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Abstract

Kiyoshi Itô’s formulation of stochastic calculus is a key component to modern stochastic analysis. From this

framework comes stochastic differential equations (SDEs) which have seen important applications in various

disciplines such as finance, biology, and physics. While ordinary differential equations (ODEs) are often used

to study the motions of a particle under the influence of a deterministic vector field, SDEs are models of

such motions when the particle is also subject to a random ‘diffusing’ effect. The question as to whether the

trajectory of a particle in an SDE system is ‘close’ to that of the same particle in the corresponding ODE

system has long been considered under the context of stability. This thesis surveys concepts and methods

that were developed to investigate the stability of solutions to SDEs. Similarly as in the case of ODEs,

Lyapunov functions, upon adapted to the stochastic setting, play important roles in the study of stability

for SDEs. But different from the case of ODEs, since solutions to SDEs are stochastic processes, the notion

of stability has richer and more flexible interpretations from a probabilistic point of view. Aiming to extend

the study of stability to certain classes of SDEs, this thesis also proposes a new notion of stability, known

as stability in ratio, which captures the relative growth rate of the SDE solution to the corresponding ODE

solution. The relations between this new notion of stability and existing definitions are examined, and some

techniques for determining the stability in ratio are illustrated through examples as well.

Abstracte

La formulation de calcul stochastique de Kiyoshi Itô est très importante dans la theorie d’analyse stochastique

modernes. Les équations différentielles stochastiques (EDS) ont été utilisées dans divers disciplines, notamment

la finance, la biologie, et la physique. Tandis que les équations différentielles ordinaires (EDO) sont souvent

utilisées pour étudier les mouvements d’une particule sous l’influence d’un champ vectoriel déterministe, les

EDS sont des modèles de ces mouvements lorsque la particule est influencée par un effet de ‘diffusion’. On

se demande si la trajectoire d’une particule dans une système EDS est ‘proche’ de celle de la même particule

dans le système EDO correspondant. Ce question a été considérée par plusieurs auteurs dans le contexte de

la stabilité de la solution d’une EDS. Cette thèse examine les méthodes développées pour étudier la stabilité

de la solution d’une EDS. Parmi les outils les plus efficaces pour étudier la stabilité des EDS sont les fonctions

de Lyapunov qui ont été introduites à l’origine il y a plus d’un siècle pour étudier la dynamique des systèmes

d’EDO. Mais contrairement au cas des EDO, les solutions des EDS étant des processus stochastiques, la

notion de stabilité a des interprétations plus riches et plus flexibles d’un point de vue probabiliste. Cette

thèse propose également une nouvelle notion de stabilité qui élargit l’étude de la stabilité. Nommé stabilité

en ratio, cette notion permet de saisir le taux de croissance de la solution EDS par rapport à la solution EDO

correspondante. Cette thèse examine également comment cette nouvelle notion de stabilité se rapporte aux

définitions existantes. Certaines techniques pour établir la stabilité en ratio sont illustrées par des exemples.
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1 Introduction

Stochastic differential equations (SDEs) can be seen as ‘perturbations’ of ordinary differential equations

(ODEs) when the deterministic system is perturbed by a stochastic diffusing force. In this sense, SDEs are the

probabilistic extension to ODEs [13]. It is natural then to wonder how the behavior of the stochastic solution

differs from that of the deterministic counterpart. This is the main question investigated in this thesis. The

study of the connections and the comparisons between the solution to an SDE and that to the corresponding

ODE in which the diffusing force is removed gives rise to the notion of stability of solutions to SDEs. Stability

of solutions to deterministic dynamical systems, including ODEs and partial differential equations (PDEs),

has long been considered, for which a rich literature of theories and techniques has been developed. However,

to study stability for a stochastic system, we face new challenges and need to acquire new tools. Since the

solution to an SDE, if it exists, is a stochastic process, there are different notions of stability with different

levels of ‘strength’ from a probabilistic point of view, which leads to diverse stability conditions and results.

This thesis gives a comprehensive review of the existing literature on stability of solutions to SDEs, including

numerous notions of stability, standard methods, and general results. In general, sample paths of solutions

to an SDE have very different properties from trajectories driven by a deterministic vector field. In addition

to showing contrasting local properties such as regularity, the two paths also often exhibit different behaviors

in the long run. The discrepancy between the long-term asymptotic behavior of the SDE solution and that

of the ODE solution is especially prominent when the ODE solution is unbounded. We zoom in on these

types of SDEs (and ODEs) and propose a new approach towards stability named stability in ratio. This

new approach is adopted to examine specific classes of SDEs and generates interesting and promising results.

Below we give a detailed description of the structure of the thesis.

Chapter 2 begins with a review of the notion of stability in the deterministic setting [15, 18]. Given a

dynamical system ẋ(t) = f(t, x(t)) with an equilibrium point xe (that is to say f(t, xe) = 0 for all t ≥ 0), a

solution x(t) starting from some point close to xe is stable if x(t) remains close to xe for all time. There are

multiple ways of interpreting ‘close’ mathematically, which give rise to multiple definitions of stability. In

the late nineteenth century, Russian mathematician A. M. Lyapunov introduced a framework [23], known as

Lyapunov’s method or the direct method, for analyzing the stability of x(t) without necessarily determining

the explicit expression for x(t). This is done by constructing a non-negative Lyapunov function V (t, x)

which can be viewed as a generalized representation of the energy of x(t) at time t at position x, and which

is uniquely minimized at xe. Under some mild conditions, the existence of a Lyapunov function itself is

sufficient for establishing stability. Intuitively speaking, to determine x(t) being stable with respect to xe, it

is enough to verify that x(t) does not gain energy as time progresses. Similar conditions exist for the other

types of stability.
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Chapter 2 continues with a review of concepts in probability theory that are necessary for understanding

SDEs [2, 4, 24, 26]. We start with an introduction to Brownian motion, arguably the most important

stochastic process, which was first observed by botanist Robert Brown in 1827 and then formalized by

Einstein [10] several decades later. In the 1940s, Itô created a new scope in the study of Brownian motion by

introducing Itô’s integral and Itô’s calculus [16], which in turn allowed for the formal definition of an SDE.

We review basic concepts and results involving existence, uniqueness, and other properties of solutions to

SDEs, as well as useful tools such as the comparison theory for SDEs.

Chapter 3 gives an overview of the theory of stability for solutions to SDEs, following mostly the

comprehensive work of Khaminskii [19]. To summarize, for a given SDE dX(t) = b(t,X(t)) dt+σ(t,X(t)) dB(t),

we want to investigate the relation between X(t), the solution to the SDE, and X̃(t), the solution to the

ODE dX(t) = b(t,X(t)) dt obtained by removing Itô’s differential dB(t) from the SDE. Compared with

the stability previously introduced for ODEs, in the probabilistic setting there are considerably more ways

in which we can interpret X(t) as being stable or unstable with respect to the deterministic counterpart.

In addition, SDEs are generally intractable, and solutions to SDEs, as stochastic processes, are expected to

have low regularity (for example, lack of bounded variation), fractal structures, and other properties that are

intrinsically different from the deterministic trajectories. To this end, several rather restrictive assumptions

on the coefficients of SDEs are imposed to keep the solutions accessible and manageable. However, despite of

all the new challenges associated with stochastic systems, similarly as in the deterministic systems, one can

define a stochastic analogue of Lyapunov function which can be used to study stability. Efforts to extend

Lyapunov’s method to the random setting had already been carried out in 1960s, not only for SDEs but also

for more general stochastic systems. An influential work was conducted by Bucy [5] in which he argued that

the stochastic Lyapunov function should be constructed as a super-martingale. Other early works on this

topic include Gikhman [14], Kats [17], and Kushner [21] to name a few.

Most of the stability results reviewed in Chapter 3 are established under rather stringent conditions.

In particular, one important assumption requires that the diffusive force σ(t,X(t)) is weak when X(t) is

close to X̃(t), and σ(t,X(t)) vanishes completely when X(t) agrees with X̃(t). This assumption certainly

puts a strong restriction on the type of SDEs to which the results apply, and dropping this assumption

would allow us to consider more general SDEs. However, when σ(t,X(t)) is no longer ‘sensitive’ to the

relation between X(t) and X̃(t), the current definitions of stability would require substantial modifications.

In addition, the existing theory of stability mostly concerns SDEs and ODEs whose solutions remain bounded

in time, in which case the difference between X(t) and X̃(t) is captured in a straightforward way by the

distance
∣∣∣X(t)− X̃(t)

∣∣∣. However, this boundedness assumption also greatly limits the scope of SDEs to which

the results apply, and in the case when X(t) and X̃(t) grow unboundedly,
∣∣∣X(t)− X̃(t)

∣∣∣ may not be the

most appropriate quantifier of the proximity of X(t) to X̃(t). As an attempt to circumvent the restrictions
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mentioned above, in Chapter 4 we propose a new form of stability. Given an SDE with the solution X(t) and

the deterministic counterpart X̃(t), we consider a new stochastic process, referred to as the ratio process,

defined as Y (t) = X(t)/X̃(t). We say that X(t) is stable in ratio if almost surely Y (t) and 1/Y (t) stay

bounded for all time. This stability captures the relative growth rate of X(t) compared to X̃(t). We apply

the framework of stability in ratio to study specific classes of SDEs, particularly those with coefficients being

power functions in the spatial variable, and obtain a set of diverse outcomes on stability in ratio, even among

SDEs that have similar structures. In this process, we also experiment with various techniques, including

Lyapunov’s method, martingale method and transformation method, to treat Y (t) for more general SDEs.
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2 Preliminaries

This chapter is devoted to setting up the necessary ideas and notation required to properly define the

various concepts of stability. We begin with an overview of results in the deterministic case in Section 2.1.

Lyapunov’s method is introduced and used to determine the stability for dynamical systems not influenced

by random diffusive forces, namely ẋ(t) = f(t, x(t)). The idea of a Lyapunov function is formalized and the

criteria it must satisfy to achieve the various types of stability are presented.

The basic measure-theoretic probability notation is introduced. The notion of a stochastic process is

presented, with emphasis on the process known as Brownian motion. Many facts on Brownian motion is

presented. We build Itô integrals by approximations constructed with simple functions, which in turn are

used to formally define SDEs. We discuss what it means for a stochastic process X(t) to be a solution to an

SDE. Many results on the properties of SDEs are given, including Itô’s lemma, conditions for existence and

uniqueness, and comparison results.

2.1 Dynamical Systems and Stability

In this section, we review some concepts related to dynamical systems from [15] and [18]. A dynamical

system describes motion under the influence of a deterministic vector field. Formally, a dynamical system

in l-dimensions is governed by the ordinary differential equation
ẋ(t) = f(t, x(t))

x(0) = x0 ∈ Rl

. (2.1)

Here, the quantity x(t) ∈ Rl for every t ≥ 0 is the state. In many physical systems, the state represents

the position of a particle. Here and throughout, we set I = [0,∞). Letting D ⊆ Rl be a domain containing

the initial value x0, the function f : I ×D → Rl describes how the state changes with time. Understanding

the behavior of the function f is critical to understanding how x(t) behaves. For this reason, f is often

classified into various categories, such as ‘linear’ or ‘non-linear’ (whether or not f is a linear function of x(t)),

‘time-homogeneous’ or ‘time-inhomogenous’ (whether or not f is independent of t), etc. In this section, we

assume f is piecewise continuous in time and Lipschitz in space (or at least in some neighborhood of x0),

that is to say that for every t ≥ 0, there exists a constant B so that∣∣f(t, x)− f(t, y)
∣∣ ≤ B|x− y| (2.2)

holds for every x, y ∈ D. The existence of a unique solution is given by the following theorem:

Theorem 2.1 (Picard-Lindelöf Theorem). Let U ⊆ I×Rl be a closed rectangle containing (t0, x0). Suppose

that f : U → Rl is continuous in time and Lipschitz in space. Then for some ϵ > 0, the system (2.1) with

initial condition replaced with x(t0) = x0 has a unique solution on the interval [t0 − ϵ, t0 + ϵ].

6
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2.1.1 Stability

It is useful to consider the long term asymptotic behavior of dynamical systems. One particularly useful

concept is the idea of stability. The idea of stability materializes in many different forms.

A point xe said to be an equilibrium point or a critical point of system (2.1) if f(t, xe) = 0 for

every t ≥ 0. It is clear that if the state ever reaches the equilibrium point, it will remain there in perpetuity.

That is, if x(t0) = xe, then x(t) = xe for every t ≥ t0 ≥ 0. An equilibrium point xe is said to be stable (for

t ≥ t0) if for every ϵ > 0, there exists some δ = δ(ϵ, t0) > 0 such that if

∣∣x(t0)− xe
∣∣ < δ, (2.3)

then for every t ≥ t0 ≥ 0 we have that ∣∣x(t)− xe
∣∣ < ϵ. (2.4)

Conceptually, this means that if the initial state begins sufficiently close to an equilibrium point, then a

solution x(t) will remain close to said equilibrium point forever. By the estimate (2.2) and Theorem 2.1,

this solution exists and is unique. An equilibrium point that is not stable is said to be unstable. This

definition is a local concept as the stability of a point xe only relies on the behavior of solutions near it. In

the definition of stability, one could also replace xe in (2.4) by a solution x0(t) of (2.1) and xe in (2.3) by

x0(t0) to instead have the definition of stability for a solution to the system rather than just one individual

point.

The concept of stability can be refined even further into stronger definitions. An equilibrium point of

the system (2.1) is said to be uniformly stable if it is stable and the choice of δ does not depend on t0.

An equilibrium point xe is said to be asymptotically stable (for t ≥ t0) if, in addition to being stable, we

have that

x(t) → xe (2.5)

as t → ∞ provided x(t0) satisfies (2.3). Being asymptotically stable requires the trajectory to not deviate

from its initial point as before and additionally demands the state also approaches the equilibrium point

as time progresses. The point xe is globally asymptotically stable if (2.5) holds for every x(t0) ∈ Rl.

Clearly this definition only applies if the equilibrium point xe is unique. Note that condition (2.5) alone

is not sufficient to conclude the stability of the system as this condition is only a control on the long-term

behavior and says nothing about the short-term behavior of x(t).

An equilibrium point xe is said to be exponentially stable (for t ≥ t0) if for every t ≥ t0 and every

starting state x(t0) satisfying (2.3) it holds that

∣∣x(t)− xe
∣∣ ≤ A exp

(
−α(t− t0)

)∣∣x(t0)∣∣ ,
7
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for some constants A > 0 and α > 0. Not only does the distance between x(t) and xe shrink, but the rate

at which x(t) converges to xe is at least exponentially fast. It is clear that exponential stability implies

asymptotic stability, which in turn implies stability. Haddad [15] provides clear visuals for most of these

types of stability.

We remark that we will use the terminology of stability in an exchangeable manner between an

equilibrium point and a solution. Namely, whenever one of the above mentioned stability conditions is

satisfied by a solution x(t) and a point xe, we will also say that x(t) is stable (in the way according to the

occurred condition) with respect to xe.

Finally, observe that by performing a translation if necessary, we can always assume that the equilibrium

point is xe = 0 for another system. Therefore, it is sufficient to study stability with respect to the trivial

constant 0 solution. To see this formally, consider the dynamical system governed by

d

ds
y(s) = g(s, y(s)) (2.6)

and defined for s ≥ a ∈ R. Let y0(s) and y(s) be two solutions to this system, and define the transformation

x(t) = y(s)− y0(s)

for t = s− a. Then we have that

d

dt
x(t) = g(s, y(s))− d

dt
y0(s) = g(t+ a, x(t) + y0(t+ a))− d

dt
y0(t+ a).

