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Abstract

Computer systems have gone through tremendous changes in the past few

decades. Relatively large general purpose computers dominated the early days

of computers. With time, demand increased for smaller, more dedicated com-

puter systems, called embedded systems. These systems perform a specific

set of functions interacting with the physical environment, often in real-time.

Real-time embedded systems are found today in many application domains

such as the automotive domain, avionics, and control systems. Real-time sys-

tems differ from traditional computer systems in their dependence on time as

a correctness criteria, i.e., a late correct answer is useless for these systems.

Embedded real-time systems today are more integrated, more parallel, and

more complex than ever before. In this thesis, we discuss limitations that

affect the applicability of real-time models, analysis methods, and scheduling

approaches to the realities of today’s embedded systems and propose solutions

to address these challenges.

We first look into the issue of shared resources and its effect on the mapping

and scheduling of software tasks in a real-time system. Most task mapping

approaches proposed in the literature perform task mapping assuming inde-

pendent tasks that do not share resources. Managing shared resources and

their protection mechanisms is performed later. However, this approach might

require several rounds of iteration and can lead to inefficient results. In this

thesis, we explore the possibility of using different resource protection mecha-

nisms within a single system, and propose to tackle the design problem more

efficiently by jointly performing task allocation, scheduling, and resource pro-
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tection mechanism selection. Two approaches are presented to solve this op-

timization problem: an optimal Mixed Integer Linear Programming (MILP)

approach and an efficient heuristic. The proposed work is shown to signifi-

cantly improve system schedulability. Experimental results indicate that the

minimum utilization at which at least 95% of systems become scheulable can

be improved from 65%–70% for the best published task allocation algorithms

to 76%–85% using our heuristic with minimal memory cost. Even better re-

sults can be achieved using the MILP approach.

Next, we look into the design of systems composed of components that

have different levels of criticality. Mixed-Criticality Systems (MCS) received

much attention recently to due their industrial relevance. We focus on three

challenges in MCS design: task allocation, fault-tolerance, and model-based

design. For task allocation, we show that traditional task allocation algorithms

can be inefficient in a mixed-criticality context, and propose an alternative that

we call dual-partitioned task allocation. Experiments show that for systems

that have a utilization of 80% or higher, we can schedule 17% more systems

on a given multicore platform using the dual-partitioned approach.

Fault-tolerance is an important issue for MCS since these systems contain

a safety critical part. To design MCS that tolerate hardware transient faults,

we propose a new mixed-criticality model that simultaneously addresses crit-

icality, reliability, and Quality of Service (QoS). A schedulability test for the

new model is derived. Furthermore, to allow designers to incorporate the new

model and analysis in their design process, we propose a design space explo-

ration framework based on the new model that supports various fault-tolerance
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mechanisms. QoS improvements of up to 42.9% can be achieved using the new

model compared to the traditional MCS model extended to support transient

faults. To overcome more serious faults that can cause a processor in the sys-

tem to fail, we present a new design approach for MCS. The standard MCS

model operation and analysis are extended to cover this failure scenario. Map-

ping and scheduling is performed using a new MILP formulation. Experiments

show that the proposed approach achieves a 3.2X increase in the number of

schedulable systems compared to a baseline design process.

Model-based design is used in many domains for designing complex systems

starting from high level models. We focus specifically here on the Synchronous

Reactive (SR) model since it is widely used for control-dominated applications.

A major challenge when systems designed using the SR model are implemented

is the preservation of the model semantics. Sometimes, the model semantics

can not preserved unless blocks known as functional delays are added to the

system, with negative effects on system performance. In this thesis, we pro-

pose algorithms to generate optimized semantic-preserving implementations

for MCS specified using the SR model, with minimal functional delay addi-

tion. An optimal Branch-and-Bound based algorithm and an efficient heuristic

are proposed for this purpose.
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Abrégé

Les systèmes informatiques ont subi des changements énormes au cours

des dernières décennies. Dans leurs débuts, les ordinateurs, de grande taille

et à usage général, étaient dominants. Avec le temps, la demande pour des

systèmes informatiques plus petits et dédiés pour des tâches plus spécifiques,

appelés systèmes embarqués, a augmenté. Ces systèmes exécutent un ensemble

de fonctions spécifiques interagissant avec l’environnement physique, souvent

en temps réel. Les systèmes embarqués temps-réel se trouvent aujourd’hui

dans de nombreux domaines d’application tels que l’automobile, l’avionique et

les systèmes de contrôle. Les systèmes temps-réel diffèrent des systèmes infor-

matiques traditionnels dans leur dépendence au temps qui est utilisé comme

critère de correction. C’est-à-dire qu’une réponse correcte tardive est inutile

pour ces systèmes.

Les systèmes embarqués temps-réel sont aujourd’hui plus intégrés, plus

parallèles et plus complexes que jamais. Dans cette thèse, nous discutons

des limites qui affectent l’applicabilité des modèles temps-réel, des méthodes

d’analyse et des approches d’ordonnancement aux réalités des systèmes em-

barqués d’aujourd’hui et nous proposons des solutions pour relever ces défis.

En premier lieu, nous examinons la question des ressources partagées et

leurs effets sur la cartographie et l’ordonnancement des tâches logicielles dans

un système temps-réel. La plupart des approches de cartographie des tâches

proposées dans la littérature effectuent la cartographie des tâches en assumant

des tâches indépendantes qui ne partagent pas les ressources. La gestion

des ressources partagées ainsi que leurs mécanismes de protection sont ef-
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fectués plus tard. Cependant, cette approche peut nécessiter plusieurs cy-

cles d’itération et peut mener à des résultats inefficaces. Dans cette thèse,

nous explorons la possibilité d’utiliser différents mécanismes de protection des

ressources au sein d’un même système et proposons d’aborder plus efficacement

le problème de conception en exécutant conjointement l’attribution des tâches,

l’ordonnancement et la sélection des mécanismes de protection des ressources.

Deux approches sont présentées pour résoudre ce problème d’optimisation: une

approche doptimisation linéaire à nombres entiers mixtes optimale (MILP) et

une heuristique efficace. Le travail proposé permet d’améliorer considérablement

lordonnançabilité du système. Les résultats expérimentaux indiquent que

l’utilisation minimale à laquelle au moins 95% des systèmes deviennent or-

donnançables peut être améliorée de 65%–70%, dans les meilleurs algorithmes

d’allocation de tâche publiés, à 76%–85% en utilisant notre heuristique avec

un cot mémoire minime. Des résultats encore meilleurs peuvent être obtenus

en utilisant l’approche MILP.

Ensuite, nous examinons la conception de systèmes formés de composants

qui ont différents niveaux de criticité. Les systèmes de criticité mixte (MCS)

ont récemment reçu beaucoup d’attention en raison de leur pertinence indus-

trielle. Nous nous concentrons sur trois défis en matière de conception MCS:

lattribution des tâches, la tolérance aux pannes et la conception basée sur

modèle. Pour l’attribution des tâches, nous montrons que les algorithms tra-

ditionnels, d’allocation de tâches peuvent être inefficaces dans un contexte de

criticité mixte et proposer une alternative que nous appelons allocation de

tâches à double partition. Les expériences montrent que pour les systèmes
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dont l’utilisation est supérieure ou égale à 80%, qu’on peut ordonnancer 17%

de systèmes sur une plate-forme multicœur donnée en utilisant l’approche à

deux partitions.

La tolérance aux pannes est un problème important pour les MCS puisque

ces systèmes contiennent une partie critique pour la sécurité. Pour concevoir

des MCS qui tolèrent les défauts transitoires, nous proposons un nouveau

modèle de criticité mixte qui aborde simultanément la criticité, la fiabilité et

la qualité de service (QoS). Un test d’ordonnançabilité pour le nouveau modèle

est déduit. En outre, pour permettre aux concepteurs d’intégrer le nouveau

modèle et l’analyse dans leur processus de conception, nous proposons un cadre

d’exploration d’espace de conception basé sur le nouveau modèle qui prend en

charge divers mécanismes de tolérance de pannes. Des améliorations de la

qualité de service jusqu’à 42.9% peuvent être obtenues en utilisant le nou-

veau modèle comparé au modèle MCS traditionnel qui peuvent supporter les

pannes transitoires. Pour surmonter les pannes plus graves qui peuvent en-

traner l’échec d’un processeur dans le système, nous présentons une nouvelle

approche de conception pour MCS. Le fonctionnement et l’analyse du modèle

MCS standard sont élargis pour couvrir ce scénario de défaillance. La cartogra-

phie et l’ordonnancement sont effectuées en utilisant une nouvelle formulation

MILP. Les expériences montrent que l’approche proposée permet d’obtenir une

augmentation de 3.2 fois du nombre de systèmes ordonnançables comparé à

un processus de conception de base.

La conception basée sur modèles est utilisée dans de nombreux domaines

pour concevoir des systèmes complexes à partir de modèles de haut niveau.
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Nous focalisons, ici, spécifiquement sur le modèle réactif synchrone (SR), car

il est largement utilisé pour les applications dominées par les systèmes de

contrôle. Un défi majeur lorsque les systèmes conçus à l’aide du modèle SR

sont implementés est la préservation du modèle sémantique. Parfois, le modèle

sémantique ne peut pas être conservé à moins que des blocs connus comme

des retards fonctionnels soient ajoutés au système, avec des effets négatifs sur

la performance du système. Dans cette thèse, nous proposons des algorithmes

pour générer des implémentations de conservation sémantique optimisées pour

MCS spécifiées à l’aide du modèle SR, avec un minimum d’ajout de retard fonc-

tionnel. Un algorithme optimal basé sur Branch-and-Bound et une heuristique

efficace sont proposés à cet effet.
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Chapter 1

Introduction

Embedded systems have become prevalent in all aspects of our lives today.

Approximately 98% of the microprocessors sold today are used in embedded

systems [1]. Embedded systems are already present in cars, airplanes, im-

plantable medical devices, TVs, etc. They are also central to many emerging

technologies such as wearable devices and the Internet of Things. Many of

these systems are real-time embedded systems that have to interact with the

environment within predefined timing constraints. “A real-time computer sys-

tem is a computer system in which the correctness of the system behavior

depends not only on the logical results of the computations, but also on the

physical instant at which these results are produced” [2].

When designing such systems, the designer must make sure that the system

always respects its timing constraints even for a worst case combination of

internal and external events. This differs from traditional computing where

emphasis has usually been on improving average case performance. In many

real-time applications, a reaction that occurs too late could be useless or even
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dangerous [3]. The emphasis on providing enough resources for the worst case

behavior often has to be balanced with efficiency and other design constraints.

Managing this tradeoff is not a trivial task, and designers need to handle often

conflicting objectives of safety, efficiency, cost, and time-to-market.

In this dissertation, we focus on the design process of embedded real-time

systems and propose new system models, analysis methods, and scheduling

approaches. Our objective is to enable the design of efficient real-time systems

that maximize the usage of the available hardware resources without compro-

mising other system requirements such as timing and reliability constraints.

1.1 Timing in Embedded System Design

Figure 1.1 shows the main components of an example embedded design pro-

cess from a timing viewpoint. The starting point for any design is a high level

specification given as one or more documents describing the intended function-

ality of the system and the design requirements. Designers then convert this

high level specification to a more refined implementation. This implementa-

tion needs to be deployed on a hardware platform. We focus on single core and

homogeneous multicore hardware platforms where the implementation consists

of one or more software programs or tasks that can execute on any core.

When multiple tasks run on a processor, the processor time allocated to

each task must be determined. On a multicore platform, an additional com-

plication is determining a suitable allocation of tasks to processors. This step

is known as task mapping (also known as task allocation or partitioning). The

set of rules that at any time, determines the order in which tasks are executed
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Fig. 1.1: The main componenets in an embedded systems design flow from a
timing viewpoint

on a particular processor is called a scheduling algorithm [3].

This mapping and scheduling operation therefore takes an implementation

consisting of a set of software tasks and a particular hardware platform and

produces a deployed system. This is typically an iterative procedure where

mapping and scheduling decisions are made and then revisited again and again

to optimize one or more design objectives.

Before a fully deployed system is produced, the system must undergo com-

prehensive verification to ensure that the system’s implementation matches

the specification and requirements. For real-time systems, we need to both

verify that the system produces the correct outputs (functional verification)

and that it produces these outputs on time without violating the system’s tim-

ing constraints (timing verification). Finally, the product goes through final

testing.
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Timing verification is typically done through formal analysis, often referred

to as schedulability analysis, on abstract models of the system. This abstract

system model focuses on those aspects that impact the timing verification

process such as the number of processors, the number of tasks and their timing

parameters. The system model also specifies other system features that can

affect the timing analysis, for example: are tasks independent, or do they share

resources? Do tasks have fixed priorities, or does a task’s priority change

over time? Are faults modeled, and if so, what is their impact on tasks?

We will describe a basic timing model in Chapter 2 and adapt it in each of

the remaining chapters, abstracting away details not relevant to the problem

described in the chapter and adding new details.

In this work, we focus on the three “real-time related” components in Figure

1.1: a) the system model, b) timing verification, and c) mapping, scheduling

and optimization. We propose new system models, associated analysis meth-

ods for verifying timing constraints, and new approaches for mapping and

scheduling real-time systems.

1.2 Motivation

Designing real-time embedded systems is becoming an increasingly difficult

task as consumers demand more features leading to more complex designs than

ever before. This complexity accompanied with the pressure from increased

competition is causing a reduction in the quality of the final products released

to the market. Companies are often being forced to recall products leading to

billions of dollars of losses, and sometimes unfortunately, it leads to tragic loss
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of lives. The automotive industry, for example, where cost is a very important

design constraint, is one of the most prominent examples of these problems.

According to the National Highway Traffic Safety Administration [4], in 2013

the auto industry recalled 22 million cars, more than the number of cars sold

that year [5]. This figure went up to 51 million in 2015 [6].

As the number of lines of code in a modern vehicle is rapidly increasing,

software errors, whether due to functionally wrong code or timing errors, will

constitute a significant part of design problems. This is also true for other

industries such as avionics, medical devices, and consumer electronics. Our

focus here is on timing-related errors. Many real-time system models and

analysis methods have been proposed over the years. [7] provides a survey

of some of the prominent real-time models for single core platforms. Tools

such as Symtavision [8] and aiT [9] have been developed allowing designers to

perform timing analysis of real-time systems.

However, there is always a need to adapt real-time models and propose new

ones to accommodate emerging design and architecture trends such as the use

of multicore architectures in real-time systems [10], and the integration of tasks

with different criticalities on a common platform [11].

We will give special attention in this thesis to multicore architectures. Mul-

ticore architectures are becoming more common in real-time systems. The

computational demands of application are increasing at a rapid pace. To ad-

dress these demands, chip manufacturers have focused previously on increasing

clock speeds. However, due to heating issues, this approach has become prob-

lematic. Instead, there is now an increasing trend towards using multiprocessor
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platforms for high-end real-time applications [10].

Today’s embedded systems are also more integrated than ever before. An-

other increasingly important trend in real-time systems is the integration of

components of different levels of criticality onto a common hardware plat-

form [12]. This led to the emergence of the concept of Mixed-Criticality Sys-

tems (MCS) [12]. The critical part of the system is often subject to certification

requirements from certification authorities while the less critical tasks are not.

Current certification standards, such as ISO26262 in the automotive domain

and DO-178C in the avionics domain, define several criticality levels according

to the level of assurance required for a given function.

Focusing on these design trends, we observe the following limitations in

previous real-time models and scheduling techniques:

• Mapping and scheduling in resource-sharing multicore systems: tasks in

real embedded systems often share resources such as shared variables,

data structures, I/O resources, and peripherals. When real-time tasks

allocated on different cores cooperate through the use of shared com-

munication resources, they need to be protected by mechanisms that

guarantee access in a mutually exclusive way with bounded worst-case

blocking time. While exclusive access guarantees data consistency for

the shared resource, it has a direct impact on scheduling and task al-

location because of blocking delays. The problem of finding a feasible

task allocation is known to be NP-hard (even in the case of no shared re-

sources) [13]. Most works on task allocation and scheduling in multicore

ignored the effect of shared resources. However, resource-agnostic task
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allocation algorithms can introduce bottlenecks in the system through

unnecessary distribution of tasks that share global resources across dif-

ferent processors [14].

• Task mapping in multicore mixed-criticality systems: MCS bring new and

interesting challenges to the mapping problem. MCS can have multiple

operational modes and inherently provide different guarantees to tasks

in these modes. This complicates the mapping and scheduling problem

as tasks can have different execution times in different modes. Tradi-

tional mapping and scheduling approaches do not extend to or become

inefficient when applied to mixed-criticality systems.

• Fault-tolerance in mixed-criticality systems: MCS contain a safety criti-

cal part. That part of the system must be made reliable and should be

able to survive transient or permanent faults occurring in the system.

The problem of designing fault-tolerant MCS, however, has not yet re-

ceived much attention [12]. Faults are typically tolerated using temporal

and spatial redundancy. This redundancy imposes additional constraints

on the design of the mixed-criticality system. System models, analysis

techniques, and mapping and scheduling approaches for MCS should be

adapted to take into account tasks’ reliability requirements.

• Model-based design for mixed-criticality systems: model-based design is

among the best practices for software development, especially in the

automotive and aeronautic industry [15]. In a model-based design pro-

cess, software implementations can be automatically generated from high
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level models, reducing the number of errors injected by the design team.

When a system implementation is generated automatically, the imple-

mentation might not be schedulable unless the designer modifies the

model by adding functional delays. These delays have a negative im-

pact on the system’s cost and performance and should be avoided when

possible. While there has been substantial focus on developing expres-

sive functional models and languages, this has not been matched by a

similar effort on the selection of the best mapping and the generation

of optimized implementations. This is especially true in the case of

mixed-criticality systems where efficient solutions to the problem of im-

plementing a system developed using a model-based design process are

still lacking

1.3 Thesis Statement

This thesis studies emerging trends in real-time system design. State-of-

the-art real-time systems are composed of more functions that have different

criticalities, share more resources, and are executing on more cores than ever

before. With this observation in mind, we propose new mapping and schedul-

ing approaches for resource-sharing multicore real-time systems. For mixed-

criticality systems, we propose new system models and analysis methods for

fault-tolerant MCS. We also propose new mapping and scheduling approaches

for MCS that take into account the redundancy required for fault-tolerance.

Moreover, we investigate generating MCS implementations in a model-based

design flow. A persistent theme throughout the thesis is efficiency, i.e. pro-
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ducing solutions that preserve design requirements while maximizing the use

of available resources and/or minimizing implementation cost.

1.4 Thesis Contributions

To address the limitations in real-time models and design techniques dis-

cussed in Section 1.2, we make the following contributions in this thesis:

1.4.1 Mapping and scheduling in resource-sharing multicore

systems

To overcome problems with resource-agnostic task allocation, we propose

two novel resource-aware task allocation approaches for multicore real-time

systems. Shared resources in a multicore system can be protected by lock-based

mechanisms such as the Multiprocessor Priority Ceiling Protocol (MPCP) [16]

and the Multiprocessor Stack Resource Policy (MSRP) [17], or by wait-free

resources. Lock-based mechanisms have a negative impact on the schedula-

bility of the system by forcing tasks to incur blocking while they wait for the

resource to be unlocked. Wait-free methods can improve schedulability at the

expense of additional memory. We exploit the tradeoff between lock-based

and waitfree mechanisms and propose to consider the selection of the pro-

tection mechanism as an additional design variable. A more general design

problem than previously explored is formulated through jointly performing

task allocation, scheduling, and resource protection mechanism selection. The

problem is formulated as a Mixed Integer Linear Program (MILP) for both

MPCP and MSRP to find an optimal solution. Moreover, a heuristic algo-
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rithm is proposed to solve the problem more quickly with good sub-optimal

solutions for large systems where an MILP solution might take a long time to

find. The solutions proposed produce more efficient task configurations than

previously proposed algorithms, significantly extending the range of systems

that can be scheduled on a particular platform. Experimental results indicate

that state-of-the-art algorithms deteriorate quickly for systems beyond 65%

utilization capacity and almost cease to schedule any systems beyond 80% uti-

lization. Our proposed heuristic continues to schedule almost all systems at

80% utilization. The MILP achieves even better results. Section 3.5 provides

a detailed comparison.

