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Abstract 

The application of thermal barrier coatings (TBCs) in gas turbine engines allowed 

humanity to extend the limit of operating temperature and to achieve better efficiency. The current 

generation of TBC materials has been used for decades and is showing inadequate potentials for 

further improvement. Thus it is critical to keep exploring new material candidates with better 

performance for the next-generation high-performance TBC. One most critical material property 

for selecting promising TBC material candidates is the thermal conductivity of the top coat, the 

outmost layer of a TBC. The combination of first-principles calculations, single-mode relaxation-

time approximation, and the linearized phonon Boltzmann equation makes the prediction of lattice 

thermal conductivities of materials possible via computational simulations. However, the 

computational process involved requires a large number of inter-dependent subtasks. Therefore, it 

is important to streamline and optimize the process for better computational efficiency. Towards 

this, this thesis aims to develop workflow toolkit to automate the thermal conductivities 

computational process. In particular, a first-principles workflow software, Ph3pyWF, has been 

developed to conduct high-throughput computation of lattice thermal conductivities of TBC 

materials, able to calculate the lattice thermal conductivities of multiple oxide systems. The 

calculated results showed good agreement with the experimental results. High degree of 

automation and robustness was proven throughout the tests, indicative of this workflow to serve 

as an efficiency booster for high-throughput computational exploration of TBC materials.   
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Résumé 

L'application de revêtements de barrière thermique (Thermal Barrier Coatings ou TBC) 

dans les turbines à gaz a permis à l'humanité d'augmenter leurs limites de température de 

fonctionnement et d'obtenir une meilleure efficacité. La génération actuelle de matériaux TBC est 

utilisée depuis plusieurs décennies et présente un potentiel inadéquat d’amélioration future. Il est 

donc essentiel de continuer à explorer, pour la nouvelle génération, de nouveaux candidats de 

matériaux TBC possédants de meilleures performances. La conductivité thermique de la couche 

supérieure, soit la couche externe d’un TBC, est l'une des propriétés les plus importantes pour la 

sélection de matériaux prometteurs. La combinaison de calculs des premiers principes, 

d’approximation de temps de relaxation monomode et de l'équation de Boltzmann de phonon 

linéarisé rend possible la prédiction de conductivités thermiques des réseaux de matériaux par 

simulations numériques. Toutefois, le processus de calcul en cause nécessite un grand nombre de 

sous-tâches interdépendants. Il est donc important de rationaliser et d'optimiser le processus pour 

obtenir une meilleure efficacité de calcul. Pour ce faire, cette thèse vise à développer un outil de 

gestion de processus de travail pour automatiser le calcul de conductivités thermiques. En 

particulier, un logiciel de gestion de processus de travail basé sur les premiers principes, Ph3pyWF, 

a été développé pour effectuer un calcul à haut débit de conductivités thermiques de matériaux 

TBC, capable de déterminer la conductivité thermique de réseaux de multiples systèmes d’oxydes. 

Les résultats calculés ont permis d’obtenir des résultats concordants avec les résultats 

expérimentaux. Un degré élevé d'automatisation et de robustesse a été prouvé tout au long des 

essais, ce qui indique que ce processus de travail permettra de décupler l'efficacité de l'exploration 

numérique à haut débit des matériaux TBC.   
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Chapter 1: General Overview 

1.1. Introduction 

Gas turbine engine, a type of continuous internal combustion engine with gas as the 

working fluid, has profound impact on human society. With higher power-to-weight ratio than 

traditional intermittent-combustion engine, it is widely adopted in various of industries including 

aerospace and power generation. Since the birth of the first gas turbine engine, scientists and 

engineers have been striving to increase the operating temperature to achieve higher efficiency and 

power-to-weight ratio. Studies have shown that the work output increases by approximately 10% 

for every 50 K increase in operating temperature, resulting in a 1.5% gain in thermal efficiency 1,2. 

To push the performance of gas turbine engines beyond the limitation of metallic materials, 

particularly through elevating the operating temperature, ceramic thermal barrier coatings (TBCs) 

were developed.  

A typical TBC system consists of three layers: the ceramic topcoat for thermal protection, 

the bond coat for connection between superalloy substrate and topcoat, and the thermally grown 

oxide between bond coat and topcoat. The ceramic materials for the topcoat are designed to have 

thermal conductivity (less than 3 W/m-K at 1000°C) magnitudes less than that of the superalloy 

substrate (~30±5 W/m-K at 1000°C). Modern TBC systems provide significant reduction in the 

surface temperature (up to a few hundred degrees Celsius) of superalloy substrate, allowing higher 

operating temperature. Besides of application in gas turbine engines, TBCs can also be employed 

in automotive industry to improve fuel efficiency and reduce exhaust pollution 3,4.  

Traditionally, new material systems are discovered mainly by conducting large number of 

trial-and-error experiments, which are time consuming and require specialized equipment for 

characterization of material properties. Accompanied with the development of modern quantum 
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mechanics and the exponentially growing computational capability, a new field of materials 

science has emerged, known as computational materials design. It allows the prediction of 

materials properties without conducting experiments, and thus drastically reduces the cost of 

materials and labor work. Electronic structure methods such as Hartree-Fock (HF) and density 

function theorem (DFT) enable first-principles (or “ab-initio”) simulation of material systems, 

which as the name implies, uses minimal to no empirical knowledge of the systems. Currently, 

computational methods have been adopted in the exploration of many categories of new functional 

materials including catalysts 5–7, thermoelectrics 8–11, and battery materials 12–14. In the exploration 

of new TBC materials, computational materials design has also been proven as a powerful tool for 

screening promising candidates from huge pool of material systems.  

Oftentimes when conducting computational study of materials, researchers find themselves 

doing repetitive works. Typical procedure of computational studies involves preparation of input 

files, submission of jobs, retrieval and parsing of output files. In the case where large number of 

computational jobs are conducted in parallel, manual operation is inefficient and error prone. For 

example, computational approach for lattice thermal conductivity often leads to hundreds to 

thousands of first-principles calculations. Additionally, error identification and recovery for failed 

subprocesses is usually complicated and frustrating. All the aforementioned issues associated with 

manual running of computational studies raise significant demand for automation of computational 

workflow.  

To accelerate the process of computational materials exploration, efforts have been made 

to develop new software infrastructures that combine automated computational workflows and 

database storage solutions. Such infrastructures do not only improve the simplicity and efficiency 
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of computational studies, but also ensure better reproducibility of results and reusability of 

computational codes.  

1.2. Objectives 

As described above, workflow is essential to accelerate the exploration of new TBC top 

coat materials. As such, this work aims to develop a highly automated workflow toolkit to conduct 

first-principles computation of lattice thermal conductivities of TBC materials. The overall goal 

of this thesis work to design a software that can manage and execute large number of inter-

dependent subtasks with minimal user intervention while reliably predicting lattice thermal 

conductivities. Specifically, the following objectives are targeted, listed below: 

• Design and develop a computational workflow software to predict lattice thermal 

conductivity using first-principles methods.  

• Validate this workflow by calculating lattice thermal conductivities of multiple oxide 

systems using this workflow and comparing the calculated results with experimental values.  

• Evaluate the performance of the workflow and identify directions for future improvement. 
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Chapter 2: Literature Review 

2.1. Overview of Thermal Barrier Coatings (TBC) 

2.1.1. History of TBCs 

During World War II, turbojet powered aircrafts were developed and adopted by the 

military of multiple nations 15. The demand of higher engine operating temperature has emerged 

since then. The first TBC applied in aerospace industry was developed in the 1950s by the National 

Advisory Committee for Aeronautics (NACA) and the National Bureau of Standards (NBS) 16. 

Frit enamels were used as the topcoat of this TBC system, and were applied to the substrate by 

spraying followed by drying and firing 17. In the 1960s, Pratt & Whitney introduced TBC system 

with innovative flame-sprayed Ni-Al bond coat, which marked the starting point of TBC systems 

with multi-layered structure 18. During this stage, the topcoat material was mainly magnesia-

stabilized zirconia (MSZ), which was susceptible to destabilization and has relatively low limit of 

temperature. In the 1980s, TBC performance was significantly improved by replacing the topcoat 

materials with yttria-stabilized zirconia (YSZ), which has much better durability and thermal 

resistance 18. Specifically, the partially stabilized zirconia with ~7 wt.% yttria (7YSZ), with high 

resistance against thermal cycling than the fully stabilized counterpart, has become the industry 

standard for the following decades 19.  

2.1.2. Structure of TBCs 

Most commonly, a modern TBC system consists of three layers of different materials on 

the surface of substrate: bond coat, thermally grown oxide (TGO), and topcoat. Notably, the 

substrate is sometimes considered as part of a TBC system since its properties affect the selection 

of the other layers materials. The bond coat serves two major purposes: to strengthen the adhesion 

between ceramic topcoat and metallic substrate (by reducing the thermal expansion mismatch 
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between these layers), and to provide resistance against oxidation of the substrate 20. The typical 

material system of the bond coat is MCrAlY, where M can be Ni and/or Co. The presence of Ni 

and/or Co ensures the high-temperature mechanical properties, similar to that in superalloys. 

Addition of Co can further improve hot corrosion resistance 21. The presence of Al and Cr mainly 

serves as a reservoir that replenishes the TGO scale 22. The presence of Y improves the mechanical 

strength of TGO scale at high-temperature, as well as reduces the growth rate of TGO scale 23. 

During operation, oxidation of the bond coat results in formation of TGO, which typically presents 

in the form of α-Al2O3 scale, between the bond coat and the topcoat. The growth of TGO leads to 

several detrimental effects including crack initiation, increase in induced strain, and spallation of 

the ceramic topcoat 24,25. However, with carefully engineered bond coat, the dense and defect-free 

α-Al2O3 formed at slow growth rate can act as a oxygen diffusion barrier due to its extremely low 

oxygen ionic diffusivity, thus provide further protection to the substrate 26. The outermost layer of 

a TBC system is the topcoat. The topcoat provides excellent thermal insulation and significantly 

reduces the surface temperature of the substrate. The material systems of the topcoat must have 

minimal thermal conductivity and optimal thermal expansion coefficient. Usually, the topcoat is 

manufactured to be porous to further improve its thermal insulation performance.  

2.1.3. Manufacturing Techniques for TBCs 

The microstructure of coatings is directly influenced by manufacturing technique, which 

has a substantial impact on TBC performance. Highly porous microstructure can lead to more than 

60% reduction in effective thermal conductivity of 7 wt.% yttria stabilized zirconia 27. TBCs can 

be deposited on substrates using various techniques including atmospheric plasma spray, electron 

beam physical vapor deposition, and high-velocity oxygen fuel. Below several common techniques 

are described in detail.  
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a. Atmospheric Plasma Spray (APS) 

APS is one of the most common deposition methods of TBCs. In essence, the coating 

material is melted while passing through a high-temperature plasma and is accelerated to the 

substrate surface at high velocity. The plasma is generated between a tungsten cathode rod and a 

water-cooled copper anode nozzle with flowing inert gas. High-frequency AC discharge is used to 

start the high intensity electric arc, which heats the inert gas to plasma temperature. DC power is 

then applied to maintain the following operation. The plasma expands and accelerates to form a 

jet exiting the nozzle at high velocity. Coating material powder particles are then injected into the 

plasma and heated to molten state. These molten powder particles are accelerated through the 

plasma, and strike the substrate, forming “splats” on the substrate surface. Eventually these splats 

solidify rapidly and form the coating. 20,25 

Since APS technique uses high intensity electric arc as the heat source, it is able to reach 

extremely high temperature (above 10,000K) and allows deposition of many materials and better 

composition control. Plasma spraying process can also achieve high deposition rate at relatively 

low cost 25. The microstructure of coating deposited by APS contains many inter-splat pores, which 

are oriented in parallel with to the substrate surface. These inter-splat pores provide effective 

thermal impedance, which results in lower through-thickness thermal conductivity of APS TBCs 

28. However, they also act as crack initiators and lead to segmentation at elevated temperature. 

Eventually, this characteristic results in a poor thermal cycle/shock resistance 29–31. In addition, 

coating deposited by APS is subjected to oxidation due to operation under atmospheric condition. 

This issue can be neglected when the coating material is oxides (e.g. ceramic topcoat) or when 

oxide contamination is tolerable 32.  
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APS is commonly used to apply top coat on the components that work under less harsh 

mechanical conditions, such as combustion chamber, fuel vaporizer, and other static components 

32. In addition, bond coat can be applied using plasma spraying technique under low air pressure 

(LPPS) or vacuum (VPS) 24.  

b. Electron Beam Physical Vapor Deposition (EB-PVD) 

In EB-PVD, the coating material is vaporized by a high-intensity electron beam and 

solidifies upon reaching the substrate surface. One or more electron guns generate the high-

intensity electron beam, direct and focus electron beam to the ingot of coating material. In some 

situation, the ingot is held by a moving device and can be rotated and fed to maintain the position 

of vaporizing surface. The deposition chamber must maintain high vacuum condition to ensure 

free passage for the electron beam and gaseous coating material. 33 

The coating deposited by EB-PVD exhibits single-crystal columnar microstructure. 

Intercolumnar pores are also present in the coating, aligned perpendicular to the substrate surface. 

This property renders EB-PVD TBCs high strain tolerance, and reduced thermal expansion 

mismatch, thus improved resistance to spallation. Additionally, EB-PVD TBCs are reported to 

have strong mechanical adhesion, high surface smoothness, and excellent thermal shock resistance 

during thermal cycling 25,34. However, this columnar morphology characteristic also results in 

significantly higher thermal conductivity. Top coats deposited using EB-PVD have approximately 

80% higher effective thermal conductivity than those deposited using APS 28.  

