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Abstract 

Major depressive disorder (MDD), one of the most prevalent psychiatric diagnoses, affects 

over 200 million people worldwide. MDD is a leading cause of disability globally and there are 

known sex differences, including higher rates of MDD in women than in men. In transcriptomic 

studies of the postmortem human brain and in rodent models of MDD, disease-associated 

gene expression changes in multiple brain regions differed between the sexes. Imbalance in 

excitatory and inhibitory neuronal signaling, impairments in astrocytic function, disruption of 

white matter, neuroinflammatory changes, and alterations in blood brain barrier integrity 

have been reported in MDD. Thus, the majority of the highly functionally specialized cell types 

of the human cortex have been implicated in this disease. To elucidate cell type and sex 

specific depression-associated gene expression changes we performed, for the first time, 

single-nucleus RNA-sequencing (snRNA-seq) postmortem in the dorsolateral prefrontal 

cortex, a cohort of male subjects and a cohort of female subjects, who were depressed and 

died by suicide, or were psychiatrically healthy. The combined dataset encompasses over 

160,000 cells across 41 computationally defined cell type clusters. Differential expression 

analysis implicated microglia and parvalbumin interneurons in females with depression and 

deep layer excitatory neurons, oligodendrocyte precursor cells, and astrocytes in males with 

depression. Meta-analysis revealed concordant patterns of depression-associated 

transcriptomic changes across both sexes within cell types, despite the prominence of distinct 

cell types in each sex individually. These data represent the first unbiased survey of cell type 

and sex specific gene expression changes in depression at a single cell resolution. 
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Resumé 

Trouble dépressif majeur (TDM), l'un des diagnostics psychiatriques les plus répandus, affecte 

plus de 200 millions de personnes dans le monde. Le TDM est l'une des principales causes 

d'invalidité à l'échelle mondiale, et il existe des différences connues entre les sexes, 

notamment des taux plus élevés de TDM chez les femmes que chez les hommes. Dans les 

études transcriptomiques du cerveau post-mortem humain et dans les modèles rongeurs de 

TDM, les modifications de l'expression génique associées à la maladie dans plusieurs régions 

cérébrales différaient entre les sexes. Un déséquilibre dans la signalisation neuronale 

excitatrice et inhibitrice, des altérations de la fonction astrocytaire, des perturbations de la 

substance blanche, des changements neuro-inflammatoires et des altérations de l'intégrité de 

la barrière hémato-encéphalique ont été signalés dans le TDM. Ainsi, la majorité des types 

cellulaires hautement spécialisés du cortex humain ont été impliqués dans cette maladie. Pour 

élucider les modifications de l'expression génique associées à la dépression spécifiques aux 

types cellulaires et aux sexes, nous avons réalisé, pour la première fois, des séquençages 

d'ARN à l'échelle du noyau unique (snRNA-seq) post-mortem dans le cortex préfrontal 

dorsolatéral, sur une cohorte d'hommes déprimés décédés par suicide ou en bonne santé sur 

le plan psychiatrique, et sur une cohorte de femmes déprimées décédées par suicide ou en 

bonne santé sur le plan psychiatrique. L'ensemble de données combinées comprend plus de 

160 000 cellules réparties dans 41 clusters de types cellulaires définis par calcul. L'analyse de 

l'expression différentielle a impliqué les microglies et les interneurones à parvalbumine chez 

les femmes souffrant de dépression, ainsi que les neurones excitateurs de la couche profonde, 

les cellules précurseurs des oligodendrocytes et les astrocytes chez les hommes souffrant de 

dépression. Une méta-analyse a révélé des schémas concordants de modifications 
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transcriptomiques associées à la dépression dans les deux sexes au sein des types cellulaires, 

malgré la prédominance de types cellulaires distincts pour chaque sexe individuellement. Ces 

données représentent la première étude non biaisée des modifications de l'expression 

génique spécifiques aux types cellulaires et aux sexes dans la dépression à une résolution 

cellulaire unique. 
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Preface to the Thesis 
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the Thesis Preparation Guidelines by the Department of Graduate and Postdoctoral Studies at 
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Gustavo Turecki and Dr. Corina Nagy, and the thesis contains four chapters. Chapter 1 is a 
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Lastly, Chapter 4 summarizes the key findings from Chapters 2 and 3 in the context of previous 

work in the field and discusses the strengths, limitations, and future directions. Texts 

connecting the individual studies were written in accordance with the guidelines outlined by 

the McGill University Graduate and Postdoctoral Studies Office. 
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pertinent to the research presented in the thesis. The writing and literature review were 

conducted by the thesis author under the supervision of G.T. and C.N. 

Chapter 2: 

This chapter contains published original results (https://doi.org/10.1038/s41593-020-0621-y) 

from single-nucleus RNA-seq in the postmortem dorsolateral prefrontal cortex (dlPFC) in male 

individuals with or without depression. The thesis author performed experiments (sample 

preparation, in situ hybridization, microscopy) and bioinformatic analysis, and wrote the 

manuscript. C.N. conceptualized the study and performed experiments (sample preparation, 

qPCR) and data analysis, and wrote the manuscript. A.T. and M.A.D. performed experiments 

(in situ hybridization, microscopy). A.T. additionally analyzed microscopy data. Y.C.W. 

performed snRNA-seq library preparation and high-throughput qPCR. V.Y. performed 

fluorescence assisted nuclei sorting. J-F.T. and K.P. analyzed data. M.S., S.J.T., and P.P. provided 
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procurement, results interpretation, and manuscript preparation. J.R. provided expertise in 

single-cell methodology and reviewed the manuscript. G.T. supervised the study, experimental 

design, data interpretation, and manuscript preparation. 

https://doi.org/10.1007/s40473-019-00192-3
https://doi.org/10.1038/s41593-020-0621-y
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Chapter 3:  

This chapter contains published original results (https://doi.org/10.1038/s41467-023-38530-

5) from single-nucleus RNA-seq in the postmortem dlPFC in female individuals with or without 

depression and a comparison to the results in males. The thesis author performed sample 

preparation, conceptualized and performed bioinformatic analysis, and wrote the 

manuscript. H.M. performed weighted gene co-expression network analysis. R.R. and K.Y. 

supported data interpretation and reviewed the manuscript. J.Y., L.F., and M-A.D. contributed 

to sample preparation. A.C. and Z.A. supported data analysis. D.C.M. aided in sample 

procurement. M.S. provided bioinformatic expertise and reviewed the manuscript. N.M. 

supported sample procurement and reviewed the manuscript. G.T. secured funding and 

supervised the study design, implementation, and manuscript preparation. C.N. 

conceptualized and performed snRNA-seq experiments, and supervised manuscript 

preparation.    

Chapter 4:  

This chapter contains an overall discussion and contextualization of the findings, strengths and 

limitations, conclusions, and future directions. This chapter was written by the thesis author 

under the guidance of G.T. and C.N. 

  

https://doi.org/10.1038/s41467-023-38530-5
https://doi.org/10.1038/s41467-023-38530-5
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Contribution to original knowledge 

In the first study, published in Nature Neuroscience, we examined using a high-throughput, 

unbiased approach, the cell type specific transcriptomic differences between male individuals 

with depression who died by suicide and psychiatrically healthy individuals. Our dataset 

represents one of the first high-throughput interrogations of the human dlPFC at single-

nucleus resolution and the first evaluation of depression-associated transcriptomic changes 

at single-nucleus resolution.  We identified the most prominent changes in gene expression in 

a subtype of deep layer excitatory neurons and in immature oligodendrocyte precursor cells 

(OPCs). The data we generated was made publicly available and subsequently used by other 

groups to further understand cell type specificity of brain pathologies at single-nucleus 

resolution.  

In the second study, published in Nature Communications, we performed the first snRNA-seq 

study of cell type specific transcriptomic changes in the dlPFC in female individuals with 

depression who died by suicide compared to psychiatrically healthy controls. Females are 

typically understudied in biomedical research and our dataset in females will be widely useful 

to the research community. We found that, unlike in males, the cell types with the most 

prominent depression-associated changes in gene expression were microglia and parvalbumin 

interneurons. A reanalysis of the previously generated male dataset in parallel, using the 

updated pipeline applied to the female dataset, confirmed the main features of our previous 

findings, and further allowed meta-analysis of results from both sexes. The meta-analysis 

revealed, within each cell type, more evidence for concordance, rather than discordance, of 

depression-associated transcriptomic differences between the sexes.  

Prior to this work, no unbiased evaluation across all brain cell types of transcriptomic 
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contributions to depression had been performed and few studies had examined similarities 

and differences in depression-associated transcriptomic patterns in male and female 

individuals, primarily pointing to strikingly distinct gene expression changes in each sex. 

Together our studies highlight that distinct cell types are likely the prominent contributors to 

depression-associated transcriptomic changes in the dlPFC in males and females which could 

explain the discordance in transcriptomic changes reported thus far in bulk tissue studies. On 

the other hand, within each cell type depression-associated changes in gene expression 

showed evidence for similarity between the sexes. The extent and mechanisms of similarities 

and differences in gene expression alterations in depression between males and females 

across brain regions remain to be elucidated. The results we have generated, which are made 

publicly available for the research community, will generate further insights into the biological 

processes contributing to depression in each sex.   
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Chapter 1: Introduction 

Preface to Chapter 1 

We start by discussing essential background information on depression, the phenotype of 

interest in the research presented here, and a brief overview of the major biological processes 

involved in MDD. We then examine some of the evidence from molecular studies in human 

individuals, and in animal models of stress and depression, for biological sex differences in 

MDD. Next, we discuss some of the current literature implicating specialized brain cell types 

in MDD pathology. Finally, we delve into the single-cell and single-nucleus technologies which 

have been employed to dissect the human brain biology and pathology in great detail in the 

past decade, which provide the necessary tools for our investigation of cell type specific 

transcriptomic contributions to MDD. We end with a clear statement of the objectives of the 

research presented which brings together open questions about the cell type and sex 

specificity of molecular changes in the brain in depression and then applies single-nucleus 

technology to answer these questions.  
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Depression 

Major depressive disorder (MDD) is a psychiatric condition characterized by persistent low 

mood, anhedonia, feelings of guilt and worthlessness, and suicidal ideation among other 

symptoms1. MDD affects over 200 million people globally and is a leading cause of disability 

worldwide2. A diagnosis of depression increases the risk for suicide3. There are genetic 

contributions to depression, which has a modest heritability (around 30-40%), and recent 

genome-wide association studies (GWAS) have identified over 100 genetic loci that are 

associated with the disorder4,5. Brain imaging studies indicate region specific changes in brain 

activity and morphology in depression and brain region specific transcriptomic and epigenetic 

changes have been reported in post-mortem studies.  

Depression is quite heterogenous in its presentation and there can be varying levels of 

symptom severity, recurrence, treatment resistance, and associated comorbidities such as 

anxiety disorders and substance use disorders. Moreover, the incidence of depression in 

higher in women than in men2 and the symptomatology may also differ between the sexes. 

There is accumulating evidence that the molecular basis of depression may also differ to some 

extent between the sexes.  

Biological mechanisms of depression 

Several theories exist about the etiology of MDD. One theory which is well supported by the 

evidence models MDD as a dysregulation of the stress response system6,7. The hypothalamic-

pituitary-adrenal (HPA) axis normally responds to stress by increasing secretion of 

corticotropin releasing hormone (CRH) from the paraventricular nucleus (PVN) of the 

hypothalamus which in turn leads to release of adrenocorticotropic hormone (ACTH) from the 

pituitary gland and subsequently the release of corticosteroids from the adrenal glands6. 
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Negative feedback mechanisms acting through the glucocorticoid receptor (GR) then return 

corticosteroid levels back to baseline when the stressful conditions pass. However, evidence 

suggests that components of the system including the GR, CRH, and corticosteroids are not 

properly regulated in depression and in animal models of depression6. Interestingly, in 

addition to this hormonal stress response, the sympathetic nervous system’s response to 

stress and restoration of homeostasis by the parasympathetic nervous system is also likely 

disrupted in depression8,9. Activation of the parasympathetic nervous system through the 

vagus nerve as a potential therapy for depression is an active area of research9. Related to the 

involvement of the HPA axis and the autonomic nervous system, disrupted modulation of 

inflammation has also been proposed as a mechanism for depression etiology6,8,9.  

Within the brain, imbalance in excitatory and inhibitory neurotransmission, glial cell and white 

matter dysfunction, neuroinflammation and blood brain barrier deficits have all been linked 

to MDD. The potential contributions of major brain cell types to MDD are discussed in greater 

detail in a subsequent section. Of note, the monoaminergic neurotransmitter systems – 

serotonergic, norepinephrinergic, and dopaminergic – given their role in regulating mood, 

emotions, and reward processing have been widely studied in depression and related animal 

models, investigating the monoaminergic hypothesis of depression6,7. In fact, selective 

serotonin reuptake inhibitors (SSRIs) and selective serotonin-norepinephrine reuptake 

inhibitors (SNRIs) are first line pharmacological treatments for depression, and are very 

effective for some patients, although their benefits are by no means universal. Lastly, gene-

environment interactions, particularly in the context of exposure to early life stress, contribute 

to depression etiology, likely through epigenetic mechanisms7,10.  
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Sex differences in depression 

The most prominent sex difference in MDD is the higher incidence of MDD in women 

compared to men11. Further, women are more likely to experience comorbid anxiety and 

recurrent depression whereas men are more likely to experience comorbid substance use 

disorder12 and to die by suicide3. Sex differences may also exist at the genetic level with sex-

stratified GWAS implicating distinct loci in men and women13.  

Several studies which have attempted to connect brain imaging findings with MDD-associated 

molecular changes have also uncovered sex-specificity14,15. For example, one study found 

differences in the resting state functional connectivity specific to males and females when 

examining the components of the default mode network (DMN) as well as regions previously 

shown to have molecular sex differences in MDD. In particular, they found that oft reported 

observations of hyperconnectivity in the DMN in MDD were mostly driven by males. Utilizing 

genes pre-associated with depression from transcriptomic studies and relying on publicly 

available brain transcriptomic atlases, they further found the expression of distinct genes to 

be associated with male and female specific alterations in resting state functional 

connectivity14. Similarly, another group focused on structural imaging and exploring the 

relationship of cortical thickness, surface area, and gyrification as well as subcortical volumes, 

with MDD genetic susceptibility and transcriptomic patterns revealing sex specificity15.  

A systematic review from 2018 examined 20 studies published over 10 years interrogating 

biological sex differences in the pathophysiology of depression16. The authors mentioned 

differences in the levels of sex hormones including androgens, such as testosterone, as well 

as female sex hormone levels which vary during puberty, perimenopause, pregnancy and 

childbirth as potential contributors to sex differences in depression, but pointed to the 
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limitation that not many studies evaluated directly measured gonadal hormone levels making 

it difficult to draw conclusions16. Further the authors mentioned baseline and depression-

related differences between males and females in the monoaminergic, GABA-ergic, and 

glutamatergic neurotransmission systems, in neurotrophic factors, and in pro- and anti-

inflammatory cytokines as additional components factoring into MDD-associated sex 

differences16. The authors’ conclusions are in line with brain molecular differences between 

the sexes in the stress response system both at baseline and in response to stress in humans 

and in animal models17. 

Sex specificity of MDD associated transcriptomic changes in the human brain 

Not many studies have directly and specifically compared MDD-associated transcriptome-

wide gene expression differences in the human brain between the sexes. Further, some 

studies have been biased towards one sex, mostly males given that the brain tissues used are 

often from those who died by suicide and thus less likely to include females. A widely cited 

and pioneering study, by Labonté and colleagues, not only identified little overlap of MDD-

associated differentially expressed genes (DEGs) in males and females, but also identified 

overall lack of concordance in threshold free patterns of MDD-associated transcriptomic 

change between the sexes across several brain regions18. Gene co-expression module analysis 

supported the sex differences in MDD-associated gene expression changes18. These findings 

were further bolstered by genetically manipulated animal models which showed similar sex 

specific patterns as in the human cohorts18. 

Several studies re-examining the Labonté dataset focusing on long non-coding RNAs also 

found striking differences in MDD-associated changes in expression of lincRNAs in males and 

females across brain regions19,20. Manipulating the expression of these lincRNAs in rodent 
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models recapitulated depressive like behaviors in a cell type and sex specific manner19,20. 

These studies also detected striking baseline differences in lincRNA expression in the brain 

between the sexes20. Further, a transcriptomic study across several cortical regions focusing 

on post-traumatic stress disorder also examined a cohort of individuals with MDD21. The 

authors found considerably fewer DEGs in male MDD cases versus controls in each of the 

cortical regions, compared to the number of DEGs between female MDD cases versus controls 

in the same regions21.  

Additionally, several meta-analyses have specifically examined sex differences in gene 

expression differences in depression in the brain. Most of these studies have identified 

differences in depression associated changes between the sexes, even if not all studies report 

perfectly consistent findings.  

A 2015 meta-analysis assessed MDD-associated gene expression differences in the human 

brain using eight microarray datasets from three brain regions (the anterior cingulate cortex 

(ACC), the dlPFC, and the amygdala) with separate datasets corresponding to male and female 

cohorts for each region22. The meta-analysis identified 566 genes associated with MDD using 

a lenient FDR of 25%, and 39 of these genes showed an effect of sex although not necessarily 

revealing opposite direction of effect between males and females22.  

A subsequent 2018 meta-analysis23 specifically examined differential gene expression 

associated with MDD stratified by sex, using the same microarray datasets as analyzed by Ding 

et al., 2015 but with a methodological approach designed to examine sex differences. This 

meta-analysis found that most of the DEGs were sex specific and the DEGs in common 

between the sexes primarily showed opposite directions of effect23. Further, in threshold free 
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comparisons the authors observed evidence for discordance in patterns of MDD-associated 

gene expression between males and females23.  

Most recently, a meta-analysis examined transcriptomic differences in depression across 

several brain regions, combined both RNA-seq and microarray studies (same as Ding et al., 

2015), and performed sex-stratified analyses24. This meta-analysis specifically focused on a 

subset of 269 genes implicated in MDD by a recent GWAS4 and found two genes (SPRY2 and 

ITPR3) with evidence for overall differential expression in MDD, and a handful of mutually 

exclusive DEGs in male (4 genes, including ITPR3) and female (3 genes, including SPRY2) 

specific sex-stratified analysis24. The study also found 6 genes with opposite direction of effect 

in males and females when examining sex by phenotype interactions, including CKB and 

UBE2M which were increased in expression in the depressed males and MANEA which was 

increased in expression in the depressed females per sex-stratified analysis. These results 

provide further support that in males and females, distinct genes may show differential 

expression related to depression in the brain.  

However, it is important to note that the above meta-analysis incorporates results from Ding 

et al., 2015 and Labonté et al., 2017 rather than previously unexplored biological samples. 

Additionally, some technical caveats require consideration – the above-mentioned meta-

analysis studies have combined data from cohorts which have technological differences 

between them – such as different microarray platforms used22-24, and in some cases the meta-

analyses combined data from separate cohorts of males and females of a necessity since 

suitable datasets with comparable representation of males and females are few in number.  

Apart from meta-analyses, several recent reviews have discussed the molecular basis of sex 

differences in MDD25,26. These reviews have suggested a difference in the role of microglia and 
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excitatory neurons in depression in males and females. Seney et al., 2022, examined the 

evidence for the dlPFC, ACC, and basolateral amygdala (BLA) from postmortem studies, and 

concluded that region specific alterations in excitatory and inhibitory signaling balance 

involving both somatostatin and parvalbumin neurons show sex differences in MDD. Further, 

the authors pointed to more activated state of microglia in females at baseline compared to 

males and that the MDD-associated changes in microglia may be in opposite directions 

between the sexes25. Bollinger, 2021 further suggests that the difference in microglial state 

and dendritic spine density between the sexes in rodent models of stress may be mediated by 

the effect of glucocorticoids and estrogen. Moreover, Bollinger concludes that in human males 

with MDD neuronal transcripts are decreased and microglial transcripts are increased, 

whereas the opposite is true for females26. However, it is important to note that the research 

so far, especially in humans has been in bulk tissue samples, and thus the contributions of 

different cell types to these overall apparent sex differences remain to be established.   

Sex differences in animal models of MDD 

Although much of the research in animal models was restricted to males in the past, many 

recent studies have examined sex specific effects in rodent models of MDD. Animal models 

cannot recapitulate fully the complex and heterogeneous nature of MDD but different aspects 

of MDD, such as anhedonia or comorbid anxiety, and different causal factors, such as social 

isolation or early life adversity, can be captured in animal models.  

Several reviews have focused on sex differences in animal models of MDD. Not all models of 

stress have the same effect in male and female animals. Chronic variable stress (CVS), chronic 

unpredictable mild stress (CUMS), and social isolation paradigms produce different responses 

in male and female rodents, whereas the sex-specific effects seem less pronounced for the 
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learned helplessness paradigm27.  Early life stress models such as maternal separation shows 

effects in both males and females, whereas models such as chronic social defeat stress (CSDS) 

have only recently been adapted for use in female mice27.  

Mena et al., 2019 summarized the evidence from animal models for sex differences within 

candidate biological systems of interest in depression. Components of the HPA axis, including 

the GR and CRH, show evidence for sex-specific differences in response to stress at the levels 

of gene expression and epigenetic modulation6. Similarly, the brain-derived neurotrophic 

factor (BDNF), serotonin receptors and transporters, and GABA-ergic and glutamatergic 

signaling components show some evidence of sex differences in animal models of stress, and 

in some cases in human studies, in terms of gene expression and regulation6. Interestingly, in 

rodent models, the estrogen receptors, ESR-alpha and ESR-beta contributed to sex differences 

in resilience and susceptibility in stress models, and some of the effects seem to be mediated 

through components of the HPA axis27. 

Additional studies have further contributed to our understanding of this phenomenon. A 

study assessing sex differences in response to oral cortisol administration, a mouse model of 

stress-related disorders, using wild-type and BDNF mutant mice reported several sex 

differences overall and sex-specific changes in response to cortisol not only in behavior but 

blood cortisol levels and adrenal gland weights, reflecting sex differences in the hypothalamic-

pituitary-axis function28. Moreover, transcriptome wide patterns of hippocampal gene 

expression changes related to oral cortisol administration were dependent on hippocampal 

sub-region, genotype, and sex28.  

Another study examining the effects of CSDS female mice compared to previous results in 

males, found sex-specific increases in in peripheral inflammatory markers29. Further, these 
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increases were partially reversed by a phytochemical combination therapy. Moreover, in the 

PFC the transcriptomic effect of combination therapy of phytochemicals, designed to decrease 

inflammation and modulate synaptic effects of stress, partially rescued the transcriptomic 

effects of CSDS in each sex29. However, the transcriptomic effects of CSDS stress on the PFC in 

each sex were distinct29.  

A recent transcriptomic study of the dorsal and ventral hippocampus in a rat model of chronic 

restraint stress, found concordance between the effects of stress between the two regions 

within each sex and a concordance between the ventral hippocampal gene expression 

changes in females and dorsal hippocampal gene expression changes in males30. Although 

there were some overlapping DEGs and pathways affected by stress in both sexes, most 

affected genes and pathways identified were sex specific30. The behavioral and somatic effects 

of stress showed sex differences. Further the authors identified sex differences, both at 

baseline and in stress response, in the levels of protein products related to BDNF signaling and 

glutamatergic neurotransmission which showed hippocampal sub-region specificity30.  

A series of studies in rodent models found sex differences in microglial states and the 

expression of immune function related genes at baseline and in response to acute or chronic 

stress31-33. More specifically, at baseline in females in the medial prefrontal cortex (mPFC), 

microglia were more shifted towards a primed state versus a ramified state compared to 

males, but stress exposure decreased this tendency for a more activated morphology in 

female microglia31.  Similarly, in an examination of the orbitofrontal cortex (OFC), dorsal 

hippocampus, and the BLA, the ratio of primed to ramified microglia and the changed 

expression of a set of inflammatory markers showed sex and brain region specificity in 

response to acute or chronic stress32. Further, the behavioral effects of varying stress duration 
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(14 or 28 days) differed between male and female mice, with only males showing earlier 

effects at 14 days33. Moreover, several genes related to microglial function showed sex specific 

alterations in response to stress in the PFC33.  

Finally, the differential contributions of sex chromosomes and gonadal hormones to sex 

differences in stress response within rodent models are beginning to be dissected using the 

four-core genotypes mouse model where the hormonal status and sex chromosome 

configuration of mice are decoupled34. Despite the limitations of animal models in 

recapitulating complex human phenotypes such as depression, the ability to perform such 

informative genetic and molecular manipulations will strengthen our understanding of brain 

molecular differences between the sexes and their role in depression.   

Taken together the evidence from animal models of depression, or more generally stress, 

suggest that there are sex differences in the behavioral response to stress, in peripheral 

markers of stress and inflammation, and in brain transcriptomic changes associated with 

stress. Moreover, these sex differences exist in interplay with gene expression differences due 

to brain region variations, types of stressors, genetic susceptibility, and effect of treatments.  

Cell types implicated in depression 

Our understanding of cell types and cell states in the human brain is evolving as the 

technologies and approaches for defining them evolve. Nevertheless, studies of depression 

and animal models of depression have supported the involvement of a wide variety of the 

well-established cell types of the cortex in this disease.  Changes in neuronal and glial number 

and morphology in cortical areas, specific to cell subtypes or cortical layers, were detected in 

early postmortem studies of MDD35. More recent molecular studies have lent further support 

to the involvement of a broad range of cortical cell types in MDD.  
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Neuronal contributions 

Transcriptome wide studies of depression in the human brain implicated genes related to 

synaptic and neuronal functions in depression. For example, an early microarray study of the 

postmortem dlPFC in depression identified genes related to synaptic vesicles (e.g. - SYN1, 

CALM2),  dendritic spines (RAB4B) and axon growth (TUBB4) as showing decreased expression 

in MDD36. The results were confirmed with in situ hybridization, and supported by results from 

a rat model of depression, and pointed to GATA1 as a repressive transcription factor 

contributing to the decrease in expression of these genes related to neuronal function36. A 

meta-analysis of gene co-expression in 11 microarray studies of depression across several 

brain regions, identified a gene module overlapping GWAS-implicated MDD-genes which was 

enriched for glutamatergic and GABAergic gene sets as well as containing genes related to 

neuron growth and development (BDNF, ephrins)37.  

Among more targeted studies, a variant specific comparison of synapsin genes SYN1, SYN2, 

and SYN3, demonstrated that specific transcript variants of SYN1 and SYN2 were increased in 

expression in the PFC (BA10) in individuals with MDD, in contrast to Kang et al. (2012)38. The 

increased expression of SYN1 was in line with an increased H3K4me3 (activating) histone 

modification at the SYN1 promoter. Further, for SYN2, a decrease in methylation was found at 

several CpGs in its promoter in individuals with MDD which could epigenetically contribute to 

its increased expression39. 

Excitatory and inhibitory neuronal subtype contributions 

Neurons are a heterogeneous population of cells. In the adult human cortex, there are not 

only excitatory and inhibitory neuronal populations but also great diversity within these 

populations. For example, excitatory neurons differ in their inputs and their projections 
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according to their cortical layer location and inhibitory neurons are classified into sub-

categories based on their expression of neuropeptides, their morphology, and their role in the 

cortical microcircuitry.  

Evidence from postmortem brain studies and animal models of stress suggest that there are 

changes in the glutamatergic neurotransmission system in the cortex40. Deficits in the 

GABAergic neurotransmission system in the cortex have also been reported in human and 

animal models studies, strongly implicating somatostatin expressing neurons, and to some 

extent parvalbumin (PV) expressing neurons40,41. Together, the evidence suggests an 

imbalance of inhibitory and excitatory signaling in the cortex in depression, which may be 

associated with a shift from the executive network to the DMN41.  

 
A targeted assessment of glutamate receptor gene expression measured a panel of 21 

metabotropic and ionotropic glutamate receptors in the dlPFC in MDD individuals and 

controls. Five of the 21 genes, including ionotropic and metabotropic subunits, showed higher 

expression in cases than controls42. Further, a sex-stratified assessment revealed that the 

majority of glutamate receptor genes showed increased expression in female cases compared 

to female controls specifically42. Similarly, a screen of 200 genes related to glutamatergic 

function including glutamate receptors and transporters, glutamate metabolizing enzymes, 

and selected neurotrophic factors and signaling molecules, found four genes upregulated in 

MDD cases in the PFC, including an NMDAR subunit gene and a mitochondrial glutamate 

transporter43.  

One study examining somatostatin positive inhibitory neurons44, using a mouse model of 

stress, found reductions in the number of this type of neuron in both male and female mice 

in response to stress, but found genes in the EIF2 signaling pathway of stress related 
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transcription changes were reduced in expression in males while genes related to growth 

factor signalling were reduced in expression in female mice. Another recent study focusing on 

perineuronal nets (PNNs) in the postmortem ventromedial PFC45, found higher PNN density 

around neurons in deep cortical layers in depressed individuals with a history of experiencing 

childhood abuse. PNN intensity and the area of the neurons covered by PNNs was also 

increased in the same group. PNNs primarily surround PV interneurons in the human cortex 

and the percentage of PV interneurons surrounded by PNNs was higher in the depression 

individuals with a history of childhood abuse45. Interestingly, the expression of genes related 

to PNN production was increased in OPCs (VCAN, TNR, PTPRZ1) in the depressed individuals 

who had been abused in childhood. These results suggest that inhibitory PV interneurons and 

their surrounding extra-cellular matrix may be altered in depression, in the context of 

childhood abuse, and OPCs may be contributing to this process.     

The above discussion barely skims the surface of the existing literature implicating various 

cortical neuronal subtypes in depression, but already reveals a complex molecular and cellular 

landscape. A complete picture of the relative contributions of the numerous neuronal types 

of the cortex to depression and the association of their transcriptomic state to MDD, remains 

to be established.  

Glial contributions 

It is not only neurons that have been studied or implicated in depression in the brain. Each of 

the major glial cell types, including astrocytes, oligodendrocytes, microglia, and endothelial 

cells have in turn been investigated and proposed to play a role in the brain in depression.  

Astrocytes 

Astrocytes are part of the “tripartite synapse” and perform essential functions in the brain 
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including modulating synaptic transmission, for example by uptake of neurotransmitters, and 

providing trophic support to neurons. Astrocytes are known to be connected to each other in 

a network and to communicate through the flow of calcium ions through gap junctions 

between the cells. Several lines of evidence suggest that astrocytes are involved in depression 

pathology.  

Genes important for astrocytic functions, such as GJA1 and GJB6 which encode connexins that 

form gap junctions between astrocytes, have been shown to be downregulated in the PFC in 

suicide completers and in individuals with depression, using genome wide and targeted 

approaches46,47. The decreased expression of these genes was shown to be associated with 

epigenetic modulation via histone modification, specifically increased presence of the 

repressive mark, H3K9me348. The SOX9 transcription factor, another core astrocytic gene 

which likely regulates the expression of the connexins, was also decreased in these 

studies46,47.  The reduction of connexins was verified at the protein level46 and in additional 

brain regions48.  

Further, the glial acidic fibrillary protein (GFAP), which is expressed in a subset of astrocytes 

and considered to be a marker for those astrocytes, was decreased in depressed individuals, 

both at the mRNA and protein levels in the thalamus and the caudate49, in addition to 

decreased mRNA expression in the PFC48, in depressed individuals.  

Moving beyond the molecular to the cellular level, there is evidence for changes in 

morphology of astrocytes, with white matter astrocytes showing more elaborate branching 

patterns, in the ACC in individuals with depression50. Moreover, the density of astrocytes 

immunoreactive for GFAP was decreased in PFC gray matter, and in thalamus and caudate51. 

Similarly, the density of astrocytes immunoreactive for vimentin, another intermediate 
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filament protein similar to GFAP which is enriched in but not exclusive to astrocytes, was 

decreased in PFC gray and white matter and in caudate51.  

Oligodendrocyte lineage cells 

An early microarray study of the temporal cortex in depressed and control individuals from 

the Stanley consortium (https://www.stanleyresearch.org/brain-research/) indicated a 

downregulation of genes related to myelin and oligodendrocyte function such as MAG, MOG, 

MOBP, and PLP1, and a subset of these results were validated52. The differentially expressed 

genes were not exclusively oligodendroglia related, since genes involved with synaptic 

function and axon growth were also implicated52. Nevertheless, transcriptome wide gene 

expression screening pointed towards oligodendroglial differences in depressed patients.  

Molecular changes in the oligodendrocyte lineage, comprising oligodendrocyte precursor cells 

as well as myelinating and mature oligodendrocytes which are essential cellular components 

of the white matter, have been reported in depression related pathologies. A comprehensive 

study profiled DNA methylation and gene expression differences in the ACC between 

depressed individuals with a history of experiencing childhood abuse and psychiatrically 

healthy controls and found evidence both at the epigenetic and transcriptomic level for 

dysregulation of genes involved in myelin function, thus implicating the oligodendrocyte 

lineage (OL)53. DNA methylation differences were shown to be specific to the OL using 

fluorescence-assisted nuclei sorting (FANS) and gene expression changes specific to myelin 

genes were consistent with a rodent model of early life adversity53. Further, studies of the ACC 

white matter showed decreased density of SOX10+ OL cells in abused individuals and a 

decrease in axon diameter and myelin density53.  

A related study found that the presence of astrocytic connexins was decreased on 

https://www.stanleyresearch.org/brain-research/
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oligodendrocytic cells and on myelinated axons in depressed individuals in the ACC54. Further 

the expression of oligodendrocytic connexin genes (GJB1 and GJC2) were decreased along 

with several genes encoding proteins that interact with and regulate connexins (OCLDN, CAV1 

and CAV2)54. Most of these effects were not specific to depressed individuals with childhood 

abuse, but applicable to the depressed group overall. Altogether the authors concluded that 

there may be dysregulation of gap junctions between astrocytes and oligodendrocytes, which 

can have a functional impact on myelin, in depressed individuals.  

Further, examination of fatty acids, specifically choline glycerophospholipids, in the ACC white 

matter revealed increased concentration of fatty acids related to the arachidonic acid 

synthesis pathway specifically in depressed individuals with a history of experiencing 

childhood abuse, but not in depressed individuals without a history of childhood abuse55. 

These results add support for molecular differences in myelin, including lipid composition, in 

depression related phenotypes, further implicating the oligodendrocyte lineage cells. 

Moreover, the arachidonic acid synthesis pathway is involved in inflammation, a process that 

has been linked to depression by multiple lines of evidence, some of which are discussed 

below55.  

Microglia and endothelial cells – inflammation and the blood brain barrier 

Many studies have examined the role of inflammation in depression, both in the periphery 

and in the central nervous system. While most studies indicate an involvement of 

inflammatory processes and molecules, both in terms of genetic variation and gene 

expression, the relationship does not seem to be a straightforward increase in inflammation 

in all individuals with depression56. An evaluation of the expression of seven interleukin genes 

in the dlPFC found evidence for decreased expression of the pro-inflammatory cytokine gene 
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IL1A in individuals with MDD and individuals with post-traumatic stress disorder (PTSD)57. On 

the other hand, the gene expression of TNF-A, another pro-inflammatory cytokine, was found 

to be increased in individuals who died by suicide, in individuals with MDD, and in individuals 

with MDD who died by suicide in the dlPFC58. The authors found evidence for epigenetic and 

post-transcriptional regulation of TNF-A expression58.  

While these studies were more targeted, another study performed RNA-seq in the dentate 

gyrus (DG) region of the hippocampus to compare MDD cases and controls, followed by 

specific comparisons between controls and MDD cases with recurrent or single episodes and 

with or without suicide, as well as sex stratified analyses59. The study found differences in 

expression of a variety of molecules related to inflammation including cytokines (CCL2) and 

molecules downstream of interferons (ISG15, IFI44L, IFI6) and modulators of cytokine 

response (SOCS3)59. Again, the pattern of these expression changes was more nuanced than 

a direct up or downregulation of inflammation and showed evidence for sex and depression 

subtype specificity.  

Microglia are the resident immune cells of the brain, while endothelial cells form the 

capillaries of the blood brain barrier, and both cell types play an important role in regulating 

inflammation in the brain in response to injury and disease. Thus, the findings of dysregulation 

of inflammatory molecules in the brain in depression point to these cell types. The above-

mentioned studies considered bulk tissues for molecular analysis. On the other hand, one 

study evaluated IBA1 positive microglia in the white matter of the ACC and found an increased 

proportion of primed to ramified microglia in depressed suicide individuals and an increase in 

blood vessel associated IBA1 positive macrophages60. Gene expression measurements, in 

bulk, of several microglia and macrophage markers, pro-inflammatory molecules, and cell 
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adhesion molecules showed increases in IBA1, CD45, MCP-1, ZO-1, in MDD60. Most recently, 

a pre-print reported gene expression differences in microglia from the occipital cortex grey 

matter but not the corpus callosum white matter in depressed individuals compared to 

controls, and evidence for differences in phagocytic pathways and immune response61. 