1.4.2 Task mapping in multicore mixed-criticality systems

As mentioned in Section 1.2, traditional task allocation algorithms can

become inefficient in a mixed-criticality context. To preserve the guarantees

provided to the critical tasks while efficiently executing non-critical tasks in

the systems, we strike a balance between global and partitioned scheduling

approaches and propose a novel semi-partitioned scheduling approach tailored

for MCS. To this end, we propose the dual-partitioned mixed-criticality task

allocation algorithm. Our experiments (Section 4.3) indicate that the dual-

partitioned algorithm can schedule 17% more systems than traditional task

allocation algorithms at system utilizations of 80% or higher.
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1.4.3 Fault-tolerance in mixed-criticality systems

To incorporate concerns about reliability under hardware transient faults

into MCS design, we propose a new MCS system model that jointly addresses

both reliability and criticality requirements. In the new model, critical tasks

are guaranteed sufficient service under transient faults to satisfy reliability

requirement from standards such as DO-178C [18]. We derive schedulabil-

ity analysis for the new model. The model and analysis support various

fault-tolerance mechanisms such as re-execution, Dual Modular Redundancy

(DMR), Triple Modular Redundancy (TMR), and passive replication. More-

over, we present a design space exploration approach that explores different

task mappings and fault-tolerance mechanisms. The proposed exploration ap-

proach aims to find designs that satisfy criticality and reliability requirements

while also addressing efficiency by maximizing the service provided to non-

critical tasks.

We also consider permanent hardware faults in MCS and present a design

approach for multicore MCS that can survive a processor failure. To this end,

we extend the system operation description and schedulability analysis of the

standard MCS model to incorporate the failure of one of the processors. An

MILP-based mapping and scheduling approach is proposed to produce MCS

designs that are efficient, tolerant to permanent faults, and adhere to criticality

requirements. The possibility of processor failures is taken pro-actively into

account when making the initial mapping and scheduling decisions. We show

that this design approach improves schedulability significantly (for example a

3.2X improvement is observed for systems composed of 20 tasks and 4 cores)
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over a design approach that adds reliability on top of an initial reliability-

agnostic system design.

1.4.4 Implementing synchronous reactive models of

mixed-criticality systems

Various models of computation have been used in model-based design for

embedded systems. We focus here on the Synchronous Reactive (SR) model

of computation which is used extensively for control applications and is the

underlying model of computation for many formalisms and languages such as

Simulink, Esterel, LUSTRE, and SIGNAL. We propose efficient solutions to

the problem of implementing synchronous reactive models of MCS. Our objec-

tive is to ensure the preservation of the model semantics in the implementation

while minimizing the use of functional delays. An optimal branch-and-bound

based algorithm and a heuristic algorithm are proposed for this purpose. Our

experimental evaluation in Section 6.6 shows that the heuristic algorithm pro-

duces close to optimal results (only about 3% higher cost) while being scalable

to large systems.

1.5 Related Publications

The work in this thesis resulted in several publications which are listed

below.

1. [19] Z. Al-bayati, Y. Sun, H. Zeng, M. Di Natale, Q. Zhu and B. H.

Meyer, “Task placement and selection of data consistency mechanisms
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for real-time multicore applications,” 21st IEEE Real-Time and Embed-

ded Technology and Applications Symposium (RTAS’15), pp. 172-181.

In this paper, we propose a resource-aware task allocation algorithm

for systems that use MSRP to protect shared resources. Furthermore,

we leverage the additional opportunity provided by wait-free methods

and propose an algorithm that performs both task allocation and data

consistency mechanism selection (MSRP or wait-free). Results show that

the selective use of wait-free methods can significantly extend the range

of schedulable systems at the cost of memory. This paper is covered in

Chapter 3.

2. [20] Z. Al-bayati, Q. Zhao, A. Youssef, H. Zeng and Z. Gu, “Enhanced

partitioned scheduling of Mixed-Criticality Systems on multicore plat-

forms,” The 20th Asia and South Pacific Design Automation Conference

(ASPDAC’15), 2015, pp. 630-635.

In this paper, the efficient partitioning of MCS on multicore architectures

is discussed. A novel mixed-criticality partitioning algorithm, the Dual-

Partitioned Mixed-Criticality (DPM) algorithm, is presented. Experi-

mental results show that DPM consistently outperforms existing mixed-

criticality partitioning algorithms, for example, at utilizations of 0.8 or

higher, DPM is able to schedule 17% more systems. This paper is dis-

cussed in Chapter 4.

3. [21] Z. Al-bayati, J. Caplan, B. H. Meyer and H. Zeng, “A four-mode

model for efficient fault-tolerant mixed-criticality systems,” 2016 Design,
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Automation and Test in Europe Conference & Exhibition (DATE’16),

2016, pp. 97-102.

In this paper, we consider the problem of designing and scheduling cer-

tifiable fault-tolerant mixed-criticality systems under transient faults.

We propose a new four-mode model that addresses faults and execu-

tion time overruns with separate modes. This model, combined with

the selective continuation of low-criticality tasks, improves the Quality

of Service (QoS) to these tasks while providing the same guarantee to

high-criticality tasks. Experimental results show that QoS improvements

of up to 42.9% can be achieved by the new model. This paper is discussed

in Chapter 5.

4. [22] Z. Al-bayati, B. H. Meyer and H. Zeng, “Fault-tolerant scheduling

of multicore mixed-criticality systems under permanent failures,” 2016

IEEE International Symposium on Defect and Fault Tolerance in VLSI

and Nanotechnology Systems (DFT’16), 2016, pp. 57-62.

In this paper, we present an approach to design multicore mixed-criticality

systems that can survive permanent processor failures. Critical tasks ex-

ecuting on the failing cores are migrated to other cores to allow them

to continue execution. Schedulability analysis for the extended model

is developed. Then, the problem of finding a mixed-criticality system

configuration on a multicore architecture is formulated as a MILP. This

paper is discussed in Chapter 5.
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5. [23] Q. Zhao, Z. Al-bayati1, H. Zeng, and Z. Gu, “Optimized Implemen-

tation of Multi-Rate Mixed-Criticality Synchronous Reactive Models,”

ACM Transactions on Design Automation of Electronic Systems (TO-

DAES). Volume 22 Issue 2, Article 23. January 2017.

The paper considers model-based design using SR models for MCS. The

paper presents a branch-and-bound procedure and a heuristic algorithm

to minimize the total system cost of functional delays in the implemen-

tation. This paper is discussed in Chapter 6.

Two other journal papers are still under review:

6. Z. Al-bayati, Y. Sun, H. Zeng, M. Di Natale, Q. Zhu and B. H. Meyer,

“Partitioning and Selection of Data Consistency Mechanisms for Multi-

core Real-Time Systems”.

This paper extends [19] with support for the MPCP suspension-based

protocol. An MILP-based solution method is also presented to perform

task allocation and data consistency mechanism selection in an optimal

way for both MPCP and MSRP. The paper is discussed in Chapter 3.

7. J. Caplan, Z. Al-bayati2, H. Zeng, and B. H. Meyer, “Mapping and

Scheduling Mixed-Criticality Systems with On-Demand Redundancy”.

This paper extends the model and analysis in [21] to support on-demand

redundancy with various fault tolerance mechanisms. A design space

1My contribution for this paper was being the main developer of the branch-and-bound
based algorithm and phase 2 of the heuristic with input from Ms. Zhao. I also implemented
the parts I contributed.

2For this paper, the core model was co-developed with Mr. Caplan. I also contributed
the derivation of the generic re-execution profiles.
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exploration approach based on the improved analysis is also presented.

The paper is discussed in Chapter 5.

1.6 Thesis Outline

Chapter 2 presents background information essential to the understanding

of the rest of the thesis and discusses related works.

Chapter 3 presents our resource-aware mapping and scheduling approaches

for mulitcore real-time systems. An optimal MILP-based solution is presented

followed by a sub-optimal heuristic. Experimental results comparing these

approaches to state-of-the-art algorithms are also presented.

Chapter 4 presents a novel efficient task allocation approach specific for

MCS. Experimental results are presented comparing this approach with tradi-

tional task allocation approaches.

Chapter 5 presents our solutions for designing fault-tolerant MCS under

both transient and permanent faults. For both types of faults, an MCS model,

its analysis, and accompanying design space exploration approaches are pre-

sented.

Chapter 6 presents two algorithms for implementing MCS designed using

a model-based design process. Experiments exploring the performance and

scalability of both algorithms are presented.

Chapter 7 concludes the thesis highlighting the main findings and outlining

areas for future improvement.
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Chapter 2

Background and Related Work

In this chapter, we present background information on system models and

analysis in real-time systems focusing especially on resource-sharing multicore

systems and Mixed-Criticality Systems (MCS). We also discuss relevant re-

lated works. The chapter starts by presenting a basic model for real-time

systems in Section 2.1. In Section 2.2, we discuss scheduling and task alloca-

tion. In Section 2.3, we discuss the effect of introducing shared resources into

the scheduling problem. In Section 2.4, we give a brief introduction to MCS.

In Section 2.5, we discuss fault-tolerance in the context of MCS. Finally, in

Section 2.6, we give a brief overview of model-based design.

2.1 System Model: Basic Definitions

In this section, we describe a generic (from the timing viewpoint) system

model. We consider a system in which the functionality can be divided into

a set of schedulable units called tasks. A system consists of a set of N tasks
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Γ = {τ1, τ2, ..., τN}, and M homogeneous processors P = {p1, p2, ..., pM}. For

single core architectures, M=1. A task is the smallest entity scheduled by the

operating systems. Each instance of a task is called a job. Tasks can generate

an infinite sequence of jobs. We denote the jth instance (job) of a task τi by

τi,j. A job τi,j can be characterized by the following parameters (summarized

in Figure 2.1):

• Arrival time (aji ): the time instant at which the job becomes ready to

execute.

• Finish time (f j
i ): the time instant at which the job finishes its execution.

• Execution time (Cj
i ): the total amount of time that the job spends exe-

cuting on the processor (sum of the two shaded regions in Figure 2.1).

• Interference (Iji ): the total amount of time that the job spends waiting

for other jobs to finish their execution (sum of Ij1i and Ij2i in Figure 2.1).

• Relative deadline (Dj
i ): the amount of time that the task is given to

complete after its arrival. This is typically the same for all jobs of task

(i.e. ∀ jobs j, k of task τi: D
j
i = Dk

i = Di).

• Response time (Rj
i ): the total amount of time the job takes from arrival

until it finishes execution including interference from other tasks . Rj
i =

f j
i − aji

• Inter-arrival time or period (T j
i ): the amount of time between the arrival

of the job and the arrival of the subsequent job of the task T j
i = aj+1

i −aji .
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Fig. 2.1: Basic job parameters

Tasks that release jobs in an irregular manner (arrival times of the task’s

jobs are unrelated) are called aperodic tasks. Tasks that release jobs at regular

intervals are called periodic tasks. For periodic tasks, the amount of time

between the arrivals of two subsequent jobs is constant. Between the two

types is another type of tasks that releases jobs with a minimum inter-arrival

time. After this time passes, a new job can arrive at any instant. These

tasks are called sporadic tasks. In this work, we are concerned with the more

common periodic and sporadic task sets.

In real-time scheduling, we are interested in the worst case behavior of

systems. Therefore, we characterize a task by deriving the worst case param-

eters across all job instances. A task τi in the simplest case can be fully

characterized by the tuple 〈Ci, Di, Ti〉 where

• Ci: the Worst Case Execution Time (WCET) of the task given by Ci =

max
j

(Cj
i ). The WCET of the task is usually derived using static code

analysis tools or measured by simulation.
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• Ti: the minimum inter-arrival time of the task Ti = min
j
(aj+1

i − aji ).

• Di: the task’s relative deadline. This is typically dependent on the

application requirements.

The deadline of the task could be smaller, equal to, or greater than its

period. To simplify the discussion we will restrict our scheduling discussion to

implicit deadline systems (D = T ) and constrained deadline systems (D ≤ T ).

The ratio Ci/Ti is referred to as the task utilization ui.

2.2 Scheduling

Scheduling is one of the key issues in real-time systems design. The schedul-

ing problem consists of determining which tasks execute on the processors at

each time instant. The scheduling problem in the general sense is known to

be NP-complete [24]. The different properties of real-time designs and the

different assumptions used by systems’ developers led to the development of a

large number of scheduling algorithms. There are different criteria to classify

scheduling algorithms. Figure 2.2 [25] shows one possible classification.

As mentioned in Section 2.1, we are interested here in periodic and sporadic

hard real-time systems that are common in many applications and domains

today such as control, automotives, and avionics. A preemptive scheduling

algorithm can suspend a running job to allow a high priority job to run. We

will focus here on preemptive algorithms since they allow higher efficiency [3].

A static scheduling algorithm makes scheduling decisions at deign time, for

example the scheduler is given a table of task start and and end times which
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Fig. 2.2: Classification of scheduling algorithms

the scheduler enforces. Dynamic scheduling algorithms make their decisions at

runtime. Static scheduling is efficient, however, it lacks the flexibility to deal

with possible runtime scenarios. Furthermore, generating the schedule tables

might be difficult for large systems with non-harmonic parameters, and these

tables if found could be long and have high memory requirements. We will

focus here on dynamic scheduling.

Dynamic scheduling of real-time systems is typically based on priorities

assigned to tasks. The priority of the task can remain constant during the

system’s operation (fixed priority scheduling) or the priority of the task can

change dynamically at runtime (dynamic priority scheduling). Each type of

scheduling has its own advantages and disadvantages. Fixed priority schedul-

ing algorithms such as the Rate Monotonic (RM) scheduling algorithm are

simpler to implement and more predictable. Dynamic priority scheduling al-

gorithms such as Earliest Deadline First (EDF) can potentially schedule more

systems, however, they are hard to implement and in many instances are not

supported by standards. [3] provides a more detailed comparison.
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2.2.1 Scheduling in multicore architectures

When multicore architectures are the implementation target, another di-

mension to the scheduling problem is the selection of the processor on which

a given job is executed. There are two general approaches:

• Global Scheduling: jobs are allowed to migrate freely between processors.

A job can start execution on one processor and end its execution on

another processor

• Partitioned Scheduling: Tasks are allocated to a certain processor. All

jobs of the task must start and finish execution on this processor and no

migration is allowed

Global scheduling has the potential to achieve better utilization for the

overall systems. Partitioned scheduling can be implemented more easily and

predictably, also it has the practical advantage that once a task allocation is

found, a wealth of real-time scheduling techniques and analyses for uniproces-

sor systems can be used [10].

Therefore, in this thesis we focus on partitioned fixed-priority schedul-

ing where tasks are statically assigned to cores and each core is scheduled by

a local fixed-priority scheduler. This is widely used in embedded multicore

real-time systems today. Such scheduling policies are supported by the AU-

TOSAR standard for automotive systems [26], as well as most commercial

RTOSes, including VxWorks, QNX, LynxOS, and all POSIX-compliant ones.

For fixed-priority partitioned systems, we denote the priority of a task τi

by πi and the processor to which τi is assigned by Pi. Lower priority values
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indicate a higher priority task i.e. if πi < πj then τi has a higher priority.

Designers of these systems must determine an appropriate allocation of tasks

to processing cores as well as assign priorities on each core. At runtime, the

highest priority task at each time instance executes on the processor. Designers

need to ensure that all tasks finish their execution before their deadlines. This

is done using schedulability analysis (discussed in Section 2.2.3).

2.2.2 Task allocation: related work

Allocation problems are very common in multicore systems, and in most

cases they are proven to be special instances of the general bin-packing prob-

lem [27]. For real-time systems without considering shared resources, several

heuristics are proposed, e.g., [13, 28, 29]. Baruah and Bini presented an exact

ILP (Integer Linear Programming) based approach [30]. Chattopadhyay and

Baruah showed how to leverage lookup tables to enable fast, yet arbitrarily

accurate partitioning [31]. Baruah presented a polynomial-time approximation

scheme [32]. Other results for partitioned scheduling of independent sporadic

tasks can be found in a recent survey [10]. The work in Chapter 3 of this thesis

differs from these works by considering the impact of shared resources when

performing task allocation.

2.2.3 Schedulability analysis

Schedulability analysis is used to check that all tasks in the system meet

their deadline requirements. For fixed priority systems, one of the most com-

mon methods to check whether a system is schedulable is response time anal-
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ysis [3, 33]. For the model presented in this chapter, the worst case response

time of a task τi, denoted by Ri occurs when the task is released simultaneously

with all higher priority tasks and is given by:

Ri = Ci +
∑

j∈hp(i)

⌈Ri

Tj

⌉
· Cj (2.1)

where hp(i) is the set of tasks that have higher priority than τi. Note that Ri

appears on both sides on the equation. The response time is the smallest value

that satisfies Equation (2.1). This value can be found iteratively as illustrated

by the following equation:

Rn+1
i = Ci +

∑
j∈hp(i)

⌈Rn
i

Tj

⌉
· Cj (2.2)

The iterations start by setting a suitable initial value for Rn
i (e.g. Ci since

Ri ≥ Ci). The right hand sides is then evaluated and the result is assigned

to Rn+1
i . In the second iteration, this result is used on the right hand side

as Rn
i and a new Rn+1

i is calculated. The process continues until no increase

in Rn+1
i occurs for two consecutive iterations (i.e. Rn+1

i =Rn
i ). This result

represents the response time. The iterations also stop if Rn+1
i grows larger

than the deadline Di as this indicates that the task is not schedulable.

Once the response times for all tasks are calculated, a system is schedulable

if and only if:

∀τi ∈ Γ : Ri ≤ Di (2.3)
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2.3 Resource Sharing

A resource is a software structure used by a task to advance its execution

such as a variable, a data structure, or a set of registers on a peripheral de-

vice [3]. When a resource is shared between tasks, it might be possible that

more than one task attempts to access the resource concurrently. This can be

dangerous as these accesses might leave the shared resource in an inconsistent

state. Protection mechanisms must be introduced to ensure that the resource

remains in a consistent state. This is typically done through synchronization

locks. Before getting access to the resource, a task must first attempt to lock

the shared resource. If the locking operation is successful, the task is granted

access to the resource. Once done, the task releases the lock. If the locking

operation is not successful, the task must wait for the resource to be released

and is said to be blocked on the resource. In a multicore architecture, the

resource can be local (accessed by tasks allocated to the same processor) or

global (accessed by tasks allocated to different processors).

The period of time a task τi spends accessing a shared resource is typically

referred to as a critical section. The execution of task τi is composed of a set

of alternating critical sections and sections in which τi executes without using

a (global or local) shared resource, defined as normal execution segments. The

WCET is defined by a tuple {Ci,1, C
′
i,1, Ci,2, C

′
i,2, ..., C

′
i,s(i)−1, Ci,s(i)}, where s(i)

is the number of normal execution segments, and s(i) − 1 is the number of

critical sections. Ci,j (C
′
i,j) is the WCET of the j-th normal execution segment
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(critical section) of τi. The WCET Ci of τi is then

Ci =
∑

1≤j≤s(i)

Ci,j +
∑

1≤j<s(i)−1

C ′
i,j (2.4)

The time a given task τi spends waiting for a shared resource to become

free is commonly referred to as blocking time, Bi. If τi accesses more than one

resource, then Bi is simply the sum of the blocking times encountered across all

resources. To ensure resource accesses proceed with bounded blocking times

and without deadlocks, resource access protocols have been proposed. These

protocols manage access to the shared resources and determine task priori-

ties during their critical sections. On multicore architectures, two prominent

protocols have been used extensively in academia and industry: suspension-

based Multiprocessor Priority Ceiling Protocol (MPCP) [16], and spin-based

Multiprocessor Stack Resource Policy (MSRP) [17].