Using the fact that y0 is a solution to (2.6), is clear that

d

dt
x(t) = g(t+ a, x(t) + y0(t+ a))− g(t+ a, y0(t+ a)).

If x(t) = 0 for all t ≥ 0, the right hand side is also zero and hence xe = 0 is an equilibrium point for the

transformed system. As such, to study the stability of y(s) with respect to y0(s), we only need to consider

the cases when the equilibrium point is the trivial constant solution.

2.1.2 Lyapunov’s Second Method

It is generally not difficult to analyze the stability if an explicit form the solution x(t) to (2.1) is

available. However, it is very often the case that this form is not available. As alluded to previously, due

to the work of A. M. Lyapunov there are ways to obtain results on stability without having access to x(t)

itself. This method is known as Lyapunov’s second method or Lyapunov’s direct method [23].

Let D ⊆ Rl be some domain containing x = 0. A function V : I × D → R is said to be positive

definite on D if for every t ≥ 0 we have that

∀x ∈ D : V (t, x) ≥ 0, (2.7)

8
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and

V (t, x) = 0 ⇔ x = 0, (2.8)

and

V (t, x) → ∞ as |x| → ∞. (2.9)

Together, conditions (2.7) and (2.8) imply there must exist a unique minimum of V (t, x), namely x = 0.

The function V is said to be uniformly positive definite if additionally there exists a pair of continuous

positive definite functions W1,W2 : Rl → R so that

W1(x) ≤ V (t, x) ≤W2(x). (2.10)

This definition allows the dependence on t to be removed while maintaining properties of positive definite

functions. In particular, for every t ≥ 0 the function V is bounded away from 0 provided x ̸= 0. Figure 1

gives an example of this.

Figure 1: An example of a time-homogeneous Lyapunov function V (x)

for D ⊆ R2. The dotted green lines depict various level sets of V (x).

If V is differentiable in both arguments, we define the derivative of V along the trajectory of the solution

x(t) to (2.1) as

V̇ (t, x) :=
∂V (t, x)

∂t
+
(

∂V (t,x)
∂x , f(t, x)

)
Rl

=
∂V (t, x)

∂t
+

l∑
i=1

fi(t, x)
∂V (t, x)

∂xi
. (2.11)

9
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Often, we seek some condition on V̇ in order to conclude the stability of the solution x(t) with respect to

the zero solution. It is usually the case that we require V̇ (t, x) to be non-positive (or some slight variation

of this). This is known as the monotonicity requirement.

The function V (t, x) can be interpreted as a generalized energy function for the dynamical system (2.1)

with equilibrium point xe = 0. For every x ∈ Rl, the quantity V (t, x) represents the amount of energy the

solution x(t) has at time t. The further x(t) is from the equilibrium point, the more energy it has. The

quantity V̇ represents the change in energy of the solution x(t). The monotonicity requirement therefore

represents the restriction that the solution does not gain energy. Since the unique point where the energy

is null is the equilibrium point at xe = 0, this implies that the state cannot exceed some distance from the

equilibrium point xe. This is formalized as Theorem 4.8 in [18] or Theorem 3.1 of [15], which we present

here as:

Theorem 2.2 (Lyapunov’s Stability Theorem). Let U ⊆ Rl be a neighborhood of the origin. Suppose there

exists on I × U a continuously differentiable uniformly positive definite function V such that V̇ (t, x) ≤ 0

for all t ∈ I and all x ∈ U , except possibly at the origin. Then xe = 0 is a uniformly stable point of the

dynamical system (2.1).

By considering variations on the condition imposed on V̇ , we can achieve different results. If instead

V̇ < 0, one interpretation is that instead of simply requiring that the energy of the system is non-increasing,

we require that it is always decreasing. This leads to the following:

Theorem 2.3 (Lyapunov’s Asymptotic Stability Theorem). Let U ⊆ Rl be a neighborhood of the origin. For

some positive definite function W (x), suppose there exists on I × U a continuously differentiable uniformly

positive definite function V such that V̇ (t, x) < −W (x) for all t ∈ I and all x ∈ U , except possibly at the

origin. Then the system (2.1) is uniformly asymptotically stable at the point xe = 0.

One more improvement we can make is to require that not only does the system lose energy as in

Theorem 2.3, but it also loses energy at a certain rate. The following theorem discusses the case where loss

of energy proportional to the amount of energy remaining.

Theorem 2.4 (Lyapunov’s Exponential Stability Theorem). Let U ⊆ Rl be a neighborhood of the origin.

Suppose there exists on I ×U a continuously differentiable function V such that, for some positive constants

k1, k2, k3, and p ≥ 1, it holds that k1|x|p ≤ V (t, x) ≤ k2|x|p and V̇ (t, x) ≤ −k3|x|p for all t ∈ I and all

x ∈ U , except possibly at the origin. Then xe = 0 is exponentially stable.

These results, whose proofs can also be found in [15] or [18], give methods of determining the stability

of a system without requiring an explicit form for the solution. This is very powerful since the dynamical

system (2.1) can be difficult to solve. It will be seen in Chapter 3 that these results can be generalized to

the stochastic setting where having access to an explicit solution is even more difficult to achieve.

10
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2.2 Probability Basics

In this section we review some important concepts in probability theory. Let the triple (Ω,F ,P) be a

probability space. A function X : Ω → Rl is said to be a random variable if X is F-measurable, that is to

say

X−1(B) =
{
ω ∈ Ω : X(ω) ∈ B

}
∈ F

for every B ∈ B
(
Rl
)
, the Borel σ-algebra. Whenever l > 1, we also call X a random vector. Given

(Ω,F ,P), we say {Ft : t ≥ 0} is a filtration if Ft ⊆ F for all t ≥ 0 and Fs ⊆ Ft for all 0 ≤ s ≤ t. We call

the space
(
Ω,F , {Ft}t≥0 ,P

)
a filtered probability space.

Denote by Rl(I) the collection of all Rl-valued functions defined on I. Define by Tt : Rl(I) → Rl

by Tt(f) = f(t), which is the coordinate projection map. Define by ΣI
Rl = σ

(
{Tt : t ∈ I}

)
the σ-algebra

generated by the projection maps at every time t ≥ 0. A stochastic process is a function X : Ω → Rl(I)

that is measurable with respect to ΣI
Rl . Such a process is written as

{
X(t) : t ≥ 0

}
or simply just X(t) and

is called a process with values in Rl or simply l-dimensional. For a given time s ≥ 0, the value X(s) is itself

a random variable that depends on ω ∈ Ω and returns the value of the process at the specific time s. Viewed

holistically, the process
{
X(t) : t ≥ 0

}
defines a path in Rl that evolves with time. The process is adapted

to the filtration {Ft : t ≥ 0} if X(t) is measurable with respect to Ft for every t ≥ 0. The process is called

progressively measurable if (s, ω) ∈ [0, t]×Ω → X(s, w) ∈ Rl is B
(
[0, t]

)
×Ft measurable for every t ≥ 0.

It is observed that the latter implies the former but the converse is only guaranteed when the sample paths

of X are right-continuous and have left limits.

A stochastic process
{
X(t) : t ≥ 0

}
on
(
Ω,F , {Ft}t≥0 ,P

)
that is progressively measurable with respect

to {Ft : t ≥ 0} is called a martingale if X(t) ∈ L1 and

E
[
X(t)|Fs

]
= X(s)

for all times 0 ≤ s ≤ t. It is a supermartingale if the equality is replaced with ≤. Martingales are a

general class of stochastic processes for which many behaviors can be identified.

A function f : I → R is said to be cádlág (or RCLL) if, for every x ∈ I, we have that lims↗x f(s)

exists and also limt↘x f(t) exists and is equal to f(x). The following version of a well known result of Doob

(Theorem 5.2.15 in [26]) will be useful in Chapter 4:

Theorem 2.5 (Doob’s Martingale Convergence Theorem). Let
{
X(t) : t ≥ 0

}
be a martingale with cádlág

paths. If for some p > 1, supt≥0 E
[∣∣X(t)

∣∣p] < ∞, then there exists a random variable X∞ ∈ Lp such that

X(t) → X∞ almost surely and in Lp.

11
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2.2.1 Brownian Motion

One of the most important and widely studied stochastic processes is Brownian motion. A stochastic

process
{
B(t) : t ≥ 0

}
is said to be a standard one-dimensional Brownian motion on

(
Ω,F , {Ft}t≥0 ,P

)
if

1. B(0) = 0 almost surely.

2. the process has Normal increments, that is B(t)− B(s) has distribution N (0, t− s) for all 0 ≤ s ≤ t,

where N denotes the univariate Gaussian distribution.

3. the process has independent increments, that is for all n ≥ 1 and 0 < t1 < t2 < · · · < tn, the random

variables B(t1), B(t2)−B(t1), . . . , B(tn)−B(tn−1) are independent.

The following result is due to Weiner and is Theorem 1.3 in [24]:

Theorem 2.6 (Existence of Brownian Motion). Standard one-dimensional Brownian motion exists.

Observe that the above conditions imply that B(t) is a martingale. An l-dimensional Brownian

motion is defined by B(t) =
(
Bj(t)

)l
j=1

where Bj(t) are independent one-dimensional Brownian motions

for 1 ≤ j ≤ l.

An important property of Brownian motion is that it satisfies the law of the iterated logarithm, a

general result for sums of independent, identically distributed random variables with zero mean and unit

variance [26]. This gives insight into the asymptotic behavior of Brownian motion. See Theorem 3.2 of [2]

for a proof.

Theorem 2.7 (Law of the Iterated Logarithm for Brownian Motion). If B(t) is a standard one-dimensional

Brownian motion, then

lim sup
t→∞

B(t)√
2t ln ln t

= 1 = − lim inf
t→∞

B(t)√
2t ln ln t

almost surely.

This shows that for almost every ω, the path ω → B(t) is eventually bounded by the envelope functions

±
√
2t ln ln t. It is possible to show that a direct consequence of the above is

lim sup
t↘0

B(t)√
2t ln ln(1/t)

= 1 = − lim inf
t↘0

B(t)√
2t ln ln(1/t)

almost surely. This describes the instantaneous behavior of Brownian motion.

Let
{
X(t) : t ≥ 0

}
be a stochastic process on some domain D. Consider U0 ⊆ D and let U be the

complement of U0. The process
{
X(t) : t ≥ 0

}
is said to be recurrent relative to U0 if, whenever X(s) = x

for some s ≥ 0 and x ∈ U , the exit time of U after s, denoted by τU , is finite almost surely. Intuitively,

12
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a recurrent process returns to the set U0 in finite time regardless of the starting position. Additionally,

the process is point recurrent if for every x0 ∈ U0, there exists a sequence {tn : n ∈ N} with tn ↗ ∞

so that X(tn) = x0 for all n ∈ N. It is neighborhood recurrent if we have the weaker condition that

for every ϵ > 0, the sequence satisfies X(tn) ∈ B(x0, ϵ), the ball of radius ϵ centered at x0. A process{
X(t) : t ≥ 0

}
said to be transient if

∣∣X(t)
∣∣ ↗ ∞ almost surely as t → ∞. In one-dimension, we can

specify that
{
X(t) : t ≥ 0

}
is transient at +∞ if X(t) ↗ +∞ as t → ∞. We define

{
X(t) : t ≥ 0

}
to be

transient at −∞ similarly. The following reuslt (Theorem 3.20 in [24]) describes the behavior of Brownian

motion in relation to these notions.

Theorem 2.8 (Recurrence and Transience of Brownian Motion). Let
{
B(t) : t ≥ 0

}
be an Rl-valued Brownian

motion. Then

• if l = 1, then
{
B(t) : t ≥ 0

}
is point recurrent

• if l = 2, then
{
B(t) : t ≥ 0

}
is neighborhood recurrent

• if l ≥ 3, then
{
B(t) : t ≥ 0

}
is transient

The previous results show that Brownian motion behaves somewhat nicely. This is not always the case.

Below is Theorem 1.35 of [24] which shows that Brownian motion also behaves erratically.

Theorem 2.9 (Brownian Motion has Locally Unbounded Variation). Almost surely, for every t ≥ 0, s ∈

[0, t] → B(s) ∈ Rl has unbounded variation.

More specifically, the theorem says that almost surely

sup
k∈N,P∈Pk

k∑
j=1

∣∣B(tj)−B(tj−1)
∣∣ = ∞

where Pk denotes the set of partitions with k + 1 elements of the interval [0, t] (that is to say of the form

Pk ⊇ P = {0 = t0 < t1 < · · · < tk = t}). Let P be the set of all partitions of [0, t] and let P (n) ⊆ P be

a sequence of nested partitions with mesh vanishing as n → ∞. The quadratic variation of a process{
X(t) : t ≥ 0

}
is defined to be

⟨X⟩t = lim
n→∞

k(n)∑
j=1

(
X
(
t
(n)
j

)
−X

(
t
(n)
j−1

))2

for every t ≥ 0, provided the limit exists. Here, k(n) is the number so that the sum ranges over all elements

of the n-th partition. Applying this to Brownian motion, we have that ⟨B⟩t = t for every t ≥ 0. This gives

the heuristic that ‘
(
dB(t)

)2 ≈ dt’, which will be useful in subsequent discussions. By applying Kolmogorov’s

continuity theorem, a result on the regularity of Brownian motion is obtained (see Corollary 1.20 in [24]).

Theorem 2.10 (Brownian Motion Continuity). Brownian motion is almost surely α-Hölder continuous for

0 < α < 1/2. Brownian motion is almost surely nowhere α-Hölder continuous for α > 1/2.

In particular, this shows that
{
B(t) : t ≥ 0

}
is almost surely nowhere differentiable.

13
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2.2.2 Itô’s Integral

The following construction is taken from [13]. Let B(t) be a standard one-dimensional Brownian motion.

Let P = {0 = t0 < t1 < · · · < tm = t} be a partition of [0, t] and g : [0, t] → R be a simple function with

g(s) = gk if tk ≤ s < tk+1. We define∫ t

0

g(s) dB(s) =

m∑
k=0

gk
(
B(tk+1)−B(tk)

)
.

Now let φ be a stochastic process defined on [0, t] such that

∥φ∥2L2(I×Ω) =

∫ t

0

E
[
φ2(s)

]
ds <∞

and let {φn}∞n=1 be a sequence of simple functions with the same domain as φ so that φn → φ under the

L2(I × Ω) norm. The Itô stochastic integral as in [13] is defined as

Iφ(t) =
∫ t

0

φ(s) dB(s) = lim
n→∞

∫ t

0

φn(s) dB(s)

for every t ≥ 0. Below are two important properties regarding the expectation of this integral for all t ≥ 0.

The first asserts that the expectation of an Itô integral is zero. The second relates the second moment of

the stochastic integral to the expectation of a standard integral as is known as the Itô isometry. They are

stated as, for every t ≥ 0,

E

[∫ t

0

φ(s) dB(s)

]
= 0 (2.12)

and

E

(∫ t

0

φ(s) dB(s)

)2
 = E

[∫ t

0

φ2(s) ds

]
. (2.13)

In the case that φ is a deterministic function, the Itô integral
{
Iφ(t) : t ≥ 0

}
is a Gaussian process and hence

it has the same distribution as B
(∫ t

0

φ2(s) ds

)
: t ≥ 0


where B is a standard Brownian motion. The process behaves similarly to a Brownian motion except that it

is running on its own ‘clock’ determined by φ. This can be viewed as a time-transformed Brownian motion.

