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GENERAL ABSTRACT 59 

Species distribution models (SDMs) are one of the most popular numerical tools in ecology, and 60 

have been used predictively in biological invasion management. However, the degree to which 61 

SDMs are predictive under new contexts – their transferability – is largely unknown with the 62 

majority of studies being restricted to few species with equivocal results. This thesis focused on 63 

the evaluation of the spatial transferability of SDMs applied to biological invasions, and what 64 

factors may contribute to their predictive success. I examined the discriminatory ability of SDMs 65 

fitted using two popular modelling approaches for 648 species within their native ranges, and 66 

extrapolated to 1918 invaded ranges. I assessed various general factors of transferability, as well 67 

as factors related specifically to biological invasions. Despite strong model performance within 68 

the native range, more than half of the SDMs had poor performance when validated using their 69 

exotic range distributions. Model performance varied between taxonomic classes and invaded 70 

continents, and increased with the performance of the model and the environmental breadth of 71 

the species in the native range, as well as the number of occurrences and year of first record in 72 

the exotic range. Models performed worse with greater environmental breadth in the exotic 73 

range, gross domestic product in the native range, geographic distance between ranges and when 74 

extrapolating to islands. While poor transferability was observed on average, SDM performances 75 

differed depending on characteristics of the species, ranges and models themselves. Some factors 76 

were contrary to expectations, where SDMs performed better with higher habitat generalism and 77 

for more recent invasions. The latter is counter to assumptions of equilibrium, and suggests that 78 

SDMs may be useful for management early in the invasions process. This thesis contributes to 79 

the growing literature examining SDM transferability, and provides further insights on their 80 

potential uses as a management tool for biological invasions.  81 



5 

RESUMÉ 82 

Les modèles de répartition des espèces (species distribution models; SDMs) sont l’un des outils 83 

numériques les plus populaires en écologie et sont régulièrement utilisés de façon prédictive pour 84 

la gestion d’invasions biologiques. Cependant, le niveau de prévisibilité des SDMs dans de 85 

nouveaux contextes — c’est-à-dire leur transférabilité — demeure largement inconnu, la 86 

majorité des études étant limitées à quelques espèces avec des résultats équivoques. Cette thèse 87 

se concentre sur l’évaluation de la transférabilité spatiale des SDMs appliqués aux invasions 88 

biologiques et les facteurs qui contribuent à leur prévisibilité. J’ai examiné la capacité 89 

discriminatoire des SDMs en ajustant deux approches de modélisation populaires pour 90 

648 espèces dans leurs aires de répartition indigènes afin d’extrapoler les modèles aux 1918 aires 91 

de répartition envahies. J’ai évalué divers facteurs de transférabilité généraux, ainsi que des 92 

facteurs liés spécifiquement aux invasions biologiques. Malgré de bonnes performances envers 93 

leur application sur les aires de répartition indigènes, la plupart des SDMs ont offert des 94 

performances médiocres lors de leur validation sur les aires de répartition exotiques. La 95 

performance des modèles en répartition exotique a varié en fonction des classes taxonomiques 96 

utilisées et des continents envahis. Celle-ci a augmenté avec la performance du modèle et 97 

l’étendue environnementale des espèces dans leur aire de répartition indigène, ainsi qu’avec le 98 

nombre d’occurrences et l’année de la première observation dans les aires de répartition 99 

exotiques. La performance des modèles extrapolés a diminué avec la présence de plus grandes 100 

étendues environnementales dans l’aire de répartition exotique, de plus gros produits intérieurs 101 

bruts dans l’aire de répartition indigène, et de plus longues distances géographiques entre les 102 

aires de répartition, ainsi qu’avec leur application aux îles exotiques. Bien qu’une faible 103 

transférabilité ait été observée en moyenne, la performance des SDMs différait selon les 104 
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caractéristiques des espèces, les aires de répartition impliquées et les modèles eux-mêmes. 105 

Certains résultats vont à l’encontre de nos attentes ; notamment, les SDMs extrapolés ont offert 106 

de meilleures performances dans les habitats plus généralisés et pour les invasions plus récentes. 107 

Ce dernier résultat n’appuie pas les hypothèses de l’équilibre existantes et suggère que les SDM 108 

peuvent être utiles pour la gestion dès le début du processus d’invasion. Cette thèse contribue à 109 

la littérature de plus en plus vaste examinant la transférabilité des SDMs et fournit des aperçus 110 

supplémentaires sur leur potentiel comme outil de gestion des invasions biologiques. 111 

  112 
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GENERAL INTRODUCTION 203 

Rapid global change currently threatens biodiversity, which has led to new challenges to 204 

understand and manage these drivers of extinction. The current biodiversity extinction crisis has 205 

been attributed to various global drivers, including biological invasions (Mack et al., 2000), 206 

climate change and land use change (Millennium Ecosystem Assessment, 2005). There has been 207 

a growing need to develop tools to better understand the ramifications of global change on 208 

species, and predict future responses for conservation. This thesis focuses on biological 209 

invasions, and on estimating the distributions of species in their exotic ranges. 210 

 211 

Biological invasions 212 

Biological invasions, in which species are introduced, establish and spread throughout a new 213 

region, have led to severe ecological damages and extirpations of vulnerable populations 214 

(Doherty et al., 2016; Mack et al., 2000; Vitousek et al., 1996), as well as severe economic 215 

impacts with billions of dollars lost annually in the United States alone (Pimentel et al., 2005). 216 

Modern invasions have been primarily driven by the movement of humans, particularly through 217 

global trade between biogeographical regions (Meyerson & Mooney, 2007). In particular, the 218 

rise in international trade has led to increases in the frequency of introduction events as well as 219 

the number of introduced individuals (propagule pressure; Lockwood et al., 2005), which is a 220 

primary factor determining invasions. The rate of new invasions has been increasing over time 221 

globally where a lack of saturation has been observed (Seebens et al., 2017), demonstrating an 222 

increasingly urgent concern for conservation. 223 
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 The management of biological invasions may occur at any stage in the invasion process. 224 

Prevention is an important component of invasive species management, and therefore 225 

understanding the likelihood of species establishment and potential subsequent spread in a new 226 

region is crucial to estimate the potential risk posed by each species and to prioritize 227 

management efforts (Leung et al., 2012). Once the species has established within a region, 228 

identifying the most suitable areas may help prioritize efforts to control or contain the species 229 

(Gormley et al., 2011). Early detection and rapid response are necessary management strategies, 230 

before invading species become widespread and too challenging to control or contain (Lodge et 231 

al., 2006). To this effect, species distribution models (SDMs) have become one of the most 232 

promising tools to predict potentially invaded or currently invaded ranges.  233 

 234 

Species distribution models 235 

The growth of large datasets has given rise to diverse ecological models that may be used to 236 

inform management decisions. Species distribution models (SDMs) are an example of these 237 

numerical tools, relating species occurrence information to the environmental factors of their 238 

distribution through a quantitative or rules-based framework (Franklin, 2010). Many other names 239 

have been used to describe the species distribution modelling process, including ecological niche 240 

models (ENMs), habitat models, climate envelopes, and range mapping (Elith & Leathwick, 241 

2009).  242 

 The ecological niche of a species is a vital concept in ecology, and is defined as the set of 243 

biotic and abiotic conditions required for a species to persist, where the fundamental niche of a 244 

species consists of all the suitable conditions for their survival, and the realized niche consists of 245 



14 

the ecological space that the species actually occupies (Hutchinson, 1957). While SDMs may 246 

attempt to capture the ecological requirements of species, the fundamental niche of a species is 247 

unknown in practice (Phillips et al., 2006). SDMs measure the observed distributions, which may 248 

be constrained by dispersal limitations or historical factors, or other factors and thus reflect the 249 

realized niche (Lobo et al., 2010). 250 

 SDMs may be implemented in a number of different ways, such as the response variable 251 

of the model, the modelling approach itself and the predictors included. The most common 252 

response variables used in SDMs for single species are presence-only (in which the absences of 253 

the species are not known; Yates et al., 2018). While presence-absence and abundance data 254 

contain the more information content and may yield better model performance, the use of 255 

presence-only data has become more common due to their wide availability through large 256 

databases (e.g. GBIF, 2020) and the practical challenges associated with obtaining rigorously 257 

sampled presence-absence or abundance data (Barbet-Massin et al., 2012).  258 

 Different approaches have emerged to best employ the use of presence-only data. Few 259 

modelling procedures exclusively use presences (e.g. BIOCLIM; Busby, 1991), where most 260 

approaches employ the use of pseudo-absences, or background information in place of true 261 

absences (Barbet-Massin et al., 2012). Background sites have been interpreted as a sample of 262 

available environments in the study site for a given species, or as an indicator of their unsuitable 263 

conditions (Capinha et al., 2011). One consequence of using SDMs fitted using presence-only 264 

data is that they can only provide relative likelihoods of occurrences, as background sites do not 265 

reflect true absences (which is unknown), and the number of sampled background sites influence 266 

the absolute probabilities of the model predictions (Pearce & Boyce, 2006). However, the 267 

relative suitability values from presence-only SDMs can yield important information, allowing 268 
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for “discrimination” between invaded and background sites (rather than “calibration” related to 269 

absolute probabilities of occurrence; Pearce & Boyce, 2006). Indeed, presence-only SDMS may 270 

discriminate between high and low risk areas which may be used to inform invasion management 271 

priorities (e.g. Crafton, 2014). 272 

SDMs may use various predictors to describe species distributions. SDMs may be 273 

implemented using indirect, correlative predictors (which comprise abiotic or biotic predictors), 274 

or as mechanistic models based on experimental data to link physiological responses directly to 275 

their environment (Evans et al., 2015; Yates et al., 2018). While mechanistic models may 276 

provide direct linkages between species and their environment (Evans et al., 2015), the required 277 

experimental data is often resource intensive, making such models currently impractical (Elith 278 

and Leathwick, 2009; Yates et al., 2018), particularly for biological invasions where rapid 279 

assessment is often needed. Consequently, correlative models have become the most common 280 

form of SDM, particularly using widely available, high resolution climatic data (e.g. Fick & 281 

Hijmans, 2017) that may be easily implemented as predictors of species distributions. 282 

SDMs have been applied for invasive species across several taxa, including marine (e.g. 283 

Crafton, 2014) and terrestrial (e.g. Lozier & Mills, 2011) ecosystems. SDMs may be used, for 284 

example, to identify areas of high risk for species in transit where they may establish and spread 285 

(Leung et al., 2012). Where species have established, SDMs are particularly useful to identify 286 

where the species may be located or may spread, to inform management priorities for control 287 

(e.g. Gormley et al., 2011). The application of SDMs may also be used to link global drivers of 288 

biodiversity loss, for example by predicting the shift in invasive species suitability over time due 289 

to climate change (e.g. Ahmad et al., 2019). Indeed, the benefits of SDMs to better inform 290 
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conservation efforts for biological invasions are clear, where risk assessments that allow the 291 

prioritization of species or sites may be made through these spatial predictions (Elith, 2017).  292 

Broadly, SDMs have become widely popular as an approach to answer large-scale 293 

ecological questions. SDMs can be used for explanation, in order to gain insight on the causal 294 

drivers of species distributions and their niche requirements (e.g. Graham et al., 2004; Heegaard, 295 

1997; Leathwick & Austin, 2001). Over time, the primary application of distribution modelling 296 

has shifted to prediction as a result of the increasingly large quantity of available data and the 297 

development of more advanced models (Elith & Leathwick, 2009).  298 

 299 

SDMs transferability for biological invasions 300 

In the context of biological invasions, SDMs fitted on the native range of a species have been 301 

used to predict their suitability or distribution in new ranges (e.g. Gama et al., 2016; Padalia et 302 

al., 2014). Unlike SDMs used for explanation, these predictive models are extrapolated to exotic 303 

ranges, where many factors may differ, and the reliability of the model may not hold. Therefore, 304 

understanding the degree to which SDMs may be predictive outside of the data used to fit the 305 

model, termed transferability, is necessary if SDMs are to be useful for forecasting the 306 

distributions of biological invasions. 307 

 Despite the widespread use of SDMs, recent publications have criticized the use of SDMs 308 

when making predictions in new environments, either temporally or spatially, suggesting that 309 

these models may fail outside of the data used to calibrate the models. The majority of SDMs are 310 

not rigorously examined before being applied where predictive models are typically assessed 311 
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using the range used to generate the model itself rather than on an independent dataset and 312 

consequently may not reflect its actual predictive ability (Vanreusel et al., 2007).  313 

 Recent reviews have outlined the challenges of developing ecological models for 314 

prediction, highlighting various factors that may influence transferability (Sequeira et al., 2018; 315 

Werkowska et al., 2017; Yates et al., 2018). Transferability may be influenced by the quality of 316 

the data, including low sample sizes, where sampling biases and low positional accuracy may 317 

consequently lead to poor SDM predictions (Yates et al., 2018). The choice of modelling 318 

approach influences the complexity of the models themselves and consequently their 319 

transferability, where overfitted models may fit to noise in the data, and underfitted models may 320 

fail to effectively capture complex ecological relationship (Werkowska et al., 2017). Identifying 321 

relevant predictors (and the number of predictors) may also influence transferability, in order to 322 

effectively describe a species distribution (Petitpierre et al., 2017). Whether specific taxa may be 323 

more or less transferable has been of interest (Yates et al., 2018), which may contain traits that 324 

make them more or less transferable (Urban et al., 2016). For example, ecological models have 325 

been shown to perform poorly for habitat generalist species (Brotons et al., 2004; Brotons et al., 326 

2007; Zhang et al., 2015), as these species may not be restricted by the environmental predictors, 327 

as well as fail to differentiate between the presence and background environment. Shifting 328 

species distributions over time may violate the assumption that species are in equilibrium with 329 

their environment (Araújo & Peterson, 2012; Guisan & Thuiller, 2005). This assumption is often 330 

violated in the early stages of biological invasion, which may lead to the miscalibration of SDMs 331 

when characterizing the species-environment relationship (Václavík & Meentemeyer, 2011). 332 

Population density may influence the spread and distribution of species, and consequently model 333 

transferability to new ranges (Yates et al., 2018). While propagule pressure is a major predictor 334 
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of invasive species establishment, it may also influence the geographic spread of established 335 

species, increase the genetic variation of the population and allow for multiple introductions in 336 

different locations (Leung et al., 2012; Lockwood et al., 2005). Therefore, propagule pressure 337 

and its surrogate measures such as gross domestic product (GDP; Sardain et al., 2019) may 338 

correlate with human-mediated spread and the degree to which species occupy all of the suitable 339 

environments within invaded ranges.  340 

 One of the primary challenges for developing models for transferability is the potential 341 

failure of SDMs when extrapolating to non-analogous conditions (Sequeira et al., 2018; Yates et 342 

al., 2018). SDMs fitted on a truncated curve may fail to predict outside of the conditions used to 343 

fit the model, for which species responses are unknown (Thuiller et al., 2004). Alternatively, 344 

SDMs may fail in cases where the realized niche has shifted (e.g. release from antagonizing 345 

biotic interactions; Tingley et al., 2014), leading to an apparent change in their species-346 

environment relationship. Yet, the majority of SDMs do not include important biological factors 347 

such as physiological and evolutionary traits, species interactions and dispersal, instead only 348 

considering the abiotic environment that the species occupies (Urban et al., 2016). Niche shifts 349 

have been observed across a variety of taxa for biological invasions, including plants 350 

(Broennimann et al., 2007; Early & Sax, 2014), insects (Hill et al., 2017), marine fish 351 

(Parravicini et al., 2015), birds (Cardador & Blackburn, 2020; Strubbe et al., 2012), reptiles and 352 

amphibians (Li et al., 2014; Tingley et al., 2014). 353 

 While there has been an increasing number of studies that have evaluated the spatial 354 

transferability of SDMs, the majority of these assessments have been restricted to few species or 355 

taxonomic groups and with varying methodologies leading to equivocal results. For example, 356 

Petitpierre et al. found that SDMs could reliably predict the exotic ranges for plants, noting that 357 
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few species in their invaded range existed outside of their native climatic niche (2012). Other 358 

studies have reported the opposite trend, finding that species occurred outside of the climatic 359 

conditions recorded in their native range (e.g. Beaumont et al., 2009; Goncalves et al., 2014). 360 

This lack of consensus has demonstrated a general limited understanding of model 361 

transferability, which is crucial for the application of SDMs for prediction. Therefore, a broad 362 

systematic assessment of SDM transferability, with the identification of factors that drive model 363 

success, would be timely and useful. 364 

This thesis seeks to evaluate the transferability of SDMs when extrapolated across spatial 365 

landscapes, and identify the potential factors associated with model failure. I constructed SDMs 366 

for 648 terrestrial species across 8 taxonomic classes using occurrence records from their native 367 

range and extrapolated these models to 1918 characterized invaded ranges as an independent 368 

form of validation to assess the loss in transferability. Using global occurrence data to provide 369 

the most extensive assessment of SDM transferability for invasive species to date, my goal was 370 

to examine under what conditions SDMs may succeed based on hypotheses surrounding 371 

transferability in general, as well as factors related specifically to biological invasions.  372 

 373 
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CHAPTER ONE 528 

ABSTRACT 529 

Aim 530 

Species distribution models (SDMs) are widely used predictive tools to forecast potential 531 

biological invasions. However, the reliability of SDMs extrapolated to exotic ranges remains 532 

understudied, with most analyses restricted to few species with equivocal results. We examine 533 

the spatial transferability of SDMs for 648 non-indigenous species extrapolated across new 534 

ranges, and identify what factors may lead to predictive failure. 535 

Location 536 

Global. 537 

Time period 538 

Current. 539 

Major taxa studied 540 

648 terrestrial species; 8 taxonomic classes. 541 

Methods 542 

We performed a large-scale assessment of the transferability of SDMs using two modelling 543 

approaches: generalized additive models (GAMs) and MaxEnt. We fitted SDMs on the native 544 

ranges of species and extrapolated them to 1918 exotic ranges. We examined the effect of several 545 

general factors, and factors related to biological invasions, on spatial transferability. 546 

Results 547 
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Despite both modelling approaches performing well when predicting the fitting range of the 548 

species (GAM mean AUC = 0.809; standard deviation (s) = 0.076; MaxEnt mean AUC = 0.830; 549 

s = 0.070), we observed low spatial transferability on average when extrapolating to their 550 

invaded ranges (GAM mean AUC = 0.686; s = 0.124; MaxEnt mean AUC = 0.689; s = 0.122). 551 

Transferability differed between taxonomic classes and invaded continents, and was positively 552 

influenced by the performance of the model and environmental breadth in the native range, 553 

number of occurrences in the exotic range, and the year of first record. Models performed worse 554 

with greater environmental breadth in the exotic range, gross domestic product of the native 555 

range, geographic distance between ranges and when extrapolating to islands. 556 

Main conclusions 557 

Our study showed poor spatial transferability on average, with SDM performance differing based 558 

on characteristics of the data, species and ranges. Contrary to expectations, specialized species 559 

(in native ranges) had the lowest predictability in exotic ranges, and more recent invasions 560 

showed stronger discriminatory ability. The latter suggests equilibrium conditions may not favor 561 

higher predictability in exotic ranges, and SDMs could be useful for management early in an 562 

invasion. We discuss the possible mechanisms of these findings. 563 

Keywords: GBIF; global; invasive species; presence-only data; species distribution model; 564 

transferability  565 
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INTRODUCTION 566 

Developing models to predict species distributions within exotic ranges has become increasingly 567 

important for the management of biological invasions (Elith, 2017) due to the severe effects of 568 

invaders on biodiversity loss (Bellard et al., 2016) and economic damages (Bradshaw et al., 569 

2016). Given the increasing availability of large databases and sophisticated algorithms (Elith & 570 

Leathwick, 2009), species distribution models (SDMs) have become the tool of choice for 571 

prediction (e.g. Lozier & Mills, 2011). SDMs are statistical tools that relate species occurrence 572 

data to their environment and other spatial characteristics (Franklin, 2009). SDMs have been 573 

shown to perform well when characterizing the distribution of the species within its fitting range 574 

when utilizing informative predictors and rigorously sampled survey data (Elith & Leathwick, 575 

2009). However, the reliability of SDMs when extrapolating to novel contexts must be viewed 576 

with caution (Yates et al., 2018).  577 

The challenges of developing of SDMs as predictive tools have been summarised in 578 

recent publications (Sequeira et al., 2018; Werkowska et al., 2017; Yates et al., 2018), noting that 579 

the transferability of SDMs across spatial landscapes is largely unknown. Most direct analyses of 580 

transferability to exotic ranges have been restricted to single or few species or taxonomic groups 581 