MPCP and MSRP have been compared in a number of research works

(with respect to their worst-case timing guarantees), with a general consensus

that MSRP performs best for short (global) critical sections and MPCP for

long ones [34]. We will describe these two protocols next.

2.3.1 Multiprocessor priority ceiling protocol

MPCP [16] is a multiprocessor extension of the Priority Ceiling Protocol

(PCP) [35]. In MPCP, tasks use assigned priorities for normal executions,

and inherit the ceiling priority of the resource whenever they execute a critical

section. The ceiling priority of a local resource is the highest priority of any

task that can possibly use it. For a global resource, its remote priority ceiling

is required to be higher than any task priority in the system. For this purpose,



2.3 Resource Sharing 27

a base priority offset higher than the priority of any task is applied to all

global resources. Jobs are suspended when they try to access a locked global

resource and added to a priority queue. The suspension of a higher priority

task blocked on a global critical section allows other (possibly lower priority)

tasks to execute and may even try to execute local or global critical sections.

We briefly review the schedulability analysis of MPCP [14, 36].

The normal section of a task can be blocked by the critical section of lower

priority tasks on the same core. For each of the s(i) normal sections, the worst

case local blocking time Bl
i that τi may suffer is the longest critical section

among all the lower priority local tasks:

Bl
i = s(i)×

∑
k:πk>πi&Pk=Pi

max
1≤m<s(k)

C ′
k,m. (2.5)

τi can only be interfered with by critical sections with a higher remote

priority ceiling once it enters its critical section. Also, since the critical sec-

tion has higher priority than the normal section, in a critical section τi will

only suffer one such interference from each task on the same core. Thus, the

response time of the j-th critical section is bounded by:

W ′
i,j = C ′

i,j +
∑

k �=i:Pk=Pi

max
1≤m<s(k)&Πk,m<Πi,j

C ′
k,m. (2.6)

where Πi,j is the priority ceiling of the critical section C ′
i,j. The remote blocking

time Br
i,j suffered in the j-th critical section is:

Br
i,j = max

πk>πi&Sk,m=Si,j

W ′
k,m

+
∑

πh<πi&Sh,n=Si,j

(⌈
Br

i,j

Th

⌉
+ 1

)
W ′

h,n,
(2.7)

where Si,j denotes the resource accessed by the critical section C ′
i,j and Sk,m =

Si,j indicates that the critical sections C ′
i,j and C ′

k,m access the same resource.
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The initial value for the iterative procedure can be set as the first term on the

right hand side. The total remote blocking time is then:

Br
i =

∑
1≤j<s(i)

Br
i,j . (2.8)

In [14], the worst case response time Ri of τi is then calculated by the

following iterative formula:

Ri = Ci +Bl
i +Br

i +
∑

πh<πi&Ph=Pi

⌈
Ri +Br

h

Th

⌉
Ch. (2.9)

Recently, Chen et al. [36] showed that Eq. (2.9) is optimistic, and proposed a

fix by replacing Br
h with Rh−Ch when Rh ≤ Th. The response time calculation

becomes:

Ri = Ci +Bl
i +Br

i +
∑

πh<πi&Ph=Pi

⌈
Ri +Rh − Ch

Th

⌉
Ch. (2.10)

2.3.2 Multiprocessor stack resource policy

MSRP (Multiprocessor Stack Resource Policy) [17] is a multiprocessor ex-

tension of the Stack Resource Policy (SRP) [37]. The local shared resources

are managed in the same way as MPCP. The global resources are assigned

with a ceiling that is higher than that of any local resource. A task that fails

to lock a global resource spins on the resource lock until it is freed, keeping the

processor busy. (In the MPCP protocol, for comparison, the task is suspended

and yields the CPU.) To minimize the spin lock time (wasted CPU time),

tasks cannot be preempted when executing a global critical section, so as to

free the resource as soon as possible. MSRP uses a FIFO queue (as opposed

to a priority-based queue in MPCP) to manage the tasks waiting on a lock for
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a given busy resource. MSRP maintains the same basic property of SRP: once

a task starts execution it cannot be blocked.

We briefly review the sufficient schedulability analysis for MSRP in [17].

Recently, a more accurate analysis based on an ILP formulation has been

proposed by Wieder and Brandenburg [38]. However, for our objective of

using the analysis in design optimization where many solutions need to be

evaluated quickly, the significant runtime of this approach causes scalability

issues in large systems. This will be demonstrated with experimental results

in Chapter 3.

The local blocking time Bl
i of task τi is bounded by the longest critical

section of a lower priority task on the same core accessing a resource with a

ceiling higher than πi.

Bl
i = max

k:πk>πi∧Pk=Pi

{
max

1≤m<s(k)
C ′
k,m

}
(2.11)

The spin time Li,j that τi may spend for accessing a global resource Si,j

can be bounded by:

Li,j =
∑
P �=Pi

{
max

τk:Pk=P,1≤m<s(k)
C ′
k,m

}
. (2.12)

The total worst case execution time C∗
i becomes:

C∗
i = Ci +

∑
1≤j<s(i)

Li,j . (2.13)

The worst-case remote blocking time Br
i is:

Br
i = max

k:πk>πi∧Pk=Pi

{
max

1≤m<s(k)
(C ′

k,m + Lk,m)

}
. (2.14)

Finally, the worst case response time Ri of τi is:

Ri = C∗
i +max{Bl

i, B
r
i }+

∑
πh<πi∧Ph=Pi

⌈
Ri

Th

⌉
C∗
h. (2.15)
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2.3.3 Wait-free methods

When the shared resource is a communication buffer (memory used

for communicating data), lock-based methods can be replaced with wait-free

methods for ensuring data consistency. The writer and readers are protected

against concurrent access by replicating the communication buffer and lever-

aging information on the time instant and order (priority and scheduling) of

the buffer access [39, 40]. Wait-free methods have virtually no blocking time

(in reality often negligible) and may enhance the schedulability of the system

at the cost of additional memory.

The objective of wait-free methods is to avoid blocking by ensuring that

each time a writer needs to update the communication data, it is reserved with

an unused buffer. Readers are free to use other dedicated buffers. Figure 2.3

shows the typical stages performed by the writer and the readers in a wait-free

protocol implementation [41].

Signal read completion

Writer

Step 1

Reader

Find a free buffer position

Write data

Find the latest written entry
Mark entry as in use

Step 3

Step 2 Read data

Signal write completion

Fig. 2.3: Writer and readers stages in wait-free methods.

The algorithm makes use of three global sets of data. An array of buffers
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is sized so that there is always an available buffer for the writer to write new

data. An array keeps in the i-th position the buffer index in use by the i-th

reader. Finally, a variable keeps track of the latest buffer entry that has been

updated by the writer. Each reader looks for the latest entry updated by the

writer, stores its index in a local variable, and then reads its contents.

Consistency in the assignment of the buffer indexes can be guaranteed by

any type of hardware support for atomic operations, including Compare-And-

Swap (CAS) (as in the original paper by Chen and Burns [41]), but also Test

and Set, and hardware semaphores, as available in several architectures today

(the required support for atomicity is discussed in detail in [42]). The use

of hardware support for atomicity is not limited to wait-free methods. Any

implementation of MSRP for example needs similar instructions for the low-

level protection of the lock data structures (including the FIFO queue for tasks

waiting for the shared resource).

2.4 Mixed Criticality Systems

Embedded systems today are performing more complex and diverse tasks

than ever before, as cost constraints drive the integration of diverse features

in highly integrated systems. Some of these features might be critical to the

operation or the safety of the system, thus requiring explicit certification, while

others do not. Criticality is the level of assurance needed by a particular task

in the system [12]. Systems composed of components with different criticalities

are called Mixed Criticality Systems (MCS). MCS have numerous applications

in domains such as automotive and avionics. These systems are subject of
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ongoing research summarized in [12]. Current certification standards such as

ISO26262 in the automotive domain and DO-178C in the avionics domain

define several criticality levels according to the level of assurance required for

a given function.

MCS are often subject to certification by regulators. To ensure safety,

certification authorities require that the correctness of the system be demon-

strated under extremely conservative constraints that are unlikely to arise in

reality [43]. This leads to higher estimates of tasks’ execution times than those

calculated by designers. To obtain certification, designers must able to demon-

strate that the safety-critical part of the system meets its timing constraints

even with these high estimates. MCS assume that the underlying operat-

ing system is trusted, certified to the highest criticality level, and provides

monitoring and isolation services. This type of OS, with minor variations in

features, can be called a microkernel, a hypervisor, or separation kernel [44].

2.4.1 Basic MCS model

The introduction of levels of criticality into the design of real-time sys-

tems requires revisiting the theory and models of real-time scheduling to take

into account the new challenges introduced by MCS. Mixed-criticality schedul-

ing [11] was proposed to achieve efficient utilization of the underlying CPU

resources while guaranteeing safety and temporal isolation for highly critical

tasks. Since this first paper, many other works have addressed mixed criti-

cality scheduling. The work on MCS scheduling has resulted in a standard

model [45, 46].
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The standard model introduces a new task parameter, criticality level

L. Two criticality levels for the systems’ tasks are typically defined (L ∈

{LO,HI}): LO (for non-critical tasks) and HI (for critical tasks). Non-critical

tasks have a single execution time (C(LO)). Safety critical tasks are charac-

terized by two execution times (C(LO), C(HI)) where C(HI) ≥ C(LO).

These execution times represent the designer’s and the certification author-

ity’s estimates respectively. For scheduling tasks according to the standard

MCS model with fixed priority scheduling, a new scheduling scheme, called

Adaptive Mixed-Criticality (AMC) [46] was introduced. Under AMC, system

operation proceeds as follows [46]:

1. The system starts operating in the LO mode.

2. Under the LO mode, all systems tasks (both LO and HI) are allowed to

execute. The task with the highest priority (regardless of criticality) at

any time is assigned to the processor.

3. If any task in the system tries to execute beyond its LO-mode WCET

(C(LO)) without signalling completion, the system switches into the HI

mode.

4. When this happens, LO tasks are dropped immediately. The HI task

with the highest priority executes on the processor. Under the HI mode,

these HI tasks are allowed to execute upto their certification authority

accepted WCET estimate (C(HI)).

The HI mode ensures that even if the conservative estimate from the regula-

tor is accurate, the safety-critical part of the system will continue to operate.



34 Background and Related Work

The LO mode demonstrates normal operation of the full system with more

optimistic WCET estimates.

2.4.2 Schedulability analysis

The schedulability of MCS executing according to the AMC model can be

verified using response time analysis. A sufficient schedulability test known

as AMC-rtb is presented in [46]. The work in [46] also demonstrates that an

exact test would not be tractable. Under AMC-rtb, three cases need to be

verified [46]:

1. the schedulability of all tasks in the LO mode;

2. the schedulability of HI tasks in the HI mode; and,

3. the schedulability of HI tasks during the LO to HI mode .

The response time Ri(LO) of a task τi in the LO mode is:

Ri(LO) = Ci(LO) +
∑

j∈hp(i)

⌈
Ri(LO)

Tj

⌉
· Cj(LO) (2.16)

Once a mode change starts, the LO tasks are not allowed to execute any

more; we are therefore only concerned with checking the schedulability of the

HI tasks in the stable HI mode and during the mode change itself. The response

times of a HI task in the HI mode and mode change are:

Ri(HI) = Ci(HI) +
∑

j∈hpH(i)

⌈
Ri(HI)

Tj

⌉
· Cj(HI) (2.17)
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Ri(MC) = Ci(HI) +
∑

j∈hpH(i)

⌈Ri(MC)

Tj

⌉
· Cj(HI)

+
∑

k∈hpL(i)

⌈Ri(LO)

Tk

⌉
· Ck(LO)

(2.18)

where hpH(i) (hpL(i)) is the set of HI-criticality (LO-criticality) tasks that

have the same processor as τi and have higher priority. To affect an instance

of τi, a mode change must occur before Ri(LO). Hence tasks in hpL(i) are

dropped after Ri(LO) and we need to account for them only until Ri(LO).

Eq.(2.18) contains the same terms as Eq.(2.17) plus one additional term.

Hence, Eq.(2.17) is subsumed by Eq.(2.18), and in practice we only need to

verify Eq.(2.16) and Eq.(2.18).

2.4.3 MCS on multicores: related work

Scheduling MCS on multicores has received significant attention recently

due to its relevance for current and future high performance MCS. One of

the first works on multi-core scheduling of MCS is [47]. Five different criti-

cality levels are employed with each level using a different form of scheduling

and partitioning. Level-A (the highest level) uses a cyclic executive (static

scheduling), level-B uses partitioned EDF, levels C and D use global EDF,

and level-E uses global best effort. For scheduling tasks, a complex two-level

hierarchical scheduler is used. The approach also placed some restriction on

tasks’ periods requiring all periods of level-B tasks be integer multiples of the

level-A hyperperiod [47].

In [48], Baruah et al. compare the use of partitioning and global scheduling

for MCS and conclude that partitioned scheduling is generally more effective.
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A major reason is that the utilization bounds used as schedulability tests for

global scheduling are often pessimistic whereas partitioned scheduling can use

more accurate schedulability analysis techniques [48]. Moreover, partitioned

scheduling is adopted in the industrial standards for multicore real time sys-

tems scheduling [49].

For systems scheduled with dynamic priorities (EDF), several recent works

discuss partitioning for MCS scheduled by EDF-VD [50] (EDF with Virtual

Deadlines, an extension of EDF for MCS), such as [49, 51]. In [51], a par-

titioning scheduling algorithm called MPVD is proposed. In MPVD, HI-

criticality tasks are allocated using the Worst-Fit bin-packing algorithm then

LO-criticality tasks are allocated using First-Fit. Tasks are sorted by their

utilization at their criticality level in both cases. Rodriguez et al. [49] use a

similar method trying more combinations of bin-packing algorithms (Best-Fit,

Worst-Fit, First-Fit and Next-Fit). The authors conclude that a scheme that

assigns HI tasks first using Worst-Fit then LO tasks using First-Fit both sorted

by decreasing density maximizes the schedulability success ratio.

For fixed priority scheduling, [52] compares various bin-packing heuristics

for partitioned scheduling of MCS. Tasks are ordered by decreasing utilization

or by decreasing criticality and the partitioning algorithms First-Fit, Best-Fit,

and Worst-Fit are compared. First-Fit and Best-Fit with decreasing criticality

are found to have the best success ratios. It is worth noting that the paper

uses the older Static Mixed Criticality (SMC) [11] model which has largely

been superseded by the more recent AMC [46].

In Chapter 4, a hybrid scheduling approach (between global and parti-
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tioned scheduling) for multicore MCS is proposed. The proposed approach

tries to combine the advantages of both scheduling appoaches while taking

into account the nature of MCS.

2.5 Fault-Tolerance in MCS

Software safety standards such as ISO26262 in addition to specifying criti-

cality requirements also specify reliability requirements that must be satisfied

by the system [53]. In MCS, the critical part of the system must be able to

function even when faults occur. Faults can be classified [54] according to their

duration into: transient, permanent, or intermittent. We focus here on tran-

sient and permanent faults affecting the processor. Other types of faults, such

as intermittent faults [55], network [56] and memory [57] errors are assumed

to be dealt with by other mechanisms.

Transient faults, or soft errors, occur when environmental radiation causes

voltage spikes in digital circuits [57]. These faults are typically very short

in nature but they have the capacity to cause errors in the system if they

propagate to the output. Transient faults are increasing due to the increasing

number of transistors and shrinking device sizes which allow smaller charges to

cause faults [58]. In order for the system to execute correctly in the presence

of transient faults, the system must first detect these faults and then a correc-

tive measure must be taken. Examples of detection mechanisms are lockstep

execution [59] and acoustic sensors [60].

In Chapter 5, we propose a mixed-criticality task model and analysis method

for fault-tolerant MCS targeting specifically transient faults. The model as-
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sumes the system’s cores are capable of detecting these faults. The model and

analysis are independent of the fault detection mechanisms and only require

the existence of such mechanisms. Afterwards, we develop a design space

exploration approach based on the proposed model which we apply to the

common fault-tolerance mechanisms discussed next.

2.5.1 Lockstep execution and on-demand redundancy

Lockstep (LS) execution [59] is a popular method for error detection in

automotive Electronic Control Units (ECUs) [61, 62, 63]. LS implements fine-

grained redundancy: each store instruction is compared in hardware between

the cores before being released to the bus. Cores are paired and each executes

the same code in parallel. The results are compared through hardware voting

to detect if any errors occurred. Fig. 2.4a shows an example of lockstep exe-

cution, where the four physical cores operate essentially as two logical nodes

regardless of the workload: both non-critical tasks (blue) and critical tasks

(red) must execute on two cores at all times. Correction can be implemented

with three processors by majority vote. Lockstep cores are difficult to build

and scale due to the precise synchronization required [59, 64].

Alternatively, On-demand Redundancy (ODR) [65, 66] enables more flexi-

bility in system design by allowing cores to be dynamically coupled and decou-

pled when needed. This allows redundant tasks to be arbitrarily scheduled [65].

Fig. 2.4b shows how ODR allows greater flexibility in scheduling. For exam-

ple, cores C1, C2, and C3 can be dynamically coupled to execute task T6 or

decoupled to execute other tasks in the system. Non-critical tasks such as T2
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can be executed on a single physical core.

(a) Lockstep execution

(b) On-demand redundancy

Fig. 2.4: Architectures for multicore fault-tolerant systems.

In our design space exploration framework (discussed in Chapter 5), we

support four fault-tolerance mechanisms (LS and 3 flavours of ODR), as in

Fig. 2.5. In (a), LS execution occurs when a core has internal mechanisms for

detecting but not correcting errors. An error simply results in a re-execution

on that core. In (b), Dual Modular Redundancy (DMR) replicates a thread

on two cores that cannot detect errors by themselves. The task must be re-

executed if the executions do not match according to some external comparison

or voting mechanism. In (c), Triple Modular Redundancy (TMR) replicates a

thread on three cores that cannot detect errors. If an error occurs, the majority
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answer is taken from the three replicas and no re-execution is required. Finally,

in (d), Passive Replication (PR) is similar to TMR but the final replica does

not execute if the first two copies return the same result.

Fig. 2.5: Supported fault-tolerance mechanisms

2.5.2 Transient faults in MCS: related work

A few recent works have begun exploring scheduling MCS considering tran-

sient faults. For instance, in [67] re-execution slots are reserved for all tasks

(both LO and HI). Since faults are rare events, such over-provisioning wastes

CPU time and increases hardware costs. The work we propose in Chapter

5 starts the system in a mode with no over-provisioning, and only considers

re-execution for HI-criticality tasks and in response to faults. In [53], the re-

liability requirements of tasks are accounted for by deriving new values for

the HI-criticality tasks’ WCETs in the HI mode. However, the work does

not model the basic MCS premise that HI tasks can have different WCETs

coming from, for example, the designer and the certification authority. The
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work in [68] addresses this issue and is similar to our work in considering both

fault tolerance and certification requirements for MCS. However, it uses the

standard two-mode model of MCS, and LO-criticality tasks are immediately

dropped once either a fault or an overrun occurs, compromising the Quality

of Service (QoS) provided to LO tasks. We define QoS as the fraction of LO

tasks scheduled in a given mode to the total number of LO tasks. In our work,

LO task QoS is considered as part of the design problem and optimized. Our

work also covers a wider range of fault tolerance mechanisms as opposed to

just re-execution on the same core as in [68].

Due to the increasing complexity of designs and richness of architectural

options, automated Design Space Exploration (DSE) approaches have flour-

ished in recent years. They have been used in several domains and for various

use cases. Examples of such use cases are: [69] which uses a model-driven

framework for guided DSE with hints to suppress the search space, applied to

a cloud infrastructure configuration problem as a case study, and DESERT tool

applied in [70] for component-based model synthesis in vehicle development.