2.3 Stochastic Differential Equations

Let
{
B(t) : t ≥ 0

}
be am-dimensional Brownian motion defined on

(
Ω,F , {Ft}t≥0 ,P

)
where, for every

t ≥ 0, we have that

Ft = σ
({
B(s) : 0 ≤ s ≤ t

})
is the filtration generated by the Brownian motion up to time t. For some T > 0, suppose we have the

deterministic functions

b : [0, T ]× Rl → Rl

14
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σ : [0, T ]× Rl → Ml×m

where Ml×m denotes the space of l ×m symmetric non-negative definite matrices. The notation bi is the

one-dimensional function that represents the i-th component of b. Similarly, σi,j represents the (i, j) entry

of σ.

Let
{
B(t) : t ≥ 0

}
be am-dimensional Brownian motion. We define a Rl-valued stochastic process X(t)

to be a weak solution to the Itô stochastic differential equation (SDE)
dX(t) = b(t,X(t)) dt+ σ(t,X(t)) dB(t)

X(0) = x0 ∈ Rl

(2.14)

over [0, T ] if it satisfies that

1.
{
X(t) : t ≥ 0

}
is progressively measurable with respect to {Ft : 0 ≤ t ≤ T}.

2. For every 1 ≤ i ≤ l, Fi = bi(t,X(t)) ∈ L1(I × Ω). That is to say∫ T

0

E
[
bi(t,X(t))

]
dt <∞.

3. For every 1 ≤ i ≤ l and 1 ≤ j ≤ m, Gi,j = σi,j(t,X(t)) ∈ L2(I × Ω). That is to say∫ T

0

E
[
σ2
i,j(t,X(t))

]
dt <∞.

4. For every 0 ≤ t ≤ T , almost surely

X(t) = x0 +

∫ t

0

b(s,X(s)) ds+

∫ t

0

σ(s,X(s)) dB(s). (2.15)

Here, the latter integral ∫ t

0

σ(s,X(s)) dB(s)

is a multidimensional Itô integral and is understood to be a Rl-valued random variable whose i-th component

is the sum of one-dimensional Itô integrals given by

m∑
j=1

∫ t

0

Gi,j dBj(s)

for every 1 ≤ i ≤ l. Often we deal with one-dimensional SDEs (l = m = 1) in which case b and σ are simply

functions from [0, T ]× Rl to R.

In the equation (2.14), the term b is called the drift coefficient which represents the movement of the

process
{
X(t) : t ≥ 0

}
with respect to time as a function of the current time and its current position. The

term σ is the diffusion coefficient which captures the intensity of the random movements that
{
X(t) : t ≥ 0

}
15
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experiences due to increments of the Brownian motion
{
B(t) : t ≥ 0

}
. In the case when σ = 0 everywhere,

the system experiences no random forces and (2.14) reduces to an ODE whose solution, if it exists, is

a deterministic function. On the other hand, if it is the case that b = 0 everywhere, then the solution{
X(t) : t ≥ 0

}
, if it exists, is driven solely by Brownian motion and hence is a martingale by (2.12).

For notational convenience, we write the initial condition of the stochastic process in superscript as

Xs,x0(t) which denotes X(s) = x0. If s = 0, it will be omitted in the superscript. Hence, we will also write

the differential expression (2.14) as

dXx0(t) = F dt+GdB(t). (2.16)

The right hand side of (2.16) is called the stochastic differential of Xx0(t). This can also be written

coordinate-wise with the i-th component being equal to

dXx0
i (t) = Fi dt+

m∑
j=1

Gi,j dBj(t)

2.3.1 Itô’s Lemma

The following result of Itô is a way to convert between the stochastic differentials of two stochastic

processes related by a sufficiently differentiable function. The following is presented as Theorem 3.3 in [19].

Theorem 2.11 (Itô’s Formula). Let
{
X(t) : t ≥ 0

}
be a stochastic process associated with the stochastic

differential dX(t) = F dt + GdB(t) where F and G depend only on t. Suppose u : [0, T ] × Rl → Rp is a

continuous function with continuous partial derivatives ∂u
∂t ,

∂u
∂xi

, ∂2u
∂xi∂xj

for 1 ≤ i, j ≤ l, and denote its k-th

component by uk. Let Y (t) = u(t,X(t)) be a stochastic process with values in Rp. Then
{
Y (t) : t ≥ 0

}
has

the stochastic differential

dY (t) =

 ∂
∂tu(t,X(t)) +

l∑
i=1

bi(t,X(t)) ∂
∂xi

u(t,X(t)) +
1

2

l∑
i,j=1

ai,j(t,X(t)) ∂2

∂xi∂xj
u(t,X(t))

 dt

+

l∑
i=1

∂
∂xi

u(t,X(t))

 m∑
r=1

σi,r(t) dBr(t)

 ,

(2.17)

where ai,j(t,X(t)) is the (i, j) entry of the matrix σ(t,X(t))
(
σ(t,X(t))

)T
.

In the one-dimensional case l = m = p = 1 where dX(t) = b(t,X(t)) dt + σ(t,X(t)) dB(t) is the SDE of

interest, this takes the cleaner form

dY (t) =

(
∂
∂tu(t,X(t)) + b(t,X(t)) ∂

∂xu(t,X(t)) +
σ2(t,X(t))

2
∂2

∂x2u(t,X(t))

)
dt

+ σ(t,X(t)) ∂
∂xu(t,X(t)) dB(t).

The last term in front of dt is the only difference between the standard calculus and stochastic calculus. The

appearance of this term can be attributed to the previous argument that ‘
(
dB(t)

)2 ≈ dt’.
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It is often the case that an explicit formula for the solution to an SDE is unavailable. However, in

some situations it is possible to determine such an expression. The following example illustrates this using

Theorem 2.11.

Example 2.12. Let l = m = 1. Consider the SDE given by
dY (t) = g(t)Y (t) dB(t)

Y (0) = y0

(2.18)

where g : R → R is continuous. Then we verify that

Y (t) = y0 exp

(
−1

2

∫ t

0

g2(s) ds+

∫ t

0

g(s) dB(s)

)

is a solution to (2.18) over [0, T ] for every T > 0. To see this, let X(t) be the argument in the exponential.

Then X(t) has stochastic differential

dX(t) = −1

2
g2(t) dt+ g(t) dB(t).

Let u(t, x) = ex. Then by Itô’s formula (2.17), we have

dY (t) =

(
∂
∂tu(t,X(t)) + b(t,X(t)) ∂

∂xu(t,X(t)) +
1

2
a(t,X(t)) ∂2

∂xi∂xj
u(t,X(t))

)
dt

+ σ(t,X(t)) ∂
∂xu(t,X(t)) dB(t)

=

(
0− 1

2
g2(t)eX(t) +

1

2
g2(t)eX(t)

)
dt+ g(t)eX(t) dB(t)

= g(t)Y (t) dB(t).

In particular, we observe that
{
Y (t) : t ≥ 0

}
is a martingale.

If g ∈ L2(I), then almost surely Y (t) converges to a random variable as t → ∞. Otherwise, by the law

of the iterated logarithm (Theorem 2.7),
∣∣∣∫ t

0
g(s) dB(s)

∣∣∣ grows more slowly than 1
2

∫ t

0
g2(s) ds as t → ∞, so

Y (t) → 0 almost surely as t→ ∞.

2.3.2 Existence and Uniqueness Conditions

It is important to study when a solution to the SDE (2.14) exists and, if it does, when such a solution

is unique. The definitions of existence and uniqueness in the stochastic setting are slightly more nuanced

than those in the deterministic setting.

A process
{
X(t) : t ≥ 0

}
is said to be a strong solution, or simply just a solution, to (2.14) if

(2.15) holds for every standard Brownian motion. It is also shown [9] that, equivalently,
{
X(t) : t ≥ 0

}
is a strong solution if it is

{
FB

t : t ≥ 0
}

adapted, where for every t ≥ 0, FB
t is the σ-algebra generated
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by σ(
{
B(s) : s ≤ t

}
) and by the subsets of null sets from σ(

{
B(s) : s ≥ 0

}
). In contrast,

{
X(t) : t ≥ 0

}
is a weak solution to (2.14) if there exists a Brownian motion such that

{
X(t) : t ≥ 0

}
satisfies (2.15)

but
{
X(t) : t ≥ 0

}
is not necessarily measurable with respect to the σ-algebra generated by that chosen

Brownian motion. Hence, a strong solution is automatically a weak solution. Additionally, weak solutions

are sometimes denoted as
{
(X(t), B(t)) : t ≥ 0

}
, so as to specify the specific Brownian motion for which{

X(t) : t ≥ 0
}
solves the SDE.

Solutions to the SDE (2.14) are said to be unique in law if for any weak solutions
{
(X1(t), B1(t)) : t ≥ 0

}
and

{
(X2(t), B2(t)) : t ≥ 0

}
, the laws of

{
X1(t) : t ≥ 0

}
and

{
X2(t) : t ≥ 0

}
are the same. The solutions are

pathwise unique if they are indistinguishable (that is to say P
(
∀t ≥ 0 : X1(t) = X2(t)

)
= 1). It is clear

that the latter implies the former. The following result depicted as Figure 1.1 in [9] describes how these

relate to each other.

Proposition 2.13. There exists a pathwise unique strong solution to the SDE (2.14) if any of the following

holds:

• there exists a weak solution and pathwise uniqueness holds for the SDE

• there exists a strong solution and uniqueness in law holds for the SDE

General results are possible given some regularity conditions on the drift and the diffusion terms. In

particular, we require b : [0, T ] × Rl → Rl and σr : [0, T ] × Rl → Rl (σr is the r-th column of σ for

every 1 ≤ r ≤ m) to be functions that satisfy the following two conditions which control their growth and

regularity: ∣∣b(t, x)∣∣+ m∑
r=1

∣∣σr(t, x)∣∣ ≤ B
(
1 +|x|

)
, (2.19)

∣∣b(t, x)− b(t, y)
∣∣+ m∑

r=1

∣∣σr(t, x)− σr(t, y)
∣∣ ≤ B|x− y| . (2.20)

These conditions must hold for some B > 0 and every x, y ∈ Rl and every 0 ≤ t ≤ T . Condition (2.19) states

that the functions b and σr do not grow faster than a linear function in space. Condition (2.20) requires

that b and σr are spatially Lipschitz, uniformly in a given finite time interval. An SDE whose coefficients

satisfy these conditions is guaranteed to have a unique solution [2].

Theorem 2.14 (Existence and Uniqueness of Solutions to SDEs). Consider the SDE (2.14). For every

T > 0, if (2.19) and (2.20) hold on [0, T ], then there exists a pathwise unique strong solution to the SDE

over [0, T ].

In the case of one-dimensional homogeneous SDEs (b(t, x) = b(x) and σ(t, x) = σ(x) for every t ≥ 0), the

Lipschitz condition can be relaxed. The following is attributed to Engelbert and Schmidt [11].
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Theorem 2.15 (Engelbert-Schmidt). Consider the one-dimensional SDE

dX(t) = b(X(t)) dt+ σ(X(t)) dB(t) (2.21)

with b/σ2 being locally integrable in R. Assume that there exists a constant C > 0 such that for every x, y ∈ R

∣∣b(x)∣∣+∣∣σ(x)∣∣ ≤ C(1 +|x|)

and ∣∣σ(x)− σ(y)
∣∣ ≤ C

√
|x− y|

Then there exists a pathwise unique strong solution to the SDE.

It is worth mentioning that, also for one-dimensional homogeneous SDEs, Yamada and Watanabe proved

pathwise uniqueness under further relaxed conditions on b and σ [28].

Theorem 2.16 (Yamada-Watanabe). Consider the one-dimensional SDE (2.21). Assume that there exists

a positive increasing function ρ and a positive concave function κ on (0,∞) such that for every x, y ∈ R

∣∣b(t, x)− b(t, y)
∣∣ ≤ κ(|x− y|)∣∣σ(t, x)− σ(t, y)
∣∣ ≤ ρ(|x− y|)

and ∫ ∞

0

1

ρ2(u)
du = ∞ (2.22)

and ∫ ∞

0

1

κ(u)
du = ∞.

Then, if there exists a solution to the SDE, the solution is pathwise unique.

The following example which relates to the ‘model equation’ in [6] that is discussed in Section 3.5 is an

example where the Yamada-Watanabe theorem, rather than Theorem 2.14, gives the uniqueness of solutions.

Example 2.17. Consider the one-dimensional SDE

dX(t) = 2
√
X(t) dB(t)

with X(0) = x0 > 0. The coefficients satisfy the Yamada-Watanabe theorem conditions. Combined with

Proposition 2.13, we know that if a weak solution exists, then it is pathwise unique, and hence there exists a

strong solution that is pathwise unique. We will revisit this example after introducing the next theorem.

The theorems presented above concern the existence and the uniqueness in the strong sense, but often

in practice we only need the existence and uniqueness in the weak sense. In many cases, the SDEs we are

interested in studying fall out of the scope of Theorems 2.14, 2.15, and 2.16.
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We state some results (specifically, Theorems 4.1, 4.2, and 4.3 in [9]) on the existence and the uniqueness

in the weak sense for time-homogeneous SDEs. These results also discuss the recurrence or the transience

of the unique solution. The following theorems rely on the assumption that there exists a δ > 0 so that∫ θ+δ

θ−δ

1 +
∣∣b(x)∣∣

σ2(x)
dx <∞

for every θ ∈ (a,∞) for some a ∈ R. We also define, for every x ∈ [a,∞), the quantities

ρ(x) = exp

(
−
∫ x

a

2b(t)

σ2(t)
dt

)
and

s(x) = −
∫ ∞

x

ρ(t) dt.

Theorem 2.18. Suppose that ∫ ∞

a

ρ(x) dx = ∞.

Given x0 ∈ [a,∞), there exists a weak solution starting from x0 defined up to τa, where τa is the hitting time

of a (that is to say τa = infs≥0

{
X(s) = a

}
), and the solution is unique in law. Further, τa < ∞ almost

surely.

In fact, under the condition of Theorem 2.18, a global solution exists. Now we revisit Example 2.17. The

coefficient of the SDE also satisfies the condition of Theorem 2.18 with a = 0, which implies that a weak

solution exists up to the time it hits 0 (it can be shown that this happens in finite time). Following our

previous arguments, we know that a strong solution exists up to the time it hits 0 and the solution is pathwise

unique. The next two theorems supplement Theorem 2.18 and concern the behavior of the solution near ∞.

Theorem 2.19. Suppose that∫ ∞

a

ρ(x) dx <∞,

∫ ∞

a

∣∣s(x)∣∣
ρ(x)σ2(x)

dx = ∞.

Given x0 ∈ [a,∞), there exists a weak solution starting from x0 defined up to τa, and the solution is unique

in law. Further, if x0 > a, τa = ∞ with positive probability and the solution tends to ∞ almost surely as

t→ ∞ conditioning on τa = ∞.

Theorem 2.20. Suppose that∫ ∞

a

ρ(x) dx <∞,

∫ ∞

a

∣∣s(x)∣∣
ρ(x)σ2(x)

dx <∞.

Given x0 ∈ (a,∞), there exists a weak solution starting from x0 defined up to τ∞, where τ∞ is the time of

explosion, and the solution is unique in law. Furthermore, τ∞ <∞ with positive probability.