EB-PVD technique demands high equipment cost and operation cost due to the complexity 

of electron guns and the requirement of high-vacuum in deposition chamber. Also, EB-PVD has 

relatively low evaporation efficiency and low deposition rate since long source-to-substrate 

distance is required to protect substrate from overheating 34.  
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EB-PVD is often used to apply topcoat on the critical components such as high-pressure 

turbine blades, where sufficient strain tolerance is more important than low thermal conductivity 

18. Improved EB-PVD variants have been developed to overcome the aforementioned 

disadvantages. Hass et al. developed directed vapor deposition (DVD) which uses a jet of inert 

carrier gas to guide vaporized coating materials towards the substrate 34. The electron gun used 

was modified to work under low-vacuum condition (10-3 – 10 Torr) which is much easier and 

cheaper to maintain than the high-vacuum condition (10-4 – 10-8 Torr) required by conventional 

EB-PVD 35,36. EB-DVD technique demonstrated remarkably greater materials utilization 

efficiency and deposition rate 36. To further reduce the thermal conductivity of topcoat while 

maintaining sufficient strain tolerance, a new technique using EB-DVD was later developed to 

deposit coatings with zig-zag shaped columnar morphology 37. The zig-zag shaped pores reduce 

the thermal conductivity to a similar level as coatings deposited by APS 38.  

c. High-Velocity Oxygen Fuel (HVOF) 

High-velocity oxygen fuel, usually referred to as HVOF, is a relatively new thermal spray 

coating technique. It shares many similarities with APS. In HVOF, oxygen and fuel are 

continuously fed into the combustion chamber in a water-cooled nozzle. The oxygen-fuel mixture 

combusts to produce high-velocity and high-temperature (up to 3000°C) stream. Coating material 

powders are fed into the combustion chamber by inert carrier gas, heated to molten or semi-molten 

state and sprayed to substrate surface at supersonic velocity. 25 

Due to high spraying velocity, HVOF coating exhibits high density and decent adhesion. 

It is also reported that HVOF coating has fewer microcracks and thus provides better passivation 

against corrosion 39. Such properties make HVOF a suitable technique for bond coat deposition. 

Since the maximum temperature in HVOF is lower than that in APS due to the fuel-oxygen 
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combustion limitation, coating material powders must be ultra-fine and have narrow size 

distribution. Coarse powders lead to deposition of insufficiently melted particles, which is 

detrimental to the surface finish and structural properties of the coating layer. Particles finer than 

the desirable size range may degrade before reaching the substrate surface. 40 

Additionally, HVOF inflict thermal stress on the substrate due to high temperature gradient 

during spraying. This effect limits the application of HVOF. However, it is less detrimental for 

applying bond coat on superalloy substrate. 41 

2.1.4. TBC Design Criteria 

TBCs are complex systems that operate under extreme environments. To guarantee that the 

TBC system achieves the expected performance, a variety of factors must be considered while 

selecting materials as TBC components. Below several key factors considered in the design of 

TBCs are elaborated.  

a. Thermal Conductivity of Top Coat 

The most obvious purpose of TBC materials is to provide heat insulation to protect the 

metallic substrate from the hot gas steam which has temperature may exceed the melting point of 

most superalloys. Therefore, a low thermal conductivity is a necessity for any candidate TBC 

material to provide adequate reduction in the substrate surface temperature.  

At microscopic scale, to reduce the thermal conductivity of TBC system, the intrinsic 

thermal conductivity of the topcoat material must be reduced. In general, this can be achieved by 

reducing the phonon group velocity and increasing anharmonicity of the interatomic bonds.  

The group velocity of acoustic phonon is approximately √𝐸/𝜌, where 𝐸 is the bulk elastic 

modulus which reflect s the strength of interatomic bonds, and 𝜌 is the density of the material 42. 

This equation provides a selection guideline that low intrinsic thermal conductivity can be found 
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in materials with smaller elastic modulus and larger density. However, materials with weak 

interatomic bonds tend to have low melting point, which is unfavorable for TBC application. One 

approach to resolve this deadly issue is to increase the mass contrast of compositional elements 

and the complexity of the primitive cells, instead of directly weakening the interatomic bonds 43. 

To increase anharmonicity of the interatomic bonds, we may look for material systems with 

open-frameworks in crystal structures. Some example materials include Si-Ge clathrates, filled 

skutterudites, and 𝛽-pyrochlore oxides 44–46. Such material systems have very weak interatomic 

bonds between host atoms and guest atoms inside of the open-framework, and thus exhibit high 

anharmonicity.  

Moreover, the thermal conductivity of a TBC system can be further reduced by introducing 

point defects in the lattice structure and refining grains to increase grain boundary density 47. Both 

approaches provide extra phonon scattering processes, and hence reduce thermal conductivity. 

Macroscopically, porosity can be introduced by altering the deposition techniques, as described in 

the manufacturing techniques section, and will also reduce the thermal conductivity of the TBC 

system.  

b. Thermal Expansion Mismatch 

The difference in the coefficient of thermal expansion (CTE) between different coating 

layers is a critical factor to consider when designing TBC systems. Usually, the ceramic topcoat 

has much lower CTE than the metallic substrate. In a typical TBC system, the CTE of 7YSZ 

topcoat, NiCoCrAlY bond coat, and IN738 substrate are 10.7×10-6K-1, 17.5×10-6K-1, and 16×10-

6K-1 respectively 48. Mismatch of CTE leads to thermal stress near the interface between layers, 

which in long term initiates cracks and accelerate crack propagation.  
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The failure behavior due to CTE mismatch of TBC is usually studied by conducting 

thermal shock test, also known as burner rig test 49. During burner rig test, TBC is tested with 

higher heating and cooling rate, but with shorter holding time in the high-temperature condition. 

Such test condition results in negligible TGO growth, thus allows more focused investigation on 

the failure due to CTE mismatch.  

The risk of CTE mismatch may be mitigated via either intrinsic or extrinsic methods. 

Intrinsically, designing topcoat ceramic materials with higher CTE that matches the bond coat and 

substrate properties would definitely be effective, but is challenging due to the nature of ceramic 

materials. Extrinsically, and more commonly, fabrication techniques can be controlled to increase 

the porosity of the topcoat layer, reducing the global stiffness of the topcoat and hence improve 

the strain tolerance.  

c. Top coat Sintering 

Under elevated temperature below the melting point of the topcoat, sintering occurs in the 

topcoat layer. It is a microstructure transformation with closing of pores and micro-cracks. 

Sintering process results in densification of coating layer and increase in thermal conductivity. The 

densification effect leads to increase in the global elastic modulus (stiffness) of the topcoat, thus 

reduces the strain tolerance and makes the system more susceptible to failure due to CTE mismatch. 

The increase in thermal conductivity is clearly an unfavorable effect, as it indicates the 

deterioration of the most critical functionality of the topcoat. With increased thermal conductivity, 

the topcoat provides insufficient thermal shielding for the metallic substrate, which could lead to 

severe deformation of the entire component.  
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d. CMAS Infiltration 

During operation of aerospace gas turbines, it is almost impossible to avoid intake of 

silicate particles existing in suspended dust, sand, and even volcanic ash cloud. These silicate 

particles mainly consist of calcium-magnesium-aluminosilicate (CMAS). At elevated temperature 

above 1200°C, molten CMAS wets the topcoat surface upon contact, and infiltrates into the 

porosity of the topcoat layer 50. The topcoat with columnar as-fabricate porosities is more 

susceptible to CMAS penetration along the perpendicular pores. Mechanically, such infiltration 

stiffens the topcoat layer, which along with CTE mismatch between CMAS and topcoat material, 

leads to reduction in strain tolerance and coat delamination through operations. CMAS infiltration 

also densifies the topcoat layer, causes increase in thermal conductivity and degradation of TBC 

insulation effectiveness. If CAMS infiltration reaches the TGO layer, chemical interaction between 

CMAS and TGO may promote creep cavitation in the bond coat and lead to crack propagation in 

the metallic substrate.  

In particular, when 7YSZ topcoat is in contact with CMAS under temperature above the 

CMAS melting point, the tetragonal prime (t’) phase dissolves in molten CMAS, and reprecipitate 

in form of either yttria-enriched or yttria-depleted phases 51. The yttria-depleted phase undergoes 

destructive phase transformation upon cooling.  

Current methods to mitigate CMAS infiltration issue mainly focus on chemical 

modification of the topcoat system. To obtain better resistance against CMAS, the topcoat need to 

be designed to react with CMAS upon contact, to form a stable crystalline layer which impedes 

further infiltration, while the reaction must be kinetically more competitive than the infiltration 

process 50.  
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e. Oxidation of Bond coat 

During prolonged operation under elevated temperature, oxygen atoms diffuse through the 

topcoat and oxidize the metallic bond coat. The oxidation reaction occurs at the interface between 

the topcoat and the bond coat, yields continuous layer of oxide scale, and leads to the growth of 

TGO layer. As TGO grows, the transformation from metal to oxide causes significant density 

reduction and volume expansion, and magnifies the effect of CTE mismatch between the TGO and 

the topcoat. The volume expansion and CTE mismatch consequently leads to residual stress build-

up in the TGO layer. Once the TGO growth reaches the critical thickness, spallation begins to 

occur in the TGO layer, causing the breakaway of both the TGO and topcoat layers.  

Before TGO growth reaches the critical thickness, failure may occur due to chemical 

reactions 52. During exposure to elevated temperature, the aluminum content in the bond coat drops. 

Depletion of aluminum in the bond coat causes oxidation of the Ni, Cr, Co elements in the bond 

coat by reacting with existing alumina scale in the TGO. The Ni, Cr, Co enriched oxide forms a 

porous layer of with increasing pore size with time, replacing the protective alumina scale. 

Consequently, this aluminum depleted porous oxide has poor mechanical strength and is 

susceptible to spallation. In addition, such layer is inadequate as an oxygen barrier, allowing 

oxygen atoms diffuse into the substrate. This process is also known as chemical failure. 
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f. Corrosion by Impurities 

Vanadium exists in the fuel used by gas turbines as a detrimental impurity. During 

combustion, vanadium reacts with oxygen to form vanadium pentoxide (V2O5). Presence of 

vanadium is especially detrimental for TBC systems using YSZ as the topcoat material 53. Upon 

contact, vanadium pentoxide rapidly reacts with yttria in the YSZ system to produce yttrium 

vanadate through the following reaction: 

 𝑉2𝑂5 + 𝑌2𝑂3 → 2𝑌𝑉𝑂4 (1) 

This reaction causes depletion of yttria in the YSZ system, and consequently leads to 

destabilization and destructive tetragonal-to-monoclinic phase transformation upon cooling.  

A more uncommon TBC system using calcium silicate as the topcoat material has been 

proven to have better resistance against vanadium corrosion. However it is susceptible to corrosion 

caused by sulfur, which is another common impurity existing in industrial fuels 53.  
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2.2. Materials Systems for TBC Application 

2.2.1. 7 wt.% Yttria stabilized zirconia (7YSZ) 

Partially stabilized zirconia with ~7 wt.% yttria (7YSZ), ever since its adoption in the 1980s, 

has become the industrial standard for TBCs. Pure zirconia can exist in three phases: monoclinic 

phase stable at temperature lower than 1170°C, tetragonal phase stable from 1170°C to 2370°C, 

and cubic phase from 2370°C to the melting point (2680°C) 54. During cooling from melting 

temperature, pure zirconia is susceptible to cracking induced by the tetragonal-to-monoclinic 

phase transformation which involves a 3-5% volume expansion 55,56. This property makes pure 

zirconia extremely difficult to fabricate, and also not practical for TBC applications where the 

material must withstand numerous of thermal cycle.  

To improve the thermal cycle resistance of zirconia, additives such as calcia (CaO), 

magnesia (MgO), and yttria (Y2O3) were added in attempt to stabilize the high-temperature phases. 

However, zirconia-calcia and zirconia-magnesia systems are proven to be not viable. Calcia and 

magnesia were added for stabilizing the high-temperature cubic phase, but the effect was limited. 

The cubic phase becomes unstable below about 1140°C for zirconia-calcia, and below 1400°C for 

zirconia magnesia 57. Zirconia-yttria system on the other hand, showed excellent performance 

superior to zirconia-calcia and zirconia-magnesia systems. While stabilizing high-temperature 

cubic phase, yttria additive also helps forming a non-transformable tetragonal prime (t’) phase 58. 

Initially, the material system was designed to contain 12-20 wt.% of yttria to fully stabilize the 

cubic phase. It was later proven experimentally by Stecura that zirconia partially stabilized by 6-8 

wt.% of yttria achieves optimal resistance to thermal cycle 59. Such zirconia system partially 

stabilized with 6-8 wt.% of yttria was then named 7YSZ and was widely used since.  
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In order to achieve lower thermal conductivity with YSZ systems, research was conducted 

to study the effect of doping elements, commonly rare-earth (RE) elements. By adding 1 mol% of 

Yb2O3 and 1 mol% of Gd2O3 to the 7YSZ system, replacing part of the yttria composition, the 

result coating showed significant improvement, with thermal conductivity reduced from 1.45 

W/m-K to 1.2 W/m-K at 1316°C. The doped YSZ also showed better sintering resistance, with 

ratio of thermal conductivity increment after 20 hours of operation reduced from 52% to 37%. 

These results shows improved microstructural and chemical stability of the YSZ doped with RE 

elements. 60 

Compared with the previous generations of TBC materials, 7YSZ has lower thermal 

conductivity, and higher thermal expansion coefficient which reduces thermal expansion 

mismatch 61. It also has better thermo-chemical compatibility with TGO. In addition, the t’ phase 

existing in 7YSZ provides decent fracture toughness of about 2 MPa√𝑚 due to the ferroelastic 

toughening mechanism 62,63.  

Drawbacks of 7YSZ as TBC materials include limited operation temperature, high 

sintering rate, susceptibility to CMAS degradation, and inadequate thermal conductivity. At 

temperature above 1200°C, the metastable t’ phase begins to decompose into yttria enriched cubic 

phases and yttria depleted tetragonal phases. During cooling to room temperature, while the yttria 

enriched phases remain in cubic or transform to t’ phases, the yttria depleted phases, similar to 

pure zirconia, are subject to destructive tetragonal-to-monoclinic phase transformation 64. The 

sintering of 7YSZ starts at 800-1000°C, and reaches peak rate at 1150-1280°C 65. Such sintering 

process occurs under operating condition, and results in reduction in porosity and ultimately 

increase in thermal conductivity. Upon contact with CMAS during operation, 7YSZ can be easily 

infiltrated by CMAS, leading to phase decomposition and delamination during thermal cycling 66. 
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Finally, despite having relatively low thermal conductivity at the beginning of its era, 7YSZ is 

currently showing inadequately low thermal conductivity while the industry is pursuing higher 

operating temperature.  