[71] provides a taxonomy and review of 188 approaches.

For the specific case of MCS, mapping strategies and automated design

space exploration for multicore MCS were first explored in [72]. A two-stage

process of nested genetic algorithms is used to solve the resource allocation

problem in two distinct phases: a fault tolerance mechanism is selected for

each task followed by the allocation of all tasks and necessary replicas to cores.

The task model used is simplified, and there is no formal MCS schedulability

analysis. [73] considers mapping and scheduling MCS under recommendations
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from reliability studies such as zonal and fault hazard analysis. Critical task

re-executions take priority over non-critical tasks optimistically scheduled at

the same time. [74] performs joint optimization of energy and fault-tolerance

when mapping mixed-criticality applications on a Multiprocessor System-on-

chip (MPSoC). A genetic algorithm is proposed to explore different hardening

techniques and task mappings, and decide the droppable task set. These two

works, however, do not model the basic MCS premise of varying WCET esti-

mates as we do in Chapter 5. Architecture-level partitioning techniques such

as those described in ARINC 653 standard or in [75] have been used to limit

fault propagation for combinations of critical and non-critical functionalities,

however, they are outside the scope of this thesis.

2.5.3 Permanent faults in MCS: related work

In [76], task migration for surviving permanent faults is discussed for sys-

tems consisting of hard real-time and soft real-time tasks. EDF scheduling is

assumed for the hard real-time tasks and a Constant Bandwidth Server (CBS)

is used for soft ones. An online greedy algorithm handles task migration and

adjusts CBS parameters accordingly. Our work in Chapter 5 uses a more con-

temporary MCS task model and targets a more general design problem offline.

The work in [77] proposes an algorithm to handle task relocation in the case

of processor failures. This work is based on a different MCS model (zero slack

scheduling [78]) than the one we use. Zero slack scheduling has difficultly in-

corporating sporadic tasks and even for periodic tasks, ensuring safe execution

is not trivial [12].
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In contrast, in Chapter 5 we propose an offline design space exploration

approach that adds additional degrees of freedom by considering priorities,

the initial allocation, and relocations as part of the design problem. The other

works mentioned in this section only consider relocation. With our approach,

systems that are more optimized in terms of reliability and cost can be designed

as reliability is pro-actively taken as an important pillar in the initial design

of the system.

2.6 Model-Based Design Using Synchronous Reactive

Models

Model-based design [79] is emerging as a solution for handling the increas-

ing complexity of embedded systems. In model-based design, functionality is

specified according to a language based on a formal model of computation.

After the functional model is validated/verified, a software implementation

on the selected platform is automatically generated using methods and tools

that guarantee the preservation of semantic properties of interest. This design

approach enables advanced verification, reduces design errors, and improves

turnaround times for complex designs.

Synchronous Reactive (SR) models are widely used as the formal model

of computation in designing control-dominated applications. They have been

developed since the early 80s, including Esterel [80], Lustre [81], SIGNAL [82],

and the Simulink graphical language [83]. They are popular today in many

application domains, such as the avionics and automotive industries. We focus

on SR models in this thesis, more specifically on the problem of design synthesis
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or implementation synthesis, i.e., algorithms for turning complex functional

specifications into correct and optimal software implementations on embedded

platforms.

The traditional approach to implementing synchronous programs such as

those written in Esterel or Lustre is by using a single-threaded executable

that runs according to an event server model. Reactions to events are decom-

posed into atomic actions that are partially ordered using a causality analysis

of the program. The scheduling is generated at compile time to exploit the

partial causality order of functions, and the generated code executes without

the need of an operating system. The main concern is to check that the syn-

chronous assumption holds, i.e., ensuring the longest chain of reactions to any

event is completed within the task period. In commercial code generators for

Simulink, e.g., Simulink Coder and Embedded Coder from MathWorks, or Tar-

getLink from dSPACE, two options are available: a single-task (executing at

the base period), or a fixed-priority multi-tasking implementation where one

task is generated for each period in the model, with Rate Monotonic (RM)

priority assignment. Control systems are multi-rate (composed of cooperating

functions executing at different periods). In such cases, multi-tasking imple-

mentations are preferable, because they allow higher resource utilizations and

improve schedulability, compared to their single-task counterparts.

The work in Chapter 6 of this thesis considers the problem of optimizing

the multi-task implementation of mixed-criticality SR models. Our target is

to synthesize an efficient implementation that preserves the model semantics.

We will first discuss the SR model semantics in more depth.
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2.6.1 SR semantics preservation

An SR models can be represented by a Directed Acyclic Graph (DAG) G =

{N , E}, where N is the set of nodes (in the terminology of Lustre, or blocks in

Simulink), and E is the set of edges between the nodes. N = {N1, . . . , N|N |}

is the set of functional nodes. Each node is triggered by sporadic or periodic

events, therefore each node Ni is characterized by a period Ti. Node Ni has one

or more input ports and output ports. E = {E1, . . . , E|E|} is the set of edges. An

edge (or link) Eij = (Ni, Nj) connects the output port of node Ni (the source

node) to an input port of node Nj (the sink). If the edge Eij has no delay on it,

called a feedthrough edge, then there exists a precedence constraint Ni → Nj,

enforced by assigning higher priority to Ni than Nj. If the edge Eij has a unit

delay on it, denoted as Ni
−1→ Nj, then there exists a Rate Transition (RT)

block (based on Simulink terminology) inserted between Ni and Nj to break

the precedence constraint. A high-rate-to-low-rate dependency edge is an edge

Eij connecting a faster writer Ni to a slower reader Nj. A low-rate-to-high-rate

dependency edge is an edge Eij connecting a slower writer Ni to a faster reader

Nj. The RT block behaves like a Zero-Order Hold block for high-rate-to-low-

rate dependency edges, or a Unit Delay block plus a Hold block (Sample and

Hold) for low-rate-to-high-rate dependency edges [15]. (It is possible to have

more than one delay on an edge in general, but we do not consider it here.

Note that the term delay is used to refer to Rate Transition blocks, based on

terminology from signal processing literature, and the term latency is used

to refer to the real-time latency, measured in milliseconds or seconds). A

unit delay on a high-rate-to-low-rate dependency edge does not add additional
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dataflow latency, but a unit delay on a low-rate-to-high-rate dependency edge

adds latency equal to one period of the low-rate task. We assume that unit

delays are added on all high-rate-to-low-rate dependency edges to maintain the

synchronous semantics, but a unit delay may or may not be added on a low-

rate-to-high-rate dependency edge, depending on task parameters. The set of

topological dependencies implied by feedthrough edges define a partial order

of execution among nodes, which must be respected in both simulation and

runtime execution.

Let Ni(k) represent the k-th instance of node Ni, which is periodically

activated; and let ri(k) represent the activation time of Ni(k). Given time

t ≥ 0, we define ni(t) to be the number of times that Ni has been activated

before or at t. For an edge Ni → Nj, if ij(k) denotes the input of the k-

th occurrence of Nj, then this input must be equal to the output of the last

occurrence of Ni, denoted by oi(m), which is no later than rj(k):

ij(k) = oi(m), where m = ni(rj(k)). (2.19)

The timeline on the bottom of Figure 2.6 illustrates the execution of two tasks

with SR semantics. The horizontal axis represents time. The vertical arrows

capture the time instants when the nodes are activated and compute their

outputs from the input. In Figure 2.6, it is ij(k) = oi(m) and ij(k + 1) =

oi(m+ 2).

On the other hand, if Ni
−1→ Nj, then the previous output value is read,

that is,

ij(k) = oi(m− 1), where m = ni(rj(k)). (2.20)
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(m+2)(k)r j (k+1)rr i (m−1)

oi (m)= j (k)i
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oi (m+2)= j (k+1)i

r ij

Fig. 2.6: Input/output relation with no edge delay.
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r ij

Fig. 2.7: Input/output relation with unit edge delay.

Figure 2.7 shows the effect of the added delay on a high-rate-to-low-rate

dependency edge on the input/output relation. Any such added delay helps

to relax the precedence constraints imposed on the scheduling and improve

schedulability, but causes an increase in end-to-end latency, which in turn

causes degraded system control performance; it also increases memory con-

sumption due to duplicated buffers on the edge. Since the edge buffers are

typically not large, the effect of increased memory consumption is relatively

minor. If we focus on system control performance, it is possible to associate to

each delay value a performance cost [84] by using simulation to measure the

(application-specific) control error with different delay values on each specific

edge. We will illustrate this concept with an example.

Impact of delays on control performance: example

We use a relatively complex example from the Simulink library to illus-

trate the impact of added delays on control performance. Figure 2.8 shows
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Fig. 2.8: A Simulink example of an hydraulic servomechanism (representative
of a suspension control).

Fig. 2.9: Hydraulic servo with additional communication delays.

a Simulink model of a hydraulic servomechanism controlled by a pulse-width

modulated (PWM) solenoid. It is representative of feedback control loops in

which there is a flow of data from the sensor to the control and from the con-

trol back to the actuator (represented by the red line over the communication

links in the figure).

We change the model to add functional delays to the data communications

between the sensors, the actuators and the control, to simulate the effect on

the quality of control. Figure 2.9 shows the same hydraulic servo model, with

additional functional delays on the sensor and actuator paths.

Figure 2.10 shows the results of the simulation of the example model, in



2.6 Model-Based Design Using Synchronous Reactive Models 49

Fig. 2.10: Actuator position and error for the hydraulic servo without (top)
and with (bottom) delays.

the top row without added delays, and in the bottom row when a unit delay is

added on the sensor path. The results of the simulation show the displacement

compared with the reference signal (red line of the left graph), the output (blue

line of the left graph), and the error (right graph) in these two cases. The

control quality with a unit delay is somewhat degraded, and the simulation

results show that the error is now about four times larger. For this control

model, it is possible to measure the control error (in millimeter, mm) on the

given reference signal for different delay values on the actuator and sensor

paths. The results are shown in Table 2.1.

sensor delay actuator delay max error (mm)
0 0 0.75
1 0 1.1
0 1 1.6
1 1 1.6

Table 2.1: Max errors for delays on the sensor and actuator paths

In this case, if the control error is the performance parameter of interest,
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it is possible to associate to each delay value a performance cost. If convex

optimization is used to compute an optimal design configuration, we need to

approximate the dependency of the performance from the number of delays

with a convex function. For example, we can find a convex hull or linearize

the function expressed by the table using a least square approximation, or use

continuous piecewise linear function to approximate such curves (approximate

formulations for use in mixed integer linear programming (MILP) can be found

in [85]).

In this thesis, we assume that a linear function is given which approximates

the relationship between the delays on the communication links and the control

error. We adopt the optimization objective of minimizing the weighted sum

of edge delays, where the weight for each edge is determined by the designer,

based on its effect on the control performance and/or buffer size on each edge.

2.6.2 Model-based design: related work

[86] discussed general conditions for a semantics-preserving implementation

of communications among synchronous nodes on a uniprocessor platform, and

presented a wait-free communication mechanism. [87] addressed the problem

of finding an optimal multitask implementation for multirate Simulink models

with fixed-priority scheduling, and presented a branch-and-bound algorithm

to minimize the memory usage from communication buffers. [15] presented a

more general formulation of the problem in [87], and an MILP formulation.

[84] addressed the problem of minimizing the use of functional delays in im-

plementation of SR models based on EDF scheduling.
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For MCS, [88] presented algorithms for static time-triggered scheduling of

a mixed criticality taskset, equivalent to a single-rate SR model, on a unipro-

cessor. First they assign priorities to jobs with Own-Criticality-Based Priority

(OCBP) [43], then they construct two separate schedule tables, SLO for LO-

criticality mode and SHI for HI-criticality mode. At runtime, they switch from

SLO to SHI upon the mode switch event from LO to HI criticality mode. [89]

presented algorithms for static time-triggered scheduling of a multi-rate mixed-

criticality synchronous program on a uniprocessor. First, the multi-rate block

diagram is unrolled into a single-rate block diagram within its hyper-period.

Then, OCBP is applied to assign priorities to nodes in the unrolled block dia-

gram. Finally, the techniques in [88] are applied to construct schedule tables.

Time-triggered scheduling may be suitable for certain application domains

such as avionics, but is not a common practice in cost-sensitive application

domains like automotive systems. In contrast, Chapter 6 presents an efficient

method for implementing SR models for MCS using dynamic scheduling.
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Chapter 3

Task Allocation in Multicore

Real-Time Systems

Multicore architectures are becoming increasingly common in high per-

formance real-time applications. One of the main challenges introduced by

multicore architectures compared to their single core counterparts is finding

efficient solutions to the NP-hard task allocation problem. Many of the previ-

ous works on task allocation in real-time systems ignored the effect of shared

resources. Shared resources can introduce significant blocking, making systems

where task allocation ignored their effect unschedulable or inefficient [90].

In this chapter, we propose novel approaches to solve the task allocation

problem in multicore real time systems more efficiently. The selection of shared

resources protection mechanisms is considered as an additional design variable.

We exploit the tradeoff between lock-based protection mechanisms (which in-

troduce blocking and require no additional memory), and waitfree methods
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(which introduce negligible blocking but require additional memory cost). We

target both suspension-based locking protocols (Multiprocessor Priority Ceil-

ing Protocol (MPCP)) and spin-based locking protocols (Multiprocessor Stack

Resource Policy (MSRP)). Our objective is to find a system configuration (task

allocation, selection of resource mechanisms) that is (1) schedulable, and (2)

requires minimal memory for wait-free buffers. We solve this problem using

the following approaches:

• We develop a Mixed Integer Linear Programming (MILP) formulation for

task allocation, priority assignment, and selection of resource protection

mechanisms (between MPCP and wait-free or between MSRP and wait-

free), while finding schedulable systems with optimal cost (Section 3.3).

• To address the limitations of ILP when scaling to large designs, we pro-

pose two heuristic algorithms (Section 3.4): (1) GS-WF (greedy slacker

with wait-free), a baseline algorithm extending the lock-based greedy

slacker (GS) [90] partitioning algorithm with wait-free support, and (2)

MPA (memory-aware partitioning algorithm). Experiments show that

both algorithms increase schedulability, with MPA generally outperform-

ing GS-WF.

Experimental results indicate the effectiveness of the proposed work in sig-

nificantly extending the range of systems that can be scheduled on a particular

hardware platform, enabling systems in the 76%-88% utilization range to be

scheduled despite not being schedulable with previous resource-aware task al-

location algorithms.
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The rest of this chapter is organized as follows. In Section 3.1, we review our

system model. In Section 3.2, we present an overview of existing resource-aware

task allocation algorithms. In Sections 3.3, and 3.4, we present the two solution

approaches (MILP formulation and heuristic algorithms). In Section 3.5, we

present our experimental results. Finally, Section 3.6 concludes the chapter.

3.1 System Model

The system model is based on the basic model presented in Section 2.1.

We will briefly review it in this section. The system under consideration con-

sists of m cores P = {p1, p2, . . . , pm}. n tasks T = {τ1, τ2, . . . τn} are stat-

ically allocated to them and scheduled by static priorities. Tasks share a

set of q resources R = {r1, r2, . . . rq}. Each task τi is activated by a peri-

odic or sporadic event stream with Ti as the period or minimum interarrival

time. The execution of τi is composed of a set of alternating critical sec-

tions and normal sections. In the latter, τi executes without using a (global

or local) shared resource. The worst case execution time (WCET) is a tuple

{Ci,1, C
′
i,1, Ci,2, C

′
i,2, ..., C

′
i,s(i)−1, Ci,s(i)}, where s(i) is the number of normal sec-

tions, and s(i)− 1 is the number of critical sections. Ci,j (C
′
i,j) is the WCET

of the j-th normal section (critical section) of τi. We use parentheses around

the resource to refer to the critical section accessing it. For example, C ′
i,(r1)

denotes the WCET of τi’s critical section accessing resource r1. The set of

resources accessed by τi is denoted as R(i). πi is the nominal priority of τi

(the higher the number, the lower the priority), and Pi is the core where τi

executes. The shared resource accessed by the j-th critical section of τi is Si,j.
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τi must finish its execution within its relative deadline Di (≤ Ti). That is, a

task is said to be schedulable if the response time Ri ≤ Di. Task utilization is

defined as ui =
Ci

Ti
.

3.2 Resource-Aware Task Allocation

In [14], Lakshmanan et al. made the observation that resource-agnostic

task allocation algorithms can introduce bottlenecks in system design by plac-

ing tasks that share resources on different cores. This can lead to an increase

in blocking time. In [14], a task allocation heuristic called SPA tailored to the

MPCP protocol is also presented. It organizes tasks that share resources into

groups in order to assign them to the same processor. Nemati et al. [91] present

another partitioning heuristic for MPCP named BPA, which tries to identify

communication clusters such that globally shared resources are minimized and

the blocking time is reduced.

The first work on the partitioning problem with spin locks (MSRP) is [90].

Two solutions are proposed, one is an ILP formulation that can provide the

optimal solution, but with exponential complexity. The other is the GS [90]

heuristic, which obtains good quality solutions in a much shorter time. GS

assigns tasks to cores sequentially according to a simple greedy policy that

tries to maximize the least slack (i.e., the difference between the deadline

and the worst case response time). Our work targets a similar problem, with

two notable differences: one is considering suspension locks (MPCP) in ad-

dition to spin locks (MSRP), and the other is the selective use of wait-free

methods. In [19], the CASR (Communication Affinity and Slack with Re-
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tries) algorithm is proposed which also performs task allocation for systems

scheduled by MSRP. In this chapter, we experimentally compare our proposed

algorithms with SPA, BPA when applied to MPCP. We also apply GS and

CASR to MPCP and compare our algorithms to it. For MSRP, we compare

with GS and CASR.

3.3 Problem Formulation with MILP

Lock-based mechanisms provide data consistency for shared resources at

the price of blocking time, which negatively impacts schedulability. Wait-free

methods effectively experience no blocking which makes them an attractive

option for improving schedulablity, but require additional memory for buffer

replicas. We propose to use a combination of lock-based and wait-free mech-

anisms to leverage their complementary characteristics. In this section, we

present a MILP formulation that finds a schedulable system configuration (if

one exists) with the minimum memory cost. The design variables are (a) the

assignment of tasks to processes; (b) the assignment of task priorities; and

(c) the selection of protection mechanisms (between MSRP and wait-free or

between MPCP and wait-free) for resources.

3.3.1 General system variables and constraints

We first discuss the set of variables in the formulation. The task allocation

is denoted by a set of binary variables Ai,p, defined as 1 if task τi is allocated
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to core p and 0 otherwise. A task shall be allocated to one and only one core:

∀τi :
m∑
p=1

Ai,p = 1. (3.1)

A binary variable Gi,j is defined as 1 if tasks τi and τj are assigned to the

same core and 0 otherwise. The constraints in Eqs. (3.2) and (3.3) guarantee

the consistency of Gi,j, Ai,p, and Aj,p for all cores p.

∀τi 	= τj , ∀p : Gi,j ≥ Ai,p +Aj,p − 1, (3.2)

∀τi 	= τj , ∀p1 	= p2 : Gi,j ≤ 2−Ai,p1 −Aj,p2 . (3.3)

For any two tasks τi and τj, the binary variable πi,j is set to 1 if τi has a

higher priority than τj and 0 otherwise. The antisymmetry and transitivity of

priority orders shall be enforced through the following constraints:

∀τi 	= τj : πi,j + πj,i = 1 (3.4)

∀τi 	= τj 	= τk : πi,k ≥ πi,j + πj,k − 1 (3.5)

The binary variable Wr is defined as 1 if the resource r is protected by a

wait-free mechanism and 0 if it is protected by a lock-based mechanism. Local

resources usually do not cause much blocking (a maximum of one critical

section). Hence, to simplify the problem, we use SRP for all local resources.

