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Abstract

Most modern communication systems employ several domains for transmission and recep-

tion such as space, time, frequency, users, code sequences, and transmission media. Thus,

the signals and systems involved in information transfer have an inherent multi-domain

structure which can be well represented using tensors. A tensor is a multi-way array which

can be seen as a higher order generalization of vectors or matrices. A unified mathematical

framework capable of intuitively modelling multi-domain communication systems can be

developed with the help of tensors. The use of tensors to characterize, analyze, and build

multi-domain communication systems is proposed in this thesis. A generic system model is

defined in this work for multi-domain communication systems with N input domains and

M output domains. The multi-linear channel between such higher order input and output

signals is defined as an order M+N tensor, which couples the input and output through the

Einstein product. The suggested framework is generic, where the physical interpretations

of the domains can vary depending on the specific system being modelled.

An information theoretic analysis of multi-domain communication systems is considered

by deriving the Shannon capacity and input power allocation for a fixed higher order tensor

channel under a family of power constraints. Owing to the multi-domain nature of the in-

put signals, the power constraints in multi-domain communication systems can span one or

more domains. This thesis demonstrates the tensor framework’s ability to mathematically

represent a variety of such power constraints. Shannon capacity of tensor channels under

such family of power constraints is derived. Water-filling is extended from a matrix setting

to higher domains in such a tensor-based formulation, encapsulating the impact of various

domains and allowing collaborative multi-domain precoding and power allocation. It is also

shown that as the number of domains increases, the multiplexing gain for a tensor channel

can increase exponentially, indicating the ability of the tensor-based communication sys-

tems to offer the enormous information transmission rates required for beyond 5G systems.

In addition, this thesis illustrates how the tensor framework can be used to characterize the

capacity and rate regions of multi-user MIMO channels. The tensor-based technique leads

to a coordinated users transmission scheme. The tensor framework treats the multi-domain

interference terms as information bearing entities, and thus ensures higher achievable sum

rates as compared to the independent users transmissions.

Further, the Einstein Product of tensors is used to develop a framework for minimum
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mean square error (MMSE) estimation for multi-domain signals and data. Both proper

and improper complex tensors are addressed by the framework. The traditional linear

and widely linear MMSE estimators are extended to the tensor setting, resulting in multi-

linear and widely multi-linear MMSE estimation. Further, a relation between the MMSE

error covariance tensor and the gradient of the mutual information is extended from a

vector setting to tensors, known as the tensor I-MMSE relation. Furthermore, the tensor I-

MMSE relation is used to find the capacity of tensor channels when the input is drawn from

arbitrary distributions. In the presence of circularly symmetric Gaussian noise and under no

constraint on the input constellation, an input drawn from a circularly symmetric Gaussian

distribution achieves the channel capacity. However, under practical scenarios, the input is

often drawn from discrete signalling constellations which are far from Gaussian distributed.

By making use of the tensor I-MMSE relation, an iterative precoder is developed in this

thesis which achieves capacity of the tensor channels when the input is limited by the choice

of signalling constellations.
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Sommaire

La plupart des systèmes de communication modernes recourent à une variété de domaines

pour la transmission et la réception d’information, tels l’espace, le temps, la fréquence, les

utilisateurs, les séquences de codes et les supports de transmission. Par conséquent, les

signaux et les systèmes impliqués dans le transfert d’information possèdent une structure à

plusieurs domaines, qui peut être représentée par des tenseurs. Un tenseur est un tableau

multidirectionnel qui généralise les vecteurs et les matrices à un nombre supérieur d’indices.

Les tenseurs sont au cœur du développement d’un cadre mathématique unifié et intuitif pour

la modélisation des systèmes de communications à plusieurs domaines. Le déploiement de

tenseurs pour caractériser, analyser et concevoir ces systèmes est proposé dans cette thèse.

Un modèle y est défini pour les systèmes de communications comportant N domaines

d’entrée et M domaines de sortie. Le canal multilinéaire entre ces signaux d’entrée et

de sorties est défini par un tenseur d’ordre M + N , reliant les entrées aux sorties par le

truchement du produit d’Einstein. Le cadre exposé est général, les interprétations physiques

des domaines pouvant varier selon le système spécifique modélisé.

Une analyse fondée sur la théorie de l’information est conduite en établissant la capacité

de Shannon et la répartition de la puissance d’entrée pour un canal tensoriel d’ordre fixe

soumis à une famille de contraintes relatives à la puissance. Le caractère à plusieurs do-

maines des signaux d’entrées fait en sorte que ces contraintes s’appliquent à un ou plusieurs

domaines. Cette thèse démontre que le cadre tensoriel peut représenter mathématiquement

une variété de contraintes relatives à la puissance. L’algorithme du water-filling est généralisé

à une formulation tensorielle, combinant l’incidence de chaque domaine, le précodage et la

répartition de la puissance entre les domaines de manière collaborative. De plus, on montre

que le gain de multiplexage pour un canal tensoriel crôıt exponentiellement à mesure que

le nombre de domaines augmente, indiquant la capacité des systèmes de communications

déployant les tenseurs à fournir les hauts débits d’information requis par les technologies

au-delà du 5G. Cette thèse illustre également comment le cadre tensoriel permet de car-

actériser la capacité et les régions de capacité de systèmes MIMO à plusieurs utilisateurs.

La technique s’appuyant sur les tenseurs mène à un schéma de transmission d’utilisateurs

coordonnés. Le cadre tensoriel traite les termes d’interférence multi-domaines en tant

qu’entités porteuses d’information, assurant ainsi des sum rates réalisables supérieurs com-

parativement aux transmissions d’utilisateurs indépendants.
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En outre, le produit d’Einstein des tenseurs est employé dans le développement d’un

cadre d’estimation de l’erreur quadratique moyenne minimale (MMSE) pour les signaux

et les données multi-domaines. Les tenseurs complexes propres et impropres sont pris en

compte dans ce cadre. Les estimateurs MMSE traditionnels linéaires et largement linéaires

sont étendus au cadre tensoriel, donnant lieu à une estimation MMSE multi-linéaire et

largement multi-linéaire. Une relation entre le tenseur de covariance de l’erreur MMSE et

le gradient de l’information mutuelle est étendue d’un cadre vectoriel aux tenseurs, sous le

nom de relation I-MMSE du tenseur. De même, la relation I-MMSE tensorielle est utilisée

pour trouver la capacité des canaux tensoriels lorsque l’entrée est tirée de distributions

arbitraires. En présence d’un bruit gaussien à symétrie circulaire et sans contrainte sur

la constellation de signalisation d’entrée, une entrée tirée d’une distribution gaussienne à

symétrie circulaire atteint la capacité du canal. Toutefois, l’entrée en pratique est souvent

tirée de constellations discrètes qui sont loin d’être distribuées normalement. En mettant à

profit la relation I-MMSE tensorielle, un précodeur itératif est développé dans cette thèse

et atteint la capacité des canaux tensoriels lorsque l’entrée est limitée par le choix des

constellations de signalisation.
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Chapter 1

Introduction

Most modern communication systems are inherently multi domain in nature where the

transmission and reception spans across various domains such as space, time and frequency.

Designing modulation schemes and signal processing techniques which can simultaneously

benefit from the distinct nature of all the domains is a challenging task in emerging commu-

nication systems. To this end, a mathematical framework is much required which facilitates

integrating all the available domains of transmission and reception into the system model

in an intuitive, interpretable and structured manner. Modelling such multiple domains in

a unified mathematical framework can help exploit the full potential of all the available

resources while accounting for their mutual effects. Such a system representation can be

suitably developed using tensors and tools from multi-linear algebra can be employed to

devise suitable signal processing techniques.

Tensors are multi-way arrays which have found widespread applications in various sci-

ence and engineering disciplines. This thesis focusses on the modelling of multi-domain

communication systems using a tensor framework, the introduction of the tensor channel

and the evaluation of its Shannon capacity under different constraints. In order to establish

the motivation behind employing tensors for representation of input, output, and channel

in multi-domain communication systems, the following section is dedicated to a detailed

literature review on multi-domain communication systems, and tensor applications in re-
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lated fields. Further, a brief summary of known results for the capacity of Multiple-Input

Multiple-Output (MIMO) matrix channels is also included.

1.1 Literature Review

1.1.1 Multi-Domain Communication Systems

As Internet of Things (IoT) and Machine-to-Machine (M2M) communications gain promi-

nence, we can expect a massive increase in the number of devices requiring wireless con-

nectivity along with extremely high data rates. Ensuring seamless connectivity of such

a large number of devices presents some significant challenges for modern communication

systems and networks such as 5G and beyond. To meet such challenges, various tech-

nologies are being proposed including large MIMO [1], millimeter-wave [2], non-orthogonal

multiple-access schemes [3, 4], and network densification [5]. These trends create the need

for communication systems with transceivers that incorporate a diverse combination of do-

mains. The word ‘domain’ refers to any available resource at the transmitter or receiver,

and can incorporate a variety of parameters such as antennas, time slots, frequency bins,

code sequences, users, to name a few. Henceforth, we refer to a communication system as

a multi-domain communication system if the signal transmission or reception spans across

more than one domain.

With 5G systems already being implemented in parts of the world, the current research

is driving the narrative towards beyond 5G and 6G systems [6, 7]. The 6G systems aim to

achieve more than three times the spectral efficiency, and more than ten times the energy

efficiency as compared to 5G [8]. Also, one of the primary requirements of 6G is to deliver

a data rate of more than 1 Tbps, for which there are suggestions to move from wireless

radio communications to optical free space communications for indoor environments [9, 10].

In addition, the vision for 6G also includes an altogether new communications infrastruc-

ture bringing access points and cloud functionalities on drones and Very-low Earth Orbit

(VLEO) satellites. Such systems aim to incorporate ubiquitous connectivity with very high

data rates making use of the sub-THz spectrum and visible light spectrum as well [11]. This
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clearly paves the path for communication systems where the nature of transmission me-

dia is going to be much more evolved than what we have today. The physical layer for a

specific system will no more be just restricted to only wired, wireless or optical mode, but

a combination of any possible transmission media depending on the use-case. Addressing

physical layer issues, such as modulation, coding, waveform selection, equalization etc.,

while keeping in mind the gamut of transmission domains available, will be a major chal-

lenge. Accounting for the distinct features of such domains and their mutual effects in the

design process of future communication systems will be crucial.

When it comes to the physical layer design of a multi-domain communication system,

one of the primary concerns is the selection of an appropriate waveform. Since most practi-

cal systems are constrained in both bandwidth and power, for any wireless communication

system low transmit power with efficient use of spectrum is a major requirement which has

to be considered while designing a waveform. A detailed survey of various multi-carrier

candidate waveforms considered for 5G and beyond systems can be found in [12]. Among

all the waveforms, Orthogonal Frequency Division Multiplexing (OFDM) has been one of

the most popular multi-carrier schemes so far and has been extensively used with MIMO

in 4G standards and Wi-Fi [13], and now also for 5G [14]. In OFDM, the data stream

is divided and sent through multiple data sub-carriers or frequency sub-bands within al-

located bandwidth, all orthogonal to each other to avoid interference, allowing for a sim-

plified receiver structure over frequency selective channels. With a few modifications like

scalable sub-carrier spacing, OFDM with cyclic prefix has recently been approved for 5G

NR air interface as well in Third Generation Partnership Project (3GPP) Release 15 [14].

Power efficiency of OFDM can be improved by preprocessing the input symbols through

a Discrete Fourier Transform (DFT) block before sub-carrier mapping at the transmitter,

thereby making the resulting waveform behave like a single carrier. Such a waveform is

called DFT-spread-OFDM [15] and it is supported in 5G for enhanced mobile broadband.

Despite its benefits such as robustness against multipath channels, easy implementa-

tion of Fast Fourier Transform (FFT) algorithms and convenient integration with MIMO,

OFDM has its shortcomings as it suffers from low spectral efficiency due to cyclic pre-
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fix, sensitivity to carrier frequency offset, high Peak to Average Power Ratio (PAPR) and

high out of band emissions [16] which warrants a necessity to explore other alternative

waveforms which can provide better spectral efficiency. One such promising multi-carrier

modulation scheme alternative is Filter Bank Multi-Carrier (FBMC) [17] where each sub-

carrier is shaped by a prototype filter to suppress the side lobes of the signals. Another

alternative of OFDM, initially proposed for 5G, is Generalized Frequency Division Multi-

plexing (GFDM) [18] which is a non-orthogonal multi-carrier scheme. In GFDM, the data

is divided into two-dimensional time frequency grid introducing flexible pulse shaping for

individual sub-carriers and reducing the amount of cyclic prefix. The sub-carrier filtering

reduces the out-of-band leakage and makes it suitable for fragmented spectrum applications

or cognitive radio scenarios. Another important candidate scheme contesting for beyond 5G

wireless communication systems is the Universal Filtered Multi-Carrier (UFMC) [19],[20].

A detailed comparative analysis of of cyclic prefix -OFDM, FBMC, GFDM, UFMC and

other multi-carrier schemes along with their pros and cons can be found in [21],[22].

While most of the proposed schemes were initially designed using time and frequency do-

mains only, their integration with MIMO has to be an essential feature for their acceptance

and implementation in modern wireless communication systems. The non-orthogonality of

such schemes introduces an intrinsic interference and thus does not give a straight forward

integration with the MIMO systems unlike in the case of MIMO-OFDM [23, 24]. That is

why MIMO in conjunction with multi-carrier techniques such as MIMO-GFDM [25, 26],

MIMO-FBMC [27], MIMO-UFMC [28], etc., has been extensively researched over past

few years. Techniques have been developed to improve link reliability through space-time,

space-frequency, and space-time-frequency coding methods [29] that exploit diversity in all

the spatial, temporal and frequency domains. Thus it is evident that along side time and

frequency, space as a domain has to be incorporated in the system model for efficiently

extracting the benefit of all the available resources in the design process of new modulation

schemes. With any of the multi-carrier schemes combined with MIMO, the received and

transmitted signals have an inherent multi-domain structure which can be mathematically

represented using multi-way arrays, more commonly known as tensors. The domains in a
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communication system need not be restricted to space, time, and frequency but can include

other parameters such as users, propagation delay, spreading sequence, etc. depending on

the specific system. For instance, enhancing Multiple Access (MA) schemes will be an

important feature for beyond 5G systems [30]. Spectral efficiency can be increased with

schemes like Power Domain Non-Orthogonal Multiple Access (PD-NOMA) or Sparse Coded

Multiple Access (SCMA) [31]. Thus, it could be useful to incorporate users or code se-

quences as additional domains in a communication system while designing the transceiver

schemes. Therefore, no matter which of these numerous waveform schemes being discussed

for future communication systems triumphs and takes the mantle for meeting the high

requirements of beyond 5G systems, it is certain that we need a system model which al-

lows an integration over multiple domains of transmission and reception. The associated

signal processing and coding involved at the transceivers to use such modulation schemes

is invariably going to span more than one domain of communications. This necessitates a

generic unified mathematical framework with which we can model any multi-domain com-

munication system, and hence tensors naturally come into play. Having such a framework

would not only provide a mathematical set up for the existing schemes, but would also act

as a stepping stone for developing new and improved schemes spanning multiple domains.

Since tensors provide a backbone for such a multi-domain system representation, next we

present a brief review of tensors and their applications across various fields primarily in

communications and signal processing.

1.1.2 Tensors and their Applications

A tensor is a multi-way array that can be seen as an Nth order generalization of a vector or

a matrix, where a vector is a tensor of order one and a matrix is a tensor of order two [32].

Tensors were introduced in the early nineteenth century with applications in Physics [33].

Later, tensors found applications in Psychometrics in the sixties with the work of Tucker

[34] as an extension of two-way data analysis to higher-order datasets, and in Chemometrics

in the eighties [35, 36]. In the last few decades, tensors as an extension of matrices have

found extensive applications in various engineering disciplines including computer vision
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[37, 38], data mining [39, 40], machine learning [41], neuroscience [42], signal processing

[43, 44] and multi-linear system theory [45, 46]. Tensors provide a unified and intuitive

framework to represent processes with dependencies on more than two variables. Through

a tensor based approach, we can develop models which capture interactions between various

parameters enhancing the understanding of their mutual effects. A detailed summary of

tensor algebra results and their applications can be found in many recent publications such

as [32, 40, 47, 41, 48, 49, 50].

Tensor decompositions have been an area of extensive study because of its varied appli-

cations. One of the most commonly used factorization was developed independently under

two names, in the form of Canonical Decomposition by Carroll and Chang [51] and Parallel

Factorization (PARAFAC) by Harshman [52]. The factorization is now popularly referred

as Canonical Polyadic (CP) decomposition [32] where a tensor is decomposed as a linear

combination of rank one tensors. Uniqueness of CP decomposition for higher order tensors

under certain conditions [53] has led to many applications particularly in signal processing

for Blind Source Separation [54],[55]. Another widely used decomposition is the Tucker

decomposition first introduced by Ledyard Tucker in [56] for the purpose of higher-order

Principal Component Analysis (PCA). It decomposes a tensor into a core tensor trans-

formed by a matrix along each mode known as the factor matrices. It has applications in

finding low rank structures, classification, and feature extraction in high dimension data

[57, 32]. A combination of the aspects of the CP and Tucker decomposition is known as

PARALIND decomposition, which was proposed in [58], and was used for cases having

linear dependencies in one or more modes of the tensor. Another decomposition combining

the CP and Tucker decomposition was suggested in [59] known as PARATUCK2 for third

order tensors with applications in Psychometrics. Further, the generalized PARATUCK2

decomposition with application in blind receiver design in space-time-frequency MIMO

communication systems was proposed in [60]. Later on, a more general model for con-

strained PARAFAC decomposition modelling PARATUCK and PARALIND in a unified

framework with applications in signal processing was developed in [61]. Furthermore, Ten-

sor Train (TT) decomposition of tensors has been extensively used in Big Data applications
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for reducing storage complexity. The TT decomposition breaks a higher order tensor into

a set of sparsely connected lower order tensors, known as the core tensors. The low rank

structure of the core tensors is exploited to reduce storage complexity [62].

The most popular and widely used decompositions in case of matrices are the Singu-

lar Value Decomposition (SVD) and Eigen Value Decomposition (EVD). To consider their

extensions to higher order tensors, there is no single generalization of singular value or eigen-

value that preserves all the properties of the matrix case [63],[64]. The most commonly

used generalization of the matrix singular value decomposition is known as the Higher order

Singular Value Decomposition (HOSVD) which is basically the same as Tucker decompo-

sition for higher order tensors [65]. Similarly as a generalization to matrix eigenvalues to

tensors, several definitions exist in literature for tensor eigenvalues [66]. But most of these

definitions apply to super-symmetric tensors which restricts to a class of tensors that are

invariant under any permutation of their indices. Such an approach has applications in

Physics and Mechanics [67]. More recently, in order to solve a set of multi-linear equations

using tensor inversion, a specific notion of tensor SVD and EVD was introduced in [48]

using the Einstein product of tensors. It is shown in [48] that a tensor group endowed

with the Einstein product is structurally similar or isomorphic to a general linear group

of matrices. Through this property, [48] establishes a singular value decomposition that

decomposes the tensor into the Einstein product of a core tensor along with two unitary

tensors. The tensor SVD and EVD proposed in [48] can be seen as a specific case of the

Tucker decomposition. While strict diagonalization of the core tensor is not possible in

Tucker decomposition [32], the proposed tensor SVD in [48] generates a core tensor which

has certain interesting structural properties that can be referred to as pseudo-diagonal.

In [48], the idea of tensor SVD and EVD is presented only for fourth order tensors with

symmetric mode lengths. The idea of SVD from [48] is further generalized for any even

order tensor irrespective of symmetry in mode length in [68]. Similarly, [69] generalizes the

idea of tensor EVD to any even order tensor with applications in image processing. The

notion of equivalence between the Einstein product of tensors and the corresponding matrix

product of the transformed tensors is very crucial and relevant as it helps in developing
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several tools and concepts from linear algebra such as matrix inverse, ranks, determinants,

etc., to tensors without having to explicitly transform a tensor into a matrix or a vector

[70].

In the past two decades, the idea to use tensors for modelling wireless communication

systems has gained much attention to improve system performance and analysis as it allows

a consolidated representation of multiple signalling domains. In the spirit of multi-user,

multi-carrier, multi-antenna systems along with different signal processing strategies across

time, code, etc., more domains need to be introduced in the line of transmission and recep-

tion to model and counter the effect of all the possible sources of interference. A common

approach has been to combine multiple domains and treat the transmit and receive signals

as concatenated vectors and the channel as a matrix. However, in doing so the natural

structure of the signal becomes obscured in the model and we lose the distinction between

domains. Thus it makes more sense to use tensors for signal representation and employ

tools from multi-linear algebra for the design and analysis of transceiver schemes. One

of the initial applications of tensor in wireless communications was proposed for a Direct

Sequence- Code Division Multiple Access (DS-CDMA) system in [71] where the received

signal is mapped into a third order tensor with code, spatial, and temporal domains and

information is extracted from the received signal using PARAFAC decomposition. It was

shown in [72] that the blind multi-user separation and equalization can be solved using

tensor decompositions of third order tensors for Code Division Multiple Access (CDMA)

and over-sampled systems. Another application of third order tensor decomposition has

been shown for channel estimation and data recovery in MIMO spread spectrum systems

[73]. A tensor space-time-frequency coding technique for a MIMO OFDM CDMA system is

developed in [74] where a fifth order coding tensor is used to generate a fifth order transmit

signal. The five domains correspond to transmit antennas, data stream, sub-carriers, time

blocks, and chips. The baseband equivalent received signal is also represented as a fifth

order tensor which under some suitable assumptions on the channel admits a generalized

PARATUCK model. Based on this model, semi-blind receivers are then used for joint

symbol and channel estimation. Further, a unified model is proposed in [75] to represent
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eight different schemes of tensor based MIMO wireless communication systems by show-

ing them to be the specific cases of the Tensor Space-Time-Frequency (TSTF) scheme.

Tensors have also found applications in cooperative communications where tensor based

semi-blind receivers have been developed for channel estimation and symbol detection in

relay assisted communication systems [76],[77]. More recently, tensors are also being con-

sidered for mathematical modelling of several key technologies associated with beyond 5G

and 6G communication systems such as Intelligent Reflecting Surfaces (IRS) [78], mas-

sive MIMO [79, 80], millimeter wave [81, 82], MIMO relay systems [83]. Recently, the

contracted product of tensors and tensor inversion has been used in [84] to develop joint-

domain equalization at the receiver to combat inter-domain interferences in multi-domain

communication systems.

A short summary of the commonly used tensor tools along with some of their applica-

tions is provided in Table 1.1.

Table 1.1: Tensor Tools and Applications.

Tensor Tool Example of Applications
PARAFAC (CP) Model received signal in DS-CDMA and develop blind

receiver methods [71]
Tucker Decomposition Data mining, Computer Vision, finding low rank struc-

tures in high dimensional data [57]
PARATUCK Semi blind receivers for joint channel estimation and

data detection in MIMO OFDM CDMA systems [74]
Tensor Train Decomposition Reducing storage complexity in Big Data applications

[57], space-time coding for MIMO OFDM relay sys-
tems [85]

Tensor Inversion Joint multi-domain equalization in systems such as
MIMO GFDM [84]

Tensor EVD using the Einstein
Product

Multi-linear controls system theory [46], Image Pro-
cessing [69]

Block Constrained PARAFAC Blind multi-user detection and equalization for over-
sampled, DS-CDMA and OFDM systems [86]

PARAFAC with Linear Depen-
dencies (PARALIND)

Blind receiver for MIMO OFDM in the presence of
carrier frequency offset [87]

With all these applications and many more [88], the use of tensors for signal processing
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in wireless communication systems has garnered a lot of attention in the past few years.

However, most of the focus has been around signal processing and to the best of our knowl-

edge, not much attention has been given to characterizing the channel in a communication

system as a higher order tensor and approaching the subject matter from an information

theoretic point of view which is the main thrust of this thesis. We aim to quantify capacity

for higher order tensor channels. The initial motivation to use tensors for our purpose

stems from their unique suitability to retain the distinction between multiple domains

in the system model, thereby allowing a convenient representation of a variety of power

constraints across domains. Even though tensor entities occur naturally in multi-domain

communication systems, it should be noted that in principle a tensor can be represented

using a matrix or a vector. For instance, the slices of a third order tensor can be stacked

together to form a bigger matrix. Such matrix representations are sometimes used in order

to leverage the well established linear algebra concepts for analysis. However, representing

a naturally occurring higher order tensor using a lower order array such as a matrix or

vector collapses the distinct multiple indices which are used to identify the domains. Thus

in order to restore the identifiability of domains, it becomes imperative to use tensors [89].

Retaining the identifiability of domains is crucial such that any domain specific constraints

can be incorporated in the mathematical framework as demonstrated in this thesis.

In the existing literature, capacity analysis for a MIMO matrix channel which charac-

terizes mostly space domain has been extensively studied. The MIMO matrix based system

model can be seen a specific case of the more general tensor based system model that is

proposed in this thesis. Therefore, it is important to look at the different results available in

the literature for the capacity of MIMO matrix channels, so as to ensure that we can show

those results as a degenerate case of the results corresponding to tensor channels. Hence

comparing the tensor and matrix channel results would not only emphasize the advantages

of the tensor based schemes, but would also act as a sanity check and validation for the

results presented in this thesis. For this purpose, in the next section, we present a brief

review of some important information theoretic results associated with the MIMO matrix

channels.
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1.1.3 Capacity for MIMO channels

Initial results predicting the gain in channel capacity by employing multiple antennas at

the transmitter and receiver were presented by Telatar [90] and Foschnini [91] in the late

90’s. Telatar proposed in [90] that a MIMO matrix channel can be converted into paral-

lel, non-interfering Single Input Single Output (SISO) channels through a singular value

decomposition of the channel matrix with gains corresponding to the singular values of

the channel matrix. It was also established in [90] that the optimum input distribution

which achieves the capacity is circularly symmetric complex Gaussian and the optimum

power allocation is performed using the classical water-filling approach on the decomposed

channels. Telatar’s work has acted as a stepping stone over the late 90’s and early 2000’s

for several other contributions in this field. Since then, a significant research effort has

been invested in extending Telatar’s work and developing its variations for more practical

scenarios, and under different assumptions on Channel State Information (CSI).

Telatar considered the cases for fixed channels with perfect Channel State Information

at the Transmitter (CSIT) and for flat Rayleigh fading channels with perfect Channel State

Information at the Receiver (CSIR) [90]. Majority of the ensuing work in this field after

[90] considered variations of the channel state information availability at the transmitter or

receiver. If the transmitter or the receiver does not know the CSI perfectly but rather have

only a partial knowledge of the channel statistics, then such a case is referred to as hav-

ing Channel Distribution Information at the Transmitter (CDIT) or Channel Distribution

Information at the Receiver (CDIR) respectively. Telatar assumed a zero-mean spatially

white channel model at the transmitter for the CSIT and CSIR case. Later, the mutual

information optimization problems for CSIR and CDIT situation where the channel mean

and channel covariance feedbacks are separately available from the receiver to transmitter

were solved in [92]. However [92] assumed only a single receive antenna. The work in [92]

was later extended in [93] for multiple transmit and multiple receive antenna case with

covariance feedback, where it was concluded that the optimum transmit strategy involved

transmitting along the eigenvectors of the channel covariance matrix. However, in its sys-

tem model, [93] considered breaking the channel matrix into the product of a spatially
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white zero mean channel matrix and a transmit correlation matrix only, thereby assum-

ing one-sided correlation. Later on, [94] considered the same case but assuming receive

correlation as well and showed that the receive correlation matrix does not affect the eigen-

vectors of the transmit covariance matrix. It is interesting to note that [92], [93] and [94],

under incremental assumptions in the system model, reached at similar conclusions. A two-

sided correlated MIMO channel was handled in [95] by expressing the ergodic capacity of

the channel in terms of a hyper-geometric function with matrix arguments providing close

form solutions for some asymptotic cases. Their work generalizes the capacity expression

by Telatar from [90] and water-filling power allocation for correlated MIMO channels. For

the CDIT and CDIR case, [96] considered the zero-mean spatially white model and it was

concluded that increasing the number of antennas beyond the number of symbol periods in

the channel coherence interval does not help with increasing the capacity. However, later it

was contradicted in [97] which showed that if we do not assume zero mean spatially white

channel, then in CDIT and CDIR case, spatial correlation at the transmit side can actually

benefit the capacity.

Several MIMO communication systems often come along with large transmission band-

width in which case it is not very realistic to assume narrowband MIMO transmissions.

For frequency selective transmissions, where the channel coherence bandwidth is assumed

smaller than the typical transmission bandwidth, the key idea is to divide the channel

bandwidth into parallel flat fading channels and construct an overall block-diagonal chan-

nel matrix with the diagonal blocks given by the channel matrices corresponding to each of

the sub-channels. This approach essentially concatenates the transmit vector correspond-

ing to the different antennas and sub-carriers. Using this approach, an ergodic capacity

expression for OFDM based spatial multiplexing system is provided in [98] by resorting

to asymptotic analysis. It is also established in [98] that unlike the SISO case, frequency

selectivity may give advantage in terms of ergodic capacity as compared to the flat fad-

ing assuming that the delay paths increase the total angle spread. In contrast with the

Rayleigh flat fading case, closed form expressions are not available for frequency selective

case, and the capacity is generally computed numerically. In [99], instead of relying on
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Monte-Carlo simulations, another iterative water-filling technique is proposed to optimize

the approximation of the average mutual information in frequency selective channels for

large number of transmit and receive antennas.

Within the CSIT scenario, one important consideration has been finding the channel

capacity under per antenna power constraints instead of sum power constraint. Such per

antenna power constraints emerge in several practical MIMO systems since each antenna

may be connected to a separate power amplifier with finite dynamic range on the individual

RF chain. Another scenario where such constraints are common is distributed MIMO which

has transmit antennas located at different physical locations and do not share the same

power source [100]. For MIMO channels, capacity with per antenna power constraints

was first considered in [101] where the capacity optimization problem was formulated in

a semi-definite program framework and a solution was proposed using the Karush-Kuhn-

Tucker (KKT) conditions for optimality. Furthermore, using similar approach mixed power

constraints were considered in [102] which leads to a matrix field water-filling solution for

optimum power allocation.

With no constraints on the choice of input distribution, most of the work for channel

capacity takes input to be circularly symmetric complex Gaussian distributed as this distri-

bution is known to be the entropy maximizer for a given covariance [103, 90]. However, in

a practical communication system, more often the input is drawn from discrete signalling

constellations and hence is not Gaussian. Such cases are often handled by exploiting the

Mutual Information - Minimum Mean Squared Error (I-MMSE) relationship proposed in

[104] for scalar and vector inputs. In [105], a power allocation policy was proposed that

maximizes the mutual information for any arbitrary input distribution for diagonal, i.e. par-

allel non-interfering MIMO Gaussian channels leading to a mercury water-filling approach

of power allocation. The mercury level corresponds to the non-Gaussianity of the input

distribution. For Gaussian distributed signal, the mercury level is zero and the approach

reduces to classical water-filling. This work was further extended in [106] for interfering

channels where the mercury level accounts not only for the non-Gaussian input distribu-

tions, but also for the interference among the input terms. A linear precoder was proposed
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in [106] using the relation between the gradient of mutual information with respect to

the channel and the minimum mean squared error matrix derived in [107]. Further, [108]

presents iterative algorithms using a quadratic function of the precoder matrix to compute a

linear precoder which maximizes the mutual information for finite alphabet input. Instead

of finding a precoder, [109] presents an iterative method to directly find the optimum input

covariance and characterize it in high and low Signal to Noise Ratio (SNR) regimes. More

recently, [110] considers the power allocation problem for parallel Gaussian channels with

input distributions which are close to Gaussian in the Kullback-Leibler divergence, leading

to a robust water-filling. Also, [111] presents MIMO transmission strategy under discrete

input signal constraints where a linear precoder and non-uniformly distributed input signals

are jointly optimized. A more detailed summary of results pertaining to capacity limits of

MIMO channels where input signals are drawn from finite constellations can be found in

[112].

Having reviewed the various aspects of multi-domain communication systems, tensors,

and the capacity of MIMO channels, we now present the thesis statement in the following

section.

1.2 Thesis Statement

In this section, we present the objectives that motivated the research presented in this

thesis, our original contributions, and an organization of this thesis.

1.2.1 Thesis Motivation and Objectives

The primary objective of this research is to derive limits of information transmission capa-

bilities for multi-domain communications channels characterized by tensors. To this end,

the presented research aims to introduce a unifying tensor-based mathematical framework

for multi-domain communication systems. The channel when treated as a higher order ten-

sor generalizes the notion of MIMO channels to higher domains. Through an information

theoretic analysis of such a tensor channel, this research aims to explore the impact of dif-
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ferent channel sizes, and several input power and constellation constraints, on the channel

capacity. Note that the analysis in this thesis focusses on the case where the channel is

deterministic, and is known at both the transmitter and the receiver. Since a tensor rep-

resentation preserves the natural structure of the signals and systems involved, we aim to

exploit the multi-domain structure of the input signals to mathematically describe a family

of input power constraints, such as sum power or per antenna or per element power con-

straints. The presented research intends to highlight the benefits involved in encompassing

all the system parameters in a single framework using tensors which gives a convenient way

of handling inter-domain interferences. Also, this research aims to develop a framework

for estimation of multi-domain signals and data, which can be used to characterize the

covariance of the estimation error as a higher order tensor. By exploiting a connection be-

tween the mutual information and the error covariance tensor of a Minimum Mean Squared

Error (MMSE) estimator, this research aims to find the capacity of tensor channels under

arbitrary input distributions.

1.2.2 Original Contributions

This thesis proposes a novel mathematical framework using tensors for modelling multi-

domain communication systems. Through several examples of multi-user, multi-carrier, and

multi-antenna systems, the utility of the proposed framework is established. In particular,

this thesis characterizes the multi-linear channel in a multi-domain communication system

as a higher order tensor and finds its Shannon capacity. The tensor approach allows to find

the channel capacity under a family of power constraints such as per element or per domain

constraints. It is shown that the capacity multiplexing gain associated with a tensor channel

can increase exponentially with increase in the number of domains. The tensor technique

also allows to characterize the capacity and rate regions for multi-user MIMO systems.

It is shown that for multi-user systems, the tensor technique allows to treat inter-user

interferences as information bearing entities, thereby providing larger possible sum rates as

compared to the matrix techniques which often treat interference as noise. Also, a tensor

framework for estimation has been proposed which includes the multi-linear estimator, and
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the widely multi-linear estimator. It is shown that when the signal or data to be estimated

is inherently multi-domain in nature, then joint estimation of the signals across all the

domains achieved through the tensor framework can lead to much better mean square

error performance at the receiver as compared to the per domain estimators often used in a

matrix/vector setting. The tensor framework gives a structured mathematical formalism to

treat multi-domain interferences and thereby captures the mutual effect of various domain

parameters. This thesis also generalizes the vector I-MMSE relation to a tensor setting,

and uses it to find the tensor channel capacity when the input is constrained to be drawn

from discrete signalling constellations with given input distribution. Once again, the tensor

approach allows to solve this problem for not just the sum power constraint, but for a family

of power constraints spanning multiple domains.

This thesis has resulted into the following published contributions :

Journals :

[J1] D. Pandey, and H. Leib, “The Tensor Multi-linear Channel and its Shannon Capac-

ity”, IEEE Access, pp 1-36, vol 10, March 2022.

[J2] D. Pandey, A. Venugopal, and H. Leib, “Multi-Domain Communication Systems and

Networks: A Tensor-Based Approach”, MDPI Network vol 1(2), pp 50-74, July 2021

(Invited Paper).

[J3] D. Pandey, and H. Leib, “A Tensor Framework for Multi-Linear Complex MMSE

Estimation”, IEEE Open Journal of Signal Processing, vol 2, pp 336-358, May 2021.

Conference Proceedings :

[C1] D. Pandey, and H. Leib, ”Shannon Capacity of Tensor Channels under a Family of

Power Constraints”, in 2021 Biennial Symposium on Communications (BSC 2021),

held between Jun 29, 2021 – Jun 30, 2021.

[C2] D. Pandey, and H. Leib, “A Tensor based Precoder and Receiver for MIMO GFDM

systems”, in ICC 2021-IEEE International Conference on Communications (pp. 1-6),

held between Jun 14, 2021 – Jun 23, 2021.
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[C3] D. Pandey, and H. Leib, “Tensor multi-linear MMSE estimation using the Einstein

product”, in Future of Information and Communication Conference (FICC) held be-

tween April 29, 2021- April 30, 2021, (pp. 47-64), Springer, Cham.

(This paper won the Best Student Paper award at the conference)

Poster Presentations :

[P1] D. Pandey, and H. Leib, “The Tensor Channel for Multi-domain Communications

and its Information Transmission Capacity”, STARaCom Annual Meeting, McGill

University, Montreal, Feb 2019.

[P2] D. Pandey, and H. Leib, “Capacity Achieving Multi-linear Precoder for Tensor Chan-

nels with Arbitrary Input Distributions”, STARaCom Annual Meeting, McGill Uni-

versity, Montreal, May 2022.

Author Contributions Statement : The research for all the published/presented work

listed here, except [J2], was carried out by the first author, D. Pandey under the guidance

and supervision of H. Leib. The research published in [J2] was carried out equally by both

the first and second authors, D.Pandey and A.Venugopal (fellow graduate student), under

the supervision of H. Leib. The drafts for all the papers were written by D. Pandey, and

reviewed by H. Leib.

The research presented in [J1], [J2], [C1], [C2], and [P1] is mostly based on Chapters 2

and 3 of this thesis. The contributions [J3] and [C3] are based on Chapters 2 and 4 of this

thesis, while [P2] is based on some initial results from Chapter 5. A journal draft based on

results from Chapter 5 is under preparation.

1.2.3 Outline of the Thesis

The organization of this thesis is as follows :

Chapter 2 introduces the notion of tensors along with some relevant tensor algebra

results and properties. We present several tensor operations such as tensor SVD, EVD,

inversion, Hermitian, based on the Einstein product definition. A new numerical approach
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for calculating tensor inversion based on Newton’s Method is also presented. Complex

random tensors and their second order characteristics are also defined. Furthermore, we

use the tensor properties to develop and present our generic framework which models

several multi-domain communication systems. Various examples of practical multi-domain

communication systems where channel could be modelled as a higher order tensor based

on our system model are also presented.

Chapter 3 introduces information theoretic notions such as Entropy, Mutual Informa-

tion, associated with the tensor based multi-domain communication systems. In particular,

we harness the tensor framework developed in Chapter 2 to mathematically define a fam-

ily of input power constraints spanning multiple domains. We find the Shannon Capacity

of higher order tensor channels under the family of power constraints. This chapter also

presents an algorithmic approach to find the optimal input covariance, along with a discus-

sion on its computational complexity. Furthermore, this chapter presents several numerical

examples illustrating the capacity results for various tensor channel sizes, and different

constraints. We also present application of our work to MIMO GFDM systems. Also, as

an application, we consider the capacity of multi-user MIMO multiple access channels and

interference channels through the proposed tensor framework.

Chapter 4 focusses on the MMSE estimation problem in the context of tensor signals.

We present the best MMSE estimator followed by a widely multi-linear MMSE and multi-

linear MMSE estimators. A comparison between the proposed estimator using the Einstein

product and the Tucker product approach is also presented. We present several numerical

examples with applications of the tensor framework for MMSE estimation of Gaussian

signals, tensors stored in TT format and multi-domain communication systems. Simulation

results for MIMO OFDM systems are presented to illustrate the performance of various

tensor estimation techniques.

Chapter 5 employs the results from Chapters 3 and 4, to find the capacity of tensor

channels when the input is drawn from discrete signalling constellations. A mathematical

relation between the gradient of the mutual information presented in Chapter 3, and the

MMSE error covariance tensor derived in Chapter 4 is presented which generalizes a sim-
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ilar relation from [107] to tensor settings. Furthermore, this relation is used to find the

capacity achieving precoding scheme at the transmitter under discrete input constellation

constraints.

Chapter 6 presents the conclusions from all the previous chapters, and shows direction

for future works.

Appendices A, B present some supplementary mathematical results and derivations

required for a more detailed understanding of several key results in the thesis. Appendix

C is a guide for computer simulation codes required to reproduce the results presented in

this thesis.
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Chapter 2

Tensor Algebra and the System

Model

This chapter presents relevant tensor definitions and properties needed for this thesis.

More details on tensor algebra can be found in [32, 41, 84, 48, 70, 49]. Also, this chapter

includes the tensor based system model used to represent multi-domain communication

systems, along with examples of various practical systems modelled through the proposed

framework.

2.1 Tensor Algebra

2.1.1 Preliminary Definitions

Tensors are multi-way arrays with components indexed by N indices also known as modes.

The number of modes, N is called the order of the tensor. Tensors can be seen as a

generalization of matrices which have only two modes (order 2 tensor) or vectors which

have only one mode (order 1 tensor) [41]. A fiber is defined by fixing every index in a

tensor except one, and can be considered as the higher order analogue of matrix rows and

columns. Similarly, a slice is a two dimensional section of a tensor defined by fixing all but

two indices [32].
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Definition 1. Tensor Linear Space : The set of all tensors of size I1 × . . . × IK over

C forms a linear space, denoted as TI1,...,IK (C). For A,B ∈ TI1,...,IK (C) and α ∈ C, the

sum A + B = C ∈ TI1,...,IK (C) where Ci1,...,ik = Ai1,...,ik + Bi1,...,ik , and scalar multiplication

α ·A = D ∈ TI1,...,IK (C) where Di1,...,ik = αAi1,...,ik .

Definition 2. Matricization Transformation [48]: Let us denote the linear space of

P×Q matrices over C as MP,Q(C). For an order K = N+M tensor A ∈ CI1×...×IN×J1×...×JM ,

the transformation fI1,...,IN |J1,...,JM : TI1,...,IN ,J1,...,JM (C) ⇒ MI1·I2···IN−1·IN ,J1·J2···JM−1·JM (C)

with fI1,...,IN |J1,...,JM (A) = A is defined component-wise as :

Ai1,i2,...,iN ,j1,j2,...,jM

fI1,...,IN |J1,...,JM−−−−−−−−−−−→←−−−−−−−−−−−
f−1
I1,...,IN |J1,...,JM

Ai1+
∑N

k=2(ik−1)
∏k−1

l=1 Il,j1+
∑M

k=2(jk−1)
∏k−1

l=1 Jl
(2.1)

The transformation in (2.1) is also called matricization, or matrix unfolding of ten-

sor by partitioning the indices into two disjoint subsets [47]. The vectorization operation

as defined in [113] can be seen as a special case of (2.1) where J1 = · · · = JM = 1.

The bar in subscript of fI1,...,IN |J1,...,JM represents the partitioning after N modes of an

N + M order tensor where first N modes correspond to the rows of the representing ma-

trix, and the last M modes correspond to the columns of the representing matrix. This

mapping is bijective [70], and it preserves addition and scalar multiplication operations

i.e., for A,B ∈ TI1,...,IN ,J1,...,JM (C) and any scalar α ∈ C, we have fI1,...,IN |J1,...,JM (A +

B) = fI1,...,IN |J1,...,JM (A)+fI1,...,IN |J1,...,JM (B) and fI1,...,IN |J1,...,JM (αA) = αfI1,...,IN |J1,...,JM (A).

Hence the linear spaces TI1,...,IN ,J1,...,JM (C) and MI1·I2···IN−1·IN ,J1·J2···JM−1·JM (C) are isomor-

phic and the transformation fI1,...,IN |J1,...,JM is an isomorphism between the linear spaces.

For a matrix, the transformation (2.1) creates a column vector when N = 2,M = 0, a row

vector when N = 0,M = 2 does not change when N = M = 1.

Definition 3. Tensor Contracted product [47]: A contraction between tensors X ∈
CI1×...×IM×J1×...×JN and Y ∈ CI1×...×IM×K1×...×KP along their M common modes denoted by

〈X,Y〉{1,...,M ;1,...,M} leads to a resulting tensor, Z ∈ CJ1×...×JN×K1×...×KP given by :

Zj1,...,jN ,k1,...,kP =
∑

i1,...,iM

Xi1,...,iM ,j1,...,jNYi1,...,iM ,k1,...,kP (2.2)
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In general, the modes to be contracted need not be consecutive. However, the dimen-

sions of the corresponding modes being contracted must be same. For instance, tensors

X ∈ CI×J×K×L and Y ∈ CJ×P×L×Q can be contracted as Z = 〈X,Y〉{2,4;1,3} to generate

Z ∈ CI×K×P×Q with elements Zi,k,p,q =
∑

j,l Xi,j,k,lYj,p,l,q. Other tensor products, such as

the Einstein product or the mode-n product of tensor with matrices can be seen as special

cases of the tensor contracted product.

Definition 4. Einstein product [48]: For any N , the Einstein product is defined using

the operation ∗N by :

(A ∗N B)i1,...,iP ,j1,...,jM =
∑

k1,...,kN

Ai1,i2,...,iP ,k1,...,kNBk1,...kN ,j1,j2,...,jM (2.3)

where A ∈ CI1×...×IP×K1×...×KN and B ∈ CK1×...×KN×J1×...×JM .

Einstein product is a special case of tensor contracted product where contraction is over

N consecutive modes. Both outer product and inner product can be seen as special cases

of the Einstein product. For tensors X,Y ∈ CI1×I2×...×IN and Z ∈ CJ1×J2×...×JM , we define

the Inner Product as :

〈X,Y〉 =

I1∑

i1=1

I2∑

i2=1

. . .

IN∑

iN=1

Xi1,i2,...,iNY
∗
i1,i2,...,iN

= X ∗N Y∗ (2.4)

where 〈X,Y〉 is a scalar, and the Outer Product as :

(X ◦ Z)i1,i2,...,iN ,j1,j2,...,jM = Xi1,i2,...,iNZj1,j2,...,jM = X ∗0 Z (2.5)

where (X ◦ Z) ∈ CI1×...×IN×J1×...×JM . Also, the norm of X is defined as :

||X||=

√√√√
I1∑

i1=1

I2∑

i2=1

......

IN∑

iN=1

| Xi1,i2,....,iN |2 (2.6)

Definition 5. mode-n product[65]: The mode-n product of a tensor X ∈ CI1×I2×...×IN

with a matrix U ∈ CJ×In is denoted by X×nU and is defined as :

(X×nU)i1,i2,...,in−1,j,in+1,...,iN =
In∑

in=1

Xi1,i2,...,iN Uj,in (2.7)

where (X×n U) ∈ CI1×...×In−1×J×In+1×...×IN .
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Definition 6. Square tensors [70]: A tensor A ∈ CI1×...×IN×J1×...×JM is called a square

tensor if N = M and Ik = Jk for k = 1, . . . , N .

For square tensors A,B of size I×J×I×J , it was first shown in [48] that fI,J |I,J(A∗2B) =

fI,J |I,J(A) · fI,J |I,J(B) where · refers to the usual matrix multiplication. It can be easily

generalized to square or non-square tensors of any order and size as shown in [70, 114].

Lemma 1. For tensors A ∈ CI1×...×IN×J1×...×JM and B ∈ CJ1×...×JM×K1×...×KP under the

transformation from (2.1), the following holds:

fI1,...,IN |K1,...,KP
(A ∗M B) = fI1,...,IN |J1,...,JM (A) · fJ1,...,JM |K1,...,KP

(B) (2.8)

The proof for Lemma 1 is provided in [114].

Definition 7. Pseudo-diagonal Tensors : Any tensor D ∈ CI1×...×IN×J1×...×JM of order

N + M is called pseudo-diagonal if its transformation fI1,...,IN |J1,...,JM (D) yields a diagonal

matrix.

A square tensor D ∈ CI1×...×IN×I1×...×IN is pseudo-diagonal if all its entries Di1,...,iN ,j1,...,jN

are zero except when i1 = j1, i2 = j2, . . . , iN = jN . Such a tensor under transformation

fI1,...,IN |I1,...,IN (D) always yields a square diagonal matrix. In [48, 68] such a tensor is termed

as diagonal tensor, and in [45] it is termed as U-diagonal. However, we will refer to it as

pseudo-diagonal in this thesis, so as to make a distinction from the diagonal tensor definition

more widely found in literature which states that a diagonal tensor has all entries Di1,...,iN

zero except when i1 = i2 = · · · = iN [32]. This can be seen as a strict diagonal condition

as non-zero elements exist only when all the modes have same index. In a pseudo-diagonal

tensor, say of order 2N , elements are non-zero when every ith and (i + N)th mode have

same index for i = 1, . . . , N . An example of order 4 tensor showing the difference between

diagonal and pseudo-diagonal structures is presented in Figure 2.1 where the empty squares

represent zero elements.

For a matrix, which has just two modes, the diagonal and pseudo-diagonal structures

are the same. Note that pseudo-diagonality is defined with respect to a partition after N

modes. For instance, if we refer to a third order tensor as pseudo-diagonal, it is important
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i1

i2

j1

j2

Pseudo-diagonal tensor A of order 4, size 3× 3× 3× 3, with respect to partition after 2 modes

Non-zero elements occur at A1,1,1,1,A1,2,1,2,A2,1,2,1,A2,2,2,2,A1,3,1,3,A3,1,3,1,A3,2,3,2,A2,3,2,3,A3,3,3,3

i.e. when i1 = j1, i2 = j2

Strictly diagonal tensor A of order 4, size 3× 3× 3× 3

Non-zero elements occur only at A1,1,1,1,A2,2,2,2,A3,3,3,3, i.e. when ii = i2 = j1 = j2

i1

i2

j1

j2

Fig. 2.1: Order 4 diagonal and pseudo-diagonal tensors.
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to specify whether it is pseudo-diagonal with respect to partition after the first mode or

the second mode. Hence to avoid overload of notation in this thesis, whenever we refer to a

tensor of order N +M or order 2N as pseudo-diagonal, then the tensor is pseudo-diagonal

with respect to a partition after N modes.

Definition 8. An identity tensor, I ∈ CI1×...×IN×I1×...×IN is a square pseudo-diagonal tensor

such that for any other square tensor A ∈ CI1×...×IN×I1×...×IN , we have A∗N I = I∗NA = A.

For non-square tensor B ∈ CJ1×...×JM×I1...×...×IN , we have B ∗N IN = B and IM ∗M B = B

where IN and IM are identity tensors of order 2N and 2M respectively.

Definition 9. The tensor A−1 ∈ CI1×...×IN×I1×...×IN is an inverse of a square tensor of

same size, A ∈ CI1×...×IN×I1×...×IN if A ∗N A−1 = A−1 ∗N A = IN [70].

Definition 10. The Hermitian of a tensor A ∈ CI1×...×IN×J1×...×JM is a tensor B ∈
CJ1×...×JM×I1×...×IN which has entries B∗j1,j2,...,jM ,i1,i2,...,iN

= Ai1,i2,...,iN ,j1,j2,...,jM and is de-

noted as AH , where ()∗ denotes complex conjugate. Note that since tensors have more

than two modes, so there can be multiple ways to define a tensor Hermitian or transpose

using permutations [115]. For simplicity of notation, in this thesis wherever we write a

tensor explicitly as N +M or 2N order tensor, then AH is always with respect to partition

after N modes as explained in this definition. Also, a square tensor X ∈ CI1×...×IN×I1×...×IN

is called Hermitian tensor if X = XH .