In fact, under the conditions of Theorem 2.18 or 2.19, a unique in law global solution exists. The following

example illustrates the use of Theorems 2.18, 2.19, and 2.20 in the case where the drift and the diffusion

are power functions and hence do not satisfy (2.19) or (2.20) except in the case where b and σ are linear

functions of x.
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Example 2.21. Consider the SDE

dX(t) = µXα(t) dt+ νXβ(t) dB(t)

with X(0) = x0 = 0. Set λ = µ/ν2 and γ = α − 2β. Then, by Theorem 2.18 the solution X(t) is recurrent

relative to |x| < ϵ if one of

γ < −1, γ = −1 and λ ≤ 1/2, γ > −1 and λ ≤ 0 (2.23)

is true. By Theorem 2.19, it is transient if none of the conditions for recurrence holds and one of

γ = −1 and β ≤ 1, γ > −1 and β ≤ 1− γ

2
(2.24)

is true. Further, if X(t) is recurrent or transient, then a unique in law solution exists. If neither (2.23) nor

(2.24) hold, then X(t) explodes in the sense that it reaches +∞ in finite time with positive probability by

Theorem 2.20. In this case, a unique in law solution exists up until the time of explosion.

2.3.3 Comparison Theory

When solutions to SDEs are not easily available, it may be sufficient to relate one SDE to another. For

example, if the solution X1(t) to a given SDE is not available but X1(t) is related to the solution X2(t) to

another SDE whose solution is better studied, then one may leverage knowledge of X2(t) to determine some

useful properties of X1(t). Theorem 3 of Yamada [27] is often useful.

Theorem 2.22 (Almost Sure Comparison of Solutions to SDEs). Let X1(t) and X2(t) be the solutions to

dX1(t) = b1(t,X1(t)) dt+ σ(t,X1(t)) dB(t) (2.25)

and

dX2(t) = b2(t,X2(t)) dt+ σ(t,X2(t)) dB(t) (2.26)

respectively. Suppose that b1(t, x) < b2(t, x) and
∣∣σ(t, x)− σ(t, y)

∣∣ ≤ ρ(|x− y|) where ρ satisfies condition

(2.22). Then if X1(0) ≤ X2(0), then X1(t) ≤ X2(t) almost surely for all t ≥ 0. If in addition the pathwise

uniqueness holds for both equations, then the previous condition may be relaxed to b1(t, x) ≤ b2(t, x).

This result requires that the diffusion term is the same for both SDEs. Thus, unfortunately, it is rather

restrictive. In the case when two given SDEs have different diffusion terms, one may attempt to apply

a transformation to the SDEs to match the diffusion terms. This is done later in Section 4.3.3 for other

reasons. Alternatively, results on the expectation of the solutions can be obtained instead (see Theorem 2.2

and Table 1 in [3]).

Theorem 2.23 (Comparison of Solutions to SDEs in Expectation). Let X1(t) and X2(t) be as in (2.25)

and (2.26) again with drift b1(t, x) ≤ b2(t, x) but now diffusion σ1(t, x) ≤ σ2(t, x). Then if X1(0) ≤ X2(0),

then E
[
X1(t)

]
≤ E

[
X2(t)

]
for all t ≥ 0.

One particularly nice aspect of this theorem is that it does not require the coefficients to satisfy the Lipschitz

conditions.

21



Bryden Cheong

3 Stability of Solutions to Stochastic Differential Equations

We now turn to the main topic of interest. Previously, it was investigated when the solutions to

dynamical systems were stable. To do this, multiple definitions of stability were considered. In order to

establish the stability of these solutions, Lyapunov type methods were used. Now, we turn our attention to

when solutions to SDEs are stable when compared to their deterministic counterparts. In the probabilistic

setting, there are more ways in which we can define stability. Fortunately, the Lyapunov theorems that was

used in the deterministic case translates without too much difficulty to the stochastic setting.

3.1 Problem Statement

This section prepares some of the concepts that will be required to discuss stability of solutions to

SDEs. We begin by considering the SDE in Rl given by

dX(t) = b(t,X(t)) dt+ σ(t,X(t)) dB(t) (3.1)

defined on t ∈ [s, T ] for some s ≤ T . Throughout the rest of this thesis, unless specified otherwise, the term

solution (to an SDE) always refers to a strong solution, and similarly for existence and uniqueness. Suppose

that for some x ∈ Rl, solutions to this SDE exist and are unique whenever the starting position X(s) is

sufficiently close to x. As before, we denote by Xs,x1(t) the unique solution to the SDE (3.1) subject to the

initial condition X(s) = x1. Sometimes this will be written simply as X(t) if no ambiguity exists.

3.1.1 Deterministic Solutions

To consider stability, first we need to choose a reference with respect to which the solution to (3.1)

should be stable. Let Xs,x1(t) be the unique solution to the system (3.1). We refer to X̃s,x0(t) as the

deterministic solution of the system if it is the unique solution to the ODE system given by
dX̃(t) = b(t, X̃(t)) dt

X̃(s) = x0 ∈ Rl

(3.2)

for t ≥ s. Similarly, this will sometimes be written simply as X̃(t) if no ambiguity exists.

The deterministic solution is how the stochastic process Xs,x1(t) would behave in the absence of the

random pertubative force (that is to say when σ = 0), provided their respective starting positions x0, x1

equate. In this sense, X̃s,x0(t) serves as a good candidate with what Xs,x1(t) should be compared: if Xs,x1(t)

does not deviate too far from X̃s,x0(t) when the starting points x0 and x1 are sufficiently close, then it is

natural to consider Xs,x1(t) as ‘stable’.
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3.1.2 Lyapunov Functions

Many results in this section are stated in terms of Lyapunov functions as in Section 2.1.2. To this end

we define the operator L associated with the SDE (3.1) that acts on V as

LV (t, x) =
∂V (t, x)

∂t
+

l∑
i=1

bi(t, x)
∂V (t, x)

∂xi
+

1

2

l∑
i,j=1

ai,j(t, x)
∂2V (t, x)

∂xi∂xj
. (3.3)

Here, bi and ai,j correspond to the drift and diffusion coefficients as per (2.17). The operator L is also known

as the generator of the process. This form is very similar to (2.11). By adding the term involving ai,j ,

this quantity can be viewed as the stochastic analogue of V̇ . Just as before, we may view a positive definite

function V as a generalized energy function for the solution to (3.1).

The quantity LV in 3.3 therefore represents the change of energy just as V̇ did in the deterministic

case. The additional term captures changes in energy caused by random perturbative forces. The following

result (Lemma 3.2 in [19]) best expresses this relationship.

Lemma 3.1 (Expected Energy Change). Let Xs,x1(t) be a solution to (3.1), U be a bounded domain with

Xs,x1(s) ∈ U , and τU be the first exit time of U . Set τU (t) = min(τU , t). Then if V is twice continuously

differentiable, then

E
[
V (τU (t), X

s,x1(τU (t)))− V (s, x1)
]
= E

[∫ τU (t)

s

LV (u,Xs,x1(u)) du

]
.

This result says that the expected change in energy from time s to τU (t) is given by the expectation of the

integral of the LV term over the same time interval. Heuristically, Lemma 3.1 allows us to quantify energy

changes of the process Xs,x1(t) on average. This is visualized in Figure 3. In Section 2.1.2, Theorems 2.2,

2.3, and 2.4 asserted that if V̇ satisfied some non-positivity condition, then the stability of the solution was

guaranteed. In the stochastic setting, we will see that if LV satisfies similar conditions, then the stability of

the solution to the SDE (3.1) is attained.

3.2 Notions of Stability

Here, we consider stability of a solution to an SDE with respect to the deterministic solution. In order

to obtain results involving the operator L and the Lyapunov function V , definitions of stability are required.

As in the deterministic case, there exist several notions of stability for stochastic systems.

Due to the inherent probabilistic nature of the stochastic solution, there is another dimension of depth

to consider. The goal is to compare Xs,x1(t) and X̃s,x0(t) and how their distance converges to 0. Since

the former is a random variable, we may consider all the different ways in which random variables converge

(convergence in distribution, in probability, almost sure, and in Lp).
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3.2.1 Weak Stability

This section considers weak notions of stability as given in Chapter 1.5 of Khaminskii [19]. These notions

of stability deal with the process Xs,x1(t) for a given moment t. This is in contrast to strong definitions

in Section 3.2.2 where the whole path of the solution will be considered. The definitions presented in this

section do not constitute all possible definitions, but are the ones that are most studied.

Definition 3.2 (Weakly Stable in Probability). A solution Xs,x1(t) of (3.1) is said to be weakly stable in

probability with respect to the deterministic solution X̃s,x0(t) for t ≥ t0 if for every ϵ > 0, δ > 0, there exists

r ≥ 0 such that if |x1 − x0| < r, then

P
(∣∣∣Xs,x1(t)− X̃s,x0(t)

∣∣∣ > ϵ

)
< δ.

for every t ≥ t0.

This definition requires that for sufficiently close starting points the processes are arbitrarily close to one

another with probability arbitrarily close to 1 at any time past t0. This is alternatively stated as

lim
x1→x0

sup
t≥t0

P
(∣∣∣Xs,x1(t)− X̃s,x0(t)

∣∣∣ > ϵ

)
→ 0. (3.4)

If, in addition to the the conditions in Definition 3.2, it holds that

lim
t→∞

P
(∣∣∣Xs,x1(t)− X̃s,x0(t)

∣∣∣ > ϵ

)
→ 0

for |x1 − x0| < r, then we say that the solution Xs,x1(t) to the SDE (3.1) is asymptotically stable with

respect to the deterministic solution. For convenience, the stability of the solution Xs,x1(t) to the SDE will

sometimes be referred to as the stability of the SDE itself. Stronger types of stability consider the distance

between the stochastic solution Xs,x1(t) and the deterministic solution X̃s,x0(t) under Lp.

Definition 3.3 (Weakly p-stable). A solution Xs,x1(t) of (3.1) is said to be weakly p-stable with respect to

the deterministic solution X̃s,x0(t) for t ≥ t0 if for every ϵ > 0, there exists r ≥ 0 such that if |x1 − x0| < r,

then

E
[∣∣∣Xs,x1(t)− X̃s,x0(t)

∣∣∣p] < ϵ (3.5)

for every t ≥ t0.

By Markov’s inequality, we see that that weak p-stability implies weak stability in probability. Similarly, if

the quantity in (3.5) converges to 0 as t→ ∞, then we say the solution is asymptotically p-stable. Finally,

Xs,x1(t) is said to be exponentially p-stable with respect to X̃s,x0(t) if there exists constants A > 0 and

α > 0 such that

E
[∣∣∣Xs,x1(t)− X̃s,x0(t)

∣∣∣p] ≤ A|x1 − x0|p exp (−αt)

for every t ≥ t0.
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Another way to strengthen the stability is to remove the localized dependence of x1 on x0. That is, for

arbitrary x0 and x1, the above conditions hold so long as t is sufficiently large. The following definition is

stated for stability in probability but can be adapted to p-stability or asymptotic stability as well.

Definition 3.4 (Weakly Stable in Probability in the Large). A solution Xs,x1(t) of (3.1) is said to be weakly

stable in probability in the large with respect to the deterministic solution X̃s,x0(t) if for every ϵ > 0, δ > 0,

and every x0, there exists some T = T (x1 − x0, ϵ, δ) so that

P
(∣∣∣Xs,x1(t)− X̃s,x0(t)

∣∣∣ > ϵ

)
< δ

for t > T .

3.2.2 Strong Stability

In this section we consider stability in the strong sense. Compared to weak forms of stability, these

concepts are more widely studied in literature. Many definitions in this section translate from the weak

setting with little difficultly. When a solution Xs,x1(t) is strongly stable, it is often simply referred to as

stable. Later in Section 3.4, we investigate sufficient conditions for stability of the solution to (3.1) in terms

of the restrictions imposed on the coefficients.

Definition 3.5 (Strongly Stable in Probability). A solution Xs,x1(t) of (3.1) is said to be (strongly) stable

in probability with respect to the deterministic solution X̃s,x0(t) for t ≥ 0 if for every ϵ > 0 and s ≥ 0

lim
x1→x0

P

(
sup
t≥s

∣∣∣Xs,x1(t)− X̃s,x0(t)
∣∣∣ > ϵ

)
= 0.

The solution Xs,x1(t) is said to be unstable if it is not stable. We additionally say the solution is stable

uniformly if the limit tends to 0 uniformly in s ≥ 0. Definition 3.5 requires that the uniform distance

between the stochastic solution and the deterministic solution converges to 0 as the initial points converge to

one another. Clearly this definition implies (3.4), and hence strong stability implies weak stability. Here and

throughout the remainder of this thesis, the term ‘stable’ refers to strong stability unless otherwise specified.

As in the weak case, we extend the strong definition of stability by imposing some additional requirements.

Definition 3.6 (Strongly Asymptotically Stable in Probability). A solution Xs,x1(t) to (3.1) is said to be

asymptotically stable with respect to the deterministic solution X̃s,x0(t) if it is strongly stable and additionally

lim
x1→x0

P
(
lim
t→∞

∣∣∣Xs,x1(t)− X̃s,x0(t)
∣∣∣ = 0

)
= 1. (3.6)

If the statement (3.6) holds without taking the outermost limit, we say the solution is asymptotically

stable in the large. The following definition is the analogue of Definition 3.3 for strong stability.
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Definition 3.7 (p-stability). A solution Xs,x1(t) to (3.1) is said to be p-stable for p > 0 with respect to the

deterministic solution X̃s,x0(t) if

lim
δ→0

(
sup

|x1−x0|<δ,t≥s

E
[∣∣∣Xs,x1(t)− X̃s,x0(t)

∣∣∣p])→ 0

If additionally the expectation term vanishes as t→ ∞, then the solution is asymptotically p-stable. Finally,

if there exists constants A > 0 and α > 0 so that

E
[∣∣∣Xs,x1(t)− X̃s,x0(t)

∣∣∣p] ≤ A|x1 − x0|p exp (−αt)

for every t ≥ s, then the solution is exponentially p-stable.

3.3 Assumptions

In order to obtain meaningful results, certain assumptions on the drift term b and the diffusion term

σ must be made. We assume these assumptions hold throughout the remainder of this chapter. The first

assumption controls the behavior of the deterministic solution by requiring it to be bounded. Formally, we

require that there exists M > 0 so that

sup
t≥s

∣∣∣X̃s,x(t)
∣∣∣ ≤M (3.7)

for all x in some neighborhood of x0. This requirement alleviates some of the issues that could arise when

considering unbounded solutions in the context of definitions introduced in Section 3.2. We later drop this

assumption in Chapter 4 when considering a different notion of stability.

The next assumption controls the effect of the random perturbations on Xs,x1(t) along the trajectory of

the deterministic solution. We assume that if Xs,x1(t0) = X̃s,x0(t0) for some t0 ≥ s, then Xs,x1(t) = X̃s,x0(t)

for all t ≥ t0. This is to say the effect of diffusion disappears along the trajectory of the deterministic solution.

Intuitively, the stochastic process ‘sticks’ to the deterministic solution. This vanishing assumption is written

as

σ(t, X̃s,x0(t)) = 0. (3.8)

If a continuity condition (such as the Lipschitz condition (2.20)) is placed on σ, then this assumption controls

the strength of random forces in a neighborhood of the deterministic solution. Note that this assumption

is necessary for studying the current notions of stability. To see this, observe that even when x0 = x1, if

the diffusion coefficient is non-zero for some interval of time, then with positive probability Xs,x1(t) will

move away from X̃s,x0(t). In general, there would be no reason to expect the stochastic solution and the

deterministic solution to be close. Despite this, they may still may behave similarly as will be examined in

Chapter 4.
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3.4 Lipschitz Coefficients

We consider now some results when the coefficients of the SDE (3.1) satisfy conditions (2.19) and (2.20).

