1	
2	
3	
4	
5	HOW WELL DO SPECIES DISTRIBUTION MODELS PREDICT OCCURRENCES IN
6	EXOTIC RANGES?
7	
8	Dat Nguyen
9	Department of Biology
10	McGill University
11	Montreal, Quebec, Canada
12	
13	January 2021
14	A thesis submitted to McGill University in partial fulfillment of the requirements of the degree
15	of Master of Science
16	© Dat Nguyen 2021
17	

18	TABLE OF CONTENTS
19	GENERAL ABSTRACT 4
20	RESUMÉ
21	ACKNOWLEDGEMENTS7
22	CONTRIBUTION OF AUTHORS 8
23	LIST OF TABLES
24	SUPPLEMENTARY TABLES
25	LIST OF FIGURES 10
26	SUPPLEMENTARY FIGURES 11
27	GENERAL INTRODUCTION12
28	Biological invasions
29	Species distribution models
30	SDMs transferability for biological invasions
31	REFERENCES
32	CHAPTER ONE 26
33	ABSTRACT
34	INTRODUCTION
35	METHODS
36	Environmental data
37	Species data
38	Background environment selection
39	Modelling species distributions
40	Predictors of SDM transferability
41	RESULTS
42	Species distribution modelling performance 40
43	Predictors of model performance 41
44	DISCUSSION
45	Predictors of transferability

46	Limitations and future directions	
47	Conclusion	
48	REFERENCES	
49	DATA AVAILABILITY STATEMENT	
50	TABLES	
51	FIGURES	
52	GENERAL CONCLUSION	
53	REFERENCES	
54	SUPPORTING INFORMATION	
55	SUPPLEMENTARY TABLES	
56	SUPPLEMENTARY FIGURES	
57		

GENERAL ABSTRACT

60 Species distribution models (SDMs) are one of the most popular numerical tools in ecology, and 61 have been used predictively in biological invasion management. However, the degree to which 62 SDMs are predictive under new contexts – their transferability – is largely unknown with the 63 majority of studies being restricted to few species with equivocal results. This thesis focused on 64 the evaluation of the spatial transferability of SDMs applied to biological invasions, and what 65 factors may contribute to their predictive success. I examined the discriminatory ability of SDMs 66 fitted using two popular modelling approaches for 648 species within their native ranges, and 67 extrapolated to 1918 invaded ranges. I assessed various general factors of transferability, as well 68 as factors related specifically to biological invasions. Despite strong model performance within 69 the native range, more than half of the SDMs had poor performance when validated using their 70 exotic range distributions. Model performance varied between taxonomic classes and invaded 71 continents, and increased with the performance of the model and the environmental breadth of 72 the species in the native range, as well as the number of occurrences and year of first record in 73 the exotic range. Models performed worse with greater environmental breadth in the exotic 74 range, gross domestic product in the native range, geographic distance between ranges and when 75 extrapolating to islands. While poor transferability was observed on average, SDM performances 76 differed depending on characteristics of the species, ranges and models themselves. Some factors 77 were contrary to expectations, where SDMs performed better with higher habitat generalism and 78 for more recent invasions. The latter is counter to assumptions of equilibrium, and suggests that 79 SDMs may be useful for management early in the invasions process. This thesis contributes to 80 the growing literature examining SDM transferability, and provides further insights on their 81 potential uses as a management tool for biological invasions.

82

RESUMÉ

83 Les modèles de répartition des espèces (species distribution models; SDMs) sont l'un des outils 84 numériques les plus populaires en écologie et sont régulièrement utilisés de façon prédictive pour 85 la gestion d'invasions biologiques. Cependant, le niveau de prévisibilité des SDMs dans de 86 nouveaux contextes — c'est-à-dire leur transférabilité — demeure largement inconnu, la 87 majorité des études étant limitées à quelques espèces avec des résultats équivoques. Cette thèse se concentre sur l'évaluation de la transférabilité spatiale des SDMs appliqués aux invasions 88 89 biologiques et les facteurs qui contribuent à leur prévisibilité. J'ai examiné la capacité 90 discriminatoire des SDMs en ajustant deux approches de modélisation populaires pour 91 648 espèces dans leurs aires de répartition indigènes afin d'extrapoler les modèles aux 1918 aires 92 de répartition envahies. J'ai évalué divers facteurs de transférabilité généraux, ainsi que des 93 facteurs liés spécifiquement aux invasions biologiques. Malgré de bonnes performances envers 94 leur application sur les aires de répartition indigènes, la plupart des SDMs ont offert des 95 performances médiocres lors de leur validation sur les aires de répartition exotiques. La 96 performance des modèles en répartition exotique a varié en fonction des classes taxonomiques 97 utilisées et des continents envahis. Celle-ci a augmenté avec la performance du modèle et 98 l'étendue environnementale des espèces dans leur aire de répartition indigène, ainsi qu'avec le 99 nombre d'occurrences et l'année de la première observation dans les aires de répartition 100 exotiques. La performance des modèles extrapolés a diminué avec la présence de plus grandes 101 étendues environnementales dans l'aire de répartition exotique, de plus gros produits intérieurs 102 bruts dans l'aire de répartition indigène, et de plus longues distances géographiques entre les 103 aires de répartition, ainsi qu'avec leur application aux îles exotiques. Bien qu'une faible 104 transférabilité ait été observée en moyenne, la performance des SDMs différait selon les

105 caractéristiques des espèces, les aires de répartition impliquées et les modèles eux-mêmes.

106 Certains résultats vont à l'encontre de nos attentes ; notamment, les SDMs extrapolés ont offert

107 de meilleures performances dans les habitats plus généralisés et pour les invasions plus récentes.

108 Ce dernier résultat n'appuie pas les hypothèses de l'équilibre existantes et suggère que les SDM

109 peuvent être utiles pour la gestion dès le début du processus d'invasion. Cette thèse contribue à

110 la littérature de plus en plus vaste examinant la transférabilité des SDMs et fournit des aperçus

111 supplémentaires sur leur potentiel comme outil de gestion des invasions biologiques.

113

ACKNOWLEDGEMENTS

114	I would first like to thank my supervisor Professor Brian Leung for his guidance throughout both
115	my undergraduate and graduate studies. This project would not have been possible without
116	Brian's support and commitment to his students.
117	I am grateful to the members of my supervisory committee, Professor Virginie Millien
118	(Redpath Museum, McGill University) and Professor Laura Pollock (Department of Biology,
119	McGill University) for providing their suggestions and insight during our meetings.
120	I would like to thank the following institutions for their financial support of this project:
121	Natural Sciences and Engineering Research Council (NSERC), McGill University, and the
122	McGill Department of Biology.
123	I thank all current and past members of the Leung lab (Abbie Gail Jones, Andrew Sellers,
124	Charlotte Steeves, Emma Hudgins, Jorge Morales, Henry Morgane, Kasia Johnson, Lidia Della
125	Venezia, Natalie Richards, Sarah Chamberland-Fontaine, Shriram Varadarajan) for their
126	feedback, advice and support throughout my time at the lab. This thesis would not have been
127	possible without my fellow lab members fostering a productive and supportive work
128	environment.
129	Finally, I would like to thank my family and friends for their love and support throughout
130	my project. A special thank you to Emily Horvat and Abbie Gail Jones for their help with the
131	French translations of the Abstract. This thesis would not have been possible without their
132	inspiration and emotional support.

CONTRIBUTION OF AUTHORS

135	All stages of the thesis – project conceptualization, data collection, modelling and analyses –
136	were developed primarily by the candidate Dat Nguyen with guidance from the supervisor
137	Professor Brian Leung (McGill University). Additional insights and suggestions were provided
138	by the candidate's supervisory committee: Professor Virginie Millien (McGill University) and
139	Professor Laura Pollock (McGill University). The thesis was written by the candidate, with
140	editorial contributions made by Brian Leung.

LIST OF TABLES

143	Table 1. Full list of variables and acronyms used to predict the transferability of SDMs, with a
144	description of how the factors were generated. Rationale for why each factor may influence
145	SDM transferability is provided for each factor, with sources. Variables marked with an asterisk
146	(*) denote factors generated for both the native and exotic ranges.
147	Table 2. Estimated model parameters, with standard error, <i>t</i> -value and <i>P</i> -values of the fixed
148	effects for the linear mixed model fitted using the full dataset for GAMs and MaxEnt with
149	taxonomic class as a categorical predictor.
150	Table 3. Mean performance of the species distribution models divided between taxonomic
151	groups, measured as area under the receiver operating characteristic curve (AUC), in both the
152	native (fitting) range and the extrapolated (validation) range.
153	
1.5.4	
154	SUPPLEMENTARY TABLES
154 155	SUPPLEMENTARY TABLES Table S1. Description of the data sources used in the analyses, for both the species distribution
154 155 156	SUPPLEMENTARY TABLES Table S1. Description of the data sources used in the analyses, for both the species distribution modelling and the predictors of transferability.
154 155 156 157	SUPPLEMENTARY TABLES Table S1. Description of the data sources used in the analyses, for both the species distribution modelling and the predictors of transferability. Table S2. List of the 648 species included in the analysis along with their taxonomic class and
154 155 156 157 158	 SUPPLEMENTARY TABLES Table S1. Description of the data sources used in the analyses, for both the species distribution modelling and the predictors of transferability. Table S2. List of the 648 species included in the analysis along with their taxonomic class and the total number of occurrences classified in their native and exotic ranges.
 154 155 156 157 158 159 	 SUPPLEMENTARY TABLES Table S1. Description of the data sources used in the analyses, for both the species distribution modelling and the predictors of transferability. Table S2. List of the 648 species included in the analysis along with their taxonomic class and the total number of occurrences classified in their native and exotic ranges. Table S3. Full list of GBIF DOIs for downloading occurrence records used to sample target-
 154 155 156 157 158 159 160 	 SUPPLEMENTARY TABLES Table S1. Description of the data sources used in the analyses, for both the species distribution modelling and the predictors of transferability. Table S2. List of the 648 species included in the analysis along with their taxonomic class and the total number of occurrences classified in their native and exotic ranges. Table S3. Full list of GBIF DOIs for downloading occurrence records used to sample target-group background sites, with classes and countries as ISO3 corresponding to each DOI link,
 154 155 156 157 158 159 160 161 	 SUPPLEMENTARY TABLES Table S1. Description of the data sources used in the analyses, for both the species distribution modelling and the predictors of transferability. Table S2. List of the 648 species included in the analysis along with their taxonomic class and the total number of occurrences classified in their native and exotic ranges. Table S3. Full list of GBIF DOIs for downloading occurrence records used to sample target-group background sites, with classes and countries as ISO3 corresponding to each DOI link, semi-colon separated.
 154 155 156 157 158 159 160 161 	 SUPPLEMENTARY TABLES Table S1. Description of the data sources used in the analyses, for both the species distribution modelling and the predictors of transferability. Table S2. List of the 648 species included in the analysis along with their taxonomic class and the total number of occurrences classified in their native and exotic ranges. Table S3. Full list of GBIF DOIs for downloading occurrence records used to sample target-group background sites, with classes and countries as ISO3 corresponding to each DOI link, semi-colon separated.

162	Table S4. Pairwise correlation table between all continuous and binary predictors included in the
163	transferability model for GAMs.

- 164 **Table S5**. Summary table for models calculated using species mobility (SESS) as a binary
- 165 predictor of SDM performance, in place of taxonomic class (CLASS). Parameter estimates,
- 166 standard error, t-statistic and *P*-values are provided.
- 167 **Table S6.** Predictor estimates for the transferability model with GAMs and MaxEnt, including
- 168 taxonomic class and continent as categorical predictors. Mean and standard deviation are
- 169 provided for the scaled factors. Predictors marked with an asterisk (*) were log-transformed and
- 170 predictors marked with two asterisks (**) were logit-transformed before scaling.
- 171 **Table S7**. Mean predictive performance of GAM and MaxEnt species distribution models for
- 172 each country in the study, with standard deviation and number of invading species.
- 173
- 174

LIST OF FIGURES

175 **Figure 1**. Flow chart outlining the analyses performed in the study.

176 Figure 2. Density histogram of the performance of GAMs (a) and MaxEnt (b) measured as area

177 under the receiver operating characteristic curve (AUC) when predicting the native range, or

- 178 fitting dataset (blue), using 10-fold cross-validation and when extrapolating to the exotic range,
- 179 or validation dataset (red).
- 180 **Figure 3.** Dot-whisker plot of the parameter estimates for the binary and continuous predictors
- 181 included in the linear mixed model for GAM (black) and MaxEnt (orange), with taxonomic class

and continent as categorical predictors. Whiskers represent the 95 percent confidence intervals ofthe parameter estimates.

Figure 4. Map of the mean discriminatory performance (area under the receiver operating characteristic curve; AUC) of the extrapolated models using (a) GAM and (b) MaxEnt. Regions marked with an asterisk (*) represent areas that were invaded by fewer than three species.

187

188 SUPPLEMENTARY FIGURES

189 Figure S1. Change in area under the receiver operating characteristic curve (AUC) and

190 Continuous Boyce Index (CBI) values at decreasing proportion of sampled occurrences for the

191 simulated species-environment. Points represent the mean values at the given proportion of

192 sampled presences, with the red line representing the mean value at 95 percent sampled

193 presences and error bars representing the standard deviation at each fraction.

194 Figure S2. Comparison of native range model performance using 10-fold random cross-

195 validation and 5-fold spatial-block cross-validation, measured as the mean area under the

196 receiver operating characteristic curve (AUC).

197 Figure S3. Example of PCA-based environmental breadth and coverage as a predictor for the

198 prickly pear (*Opuntia ficus-indica*). The grey points represent the 10,000 global reference site

199 points used to generate the PCA environment space for all species. The blue and black points

200 represent the occurrences and sampled background sites in geographic and environmental space,

respectively.

202

GENERAL INTRODUCTION

204 Rapid global change currently threatens biodiversity, which has led to new challenges to 205 understand and manage these drivers of extinction. The current biodiversity extinction crisis has 206 been attributed to various global drivers, including biological invasions (Mack et al., 2000), 207 climate change and land use change (Millennium Ecosystem Assessment, 2005). There has been 208 a growing need to develop tools to better understand the ramifications of global change on 209 species, and predict future responses for conservation. This thesis focuses on biological 210 invasions, and on estimating the distributions of species in their exotic ranges. 211 212 **Biological invasions**

213 Biological invasions, in which species are introduced, establish and spread throughout a new 214 region, have led to severe ecological damages and extirpations of vulnerable populations 215 (Doherty et al., 2016; Mack et al., 2000; Vitousek et al., 1996), as well as severe economic 216 impacts with billions of dollars lost annually in the United States alone (Pimentel et al., 2005). 217 Modern invasions have been primarily driven by the movement of humans, particularly through 218 global trade between biogeographical regions (Meyerson & Mooney, 2007). In particular, the 219 rise in international trade has led to increases in the frequency of introduction events as well as 220 the number of introduced individuals (propagule pressure; Lockwood et al., 2005), which is a 221 primary factor determining invasions. The rate of new invasions has been increasing over time 222 globally where a lack of saturation has been observed (Seebens et al., 2017), demonstrating an 223 increasingly urgent concern for conservation.

224 The management of biological invasions may occur at any stage in the invasion process. 225 Prevention is an important component of invasive species management, and therefore 226 understanding the likelihood of species establishment and potential subsequent spread in a new 227 region is crucial to estimate the potential risk posed by each species and to prioritize 228 management efforts (Leung et al., 2012). Once the species has established within a region, 229 identifying the most suitable areas may help prioritize efforts to control or contain the species 230 (Gormley et al., 2011). Early detection and rapid response are necessary management strategies, 231 before invading species become widespread and too challenging to control or contain (Lodge et 232 al., 2006). To this effect, species distribution models (SDMs) have become one of the most 233 promising tools to predict potentially invaded or currently invaded ranges.

234

235 Species distribution models

The growth of large datasets has given rise to diverse ecological models that may be used to inform management decisions. Species distribution models (SDMs) are an example of these numerical tools, relating species occurrence information to the environmental factors of their distribution through a quantitative or rules-based framework (Franklin, 2010). Many other names have been used to describe the species distribution modelling process, including ecological niche models (ENMs), habitat models, climate envelopes, and range mapping (Elith & Leathwick,

242 2009).

The ecological niche of a species is a vital concept in ecology, and is defined as the set of biotic and abiotic conditions required for a species to persist, where the fundamental niche of a species consists of all the suitable conditions for their survival, and the realized niche consists of the ecological space that the species actually occupies (Hutchinson, 1957). While SDMs may
attempt to capture the ecological requirements of species, the fundamental niche of a species is
unknown in practice (Phillips et al., 2006). SDMs measure the observed distributions, which may
be constrained by dispersal limitations or historical factors, or other factors and thus reflect the
realized niche (Lobo et al., 2010).

251 SDMs may be implemented in a number of different ways, such as the response variable 252 of the model, the modelling approach itself and the predictors included. The most common 253 response variables used in SDMs for single species are presence-only (in which the absences of 254 the species are not known; Yates et al., 2018). While presence-absence and abundance data 255 contain the more information content and may yield better model performance, the use of 256 presence-only data has become more common due to their wide availability through large 257 databases (e.g. GBIF, 2020) and the practical challenges associated with obtaining rigorously 258 sampled presence-absence or abundance data (Barbet-Massin et al., 2012).

259 Different approaches have emerged to best employ the use of presence-only data. Few 260 modelling procedures exclusively use presences (e.g. BIOCLIM; Busby, 1991), where most 261 approaches employ the use of pseudo-absences, or background information in place of true 262 absences (Barbet-Massin et al., 2012). Background sites have been interpreted as a sample of 263 available environments in the study site for a given species, or as an indicator of their unsuitable 264 conditions (Capinha et al., 2011). One consequence of using SDMs fitted using presence-only 265 data is that they can only provide relative likelihoods of occurrences, as background sites do not 266 reflect true absences (which is unknown), and the number of sampled background sites influence 267 the absolute probabilities of the model predictions (Pearce & Boyce, 2006). However, the 268 relative suitability values from presence-only SDMs can yield important information, allowing

269	for "discrimination" between invaded and background sites (rather than "calibration" related to
270	absolute probabilities of occurrence; Pearce & Boyce, 2006). Indeed, presence-only SDMS may
271	discriminate between high and low risk areas which may be used to inform invasion management
272	priorities (e.g. Crafton, 2014).

273 SDMs may use various predictors to describe species distributions. SDMs may be 274 implemented using indirect, correlative predictors (which comprise abiotic or biotic predictors), 275 or as mechanistic models based on experimental data to link physiological responses directly to 276 their environment (Evans et al., 2015; Yates et al., 2018). While mechanistic models may 277 provide direct linkages between species and their environment (Evans et al., 2015), the required 278 experimental data is often resource intensive, making such models currently impractical (Elith 279 and Leathwick, 2009; Yates et al., 2018), particularly for biological invasions where rapid 280 assessment is often needed. Consequently, correlative models have become the most common 281 form of SDM, particularly using widely available, high resolution climatic data (e.g. Fick & 282 Hijmans, 2017) that may be easily implemented as predictors of species distributions.

283 SDMs have been applied for invasive species across several taxa, including marine (e.g. 284 Crafton, 2014) and terrestrial (e.g. Lozier & Mills, 2011) ecosystems. SDMs may be used, for 285 example, to identify areas of high risk for species in transit where they may establish and spread 286 (Leung et al., 2012). Where species have established, SDMs are particularly useful to identify 287 where the species may be located or may spread, to inform management priorities for control 288 (e.g. Gormley et al., 2011). The application of SDMs may also be used to link global drivers of 289 biodiversity loss, for example by predicting the shift in invasive species suitability over time due 290 to climate change (e.g. Ahmad et al., 2019). Indeed, the benefits of SDMs to better inform

conservation efforts for biological invasions are clear, where risk assessments that allow theprioritization of species or sites may be made through these spatial predictions (Elith, 2017).

Broadly, SDMs have become widely popular as an approach to answer large-scale ecological questions. SDMs can be used for explanation, in order to gain insight on the causal drivers of species distributions and their niche requirements (e.g. Graham et al., 2004; Heegaard, 1997; Leathwick & Austin, 2001). Over time, the primary application of distribution modelling has shifted to prediction as a result of the increasingly large quantity of available data and the development of more advanced models (Elith & Leathwick, 2009).

299

300 SDMs transferability for biological invasions

In the context of biological invasions, SDMs fitted on the native range of a species have been used to predict their suitability or distribution in new ranges (e.g. Gama et al., 2016; Padalia et al., 2014). Unlike SDMs used for explanation, these predictive models are extrapolated to exotic ranges, where many factors may differ, and the reliability of the model may not hold. Therefore, understanding the degree to which SDMs may be predictive outside of the data used to fit the model, termed transferability, is necessary if SDMs are to be useful for forecasting the distributions of biological invasions.

308 Despite the widespread use of SDMs, recent publications have criticized the use of SDMs 309 when making predictions in new environments, either temporally or spatially, suggesting that 310 these models may fail outside of the data used to calibrate the models. The majority of SDMs are 311 not rigorously examined before being applied where predictive models are typically assessed using the range used to generate the model itself rather than on an independent dataset andconsequently may not reflect its actual predictive ability (Vanreusel et al., 2007).

314 Recent reviews have outlined the challenges of developing ecological models for 315 prediction, highlighting various factors that may influence transferability (Sequeira et al., 2018; 316 Werkowska et al., 2017; Yates et al., 2018). Transferability may be influenced by the quality of 317 the data, including low sample sizes, where sampling biases and low positional accuracy may 318 consequently lead to poor SDM predictions (Yates et al., 2018). The choice of modelling 319 approach influences the complexity of the models themselves and consequently their 320 transferability, where overfitted models may fit to noise in the data, and underfitted models may 321 fail to effectively capture complex ecological relationship (Werkowska et al., 2017). Identifying 322 relevant predictors (and the number of predictors) may also influence transferability, in order to 323 effectively describe a species distribution (Petitpierre et al., 2017). Whether specific taxa may be 324 more or less transferable has been of interest (Yates et al., 2018), which may contain traits that 325 make them more or less transferable (Urban et al., 2016). For example, ecological models have 326 been shown to perform poorly for habitat generalist species (Brotons et al., 2004; Brotons et al., 327 2007; Zhang et al., 2015), as these species may not be restricted by the environmental predictors, 328 as well as fail to differentiate between the presence and background environment. Shifting 329 species distributions over time may violate the assumption that species are in equilibrium with 330 their environment (Araújo & Peterson, 2012; Guisan & Thuiller, 2005). This assumption is often 331 violated in the early stages of biological invasion, which may lead to the miscalibration of SDMs 332 when characterizing the species-environment relationship (Václavík & Meentemeyer, 2011). 333 Population density may influence the spread and distribution of species, and consequently model 334 transferability to new ranges (Yates et al., 2018). While propagule pressure is a major predictor

of invasive species establishment, it may also influence the geographic spread of established
species, increase the genetic variation of the population and allow for multiple introductions in
different locations (Leung et al., 2012; Lockwood et al., 2005). Therefore, propagule pressure
and its surrogate measures such as gross domestic product (GDP; Sardain et al., 2019) may
correlate with human-mediated spread and the degree to which species occupy all of the suitable
environments within invaded ranges.

341 One of the primary challenges for developing models for transferability is the potential 342 failure of SDMs when extrapolating to non-analogous conditions (Sequeira et al., 2018; Yates et 343 al., 2018). SDMs fitted on a truncated curve may fail to predict outside of the conditions used to 344 fit the model, for which species responses are unknown (Thuiller et al., 2004). Alternatively, 345 SDMs may fail in cases where the realized niche has shifted (e.g. release from antagonizing 346 biotic interactions; Tingley et al., 2014), leading to an apparent change in their species-347 environment relationship. Yet, the majority of SDMs do not include important biological factors 348 such as physiological and evolutionary traits, species interactions and dispersal, instead only 349 considering the abiotic environment that the species occupies (Urban et al., 2016). Niche shifts 350 have been observed across a variety of taxa for biological invasions, including plants 351 (Broennimann et al., 2007; Early & Sax, 2014), insects (Hill et al., 2017), marine fish 352 (Parravicini et al., 2015), birds (Cardador & Blackburn, 2020; Strubbe et al., 2012), reptiles and 353 amphibians (Li et al., 2014; Tingley et al., 2014). 354 While there has been an increasing number of studies that have evaluated the spatial 355 transferability of SDMs, the majority of these assessments have been restricted to few species or

taxonomic groups and with varying methodologies leading to equivocal results. For example,

357 Petitpierre et al. found that SDMs could reliably predict the exotic ranges for plants, noting that

few species in their invaded range existed outside of their native climatic niche (2012). Other studies have reported the opposite trend, finding that species occurred outside of the climatic conditions recorded in their native range (e.g. Beaumont et al., 2009; Goncalves et al., 2014). This lack of consensus has demonstrated a general limited understanding of model transferability, which is crucial for the application of SDMs for prediction. Therefore, a broad systematic assessment of SDM transferability, with the identification of factors that drive model success, would be timely and useful.

365 This thesis seeks to evaluate the transferability of SDMs when extrapolated across spatial 366 landscapes, and identify the potential factors associated with model failure. I constructed SDMs 367 for 648 terrestrial species across 8 taxonomic classes using occurrence records from their native 368 range and extrapolated these models to 1918 characterized invaded ranges as an independent 369 form of validation to assess the loss in transferability. Using global occurrence data to provide 370 the most extensive assessment of SDM transferability for invasive species to date, my goal was 371 to examine under what conditions SDMs may succeed based on hypotheses surrounding 372 transferability in general, as well as factors related specifically to biological invasions.

373

374 REFERENCES

Ahmad, R., Khuroo, A. A., Charles, B., Hamid, M., Rashid, I., & Aravind, N. A. (2019). Global
distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum
vulgare (Ox-eye Daisy) under climate change. *Scientific reports*, 9(1), 1-15.

Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modeling. *Ecology*, 93(7), 1527-1539.

380 381 382	Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many?. <i>Methods in ecology and</i> <i>evolution</i> , 3(2), 327-338.
383 384 385 386	 Beaumont, L. J., Gallagher, R. V., Thuiller, W., Downey, P. O., Leishman, M. R., & Hughes, L. (2009). Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. <i>Diversity and Distributions</i>, 15(3), 409-420.
387 388 389	 Broennimann, O., Treier, U. A., Müller-Schärer, H., Thuiller, W., Peterson, A. T., & Guisan, A. (2007). Evidence of climatic niche shift during biological invasion. <i>Ecology letters</i>, 10(8), 701-709.
390 391 392	Brotons, L., Thuiller, W., Araújo, M. B., & Hirzel, A. H. (2004). Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. <i>Ecography</i> , 27(4), 437-448.
393 394 395	Brotons, L., Herrando, S., & Pla, M. (2007). Updating bird species distribution at large spatial scales: applications of habitat modelling to data from long-term monitoring programs. <i>Diversity and distributions</i> , 13(3), 276-288.
396 397	Busby, J. (1991). BIOCLIM-a bioclimate analysis and prediction system. <i>Plant protection quarterly</i> , 61, 8-9.
398 399 400	 Capinha, C., Leung, B., & Anastácio, P. (2011). Predicting worldwide invasiveness for four major problematic decapods: an evaluation of using different calibration sets. <i>Ecography</i>, 34(3), 448-459.
401 402 403	Cardador, L., & Blackburn, T. M. (2020). A global assessment of human influence on niche shifts and risk predictions of bird invasions. <i>Global Ecology and Biogeography</i> , 29(11), 1956-1966.
404 405	Crafton, R. E. (2014). Modeling invasion risk for coastal marine species utilizing environmental and transport vector data. <i>Hydrobiologia</i> , 746(1), 349-362.

406 407 408	Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G., & Dickman, C. R. (2016). Invasive predators and global biodiversity loss. <i>Proceedings of the National Academy of Sciences</i> , 113(40), 11261-11265.
409 410 411	Early, R., & Sax, D. F. (2014). Climatic niche shifts between species' native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. <i>Global ecology and biogeography</i> , 23(12), 1356-1365.
412 413 414	 Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. <i>Annual review of ecology, evolution, and systematics</i>, 40, 677-697.
415 416	Elith, J. (2017). Predicting distributions of invasive species. <i>Invasive species: Risk assessment and management</i> , 10(9781139019606.006).
417 418 419	Evans, T. G., Diamond, S. E., & Kelly, M. W. (2015). Mechanistic species distribution modelling as a link between physiology and conservation. <i>Conservation physiology</i> , 3(1), cov056.
420 421	Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. <i>International journal of climatology</i> , 37(12), 4302-4315.
422 423	Franklin, J. (2010). <i>Mapping species distributions: spatial inference and prediction</i> . Cambridge University Press.
424 425 426	Gama, M., Crespo, D., Dolbeth, M., & Anastácio, P. (2016). Predicting global habitat suitability for Corbicula fluminea using species distribution models: The importance of different environmental datasets. <i>Ecological Modelling</i> , 319, 163-169.
427	GBIF (2020). Global Biodiversity Information Facility. Available from https://www.gbif.org/
428 429 430 431	 Goncalves, E., Herrera, I., Duarte, M., Bustamante, R. O., Lampo, M., Velasquez, G., & García-Rangel, S. (2014). Global invasion of <i>Lantana camara</i>: has the climatic niche been conserved across continents?. <i>PLoS One</i>, 9(10), e111468. Gormley, A. M., Forsyth, D. M., Griffioen, P., Lindeman, M., Ramsey, D. S., Scroggie, M. P., &
432	Woodford, L. (2011). Using presence-only and presence-absence data to estimate the

- 433 current and potential distributions of established invasive species. *Journal of Applied*434 *Ecology*, 48(1), 25-34.
- Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J., & Moritz, C. (2004). Integrating
 phylogenetics and environmental niche models to explore speciation mechanisms in
 dendrobatid frogs. *Evolution*, 58(8), 1781-1793.
- Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple
 habitat models. *Ecology letters*, 8(9), 993-1009.
- Heegaard, E. (1997). Ecology of Andreaea in western Norway. *Journal of Bryology*, 19(3), 527636.
- Hill, M. P., Gallardo, B., & Terblanche, J. S. (2017). A global assessment of climatic niche shifts
 and human influence in insect invasions. *Global ecology and biogeography*, 26(6), 679689.
- Hutchinson, G.E. (1957) Concluding Remarks. *Cold Spring Harbor Symposia on Quantitative Biology*, 22, 415-427.
- Leathwick, J. R., & Austin, M. P. (2001). Competitive interactions between tree species in New
 Zealand's old-growth indigenous forests. *Ecology*, 82(9), 2560-2573.
- Leung, B., Roura-Pascual, N., Bacher, S., Heikkilä, J., Brotons, L., Burgman, M. A., ... & Sol, D.
 (2012). TEASIng apart alien species risk assessments: a framework for best practices. *Ecology Letters*, 15(12), 1475-1493.
- Lobo, J. M., Jiménez-Valverde, A., & Hortal, J. (2010). The uncertain nature of absences and
 their importance in species distribution modelling. *Ecography*, 33(1), 103-114.
- Lockwood, J. L., Cassey, P., & Blackburn, T. (2005). The role of propagule pressure in
 explaining species invasions. *Trends in ecology & evolution*, 20(5), 223-228.
- Lodge, D. M., Williams, S., MacIsaac, H. J., Hayes, K. R., Leung, B., Reichard, S., ... & Carlton,
 J. T. (2006). Biological invasions: recommendations for US policy and management. *Ecological applications*, 16(6), 2035-2054.

- Lozier, J. D., & Mills, N. J. (2011). Predicting the potential invasive range of light brown apple
 moth (*Epiphyas postvittana*) using biologically informed and correlative species
 distribution models. *Biological Invasions*, 13(10), 2409.
- Li, Y., Liu, X., Li, X., Petitpierre, B., & Guisan, A. (2014). Residence time, expansion toward
 the equator in the invaded range and native range size matter to climatic niche shifts in
 non-native species. *Global Ecology and Biogeography*, 23(10), 1094-1104.
- Mack, R. N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M., & Bazzaz, F. A. (2000).
 Biotic invasions: causes, epidemiology, global consequences, and control. *Ecological applications*, 10(3), 689-710.
- Meyerson, L. A., & Mooney, H. A. (2007). Invasive alien species in an era of globalization. *Frontiers in Ecology and the Environment*, 5(4), 199-208.
- 470 Millennium Ecosystem Assessment (2005). *Ecosystems and human well-being: biodiversity*471 *synthesis*. World Resources Institute, Washington, DC.
- Padalia, H., Srivastava, V., & Kushwaha, S. P. S. (2014). Modeling potential invasion range of
 alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and
 GARP. *Ecological informatics*, 22, 36-43.
- 475 Parravicini, V., Azzurro, E., Kulbicki, M., & Belmaker, J. (2015). Niche shift can impair the
- 476 ability to predict invasion risk in the marine realm: an illustration using Mediterranean
 477 fish invaders. *Ecology Letters*, 18(3), 246-253.
- 478 Pearce, J. L., & Boyce, M. S. (2006). Modelling distribution and abundance with presence-only
 479 data. *Journal of Applied Ecology*, 43(3), 405-412.
- 480 Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C., & Guisan, A. (2012).
 481 Climatic niche shifts are rare among terrestrial plant invaders. *Science*, 335(6074), 1344482 1348.
- Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C., & Guisan, A. (2017). Selecting
 predictors to maximize the transferability of species distribution models: lessons from
 cross-continental plant invasions. *Global Ecology and Biogeography*, 26(3), 275-287.

- Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species
 geographic distributions. *Ecological modelling*, 190(3-4), 231-259.
- Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic
 costs associated with alien-invasive species in the United States. *Ecological economics*,
 52(3), 273-288.
- 491 Sardain, A., Sardain, E., & Leung, B. (2019). Global forecasts of shipping traffic and biological
 492 invasions to 2050. *Nature Sustainability*, 2(4), 274-282.
- Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., ... &
 Bacher, S. (2017). No saturation in the accumulation of alien species worldwide. *Nature communications*, 8(1), 1-9.
- 496 Sequeira, A. M., Bouchet, P. J., Yates, K. L., Mengersen, K., & Caley, M. J. (2018). Transferring
 497 biodiversity models for conservation: opportunities and challenges. *Methods in Ecology*498 *and Evolution*, 9(5), 1250-1264.
- 499 Strubbe, D., Broennimann, O., Chiron, F., & Matthysen, E. (2012). Niche conservatism in non500 native birds in Europe: niche unfilling rather than niche expansion. *Global Ecology and*501 *Biogeography*, 22(8), 962-970.
- 502 Thuiller, W., Brotons, L., Araújo, M. B., & Lavorel, S. (2004). Effects of restricting
 503 environmental range of data to project current and future species distributions.
 504 *Ecography*, 27(2), 165-172.
- 505 Tingley, R., Vallinoto, M., Sequeira, F., & Kearney, M. R. (2014). Realized niche shift during a
 506 global biological invasion. *Proceedings of the National Academy of Sciences*, 111(28),
 507 10233-10238.
- 508 Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J. B., Pe'er, G., Singer, A., ... & Gonzalez, A.
 509 (2016). Improving the forecast for biodiversity under climate change. *Science*, 353(6304),
 510 aad8466.
- 511 Václavík, T., & Meentemeyer, R. K. (2011). Equilibrium or not? Modelling potential distribution
 512 of invasive species in different stages of invasion. *Diversity and Distributions*, 18(1), 73513 83.

514	Vanreusel, W., Maes, D., & Van Dyck, H. (2007). Transferability of species distribution models:
515	a functional habitat approach for two regionally threatened butterflies. Conservation
516	<i>biology</i> , 21(1), 201-212.
517	Vitousek, P., D'Antonio, C., Loope, L., & Westbrooks, R. (1996). Biological invasions as global
518	environmental change. American scientist, 84, 468.
519	Werkowska, W., Márquez, A. L., Real, R., & Acevedo, P. (2017). A practical overview of
520	transferability in species distribution modeling. Environmental reviews, 25(1), 127-133.
521	Yates, K. L., Bouchet, P. J., Caley, M. J., Mengersen, K., Randin, C. F., Parnell, S., &
522	Dormann, C. F. (2018). Outstanding challenges in the transferability of ecological
523	models. Trends in ecology & evolution, 33(10), 790-802.
524	Zhang, L., Liu, S., Sun, P., Wang, T., Wang, G., Zhang, X., & Wang, L. (2015). Consensus
525	forecasting of species distributions: The effects of niche model performance and niche
526	properties. PLoS One, 10(3), e0120056.

528	CHAPTER ONE
529	ABSTRACT
530	Aim
531	Species distribution models (SDMs) are widely used predictive tools to forecast potential
532	biological invasions. However, the reliability of SDMs extrapolated to exotic ranges remains
533	understudied, with most analyses restricted to few species with equivocal results. We examine
534	the spatial transferability of SDMs for 648 non-indigenous species extrapolated across new
535	ranges, and identify what factors may lead to predictive failure.
536	Location
537	Global.
538	Time period
539	Current.
540	Major taxa studied
541	648 terrestrial species; 8 taxonomic classes.
542	Methods
543	We performed a large-scale assessment of the transferability of SDMs using two modelling
544	approaches: generalized additive models (GAMs) and MaxEnt. We fitted SDMs on the native
545	ranges of species and extrapolated them to 1918 exotic ranges. We examined the effect of several
546	general factors, and factors related to biological invasions, on spatial transferability.
547	Results

548 Despite both modelling approaches performing well when predicting the fitting range of the 549 species (GAM mean AUC = 0.809; standard deviation (s) = 0.076; MaxEnt mean AUC = 0.830; 550 s = 0.070), we observed low spatial transferability on average when extrapolating to their 551 invaded ranges (GAM mean AUC = 0.686; s = 0.124; MaxEnt mean AUC = 0.689; s = 0.122). 552 Transferability differed between taxonomic classes and invaded continents, and was positively 553 influenced by the performance of the model and environmental breadth in the native range, 554 number of occurrences in the exotic range, and the year of first record. Models performed worse 555 with greater environmental breadth in the exotic range, gross domestic product of the native 556 range, geographic distance between ranges and when extrapolating to islands.

557 Main conclusions

558 Our study showed poor spatial transferability on average, with SDM performance differing based 559 on characteristics of the data, species and ranges. Contrary to expectations, specialized species 560 (in native ranges) had the lowest predictability in exotic ranges, and more recent invasions 561 showed stronger discriminatory ability. The latter suggests equilibrium conditions may not favor 562 higher predictability in exotic ranges, and SDMs could be useful for management early in an 563 invasion. We discuss the possible mechanisms of these findings.

564 Keywords: *GBIF*; global; invasive species; presence-only data; species distribution model;
565 transferability

566 INTRODUCTION

567 Developing models to predict species distributions within exotic ranges has become increasingly 568 important for the management of biological invasions (Elith, 2017) due to the severe effects of 569 invaders on biodiversity loss (Bellard et al., 2016) and economic damages (Bradshaw et al., 570 2016). Given the increasing availability of large databases and sophisticated algorithms (Elith & 571 Leathwick, 2009), species distribution models (SDMs) have become the tool of choice for 572 prediction (e.g. Lozier & Mills, 2011). SDMs are statistical tools that relate species occurrence 573 data to their environment and other spatial characteristics (Franklin, 2009). SDMs have been 574 shown to perform well when characterizing the distribution of the species within its fitting range 575 when utilizing informative predictors and rigorously sampled survey data (Elith & Leathwick, 576 2009). However, the reliability of SDMs when extrapolating to novel contexts must be viewed 577 with caution (Yates et al., 2018).

578 The challenges of developing of SDMs as predictive tools have been summarised in 579 recent publications (Sequeira et al., 2018; Werkowska et al., 2017; Yates et al., 2018), noting that 580 the transferability of SDMs across spatial landscapes is largely unknown. Most direct analyses of 581 transferability to exotic ranges have been restricted to single or few species or taxonomic groups 582 (e.g. Beaumont et al., 2009; Goncalves et al., 2014; Peterson et al., 2003; Sofaer et al., 2018). 583 Moreover, there has been a lack of consensus on whether such models are transferable despite 584 the popularity of ecological models as predictive tools (e.g. Beaumont et al., 2009; Goncalves et 585 al., 2014; Morán-Ordóñez et al., 2017; Petitpierre et al., 2012). Thus, a broader systematic 586 analysis is needed, with a focus on SDMs built on native ranges and extrapolated to exotic 587 ranges, as well as the potential factors affecting their transferability.

588 Several factors may influence model transferability generally, across time and space. One 589 proposed issue is whether SDMs may be more or less transferable depending on the taxonomic 590 group of the species (Yates et al., 2018), given relevant differences in biological traits that 591 influence species distributions (Urban et al., 2016). For example, the movement and behaviour of 592 species may affect whether occurrences may be accurately recorded, as well as their ability to 593 spread to suitable habitats. Habitat-generalist species may lead to poorer transferability as they 594 may not be constrained by the environmental factors considered, or comprise multiple 595 subpopulations that differ environmentally (Brotons et al., 2007), affecting whether the fitted 596 SDMs can discriminate between presences and background data (Brotons et al., 2004; Zhang et 597 al., 2015). Other general factors have been highlighted, such as data quality (Yates et al., 2018), 598 model complexity (Werkowska et al., 2017), statistical approach (Yates et al., 2018), 599 stochasticity and small sample sizes (Yates et al., 2018), and the choices of predictors 600 (Petitpierre et al., 2017).

601 Beyond these general issues, some factors may be particularly relevant for biological 602 invasions. A key element of invasions is that species may still be spreading within their 603 introduced range (Václavík & Meentemeyer, 2011), violating the underlying assumption of 604 SDMs that species are in equilibrium with their environment (Araújo & Peterson, 2012; Guisan 605 & Thuiller, 2005). In turn, spread is influenced by propagule pressure (the number of individuals 606 introduced and/or rate of introduction events; Lockwood et al., 2005), where higher propagule 607 pressure leads to a greater opportunity to encounter suitable habitats (i.e. they are less limited by 608 "exposure"). Further, lack of exposure should be more important earlier in the invasion process, 609 and distributions should become increasingly driven by habitat suitability as a species continues

610 to spread (Leung et al., 2012; Runquist et al., 2019). Thus, we hypothesized that species with 611 higher propagule pressure and those that had invaded earlier would show stronger transferability. 612 Previous works have identified non-analogous environments as a key factor affecting 613 transferability, where models that are fitted on truncated curves may fail to predict species 614 responses to new conditions (Yates et al., 2018). This is particularly relevant as invasive species 615 are introduced to disjoint ranges by definition. Thus, we predicted a positive relationship 616 between spatial transferability and environmental similarity between native and exotic ranges. 617 Likewise, ranges may differ over longer geographic distances, which could correlate to other 618 unmeasured environmental, biotic or human factors. Finally, we also explored the effect of 619 islands on transferability. Islands differ from mainland areas in terms of their higher levels of 620 endemism, lower species richness and restricted land areas (Kier et al., 2009), suggesting non-621 analogous conditions. Moreover, impacts often differ between island and mainland invasions 622 (Spatz et al., 2017), suggesting ecological differences at play. Thus, we predicted lower 623 transferability when predicting island invasions. 624 The objectives of this study were (1) to evaluate the capacity of SDMs to predict species 625 distribution when extrapolated to exotic ranges (i.e., disjointed and outside of the range used for

analyzed the transferability of SDMs constructed on the native range of 648 terrestrial species
across 8 taxonomic classes and extrapolated to their exotic ranges, providing the largest

calibration), and (2) to identify factors that may influence model transferability. To do so, we

629 systematic analysis of native to exotic range transferability to date.

630

626

632 METHODS

633 To assess the transferability of SDMs, we fitted models for species on their native range and 634 extrapolated them to their exotic ranges (see Figure 1 for full flowchart of methodology). 635 Background reference sites were sampled using the 'target-group background' approach (TGB, 636 Phillips et al., 2009) within each range to account for biases associated with presence-only data. 637 After extrapolating to the exotic range of the species, we assessed the transferability of SDMs in 638 terms of their discriminatory power and examined several potential predictors of model success 639 based on hypotheses associated with the models, species or characteristics of the ranges 640 themselves (Table 1). All analyses were performed in R (R Core Team, 2019). Descriptions of 641 the datasets used in the model fitting, validation and predictors of transferability are provided in 642 Supporting Information Table S1.

643

644 Environmental data

645 We included environmental predictors that are available globally and frequently used in SDM 646 literature. We used the 19 bioclimatic variables from WorldClim version 2 at 2.5-arcmin 647 resolution (approximately 5 km grid size; Fick & Hijmans, 2017). Variables were derived from 648 monthly temperature and precipitation values relating to its mean, variation and extremes (Fick 649 & Hijmans, 2017). All bioclimatic variables were standardized to a mean of zero and standard 650 deviation of one. Prior to model fitting, we accounted for multicollinearity by removing highly 651 correlated variables across all cells globally using a threshold pairwise correlation coefficient 652 value of |r| > 0.7. After excluding collinear variables, the reduced set was used in all SDMs: 653 annual mean temperature (bio1), mean diurnal range (mean of monthly maximum and minimum

654	temperatures; bio2), temperature annual range (bio7), annual precipitation (bio12), precipitation
655	of the driest month (bio14), precipitation seasonality (coefficient of variation; bio15) and
656	precipitation of the coldest quarter (bio19).
657	We included two variables in addition to the seven bioclimatic predictors: elevation and
658	normalized difference vegetation index (NDVI) at 2.5-arcmin and 3-arcmin resolution,
659	respectively. Elevation has been shown to drive many ecological processes affecting species
660	distributions (Wang et al., 2017), while NDVI, which is an index of vegetation cover
661	("greenness"), has been used as surrogate for habitat quality (Pettorelli et al., 2011) and land
662	cover changes (Lunetta et al., 2006). Both predictors have been widely used in SDMs (Morán-
663	Ordóñez et al., 2017; Wen et al., 2015) and globally available. Elevation data was downloaded
664	from WorldClim (Fick & Hijmans, 2012), and MODIS NDVI data was downloaded through the
665	NASA Goddard Earth Sciences Data and Information Services Center (GES DISC; Acker &
666	Leptoukh, 2007). Neither elevation nor NDVI were highly correlated ($ r < 0.7$) with the climate
667	predictors.

668

669 Species data

We obtained species occurrence records from the Global Biodiversity Information Facility (GBIF, 2020; see Supporting Information Text S1 for the list of DOI links), which were subsequently gridded to the environmental data (at 2.5-arcmin resolution). Grid cells containing multiple occurrences were counted as a single presence. We filtered out records with listed geospatial issues within GBIF and coordinate uncertainty greater than 5 kilometers (the resolution of our environmental data). We applied standardized cleaning using the

676 'CoordinateCleaner' package (Zizka et al., 2019), which removed any records with equal or
677 zero/zero coordinates, found in urban areas, near biodiversity institutions, outside of their listed
678 country, or at the centroids of countries and its subdivisions. Finally, we removed all occurrence
679 records that did not have associated environmental data, or were dated before the year 1970 to
680 match the temporal resolution of WorldClim.

681 Species occurrences were classified as either native or exotic at the country level using 682 distributional information from the CABI Invasive Species Compendium (CABI, 2020) and the 683 IUCN Global Invasive Species Database (GISD, 2015). We defined "regions" and "ranges" as 684 physical locations and the contiguous geographic extent of the species, respectively. Regions 685 were generated at the sub-national level (state/province/equivalent), using the Global 686 Administrative Areas database (2018). Exotic ranges were defined as the set of contiguous 687 regions (that is, regions that share a land border with each other) containing at least one 688 occurrence point. Therefore, an SDM fitted on the native range for a species may be extrapolated 689 to one or more exotic ranges, each comprising one or more connected regions. We excluded 690 records that were found in countries where the species was considered both native and exotic, or 691 not classified. Ranges (or species) with fewer than 20 occurrences were excluded to avoid 692 overfitting. The species included in the study, along with relevant taxonomic information are 693 presented in Supporting Information Table S2.

694

695 Background environment selection

696 Presence-only occurrence records represent the most common form of distributional data. We 697 compared the environments our occurrence records to 10,000 sampled background sites in both

698 the native and exotic ranges (Barbet-Massin et al., 2012; Capinha et al., 2011). While the number 699 of background points included in the model affects the absolute probabilities of prediction, the 700 likelihood of presences could still be interpreted in a relative manner, termed discrimination 701 (Pearce & Boyce, 2006). We used the 'target-group background' approach to select our 702 background sites (TGB; Phillips et al., 2009) by randomly sampling GBIF records belonging to 703 the same taxonomic class as the species of interest, within the same range and independently of 704 species presences (see Supporting Information Table S3 for the GBIF DOIs). This accounted for 705 observation biases associated with presence-only data by mimicking the sampling approach of 706 the occurrence records. We applied the same data cleaning procedure to our target-group 707 backgrounds sites as the occurrence records. For computational reasons, we downloaded 708 occurrence records for 300 randomly sampled species within class-region combinations that 709 possessed greater than 10,000,000 occurrences in total, which were then sub-sampled to 10,000 710 points per range. Additionally, we used the maximum number of available occurrences where 711 ranges had fewer than 10,000 available background sites. However, species that did not possess 712 at least 4000 potential background sites were excluded.

713

714 Modelling species distributions

We applied two modelling approaches as the framework of the SDMs in this study: generalized additive models (GAMs; Hastie & Tibshirani, 1990) and MaxEnt (Phillips et al., 2006). GAMs were implemented in this study using the 'mgcv' package in R (Wood, 2017). Specifically, for GAMs, non-linear relations (the 'smooth' terms in the model) are defined by segments specified by the number of knots, each of which may have their own polynomial function form.

720
$$z_{ij} = b_0 + s(x_{1,i}) + s(x_{2,i}) + \dots + s(x_{m,i})$$
(1)

721
$$y_{ij} = \frac{1}{1 + e^{-z_{ij}}}$$
 (2)

Where y_{ij} was the binary presence or background at site *i* and species *j*, and $x_{1,i} \dots x_{m,i}$ were the 722 723 *m* continuous climatic predictors with smoothing terms *s*. We used a maximum of 5 knots to 724 allow each smoothing function to remain flexible, but computationally efficient. To prevent 725 overfitting, we allowed terms to be excluded by setting the 'select' argument to true within the 726 'gam' function. Additionally, we removed variables showing concurvity (the non-linear 727 extension of multicollinearity where the smooth term for one independent variable can be 728 approximated by a linear combination of the other smooth terms in the model; Buja et al., 1989; 729 Morlini, 2006). We applied the 'concurvity' function from the package 'mgcv' (Wood, 2017), 730 and removed predictors with the highest 'worst' case concurvity. We refit the GAM, iterating 731 this procedure until all variables possessed estimated concurvity values less than 0.8.

MaxEnt is a machine learning method designed specifically for presence-background modelling (Phillips et al., 2006; Phillips & Dudík 2008). Similar to GAMs, MaxEnt may be subject to similar issues of overfitting given its flexible modelling procedures. To reduce possible overfitting, we limited the model complexity to only include linear, quadratic and product features (Merow et al., 2014). The SDMs were fitted using 'maxnet' package in R (version 3.4.0; Phillips, 2017), with the default arguments for the rest of the settings.

As the metric of model performance, we used the area under the receiver operating
characteristic curve (AUC; Hanley & McNeil, 1982). An AUC value of 1 indicates perfect
discrimination, while a value of 0.5 indicates discrimination no better than chance. We compared
AUC in the fitted range against AUC in the exotic ranges, to determine transferability, and

742 conversely, loss of discriminatory power. As presence-only models discriminate between 743 presences and background sites rather than absences, the interpretation of AUC is less clear than 744 with presence-absence (Phillips et al., 2006). Nonetheless, we considered AUC values greater 745 than or equal to 0.7 to have useful model performance (Morán-Ordóñez et al., 2017; Swets, 746 1988). While several authors have criticized the use of AUC due to the equal weighting of 747 omission and commission errors (Jiménez-Valverde, 2012; Lobo et al., 2007), AUC remains one 748 of the most commonly used metrics of discrimination for SDMs, and is suited for the relative 749 behaviour of presence-background models (Phillips et al., 2006). We also considered the 750 Continuous Boyce Index (CBI; Hirzel et al., 2006), but using simulation analyses we found that 751 CBI was sensitive to the proportion of unsampled presences, while AUC was robust (Supporting 752 Information Text S2; Figure S1). Therefore, we only report the AUC in the main text (but 753 provide the CBI results in the Supporting Information Text S2).

754

755 **Predictors of SDM transferability**

756 We examined several factors based on characteristics of the SDMs and species that may be 757 related to model transferability in general, as well as characteristics related specifically to 758 biological invasions (Table 1). As a general predictor of transferability, we included the 759 discriminatory performance within the native range, based on mean AUC from 10-fold cross-760 validation. Additionally, we compared the mean AUC generated using 10-fold random cross-761 validation to spatial-block cross-validation (Supporting Information Text S3). Both techniques 762 were highly correlated with each other and had little overall difference in results, with a small 763 decline in performance with spatial-block cross-validation (Supporting Information Text S3; 764 Figure S2). Therefore, we reported the results using random cross-validation. We considered the
number of occurrences used to fit the model, as models with few sample points may lead to the species-environment relationships being poorly captured (Wisz et al., 2008). Stochasticity may also lead to poor predictive performance, particularly at low numbers (Yates et al., 2018), and thus we included the number of occurrences in the exotic range. To examine generalities within large geographic areas, we included the invaded continent as a categorical predictor. Multicontinental invasions were treated as a unique level within the factor.

771 We considered differences in transferability between taxonomic classes. The taxonomic 772 class of each species was obtained using the 'taxize' package in R (Chamberlain & Szöcs, 2013). 773 Relevant species traits, such as their dispersal ability (Miller & Holloway, 2015; Syphard & 774 Franklin, 2010), may directly influence species distributions and consequently the performance 775 of SDMs in a predictive context. We included the mobility of species in their adult life stage as a 776 binary predictor, where sessile species were assigned a value of 1 and species capable of 777 movement were given a value of 0. The levels of mobility were highly collinear with the 778 taxonomic class of the species and thus were assessed separately.

779 We examined the effects of ecological generalism on transferability (Brotons et al., 2004; 780 Zhang et al., 2015) using two environment-based predictors: environmental breadth and 781 environmental coverage (Supporting Information Text S4). We quantified the environmental 782 breadth and coverage of each native species distribution by projecting the occurrence cells, as 783 well as the background environment cells into a two-dimensional environment space using 784 principal component analysis (PCA; Pearson, 1901). The environmental breadth of a species was 785 defined as the area of the environment space encompassing the occurrences in the native range, 786 representing their specialization (Supporting Information Text S4). Environmental coverage was 787 calculated by dividing the environmental breadth of the projected occurrences by the

environmental breadth of all cells in the range (i.e. the occurrence and background cells
combined; Figure S3). We incorporated environmental coverage to estimate how much of the
available environment the species occupied, where a high environmental coverage may result in
an SDM that cannot distinguish between occurrences and background sites. We examined the
environmental breadth and coverage of species for both their native and exotic ranges.

793 We considered invasion specific factors in addition to the general predictors of 794 transferability (Table 1). We expected species to be farther from equilibrium, with lower 795 exposure (i.e. propagule pressure) and earlier in an invasion, resulting in distributions being 796 driven by other factors besides environmental constraints (Leung et al., 2012, Runquist et al., 797 2019). We used gross domestic product (GDP) as a proxy of propagule pressure, which is 798 strongly correlated with trade-related transport (Sardain et al., 2019). The GDP of the range was 799 calculated using the sum of all cells within its regions using a gridded GDP dataset (at 5-arcmin 800 resolution) provided by Kummu et al. (2018). We also included the year of first record within an 801 invaded range as a surrogate for time since invasion, using Seebens et al. (2017) first records 802 database, and supplemented with the earliest recorded GBIF presence associated with that 803 species and range (GBIF, 2020).

As transferability may be influenced by non-analogous conditions when extrapolating (Yates et al., 2018), we examined the dissimilarity between the native and exotic ranges using geographical and environmental distances as well as islands versus mainlands. We calculated geographic distances as the Haversine distance (in kilometres) between the centroids of the native and exotic ranges with background environment points included. We estimated the similarity between ranges using a multivariate environmental similarity surfaces (MESS; Elith et al., 2010). MES values measure the similarity of a given point to a set of reference points for

811 each environmental predictor, providing a continuous measure with positive values indicating 812 cells that are environmentally similar and negative values indicating cells that are dissimilar 813 (Elith et al., 2010). We calculated environmental similarity as the proportion of negative MES 814 values in the exotic range with the native range as reference sites and the environmental 815 predictors used to fit the SDMs, using the 'MESS' function from the 'modEvA' package 816 (Barbosa et al., 2013). For our analysis of islands, ranges were classified as island or mainland 817 based on whether all of its regions were contained within the global shoreline vector and islands 818 database by Sayre et al. (2018).

819 We included all predictors into a "transferability model" to examine the potential factors 820 that influence the predictive success of SDMs in the exotic range. We used the AUC value in the 821 exotic range as the response variable. The transferability model was generated as a linear mixed-822 effects model (LMM; Breslow & Clayton, 1993) using the 'lmer' function from the 'lme4' 823 package (Bates et al., 2015). We included species as a random effect factor, as species could 824 invade multiple disjoint ranges. Nominal variables use one level of the factor as the reference, 825 which we set as Mammalia and North America for taxonomic class and continent, respectively. 826 Continuous variables were scaled to a mean of zero and standard deviation of one to allow 827 comparability between fitted model parameters. Both native and exotic AUC values were logit-828 transformed, while the number of occurrences, environmental breadth and GDP were log-829 transformed (Table 1). None of the continuous or binary predictors were highly correlated with 830 each other (|r| < 0.7; Supporting Information Table S4). We excluded species-locations that did 831 not have available data for the factors, resulting in 648 species and 1918 species-location 832 combinations. The vast majority of species in the analyses were plants (Supporting Information 833 Table S2), comprising 591 of the 648 species and 4 of the 8 classes (Liliopsida, Magnoliopsida,

834 *Pinopsida*, and *Polypodiopsida*). Other classes were examined, consisting of 13 mammals

835 (*Mammalia*), 21 birds (*Aves*), 19 insects (*Insecta*) and 4 reptiles (*Reptilia*). We reported the R^2

following Nakagawa et al. (2017) for the mixed-effects models to provide the conditional (the

837 variance explained by both the fixed and random factors) and marginal (the variance explained

838 solely by the fixed factors) R^2 values.

839

840 **RESULTS**

841 Species distribution modelling performance

842 Both SDM approaches, GAM and MaxEnt, were able to accurately discriminate between

843 presences and background sites in the range used for fitting when tested using 10-fold cross-

validation (Figure 2). SDMs fitted using GAMs had a mean AUC of 0.809 (N = 648; standard

deviation (s) = 0.076) when predicting the native range. SDMs fitted using MaxEnt performed

better within the fitting (native) range with a mean AUC of 0.830 (N = 648; s = 0.070).

847 However, when extrapolated to one or more exotic ranges, a significant drop in model

848 performance was observed for both GAM and MaxEnt, with both model approaches performing

similarly (Figure 2). The extrapolated GAMs had a mean AUC of 0.686 (N = 1918; s = 0.124),

while MaxEnt models had a mean AUC of 0.689 (N = 1918; s = 0.122). Roughly half of model

extrapolations were poor, where 1078 (56.2%) and 1076 (56.1%) predicted exotic ranges had

AUC values below 0.7 for GAMs and MaxEnt, respectively. 229 (11.9%) and 228 (11.9%)

predictions had AUC values between 0.7 and 0.75, 227 (11.8%) and 222 (11.6%) predictions had

AUC values between 0.75 and 0.8, and 384 (20.0%) and 392 (20.4%) predictions had AUC

values greater than 0.8, for GAM and MaxEnt respectively.

856

857 **Predictors of model performance**

The transferability model, fitted using a linear mixed model had a marginal R^2 value of 0.224, 858 and a conditional R^2 value of 0.323 for GAMs. The transferability model fitted with MaxEnt had 859 a marginal R^2 value 0.236 and conditional R^2 value 0.291. Therefore, while the predictors 860 included in the model explained some of the variation associated with model transferability, a 861 862 considerable amount of unexplained variation remained. Of the 17 fixed effects used to 863 characterize model transferability, 11 predictors were significant for the transferability model 864 fitted for GAMs, and 9 were significant for the transferability model fitted for MaxEnt (Table 2; 865 Supporting Information Table S5, Table S6; Figure 3).

866 We found that higher discriminatory ability (AUC) in the native range was positively 867 related to AUC in the exotic range, as expected (Table 2; Figure 3). In contrast, the number of 868 occurrences used to fit the model did not significantly affect transferability, while the number of 869 occurrence points in the invaded range was positively related for GAMs but not significant with 870 MaxEnt models. Transferability varied geographically, with significant differences between 871 continents (Table 2; Figure 4). SDMs had worse discrimination in Asia, South America and 872 Africa. The United States, Australia and Mexico, which accounted for most of the recorded 873 invasions in the dataset, performed better than the average with mean AUC values greater than 874 0.7 (but less than 0.75; Supporting Information Table S7).

The transferability of the SDMs significantly differed between taxonomic classes for both GAMs and MaxEnt (Table 2; Table 3). Birds and mammals had the lowest discriminatory performance when predicting the invaded range. Birds had a mean AUC of 0.638 (s = 117; N =

878 58) and 0.661 (s = 0.114) for GAMs and MaxEnt, respectively, while Mammals had a mean 879 AUC of 0.639 (s = 0.112; N = 30) and 0.641 (s = 0.095). Insects showed better performance, 880 with mean AUC values of 0.673 (s = 0.117; N = 34) and 0.676 (s = 0.117). Plants, which 881 comprised 591 of the 648 species in the analyses, had an overall mean of 0.689 (s = 0.124; N =882 1790) and 0.690 (s = 0.122) across the four plant classes. Reptiles performed well with mean 883 AUC values of 0.816 (s = 0.155) and 0.738 (s = 0.187), however only 4 species were examined, 884 with 6 extrapolated species-locations. The mobility of the species was assessed separately from 885 class as they were highly collinear, and was not significant (Supporting Information Table S5). 886 Contrary to our hypothesis, SDMs for species with larger environmental breadths in their native 887 range performed better when extrapolating to new ranges (Table 2; Figure 3). Native 888 environmental coverage, however, did not significantly affect transferability. Conversely, SDMs 889 performed worse when species had a large environmental breadth and environmental coverage in 890 the exotic range.

891 The GDP of the exotic range did not significantly affect model transferability (Table 2; 892 Figure 3), while models fitted on native ranges with larger GDPs tended to perform worse, 893 contrary to our hypotheses. Also unexpectedly, the year of first record significantly affected 894 transferability, with newer species sightings leading to higher transferability in GAMs but not 895 MaxEnt models. Indeed, a *post-hoc* analysis examining relatively recent invasions (after the year 896 1970) in North America (which showed the highest transferability; Figure 4) resulted in a 897 respectable AUC for both GAMs (mean AUC = 0.799, s = 0.129, N = 33) and MaxEnt (mean 898 AUC = 0.792, s = 0.134), suggesting that strong transferability may be possible in some 899 circumstances.

900 Both GAMs and MaxEnt models tended to perform worse when extrapolated across 901 larger geographic distances, as predicted (Table 2; Figure 3). In contrast, the degree of 902 environmental similarity did not significantly correlate to the transferability of SDMs. On 903 average however, only 11.7% and 15.6% of sites across all exotic ranges showed negative MES 904 values for GAMs and MaxEnt, respectively, suggesting high environmental similarity between 905 ranges, and potentially insufficient differences to detect an effect. Finally, SDMs performed 906 substantially worse when attempting to predict the distribution of species on islands, as 907 predicted. Island invasions accounted for 387 out of the 1918 species-locations, with 383 of these 908 invasions by species originating from mainlands. Species originating from islands, however, did 909 not significantly affect model transferability, but these only consisted of 13 out of 648 species 910 and could simply reflect low power.

911

912 **DISCUSSION**

While many studies have used SDMs to forecast the distributions of exotic species (e.g. Shrestha 913 914 et al., 2014; Vicente et al., 2013), recent studies on transferability have cautioned the many 915 pitfalls associated with extrapolating SDMs to novel conditions (Sequeira et al., 2018; 916 Werkowska et al., 2017; Yates et al., 2018). Indeed, we found that the performance of the SDMs 917 in the exotic ranges showed a marked decline in discriminatory ability, with less than half of the 918 model predictions being considered acceptable (based on a 0.7 AUC threshold) despite a 919 relatively strong discriminatory performance in the native range (Morán-Ordóñez et al., 2017; 920 Swets, 1988). On the other hand, most successfully invaded ranges were similar to their native 921 ranges with few sites considered different on average (between 11 and 15 percent), based on 922 MES scores. This suggests predictability of invasions based broadly on environmental

923conditions, at least at a regional level. Additionally, from a more optimistic perspective, while924half the species failed in their SDM transferability, the other half maintained some925discriminatory ability (AUC > 0.7). Whether this is sufficient to justify using SDMs built in926native ranges to forecast species distributions in exotic ranges is equivocal. This highlights the927necessity to identify whether transferability of such ecological models may be improved, and928whether we can identify when models may be reliable (Yates et al., 2018). Ideally, such methods929would be based on widely available data.

930

931 **Predictors of transferability**

As expected, SDMs that were better able to predict their own range (native AUC) were more likely to succeed when extrapolating to new ranges (exotic AUC). The number of occurrences included in model fitting did not influence spatial transferability, while models performed better when predicting ranges with more occurrences. The latter supports our hypothesis that a larger number of occurrences in the exotic range may result in increased strength of validation, as low occurrence numbers may be more affected by stochasticity in which species do not occur in suitable habitats by chance (Yates et al., 2018).