Definition 11. A square tensor, U ∈ CI1×...×IN×I1×...×IN is called unitary if UH ∗N U =

U ∗N UH = I.

Some important properties of the Einstein product

Based on the definitions of tensor inverse, Hermitian, the Einstein product, and Lemma 1,

several tensor algebra relations and properties can be derived. Here we list a few properties

which are often used and can be proven by expanding the tensor operations element-wise

or using Lemma 1.
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1. Associativity : For tensors A ∈ CI1×...×IP×J1×...×JN , B ∈ CJ1×...×JN×K1×...×KM and

C ∈ CK1×...×KM×T1×...×TQ , we have

(A ∗N B) ∗M C = A ∗N (B ∗M C) (2.9)

2. Commutativity : Einstein product is not commutative in general. However for the

specific case where the product is taken over all the N modes of one of the tensors,

say for tensors A ∈ CI1×...×IP×J1×...×JN and B ∈ CJ1×...×JN , the following can be

established :

A ∗N B = B ∗N AT (2.10)

3. Distributivity : For tensors, A,B ∈ CI1×...×IP×J1×...×JN and C ∈ CJ1×...×JN×K1×...×KM ,

we have :

(A + B) ∗N C = (A ∗N C) + (B ∗N C) (2.11)

4. For tensors A ∈ CI1×...×IM×J1×...×JN and B ∈ CJ1×...×JN×K1×...×KP , we have :

(A ∗N B)H = BH ∗N AH (2.12)

5. For square tensors A and B ∈ CI1×...×IN×I1×...×IN , we have :

(A ∗N B)−1 = B−1 ∗N A−1 (2.13)

2.1.2 Tensor SVD and EVD

Tucker decomposition of a tensor can be seen as a higher order SVD [65] and has found

many applications particularly in extracting low rank structures in higher dimensional data

[116]. A more specific version of tensor SVD is presented in [48] as a tool for finding tensor

inversion and solving multi-linear systems. Note that [48] presents SVD for square tensors

only. The idea of SVD from [48] is further generalized for any even order tensor in [68].

However, it can be further extended for any arbitrary order and size of tensor in the form

of the following theorem.

Theorem 1. For a tensor, A ∈ CI1×...×IN×J1×...×JM , the SVD of A has the form :

A = U ∗N D ∗M VH (2.14)
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where U ∈ CI1×...×IN×I1×...×IN and V ∈ CJ1×...×JM×J1×...×JM are unitary tensors and D ∈
CI1×...×IN×J1×...×JM is a pseudo-diagonal tensor whose non-zero values are the singular val-

ues of A.

Note that for a tensor of order N + M , we will get different valid SVDs for different

values of N and M . For a given N and M , the existence of a tensor SVD can be shown

using Lemma 1 [48]. A proof of this theorem for 2N order tensors with N = M using

transformation defined in (2.1) is provided in [48]. The proof of the general case is included

in Appendix B.1.

Several different definitions of tensor eigenvalues exist in the literature [66] which intend

to generalize the properties of matrix eigenvalues to higher order. Motivated by their

applications in physics and mechanics, several of such definitions apply to the case of only

super-symmetric tensors which are defined as a class of tensors that are invariant under any

permutation of their indices [67]. However, there is no single generalization of eigenvalues

to tensor case that preserves all the properties of the matrix eigenvalues [63]. For our

purposes, we present a particular generalization from [69] which can be easily extended to

any square tensor, irrespective of symmetry in its elements.

Definition 12. Let A ∈ CI1×...×IN×I1×...×IN ,X ∈ CI1×...×IN , λ ∈ C, where X and λ satisfy

A ∗N X = λX, then we call X and λ as eigentensor and eigenvalue of A respectively [69].

Lemma 2. Eigenvalues λ of a Hermitian tensor A ∈ CI1×...×IN×I1×...×IN are real, i.e λ ∈ R.
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Proof. Consider X ∈ CI1×...×IN and λ ∈ C. Since A is Hermitian, we have AH = A

A ∗N X = λX

X ∗N AT = λX (from (2.10))

(X ∗N AT )∗ = (λX)∗

X∗ ∗N AH = λ∗X∗

X∗ ∗N A = λ∗X∗ (since A = AH)

X∗ ∗N A ∗N X = λ∗X∗ ∗N X

X∗ ∗N (λX) = λ∗X∗ ∗N X (as A ∗N X = λX)

λX∗ ∗N X = λ∗X∗ ∗N X (as λ is a scalar)

λ = λ∗ ⇒ λ ∈ R (since X is non-zero)

Theorem 2. The EVD of a Hermitian tensor A ∈ CI1×...×IN×I1×...×IN is given as [48] :

A = U ∗N D ∗N UH (2.15)

where U ∈ CI1×...×IN×I1×...×IN is a unitary tensor and D ∈ CI1×...×IN×I1×...×IN is a square

pseudo-diagonal tensor, i.e. Di1,...,iN ,j1,...,jN = 0 if (i1, . . . , iN) 6= (j1, . . . , jN) with its non-

zero values being the eigenvalues of A and U containing the eigentensors of A.

This theorem can be proven using Lemma 1, details are provided in [48, 117]. The

eigenvalues of A are same as the eigenvalues of fI1,...,IN |I1,...,IN (A) [117].

Definition 13. Positive semi-definite and definite tensors: A square tensor A ∈
CI1×...×IN×I1×...×IN is positive semi-definite, denoted by A � 0 if all its eigenvalues are non-

negative, which is the same as fI1,...,IN |I1,...,IN (A) being a positive semi-definite matrix. A

tensor is positive definite, A � 0, if all its eigenvalues are strictly greater than zero.

A positive semi-definite pseudo-diagonal tensor D, will have all its components non-

negative and its square root can be denoted as D1/2 which is also pseudo-diagonal positive

semi-definite whose elements are the square root of the elements of D such that D1/2 ∗N
D1/2 = D. Similarly, if D is positive definite, its inverse can be denoted as D−1 which is also
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pseudo-diagonal whose non zero elements are the reciprocal of the corresponding elements

of D. Based on the tensor EVD, we can also write the square root of any Hermitian positive

semi-definite tensor as A1/2 = U∗ND1/2∗NUH and inverse of any Hermitian positive definite

tensor as A−1 = U ∗N D−1 ∗N UH .

Definition 14. Trace: The trace of a tensor A ∈ CI1×...×IN×I1×...×IN is defined as the sum

of its pseudo-diagonal entries :

tr(A) =
∑

i1,...,iN

Ai1,i2,...,iN ,i1,i2,...,iN (2.16)

Definition 15. Determinant: The determinant of a tensor A ∈ CI1×...×IN×I1×...×IN is

defined as the product of its eigenvalues i.e., if A = U ∗N D ∗N UH , then

det(A) =
∏

i1,...,iN

Di1,i2,...,iN ,i1,i2,...,iN (2.17)

The eigenvalues of A are the same as that of its matrix transformation, hence det(A) =

det(fI1,...,IN |I1,...,IN (A)). Note that a few other definitions for determinant exist in literature

based on how one chooses to define the eigenvalues of tensors [118]. The definition we have

presented is the one corresponding to the eigenvalue definition used in this thesis. This

definition is the same as the unfolding determinant in [70].

Some properties of trace and determinant

The following properties can be shown by writing the tensors component wise or using

Lemma 1.

1. For two tensors A ∈ CI1×...×IN and B ∈ CI1×...×IN of same size and order N ,

A ∗N B = B ∗N A = tr(A ◦B) = tr(B ◦A) (2.18)

Note that (2.18) can be seen as a specific case of (2.10) by setting P = 0. In (2.10),

if P = 0 then AT = A and thus (2.10) reduces to A ∗N B = B ∗N A. Also, A ∗N B

is a scalar in this case which is given by
∑

i1,...,iN
Ai1,...,iNBi1,...,iN . Hence the second

part of the equality in (2.18) follows from the definition of outer product and trace

which gives tr(A ◦B) = tr(B ◦A) =
∑

i1,...,iN
Ai1,...,iNBi1,...,iN .
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2. For tensors A ∈ CI1×...×IN×J1×...×JM and B ∈ CJ1×...×JM×I1×...×IN , we have :

tr(A ∗M B) = tr(B ∗N A) (2.19)

det(IN + A ∗M B) = det(IM + B ∗N A) (2.20)

where IN and IM are identity tensors of order 2N and 2M respectively. To prove

(2.20), we can use Lemma 1 and Sylvester’s matrix determinant identity [119].

3. For tensors A,B ∈ CI1×...×IN×I1×...×IN , we have [70]:

det(A ∗N B) = det(B ∗N A) = det(A) · det(B) (2.21)

4. Trace of a positive semi-definite tensor is the sum of its eigenvalues.

5. The determinant of a unitary tensor is 1 and the determinant of a square pseudo-

diagonal tensor is the product of its pseudo-diagonal entries.

2.1.3 Tensor Train Decomposition

The TT decomposition represents a higher order tensor through a set of sparsely connected

lower order tensors called cores. For a tensor T of size I1×I2×. . .×IN , the TT decomposition

is written as [62] :

Ti1,...,iN =
∑

r0,r1,...,rN

T
(1)
r0,i1,r1

· T(2)
r1,i2,r2

· · ·T(N)
rN−1,iN ,rN

(2.22)

where each T(i) is a third order tensor of size Ri−1 × Ii × Ri and Ri denote the TT ranks

with R0 = RN = 1 and Ri ≥ 1 for i = 1, . . . , N−1 [62]. In TT decomposition, the low rank

structure of the core tensors is harnessed for reducing the storage complexity. Instead of

storing the whole tensor, only the cores T(i) are stored. Different cores are also sometimes

stored in distributed storage systems. This imposes a requirement that any mathematical

operation to be performed on the tensor should avoid a full reconstruction or rearranging

of the data but should be able to act on the cores themselves. The mechanism with which

tensor operations act on the cores can be best understood using a graphical representation

of the TT decomposition through a Tensor Network (TN) containing nodes and edges.
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A TN is a graphical illustration of tensor operations where each node represents a tensor

and each outgoing edge from a node represents a mode of the tensor. Hence a vector can

be represented in a TN using a node with a single edge, a matrix with a node and two

edges, and a tensor of order N with a node and N edges. An edge connecting two nodes

in a TN represents contraction between the two tensors along the connected edge. The

free edges correspond to the modes which are not contracted. The total number of free

edges represent the order of the resulting tensor. Subsequently, the TT decomposition from

(2.22) can be represented using a TN as shown in Figure 2.2 where each core is represented

by a node.

I1
I2

I3

I4

IN-1

IN

I1
In-1 In

In+1 IN

R1
RN-1Rn-2 Rn-1 Rn Rn+1

Fig. 2.2: TN representation of Nth order tensor T ∈ CI1×I2×...×IN in TT format.

The TT ranks of a tensor determine the storage consumption of the tensor. In several

cases, the exact TT decomposition of a tensor may lead to high TT ranks. Hence often an

approximation of the TT decomposition of a tensor is computed with a given accuracy ε to

fit a desired set of low TT ranks for reduced storage [62]. If we denote the TT approximation

of a tensor A as AT , the computed approximation satisfies ||A−AT ||≤ ε||A||. A sequential

SVD based algorithm to compute such TT decomposition with given accuracy ε is presented

in [62].

The Einstein product between two different tensors, Q ∗K P stored in TT format can

be represented using the TN as shown in Figure 2.3. The gray nodes represent the cores

in the tensor train of P ∈ CL1×...×LK×J1×...×JM and the white nodes represent the cores

in the tensor train of Q ∈ CI1×...×IN×L1×...×LK . An advantage of computing the Einstein

product using the TT format is that the resulting tensor can be directly obtained in terms
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of its TT cores. An algorithm to compute the Einstein product in the TT format without

reconstructing the whole tensor has been provided in [120].

I1 IN
J1

JM

R1
RN-1 RN

RN+1
RN+K-2 RN+K-1

L1
LK-1 LK

S1 SK-2 SK-1 SK SK+1
SK+M-1

Fig. 2.3: TN representation of Einstein Product Q∗KP for tensors Q ∈ CI1×...×IN×L1×...×LK

and P ∈ CL1×...×LK×J1×...×JM in TT format where Ri and Sj represent TT ranks for Q and
P respectively.

2.1.4 Complex Random Tensors

A tensor is said to be random if its components are random variables. Expectation of a

random tensor XXX ∈ CI1×...×IN , denoted by M̄ = E[XXX] ∈ CI1×...×IN , is a tensor with each

component consisting of the expected value of the corresponding component of XXX.

Covariance and Pseudo-covariance

The covariance of a tensor XXX ∈ CI1×I2×...×IN can be defined as a tensor of size I1×I2× . . .×
IN × I1 × I2 × . . .× IN represented by Q = E[(XXX− M̄) ◦ (XXX− M̄)∗] where M̄ = E[XXX] is the

mean tensor. However, a complete second-order characterization also requires defining the

pseudo-covariance which is given as Q̃ = E[(XXX− M̄) ◦ (XXX− M̄)]. A complex random tensor

is said to be proper if its pseudo-covariance is 0T, i.e Q̃ = 0T, where 0T denotes an all zero

tensor. Corresponding definitions for vector and matrix cases can be found in [121, 122].

For vectors, an augmented representation is used to completely define the second order

characteristics where the augmented vector is written as ẍ =


 x

x∗


 [123, 103]. Next, we

will exploit the multi-domain nature of tensors to develop an augmented representation of

complex tensors.



2 Tensor Algebra and the System Model 33

Unlike a vector, a tensor has more than one mode. Therefore concatenation of the

conjugate tensor can be done across any mode. However, given that the primary advantage

of a tensor is its ability to maintain the distinction between different domains, we suggest

that for a complex valued tensor XXX ∈ CI1×...×IN , the augmented tensor can be created by

adding another domain of size 2 such that ẌXX ∈ CI1×...×IN×2 where ẌXXi1,...,iN ,1 = XXXi1,...,iN

and ẌXXi1,...,iN ,2 = XXX
∗
i1,...,iN

. The augmented mean tensor will be M̈ = E[ẌXX]. The augmented

covariance tensor will be given as Q̈ = E[(ẌXX − M̈) ◦ (ẌXX − M̈)∗] of size I1 × . . . × IN × 2 ×
I1 × . . .× IN × 2.

The augmented covariance tensor Q̈ contains the covariance Q and the pseudo-covariance

tensor Q̃ along with their conjugates as Q̈[:, . . . , :︸ ︷︷ ︸
N

, 1, :, . . . , :︸ ︷︷ ︸
N

, 1] = Q, Q̈[:, . . . , :, 1, :, . . . , :, 2] =

Q̃, Q̈[:, . . . , :, 2, :, . . . , :, 1] = Q̃∗ and Q̈[:, . . . , :, 2, :, . . . , :, 2] = Q∗.

Tensor Gaussian Distribution

Definition 16. The pdf of a general Gaussian distributed complex-valued tensor XXX ∈
CI1×I2×...×IN of order N is given by :

p
XXX

(x) =
1

(π)I1I2...IN (det(Q̈))1/2
× exp

{
− 1

2
(ẍ− m̈)HQ̈

−1
(ẍ− m̈)

}
(2.23)

where ẍ = vec(Ẍ), m̈ = vec(E[ẌXX]) and Q̈ is the covariance matrix of the vectorized

augmented tensor where fI1,...,IN ,2|I1,...,IN ,2(Q̈) = Q̈. We can re-write the pdf as :

p
XXX

(X) =
1

(π)I1I2...IN (det(Q̈))1/2
× exp

{
− 1

2
(Ẍ− M̈)∗ ∗N+1 Q̈

−1 ∗N+1 (Ẍ− M̈)
}

(2.24)

Notationally, we write XXX ∼ CN (M̄,Q, Q̃). The equivalence of (2.23) and (2.24) can be

directly established based on the properties of Einstein product and Lemma 1. For proper

complex Gaussian tensor, with zero pseudo-covariance the pdf simplifies as :

p
XXX

(X) =
1

(π)I1I2...IN det(Q)
× exp

{
− (X− M̄)∗ ∗N Q−1 ∗N (X− M̄)

}
(2.25)

where M̄ = E[XXX] is the order-N mean tensor and Q = E[(XXX−M̄)◦(XXX−M̄)∗] is the order-2N

covariance tensor.
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2.1.5 Tensor Gradients and Integrals

Any real valued scalar function g(x) of a complex variable x can be seen as a function of its

real and imaginary components or equivalently as a function of the complex variable and

its conjugate, i.e. g(x) = f(x, x∗). Thus to find a stationary point of f(x, x∗), it is shown

in Appendix A.7.4 of [124] that one can use the partial derivative with respect to either

the complex variable,
∂f

∂x
= 0 or its conjugate

∂f

∂x∗
= 0. Either one of the two conditions

would be necessary and sufficient to determine a stationary point. Furthermore, since g(x)

is real-valued, stationary point can simply be found by taking the derivative of the function

g(x) with respect to x∗ and setting it to zero [125].

The gradient with respect to a matrix is defined as ∇
X
f , ∂f/∂X∗, where [∇

X
f ]i,j =

∂f/∂X∗i,j [107]. We similarly define the gradient with respect to a tensor as ∇
X
f , ∂f/∂X∗

where the gradient is a tensor of the same size as X whose individual components are the

derivatives with respect to the components of X∗, i.e. [∇
X
f ]i1,...,iN = ∂f/∂X∗i1,...,iN where

the complex derivative is defined as [107] :

∂f

∂X∗i1,...,iN
,

1

2

( ∂f

∂<{Xi1...,iN}
+ j

∂f

∂={Xi1,...,iN}
)
. (2.26)

Using this definition, we can extend several results on matrix complex gradients from [107],

[126], [124, Appendix A.7] to a tensor setting. For instance, given A ∈ CJ1×...×JM×I1×...×IN

and Hermitian positive semi-definite tensors B,C ∈ CI1×...×IN×I1×...×IN , using results from

[107], [126] and Lemma 1, we can write :

∇
C

log[det(IM + A ∗N C ∗N AH)] = AH ∗M (A ∗N C ∗N AH + IM)−1 ∗M A, (2.27)

∇
C

tr(B ∗N C) = B. (2.28)

Further, we represent the integration of a scalar function f(A) over the tensor variable

A ∈ CI1×...×IN as follows :∫
f(A)∂A =

∫
· · ·
∫
f(A)∂A1,...,1,1∂A1,...1,2∂A1,...1,3 · · · ∂AI1,...,IN . (2.29)

The result is a scalar entity obtained by a multi variable integration of the scalar function

over all the components of the tensor A. Now let us consider a tensor valued function g of

the tensor A such that g(A) ∈ CJ1×...×JM . In such a case, integrating the tensor function
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over the tensor variable denoted as
∫
g(A)dA would be a tensor of same size as g(A) with

each element given as : [∫
g(A)dA

]

j1,...,jM

=

∫ [
g(A)

]
j1,...,jM

∂A. (2.30)

Thus in this thesis, we use the notation of
∫

()∂A when expressing an integration of a scalar

function of a tensor A resulting into a scalar, and
∫

()dA when expressing an integration

of a tensor function of tensor A which results into a tensor. For instance, for a random

variable XXX ∈ CI1×...×IN with pdf given by p
XXX

(X), the expected value (which is a tensor)

would be written as :

E[XXX] =

∫
Xp

XXX
(X)dX (2.31)

and to denote the expected value of a scalar function of the random variable, say h(XXX), we

would write :

E[h(XXX)] =

∫
p
XXX

(X)h(X)∂X. (2.32)

2.1.6 Newton’s Method for Tensor Inversion

Solving tensor equations without resorting to matrix transformation has become an active

area of research in the past few years [48, 70, 68, 114, 127, 128, 129, 130, 131, 132, 133].

The reasons for avoiding a matrix unfolding of the tensors are many folds. In several appli-

cations, tensors arise naturally as part of the problem. Hence there is no point in unfolding

the tensors for computations, only to revert back to the original structure afterwards, since

it adds additional steps going to and from tensor space to matrix space. Also, keeping the

tensor structure intact can allow us to leverage the information in the structure for reducing

the complexity of operations and storage. In [62], it is shown that tensor train decomposi-

tions can be used to store large tensors by exploiting the redundancy in its elements. This

is a primary reason why tensors are being so widely used in Big Data applications where

even large vector and matrix data are being tensorized for storage [57]. Hence there is

a need to express any processing for tensor signals within the tensor framework without

changing the structure of the tensor.



2 Tensor Algebra and the System Model 36

Among other tensor operations, one of the more frequently used operations is tensor

inversion [48]. Higher Order Bi-conjugate Gradient (HOBG) and Jacobi methods are pre-

sented in [48, 46] for tensor inversion. In this thesis, we present another numerical method

for approximating tensor inversion, without using any matrix transformation. We extend

the Newton’s Method (NM) used for matrix inversion from [134] to tensors. To find the

inverse of tensor A ∈ CI1×...×IN×I1×...×IN , we use the following iterative equation :

B(k+1) = (2IN −B(k) ∗N A) ∗N B(k) (2.33)

where the initial guess for the inverse B(0) can be set to a · AH . Using similar line of

arguments as in Theorem 2 from [135], it can be shown that this method converges if

0 < a < 2/σ2
max where σ2

max is the largest eigenvalue of C = AH ∗N A. To avoid the

calculation of σ2
max, we use the bound suggested for matrix inversion in [136]. We define :

λ = m+ s(I1 · I2 · · · IN − 1)1/2 (2.34)

where m = tr(C)/(I1 · · · IN) and s2 = tr(C ∗N CH)/(I1 · · · IN) − m2, and use a = 2/λ

to ensure convergence. The constant λ is an upper bound on the tensor eigenvalue, i.e.

λ ≥ σ2
max. This upper bound for the matrix eigenvalues was derived in [137] and for the

tensor eigenvalues has been derived in Appendix B.6.

2.1.7 Complexity of Newton’s Method

We analyze the computational complexities in terms of the required number of flops for

a given step. A flop is defined as a single floating point operation such as an addition,

multiplication, subtraction, division, comparison (>,<,==), or a scalar square root, etc.

Consider the definition of Einstein product across N modes between tensor A of size

I1 × . . . × IP ×K1 × . . . ×KN and tensor B of size K1 × . . . ×KN × J1 × . . . × JM from

(2.3). Computing a single element in A ∗N B requires K1 ·K2 · · ·KN multiplications and

also K1 · K2 · · ·KN − 1 additions. There are total I1 · I2 · · · IP · J1 · J2 · · · JM elements in

the tensor A ∗N B. Let I =
∏P

i=1 Ii, J =
∏M

j=1 Jj, and K =
∏N

k=1Kk. There are a total IJ

elements in A ∗N B where each element is computed using K multiplications and K − 1

additions. Subsequently finding all the elements of A ∗N B requires IJK multiplications
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and (K−1)IJ additions. Hence a total of IJK+(K−1)IJ = (2K−1)IJ flops are required

for computing all the elements in A ∗N B. If the number of required flops is polynomial

in its size n, i.e. the operation requires a0n
p + a1n

p−1 + · · · + ap flops (for fixed constants

a0, a1, . . . , ap), we represent the complexity only using the highest power in n as O(np).

Hence the complexity of the Einstein product which requires (2K − 1)IJ flops is given as

O(IKJ) which is same as O((I1 · · · IP ) · (K1 · · ·KN) · (J1 · · · JM)). For the case where both

A and B are order 2N tensors of size I1 × . . .× IN × I1 × . . .× IN each, the complexity of

A ∗N B is given as O((I1 · · · IN)3).

The complexity of each iteration in the NM for finding tensor inversion mainly depends

on the complexity of the Einstein product between tensors of order 2N . For (2.33), assum-

ing I1 = I2 = · · · = IN = L, the worst case complexity of each iteration in NM is cubic in

tensor size, O(L3N) and grows exponentially with the order of the tensor. However, using

the approach presented in Appendix B.7, the per iteration complexity of tensor inversion

using NM can be lowered to O(L2N). Further, use of parallel processing can reduce the

time complexity of such tensor operations significantly. Using parallel processing, the time

complexity of each iteration in NM is O(logLN) as shown in Appendix B.7, which is linear

in the number of domains and not exponential.

The number of iterations required by NM is significantly lower than other methods such

as HOBG and Jacobi methods for large tensors. A comparison of the number of required

iterations by HOBG and Jacobi method is presented in [48] which shows that HOBG

outperforms Jacobi method. Here, we present a comparison between HOBG and NM by

comparing the performance of both the algorithms to find the inverse of tensors, having

zero mean unit variance circular complex Gaussian entries of various size. The number

of iterations required to find the inverse were averaged over 100 different realizations of

tensors of each size. Tolerance was kept as 10−6. Figure 2.4 shows number of iterations

against order of the tensor when each dimension has size 3. Clearly, as the order increases,

iterations required by NM are significantly lower than HOBG. Similarly, Figure 2.5 shows

the number of iterations against dimensions of the individual domains for order 4 tensor,

where similar observation can be made.
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Fig. 2.4: Number of iterations vs Order of tensor with dimension 3 for Tensor Inversion
Algorithms.
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Fig. 2.5: Number of iterations vs Dimension of order 4 tensor for Tensor Inversion Algo-
rithms.
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Note that the main thrust of this thesis is not on the computational capabilities of

tensors, but on the information theoretic aspects of the channels associated with a ten-

sor based communication system. Thus, all the numerical/simulation results presented in

this thesis were generated using MATLAB, which provides a convenient structure to de-

fine and operate on multi-way arrays. While MATLAB has several built-in functions to

operate directly on higher order arrays, and also allows parallel execution of algorithms,

it should be acknowledged that MATLAB may not be the most efficient programming

platform for implementation of tensor based operations. There are faster programming

platforms which can significantly exploit the tensor structures for more efficient execution

of algorithms. Certain Python libraries such as Tensorflow and PyTorch, contain several

built-in functionalities which can be used for implementation of various tensor operations,

such as tensor products, reshape, concatenation, decompositions, etc. TensorFlow was cre-

ated by Google as a machine learning implementation library and is widely used for various

business and research purposes involving artificial intelligence, machine learning and deep

learning [138]. Similarly, PyTorch was developed by Facebook as an open source machine

learning and deep learning library [139]. One major advantage that PyTorch provides is

its seamless integration with parallel computing platforms such as CUDA that allows using

Graphics Processing Unit (GPU) for tensor operations. Several operations, even for large

vectors and matrices are often performed by tensorizing the data for parallel and faster

implementation on such platforms.

2.2 Tensor System Model for Multi-domain Communication

Systems

The input and output in a multi-domain communication system can be defined as tensor

symbols of order N and M respectively. Let XXX ∈ CI1×...×IN denote the input (transmitted)

tensor symbol with I1, I2, . . . , IN as the dimensions of its N domains where each component

XXXi1,...,iN is a discrete complex symbol. Similarly, we represent the output (received) tensor

symbol by YYY ∈ CJ1×...×JM with J1, J2, . . . , JM as the dimensions of its M domains. With
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these input and output, a multi-linear channel between the transmit and the receive side

can be defined as a tensor of order M + N represented by H ∈ CJ1×...×JM×I1×...×IN . The

system model can be represented using the Einstein product of the channel tensor with the

input tensor where we contract along all the N modes of the input. In the presence of a

noise tensor, the system model is given as :

YYY = H ∗N XXX +NNN (2.35)

where

YYYj1,...,jM =

I1∑

i1=1

I2∑

i2=1

. . .

IN∑

iN=1

Hj1,...,jM ,i1,...,iNXXXi1,...,iN +NNNj1,...,jM (2.36)

with NNN representing the received noise tensor of same size as YYY. The narrowband discrete

time MIMO matrix channel model is a special case of the tensor model from (2.35) where

input and output are order 1 tensors (vectors), the channel is an order 2 tensor (matrix)

and the Einstein product reduces to regular matrix multiplication, y = Hx+n. In a matrix

representation of a discrete MIMO channel which characterizes only the space domain, each

component of the channel matrix Hi,j represents the complex gain (i.e. amounting for both

phase change and amplitude gain) of different paths between transmit and receive antennas.

In a tensor channel, each component from the channel is a complex gain that couples a

component from the order N tensor input symbol to a component of the order M tensor

output symbol. The proposed system model is generic and the number of modes along

with the physical interpretation of the individual modes is system specific. The modes

can represent space, time, frequency, propagation delay, users, spreading sequence, etc.,

depending on the system.

System models for three different cases (in the absence of noise) are illustrated in Figure

2.6. The first case represents the conventional MIMO system model where the input and

output are order 1 tensors (vectors) of size 2, and the channel is an order 2 tensor (matrix) of

size 2×2. Such a model can evolve further to incorporate additional domains as illustrated

in the second and third cases. In the second case, the input and output are order 2 tensors

of size 2× 2 each, and the channel is an order 4 tensor of size 2× 2× 2× 2. Further, in the

third case the input and output are order 3 tensors of size 2 × 2 × 2, while the channel is
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an order 6 tensor of size 2× 2× 2× 2× 2× 2. The input indices are denoted using i1, i2, i3

and the output indices using j1, j2, j3. The multi-domain nature of the tensor channel and

its coupling with the input through the Einstein product in the system model allow us to

visualize (2.35) as an evolution of the MIMO matrix channel model, with latter being just

a special case of the former.

For a MIMO communication system having NR receive and NT transmit antennas, the

continuous time input-output relation in a linear time varying channel is written as [140] :

y(t) =

∫
H(t, τ)x(t− τ)dτ + n(t) (2.37)

where x(t) is the NT×1 continuous time input vector, n(t) and y(t) are the NR×1 noise and

received vectors respectively. The channel matrix H(t, τ) of size NR×NT , has components

Hnr,nt(t, τ) that denote the channel impulse response between the transmit antenna nt and

the receive antenna nr at a time instant t and delay τ . If the channel is assumed time-

invariant with a maximum delay τmax, the discretization of (2.37) at a sampling frequency

fs gives the input/output relation at an instant k as [140]:

y[k] =
D∑

d=1

H[d]x[k − (d− 1)] + n[k], k = 0, 1, . . . , (N − 1) (2.38)

where x[k] is the NT × 1 channel input at time index k, n[k] and y[k] are the NR × 1

noise and received vectors respectively. The NR×NT matrix H[d] has components Hnr,nt [d]

which represents the length D channel impulse response between transmit antenna nt and

receive antenna nr at delay d, where D = dfsτmaxe. Delay can be considered as another

domain in the system model. So for a time-invariant channel, at any time instant k the

relation in (2.38) can be expressed using tensor model as [141]:

y[k] = H ∗2 X[k] + n[k] (2.39)

where all the individual vectors x[k],x[k − 1], . . . ,x[k − (D − 1)] from (2.38) form the

columns of the matrix X[k] of size NT ×D and all the individual matrices H[1], . . . ,H[D]

from (2.38) are stacked together where they form the slices of the order-three channel tensor

H of size NR ×NT ×D. For D = 1, H reduces to a matrix and X[k] to a vector in (2.39).

As D increases, the tensor framework allows capturing the time dispersion in the system
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X

Yj1 =
∑
i1

Hj1,i1Xi1

Yj1,j2 =
∑
i1,i2

Hj1,j2,i1,i2Xi1,i2

Yj1,j2,j3 =
∑

i1,i2,i3

Hj1,j2,j3,i1,i2,i3Xi1,i2,i3

Output Y Channel H Input X

Fig. 2.6: The tensor system model and its evolution with the increase in order.

model by increasing the dimension of the delay domain in the channel and the input. Now

assuming that the channel is time variant, the discretized input/output relation can be
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given as [24]:

y[k] =
D∑

d=1

H[k, d]x[k − (d− 1)] + n[k], k = 0, 1, . . . , (N − 1) (2.40)

where each element Hnr,nt [k, d] represents complex channel gain between ntth transmit

and nrth receive antenna for delay d at time instant k. In [24], assuming a cyclic prefix

addition to each input block, (2.40) is expressed in matrix notation as y′ = H′x′ + n′ over

a time block of N symbol durations by appending vectors y[k], x[k − (d − 1)] and n[k]

for different k into vectors y′, x′ and n′ of size N · NR , N · NT and N · NR respectively,

and the channel matrix H[k, d] into a larger matrix H′ of size N ·NR ×N ·NT . However,

appending the vectors implies making the two distinct domains indistinguishable in the

system formulation. Hence a more obvious and intuitive way to represent such a system

would be using tensors where the channel can be expressed as NR × N × NT ×D′ tensor

where D′ = N +D− 1. We do not assume any cyclic prefix addition here. Since output at

index k i.e. y[k] will depend on inputs x[k],x[k − 1], . . . ,x[k − (D − 1)], so corresponding

to output being indexed by N time indices 0, 1, . . . , (N − 1), the input will be indexed by

N + D − 1 time indices −(D − 1), . . . , (N − 1). So in the system model (2.39), we add a

domain of length N time slots to the channel tensor and the output tensor to account for

the time variation and increase the delay domain length to N +D−1 in the channel tensor

and the input tensor. Thereby, our system model becomes :

Y = H ∗2 X + N (2.41)

where all the individual vectors y[k] from (2.40) for k = 0, . . . , (N − 1) form the columns

of the matrix Y of size NR × N . Similarly vectors n[k] from (2.40) form the columns of

the matrix N of size NR ×N and vectors x[d′] where d′ = k− (d− 1) form the columns of

the matrix X of size NT ×D′. All the individual matrices H[k, d] from (2.40) are now sub-

tensors of the order-four channel tensor H of size NR×N×NT ×D′ where H:,k,:,d = H[k, d].

We can see how the tensor system model in (2.39) simply evolved in (2.41) to account for

time variation of the channel as well.
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2.3 Tensor Model applied to practical systems

The model presented in (2.35) can be used to represent a wide variety of systems, not

necessarily confined to communication systems. For instance, the system model used in

[69] for image restoration model is a specific case of the system model in (2.35). To em-

phasize the relevance of the proposed tensor channel model, particularly in multi-domain

communication systems, next we present a few examples of practical systems which can be

modelled using tensors.

2.3.1 MIMO OFDM and Multi-user MIMO OFDM

OFDM is one of the most popular multi-carrier schemes and has been used extensively

with MIMO in 4G standards and Wi-Fi [13]. A conventional model for a MIMO OFDM

system in the frequency domain is given by [24] :

y̌[p] = Ȟ[p, p]x̌[p] +
Nsc−1∑

q=0,q 6=p

Ȟ[p, q]x̌[q] + ň[p] (2.42)

where y̌[p] , x̌[p] and ň[p] are the frequency domain received, transmitted and noise symbol

vectors at sub-carrier p, while Nsc denotes the number of sub-carriers. The model rep-

resented by (2.42) can be obtained from (2.40) by taking the Nsc−point DFT of {y[k]}
where DFT{y[k]} = y̌[p], DFT{n[k]} = ň[p] and DFT{x[k]} = x̌[p]. The frequency

domain NR × NT channel matrix between transmit sub-carrier q and receive sub-carrier

p is Ȟ[p, q], whose individual elements Ȟnr,nt [p, q] can be obtained from the discrete time

varying channel between the nrth receive antenna and ntth transmit antenna, Hnr,nt [k, d]

(based on the DFT of (2.40)) as :

Ȟnr,nt [p, q] =
1

Nsc

Nsc−1∑

k=0

D−1∑

d=0

Hnr,nt [k, d]ej2πk(q−p)/Nsce−j2πqd/Nsc (2.43)

where 1 ≤ nr ≤ NR , 1 ≤ nt ≤ NT and 0 ≤ p, q ≤ Nsc− 1. Using tensors, we can represent

the frequency domain input/output relation in MIMO OFDM of (2.42) as :

Y̌ = Ȟ ∗2 X̌ + Ň (2.44)
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where each vector y̌[p] and ň[p] from (2.42) for p = 0, . . . , Nsc − 1 form the columns

of matrices Y̌ and Ň of size NR × Nsc, and vectors x̌[p] form the columns of matrix

X̌ ∈ CNT×Nsc . The input and output are connected by an order 4 tensor channel Ȟ ∈
CNR×Nsc×NT×Nsc where each element Ȟnr,nt [p, q] from (2.43) is now an element in the channel

tensor as Ȟnr,p,nt,q. We can expand the MIMO OFDM system model to include users as

an additional domain in the model which will lead to a sixth order tensor channel. In

the case of Multi-User (MU) MIMO OFDM, the frequency domain channel matrix is often

represented as an NR×NT matrix corresponding to a specific user and a specific sub-carrier

[142, 143]. To account for Inter-Carrier Interference (ICI) as well, the channel matrix could

be represented as Ȟ[u, p, q] ∈ CNR×NT corresponding to the uth user for transmit sub-carrier

q and receive sub-carrier p. Consider a MU MIMO OFDM downlink system where a base

station is catering to U users having NR receive antennas each. The system model is a

generalization of (2.42) and it is given by

y̌[u, p] = Ȟ[u, p, p]x̌[p] +
Nsc−1∑

q=0,q 6=p

Ȟ[u, p, q]x̌[q]

︸ ︷︷ ︸
ICI for uth user

+ň[u, p] (2.45)

for p, q = 0, . . . , Nsc−1 and u = 1, . . . , U . The entities y̌[u, p] ∈ CNR×1 and ň[u, p] ∈ CNR×1

represent the received signal vector and noise vector on sub-carrier p for the uth user,

respectively. Also, x̌[q] ∈ CNT×1 denotes the transmit vector from the base station at

sub-carrier q, which is given by [144]:

x̌[q] =
U∑

u′=1

M[u′, q]ď[u′, q] (2.46)

where M[u′, q] ∈ CNT×NT denotes the precoding matrix used to transmit data vector

ď[u′, q] ∈ CNT×1 to user u′ on sub-carrier q. Hence the system model of (2.45) becomes

y̌[u, p] =
Nsc−1∑

q=0

Ȟ[u, p, q]
( U∑

u′=1

M[u′, q]ď[u′, q]
)

+ ň[u, p]. (2.47)

Let Ȟ[u, p, q] ·M[u′, q] = G[u, u′, p, q] ∈ CNR×NT denote the equivalent channel between

the transmit data vector ď[u′, q] and the receive vector y̌[u, p], then the input/output
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relation can be written as :

y̌[u, p] =
Nsc−1∑

q=0

U∑

u′=1

G[u, u′, p, q]ď[u′, q] + ň[u, p]. (2.48)

In this case, the output and noise elements can be rearranged into order three tensors

Y̌YY, ŇNN ∈ CU×NR×Nsc . The components y̌
nr

[u, p] and ňnr
[u, p] are mapped to elements of

third order tensors, denoted by Y̌YYu,nr,p and ŇNNu,nr,p respectively. Similarly, the input can be

rearranged as an order three tensor ĎDD ∈ CU×NT×Nsc where ďnt
[u′, q] is mapped to ĎDDu′,nt,q.

Subsequently, the channel can be represented as an order 6 tensor Ǧ ∈ CU×NR×Nsc×U×NT×Nsc

where each element of matrix Gnr,nt [u, u
′, p, q] from (2.47) is mapped to an element Ǧu,nr,p,u′,nt,q

of the sixth order tensor channel. The system model then becomes :

Y̌YY = Ǧ ∗3 ĎDD + ŇNN. (2.49)

The tensor model represented by (2.49) can be considered as an evolution of the common

matrix MIMO model in the space domain only, to a tensor MIMO model that in addition

to space encapsulates also the frequency and user domains.

2.3.2 Cellular Networks

In cellular networks, the cell index can also be incorporated as a domain in the system

model when represented through the tensor framework. In such a case, the channel tensor

will include terms corresponding to the inter-cell interference as well. Assume a K cell

MIMO Interfering Broadcast Channel (IBC) as in [145] where each cell consists of a Base

Station (BS) with M antennas and U users with L antennas each. The channel between

the kth base station and the uth user in the ith cell is denoted by a matrix H(k,i,u) ∈ CL×M .

Let s(k) ∈ CM×1 be the broadcast transmitted signal vector by the kth base station, which

is intended to be received by all the users within its cell. Then the received signal vector

at the uth user in the ith cell can be written as [145]:

y(i,u) =
K∑

k=1

H(k,i,u)s(k) + z(i,u) (2.50)
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where z(i,u) ∈ CL×1 denotes the additive noise vector for the uth user in the ith cell. Notice

that the summation in (2.50) includes not only the desired term (corresponding to k = i),

but also the interference terms received by a user from a base station outside its cell (inter-

cell interference corresponding to k 6= i). The system model in (2.50) can be represented

using the tensor model from (2.35). Consider the transmit signal corresponding to K base

stations with M antennas each as an order 2 tensor S ∈ CM×K where each vector s(k) forms

a column of the matrix S. Similarly the output and noise received by U users in each of

the K cells with L antennas per user can be defined as order 3 tensors YYY ∈ CL×K×U and

ZZZ ∈ CL×K×U respectively such that YYY:,i,u = y(i,u) and ZZZ:,i,u = z(i,u). The channel can be

defined as an order 5 tensor H ∈ CL×K×U×M×K such that H:,i,u,:,k = H(k,i,u). Hence the

system model from (2.50) can be equivalently expressed using the Einstein product as :

YYY = H ∗2 S +ZZZ, (2.51)

where the channel is expressed as an order-5 tensor.

2.3.3 MIMO GFDM and Multi-user MIMO GFDM

GFDM is a block based multi-carrier modulation scheme where each GFDM symbol consists

of complex valued data symbols dk,m distributed overK sub-carriers andM timeslots known

as sub-symbols. Hence each GFDM block consists a total of N = KM complex symbols.

A GFDM modulated signal for a SISO system is given as [18] :

xn =
K−1∑

k=0

M−1∑

m=0

dk,m g[(n−mK)mod N ] exp(j2πkn/K)︸ ︷︷ ︸
gk,m[n]

(2.52)

for n = 0, 1, . . . , N − 1, where gk,m[n] is the shifted version of the prototype filter impulse

response g[n] to the mth sub-symbol which is modulated on the kth sub-carrier. The

modulo N operation makes gk,m[n] a circularly shifted version of gk,0[n]. Collecting the

filter samples in a vector g
k,m

= (gk,m[0], gk,m[1], . . . , gk,m[N − 1])T ∈ CN×1, a transmit

matrix A ∈ CN×N can be defined as A = (g
0,0
, . . . , g

K−1,0
, g

0,1
, . . . , g

0,M−1
, . . . , g

K−1,M−1
).

With d = (d0,0, . . . , dK−1,0, d0,1, . . . , d0,M−1, . . . , dK−1,M−1)T , as the N×1 data vector (2.52)
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can be written as,

x = Ad (2.53)

where the vector x ∈ CN×1 is the transmitted signal corresponding to the GFDM data

block d. After employing cyclic prefix between GFDM blocks to ensure no inter-block

interference, the transmitted samples through a wireless channel are modelled as y =

Cx + n = CAd + n [18] where C ∈ CN×N is the circular channel convolution matrix. It is

obtained from channel impulse response h = [h[0], h[1], . . . , h[N−1]] as Ci,j = h[(i−j)mod N ].

The vectors y,n ∈ CN×1 represent the received signal and noise vectors respectively. At

the receiver, a matrix B ∈ CN×N is used to process the received signal as

d̃ = By = BCA︸ ︷︷ ︸
H

d + Bn = Hd + ñ. (2.54)

Some common options for the matrix B includes a zero forcing, matched filter, or MMSE

receiver matrix [18].

From (2.52) we see that the data symbols in a GFDM system are indexed by two

indices. Hence it is more natural to represent such data as a matrix D ∈ CK×M with

elements Dk,m = dk,m. The transmit filtering operation can be expressed using a tensor

A ∈ CN×K×M , where An,k,m = gk,m[n]. Hence (2.52) can be written in tensor form as

x = A ∗2 D (2.55)

and the received signal can be written as y = C ∗1 A ∗2 D + n. At the receiver, a tensor

B ∈ CK×M×N can be employed to process the received signal as

D̃ = B ∗1 y = B ∗1 C ∗1 A ∗2 D + B ∗1 n = H ∗2 D + N (2.56)

where D̃,N ∈ CK×M denote the output data and noise matrices respectively. The tensor

H ∈ CK×M×K×M is the equivalent channel between the input and output data matrices

which includes a cascade of transmit filter, physical channel and the receive filter.

Such a system model can be further extended to represent a MIMO GFDM system. Let

S independent streams of data be transmitted using K sub-carriers, M sub-symbols and

NT transmit antennas. Let NR denotes the number of receive antennas. The data matrix

D(s) to be transmitted on the sth stream forms a slice of an order-3 input data tensor
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DDD ∈ CS×K×M for s = 1, . . . , S. The transmit filtering generates a vector x(nt) ∈ CN×1

corresponding to each antenna. All such vectors for nt = 1, . . . , NT can be represented as

columns of a matrix X ∈ CNT×N . The transmit filter tensor that generates X can now be

represented using a tensor HT ∈ CNT×N×S×K×M where HTnt,:,s,:,: = A, assuming that same

pulse shape filter is used for all the transmit antennas. If S = NT and transmit data of each

stream is mapped directly to a corresponding antenna, then HT contains zeros when s 6= nt.

The input data tensor is converted into the transmit matrix as X = HT ∗3 DDD. It passes

through the channel HC ∈ CNR×N×NT×N where HCnr,:,nt,: = C(nr,nt) and C(nr,nt) ∈ CN×N

represents the circular channel convolution matrix obtained from channel impulse response

between nrth receive and ntth transmit antenna. Thus the received signal matrix is given

as Y = HC ∗2HT ∗3DDD+V where V ∈ CNR×N is the received noise matrix. With the receive

filter represented using HR ∈ CS×K×M×NR×N , the received signal matrix Y is converted

to the output tensor D̃DD ∈ CS×K×M containing the received data elements on each stream,

sub-carrier and sub-symbol, i.e.

D̃DD = HR ∗2 Y = HR ∗2 HC ∗2 HT︸ ︷︷ ︸
H

∗3DDD +NNN (2.57)

where H ∈ CS×K×M×S×K×M represents the sixth order equivalent channel between the

input and the output tensors and the noise tensor is given by NNN = HR ∗2 V. The system

model developed in (2.57) expresses the output data elements as a linear combination of all

the elements of the input tensor with the help of Einstein product. The coefficients of this

linear combination are encapsulated in the equivalent channel H which thereby contains

all the multi-domain interference terms. A model for such a MIMO GFDM system has

been considered in [26] where the complex symbols corresponding to each sub-carrier, sub-

symbol and antenna for both transmitter and receiver are arranged in single transmit and

receive vectors of size N · NT and N · NR respectively, and channel as a matrix of size

N ·NR×N ·NT . Such a model involves a large matrix where several domain symbols have

been merged and hence the distinction between them has been obscured. However, the

tensor model maintains the identifiability of all the domains.
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The overall system model is represented as

D̃DD = H ∗3 DDD +NNN (2.58)

and it is illustrated in Figure 2.7 which represents the system model for a MIMO GFDM

system with 2 transmit and 2 receive antennas. In Figure 2.7 a matrix is shown as a square

and a higher order tensor as a double-line square with its order written on top right corner.

A third order tensor is represented as a cube with staggered edges. The data corresponding

to each antenna for all the K sub-carriers and M sub-symbols is represented as a K ×M
matrix, where the matrices corresponding to each antenna form slices of the third order

input tensor.

Multi-user MIMO GFDM

The MU MIMO GFDM system model has been presented in [146, 147] where a matrix

channel based approach has been used. Consider an uplink scenario with U users each

with NT transmit antennas, and a base station equipped with NR receive antennas. Let

d(nt,u) ∈ CKM×1 denote the data vector to be transmitted from ntth transmit antenna of

the uth user. The transmitted GFDM symbol is generated as [147]:

x(nt,u) = Ad(nt,u) (2.59)

where x(nt,u) ∈ CKM×1 and A is the KM × KM transmitter matrix as in (2.53). The

received symbol at the base station is given as :

y(nr) =
U∑

u=1

NT∑

nt=1

C(nr,nt,u)x(nt,u) + n(nr) (2.60)

where y(nr) ∈ CKM×1 and C(nr,nt,u) ∈ CKM×KM is the circular convolution matrix generated

from the channel impulse response [147]. The received vector for different antennas can be

concatenated to form :


y(1)

...

y(NR)




︸ ︷︷ ︸
ỹ

=
U∑

u=1




C(1,1,u)A . . . C(1,NT ,u)A
...

. . .
...

C(NR,1,u)A . . . H(NR,NT ,u)A




︸ ︷︷ ︸
C̃

(u)




d(1,u)

...

d(NT ,u)




︸ ︷︷ ︸
d̃

(u)

+




n(1)

...

n(NR)




︸ ︷︷ ︸
ñ

(2.61)
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Fig. 2.7: Tensor system model for MIMO GFDM with 2 antennas (NT = NR = 2).
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where ỹ and ñ are vectors of size K ·M ·NR. Demodulation is performed at the receiver

such that the resulting estimated vector is given by :

d̂ = Wỹ (2.62)

where d̂ ∈ CKMNTU×1 contains the estimated transmitted data from all users. A specific

structure of the matrix W ∈ CKMNTU×KMNR for joint detection and demodulation based on

MMSE filtering is presented in [147]. In essence, the model explained so far is concatenating

the data corresponding to sub-symbols, sub-carrier, antennas and users into a single vector.

A more intuitive representation of such a system keeping the structure of the input and

output intact can be provided by using tensors. The transmitted and estimated data

represented as d(nt,u) ∈ CKM×1 and d̂ ∈ CKMNTU×1 respectively can be set as fourth order

tensors DDD,D̂DD ∈ CK×M×NT×U . The received signal represented earlier by ỹ ∈ CKMNR×1 is

now a third order tensor YYY ∈ CK×M×NR , and the effective channel is a seventh order tensor

H ∈ CK×M×NR×K×M×NT×U . The input/output system relation is :

YYY = H ∗4 DDD +NNN (2.63)

where NNN is the noise tensor of same size as YYY. The joint estimation operation can be

achieved through tensor W ∈ CK×M×NT×U×K×M×NR as :

D̂DD = W ∗3 YYY = W ∗3 H︸ ︷︷ ︸
channel

∗4DDD + W ∗3 NNN︸ ︷︷ ︸
noise

. (2.64)

Hence we can see that the effective channel between DDD and D̂DD, represented by W∗3 H is an

eighth order tensor of sizeK×M×NT×U×K×M×NT×U where all the domains being used

namely sub-carriers, sub-symbols, antennas and users have been distinctly incorporated.

Through all these examples, we can clearly see how the tensor framework facilitates

incorporating multiple domains in the system model in a systematic and intuitive manner

while maintaining the distinction between them. Similarly several other multi-domain

systems such as MIMO Digital Subscriber Line (DSL) [148], MIMO CDMA [149], MIMO

FBMC [27] etc., can be represented using the tensor based system model.
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Chapter 3

Shannon Capacity of the Tensor

Channel

In this chapter, we find the Shannon capacity of higher order tensor channels associated

with any multi-domain communication system. We assume that the channel is known at

the transmitter and receiver, and is deterministic.

3.1 Information Theoretic Notions for Tensors

Throughout this chapter, we assume the noise tensor from (2.35) to be modelled using cir-

cularly symmetric complex Gaussian distribution. For the system model in (2.35), we will

now show that in the presence of circularly symmetric complex Gaussian noise, the input

distribution that achieves the channel capacity is also circularly symmetric complex Gaus-

sian. Thus, the following section presents some results concerning the circularly symmetric

complex Gaussian distributed tensors.