In this case, some properties of the sample paths of the solution can be derived. These properties allow for

general Lyapunov type methods to be applicable in the stochastic setting. The stability theorems presented

here are mostly from [19] but are also presented in earlier works such as [1, 14, 17, 21].

3.4.1 Lyapunov Stability Theorems

Let us first establish a couple of definitions. First, we say that a process
{
X(t) : t ≥ 0

}
is regular if

P (τ = ∞) = 1 where τ is the exit time of every bounded domain. That is to say, a process is regular if it

almost surely does not explode in finite time. Second, we formally define the trajectory of the deterministic

solution to (3.2) as T =
{
(t, x) : t ≥ s with X̃s,x0(t) = x

}
. Finally, a closed set Γ is said to be inaccessible

to a process
{
X(t) : t ≥ 0

}
if P

(
τΓ <∞

)
= 0, where τL is the hitting time of the set Γ (that is to say

τΓ = infs≥0

{
X(s) ∈ Γ

}
). With these definitions, we have the following lemma.

Lemma 3.8 (Inaccessibility of the Deterministic Solution). Suppose the solution
{
Xs,x1(t) : t ≥ s

}
of the

SDE (3.1) has coefficients satisfying the Lipschitz condition (2.20) in every spatially bounded domain, as well

as (3.8). Then if x0 ̸= x1, the trajectory of the deterministic solution X̃s,x0(t) is inaccessible to Xs,x1(t).

Beyond guaranteeing the uniqueness of a solution, Lemma 3.8 shows that the Lipschitz condition also allows

for better understanding of the behaviors of Xs,x1(t). This in turn leads to Lyapunov type stability theorems

for the stochastic case similar to those seen in Section 2.1 for deterministic systems.

Suppose x : I → Rl is a function. We say that a function V : I ×D → R is positive definite about

the path x(t) on D if, in addition to (2.7) and (2.9), we have that

∀t ∈ I : V (t, x(t)) = 0.

As before, this definition can be upgraded to be uniform if the additional condition (2.10) holds where now

W1 and W2 are continuous positive definite functions about the path x(t). When the function V is viewed

as representing an energy, the above definition asserts that the trajectory of x(t) is where the energy is

minimized. The previous interpretation as in Section 2.1.2 still applies. With this setup, we are nearing our

first result regarding the stability of SDEs. We first need the next lemma which justifies the supermartingale

idea first suggested by [5].

Lemma 3.9 (Lyapunov Process is a Supermartingale). Let V (t, x) be a function continuously differentiable

with respect to t and twice continuously differentiable with respect to x on the set I ×
{
U \ Γ

}
where U

is a bounded domain in Rl and Γ ⊂ U is a set inaccessible to a solution Xs,x1(t) of (3.1). Assume that

LV (t, x) ≤ 0 on the set I ×
{
U \ Γ

}
. Then the process

{
V (τU (t), X(τU (t))) : t ≥ s

}
is a supermartingale,

where we recall τU is the exit time of U .
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Finally, we get the stochastic analogue of Theorem 2.2. The proof is slightly modified from that in [19].

Theorem 3.10 (Lyapunov Strong Stability). Suppose the assumptions stated in Section 3.3 hold. Suppose

also that there exists a function V (t, x), positive definite about the path X̃s,x0(t), that is continuously

differentiable with respect to t and twice continuously differentiable with respect to x. Assume LV (t, x) ≤ 0

everywhere in a domain U except possibly along the trajectory of X̃s,x0(t). Then the solution Xs,x1(t) of the

SDE (3.1) is strongly stable in probability with respect to the deterministic solution X̃s,x0(t).

Proof. Let U be a bounded domain containing the path of X̃s,x0(t), which is possible because X̃s,x0(t) is

bounded by assumption. Let V (t, x) be sufficiently differentiable on I × U as in the assumption of the

theorem. Let r be the number so that

Ar =

{
(t, x) : ∃t ≥ s such that

∣∣∣X̃s,x0(t)− x
∣∣∣ < r

}
is contained in the closure of I × U . Then Vr = inf(t,x)∈(I×U)\Ar

V (t, x) > 0 by assumption.

Now set Y s,x1,x0(t) = Xs,x1(t)−X̃s,x0(t). Write Ω1 =
{
ω ∈ Ω : sups≤u≤t

∣∣Y s,x1,x0(u, ω)
∣∣ > r

}
. Observe

that the following chain of inequalities

E
[
V (τAr

(t), Xs,x1(τAr
(t)))

]
=

∫
Ω

V (τAr
(t), Xs,x1(τAr

(t))) dP

≥
∫
Ω1

V (τAr
(t), Xs,x1(τAr

(t))) dP

≥ inf
(t,x)∈(I×U)\Ar

V (t, x)

∫
Ω1

dP

= inf
(t,x)∈(I×U)\Ar

V (t, x) · P

(
sup

s≤u≤t

∣∣Y s,x1,x0(u, ω)
∣∣ > r

)
implies that

P

(
sup

s≤u≤t

∣∣Y s,x1,x0(u, ω)
∣∣ > r

)
≤

E
[
V (τAr

(t), Xs,x1(τAr
(t)))

]
Vr

. (3.9)

By Khaminskii’s Theorem 3.5 (see Khaminskii’s Example 3.2), the regularity of the process Xs,x1(t) follows

from continuity of its coefficients and the Lipschitz conditions. By Lemma 3.8, the trajectory T of the

deterministic solution is inaccessible to the process Xs,x1(t) whenever x0 ̸= x1. In particular, by Lemma

3.9,
{
V (τAr (t), X

s,x1(τAr (t))) : t ≥ s
}
is a supermartingale, so

E
[
V (τAr

(t), Xs,x1(τAr
(t)))

]
≤ V (s, x1)

for every t ≥ s. Combining this with (3.9), we obtain

P

(
sup

s≤u≤t

∣∣Y s,x1,x0(u, ω)
∣∣ > r

)
≤

E
[
V (τAr

(t), Xs,x1(τAr
(t)))

]
Vr

≤ V (s, x1)

Vr
.

Then taking t→ ∞, we obtain

P

(
sup
s≤u

|Y s,x1,x0 | (u) > r

)
≤ V (s, x1)

Vr
.

Since Vr > 0 and by the continuity of V (s, x1), taking x1 → x0, the right hand side goes to 0.
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If, in addition to the hypotheses of Theorem 3.10, we also have

lim
x→x0

sup
t>0

V (t, x) = 0,

then the stability is uniform. In this case V (t, x) is said to have infinitesimal upper limit.

Naturally, imposing stricter conditions will yield stronger forms of stability. We could expect that if

we require that LV < 0 then asymptotic stability will hold. The following results, Theorems 5.5 and 5.11

in [19], assume that the deterministic solution is X̃s,x0(t) = 0. It also assumes that the vanishing diffusion

condition (3.8) holds.

Theorem 3.11 (Lyapunov Asymptotic Stability). Suppose that there exists a function V (t, x), positive

definite about the path X̃s,x0(t), continuously differentiable with respect to t and twice continuously differentiable

with respect to x. Assume further that V (t, x) has infinitesimal upper limit and LV (t, x) < 0 everywhere in

a domain U except possibly along the trajectory of X̃s,x0(t). Then the solution Xs,x1(t) of the SDE (3.1) is

strongly asymptotically stable in probability with respect to the deterministic solution X̃s,x0(t).

Theorem 3.12 (Lyapunov Exponential Stability). Suppose that there exists a function V (t, x), positive

definite about the path X̃s,x0(t), continuously differentiable with respect to t and twice continuously differentiable

with respect to x. Further assume that there exists positive constants k1, k2, and k3 so that

k1|x|p ≤ V (t, x) ≤ k2|x|p

and

LV (t, x) ≤ −k3|x|p

for every t ≥ s and x ∈ Rl. Then the solution Xs,x1(t) of the SDE (3.1) is exponentially p-stable with respect

to the deterministic solution X̃s,x0(t).

In addition, Theorem 5.7 of [19] will be useful in Section 4.3.1.

Theorem 3.13 (Lyapunov Asymptotic Stability in the Large). Assume that the constant 0 is a solution

to (3.1). If Xs,x1(t) is a solution to (3.1) that is uniformly stable in probability with respect to 0 and is

recurrent to
{
x ∈ Rl : |x| < ϵ

}
for any ϵ > 0, then Xs,x1(t) is asymptotically stable in the large.

3.4.2 Examples

The following examples illustrate the use of the theorems presented in Section 3.4.1. By choosing the

appropriate Lyapunov function V , we can obtain results on stability. It is occasionally the case that stability

can be shown without the use of Lyapunov functions, which will also be demonstrated.
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One class of SDEs which are particularly nice to work with are those with linear coefficients. We use

the notation of Evans [13]. Assuming s = 0, the SDE (3.1) is said to be linear if the drift and diffusion

coefficients has the form

b(t, x) = c(t) + d(t)x (3.10)

σ(t, x) = e(t) + f(t)x (3.11)

for appropriate functions c, d, e, and f . The solution to a one-dimensional linear SDE is

Xx1(t) = exp

(∫ t

0

d(s) ds−
∫ t

0

f2(s)

2
ds+

∫ t

0

f(s) dB(s)

)

·

(
x1 +

∫ t

0

exp

(
−
∫ s

0

d(r) dr +

∫ s

0

f2(r)

2
dr −

∫ s

0

f(r) dB(r)

)(
c(s)− e(s)f(s)

)
ds

+

∫ t

0

exp

(
−
∫ s

0

d(r) dr +

∫ s

0

f2(r)

2
dr −

∫ s

0

f(r) dB(r)

)
e(s) dB(s)

) (3.12)

for every t ≥ 0.

The linear SDE is said to be homogeneous if c = e = 0. In the case that only e = 0, we say it

is semi-homogeneous of first kind. If, alternatively, we have that only c = 0 then it is said to be

semi-homogeneous of second kind. Is it clear that condition (3.8) fails to hold in the semi-homogeneous

cases. The next example examines the stability of the solution to the homogeneous linear SDE.

Example 3.14. Consider the one-dimensional SDE

dX(t) = b(t)X(t) dt+ σ(t)X(t) dB(t) (3.13)

with initial condition X(0) = x1 > 0. We assume that b(t) and σ(t) are bounded so as to satisfy conditions

(2.19) and (2.20). By (3.12),

Xx1(t) = x1 exp

∫ t

0

(
b(s)− σ2(s)

2

)
ds+

∫ t

0

σ(s) dB(s)

 (3.14)

solves this SDE. Set

η(t) =

∫ t

0

(
b(s)− σ2(s)

2

)
ds+

∫ t

0

σ(s) dB(s).

It can be seen directly that if η(t) → −∞ as t→ ∞ almost surely, then Xx1(t) is asymptotically stable with

respect to the constant function X̃(t) = 0. If lim supt→∞ η(t) <∞ almost surely, we have stability. If instead

lim supt→∞ η(t) = ∞ with non-zero probability, we have instability.

This result can also be achieved by the method of Lyapunov. To see stability, fix ϵ > 0 so that∫ t

0

(
b(s)− σ2(s)

2
+ ϵ

)
ds < k
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holds for some k > 0 and all t > 0. This condition limits the effects of drift and so the Lyapunov function

V (t, x) = |x|α exp

−α
∫ t

0

(
b(s)− σ2(s)

2
+ ϵ

)
ds


satisfies the conditions of Theorem 3.10 for small enough α > 0. Apply the generator

L =
∂

∂t
+ b(t)|x| ∂

∂x
+

1

2
σ2(t)|x|2 ∂2

∂x2

to obtain

LV (t, x) = α|x|α exp

−α
∫ t

0

(
b(s)− σ2(s)

2
+ ϵ

)
ds

(−ϵ+ α · σ
2(t)

2

)
.

Taking α to be sufficiently small so that the last term is negative, the Lyapunov function satisfies LV (t, x) ≤ 0

everywhere. By Theorem 3.10, this shows that the system is stable.

Example 3.15. Let us consider again (3.13) but with time-homogeneous coefficients. That is to say the

drift is b(t) = b ∈ R and the diffusion is σ(t) = σ ∈ R. Setting V (t, x) = |x|p, we have that

LV (t, x) = p|x|p−1

(
b+

σ2

2
(p− 1)

)
.

Hence if b+ σ2

2 (p− 1) < 0, then we have p-stability by Theorem 3.12.

Example 3.16. Consider the one-dimensional SDE

dX(t) = g′(t) dt+
∣∣X(t)− g(t)

∣∣dB(t) (3.15)

for some differentiable function g such that (3.7) holds. If x0 = g(0), we claim that g(t) is the deterministic

solution with respect to which Xx1(t) is stable. Choose the Lyapunov function V (t, x) =
∣∣x− g(t)

∣∣ which
satisfies Theorem 3.10. Apply the generator to obtain

LV (t, x) =
∂

∂t

∣∣x− g(t)
∣∣+ g′(t)

∂

∂x

∣∣x− g(t)
∣∣ = −g′(t) + g′(t) = 0

in a neighborhood around but excluding the path of g(t). Then again by Theorem 3.10, stability is obtained.

3.4.3 Numerical Visualizations

The core idea introduced in this section has been that, through the appropriate choice of Lyapunov

function V (t, x), the solution Xs,x1(t) to the system (3.1) is stable in some sense with respect to X̃s,x0(t).

Now, we visualize these ideas through a numerical example that helps us understand the interaction between

the solution X(t) and the Lyapunov results.

Consider the two-dimensional SDE given by
dX1(t) =

1
4X1(t) dt+X1(t) dB1(t)

dX2(t) =
1
4X2(t) dt+X2(t) dB2(t)

(3.16)
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and, for x1, x2 > 0, let X(x1,x2)(t) be its solution with satisfying X(x1,x2)(0) = (x1, x2). Each dimension of

the two-dimensional process is a independent process that is stable with respect to 0 as seen in Example

3.14. It can then be similarly observed that the two-dimensional process X(x1,x2)(t) is stable with respect

to the origin.

Figure 2: One realization of X(t)

which is the solution to the SDE (3.16) for 0 ≤ t ≤ 3.

In order to simulate this, we use the explicit order 1 strong scheme (also called a stochastic Runge-Kutta

scheme) in [20] to obtain a numerical solution to (3.16). This scheme is given by

X(n+ 1) = X(n) + b(n,X(n))∆t+ σ(n,X(n))∆B(t)

+
1

2
√
∆t

(
σ(n,K(n))− σ(n,X(n))

) ((
∆B(t)

)2 −∆t
)

where n is the time discretization, ∆t is the time increment, ∆B(t) is the corresponding increment of

Brownian motion, and

K(n) = X(n) + b(n,X(n))∆t+ σ(n,X(n))
√
∆t.
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A sample path of X(x1,x2)(t) for 0 ≤ t ≤ 3 is seen in Figure 2 with x1 = x2 = 1. All figures in this section

were created using the Python programming language.

We choose the Lyapunov function V (t, x) = |x|1/4. Then we may visualize Figure 2 in three dimensions

where the solution X(1,1)(t) ‘lives’ on the Lyapunov function. This is illustrated in Figure 3. The orange

contour lines depict z = V (t, x) with deeper colors indicating a higher energy level. The same sample path of

X(1,1)(t) traverses this energy function. Since LV (t, x) ≤ 0, we expect that the trajectory in blue eventually

falls into the energy well located at the origin.