In mouse stress models, a recent study found sex specific and brain region specific changes in 

expression of endothelial cell genes such as Cldn5, which was decreased in female mice in the 

PFC, but in male mice in the nucleus accumbens (NAcc)62. CLDN5 was also found to be 

decreased in both male and female humans with MDD in the NAcc62, but only in females in 

the PFC. The authors also found sex specific transcriptome wide effects of stress paradigms 

on gene expression in mouse brain endothelial cells. Thus, blood brain barrier and endothelial 

cell molecular state is likely to be altered in MDD.  

The implication of such diverse cell types in MDD and the distinct roles these cell types seem 

to play in the pathology of MDD necessitate more comprehensive cell type specific 

assessments of molecular contributions to the disease. Recent advances in single-cell and 

single-nucleus technologies can greatly aid in performing the requisite cell type specific 

studies, and are discussed in detail in the following section.  
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Abstract 

Purpose of review: This review summarizes some of the most recent studies on single-cell 

resolution sequencing of the post-mortem human brain and the application of these 

techniques for the study of psychiatric and neurological disorders.  

Recent findings: Over the last several years, researchers have optimized single-cell 

transcriptome and genome sequencing in post-mortem human brain tissue. This has given us 

unprecedented access to cell-type specific gene expression profiles and somatic mutations 

unique to pathological states. Additionally, we can now measure epigenetic information from 

individual brain cells and with advanced statistical approaches, we can focus on the key cell-

types underlying psychiatric and other brain phenotypes.    

Summary: A new era of cell-type specific and single-cell resolution studies of the human brain 

is underway. With proper application of rapidly advancing laboratory and data analysis 

techniques, we should witness important advances in our understanding of molecular 

changes associated with psychiatric and neurological phenotypes.  
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Introduction  

 The extensive specialization and diversity of cell-types in the mammalian brain has 

been of great interest since the earliest days of neuroscience. Over the decades, technological 

advances have allowed us to interrogate various features of brain cell-types, including their 

morphology, electrophysiology, and molecular biology, in ever-increasing detail. Many of 

these techniques provide some insight into the functioning of single brain cells, such as patch-

clamp recordings of individual neurons in brain slices or tracking of fluorescently labelled 

microglia in vivo. However, with the advent of single-cell next-generation sequencing (NGS) 

techniques, we are now able to study in minute detail the identity, function, and state of 

individual brain cells.  

Studies of the human brain at single-cell resolution have become an invaluable 

resource for teasing apart the interactions between members of this complex cellular 

ecosystem. Cell-type specificity provided by single-cell approaches allows us to hone in on the 

individual components contributing to complex neurological and psychiatric disorders. In the 

context of psychiatry, there has been considerable interest in measuring cell-type specific 

gene expression changes associated with disease, detecting somatic mutations with single-

cell genomics, and pin-pointing the cell-types which contribute most prominently to a given 

psychopathology.  

Single-cell sequencing technologies 

Currently available techniques encompass single-cell level measurements of genomes, 

transcriptomes, proteomes, and epigenomes, potentially combined with morphological, 

spatiotemporal, and electrophysiological data (Figure 1) 1,2.  
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Some single-cell and single-nucleus RNA-seq (scRNA-seq and snRNA-seq) technologies 

rely on fluorescence assisted sorting of individual cells or nuclei into the wells of a microplate 

3-5 followed by preparation of libraries from the RNA extracted in each well. Many flavours of 

microfluidics based technologies including Drop-seq 6, inDrops 7, DroNc-seq 8, sNucDrop-seq 

9, and 10X Chromium 10, among others, have also been developed for scRNA-seq and snRNA-

seq. These techniques rely on microfluidic devices which encapsulate individual cells or nuclei 

in oil droplets as the suspension is passed through the device. Each cell or nucleus is tagged 

with a unique barcode and mRNA molecules are captured by poly-A priming. Library 

preparation is performed in bulk and after sequencing, the reads are demultiplexed using 

barcodes, while unique molecular identifiers (UMIs) are used to generate counts of different 

RNA molecules originating from individual nuclei. Plate-based methods are generally low-

throughput but allow for full-length cDNA sequencing whereas droplet-based methods can 

be ultra-high throughput (scalable up to millions of cells) but suffer from higher dropout rates 

and 3’ biased reads.  

A suite of single-cell level NGS approaches have also been developed utilizing 

combinatorial indexing for measuring transcription 11,12, DNA methylation 13, chromatin states 

14-16, and even multiple modalities of information 17. These approaches are based on split-

and-pool strategies and involve sorting and tagging individual cells or nuclei with barcodes, 

followed by sequential pooling and attachment of additional barcodes. The numbers of 

barcodes used and cells pooled are adjusted such that the probability of multiple cells 

receiving the same combination of barcodes is very low. These methods are less expensive 

and may require less specialized equipment than droplet-based methods, but they can result 
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in higher multiplet rates, when multiple cells or nuclei are tagged by the same barcode 

combination.  

For profiling DNA sequence variations at the single-cell level, most studies thus far 

have relied on sorting of individual nuclei into the wells of a microplate. However, recently, 

commercial technology for droplet-based high-throughput single-nucleus genome 

sequencing has been created which holds promise for detecting both copy-number variations 

(CNVs) and single-nucleotide variations (SNVs) at single-cell resolution 18.  

Droplet-based profiling of open chromatin in single-cells has also been developed 19. 

Furthermore, several techniques for acquiring multimodal data at single-cell resolution exist, 

such as CITE-seq which measures cell-surface epitopes and transcriptomes 20 or Patch-seq 

which measures electrophysiological recordings and transcriptomes 21.  

Thus, a wide variety of sequencing technologies are available for single-cell resolution 

studies of complex tissues. However, not all technologies are equally applicable to human 

brain tissue, especially archived, frozen, post-mortem brain tissue which is of primary interest 

when studying psychopathology. For example, scRNA-seq is at best extremely challenging, 

and often impossible, for frozen post-mortem brain tissue because of the difficulties of 

extracting intact cells from such tissue, especially neurons which have extensive and fragile 

processes. Fortunately, several studies have indicated that identification of cell-types based 

on single-nucleus gene expression profiles is comparable to single-cell transcriptomic profiles, 

although the RNA content of the whole cell and the nucleus are not identical 22,23. In this 

review, we briefly touch upon single-cell sequencing studies of the mouse brain but focus 
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mainly on studies that have harnessed NGS to examine gene expression (Table 1) and genomic 

variation (Table 2) at the single-cell level in the human brain.    

Single-cell and single-nucleus sequencing of the mouse brain 

 Given that rodent models of psychopathology and neurological disease are a mainstay 

of modern neuroscience, in the past few years a plethora of studies have been published on 

single-cell and single-nucleus sequencing of the mouse brain. Many different brain regions 

have been profiled by scRNA-seq including cortical regions 8,24-26, subcortical structures 27, and 

the hippocampus 8,24,28,29. Different stages in brain development have been investigated in 

detail 30-32 and specific cell-types have been targeted, such as oligodendrocytes 33,34 or 

microglia 35-37. In many experiments, cell-type specific signatures of a variety of experimental 

perturbations have been measured 26,29,38.  

In fact, single-cell transcriptomics has recently produced several large scale atlases of 

mouse brain cellular diversity 12,39-41. Moreover, single-cell resolution ATAC-seq studies of 

several mouse brain regions have recently been published 14-16. The explosion of single-cell 

and single-nucleus sequencing studies of the mouse brain has previously been reviewed in 

detail elsewhere 42-45. 

Single-cell and single-nucleus transcriptomics of the healthy human brain   

Darmanis et al. (2015) performed one of the first scRNA-seq studies of human brain in 

surgically excised non-pathological tissue from the adult human temporal cortex of 8 epilepsy 

patients and on developing brain samples from 16 to 18-week old fetuses. They profiled gene 

expression in over 400 individual cells using Fluidigm C1 chips 5. Unbiased (i.e. unsupervised) 

and biased (i.e. supervised) clustering approaches, now commonplace in scRNA-seq, and cell-
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type annotation, identified excitatory and inhibitory neurons as well as major glial cell-types. 

Soon after, Krishnaswami et al. (2016) established one of the first protocols for snRNA-seq on 

human post-mortem brain tissue. They used fluorescence assisted nuclei sorting (FANS) to 

place individual neuronal nuclei, selected based on NeuN expression, into the wells of a 

microplate and used a SMART-seq approach for generating libraries 3. Their work 

demonstrated on a small-scale the feasibility of snRNA-seq in archived post-mortem tissues, 

such as those accessible through brain banks.   

The same year, Lake et al. (2016) performed Fluidigm C1 chip capture of NeuN positive 

FAN sorted neuronal nuclei to profile more than 3000 neurons from various cortical regions 

of a single healthy subject. They identified numerous inhibitory and excitatory neuronal 

subtypes which were in broad agreement with the cell-types described by Darmanis et al. 

(2015), but revealed finer subtypes powered by the larger dataset, such as layer-specific and 

region-specific excitatory neuron subtypes 46. 

Habib et al. (2017), created an snRNA-seq method they termed DroNc-seq and applied 

it to several post-mortem human prefrontal cortex (PFC) and hippocampus samples, in 

addition to mouse brain tissue. DroNc-seq incorporated several adjustments to the Drop-seq 

6 protocol, including an alteration to the dimensions of the microfluidic device to allow for 

capture of nuclei, which are smaller than cells, and  inclusion of intronic reads in analyses due 

to the preponderance of pre-mRNA in the nucleus. They were the first to demonstrate the 

feasibility of droplet-based high-throughput snRNA-seq in archived post-mortem human 

brain tissue 8. Furthermore, there was good correspondence in cell-types between the mouse 

and human datasets and with the findings of Lake et al. (2016).  
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Lake et al. (2018) independently designed an adaptation of Drop-seq for snRNA-seq. 

Their modifications included heat-based lysis of nuclei and incorporation of intronic reads, 

similar to Habib et al. (2017). Moreover, they performed an assay for single-nucleus 

chromatin accessibility based on combinatorial barcoding, in addition to snRNA-seq, and used 

their snRNA-seq findings to refine clustering of single-nuclei based on chromatin accessibility 

47. Although tissue was obtained from healthy subjects, the cell-type specific chromatin 

accessibility information generated was used to indirectly assess cell-type involvement in 

neurological and psychiatric diseases.     

 While most studies have focused on the cortex, Welch et al. (2019) performed high-

throughput snRNA-seq on more than 40,000 nuclei derived from archived substantia nigra 

samples from 7 healthy donors. They developed and applied a single-cell data analysis tool 

called LIGER for aligning the data from multiple individuals into a consolidated dataset. 

Clustering driven by inter-individual variability is a recurring problem in snRNA-seq datasets, 

and LIGER was able to mitigate this effect. They identified the expected subtypes of glial and 

neuronal cells, including dopaminergic neurons. Moreover, they were able to pin-point 

subject specific effects: including activation of microglia in one subject who experienced 

traumatic brain injury (TBI) at the time of death, and distinct microglial and astrocytic 

signatures in another subject with histological signs of amyloid deposits upon post-mortem 

examination 48. Thus, not only will their dataset serve as a reference for future snRNA-seq 

studies of the substantia nigra, but their software, which can effectively combine results from 

multiple datasets for joint analysis without losing dataset-specific components of the 

information, will be widely applicable in future single-cell sequencing studies.   
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While the massive capacity of high-throughput snRNA-seq is enticing, some questions 

require a more targeted approach as exemplified by a recent human brain snRNA-seq study 

from the Allen Institute 49. Boldog et al., (2018) identified a new subtype of inhibitory neuron, 

dubbed the rosehip neuron, which seems to be uniquely found in the human cortex. The 

information from snRNA-seq was complemented by morphological and electrophysiological 

data from surgical tissue as well as corroborated with fluorescent in situ hybridization (ISH). 

The data from this study is part of a larger human mid-temporal gyrus dataset 50, generated 

by the Allen Institute from both post-mortem samples and surgical tissue and it provides an 

excellent resource for benchmarking data produced by high-throughput platforms. Uniquely, 

this dataset accounted for cortical layer location during the dissection and extraction of 

nuclei.   

Single-nucleus transcriptomic studies of human brain pathology 

Over the past year, a slew of single-cell sequencing studies of the human brain has 

exploited the rapidly developing technology to ask questions about cell-type diversity and 

cell-type specific gene expression changes in pathological states, including autism spectrum 

disorders (ASD) 51-53, Alzheimer’s disease (AD) 54, multiple sclerosis (MS) 55, and depression 56.  

Among studies focusing on ASD, Renthal et al. (2018) performed snRNA-seq using the 

inDrops approach in a mouse model of Rett syndrome and in the post-mortem occipital cortex 

of Rett syndrome patients. Rett syndrome is an X-linked developmental disorder in the autism 

spectrum. Affected females are heterozygous carriers of causal mutations in the MECP2 gene. 

Since one X-chromosome carries the mutation and the other does not, random X-

chromosome inactivation in individual cells results in mosaic expression of the mutant MECP2 
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allele in the brain. Using an innovative analytical approach, this group was able to utilize 3’ 

biased snRNA-seq reads to separate cells containing an active MECP2 mutation causal for 

Rett, from cells in which the mutant allele was not expressed 51. This was achieved by 

genotyping the Rett syndrome patients to identify SNPs in the 3’ region of genes near the 

MECP2 locus, in linkage disequilibrium with the MECP2 mutation carried by the patient. These 

SNPs could then be detected by 3’ snRNA-seq, thus allowing the authors to determine 

whether the mutant or healthy MECP2 allele was expressed in a particular cell 51. Their 

approach allowed direct comparison of gene expression within specific cell-types between 

cells expressing mutated versus normal MECP2, revealing similarities in the patterns of 

differential gene expression (DGE) in the human patients and the mouse model.  

Further applying single-cell technology to study ASD, Velmeshev et al. (2019) 

performed high-throughput snRNA-seq of the PFC and anterior cingulate cortex (ACC) in 

individuals with ASD, epilepsy, or no pathology. Unbiased identification of cell-types across 

the brain regions identified the major cortical cell-types and revealed an over-representation 

of protoplasmic astrocytes in ASD subjects. Cell-type specific DGE analysis revealed over 500 

differentially expressed genes (DEGs) which were in good agreement with previous literature 

on ASD-associated genes 52. The DEGs in upper layer neurons and in microglia were the best 

predictors for clinical autism severity. Since several of the ASD subjects also experienced 

seizures, the authors performed cell-type specific DGE analysis by snRNA-seq in the PFC of 

matched sporadic epilepsy patients, to tease apart the contributions of seizures and ASD. Only 

a small proportion of DEGs in epilepsy overlapped with the ASD findings, suggestion that most 

of the cell-type specific DEGs were specific to ASD.  
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Similar to the previous study, Sorrells et al. (2019) performed snRNA-seq post-mortem 

on the amygdala from 8 individuals between the ages of 4 and 15 years, both neurotypical 

controls and ASD patients. Their paper focused on identifying a subset of neurons within the 

paralaminar nucleus (PL) of the human amygdala which show protracted development and 

retain molecular and morphological features of immature neurons well into adulthood 53. 

Their snRNA-seq experiment complemented the ISH and immunohistochemistry findings. 

Among more than 13,000 nuclei sequenced, they were in fact able to identify a small 

population marked by high expression of DCX, BCL2, NR2F2, and ROBO1, characteristic of the 

immature PL neurons identified using other techniques. Moreover, snRNA-seq allowed them 

to detect additional genes that were enriched in this immature neuronal population, namely 

ST8SIA2, SOX11, and MAP2. Finally, they were able to compare gene expression between ASD 

cases and controls in this immature PL neuron cluster and identify around 30 DEGs.  

To explore Alzheimer’s disease at the single-cell level, Mathys et al. (2019) performed 

high-throughput snRNA-seq on the PFC of 48 individuals from the ROSMAP 57 cohort. They 

clustered cells into the major neuronal and non-neuronal cell-types of the PFC and measured 

DGE between individuals with detectable Alzheimer’s pathology and individuals without 

pathology. Over a thousand DEGs were identified, the majority of which were downregulated, 

with the largest contribution from excitatory neurons. A small subset of DEGs were validated 

in NeuN positive and negative populations separated by FANS and by ISH 54. They also 

examined progressive changes in gene expression with increase in pathological burden by 

grouping individuals according to clinico-pathological measures. Changes in gene expression 

were more cell-type specific between individuals with no pathology versus early pathology, 

compared to individuals with early pathology versus late pathology. Sub-clustering of the 
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major cell-types identified specific sub-clusters with over-representation of cells from 

pathological or healthy states. Interestingly, some AD-associated sub-clusters had an over-

representation of female cells. Further exploration of sex-differences revealed a global 

pathology-associated upregulation of genes in oligodendrocytes in males and a global 

pathology-associated downregulation of genes in neurons in females. An interesting feature 

of this dataset is the advanced age of the donors (> 70 years).  

In a landmark study of oligodendroglial heterogeneity in the human brain, Jäkel et al. 

(2019) performed snRNA-seq on white matter obtained post-mortem from multiple sclerosis 

(MS) patients and controls. In addition to neurons and other glia, they identified many 

different oligodendrocyte and oligodendrocyte precursor (OPC) clusters, including an 

oligodendrocyte cluster with immune features. Characteristic gene expression features of 

these oligodendroglial clusters were verified by ISH and immunohistochemistry 55. 

Pseudotime analysis indicated that end state oligodendrocytes most highly express genes 

involved in cell-signalling and adhesion, whereas myelinating oligodendrocytes most highly 

express genes involved in myelination. On combined clustering of control and MS datasets, 

there was a higher representation of immune cells, including macrophages, derived from MS 

tissue, indicating immune infiltration. Overall, the same cell-types were present in MS versus 

control white matter, but OPCs and intermediate oligodendrocytes were under-represented 

in MS and the distribution of nuclei among the mature oligodendrocyte clusters was also 

altered. DGE analysis revealed increased expression of genes for myelination in multiple 

oligodendrocytic clusters in MS, as well as distinct changes in gene expression between 

lesioned, non-lesioned, and remyelinating regions of white matter from patients.    
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In our lab, we sequenced around 80,000 nuclei from the PFC of 17 individuals who 

were depressed and died by suicide and 17 individuals who were psychiatrically healthy. The 

26 quality-controlled cell-type clusters we identified were in good correspondence with the 

cell-types identified by Habib et al. (2017). We were able to detect cluster-specific DEGs 

associated with depression in more than half of these cell-types 56. Many of these genes have 

previously been implicated in bulk gene expression studies of MDD.  

Single-cell resolution studies of sequence variation in the human brain  

The potential impact of somatic mutations, including SNVs and CNVs, which may 

accumulate in the post mitotic cells of the central nervous system over the course of 

development and aging, has long intrigued neuroscientists in the context of neurological and 

psychiatric conditions 58. Experimental techniques exist for studying somatic mutations and 

their contributions to brain disorders using tissue homogenates, but single-nucleus genome 

sequencing has an undeniable advantage in this context. Although limitations, such as errors 

introduced during whole genome amplification (WGA) and the astronomical cost of whole 

genome sequencing (WGS) for large numbers of cells, still remain to be addressed, several 

groups have succeeded in sequencing the genomes of single-cells from post-mortem brain 

tissue and the results have yielded some intriguing insights.  

McConnell et al. (2013) measured CNVs in single neurons from post-mortem human 

frontal cortex and induced pluripotent stem cell (iPSC) derived neurons using WGA followed 

by DNA microarrays or sequencing. Cultured neurons had higher incidence of CNVs compared 

to NPCs or fibroblasts, suggesting that accumulation of somatic mutations may be integral to 

the development of neuronal identity. Non-germline small and large CNVs distributed 
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throughout the genome were detected in > 40% of the brain-derived neurons, although only 

a small number of neurons showed extensive CNV burden 59.  

Cai et al. (2014) measured CNVs in post-mortem brain tissue from 3 healthy individuals 

and 1 subject with hemimegaencephaly (HMG) and established that aneuploidy is rare but 

sub-chromosomal CNVs are common. They confirmed an expected CNV at chromosome 1q in 

the HMG brain, although they identified a tetrasomy rather than the predicted trisomy 60. 

Some CNVs were shared by multiple neurons, providing evidence that they are not artefacts 

of the technology.  

LINE1 (L1) retrotransposon insertion, a subtype of CNV, is of special interest in 

psychiatry. These mobile DNA elements are capable of “’jumping” in the genome, i.e. 

inserting a copy of themselves into a new part of the genome via an RNA intermediate, and 

are thought to be especially active during neurogenesis. Most of the newly formed L1 

insertions in the genome are not-capable of jumping but they can create variation in the 

genomes of individual neurons, even within the same individual, which may have gene 

regulatory consequences 58. Moreover, studying somatic L1 retrotransposition with single-cell 

genomics is of interest in psychiatric research because changes in the rates of L1 

retrotransposition have been linked to schizophrenia 61,62, autism spectrum disorders 63, and 

major depressive disorder 64.  

Evrony et al. (2012) examined the rates of L1 retrotransposition in 300 neuronal nuclei 

from the cortex and caudate nucleus in three neurologically healthy individuals by WGA, L1 

insertion profiling (L1 IP), and sequencing. They detected hundreds of known and tens of 

novel L1 insertions in these single-nucleus genomes, but on average each neuron had less 
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than one somatic L1 insertion, suggesting that such insertions are generally rare 65. In 

contrast, Upton et al. (2015) reported much higher rates of somatic L1 insertions in 

hippocampal neurons (~13 on average) and glia (~6 on average) and cortical neurons (~16 on 

average) using single-cell retrotransposon capture sequencing (RC-seq). Somatic L1 insertions 

were identified based on their absence in bulk tissue RC-seq with brain and liver samples from 

the same individuals and seemed to be enriched in hippocampally transcribed genes in both 

neurons and glia from the hippocampus 66. However, Evrony et al. (2016) later reanalysed 

these data and estimated that the true rates were closer to less than one L1 somatic insertion 

per cell 67, more consistent with their earlier paper.   

In a 2015 study (Lodato et al.), 36 neurons from the cortex of three individuals were 

sequenced to detect somatic SNVs. On average, 1500 L1 variants were identified and a 

considerable proportion was found in transcriptionally active neuronal gene regions. 

Interestingly, certain SNVs seem to be caused by deamination of methyl cytosines to 

thymines, suggesting that they were produced post-mitotically rather than during DNA 

replication in development 68. Using one subject to detect patterns of shared somatic 

mutations diverging over time, Lodato et al., were able to trace the developmental lineage of 

a subset of neurons, identifying clades of related neurons. Of note, some of the more 

frequently detected brain SNVs were present in non-brain tissue, indicating that they arose 

early in development.  

In a follow-up study, Lodato et al. (2018) measured SNVs in the hippocampus and PFC 

of 24 individuals with ages spanning 4 months to 82 years. Nine subjects were diagnosed with 

either Cockayne syndrome (CS) or xeroderma pigmentosa (XP), neurodegenerative diseases 

caused by deficiencies in the DNA repair mechanism, and the remaining 15 were free of 
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pathology. In line with previous studies, somatic SNVs were found to accumulate with age 

and be enriched in neuronally expressed genes. However, SNVs seemed to accumulate at a 

higher rate in the hippocampus 69. As expected, somatic SNVs were more frequent in CS and 

XP subjects than in controls.  

Most recently, a study looking at 1000 cells from brain-healthy individuals found, on 

average, that neurons harbour more CNVs than non-neuronal or non-neural cells (Chronister 

et al., 2019). Furthermore, these CNVs tended to affect a larger portion of the genomes 70. 

Neuronally expressed transcripts are generally longer and are reported to possess more 

somatic mutations within neurons 68. However, in contrast to the reported neuronal increase 

of somatic SNVs overtime, this study 69 found a decreased prevalence with age of neurons 

with CNVs in their genomes. The authors suggest that cells with more CNVs may be more 

susceptible to aging-related loss.  

Single-nucleus methylomics in the post-mortem human brain 

Whole-genome bisulphite sequencing (WGBS) of single cells from archived tissue is 

extremely challenging as bisulphite-conversion leads to loss of material and is very limiting 

when starting with extremely small amounts of DNA derived from single cells. Furthermore, 

the process is expensive as each cell needs to be sequenced at sufficient coverage. 

Nevertheless, Luo et al. (2017) performed single-nucleus WGBS and produced a single-cell 

resolution map of DNA methylation in the human frontal cortex. FAN sorting into microplates, 

followed by bisulphite-conversion and sequencing, produced single-nucleus DNA methylation 

profiles for almost 3000 nuclei from the frontal cortex of a single subject. Despite data 

sparsity, clustering of cells using single-nucleus DNA-methylation signatures resulted in 
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separation of the cortical excitatory and inhibitory neuronal subtypes with a resolution 

comparable to snRNA-seq 71. Non-CG methylation was found to be more cell-type specific 

than CG methylation and overall patterns of cell-type specific methylation were highly 

conserved from mouse brain to human brain. This dataset is a valuable reference for cell-type 

specific DNA methylation in the human brain and enables deconvolution of bulk DNA 

methylation data to estimate constituent cell-types.  

Insights, challenges, and future applications of human brain single-cell sequencing  

Some limitations of snRNA-seq in the human brain may be inherent to the technology 

or the underlying biology, such as underrepresentation of glial cells 8,47,52 and consistently 

lower numbers of RNA molecules detected in glial cells compared to neurons 5,8,47. Other 

limitations may be overcome using computational methods such as imputation for addressing 

high gene dropout and sparse data 72-74 and dataset alignment algorithms for addressing inter-

individual variability 48,75.  

As our knowledge of the strengths and limitations of these techniques increases, so 

does our ability to better design experiments. Using cryosections from histological dissections 

for extracting nuclei can ensure more even input from different microanatomical regions 47,52. 

Combining two subjects, differing in sex or in known SNVs, for nuclei capture on a microfluidic 

device, followed by deconvolution using sex-specific genes or based on known SNVs, can help 

account for technical variability between captures 76. 

   In addition to direct identification of cell-types and comparison of cell-type specific 

features between biological groups, different modalities of single-cell data can indirectly 

inform our understanding of disease states. Deconvolution algorithms 77,78 can elucidate cell-
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type contributions to observed disease-related changes in gene expression or DNA 

methylation in bulk tissue studies. Findings from genome-wide association studies (GWAS) 

and bulk gene expression studies can in turn help pin-point disease-relevant cell-types from 

single-cell datasets 79-81. Future work will likely involve integration of multimodal data 16,48,75, 

and use of complementary approaches other than NGS, such as high-throughput ISH 82,83, for 

single-cell resolution studies.  

Conclusion  

Promising initiatives such as the Human Cell Atlas 84 and the Brain Somatic Mosaicism 

Network 85 are currently underway, and should greatly enhance our understanding of 

diversity in the transcriptome and genome of individual cells in the brain. The findings will 

contribute to furthering our knowledge of complex diseases which affect the brain. The 

continued rapid advancement of single-cell technology is creating ample opportunities for 

applying these technologies to the study of the human brain in health and disease. Soon we 

can hope to unravel the intricate complexity of the multitude of cell-types that compose the 

human brain and to better explain how they contribute to the development of disease.  

Human and Animal Rights 

This article does not contain any studies with human or animal subjects performed by 

any of the authors. 
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Figures 

 

Figure 1: The human brain is composed of billions of individual cells which belong to an 

amazingly diverse array of cell-types. These cells and their mutual interactions give rise to the 

myriad complex functions of the brain, as well as dysfunctions such as psychiatric diseases. 

Each cell in turn is defined by its genome, epigenome, transcriptome, proteome, and other 

measurable properties. How do the specific states, functions, and interactions of a billion cells 

relate to the state and functioning of an entire human brain? A rapidly evolving suite of 

technologies which apply next-generation sequencing at the single-cell level may help us find 

the answer. We are now able to measure changes in the genomic sequences, gene expression, 

epigenetic modifications, chromatin states and sometimes combinations of these variables 

within individual cells of diverse cell-types in the brains of healthy and diseased individuals. 

The detailed picture of cell-types and states produced by these datasets will aid us in teasing 
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apart the specific and complementary roles of diverse brain-cell types in psychiatric and 

neurological diseases.  

Tables
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Table 1: Recent single-cell and single-nucleus RNA-sequencing studies of the human brain 

Publication Subjects Sample 

type 

Brain regions PMI/RIN Through-

put 

Technique  Goal of study 

Darmanis et al., 

2015 

8 adult epilepsy pa-

tients, 4 fetal (16-18 

week) 

Surgical Temporal cortex, fe-

tal cortex 

NA 400-500 

cells 

Fluidigm C1 chips, full length 

cDNA (SMART-seq) 

Identify major cell types in adult 

human cortical tissue at single-cell 

resolution 

Krishnaswami et 

al., 2016 

NA Post-mor-

tem 

Prefrontal cortex – 

neurons and non-

neurons 

RIN>=7, PMI up 

to several hours 

10-30 cells FANS, plate-based, full-length 

cDNA (SMART-seq) 

To establish feasibility of snRNA-

seq from post-mortem archived 

human brain 

Lake et al., 2016 1 subject, 51 yr old fe-

male 

Post-mor-

tem 

Cortical regions 

(BA41, 17, 10, 8, 22, 

21) – only neurons 

PMI 22 hrs 3000-4000 

cells 

FANS, Fluidigm C1 chips, full 

length cDNA (SMART-seq) 

Establish snRNA-seq in human 

brain, characterize cell types 

Habib et al., 2017 5 subjects, 40-65 yrs, 

male 

Post-mor-

tem 

Hippocampus & 

prefrontal cortex, 

neurons & glia 

RIN > 6.9, PMI 

average 12.4 hrs 

15,000 cells Modified Drop-seq, poly-A 

capture, 3' sequencing 

Establish droplet-based snRNA-seq 

in human brain, characterize cell 

types 

Lake et al., 2018 6 subjects, 20-49 yrs, 

males and females 

Post-mor-

tem 

Cortex & cerebel-

lum, neurons & glia 

PMI < 24 hours 35,000 cells Modified Drop-seq, ploy-A 

capture, 3' sequencing  

Characterize different cell types, 

relate to regions of open chroma-

tin 

Renthal et al., 

2018 

3 subjects, 8-24 years, 

females, Rett syn-

drome 

Post-mor-

tem 

Occipital cortex PMI < 16 hours 30,000 cells inDrops Comparing cells expressing mu-

tated MECP2 to cells expressing 

normal MECP2 

Boldog et al., 

2018 

2 subjects, 50 & 54 yrs 

old, male 

Post-mor-

tem 

Mid-temporal gy-

rus, cortical layer 1 

RIN>=7, PMI 24 

hours 

800-900 

cells 

FANS, plate-based, SMART-

seq, full-length cDNA 

Identification of novel inhibitory 

neuron subtypes 

Jäkel et al., 2019 5 controls, 4 MS, males 

and females 

Post-mor-

tem 

White matter areas NA 17,000 cells 10X Genomics Chromium Characterizing oligodendrocyte 

heterogeneity in MS and healthy 

white matter 
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Mathys et al., 

2019 

24 controls, 24 AD pa-

thology, balanced 

males and females  

Post-mor-

tem 

Prefrontal cortex NA 80,000 cells 10X Genomics Chromium Cell-type specific differential gene 

expression in Alzheimer’s disease 

Velmeshev et al., 

2019 

15 ASD, 8 epilepsy, 23 

controls, 4-54 yrs  

Post-mor-

tem 

Prefrontal and ante-

rior cingulate cortex 

3-42 hours 120,000 

cells 

10X Genomics Chromium Cell-type specific differential gene 

expression in ASD and epilepsy 

Sorrells et al., 

2019 

4 ASD, 4 control, 4-15 

yrs 

Post-mor-

tem 

Amygdala 3-27 hours 13000 cells 10X Genomics Chromium Identification of immature or 

newly formed neurons 

Welch et al., 2019 5 males, 3 females, 

controls, 18-75 yrs  

Post-mor-

tem 

Substantia nigra < 24 hours 44,000 cells 10X Genomics Chromium Cell-type identification, cross do-

nor and cross species comparisons 

MS – multiple sclerosis, ASD – autism spectrum disorders 
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Table 2: Recent and single-nucleus whole-genome sequencing studies of the human brain 

Publication Subjects Sample type Brain regions Throughput Technique  Goal of study 

Evrony et al., 
2012 

3 controls, 1 
fetus, 1 HMG 

Surgical and 
post-mortem 

Cortex and caudate nu-
cleus, only neurons 300 cells 

FACS, MDA, L1 IP se-
quencing 

Assess somatic L1 retrotransposon variabil-
ity in healthy brains 

McConnell et 
al., 2013 

3 subjects, 
20-26 yrs, 1 
male Post-mortem 

Frontal cortex, only 
neurons >100 cells 

FACS, GenomePlex, 
sequencing 

Detecting somatic CNVs in human brain 
neurons 

Cai et al., 2014 
2 controls, 1 
fetal, 1 HMG Post-mortem 

Cortex, neurons and 
non-neurons >200 cells 

FACS, GenomePlex or 
MDA, sequencing 

Detecting somatic CNVs in normal and HMG 
brain 

Upton et al., 
2015 

4 subjects, 1 
AGS individ-
ual Post-mortem 

Hippocampus and cor-
tex, neurons and glia 100-200 cells 

FACS, MALBAC, RC-
seq 

Assess somatic L1 retrotransposon variabil-
ity in healthy brains 

Lodato et al., 
2015 

3 subjects, 
15-42 yrs  Post-mortem PFC, neurons ~250 cells 

FACS, MDA, sequenc-
ing 

Assess somatic SNVs in single neurons from 
a healthy brain 

Lodato et al., 
2018 

24 subjects, 
4-83 years, 9 
subjects CS or 
XP Post-mortem 

Cortex and hippocam-
pus, only neurons ~160 cells 

FACS, MDS, sequenc-
ing 

Assess effect of age and neurodegeneration 
on somatic SNVs 

Chronister et 
al., 2019 

5 subjects, 4 
months - 95 
years Port-mortem 

Frontal cortex, neurons 
and non-neurons >800 cells PicoPlex, sequencing 

Assess somatic CNV diversity of the human 
brain cells with age  

Notes: FACS – fluorescence assisted cell sorting, MDA – multiple displacement amplification, AGS – Aicardi-Goutières Syndrome, MALBAC – Multiple Annealing and Looping 

Based Amplification Cycles
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Recent advances in single-cell sequencing of the human brain 

Since the advent of high-throughput snRNA-seq interrogation of human postmortem brain in 

disease contexts in 201963-65 the technologies have further evolved, and the field has progressed 

in leaps and bounds. Multimodal profiling of the transcriptome and epigenome (open-chromatin 

regions) has become commonplace as has spatial gene expression profiling in tissue sections at 

near single-cell resolution. Moreover, profiling histone modifications at a single-nucleus level at 

a high-throughput has become feasible66 and, most recently, spatially resolved simultaneous 

measurement of the transcriptome and epigenome in tissue sections has been achieved67. 

Keeping pace with the development of experimental techniques, analysis methods have 

developed at a rapid pace. From cell filtering68 and sample multiplexing69 to multiplet removal70, 

from batch correction71 to clustering assessment72,73, and frameworks for facilitating comparison 

between phenotypes74,75 or linking findings in genetics to single-cell sequencing results76, the 

possibilities are numerous. Add to that the specialized tools for analysis of spatial77 or epigenetic 

datasets78 or for combining spatially resolved data with single-nucleus data, and we have a 

formidable arsenal of methods at our disposal to analytically dissect the identity, state, function, 

and dysfunction of individual cells in the human brain. Interestingly, new suites of tools have 

begun to explore the potential ligand receptor interactions between cell types while also 

accounting for the spatial distance between them79,80. Identifying not only cell types relevant to 

a phenotype, but the disrupted cell-cell communication between them, could provide promising 

therapeutic avenues for future research. Figure 1 below summarizes some of the key steps in 
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handling snRNA-seq data and Table 1 presents a sampling of tools that can be used for achieving 

each processing step.  

Many scRNA-seq and snRNA-seq studies of postmortem tissue in disease contexts have added to 

our understanding of several different neurological and psychiatric phenotypes over the past few 

years. Researchers have extensively explored the molecular underpinnings of Alzheimer’s disease 

at single-nucleus resolution81,82. Studies have interrogated postmortem tissue in Huntington’s 

disease83, Parkinson’s disease84 and schizophrenia85,86 using single-nucleus techniques. Several of 

these studies have combined snRNA-seq with snATAC-seq81 or spatial transcriptomics87. 