(e.g. Beaumont et al., 2009; Goncalves et al., 2014; Peterson et al., 2003; Sofaer et al., 2018). 582 

Moreover, there has been a lack of consensus on whether such models are transferable despite 583 

the popularity of ecological models as predictive tools (e.g. Beaumont et al., 2009; Goncalves et 584 

al., 2014; Morán-Ordóñez et al., 2017; Petitpierre et al., 2012). Thus, a broader systematic 585 

analysis is needed, with a focus on SDMs built on native ranges and extrapolated to exotic 586 

ranges, as well as the potential factors affecting their transferability. 587 
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Several factors may influence model transferability generally, across time and space. One 588 

proposed issue is whether SDMs may be more or less transferable depending on the taxonomic 589 

group of the species (Yates et al., 2018), given relevant differences in biological traits that 590 

influence species distributions (Urban et al., 2016). For example, the movement and behaviour of 591 

species may affect whether occurrences may be accurately recorded, as well as their ability to 592 

spread to suitable habitats. Habitat-generalist species may lead to poorer transferability as they 593 

may not be constrained by the environmental factors considered, or comprise multiple 594 

subpopulations that differ environmentally (Brotons et al., 2007), affecting whether the fitted 595 

SDMs can discriminate between presences and background data (Brotons et al., 2004; Zhang et 596 

al., 2015). Other general factors have been highlighted, such as data quality (Yates et al., 2018), 597 

model complexity (Werkowska et al., 2017), statistical approach (Yates et al., 2018), 598 

stochasticity and small sample sizes (Yates et al., 2018), and the choices of predictors 599 

(Petitpierre et al., 2017). 600 

Beyond these general issues, some factors may be particularly relevant for biological 601 

invasions. A key element of invasions is that species may still be spreading within their 602 

introduced range (Václavík & Meentemeyer, 2011), violating the underlying assumption of 603 

SDMs that species are in equilibrium with their environment (Araújo & Peterson, 2012; Guisan 604 

& Thuiller, 2005). In turn, spread is influenced by propagule pressure (the number of individuals 605 

introduced and/or rate of introduction events; Lockwood et al., 2005), where higher propagule 606 

pressure leads to a greater opportunity to encounter suitable habitats (i.e. they are less limited by 607 

“exposure”). Further, lack of exposure should be more important earlier in the invasion process, 608 

and distributions should become increasingly driven by habitat suitability as a species continues 609 
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to spread (Leung et al., 2012; Runquist et al., 2019). Thus, we hypothesized that species with 610 

higher propagule pressure and those that had invaded earlier would show stronger transferability.  611 

Previous works have identified non-analogous environments as a key factor affecting 612 

transferability, where models that are fitted on truncated curves may fail to predict species 613 

responses to new conditions (Yates et al., 2018). This is particularly relevant as invasive species 614 

are introduced to disjoint ranges by definition. Thus, we predicted a positive relationship 615 

between spatial transferability and environmental similarity between native and exotic ranges. 616 

Likewise, ranges may differ over longer geographic distances, which could correlate to other 617 

unmeasured environmental, biotic or human factors. Finally, we also explored the effect of 618 

islands on transferability. Islands differ from mainland areas in terms of their higher levels of 619 

endemism, lower species richness and restricted land areas (Kier et al., 2009), suggesting non-620 

analogous conditions. Moreover, impacts often differ between island and mainland invasions 621 

(Spatz et al., 2017), suggesting ecological differences at play. Thus, we predicted lower 622 

transferability when predicting island invasions. 623 

The objectives of this study were (1) to evaluate the capacity of SDMs to predict species 624 

distribution when extrapolated to exotic ranges (i.e., disjointed and outside of the range used for 625 

calibration), and (2) to identify factors that may influence model transferability. To do so, we 626 

analyzed the transferability of SDMs constructed on the native range of 648 terrestrial species 627 

across 8 taxonomic classes and extrapolated to their exotic ranges, providing the largest 628 

systematic analysis of native to exotic range transferability to date.  629 

 630 

 631 
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METHODS 632 

To assess the transferability of SDMs, we fitted models for species on their native range and 633 

extrapolated them to their exotic ranges (see Figure 1 for full flowchart of methodology). 634 

Background reference sites were sampled using the ‘target-group background’ approach (TGB, 635 

Phillips et al., 2009) within each range to account for biases associated with presence-only data. 636 

After extrapolating to the exotic range of the species, we assessed the transferability of SDMs in 637 

terms of their discriminatory power and examined several potential predictors of model success 638 

based on hypotheses associated with the models, species or characteristics of the ranges 639 

themselves (Table 1). All analyses were performed in R (R Core Team, 2019). Descriptions of 640 

the datasets used in the model fitting, validation and predictors of transferability are provided in 641 

Supporting Information Table S1. 642 

 643 

Environmental data 644 

We included environmental predictors that are available globally and frequently used in SDM 645 

literature. We used the 19 bioclimatic variables from WorldClim version 2 at 2.5-arcmin 646 

resolution (approximately 5 km grid size; Fick & Hijmans, 2017). Variables were derived from 647 

monthly temperature and precipitation values relating to its mean, variation and extremes (Fick 648 

& Hijmans, 2017). All bioclimatic variables were standardized to a mean of zero and standard 649 

deviation of one. Prior to model fitting, we accounted for multicollinearity by removing highly 650 

correlated variables across all cells globally using a threshold pairwise correlation coefficient 651 

value of |r| > 0.7. After excluding collinear variables, the reduced set was used in all SDMs: 652 

annual mean temperature (bio1), mean diurnal range (mean of monthly maximum and minimum 653 
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temperatures; bio2), temperature annual range (bio7), annual precipitation (bio12), precipitation 654 

of the driest month (bio14), precipitation seasonality (coefficient of variation; bio15) and 655 

precipitation of the coldest quarter (bio19). 656 

 We included two variables in addition to the seven bioclimatic predictors: elevation and 657 

normalized difference vegetation index (NDVI) at 2.5-arcmin and 3-arcmin resolution, 658 

respectively. Elevation has been shown to drive many ecological processes affecting species 659 

distributions (Wang et al., 2017), while NDVI, which is an index of vegetation cover 660 

(“greenness”), has been used as surrogate for habitat quality (Pettorelli et al., 2011) and land 661 

cover changes (Lunetta et al., 2006). Both predictors have been widely used in SDMs (Morán-662 

Ordóñez et al., 2017; Wen et al., 2015) and globally available. Elevation data was downloaded 663 

from WorldClim (Fick & Hijmans, 2012), and MODIS NDVI data was downloaded through the 664 

NASA Goddard Earth Sciences Data and Information Services Center (GES DISC; Acker & 665 

Leptoukh, 2007). Neither elevation nor NDVI were highly correlated (|r| < 0.7) with the climate 666 

predictors. 667 

 668 

Species data 669 

We obtained species occurrence records from the Global Biodiversity Information Facility 670 

(GBIF, 2020; see Supporting Information Text S1 for the list of DOI links), which were 671 

subsequently gridded to the environmental data (at 2.5-arcmin resolution). Grid cells containing 672 

multiple occurrences were counted as a single presence. We filtered out records with listed 673 

geospatial issues within GBIF and coordinate uncertainty greater than 5 kilometers (the 674 

resolution of our environmental data). We applied standardized cleaning using the 675 



33 

‘CoordinateCleaner’ package (Zizka et al., 2019), which removed any records with equal or 676 

zero/zero coordinates, found in urban areas, near biodiversity institutions, outside of their listed 677 

country, or at the centroids of countries and its subdivisions. Finally, we removed all occurrence 678 

records that did not have associated environmental data, or were dated before the year 1970 to 679 

match the temporal resolution of WorldClim. 680 

Species occurrences were classified as either native or exotic at the country level using 681 

distributional information from the CABI Invasive Species Compendium (CABI, 2020) and the 682 

IUCN Global Invasive Species Database (GISD, 2015). We defined “regions” and “ranges” as 683 

physical locations and the contiguous geographic extent of the species, respectively. Regions 684 

were generated at the sub-national level (state/province/equivalent), using the Global 685 

Administrative Areas database (2018). Exotic ranges were defined as the set of contiguous 686 

regions (that is, regions that share a land border with each other) containing at least one 687 

occurrence point. Therefore, an SDM fitted on the native range for a species may be extrapolated 688 

to one or more exotic ranges, each comprising one or more connected regions. We excluded 689 

records that were found in countries where the species was considered both native and exotic, or 690 

not classified. Ranges (or species) with fewer than 20 occurrences were excluded to avoid 691 

overfitting. The species included in the study, along with relevant taxonomic information are 692 

presented in Supporting Information Table S2. 693 

 694 

Background environment selection 695 

Presence-only occurrence records represent the most common form of distributional data. We 696 

compared the environments our occurrence records to 10,000 sampled background sites in both 697 
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the native and exotic ranges (Barbet-Massin et al., 2012; Capinha et al., 2011). While the number 698 

of background points included in the model affects the absolute probabilities of prediction, the 699 

likelihood of presences could still be interpreted in a relative manner, termed discrimination 700 

(Pearce & Boyce, 2006). We used the ‘target-group background’ approach to select our 701 

background sites (TGB; Phillips et al., 2009) by randomly sampling GBIF records belonging to 702 

the same taxonomic class as the species of interest, within the same range and independently of 703 

species presences (see Supporting Information Table S3 for the GBIF DOIs). This accounted for 704 

observation biases associated with presence-only data by mimicking the sampling approach of 705 

the occurrence records. We applied the same data cleaning procedure to our target-group 706 

backgrounds sites as the occurrence records. For computational reasons, we downloaded 707 

occurrence records for 300 randomly sampled species within class-region combinations that 708 

possessed greater than 10,000,000 occurrences in total, which were then sub-sampled to 10,000 709 

points per range. Additionally, we used the maximum number of available occurrences where 710 

ranges had fewer than 10,000 available background sites. However, species that did not possess 711 

at least 4000 potential background sites were excluded. 712 

 713 

Modelling species distributions 714 

We applied two modelling approaches as the framework of the SDMs in this study: generalized 715 

additive models (GAMs; Hastie & Tibshirani, 1990) and MaxEnt (Phillips et al., 2006). GAMs 716 

were implemented in this study using the ‘mgcv’ package in R (Wood, 2017). Specifically, for 717 

GAMs, non-linear relations (the ‘smooth’ terms in the model) are defined by segments specified 718 

by the number of knots, each of which may have their own polynomial function form. 719 
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𝑧𝑖𝑗 = 𝑏0 + 𝑠(𝑥1,𝑖) + 𝑠(𝑥2,𝑖)+. . . +𝑠(𝑥𝑚,𝑖)    (1) 720 

𝑦𝑖𝑗 =
1

1+𝑒
−𝑧𝑖𝑗

       (2) 721 

Where 𝑦𝑖𝑗 was the binary presence or background at site i and species j, and 𝑥1,𝑖 … 𝑥𝑚,𝑖 were the 722 

m continuous climatic predictors with smoothing terms s. We used a maximum of 5 knots to 723 

allow each smoothing function to remain flexible, but computationally efficient. To prevent 724 

overfitting, we allowed terms to be excluded by setting the ‘select’ argument to true within the 725 

‘gam’ function. Additionally, we removed variables showing concurvity (the non-linear 726 

extension of multicollinearity where the smooth term for one independent variable can be 727 

approximated by a linear combination of the other smooth terms in the model; Buja et al., 1989; 728 

Morlini, 2006). We applied the ‘concurvity’ function from the package ‘mgcv’ (Wood, 2017), 729 

and removed predictors with the highest ‘worst’ case concurvity. We refit the GAM, iterating 730 

this procedure until all variables possessed estimated concurvity values less than 0.8. 731 

 MaxEnt is a machine learning method designed specifically for presence-background 732 

modelling (Phillips et al., 2006; Phillips & Dudík 2008). Similar to GAMs, MaxEnt may be 733 

subject to similar issues of overfitting given its flexible modelling procedures. To reduce 734 

possible overfitting, we limited the model complexity to only include linear, quadratic and 735 

product features (Merow et al., 2014). The SDMs were fitted using ‘maxnet’ package in R 736 

(version 3.4.0; Phillips, 2017), with the default arguments for the rest of the settings. 737 

As the metric of model performance, we used the area under the receiver operating 738 

characteristic curve (AUC; Hanley & McNeil, 1982). An AUC value of 1 indicates perfect 739 

discrimination, while a value of 0.5 indicates discrimination no better than chance. We compared 740 

AUC in the fitted range against AUC in the exotic ranges, to determine transferability, and 741 



36 

conversely, loss of discriminatory power. As presence-only models discriminate between 742 

presences and background sites rather than absences, the interpretation of AUC is less clear than 743 

with presence-absence (Phillips et al., 2006). Nonetheless, we considered AUC values greater 744 

than or equal to 0.7 to have useful model performance (Morán-Ordóñez et al., 2017; Swets, 745 

1988). While several authors have criticized the use of AUC due to the equal weighting of 746 

omission and commission errors (Jiménez-Valverde, 2012; Lobo et al., 2007), AUC remains one 747 

of the most commonly used metrics of discrimination for SDMs, and is suited for the relative 748 

behaviour of presence-background models (Phillips et al., 2006). We also considered the 749 

Continuous Boyce Index (CBI; Hirzel et al., 2006), but using simulation analyses we found that 750 

CBI was sensitive to the proportion of unsampled presences, while AUC was robust (Supporting 751 

Information Text S2; Figure S1). Therefore, we only report the AUC in the main text (but 752 

provide the CBI results in the Supporting Information Text S2). 753 

 754 

Predictors of SDM transferability 755 

We examined several factors based on characteristics of the SDMs and species that may be 756 

related to model transferability in general, as well as characteristics related specifically to 757 

biological invasions (Table 1). As a general predictor of transferability, we included the 758 

discriminatory performance within the native range, based on mean AUC from 10-fold cross-759 

validation. Additionally, we compared the mean AUC generated using 10-fold random cross-760 

validation to spatial-block cross-validation (Supporting Information Text S3). Both techniques 761 

were highly correlated with each other and had little overall difference in results, with a small 762 

decline in performance with spatial-block cross-validation (Supporting Information Text S3; 763 

Figure S2). Therefore, we reported the results using random cross-validation. We considered the 764 
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number of occurrences used to fit the model, as models with few sample points may lead to the 765 

species-environment relationships being poorly captured (Wisz et al., 2008). Stochasticity may 766 

also lead to poor predictive performance, particularly at low numbers (Yates et al., 2018), and 767 

thus we included the number of occurrences in the exotic range. To examine generalities within 768 

large geographic areas, we included the invaded continent as a categorical predictor. Multi-769 

continental invasions were treated as a unique level within the factor. 770 

We considered differences in transferability between taxonomic classes. The taxonomic 771 

class of each species was obtained using the ‘taxize’ package in R (Chamberlain & Szöcs, 2013). 772 

Relevant species traits, such as their dispersal ability (Miller & Holloway, 2015; Syphard & 773 

Franklin, 2010), may directly influence species distributions and consequently the performance 774 

of SDMs in a predictive context. We included the mobility of species in their adult life stage as a 775 

binary predictor, where sessile species were assigned a value of 1 and species capable of 776 

movement were given a value of 0. The levels of mobility were highly collinear with the 777 

taxonomic class of the species and thus were assessed separately.  778 

We examined the effects of ecological generalism on transferability (Brotons et al., 2004; 779 

Zhang et al., 2015) using two environment-based predictors: environmental breadth and 780 

environmental coverage (Supporting Information Text S4). We quantified the environmental 781 

breadth and coverage of each native species distribution by projecting the occurrence cells, as 782 

well as the background environment cells into a two-dimensional environment space using 783 

principal component analysis (PCA; Pearson, 1901). The environmental breadth of a species was 784 

defined as the area of the environment space encompassing the occurrences in the native range, 785 

representing their specialization (Supporting Information Text S4). Environmental coverage was 786 

calculated by dividing the environmental breadth of the projected occurrences by the 787 
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environmental breadth of all cells in the range (i.e. the occurrence and background cells 788 

combined; Figure S3). We incorporated environmental coverage to estimate how much of the 789 

available environment the species occupied, where a high environmental coverage may result in 790 

an SDM that cannot distinguish between occurrences and background sites. We examined the 791 

environmental breadth and coverage of species for both their native and exotic ranges. 792 

We considered invasion specific factors in addition to the general predictors of 793 

transferability (Table 1). We expected species to be farther from equilibrium, with lower 794 

exposure (i.e. propagule pressure) and earlier in an invasion, resulting in distributions being 795 

driven by other factors besides environmental constraints (Leung et al., 2012, Runquist et al., 796 

2019). We used gross domestic product (GDP) as a proxy of propagule pressure, which is 797 

strongly correlated with trade-related transport (Sardain et al., 2019). The GDP of the range was 798 

calculated using the sum of all cells within its regions using a gridded GDP dataset (at 5-arcmin 799 

resolution) provided by Kummu et al. (2018). We also included the year of first record within an 800 

invaded range as a surrogate for time since invasion, using Seebens et al. (2017) first records 801 

database, and supplemented with the earliest recorded GBIF presence associated with that 802 

species and range (GBIF, 2020). 803 

 As transferability may be influenced by non-analogous conditions when extrapolating 804 

(Yates et al., 2018), we examined the dissimilarity between the native and exotic ranges using 805 

geographical and environmental distances as well as islands versus mainlands. We calculated 806 

geographic distances as the Haversine distance (in kilometres) between the centroids of the 807 

native and exotic ranges with background environment points included. We estimated the 808 

similarity between ranges using a multivariate environmental similarity surfaces (MESS; Elith et 809 

al., 2010). MES values measure the similarity of a given point to a set of reference points for 810 
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each environmental predictor, providing a continuous measure with positive values indicating 811 

cells that are environmentally similar and negative values indicating cells that are dissimilar 812 

(Elith et al., 2010). We calculated environmental similarity as the proportion of negative MES 813 

values in the exotic range with the native range as reference sites and the environmental 814 

predictors used to fit the SDMs, using the ‘MESS’ function from the ‘modEvA’ package 815 

(Barbosa et al., 2013). For our analysis of islands, ranges were classified as island or mainland 816 

based on whether all of its regions were contained within the global shoreline vector and islands 817 

database by Sayre et al. (2018). 818 

We included all predictors into a “transferability model” to examine the potential factors 819 

that influence the predictive success of SDMs in the exotic range. We used the AUC value in the 820 

exotic range as the response variable. The transferability model was generated as a linear mixed-821 

effects model (LMM; Breslow & Clayton, 1993) using the ‘lmer’ function from the ‘lme4’ 822 

package (Bates et al., 2015). We included species as a random effect factor, as species could 823 

invade multiple disjoint ranges. Nominal variables use one level of the factor as the reference, 824 

which we set as Mammalia and North America for taxonomic class and continent, respectively. 825 

Continuous variables were scaled to a mean of zero and standard deviation of one to allow 826 

comparability between fitted model parameters. Both native and exotic AUC values were logit-827 

transformed, while the number of occurrences, environmental breadth and GDP were log-828 

transformed (Table 1). None of the continuous or binary predictors were highly correlated with 829 

each other (|r| < 0.7; Supporting Information Table S4). We excluded species-locations that did 830 

not have available data for the factors, resulting in 648 species and 1918 species-location 831 

combinations. The vast majority of species in the analyses were plants (Supporting Information 832 

Table S2), comprising 591 of the 648 species and 4 of the 8 classes (Liliopsida, Magnoliopsida, 833 
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Pinopsida, and Polypodiopsida). Other classes were examined, consisting of 13 mammals 834 

(Mammalia), 21 birds (Aves), 19 insects (Insecta) and 4 reptiles (Reptilia). We reported the R2 835 

following Nakagawa et al. (2017) for the mixed-effects models to provide the conditional (the 836 

variance explained by both the fixed and random factors) and marginal (the variance explained 837 

solely by the fixed factors) R2 values. 838 

 839 

RESULTS 840 

Species distribution modelling performance 841 

Both SDM approaches, GAM and MaxEnt, were able to accurately discriminate between 842 

presences and background sites in the range used for fitting when tested using 10-fold cross-843 

validation (Figure 2). SDMs fitted using GAMs had a mean AUC of 0.809 (N = 648; standard 844 

deviation (s) = 0.076) when predicting the native range. SDMs fitted using MaxEnt performed 845 

better within the fitting (native) range with a mean AUC of 0.830 (N = 648; s = 0.070).  846 