Let rd(r) be the set of tasks reading from a shared resource r, wt(r) be its

writer, and rw(r)=rd(r) ∪ wt(r). The following constraint forces Wr to be

0 if the all readers of resource r are assigned to the same core as the writer

(Gi,wt(r) = 1, ∀τi ∈ rd(r)):

∀r : Wr ≤ |rd(r)| −
∑

τi∈rd(r)
Gi,wt(r). (3.6)
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The schedulability of the system requires that each task response time is

no longer than its deadline:

∀τi : Ri ≤ Di. (3.7)

A sufficient schedulability condition is that the total utilization on each core

cannot exceed 1:

∀p :

n∑
i=1

(Ai,p ·
Ci

Ti
) ≤ 1. (3.8)

This constraint is effective in quickly ruling out trivially infeasible task alloca-

tions.

3.3.2 MSRP response time formulation

To calculate the MSRP response time, we first rewrite Eq. (2.15) by sub-

stituting (2.13) for C∗:

Ri =Ci +max{Bl
i, B

r
i }︸ ︷︷ ︸

BLi

+
∑

πh<πi∧Ph=Pi

⌈
Ri

Th

⌉
Ch

+
∑

1≤j<s(i)

Li,j +
∑

πh<πi∧Ph=Pi

⌈
Ri

Th

⌉
·

∑
1≤k<s(h)

Lh,k

︸ ︷︷ ︸
BHi

.
(3.9)

The response time Ri is now the sum of four terms. The first term is the task

WCET (a constant). The second term, BLi, represents the blocking time that

may be experienced by the task before it can start executing, caused by lower

priority tasks on the same core accessing a local or a remote resource. Its

formulation is detailed next. The fourth term, BHi, is the spin time on global

resources to which either the task τi itself or local high priority tasks try to

access. Its formulation is discussed afterwards.
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The third term is the interference from local higher priority tasks. An

integer variable OLi,h is introduced to represent the number of times task τh

may interfere with τi.

∀τh 	= τi : OLi,h =

⌈
Ri

Th

⌉
·Gi,h · πh,i (3.10)

This can be linearized as:⎧⎪⎨
⎪⎩

OLi,h ≥
Ri

Th
−M(1−Gi,h)−M(1− πh,i)

OLi,h < 1 +
Ri

Th
, OLi,h ≤M ·Gi,h, OLi,h ≤M · πh,i

where M is a large constant, such as Di.

Formulation of BLi

From Eqs. (2.11) and (2.14), BLi is the maximum over BLi,r for all re-

sources, where BLi,r is the maximum blocking time encountered by task τi

due to an access to resource r by a local lower priority task:

∀τi, ∀r ∈ R : BLi ≥ BLi,r. (3.11)

BLi,r depends on the type of resource. There are two cases.

Case 1: r is a local resource. As in Eq. (2.11), the following conditions

must be satisfied to include the access to r in τi’s blocking calculation: r is

local; r is accessed by a lower priority task τj allocated to the same core as τi;

and, r has a ceiling greater than or equal to the priority of τi. These conditions

are formulated by the following constraints:

∀r, ∀τi 	= τj ∧ τj ∈ rw(r), ∀τh 	= τj ∧ τh ∈ rw(r) :

BLi,r ≥ C ′
j,(r) −M |i− wt(r)|(1−Gi,wt(r))−M(1−Gi,j)

−M(1− πi,j)−M(1−Gj,h)−M |i− h|(1− πh,i).
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The constraint is effective (i.e., C ′
j,(r) is accounted for in BLi,r’s calculation)

only if the writer of r is on the same core (Gi,wt(r) = 1), τj is on the same core

(Gi,j = 1) and has lower priority (πi,j = 1), τh is on the same core, and finally

r has a ceiling that is either higher than τi’s priority (πh,i = 1) or equal to it

(if h = i and hence τi accesses r).

Case 2: r is a global resource. If r is protected with a lock-based mecha-

nism (Wr = 0), as in Eq. (2.14), τi can be blocked by (2a) local lower priority

tasks accessing r, or (2b) remote tasks accessing r provided that there is at

least one local low priority task accessing it. Since accesses to global resources

are completed in a FIFO manner with at most one concurrent request from

each core, we split BLi,r on a per-core basis and then sum over all cores:

∀τi, r, p : BLi,r ≥
m∑
p=1

BLi,r,p −M ·Wr. (3.12)

In case 2a, three conditions must be satisfied: r is global; r is accessed

by a task τj allocated on processor p; and τj is on the same core p as τi with

a lower priority than τi. Eq. (3.13) formulates the conditions: it is effective

only if both τi and τj are allocated on p (Ai,p = 1 and Aj,p = 1), τj has lower

priority than τi (πi,j = 1), and there exists a task τk on a different core that

accesses the resource (Gj,k = 0; resource r is global). In addition, if τj is not

the writer, then the writer and τj are allocated to different cores.

∀r, ∀p, ∀τi 	= τj 	= τk ∧ τj ∈ rw(r) ∧ τk ∈ rw(r) :

BLi,r,p ≥ C ′
j,(r) −M(1−Ai,p)−M(1−Aj,p)

−M(1− πi,j)−M ·Gj,k −M |j − wt(r)| ·Gj,wt(r)

(3.13)

For case 2b, it shall be that r is global; r is accessed by a remote task τj

allocated on p; and there exists a lower priority task τk on the same core as
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Table 3.1: Task parameters for the ILP example system

Task Period (ms) WCET (ms) Core Priority r1 access time

τ1 500 100.0 p1 4 -
τ2 15 0.2 p1 3 0.10
τ3 200 5.0 p2 2 0.50
τ4 60 5.0 p2 1 0.15

τi that accesses r. This can be achieved with Eq. (3.14), where the last two

terms ensure that r is global, similar to Eq. (3.13).

∀r, ∀p, ∀τi 	= τj 	= τk ∧ τj ∈ rw(r) ∧ τk ∈ rw(r) :

BLi,r,p ≥ C ′
j,(r) −M(1−Aj,p)−M ·Gi,j

−M(1−Gi,k)−M(1− πi,k)

−M |j − wt(r)| ·Gj,wt(r) −M |k − wt(r)| ·Gk,wt(r)

(3.14)

Formulation of BHi

The analysis in [17] over-estimates BHi, as shown in [38]. Consider the

task set in Table 3.1, where tasks τ2, τ3, and τ4 share a global resource r1. τ1 is

allocated to core p1 along with one high priority task (τ2). BH1, as in Eq. (3.9),

consists of τ1’s remote accesses and remote accesses by higher priority tasks.

Since τ1 does not access any remote resources, we only need to account for

τ2’s remote blocking. L2,1 is the spin time encountered by task τ2 to access

resource r1. Using Eq. (2.12), L2,1 is the sum of the longest accesses to r1 from

each other core. In the example, we have only one other core (p2) and the

longest critical section has a length of 0.5, hence L2,1 = 0.5, and

BH1 =
∑

1≤j<s(1)

L1,j +

⌈
R1

T2

⌉ ∑
1≤k<s(2)

L2,k = 0 +

⌈
R1

15

⌉
· 0.5.
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The iterative procedure to compute R1 can start from C1 = 100. BH1 =⌈
100
15

⌉
· 0.5 = 3.5, and R1 converges at 103.5.

In this example, the analysis in [17] essentially estimates that τ2 would

try to access r1 seven times during a period of 100 time units and each time,

it finds that a task from p2 is accessing it. However, this is pessimistic as a

maximum of five instances of tasks on p2 can access r1 (two instances of τ3 and

three instances of τ4). Therefore, a tighter bound for BH1 can be found by

taking the minimum of the number of local accesses and the number of remote

accesses to the global resource, in this case BH1 = 0.5 ·min(7, 5) = 2.5.

The analysis can be further tightened: we may identify the accessing task

and include its access time in the calculation instead of pessimistically taking

the longest critical section on each processor. For the example, we would

have a maximum of two accesses from τ3 and three from τ4, hence BH1 =

0.5 · 2 + 0.15 · 3 = 1.45.

Taking advantage of these optimizations, we formulate BH. The is done

by breaking BH down by resource and then by task. BHi,r,j is the blocking

time encountered by τi when it tries to access global resource r and is forced

to wait because remote task τj is accessing r. For example, for remote task τ4,

BH1,1,4 = 0.15 · min(3, 7 − 2). The actual number of accesses (three in this

case) is thus affected by:

1. Remote overlap: the maximum number of possible overlaps between τj and

τi (three in the example), denoted by the variable ORi,j;

2. Local accesses: the number of times τi or local higher priority tasks attempt

to access the resource (seven in the example), denoted by the variableNHi,r;
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and,

3. Local accesses already accounted for. This term comes from the longer

critical sections of tasks that are allocated on τj’s processor (in the example,

two from τ3 since its critical section is longer 0.5 > 0.15), denoted by the

variable NCi,r,j.

Eq. (3.15) formulates BHi,r,j, where the last term ensures that only global

resources are considered. The min operator is commonly implemented in ILP

solvers to simplify formulations. In general, the operation z = min(x, y) can

be easily translated to ILP by defining an auxiliary binary variable b that is

set to 0 if x ≤ y and 1 otherwise.

∀τi 	= τj ∧ τj ∈ rw(r) :

BHi,r,j ≥ C ′
j,(r) ·min(ORi,j , NHi,r −NCi,r,j)

−M |wt(r)− j| ·Gwt(r),j

(3.15)

BHi is then calculated by summing BHi,r,j over r and j:

∀τi, ∀r ∈ R : BHi,r ≥
∑
j

BHi,r,j −M ·Wr (3.16)

∀τi : BHi =
∑
r∈R

BHi,r (3.17)

Finally, we need to formulate constraints to bound the three variables used

in BHi,r,j’s calculation. The number of overlaps ORi,j between two remotely

allocated tasks (hence Gi,j = 0) is equal to 1 +
⌈
Ri

Tj

⌉
, formulated as:

∀τi 	= τj : 1 + Ri
Tj
−M ·Gi,j ≤ ORi,j < 2 + Ri

Tj

∀τi 	= τj : ORi,j ≤M(1−Gi,j)
(3.18)
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NHi,r can be calculated by considering the number of accesses from each

task separately:

∀τi, r : NHi,r =
∑

τj∈rw(r)

NHi,r,j (3.19)

NHi,r,j is given by the following constraint (where the last term ensures only

global resource accesses are considered):

NHi,r,j ≥ OLi,j −M |wt(r)− j| ·Gwt(r),j .

Finally, NCi,r,j represents accesses to r by tasks that are allocated on τj’s

core and have longer critical sections. We split NCi,r,j on a per task basis:

∀r, ∀τi 	= τj ∧ τj ∈ rw(r) : NCi,r,j =
∑

τk∈rw(r),τk �=τj �=τi

NCi,r,j,k,

where NCi,r,j,k is the number of accesses to r during τi’s execution by tasks

τk that are (a) allocated to τj’s core and (b) have longer critical sections for

accessing r than τj. NCi,r,j,k can be tightly bounded by:

∀r, ∀τi 	= τj 	= τk ∧ τj ∈ rw(r) ∧ τk ∈ rw(r) ∧ C ′
k,(r) ≥ C ′

j,(r) :⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

NCi,r,j,k ≥ ORi,k −M(1−Gj,k)−M ·Gk,wt(r),

NCi,r,j,k ≤M ·Gj,k, NCi,r,j,k ≤M(1−Gk,wt(r)),

NCi,r,j,k ≤ ORi,k;

(3.20)

∀r, ∀τi 	= τj 	= τk ∧ τj ∈ rw(r) ∧ τk ∈ rw(r) ∧ C ′
k,(r) < C ′

j,(r) :

NCi,r,j,k = 0.

(3.21)

The constraints in Eq. (3.20) are for the case that τk accesses the resource

r with a longer critical section than τj. The first constraint is that NCi,r,j,k

is lower bounded by the number of possible accesses of τk to r during τi’s

lifetime (ORi,k). This condition is enforced only when τj and τk are on the
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same core (Gj,k = 1) and r is global (Gk,wt(r) = 0). The rest of (3.20), together

with (3.21), ensures that NCi,r,j,k is set to 0 if any of the previous conditions

is not satisfied.

3.3.3 MPCP response time formulation

For MPCP, the response time is calculated according to Eq. (2.10). We

define a new variable OL2i,h to represent the term
⌈
Ri+Rh−Ch

Th

⌉
, a safe upper

bound on the number of preemptions by the local higher priority task τh.

OL2i,h is bounded by the following constraints: ∀τi 	= τh,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

OL2i,h ≥
Ri +Rh − Ch

Th
−M(1−Gi,h)−M · πi,h,

OL2i,h < 1 +
Ri +Rh − Ch

Th
,

OL2i,h ≤M ·Gi,h,

OL2i,h ≤M(1− πi,h).

(3.22)

We also define two new variables BCi and BRi to represent Bl
i and Br

i

respectively. Eq. (2.10) becomes:

∀τi : Ri = Ci +BCi +BRi +
∑
h �=i

Ch ·OL2i,h. (3.23)

Local blocking time BCi

BCi in MPCP is calculated by Eq. (2.5). In the worst case, each local lower

priority task can block τi. Hence,

∀τi : BCi =
∑
j �=i

BCi,j , (3.24)

where BCi,j is the local blocking suffered by task τi due to a resource access

by the local lower priority task τj. BCi,j must be set to 0 for remote or higher
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priority tasks. Also, the formulation of BCi,j differs depending on whether τj

is a writer for the resource. As in Eq. (2.5), only the longest resource access

for τj is considered in the calculation.

When τj is not the writer of r, we add two constraints to calculate BCi,j

(Eq.(3.25)). The first constraint is for the case where r is a local resource

(Gj,wt(r) = 1), and the second when r is a global resource protected by MPCP

(Gj,wt(r) = 0, Wr = 0). Both constraints ensure that τj is only accounted for

if it is a local lower priority task (Gi,j = 1, πi,j = 1).

∀r, ∀τi 	= τj ∧ τj ∈ rw(r) ∧ τj 	= wt(r) :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BCi,j ≥ s(i) · C ′
j,(r) −M(1−Gi,j)−M(1− πi,j)

−M(1−Gj,wt(r)),

BCi,j ≥ s(i) · C ′
j,(r) −M(1−Gi,j)−M(1− πi,j)

−M ·Gj,wt(r) −M ·Wr.

(3.25)

When τj is the writer, similar constraints are defined for BCi,j (Eq.(3.26)).

The difference is that there must exist another task τk accessing r. The first

constraint is for the case in which r is a local resource (Gj,k = 1), and the

second for the case in which r is global and protected by MPCP (Gj,k = 0,

Wr = 0).

∀r, ∀τi 	= τj 	= τk ∧ τj = wt(r) ∧ τk ∈ rw(r) :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BCi,j ≥ s(i) · C ′
j,(r) −M(1−Gi,j)−M(1− πi,j)

−M(1−Gj,k),

BCi,j ≥ s(i) · C ′
j,(r) −M(1−Gi,j)−M(1− πi,j)

−M ·Gj,k −M ·Wr,

(3.26)
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Remote priority ceiling

Before formulating remote blocking, we incorporate the concept of remote

priority ceiling, used in Eq. (2.6), into the ILP formulation. The remote pri-

ority ceiling Πi,r1 of a global critical section C ′
i,(r1) under MPCP is given by

Πbase + Πx where Πbase is a priority level higher than that of any task in the

system, and τx is the highest priority task accessing r1 allocated to any core

other than that of τi.

To define the relative ordering between the priority ceilings of two global

critical sections C ′
i,(r1) and C ′

j,(r2), we define a new variable Πi,r1,j,r2, which is

set to 1 if an access to r2 has no impact on the response time of C ′
i,(r1). This

happens if the global critical section of τi accessing r1 has an equal or higher

remote ceiling than the critical section of τj accessing r2. Πi,r1,j,r2 is 1 when

the highest priority task accessing r1 and allocated to any other core than τi’s

has a higher (or equal) priority than the highest priority task accessing r2 and

allocated to any other core than τj’s.

To derive Πi,r1,j,r2, we split the calculation for the remote tasks. Let τx 	= τi

be any task (remote to τi) that accesses the global resource r1, and let τy 	= τj

be any task (remote to τj) that accesses the global resource r2.

1. Πi,r1,j,r2,x,y is 0 if task τx has a lower priority than the remote task τy and

1 otherwise.

2. Πi,r1,j,r2,x is 1 if τx has a higher priority than all such τy (i.e., if all Πi,r1,j,r2,x,y =

1) and 0 otherwise.

3. Πi,r1,j,r2 is 1 when C ′
i,(r1) has a higher (or equal) priority ceiling than C ′

j,(r2)
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Fig. 3.1: MPCP remote ceiling example

Table 3.2: Remote priority ceiling calculation

Parameter Value Parameter Value Parameter Value

Π3,8,4,9,1,2 1
Π3,8,4,9,1 1

Π3,8,4,9 1
Π3,8,4,9,1,5 1
Π3,8,4,9,6,2 0

Π3,8,4,9,6 0
Π3,8,4,9,6,5 0

Π4,9,3,8,2,1 0
Π4,9,3,8,2 0

Π4,9,3,8 0
Π4,9,3,8,2,6 1
Π4,9,3,8,5,1 0

Π4,9,3,8,5 0
Π4,9,3,8,5,6 1

if there is any τx that has a higher priority than all such τy (i.e., if any τx

has Πi,r1,j,r2,x = 1).

We illustrate these steps with the example in Fig. 3.1. Assume the tasks are

indexed by decreasing priority (τ1 has the highest priority and τ6 the lowest).

We compute the ceiling of resource accesses from core p1 to resources r8 and

r9. For τ3, Π3,8,4,9 = 1 since the remote task τ1 has a higher priority than any

task accessing r9. Also, Π4,9,3,8 = 0 for the same reason. Table 3.2 shows all

the values.

Πi,r1,j,r2,x,y is set to 0 if τx has lower priority than τy. Πi,r1,j,r2,x can be

viewed as the result of an AND operation on all valid Πi,r1,j,r2,x,y values. Since

the allocation of τy is only known at runtime, Πi,r1,j,r2,x,y must be invalidated



3.3 Problem Formulation with MILP 69

(set to 1 so that it does not affect the AND operation) if τy must not affect the

result of the operation (for example, if it is local to τj). Similarly Πi,r1,j,r2 can

be viewed as the result of an OR operation on all the valid Πi,r1,j,r2,x values.

Πi,r1,j,r2,x must be set to 0 if it must not affect the result of the OR operation

(e.g., if τx is local to τi).

We enforce the following constraints:

∀r1 	= r2, ∀τi ∧ τi ∈ rw(r1), ∀τj 	= τi ∧ τj ∈ rw(r2),

∀τx 	= τi ∧ τx ∈ rw(r1), ∀τy 	= τj ∧ τy ∈ rw(r2) :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if τy = wt(r2) Πi,r1,j,r2,x,y ≤ Gj,y + πx,y,

if τy 	= wt(r2) Πi,r1,j,r2,x,y ≤ Gj,y + πx,y +Gwt(r2),y,

Πi,r1,j,r2,x,y ≥ πx,y,

Πi,r1,j,r2,x,y ≥ Gj,y,

if τy 	= wt(r2) Πi,r1,j,r2,x,y ≥ Gy,wt(r2).

(3.27)

The first two constraints in Eq. (3.27) set Πi,r1,j,r2,x,y to 0 only if (a) τx has

a lower priority than τy (πx,y = 0); (b) τy is remote to τj (Gj,y = 0); (c) τy

writes to global resource r2 or τy remotely reads from r2 (Gwt(r2),y = 0). The

other three constraints set Πi,r1,j,r2,x,y to 1 in the opposite scenarios (if τx has

a higher priority than τy or if τy is invalid for the calculation of Πi,r1,j,r2).

Next, we enforce the following constraints on Πi,r1,j,r2,x:

∀r1 	= r2, ∀τi ∧ τi ∈ rw(r1), ∀τj 	= τi ∧ τj ∈ rw(r2),

∀τx 	= τi ∧ τx ∈ rw(r1), ∀τy 	= τj ∧ τy ∈ rw(r2) :⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Πi,r1,j,r2,x ≤ Πi,r1,j,r2,x,y,

Πi,r1,j,r2,x ≤ 1−Gi,x,

if τx 	= wt(r1) Πi,r1,j,r2,x ≤ 1−Gx,wt(r1).