Additionally, outside of disease contexts, our understanding of brain cell types across brain 

regions, development, and evolution has steadily increased88,89. Further, targeted studies have 

been addressing the earlier drawbacks of single-nucleus sequencing methods for profiling glial 

populations90,91. In summary, the field has made tremendous progress in the past few years and 

this growth trend seems likely to continue in the near future bringing not just more exciting 

technologies and impressive datasets, but also more importantly, deeper biological insights to 

the research community.  
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Figures 

 

Figure 1: Single-cell and single-nucleus RNA-seq data analysis overview. Required steps are shown in purple and optional steps are 

shown in pink. 
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Tables 

 Table 1: A partial list of recently published tools for scRNA-seq and snRNA-seq data analysis. A 

more comprehensive list92, which is continually growing, is available here: https://www.scrna-

tools.org/ 

 Step Tools 

Clustering assessment clustree, scclusteval 

Gene set enrichment of trajectory genes enrichR, fGSEA, ClusterProfiler 

RNA velocity analysis scVelo, velocyto 

Differential trajectory between groups tradeSeq 

Counts generation CellRanger, alevin-fry, kallisto-bustools, DropSeq 

tools 

Alignment CellRanger, alevin-fry, kallisto-bustools, DropSeq 

tools 

Enrichment for genetic traits EWCE, scDRS 

Cell type prioritization Augur 

Trajectory analysis  monocle3, slingshot 

Gene set enrichment analysis of markers enrichR, fGSEA, ClusterProfiler 

Gene regulatory network SCENIC, SCENIC+, hdWGCNA 

Cell-cell communication network CellChat, CellPhoneDB, iTALK, LIANA 

Network analysis Various depending on type 

Gene set enrichment analysis of DEGs enrichR, fGSEA, ClusterProfiler 

Differential expression between groups muscat, Libra, edgeR, limma, DESeq2 

https://www.scrna-tools.org/
https://www.scrna-tools.org/
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Compositional analysis propeller, scCODA 

Comparison to other datasets MetaNeighbor, FR-Match 

Differential expression analysis between cell 

types 

MAST, Wilcoxon tests, presto 

Annotation  scType, BRETIGEA, BrainInABlender, Azimuth, 

scArches 

Clustering  Louvain, Leiden, k-nearest neighbors 

Batch correction or dataset integration  Seurat integration, Harmony, LIGER, Scanorama, 

ComBat 

Dimensionality reduction  PCA, UMAP, tSNE 

Feature selection Seurat vst, marker based 

Imputation MAGIC 

Normalization  Log normalization, scran, sctransform 

Quality control SampleQC 

Preprocessing Various depending on substeps 

Sample demultiplexing (genotype) CellSNP, demuxafy 
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Objectives 

As outlined in the above review of the relevant literature, the extent of similarity or differences 

in depression-associated molecular changes in the brain between males and females is still under 

investigation. The evidence from animal models and human studies suggests sex specificity in the 

molecular basis of depression but the information available is far from comprehensive. Molecular 

and cellular studies have implicated disruptions in different classes of brain cell types, both 

neuronal and glial, in depression pathophysiology. The relative importance of these cell type 

specific contributions is as yet unknown and previous studies have examined specific target cell 

types rather than screening, at the molecular level, all cell types of the brain. Finally, limited 

research has examined the sex specificity of cell types implicated in depression.  

Thus, the research presented in this thesis sought to explore the cell type and sex specificity of 

molecular differences in the brain between individuals with depression and individuals without, 

focusing on gene expression. We leveraged novel snRNA-seq technology, the strengths and 

limitations of which have been discussed above, to attempt to answer the research question. Our 

objectives were to profile cell type specific gene expression in the postmortem human dlPFC 

across all brain cell types with snRNA-seq, to identify cell types with differentially expressed genes 

between individuals with depression and those without, and to compare whether the cell types 

and genes implicated are similar or different in males and females. 
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Chapter 2  
 

Preface to Chapter 2 
 

There is ample molecular evidence for the contribution of both neuronal cell types – including 

excitatory and inhibitory neurons, and glial cell types – including astrocytes, oligodendrocyte 

lineage cells, and microglia, to MDD-associated changes in the human brain and in animal models 

of MDD. With the advent of methods for profiling gene expression in individual nuclei from the 

human brain in an unbiased, high-throughput manner, we set out to assess differences 

associated with depression across all cortical cell types in the dlPFC. First, we optimized an 

approach to extract nuclei for snRNA-seq from archived post-mortem brain samples (Appendix 

1). Then, to apply this very novel snRNA-seq technology within the constraints of ensuring 

sufficient power and managing experimental costs, we initially only profiled a cohort of male 

individuals with or without depression, thus simplifying statistical analysis and including more 

individuals per group than would be possible with a sex-stratified cohort. While studies 

examining a single sex, of a necessity, provide an incomplete picture, they can serve as a starting 

point for understanding the sex specific contributions to a condition with established sex 

differences, such as depression. Our findings are presented below.  
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Abstract 

Major depressive disorder (MDD) has an enormous impact on global disease burden, affecting 

millions of people worldwide and ranking as a leading cause of disability for almost three 

decades. Past molecular studies of MDD employed bulk homogenates of post-mortem brain 

tissue, obscuring gene expression changes within individual cell types. Here, we used single-

nucleus transcriptomics to examine ~80,000 nuclei from the dorsolateral prefrontal cortex of 

male individuals with MDD (n=17) and healthy controls (n=17). We identified 26 cellular clusters, 

and over 60% of these showed differential gene expression between groups. We found the 

greatest dysregulation in deep layer excitatory neurons and immature oligodendrocyte precursor 

cells (OPCs), contributing almost half (47%) of all changes in gene expression. These results 

highlight the importance of dissecting cell-type specific contributions to the disease, and offer 

opportunities to identify new avenues of research and novel targets for treatment.   



69 

 

Major depressive disorder (MDD) is a complex and heterogeneous disorder that affects an 

estimated 300 million people worldwide1. Genetic factors underlying the risk for MDD have been 

investigated using including genome-wide association studies, among other approaches2. 

Although some genetic associations have been detected, it remains a challenge to extract causal 

disease mechanisms from these findings 3. It has been positing that MDD results from 

dysregulation of monoaminergic transmission, largely implicating the serotonergic and 

noradrenergic systems, has dominated the field for several decades. More recently, other factors 

have been associated with MDD, including glutamatergic and GABAergic transmission4, 5, glial cell 

function, including astrocytic and oligodendrocytic contributions6-8, blood-brain barrier 

integrity6, and inflammation9. Given the wide variety of cell types in the brain and their complex 

interactions, investigative approaches with cell-type specificity are especially needed to gain 

insight into psychiatric phenotypes including MDD. 

The interpretation of differential gene expression in bulk brain tissue homogenates is 

complicated by the heterogeneous cellular composition of the sample. Single-cell sequencing 

approaches have revealed that gene expression patterns in the brain are cell type specific, not 

only differentiating major classes of cells such as neuronal and glial cells, but even differentiating 

subtypes of glial cells and neurons10, 11. Therefore, it is difficult to verify whether subtle molecular 

differences observed from tissue homogenates are explained by the disease state or by 

differences in cell type composition between samples12 Recently developed techniques for high-

throughput single-cell and single-nucleus RNA-sequencing provide a solution for addressing this 

inherent drawback to bulk tissue experiments11, 13. 
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High-throughput droplet-based single-nucleus RNA-sequencing (snRNA-seq) allows the profiling 

of thousands of nuclear transcriptomes, by utilizing nucleus-specific barcodes and unique 

molecular identifiers (UMI) to tag individual RNA molecules. snRNA-seq yields comparable, albeit 

distinct, information14 from single-cell RNA-seq (scRNA-seq), while facilitating the analysis of 

frozen tissues, which are not amenable to the isolation of intact cells. While there has been 

considerable interest in using scRNA-seq and snRNA-seq datasets to gain insight into the 

processes underlying complex brain disorders15-17, very few direct comparisons of single-nucleus 

human brain gene expression has yet been performed in a psychiatric phenotype using high-

throughput technologies. 

Here, we sequenced ~80,000 nuclear transcriptomes from the prefrontal cortex of MDD cases 

and psychiatrically healthy controls and identified cell type specific differentially expressed 

genes. These results point to gene expression changes in predominantly two cell types, 

oligodendrocyte precursor cells and deep layer excitatory neurons. The relationships between 

and functions of the differentially expressed genes from these two cell clusters suggest 

impairments to FGF signalling, steroid hormone receptor cycling, immune function, and altered 

cytoskeletal regulation (related to changes in synaptic plasticity). This approach to snRNA-seq can 

effectively interrogate subtle phenotypes with improved resolution in archived brain tissue, and 

provide novel directions for follow-up studies. 
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Results 

To assess the involvement of individual cell types in the pathophysiology of MDD, we examined 

nuclei from the dorsolateral prefrontal cortex (dlPFC), a region implicated in the pathology of 

major depressive disorder18. We used a droplet-based single-nucleus method optimized for use 

with postmortem brain tissue to assess a large number of nuclei. We measured 78,886 nuclei 

from 34 brain samples, half from patients who died during an episode of MDD, and the other half 

from matched psychiatrically healthy individuals (Table 1, Supplementary Tables 1-3). The 

experimental design is depicted in Fig. 1. On average, we sequenced to a depth of almost 200 

million reads per sample (Supplementary Table 1). Given that glial cells have consistently been 

found to have fewer transcripts than neuronal cells10, 11, we used custom filtering criteria based 

on the distribution of UMIs per nucleus detected to recover a substantial number of glial cells 

(see Methods, Supplementary Fig. 1a-e, Supplementary Table 4). In an initial subset of 20 

subjects, applying our custom filtering increased the total number of cells 1.8–fold but increased 

the number of non-neuronal cells by almost 6-fold (data not shown). More than 90% of the nuclei 

passing these filtering criteria had less than 5% reads from mitochondrially encoded genes 

(Supplementary Fig. 1f). The average gene count across nuclei ranged from 2144 in neurons to 

1144 genes in glia (Supplementary Table 5). UMI counts were approximately twice the gene 

count for all cell types, as expected for this level of sequencing depth (Supplementary Table 5). 

Between sample groups, there were no significant differences between cases and controls in the 

median gene count per nucleus (t test p=0.12), median UMI count per nucleus (t test p=0.14), 

and number of cells detected per individual (t test=0.07) (Supplementary Table 1). 
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Identification of 26 distinct cell types in the dlPFC 

In order to identify different cell types present in the brain samples, we applied unsupervised 

graph-based clustering19 using the first 50 principal components derived from the 2135 most 

variable genes across individual nuclei (Methods, Supplementary Fig. 2a-b). After stringent 

quality control (Methods), we identified 26 distinct clusters (Fig. 2a). Each cluster was annotated 

using a combination of known cell type markers for excitatory and inhibitory neurons, and non-

neuronal cells, including astrocytes, oligodendrocytes, oligodendrocyte precursor cells (OPCs), 

endothelial cells, and microglia (see Methods for full list of markers, Supplementary Table 6, 

Supplementary Fig. 3a-p). Gene expression patterns specific to cell type clusters were visualised 

using a DotPlot (Fig. 2b), average and median gene expression heatmaps (Supplementary Fig. 4a-

b), and violin plots (Fig. 2c-e) to form a consensus for annotation. 

Refined cell subtypes reflect cortical cellular architecture  

The clusters generated from our data are consistent with those previously reported in snRNA-

seq of human PFC (Supplementary Fig. 5)11. Gene expression patterns previously linked to specific 

cortical layers (see Methods) coincide with our clustering of excitatory cells. In Fig. 2c, the genes 

are arranged from top to bottom in order of their expression across the cortical layers (first 17 

rows, from the layer I/II to layer VI). There is a gradient of expression of these genes across the 

excitatory clusters. For example, clusters Ex1, Ex4, and Ex7-9 had high expression of TLE4 (layer 

VI specific). Ex1, Ex8, and Ex9 showed concurrent expression of layer V/VI markers such as TOX. 

Ex6 and Ex7 additionally showed expression of the layer IV specific gene RORB. HTR2C, which is 
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specific to a subset of layer V neurons, was prominent in Ex1 alone. PCP4, which is also layer V 

specific, was present in Ex1-3, Ex7, and Ex9. Superficial layer (I-III) markers such as CUX2 and 

RASGRF2 were mainly seen in the large cluster, Ex10. Likewise, inhibitory cell types demonstrated 

subtype specific gene expression patterns. For example, In7 was classified as inhibitory-

parvalbumin because it expressed GAD1 and PVALB, and lacked VIP and SST (Fig. 2d). Multiple 

astrocytic clusters were also identified, and while the typical sub-classification of astrocytes is 

based on their morphology within grey or white matter20, we used only grey matter for these 

samples. As such, based on the higher percentage of GFAP expression in Astros_3 (38%) 

compared to Astros_2 (21%), we suspect that Astros_3 is more likely to represent reactive 

astrocytes21 (Supplementary Table 6). 

Reconstruction of oligodendrocyte developmental trajectory  

We identified five distinct cell type clusters that fell into the oligodendrocyte lineage (OL), 

including two that we classified as OPCs (Fig 2e). OPCs express a characteristic set of markers 

such as PDGFRA and PCDH15, which decline as these cells mature into oligodendrocytes, whereas 

other lineage markers like, OLIG2 or SOX10, are present in both mature and immature cells. Given 

these developmental stage specific markers it was possible to plot a pseudotime trajectory22 

using gene expression for OPC1, OPC2, Oligos1, Oligos2 and Oligos3. Our result indicated that 

OPC2 were the youngest cells within the dataset followed by OPC1, then Oligos2 and Oligos3, 

with Oligos1 being the most mature (Fig.2e, top). The expression of thousands of genes varied 

according to pseudotime (q<0.01). Approximately half of the genes associated with pseudotime 

overlapped in cases and controls (Supplementary Fig. 6a). However, among the genes exclusively 
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associated with pseudotime in cases, there was a 2.7–fold enrichment of apoptosis signalling in 

PANTHER23 pathway analysis (FDR p<9.01x10-3), while no enrichment was observed in controls. 

Given that certain stages of oligodendrocyte differentiation are associated with heightened 

susceptibility to apoptosis, this may indicate differences in OL development between cases and 

controls24. To assess the individual profiles of important developmental gene markers, we plotted 

their expression across pseudotime (Supplementary Fig. 6b-i), revealing their expected pattern 

of expression. 

To compare our oligodendrocyte lineage (OL) cells with previously described OL cell types, we 

performed bioinformatic deconvolution (Fig. 2e, bottom). Our OPC2 gene expression profile was 

entirely represented by the “OPCs” gene expression profile from Jäkel et al. (2019)25. The OPC1 

profile also primarily corresponded to the OPCs, but consistent with this cluster being further 

along the pseudotime trajectory, it showed a small correspondence to the COPs (committed 

oligodendrocyte precursors). Our oligodendrocyte clusters showed varying degrees of 

correspondence to the published data, with decreasing overlap to the published “OPCs” 

expression profile with increasing maturity of the cell type (ranging from 70-11% 

correspondence). Interestingly, among our oligodendrocytes, Oligos3 showed the highest 

correspondence to the ImOlGs (immune oligodendroglia), as defined by Jäkel et al25. The 

“immune gene expression” feature of Oligos3 is highlighted in our hierarchical clustering 

dendrogram (Fig. 1b), in which Oligos3 is located closer to the Micro/Macro cluster compared to 

the other OL clusters.  
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Cell type-specific patterns of altered gene expression in MDD 

We set out to assess gene expression differences between cases and controls within each cluster. 

However, one limitation of droplet based single-nucleus technology is the possibility of capturing 

doublet or multiplet nuclei, which we have estimated to be minimal in our case, as only 5.2% of 

captured nuclei were doublets or multiplets, based on a species mixing experiment 

(Supplementary Fig. 1g). This, however, represented a potential confounding factor when 

assessing differential gene expression between groups. We therefore eliminated doublets and 

multiplets from the dataset by calculating the correlation of each cell to the median expression 

value of its assigned cluster (Methods, Supplementary Fig. 7) and cells with low correlation were 

removed (Supplementary Table 7a-b). We also excluded any genes expressed in less than 10% of 

the cells in that cluster. Using only these purified clusters and filtered genes (median 5212 per 

cluster), we performed a differential gene expression analysis (Supplementary Tables 8-31).  

A total of 96 genes (FDR <0.10) were differentially expressed in 16 of the 25 clusters analyzed 

(Fig. 3a) and 45 of those remained significant at FDR<0.05 (12 of 25 clusters). FDR correction 

considering all clusters together yields 41 significant genes (FDR < 0.10) in 16 clusters 

(Supplementary Table 32).This further supports that our statistical analyses are in fact able to 

detect differences in gene expression between the groups. To retain a larger set of genes in order 

to better capture functional enrichments within individual cell types, we considered all genes 

which passed FDR < 0.10, corrected per cluster. The majority, 83% (80 genes), were 

downregulated in line with findings from previous transcriptomic studies in MDD3, 4. Differential 
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expression analysis treated each cell as a sample (Supplementary Fig. 8), but per subject 

contributions were visualized using heatmaps of average gene expression to assess biases in 

subject contributions. Patterns of gene expression averaged by subject reflected the expected 

differences between cases and controls (Supplementary Fig. 9a-p). Thirty-nine of the 96 

differentially expressed genes were found in excitatory cell clusters and, of those, 34 were 

downregulated (Fig. 3a, insert). Some neuronal clusters contained both upregulated and 

downregulated genes, but it was more common for affected neuronal clusters to contain only 

downregulated genes (8/12, 67%). All but one inhibitory cluster showed altered gene expression 

and non-neuronal clusters tended to have both up- and downregulated genes (Fig. 3b).  

Of particular interest, two clusters – one composed of immature oligodendrocyte precursor cells 

(OPC2) and one composed of deep layer excitatory neurons (Ex7) – accounted for almost half 

(47%) of the dysregulated genes (Fig. 3c). Finally, two genes were differentially expressed in more 

than one cluster: PRKAR1B showed decreased expression in excitatory clusters Ex7 (FDR=0.087, 

FC=0.87) and Ex2 (FDR=0.047, FC=0.82) and TUBB4B in excitatory clusters Ex7 (FDR=0.079, 

FC=0.87) and Ex6 (FDR=0.073, FC=0.86).  

Cell type specific DEGs recapitulate published MDD findings 

Three of our DEGs (FADS2, CKB and KAZN) have previously been identified in GWAS of MDD2, 26.To 

further compare our DEGs with previously reported findings in MDD we took advantage of 

publically available databases PsyGeNET27 and DisGeNET28. Using PsyGeNET we found that 26 of 

our DEGs have previously been linked to mental illness in the literature. The highest number of 

associations (22/54 associations) were for depressive disorders, followed by associations for 



77 

 

schizophrenia spectrum and other psychotic disorders (20/54; Fig. 3d). Using DisGeNET we found 

15 genes associated with MDD related terms (hypergeometric test, p-value = 0.00029; Fig. 3e). 

Hypergeometric tests for overlap between DEGs in individual clusters and genes related to 

depression in DisGeNet revealed a specific enrichment in OPC2 DEGs (p=5.7x10-4, Fig. 3e). 

Interestingly, we found that 67% of these genes were contributed by the OPC2 and Ex7 clusters 

(Fig. 3e). Complete results from PsyGeNET and DisGeNET are presented in Supplementary Table 

33-35. 

Functional implications of cell type specific DEGs 

We used Gene Ontology and Reactome Pathway enrichment analysis to identify the relationship 

of our 96 DEGs to biological functions. There were strong enrichments of Gene Ontology terms 

for neuron projection maintenance (84-fold enrichment; FDR=0.011) and negative regulation of 

long-term synaptic potentiation (75-fold enrichment; FDR=0.012). Both of these terms are 

hierarchically related with the more general term regulation of synaptic plasticity, also enriched 

in the set of 96 genes (9-fold enrichment, FDR=0.012). Reactome Pathways enrichments included 

Kinesins (21.74-fold enrichment; FDR = 6.24x10-4), HSP90 chaperone cycle for steroid hormone 

receptors (15.79-fold enrichment; FDR = 3.4x10-2), and Innate Immune System (3.01-fold 

enrichment, FDR=3.29x10-2). A full list of all enrichment analyses performed is provided in 

Supplementary Table 36-41.  

The majority (excluding three: AC133680.1, MEG3, FAM66C) of the DEGs were protein-coding. 

We used STRING network analysis 29 to plot the interactions between these proteins coding DEGs. 
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This enabled us to identify common pathways and systems, within which these proteins, 

contributed by different cell types, functionally interact. The overall connectivity between 

proteins encoded by our DEGs was significantly higher than that expected for a random subset 

of genes (p-value = 3.64x10-4). While distinct genes were dysregulated in different clusters, 

common pathways and biological processes dysregulated across clusters included cytoskeletal 

function, immune system function, and SHR chaperone cycling (Fig. 4a), all of which have been 

previously implicated in MDD 9, 30. 

Interestingly, certain genes were present in multiple pathways and processes, for example 

HSP90AA1 (OPC2) links SHR chaperone cycling, immune system functioning and cytoskeletal 

function (Fig. 4b). Likewise, KIF16B from lower layer neurons (Ex7) and KIF26B and KLC2 in two 

inhibitory cells types (In2 VIP and In3 SST respectively), belong to both the kinesin pathway and 

cytoskeletal function (Fig. 4c). Of note, KAZN, a gene previously associated with MDD26, interacts 

with the KIF16B (Ex7), both of which represent some of the few upregulated genes in the dataset. 

Weighted gene co-expression network analysis 

In addition to directly measuring gene expression changes between groups, we performed 

weighted gene co-expression network analysis (WGCNA). To circumvent the challenges posed by 

the sparsity of snRNA-seq data, we performed WGCNA on the average gene expression profile 

for each subject across all cell types and included the percentage contribution of different cell 

types as a correlate. Our results indicated that 5 modules were significantly associated with MDD 

(Supplementary Table 42). 

Four of the 5 modules were also strongly associated with Ex7, representing the highest cluster-
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phenotype overlap. We chose to focus on the largest module (blue), which included 2699 genes 

and significantly overlapped with our identified DEGs (Fig. 5a, 44%, p-value = 6.04x10-19, 

hypergeometric test for overlap). To identify the most connected genes within the blue module, 

we performed a hub gene analysis resulting in 285 hub genes (Fig.5b, see Methods) and plotted 

the top 50, which included 10 DEGs (Fig. 5c). The top term for a Gene Ontology analysis of the 

hub gene list was “neurotransmitter secretion” (8.69-fold enrichment, FDR=7.21 x10-3), 

suggesting a disruption of intercellular communication between neural cells. Furthermore, we 

found that 26 of the 41 DEGs that overlapped with the blue module were also hub genes (p-value 

= 4.95 x 10-31, hypergeometric test for overlap). 

Validation of gene expression changes 

We preformed validation of our DEGs using fluorescence-assisted nuclei sorting (FANS) to 

separate broad cell types followed by high-throughput qPCR. As expected, given that the FANS 

fractions are much broader than the single cell clusters, with the 26 clusters combined into 4 

sorted populations, levels of validation varied in part as a function of the relative representation 

of the cluster in the sorted fraction (Supplementary Fig. 10-11, Supplementary tables 43-46). 

Figure 5 (d) highlights validated genes that overlap with the WGCNA results. 

Intercommunication between lower layer excitatory neurons and oligodendrocyte precursor 

cells 

Next, in order to better understand how cells are interacting, we applied a predictive tool to 

explore the relationship of ligands of one cluster to the receptors expressed in another cluster. 

We focused our analysis on Ex7 and OPC2, the two clusters showing the most DEGs, and with the 
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greatest overlap of genes associated with phenotype from the literature and from our WGCNA. 

We found a total of 90 significantly changed ligand-receptor combinations between Ex7 and OPC2 

after random permutations (p<0.01). Fifty-eight Ex7 ligand to OPC2 receptor (Fig. 6a left, 

Supplementary Table 47a) and 32 OPC2 ligand to Ex7 receptor interactions were altered between 

cases and controls (Fig. 6a right, Supplementary Table 47b). We found significant changes to FGF 

signalling originating from both cell types. Although these results are exploratory and need to be 

interpreted with caution, they are consistent with previous literature implicating the FGF system 

in MDD, and particularly, changes in FGF signalling in OPCs 31, 32 leading to depressive phenotypes, 

and provide an intriguing avenue for future experiments.  

Based on the DEGs found in Ex7 and OPC2, we modeled the potential interaction indicating the 

class of protein and change in expression of the gene (Fig. 6b). To add support to the model we 

selected genes to further study with RNAScope® fluorescence in situ hybridization. Given the 

important change in FGF signalling we chose to investigate FIBP (FGF1 intercellular binding 

protein), KAZN a potential junction protein and HPS90AA1 a co-chaperone involved in stress 

hormone receptor cycling. We found FIBP was downregulated, as expected, in deep layer 

excitatory neurons (Fig. 6c, Unpaired t test, t217=2.5, p=0.013, n= 95 nuclei for cases and controls) 

while KAZN was upregulated in OPCs (Fig. 6d, Unpaired t test, t188=2.7, p=0.007, n=100 nuclei for 

controls, n=119 nuclei for cases) and HSP90AA1 was downregulated, also in OPCs (Fig. 6e, 

Unpaired t test, t192=2.0, p=0.026, n= 107 nuclei for controls, n= 87 nuclei for cases).  
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Discussion 

Our examination of single-nucleus transcriptomes from the dlPFC in MDD revealed dysregulation 

of gene expression in almost 60% of the cell types identified, with a total of 96 differentially 

expressed genes. There were prominent gene expression changes in immature oligodendrocyte 

precursor cells (OPC2) and in deep layer excitatory neurons (Ex7), and a large percentage of their 

DEGs overlapped with genes previously implicated in MDD. 

Given the complexity of psychiatric disorders such as MDD, disentangling the role of each cell 

type in the brain is important and requires single cell resolution. For example, the ability to 

distinguish glial subtypes – including multiple astrocytic, oligodendrocytic, and OPC clusters – 

enabled us to pinpoint changes specific to OPCs, but not oligodendrocytes, and changes selective 

to only one subset of astrocytic cells.  

In recent years, the target cell types in MDD pathophysiology have expanded from excitatory 

neurons to include inhibitory interneurons18 and non-neuronal cells4-9. Here we found 16 unique 

cell types showing evidence of differential gene expression in depression, including 4 non-

neuronal clusters and 6 clusters of interneurons supporting the complex interplay between 

multiple cell types in MDD. Previous studies have shown that SST and PVALB interneurons are 

dysregulated in MDD patients18, and here we report several DEGs in 3 interneuron clusters that 

are defined by the expression of these GABAergic markers (Inhib_3_SST, Inhib_6_SST, and 

Inhib_8_PVALB). Interestingly, a separate cluster of PVALB interneurons (Inhib_7_PVALB) did not 

show differential expression, which may indicate that not all PVALB interneurons are equally 
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affected. However, we find differentially expressed genes in non-SST, non-PVALB interneuron 

clusters (Inhib_2_VIP, Inhib_1, and Inhib_5), which suggests that additional interneuron subtypes 

could have a role in depression, and should be examined in future research.  

We found 10 different excitatory cell types which were annotated to specific cortical layers based 

on known markers. Ex10 represented a large cluster of superficial cortical layer cells, whereas 

there were numerous clusters representing different excitatory cell types from deeper cortical 

layers. The neuronal cluster with the most change was Ex7, a deep layer cluster characterized 

primarily by DPP10 expression. DPP10 encodes a dipeptidyl peptidase-related protein that 

regulates neuronal excitability and has previously been associated with a human-specific, 

neuron-based regulatory network. Structural variants of this gene have been implicated in 

neuropsychiatric diseases, including autism, schizophrenia and bipolar disorder33.  

OPC2 also showed extensive gene expression changes between cases and controls. OPC2 was the 

youngest cell type in the OL pseudotime trajectory. The use of cellular deconvolution techniques 

indicated that OPC1 have some similarity to committed OPCs whereas OPC2 showed no such 

correspondence, supporting the idea of functional heterogeneity among OPCs 34. Furthermore, 

compared to OPC1, OPC2 expressed higher levels of certain glutamate and sodium receptors, 

which are typically lost as the cells mature 34. 

Evidence suggests that half of the OPCs (NG2+) in the brain do not give rise to any other cell 

type35, and exhibit synaptic contact with neurons 36. As such, OPCs are now thought to be a 

distinct glial cell type implicated in brain plasticity through roles such as integration of synaptic 
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activity37 and mediation of long term potentiation38. Additionally, there is evidence directly 

implicating the loss of this cell type with emergence of depressive-like behaviour31. The data from 

this study support a role for OPCS in MDD independent from their role as precursor cells for 

oligodendrocytes. 

STRING DB protein network analysis highlighted a number of links including connections between 

three differentially expressed genes encoding kinesin-related proteins: KIF26B, KLC2 and KIF16B. 

KIF16B (increased in Ex7) is involved in recycling receptors including the fibroblast growth factor 

receptor (FGFR). Interestingly, FIBP, encoding acidic FGF1 intracellular-binding protein, was 

decreased in Ex7. FGFR transport relies, in part, on the interaction between kinesins and Rab 

GTPases 39. Notably, we found RAB11B (encoding a Rab GTPase) and KLC2 to be downregulated 

in In3. Taken together, these findings could point to a disruption of FGFR recycling by kinesins 

and Rab GTPases, as well as disrupted modulation FGF intercellular signalling by FIBP in neurons 

in MDD.  

Based on animal models and in cell culture, FGFs (specifically FGF2) and FGFRs seem to be 

affected by stress and the glucocorticoids40. The glucocorticoid receptor (GR) has consistently 

been implicated in MDD 41. HSP90AA1 (decreased in OPC2) and FKBP4 (decreased in Ex7), along 

with its homolog FKPB5, encode cochaperones for the GR and regulate intracellular signalling 

functions of this receptor30. HSP90AA1 codes for the stress inducible isoform HSP90α and 

interestingly, is known to be secreted in certain stress contexts 42. These changes may point to a 

fundamental disruption in GR signaling in deep layer excitatory cells and OPCs, which could 

further interact with the above described changes in FGF signalling.  
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The genes related to chaperone mediated steroid hormone receptor cycling overlapped with 

genes involved in innate immune function. This is unsurprising given the role of glucocorticoids 

in modulating inflammation, one of the primary responses of the immune system. Both OPC2 

and Ex7 were enriched for the common genes between these pathways. Finally both the FGF and 

GR system have implications in the plastic properties of excitatory neurons such as projection 

outgrowth and stability 43, 44.  

Additionally, genes such as PRNP (the prion protein gene) and KAZN (a gene involved in 

desmosome assembly), were strongly altered in the OPC2 cluster and are associated with 

mediating synaptic plasticity and cellular communication45, 46 . The absence of Prnp has been 

associated with an increased number of undifferentiated oligodendrocytes and the delayed 

expression of differentiation markers47, which is intriguing given the evidence implicating a lack 

of mature adult oligodendrocytes in animal models of depression and anxiety48. On the other 

hand, overexpression of kazrin in keratinocytes profoundly changed cell shape, reduced 

filamentous actin, and impaired assembly of intercellular junctions 46. Interestingly, decreased 

desmosome length has been described in Prnp−/− mice49 suggesting an interplay between these 

proteins. Further, a SNP in KAZN showed one of the strongest associations in individuals with 

treatment resistant depression 26.  

Based on the information we derived from various bioinformatics strategies we have proposed a 

putative model for the bidirectional interactions between lower layer excitatory neurons and 

immature oligodendrocytes. We used RNAScope® to validate some of the key transcriptional 

changes highlighted by the model. Though these results are interesting, functional follow up 
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studies will be required to determine the role of molecules like FGF, HSP90α and Kazrin in the 

communication between these two cell types.  

Our study is not without limitations. All individuals included in our study were male, so our results 

are not necessarily generalizable to women, particularly as previous studies have suggested that 

brain transcriptomic changes associated with MDD are different in females50. Nonetheless, this 

first screen provides important information that may help inform subsequent studies exploring 

both men and women with MDD. Technical limitations with droplet-based snRNA-seq of human 

brain have been previously described. We, like others10, 11, found a much greater proportion of 

neurons compared to glial cells than would be expected based on histologically determined 

estimates, pointing to a potential limitation of the methodology for capturing non-neuronal cells. 

Although droplet-based snRNA-seq does not capture lowly expressed genes, nevertheless, we 

were able to perform differential gene expression for thousands of genes in precisely defined cell 

types. 

Lastly, we believe the consistency across dissections was not sufficient for estimating cell type 

proportions. For example, even a small over-representation of one cortical layer versus another 

during dissection, can give misleading results regarding the proportion of cell-types. Other groups 

have attempted to extract nuclei from cryo-sectioned samples to address these inconsistencies 

10. 

Our study has elucidated gene expression changes specific to numerous independent cell types 

in MDD. We have identified a potentially important link between OPCs and deep layer excitatory 
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neurons, which implicates fundamental pathways including FGF signalling, glucocorticoid 

receptor regulation and synaptic plasticity in the brains of depressed individuals. The 

generalizability of these data will rely on independent validation in other MDD cohorts; 

nonetheless, this work provides an exciting start point for understanding the complex interplay 

of cells in the brain and a platform for future functional research to assess these potential 

interactions. Future single-cell studies of MDD should aim to relate cell types with symptomology 

and severity as has been done in recent papers 16, 17 . 
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Figures and Figure Legends 

Figure 1 
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Figure 1: Experimental Flow. Schematic representation of experimental procedures. 

Nuclei were extracted from Brodmann area 9 (BA9) in the dlPFC of 17 cases and 17 

controls, single nuclei were captured in droplets for RNA-seq. Unsupervised clustering and 

cell type annotation were followed by differential expression analysis between cases and 

controls within each cluster. Bioinformatic analyses were performed to link the changes 

to the phenotype. Two validation approaches: FANS-high-throughput qPCR and FISH, 

were applied for validating differential expression results.  

Figure 2 

 

Figure 2: Identification of cell types a) TSNE plot depicting the ~73,000 cells in 26 clusters 

identified after strict quality control of initial clusters. b) Cell type annotation was 

performed based on expression of well-established marker genes. (Left) Dendrogram 

representing relationship between identified cell type clusters based on gene expression. 
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(Middle) DotPlot depicting expression of known marker genes in the 26 clusters of 

interest. Marker genes are colour coded according to the cell type in which they should 

be detected. The size of the dots represents the proportion of cells expressing the gene 

whereas the colour intensity represents the average expression level. (Right) Columns 

listing the number of cells per group and the bar plot depicting the mean number of UMIs 

per cell in each cluster. c) Cortical layer specific markers varied in expression within the 

excitatory neuronal clusters. The violin plots depict the expression per cluster of layer 

specific marker genes going from the more superficial layers (I/II) on the left to the deeper 

layers (V/VI) on the right. d) Known classes of inhibitory neurons are identifiable based on 

the expression pattern of peptide genes (VIP, SST, CCK) and calcium binding protein genes 

(PVALB). e) (Left, violin plots) Cells belonging to the oligodendrocyte lineage expressed 

the expected markers. (Top) The oligodendrocyte lineage cells from 5 clusters were 

analysed to produce a pseudotime trajectory to gauge their developmental stages. . 

(Right) The location of these clusters along the trajectory was consistent with 

deconvolution (Jäkel et al., 2019). The numbers represent the percentage contribution of 

each of the previously published cluster signatures to the corresponding clusters in our 

dataset.  For violin plots in figures 2c-e values extend from minimum to maximum, the 

median value is indicated by a dot and the n-value per cluster corresponds to the total 

“No. of cells”for cases and controls combined listed in 2b. Nuclei were derived from 34 

subjects. 
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Figure 3 

 

Figure 3: Differentially expressed genes. a) For each cluster the percentage change in 

expression between cases and controls of all detected genes are plotted with decreased 

expression to the bottom of the midline and increased expression to the top. Ninety-six 

significantly changed genes (16 were up-and 80 down-regulated) are marked in colour, 

based on their corrected FDRs as shown in the legend. The numbers of nuclei from cases 

and controls per cluster (n) are available in Supplementary Tables 8-31. p-values were 

obtained using a mixed linear model (see Methods). Nuclei were derived from 34 
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subjects. Sixteen out of the 26 clusters contained significantly differentially expressed 

genes. (Insert) Stacked bar-graph shows contribution of different cell type clusters to 

differentially expressed genes. b) Number of clusters in each broad category showing up 

and downregulated genes in MDD cases. c) The scatter plots represent the number of 

DEGs and the average percentage change in expression for each cluster. The cluster size 

is depicted by the size of the circle. Upper graph depicts upregulated genes, lower graph 

depicts downregulated genes. OPC2 and Ex7 show the highest level of both up and down 

regulated genes. d-e) The number of genes with known relationship to psychiatric 

phenotypes using available databases PsyGeNET and DisGeNET. d) 26 of the 96 

dysregulated genes were found in PsyGeNET and showed an enrichment for MDD (Total, 

all the genes which overlap database for a given disorder; 100% association, the genes 

positively associated with the disease; 100% no association, the genes negatively 

associated with the disease; both, mixed findings (positive and negative) for a given gene 

related to the disease. e) (Left) 15 genes were found to be associated with depression 

related terms in DisGeNET.  (Right) The percentage of genes per cluster associated with 

MDD from DisGeNET, along with cluster specific enrichment of DisGeNET MDD associated 

genes. For hypergeometric tests, the number of depression-associated genes in DisGeNET 

was 1199 and the number of unique genes in DisGeNET was 17545 for all tests. The 

number of DEGs in DisGeNET (k) and the number of depression-associated DEGs (x) are 

listed:  All clusters: k=85, x=15; OPC2: k=24, x=7; Ex7: k=19, x=3; Endo: k=2, x=1; Astro3: 

k=6, x=1; Ex3:  k=2, x=1; In2:  k=11, x=1; In5: k=2, x=1.  
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Figure 4 

Figure 4: Differential expression and biological associations. a) String DB network for all 
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DEGs with nodes corresponding to a set of biological processes and pathways highlighted 

(legend on right). b) Subset of genes shared between the immune function related terms 

and the steroid hormone receptor cycling pathway. c) Subset of genes involved in 

cytoskeletal function and kinesin activity. Colour strips beneath networks give a 

proportional representation of the contributing clusters.  