However, when extrapolated to one or more exotic ranges, a significant drop in model 847 

performance was observed for both GAM and MaxEnt, with both model approaches performing 848 

similarly (Figure 2). The extrapolated GAMs had a mean AUC of 0.686 (N = 1918; s = 0.124), 849 

while MaxEnt models had a mean AUC of 0.689 (N = 1918; s = 0.122). Roughly half of model 850 

extrapolations were poor, where 1078 (56.2%) and 1076 (56.1%) predicted exotic ranges had 851 

AUC values below 0.7 for GAMs and MaxEnt, respectively. 229 (11.9%) and 228 (11.9%) 852 

predictions had AUC values between 0.7 and 0.75, 227 (11.8%) and 222 (11.6%) predictions had 853 

AUC values between 0.75 and 0.8, and 384 (20.0%) and 392 (20.4%) predictions had AUC 854 

values greater than 0.8, for GAM and MaxEnt respectively.  855 
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 856 

Predictors of model performance 857 

The transferability model, fitted using a linear mixed model had a marginal R2 value of 0.224, 858 

and a conditional R2 value of 0.323 for GAMs. The transferability model fitted with MaxEnt had 859 

a marginal R2 value 0.236 and conditional R2 value 0.291. Therefore, while the predictors 860 

included in the model explained some of the variation associated with model transferability, a 861 

considerable amount of unexplained variation remained. Of the 17 fixed effects used to 862 

characterize model transferability, 11 predictors were significant for the transferability model 863 

fitted for GAMs, and 9 were significant for the transferability model fitted for MaxEnt (Table 2; 864 

Supporting Information Table S5, Table S6; Figure 3).  865 

 We found that higher discriminatory ability (AUC) in the native range was positively 866 

related to AUC in the exotic range, as expected (Table 2; Figure 3). In contrast, the number of 867 

occurrences used to fit the model did not significantly affect transferability, while the number of 868 

occurrence points in the invaded range was positively related for GAMs but not significant with 869 

MaxEnt models. Transferability varied geographically, with significant differences between 870 

continents (Table 2; Figure 4). SDMs had worse discrimination in Asia, South America and 871 

Africa. The United States, Australia and Mexico, which accounted for most of the recorded 872 

invasions in the dataset, performed better than the average with mean AUC values greater than 873 

0.7 (but less than 0.75; Supporting Information Table S7). 874 

The transferability of the SDMs significantly differed between taxonomic classes for both 875 

GAMs and MaxEnt (Table 2; Table 3). Birds and mammals had the lowest discriminatory 876 

performance when predicting the invaded range. Birds had a mean AUC of 0.638 (s = 117; N = 877 
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58) and 0.661 (s = 0.114) for GAMs and MaxEnt, respectively, while Mammals had a mean 878 

AUC of 0.639 (s = 0.112; N = 30) and 0.641 (s = 0.095). Insects showed better performance, 879 

with mean AUC values of 0.673 (s = 0.117; N = 34) and 0.676 (s = 0.117). Plants, which 880 

comprised 591 of the 648 species in the analyses, had an overall mean of 0.689 (s = 0.124; N = 881 

1790) and 0.690 (s = 0.122) across the four plant classes. Reptiles performed well with mean 882 

AUC values of 0.816 (s = 0.155) and 0.738 (s = 0.187), however only 4 species were examined, 883 

with 6 extrapolated species-locations. The mobility of the species was assessed separately from 884 

class as they were highly collinear, and was not significant (Supporting Information Table S5). 885 

Contrary to our hypothesis, SDMs for species with larger environmental breadths in their native 886 

range performed better when extrapolating to new ranges (Table 2; Figure 3). Native 887 

environmental coverage, however, did not significantly affect transferability. Conversely, SDMs 888 

performed worse when species had a large environmental breadth and environmental coverage in 889 

the exotic range. 890 

The GDP of the exotic range did not significantly affect model transferability (Table 2; 891 

Figure 3), while models fitted on native ranges with larger GDPs tended to perform worse, 892 

contrary to our hypotheses. Also unexpectedly, the year of first record significantly affected 893 

transferability, with newer species sightings leading to higher transferability in GAMs but not 894 

MaxEnt models. Indeed, a post-hoc analysis examining relatively recent invasions (after the year 895 

1970) in North America (which showed the highest transferability; Figure 4) resulted in a 896 

respectable AUC for both GAMs (mean AUC = 0.799, s = 0.129, N = 33) and MaxEnt (mean 897 

AUC = 0.792, s = 0.134), suggesting that strong transferability may be possible in some 898 

circumstances. 899 
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Both GAMs and MaxEnt models tended to perform worse when extrapolated across 900 

larger geographic distances, as predicted (Table 2; Figure 3). In contrast, the degree of 901 

environmental similarity did not significantly correlate to the transferability of SDMs. On 902 

average however, only 11.7% and 15.6% of sites across all exotic ranges showed negative MES 903 

values for GAMs and MaxEnt, respectively, suggesting high environmental similarity between 904 

ranges, and potentially insufficient differences to detect an effect. Finally, SDMs performed 905 

substantially worse when attempting to predict the distribution of species on islands, as 906 

predicted. Island invasions accounted for 387 out of the 1918 species-locations, with 383 of these 907 

invasions by species originating from mainlands. Species originating from islands, however, did 908 

not significantly affect model transferability, but these only consisted of 13 out of 648 species 909 

and could simply reflect low power. 910 

 911 

DISCUSSION 912 

While many studies have used SDMs to forecast the distributions of exotic species (e.g. Shrestha 913 

et al., 2014; Vicente et al., 2013), recent studies on transferability have cautioned the many 914 

pitfalls associated with extrapolating SDMs to novel conditions (Sequeira et al., 2018; 915 

Werkowska et al., 2017; Yates et al., 2018). Indeed, we found that the performance of the SDMs 916 

in the exotic ranges showed a marked decline in discriminatory ability, with less than half of the 917 

model predictions being considered acceptable (based on a 0.7 AUC threshold) despite a 918 

relatively strong discriminatory performance in the native range (Morán-Ordóñez et al., 2017; 919 

Swets, 1988). On the other hand, most successfully invaded ranges were similar to their native 920 

ranges with few sites considered different on average (between 11 and 15 percent), based on 921 

MES scores. This suggests predictability of invasions based broadly on environmental 922 
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conditions, at least at a regional level. Additionally, from a more optimistic perspective, while 923 

half the species failed in their SDM transferability, the other half maintained some 924 

discriminatory ability (AUC > 0.7). Whether this is sufficient to justify using SDMs built in 925 

native ranges to forecast species distributions in exotic ranges is equivocal. This highlights the 926 

necessity to identify whether transferability of such ecological models may be improved, and 927 

whether we can identify when models may be reliable (Yates et al., 2018). Ideally, such methods 928 

would be based on widely available data. 929 

 930 

Predictors of transferability 931 

As expected, SDMs that were better able to predict their own range (native AUC) were more 932 

likely to succeed when extrapolating to new ranges (exotic AUC). The number of occurrences 933 

included in model fitting did not influence spatial transferability, while models performed better 934 

when predicting ranges with more occurrences. The latter supports our hypothesis that a larger 935 

number of occurrences in the exotic range may result in increased strength of validation, as low 936 

occurrence numbers may be more affected by stochasticity in which species do not occur in 937 

suitable habitats by chance (Yates et al., 2018).  938 

 Discrimination in the exotic ranges differed between taxonomic classes, suggesting that 939 

SDMs may be more reliable for some taxonomic groups over others, and may be linked by 940 

shared traits (Regos et al., 2019). In contrast, the mobility of the species did not significantly 941 

affect model transferability, however other traits more specific to the taxonomic groups may 942 

influence transferability and should be assessed in the future. For instance, model performance 943 

has been shown to differ between bird species based on traits related to biogeographic origin, 944 
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migratory status, and habitat preference (Regos et al., 2019). Other potential traits include 945 

commonness, body size, dispersal ability and trophic position (Dobrowski et al., 2011; Soininen 946 

& Luoto, 2014; Urban et al., 2016; Wogan, 2016). 947 

Transferability also differed between invaded continents, suggesting that generalities can 948 

be made on whether models may be more reliable when extrapolating to certain areas of the 949 

world. For example, geographical biases have been observed in data availability (Yesson et al., 950 

2007) and research focus (Pyšek et al., 2008), where some areas such as Africa may be poorly 951 

sampled resulting in worse transferability, while North America, with high sampling intensity, 952 

showed the strongest performance. 953 

  Several of our findings differed from our a priori expectations, suggesting other 954 

processes were in play and requiring new hypotheses. While exotic environmental breadth and 955 

coverage negatively influenced model transferability (as predicted; Brotons et al., 2004; Brotons 956 

et al., 2007; Zhang et al., 2015), environmental breadth in the native range was positively related 957 

to transferability (contrary to our hypothesis). As a potential explanation, the positive 958 

relationship between native environmental breadth and SDM transferability may be due to a 959 

censoring effect, wherein we only can analyze successful establishments. Smaller niche breadths 960 

may result in better discrimination in the native range in general, but most of these specialists 961 

may fail to establish at all in any exotic range (i.e., they would never enter the analysis). Species 962 

with narrow environmental breadths that did establish may then represent species restricted by 963 

other processes (e.g. biotic factors; Urban et al., 2016), that are released when invading a new 964 

region and may therefore occur outside of its realized niche and be poorly predicted. This post 965 

hoc hypothesis, however, requires further testing. 966 
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 Also contrary to our initial hypotheses, we found that higher exposure led to poorer 967 

model performance. We had expected that as species had greater opportunity to spread, exposure 968 

should become less a limiting factor, thereby allowing environmental determinants to become 969 

more important in shaping species distributions (Leung et al., 2012, Runquist et al., 2019). First, 970 

using GDP as a proxy of propagule pressure (GDP should be positively related to the amount of 971 

trade-related movement, and thus to propagule pressure; Sardain et al., 2019) we found a 972 

negative relationship between GDP in the native range and SDM transferability, suggesting that 973 

higher exposure may actually lead to poorer predictions. Second, species that had more recent 974 

recorded arrivals also showed better spatial transferability, contradicting the prediction that 975 

newer invaders would be less predictable (as these species may still be spreading and farther 976 

from equilibrium with its environment; Václavík & Meentemeyer, 2011). One possibility is that 977 

older invaders have evolved over time to diverge from the native range population (Mooney & 978 

Cleland, 2001). However, the majority of invasions included in the study were observed after the 979 

year 1900, and therefore evolution would have had to be rapid. Alternatively, species may first 980 

establish in the most suitable habitats, as these should offer the highest probabilities of survival. 981 

Instead of being stochastic events, driven primarily by exposure, early phases of invasion could 982 

be driven by the interaction between propagule pressure and environmental suitability. With 983 

increased exposure, species at higher population densities may begin to occupy less suitable sites 984 

due to processes such as competition, resulting in poorer transferability (McLoughlin et al., 985 

2010). From a management perspective, this could be important as it suggests that SDMs may be 986 

able to predict “recent” invasions, despite being far from their equilibrium distribution.  987 

 Recent publications have highlighted the risk of extrapolating to non-analogous 988 

conditions as models fitted on a truncated range of environmental data may fail to predict species 989 
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response beyond these limits (Sequeira et al., 2018; Yates et al., 2018). Consistent with this, 990 

SDMs exhibited poorer discriminatory performance when extrapolated to more distance ranges. 991 

Additionally, SDMs performed worse when extrapolating to islands, where environments often 992 

differ (Vitousek, 1990), although other non-ecological factors could also be at play (for example, 993 

poorer data quality on islands; Ficetola et al., 2014). While the environmental dissimilarity 994 

between ranges did not influence model success, few sites were dissimilar between native and 995 

exotic ranges for the climatic variables examined. Nonetheless, given the low discriminatory 996 

performance on average in exotic ranges, the similarity between measured environmental 997 

conditions was insufficient to confer high transferability. 998 

 999 

Limitations and future directions 1000 

The SDMs in this study were generated using presence-only data, which is the most common 1001 

approach due to the wide availability of occurrence records (Elith and Leathwick, 2009). SDMs 1002 

fitted using presence-only data do not provide absolute probabilities of occurrence, but rather 1003 

only relative probabilities (Pearce & Boyce, 2006). Despite survey data representing a more 1004 

rigorous sampling design, such data is less available for most species (Barbet-Massin et al., 1005 

2012). Thus, presence-only SDMs will likely remain an essential part of ecological modelling.  1006 

 Although we found only low to moderate transferability, we acknowledge that we 1007 

primarily focused on climate-based variables. Other drivers of species distributions have been 1008 

suggested such as land use, ecosystem functional attributes and biotic factors (Arenas-Castro et 1009 

al., 2018; Regos et al., 2019; Urban et al., 2016). Not surprisingly though, the majority of 1010 

ecological models have been based on climatic predictors, given the challenges of implementing 1011 



48 

mechanistic predictors based on experimental data (Werkowska et al., 2017) and the greater 1012 

availability of high resolution global climate data (e.g. Fick & Hijmans, 2017).  1013 

We identified several factors that influenced spatial transferability, with the fixed effects 1014 

explaining 22.4% of the variance associated with model performance. Of course, only a subset of 1015 

possible predictors of transferability were assessed in this study, and given the relatively low 1016 

average transferability of SDMs, identifying additional predictors to better understand the 1017 

reliability is crucial (Yates et al., 2018). For example, functional trait-based approaches in 1018 

ecology are becoming increasingly popular though data remains scarce, particularly for many 1019 

rarer species (Majekova et al., 2016). Beyond the choice of predictors included in the model, 1020 

SDM transferability may also be influenced by the quality of the dataset itself, which has seldom 1021 

been examined as a source of failure (Datta et al., 2020). Other factors have been proposed when 1022 

contrasting ranges as well, such as changes in environmental correlation structures (Werkowska 1023 

et al., 2017) and biotic interactions (Urban et al., 2016). Much room exists for improvement in 1024 

identifying what might make SDMs more transferable. If such factors were simultaneously based 1025 

on widely available data, they could have a substantial effect in improving the usage of SDMs in 1026 

exotic ranges.    1027 

  1028 

Conclusion 1029 

Many studies have emphasized the need for proper validation of predictive models when 1030 

applying them to new ecological contexts. In this study, we provided the most extensive 1031 

assessment of spatial transferability to date, providing vital insights into the future use of SDMs 1032 

for predicting biological invasions. Caution is warranted, as half of the SDMs exhibited poor 1033 
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discriminatory performance in the exotic range. However, SDM performance was 1034 

heterogeneous, and may be more reliable in areas with more data and for more recent invasions 1035 

(e.g., invasions in North America after 1970). Identifying predictors of model transferability and 1036 

improving the reliability of SDMs for biological invasions should be a priority. 1037 
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TABLES 

Table 1. Full list of variables and acronyms used to predict the transferability of SDMs, with a 

description of how the factors were generated. Rationale for why each factor may influence 

SDM transferability is provided for each factor, with sources. Variables marked with an asterisk 

(*) denote factors generated for both the native and exotic ranges. 

Variable (acronym) Description Rationale 

Native AUC (NAUC) 

Performance of the SDM on its own range measured 

as AUC, using 10-fold cross-validation. Logit-

transformed. 

Models that fail to characterize its own range are likely to fail 

when extrapolating to new environments (Morán‐Ordóñez et 

al., 2017). 

Number of 

occurrences (NOCC; 

EOCC)* 

Number of occurrences used to fit or validate the 

model. Multiple occurrences found in a single cell 
were counted as a single occurrence. Log-

transformed. 

Ranges with small sample sizes may fail to capture complex 

ecological relationships and be prone to stochasticity, leading 
to increased parameter uncertainty and unstable results (Wisz 

et al., 2008; Yates et al., 2018). 

Continent (CONT) 
Nominal variable of the invaded continent. Multi-

continental invasions were treated as their own level. 

Generalities in environmental conditions and biotic 

composition within large regional areas, as well as differences 

in quality of invasive species records and biodiversity 
information (Pyšek et al., 2008) may affect SDM 

transferability. 

Taxonomic class 

(CLASS) 
Nominal variable of the species’ taxonomic class. 

SDM transferability may differ between groups of species, or 

their habitat, that may share similar characteristics (Regos et 
al., 2019). 

Sessile (SESS) 
Binary variable on whether the species is sessile (1) 

or mobile (0) 

Species traits such as the behaviour and movement of species 

may affect our ability to accurately records species 

occurrences, and influence the dispersal ability of species to 
reach all available sites (Syphard & Franklin, 2010; Miller & 

Holloway, 2015). 

Environmental breadth 

(NEB; EEB)* 

Convex hull area of occurrence points projected into 

environmental PCA space. Log-transformed. 

Generalist species may not be restricted by the environmental 
factors considered in the SDM, and result in poor 

transferability (Brotons et al., 2004; Zhang et al., 2015). 

Environmental 

coverage (NEC; 

EEC)* 

Proportion of total environmental space of the 

background sites and occurrences occupied by only 

the occurrences. 

A large environmental coverage may lead to SDMs being 

unable to distinguish between presences and their background 

environment (Brotons et al., 2004; Zhang et al., 2015). 

Gross domestic 

product (NGDP; 

EGDP)* 

Sum of the GDP of all defined regions in the range. 
Log-transformed. 

Increased propagule pressure (e.g. through trade) may lead to 

increased dispersal to all suitable locations for a given range 
(‘exposure’), resulting in species closer to equilibrium with 

their environment (Lockwood et al., 2005; Leung et al., 2012). 

Year of first record 

(YEAR) 

Earliest recorded occurrence of the species within the 

defined invaded range. 

Newer invaders may still be spreading, and not yet reached all 

suitable habitats, violating assumptions of equilibrium 
(Runquist et al., 2019). 

Geographic distance 
between ranges 

(DIST) 

Haversine distance (in km) between the centroids of 
the native and exotic ranges, including background 

environment. 
Species may experience new environmental conditions or 
community compositions outside of the range in the fitting 

data leading to unpredictable responses (Werkowska et al., 

2017; Yates et al., 2018). 
Environmental 
similarity between 

ranges (ESIM) 

Proportion of negative MES values in the exotic 

range with the native range as reference sites. 

Island (NISL; EISL)* 
Binary predictor on whether all occurrences were 

found on an island (1) or not (0). Native and exotic. 

Ecological characteristics of islands differ significantly from 

the mainland - higher endemism, lower species richness and 

restricted distributions - and may greatly affect species 
distribution (Kier et al., 2009). 
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Table 2. Estimated model parameters, with standard error, t-value and P-values of the fixed 

effects for the linear mixed model fitted using the full dataset for GAMs and MaxEnt with 

taxonomic class as a categorical predictor. 

* Denotes factors significant for both GAM and MaxEnt 

G Denotes factors significant for only GAM 

  

 GAM MaxEnt 

Variable Estimate Std. error t-statistic P-value Estimate Std. error t-statistic P-value 

Native AUC (NAUC)* 0.089 0.019 4.592 < 0.001 0.058 0.018 3.237 0.001 

Native number of occurrences (NOCC) -0.028 0.026 -1.051 0.295 -0.001 0.024 -0.055 0.956 

Exotic number of occurrences (EOCC)G 0.047 0.022 2.097 0.036 0.036 0.022 1.627 0.105 

Continent (CONT)* - - - < 0.001 - - - < 0.001 

Taxonomic class (CLASS)* - - - 0.017 - - - 0.010 

Native environmental breadth (NEB)* 0.153 0.028 5.492 < 0.001 0.182 0.027 6.632 < 0.001 

Exotic environmental breadth (EEB)* -0.108 0.032 -3.414 < 0.001 -0.121 0.032 -3.835 < 0.001 

Native environmental coverage (NEC) 0.011 0.027 0.419 0.677 -0.012 0.025 -0.484 0.629 

Exotic environmental coverage (EEC)* -0.153 0.027 -5.670 < 0.001 -0.142 0.027 -5.284 < 0.001 

Native GDP (NGDP)* -0.074 0.025 -2.975 0.003 -0.056 0.023 -2.435 0.015 

Exotic GDP (EGDP) 0.059 0.034 1.741 0.082 0.058 0.034 1.726 0.084 

Year of first records (YEAR)G 0.035 0.016 2.146 0.032 0.020 0.016 1.258 0.209 

Geographic distance (DIST)* -0.055 0.018 -3.006 0.003 -0.057 0.018 -3.123 0.002 

Environmental similarity (ESIM) 0.023 0.018 1.257 0.211 0.013 0.019 0.656 0.513 

Native island (NISL) -0.035 0.137 -0.258 0.797 0.032 0.127 0.252 0.801 

Exotic island (EISL)* -0.270 0.056 -4.862 < 0.001 -0.302 0.056 -5.441 < 0.001 
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Table 3. Mean performance of the species distribution models divided between taxonomic 

groups, measured as area under the receiver operating characteristic curve (AUC), in both the 

native (fitting) range and the extrapolated (validation) range. 