3.1.1 Differential Entropy of circularly symmetric complex Gaussian tensor

A complex random tensor XXX is defined as circular if it is rotationally invariant, i.e. XXX and

YYY = ejαXXX have the same probability distribution for any given real α. A complex Gaussian
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random vector is circularly symmetric if and only if it is zero mean and proper [121]. This

statement can be extended to tensor case also :

Lemma 3. A complex Gaussian random tensor is circularly symmetric if and only if it is

zero mean and proper.

The proof of Lemma 3 directly follows from the definition of proper and circularly

symmetric tensors. The distribution of a circularly symmetric complex Gaussian tensor

XXX ∈ CI1×...×IN with covariance Q is given by (2.25), with M̄ = 0T. Subsequently, the

differential entropy of such a tensor is given by :

H(XXX) = E[− log p
XXX

(XXX)]

= E
[
− log

{
exp (−XXX

∗ ∗N Q−1 ∗N XXX)

(π)I1I2...IN det(Q)

}]

= log
(

(π)I1...IN det(Q)
)

+ (log e)E
[
((XXX∗ ∗N Q−1) ∗N XXX)

]

= log
(

(π)I1...IN det(Q)
)

+ (log e)E
[

tr (XXX ◦ (XXX∗ ∗N Q−1))
]

(from (2.18))

= log
(

(π)I1...IN det(Q)
)

+ (log e) tr (E[XXX ◦XXX∗] ∗N Q−1

︸ ︷︷ ︸
identity tensor

) (from associativity rule, (2.9))

= log
(

(eπ)I1...IN det(Q)
)
. (3.1)

Lemma 4. Let XXX ∈ CI1×...×IN be a zero mean circularly symmetric complex Gaussian

random tensor with covariance tensor Q. Let YYY ∈ CI1×...×IN be another zero-mean random

tensor with same covariance tensor. Then, H(XXX) ≥ H(YYY).

Proof. Let p
XXX

(X) and p
YYY
(Y) be the density functions of XXX and YYY respectively where p

XXX
(X)

is given by (2.25) with M̄ = 0T. Since EXXX[XXX ◦ XXX∗] = EYYY[YYY ◦ YYY∗] = Q, we have H(XXX) =

−EXXX[log p
XXX

(XXX)] = −EYYY[log p
XXX

(YYY)]. Therefore,

H(XXX)−H(YYY) = −EYYY[log p
XXX

(YYY)] + EYYY[log p
YYY
(YYY)]

= EYYY

[
− log

p
XXX

(YYY)

p
YYY
(YYY)

]
≥ EYYY

[
1− p

XXX
(YYY)

p
YYY
(YYY)

] 1

ln 2
= 0

⇒ H(XXX) ≥ H(YYY).
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Lemma 4 essentially implies that for a given covariance tensor, a circularly symmetric

complex Gaussian distribution is the entropy maximizer. Any non-Gaussian or non-circular

input distribution will lead to a lower entropy.

3.1.2 Mutual Information

We now derive the output covariance and pseudo-covariance for the system model defined

in (2.35) in terms of the input and noise covariances and pseudo-covariances. For (2.35),

the output covariance tensor is given by

QYYY = cov(YYY) = E[YYY ◦YYY∗] = E[(H ∗N XXX +NNN) ◦ (H∗ ∗N XXX
∗ +NNN

∗)] (3.2)

QYYY = E[(H ∗N XXX) ◦ (H∗ ∗N XXX
∗)]︸ ︷︷ ︸

Main term

+ E[NNN ◦NNN∗]︸ ︷︷ ︸
Noise Covariance

+E[(H ∗N XXX) ◦NNN∗] + E[NNN ◦ (H∗ ∗N XXX
∗)]︸ ︷︷ ︸

cross terms

(3.3)

Assuming XXX and NNN are zero mean and independent, the cross terms will be zero. Based on

the commutativity rule (2.10), we get H∗ ∗N XXX
∗ = XXX

∗ ∗N (H∗)T = XXX
∗ ∗N HH . Using the

associativity rule (2.9), we get :

QYYY = E[(H ∗N XXX) ◦ (XXX∗ ∗N HH)] + QNNN

= (H ∗N E[XXX ◦XXX∗] ∗N HH) + QNNN

= H ∗N QXXX ∗N HH + QNNN (3.4)

where QXXX and QNNN are the input and noise covariance tensors respectively. Similarly, the

output pseudo-covariance tensor can be derived as:

Q̃YYY = E[YYY ◦YYY] = E[(H ∗N XXX +NNN) ◦ (H ∗N XXX +NNN)] = H ∗N Q̃XXX ∗N HT + Q̃NNN (3.5)

where Q̃XXX and Q̃NNN are the input and noise pseudo-covariance tensors respectively. Since

we consider noise to be circularly symmetric, its pseudo-covariance is 0T. Further, if input

pseudo-covariance is also 0T, then the output pseudo-covariance will also be 0T. Subse-

quently, the following lemma can be established:

Lemma 5. If XXX ∈ CI1×I2×...×IN and NNN ∈ CJ1×...×JM are independent circularly sym-

metric complex Gaussian tensors, then YYY = H ∗N XXX + NNN for any deterministic tensor

H ∈ CJ1×J2×...×JM×I1×I2×...×IN , is also circularly symmetric complex Gaussian.



3 Shannon Capacity of the Tensor Channel 56

Proof. Since XXX, and NNN are circularly symmetric Gaussian tensors, from Lemma 3 we know

they are zero mean and proper, i.e.

E[XXX] = 0T, E[NNN] = 0T, Q̃XXX = 0T, and Q̃NNN = 0T. The tensor YYY will also be Gaussian, and

in order to show that it would be circularly symmetric, we need to show that it has zero

mean and zero pseudo-covariance. Hence, we have

E[YYY] = H ∗N E[XXX] + E[NNN] = 0T. (3.6)

Also, the pseudo-covariance of YYY from (3.5) is given as:

Q̃YYY = H ∗N 0T ∗N HT + 0T = 0T (3.7)

which concludes the proof.

Since the input tensor XXX and the noise tensor NNN are assumed independent, we can write

the mutual information between the input and output tensors as :

I(XXX;YYY) = H(YYY)−H(YYY|XXX) (3.8)

= H(YYY)−H(NNN) (3.9)

= H(YYY)− log ((eπ)J1J2···JM det(QNNN)). (3.10)

Based on Lemma 4 and the received covariance derived in (3.4), we can write :

H(YYY) ≤ log
(

(eπ)J1J2···JM det(H ∗N QXXX ∗N HH + QNNN)
)

(3.11)

⇒ I(XXX;YYY) ≤ log

[
det (H ∗N QXXX ∗N HH + QNNN)

det(QNNN)

]
(3.12)

where equality is achieved only if YYY is circularly symmetric Gaussian distributed.

3.2 Capacity of a Fixed Tensor Channel

In order to find the Shannon capacity of the tensor channel, it is required to maximize

the mutual information between the input and the output tensors over input distributions

under possible constraints. We assume that the tensor channel is known and the noise

tensor is zero-mean circularly symmetric complex Gaussian distributed having independent

components with variance σ2, and hence the noise covariance tensor is given by QNNN = σ2IM .
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For simplicity, we assume σ2 = 1. Now let us consider the mutual information inequality of

(3.12) where equality is achieved only if YYY is circularly symmetric Gaussian distributed. In

the proposed tensor system model (2.35), if NNN is zero-mean circularly symmetric complex

Gaussian, then using Lemma 5 implies that YYY will also be zero-mean circularly symmetric

complex Gaussian if XXX is so. Hence for maximizing the mutual information, we take XXX as

zero-mean circularly symmetric complex Gaussian with covariance QXXX = Q. Thus, with the

noise covariance tensor as identity tensor IM , we get

I(XXX;YYY) = log [ det (H ∗N Q ∗N HH + IM)] (3.13)

and the capacity is given by,

max
Q

(
log [ det (H ∗N Q ∗N HH + IM)]

)

s.t. f(Q) ≤ 0, Q � 0.
(3.14)

where the inequality constraint f(Q) ≤ 0 can represent a family of power constraints. At

this point, it should be noted that for any Hermitian positive semi-definite tensor A ∈
CI1×...×IN×I1×...×IN , log[det(A)] is a concave function. The proof has been provided in

Appendix B.2. Thus the above optimization is a maximization of a concave function

subject to a family of power constraints.

3.2.1 Family of Power Constraints

In a practical system, the power constraints on the transmit symbol may span multiple

domains. For instance, in a transmission scheme employing the space, time, and frequency

domains, instead of imposing power across the tensor symbol, individual power constraint

might apply on each antenna, or each antenna and time slot, or each antenna, time slot

and frequency bin. Using the tensor framework, we have the flexibility of mathematically

representing a family of such power constraints.

First we introduce some notations for ease of understanding. Let the sequence of indices

(i1, i2, . . . , iN) be denoted as i. Let ic denotes the sequence of indices indicating tensor

symbol elements under power constraint and let ir represents the the indices in i which are

not in ic. For example, in an order-5 tensor of size I1× I2× I3× I4× I5, the sequence of all
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indices is denoted as i = (i1, i2, i3, i4, i5). If the domains which are under individual power

constraints are 1 and 3, then ic = (i1, i3) and ir = (i2, i4, i5). With this choice of notations,

we will express
∑I1

i1=1

∑I3
i3=1 as

∑
ic

. Notations corresponding to the cases where either ic

or ir is empty are explained in Table 3.1.

Table 3.1: Simplified notation for indices.

Cases
∑

ir
Qi,i denotes Pic denotes Interpretation

ic is empty and ir = i
∑

i Qi,i = tr(Q) P sum power constraint

ir is empty and ic = i Qi1,...,iN ,i1,...,iN Pi1,...,iN per element constraints

Using these simplified notations, we will now formulate a family of optimization prob-

lems to find the tensor channel capacity which can cover different types of power constraints,

as follows :

max
Q

(
log [ det (H ∗N Q ∗N HH + IM)]

)
(3.15)

s.t.
∑

ir

Qi,i ≤ Pic ∀ic, (3.16)

Q � 0. (3.17)

To illustrate how the above framework can represent a large variety of constraints, let us

consider a few specific cases. The case ic = i, hence ir is empty, will represent the situation

where we have per element power constraints with Pic = Pi1,...,iN and (3.16) becomes :

Qi1,...,iN ,i1,...,iN ≤ Pi1,...,iN , ∀i1, i2, . . . , iN . (3.18)

When ic = iK , where K ≤ N , we have the case with per domain element constraint for the

Kth domain where each element iK has a different budget of PiK , i.e. Pic = PiK and (3.16)

becomes :
I1∑

i1=1

. . .

IK−1∑

iK−1=1

IK+1∑

iK+1=1

. . .

IN∑

iN=1

Qi1,...,iK ,...,iN ,i1,...,iK ,...,iN ≤ PiK , ∀iK . (3.19)

Now let us assume we have power constraints on two domains K and L such that K <

L ≤ N . Then ic = (iK , iL) and ir = (i1, . . . , iK−1, iK+1, . . . iL−1, iL+1, . . . , iN). In this case
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Pic = PiK ,iL and (3.16) becomes :

I1∑

i1=1

. . .

IK−1∑

iK−1=1

IK+1∑

iK+1=1

. . .

IL−1∑

iL−1=1

IL+1∑

iL+1=1

. . .

IN∑

iN=1

Qi1,...,iK ,...,iL,...,iN ,i1,...,iK ,...,iL,...,iN ≤ PiK ,iL , ∀(iK , iL).

(3.20)

Similarly, we can represent constraints on any number of domains. Lastly, let us assume

that ic is empty, hence ir = i and the power constraint translates to the sum power

constraint, i.e. Pic = P and we get :

I1∑

i1=1

. . .

IN∑

iN=1

Qi1,...,iN ,i1,...,iN = tr(Q) ≤ P. (3.21)

All such power constraints are linear, and the objective function in (3.15) is concave. Note

that the feasible set for this optimization problem is the set of positive semi-definite tensors

satisfying the given power constraints which are linear. Hence the feasible set is convex.

Thereby (3.15), (3.16) and (3.17) represent a family of convex optimization problems which

can be solved using the KKT conditions [150]. Furthermore, since Pic are finite and non-

negative, an obvious choice of the covariance tensor belonging to the feasible set could

be a pseudo-diagonal tensor with non-negative entries such that they satisfy the power

constraints. So the feasible set is a non-empty convex set. Hence by Slater’s condition

[150], strong duality holds and the optimal solution always exist. Next we will find the

optimal solution using the KKT conditions. A description of the KKT conditions for

tensors can be found in Appendix A.1.

3.2.2 Solution using KKT conditions

Let M � 0 be the Lagrange multiplier tensor for the positive semi-definite constraint from

(3.17) of size I1× . . . IN × I1× . . . IN . Let µic ≥ 0 for all ic denote the Lagrange multipliers

corresponding to all the linear constraints from (3.16). Then the Lagrangian functional can

be defined as :

L(Q, {µic},M) = − log[det(H∗NQ∗NHH+IM)]+
∑

ic

µic(
∑

ir

Qi,i−Pic)−tr(M∗NQ). (3.22)
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For any optimization problem, the Lagrangian functional is a function of the objective

function, and the constraint functions along with their respective Lagrange multipliers. For

a detailed explanation regarding the Lagrangian, refer to Appendix A.1. We arrange the

values {µic} in a pseudo-diagonal tensor B of same size as the input covariance such that its

non-zero entries are Bi,i = µic ,∀ir. For instance, if ic = (i1, i2), then Bi1,...,iN ,i1,...,iN = µi1,i2

for all (i3, . . . , iN). Then we get
∑

ic

µic ·
∑

ir

Qi,i =
∑

ic

∑

ir

µic · Qi,i (3.23)

=
∑

i

Bi,i · Qi,i (3.24)

= tr(B ∗N Q). (3.25)

Based on (3.25), we can re-write the Lagrangian from (3.22) as :

L(Q, {µic},M) = − log[det(H ∗N Q ∗N HH + IM)]−
∑

ic

µicPic + tr(B ∗N Q)− tr(M ∗N Q). (3.26)

The first KKT condition is obtained by setting the gradient of the Lagrangian with respect

to Q to 0T. In (3.26), the gradient of the log[det(·)] term can be found using (2.27), and the

gradient of the trace terms can be found using (2.28). Thus, the gradient of the Lagrangian

with respect to Q can be written as :

∇
Q
L = −HH ∗M (H ∗N Q ∗N HH + IM)−1 ∗M H + B−M. (3.27)

Equating ∇
Q
L from (3.27) to 0T, we get the first KKT condition as

HH ∗M (H ∗N Q ∗N HH + IM)−1 ∗M H = B−M. (3.28)

The KKT equations also include complementary slackness condition corresponding to each

constraint and its associated Lagrange multiplier [150]. For the linear constraints in (3.16),

the definition of complementary slackness leads to :

µic(
∑

ir

Qi,i − Pic) = 0, ∀ic. (3.29)

For the constraint in (3.17), based on the approach taken for semi-definite programming

[150], the complementary slackness can be written as tr(M ∗N Q) = 0. Since M,Q � 0,
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we have tr(M ∗N Q) = 0 ⇒ M ∗N X = 0T (See Lemma 9 from Appendix A.1). Also, since

tr(M ∗N Q) = tr(M ∗N Q1/2 ∗N Q1/2) = tr(Q1/2 ∗N M ∗N Q1/2), the complementary slackness

for the positive semi-definite constraint is written as :

Q1/2 ∗N M ∗N Q1/2 = 0T. (3.30)

The tensor KKT conditions for the problem in (3.15)-(3.17) are given by (3.28), (3.29) and

(3.30).

Notice that all the entries of B, i.e µic , will be strictly greater than 0 at optimum because

the inequality constraint must be met with equality at optimum. So B is a positive definite

tensor, i.e. B � 0 and hence invertible. Also since µic > 0, (3.29) can be written as :
∑

ir

Qi,i − Pic = 0, ∀ic. (3.31)

Let us define a tensor H̄ ∈ CI1×...×IN×I1×...×IN and its tensor EVD as :

H̄ , B−1/2 ∗N (HH ∗M H) ∗N B−1/2 = V ∗N D̄ ∗N VH . (3.32)

Theorem 1 from [151] presents a general framework in a matrix setting to solve equations

originating from KKT conditions for MIMO input covariance optimization. By extending

it to tensor case, we can solve (3.28) and (3.30) subject to Q � 0,M � 0 and B � 0 and

obtain the optimal Q. A detailed solution of the KKT equations in the tensor framework

has been included in Appendix A.2. Based on the results from Appendix A.2, the optimal

Q is given by

Qopt = B−1/2 ∗N V ∗N
(
IN − D̄−1

)+

∗N VH ∗N B−1/2 (3.33)

where D̄ and V are obtained through the tensor EVD of H̄ from (3.32) and (Z)+ de-

notes a pseudo-diagonal tensor whose pseudo-diagonal entries are all non-negative, i.e.
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(Zi1,...,iN )+ = max{0,Zi1,...,iN}. Hence we can calculate the capacity as :

C = log [ det (H ∗N Qopt ∗N HH + IM)]

= log [ det (Qopt ∗N HH ∗M H + IN)]

= log [ det(B−1/2 ∗N V ∗N (IN − D̄−1)+ ∗N VH ∗N B−1/2 ∗N HH ∗M H + IN)]

= log [ det(V ∗N (IN − D̄−1)+ ∗N VH∗N
B−1/2 ∗N HH ∗M H ∗N B−1/2

︸ ︷︷ ︸
H̄

+IN)] (using (2.20), (3.32))

= log [ det(V ∗N ((IN − D̄−1)+ ∗N D̄ + IN) ∗N VH)]. (3.34)

Since the determinant is the product of eigenvalues, we get :

C =
∑

i1,...,iN

log((1− d̄−1
i1,...,iN

)+ · d̄i1,...,iN + 1)

=
∑

i1,...,iN

(log(d̄i1,...,iN ))+ (3.35)

where d̄i1,...,iN are the non-zero eigenvalues of H̄. Note that the optimum covariance tensor

from (3.33) depends not only on the eigenvalues, but also the eigentensors of H̄. Hence

ensuring an optimum input covariance leads to not only an optimum power allocation

scheme, but also a joint multi-domain precoding at the transmitter which is required for

achieving capacity.

In order to find the optimal input covariance, we need to find the tensor B containing

the Lagrange multipliers. We will now simplify the expression for covariance under high

SNR assumption, and find the elements of B. Further, we will develop an algorithm to

approximate the optimum covariance and capacity using (3.31), (3.33) and (3.35) for any

SNR value.

Assuming high SNR, we can ignore ()+ and write (3.33) as:

Q = B−1/2 ∗N
(
IN − V ∗N D̄−1 ∗N VH︸ ︷︷ ︸

H̄−1

)
∗N B−1/2

= B−1/2 ∗N (IN −B1/2 ∗N (HH ∗M H)−1 ∗N B1/2) ∗N B−1/2 (using (3.32))

= B−1 − (HH ∗M H)−1 (3.36)
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and (3.34) as :

C = log [ det(V ∗N ((IN − D̄−1) ∗N D̄ + IN) ∗N VH)]

= log [ det(V ∗N D̄ ∗N VH)] = log [ det(H̄)]

= log [ det(B−1/2 ∗N (HH ∗M H) ∗N B−1/2)]

= log [ det(B−1 ∗N (HH ∗M H))] (using (2.21))

= log [ det(B−1) · det(HH ∗M H)]. (3.37)

It is important to note that the channel capacity and optimum input covariance can be ex-

actly calculated using (3.37) and (3.36) only at high SNR. Under high SNR approximation,

we can find the elements of B by substituting Q from (3.36) into (3.31) to get :
∑

ir

(B−1 − (HH ∗M H)−1)i,i = Pic ∀ic (3.38)

∑

ir

(B−1)i,i −
∑

ir

((HH ∗M H)−1)i,i = Pic ∀ic. (3.39)

Let Nir
denote the number of values that ir can take. For example, if ir = (i1, . . . , iN),

then Nir
= I1 · · · IN , if ir = (iK , iL), then Nir

= IK · IL. Since B contains µic on its

pseudo-diagonal with each µic appearing exactly Nir
times, from (3.39) we can write :

Nir
· µ−1

ic
−
∑

ir

((HH ∗M H)−1)i,i = Pic ∀ic (3.40)

µic =
Nir

Pic +
∑

ir
((HH ∗M H)−1)i,i

∀ic (3.41)

which gives us all the elements of B.

The proposed solution in (3.41), (3.37) and (3.36) assumes high SNR as we have ignored

the ()+ operation. To extend the solution for any SNR, we now present a scaling approach

to approximate the input covariance tensor at any SNR setting, and verify that the resulting

covariance satisfies the constraints. If the covariance Q obtained from (3.36) has negative

eigenvalues, then we force the negative eigenvalues of Q to be zero. If the tensor EVD

of Q is given as U ∗N D ∗N UH , the pseudo-diagonal elements of Q can be written as,

Qi,i =
∑

i′ Ui,i′Di′,i′U
H
i′,i. Thus the brute force approach of setting the negative values in D

to zero can result into larger values at the pseudo-diagonal of Q. This in turn can make
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the solution infeasible, i.e. the power constraint Pic from (3.16) might not be met and we

may get a different power allotted say P ′ic where P ′ic ≥ Pic . Note that

P ′ic =
∑

ir

Qi,i, ∀ic. (3.42)

So we scale the resulting Q using another pseudo-diagonal tensor S such that the power

constraints remain satisfied, i.e. Qscaled = S ∗N Q ∗N SH where the pseudo-diagonal entries

of scaling tensor S are given as :

Si,i =

√
Pic
P ′ic

, ∀ir (3.43)

such that the pseudo-diagonal entries of Qscaled become :

(Qscaled)i,i = Qi,i ·
Pic
P ′ic

. (3.44)

Hence, based on (3.42) we have
∑

ir

(Qscaled)i,i =
∑

ir

Qi,i ·
Pic
P ′ic

= Pic . (3.45)

Thus the choice of scaling operation ensures that Qscaled satisfies the power constraints. A

similar technique has been used for matrix-field water-filling in [102] where the diagonal

elements of the covariance matrix are scaled to ensure that the resulting matrix remains pos-

itive semi-definite while satisfying the power constraints. Such a scaling approach simplifies

the computation of the input covariance but also makes it suboptimal and hence leads to

an approximation of the capacity. However, this approximation gets better as SNR grows

and is exact at sufficiently high SNR. This is because a sufficiently high SNR ensures that

all the eigenvalues of the input covariance are non-negative, and thus the covariance tensor

is positive semi-definite without any requirement of scaling. The procedure is systemat-

ically presented in Algorithm 1. Finding the capacity is a convex optimization problem,

hence can be solved using software tools such as CVX [152], which can be compared with

the capacity obtained via the approximation in Algorithm 1 to assess the validity of the

proposed approach. We present such a comparison in the numerical examples later on in

this chapter (Figure 3.7) to illustrate the accuracy of the proposed approach.
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Algorithm 1 Finding the Input Covariance tensor

1: Input H, Pic , Nir

2: Initialize flag ← 0
3: Find pseudo-diagonal elements of B by calculating µic using (3.41)
4: Calculate Q using (3.36).
5: Perform tensor EVD of Q = U ∗N D ∗N UH

6: for all i1, i2, . . . , iN
7: if Di1,...,iN < 0
8: Di1,...,iN ← 0
9: flag ← 1

10: end if
11: end for
12: if flag == 1
13: Update Q← U ∗N D ∗N UH

14: Calculate P ′ic using (3.42)
15: Find pseudo-diagonal tensor S using (3.43)
16: Update Q← S ∗N Q ∗N SH

17: end if
18: return Q

3.2.3 Complexity Analysis of Algorithm 1

Algorithm 1 is used to approximate the optimal input covariance tensor using (3.36) and

a scaling process to ensure a feasible solution. For a given channel, the algorithm requires

fixed computational resources and can be deployed off line. In this section, we analyze the

computational resources required to execute this algorithm. Since Algorithm 1 requires

extensive tensor operations which scale with the tensor size, using cloud services to imple-

ment it can be a suitable option. Several cloud services provide parallel and distributed

computing infrastructures for faster and efficient computations [153]. Thus depending on

the platform and the number of multi-core processors being employed, the time of execution

of the algorithm can significantly differ. However, irrespective of the computing infrastruc-

ture available, a suitable measure of the computational complexity is the required number

of mathematical operations to be performed in a given algorithm, as used in [154, 155].

Hence, here we analyze the computational complexity of Algorithm 1 in terms of the re-

quired number of flops for a given step as discussed in section 2.1.7.
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Assume channel H is of size J1× . . .×JM × I1× . . .× IN and Nic
denotes the number of

values that ic can take. In Algorithm 1, the first two steps are input initialization. Step 3

requires computing the Einstein product over the common M modes of HH and H, which

based on the discussion in section 2.1.7 has a complexity of O((I1 · · · IN)2(J1 · · · JM)). Fur-

ther within step 3, it is required to find the inverse of HH ∗MH which is an order 2N tensor.

The inverse of an order 2N tensor can be calculated using the HOBG method described in

[48] or NM where each iteration has a computational cost of O((I1 · · · IN)3) as discussed

in section 2.1.7. It is important to note that the complexity of such iterative methods

depends on the number of iterations, which in turn depends on the desired accuracy level

set to achieve convergence. Furthermore, parallel processing can be employed to reduce

the time complexity of such operations as discussed in Appendix B.7. Also, non-iterative

methods such as Gauss elimination based on triangular decomposition of tensors [70] can

be used for tensor inversion which requires a computational complexity of O((I1 · · · IN)3).

Hence, the worst case complexity of tensor inversion without any use of parallel processors

is O((I1 · · · IN)3). Eventually step 3 calculates each µic using (3.41) which requires Nir
+ 1

additions and 1 division, and this needs to be done for all the Nic
values that ic can take.

Thus this step requires (Nir
+ 2) · Nic

flops and its complexity is O(Nir
· Nic

). Note that

since Nir
·Nic

= I1 · · · IN , the complexity of finding µic can be written as O(I1 · · · IN). Step

4 which finds Q using (3.36) subtracts an order 2N tensor from a pseudo-diagonal ten-

sor. Since the number of pseudo-diagonal elements are I1 · · · IN , step 4 performs I1 · · · IN
subtractions and thus has a complexity of O(I1 · · · IN). Further step 5 finds the tensor

EVD of an order 2N tensor Q. The complexity of finding the EVD of a tensor of size

I1× . . .×IN×I1× . . .×IN using the Einstein product properties is O((I1 · · · IN)3) [46]. Al-

gorithms which generalize the matrix eigen decomposition approaches to tensor EVD using

the Einstein product properties can be found in [70, 69], [46, Algorithm C.2] . Steps 6 to 11

essentially perform the operation max(0,Di1,...,iN ) on each of the I1 · · · IN pseudo-diagonal

elements of the tensor D. Hence it has a complexity of O(I1 · · · IN). Step 12 is just a single

scalar comparison, and step 13 updates Q using the Einstein product between tensors of

order 2N with size I1× . . .× IN × I1× . . .× IN for which the complexity is O((I1 · · · IN)3).
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Step 14 finds P ′ic for all the Nic
values of ic. Thus it performs Nir

additions for each of the

Nic
values that ic can take. Hence step 14 requires Nir

·Nir
flops and thus has a complexity

of O(Nir
·Nir

) which is same as O(I1 · · · IN). Step 15 calculates the scaling factor for all ic,

thus performs Nic
divisions and square roots. Hence it has a complexity of O(Nic

). Finally,

step 16 updates Q using the Einstein product between tensors of order 2N and thus has a

complexity of O((I1 · · · IN)3).

Table 3.2: Computational complexity of Algorithm 1.

Step Operation Complexity
3 Find HH ∗M H O((I1 · · · IN)2 · J1 · · · JM)
3 Find (HH ∗M H)−1 O((I1 · · · IN)3)
3 Find µic using (3.41) O(I1 · · · IN)
4 Find Q using (3.36) O(I1 · · · IN)
5 EVD of Q O((I1 · · · IN)3)

6-11 Check D O(I1 · · · IN)
13 Update Q O((I1 · · · IN)3)
14 Find P ′ic using (3.42) O(I1 · · · IN)

15 Find S using (3.43) O(Nic
)

16 Update Q O((I1 · · · IN)3)

Table 3.2 summarizes the step by step computational complexity cost of Algorithm 1.

The first column in Table 3.2 indicates the step number from Algorithm 1, second column

describes the operation and third column states the complexity. We can observe that all

the entries in complexity column of Table 3.2, have a complexity order of 3 (cubic) or less

in I1 · · · IN except the first operation which has a complexity of O((I1 · · · IN)2 · J1 · · · JM).

Hence on summing all the entries of the third column in Table 3.2, we see that the overall

complexity of Algorithm 1 is given as O((I1 · · · IN)2 · J1 · · · JM) +O((I1 · · · IN)3). Further

in the case when J1 · · · JM ≤ I1 · · · IN , the complexity of Algorithm 1 can be written as

O((I1 · · · IN)3).

Note that the steps in Algorithm 1 with complexity of O((I1 · · · IN)3) primarily rely on

the Einstein product operation. However, since this algorithm can be executed on multi-

core computer systems, the time complexity of performing all the operations in Einstein

product can be significantly reduced by making use of parallel processing. This can help
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reduce the time complexity of operations such as tensor inversion and EVD. Appendix

B.7 includes details on parallel implementation of the Einstein product and the NM. The

steps in Algorithm 1 which have a complexity of O(I1 · · · IN) or less (step 15), can also

be performed faster using parallel processors. For example in step 3, all the µic of (3.41)

for different ic can be calculated simultaneously on parallel processors. Similarly all the

I1 · · · IN operations in steps 4 and 6-11, can be performed simultaneously. In steps 14

and 15, the P ′ic from (3.42) and the scaling factors from (3.43) for all the ic can also be

computed simultaneously. Hence Algorithm 1 can be suitably adapted to run on parallel

processing multi-core computer systems depending on the number of processors available.

Several computing platforms such as MATLAB provide support for parallel implementation

of such algorithms. A more detailed study into the parallelization of the proposed algorithm

for faster time complexity has been left for future investigation.

3.2.4 Comparing different constraints

Let the set of all possible positive semi-definite tensors of size I1× . . .× IN × I1× . . .× IN
be represented by Q. Let the feasible set for the optimization problem in (3.15)-(3.17) for

two different settings ic1 and ic2 be Q1 and Q2 respectively. Assume ic1 is a subsequence of

ic2. For instance, let ic2 = (i1, i2, i3), and ic1 = (i1, i2). So Q1 represents a set of all positive

semi-definite tensors Q which satisfies
∑

i3,i4,...,iN

Qi1,...,iN ,i1,...,iN ≤ Pi1,i2 ∀(i1, i2) (3.46)

and Q2 represents a set of all positive semi-definite tensors Q which satisfies
∑

i4,...,iN

Qi1,...,iN ,i1,...,iN ≤ Pi1,i2,i3 ∀(i1, i2, i3). (3.47)

In (3.46), the first two domains are under power constraints, whereas in (3.47), the power

constraints span the third domain as well with
∑

i3
Pi1,i2,i3 = Pi1,i2 . Summing over i3 in

(3.47) gives (3.46). Hence every Q that satisfies (3.47) will also satisfy (3.46), showing that

the set of Q satisfying (3.47) is a subset of the set of Q satisfying (3.46), i.e. Q2 ⊆ Q1.

Let the optimal value of the objective function in the optimization problem in (3.15)-

(3.17) for set Q1 be C1 and for Q2 be C2. From the basic principles of optimization [150], it
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is known that a globally optimal point is also locally optimal. Hence if C1 is the maximum

of the objective function over the set of constraints Q1, then C1 is also the maximum of

the objective function over Q2 since Q2 ⊆ Q1. Hence C2 ≤ C1, where equality is possible

if the optimal Q lies in the set Q2. This holds for any configuration of ic1 and ic2 so far

as ic1 is a subsequence of ic2. Essentially, as more domains are put under constraints, the

feasible set for the optimization problem shrinks, possibly lowering the capacity.

For instance, consider a 2× 2 input where the two domains are antenna and time slots.

Let the capacity achieved under total power constraint P , be C1. Let the capacity achieved

under per antenna power constraints of P1 for antenna 1 and P2 for antenna 2 such that

P1 + P2 = P , be C2. Since the set of feasible solution with per antenna power constraints

is a subset of the set of feasible solution with total power constraint we have C2 ≤ C1.

Similarly, capacity achieved under power constraints per element, i.e. P11, P12, P21, P22

where Pi,j represents power budget on the ith antenna and the jth time slot, such that

P11 + P12 = P1, P21 + P22 = P2, be C3, then C3 ≤ C2. This has also been shown in [101]

for a MIMO channel where capacity under per antenna power constraint is always smaller

than the capacity under sum power constraint.

3.2.5 Capacity under sum power constraint

Under the sum power constraint of (3.21), ic is empty and hence there is a single Lagrange

multiplier µ associated with the constraint (3.21). Hence the tensor B, which contains the

Lagrange multipliers on its pseudo-diagonal, will be a scaled identity tensor. Substituting

B = µIN in (3.32) gives H̄ = µ−1 · (HH ∗M H) = V ∗N (µ−1 ·D) ∗N VH , and subsequently

(3.33) becomes

Q = V ∗N
(
µ−1IN −D−1

)+

∗N VH . (3.48)

Substituting d̄i1,...,iN = di1,...,iN/µ in (3.35) gives :

C =
∑

i1...,iN

log
[( 1

µ
− 1

di1,...,iN

)+

· di1,...,iN + 1
]

(3.49)

=
∑

i1,...,iN

(
log
(di1,...,iN

µ

))+

(3.50)
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where a+ denotes max{0, a}, di1,...,iN are the non-zero eigenvalues of HH ∗M H and 1/µ is

chosen to satisfy (3.31):

tr(Q) =
∑

i1,...,iN

( 1

µ
− 1

di1,...,iN

)+

= P. (3.51)

The optimum covariance derived in (3.48) is a generalization of the water-filling solution

for the MIMO matrix channel to multiple domains. Hence under sum power constraint, we

compute the tensor EVD of HH ∗M H to obtain V and D. Further, we use (3.51) to find

µ and subsequently use (3.49) to find the capacity.

3.2.6 Multiplexing Gain

We can characterize the capacity contribution by each constrained domain separately and

the multiplexing gain under various power constraints. For a fixed tensor channel, the

tensor B−1 is pseudo-diagonal with entries µ−1
ic

, hence det(B−1) =
∏
i

µ−1
ic

=
∏
ir

(
∏
ic

µ−1
ic

) =

(∏
ic

µ−1
ic

)Nir
. For instance, assume that out of N input domains, elements of the first

domain are under individual power constraints such that ic = (i1) and ir = (i2, . . . , iN),

then

det(B−1) =
∏

i1,i2,...,iN

µ−1
i1

=
(∏

i1

µ−1
i1

)I2·I3···IN
. (3.52)

Also det(HH ∗M H) =
∏
i

di where di are eigenvalues of HH ∗M H. Hence using (3.37) we

have

C = log
[∏

i

di
µi1

]

=
∑

i

log
di
µi1

=
∑

i1

( ∑

i2,...,iN

log
di
µi1

)
=
∑

i1

Ci1 (3.53)

where Ci1 =
∑

i2,...,iN
log

di
µi1

can be seen as the contribution of the i1th element of the

constrained domain to the overall capacity. For instance if the first domain refers to space
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domain, then Ci1 is the capacity contribution of the i1th antenna. For any general case

where ic contains the indices of domains under constraint, we can write :

C = log
[∏

ic,ir

di
µic

]
=
∑

ic

(∑

ir

log
di
µic

)
=
∑

ic

Cic (3.54)

where Cic =
∑

ir
log

di
µic

can be seen as the contribution of the icth element of the con-

strained domains to the overall capacity. Substituting µic from (3.41) into Cic , we can

further write :

Cic(Pic) =
∑

ir

log
di
µic

(3.55)

=
∑

ir

log
(
di ·

Pic +
∑

ir
((HH ∗M H)−1)i,i

Nir

)
(3.56)

=
∑

ir

[
log
(
Pic +

∑

ir

((HH ∗M H)−1)i,i

)
+ log

( di
Nir

)]
. (3.57)

The multiplexing gain provided by a channel is defined as lim
SNR→∞

C(SNR)

log SNR
[156]. We can

write the multiplexing gain provided by icth constrained domain as :

χic = lim
Pic
→∞

Cic(Pic)

log(Pic)
(3.58)

Since for large Pic , we have log
(
Pic +

∑
ir

((HH ∗M H)−1)i,i

)
≈ log(Pic), and using (3.58)

and (3.57) we get

χic = lim
Pic
→∞

∑
ir

[
log
(
Pic

)
+ log

( di
Nir

)]

log(Pic)
(3.59)

= lim
Pic
→∞

Nir
log(Pic) +

∑
ir

log
( di
Nir

)

log(Pic)
(3.60)

= Nir
. (3.61)

In general, since Nir
represents the product of dimensions of the domains not under

individual constraints, it increases exponentially in the number of unconstrained domains.

As a result, for tensor channels the multiplexing gain increases exponentially with the

increase in the number of unconstrained domains. Note that in deriving the multiplexing
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gain, for simplicity we have assumed that all the eigenvalues of HH ∗M H are non-zero,

which may not always be the case. In general, the capacity is a function of the given

channel’s specific singular values, some of which may be zero. In that case depending on

which and how many singular values are zero, the multiplexing gain will be different and

may not increase exponentially with increase in domains.

Based on (3.61), the multiplexing gain achieved under sum power constraint is I1 · · · IN .

However (3.61) assumes that inverse of (HH ∗M H) exists which will be the case if all its

eigenvalues are non-zero. In case the inverse does not exist, then a minimum norm least

square solution can be adopted which aims to find a tensor T which represents the pseudo-

inverse of (HH ∗M H) such that ||(HH ∗M H) ∗N T − IN ||2 is minimized [48]. For this

purpose, a higher order bi-conjugate gradient method is described in [48]. In such a case,

the multiplexing gain would be lower than I1 · · · IN and would depend on the number of

non-zero eigenvalues of (HH ∗M H). So next we analyze the multiplexing gain, associated

with a tensor channel under sum power constraint. Note that the number of non-zero

eigenvalues of (HH ∗M H) will be same as the number of non-zero singular values of H.

Let I1 · I2 · · · IN = I and J1 · J2 · · · JM = J , then the number of non-zero singular values R

are less than or equal to I and J , i.e. R ≤ min{I, J} where equality is met if all the the

singular values of H are non-zero.

The multiplexing gain, denoted by χ, is calculated at a very high SNR, for which

water-filling reduces to uniform power allocation over the non-zero eigen channels, i.e.( 1

µ
− 1

di1,...,iN

)+

≈ P

R
. Hence using (3.49), the capacity becomes

C =
∑

i1,...,iN
di1,...,iN 6=0

(
log
(

1 +
P

R
di1,...,iN

))
. (3.62)
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As P →∞, (3.62) simplifies to :

C =
∑

i1,...,iN
di1,...,iN 6=0

log
(P
R
di1,...,iN

)
(3.63)

=
∑

i1,...,iN
di1,...,iN 6=0

[
log(P ) + log

(di1,...,iN
R

)]
(3.64)

= R log(P ) +
∑

i1,...,iN
di1,...,iN 6=0

log
(di1,...,iN

R

)
(3.65)

⇒ χ = lim
P→∞

C

log(P )
= R. (3.66)

Assuming all the singular values of the tensor channel are non-zero, we have R = min{I1 ·
I2 · · · IN , J1 · J2 · · · JM}. For a conventional MIMO matrix channel, capacity pre-log is

known to be less than or equal to the minimum of the number of transmit and receive

antennas [90] which is the specific case of the tensor pre-log. For MIMO matrix channel

N = M = 1, and we have χ = min{I1, J1} where I1 and J1 are the number of transmit

and receive antennas respectively. For a tensor case, it is interesting to see that assuming

equal dimension sizes on each domain i.e. I1 = I2 = · · · = IN = J1 = J2 · · · JM = L, then

the capacity pre-log can be given as :

χ = min{I1 · I2 · · · IN , J1 · J2 · · · JM}

= min{LN , LM}

= Lmin{N,M} (3.67)

which is exponential in the number of domains.

3.3 Numerical Examples and Applications

In this section, we present numerical examples to illustrate previous results.
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3.3.1 Examples with different input constraints and channel sizes

Our results assume that the channel is deterministic. For the numerical examples, rather

than using a specific channel tensor, we generate the channel using the Rayleigh model as

in [90, 91, 157]. The channel tensor consists of realizations of i.i.d. circularly symmetric

complex Gaussian entries of zero mean and unit variance such that E[|HHHj1,...,jM ,i1...,iN |2] = 1

[91]. These channel realizations are known at the transmitter and receiver.

Let us denote the capacity of a deterministic tensor channel H as C(H). Assume that

we calculate capacities of K such channels denoted by C(H(k)) for k = 1, . . . , K where

the tensor H(k) consist of realizations of complex Gaussian random variables. The average

of K such deterministic channels is given by C̄K = 1
K

∑K
k=1 C(H(k)). Due to law of large

numbers, as K → ∞, we have C̄K → E[C(HHH)] where HHH is a tensor of Gaussian random

variables. All the numerical results included in this section present C̄K for K = 100, which

can be interpreted as the ergodic capacity of a random tensor channel when its realizations

are known at the transmitter and the receiver. The SNR is defined as P/σ2 as used in

[90], where P is the sum power constraint or the total transmit power and the noise tensor

contains i.i.d. circularly symmetric complex Gaussian entries with zero mean and variance

σ2 = 1.

Capacity for different sizes of Channel Tensor

Figure 3.1 presents the channel capacity in bits/channel-use for a fourth order channel

tensor under a sum power constraint at SNR of 10 dB. Input and output are order-2

tensors of size X × Y each, corresponding to a X × Y ×X × Y tensor channel. It is seen

that increasing X and Y individually leads to an increase in total capacity.

To understand the effect of different types of channel, we also find capacity when the

channel is normalized such that the total receive average power is identical to the trans-

mitted power. Such a normalization ensures that the channel gain is unity and has been

suggested in [158, 159] for the MIMO matrix case. In tensor channels, such a normalization

is achieved when the individual entries of the channel tensor H ∈ CJ1×...×JM×I1×...×IN are
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Fig. 3.1: Capacity [bits/channel-use] vs X vs Y for channel with X × Y size input and
output tensor.

generated as circular complex Gaussian with zero mean and variance 1/(J1 · · · JM). Figure

3.2 shows the capacity of such a normalized tensor channel of size X × Y × X × Y with

both input and output of size X × Y each, under sum power constraint at a fixed SNR of

10 dB. On increasing the size of input and output tensors, the rate of increase in capacity

is lower as compared to Figure 3.1, and the capacity tends to reach a saturation for large

values of X and Y .

For the normalized channel case where the channel gain is unity, and hence transmit and

receive signal power are same, capacity is plotted against received SNR for a 2× 2× 2× 2
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Fig. 3.2: Capacity [bits/channel-use] for normalized channel vs X vs Y where X × Y is
the size of input and output tensor.

tensor channel in Figure 3.3. A comparison with corresponding scalar and matrix channels

with the same received signal power is also presented. The gain in the capacity achieved by

moving from scalar to a tensor channel can be attributed to the multiplexing gain provided

by the tensor channel which increases with the number of domains.

For the rest of the numerical examples, the more widely used model from [90, 91] where

the channel entries are circular complex Gaussian with zero mean and unit variance is

employed, as for Figure 3.1. Figure 3.4 presents the capacity of a fourth order tensor

channel under sum power constraint where the output is fixed as a 2× 2 tensor and input
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Fig. 3.3: Channel capacity for tensor, matrix and scalar channel with same received signal
power.

is X × Y tensor at 10 dB SNR, under sum power constraint. The rate of increase in

capacity for X and Y is lower as compared to Figure 3.1 for higher values of X and Y

since the output tensor size is fixed as 2 × 2. So the capacity pre-log which is bounded

by min{X · Y, 2 · 2} = 4, does not increase with increasing X and Y . We observe that

increasing the size of individual domains of the input tensor does not provide significant

gain if the number and size of the corresponding domains of the output tensor are fixed.
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Fig. 3.4: Capacity [bits/channel-use] vs X vs Y for channel with X × Y size input tensor
and 2× 2 output tensor.

Capacity under different domain power constraints

In this section we compare different possible power constraints. Algorithm 1 is used to

approximate the optimum input covariance and thereby capacity, under per domain element

and per element power constraints.

Figure 3.5 illustrates the capacity under sum power constraint and per domain element

power constraints for a 2 × 2 × 2 × 2 channel with power constraint on input tensor of

size 2 × 2. The power budgets on one of the domains of the input tensor are P1 = x · P
and P2 = (1 − x) · P . For instance, assume that the two domains are space and time.
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Then such a constraint reflects that the power budget for the first time slot for both the

antennas is P1 and for the second slot for both the antennas is P2 with total available power

P1 + P2 = P . The plot in Figure 3.5 is presented for capacity against x = P1/P at 10

dB SNR. The flat line represents the capacity under sum power constraint which shows no

variation with x, and the curved line shows the capacity with per domain element power

constraints. As can be observed from Figure 3.5, the capacity under per domain element

constraints is always lower than the capacity under sum power constraint, and these become

very close to each other when x ≈ 0.5, i.e. uniform power is allotted to the elements of the

constrained domain. Note that such a behaviour is observed over an average of 100 channel

realizations. For a given specific realization, the two curves may not meet at x = 0.5. For

the MIMO case, a similar numerical result has been presented in [101] under per antenna

power constraints for a fixed channel.

In Figure 3.6 we present the capacity under per element power constraints and compare

it with sum power constraint. If the total available power is P , then as before P1 = x·P and

P2 = (1−x) ·P . Further, P11 = y ·P1, P12 = (1− y) ·P1, P21 = y ·P2 and P22 = (1− y) ·P2.

Thus, with 0 ≤ x, y ≤ 1, P11, P12, P21, P22 represent the individual power constraints on all

the four elements of the input tensor such that P11 + P12 + P21 + P22 = P . With different

choices of x and y, we achieve different per element power constraints such that total power

remains P . The capacity with per element power constraints against x and y at SNR of

15 dB is presented in Figure 3.6. The flat surface represents capacity under sum power

constraint which shows no variation with x and y, and the curved surface shows capacity

under per element power constraints. It can be seen that for different values of x and y,

the capacity achieved under per element constraints can be significantly lower than the

capacity achieved under sum power constraint.

Note that Algorithm 1 only approximates the optimum input covariance and thus does

not provide the exact capacity at low SNRs. However, since the problem at hand is a con-

vex optimization problem, several software tools for numerical optimization can be used

to calculate the capacity. To analyze how well the scaling approximation in Algorithm 1

works, we present a comparison between the capacity calculated through the convex op-
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Fig. 3.5: Capacity [bits/channel-use] for a 2× 2× 2× 2 tensor channel under per domain
element power constraints and total power constraint at 10 dB SNR.

timization software tool CVX [152], and the capacity approximated through Algorithm

1. Figure 3.7 presents the capacity for sum power constraint, per domain element power

constraints where a single domain of dimension 2 is constrained with power budgets P1, P2,

and per element power constraints where all the four elements have different power bud-

gets P11, P12, P21, P22 against SNR for x = y = 0.1. We present such results for capacity

calculated by using two methods. First method uses Algorithm 1 for which the graphs are

presented using solid curves. Second method uses CVX for which the graphs are presented

using dashed curves. As can be observed, the capacity calculated via the approximation
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Fig. 3.6: Capacity [bits/channel-use] for per element power constraints vs x vs y at 15 dB
SNR.

of Algorithm 1 matches very closely to the one calculated via CVX, and is almost indis-

tinguishable at moderate to high SNR. This shows that Algorithm 1 provides a reasonably

good approximation to the optimal solution at low SNR, while providing an exact solution

at high SNR. Furthermore, it can be seen that the capacity under per domain element

and per element constraints is always upper bounded by the capacity under sum power

constraint. The capacity increases with SNR for all three cases, but the performance dif-

ference also gradually increases between the three solid curves, with sum power constraint

performing the best, followed by per domain element and lastly, the per element constraint.
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Fig. 3.7: Capacity [bits/channel-use] for different constraints vs SNR using Algorithm 1
and CVX.

Figure 3.8 compares capacity under sum power and per domain element power con-

straints with x = 0.1 for different N where both input and output are order N . The

channel is an order 2N tensor and the size of each domain is 2. The capacity increases

exponentially with N in both the cases. However, the capacity under per domain element

constraint is always upper bounded by the capacity under sum power constraint.
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Fig. 3.8: Capacity [bits/channel-use] vs input order comparing sum power and per domain
element power constraints with P1/P = 0.1.

Correlated Tensor Channel

Consider an order N random tensor HHH ∈ CI1×...×IN containing i.i.d. zero mean and unit

variance elements. Let Ψ(n) ∈ CIn×In for n = 1, . . . , N be a sequence of Hermitian matrices

such that Ψ(n) = A(n)A(n)H where A(n) ∈ CIn×In is the square root matrix of Ψ(n). The

mode-n product of tensor HHH across all the modes with these matrices can be written as

[160]:

HHH
corr = HHH ×1 A(1) ×2 A(2) ×3 · · · ×N A(N) (3.68)
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where the elements of HHHcorr are correlated. Let vec(HHH) be denoted as h, then using the

property of mode-n product from [160],[161, Lemma 2.1], we can write (3.68) using the

Kronecker product denoted by ⊗ as :

vec(HHHcorr) = (A(N) ⊗ · · · ⊗ A(1))h. (3.69)

The correlation matrix of the vectorized channel can be written as :

E[vec(HHHcorr) vec(HHHcorr)H ]

= E[(A(N) ⊗ · · · ⊗ A(1))h · hH(A(N) ⊗ · · · ⊗ A(1))H ] (3.70)

= (A(N) ⊗ · · · ⊗ A(1))E[h · hH ](A(N) ⊗ · · · ⊗ A(1))H (3.71)

= (A(N) ⊗ · · · ⊗ A(1))(A(N) ⊗ · · · ⊗ A(1))H (3.72)

= (A(N)A(N)H ⊗ · · · ⊗ A(1)A(1)H) (3.73)

= Ψ(N) ⊗ · · · ⊗Ψ(1) (3.74)

where (3.72) to (3.73) follow from matrix Kronecker product properties [162, Corollary 4].

Thus the correlation matrix of the vectorized tensor is given in terms of the Kronecker

product of different mode-n factor correlation matrices denoted by Ψ(n). Such a model

is called a separable correlation model and it is considered for real random variables in

[163]. While (3.74) expresses the correlation as a matrix by vectorizing HHH
corr, it is shown

in [163, Proposition 2.1] that the correlation of HHHcorr from (3.68) can also be expressed as

an order 2N tensor obtained via the outer product of the factor matrices Ψ(n) defined as

R̄ = Ψ(1)◦· · ·◦Ψ(N). Note that the correlation tensor when defined as R = E[HHHcorr◦HHHcorr∗] is

just a permuted version of R̄, where Ri1,...,iN ,i
′
1,...,i

′
N

= R̄i1,i′1,...,iN ,i
′
N

= E[HHHcorr
i1,...,iN

·HHHcorr∗
i′1,...,i

′
N

] =

Ψ
(1)

i1,i′1
· · ·Ψ(N)

iN ,i
′
N

. Hence the separable model implies that each element in the order 2N

correlation tensor can be expressed as the product of the elements of the factor matrices.