Discrimination in the exotic ranges differed between taxonomic classes, suggesting that SDMs may be more reliable for some taxonomic groups over others, and may be linked by shared traits (Regos et al., 2019). In contrast, the mobility of the species did not significantly affect model transferability, however other traits more specific to the taxonomic groups may influence transferability and should be assessed in the future. For instance, model performance has been shown to differ between bird species based on traits related to biogeographic origin,

migratory status, and habitat preference (Regos et al., 2019). Other potential traits include
commonness, body size, dispersal ability and trophic position (Dobrowski et al., 2011; Soininen
& Luoto, 2014; Urban et al., 2016; Wogan, 2016).

Transferability also differed between invaded continents, suggesting that generalities can be made on whether models may be more reliable when extrapolating to certain areas of the world. For example, geographical biases have been observed in data availability (Yesson et al., 2007) and research focus (Pyšek et al., 2008), where some areas such as Africa may be poorly sampled resulting in worse transferability, while North America, with high sampling intensity, showed the strongest performance.

954 Several of our findings differed from our *a priori* expectations, suggesting other 955 processes were in play and requiring new hypotheses. While exotic environmental breadth and 956 coverage negatively influenced model transferability (as predicted; Brotons et al., 2004; Brotons 957 et al., 2007; Zhang et al., 2015), environmental breadth in the native range was positively related 958 to transferability (contrary to our hypothesis). As a potential explanation, the positive 959 relationship between native environmental breadth and SDM transferability may be due to a 960 censoring effect, wherein we only can analyze successful establishments. Smaller niche breadths 961 may result in better discrimination in the native range in general, but most of these specialists 962 may fail to establish at all in any exotic range (i.e., they would never enter the analysis). Species 963 with narrow environmental breadths that did establish may then represent species restricted by 964 other processes (e.g. biotic factors; Urban et al., 2016), that are released when invading a new 965 region and may therefore occur outside of its realized niche and be poorly predicted. This *post* 966 hoc hypothesis, however, requires further testing.

967 Also contrary to our initial hypotheses, we found that higher exposure led to poorer 968 model performance. We had expected that as species had greater opportunity to spread, exposure 969 should become less a limiting factor, thereby allowing environmental determinants to become 970 more important in shaping species distributions (Leung et al., 2012, Runquist et al., 2019). First, 971 using GDP as a proxy of propagule pressure (GDP should be positively related to the amount of 972 trade-related movement, and thus to propagule pressure; Sardain et al., 2019) we found a 973 negative relationship between GDP in the native range and SDM transferability, suggesting that 974 higher exposure may actually lead to poorer predictions. Second, species that had more recent 975 recorded arrivals also showed better spatial transferability, contradicting the prediction that 976 newer invaders would be less predictable (as these species may still be spreading and farther 977 from equilibrium with its environment; Václavík & Meentemeyer, 2011). One possibility is that 978 older invaders have evolved over time to diverge from the native range population (Mooney & 979 Cleland, 2001). However, the majority of invasions included in the study were observed after the 980 year 1900, and therefore evolution would have had to be rapid. Alternatively, species may first 981 establish in the most suitable habitats, as these should offer the highest probabilities of survival. 982 Instead of being stochastic events, driven primarily by exposure, early phases of invasion could 983 be driven by the interaction between propagule pressure and environmental suitability. With 984 increased exposure, species at higher population densities may begin to occupy less suitable sites 985 due to processes such as competition, resulting in poorer transferability (McLoughlin et al., 986 2010). From a management perspective, this could be important as it suggests that SDMs may be 987 able to predict "recent" invasions, despite being far from their equilibrium distribution.

Recent publications have highlighted the risk of extrapolating to non-analogous
conditions as models fitted on a truncated range of environmental data may fail to predict species

990 response beyond these limits (Sequeira et al., 2018; Yates et al., 2018). Consistent with this, 991 SDMs exhibited poorer discriminatory performance when extrapolated to more distance ranges. 992 Additionally, SDMs performed worse when extrapolating to islands, where environments often 993 differ (Vitousek, 1990), although other non-ecological factors could also be at play (for example, 994 poorer data quality on islands; Ficetola et al., 2014). While the environmental dissimilarity 995 between ranges did not influence model success, few sites were dissimilar between native and 996 exotic ranges for the climatic variables examined. Nonetheless, given the low discriminatory 997 performance on average in exotic ranges, the similarity between measured environmental 998 conditions was insufficient to confer high transferability.

999

1000 Limitations and future directions

1001 The SDMs in this study were generated using presence-only data, which is the most common approach due to the wide availability of occurrence records (Elith and Leathwick, 2009). SDMs 1002 1003 fitted using presence-only data do not provide absolute probabilities of occurrence, but rather 1004 only relative probabilities (Pearce & Boyce, 2006). Despite survey data representing a more 1005 rigorous sampling design, such data is less available for most species (Barbet-Massin et al., 1006 2012). Thus, presence-only SDMs will likely remain an essential part of ecological modelling. 1007 Although we found only low to moderate transferability, we acknowledge that we 1008 primarily focused on climate-based variables. Other drivers of species distributions have been 1009 suggested such as land use, ecosystem functional attributes and biotic factors (Arenas-Castro et 1010 al., 2018; Regos et al., 2019; Urban et al., 2016). Not surprisingly though, the majority of 1011 ecological models have been based on climatic predictors, given the challenges of implementing 1012 mechanistic predictors based on experimental data (Werkowska et al., 2017) and the greater

1013

availability of high resolution global climate data (e.g. Fick & Hijmans, 2017).

1014 We identified several factors that influenced spatial transferability, with the fixed effects 1015 explaining 22.4% of the variance associated with model performance. Of course, only a subset of 1016 possible predictors of transferability were assessed in this study, and given the relatively low 1017 average transferability of SDMs, identifying additional predictors to better understand the 1018 reliability is crucial (Yates et al., 2018). For example, functional trait-based approaches in 1019 ecology are becoming increasingly popular though data remains scarce, particularly for many 1020 rarer species (Majekova et al., 2016). Beyond the choice of predictors included in the model, 1021 SDM transferability may also be influenced by the quality of the dataset itself, which has seldom 1022 been examined as a source of failure (Datta et al., 2020). Other factors have been proposed when 1023 contrasting ranges as well, such as changes in environmental correlation structures (Werkowska 1024 et al., 2017) and biotic interactions (Urban et al., 2016). Much room exists for improvement in 1025 identifying what might make SDMs more transferable. If such factors were simultaneously based 1026 on widely available data, they could have a substantial effect in improving the usage of SDMs in 1027 exotic ranges.

1028

1029 Conclusion

Many studies have emphasized the need for proper validation of predictive models when
applying them to new ecological contexts. In this study, we provided the most extensive
assessment of spatial transferability to date, providing vital insights into the future use of SDMs
for predicting biological invasions. Caution is warranted, as half of the SDMs exhibited poor

- 1034 discriminatory performance in the exotic range. However, SDM performance was
- 1035 heterogeneous, and may be more reliable in areas with more data and for more recent invasions
- 1036 (e.g., invasions in North America after 1970). Identifying predictors of model transferability and
- 1037 improving the reliability of SDMs for biological invasions should be a priority.
- 1038

1039 **REFERENCES**

- Acker, J. G., & Leptoukh, G. (2007). Online analysis enhances use of NASA earth science data.
 Eos, Transactions American Geophysical Union, 88(2), 14-17.
- Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modeling.
 Ecology, 93(7), 1527-1539.
- Arenas-Castro, S., Gonçalves, J., Alves, P., Alcaraz-Segura, D., & Honrado, J. P. (2018).
 Assessing the multi-scale predictive ability of ecosystem functional attributes for species
 distribution modelling. *PLoS One*, 13(6), e0199292.
- Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences
 for species distribution models: how, where and how many?. *Methods in ecology and evolution*, 3(2), 327-338.
- Barbosa, A. M., Real, R., Muñoz, A. R., & Brown, J. A. (2013). New measures for assessing
 model equilibrium and prediction mismatch in species distribution models. *Diversity and Distributions*, 19(10), 1333–1338.
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models
 Using Ime4. *Journal of Statistical Software*, 67(1), 1-48.
- Beaumont, L. J., Gallagher, R. V., Thuiller, W., Downey, P. O., Leishman, M. R., & Hughes, L.
 (2009). Different climatic envelopes among invasive populations may lead to
 underestimations of current and future biological invasions. *Diversity and Distributions*,
 15(3), 409-420.

Bellard, C., Cassey, P., & Blackburn, T. M. (2016). Alien species as a driver of recent
extinctions. *Biology letters*, 12(2), 20150623.

1061 Bradshaw, C. J., Leroy, B., Bellard, C., Roiz, D., Albert, C., Fournier, A., ... & Courchamp, F.

- 1062 (2016). Massive yet grossly underestimated global costs of invasive insects. *Nature*1063 *communications*, 7(1), 1-8.
- Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in generalized linear mixed
 models. *Journal of the American Statistical Association*, 88(421), 9-25.
- Brotons, L., Thuiller, W., Araújo, M. B., & Hirzel, A. H. (2004). Presence-absence versus
 presence-only modelling methods for predicting bird habitat suitability. *Ecography*,
 27(4), 437-448.
- Brotons, L., Herrando, S., & Pla, M. (2007). Updating bird species distribution at large spatial
 scales: applications of habitat modelling to data from long-term monitoring programs. *Diversity and distributions*, 13(3), 276-288.
- Buja, A., Hastie, T., & Tibshirani, R. (1989). Linear smoothers and additive models. *The Annals of Statistics*, 17(2), 453-510.
- 1074 CABI (2020). *CABI Invasive Species Compendium*. Wallingford, UK: CAB International.
 1075 Retrieved from http://www.cabi.org/isc/
- 1076 Capinha, C., Leung, B., & Anastácio, P. (2011). Predicting worldwide invasiveness for four
 1077 major problematic decapods: an evaluation of using different calibration sets. *Ecography*,
 1078 34(3), 448-459.
- 1079 Chamberlain, S. A., & Szöcs, E. (2013). taxize: taxonomic search and retrieval in R.
 1080 *F1000Research*, 2.
- Datta, A., Schweiger, O., & Kühn, I. (2020). Origin of climatic data can determine the
 transferability of species distribution models. *NeoBiota*, 59, 61.
- 1083 Dobrowski, S. Z., Thorne, J. H., Greenberg, J. A., Safford, H. D., Mynsberge, A. R., Crimmins,
 1084 S. M., & Swanson, A. K. (2011). Modeling plant ranges over 75 years of climate change

- in California, USA: temporal transferability and species traits. *Ecological Monographs*,
 81(2), 241-257.
- Elith, J. (2017). Predicting distributions of invasive species. *Invasive species: Risk assessment and management*, 10(9781139019606.006).
- Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and
 prediction across space and time. *Annual review of ecology, evolution, and systematics*,
 40, 677-697.
- Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. *Methods in ecology and evolution*, 1(4), 330-342.
- Ficetola, G. F., Cagnetta, M., Padoa-Schioppa, E., Quas, A., Razzetti, E., Sindaco, R., &
 Bonardi, A. (2014). Sampling bias inverts ecogeographical relationships in island
 reptiles. *Global Ecology and Biogeography*, 23(11), 1303-1313.
- Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces
 for global land areas. *International journal of climatology*, 37(12), 4302-4315.
- 1099 Franklin, J. (2009). *Mapping species distributions: spatial inference and prediction*. Cambridge
 1100 University Press.
- GBIF (2020). Global Biodiversity Information Facility Occurrence Download. Retrieved from
 https://doi.org/10.15468/dl.g85fea
- Global Invasive Species Database (GISD) (2015). *The Global Invasive Species Database*.
 Retrieved from http://www.issg.org/database
- Global Administrative Areas (2018). GADM database of Global Administrative Areas, version
 3.6. Retrieved from https://gadm.org/data.html
- Goncalves, E., Herrera, We., Duarte, M., Bustamante, R. O., Lampo, M., Velasquez, G., ... &
 García-Rangel, S. (2014). Global invasion of *Lantana camara*: has the climatic niche
 been conserved across continents?. *PLoS One*, 9(10), e111468.

- Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple
 habitat models. *Ecology letters*, 8(9), 993-1009.
- Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver
 operating characteristic (ROC) curve. *Radiology*, 143(1), 29-36.
- 1114 Hastie, T. J. & Tibshirani R. J. (1990) Generalized Additive Models, Chapman and Hall/CRC.
- 1115 Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). Evaluating the ability of
- habitat suitability models to predict species presences. *Ecological modelling*, 199(2),
 1117 142-152.
- Jiménez-Valverde, A. (2012). Insights into the area under the receiver operating characteristic
 curve (AUC) as a discrimination measure in species distribution modelling. *Global Ecology and Biogeography*, 21(4), 498-507.
- Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C., ... & Barthlott, W. (2009). A
 global assessment of endemism and species richness across island and mainland regions. *Proceedings of the National Academy of Sciences*, 106(23), 9322-9327.
- Kummu, M., Taka, M., & Guillaume, J. H. (2018). Gridded global datasets for gross domestic
 product and Human Development Index over 1990–2015. *Scientific data*, 5, 180004.
- Leung, B., Roura-Pascual, N., Bacher, S., Heikkilä, J., Brotons, L., Burgman, M. A., ... & Sol, D.
 (2012). TEASIng apart alien species risk assessments: a framework for best practices. *Ecology Letters*, 15(12), 1475-1493.
- Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2007). AUC: a misleading measure of the
 performance of predictive distribution models. *Global ecology and Biogeography*, 17(2),
 1131 145-151.
- Lockwood, J. L., Cassey, P., & Blackburn, T. (2005). The role of propagule pressure in
 explaining species invasions. *Trends in ecology & evolution*, 20(5), 223-228.

1134 1135	Lozier, J. D., & Mills, N. J. (2011). Predicting the potential invasive range of light brown apple moth (<i>Epiphyas postvittana</i>) using biologically informed and correlative species
1136	distribution models. Biological Invasions, 13(10), 2409.
1137	Lunetta, R. S., Knight, J. F., Ediriwickrema, J., Lyon, J. G., & Worthy, L. D. (2006). Land-cover
1138	change detection using multi-temporal MODIS NDVI data. Remote sensing of
1139	environment, 105(2), 142-154.
1140	Majekova, M., Paal, T., Plowman, N. S., Bryndova, M., Kasari, L., Norberg, A., & Le
1141	Bagousse-Pinguet, Y. (2016). Evaluating functional diversity: missing trait data and the
1142	importance of species abundance structure and data transformation. <i>PloS one</i> , 11(2).
1143	McLoughlin, P. D., Morris, D. W., Fortin, D., Vander Wal, E., & Contasti, A. L. (2010).
1144	Considering ecological dynamics in resource selection functions. Journal of animal
1145	<i>ecology</i> , 79(1), 4-12.
1146	Merow, C., Smith, M. J., Edwards Jr, T. C., Guisan, A., McMahon, S. M., Normand, S., &
1147	Elith, J. (2014). What do we gain from simplicity versus complexity in species
1148	distribution models?. Ecography, 37(12), 1267-1281.
1149	Miller, J. A., & Holloway, P. (2015). Incorporating movement in species distribution models.
1150	Progress in Physical Geography, 39(6), 837-849.
1151	Mooney, H. A., & Cleland, E. E. (2001). The evolutionary impact of invasive species.
1152	Proceedings of the National Academy of Sciences, 98(10), 5446-5451.
1153	Morán-Ordóñez, A., Lahoz-Monfort, J. J., Elith, J., & Wintle, B. A. (2017). Evaluating 318
1154	continental-scale species distribution models over a 60-year prediction horizon: what
1155	factors influence the reliability of predictions?. Global Ecology and Biogeography, 26(3),
1156	371-384.
1157	Morlini, I. (2006). On multicollinearity and concurvity in some nonlinear multivariate models.
1158	Statistical Methods and Applications, 15(1), 3-26.
1159	Nakagawa, S., Johnson, P. C., & Schielzeth, H. (2017). The coefficient of determination R 2 and
1160	intra-class correlation coefficient from generalized linear mixed-effects models revisited
1161	and expanded. Journal of the Royal Society Interface, 14(134), 20170213.

- Pearce, J. L., & Boyce, M. S. (2006). Modelling distribution and abundance with presence-only
 data. *Journal of Applied Ecology*, 43(3), 405-412.
- Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 2(11),
 559-572.
- Peterson, A. T., Papes, M., & Kluza, D. A. (2003). Predicting the potential invasive distributions
 of four alien plant species in North America. *Weed Science*, 51(6), 863-868.
- Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C., & Guisan, A. (2012).
 Climatic niche shifts are rare among terrestrial plant invaders. *Science*, 335(6074), 13441348.
- Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C., & Guisan, A. (2017). Selecting
 predictors to maximize the transferability of species distribution models: lessons from
 cross-continental plant invasions. *Global Ecology and Biogeography*, 26(3), 275-287.
- Pettorelli, N., Ryan, S., Mueller, T., Bunnefeld, N., Jędrzejewska, B., Lima, M., & Kausrud, K.
 (2011). The Normalized Difference Vegetation Index (NDVI): unforeseen successes in
 animal ecology. *Climate research*, 46(1), 15-27.
- Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species
 geographic distributions. *Ecological modelling*, 190(3-4), 231-259.
- Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new
 extensions and a comprehensive evaluation. *Ecography*, 31(2), 161-175.
- Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S.
 (2009). Sample selection bias and presence-only distribution models: implications for
 background and pseudo-absence data. *Ecological applications*, 19(1), 181-197.
- Phillips, S. J. (2017). maxnet: Fitting 'Maxent' Species Distribution Models with 'glmnet'. R
 package version 0.1.2. Retrieved from https://CRAN.R-project.org/package=maxnet

- 1187 Pyšek, P., Richardson, D. M., Pergl, J., Jarošík, V., Sixtova, Z., & Weber, E. (2008).
- Geographical and taxonomic biases in invasion ecology. *Trends in ecology & evolution*,
 23(5), 237-244.
- 1190 R Core Team (2019). R: A language and environment for statistical computing. R Foundation for
 1191 Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/
- Regos, A., Gagne, L., Alcaraz-Segura, D., Honrado, J. P., & Domínguez, J. (2019). Effects of
 species traits and environmental predictors on performance and transferability of
 ecological niche models. *Scientific Reports*, 9(1), 1-14.
- Runquist, R. D. B., Lake, T., Tiffin, P., & Moeller, D. A. (2019). Species distribution models
 throughout the invasion history of Palmer amaranth predict regions at risk of future
 invasion and reveal challenges with modeling rapidly shifting geographic ranges. *Scientific reports*, 9(1), 1-12.
- Sardain, A., Sardain, E., & Leung, B. (2019). Global forecasts of shipping traffic and biological
 invasions to 2050. *Nature Sustainability*, 2(4), 274-282.
- Sayre, R., Noble, S., Hamann, S., Smith, R., Wright, D., Breyer, S., ... & Hopkins, D. (2018). A
 new 30 meter resolution global shoreline vector and associated global islands database
 for the development of standardized ecological coastal units. *Journal of Operational Oceanography*, 12(sup2), S47-S56.
- Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., ... &
 Bacher, S. (2017). No saturation in the accumulation of alien species worldwide. *Nature communications*, 8(1), 1-9.
- Sequeira, A. M., Bouchet, P. J., Yates, K. L., Mengersen, K., & Caley, M. J. (2018). Transferring
 biodiversity models for conservation: opportunities and challenges. *Methods in Ecology and Evolution*, 9(5), 1250-1264.
- Shrestha, U. B., & Bawa, K. S. (2014). Impact of climate change on potential distribution of
 Chinese caterpillar fungus (*Ophiocordyceps sinensis*) in Nepal Himalaya. *PLoS one*, 9(9).

- Sofaer, H. R., Jarnevich, C. S., & Flather, C. H. (2018). Misleading prioritizations from
 modelling range shifts under climate change. *Global ecology and biogeography*, 27(6),
 658-666.
- Soininen, J., & Luoto, M. (2014). Predictability in species distributions: a global analysis across
 organisms and ecosystems. *Global ecology and biogeography*, 23(11), 1264-1274.
- Spatz, D. R., Zilliacus, K. M., Holmes, N. D., Butchart, S. H., Genovesi, P., Ceballos, G., ... &
 Croll, D. A. (2017). Globally threatened vertebrates on islands with invasive species. *Science Advances*, 3(10), e1603080.
- Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. *Science*, 240(4857), 12851222 1293.
- Syphard, A. D., & Franklin, J. (2010). Species traits affect the performance of species
 distribution models for plants in southern California. *Journal of Vegetation Science*,
 21(1), 177-189.
- Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J. B., Pe'er, G., Singer, A., ... & Gonzalez, A.
 (2016). Improving the forecast for biodiversity under climate change. *Science*, 353(6304),
 aad8466.
- 1229 Václavík, T., & Meentemeyer, R. K. (2011). Equilibrium or not? Modelling potential distribution
 1230 of invasive species in different stages of invasion. *Diversity and Distributions*, 18(1), 731231 83.

Vicente, J. R., Fernandes, R. F., Randin, C. F., Broennimann, O., Gonçalves, J., Marcos, B., ... &
Honrado, J. P. (2013). Will climate change drive alien invasive plants into areas of high
protection value? An improved model-based regional assessment to prioritise the

- 1235 management of invasions. *Journal of environmental management*, 131, 185-195.
- Vitousek, P. M. (1990). Biological invasions and ecosystem processes: towards an integration of
 population biology and ecosystem studies. In *Ecosystem management* (pp. 183-191).
 Springer, New York, NY.

- Wang, Q., Punchi-Manage, R., Lu, Z., Franklin, S. B., Wang, Z., Li, Y., ... & Xu, Y. (2017).
 Effects of topography on structuring species assemblages in a subtropical forest. *Journal of Plant Ecology*, 10(3), 440-449.
- Wen, L., Saintilan, N., Yang, X., Hunter, S., & Mawer, D. (2015). MODIS NDVI based metrics
 improve habitat suitability modelling in fragmented patchy floodplains. *Remote Sensing Applications: Society and Environment*, 1, 85-97.
- Werkowska, W., Márquez, A. L., Real, R., & Acevedo, P. (2017). A practical overview of
 transferability in species distribution modeling. *Environmental reviews*, 25(1), 127-133.
- 1247 Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS
- 1248Predicting Species Distributions Working Group. (2008). Effects of sample size on the1249performance of species distribution models. *Diversity and distributions*, 14(5), 763-773.
- Wogan, G. O. (2016). Life history traits and niche instability impact accuracy and temporal
 transferability for historically calibrated distribution models of North American birds.
 PLoS One, 11(3).
- Wood, S. N. (2017). *Generalized additive models: an introduction with R*. Chapman and
 Hall/CRC.
- Yates, K. L., Bouchet, P. J., Caley, M. J., Mengersen, K., Randin, C. F., Parnell, S., ... &
 Dormann, C. F. (2018). Outstanding challenges in the transferability of ecological
 models. Trends in ecology & evolution, 33(10), 790-802.
- Yesson, C., Brewer, P. W., Sutton, T., Caithness, N., Pahwa, J. S., Burgess, M., ... & Culham, A.
 (2007). How global is the global biodiversity information facility? *PloS one*, 2(11),
 e1124.
- Zhang, L., Liu, S., Sun, P., Wang, T., Wang, G., Zhang, X., & Wang, L. (2015). Consensus
 forecasting of species distributions: The effects of niche model performance and niche
 properties. *PLoS One*, 10(3), e0120056.
- Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., ... &
 Svantesson, S. (2019). CoordinateCleaner: Standardized cleaning of occurrence records
 from biological collection databases. *Methods in Ecology and Evolution*, 10(5), 744-751.

1267 DATA AVAILABILITY STATEMENT

- 1268 Species records are available through GBIF (https://www.gbif.org/), with DOIs for occurrences
- and background sites provided in Supporting Information Text S1 and Table S3, respectively.
- 1270 Distributional data for invasive species are available through GISD
- 1271 (http://www.iucngisd.org/gisd/) and CABI Invasive Species Compendium
- 1272 (https://www.cabi.org/ISC). GADM ESRI shapefiles for global subdivisions are available from
- 1273 http://gadm.org/. Global shoreline vector for islands are available from Sayre et al., 2018
- 1274 (https://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/). Bioclimatic and elevation data are
- 1275 available through WorldClim v2 (https://www.worldclim.org/). MODIS NDVI data was
- 1276 accessed through NASA GES DISC (https://giovanni.gsfc.nasa.gov/giovanni/). First records data
- 1277 for invasive species was provided by Seebens et al., 2017's Alien Species First Records data set
- 1278 (https://zenodo.org/record/3690742#.X3uheu17mUk/). Gridded GDP dataset are available
- 1279 through Kummu et al., 2018 (https://datadryad.org/stash/dataset/doi:10.5061/dryad.dk1j0).

TABLES

Table 1. Full list of variables and acronyms used to predict the transferability of SDMs, with a description of how the factors were generated. Rationale for why each factor may influenceSDM transferability is provided for each factor, with sources. Variables marked with an asterisk (*) denote factors generated for both the native and exotic ranges.

Variable (acronym)	Description	Rationale				
Native AUC (NAUC)	Performance of the SDM on its own range measured as AUC, using 10-fold cross-validation. Logit- transformed.	Models that fail to characterize its own range are likely to fail when extrapolating to new environments (Morán-Ordóñez et al., 2017).				
Number of occurrences (NOCC; EOCC)*	Number of occurrences used to fit or validate the model. Multiple occurrences found in a single cell were counted as a single occurrence. Log-transformed.	Ranges with small sample sizes may fail to capture complex ecological relationships and be prone to stochasticity, leading to increased parameter uncertainty and unstable results (Wisz et al., 2008; Yates et al., 2018).				
Continent (CONT)	Nominal variable of the invaded continent. Multi- continental invasions were treated as their own level.	Generalities in environmental conditions and biotic composition within large regional areas, as well as differences in quality of invasive species records and biodiversity information (Pyšek et al., 2008) may affect SDM transferability.				
Taxonomic class (CLASS)	Nominal variable of the species' taxonomic class.	SDM transferability may differ between groups of species, or their habitat, that may share similar characteristics (Regos et al., 2019).				
Sessile (SESS)	Binary variable on whether the species is sessile (1) or mobile (0)	Species traits such as the behaviour and movement of species may affect our ability to accurately records species occurrences, and influence the dispersal ability of species to reach all available sites (Syphard & Franklin, 2010; Miller & Holloway, 2015).				
Environmental breadth (NEB; EEB)*	Convex hull area of occurrence points projected into environmental PCA space. Log-transformed.	Generalist species may not be restricted by the environmental factors considered in the SDM, and result in poor transferability (Brotons et al., 2004; Zhang et al., 2015).				
Environmental coverage (NEC; EEC)*	Proportion of total environmental space of the background sites and occurrences occupied by only the occurrences.	A large environmental coverage may lead to SDMs being unable to distinguish between presences and their background environment (Brotons et al., 2004; Zhang et al., 2015).				
Gross domestic product (NGDP; EGDP)*	Sum of the GDP of all defined regions in the range. Log-transformed.	Increased propagule pressure (e.g. through trade) may lead to increased dispersal to all suitable locations for a given range ('exposure'), resulting in species closer to equilibrium with their environment (Lockwood et al., 2005; Leung et al., 2012).				
Year of first record (YEAR)	Earliest recorded occurrence of the species within the defined invaded range.	Newer invaders may still be spreading, and not yet reached all suitable habitats, violating assumptions of equilibrium (Runquist et al., 2019).				
Geographic distance between ranges (DIST)	Haversine distance (in km) between the centroids of the native and exotic ranges, including background environment.	Species may experience new environmental conditions or community compositions outside of the range in the fitting data leading to unpredictable responses (Werkowska et al., 2017; Yates et al., 2018).				
Environmental similarity between ranges (ESIM)	Proportion of negative MES values in the exotic range with the native range as reference sites.					
Island (NISL; EISL)*	Binary predictor on whether all occurrences were found on an island (1) or not (0). Native and exotic.	Ecological characteristics of islands differ significantly from the mainland - higher endemism, lower species richness and restricted distributions - and may greatly affect species distribution (Kier et al., 2009).				

Table 2. Estimated model parameters, with standard error, *t*-value and *P*-values of the fixed

effects for the linear mixed model fitted using the full dataset for GAMs and MaxEnt with

taxonomic class as a categorical predictor.

	GAM				MaxEnt			
Variable	Estimate	Std. error	<i>t</i> -statistic	<i>P</i> -value	Estimate	Std. error	<i>t</i> -statistic	<i>P</i> -value
Native AUC (NAUC)*	0.089	0.019	4.592	< 0.001	0.058	0.018	3.237	0.001
Native number of occurrences (NOCC)	-0.028	0.026	-1.051	0.295	-0.001	0.024	-0.055	0.956
Exotic number of occurrences (EOCC) ^G	0.047	0.022	2.097	0.036	0.036	0.022	1.627	0.105
Continent (CONT)*	-	-	-	< 0.001	-	-	-	< 0.001
Taxonomic class (CLASS)*	-	-	-	0.017	-	-	-	0.010
Native environmental breadth (NEB)*	0.153	0.028	5.492	< 0.001	0.182	0.027	6.632	< 0.001
Exotic environmental breadth (EEB)*	-0.108	0.032	-3.414	< 0.001	-0.121	0.032	-3.835	< 0.001
Native environmental coverage (NEC)	0.011	0.027	0.419	0.677	-0.012	0.025	-0.484	0.629
Exotic environmental coverage (EEC)*	-0.153	0.027	-5.670	< 0.001	-0.142	0.027	-5.284	< 0.001
Native GDP (NGDP)*	-0.074	0.025	-2.975	0.003	-0.056	0.023	-2.435	0.015
Exotic GDP (EGDP)	0.059	0.034	1.741	0.082	0.058	0.034	1.726	0.084
Year of first records (YEAR) ^G	0.035	0.016	2.146	0.032	0.020	0.016	1.258	0.209
Geographic distance (DIST)*	-0.055	0.018	-3.006	0.003	-0.057	0.018	-3.123	0.002
Environmental similarity (ESIM)	0.023	0.018	1.257	0.211	0.013	0.019	0.656	0.513
Native island (NISL)	-0.035	0.137	-0.258	0.797	0.032	0.127	0.252	0.801
Exotic island (EISL)*	-0.270	0.056	-4.862	< 0.001	-0.302	0.056	-5.441	< 0.001

* Denotes factors significant for both GAM and MaxEnt

^G Denotes factors significant for only GAM

Table 3. Mean performance of the species distribution models divided between taxonomic

groups, measured as area under the receiver operating characteristic curve (AUC), in both the

	Native					Exotic					
		GAM		MaxEnt			GAM		MaxEnt		
Taxa	Ν	AUC	Std. dev.	AUC	Std. dev.	Ν	AUC	Std. dev.	AUC	Std. dev.	
Aves	21	0.751	0.080	0.772	0.080	58	0.638	0.117	0.661	0.114	
Mammalia	13	0.761	0.110	0.774	0.107	30	0.639	0.112	0.641	0.095	
Insecta	19	0.777	0.072	0.799	0.048	34	0.673	0.117	0.676	0.117	
Plants	591	0.814	0.074	0.834	0.068	1790	0.689	0.124	0.690	0.122	
Pinopsida	5	0.907	0.075	0.921	0.059	9	0.674	0.180	0.696	0.144	
Liliopsida	161	0.819	0.070	0.836	0.063	465	0.685	0.123	0.686	0.120	
Magnoliopsida	416	0.810	0.075	0.832	0.069	1301	0.689	0.123	0.691	0.123	
Polypodiopsida	9	0.825	0.038	0.858	0.035	15	0.760	0.162	0.794	0.119	
Reptilia	4	0.792	0.087	0.804	0.095	6	0.816	0.155	0.738	0.187	
TOTAL	648	0.809	0.076	0.830	0.070	1918	0.686	0.124	0.689	0.122	

native (fitting) range and the extrapolated (validation) range.

FIGURES

Figure 2. Density histogram of the performance of GAMs (a) and MaxEnt (b) measured as area under the receiver operating characteristic curve (AUC) when predicting the native range, or fitting dataset (blue), using 10-fold cross-validation and when extrapolating to the exotic range, or validation dataset (red).

Figure 3. Dot-whisker plot of the parameter estimates for the binary and continuous predictors included in the linear mixed model for GAM (black) and MaxEnt (orange), with taxonomic class and continent as categorical predictors. Whiskers represent the 95 percent confidence intervals of the parameter estimates.

Figure 4. Map of the mean discriminatory performance (area under the receiver operating characteristic curve; AUC) of the extrapolated models using (a) GAM and (b) MaxEnt. Regions marked with an asterisk (*) represent areas that were invaded by fewer than three species.