Figure 5 

 

Figure 5: Weighted gene co-expression network analysis. a) Venn diagram of overlap 

between blue module genes and DEGs (hypergeometric test, p-value = 6.037692e-19). b) 
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Venn diagram for overlap between blue module hub genes and DEGs (hypergeometric 

test, p-value = 4.954172e-31). c) Visualization of the top 50 hub genes assessed for the 

blue module. DEG nodes and all edges connected to them are colored teal. d) Boxplots 

represent expression levels of DEGs validated with high-throughput qPCR in FAN sorted 

populations which were also hub genes in the blue module. Mann-Whitney U tests (two-

sided) were performed for PRAF2 as the values were not normally distributed based on 

the Shapiro Wilk’s test for normality. All other genes were tested with unpaired two-sided 

t-tests as their values were normally distributed. P-values: * < 0.05, ** < 0.01, *** < 0.001, 

**** < 0.0001. Whiskers on box plot represent maximum and minimum values.  Box 

extends from the 25th percentile to 75th percentile, the center line represents the 

median, and dots represent all values in the dataset. ATP6V0B: n=15 cases, 11 controls, 

t=3.10, df=12.62, p-value=0.0087; CKB: n=9 cases, 7 controls, t= 2.48, df=16.85 p-value= 

0.023 ; PRAF2: n=14 cases, 10 controls, U= 8, p-value=6.8 x 10-5; TKT: n= 16 cases, 14 

controls, t= 2.25, df=19.83, p-value=0.036; PLD3: n=15 cases, 14 controls, t= 3.06, df= 

15.83, p-value=0.0075; OTUB1: n=16 cases, 14 controls, t= 2.39, df=20.92, p-value=0.026; 

ACTB: n=14 cases, 15 controls, t=3.14, df= 19.98, p-value=0.0052; HNRNPK: n= 14 cases, 

13 controls, t=2.41, df=16.07, p-value=0.028.  
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Figure 6 

 

Figure 6: Contributions of OPC2 and Ex7.  a) CCInx receptor ligand based cell-cell 

interaction network analysis for communication between Ex7 and OPC2. Given the large 
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number of connections (Supplementary Tables 47a,b), a subset are shown. b) Our data 

points to a change in the communication between deep layer excitatory neurons (Ex7) 

and immature OPCs (OPC2). Altered FGF bidirectional signalling was identified via CCInx. 

We propose that immature OPCs have a very important role in regulating plastic 

properties of deep layer excitatory cells, such as neuron projection outgrowth and 

maintenance. Lines between cell types are labeled with secreted or junction proteins 

found to be dysregulated in the given cell type for example HPS90AA1 codes for the stress 

inducible isoform HSP90α, known to be secreted in certain contexts, KAZN is an 

upregulated junction protein in OPCs and ATP6V0B could represent altered ATP signaling. 

Arrows beside gene names indicate up or downregulation. Beside each cell type are the 

genes in given functional categories and their direction of change in the disease state. c) 

Decreased expression of the gene encoding FGF1 intercellular Binding Protein (FIBP) was 

validated in deep layer neurons using RNAScope®. SLC17A7 (encoding VGLUT) was used 

as a marker for excitatory cells and RXFP1 was used to identify deep layer neurons. 

SLC17A7
+
, RXFP1

+
 cells were imaged and FIPB expression was counted (Cases: n=119 

nuclei, controls: n=100 nuclei, unpaired two-sided t-test, t = 2.49, df= 217, p = 0.013). d) 

Increased KAZN (cases: n=95 nuclei, controls: n=95 nuclei, unpaired two-sided t-test, t = -

2.69, df= 188, p = 0.008) and e) decreased HSP90AA1 (cases: n = 87 nuclei, controls: n = 

107 nuclei, unpaired two-sided t-test, t = 2.23, df= 186, p= 0.027 expression were 

validated in OPCs using PDGFRA as a marker for oligodendrocyte precursor cells  Whiskers 

on box plot represent the 5th and 95th percentile. Box extends from the 25th percentile to 
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75th percentile and the center line represents the median. Dots represent points beyond 

the 5th or 95th percentile.   
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Tables 

Table 1: Sample information 

 Controls (n=17)  Cases (n=17) p value 

Age (years) 38.71 ± 4.32 41.06 ± 4.66 p=0.714 

Gender 17M 17M - 

PMI (hrs) 34.01 ± 4.94 41.69 ± 4.76 ᵻp=0.190 

pH 6.49 ± 0.06 6.60 ± 0.07 p=0.212 

Storage Time (years) 14.71± 1.44 12.47± 1.46 ᵻp=0.543 

Cause of death 
Accident (6),  
Natural (11) 

Suicide (17)  

Substance depend-
ence 

None None  

Comorbid diagnoses None None  

Toxicology 
EtOH (2), Canna-

binoids (1),  

EtOH (6), BZ (1), AD 
(2), Cannabinoids (1), 

Cocaine (1),  

 
 

Antidepressant 
Treatment 

None 3  

Mean ± SEM 
ᵻMann Whitney test 
NA – not applicable, EtOH – ethanol, BZ – benzodiazepines, AD – antidepressants, AC – anticon-
vulsants  
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Materials and Methods 

Subjects: Postmortem brain samples 

This study was approved by the Douglas Hospital Research Ethics Board, and written informed 

consent from next-of-kin was obtained for each subject. Postmortem brain samples were 

provided by the Douglas-Bell Canada Brain Bank (www.douglasbrainbank.ca). Frozen grey matter 

samples were dissected from Brodmann Area 9 (dlPFC). Brains were dissected by trained 

neuroanatomists and stored at -80 C. For each individual, the cause of death was determined 

by the Quebec Coroner’s office, and psychological autopsies were performed by proxy-based 

interviews, as described previously51. Cases met criteria for MDD and died by suicide whereas 

controls were individuals who died suddenly and did not have evidence of any axis I disorders 

(Table 1). Post mortem interval (PMI) represents the delay between a subject’s death and 

collection and processing of the brain.  To assess RNA quality, we measured the RIN obtained for 

our samples using tissue homogenates. An unpaired, two-tailed, Student’s t-test revealed no 

significant difference (p=0.15) in RIN between cases (mean RIN of 6.74) and controls (mean RIN 

of 6.16). 17 cases and 17 controls were included in the snRNA-seq experiment and the full cohort 

of subjects (except 25) was used for follow-up validation of DEGs by FANS and high throughput 

qPCR. RNAScope experiments were performed on representative subsets of samples using 5 

cases and 5 matched controls. Detailed information on experimental design and reagents can 

also be found in the Life Sciences Reporting Summary. 

Nuclei isolation and capture 

http://www.douglasbrainbank.ca/
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50 mg of frozen tissue was dounced in 3 mL of lysis buffer, 10 times with a loose pestle and an 

additional 5 times with the tight pestle. The lysis buffer contained 10 mM Tris (pH 7.4), 10 mM 

NaCl, 3 mM MgCl2, and 0.05% (v/v) NP-40 detergent. The sample was left to lyse in a total of 5 

mL of buffer for 5 min, after which 5 mL of wash buffer was added and swirled. The sample was 

passed through a 30 μm cell strainer and spun for 5 min at 500 g. This step was repeated for a 

total of two filtering steps. After pelleting, the nuclei are resuspended in 5-10 mL of wash buffer 

by pipetting up and down 8-10 times. After 3 washes, the nuclei were resuspended in 1 mL of 

wash buffer and mixed with 25 % Optiprep™ and layered on a 29 % Optiprep™ cushion and spun 

for 30 min at 10,000 g. Nuclei were resuspended in wash buffer to achieve a concentration of 

~1x106 nuclei/mL. Representative images of extracted nuclei are presented in Supplementary Fig. 

12.   

We used the 10x Genomics® Chromium™ controller for single cell gene expression to isolate 

single nuclei for downstream bulk RNA library preparation. We strictly followed the protocol as 

outlined by the user guide (CG00052_SingleCell3_ReagentKitv2UserGuide_RevE.pdf), with the 

exception of loading concentration, which we increase by 30% as we assessed the capture of 

nuclei to be slightly less efficient than cell encapsulation. We aimed to capture ~3000 nuclei per 

sample. So, for example, if our sample concentration was 390 nuclei/μL (~ 400 nuclei/ μL) 

according to page 10 of Protocol Step 1 we are required to load 13.1 μL of the stock to capture 

3000 cells. But instead, we would recalculate our stock concentration to be 70% of 390 = 273 

nuclei/ μL and load 17.4 μL (the recommended amount for 300 nuclei/ μL) instead. This system 

only allows for a maximum of 8 samples per capture run. As such, we required multiple batches 

to collect the individual nuclei for all 34 samples (6 batches). Samples 24 and 25 performed 

https://assets.ctfassets.net/an68im79xiti/UhAMGmlaEMmYMaA4A4Uwa/d65ff7b9bb5e88c2bb9e15e58f280e18/CG00052_SingleCell3_ReagentKitv2UserGuide_RevE.pdf
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poorly, we therefore, carried out the capture on two separate chips and sequenced twice 

combining the data from both runs for the final analysis.  

Sequence Alignment and UMI Counting 

A pre-mRNA transcriptome was built using the cellranger mkref (Cellranger version 2.0.1) 

command and default parameters starting with the refdata-cellranger-GRCh38-1.2.0 

transcriptome and as per the instructions provided on the 10X Genomics website. Reads were 

demultiplexed by sample index using the cellranger mkfastq command (Cellranger v2.1.0). Fastq 

files were aligned to the custom transcriptome, cell barcodes were demultiplexed, and UMIs 

corresponding to genes were counted using the cellranger count command and default 

parameters. 

Data Transformation for Secondary Analysis 

The unfiltered gene barcode matrices for each sample were loaded into R using the Read10X 

function in the Seurat R package (version 2.2.0, 2.3.0)19. Cell names were modified such that the 

subject name, batch, and biological condition were added to them. Seurat objects were created 

corresponding to each sample using the CreateSeuratObject function with the imported 

unfiltered gene-barcode matrices provided as the raw data. Individual Seurat objects for each 

sample were combined into one object using the MergeSeurat function sequentially. No filtering 

or normalization was performed up to this step. Since this is a single nucleus dataset, all 

mitochondrial genes that are transcribed from the mitochondrial genome were removed, along 

with genes not detected in any cell. 

Barcode and Gene Filtering 
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Based on the distribution of nGene (total number of genes detected in each cell) for the total 

dataset (assessed by summary and hist R52 functions), barcodes that were associated with less 

than 110 detected genes were removed. Based on the distribution of nUMI (total numbers of 

UMIs detected in each cell), the top 0.5 % of barcodes were also excluded as most likely being 

multiplets rather than single nuclei, as there was a very sharp increase of nUMI from 16,393 at 

the 99.5th percentile to 102,583 at the maximum.  

Next, the distribution of nUMI for the remaining barcodes was fit with three normal distributions 

using the normalmixEM function from the mixtools53 package (Supplementary Fig. 1c). The 

rationale was that, the filtered barcodes contain a population of low quality “noise” barcodes 

that have a very low nUMI on average, a population of non-neuronal cells that have an 

intermediate nUMI and a population of neuronal cells that have a high nUMI. Based on the fitting 

of the normal distributions, only the barcodes with a high probability (> 0.95) of belonging to 

either the putative “non-neuronal” or putative “neuronal” distributions, and a low probability 

(<0.05) of belonging to the “noise” distribution were retained for further analysis (Supplementary 

Fig. 1c-d). 78,886 cells and 30,062 genes were retained.   

Our custom filtering (Supplementary Fig. 1a-e, Supplementary Table 4) helped to increase the 

number of glial cells recovered. With an initial subset of 20 subjects, applying our custom filtering 

increased the total number of cells 1.8–fold but increased the number of non-neuronal cells by 

almost 6-fold (data not shown). After custom filtering the minimum numbers of genes and UMIs 

per nucleus were 254 and 340 respectively. 
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Once nuclei were filtered, the percentages of mitochondrial reads associated with the retained 

barcodes were calculated although for quality control purposes those reads were not used during 

the filtering or downstream analysis (Supplementary Fig. 1f). Although the percentage of reads 

mapping to mitochondrially expressed genes is a more pertinent quality control parameter for 

single-cell rather than single nucleus approaches, contaminating mitochondrial reads often 

present a problem in single-nucleus protocols (pers. comm., Lake, B.B.). However, our optimized 

approach was able to minimize this technical issue.   

Data Processing and Dimensionality Reduction  

The UMI counts were normalized to 10,000 counts per cell and converted to log scale (Seurat 

function NormalizeData). The batch, condition, and subject information was added as metadata 

to the final Seurat object; nUMI and batch were regressed out using the ScaleData function. The 

Seurat FindVariableGenes function was used with default selections and cut-offs as follows: 

x.low.cutoff = 0.003, x.high.cutoff = 2, y.cutoff = 1. This resulted in a list of 2135 highly variable 

genes, which excludes lowly expressed genes (below 25th percentile), very highly expressed 

genes, and selects only the top 10 % of genes in terms of the scaled dispersion. These highly 

variable genes were used to calculate 100 principal components. Based on the PC elbow plot of 

the standard deviation of the PCs (Supplementary Fig. 2a), the first 50 PCs were retained for use 

in downstream analysis. 

Clustering by Gene Expression 

The FindClusters function was applied with a resolution of 2.5 and produced 44 initial clusters. 

The goal of clustering is to sort nuclei by cell type so that all remaining gene expression variation 
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within clusters is not related to cell differentiation processes. Prior to the advent of single nuclei 

expression profiling, cell types were identified by observing differences in cell morphology, 

behaviour, and anatomic location. It is fairly straight-forward to sort single nuclei expression 

profiles into known cell types according to the expression levels of marker genes that 

differentiate between these cell types. However, it is very unlikely that all cell types have been 

identified so we must rely on nuclei clustering to uncover as-yet unknown cell types.  

Unfortunately, the number of clusters obtained from the clustering algorithm is somewhat 

arbitrary because clustering depends on the settings of several parameters, and there is no 

consensus on how they should be set. Although clusters obtained using reasonable default 

settings usually correspond to known biological cell types, some clusters may appear to 

potentially identify entirely new cell types or splinter existing cell types into multiple subtypes. 

Deciding if the clusters really do identify new cell types can be difficult or may even be impossible 

from available data. 

To address this issue, we used tools in the Seurat package to sequentially combine any clusters 

that were not sufficiently distinct from each other. In particular, after performing initial 

hierarchical clustering of the graph-based clusters (BuildClusterTree), we assessed the nodes of 

the dendrogram using a random forest classifier (AssessNodes) and then merged together any 

nodes which were in the bottom 25 % of the dendrogram (using the branching.times function 

from the ape R package54) and had an out-of-bag-error of more than 5 %. We then repeated this 

clustering and merging process for the nuclei within each terminal node until none of the 

remaining nodes fulfilled our cut-off criteria (Supplementary Fig. 2b). The resulting set of 30 

clusters were then characterized in terms of known markers genes of all major, well-defined brain 
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cell types (Supplementary Fig. 2c-d). For refining identification of excitatory neuron types, we 

combined and re-clustered a set of excitatory clusters with highly correlated gene expression 

profiles (R > 0.95) (Supplementary Fig. 13a-c) using similar parameters for clustering as the whole 

dataset. This included 7 clusters of ~40,000 cells.  Reclustering yielded 33 final clusters for 

downstream analysis. Finally, the clusters were manually curated to eliminate potential biases; 

for example, clusters were removed if mainly one sample contributed to the cells contained 

within the cluster (Supplementary Tables 48-51, Supplementary Fig. 14a-e). 

Cluster Annotation 

Genes used as markers for major cell-types and layer-specificity are listed below. Inhibitory 

neuron subtypes were annotated based on expression of canonical inhibitory interneuron 

markers SST, PVALB, and VIP where possible. Excitatory neuron subtypes were annotated with 

some level of layer specificity based on expression of layer specific markers11, 55, 56. We also 

characterised clusters in terms of all genes differentially expressed between clusters 

(FindAllMarkers function, bimodal test, logfc.threshold of log(2), other parameters set to default) 

(Supplementary Table 6). 

Major cell-type markers (Supplementary Fig. 3a-p) 

Macrophage/ Microglia: SPI1, MRC1, TMEM119, CX3CR1; Endothelial: CLDN5, VTN; Astrocytes: 

GLUL, SOX9, AQP4, GJA1, NDRG2, GFAP, ALDH1A1, ALDH1L1, VIM; OPCs: PTGDS, PDGFRA, 

PCDH15, OLIG2, OLIG1; Oligodendrocytes: PLP1, MAG,MOG, MOBP, MBP; Excitatory neurons: 

SATB2, SLC17A7, SLC17A6; Inhibitory neurons: GAD1,GAD2, SLC32A1; Neurons: SNAP25,STMN2, 

RBFOX3. 
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Layer-specific markers:  

L2: GLRA3; L2-3: LAMP5, CARTPT; L2-4: CUX2, THSD7A; L2-6: RASGRF2, PVRL3; L3-4: PRSS12; L4-

5: RORB; L4-6: GRIK4; L5: KCNK2, SULF2, PCP4, HTR2C, FEZF2; L5-6: TOX, ETV1, RPRM, RXFP1, 

FOXP2; L6: SYT6, OPRK1, NR4A2, SYNPR, TLE, NTNG2, ADRA2A 

Pseudotime trajectory using Monocle 

For oligodendrocyte developmental trajectory assessment, the data for cells belonging to the five 

clusters in the oligodendrocyte lineage (Oligos_1, Oligos_2, Oligos_3, OPCs_1, OPCs_2) were 

used to create a separate Seurat object using the SubsetData function. The most variable genes 

for these clusters alone were identified using the FindVariableGenes function and the following 

parameters: x.low.cutoff = 0.003, x.high.cutoff = 3, y.cutoff = 1 (giving a total of 895). The Seurat 

object was imported into a CDS (CellDataSet) object using the Monocle22 function importCDS.  

Estimation of size factors and dispersions was performed (using the estimateSizeFactors and 

estimateDispersions Monocle functions) on the CDS object using default parameters. 

Dimensionality reduction was then performed using reduceDimension, with reduction_method 

set to DDRTree. The 895 variable genes identified as above were used for ordering the cells into 

a trajectory with the orderCells function. The pseudotime trajectory was then plotted with 

plot_cell_trajectory (Fig. 2e), and the change in expression of genes known to be involved in 

oligodendrocyte development were plotted using plot_genes_in_pseudotime (Supplementary 

Fig. 6b-i). differentialGeneTest was applied separately to oligodendrocyte lineage cells from 

control subjects and MDD cases with fullModelFormulaStr = "~sm.ns(Pseudotime)". This allows 

us to model the expression of each gene as a function of pseudotime.  All genes detected in at 
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least one cell in the respective group were compared and their changes across pseudotime were 

assessed. A q-value cut-off of < 0.01 was used to identify genes associated with pseudotime. The 

overlapping and non-overlapping genes were identified by comparing the lists obtained for the 

two groups (Supplementary Fig. 6a).  

Purification of Clusters for Differential Expression 

Our doublet removal approach comprised of calculating a median gene expression profile for all 

our clusters, calculating the correlation of the gene expression of each cell, with the median 

profile of its cluster (considering only the top 865 genes whose median expression was highly 

variable, that is had a variance of > 0.25 across the different cluster) and selecting cells with high 

correlation. This was done by fitting bimodal normal distributions to the total distribution of 

correlations in the cluster to identify low and high correlation peaks. Cells were retained only if 

they had a low probability of falling in the low correlation peak (p < 0.25) and a high probability 

(p > 0.75) of falling in the high correlation peaks (Supplementary Fig. 7).  

Differential Gene Expression Analysis 

Differential expression analysis between the cases and controls was performed using linear 

mixed models implemented in the lme457 and lmerTest58 R packages. Mixed models were 

necessary in order to account for dependencies between nuclei obtained from the same subject. 

Biological condition and number of UMIs were included in models as fixed effects and the subject 

and batch as random effects. The inclusion of subject as a random effect should account for 

subject specific effects such as age and PMI as well as technical effects of capture and library 
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preparation which was performed separately for each subject. A false discovery rate (FDR) of 0.1 

was used to detect differentially expressed genes within each cell type.  

Weighted Gene Co-expression Network Analysis (WGCNA) 

Average cell-expression for each sample across every cluster was calculated. These average 

counts were converted to log + 1 counts to reduce dispersion. WGCNA analysis was carried out 

in R with the WGCNA package (version 1.68) by Langfelder and Horvath. Genes with insufficient 

variance were excluded as well as outlier samples. After some tests, a soft-thresholding power 

of 7 and a minimum module size of 30 genes were selected for the gene network construction. 

Resulting modules were correlated with the phenotype information (MDD vs Control), as well as 

each sample's respective composition of each of the 26 single-cell type clusters they're composed 

of. 

We performed hub gene analysis on the blue module, which was the largest module (2699 genes) 

which was correlated to phenotype. Potential hub genes were identified in the module of interest 

my selecting genes with a module membership larger than 0.80 and a gene significance larger 

than 0.20 with a p-value of less than 0.05. The top 50 potential hub genes were extracted 

alongside any weighted interaction of more than 0.2. The resulting network was visualized in 

Cytoscape (3.7.1). 

Fluorescence-assisted nuclei sorting (FANS) 

Nuclear suspensions were prepared from 80-100 mg of post-mortem brain tissue from BA9 as 

described previously 59 with the following modifications: homogenized tissue was centrifuged on 

the sucrose layer at 800g for 20 minutes at 4oC, followed by another centrifugation in nuclei 
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extraction buffer. Resuspended nuclei were stained with the following primary antibodies in 600 

μL of blocking buffer: mouse anti-CUTL2-PerCP conjugated (1:100, Novus catalog no. H00023316-

M03, clone 2H8, lot 080618-112618 conjugated to PerCP using the Novus Lightning Link Labeling 

kit, catalog no. 718-0010), goat anti-SOX10 (1:100, R&D Systems catalog no. AF2864), mouse anti-

NeuN-A700 (1:300, Novus catalog no. NBP1-92693AF700, clone- 1B7) by incubating at room 

temperature, away from light, with rotation for 2 hours. Secondary antibody (donkey anti-goat 

Alexa Fluor 488, 1:1000, JacksonImmuno 705-545-147) was added and incubated for 1 hour at 

room temperature with rotation. All antibodies were purchased from Cedarlane. Nuclei were 

washed with PBS and the DNA was stained by Hoechst 33342 (Invitrogen, H1399).  

FACSAria Fusion (BD Biosciences, San Jose, CA) was used for sorting of four populations – SOX10 

positive, SOX10 negative, CUTL2 positive and CUTL2 negative. Gating strategy for the sorts is 

shown in (Supplementary Fig. 11) and was as follows. Doublet discrimination was achieved by 

gating of Hoechst 33342 stained singlets in FSC-A vs Hoechst-A plot using 350 nm UV laser and 

450/50 filter. Subsequent SOX10 positive, SOX10 negative and NeuN positive populations were 

gated in Alexa Fluor 700-A vs Alexa Fluor 488-A plot utilizing red 640 nm laser in combination with 

730/45 filter and blue 488 laser in combination with 530/30 filter, respectively. CUTL2 positive 

and negative populations, the derivatives of NeuN positive gate, were defined in Alexa 488-A vs 

PerCP-A (blue 488 laser, 695/40 filter) plot with interval gates. CUTL2 positive population was 

identified as 30-40% of NeuN positive population with highest CUTL2-PerCP fluorescence. For 

gating of CUTL2 negative population the SOX10 negative and SOX10 positive populations were 

displayed in Alexa 488-A vs PerCP-A plot and the CULT2 negative population was gated within 

PerCP intensities of SOX10 populations. CUTL2 negative population comprised near 10% of NeuN 
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positive population. 

Validation information for antibodies is as follows: Novus H00023316-M03- validated in Western 

blot and ELISA, used in one publication in human brain tissue (PMID: 29126813); R&D Systems 

AF2864- validated in Western blot against human SOX10 protein, ELISAs, immunocytochemistry, 

19 citations; Novus NBP1-92693AF700- validated in immunocytochemistry, 

immunohistochemistry, Western blot, one publication for flow cytometry in human brain tissue 

(PMID: 28750583). 

High-throughput qPCR 

RNA was extracted from FANS sorted nuclei population using the Norgen RNA/DNA Purification 

Kit (Cat. 48700). cDNA was synthesized using a modified SMART-seq procedure as described 

previously 60. The Fluidigm Biomark system was used for performing high-throughput qPCR as per 

manufacturer protocol as previously described61. Fludigim Delta Gene™ primer designs were used 

for the 93 targets (all differentially expressed transcripts excluding AC133680.1) and 3 

endogenous controls (GAPDH, POLR2A, UBC).  

Cell-cell interaction measurement 

To assess cell-cell communication, we calculated predicted ligand-receptor interactions between 

Ex7 and OPC2 using CCInx62 (https://github.com/BaderLab/CCInx), in which the connection 

between each ligand and receptor is quantified as an edge weight. We chose a gene expression 

threshold of 2.75 and above to limit our research to relatively highly expressed ligands and 

receptors and for ease of visualization. To test if the edge weights were significantly different 

between cases and controls, we randomly permuted our subjects into two groups 100 times and 

formed normal distributions of the edge weight differences between groups for each ligand-
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receptor pair. We then calculated a p-value for the case-control edge weight difference for each 

ligand-receptor pair based on its position in the distribution. Edge weight difference p-values 

<0.01 were considered significant. A sample script used for assessing the significance of edges 

has been provided. 

Cell deconvolution for all clusters 

Expression data from (dbGaP:phs000424.v8.p1)11 was used as reference signatures for annotated 

cell types. UMI counts for each cell were converted to transcripts per million (TPMs) in order to 

account for the varying sequencing depth of each cell and sample. Average expression levels 

were calculated for each cell type-specific cluster defined in the paper. 

Cluster-specific gene expression profiles were obtained by summing the UMI values of all 24301 

genes common to our dataset and the reference for each nucleus in each cluster and converting 

the sums to TPMs. R package, DeconRNASeq v1.18.063 was used to deconvolute these cluster-

specific profiles. Using the data from11as reference, we were able to estimate the cell type 

composition of our clusters. 

Cell deconvolution for oligodendrocyte lineage  

Average expression from every control samples from the Jäkel et al. dataset were calculated and 

used as cell signatures for the deconvolution of our oligodendrocytic clusters (average cell 

expression of every cell in the cluster considered as bulk) using the R package DeconRNASeq (v 

1.26.0). 

RNA-Scope Fluorescent In Situ Hybridization 
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Frozen BA9 blocks were cut serially with a cryostat (10µm thickness) on superfrost charged slides 

and kept at -80oC until further processed. In situ hybridization was performed using Advanced 

Cell Diagnostics RNAscope® probes and reagents according to the manufacturer instructions in 5 

matched subjects per group. Briefly, sections were first fixed in chilled 10% neutral buffered 

formalin for 15 mins at 4oC, dehydrated by increasing gradient of ethanol bathes and left to air 

dry for 5 minutes. Endogenous peroxidase activity was quenched with hydrogen peroxide 

reagent for 10 minutes, followed by protease digestion for 30 minutes at room temperature. The 

following sets of probes were then hybridized for 2 hours at 40oC in a humidity-controlled oven 

(HybEZ II, ACDbio): Hs-RXFP1 (cat. no. 422821), Hs-FIBP (cat. no. 569781-C2) and Hs-SLC17A7 

(cat. no. 415611-C3) to quantify FIBP expression in excitatory (SLC17A7+) layer 5-6 (RXFP1+) 

neurons; KAZN (cat. no. 569791) and PDGFRA (cat. no. 604481-C3), and HSP90AA1 (cat. no. 

477061)  to quantify KAZN expression in OPCs (PDGFRA+). Successive addition of amplifiers was 

performed using the proprietary AMP reagents, and the signal visualized through probe-specific 

HRP-based detection by tyramide signal amplification with Opal dyes (Opal 520, Opal 570 and 

Opal 690; Perkin Elmer) diluted 1:300. Slides were then coverslipped with Vectashield mounting 

medium with DAPI for nuclear staining (Vector Laboratories) and kept at 4oC until imaging.  

Imaging and analysis of in situ RNA expression 

Image acquisitions was performed on a FV1200 laser scanning confocal microscope (FV1200) 

equipped with a motorized stage. For each experiment and subject, around 10 stack images were 

taken to capture at least 20 cells of interest per subject: excitatory neurons (SLC17A7+) from 

cortical layers 5-6 (RXFP1+), and OPCs (PDGFRA+). Images were taken using a x60 objective (NA 
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= 1.42) with a XY pixel width of 0.3µm and Z spacing of 0.4µm. Laser power and detection 

parameters were kept consistent between subjects for each set of experiment. Because TSA 

amplification with Opal dyes yields a high signal to noise ratio, parameters were set so that 

autofluorescence from lipofuscin and cellular debris was filtered out of the image. Positivity for 

cell defining markers was determined by bright clustered puncta-like signal present within the 

nucleus and cytoplasm of the cells. Expression of genes of interest was quantified using the 

“Analyze Particles” function in Fiji 64. Stacks were first converted to Z-projections, and for each 

image cell nuclei of cells of interests were manually contoured based on DAPI expression. Single 

labeled molecules of RNA were automatically counted in each channel using the find maxima 

function with a noise tolerance of 350 for FIBP and RXFP1, and 400 for KAZN and PDGFRA. 

Normalized FIBP and KAZN expression per cell was calculated by dividing FIBP and KAZN raw 

counts to RXFP1 and PDGFRA raw counts respectively. HSP90AA1 expression was quantified by 

manually thresholding the signal per image and measuring the percentage of area of the nucleus 

covered by the resulting mask. 

Statistical analysis 

No statistical methods were used to predetermine sample size. Sample size was determined 

based on sample sizes used in previous similar studies. Subjects were assigned to groups based 

on diagnosis and not by random assignment. All subjects were male, and groups were matched 

for age (18-87 years), post-mortem interval (12-93 hours), and brain pH (6-7.01). Clinicians were 

blinded for final psychiatry autopsy diagnosis of MDD case or control. Clustering of single nuclei 
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gene expression profiles was performed in an unbiased blinded manner. Cluster annotations 

were assigned after generation of clusters.  

Clusters were excluded from downstream analysis if they did not show even contribution from 

subjects as these clusters are likely to reflect sample specific artifacts rather than biological 

variability of interest. Single-nuclei were excluded from cell-type clusters based on their level of 

correlation to the median expression profile of the cluster (lowly correlated nuclei were 

removed) as detailed above to ensure that differential gene expression analysis was performed 

using similar nuclei populations from cases and controls. The exclusion criteria were not pre-

established and were chosen based on preliminary analysis of the data. 

Differential expression analysis between the cases and controls in the snRNA-seq data was 

performed using linear mixed models implemented in the lme457 and lmerTest58 R packages with 

biological condition and number of UMIs as fixed effects, the subject and batch as random 

effects, and a false discovery rate of 0.1 for significance. For analysis of RNAScope results, two-

tailed t-tests were performed with a significance threshold of p < 0.05 and data distribution was 

assumed to be normal but this was not formally tested. For analysis of high-throughput qPCR 

data two-tailed t-tests or two-tailed Wilcoxon rank sum (i.e. Mann Whitney U tests) were 

performed, both at a significance threshold of p <0.05, and depending on data normality as 

measured by the Shapiro Wilk’s test.  

Data Availability 
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Raw sequencing data, annotated gene-barcode matrix, and lists of cells used for differential gene 

expression analysis are accessible on GEO using the accession number GSE144136 or using this 

link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144136. 

Code Availability 

A sample custom R script (Supplementary_R_Script_1.R) used for analyzing high-throughput 

qPCR data is provided and an R script used to test the statistical significance of CCInx interactions 

is provided (Supplementary_R_Script_2.R) along with this paper. 

Accession Numbers 

GEO accession number for snRNA-seq data: GSE144136.  
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Supplementary Methods 

Intermediate Steps of Cell Type Clustering 

Characterization of the 30 preliminary clusters in terms of known marker genes identified 3 as-

trocytic, 3 oligodendrocytic, 2 oligodendrocyte precursor, 1 microglial/macrophagic, 1 endothe-

lial, 8 inhibitory neuron, and 9 excitatory neuron clusters (Supplementary Fig. 2c-d). In addition, 

there were three “mixed” cluster, which either expressed both neuronal and glial markers or 

expressed both excitatory neuronal and inhibitory neuronal markers.  

In past studies of large single-nucleus human brain dataset, broad clusters were identified and 

subsequently sub-clustered1. We reclustered some of our large excitatory clusters (7 in total), 

including one containing ~27,000 cells, as shown in Supplementary Fig. 13a-c. This resulted in 10 

new sub-clusters, two of which appeared to be composed of cell doublets (excitatory/inhibitory 

and neuronal/glial cells) (Supplementary Fig. 13b).  

Two small clusters (Astros_1 and Inhib_4_SST) were omitted because they were each composed 

of a small number of cells from a single subject (subjects 12 and 10, respectively) (Supplementary 

Table 50-51). In Astros_1, there was increased GFAP (highest among three astrocytic clusters) 

and JUNB; in Inhib_4_SST there was increases JUN, FOS, and NPAS4 (Supplementary Fig. 14c). 

Thus, the presence of a population of “activated” cells in these subjects probably explains the 

two subject-specific clusters. All other clusters comprised of cells from the majority of subjects.  

After removing all doublet clusters and clusters composed of cells from only a single subject, we 

retained 26 clusters (2 astrocytic, 3 oligodendrocytic, 2 oligodendrocyte precursor, 1 endothelial, 

1 microglial/macrophagic, 7 inhibitory neuronal, and 10 excitatory neuronal) with relatively even 
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distribution from subjects, batches, and biological conditions (Supplementary Table 7a, 49-51, 

Supplementary Fig. 14a-b).  

Closer Examination of Selected Differentially Expressed Genes 

The per cell (nucleus) expression of selected differentially expressed genes in Ex7 and OPC2 is 

represented in the density in Supplementary Fig. 8a-f. While the heatmaps in Supplementary Fig. 