2.2.2. Pyrochlore Ceramic Oxides 

One promising candidate material system to replace 7YSZ for applications operate at above 

1200°C is material with pyrochlore structure A2B2O7 where A and B are 3+ and 4+ ions 

respectively. Specifically, rare-earth zirconate pyrochlores, with chemical formula RE2Zr2O7, are 

the most widely studied. In material systems with chemical formula A2B2O7, the phase stability is 

highly dependent on the ratio of ionic radii of cations A to B: 𝑟(𝐴3+): 𝑟(𝐵4+). It is found that for 

the systems with 𝑟(𝐴3+): 𝑟(𝐵4+) > 1.42 , the cubic pyrochlore phase is stable, whereas the 

systems with smaller ratio of ionic radii are expected to have a defect fluorite phase at elevated 

temperature 67.  
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Figure 1: Binary phase diagram of La2O3-ZrO2, “P” and “C1” indicate the pyrochlore and fluorite phases 

respectively. Temperature unit in °C. 68 

As illustrated in Figure 1, a typical rare-earth zirconate system La2Zr2O7 can retain a stable 

cubic pyrochlore structure from room temperature up to its melting point at ~2300°C, exhibiting 

excellent high-temperature stability. In lanthanide series from La to Lu, the stability of the 

pyrochlore phase reduces as the ionic radius decreases. According to the calculated phase diagram 

42, systems with La, Pr, Nd, Sm, Eu and Gd have stable cubic pyrochlore phases at typical gas 

turbine operating temperature (~1300°C). System with RE elements from Tb to Lu, the high-

temperature stable phase is either the fluorite phase or mixture of fluorite phase and 𝛿-zircoate 

phase.  
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Among rare-earth zirconate pyrochlores, La2Zr2O7 and Gd2Zr2O7 are the most 

comprehensively studied. At 1000°C, La2Zr2O7 has thermal conductivity of 1.56 W/m-K, more 

than 20% lower than the thermal conductivity of YSZ (2.12 W/m-K) 69. The ionic conductivity of 

La2Zr2O7 is significantly lower than that of YSZ, makes it less oxygen-transparent, and hence a 

good barrier against oxygen diffusion to reduce TGO growth rate 70. Despite having lower melting 

temperature than YSZ, pyrochlores have low sintering activities, giving them stronger resistance 

against densification by sintering 71. In addition, Gd2Zr2O7 has been tested to have good resistance 

against CMAS infiltration, and the study of mechanism shows that this resistance is valid for the 

other rare-earth zirconate pyrochlores 72. Upon contact with CMAS, the zirconate dissolves into 

the molten CMAS, reacts to form crystalline apatite reaction layer, blocking the possible flow 

channels and impede further infiltration. Finally, the structure of cubic pyrochlore can be described 

as "a network structure of corner linked BO6 octahedra with the A atoms filling the interstices", 

thus both A-sites and B-sites can be substituted by impurity atoms, allowing further modification 

of thermal properties to the system 73. The effect of different substitute atoms is an excellent 

research subject where computational materials design can be applied. 

Currently the main drawback of rare-earth zirconate pyrochlores is the low CTE. The CTE 

of La2Zr2O7 is 9.1×10-6 K-1, which is much lower compared with 10.7×10-6 K-1 for YSZ, making 

it subject to more significant CTE mismatch and hence shorter lifetime 69,74. One approach to 

mitigate the CTE mismatch issue is to apply double-layer topcoat, with rare-earth zirconate 

pyrochlores on top of YSZ 75. In a double-layer topcoat, the pyrochlores provide major thermal 

insulation and resistance against sintering and CMAS, while YSZ acts as a buffer to reduce CTE 

mismatch between pyrochlores and bond coat.  
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2.2.3. Perovskite Ceramic Oxides 

Perovskite is a class of materials with chemical formula ABO3 that has corner-sharing 

octahedral crystal structure. It is able to form solid solution with many different ions including 

ions with large atomic mass 74. The properties of perovskite can be easily modified due to the 

ordering effect of cation in B-sites 76. Some zirconate perovskites have extremely high melting 

point such as SrZrO3 (3073K) and BaZrO3 (2963K) 69. However perovskites have significantly 

lower CTE than YSZ, and may undergo detrimental orthorhombic-to-pseudo-tetragonal phase 

transformation 69.  

2.2.4. High Entropy Ceramic Oxides 

In the very recent years, high entropy ceramics (HECs) has become an emerging class of 

materials that attracted many research interests. Although currently HECs do not have a 

standardized definition, they commonly refer to ceramic systems with five or more principle 

cations, where the ideal configuration entropy greater than 1.5𝑅 (𝑅 is the gas constant) per mol of 

cations 77. HECs have remarkably low thermal conductivity due to the strong phonon scattering 

effect created by mass and bond disorder 78. However, the compositional and configurational 

complexity of HECs demand intensive experiments and/or simulations to understand the 

mechanisms and to obtain predictive descriptors.  
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2.3. High-Throughput Computational Materials Screening 

With increasing complexity of the emerging classes of materials, HECs for example, 

traditional experimental techniques are showing inadequate efficiency. The design and exploration 

of these complex materials via conventional experimentation would require numerous parallel 

experimental studies of thousands of materials simultaneously, which is a daunting task. Even with 

conventional computational methods which allow running tasks in parallel, the execution and 

management of numerous subprocesses can still be overwhelming. Hence, further automation of 

computational methods is desired. By the combination of first-principles computation and 

automated workflow frameworks, high-throughput (HT) materials screening is made possible, 

where simulations of a large pool of material systems are generated, managed, and analyzed in 

parallel. In some definitions, in a HT materials screening process, the throughput of data produced 

is beyond the capability of the researcher’s direct intervention, and must be analyzed automatically 

79. Computational workflow frameworks, such as Atomate 80 and AFLOW 81, have been developed 

to conduct HT material screening by highly customizable workflows. In computational material 

design process, it is often required to specify different simulation parameters based on the material 

systems. These parameters can usually be determined automatically in a HT computational 

framework by performing convergence tests or with the help of other utilities. Furthermore, in HT 

material screening, the screening efficiency can be significantly improved with well-defined 

“descriptors” as criteria, which are empirical quantities connecting the calculated microscopic 

properties to the macroscopic properties of the materials 79,82. 
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2.4. Workflow in Computational Materials Science 

2.4.1. Workflow Overview 

One essential aspect of computational materials science is the efficiency of execution and 

management of computational subprocesses. In recent years, workflow emerges as a valuable tool 

to address such need. The term “workflow” refers to the sequence of operations where information 

is passed from one operation to another. In the field of computational materials science, a workflow 

consists of one or multiple computational subprocesses linked internally by pre-defined procedures 

to conduct a certain type of analysis of a material. Commonly, a workflow can be represented as a 

directed acyclic graph (DAG), in which the nodes represent the computational subprocesses 

involved and the edges represent the dependency relation between the subprocesses 83. In some 

cases where iteration is required by the application, workflows may have cycles with properly 

defined break conditions in the graph representation, making it a directed cyclic graph (DCG) 

instead of DAG 84.  

The most critical feature of a workflow is automation. A workflow that conducts and 

manages complex computational tasks with a high degree of automation can significantly reduce 

repetitive work and improve the efficiency of research. Ideally, user intervention is only required 

to specify input parameters at the beginning of the workflow, and to collect output results at the 

end of the workflow. Workflow with a high degree of automation also enables non-expert users to 

conduct high-throughput exploration of materials.  

Other recommended features of a modern workflow include but not limited to reusability, 

reproducibility, and well-designed data management strategy. To avoid reinventing utilities with 

similar functionality, a workflow should be as reusable as possible. A workflow with adequate 

reusability can be used to build higher-level workflows as a whole or provide modular 
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subprocesses to build other workflows. For example, since many computational materials studies 

require optimization of lattice structure, a robust structure optimization subprocess or workflow is 

guaranteed to improve reusability.  

In all fields of scientific research, reproducibility has great importance as it indicates the 

reliability of the study. By nature, computational studies can be more reproducible since digital 

data can be trivially cloned. To achieve this, a workflow needs to store information of the input 

parameters specified, the methodology used, the intermediate results obtained from the 

subprocesses, and even the environment in which the subprocesses were executed.  

In order to achieve a high degree of automation for more complex scenarios, the workflow 

needs to be dynamic. A dynamic workflow is able to modify the parameters and dependencies of 

its existing subprocesses, add new subprocesses to the workflow, and remove existing 

subprocesses from the workflow, depending on the output of certain subprocesses. For example, a 

subprocess in a workflow instance created using FireWorks 85 returns an “FWAction” upon its 

completion, which can store data, pass data to the next subprocess, add new subprocesses etc. This 

feature is particularly important for thermal conductivity computational workflows since the 

output structure from the relaxation subprocess determines the number and the input parameters 

of new static subprocesses to be added.  

2.4.2. Automation and Transparency 

Most commonly, computations are executed on high-performance computer (HPC) 

clusters or other platforms with greater computing power instead of personal devices. Operations 

required in the life cycle of a computational workflow, including file preparation, job submission 

to queue managers, and output retrieval and parsing, are repetitive and tedious when executed 

manually on a remote platform. Many utilities have been developed with Application 
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Programming Interfaces (APIs) to automate and simplify these remote management tasks. 

Pymatgen (Python Materials Genomics) developed by Materials Project provides APIs for input 

files generation and output files parsing accustomed to various quantum calculation engines 86. 

FireWorks provides adapters to various queueing managers including but not limited to SLURM, 

PBS, and Oracle Grid Engine to allocate resources and execute workflows 85. Specifically for 

Vienna ab initio simulation package (VASP) 87, the first-principle simulation software used in this 

work, a variety of toolkits have been developed to assist in preparing input files and parsing output 

files, such as VASPKIT 88 and qvasp 89.  

Another feature to improve the degree of automation of a workflow is a high-level interface 

that frees researchers from learning new codes and allows them to focus on the research objectives. 

When designing a workflow with a high-level interface, it is important to discuss the transparency 

of the interface 90. By definition, in a software with a transparent interface, the details of the 

implementation are invisible (transparent) to users, and the number of input parameters required 

from the user is minimized. Most internal parameters either have default values or are determined 

automatically by the workflow. Oftentimes, such workflow with a highly transparent interface can 

be described as a generic turnkey solution. In the case of a workflow for computational materials 

science with a transparent interface, to analyze the properties of a material system, the user only 

needs to specify the initial lattice structure of the material system and the type of calculations to 

run. In some cases, users can set a general degree of precision without specifying the numeric 

values for the computational parameters. A workflow with a transparent interface can easily be 

used by non-expert users with minimal coding background, after going through simple tutorials or 

examples. Despite the simplicity and convenience, having a transparent interface may not always 

be the optimal solution. In a workflow, some input parameters of subprocesses cannot be 
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automatically determined, especially when they are dependent on how and where the workflow is 

executed 90. For example, when the subprocesses are executed on a HPC platform, a workflow 

with a highly transparent interface is unable to easily determine domain-specific settings, which 

depend on the environment of the HPC platform, the type of queueing manager, and the type of 

quantum engine. Such high degree of automation binds a workflow to the specific environment on 

where it is developed. Another drawback of a highly transparent interface is that it does not allow 

expert users to modify or override the inputs. Even if all the inputs could be automatically 

determined, an expert user with knowledge beyond the “auto-input algorithm” may still want to 

override some of them. For example, instead of simply predicting a material property, an expert 

user may want to conduct convergence tests regarding one of the hidden parameters in order to 

improve the default input set.  

In contrast, an interface with less transparency is described as being opaque. In a fully 

opaque interface, all the input parameters of subprocesses are exposed to the user. With such 

exposure, users are able to customize and override each and every input of any subprocesses in a 

workflow. It allows users to inspect and modify input parameters before and during the execution 

of a workflow, no matter if they can be automatically determined. However, a workflow with an 

opaque interface is usually not friendly to non-expert users, as non-expert users can be 

overwhelmed by a large number of input parameters.  

A balanced solution is to design workflow with an optionally transparent interface. To 

achieve this goal, a workflow must: 1) expose all the input parameters of its subprocesses so that 

they can be overridden when needed, and 2) specify reasonable default values for most input 

parameters so that users can interact with a simple and straightforward interface that requires 

minimal amount of input parameters. While non-expert users enjoy the simplicity of a transparent 
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interface, expert users can still override the default values of input parameters as of an opaque 

interface. Hubert et al. have proposed a further improved solution that is to use an input generator 

90, which is a function that generates the full set of input parameters required by a workflow based 

on a minimal set of essential parameters. This approach enables expert users to inspect and even 

modify the full set of input parameters before feeding them into the workflow.  

2.4.3. Reusability and Reproducibility 

As previously mentionedan important characteristic of a workflow that is often desired is 

its reusability, which represents the potential of using the workflow in other tasks of similar nature 

design, workflows can be built with existing lower-level workflows and subprocesses of existing 

workflows.  

Designing workflows with great reusability can significantly reduce repetitive works, and 

hence improve the efficiency of materials exploration. One necessary design principle to achieve 

high reusability is modularity (in contrast to an “all-in-one” solution). If a subprocess in a 

workflow is frequently used by other types of workflows, then it should be coded separately from 

the main workflow as a module. With atomized subprocess modules as building blocks, developers 

can then easily construct workflows for different purposes by importing and connecting relevant 

modules. The modular design also significantly reduces the length of code required for workflows, 

improves readability, and helps achieve a high-level interface. Additionally, the modular design 

of open-source workflows enables developers to contribute independently to the repository. With 

clear and comprehensive documentation, users can easily share new modules, and incorporate 

modules developed by others in their own workflows. For example, based on existing components 

in Atomate library 80, higher-level workflows have been developed for X-ray absorption spectra 

calculation 91, ferroelectrics exploration 92, and vacancy formation energy calculation 93. 
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In order to reproduce computational results, it is necessary for a workflow to store the 

information of input parameters along with many other computational configurations, that is, to 

record data provenance. Data provenance means that a workflow should store not only the input 

parameters and output results of the workflow itself, but also the intermediate inputs and outputs 

of its subprocesses 90. For example, when the lattice thermal conductivity of a material is calculated 

from an un-optimized unit cell, the optimized unit cell structure and displaced supercell structures 

should be accessible to the user. This makes the computational result both reproducible and 

intelligible. However, complete data provenance is not always necessary, especially for complex 

workflows that produce large provenance graphs. In practice, users should be able to investigate 

data provenance at different granularity levels, i.e., scoped provenance. On the occasion where 

ultimate reproducibility is required, one could store the reference virtual machines of the 

environment where workflows are executed 94.  