Taxa 

Native Exotic 

N 

GAM MaxEnt 

N 

GAM MaxEnt 

AUC Std. dev. AUC Std. dev. AUC Std. dev. AUC Std. dev. 

Aves 21 0.751 0.080 0.772 0.080 58 0.638 0.117 0.661 0.114 

Mammalia 13 0.761 0.110 0.774 0.107 30 0.639 0.112 0.641 0.095 

Insecta 19 0.777 0.072 0.799 0.048 34 0.673 0.117 0.676 0.117 

Plants 591 0.814 0.074 0.834 0.068 1790 0.689 0.124 0.690 0.122 

Pinopsida 5 0.907 0.075 0.921 0.059 9 0.674 0.180 0.696 0.144 

Liliopsida 161 0.819 0.070 0.836 0.063 465 0.685 0.123 0.686 0.120 

Magnoliopsida 416 0.810 0.075 0.832 0.069 1301 0.689 0.123 0.691 0.123 

Polypodiopsida 9 0.825 0.038 0.858 0.035 15 0.760 0.162 0.794 0.119 

Reptilia 4 0.792 0.087 0.804 0.095 6 0.816 0.155 0.738 0.187 

TOTAL 648 0.809 0.076 0.830 0.070 1918 0.686 0.124 0.689 0.122 
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FIGURES 

Figure 1. Flow chart outlining the analyses performed in the study. 
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Figure 2. Density histogram of the performance of GAMs (a) and MaxEnt (b) measured as area 

under the receiver operating characteristic curve (AUC) when predicting the native range, or 

fitting dataset (blue), using 10-fold cross-validation and when extrapolating to the exotic range, 

or validation dataset (red). 
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Figure 3. Dot-whisker plot of the parameter estimates for the binary and continuous predictors 

included in the linear mixed model for GAM (black) and MaxEnt (orange), with taxonomic class 

and continent as categorical predictors. Whiskers represent the 95 percent confidence intervals of 

the parameter estimates. 
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Figure 4. Map of the mean discriminatory performance (area under the receiver operating 

characteristic curve; AUC) of the extrapolated models using (a) GAM and (b) MaxEnt. Regions 

marked with an asterisk (*) represent areas that were invaded by fewer than three species. 
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GENERAL CONCLUSION 

SDMs remain one of the most valuable mathematical tools in ecology for addressing large-scale 

questions in global change and biodiversity. While the potential uses of SDMs continue to be 

explored, further caution is warranted given the various potential causes for concern as models 

are used to predict novel environments (Sequeira et al., 2018; Werkowska et al., 2017; Yates et 

al., 2018). While several studies have assessed the spatial transferability of SDMs (e.g. 

Goncalves et al., 2014; Petitpierre et al., 2012), many of these studies have been restricted to a 

limited number of species, taxonomic groups or regions and have resulted in a lack of consensus. 

A strong focus has been placed on improving model predictions across new contexts, and 

identifying which models may be transferable prior to their extrapolation (Yates et al., 2018). 

Therefore, a large-scale systematic analysis of SDM transferability is needed to understand to 

what degree such models are currently transferable, and under what conditions they may 

succeed. 

 In this thesis, I demonstrated that despite a strong model performance in the native 

(fitting) range, more than half of the models showed poor spatial transferability in the exotic 

range. The SDMs were implemented using presence-only data and climate-based abiotic 

variables, which has become the most common approach given their wide availability and 

potential for global application (Elith and Leathwick, 2009). Response variables with greater 

biological information, such as abundance or presence-absence data, as well as more mechanistic 

or ecologically relevant predictors, may confer better transferability (Yates et al., 2018). 

However, the collection of such data is often challenging, requiring rigorous sampling design 

(Elith and Leathwick, 2009), and are therefore constrained by their limited availability relative to 

the easily accessible presence-only databases (e.g. GBIF, 2020) and high resolution global 
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climate information (e.g. Fick & Hijmans, 2017). Thus, caution is warranted when using SDMs 

to make predictions across spatial landscapes, particularly through these popular approaches. 

 While model performances were overall poor, I demonstrated that transferability was 

significantly influenced by several factors, including the number of occurrences in the exotic 

range, the taxonomic class and the invaded continent. Several studies have cautioned against 

extrapolating beyond the conditions used to fit the models, as SDMs may fail to capture these 

unobserved species-environment relationships (Werkowska et al., 2017; Yates et al., 2018). 

Environmental conditions did not differ considerably between the native and exotic ranges, with 

respect to the climatic variables used to fit the SDMs. Despite these differences, I observed 

poorer model performance across greater geographic distances and when extrapolating to islands, 

suggesting that other differences may exist between ranges beyond the climatic predictors, or 

that the species-environment relationship had changed between ranges (“nice shift”; Tingley et 

al., 2014). The impacts of invasive species on biodiversity loss are particularly more severe on 

islands globally (Spatz et al., 2017), highlighting concerns for the prediction of invaders using 

ecological models as a management tool.  

 Several predictors were contrary to their hypothesized direction, which requires further 

exploration. Contrary to other studies (Brotons et al., 2004; Brotons et al., 2007; Zhang et al., 

2015), I found that SDMs tended to perform better with larger environmental breadths. 

Additionally, I found that higher exposure (the opportunity to reach suitable habitats) led to 

poorer model performance, where models performed better for more recent invasions and high 

GDP in the native range (relating to greater trade and thus greater propagule pressure). This is 

contrary to the assumption that species closer to equilibrium with their environment are more 
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predictable (Václavík & Meentemeyer, 2011), however this result provides a silver lining as 

more recent invasions that are often of more concern to managers may be predictable. 

 Further examination of additional predictors should be considered, as this thesis 

considered only a subset of potential factors. The mobility of species did not significantly affect 

transferability, however given that taxonomic class was significant, other taxa-specific biological 

predictors may influence transferability, such as biotic interaction and dispersal ability (Urban et 

al., 2016), biogeography and habitat preference (Regos et al., 2019), as well as body size 

(Soininen & Luoto, 2014). Other functional trait-based approaches may be predictive, however 

such data are limited in their availability (Majekova et al., 2016). Changes in environmental 

correlation structures between ranges may also provide further insights on why the SDMs failed 

(Werkowska et al., 2017), particularly given that environmental values did not generally differ. 
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SUPPORTING INFORMATION 

Text S1. Full list of the GBIF DOIs for the occurrence records used in the analyses, prior to 

filtering the data. 
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Text S2. Examination of the Continuous Boyce index (CBI) as an alternative measure of model 

transferability. 

Several criticisms have been raised against the use of AUC as a measure of model performance 

(Jiménez-Valverde, 2012; Lobo et al., 2007), and that a weakness of AUC is the equal weighting 

of omission and commission errors. Another limitation is that AUC only provides a measure of 

relative probability - that is, the focus of AUC is on discrimination rather than calibration. 

However, we argue that this is the appropriate limit to inferences for presence-only data, because 

we do not know how many presences are unobserved; we only know the relative probability of 

occurrence in comparison with other locations. 

 The Continuous Boyce Index (CBI) has been commonly used as an alternative measure 

of SDM performance in place of AUC for presence-only modelling, as it relies solely on species 

presences (Hirzel et al., 2006). The Boyce index compares the model’s predicted suitability of 

presence locations to the overall predictions of suitable areas (Boyce et al., 2002). CBI values 

range between -1 and 1, with positive values indicating predicted suitability consistent with 

species occurrences, negative values indicating low predicted suitability at sites with presences. 

Values that are near 0 indicate predicted suitability consistent with a random model. 

 One of the central issues of presence-only data is imperfect detection, where a potentially 

large fraction of occurrences may be unobserved (Fithian et al., 2014). Further, this is 

particularly important in extrapolating to new locations, where the fraction of observed presences 

may differ between ranges. Thus, a metric that is robust to this confounding factor would be 

preferable in the context of presence-only data.  
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We conducted theoretical analyses to test the sensitivity of the metric to the fraction of 

unobserved occurrences using simulations. We modeled an underlying functional relationship to 

generate occurrence probabilities using a simple logistic equation, serially reducing the fraction 

of occurrences observed at five percent intervals (i.e., simulating presence-only data), and 

randomly choosing 10,000 background points to fit the SDM. We generated GAMs at each 

fraction using the sampled species occurrences and background sites, with AUC and CBI values 

generated from the fitted values. We repeated the process 50 times, generating a new 

environment and species occurrence each time, and took the mean and standard deviation of 

AUC and CBI values. We calculated the CBI value using the ‘ecospat.boyce’ function from the 

‘ecospat’ R package (Di Cola et al., 2017).  

 We found that AUC was robust to the fraction of unobserved occurrences, while CBI was 

sensitive to this proportion (Figure S1). The mean CBI values at 95 percent sampled had a mean 

value of 0.976 (standard deviation s = 0.025), and decreased as the proportion of sampled 

presences decreased to a mean of 0.726 (s = 0.119). Conversely, AUC remained consistent as the 

proportion decreased, with variance increasing marginally at very low proportions, with a mean 

AUC of 0.870 (s = 0.004) and 0.873 (s = 0.016) for 95 percent and 5 percent sampled presences, 

respectively. Therefore, we believe that AUC was preferable for our study, and applied it as the 

main measure of model transferability. 

 Nonetheless, we include the CBI analysis in the Supplementary Material, examining 

model transferability. Using 10-fold cross-validation, we obtained a mean CBI of 0.826 

(standard deviation s = 0.122; N = 648) for GAMs, and mean CBI of 0.853 (s = 0.145) for 

MaxEnt models in the native range. When extrapolating to the exotic ranges, we observed a 
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decline in performance, with a mean CBI of 0.356 (s = 0.561; N = 1918) for GAMs and mean 

CBI of 0.360 (s = 0.543) for MaxEnt models. 
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Text S3. Comparison of random cross-validation and spatial-block cross-validation within the 

native fitting range 

We examined the discriminatory performance within the native range calculated using the mean 

AUC from 5-fold spatial-block cross-validation (Fithian et al., 2015) in comparison with random 

partitioning. Spatial-block cross-validation is the technique of splitting the study side into a 

checkerboard, whose blocks (which include presences and background sites) that are then 

randomly assigned to folds. Therefore, spatial-block cross-validation has been suggested as a 

better reflection of potential SDM transferability than random partitioning, which may lack 

spatial independence due to spatial autocorrelation (Bahn & McGill, 2013). We generated the 

folds using the ‘blockCV’ package (Valavi et al., 2019), with a block size of 200×200 km2 or 

100×100 km2 in cases of more spatially aggregated occurrences (that is, cases where 200-km 

blocks resulted in folds containing 0 occurrences, or more than half of the occurrences). 

 Mean native range AUC values generated using spatial-block cross-validation were 

highly correlated with random paritioning (r = 0.958 for GAM; r = 0.946 for MaxEnt), with little 

difference in terms of overall model discriminatory performance (Figure S2). SDMs generated 

using GAMs had a mean AUC of 0.786 (s = 0.081; N = 648) using spatial-block cross-validation, 

compared to a mean AUC of 0.809 (s = 0.076) using random partitioning, while SDMs fitted 

using MaxEnt had a mean AUC of 0.810 (s = 0.078) compared to 0.830 (s = 0.070). The 

transferability models with native range AUC calculated using spatial-block instead of random 

partitioning as a predictor did not significantly differ in terms of parameter estimate direction and 

magnitude, as well as overall variance explained (marginal R2 of 0.226 and 0.237 for GAM and 

MaxEnt respectively, and a conditional R2 of 0.323 and 0.292; Nakagawa et al., 2017). 
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Text S4. Description on the methodology used to generate environmental breadth and 

environmental coverage of a species. 

To generate the measure of environmental breadth and environmental coverage, we first 

generated a 2-dimensional environment space using the first two axes of a principal component 

analysis (PCA; Pearson, 1901) with the 9 environmental predictors included in the SDM fitting 

using 10 000 global reference points (PC1 = 37.969 % deviance explained; PC2 = 23.753 % 

deviance explained). We then projected the occurrence and background environment cells into 

this defined two-dimensional environmental space and drew convex hulls around the points 

(Supporting Information Figure S3). Projecting the species occurrences into a previously defined 

environment space allowed comparison between species when considering their environmental 

breadth and coverage. We measured the environmental breadth of a species as the area of the 

polygon generated by the convex hull around the occurrences in environment space. 

Environmental coverage was generated as the environmental breadth of a species divided by the 

environmental breadth of all cells (i.e. the background environmental cells and the occurrence 

cells). 
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SUPPLEMENTARY TABLES 

Table S1. Description of the data sources used in the analyses, for both the species distribution 

modelling and the predictors of transferability. 

Datum Description Source 

Occurrence and distribution data   

Species sightings Records of species presences (1) or as 

background environment using 

target-group background sites (0) 

Global Biodiversity Information 

Facility (GBIF, 2020) 

Range information Distributional information of species 

at the country-level, classifying 

species within a region as native or 

exotic. 

CABI Invasive Species 

Compendium (CABI, 2020); IUCN 

Global Invasive Species Database 

(GISD, 2015) 

Country subdivisions Administrative areas of all countries 

at level 1 (province/state/equivalent), 

with contiguous subdivisions within 

countries sharing a land border 

combined to form a region. 

Global Administrative Areas, 

version 3.6 (GADM, 2018) 

Environmental variables   

Bioclimatic variables 19 bioclimatic variables reduced to 7 

uncorrelated variables at 2.5-arcmin 

resolution (bio1 = annual mean 

temperature, bio2 = mean of monthly 

maximum and minimum 

temperatures, bio7 = temperature 

annual range, bio12 = annual 

precipitation, bio14 = precipitation of 

the driest month, bio15 = 

precipitation seasonality, bio19 = 

precipitation of the coldest quarter) 

WorldClim version 2 (Fick & 

Hijmans, 2017) 

Elevation Derived from STRM elevation data; 

2.5-arcmin resolution 

Vegetation Normalized Difference Vegetation 

Index, NDVI, at 0.05-degree, or 3-

arcmin resolution 

MODIS NDVI through the NASA 

Goddard Earth Sciences Data and 

Information Services Center (GES 

DISC; Acker and Leptoukh, 2007) 

Predictors of transferability   

Class Taxonomic class of the species ‘taxize’ package in R (Chamberlain 

& Szöcs, 2013) 

Islands Binary value indicating whether 

administrative region is an island (1) 

or not (0) 

Global shoreline vector and islands 

dataset (Sayre et al., 2018) 

Year of first record Earliest record of non-indigenous 

species within the invaded range 

Alien Species First Records version 

1.2 (Seebens et al., 2017); Global 

Biodiversity Information Facility 

(GBIF, 2020) 

Gross domestic product Sum of gridded cells of gross 

domestic product, GDP within 

regions at 5-arcmin resolution for 

2015 

Gridded global datasets for Gross 

Domestic Product and Human 

Development Index over 1990–

2015 (Kummu et al., 2018) 
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Table S2. List of the 648 species included in the analysis along with their taxonomic class and 

the total number of occurrences classified in their native and exotic ranges. 

Species Class Taxa 

Occurrence points 

Native Exotic 

Abelmoschus moschatus Magnoliopsida Plant 256 133 

Abutilon grandifolium Magnoliopsida Plant 60 27 

Abutilon theophrasti Magnoliopsida Plant 21 2895 

Acacia auriculiformis Magnoliopsida Plant 655 140 

Acacia cyclops Magnoliopsida Plant 379 187 

Acacia dealbata Magnoliopsida Plant 5824 1739 

Acacia decurrens Magnoliopsida Plant 678 42 

Acacia longifolia Magnoliopsida Plant 3179 347 

Acacia mangium Magnoliopsida Plant 27 127 

Acacia mearnsii Magnoliopsida Plant 3302 706 

Acacia melanoxylon Magnoliopsida Plant 8442 652 

Acacia retinodes Magnoliopsida Plant 400 106 

Acanthospermum australe Magnoliopsida Plant 330 99 

Acanthospermum hispidum Magnoliopsida Plant 234 524 

Acer negundo Magnoliopsida Plant 96 6156 

Acer platanoides Magnoliopsida Plant 23682 2920 

Acer pseudoplatanus Magnoliopsida Plant 19109 10428 

Achillea millefolium Magnoliopsida Plant 81423 441 

Acridotheres tristis Aves Vertebrate 22993 8499 

Adenanthera pavonina Magnoliopsida Plant 84 26 

Aegilops cylindrica Liliopsida Plant 46 295 

Aegilops triuncialis Liliopsida Plant 812 111 

Aeschynomene americana Magnoliopsida Plant 708 109 

Agapanthus praecox Liliopsida Plant 55 635 

Agave americana Liliopsida Plant 385 3892 

Ageratina adenophora Magnoliopsida Plant 91 1082 

Ageratum conyzoides Magnoliopsida Plant 808 1212 

Ageratum houstonianum Magnoliopsida Plant 215 1059 

Agropyron cristatum Liliopsida Plant 526 972 

Agrostis capillaris Liliopsida Plant 47938 2356 

Agrostis gigantea Liliopsida Plant 11436 848 

Ailanthus altissima Magnoliopsida Plant 32 4885 

Aira caryophyllea Liliopsida Plant 3132 2565 

Akebia quinata Magnoliopsida Plant 374 89 

Albizia julibrissin Magnoliopsida Plant 366 2363 
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Albizia lebbeck Magnoliopsida Plant 188 667 

Alectoris chukar Aves Vertebrate 2566 4232 

Alhagi maurorum Magnoliopsida Plant 105 77 

Allamanda cathartica Magnoliopsida Plant 536 477 

Alliaria petiolata Magnoliopsida Plant 21547 4503 

Alnus glutinosa Magnoliopsida Plant 39562 244 

Alocasia macrorrhizos Liliopsida Plant 43 26 

Alopecurus pratensis Liliopsida Plant 12112 12497 

Alpinia purpurata Liliopsida Plant 45 273 

Alpinia zerumbet Liliopsida Plant 175 100 

Alternanthera philoxeroides Magnoliopsida Plant 130 795 

Alternanthera sessilis Magnoliopsida Plant 29 4307 

Alysicarpus vaginalis Magnoliopsida Plant 492 55 

Alyssum desertorum Magnoliopsida Plant 173 315 

Amaranthus spinosus Magnoliopsida Plant 106 223 

Ambrosia artemisiifolia Magnoliopsida Plant 2690 2884 

Ambrosia tenuifolia Magnoliopsida Plant 32 48 

Ambrosia trifida Magnoliopsida Plant 2653 200 

Ammophila arenaria Liliopsida Plant 1661 458 

Amorpha fruticosa Magnoliopsida Plant 27 238 

Andropogon virginicus Liliopsida Plant 81 918 

Annona cherimola Magnoliopsida Plant 20 24 

Annona glabra Magnoliopsida Plant 385 63 

Annona squamosa Magnoliopsida Plant 26 336 

Anoplolepis gracilipes Insecta Invertebrate 110 21 

Anser indicus Aves Vertebrate 1958 1792 

Anthemis cotula Magnoliopsida Plant 308 1279 

Anthoxanthum odoratum Liliopsida Plant 40614 4033 

Antigonon leptopus Magnoliopsida Plant 757 377 

Arctotheca calendula Magnoliopsida Plant 146 5751 

Ardisia crenata Magnoliopsida Plant 348 266 

Ardisia elliptica Magnoliopsida Plant 75 72 

Argemone mexicana Magnoliopsida Plant 516 533 

Aristolochia elegans Magnoliopsida Plant 27 155 

Arivela viscosa Magnoliopsida Plant 59 369 

Arrhenatherum elatius Liliopsida Plant 25048 320 

Arthraxon hispidus Liliopsida Plant 452 206 

Artocarpus altilis Magnoliopsida Plant 43 118 

Arundo donax Liliopsida Plant 91 3200 

Asclepias curassavica Magnoliopsida Plant 302 1930 

Asparagus asparagoides Liliopsida Plant 115 2963 
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Asparagus officinalis Liliopsida Plant 3805 1288 