9a-p depict the average expression per subject in the specified cluster for thee genes, the density 

plots give a clearer picture of the range of expression of these genes in individual nuclei within 

the cluster for controls and depressed cases. The overall difference in expression level between 

nuclei derived from control subjects and MDD cases are seen in these plots.  
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Supplementary Figure 1  

General data quality metrics 

Violin plots showing distribution of numbers of UMIs and numbers of genes detected in each cell 

(a) before (n ~ 7 million barcodes detected pre-filtering from 34 subjects) and (b) after (n=78,886 
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individual nuclei from 34 subjects) custom filtering. (c) Normal distributions from mxmdl used for 

filtering (see Methods). Cells with high probability of belonging to the green or blue distribution 

were retained. (d) Distribution of number of UMIs per cell after all filtering steps showing two 

peaks likely roughly corresponding to non-neuronal and neuronal cells. (e) TSNE plots shaded by 

the number of genes (left), and the number of UMIs (right) detected in each cell, n=78,886 indi-

vidual nuclei from 34 subjects. (f) The percentage of UMIs corresponding to mitochondrially en-

coded genes was below 5% for 90% of the cells in all batches (n= 78,886 individual nuclei from 

34 subjects). (g) Barnyard plot produced by CellRanger for data generated by us using a mouse-

human mixed sample depicting mouse-human doublets (total rate of 5.2%) using the pre-mRNA 

reference and default filtering. All violin plots extend from the minimum to the maximum value.  
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Supplementary Figure 2 
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Results from initial clustering analysis 

(a) Elbow plot showing the standard deviation of each of the 100 principal components calculated 

based on the top 2135 variable genes. First 50 principal components were used for downstream 

analysis. (b) Dendrograms depicting the relationships between clusters, created based on hierar-

chical clustering of the top 50 principle components, after every step of successive merging of 

the 43 initial clusters from unsupervised clustering (see Methods).  (c) Unsupervised clustering 

followed by successive merging of similar clusters resulted in 30 clusters, n=78,886 individual 

nuclei from 34 subjects. (d) Average expression heatmap of cell-type marker genes (Macrophage/ 

Microglia: SPI1, MRC1, TMEM119, CX3CR1; Endothelial: CLDN5, VTN, VIM; Astrocytes: GLUL, 

SOX9, AQP4, GJA1, NDRG2, GFAP, ALDH1A1, ALDH1L1, VIM; OPCs: PTGDS, PDGFRA, PCDH15, 

OLIG2, OLIG1; Oligodendrocytes: OLIG1, OLIG2, PLP1, MAG, MOG, MOBP, MBP; Excitatory neu-

rons: SATB2, SLC17A7, SLC17A6; Inhibitory neurons: GAD1, GAD2, SLC32A1; Neurons: SNAP25, 

STMN2, RBFOX3). Average marker gene expression in the 30 clusters was used for preliminary 

annotation.  
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Supplementary Figure 3 

Individual TSNE plots representing the expression of various neuronal (a-h) and non-neuronal (i-

p) cell type marker in a given cluster (n=78,886 individual nuclei from 34 subjects). 
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Supplementary Figure 4 
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Cluster annotation based on marker genes  

(a) Heatmap showing average expression of cell-type marker genes (as in Supplementary Fig. 2d) 

in the final 33 clusters. Numbers 1-10 correspond to the clusters obtained after reclustering the 

excitatory clusters. (b) Table showing the median expression of cell-type marker genes (darker 

red box corresponds to higher median expression) in the 33 final and fully annotated clusters.     
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Supplementary Figure 5 

Cellular deconvolution analysis 

Cell-type deconvolution was performed using the average gene expression in each of our clusters 

based on a previously published data from a similar sample set (Habib, N., et al. Nature Method 

14, 955 (2017)). We found that cluster composition followed expected patterns across experi-

ments. Given that we had a larger sample set, we were able to resolve more cell types than were 

identified in the human PFC in this dataset. 
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Supplementary Figure 6 

(a) Approximately half of the genes that varied across pseudotime were shared between cases 

and controls. (b-i) Expression across pseudotime of (b-c) genes known to be highly expressed in 

OPCs or immature oligodendrocytes (d-e) transitionary, or (f-i) highly expressed in mature oli-

godendrocytes.  
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Supplementary Figure 7 

Cell-filtering for cluster purification 

Sample histograms of correlation between the gene expression profile of a cell and the median 

expression profile of its cluster (using highly variable genes) were plotted and normal distribu-

tions were fitted using mxmdl (see Methods). Cells with lower correlation and thus a higher prob-

ability of belonging to the red distribution were excluded, while cells with a higher probability of 

belonging to the green distribution were included. For clusters such as Ex_3_L4_5 (left) this re-

moved lowly correlated cells. For clusters such as Ex_6_L4_6 (middle), where most cells were 

highly correlated to the median, not many cells needed to be removed. For clusters such as 

Ex_2_L5 (right), the two distributions overlapped and none of the cells were removed.   
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Supplementary Figure 8 
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Density plots (left) and boxplots (right) showing distribution of normalized expression values in 

single-nuclei for (a) FKBP4, (b) FIBP, and (c) KIF16B in Ex7 (n=1201 individual nuclei from 15 con-

trols and individual 2170 nuclei from 17 cases) and for (d) KAZN, (e) HSP90AA1, and (f) PRNP in 

OPC2 (n=312 individual nuclei from 16 controls, and 164 individual nuclei from 13 cases). Only 

nuclei retained in purified cluster are represented. Controls in orange, cases in blue. For the box-

plots, the lower and upper hinges correspond to the 25th and 75th percentiles respectively. The 

upper and lower whiskers extend from the upper hinge to the largest value and from the lower 

hinge to the smallest value respectively, and no further from the hinge than 1.5 times the inter-

quartile range. Data points beyond this range are plotted individually. The central line is the me-

dian. 
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Supplemental Figure 9 

Differential expression heatmaps 

(a-p) Heatmaps of average expression for differentially expressed genes per subject in each clus-

ter (controls on the left, cases on the right) showing significant differential expression.  
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Supplementary Figure 10 

Summary of validations results from high-throughput qPCR. (Left) RNAScope in situ hybridization 

image showing expression of CUX2, RXFP1, and GAD1 in the dlPFC of one subject from our cohort. 

The experiment was performed once to confirm the pattern of CUX2 expression. (Top middle) 

Representative FANS plot from 34 sorts performed for 34 subjects depicting separation of nuclei 

(refer to Supplementary Fig. 12). (Top right) qPCR validation of expected marker gene expression 

to verify FANS separation (error bars represent ± S.E.M).  SOX10 (n = 5 technical replicates), OLIG2 

(n = 5 technical replicates), CUX2 (n = 5 technical replicates), and SLC1A2 (n = 5 technical repli-

cates) all show highest expression in the expected population. GAD1 (n = 5 technical replicates), 

SLC17A7 (n = 10 technical replicates), and CTIP2 (n = 5 technical replicates) are expressed more 

highly in the neuronal population.  
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Supplementary Figure 11 

Representative plots from one subject illustrating the gating strategy for FANS as described in 

detail in the Methods. 
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Supplementary Figure 12 

Microscope images of nuclei after extraction with brightfield and with Hoechst staining for DNA. 

Representative image from 36 samples prepared for 34 subjects.  
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Supplementary Figure 13  

Reclustering of excitatory clusters 
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(a) (Left) Pearson’s correlation between gene expression (n= 30062 genes) in pairs of clusters. 

Only the correlation coefficients > 0.95 are shown. Similar cell-types show this high-level of cor-

relation. (Right) Flowchart clarifying the relationship between the 9 initial and 10 final excitatory 

clusters. Based on gene expression correlation patterns cells in clusters Excit_2-4 and Excit_6-9 

were re-clustered, while cells in cluster Excit_1 and Excit_5 were not.  (b) DotPlot showing ex-

pression of cell-type marker genes (as in Supplementary Figure 2d) in the 10 clusters obtained 

after reclustering. The highlighted clusters were marked as mixed, because they expressed 

marker genes of multiple cell-types. (c) TSNE with 33 clusters resulting after re-clustering of se-

lected excitatory clusters shown in Supplementary Fig. 2c into more refined excitatory subtypes 

(n= 78,886 individual nuclei from 34 subjects).  

a 

 

 

 

 

 

 

 

 

 

 

 

 



151 

 

b 

 

 

 

 

 

 

 

 

 

  



152 

 

c 

 

 

 

 

 

 

 

 



153 

 

d 

 

 

 

 

 

 

 

 

 

 

e 

 

 

 

 

 

 

 

 

  



154 

 

Supplementary Figure 14 

Quality control metrics for final clusters  

(a) Contribution of each group (depressed cases versus controls) to a given cluster. In most cases 

there is a relatively even contribution. In highly skewed instances like cluster Astros_1 or In-

hib_4_SST, these clusters were discarded.  (b) The samples were processed in multiple batches. 

Batches 1 and 2 were relatively small batches with 2 samples each while batches 4-6 were full 8-

sample captures (as much as can be processed by one 10x chip). In most cases all batches con-

tributed to each cluster. In some cases, e.g. Astros_1 only one batch contributed and as a result, 

this cluster is removed from downstream analysis. (c) Clusters Inhib_4_SST and Astros_1 were 

excluded because they were primarily contributed by a single subject each. Inhib_4_SST specifi-

cally showed increased expression of activity dependent genes NPAS4, JUN, and FOS. Astros_1 

showed highly increased expression of GFAP compared to other astrocytic clusters. (d & e) tSNE 

plots colored by subject and batch (n=78,886 individual nuclei from 34 subjects). Linear models 

examining the effect of batch and subject on the residuals of the first tSNE component (residual-

ized on the second tSNE component) showed an R-squared value of <0.002 for batch and < 0.04 

for subject, emphasizing the absence of prominent batch effects on clustering. 
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Chapter 3 

Preface to Chapter 3 

Encouraged by our findings of cell type specific gene expression differences associated with 

depression in our male cohort we extended our dataset with a cohort of female individuals. Our 

initial study focused on males to simplify experimental design in the application of a novel 

technology for profiling the human brain in depression and to facilitate comparison with previous 

literature which was biased towards males. Subsequently, given the considerable evidence for sex 

differences in depression-associated transcriptomic patterns we generated crucial 

complementary data in females, identified cell types with prominent depression-associated gene 

expression differences in females, re-evaluated our male dataset in parallel with improved 

contemporary analysis methodology, and finally performed statistical comparison of the findings 

between the sexes highlighting the points of similarity and difference, as described in the 

following chapter.   
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Abstract 

Major depressive disorder (MDD) is a common, heterogenous, and potentially serious psychiatric 

illness. Diverse brain cell types have been implicated in MDD etiology. Significant sexual 

differences exist in MDD clinical presentation and outcome, and recent evidence suggests 

different molecular bases for male and female MDD. We evaluated over 160,000 nuclei from 71 

female and male donors, leveraging new and pre-existing single-nucleus RNA-sequencing data 

from the dorsolateral prefrontal cortex. Cell type specific transcriptome-wide threshold-free 

MDD-associated gene expression patterns were similar between the sexes, but significant 

differentially expressed genes (DEGs) diverged. Among 7 broad cell types and 41 clusters 

evaluated, microglia and parvalbumin interneurons contributed the most DEGs in females, while 

deep layer excitatory neurons, astrocytes, and oligodendrocyte precursors were the major 

contributors in males. Further, the Mic1 cluster with 38% of female DEGs and the ExN10_L46 

cluster with 53% of male DEGs, stood out in the meta-analysis of both sexes.  

Keywords 

major depressive disorder; sex differences; single-nucleus RNA-sequencing; dorsolateral 

prefrontal cortex; microglia; PV interneurons  
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Introduction 

Major depressive disorder (MDD) is a serious and potentially debilitating mental illness affecting 

200-300 million people worldwide1. MDD is a leading cause of disability globally1 and some 

prominent symptoms in patients with MDD include persistent low mood, decreased interest 

and/or pleasure, sleep and appetite disturbances, feelings of worthlessness, and suicidal 

thoughts2. A number of genetic variants have been identified which contribute to the heritability 

of MDD3 and brain transcriptomic differences4 are detected in this disease, but the molecular 

etiology of MDD is still only partially understood. 

There are known dissimilarities in the epidemiology and pathophysiology of MDD between the 

sexes. Notably, it is twice as prevalent in women than men5. Symptomatology differs in that, 

women are more likely to have comorbid anxiety, so-called atypical depression, and recurrent 

episodes, while men are more likely to have comorbid substance use disorders and to die by 

suicide6-8. Sex specific molecular profiles in MDD and corresponding animal models are often 

attributed to hormonal differences either during development or in adulthood, to the 

contributions of sex-chromosomes, or to inherent sex differences in the monoaminergic system 

or the hypothalamic-pituitary-adrenal axis (HPA), among other factors6,9.  

Recent studies in humans have attempted to address the gap in our knowledge of molecular sex 

differences in depression by examining MDD-associated sex-specific brain transcriptomic 

differences in human patients7,10. Using bioinformatic and meta-analysis approaches, combined 

with validation in animal models, these studies found that, overall, MDD-associated differences 

in brain transcriptomics are primarily sex-specific across brain regions, with very little overlap of 
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differentially expressed genes (DEGs) and discordance in overall patterns of difference between 

the sexes.  

Single-nucleus RNA-sequencing (snRNA-seq) can disentangle cell type specific transcriptomic 

contributions to complex neuropsychiatric conditions11-15, and our recent snRNA-seq results16 

revealed disruptions in deep layer excitatory neurons and immature oligodendrocyte precursor 

cells (OPCs) in the prefrontal cortex (PFC) of males with MDD. Given the higher prevalence of 

MDD among women, the known sex-specific differences in MDD, and growing evidence that male 

and female MDD may be mediated by distinct brain molecular mechanisms, we conducted a 

study in a cohort of female individuals and applied an updated unified analysis pipeline to both 

the female and previously generated male cohorts. With a total of 71 individuals, 37 cases and 

34 controls and over 160,000 single-nuclei profiled, our dataset represents the largest snRNA-

seq study of the human brain in MDD to date. We found that the DEGs detected and the cell 

types with prominent differences were distinct in males and females. However, the overall 

patterns of MDD-associated gene expression difference within each cell type were consistent 

between the sexes. Whereas in males our analysis indicated a strong involvement of deep layer 

excitatory neurons, astrocytes, and OPCs – consistent with our previous report, in females we 

found a striking contribution of microglia and parvalbumin (PV) interneurons to MDD pathology.   

Results 

Profiling cells of the human dorsolateral prefrontal cortex (dlPFC)  

snRNA-seq data was generated from the dlPFC for 20 female subjects with MDD and 18 

neurotypical female controls (Figure 1a, schematic; Table 1, demographic and sample 
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characteristics; Supplementary Data 1, sequencing metrics) and combined with previously 

generated data from males16. After pre-processing with a unified pipeline (methods: Sequencing, 

alignment, and generation of count matrices), we retained 160,711 high-quality nuclei with 

comparable contributions of sex (51% from females) and disease status (58% MDD). We used 

Harmony17 to correct for covariates, including batch effects (Supplementary Figure 1a-d), and 

applied the scclusteval18 workflow to optimize the Seurat clustering parameters (Supplementary 

Figure 2a-b) resulting in the identification of 41 nuclei clusters. Clusters mostly did not appear to 

be driven by batch, sex, brain bank, or subject (Supplementary Figure 3a-e, g).  

Of the 41 clusters, 40 could each be confidently annotated to one of 7 major brain cell types 

(methods: Cluster annotation, Figure 1b-d, Supplementary Figure 4, Supplementary Data 2) – 

excitatory neurons (48% of nuclei), inhibitory neurons (18% of nuclei), oligodendrocytes (14% of 

nuclei), astrocytes (8% of nuclei), OPCs (5% of nuclei), endothelial cells (2.5% of nuclei), and 

microglia (2% of nuclei). The one unassigned cluster displayed a mixed expression profile of 

neuronal and glial marker genes (2% of nuclei).  

We annotated 30 neuronal clusters, both excitatory (20 clusters) and inhibitory (10 clusters), 

using known subtype markers (Supplementary Figure 5a-b). Excitatory neuronal clusters were 

annotated according to their layer of origin and inhibitory neuronal clusters according to their 

developmental origin, where applicable. For non-neuronal cells, we identified one microglial 

cluster, two clusters of astrocytes, and three clusters each of oligodendrocytes and OPCs.  

Clusters annotated to the oligodendrocyte lineage (OL) were further characterized using 

pseudotime trajectory analysis (methods: Pseudotime trajectory analysis; Supplementary Figure 

5c-d).  
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Using the gene expression patterns of our clusters and matching them to published clusters in 

several human brain datasets19,20, we found close correspondence between observed cell types 

(Figure 1e, Supplementary Figure 6), further emphasizing that the quality of our data, clustering, 

and annotation are at par with other recent snRNA-seq datasets for the human brain. Besides 

the single cluster with mixed expression profile, two other clusters showed evidence of possible 

technical effects, ExN17 and ExN5 (methods: Assessment of clustering quality).    

Cell types with altered proportions in MDD   

We next examined whether proportions of nuclei in broad cell types and clusters differed 

between cases and controls. We observed that the proportions of nuclei per subject contributing 

to the broad astrocytic and OPC cell types were significantly decreased in cases compared to 

controls (two-sided Wilcoxon-test, FDR =3.46x10-4, Ast; FDR= 5.32x10-4, OPC; Figure 1f, 

Supplementary Data 3) and there were concomitant increases in excitatory neurons (FDR 

0.0477). Similarly, there were reduced proportions of nuclei in both astrocytic clusters (Ast1, FDR 

0.00188; Ast2, FDR 0.00291) and in two of three OPC clusters (OPC1, FDR 0.009799; OPC2, FDR 

0.0168; Figure 1f, Supplementary Data 3). The robustness of these differences was supported by 

sub-sampling analysis (methods: Cell type proportions comparison). Splitting the male and 

female datasets revealed similar patterns as observed for the combined data (Supplementary 

Figure 7). These results are similar to those found in analyses of other brain disorders11,21, and 

indicate that there may be decreased proportion of astrocytes and OPCs may be reduced in MDD. 

Here the FDR refers to Benjamini and Hochberg correction.  

Global cell type specific transcriptomic changes are largely concordant between the sexes 
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We next asked whether there are sex-specific differences in the gene expression patterns of 

individual cell types. To answer this question, we performed differential gene expression analysis 

comparing cases and controls in broad cell types and clusters, in males and females separately.  

In both males and females, we observed a high proportion of common DEGs between broad and 

cluster level analyses. However, consistent with previous studies showing distinct brain 

transcriptomic changes in males and females with MDD10,22, few DEGs were common to both 

sexes (Figure 2a). To compare overall patterns of depression-associated gene expression in males 

and females beyond those genes passing significance thresholds, we performed rank-rank 

hypergeometric overlap (RRHO) analysis23 (methods: Comparison of male and female results). 

Specifically, we used RRHO2 to compare the orderings of the genes induced by MDD association 

statistics in males compared to females. These orderings were generally moderately to strongly 

concordant between the sexes (Figure 2b). Some evidence of discordance was visible only for Oli 

and OPC. There was a significant overlap between males and females in genes less expressed in 

MDD in Ast, ExN, and InN (warm colors in top right quadrant of RRHO plots) and an overlap in 

genes more expressed in MDD in Mic (warm colors in bottom left quadrant of RRHO plot).  

At the cluster level there was some evidence of discordance between the sexes, with 8 out of 34 

clusters compared showing discordant patterns. This encompassed certain neuronal clusters, 

primarily excitatory neuronal, including ExN4_L35, ExN7, ExN12_L56, ExN13_L56, 

InN10_ADARB2 (Supplementary Figure 8).  Within the oligodendrocyte lineage, discordance is 

apparent for the Oli2, Oli3, and OPC1 clusters (Figure 2c). Supplementary Data 4 summarizes the 

maximum -log10 p-values from RRHO2 analyses and the classification of the results into weak, 

moderate, strong categories or concordance and discordance – with strongly concordant or 
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discordant results providing the most convincing evidence for similarity or difference between 

the sexes. As can be seen from Supplementary Data 4, we can see moderate or strong evidence 

for concordance between males and females in not only neuronal cell types, but also glia (e.g.- 

microglia and astrocytes). 

Taken together we find that, although cell type specific statistically significant MDD-associated 

DEGs differ between the sexes, a threshold-free ranking approach to comparison shows 

considerable concordance between males and females for the majority of broad cell types and 

clusters.  

We further assessed whether the similarities in cell type specific MDD-associated gene 

expression differences between males and females was likely to arise by chance using 

permutation analysis, which supported our conclusion that the similarities are not driven by 

chance (methods: Permutation analysis, Supplementary Figure 9e-j, Supplementary Data 4). For 

broad cell types, excluding the cluster annotated as having a mixed contribution of cell types, on 

average 91% of the time the real data yielded a higher correlation between male and female 

results than the permuted data. For clusters with concordant patterns, on average 90% of the 

time the real data yielded a higher correlation between males and females than the permuted 

data. However, for clusters with evidence of discordance, the real correlation was higher than 

permuted correlation only 42% of the time.  

Cell types with strongest MDD associations differ by sex 

Next, we identified the cell types with the strongest evidence of dysregulation due to MDD in 

each sex. In males, our reanalysis indicated results consistent with those we reported previously, 
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i.e., for broad cell types we identified the highest number of DEGs in astrocytes (90/151, 60%) 

and OPCs (54/151, 36%) (Figure 3a, Supplementary Figure 10a-d, Supplementary Data 5), 

whereas at the cluster level (Figure 3b, Supplementary Figure 10e-h & 11, Supplementary Data 

5), the highest number of DEGs were found in a cluster of deep layer excitatory neurons – 

ExN10_L46 (238/447, 53%) and a cluster of astrocytes – Ast1 (98/447, 22%). A summary of the 

proportions of upregulated versus downregulated genes and unique DEGs versus DEGs shared 

across clusters is provided in Figure 3e. Correlations between gene expression fold differences 

calculated in our reanalysis and our previous analysis are provided in Supplementary Figure 10i-

l (methods: Differential expression analysis - Comparison of male differential expression results 

to previous results).  

In females, for broad cell types, we detected a high number of DEGs in microglia only (74/85, 

87%) (Figure 3c, Supplementary Figure 12a-d, Supplementary Data 6). The same analysis at the 

cluster level (Figure 3d, Supplementary Figure 12e-h, Supplementary Data 6) consistently showed 

the highest number of DEGs in the Mic1 (Figure 3f; 68/180 DEGs, 38%) cluster with a large 

proportion (53/68, 78%) overlapping with the microglial DEGs at the broad level. We focused on 

cluster level results for follow up analyses (methods: Differential expression analysis, for 

justification) and assessed the robustness of our microglial findings against misclassified or 

contaminating cells (Supplementary Figure 12i).  

The majority of microglial DEGs (47/68, 69%) were confirmed to be both transcribed and 

translated in microglia using a TRAP gene expression dataset in a lipopolysaccharide challenge 

mouse model24.  
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In addition to microglia, several inhibitory neuronal clusters (Figure 3g), including two PVALB 

expressing clusters – InN1_PV and InN9_PV as well as an SST expressing cluster – InN2_SST and 

an ADARB2 expressing cluster – InN8_ADARB2 contained the majority of remaining DEGs. Our 

results thus pointed to dysregulation of microglia and inhibitory neurons, especially PV 

interneurons in females with MDD which further prompted us to explore the biological pathways 

within and possible interactions between these cell types which could be altered in MDD, as 

detailed below.  

Further, our permutation analyses revealed that at the broad level the number of unique DEGs 

identified with the real data was higher than 93% of permutations for females and 97% of 

permutations for males (Supplementary Figure 9a-b). At the cluster level, for males, the real 

number of unique DEGs was higher than the number of permuted DEGs 94% of the time 

(Supplementary Figure 9c). The evidence from permutations was weaker at the cluster level for 

females with 60% of permutations revealing fewer unique DEGs than the real data 

(Supplementary Figure 9d).  

Meta-analysis reveals additive effects of depression-associated transcriptomic changes in 

males and females 

To maximize statistical power to observe gene expression differences common to both males and 

females, we performed meta-analyses of the male and female data within each broad cell type 

and cluster. For broad cell types, the meta-analysis revealed upregulated genes in microglia and 

downregulated genes in astrocytes, with the majority of DEGs from the separate male and female 

analyses retained (Figure 4, Supplementary Data 7). There were more DEGs in microglia (172 
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DEGs) than observed in the female dataset alone (74 DEGs), whereas there were fewer DEGs in 

astrocytes (53 DEGs) than identified in males alone (90 DEGs). 49/90 (54%) DEGs in the broad 

astrocytic cluster in males and 56/74 (76%) DEGs in the broad microglial cluster in females were 

recapitulated in the meta-analysis. There were 22 DEGs in OPCs in the meta-analysis, but the 

number was less than half compared to the independent analysis of the male dataset (54 DEGs) 

whereas for oligodendrocytes the number of DEGs was higher when the data were meta-

analyzed (21 versus 7 DEGs in the male dataset alone).  The decrease in number of MDD-

associated DEGs in OPCs when combining the male and female cohorts indicates that gene 

expression differences in OPCs in MDD are dissimilar between the sexes. This agrees with the 

discordance of depression-related transcriptomic changes between sexes in OPCs in our RRHO2 

analysis.   

At the cluster level, we found that upregulated DEGs in Mic1 and downregulated DEGs in 

ExN10_L46 stood out as the top findings in the meta-analysis (Figure 4, Supplementary Data 7). 

Once again, we found more microglial DEGs (128 DEGs) via the meta-analysis compared to the 

female data alone (68 DEGs) and more DEGs in ExN10_L46 (254 DEGs) than with the male data 

alone (238 DEGs).  

Given the overall between-sex concordance in MDD-associated gene expression changes 

detected in RRHO2, it is not surprising that clusters with prominent differential expression from 

the individual cohorts also stood out in the meta-analysis. Taken together these results further 

support that the global patterns of change in gene expression within cell type are generally 
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consistent between males and females, especially for excitatory neurons and microglia, with a 

few notable exceptions such as OPCs.  

Female cell type specific DEGs are enriched for previous MDD-linked genes   

The relevance of the DEGs we have identified to psychiatric disorders was evaluated by referring 

to the PsyGeNET25 text-mining database. Compared to other disorders, depressive disorders had 

the most gene-disease associations with the female cell type specific DEGs (> 60; Figure 5a). The 

next largest number of gene-disease associations was for schizophrenia (< 40). Statistically, the 

overlap of all DEGs at the cluster level with disease-associated genes in PsyGeNET was significant 

only for two disease categories, Depressive disorders (hypergeometric test, p = 0.0378) and 

Alcohol use disorders (hypergeometric test, p = 0.0141). Further, for the top 5 clusters with 

highest numbers of DEGs in the female cluster-level analysis, gene-disease associations for 

depression and related disorders in PsyGeNET were identified for several DEGs (Figure 5b-c). 

Therefore, our cell type specific DEG findings in females recapitulated previously reported gene-

disease associations.  

Disease-relevant biological pathways revealed by cell type specific transcriptomic changes in 

females with MDD 

To explore the underlying pathways associated with the cell type specific transcriptomic changes 

in females with MDD, we performed pre-ranked gene set enrichment analysis (GSEA; methods: 

Pre-ranked gene set enrichment analysis). Female microglia from cases showed significant 

negative enrichment scores for inflammation-related Reactome pathway gene sets including 

“Interferon Gamma signaling”, “Interleukin 4 and Interleukin 13 signaling”, “Interleukin 10 

signaling”, and “TNFR2 non-canonical NF-KB pathway” (Figure 5d, Supplementary Data 8). 
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“Neuronal system” gene sets were positively enriched with contributions from “Voltage-gated 

potassium channels”, “Class C/3 metabotropic glutamate/pheromone receptors”, and 

“Neurexins and neuroligins” among others (Figure 5d). Interestingly both pro- and anti-

inflammatory immune signaling pathway gene sets were downregulated which may indicate that 

MDD-associated dysregulation of gene expression in microglia involves more than just a 

microglial inflammatory response.   

Further, both PV interneuron clusters showed a negative enrichment of heat shock factor 1 

(HSF1) related terms – “HSF1 activation” in InN9_PV and “HSF1 dependent transactivation” in 

InN1_PV. Moreover, both clusters showed an enrichment of the gene sets “Cellular response to 

external stimuli” and “Metabolism of RNA”. The InN1_PV cluster showed further enrichment of 

immune gene sets such as “Innate immune system”, “Adaptive immune system”, and “Cytokine 

signaling in immune system” and interestingly in the context of sex differences in depression, 

“ESR mediated signaling”, pertaining to the estrogen receptor.  

Thus, our GSEA of the female microglia and PV interneuron differential expression results 

revealed dysregulated Reactome pathway gene sets which are functionally relevant in these cell 

types and plausibly associated with sex differences.  

Assessing the relationship between microglia and PV interneuron dysregulation in females with 

MDD using protein-protein interaction assessment 

To further assess the functional relevance of striking gene expression differences in microglia and 

PV interneurons in females with MDD, we examined whether the protein products of DEGs in 

these clusters belonged to interacting networks. STRING26 protein-protein interaction (PPI) 
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analysis (methods: STRING analysis) revealed links between the protein products of several DEGs 

in the microglia and the PV interneurons. We focused on the top two interactions, based on the 

STRING confidence score. These interactions were between protein products of DEGs coming 

from microglia and PV interneurons and with the same direction of change (Figure 5e). The 

ROBO2 gene, which encodes a canonical cell migration guidance receptor27, was increased in 

microglia whereas one of its corresponding ligands, SLIT327 was increased in expression in the 

InN9_PV cluster. Additionally, ADAMSTL1 and THSD4 (also known as ADAMTSL6), two members 

of the ADAMTS-like family of proteins, which have extracellular matrix (ECM) binding 

properties28, were upregulated in microglia and in the InN1_PV cluster respectively. The PPI 

network analysis results point to the intriguing possibility that changes in communication 

between microglia and PV interneurons through the ECM and cell surface molecules contribute 

to depression-associated brain pathology in females.  

Assessing the relationship between microglia and PV interneuron dysregulation in females with 

MDD using ligand-receptor interaction assessment 

 

Building upon the indications from PPI assessment we explored the possible changes in ligand-

receptor expression in microglia and PV interneurons between female cases and controls with 

CellChat29 (methods: CellChat analysis). CellChat identified more interacting ligand-receptor pairs 

and estimated increased communication strength overall within and between and within 

microglia and PV interneurons in cases compared to controls (Figure 5f). CellChat further 

identified several signaling pathways (groups of related ligand-receptor pairs) with decreased 

(top pathway: GAS) and increased (top pathway: SPP1) communication in cases compared to 



170 

 

controls (Figure 5f). Within these top signaling pathways, we specifically identified a probable 

increase in SPP1 to integrin communication and decrease in GAS6-MERTK communication from 

microglia to PV interneurons and vice versa, respectively (Supplementary Figure 13).  

WGCNA confirms MDD dysregulated pathways in female microglia and PV interneurons 

Next, we performed weighted-gene co-expression network analysis (WGCNA) using the 

pseudobulk gene expression profiles to identify correlated modules of genes associated with 

MDD in microglia and PV interneurons in females.  

In microglia, 8 modules out of 44 had a significant correlation with case-control status (p-value < 

0.05; Figure 6a). Further, the MEturquoise module which is positively correlated with MDD-status 

(correlation 0.627, p = 7.26x10-5) showed a significant overlap (p = 5x10-56; methods: Weighted 

gene co-expression network analysis) with upregulated DEGs in microglia in female cases (Figure 

6b). MEturquoise also showed an enrichment of Reactome pathway gene sets related to ion 

channels, neurotransmitter receptors, and the neuronal system (Figure 6c) similar to gene sets 

found upregulated in microglia in female cases by GSEA.  

In PV interneurons (including nuclei in the InN1_PV and InN9_PV clusters), 16 of 55 modules were 

significantly associated with case-control status (p < 0.05, Figure 6d). Additionally, 

downregulated DEGs from InN1_PV and InN9_PV significantly overlapped (p = 3.24x10-7) with 

the genes from the MEturquoise module (Figure 6e). The MEturquoise module which is 

negatively associated with MDD (correlation -0.582, p = 0.00016), had over-representation of 489 

Reactome pathway gene sets. Of these, 30 pathways overlapped with the main downregulated 

pathways previously identified with GSEA in InN1_PV or InN9_PV (Figure 6f). The overlapping 
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pathways included “HSF1 activation”, “HSF1 dependent transactivation”, and “ESR mediated 

signaling”. Further, upregulated DEGs in InN1_PV and InN9_PV significantly overlapped with the 

genes of two modules which had a positive association with MDD-status: MEred (correlation 

0.568, p = 0.0002) and MEgreenyellow (correlation 0.426, p = 0.0085).  

Overall, the female microglia and PV interneuron WGCNA results further support our MDD-

associated DEG and Reactome Pathway findings in these clusters.  

Discussion 

Cell type specificity of depression associated transcriptomic changes 

There is a sizable body of postmortem literature describing differences from cellular morphology 

to proteomic and transcriptomic profiles in individuals with depression. Classic cytological 

experiments from the turn of the century identified abnormalities in morphology and distribution 

of cell types, but also put into question cell number, size, and neuropil density, particularly for 

neurons and astrocytes30-34. Transcriptomic studies have to some extent implicated all broad cell 

types35-37. Results from our present and previous study confirm this implication of multiple cell 

types including excitatory and inhibitory neurons, astrocytes, OPCs, and microglia. 

Our study highlights potential cell type specific transcriptomic targets for treatment and 

intervention in MDD. Given that different cell types appear to be implicated in MDD in males and 

females, approaches to treatment may need to be different as well. At the very least, our findings 

strengthen the evidence in support of including female subjects in pre-clinical and clinical 

research, which had been historically neglected and continues to be neglected in biomedical 

research. 
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Sex-specificity of depression-associated transcriptomic differences  

Only recently have postmortem transcriptomic studies of MDD begun to incorporate sex as a 

biological factor 7,10. These studies, which analyzed bulk tissue samples, reported distinct gene 

expression differences in males and females with very limited overlap of DEGs. Our findings are 

consistent with these studies in that the cell types with most prominent differences in gene 

expression – and the DEGs within these cell types – were quite separate for males and females 

(Figure 2a). However, in contrast, we found that within each cluster and broad cell type the 

threshold-free patterns of MDD-associated difference in gene expression were highly concordant 

between the sexes in most cases, except for most oligodendrocyte lineage clusters (Figure 2b-c). 

This overall agreement between the sexes was confirmed by a meta-analysis of the male and 

female data (Figure 4a-c). Possibly, by using single-nucleus methodology, our results provided 

better resolution for threshold free analyses. 

Notably, recent reviews on the sex specificity of transcriptomic differences in MDD22,38 suggest 

that in females with MDD there is reduced microglial activation and increased synaptic 

connectivity while the opposite is true for males. This theory is supported by the downregulation 

we observed in MDD females in microglial inflammatory pathways such as interferon and NF-KB 

signaling.  

Immune response is innately different across sexes leading to inflammatory responses that vary 

with age and sex resulting in a bias in susceptibility to the development of diseases from 

autoimmune to infections to cancer39. Microglia, the resident immune cell of the brain, showed 

the most significant difference in gene expression compared to control subjects specifically in 

females and not males (Figure 3a-d). It has been hypothesized that these differences result from 
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distinct starting points between sexes6. Notably, many microglial immune functions are mediated 

by gonadal hormones including transcriptional regulators such as suppressor of cytokine 

signaling 3, SOCS340, which is downregulated in our data and influences the expression of other 

cytokines. 

Microglial contributions to MDD in females 

The salient implication of microglia specifically in females is consistent with differences in the 

distribution, structure, transcriptome, and proteome of microglia between the sexes, in both 

health and disease41-43. Furthermore, the number and phenotype of microglia differ by sex in the 

rodent brain44-46, and several recent rodent studies demonstrated sex-specificity of microglial 

response to stress in various brain regions47-49. These studies describe changes in genes involved 

in cellular stress and immune function with brain-region and sex-specific variation. This is roughly 

analogous to the female-specific pathway dysregulation we observed in microglia and PV 

interneurons in MDD (Figure 5d, Supplementary Data 8).   

Most studies examining peripheral markers report increased inflammation in MDD50, but studies 

in brain tissue have reported increases50, decreases51, or changes in both directions52 in the 

expression of pro-inflammatory molecules. Moreover, several depression-linked genetic variants 

in pro-inflammatory genes, including in IL1B, TNFA, and CRP, are associated with decreased 

expression53. Recently the concept of a pro-inflammatory versus anti-inflammatory state of 

microglia has been challenged54. In the brain, amidst close interactions with multiple cell types, 

microglia adopt more diverse states with varying levels of pro- and anti-inflammatory markers, 

and this is being underscored by single-cell data54. Our results reflect altered microglial 
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transcription in MDD females versus controls, with pro-inflammatory (interferon and NF-KB 

signaling) and anti-inflammatory (IL4, IL13, and IL10 signaling) pathways simultaneously 

downregulated (Supplementary Data 8).  

We observed evidence that further “neuronal” pathways – including neurotransmitter signaling 

and ion channels – were upregulated in female MDD microglia, in both differential expression 

and WGCNA results (Supplementary Data 8, Figure 6c). Microglia have long been known to 

express neurotransmitter receptors and ion channels. Mounting evidence suggests these 

canonically “neuronal” gene products regulate microglial activity55-58, and our results suggest that 

changes in their expression may contribute to MDD pathophysiology, at least in females.   

PV interneuron and microglia crosstalk in females with MDD 

Together with striking changes in microglial gene expression, we observed dysregulation in PV 

interneurons. PV interneurons, among other interneuron subtypes, are implicated in stress and 

depression with evidence for sex-specific changes59,60. Most PV interneurons are encapsulated 

by ECM structures called perineuronal nets (PNNs) which help protect them from cellular stress, 

and microglia are known to regulate PNNs61. Oxidative and cellular stress relate to PV neuron and 

PNN deficits in animal models62 and cellular stress may be part of the molecular pathology in 

MDD63.  