2.4.4. Data Management 

Manually running computational procedures involves uploading, downloading files 

to/from remote directories, and parsing output files, which are labor-intensive and prone to error. 

In order to ensure reproducibility and reduce the error due to manual operation, the coupling of 

workflow automation and data storage must be tight. For the high-throughput computational 

exploration of materials, it is exceptionally important to maintain the quality, accessibility, and 

reproducibility of a large amount of data.  

To couple automated computational workflow and data storage, it is critical to incorporate 

database solutions into the workflow infrastructure. Effective database solution enables sharing of 

data among collaborators to avoid running repetitive computational workflows, improves the 

efficiency of data analysis, and accelerates the exploration of materials.  
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When selecting a database to couple with an automated workflow, one should carefully 

choose the type of database. There are mainly 2 types of databases: relational and non-relational.  

Relational database, also known as Structured Query Language (SQL) database, stores data 

in tables where rows are the entries and columns are the attributes of entries. For decades, relational 

databases have been the most widely used type of database. A strict schema is required in advance 

to create a relational database. The schema of a relational database ensures data consistency. Each 

table in a relational database will have a column with unique values, which is called a primary key. 

When the primary key of one table is referenced by a column in another table, the column in the 

second table is called a foreign key. The creation of a foreign key establishes and enforces a link 

between two tables. This primary key and foreign key combination ensures data accuracy by 

preventing duplicate information. However, the rigidity of the database schema makes it very 

complex to modify the structure of data, and hence results in poor flexibility. Additionally, the 

querying operation in relational database either requires the user to have knowledge of the schema 

format and SQL syntax, or requires the developer to implement wrapper libraries for simplification.  

Non-relational database, also known as NoSQL (Not only SQL) database, can be further 

divided into multiple sub-categories including but not limited to document database, key-value 

database, and graph database. Document database, which is the most commonly used non-

relational database, stores data in documents in JavaScript Object Notation (JSON) format. JSON 

document is very similar to a dictionary object in Python, which contains key-value pairs of data. 

Non-relational database requires no strict schema, making it highly flexible and easier to design. 

Moreover, the querying syntax of non-relational database is easier than that of relational database 

for non-expert researchers, who often have more experience with Python than SQL.  
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Ultimately, when an automated computational workflow is coupled with a well-designed 

database solution and standardized data format, it is made possible to construct centralized public 

databases. Some examples are: Materials Project 95, ICSD 96, and TE Design Lab 82. 

2.4.5. Workflow for TBC Exploration 

Taking the advantage of automated computational workflow frameworks, toolkits have 

been developed to explore and study materials in various application fields. For example, in the 

exploration of topological insulators, an automated workflow developed based on AFLOW 97 

framework was used to identify 28 potential topological insulators, some hardly discoverable 

without the high-through method, from the entire aflowlib.org repository 98. In the exploration of 

2D materials, an automated workflow developed based on AiiDA 94 framework was used to 

identify 56 easily exfoliable magnetic materials from 108,423 unique, experimentally known 3D 

compounds 99. Furthermore, a preset workflow provided by Atomate 80 framework was used to 

identify 126 new ferroelectric materials from over 67,000 candidate materials 92.  

The exploration of TBC materials involves the investigation of many material properties 

including thermal conductivity, thermal expansion coefficient, and relevant mechanical properties. 

To efficiently select promising TBC material candidates from a large pool of potential material 

systems, it is critical to develop automated workflows to predict each of the properties. In this 

work, we emphasize the development of an automated workflow for the prediction of lattice 

thermal conductivity, which is the most critical property of top coat materials.   

In the community of computational materials science, open-sourced software packages 

have been developed for the prediction of various material properties. For first-principles lattice 

thermal conductivity calculations, some of the most widely used software packages are Phonopy 

100, Phono3py 101, and ShengBTE 102. In recent years, there are toolkits developed utilizing machine 
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learning (without first-principle calculations) to predict lattice thermal conductivities such as 

hiPhive 103,104. Usually, these lattice thermal conductivity specialized utilities provide APIs for 

generations of displaced supercell configurations, and for extraction of required information from 

first-principle calculation output files. However, the degree of automation provided by these APIs 

is still insufficient for HT screening of top coat material candidates, thus advanced frameworks are 

required to connect them together.  

In recent years, many frameworks and utilities have also been developed to facilitate 

automated computational workflows. Pymatgen 86 provides utilities to generate sets of VASP input 

files and to parse and plot phonon dispersion and density of states (DOS). FireWorks 85 provides 

a robust framework to generate, monitor, and control the computational workflow. Atomate 80, 

built on top of FireWorks, while implementing a higher-level interface to manage workflows, 

provides “standard” workflow presets (e.g. structural relaxation, static calculation, band structure 

calculation, elastic constant calculation, Gibbs free energy calculation) which can be used as 

building blocks for new workflows. Some other frameworks such as AiiDA 94, MPInterfaces 105, 

ASE 106, and AFLOWπ 107 also have the potential to be used to develop automated workflows.  

Specifically for the computations of lattice thermal conductivity using the finite 

displacement method (which will be discussed in Chapter 3.2.4), the major portion of subprocesses 

should be generated based on the output of other subprocesses. Therefore, the framework adopted 

for such calculations must be able to create dynamic workflows. Additionally, the dynamical 

workflow also enables automated screening of materials using complex conditions, which could 

greatly reduce the computational cost in HT screening projects by removing disqualified candidate 

systems with from the pool.  
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Despite that efforts have been made to develop first-principles workflows for automated 

lattice thermal conductivity computations 108,109, there is no open-sourced software package that 

automates the full process of the exploration of TBC materials at the time of writing. Most studies 

in this field were still conducted with low degree of automation, thus raising the demand for further 

automation which this work aims to fulfill.   
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Chapter 3: Methodology 

Traditionally, the development of TBC materials requires large number of trial-and-error 

experiments. These experimental methods usually involve of preparation of specimens and 

characterization of microstructures, thermal and mechanical properties. Such methodology is very 

time consuming and requires careful operation by qualified personnel, hence its limited scalability. 

In addition, experimental methods provide little knowledge on the underlying mechanisms which 

lead to TBC materials properties.  

With the growing computational capability, it is made possible to explore new TBC 

materials using computer simulations. As have been demonstrated by many studies 110–113, first-

principles density functional theory (DFT) calculations combining anharmonic lattice dynamics 

have been shown to be an effective way to evaluate thermal conductivities of various material 

systems with reasonable accuracy. This computational route, with its ability to resolve atomic 

details and reveal fundamental physical origins, also makes it possible to investigate the 

mechanisms and factors controlling lattice thermal conductivities, and thus to develop physics-

based guidelines for future TBC materials design. 

3.1. First-Principles Density Functional Theory Calculations 

First-principles or ab initio method, since its birth in the 1990s, has become one of the most 

important numerical modelling techniques at atomistic scale. As the names imply, only the most 

fundamental properties (physical constants), instead of (or with least) empirical assumptions, are 

required for the calculations. This approach evaluates electronic-structure using quantum 

mechanical principles, and thus predicts the interaction of atoms and electrons in a system, which 

ultimately derives the macroscopic properties of interest. 114 
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First-principles method is all about solving the many-body Schrödinger equation (SE), 

which in the time-independent, non-relativistic, Born-Oppenheimer approximation is expressed as: 

 �̂�𝜓(𝑟1, 𝑟2, … , 𝑟𝑁) = 𝐸𝜓(𝑟1, 𝑟2, … , 𝑟𝑁) , (2) 

where the Hamiltonian operator �̂�  consists of three terms: the kinetic energy �̂�, the electron-

electron interaction �̂�, and the external potential �̂�. In computational materials study, the external 

potential is merely the interaction between electrons and nuclei. These three terms are expressed 

as: 

 

�̂� = −
1

2
∑ ∇𝑖

2

𝑁𝑒

𝑖

 , (3) 

 

�̂� = ∑
1

|𝑟𝑖 − 𝑟𝑗|

𝑁𝑒

𝑖<𝑗

 , (4) 

 

�̂� = − ∑ ∑
𝑍𝑘

|𝑟𝑖 − 𝑅𝑘|

𝑁𝑎𝑡

𝑘

𝑁𝑒

𝑖

 , (5) 

where 𝑁𝑒 represents the number of electrons, 𝑁𝑎𝑡 represents the number of atoms, 𝑟𝑖 represents 

the spatial coordinate of electron 𝑖, and 𝑍𝑘 represents the charge on nucleus 𝑘 at location 𝑅𝑘.  

In order to obtain the ground state configuration, one need to solve the SE by iteratively 

altering the wave function 𝜓 to find the configuration that minimize the total energy 𝐸. The exact 

solution to SE is usually not obtainable except for a few extremely simple systems such as 

hydrogen atom. Approximation methods including Hartree-Fock (HF) 115, perturbation theory 116, 

and configuration interaction 117, all using wave function to describe electrons, are too 

computationally expensive to be employed for large systems. Currently the most important and 

most widely used first-principles method is density functional theory (DFT). Using DFT, current 
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high-performance computing (HPC) centers are able to perform static calculations for systems 

with up to 1,000,000 atoms, and dynamic simulations for systems with up to 10,000 atoms 118.  

The key concept of DFT is to use the electron density instead of the electron wave function 

as the descriptor of electronic structure of many-body systems. Electron density 𝜌(𝑟) is defined as 

the probability density of finding an electron in a small volume around certain spatial position. It 

is obtained by an integral over all but one spatial coordinate, described by the following equation:  

 
𝜌(𝑟) = 𝑁 ∫ |ψ(r1, s1, … , rN, sN)|2𝑑𝑠1𝑑𝑟2𝑑𝑠2 … 𝑑𝑟𝑁𝑑𝑠𝑁

 

𝑉

 , (6) 

where |ψ(r1, s1, … , rN, sN)|2  is the probability density of finding the system with position 

coordinates between 𝑟1 and 𝑟1 + 𝑑𝑟1, …, 𝑟𝑁 and 𝑟𝑁 + 𝑑𝑟𝑁, and spin coordinates equal to 𝑠1, … , 𝑠𝑁. 

Electron density has following properties: it is non-negative at any position; it is 0 at infinite 

distance; the integral over all space yields the total number of electrons. Unlike wave function, 

electron density is measurable by experiment. Remarkably, some measurable properties, especially 

those that have classical interpretation, can be easily expressed in terms of electron density.  

In 1964, Hohenberg and Kohn proposed two theorems alongside of their proofs as the 

foundation of DFT 119. The first theorem states that the external potential 𝑣(𝑟) is determined by 

the ground state electron density 𝜌(𝑟). Since the exact ground state WF and everything about the 

ground state system can be found knowing 𝑣(𝑟) and the number of electrons 𝑁, we can now 

describe the system completely by specifying the electron density.  

The proof is as following: Suppose an electron density 𝜌(𝑟) leads to two distinct external 

potentials 𝑣(𝑟) and 𝑣′(𝑟), and thus two different Hamiltonians �̂� and �̂�′, with two different exact 

wave functions |𝜓⟩ and |𝜓′⟩. According to the variational principle:  
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 𝐸 = ⟨𝜓|�̂�|𝜓⟩ ≤ ⟨𝜓′|�̂�|𝜓′⟩ = ⟨𝜓′|�̂�′|𝜓′⟩ + ⟨𝜓′|�̂� − �̂�′|𝜓′⟩ 

= 𝐸′ + ∫[𝑣(𝑟) − 𝑣′(𝑟)]𝜌(𝑟)𝑑𝑟 . 
(7) 

And: 

 𝐸′ = ⟨𝜓′|�̂�|𝜓′⟩ ≤ ⟨𝜓|�̂�′|𝜓⟩ = ⟨𝜓|�̂�|𝜓⟩ − ⟨𝜓|�̂� − �̂�′|𝜓⟩ 

= 𝐸′ − ∫[𝑣(𝑟) − 𝑣′(𝑟)]𝜌(𝑟)𝑑𝑟 . 
(8) 

Adding eq. 7 and eq. 8 gives: 

 𝐸 + 𝐸′ ≤ 𝐸 + 𝐸′, (9) 

which is contradictory. Thus, it is impossible for there to exist two distinct external potentials given 

a single electron density.  

The second theorem states that while 𝑁  and 𝑣(𝑟) are fixed, for any trial density �̃�(𝑟) 

satisfying �̃�(𝑟) ≥ 0 and ∫ �̃�(𝑟)𝑑𝑟 = 𝑁,  

 𝐸 ≤ 𝐸𝑣[�̃�] , (10) 

where 𝐸 is the exact energy and 𝐸𝑣[�̃�] is the energy functional associated with the trial density. 

This theorem allows minimization of the total energy of a system by varying the ground state 

electron density under the aforementioned constraints. It is also known as the Hohenberg-Kohn 

density variational principle, similar to the wave function counterpart.  