Asparagus setaceus Liliopsida Plant 175 384 

Asystasia gangetica Magnoliopsida Plant 485 132 

Atriplex semibaccata Magnoliopsida Plant 2743 414 

Austrocylindropuntia subulata Magnoliopsida Plant 44 418 

Avena barbata Liliopsida Plant 1576 5145 

Axonopus fissifolius Liliopsida Plant 259 1052 

Azadirachta indica Magnoliopsida Plant 88 1632 

Azolla filiculoides Polypodiopsida Plant 338 1198 

Baccharis halimifolia Magnoliopsida Plant 709 443 

Bassia hyssopifolia Magnoliopsida Plant 32 188 

Bauhinia purpurea Magnoliopsida Plant 106 26 

Bauhinia variegata Magnoliopsida Plant 144 243 

Bellis perennis Magnoliopsida Plant 29002 1029 

Berberis aquifolium Magnoliopsida Plant 1173 7444 

Berberis darwinii Magnoliopsida Plant 83 106 

Berberis thunbergii Magnoliopsida Plant 226 3703 

Bidens frondosa Magnoliopsida Plant 1141 3554 

Bidens pilosa Magnoliopsida Plant 1480 4234 

Bixa orellana Magnoliopsida Plant 1005 32 

Boerhavia coccinea Magnoliopsida Plant 648 884 

Boerhavia diffusa Magnoliopsida Plant 180 133 

Bombus terrestris Insecta Invertebrate 10200 123 

Bothriochloa ischaemum Liliopsida Plant 661 416 

Bothriochloa pertusa Liliopsida Plant 25 493 

Bougainvillea spectabilis Magnoliopsida Plant 620 265 

Brachypodium distachyon Liliopsida Plant 1399 805 

Brachypodium sylvaticum Liliopsida Plant 21485 46 

Branta canadensis Aves Vertebrate 149911 25519 

Brassica nigra Magnoliopsida Plant 1487 541 

Brassica rapa Magnoliopsida Plant 24 3057 

Brassica tournefortii Magnoliopsida Plant 118 3671 

Briza maxima Liliopsida Plant 1814 4644 

Bromus diandrus var. rigidus Liliopsida Plant 348 53 

Bromus hordeaceus Liliopsida Plant 19161 4599 

Bromus inermis Liliopsida Plant 3676 1968 

Bromus japonicus Liliopsida Plant 542 828 

Bromus madritensis Liliopsida Plant 1543 896 

Bromus rubens Liliopsida Plant 997 4456 

Bromus secalinus Liliopsida Plant 365 1098 

Bromus sterilis Liliopsida Plant 11021 297 
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Bromus tectorum Liliopsida Plant 693 4464 

Broussonetia papyrifera Magnoliopsida Plant 396 551 

Brugmansia suaveolens Magnoliopsida Plant 200 295 

Bubulcus ibis Aves Vertebrate 11493 42214 

Buddleja davidii Magnoliopsida Plant 59 1731 

Buddleja madagascariensis Magnoliopsida Plant 96 33 

Butomus umbellatus Liliopsida Plant 4859 312 

Caesalpinia decapetala Magnoliopsida Plant 110 640 

Caesalpinia pulcherrima Magnoliopsida Plant 501 863 

Caladium bicolor Liliopsida Plant 1581 165 

Calliandra houstoniana Magnoliopsida Plant 1238 66 

Callisia fragrans Liliopsida Plant 70 22 

Callitropsis arizonica Pinopsida Plant 294 110 

Calluna vulgaris Magnoliopsida Plant 39007 111 

Calopogonium mucunoides Magnoliopsida Plant 472 227 

Calotropis procera Magnoliopsida Plant 1536 1334 

Cananga odorata Magnoliopsida Plant 133 93 

Canna indica Liliopsida Plant 1832 818 

Capsella bursa-pastoris Magnoliopsida Plant 28137 3432 

Cardamine flexuosa Magnoliopsida Plant 11747 609 

Cardiospermum grandiflorum Magnoliopsida Plant 183 199 

Cardiospermum halicacabum Magnoliopsida Plant 887 612 

Carduus nutans Magnoliopsida Plant 4212 1778 

Carduus pycnocephalus Magnoliopsida Plant 1294 1335 

Carpobrotus edulis Magnoliopsida Plant 194 1416 

Cassia fistula Magnoliopsida Plant 92 272 

Cassytha filiformis Magnoliopsida Plant 2271 52 

Casuarina cunninghamiana Magnoliopsida Plant 1543 73 

Casuarina equisetifolia Magnoliopsida Plant 419 218 

Catharanthus roseus Magnoliopsida Plant 49 2891 

Cecropia schreberiana ssp. 

antillarum Magnoliopsida Plant 473 21 

Cedrela odorata Magnoliopsida Plant 993 68 

Celastrus orbiculatus Magnoliopsida Plant 459 1344 

Cenchrus biflorus Liliopsida Plant 1552 51 

Cenchrus macrourus Liliopsida Plant 123 140 

Cenchrus pedicellatus Liliopsida Plant 1329 814 

Cenchrus polystachios Liliopsida Plant 973 640 

Centaurea debeauxii Magnoliopsida Plant 1737 23 

Centaurea diffusa Magnoliopsida Plant 189 254 

Centaurea melitensis Magnoliopsida Plant 934 2919 

Centaurea solstitialis Magnoliopsida Plant 443 1129 
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Centella asiatica Magnoliopsida Plant 3219 42 

Centratherum punctatum Magnoliopsida Plant 642 51 

Ceratitis capitata Insecta Invertebrate 157 23 

Cervus elaphus Mammalia Vertebrate 9933 190 

Cervus nippon Mammalia Vertebrate 102 530 

Chloris gayana Liliopsida Plant 178 1230 

Chloris virgata Liliopsida Plant 622 936 

Chondrilla juncea Magnoliopsida Plant 2096 1820 

Christella dentata Polypodiopsida Plant 1116 453 

Chromolaena odorata Magnoliopsida Plant 1467 820 

Cinnamomum camphora Magnoliopsida Plant 191 1095 

Cinnamomum verum Magnoliopsida Plant 29 88 

Cirsium arvense Magnoliopsida Plant 39900 3341 

Cirsium vulgare Magnoliopsida Plant 36995 17538 

Clematis terniflora Magnoliopsida Plant 333 525 

Clematis vitalba Magnoliopsida Plant 16398 558 

Clerodendrum bungei Magnoliopsida Plant 43 66 

Clerodendrum chinense Magnoliopsida Plant 21 93 

Clidemia hirta Magnoliopsida Plant 1211 81 

Clitoria ternatea Magnoliopsida Plant 85 714 

Coccinella septempunctata Insecta Invertebrate 14363 4050 

Coccinia grandis Magnoliopsida Plant 208 31 

Cocos nucifera Liliopsida Plant 183 671 

Coix lacryma-jobi Liliopsida Plant 85 375 

Colocasia esculenta Liliopsida Plant 362 893 

Columba livia Aves Vertebrate 35571 116223 

Conium maculatum Magnoliopsida Plant 4452 1971 

Cornus sericea Magnoliopsida Plant 3054 1665 

Cortaderia jubata Liliopsida Plant 61 181 

Cortaderia selloana Liliopsida Plant 192 2784 

Corvus splendens Aves Vertebrate 16428 438 

Corythucha ciliata Insecta Invertebrate 20 131 

Cosmos caudatus Magnoliopsida Plant 135 81 

Cosmos sulphureus Magnoliopsida Plant 449 629 

Cotoneaster horizontalis Magnoliopsida Plant 36 2745 

Crassocephalum crepidioides Magnoliopsida Plant 104 613 

Crataegus monogyna Magnoliopsida Plant 45152 1919 

Crotalaria retusa Magnoliopsida Plant 253 532 

Cryptostegia grandiflora Magnoliopsida Plant 39 472 

Cryptostegia madagascariensis Magnoliopsida Plant 43 94 

Ctenosaura similis Reptilia Vertebrate 594 42 
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Cucumis anguria Magnoliopsida Plant 36 272 

Cupaniopsis anacardioides Magnoliopsida Plant 763 38 

Cuscuta epithymum Magnoliopsida Plant 2081 192 

Cyanthillium cinereum Magnoliopsida Plant 2749 291 

Cyathula prostrata Magnoliopsida Plant 210 246 

Cyclachaena xanthiifolia Magnoliopsida Plant 175 298 

Cygnus olor Aves Vertebrate 34689 10556 

Cylindropuntia fulgida Magnoliopsida Plant 366 51 

Cynara cardunculus Magnoliopsida Plant 464 820 

Cynodon dactylon Liliopsida Plant 616 10239 

Cynodon nlemfuensis Liliopsida Plant 47 119 

Cynoglossum officinale Magnoliopsida Plant 2934 599 

Cyperus difformis Liliopsida Plant 1516 151 

Cyperus imbricatus Liliopsida Plant 138 42 

Cyperus papyrus Liliopsida Plant 151 128 

Cyperus rotundus Liliopsida Plant 351 354 

Cyrtomium falcatum Polypodiopsida Plant 709 116 

Cytisus scoparius Magnoliopsida Plant 20792 1910 

Dactylis glomerata Liliopsida Plant 50529 4424 

Dactyloctenium aegyptium Liliopsida Plant 1981 1498 

Dalbergia sissoo Magnoliopsida Plant 32 50 

Datura quercifolia Magnoliopsida Plant 88 270 

Delairea odorata Magnoliopsida Plant 35 799 

Delonix regia Magnoliopsida Plant 25 1252 

Descurainia sophia Magnoliopsida Plant 3975 748 

Desmodium incanum Magnoliopsida Plant 738 138 

Dichanthium annulatum Liliopsida Plant 357 295 

Dichrostachys cinerea Magnoliopsida Plant 425 929 

Digitaria bicornis Liliopsida Plant 347 385 

Digitaria ciliaris Liliopsida Plant 272 1649 

Digitaria eriantha Liliopsida Plant 445 61 

Digitaria sanguinalis Liliopsida Plant 5507 917 

Dimorphotheca sinuata Magnoliopsida Plant 80 107 

Dioscorea alata Liliopsida Plant 41 77 

Dioscorea bulbifera Liliopsida Plant 744 186 

Diprion similis Insecta Invertebrate 25 427 

Dovyalis caffra Magnoliopsida Plant 40 378 

Drymaria cordata Magnoliopsida Plant 237 335 

Duranta erecta Magnoliopsida Plant 910 906 

Dysphania ambrosioides Magnoliopsida Plant 599 1261 

Echinochloa pyramidalis Liliopsida Plant 331 75 
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Echinocystis lobata Magnoliopsida Plant 1323 660 

Echium plantagineum Magnoliopsida Plant 1542 7297 

Ehrharta calycina Liliopsida Plant 199 1082 

Ehrharta erecta Liliopsida Plant 143 1507 

Elaeagnus angustifolia Magnoliopsida Plant 284 898 

Elaeagnus umbellata Magnoliopsida Plant 438 2545 

Elephantopus mollis Magnoliopsida Plant 1066 83 

Eleusine indica Liliopsida Plant 420 2115 

Elodea canadensis Liliopsida Plant 164 7602 

Elodea nuttallii Liliopsida Plant 183 3961 

Emilia sonchifolia Magnoliopsida Plant 140 797 

Epilobium ciliatum Magnoliopsida Plant 7059 8804 

Eragrostis atrovirens Liliopsida Plant 305 45 

Eragrostis ciliaris Liliopsida Plant 354 514 

Eragrostis japonica Liliopsida Plant 309 88 

Eragrostis lehmanniana Liliopsida Plant 267 283 

Eragrostis pilosa Liliopsida Plant 802 484 

Eragrostis plana Liliopsida Plant 109 24 

Eragrostis tenella Liliopsida Plant 55 273 

Eragrostis unioloides Liliopsida Plant 130 28 

Eremochloa ophiuroides Liliopsida Plant 23 56 

Erigeron karvinskianus Magnoliopsida Plant 401 1304 

Erinaceus europaeus Mammalia Vertebrate 1104 9717 

Eriobotrya japonica Magnoliopsida Plant 50 4462 

Erodium botrys Magnoliopsida Plant 293 1534 

Erodium cicutarium Magnoliopsida Plant 17185 6834 

Etlingera elatior Liliopsida Plant 63 96 

Eucalyptus camaldulensis Magnoliopsida Plant 6279 428 

Euonymus alatus Magnoliopsida Plant 542 1124 

Euonymus fortunei Magnoliopsida Plant 230 552 

Euonymus japonicus Magnoliopsida Plant 68 189 

Eupatorium cannabinum Magnoliopsida Plant 2159 17714 

Euphorbia esula Magnoliopsida Plant 1339 219 

Euphorbia terracina Magnoliopsida Plant 548 551 

Euphorbia tirucalli Magnoliopsida Plant 968 47 

Fallopia convolvulus Magnoliopsida Plant 23 2099 

Ficus microcarpa Magnoliopsida Plant 318 63 

Ficus pumila Magnoliopsida Plant 128 24 

Fimbristylis dichotoma Liliopsida Plant 146 261 

Fimbristylis littoralis Liliopsida Plant 718 183 

Flemingia strobilifera Magnoliopsida Plant 156 28 
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Foeniculum vulgare Magnoliopsida Plant 5334 3449 

Forficula auricularia Insecta Invertebrate 6010 864 

Gaillardia pulchella Magnoliopsida Plant 75 252 

Galega officinalis Magnoliopsida Plant 857 24 

Galinsoga parviflora Magnoliopsida Plant 411 658 

Galinsoga quadriradiata Magnoliopsida Plant 256 6336 

Gallus gallus Aves Vertebrate 3312 259 

Gaultheria shallon Magnoliopsida Plant 536 130 

Genetta genetta Mammalia Vertebrate 112 2814 

Genista monspessulana Magnoliopsida Plant 167 1453 

Gleditsia triacanthos Magnoliopsida Plant 21 1708 

Gliricidia sepium Magnoliopsida Plant 607 186 

Glyceria declinata Liliopsida Plant 3989 236 

Glyceria maxima Liliopsida Plant 7639 147 

Gomphocarpus physocarpus Magnoliopsida Plant 168 560 

Grevillea robusta Magnoliopsida Plant 594 1163 

Gunnera tinctoria Magnoliopsida Plant 96 532 

Gypsophila paniculata Magnoliopsida Plant 262 141 

Haemorhous mexicanus Aves Vertebrate 3891 93798 

Halyomorpha halys Insecta Invertebrate 107 2092 

Harmonia axyridis Insecta Invertebrate 312 16769 

Hedera helix Magnoliopsida Plant 45707 1887 

Hedychium coronarium Liliopsida Plant 113 462 

Heliconia bihai Liliopsida Plant 148 40 

Heliotropium curassavicum Magnoliopsida Plant 1148 565 

Helminthotheca echioides Magnoliopsida Plant 3787 3404 

Hemidactylus frenatus Reptilia Vertebrate 483 1138 

Hemidactylus mabouia Reptilia Vertebrate 411 489 

Heteropogon contortus Liliopsida Plant 2681 608 

Holcus lanatus Liliopsida Plant 25497 9465 

Houttuynia cordata Magnoliopsida Plant 398 31 

Hydrilla verticillata Liliopsida Plant 81 229 

Hydrocharis morsus-ranae Liliopsida Plant 3985 275 

Hyoscyamus niger Magnoliopsida Plant 1920 223 

Hyparrhenia rufa Liliopsida Plant 746 976 

Hypericum perforatum Magnoliopsida Plant 34372 5912 

Hypochaeris radicata Magnoliopsida Plant 14344 14304 

Icerya purchasi Insecta Invertebrate 34 28 

Impatiens walleriana Magnoliopsida Plant 25 1087 

Imperata cylindrica Liliopsida Plant 5596 398 

Indigofera hirsuta Magnoliopsida Plant 1010 293 
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Indigofera spicata Magnoliopsida Plant 191 106 

Indigofera suffruticosa Magnoliopsida Plant 1040 40 

Ipomoea hederifolia Magnoliopsida Plant 811 163 

Ipomoea nil Magnoliopsida Plant 435 370 

Ipomoea purpurea Magnoliopsida Plant 1247 1602 

Ipomoea quamoclit Magnoliopsida Plant 317 580 

Iris pseudacorus Liliopsida Plant 26144 1145 

Ischaemum rugosum Liliopsida Plant 141 77 

Jacaranda mimosifolia Magnoliopsida Plant 93 1396 

Jacobaea vulgaris Magnoliopsida Plant 25043 1880 

Jatropha gossypiifolia Magnoliopsida Plant 463 609 

Juncus effusus Liliopsida Plant 30798 1335 

Juncus ensifolius Liliopsida Plant 202 79 

Juncus tenuis Liliopsida Plant 419 9369 

Lachnagrostis filiformis Liliopsida Plant 5189 37 

Lagarosiphon major Liliopsida Plant 29 358 

Lagerstroemia indica Magnoliopsida Plant 175 367 

Lagerstroemia speciosa Magnoliopsida Plant 91 32 

Lamium amplexicaule Magnoliopsida Plant 8801 2970 

Lantana camara Magnoliopsida Plant 3821 6552 

Lawsonia inermis Magnoliopsida Plant 70 57 

Leiothrix lutea Aves Vertebrate 976 103 

Lemna minuta Liliopsida Plant 228 1950 

Leonotis nepetifolia Magnoliopsida Plant 25 803 

Leonurus japonicus Magnoliopsida Plant 182 94 

Lepidium latifolium Magnoliopsida Plant 747 438 

Lepidium perfoliatum Magnoliopsida Plant 95 414 

Lepidium virginicum Magnoliopsida Plant 1789 1129 

Leptochloa panicea ssp. mucronata Liliopsida Plant 365 28 

Lepus europaeus Mammalia Vertebrate 9143 7977 

Lespedeza cuneata Magnoliopsida Plant 726 763 

Leucaena leucocephala Magnoliopsida Plant 747 2155 

Leucanthemum vulgare Magnoliopsida Plant 15478 13145 

Ligustrum lucidum Magnoliopsida Plant 63 1686 

Ligustrum obtusifolium Magnoliopsida Plant 345 134 

Ligustrum sinense Magnoliopsida Plant 137 2041 

Lilioceris lilii Insecta Invertebrate 576 4500 

Linaria dalmatica Magnoliopsida Plant 34 565 

Linaria vulgaris Magnoliopsida Plant 29201 2030 

Linepithema humile Insecta Invertebrate 54 428 

Lolium multiflorum Liliopsida Plant 1093 4749 
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Lolium perenne Liliopsida Plant 25956 4881 

Lolium rigidum Liliopsida Plant 1095 3732 

Lolium temulentum Liliopsida Plant 87 70 

Lonicera japonica Magnoliopsida Plant 311 4227 

Lonicera morrowii Magnoliopsida Plant 44 671 

Ludwigia peruviana Magnoliopsida Plant 555 274 

Lupinus angustifolius Magnoliopsida Plant 933 216 

Lupinus polyphyllus Magnoliopsida Plant 1435 24780 

Lycium ferocissimum Magnoliopsida Plant 80 4502 

Lygodium japonicum Polypodiopsida Plant 1303 737 

Lygodium microphyllum Polypodiopsida Plant 628 84 

Lythrum salicaria Magnoliopsida Plant 30569 2790 

Macroptilium atropurpureum Magnoliopsida Plant 657 471 

Macrothelypteris torresiana Polypodiopsida Plant 252 834 

Malva pusilla Magnoliopsida Plant 229 525 

Mangifera indica Magnoliopsida Plant 304 1275 

Manilkara zapota Magnoliopsida Plant 588 74 

Marrubium vulgare Magnoliopsida Plant 1971 6589 

Martynia annua Magnoliopsida Plant 391 149 

Medicago lupulina Magnoliopsida Plant 17089 2859 

Medicago polymorpha Magnoliopsida Plant 1566 4700 

Melaleuca quinquenervia Magnoliopsida Plant 910 49 

Melia azedarach Magnoliopsida Plant 154 4907 

Melicoccus bijugatus Magnoliopsida Plant 71 49 

Melilotus officinalis Magnoliopsida Plant 2720 4242 

Melinis minutiflora Liliopsida Plant 93 648 

Melinis repens Liliopsida Plant 666 2995 

Mentha pulegium Magnoliopsida Plant 622 713 

Mesembryanthemum crystallinum Magnoliopsida Plant 447 1122 

Microstegium vimineum Liliopsida Plant 338 1306 

Mimosa pigra Magnoliopsida Plant 994 861 

Mimosa pudica Magnoliopsida Plant 1152 709 

Mirabilis jalapa Magnoliopsida Plant 695 4332 

Miscanthus sinensis Liliopsida Plant 552 135 

Molothrus bonariensis Aves Vertebrate 15885 1486 

Momordica charantia Magnoliopsida Plant 282 1827 

Moringa oleifera Magnoliopsida Plant 129 374 

Mucuna pruriens Magnoliopsida Plant 174 20 

Muntingia calabura Magnoliopsida Plant 1063 106 

Murdannia nudiflora Liliopsida Plant 43 303 

Mustela nivalis Mammalia Vertebrate 227 2468 
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Mustela vison Mammalia Vertebrate 1770 8108 