Figure 3: Stochastic process on the Lyapunov function

V (t, x) = |x|1/4 for 0 ≤ t ≤ 3.

A video animation can be found on GitHub.
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3.5 Non-Lipschitz Coefficients

In the setting of non-Lipschitz coefficients, the methods of Lyapunov no longer apply. However, it should

not be surprising that the definitions of stability continue to hold nevertheless. This thesis demonstrates a

couple of methods to obtain stability when condition (2.20) fails to hold. The methods used in this section

work more directly with the properties of the specific SDE in comparison with the Lyapunov method in

Section 3.4.1.

Currently, no general theory as applicable as the Lyapunov stability theorems exists for SDEs with

non-Lipschitz coefficients. Even when the drift and the diffusion terms satisfy Hölder continuity conditions,

problems still occur. In Example 2.17, the diffusion coefficient σ(t, x) = 2
√
x is only α-Hölder continuous

for α ≤ 1/2. It was also discovered that the hitting time at x = 0 of this process is finite almost surely and

consequently the conditions and the assertion of Lemma 3.8 fail to hold. As a result, Theorem 3.10 does not

apply even if the stability of this SDE can be established by other means (as will be seen in greater detail

in Section 3.5.2). As such, the Lipschitz condition is indispensable for the general Lyapunov framework to

apply. Despite this, some partial results are still obtainable (as evidenced by [22] for example).

3.5.1 Stability by Comparison

It could be the case that drift does not satisfy the Lipschitz condition (2.20), yet it is sufficiently

well behaving in a neighborhood of the deterministic solution. Under such conditions, the construction of a

related process which is stable is sufficient to conclude the stability of the original solution via the comparison

theory stated in Theorem 2.22. The following example illustrates this idea.

Example 3.17. Consider the SDE given by

dX(t) = X(t) ln(X(t)) dt+X(t) dB(t) (3.17)

with x1 > 0. By Theorem 2.19 there exists a unique solution. We cannot apply any of the Lyapunov results

directly since the drift fails to be Lipschitz near 0. Instead, we seek to apply Lyapunov results to a related

process. Consider

dZ(t) = (Z2(t)− Z(t)) dt+ Z(t) dB(t).

By Theorem 2.22, we have that X(t) ≤ Z(t) almost surely. Take the Lyapunov function V (t, z) = |z| to

obtain LV (t, z) ≤ 0 in a neighborhood of the origin. Then by Theorem 3.10, Z(t) is stable with respect to

the constant 0. Since X(t) is non-negative, X(t) is also stable with respect to 0.

3.5.2 Square Bessel Processes

In this section, we consider the square Bessel processes. The unique solution to the SDE

dX(t) = ndt+ 2
√
X(t) dB(t) (3.18)
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with X(0) = x1 is referred to as the square of the n-dimensional Bessel process for every n ≥ 0. In this

case the diffusion coefficient σ(t, x) = 2
√
x does not satisfy the Lipschitz condition (2.20) at x = 0. As a

result, Theorem 3.10 does not apply. Regardless, in some cases the definitions of stability still apply to this

stochastic process. For n ≥ 3, the solution X(t) of (3.18) has the property that X(t) → ∞ as t → ∞ [25],

so any possible hope for stability is dashed.

One case which is easy to solve is if n = 1, the square of the 1-dimensional Bessel process. In fact,

given x1 > 0, by Itô’s formula (2.17) we have the explicit formula for Xx1(t) given by

Xx1(t) =
(√
x1 +B(t)

)2
. (3.19)

Clearly, neither the assumption (3.7) nor (3.8) are satisfied by the deterministic solution. As such, the

current notion of stability is not applicable to this SDE.

A less trivial and more interesting case is when n = 0, the square of the 0-dimensional Bessel process,

which was already examined in Example 2.17. This process is linked to the Kimura equation and has been

studied extensively in [6, 7, 8, 12] to name a few sources. Here we can consider stability with respect to the

deterministic solution with starting point x0 = 0. Then the deterministic path is simply the constant c = 0

and assumption (3.8) holds. Chen and Stroock [6] showed that in this case the solution Xx1(t), up to the

hitting time of 0, has the transition density given by

q(x, y, t) =
1

y
exp

(
−x+ y

2t

) ∞∑
n=1

(
xy
4t2

)n
n!(n− 1)!

.

Let τ0 be the first time that the solution Xx1(t) of (3.18) hits {0}. If we impose that the solution gets

absorbed at 0 upon hitting, it follows that Xx1(t1) = 0 ⇒ Xx1(t2) = 0 whenever t1 ≤ t2. Then

P (τ0 = ∞) = lim
t→∞

P
(
Xx1(t) > 0

)
= lim

t→∞

∫ ∞

0

q(x, y, t) dy.

It is easy to verify that the last limit is 0, thereby proving the previous statement that τ0 <∞ almost surely.

Alternatively, another way to see that τ0 < ∞ is through Theorem 2.22 by comparing this solution to that

when b(x) = 1, where the latter solution (3.19) reaches x = 0 in finite time by the recurrence of B(t). As

such, τ0 must be finite almost surely.

These observations are in contrast to the assertion of Lemma 3.8. For SDEs that satisfy (3.8) and the

Lipschitz condition, the diffusion near the deterministic solution is sufficiently damped so that the process

cannot reach the path. However, if this assumption is dropped, the trajectory of the deterministic solution

may be accessible to the solution to the SDE.
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In fact, a stronger sense of stability holds. Since when n = 0 we are considering the model equation

with no drift, Xx1(t) is a martingale. In particular

E
[
Xx1(t)

]
= x1 (3.20)

for all times t ≥ 0. As x1 → 0 this quantity vanishes, hence the process is strongly 1-stable with respect to

0. By using the density, it is shown in [6] that

E
[∣∣Xx1(t)

∣∣p] = ∫ ∞

0

ypq(x1, y, t) dy =

p∑
j=1

Cp,jt
p−jxj1

for appropriate constants Cp,j with p ∈ N and 1 ≤ j ≤ p. For every t ≥ 0, the quantity on the right hand

side is a polynomial in x1 with no constant term. Sending x1 → 0 establishes that the model equation with

no drift is actually strongly p-stable for every p ≥ 1. On the other hand, since (3.20) has no dependence

on t, sending t → ∞ does not yield 0 and so the process is not asymptotically 1-stable, and hence not

asymptotically p-stable for every p > 1 also. Evidently it is not exponentially p-stable either.

3.6 Relative Stability of Solutions to Different SDEs

Hitherto, we have considered the stability of the solution X(t) with respect to the deterministic solution

X̃(t). It is natural to then ask if we may consider the stability of a solution to an SDE with respect to the

solution to another SDE sharing the same drift. In this section we show that this is essentially the same as

what has been already discussed throughout this chapter.

Let Xs,x1

1 (t) and Xs,x2

2 (t) be the solutions to the SDE (3.1) but with the diffusion term σ(t, x) replaced

by σ1(t, x) and σ2(t, x), respectively. Assume |x1 − x2| < δ. We consider what happens to the trajectories

of these solutions as the starting points get close. That is, we wish to study what happens to the quantity

sup
t∈[s,T ]

∣∣Xs,x1

1 (t)−Xs,x2

2 (t)
∣∣

as δ → 0. To examine this, consider the following chain of inequalities. For appropriate starting point x0,

let X̃s,x0(t) be the deterministic solution shared by Xs,x1

1 (t) and Xs,x2

2 (t). For any ϵ > 0 we have

P

(
sup

t∈[s,T ]

∣∣Xs,x1

1 (t)−Xs,x2

2 (t)
∣∣ > 2ϵ

)
≤ P

(
sup

t∈[s,T ]

∣∣∣Xs,x1

1 (t)− X̃s,x0(t)
∣∣∣+∣∣∣X̃s,x0(t)−Xs,x2

2 (t)
∣∣∣ > 2ϵ

)

≤ P

(
sup

t∈[s,T ]

∣∣∣Xs,x1

1 (t)− X̃s,x0(t)
∣∣∣ > ϵ

)

+ P

(
sup

t∈[s,T ]

∣∣∣X̃s,x0(t)−Xs,x2

2 (t)
∣∣∣ > ϵ

)
.

(3.21)

Observe that a result similar to (3.21) can be obtained under Lp norm. It implies that showing the processes

Xs,x1(t) and Xs,x2(t) being individually stable with respect to X̃s,x0(t) is sufficient to showing that they are

stable with respect to each other. In the other direction, one can similarly show that if Xs,x1

1 (t) is stable

with respect to both Xs,x2

2 (t) and X̃s,x0(t), then Xs,x2

2 (t) is stable with respect to X̃s,x0(t).
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4 Stability in Ratio

Chapter 3 considered rather strict forms of stability. In all the senses of stability previously considered,

it was essential that the solution to the SDE did not deviate from the deterministic solution by more than

an arbitrarily small amount either in probability or pathwise. In order to obtain results for this, it was

necessary to impose the rather strict assumptions in Section 3.3.

In this chapter, an attempt to generalize the notion of stability is made. This thesis considers the

ratio process which is defined to be the quotient of the solution to the stochastic equation and the solution

to the deterministic equation. Using the ratio process, a new definition of stability for the SDE (3.1) is

considered. Known as stability in ratio, this new definition of stability allows us to relax the previously

imposed assumptions in Section 3.3 and hence it can be used to study a broader class of SDEs. We will

discuss the relation between stability in ratio and the previous definitions studied in Section 3.2. Although

these new definitions and the methods for studying them are weaker than those considered in Chapter 3, a

close look at them leads to observations of interesting behaviors that were not visible under the framework

previously adopted in Chapter 3. This analysis is restricted to one-dimensional processes.

4.1 The Ratio Process and Stability in Ratio

The method to study stability in ratio that we propose here is to consider the ratio of the stochastic

solution Xs,x1(t) to (3.1) to its deterministic solution X̃s,x0(t). That is, for the one-dimensional process

Xs,x1(t) with deterministic solution X̃s,x0(t) > 0 for all t ≥ 0, we define the ratio process Y s,x0,x1(t) as

Y s,x0,x1(t) =
Xs,x1(t)

X̃s,x0(t)
(4.1)

for every 0 ≤ s ≤ t and x0, x1 ∈ R. For the majority of this chapter, we restrict ourselves to one-dimensional

SDEs which have unique solutions in the strong sense. We will assume s = 0 and denote the ratio process

by Y x0,x1(t) or simply Y (t) when no ambiguity exists. This quantity attempts to capture how the stochastic

process Xx1(t) grows in relation to the deterministic process X̃x0(t). If the process Xx1(t) is strongly

asymptotically stable with respect to X̃x0(t) as defined in Section 3.2 and at the same time X̃x0(t) is

bounded away from 0 in the sense that m = inft≥0

∣∣∣X̃s,x0(t)
∣∣∣ > 0, then for every ϵ > 0

lim
x1→x0

P

(
sup
t≥0

∣∣Y x0,x1(t)− 1
∣∣ > ϵ

)
= lim

x1→x0

P

sup
t≥0

∣∣∣∣∣Xx1(t)

X̃x0(t)
− 1

∣∣∣∣∣ > ϵ


≤ lim

x1→x0

P

(
sup
t≥0

∣∣∣Xs,x1(t)− X̃s,x0(t)
∣∣∣ > mϵ

)
= 0,

(4.2)

and

lim
x1→x0

P
(
lim
t→∞

Y x0,x1(t) = 1

)
= lim

x1→x0

P
(
lim
t→∞

∣∣∣Xx1(t)− X̃x0(t)
∣∣∣ = 0

)
= 1. (4.3)
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We can similarly examine the behavior of Y x0,x1(t) under other stability conditions introduced in

Chapter 3, such as weakly (asymptotically) stable or weakly p-stable. All the outcomes will point towards

the fact that if Xx1(t) is stable with respect to X̃x0(t) in any reasonable sense, Y x0,x1(t) will stay near 1

for all time with high (or even 1) probability. Based on these observations, we are inspired to adopt the

converse perspective and use the proximity of Y x0,x1(t) to 1 as a new criterion for stability. Below we state

our first stability definition in this spirit.

Definition 4.1 (Strictly Stable in Ratio). The solution Xx1(t) to (3.1) is said to be strictly stable in ratio

with respect to X̃x0(t) if, for every x0, x1, the ratio process Y x0,x1(t) satisfies that

lim
x1→x0

lim
t→∞

Y x0,x1(t) = 1 (4.4)

almost surely.

Intuitively, this says that the stochastic solution and the deterministic solution grow at the same rate provided

they start from sufficiently close positions. There are multiple motivations for this definition:

1. This definition only considers the long term behavior of Xx1(t) and X̃x0(t). Under this definition,

it is possible for the process to be stable in ratio even though there might be considerable variations

between the stochastic and the deterministic processes in any finite time interval. Stability in ratio

only requires that the asymptotic growth rates of the two processes are close. In a sense, this definition

of stability does not penalize the processes for short periods of erratic behaviors so long as the eventual

behavior of the processes are consistent.

2. When considering this ratio process, we may drop the assumption (3.7). For two quantities that both

grow unboundedly, their difference may lose significance or even become indeterminate. For a given

SDE, due to the compounded effects of random movements over long periods of time, the absolute

difference between Xx1(t) and X̃x0(t) may be large, but their ratio may remain controlled. Hence, the

ratio process Y x0,x1(t) awards partial credit when the processes Xx1(t) and X̃x0(t) move apart but

still grow at similar rates.

3. The previous assumption (3.8) can also be dropped. This condition required that the stochastic

solution experienced no diffusion when it matched exactly the deterministic solution. This would

only be satisfied by very specific SDEs. Without this assumption, we allow Xx1(t) to evolve under a

general diffusive force that is not necessarily tied to the deterministic vector field that drives X̃x0(t).

This would be a more realistic model of physical phenomena. This is in contrast to situations such

as Example 3.15 where the diffusion coefficient is made to purposely vanish around the deterministic

solution.

It should be noted that dropping these assumptions, the notions of stability in this chapter relax the idea

that a stochastic solution must be arbitrarily close to its deterministic solution. In this sense, the concept
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of stability in ratio is much more forgiving. While this is weaker than the stability definitions considered in

Section 3.2, it allows for a larger class of SDEs to be studied. It may also reveal new insights into solutions

to SDEs which are stable under the previous definitions.

As we will see shortly, the condition (4.4) is rather strict, and it fails even in very simple examples that

were stable under the notions in Section 3.2. The following two definitions handle these cases.

Definition 4.2 (Stable in Ratio). The solution Xx1(t) to (3.1) is said to be stable in ratio with respect to

X̃x0(t) if, for every x0, x1, the ratio Y x0,x1(t) satisfies that

lim
x1→x0

lim inf
t→∞

Y x0,x1(t) > 0 (4.5)

and

lim
x1→x0

lim sup
t→∞

Y x0,x1(t) <∞ (4.6)

almost surely.

This definition allows more flexibility in the relative growth rate between the stochastic solution to (3.1) and

the corresponding deterministic solution. It is no longer required that Xx1(t) and X̃x0(t) grow at exactly the

same rate, but their growth rates should still be comparable in terms of the order of magnitude. If Definition

4.1 or 4.2 holds even without taking the limit x1 → x0, then the solution is said to be strictly stable in

ratio in the large and stable in ratio in the large, respectively.

Definition 4.3 (Unstable in Ratio). The solution Xx1(t) to (3.1) is said to be unstable in ratio with respect

to X̃x0(t) if, for every x0 ̸= x1, the ratio process Y x0,x1 satisfies that

lim
x1→x0

lim inf
t→∞

Y x0,x1(t) = 0

or

lim
x1→x0

lim sup
t→∞

Y x0,x1(t) = ∞

with positive probability.