We found evidence of dysregulated cellular stress pathways, such as heat-shock factor activation, 

in PV interneurons in MDD females via differential expression analysis and WGCNA 

(Supplementary Data 8, Figure 6f). Moreover, both analyses pointed to dysregulation of estrogen 

receptor mediated signaling.  The expression of many genes is regulated by the ligand-bound 
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estrogen receptor and difference in estrogen levels are known to contribute to differences in 

brain physiology between the sexes41.  

Beyond effects in individual cell types, our results imply potentially impaired communication 

between PV interneurons and microglia in females with MDD (Figure 5e-f). Microglial synaptic 

regulation involves migration of microglia towards specific neurons and in glioblastomas this 

migration can be regulated by SLIT-ROBO signaling27. The SLIT3 gene and its corresponding 

receptor gene ROBO2 were upregulated in PV interneurons and microglia respectively in females 

with MDD. Of note, genetic variation in SLIT3 has been associated with depression64.  

We observed that the ECM-binding protein genes ADAMTSL1 and THSD4 were upregulated in 

microglia and PV interneurons, respectively, in MDD females. These recently characterized 

ADAMTS-like proteins lack the enzymatic domains through which ADAMTSs break PNN 

components, but they have been proposed to protect these components from degradation by 

mimicking ADAMTS binding28,65. We therefore conjecture that microglial migration cued by PV 

interneurons, followed by concerted alterations of the ECM by these two cell types stabilize PNNs 

in females with MDD. A recent study  – including males and females – reported increased PNN 

number in the PFC of MDD subjects who experienced early life adversity66, and our molecular 

findings might underlie one sex-specific mechanism for PNN alterations in MDD.  

Our preliminary assessment also points to downregulation of PV interneuron to microglia 

signaling via GAS6-MERTK and upregulation of SPP1 to integrin signaling in the opposite direction 

in females with MDD. Together, MERTK and GAS6 promote homeostasis and neuronal survival 

and they are disrupted in several nervous system disorders67. On the other hand, microglial 

osteopontin (SPP1), promotes remyelination in multiple sclerosis and is neuroprotective near 
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infarcts in stroke but in Alzheimer’s disease it is part of the “disease associated microglia” 

signature68. The role of these signaling molecules in depression, if any, are yet to be determined.  

Limitations 

This study has limitations that should be considered. We could not directly compare male and 

female cell type specific transcriptomes or assess the interaction of sex and disease status given 

that we are using data from two sex-specific datasets. Thus, the implication of different cell types 

in MDD between males and females could be partly attributable to differences in methodology 

(such as library preparation chemistry, tissue collection approach, or nuclei isolation protocol, 

among other factors) for generating the two datasets. However, we attempted to mitigate this 

by applying a unified pre-processing pipeline and joint definition of cell types. Our findings are 

consistent with previous evidence for sex-specific mechanisms for depression etiology in animal 

models and human studies6,9,69,70.  

Our permutation analysis indicated our DEGs at the cluster level for females may not be as robust 

as for the male cluster level analysis and the broad analysis for both sexes. However, our main 

findings in females at the cluster level are in microglia, and 78% of microglial DEGs in the female 

cluster analysis are also present in the female broad analysis, results that were robust, according 

to the permutation approach. Further our DEGs from the female cluster level analysis were 

supported by our WGCNA results, partially mitigating the concern that the DEGs can be an 

artefact of the differential expression analysis strategy. 

Although our study included data from over 160,000 nuclei, the number of subjects was small 

relative to the large number of genes tested for associations with MDD. The relatively small 

number of subjects included in this study limits our statistical power to detect cell type specific 



177 

 

disease relevant genes and pathways. Further, our results may not be generalizable to all 

populations and this work will need to be extended with larger sample sizes from diverse 

populations. However, the number of subjects included in our study compares favourably to 

most published snRNA-seq studies of neuropsychiatric conditions to date, which have included 

anywhere between 11 to 48 subjects11,12,15,71,72.  

We did not identify a separate sub-population of disease-associated microglia as observed in 

some neurological disorders73. This may partly be due to the lack of cytoplasmic transcripts in 

snRNA-seq limiting the information about microglial states74. Nevertheless, a recent study 

highlighted similarities between cellular and nuclear microglia RNA-seq data from mouse and 

human – fresh and frozen – CNS samples75. Nuclear microglia transcriptomes are a reliable proxy 

for cellular transcriptomes and are less affected by cell isolation-based transcriptional artifacts75. 

We were able to detect inflammatory pathway dysregulation in female microglia despite the 

limitations.  

Our CellChat and STRING results are speculative. We cannot draw conclusions about the 

proximity of microglia to PV interneurons or the presence of PNNs, as snRNA-seq involves 

dissociation of the tissue with loss of spatial and structural information. Neither can we conclude 

that protein expression is changed for our DEGs. Future studies using spatial transcriptomic 

techniques coupled with immunohistochemistry may better answer these questions. 

Lastly, a few clusters may be of lower quality (biased by batch or according to quality parameters, 

and inconsistency with other datasets or with cluster enriched genes; ExN17, ExN5 and Mix). 

However, given that these clusters did not contribute substantially to our differential expression 

results, their impact on our main conclusions is likely to be limited. 
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Outcomes 

We provide a cell type and sex-specific assessment of transcriptomic changes in the dlPFC in 

MDD using snRNA-seq. Our dataset represents a rich resource which will stimulate further 

fruitful investigations of sex- and cell type specific molecular pathways in depression. While 

most transcriptomic changes in males with MDD are observed in deep layer excitatory neurons, 

astrocytes, and OPCs, in females the changes are concentrated in microglia and PV 

interneurons. Although major dysregulated cell types and genes are distinct for each sex, within 

broad cell types and clusters the patterns of transcriptomic differences in MDD are primarily 

concordant between males and females. Finally, preliminary evidence hints that in females with 

MDD, impaired communication between microglia and PV interneurons may be an important 

feature of MDD molecular pathology.  

Methods 

Male snRNA-seq dataset 

We used published snRNA-seq data from a cohort of male subjects with or without MDD16. We 

started with the raw FASTQ files available through GEO (GSE144136,  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144136) and reprocessed the data, 

dropping two runs from one subject (number 25) with low quality results based on the previous 

analysis. All male samples for the study had been obtained from the Douglas Bell-Canada Brain 

Bank.  

Post-mortem brain samples in the female cohort 
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This study was approved by the Douglas Institute IRB. Human post-mortem dlPFC tissue was 

obtained from the Douglas- Bell-Canada Brain Bank (www.douglasbrainbank.ca, all female case 

samples and eight female control samples) and from the University of Miami Miller School of 

Medicine Brain Endowment Bank (https://med.miami.edu/programs/brain-endowment-bank, 

ten female control samples). Informed consent from next of kin was obtained for each individual 

included in this study. Frozen histological grade samples of gray and white matter were dissected 

from the dlPFC (Brodmann Area 9) by expert neuroanatomists and stored at –80 °C.  Psychological 

autopsies were performed using proxy-based interviews complemented by medical charts, as 

previously described76. A summary of sample demographic characteristics is provided in Table 1. 

All cases included in this study died while affected by MDD or unspecified depressive disorder, 

whereas controls were neurotypical individuals who died suddenly without prolonged agonal 

periods and did not have evidence of axis I disorders. The post-mortem interval (PMI) represents 

the delay between an individual’s death and collection and processing of the brain.  One female 

case subject and three female control subjects were Hispanic, two female control subjects were 

African American, and race information was missing for one female case.  All other female 

subjects were Caucasian, as were all subjects in the male cohort. 

Nuclei extraction, single-nuclei capture, and library preparation for female cohort 

Nuclei were extracted from coronal cryosections or tissue shavings across the cortical layers and 

white matter, weighing between 40-65 mg, obtained using a cryostat at -20 °C with thickness set 

to 100 microns. Nuclei were extracted as previously described77. Two versions of the iodixanol 

gradient were used – a weaker gradient using 17.5% and 15% (w/v) concentrations of iodixanol 

(batches 3F, 7F, 2F) and a stronger gradient using the 29% and 25% (w/v) concentrations of 

http://www.douglasbrainbank.ca/
https://med.miami.edu/programs/brain-endowment-bank
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iodixanol (batches 6F, 8F, 12F), as previously published78, and we found the stronger gradient to 

perform better. Nuclei were resuspended in wash buffer and stained using Hoescht 33342 

(1:2000). 10 uL of nuclei were loaded onto EVE cell counting slides (MBI) and imaged using an 

Olympus VS120 Slide Scanner (10X magnification) and counted using the QuPath79 software 

(version 0.2.0) with the “Watershed cell detection” functionality.  

We used the 10x Genomics Chromium controller for single-cell gene expression to isolate single 

nuclei for downstream RNA library preparation with 10x Genomics Chromium Single Cell 3’ 

reagents. For samples processed with version 2 of the Chromium chemistry (Supplementary Data 

1), we followed the protocols as outlined by the user guide 

(CG00052_SingleCell3_ReagentKitv2UserGuide_RevB; latest version 

at https://assets.ctfassets.net/an68im79xiti/RT8DYoZzhDJRBMrJCmVxl/6a0ed8015d89bf96021

28a4c9f8962c8/CG00052_SingleCell3_ReagentKitv2UserGuide_RevF.pdf), whereas for sample 

processed with version 3 of the Chromium chemistry (Supplementary Data 1) we followed the 

protocols as outlined by the user guide (CG000204_ChromiumNextGEMSingleCell3_v3.1_Rev_D, 

https://assets.ctfassets.net/an68im79xiti/1eX2FPdpeCgnCJtw4fj9Hx/7cb84edaa9eca04b607f91

93162994de/CG000204_ChromiumNextGEMSingleCell3_v3.1_Rev_D.pdf). The catalog numbers 

for the 10X Genomics single-cell RNA-seq kits for the v2 chemistry and v3 chemistry were 120237 

and 1000121, respectively. The only modification was for loading concentration, which we 

increased by 30% as we assessed the capture of nuclei to be slightly less efficient than cell 

encapsulation. Nuclei were loaded to capture 3000 per sample, but because of a systematic error 

in counting the actual number of nuclei captured per sample was variable (Supplementary Data 

1).  

https://assets.ctfassets.net/an68im79xiti/RT8DYoZzhDJRBMrJCmVxl/6a0ed8015d89bf9602128a4c9f8962c8/CG00052_SingleCell3_ReagentKitv2UserGuide_RevF.pdf
https://assets.ctfassets.net/an68im79xiti/RT8DYoZzhDJRBMrJCmVxl/6a0ed8015d89bf9602128a4c9f8962c8/CG00052_SingleCell3_ReagentKitv2UserGuide_RevF.pdf
https://assets.ctfassets.net/an68im79xiti/1eX2FPdpeCgnCJtw4fj9Hx/7cb84edaa9eca04b607f9193162994de/CG000204_ChromiumNextGEMSingleCell3_v3.1_Rev_D.pdf
https://assets.ctfassets.net/an68im79xiti/1eX2FPdpeCgnCJtw4fj9Hx/7cb84edaa9eca04b607f9193162994de/CG000204_ChromiumNextGEMSingleCell3_v3.1_Rev_D.pdf
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Sequencing, alignment, and generation of count matrices 

The majority of samples in the female cohort (36) were sequenced using the Illumina NovaSeq 

6000 but two samples were sequenced using BGI DNB-seq technology. Sequencing metrics are 

provided in Supplementary Data 1. All samples from the male cohort were realigned. Alignment 

was performed and count matrices were generated with Cell Ranger version 5.0.1 against the 

GRCh38 reference available on the 10X Genomics website (refdata-gex-GRCh38-2020-A,  

https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build). 

We ran the “cellranger count” command using the “--include-introns” option and all other 

options set to default.  

An initial 174,178 nuclei were obtained with Cell Ranger default cell filtering. The median value 

of mean reads per cell was 71,279, the average mapping rate to the transcriptome was 68.8%, 

the average fraction of reads in cells was 71 %, and the average sequencing saturation was 78.5% 

(Supplementary Data 1). There was higher intronic mapping rate (Kruskal-Wallis test p-value 

0.0029) and a lower exonic mapping rate (Kruskal-Wallis test p-value 0.0048) for cases compared 

to controls, but no significant differences in any other sequencing quality control metrics 

(Supplementary Data 1).   

The filtered gene barcode matrices were individually loaded into R80 (versions 4.0.2 and 4.1.2) 

for downstream analysis and processed with Seurat81 (4.0.3.9000 and 4.0.5).  Percentage of reads 

from mitochondrially encoded genes were calculated before filtering, added as metadata, and 

used as a quality control parameter for nuclei filtering, after which the mitochondrial genes were 

removed for downstream analysis. The parameters for filtering were as follows: 

https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build
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Male cohort: nCount_RNA < 35000, nFeature_RNA > 350, percent.mt < 10 

Female cohort v2 chemistry: nCount_RNA < 25000, nFeature_RNA > 250, percent.mt < 10 

Female cohort v3 chemistry: nCount_RNA < 120000, nFeature_RNA > 350, percent.mt < 10 

After filtering, we obtained 79,058 nuclei in the male cohort (43,347 from cases, 35,711 from 

controls) and 81,653 nuclei in the female cohort (49,926 from cases, 31,727 from controls).  In 

the female cohort, after filtering, the median across samples of the median number of UMIs per 

cell and the median the number of genes per cell were 2758.5 and 1711.5 respectively 

(Supplementary Data 1). In the males, the corresponding numbers were 2530.5 and 1638.25 

respectively (Supplementary Data 1). 

Dimensionality reduction and data integration 

We performed SCTransform on each Seurat object individually and used the 

SelectIntegrationFeatures function to set the variable genes for downstream analysis. We scaled 

each cell to 10000 counts and ran log normalization. We regressed out nCount_RNA and 

percent.mt from the counts to get scaled gene expression values for variable genes, which was 

used as input for calculating 100 PCA components. We corrected PCA components with 

Harmony17 to account for batch, chemistry, and sample specific effects. This helped align the 

datasets as seen in the UMAP projections produced before and after correction (Supplementary 

Figure 1a-d). All UMAPs in figures were created using Seurat.   

Clustering  

We tested of a range of combinations of clustering parameters for the Seurat package 

(FindClusters function) using the scclusteval18 sub-sampling (80% of all cells, 100 times) and 
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stability comparison workflow using Jaccard indices, with some customization. With each sub-

sampling, PCA and Harmony were recalculated. The parameters tested were: k-param: 20, 30; 

resolution: 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5; number of Harmony corrected PCs to use: 70, 80. 

We then set a threshold for the minimum stability with a chooseR-like82 approach based on the 

bootstrapped medians of the median Jaccard index across all the clusters and all the parameter 

sets tested. We selected parameters that maximized the number of clusters while passing the 

threshold of cluster stability: 70 Harmony corrected PCA components, a k-nearest neighbors’ 

parameter of 30, and a resolution of 0.7 (Supplementary Figure 2a-b). Repeating the Harmony 

correction with a seed set followed by clustering with the optimal parameters produced 41 

clusters. Final UMAPs were produced using all 100 Harmony corrected PCA components and all 

calculation parameters set to default.   

Cluster annotation  

Genes enriched in clusters were calculated using the wilcoxauc function from presto83 with 

default parameters, and filtered with the following criteria:  padj < 0.05, logFC > log(1.5), pct_in-

pct_out > 10. For annotation, the following known cell type marker genes were assessed in the 

cluster enriched genes: 

Macrophage/microglia: SPI1, MRC1, TMEM119, CX3CR1; Endothelial: CLDN5, VTN, VIM; 

Astrocytes: GLUL, SOX9, AQP4, GJA1, NDRG2, GFAP, ALDH1A1, ALDH1L1; OPCs: PDGFRA, 

PCDH15, OLIG2, OLIG1; Oligodendrocytes: PLP1, MAG, MOG, MOBP, MBP; Neurons: SNAP25, 

RBFOX3; Excitatory neurons: SATB2, SLC17A7, SLC17A6; Inhibitory neurons: GAD1, GAD2, 

SLC32A1, Inhibitory neuronal subtypes: VIP, PVALB, SST, ADARB2, LHX6, LAMP5, PAX6 
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Additionally, expression of cell type specific genes from BRETIGEA84 were assessed using the 

Seurat AddModuleScore function (Supplementary Figure 4).  

Twenty clusters of excitatory cells were identified (Supplementary Figure 5a) including four 

superficial cortical layer neuronal clusters (ExN1_L24, ExN2_L23, ExN8_L24, ExN9_L23), ten deep 

cortical layer neuronal clusters (ExN3_L46, ExN4_L35, ExN10_L46, ExN11_L56, ExN12_L56, 

ExN13_L56, ExN15_L56, ExN16_L56, ExN19_L56, ExN20_L56) and six excitatory neuronal clusters 

without an obvious pattern of cortical layer specific marker expression (ExN5, ExN6, ExN7, ExN14, 

ExN17, ExN18). The layer annotations of excitatory neuronal clusters were supported by 

assessment of enrichment for genes known to be specific to the different layers of the cortex 

using spatial transcriptomics results from Maynard et al.85 (data in supplementary table 4 of the 

cited publication). 

We identified 10 inhibitory clusters (Supplementary Data 2, Supplementary Figure 5b), that can 

broadly be divided into cells likely derived from the medial ganglionic eminence (MGE; InN1_PV, 

InN9_PV, InN2_SST, InN5_SST) based on LHX6, SST, or PVALB enrichment, or the caudal 

ganglionic eminence (CGE; InN3_VIP, InN4_VIP, InN6_LAMP5, InN8_ADARB2, InN10_ADARB2) 

based on ADARB2 enrichment. The InN2_SST cluster was enriched for SST and GAD1 expression 

but had no LHX6 enrichment. The InN8_ADARB2 (also referred to interchangeably as InN8_Mix) 

cluster also showed enrichment for SST. One inhibitory neuron cluster with enrichment for both 

ADARB2 and LHX6 (InN7_Mix), which has been previously reported86.  

Assessment of clustering quality 
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Contribution of batches, groups, brain banks, and subjects was relatively uniform across clusters 

(Supplementary Figure 3a-d, g). Endothelial, microglial, and oligodendrocyte lineage cells showed 

a higher percentage of contribution from the females compared to the males, possibly due a 

different dissection strategy used for the two cohorts such that for the female cohort more white 

matter tissue was included in the nuclei extractions. All but one cluster (number 34, later 

annotated as ExN17) had contributions from both the male and female cohorts and one cluster 

was primarily composed of cells from the female cohort (number 11, ExN5). ExN17 also  showed 

exceptionally high numbers of UMIs detected per nucleus (Supplementary Figure 3f). Moreover, 

one cluster (number 17, which was later annotated as showing a mixed expression profile – Mix) 

had relatively high percentage of mitochondrial reads (Supplementary Figure 3f). These clusters 

are likely driven by technical effects rather than representing biologically driven cell subtypes or 

cell states, but they only represented < 6% of our data.   

Comparison to other datasets 

MetaNeighbor 

We used MetaNeighbor87 to compare the clusters in our dataset to several published 

datasets16,19,20. For the Song et al., 2020 data we used the h5_a88, h789, h1090, and h1486 datasets 

which contain adult human cortical cells or nuclei and were reprocessed by the authors. We used 

our own dataset as a reference to train the model, for consistency of comparisons across the 

datasets and limited the analysis to the same variable genes we used for PCA and clustering. 

MetaNeighbor best hits plots are shown in Figure 1e and Supplementary Figure 6.  

Spatial label transfer 
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We used Seurat to transfer the labels for layer annotation from a spatial transcriptomics dataset85 

to our dataset (Supplementary Figure 5a). Each tissue section of the spatial transcriptomics data 

was treated separately and one section each from two different subjects were assessed (data 

shown for one subject and section - 151673). Both the spatial and snRNA-seq data were 

preprocessed with SCTransform and transfer anchors were identified using the “canonical 

correlation analysis” option before transferring the labels. 

Pseudotime trajectory analysis 

We used “slingshot”91 to build a pseudotime trajectory with our OL nuclei (Supplementary Figure 

5c). We built the pseudotime trajectory with the male and female datasets combined. OL nuclei 

were subset and UMAP was rerun using the following parameters: dims= 1:10, min.dist=0.1, 

spread = 5, n.neighbors = 100, chosen to capture the global patterns in the data. Slingshot was 

run with the resulting UMAP as input and using the following parameters: extend = "n", start.clus 

= "OPC2", end.clus = "Oli3", stretch = 0.1, thresh = 0.3, once again chosen to capture the broad 

patterns in the data. The start and end clusters were chosen based on their position in the UMAP, 

and cluster labels were provided. The oligodendrocyte lineage (OL) clusters were arranged from 

OPC2 at one end of the pseudotime trajectory, followed by OPC1 and OPC3, a small cluster 

possibly corresponding to committed oligodendrocyte precursors (COPs). At the other end of the 

pseudotime trajectory Oli2, Oli1, and Oli3 were placed sequentially and could represent the order 

of oligodendrocyte clusters from myelinating to mature states.  

We fit the expression of genes along pseudotime by splitting the data for males and females 

before using tradeSeq92 (Supplementary Figure 5d). We ran fitGAM on the UMI counts for each 

gene, with age, PMI, pH, and batch as covariates, with conditions set to case and control status, 
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and nknots of 5, based on evaluation of a range of nknot values. The fitted expression of OL 

marker genes was visualized using the plotSmoothers function. The pseudotime trajectory 

analysis was performed following the vignette available here: 

https://kstreet13.github.io/bioc2020trajectories/articles/workshopTrajectories.html 

Cell type proportions comparison 

The percentage of nuclei in each cluster and each broad cell type for each sample was calculated 

and compared between cases and controls with Wilcoxon tests using rstatix93. To further mitigate 

the effect of outliers we obtained p-values for the Wilcoxon test using bootstrapping with 10000 

replicates (R package boot94; Supplementary Data 3) which supported the initial results. Lastly, 

we also examined the distribution of p-values (Supplementary Data 3) from the Wilcoxon test 

rerun after randomly sub-sampling 70% of the nuclei 100 times similar to a previous study11 and 

confirmed the pattern of changes in proportion preserved after sub-sampling (Supplementary 

Data 3). Wilcoxon tests were also repeated for the male and female datasets separately 

(Supplementary Figure 7) as described above. All boxplots in Figure 1 and Supplementary Figure 

7 are made using the geom_boxplot function from ggplot2, and the detailed description of the 

boxplot elements can be found, in the documentation for the function which is linked here: 

https://ggplot2.tidyverse.org/reference/geom_boxplot.html.  

Differential expression analysis 

We performed pseudobulk differential gene expression analysis using muscat95 and edgeR96 at 

the broad cell type and cluster levels in males and females separately. Pseudobulk expression 

profiles were obtained by summing the raw UMI counts for each gene for each sample within the 

https://kstreet13.github.io/bioc2020trajectories/articles/workshopTrajectories.html
https://ggplot2.tidyverse.org/reference/geom_boxplot.html
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broad cell type or cluster. Only one run of the male sample 24 was included in these analyses 

(M24_2 excluded). Additionally, subjects were only included if they had a minimum of 10 cells in 

the broad cell type or 5 cells minimum in the cluster. The covariates included age, pH, PMI, and 

batch and muscat’s default gene and sample filtering were disabled. Further, internal checks 

within muscat excluded clusters where the number of samples with sufficient cells was not 

enough, given the model being used. DEGs were selected using an FDR (Benjamini & Hochberg) 

adjusted local (within cluster or broad cell type) p-value <0.05 and logFC > log2(1.1) and non-zero 

expression value in at least 3 samples. The isOutlier function (nmads 5, log “FALSE”) from scater97 

was used to flag potential outliers on the CPMs from edgeR, as an additional assessment for 

genes that were called as differentially expressed. Flagged outliers were not removed from 

analysis. For one female subject with missing pH, F35, the average pH across all female subjects 

was substituted.  

Since the only difference between the broad and cluster level microglial results lies in the 

exclusion criteria for subjects based on number of cells contributed the input data and outcomes 

were similar between these analyses, and we focused on the cluster level results in females for 

follow-up analyses.  

All Venn diagrams to show overlap of differentially expressed genes were made with ggvenn 

(version 0.1.9). Heatmaps for differentially expressed genes were made with ComplexHeatmap 

(version 2.10.0). 

Comparison of male differential expression results to previous results  
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For the male differential expression results, using linear regression we compared the log fold 

changes per gene for top clusters with highest numbers of DEGs from the current analysis with 

the per gene estimates for similar clusters with high numbers of DEGs in our previous analysis16. 

Considering only the top 1000 genes in common ranked by the p-values in the current analysis, 

we found moderate positive relationships with R-squared values in the 0.13-0.32 range 

(Supplementary Figure 10i-l). Considering that the analysis approaches were quite distinct at 

every upstream and downstream step, these results support a similar pattern of changes in gene 

expression in the male data as we had previously reported.   

Sub-clustering of microglia for differential expression analysis in females 

A subset of microglia clustered next to oligodendrocytes in the UMAP, which could reflect 

misclassified cells, doublets, or even immune oligodendroglia98,99 or white matter microglia100. 

To determine the robustness of our microglial results to the presence of this subset of cells, we 

sub-clustered the microglial cluster. We found variable features within the microglial population, 

reran PCA and Harmony, and optimized clustering parameters (resolution 0.01, other parameters 

default) using silhouette scores. We excluded any subclusters which expressed oligodendrocyte 

lineage markers (PLP1 and ZFPM2). Then we reran differential expression analysis on female 

microglia using the same parameters as initially used and found that new per gene logFCs showed 

a strong positive association (linear regression) with the initial results (Supplementary Figure 12i). 

Given that sub-setting microglia to most confident nuclei did not substantially alter the results 

and for downstream analysis, we proceeded with the DEGs obtained using the full microglial 

cluster. 
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Comparison of male and female results 

Rank-rank hypergeometric overlap 

We performed a threshold free, rank-rank hypergeometric overlap (RRHO) analysis with 

RRHO223. Within each cluster or broad cell type, genes were scored using the product of the logFC 

and the negative log base 10 uncorrected p-value from differential expression analysis in the 

male and female datasets separately. The scored gene lists were provided to RRHO2_initialize 

function (method “hyper” and log10.ind “TRUE”) and the results were plotted using the 

RRHO2_heatmap function.  

Meta-analysis by Fisher combination of p-values 

To meta-analyze the male and female differential expression results per broad cell type and per 

cluster, we used Fisher combination of p-values as implemented in the metaRNASeq101 R package 

on the uncorrected p-values after filtering out genes detected in less than 3 samples. We also 

used an FDR (Benjamini & Hochberg) adjusted p-value threshold of 0.05 for genes to be 

considered significantly changed in the meta-analysis and removed any genes with opposite 

direction of change between the two datasets. 

Permutation analysis 

We permuted the cases versus control labels 100 times, within each batch, within the male and 

female datasets separately, and re-ran our differential expression analysis to obtain a distribution 

of the number of cell type specific unique DEGs (counting once any DEGs repeated across 

multiple clusters or cell types), at the broad and cluster level, for males and females, with 

randomly permuted groups (Supplementary Figure 9a-d). We also calculated the Spearman 



191 

 

correlation between the differential expression gene scores (log fold change multiplied by the 

negative log base 10 uncorrected p-value, as used in RRHO2 analysis) between male and female 

datasets per cell type and cluster. We plotted the distribution of correlation coefficients obtained 

between the male and female datasets using permuted case versus control labels for broad cell 

types (Supplementary Figure 9e-j). Further, we assessed for each cluster what percentage of 

Spearman correlation coefficients calculated using permuted results were less than the 

Spearman correlation coefficient observed with the real labels (Supplementary Data 4), with a 

higher percentage representing a correlation that is less likely to appear by chance with random 

case versus control labels. 

Functional interpretation of female differential expression results  

Pre-ranked gene set enrichment analysis (GSEA) 

For the microglial (Mic1) and PV interneuron (InN1_PV, InN9_PV) differential expression results 

we individually performed pre-ranked Gene Set Enrichment Analysis102 with FGSEA103 using the 

same ranking metric as used for RRHO2 (product of log fold change and the negative log base 10 

of the uncorrected p-value). We evaluated the Reactome pathway104 gene sets obtained from 

msigdbr105. The following parameters were used for the fgsea function: eps = 0.0, minSize = 15, 

maxSize = 1000 and any pathways with Benjamini-Hochberg adjusted p-value < 0.1 were 

considered to be significant. Finally, we ran collapsedPathways with pval.threshold= 0.01 to get 

the main pathways for each cluster.  

PsyGeNET analysis 
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With the list of DEGs from the female dataset across all clusters, we ran enrichedPD from 

psygenet2r106 with database = “ALL” and other parameters set to default to find the psychiatric 

disorders for which our DEGs showed an enrichment. Next, we ran psygenetGene with database= 

“ALL” and other parameters set to default, and created a geneAttrPlot for the evidence index for 

all DEGs from all clusters in females to summarize the links between our DEGs and psychiatric 

disorders reported in PsyGeNET25. Additionally, we similarly ran psygenetGene, individually on 

the DEGs from Mic1, InN1_PV, InN2_SST, InN9_PV, InN8_ADARB2, and plotted the corresponding 

gene-disease association heatmaps with plot type = “GDA heatmap”.  

STRING analysis 

We used STRING DB26 (version 11.5) to assess the relationships between the protein products of 

our DEGs in female microglia and PV interneurons. The entire list of DEGs from these clusters 

(Mic1, InN1_PV, and InN9_PV) were provided as input and the confidence level was set to high 

(interaction score > 0.7). We then exported the network to Cytoscape (3.9.1), colored genes by 

direction of change in expression, shaped DEG nodes based on their cluster of origin, and labelled 

the edges with the confidence scores for the interactions.  

CellChat analysis 

We subset the relevant nuclei from females in Mic1, InN1_PV, and InN9_PV and performed 

CellChat29 analysis. We relabelled all PV interneuron nuclei as InN_PV. For cases and controls 

independently, we sequentially ran identifyOverExpressedGenes and 

identifyOverExpressedInteractions with lenient default parameters to find the ligand-receptor 

gene combinations overexpressed in these cell types. Next, we ran computeCommunProb (with 
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nboot = 1000) followed by computeCommunProbPathway, netAnalysis_computeCentrality, and 

aggregateNet with default parameters to find the ligand-receptor pathways present. Lastly, we 

merged the case and control objects and ran computeNetSimilarityPairwise with type 

“functional”. Finally, we used the compareInteractions, rankNet, and netVisual_bubble to 

visualize the results.  We used the following vignette for CellChat analysis: 

https://github.com/sqjin/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_dat

asets.html 

Weighted gene co-expression network analysis (WGCNA) 

Weighted gene co-expression network analysis (WGCNA) was performed to identify co-expres-

sion modules using the snRNA-seq expression data107. First, the aggregated expression for each 

female sample in microglia and PV interneuron clusters (InN1_PV and InN9_PV combined) was 

calculated by summing the counts per gene across all nuclei. We excluded subjects that did not 

have at least 5 microglial nuclei or 5 PV interneuron nuclei (InN1_PV and InN9_PV combined). To 

account for known external sample traits, the counts were corrected for age, pH, PMI, and batch 

(same as covariates used for differential gene expression analysis) using limma108. In addition, 

lowly expressed genes with total counts of below 5 were removed. A soft thresholding power of 

10 and 12, respectively, with a minimum module size of 30 genes, were used for network con-

struction and module detection for microglia and PV interneurons. Each module was correlated 

with the phenotype (healthy control vs MDD), and significance was determined using a p-value < 

0.05.   

https://github.com/sqjin/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_datasets.html
https://github.com/sqjin/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_datasets.html
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To further characterize modules correlated with MDD, Fisher tests for overlap were performed 

to calculate the over-representation of DEGs as described previously109. In addition, the func-

tional annotation of modules was determined using Reactome Pathway gene set over-represen-

tation analysis provided by clusterprofiler110.   

Data availability 

Raw sequencing data (FASTQ files) for the female cohort generated in this study is available on 

GEO (accession number: GSE213982, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213982) along with the processed 

gene-barcode matrix and metadata including both male and female cohorts. The raw sequencing 

data for the male cohort are also available on GEO (accession number: GSE144136, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144136). Additionally, the processed 

data from this study are available on the UCSC Cell Browser for easy visualization: https://dlpfc-

mdd.cells.ucsc.edu. Source data for all figures in this paper are provided on Zenodo:  

https://doi.org/10.5281/zenodo.7884086. The reference genome version used is available on the 

10X Genomics website (refdata-gex-GRCh38-2020-A, https://support.10xgenomics.com/single-

cell-gene-expression/software/release-notes/build). 

Allen Brain Institute motor cortex data used for MetaNeighbor comparison are available for 

download here: https://portal.brain-map.org/atlases-and-data/rnaseq/human-m1-10x. STAB 

reprocessed data from published snRNA-seq and scRNA-seq datasets used for MetaNeighbor 

comparison is available here: https://mai.fudan.edu.cn/stab/help/. The spatial transcriptomics 

https://doi.org/10.5281/zenodo.7884086
https://portal.brain-map.org/atlases-and-data/rnaseq/human-m1-10x
https://mai.fudan.edu.cn/stab/help/
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data used here for label transfer is available using the spatialLIBD (version 1.6.0) R package and 

through the AWS download links provided here: https://github.com/LieberInstitute/spatialLIBD.  

Code availability 

All scripts used to analyze data are provided in a Github repository 

(https://github.com/MgssGroup/snRNASeq_public/). The DOI for the version of the scripts used 

is: https://zenodo.org/badge/latestdoi/634913347.  

https://github.com/LieberInstitute/spatialLIBD
https://github.com/MgssGroup/snRNASeq_public/
https://zenodo.org/badge/latestdoi/634913347
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Tables 

Table 1: Demographic and sample characteristics of cohorts 

Group Case (n = 37) Control (n = 34) 

Sex Female (n = 20) Male (n = 17) Female (n = 18) Male (n = 16) 

Age  
45.10±3.19 
(0.92) 

41.06±4.66 
(0.67) 

47.89±4.45 
(0.92) 

38.38±4.58 
(0.67) 

PMI* 
41.49±3.07 
(0.02) 

41.69±4.76 
(0.10) 

30.27±4.73 
(0.02) 

32.02±4.81 
(0.10) 

pH 
6.58±0.08 
(0.06) 

6.60±0.07 
(0.30) 

6.34±0.08 
(0.06) 

6.50±0.06 
(0.30) 

(*) significantly different between female cases and controls (p-value < 0.05) 
Numbers in brackets are uncorrected p-values from Kruskal-Wallis test between the two 
conditions for the same sex. Numeric values in each cell represent the mean±SEM. pH was 
unavailable for one female subject, F35. 
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Figures and Figure Legends 
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Figure 1 

  

Figure 1: Overview of cell types characterized in the dlPFC. a) Schematic of study design. 

Diagrams depict the brain region of interest, Brodmann area 9, corresponding to the dlPFC. b) 
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UMAP plot colored by the broad cell types. c) UMAP plot colored by the individual clusters 

identified and annotated. For UMAP plots, the x and y-axes represent the first and second UMAP 

co-ordinates respectively. d) DotPlot depicting the expression of marker genes (SNAP25 – 

neurons, SLC17A7 – excitatory neurons, GAD1 – inhibitory neurons, ALDH1L1 – astrocytes, 

PDGFRA – oligodendrocyte precursor cells, PLP1 – oligodendrocytes, CLDN5 – endothelial cells, 

CX3CR1 – microglia). The dendrogram next to the cluster names shows the relationship between 

the clusters by using the distance based on average expression of highly variable genes. e) Best 

hits heatmap from MetaNeighbor showing the correspondence between the clusters in our 

dataset (columns) and the broad categories of cells identified in the Allen Brain Institute human 

motor cortex snRNA-seq dataset20 (rows). f) Boxplots showing the proportion of nuclei in each 

cluster for each subject split by cases and controls for the broad OPC, astrocyte, and excitatory 

neuron cell types and the Ast1, Ast2, OPC1, and OPC2 clusters (n= 37 cases, 34 controls, 

representing biologically independent samples for each cluster or broad cell type). The middle 

line is the median. The lower and upper hinges correspond to the 25th and 75th percentiles. Upper 

and lower whiskers extend from the upper or lower hinges to the largest or smallest value no 

further than 1.5 times the inter-quartile range from the hinge, where the inter-quartile range is 

the distance between the first and third quartiles. Points beyond the end of the whiskers are 

plotted individually. In Figures 1c-e, excitatory neuronal cluster names contain approximate layer 

annotations and inhibitory neuronal cluster names contain MGE or CGE specific marker 

information as a suffix where applicable, as described in methods: Cluster annotation. For 

example, ExN10_L46 denotes a cluster of excitatory neurons with enrichment of marker genes 

from layer 4 to layer 6 of the cortex and InN1_PV denotes a cluster on inhibitory neurons with 
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enrichment of the MGE specific marker PV. This convention is used throughout the paper. Brain 

diagram in 1a was created with BioRender.com. Source data are provided as a Source Data file. 