The proof in [163] is for real tensors, but can be easily applied to complex tensors as well.

The well known MIMO matrix Kronecker correlation model forms a specific case of

(3.68) where the tensor HHH is order-2 and the factor matrices A(1) and A(2) denote the square

root of row and column correlation matrices respectively [164]. The MIMO Kronecker model

may not be very accurate in several scenarios, however it is still widely used because of its

tractable analytic form, see for example [165, 95, 166, 167].
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Now consider an order-4 tensor channel of size 3×3×3×3 corresponding to an order-2

input and order-2 output. We generate such a channel HHHcorr with correlated elements using

(3.68), where the elements of HHH are i.i.d zero mean complex Gaussian with unit variance.

For the numerical examples, we consider the correlation matrices generated using the ex-

ponential model with different correlation factor ρn where the elements of the correlation

matrix Ψ(n) are defined as Ψ
(n)
i,j = ρ

|i−j|
n for ρn ∈ [0, 1) [168]. The four correlation matrices

Ψ(1),Ψ(2),Ψ(3) and Ψ(4) are generated using the exponential model with correlation coeffi-

cients ρ1, ρ2, ρ3 and ρ4 respectively. Assuming that the channel realization is known at the

transmitter and the receiver, we find the capacity of such a channel with correlated elements

under sum power constraint. Figure 3.9 presents capacity at 10 dB SNR for different values

of correlation coefficients where the receive domains are correlated with ρ1 = ρ2 = ρR and

the transmit domains are correlated with ρ3 = ρ4 = ρT . The plot shows that the capacity

decreases with increase in ρT and ρR, and it is least when ρT and ρR approach 1. Capacity

is largest when both ρT and ρR approach zero in which case the correlation matrices are

identity and the channel has only uncorrelated elements across all the domains.

Next we investigate the impact of correlation on the tensor channel capacity when the

correlation spans over a variable number of domains. Figure 3.10 presents the capacity

against SNR for different number of domains having correlated entries. Capacity is lowest

when ρn is non-zero (0.7 in the figure) for all the domains (i.e. for n = 1, 2, 3, 4) and

is highest when ρn is zero for all n, i.e. all entries are uncorrelated. Further it can be

observed that the capacity difference between the various cases presented in Figure 3.10

is more significant at higher SNR. It is seen that the capacity decreases with increase in

the number of domains having non-zero correlation factor. Such a loss of capacity with

increase in the domains having correlation is further illustrated in Figure 3.11 for various

tensor channel order.

In Figure 3.11, we present the capacity against SNR for order 2M correlated tensor

channels with order M input and output having individual dimensions of 3. The factor

correlation matrices along each of the 2M modes are based on the exponential model with

correlation factor ρ. The graph is presented for M = 2, 3, 4, 5 and ρ = 0.4, 0.7. Note that
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different values of M lead to different tensor channel sizes with order 4, 6, 8, and 10. Hence

for a meaningful comparison of the impact of correlation, the capacity plotted in Figure

3.11 is normalized with respect to the number of elements in the input tensor symbol which

is 3M . As can be observed in Figure 3.11, for a fixed ρ, as the number of domains of the

tensor channel with all correlated elements increases, the capacity per element decreases.

Further, this loss is more significant for higher correlation (larger values of ρ) as can be

seen by comparing the curves for ρ = 0.7 and 0.4.

Fig. 3.9: Capacity [bits/channel-use] vs correlation coefficients for tensor channel with
correlated entries.
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Fig. 3.11: Capacity [bits/channel-use] normalized with respect to the size of transmit
tensor vs SNR for different order tensor channels with correlated entries.

Domain Trade-Off

An advantage of looking at the channel as a higher order tensor is that the trade-off which

may exist between different domains can be mathematically analyzed and harnessed. The

lack of resources in one domain could be compensated by resources in another domain. This

paves the path for certain flexibility in resource allocation across domains. To demonstrate

such a domain trade-off, we consider Figure 3.12 which illustrates the behaviour of the

capacity under sum-power constraint against SNR. The transmitter employs a vector input,

i.e. a single domain of dimension 16 and the output is a tensor of various number of domains.
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The channel capacity curves show an increase in the capacity achieved when the number of

receive domains is increased. It can also be observed that the capacity achieved by a 16×16

channel is same as that of the capacity achieved by an 16 × 2 × 2 × 2 × 2 channel. This

implies that even with limited resources in one domain, increasing the number of domains

can give higher capacity by exploiting the trade-off between multiple domains.
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Fig. 3.12: Capacity [bits/channel-use] vs SNR for 16×1 input and different configurations
of output structure.

Figure 3.12 suggests that the individual domain’s dimensions can be flexibly inter-

changed if the overall size of the input and output remains constant. However, it is impor-

tant to note that such a behaviour is observed over an average of 100 channel realizations
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when all the tensor channel elements are i.i.d. Gaussian with zero mean and unit variance,

which has been the case in our numerical examples so far. For any two given tensor chan-

nels with same overall size but different dimensions of individual domains, the capacity

may not always be exactly same. The exact behavior of such a domain trade-off would

depend on the specific tensor channel eigenvalues. The example of a channel with i.i.d.

Gaussian entries without assigning specific physical meaning to the domains incorporated

is presented only to illustrate the basic idea of trade-off. Further, to understand such a

trade-off in a more realistic set-up, we consider the example of a MIMO GFDM channel in

section 3.3.3.

3.3.2 Tensor Channels for various Input-Output Configurations

For a fixed order tensor channel, different configurations of input and output can lead

to different capacities. Hence, an insightful comparison between the capacities of tensor

channels with different orders requires to clearly specify the divide between the number of

input and output domains. For instance, when we state the capacity of an order-6 channel,

we need to specify that it is corresponding to say order-3 input and order-3 output, or

order-4 input and order-2 output, or any other possible configuration. In this section, we

analyze how the capacity for a given tensor channel changes with change in such input and

output configurations. We will fix the tensor channel order M +N and increase the input

order N (consequently decrease output order M) to understand the capacity behavior. All

the results presented in this section are averaged over 100 different channel realizations

unless otherwise stated. Also, the dimension of individual domains for all the examples in

this section is taken as 2.

Capacity Against Input Order

Figure 3.13 presents the capacity under sum-power constraint of an order-10 tensor channel

plotted against the input order N . The output order is 10−N . The capacity is plotted for

different values of transmit power budget P . The channel is generated as described in the

previous section where each element of the channel is drawn from a circularly symmetric
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complex Gaussian distribution with zero mean and unit variance. It can be seen that for

such tensor channels, at high transmit powers, the best configuration of the input and

output is when both input and output orders are same for almost any power budget. The

difference in the capacity between the case with order-5 input order-5 output, and with

any other input-output configuration can be significant especially as the transmit power

increases. This is because with an equal divide between the transmit and receive side, we

get maximum number of parallel decomposed scalar channels which is same as the number

of non-zero singular values of H, and is given as R ≤ min{I1 · · · IN , J1 · · · JM}. Since we

consider individual dimensions of size 2, for this case we have R ≤ {2N , 210−N} which is

maximized when N = 5. Hence, if sufficient power is available such that power is allotted to

most of the eigen channels, having larger number of such channels, i.e. N = 5 is preferred.

However, as the transmit power decreases, we observe the the peak in the curve shifts

towards very low and a very large value of N , indicating that as P decreases a channel

with fewer number of domains on a given side may provide larger capacity than the case

with equal number of domains on both sides. At low P , the tensor water-filling tends

to allocate power to selected strong channels only. Thus having large number of parallel

scalar channels is not beneficial since the limited power budget would not allow any power

allocation on all such channels. Thus in such a case, having fewer but stronger parallel

channels is better than having more number of channels. For a very low power budget such

as P = −15 dB this is achieved when R ≤ {2N , 210−N} is minimized for which N = 1 or

N = 9.

However, it should be noted that such an observation over an average of several channel

realizations depends on the specific distribution used to generate the tensor channel, and

thus should not be generalized for any arbitrary channel. In this particular example, since

the channel elements are drawn from zero mean unit variance distribution, the channel

gain increases with increasing channel size. Channel gain is defined as the gain in power at

the receiver provided by the channel assuming uniform power allocation at the transmitter

[159]. For any given channel, the total received signal power PR is given in terms of total
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Fig. 3.13: Capacity [bits/channel-use] vs Input Order for Order-10 tensor channel.
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transmit signal power P as [159]

PR = ||H||2P
I

(3.75)

where I denotes the total number of input elements. If the channel elements are generated

using zero mean unit variance, then the average received signal power over several channel

realizations would be given as :

P̄R = E[||HHH||2]
P

I
=

∑

j1,...,jM ,i1,...,iN

E[|HHHj1,...,jM ,i1,...,iN |2]︸ ︷︷ ︸
=1

P

I
= J · I · P

I
= J · P. (3.76)

which scales with J where J = J1 · · · JM denotes the total number of receive elements.

Thus for a given order tensor channel, changing the input and output configurations would

change the power gain provided by the channel at the receiver. Hence, for a fair comparison

between the performance of different input output orders for a fixed channel, it is important

to normalize the channel such that it does not provide any power gain at the receiver. We

consider this case next.

Figure 3.14 presents the capacity under sum power constraint of order-10 tensor channel

against the input order N , when the channel elements are normalized to provide unit power

gain at the receiver. For this purpose, the channel is generated using circularly symmetric

complex Gaussian with zero mean and variance 1/(J1 · · · JM) as used for the example of

Figure 3.2. In such a case, E[||HHH||2] = I and thus the average received signal as calculated

using (3.76) would be same as the transmit signal power. As can be seen that the curves

in Figure 3.14 significantly differ from Figure 3.13. In Figure 3.14, the curves are not

centred around N = 5, but the peaks are shifted towards larger values of N . Also the peak

value occurs at different N for different power budgets P . At P = 15 dB, input order-6

and output order-4 gives the peak value, whereas at P = 0 dB, input order-8 and output

order-2 gives the peak value. The peak shifts towards the center as P increases. For such

normalized channels, as the input order increases, output order decreases, thus J1 · · · JM
decreases, which makes the individual components of the channel stronger. Hence the

capacity tends to increase with increasing input order. However at a high transmit power,

the increase in capacity with increasing input order takes place only till a specific input

order. Note that there are two separate factors that contribute to the channel capacity : the
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structure of the channel, and the transmit power. The structure of the channel determines

the number of non-zero eigenvalues of (HH ∗M H), which also represents the number of

equivalent decomposed parallel scalar channels which carry information. The number of

non-zero eigenvalues of (HH ∗M H) is same as the number of non-zero singular values of H

which is given as R ≤ min{I, J} where equality is achieved if all the singular values are non-

zero. With increasing input order and decreasing output order, R reduces, thus the number

of decomposed parallel scalar channels also reduces. At low P , this is beneficial because

the tensor water-filling would anyway favor selected strong channels for transmission and

most power would be concentrated on the stronger channels. However, with larger P ,

power tends to get distributed more evenly across all the decomposed channels, thus having

larger R is beneficial which can be achieved when input and output order are closer since

R ≤ min{I, J}. This inherent interplay between the available power level and the available

number of input domains causes the peak of the curves in Figure 3.14 to shift towards

centre as P increases.

Figure 3.15 illustrates this behavior for various orders of tensor channels from 4 to 8 for

various power levels. The x axis in all the sub-plots denote the input order, and the channel

is normalized to provide unit power gain. In all the sub-plots it can be seen that the peak is

shifted in favor of larger input order and smaller output order for smaller values of P such

as 0 dB and 5 dB. For higher values of P also, the peak is towards larger N and smaller M ,

but it gradually shifts towards the centre. The best input output configurations as observed

from Figure 3.15 are summarized in Table 3.3 where it can be seen that for smaller values

of P , the value of output order M is almost always 1 and N takes the largest possible value.

However as P and channel order increases, we see the value of M is increasing and getting

closer to the value of N .

To further analyze the behavior with respect to the number of transmit elements in

the input tensor, Figure 3.16 presents the capacity per input tensor element for the same

example as Figure 3.14. It can be seen that with increase in the input order there is a

decrease in the capacity per input element. As the input order increases, the same power

is getting distributed to more individual elements, hence the capacity per input element
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Table 3.3: Best Input and Output Orders (N,M) for Normalized Gaussian Tensor Chan-
nels with Capacity (C) in bits/channel-use.

Channel Order P = 15 dB P = 10 dB P = 5 dB P = 0 dB

4
N = 3,M = 1,
C = 11.64

N = 3,M = 1,
C = 8.53

N = 3,M = 1,
C = 5.60

N = 3,M = 1,
C = 3.07

5
N = 3,M = 2,
C = 14.92

N = 4,M = 1,
C = 10.54

N = 4,M = 1,
C = 7.37

N = 4,M = 1,
C = 4.64

6
N = 4,M = 2,
C = 19.38

N = 4,M = 2,
C = 13.16

N = 5,M = 1,
C = 9.38

N = 5,M = 1,
C = 6.28

7
N = 5,M = 2,
C = 23.73

N = 5,M = 2,
C = 17.16

N = 6,M = 1,
C = 11.31

N = 6,M = 1,
C = 8.09

8
N = 5,M = 3,
C = 31.24

N = 6,M = 2,
C = 21.25

N = 6,M = 2,
C = 14.92

N = 7,M = 1,
C = 10.06

decreases. However, the total capacity can be significantly larger with large N as shown

in Figure 3.14. Moreover, having large N provides more robustness to the system in case

of any failed transmissions. With small N , any failure of transmission on an individual

element would cause a significant loss of total capacity. However, for large N , loosing

transmission on a few transmit elements would not hamper the overall capacity much since

the contribution of individual components is small. We explain this notion further through

examples.

Robustness with increasing input order

We consider tensor channels of various orders where each domain has a dimension 2 with

circularly symmetric complex Gaussian elements normalized to provide unit power gain

at the receiver. We find the optimum input covariance and the capacity of such a tensor

channel under sum power constraints for various input orders using (3.48) and (3.50). Let

us denote this input covariance as Q(1) and capacity as C1. Further, we find the capacity

when there is one or more failed transmissions at the input. Let the number of input

elements which failed transmission be denoted by n. We plot the relative loss in capacity

as a function of such failed transmissions n. To simulate n failed or disabled input elements,

we randomly select n elements out of the I1 · I2 · · · IN elements in the input tensor and set

them to 0. To this effect, the corresponding values in the covariance tensor Q(1) are also set
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to 0 to obtain a modified covariance Q(2). For instance, if a randomly selected failed input

element is XXXi′1,...,i
′
N

, then we set Q
(1)
i1,...,iN ,j1,...,jN

= 0 wherever either i1 = i′1, . . . , iN = i′N or

j1 = i′1, . . . , jN = i′N to get Q(2). Let the modified input be denoted by X̃XX which is defined

as :

X̃XXi1,...,iN =





0, if i1 = i′1, . . . , iN = i′N

XXXi1,...,iN , otherwise
(3.77)

and the modified covariance denoted by Q(2) = E[X̃XX ◦ X̃XX∗], be defined as :

Q
(2)
i1,...,iN ,j1,...,jN

= E[X̃XXi1,...,iNX̃XX
∗
j1,...,jN

] =





0, if i1=i′1,...,iN=i′N or j1=i′1,...,jN=i′N

Q
(1)
i1,...,iN ,j1,...,jN

, otherwise

(3.78)

Thus Q(2) by definition represents the input covariance with failed transmission and the

capacity under such failed transmission is calculated using C2 = log[det(IM +H ∗N Q(2) ∗N
HH)], and the relative loss in capacity is calculated using

C1 − C2

C1

.

The relative loss in capacity is plotted in Figure 3.17 and 3.18 for order-6 tensor channel

at P = 0 and 10 dB respectively. It can be seen that for smaller values of N , the loss in

capacity with even a single disabled input can be very significant. The loss reaches a value

of 1 for N = 1, n = 2, for N = 2, n = 4 and for N = 3, n = 8 because with individual

dimensions set as 2, these cases correspond to all the input elements being disabled for

transmission making C2 = 0. For larger values of N , the loss in capacity is small since the

contribution of individual elements is not too significant in the aggregate scheme due to the

large number of input elements carrying information. This demonstrates the robustness

of transmission achieved due to large number of transmit elements. This phenomenon is

further accentuated in Figures 3.19 and 3.20 which present the relative loss in capacity for

order-10 tensor channels at P = 0 and 10 dB respectively. In Figures 3.19 and 3.20, as N

increases the loss in capacity becomes almost negligible with increased number of disabled

elements.

It can be observed that the loss in capacity tends to increase almost linearly with n

especially at higher P and lower values of N . When N ≤M , with channel containing i.i.d.
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elements the number of non-zero singular values of the channel is R = I where I denotes

the number of elements in the input tensor. At high P , since water-filling tends to uniform

power allocation across all the R = I non-zero eigenvalues thus (µ−1IN−D−1)+ from (3.48)

tends to a scaled identity tensor P
I
IN . This makes the optimal covariance from (3.48) also

P
I
IN . Thus as P increases, almost all the input elements receive similar power, and they

all carry comparable amount of information which causes the almost linear increase of loss

in capacity with n. Such linear behavior gets more pronounced as P increases.
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Fig. 3.19: Relative loss in Capacity due to disabled transmit elements for order-10 tensor
channel at P = 0 dB.
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Note that for lower P also, averaging over several channel realizations makes the perfor-

mance closer to uniform power allocation which tends to a linear behavior on average, but

this may not be so for each single channel realization. Thus to illustrate the dependence

of loss in capacity on P and N , we now take two fixed examples of tensor channel without

averaging over several channel realizations. Figure 3.21 presents the loss in capacity with

n for two specific realizations of order-10 tensor channel. The specific channels H(1),H(2)

are realizations of zero mean unit variance circularly symmetric Gaussian distribution. For

normalization of these specific channels, we set Hnorm = H
||H||

√
I and I represents the total

number of input elements. Please refer to Appendix C for information about the exact

channel tensors required to reproduce the results in Figure 3.21. As can be seen in Figure

3.21, the loss in capacity at P = 0 dB increases with n but is not linear. However, at

P = 10 dB, the loss in capacity tends to increase linearly with n because with increasing

P , the power tends to get almost uniformly distributed among the input elements. In any

case the loss diminishes with increasing N demonstrating the robustness of large input

systems.

Capacity Against Channel Order

We now consider the capacity against increasing channel order. For even order (2N) chan-

nels we take the input and output order as N , and for odd order (2N + 1) channels we

consider two cases : 1) input N , output N + 1 and 2) input N + 1, output N . We will

also compare these cases with the capacity corresponding to best input output order from

Table 3.3.

Capacity for normalized tensor channels at three different power levels is presented

against increasing channel order in Figure 3.22. The solid lines represent case 1 and dashed

lines represent case 2. For even order channels, the two cases coincide. From Figure 3.22

it can be seen that with increasing channel order the capacity may not necessarily increase

monotonically. The specifics of the input and output order play a role. For instance, from

order-5 to order-6 channel, the capacity increases if the order-5 corresponds to output order-

3 and input order-2, whereas the capacity decreases if the order-5 corresponds to output
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order-2 and input order-3 for P = 5 and 10 dB. However, note that from Table 3.3, we see

that the capacity can increase for any P with increasing channel order if the corresponding

input and output order are suitably selected. The difference in the two values of capacity

for odd order channels in Figure 3.22 is because of the different ways in which the channel

elements are generated. Note that for both the cases (order N input, order N + 1 output

or order N + 1 input, order N output), the number of decomposed parallel scalar channels

will be similar. But if the output order is large, then the channel normalization ensures

weaker channel elements thus each equivalent parallel scalar channel is weaker. However, if

the input order is large, then the channel normalization ensures stronger channel elements

which makes each parallel scalar channel stronger. This behavior of capacity is not observed

if the channel is not normalized. This is illustrated in Figure 3.23 where capacity is plotted

against increasing input order for channel with zero mean unit variance elements. In such

a case, moving from a lower order to higher order channel increases the size of the channel

without diminishing the strength of the existing components. Thus the channel provides

power gain, and the capacity smoothly increases with channel order. As can be seen in

Figure 3.23, case 1 and case 2 do not make a significant difference and the curves almost

overlap. With a tensor channel having same dimensions of each domain and containing

i.i.d. elements, the number of parallel scalar channels (given by R = min{I, J} where I, J

denote the number of transmit and receive elements respectively) remains the same if the

input is order N + 1 and output is order N or if the input is order N and output is order

N + 1. Also, since the channel elements are generated with unit variance, thus changing

the input output configuration does not change the strength of the channel components

as well, unlike the normalized channel case. Hence case 1 and case 2 overlap in non-

normalized channels as opposed to the normalized channel case where the solid curves and

dashed curves (Figure 3.22) are distinct for odd order channels. However, it should be

noted that even for normalized tensor channels, with increasing power level P , the capacity

shows an increasing behavior with channel order irrespective of the input being N + 1 or

output being N + 1. This is illustrated in Figure 3.24 where the capacity is plotted against

channel order for very high values of P . While there is still significant difference in the
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capacity of the odd order channels for case 1 and case 2, the capacity always increases with

the channel order itself. For instance, if we compare Figure 3.24 and 3.22, we can see that

in Figure 3.22 capacity of order-8 channel is lower than capacity of order-7 channel when

input is order-4 and output is order-3. However, in Figure 3.24, the capacity for order-8

is larger than either of the two input output configurations of order-7 channel. Thus the

effect of channel normalization which weakens the individual components with increasing

output order can be compensated for by increasing the transmitted signal power so as to

ensure sufficient power allocation even to the weaker channels with water-filling.
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3.3.3 MIMO GFDM

For MIMO GFDM, consider the system model from (2.58), where the channel is represented

as an order 6 tensor of size S×K×M×S×K×M . The model is also illustrated in Figure

2.7. Let the number of transmit and receive antennas be NT and NR respectively, with

NT = NR = S. We analyze the capacity for different number of data streams, sub-carriers

and sub-symbols, denoted by S,K, and M respectively, to explore the trade-off between

these domains. The channel is generated as a cascade of transmit filter, physical channel

and receive filter. In this example, we use a Raised Cosine (RC) transmit pulse shaping

filter with roll off factor 1 at the transmitter. The receive filter is matched to the transmit

filter and the elements of the physical channel are generated using i.i.d. complex Gaussian

with zero mean and unit variance. Furthermore, the entries of the equivalent channel H

are normalized to ensure that the average received power is same as the transmit power P .

The noise tensor NNN contains zero mean and unit variance circularly symmetric Gaussian

entries such that noise covariance is N0I with N0 = 1. With channel gain normalized to

one, the signal to noise ratio is defined as SNR = (NTEs)/N0 [25] where Es is the transmit

energy per element defined as P/(NTKM). The tensor framework gives us the capacity

in bits/channel-use, where in each transmission a tensor symbol contains elements across

all the sub-carriers, sub-symbols and antennas. Hence we normalize the capacity of the

MIMO GFDM channel by the number of sub-carriers and sub-symbols as in [25]. Figure

3.25 shows the normalized capacity against SNR for different values of S,K, and M . It can

be seen that for a fixed value of KM , as S increases we get higher capacity. Also, for a fixed

S, choosing different configurations of K and M , such that the product KM is constant,

leads to almost similar capacity results. The capacity when K = 4,M = 10 is almost the

same as the capacity with K = 8,M = 5, and slightly lower than with K = 2,M = 20.

This exhibits the latent trade-off between the sub-carrier and sub-symbol domains, which

can be harnessed using the tensor framework.
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Fig. 3.25: Capacity vs SNR for MIMO GFDM with different S,K,M .

Effect of Pulse Shaping Parameters on the Channel Capacity

Notice that the equivalent channel for MIMO GFDM is generated using a cascade of the

transmit filter, physical channel and receive filter as explained in section 2.3.3. Using the

tensor framework, we can analyze the capacity behaviour of the channel corresponding

to different pulse shaping parameters as well. We simulate a system with S = NR =

NT = 2, K = 8 and M = 5. The transmit filter tensor HT is generated using different

pulse shapes, namely RC, Root Raised Cosine (RRC) and Dirichlet. The roll-off factor α

associated with RC and RRC pulse describes the overlap of the sub-carriers in the frequency

domain. The Dirichlet pulse is defined by a rectangular function in the frequency domain
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with width of M frequency bins that are located around the DC bin [169] or in time domain

as gM [n] = (sin(Mn/2))/(M sin(n/2)). Figure 3.26 shows the normalized capacity of the

tensor channel under sum power constraint for all the three transmit filters with different

α for RC and RRC.
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Fig. 3.26: Capacity vs SNR for MIMO GFDM with different pulse shaping filters.

In Figure 3.26, the difference in capacity for various filters at low SNRs is minimal. At

high SNR, it can be observed that Dirichlet achieves highest capacity. With RC and RRC,

higher roll-off factor of the pulse shape leads to a lower capacity. Since higher values of α

denote higher overlap between sub-carriers within a tensor symbol, increasing α increases

the intra-tensor interference. When α = 0, both RC and RRC reduce to a sinc pulse, and
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hence are identical. With increasing α, RC gives higher capacity than RRC as for a given

α, RC has sharper edges in frequency domain, hence creates less self-interference. Dirichlet

pulse shaping filter shows highest capacity as it does not create any self-interference. In

fact employing Dirichlet pulse makes the GFDM system orthogonal [169].

3.4 Tensor Multi-user Channel Capacity

In this section, we consider the application of the tensor framework to Multi-User (MU)

systems where each user is equipped with multiple antennas. We present numerical ex-

amples comparing the tensor approach with other results known in literature for K-user

Gaussian multiple access channels and interference channels.

3.4.1 Multiple Access Channels

Consider a MU MIMO network where a Base Station (BS) equipped with NR antennas is

receiving information from K users with NT antennas each. Let the uplink channel matrix

between the kth user and the base station be denoted by H(k) ∈ CNR×NT . The discrete

time received signal y ∈ CNR×1 at the BS is given as [170] :

y =
K∑

k=1

H(k)x(k) + n (3.79)

where x(k) ∈ CNT×1 is the signal transmitted by the kth user and n ∈ CNR×1 is the

received noise vector which is assumed circularly symmetric complex Gaussian with identity

covariance matrix. In such a system, each user k is subject to an individual power constraint

Pk. If the transmit covariance matrix of user k is denoted as Q(k), then the power constraint

can be expressed as tr(Q(k)) ≤ Pk for k = 1, . . . , K.

A multi-user channel with K users is characterized by a K-dimensional achievable rate

region CR, known as the capacity region [170], where each point in the region (R1, R2, . . . , RK)

represents the achievable rates Rk at which user k can send information with arbitrarily

low error probability. We assume that all the channel matrices are known to the receiver

and all the transmitters. We denote the convex hull of the union of sets using the symbol
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⋃̄
. With power constraints (P1, P2, . . . , PK), the capacity region of MIMO Multiple Access

Channels (MAC) is expressed as [170] :

CR =
⋃̄

tr(Q(k))≤Pk,∀k

{
(R1, . . . , RK) : 0 ≤

∑

k∈S

Rk ≤ log det
(

I +
∑

k∈S

H(k)Q(k)H(k)H
)

∀S ⊆ {1, . . . , K}
}

(3.80)

where S denotes a subset of the set of users. Each set of covariance matrices (Q(1), . . . ,Q(K))

satisfying the power constraints corresponds to a K-dimensional polyhedron [97]. The

capacity region is the convex hull of the union of all such polyhedrons. For Gaussian

MIMO MAC, the capacity region can be defined using only the union of rate regions and

the convex hull is not needed [170]. It is shown in [171] that for Gaussian MIMO MAC,

the boundary points of the capacity region can be characterized by maximizing a weighted

sum rate
∑

k νkRk for all non-negative νk such that
∑

k νk = 1, and thus finding boundary

points can be cast into a convex optimization problem.

Essentially, (3.80) represents a set of bounds on individual rates R1, R2, . . . , RK , and

combination of rates such as R1 +R2, R1 +R3, R2 +R3, R1 +R2 +R3 and so on, including

the sum rate R1 +R2 + · · ·+RK . For a two users case, this can be represented as :

CR =
⋃̄

tr(Q(1))≤P1,

tr(Q(2))≤P2





0 ≤ R1 ≤ log det
(

I + H(1)Q(1)H(1)H
)

0 ≤ R2 ≤ log det
(

I + H(2)Q(2)H(2)H
)

0 ≤ R1 +R2 ≤ log det
(

I + H(1)Q(1)H(1)H + H(2)Q(2)H(2)H
)





(3.81)

For a given choice of covariance matrices Q(1) and Q(2) which satisfy the power con-

straints, (3.81) represents an upper bound on R1, R2 and R1 + R2. The maximum of

log det(I + H(1)Q(1)H(1)H) and log det(I + H(2)Q(2)H(2)H) from (3.81) are the individual

achievable capacities by user 1 and user 2 respectively assuming the other user is silent.

The maximum of log det(I + H(1)Q(1)H(1)H + H(2)Q(2)H(2)H) is the sum capacity achievable

when both users are transmitting. Note that the choice of covariance matrices Q(1) and

Q(2) satisfying the power constraints which achieves the sum capacity may not achieve the

individual capacities. Similarly the choice of Q(1) and Q(2) which achieves the individual

capacities may not achieve the sum capacity. In general, different transmit choices lead to
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different pairs of covariance matrices (Q(1),Q(2)) such that the capacity region is given by

the convex hull of the union of an infinite number of rate regions each corresponding to a

different set (Q(1),Q(2)). The optimal choice of Q(1) and Q(2) which achieves the sum capac-

ity is found by an iterative water-filling approach [171] which sequentially finds covariance

for each user with the single-user classical water-filling method assuming interference from

other users as noise. A detailed step by step algorithm can be found in [171].

However, such an approach assumes that different users transmit independently. The it-

erative water-filling algorithm treats the information available about other users’ interfering

channels as noise. In the presence of complete channel state information, a better transmit

strategy which can provide higher achievable rates would be to allow users to coordinate

for transmission. Hence a joint signal transmit strategy can expand the capacity region.

Using the tensor framework, we can find the capacity region assuming user coordination.

First, let us express (3.79) using the tensor system model. The multi-user MIMO tensor

channel can be defined as a third order tensor H ∈ CNR×NT×K where H:,:,k = H(k). The

input signal can be denoted using a matrix X ∈ CNT×K , where each x(k) of (3.79) forms a

column of the matrix X. Hence the system model in (3.79) can be represented as :

y = H ∗2 X + n. (3.82)

The input covariance is represented as an order-4 tensor Q ∈ CNT×K×NT×K . Assuming

the noise to be circularly symmetric complex Gaussian with identity covariance matrix,

denoted by I, the output covariance can be written as (H∗2Q∗2H
H +I). Subsequently, the

sum capacity of such a system with user coordination can be calculated from the following

optimization problem :

max
Q

log [ det (H ∗2 Q ∗2 H
H + I)] (3.83)

s.t.

NT∑

n=1

Qn,k,n,k ≤ Pk ∀k, (3.84)

Q � 0. (3.85)

where
∑NT

n=1 Qn,k,n,k ≤ Pk represents the individual power constraints for different users.

The optimal Q that achieves capacity can be approximated using Algorithm 1. Note the
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difference in this tensor formulation and the iterative water-filling approach used in vector

formulation is that the latter assumes different users transmit independently despite having

perfect channel state information. With independent transmissions, the iterative water-

filling maximizes the function log det(I +
∑K

k=1 H(k)Q(k)H(k)H) subject to tr(Q(k)) ≤ Pk and

Q(k) � 0 for k = 1, . . . , K [171]. Note that this objective function is same as the upper

bound on the sum rate from (3.80) for S = {1, . . . , K}. The vector based iterative water-

filling treats inter-user interference as noise since it attempts to optimize the sum rate over

all choices of separate covariance matrix for each user as shown in [171]. On the other hand,

the tensor approach solves the problem in (3.83)-(3.85) and aims to find a joint covariance

across all the users. Thereby, the tensor approach suggests a joint transmit scheme for all

the users wherein the inter-user interference is not treated as noise since the interference

term also carries signal information. The maximum sum rate achieved by all the K users

given in (3.83) is the sum capacity of the K users MIMO MAC under user coordination.

Similarly the sum capacity achieved by a subset S of the all the users U = {1, . . . , K} is

given as the maximum of log det(I +H(S) ∗2 Q
(S) ∗2 H

(S)H) over the choice of positive semi-

definite Q(S) which satisfies the power constraints. The tensor H(S) ∈ CNR×NT×|S| with |S|
denoting the cardinality of S, contains matrices of size NR×NT as slices corresponding to

only those users which are included in S. Similarly Q(S) ∈ CNT×|S|×NT×|S| is the covariance

tensor of X(S) ∈ CNT×|S| which contains columns of only those users which are included in

S.

Hence the tensor framework allows to define a capacity region with user coordination

as :

CR =
⋃̄

∑NT
n=1 Q

(S)
n,i,n,i≤p

(S)
i ,∀i

{
(R1, . . . , RK) : 0 ≤

∑

k∈S

Rk ≤ log det
(

I + H(S) ∗2 Q
(S) ∗2 H

(S)H
)

∀S ⊆ {1, . . . , K}
}

(3.86)

where S contains the list of users being considered. The vector p(S) contains the power

budgets of the users included in S, with its components p(S)
i

denoting the power budget of

the ith user in set S for i = 1, . . . , |S|. Note that the expression log det(I + H(S) ∗2 Q
(S) ∗2

H(S)H) in (3.86) is same as the objective function in (3.83) when S contains all the users,
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i.e. S = {1, . . . , K}.
As an example, let us consider a three users scenario for which S can assume the

following sets :{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}. Subsequently, we can express the

capacity region from (3.86) as :

CR =
⋃̄

tr(Q(i))≤Pi, i=1,2,3∑
n Q

(1,2)
n,1,n,1≤P1,

∑
n Q

(1,2)
n,2,n,2≤P2∑

n Q
(2,3)
n,1,n,1≤P2,

∑
n Q

(2,3)
n,2,n,2≤P3∑

n Q
(1,3)
n,1,n,1≤P1,

∑
n Q

(1,3)
n,2,n,2≤P3∑

n Qn,k,n,k≤Pk, k=1,2,3





0 ≤ R1 ≤ log det
(

I + H(1)Q(1)H(1)H
)

0 ≤ R2 ≤ log det
(

I + H(2)Q(2)H(2)H
)

0 ≤ R3 ≤ log det
(

I + H(3)Q(3)H(3)H
)

0 ≤ R1 +R2 ≤ log det
(

I + H(1,2) ∗2 Q
(1,2) ∗2 H

(1,2)H
)

0 ≤ R2 +R3 ≤ log det
(

I + H(2,3) ∗2 Q
(2,3) ∗2 H

(2,3)H
)

0 ≤ R1 +R3 ≤ log det
(

I + H(1,3) ∗2 Q
(1,3) ∗2 H

(1,3)H
)

0 ≤ R1 +R2 +R3 ≤ log det
(

I + H ∗2 Q ∗2 H
H
)





(3.87)

For the first bound on R1, we have S = {1}, i.e. we consider only first user and find

what is the maximum rate that user 1 can transmit given the power constraint on user

1 and that all other users are silent. In this case, H(1) ∈ CNR×NT×1 is essentially the

matrix H(1) between the user 1 and base station, and Q(1) ∈ CNT×1×NT×1 is the covariance

matrix Q(1) of user 1. Hence this reduces to single user MIMO channel where the optimal

Q(1) which achieves maximum rate can be found using classical water-filling. Similarly,

conditions two and three in (3.87) correspond to the bounds on the rates achieved by user

2 and user 3 (R2 and R3) respectively when all other users are silent. Hence, the first

three conditions are same as the one derived from the vector case (3.80). Condition four

corresponds to S = {1, 2}, thus gives a bound on the sum rate that user 1 and user 2 can

together achieve given that user 3 is silent. In this case H(1,2) ∈ CNR×NT×2 is a sub-tensor

of H as H(1,2) = H:,:,1:2. The covariance tensor Q(1,2) ∈ CNT×2×NT×2 is a sub-tensor of

Q given by Q(1,2) = Q:,1:2,:,1:2. The power constraints are defined as
∑

n Q
(1,2)
n,1,n,1 ≤ P1 and

∑
n Q

(1,2)
n,2,n,2 ≤ P2 where P1, P2 are power budgets for user 1 and 2 respectively. Note that

the bound on sum rate R1 + R2 achieved using this method assumes that user 1 and 2

perform a joint transmission. Hence the sum rate achieved using the tensor approach will
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be different than the one obtained from iterative water-filling which assumes independent

transmission. Similarly, condition five represents the bound on sum rate R2 + R3 that

can be achieved when user 2 and 3 transmit together keeping user 1 silent. In this case

H(2,3) ∈ CNR×NT×2 is a sub-tensor of H given by H(2,3) = H:,:,2:3. The covariance tensor

Q(2,3) ∈ CNT×2×NT×2 is a sub-tensor of Q given by Q(2,3) = Q:,2:3,:,2:3. The power constraints

are defined as
∑

n Q
(2,3)
n,1,n,1 ≤ P2 and

∑
n Q

(2,3)
n,2,n,2 ≤ P3 where P2, P3 are power budgets for

user 2 and 3 respectively. Similarly condition six represents the bound on sum rate R1 +R3

that can be achieved when user 1 and 3 transmit together keeping user 2 silent. The last

condition represents the bound on sum rate when all the three users are transmitting.

Note that the covariance tensors satisfying the power constraints of all the equations in

(3.87) can be seen as sub-tensors of the covariance tensor Q. For instance, Q:,1,:,1 = Q(1)

represents the covariance matrix of user 1. But the optimal choice of covariance tensor

Q that achieves the sum capacity under user cooperation can not be obtained from only

individual covariance tensors Q(i) for different users. For instance, the optimal Q(1) that

maximizes log det(I + H(1)Q(1)H(1)H) may not be the sub-tensor of the optimal Q that

maximizes log det(I + H ∗2 Q ∗2 H
H). Thus the capacity region under user coordination is

given by the convex hull of the union of all the rate regions over all the choices of covariance

tensors which satisfy the power constraints.

We can also use (3.86) to represent the capacity region without user coordination as in

(3.80) by assuming the following additional constraints on the covariance tensor:

Q
(S)
n,i,n′,i′ = 0, for i 6= i′. (3.88)

To prove this, we consider the expression H(S) ∗2 Q
(S) ∗2 H

(S)H from (3.86) for any given S
and show that with (3.88) it reduces to

∑
k∈S H(k)Q(k)H(k)H as in (3.80). We can write :

(H(S) ∗2 Q
(S) ∗2 H

(S)H)j,j′ =
∑

n′,i′

(
∑

n,i

H
(S)
j,n,iQ

(S)
n,i,n′,i′)H

(S)H
n′,i′,j′ . (3.89)

With (3.88), entries of Q(S) are zero for all i 6= i′. Hence we can write (3.89) as

(H(S) ∗2 Q
(S) ∗2 H

(S)H)j,j′ =

|S|∑

i=1

( NT∑

n′=1

(

NT∑

n=1

H
(S)
j,n,iQ

(S)
n,i,n′,i)H

(S)H
n′,i,j′

)
. (3.90)

Note that each user in the set of all users U = {1, . . . , K} is known by its index k, i.e.
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first user, second user, kth user and so on. The variable i denotes the index of a user in

set S where S ⊆ U . For instance if S = {3, 4, . . . , K}, then the third user (k = 3) is at

index i = 1 in S. Hence we replace the index i with the user number k. The entities H
(S)
:,;,i

and Q
(S)
:,i,:,i are the channel sub-tensor and covariance matrix of the user i in set S, and

equivalently of the kth user in set of all users. Hence we get H
(S)
j,n,i = H

(k)
j,n for k ∈ S, and

the covariance as Qn,i,n′,i = Q
(k)
n,n′ for k ∈ S. Thus we can write (3.90) as :

(H(S) ∗2 Q
(S) ∗2 H

(S)H)j,j′ =
∑

k∈S

( NT∑

n′=1

(

NT∑

n=1

H
(k)
j,nQ

(k)
n,n′)H

(k)H
n,j′

)
(3.91)

=
∑

k∈S

(H(k)Q(k)H(k)H)j,j′ . (3.92)

Substituting (3.92) with the additional constraints (3.88) into (3.86) gives us the capacity

region from (3.80) which assumes no user coordination.

Now we present a few numerical examples to illustrate the concepts. Consider a MU

MIMO MAC scenario where K users with NT = 2 antennas each are transmitting to a

base station equipped with NR = 10 antennas. The noise vector at the receiver is circularly

symmetric complex Gaussian with zero mean and identity covariance matrix. The channel

entries are realizations of circularly symmetric complex Gaussian random variables with

zero mean and unit variance and these realizations are known at the transmitters and

receiver. The results presented are averaged over 100 different channel realizations. Each

user has an individual power budget Pk. The total transmit power is P =
∑

k Pk. We

assume that all the users have the same power constraint, i.e. Pk = P/K and plot the sum

capacity obtained through the tensor approach achieved by K users against total power

in Figure 3.27. The sum capacity is found by solving the optimization problem in (3.83)-

(3.85). We employ the proposed solution from Algorithm 1 to approximate the optimal

input covariance tensor which achieves the sum capacity. The covariance tensor obtained

from Algorithm 1 is further used to approximate the sum capacity given by log det(H ∗2

Q ∗2 H
H + I). This approach assumes that all the users coordinate for transmission. It can

be seen that for a fixed number of users, the sum capacity increases with an increase in

the total transmit power. Furthermore, for a fixed total transmit power, the sum capacity
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increases when the number of users increases. Especially at higher transmit powers, the

increased number of users lead to a significant increase in the sum capacity.
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Fig. 3.27: Sum capacity vs transmit power for MU MIMO MAC.

The results of Figure 3.27 can be compared with the iterative water-filling approach

where different users despite having channel state information of other users transmit inde-

pendently. Figure 3.28 presents the sum capacity under coordinated users and independent

users against the number of users for two different values of total power. The sum capacity

under independent users is calculated using the iterative water-filling approach from [171,

Algorithm 1]. It can be observed that as the number of users increases, there is a significant

difference in achievable rate of coordinated users as compared to the independent users.
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This shows that user cooperation captured in the input covariance tensor structure can

increase the sum capacity substantially.
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Fig. 3.28: Sum capacity vs users for MU MIMO MAC.

Further the capacity region of a 2 users MIMO MAC is presented in Figure 3.29 for

transmit power budgets P1 = P2 = 5 dB. We assume the base station has NR = 8 antennas,

and 2 different settings for transmit antennas NT = 4 and 8. The capacity region obtained

from the tensor formulation for two users can be expressed as :
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CR =
⋃̄

tr(Q(1))≤P1,

tr(Q(2))≤P2,
NT∑
n=1

Qn,k,n,k≤Pk,k=1,2.





R1 ≤ log det
(

I + H(1)Q(1)H(1)H
)

R2 ≤ log det
(

I + H(2)Q(2)H(2)H
)

R1 +R2 ≤ log det
(

I + H ∗2 Q ∗2 H
H
)





(3.93)

For the two users case, finding the optimum covariance that maximizes the achievable

rate of user 1 assuming user 2 is silent reduces to a single user MIMO scenario. Hence the

bounds on individual rates R1 and R2 in (3.93) and (3.81) are the same. Note however that

the bound on the sum rate R1 + R2 differs. With the additional constraint on covariance

tensor from (3.88), the bound on the sum rate in (3.93) translates to :

R1 +R2 ≤ log det
(

I + H ∗2 Q ∗2 H
H
)

(3.94)

= log det
(

I + H(1)Q(1)H(1)H + H(2)Q(2)H(2)H
)

(3.95)

where (3.94) to (3.95) follow from (3.92). Hence, with additional constraint on covariance

Q as defined by (3.88), the sum rate bound in (3.93) reduces to the sum rate bound in

(3.81), and thus all the three bounds in (3.93) depend only on Q(1),Q(2). The additional

constraint corresponds to the transmit scheme where each user acts independent of the

other user. In such a case, the capacity region is characterized by a pair of covariance

matrices (Q(1),Q(2)) which satisfies the power constraints. In general, the capacity region

of the 2 users case corresponding to (3.93) is characterized by a triplet (Q(1),Q(2),Q) where

Q is the transmit covariance tensor which prescribes a joint transmission scheme. The

transmit covariance matrix of individual users Q(1),Q(2) form the sub-tensors of Q. However

the optimal Q(1),Q(2) which maximizes R1, R2 respectively may not be the sub-tensors of

the optimal Q which maximizes R1 + R2. The optimal Q(1),Q(2) are found assuming the

other user to be silent for transmission, whereas the optimal Q is found assuming joint

transmission by both the users.
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Fig. 3.29: Capacity region of a 2 users MIMO MAC.

The rate regions in (3.93) and (3.81) forms a pentagon on a two dimensional R1, R2

plane. The capacity region is determined by the convex hull of the union of all such

pentagons obtained through different choices of covariances which satisfy the constraints.

In Figure 3.29, the solid line (case 1) represents the pentagon corresponding to (3.81) where

(Q(1),Q(2)) are obtained via iterative water-filling from [171, Algorithm 1] to maximize the

sum rate with independent transmissions. The dotted line (case 2) represents the pentagon

corresponding to (3.81) where (Q(1),Q(2)) are obtained via conventional water-filling for

single user MIMO to maximize R1 and R2 individually. Similarly, different (Q(1),Q(2)) will

correspond to different pentagons based on (3.81). The capacity region with independent

users is obtained as a convex hull of the union of all such pentagons associated with different

covariances which satisfy the constraints in (3.81). Thus the convex hull of the regions of
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case 1 and 2 gives an inner bound to the capacity region with independent user transmission.

The capacity region signifies the bounds on the rate of transmission by each user.

The dashed line (case 3) represents the pentagon corresponding to (3.93) where Q is

approximated using Algorithm 1 to maximize the sum rate, and Q(1),Q(2) are the sub-

tensors of the Q obtained from Algorithm 1. However such a choice of Q(1) and Q(2) may

not maximize the individual rates of user 1 and 2. This is reflected in Figure 3.29 as the

dotted line shows a larger bound on individual rates as compared to other cases in both the

vertical and horizontal segments, A and B. Case 2 can be seen as another scenario for (3.93)

where Q(1),Q(2) are chosen to maximize the individual rates and the joint covariance tensor

Q has structure Q:,i,:,j = Q(i) for i = j and 0 for i 6= j with i, j = 1, 2. Such a covariance

tensor does not maximize the sum rate but only individual rates and still satisfies all the

constraints in (3.93). The capacity region with user coordination is given by the convex

hull of the union of pentagons associated with case 3 and case 2 along with every pentagon

associated with different covariances which satisfy the constraints in (3.93). Thus, a convex

hull of the regions of case 2 and 3 gives an inner bound to the capacity region with user

coordination. The bound on the sum achievable rate indicated by segment C in Figure 3.29

is lowest in case 2, followed by the case where transmit covariances are chosen via iterative

water-filling (case 1), and is largest when covariance is obtained using the tensor approach

assuming user coordination (case 3). Moreover, this difference increases as NT increases

from 4 to 8, as observed in the figure. Hence it is seen that the boundary of the capacity

region expands in segment C with user coordination as opposed to the independent users

transmissions.

3.4.2 MIMO Interference Channels

We now consider the MU MIMO Interference Channels (IC) scenario where both the trans-

mit and receive side have user separation. Consider K transmit devices having NT antennas

each that are communicating with their respective K receive devices having NR antennas

each. Such a channel model assumes that all the transmitting devices are communicating

with their respective receivers while creating interference to all the other receivers. Finding
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the exact capacity region of a general K user interference channel is still an ongoing effort

[172, 173]. For the 2 users scenario, capacity bounds have been discussed in [174, 175] and

references within, under certain assumptions regarding interference such as Z interference

channels (one of the two receive users does not experience interference), strong interference,

and noisy interference. The expression ‘noisy interference’ refers to conditions where the

sum capacity can be achieved by treating interference as noise [176]. In [176, Theorem 2],

a set of conditions involving the channel and transmit covariance matrices are established

which are sufficient for interference to be treated as noise in a 2 users MIMO IC. Such

conditions ensure that the indirect links are much weaker than the direct links, and power

allocation is such that the received power of the message on the indirect link for each user

is very low compared to the received power of the message via the direct link. Further, it

is shown in [177] that under strong interference, each receiver can jointly decode the signal

and the interference to achieve the sum capacity. As an extension of the two users case,

[178] derives the conditions under which treating noise as interference can achieve the sum

capacity for a K users IC. Most of these works assume no coordination among the source

transmitters or the destinations. If different transmitting users coordinate for transmis-

sion, and receivers coordinate for reception then interference can be treated as information

bearing entity which can be harnessed using the tensor framework.

The system model for a MIMO interference network is given by [179]:

y(k) = H(k,k)x(k) +
∑

u
u6=k

H(k,u)x(u) + n(k) (3.96)

for k = 1, . . . , K and x(k) ∈ CNT×1 is the vector transmitted by source k. Also, y(k),n(k) ∈
CNR×1 are the received signal and noise vectors at destination k. The matrix H(k,k) ∈
CNR×NT is the direct channel between source k and destination k and H(k,u) ∈ CNR×NT is

the cross-channel matrix between source u and destination k. For each transmitting source,

there is an individual power constraint defined as tr(Q(k)) ≤ Pk, where Q(k) ∈ CNT×NT is

the covariance matrix of vector x(k) and Pk denotes the power budget. Such interference

networks can be thought of as a tensor communication link. The input can be represented

as a matrix X ∈ CNT×K where each x(k) forms a column of the matrix X. Similarly the
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received signal and noise can be represented using matrices Y,N ∈ CNR×K where each

y(k) and n(k) form columns of the matrices Y and N. The overall channel between such

an input and output can be represented as a fourth order tensor H ∈ CNR×K×NT×K where

H:,k,:,u = H(k,u). Subsequently the interference network system model can be represented

in tensor form as :

Y = H ∗2 X + N. (3.97)

Note that (3.97) differs from MIMO MAC specified by (3.82) in the sense that in (3.82) the

channel is a third order tensor and thus the output is a vector. On the other hand in (3.97)

the channel is a fourth order tensor which accounts for the user separation at the receiver

side as well and thus the output is a matrix or an order-2 tensor. The power constraints on

the input can be defined in a similar manner as for (3.82). Assuming the noise covariance

is an identity tensor I of size NR × K × NR × K, the tensor formulation can be used to

specify the channel capacity as

max
Q

log det
(
H ∗2 Q ∗2 H

H + I
)

(3.98)

s.t.

NT∑

n=1

Qn,k,n,k ≤ Pk ∀k, Q � 0. (3.99)

Note that capacity obtained from the proposed tensor formulation assumes that all the

sources cooperate for transmission and all the destinations cooperate for reception.

Next we consider an example with two users interference channel and compare the sum

rate achieved using the tensor framework which assumes user cooperation, with the upper

bound on rate suggested in [174] while treating interference as noise. We consider the same

example from [174] consisting of a system composed of two transmitters and two receivers,

equipped with NT antennas each. The model introduces a positive scalar a ≥ 0 to control

the interference power :

y(1) = H(1,1)x(1) + a · H(1,2)x(2) + n(1), (3.100)

y(2) = a · H(2,1)x(1) + H(2,2)x(2) + n(2). (3.101)

Such a system of equations can be equivalently represented using (3.97) where the channel

H is a tensor of size NT×2×NT×2 and the input, output and noise are matrices of size NT×
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2 each. We find the capacity of such MIMO interference channels with user coordination

using the tensor framework where the optimal input covariance is approximated using

Algorithm 1.