Since �̃�(𝑟) determines the associated wave function |�̃�⟩, we can proof the second theorem 

by variational principle: 

 𝐸𝑣(𝜌) = 𝐸 ≤ ⟨�̃�|�̂�|�̃�⟩ = 𝐸𝑣[�̃�] . (11) 

Soon enough, in 1965, Kohn and Sham proposed an approach to express the energy 

functional by decomposing into known contributions from the independent electrons 

approximation and an unknown nonclassical term 120:  



36 

 

 𝐸[𝜌] = 𝑉𝑒𝑥𝑡[𝜌] + 𝑇𝐾𝑆[𝜙] + 𝑉𝐻[𝜌] + 𝐸𝑋𝐶[𝜌] , (12) 

where 𝑉𝑒𝑥𝑡, 𝑇𝐾𝑆, 𝑉𝐻 are external potential, kinetic energy, and Hartree energy, respectively, with 

the following expressions: 

 
𝑉𝑒𝑥𝑡[𝜌] = ∫ 𝜌(𝑟)𝑉𝑛(𝑟)𝑑𝑟 , (13) 

 
𝑇𝐾𝑆[𝜙] = − ∑ ∫ 𝜙𝑖

∗(𝑟)
∇2

2
𝜙𝑖(𝑟)𝑑𝑟

𝑖

 , (14) 

 
𝑉𝐻[𝜌] =

1

2
∫ ∫

𝜌(𝑟)𝜌(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′  . (15) 

The unknown nonclassical term 𝐸𝑋𝐶 is referred to as the exchange-correlation term, which 

does not have an explicit expression. Many exchange-correlation functionals have been developed 

in attempt to provide decent approximation for DFT calculations, including local density 

approximation (LDA) 121, generalized gradient approximation (GGA) 122, meta-GGA 123, hybrid 

meta-GGA 124 etc. 

To solve the ground state electron density 𝜌, an iterative procedure called self-consistent 

field (SCF) procedure is used. In SCF procedure, an initial guess of electron density is used to 

solve the Kohn-Sham equation, and a more accurate output electron density can be calculated. The 

output electron density is then used as the input of the next iteration. Once desired convergence is 

achieved, the iteration is concluded. The physical properties of the system can thus be calculated 

based on the converged ground state electron density.  

3.2. Computational Background for Thermal Properties 

3.2.1. Thermal Conductivity Overview 

In crystalline solids, heat energy is transported mainly via 3 mechanisms: electrons, lattice 

waves (phonons), and electromagnetic waves (photons). The contribution to thermal conductivity 



37 

 

through any type of carrier is highly dependent on the mean free path of the carrier between 

collisions 125. In metallic materials, electrons are delocalized and have relatively long mean free 

path, thus are the dominant thermal transportation mechanism. In dielectrics like most oxide 

ceramics, heat energy is transported almost entirely via lattice waves since electrons in dielectrics 

are highly localized and have negligible mean free path 125. Since TBC materials are mostly 

ceramics, this work focuses only on the thermal conductivity contributed by lattice waves, which 

is frequently referred to as lattice thermal conductivity.  

3.2.2. Harmonic and Anharmonic Lattice Dynamics 

Consider a lattice structure which has atoms with small displacements near their 

equilibrium positions. The total potential energy of such lattice structure (𝐸) can be expressed as 

the following Taylor series: 

 
𝐸 = 𝐸0 + ∑

𝜕𝐸

𝜕𝑢𝑖
𝛼 𝑢𝑖

𝛼

𝑖;𝛼

+
1

2!
∑

𝜕2𝐸

𝜕𝑢𝑖
𝛼𝜕𝑢𝑗

𝛽
𝑢𝑖

𝛼𝑢𝑗
𝛽

𝑖,𝑗;𝛼,𝛽

+
1

3!
∑

𝜕3𝐸

𝜕𝑢𝑖
𝛼𝜕𝑢𝑗

𝛽
𝜕𝑢𝑘

𝛾
𝑢𝑖

𝛼𝑢𝑗
𝛽

𝑢𝑘
𝛾

𝑖,𝑗,𝑘;𝛼,𝛽,𝛾

+ ⋯, 

(16) 

where 𝐸0 is the total potential energy at equilibrium configuration, and 𝑢𝑖
𝛼 is the displacement of 

atom 𝑖 from its equilibrium position in direction 𝛼. The first constant term (𝐸0) can be ignored by 

adjusting the reference level of potential energy. The second term (1st order term) on the right-

hand side of eq. 16 is the first partial derivative of potential energy, which also represents the force 

exerted on an atom by all the others. Since the potential energy is minimized at the equilibrium 

configuration, its first partial derivative is 0, thus the second term can be ignored 126.  

From the remaining 2nd order and third-order terms, the 2nd order “harmonic” and the 3rd 

order “anharmonic” interatomic force constants (IFCs) are defined as following: 
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𝜙𝑖𝑗

𝛼𝛽
=

𝜕2𝐸

𝜕𝑢𝑖
𝛼𝜕𝑢𝑗

𝛽
 , (17) 

 
𝜙𝑖𝑗𝑘

𝛼𝛽𝛾
=

𝜕3𝐸

𝜕𝑢𝑖
𝛼𝜕𝑢𝑗

𝛽
𝜕𝑢𝑘

𝛾
 . (18) 

Under harmonic approximation, only up to the 2nd order IFCs are considered to describe 

small displacements of atoms. It is a relatively simple model where interatomic forces are 

described with a spring analogy, and there is no interaction between phonons. With harmonic 

approximation, many physical properties including heat capacity, Gibbs energy, and phonon 

dispersion can be evaluated.  

However, without interaction between different phonon modes, all the phonons have 

infinite mean free path which results in infinite thermal conductivity of the system. In addition, 

other phenomena such as thermal expansion and phase transition cannot be explained within 

harmonic approximation 125. By considering the third-order anharmonic IFCs to describe 

anharmonic interactions, the aforementioned phenomena can be well explained.  

3.2.3. Three-Phonon Scattering 

The resistance mechanisms of phonon transportation include phonon-phonon interaction, 

phonon-defect scattering, phonon-boundary scattering, phonon-electron scattering. Among these 

mechanisms, phonon-phonon interaction has the most significant impact on thermal conductivity 

in a defect-free lattice system. Under anharmonic lattice dynamic approximation, interactions 

between different phonon modes result in limited phonon lifetime and mean free path. Three-

phonon scattering, among all types of phonon-phonon interactions, is the most commonly occurred 

process, hence has the greatest impact on the lattice thermal conductivity of dielectric materials.  
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In a three-phonon scattering process, either one phonon splits into two other phonons, or 

two phonons combines into one phonon. In general, three-phonon scattering processes can be 

described by the following equations: 

 ℏ𝜔1 + ℏ𝜔2 = ℏ𝜔3 , (19) 

 �⃗�1 + �⃗�2 = �⃗�3 + �⃗� , (20) 

where 𝜔𝑖 and �⃗�𝑖 are frequency and wave vector of phonon 𝑖, respectively, and �⃗� is a reciprocal 

lattice vector. Eq. 19 represents the conservation of energy in the process. Eq. 20 however, 

represents a conditional conservation of crystal momentum. Based on the expressions above, three-

phonon scattering processes can be further categorized into Normal process (N-process) where 

�⃗� = 0, and Umklapp process (U-process) otherwise, as illustrated in Figure 2.  

 

Figure 2: Schematics of (a) N-process and (b) U-process 110 

U-process occurs when the wave vectors of two incident phonons add up to a scattered 

wave vector that is outside of the first Brillouin zone, and the scattering process effectively 
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produces a phonon with reversed group velocity by subtracting the reciprocal lattice vector �⃗�. U-

process results in a reversed heat flux, and therefore has significant thermal resistive effect. N-

process on the other hand, as a momentum-conserving process, has little effect on the heat flux. 

Remarkably, crystal momentum is called “quasimomentum” since it is only conserved to within 

an additive constant.  

3.2.4. Finite Displacement Method 

The most commonly used computational method to evaluate 2nd-order and 3rd order IFCs 

is supercell based, finite displacement method. From eq. 17, we can express the 2nd order IFCs 

approximated as: 

 
𝜙𝑖𝑗

𝛼𝛽
=

𝜕2𝐸

𝜕𝑢𝑖
𝛼𝜕𝑢𝑗

𝛽
= −

𝜕𝐹𝑗
𝛽

𝜕𝑢𝑖
𝛼 ≈ −

𝐹𝑗
𝛽(𝑢𝑖

𝛼 = ℎ) − 𝐹𝑗
𝛽

ℎ
 , (21) 

where 𝐹𝑗
𝛽

 represents the force exerted on atom 𝑗 in direction 𝛽, while atom 𝑖 is displaced by a 

finite displacement ℎ from equilibrium position in the direction 𝛼 101. The force 𝐹𝑗
𝛽

 is usually zero 

at equilibrium position.  

Similarly, from eq. 18, for the 3rd order IFCs: 
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(22) 

where in this case atom 𝑖 and 𝑗 are displaced by a finite displacement ℎ from equilibrium position 

in the direction 𝛼 and 𝛽  respectively 102. According to eq. 22, we can deduce that each 𝜙𝑖𝑗𝑘
𝛼𝛽𝛾

 

element requires four DFT calculations with different supercell configurations. Generally, for a 
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unit cell with 𝑛 atoms and a supercell with 𝑁 unit cells, 4 × 9𝑛2𝑁 DFT calculations are required, 

which is clearly impractical and not scalable 102. Fortunately, the total number of required DFT 

calculations can be reduced considering system symmetries. From eq. 17 and eq. 22, changing the 

order of differentiation does not affect the result of these partial derivatives. Thus, we have the 

following permutation symmetries: 

 𝜙𝑖𝑗
𝛼𝛽

= 𝜙𝑗𝑖
𝛽𝛼

 (23) 

 𝜙𝑖𝑗𝑘
𝛼𝛽𝛾

= 𝜙𝑖𝑘𝑗
𝛼𝛾𝛽

= 𝜙𝑘𝑗𝑖
𝛾𝛽𝛼

= ⋯. (24) 

Also, considering a general space-group symmetry operation: 

 ∑ 𝑇𝛼′𝛼𝑅𝑖
𝛼 + 𝑏𝛼′

= 𝑅𝑇𝑏(𝑖)

𝛼′
 

𝛼

, (25) 

where 𝑇 is the point-group operator and 𝑏 is the translation operator, and 𝑇𝑏(𝑖) indicates the atom 

to which the 𝑖th atom is mapped under the given operation. The 3rd order IFCs therefore satisfy the 

following relation: 

 𝜙𝑇𝑏(𝑖)𝑇𝑏(𝑗)𝑇𝑏(𝑘)

𝛼′𝛽′𝛾′

= ∑ 𝑇𝛼′𝛼𝑇𝛽′𝛽𝑇𝛾′𝛾𝜙𝑖𝑗𝑘
𝛼𝛽𝛾

𝛼𝛽𝛾

. (26) 

Additionally, by introducing a cut-off radius, we can further reduce the number of atomic 

triplets considered. Usually, the value of cut-off radius needs to be determined through 

convergence test based on either the force constants or the result thermal conductivity.  

3.2.5. Calculation of Lattice Thermal Conductivity 

In this work, lattice thermal conductivity is computed by solving linearized Boltzmann 

transport equation (LBTE) under the single mode relaxation time (SMRT) approximation. The 

lattice thermal conductivity tensor can be expressed as: 

 
𝜅𝛼𝛽 =

1

𝑁𝑉0
∑ 𝐶𝜆𝜈𝜆

𝛼𝜈𝜆
𝛽

𝜏𝜆

𝜆

 , (27) 
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where 𝛼, 𝛽 are the Cartesian indices, 𝜆 is the abbreviation of phonon mode with band index 𝑠 and 

wave vector 𝑞, 𝑁 is the number of unit cells in the system, 𝑉0 is the volume of a unit cell, 𝐶𝜆 is the 

mode dependent heat capacity, 𝑣𝜆
𝛼 and 𝜏𝜆 are the group velocity and SMRT of the phonon mode 

𝜆 respectively.  

The mode dependent heat capacity is expressed as: 

 

𝐶𝜆 = ∑ 𝑘𝐵 (
ℏ𝜔𝜆

𝑘𝐵𝑇
)

2 exp (
ℏ𝜔𝜆

𝑘𝐵𝑇
)

(exp (
ℏ𝜔𝜆

𝑘𝐵𝑇
) − 1)

2

𝜆

 . (28) 

From the 2nd order IFCs, we can compute the harmonic frequency 𝜔𝑞𝑠 and the polarization 

vector 𝑊(𝑘, 𝑞𝑠) of phonon mode 𝜆 by solving eigenvalue problem of a dynamical matrix 𝐷(𝑞): 

 ∑ 𝐷𝛼𝛽

𝑘′𝛽

(𝑘𝑘′, 𝑞)𝑊𝛽(𝑘, 𝑞𝑠) = 𝜔𝑞𝑠
2 𝑊𝛼(𝑘, 𝑞𝑠) , 

(29) 

with 

 
𝐷𝛼𝛽(𝑘𝑘′, 𝑞) =

1

√𝑚𝑘𝑚𝑘′

∑ Φ
0𝑘,𝑗′𝑘′
𝛼𝛽

𝑗′

 𝑒𝑖𝑞[𝑟(𝑗′𝑘′)−𝑟(0𝑘)] . (30) 

Here a slightly different notation is used to label atoms where 𝑟(𝑗𝑘) represents the position 

of the 𝑘-th atom in the 𝑗-th unit cell, and 𝑚𝑘 is the atomic mass of atom type 𝑘.  

Based on the eigenvalue equation, the group velocity 𝑣𝜆
𝛼 of phonon mode 𝜆 in direction 𝛼 

can then be calculated by: 

 
𝑣𝜆

𝛼 =
𝜕𝜔𝜆

𝜕𝑞𝛼
 

=
1

2𝜔𝜆
∑ 𝑊𝛽(𝑘, 𝜆)

𝑘𝑘′𝛽𝛾

𝜕𝐷𝛽𝛾(𝑘𝑘′, 𝑞)

𝜕𝑞𝛼
𝑊𝛾(𝑘′, 𝜆) . 