Myiopsitta monachus Aves Vertebrate 7684 1529 

Myocastor coypus Mammalia Vertebrate 193 1907 

Myriophyllum spicatum Magnoliopsida Plant 5675 545 

Mythimna unipuncta Insecta Invertebrate 1359 286 

Nassella neesiana Liliopsida Plant 60 518 

Nassella tenuissima Liliopsida Plant 28 31 

Nasturtium microphyllum Magnoliopsida Plant 1600 139 

Neonotonia wightii Magnoliopsida Plant 178 117 

Nephrolepis cordifolia Polypodiopsida Plant 484 138 

Nicotiana glauca Magnoliopsida Plant 223 3566 

Nicotiana tabacum Magnoliopsida Plant 35 179 

Nymphoides peltata Magnoliopsida Plant 1085 133 

Ocimum gratissimum Magnoliopsida Plant 259 170 

Oldenlandia corymbosa Magnoliopsida Plant 223 345 

Oldenlandia lancifolia Magnoliopsida Plant 177 128 

Ondatra zibethicus Mammalia Vertebrate 2119 2475 

Onopordum acanthium Magnoliopsida Plant 3681 1152 

Onopordum illyricum Magnoliopsida Plant 139 61 

Opuntia ficus-indica Magnoliopsida Plant 343 1606 

Orobanche minor Magnoliopsida Plant 1329 677 

Oxyura jamaicensis Aves Vertebrate 38372 862 

Paederia foetida Magnoliopsida Plant 574 32 

Panicum repens Liliopsida Plant 155 468 

Parkinsonia aculeata Magnoliopsida Plant 1048 2707 

Parthenium hysterophorus Magnoliopsida Plant 1377 1068 

Parthenocissus quinquefolia Magnoliopsida Plant 9207 2484 

Paspalum conjugatum Liliopsida Plant 764 308 

Paspalum dilatatum Liliopsida Plant 91 5537 

Paspalum distichum Liliopsida Plant 498 1972 

Paspalum notatum Liliopsida Plant 173 397 

Paspalum paniculatum Liliopsida Plant 386 111 

Paspalum scrobiculatum Liliopsida Plant 1826 30 

Paspalum urvillei Liliopsida Plant 153 1215 

Paspalum vaginatum Liliopsida Plant 507 98 

Passer domesticus Aves Vertebrate 23909 141202 

Passiflora caerulea Magnoliopsida Plant 370 1773 

Passiflora edulis Magnoliopsida Plant 384 1126 

Passiflora foetida Magnoliopsida Plant 2327 1243 

Passiflora suberosa Magnoliopsida Plant 583 346 

Passiflora tarminiana Magnoliopsida Plant 57 96 
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Pastinaca sativa Magnoliopsida Plant 10487 1223 

Paulownia tomentosa Magnoliopsida Plant 40 1589 

Pentas lanceolata Magnoliopsida Plant 93 32 

Persicaria maculosa Magnoliopsida Plant 18051 1608 

Persicaria perfoliata Magnoliopsida Plant 295 438 

Persicaria punctata Magnoliopsida Plant 2167 29 

Phalaris aquatica Liliopsida Plant 108 4361 

Phalaris paradoxa Liliopsida Plant 186 784 

Phasianus colchicus Aves Vertebrate 2473 76556 

Pheidole megacephala Insecta Invertebrate 108 94 

Phleum pratense Liliopsida Plant 29249 2177 

Phormium tenax Liliopsida Plant 817 82 

Phyllanthus urinaria Magnoliopsida Plant 209 408 

Physalis angulata Magnoliopsida Plant 496 662 

Physalis peruviana Magnoliopsida Plant 273 1459 

Pinus elliottii Pinopsida Plant 224 177 

Pinus halepensis Pinopsida Plant 2870 579 

Pinus pinaster Pinopsida Plant 4827 157 

Pinus radiata Pinopsida Plant 118 1985 

Piper aduncum Magnoliopsida Plant 1656 34 

Pithecellobium dulce Magnoliopsida Plant 780 277 

Pittosporum tenuifolium Magnoliopsida Plant 770 102 

Pittosporum undulatum Magnoliopsida Plant 2757 65 

Plantago coronopus Magnoliopsida Plant 6082 1861 

Plantago lanceolata Magnoliopsida Plant 42408 9822 

Pluchea carolinensis Magnoliopsida Plant 371 39 

Poa annua Liliopsida Plant 6272 10310 

Poa compressa Liliopsida Plant 10132 1121 

Poa nemoralis Liliopsida Plant 28847 245 

Poa pratensis Liliopsida Plant 37565 3518 

Polycarpon tetraphyllum Magnoliopsida Plant 835 1347 

Polygonum aviculare ssp. 

depressum Magnoliopsida Plant 6086 714 

Polypogon monspeliensis Liliopsida Plant 881 3259 

Populus alba Magnoliopsida Plant 4267 660 

Porphyrio porphyrio Aves Vertebrate 13157 209 

Portulaca pilosa Magnoliopsida Plant 956 1266 

Potamogeton crispus Liliopsida Plant 5751 841 

Potamogeton perfoliatus Liliopsida Plant 6111 55 

Procyon lotor Mammalia Vertebrate 6480 1415 

Prosopis glandulosa Magnoliopsida Plant 2039 85 

Prosopis juliflora Magnoliopsida Plant 385 488 
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Prosopis velutina Magnoliopsida Plant 73 94 

Prunella vulgaris Magnoliopsida Plant 46590 2263 

Prunus serotina Magnoliopsida Plant 6723 4071 

Pseudelephantopus spicatus Magnoliopsida Plant 608 46 

Psittacula krameri Aves Vertebrate 14215 1904 

Pteris tripartita Polypodiopsida Plant 130 37 

Pteris vittata Polypodiopsida Plant 489 212 

Pueraria phaseoloides Magnoliopsida Plant 81 120 

Pycnonotus jocosus Aves Vertebrate 8533 456 

Pyracantha coccinea Magnoliopsida Plant 1782 862 

Pyrus calleryana Magnoliopsida Plant 53 1179 

Python bivittatus Reptilia Vertebrate 27 162 

Rhamnus alaternus Magnoliopsida Plant 3647 210 

Rhamnus cathartica Magnoliopsida Plant 9557 2062 

Rhamnus frangula Magnoliopsida Plant 28367 1178 

Rhaponticum repens Magnoliopsida Plant 42 447 

Rhinocyllus conicus Insecta Invertebrate 267 113 

Rhodomyrtus tomentosa Magnoliopsida Plant 143 21 

Rhus typhina Magnoliopsida Plant 2278 1616 

Rivina humilis Magnoliopsida Plant 1450 248 

Rosa bracteata Magnoliopsida Plant 22 187 

Rosa multiflora Magnoliopsida Plant 308 2476 

Rosa rugosa Magnoliopsida Plant 51 10632 

Rosmarinus officinalis Magnoliopsida Plant 47 1256 

Rottboellia cochinchinensis Liliopsida Plant 563 233 

Rubus ellipticus Magnoliopsida Plant 41 34 

Rubus niveus Magnoliopsida Plant 59 37 

Rubus parviflorus Magnoliopsida Plant 2366 27 

Rubus plicatus Magnoliopsida Plant 25351 186 

Rubus rosifolius Magnoliopsida Plant 1410 191 

Rubus ulmifolius Magnoliopsida Plant 8642 928 

Rudbeckia laciniata Magnoliopsida Plant 115 894 

Ruellia simplex Magnoliopsida Plant 417 350 

Rumex acetosella Magnoliopsida Plant 37327 6857 

Rumex obtusifolius Magnoliopsida Plant 26583 2326 

Rusa unicolor Mammalia Vertebrate 77 458 

Russelia equisetiformis Magnoliopsida Plant 60 22 

Saccharum ravennae Liliopsida Plant 363 52 

Sacciolepis indica Liliopsida Plant 879 80 

Sagina procumbens Magnoliopsida Plant 26939 380 

Sagittaria latifolia Liliopsida Plant 791 123 
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Sagittaria platyphylla Liliopsida Plant 158 137 

Salix babylonica Magnoliopsida Plant 20 1361 

Salix cinerea Magnoliopsida Plant 26545 260 

Salix fragilis Magnoliopsida Plant 7110 1086 

Samanea saman Magnoliopsida Plant 220 130 

Sambucus nigra Magnoliopsida Plant 35779 498 

Sansevieria hyacinthoides Liliopsida Plant 111 62 

Schinus terebinthifolius Magnoliopsida Plant 585 559 

Schismus arabicus Liliopsida Plant 59 527 

Sciurus carolinensis Mammalia Vertebrate 4469 7777 

Sechium edule Magnoliopsida Plant 206 86 

Senecio glomeratus Magnoliopsida Plant 360 30 

Senecio madagascariensis Magnoliopsida Plant 67 1819 

Senecio squalidus Magnoliopsida Plant 190 837 

Senecio viscosus Magnoliopsida Plant 2860 161 

Senecio vulgaris Magnoliopsida Plant 28568 4113 

Senna alata Magnoliopsida Plant 312 662 

Senna hirsuta Magnoliopsida Plant 576 193 

Senna obtusifolia Magnoliopsida Plant 1125 1163 

Senna occidentalis Magnoliopsida Plant 1236 2024 

Senna septemtrionalis Magnoliopsida Plant 195 733 

Senna siamea Magnoliopsida Plant 26 1773 

Senna spectabilis Magnoliopsida Plant 580 794 

Sesbania punicea Magnoliopsida Plant 78 285 

Setaria palmifolia Liliopsida Plant 493 242 

Setaria parviflora Liliopsida Plant 1298 1362 

Setaria verticillata Liliopsida Plant 2830 532 

Sicyos angulatus Magnoliopsida Plant 410 82 

Sida acuta Magnoliopsida Plant 1357 1181 

Sida linifolia Magnoliopsida Plant 607 186 

Silene gallica Magnoliopsida Plant 2014 2327 

Silybum marianum Magnoliopsida Plant 2137 4417 

Sisymbrium irio Magnoliopsida Plant 980 2768 

Solanum elaeagnifolium Magnoliopsida Plant 2732 1055 

Solanum erianthum Magnoliopsida Plant 102 87 

Solanum mauritianum Magnoliopsida Plant 336 1780 

Solanum quitoense Magnoliopsida Plant 106 60 

Solanum seaforthianum Magnoliopsida Plant 41 680 

Solanum sisymbriifolium Magnoliopsida Plant 503 247 

Solanum viarum Magnoliopsida Plant 162 147 

Solenopsis invicta Insecta Invertebrate 54 1287 
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Solidago canadensis Magnoliopsida Plant 974 11162 

Solidago gigantea Magnoliopsida Plant 1124 5309 

Soliva sessilis Magnoliopsida Plant 30 800 

Sonchus asper Magnoliopsida Plant 18336 7336 

Sonchus oleraceus Magnoliopsida Plant 14914 18764 

Sorghum halepense Liliopsida Plant 47 3185 

Spartium junceum Magnoliopsida Plant 2060 629 

Spathodea campanulata Magnoliopsida Plant 170 411 

Spermacoce verticillata Magnoliopsida Plant 1584 355 

Sphagneticola trilobata Magnoliopsida Plant 1018 690 

Spiraea chamaedryfolia Magnoliopsida Plant 170 967 

Spiraea japonica Magnoliopsida Plant 147 554 

Sporobolus africanus Liliopsida Plant 171 1620 

Stachys arvensis Magnoliopsida Plant 1672 1055 

Stachytarpheta cayennensis Magnoliopsida Plant 1065 308 

Stenotaphrum secundatum Liliopsida Plant 144 834 

Streptopelia decaocto Aves Vertebrate 31941 103993 

Sus scrofa Mammalia Vertebrate 4722 5521 

Symphyotrichum novi-belgii Magnoliopsida Plant 467 2098 

Syngonium podophyllum Liliopsida Plant 1528 115 

Syzygium cumini Magnoliopsida Plant 46 215 

Taeniatherum caput-medusae Liliopsida Plant 675 193 

Tagetes erecta Magnoliopsida Plant 779 2753 

Tagetes minuta Magnoliopsida Plant 209 245 

Tamarix aphylla Magnoliopsida Plant 48 612 

Tamarix gallica Magnoliopsida Plant 800 32 

Tamarix parviflora Magnoliopsida Plant 101 81 

Tamarix ramosissima Magnoliopsida Plant 102 1301 

Tanacetum vulgare Magnoliopsida Plant 37184 2911 

Tecoma capensis Magnoliopsida Plant 244 178 

Tecoma stans Magnoliopsida Plant 1997 1033 

Terminalia catappa Magnoliopsida Plant 231 745 

Thespesia populnea Magnoliopsida Plant 126 45 

Thevetia peruviana Magnoliopsida Plant 473 1440 

Threskiornis aethiopicus Aves Vertebrate 5579 470 

Thunbergia alata Magnoliopsida Plant 241 1350 

Thunbergia fragrans Magnoliopsida Plant 63 223 

Thunbergia grandiflora Magnoliopsida Plant 27 252 

Tibouchina urvilleana Magnoliopsida Plant 248 65 

Tithonia diversifolia Magnoliopsida Plant 360 1234 

Tithonia rotundifolia Magnoliopsida Plant 120 232 
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Toona ciliata Magnoliopsida Plant 669 143 

Toxicodendron succedaneum Magnoliopsida Plant 149 31 

Tradescantia fluminensis Liliopsida Plant 204 1762 

Tradescantia pallida Liliopsida Plant 240 620 

Tradescantia spathacea Liliopsida Plant 299 171 

Tradescantia zebrina Liliopsida Plant 379 879 

Trapa natans Magnoliopsida Plant 552 123 

Triadica sebifera Magnoliopsida Plant 166 1636 

Trifolium dubium Magnoliopsida Plant 17131 3433 

Trifolium repens Magnoliopsida Plant 60678 11810 

Triumfetta rhomboidea Magnoliopsida Plant 742 325 

Turbina corymbosa Magnoliopsida Plant 518 22 

Tussilago farfara Magnoliopsida Plant 41605 3598 

Typha latifolia Liliopsida Plant 26506 86 

Ulex europaeus Magnoliopsida Plant 13078 2858 

Urena lobata Magnoliopsida Plant 1244 427 

Urochloa panicoides Liliopsida Plant 136 401 

Urtica dioica Magnoliopsida Plant 57496 120 

Vachellia nilotica Magnoliopsida Plant 947 363 

Verbascum thapsus Magnoliopsida Plant 21821 9707 

Verbena litoralis Magnoliopsida Plant 825 291 

Verbena rigida Magnoliopsida Plant 42 1391 

Verbesina encelioides Magnoliopsida Plant 1254 374 

Vernicia fordii Magnoliopsida Plant 48 122 

Vespula germanica Insecta Invertebrate 2024 550 

Vicia villosa Magnoliopsida Plant 4634 2883 

Vincetoxicum nigrum Magnoliopsida Plant 335 199 

Vulpia bromoides Liliopsida Plant 2905 4412 

Vulpia myuros Liliopsida Plant 4791 5982 

Wasmannia auropunctata Insecta Invertebrate 696 72 

Wisteria floribunda Magnoliopsida Plant 466 42 

Xanthium spinosum Magnoliopsida Plant 89 2971 

Xanthogaleruca luteola Insecta Invertebrate 108 127 

Xanthosoma sagittifolium Liliopsida Plant 122 66 

Youngia japonica Magnoliopsida Plant 719 688 

Zingiber zerumbet Liliopsida Plant 43 23 

Zinnia peruviana Magnoliopsida Plant 1170 295 

Zizania latifolia Liliopsida Plant 69 26 

Ziziphus mauritiana Magnoliopsida Plant 34 1043 
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Table S3. Full list of GBIF DOIs for downloading occurrence records used to sample target-

group background sites, with classes and countries as ISO3 corresponding to each DOI link, 

semi-colon separated. 

DOI Class ISO3 

https://doi.org/10.15468/dl.scehaa Insecta SWE 

https://doi.org/10.15468/dl.3yjkmb Insecta FRA 

https://doi.org/10.15468/dl.bsm8hv Insecta GBR 

https://doi.org/10.15468/dl.24awy7 Insecta USA 

https://doi.org/10.15468/dl.5bks73 Insecta CAN 

https://doi.org/10.15468/dl.q57a8f Insecta DEU 

https://doi.org/10.15468/dl.93aa9t Insecta ITA 

https://doi.org/10.15468/dl.2w5ybx Insecta 
CZE;RUS;BGR;CHL;GRC;HUN;KOR;CHN;UKR;T

UR;SRB;GEO;SVK;ROU;SVN;HRV 

https://doi.org/10.15468/dl.9evn73 Insecta NLD 

https://doi.org/10.15468/dl.mgppp4 Insecta DNK 

https://doi.org/10.15468/dl.9kerem Insecta PRT 

https://doi.org/10.15468/dl.a2epjr Insecta 

ZAF;ISR;MEX;ARG;BLR;IDN;BRA;DZA;LKA;IN

D;MTQ;PHL;THA;TWN;GUF;ISL;PER;PRI;KAZ;I

RN;CRI;DOM;HTI;COL;MYS;BRN;LTU;CUB;TT

O;MKD;MOZ;AFG;BOL;MNE;KHM;MAR;PRY;A

RM;MDA;GTM;PAN;JOR;LVA;CYP;SYR;VNM 

https://doi.org/10.15468/dl.zqv7zc Insecta CHE 

https://doi.org/10.15468/dl.t3retf Insecta BEL 

https://doi.org/10.15468/dl.hg3x44 Insecta ESP 

https://doi.org/10.15468/dl.rgnegs Insecta AUS 

https://doi.org/10.15468/dl.v22rjk Insecta AUT 

https://doi.org/10.15468/dl.9a8f5k Insecta POL 

https://doi.org/10.15468/dl.eeb65r Insecta NZL 

https://doi.org/10.15468/dl.s2z5d9 Insecta NOR 

https://doi.org/10.15468/dl.ptj88b Insecta FIN 

https://doi.org/10.15468/dl.cz5dxs Insecta UZB;MNG;ALB 

https://doi.org/10.15468/dl.q498ed Insecta IRL 

https://doi.org/10.15468/dl.kt7vb3 Insecta LUX 

https://doi.org/10.15468/dl.jvtb89 Insecta JPN 

https://doi.org/10.15468/dl.8hd77s Insecta EST 

https://doi.org/10.15468/dl.smwn42 Mammalia SWE 

https://doi.org/10.15468/dl.8w892v Mammalia FRA 

https://doi.org/10.15468/dl.t72fra Mammalia 

IMN;NZL;MEX;RUS;SRB;BGR;NLD;ZAF;CRI;TC

D;AUS;LKA;TWN;PRT;LUX;GEO;BGD;SVK;DZ

A;BWA;SDN;BLR;HUN;NAM;SVN;HND;MNG;R

OU;BTN;LTU;SLV;UKR;PAN;EST;ALB;AZE;EG

Y;KAZ;LVA;GTM;ETH;JEY;OMN;AND;MKD;PE

R;MAR;UZB;KHM;BLZ;KGZ;NIC;TUN;MNE;CO

L;ECU;BIH;ESH;NER 

https://doi.org/10.15468/dl.gyk7hf Mammalia GBR 

https://doi.org/10.15468/dl.ujydgk Mammalia USA 

https://doi.org/10.15468/dl.ef9445 Mammalia CAN 

https://doi.org/10.15468/dl.akg67z Mammalia DEU 
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https://doi.org/10.15468/dl.n7yhx4 Mammalia 

ARG;AUT;ITA;IND;MYS;CHL;POL;JPN;FIN;BRA

;IRL;KEN;ISR;CHN;CHE;IRN;PRY;GHA;CIV;IDN

;UGA 

https://doi.org/10.15468/dl.qdu7dp Mammalia 
URY;THA;KOR;NPL;CZE;HRV;VNM;GRC;TUR;P

AK;MMR;IRQ;ZMB;SEN;GMB 

https://doi.org/10.15468/dl.hu69jv Mammalia DNK 

https://doi.org/10.15468/dl.ym3k5p Mammalia ESP 

https://doi.org/10.15468/dl.d4fdrv Mammalia BEL 

https://doi.org/10.15468/dl.md73q3 Mammalia NOR 

https://doi.org/10.15468/dl.54jtyn Pinopsida 

FRA;ZAF;PRT;USA;NZL;ITA;ISR;AUS;ESP;IRN;

GRC;BEL;MEX;PSE;GBR;TUR;MLT;ALB;SYR;C

YP;LBN;CHE;MAR;DZA;JOR 

https://doi.org/10.15468/dl.bnhhfx Polypodiopsida 
ZAF;TWN;CHN;PNG;ESP;PRT;ITA;MEX;IDN;EC