For the numerical example, in (3.100), (3.101) we take a = 1/
√

3 and the channel

entries are i.i.d. zero mean unit variance Gaussian random variables as used in [174]. The

results are averaged over 100 different channel realizations. These channel realizations are

known at the transmitters and the receivers. We find the sum rate achieved via the tensor

framework assuming user coordination, and denote it using RT . We compare RT with the

capacity of K parallel non-interfering channels found using standard water-filling approach

and denote it as RU . In [174], RU has been used as an upper bound on the achievable sum

rate while treating interference as noise. Figures 3.30-3.34 present a comparison between

RT and RU . To calculate RU , we find the transmit covariance matrix Q(k) for each user

input x(k) based on MIMO water-filling corresponding to the channel H(k,k), and set RU =
∑

k log det(I + H(k,k)Q(k)H(k,k)H). Also, RT is calculated using the objective function in

(3.98) where the optimal covariance tensor Q is approximated using Algorithm 1.

Figure 3.30 compares RT and RU for a 2 users case with different power constraints

P1 = P2 = P . The achievable sum rates with the two approaches are plotted against

the number of antennas NT . The sum rates for both the cases increase as NT increases.

The achievable rate with user coordination as ensured in the tensor framework, RT is

higher than the upper bound on the sum rate, RU from [174]. It can also be observed in

Figure 3.30 that as P increases, the gap between RT and RU increases as well. The tensor

approach shows that the presence of interference can in fact give higher achievable sum

rates if the transmit and receive operations are performed jointly by all the transmitting

and receiving users respectively. Hence the sum rate achieved via the tensor approach, that

allows cooperation at the transmitter and receiver sides, can be higher than the sum rate

achieved in the absence of interference.
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Fig. 3.30: Achievable sum rate vs number of antennas for 2 users MIMO IC.

This phenomenon is further observed in Figure 3.31 which presents the sum rate against

the number of users K for a multi-user MIMO interference scenario from (3.96) with NT =

2. Each users’ receive signal contains a desired signal and information from K−1 interfering

links whose power is controlled by a scalar factor a as described in the two users case. The

result presented is for a = 1/
√

3 and for two different total power budgets P = 5, 10 dB with

individual power constraints as Pk = P/K. It can be seen that RT is always larger than

RU . Furthermore, as the number of users grows, the difference between RT and RU also

widens, which demonstrates the advantage of considering interference as an information

bearing entity rather than noise, through the tensor framework.
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Fig. 3.31: Achievable sum rate vs number of users for K-user MIMO IC with NT = 2.

To further elaborate on the role of interference, Figure 3.32 presents the sum rate RT of

the two users scenario achieved using the tensor framework for different interference power

and compares it with RU . The solid lines represent RT and dashed lines represent RU . The

result is plotted against the interference coupling power gain defined as G1 = 10 log10 a
2

dB [174] for different number of antennas NT at each device, and with power constraints

Pk = P/K for k = 1, 2 where K = 2 and P is set to 10 dB. It is seen clearly that higher

interference leads to higher sum rate RT using the tensor approach. Also, RT increases with

NT and the gap between sum rate for different number of antennas widens with increasing

interference. However, RU is always lower than RT and does not change with G1. Since RU
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is calculated by assuming zero interference, it does not vary with changing the interference

power. At very low interference power, we see that RT and RU are almost same. The

difference between RT and RU starts to be significant (more than 1 bit/channel-use) at

an interference power G1 of approximately -2 dB when NT = 2, and around -6 dB when

NT = 8.
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Fig. 3.32: Achievable sum rate vs interference power for 2 users MIMO IC.
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Next we consider a 3 users system specified by:

y(1) = H(1,1)x(1) + a · H(1,2)x(2) + b · H(1,3)x(3) + n(1) (3.102)

y(2) = a · H(2,1)x(1) + H(2,2)x(2) + b · H(2,3)x(3) + n(2) (3.103)

y(3) = a · H(3,1)x(1) + b · H(3,2)x(2) + H(3,3)x(3) + n(3) (3.104)

Such a system model can be represented using (3.97) with Y,X and N as NT × 3 matrices

each and H as an NT × 3 × NT × 3 tensor. The number of antennas at each device is

denoted by NT . Each destination user receives signals from a direct link and 2 interfering

links whose power is controlled by scalar factors a and b respectively. In Figure 3.33 we

present RT and RU against interference power with three users for NT = 2. The power

constraints for each user is same, i.e. Pk = P/K where K = 3, and P is set to 5 dB. In

Figure 3.33 we have G1 = 10 log10 a
2 dB and G2 = 10 log10 b

2 dB, where G1, G2 represent

the strength of the 2 interfering links for each user. It can be seen that RT is low when

the interference power of both links is weak. With increasing strength of the interfering

links, we get higher sum rate RT . The curve for RU does not vary with change in G1 and

G2 and is always lower than RT . Similar observation can be made in Figure 3.34 which

represents RT and RU for NT = 4. On comparing Figures 3.33 and 3.34, we see that RT

and RU increase as NT increases from 2 to 4. Notice that difference in RT for NT = 2 and

4 is wider for large values of G1, G2, i.e. when the interference gets stronger. The tensor

framework allows to treat interfering terms as information bearing components, resulting

in higher rates with increasing G1, G2 and NT .
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Fig. 3.33: Achievable sum rate vs interference power for 3 users MIMO IC with NT = 2.

Fig. 3.34: Achievable sum rate vs interference power for 3 users MIMO IC with NT = 4.
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3.5 Chapter Summary

In this chapter, we formulated and solved the problem of finding the Shannon capacity

of higher order tensor channels. In particular, the tensor framework’s ability to mathe-

matically represent a family of domain specific power constraints is utilized. The optimal

solution is developed using the KKT conditions under such power constraints. An algo-

rithmic approach is presented to approximate the optimum input covariance for any SNR

setting. It was shown that for a fixed tensor channel, an exponential increase in channel

multiplexing gain can be achieved with increase in the number of domains. Through nu-

merical examples, the channel capacity behavior is analysed for different channel orders

and dimensions. It was also shown that the capacity of tensor channels decreases as the

correlation among the channel components increases. An example of MIMO GFDM system

was presented to illustrate how the impact of various transmit and receive filter parameters

on the equivalent channel capacity, and domain trade-offs can be analyzed in the tensor

framework. The tensor formalism allows to characterize the capacity of multi-user MIMO

systems having per user power constraints for any number of users. In case of multi-user

MAC and IC channels, it was shown that the tensor approach leads to a cooperative users

approach which provides higher sum rates as compared to the independent users approach.

The tensor framework allows to capture the user cooperation in the form of a joint covari-

ance tensor across all the domains. It is shown that such an improvement in achievable

rates through user cooperation becomes even more significant as the number of users grows

or the power of the interfering links increases.
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Chapter 4

MMSE Estimation of Tensors

In this chapter, we develop a framework for MMSE estimation which is concerned with

estimating a signal in tensor form from a tensor based noisy observation. We present the

notions of best MMSE estimation, and also the tensor multi-linear and widely multi-linear

estimators. The notion of the error covariance tensor associated with the MMSE estimator,

as presented in this chapter, can be used to establish a relationship with the gradient of

the mutual information, thereby linking the information and estimation measures, as will

be shown in Chapter 5.

The commonly used methods for tensor estimation found in literature rely on the Tucker

or PARAFAC (CP) decompositions. The Tucker product based technique is also known as

the n-mode Wiener filtering approach [180], and aims to find N separate factor matrices

along each mode of the order N tensor to be estimated. The mode-n product between

the observed noisy tensor and the factor matrices is then used to find the estimate. Such

an approach has found applications in various areas such as image processing [180], speech

processing [181], and communication systems [80]. However, the additional assumption that

the multi-linear estimator is separable across all the modes, makes the Tucker approach

sub-optimal within the class of multi-linear estimators. Estimation using CP model relies

on matrix unfolding of the observed tensor and uses an alternating least squares method to

find the separate factor tensors [182]. Such an estimation technique assumes a finite rank
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decomposition of the tensor to be estimated, and is often employed for tensor completion

problems [183]. Further, it has applications in communication systems for joint channel

and symbol estimation if the signal can be assumed to have a low rank CP structure [82].

In this chapter, we will first establish the best MMSE estimators, and then use the Einstein

product to find a multi-linear operator where no such separability or rank constraints are

assumed on the tensor to be estimated.

4.1 Tensor Framework for Estimation

Consider the problem of estimating a complex tensor XXX ∈ CI1×...×IN from an observed

complex tensor YYY ∈ CJ1×...×JM . Throughout this chapter, we assume that the observed

tensor and the tensor to be estimated have zero mean. We first establish an Orthogonality

principle for tensors through the following theorem :

Theorem 3. Let g : CJ1×...×JM → CI1×...×IN be a tensor valued function of a tensor such

that X̂XX = g(YYY) ∈ CI1×...×IN is an estimator of tensor XXX ∈ CI1×...×IN based on the observation

tensor YYY ∈ CJ1×...×JM . We define the error tensor as EEE = XXX− g(YYY), then if :

E[〈EEE, h(YYY)〉] = 0 for any h : CJ1×...×JM → CI1×...×IN (4.1)

then,

E[||EEE||2] ≤ E[||XXX− h(YYY)||2]. (4.2)

Proof of Theorem 3 is provided in Appendix B.3. Using similar line of proof as for

Theorem 3, the following corollaries can be established :

Corollary 3.1. Let g, h : CJ1×...×JM → CI1×...×IN be tensor valued functions of ten-

sors such that g(YYY) = A1 ∗M YYY + A2 ∗M YYY
∗ and h(YYY) = B1 ∗M YYY + B2 ∗M YYY

∗ where

A1,A2,B1,B2 ∈ CI1×...IN×J1×...×JM . Let g(YYY) be an estimator of tensor XXX ∈ CI1×...×IN

based on the observation tensor YYY ∈ CJ1×...×JM . Then for the error tensor EEE = XXX− g(YYY), if,

E[〈EEE, h(YYY)〉] = 0 for any B1,B2 ∈ CI1×...IN×J1×...×JM (4.3)

then,

E[||EEE||2] ≤ E[||XXX− h(YYY)||2]. (4.4)
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Corollary 3.2. Let g, h : CJ1×...×JM → CI1×...×IN be tensor valued functions of tensors

such that g(YYY) = A ∗M YYY and h(YYY) = B ∗M YYY where A,B ∈ CI1×...IN×J1×...×JM . Let g(YYY) be

an estimator of tensor XXX ∈ CI1×...×IN based on the observation tensor YYY ∈ CJ1×...×JM . Then

for the error tensor EEE = XXX− g(YYY), if

E[〈EEE, h(YYY)〉] = 0 for any B ∈ CI1×...IN×J1×...×JM (4.5)

then,

E[||EEE||2] ≤ E[||XXX− h(YYY)||2]. (4.6)

4.1.1 Best MMSE Estimation of Tensors

The objective is to find the function g(YYY) which is the best estimator of XXX in mean square

error sense. Let h(YYY) be any other estimator. Then we have :

E[〈XXX− g(YYY),h(YYY)〉] = EYYY

[
E[〈XXX− g(YYY), h(YYY)〉 | YYY]

]
(4.7)

= EYYY

[
E[(XXX− g(YYY)) ∗N h(YYY)∗ | YYY]

]
. (4.8)

Conditioned on YYY, we can take h(YYY)∗ and g(YYY) outside of the inner expectation.

E[〈XXX− g(YYY),h(YYY)〉] = EYYY

[
E[(XXX− g(YYY)) | YYY] ∗N h(YYY)∗

]
(4.9)

= EYYY

[
(E[XXX | YYY]− g(YYY)) ∗N h(YYY)∗

]
. (4.10)

From orthogonality principle, we know that (4.10) has to be 0 for any h(YYY) to minimize the

mean square error. Thus g(YYY) = E[XXX | YYY] is the best MMSE estimator of tensor XXX from YYY :

X̂XX = E[XXX | YYY]. (4.11)

Since E[X̂XX] = E[E[XXX | YYY]] = E[XXX], the error EEE = XXX − X̂XX, is a zero mean tensor with the

associated covariance as :

QEEE = E[(XXX− X̂XX) ◦ (XXX− X̂XX)∗] (4.12)

= EXXX,YYY[(XXX− E[XXX | YYY]) ◦ (XXX− E[XXX | YYY])∗]. (4.13)

Note that (4.13) represents the order 2N covariance tensor of the error when conditional

mean estimator is used to estimate an order N tensor. The trace of such a covariance
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tensor gives us the Mean Squared Error (MSE) in estimation as :

E[||EEE||2] = E
[ ∑

i1,...,iN

|EEEi1,...,iN |2
]

=
∑

i1,...,iN

E[|EEEi1,...,iN |2] = tr(QEEE) (4.14)

Notice that similar to the vector case [121], conditioning on YYY is same as conditioning on

YYY
∗, i.e. E[XXX | YYY] = E[XXX | YYY∗] . Hence the estimator conditioned on both YYY and YYY

∗ gives no

extra information as compared to the one conditioned only on YYY. Also the conditional mean

estimator of XXX∗ would just be the complex conjugate of the conditional mean estimator of

XXX.

4.1.2 Widely Multi-linear and Multi-linear MMSE Estimation of Tensors

A function f between linear spaces V and W , denoted as f : V → W , over the same field

K is said to be a linear map if f(u+ v) = f(u) + f(v) and f(cu) = cf(u) for any u, v ∈ V
and scalar c ∈ K [184]. Consider a simple linear relation over complex field as y = hx

where x, y, h ∈ C. Such a relation can be written as a transformation in terms of the real

and imaginary components of y, x in R2 as :
yr
yi


 =


hr −hi
hi hr




xr
xi


 (4.15)

where xr, yr, hr denote the real parts and xi, yi, hi denote the imaginary parts of x, y, h

respectively. Thus, linear transformations on R2 are linear on complex field C only if the

transforming matrix has the specific structure as shown in (4.15). But not all linear relations

on R2 need to have the same structural constraints on the transforming matrix as in (4.15).

Thus, in order to establish a transformation on C which has a more general linear form in

R2, a widely linear relation can be used where the function depends not only on x, but also

its conjugate x∗ as y = g(x) = hx + kx∗ for h, k ∈ C. Clearly this relation is not linear in

x as it does not satisfy the scalar multiplication property, i.e. g(cx) = chx+ c∗kx∗ 6= cg(x)

for c ∈ C. However, when expressed in R2, we can write g(x) as :


yr
yi


 =


hr −hi
hi hr




xr
xi


+


kr −ki
ki kr




 xr

−xi


 =


hr + kr −hi + ki

hi + ki hr − kr




xr
xi


 (4.16)
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which is a more general form of linear transformation on R2. Hence the equivalent of a

general linear relation in R2 on C is the widely linear transformation, also known as linear-

conjugate-linear relationship [121]. Essentially, the set of complex linear transformations is

a subset of widely linear transformations where k = 0. The notion of widely linear transfor-

mation was used to define the Widely Linear Minimum Mean Squared Error (WLMMSE)

estimate of a complex vector in [121, 185] where the estimate of a vector depends linearly

on both the observed vector and its conjugate or in other words depends widely linearly on

the observed vector. For complex data estimation, assuming a widely linear dependence

instead of linear can significantly improve the performance since the former uses both co-

variance and pseudo-covariance for estimation, while the latter employs only the covariance

[121].

In this section, we restrict ourselves to the class of estimators which depend linearly

on the received tensor YYY and its conjugate YYY
∗. If the estimator depends linearly only on

tensor YYY, it is called a multi-linear estimate, whereas if the estimator depends linearly

on both YYY and YYY
∗ through different set of coefficients, it is called a widely multi-linear

estimate. In order to estimate the tensor XXX ∈ CI1×...×IN from an observed complex tensor

YYY ∈ CJ1×...×JM and its conjugate by a multi-linear structure, we are looking for the tensors

A1,A2 ∈ CI1×...IN×J1×...×JM such that the estimator:

X̂XXWL = A1 ∗M YYY + A2 ∗M YYY
∗ (4.17)

satisfies

E[||XXX− (A1 ∗M YYY + A2 ∗M YYY
∗)||2] ≤ E[||XXX− (B1 ∗M YYY + B2 ∗M YYY

∗)||2] (4.18)

for any other tensors B1,B2 ∈ CI1×...×IN×J1×...×JM . From Corollary 3.1, we know that the

optimal A1 and A2 will be such that :

E[〈(XXX− X̂XXWL), (B1 ∗M YYY + B2 ∗M YYY
∗)〉] = 0 (4.19)

for any choice of B1,B2 ∈ CI1×...×IN×J1×...×JM . On substituting (4.17) into (4.19), we get :

E[(XXX−A1 ∗M YYY−A2 ∗M YYY
∗) ∗N (B1 ∗M YYY + B2 ∗M YYY

∗)∗] = 0. (4.20)

From (2.10), we can write (B1 ∗M YYY)∗ = (YYY∗ ∗M BH
1 ) and (B2 ∗M YYY

∗)∗ = (YYY ∗M BH
2 ), and
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hence the left hand side of (4.20) can be written as :

E[(XXX−A1 ∗M YYY−A2 ∗M YYY
∗) ∗N ((YYY∗ ∗M BH

1 ) + (YYY ∗M BH
2 ))]

= E[ tr {(XXX−A1 ∗M YYY−A2 ∗M YYY
∗) ◦ ((YYY∗ ∗M BH

1 ) + (YYY ∗M BH
2 ))}] (from (2.18)) (4.21)

= E[ tr {XXX ◦YYY∗ ∗M BH
1 −A1 ∗M YYY ◦YYY∗ ∗M BH

1 −A2 ∗M YYY
∗ ◦YYY∗ ∗M BH

1 +

XXX ◦YYY ∗M BH
2 −A1 ∗M YYY ◦YYY ∗M BH

2 −A2 ∗M YYY
∗ ◦YYY ∗M BH

2 }] (4.22)

= tr {E[XXX ◦YYY∗]︸ ︷︷ ︸
CXYXYXY

∗MBH
1 −A1 ∗M E[YYY ◦YYY∗]︸ ︷︷ ︸

CYYY

∗MBH
1 −A2 ∗M E[YYY∗ ◦YYY∗]︸ ︷︷ ︸

C̃∗
YYY

∗MBH
1 +

E[XXX ◦YYY]︸ ︷︷ ︸
C̃XYXYXY

∗MBH
2 −A1 ∗M E[YYY ◦YYY]︸ ︷︷ ︸

C̃YYY

∗MBH
2 −A2 ∗M E[YYY∗ ◦YYY]︸ ︷︷ ︸

C∗
YYY

∗MBH
2 } (4.23)

= tr { (CXYXYXY −A1 ∗M CYYY −A2 ∗M C̃∗YYY)︸ ︷︷ ︸
B̄1

∗MBH
1 + (C̃XYXYXY −A1 ∗M C̃YYY −A2 ∗M C∗YYY)︸ ︷︷ ︸

B̄2

∗MBH
2 }.

(4.24)

For (4.24) to be 0, for any B1 and B2, we need B̄1 and B̄2 to be all zero tensors, which

gives us the conditions for optimal A1 and A2 :

CXYXYXY = A1 ∗M CYYY + A2 ∗M C̃∗YYY (4.25)

C̃XYXYXY = A1 ∗M C̃YYY + A2 ∗M C∗YYY. (4.26)

Equations (4.25) and (4.26) are systems of multi-linear equations which can be solved for

A1 and A1 using methods described in [48]. If the inverse of the covariance of YYY exists,

then from (4.26), we get A2 = (C̃XYXYXY −A1 ∗M C̃YYY) ∗M C∗−1
YYY which we can substitute in (4.25)

to get :

CXYXYXY = A1 ∗M CYYY + (C̃XYXYXY −A1 ∗M C̃YYY) ∗M C∗−1
YYY ∗M C̃∗YYY (4.27)

= A1 ∗M (CYYY − C̃YYY ∗M C∗−1
YYY ∗M C̃∗YYY) + (C̃XYXYXY ∗M C∗−1

YYY ∗M C̃∗YYY) (4.28)

⇒ A1 =
(
CXYXYXY − C̃XYXYXY ∗M C∗−1

YYY ∗M C̃∗YYY

)
∗M P−1

YYY (4.29)

where, PYYY = (CYYY − C̃YYY ∗M C∗−1
YYY ∗M C̃∗YYY). (4.30)

Also from (4.25) we get A1 = (CXYXYXY − A2 ∗M C̃∗YYY) ∗M C−1
YYY which we can substitute in (4.26)
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to get :

A2 =
(
C̃XYXYXY − CXYXYXY ∗M C−1

YYY ∗M C̃YYY

)
∗M P∗−1

YYY . (4.31)

Substituting (4.29) and (4.31) into (4.17) gives us the widely multi-linear estimate X̂XXWL of

the tensor XXX. The covariance of the corresponding error tensor is :

QWL = E[(XXX− X̂XXWL) ◦ (XXX− X̂XXWL)∗]

= CXXX −A1 ∗M CHXYXYXY −A2 ∗M C̃HXYXYXY. (4.32)

A detailed derivation of (4.32) has been included in Appendix B.4. On substituting A1

and A2 from (4.29) and (4.31) respectively, we get :

QWL = CXXX −
(
CXYXYXY − C̃XYXYXY ∗M C∗−1

YYY ∗M C̃∗YYY

)
∗M P−1

YYY ∗M CHXYXYXY−
(
C̃XYXYXY − CXYXYXY ∗M C−1

YYY ∗M C̃YYY

)
∗M P∗−1

YYY ∗M C̃HXYXYXY. (4.33)

The quantity A1 ∗M CHXYXYXY +A2 ∗M C̃HXYXYXY can be seen as the cross covariance between the widely

multi-linear estimator X̂XXWL and the tensor XXX (based on (B.11)). Hence, intuitively the

error covariance tensor is the difference between the covariance tensor of XXX and the cross

covariance between X̂XXWL and XXX, i.e. QWL = CXXX − C
X̂XXWLXXX

.

The corresponding MSE is given by

MSEWL = tr(QWL) = tr(CXXX −A1 ∗M CHXYXYXY −A2 ∗M C̃HXYXYXY)

= tr(CXXX−(CXYXYXY−C̃XYXYXY∗MC∗−1
YYY ∗M C̃∗YYY)∗MP−1

YYY ∗MCHXYXYXY−(C̃XYXYXY−CXYXYXY∗MC−1
YYY ∗M C̃YYY)∗MP∗−1

YYY ∗M C̃HXYXYXY).

(4.34)

Next we consider the problem of MMSE estimation where we assume that the estimate

of XXX depends linearly only on the received tensor YYY and not its conjugate, i.e.

X̂XXL = A ∗M YYY (4.35)

and we want to find the tensor A ∈ CI1×...×IN×J1×...×JM such that E[||XXX − A ∗M YYY||2] ≤
E[||XXX − B ∗M YYY||2] for any other tensor B ∈ CI1×...×IN×J1×...×JM . Using Corollary 3.2, we

know that the optimal A will satisfy E[(XXX−A∗M YYY)∗N (B∗M YYY)∗] = 0. Now using the same

line of proof as for (4.24) by substituting A2 = 0T and A1 = A we can get the condition
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for optimal A as :

CXYXYXY = A ∗M CYYY. (4.36)

Equation (4.36) can be solved using methods described in [48] for A. If the inverse of CYYY

exists, then we have

A = CXYXYXY ∗M C−1
YYY (4.37)

and the multi-linear MMSE estimate of XXX is given by :

X̂XXL = (CXYXYXY ∗M C−1
YYY ) ∗M YYY. (4.38)

The covariance of the corresponding error tensor is :

QL = E[(XXX− X̂XXL) ◦ (XXX− X̂XXL)∗] (4.39)

which we can solve by substituting A2 = 0T and A1 = (CXYXYXY ∗M C−1
YYY ) in (4.34), to get:

QL = CXXX −A ∗M CHXYXYXY = CXXX − CXYXYXY ∗M C−1
YYY ∗M CHXYXYXY. (4.40)

The quantity A ∗M CHXYXYXY can be seen as the cross covariance between X̂XXL and XXX. Hence,

intuitively the error covariance tensor is the difference between the covariance tensor of XXX

and the cross covariance between X̂XXL and XXX, i.e. QL = CXXX − C
X̂XXLXXX

. The MSE is given as:

MSEL = tr(QL) = tr(CXXX − CXYXYXY ∗M C−1
YYY ∗M CHXYXYXY). (4.41)

4.1.3 Comparing Multi-linear and Widely Multi-linear MMSE Estimation

Let g(YYY) = A1∗MYYY+A2∗MYYY
∗ be a widely multi-linear estimator of XXX based on tensor YYY and

its conjugate YYY
∗. Based on Corollary 3.1, we know that the mean square error achieved by

the widely multi-linear estimate g(YYY) with A1 and A2 given in (4.29) and (4.31) respectively

will be less than or equal to the mean square error achieved by any other choice of A1 and

A2. An alternate choice of A1 and A2 can be A1 = A (obtained from (4.37)) and A2 = 0T,

in which case g(YYY) will represent the multi-linear estimate. Hence the mean square error

achieved by a widely multi-linear estimate given by (4.34) is always less than or equal to the

mean square error achieved by the multi-linear estimate given by (4.41). The performance

difference between the two estimators can be analyzed by comparing their respective error
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covariance tensors. On substituting CXYXYXY from (4.25) into (4.40), we get :

QL = CXXX − (A1 ∗M CYYY + A2 ∗M C̃∗YYY) ∗M C−1
YYY ∗M (A1 ∗M CYYY + A2 ∗M C̃∗YYY)H (4.42)

= CXXX − (A1 + A2 ∗M C̃∗YYY ∗M C−1
YYY ) ∗M (CYYY ∗M AH

1 + C̃YYY ∗M AH
2 ) (4.43)

= CXXX −A1 ∗M CYYY ∗M AH
1 −A1 ∗M C̃YYY ∗M AH

2 −A2 ∗M C̃∗YYY ∗M AH
1 −

A2 ∗M C̃∗YYY ∗M C−1
YYY ∗M C̃YYY ∗M AH

2 . (4.44)

Note that we have used the properties CYYY = CHYYY and C̃YYY = C̃TYYY in deriving (4.44). Similarly

on substituting CXYXYXY from (4.25) and C̃XYXYXY from (4.26) into (4.32), we get

QWL = CXXX −A1 ∗M (A1 ∗M CYYY + A2 ∗M C̃∗YYY)H −A2 ∗M (A1 ∗M C̃YYY + A2 ∗M C∗YYY)H

= CXXX −A1 ∗M CYYY ∗M AH
1 −A1 ∗M C̃YYY ∗M AH

2 −A2 ∗M C̃∗YYY ∗M AH
1 −A2 ∗M C∗YYY ∗M AH

2 .

(4.45)

Subtracting (4.45) from (4.44), we get

∆Q = QL − QWL = A2 ∗M (C∗YYY − C̃∗YYY ∗M C−1
YYY ∗M C̃YYY) ∗M AH

2 (4.46)

= A2 ∗ P∗YYY ∗M AH
2 (from (4.30)) (4.47)

= (C̃XYXYXY − CXYXYXY ∗M C−1
YYY ∗M C̃YYY) ∗M P∗−1

YYY ∗M (C̃XYXYXY − CXYXYXY ∗M C−1
YYY ∗M C̃YYY)H (from (4.31))

(4.48)

∆e = MSEL −MSEWL = tr(QL − QWL) = tr(∆Q) (4.49)

Since P∗−1
YYY is a positive definite tensor, hence the pseudo-diagonal entries of ∆Q are always

non negative. Hence ∆e is always non negative. The condition when the two estimates are

identical and hence provide the same mean square error, i.e. ∆e = 0, is formally established

in the following Lemma.

Lemma 6. The widely multi-linear and multi-linear MMSE estimates are identical when :

C̃XYXYXY = CXYXYXY ∗M C−1
YYY ∗M C̃YYY. (4.50)
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Proof. Substituting (4.50) in (4.29), we get :

A1 = (CXYXYXY − CXYXYXY ∗M C−1
YYY ∗M C̃YYY ∗M C∗−1

YYY ∗M C̃∗YYY) ∗M (CYYY − C̃YYY ∗M C∗−1
YYY ∗M C̃∗YYY)−1

= CXYXYXY ∗M (I− C−1
YYY ∗M C̃YYY ∗M C∗−1

YYY ∗M C̃∗YYY) ∗M (CYYY ∗M (I− C−1
YYY ∗M C̃YYY ∗M C∗−1

YYY ∗M C̃∗YYY))−1

= CXYXYXY ∗M (I− C−1
YYY ∗M C̃YYY ∗M C∗−1

YYY ∗M C̃∗YYY) ∗M (I− C−1
YYY ∗M C̃YYY ∗M C∗−1

YYY ∗M C̃∗YYY)−1 ∗M C−1
YYY

= CXYXYXY ∗M C−1
YYY . (4.51)

Also, substituting (4.50) in (4.31), we get A2 = 0T. In this case, the widely multi-linear

estimate is given as (CXYXYXY ∗M C−1
YYY ) ∗M YYY + 0T ∗M YYY

∗, which is the multi-linear estimate from

(4.38).

The condition in Lemma 6 essentially represents a case where the error of the multi-

linear estimate (X̂XXL−XXX) is uncorrelated with YYY
∗, i.e. E[(X̂XXL−XXX)◦ (YYY∗)∗] = 0T. Substituting

(4.38) in this condition we get :

E[((CXYXYXY ∗M C−1
YYY ) ∗M YYY−XXX) ◦ (YYY∗)∗] = 0T (4.52)

⇒ (CXYXYXY ∗M C−1
YYY ) ∗M E[YYY ◦YYY]− E[XXX ◦YYY] = 0T (4.53)

⇒ CXYXYXY ∗M C−1
YYY ∗M C̃YYY − C̃XYXYXY = 0T (4.54)

which is same as (4.50). A trivial case where this will be satisfied is when the tensor to be

estimated and the observation are jointly proper. Tensors XXX and YYY are called jointly proper

if they are both individually proper, i.e. C̃XXX = C̃YYY = 0T and cross-proper, i.e. C̃XYXYXY = 0T.

In this case, (4.50) is satisfied, hence multi-linear estimate is same as widely multi-linear

estimate. However, XXX and YYY being jointly proper is not a necessary condition, as even if XXX

is not proper, i.e. C̃XXX 6= 0T but C̃YYY = 0T and C̃XYXYXY = 0T, still (4.50) is satisfied making the

multi-linear and widely multi-linear estimate same.

Further, if the tensor to be estimated XXX is real, the cross pseudo-covariance is given as :

C̃XYXYXY = E[XXX ◦YYY] = E[(XXX ◦YYY∗)∗] = C∗XYXYXY (since XXX = XXX
∗). (4.55)

Substituting (4.55) into (4.25) and comparing with (4.26) shows that A2 = A∗1. Thus for

real XXX, the widely multi-linear MMSE estimate and the associated mean square error (from
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(4.34)) are given as :

X̂XXWL = A1 ∗M YYY + A∗1 ∗M YYY
∗ (4.56)

= 2<(A1 ∗M YYY) (4.57)

= 2<((CXYXYXY − C̃XYXYXY ∗M C∗−1
YYY ∗M C̃∗YYY) ∗M P−1

YYY ∗M YYY) (4.58)

which shows that the widely multi-linear estimate of a real signal is always real irrespective

of the observation being complex. The corresponding mean square error is given as:

MSEWL = tr(CXXX −A1 ∗M CHXYXYXY −A∗1 ∗M C∗HXYXYXY )

= tr(CXXX − 2<(A1 ∗M CHXYXYXY))

= tr(CXXX − 2<((CXYXYXY − C̃XYXYXY∗M C∗−1
YYY ∗M C̃∗YYY) ∗M P−1

YYY ∗M CHXYXYXY)). (4.59)

For real or proper complex vectors, it is well known that if the signal to be estimated

x and the observed vector y are jointly Gaussian random vectors, then the best MMSE

estimate is same as the Linear Minimum Mean Squared Error (LMMSE) estimate. However,

to be more accurate, we can say that if x and y are two jointly complex Gaussian random

vectors, then the best MMSE estimator E[x|y] is the WLMMSE estimator of x from y

[122]. We can extend this result to widely multi-linear MMSE estimate in the form of the

following theorem.

Theorem 4. If XXX and YYY are two jointly complex Gaussian tensors, then the best MMSE

estimator E[XXX|YYY] is the widely multi-linear estimator of XXX from YYY.

A proof of Theorem 4 has been included in Appendix B.5.

4.1.4 Comparison with Tucker based Tensor MMSE filter

The n-mode Wiener filter which makes use of the Tucker product [186] is a commonly used

signal processing technique for tensors. Consider an observed tensor YYY ∈ CI1×...×IN . The

objective is to estimate XXX ∈ CI1×...×IN based on the observation YYY. Note that such class

of estimators often assume that the signal to be estimated and observed signals have the

same dimensions. The estimator of the signal tensor XXX can be represented by N n-mode
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filters represented via A(n) ∈ CIn×In using the Tucker product as follows [187]:

X̂XXT = YYY×1 A(1) ×2 A(2) ×3 . . .×N A(N) (4.60)

where the criterion for obtaining the optimal n-mode filters A(n) is the minimization of the

mean squared error between XXX and X̂XXT , defined as :

e(A(1),A(2), . . . ,A(N)) = E[||XXX− X̂XXT ||2] (4.61)

= E[||XXX−YYY×1 A(1) ×2 A(2) ×3 . . .×N A(N)||2]. (4.62)

The optimal choice of the n-mode filter matrices A(n) which ensures minimum mean-

squared error between XXX and X̂XXT is calculated using n-mode Wiener filtering method which

relies on matrix unfoldings of YYY [186]. Initially, all the factor matrices A(n) are set to identity

matrices. For updating A(n) for each n, it is assumed that A(m) for m 6= n are known. An

alternative least squares method is used to calculate all the optimal A(n) where A(m) for

m 6= n is fixed to find A(n) for all n, and then we repeat for all n until a convergence criterion

is met. A detailed derivation of the solution and the algorithm to calculate the optimal

n-mode matrix filters is presented in [187, 186]. To the best of our knowledge, the Tucker

operator based estimator is presented only for the multi-linear case in the literature but

not for the widely multi-linear case. However a simple extension to a widely multi-linear

case using Tucker operator would require finding optimal factor matrices B(n) ∈ CIn×In to

operate on the conjugate of YYY as well, i.e.

X̂XXWT = YYY×1 A(1) ×2 . . .×N A(N) +YYY
∗ ×1 B(1) ×2 . . .×N B(N) (4.63)

such that the mean square error between XXX and X̂XXWT is minimized. Notice that both (4.60)

and (4.63) can be seen as special cases of the widely multi-linear estimator from (4.17).

Hence the Tucker product based estimator can be seen as a specific case of the MMSE

estimator using the Einstein product with an additional constraint. On writing (4.60)

element-wise,

X̂XXT i1,...,iN =

IN∑

jN=1

. . .

I1∑

j1=1

YYYj1,...,jN · A(1)
i1,j1
· A(2)

i2,j2
· · ·A(N)

iN ,jN
. (4.64)

We define a tensor A ∈ CI1×...×IN×I1×...×IN such that

Ai1,...,iN ,j1,...,jN = A
(1)
i1,j1
· A(2)

i2,j2
· · ·A(N)

iN ,jN
(4.65)
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In this case we can re-write (4.64) as :

X̂XXT i1,...,iN =

IN∑

jN=1

. . .

I1∑

j1=1

YYYj1,...,jN ·Ai1,...,iN ,j1,...,jN

⇒X̂XXT = A ∗N YYY (4.66)

The solution for the optimal tensor A which minimizes the mean square-error between XXX

and X̂XXT in (4.66) is the multi-linear MMSE estimator as given by (4.37). Similarly (4.63)

can be equivalently written as (4.17) with constraints A1i1,...,iN ,j1,...,jN = A
(1)
i1,j1
· · ·A(N)

iN ,jN

and A2i1,...,iN ,j1,...,jN = B
(1)
i1,j1
· · ·B(N)

iN ,jN
. Hence the Tucker multi-linear MMSE estimator

can be seen as a special case of the Einstein product based multi-linear MMSE estimator

with an additional constraint that the tensor A can be written as in (4.65). Similarly,

the Tucker widely multi-linear MMSE estimator can be seen as a constrained case of the

widely multi-linear MMSE estimator from (4.17). The constraint (4.65) expresses the

tensor A as a rearranged outer product of N factor matrices A(n). This extra constraint

makes the performance of Tucker operator based estimators sub-optimal within the class

of multi-linear estimators. The Tucker or the n-mode filtering approach aims to find factor

matrices along each mode separately, and thereby assumes that the optimal multi-linear

estimator can be expressed using the product of such factor matrix elements. But the

proposed estimator based on the Einstein product finds the best multi-linear estimator

with no constraints or assumptions regarding separability of the estimator across different

modes, thereby providing better mean square error performance.

Complexity Analysis: Even though Tucker operator based estimator is sub-optimal, it

has a computational advantage over the more general multi-linear estimator using the Ein-

stein product. Finding the estimator for multi-linear MMSE estimation of order N tensor

requires inverting the covariance tensor of size I1×I2× . . . IN×I1×I2× . . .×IN , which has

a computational complexity of O((I1 · · · IN)3). The Tucker approach while admitting sub-

optimality breaks the tensor estimation problem into N smaller linear estimation problems

which requires inverting N matrices of size In × In for n = 1, . . . , N where the complexity

of each matrix inversion is O(I3
n) [80]. The computational cost for the two methods is

presented in Table 4.1. Hence, as N increases, the Tucker method provides a low com-
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plexity solution but with sub-optimal performance. In section 4.2.2 we present numerical

examples illustrating the loss of performance due to the sub-optimality of Tucker approach

as N grows, and compare it with the Einstein product approach.

Table 4.1: Complexity comparison for tensor estimation.

Method Complexity
Using Tucker product O(I3

1 + I3
2 + · · ·+ I3

N)
Using Einstein product O((I1 · I2 · · · IN)3)

Since the complexity of the Einstein product approach primarily depends on the tensor

inversion operation, approaches discussed in Appendix B.7 can be employed to reduce the

time complexity of finding the tensor inverse.

4.2 Applications of Tensor MMSE Estimation

A standard task for a receiver in a communication system is to estimate the transmitted

signal based on the noisy observation received through the channel. Hence for a multi-

domain communication system where the input and output signals are modelled using

tensors as in (2.35), the tensor based MMSE estimation techniques developed in this chapter

can be employed at the receiver.

For a known channel H, assuming XXX and NNN to be independent and zero mean, using

the steps for deriving (3.4), we can write the received covariance, cross covariance, received

pseudo-covariance and cross pseudo-covariance tensors as :

CYYY = H ∗N CXXX ∗N HH + CNNN (4.67)

CXYXYXY = CXXX ∗N HH (4.68)

C̃YYY = H ∗N C̃XXX ∗N HT + C̃NNN (4.69)

C̃XYXYXY = C̃XXX ∗N HT (4.70)

respectively. Here CXXX, C̃XXX,CNNN, and C̃NNN denote the input covariance, input pseudo-covariance,

noise covariance and noise pseudo-covariance tensors respectively. Substituting (4.67) and
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(4.68) into (4.38) and (4.41) gives the receiver structure based on multi-linear MMSE es-

timation and the associated mean square error respectively. Similarly substituting (4.67),

(4.68), (4.69) and (4.70) into (4.29) and (4.31) gives us tensors A1 and A2 which on sub-

stituting into (4.17) and (4.34) yields the receiver structure based on widely multi-linear

MMSE estimation and the associated mean square error respectively.

Let us assume that the transmitted tensor contains independent elements normalized to

unit power such that CXXX = IN which is an identity tensor of size I1× . . .×IN×I1× . . .×IN .

Let the noise be additive circular Gaussian noise with mean zero and variance σ2
n, such that

CNNN = σ2
nIM and C̃NNN = 0T. Hence the mean square error from widely multi-linear estimation

(based on (4.34)) can be given as :

MSE = tr(IN)− tr
(

(HH − C̃XXX ∗N HT ∗M (H ∗N HH + σ2
nIM)∗−1 ∗M (H ∗N C̃XXX ∗N HT )∗)∗M

P−1
YYY ∗M H

)
− tr

(
(C̃XXX ∗N HT −HH ∗M (H ∗N HH + σ2

nIM)−1 ∗M H ∗N C̃XXX ∗N HT )∗M

P∗−1
YYY ∗M H∗ ∗N C̃HXXX

)
(4.71)

where PYYY is given by (4.30). The MSE performance difference between receivers employ-

ing widely multi-linear and multi-linear estimators in such multi-domain communication

systems can be found using (4.49) as :

∆e = tr
[(

C̃XXX ∗N HT −HH ∗M (H ∗N HH + σ2
nIM)−1 ∗M H ∗N C̃XXX ∗N HT

)
∗M P∗−1

YYY ∗M
(
C̃XXX ∗N HT −HH ∗M (H ∗N HH + σ2

nIM)−1 ∗M H ∗N C̃XXX ∗N HT
)H]

. (4.72)

Notice that if C̃XXX = 0T which is when XXX is proper, then ∆e is also zero as widely multi-linear

estimator reduces to a multi-linear estimator in this case. The MSE expression from (4.71)

simplifies to :

MSE = tr (IN −HH ∗M (H ∗N HH + σ2
nIM)−1 ∗M H) (4.73)

which is same as the MSE from multi-linear estimation (from (4.41)) with CXYXYXY = HH and

CYYY = (H ∗N HH + σ2
nIM).

In the subsequent sections, we present numerical examples to illustrate the concept of

Tensor multi-linear (TL) and Tensor widely multi-linear (TWL) estimators in the context

of multi-domain communication systems. We use (4.17) at the receiver for TWL estimation
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with A1 and A2 calculated from (4.29) and (4.31). Also, (4.38) is used at the receiver for

TL estimation. The received covariance, cross covariance, pseudo-covariance and cross

pseudo-covariance are calculated based on (4.67)-(4.70). The elements of input tensor are

generated with zero mean variance σ2
s and noise tensor with zero mean variance σ2

n. The

SNR is defined as σ2
s/σ

2
n. For all the examples, we keep σ2

s = 1 and vary σ2
n to attain

different SNR values. We use Monte Carlo simulations where input, channel and noise

are randomly generated with channel realizations known at the receiver. The results are

averaged over Nch = 500 channel realizations for each SNR, with Nin = 100 noise and input

realizations for each channel realization. The performance is evaluated in terms of mean

square error normalized with respect to the number of transmit tensor elements, i.e.

MSE =
1

Nch

1

Nin

Nch∑

k=1

Nin∑

l=1

||XXX(k,l) − X̂XX
(k,l)||2

numel[XXX(k,l)]
(4.74)

whereXXX(k,l) and X̂XX
(k,l)

denote the actual and the estimated tensors at the kth channel and lth

input run for a fixed SNR. The number of transmit elements are denoted by numel[XXX(k,l)].

4.2.1 Example with Gaussian input signals

In (2.35), let the input tensor, XXX ∈ C4×4×4 contain elements drawn from i.i.d. zero mean

unit variance improper complex Gaussian distribution. Let each element of XXX be denoted

by x = a + ib where a and b are real scalar random variables. To generate a and b for

simulation such that they are correlated with coefficient ρ, we consider the vector p =

[a, b]T and its correlation matrix R = [var(a), cov(a, b); cov(b, a), var(b)], where cov(a, b) =

ρ
√

var(a)var(b). The Cholesky decomposition of R is given as R = LLT . We generate vector

q = [c, d]T where c and d are uncorrelated zero mean and variance 1/2 Gaussian scalars.

Then p = Lq generates a vector with entries a and b such that var(a) = var(b) = 1/2

and they are correlated with coefficient ρ. All the elements of XXX designated as x = a + ib

are generated independently using this Cholesky Decomposition method. Hence input

pseudo-covariance C̃XXX is a pseudo-diagonal tensor where all its non-zero entries are E[x2] =

var(a)−var(b)+i·2cov(a, b). Thus for different ρ, we get different C̃X. The input covariance

is CXXX = σ2
sI where I is an order 6 identity tensor and σ2

s = var(a)+var(b) = 1. Furthermore
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NNN ∈ C4×4×4 is an order three received noise tensor with zero mean proper complex Gaussian

entries and independent of input signal with covariance CNNN = σ2
nI and pseudo-covariance

C̃NNN = 0T. The channel H ∈ C4×4×4×4×4×4 contains i.i.d. zero mean unit variance proper

complex Gaussian entries. The objective is to estimate XXX based on the observation YYY.

Figure 4.1 plots the MSE against ρ at 10 dB SNR. It can be seen that for a low mag-

nitude of ρ, i.e when the signal is close to being proper, both TL and TWL estimation

results in almost same mean squared error, but as the magnitude of ρ increases the TWL

estimator performs much better than the TL estimator. The mean squared error essen-

tially remains flat for TL estimation when changing ρ as it does not take into account the

pseudo-covariance. As observed in Figure 4.1, the mean squared error follows quite well the

theoretical mean squared error calculated from (4.41) and (4.34), which validates our simu-

lation set up. Further, Figure 4.2 presents the mean squared error against SNR for specific

values of ρ. With increase in SNR, mean squared error reduces but the TWL estimator

performs much better than the TL estimator for higher values of ρ. The TL estimator per-

formance does not change with ρ as it does not depend on the pseudo-covariance. However,

for a given SNR the TWL estimator performance improves as ρ increases since it uses the

correlation between the real and imaginary components of the tensor for estimation.

4.2.2 Example of Tucker based MMSE Estimation

We now compare the Tucker product based MMSE estimator with the Einstein product

based multi-linear MMSE estimator. In a multi-domain communication system, consider

input XXX, output YYY and noise NNN are order N tensors where dimension of each individual

domain is 3. Hence the channel H is an order 2N tensor where all its modes have di-

mension 3. We assume that the channel can be written in terms of N factor matrices

H(1),H(2), . . . ,H(N) of size 3× 3 each as in (4.65). Hence the system model can be written

in two equivalent forms as :

YYY = XXX×1 H(1) ×2 H(2) ×3 . . .×N H(N) +NNN (4.75)

YYY = H ∗N XXX +NNN (4.76)
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Fig. 4.1: MSE vs correlation coefficient between real and imaginary parts of Gaussian
input at 10 dB SNR.

where Hi1,i2,...,iN ,j1,j2,...,jN = H
(1)
i1,j1
·H(2)

i2,j2
· · ·H(N)

iN ,jN
. The equivalence of these system models

can be established by writing the equations element-wise as shown in (4.64)-(4.66). For

simulations, XXX and NNN are generated using circularly symmetric complex Gaussian distribu-

tion with covariance as scaled identity tensor σ2
sI and σ2

nI respectively, with σ2
s = 1. The

components of H(1),H(2), . . . ,H(N) are i.i.d. drawn from proper complex Gaussian distribu-

tion with zero mean and unit variance. The objective is to estimate XXX based on observing

YYY. The Tucker operator based estimator finds factor matrices A(1),A(2), . . . ,A(N) such that

the estimate is given by (4.60). For the channel model (4.75) the factor matrices A(n) are
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given as [80] :

A(n) = R
(n)
XXX H(n)H(H(n)R

(n)
XXX H(n)H + R

(n)
NNN )−1 (4.77)

for n = 1, 2, . . . , N where R
(n)
XXX = E[X(n)X

H
(n)] and R

(n)
NNN = E[N(n)N

H
(n)]. The quantities X(n)

and N(n) are the n-mode matrix unfoldings of XXX and NNN respectively. The mean square

error achieved by this estimator is compared with the mean square error achieved by the

Einstein product based multi-linear MMSE estimator of (4.35) where A is given by (4.37).

The MSE plot is presented in Figure 4.3 for three different values of N = 2, 3, 4.

The solid lines in Figure 4.3 correspond to the MSE when the Einstein product method

is used, and the dashed lines correspond to the MSE when the Tucker method is used.
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It can be observed that in all the three cases the multi-linear MMSE estimator based on

the Einstein product achieves lower mean squared error than the Tucker operator based

estimator, and they perform similar at high SNR. Further, it can be observed that as N

increases, the difference between the performance of Tucker method and Einstein product

method also widens. For N = 2, the performance gap between the two cases is small

especially at high SNR, but for N = 4 the gap is significant. This shows that for higher

order tensors, assuming the multi-linear estimator to be separable across all the domains

makes the performance more sub-optimal. This is further apparent in Figure 4.4 where

the MSE performance for the two methods is plotted against N for a fixed SNR of 30
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dB. For N = 1, both the methods reduce to standard vector based LMMSE solution,

hence they perform exactly same. As can be observed in Figure 4.4, with increasing N the

performance of the Tucker approach can be substantially worse than the Einstein product

method. However, it is to be noted that the computational complexity of Tucker approach

is less than the Einstein product method. Hence there is an inherent trade-off between the

Einstein product method and the Tucker approach where the former provides much better

performance, but the latter has lower complexity.
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Fig. 4.4: MSE vs tensor order for different estimation techniques at 30 dB SNR.
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4.2.3 Estimation of Tensors in TT format

The number of elements in a tensor grows exponentially with its number of domains. In

addition, the dimensionality of each domain may be large as well. Hence tensor-based

systems often generate large data which pose a challenge on their storage complexity. For

instance, in modern multi-domain communication systems, the dimensions of domains such

as space (antenna) or frequency (sub-carriers) can be significantly large in a massive MIMO

or multi-carrier scheme. However, with the help of tensor tools such as TT decomposition,

effective storage mechanisms have been proposed in literature for large data. The TT de-

composition approach is not only used when the data has a natural multi-way structure,

but also when the data to be stored is a large vector or matrix. In such cases, the large ma-

trix or vector is converted to a tensor for storage efficiency through Tensorization [57] (refer

to section 2.1.3 for details on TT decomposition). The tensor-based technique presented

in this chapter offers itself as an effective mechanism for data estimation when tensors are

expressed and stored in TT format. This is because the MMSE estimation methods pro-

posed in this chapter do not rely on any tensor to vector/matrix transformation, but make

use of the Einstein Product.

An algorithm to compute the Einstein Product for tensors in TT format without re-

constructing the whole tensor is presented in [120]. Through an example, we now show

the application of tensor MMSE estimator for tensor stored in TT format. Consider the

system model from (2.35) where YYY,XXX and NNN are order 3 tensors of size 5× 5× 5 each and

H is an order 6 tensor of size 5×5×5×5×5×5. We use the multi-linear MMSE tensor A

from (4.37) to find the estimate X̂XX at the receiver. For the numerical example, XXX and NNN are

generated using i.i.d. zero mean proper complex Gaussian distribution with covariance as

σ2
sI and σ2

nI respectively, with σ2
s = 1. The channel contains i.i.d. zero mean unit variance

complex Gaussian entries and is normalized to provide unit power gain at the receiver. We

show the MSE results when the observed tensor YYY and the multi-linear MMSE tensor A

are instead stored in their TT formats ȲYY and Ā at the receiver with accuracy ε. Algorithm

1 from [62] is employed to calculate the TT decompositions. The estimation in tensor’s

original format is given as X̂XX = A ∗3 YYY. However, since we assume YYY and A are stored in
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TT formats, we find the estimate X̂XX also in TT format denoted as
¯̂
XXX using ȲYY and Ā as :

¯̂
XXX = Ā ∗3 ȲYY (4.78)

which can be written in terms of their cores as :

¯̂
XXXi,j,k =

∑

r0,r1,r2,r3

X̂XX
(1)

r0,i,r1
· X̂XX(2)

r1,j,r2
· X̂XX(3)

r2,k,r3
(4.79)

= (Ā ∗3 ȲYY)i,j,k =
∑

l,m,n

Āi,j,k,l,m,n · ȲYYl,m,n (4.80)

=
∑

l,m,n

( ∑

p0,p1,...,p6

A
(1)
p0,i,p1

·A(2)
p1,j,p2

·A(3)
p2,k,p3

· · ·A(6)
p5,n,p6

)
·
( ∑

s0,s1,s2,s3

YYY
(1)
s0,l,s1

·YYY(2)
s1,m,s2

·YYY(3)
s2,n,s3

)
.