(3.28)
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The first and second constraints in Eq. (3.28) ensure respectively that Πi,r1,j,r2,x

is 0 if any Πi,r1,j,r2,x,y is 0 or τx is local to τi. The third constraint sets Πi,r1,j,r2,x

to be 0 if τx is local to the writer of r1.

Finally, Πi,r1,j,r2 is set to 1 if there is a task τx (other than τi) accessing r2

that has Πi,r1,j,r2,x = 1. This can be enforced with the following constraint:

∀r1 	= r2, ∀τi ∧ τi ∈ rw(r1), ∀τj 	= τi ∧ τj ∈ rw(r2) :

Πi,r1,j,r2 = max
τx �=τi,τx∈rw(r1)

Πi,r1,j,r2,x.
(3.29)

Πi,r1,j,r2 is 1 if r2’s access does not affect the response time of C ′
i,(r1). Thus, the

special case of equal ceilings between C ′
i,(r1) and C ′

j,(r2) also leads to Πi,r1,j,r2 =

1. This situation arises only if the highest priority remote tasks for both r1

and r2 are the same. For example, if τ1 accesses resource r9 in Fig. 3.1. By

setting πi,i = 1 for all τi, this scenario can be incorporated into the existing

analysis.

Remote blocking time BRi

The remote blocking time in MPCP is calculated according to Eqs. (2.6)–

(2.8). The remote blocking BRi for τi is the sum over all resources accessed

by τi (Eq. (2.8)), represented in the following constraint:

∀τi : BRi =
∑

r:τi∈rw(r)

BRi,r. (3.30)

Accesses to global resources in MPCP are queued by priority. When a task

tries to access a global resource, it can be blocked by (a) a lower priority task

holding the resource (first term in Eq. (2.7)); (b) higher priority tasks holding

the resource or queued waiting for it (second term in Eq. (2.7)). At most one
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lower priority task can block τi. A higher priority task τk can block τi multiple

times as shown in Eq. (2.7). We define two variables: BR1i,r,k (BR2i,r,k) for

the remote blocking suffered by τi when it tries to access r and gets blocked

by a lower (higher) priority task τk. With these definitions, BRi,r is:

∀τi, ∀r ∧ τi ∈ rw(r) :

BRi,r = max
τk �=τi,τk∈rw(r)

BR1i,r,k +
∑

τh �=τi,τh∈rw(r)

BR2i,r,h.
(3.31)

Eq. (3.31) is equivalent to Eq. (2.7) with BR1i,r,k representing W ′
k,(r) and

BR2i,r,h denoting
(⌈

Br
i,j

Th

⌉
+ 1

)
W ′

h,(r). BR1i,r,k is computed according to Eq. (2.7).

When τk holds r, it can be preempted on its core by a task τa to execute a re-

source with a higher priority ceiling. BR1i,r,k is computed for each preempting

task τa as follows:

∀τi, ∀r ∧ τi ∈ rw(r), ∀τk 	= τi ∧ τk ∈ rw(r) :

BR1i,r,k ≥ C ′
k,(r) +

∑
τa

BRi,r,k,a −M(1− πi,k)−M ·Wr

−M |wt(r)− i| ·Gi,wt(r) −M |wt(r)− k| ·Gk,wt(r).

The constraint ensures that (a) πi has higher priority; (b) r is not protected

by a wait-free mechanism; (c) the global resource r is accessed by τi; and (d)

r is accessed by τk.

BR1i,r,k,a is the maximum blocking suffered by the remote critical section

C ′
k,(r) due to the local task τa executing a remote section with a higher ceiling,
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hence:

∀τi, ∀r,∧τi ∈ rw(r), ∀τk 	= τi ∧ τk ∈ rw(r),

∀r2 	= r, ∀τa 	= τk ∧ τa ∈ rw(r2) :

BR1i,r,k,a ≥ C ′
a,(r2) −M ·Πk,r,a,r2 −M(1−Gk,a)

−M |wt(r2)− a| ·Ga,wt(r2) −M ·Wr2.

(3.32)

This constraint ensures that (a) only critical sections with higher priority ceil-

ings (Πk,r,a,r2 = 0) are accounted for; (b) τa is local to τk; (c) τa accesses

the global resource r2; and (d) the resource r2 is not protected by a wait-free

mechanism.

The calculation ofBR2i,r,k proceeds similarly. However, the term
(⌈

Br
i,j

Th

⌉
+ 1

)
must be accounted for. Similarly to the overlap variables (OL, OL2, OR), we

define OB as:

∀τi 	= τh, ∀r ∧ τi ∈ rw(r) : 1 +
BRi,r

Th
≤ OBi,r,h < 2 +

BRi,r

Th
.

The calculation of BR2i,r,k then proceeds as follows:

∀τi, ∀r ∧ τi ∈ rw(r), ∀τk 	= τi ∧ τk ∈ rw(r) :

BR2i,r,k ≥ OBi,r,k · C ′
k,(r) +

∑
τa

BR2i,r,k,a −M · πi,k

−M |wt(r)− i| ·Gi,wt(r) −M |wt(r)− k| ·Gk,wt(r) −M ·Wr;

∀τi, ∀r ∧ τi ∈ rw(r), ∀τk 	= τi ∧ τk ∈ rw(r),

∀r2 	= r, ∀τa 	= τk ∧ τa ∈ rw(r2) :

BR2i,r,k,a ≥ OBi,r1,k · C ′
a,(r2) −M ·Πk,r,a,r2 −M ·Wr2

−M(1−Gk,a)−M |wt(r2)− a| ·Ga,wt(r2).
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3.3.4 Objective function

For each wait-free resource, the memory cost is calculated using the tem-

poral concurrency control protocol as in [40]. A variable CTr represents the

memory cost of resource r:

∀r, ∀τi ∈ rd(r), CTr ≥ (1 + max(2, 1 + � Ti

Twt(r)

))Dr

−M ·Gi,wt(r) −M(1−Wr),

(3.33)

where Dr is the size of the shared data buffer r. The first term on the right

side of the constraint is a constant and the last two terms ensure that the

resource is global and protected by a wait-free mechanism. The objective is to

minimize the total memory overhead:

min
∑
r∈R

CTr. (3.34)

3.4 Heuristic Algorithms

While the MILP formulation presented in the previous section can find

optimal system configurations (a feasible solution if one exists with minimum

memory cost), the problem becomes too complex for large designs. To ad-

dress this scalability issue, we present two heuristic algorithms. The first is

a wait-free extension of the GS algorithm that uses wait-free methods as a

last resort when GS fails. While this extension can improve schedulability, it

ignores memory costs when making assignment decisions. To optimize both

schedulability and memory cost, we propose an entirely new memory-aware

partitioning heuristic that searches a wider design space by initially assuming
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all resources use wait-free methods. Memory cost is then reduced by using

lock-based mechanisms whenever feasible.

3.4.1 Extending greedy slacker with wait-free methods

The first algorithm (GS-WF) extends the GS [90] heuristic. Once a task

fails to be assigned to any core in GS, GS-WF uses wait-free mechanisms for

all the global resources accessed by the task and attempts to assign the task

to each of the cores. If this makes the task schedulable on at least one core,

GS-WF selects the one that maximizes the smallest task slack normalized

to the period; otherwise, the algorithm fails. GS-WF only tries to improve

the assignments from GS in case of their failure. Given that the allocation

decisions are inherently based on minimizing slack and do not consider the

memory cost, the end result can be schedulable but quite inefficient in terms

of memory.

3.4.2 Memory-aware partitioning algorithm

The second heuristic, Memory-aware Partitioning Algorithm (MPA), con-

sists of two phases:

1. Finding an initial feasible solution;

2. Improving the solution by exploring other possible solutions using a local

search.

In the first phase, the algorithm focuses on obtaining an initial schedulable

solution. To maximize the probability of finding such a solution, all global
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resources are initially protected by wait-free methods. Local resources are

managed using the Priority Ceiling Protocol (PCP) [35] or the Stack Resource

Policy (SRP) [37] as they only introduce minimal blocking. The second phase

reduces the memory cost resulting from the use of wait-free methods through

local search to selectively change the data consistency mechanism to MPCP or

MSRP. We first describe the concept of assignment urgency which we utilize

in the algorithm.

Assignment urgency

In the proposed algorithm, tasks are allocated to cores one by one. The

order has a significant impact on schedulability and memory cost. We pro-

pose the concept of Assignment Urgency (AU), an estimate of the penalty

(in schedulability or memory) if a task is not the next to be assigned. The

assignment urgency AUi of task τi is defined as:

AUi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mmax

τi schedulable

on 1 core

∣∣∣∣min
j

MC(τi, pj)−min
k �=j

MC(τi, pk)

∣∣∣∣ τi schedulable

on > 1 cores

where MC(τi, pj) is the memory cost of assigning τi to pj using wait-free for

all its global resources, and Mmax is a value that is higher than the worst case

memory cost of assigning any task to any core in the system:

Mmax = max
∀τi∈T

max
∀pj∈P

MC(τi, pj) + 1. (3.35)
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The definition of Mmax ensures that tasks schedulable on only one core will

have higher AU values than those with more assignment options. If a task can

be scheduled on more than one core, then there is usually enough allocation

freedom to defer its assignment. This may come with a cost in memory since

the task may have to be scheduled on a suboptimal core (if the most suitable

core in terms of memory is not available). The possible penalty is estimated

as the absolute difference in memory between the core resulting in the lowest

memory needs, and the second best.

The main algorithm for the task allocation and resource protection selection

is shown in Algorithm 3.1. It takes as input the task set T and the locking

protocol (MPCP or MSRP) to be used for lock-based resources. The algorithm

then works in two phases.

Phase 1

The first phase is a greedy procedure that assumes the use of wait-free

methods for all global resources and tries to assign each task to the core on

which it has the least memory cost. The function TaskSort() computes the

assignment urgencies of a given list of (unassigned) tasks and sorts them by

decreasing AU. It returns failure if a task has no feasible core. Algorithm 3.1

uses TaskSort() to sort the set of unassigned tasks in the list LT (Line 5).

The task with the highest assignment urgency is then assigned to its best

candidate core (Lines 13–14). At any time, if a task has no feasible core,

the algorithm resets the task assignments and tries a resource-oblivious any-

fit policy using the function AnyFit() (Lines 6–11). AnyFit() runs in the
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Algorithm 3.1: Memory-aware Partitioning Algorithm
1: Function AllocationAndSynthesis(T , lockProtocol)

2: Phase 1:
3: LT ← T
4: while LT �= ∅ do
5: if TaskSort(LT ) = failure then
6: Reset partitioning
7: if AnyFit() = true then
8: Goto Phase 2
9: else
10: return failure
11: end if
12: else
13: τk ← ExtractFirst(LT )
14: TA ← TA+ allocating τk to pj with smallest MC(τk, pj);
15: end if
16: end while
17:
18: Phase 2:
19: OptimizeResources(TA, lockProtocol)
20: curOpt ← TA; NA.add(TA)
21: while NA �= ∅ do
22: Th ← MemoryCost(GetLast(NA))
23: curSys = ExtractFirst(NA)
24: LN ←GenerateNeighbors(curSys)
25: for all AS in LN do
26: OptimizeResources(AS, lockProtocol)
27: if IsSchedulable(AS) and MemoryCost(AS) < Th and NotVisited(AS) then
28: NA.add(AS)
29: if size(NA) > n then RemoveLast(NA)
30: if cost(AS) < cost(curOpt) then curOpt = AS
31: Th ← MemoryCost(GetLast(NA))
32: end if
33: end for
34: if NoChange(curOpt, #iter) or cost(curOpt) ≤ tgtCost then
35: return curOpt
36: end if
37: end while

following order: worst-fit with decreasing utilization, best-fit with decreasing

utilization, first-fit, and next-fit. If AnyFit() also fails, Algorithm 3.1 returns

failure. Otherwise, at the end of the first phase, all tasks should be assigned

to a core in a task allocation scheme TA.

Phase 2

In the second phase, the solution TA obtained in the first phase is improved

with respect to memory cost by exploring selected neighbors (with smaller
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memory cost). The main loop of phase 2 (Lines 21–37 of Algorithm 3.1) has

some similarities with branch-and-bound algorithms. It explores the neighbor-

ing solutions among a controlled number of candidates, which are placed in

a list NA sorted by increasing memory cost. The first solution (with lowest

cost) in NA is further explored by branching (generating its neighbors).

The difficulty in exploration arises from the estimate of the quality of the

solutions that may be found under a given branch. The algorithm allows the

exploration of solutions (neighbors) with both lower and higher costs than the

current optimum to avoid getting stuck in a local optimum. However, to avoid

infinite searches, the exploration is bounded by a condition on the number of

iterations without improvement (Line 34, Algorithm 3.1). It is also bounded

by the size ofNA which is at most equal to the number n of tasks in the system

(Line 29, Algorithm 3.1). Essentially, the best n unexplored candidates at any

stage are kept in NA. In our experiments, larger sizes for NA such as 2n or 4n

do not improve the quality of the obtained solution but result in substantially

longer runtimes. To avoid loops, recently visited neighbors are discarded.

The solution space exploration works as follows. The first solution in NA

(solution with minimum cost) is removed from the list (Line 23) and consid-

ered as the new base (curSys) for further exploration. Lines 24–33 show the

generation and exploration of neighbors. All feasible neighbors of the current

base curSys are generated (Line 24). However, not all of them are further

explored. A threshold value Th is used as an acceptance criterion for new

neighbors generated from curSys, which is set to be the memory cost of the

last solution in NA (the unexplored solution with the n-th highest cost, as
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in Line 31). Only solutions with lower costs than Th are accepted for further

exploration (added to NA, Lines 27–28). The cost of any new solution is

considered only after resource optimization (Line 26) such as when compar-

ing with Th (Line 27), or when comparing with the current optimum curOpt

(Line 30). Resource optimization for a given solution is performed by the

function OptimizeResources() (discussed below).

If there are no more promising solutions to explore (NA becomes empty),

or the solution is not improving after a given number of iterations, or a solution

with the desired quality (tgtCost, typically depending on the available RAM

memory) is found, the algorithm terminates (Lines 34–36).

The generation of neighbors is done inside the function GenerateNeighbors().

A neighbor of a given task allocation solution can be obtained by a re-assignment

of a task τi allocated on core pa to a different core pb 	= pa that can accommo-

date it, either directly (1-move neighbor) or by removing a task τj with equal

or higher utilization from pb and assigning τj to another core pc 	= pb (2-move

neighbor).

Resource optimization is performed by the function OptimizeResources().

This function changes the protection mechanism of global resources from wait-

free to lock-based (MPCP or MSRP) for as many resources as possible, while

retaining system schedulability. It is called at the start of phase 2 (Line 19,

Algorithm 3.1) and whenever a new candidate solution is found (Line 26,

Algorithm 3.1). An exhaustive search in OptimizeResources() would be im-

practical, therefore, we developed a heuristic (Algorithm 3.2) that initializes

the protection mechanism for all the global resources to wait-free and places
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Algorithm 3.2: Optimizing data consistency mechanisms
1: Function OptimizeResources(TA, lockProtocol)

2: GR = FindGlobalResources(TA)
3: for all ri in GR do
4: SetProtocol(ri, wait free)
5: end for
6: SortByMemoryCost(GR)
7: for all ri in GR do
8: SetProtocol(ri, lockProtocol)
9: if IsSchedulable(TA) = false then
10: SetProtocol(ri, wait free)
11: end if
12: end for

them in a list GR (Lines 2–5). It then sorts the resources in GR by decreas-

ing memory cost of their wait-free implementation (Line 6). The protection

mechanism of the first (highest cost) resource in GR is changed to a lock-based

mechanism and system schedulability is checked. If the system becomes un-

schedulable, the protection mechanism is reverted to wait-free. The procedure

iterates through all the resources in GR, changing the protection mechanism

from wait-free to lock-based whenever possible (Lines 7–12).

3.5 Experimental Results

In this section, the proposed approaches are evaluated in terms of schedu-

lability and memory cost (if schedulable). In Section 3.5.1, we first compare

the schedulability analysis from [17] (Eqs. (2.11)–(2.15)) and the ILP-based

schedulability analysis in [38] using relatively small task sets. Then, we focus

on the performance of the proposed heuristics and provide an overall evalua-

tion of the heuristics in Section 3.5.2 comparing the algorithms presented in

the previous sections with state-of-the-art partitioning algorithms. For MSRP,

we compare GS-WF and MPA with the best performing resource-aware task
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allocation algorithms proposed so far: GS and CASR. For MPCP, we compare

our algorithms with SPA [14], BPA [91], GS applied to MPCP, and CASR

applied to MPCP. In Section 3.5.3, we study the robustness of the algorithms

under different parameter variations. Finally, in Section 3.5.4, we focus on the

ILP formulations and compare them with heuristics that have the option to

use wait-free resources (GS-WF, MPA). Through the experiments, the unit for

memory cost is in bytes. For each parameter configuration, 100 systems are

randomly generated.

We adopt a task generation scheme similar to [90]. We consider systems

with 3, 4 or 8 cores. The task periods are generated according to a log-uniform

distribution from one of two different ranges [10, 100] ms and [3, 33] ms. The

average task utilization is selected from the set {0.05, 0.1, 0.12, 0.2, 0.3}. The

critical section lengths are randomly generated in either [0.001, 0.1] ms or

[0.001, 0.015] ms with uniform distribution.

The tasks share between 1 and 40 resources. The resource sharing factor

(rsf) represents the portion of tasks in the system sharing a given resource,

e.g., rsf = 0.1 means each resource is shared by 10% of the tasks in the system.

For each experiment, a resource sharing factor is selected from the set {0.1,

0.25, 0.5, 0.75}. The tasks that share a given resource are randomly generated.

This process is independent for each resource. The size of communication data

is chosen randomly from the set (in bytes): 1 (with probability p = 10%), 4

(p = 20%), 24 (p = 20%), 48 (p = 10%), 128 (p = 20%), 256 (p = 10%), and

512 (p = 10%).

It is well known that as the utilization of the task set increases, schedu-
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lability decreases. To be able to quantitatively compare the schedulability of

different approaches, we devise a new metric which we refer to as the criti-

cal utilization. In a given experiment, the critical utilization for a particular

partitioning algorithm is the maximum utilization at which the partitioning

algorithm is able to schedule at least 95% of generated systems. This charac-

terizes the point where almost all systems are schedulable while leaving some

margin in case a particular approach fails for a few systems.

As CASR is a tunable algorithm requiring setting the utilization bound (Ub)

value, we evaluate two approaches: 1) a single run of CASR with utilization

bound Ub = UT /m (denoted by CASR or s-Ub); and 2) the best solution from

multiple (five) runs of CASR with a set of Ub values {0, 25%, 50%, 75%, 100%}

(denoted by CASR-m or m-Ub). For MPA, the number of iterations is set to

be 10n where n is the number of tasks in the system.

3.5.1 Schedulability analysis

We first focus on schedulability analysis and evaluate the task partitioning

algorithms using the schedulability analysis for MSRP in [17], and the ILP-

based analysis in [38]. The average core utilization is selected to be in the

range 68%–96% by fixing the average task utilization at 12% and varying the

number of tasks in the range [17, 24]. Utilizations outside this range show no

variation between the approaches. Tasks are to be allocated to 3 cores, and

share 20 resources. The resource sharing factor is selected to be 0.25. The task

periods are randomly generated in [10, 100] ms and critical section lengths are

randomly chosen in [0.001, 0.1] ms.