U;PER;COL;MYS;PHL;MDG;BRA 

https://doi.org/10.15468/dl.pwhn5q Polypodiopsida AUS 

https://doi.org/10.15468/dl.ypgzhd Polypodiopsida GBR 

https://doi.org/10.15468/dl.gs3vd7 Polypodiopsida 
DEU;HKG;BEL;CHL;REU;ASM;URY;MYT;MAR;

CYP;CAN;GRC;IRL;ISR 

https://doi.org/10.15468/dl.qd957y Polypodiopsida USA 

https://doi.org/10.15468/dl.2xb4p6 Polypodiopsida NZL 

https://doi.org/10.15468/dl.e78gvx Polypodiopsida FRA 

https://doi.org/10.15468/dl.dw8b63 Polypodiopsida JPN 

https://doi.org/10.15468/dl.pu2hhr Polypodiopsida NLD 

https://doi.org/10.15468/dl.rprua9 Polypodiopsida 
VNM;ARG;KHM;SWZ;KOR;MOZ;CPV;GTM;NPL

;TGO;ZWE;PRY;GNQ 

https://doi.org/10.15468/dl.yu9s5k Reptilia USA 

https://doi.org/10.15468/dl.tceyhv Reptilia 
PAN;ZAF;HND;CRI;TZA;CUB;PRI;TWN;COL;BR

A;GTM;CHN;ECU;PER;ARG 

https://doi.org/10.15468/dl.dnxzqe Reptilia MEX 

https://doi.org/10.15468/dl.kxtujh Reptilia 
IND;AUS;BHS;KHM;NCL;PNG;JAM;REU;MMR;P

HL;NPL;LAO;BGD;BTN 

https://doi.org/10.15468/dl.nzjm8h Reptilia 

BLZ;THA;NIC;VNM;GUY;MOZ;SLV;PRY;STP;G

HA;ZWE;SUR;NGA;BOL;VEN;ZMB;GUF;SWZ;C

MR;SEN;GAB;COD 

https://doi.org/10.15468/dl.mgrq9f Aves SWE 

https://doi.org/10.15468/dl.qwadev Aves SWE 

https://doi.org/10.15468/dl.qvhyh6 Aves SWE 

https://doi.org/10.15468/dl.789zrr Aves SWE 

https://doi.org/10.15468/dl.tpfxv4 Aves SWE 

https://doi.org/10.15468/dl.h6ys6p Aves SWE 

https://doi.org/10.15468/dl.eurguf Aves SWE 

https://doi.org/10.15468/dl.8kguu5 Aves SWE 

https://doi.org/10.15468/dl.2mrcvp Aves SWE 

https://doi.org/10.15468/dl.pgspdw Aves SWE 

https://doi.org/10.15468/dl.rd8ns4 Aves ZAF 

https://doi.org/10.15468/dl.93tn2f Aves 

LKA;THA;MYT;BGD;MYS;REU;ISR;KAZ;MNG;

ARE;SAU;NPL;MDG;LAO;KHM;NCL;OMN;VNM

;MUS;MMR;IRN;UZB;AFG;KGZ;KWT;JOR;BTN;

PAK;IRQ;LBN;TJK;SYR;TKM;LUX;BHS;EST 

https://doi.org/10.15468/dl.3pyptv Aves IND 

https://doi.org/10.15468/dl.yg5y25 Aves USA 

https://doi.org/10.15468/dl.r8yrh3 Aves USA 

https://doi.org/10.15468/dl.btmhg7 Aves USA 

https://doi.org/10.15468/dl.728cmq Aves USA 
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https://doi.org/10.15468/dl.58bpns Aves USA 

https://doi.org/10.15468/dl.jy4epc Aves USA 

https://doi.org/10.15468/dl.cquss5 Aves USA 

https://doi.org/10.15468/dl.vjwhjj Aves USA 

https://doi.org/10.15468/dl.2setyf Aves USA 

https://doi.org/10.15468/dl.e8bu9y Aves USA 

https://doi.org/10.15468/dl.tk4ank Aves USA 

https://doi.org/10.15468/dl.xmbj69 Aves USA 

https://doi.org/10.15468/dl.f3pbgh Aves USA 

https://doi.org/10.15468/dl.93xkf3 Aves USA 

https://doi.org/10.15468/dl.e6ycq7 Aves USA 

https://doi.org/10.15468/dl.7xbgu3 Aves USA 

https://doi.org/10.15468/dl.em8usn Aves USA 

https://doi.org/10.15468/dl.6rh8nc Aves USA 

https://doi.org/10.15468/dl.kywuy2 Aves AUS 

https://doi.org/10.15468/dl.a7vac3 Aves AUS 

https://doi.org/10.15468/dl.cmkdgz Aves AUS 

https://doi.org/10.15468/dl.ezyvay Aves AUS 

https://doi.org/10.15468/dl.gqs288 Aves AUS 

https://doi.org/10.15468/dl.ucqq36 Aves DEU 

https://doi.org/10.15468/dl.zche68 Aves NZL 

https://doi.org/10.15468/dl.svnva4 Aves RUS 

https://doi.org/10.15468/dl.n4a3uc Aves FRA 

https://doi.org/10.15468/dl.z3jdew Aves FRA 

https://doi.org/10.15468/dl.atebj6 Aves FRA 

https://doi.org/10.15468/dl.xfzd6e Aves CHN 

https://doi.org/10.15468/dl.tjyhnd Aves NLD 

https://doi.org/10.15468/dl.kzfrf9 Aves NLD 

https://doi.org/10.15468/dl.t62pjb Aves NLD 

https://doi.org/10.15468/dl.42cukm Aves BEL 

https://doi.org/10.15468/dl.v52zzm Aves BEL 

https://doi.org/10.15468/dl.45suvj Aves BEL 

https://doi.org/10.15468/dl.rxyvq6 Aves TUR 

https://doi.org/10.15468/dl.vtgb78 Aves AUT 

https://doi.org/10.15468/dl.p339bx Aves CZE 

https://doi.org/10.15468/dl.guhetd Aves CHE 

https://doi.org/10.15468/dl.rdrnaa Aves GBR 

https://doi.org/10.15468/dl.atawz7 Aves GBR 

https://doi.org/10.15468/dl.fn7uhe Aves GBR 

https://doi.org/10.15468/dl.7fajg9 Aves FIN 

https://doi.org/10.15468/dl.x2m8v4 Aves FIN 

https://doi.org/10.15468/dl.mqaw7r Aves FIN 

https://doi.org/10.15468/dl.bekcgz Aves UKR 

https://doi.org/10.15468/dl.9q36mp Aves ITA 

https://doi.org/10.15468/dl.bwfs8w Aves DNK 

https://doi.org/10.15468/dl.8ppeqw Aves DNK 

https://doi.org/10.15468/dl.ktx97h Aves DNK 

https://doi.org/10.15468/dl.e5wcx6 Aves DNK 

https://doi.org/10.15468/dl.2nz6vd Aves DNK 

https://doi.org/10.15468/dl.jkevau Aves CAN 

https://doi.org/10.15468/dl.wnn2ww Aves CAN 

https://doi.org/10.15468/dl.tuxms8 Aves CAN 

https://doi.org/10.15468/dl.u3rmh2 Aves CAN 

https://doi.org/10.15468/dl.ykxwsr Aves CAN 
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https://doi.org/10.15468/dl.p9ebfw Aves CAN 

https://doi.org/10.15468/dl.yqnhhq Aves CAN 

https://doi.org/10.15468/dl.npwbbz Aves CAN 

https://doi.org/10.15468/dl.6wqz3v Aves CAN 

https://doi.org/10.15468/dl.kr3f9c Aves NOR 

https://doi.org/10.15468/dl.uu4c2g Aves NOR 

https://doi.org/10.15468/dl.7795dh Aves NOR 

https://doi.org/10.15468/dl.758btm Aves NOR 

https://doi.org/10.15468/dl.j6ss9w Aves NOR 

https://doi.org/10.15468/dl.m6mprq Aves MEX 

https://doi.org/10.15468/dl.gz63j8 Aves 
LVA;LTU;HRV;BLR;SVK;SVN;MNE;MKD;NGA;

MDA;CMR;COD;RWA;AGO 

https://doi.org/10.15468/dl.45eugh Aves SJM;COL;ARG 

https://doi.org/10.15468/dl.txqkq7 Aves IRL 

https://doi.org/10.15468/dl.hktxwm Aves POL 

https://doi.org/10.15468/dl.rxfhxm Aves PRT 

https://doi.org/10.15468/dl.z8rg39 Aves ESP 

https://doi.org/10.15468/dl.zjtfjb Aves ESP 

https://doi.org/10.15468/dl.q6fwhv Aves ESP 

https://doi.org/10.15468/dl.7m8a7z Aves DZA;BRA;GUY;TUN;KOR;CUB;HND;ECU 

https://doi.org/10.15468/dl.nw77ye Aves BGR 

https://doi.org/10.15468/dl.ksfnr2 Aves UGA 

https://doi.org/10.15468/dl.9u3j6k Aves PAN;TWN 

https://doi.org/10.15468/dl.cb8e3a Aves GRC 

https://doi.org/10.15468/dl.zqrjn6 Aves 
EGY;BLZ;PRK;NIC;MAR;BWA;CYP;ALB;PER;S

EN;ZWE;BIH;SYC;NAM;CPV;BOL 

https://doi.org/10.15468/dl.nd8jre Aves ROU 

https://doi.org/10.15468/dl.dfeqa8 Aves SRB 

https://doi.org/10.15468/dl.raxcec Aves 
GMB;VEN;FRO;BEN;ISL;GTM;CHL;IMN;MLT;S

LV;PRY;IDN;HKG;PRI;SGP 

https://doi.org/10.15468/dl.abfpek Aves HUN 

https://doi.org/10.15468/dl.pbj3u3 Aves GHA 

https://doi.org/10.15468/dl.f394r9 Aves KEN 

https://doi.org/10.15468/dl.mvadan Aves 

TTO;TZA;URY;DOM;GUF;SUR;PHL;PNG;SOM;V

IR;BES;BFA;QAT;TCD;GNB;GEO;AZE;MRT;BH

R;MLI;ETH;MWI;ZMB;MOZ;SWZ;SDN 

https://doi.org/10.15468/dl.22acs9 Aves JPN 

https://doi.org/10.15468/dl.dzxx2y Liliopsida SWE 

https://doi.org/10.15468/dl.w7wuv3 Liliopsida FRA 

https://doi.org/10.15468/dl.cxgvbt Liliopsida GBR 

https://doi.org/10.15468/dl.edbg2x Liliopsida COL 

https://doi.org/10.15468/dl.dbeycv Liliopsida USA 

https://doi.org/10.15468/dl.yy698u Liliopsida 

TWN;UKR;POL;ROU;IDN;PHL;PAN;ZWE;PRI;B

OL;GAB;PNG;BEN;KEN;CZE;IND;BGD;BWA;M

OZ;MAR;GTM;NPL;GRC;TUR;NIC;IRL;VEN;TH

A;MLI;CIV;KOR;MDG;TZA;HND;CHL;ETH;VNM

;BLZ;MYS;MWI;PAK;BFA;PRY;SLV;NGA;UGA;

GUF;TGO;IRN;COD;AFG;ZMB;CMR;GUY;LAO;

NCL;PSE;SEN;GHA 

https://doi.org/10.15468/dl.zz3f6a Liliopsida NZL 

https://doi.org/10.15468/dl.g2e5h4 Liliopsida ZAF 

https://doi.org/10.15468/dl.vdteqy Liliopsida MEX 

https://doi.org/10.15468/dl.6ufw3e Liliopsida RUS 

https://doi.org/10.15468/dl.5z3us7 Liliopsida ITA;AUT;CRI;ECU;ARG;ISR 
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https://doi.org/10.15468/dl.9wxqbb Liliopsida CAN 

https://doi.org/10.15468/dl.w34t73 Liliopsida DEU 

https://doi.org/10.15468/dl.994rd4 Liliopsida 
LTU;BLR;CHE;LVA;REU;SVN;EST;NAM;GLP;S

RB;MNE;ARE;BIH;LUX;ISL;SJM 

https://doi.org/10.15468/dl.3femm5 Liliopsida AUS 

https://doi.org/10.15468/dl.s7rq2v Liliopsida BEL 

https://doi.org/10.15468/dl.kk5ndq Liliopsida 

KAZ;KGZ;URY;DOM;IRQ;SOM;HRV;SVK;SUR;L

KA;VUT;SAU;HUN;DZA;CYP;BGR;SLB;EGY;GE

O;FSM;SWZ;CUB;ARM;MNG;BHS;GNQ;ALB;M

MR;KHM;AZE;LBN;HTI;TUN;CPV;TJK;JOR;RW

A;ATG;TTO;LSO;WSM;COG;OMN;HKG;MKD;S

YR;AGO;TKM;ASM;BTN;TON;SGP;SYC 

https://doi.org/10.15468/dl.zv9sdh Liliopsida FIN 

https://doi.org/10.15468/dl.2v846r Liliopsida PRT 

https://doi.org/10.15468/dl.kkktrv Liliopsida ESP 

https://doi.org/10.15468/dl.j2yt6d Liliopsida NOR 

https://doi.org/10.15468/dl.3srh2c Liliopsida NLD 

https://doi.org/10.15468/dl.pvrern Liliopsida DNK 

https://doi.org/10.15468/dl.8qnwzj Liliopsida BRA 

https://doi.org/10.15468/dl.mack8m Liliopsida PER 

https://doi.org/10.15468/dl.6kum3z Liliopsida CHN 

https://doi.org/10.15468/dl.gn433r Liliopsida JPN 

https://doi.org/10.15468/dl.xvwmpt Magnoliopsida SWE 

https://doi.org/10.15468/dl.r4tqxx Magnoliopsida DNK 

https://doi.org/10.15468/dl.sqfuqj Magnoliopsida FRA 

https://doi.org/10.15468/dl.4kjd9n Magnoliopsida GBR 

https://doi.org/10.15468/dl.nbx4ch Magnoliopsida COL 

https://doi.org/10.15468/dl.tzbaxd Magnoliopsida NZL 

https://doi.org/10.15468/dl.garrrd Magnoliopsida CAN 

https://doi.org/10.15468/dl.u6x9j3 Magnoliopsida USA 

https://doi.org/10.15468/dl.3n5txa Magnoliopsida RUS 

https://doi.org/10.15468/dl.2vzsbh Magnoliopsida CHE 

https://doi.org/10.15468/dl.wrhw2h Magnoliopsida ITA 

https://doi.org/10.15468/dl.rqmavn Magnoliopsida POL 

https://doi.org/10.15468/dl.hdezsu Magnoliopsida 

LTU;DZA;BLR;NGA;MNG;PRI;SVK;GTM;MWI;K

AZ;HND;ROU;GEO;HRV;BGR;HUN;LVA;PHL;D

OM;VNM;LBR;URY;SWZ;JAM;TUN;KEN;AZE;C

UB;SYR;SUR;BLZ;BWA;JOR;NPL;IRN;CYP;MLI;

UGA;GNQ;ZWE;AFG;MOZ;ZMB;ARM;LBN;GUF

;SLV;SEN;TGO;RWA;PYF;AGO;CAF;COG;PRK;B

FA;HKG;NER;VUT;TCD;GIN;SDN;YEM 

https://doi.org/10.15468/dl.dztge3 Magnoliopsida MEX 

https://doi.org/10.15468/dl.b752bn Magnoliopsida TWN 

https://doi.org/10.15468/dl.tpcg3z Magnoliopsida ZAF 

https://doi.org/10.15468/dl.wsqz73 Magnoliopsida ECU 

https://doi.org/10.15468/dl.kwcugz Magnoliopsida PRT 

https://doi.org/10.15468/dl.hyb9wc Magnoliopsida FIN 

https://doi.org/10.15468/dl.suek67 Magnoliopsida 
IRL;CHL;NIC;UKR;KOR;PAN;EST;COD;TUR;SV

N;MAR;PAK;PRY;NCL;THA;GHA;GUY;ETH;CIV 

https://doi.org/10.15468/dl.hem47d Magnoliopsida ESP 

https://doi.org/10.15468/dl.2922bk Magnoliopsida DEU 

https://doi.org/10.15468/dl.em7p57 Magnoliopsida AUS 

https://doi.org/10.15468/dl.87bpsk Magnoliopsida MYS;IND;TZA;VEN;GAB 

https://doi.org/10.15468/dl.9vh3tz Magnoliopsida BEL 
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https://doi.org/10.15468/dl.gu7kw7 Magnoliopsida AUT 

https://doi.org/10.15468/dl.2v67xv Magnoliopsida CZE 

https://doi.org/10.15468/dl.k9e6hm Magnoliopsida 

DMA;KNA;CYM;SOM;SRB;MNE;ALB;LAO;MK

D;SLB;TLS;VIR;OMN;TTO;LKA;GMB;IRQ;HTI;G

RD;BHS;BTN;KHM;FJI;GUM;BGD;MUS;MMR;L

CA;VGB;EGY;BRB;SAU;LSO;TJK;SGP;UZB;SYC

;MLT 

https://doi.org/10.15468/dl.6h9t4a Magnoliopsida BEN 

https://doi.org/10.15468/dl.83ys52 Magnoliopsida IDN 

https://doi.org/10.15468/dl.nqw2sc Magnoliopsida ISR 

https://doi.org/10.15468/dl.qtkqdq Magnoliopsida PER 

https://doi.org/10.15468/dl.ja5kgm Magnoliopsida NOR 

https://doi.org/10.15468/dl.xt392e Magnoliopsida ARG 

https://doi.org/10.15468/dl.v7u6jz Magnoliopsida BRA 

https://doi.org/10.15468/dl.29q7pe Magnoliopsida NLD 

https://doi.org/10.15468/dl.e6ctmd Magnoliopsida CHN 

https://doi.org/10.15468/dl.8dtqzv Magnoliopsida GRC 

https://doi.org/10.15468/dl.3z9dyn Magnoliopsida 

BIH;REU;GLP;KGZ;ATG;NAM;MTQ;MDA;BES;

AND;ARE;LIE;FRO;PSE;SJM;KWT;QAT;SMR;MS

R;LBY 

https://doi.org/10.15468/dl.ew6ckc Magnoliopsida BOL 

https://doi.org/10.15468/dl.f8a3qr Magnoliopsida LUX 

https://doi.org/10.15468/dl.f7x8q4 Magnoliopsida CRI 

https://doi.org/10.15468/dl.z2nkxw Magnoliopsida PNG 

https://doi.org/10.15468/dl.44x4z2 Magnoliopsida JPN 

https://doi.org/10.15468/dl.wx6zv9 Magnoliopsida CMR 

https://doi.org/10.15468/dl.fud689 Magnoliopsida ISL 

https://doi.org/10.15468/dl.x7h8sq Magnoliopsida MDG 

https://doi.org/10.15468/dl.s6g489 Insecta 

KEN;NGA;BEN;PRK;BLZ;LCA;VCT;VIR;GRD;D

MA;BRB;BES;JAM;CUW;GLP;KNA;LIE;HND;TZ

A;BIH;MMR;SEN;NIC;GAB;VEN;GUY;ZWE;NA

M;CMR;COD;TGO;CIV;ZMB;GIN;BWA;SDN;ET

H;MWI;BDI;UGA;URY;SUR 

https://doi.org/10.15468/dl.pxefdy Mammalia BEN;CYP;PHL;SGP;ARM;GIN;VEN 

https://doi.org/10.15468/dl.z6aq22 Pinopsida 
BHS;BRA;BLZ;COL;NIC;HND;PAN;TUN;BOL;C

UB;SVN;GUY;MNE;NLD;CRI;LBY;TCA 

https://doi.org/10.15468/dl.5m5trk Polypodiopsida 

TZA;GAB;CXR;CUB;SLB;BOL;CRI;ETH;CIV;VE

N;PAN;NIC;COD;NCL;SGP;NIU;GUM;UGA;KEN;

BEN;CMR;ZMB;GHA;COG;LBR;AGO;GIN;DOM;

THA;GUF;BRN;NGA;COM;BDI;LAO;BLZ;YEM;

MMR;BFA;PLW;MUS;MWI;TON;LKA;FJI;PYF;W

SM;RWA;VUT;MNP;SLV;IND;CAF;HND;LSO;NA

M;SEN 

https://doi.org/10.15468/dl.b5s6vb Reptilia GIN;NAM;MWI;BEN;RWA 

https://doi.org/10.15468/dl.47gmcu Aves 

FJI;PYF;VUT;PSE;WSM;ARM;GRL;SPM;TCA;GL

P;HTI;CRI;BRB;JAM;LCA;MTQ;CUW;STP;LIE;L

SO;GUM;LBY;CIV;GAB;GIN;ESH;LBR;ERI;GGY;

TGO;COK;BRN;AND;TLS;YEM;VCT;MDV;KNA;

VGB;GRD;MAC;AIA;ATG;DJI;FLK;TON;SLB;NE

R;BDI;SLE;CAF 

https://doi.org/10.15468/dl.mx6wgh Liliopsida 

MTQ;CXR;GIN;LBR;NER;TCD;GMB;BDI;CAF;DJ

I;MRT;SDN;LBY;YEM;KWT;DMA;UZB;PYF;SLE

;COM;MLT;MDA;MUS;PRK;GNB;LIE;TLS;JAM;

NIU;WLF;AND 
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https://doi.org/10.15468/dl.pqhuk3 Magnoliopsida 

FSM;BRN;CUW;BDI;COK;CPV;MRT;MNP;ABW;

STP;SPM;TON;TCA;GNB;CXR;COM;DJI;NRU;PL

W;SLE;ERI;MAC;TKM 
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Table S4. Pairwise correlation table between all continuous and binary predictors included in the 

transferability model for GAMs. 