GENERAL CONCLUSION

SDMs remain one of the most valuable mathematical tools in ecology for addressing large-scale questions in global change and biodiversity. While the potential uses of SDMs continue to be explored, further caution is warranted given the various potential causes for concern as models are used to predict novel environments (Sequeira et al., 2018; Werkowska et al., 2017; Yates et al., 2018). While several studies have assessed the spatial transferability of SDMs (e.g. Goncalves et al., 2014; Petitpierre et al., 2012), many of these studies have been restricted to a limited number of species, taxonomic groups or regions and have resulted in a lack of consensus. A strong focus has been placed on improving model predictions across new contexts, and identifying which models may be transferable prior to their extrapolation (Yates et al., 2018). Therefore, a large-scale systematic analysis of SDM transferability is needed to understand to what degree such models are currently transferable, and under what conditions they may succeed.

In this thesis, I demonstrated that despite a strong model performance in the native (fitting) range, more than half of the models showed poor spatial transferability in the exotic range. The SDMs were implemented using presence-only data and climate-based abiotic variables, which has become the most common approach given their wide availability and potential for global application (Elith and Leathwick, 2009). Response variables with greater biological information, such as abundance or presence-absence data, as well as more mechanistic or ecologically relevant predictors, may confer better transferability (Yates et al., 2018). However, the collection of such data is often challenging, requiring rigorous sampling design (Elith and Leathwick, 2009), and are therefore constrained by their limited availability relative to the easily accessible presence-only databases (e.g. GBIF, 2020) and high resolution global

climate information (e.g. Fick & Hijmans, 2017). Thus, caution is warranted when using SDMs to make predictions across spatial landscapes, particularly through these popular approaches.

While model performances were overall poor, I demonstrated that transferability was significantly influenced by several factors, including the number of occurrences in the exotic range, the taxonomic class and the invaded continent. Several studies have cautioned against extrapolating beyond the conditions used to fit the models, as SDMs may fail to capture these unobserved species-environment relationships (Werkowska et al., 2017; Yates et al., 2018). Environmental conditions did not differ considerably between the native and exotic ranges, with respect to the climatic variables used to fit the SDMs. Despite these differences, I observed poorer model performance across greater geographic distances and when extrapolating to islands, suggesting that other differences may exist between ranges beyond the climatic predictors, or that the species-environment relationship had changed between ranges ("nice shift"; Tingley et al., 2014). The impacts of invasive species on biodiversity loss are particularly more severe on islands globally (Spatz et al., 2017), highlighting concerns for the prediction of invaders using ecological models as a management tool.

Several predictors were contrary to their hypothesized direction, which requires further exploration. Contrary to other studies (Brotons et al., 2004; Brotons et al., 2007; Zhang et al., 2015), I found that SDMs tended to perform better with larger environmental breadths. Additionally, I found that higher exposure (the opportunity to reach suitable habitats) led to poorer model performance, where models performed better for more recent invasions and high GDP in the native range (relating to greater trade and thus greater propagule pressure). This is contrary to the assumption that species closer to equilibrium with their environment are more

predictable (Václavík & Meentemeyer, 2011), however this result provides a silver lining as more recent invasions that are often of more concern to managers may be predictable.

Further examination of additional predictors should be considered, as this thesis considered only a subset of potential factors. The mobility of species did not significantly affect transferability, however given that taxonomic class was significant, other taxa-specific biological predictors may influence transferability, such as biotic interaction and dispersal ability (Urban et al., 2016), biogeography and habitat preference (Regos et al., 2019), as well as body size (Soininen & Luoto, 2014). Other functional trait-based approaches may be predictive, however such data are limited in their availability (Majekova et al., 2016). Changes in environmental correlation structures between ranges may also provide further insights on why the SDMs failed (Werkowska et al., 2017), particularly given that environmental values did not generally differ.

REFERENCES

- Brotons, L., Thuiller, W., Araújo, M. B., & Hirzel, A. H. (2004). Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. *Ecography*, 27(4), 437-448.
- Brotons, L., Herrando, S., & Pla, M. (2007). Updating bird species distribution at large spatial scales: applications of habitat modelling to data from long-term monitoring programs. *Diversity and distributions*, 13(3), 276-288.
- Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. *Annual review of ecology, evolution, and systematics*, 40, 677-697.
- Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. *International journal of climatology*, 37(12), 4302-4315.

GBIF (2020). Global Biodiversity Information Facility. Available from https://www.gbif.org/

- Goncalves, E., Herrera, We., Duarte, M., Bustamante, R. O., Lampo, M., Velasquez, G., ... & García-Rangel, S. (2014). Global invasion of *Lantana camara*: has the climatic niche been conserved across continents?. *PLoS One*, 9(10), e111468.
- Majekova, M., Paal, T., Plowman, N. S., Bryndova, M., Kasari, L., Norberg, A., ... & Le Bagousse-Pinguet, Y. (2016). Evaluating functional diversity: missing trait data and the importance of species abundance structure and data transformation. *PloS one*, 11(2).
- Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C., & Guisan, A. (2012). Climatic niche shifts are rare among terrestrial plant invaders. *Science*, 335(6074), 1344-1348.
- Regos, A., Gagne, L., Alcaraz-Segura, D., Honrado, J. P., & Domínguez, J. (2019). Effects of species traits and environmental predictors on performance and transferability of ecological niche models. *Scientific Reports*, 9(1), 1-14.
- Sequeira, A. M., Bouchet, P. J., Yates, K. L., Mengersen, K., & Caley, M. J. (2018). Transferring biodiversity models for conservation: opportunities and challenges. *Methods in Ecology* and Evolution, 9(5), 1250-1264.
- Soininen, J., & Luoto, M. (2014). Predictability in species distributions: a global analysis across organisms and ecosystems. *Global ecology and biogeography*, 23(11), 1264-1274.
- Spatz, D. R., Zilliacus, K. M., Holmes, N. D., Butchart, S. H., Genovesi, P., Ceballos, G., ... & Croll, D. A. (2017). Globally threatened vertebrates on islands with invasive species. *Science Advances*, 3(10), e1603080.
- Tingley, R., Vallinoto, M., Sequeira, F., & Kearney, M. R. (2014). Realized niche shift during a global biological invasion. *Proceedings of the National Academy of Sciences*, 111(28), 10233-10238.
- Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J. B., Pe'er, G., Singer, A., ... & Gonzalez, A. (2016). Improving the forecast for biodiversity under climate change. *Science*, 353(6304), aad8466.

- Václavík, T., & Meentemeyer, R. K. (2011). Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. *Diversity and Distributions*, 18(1), 73-83.
- Werkowska, W., Márquez, A. L., Real, R., & Acevedo, P. (2017). A practical overview of transferability in species distribution modeling. *Environmental reviews*, 25(1), 127-133.
- Yates, K. L., Bouchet, P. J., Caley, M. J., Mengersen, K., Randin, C. F., Parnell, S., ... & Dormann, C. F. (2018). Outstanding challenges in the transferability of ecological models. Trends in ecology & evolution, 33(10), 790-802.
- Zhang, L., Liu, S., Sun, P., Wang, T., Wang, G., Zhang, X., & Wang, L. (2015). Consensus forecasting of species distributions: The effects of niche model performance and niche properties. *PLoS One*, 10(3), e0120056.

SUPPORTING INFORMATION

Text S1. Full list of the GBIF DOIs for the occurrence records used in the analyses, prior to filtering the data.

https://doi.org/10.15468/dl.g85fea https://doi.org/10.15468/dl.m5ym58 https://doi.org/10.15468/dl.ujb33g https://doi.org/10.15468/dl.k57nmd https://doi.org/10.15468/dl.fmmw5u https://doi.org/10.15468/dl.nrskxc https://doi.org/10.15468/dl.s4atgj https://doi.org/10.15468/dl.rs4mz5 https://doi.org/10.15468/dl.xvgpsn https://doi.org/10.15468/dl.qvnt2u https://doi.org/10.15468/dl.fjfeb2 https://doi.org/10.15468/dl.7f22vx https://doi.org/10.15468/dl.vcdyuy https://doi.org/10.15468/dl.bby79p https://doi.org/10.15468/dl.n6vt57 https://doi.org/10.15468/dl.qkpvf4

REFERENCES

GBIF (2020). Global Biodiversity Information Facility Occurrence Download. Retrieved from https://www.gbif.org/ **Text S2.** Examination of the Continuous Boyce index (CBI) as an alternative measure of model transferability.

Several criticisms have been raised against the use of AUC as a measure of model performance (Jiménez-Valverde, 2012; Lobo et al., 2007), and that a weakness of AUC is the equal weighting of omission and commission errors. Another limitation is that AUC only provides a measure of relative probability - that is, the focus of AUC is on discrimination rather than calibration. However, we argue that this is the appropriate limit to inferences for presence-only data, because we do not know how many presences are unobserved; we only know the relative probability of occurrence in comparison with other locations.

The Continuous Boyce Index (CBI) has been commonly used as an alternative measure of SDM performance in place of AUC for presence-only modelling, as it relies solely on species presences (Hirzel et al., 2006). The Boyce index compares the model's predicted suitability of presence locations to the overall predictions of suitable areas (Boyce et al., 2002). CBI values range between -1 and 1, with positive values indicating predicted suitability consistent with species occurrences, negative values indicating low predicted suitability at sites with presences. Values that are near 0 indicate predicted suitability consistent with a random model.

One of the central issues of presence-only data is imperfect detection, where a potentially large fraction of occurrences may be unobserved (Fithian et al., 2014). Further, this is particularly important in extrapolating to new locations, where the fraction of observed presences may differ between ranges. Thus, a metric that is robust to this confounding factor would be preferable in the context of presence-only data.
We conducted theoretical analyses to test the sensitivity of the metric to the fraction of unobserved occurrences using simulations. We modeled an underlying functional relationship to generate occurrence probabilities using a simple logistic equation, serially reducing the fraction of occurrences observed at five percent intervals (i.e., simulating presence-only data), and randomly choosing 10,000 background points to fit the SDM. We generated GAMs at each fraction using the sampled species occurrences and background sites, with AUC and CBI values generated from the fitted values. We repeated the process 50 times, generating a new environment and species occurrence each time, and took the mean and standard deviation of AUC and CBI values. We calculated the CBI value using the 'ecospat.boyce' function from the 'ecospat' R package (Di Cola et al., 2017).

We found that AUC was robust to the fraction of unobserved occurrences, while CBI was sensitive to this proportion (Figure S1). The mean CBI values at 95 percent sampled had a mean value of 0.976 (standard deviation s = 0.025), and decreased as the proportion of sampled presences decreased to a mean of 0.726 (s = 0.119). Conversely, AUC remained consistent as the proportion decreased, with variance increasing marginally at very low proportions, with a mean AUC of 0.870 (s = 0.004) and 0.873 (s = 0.016) for 95 percent and 5 percent sampled presences, respectively. Therefore, we believe that AUC was preferable for our study, and applied it as the main measure of model transferability.

Nonetheless, we include the CBI analysis in the Supplementary Material, examining model transferability. Using 10-fold cross-validation, we obtained a mean CBI of 0.826 (standard deviation s = 0.122; N = 648) for GAMs, and mean CBI of 0.853 (s = 0.145) for MaxEnt models in the native range. When extrapolating to the exotic ranges, we observed a

decline in performance, with a mean CBI of 0.356 (s = 0.561; N = 1918) for GAMs and mean CBI of 0.360 (s = 0.543) for MaxEnt models.

REFERENCES

- Boyce, M. S., Vernier, P. R., Nielsen, S. E., & Schmiegelow, F. K. (2002). Evaluating resource selection functions. *Ecological modelling*, 157(2-3), 281-300.
- Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., d'Amen, M., Randin, C., ... & Guisan, A. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. *Ecography*, 40(6), 774-787.
- Fithian, W., Elith, J., Hastie, T., & Keith, D. A. (2015). Bias correction in species distribution models: pooling survey and collection data for multiple species. *Methods in ecology and evolution*, 6(4), 424-438.
- Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. *Ecological modelling*, 199(2), 142-152.
- Jiménez-Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. *Global Ecology and Biogeography*, 21(4), 498-507.
- Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2007). AUC: a misleading measure of the performance of predictive distribution models. *Global Ecology and Biogeography*, 17(2), 145-151.

Text S3. Comparison of random cross-validation and spatial-block cross-validation within the native fitting range

We examined the discriminatory performance within the native range calculated using the mean AUC from 5-fold spatial-block cross-validation (Fithian et al., 2015) in comparison with random partitioning. Spatial-block cross-validation is the technique of splitting the study side into a checkerboard, whose blocks (which include presences and background sites) that are then randomly assigned to folds. Therefore, spatial-block cross-validation has been suggested as a better reflection of potential SDM transferability than random partitioning, which may lack spatial independence due to spatial autocorrelation (Bahn & McGill, 2013). We generated the folds using the 'blockCV' package (Valavi et al., 2019), with a block size of 200×200 km² or 100×100 km² in cases of more spatially aggregated occurrences (that is, cases where 200-km blocks resulted in folds containing 0 occurrences, or more than half of the occurrences).

Mean native range AUC values generated using spatial-block cross-validation were highly correlated with random paritioning (r = 0.958 for GAM; r = 0.946 for MaxEnt), with little difference in terms of overall model discriminatory performance (Figure S2). SDMs generated using GAMs had a mean AUC of 0.786 (s = 0.081; N = 648) using spatial-block cross-validation, compared to a mean AUC of 0.809 (s = 0.076) using random partitioning, while SDMs fitted using MaxEnt had a mean AUC of 0.810 (s = 0.078) compared to 0.830 (s = 0.070). The transferability models with native range AUC calculated using spatial-block instead of random partitioning as a predictor did not significantly differ in terms of parameter estimate direction and magnitude, as well as overall variance explained (marginal R^2 of 0.226 and 0.237 for GAM and MaxEnt respectively, and a conditional R^2 of 0.323 and 0.292; Nakagawa et al., 2017).

75

REFERENCES

- Bahn, V., & McGill, B. J. (2013). Testing the predictive performance of distribution models. *Oikos*, 122(3), 321-331.
- Fithian, W., Elith, J., Hastie, T., & Keith, D. A. (2015). Bias correction in species distribution models: pooling survey and collection data for multiple species. *Methods in ecology and evolution*, 6(4), 424-438.
- Nakagawa, S., Johnson, P. C., & Schielzeth, H. (2017). The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. *Journal of the Royal Society Interface*, 14(134), 20170213.
- Valavi, R., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. (2019). block CV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. *Methods in Ecology and Evolution*, 10(2), 225-232.

Text S4. Description on the methodology used to generate environmental breadth and environmental coverage of a species.

To generate the measure of environmental breadth and environmental coverage, we first generated a 2-dimensional environment space using the first two axes of a principal component analysis (PCA; Pearson, 1901) with the 9 environmental predictors included in the SDM fitting using 10 000 global reference points (PC1 = 37.969 % deviance explained; PC2 = 23.753 % deviance explained). We then projected the occurrence and background environment cells into this defined two-dimensional environmental space and drew convex hulls around the points (Supporting Information Figure S3). Projecting the species occurrences into a previously defined environment space allowed comparison between species when considering their environmental breadth and coverage. We measured the environmental breadth of a species as the area of the polygon generated by the convex hull around the occurrences in environment space. Environmental coverage was generated as the environmental breadth of a species divided by the environmental breadth of all cells (i.e. the background environmental cells and the occurrence cells).

REFERENCES

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572.

SUPPLEMENTARY TABLES

Table S1. Description of the data sources used in the analyses, for both the species distribution

modelling and the predictors of transferability.

Datum	Description	Source
Occurrence and distribution data		
Species sightings	Records of species presences (1) or as background environment using target-group background sites (0)	Global Biodiversity Information Facility (GBIF, 2020)
Range information	Distributional information of species at the country-level, classifying species within a region as native or exotic.	CABI Invasive Species Compendium (CABI, 2020); IUCN Global Invasive Species Database (GISD, 2015)
Country subdivisions	Administrative areas of all countries at level 1 (province/state/equivalent), with contiguous subdivisions within countries sharing a land border combined to form a region.	Global Administrative Areas, version 3.6 (GADM, 2018)
Environmental variables		
Bioclimatic variables Elevation	19 bioclimatic variables reduced to 7 uncorrelated variables at 2.5-arcmin resolution (bio1 = annual mean temperature, bio2 = mean of monthly maximum and minimum temperatures, bio7 = temperature annual range, bio12 = annual precipitation, bio14 = precipitation of the driest month, bio15 = precipitation seasonality, bio19 = precipitation of the coldest quarter) Derived from STRM elevation data; 2.5 arcmin preclution	WorldClim version 2 (Fick & Hijmans, 2017)
Vegetation	Normalized Difference Vegetation Index, NDVI, at 0.05-degree, or 3- arcmin resolution	MODIS NDVI through the NASA Goddard Earth Sciences Data and Information Services Center (GES
		DISC; Acker and Leptoukh, 2007)
Predictors of transferability		
Class	Taxonomic class of the species	'taxize' package in R (Chamberlain & Szöcs, 2013)
Islands	Binary value indicating whether administrative region is an island (1) or not (0)	Global shoreline vector and islands dataset (Sayre et al., 2018)
Year of first record	Earliest record of non-indigenous species within the invaded range	Alien Species First Records version 1.2 (Seebens et al., 2017); Global Biodiversity Information Facility (GBIF, 2020)
Gross domestic product	Sum of gridded cells of gross domestic product, GDP within regions at 5-arcmin resolution for 2015	Gridded global datasets for Gross Domestic Product and Human Development Index over 1990– 2015 (Kummu et al., 2018)

Table S2. List of the 648 species included in the analysis along with their taxonomic class and

 the total number of occurrences classified in their native and exotic ranges.

			Occurrence points	
Species	Class	Taxa	Native	Exotic
Abelmoschus moschatus	Magnoliopsida	Plant	256	133
Abutilon grandifolium	Magnoliopsida	Plant	60	27
Abutilon theophrasti	Magnoliopsida	Plant	21	2895
Acacia auriculiformis	Magnoliopsida	Plant	655	140
Acacia cyclops	Magnoliopsida	Plant	379	187
Acacia dealbata	Magnoliopsida	Plant	5824	1739
Acacia decurrens	Magnoliopsida	Plant	678	42
Acacia longifolia	Magnoliopsida	Plant	3179	347
Acacia mangium	Magnoliopsida	Plant	27	127
Acacia mearnsii	Magnoliopsida	Plant	3302	706
Acacia melanoxylon	Magnoliopsida	Plant	8442	652
Acacia retinodes	Magnoliopsida	Plant	400	106
Acanthospermum australe	Magnoliopsida	Plant	330	99
Acanthospermum hispidum	Magnoliopsida	Plant	234	524
Acer negundo	Magnoliopsida	Plant	96	6156
Acer platanoides	Magnoliopsida	Plant	23682	2920
Acer pseudoplatanus	Magnoliopsida	Plant	19109	10428
Achillea millefolium	Magnoliopsida	Plant	81423	441
Acridotheres tristis	Aves	Vertebrate	22993	8499
Adenanthera pavonina	Magnoliopsida	Plant	84	26
Aegilops cylindrica	Liliopsida	Plant	46	295
Aegilops triuncialis	Liliopsida	Plant	812	111
Aeschynomene americana	Magnoliopsida	Plant	708	109
Agapanthus praecox	Liliopsida	Plant	55	635
Agave americana	Liliopsida	Plant	385	3892
Ageratina adenophora	Magnoliopsida	Plant	91	1082
Ageratum conyzoides	Magnoliopsida	Plant	808	1212
Ageratum houstonianum	Magnoliopsida	Plant	215	1059
Agropyron cristatum	Liliopsida	Plant	526	972
Agrostis capillaris	Liliopsida	Plant	47938	2356
Agrostis gigantea	Liliopsida	Plant	11436	848
Ailanthus altissima	Magnoliopsida	Plant	32	4885
Aira caryophyllea	Liliopsida	Plant	3132	2565
Akebia quinata	Magnoliopsida	Plant	374	89
Albizia julibrissin	Magnoliopsida	Plant	366	2363

Albizia lebbeck	Magnoliopsida	Plant	188	667
Alectoris chukar	Aves	Vertebrate	2566	4232
Alhagi maurorum	Magnoliopsida	Plant	105	77
Allamanda cathartica	Magnoliopsida	Plant	536	477
Alliaria petiolata	Magnoliopsida	Plant	21547	4503
Alnus glutinosa	Magnoliopsida	Plant	39562	244
Alocasia macrorrhizos	Liliopsida	Plant	43	26
Alopecurus pratensis	Liliopsida	Plant	12112	12497
Alpinia purpurata	Liliopsida	Plant	45	273
Alpinia zerumbet	Liliopsida	Plant	175	100
Alternanthera philoxeroides	Magnoliopsida	Plant	130	795
Alternanthera sessilis	Magnoliopsida	Plant	29	4307
Alysicarpus vaginalis	Magnoliopsida	Plant	492	55
Alyssum desertorum	Magnoliopsida	Plant	173	315
Amaranthus spinosus	Magnoliopsida	Plant	106	223
Ambrosia artemisiifolia	Magnoliopsida	Plant	2690	2884
Ambrosia tenuifolia	Magnoliopsida	Plant	32	48
Ambrosia trifida	Magnoliopsida	Plant	2653	200
Ammophila arenaria	Liliopsida	Plant	1661	458
Amorpha fruticosa	Magnoliopsida	Plant	27	238
Andropogon virginicus	Liliopsida	Plant	81	918
Annona cherimola	Magnoliopsida	Plant	20	24
Annona glabra	Magnoliopsida	Plant	385	63
Annona squamosa	Magnoliopsida	Plant	26	336
Anoplolepis gracilipes	Insecta	Invertebrate	110	21
Anser indicus	Aves	Vertebrate	1958	1792
Anthemis cotula	Magnoliopsida	Plant	308	1279
Anthoxanthum odoratum	Liliopsida	Plant	40614	4033
Antigonon leptopus	Magnoliopsida	Plant	757	377
Arctotheca calendula	Magnoliopsida	Plant	146	5751
Ardisia crenata	Magnoliopsida	Plant	348	266
Ardisia elliptica	Magnoliopsida	Plant	75	72
Argemone mexicana	Magnoliopsida	Plant	516	533
Aristolochia elegans	Magnoliopsida	Plant	27	155
Arivela viscosa	Magnoliopsida	Plant	59	369
Arrhenatherum elatius	Liliopsida	Plant	25048	320
Arthraxon hispidus	Liliopsida	Plant	452	206
Artocarpus altilis	Magnoliopsida	Plant	43	118
Arundo donax	Liliopsida	Plant	91	3200
Asclepias curassavica	Magnoliopsida	Plant	302	1930
Asparagus asparagoides	Liliopsida	Plant	115	2963

Asparagus officinalis	Liliopsida	Plant	3805	1288
Asparagus setaceus	Liliopsida	Plant	175	384
Asystasia gangetica	Magnoliopsida	Plant	485	132
Atriplex semibaccata	Magnoliopsida	Plant	2743	414
Austrocylindropuntia subulata	Magnoliopsida	Plant	44	418
Avena barbata	Liliopsida	Plant	1576	5145
Axonopus fissifolius	Liliopsida	Plant	259	1052
Azadirachta indica	Magnoliopsida	Plant	88	1632
Azolla filiculoides	Polypodiopsida	Plant	338	1198
Baccharis halimifolia	Magnoliopsida	Plant	709	443
Bassia hyssopifolia	Magnoliopsida	Plant	32	188
Bauhinia purpurea	Magnoliopsida	Plant	106	26
Bauhinia variegata	Magnoliopsida	Plant	144	243
Bellis perennis	Magnoliopsida	Plant	29002	1029
Berberis aquifolium	Magnoliopsida	Plant	1173	7444
Berberis darwinii	Magnoliopsida	Plant	83	106
Berberis thunbergii	Magnoliopsida	Plant	226	3703
Bidens frondosa	Magnoliopsida	Plant	1141	3554
Bidens pilosa	Magnoliopsida	Plant	1480	4234
Bixa orellana	Magnoliopsida	Plant	1005	32
Boerhavia coccinea	Magnoliopsida	Plant	648	884
Boerhavia diffusa	Magnoliopsida	Plant	180	133
Bombus terrestris	Insecta	Invertebrate	10200	123
Bothriochloa ischaemum	Liliopsida	Plant	661	416
Bothriochloa pertusa	Liliopsida	Plant	25	493
Bougainvillea spectabilis	Magnoliopsida	Plant	620	265
Brachypodium distachyon	Liliopsida	Plant	1399	805
Brachypodium sylvaticum	Liliopsida	Plant	21485	46
Branta canadensis	Aves	Vertebrate	149911	25519
Brassica nigra	Magnoliopsida	Plant	1487	541
Brassica rapa	Magnoliopsida	Plant	24	3057
Brassica tournefortii	Magnoliopsida	Plant	118	3671
Briza maxima	Liliopsida	Plant	1814	4644
Bromus diandrus var. rigidus	Liliopsida	Plant	348	53
Bromus hordeaceus	Liliopsida	Plant	19161	4599
Bromus inermis	Liliopsida	Plant	3676	1968
Bromus japonicus	Liliopsida	Plant	542	828
Bromus madritensis	Liliopsida	Plant	1543	896
Bromus rubens	Liliopsida	Plant	997	4456
Bromus secalinus	Liliopsida	Plant	365	1098
Bromus sterilis	Liliopsida	Plant	11021	297

Bromus tectorum	Liliopsida	Plant	693	4464
Broussonetia papyrifera	Magnoliopsida	Plant	396	551
Brugmansia suaveolens	Magnoliopsida	Plant	200	295
Bubulcus ibis	Aves	Vertebrate	11493	42214
Buddleja davidii	Magnoliopsida	Plant	59	1731
Buddleja madagascariensis	Magnoliopsida	Plant	96	33
Butomus umbellatus	Liliopsida	Plant	4859	312
Caesalpinia decapetala	Magnoliopsida	Plant	110	640
Caesalpinia pulcherrima	Magnoliopsida	Plant	501	863
Caladium bicolor	Liliopsida	Plant	1581	165
Calliandra houstoniana	Magnoliopsida	Plant	1238	66
Callisia fragrans	Liliopsida	Plant	70	22
Callitropsis arizonica	Pinopsida	Plant	294	110
Calluna vulgaris	Magnoliopsida	Plant	39007	111
Calopogonium mucunoides	Magnoliopsida	Plant	472	227
Calotropis procera	Magnoliopsida	Plant	1536	1334
Cananga odorata	Magnoliopsida	Plant	133	93
Canna indica	Liliopsida	Plant	1832	818
Capsella bursa-pastoris	Magnoliopsida	Plant	28137	3432
Cardamine flexuosa	Magnoliopsida	Plant	11747	609
Cardiospermum grandiflorum	Magnoliopsida	Plant	183	199
Cardiospermum halicacabum	Magnoliopsida	Plant	887	612
Carduus nutans	Magnoliopsida	Plant	4212	1778
Carduus pycnocephalus	Magnoliopsida	Plant	1294	1335
Carpobrotus edulis	Magnoliopsida	Plant	194	1416
Cassia fistula	Magnoliopsida	Plant	92	272
Cassytha filiformis	Magnoliopsida	Plant	2271	52
Casuarina cunninghamiana	Magnoliopsida	Plant	1543	73
Casuarina equisetifolia	Magnoliopsida	Plant	419	218
Catharanthus roseus	Magnoliopsida	Plant	49	2891
Cecropia schreberiana ssp.	Manalianaida	D14	472	21
antiliarum Cadrala adarata	Magnoliopsida	Plant	4/3	21
	Magnoliopsida	Plant	995	1244
Caracherer high area	I ili anni da	Plant	439	1344
Canadama and an and an and an and an	Liliopsida	Plant	1352	140
Conchrus macrourus		Plant	123	014
Centrus pedicellatus		Plant	1329	814
Contouros debecurii		Plant	9/5	040
	Magnoliopsida		1/3/	23
Centaurea diffusa	Magnoliopsida		189	254
	Magnoliopsida	Plant	934	2919
Centaurea solstitialis	Magnoliopsida	Plant	443	1129

Centella asiatica	Magnoliopsida	Plant	3219	42
Centratherum punctatum	Magnoliopsida	Plant	642	51
Ceratitis capitata	Insecta	Invertebrate	157	23
Cervus elaphus	Mammalia	Vertebrate	9933	190
Cervus nippon	Mammalia	Vertebrate	102	530
Chloris gayana	Liliopsida	Plant	178	1230
Chloris virgata	Liliopsida	Plant	622	936
Chondrilla juncea	Magnoliopsida	Plant	2096	1820
Christella dentata	Polypodiopsida	Plant	1116	453
Chromolaena odorata	Magnoliopsida	Plant	1467	820
Cinnamomum camphora	Magnoliopsida	Plant	191	1095
Cinnamomum verum	Magnoliopsida	Plant	29	88
Cirsium arvense	Magnoliopsida	Plant	39900	3341
Cirsium vulgare	Magnoliopsida	Plant	36995	17538
Clematis terniflora	Magnoliopsida	Plant	333	525
Clematis vitalba	Magnoliopsida	Plant	16398	558
Clerodendrum bungei	Magnoliopsida	Plant	43	66
Clerodendrum chinense	Magnoliopsida	Plant	21	93
Clidemia hirta	Magnoliopsida	Plant	1211	81
Clitoria ternatea	Magnoliopsida	Plant	85	714
Coccinella septempunctata	Insecta	Invertebrate	14363	4050
Coccinia grandis	Magnoliopsida	Plant	208	31
Cocos nucifera	Liliopsida	Plant	183	671
Coix lacryma-jobi	Liliopsida	Plant	85	375
Colocasia esculenta	Liliopsida	Plant	362	893
Columba livia	Aves	Vertebrate	35571	116223
Conium maculatum	Magnoliopsida	Plant	4452	1971
Cornus sericea	Magnoliopsida	Plant	3054	1665
Cortaderia jubata	Liliopsida	Plant	61	181
Cortaderia selloana	Liliopsida	Plant	192	2784
Corvus splendens	Aves	Vertebrate	16428	438
Corythucha ciliata	Insecta	Invertebrate	20	131
Cosmos caudatus	Magnoliopsida	Plant	135	81
Cosmos sulphureus	Magnoliopsida	Plant	449	629
Cotoneaster horizontalis	Magnoliopsida	Plant	36	2745
Crassocephalum crepidioides	Magnoliopsida	Plant	104	613
Crataegus monogyna	Magnoliopsida	Plant	45152	1919
Crotalaria retusa	Magnoliopsida	Plant	253	532
Cryptostegia grandiflora	Magnoliopsida	Plant	39	472
Cryptostegia madagascariensis	Magnoliopsida	Plant	43	94
Ctenosaura similis	Reptilia	Vertebrate	594	42

Cucumis anguria	Magnoliopsida	Plant	36	272
Cupaniopsis anacardioides	Magnoliopsida	Plant	763	38
Cuscuta epithymum	Magnoliopsida	Plant	2081	192
Cyanthillium cinereum	Magnoliopsida	Plant	2749	291
Cyathula prostrata	Magnoliopsida	Plant	210	246
Cyclachaena xanthiifolia	Magnoliopsida	Plant	175	298
Cygnus olor	Aves	Vertebrate	34689	10556
Cylindropuntia fulgida	Magnoliopsida	Plant	366	51
Cynara cardunculus	Magnoliopsida	Plant	464	820
Cynodon dactylon	Liliopsida	Plant	616	10239
Cynodon nlemfuensis	Liliopsida	Plant	47	119
Cynoglossum officinale	Magnoliopsida	Plant	2934	599
Cyperus difformis	Liliopsida	Plant	1516	151
Cyperus imbricatus	Liliopsida	Plant	138	42
Cyperus papyrus	Liliopsida	Plant	151	128
Cyperus rotundus	Liliopsida	Plant	351	354
Cyrtomium falcatum	Polypodiopsida	Plant	709	116
Cytisus scoparius	Magnoliopsida	Plant	20792	1910
Dactylis glomerata	Liliopsida	Plant	50529	4424
Dactyloctenium aegyptium	Liliopsida	Plant	1981	1498
Dalbergia sissoo	Magnoliopsida	Plant	32	50
Datura quercifolia	Magnoliopsida	Plant	88	270
Delairea odorata	Magnoliopsida	Plant	35	799
Delonix regia	Magnoliopsida	Plant	25	1252
Descurainia sophia	Magnoliopsida	Plant	3975	748
Desmodium incanum	Magnoliopsida	Plant	738	138
Dichanthium annulatum	Liliopsida	Plant	357	295
Dichrostachys cinerea	Magnoliopsida	Plant	425	929
Digitaria bicornis	Liliopsida	Plant	347	385
Digitaria ciliaris	Liliopsida	Plant	272	1649
Digitaria eriantha	Liliopsida	Plant	445	61
Digitaria sanguinalis	Liliopsida	Plant	5507	917
Dimorphotheca sinuata	Magnoliopsida	Plant	80	107
Dioscorea alata	Liliopsida	Plant	41	77
Dioscorea bulbifera	Liliopsida	Plant	744	186
Diprion similis	Insecta	Invertebrate	25	427
Dovyalis caffra	Magnoliopsida	Plant	40	378
Drymaria cordata	Magnoliopsida	Plant	237	335
Duranta erecta	Magnoliopsida	Plant	910	906
Dysphania ambrosioides	Magnoliopsida	Plant	599	1261
Echinochloa pyramidalis	Liliopsida	Plant	331	75