Figure 2 

 

Figure 2: Overall comparison of cell type specific MDD-associated gene expression changes in 

males and females. a) Venn diagram showing the overlap of DEGs between the male and female 

datasets at the broad cell type and cluster levels. b) RRHO2 plots for correspondence between 
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differential expression results for broad cell types in the female (x-axis) and male (y-axis) 

datasets. Warm colors in the bottom left and top right quadrants reflect overlap in genes with 

increased expression or decreased expression respectively, in cases versus controls between the 

male and female datasets. Warm colors in the top left and bottom right quadrants reflect 

overlaps in genes with the opposite direction of effects between the male and female datasets. 

For each dataset, genes were ranked according to the value of the log of the fold change 

multiplied by the negative base 10 logarithm of the uncorrected p-value from differential 

expression analysis. c) RRHO2 plots similar to (b) but for oligodendrocyte lineage clusters. For 

RRHO2 plots comparing broad cell types the color scale maximum was set to a -log10(p-value) of 

50, and for RRHO2 plots comparing clusters the color scale maximum was set to a -log10(p-value) 

of 25 for ease of comparison. RRHO2 uses one-sided hypergeometric tests, the p-values plotted 

here are uncorrected. Source data are provided as a Source Data file. 
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Figure 3 
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Figure 3: Cell type specific differential gene expression in males and females with MDD. a-b) 

Distribution of differentially expressed genes in (a) broad cell types and (b) clusters with 

increased and decreased expression in male cases compared to controls. c-d) Distribution of 

differentially expressed genes in (c) broad cell types and (d) clusters with increased and 

decreased expression in female cases compared to controls. For a-d, points are colored by the 

corrected p-value for differential expression, and upregulated genes are plotted to the right of 

the midline while downregulated genes are plotted to the left. e) Barplots showing proportions 

of up and downregulated genes and unique and shared genes. For males, the majority of DEGs 

were decreased in expression in cases compared to controls both at the broad (110/151, 73%) 

and cluster levels (358/447, 80%) and most DEGs were cell type specific both at the broad 

(145/151, 96% unique DEGs) and cluster (398/447, 89% unique DEGs) level. For females, the 

majority of DEGs were upregulated both at the broad (70/85, 82%) and the cluster level (140/180, 

78%) and most DEGs were cell type specific both at the broad (84/85, 99% unique DEGs) and 

cluster (166/180, 92% unique DEGs) level. f-g) Heatmaps showing the pseudobulk expression of 

differentially expressed genes in top clusters with highest number of DEGs in the female cluster 

level analysis – (f) microglia, (g) inhibitory neuronal clusters. For f-g, the plotted values are 

pseudobulk CPMs (counts per million) calculated with edgeR and muscat and scaled per row (by 

gene). For all heatmaps (f-g), the annotation bar at the top is colored orange for cases and purple 

for controls, and rows and columns are not clustered. Statistical testing corresponding to figures 

3a-d were performed with the edgeR (glmQLFit, glmQLFtest), FDR (Benjamini & Hochberg) 

corrected p-values are plotted. Source data are provided as a Source Data file. 
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Figure 4 

 

Figure 4: p-value combination meta-analysis results. a-b) Distribution of DEGs across the (left) 

broad cell types and (right) clusters after p-value combination meta-analysis. b) Numbers of DEGs 

(y-axis) in each cluster for the male analysis, female analysis, and meta-analysis. c-d) Overlap of 

meta-analysis DEGs with the individual analyses of the male and female datasets for (c) broad 

cell types and (d) clusters. The statistical test performed is Fisher combination of p-values as 

implemented in metaRNAseq, the test is one-sided, and the p-values were Benjamini Hochberg 

corrected. Source data are provided as a Source Data file. 
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Figure 5 

 

Figure 5: Characterization of cell type specific DEGs in females with MDD. a) PsyGeNET 

literature reported gene-disease association bar plot for all DEGs in the female cluster level 

analysis. The y-axis shows the number of gene-disease associations. “100% association” indicates 

all evidence is in support, “100% no association” indicates the opposite, while “Both” indicates 
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mixed support. b-c) Gene-disease association heatmaps for 5 clusters with the highest numbers 

of DEGs in females: (b) microglia, (c) inhibitory neuron clusters. Evidence index of 1 indicates that 

all literature supports the association, while 0 indicates that there is no support for the 

association. Values in between indicate partial support. d) Networks showing the relationship 

between main gene sets (yellow) and all gene sets (blue) with enrichment in pre-ranked GSEA 

with Reactome pathways in Mic1 (left) and InN9_PV (right) in females. Controlling for the overlap 

between gene sets, the main gene sets are independently enriched. e) STRING network showing 

DEGs in female microglia and PV interneurons whose protein products have reported 

interactions. The shape of the node represents the cluster in which the DEG was detected, and 

the color represents the direction of fold change in cases compared to controls. The numbers on 

the edges represent the confidence scores for the interactions. f) (left) Bar plots showing the 

number and strength of ligand-receptor communications within and between PV interneurons 

and microglia in cases and controls. (right) Relative strength of communication in different 

signaling pathways for cases and controls. Source data are provided as a Source Data file. 
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Figure 6 

 

Figure 6: WGCNA results for microglia and PV interneurons in females. a) Heatmap showing the 

correlation and associated p-value, in parentheses, of Mic1 WGCNA module eigengenes with 

case-control status and covariates (age, pH, PMI). b) Heatmap showing the test-statistic and FDR 
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corrected p-value, in parentheses, for one-sided Fisher tests of overlap between the Mic1 

WGCNA module member genes and DEGs in females in Mic1. c) Top Reactome pathway gene 

sets over-represented in Mic1 WGCNA, in the MEturqouise module using one-tailed 

hypergeometric testing. Uncorrected p-values are plotted. d) Heatmap showing the correlation 

and associated p-value, in parentheses, of InN_PV WGCNA module eigengenes with case-control 

status and covariates. e) Heatmap showing the test-statistic and FDR corrected p-value, in 

parentheses, for one-sided Fisher tests of overlap between the InN_PV WGCNA module member 

genes and DEGs in females the InN1_PV or InN9_PV clusters. f) Venn diagram showing the 

overlap of Reactome pathway gene sets enriched in the InN_PV WGCNA module MEturquoise 

(associated negatively with case status) and downregulated via GSEA in cases within InN1_PV or 

InN9_PV. For 6a, 6d the statistical test performed was a Pearson correlation as implemented in 

the WGCNA package and p-values are one-sided and uncorrected.  Source data are provided as 

a Source Data file. 
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Supplementary Information 

Supplementary Figures 

 
a      b 

       
c      d 

                      
 
  
Supplementary Figure 1: UMAP plots using uncorrected and Harmony corrected PCA compo-

nents. a-b) UMAP plot using uncorrected PCA components colored by chemistry and sex. c-d) 

UMAP plot using Harmony corrected PCA components colored by chemistry and sex. For UMAPs 

we used all 100 PC components or Harmony corrected PC components with other parameters 

set to default. Source data are provided as a Source Data file. 

   

  

 

 

  

           

         

 
 
 
 
 
 
 
 
 

  
  

         

   

  

 

 

  

           

         

 
 
 
 
 
 
 
 
 

      
    

   

   

  

 

 

  

      

                                       

 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
  
 
 
 
 
  
  
 
 
 

  
  

         

   

  

 

 

  

      

                                       

 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
  
 
 
 
 
  
  
 
 
 

      
    

   



217 

 

 

a     

 
b 

 

Supplementary Figure 2: Assessment of clustering parameters. a) scclusteval output showing 

the percentage of nuclei in stable clusters, as assessed by sub-sampling and Jaccard index calcu-

lation, using a range of clustering parameters. b) Boxplots showing the median Jaccard index for 
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each cluster across sub-sampling with different parameter combinations for clustering. The indi-

vidual dots correspond to the median Jaccard index, across all sub-samplings, for each cluster 

obtained using the given set of parameters. The boxes represent the bootstrapped 95% confi-

dence interval for the median of the median Jaccard index across all clusters, for the given set of 

clustering parameters. The box starts at the lower bound of the confidence interval and extends 

to the higher bound, while the line in the center represents the actual median. The clustering 

parameters that provide the highest number of clusters, while crossing a bootstrapped threshold 

of median Jaccard index across clusters, are highlighted. Source data are provided as a Source 

Data file. 

a        b 

    
c        d 
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e        f 
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Supplementary Figure 3: Evaluation of clusters based on technical parameters. a) Proportions 

of nuclei from each sex in each cluster. b) Proportion of nuclei from each batch in each cluster. 

c) Proportion of nuclei from cases and controls among the female nuclei in each cluster. d) 

Proportion of nuclei from cases and controls among the male nuclei in each cluster.  e) Proportion 

of nuclei from each library (mostly corresponding to subject) in each cluster (for each cluster n= 

72 samples, i.e. libraries, from 71 biologically independent subjects). The middle line is the 

median. The lower and upper hinges correspond to the 25th and 75th percentiles. Upper and lower 

whiskers extend from the upper or lower hinges to the largest or smallest value no further than 

1.5 times the inter-quartile range from the hinge, where the inter-quartile range is the distance 

between the first and third quartiles. Points beyond the end of the whiskers are plotted 

individually. f) Violin plots for number of molecules detected, number of genes detected, and 
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percentage of mitochondrial reads per nuclei split by cluster. Mitochondrial gene counts were 

removed for downstream analysis, after calculating the mitochondrial read percentage. Y-axis is 

in log-scale. g) Proportions of nuclei from each brain bank in each cluster. For 3a-e, and g, “Freq” 

stands for frequency representing the proportion of cells. Correspondence between numbered 

clusters and cluster names in 3f: 0 - ExN1_L24, 1 - ExN2_L23, 2 - Ast1, 3 - Oli1, 4 - ExN3_L46, 5 - 

ExN4_L35, 6 - Oli2, 7 - Oli3, 8 - InN1_PV, 9 - InN2_SST, 10 - InN3_VIP, 11 - ExN5, 12 - InN4_VIP, 13 

- ExN6, 14 - OPC1, 15 - End1, 16 - ExN7, 17 - Mix, 18 - Mic1, 19 - OPC2, 20 - Ast2, 21 - InN5_SST, 

22 - ExN8_L24, 23 - ExN9_L23, 24 - ExN10_L46, 25 - InN6_LAMP5, 26 - ExN11_L56, 27 - 

ExN12_L56, 28 - ExN13_L56, 29 - InN7_Mix, 30 - ExN14, 31 - InN8_ADARB2, 32 - ExN15_L56, 33 - 

ExN16_L56, 34 - ExN17, 35 - InN9_PV, 36 - InN10_ADARB2, 37 - ExN18, 38 - ExN19_L56, 39 - 

ExN20_L56, 40 - OPC3. Source data are provided as a Source Data file. 
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Supplementary Figure 4: Assessment of cell type scores per cluster. Violin plots showing module 

scores for major brain cell type marker genes from BRETIGEA in each cluster. Correspondence 

between numbered clusters and cluster names same as in Supplementary Figure 3. Source data 

are provided as a Source Data file.  
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Supplementary Figure 5: Annotation of cell sub-types among clusters. a) (left) UMAP plot 

showing the 20 clusters of excitatory neurons identified. (right) UMAP plot showing the predicted 

layer labels for excitatory neurons using Seurat label transfer from a spatial transcriptomics 

dataset of the human dlPFC1. b) (left) UMAP plot showing the 10 clusters of inhibitory neurons 

identified. (right) Violin plots showing the expression of maker genes of inhibitory neurons and 

their known subtypes. c) (left) UMAP plot showing the 6 oligodendrocyte lineage (OL) clusters. 

(middle) Same UMAP plot as colored according to the pseudotime trajectory calculated (early to 

late pseudotime points colored from red to blue). (right) Violin plots showing expression of 

selected markers of the OL in the respective clusters. d) Smoothed expression fit to depict the 

variation in expression of selected OL genes along pseudotime using GAMS in males (top) and 

females (bottom). For UMAPs in (a) and (b) we used the first 50 Harmony components, and 

n.neighbors = 20. Source data are provided as a Source Data file. 
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Supplementary Figure 6: Comparison of clustering to published datasets. Best hits plot from 

MetaNeighbor showing the correspondence between clusters defined in our dataset and clusters 

defined in (left) the STAB dataset and (right) in our previous analysis of the male cohort alone. 

Clusters defined in this study are represented on the x-axis while clusters defined in the STAB 

study and the previous analysis of the male data are represented along the y-axis. Source data 

are provided as a Source Data file. 
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Supplementary Figure 7: Differences in cell type proportion between cases and controls in each 

sex. Boxplots showing cell type proportions with significant differences between MDD cases and 

controls, using Wilcoxon tests performed on the male and female datasets separately (n= 17 

cases, 16 controls, for males and n=20 cases, 18 controls for females, representing biologically 

independent samples for each cluster). At the broad level, there was a significant decrease in 

males in a) Ast (FDR 0.0130) and b) OPC (FDR 0.0325) and an increase in c) ExN (FDR 0.0325). In 

females, at the broad level the decrease in d) Ast was close to significance (FDR 0.0536) and the 

decrease in e) OPC (0.0466) was significant. At the cluster level there were no significant 

differences in the female dataset, but there was a decrease in f) Ast1 (FDR 0.0364) and g) Ast2 

(FDR 0.0364) in males and an increase in h) ExN2_L23 (FDR 0.0492). Two-tailed Wilcoxon tests 

were performed. The middle line is the median. The lower and upper hinges correspond to the 

25th and 75th percentiles. Upper and lower whiskers extend from the upper or lower hinges to 

the largest or smallest value no further than 1.5 times the inter-quartile range from the hinge, 

where the inter-quartile range is the distance between the first and third quartiles. Points beyond 

the end of the whiskers are plotted individually. Source data are provided as a Source Data file. 
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Supplementary Figure 8: RRHO plots for discordant clusters. RRHO plots showing the discordant 

relationship between males and females for patterns in depression-associated gene expression 

difference in several excitatory and inhibitory neuronal clusters. Interpretation of the plots is 

similar to Figure 2. For RRHO plots comparing broad cell types the color scale maximum was set 

to a -log10(p-value) of 50, and for RRHO plots comparing clusters the color scale maximum was 
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set to a -log10(p-value) of 25 for ease of comparison. RRHO2 uses one-sided hypergeometric 

tests, the p-values plotted here are uncorrected. Source data are provided as a Source Data file.  
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Supplementary Figure 9: Permutation assessment for differential expression. Distribution of 

numbers of unique DEGs using permuted case versus controls labels in: a) males at the broad 

level, b) females at the broad level, c) males at the cluster level, and d) females at the cluster 

level. Red vertical lines indicate the number of unique DEGs obtained with real labels and show 

that the real labels result in higher number of unique DEGs than expected by chance with random 

case versus control annotations for both sexes at the broad level, and for males at the cluster 

level. e-j) Distribution of Spearman correlation coefficients when correlating gene scores based 

on male and female dataset differential gene expression analyses with permuted labels, for broad 

cell types. The black vertical line denotes the Spearman correlation coefficient obtained with the 

real case control labels and is higher than the majority of coefficients obtained with randomly 

permuted cases versus control labels for Ast, ExN, InN, and Mic and to a lesser extent for Oli and 

OPC. In all plots, the y-axis represents the number of iterations of permutations.  Source data are 

provided as a Source Data file. 
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Supplementary Figure 10: Evaluation of male differential expression results. Number of DEGs 

in each broad cell type for males plotted against (a) the number of subjects included in DEG 

analysis and (b) the total number of nuclei in the broad cell type. For DEGs in males at the broad 

cell type level (c) the distribution of number of subjects flagged as possible outliers and (d) the 

distribution of subjects with non-zero expression. Number of DEGs in each cluster for males 

plotted against (e) the number of subjects included in DEG analysis and (f) the total number of 

nuclei in the cluster. For DEGs in males at the cluster level (g) the distribution of number of 

subjects flagged as possible outliers and (h) the distribution of subjects with non-zero expression. 

Possible outliers were not removed from the analyses but were assessed as a quality metric for 

DEG analysis. The plots include the Mix cluster results. i-l) Scatter plots showing the relationship 

between (linear regression and corresponding statistics) the estimated effects per gene from our 

previous analysis of the male data and the log fold changes from our current analysis for cell type 

specific case-control differences in males for similar pairs of clusters. Source data are provided 

as a Source Data file. 
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Supplementary Figure 11: DEGs in top clusters for males. a) Heatmaps showing the pseudobulk 

expression of differentially expressed genes in top clusters with highest number of DEGs in the 

male cluster level analysis – (a) ExN10_L46, (b) Ast1. The plotted values are pseudobulk CPMs 

calculated with edgeR and muscat and scaled per row (by gene). The annotation bar at the top is 

colored orange for cases and purple for controls, and rows and columns are not clustered. For 



235 

 

ExN10_L46 the DEGs are in ascending order of log fold change from top to bottom. Source data 

are provided as a Source Data file. 
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Supplementary Figure 12: Evaluation of female differential expression results. Number of DEGs 

in each broad cell type for females plotted against (a) the number of subjects included in DEG 

analysis and (b) the total number of nuclei in the broad cell type. For DEGs in females at the broad 

cell type level (c) the distribution of number of subjects flagged as possible outliers and (d) the 

distribution of subjects with non-zero expression. Number of DEGs in each cluster for females 

plotted against (e) the number of subjects included in DEG analysis and (f) the total number of 

nuclei in the cluster. For DEGs in females at the cluster level (g) the distribution of number of 

subjects flagged as possible outliers and (h) the distribution of subjects with non-zero expression. 

Possible outliers were not removed from the analyses but were assessed as a quality metric for 

DEG analysis. The plots include the Mix cluster results. i) Scatter plot of log fold changes per gene 

in DEG analysis of the female microglia data at the cluster level with or without including nuclei 

that express oligodendroglial markers and cluster close to oligodendroglia on the UMAP plot 

(methods: Differential expression analysis - Sub-clustering of microglia for differential expression 

analysis in females). The majority of DEGs obtained with the full microglia cluster were retained 

in the subsetted microglia cluster (40/68, 59%) and the log fold changes for DEGs were strongly 
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positively related (linear regression) with an R-squared of 0.54. Source data are provided as a 

Source Data file. 

a 

 
b 

 

Supplementary Figure 13: Exploratory visualization of ligand-receptor interaction comparison 

in female microglia and PV interneurons. a) Ligand-receptor pairs with increased signaling from 

microglia to PV interneurons in cases compared to controls. b) Ligand receptor pairs with 

increased (left) and decreased (right) signaling from PV interneurons to microglia in cases 

compared to controls. These results are based on a preliminary assessment using CellChat. The 
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p-values, corresponding to communication between individual ligand-receptor pairs in cases and 

controls separately, are based on permutation and are uncorrected. Source data are provided as 

a Source Data file. 

Supplementary References:  

1. Maynard, K.R., et al. Transcriptome-scale spatial gene expression in the human dorsolateral 

prefrontal cortex. Nature neuroscience 24, 425-436 (2021). 
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Chapter 4: Discussion 

Preface to Chapter 4 

In this chapter we summarize our findings from the two studies of cell type specific gene expres-

sion differences in depression, including the findings from the male and female cohort, and dis-

cuss them in the context of previous studies of brain cell type contributions to depression. Finally, 

we mention some of the limitations of the research presented in this thesis and indicate possible 

future directions of research which might build upon the results and address the gaps remaining 

in our knowledge. We end with a brief conclusion connecting our work back to the rationale and 

need for molecular studies of the brain in depression.    
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Discussion 

Summary of the research 

We have produced novel cell type specific gene expression and depression-associated gene 

expression datasets across cortical cell types from the human dlPFC. The datasets have been 

made publicly available and can be used by other researchers to generate further insights and 

hypotheses or to verify results obtained with independent cohorts. These data and results are 

contributing to the growing body of knowledge regarding cell type specific molecular profiling of 

the human body and brain. Our combined dataset compares favorably to the current publicly 

available disease-specific single-nucleus datasets of the human brain in terms of number of 

individuals included.  

Our results provide a first glimpse at cell-type specific gene expression differences in males and 

females with depression compared to psychiatrically healthy controls and highlight the 

importance of deep layer excitatory neurons, astrocytes, oligodendrocyte precursor cells, and 

microglia. The results implicate a variety of cell types, both neuronal and glial, which is in line 

with findings from previous bulk tissue molecular and histological studies. Further, the findings 

that cell types with the most differentially expressed genes were distinct in males and females is 

in line with previous studies in humans and in animal models18,23,26,32,44 indicating differences in 

the molecular pathophysiology of MDD between the sexes.  

Additionally, our meta-analyses comparing the male and female datasets suggest that within 

individual cell types the transcriptomic patterns associated with depression are more similar than 

opposite in males and females. This highlights the strength of cell type specific approaches over 
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bulk tissue approaches. In previous bulk studies the discordant MDD-associated transcriptomic 

patterns between males and females18,23 could have arisen due to the prominence of separate 

cell types in each sex.  

Further, the key results of our studies are in many ways consistent with previous cell type specific 

examinations of molecular changes in depression, which generally focused on a few cell types at 

a time, as discussed below. 

Comparison to previous findings 

Excitatory and inhibitory neurons 

The dysregulation of a subtype of deep layer excitatory neurons of the dlPFC in the male dataset 

was consistent between our first analysis and reanalysis of these data using quite distinct 

approaches, and thus is likely to reflect a robust feature of depression-associated transcriptomic 

differences in this cohort. Our finding of prominent differential expression in inhibitory 

interneurons in females is consistent with past literature demonstrating contributions of cortical 

interneuron subtypes to depression41 although we found more changes in PV interneurons than 

in SST interneurons and the previous results were not necessarily specific to females. Together 

the above two results provide support for theories that suggest an imbalance in excitatory and 

inhibitory signaling in depression.  

The threshold-free meta-analyses suggested concordance in changes between males and females 

in the deep layer excitatory neuron and PV interneuron clusters which had high numbers of DEGs 

in males and female respectively. Additionally, in the p-value combination meta-analyses, most 

of the DEGs in the male dataset for ExN10_L46 and in the female dataset for InN1_PV were 

recapitulated. We might speculate that the above cell types are involved in excitatory and 
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inhibitory disbalance in both sexes, but the contributions of deep layer excitatory neurons are 

greater in males and those of PV interneurons are greater in females.  

Based on bioinformatic comparison, ExN10_L46 matched closely with layer 5 intratelencephalic 

neurons from the Allen Brain Institute motor cortex dataset. Although motor cortex cell types are 

not directly equivalent to dlPFC cell types, layer 5 intratelencephalic neurons typically send 

projections to other regions of the telencephalon – the forebrain, mainly the cortex and striatum, 

in contrast to extratelencephalic neurons which send signals outside the cortex and striatum, for 

example to the thalamus and pons93. Interestingly, intratelencephalic neurons in the PFC can 

respond to a variety of neuromodulators including dopamine, norepinephrine, and serotonin 

which are important in mood regulation93.  

PV interneurons synapse onto the soma and axons of excitatory neurons in the cortex and 

modulate their output, in contrast to SST interneurons which synapse onto the dendrites of 

cortical excitatory neurons and modulate the inputs to these neurons94. The dlPFC can contribute 

to the shift from executive network to DMN that has often been implicated in MDD and changes 

in excitation and inhibition in this brain region have been proposed to contribute to the altered 

connectivity in brain imaging studies41. We might speculate based on our results, that in males 

and females, different transcriptomic mechanisms – PV interneuron versus excitatory neuron 

gene expression differences – could be contributing to similar circuit level changes in the dlPFC 

resulting in MDD phenotypes.  

The oligodendrocyte lineage 

Our finding of prominent differential expression in OPCs was common to both analyses of the 

male dataset, however while in our first approach we found DEGs mainly in a potentially less 
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differentiated subcluster of OPCs, in the second approach we found DEGs in the broad OPC 

cluster. The implication of both OPCs and astrocytes is consistent with a previous study which 

found evidence for altered interaction between astrocytes and OPCs in depressed individuals54. 

Although we did not explore cell-cell interactions between astrocytes and OPCs, this could be an 

interesting avenue for future research both using bioinformatic and experimental approaches.  

We did not find prominent differential expression signatures in oligodendrocytes either in males 

or in females and this in contrast with previous work which identified molecular differences 

implicating oligodendrocytes in depression53,55. However, the previous studies focused on a 

different brain region, the ACC, and the differences identified were specific to those with 

depression and a history of experiencing childhood abuse. On the other hand, our cohorts 

included individuals with a history of depression, not separated by the presence or absence of 

experienced childhood abuse in their history.  Further,  we are limited to examining gene 

expression whereas some of the findings in these studies were in DNA methylation differences53 

or differences in levels of lipid components of myelin55. 

Other glial cells  

Astrocytes and microglia are two classes of glial cells that are highly responsive to the surrounding 

environment. These dynamic cells are thus involved in many disease pathologies in the brain. In 

our results, we found evidence for greater involvement of astrocytes in depression pathology in 

males and greater involvement of microglia in depression pathology for females. One possible 

explanation for this is that similar external cues or risk factors for depression (genetic 

susceptibility, chronic stress, early life adversity) may be triggering a response in a different glial 

cell type in each sex. While we cannot verify this hypothesis based on our dataset, it provides an 
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interesting avenue of future exploration of sex specific mechanisms of depression using animal 

models.    

Our findings of altered gene expression in astrocytes in the reanalysis of the male cohort, 

including downregulation of connexin genes such as GJA1 and other astrocytic genes such as 

AQP4, is consistent with previous studies46,47. This is not surprising since individuals were selected 

from the same brain bank and a subset of individuals were in common with these previous 

studies. While we had detected DEGs in astrocytes in the previous analysis of the male dataset, 

and some of the genes are also recapitulated in the reanalysis (such as FADS2), astrocytes were 

not as prominently dysregulated as deep layer excitatory neurons and OPCs in the previous 

assessment. This could reflect better ability to correctly identify astrocytes when combining the 

male and female datasets for analysis and better power for detecting differential expression at 

the pseudobulk level.  

Our findings in microglia in females and the dysregulation of inflammation related pathways is 

consistent with previous literature57-60 however there is no clear pattern of pro-inflammatory or 

anti-inflammatory. The female specificity of these findings is more difficult to verify against 

previous literature since not all studies performed sex-stratified analyses and even for studies 

that did, female cohorts were relatively small59.  The downregulation of IL1B in depression is 

consistent with previous findings from the choroid plexus, although the previous study was not 

cell type specific95. Additionally, a few of our DEG findings are consistent with the Scheepstra et 

al. (2023) study which was specific to microglia but in a different cortical region, namely decrease 

in CD14 and increase in CNTNAP261.  

On the other hand, we did not detect changes in endothelial cells either in males or females, 
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which is not consistent with the previous literature in animal models and in human brains62. This 

could be a limitation of our snRNA-seq approach as several studies have shown that specific 

enrichment of endothelial cells needs to be performed at the wet lab level to fully profile this and 

associated cell types from the post-mortem brain91.  

Limitations 

Despite the strengths of our research and its consistency with previous literature, there are also 

weaknesses that need to be considered. There are many reasons to be cautious when interpreting 

results from high-throughput transcriptomic studies of disease relying on postmortem brain 

tissue. From the potential for lack of specificity of disease associated gene expression signatures 

in high-throughput transcriptomic studies96 to the unavoidable biases when using postmortem 

tissue for molecular research97, there are pitfalls that deserve consideration. However, limited 

though we may be by available tools, techniques, and resources we can and should continue to 

strive towards acquiring more information, knowledge, and understanding of brain disorders at a 

molecular level. This work represents one such attempt to make sense of the brain in depression.  

Our results represent the outcome of a specific set of decisions regarding analysis and the details 

of the results would inevitably change to some extent if the methods applied were changed. 

However, for our male cohort we saw that the prominence of gene expression changes in a 

subtype of deep layer excitatory neurons, and generally in oligodendrocyte precursor cells, was 

preserved even after a very different analytical approach was implemented. This increases our 

confidence that the broad conclusions derived from our data and analysis should be robust to 

analytical approaches.  

We are limited by the generation of data in males and females in separate studies, which did not 
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allow a direct comparison between the sexes, or an assessment of sex by phenotype interaction, 

and future work must address this by simultaneously generating and analyzing cell type specific 

gene expression profiles associated with depression in both sexes. Moreover, the cohort of 

individuals used in this study was mostly comprised of people of European ancestry. While the 

genetic background of individuals is more important in genetic studies than in transcriptomic 

studies, we cannot rule out the possibility that findings in more diverse cohorts will differ.  

When interpreting these data, we must keep in mind that these results pertain to a single region 

of the cortex, albeit a region which is relevant to depression pathology. Thus, future work should 

test the extensibility of our findings to other cortical and sub-cortical brain regions relevant to 

depression. In fact, in the future, combining brain imaging network analysis in living patients with 

postmortem snRNA-seq across brain regions may begin to tease apart the similarities and 

differences of depression associated changes in anatomically and functionally connected brain 

regions with cell type resolution.  

We did not account for the presence or absence of a history of childhood abuse in our analysis, 

which previous studies have demonstrated  can in some cases produce a more specific molecular 

phenotype compared to depression without a history of experienced childhood abuse. 

Additionally, our depressed individuals all died by suicide, and we cannot distinguish specific 

effects of suicide from the effects of depression in our results.  

A limitation of our work is that, while we attempted technical validation of a few of our results in 

the initial male analysis with partial success, the process is technically challenging and very 

resource intensive, thus we did not perform equivalent experiments in the female cohort.  

Lastly, we have not attempted to replicate our findings in an independent cohort from a different 
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brain bank. Thus, we do not know if these results are generalizable to other cohorts. It will be 

important for future work to replicate our major findings in an independent cohort, which is a 

non-trivial endeavor when working with postmortem brain samples pertaining to a specific 

disease state which are challenging to collect. Moreover, any molecular studies of the 

postmortem brain cannot draw causal conclusions. Follow-up studies in animal models of stress 

can be helpful in this regard.  

Future directions 

The comparison of cell type specific gene expression differences between cases and controls is a 

first step in generating insights from the data generated. Many other assessments of the data are 

possible. For example, construction of cell type specific gene regulatory networks (GRN) in cases 

and controls, followed by identification of GRNs associated with depression, by applying methods 

such as SCENIC98 which identifies co-regulated “regulons” of transcription factors and their target 

genes, could be informative for expanding our molecular understanding of depression.  

Further, it would be interesting to explore if the depression-associated gene expression modules 

identified in female microglia and PV interneurons via WGCNA are preserved in males in these 

cell types. Equivalent comparisons could be performed for prominently affected cell types in 

males – astrocytes and deep layer excitatory neurons.  

Moreover, cell type specific prioritized lists of genes, such as DEGs in top cell types or cell type 

specific depression-associated WGCNA modules hub genes, can be used to augment or be 

augmented by genetic findings in MDD. For example, it may be possible to construct cell type 

specific expression-based polygenic risk scores (ePRS)99 or transcriptome-based polygenic score 

(T-PRS)15 by leveraging cell type specific expression quantitative trait loci (eQTLs) that may 
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distinguish individuals with genetic risk for depression from those without. In fact, the gene 

expression profiles of the cell types in our datasets could be used to perform cell type specific 

“deconvolution” of eQTLs, leveraging the statistical power of larger bulk datasets100. Further, it 

may be possible to prioritize GWAS variants by assessing their potential to affect cell type specific 

MDD-associated genes.  

Some cell type specific gene expression studies have sought to link gene expression within given 

cell types to specific symptomatology of the disease under investigation101,102. We did not 

perform such analyses with our dataset, but the possibilities for linking molecular differences in 

specific cell types of the brain to different dimensions of depression are intriguing and should be 

explored in future work if sufficient characterization of the individuals is available. 

While we measured only one molecular modality of cell type specific information, gene 

expression, many of the more recent single-cell resolution studies of the brain are leaning 

towards incorporating multiple modalities such as gene expression and chromatin accessibility 

within the same cells. Future studies can extend our work by profiling the cell type specific 

epigenetic differences associated with depression, including chromatin accessibility, histone 

modifications, and DNA-methylation, which no doubt function in concert with gene expression 

differences to produce depression pathology. Using other modalities to corroborate our results 

will reveal the points of convergence and divergence of these inter-related molecular mechanisms 

in determining depression pathology. 

Conclusion 

From the perspective of public health, the problem of depression is complex and difficult to solve, 

even while it is very important to address, and deserves our attention and dedicated efforts 
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towards a solution. The work presented here, although examining a disease state in the 

postmortem human brain, represents basic science rather than translational research. We 

attempted to better understand the human brain at a molecular level, and we attempted to better 

understand how the molecular state of the brain differs in depression. Our results both concurred 

with and built upon previous findings in molecular and cellular brain pathology in MDD and 

suggest several new avenues for exploring the sex and cell type specific mechanisms that 

contribute to the development of depression.  
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Abstract 

Single-cell and single-nucleus sequencing techniques are a burgeoning field with various 

biological, biomedical, and clinical applications. Numerous high and low-throughput methods 

have been developed for sequencing the RNA and DNA content of single cells. However, for all 

these methods the key requirement is high quality input of a single-cell or single-nucleus 

suspension. Preparing such a suspension is the limiting step when working with fragile, archived 

tissues of variable quality. This hurdle can prevent such tissues from being extensively 

investigated with single-cell technologies. We describe a protocol for preparing single-nucleus 

suspensions within the span of a few hours that reliably works for multiple post-mortem and 

archived tissue types using standard lab equipment. The stages of the protocol include tissue 

preparation and dissociation, nuclei extraction, and nuclei concentration assessment and 

capture. The protocol is comparable to other published protocols but does not require 

fluorescence assisted nuclei sorting or ultracentrifugation. The protocol can be carried out by a 

competent graduate student familiar with basic laboratory techniques and equipment. Moreover, 

these preparations are compatible with single-nucleus RNA-seq and ATAC-seq using the 10X 

Genomics’ Chromium system. The protocol reliably results in efficient capture of single nuclei for 

high-quality single-nucleus RNA- seq libraries.  

Keywords: nuclei extraction, single nucleus suspension, snRNA-seq, snATAC-seq 
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Introduction 

Advancements in technology have allowed researchers to preform large-scale 

transcriptomic studies at the level of a single-cell. Droplet-based cell isolation has become a 

favorite in the field for its scalability and simplicity of use with either in-house fluidic set-ups1,2, 

or commercially available equipment (10x Genomics)3. This technique is particularly interesting 

for tissues with highly heterogeneous cellular compositions like intestine4, lung5, spinal cord6, and 

brain7,8. There has been particular interest in deconvoluting brain architecture and function, 

which at its base, starts by accurately identifying all the cells types present9-11. However, truly 

harnessing the power of individual cellular transcriptomes comes with assessing differences 

between those transcriptomes in different physiological states. This is of particular value for 

complex diseases where multiple genes contribute with additive effects, making it difficult to 

identify changes in tissues homogenates12. The chemical dissociation of tightly interconnected 

brain cells and other cell-types has been found to alter transcription profiles13,14. Given that 

nuclear transcriptomes closely reflect the cell’s cytosolic profile15,16, isolating the nuclei from 

brain tissue has proven to be an excellent strategy for single-cell level studies.  Likewise, other 

tissues that have either been frozen for long term storage or that are formed by syncytium, such 

as in skeletal muscles17,18, could benefit from this approach.   

Development of the Protocol 

Numerous protocols for isolating nuclei from brain cells have been published10,11,19-23; 

some rely on the additional purification by fluorescence assisted cell sorting (FACS)20,23, which is 

costly, time consuming and not readily available for all researchers, while others have made 

adjustments to the microfluidics component used to isolate and capture single cells or nuclei10, 
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which can also be limiting to labs. Our protocol has been developed for use with the commercially 

available Chromium™ Single Cell Controller. This is a highly optimized system that allows scalable 

single-cell capture. We have adapted our protocol to allow the Chromium system to efficiently 

capture nuclei from archived post-mortem tissue. Our preparation produces stable and easily 

quantifiable nuclear suspension even when using archived brain tissue. We have used this 

approach to successfully compare the gene expression differences in the post-mortem prefrontal 

cortex of depressed patients who died by suicide compared to psychiatrically healthy controls24. 

The protocol has also been successfully applied, with minor modifications, to collect single-

nucleus transcriptomic data from surgical samples of glioblastoma25 and in a recent study of post-

mortem brain in schizoprenia26.  Thus, gene expression and chromatin accessibility can be 

measured from post-mortem brain tissue using this protocol. We anticipate that newer 

techniques from 10x Genomics such as those that combine scATAC-seq and snRNA-seq to study 

them simultaneously in frozen tissues could also take advantage of this protocol.  