4.2 Illustrations with Examples

Before attempting to establish general properties on Y x0,x1(t), we will study the following illustrative

examples to gain some intuitions.

4.2.1 Linear Coefficients

This section revisits linear SDEs which we recall are SDEs whose drift and diffusion coefficients satisfy

(3.10) and (3.11). It will be seen that, even in this class of SDEs, the results on stability in ratio vary

considerably.
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Example 4.4. Consider the one-dimensional linear SDE with d = f = 0 and e = 1, that is

dX(t) = c(t) dt+ dB(t).

This SDE is in the class of semi-homogeneous of second kind. It is easy to see that for every x0, x1 ∈ R

Xx1(t) = x1 +

∫ t

0

c(s) ds+B(t) := x1 + C(t) +B(t)

and

X̃x0(t) = x0 + C(t),

hence

Y x0,x1(t) =
x1 + C(t) +B(t)

x0 + C(t)
. (4.7)

First suppose that c(t) = 1 and hence C(t) = t. By Theorem 2.7 we know that B(t) has sub-linear growth.

Therefore, we have that (4.7) converges to 1 as t → ∞ almost surely, which means in this case Xx1(t) is

strictly stable in ratio with respect to X̃x0(t). Furthermore, this applies to any choice of x0 and x1, so it is

strictly stable in the large. By the law of the iterated logarithm for B(t), we know that the same conclusion

holds whenever C(t) ↗ ∞ faster than
√
2t ln ln t.

This is no longer the case if c(t) vanishes quickly. For example, if C(t) = 2
√
2t ln ln t (for sufficiently large t),

then again by the law of the iterated logarithm, Y x0,x1(t) almost surely remains within [1/2, 3/2] eventually

and hence Xx1(t) is stable in ratio with respect to X̃x0(t). If c(t) is integrable, then the main contributor

to the ratio in (4.7) is B(t), and Xx1(t) is unstable in ratio with respect to X̃x0(t). This falls into the case

where X̃x0(t) remains bounded, which is discussed in Section 4.2.3.

The last case of the previous example showed that the process Xx1(t) is unstable in ratio with respect to

X̃x0(t) since the behavior Y x0,x1(t) was mostly driven by B(t) as the drift term fizzled out. The following

example shows that, even in the presence of drift, the stability in ratio can be violated.

Example 4.5. Let x0, x1 > 0. Let Xx1(t) be the solution to the linear homogeneous SDE (3.13), again with

the boundedness assumptions on the coefficients. The deterministic system is given by

dX̃(t) = b(t)X̃(t) dt

and is therefore solved by

X̃x0(t) = x0 exp

(∫ t

0

b(s) ds

)
.

Then by (3.14) we have

Y x0,x1(t) =
x1
x0

exp

(
−
∫ t

0

σ2(s)

2
ds+

∫ t

0

σ(s) dB(s)

)
. (4.8)
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First assume that σ ∈ L2. Then by Example 2.12, Y x0,x1(t) converges to a random variable as t → ∞. In

particular, this limit random variable, upon rescaling, has the log-normal distribution with parameters

µ = −
∫ ∞

0

σ2(s)

2
ds, s =

∫ ∞

0

σ2(s) ds.

This is true for all choices of x0 and x1, so X
x1(t) is stable in ratio with respect to X̃x0(t) in the large.

Now suppose that σ ̸∈ L2. By the recurrence of Brownian motion in one-dimension, this process visits all

of I infinitely often almost surely. However, again by Example 2.12, the process goes to 0 almost surely as

t→ ∞. In this situation the process is unstable in ratio.

Example 4.5, in contrast to Example 3.14, highlights the new phenomenon that has occurred with

stability in ratio. Previously in Example 3.14, stability (in the traditional sense) depended on the drift and

the diffusion coefficients. If the drift was sufficiently large relative to the diffusion, the solution Xs,x1(t)

was unstable. If the drift was relatively small (or negative), then stability was achieved. In the case of

stability in ratio, the drift does not appear in (4.8) at all. Related to this observation, we remark that

when the drift coefficient is negative and not integrable, X̃x0(t) → 0 as t → ∞, and hence the estimate

(4.2) does not apply. Indeed, it is possible for Xx1(t) to be strongly asymptotically stable but not stable

in ratio with respect to X̃x0(t). This means that, although the newly introduced notion of stability in

ratio is generally more relaxed than the classical stability notions previously introduced in Section 3.2, it is

not a weaker condition in the rigorous sense and there is no implication relation from the latter to the former.

The next example shows that the semi-homogeneous of first kind case behaves similarly to the homogeneous

case under some assumptions on the coefficients.

Example 4.6. Consider the linear SDE of semi-homogeneous of first kind given by

dX(t) = (c(t) + d(t)X(t)) dt+ f(t) dB(t).

We assume that c(t), d(t), and f(t) are all bounded. Given x0, x1 > 0, by (3.12) the ratio process is given by

Y x0,x1(t) = exp

(
−
∫ t

0

f2(s)

2
ds+

∫ t

0

f(s) dB(s)

)

×
x1 +

∫ t

0
exp

(
−
∫ s

0
d(r) dr +

∫ s

0
f2(r)

2 dr −
∫ s

0
f(r) dB(r)

)
c(s) ds

x0 +
∫ t

0
exp

(
−
∫ s

0
d(r) dr

)
c(s) ds

.

We assume that c(t) is non-negative so that X̃(t) ̸= 0 for t ≥ 0. Let

u(t) =

∫ t

0

f2(s) ds
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for every t ≥ 0. Then Y x0,x1(t) has the same distribution as the process

N(t) = exp

(
−u(t)

2
+B(u(t))

)
×
x1 +

∫ t

0
exp

(
−
∫ s

0
d(r) dr + u(s)

2 −B(u(s))
)
c(s) ds

x0 +
∫ t

0
exp

(
−
∫ s

0
d(r) dr

)
c(s) ds

=
x1 exp

(
−u(t)

2 +B(u(t))
)

x0 +
∫ t

0
exp

(
−
∫ s

0
d(r) dr

)
c(s) ds

+

∫ t

0
exp

(
−
∫ s

0
d(r) dr − u(t)−u(s)

2 +B(u(t))−B(u(s))
)
c(s) ds

x0 +
∫ t

0
exp

(
−
∫ s

0
d(r) dr

)
c(s) ds

.

When f ∈ L2, as we have seen in Example 4.5, exp
(
−u(t)

2 +B(u(t))
)

converges to a non-trivial random

variable almost surely. It is easy to see that N(t) remains bounded and at the same time bounded away from 0

for all time almost surely. Thus, we conclude that in this case Xx1(t) is stable in ratio with respect to X̃x0(t).

Now assume f ̸∈ L2. For simplicity, we will assume that f = 1 in which case u(t) = t. The case with general

f can be treated similarly. Under this assumption exp
(
− t

2 +B(t)
)
converges to 0 as t → ∞ almost surely.

So, to study the limit of N(t), it is sufficient to consider∫ t

0
exp

(
−
∫ s

0
d(r) dr − t−s

2 +B(t)−B(s)
)
c(s) ds

x0 +
∫ t

0
exp

(
−
∫ s

0
d(r) dr

)
c(s) ds

which further has the same distribution as

M(t) =

∫ t

0
exp

(
−
∫ s

0
d(r) dr − t−s

2 +B(t− s)
)
c(s) ds

x0 +
∫ t

0
exp

(
−
∫ s

0
d(r) dr

)
c(s) ds

=

∫ t

0
exp

(
−
∫ t−q

0
d(r) dr − q

2 +B(q)
)
c(t− q) dq

x0 +
∫ t

0
exp

(
−
∫ t−q

0
d(r) dr

)
c(t− q) dq

.

By the law of the iterated logarithm, we know that almost surely exp
(
− q

2 +B(q)
)
is bounded by, say,

exp
(
− q

4

)
, for all q sufficiently large. Therefore, if the denominator above is unbounded, that is

lim
t→∞

∫ t

0

exp

(
−
∫ s

0

d(r) dr

)
c(s) ds = ∞,

then it is easy to see that almost surely M(t) → 0 as t → ∞, in which case Xx1(t) is unstable in ratio with

respect to X̃x0(t). However, if the denominator stays bounded as t→ ∞, then for all t ≥ 1,

M(t) ≥

∫ 1

0
exp

(
−
∫ t−q

0
d(r) dr − q

2 +B(q)
)
c(t− q) dq

x0 +
∫∞
0

exp
(
−
∫ t−q

0
d(r) dr

)
c(t− q) dq

≥
exp

(
− 1

2 +mins∈[0,1]B(s)
) ∫ 1

0
exp

(
−
∫ t−q

0
d(r) dr

)
c(t− q) dq

x0 +
∫∞
0

exp
(
−
∫ t−q

0
d(r) dr

)
c(t− q) dq

,
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where the second line is a random variable that is almost surely positive. This means that almost surely M(t)

is bounded away from 0 for all time, and hence in this case Xx1(t) is stable in ratio with respect to X̃x0(t).

The last example in this section that we present shows that different choices of diffusion lead to different

asymptotic behaviors of the ratio process even if the drift terms are the same.

Example 4.7. Consider two one-dimensional linear SDEs given by

dX1(t) =
X1(t)

t+ 1
dt+X1(t) dB(t)

dX2(t) =
X2(t)

t+ 1
dt+ (t+ 1) dB(t)

with initial condition x0 = x1 = x2 = 1. Applying (3.12) to each of these yields

Xx1
1 (t) = (t+ 1) exp

(
− t

2
+B(t)

)
Xx2

2 (t) = (t+ 1)(B(t) + 1)

with the deterministic solution

X̃x0(t) = t+ 1.

Therefore, the respective ratio processes are

Y x0,x1

1 (t) = exp

(
− t

2
+B(t)

)
Y x0,x2

2 (t) = B(t) + 1

which behave differently. The former SDE is a homogeneous linear SDE which has been studied in Example

4.5. The latter case is analogous to Example 4.4. In either case, however, we have instability in ratio.

4.2.2 Non-linear Coefficients

In this section we consider an SDE with nonlinear coefficients. Unsurprisingly, the behavior of the ratio

process in this case is more erratic.

Example 4.8. Consider the SDE as in (3.18) with n = 1. Given x0, x1 > 0, the ratio process is given by

Y x0,x1(t) =
(
√
x1 +B(t))2

x0 + t
. (4.9)

Applying the law of the iterated logarithm, since
∣∣B(t)

∣∣2 grows faster than any line, the solution is therefore

unstable in ratio. Hence, by having a diffusion term with stronger degeneracy near 0 compared to the linear

case in Example 4.5, the ratio process behaves more erratically. As already seen in Section 3.5.2, the hitting

time of x = 0 is finite almost surely, although the drift in this case ‘revives’ the process afterwards.
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More generally, consider the SDE

dX(t) =
n(n− 1)

2
(X(t))

n−2
n dt+ n(X(t))

n−1
n dB(t). (4.10)

For x0, x1 > 0, we have that

Xx1(t) =
(
x
1/n
1 +B(t)

)n
(4.11)

and

X̃x0(t) =
(
x
2/n
0 + (n− 1)t

)n/2
.

When n ≥ 2, the diffusive force is proportional to (X(t))α for some α ∈ [1/2, 1). It should be expected that

the ratio process in this case has the same recurrence property as (4.9). However, if n > 2, then the solution

is not guaranteed to be unique. For example, when n = 4 then the SDE (4.10) with initial condition x1 = 1

is solved by Xx1(t) = (1 + B(t))4 as per (4.11), but also by Xx1
a (t) = (1 + B(t))41[t≤τ0] where τ0 is the

first hitting time of the set {−1} of B(t). This corresponds to the process that ‘dies’ upon reaching 0. As

a consequence, we obtain two ratio processes with contrasting long-term behaviors: one becoming unbounded

as time progresses and the other being constantly zero after a finite amount of time, justifying the necessity

of requiring the solution to the SDE to be unique.

4.2.3 Bounded Deterministic Solution

Nearly all of the previous examples considered X̃x0(t) which was unbounded. This appears to be the

correct class of SDEs to study since, in the case where the deterministic solution is bounded, the problem

of studying the ratio process is analogous to studying the behavior of Xx1(t). The one exception to this is

when both the stochastic and deterministic solutions vanish (see the discussion involving Example 4.5). The

following two examples illustrate the idea that bounded solutions can be made to behave in any which way

we wish.

Example 4.9. Let x0, x1 ∈ (1, 2) and consider the SDE (3.1) with

b(t, x) = min
{
(x− 1)(x− 2),K

}
for some K > 0, and

σ(t, x) = 1[x<2] + (3− x)1[2≤x≤3].

These functions satisfy Theorem 2.14, so a unique solution exists. On the open interval (1, 2), b(x) is

negative, and hence X̃x0(t) → 1 as t→ ∞.

Meanwhile, Xx1(t) hits x = 3 in finite time with probability one. From here, the SDE has positive drift (of

at least the constant min {1,K} > 0) and is no longer under the influence of random forces, so Xx1(t) → ∞

as t→ ∞. Hence the Xx1(t) is unstable in ratio with respect to X̃x0(t).
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The diffusion term in Example 4.9 vanishes on x ≥ 3 and, after a random finite time, Xx1(t) becomes

deterministic. The following example shows the same behavior where the diffusion vanishes on a set of

Lebesgue measure 0.

Example 4.10. Consider the SDE

dX(t) = sin2(πX(t)) dt+
∣∣sin(πX(t))

∣∣dB(t).

For any k ∈ Z, the diffusion coefficient
∣∣sin(πx)∣∣ vanishes at x = k (that is to say k is a degenerate point

for the diffusion). Furthermore, when x approaches k,
∣∣sin(πx)∣∣ is well approximated by either

∣∣π(x− k)
∣∣.

In other words, near every degenerate point k, the diffusion coefficient degenerates at the linear order. On

the other hand, for every k ∈ Z, although the drift coefficient sin2(πx) is positive within (k − 1, k), as x

approaches k − 1 or k, sin2(πx) decays to 0 at the quadratic order in terms of the distance between x and

either k− 1 or k. This is a case where every integer becomes a ‘natural’ boundary for the solution (see [8]).

Therefore, for every x1 ∈ R, if x ∈ [k − 1, k) for some k ∈ Z, then almost surely Xx1(t) ∈ [k − 1, k) for all

t ≥ 0.

As for the deterministic solution, it is easy to verify that for every x0 ∈ R, if x0 ∈ [k− 1, k) for some k ∈ Z,

then

X̃x0(t) = − 1

π
arccot

(
πt+ cot(πx0)

)
+ k,

and hence X̃x0(t) → k as t→ ∞. Therefore, we have for any x0 and x1 outside of (−1, 1), Xx1(t) is stable

in ratio with respect to X̃x0(t).

4.3 Methods for Determining Stability in Ratio

This section will consider some techniques that can be used to study the ratio processes of various

SDEs. Due to the fact that these definitions of stability are inherently more relaxed than those considered

in Section 3.2 and admit a wider class of SDEs, it should not be surprising that the results obtained are less

powerful. Nevertheless, relatively general techniques can be applied in studying the stability (or instability)

in ratio.