Echinocystis lobata	Magnoliopsida	Plant	1323	660
Echium plantagineum	Magnoliopsida	Plant	1542	7297
Ehrharta calycina	Liliopsida	Plant	199	1082
Ehrharta erecta	Liliopsida	Plant	143	1507
Elaeagnus angustifolia	Magnoliopsida	Plant	284	898
Elaeagnus umbellata	Magnoliopsida	Plant	438	2545
Elephantopus mollis	Magnoliopsida	Plant	1066	83
Eleusine indica	Liliopsida	Plant	420	2115
Elodea canadensis	Liliopsida	Plant	164	7602
Elodea nuttallii	Liliopsida	Plant	183	3961
Emilia sonchifolia	Magnoliopsida	Plant	140	797
Epilobium ciliatum	Magnoliopsida	Plant	7059	8804
Eragrostis atrovirens	Liliopsida	Plant	305	45
Eragrostis ciliaris	Liliopsida	Plant	354	514
Eragrostis japonica	Liliopsida	Plant	309	88
Eragrostis lehmanniana	Liliopsida	Plant	267	283
Eragrostis pilosa	Liliopsida	Plant	802	484
Eragrostis plana	Liliopsida	Plant	109	24
Eragrostis tenella	Liliopsida	Plant	55	273
Eragrostis unioloides	Liliopsida	Plant	130	28
Eremochloa ophiuroides	Liliopsida	Plant	23	56
Erigeron karvinskianus	Magnoliopsida	Plant	401	1304
Erinaceus europaeus	Mammalia	Vertebrate	1104	9717
Eriobotrya japonica	Magnoliopsida	Plant	50	4462
Erodium botrys	Magnoliopsida	Plant	293	1534
Erodium cicutarium	Magnoliopsida	Plant	17185	6834
Etlingera elatior	Liliopsida	Plant	63	96
Eucalyptus camaldulensis	Magnoliopsida	Plant	6279	428
Euonymus alatus	Magnoliopsida	Plant	542	1124
Euonymus fortunei	Magnoliopsida	Plant	230	552
Euonymus japonicus	Magnoliopsida	Plant	68	189
Eupatorium cannabinum	Magnoliopsida	Plant	2159	17714
Euphorbia esula	Magnoliopsida	Plant	1339	219
Euphorbia terracina	Magnoliopsida	Plant	548	551
Euphorbia tirucalli	Magnoliopsida	Plant	968	47
Fallopia convolvulus	Magnoliopsida	Plant	23	2099
Ficus microcarpa	Magnoliopsida	Plant	318	63
Ficus pumila	Magnoliopsida	Plant	128	24
Fimbristylis dichotoma	Liliopsida	Plant	146	261
Fimbristylis littoralis	Liliopsida	Plant	718	183
Flemingia strobilifera	Magnoliopsida	Plant	156	28

Foeniculum vulgare	Magnoliopsida	Plant	5334	3449
Forficula auricularia	Insecta	Invertebrate	6010	864
Gaillardia pulchella	Magnoliopsida	Plant	75	252
Galega officinalis	Magnoliopsida	Plant	857	24
Galinsoga parviflora	Magnoliopsida	Plant	411	658
Galinsoga quadriradiata	Magnoliopsida	Plant	256	6336
Gallus gallus	Aves	Vertebrate	3312	259
Gaultheria shallon	Magnoliopsida	Plant	536	130
Genetta genetta	Mammalia	Vertebrate	112	2814
Genista monspessulana	Magnoliopsida	Plant	167	1453
Gleditsia triacanthos	Magnoliopsida	Plant	21	1708
Gliricidia sepium	Magnoliopsida	Plant	607	186
Glyceria declinata	Liliopsida	Plant	3989	236
Glyceria maxima	Liliopsida	Plant	7639	147
Gomphocarpus physocarpus	Magnoliopsida	Plant	168	560
Grevillea robusta	Magnoliopsida	Plant	594	1163
Gunnera tinctoria	Magnoliopsida	Plant	96	532
Gypsophila paniculata	Magnoliopsida	Plant	262	141
Haemorhous mexicanus	Aves	Vertebrate	3891	93798
Halyomorpha halys	Insecta	Invertebrate	107	2092
Harmonia axyridis	Insecta	Invertebrate	312	16769
Hedera helix	Magnoliopsida	Plant	45707	1887
Hedychium coronarium	Liliopsida	Plant	113	462
Heliconia bihai	Liliopsida	Plant	148	40
Heliotropium curassavicum	Magnoliopsida	Plant	1148	565
Helminthotheca echioides	Magnoliopsida	Plant	3787	3404
Hemidactylus frenatus	Reptilia	Vertebrate	483	1138
Hemidactylus mabouia	Reptilia	Vertebrate	411	489
Heteropogon contortus	Liliopsida	Plant	2681	608
Holcus lanatus	Liliopsida	Plant	25497	9465
Houttuynia cordata	Magnoliopsida	Plant	398	31
Hydrilla verticillata	Liliopsida	Plant	81	229
Hydrocharis morsus-ranae	Liliopsida	Plant	3985	275
Hyoscyamus niger	Magnoliopsida	Plant	1920	223
Hyparrhenia rufa	Liliopsida	Plant	746	976
Hypericum perforatum	Magnoliopsida	Plant	34372	5912
Hypochaeris radicata	Magnoliopsida	Plant	14344	14304
Icerya purchasi	Insecta	Invertebrate	34	28
Impatiens walleriana	Magnoliopsida	Plant	25	1087
Imperata cylindrica	Liliopsida	Plant	5596	398
Indigofera hirsuta	Magnoliopsida	Plant	1010	293

Indigofera spicata	Magnoliopsida	Plant	191	106
Indigofera suffruticosa	Magnoliopsida	Plant	1040	40
Ipomoea hederifolia	Magnoliopsida	Plant	811	163
Ipomoea nil	Magnoliopsida	Plant	435	370
Ipomoea purpurea	Magnoliopsida	Plant	1247	1602
Ipomoea quamoclit	Magnoliopsida	Plant	317	580
Iris pseudacorus	Liliopsida	Plant	26144	1145
Ischaemum rugosum	Liliopsida	Plant	141	77
Jacaranda mimosifolia	Magnoliopsida	Plant	93	1396
Jacobaea vulgaris	Magnoliopsida	Plant	25043	1880
Jatropha gossypiifolia	Magnoliopsida	Plant	463	609
Juncus effusus	Liliopsida	Plant	30798	1335
Juncus ensifolius	Liliopsida	Plant	202	79
Juncus tenuis	Liliopsida	Plant	419	9369
Lachnagrostis filiformis	Liliopsida	Plant	5189	37
Lagarosiphon major	Liliopsida	Plant	29	358
Lagerstroemia indica	Magnoliopsida	Plant	175	367
Lagerstroemia speciosa	Magnoliopsida	Plant	91	32
Lamium amplexicaule	Magnoliopsida	Plant	8801	2970
Lantana camara	Magnoliopsida	Plant	3821	6552
Lawsonia inermis	Magnoliopsida	Plant	70	57
Leiothrix lutea	Aves	Vertebrate	976	103
Lemna minuta	Liliopsida	Plant	228	1950
Leonotis nepetifolia	Magnoliopsida	Plant	25	803
Leonurus japonicus	Magnoliopsida	Plant	182	94
Lepidium latifolium	Magnoliopsida	Plant	747	438
Lepidium perfoliatum	Magnoliopsida	Plant	95	414
Lepidium virginicum	Magnoliopsida	Plant	1789	1129
Leptochloa panicea ssp. mucronata	Liliopsida	Plant	365	28
Lepus europaeus	Mammalia	Vertebrate	9143	7977
Lespedeza cuneata	Magnoliopsida	Plant	726	763
Leucaena leucocephala	Magnoliopsida	Plant	747	2155
Leucanthemum vulgare	Magnoliopsida	Plant	15478	13145
Ligustrum lucidum	Magnoliopsida	Plant	63	1686
Ligustrum obtusifolium	Magnoliopsida	Plant	345	134
Ligustrum sinense	Magnoliopsida	Plant	137	2041
Lilioceris lilii	Insecta	Invertebrate	576	4500
Linaria dalmatica	Magnoliopsida	Plant	34	565
Linaria vulgaris	Magnoliopsida	Plant	29201	2030
Linepithema humile	Insecta	Invertebrate	54	428
Lolium multiflorum	Liliopsida	Plant	1093	4749

Lolium perenne	Liliopsida	Plant	25956	4881
Lolium rigidum	Liliopsida	Plant	1095	3732
Lolium temulentum	Liliopsida	Plant	87	70
Lonicera japonica	Magnoliopsida	Plant	311	4227
Lonicera morrowii	Magnoliopsida	Plant	44	671
Ludwigia peruviana	Magnoliopsida	Plant	555	274
Lupinus angustifolius	Magnoliopsida	Plant	933	216
Lupinus polyphyllus	Magnoliopsida	Plant	1435	24780
Lycium ferocissimum	Magnoliopsida	Plant	80	4502
Lygodium japonicum	Polypodiopsida	Plant	1303	737
Lygodium microphyllum	Polypodiopsida	Plant	628	84
Lythrum salicaria	Magnoliopsida	Plant	30569	2790
Macroptilium atropurpureum	Magnoliopsida	Plant	657	471
Macrothelypteris torresiana	Polypodiopsida	Plant	252	834
Malva pusilla	Magnoliopsida	Plant	229	525
Mangifera indica	Magnoliopsida	Plant	304	1275
Manilkara zapota	Magnoliopsida	Plant	588	74
Marrubium vulgare	Magnoliopsida	Plant	1971	6589
Martynia annua	Magnoliopsida	Plant	391	149
Medicago lupulina	Magnoliopsida	Plant	17089	2859
Medicago polymorpha	Magnoliopsida	Plant	1566	4700
Melaleuca quinquenervia	Magnoliopsida	Plant	910	49
Melia azedarach	Magnoliopsida	Plant	154	4907
Melicoccus bijugatus	Magnoliopsida	Plant	71	49
Melilotus officinalis	Magnoliopsida	Plant	2720	4242
Melinis minutiflora	Liliopsida	Plant	93	648
Melinis repens	Liliopsida	Plant	666	2995
Mentha pulegium	Magnoliopsida	Plant	622	713
Mesembryanthemum crystallinum	Magnoliopsida	Plant	447	1122
Microstegium vimineum	Liliopsida	Plant	338	1306
Mimosa pigra	Magnoliopsida	Plant	994	861
Mimosa pudica	Magnoliopsida	Plant	1152	709
Mirabilis jalapa	Magnoliopsida	Plant	695	4332
Miscanthus sinensis	Liliopsida	Plant	552	135
Molothrus bonariensis	Aves	Vertebrate	15885	1486
Momordica charantia	Magnoliopsida	Plant	282	1827
Moringa oleifera	Magnoliopsida	Plant	129	374
Mucuna pruriens	Magnoliopsida	Plant	174	20
Muntingia calabura	Magnoliopsida	Plant	1063	106
Murdannia nudiflora	Liliopsida	Plant	43	303
Mustela nivalis	Mammalia	Vertebrate	227	2468

Mustela vison	Mammalia	Vertebrate	1770	8108
Myiopsitta monachus	Aves	Vertebrate	7684	1529
Myocastor coypus	Mammalia	Vertebrate	193	1907
Myriophyllum spicatum	Magnoliopsida	Plant	5675	545
Mythimna unipuncta	Insecta	Invertebrate	1359	286
Nassella neesiana	Liliopsida	Plant	60	518
Nassella tenuissima	Liliopsida	Plant	28	31
Nasturtium microphyllum	Magnoliopsida	Plant	1600	139
Neonotonia wightii	Magnoliopsida	Plant	178	117
Nephrolepis cordifolia	Polypodiopsida	Plant	484	138
Nicotiana glauca	Magnoliopsida	Plant	223	3566
Nicotiana tabacum	Magnoliopsida	Plant	35	179
Nymphoides peltata	Magnoliopsida	Plant	1085	133
Ocimum gratissimum	Magnoliopsida	Plant	259	170
Oldenlandia corymbosa	Magnoliopsida	Plant	223	345
Oldenlandia lancifolia	Magnoliopsida	Plant	177	128
Ondatra zibethicus	Mammalia	Vertebrate	2119	2475
Onopordum acanthium	Magnoliopsida	Plant	3681	1152
Onopordum illyricum	Magnoliopsida	Plant	139	61
Opuntia ficus-indica	Magnoliopsida	Plant	343	1606
Orobanche minor	Magnoliopsida	Plant	1329	677
Oxyura jamaicensis	Aves	Vertebrate	38372	862
Paederia foetida	Magnoliopsida	Plant	574	32
Panicum repens	Liliopsida	Plant	155	468
Parkinsonia aculeata	Magnoliopsida	Plant	1048	2707
Parthenium hysterophorus	Magnoliopsida	Plant	1377	1068
Parthenocissus quinquefolia	Magnoliopsida	Plant	9207	2484
Paspalum conjugatum	Liliopsida	Plant	764	308
Paspalum dilatatum	Liliopsida	Plant	91	5537
Paspalum distichum	Liliopsida	Plant	498	1972
Paspalum notatum	Liliopsida	Plant	173	397
Paspalum paniculatum	Liliopsida	Plant	386	111
Paspalum scrobiculatum	Liliopsida	Plant	1826	30
Paspalum urvillei	Liliopsida	Plant	153	1215
Paspalum vaginatum	Liliopsida	Plant	507	98
Passer domesticus	Aves	Vertebrate	23909	141202
Passiflora caerulea	Magnoliopsida	Plant	370	1773
Passiflora edulis	Magnoliopsida	Plant	384	1126
Passiflora foetida	Magnoliopsida	Plant	2327	1243
Passiflora suberosa	Magnoliopsida	Plant	583	346
Passiflora tarminiana	Magnoliopsida	Plant	57	96

Pastinaca sativa	Magnoliopsida	Magnoliopsida Plant		1223
Paulownia tomentosa	Magnoliopsida	Plant	40	1589
Pentas lanceolata	Magnoliopsida	Plant	93	32
Persicaria maculosa	Magnoliopsida	Plant	18051	1608
Persicaria perfoliata	Magnoliopsida	Plant	295	438
Persicaria punctata	Magnoliopsida	Plant	2167	29
Phalaris aquatica	Liliopsida	Plant	108	4361
Phalaris paradoxa	Liliopsida	Plant	186	784
Phasianus colchicus	Aves	Vertebrate	2473	76556
Pheidole megacephala	Insecta	Invertebrate	108	94
Phleum pratense	Liliopsida	Plant	29249	2177
Phormium tenax	Liliopsida	Plant	817	82
Phyllanthus urinaria	Magnoliopsida	Plant	209	408
Physalis angulata	Magnoliopsida	Plant	496	662
Physalis peruviana	Magnoliopsida	Plant	273	1459
Pinus elliottii	Pinopsida	Plant	224	177
Pinus halepensis	Pinopsida	Plant	2870	579
Pinus pinaster	Pinopsida	Plant	4827	157
Pinus radiata	Pinopsida	Plant	118	1985
Piper aduncum	Magnoliopsida	Plant	1656	34
Pithecellobium dulce	Magnoliopsida	Plant	780	277
Pittosporum tenuifolium	Magnoliopsida	Plant	770	102
Pittosporum undulatum	Magnoliopsida	Plant	2757	65
Plantago coronopus	Magnoliopsida	Plant	6082	1861
Plantago lanceolata	Magnoliopsida	Plant	42408	9822
Pluchea carolinensis	Magnoliopsida	Plant	371	39
Poa annua	Liliopsida	Liliopsida Plant		10310
Poa compressa	Liliopsida	Plant	10132	1121
Poa nemoralis	Liliopsida	Plant	28847	245
Poa pratensis	Liliopsida	Plant	37565	3518
Polycarpon tetraphyllum	Magnoliopsida	Plant	835	1347
Polygonum aviculare ssp.		DI	(00)	714
depressum	Magnoliopsida	Plant	6086	714
Polypogon monspeliensis	Liliopsida	Plant	881	3259
Populus alba	Magnoliopsida	Plant	4267	660
Porphyrio porphyrio	Aves Vertebrate		13157	209
Portulaca pilosa	Magnoliopsida Plant		956	1266
Potamogeton crispus	Liliopsida	Plant	5751	841
Potamogeton perfoliatus	Liliopsida	Plant	6111	55
Procyon lotor	Mammalia	Vertebrate	6480	1415
Prosopis glandulosa	Magnoliopsida	Plant	2039	85
Prosopis juliflora	Magnoliopsida	Plant	385	488

Prosopis velutina	Magnoliopsida Plant		73	94
Prunella vulgaris	Magnoliopsida	Plant	46590	2263
Prunus serotina	Magnoliopsida	Plant	6723	4071
Pseudelephantopus spicatus	Magnoliopsida	Plant	608	46
Psittacula krameri	Aves	Vertebrate	14215	1904
Pteris tripartita	Polypodiopsida	Plant	130	37
Pteris vittata	Polypodiopsida	Plant	489	212
Pueraria phaseoloides	Magnoliopsida	Plant	81	120
Pycnonotus jocosus	Aves	Vertebrate	8533	456
Pyracantha coccinea	Magnoliopsida	Plant	1782	862
Pyrus calleryana	Magnoliopsida	Plant	53	1179
Python bivittatus	Reptilia	Vertebrate	27	162
Rhamnus alaternus	Magnoliopsida	Plant	3647	210
Rhamnus cathartica	Magnoliopsida	Plant	9557	2062
Rhamnus frangula	Magnoliopsida	Plant	28367	1178
Rhaponticum repens	Magnoliopsida	Plant	42	447
Rhinocyllus conicus	Insecta	Invertebrate	267	113
Rhodomyrtus tomentosa	Magnoliopsida	Plant	143	21
Rhus typhina	Magnoliopsida	Plant	2278	1616
Rivina humilis	Magnoliopsida	Plant	1450	248
Rosa bracteata	Magnoliopsida	Plant	22	187
Rosa multiflora	Magnoliopsida	Plant	308	2476
Rosa rugosa	Magnoliopsida	Plant	51	10632
Rosmarinus officinalis	Magnoliopsida	Plant	47	1256
Rottboellia cochinchinensis	Liliopsida	Plant	563	233
Rubus ellipticus	Magnoliopsida	Magnoliopsida Plant		34
Rubus niveus	Magnoliopsida Plant		59	37
Rubus parviflorus	Magnoliopsida	Plant	2366	27
Rubus plicatus	Magnoliopsida	Plant	25351	186
Rubus rosifolius	Magnoliopsida	Plant	1410	191
Rubus ulmifolius	Magnoliopsida	Plant	8642	928
Rudbeckia laciniata	Magnoliopsida	Plant	115	894
Ruellia simplex	Magnoliopsida	Plant	417	350
Rumex acetosella	Magnoliopsida	Plant	37327	6857
Rumex obtusifolius	Magnoliopsida	Plant	26583	2326
Rusa unicolor	Mammalia	Vertebrate	77	458
Russelia equisetiformis	Magnoliopsida	Plant	60	22
Saccharum ravennae	Liliopsida	Plant	363	52
Sacciolepis indica	Liliopsida	Plant	879	80
Sagina procumbens	Magnoliopsida	Plant	26939	380
Sagittaria latifolia	Liliopsida	Plant	791	123

Sagittaria platyphylla	Liliopsida Plant		158	137
Salix babylonica	Magnoliopsida	Plant	20	1361
Salix cinerea	Magnoliopsida	Plant	26545	260
Salix fragilis	Magnoliopsida	Plant	7110	1086
Samanea saman	Magnoliopsida	Plant	220	130
Sambucus nigra	Magnoliopsida	Plant	35779	498
Sansevieria hyacinthoides	Liliopsida	Plant	111	62
Schinus terebinthifolius	Magnoliopsida	Plant	585	559
Schismus arabicus	Liliopsida	Plant	59	527
Sciurus carolinensis	Mammalia	Vertebrate	4469	7777
Sechium edule	Magnoliopsida	Plant	206	86
Senecio glomeratus	Magnoliopsida	Plant	360	30
Senecio madagascariensis	Magnoliopsida	Plant	67	1819
Senecio squalidus	Magnoliopsida	Plant	190	837
Senecio viscosus	Magnoliopsida	Plant	2860	161
Senecio vulgaris	Magnoliopsida	Plant	28568	4113
Senna alata	Magnoliopsida	Plant	312	662
Senna hirsuta	Magnoliopsida	Plant	576	193
Senna obtusifolia	Magnoliopsida	Plant	1125	1163
Senna occidentalis	Magnoliopsida	Plant	1236	2024
Senna septemtrionalis	Magnoliopsida	Plant	195	733
Senna siamea	Magnoliopsida	Plant	26	1773
Senna spectabilis	Magnoliopsida	Plant	580	794
Sesbania punicea	Magnoliopsida	Plant	78	285
Setaria palmifolia	Liliopsida	Plant	493	242
Setaria parviflora	Liliopsida	Plant	1298	1362
Setaria verticillata	Liliopsida	Plant	2830	532
Sicyos angulatus	Magnoliopsida	Plant	410	82
Sida acuta	Magnoliopsida	Plant	1357	1181
Sida linifolia	Magnoliopsida	Plant	607	186
Silene gallica	Magnoliopsida	Plant	2014	2327
Silybum marianum	Magnoliopsida	Plant	2137	4417
Sisymbrium irio	Magnoliopsida	Plant	980	2768
Solanum elaeagnifolium	Magnoliopsida	Plant	2732	1055
Solanum erianthum	Magnoliopsida	Plant	102	87
Solanum mauritianum	Magnoliopsida	Plant	336	1780
Solanum quitoense	Magnoliopsida	Plant	106	60
Solanum seaforthianum	Magnoliopsida	Plant	41	680
Solanum sisymbriifolium	Magnoliopsida	Plant	503	247
Solanum viarum	Magnoliopsida	Plant	162	147
Solenopsis invicta	Insecta	Invertebrate	54	1287

Solidago canadensis	Magnoliopsida Plant		974	11162
Solidago gigantea	Magnoliopsida	Plant	1124	5309
Soliva sessilis	Magnoliopsida	Plant	30	800
Sonchus asper	Magnoliopsida	Plant	18336	7336
Sonchus oleraceus	Magnoliopsida	Plant	14914	18764
Sorghum halepense	Liliopsida	Plant	47	3185
Spartium junceum	Magnoliopsida	Plant	2060	629
Spathodea campanulata	Magnoliopsida	Plant	170	411
Spermacoce verticillata	Magnoliopsida	Plant	1584	355
Sphagneticola trilobata	Magnoliopsida	Plant	1018	690
Spiraea chamaedryfolia	Magnoliopsida	Plant	170	967
Spiraea japonica	Magnoliopsida	Plant	147	554
Sporobolus africanus	Liliopsida	Plant	171	1620
Stachys arvensis	Magnoliopsida	Plant	1672	1055
Stachytarpheta cayennensis	Magnoliopsida	Plant	1065	308
Stenotaphrum secundatum	Liliopsida	Plant	144	834
Streptopelia decaocto	Aves	Vertebrate	31941	103993
Sus scrofa	Mammalia	Vertebrate	4722	5521
Symphyotrichum novi-belgii	Magnoliopsida Plant		467	2098
Syngonium podophyllum	Liliopsida Plant		1528	115
Syzygium cumini	Magnoliopsida	Plant	46	215
Taeniatherum caput-medusae	Liliopsida	Plant	675	193
Tagetes erecta	Magnoliopsida	Plant	779	2753
Tagetes minuta	Magnoliopsida	Plant	209	245
Tamarix aphylla	Magnoliopsida	Plant	48	612
Tamarix gallica	Magnoliopsida	Plant	800	32
Tamarix parviflora	Magnoliopsida Plant		101	81
Tamarix ramosissima	Magnoliopsida	Plant	102	1301
Tanacetum vulgare	Magnoliopsida	Plant	37184	2911
Tecoma capensis	Magnoliopsida	Plant	244	178
Tecoma stans	Magnoliopsida	Plant	1997	1033
Terminalia catappa	Magnoliopsida	Plant	231	745
Thespesia populnea	Magnoliopsida	Plant	126	45
Thevetia peruviana	Magnoliopsida	Plant	473	1440
Threskiornis aethiopicus	Aves	Vertebrate	5579	470
Thunbergia alata	Magnoliopsida	Plant	241	1350
Thunbergia fragrans	Magnoliopsida	Plant	63	223
Thunbergia grandiflora	Magnoliopsida	Plant	27	252
Tibouchina urvilleana	Magnoliopsida	Plant	248	65
Tithonia diversifolia	Magnoliopsida	Plant	360	1234
Tithonia rotundifolia	Magnoliopsida	Plant	120	232

Toona ciliata	Magnoliopsida	Plant	669	143
Toxicodendron succedaneum	Magnoliopsida	Plant	149	31
Tradescantia fluminensis	Liliopsida	Plant	204	1762
Tradescantia pallida	Liliopsida	Plant	240	620
Tradescantia spathacea	Liliopsida	Plant	299	171
Tradescantia zebrina	Liliopsida	Plant	379	879
Trapa natans	Magnoliopsida	Plant	552	123
Triadica sebifera	Magnoliopsida	Plant	166	1636
Trifolium dubium	Magnoliopsida	Plant	17131	3433
Trifolium repens	Magnoliopsida	Plant	60678	11810
Triumfetta rhomboidea	Magnoliopsida	Plant	742	325
Turbina corymbosa	Magnoliopsida	Plant	518	22
Tussilago farfara	Magnoliopsida	Plant	41605	3598
Typha latifolia	Liliopsida	Plant	26506	86
Ulex europaeus	Magnoliopsida	Plant	13078	2858
Urena lobata	Magnoliopsida	Plant	1244	427
Urochloa panicoides	Liliopsida Plant		136	401
Urtica dioica	Magnoliopsida Plant		57496	120
Vachellia nilotica	Magnoliopsida Plant		947	363
Verbascum thapsus	Magnoliopsida Plant		21821	9707
Verbena litoralis	Magnoliopsida	Plant	825	291
Verbena rigida	Magnoliopsida	Plant	42	1391
Verbesina encelioides	Magnoliopsida	Plant	1254	374
Vernicia fordii	Magnoliopsida	Plant	48	122
Vespula germanica	Insecta Invertebrate		2024	550
Vicia villosa	Magnoliopsida Plant		4634	2883
Vincetoxicum nigrum	Magnoliopsida	Plant	335	199
Vulpia bromoides	Liliopsida	Plant	2905	4412
Vulpia myuros	Liliopsida	Plant	4791	5982
Wasmannia auropunctata	Insecta	Invertebrate	696	72
Wisteria floribunda	Magnoliopsida	Plant	466	42
Xanthium spinosum	Magnoliopsida	Plant	89	2971
Xanthogaleruca luteola	Insecta	Invertebrate	108	127
Xanthosoma sagittifolium	Liliopsida	Plant	122	66
Youngia japonica	Magnoliopsida	Plant	719	688
Zingiber zerumbet	Liliopsida	Plant	43	23
Zinnia peruviana	Magnoliopsida	Plant	1170	295
Zizania latifolia	Liliopsida	Plant	69	26
Ziziphus mauritiana	Magnoliopsida	Plant	34	1043

Table S3. Full list of GBIF DOIs for downloading occurrence records used to sample target-

group background sites, with classes and countries as ISO3 corresponding to each DOI link,

semi-colon separated.

DOI	Class	ISO3
https://doi.org/10.15468/dl.scehaa	Insecta	SWE
https://doi.org/10.15468/dl.3yjkmb	Insecta	FRA
https://doi.org/10.15468/dl.bsm8hv	Insecta	GBR
https://doi.org/10.15468/dl.24awy7	Insecta	USA
https://doi.org/10.15468/dl.5bks73	Insecta	CAN
https://doi.org/10.15468/dl.q57a8f	Insecta	DEU
https://doi.org/10.15468/dl.93aa9t	Insecta	ITA
https://doi.org/10.15468/dl.2w5ybx	Insecta	CZE;RUS;BGR;CHL;GRC;HUN;KOR;CHN;UKR;T UR;SRB;GEO;SVK;ROU;SVN;HRV
https://doi.org/10.15468/dl.9evn73	Insecta	NLD
https://doi.org/10.15468/dl.mgppp4	Insecta	DNK
https://doi.org/10.15468/dl.9kerem	Insecta	PRT
https://doi.org/10.15468/dl.a2epjr	Insecta	ZAF;ISR;MEX;ARG;BLR;IDN;BRA;DZA;LKA;IN D;MTQ;PHL;THA;TWN;GUF;ISL;PER;PRI;KAZ;I RN;CRI;DOM;HTI;COL;MYS;BRN;LTU;CUB;TT O;MKD;MOZ;AFG;BOL;MNE;KHM;MAR;PRY;A RM;MDA;GTM;PAN;JOR;LVA;CYP;SYR;VNM
https://doi.org/10.15468/dl.zqv7zc	Insecta	CHE
https://doi.org/10.15468/dl.t3retf	Insecta	BEL
https://doi.org/10.15468/dl.hg3x44	Insecta	ESP
https://doi.org/10.15468/dl.rgnegs	Insecta	AUS
https://doi.org/10.15468/dl.v22rjk	Insecta	AUT
https://doi.org/10.15468/dl.9a8f5k	Insecta	POL
https://doi.org/10.15468/dl.eeb65r	Insecta	NZL
https://doi.org/10.15468/dl.s2z5d9	Insecta	NOR
https://doi.org/10.15468/dl.ptj88b	Insecta	FIN
https://doi.org/10.15468/dl.cz5dxs	Insecta	UZB;MNG;ALB
https://doi.org/10.15468/dl.q498ed	Insecta	IRL
https://doi.org/10.15468/dl.kt7vb3	Insecta	LUX
https://doi.org/10.15468/dl.jvtb89	Insecta	JPN
https://doi.org/10.15468/dl.8hd77s	Insecta	EST
https://doi.org/10.15468/dl.smwn42	Mammalia	SWE
https://doi.org/10.15468/dl.8w892v	Mammalia	FRA
https://doi.org/10.15468/dl.t72fra	Mammalia	IMN;NZL;MEX;RUS;SRB;BGR;NLD;ZAF;CRI;TC D;AUS;LKA;TWN;PRT;LUX;GEO;BGD;SVK;DZ A;BWA;SDN;BLR;HUN;NAM;SVN;HND;MNG;R OU;BTN;LTU;SLV;UKR;PAN;EST;ALB;AZE;EG Y;KAZ;LVA;GTM;ETH;JEY;OMN;AND;MKD;PE R;MAR;UZB;KHM;BLZ;KGZ;NIC;TUN;MNE;CO L;ECU;BIH;ESH;NER
https://doi.org/10.15468/dl.gyk7hf	Mammalia	GBR
https://doi.org/10.15468/dl.ujydgk	Mammalia	USA
https://doi.org/10.15468/dl.ef9445	Mammalia	CAN
https://doi.org/10.15468/dl.akg67z	Mammalia	DEU