(31) 
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From the 3rd order IFCs, we can compute the imaginary part of the phonon self-energy 

using: 

 𝛤𝜆(𝜔) =
18𝜋

ℏ
∑ |Φ−𝜆𝜆′𝜆′′|2

𝜆′𝜆′′

∙ {(𝑛𝜆′ + 𝑛𝜆′′ + 1)𝛿(𝜔 − 𝜔𝜆′ − 𝜔𝜆′′)

+ (𝑛𝜆′ − 𝑛𝜆′′)[𝛿(𝜔 + 𝜔𝜆′ − 𝜔𝜆′′) − 𝛿(𝜔 − 𝜔𝜆′ + 𝜔𝜆′′)]} , 

(32) 

where 𝛷−𝜆𝜆′𝜆′′ is the strength of 3-phonon interaction among phonons with mode 𝜆, 𝜆′, and 𝜆′′ 

given by: 

 
Φ−𝜆𝜆′𝜆′′ =

1

√𝑁

1

3!
∑ ∑ 𝑊𝛼(𝑘, 𝜆)𝑊𝛽(𝑘′, 𝜆′)

𝛼𝛽𝛾

𝑊𝛾(𝑘′′, 𝜆′′)√
ℏ

2𝑚𝑘𝜔𝜆
√

ℏ

2𝑚𝑘′𝜔𝜆′
√

ℏ

2𝑚𝑘′′𝜔𝜆′′
𝑘𝑘′𝑘′′

 

× ∑ Φ
0𝑘,𝑗′𝑘′,𝑗′′𝑘′′
𝛼𝛽𝛾

 𝑒𝑖𝑞′[𝑟(𝑗′𝑘′)−𝑟(0𝑘)] 𝑒𝑖𝑞′′[𝑟(𝑗′′𝑘′′)−𝑟(0𝑘)] 𝑒𝑖(𝑞+𝑞′+𝑞′′)𝑟(0𝑘) Δ(𝑞 + 𝑞′ + 𝑞′′)

𝑗𝑗′

 , 

(33) 

where Δ(𝑞 + 𝑞′ + 𝑞′′) equals to 1 if (𝑞 + 𝑞′ + 𝑞′′) is a reciprocal lattice vector, otherwise equals 

to 0.  

Finally, we can obtain the phonon relaxation time, which is the last piece of puzzle for 

lattice thermal conductivity calculation, given by:  

 
𝜏𝜆 =

1

2Γ𝜆(𝜔𝜆)
 . (34) 

In summary, with phonon group velocity and heat capacity from 2nd order IFCs, and 

phonon relaxation time from 3rd order IFCs, we may compute the lattice thermal conductivity of 

any material system at given temperature.  
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3.3. Workflow for Lattice Thermal Conductivity Computation 

As indicated in Section 3.2.4, calculating lattice thermal conductivities using the finite 

displacement method requires a large number of static DFT calculations of displaced supercell 

configurations. The calculation process also involves multiple types of computations including 

structural relaxation DFT calculation, static DFT calculation, and phonon-related calculations. 

Employing an automated computational workflow framework allows the linking of different types 

of computations, and hence greatly simplifies the execution and management of such exhaustive 

computational subprocesses. Additionally, since both the number of the displaced configurations 

and the supercell structure of each configuration depends on the relaxed unit cell structure, the 

static DFT calculation subprocesses should be added to the workflow upon the completion of the 

relaxation subprocess. To achieve this, the workflow framework must have the ability to change 

the workflow structure during runtime, i.e., to create dynamic workflows.  

In a computational workflow for lattice thermal conductivity, the unit cell structure is first 

relaxed. The output of the relaxation subprocess (the relaxed unit cell structure) shall then be used 

to create the corresponding supercell configurations and static calculation subprocesses. The 

output of static calculation subprocesses shall be parsed to obtain an organized dataset of 

interatomic forces, which will finally be used to calculate the lattice thermal conductivity.  
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Chapter 4: Ph3pyWF Tool Package 

4.1. Overview 

The computational route to lattice thermal conductivity involves a large quantity of 

subtasks. Running and managing such quantity of subtasks is very complicated, especially when 

handling errors. Traditionally, to run a complete thermal properties analysis using VASP 87, 

researchers have to perform many operations manually and monitor the simulation progress. First, 

input files for the structural relaxation VASP job need to be prepared manually before job 

submission to SLURM. After unpredictable computation time, the output files are collected and 

used to generate input files for subsequent static VASP jobs via Phonopy/Phono3py. The second 

step generates hundreds or even thousands of static jobs and should be placed in designated 

directories for post-analysis. Each of these jobs is submitted individually to SLURM. In the case 

of job failure, it is even more complicated to locate the job and identify the cause of failure. 

Therefore, automated execution and management of the computational workflow are required.  

An open-source workflow python package with name “Ph3pyWF” has been developed in 

this work to fulfill such demand of automation. It is designed to conduct high-throughput thermal 

conductivity computations with a user-friendly interface and progress monitor. The software also 

allows simple and robust error identification and recovery.  
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4.2. Workflow Architecture 

The high-level architecture of Ph3pyWF package is developed based on Atomate 80 and 

FireWorks 85 computational workflow framework. From a bottom-up aspect of view, Ph3pyWF 

contains three levels of components: Firetask, Firework, and Workflow. 

Firetasks are the most fundamental building blocks of a Workflow. A Firetask in essence 

is a script that performs specific operations, such as writing/reading files, running VASP 

simulation, interacting with database, etc. A Firework contains a series of Firetask(s) that will be 

executed in sequence. Specification of a Firework passes input parameters to the Firetask(s) 

contained in the Firework. A Workflow is a set of Firework(s) connected with certain dependencies. 

For example, if Firework B requires output from Firework A as input parameters, Firework A will 

be the “parent” of Firework B. Firework B is marked with the state “WAITING” and “READY” 

before and after completion of Firework A respectively.  

In addition, Firetasks can return “FWAction” which performs modification of the 

Workflow specifications, addition of new Fireworks, cancellation of remaining Fireworks, etc., 

depending on the output. This feature allows users to dynamically control the workflow.  
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Figure 3: Outline of Ph3pyWF architecture 

Figure 3 illustrates the Fireworks and their dependencies in a Workflow object of 

Ph3pyWF. The first task is to obtain the optimized unit cell structure of the material system of 

interest. Preset Firework for structural optimization is available in Atomate library, and is adopted 

for this task with slight modification to the default parameters. This Firework prepares VASP input 

files according to the given structure and parameters, runs VASP simulation, and parses output 

files to extract useful results.  
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With the optimized unit cell structure, displaced supercell structures can then be generated 

using the finite displacement method. A new Firetask (Ph3pyAdderTask) has been developed for 

this purpose. When creating a new workflow, a Firework is created containing only this Firetask. 

In this Firework, the optimized unit cell structure is fetched from the database by querying for the 

document containing the result of the optimization Firework. Phono3py is then used to generate a 

list of displaced supercell structures. Users can specify different supercell sizes for the 2nd and 3rd 

order IFCs calculation. By default, the 2nd order IFCs are calculated from a subset of displaced 

supercell configurations for the 3rd order IFCs. During this Firework, Phono3py writes a file 

(disp_fc3.yaml) containing the information of displaced supercell structures, which is later 

required by the post-analysis Firework. This file is parsed as a dictionary object to be conveniently 

stored in the database.  

For each displaced supercell structure in the list, a corresponding static VASP job is 

appended to a list of Fireworks. After the completion of the second Firework (generate displaced 

supercells), static Fireworks are inserted into the Workflow by an FWAction. They are inserted 

using mode “detour” to ensure that all of the inserted Fireworks are parents of the post-analysis 

Firework. These Fireworks are slightly modified preset static calculation Fireworks. Most 

simulation parameters, except those related to the static job type, are identical to that of the 

optimization Firework.  

In the case where different supercell sizes for the 2nd and 3rd order IFCs calculation are 

specified, additional Fireworks for the 2nd
 order IFCs are also inserted into the Workflow by the 

aforementioned FWAction. Fireworks for the 2nd IFCs have names formatted differently than that 

for the 3rd order IFCs to provide not only better readability for users, but also more robust data 

retrieval for post-analysis Firework.  
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After all the static Fireworks are completed, thermal conductivity can be calculated. The 

post-analysis Firework fetches the following data from the database: optimized unit cell structure, 

list and information of displaced supercells generated, interatomic forces, and other required 

information depending on the specifications. With these data fetched, the Firework then uses 

Phono3py to calculate IFCs and thermal conductivity at a given range of temperatures. Phonopy 

is also used in this Firework to calculate phonon DOS and dispersion band structure. Phono3py 

post-analysis generates several large output files. The key results (temperatures, lattice thermal 

conductivities, phonon DOS and phonon band structure) are stored in the database as dictionary 

objects. Optionally, large output files, which contain information on phonon group velocities, and 

phonon frequency, can be compressed and stored in the database in binary format.  

4.3. Typical Usage 

 
Figure 4: Schematic of operation procedure using Ph3pyWF. Solid arrows denote order of execution. Dashed 

arrows denote sending and receiving of data.  

A typical operation procedure using Ph3pyWF is shown in Figure 4. There are three places 

where events take place, the user’s terminal, database, and high-performance computers (HPC). 

The user’s terminal can be any machine that runs Python and has internet access. It is the main 
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interface for the user to create and manage workflows. For DFT computations, high-performance 

computers (HPC) are required to provide sufficient computational resources. In this work, the HPC 

resource used was Cedar cluster provided by Compute Canada. HPC conducts all the 

computational subprocesses and stores temporary input and output files. Due to HPC policy, these 

files are stored in a “scratch” storage and are purged periodically unless manually transferred to a 

permanent storage location. Most commonly, the user needs to connect to the HPC to submit 

computation jobs and allocate computing resources. With other software packages, it is also 

possible to access HPC via the user’s terminal. The database is used to store all the workflow 

information, intermediate computation results, and final thermal conductivity results. It provides 

permanent storage of organized data for more convenient queries and analyses. MongoDB is used 

in this work as the database.  

Before creating the very first workflow instance, domain-specific environment parameters 

need to be configured on the user’s terminal and HPC. For simplicity, this work will not discuss 

the details of the configuration files other than their purpose since they are available in the 

documentation of respective libraries.  

For Atomate 80 and Fireworks 85 environment, five configuration files are required: db.json, 

my_fworker.yaml, my_launchpad.yaml, my_qadaptor.yaml, and FW_config.yaml. The file db.json 

provides information including server address and credential to connect to the MongoDB coupled 

with the workflow for storing and parsing of output (other collections in the MongoDB are also 

accessible with redirecting). The file my_fworker.yaml provides the parameters that control which 

subprocesses are executed on this machine, which is useful when multiple machines (or clusters) 

are available, as well as the environmental parameters including the path to VASP executable. The 

file my_launchpad.yaml provides database information similar to that in db.json, but for querying 
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and updating the status of Fireworks and Workflows. The file my_qadaptor.yaml stores the type of 

queueing manager used in the environment and the configuration options for computational 

resource allocation, such as number of CPU cores, number of nodes, and total wall time. Finally, 

the file FW_config.yaml indicates the path to the aforementioned 4 configuration files. Commonly, 

multiple folders, each contains aforementioned 4 configuration files with different parameters, can 

be created. The user can then apply different sets of configurations by only changing the path 

parameter in FW_config.yaml. Since no intensive computation is conducted on user’s terminal, 

only db.json and FW_config.yaml should be set, while all 5 files should be set on the HPC.  

In addition, a file with filename .pmgrc.yaml in home directory should be set for Pymatgen 

86 configurations. On HPC, pseudopotentials should be stored in specific directory structure, and 

the location should be specified in this file. When running VASP computation jobs, POTCAR files 

are created based on pseudopotential files found at location provided by this file. Optionally, 

Materials Project API key can also be specified in this file for more convenient interaction with 

the open database provided by Materials Project API.  

New Ph3pyWF workflow instances are created on the user’s terminal. JupyterLab is used 

in this work for a more interactive coding environment. The user needs to provide the input unit 

cell structure in Pymatgen format. This can be done by manually writing the POSCAR file and 

convert to Pymatgen format or extract from online crystal structure databases such as Materials 

Project. Most parameters can be determined automatically in Ph3pyWF, but the user can also 

specify certain parameters if needed. A more detailed description of all the parameters can be 

found in the following section. The workflow is then uploaded to the database.  

On HPC, instead of submitting individual computation jobs, generic jobs are submitted for 

all the workflows. When the resource is allocated, the software fetches information on workflows 
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from the database, and starts running Fireworks with “READY” state. Each submitted job can run 

one Firework at one time but can run multiple Fireworks throughout the time allocated.  

The progress of the workflow is continuously updated in the database as the jobs run. In 

the case of job failure, the failed Fireworks are marked as “FIZZLED” and can be easily identified 

in the database. The error message and launch directory are also included in the database for 

debugging. Usually, the error is not caused by critical mistakes and the user only needs to rerun 

the Firework by resetting the Firework state to “READY”. In Ph3pyWF, failed static VASP jobs 

do not affect other static jobs in the same workflow, nor any other Fireworks in different workflows. 

Auxiliary utilities have been developed to monitor workflow progress and rerun failed Fireworks. 

In the case where a Firework failed multiple times, warning messages will be raised to indicate 

that further investigation is required.  

Upon completion of VASP calculations, output files are automatically parsed, and the key 

results will be uploaded to specific sectors (“ph3py_task” collection) in the database.  

4.4. Computational Parameters 

The modular design of this workflow software allows expert users to customize their input 

parameter at different levels of granularity.  

Table 1: Input parameters of Ph3pyWF at workflow level 

Parameter Type Default value 

structure pymatgen.Structure <N/A> 

skip_relax Boolean False 

name String “phono3py wf” 

c Dictionary None 

 

Table 1 lists the parameters at the top-most level, when instantiating a new workflow object. 

The only required input parameter without default value is the input unit cell structure. The input 
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unit cell structure should be a Pymatgen Structure object, which can be generated by parsing 

structure files including but not limited to POSCAR, CONTCAR, Crystallographic Information 

File (CIF), or fetched from online database. If skip_relax is set to True, the workflow will skip 

the structural relaxation and use the input unit cell structure directly to generate displaced 

supercells. User can change the suffix of workflow name by specifying the parameter name. The 

workflow name will be the concatenation of the chemical formula of the input structure and the 

name specified by user. The last parameter c is a dictionary object containing more detailed 

calculation settings which will be explained in the following paragraphs. By default, c does not 

contain any data, and any setting specified by the user will override the default calculation settings.  