3.5 Experimental Results 83

Table 3.3 reports the percentage of schedulable solutions obtained by each

algorithm and the memory costs (for MPA and GS-WF). Table 3.4 presents

the average runtime of each algorithm. Each table is divided into two parts

where the upper half shows the results using the analysis in [17], and the lower

half (with the prefix i) shows the results for the ILP-based analysis [38]. The

general trend is that MPA outperforms the other algorithms. The performance

of all partitioning algorithms improves in terms of both schedulability and

memory cost when using the ILP-based analysis. However, this comes at the

price of a much longer runtime. The runtimes for these relatively small systems

increase by 150 times on average when using the ILP schedulability analysis,

and even more for larger systems. In general, the relative comparison among

the partitioning schemes does not appear to be sensitive to the choice of the

analysis method. In the rest of the experiments, we use the analysis in [17] for

MSRP and the analysis in [14, 36] for MPCP with larger systems.

Table 3.3: Schedulability/average memory cost (GS-WF and MPA only, in
bytes)

Average core util 68% 80% 88% 92% 96%

GS 100% 46% 0% 0% 0%
CASR (s-Ub) 100% 69% 0% 0% 0%
CASR (m-Ub) 100% 91% 1% 0% 0%
GS-WF 100%/0 100%/1687 26%/6963 0%/– 0%/–
MPA 100%/0 100%/0 96%/231 37%/3315 0%/–

iGS 100% 99% 70% 9% 0%
iCASR (s-Ub) 100% 100% 85% 21% 0%
iCASR (m-Ub) 100% 100% 98% 37% 0%
iGS-WF 100%/0 100%/31 81%/347 13%/1395 0%/–
iMPA 100%/0 100%/0 96%/0 37%/79 0%/–
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Table 3.4: Average runtime (in seconds)

Average core util 68% 80% 88% 92% 96%

GS 0.022 0.026 0.011 0.007 0.007
CASR (s-Ub) 0.016 0.044 0.035 0.002 0.001
CASR (m-Ub) 0.019 0.073 0.159 0.009 0.007
GS-WF 0.020 0.032 0.021 0.009 0.008
MPA 0.077 0.183 13.200 3.700 0.022

iGS 65.31 86.060 101.990 49.97 20.160
iCASR (s-Ub) 28.490 70.530 122.910 132.74 51.700
iCASR (m-Ub) 41.540 86.600 164.290 398.200 253.220
iGS-WF 47.310 88.670 104.650 57.830 26.130
iMPA 198.62 247.730 133.430 52.960 17.350

3.5.2 General evaluation of heuristics

In the second set of experiments, we focus on evaluating the approaches

when applied to larger systems. For this experiment, the number of tasks n is

varied in the range [40, 76], to be scheduled on 8 cores. The average utilization

of each task is 0.1. Periods are generated in the range [10, 100] ms, and critical

section lengths are selected in [0.001, 0.1] ms. The number of resources is fixed

at 4, and each resource is shared by a quarter of the systems’ tasks.

The results are shown in Figs. 3.2–3.5. Fig. 3.2 shows that when MPCP

is used as the data consistency mechanism, SPA [14] and BPA [91] perform

worst with respect to schedulability. BPA and SPA both try to divide the

tasks in the system into bundles that share resources, and then, attempts are

made to assign the bundles to processors. While this strategy might work

for some applications, in general it is difficult to find bundles with suitable

utilizations that only share resources internally. When these algorithms fail to

find such bundles, they do not perform as well as the other algorithms. Even
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Fig. 3.2: Comparison of schedulability (8 cores, 4 resources) with MPCP

Fig. 3.3: Comparison of schedulability (8 cores, 4 resources) with MSRP

at utilizations as low as 50%, SPA can only schedule 37% of systems and BPA

58% of systems while all other algorithms easily schedule 100%
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Fig. 3.4: Comparison of memory cost (8 cores, 4 resources) with MPCP

Fig. 3.5: Comparison of memory cost (8 cores, 4 resources) with MSRP

Figs. 3.2 and 3.3 illustrate that CASR outperforms other algorithms that do

not use wait-free methods regardless of the blocking mechanism used (MPCP
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or MSRP). The critical utilization (maximum utilization at which the par-

titioning algorithm is able to schedule 95% or more of generated systems)

is improved from 70% for GS to 76%-77% for CASR-m. These two figures

demonstrate the improvement obtained using wait-free methods. GS-WF and

MPA provide significantly better schedulability than GS, increasing the criti-

cal utilization to 80% for both MPA and GS-WF with MPCP and to 83% for

GS-WF and 88% for MPA with MSRP. Figs. 3.4 and 3.5 compare the addi-

tional memory cost needed by wait-free methods for both GS-WF and MPA.

As shown in Fig. 3.4, MPA requires 15.4% of the memory required by GS-WF

(56 bytes on average compared to 363 for GS-WF) with MPCP. For MSRP

(Fig. 3.5), in systems with small utilization, GS-WF performs noticeably bet-

ter. However, as the average core utilization exceeds 0.75 (number of tasks

exceeds 60), MPA tends to have a lower (about 40% less on average) cost.

These figures show that system schedulability can be improved with minimal

memory penalty when lock-based resources are selectively replaced by wait-

free ones. Algorithms (such as GS-WF and MPA) that exploit this observation

outperform those that don’t.

3.5.3 Effect of different parameters

In this section, we evaluate the robustness of the proposed heuristics to

changes in the input parameter settings. To evaluate systems with more heavy

communication, we first generate system configurations with 20 resources. The

number of tasks is varied in the range [20, 40] to be scheduled on 4 cores with

rsf=0.25. All other parameter settings are the same as those in Section 3.5.2.
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Figs. 3.6–3.9 plot the results of this experiment. The general trend in schedu-

lability remains the same as Section 3.5.2: CASR performs better than SPA,

BPA, and GS. MPA significantly improves upon GS-WF in both schedulability

and memory cost. In terms of schedulability; When using MPCP, the critical

utilization is improved from 57% for GS to 65% for CASR-m, to 70% for GS-

WF, to 76% for MPA. When using MSRP, the critical utilization is similarly

improved from 66% for GS to 70% for CASR-m, to 78% for GS-WF, to 85%

for MPA. The memory advantage for MPA over GS-WF is significantly higher.

MPA requires only about 1% of the memory required for GS-WF (44 bytes to

4505 bytes on average with MPCP, 32 bytes to 2719 bytes with MSRP) and

this advantage is consistent across all utilizations. With more resources in the

system (and hence more options to apply waitfree methods), MPA significantly

improves system schedulability. Compared to the best algorithm that does not

use waitfree methods (CASR-m), the critical utilization is improved by 17%

for MPCP and 21% for MSRP. These results shows that a significant improve-

ment in schedulability is possible with MPA at a minimal memory cost. Using

MPA, more systems can be scheduled on a specific platform without the need

for costly increases to the processing power of the system.

Next, we observe the algorithms performance when varying other system

parameters. First, we fix the utilization (at 70% by having n = 28) and

increase the processor load by increasing the number of shared resources in

the range [1, 40] while fixing rsf at 0.25. The schedulability results are shown

in Figs. 3.10 and 3.11. For MPCP, MPA is the only algorithm to always find a

schedulable solution. For MSRP, both GS-WF and MPA always schedule all
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Fig. 3.6: Comparison of schedulability (4 cores, 20 resources )- MPCP

Fig. 3.7: Comparison of schedulability (4 cores, 20 resources) - MSRP

systems.

To evaluate the effect of changing the resource sharing factor, another ex-
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Fig. 3.8: Comparison of memory cost (4 cores, 20 resources) - MPCP

Fig. 3.9: Comparison of memory cost (4 cores, 20 resources) - MSRP

periment is performed using the same settings while keeping the number of

resources at 20. Tables 3.5 and 3.6 present the result. It shows that MPA and
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Fig. 3.10: Comparison of schedulability with a variable number of resources
- MPCP

Fig. 3.11: Comparison of schedulability with a variable number of resources
- MSRP
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Table 3.5: MPCP schedulability/average memory cost (GS-WF and MPA
only, in bytes) for different sharing factors

rsf 0.1 0.25 0.5 0.75

SPA 52% 0% 0% 0%
BPA 73% 0% 0% 0%
GS 98% 8% 0% 0%
CASR (s-Ub) 100% 17% 0% 0%
CASR (m-Ub) 100% 38% 0% 0%
GS-WF 99%/1.45 96%/4731 81%/10145 25%/12523
MPA 100%/0 100%/0 100%/19 96%/818

GS-WF perform significantly better than all other algorithms as tasks commu-

nicate more often. At lower rsf values, there is little room for improvement

for MPA over GS-WF since it is possible to schedule 100% of systems how-

ever, with more sharing a more significant improvement for MPA is observed.

MPA also succeeds in keeping the memory usage small. For example, when

rsf = 0.75 MPA requires on average just 818 bytes of memory with MPCP

and 841 bytes of memory with MSRP, compared to GS-WF’s 12523 and 11493

(a reduction of 93.5% and 92.7% respectively). Experiments varying other

parameters, e.g., periods and critical section lengths, yield similar conclusions.

The results in this section show that the underlying premise that selectively

replacing lock-based resources with waitfree ones improves schedulability holds

when system parameters are changed and that our proposed MPA heuristic

exploits this observation and is robust to parameter changes.
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Table 3.6: MSRP schedulability/average memory cost (GS-WF and MPA
only, in bytes) for different sharing factors

rsf 0.1 0.25 0.5 0.75

GS 100% 68% 0% 0%
CASR (s-Ub) 100% 94% 0% 0%
CASR (m-Ub) 100% 100% 0% 0%
GS-WF 100%/0 100%/1136 98%/9628 67%/11493
MPA 100%/0 100%/0 100%/104 100%/841

3.5.4 Evaluation with ILP

Finally, we implemented the ILP formulation presented in Section 3.3 using

CPLEX [92], and compared it with the two heuristics that have the option of

using wait-free methods (MPA and GS-WF). A 4-hour time out was used, after

which CPLEX returned the best solution found so far (if any). We generated

smaller systems consisting of 15 tasks sharing 8 resources. The tasks were

scheduled on 3 cores, with each resource being shared by 4 tasks. We observed

schedulability and memory cost as utilization was increased in the range [0.5-

0.9]. Other parameters were similar to the previous experiments. The results

are summarized in Tables 3.7 (for MPCP) and 3.8 (for MSRP). These results

show that with a 4-hour timeout, the ILP formulation manages to schedule

more systems than the proposed heuristics. The ILP achieves a lower memory

cost than GS-WF. However, it does not always achieve a lower memory cost

than MPA, especially for MPCP. This is due to the timeout used which forces

the MILP to exit with a sub-optimal solution when it can not find an optimal

one quickly. Setting a larger timeout value shall allow the ILP to find solutions

with reduced memory cost.
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As the task size grows larger, it becomes difficult for the ILP to find schedu-

lable systems with low cost within a reasonable time. We performed an exper-

iment with systems consisting of 20 tasks where the MSRP ILP formulation

performed worse in schedulability than MPA with a 2-hour timeout. Increas-

ing the timeout to 12 hours, ILP just edged out MPA in schedulability. The

MPCP formulation was even more difficult for the ILP solver to handle, re-

quiring more solver time to find schedulable systems. This scalability issue

is expected since the problem is NP-hard. The approaches proposed in this

chapter complement each other: the ILP formulation can be used to find op-

timal solutions for smaller task sets, while the MPA algorithm can be used to

find sub-optimal ones for larger task sets.

Table 3.7: MPCP Schedulability/average memory cost (in bytes) at different
utilizations

Avg. core util 50% 60% 70% 80% 90%

GS-WF 100%/0 100%/0 100%/53.48 83%/918.1 3%/3205
MPA 100%/0 100%/0 100%/0 96%/2.78 3%/384
ILP (4h) 100%/0 100%/0 100%/0.03 100%/32.78 27%/939

Table 3.8: MSRP Schedulability/average memory cost (in bytes) at different
utilizations

Avg. core util 50% 60% 70% 80% 90%

GS-WF 100%/0 100%/0 100%/0 100%/145.9 39%/1749
MPA 100%/0 100%/0 100%/0 100%/0 72%/104.4
ILP (4h) 100%/0 100%/0 100%/0 100%/0 96%/99.68
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3.6 Conclusion

In this chapter, we proposed new resource-aware partitioning approaches

for fixed priority partitioned multicore systems. Due to the complexity of the

problem, one solution approach might not be scale to all systems. Therefore,

we propose two approaches; First, an ILP formulation is proposed to perform

task allocation, priority assignment, and protection mechanism selection be-

tween lock-based and wait-free methods, to find a schedulable system with

minimal memory cost. Second, for large systems where ILP cannot scale to,

we proposed the MPA heuristic. Experimental results show that MPA im-

proves the critical utilization (maximum utilization at which at least 95% of

systems are found schedulable) to the 76%-88% range allowing designers to

schedule more systems on the same hardware with minimal memory cost. Ex-

perimental results also show that this improvement is robust to changes in the

input parameter settings.
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Chapter 4

Task Allocation in

Mixed-Criticality Systems

MCS have gained increasing interest in the past few years due to their

industrial relevance. We focus in this chapter on finding an efficient scheduling

approach for MCS on multicore architectures. When MCS are implemented

on a multicore platform, previous work indicates that partitioned scheduling

is superior to global scheduling [48]. However, partitioned scheduling often

comes with a cost in the overall utilization achievable since some processors will

have unused capacity. This problem is even worse for mixed-criticality tasks,

as tasks have different execution times (and hence utilizations), at different

criticality levels. A partitioning suitable for one criticality level might not

be efficient at another criticality level. We propose in this chapter1, to use

1The work in this chapter was done in collaboration with Qingling Zhao and Ahmed
Youssef. My contribution was proposing the use of the dual partitioned approach, and the
main development and implementation of the DPM algorithm with input from the other
authors. The scheduling analysis was developed by Qingling Zhao.
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a semi-partitioned scheduling approach, which we refer to as dual-partitioned

scheduling, to schedule multicore MCS.

In dual-partitioned scheduling, HI-criticality tasks are statically mapped

to processors at all times to ensure predictability while LO-criticality tasks

are allowed, with limited migration, to efficiently use the cores. As long as the

system remains in a stable criticality mode, it is fully partitioned. However,

during criticality change, LO-criticality tasks can be migrated to another core.

In this chapter, we present the Dual Partitioned Mixed-Criticality (DPM)

algorithm for performing task allocation in MCS. Our experiments show that

DMP performs consistently better than the best full partitioned algorithms

across a wide range of parameter settings. For example, at utilizations of 0.8

or higher, the approach is able to enhance the schedulability of full partitioned

algorithms by 17%.

The rest of this chapter is organized as follows: In Section 4.1, the system

model is presented. The proposed dual-partitioned mixed-criticality schedul-

ing approach and the schedulability analysis are described in Section 4.2. Sec-

tion 4.3 presents the experimental results. Finally, Section 4.4 concludes the

chapter.

4.1 System Model

4.1.1 Elastic Mixed-Criticality (EMC)

In the Adaptive Mixed-Criticality (AMC) model (Section 2.4), all LO-

criticality tasks are abandoned in the HI-mode. While this guarantees sufficient

CPU time for HI-criticality tasks, no guarantees are provided for LO-criticality
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tasks in the HI-mode which might be undesirable for many applications. For

example, in control applications, sporadic delays can be introduced and cause

system instability [93]. To relax the assumptions of AMC and provide a level of

service to LO-criticality tasks, Burns et al. [45] propose increasing the period

of the LO-criticality tasks in HI-mode, a concept employed previously in the

elastic task model [94].

Su et al. consider the elastic mixed-criticality task model, and study Ear-

liest Deadline First (EDF) based scheduling algorithms for uniprocessors [95]

and multicore processors [96]. [97] present the Extended Elastic Mixed-Criticality

(E2MC) task model, which assigns each LO-critical task a pair of small and

large periods, representing its Quality of Service (QoS) guarantees in LO and

HI-crit modes, respectively, and presents a schedulability test for a mode-

switch EDF scheduler based on unified Demand Bound Analysis.

[98, 99] present ZS-QRAM, a scheduling approach that enables the use of

flexible execution times and application utility to tasks in order to maximize

total system utility of MCS. ZS-QRAM allows task periods to vary at runtime,

with higher utility values associated with smaller periods. Both ZS-QRAM and

EMC are motivated by the elastic task model [94], but their underlying task

models are very different. ZSRM and ZS-QRAM are designed for maximizing

the total system utility of soft real-time systems, while AMC and EMC are

designed to achieve safety certification at multiple criticality levels.

In this chapter, we use the elastic task model by allowing LO-criticality

tasks to run in the HI-mode at a reduced rate. We focus on fixed priority

systems, hence, the elastic model is applied to fixed priority scheduling, instead



4.1 System Model 99

of EDF scheduling as in [95, 96].

A recently published work ([100]) also studies fixed priority scheduling with

the elastic task model and introduces the Mode-Switch Fixed-Priority (MS-FP)

scheduler. [100] focuses on priority and period selection to optimize control

performance on a single core architecture while the focus of this chapter is on

task mapping in multicore architectures.

4.1.2 Task model

We consider a system, consisting of a set ofN independent mixed-criticality

sporadic tasks Γ = {τ1, τ2, ..., τN}, and M processors P = {π1, π2, ..., πM}. In

accordance with the current literature on MCS [12], we assume that (a) tasks

are independent (i.e., there is no blocking due to shared resources), (b) tasks

do not suspend themselves, other than at the end of their computation, (c) the

overheads due to context switching, migration, etc., are negligible (assumed to

be zero), (d) tasks have implicit deadlines equal to their periods (i.e., Di = Ti).

Each task τi has a 5-tuple of parameters 〈Li, Ci(LO), Ci(HI), Ti(LO), Ti(HI)〉

where

• Li ε {LO, HI} denotes the task’s criticality level.

• Ci(LO) denotes the task’s worst-case execution time (WCET) in LO-

mode.

• Ci(HI) denotes the task’s WCET in HI-mode, with Ci(HI) = Ci(LO) if

Li = LO, and Ci(LO) ≤ Ci(HI) if Li = HI. Cfactor denotes the ratio

of the HI-to-LO WCET of the task (Cfactori = Ci(HI)/Ci(LO)).
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• Ti(LO) denotes the period (minimum arrival interval) of τi in LO-mode.

• Ti(HI) denotes the period of τi in HI-mode,with Ti(HI) = Ti(LO) if

Li = HI, and Ti(HI) ≥ Ti(LO) if Li = LO.

LO-criticality tasks are guaranteed a reduced level of service (Ti(HI) ≥

Ti(LO)) in the HI mode. For HI-criticality tasks, a more conservative assump-

tion for the WCET is used in the HI-mode. Each task τi can thus have two

different utilizations (ui(LO), ui(HI)) and consequently the system will have

two different utilizations (U(LO), U(HI)).

We assume that Rate-Monotonic scheduling is used to schedule tasks on

each processor. Since the periods of LO-criticality tasks are allowed to change

in the HI-mode, all tasks are allowed to have two priorities: one for the LO-

mode pri(LO), and one for the HI-mode pri(HI).

4.1.3 System behavior

Basic system operation proceeds mostly as described in Section 2.4.1. How-

ever, some changes are necessary since we are assuming that LO-criticality

tasks must be guaranteed a reduced level of service (Ti(HI) ≥ Ti(LO)) in

the stable HI mode. The following change is made to step 4 in the system

operation description in Section 2.4.1:

4- When this happens (a task executes beyond C(LO)), LO tasks are

dropped immediately for the duration of the mode change period only. HI

tasks continue execution and the HI task with the highest priority executes on

the processor. The stable mode commences once all tasks are migrated and

all HI-criticality carry-over jobs (those that started before the mode change)
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have finished execution. At that point, LO tasks are allowed to continue exe-

cuting again on their (possibly) new processors with reduced periods. HI tasks

continue to execute through the entire mode change and in the HI mode up

to their certification authority accepted WCET estimate (C(HI)).