(4.81)

The objective is to estimate the TT cores X̂XX
(1)
, X̂XX

(2)
and X̂XX

(3)
using the TT cores of ȲYY and

Ā without explicitly constructing the whole tensor at any stage. We use Algorithm 1 from

[120] for this purpose which finds the TT cores of
¯̂
XXX using the TT cores of ȲYY and Ā. From

the estimated cores we reconstruct
¯̂
XXX and compare it with the transmitted tensor XXX to

calculate the mean squared error in estimation. Figure 4.5 presents the MSE against SNR

in dB for different accuracy ε with which TT decomposition is calculated. We compare

this result with the MSE achieved when all the tensors are taken in their original non-

decomposed formats, labelled as ‘original case’ in the figure. We can observe that for

lower value of ε such as ε = 0.01, the MSE achieved by the multi-linear MMSE estimation

performed on tensors in TT format is indistinguishable from the case when tensors are

used in original format. The performance degradation in MSE is observed at high SNR

as ε increases. A small value of ε indicates an almost exact TT decomposition whereas

a larger value of ε indicates a larger approximation error in the TT decomposed format.

Further, Figure 4.6 presents the MSE against the accuracy ε for a fixed SNR of 20 dB.

The MSE for the original case is unaffected by ε. For estimation in TT format, the MSE is

almost same as the original case for small ε but after a certain value (> 0.03 in this case),

the MSE increases. This increase in MSE is due to the approximation tolerance set in

the computation of TT format by fixing ε. Hence multi-linear MMSE estimation can be

used for tensors stored in TT format, and its MSE performance remains the same as that
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of the original case if the TT decomposition is computed with high accuracy, i.e. low ε.

Also, since the Einstein product can be implemented directly on the cores, the proposed

estimation technique does not require reconstructing the original tensors.
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Fig. 4.5: MSE vs SNR for estimation of tensor in TT format.

4.2.4 Tensor Estimation for MIMO OFDM System

Consider the vector based system model for MIMO OFDM from (2.42). A common ap-

proach used in MIMO OFDM receiver design is to assume that there is no inter-carrier

interference, i.e. Ȟ
(p,q)

= 0 if p 6= q, and perform LMMSE estimation on a per sub-carrier

basis [188, 189, 190]. Assuming that the input x̌(p) have i.i.d. zero mean unit variance ele-
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Fig. 4.6: MSE vs accuracy of the tensor TT format.

ments such that the input covariance is an identity matrix, I for each p, and is independent

of noise ň(p), the receiver structure with per sub-carrier estimation is given as [188]:

ˆ̌x(p) = Ȟ
(p,p)H · (Ȟ(p,p) · Ȟ(p,p)H

+ CN)−1 · y̌(p) (4.82)

for p = 1, . . . , Nsc, and CN ∈ CNR×NR is the noise covariance matrix. The per sub-

carrier estimation in (4.82) is based on the standard LMMSE filter used for matrix based

systems. If we ignore the ICI completely and assume noise to be circularly symmetric white

Gaussian with σ2
n variance elements, then CN = σ2

n · I. Alternately, one can treat the inter-

carrier interference term in (2.42) also as noise, in which case CN = (σ2
n · I +

∑
q 6=p Ȟ

(p,q) ·
Ȟ

(p,q)H
). This approach however does not make good use of the ICI terms to extract signal
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information. In several scenarios, such as in high mobility systems, the channel is doubly

selective leading to strong ICI in which case ignoring the interference terms or treating

them as noise would lead to sub-optimal performance.

Alternately, consider the tensor based system model for MIMO OFDM from (2.44)

where the channel is represented as a fourth order tensor Ȟ ∈ CNR×Nsc×NT×Nsc . The ICI is

reflected in the elements of Ȟnr,p,nt,q when p 6= q. With such a system model in place, one

can use the tensor based receiver structure from (4.17) or (4.38) as the tensor formulation

provides an easy method to take into account the information provided by the interfering

terms across all the domains.

We present simulation results using TWL and TL estimation for a MIMO OFDM

system with Nsc = 64 sub-carriers, 2 transmit and 2 receive antennas. The channel

between each transmit and receive pair of antennas is generated as in [191, 192]. The

channel impulse response matrix between ntth transmit and nrth receive antenna denoted

as H̄
(nr,nt) ∈ CNsc×Nsc is generated by employing a two tap multipath (L = 2) fading

channel following Jakes’ model [193] using exponential power profile, σ2
l = exp(−l/L)∑L−1

l=0 exp(−l/L)

where σ2
l represents the variance of the lth channel tap. This matrix is further con-

verted to the frequency domain using the DFT matrix W ∈ CNsc×Nsc with elements

Wm,n = 1/
√
Nsc exp(−j2πmn/Nsc), which then forms the sub-tensor of the frequency

domain channel tensor as Ȟnr,:,nt,: = WH̄
(nr,nt)WH . The channels are generated for dif-

ferent values of Doppler d, normalized to the OFDM symbol rate, to induce inter-carrier

interference. Unless otherwise stated, we take d = 0.2. All the results presented were cal-

culated using Monte Carlo simulations with averaging over 500 channel realizations, and at

least 100 bit errors were collected for each channel realization to calculate Bit Error Rate

(BER). The MSE / BER results are plotted against received SNR per bit.

Figure 4.7 presents the performance of TL and TWL estimators when input is drawn

from a Binary Phase Shift Keying (BPSK) constellation which makes the input improper.

For the simulation, all the elements in the input tensor are uncorrelated and drawn from a

BPSK constellation with unit energy, thereby making the input covariance CXXX and pseudo-

covariance C̃XXX as identity tensors. To ensure that the input symbols are uncorrelated,



4 MMSE Estimation of Tensors 160

0 5 10 15 20 25

E
b
/N

0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
S

E
 /
 B

E
R

MSE, TL

MSE, TWL

BER, TL

BER, TWL

Fig. 4.7: MSE and BER vs Eb/N0 for 2× 2 MIMO OFDM with BPSK input.

one can use symbol interleaving which is commonly used in practice [194]. The received

covariance, cross covariance, pseudo-covariance and cross pseudo-covariance are calculated

using (4.67)-(4.70) respectively. For TWL estimation, (4.17) is used at the receiver where A1

and A2 are given by (4.29) and (4.31). For TL estimation, (4.38) is used at the receiver. The

output of the estimator in both cases is passed through a BPSK demodulator to determine

the transmitted symbols and calculate the BER. Since BPSK is an improper constellation,

we can clearly see in Figure 4.7 that the widely multi-linear MMSE estimator from (4.17)

outperforms multi-linear MMSE estimator from (4.38).

Next, we compare estimation in MIMO OFDM with 4-Quadrature Amplitude Modu-
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Fig. 4.8: MSE vs Eb/N0 for 2× 2 MIMO OFDM with 4QAM input for different Doppler
values d.

lation (QAM) using the tensor multi-linear estimation and the per sub-carrier estimation.

We consider three different scenarios based on the estimation technique employed by the

receiver :

Case 1 : Per sub-carrier estimation from (4.82) where interference terms are completely

ignored, such that CN = σ2
n · I.

Case 2 : Per sub-carrier estimation from (4.82) with interference treated as noise, such

that CN = (σ2
n · I +

∑
q 6=p Ȟ

(p,q) · Ȟ(p,q)H
).

Case 3 : Multi-linear MMSE estimation from (4.38) with CYYY and CXYXYXY calculated from (4.67)
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and (4.68) respectively.
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Fig. 4.9: BER vs Eb/N0 for 2× 2 MIMO OFDM with 4QAM input for different Doppler
values d.

Figures 4.8 and 4.9 present the MSE and BER for the three cases with different values

of the Doppler parameter d. It can be seen that as d increases, there is a significant

performance degradation for case 1 and case 2 as compared to case 3. Case 2 performs

slightly better than case 1 at higher SNRs as it accounts for interference albeit as noise. It

can be observed in Figure 4.8 that for case 1 at d = 1, the mean squared error increases at

very high SNR. This is because at high SNR, the receiver of case 1 acts like a zero forcing

receiver which tries to invert the channel while completely ignoring the interference terms.
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Hence for high values of d when the interfering terms are dominant in the received signal,

the channel inversion further amplifies the interference part of the received signal leading

to a higher mean squared error. This is easily remedied by making simultaneous use of the

information from all the domains with the tensor multi-linear MMSE estimator, as done

with case 3. Also, case 3 shows robustness to a change in d, as the MSE or BER performance

do not change significantly between d = 0 to d = 2. The robustness of the multi-linear

MMSE estimation can be further observed in Figure 4.10 where the MSE results for case

3 are presented for very high values of Doppler parameter, d. It can be seen that only at
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extremely large values of Doppler, does the performance degrades. Such large values of the

Doppler may not be very practical but are presented here only for a comparison and to

demonstrate the behavior of the proposed estimator in extreme cases.

4.3 Chapter Summary

This chapter considered MMSE estimation techniques for tensor based signals. A unified

framework for estimation of complex tensors, proper or improper, has been developed

using the Einstein product. The multi-linear and widely multi-linear MMSE estimation

techniques for multi-domain signals have been formulated while keeping the multi-way

structure of the signals intact. The error covariance associated with such estimations has

been characterized as a higher order tensor. We compared the proposed estimator using

the Einstein product with the Tucker approach. The Tucker product based estimator offers

suboptimal performance while providing lower computational complexity. The estimator

using Einstein product has a higher computational complexity but provides much better

MSE performance. We showed that the proposed estimator can also be used in applications

where tensors are stored in TT formats. Also, as an example, we considered MIMO OFDM

in a doubly selective channel using the tensor framework. The channel was represented

using an order four tensor, accounting for inter-carrier and inter-antenna interference in a

single framework. It was shown that the tensor based MMSE estimation outperforms per

sub-carrier estimation for MIMO OFDM especially when the inter-carrier interference is

high.
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Chapter 5

Capacity of Tensor Channels Under

Discrete Input Signal Constraints

In view of a tensor-based system model for multi-domain communication systems, we have

established in Chapter 3 that the capacity of a tensor channel with additive circularly

symmetric complex Gaussian noise under a family of power constraints is achieved when

the input is also circularly symmetric complex Gaussian distributed. The optimal input

covariance depends on the specific power constraints at the transmitter. For a wide variety

of power constraints such as per domain or per element power constraints, the capacity

achieving input covariance can be approximated using Algorithm 1. However, in a practical

communication system, the input is often drawn from discrete signalling constellations

rather than a Gaussian distribution. Thus it is of significant interest to consider the problem

of maximizing the mutual information between the input and the output tensors when the

input elements are drawn from a given discrete distribution. In this chapter, we investigate

how the additional constraints on the input constellations affect the capacity.

For the MIMO matrix channel case, the problem of maximizing mutual information with

discrete inputs has been handled using the relationship between the mutual information

and minimum mean square error, popularly known as the I-MMSE relation as derived in

[104]. The I-MMSE relation links the gradient of the mutual information with the total
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MSE obtained from an estimator based on the conditional expectation. The I-MMSE

relationship holds for any input distribution so far as the input-output pair are linked via

additive circularly symmetric Gaussian noise. Since closed form expressions for mutual

information are not easy to derive when the input is drawn from discrete constellations,

the I-MMSE relation comes to play as it provides a mechanism to bypass the need of

finding the exact mutual information expression. Using the principles employed in I-MMSE

derivation from [104], the gradient of mutual information with respect to a variety of

system parameters such as the channel matrix and the precoder, has been derived in [107]

for vector Gaussian channels. The problem of power allocation in parallel non-interfering

Gaussian channels is solved [105] using the I-MMSE relation leading to a mercury water-

filling solution. Furthermore, for a general MIMO channel with interfering terms, [106]

uses the relation between the gradient of the mutual information with respect to a linear

precoding matrix derived in [107] to obtain an optimal linear precoder.

So far, the problem of finding a precoder or input covariance that maximizes the mutual

information with discrete inputs has only been addressed in the context of scalar or vector

inputs, where only a single domain (space/antenna) is taken into account. More so, within

the space domain, most of the work in literature assumes only a sum power constraint and

not per antenna power constraints. In this chapter, we consider the problem of finding

a multi-linear input precoder which maximizes the input-output mutual information in a

tensor based multi-domain communication system. Furthermore, we consider not just the

sum power constraint but a family of power constraints as defined in section 3.2.1 which

includes the per domain or per element power constraints. In this chapter, we combine the

results from Chapter 3 and 4 to handle the case of discrete inputs while maximizing the

mutual information. We first derive the gradient of mutual information with respect to the

channel tensor, and exploit its relation with the MMSE tensor for our purpose.
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5.1 The Tensor I-MMSE relation

In this section we will derive the gradient of the mutual information with respect to several

parameters such as the channel and the precoder, and express them using the MMSE

tensor.

Consider the system model from (2.35) where an order-N input XXX ∈ CI1×...×IN and

order-M output YYY ∈ CJ1×...×JM are connected via a multi-linear channel as :

YYY = H ∗N XXX +NNN (5.1)

with NNN representing the received noise tensor of same size as YYY. We assume that NNN is

circularly symmetric complex Gaussian distributed having independent zero mean and

unit variance components such that its covariance is an identity tensor.

The best MMSE estimator, given by the conditional mean, has been derived for the

tensor setting in Chapter 4 along with the associated error covariance tensor. We denote

the order-2N error covariance tensor using QEEE ∈ CI1×...×IN×I1×...×IN , which can be written

as (based on (4.13)) :

QEEE = E[(XXX− E[XXX|YYY]) ◦ (XXX− E[XXX|YYY])∗] (5.2)

= E[XXX ◦XXX∗] + E
[
E[XXX|YYY] ◦ E[XXX∗|YYY]

]
− E

[
E[XXX|YYY] ◦XXX∗

]
− E

[
XXX ◦ E[XXX∗|YYY]

]
(5.3)

= E
[
XXX ◦XXX∗

]
+ E

[
E[XXX|YYY] ◦ E[XXX∗|YYY]

]
− E

[
E[XXX|YYY] ◦ E[XXX∗|YYY]

]
− E

[
E[XXX|YYY] ◦ E[XXX∗|YYY]

]

(5.4)

= E
[
XXX ◦XXX∗

]
− E

[
E[XXX|YYY] ◦ E[XXX∗|YYY]

]
. (5.5)

The MMSE tensor QEEE associated with the conditional mean estimator can be linked with

the gradient of the input-output mutual information as shown in the following theorem :

Theorem 5. In the system model (5.1), if NNN is circularly symmetric complex Gaussian

with zero mean and identity covariance tensor, then the gradient of the input-output mutual

information with respect to the channel tensor is given by

∇
H
I(XXX;YYY) = H ∗N QEEE (5.6)

where QEEE is the MMSE tensor defined in (5.5).
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Proof. The proof of this theorem when the input and output are vectors, thus the channel

is a matrix, is provided in [107]. The same proof can be extended to the tensor case as

shown in Appendix B.9.

Now consider a more general system model:

YYY = H ∗N P ∗N XXX +NNN (5.7)

where P ∈ CI1×...×IN×I1×...×IN denotes a multi-linear precoding tensor. If we assume input

tensor XXX is zero mean with covariance Q̄ = E[XXX ◦XXX∗], then the transmit covariance would

be given by

Q = E[(P ∗N XXX) ◦ (P ∗N XXX)∗] (5.8)

= E[P ∗N XXX ◦XXX∗ ∗N PH ] (5.9)

= P ∗N Q̄ ∗N PH . (5.10)

If the input before any precoding consists of i.i.d. zero mean unit variance elements such

that Q̄ = IN , then the transmit covariance is given as Q = P ∗N PH . A direct corollary of

Theorem 5 which can be established using the chain rule of differentiation is as follows :

Corollary 5.1. For the system model in (5.7) where P ∈ CI1×...×IN×...×IN denotes a multi-

linear precoder operator at the input, the noise NNN is circularly symmetric complex Gaussian

with zero mean and covariance given by identity tensor, and the input XXX is arbitrary

distributed with covariance Q̄ such that the transmit covariance is given by Q = P∗N Q̄∗NPH ,

we have

∇
P
I(XXX;YYY) = HH ∗M H ∗N P ∗N QEEE (5.11)

and

∇
Q
I(XXX;YYY) ∗N P ∗N Q̄ = HH ∗M H ∗N P ∗N QEEE (5.12)

where QEEE is the MMSE tensor defined in (5.5).

Proof. Let H̄ = H ∗N P, then we can write YYY = H̄ ∗N XXX + NNN. Thus, from Theorem 5 we

know :

∇
H̄
I(XXX;YYY) = H̄ ∗N QEEE = H ∗N P ∗N QEEE. (5.13)
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Using chain rule of differentiation (see Lemma 12 in Appendix B.8) we have :

∇
P
I(XXX;YYY) = HH ∗M ∇H̄

I(XXX;YYY) = HH ∗M H ∗N P ∗N QEEE (5.14)

which proves (5.11). Also since Q = P∗N Q̄∗N PH , we can apply the chain rule (see Lemma

13 in Appendix B.8) to get :

∇
P
I(XXX;YYY) = ∇

Q
I(XXX;YYY) ∗N P ∗N Q̄. (5.15)

Substituting (5.14) into (5.15), we get :

∇
Q
I(XXX;YYY) ∗N P ∗N Q̄ = HH ∗M H ∗N P ∗N QEEE (5.16)

which proves (5.12).

The results of Corollary 5.1 give us the gradient of the mutual information with respect

to the input precoder and the transmit covariance in terms of the MMSE tensor. So even

in cases where we do not have a closed form expression of the mutual information, these

gradient results can be exploited to optimize the mutual information as shown in the next

section.

5.2 Maximizing the Mutual Information for arbitrary inputs

Consider the system model from (5.1). Assuming that the input elements are drawn from

a zero mean signal constellation with a fixed probability distribution, the objective is to

determine the transmit covariance Q that maximizes the mutual information I(XXX;YYY) subject

to a given power constraint. Hence we can define the optimization problem as:

max
Q
I(XXX;YYY) (5.17)

s.t.
∑

ir

Qi,i ≤ Pic ∀ic, (5.18)

Q � 0. (5.19)

For an explanation of the notations describing the power constraints, refer to section 3.2.1.

Unlike the case of Gaussian input, the optimization problem in (5.17)-(5.19) is not nec-

essarily a concave function maximization since the mutual information between the input
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and the output for any given input constellation may not yield a concave objective func-

tion. More so, closed form expression of the mutual information for any given constellation

may not be known. However, the KKT conditions provide a set of necessary conditions for

the optimal input covariance to be a critical point to any optimization problem [195, 150].

Hence we will now derive the necessary conditions for the optimal covariance using the

KKT conditions.

5.2.1 Conditions for Optimal Covariance

Let M � 0 be the Lagrange multiplier tensor for the positive semi-definite constraint from

(5.19) of size I1 × . . . IN × I1 × . . . IN . Let µic ≥ 0 for all ic be the Lagrange multipliers

corresponding to all the linear constraints from (5.18). Then the Lagrangian functional can

be defined as :

L(Q, {µic},M) = −I(XXX;YYY) +
∑

ic

µic(
∑

ir

Qi,i − Pic)− tr(M ∗N Q). (5.20)

Consider a pseudo-diagonal tensor B of same size as the input covariance, such that its non-

zero elements are Bi,i = µic ,∀ir. For instance, if ic = (i1, i2), then Bi1,...,iN ,i1,...,iN = µi1,i2

for all (i3, . . . , iN). Then we get
∑

ic

µic ·
∑

ir

Qi,i =
∑

ic

∑

ir

µic · Qi,i =
∑

i

Bi,i · Qi,i = tr(B ∗N Q). (5.21)

Based on (5.21), we can re-write the Lagrangian from (5.20) as :

L(Q, {µic},M) = −I(XXX;YYY)−
∑

ic

µicPic + tr(B ∗N Q)− tr(M ∗N Q) (5.22)

and the derivative of Lagrangian with respect to Q can be written as :

∇
Q
L = −∇

Q
I(XXX;YYY) + B−M (5.23)

The first KKT condition is obtained by setting the ∇
Q
L from (5.23) to zero as :

−∇
Q
I(XXX;YYY) + B−M = 0T. (5.24)

The KKT conditions also include complementary slackness equations corresponding to

each constraint. These equations are obtained by setting every function in the Lagrangian

functional from (5.20) to 0 except the objective function. A detailed explanation has been
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provided in Appendix A.1. Thus we can write the complementary slackness equations as

tr(M ∗N Q) = 0, (5.25)

µic(
∑

ir

Qi,i − Pic) = 0, ∀ic. (5.26)

Since M � 0 and Q � 0, using Lemma 9 from Appendix A.1, we can write (5.25) as :

M ∗N Q = 0T. (5.27)

Also notice that all the entries of B, i.e µic , will be strictly greater than 0 at optimum

because the inequality constraint must be met with equality at optimum. Since µic > 0,

(5.26) can be written as as :
∑

ir

Qi,i − Pic = 0, ∀ic. (5.28)

Now consider the relation between the gradient of the mutual information and the

MMSE tensor from Corollary 5.1 (assuming P = IN , i.e. an identity tensor, and thus

Q = Q̄ in (5.12)), we can write

∇
Q
I(XXX;YYY) ∗N Q = HH ∗M H ∗N QEEE. (5.29)

We can rewrite (5.24) as :

∇
Q
I(XXX;YYY) = B−M (5.30)

⇒ ∇
Q
I(XXX;YYY) ∗N Q = B ∗N Q−M ∗N Q. (5.31)

On equating (5.29) and (5.31) , we get :

HH ∗M H ∗N QEEE = B ∗N Q− M ∗N Q︸ ︷︷ ︸
=0T , from(5.27)

. (5.32)

Thus we have

HH ∗M H ∗N QEEE = B ∗N Q (5.33)

⇒ Q = B−1 ∗N HH ∗M H ∗N QEEE (5.34)

where the elements of tensor B are found to satisfy the power constraints in (5.28). The

relation derived in (5.34) when reduced to a matrix channel with sum power constraints (for

which B is a scaled identity matrix) at the input reduces to the result of Theorem 1 from

[109]. Thus (5.34) generalizes the optimum covariance result for MIMO matrix channel
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under sum power constraint, to a higher order tensor channel model under a family of

power constraints.

5.2.2 Case of Gaussian signalling

If the input XXX is taken to be circularly symmetric complex Gaussian distributed with

covariance Q, then based on (3.13), the mutual information is given by log [ det (H ∗N Q ∗N
HH + IM)]. Hence the gradient of the mutual information for the Gaussian input case with

respect to Q is given as (based on (2.27)) :

∇
Q
I(XXX;YYY) = HH ∗M (IM + H ∗N Q ∗N HH)−1 ∗M H. (5.35)

Also, from Chapter 4 we know that when the input and output are jointly circular complex

Gaussian, the best estimator (conditional mean estimator) is same as the multi-linear

MMSE estimator. The MMSE tensor corresponding to the multi-linear MMSE estimation

is given as (based on (4.40)) :

QEEE = Q− Q ∗N HH ∗M (IM + H ∗N Q ∗N HH)−1 ∗M H ∗N Q. (5.36)

From (5.36) we can write :

QEEE ∗N HH = Q ∗N HH − Q ∗N HH ∗M (IM + H ∗N Q ∗N HH

︸ ︷︷ ︸
A

)−1 ∗M H ∗N Q ∗N HH

︸ ︷︷ ︸
A

.

(5.37)

Based on the property, (IM +A)−1∗MA = (IM +A)−1∗M (IM +A−IM) = IM−(IM +A)−1,

we have :

QEEE ∗N HH = Q ∗N HH − Q ∗N HH ∗M
(
IM − (IM + H ∗N Q ∗N HH)−1

)
(5.38)

= �����
Q ∗N HH −�����

Q ∗N HH + Q ∗N HH ∗M (IM + H ∗N Q ∗N HH)−1

(5.39)

⇒ QEEE ∗N HH ∗M H = Q ∗N HH ∗M (IM + H ∗N Q ∗N HH)−1 ∗M H. (5.40)
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Taking Hermitian on both sides and noting that QEEE and (IM + H ∗N Q ∗N HH)−1 are both

Hermitian tensors, we get :

HH ∗M H ∗N QEEE = HH ∗M (IM + H ∗N Q ∗N HH)−1 ∗M H ∗N Q (5.41)

= ∇
Q
I(XXX;YYY) ∗N Q, (using (5.35)). (5.42)

which is the same as (5.29). This validates the relationship between the gradient of mutual

information with respect to the input covariance and the MMSE tensor for the specific

case of Gaussian signalling in which case we have closed form expressions for the mutual

information and the MMSE tensor.

5.3 Solving for the Optimal Input Precoder

It is to be noted that while (5.34) states an equation which must be satisfied by the

optimal input covariance tensor, it does not uniquely identifies the same. Since the MMSE

tensor QEEE in (5.34) would itself depend on the transmit covariance tensor, thus (5.34) does

not provide a direct equation to solve for the input covariance. In order to solve for the

optimal transmit covariance, we may adopt an iterative approach using a gradient ascent

method. Consider the system model from (5.7), with input XXX containing i.i.d. zero mean

unit variance entries. Thus the tensor P can be seen as a multi-linear precoder tensor

which also does power allocation given the specific power constraints. Given the precoder

tensor, the transmit covariance Q can be seen as Q = P ∗N PH (based on (5.10)). Thus

the optimization problem in (5.17) can be recast using the multi-linear precoder P as the

optimizing variable. Our objective is to find a P that maximizes the mutual information

I(XXX;YYY) for a given input distribution subject to the power constraints, and can be described

in terms of P as :

max
P
I(XXX;YYY) (5.43)

s.t.
∑

ir

(P ∗N PH)i,i ≤ Pic ∀ic. (5.44)

Let P denote the set of all such tensors which satisfy the constraints in (5.44), known as the

feasible set. We use a gradient ascent approach to find the optimal P using the following
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iterative equation :

P(k+1) =
[
P(k) + ν∇

P
I(k)

]
P

(5.45)

where [·]P denotes the projection onto the feasible set P such that that power constraints

are satisfied, i.e.
∑

ir
(P(k+1) ∗N P(k+1)H)i,i = Pic ,∀ic. The projection of any P(0) onto the

feasible set P can be mathematically defined as [P(0)]P = arg min
P∈P
||P−P(0)||2. The variable

k denotes the iteration index. The constant ν denotes the step size taken for the gradient

ascent. Substituting ∇
P
I from (5.11) into (5.45) we get

P(k+1) =
[
P(k) + ν ·HH ∗M H ∗N P(k) ∗N Q

(k)
EEE

]
P
. (5.46)

Equation (5.46) gives an iterative procedure to find the precoder. For low SNRs, any initial

guess of P(0) which satisfies the power constraints with equality can be made. For instance,

in general the initial guess for P(0) could be a pseudo-diagonal tensor corresponding to a

uniform power allocation at the input in case of sum power constraints. Note that since the

mutual information may not be a concave function for several discrete input distributions,

the iterative method from (5.46) would in general provide only a necessary condition for

the optimal input precoder. One approach in such cases is to consider running the gradient

ascent iterative equation using several starting guesses of P(0), and then select the stationary

point precoder which offers the maximum mutual information as used in [106]. However, an

alternate approach could be devised using the fact that the mutual information for discrete

inputs is a concave function at low enough SNRs [109]. Thus in order to obtain an optimal

P for any given SNR, we use a similar approach as presented in [109]. First we determine

the unique globally optimal input precoder P using (5.46) for a low enough SNR with any

starting guess. The low SNR ensures that the optimization problem is concave hence the

solution is indeed globally optimal. Further, we increase the SNR gradually where the

optimal precoder for the higher SNR is computed by taking the precoder corresponding

to the lower SNR as the starting point. It is assumed that the mutual information as a

function of SNR does not change drastically with a small change in SNR. Thus, choosing the

globally optimum value at a low SNR as a starting point for a slightly higher SNR ensures

that the starting point remains in the proximity of the global optimum for the higher SNR
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case. Such a technique is sometimes used for non concave function optimization [196, 109].

Further, to implement the iterative equation from (5.46) to find the optimal P, we need

to address the following questions : how to compute the projection operation [·]P, how

to compute the MMSE tensor, and how to evaluate the achievable mutual information for

performance comparison in the absence of any closed form expressions. We will now discuss

all these steps in detail.

5.3.1 Determining the projection onto the feasible set

The projection of the iterative precoder onto the set of feasible precoders satisfying the sum

power constraints for MIMO channels has been cast as a convex optimization problem in

[107]. Similarly, the projection of a tensor P(0) onto the feasible set P satisfying the family

of power constraints denoted by [·]P, can be cast as a convex optimization problem :

min
P

||P− P(0)||2 (5.47)

s.t.
∑

ir

(P ∗N PH)i,i = Pic ,∀ic. (5.48)

Such a projection problem can be solved using the KKT conditions [150], or using software

tools such as CVX [152]. Here we present the solution using the KKT conditions.

Let lic ≥ 0 for all ic be the Lagrange multipliers corresponding to all the linear con-

straints from (5.48). Then the Lagrangian functional corresponding to (5.47)-(5.48) can be

defined as :

L(P, {lic}) = ||P− P(0)||2+
∑

ic

lic(
∑

ir

(P ∗N PH)i,i − Pic). (5.49)

We arrange the values {lic} in a pseudo-diagonal tensor F of same size as the input pre-

coder such that its non-zero entries are Fi,i = lic , ∀ir. For instance, if ic = (i1, i2), then



5 Capacity of Tensor Channels Under Discrete Input Signal Constraints 176

Fi1,...,iN ,i1,...,iN = li1,i2 for all (i3, . . . , iN). Then we get
∑

ic

lic ·
∑

ir

(P ∗N PH)i,i =
∑

ic

∑

ir

lic · (P ∗N PH)i,i (5.50)

=
∑

i

Fi,i · (P ∗N PH)i,i (5.51)

= tr(F ∗N P ∗N PH). (5.52)

Based on (5.52), we can re-write the Lagrangian from (5.49) as :

L(P, {lic}) = ||P− P(0)||2−
∑

ic

licPic + tr(F ∗N P ∗N PH). (5.53)

To find the derivative of the Lagrangian with respect to P, note that

(P∗NPH)i1,...,iN ,j1,...,jN =
∑

i′1,...,i
′
N

Pi1,...,iN ,i′1,...,i′NP
H
i′1,...,i

′
N ,j1,...,jN

=
∑

i′1,...,i
′
N

Pi1,...,iN ,i′1,...,i′NP
∗
j1,...,jN ,i

′
1,...,i

′
N
.

(5.54)

Thus the trace is calculated as

tr(P ∗N PH) =
∑

i1,...,iN

∑

ı′1,...,i
′
N

Pi1,...,iN ,i′1,...,i′NP
∗
j1,...,jN ,i

′
1,...,i

′
N

(5.55)

and its derivative is calculated as

[∇
P

tr(P ∗N PH)]k1,...,kN ,k
′
1,...,k

′
N

=
∂

∂P∗k1,...,kN ,k
′
1,...,k

′
N

tr(P ∗N PH) = Pk1,...,kN ,k
′
1,...,k

′
N

(5.56)

which proves ∇
P

tr(P∗N PH) = P. Since ||P−P(0)||2 is same as tr((P−P(0))∗N (P−P(0))H),

we have ∇
P
||P−P(0)||2= P−P(0). Also, based on the chain rule of derivatives (see Lemma

13 in Appendix B.8), we have ∇
P

tr(F ∗N P ∗N PH) = F ∗N P. Thus the derivative of the

Lagrangian from (5.53) with respect to P can be written as :

∇
P
L = P− P(0) + F ∗N P. (5.57)

The KKT condition is achieved by setting (5.57) to an all zero tensor which gives us :

(F + IN) ∗N P = P(0) (5.58)

Since (F + IN) is a pseudo-diagonal tensor with non-zero elements, we denote its inverse

as Z = (F + IN)−1. The pseudo-diagonal elements of tensor Z are represented as :

Zi,i = zic = 1/(lic + 1),∀ir (5.59)



5 Capacity of Tensor Channels Under Discrete Input Signal Constraints 177

where lic are the pseudo-diagonal elements of tensor F. From (5.58) the tensor P can be

written using Z as

P = Z ∗N P(0). (5.60)

Thus the projection is given by the Einstein product between the tensors Z and P(0). In

order to find the elements of the pseudo-diagonal tensor Z, we use the power constraints

from (5.48). Substituting P from (5.60) into (5.48), we get:
∑

ir

(Z ∗N P(0) ∗N (Z ∗N P(0))H)i,i = Pic , ∀ic. (5.61)

∑

ir

(Z ∗N P(0) ∗N P(0)H ∗N ZH)i,i = Pic , ∀ic. (5.62)

Note that Z is a pseudo-diagonal tensor with only real elements, so ZH = Z, and also Zi,j

is non-zero only when i = j. Thus we get :

(Z ∗N P(0) ∗N P(0)H ∗N ZH)i,i = (Z ∗N P(0) ∗N P(0)H ∗N Z)i,i (5.63)

=
∑

j,j′

Zi,j · (P(0) ∗N P(0)H)j,j′ · Zj′,i (5.64)

= Z2
i,i · (P(0) ∗N P(0)H)i,i (5.65)

where the last equality follows from the pseudo-diagonality of Z. On substituting (5.65)

into (5.62) we get
∑

ir

Z2
i,i · (P(0) ∗N P(0)H)i,i = Pic , ∀ic. (5.66)

Using (5.59) and (5.66), we get

z2
ic

∑

ir

(P(0) ∗N P(0)H)i,i = Pic , ∀ic, (5.67)

zic =

√
Pic∑

ir
(P(0) ∗N P(0)H)i,i

, ∀ic, (5.68)

which gives us all the elements of the pseudo-diagonal tensor Z. To better understand this

result, consider the case of sum power constraint for which ic is empty, Pic = P represents

the total power budget, and ir = (i1, . . . , iN). Since there is a single power constraint, we

have a single Lagrange multiplier, and thus Z is a scaled identity tensor z · IN . Thus we
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get :

z =

√
P∑

i(P
(0) ∗N P(0)H)i,i

(5.69)

=

√
P

tr(P(0) ∗N P(0)H)
(5.70)

=

√
P

||P(0)||2 (5.71)

i.e. in case of sum-power constraint since the tensor Z is a scaled identity tensor z · IN , the

solution to (5.47)-(5.48) is proportional to P(0) upto a scaling factor z, chosen to satisfy the

power constraint. This result when applied to a MIMO matrix channel under sum power

constraint is consistent with the same solution for the MIMO case as presented in [107].

5.3.2 Calculation of the MMSE tensor

The MMSE tensor has a closed form expression in case of Gaussian input. For the numerical

computation of the MMSE tensor for discrete inputs, the usual approach is to use Monte-

Carlo simulations [106, 107]. If the input constellation size is Θ, then we can have a total

of K = ΘI possible input tensors XXX ∈ CI1×...×IN where I =
∏N

n=1 In. We denote the

realizations of input tensor as X(k) for k = 1, . . . , K. Finding the MMSE tensor entails

averaging over all such input tensors. For a fixed tensor channel, corresponding to a given

input tensor X(k), we generate L noise tensors which are drawn from circularly symmetric

complex Gaussian distribution, and compute the corresponding output tensor using (5.7)

and denote it as Y(k,l) for l = 1, . . . , L. With large L, the MMSE tensor can be approximated

using Monte Carlo runs as :

QEEE = E[(XXX− E[X|YYYX|YYYX|YYY]) ◦ (XXX− E[X|YYYX|YYYX|YYY])∗] (5.72)

≈ 1

K

K∑

k=1

1

L

L∑

l=1

(
X(k) − E[XXX|YYY = Y(k,l)]

)
◦
(
X(k) − E[XXX|YYY = Y(k,l)]

)∗
. (5.73)
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If the input distribution conditioned on the output is denoted by the function p
XXX|YYY(X|Y),

the conditional expectation E[XXX|YYY = Y] in (5.73) can be computed as :

E[XXX|YYY = Y] =
∑

X

X · p
XXX|YYY(X|Y) =

∑

X

X ·
p
YYY|XXX(Y|X)p

XXX
(X)

p
YYY
(Y)

(5.74)

=

∑
XX · pYYY|XXX(Y|X)p

XXX
(X)∑

X′ ·pYYY|XXX(Y|X′)p
XXX

(X′)
. (5.75)

The function p
XXX

(·) denotes the input probability distribution and p
YYY|XXX(·) denotes the output

distribution conditioned on the input, which can be written as :

p
YYY|XXX(Y|X) =

1

πJ1·J2···JM
exp (− ||Y−H ∗N P ∗N X||2). (5.76)

In order to compute the MMSE tensor for a given channel H and precoder P, it can

be seen that the complexity increases exponentially with the input tensor size. First we

consider the complexity of computing (5.76). Let I = I1 · I2 · · · IN and J = J1 · J2 · · · JM .

Based on the complexity of computing Einstein product as discussed in section 3.2.3, cal-

culating H∗N P∗NX requires O(I2 ·J) operations. Further, calculating Y−H∗N P∗NX is a

subtraction of tensors with J elements, and further calculating the norm square requires J

multiplications and J−1 additions. Finding (1/πJ) exp(·) can be seen as a single operation.

Thus calculating the conditional pdf using (5.76) requires O(I2 · J) operations. The condi-

tional pdf is substituted into (5.75) to find the conditional expectation for a given Y, which

requires summing over all the possible input tensors X. Thus calculating (5.75) requires

O(K · I2 · J) operations where K = ΘI denotes the possible input tensors with I elements

and constellation size Θ. Further this conditional expectation is substituted into (5.73)

which computes a double summation, where within each summation a tensor subtraction

and an outer product is calculated. The subtraction is between I elements, and the outer

product between tensors of same size (in this case I1× . . .×IN) requires I2 multiplications.

Thus complexity of subtraction and outer product combined is O(I2). Subsequently, total

number of operations required to compute the expression inside summations in (5.73) is

O(K · I2 · J · I2) = O(K · I4 · J). Further this summation takes place over all L values

of l, and K values of k, thus the overall complexity of calculating the MMSE tensor for a

fixed channel and precoder is O(K2 · L · I4 · J). Since K = ΘI = ΘI1·I2···IN , the complexity
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O(K2 · L · I4 · J) can also be written as O(Θ2·I1·I2···IN · L · (I1 · I2 · · · IN)4J1 · J2 · · · JM).

Thus the complexity of computing the MMSE tensor using Monte Carlo methods increases

exponentially with the number of input elements denoted by I = I1 · I2 · · · IN .

5.3.3 Calculation of Mutual Information for a given precoder

In order to assess the performance for a given precoder, we need to evaluate the mutual

information. Since closed form expression for mutual information are not generally available

for discrete inputs, we use Monte-Carlo method to calculate the mutual information for

the given precoder. In the system model (5.7), since noise tensor NNN is independent of the

input tensor XXX, the mutual information is given as

I(XXX;YYY) = H(YYY)−H(YYY|XXX) = H(YYY)−H(NNN) (5.77)

where the noise tensor is zero mean circularly symmetric Gaussian with identity covariance

IM . Thus H(NNN) is given by (using (3.1)) :

H(NNN) = log
(

(eπ)J1...JM det(IM)
)

= log((eπ)J1···JM ). (5.78)

The output entropy can be calculated using Monte Carlo simulations to approximate the

mutual information. For the case when input contains equiprobable elements, the mutual

information can be calculated as established in the following lemma :

Lemma 7. In the system model (5.7), assuming input tensor elements are drawn from a

set of discrete constellation points which are equiprobable, and given a precoder tensor P,

the mutual information can be numerically evaluated using :

I(XXX;YYY) = I1 · · · IN · log Θ− J1 · · · JM · log(e)− 1

ΘI1···IN
·

ΘI1···IN∑

m=1

ENNN

[
log

ΘI1···IN∑

k=1

exp (− ||H ∗N P ∗N (X(m) − X(k)) +NNN||2)
]

(5.79)

where the expectation over noise can be carried out using Monte Carlo runs.

Proof. When input consists of equiprobable i.i.d symbols, the output distribution can be

specified as :

p
YYY
(Y) = EXXX[p

YYY|XXX(Y|XXX)] =
1

ΘI1·I2···IN

ΘI1·I2···IN∑

k=1

p
YYY|XXX(Y|X(k)) (5.80)
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Using (5.80), the output entropy can be calculated as :

H(YYY) = −EYYY

[
log p

YYY
(YYY)
]

= −EYYY

[
log

1

ΘI1·I2···IN

ΘI1·I2···IN∑

k=1

p
YYY|XXX(YYY|X(k))

]
(5.81)

= log ΘI1···IN − EYYY

[
log

ΘI1·I2···IN∑

k=1

p
YYY|XXX(YYY|X(k))

]
. (5.82)

The conditional distribution p
YYY|XXX(Y|X(k)) can be specified using (5.76) and thus (5.82) be-

comes :

H(YYY) = log ΘI1···IN − EYYY

[
log

ΘI1···IN∑

k=1

exp (− ||YYY−H ∗N P ∗N X(k)||2)

πJ1·J2···JM

]
(5.83)

= log ΘI1···IN − EXXX,NNN

[
log

ΘI1···IN∑

k=1

exp (− ||H ∗N P ∗N XXX +NNN −H ∗N P ∗N X(k)||2)

πJ1·J2···JM

]
(5.84)

= log ΘI1···IN + log(πJ1···JM )− EXXX,NNN

[
log

ΘI1···IN∑

k=1

exp (− ||H ∗N P ∗N (XXX− X(k)) +NNN||2)
]
.

(5.85)

Since we assume that XXX is independent of NNN, we get :

H(YYY) = log ΘI1···IN + log(πJ1···JM )− EXXX

[
ENNN

[
log

ΘI1···IN∑

k=1

exp (− ||H ∗N P ∗N (XXX− X(k)) +NNN||2)
]]

(5.86)

= log ΘI1···IN + log(πJ1···JM )− 1

ΘI1···IN
·

ΘI1···IN∑

m=1

ENNN

[
log

ΘI1···IN∑

k=1

exp (− ||H ∗N P ∗N (X(m) − X(k)) +NNN||2)
]
.

(5.87)
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On substituting (5.87) and (5.78) into (5.77) gives us

I(XXX;YYY) = log ΘI1···IN + log(πJ1···JM )− 1

ΘI1···IN
·

ΘI1···IN∑

m=1

ENNN

[
log

ΘI1···IN∑

k=1

exp (− ||H ∗N P ∗N (X(m) − X(k)) +NNN||2)
]
− log((eπ)J1···JM )

(5.88)

= I1 · · · IN · log Θ− J1 · · · JM · log(e)− 1

ΘI1···IN
·

ΘI1···IN∑

m=1

ENNN

[
log

ΘI1···IN∑

k=1

exp (− ||H ∗N P ∗N (X(m) − X(k)) +NNN||2)
]
. (5.89)

The complexity of calculating the mutual information for a given channel and precoder

is also exponential in the size of the input tensor. Let I = I1 · · · IN and J = J1 · · · JM .

For a given noise realization, calculating the exp(·) expressions inside the summation in

(5.79) requires O(I2 ·J) operations. If we are averaging over L noise realizations, then it is

clear from the summation over k and m in (5.79) that the overall complexity of finding the

mutual information would be given as O(I2 ·J ·ΘI ·L·ΘI) which is same as O(I2 ·J ·Θ2·I ·L).

In the presence of high transmit power, the mutual information from (5.79) converges

to a fixed value as shown in the following lemma.

Lemma 8. As the transmit power increases, i.e. when P → ∞, the mutual information

from (5.79), I(XXX;YYY)→ I1 · · · IN log(Θ).

Proof. Consider the expression inside exp(·) in (5.79). As the transmit power becomes very

large, i.e. P →∞, we can write :

||H ∗N P ∗N (X(m) − X(k)) +NNN||2→




∞, if m 6= k

||NNN||2, if m = k
(5.90)

Note that when m = k, for any given noise realization NNN = N, the function ||H ∗N P ∗N
(X(m) − X(k)) + N||2 is same as ||N||2. Also for m 6= k when P → ∞, then there is one

realization of NNN that diverges from the limit in (5.90) (when N = −H∗N P∗N (X(m)−X(k))).
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But the probability that NNN takes this specific realization is 0. Hence the limit in (5.90)

converges almost surely. Thus as P →∞, we have :

ΘI1···IN∑

k=1

exp (− ||H ∗N P ∗N (X(m) − X(k)) +NNN||2)→ exp(−||NNN||2) (5.91)

Since the noise tensor contains i.i.d. circularly symmetric zero mean unit variance elements,

the expectation term in (5.79) can be written as (after substituting (5.91) in (5.79)) :

ENNN[log exp(−||NNN||2)]→ log(e)
∑

j1,...,jM

−E[|NNNj1,...,jM |2] = − log(e) · J1 · J2 · · · JM . (5.92)

Thus (5.79) becomes :

I(XXX;YYY)→ I1 · · · IN · log Θ− J1 · · · JM · log(e)− 1

ΘI1···IN
·

ΘI1···IN∑

m=1

− log(e) · J1 · J2 · · · JM

= I1 · · · IN · log Θ− J1 · · · JM · log(e) +
1

ΘI1···IN
ΘI1···IN log(e) · J1 · J2 · · · JM

= I1 · · · IN · log Θ. (5.93)

5.4 Numerical Examples

Before we present numerical examples, first we summarize the steps required to find the

optimal input precoder that maximizes the mutual information when the input is drawn

from discrete constellations :

Step 1. Set n = 0 and initialize P(0) to a choice which satisfies the power constraints, such

as a precoder doing uniform power allocation.

Step 2. For a given precoder, calculate the MMSE tensor Q
(n)
EEE using (5.73). Note that

calculating the MMSE tensor using (5.73) requires averaging over all the possible input

tensors and several noise realizations. Corresponding to each possible input tensor X(k),

we generate output tensors Y(l) for l = 1, . . . , L where L denotes the number of noise

realizations. For any given input and output pair, the conditional pdf is calculated using

(5.76) for the given precoder and channel, and further (5.75) is used to find the conditional

expectation which is substituted in (5.73) to find the MMSE tensor.
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Step 3. Based on the MMSE tensor calculated in step 2, update the precoder using (5.46).

Step 4. Set n = n + 1 and go to step 2 and repeat until a desired convergence criteria is

met.

Step 5. Calculate the mutual information for the updated precoder using (5.76). Note

that mutual information can be calculated after each precoder update for checking the

convergence. However, mutual information is not needed for updating the precoder itself,

and convergence criterion for the iterative equation can also be set using the mean square

error as we will illustrate through examples in this section.

For the numerical results, the channel elements are generated using circularly symmetric

complex Gaussian distribution with zero mean and unit variance unless otherwise stated.

Also the input symbols are drawn from equiprobable distribution unless otherwise specified.

For the gradient ascent, we use a step size of ν = 0.01. The total transmit power constraint

is denoted by P and the noise tensor contains i.i.d. circularly symmetric complex Gaussian

entries with zero mean and variance σ2 = 1. All the results are presented by averaging

over S channel realizations. For a given channel and precoder the calculation of the MMSE

tensor and Mutual Information is carried out using L noise realizations. The values of S

and L are kept as 100, unless otherwise stated.

5.4.1 Capacity for selected input constellations

In this section, we numerically analyze the capacity of order-4 tensor channels when the

input is constrained to be drawn from a fixed discrete constellation. Most of the work in

literature which presents the MIMO matrix channel capacity with discrete inputs such as

[106, 109], make use of the BPSK constellation to illustrate the performance. One of the

reasons why a simple constellation such as BPSK is chosen is because the simulation of

the MMSE or the mutual information via Monte Carlo methods becomes computationally

very expensive with increasing size of the constellation. For the tensor case, we showed in

section 5.3.2 and 5.3.3, that the complexity of computing MMSE from (5.73) and mutual

information from (5.79) increases significantly with constellation size and number of input

elements. Hence in this work, to illustrate the main concepts we start with a simple
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constellation such as BPSK as used in [106, 109] which has 1 bit per symbol, and thus Θ = 2.

However, to check the performance of the multi-linear precoders, we also run simulations

using some higher constellations such as Quadrature Phase Shift Keying (QPSK) which

has 2 bits per symbol and thus Θ = 4. In addition, we also test two different constellations

which have 3 bits per symbol and thus Θ = 8, namely 8-Phase Shift Keying (PSK) and

8-Amplitude Phase Shift Keying (APSK).

The difference between the 8-PSK and 8-APSK constellation is that in 8-PSK all the

8 constellation points lie on the same circle whereas in 8-APSK the symbols are arranged

on concentric circles of different radius with a constant phase offset. The constellation

for 8-PSK is shown in Figure 5.1 where all the points lie on unit circle. Whereas, the

constellation for 8-APSK, as shown in Figure 5.2, has phase shifted points lying on two

circles of different radius. The presented 8-APSK can also be called 4-4 8APSK since it

has 4 points on the inner circle and 4 on the outer. In this way, APSK combines both

amplitude and phase shift keying. The advantage of a combination of amplitude and phase

shift keying is that the minimum euclidean distance between the constellation points is

increased for the same average symbol energy. However at the same time 8-APSK leads to

higher peak to average power ratio than 8-PSK.
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Fig. 5.1: 8 PSK Constellation.
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Fig. 5.2: 8 APSK Constellation.
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We first consider the example of BPSK constellation. Consider an order-4 tensor channel

of size 2 × 2 × 2 × 2 corresponding to an order-2 input of size 2 × 2, and order-2 output

of size 2 × 2. Under different power budgets P , we iteratively update the input precoder

using (5.46) and plot the mutual information computed through (5.79) in each iteration in

Figure 5.3. As can be seen in Figure 5.3, the mutual information increases with iterations

and reaches a saturation after some point. This saturated level can be considered as the

maximum mutual information or the capacity under BPSK constrained input for the given

power budget and equiprobable input distribution. As P increases the saturated mutual

information value also increases.
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Fig. 5.3: Convergence of Mutual Information (in bits) for order 4 channel with BPSK
input.
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Note that we present the convergence of mutual information against iterations as the

mutual information is an entity of interest for our purpose which can be used as a criteria

for terminating the iterations. However, we do not actually need to calculate the mutual

information at each iteration. For updating the precoder, we only need an updated MMSE

tensor QEEE. Hence, a possible termination criteria for the iterative equation could also be

established by observing the MMSE tensor. In Figure 5.4, we present the normalized mean

square error against iterations. The normalized mean square error is the ratio of the trace

of the the error covariance tensor and the total transmit power, calculated as :

NMSE =
1

P
tr(QEEE). (5.94)

It can be seen in Figure 5.4 that the mean square error reduces as the iteration increases

and also reaches a saturation. The saturation level is lower for higher transmit power P . On

comparing the convergence of mutual information in Figure 5.3 and of mean square error

in Figure 5.4, we see that as the mean squared error decreases, the mutual information

increases, and both entities saturate around the same number of iterations. Thus the

convergence criteria for the precoder update iterative equation can be set by considering

the saturation of either of the two parameters, mutual information or mean square error.