https://doi.org/10.15468/dl.n7yhx4	Mammalia	ARG;AUT;ITA;IND;MYS;CHL;POL;JPN;FIN;BRA ;IRL;KEN;ISR;CHN;CHE;IRN;PRY;GHA;CIV;IDN ;UGA
https://doi.org/10.15468/dl.qdu7dp	Mammalia	URY;THA;KOR;NPL;CZE;HRV;VNM;GRC;TUR;P AK;MMR;IRQ;ZMB;SEN;GMB
https://doi.org/10.15468/dl.hu69jv	Mammalia	DNK
https://doi.org/10.15468/dl.ym3k5p	Mammalia	ESP
https://doi.org/10.15468/dl.d4fdrv	Mammalia	BEL
https://doi.org/10.15468/dl.md73q3	Mammalia	NOR
https://doi.org/10.15468/dl.54jtyn	Pinopsida	FRA;ZAF;PRT;USA;NZL;ITA;ISR;AUS;ESP;IRN; GRC;BEL;MEX;PSE;GBR;TUR;MLT;ALB;SYR;C YP;LBN;CHE;MAR;DZA;JOR
https://doi.org/10.15468/dl.bnhhfx	Polypodiopsida	ZAF;TWN;CHN;PNG;ESP;PRT;ITA;MEX;IDN;EC U;PER;COL;MYS;PHL;MDG;BRA
https://doi.org/10.15468/dl.pwhn5q	Polypodiopsida	AUS
https://doi.org/10.15468/dl.ypgzhd	Polypodiopsida	GBR
https://doi.org/10.15468/dl.gs3vd7	Polypodiopsida	DEU;HKG;BEL;CHL;REU;ASM;URY;MYT;MAR; CYP;CAN;GRC;IRL;ISR
https://doi.org/10.15468/dl.qd957y	Polypodiopsida	USA
https://doi.org/10.15468/dl.2xb4p6	Polypodiopsida	NZL
https://doi.org/10.15468/dl.e78gvx	Polypodiopsida	FRA
https://doi.org/10.15468/dl.dw8b63	Polypodiopsida	JPN
https://doi.org/10.15468/dl.pu2hhr	Polypodiopsida	NLD
https://doi.org/10.15468/dl.rprua9	Polypodiopsida	VNM;ARG;KHM;SWZ;KOR;MOZ;CPV;GTM;NPL ;TGO;ZWE;PRY;GNQ
https://doi.org/10.15468/dl.yu9s5k	Reptilia	USA
https://doi.org/10.15468/dl.tceyhv	Reptilia	PAN;ZAF;HND;CRI;TZA;CUB;PRI;TWN;COL;BR A;GTM;CHN;ECU;PER;ARG
https://doi.org/10.15468/dl.dnxzqe	Reptilia	MEX
https://doi.org/10.15468/dl.kxtujh	Reptilia	IND;AUS;BHS;KHM;NCL;PNG;JAM;REU;MMR;P HL;NPL;LAO;BGD;BTN
https://doi.org/10.15468/dl.nzjm8h	Reptilia	BLZ;THA;NIC;VNM;GUY;MOZ;SLV;PRY;STP;G HA;ZWE;SUR;NGA;BOL;VEN;ZMB;GUF;SWZ;C MR;SEN;GAB;COD
https://doi.org/10.15468/dl.mgrq9f	Aves	SWE
https://doi.org/10.15468/dl.qwadev	Aves	SWE
https://doi.org/10.15468/dl.qvhyh6	Aves	SWE
https://doi.org/10.15468/dl.789zrr	Aves	SWE
https://doi.org/10.15468/dl.tpfxv4	Aves	SWE
https://doi.org/10.15468/dl.h6ys6p	Aves	SWE
https://doi.org/10.15468/dl.eurguf	Aves	SWE
https://doi.org/10.15468/dl.8kguu5	Aves	SWE
https://doi.org/10.15468/dl.2mrcvp	Aves	SWE
https://doi.org/10.15468/dl.pgspdw	Aves	SWE
https://doi.org/10.15468/dl.rd8ns4	Aves	ZAF
https://doi.org/10.15468/dl.93tn2f	Aves	LKA; IHA;MYI;BGD;MYS;REU;ISR;KAZ;MNG; ARE;SAU;NPL;MDG;LAO;KHM;NCL;OMN;VNM ;MUS;MMR;IRN;UZB;AFG;KGZ;KWT;JOR;BTN; PAK;IRQ;LBN;TJK;SYR;TKM;LUX;BHS;EST
https://doi.org/10.15468/dl.3pyptv	Aves	IND
https://doi.org/10.15468/dl.yg5y25	Aves	USA
https://doi.org/10.15468/dl.r8yrh3	Aves	USA
https://doi.org/10.15468/dl.btmhg7	Aves	USA
https://doi.org/10.15468/dl.728cmq	Aves	USA