Table 2: Supported parameters in dictionary object c to modify the calculation settings of subprocesses 

Parameter Type Default value 

tag String <Automatically generated> 

supercell_size_fc3 Tuple (2,2,2) 

supercell_size_fc2 Tuple <Same as supercell_size_fc3> 

cutoff_pair_distance Float None 

atom_disp Float 0.03 

vasp_input_set_relax VaspInputSet Ph3pyRelaxSet 

vasp_input_set_static VaspInputSet Ph3pyStaticSet 

db_file String ">>db_file<<" 

metadata Dictionary {} 

USER_*_SETTINGS Dictionary {} 

t_min Float 200 

t_max Float 1401 

t_step Float 50 

primitive_matrix ndarray None 

mesh List [11,11,11] 

is_nac Boolean True 

is_symmetry Boolean True 

symprec Float 1e-5 
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Table 2 lists the supported parameters in the aforementioned dictionary object c. These are 

the parameters for Firework level subprocesses.  

The parameter tag is a unique string for identification of a workflow and any connected 

workflows. Without user specification, the value of tag is automatically generated depending on 

the time when the workflow is instantiated (e.g., "2021-09-21-14-32-07-656382"). Such default 

generated value is prone to collision, where the same tag is assigned to multiple irrelevant 

workflows, but when new workflows are instantiated at low frequency it is more readable for users. 

For high-throughput computation, it is recommended to use universally unique identifier (UUID) 

as tag to avoid collision. The Fireworks in a workflow have names containing this tag string. This 

tag is commonly used to query and update Fireworks in a workflow and can be used as a parameter 

to instantiate auxiliary workflows that are connected to the main workflow.  

The parameter supercell_size_fc3 is a 3-element tuple that specifies the supercell 

dimension for 3rd order IFCs. Supercell is generated by elongating along lattice axes of unit cell. 

The default value is (2,2,2), in which case a 2 × 2 × 2  supercell is created. The parameter 

supercell_size_fc2 specifies the supercell dimension for 2nd order IFCs and is optional. By 

default, 2nd order IFCs calculation uses the same supercell dimension as the 3rd order IFCs supercell 

dimension. User may specify larger and different supercell dimension for 2nd order IFCs since two-

atom interaction have longer range in real space than three-atom interaction. If 

supercell_size_fc2 is specified, additional displaced supercell structures are generated, and the 

corresponding static Fireworks are added to the workflow. It is recommended to set the supercell 

dimension according to the unit cell structure. A “rule of thumb” is to ensure that the supercell 

have lengths more than 9 Angstrom along each lattice orientation.  
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The parameter cutoff_pair_distance specifies the cutoff pair distance in Angstrom in 

supercells to reduce the number of static Fireworks. With finite displacement method, two of the 

three atoms in an interaction triplet are displaced. If the distance between the two displaced atoms 

in a displaced supercell is larger than the specified cutoff pair distance, such supercell 

configuration is excluded from the IFCs calculations, and no corresponding static Firework is 

added.  

The parameter atom_disp specifies the magnitude of atomic displacement in Angstrom for 

finite displacement method. For VASP calculations, the suggested default value is 0.03 Angstrom.  

The parameters vasp_input_set_relax and vasp_input_set_static specify the VASP 

calculation settings for structural relaxation and static force calculations respectively. The default 

input sets are included in Ph3pyWF library, and their settings are discussed in the later section. 

One may use different VASP input sets imported from external sources or customized by local 

files.  

The parameter db_file specifies the path to the db.json file which contains the database 

credentials. By default, the value is a non-path formatted string “>>db_file<<”, with which 

Ph3pyWF will check local configuration files for the path upon execution.  

The parameter metadata is used to store user defined metadata such as descriptions of the 

workflow. This parameter has no effect on the calculation.  

USER_*_SETTINGS represents a set of VASP input parameters, including 

USER_INCAR_SETTINGS, USER_INCAR_SETTINGS_STATIC, USER_POTCAR_SETTINGS, 

USER_POTCAR_FUNCTIONAL, USER_KPOINTS_SETTINGS, and USER_KPOINTS_SETTINGS_STATIC, to 

override the default settings specified by vasp_input_set_relax and vasp_input_set_static. The 
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detailed description of each setting can be found in Pymatgen documentation. POTCAR settings 

are universal and are applied to all the Fireworks in a workflow.  

The parameters t_min, t_max, and t_step specify the temperatures in Kelvin at which 

lattice thermal conductivities are evaluated. The default values of t_min, t_max, and t_step 

generate list temperature values: 200K, 250K, …, 1350K, 1400K. Note that t_min is included in 

the list of temperature values while t_max is excluded.  

The parameter primitive_matrix is a 3 × 3 array that specifies the transformation matrix 

from non-primitive cell to primitive cell. When primitive unit cell is used as input structure, this 

parameter is unnecessary to be specified.  

The parameter mesh is a 3-element list that specifies the q-point mesh sampling grid used 

for thermal conductivity calculation. The default q-point mesh is 11 points along each axis. For 

supercell with large number of atoms, 11 × 11 × 11 q-point mesh may result in long computing 

time exceeding the allocated wall time of a single job, thus it is recommended to specify a less 

dense q-point mesh initially and run a q-point convergence analysis (discussed in later sections) 

afterward.   

The parameter is_nac specifies whether or not to apply non-analytical term correction for 

harmonic phonons. If is_nac is set to True, an additional Firework is added to the workflow. The 

added Firework run a modified static VASP calculation to obtain static dielectric tensor and the 

Born effective charges, which will be used by the final phonon properties calculation.  

The parameters is_symmetry and symprec specify if crystal symmetry is used and the 

tolerance used to find crystal symmetry respectively. When the value of symprec is too small, 

exceeding large number of displaced structures may be generated.  
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4.5. First-Principles Calculation Settings 

Table 3: Default VASP parameters for structural relaxation calculations 

Parameter Default value 

ALGO Normal 

EDIFF_PER_ATOM 1e-9 

EDIFFG -1e-5 

ENCUT 520 

IBRION 2 

ISIF 3 

ISMEAR 0 

ISPIN 2 

LASPH True 

LDAU True 

LREAL AUTO 

NELM 100 

NSW 300 

PREC Accurate 

SIGMA 0.01 

KPOINTS reciprocal_density = 64 

POTCAR_FUNCTIONAL PBE_54 

 

All the first-principles calculations in this work were performed using the Vienna ab initio 

simulation package (VASP) 87 with projected augmented wave (PAW) potential. Table 3 lists the 

default VASP parameters for structural relaxation calculations. The default exchange correlation 

potential is implemented using Perdew–Burke–Ernzerhof (PBE) generalized gradient 

approximation (GGA) 122. User may also apply local-density approximation (LDA) 121 by 

modifying USER_INCAR_SETTINGS. The kinetic energy cutoff is set to 520 eV. The Brillouin zone is 

sampled using Monkhorst-Pack (MP) k-point meshes with reciprocal volume density of 64 Å−3. 

The convergence criteria are set to 10−9 𝑒𝑉 and 10−5 𝑒𝑉 Å−1 for the total energy and the force 

respectively.  
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Table 4: Default VASP parameters for static calculations 

Parameter Default value 

ALGO Normal 

EDIFF_PER_ATOM 1e-9 

ENCUT 520 

IBRION -1 

ISIF 3 

ISMEAR 0 

ISPIN 2 

LASPH True 

LDAU True 

LREAL AUTO 

NELM 100 

NSW 300 

PREC Accurate 

SIGMA 0.01 

KPOINTS reciprocal_density = 32 

POTCAR_FUNCTIONAL PBE_54 

 

Table 4 lists the default VASP parameters for static calculations. By default, static 

calculations use Monkhorst-Pack (MP) k-point meshes with reciprocal volume density of 32 Å−3. 

Most other parameters are identical to those for structural relaxation calculations. The VASP 

parameters for static dielectric tensor and the Born effective charges calculations are modified 

based on the VASP parameters for static calculations.  

4.6. Error Identification and Correction 

When the computational procedure is executed and managed manually, handling 

subprocess failure is arguably the most frustrating work. Using the finite displacement method for 

thermal conductivity calculation, hundreds to thousands of subprocesses are generated. Without 

the help of automated workflow, these subprocesses are usually submitted to the HPC through 
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temporary scripts, with each subprocess occupying a single queued job. Oftentimes the user is 

unable to estimate the time required for each subprocess, thus the allocated wall time may be 

insufficient and lead to incomplete jobs. When manually running lattice thermal conductivity 

computations, the user may not be able to realize the presence of failed or incomplete jobs until 

the final step (IFCs and thermal conductivity calculation). Also, most thermal conductivity 

calculation software packages are unable to provide information about which particular jobs failed. 

In such scenario, the user has to go through the output files of all subprocesses to identify the failed 

jobs and the reason for failure, and then rerun those jobs.  

In this work, the workflow software developed is capable of handling most errors 

associated with VASP input parameters, and also provides a simple interface for error 

identification and correction. Ph3pyWF is developed based on Atomate infrastructure which uses 

Custodian 127 framework to run the VASP executable. It is able to detect many common error 

messages during VASP calculations, then make corrections to the input parameters and rerun the 

calculation automatically.  

In the case where a Firework fails due to an error that Custodian is unable to handle 

automatically, the state of failed Firework is marked as “FIZZLED” in the workflows collection 

in the database, and the error message is stored in the launches collection. The user can easily 

query the database to identify failed jobs and reasons for failure to handle correspondingly. If the 

stored error message provides insufficient information for correction methods, the user may check 

launch information in the database for the launch directory of failed Firework, and navigate to the 

launch directory to investigate input and output files, as well as the log file.  

Ph3pyWF allows running multiple Fireworks in serial in a single queued job. The last 

Firework running when the allocated time limit is reached will inevitably become a “lost run”. 



60 

 

Such Firework will remain in “RUNNING” state forever and no error message will be stored. 

FireWorks library provides interfaces to detect lost runs by checking if the elapsed time from the 

last update of a Firework exceeds user-specified expiration time.  

4.7. Progress Monitor 

Ph3pyWF also implements auxiliary utilities to monitor the progress of workflows and to 

automatically handle failed and lost Fireworks. A script with the name guard_ph3pywf, which can 

be used by the command line, is included in the Ph3pyWF package. By specifying the tag of 

workflow(s), or the id of any Firework (fw_id) in workflow(s), the script will periodically check 

the progress of specified workflow(s), and report information including: the number of all 

Fireworks in a workflow, the number of running, completed, and failed Fireworks. The script will 

also detect lost Fireworks, and rerun failed and lost Fireworks. If any Firework fails more than 

three times, a warning message will be prompted to notify the user to check for unrecoverable 

errors.  

4.8. Post-analysis using Ph3pyWF 

After a Ph3pyWF workflow is completed, calculated lattice thermal conductivity, phonon 

dispersion band structure, and phonon density of state are stored in the database along with 

descriptive metadata in a relative readable format. To further automate the analysis procedure, 

Ph3pyWF also includes API for simple post-analysis and graph plotting. By only specifying the 

tag of a workflow, the post-analysis utility automatically fetches results of the specified workflow 

from the database. With class methods, the user may easily plot and save figures of lattice thermal 

conductivity, phonon dispersion band structure, and phonon density of state.  

Additionally, a component of standard Ph3pyWF, Phono3pyAnalysisToDb, can be used 

alone as a workflow and launched independently to redo the final thermal conductivity calculations 
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for a completed workflow. The user may specify different q-point mesh and different temperature 

ranges in this workflow. This workflow fetches existing VASP computation results computed in 

the associated workflow, therefore avoiding repetitively rerunning the computationally expensive 

first-principles calculations. By default, this workflow overwrites the result document, and updated 

results can be fetched without changing the query string. Optionally the user can create copy 

documents with different tags, but the query string needs to be changed accordingly for each copy.  

Another workflow, wf_ph3py_get_kappa_convergence, can also be launched independently 

to redo the final thermal conductivity calculations. This workflow will calculate thermal 

conductivities using different q-point meshes, and then evaluate the convergence (fitted) value of 

thermal conductivity. The detail of this workflow is discussed in section 5.1. This workflow adds 

new information on top of the result document instead of overwriting the initial thermal 

conductivity values calculated using a single q-point mesh. Similarly, this workflow overwrites 

the fitted result in a result document by default and is able to create copies when specified.  
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Chapter 5: Results and Discussion 

5.1. Convergence Test 

5.1.1. Supercell Size 

The supercell size is one of the inputs that are recommended to be specified manually. A 

convergence test was conducted to investigate the effect of supercell size on the calculated lattice 

thermal conductivity in cubic MgO system. MgO is selected due to its simple structure, low 

number of atoms in the primitive cell, and high lattice symmetry, with which the computational 

cost is affordable even when a large supercell size is employed.  

 
Figure 5: Effect of supercell size on the calculated lattice thermal conductivity of cubic MgO. The solid curves 

represent the calculated values of 𝜅 using Ph3pyWF with supercell sizes from 2 × 2 × 2 to 4 × 4 × 4. The 

filled symbols represent the experimental measured values of 𝜅. 128,129 

Figure 5 shows the calculated lattice thermal conductivities of MgO calculated using 

Ph3pyWF with different supercell sizes. In all 3 workflows, the reciprocal density of k-point 

meshes for all first-principles calculations were all set to 128 Å−3, and no cutoff pair distance were 

specified. Ph3pyWF automatically generated 4 × 4 × 4, 3 × 3 × 3, and 2 × 2 × 2  Monkhorst-
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Pack k-point meshes for the static calculations in the workflows with supercell sizes of 2 × 2 × 2, 

3 × 3 × 3, and 4 × 4 × 4 respectively. The lattice parameters of supercells in 3 cases range from 

6.02 Å to 12.04 Å. The results indicate a convergence pattern with increasing supercell size. From 

this convergence test we adopted a guideline that the acceptable convergence can be reached with 

lattice parameter along each axis of the supercell greater than 10 Å. In the case where the lattice 

parameter along an axis of a primitive unit cell is already greater than 9 Å, no elongation will be 

done along that axis to keep computational cost at a reasonable level.  