Next, in addition to the constraint on input signal constellation, we also consider two

different types of power constraints : sum power constraint, and per-domain power con-

straints where one of the two domains has individual power budgets defined by P1 = x · P
and P2 = (1−x) ·P with x = 0.9. For both these constraints, we plot the capacity when the

input is constrained to be drawn from BPSK constellation. We also plot the capacity with

the same power constraints but under Gaussian input signalling for comparison. Figure 5.5

shows the comparison of these capacities and thus illustrates the loss of capacity due to the

additional constraints on input constellation. Notice that the use of BPSK constellation

limits the capacity, which for high values of P saturates around 4 bits/channel-use as per

Lemma 8 and also seen in Figure 5.5. The gap between the capacity with BPSK input and

the channel capacity under no input constellation constraint (in which case we have Gaus-

sian signalling) is significantly large at higher transmit powers. Although, at lower P , we

observe that capacity is almost same whether we have the additional signalling constraints
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Fig. 5.4: Convergence of Mean Square Error for order 4 channel with BPSK input.

on input or not. Also, with per-domain power constraints the capacity is lower than the

capacity achieved with sum power constraint for both Gaussian and BPSK inputs. This

is as observed in Chapter-3 where the additional constraints on the input power makes

the feasible set smaller and thus lowers the capacity. Figure 5.5 highlights the dominant

behaviour of several different constraints. If the total power budget P is low, then any ad-

ditional constraint on the input constellation does not affect the capacity much. Hence at

low SNRs, the limited power budgets are the dominant constraints whereas the signalling

constellation constraints are not too relevant. However, at high SNRs, the input signalling

constellation constraints severely limits the capacity and thus acts as the dominant con-
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straint. Increasing the power budget P , or having individual domain power constraints,

does not change the capacity beyond a point with discrete input signal constellation con-

straints as the capacity saturates.
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Fig. 5.5: Capacity for order 4 tensor channel with BPSK and Gaussian inputs.

In Figure 5.5, we considered a specific per-domain power constraint corresponding to

x = 0.9. To analyze the capacity for a larger variety of power constraint, in Figures 5.6

and 5.7 we plot the tensor channel capacity for different values of x for both BPSK and

Gaussian inputs. Note that different values of x such that 0 < x < 1 generate different type

of per-domain power constraints. Figure 5.6 shows the capacity behaviour for lower power

budgets (P = 0,−2 dB), where it can be seen that the capacity for both the Gaussian
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input and the BPSK input changes with change of per-domain power constraint parameter

x. The gap between the curves for Gaussian and BPSK increases as P grows. But changing

x does change the capacity for both kind of inputs. On contrasting this with Figure 5.7,

which shows the same plot for higher power budgets (P = 2, 4 dB), we observe that the

capacity with BPSK input does not get much affected by changing the parameter x. In

fact, for sufficiently high value of P , the capacity with BPSK input is almost a straight line

when plotted against x, whereas with Gaussian input the capacity shows an arch like curve

against x. This further establishes that for high transmit powers under discrete signalling

constraints, the per-domain power constraints are not too significant as the discrete input

constraint is the dominant factor that limits the capacity.

Next we consider the tensor channel capacity when every individual element of the

input tensor is under a different power constraint. If the total available power is P , then

as used in previous examples P1 = x · P and P2 = (1− x) · P . Further, P11 = y · P1, P12 =

(1 − y) · P1, P21 = y · P2 and P22 = (1 − y) · P2. Thus, with 0 < x, y < 1, P11, P12, P21, P22

denote the individual power constraints on all the four elements of the 2 × 2 input tensor

such that P11+P12+P21+P22 = P . Different choices of x and y lead to different per-element

power constraints such that total power budget is P . Figures 5.8, 5.9, 5.10, and 5.11 shows

the capacity of the tensor channel for Gaussian and BPSK inputs against different values

of x and y, for P = −2, 0, 2, 4 dB respectively. In all the four figures it can be seen that

capacity with Gaussian input is higher than the BPSK input. However, in Figure 5.8 the

curves are fairly close to each other, whereas in Figure 5.11 the gap between the two curves

is very wide. With increasing P , the gap between the two curves for Gaussian and BPSK

input gradually widens as can be observed in Figure 5.8, 5.9, 5.10, and 5.11. It is also

important to note that the variation with x and y for smaller values of P as shown in

Figures 5.8 and 5.9 is similar for both Gaussian and BPSK inputs. But for higher values of

P , the surface curve corresponding to BPSK input tends to be a flat surface as opposed to

the Gaussian input where the curve shows variation with x and y. This further illustrates

that as P increases, individual element power constraints do not play a significant role in

determining the channel capacity if the input is drawn from discrete constellations.
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Fig. 5.6: Capacity under per domain power constraints with BPSK and Gaussian inputs.
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Fig. 5.8: Capacity (in bits/channel-use) for various per element power constraints at
P = −2 dB with BPSK and Gaussian inputs.

Fig. 5.9: Capacity (in bits/channel-use) for various per element power constraints at P = 0
dB with BPSK and Gaussian inputs..



5 Capacity of Tensor Channels Under Discrete Input Signal Constraints 194

Fig. 5.10: Capacity (in bits/channel-use) for various per element power constraints at
P = 2 dB with BPSK and Gaussian inputs.

Fig. 5.11: Capacity (in bits/channel-use) for various per element power constraints at
P = 4 dB with BPSK and Gaussian inputs..
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Further to illustrate the behavior of capacity for another constellation, we use QPSK

as the input signalling constraint. Figure 5.12 shows the capacity against P for sum power

and per-domain power constraint (with x = 0.9) when the input is drawn from a QPSK

constellation and compares it with Gaussian input signalling. Similar to Figure 5.5, here

also it can be observed that the capacity under QPSK input is significantly lower than

the Gaussian input and reaches a saturation for large values of P . In this case the value

saturates around 8 bits/channel-use as per Lemma 8, however this saturation occurs at a

higher value of P as compared to the BPSK case. Also increasing P beyond a certain point

does not increase the capacity any more. For lower values of P , the capacity with QPSK

input is almost same as the capacity with the Gaussian input. So here also, we observe that

the input constellation constraint becomes the dominating factor at higher SNRs, although

at low SNR the limited power budget remains the dominant constraint.

Further to illustrate the behaviour of capacity for different constellations of same size,

we compare 8-PSK with 8-APSK under sum power constraints. As can be seen in Figure

5.13, the capacity for the discrete constellations is nearly same as compared with Gaussian

input for low transmit powers. However for high transmit power the capacity with Gaussian

input increases significantly, while the capacity for constellation with 8-PSK with 8-APSK

saturates at about 12 bits/channel-use. On comparing the capacity curves for the two

discrete constellations 8-PSK with 8-APSK, which have the same size, it can be observed

that at low transmit power the curves are indistinguishable. But for moderate values

of transmit power, the capacity with 8-PSK is slightly lower than that of 8-APSK. For

instance, at 8 dB, the capacity for 8-APSK is approximately 0.5 bits/channel-use lower

than the capacity for 8-PSK. This difference can be attributed to the fact that the average

distance between neighbouring constellation points in APSK is larger than PSK. This can

produce better mean square performance at the receiver, and thus lead to a larger mutual

information. However, at high enough transmit power, both the constellations saturate to

same level since they have the same size.

Upon comparing Figures 5.5, 5.12, and 5.13, it can be seen that the channel capacity

for discrete constellations is always similar to the case with Gaussian input signalling at
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Fig. 5.12: Capacity of order 4 tensor channel with QPSK and Gaussian inputs .

low enough SNR, and starts to significantly deviate only after a moderate value of SNR.

For BPSK, the curves started to deviate around -4 dB, for QPSK around 2 dB, and for

8-PSK or 8-APSK around 5 dB. The capacity saturation value also increases on increasing

the constellation size. Thus it can be concluded that as the constellation size grows, the

performance gap between the discrete constellations and the Gaussian input decreases.

5.4.2 Capacity for different tensor channel order

So far we considered a fixed tensor channel and compared different power constraints and

constellations. Now we consider the capacity against various orders of tensor channels
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Fig. 5.13: Capacity of order 4 tensor channel with 8 PSK, 8 APSK and Gaussian inputs .

for discrete inputs under sum power constraint. The results are generated using the same

procedure as descried in the beginning of section 5.4. Figure 5.14 illustrates the behavior of

the mutual information as the precoder is updated iteratively using (5.46) at P = 0 dB for

BPSK input. The mutual information convergence is plotted for different order of tensor

channels. If the channel is even order 2N , then both input and output are taken to be order

N . For odd order 2N + 1 tensor channels, we take input to be order N + 1 and output

to be order N . To be specific, corresponding to order 3, 4, 5, and 6 channels, the input

output pairs are taken as (2, 1), (2, 2), (3, 2), and (3, 3) respectively. The dimensions of the

individual channel domains is kept as 2 for all the examples presented in this section. It
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can be seen in Figure 5.14 that the mutual information increases and saturates after several

iterations for any order tensor channel. This saturation level indicates the capacity of the

tensor channel. For the same P , the saturation level is higher for higher order channels.

It is important to note here that the channel entries are generated as in previous section

using circularly symmetric Gaussian with zero mean unit variance, hence the channel is

not normalized and provides a power gain at the receiver which increases with increasing

channel size.

Further, Figure 5.15 presents the behavior of mutual information as the precoder is

iteratively updated for P = 0 dB when the tensor channel is normalized to provide unit

power gain at the receiver. The channel elements in this case are generated using i.i.d.

circularly symmetric complex Gaussian with zero mean and variance 1/(J1 · · · JM), where

J1 · · · JM is the number of elements in the output tensor. Since the channel elements are

generated with lower variance, its individual components are weaker as compared to the

non-normalized case and hence the saturation values of the mutual information are lower

than the corresponding values in Figure 5.14. Note that Figure 5.14 and 5.15 are presented

on different y-scales, thus the curves in Figure 5.15 do not appear as smooth as Figure

5.14. Also, it is to be noted that in Figure 5.15 the saturation value reached with order

3 is larger than that of order 4, and with order 5 is larger than that of order 6. For a

normalized channel, as discussed in section 3.3.2, the channel components get weaker as

the number of receive elements increases. The order 5 channel corresponds to order 3

input and order 2 output, whereas order 6 channel corresponds to an order 3 input and

order 3 output. Thus with lower output order (case of order 5 tensor channel), the channel

components are stronger as compared to the order 6 channel because of lower value of

J1 · · · JM . However, the results in Figures 5.14 and 5.15 are corresponding to a specific

input output configuration where for odd order channels, the input is order N + 1 and

output is order N . A different configuration of the input and output can change these

results. We further elaborate on the role of specific input output configuration for a fixed

order channel, both normalized and non-normalized, through more examples.

So far all the numerical results presented in the previous section and in this section
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Fig. 5.14: Convergence of Mutual Information (in bits) for different Order channel (non-
normalized) with BPSK input at P = 0 dB.
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Fig. 5.15: Convergence of Mutual Information (in bits) for different Order Normalized
Tensor channels with BPSK input at P = 0 dB.



5 Capacity of Tensor Channels Under Discrete Input Signal Constraints 201

were averaged over 100 channel realizations, where for each channel we used 100 noise

realizations to compute the MMSE tensor and the mutual information. The complexity of

computing the MMSE tensor and the mutual information increases exponentially with the

size of the input tensor as discussed in section 5.3.2 and 5.3.3. Thus to save simulation time,

for further examples with higher order inputs we use lower number of random realizations

for averaging the results. The parameters used henceforth are listed in Table 5.1. For order

5 and 6 cases, we average over only 50 channel and noise realizations, while for order 7

and 8 cases, we average over only 5 random channel realizations and 25 noise realizations.

A primary reason for choosing such lower numbers for higher orders is to save simulation

time. However, due to large number of elements within each tensor realization for order 7

and 8 cases, these smaller number of samples still gives satisfactory results. This will be

established later through examples, where averaging over smaller number of samples gives

us a good approximation of an average taken over larger samples for higher order cases.

Table 5.1: Monte Carlo Simulation Parameters.

Constellation Channel Order Channel realizations Noise realizations
BPSK ≤ 4 100 100
BPSK 5, 6 50 50
BPSK 7, 8 5 25
QPSK ≤ 4 100 100
QPSK 5, 6 15 25

Figure 5.16 illustrates the behaviour of the capacity against increasing order of the

tensor channels for different power budgets P when the channel elements are i.i.d. circularly

symmetric complex Gaussian with zero mean and unit variance. We consider two different

configurations of input and output tensors for odd order (2N + 1) tensor channels : case 1)

input order N + 1, output order N , and case 2) output order N + 1, input order N . Case

1 is represented by dashed lines in the figure and case 2 by solid (or dotted for P = 5 dB

case) lines. For even order channels, the two cases are the same, thus the points coincide.

With input drawn from a discrete constellation of size Θ, the capacity can be specified as:

C = max{H(XXX)−H(XXX|YYY)} ≤ max{H(XXX)} = log(ΘI1···IN ). (5.95)
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Fig. 5.16: Capacity vs Order of tensor Gaussian channel (non-normalized) for BPSK
input.

Thus the capacity of a channel is always upper bounded by the maximum of the input

entropy. In Figure 5.16, the upper bound from (5.95) is indicated using a square marker

for case 1 and a hexagram marker for case 2. Since for even order channels, the two bounds

are exactly same, for clarity of representation, in Figure 5.16 we mark the bound for even

order cases only with a square marker. As can be seen in Figure 5.16, the capacity with case

1 is higher than that of case 2 because of larger number of input elements in case 1. Also

note that the capacity increases with increase in P for both cases, however for odd order

tensor channels, the difference between the capacity with case 1 and case 2 also increases
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with increase in P . This is because as P increases, the capacity with BPSK input tends to

reach a saturation. This saturation depends on the size of the input constellation and the

number of input elements as specified by (5.95). Hence a higher input order configuration

leads to a higher capacity for a fixed order tensor channel. The bound in (5.95) can be met

with sufficiently high transmit power when the input tensor contains equiprobable i.i.d.

elements as established in Lemma 8.

Thus for discrete inputs, the capacity is bounded by the size of the input constellation

and the number of input elements, and tends to this bound with increasing P . This can

be also observed from Figure 5.16, since the square markers and the hexagram markers lie

almost on top of the P = 10 dB points which shows that the capacity saturation is reached

at this power level. On comparing the channel order 4 and 5 for high values of P for case 2

(input order less than output order), we see that the capacity does not increase much and

stays almost at 4 bits/channel-use because the order of the input tensor (order 2) did not

change in going from channel order 4 to order 5 in this case. However, for case 1 the order

of the input tensor goes from 2 to 3 while moving from channel order 4 to 5, which causes a

significant increase in the capacity. This increase becomes more substantial as P increases.

At sufficiently high P , the capacity almost reaches 8 bits/channel-use whenever the input

order is 3, and 4 bits/channel-use whenever the input order is 2. It is important to note that

in this example, since the channel is not normalized, the impact of changing the input and

output order (case 1 and case 2), does not change the strength of the individual elements

of the channel and the difference in capacity arises from the constellation constraint at the

input and the size of the input. Also, such a channel provides power gain at the receiver

as discussed in section 3.3.2. Thus power levels such as 5 dB and 10 dB are sufficiently

high enough to make the capacity saturate. In fact the curves for 5 dB and 10 dB almost

overlap for case 2 in Figure 5.16 because of the capacity saturation with increasing power

budget. For case 1 also, the curves for 5 dB and 10 dB are closer but they do not overlap as

the saturation value of the capacity is higher because of higher input order. For instance,

corresponding to order 5 tensor channel, case 1 can lead to 8 bits/channel-use (since input

order is 3) with sufficient power. This is double the saturation value for case 2 which is only
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4 bits/channel-use (since input order is 2). For case 2, around 5 dB is sufficient to reach the

saturated value, whereas for case 1 since the saturation value itself is higher, much higher

power is required to reach the saturation. At around 10 dB, the capacity reaches about

8 bits/channel-use for case 1. This implies that with discrete constellations, depending

on the input configuration, transmitting signal beyond a certain power would not lead to

higher capacity. Thus the available power budget can be adjusted depending on the input

configuration. Next we will analyze the channel capacity in case of normalized channels.
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Fig. 5.17: Capacity vs Order of normalized tensor Gaussian channel for BPSK input.

Figure 5.17 presents the capacity against channel order for normalized channels. Similar

to the previous example, we use square markers to denote the upper bound for case 1, and
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hexagram markers to denote the upper bound for case 2. Since for even order channels,

the upper bound for case 1 and case 2 are identical, so for clarity of viewing, the upper

bound for even order channels is marked only with a square. As discussed in section 3.3.2,

for a fixed order normalized tensor channel, a change in the configuration of the input

and output will change the strength of the channel components. A difference between the

curves in Figures 5.17 and 5.16 is that in Figure 5.17 the capacity does not necessarily

increase with channel order. The same observation was made in Figure 5.15 also. For

instance, from channel order 5 to order 6, the capacity with case 1 decreases. This is

because both order-5 (case 1) and order-6 channels correspond to the same input order 3,

but normalization of these channels ensured weaker channel components in order-6 channel

case. Further, the gap between any two power levels such as 5 dB and 10 dB is larger for

normalized channels as compared to the non-normalized channels. This is so because for

non-normalized channel, 5 dB and 10 dB power levels are high enough to reach closer to

the saturated capacity values due to the additional power gain provided by the channel.

This is evident in Figure 5.16 where the capacity is almost reaching the markers indicating

the upper bound on capacity for high P . On the other hand, since normalized channels do

not provide any power gain, much higher power is required to reach saturation. Thus the

actual capacity is close to the upper bound markers in Figure 5.17 only for lower orders for

which the upper bounds are low. The observations regarding the dependence of normalized

channel capacity on the input configuration are consistent and similar to the Gaussian case

(Figure 3.22) where depending on the specifics of the input and output order, capacity

can decrease with increase in channel order due to channel normalization. A comparison

between Figure 3.22 and Figure 5.17 shows that the capacity with BPSK input is always

lower than the Gaussian case as expected. However, for lower values of P , the difference

is small. Also on comparing Figure 3.23 and Figure 5.16 which both represent capacity

for non-normalized channels, we see that the capacity increases with channel order for the

input output configurations presented here. However, for the Gaussian input with non-

normalized channel, the increase is smooth with increasing order, whereas for the BPSK

input the increase is in a step fashion. This is because in case of non-normalized channels,
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input being order N + 1 or output being order N + 1 does not change the strength of the

channel elements. So the capacity remains same for the two cases with Gaussian input

since a Gaussian input does not restrict the capacity based on input size. On the contrary,

with discrete inputs, the number of input elements imposes restriction on the capacity due

to the discrete nature of input symbols.

It is to be noted that the results presented here for order 7 and 8 tensor channel cases

are averaged over much smaller number of channel realizations. However, they still provide

a good approximation of the average taken over larger number of samples. To establish

this, in Table 5.2 and 5.3 we present the capacity calculated corresponding to 5 different

channel realizations for the non-normalized and normalized cases respectively. For each

power level, and different channel orders, the tables present the values of the capacity

found for 5 specific realizations of random channels. Note that for odd order channels,

the values in the table correspond to case 1 (input order N + 1, output order N), since

case 1 has higher complexity due to larger input size. It can be observed from the tables

that the values of C obtained for different channel realizations are pretty close to each

other in case of order 7 and 8 channels. To analyze the dispersion of the data points, we

use the relative standard deviation and relative range as measures. For a set of 5 values

of C = {C1, C2, C3, C4, C5} with average denoted by Cavg = 1
5

∑5
i=1Ci, the dispersion

measures are defined as :

Relative Standard Deviation =

√
1
4

∑5
i=1(Ci − Cavg)2

Cavg

(5.96)

Relative Range =
max{C} −min{C}

Cavg

. (5.97)

Based on both the dispersion measures as indicated in the tables, it can be seen that for

lower orders, such as order 3 and 4, the dispersion is much higher than for order 7 and

8 cases. This justifies our choice of Monte Carlo simulation parameters as listed in Table

5.1. Also, the relative deviation and range are much smaller for higher values of P , such

as P = 10 dB especially in non-normalized tensor channels. This is because with channel

also providing power gain, P = 10 dB is a sufficiently high transmit power for the capacity

to saturate. Thus irrespective of the channel realization, the capacity bound from (5.95) is
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met and there is very little deviation in results from one realization to another. In general,

for any power level, the individual data points are very similar for order 7 and 8 channel

cases. Note that for order 7 and 8 tensor channels (when the input order is 4), iteratively

updating the MMSE tensor and calculating the mutual information for a single channel

realization itself can take upto a few weeks of simulation time. However since the number

of elements in the tensor channel in such cases is very large (27 and 28 for order 7 and 8

respectively), due to channel hardening the variation across the results for different random

realizations is small enough such that a general trend could be observed with averaging

over only a smaller number of realizations.

Table 5.2: Capacity (C) for 5 realizations of tensor channels (non-normalized) with BPSK
input.

P
in dB

Channel
Order

C in bits/channel-use
Relative

Standard Deviation
Relative
Range

0 3 3.8348, 2.1952, 2.1613, 1.8876, 2.0012 0.3323 0.8060
4 3.4687, 3.7832, 3.4949, 2.8202, 2.8518 0.1301 0.2933
5 5.5579, 5.2433, 5.6026, 5.7611, 6.1464 0.0582 0.1595
6 7.2294, 6.8690, 6.7397, 7.3395, 7.2531 0.0373 0.0846
7 11.2651, 11.4990, 11.3013, 10.8301, 11.1206 0.0222 0.0597
8 13.8875, 13.8122, 14.1447, 14.3431, 13.9982 0.0151 0.0378

5 3 3.8262, 3.1292, 3.8835, 3.5796, 3.7686 0.0842 0.2074
4 3.7407, 3.7007, 3.7160, 3.8265, 3.9890 0.0314 0.0760
5 7.7475, 7.2652, 7.8428, 7.5489, 7.5900 0.0291 0.0760
6 7.8748, 7.8539, 7.9775, 7.9043, 7.8227 0.0075 0.0196
7 15.577, 15.3818, 15.5640, 15.3990, 15.6023 0.0068 0.0142
8 15.6988, 15.7488, 15.8954, 15.8823, 15.6890 0.0063 0.0131

10 3 3.8997, 3.9981, 3.9368, 3.9156, 3.6862 0.0305 0.0802
4 3.9849, 4.0000, 4.0000, 3.9111, 3.9922 0.0095 0.0223
5 7.8122, 7.9726, 7.9757, 7.9615, 7.9701 0.0089 0.0206
6 7.9851, 8.0000, 7.8991, 7.9982, 7.9888 0.0053 0.0127
7 15.9650, 15.9965, 15.9254, 15.8991, 15.8673 0.0032 0.0081
8 15.9987, 16.0000, 15.9803, 16.0000, 15.9877 0.0005 0.0012

Figures 5.18 and 5.19 present capacity with non-normalized and normalized channels

respectively against channel order for QPSK inputs. Note that the simulation points for

QPSK are included only till order 6 because generating points for higher order requires a
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Table 5.3: Capacity (C) for 5 realizations of normalized tensor channels with BPSK input.

P
in dB

Channel
Order

C in bits/channel-use
Relative

Standard Deviation
Relative
Range

0 3 2.0256, 1.9544, 0.9360, 1.0099, 1.3445 0.3531 0.7493
4 1.1880, 1.4366, 0.7594, 2.4211, 1.1001 0.4562 1.2032
5 2.0980, 3.7683, 2.3716, 2.4565, 2.2611 0.2592 0.6446
6 2.4002, 2.6929, 2.1583, 1.8743, 2.4795 0.1355 0.3527
7 3.1376, 3.2705, 3.2278, 3.0109, 3.2059 0.0320 0.0819
8 2.6683, 2.5415, 2.6202, 2.4869, 2.5690 0.0313 0.0704

5 3 2.0449, 2.2848, 2.9153, 3.5336, 2.4045 0.2252 0.5646
4 2.4898, 2.5114, 2.8752, 3.1553, 3.3078 0.1289 0.2852
5 4.2260, 5.0934, 5.3508, 5.4620, 3.9018 0.1458 0.3246
6 4.7786, 4.8928, 4.0675, 3.9051, 4.2041 0.1008 0.2260
7 5.7805, 5.7230, 5.9079, 6.5562, 5.9616 0.0556 0.1391
8 4.9856, 4.9131, 4.9605, 5.2611, 4.9683 0.0276 0.0694

10 3 3.7695, 2.8141, 3.5459, 3.5820, 2.9086 0.1300 0.2874
4 3.8896, 3.4402, 3.6065, 3.3335, 3.9488 0.0742 0.1689
5 6.8043, 7.0262, 6.0578, 6.5212, 6.8863 0.0576 0.1454
6 6.7376, 6.4160, 6.8139, 6.8052, 7.0859 0.0354 0.0989
7 9.9630, 9.7091, 10.235, 10.0603, 9.8570 0.0200 0.0528
8 8.4750, 8.3502, 8.2942, 8.3787, 8.4984 0.0102 0.0243

very long simulation time. However, a general trend could be observed using the results

till order 6 and comparing it with the BPSK case. Similar trends as in Figure 5.16 and

5.17 can be observed for QPSK case, except that the QPSK case leads to higher capacity

than BPSK for any fixed configuration. The saturation level of capacity with increasing P

also changes because the constellation size is bigger. The capacity upper bound is marked

using the square and hexagram markers. It can be seen that the actual capacity is close

to this bound only for lower order cases in non-normalized channels at high power. Since

the capacity saturation is twice as compared to BPSK, much higher power is required to

reach the saturation with QPSK. Similar to BPSK, for QPSK also it can be seen that the

difference between case 1 and case 2 for odd order channels gets bigger as P increases.

The curves for lower P are closer to the BPSK and Gaussian case, and as P increases

the QPSK curves fall between the BPSK and the Gaussian case. Especially in case of the
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Fig. 5.18: Capacity vs Order of tensor Gaussian channel (non-normalized) for QPSK
input.

normalized channels, since there is no power gain provided by the channel also, the curves

corresponding to P = 0 dB are almost overlapping for BPSK, QPSK, and Gaussian cases.

This is in line with our observation in the previous section where we showed that at very

low transmit power budgets, the constellation constraints are not the dominant factor in

determining the capacity. Furthermore, a comparison between BPSK and QPSK curves

shows that at sufficiently high transmit power the capacity can increase almost by a factor

of 2 when employing QPSK as compared to BPSK. This gain becomes more exact in cases

where the capacity tends to reach its saturation due to high power. For instance, for an
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Fig. 5.19: Capacity vs Order of normalized tensor Gaussian channel for QPSK input.

order 4 channel, the capacity at P = 10 dB for non-normalized channels with BPSK input

is around 4 bits/channel-use while with QPSK is close to 8 bits/channel-use. In case of

normalized channels, since the channel is not providing any power gain, a transmit power

of 10 dB is not sufficiently high enough for the QPSK input capacity to reach saturation.

We can see that in case of normalized channels with QPSK input the capacity values are

lower than the bound specified by (5.95). At high power, the gain in capacity by a factor

of 2 achieved with QPSK when compared to BPSK arises since the constellation size Θ

increases by a factor of 2, and at sufficiently high transmit power, the capacity bound

specified by (5.95) is reached as per Lemma 8.
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5.4.3 Capacity for different input distributions

In the previous sections, we considered examples where the input consists of independent

symbols drawn from an equiprobable distribution as it is a widely used assumption for

discrete constellations [105, 106, 108]. In this section, we consider the capacity under

BPSK constellation constraint, where the BPSK symbols {+1,−1} are not necessarily

equally likely. Throughout this section, we assume that the elements in the input tensor,

denoted by s, are independently drawn from {+1,−1} using a Bernoulli distribution, where

Pr[s = +1] = p and Pr[s = −1] = (1 − p). We analyze the capacity behavior with

changing parameter p, and how much it deviates for smaller p as compared to p = 0.5

which corresponds to the equiprobable distribution. We consider examples of order 4 and

order 6 tensor channels, and present results averaged over several channel realizations as

listed in Table 5.1. The number of input and output domains is kept the same. Since here

the objective is not to compare different order channels, but to compare effect of p for a

given order channel, the tensor channels are not normalized and generated using circularly

symmetric Gaussian distribution with unit variance.

Figure 5.20 shows the capacity of order 4 tensor channels vs p for three different levels

of transmit power budgets P . As can be observed from Figure 5.20, the largest capacity

is achieved when p = 0.5 for any transmit power. In particular at higher transmit powers,

p = 0.5 almost reaches 4 bits/channel-use which is the upper bound on the capacity in

this case. For other values of p also, it can be seen that at high enough transmit power

P , the capacity tends to a value closer to the source entropy. For instance, corresponding

to p = 0.2, the entropy of s where Pr[s = +1] = p and Pr[s = −1] = (1 − p) can be

calculated as −0.2 log(0.2)− 0.8 log(0.8) = 0.7219 bits, and since the input contains 4 such

independent elements, the source entropy can be written as 4 × 0.7219 = 2.8877 bits. In

Figure 5.20 for p = 0.2, and P = 10 dB, we see that the capacity almost reaches this source

entropy. This phenomenon can be further observed in Figure 5.21 where the order 4 tensor

channel capacity is plotted against increasing transmit power for fixed values of p. For any

given p, with sufficiently high transmit power, we see that the capacity reaches a saturation,

where the saturation level can be specified by the source entropy. The saturation is highest
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Fig. 5.20: Capacity vs p for order 4 channels with BPSK input for different transmit
powers.

when p = 0.5, and decreases as p decreases. This suggests that among all the choices on

input distribution for BPSK constellation, an equiprobable distribution provides the largest

capacity.

Further, Figure 5.22 shows the capacity against p for an order 6 tensor channel with

BPSK input. Similar to the order 4 case, here also we observe that capacity is largest when

p = 0.5 for any transmit power. In this case, the capacity corresponding to p = 0.5 reaches

a value of almost 8 bits/channel-use at high transmit power. As p deviates from 0.5, the

capacity reduces significantly. For very small values of p such as p = 0.1, the drop in
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Fig. 5.21: Capacity vs Transmit power for order 4 channels with BPSK input for different
p.

capacity as compared to p = 0.5 can be more than 50%. Here also, for any given p, at high

transmit power the capacity approaches the source entropy. For instance, since the input

contains 8 independent elements, at p = 0.2, the source entropy is 8 × 0.7219 = 5.7744

bits, and the capacity can be seen to be very close to this bound. It should be noted

that the conclusion regarding equiprobable distribution providing the largest capacity is

specific to the input constellation considered, which is BPSK for the presented example. A

natural extension of the work in this chapter would be to consider maximizing the mutual

information not for a given input distribution but over all the possible input distributions
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of the given constellation. This forms one of the future directions of this research.
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Fig. 5.22: Capacity vs p for order 6 channels with BPSK input for different transmit
powers.

5.5 Chapter Summary

This chapter considered the problem of maximizing the mutual information in a multi-

domain communication system with discrete inputs. We extended the relation between

the derivative of the mutual information and the error covariance associated with the best

MMSE estimator from a vector to a tensor setting in the presence of circularly symmetric

Gaussian noise. The tensor I-MMSE relation was then used to find a precoder that achieves
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the tensor channel capacity when the input is drawn from discrete signalling constellations

under a family of power constraints. It was shown that the mutual information saturates at

high transmit power, where the saturation value is a function of the input tensor size, which

increases exponentially with tensor order. Through numerical examples, it was concluded

that at lower SNRs, the power constraints play a significant role while the signalling con-

stellation constraint does not affect the capacity much. The capacity with discrete inputs is

almost same as the capacity with Gaussian input at low enough SNRs. However, at higher

SNRs, the capacity is significantly affected by the signalling constellation constraints, and

thus any individual power constraints on input domains or elements does not significantly

affect the capacity. Thus, at low SNRs, the power constraints are dominant, while at higher

SNRs the signalling constellation constraints are dominant. For BPSK input, we showed

through numerical examples that an equiprobable input distribution leads to maximum

mutual information.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

This thesis presented a unified mathematical framework using tensors to represent a multi-

domain communication system, and demonstrated the benefits of such a framework through

an information theoretic analysis of the tensor channel. A tensor-based system model was

presented in Chapter 2 that can be used to model several modern communication systems

by leveraging the multi-domain nature of the signals and systems involved.

The tensor framework’s ability to retain the domain identifiability (interpretability)

of the system model was exploited to represent a family of power constraints and find the

Shannon capacity of the tensor channels under such constraints in Chapter 3. It was shown

that the multiplexing gain provided by the tensor channel can increase exponentially with

the number of domains. However, through several examples, it was demonstrated that the

capacity increase with increasing channel order can vary based on channel normalization,

and the specific input and output configurations considered for a fixed order tensor channel.

Through numerical examples with tensor channels containing Gaussian i.i.d. elements, it

was shown that having larger number of input domains provide more robustness in case

of failed transmissions. Furthermore, the tensor framework highlights the domain trade-

off phenomenon as was shown for Gaussian channels with i.i.d elements, and a MIMO

GFDM system. The family of power constraints formulation also allowed to characterize
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the capacity of multi-user MIMO systems having per user power constraints for any number

of users. In case of Gaussian MAC and IC channels, it was shown that using the tensor

framework leads to a scheme where users cooperate for transmission and reception. Such

user coordination can lead to higher achievable sum rates as compared to the sum rates

achieved with independent users, especially as the number of users grows or the power of

the interfering links increases.

Chapter 4 considered MMSE estimation for tensor based signals and established the

notion of error covariance as a higher order tensor, which was later used in Chapter 5.

The proposed framework in Chapter 4 dealt with estimation of complex tensors, proper

or improper, using the Einstein product without reshaping the tensors, and thus could be

employed for tensors in TT format as well. A comparison with the Tucker estimation was

presented which showed that the Tucker approach while providing a low complexity solution

leads to sub-optimal MSE results as compared to the proposed estimator. The application

of the tensor estimator for a MIMO OFDM system with doubly selective channel was

considered. It was shown that the tensor estimation outperforms per sub-carrier estimation

for MIMO OFDM by a significant margin when the inter-carrier interference is high.

Further, Chapter 5 extended the well known vector I-MMSE relationship to a tensor

setting by exploiting the representation of error covariance as a higher order tensor from

Chapter 4. The tensor I-MMSE was used to find a precoder that achieves the tensor channel

capacity when the input is drawn from discrete signalling constellations for a family of power

constraints. Through numerical examples, it was concluded that at lower SNRs, the power

constraints are dominant and the signalling constellation constraints do not have much

impact on the capacity. However, at higher SNRs, the capacity is significantly affected by

the signalling constellation constraints. The capacity under discrete signalling constellation

constraints reaches a saturation with increasing transmit power. The saturation level is a

function of the number of input domains and input distribution.

This thesis presented several examples of multi-domain systems where domains such as

antenna, frequency, time, and users were considered and the channel was a tensor between

order 3 to order 8. Going forward towards beyond 5G and 6G systems, as the nature of the
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transmission media evolves, identifying and incorporating additional domains in the system

model would be a necessity. Systems with multiple domains are inherently complicated to

deal with mathematically if one wishes to account for all the inter-domain interferences. The

proposed tensor approach provides a convenient mathematical framework to model such

complicated systems, derive their information transmission capabilities across all domains,

and develop associated joint domain transmit and receive signal processing methods.

6.2 Directions for Future Research

In all the work presented in this thesis, it was assumed that the tensor channel is deter-

ministic, and is thus known at both transmitter and receiver. One logical succession of

this work is to analyze the cases when the channel is random, and the channel state in-

formation is either unknown or only partially known to the transmitter and receiver. In

particular, it would be interesting to see how capacity of tensor channels behaves in cor-

related channels. A tensor channel has multiple modes, so the correlation can exist across

several modes which may not always be separable as assumed in the Kronecker correlation

model. Thus developing correlation model for tensor channels and analyzing their effect on

channel capacity is a future work to consider.

Further, the proposed system model in this thesis is generic where we presented exam-

ples of systems such as MIMO OFDM and GFDM that fit the proposed model. However,

it would be worthwhile to explore other systems where transmission spans across multiple

domains that fit in the proposed framework. In particular, integration of future communi-

cation technologies such as IRS, mmWave, etc., into the tensor framework is of relevance.

Also, tensor structures can be leveraged for improving both space and time complexities of

several algorithms. Thus, one interesting future direction of the proposed research would

be to mould and adapt the algorithms and techniques developed in this thesis to be imple-

mented on parallel programming platforms. In particular, such computational benefits can

be very useful in simulations related to Chapter 5 where the complexity of Monte Carlo

simulations to find the MMSE tensor and mutual information increases exponentially with
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tensor size. The exponential dependency of the size of a tensor on its order is often referred

as a curse of dimensionality, and several tensor decomposition techniques can be employed

to work around it. An investigation of such techniques in the context of specific tensor

channels forms another future direction of this research.

Lastly, while this work was focussed on the physical Layer, the tensor-based framework

can be extended to include higher layers as well, providing a convenient basis for commu-

nication systems cross-layer design and signal processing. In particular the use of a tensor

framework for multi-domain resource allocation can be of considerable interest.
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Appendix A

KKT conditions

A.1 KKT conditions for Tensors

Consider scalar-valued functions of a tensor Q denoted by fi(Q). For an optimization

problem of the form,

min
Q

f0(Q)

s.t. fi(Q) ≤ 0, i = 1, . . . , I
(A.1)

the Lagrangian functional is defined as :

L(Q, {λi}) = f0(Q) +
I∑

i=1

λifi(Q) (A.2)

where λi is the Lagrange multiplier associated with the ith inequality constraint. The

inequality constraints in (A.1) along with the following conditions are known as the KKT

conditions [195]

∇
Q
f0(Q) +

I∑

i=1

λi∇Q
fi(Q) = 0T (i.e.,∇

Q
L = 0T) (A.3)

λi ≥ 0 i = 1, . . . , I (A.4)

λifi(Q) = 0 i = 1, . . . , I. (A.5)

For a convex optimization problem, the set of KKT conditions are both necessary and

sufficient for the optimal solution [195, 150]. This is true irrespective of Q being a tensor or
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matrix or vector, as the functions f0 and fi’s are scalar-valued and can be seen as functions

of the individual components of Q. For the complex case, the KKT conditions remains the

same when we take derivative with respect to Q or Q∗ [151]. In optimization theory jargon,

(A.3) is referred as the stationarity condition and (A.5) is referred as the complementary

slackness condition.

Now let us consider a more specific optimization problem where the variable is con-

strained to be a Hermitian positive semi-definite tensor, i.e., min f0(Q) such that Q � 0

where Q ∈ CI1×...×IN×I1×...×IN . The positive semi-definite constraint Q � 0, can be seen

as a set of linear scalar constraints since all the eigenvalues of Q are non-negative. So

Q � 0 is equivalent to the I1I2 · · · IN linear constraints di1,...,iN ≥ 0 or −di1,...,iN ≤ 0 for

i1 = 1, . . . , I1, . . . , iN = 1, . . . , IN where di1,...,iN represents an eigenvalue of Q. If the La-

grangian multiplier corresponding to each inequality constraint −di1,...,iN ≤ 0 is λi1,...,iN

then the Lagrangian can be written as (take fi to be −di1,...,iN in (A.2)),

L(Q, {λi1,...,iN}) = f0(Q)−
∑

i1,...,iN

λi1,...,iNdi1,...,iN . (A.6)

All di1,...,iN are the pseudo-diagonal entries of D from the tensor eigenvalue decomposition

of Q = U ∗N D ∗N UH . If we construct another Hermitian positive semi-definite tensor M

of same size as Q with same unitary tensor as U and the pseudo-diagonal tensor whose

elements are λi1,...,iN , then we can see that
∑

i1,...,iN

λi1,...,iNdi1,...,iN = tr(M ∗N Q). (A.7)

Thus for any Hermitian positive semi-definite constrained variable Q, the Lagrangian from

(A.6) can be written as

L = f0(Q)− tr(M ∗N Q). (A.8)

The complementary slackness condition corresponding to each of the linear constraint on

the eigenvalues can be written as

λi1,...,iNdi1,...,iN = 0, ∀i1, . . . , iN . (A.9)

Since λi1,...,iN and di1,...,iN are non-negative, (A.9) can be substituted into (A.7) to write

the complementary slackness as tr(M ∗N Q) = 0. This is similar to the approach taken
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for semi-definite programming for the matrix case [150]. Note that since M,Q � 0, so

tr(M ∗N Q) = 0 is equivalent to M ∗N Q = 0T, as proven in the following lemma :

Lemma 9. For Hermitian positive semi-definite tensors Q,M ∈ CI1×...×IN×I1×...×IN , tr(M∗N
Q) = 0, is equivalent to M ∗N Q = 0T.

Proof. It is straightforward to see that if M ∗N Q = 0T, then tr(M ∗N Q) = tr(0T) = 0.

Now we will prove in the other direction. Since M,Q are Hermitian positive semi-definite

tensors, we can write M = M1/2H ∗N M1/2, and Q = Q1/2 ∗N Q1/2H . Thus we have :

tr(M ∗N Q) = tr(M1/2H ∗N M1/2 ∗N Q1/2 ∗N Q1/2H) = tr(Q1/2H ∗N M1/2H ∗N M1/2 ∗N Q1/2).

(A.10)

Let C = M1/2 ∗N Q1/2, then we have

tr(M ∗N Q) = tr(CH ∗N C) =
∑

i1,...,iN ,i
′
1,...,i

′
N

|Ci1,...,iN ,i′1,...,i′N |
2. (A.11)

Hence tr(M ∗N Q) = 0, implies every element Ci1,...,iN ,i′1,...,iN = 0. Thus

tr(M ∗N Q) = 0⇒ C = 0T ⇒M1/2 ∗N Q1/2 = 0T (A.12)

⇒M1/2H ∗N M1/2 ∗N Q1/2 ∗N Q1/2H = 0T (A.13)

⇒M ∗N Q = 0T. (A.14)

which proves the lemma.

A.2 Solving the equations derived from KKT conditions for the

optimal covariance tensor

In this Appendix, we present the solution to the equations (3.28) and (3.30) which are

obtained through KKT conditions for finding the optimal transmit covariance tensor Q.

The results presented here are a generalization of Theorem 1 from [151] to a tensor setting.

In this Appendix, H represents the channel tensor, M represents the tensor containing

Lagrange multipliers corresponding to the semi-definite constraint on the covariance, and

B represents the tensor whose pseudo-diagonal entries are the Lagrange multipliers corre-

sponding to the other constraints on transmit covariance (such as power). For the sum
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power constraint, B is an identity tensor and the Lagrange multiplier is a scalar µ > 0.

So for M � 0,B � 0, our objective is to find Q � 0, that satisfies (3.28) and (3.30). We

re-write (3.28) and (3.30) in a more general form as (A.15) and (A.16) respectively:

HH ∗M (H ∗N Q ∗N HH + IM)−1 ∗M H = µB−M (A.15)

Q1/2 ∗N M ∗N Q1/2 = 0T (A.16)

where (A.15) is same as (3.28) for µ = 1. We take the Einstein product of Q1/2 across N

modes with (A.15) from both left and right side to write it as :

Q1/2 ∗N HH ∗M (H ∗N Q ∗N HH + IM)−1 ∗M H ∗N Q1/2

= µQ1/2 ∗N B1/2 ∗N B1/2 ∗N Q1/2 − Q1/2 ∗N M ∗N Q1/2

︸ ︷︷ ︸
=0T (from (A.16))

. (A.17)

We define a tensor A as :

A , B1/2 ∗N Q1/2 ⇒ Q1/2 = B−1/2 ∗N A. (A.18)

Since Q is Hermitian, we have Q1/2 = (Q1/2)H = AH ∗N B−1/2, which gives

Q = B−1/2 ∗N A ∗N AH ∗N B−1/2. (A.19)

On substituting Q from (A.19) into (A.15), we get :

HH ∗M
(
H ∗N B−1/2 ∗N A ∗N AH ∗N B−1/2 ∗N HH + IM

)−1

∗M H = µB−M. (A.20)

On taking the Einstein product of B−1/2 over N modes with (A.20) from both left and

right side gives us

B−1/2 ∗N HH

︸ ︷︷ ︸
KH

∗M
(
H ∗N B−1/2

︸ ︷︷ ︸
K

∗NA ∗N AH ∗N B−1/2 ∗N HH

︸ ︷︷ ︸
KH

+IM

)−1

∗M H ∗N B−1/2

︸ ︷︷ ︸
K

= µIN −B−1/2 ∗N M ∗N B−1/2 (A.21)

where we define tensor K as K , H ∗N B−1/2.

Proposition A.2.1. Let the tensor SVD of A and K be written as :

A = UA ∗N DA ∗N VHA , (A.22)

K = UK ∗M DK ∗N VHK , (A.23)

then UA = VK.
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Proof. Substituting (A.18) and (A.19) into (A.17), we get

AH ∗N B−1/2 ∗N HH

︸ ︷︷ ︸
PH

∗M(H ∗N B−1/2 ∗N A︸ ︷︷ ︸
P

∗N AH ∗N B−1/2 ∗N HH

︸ ︷︷ ︸
PH

+IM)−1

∗M H ∗N B−1/2 ∗N A︸ ︷︷ ︸
P

= µAH ∗N A. (A.24)

We define tensor P and its tensor SVD as :

P , H ∗N B−1/2 ∗N A = UP ∗M DP ∗N VHP (A.25)

On substituting (A.22) and (A.25) into (A.24), we get

VP ∗N DH
P ∗M UH

P ∗M (UP ∗M (DP ∗N DH
P + IM) ∗M UH

P )−1 ∗M UP ∗M DP ∗N VHP

= µ(VA ∗N DH
A ∗N DA ∗N VHA ) (A.26)

⇒ VP ∗N
pseudo-diagonal︷ ︸︸ ︷

DH
P ∗M (DP ∗N DH

P + IM)−1 ∗M DP ∗NVHP = (VA ∗N
pseudo-diagonal︷ ︸︸ ︷
µDH

A ∗N DA ∗NVHA ). (A.27)

Since VP and VA are unitary tensors, and the middle quantities on both sides of (A.27)

are pseudo-diagonal, both the right and left side represent the tensor EVD of two equal

tensors. From the uniqueness of tensor EVD, (A.27) implies

VP = VA. (A.28)

Also,

PH ∗M P = AH ∗N B−1/2 ∗N HH

︸ ︷︷ ︸
KH

∗M H ∗N B−1/2

︸ ︷︷ ︸
K

∗NA (A.29)

= VA ∗N DH
A ∗N UH

A ∗N VK ∗N DH
K ∗M DK ∗N VHK ∗N UA ∗N DA︸ ︷︷ ︸

middle term

∗NVHA . (A.30)

Since VA = VP (from (A.28)) we see that (A.30) represents the tensor EVD of PH ∗M P.

Hence the middle term in (A.30) is pseudo-diagonal. So UH
A ∗N VK must also be a pseudo-

diagonal tensor. Let S , UH
A ∗N VK, then since UA and VK are unitary, we get

SH ∗N S = (UH
A ∗N VK)H ∗N (UH

A ∗N VK) = (VHK ∗N UA) ∗N (UH
A︸ ︷︷ ︸

IN

∗NVK) = IN . (A.31)

Since S is pseudo-diagonal, (A.31) implies S = IN ⇒ UA = VK, proving the proposition.

From the tensor SVD of A and K, and Proposition A.2.1, the left-hand side of (A.21)
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can be written as :

VK ∗N DH
K ∗M UH

K∗M(UK ∗M DK ∗N DA ∗N DH
A ∗N DH

K ∗M UH
K + IM)−1 ∗M UK ∗M DK ∗N VHK

= VK ∗N DH
K ∗M (DK ∗N DA ∗N DH

A ∗N DH
K + IM)−1 ∗M DK︸ ︷︷ ︸

pseudo-diagonal

∗NVHK .

(A.32)

From the EVD, B−1/2 ∗N M ∗N B−1/2 = U ∗N DBM ∗N UH , the right-hand side in (A.21)

becomes

µIN −B−1/2 ∗N M ∗N B−1/2 = U ∗N (µIN −DBM) ∗N UH . (A.33)

Equations (A.32) and (A.33) represent the tensor EVD of the left and right hand side of

(A.21), hence from uniqueness of tensor EVD we get U = VK and :

DH
K ∗M (DK ∗N DA ∗N DH

A ∗N DH
K + IM)−1 ∗M DK = µIN −DBM. (A.34)

Let the pseudo-diagonal elements of DA, DK and DBM be ai1,...,iN , ki1,...,iN and mi1,...,iN

respectively. Pseudo-diagonal elements of DH
A and DH

K will also be ai1,...,iN and ki1,...,iN

respectively as these are real values. Since both sides of (A.34) are pseudo-diagonal, hence

(A.34) can be written component-wise as :

k2
i1,...,iN

1 + a2
i1,...,iN

k2
i1,...,iN

= µ−mi1,...,iN (A.35)

⇒ a2
i1,...,iN

=
1

µ−mi1,...,iN

− 1

k2
i1,...,iN

. (A.36)

Note that (A.36) must always be non-negative since it represents the eigenvalues of a

positive semi-definite tensor. To ensure that (A.36) is always non-negative, we will now

show that mi1,...,iN = 0 for any non-zero a2
i1,...,iN

. To see this, substitute (A.18) into (A.16)

which gives AH ∗N B−1/2 ∗N M ∗N B−1/2 ∗N A = 0T. Using the tensor SVD of A and tensor

EVD of B−1/2 ∗N M ∗N B−1/2 we can write :

VA ∗N DH
A ∗N DBM ∗N DA ∗N VHA = 0T (as U = VK = UA). (A.37)

This implies that DH
A ∗N DBM ∗N DA = 0T which can be written element-wise as a2

i1,...,iN
·

mi1,...,iN = 0. Since B � 0 and M � 0, we know mi1,...,iN ≥ 0. So a2
i1,...,iN

= 0 when
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mi1,...,iN > 0, otherwise it is given by (A.36) with mi1,...,iN = 0. Together it can be written

as

a2
i1,...,iN

=
( 1

µ
− 1

k2
i1,...,iN

)+

(A.38)

where (z)+ = max{0, z}. From (A.38) and Proposition A.2.1 we get

A ∗N AH = UA ∗N
(
µ−1IN − D̄−1

)+

∗N UH
A (A.39)

= VK ∗N
(
µ−1IN − D̄−1

)+

∗N VHK (A.40)

where VK and D̄ are obtained from tensor EVD of KH ∗M K = VK ∗N D̄ ∗N VHK . Based on

the tensor SVD of K in Proposition A.2.1, we have D̄ = DH
K ∗M DK. Substituting (A.40)

into (A.19), we can conclude that

Q = B−1/2 ∗N VK ∗N
(
µ−1IN − D̄−1

)+

∗N VHK ∗N B−1/2. (A.41)
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Appendix B

Proof of Theorems and some

Miscellaneous Results

B.1 Proof of Theorem 1, Tensor SVD

For tensors A ∈ CI1×...×IN×J1×...×JM and B ∈ CJ1×...×JM×K1×...×KP , from (2.8), we get :

A ∗M B = f−1
I1,...,IN |K1,...,KP

[fI1,...,IN |J1,...,JM (A) · fJ1,...,JM |K1,...,KP
(B)] (B.1)

where f−1
I1,...,IN |K1,...,KP

is the inverse matrix transform defined in (2.1). If A ∈ CI1I2···IN×J1J2···JM

and B ∈ CJ1J2···JM×K1K2···KP are transformed matrices from A and B respectively, then sub-

stituting fI1,...,IN |J1,...,JM (A) = A and fJ1,...,JM |K1,...,KP
(B) = B in (B.1) gives us

f−1
I1,...,IN |K1,...,KP

(A · B) = A ∗M B = f−1
I1,...,IN |J1,...,JM

(A) ∗M f−1
J1,...,JM |K1,...,KP

(B). (B.2)

Hence if A = U · D · VH (obtained from matrix SVD), then based on (B.2), for an order

N +M tensor A ∈ CI1×...×IN×J1×...×JM , we have :

A = f−1
I1,...,IN |J1,...,JM

(A) = f−1
I1,...,IN |J1,...,JM

(U ·D · VH)

= f−1
I1,...,IN |I1,...,IN (U) ∗N f−1

I1,...,IN |J1,...,JM
(D) ∗M f−1

J1,...,JM |J1,...,JM
(VH) = U ∗N D ∗M VH

(B.3)
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B.2 Concavity of log det

Lemma 10. For a Hermitian positive semi-definite tensor Q ∈ CI1×...×IN×I1×...×IN , log[det(Q)]

is a concave function of Q.