https://doi.org/10.15468/dLivyshij Aves USA https://doi.org/10.15468/dLivysqi Aves USA https://doi.org/10.15468/dLivysqi Aves USA https://doi.org/10.15468/dLivysqi Aves USA https://doi.org/10.15468/dLivysqi Aves AUS https://doi.org/10.15468/dLivysqi Aves AUS https://doi.org/10.15468/dLivysqi Aves AUS https://doi.org/10.15468/dLivysqi Aves AUS https://doi.org/10.15468/dLivysqi Aves NZL https://doi.org/10.15468/dLivysqi Aves NZL	https://doi.org/10.15468/dl.58bpns	Aves	USA
https://doi.org/10.15468/dl.exteyf Aves USA https://doi.org/10.15468/dl.extexf Aves AUS https://doi.org/10.15468/dl.extexf Aves AUS https://doi.org/10.15468/dl.extexf Aves RUS https://doi.org/10.15468/dl.extexf Aves RUS https://doi.org/10.15468/dl.extexf Aves RUS https://doi.org/10.15468/dl.extexf Aves RUS	https://doi.org/10.15468/dl.jy4epc	Aves	USA
https://doi.org/10.15468/dl.2storf Aves USA https://doi.org/10.15468/dl.2storf Aves USA https://doi.org/10.15468/dl.4stank Aves USA https://doi.org/10.15468/dl.4stank Aves USA https://doi.org/10.15468/dl.4stank Aves USA https://doi.org/10.15468/dl.1stankj09 Aves USA https://doi.org/10.15468/dl.7sbgd3 Aves USA https://doi.org/10.15468/dl.6styaq7 Aves USA https://doi.org/10.15468/dl.6styaq7 Aves USA https://doi.org/10.15468/dl.6styaq7 Aves USA https://doi.org/10.15468/dl.msbun Aves USA https://doi.org/10.15468/dl.estyaq7 Aves AUS https://doi.org/10.15468/dl.estyaq2 Aves AUS https://doi.org/10.15468/dl.estyaq2 Aves AUS https://doi.org/10.15468/dl.estyaq3 Aves NZL https://doi.org/10.15468/dl.estyd4 Aves NZL https://doi.org/10.15468/dl.estyd4 Aves RUS https://doi.org/10.15468/dl.estyd4 Aves FR	https://doi.org/10.15468/dl.cquss5	Aves	USA
$\begin{split} \label{eq:heat} \begin{array}{llllllllllllllllllllllllllllllllllll$	https://doi.org/10.15468/dl.vjwhjj	Aves	USA
https://doi.org/10.15468/dl.e8bu9y Aves USA https://doi.org/10.15468/dl.k4ank Aves USA https://doi.org/10.15468/dl.k4ank Aves USA https://doi.org/10.15468/dl.37bbj6 Aves USA https://doi.org/10.15468/dl.37bbj4 Aves USA https://doi.org/10.15468/dl.46ycq7 Aves USA https://doi.org/10.15468/dl.46ycq7 Aves USA https://doi.org/10.15468/dl.efwasn Aves USA https://doi.org/10.15468/dl.efwasn Aves USA https://doi.org/10.15468/dl.erwasn Aves AUS https://doi.org/10.15468/dl.erwasn Aves AUS https://doi.org/10.15468/dl.erwasn Aves AUS https://doi.org/10.15468/dl.erwasn Aves NLL https://doi.org/10.15468/dl.acwasn Aves NLL https://doi.org/10.15468/dl.ache68 Aves NLL https://doi.org/10.15468/dl.ache64 Aves FRA https://doi.org/10.15468/dl.ache64 Aves FRA https://doi.org/10.15468/dl.ache64 Aves FRA	https://doi.org/10.15468/dl.2setyf	Aves	USA
https://doi.org/10.15468/dl.tk4ank Aves USA https://doi.org/10.15468/dl.Ts/bgb/h Aves USA https://doi.org/10.15468/dl.Ts/bgb/h Aves USA https://doi.org/10.15468/dl.Ts/bgu3 Aves USA https://doi.org/10.15468/dl.Ts/bgu3 Aves USA https://doi.org/10.15468/dl.Ts/bgu3 Aves USA https://doi.org/10.15468/dl.Ts/bgu3 Aves USA https://doi.org/10.15468/dl.Fs/bgu3 Aves USA https://doi.org/10.15468/dl.arMay Aves AUS https://doi.org/10.15468/dl.erx/vay Aves AUS https://doi.org/10.15468/dl.erx/vay Aves AUS https://doi.org/10.15468/dl.arep36 Aves DEU https://doi.org/10.15468/dl.arep36 Aves DEU https://doi.org/10.15468/dl.arep36 Aves NIZL https://doi.org/10.15468/dl.arep36 Aves RUS https://doi.org/10.15468/dl.arep36 Aves RUS https://doi.org/10.15468/dl.arep36 Aves RUS https://doi.org/10.15468/dl.arep36 Aves	https://doi.org/10.15468/dl.e8bu9y	Aves	USA
https://doi.org/10.15468/dl.xmbj69 Aves USA https://doi.org/10.15468/dl.Spbgh Aves USA https://doi.org/10.15468/dl.Spbgh Aves USA https://doi.org/10.15468/dl.en%ua Aves USA https://doi.org/10.15468/dl.en%ua Aves USA https://doi.org/10.15468/dl.en%ua Aves USA https://doi.org/10.15468/dl.en%ua Aves USA https://doi.org/10.15468/dl.gywuy2 Aves AUS https://doi.org/10.15468/dl.gywuy2 Aves AUS https://doi.org/10.15468/dl.gywuy2 Aves AUS https://doi.org/10.15468/dl.gywuy2 Aves AUS https://doi.org/10.15468/dl.gywuy4 Aves AUS https://doi.org/10.15468/dl.gys288 Aves NZL https://doi.org/10.15468/dl.gywu4 Aves RUS https://doi.org/10.15468/dl.gywu4 Aves RUS https://doi.org/10.15468/dl.gybu4 Aves FRA https://doi.org/10.15468/dl.kybu7 Aves FRA https://doi.org/10.15468/dl.kybu7 Aves NLD	https://doi.org/10.15468/dl.tk4ank	Aves	USA
https://doi.org/10.15468/dl.73bgh Aves USA https://doi.org/10.15468/dl.73bga Aves USA https://doi.org/10.15468/dl.cbe/qc7 Aves USA https://doi.org/10.15468/dl.cbe/qc7 Aves USA https://doi.org/10.15468/dl.cbr/80 Aves USA https://doi.org/10.15468/dl.cbr/80 Aves USA https://doi.org/10.15468/dl.cbr/80 Aves AUS https://doi.org/10.15468/dl.cbr/82 Aves AUS https://doi.org/10.15468/dl.cbr/82 Aves AUS https://doi.org/10.15468/dl.cbr/84 Aves AUS https://doi.org/10.15468/dl.aveq036 Aves NZL https://doi.org/10.15468/dl.aveq036 Aves NZL https://doi.org/10.15468/dl.aveq046 Aves RUS https://doi.org/10.15468/dl.aveq046 Aves FRA https://doi.org/10.15468/dl.aveq04 Aves FRA https://doi.org/10.15468/dl.avef06 Aves NLD https://doi.org/10.15468/dl.avef06 Aves NLD https://doi.org/10.15468/dl.avef06 Aves NLD <td>https://doi.org/10.15468/dl.xmbi69</td> <td>Aves</td> <td>USA</td>	https://doi.org/10.15468/dl.xmbi69	Aves	USA
$\begin{split} eq:https://doi.org/10.15468/d1.93xkf3 Aves USA \\ https://doi.org/10.15468/d1.exbgcq7 Aves AUS \\ https://doi.org/10.15468/d1.exbgcq8 Aves AUS \\ https://doi.org/10.15468/d1.exdg2 Aves AUS \\ https://doi.org/10.15468/d1.exdg2 Aves AUS \\ https://doi.org/10.15468/d1.exdg4 Aves NZL \\ https://doi.org/10.15468/d1.exbg6 Aves NZL \\ https://doi.org/10.15468/d1.exbg6 Aves FRA \\ https://doi.org/10.15468/d1.exbg6 Aves FRA \\ https://doi.org/10.15468/d1.exbg6 Aves CHN \\ https://doi.org/10.15468/d1.exbg6 Aves NLD \\ https://doi.org/10.15468/d1.exbg6 Aves NLD \\ https://doi.org/10.15468/d1.k2rbf6 Aves NLD \\ https://doi.org/10.15468/d1.k2rbf6 Aves NLD \\ https://doi.org/10.15468/d1.k2rbf Aves NLD \\ https://doi.org/10.15468/d1.k2rbf Aves BEL \\ https://doi.org/10.15468/d1.k2rbf Aves BEL \\ https://doi.org/10.15468/d1.k2rbf Aves BEL \\ https://doi.org/10.15468/d1.k2rbf Aves AUT \\ https://doi.org/10.15468/d1.k2rbf Aves AUT \\ https://doi.org/10.15468/d1.k2rbf Aves GBR \\ https://doi.org/10.15468/$	https://doi.org/10.15468/dl.f3pbgh	Aves	USA
https://doi.org/10.15468/dl.rxbgu3 Aves USA https://doi.org/10.15468/dl.rxbgu3 Aves USA https://doi.org/10.15468/dl.em8usn Aves USA https://doi.org/10.15468/dl.em8usn Aves USA https://doi.org/10.15468/dl.em8usn Aves AUS https://doi.org/10.15468/dl.em8ugn Aves AUS https://doi.org/10.15468/dl.exyvay Aves AUS https://doi.org/10.15468/dl.exyvay Aves AUS https://doi.org/10.15468/dl.exyvay Aves AUS https://doi.org/10.15468/dl.exyvay Aves RUS https://doi.org/10.15468/dl.exybay Aves RUS https://doi.org/10.15468/dl.exybay Aves RUS https://doi.org/10.15468/dl.exybay Aves RRA https://doi.org/10.15468/dl.exybay Aves FRA https://doi.org/10.15468/dl.exybay Aves FRA https://doi.org/10.15468/dl.exybay Aves NLD https://doi.org/10.15468/dl.exybay Aves NLD https://doi.org/10.15468/dl.exybay Aves NLD	https://doi.org/10.15468/dl.93xkf3	Aves	USA
Intps://doi.org/10.15468/dl.7xbgu3 Aves USA https://doi.org/10.15468/dl.emSusn Aves USA https://doi.org/10.15468/dl.emSusn Aves USA https://doi.org/10.15468/dl.koftknc Aves AUS https://doi.org/10.15468/dl.enkdugz Aves AUS https://doi.org/10.15468/dl.enkdugz Aves AUS https://doi.org/10.15468/dl.enxdugz Aves AUS https://doi.org/10.15468/dl.enxdugz Aves AUS https://doi.org/10.15468/dl.enxdugz Aves NZL https://doi.org/10.15468/dl.avprot4 Aves RUS https://doi.org/10.15468/dl.avprot4 Aves RUS https://doi.org/10.15468/dl.avprot4 Aves RUS https://doi.org/10.15468/dl.avprot4 Aves FRA https://doi.org/10.15468/dl.avprot4 Aves FRA https://doi.org/10.15468/dl.avprot4 Aves NLD https://doi.org/10.15468/dl.krpfP Aves NLD https://doi.org/10.15468/dl.krpfP Aves NLD https://doi.org/10.15468/dl.krpfP Aves NL	https://doi.org/10.15468/dl.e6vca7	Aves	USA
https://doi.org/10.15468/dl.em8usnAvesUSAhttps://doi.org/10.15468/dl.efwBncAvesUSAhttps://doi.org/10.15468/dl.ewwLgzAvesAUShttps://doi.org/10.15468/dl.ewwLgzAvesAUShttps://doi.org/10.15468/dl.ewwLgzAvesAUShttps://doi.org/10.15468/dl.ewwLgzAvesAUShttps://doi.org/10.15468/dl.ewgLg2AvesAUShttps://doi.org/10.15468/dl.exyuayAvesAUShttps://doi.org/10.15468/dl.exyuayAvesAUShttps://doi.org/10.15468/dl.exyuayAvesNZLhttps://doi.org/10.15468/dl.avwa4AvesRUShttps://doi.org/10.15468/dl.avwa4AvesFRAhttps://doi.org/10.15468/dl.avua4AvesFRAhttps://doi.org/10.15468/dl.avua4AvesFRAhttps://doi.org/10.15468/dl.avua4AvesFRAhttps://doi.org/10.15468/dl.avua4AvesNLDhttps://doi.org/10.15468/dl.avua4AvesNLDhttps://doi.org/10.15468/dl.Avua4AvesNLDhttps://doi.org/10.15468/dl.4vua4AvesNLDhttps://doi.org/10.15468/dl.4vua4AvesBELhttps://doi.org/10.15468/dl.4vua4AvesBELhttps://doi.org/10.15468/dl.4vua4AvesCEEhttps://doi.org/10.15468/dl.4vua4AvesCEEhttps://doi.org/10.15468/dl.4vua4AvesCEEhttps://doi.org/10.15468/dl.4vua4AvesGBRhttps://doi.org/10.15468/dl.avua7AvesGBRhttps://doi.org/10.15468/dl.avua7Av	https://doi.org/10.15468/dl.7xbgu3	Aves	USA
Intps://doi.org/10.15468/dl.forl8acAvesUSAhttps://doi.org/10.15468/dl.arvac3AvesAUShttps://doi.org/10.15468/dl.arvac3AvesAUShttps://doi.org/10.15468/dl.arvac3AvesAUShttps://doi.org/10.15468/dl.arvac3AvesAUShttps://doi.org/10.15468/dl.arvac3AvesAUShttps://doi.org/10.15468/dl.arvac3AvesAUShttps://doi.org/10.15468/dl.sevadAvesNZLhttps://doi.org/10.15468/dl.sevadAvesRUShttps://doi.org/10.15468/dl.sevadAvesFRAhttps://doi.org/10.15468/dl.sevadAvesFRAhttps://doi.org/10.15468/dl.sevadAvesFRAhttps://doi.org/10.15468/dl.sevadAvesCHNhttps://doi.org/10.15468/dl.sevadAvesNLDhttps://doi.org/10.15468/dl.sevadAvesNLDhttps://doi.org/10.15468/dl.sevadAvesNLDhttps://doi.org/10.15468/dl.sevadAvesNLDhttps://doi.org/10.15468/dl.vsyvadAvesBELhttps://doi.org/10.15468/dl.vsyvadAvesBELhttps://doi.org/10.15468/dl.vsyvadAvesCHEhttps://doi.org/10.15468/dl.vsyvadAvesCHEhttps://doi.org/10.15468/dl.vsyvadAvesCHEhttps://doi.org/10.15468/dl.vsyvadAvesCHEhttps://doi.org/10.15468/dl.rsyvadAvesCHEhttps://doi.org/10.15468/dl.rsyvadAvesGBRhttps://doi.org/10.15468/dl.rsyvadAvesFINhttps://doi.org/10.15468/dl.rsyvad <td>https://doi.org/10.15468/dl.em8usn</td> <td>Aves</td> <td>USA</td>	https://doi.org/10.15468/dl.em8usn	Aves	USA
Intps://doi.org/10.15468/dl.aryua3 Aves AUS https://doi.org/10.15468/dl.aryua3 Aves AUS https://doi.org/10.15468/dl.aryua3 Aves AUS https://doi.org/10.15468/dl.aryua3 Aves AUS https://doi.org/10.15468/dl.acqu36 Aves AUS https://doi.org/10.15468/dl.acqu36 Aves AUS https://doi.org/10.15468/dl.acqu36 Aves NZL https://doi.org/10.15468/dl.acqu36 Aves RUS https://doi.org/10.15468/dl.acqu36 Aves FRA https://doi.org/10.15468/dl.arbde Aves FRA https://doi.org/10.15468/dl.arbde Aves FRA https://doi.org/10.15468/dl.arbde Aves NLD https://doi.org/10.15468/dl.arbde Aves NLD https://doi.org/10.15468/dl.arbde Aves NLD https://doi.org/10.15468/dl.arbde Aves BEL	https://doi.org/10.15468/dl.6rh8nc	Aves	USA
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	https://doi.org/10.15468/dl.kywuv?	Aves	AUS
Imps://doi.org/10.15468/dl.cmkdgzAvesAUShttps://doi.org/10.15468/dl.gqs288AvesAUShttps://doi.org/10.15468/dl.ucqq36AvesDEUhttps://doi.org/10.15468/dl.ucqq36AvesNZLhttps://doi.org/10.15468/dl.ucqq36AvesNZLhttps://doi.org/10.15468/dl.avanu4AvesRUShttps://doi.org/10.15468/dl.avanu4AvesFRAhttps://doi.org/10.15468/dl.avanu4AvesFRAhttps://doi.org/10.15468/dl.avanu4AvesFRAhttps://doi.org/10.15468/dl.stafdeAvesCHNhttps://doi.org/10.15468/dl.stafdeAvesCHNhttps://doi.org/10.15468/dl.stafdeAvesNLDhttps://doi.org/10.15468/dl.stafdeAvesNLDhttps://doi.org/10.15468/dl.stafdeAvesNLDhttps://doi.org/10.15468/dl.stafdeAvesNLDhttps://doi.org/10.15468/dl.stafdeAvesBELhttps://doi.org/10.15468/dl.stafdeAvesBELhttps://doi.org/10.15468/dl.stafdeAvesCZEhttps://doi.org/10.15468/dl.stafdeAvesCZEhttps://doi.org/10.15468/dl.stafdeAvesCHEhttps://doi.org/10.15468/dl.gl.glabedAvesGBRhttps://doi.org/10.15468/dl.stafdeAvesGBRhttps://doi.org/10.15468/dl.stafdeAvesFINhttps://doi.org/10.15468/dl.stafdeAvesFINhttps://doi.org/10.15468/dl.stafdeAvesFINhttps://doi.org/10.15468/dl.stafdeAvesFINhttps://doi.org/10.15468/d	https://doi.org/10.15468/dl a7vac3	Aves	AUS
Imps://doi.org/10.15468/dl.ezyvayAvesAUShttps://doi.org/10.15468/dl.ezyvayAvesAUShttps://doi.org/10.15468/dl.zyva4AvesDEUhttps://doi.org/10.15468/dl.zyva4AvesNZLhttps://doi.org/10.15468/dl.zyva4AvesRUShttps://doi.org/10.15468/dl.zyva4AvesFRAhttps://doi.org/10.15468/dl.zyva4AvesFRAhttps://doi.org/10.15468/dl.zyva4AvesFRAhttps://doi.org/10.15468/dl.zyva4AvesFRAhttps://doi.org/10.15468/dl.zyva4AvesNLDhttps://doi.org/10.15468/dl.zyva4AvesNLDhttps://doi.org/10.15468/dl.zyva4AvesNLDhttps://doi.org/10.15468/dl.zyva4AvesNLDhttps://doi.org/10.15468/dl.zyva4AvesNLDhttps://doi.org/10.15468/dl.yv22xxAvesBELhttps://doi.org/10.15468/dl.yv22xxAvesBELhttps://doi.org/10.15468/dl.yv22xxAvesBELhttps://doi.org/10.15468/dl.yv22xxAvesGBRhttps://doi.org/10.15468/dl.ga39bxAvesCZEhttps://doi.org/10.15468/dl.gabetdAvesGBRhttps://doi.org/10.15468/dl.ztavz7AvesGBRhttps://doi.org/10.15468/dl.ztavz7AvesGBRhttps://doi.org/10.15468/dl.ztavz7AvesGBRhttps://doi.org/10.15468/dl.ztavz7AvesFINhttps://doi.org/10.15468/dl.ztavz7AvesFINhttps://doi.org/10.15468/dl.ztavz7AvesFINhttps://doi.org/10.15468/dl.ztavz7 <t< td=""><td>https://doi.org/10.15468/dl.cmkdgz</td><td>Aves</td><td>AUS</td></t<>	https://doi.org/10.15468/dl.cmkdgz	Aves	AUS
Intps://doi.org/10.15468/dl.gqs288AvesAUShttps://doi.org/10.15468/dl.gqs284AvesDEUhttps://doi.org/10.15468/dl.gqs284AvesNZLhttps://doi.org/10.15468/dl.svn44AvesRUShttps://doi.org/10.15468/dl.svn44AvesFRAhttps://doi.org/10.15468/dl.atbid6AvesFRAhttps://doi.org/10.15468/dl.atbid6AvesFRAhttps://doi.org/10.15468/dl.atbid6AvesFRAhttps://doi.org/10.15468/dl.atbid6AvesNLDhttps://doi.org/10.15468/dl.ktfd6AvesNLDhttps://doi.org/10.15468/dl.ktfd7AvesNLDhttps://doi.org/10.15468/dl.ktfd7AvesNLDhttps://doi.org/10.15468/dl.sv2zzmAvesBELhttps://doi.org/10.15468/dl.v52zzmAvesBELhttps://doi.org/10.15468/dl.v52zmAvesBELhttps://doi.org/10.15468/dl.v52zmAvesCZEhttps://doi.org/10.15468/dl.v528AvesCZEhttps://doi.org/10.15468/dl.y58AvesCZEhttps://doi.org/10.15468/dl.gnbtdAvesCBRhttps://doi.org/10.15468/dl.gnbtdAvesCBRhttps://doi.org/10.15468/dl.gnbtdAvesGBRhttps://doi.org/10.15468/dl.atava7AvesGBRhttps://doi.org/10.15468/dl.gnbtdAvesFINhttps://doi.org/10.15468/dl.gnbtdAvesFINhttps://doi.org/10.15468/dl.gnbtdAvesFINhttps://doi.org/10.15468/dl.gnbtgAAvesFINhttps://doi.org/10.15468/dl.gnbtgAAve	https://doi.org/10.15468/dl.ezuvav	Aves	AUS
Intps://doi.org/10.15468/d1.ucq36AvesDEUhttps://doi.org/10.15468/d1.ucq36AvesNZLhttps://doi.org/10.15468/d1.acq36AvesRUShttps://doi.org/10.15468/d1.acq36AvesFRAhttps://doi.org/10.15468/d1.acq36AvesFRAhttps://doi.org/10.15468/d1.acq36AvesFRAhttps://doi.org/10.15468/d1.acq36AvesFRAhttps://doi.org/10.15468/d1.acq36AvesCHNhttps://doi.org/10.15468/d1.acq16AvesNLDhttps://doi.org/10.15468/d1.acq16AvesNLDhttps://doi.org/10.15468/d1.acq179AvesNLDhttps://doi.org/10.15468/d1.452pjbAvesNLDhttps://doi.org/10.15468/d1.452ukmAvesBELhttps://doi.org/10.15468/d1.452uyiAvesBELhttps://doi.org/10.15468/d1.452uyiAvesAUThttps://doi.org/10.15468/d1.acq178AvesAUThttps://doi.org/10.15468/d1.acq2AvesCHEhttps://doi.org/10.15468/d1.acq2AvesCHEhttps://doi.org/10.15468/d1.acq2AvesGBRhttps://doi.org/10.15468/d1.acq2AvesGBRhttps://doi.org/10.15468/d1.acq2AvesFINhttps://doi.org/10.15468/d1.acq2AvesFINhttps://doi.org/10.15468/d1.acq2AvesFINhttps://doi.org/10.15468/d1.acq2AvesGBRhttps://doi.org/10.15468/d1.acq2AvesFINhttps://doi.org/10.15468/d1.acq2AvesFINhttps://doi.org/10.15468/d1.acq2AvesFIN<	https://doi.org/10.15468/dl.gas288	Aves	AUS
Intps://doi.org/10.15468/dl.zche68AvesNZLhttps://doi.org/10.15468/dl.zche68AvesRUShttps://doi.org/10.15468/dl.zche68AvesFRAhttps://doi.org/10.15468/dl.zche68AvesFRAhttps://doi.org/10.15468/dl.atebj6AvesFRAhttps://doi.org/10.15468/dl.atebj6AvesFRAhttps://doi.org/10.15468/dl.ktprdeAvesCHNhttps://doi.org/10.15468/dl.ktprdeAvesNLDhttps://doi.org/10.15468/dl.ktprdeAvesNLDhttps://doi.org/10.15468/dl.ktprdeAvesNLDhttps://doi.org/10.15468/dl.ktprdeAvesBELhttps://doi.org/10.15468/dl.ktprdeAvesBELhttps://doi.org/10.15468/dl.ktprdeAvesBELhttps://doi.org/10.15468/dl.ktprdeAvesBELhttps://doi.org/10.15468/dl.stprdeAvesCZEhttps://doi.org/10.15468/dl.p39bxAvesCZEhttps://doi.org/10.15468/dl.gubetdAvesCHEhttps://doi.org/10.15468/dl.framaaAvesGBRhttps://doi.org/10.15468/dl.framaaAvesGBRhttps://doi.org/10.15468/dl.framaaAvesGBRhttps://doi.org/10.15468/dl.framaAvesFINhttps://doi.org/10.15468/dl.framaAvesGBRhttps://doi.org/10.15468/dl.framaAvesGBRhttps://doi.org/10.15468/dl.framaAvesFINhttps://doi.org/10.15468/dl.framaAvesFINhttps://doi.org/10.15468/dl.framaAvesFINhttps://doi.org/10.15468/dl.frama </td <td>https://doi.org/10.15468/dl.ucga36</td> <td>Aves</td> <td>DEU</td>	https://doi.org/10.15468/dl.ucga36	Aves	DEU
Intgs://doi.org/10.15468/dl.svnva4AvesRUShttps://doi.org/10.15468/dl.svnva4AvesRUShttps://doi.org/10.15468/dl.avpideAvesFRAhttps://doi.org/10.15468/dl.avpideAvesFRAhttps://doi.org/10.15468/dl.avpideAvesCHNhttps://doi.org/10.15468/dl.ktpideAvesCHNhttps://doi.org/10.15468/dl.ktpideAvesNLDhttps://doi.org/10.15468/dl.ktpideAvesNLDhttps://doi.org/10.15468/dl.stpideAvesNLDhttps://doi.org/10.15468/dl.stpideAvesNLDhttps://doi.org/10.15468/dl.stpideAvesBELhttps://doi.org/10.15468/dl.stpideAvesBELhttps://doi.org/10.15468/dl.stpideAvesBELhttps://doi.org/10.15468/dl.rkpydeAvesTURhttps://doi.org/10.15468/dl.rkpydeAvesCZEhttps://doi.org/10.15468/dl.rkpydeAvesCZEhttps://doi.org/10.15468/dl.rkpdeAvesCHEhttps://doi.org/10.15468/dl.gluetdAvesCHEhttps://doi.org/10.15468/dl.gluetdAvesCBRhttps://doi.org/10.15468/dl.gluetdAvesGBRhttps://doi.org/10.15468/dl.gluetdAvesFINhttps://doi.org/10.15468/dl.gluetdAvesFINhttps://doi.org/10.15468/dl.gluetdAvesFINhttps://doi.org/10.15468/dl.gluetdAvesFINhttps://doi.org/10.15468/dl.gluetdAvesFINhttps://doi.org/10.15468/dl.gluetdAvesFINhttps://doi.org/10.15468/dl.g	https://doi.org/10.15468/dl.acha68	Aves	NZI
Intips://doi.org/10.15468/dl.r43ucAvesFRAhttps://doi.org/10.15468/dl.r3jdewAvesFRAhttps://doi.org/10.15468/dl.r3jdewAvesFRAhttps://doi.org/10.15468/dl.r5jdewAvesFRAhttps://doi.org/10.15468/dl.r5jdewAvesCHNhttps://doi.org/10.15468/dl.r5jdewAvesNLDhttps://doi.org/10.15468/dl.r5jbeAvesNLDhttps://doi.org/10.15468/dl.r5jbeAvesNLDhttps://doi.org/10.15468/dl.r5jbeAvesBELhttps://doi.org/10.15468/dl.r5jbeAvesBELhttps://doi.org/10.15468/dl.r5jbeAvesBELhttps://doi.org/10.15468/dl.r5jbeAvesBELhttps://doi.org/10.15468/dl.rysyq6AvesTURhttps://doi.org/10.15468/dl.rysyq6AvesCZEhttps://doi.org/10.15468/dl.rysyq6AvesCZEhttps://doi.org/10.15468/dl.rysyq6AvesCHEhttps://doi.org/10.15468/dl.rysyq6AvesCBRhttps://doi.org/10.15468/dl.rfmaaAvesGBRhttps://doi.org/10.15468/dl.frageAvesGBRhttps://doi.org/10.15468/dl.frageAvesFINhttps://doi.org/10.15468/dl.frageAvesFINhttps://doi.org/10.15468/dl.frageAvesFINhttps://doi.org/10.15468/dl.frageAvesFINhttps://doi.org/10.15468/dl.gampAvesFINhttps://doi.org/10.15468/dl.gampAvesDNKhttps://doi.org/10.15468/dl.be/kgzAvesDNKhttps://doi.org/10.15468/dl.be/kgaA	https://doi.org/10.15468/dl.zche68	Aves	
Intps://doi.org/10.15468/dl.rk3dcAvesFRAhttps://doi.org/10.15468/dl.rk3dewAvesFRAhttps://doi.org/10.15468/dl.rk7deAvesFRAhttps://doi.org/10.15468/dl.rk7deAvesCHNhttps://doi.org/10.15468/dl.rk7fPAvesNLDhttps://doi.org/10.15468/dl.rk7fPAvesNLDhttps://doi.org/10.15468/dl.rk2frPAvesNLDhttps://doi.org/10.15468/dl.rk2frPAvesNLDhttps://doi.org/10.15468/dl.rk2rpbAvesBELhttps://doi.org/10.15468/dl.rk2surjAvesBELhttps://doi.org/10.15468/dl.rk3surjAvesBELhttps://doi.org/10.15468/dl.rk3surjAvesTURhttps://doi.org/10.15468/dl.rk3surjAvesCZEhttps://doi.org/10.15468/dl.rksurj6AvesCHEhttps://doi.org/10.15468/dl.guetdAvesCBRhttps://doi.org/10.15468/dl.rkmaaAvesGBRhttps://doi.org/10.15468/dl.framaAvesGBRhttps://doi.org/10.15468/dl.framaAvesGBRhttps://doi.org/10.15468/dl.framaAvesFINhttps://doi.org/10.15468/dl.frameAvesFINhttps://doi.org/10.15468/dl.frameAvesFINhttps://doi.org/10.15468/dl.gedmAvesFINhttps://doi.org/10.15468/dl.gedmAvesFINhttps://doi.org/10.15468/dl.gedmAvesDNKhttps://doi.org/10.15468/dl.gedmAvesDNKhttps://doi.org/10.15468/dl.gedmAvesDNKhttps://doi.org/10.15468/dl.gevexAve	https://doi.org/10.15468/di.sviiva4	Aves	
Inttps://doi.org/10.15468/d1.ats/jd6AvesFRAInttps://doi.org/10.15468/d1.kfz/d6AvesCHNInttps://doi.org/10.15468/d1.kfz/d6AvesNLDInttps://doi.org/10.15468/d1.kfz/ff9AvesNLDInttps://doi.org/10.15468/d1.kfz/ff9AvesNLDInttps://doi.org/10.15468/d1.kf2/jbAvesBELInttps://doi.org/10.15468/d1.452µjbAvesBELInttps://doi.org/10.15468/d1.452µjbAvesBELInttps://doi.org/10.15468/d1.454µjbAvesBELInttps://doi.org/10.15468/d1.xyvq6AvesTURInttps://doi.org/10.15468/d1.xyp76AvesAUTInttps://doi.org/10.15468/d1.xyp78AvesCZEInttps://doi.org/10.15468/d1.g1AvesCEInttps://doi.org/10.15468/d1.g1AvesCBRInttps://doi.org/10.15468/d1.g1AvesGBRInttps://doi.org/10.15468/d1.fnAvesGBRInttps://doi.org/10.15468/d1.fnAvesGBRInttps://doi.org/10.15468/d1.fnAvesFINInttps://doi.org/10.15468/d1.fnAvesFINInttps://doi.org/10.15468/d1.fnAvesFINInttps://doi.org/10.15468/d1.gnAvesFINInttps://doi.org/10.15468/d1.maw7rAvesFINInttps://doi.org/10.15468/d1.maw7rAvesFINInttps://doi.org/10.15468/d1.maw7rAvesDNKInttps://doi.org/10.15468/d1.spgaGnAvesDNKInttps://doi.org/10.15468/d1.spgaGnAvesDNKInttps://doi.org/10.15468/d1.spgaGn <t< td=""><td>hups://doi.org/10.15468/dl.n4a3uc</td><td>Aves</td><td></td></t<>	hups://doi.org/10.15468/dl.n4a3uc	Aves	
Inttps://doi.org/10.15468/dl.xfzd6eAvesFRAhttps://doi.org/10.15468/dl.xfzd6eAvesCHNhttps://doi.org/10.15468/dl.kzfrf9AvesNLDhttps://doi.org/10.15468/dl.kzfrf9AvesNLDhttps://doi.org/10.15468/dl.kzfrf9AvesNLDhttps://doi.org/10.15468/dl.kzfrf9AvesBELhttps://doi.org/10.15468/dl.kz2cukmAvesBELhttps://doi.org/10.15468/dl.x52zmAvesBELhttps://doi.org/10.15468/dl.x52zmAvesBELhttps://doi.org/10.15468/dl.xyyvq6AvesTURhttps://doi.org/10.15468/dl.xgb78AvesAUThttps://doi.org/10.15468/dl.gubedAvesCZEhttps://doi.org/10.15468/dl.gubedAvesCHEhttps://doi.org/10.15468/dl.awz7AvesGBRhttps://doi.org/10.15468/dl.awz7AvesGBRhttps://doi.org/10.15468/dl.fnTuheAvesGBRhttps://doi.org/10.15468/dl.mquav7rAvesGBRhttps://doi.org/10.15468/dl.mquav7rAvesFINhttps://doi.org/10.15468/dl.mquav7rAvesFINhttps://doi.org/10.15468/dl.bekgzAvesITAhttps://doi.org/10.15468/dl.bekgzAvesDNKhttps://doi.org/10.15468/dl.bekgzAvesDNKhttps://doi.org/10.15468/dl.bekgzAvesDNKhttps://doi.org/10.15468/dl.bekgzAvesDNKhttps://doi.org/10.15468/dl.bekgzAvesDNKhttps://doi.org/10.15468/dl.ktx97hAvesDNKhttps://doi.org/10.15468/dl.ktx97h <td>https://doi.org/10.15468/di.25jdew</td> <td>Aves</td> <td></td>	https://doi.org/10.15468/di.25jdew	Aves	
https://doi.org/10.15468/dl.tylphdAvesCHNhttps://doi.org/10.15468/dl.tylphdAvesNLDhttps://doi.org/10.15468/dl.t2ftPAvesNLDhttps://doi.org/10.15468/dl.t2pjbAvesNLDhttps://doi.org/10.15468/dl.t22ukmAvesBELhttps://doi.org/10.15468/dl.t22ukmAvesBELhttps://doi.org/10.15468/dl.t22ukmAvesBELhttps://doi.org/10.15468/dl.ty2zzmAvesBELhttps://doi.org/10.15468/dl.ty2yq6AvesTURhttps://doi.org/10.15468/dl.tygb78AvesAUThttps://doi.org/10.15468/dl.tygb78AvesCZEhttps://doi.org/10.15468/dl.guhetdAvesCHEhttps://doi.org/10.15468/dl.tryap7AvesGBRhttps://doi.org/10.15468/dl.trdmaaAvesGBRhttps://doi.org/10.15468/dl.trdma2AvesGBRhttps://doi.org/10.15468/dl.traw27AvesGBRhttps://doi.org/10.15468/dl.traw27AvesGBRhttps://doi.org/10.15468/dl.traw27AvesFINhttps://doi.org/10.15468/dl.ty2m8v4AvesFINhttps://doi.org/10.15468/dl.ty2m8v4AvesFINhttps://doi.org/10.15468/dl.ty2m8v4AvesFINhttps://doi.org/10.15468/dl.ty2m6AvesFINhttps://doi.org/10.15468/dl.ty2m6AvesDNKhttps://doi.org/10.15468/dl.ty8peqwAvesDNKhttps://doi.org/10.15468/dl.tx97hAvesDNKhttps://doi.org/10.15468/dl.tx97hAvesDNKhttps://doi.org/10.15468/dl.tx	nttps://doi.org/10.15468/dl.atebj6	Aves	rka CIDI
https://doi.org/10.15468/dl.tyfndAvesNLDhttps://doi.org/10.15468/dl.txfrf9AvesNLDhttps://doi.org/10.15468/dl.txfrf9AvesNLDhttps://doi.org/10.15468/dl.tx62pibAvesBELhttps://doi.org/10.15468/dl.ty52zzmAvesBELhttps://doi.org/10.15468/dl.ty52zzmAvesBELhttps://doi.org/10.15468/dl.tysuyjAvesBELhttps://doi.org/10.15468/dl.tysuyjAvesBELhttps://doi.org/10.15468/dl.tysuyjAvesCZEhttps://doi.org/10.15468/dl.tyb78AvesCZEhttps://doi.org/10.15468/dl.tyb78AvesCZEhttps://doi.org/10.15468/dl.tyb78AvesCBRhttps://doi.org/10.15468/dl.trdmaaAvesGBRhttps://doi.org/10.15468/dl.trdmaaAvesGBRhttps://doi.org/10.15468/dl.trdmaaAvesGBRhttps://doi.org/10.15468/dl.tawz7AvesFINhttps://doi.org/10.15468/dl.ty2m8v4AvesFINhttps://doi.org/10.15468/dl.ty2m8v4AvesFINhttps://doi.org/10.15468/dl.mqaw7rAvesFINhttps://doi.org/10.15468/dl.mqaw7rAvesITAhttps://doi.org/10.15468/dl.speqwAvesDNKhttps://doi.org/10.15468/dl.tx97hAvesDNKhttps://doi.org/10.15468/dl.tx97hAvesDNKhttps://doi.org/10.15468/dl.tx97hAvesDNKhttps://doi.org/10.15468/dl.tx97hAvesDNKhttps://doi.org/10.15468/dl.tx97hAvesDNKhttps://doi.org/10.15468/dl.tx97h<	https://doi.org/10.15468/dl.xfzd6e	Aves	CHN
https://doi.org/10.15468/dl.k2fr19AvesNLDhttps://doi.org/10.15468/dl.462pibAvesBELhttps://doi.org/10.15468/dl.42cukmAvesBELhttps://doi.org/10.15468/dl.42cukmAvesBELhttps://doi.org/10.15468/dl.45suvjAvesBELhttps://doi.org/10.15468/dl.45suvjAvesBELhttps://doi.org/10.15468/dl.yp39AvesAUThttps://doi.org/10.15468/dl.yp39bxAvesCZEhttps://doi.org/10.15468/dl.guhetdAvesGBRhttps://doi.org/10.15468/dl.atawz7AvesGBRhttps://doi.org/10.15468/dl.fn7uheAvesGBRhttps://doi.org/10.15468/dl.fn7uheAvesGBRhttps://doi.org/10.15468/dl.fn399AvesFINhttps://doi.org/10.15468/dl.mqaw7rAvesFINhttps://doi.org/10.15468/dl.gamey4AvesFINhttps://doi.org/10.15468/dl.wqam7rAvesFINhttps://doi.org/10.15468/dl.bvf88wAvesITAhttps://doi.org/10.15468/dl.bvf88wAvesDNKhttps://doi.org/10.15468/dl.bvf88wAvesDNKhttps://doi.org/10.15468/dl.bvf88wAvesDNKhttps://doi.org/10.15468/dl.bvf88wAvesDNKhttps://doi.org/10.15468/dl.wpr4AvesDNKhttps://doi.org/10.15468/dl.wpr4AvesDNKhttps://doi.org/10.15468/dl.wpr4AvesDNKhttps://doi.org/10.15468/dl.wpr4AvesDNKhttps://doi.org/10.15468/dl.wpr4AvesDNKhttps://doi.org/10.15468/dl.wpr4	https://doi.org/10.15468/dl.tjyhnd	Aves	NLD
https://doi.org/10.15468/dl.16/2ptbAvesNLDhttps://doi.org/10.15468/dl.42cukmAvesBELhttps://doi.org/10.15468/dl.45suvjAvesBELhttps://doi.org/10.15468/dl.45suvjAvesBELhttps://doi.org/10.15468/dl.45suvjAvesAUThttps://doi.org/10.15468/dl.45978AvesAUThttps://doi.org/10.15468/dl.45978AvesCZEhttps://doi.org/10.15468/dl.guhetdAvesCHEhttps://doi.org/10.15468/dl.atawz7AvesGBRhttps://doi.org/10.15468/dl.fn7uheAvesGBRhttps://doi.org/10.15468/dl.7fajg9AvesFINhttps://doi.org/10.15468/dl.7fajg9AvesFINhttps://doi.org/10.15468/dl.7fajg9AvesFINhttps://doi.org/10.15468/dl.7fajg9AvesFINhttps://doi.org/10.15468/dl.7fajg9AvesFINhttps://doi.org/10.15468/dl.mqaw7rAvesFINhttps://doi.org/10.15468/dl.gafempAvesITAhttps://doi.org/10.15468/dl.speagwAvesDNKhttps://doi.org/10.15468/dl.speagwAvesDNKhttps://doi.org/10.15468/dl.speagwAvesDNKhttps://doi.org/10.15468/dl.speagwAvesDNKhttps://doi.org/10.15468/dl.speagwAvesDNKhttps://doi.org/10.15468/dl.speagwAvesDNKhttps://doi.org/10.15468/dl.speagwAvesDNKhttps://doi.org/10.15468/dl.speagwAvesDNKhttps://doi.org/10.15468/dl.wn2wwAvesDNKhttps://doi.org/10.15468/dl.wn	https://doi.org/10.15468/dl.kzfrf9	Aves	NLD
https://doi.org/10.15468/dl.42cukm Aves BEL https://doi.org/10.15468/dl.v52zzm Aves BEL https://doi.org/10.15468/dl.vsyvq6 Aves BEL https://doi.org/10.15468/dl.rsyvq6 Aves TUR https://doi.org/10.15468/dl.rsyvq6 Aves AUT https://doi.org/10.15468/dl.rg39bx Aves CZE https://doi.org/10.15468/dl.guhetd Aves GBR https://doi.org/10.15468/dl.rdmaa Aves GBR https://doi.org/10.15468/dl.rdmaa Aves GBR https://doi.org/10.15468/dl.rdmaa Aves GBR https://doi.org/10.15468/dl.rdmaa Aves GBR https://doi.org/10.15468/dl.rfnip9 Aves FIN https://doi.org/10.15468/dl.rfnip9 Aves FIN https://doi.org/10.15468/dl.mqaw7r Aves FIN https://doi.org/10.15468/dl.bekegz Aves ITA https://doi.org/10.15468/dl.bekegz Aves DNK https://doi.org/10.15468/dl.bekegs Aves DNK https://doi.org/10.15468/dl.bekegs DNK DNK <td>https://doi.org/10.15468/dl.t62pjb</td> <td>Aves</td> <td>NLD</td>	https://doi.org/10.15468/dl.t62pjb	Aves	NLD
https://doi.org/10.15468/dl.v52zzm Aves BEL https://doi.org/10.15468/dl.45suvj Aves BEL https://doi.org/10.15468/dl.rxyvq6 Aves TUR https://doi.org/10.15468/dl.ryb78 Aves AUT https://doi.org/10.15468/dl.ryb78 Aves AUT https://doi.org/10.15468/dl.ryb78 Aves CZE https://doi.org/10.15468/dl.guhetd Aves CBR https://doi.org/10.15468/dl.rdmaa Aves GBR https://doi.org/10.15468/dl.rdmaa Aves GBR https://doi.org/10.15468/dl.rdmaa Aves GBR https://doi.org/10.15468/dl.rdmaa Aves FIN https://doi.org/10.15468/dl.rdmaa Aves FIN https://doi.org/10.15468/dl.rdmaw/r Aves FIN https://doi.org/10.15468/dl.rdmaw/r Aves FIN https://doi.org/10.15468/dl.rdmaw/r Aves FIN https://doi.org/10.15468/dl.lowfs&w Aves DNK https://doi.org/10.15468/dl.lowfs&w Aves DNK https://doi.org/10.15468/dl.sppeqw Aves DNK <	https://doi.org/10.15468/dl.42cukm	Aves	BEL
https://doi.org/10.15468/dl.45suvj Aves BEL https://doi.org/10.15468/dl.rxyvq6 Aves TUR https://doi.org/10.15468/dl.rxyvq6 Aves AUT https://doi.org/10.15468/dl.ry39bx Aves CZE https://doi.org/10.15468/dl.gubtd Aves CHE https://doi.org/10.15468/dl.rdmaa Aves GBR https://doi.org/10.15468/dl.rdmaa Aves FIN https://doi.org/10.15468/dl.rdmaa Aves FIN https://doi.org/10.15468/dl.rdmaw7r Aves FIN https://doi.org/10.15468/dl.bwf2g Aves UKR https://doi.org/10.15468/dl.bwf38w Aves DNK https://doi.org/10.15468/dl.bwf38w Aves DNK https://doi.org/10.15468/dl.bwf2w Aves DNK https://doi.org/10.15468/dl.bwf2w Aves DNK	https://doi.org/10.15468/dl.v52zzm	Aves	BEL
https://doi.org/10.15468/dl.rxyvq6 Aves TUR https://doi.org/10.15468/dl.vtgb78 Aves AUT https://doi.org/10.15468/dl.p339bx Aves CZE https://doi.org/10.15468/dl.guhetd Aves CHE https://doi.org/10.15468/dl.atawz7 Aves GBR https://doi.org/10.15468/dl.tarwz7 Aves GBR https://doi.org/10.15468/dl.fn?uhe Aves GBR https://doi.org/10.15468/dl.fn?uhe Aves FIN https://doi.org/10.15468/dl.x2m8v4 Aves FIN https://doi.org/10.15468/dl.x2m8v4 Aves FIN https://doi.org/10.15468/dl.sekcgz Aves ITA https://doi.org/10.15468/dl.sekcgz Aves UKR https://doi.org/10.15468/dl.sekcgz Aves DNK https://doi.org/10.15468/dl.sepeqw Aves DNK https://doi.org/10.15468/dl.sppeqw Aves DNK https://doi.org/10.15468/dl.sppeqw Aves DNK https://doi.org/10.15468/dl.exvc6 Aves DNK https://doi.org/10.15468/dl.exvc6 Aves DNK	https://doi.org/10.15468/dl.45suvj	Aves	BEL
https://doi.org/10.15468/dl.vtgb78 Aves AUT https://doi.org/10.15468/dl.p339bx Aves CZE https://doi.org/10.15468/dl.guhetd Aves CHE https://doi.org/10.15468/dl.rdmaa Aves GBR https://doi.org/10.15468/dl.rdmaw77 Aves FIN https://doi.org/10.15468/dl.s2m8v4 Aves FIN https://doi.org/10.15468/dl.aqaw7r Aves FIN https://doi.org/10.15468/dl.s2m8v4 Aves FIN https://doi.org/10.15468/dl.spagmp Aves UKR https://doi.org/10.15468/dl.bekcgz Aves DNK https://doi.org/10.15468/dl.bekcgt Aves DNK https://doi.org/10.15468/dl.speqw Aves DNK https://doi.org/10.15468/dl.alxtx97h Aves DNK https://doi.org/10.15468/dl.alxexox6 Aves DNK	https://doi.org/10.15468/dl.rxyvq6	Aves	TUR
https://doi.org/10.15468/dl.p339bxAvesCZEhttps://doi.org/10.15468/dl.guhetdAvesCHEhttps://doi.org/10.15468/dl.rdmaaAvesGBRhttps://doi.org/10.15468/dl.atawz7AvesGBRhttps://doi.org/10.15468/dl.fn7uheAvesGBRhttps://doi.org/10.15468/dl.fn7uheAvesGBRhttps://doi.org/10.15468/dl.fn7uheAvesGBRhttps://doi.org/10.15468/dl.rfajg9AvesFINhttps://doi.org/10.15468/dl.nrqaw7rAvesFINhttps://doi.org/10.15468/dl.mqaw7rAvesFINhttps://doi.org/10.15468/dl.bekcgzAvesUKRhttps://doi.org/10.15468/dl.bekcgzAvesDNKhttps://doi.org/10.15468/dl.bekcgzAvesDNKhttps://doi.org/10.15468/dl.bwfs8wAvesDNKhttps://doi.org/10.15468/dl.bwfs8wAvesDNKhttps://doi.org/10.15468/dl.lexcx6AvesDNKhttps://doi.org/10.15468/dl.2nz6vdAvesDNKhttps://doi.org/10.15468/dl.2nz6vdAvesDNKhttps://doi.org/10.15468/dl.2nz6vdAvesDNKhttps://doi.org/10.15468/dl.2nz6vdAvesCANhttps://doi.org/10.15468/dl.yevauAvesCANhttps://doi.org/10.15468/dl.uxm8AvesCANhttps://doi.org/10.15468/dl.uxm8AvesCANhttps://doi.org/10.15468/dl.uxm8AvesCANhttps://doi.org/10.15468/dl.uxm8AvesCANhttps://doi.org/10.15468/dl.uxm8AvesCANhttps://doi.org/10.15468/dl.uxm8 <t< td=""><td>https://doi.org/10.15468/dl.vtgb78</td><td>Aves</td><td>AUT</td></t<>	https://doi.org/10.15468/dl.vtgb78	Aves	AUT
https://doi.org/10.15468/dl.guhetd Aves CHE https://doi.org/10.15468/dl.rdmaa Aves GBR https://doi.org/10.15468/dl.atawz7 Aves GBR https://doi.org/10.15468/dl.fn7uhe Aves GBR https://doi.org/10.15468/dl.fn7uhe Aves GBR https://doi.org/10.15468/dl.fn2uhe Aves GBR https://doi.org/10.15468/dl.rfajg9 Aves FIN https://doi.org/10.15468/dl.x2m8v4 Aves FIN https://doi.org/10.15468/dl.mqaw7r Aves FIN https://doi.org/10.15468/dl.mqaw7r Aves VKR https://doi.org/10.15468/dl.mqaw7r Aves UKR https://doi.org/10.15468/dl.bekcgz Aves UKR https://doi.org/10.15468/dl.bekcgz Aves DNK https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.ktx97h Aves DNK https://doi.org/10.15468/dl.ktx97h Aves DNK https://doi.org/10.15468/dl.l.wnn2ww Aves DNK	https://doi.org/10.15468/dl.p339bx	Aves	CZE
https://doi.org/10.15468/dl.rdrnaa Aves GBR https://doi.org/10.15468/dl.atawz7 Aves GBR https://doi.org/10.15468/dl.fn7uhe Aves GBR https://doi.org/10.15468/dl.fn7uhe Aves GBR https://doi.org/10.15468/dl.7fajg9 Aves FIN https://doi.org/10.15468/dl.x2m8v4 Aves FIN https://doi.org/10.15468/dl.mqaw7r Aves FIN https://doi.org/10.15468/dl.bekcgz Aves UKR https://doi.org/10.15468/dl.bekcgz Aves UKR https://doi.org/10.15468/dl.bekcgz Aves DNK https://doi.org/10.15468/dl.bekcgz Aves DNK https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.sppeqw Aves DNK https://doi.org/10.15468/dl.eswcx6 Aves DNK https://doi.org/10.15468/dl.eswcx6 Aves DNK https://doi.org/10.15468/dl.gkevau Aves CAN https://doi.org/10.15468/dl.wnn2ww Aves CAN https://doi.org/10.15468/dl.uxmn8 Aves CAN	https://doi.org/10.15468/dl.guhetd	Aves	CHE
https://doi.org/10.15468/dl.atawz7 Aves GBR https://doi.org/10.15468/dl.fn7uhe Aves GBR https://doi.org/10.15468/dl.7fajg9 Aves FIN https://doi.org/10.15468/dl.x2m8v4 Aves FIN https://doi.org/10.15468/dl.x2m8v4 Aves FIN https://doi.org/10.15468/dl.mqaw7r Aves FIN https://doi.org/10.15468/dl.bekcgz Aves UKR https://doi.org/10.15468/dl.bekcgz Aves UKR https://doi.org/10.15468/dl.bekcgz Aves DNK https://doi.org/10.15468/dl.bekcgz Aves DNK https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.eswcx6 Aves DNK https://doi.org/10.15468/dl.eswcx6 Aves DNK https://doi.org/10.15468/dl.pikevau Aves CAN https://doi.org/10.15468/dl.ykwa Aves CAN https://doi.org/10.15468/dl.uxms8 Aves CAN https://doi.org/10.15468/dl.uxms4 Aves CAN <	https://doi.org/10.15468/dl.rdrnaa	Aves	GBR
https://doi.org/10.15468/dl.fn7uhe Aves GBR https://doi.org/10.15468/dl.7fajg9 Aves FIN https://doi.org/10.15468/dl.x2m8v4 Aves FIN https://doi.org/10.15468/dl.mqaw7r Aves FIN https://doi.org/10.15468/dl.mqaw7r Aves FIN https://doi.org/10.15468/dl.bekcgz Aves UKR https://doi.org/10.15468/dl.bekcgz Aves DNK https://doi.org/10.15468/dl.bekcgz Aves DNK https://doi.org/10.15468/dl.spequy Aves DNK https://doi.org/10.15468/dl.spequy Aves DNK https://doi.org/10.15468/dl.spequy Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.apz6vd Aves DNK https://doi.org/10.15468/dl.apz6vd Aves DNK https://doi.org/10.15468/dl.apxevau Aves CAN https://doi.org/10.15468/dl.wnn2ww Aves CAN https://doi.org/10.15468/dl.uxms8 Aves CAN	https://doi.org/10.15468/dl.atawz7	Aves	GBR
https://doi.org/10.15468/dl.7fajg9 Aves FIN https://doi.org/10.15468/dl.x2m8v4 Aves FIN https://doi.org/10.15468/dl.mqaw7r Aves FIN https://doi.org/10.15468/dl.bekcgz Aves UKR https://doi.org/10.15468/dl.9q36mp Aves ITA https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.8ppeqw Aves DNK https://doi.org/10.15468/dl.8ppeqw Aves DNK https://doi.org/10.15468/dl.ktx97h Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves CAN https://doi.org/10.15468/dl.ykevau Aves CAN https://doi.org/10.15468/dl.wnn2ww Aves CAN https://doi.org/10.15468/dl.uxm88 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.ykxwsr Aves CAN	https://doi.org/10.15468/dl.fn7uhe	Aves	GBR
https://doi.org/10.15468/dl.x2m8v4 Aves FIN https://doi.org/10.15468/dl.mqaw7r Aves FIN https://doi.org/10.15468/dl.bekcgz Aves UKR https://doi.org/10.15468/dl.bekcgz Aves ITA https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.sppeqw Aves DNK https://doi.org/10.15468/dl.ktx97h Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.pikevau Aves CAN https://doi.org/10.15468/dl.yikevau Aves CAN https://doi.org/10.15468/dl.uxms8 Aves CAN https://doi.org/10.15468/dl.uxms8 Aves CAN https://doi.org/10.15468/dl.uxms2 Aves CAN https://doi.org/10.15468/dl.uxms2 Aves CAN	https://doi.org/10.15468/dl.7fajg9	Aves	FIN
https://doi.org/10.15468/dl.mqaw7r Aves FIN https://doi.org/10.15468/dl.bekcgz Aves UKR https://doi.org/10.15468/dl.9q36mp Aves ITA https://doi.org/10.15468/dl.9q36mp Aves DNK https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.8ppeqw Aves DNK https://doi.org/10.15468/dl.8ppeqw Aves DNK https://doi.org/10.15468/dl.8ppeqw Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves CAN https://doi.org/10.15468/dl.1xtwn2ww Aves CAN https://doi.org/10.15468/dl.wnn2ww Aves CAN https://doi.org/10.15468/dl.1xxm88 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.ykxwsr Aves CAN	https://doi.org/10.15468/dl.x2m8v4	Aves	FIN
https://doi.org/10.15468/dl.bekcgz Aves UKR https://doi.org/10.15468/dl.9q36mp Aves ITA https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.8ppeqw Aves DNK https://doi.org/10.15468/dl.ktx97h Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves CAN https://doi.org/10.15468/dl.nwn2ww Aves CAN https://doi.org/10.15468/dl.uwn2ww Aves CAN https://doi.org/10.15468/dl.uxm88 Aves CAN https://doi.org/10.15468/dl.uxm88 Aves CAN https://doi.org/10.15468/dl.uxmb2 Aves CAN https://doi.org/10.15468/dl.uxmb2 Aves CAN https://doi.org/10.15468/dl.uxmb2 Aves CAN https://doi.org/10.15468/dl.uxmb2 Aves CAN <td>https://doi.org/10.15468/dl.mqaw7r</td> <td>Aves</td> <td>FIN</td>	https://doi.org/10.15468/dl.mqaw7r	Aves	FIN
https://doi.org/10.15468/dl.9q36mp Aves ITA https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.ktx97h Aves DNK https://doi.org/10.15468/dl.ktx97h Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.exucx6 Aves DNK https://doi.org/10.15468/dl.exucx6 Aves DNK https://doi.org/10.15468/dl.ykevau Aves CAN https://doi.org/10.15468/dl.uwnn2ww Aves CAN https://doi.org/10.15468/dl.uxms8 Aves CAN https://doi.org/10.15468/dl.uxms8 Aves CAN https://doi.org/10.15468/dl.uxms4 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.ykxwsr Aves CAN	https://doi.org/10.15468/dl.bekcgz	Aves	UKR
https://doi.org/10.15468/dl.bwfs8w Aves DNK https://doi.org/10.15468/dl.8ppeqw Aves DNK https://doi.org/10.15468/dl.8ppeqw Aves DNK https://doi.org/10.15468/dl.ktx97h Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves DNK https://doi.org/10.15468/dl.jkevau Aves CAN https://doi.org/10.15468/dl.wnn2ww Aves CAN https://doi.org/10.15468/dl.tuxms8 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN	https://doi.org/10.15468/dl.9q36mp	Aves	ITA
https://doi.org/10.15468/dl.8ppeqw Aves DNK https://doi.org/10.15468/dl.ktx97h Aves DNK https://doi.org/10.15468/dl.ktx97h Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves DNK https://doi.org/10.15468/dl.jkevau Aves CAN https://doi.org/10.15468/dl.wnn2ww Aves CAN https://doi.org/10.15468/dl.tuxms8 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.ykxwsr Aves CAN	https://doi.org/10.15468/dl.bwfs8w	Aves	DNK
https://doi.org/10.15468/dl.ktx97h Aves DNK https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves CAN https://doi.org/10.15468/dl.wnn2ww Aves CAN https://doi.org/10.15468/dl.wnn2ww Aves CAN https://doi.org/10.15468/dl.uxms8 Aves CAN https://doi.org/10.15468/dl.uxms8 Aves CAN https://doi.org/10.15468/dl.uxmh2 Aves CAN https://doi.org/10.15468/dl.uxmk2 Aves CAN https://doi.org/10.15468/dl.uxmk2 Aves CAN	https://doi.org/10.15468/dl.8ppeqw	Aves	DNK
https://doi.org/10.15468/dl.e5wcx6 Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves DNK https://doi.org/10.15468/dl.2nz6vd Aves CAN https://doi.org/10.15468/dl.wnn2ww Aves CAN https://doi.org/10.15468/dl.tuxms8 Aves CAN https://doi.org/10.15468/dl.tuxms8 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.ykxwsr Aves CAN	https://doi.org/10.15468/dl.ktx97h	Aves	DNK
https://doi.org/10.15468/dl.2nz6vd Aves DNK https://doi.org/10.15468/dl.jkevau Aves CAN https://doi.org/10.15468/dl.wnn2ww Aves CAN https://doi.org/10.15468/dl.tuxms8 Aves CAN https://doi.org/10.15468/dl.tuxms8 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.ykxwsr Aves CAN	https://doi.org/10.15468/dl.e5wcx6	Aves	DNK
https://doi.org/10.15468/dl.jkevauAvesCANhttps://doi.org/10.15468/dl.wnn2wwAvesCANhttps://doi.org/10.15468/dl.tuxms8AvesCANhttps://doi.org/10.15468/dl.u3rmh2AvesCANhttps://doi.org/10.15468/dl.u3rmh2AvesCANhttps://doi.org/10.15468/dl.vkxwsrAvesCAN	https://doi.org/10.15468/dl.2nz6vd	Aves	DNK
https://doi.org/10.15468/dl.wnn2wwAvesCANhttps://doi.org/10.15468/dl.tuxms8AvesCANhttps://doi.org/10.15468/dl.u3rmh2AvesCANhttps://doi.org/10.15468/dl.ykxwsrAvesCAN	https://doi.org/10.15468/dl.jkevau	Aves	CAN
https://doi.org/10.15468/dl.tuxms8AvesCANhttps://doi.org/10.15468/dl.u3rmh2AvesCANhttps://doi.org/10.15468/dl.ykxwsrAvesCAN	https://doi.org/10.15468/dl.wnn2ww	Aves	CAN
https://doi.org/10.15468/dl.u3rmh2 Aves CAN https://doi.org/10.15468/dl.vkxwsr Aves CAN	https://doi.org/10.15468/dl.tuxms8	Aves	CAN
https://doi.org/10.15468/dl.ykxwsr Aves CAN	https://doi.org/10.15468/dl.u3rmh?	Aves	CAN
	https://doi.org/10.15468/dl.vkxwsr	Aves	CAN