Overview of the procedure 

The experimental workflow (Fig. 1) begins with cellular lysis by dounce-homogenization 

in low concentration detergent . Integral to the protocol are numerous wash steps to reduce 

ambient nucleic acid contamination, in a buffer containing a high percentage of bovine serum 

albumin to prevent nuclei aggregation. The suspension is repeatedly filtered to remove large 

debris. Most centrifugation steps are performed at low speeds to prevent damage to the nuclei. 

Finally, an iodixanol cushion is used to purify the nuclei. The nuclei numbers and concentration 

are assessed by a cell counter or hemocytometer. In addition, Hoechst or DAPI can be used to 

stain DNA for assessing the nuclei concentration by fluorescence microscopy. The concentration 
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of the nuclei suspension is important to reduce aggregation, particularly in tissues that have 

undergone long-term storage and are thus more likely to be damaged, fragile and inclined to 

aggregate.  Generally, a concentration of 500-1000 nuclei per microliter is sufficient for nuclei 

capture and should not result in excessive aggregation.  

Comparison with other methods 

As previously mentioned, existing single-nucleus RNA sequencing (snRNA-seq) protocols 

either rely on FACS20,23 which is harder to scale, or on droplet-based approaches which use in 

house set-ups10. Early protocols used relatively fresh frozen tissue, which is not available in most 

tissue banks where samples are likely to have undergone long-term storage9-11. Moreover, when 

studying specific phenotypes for which it is harder to obtain tissues, it is not always possible to 

select for short post-mortem intervals (PMIs) and archival times. Early protocols were also limited 

to high-quality tissue which may not be an option for answering certain types of research 

questions.  

As with several more recently published potocols19-22, we have been able to adapt our 

nuclear prep to be compatible with the 10X Chromium system which is becoming increasingly 

available as a service platform. Furthermore, the wet-lab aspect of the protocol will produce 

nuclei suitable for multiple post-nuclei capture applications such as whole genome sequencing 

for the study of somatic mutations or single-nucleus Assay for Transposase-Accessible Chromatin 

(snATAC-seq) as supported by preliminary results from our lab.  

Each of the more recently developed protocols have their own strengths and weaknesses 

and, in some cases, adaptations for specific tissue types such as macro-dissections for white 

matter regions21. The strength of our protocol is that it is mostly unaffected by variations in post 
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mortem interval (PMI) or archival times of the samples (Fig 2). Some of these protocols also 

incorporate ultra-centrifugation22,27, which is time consuming and requires specialized equipment 

and could be damaging to fragile nuclei. We are able to circumvent the additional challenges that 

arise with archived tissue such as the fragility of the cells and organelles upon freeze-thawing 

which typically results in large amounts of debris and ambient RNA than can either interfere with 

droplet formation or be integrated into droplets, increasing background sequencing noise.  Here, 

we show that brain tissue which has been stored at -80oC for as long as 22 years, can produce 

high quality single-nuclei suspensions. 

Directly applying either the cell preparation protocol or the demonstration protocol for 

nuclei developed from 10x Genomics did not produce useable results in our hands with archived 

post-mortem brain tissue (Fig. 3), although other labs have been able to successfully use this 

protocol for nuclei extraction for snRNA-seq. Moreover, our attempts to use nuclei isolated by 

fluorescent assisted nuclei sorting (FANS) as input to the 10X Genomics protocol did not yield 

acceptable results, although this approach has been adopted successfully by other groups20. The 

modifications made here are primarily for use with post-mortem brain tissue that has been 

archived for long periods of time, but can also be applied to any frozen post-mortem sample. 

Similar to previous studies10,11, we applied a few modifications to the standard  bioinformatic 

analysis with the CellRanger pipeline from 10X Gennomics to address a number of issues which 

arise with droplet-based single-nucleus sequencing. First, we assembled a pre-mRNA reference 

to account for unprocessed transcripts found in the nucleus28. Second, given that previous studies 

have consistently shown fewer identifiable transcripts in glial cells10,11 we performed  customized 

barcode filtering to include cells with a wider range of unique molecular identifiers (UMIs) while 
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removing noise. With these minor modifications to the analysis24 our isolation approach for our 

tissue type, i.e. archived post-mortem brain, produced much improved data compared to the 

available 10X Genomics nuclei preparation protocols in our hands. 

Experimental design 

The most important factor to take into consideration while designing single-cell or single-nucleus 

RNA-seq experiments is the potential batch effects. Given that the Chromium system only allows 

for the capture of 8 samples at a time and that for many experiments that total number of 

samples to be analyzed may be greater than eight, it may be preferable to create a balanced 

experimental design if possible. This will help limit the effects of batch to batch variability. For 

example, if two phenotypic or treatment groups are to be compared, it would be ideal to include 

equal numbers of samples from each group in every batch. Moreover, other potential co-variates 

to take into consideration include age, PMI, and sex. It may be possible to account for the effects 

of these variables by matching samples by these parameters within each batch.   

In cases where cell-type specific gene-expression data has been previously published, or single-

cell or nucleus gene expression datasets are available, these data can be used for comparison to 

help determine whether the cell-types identified and single-nucleus transcriptomic profiles 

detected are comparable to previously published literature. In cases where such datasets are not 

available it may be informative to prepare bulk-tissue samples in parallel or to perform 

sequencing of fluorescence assisted nuclei sorting (FANS) purified populations of expected cell-

types based on known genetic markers to validate the cell-type identification from the single-

nucleus transcriptomic data29. High-throughput in situ hybridization (ISH)30 and ISH based nuclei 

sorting29 have also been used to confirm experimentally determined cell-types from snRNA-seq. 
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In the case of complex tissues, it can be useful to perform careful dissection and even to 

cryosection the tissue before preparing nuclei to ensure that the approximate cell-type 

composition for each sample will be comparable11,21.    

Another strategy which has been recently applied to increase cost-effectiveness as well as to aid 

in batch effect correction is combining male and female samples in a single capture followed by 

using the expression of sex-specific, X-chromosome genes such as XIST and Y-chromosome genes 

such as SRY31, or the chromosome accessibility ratios for sex-chromosome versus autosomes32 to 

separate the cells from each sample. Since both samples are captured on the same lane of the 

microfluidic chip, it may be possible to account for lane to lane variability using this approach. 

Moreover, the use of cryosections of histological grade tissue blocks may be a good strategy to 

account for uniform input from a micro-anatomically heterogeneous regions such as the cerebral 

cortex11,22.  

Expertise needed to implement the protocol 

This protocol requires access to a 10X Genomics’ Chromium system and corresponding reagents, 

or an in-house droplet-based single-nucleus sequencing system. A hemocytometer or cell-

counting microscope will be required for determining proper loading concentration. Wet-lab work 

will require familiarity with standard molecular biology approaches such as cDNA synthesis and 

sequencing library preparation.  

Advantages and Limitations 

We are unable to get information about cytoplasmic transcription which may be limiting for 

obtaining data for some cell types33. Some tissue types, such as spinal cord or intestine, may 

require additional processing, such as through FACS or collagenase treatment. Representation of 
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all cell types may not be uniform as different cell types are differentially susceptible to lysis during 

the isolation procedure.  

We cannot rule out the possibility that the multiple rounds of washing and centrifugation 

incorporated into our protocol may result in damage to fragile tissue or unacceptable levels of 

loss of material if starting with small amounts of precious tissue. Moreover, we cannot rule out 

the possibility that use of the iodixanol gradient may cause biases in the types of nuclei recovered 

and this may require empirical assessment for different tissue types. We have not systematically 

assessed this bias.  

Materials  

BIOLOGICAL MATERIALS: 
 

• Tissue samples: This protocol was successfully applied for processing frozen archived 
post-mortem prefrontal cortex tissue obtained from the Douglas Bell Canada Brain Bank, 
post-mortem intestinal tissue (with modifications such as collagenase treatment), and 
surgical samples of tumor tissue25. CAUTION All experiments involving the use of human 
samples must be performed in accordance with the relevant institutional and national 
regulations. Use of post-mortem tissues was approved by the Institutional Review Board 
of the Douglas Hospital.  

 
REAGENTS: 

• NP-40 detergent at 10% (vol/vol) concentration (Abcam, cat. no. ab142227) 

• Bovine Serum Albumin Fraction V (BioShop, cat. no. ALB001.25) 

• Tris (BioShop, cat. no. TRS003.5) 

• NaCl (BioShop, cat. no. SOD001.1) 

• MgCl2.6H2O (BioShop, cat. no. MAG510) 

• HCl (BioShop, cat. no. HCL333) 
CAUTION: Concentrated HCl is highly corrosive and should be handled inside a fume hood 
while wearing PPE.   

• KCl (BioShop, cat. no. POC308) 

• KOH (BioShop, cat. no. PHY202) 
CAUTION: Concentrated KOH is highly corrosive and should be handed inside a fume hood 
while wearing PPE.  

• Tricine (BioShop, cat. no. TRI001) 
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• Glycerol (BioShop, cat. no. GLY001) 

• Protector RNAse Inhibitor (Millipore Sigma, 3335399001) 
 

CRITICAL: Other RNAse inhibitors may not be compatible with the protocol and may result in low 
yield of nuclei.  
 

• Optiprep™ Density Gradient Medium, 60% weight/volume iodixanol (Millipore Sigma, D1556-
250) 

• Gibco™ PBS, pH 7.4 (1X), (Thermo Fisher Scientific, cat. no. 100100203) 

• Deionized water 

• Ethanol 100% (Sigma, cat. no. 459836-500ML) 

• Trypan Blue Stain (0.4%) (Thermo Fisher Scientific, cat. no. T10282) 

• Hoechst stain (Invitrogen, cat. no. H1399) 

• Chromium Single Cell 3' Library & Gel Bead Kit v2 or newer (10X Genomics Inc, cat. no. 
120237) 

• Chromium Single Cell A Chip Kit (10X Genomics Inc, cat. no. 120236) 

• SPRIselect Reagent Kit (Beckman Coulter, cat. no. B23318) 

• Tween 20 (Bio-Rad, cat. no. 1610781) 

• Buffer EB (250mL) (Qiagen, cat. no. 19086) 

• Glycerin (glycerol), 50% (v/v) Aqueous Solution (Ricca Chemical Company (or other), cat. no. 
3290-32) 

• DynaBeads MyOne™ Silane Beads (5mL) (Thermo Fisher, cat. no. 37002D) (may be included 
in newer 10X Genomics snRNA-seq kits) 

• Low TE Buffer (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA, 100mL) (Thermo Fisher, cat. no. 12090-
015) 

• Nuclease-Free Water (Thermo Fisher, cat. no. AM9937) 

• TapeStation High Sensitivity D1000 Sample Buffer (Agilent, cat. no. 5067-5603) or Tape Sta-
tion High Sensitivity D5000 Sample Buffer & Ladder (Agilent, cat. no. 5067-5593) 

• TapeStation High Sensitivity D1000 ScreenTape (Agilent, cat. no. 5067-5584) or High Sensitiv-
ity D5000 ScreenTapes (Agilent, cat. not. 5067-5592) 

 
 
 
EQUIPMENT: 

Lab equipment 

• Scalpel 

• Spatula 

• Weighing boat 

• Weighing scale 

• Refrigerated bench-top centrifuge for 5mL tubes (Eppendorf, model 5430R) 

• Refrigerated bench-top centrifuge for 15 mL tubes (Beckman Coulter, model Allegra X-14R) 



266 

 

• Countess® II FL Automated Cell Counter (Thermo Fisher Scientific, cat. no. AMAQAF1000) 

• Countess® II FL Automated Cell Counter Chamber Slides (Thermo Fisher Scientific, cat. no. 
C10228) 

• Flowmi™ Cell Strainer, 40 μm (Bel-Art, cat. no. H13680-0040) 

• MACS® SmartStrainers, 30 μm (Miltenyi Biotec, cat. no. 130-098-458) 

• 7 ml Tissue Grinder, Dounce (Wheaton, cat. no. 357542) 

• 15 ml centrifuge tubes (Corning, cat.no. 430791) 

• Centrifuge tube, 50 mL screw cap (Sarstedt, SAR62547205) 

• DNA LoBind Microcentrifuge Tubes 1.5 mL (Eppendorf™, cat. no. 022431021) 

• 250 mL glass bottles 

• DNA LoBind Microcentrifuge Tubes 5.0 ml (Eppendorf, cat. no. 30108310) 

• INCYTO C-Chip Disposable Hemocytometers (SKC Films Inc., cat. no. DHCN012 or DHCN015) 

• TempAssure PCR 8-tube strip (USA Scientific, cat. no. 1402-4700) 

• 10mL serological pipette  

• Invitrogen EVOS FL Auto Cell Imaging System (Thermo Fisher Scientific) 

• Chromium Controller (10X Genomics) 

• Divided Polystyrene Reservoirs (25mL, 50) (VWR, cat. no. 41428-960) 

• 200UL Filter Tips (Rainin, cat. no. 17007961) 

• Pipet-Lite Multi Pipette L8-200XLS+ (Rainin, cat. no. 17013805) 

• TapeStation 2200 (Agilent) or equivalent equipment 
 

Software for sequence alignment and gene-barcode counting 

• CellRanger version 2.1.0 CRITICAL Linux OS must meet the minimum requirements for run-
ning CellRanger as described on the 10X Genomics’ webpage (https://support.10xge-
nomics.com/single-cell-gene-expression/software/overview/system-requirements). 

 

• bcl2fastq2, version 2.19 (https://support.illumina.com/sequencing/sequencing_soft-
ware/bcl2fastq-conversion-software.html) 

Software for secondary analysis in R 

• Seurat, version 2.3.0 or higher34  

• mixtools (1.1.0)35 

• R, version 3.4 or higher36  

Software for analysis of snATAC-seq  

• scATAC-pro version 1.1.437 
 
 

REAGENT SETUP 

Stock solutions 
CRITICAL The following reagents should be prepared ahead of time: 
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• Prepare 1M NaCl, 100mM MgCl2.6H2O, 1M MgCl2.6H2O, 1M KOH solutions in ddH2O in sepa-
rate 50 mL centrifuge tubes and store at room temperature (21-22oC for our laboratory) for 
up to 6 months.. 

• Prepare 250 mL of 10% (weight/volume) BSA solution in a glass bottle by dissolving crystalline 
BSA in ddH2O at room temperature. Store at 4oC for up to 1 week. Keep crystalline BSA at -
20oC. 

• Prepare 250 mL of 1M Tris HCl buffer in a glass bottle by dissolving Tris in ddH2O. Adjust pH 
to 7.4 by adding HCl dropwise. Store at room temperature for up to 6 months. This is a time-
consuming step.  

• Prepare 250 mL of 0.5M Tricine KOH buffer in a glass bottle by dissolving Tricine in ddH2O and 
adjusting pH to 7.8 by adding 1M KOH dropwise. This is a time-consuming step. Store at room 
temperature for up to 6 months.  

  
CRITICAL Buffer recipes provided are calculated assuming preparation of 8 samples for capture 
using a full Chromium chip. 
 
Optiprep™ diluent (altered as per Kriaucionis et al., 2009)38: Combine the following in a 250 mL 
glass bottle. Store at room temperature. 
 
Component Volume (in mL) Final concentration  

1M KCl 15 150 mM 

1M MgCl2.6H2O 0.5  5 mM 

0.5M Tricine-KOH (pH 7.8) 4 20 mM 

Deionized water 80.5 – 

Total volume 100 – 

 
Optiprep™ solutions: Using Optiprep™ diluent solution dilute the Optiprep™ reagent to make 
50% weight/volume iodixanol and 29% weight/volume iodixanol solutions from Optiprep™ 
solution in separate 50 mL centrifuge tubes. Protect from light and store at room temperature for 
up to 6 months. 
 
Lysis buffer (LB): Combine the listed components in a 50 mL centrifuge tube. This buffer should 
be made fresh and kept at 4oC or on ice.  
 
Component Volume (in μL) Final concentration  
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1M Tris-HCl pH 7.4 200 10 mM 

1M NaCl 200 10 mM 

100 mM MgCl2.6H2O 600 3 mM 

NP-40 (10%) 100 0.05% (v/v) 

Deionized water 18900  – 

Total volume  20000  – 

 
Nuclei wash buffer (NWB): Combine the listed components in a 250 mL glass bottle. This buffer 
should be made fresh and kept at 4oC or on ice.  
 
Component Volume (in mL) Final concentration  

10% BSA 100 5% (w/v) 

Glycerol 0.5  0.25% (v/v) 

Protector RNAse inhibitor 0.2 40 units/mL 

1X PBS to 200 

(~100) 

0.5X 

Total volume 200 – 

   

EQUIPMENT SETUP 

• Precool both centrifuges to 4oC.  

• Set up EVOS FL Auto microscope with 10X magnification, bright field and DAPI channels. 

Procedure 

Tissue preparation (Timing 1-4 hours) 

1. Cut tissue using a scalpel and weigh 30-50 mg of frozen tissue per sample. Keep tissue on 
dry ice while cutting to minimize degradation. Transfer to a 1.5mL microcentrifuge tube 



269 

 

using a spatula and place back on dry ice. Clean scalpel and spatula with 70% ethanol (v/v) 
between samples. Use a fresh weigh boat for each sample. Alternatively, this step could be 
replaced by cryosectioning a fresh frozen histology grade dissection of tissue and collecting 
several sections such that the total weight is between 30-50 mg.   
 
CAUTION: Post-mortem human tissue can contain pathogens. Take precautions including 
wearing PPE and seek medical attention if the scalpel breaks your skin.  
 

Nuclei extraction (Timing 2-3 hours) 
 

2. Transfer tissue using spatula to douncing tube on ice. Add 3mL of ice-cold lysis buffer and 
dounce with loose pestle 10 times and 5 more times with the tight pestle. 
 
CRITICAL STEP: Use proper douncing technique to ensure proper mechanical breakdown of 
tissue. Proceed slowly and avoid bubbles. Grind tissue against the bottom of the tube using 
the douncer with each stroke.   
 

3. Transfer homogenized tissue to a 15mL centrifuge tube by pouring and add 2 mL of chilled 
lysis buffer. Incubate on ice for 5 minutes, gently swirling to mix 2 times during incubation. 

4. Add 5 ml of chilled wash buffer to lysed tissue to quench lysis. Swirl to mix. 
5. Place 30 μm MACs SmartStrainer on a 15 mL centrifuge tube. Pipette lysed tissue suspen-

sion on top of filter to remove cell debris and large clumps. In case of blocked flow through 
the filter, tap filter gently to encourage the suspension to flow through.  

6. In the precooled Allegra-14X centrifuge, spin down the lysed tissue suspensions at 500g for 
5 minutes at 4°C. 

7. Decant supernatant into a waste beaker without disrupting the nuclei pellet. 
 
CAUTION: The supernatant should be treated as biohazardous waste and treated with 
bleach before disposal.  
 
CRITICAL STEP: Pour out supernatant in a single motion as repeated pouring motions can 
dislodge the pellet. If the pellet dislodges during decanting slowly remove the supernatant 
using a pipette.  

8. Using a 10 mL serological pipette add 10mL of nuclei wash buffer to the pelleted nuclei and 
gently pipet 8-10 times to mix.  

9. Repeat step 5-7 using the resuspended nuclei. 
10. Using a 10 mL serological pipette add 5mL of nuclei wash buffer to the pelleted nuclei and 

gently pipet 8-10 times to mix. 
11. Repeat steps 6-7 using the resuspended nuclei.  
12. Using a 1000 μL pipette tip, add 1 mL of nuclei wash buffer to pelleted nuclei and gently 

pipet 8-10 times to mix. 
13. Add 1 mL of 50% (w/v) working solution of iodixanol (Optiprep™) to the nuclei and mix well 

to obtain 2 mL of 25% (w/v) iodixanol solution containing nuclei.  
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14. Prepare an iodixanol cushion of 2 ml of 29% (w/v) iodixanol solution in a 5mL Eppendorf 
centrifuge tube. 

15. Gently add the 2 mL nuclei suspension on top of the iodixanol cushion by pipetting slowly 
against the wall of the tube to avoid mixing.  

16. In the precooled Eppendorf centrifuge, spin the tubes containing nuclei layered over iodix-
anol cushion at 10,000 g for 30 minutes at 4°C. 

17. Carefully pour out the supernatant leaving the least possible amount of volume in the tube 
without disrupting the pellet. ?TROUBLESHOOTING 

18. Using a 1000 μL pipette tip, resuspend the nuclei pellets in 500 μL or less of nuclei wash 
buffer. Gently pipette 8-10 times or until nuclei are resuspended.  

19. For a quick estimate of nuclei concentration, mix 10 μL of the nuclei suspension with 10 μL 
of Trypan blue in a separate tube. Load 10 μL of the mixture onto a Countess hemocytom-
eter slide. Count nuclei on the Countess hemocytometer and measure range of sizes. For 
human nuclei from archived post-mortem cortical tissue we have observed that the aver-
age diameter is around 10 μm. However, nuclei may have a range of sizes and it is only 
concerning if a long tail of particles of more than 30 μm are detected at this may indicate 
debris and aggregation. Trypan blue is a live dead stain and properly isolated nuclei should 
be marked as dead cells. ?TROUBLESHOOTING 

20. Using the estimated count from the Countess, dilute nuclei to around 500,000 cells/ mL or 
500 cells/ μL by adding an appropriate volume of nuclei wash buffer. It may be possible to 
increase these concentrations for capturing more nuclei.  
 
CRITICAL STEP: If the concentration of nuclei is too high it can result in aggregation which 
will prevent efficient capture of single nuclei in subsequent steps. We have achieved good 
suspensions and capture with up to 1000 nuclei/ μL, but if aggregation is observed, lower 
concentrations (as low as 500 nuclei/ μL) may be better.     
 

21. Add Hoechst stain to the resuspended nuclei at a 1:2000 dilution to obtain counts using 
fluorescence microscopy.  

Nuclei concentration assessment and capture (Timing 45 mins) 
 
CRITICAL Immediately prior to loading the Hoechst stained nuclei on the Chromium system, check 

to make sure the nuclei are well segregated (nuclei may clump) and recheck sample concentration 

using a fluorescent microscope like the Evos FL Auto (Thermofisher)  

22. OPTIONAL: Use a 1mL pipette to take a minimum of 200 μL of the sample and filter it 
through a 40μm Flowmi pipette tip filter before counting and loading. This will get rid of 
the clumped nuclei and large debris that can clog the microfluidics of Chromium chips. 
 

23. Load 10μL of sample onto a disposable hemocytometer slide and into the Evos. 
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CRITICAL STEP: Make sure to pipette up and down the full volume of the nuclei suspension 
several times to avoid settling of the pellet at the bottom of the tube before loading for 
accurate counts. 
 

24. Set the Evos to 10X magnification and image the entire hemocytometer grid field of view 
in DAPI and bright field.  This image makes counting nuclei easier and serves as a record as 
well (Fig. 3g). If a fluorescence microscope is not available, it may be sufficient to use the 
counts based on Trypan blue staining, but unfortunately it will not be possible to distinguish 
between debris and nuclei using this approach. On the other hand, using a fluorescence 
microscopy may be more time-consuming for nuclei counting when processing many sam-
ples for capture. User’s discretion and considering the state and type of tissue are im-
portant parameters when determining cell counting strategy. 

25. In parallel to steps 22-24, make the RT Master Mix and aliquot appropriate volumes of mas-
ter mix and water into PCR tubes according to the number of nuclei to be targeted for cap-
ture, referring to the Chromium protocol CG00052 Rev. D or later. ?TROUBLESHOOTING 

 
CRITICAL STEP: The Chromium capture rate for nuclei from archived tissue is lower (~20% 
less) than the capture rate for cells. To account for this, it is necessary to adjust the count 
used to determine loading volume. We empirically determined that choosing the loading 
volume by using a count that is 30% less than the observed count worked best for our sam-
ples. This adjustment may vary from tissue type to tissue type. For example, if the sample 
has a concentration of 500 nuclei/μL, the sample volume should be loaded as if it has 350 
cells/μL (70% of 500 cells) in order to recover the targeted number of nuclei.  

CRITICAL STEP: Resuspend nuclei by pipette, mixing the full volume several times 

immediately before loading to prevent aggregation of nuclei.  

26. Load the Chromium Chip and harvest the nuclei captured in droplets (i.e. GEMs) according 
to the Chromium protocol CG00052 Rev. D 

Library preparation and sequencing (Timing as per the Chromium protocol, ~8 h split over 2 
days) 

27. Perform reverse transcription, cDNA amplification, and library preparation according to the 
Chromium protocol CG00052 Rev. D. Libraries can be sequenced on an Illumina sequencer. 
Sequencing two samples per lane of a HiSeq 4000 machine can yield 150,000,000, reads 
per sample. This can translate to ~50,000 reads per nucleus if capturing 3000 nuclei per 
sample based on default CellRanger parameters and provides sufficient information for 
cell-type identification and differential expression analysis. However, the exact number of 
reads per cell will depend on how many nuclei are loaded and on the algorithm used to call 
cells. 
 
Downstream analysis options for the sequencing results are described in Box 1.  
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Box 1: Downstream data analysis  

 

Alignment, Demultiplexing, and Generation of Counts Matrix (Time: variable) 

Since our experiments utilized human nuclei, we built a pre-mRNA reference using the 

cellranger mkref (Cellranger version 2.0.1) command. Default parameters were used, starting 

with the refdata-cellranger-GRCh38-1.2.0 transcriptome and as per the instructions provided 

on the 10X Genomics website. For mouse tissue the corresponding pre-mRNA reference would 

need to be created for the mouse genome. We demultiplexed reads by sample index using the 

cellranger mkfastq command (Cellranger v2.1.0), aligned FASTQ files to the custom 

transcriptome, demultiplexed cell barcodes, counted the UMIs corresponding to genes using 

the cellranger count command and default parameters. These steps may be performed with 

custom code if desired.  

Custom Filtering to Recover Low Transcript Number Cell Types (Time: variable) 

While there are many options for software to be used for downstream analysis of snRNA-seq 

data such as scater39, SC340, Monocle341, etc., we used the Seurat R package (version 2.2.0, 

2.3.0)42.  Unfiltered gene barcode matrices for each sample were loaded into R using the 

Read10X function. At this step, cell names can be modified such that the subject name, batch, 

and biological condition are appended to them. Seurat objects were created corresponding to 

each sample using the CreateSeuratObject function with the imported unfiltered gene-barcode 

matrices provided as the raw data. Individual Seurat objects for each sample were combined 

sequentially using the MergeSeurat function. No filtering or normalization was performed up 

to this step. Since we were working with a single nucleus dataset, all mitochondrial genes that 
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are transcribed from the mitochondrial genome were removed, along with genes not detected 

in any cell. More recently several methods have been developed to align multiple datasets of 

snRNA-seq and other single-cell level data30,34 which can be used for combining the data from 

individual subjects if inter-individual variability or batch effects are deemed to have a large 

influence on the results.  

For preliminary filtering, some nuclei with very low number of genes detected (<110) and nuclei 

with very high numbers of UMIs detected (in the top 0.5%) were removed as low-quality nuclei 

and potential multiplets respectively. These cut-offs are arbitrary but can be based upon the 

distribution of the data. For example, in our dataset there was a sharp increase in the number 

of UMIs from 16,393 at the 99.5th percentile to 102,583 at the maximum which probably 

represents the multiplets in the dataset.   

If the dataset contains multiple cell-types which are expected to be heterogenous in terms of 

the number of molecules of RNA present per nucleus (such as when the nuclei of different cell-

types are known to be of very different size), the following approach can be used for removing 

low quality cells without unduly biasing the filtering against nuclei which biologically contain 

fewer molecules . For our dataset, given the known trend for higher number of RNA molecules 

in neuronal nuclei compared to glial nulcei10,11,43, the distribution of number of UMIs was fit 

with three normal distributions using the normalmixEM function from the mixtools35 package. 

The rationale is that the filtered barcodes contain a population of low quality “noise” barcodes 

that have a very low number of UMIs on average, a population of non-neuronal cells that have 

an intermediate numbersof UMIs and a population of neuronal cells that have a high number 
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TROUBLESHOOTING 

Troubleshooting advice can be found in Table 1.  

Table 1: Troubleshooting table.  

Step Problem Possible reason  Solution 

17 Absence of visible 

pellet after 

OptiprepTM cushion 

centrifugation 

A large pellet may indicate 

presence of excessive 

debris rather than high 

nuclei yield and absence of 

a visible pellet is not 

Continue with downstream 

steps assuming the location of 

the nuclei based on the 

direction in which the tube is 

placed within the centrifuge 

of UMIs. After fitting  the normal distributions, only the barcodes with a high probability (> 

0.95) of belonging to either the putative “non-neuronal” or putative “neuronal” distributions, 

and a low probability (<0.05) of belonging to the “noise” distribution were retained for further 

analysis. As an example,  for a subset of 20 subjects, applying our custom filtering 

approximately doubled the total number of cells, as more cells which were previously discarded 

as empty barcodes are now included, but increased the number of non-neuronal cells by 

almost 6 times24. 

Of note, in our experience with the newest version of Cell Ranger (3 and above) which 

incorporates the EmptyDrops algorithm for cell calling, it may not be necessary to customize 

the process of calling cells to account for biases in number of gene and RNA molecules across 

cell-types.  
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necessarily cause for 

concern. However, in 

certain cases it may 

indicate very low yield of 

nuclei.  

and assess nuclei yield under 

the microscope. If very low 

nuclei yield is observed, 

consider increasing the amount 

of input material.  

19 Low yield of nuclei Too little starting material 

(<30 mg) 

Consider eliminating one of the 

wash steps (9-10 in protocol) 

and resuspending in less 

volume (5 mL instead of 10 mL) 

in step 8.  

24 Number of nuclei 

captured does not 

meet the expected 

number based on the 

table provided by the 

10x loading guidelines 

The capture rate for nuclei 

may not be the same as 

that for cells.  

Empirically determine the 

difference between the capture 

rate expected and observed 

and adjust loading volume 

accordingly.  

 

TIMING 

Step 1, Tissue preparation: 1 hour for 8 samples if cutting pieces using a scalpel, up to 4 hours if 

collecting cryosections 

Step 2-21, Nuclei extraction: 2-3 hours 
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Step 22-26, Nuclei concentration assessment and capture: 45 minutes  

Step 27, Library preparation and sequencing, can be split into two 4 hours blocks on 2 days  

Anticipated Results 
We expect our single-nuclei extraction protocol to produce high quality single-nucleus 

suspensions (Fig. 3) from frozen archived post-mortem tissues. The nuclear suspensions are 

relatively free from debris and do not show substantial aggregation of nuclei even after 16 hours 

of refrigeration, upon visual inspection (Fig. 3-f). Capture of single-nuclei using these nuclear 

suspensions on a microfluidic device for droplet-based snRNA-seq reproducibly produces high-

quality libraries with sufficient cDNA yield for sequencing (Fig. 4).  The variability in sample 

parameters such as PMI, archival time, pH and RIN did not affect most of the quality metrics of 

snRNA-seq results with this nuclei extraction protocol (Fig. 2). The samples for which data are 

presented in Figure 2 were processed using two different gradients of iodixanol – a weaker 

gradient using 29% and 25% volume/volume dilutions of Optiprep™  reagent  (majority of 

samples) and a stronger gradient using the 29% and 25% weight/volume dilutions of iodixanol as 

described in this protocol and previously38. We subsequently found that the stronger gradient 

produces cleaner nuclei preparations and yields better sequencing quality control metrics, such 

as higher fraction of reads in cell, and  higher numbers of UMIs and genes detected,  especially 

using the updated Cell Ranger 3 pipeline and 10X Genomics v3 single-cell sequencing chemistry. 

Thus, the protocol published herein utilizes the 29% and 25% weight/volume dilutions of 

iodixanol for the gradient. Finally, we have produced preliminary results using nuclei extracted 

from post-mortem brain with our extraction protocol as input to the single-nucleus ATAC-seq 

approach employing 10X Genomics Chromium for single-cell capture. Using MACS244 for peak 
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calling and the scATAC-pro pipeline37 for cell calling, we achieved about 83% of total fragments 

uniquely mapped to genome assembly GRCh38, fraction of reads in peak (FRiP) scores of up to 

23%, median fragments mapping per cell in the range of 12,000 – 15,000, and TSS (transcription 

start site) enrichment, according to ENCODE definition, indicating a signal-to-noise ratio of more 

than 3.9 (Fig 4e-f).  

Data Availability 

Raw sequencing data are accessible on GEO using the accession number GSE144136. 
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Figures and Figure Legends 
 
Figure 1 
 

 
Figure 1: Schematic representation of the steps of the protocol. Frozen tissue is dissected, 

homogenized by douncing, lysed, and then washed, filtered, and centrifuged several times until 

a single-nucleus suspension is obtained.  
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Figure 2 

 
 

Figure 2: Effect of sample quality parameters on single-nucleus capture and sequencing metrics. 

The archival time, post mortem interval (PMI), age, and pH of the brains accounted for less than 

10% of the variation in number of cells (nuclei) retained after filtering, median number of genes 

per nucleus, and median no of UMIs (unique molecular identifiers) per nucleus. The RIN of the 

samples had had a significant negative effect (p = 3.4x10-6) on the number of nuclei captured, 

especially for RIN < 4, but did not have a large effect on the median numbers of genes or UMIs. 

The R2 values based on Pearson correlations and p-values (n = 34 samples) were calculated using 

the cor.test function in R. Linear trendlines were added using Microsoft Excel. For two of the data 

points the median UMIs, median genes, and number of cells are the aggregated values of two 

runs for those samples. All data in this figure are from the dataset published in Nagy et al. 

(2020)24.  

Figure 3 
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Figure 3: Images of extracted nuclei. (a-d) Before optimization, using the 10X Genomics 

demonstrated protocol, the extracted nuclei from two different samples (a and b) show large 

amounts of debris and the size distribution is skewed towards larger sizes (> 10 µm). After 

optimization, representative images of nuclei extracted from two samples (c and d) show much 

less debris and size-distributions are centered around 10 µm, within the expected range for 

human brain nuclei. Images were acquired with the Countess Cell Counter using Trypan blue for 

staining. Note that extracted nuclei should be marked as dead cells, as seen. (e-f) Extracted nuclei 

do not tend to aggregate even after (e) 2.5 hours or (f) 16 hours of storage at 4oC. Note that the 

size distribution after 16 hours is still centered around 10 µm, indicating an absence of 

aggregation. (g) Representative images of extracted nuclei stained with Hoechst (1:2000) 

acquired at 10X magnification on the Evos microscope. Figures (c), (d), and (g) correspond to 

samples used in Nagy et al. (2020)24. All scale bars represent 500 µm.  
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Figure 4 

 
Figure 4: cDNA traces and quality metrics for snRNA-seq libraries before and after optimization 

of nuclei extraction. (a) A FANS based nuclei isolation (using Millipore anti NeuN-PE FCMAB317PE 

antibody and DRAQ5 both at 1:300 dilution) of single-nucleus suspensions prepared as per Lutz 

et al. (2017)45 resulted in very low yield cDNA libraries whereas (b) the optimized nuclei extraction 

protocol resulted in good yield of cDNA in the expected size range. Samples in both (a) and (b) 

are derived from archived post-mortem brain tissue. Perkin Elmer Caliper traces are shown for 

snRNA-seq cDNA libraries at a dilution of 1:6. The expected library size is between 200-9000 bp 

and here we performed quantification in the 300-600 bp range. The minimum yield of cDNA 

should be 2 ng and as can be seen the yield was much improved (>90 ng) after protocol 

optimization. (c) With similar numbers of sequencing reads and median reads per cell, the 

libraries produced using the optimized nuclei extraction protocol have much higher median 

numbers of genes and UMIs per cell as can be seen from the elbow plot produced by Cell Ranger 
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as well as the tabulated summary metrics. The NeuN+ sample (cDNA trce shown in (a)) was 

processed with Cell Ranger 1.3.1 and the hg19 transcriptome while sample 215 (cDNA trace 

shown in (b)) was processed with Cell Ranger 2.1.0 and the GRCh38-1.2.0 pre-mRNA reference. 

(d) Our nuclei extraction protocol is compatible with 10X Genomics’ commercial snATAC-seq 

protocol, as can be seen from the Tapestation trace and fragment-size distribution (163-700bp) 

of a successfully prepared snATAC-seq library prepared from archived post-mortem human brain 

tissue. (e) Preliminary processing of snATAC-seq data aligned to the hg38 genome, showing the 

distribution of the percentage of reads in peaks (pct_reads_in_peaks) across captured nuclei and 

the transcription start site (TSS) enrichment score across captured nuclei for a post-mortem 

human brain sample. Samples 118 and 215 in (b) and sample 215 in (c) are from the Nagy et al. 

(2020)24 dataset.  
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