Table 5: Computational cost of each workflow in supercell size convergence test 

Supercell size Total CPU hours Average computing time per job (s) 

2 × 2 × 2 ~11 ~600 

3 × 3 × 3 ~30 ~520 

4 × 4 × 4 ~1000 ~8000 

 

The computational cost of each workflow in this convergence test is listed in Table 5. It is 

apparent that the total computing time grows exponentially with supercell size. The longer average 

computing time per job of the workflow with 2 × 2 × 2 supercell than that of the workflow with 

3 × 3 × 3 is likely caused by the k-points generated by reciprocal density, which employed meshes 

with more grid points in the workflow with smaller supercells. 
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5.1.2. Q-points Density 

Studies 102,130 have suggested that the convergence of calculated lattice thermal 

conductivity with respect to q-point mesh dimension shows a pattern that can be fitted to 

exponential curve with form: 

 𝜅 = 𝜅∞ (1 − 𝑒−
𝑞𝑖
𝜖 ) , (35) 

where 𝑞𝑖 is the number of q-points in direction 𝑖, 𝜅∞ and 𝜖 are unknown parameters to fit. The 

value of 𝜅∞ is the converged value of lattice thermal conductivity to be extrapolated, and the value 

of 𝜖 reflects the rate of convergence.  

In this work, an auxiliary workflow component has been developed to perform such 

convergence test: wf_ph3py_get_kappa_convergence. This workflow shall be launched after the 

completion of a base workflow of Ph3pyWF since itself does not involve first-principles 

calculations.  

 
Figure 6: Effect of q-point mesh on the calculated lattice thermal conductivity of La2Zr2O7 at 473 K. The filled 

symbols represent the values of 𝜅 calculated using different dimensions of q-point meshes. The solid curve 

represents the fitting curve of the calculated points to a fitting function 𝜅 = 𝜅∞(1 − 𝑒−𝑞𝑖/𝜖). The dashed line 

represents the experimentally measured value from Wang 2012 131. 
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Figure 6 shows the result obtained using wf_ph3py_get_kappa_convergence based on a 

completed Ph3pyWF for La2Zr2O7, which has been discussed in the “Validation Results” section. 

The q-point meshes used have numbers of q-points range from 3 to 13 in each direction. Only 

meshes with odd number of q-points in each direction were used to ensure gamma-centered mesh. 

The extrapolated value of lattice thermal conductivity ( 𝜅∞ ) is around 5% lower than the 

experimental value.  

The calculated points also show good alignment with the fitting curve, indicating the 

possibility to perform calculations using low density q-point meshes and obtain final result by 

extrapolation. Since the computational cost grows exponentially with the density of q-point mesh, 

this fitting method is exceptionally cost-effective.  

5.2. Validation Results 

In this work, Ph3pyWF used to perform calculation for several oxide systems: ZrO2, MgO, 

Al2O3, ZnO, BeO, La2Zr2O7, and Gd2Zr2O7. The capabilities of Ph3pyWF are validated by 

comparing the calculated lattice thermal conductivity with the experimental values.  

5.2.1. ZrO2  

The lattice thermal conductivity and phonon dispersion band structure of monoclinic ZrO2 

(space group P21/c) was calculated using Ph3pyWF. The IFCs were calculated using 2 × 2 × 2 

supercells (96 atoms) constructed from the primitive cell (12 atoms). The phonon properties were 

calculated using 11 × 11 × 11 q-point mesh. The cutoff pair distance was set as 4.0 Å to reduce 

the number of static jobs from more than 10,000 to around 2,000.  
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Figure 7: Phonon dispersion band structure for ZrO2 calculated using Ph3pyWF. 

 
Figure 8: Lattice thermal conductivity (𝜅) of monoclinic ZrO2. The solid curve represents the calculated values 

of 𝜅 using Ph3pyWF. The filled symbols represent the experimental measured values of 𝜅. 132,133 

The calculated phonon dispersion band structure shown in Figure 7 shows no presence of 

imaginary frequency, therefore indicates the stability of this structure. Figure 8 shows the lattice 
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thermal conductivity of monoclinic ZrO2 calculated using Ph3pyWF and the experimentally 

measured values. The calculated lattice thermal conductivity values show good agreement with 

the experimental values, with slight overestimation at temperatures below 800K. This workflow 

has 2541 subprocesses and costed approximately 400 CPU hours in total, with ~560 seconds per 

subprocess on average.  

5.2.2. MgO 

The lattice thermal conductivity and phonon dispersion band structure of cubic MgO (space 

group Fm 3̅ m) was calculated using Ph3pyWF. The IFCs were calculated using 4 × 4 × 4 

supercells (128 atoms) constructed from the primitive cell (2 atoms). No cutoff pair distance was 

specified in this workflow. The reciprocal density of k-point meshes for structural relaxation and 

static calculations were all set to 32 Å−3.  

 
Figure 9: Phonon dispersion band structure for MgO calculated using Ph3pyWF. 
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Figure 10: Lattice thermal conductivity (𝜅) of monoclinic MgO. The solid curve represents the calculated 

values of 𝜅 using Ph3pyWF. The filled symbols represent the experimental measured values of 𝜅. 128,129 

The calculated phonon dispersion band structure shown in Figure 9 shows no presence of 

imaginary frequency, therefore indicates the stability of this structure. Figure 10 shows the lattice 

thermal conductivity of cubic MgO calculated using Ph3pyWF and the experimentally measured 

values. The calculated lattice thermal conductivity values show good agreement with the 

experimental values in general, with overestimation at temperature above 500K.  This workflow 

has 445 subprocesses and costed approximately 100 CPU hours in total, with ~810 seconds per 

subprocess on average. The lower reciprocal density of k-points significantly reduced the 

computational cost in this workflow, comparing with the similar workflow discussed in the 

convergence test, without sacrificing too much computational accuracy.  

5.2.3. Al2O3 

The lattice thermal conductivity of corundum Al2O3 (space group R3̅c) was calculated 

using Ph3pyWF. The IFCs were calculated using 3 × 3 × 3 supercells (270 atoms) constructed 
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from the primitive cell (10 atoms). The cutoff pair distance was set as 6.0 Å to reduce the number 

of static jobs from more than 2400 to around 960. 

 
Figure 11: Lattice thermal conductivity (𝜅) of corundum Al2O3. The solid curve represents the calculated 

values of 𝜅 using Ph3pyWF. The filled symbols represent the experimental measured values of 𝜅. 134 

Figure 11 shows the lattice thermal conductivity of corundum Al2O3 calculated using 

Ph3pyWF and the experimentally measured values. Despite having underestimation over all range 

of temperatures, the calculated values show acceptable agreement with the experimental values in 

terms of the general curve shape. This workflow has 962 subprocesses and costed approximately 

120 CPU hours in total, with ~400 seconds per subprocess on average.  

5.2.4. ZnO and BeO 

Ph3pyWF has been tested on 2 wurtzite structure (space group P63mc) oxide systems: ZnO 

and BeO. The IFCs of ZnO and BeO were calculated using 3 × 3 × 2 supercells (72 atoms) and 

3 × 3 × 3 supercells (108 atoms) respectively constructed from the primitive cell (4 atoms). In 

both workflows, the use of symmetry in VASP were switched off due to reoccurring errors.  
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Figure 12: Lattice thermal conductivity (𝜅) of wurtzite ZnO. The solid curve represents the calculated values 

of 𝜅 using Ph3pyWF. The filled symbols represent the experimental measured values of 𝜅. 135 

 
Figure 13: Lattice thermal conductivity (𝜅) of wurtzite BeO. The solid curve represents the calculated values 

of 𝜅 using Ph3pyWF. The filled symbols represent the experimental measured values of 𝜅. 136–138 

The lattice thermal conductivities of wurtzite ZnO and BeO calculated using Ph3pyWF 

and their experimentally measured values are shown in Figure 12 and Figure 13 respectively. The 
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calculated values of both systems show good agreement with the experimental values at relatively 

low temperature range, and overestimation at temperature above 600 K. Nevertheless, the 

calculated results still verified the exceptionally high thermal conductivity of BeO. The workflow 

of ZnO has 1257 subprocesses and costed approximately 400 CPU hours in total, with ~1150 

seconds per subprocess on average. The workflow of BeO has 2251 subprocesses and costed 

approximately 500 CPU hours in total, with ~820 seconds per subprocess on average.  

5.2.5. La2Zr2O7 and Gd2Zr2O7 

Once the workflow software has been validated with the aforementioned binary oxide 

systems, we move on to further validate Ph3pyWF on more complicated oxide systems such as 

pyrochlores. In this work, the lattice thermal conductivities of La2Zr2O7 and Gd2Zr2O7, both are 

promising candidate of TBC topcoat materials with pyrochlore structure (space group Fd3̅m) and 

Zr occupying sites at 16𝑐 (0, 0, 0), were calculated using Ph3pyWF.  

The IFCs of La2Zr2O7 and Gd2Zr2O7 were both calculated using 2 × 2 × 2 supercells (176 

atoms) constructed from the primitive cell (22 atoms). A cutoff pair distance of 5 Å was set in both 

workflows, reducing the number of static jobs from more than 3800 to less than 900. Local density 

approximation (LDA) was used instead of generalized gradient approximation (GGA) as 

exchange-correlation functional.  
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Figure 14: Lattice thermal conductivity (𝜅) of pyrochlore La2Zr2O7. The solid curve represents the calculated 

values of 𝜅 using Ph3pyWF. The filled symbols represent the experimental measured values of 𝜅. 139,140 

 
Figure 15: Lattice thermal conductivity (𝜅) of pyrochlore Gd2Zr2O7. The solid curve represents the calculated 

values of 𝜅 using Ph3pyWF. The filled symbols represent the experimental measured values of 𝜅. 141,142 
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The lattice thermal conductivities of La2Zr2O7 and Gd2Zr2O7 calculated using Ph3pyWF 

and their experimentally measured values are shown in Figure 14 and Figure 15 respectively. The 

calculated results verified the characteristic low lattice thermal conductivities in both systems. For 

La2Zr2O7, the calculated values show good agreement with the experimental values at relatively 

low temperature. Underestimation is observed in both cases, and the flattening pattern at high 

temperature is not reflected in the calculated lattice thermal conductivities. This can be explained 

by the significant thermal conductivity contribution from radiational thermal transportation, which 

is not involved in the calculations of this workflow.  
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Figure 16: Phonon dispersion band structures for (a) La2Zr2O7 and (b) Gd2Zr2O7 calculated using Ph3pyWF. 

 
Figure 17: Phonon partial density of state (PDOS) of (a) La2Zr2O7 and (b) Gd2Zr2O7 calculated using 

Ph3pyWF.  
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Lan et al. 111 suggested that for pyrochlore systems with rare-earth elements occupying A 

sites (16d), the lower the frequency of optical phonon branches the lower the thermal conductivity 

due to the scattering of the transverse acoustic branches caused by the low-lying optical branches. 

This theory provides reasonable explanation to the lower calculated lattice thermal conductivity of 

Gd2Zr2O7. The calculated results indicate the presence of low-lying optical phonon branches at 

lower frequency in Gd2Zr2O7 (~1.5 THz) than in La2Zr2O7 (~2 THz), which can be observed in 

the phonon dispersion band structures shown in Figure 16. The phonon PDOS shown in Figure 17 

also indicate lower branches attributed by Gd in Gd2Zr2O7 (peak at ~2.1THz) than that attributed 

by La in La2Zr2O7 (peak at ~2.4THz).  

Due to the larger and more complicated unit cell and supercell, these 2 workflows costed 

more computational resources than the other validation workflows. Both workflows have around 

900 subprocesses, and each costed approximately 1000 CPU hours, with more than 4000 seconds 

per subprocess on average.  
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Chapter 6: Conclusions 

In this work, an automated workflow software package, Ph3pyWF, was developed for 

calculating lattice thermal conductivities of TBC materials using the finite displacement method 

and SMRT approximation. This workflow software employs a state-of-the-art scientific workflow 

framework to combine multiple computational material science software packages and ultimately 

accelerate the exploration of new TBC topcoat materials. After continuous development and 

testing, the following conclusions are established.   

• Ph3pyWF has shown a high degree of automation and is capable to provide a near-turn-

key solution for lattice thermal conductivity and phonon properties calculations. It 

automates the full process of calculation, covering procedures including input file 

preparation, job submission, and output parsing. Compared with manual procedures, this 

workflow is much more efficient and avoids repetitive work, especially during error 

handling.  

• Ph3pyWF satisfies the requirements of optional transparency and scoped provenance. It is 

highly transparent when running with default settings, where few input parameters have to 

be specified, but can be opaque for expert users to adjust specific parameters. The critical 

calculation results of all subprocesses in a workflow are stored in a database alongside the 

dependency information among subprocesses.  

• The lattice thermal conductivities of several material systems were calculated using 

Ph3pyWF. The results validated the capabilities of Ph3pyWF to predict the properties of 

oxides with a wide range of thermal conductivities at relatively high accuracy.  

• This work, as a good showcase, also demonstrate this framework’s capability of defining 

dynamic workflows, which is necessary for more complicated studies.  
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Chapter 7: Future Outlook 

One of the key objectives of this work is the degree of automation provided by Ph3pyWF, 

which unfortunately cannot be directly reflected in the description in this thesis. Once the source 

code of Ph3pyWF is made public, we aim to invite more users and contributors in various fields 

of study to provide feedback and improve this workflow. Some points for improvement and 

possibilities for future works are listed below.  

• More robust version control and unit testing shall be employed as Ph3pyWF enters the 

public domain to reduce inconsistency and instability. 

• More input parameters can be determined automatically by the workflow, including 

supercell size, k-point mesh, and cutoff pair distance.  

• Adding compatibility with other quantum calculation engines will greatly encourage more 

users to accelerate their research with Ph3pyWF.  

• Once the software reaches a stable version, implementation of a graphical user interface 

would significantly improve the user experience especially when monitoring and 

controlling more complicated workflows.  

• Ph3pyWF can be used to conduct high-throughput screening of materials. For this purpose, 

it needs to be more dynamic. For example, skipping 3rd order IFCs calculations if phonon 

dispersion indicates a significant presence of imaginary frequency.  

• Use Ph3pyWF to generate training datasets for machine learning applications in 

computational materials science.  

• Combine Ph3pyWF and other existing workflow components to calculate other properties, 

such as CTE, and thus comprehensively evaluate TBC candidates.  
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