https://doi.org/10.15468/dl.p9ebfw	Aves	CAN
https://doi.org/10.15468/dl.yqnhhq	Aves	CAN
https://doi.org/10.15468/dl.npwbbz	Aves	CAN
https://doi.org/10.15468/dl.6wqz3v	Aves	CAN
https://doi.org/10.15468/dl.kr3f9c	Aves	NOR
https://doi.org/10.15468/dl.uu4c2g	Aves	NOR
https://doi.org/10.15468/dl.7795dh	Aves	NOR
https://doi.org/10.15468/dl.758btm	Aves	NOR
https://doi.org/10.15468/dl.i6ss9w	Aves	NOR
https://doi.org/10.15468/dl.m6mprg	Aves	MEX
https://doi.org/10.15468/dl.gz63j8	Aves	LVA;LTU;HRV;BLR;SVK;SVN;MNE;MKD;NGA; MDA;CMR;COD;RWA;AGO
https://doi.org/10.15468/dl.45eugh	Aves	SJM;COL;ARG
https://doi.org/10.15468/dl.txqkq7	Aves	IRL
https://doi.org/10.15468/dl.hktxwm	Aves	POL
https://doi.org/10.15468/dl.rxfhxm	Aves	PRT
https://doi.org/10.15468/dl.z8rg39	Aves	ESP
https://doi.org/10.15468/dl.zjtfjb	Aves	ESP
https://doi.org/10.15468/dl.q6fwhv	Aves	ESP
https://doi.org/10.15468/dl.7m8a7z	Aves	DZA:BRA:GUY:TUN:KOR:CUB:HND:ECU
https://doi.org/10.15468/dl.nw77ve	Aves	BGR
https://doi.org/10.15468/dl.ksfnr2	Aves	UGA
https://doi.org/10.15468/dl.9u3i6k	Aves	PAN:TWN
https://doi.org/10.15468/dl.cb8e3a	Aves	GRC
https://doi.org/10.15468/dl.zqrjn6	Aves	EGY;BLZ;PRK;NIC;MAR;BWA;CYP;ALB;PER;S EN:ZWE:BIH:SYC:NAM:CPV:BOL
https://doi.org/10.15468/dl.nd8jre	Aves	ROU
https://doi.org/10.15468/dl.dfeqa8	Aves	SRB
https://doi.org/10.15468/dl.raxcec	Aves	GMB;VEN;FRO;BEN;ISL;GTM;CHL;IMN;MLT;S LV;PRY;IDN;HKG;PRI;SGP
https://doi.org/10.15468/dl.abfpek	Aves	HUN
https://doi.org/10.15468/dl.pbj3u3	Aves	GHA
https://doi.org/10.15468/dl.f394r9	Aves	KEN
https://doi.org/10.15468/dl.mvadan	Aves	TTO;TZA;URY;DOM;GUF;SUR;PHL;PNG;SOM;V IR;BES;BFA;QAT;TCD;GNB;GEO;AZE;MRT;BH R;MLI;ETH;MWI;ZMB;MOZ;SWZ;SDN
https://doi.org/10.15468/dl.22acs9	Aves	JPN
https://doi.org/10.15468/dl.dzxx2y	Liliopsida	SWE
https://doi.org/10.15468/dl.w7wuv3	Liliopsida	FRA
https://doi.org/10.15468/dl.cxgvbt	Liliopsida	GBR
https://doi.org/10.15468/dl.edbg2x	Liliopsida	COL
https://doi.org/10.15468/dl.dbeycv	Liliopsida	USA
https://doi.org/10.15468/dl.yy698u	Liliopsida	TWN;UKR;POL;ROU;IDN;PHL;PAN;ZWE;PRI;B OL;GAB;PNG;BEN;KEN;CZE;IND;BGD;BWA;M OZ;MAR;GTM;NPL;GRC;TUR;NIC;IRL;VEN;TH A;MLI;CIV;KOR;MDG;TZA;HND;CHL;ETH;VNM ;BLZ;MYS;MWI;PAK;BFA;PRY;SLV;NGA;UGA; GUF;TGO;IRN;COD;AFG;ZMB;CMR;GUY;LAO; NCL:PSE:SEN:GHA
https://doi.org/10.15468/dl.zz3f6a	Liliopsida	NZL
https://doi.org/10.15468/dl.g2e5h4	Liliopsida	ZAF
https://doi.org/10.15468/dl.vdteav	Liliopsida	MEX
https://doi.org/10.15468/dl.6ufw3e	Liliopsida	RUS
https://doi.org/10.15468/dl.5z3us7	Liliopsida	ITA;AUT;CRI;ECU;ARG;ISR

https://doi.org/10.15468/dl.9wxqbb	Liliopsida	CAN
https://doi.org/10.15468/dl.w34t73	Liliopsida	DEU
https://doi.org/10.15468/dl.994rd4	Liliopsida	LTU;BLR;CHE;LVA;REU;SVN;EST;NAM;GLP;S RB;MNE;ARE;BIH;LUX;ISL;SJM
https://doi.org/10.15468/dl.3femm5	Liliopsida	AUS
https://doi.org/10.15468/dl.s7rq2v	Liliopsida	BEL
https://doi.org/10.15468/dl.kk5ndq	Liliopsida	KAZ;KGZ;URY;DOM;IRQ;SOM;HRV;SVK;SUR;L KA;VUT;SAU;HUN;DZA;CYP;BGR;SLB;EGY;GE O;FSM;SWZ;CUB;ARM;MNG;BHS;GNQ;ALB;M MR;KHM;AZE;LBN;HTI;TUN;CPV;TJK;JOR;RW A;ATG;TTO;LSO;WSM;COG;OMN;HKG;MKD;S YR;AGO;TKM;ASM;BTN;TON;SGP;SYC
https://doi.org/10.15468/dl.zv9sdh	Liliopsida	FIN
https://doi.org/10.15468/dl.2v846r	Liliopsida	PRT
https://doi.org/10.15468/dl.kkktrv	Liliopsida	ESP
https://doi.org/10.15468/dl.j2yt6d	Liliopsida	NOR
https://doi.org/10.15468/dl.3srh2c	Liliopsida	NLD
https://doi.org/10.15468/dl.pvrern	Liliopsida	DNK
https://doi.org/10.15468/dl.8qnwzj	Liliopsida	BRA
https://doi.org/10.15468/dl.mack8m	Liliopsida	PER
https://doi.org/10.15468/dl.6kum3z	Liliopsida	CHN
https://doi.org/10.15468/dl.gn433r	Liliopsida	JPN
https://doi.org/10.15468/dl.xvwmpt	Magnoliopsida	SWE
https://doi.org/10.15468/dl.r4tqxx	Magnoliopsida	DNK
https://doi.org/10.15468/dl.sqfuqj	Magnoliopsida	FRA
https://doi.org/10.15468/dl.4kjd9n	Magnoliopsida	GBR
https://doi.org/10.15468/dl.nbx4ch	Magnoliopsida	COL
https://doi.org/10.15468/dl.tzbaxd	Magnoliopsida	NZL
https://doi.org/10.15468/dl.garrrd	Magnoliopsida	CAN
https://doi.org/10.15468/dl.u6x9j3	Magnoliopsida	USA
https://doi.org/10.15468/dl.3n5txa	Magnoliopsida	RUS
https://doi.org/10.15468/dl.2vzsbh	Magnoliopsida	CHE
https://doi.org/10.15468/dl.wrhw2h	Magnoliopsida	ITA
https://doi.org/10.15468/dl.rqmavn	Magnoliopsida	POL
https://doi.org/10.15468/dl.hdezsu	Magnoliopsida	LTU;DZA;BLR;NGA;MNG;PRI;SVK;GTM;MWI;K AZ;HND;ROU;GEO;HRV;BGR;HUN;LVA;PHL;D OM;VNM;LBR;URY;SWZ;JAM;TUN;KEN;AZE;C UB;SYR;SUR;BLZ;BWA;JOR;NPL;IRN;CYP;MLI; UGA;GNQ;ZWE;AFG;MOZ;ZMB;ARM;LBN;GUF ;SLV;SEN;TGO;RWA;PYF;AGO;CAF;COG;PRK;B FA;HKG;NER;VUT;TCD;GIN;SDN;YEM
https://doi.org/10.15468/dl.dztge3	Magnoliopsida	MEX
https://doi.org/10.15468/dl.b752bn	Magnoliopsida	TWN
https://doi.org/10.15468/dl.tpcg3z	Magnoliopsida	ZAF
https://doi.org/10.15468/dl.wsqz73	Magnoliopsida	ECU
https://doi.org/10.15468/dl.kwcugz	Magnoliopsida	PRT
https://doi.org/10.15468/dl.hyb9wc	Magnoliopsida	FIN
https://doi.org/10.15468/dl.suek67	Magnoliopsida	IRL;CHL;NIC;UKR;KOR;PAN;EST;COD;TUR;SV N;MAR;PAK;PRY;NCL;THA;GHA;GUY;ETH;CIV
https://doi.org/10.15468/dl.hem47d	Magnoliopsida	ESP
https://doi.org/10.15468/dl.2922bk	Magnoliopsida	DEU
https://doi.org/10.15468/dl.em7p57	Magnoliopsida	AUS
https://doi.org/10.15468/dl.87bpsk	Magnoliopsida	MYS;IND;TZA;VEN;GAB
https://doi.org/10.15468/dl.9vh3tz	Magnoliopsida	BEL

https://doi.org/10.15468/dl.gu7kw7	Magnoliopsida	AUT
https://doi.org/10.15468/dl.2v67xv	Magnoliopsida	CZE
https://doi.org/10.15468/dl.k9e6hm	Magnoliopsida	DMA;KNA;CYM;SOM;SRB;MNE;ALB;LAO;MK D;SLB;TLS;VIR;OMN;TTO;LKA;GMB;IRQ;HTI;G RD;BHS;BTN;KHM;FJI;GUM;BGD;MUS;MMR;L CA;VGB;EGY;BRB;SAU;LSO;TJK;SGP;UZB;SYC ;MLT
https://doi.org/10.15468/dl.6h9t4a	Magnoliopsida	BEN
https://doi.org/10.15468/dl.83ys52	Magnoliopsida	IDN
https://doi.org/10.15468/dl.nqw2sc	Magnoliopsida	ISR
https://doi.org/10.15468/dl.qtkqdq	Magnoliopsida	PER
https://doi.org/10.15468/dl.ja5kgm	Magnoliopsida	NOR
https://doi.org/10.15468/dl.xt392e	Magnoliopsida	ARG
https://doi.org/10.15468/dl.v7u6jz	Magnoliopsida	BRA
https://doi.org/10.15468/dl.29q7pe	Magnoliopsida	NLD
https://doi.org/10.15468/dl.e6ctmd	Magnoliopsida	CHN
https://doi.org/10.15468/dl.8dtqzv	Magnoliopsida	GRC
https://doi.org/10.15468/dl.3z9dyn	Magnoliopsida	BIH;REU;GLP;KGZ;ATG;NAM;MTQ;MDA;BES; AND;ARE;LIE;FRO;PSE;SJM;KWT;QAT;SMR;MS R;LBY
https://doi.org/10.15468/dl.ew6ckc	Magnoliopsida	BOL
https://doi.org/10.15468/dl.f8a3qr	Magnoliopsida	LUX
https://doi.org/10.15468/dl.f7x8q4	Magnoliopsida	CRI
https://doi.org/10.15468/dl.z2nkxw	Magnoliopsida	PNG
https://doi.org/10.15468/dl.44x4z2	Magnoliopsida	JPN
https://doi.org/10.15468/dl.wx6zv9	Magnoliopsida	CMR
https://doi.org/10.15468/dl.fud689	Magnoliopsida	ISL
https://doi.org/10.15468/dl.x7h8sq	Magnoliopsida	MDG
https://doi.org/10.15468/dl.s6g489	Insecta	KEN;NGA;BEN;PRK;BLZ;LCA;VCT;VIR;GRD;D MA;BRB;BES;JAM;CUW;GLP;KNA;LIE;HND;TZ A;BIH;MMR;SEN;NIC;GAB;VEN;GUY;ZWE;NA M;CMR;COD;TGO;CIV;ZMB;GIN;BWA;SDN;ET H:MWI;BDI;UGA;URY;SUR
https://doi.org/10.15468/dl.pxefdy	Mammalia	BEN;CYP;PHL;SGP;ARM;GIN;VEN
https://doi.org/10.15468/dl.z6aq22	Pinopsida	BHS;BRA;BLZ;COL;NIC;HND;PAN;TUN;BOL;C UB;SVN;GUY;MNE;NLD;CRI;LBY;TCA
https://doi.org/10.15468/dl.5m5trk	Polypodiopsida	TZA;GAB;CXR;CUB;SLB;BOL;CRI;ETH;CIV;VE N;PAN;NIC;COD;NCL;SGP;NIU;GUM;UGA;KEN; BEN;CMR;ZMB;GHA;COG;LBR;AGO;GIN;DOM; THA;GUF;BRN;NGA;COM;BDI;LAO;BLZ;YEM; MMR;BFA;PLW;MUS;MWI;TON;LKA;FJI;PYF;W SM;RWA;VUT;MNP;SLV;IND;CAF;HND;LSO;NA M;SEN
https://doi.org/10.15468/dl.b5s6vb	Reptilia	GIN;NAM;MWI;BEN;RWA
https://doi.org/10.15468/dl.47gmcu	Aves	FJI;PYF;VUT;PSE;WSM;ARM;GRL;SPM;TCA;GL P;HTI;CRI;BRB;JAM;LCA;MTQ;CUW;STP;LIE;L SO;GUM;LBY;CIV;GAB;GIN;ESH;LBR;ERI;GGY; TGO;COK;BRN;AND;TLS;YEM;VCT;MDV;KNA; VGB;GRD;MAC;AIA;ATG;DJI;FLK;TON;SLB;NE R;BDI;SLE;CAF
https://doi.org/10.15468/dl.mx6wgh	Liliopsida	MTQ;CXR;GIN;LBR;NER;TCD;GMB;BDI;CAF;DJ I;MRT;SDN;LBY;YEM;KWT;DMA;UZB;PYF;SLE ;COM;MLT;MDA;MUS;PRK;GNB;LIE;TLS;JAM; NIU;WLF;AND

1	M 1' '1	FSM;BRN;CUW;BDI;COK;CPV;MRT;MNP;ABW;
nttps://doi.org/10.15468/di.pqnuk3	Magnoliopsida	STP;SPM;TON;TCA;GNB;CXR;COM;DJI;NRU;PL
		W;SLE;ERI;MAC;TKM

Table S4. Pairwise correlation table between a	l continuous and binary	predictors included in the
--	-------------------------	----------------------------

transferability model for GAMs.	
---------------------------------	--

	NAUC	NOCC	EOCC	NEB	EEB	NEC	EEC	NGDP	EGDP	YEAR	DIST	ESIM	NISL	EISL	SESS
NAUC	NA	-0.013	-0.069	-0.287	-0.188	-0.360	-0.170	0.052	-0.022	0.021	0.033	-0.047	-0.090	0.064	0.141
NOCC	-0.013	NA	0.185	0.511	0.010	0.574	0.166	0.486	-0.143	-0.123	0.075	-0.292	-0.144	0.194	-0.148
EOCC	-0.069	0.185	NA	0.102	0.436	0.155	0.575	0.148	0.295	-0.301	-0.131	-0.068	-0.007	-0.198	-0.232
NEB	-0.287	0.511	0.102	NA	0.167	0.556	0.221	0.528	-0.009	-0.047	0.100	-0.402	-0.194	-0.007	-0.165
EEB	-0.188	0.010	0.436	0.167	NA	0.087	0.501	0.009	0.456	-0.120	0.077	-0.005	0.037	-0.463	-0.012
NEC	-0.360	0.574	0.155	0.556	0.087	NA	0.221	0.111	-0.059	-0.082	-0.020	-0.051	0.024	0.091	-0.215
EEC	-0.170	0.166	0.575	0.221	0.501	0.221	NA	0.090	0.032	-0.234	-0.134	-0.150	0.010	0.026	-0.205
NGDP	0.052	0.486	0.148	0.528	0.009	0.111	0.090	NA	-0.025	-0.071	0.104	-0.301	-0.387	0.097	-0.102
EGDP	-0.022	-0.143	0.295	-0.009	0.456	-0.059	0.032	-0.025	NA	-0.173	-0.276	0.132	0.036	-0.566	-0.078
YEAR	0.021	-0.123	-0.301	-0.047	-0.120	-0.082	-0.234	-0.071	-0.173	NA	0.192	0.041	-0.006	0.042	0.083
DIST	0.033	0.075	-0.131	0.100	0.077	-0.020	-0.134	0.104	-0.276	0.192	NA	-0.090	-0.054	0.159	0.158
ESIM	-0.047	-0.292	-0.068	-0.402	-0.005	-0.051	-0.150	-0.301	0.132	0.041	-0.090	NA	0.199	-0.047	0.036
NISL	-0.090	-0.144	-0.007	-0.194	0.037	0.024	0.010	-0.387	0.036	-0.006	-0.054	0.199	NA	-0.028	0.036
EISL	0.064	0.194	-0.198	-0.007	-0.463	0.091	0.026	0.097	-0.566	0.042	0.159	-0.047	-0.028	NA	0.025
SESS	0.141	-0.148	-0.232	-0.165	-0.012	-0.215	-0.205	-0.102	-0.078	0.083	0.158	0.036	0.036	0.025	NA

Table S5. Summary table for models calculated using species mobility (SESS) as a binary predictor of SDM performance, in place of

 taxonomic class (CLASS). Parameter estimates, standard error, t-statistic and *P*-values are provided.

	GAM MaxEnt					Ent		
Variable	Estimate	Std. error	<i>t</i> -statistic	<i>P</i> -value	Estimate	Std. error	<i>t</i> -statistic	<i>P</i> -value
Native AUC (NAUC)	0.086	0.019	4.489	< 0.001	0.058	0.018	3.240	0.001
Native number of occurrences (NOCC)	-0.031	0.026	-1.185	0.238	-0.005	0.024	-0.226	0.822
Exotic number of occurrences (EOCC)	0.048	0.022	2.149	0.032	0.037	0.022	1.680	0.094
Continent (CONT)	-	-	-	< 0.001	-	-	-	< 0.001
Sessile (SESS)	0.121	0.070	1.720	0.086	0.115	0.066	1.736	0.083
Native environmental breadth (NEB)	0.155	0.028	5.641	< 0.001	0.184	0.027	6.800	< 0.001
Exotic environmental breadth (EEB)	-0.114	0.032	-3.592	< 0.001	-0.128	0.032	-4.035	< 0.001
Native environmental coverage (NEC)	0.011	0.027	0.411	0.683	-0.010	0.026	-0.381	0.704
Exotic environmental coverage (EEC)	-0.154	0.027	-5.685	< 0.001	-0.142	0.027	-5.290	< 0.001
Native GDP (NGDP)	-0.074	0.025	-3.000	0.003	-0.055	0.023	-2.391	0.017
Exotic GDP (EGDP)	0.061	0.034	1.809	0.071	0.061	0.034	1.804	0.071
Year of first records (YEAR)	0.034	0.016	2.140	0.033	0.020	0.016	1.280	0.201
Geographic distance (DIST)	-0.054	0.018	-2.930	0.003	-0.055	0.018	-3.011	0.003
Environmental similarity (ESIM)	0.025	0.018	1.366	0.174	0.015	0.019	0.763	0.447
Native island (NISL)	-0.035	0.138	-0.252	0.801	0.036	0.129	0.282	0.778
Exotic island (EISL)	-0.271	0.056	-4.885	< 0.001	-0.306	0.056	-5.520	< 0.001

Table S6. Predictor estimates for the transferability model with GAMs and MaxEnt, including taxonomic class and continent as categorical predictors. Mean and standard deviation are provided for the scaled factors. Predictors marked with an asterisk (*) were log-transformed and predictors marked with two asterisks (**) were logit-transformed before scaling.

			GAM			MaxEnt			
Variable	Mean	Std. dev	Estimate	Std. error	t-statistic	Estimate	Std. error	t-statistic	
(Intercept)			1.0256	0.1414	7.2530	0.9802	0.1330	7.3719	
Native AUC (NAUC)**	1.6286	0.5512	0.0886	0.0193	4.5919	0.0583	0.0180	3.2373	
Native number of occurrences (NOCC)*	6.6843	2.0848	-0.0277	0.0264	-1.0511	-0.0013	0.0242	-0.0551	
Exotic number of occurrences (EOCC)*	5.0330	1.5050	0.0470	0.0224	2.0972	0.0359	0.0221	1.6270	
Continent (CONT)									
Africa			-0.4141	0.0751	-5.5146	-0.4403	0.0745	-5.9072	
Asia			-0.4997	0.0675	-7.4008	-0.5014	0.0673	-7.4537	
Asia;Europe			-0.2986	0.0969	-3.0813	-0.1893	0.0958	-1.9754	
Asia;Oceania			-0.7395	0.2900	-2.5498	-0.6362	0.2873	-2.2147	
Europe			-0.3358	0.0675	-4.9747	-0.3543	0.0666	-5.3167	
North America;South America			-0.4299	0.0837	-5.1383	-0.4430	0.0832	-5.3225	
Oceania			-0.0133	0.0689	-0.1937	0.0818	0.0685	1.1940	
South America			-0.4831	0.0684	-7.0602	-0.4483	0.0680	-6.5886	
Taxonomic class (CLASS)									
Aves			-0.0665	0.1653	-0.4024	0.0012	0.1540	0.0078	
Insecta			-0.0535	0.1789	-0.2992	0.0431	0.1684	0.2559	
Liliopsida			0.0746	0.1387	0.5380	0.0863	0.1296	0.6662	
Magnoliopsida			0.1317	0.1355	0.9718	0.1650	0.1266	1.3028	
Pinopsida			-0.0727	0.2636	-0.2758	0.0506	0.2506	0.2018	
Polypodiopsida			0.4386	0.2204	1.9903	0.6333	0.2093	3.0259	
Reptilia			0.7356	0.3019	2.4364	0.4163	0.2885	1.4429	
Native environmental breadth (NEB)*	2.3361	0.7345	0.1529	0.0278	5.4916	0.1819	0.0274	6.6316	
Exotic environmental breadth (EEB)*	1.3130	1.0438	-0.1081	0.0317	-3.4136	-0.1215	0.0317	-3.8352	
Native environmental coverage (NEC)	0.4412	0.1754	0.0114	0.0271	0.4189	-0.0123	0.0254	-0.4841	
Exotic environmental coverage (EEC)	0.3377	0.1806	-0.1532	0.0270	-5.6702	-0.1421	0.0269	-5.2843	
Native GDP (NGDP)*	29.8166	1.3399	-0.0735	0.0247	-2.9749	-0.0559	0.0229	-2.4349	
Exotic GDP (EGDP)*	28.3193	1.8381	0.0591	0.0339	1.7412	0.0580	0.0336	1.7264	
Year of first records (YEAR)	1897.1674	78.6150	0.0347	0.0162	2.1464	0.0199	0.0158	1.2579	
Geographic distance (DIST)	10898.6147	4590.9176	-0.0549	0.0183	-3.0062	-0.0565	0.0181	-3.1226	
Environmental similarity (ESIM)	0.1563	0.2080	0.0233	0.0185	1.2571	0.0126	0.0192	0.6558	
Native island (NISL)			-0.0352	0.1366	-0.2579	0.0321	0.1275	0.2521	
Exotic island (EISL)			-0.2703	0.0556	-4.8617	-0.3024	0.0556	-5.4412	

Country	ISO3	Mean AUC (GAM)	Standard deviation (GAM)	Mean AUC (MaxEnt)	Standard deviation (MaxEnt)	Number of species
Albania	ALB	0.699	0.162	0.746	0.130	5
Algeria	DZA	0.596	0.084	0.638	0.114	4
Angola	AGO	0.612	0.081	0.618	0.097	12
Argentina	ARG	0.640	0.099	0.633	0.098	120
Armenia	ARM	0.722	0.168	0.671	0.134	3
Australia	AUS	0.731	0.132	0.747	0.125	348
Austria	AUT	0.630	0.084	0.646	0.077	56
Azerbaijan	AZE	0.765	0.139	0.679	0.098	6
Bangladesh	BGD	0.649	0.079	0.623	0.065	13
Belarus	BLR	0.656	0.112	0.667	0.097	21
Belgium	BEL	0.635	0.089	0.641	0.083	62
Belize	BLZ	0.713	0.121	0.727	0.109	49
Benin	BEN	0.591	0.064	0.584	0.077	28
Bhutan	BTN	0.692	0.105	0.721	0.115	12
Bolivia	BOL	0.647	0.086	0.637	0.087	88
Bosnia and Herzegovina	BIH	0.619	0.105	0.675	0.093	6
Botswana	BWA	0.627	0.079	0.647	0.088	36
Brazil	BRA	0.628	0.092	0.634	0.094	163
Bulgaria	BGR	0.701	0.152	0.692	0.091	10
Burkina Faso	BFA	0.584	0.051	0.581	0.077	19
Burundi	BDI	0.661	0.099	0.670	0.105	9
Cambodia	KHM	0.631	0.075	0.629	0.088	23
Cameroon	CMR	0.631	0.078	0.625	0.089	28
Canada	CAN	0.715	0.116	0.694	0.117	166
Central African Republic	CAF	0.622	0.111	0.617	0.118	10
Chad	TCD	0.588	0.118	0.596	0.111	9
Chile	CHL	0.634	0.098	0.632	0.097	77
China	CHN	0.676	0.100	0.666	0.107	77
Colombia	COL	0.638	0.095	0.640	0.093	126
Costa Rica	CRI	0.632	0.087	0.633	0.091	84
Côte d'Ivoire	CIV	0.585	0.071	0.581	0.071	25
Croatia	HRV	0.630	0.079	0.676	0.080	13
Czech Republic	CZE	0.639	0.090	0.651	0.085	52

Table S7. Mean predictive performance of GAM and MaxEnt species distribution models for

 each country in the study, with standard deviation and number of invading species.

Democratic Republic of the	COD	0.638	0.083	0.618	0.089	34
Diibouti		0.612	0.003	0.586	0.007	ا ا
Ecuador	ECU	0.636	0.041	0.580	0.075	125
Equat	EGV	0.628	0.000	0.638	0.050	3
Egypt	ERI	0.614	NA	0.038	0.050 NA	1
Estonia	EKI	0.625	0.002	0.700	NA 0.067	1
	ESI	0.033	0.093	0.033	0.007	19
Etmopia		0.033	0.080	0.044	0.087	57
Finland		0./14	0.129	0.711	0.119	105
France		0.04/	0.108	0.038	0.090	103
French Gulana	GUF	0.010	0.080	0.622	0.079	43
Gabon	GAB	0.616	0.069	0.613	0.088	20
Gambia	GMB	0.573	0.067	0.572	0.072	6
Georgia	GEO	0.784	0.139	0.708	0.088	8
Germany	DEU	0.631	0.086	0.641	0.086	75
Ghana	GHA	0.587	0.072	0.584	0.067	23
Greece	GRC	0.687	0.145	0.674	0.120	20
Guatemala	GTM	0.699	0.117	0.707	0.110	87
Guinea	GIN	0.588	0.066	0.582	0.075	20
Guinea-Bissau	GNB	0.550	0.054	0.554	0.062	5
Guyana	GUY	0.625	0.076	0.623	0.081	46
Hungary	HUN	0.634	0.088	0.642	0.075	29
India	IND	0.653	0.101	0.649	0.105	85
Indonesia	IDN	0.519	0.034	0.530	0.039	5
Iran	IRN	0.669	0.158	0.706	0.110	6
Iraq	IRQ	0.639	0.100	0.683	0.161	3
Ireland	IRL	0.595	0.081	0.582	0.092	15
Italy	ITA	0.645	0.100	0.639	0.091	92
Japan	JPN	0.608	0.088	0.593	0.093	43
Jordan	JOR	0.577	NA	0.686	NA	1
Kazakhstan	KAZ	0.685	0.128	0.679	0.120	7
Kenya	KEN	0.655	0.089	0.645	0.094	73
Kuwait	KWT	0.581	0.006	0.764	0.110	2
Kyrgyzstan	KGZ	0.768	0.097	0.670	0.134	3
Laos	LAO	0.644	0.077	0.652	0.082	21
Latvia	LVA	0.652	0.098	0.678	0.086	21
Lesotho	LSO	0.607	0.070	0.615	0.084	16
Liberia	LBR	0.586	0.055	0.584	0.058	14
Libya	LBY	0.845	NA	0.852	NA	1
Lithuania	LTU	0.654	0.099	0.687	0.079	20
Luxembourg	LUX	0.651	0.069	0.668	0.068	13

Madagascar	MDG	0.695	0.127	0.710	0.098	11
Malawi	MWI	0.649	0.090	0.645	0.091	59
Malaysia	MYS	0.649	0.085	0.653	0.091	28
Mali	MLI	0.566	0.067	0.567	0.065	14
Mauritania	MRT	0.571	0.058	0.579	0.068	7
Mexico	MEX	0.714	0.122	0.717	0.114	202
Moldova	MDA	0.744	0.050	0.734	0.054	2
Mongolia	MNG	0.647	0.102	0.759	0.142	3
Montenegro	MNE	0.627	0.115	0.621	0.105	2
Morocco	MAR	0.603	0.084	0.666	0.103	4
Mozambique	MOZ	0.621	0.081	0.617	0.077	33
Myanmar	MMR	0.670	0.077	0.681	0.090	21
Namibia	NAM	0.647	0.104	0.658	0.121	33
Nepal	NPL	0.658	0.079	0.669	0.096	35
Netherlands	NLD	0.625	0.078	0.642	0.082	47
New Zealand	NZL	0.661	0.113	0.670	0.109	234
Nicaragua	NIC	0.624	0.088	0.634	0.094	72
Niger	NER	0.567	0.066	0.594	0.067	12
Nigeria	NGA	0.620	0.079	0.612	0.091	34
North Korea	PRK	0.586	NA	0.887	NA	1
Norway	NOR	0.715	0.128	0.709	0.121	52
Oman	OMN	0.581	0.006	0.764	0.110	2
Pakistan	РАК	0.645	0.108	0.649	0.112	30
Panama	PAN	0.631	0.088	0.633	0.090	95
Papua New Guinea	PNG	0.519	0.034	0.530	0.039	5
Paraguay	PRY	0.629	0.084	0.637	0.088	49
Peru	PER	0.636	0.089	0.634	0.092	106
Poland	POL	0.632	0.086	0.664	0.083	39
Portugal	PRT	0.655	0.114	0.646	0.102	69
Qatar	QAT	0.581	0.006	0.764	0.110	2
Republic of Congo	COG	0.594	0.053	0.597	0.071	10
Romania	ROU	0.672	0.119	0.671	0.090	20
Russia	RUS	0.690	0.125	0.693	0.119	38
Rwanda	RWA	0.669	0.095	0.650	0.093	33
Saudi Arabia	SAU	0.639	0.100	0.683	0.161	3
Senegal	SEN	0.583	0.065	0.593	0.071	18
Serbia	SRB	0.683	0.094	0.704	0.050	5
Sierra Leone	SLE	0.575	NA	0.594	NA	1
Slovakia	SVK	0.654	0.098	0.676	0.071	14
Slovenia	SVN	0.627	0.070	0.649	0.084	19

Somalia	SOM	0.614	0.053	0.639	0.072	12
South Africa	ZAF	0.667	0.102	0.662	0.107	121
Spain	ESP	0.669	0.117	0.654	0.100	103
Sudan	SDN	0.596	0.052	0.621	0.064	6
Suriname	SUR	0.615	0.094	0.622	0.087	28
Swaziland	SWZ	0.670	0.104	0.683	0.103	33
Sweden	SWE	0.702	0.124	0.698	0.120	56
Switzerland	CHE	0.631	0.084	0.643	0.075	45
Tajikistan	TJK	0.871	NA	0.780	NA	1
Tanzania	TZA	0.655	0.092	0.647	0.095	73
Thailand	THA	0.650	0.084	0.653	0.091	34
Тодо	TGO	0.598	0.057	0.585	0.068	21
Tunisia	TUN	0.653	0.086	0.685	0.171	2
Turkey	TUR	0.691	0.157	0.719	0.104	17
Uganda	UGA	0.646	0.090	0.641	0.093	53
Ukraine	UKR	0.663	0.093	0.661	0.094	32
United Arab Emirates	ARE	0.639	0.100	0.683	0.161	3
United Kingdom	GBR	0.644	0.099	0.649	0.105	90
United States	USA	0.739	0.128	0.732	0.129	402
Uruguay	URY	0.651	0.098	0.636	0.112	39
Uzbekistan	UZB	0.590	NA	0.606	NA	1
Venezuela	VEN	0.627	0.090	0.635	0.083	89
Vietnam	VNM	0.657	0.086	0.648	0.091	37
Yemen	YEM	0.755	NA	0.521	NA	1
Zambia	ZMB	0.638	0.075	0.629	0.085	47
Zimbabwe	ZWE	0.622	0.077	0.634	0.078	38
SUPPLEMENTARY FIGURES

Figure S1. Change in area under the receiver operating characteristic curve (AUC) and Continuous Boyce Index (CBI) values at decreasing proportion of sampled occurrences for the simulated species-environment. Points represent the mean values at the given proportion of sampled presences, with the red line representing the mean value at 95 percent sampled presences and error bars representing the standard deviation at each fraction.

Figure S2. Comparison of native range model performance using 10-fold random cross-validation and 5-fold spatial-block cross-validation, measured as the mean area under the receiver operating characteristic curve (AUC).

Figure S3. Example of PCA-based environmental breadth and coverage as a predictor for the prickly pear (*Opuntia ficus-indica*). The grey points represent the 10,000 global reference site points used to generate the PCA environment space for all species. The blue and black points represent the occurrences and sampled background sites in geographic and environmental space, respectively.