4.3.1 Lyapunov Method for Ratio Processes

Consider again the linear homogeneous SDE in Example 4.5. In this case, we had that Y x0,x1(t) → 0

almost surely as t→ 0, regardless of the choice of x0 and x1. So X
x1(t) is unstable in ratio. However, if we

consider the process Y x0,x1(t), then it is asymptotically stable with respect to the constant 0 in the large

as defined in Section 3.2.1. It is unlikely that the linear homogeneous case is the sole example in which the

ratio process vanishes as t→ ∞.
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It is natural to investigate the class of SDEs whose ratio processes also behave in this manner. To this

end, we can apply Lyapunov type stability results directly to the ratio process to obtain sufficient conditions

for Xx1(t) to be unstable in ratio. In order to use this approach, the point of stability of the ratio process

must be known a priori (in this case y = 0). This point serves as the deterministic process Ỹ (t) for which

the stability of Y x0,x1(t) can be established.

Let Xx1(t) be the unique solution to (3.1) with time-homogeneous coefficients b(t, x) = b(x) and

σ(t, x) = σ(x). Assume the stochastic solution and the deterministic solution are positive for all t ≥ 0.

Applying Itô’s formula (2.17) to (4.1), one readily obtains

dY x0,x1(t) =
b(X̃x0(t))

X̃x0(t)

(
b(Xx1(t))

b(X̃x0(t))
− Y x0,x1(t)

)
dt+

σ(Xx1(t))

X̃x0(t)
dB(t). (4.12)

This SDE obtained is not necessarily time-homogeneous, nor is there any guarantee that it satisfies the

Lipschitz conditions (2.19) and (2.20), so care must be taken when working with this SDE. In the case that

the above mentioned properties hold, we may apply the Lyapunov stability results obtained in Section 3.4.

There are many cases in which (4.12) turns out to behave nicely. We explore some examples here which

give sufficient conditions for the ratio process to be asymptotically stable in the large with respect to 0. This

in turn gives the instability in ratio of Xx1(t) with respect to X̃x0(t) ̸= 0.

Example 4.11. Consider the SDE

dX(t) = µX(t) dt+ νXβ(t) dB(t) (4.13)

for µ > 0 and ν ̸= 0. While a unique solution may exist for values as small as β = 1/2, we force β ≥ 1 to

enforce the Lipschitz condition (2.20). Set x0 = x1 > 0. By (4.12), the stochastic differential for the ratio

process Y x0,x1(t) = Y (t) becomes

dY (t) = νY β(t)X̃β−1(t) dB(t).

Since the drift term does not appear, we conclude Y (t) is a martingale. For the process Y (t), assumptions

(3.7) and (3.8) hold. Although the condition (2.19) does not hold, this is not required for Theorem 3.10. Take

the Lyapunov function V (t, y) = |y| and obtain that LV = 0. This implies that Y (t) is stable with respect to

y = 0. By Example 2.21, the process Xx1(t) is recurrent to every neighborhood of the origin whenever β > 1.

Since X̃x0(t) is strictly positive, the same recurrent property can be said about Y (t). By Theorem 3.13, we

conclude that Y (t) is asymptotically stable in the large with respect to 0.

The asymptotic stability for the case β = 1 is already solved by Example 4.5. Note that this method does

not require the explicit form of Y (t). Previously, when b(t) = µ and σ(t) = ν, it was shown that Y (t) → 0

almost surely. When using the Lyapunov method, this only applies if λ = µ/ν2 ≤ 1/2 (as shown in Example

2.21). This is because we are making use of the recurrence conditions for Xx1(t) rather than Y (t) directly.
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We also remark that in this example the ratio process is a martingale. This is true whenever X(t) is linear.

This is useful in Section 4.3.2. If in (4.13), the drift was replaced with Xα(t) for α < 1, the solution may

not be unique. The next example comments briefly on the case when α > 1 in a more general setting.

Example 4.12. Consider the SDE

dX(t) = g(t)Xα(t) dt+ h(t)Xβ(t) dB(t). (4.14)

First consider g(t) = µ > 0 and h(t) = ν ̸= 0. Assume also that α > 1 and x0, x1 > 0. If β is chosen such

that the SDE falls under the scope of Theorem 2.18 or 2.19 as in Example (2.21), then since X̃x0(t) explodes

in finite time, say at time t0, we have that limt↗t0 Y (t) = 0.

The phenomenon occurs in the general case too. From (4.14), the stochastic differential of Y (t) given by

(4.12) is

dY (t) = g(t)X̃α−1(t)(−Y (t) + Y α(t)) dt+ h(t)X̃β−1(t)Y β(t) dB(t). (4.15)

For all values y ∈ (0, 1), since −y + yα < 0, the drift is negative. Then, unless g(t) ‘corrects’ the SDE in

some sense, the explosion of X̃(t) at t0 translates directly to the drift term of the SDE (4.15) for Y (t) being

arbitrarily large close to t0 (times right before t0). This effect causes limt↗t0 Y (t) = 0 again.

Example 4.13. Consider the SDE

dX(t) = X(t) ln(X(t)) dt+ σ(X(t)) dB(t).

Interestingly, the stochastic differential of the ratio process given by (4.12) is of a very similar form to dX(t)

since

dY (t) = Y (t) ln(Y (t)) dt+
σ(Y (t)X̃(t))

X̃(t)
dB(t)

for x0, x1 > 0. This is similar to Example 3.17. As in that example, if σ(x) is chosen such that X(t) has a

unique solution, then we may apply Theorem 2.22 with the SDE

dZ(t) = (Z2(t)− Z(t)) dt+
σ(Z(t)X̃(t))

X̃(t)
dB(t)

and obtain that Y (t) ≤ Z(t) almost surely. The choice of Lyapunov function V (t, z) = |z| works in this case

and yields LV ≤ 0 in a neighborhood of the origin. If the recurrence of the process Y (t) can be obtained,

then again by Theorem 3.13 the ratio process Y (t) is asymptotically stable in the large.

4.3.2 Martingale Convergence Methods

In Example 4.11 we have that the ratio process Y x0,x1(t) is a martingale and accordingly we choose the

value of β large in order to apply the Lyapunov stability result. The following example considers β = 1/2.

Although we can no longer apply Theorem 3.10, using martingale convergence methods allows us to gain

knowledge on how the ratio process behaves.
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Example 4.14. Consider the SDE

dX(t) = µX(t) dt+ ν
√
X(t) dB(t)

with x1 > 0, x0 ̸= 0, µ ̸= 0, and ν ̸= 0. By Theorem 2.16, there is a unique solution Xx1(t). We multiply

this SDE by e−µt to obtain

d(e−µtX(t)) = e−µt dX(t)− e−µtµX(t) dt = e−µtν
√
X(t) dB(t).

Hence

e−µtX(t) = x1 + ν

∫ t

0

e−µt
√
X(s) dB(s). (4.16)

Using property (2.12) we can calculate that E
[
X(t)

]
= x1e

µt or E
[
Y (t)

]
= x1/x0. By squaring (4.16),

taking expectation, using (2.12) and (2.13), and applying Fubini’s theorem, we get that

E
[
X2(t)

]
e−2µt = x21 + E

[
ν2
∫ t

0

e−2µsX(s) ds

]

= x21 + ν2
∫ t

0

e−2µsE
[
X(s)

]
ds

= x21 + x1ν
2 1− e−µt

µ
,

(4.17)

so

E
[
Y 2(t)

]
=

(
x1
x0

)2

+
ν2

µ

x1
x20

(1− e−µt).

Since the second moment is bounded, by Theorem 2.5 there exists a non-trivial random variable Y∞ such

that Y (t) → Y∞ as t→ ∞ almost surely, as well as E
[∣∣Y (t)− Y∞

∣∣2]→ 0 as t→ ∞. Hence Xx1(t) is stable

in ratio. This behavior can also be seen from the SDE of Y (t) given by (4.12). Using this, we obtain

dY (t) = νe−µt/2
√
Y (t) dB(t).

The effects of diffusion are decaying exponentially fast in time. This is similar to Example 2.12, where a

choice of g ∈ L2 leads to a log-normal distribution for Y (t) as per Example 4.5.

One of the reasons this example works well is that the second moment of Y (t) is straightforward to compute.

The expectation of the stochastic integral in (4.17) is reduced to a standard integral since the expectation

in the integrand is already known. If we did not have β = 1/2, then, barring a few particular cases, the

computation would not be as simple.

4.3.3 Transformations on Solutions

By applying a suitable transformation to Xx1(t), we can obtain a new SDE for the transformed process

whose behavior is better understood. For example, at the end of Section 4.3.2, we discussed why β = 1/2

worked nicely. It would be helpful to relate the SDE we want to study to one having the same diffusion as

in Example 4.14. The following example does exactly this.
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Example 4.15. Consider the SDE

dX(t) = Xα(t) dt+Xβ(t) dB(t)

for β ∈ (0, 1), and β ̸= 1/2. Let x0, x1 > 0. Assume α is such that a unique solution exists as per Example

2.21. Take the function G(x) = x2−2β whose first derivative is

G′(x) = 2(1− β)x1−2β = 2(1− β)x−βG1/2(t).

Hence, if Z(t) = G(X(t)), then by Itô’s formula (2.17), we have

dZ(t) = 0 dt+Gx dX(t) +
1

2
Gxxσ

2 dt

= 2(1− β)X−β(t)Z1/2(t) dX(t) +
1

2
(2− 2β)(1− 2β)X−2β(t)(Xβ(t))2 dt

= 2(1− β)X−β(t)Z1/2(t)
(
Xα(t) dt+Xβ(t) dB(t)

)
+ (1− β)(1− 2β) dt

=
(
2(1− β)Xα−β(t)Z1/2(t) + (1− β)(1− 2β)

)
dt+ 2(1− β)Z1/2(t) dB(t)

=

(
2(1− β)Z

1
2

(
1+α−β

1−β

)
(t) + (1− β)(1− 2β)

)
dt+ 2(1− β)Z1/2(t) dB(t)

Note that if α = 1, then the power of Z(t) in the drift is simply 1. The process Z(t) has a drift consistent of

the constant (1− β)(1− 2β).

For the remainder of the example, set α = 1 and β = 1/4. Then

dZ(t) =

(
3

2
Z(t) +

3

8

)
dt+

3

2
Z1/2(t) dB(t)

with z1 = x
3/2
1 . The solution does not have an explicit formula. This example is only different from Example

4.14 by the constant in the drift term introduced by the transformation G(x) = x3/2. By the comparison

result 2.22, we have that U(t) ≤ Z(t) where U(t) is the solution to

dU(t) =
3

2
U(t) dt+

3

2
U1/2(t) dB(t)

with the same initial condition z1. The SDE for U(t) matches exactly the one examined in Example 4.14.

Therefore, we know that W (t), the ratio process induced by U(t), converges to some non-trivial random

variable W∞ as t→ ∞. Then

Y x0,x1(t) =
Xx1(t)

x0et
=

Z2/3(t)

x0
(
e3t/2

)2/3 =
1

x0

(
Z(t)

e3t/2

)2/3

≥ 1

x0

(
U(t)

e3t/2

)2/3

(4.18)

Since Ũ(t) = z0e
3t/2, taking the limit of (4.18) as t→ ∞, we see that Y x0,x1(t) → Y∞ where

Y∞ ≥ z
2/3
0

x0
W 2/3

∞

almost surely. Although this computation does not give us the stability in ratio of Xx1(t) directly, it does

illustrate that it cannot be unstable in ratio because of condition (4.5). Then it only remains to show that

(4.6) cannot hold in order to obtain the stability in ratio of Xx1(t).
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More generally, for time-homogeneous SDEs, the transformation G(x) that satisfies

G(x) =

∫ x

0

σ−1(s)ψ(G(s)) ds

transforms the SDE with diffusion σ(X(t)) to a new SDE Z(t) with diffusion ψ(Z(t)). In theory, it is possible

to convert any unwieldy SDE to one with a more familiar diffusion term at the cost of a cumbersome drift

term. Note that this is possible only if, for x ∈ R, σ(x) ̸= 0. Hence, dropping assumption (3.8) is essential

in this situation.

4.4 Future Extensions

This section briefly considers how definitions in this chapter can be extended in directions that this

thesis did not discuss but might be promising to investigate further.

4.4.1 Ratio Process in Higher Dimensions

The first idea is to extend Definitions 4.1 and related definitions to higher dimensions. We therefore

require a higher-dimensional version of the ratio process that is reasonable since (4.1) only applies to

one-dimensional processes. Consider the solutionXx1(t) to (3.1) in Rl and again let X̃x0(t) be its deterministic

solution. One proposal is to consider ξ ∈ Rl and then set

Y x0,x1(t, ξ) =

〈
Xx1(t), ξ

〉
Rl〈

X̃x0(t), ξ
〉
Rl

(4.19)

provided
〈
X̃x0(t), ξ

〉
Rl

̸= 0. Then Y x0,x0(t, ξ) is the multi-dimensional ratio process along vector ξ.

This definition allows us to consider the ratio along any direction. For example, if ξ = ej (where

1 ≤ j ≤ l), the j-th element in the standard basis for Rl, then (4.19) simply reduces to the ratio process

(4.1) when considering the one dimensional process given by the j-th element of the random vector Xx1(t).

In terms of stability, to extend Definition 4.1 to the multi-dimensional case, we propose that Xx1(t) is

said to be strictly stable in ratio if

lim
x1→x0

lim
t→∞

Y x0,x1(t, ξ) = 1

almost surely for all ξ ∈ Rl such that |ξ| = 1. Then, in order for the multi-dimensional process Xx1(t) to

be strictly stable in ratio, it is required that every constituent one-dimensional process of Xx1(t) is strictly

stable in ratio. As an extension of the one-dimensional case, this requirement is natural. Similar extensions

can be created for Definitions 4.2 and 4.3.
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4.4.2 Ratio Process in Lp

In Section 3.2, we considered the p-stability of the solution to (3.1). We can attempt to do the same

for the ratio process. In the same way that (4.3) was a desirable trait, we now wish that

lim
x1→x0

E
[
Y x0,x1(t)

]
= 1

for all times t ≥ 0. This is the case in Example 4.5 since we know Y x0,x1(t) is a martingale. However, if

σ ̸∈ L2, then Y x0,x1(t) → 0 almost surely as t→ ∞. So we do not have that

lim
t→∞

E
[∣∣Y x0,x1(t)− 1

∣∣] = 0.

This is to say that asymptotic p-stability would fail for any p ≥ 1. An investigation of this could prove

insightful.
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5 Conclusion

This thesis investigated the stability of stochastic differential equations. Following a review of methods

in the deterministic case as well as probability prerequisites in Chapter 2, the results that establish stability

are extended to solutions to SDEs in Chapter 3. The key results in both the stochastic and the deterministic

settings rely on the Lyapunov framework. Section 3.5 of this thesis considers SDEs failing the Lipschitz

requirement and shows that stability definitions could be applied to these models too. Such results are much

less general and have not been significantly considered in the literature.

In order to extend the results to more general settings, the thesis proposes the ratio process and the

concept of stability in ratio. This definition of stability focuses on the asymptotic behavior (in particular the

growth rate) of the solution to an SDE relative to that to the corresponding ODE. This definition of stability

is more forgiving in the sense that the local behavior of the solution to the SDE does not impact the stability

of the system. Without the burden of restrictive assumptions, this notion can be applied more generally

compared to the traditional definitions of stability. This definition has shed new insight into some previously

considered examples, but it should be noted that it does not replace the existing definitions. Although the

provided examples demonstrate various techniques to study the ratio process, as of yet no general approach

has been established in this setting and usually considerable knowledge on the behavior of the solution to

the SDE is required in order to get meaningful results.
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