  NAUC NOCC EOCC NEB EEB NEC EEC NGDP EGDP YEAR DIST ESIM NISL EISL SESS 

NAUC NA -0.013 -0.069 -0.287 -0.188 -0.360 -0.170 0.052 -0.022 0.021 0.033 -0.047 -0.090 0.064 0.141 

NOCC -0.013 NA 0.185 0.511 0.010 0.574 0.166 0.486 -0.143 -0.123 0.075 -0.292 -0.144 0.194 -0.148 

EOCC -0.069 0.185 NA 0.102 0.436 0.155 0.575 0.148 0.295 -0.301 -0.131 -0.068 -0.007 -0.198 -0.232 

NEB -0.287 0.511 0.102 NA 0.167 0.556 0.221 0.528 -0.009 -0.047 0.100 -0.402 -0.194 -0.007 -0.165 

EEB -0.188 0.010 0.436 0.167 NA 0.087 0.501 0.009 0.456 -0.120 0.077 -0.005 0.037 -0.463 -0.012 

NEC -0.360 0.574 0.155 0.556 0.087 NA 0.221 0.111 -0.059 -0.082 -0.020 -0.051 0.024 0.091 -0.215 

EEC -0.170 0.166 0.575 0.221 0.501 0.221 NA 0.090 0.032 -0.234 -0.134 -0.150 0.010 0.026 -0.205 

NGDP 0.052 0.486 0.148 0.528 0.009 0.111 0.090 NA -0.025 -0.071 0.104 -0.301 -0.387 0.097 -0.102 

EGDP -0.022 -0.143 0.295 -0.009 0.456 -0.059 0.032 -0.025 NA -0.173 -0.276 0.132 0.036 -0.566 -0.078 

YEAR 0.021 -0.123 -0.301 -0.047 -0.120 -0.082 -0.234 -0.071 -0.173 NA 0.192 0.041 -0.006 0.042 0.083 

DIST 0.033 0.075 -0.131 0.100 0.077 -0.020 -0.134 0.104 -0.276 0.192 NA -0.090 -0.054 0.159 0.158 

ESIM -0.047 -0.292 -0.068 -0.402 -0.005 -0.051 -0.150 -0.301 0.132 0.041 -0.090 NA 0.199 -0.047 0.036 

NISL -0.090 -0.144 -0.007 -0.194 0.037 0.024 0.010 -0.387 0.036 -0.006 -0.054 0.199 NA -0.028 0.036 

EISL 0.064 0.194 -0.198 -0.007 -0.463 0.091 0.026 0.097 -0.566 0.042 0.159 -0.047 -0.028 NA 0.025 

SESS 0.141 -0.148 -0.232 -0.165 -0.012 -0.215 -0.205 -0.102 -0.078 0.083 0.158 0.036 0.036 0.025 NA 
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Table S5. Summary table for models calculated using species mobility (SESS) as a binary predictor of SDM performance, in place of 

taxonomic class (CLASS). Parameter estimates, standard error, t-statistic and P-values are provided. 

 GAM MaxEnt 

Variable Estimate Std. error t-statistic P-value Estimate Std. error t-statistic P-value 

Native AUC (NAUC) 0.086 0.019 4.489 < 0.001 0.058 0.018 3.240 0.001 

Native number of occurrences (NOCC) -0.031 0.026 -1.185 0.238 -0.005 0.024 -0.226 0.822 

Exotic number of occurrences (EOCC) 0.048 0.022 2.149 0.032 0.037 0.022 1.680 0.094 

Continent (CONT) - - - < 0.001 - - - < 0.001 

Sessile (SESS) 0.121 0.070 1.720 0.086 0.115 0.066 1.736 0.083 

Native environmental breadth (NEB) 0.155 0.028 5.641 < 0.001 0.184 0.027 6.800 < 0.001 

Exotic environmental breadth (EEB) -0.114 0.032 -3.592 < 0.001 -0.128 0.032 -4.035 < 0.001 

Native environmental coverage (NEC) 0.011 0.027 0.411 0.683 -0.010 0.026 -0.381 0.704 

Exotic environmental coverage (EEC) -0.154 0.027 -5.685 < 0.001 -0.142 0.027 -5.290 < 0.001 

Native GDP (NGDP) -0.074 0.025 -3.000 0.003 -0.055 0.023 -2.391 0.017 

Exotic GDP (EGDP) 0.061 0.034 1.809 0.071 0.061 0.034 1.804 0.071 

Year of first records (YEAR) 0.034 0.016 2.140 0.033 0.020 0.016 1.280 0.201 

Geographic distance (DIST) -0.054 0.018 -2.930 0.003 -0.055 0.018 -3.011 0.003 

Environmental similarity (ESIM) 0.025 0.018 1.366 0.174 0.015 0.019 0.763 0.447 

Native island (NISL) -0.035 0.138 -0.252 0.801 0.036 0.129 0.282 0.778 

Exotic island (EISL) -0.271 0.056 -4.885 < 0.001 -0.306 0.056 -5.520 < 0.001 
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Table S6. Predictor estimates for the transferability model with GAMs and MaxEnt, including taxonomic class and continent as 

categorical predictors. Mean and standard deviation are provided for the scaled factors. Predictors marked with an asterisk (*) were 

log-transformed and predictors marked with two asterisks (**) were logit-transformed before scaling. 

      GAM MaxEnt 

Variable Mean Std. dev Estimate Std. error t-statistic Estimate Std. error t-statistic 

(Intercept)   1.0256 0.1414 7.2530 0.9802 0.1330 7.3719 

Native AUC (NAUC)** 1.6286 0.5512 0.0886 0.0193 4.5919 0.0583 0.0180 3.2373 

Native number of occurrences (NOCC)* 6.6843 2.0848 -0.0277 0.0264 -1.0511 -0.0013 0.0242 -0.0551 

Exotic number of occurrences (EOCC)* 5.0330 1.5050 0.0470 0.0224 2.0972 0.0359 0.0221 1.6270 

Continent (CONT)         

Africa   -0.4141 0.0751 -5.5146 -0.4403 0.0745 -5.9072 

Asia   -0.4997 0.0675 -7.4008 -0.5014 0.0673 -7.4537 

Asia;Europe   -0.2986 0.0969 -3.0813 -0.1893 0.0958 -1.9754 

Asia;Oceania   -0.7395 0.2900 -2.5498 -0.6362 0.2873 -2.2147 

Europe   -0.3358 0.0675 -4.9747 -0.3543 0.0666 -5.3167 

North America;South America   -0.4299 0.0837 -5.1383 -0.4430 0.0832 -5.3225 

Oceania   -0.0133 0.0689 -0.1937 0.0818 0.0685 1.1940 

South America   -0.4831 0.0684 -7.0602 -0.4483 0.0680 -6.5886 

Taxonomic class (CLASS)         

Aves   -0.0665 0.1653 -0.4024 0.0012 0.1540 0.0078 

Insecta   -0.0535 0.1789 -0.2992 0.0431 0.1684 0.2559 

Liliopsida   0.0746 0.1387 0.5380 0.0863 0.1296 0.6662 

Magnoliopsida   0.1317 0.1355 0.9718 0.1650 0.1266 1.3028 

Pinopsida   -0.0727 0.2636 -0.2758 0.0506 0.2506 0.2018 

Polypodiopsida   0.4386 0.2204 1.9903 0.6333 0.2093 3.0259 

Reptilia   0.7356 0.3019 2.4364 0.4163 0.2885 1.4429 

Native environmental breadth (NEB)* 2.3361 0.7345 0.1529 0.0278 5.4916 0.1819 0.0274 6.6316 

Exotic environmental breadth (EEB)* 1.3130 1.0438 -0.1081 0.0317 -3.4136 -0.1215 0.0317 -3.8352 

Native environmental coverage (NEC) 0.4412 0.1754 0.0114 0.0271 0.4189 -0.0123 0.0254 -0.4841 

Exotic environmental coverage (EEC) 0.3377 0.1806 -0.1532 0.0270 -5.6702 -0.1421 0.0269 -5.2843 

Native GDP (NGDP)* 29.8166 1.3399 -0.0735 0.0247 -2.9749 -0.0559 0.0229 -2.4349 

Exotic GDP (EGDP)* 28.3193 1.8381 0.0591 0.0339 1.7412 0.0580 0.0336 1.7264 

Year of first records (YEAR) 1897.1674 78.6150 0.0347 0.0162 2.1464 0.0199 0.0158 1.2579 

Geographic distance (DIST) 10898.6147 4590.9176 -0.0549 0.0183 -3.0062 -0.0565 0.0181 -3.1226 

Environmental similarity (ESIM) 0.1563 0.2080 0.0233 0.0185 1.2571 0.0126 0.0192 0.6558 

Native island (NISL)   -0.0352 0.1366 -0.2579 0.0321 0.1275 0.2521 

Exotic island (EISL)   -0.2703 0.0556 -4.8617 -0.3024 0.0556 -5.4412 
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Table S7. Mean predictive performance of GAM and MaxEnt species distribution models for 

each country in the study, with standard deviation and number of invading species. 

Country ISO3 

Mean 

AUC 

(GAM) 

Standard 

deviation 

(GAM) 

Mean 

AUC 

(MaxEnt) 

Standard 

deviation 

(MaxEnt) 

Number 

of species 

Albania ALB 0.699 0.162 0.746 0.130 5 

Algeria DZA 0.596 0.084 0.638 0.114 4 

Angola AGO 0.612 0.081 0.618 0.097 12 

Argentina ARG 0.640 0.099 0.633 0.098 120 

Armenia ARM 0.722 0.168 0.671 0.134 3 

Australia AUS 0.731 0.132 0.747 0.125 348 

Austria AUT 0.630 0.084 0.646 0.077 56 

Azerbaijan AZE 0.765 0.139 0.679 0.098 6 

Bangladesh BGD 0.649 0.079 0.623 0.065 13 

Belarus BLR 0.656 0.112 0.667 0.097 21 

Belgium BEL 0.635 0.089 0.641 0.083 62 

Belize BLZ 0.713 0.121 0.727 0.109 49 

Benin BEN 0.591 0.064 0.584 0.077 28 

Bhutan BTN 0.692 0.105 0.721 0.115 12 

Bolivia BOL 0.647 0.086 0.637 0.087 88 

Bosnia and Herzegovina BIH 0.619 0.105 0.675 0.093 6 

Botswana BWA 0.627 0.079 0.647 0.088 36 

Brazil BRA 0.628 0.092 0.634 0.094 163 

Bulgaria BGR 0.701 0.152 0.692 0.091 10 

Burkina Faso BFA 0.584 0.051 0.581 0.077 19 

Burundi BDI 0.661 0.099 0.670 0.105 9 

Cambodia KHM 0.631 0.075 0.629 0.088 23 

Cameroon CMR 0.631 0.078 0.625 0.089 28 

Canada CAN 0.715 0.116 0.694 0.117 166 

Central African Republic CAF 0.622 0.111 0.617 0.118 10 

Chad TCD 0.588 0.118 0.596 0.111 9 

Chile CHL 0.634 0.098 0.632 0.097 77 

China CHN 0.676 0.100 0.666 0.107 77 

Colombia COL 0.638 0.095 0.640 0.093 126 

Costa Rica CRI 0.632 0.087 0.633 0.091 84 

Côte d'Ivoire CIV 0.585 0.071 0.581 0.071 25 

Croatia HRV 0.630 0.079 0.676 0.080 13 

Czech Republic CZE 0.639 0.090 0.651 0.085 52 
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Democratic Republic of the 

Congo COD 0.638 0.083 0.618 0.089 34 

Djibouti DJI 0.612 0.041 0.586 0.073 2 

Ecuador ECU 0.636 0.088 0.635 0.090 125 

Egypt EGY 0.628 0.041 0.638 0.050 3 

Eritrea ERI 0.614 NA 0.700 NA 1 

Estonia EST 0.635 0.093 0.655 0.067 19 

Ethiopia ETH 0.653 0.086 0.644 0.087 57 

Finland FIN 0.714 0.129 0.711 0.119 46 

France FRA 0.647 0.108 0.638 0.096 105 

French Guiana GUF 0.616 0.080 0.622 0.079 45 

Gabon GAB 0.616 0.069 0.613 0.088 20 

Gambia GMB 0.573 0.067 0.572 0.072 6 

Georgia GEO 0.784 0.139 0.708 0.088 8 

Germany DEU 0.631 0.086 0.641 0.086 75 

Ghana GHA 0.587 0.072 0.584 0.067 23 

Greece GRC 0.687 0.145 0.674 0.120 20 

Guatemala GTM 0.699 0.117 0.707 0.110 87 

Guinea GIN 0.588 0.066 0.582 0.075 20 

Guinea-Bissau GNB 0.550 0.054 0.554 0.062 5 

Guyana GUY 0.625 0.076 0.623 0.081 46 

Hungary HUN 0.634 0.088 0.642 0.075 29 

India IND 0.653 0.101 0.649 0.105 85 

Indonesia IDN 0.519 0.034 0.530 0.039 5 

Iran IRN 0.669 0.158 0.706 0.110 6 

Iraq IRQ 0.639 0.100 0.683 0.161 3 

Ireland IRL 0.595 0.081 0.582 0.092 15 

Italy ITA 0.645 0.100 0.639 0.091 92 

Japan JPN 0.608 0.088 0.593 0.093 43 

Jordan JOR 0.577 NA 0.686 NA 1 

Kazakhstan KAZ 0.685 0.128 0.679 0.120 7 

Kenya KEN 0.655 0.089 0.645 0.094 73 

Kuwait KWT 0.581 0.006 0.764 0.110 2 

Kyrgyzstan KGZ 0.768 0.097 0.670 0.134 3 

Laos LAO 0.644 0.077 0.652 0.082 21 

Latvia LVA 0.652 0.098 0.678 0.086 21 

Lesotho LSO 0.607 0.070 0.615 0.084 16 

Liberia LBR 0.586 0.055 0.584 0.058 14 

Libya LBY 0.845 NA 0.852 NA 1 

Lithuania LTU 0.654 0.099 0.687 0.079 20 

Luxembourg LUX 0.651 0.069 0.668 0.068 13 
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Madagascar MDG 0.695 0.127 0.710 0.098 11 

Malawi MWI 0.649 0.090 0.645 0.091 59 

Malaysia MYS 0.649 0.085 0.653 0.091 28 

Mali MLI 0.566 0.067 0.567 0.065 14 

Mauritania MRT 0.571 0.058 0.579 0.068 7 

Mexico MEX 0.714 0.122 0.717 0.114 202 

Moldova MDA 0.744 0.050 0.734 0.054 2 

Mongolia MNG 0.647 0.102 0.759 0.142 3 

Montenegro MNE 0.627 0.115 0.621 0.105 2 

Morocco MAR 0.603 0.084 0.666 0.103 4 

Mozambique MOZ 0.621 0.081 0.617 0.077 33 

Myanmar MMR 0.670 0.077 0.681 0.090 21 

Namibia NAM 0.647 0.104 0.658 0.121 33 

Nepal NPL 0.658 0.079 0.669 0.096 35 

Netherlands NLD 0.625 0.078 0.642 0.082 47 

New Zealand NZL 0.661 0.113 0.670 0.109 234 

Nicaragua NIC 0.624 0.088 0.634 0.094 72 

Niger NER 0.567 0.066 0.594 0.067 12 

Nigeria NGA 0.620 0.079 0.612 0.091 34 

North Korea PRK 0.586 NA 0.887 NA 1 

Norway NOR 0.715 0.128 0.709 0.121 52 

Oman OMN 0.581 0.006 0.764 0.110 2 

Pakistan PAK 0.645 0.108 0.649 0.112 30 

Panama PAN 0.631 0.088 0.633 0.090 95 

Papua New Guinea PNG 0.519 0.034 0.530 0.039 5 

Paraguay PRY 0.629 0.084 0.637 0.088 49 

Peru PER 0.636 0.089 0.634 0.092 106 

Poland POL 0.632 0.086 0.664 0.083 39 

Portugal PRT 0.655 0.114 0.646 0.102 69 

Qatar QAT 0.581 0.006 0.764 0.110 2 

Republic of Congo COG 0.594 0.053 0.597 0.071 10 

Romania ROU 0.672 0.119 0.671 0.090 20 

Russia RUS 0.690 0.125 0.693 0.119 38 

Rwanda RWA 0.669 0.095 0.650 0.093 33 

Saudi Arabia SAU 0.639 0.100 0.683 0.161 3 

Senegal SEN 0.583 0.065 0.593 0.071 18 

Serbia SRB 0.683 0.094 0.704 0.050 5 

Sierra Leone SLE 0.575 NA 0.594 NA 1 

Slovakia SVK 0.654 0.098 0.676 0.071 14 

Slovenia SVN 0.627 0.070 0.649 0.084 19 
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Somalia SOM 0.614 0.053 0.639 0.072 12 

South Africa ZAF 0.667 0.102 0.662 0.107 121 

Spain ESP 0.669 0.117 0.654 0.100 103 

Sudan SDN 0.596 0.052 0.621 0.064 6 

Suriname SUR 0.615 0.094 0.622 0.087 28 

Swaziland SWZ 0.670 0.104 0.683 0.103 33 

Sweden SWE 0.702 0.124 0.698 0.120 56 

Switzerland CHE 0.631 0.084 0.643 0.075 45 

Tajikistan TJK 0.871 NA 0.780 NA 1 

Tanzania TZA 0.655 0.092 0.647 0.095 73 

Thailand THA 0.650 0.084 0.653 0.091 34 

Togo TGO 0.598 0.057 0.585 0.068 21 

Tunisia TUN 0.653 0.086 0.685 0.171 2 

Turkey TUR 0.691 0.157 0.719 0.104 17 

Uganda UGA 0.646 0.090 0.641 0.093 53 

Ukraine UKR 0.663 0.093 0.661 0.094 32 

United Arab Emirates ARE 0.639 0.100 0.683 0.161 3 

United Kingdom GBR 0.644 0.099 0.649 0.105 90 

United States USA 0.739 0.128 0.732 0.129 402 

Uruguay URY 0.651 0.098 0.636 0.112 39 

Uzbekistan UZB 0.590 NA 0.606 NA 1 

Venezuela VEN 0.627 0.090 0.635 0.083 89 

Vietnam VNM 0.657 0.086 0.648 0.091 37 

Yemen YEM 0.755 NA 0.521 NA 1 

Zambia ZMB 0.638 0.075 0.629 0.085 47 

Zimbabwe ZWE 0.622 0.077 0.634 0.078 38 
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SUPPLEMENTARY FIGURES 

 

Figure S1. Change in area under the receiver operating characteristic curve (AUC) and 

Continuous Boyce Index (CBI) values at decreasing proportion of sampled occurrences for the 

simulated species-environment. Points represent the mean values at the given proportion of 

sampled presences, with the red line representing the mean value at 95 percent sampled 

presences and error bars representing the standard deviation at each fraction. 
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Figure S2. Comparison of native range model performance using 10-fold random cross-

validation and 5-fold spatial-block cross-validation, measured as the mean area under the 

receiver operating characteristic curve (AUC). 
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Figure S3. Example of PCA-based environmental breadth and coverage as a predictor for the 

prickly pear (Opuntia ficus-indica). The grey points represent the 10,000 global reference site 

points used to generate the PCA environment space for all species. The blue and black points 

represent the occurrences and sampled background sites in geographic and environmental space, 

respectively. 

 