Proof. The concavity of log det function for a matrix argument is proven in [197]. Let XXX1

and XXX2 be order N zero mean complex normal distributed tensors of size I1 × . . . × IN ,

with covariance tensors Q1 and Q2 respectively. Let random variable θθθ have distribution

P (θ = 1) = λ, P (θ = 2) = 1− λ, 0 ≤ λ ≤ 1. Let θθθ,XXX1 and XXX2 be independent and let ZZZ be

defined as follows :

ZZZ =




XXX1, if θθθ = 1,

XXX2, if θθθ = 2.
(B.4)

Covariance of ZZZ is given as λQ1 + (1 − λ)Q2. Note that ZZZ is Gaussian only if θθθ is known,

otherwise not. Now from Lemma 4, we know that :

H(ZZZ) ≤ log[(eπ)I1···IN det(λQ1 + (1− λ)Q2)]. (B.5)

Since ZZZ given θ = 1 is Gaussian with covariance Q1 and ZZZ given θ = 2 is Gaussian with

covariance Q2,we get :

H(ZZZ|θθθ) = P (θ = 1) · H(ZZZ|θ = 1) + P (θ = 2) · H(ZZZ|θ = 2) (B.6)

= λ log[(eπ)I1···IN det(Q1)] + (1− λ) log[(eπ)I1···IN det(Q2)]. (B.7)

We know that H(ZZZ) ≥ H(ZZZ|θθθ), which implies

log[(eπ)I1···IN det(λQ1 + (1− λ)Q2)] ≥ λ log[(eπ)I1···IN det(Q1)] + (1− λ) log[(eπ)I1···IN det(Q2)]

⇒ log det(λQ1 + (1− λ)Q2) ≥ λ log det(Q1) + (1− λ) log det(Q2) (B.8)

which completes the proof.



B Proof of Theorems and some Miscellaneous Results 229

B.3 Proof of Theorem 3, the Orthogonality principle

E[||XXX− h(YYY)||2] = E[||XXX− g(YYY)︸ ︷︷ ︸
EEE

+ g(YYY)− h(YYY)︸ ︷︷ ︸
h̄(YYY)

||2]

= E[(EEE + h̄(YYY)) ∗N (EEE + h̄(YYY))∗]

= E[EEE ∗N E∗E∗E∗ +EEE ∗N h̄(YYY)∗ + h̄(YYY) ∗N EEE
∗ + h̄(YYY) ∗N h̄(YYY)∗]

= E[||EEE||2] + E[EEE ∗N h̄(YYY)∗] + E[h̄(YYY) ∗N EEE
∗]︸ ︷︷ ︸

cross-terms

+E[||h̄(YYY)||2].

Since h̄(YYY) is another function of YYY, hence if (4.1) holds, then the cross terms above would

be zero, which results into :

E[||XXX− h(YYY)||2] = E[||EEE||2] + E[||h̄(YYY)||2]︸ ︷︷ ︸
≥0

≥ E[||EEE||2].

B.4 Derivation of Error Covariance Tensor from (4.32)

QWL = E[(XXX− X̂XXWL) ◦ (XXX− X̂XXWL)∗]

= E[XXX ◦XXX∗]− E[XXX ◦ X̂XX∗WL]− E[X̂XXWL ◦XXX∗] + E[X̂XXWL ◦ X̂XX
∗
WL] (B.9)

where X̂XXWL = A1 ∗M YYY + A2 ∗M YYY
∗ (from (4.17)). Since the Einstein product in A1 ∗M YYY

and A2 ∗M YYY
∗ are over all the M modes of the tensor Y (which is an order M tensor), thus

the commutativity rule from (2.10) can be used to write (A1 ∗M YYY)∗ = (YYY∗ ∗M AH
1 ) and

(A2 ∗M YYY
∗)∗ = (YYY ∗M AH

2 ). So individual terms in (B.9) can be simplified as :

E[XXX ◦ X̂XX∗WL] = E[XXX ◦ (A∗1 ∗M YYY
∗ + A∗2 ∗M YYY)]

= E[(XXX ◦YYY∗) ∗M AH
1 + (XXX ◦YYY) ∗M AH

2 ]

= CXYXYXY ∗M AH
1 + C̃XYXYXY ∗M AH

2 , (B.10)

E[X̂XXWL ◦XXX∗] = E[(A1 ∗M YYY + A2 ∗M YYY
∗) ◦XXX∗]

= A1 ∗M E[YYY ◦XXX∗] + A2 ∗M E[YYY∗ ◦XXX∗]

= A1 ∗M CHXYXYXY + A2 ∗M C̃HXYXYXY, (B.11)
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E[X̂XXWL ◦ X̂XX
∗
WL]

= E[(A1 ∗M YYY + A2 ∗M YYY
∗) ◦ (A∗1 ∗M YYY

∗ + A∗2 ∗M YYY)]

= E[(A1 ∗M YYY + A2 ∗M YYY
∗) ◦ (YYY∗ ∗M AH

1 +YYY ∗M AH
2 )]

= A1 ∗M CYYY ∗M AH
1 + A2 ∗M C̃∗YYY ∗M AH

1 + A1 ∗M C̃YYY ∗M AH
2 + A2 ∗M C∗YYY ∗M AH

2

= (A1 ∗M CYYY + A2 ∗M C̃∗YYY) ∗M AH
1 + (A1 ∗M C̃YYY + A2 ∗M C∗YYY) ∗M AH

2

= CXYXYXY ∗M AH
1 + C̃XYXYXY ∗M AH

2 (from (4.25) and (4.26)). (B.12)

Substituting E[XXX ◦XXX∗] = CXXX along with (B.10), (B.11) and (B.12) into (B.9), we get :

QWL = CXXX −A1 ∗M CHXYXYXY −A2 ∗M C̃HXYXYXY. (B.13)

B.5 Proof of Theorem 4

To prove Theorem 4, we show that given YYY = Y, XXX is conditionally CN (A1 ∗M Y + A2 ∗M
Y∗,QWL, Q̃WL) using the characteristic function.

The characteristic function of a complex random vector x ∈ CN is defined as Φx(ω) =

E[ exp(i<(ωHx))] for ω ∈ CN [198]. Using Einstein Product, the characteristic function of

a complex random tensor XXX ∈ CI1×...×IN is

ΦXXX(W) = E[ exp(i<(W∗ ∗N XXX))] (B.14)

for tensor W ∈ CI1×...×IN . Notice that z = W∗ ∗N XXX is a complex scalar random variable.

If XXX is a complex Gaussian tensor with mean M, covariance C and pseudo-covariance C̃,

then z will be Gaussian distributed with mean

µz = E[z] = W∗ ∗N E[XXX] = W∗ ∗N M, (B.15)
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variance σ2
z and pseudo-variance σ̃2

z found using properties (2.9) and (2.18)

σ2
z = E[(W∗ ∗N (XXX−M)) ◦ (W∗ ∗N (XXX−M))∗]

= W∗ ∗N E[(XXX−M) ◦ ((XXX−M)∗] ∗N W

= W∗ ∗N C ∗N W (B.16)

σ̃2
z = E[(W∗ ∗N (XXX−M)) ◦ (W∗ ∗N (XXX−M))]

= W∗ ∗N C̃ ∗N W∗. (B.17)

The characteristic function Φz(ω) of a Gaussian scalar z ∼ CN (µz, σ
2
z, σ̃

2
z) is given by [199]:

Φz(ω) = exp
{
i<(ω∗µz)−

1

4

(
ω∗σ2

zω + <(ω∗σ̃2
zω
∗)
)}
. (B.18)

Now on putting z = W∗ ∗N XXX in (B.14) we get :

ΦXXX(W) = E[ exp(i<(ω∗ · z))]
∣∣∣
ω=1

= Φz(ω)
∣∣∣
ω=1

. (B.19)

On substituting (B.15), (B.16), (B.17) and ω = 1 in (B.18),

ΦXXX(W) = exp

{
i<(W∗ ∗N M)− 1

4

(
W∗ ∗N C ∗N W + <(W∗ ∗N C̃ ∗N W∗)

)}
. (B.20)

The characteristic function of an improper complex Gaussian vector as given in [199, 200]

can be seen as a specific case of (B.20). Further, the characteristic function of XXX given

YYY = Y can be written as (from (B.14)) :

ΦXXX|YYY(W) = E
[

exp
(
i<(W∗ ∗N XXX)

)
| YYY = Y

]

= E
[

exp
(
i<(W∗ ∗N (XXX− X̂XXWL + X̂XXWL))

)
| YYY = Y

]

= E
[

exp(i<(W∗ ∗N (XXX− X̂XXWL)))︸ ︷︷ ︸
a

exp
(
i<(W∗ ∗N X̂XXWL)

)

︸ ︷︷ ︸
b

| YYY = Y
]
.

Term b can be taken out of the expectation as given YYY = Y, we also know Y∗, so X̂XXWL which

is given as A1 ∗M YYY + A2 ∗M YYY
∗ becomes deterministic. In term a, the vector (XXX− X̂XXWL) is

the error tensor EEE, hence we get :

ΦXXX|YYY(W) = exp
(
i<(W∗ ∗N (A1 ∗M Y + A2 ∗M Y∗))

)
E
[

exp
(
i<(W∗ ∗N EEE)

)
| YYY = Y

]
.

(B.21)

Since the error tensor defined as EEE = XXX − (A1 ∗M YYY + A2 ∗M YYY
∗) is orthogonal to YYY, and

also XXX and YYY are jointly complex normal, so EEE is independent of YYY. Thus we can drop the
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conditioning in (B.21), which gives

ΦXXX|YYY(W) = exp
(
i<(W∗ ∗N (A1 ∗M Y + A2 ∗M Y∗))

)
E
[

exp
(
i<(W∗ ∗N EEE)

)]

︸ ︷︷ ︸
ΦEEE(W)

. (B.22)

Since XXX and YYY are assumed zero mean and jointly Gaussian, so the error tensor EEE will also

be Gaussian with zero mean. Hence its characteristic function is given as (from (B.20)):

ΦEEE(W) = exp

{
− 1

4

(
W∗ ∗N CEEE ∗N W + <(W∗ ∗N C̃EEE ∗N W∗)

)}
. (B.23)

Substituting (B.23) into (B.22) with the error covariance CEEE = QWL and pseudo-covariance

C̃EEE = Q̃WL, we get :

ΦXXX|YYY(W) = exp

{
i<(W∗ ∗N (A1 ∗M Y + A2 ∗M Y∗))

− 1

4

(
W∗ ∗N QWL ∗N W + <(W∗ ∗N Q̃WL ∗N W∗)

)}
(B.24)

which is the characteristic function of a complex Gaussian tensor with mean (A1 ∗M Y +

A2 ∗M Y∗), covariance QWL and pseudo-covariance Q̃WL (based on (B.20)). So we have

shown that given YYY = Y, XXX is conditionally CN (A1 ∗M Y + A2 ∗M Y∗,QWL, Q̃WL). Hence

the best MMSE estimate which is the conditional mean is same as the widely multi-linear

MMSE estimate for jointly complex Gaussian tensors.

B.6 Tensor Eigenvalue Upper bound

Lemma 11. For a Hermitian tensor C ∈ CI1×...×IN×I1×...×IN , we have σ2
max ≤ m +

s(
∏N

n=1 In − 1)1/2, where σ2
max is the largest eigenvalue of C, m = tr(C)/(

∏N
n=1 In) and

s2 = tr(C ∗N CH)/(
∏N

n=1 In)−m2.

Proof. Let the tensor EVD of C be given as : C = U ∗N D ∗N UH . Since C is Hermitian, its

eigenvalues are real (from Lemma 2), hence we can write D ∈ RI1×...×IN×I1×...×IN . Using

(2.19), we know that tr(C) = tr(U ∗N D ∗N UH) = tr(D ∗N UH ∗N UH) = tr(D). Similarly,

tr(C ∗N CH) = tr(D ∗N D). Thus, we can write

m =
tr(C)∏N
n=1 In

=
tr(D)∏N
n=1 In

=

∑
i1,...,iN

Di1,...,iN ,i1,...,iN∏N
n=1 In

, (B.25)
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s2 =
tr(C ∗N CH)∏N

n=1 In
−m2 =

tr(D ∗N D)∏N
n=1 In

−m2 =

∑
i1,...,iN

D2
i1,...,iN ,i1,...,iN∏N

n=1 In
−m2. (B.26)

Hence the quantities m and s2 denote the mean and variance of the (
∏N

n=1 In) real eigen-

values. Thus, from Samuelson’s inequality [201] we get that all the eigenvalues (including

the largest) satisfy Di1,...,iN ,i1,...,iN ≤ m+ s(
∏N

n=1 In − 1)1/2, which proves Lemma 11.

B.7 Faster implementation of Newton’s Iteration

Reducing the complexity using an alternate NM form

The Newton Method recursion from (2.33) is used to iteratively find the inverse of a tensor.

Most often the objective of finding the inverse is to find the solution to a system of multi-

linear equations represented by A ∗N X = Y, where A ∈ CI1×...×IN×I1×...×IN , and X,Y ∈
CI1×...×IN . If we use Newton’s iteration from (2.33) to find A−1, each iteration requires

computing Einstein product (∗N) between tensors of order 2N . Hence the complexity per

iteration is cubic in the size of tensor, i.e. O((I1 · · · IN)3) . However, employing an alternate

form of the Newton’s iteration can reduce this complexity from cubic to square in the size

of the tensor. Using the Einstein product, we can write (2.33) in expanded form linking

B(k) to B(0) as [202]:

B(k) =
2k−1∑

m=1

ck,m(B(0) ∗N A)m ∗N B(0) (B.27)

where ck,m is the coefficient of the mth summation term in (B.27) and B(k) is the approxi-

mation of A−1 at the kth iteration. For an order 2N tensor, the notation (A)m denotes:

(A)m = A ∗N A ∗N · · · ∗N A︸ ︷︷ ︸
m times

. (B.28)

Equation (B.27) can be seen as another form of the Newton’s method. By considering

ck,m as coefficients of a polynomial fk(z) = ck,0z
0 + ck,1z

1 + · · ·+ ck,2k−1z
2k−1, we can write

fk+1(z) = 2fk(z) − z[fk(z)]2 with f0(z) = 1 [202]. Thus the coefficients ck,m can be found

recursively. In fact these coefficients do not depend on the tensor to be inverted, so can be

calculated before hand and used in the solution. Since the objective is to find X = A−1∗N Y,
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rather than approximating A−1 and then taking its Einstein product with Y, we can find

the approximation of A−1 ∗N Y directly. Take Einstein product with Y on both sides in

(B.27) to get :

B(k) ∗N Y =
2k−1∑

m=1

ck,m (B(0) ∗N A)m ∗N B(0) ∗N Y︸ ︷︷ ︸
Ỹ(m)

(B.29)

where the left hand side is the approximation of X at the kth iteration, and thus we can

write :

X(k) =
2k−1∑

m=1

ck,mỸ
(m). (B.30)

Since Ỹ(m) = (B(0) ∗N A)m ∗N B(0) ∗N Y, we have :

Ỹ(m+1) = (B(0) ∗N A) ∗N Ỹ(m). (B.31)

Hence Ỹ(m) ∈ CI1×...×IN can be found recursively with Ỹ(0) = B(0) ∗N Y. The initial value

B(0) can be taken as in the standard Newton’s equation from (2.33) where B(0) = aAH , with

constant a bounded as 0 < a < 2/σ2
max and σ2

max is the largest eigenvalue of AH ∗NA. Using

such an approach the Newton’s method now requires taking Einstein product over N modes

between a tensor of order 2N with a tensor of order N in each iteration, thus reducing the

complexity toO((I1 · · · IN)2) fromO((I1 · · · IN)3). The complexity still remains exponential

in the number of domains. However, using parallel processing of NM, the exponential

dependence on the number of domains can be brought to linear dependence as shown next.

Reducing the complexity using parallel processing

Several flops in the Einstein product can be executed simultaneously on a parallel comput-

ing platform. To see this, assume tensors X and Y of size I1× . . .× IN × I1× . . .× IN each

and Z = X ∗N Y. Then all the elements of Z can be computed using multiple processors as

shown in Figure B.1.

The white rectangular nodes in Figure B.1 correspond to the individual multiplication

operations. All the white nodes need to be added to compute a single element (the gray

rectangular nodes) in tensor Z. The addition of white nodes to generate the gray nodes
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can be done using a binary tree approach as shown in Figure B.1 where all the addition

operations at a given level of the tree are performed simultaneously. The figure illustrates

this process for a single gray node, but further all the gray nodes can be computed simul-

taneously using similar binary tree approach if multiple processors are available.

∑
j1,...,jN

Xi1,...,iN ,j1,...,jNYj1,...,jN ,i′1,...,i
′
N

= Zi1,...,iN ,i′1,...,i
′
N

+

+ · · ·

Xi1,...,iN ,1,1,...,1Y1,1,...,1,i′1,...,i
′
N

Xi1,...,iN ,1,1,...,2Y1,1,...,2,i′1,...,i
′
N

+ · · ·

Xi1,...,iN ,1,1,...,3Y1,1,...,3,i′1,...,i
′
N

Xi1,...,iN ,1,1,...,4Y1,1,...,4,i′1,...,i
′
N

+

Xi1,...,iN ,j1,...,jNYj1,...,jN ,i′1,...,i
′
N

+ · · ·

Xi1,...,iN ,I1,...,INYI1,...,IN ,i′1,...,i
′
N

...

...

...

Z1,...,1,1...,1
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Fig. B.1: Parallel execution of Einstein product.

For a specific gray node, the number of nodes in a binary tree at each level starting

from root (gray node) are 20, 21, 22, . . . , 2h where h is the depth of the tree and 2h is

the number of leaf nodes. We can have similar binary trees for each of the gray nodes.

Since in Figure B.1, the number of leaf nodes (white nodes) are I1 · · · IN , we get that

the depth of the tree corresponding to each gray node is dlog(I1 · · · IN)e. We use the ceil

operator as I1 · · · IN may not always be a power of 2. Hence we can say that the height

of the tree is O(log(I1 · · · IN)). Since all the gray nodes can be computed simultaneously,

all the individual elements of X ∗N Y can be calculated in O(log(I1 · · · IN)) parallel time

units. Such a parallel processing method can significantly reduce the time complexity of

calculating the Einstein product, and subsequently other tensor operations which rely on

the Einstein product such as tensor inversion.
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Each iteration in NM (2.33), other than the Einstein products, also requires one tensor

subtraction which has a time complexity of O(1) using multiple processors. Hence the time

complexity of each Newton iteration using parallel processors is O(log(I1 · · · IN)). With

In = L for all n, the complexity is given as O(N logL), which is linear in the number of

domains.

B.8 Chain Rule for Tensor Derivatives

Let U = h(X) be a function of matrix X where U is also a matrix. In order the find the

derivative of a scalar function g(U) with respect to matrix X, the chain rule is defined as

[119, 107] :
∂g

∂Xi,j

=
∑

k,l

∂g

∂Uk,l

· ∂Uk,l

∂Xi,j

. (B.32)

Similarly, the derivative chain rule for a scalar function g(h(X)), where X ∈ CI1×...×IN and

U = h(X) ∈ CJ1×...×JM are order N and M tensors respectively, can be defined as:

∂g

∂Xi1,...,iN

=
∑

j1,...,jM

∂g

∂Uj1,...,jM

· ∂Uj1,...,jM

∂Xi1,...,iN

. (B.33)

We will now present two lemmas based on the chain rule of tensor derivatives which were

used for proving Corollary 5.1.

Lemma 12. For a real valued scalar function h(D) where tensor D ∈ CI1×...×IP×T1×...×TQ

depends on tensor B ∈ CJ1×...×JM×K1×...×KN as D = A ∗M B ∗N C with tensors A ∈
CI1×...×IP×J1×...×JM , and C ∈ CK1×...×KN×T1×...×TQ, we have :

∇
B
h = AH ∗P ∇D

h ∗Q CH . (B.34)

Proof. Since D = A ∗M B ∗N C, using (2.12) we have DH = CH ∗N BH ∗M AH , which can

be written component wise as :

(DH)t1,...,tQ,i1,...,iP =
∑

k1,...,kN
j1,...,jM

(CH)t1,...,tQ,k1,...,kN (BH)k1,...,kN ,j1,...,jM (AH)j1,...,jM ,i1,...,iP . (B.35)

Note that (BH)k1,...,kN ,j1,...,jM is same as B∗j1,...,jM ,k1,...,kN
. Thus taking the derivative of (B.35)
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with respect to a specific component of B∗ can be written as :

∂(DH)t1,...,tQ,i1,...,iP
∂B∗j′1,...,j′M ,k′1,...,k

′
N

= (CH)t1,...,tQ,k′1,...,k′N (AH)j′1,...,j′M ,i1,...,iP . (B.36)

Now using the chain rule from (B.33), we can write :

∂h

∂B∗j′1,...,j′M ,k′1,...,k
′
N

=
∑

t1,...,tQ
i1,...,iP

∂h

∂(DH)t1,...,tQ,i1,...,iP
· ∂(DH)t1,...,tQ,i1,...,iP
∂B∗j′1,...,j′M ,k′1,...,k

′
N

. (B.37)

Upon substituting (B.36) into (B.37), we get :

∂h

∂B∗j′1,...,j′M ,k′1,...,k
′
N

=
∑

t1,...,tQ
i1,...,iP

∂h

∂(DH)t1,...,tQ,i1,...,iP
· (CH)t1,...,tQ,k′1,...,k′N (AH)j′1,...,j′M ,i1,...,iP

=
∑

t1,...,tQ
i1,...,iP

(AH)j′1,...,j′M ,i1,...,iP ·
∂h

∂D∗i1,...,iP ,t1,...,tQ
· (CH)t1,...,tQ,k′1,...,k′N (B.38)

⇒ ∇
B
h = AH ∗P ∇D

h ∗Q CH . (B.39)

Lemma 13. For a real valued scalar function h(Q), where a Hermitian tensor Q ∈ CI1×...×IP×I1×...×IP

depends on tensor B ∈ CJ1×...×JM×K1×...×KN as Q = A∗M B∗N Q̄∗N BH ∗M AH with tensors

A ∈ CI1×...×IP×J1×...×JM and a Hermitian tensor Q̄ ∈ CK1×...×KN×K1×...×KN , we have :

∇
B
h = AH ∗P ∇Q

h ∗P A ∗M B ∗N Q̄H . (B.40)

Proof. The tensor Q = A ∗M B ∗N Q̄ ∗N BH ∗M AH on writing component wise is given by :

Qi1,...,iP ,i′1,...,i′P =
∑

j1,...,jM ,k1,...,kN
k′1,...,k

′
N ,j
′
1,...,j

′
M

Ai1,...,iP ,j1,...,jM ·Bj1,...,jM ,k1,...,kN · Q̄k1,...,kN ,k
′
1,...,k

′
N

· (BH)k′1,...,k′N ,j′1,...,j′M · (A
H)j′1,...,j′M ,i′1,...,i

′
P
. (B.41)

Noting that (BH)k′1,...,k′N ,j′1,...,j′M is same as B∗j′1,...,j′M ,k′1,...,k
′
N

, we can write the derivative of

(B.41) with respect to a specific component of B∗ as :

∂Qi1,...,iP ,i′1,...,i′P
∂B∗p1,...,pM ,q1,...,qN

=
∑

j1,...,jM
k1,...,kN

Ai1,...,iP ,j1,...,jMBj1,...,jM ,k1,...,kN Q̄k1,...,kN ,q1,...,qN (AH)p1,...,pM ,i′1,...,i
′
P
.

(B.42)
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Now using the chain rule from (B.33), we can write :

∂h

∂B∗p1,...,pM ,q1,...,qN

=
∑

i1,...,iP
i′1,...,i

′
P

∂h

∂Qi1,...,iP ,i′1,...,i′P
·
∂Qi1,...,iP ,i′1,...,i′P
∂B∗p1,...,pM ,q1,...,qN

. (B.43)

Upon substituting (B.42) into (B.43), we get :

∂h

∂B∗p1,...,pM ,q1,...,qN

=
∑

i1,...,iP
i′1,...,i

′
P

∂h

∂Qi1,...,iP ,i′1,...,i′P
·
∑

j1,...,jM
k1,...,kN

Ai1,...,iP ,j1,...,jM ·Bj1,...,jM ,k1,...,kN

· Q̄k1,...,kN ,q1,...,qN · (AH)p1,...,pM ,i′1,...,i
′
P
. (B.44)

Since Q is Hermitian, we have Qi1,...,iP ,i′1,...,i′P = Q∗i′1,...,i′P ,i1,...,iP
, we can write (B.44) as :

∂h

∂B∗p1,...,pM ,q1,...,qN

=
∑

i1,...,iP ,i
′
1,...,i

′
P

j1,...,jM ,k1,...,kN

(AH)p1,...,pM ,i′1,...,i
′
P

∂h

∂Q∗i′1,...,i′P ,i1,...,iP

Ai1,...,iP ,j1,...,jM ·Bj1,...,jM ,k1,...,kN · Q̄k1,...,kN ,q1,...,qN (B.45)

⇒ ∇
B
h = AH ∗P ∇Q

h ∗P A ∗M B ∗N Q̄H . (B.46)

B.9 Proof of Theorem 5, the tensor I-MMSE relationship

In order to prove Theorem 5, we first present a few results which would be required at

several intermediate steps in the proof of Theorem 5.

Corollary 5.2. Let U = Y − H ∗N X where Y ∈ CJ1×...×JM , X ∈ CI1×...×IN , and H ∈
CJ1×...JM×I1×...×IN , and let h(U) = ||U||2= ||Y−H ∗N X||2, then we have :

∇
Y
(||Y−H ∗N X||2) = (Y−H ∗N X), (B.47)

∇
H

(||Y−H ∗N X||2) = −(Y−H ∗N X) ◦ X∗. (B.48)

Proof. Note that h(U) = ||U||2=
∑

j′1,...,j
′
M
Uj′1,...,j

′
m
· U∗j′1,...,j′M . Hence we have

[∇
U
h]j1,...,jM =

∂h

∂U∗j1,...,jM
=

∂

∂U∗j1,...,jM

∑

j′1,...,j
′
M

Uj′1,...,j
′
m
· U∗j′1,...,j′M = Uj1,...,jM . (B.49)

Thus we get ∇
U
h = U, which directly leads to ∇

Y
(||Y −H ∗N X||2) = (Y −H ∗N X) and

hence proves (B.47). Now to prove (B.48), we invoke Lemma 12 from Appendix B.8. In
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the statement of Lemma 12, replace A with a scaled identity tensor (−1) · IM of order

2M , B with a tensor H of order M +N , C with a tensor X of order N , and function h as

||Y−H ∗N X||2. Then from (B.34) we get :

∇
H
h = (−1) · IM ∗M ∇U

h ∗0 X
∗ = −U ∗0 X

∗. (B.50)

From the definition of the outer product in (2.5), and substituting U and h, we can write :

∇
H

(||Y−H ∗N X||2) = −(Y−H ∗N X) ◦ X∗. (B.51)

Also, the following lemma would be used in proving Theorem 5:

Lemma 14. Let h(XXX;A) be a real valued scalar function of a random tensor XXX and a param-

eter tensor A ∈ CI1×...×IN which is differentiable for all A, then if

∣∣∣∣
∂

∂A∗i1,...,iN
h(XXX;A)

∣∣∣∣ ≤ z

where z is a random scalar with finite mean, then :

∇
A
EXXX[h(XXX;A)] = EXXX[∇

A
h(XXX;A)], (B.52)

i.e. the sequence of expectation and gradient can be interchanged.

Proof. We have

EXXX[h(XXX;A)] =

∫
h(X;A)p

XXX
(X)∂X (B.53)

⇒ ∇
A
EXXX[h(XXX;A)] =

∂

∂A∗

∫
h(X;A)p

XXX
(X)∂X (B.54)

which can be written element wise as
[
∇

A
EXXX[h(XXX;A)]

]
i1,...,iN

=
∂

∂A∗i1,...,iN

∫
h(X;A)p

XXX
(X)∂X. (B.55)

Since we assume that |∂h/∂A∗i1,...,iN | is bounded by a random scalar with finite mean, we

can use the Dominated Convergence Theorem [203], [107, Lemma 2], to bring the derivative
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inside integral and write :
[
∇

A
EXXX[h(XXX;A)]

]
i1,...,iN

=

∫
∂

∂A∗i1,...,iN
h(X;A)p

XXX
(X)∂X (B.56)

⇒ ∇
A
EXXX[h(XXX;A)] =

∫
∂

∂A∗
h(X;A)p

XXX
(X)dX (B.57)

=

∫
∇

A
h(X;A)p

XXX
(X)dX (B.58)

= EXXX[∇
A
h(XXX;A)]. (B.59)

Integration by Parts for scalar function of Tensors : If h(Y) and g(Y) are scalar

functions of a tensor Y ∈ CJ1×...×JM , then from the product rule of gradient we can write

[204]:

∇
Y

(
h(Y)g(Y)

)
= g(Y)∇

Y
h(Y) + h(Y)∇

Y
g(Y) (B.60)

where ∇
Y

(
h(Y)g(Y)

)
is a tensor of same size as Y. This equation can be rearranged as :

g(Y)∇
Y
h(Y) = ∇

Y

(
h(Y)g(Y)

)
− h(Y)∇

Y
g(Y) (B.61)

and subsequently a form of integration by parts can be written as :∫
g(Y)∇

Y
h(Y)dY =

∫
∇

Y

(
h(Y)g(Y)

)
dY−

∫
h(Y)∇

Y
g(Y)dY. (B.62)

It is important to note here that each term in (B.62) is an integral as defined in (2.30) and

is a tensor not a scalar. Thus unlike the scalar case, the first term on the right hand side
∫
∇

Y
(h(Y)g(Y))dY can not simply be written as h(Y)g(Y).

We now present the proof of the tensor I-MMSE relation.

Proof of Theorem 5:

Since the noise tensor NNN is circular symmetric Gaussian with zero mean and identity

covariance tensor, the conditional pdf of the output is given as :

p
YYY|XXX(Y|X) =

1

πJ1·J2···JM
exp

(
− (Y−H ∗N X)∗ ∗M (Y−H ∗N X)

)
(B.63)

=
1

πJ1·J2···JM
exp (− ||Y−H ∗N X||2) (B.64)
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and the unconditional output pdf is

p
YYY
(Y) = EXXX[p

YYY|XXX(Y|XXX)]. (B.65)

Also, the noise tensor NNN is independent of the input tensor XXX, thus the mutual information

is given by

I(XXX;YYY) = H(YYY)−H(YYY|XXX) = H(YYY)−H(NNN) (B.66)

where covariance of the noise tensor is identity IM . Using (3.1), H(NNN) can be written as :

H(NNN) = log
(

(eπ)J1...JM det(IM)
)

= log((eπ)J1···JM ) (B.67)

which makes the mutual information :

I(XXX;YYY) = −EYYY[log p
YYY
(YYY)]− (J1 · · · JM log(πe)) (B.68)

= −
∫
p
YYY
(Y) log(p

YYY
(Y))∂Y− (J1 · · · JM log(πe)) (B.69)

⇒ ∂

∂H∗
I = − ∂

∂H∗

∫
p
YYY
(Y) log(p

YYY
(Y))∂Y. (B.70)

Taking the derivative inside integral and using the product rule from (B.60), we get :

∂

∂H∗
I = −

∫ (
p
YYY
(Y)

∂

∂H∗
log(p

YYY
(Y)) + log(p

YYY
(Y))

∂

∂H∗
p
YYY
(Y)
)
dY (B.71)

= −
∫ (

p
YYY
(Y)

1

p
YYY
(Y)

∂

∂H∗
p
YYY
(Y) + log(p

YYY
(Y))

∂

∂H∗
p
YYY
(Y)
)
dY (B.72)

= −
∫

( log(p
YYY
(Y)) + 1)

∂

∂H∗
p
YYY
(Y)dY. (B.73)

On substituting p
YYY
(Y) from (B.65) into (B.73), we get :

∂

∂H∗
I = −

∫ (
( log(p

YYY
(Y)) + 1)

∂

∂H∗
EXXX[p

YYY|XXX(Y|XXX)]
)
dY. (B.74)

Based on Lemma 14, we can take the derivative inside expectation and get,

∂

∂H∗
I = −

∫ (
( log(p

YYY
(Y)) + 1)EXXX

[ ∂

∂H∗
p
YYY|XXX(Y|XXX)

])
dY. (B.75)

To see that the conditions for Lemma 14 are satisfied, note that the derivative of the output
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conditional pdf with respect to the channel can be written as:

∂

∂H∗
p
YYY|XXX(Y|X) =

∂

∂H∗

(exp (− ||Y−H ∗N X||2)

πJ1·J2···JM

)
, (using (B.64)) (B.76)

=
exp (− ||Y−H ∗N X||2)

πJ1·J2···JM

∂

∂H∗

(
− ||Y−H ∗N X||2

)
(B.77)

= −p
YYY|XXX(Y|X)

∂

∂H∗

(
||Y−H ∗N X||2

)
(using (B.64)) (B.78)

= p
YYY|XXX(Y|X)(Y−H ∗N X) ◦ X∗ (using (B.48)). (B.79)

Since 0 ≤ p
YYY|XXX(Y|X) ≤ 1, from (B.79) we can write :
∣∣∣∣

∂

∂H∗j1,...,jM ,i1,...,iN

p
YYY|XXX(Y|X)

∣∣∣∣ ≤ |((Y−H ∗N X) ◦ X∗)j1,...,jM ,i1,...,iN | (B.80)

where for a given channel H, the expectation of the right hand side will be finite because of

finite second order moments, hence the conditions of Lemma 14 are satisfied for interchange

of gradient and expectation in (B.75).

Similarly the gradient of the conditional pdf with respect to Y can be written as

∂

∂Y∗
p
YYY|XXX(Y|X) =

∂

∂Y∗

(exp (− ||Y−H ∗N X||2)

πJ1·J2···JM

)
, (using (B.64)) (B.81)

=
exp (− ||Y−H ∗N X||2)

πJ1·J2···JM

∂

∂Y∗

(
− ||Y−H ∗N X||2

)
(B.82)

= −p
YYY|XXX(Y|X)(Y−H ∗N X), (using (B.64) and (B.47)) (B.83)

⇒ −∇
Y
p
YYY|XXX(Y|X) = p

YYY|XXX(Y|X)(Y−H ∗N X). (B.84)

On substituting p
YYY|XXX(Y|X)(Y−H ∗N X) from(B.84) into (B.79), we get :

∂

∂H∗
p
YYY|XXX(Y|X) = −∇

Y
p
YYY|XXX(Y|X) ◦ X∗. (B.85)

Further, on substituting (B.85) into (B.75) :

∂

∂H∗
I = −

∫ (
( log(p

YYY
(Y)) + 1)EXXX

[
−∇

Y
p
YYY|XXX(Y|XXX) ◦XXX∗

])
dY (B.86)

= EXXX

[ ∫ (
( log(p

YYY
(Y)) + 1) · ∇

Y
p
YYY|XXX(Y|XXX) ◦XXX∗

)
dY
]
. (B.87)

Since the integral is with respect to Y, we can take XXX
∗ out of the integral to form :

∂

∂H∗
I = EXXX

[ ∫ (
( log(p

YYY
(Y)) + 1) · ∇

Y
p
YYY|XXX(Y|XXX)

)
dY ◦XXX∗

]
. (B.88)
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The integral in (B.88) can be written using (B.62) as:
∫ (

( log(p
YYY
(Y)) + 1) · ∇

Y
p
YYY|XXX(Y|XXX)

)
dY =

∫
∇

Y

(
( log(p

YYY
(Y)) + 1) · p

YYY|XXX(Y|XXX)

)
dY

︸ ︷︷ ︸
A

−
∫
p
YYY|XXX(Y|XXX)∇

Y
( log(p

YYY
(Y)) + 1)dY

︸ ︷︷ ︸
B

. (B.89)

The term B in (B.89) can be written as :

B =

∫
p
YYY|XXX(Y|XXX)

1

p
YYY
(Y)
∇

Y
(p

YYY
(Y))dY. (B.90)

The term A in (B.89) can be written element wise as (using (2.30)):

Aj1,...,jM =

∫ (
∇

Y

(
( log(p

YYY
(Y)) + 1) · p

YYY|XXX(Y|XXX)
))

j1,...,jM

∂Y (B.91)

=

∫
. . .

∫ [∫
∇

Y

(
( log(p

YYY
(Y)) + 1) · p

YYY|XXX(Y|XXX)

)

j1,...,jM

∂Yj1,...,jM

]
∂Y1,...,1 · · · ∂YJ1,...,JM︸ ︷︷ ︸

all elements except ∂Yj1,...,jM

.

(B.92)

Note that the function ( log(p
YYY
(Y)) + 1) · p

YYY|XXX(Y|XXX) is a real valued scalar function of tensor

Y. Let us denote it using a(Y) = ( log(p
YYY
(Y)) + 1) · p

YYY|XXX(Y|XXX) which can also be seen as

a function of the real and imaginary components of the tensor Y. Also, as |Yj1,...,jM |→ ∞
both p

YYY
(Y) and p

YYY|XXX(Y|X) tends to 0, hence the function a(Y) → 0. Hence the integral

inside the square brackets in (B.92) when evaluated from −∞ to +∞ for both real and

imaginary parts of Yj1,...,jM tends to 0, which makes the square bracket term 0 in (B.92)

and subsequently Aj1,...,jM = 0. This implies that A is an all zero tensor, i.e. A = 0T.

Substituting A = 0T and B from (B.90) into (B.89) gives us :∫ (
( log(p

YYY
(Y)) + 1) · ∇

Y
p
YYY|XXX(Y|XXX)

)
dY = −

∫
p
YYY|XXX(Y|XXX)

1

p
YYY
(Y)
∇

Y
(p

YYY
(Y))dY. (B.93)

On substituting (B.93) into (B.88), we get :

∂

∂H∗
I = EXXX

[ ∫ −p
YYY|XXX(Y|XXX)

p
YYY
(Y)

∇
Y
p
YYY
(Y)dY ◦XXX∗

]
(B.94)

= −
∫
∇

Y
p
YYY
(Y) ◦

(
EXXX

[p
YYY|XXX(Y|XXX)

p
YYY
(Y)

XXX
∗
])

dY. (B.95)
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The expectation term inside the integral in (B.95) can be written as :

EXXX

[p
YYY|XXX(Y|XXX)

p
YYY
(Y)

XXX
∗
]

=

∫
X∗
p
YYY|XXX(Y|X)

p
YYY
(Y)

p
XXX

(X)dX =

∫
X∗p

XXX|YYY(X|Y)dX = EXXX|YYY[XXX∗|YYY = Y]

(B.96)

and the term ∇
Y
p
YYY
(Y) inside the integral in (B.95) can be written using p

YYY
(Y) from (B.65)

as :

∇
Y
p
YYY
(Y) = ∇

Y
EXXX[p

YYY|XXX(Y|XXX)] = EXXX[∇
Y
p
YYY|XXX(Y|XXX)]. (B.97)

On substituting ∇
Y
p
YYY|XXX(Y|X) from (B.84) into (B.97), we get:

∇
Y
p
YYY
(Y) = EXXX[−p

YYY|XXX(Y|XXX) · (Y−H ∗N XXX)] (B.98)

=

∫
p
YYY|XXX(Y|X) · (Y−H ∗N X)p

XXX
(X)dX (B.99)

= −EXXX|YYY[p
YYY
(Y)(Y−H ∗N XXX)|YYY = Y] (B.100)

= −p
YYY
(Y)(Y−H ∗N EXXX|YYY[XXX|YYY = Y]). (B.101)

Substituting (B.96) and (B.101) into (B.95), we get:

∂

∂H∗
I =

∫
p
YYY
(Y)(Y−H ∗N EXXX|YYY[XXX|YYY = Y]) ◦ EXXX|YYY[XXX∗|YYY = Y]dY (B.102)

= E
[
(YYY−H ∗N EXXX|YYY[XXX|YYY]) ◦ EXXX|YYY[XXX∗|YYY]

]
(B.103)

= E
[
YYY ◦ E[XXX∗|YYY]

]
−H ∗N E

[
E[XXX|YYY] ◦ E[XXX∗|YYY]

]
(B.104)

= E
[
E[YYY ◦XXX∗|YYY]

]
−H ∗N E

[
E[XXX|YYY] ◦ E[XXX∗|YYY]

]
(B.105)

= E[YYY ◦XXX∗]−H ∗N E
[
E[XXX|YYY] ◦ E[XXX∗|YYY]

]
(B.106)

= H ∗N E[XXX ◦XXX∗]−H ∗N E
[
E[XXX|YYY] ◦ E[XXX∗|YYY]

]
(B.107)

= H ∗N QEEE (B.108)

where the last equality follows based on (5.5).
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Appendix C

Simulation Programs guide

All the numerical and simulation results presented in this thesis were generated using

MATLAB R2019a on 64 bit Linux systems. The software files for all the results have been

kept in a folder titled ‘Thesis Software’ which can be obtained following the university

regulations by contacting the author or his supervisor. The folder contains sub-folders

corresponding to each chapter of this thesis. Each sub-folder contains the MATLAB script

and function files required to generate the figures in this thesis. Also the mat files required

for Figure 3.21 can be found in the folder of Chapter 3. This Appendix contains a list of all

the MATLAB script files in the software distribution folder. A ReadMe file is also included

in each folder which gives the reader all the information required to run the files. Table

C.1 lists all the MATLAB m files used along with the corresponding figures that the file

can generate.

The bit error rate curves from Chapter 4 take a long time to be generated, as at

least a hundred bit errors are collected for each SNR to calculate the error rate. Hence

each point on the plots containing BER and MSE in Chapter 4 were obtained by running

the associated MATLAB scripts on several computer systems parallely for different SNR

settings. Similarly, the Monte Carlo simulations in Chapter 5 are also time consuming and

can take several weeks to run especially for higher order channels or higher constellations.

Thus, the simulation files associated with Chapter 5 for different SNRs and channel order
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were run parallely using multiple multi-core computer systems.

All the simulations were mostly performed on five different Linux based systems: one

consisting of an Intel I7-5th generation 3.5 GHz CPU with 6 cores and 32 GB memory, one

consisting of an Intel I5-4th generation 3.2 GHz CPU with 4 cores and 24 GB memory, one

consisting of an AMD Phenom II X6 2.6 GHz CPU with 6 cores and 32 GB memory and

two Intel I7-3rd generation 3.2 GHz CPU with 4 cores and 8 GB memory.

Table C.1: MATLAB code files to generate Figures in this thesis.

Chapter Section Folder Name m file to run Generates Figures
2 2.1.6 Chap2 Main File1.m 2.4, 2.5
3 3.3.1/3.3.2 Chap3/NumExamples Main File2.m 3.1 to 3.24

3.3.3 Chap3/MIMOGFDM Main File3.m 3.25
Main File4.m 3.26

3.4.1 Chap3/MIMO MAC Main File5.m 3.27
Main File6.m 3.28
Main File7.m 3.29

3.4.2 Chap3/MIMO IC Main File8.m 3.30
Main File9.m 3.31
Main File10.m 3.32
Main File11.m 3.33, 3.34

4 4.2.1 Chap4/Gaussian Main File12.m 4.1
Main File13.m 4.2

4.2.2 Chap4/Tucker Main File14.m 4.3
Main File15.m 4.4

4.2.3 Chap4/TTFormat Main File16.m 4.5
Main File17.m 4.6

4.2.4 Chap4/MIMOOFDM Main File18.m 4.7
Main File19.m 4.8, 4.9, 4.10

5 5.4.1/5.4.2 Chap5/Equiprobable Main File20.m 5.3, 5.4, 5.14, 5.15
Main File21.m 5.5, 5.12
Main File22.m 5.6, 5.7,
Main File23.m 5.8, 5.9, 5.10, 5.11
Main File24.m 5.13
Main File25.m 5.16, 5.17 ,5.18, 5.19

5.4.3 Chap5/Arbitrary PMF Main File26.m 5.20, 5.22
Main File27.m 5.21
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[169] M. Matthé, N. Michailow, I. Gaspar, and G. Fettweis, “Influence of pulse shaping
on bit error rate performance and out of band radiation of Generalized Frequency
Division Multiplexing,” in 2014 IEEE International Conference on Communications
Workshops (ICC), pp. 43–48, 2014.

[170] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO
channels,” IEEE Journal on selected areas in Communications, vol. 21, no. 5, pp. 684–
702, 2003.

[171] Wei Yu, Wonjong Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filling for Gaussian
vector multiple-access channels,” IEEE Transactions on Information Theory, vol. 50,
no. 1, pp. 145–152, 2004.

[172] M. Kiamari and A. S. Avestimehr, “Capacity region of the symmetric injective K-
user deterministic interference channel,” IEEE Transactions on Information Theory,
vol. 65, no. 7, pp. 4010–4022, 2019.

[173] X. Shang, B. Chen, G. Kramer, and H. V. Poor, “Capacity regions and sum-rate ca-
pacities of vector Gaussian interference channels,” IEEE Transactions on Information
Theory, vol. 56, no. 10, pp. 5030–5044, 2010.

[174] X. Shang, B. Chen, and M. J. Gans, “On the achievable sum rate for MIMO interfer-
ence channels,” IEEE Transactions on Information Theory, vol. 52, no. 9, pp. 4313–
4320, 2006.

[175] X. Shang, B. Chen, G. Kramer, and H. V. Poor, “On the capacity of MIMO in-
terference channels,” in 2008 46th Annual Allerton Conference on Communication,
Control, and Computing, pp. 700–707, IEEE, 2008.



References 262

[176] X. Shang and H. V. Poor, “Noisy-interference sum-rate capacity for vector Gaussian
interference channels,” IEEE Transactions on Information Theory, vol. 59, no. 1,
pp. 132–153, 2013.

[177] X. Shang and H. V. Poor, “Capacity region of vector Gaussian interference chan-
nels with generally strong interference,” IEEE Transactions on Information Theory,
vol. 58, no. 6, pp. 3472–3496, 2012.

[178] C. Geng, N. Naderializadeh, A. S. Avestimehr, and S. A. Jafar, “On the optimality
of treating interference as noise,” IEEE Transactions on Information Theory, vol. 61,
no. 4, pp. 1753–1767, 2015.

[179] A. Ghasemi, A. S. Motahari, and A. K. Khandani, “Interference alignment for the K
user MIMO interference channel,” in 2010 IEEE International Symposium on Infor-
mation Theory, pp. 360–364, 2010.

[180] J. Marot, C. Fossati, and S. Bourennane, “About advances in tensor data denoising
methods,” EURASIP Journal on Advances in Signal Processing, vol. 2008, no. 1,
p. 235357, 2008.

[181] R. Tong, G. Bao, and Z. Ye, “A higher order subspace algorithm for multichannel
speech enhancement,” IEEE Signal Processing Letters, vol. 22, no. 11, pp. 2004–2008,
2015.

[182] T. Lin and S. Bourennane, “Survey of hyperspectral image denoising methods based
on tensor decompositions,” EURASIP journal on Advances in Signal Processing,
vol. 2013, no. 1, pp. 1–11, 2013.

[183] T. Yokota, Q. Zhao, and A. Cichocki, “Smooth PARAFAC decomposition for tensor
completion,” IEEE Transactions on Signal Processing, vol. 64, no. 20, pp. 5423–5436,
2016.

[184] S. Lang, Introduction to linear algebra. Springer Science & Business Media, 2012.

[185] B. Picinbono and P. Chevalier, “Widely linear estimation with complex data,” IEEE
Transactions on Signal Processing, vol. 43, pp. 2030–2033, 1995.

[186] D. Muti, S. Bourennane, and J. Marot, “Lower-rank tensor approximation and mul-
tiway filtering,” SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 3,
pp. 1172–1204, 2008.

[187] D. Muti and S. Bourennane, “Multidimensional estimation based on a tensor de-
composition,” in IEEE Workshop on Statistical Signal Processing, 2003, pp. 98–101,
IEEE, 2003.



References 263

[188] A. Burg, S. Haene, D. Perels, P. Luethi, N. Felber, and W. Fichtner, “Algorithm and
VLSI architecture for linear MMSE detection in MIMO-OFDM systems,” in IEEE
International Symposium on Circuits and Systems, IEEE, 2006.

[189] D. N. Liu and M. P. Fitz, “Low complexity affine MMSE detector for iterative
detection-decoding MIMO OFDM systems,” IEEE Transactions on Communications,
vol. 56, no. 1, pp. 150–158, 2008.

[190] M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer, “Large-scale
MIMO detection for 3GPP LTE: Algorithms and FPGA implementations,” IEEE
Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 916–929, 2014.

[191] W. Yi and H. Leib, “OFDM symbol detection integrated with channel multipath gains
estimation for doubly-selective fading channels,” Physical communication, vol. 22,
pp. 19–31, 2017.

[192] K. A. D. Teo and S. Ohno, “Pilot-aided channel estimation and Viterbi equalization
for OFDM over doubly-selective channel,” in IEEE Globecom 2006, pp. 1–5, Nov
2006.

[193] A. Alimohammad, S. F. Fard, B. F. Cockburn, and C. Schlegel, “An improved SOS-
based fading channel emulator,” in 2007 IEEE 66th Vehicular Technology Conference,
pp. 931–935, IEEE, 2007.

[194] P. Mukunthan and P. Dananjayan, “PAPR reduction based on a modified PTS
with interleaving and pulse shaping method for STBC MIMO-OFDM system,” in
2012 Third International Conference on Computing, Communication and Network-
ing Technologies (ICCCNT’12), pp. 1–6, IEEE, 2012.

[195] Z.-Q. Luo and W. Yu, “An introduction to convex optimization for communications
and signal processing,” IEEE Journal on selected areas in communications, vol. 24,
no. 8, pp. 1426–1438, 2006.
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