We assume all processors go into HI-criticality mode at the same time. To

the best of our knowledge, this is consistent with previous works on MCS in

multicore platforms. We made the assumption that all carry-over jobs from

LO-criticality tasks are dropped during a mode change. This is a reasonable

assumption since we no longer need to guarantee them a maximum service

level when a system goes into HI-mode. Migration can be implemented as a

background task once mode change starts.

4.2 Dual-Partitioned Mixed-Criticality Scheduling

In this work, we focus on the issue of efficient scheduling of fixed priority

tasks in MCS on a multicore architecture. MCS behave differently based on

the mode of the system. As can be seen from the task model in Section 4.1,

the properties of a given task differ from one mode to another. If the system

is fully partitioned, this leads to a change in processors’ utilizations in differ-

ent modes. The change in processors’ utilizations is not necessarily uniform

across all processors since it depends on the properties of the tasks allocated

to the processor and the method used by the certification agency to derive

their WCET. The certification authority might determine, for example, that

the WCET of a certain HI-criticality task might need to be increased by a

large factor while another task’s WCET does not need to be adjusted at all.
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Therefore, the free capacity available to LO-criticality tasks across processors

does not necessarily change by the same proportion when a mode change oc-

curs. Currently, partitioning in MCS is done such that the requirements of

HI-criticality tasks in the HI-mode and the requirements of the LO-criticality

tasks in the LO-mode are both satisfied at the same time. This can be overly

pessimistic.

The problem of assigning tasks to processors is a general case of the NP-

hard bin-packing problem. Several bin-packing heuristics such as Best-Fit,

Worst-Fit, and First-Fit have been applied to multiprocessor scheduling of

traditional task sets [10] and recently used for MCS [52].

To enhance the efficiency of these partitioning algorithms when applied to

MCS, we propose to use dual-partitioned mixed-criticality scheduling. By

dual-partitioned we mean that the system in the steady modes (LO-mode and

HI-mode) is fully-partitioned. However, the task-to-processor assignments in

these two modes are not necessarily the same. A LO-criticality task τi in the

system may have two (possibly different) designated processors πi(LO) and

πi(HI). This approach avoids the shortcomings of global scheduling, in par-

ticular the need to use the pessimistic bounds of global scheduling, while being

capable of scheduling more systems than partitioned scheduling, as shown by

the experimental results in Section 4.3.

In terms of system operation, while the system continues to operate in a

given mode, all tasks are executed on their designated processors. However,

when a mode change occurs, tasks may migrate to a new set of designated

processors. The set of tasks that migrate is determined by our algorithm at
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design time. Tasks remain on the new processors while the system remains

in the new mode. Migration is done to ensure efficient use of resources in the

new mode. To preserve the predictability of critical tasks, we do not allow HI-

criticality tasks to migrate. Only LO-criticality tasks can migrate such that

they are guaranteed a minimum service level on the new processors.

To illustrate the principle of dual-partitioned MCS, we use a simple system

consisting of 4 tasks to be partitioned onto two processors {P1,P2} as shown

in Table 4.1. We assume that deadlines are equal to periods and that rate-

monotonic scheduling is used. In the case of tasks with equal periods, the task

with the lower task ID has higher priority.

Without dual partitioned scheduling, it is impossible to schedule the system

as any task allocation will result in a system utilization that exceeds 1 in one of

the two modes. In the HI mode, task τ1 has a utilization of 0.9, which means it

cannot be co-located to the same core with any other task. However, in the LO-

mode the total utilization for the other three tasks would be 0.3+0.5+0.3=1.1

and hence it is not schedulable.

With dual partitioned scheduling, it is possible to have a schedulable sys-

tem: In LO-mode, tasks τ1 and τ2 are assigned to core P1, while τ3 and τ4

to P2. In HI-mode, τ2 migrates to P2, and the other tasks remain on their

original cores. Figure 6.2 shows the runtime behavior of this assignment. The

system starts in LO mode, then at time t = 13, τ1 executes for more than its

C(LO) and the system goes through a mode change into HI-mode. At this

instant, τ2 starts to migrate to P2. At the same time, all active LO-criticality

tasks (τ3 in this case) are dropped and no new instances are allowed to run for
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the whole mode change period. At t = 19, all carry-over jobs finish and the

system starts to operate in the HI-mode with τ2 running on P2.

Table 4.1: Task Parameters for The Example System

Task Criticality C(LO) C(HI) T(LO) T(HI)
τ1 HI 3 9 10 10
τ2 LO 3 3 10 20
τ3 LO 5 5 10 20
τ4 HI 3 6 10 10

Fig. 4.1: Example system execution trace

The Dual-Partitioned Mixed-Criticality (DPM) algorithm shown in Algo-

rithm 4.1 is proposed to perform task assignments. Two partitions are even-

tually produced by the algorithm: LO-partition is used for the LO-mode and

HI-partition for the HI-mode. The algorithm can be viewed as consisting of

two phases: the partitioning phase and the optimization phase.

First phase - Partitioning: Two partitions are produced, LO-partition

and HI-partition. This is done in three steps: first we assign the HI-criticality

tasks (same assignment in both modes), followed by LO-criticality tasks in the

HI mode, and finally LO-criticality tasks in the LO-mode. For each step, a

bin-packing strategy is used to assign tasks.

Bin-packing() in Algorithm 4.2 is used for assigning tasks in a certain

mode M according to given fitting criteria FitCriteria, such as Worst-Fit or

Best-Fit. For the partition in the HI-mode (i.e., M = HI), tasks are first
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sorted by decreasing HI-mode utilization, and processors are sorted according

to FitCriteria. Then, tasks are assigned one-by-one. Before a task τi is as-

signed to a processor, the schedulability of the processor (with τi assigned to

it) needs to be checked. We only need to check the schedulability of the pro-

cessor in the HI mode by using SCHEDULABLE-HI(); for the partition in the LO

mode (i.e., M = LO), tasks are sorted by decreasing LO-mode utilization and

assigned one-by-one after checking the schedulability of the processor using

SCHEDULABLE-LO-and-MC().

The algorithm DPM() can use any bin-packing strategy. By changing the

task sorting criteria, the fitting criteria for HI-criticality tasks (Fitcriteria1 in

Algorithm 4.1) and for LO-criticality tasks (Fitcriteria2), different algorithms

can be obtained. Experimental results showed that using Worst-Fit for par-

titioning HI-criticality tasks produces the best results, as it distributes the

HI-criticality tasks among all processors evenly, leaving more freedom to par-

tition the LO-criticality tasks among a larger number of processors. For LO-

criticality tasks, we observed that using First-Fit achieves maximum schedu-

lability for these tasks.

Second phase - Optimization: Phase 2 is the optimization phase which

takes the partitioning produced in phase 1 (if it succeeds) and reduces the

number of migrations required in the mode change. This is done by changing

the assignment of some LO-criticality tasks in the LO-mode. The tasks that

migrate in the mode change are put in the list MT and sorted by decreasing

LO-utilization. Then for each task τi in MT , two attempts are made to

relocate the task. First, we attempt to reassign the task in the LO-mode to the
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Algorithm 4.1: DPM(Γ, P , FitCriteria1, FitCriteria2)

1: [ΓHI , ΓLO] = Split(Γ)
2: Phase 1.1: assign HI-criticality tasks
3: if Bin-packing(ΓHI , P , FitCriteria1, HI)== FAIL then
4: return FAIL
5: end if
6: Phase 1.2: assign LO-criticality tasks in HI-mode
7: if Bin-packing(ΓLO, P , FitCriteria2, HI)== FAIL then
8: return FAIL
9: end if
10: HI-partition=current partition
11: Phase 1.3: assign LO-criticality tasks in LO-mode
12: DeAllocateTasks(ΓLO)
13: if Bin-packing(ΓLO, P , FitCriteria2, LO)== FAIL then
14: return FAIL
15: end if
16: Phase 2: optimize allocation
17: MT = tasks τi with πi(LO) != πi(HI) sorted by decreasing LO-utilization
18: for each τi ∈MT do
19: if SCHEDULABLE-LO-and-MC(τi,πi(HI)) then
20: assign(τi, πi(HI))
21: MT .update()
22: end if
23: end for
24: for each τi, τj ∈MT do
25: if πi(HI) == πj(LO) then
26: if SCHEDULABLE-LO-and-MC(τi, πi(HI)− τj)) and

SCHEDULABLE-LO-and-MC(τj , πi(LO)− τi)) then
27: swap(τi,τj)
28: MT .update()
29: end if
30: end if
31: end for
32: LO-partition=current partition
33: return SUCCESS

same processor (πi(HI)) to which it is assigned in the HI-mode (Algorithm 4.1,

lines 18–23). If this fails, another attempt is made to swap the task τi with

another migrating task τj from πi(HI) such that πj(LO)=πi(HI) but πj(HI)

	= πj(LO) (lines 24–31).

We divide the schedulability analysis into two functions:
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Algorithm 4.2: Bin-packing(Γ, P , FitCriteria, M)

1: Sort(Γ, Decreasing M-utilization)
2: Sort(P , FitCriteria)
3: for each τi ∈ Γ do
4: for each pj ∈ P do
5: if M == HI then
6: Sched = SCHEDULABLE-HI(τi,pj)
7: else
8: Sched = SCHEDULABLE-LO-and-MC (τi,pj)
9: end if
10: if Sched then
11: assign(τi, pj)
12: Sort(P , FitCriteria)
13: nextTask
14: end if
15: end for
16: if τi not assigned on any processor then
17: return FAIL
18: end if
19: end for
20: return SUCCESS

SCHEDULABLE-HI(), used in the HI-partition, and SCHEDULABLE-LO-and-MC(),

used in the LO-partition. If the dual-partitioned approach is not used, the

conditions for schedulability for both the HI-mode and LO-mode need to be

satisfied for the same partitioning.

4.2.1 Schedulability Analysis

Schedulability in LO-partition (SCHEDULABLE-LO-and-MC()): Since

we also assume jobs from LO-criticality tasks are dropped during mode change,

the AMC-rtb analysis in [46] can be reused for the schedulability test in LO-

partition to check the schedulability in the LO-mode and the mode change.

Schedulability in HI-partition (SCHEDULABLE-HI()): The task set

on the processor during the HI-partition is taken into account. All tasks are
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checked using their HI-mode parameters. The Worst Case Response Time

(WCRT) for task τi in the HI-partition is given by:

Ri(HI) = Ci(HI) +
∑

j∈hpHI(i)

⌈Ri(HI)

Tj(HI)

⌉
· Cj(HI) (4.1)

where hpHI(i) denotes the set of tasks which have higher priority than τi on

the same processor in the HI-partition.

4.3 Experimental Evaluation

In this section, we compare different partitioning algorithms and evaluate

the effectiveness of applying the proposed DPM approach to them. We will

use the notation X/Y to denote the different algorithms where X is the bin-

packing heuristic used for HI-criticality tasks and Y the heuristic for LO-

criticality tasks, where X,Y ∈ {W (Worst-Fit), F (First-Fit), B (Best-Fit)}.

For example, W/B is the algorithm obtained by applying Worst-Fit to HI-

criticality tasks, then Best-Fit to LO-criticality tasks.

Unless otherwise stated, for all experiments, the periods of the tasks (for

LO-criticality tasks, this refers to T(LO)) are randomly selected from the set

{10, 20, 40, 50, 100, 200, 400, 500, 1000}ms with uniform distribution. All LO-

criticality tasks were guaranteed by default a maximum period in the HI-mode

equal to double their nominal period (Ti(HI) = 2∗Ti(LO)). The CFactor for

HI-criticality tasks defining the ratio between HI-mode WCET and LO-mode

WCET was randomly selected in [1-3] with uniform distribution. Then, the

LO-utilization of tasks was generated using the UUnifast [101] algorithm with
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the LO-utilization capped at 0.49 per task and the HI-utilization capped at

0.66 per task. The UUnifast algorithm generates tasks such that their total

LO-mode utilization is equal to a given value (default=0.85*M). The HI-

mode utilization depends on other random parameters (Cfactor and T (LO)).

Any system with a total HI-mode utilization > M (number of processors)

was discarded. The execution time of the task (Ci(LO)) is then derived from

the period (T (LO)) and LO-utilization. Ci(HI) is derived from Ci(LO) and

Cfactor. By default, half of the tasks in the system are HI-criticality tasks.

1000 systems were generated at each data point.

In the first experiment, we compare the algorithms before applying DPM,

which includes nine different combinations of the partitioning algorithms (W/W,

W/B, W/F, B/W, B/B, B/F, F/W, F/B, F/F). Furthermore, we also report

the results of using the original bin-packing heuristic, which sorts tasks by

decreasing utilization (DU), thus ignoring criticality. Figure 4.2 shows the

percentage of schedulable systems as a function of the average per-processor

LO-utilization. For this experiment, 40 tasks (20 LO, 20 HI) were scheduled

on 4 processors.

It is clear from the figure that algorithms that assign HI-criticality tasks

using Worst-Fit strategy produce substantially better results than the remain-

ing ones. Among these, using First-Fit for LO-criticality tasks has the best

schedulability. Interestingly, this coincides with previous results in [49] for

EDF-VD [50] scheduled systems. In the remaining part of this section, we

will focus on the W/F algorithm due to its superior performance and show

the improvements that can be obtained by applying the DPM algorithm to
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Fig. 4.2: Percentage of schedulable systems at different LO-utilizations for
various heuristics (before applying DPM)

it (W/F-DPM). Using DPM on other algorithms generates similar improve-

ments.

Figure 4.3 shows the improvement obtained by applying the proposed ap-

proach on the W/F algorithm. The W/F-DPM algorithm (Algorithm 4.1 with

FitCriteria1=Worst-Fit and FitCriteria2=First-Fit) schedules more systems

than the conventional W/F algorithm, especially at high utilizations. At uti-

lizations of 0.8 and higher, the W/F-DPM enhances the schedulability of W/F

by 17%, increasing at utilizations of 0.9 and beyond to 28%.

To study the robustness of the DPM algorithm at various parameter set-

tings, the key experiment parameters were varied in the subsequent experi-

ments. The average per-task utilization was varied by varying the total task
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count in the range [20-100] while keeping the LO-utilization fixed at 0.85 per

processor. All other parameters are kept the same. Figure 4.4 shows the per-

centage of schedulable systems as a function of the total task count (higher

task counts indicate lower average task utilizations). W/F-DPM increases the

schedulability of W/F at all task utilizations by an average of 20%. This

percentage is higher for systems with a higher number of tasks.

Fig. 4.3: Improvement on schedulability at different LO-utilizations

Fig. 4.4: Improvement on schedulability at different tasks counts

The impact of having a different HI/LO criticality mix is studied in Fig-

ure 4.5. The percentage of HI-criticality tasks is varied in the range [20%-70%]
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while keeping all other parameters fixed. For systems with ≤30% HI-criticality

tasks, almost all systems are schedulable. With more HI-criticality tasks in

the mix, the performance of both algorithms degrade but W/F-DPM performs

better. For these systems, W/F-DPM schedules 67% of systems while W/F

schedules 56%. As shown in Figure 4.6, similar observation can be drawn for

varying numbers of processors.

Fig. 4.5: Improvement on schedulability at different percentages of HI tasks

Fig. 4.6: Scalability of DPM to larger numbers of processors

In all previous experiments, the ratio of HI-mode WCET to LO-mode
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WCET (CFactor) was randomly selected in [1-3]. To check whether changing

the range of HI-criticality WCET impacts schedulability, the maximum value

of CFactor (3 in previous experiments) was varied. Figure 4.7 shows that

schedulability drops, as expected, when the maximum allowed C(HI)/C(LO)

ratio increases. However, the schedulability of DPM drops more moderately.

In the last experiment, the effect of providing different levels of minimum ser-

vice guarantees to different LO-criticality tasks in the HI-mode is explored.

Instead of having a fixed value for the ratio T (HI)/T (LO) as in the previous

experiments, this ratio was chosen randomly in the range [1-Tmax] with uni-

form distribution, and Tmax was varied in the range [2-7]. DPM maintained on

average a 16% schedulability advantage in line with the results of the previous

experiments.

Fig. 4.7: Improvement at different values of the maximum CFactor

To evaluate the impact of Phase 2 of the algorithm in reducing the number

of migrations, we performed an experiment to check the number of migrations

before and after this phase at different utilizations. We used the same param-

eters as in the experiment in Figure 4.3 and averaged the results over 1000
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Fig. 4.8: Improvement at different values of the maximum T(HI)/T(LO) ratio

Fig. 4.9: Impact of Phase 2

schedulable systems at each utilization. The results are shown in Figure 4.9.

The results show that Phase 2 reduces the number of migrations by 42% on

average. After the application of phase 2, an average of only 1.4 migrations

are required on each core which reduces the mode change overhead.

4.4 Conclusion

In this work, we present a study of fixed-priority partitioned scheduling on

multicore architectures. We compare the performance of bin-packing heuris-

tics when applied to elastic mixed-criticality systems. We also present a novel
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dual-partitioned mixed-criticality scheduling algorithm for multicore architec-

tures. The dual partitioned approach is applicable to any bin-packing heuristic

and can increase the schedulability of the heuristic on a given platform while

providing minimum service guarantees to LO-criticality tasks. Experimental

results show that at utilizations of 0.8 or higher, schedulability is enhanced by

17%. The proposed approach thus optimizes the use of the available resources

by scheduling more functionality on the same hardware, and can potentially

lead to significant savings in the computing resources.
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Chapter 5

Tolerating Hardware Faults in

Mixed-Criticality Systems

One of the main objectives of the current research on MCS is to develop

systems that are efficient while at the same time being certifiable and adhere

to safety standards such as ISO26262. While the criticality and Worst Case

Execution Time (WCET) related part of the MCS design problem received

much attention, the reliability of these systems which do contain a safety crit-

ical part was not similarly addressed. These same standards specify reliability

requirements for systems. An MCS system must satisfy both sets of require-

ments: criticality and reliability. This Chapter1 provides a comprehensive

study of fault-tolerance in Mixed-Criticality Systems (MCS) for both tran-

1The work on transient faults in this chapter was done in close collaboration with Jonah
Caplan. The core model was co-developed with Mr. Caplan. I developed the schedu-
lability analysis and implemented the simulation framework for single cores and lockstep
architectures. Mr. Caplan extended the work to other fault-tolerant mechanisms to which
I contributed the derivation of the generic re-execution profiles. The work on permanent
faults did not involve external collaboration.
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sient and permanent faults. We focus on hardware faults in this chapter. To

enable the design of fault-tolerant MCS, we make the following contributions

1. We propose a novel four-mode MCS model and accompanying schedula-

bility analysis to simultaneously consider certification, transient faults,

and the Quality of Service (QoS) provided to LO-criticality tasks (Sec-

tions 5.3, 5.4). Our model (a) differentiates between requirements im-

posed by certification and fault tolerance, (b) provides suitable guaran-

tees for HI tasks in each case, and (c) optimizes the QoS provided to LO

tasks.

2. We make the observation that On-Demand Redundancy (ODR), which

allows cores to be dynamically coupled and decoupled at runtime, can

potentially have significant advantages for MCS. Based on this, we gener-

alize the four-mode model and analysis to support ODR with the various

fault-tolerance mechanisms (discussed in Section 2.5.1). A task set trans-

formation is proposed to generate a modified task set that can support

different mechanisms while satisfying reliability and certification require-

ments (Section 5.5).

3. We propose a Design Space Exploration (DSE) approach that uses the

generalized analysis and supports ODR and heterogeneous platforms

(Section 5.6). The design variables explored are task mappings and selec-

tion of redundancy techniques. The objective is to produce reliable and

schedulable systems while maximizing the LO tasks QoS. Experiments

show that ODR can improve QoS provided to non-critical tasks by 29%
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on average, compared to lockstep execution.

4. For tolerating permanent faults, we present a design approach for reliable

MCS scheduled with partitioned fixed-priority scheduling under perma-

nent processor failures. To this end, we extend the standard mixed-

criticality model and schedulability analysis to support the failure of one

processor in the system (Sections 5.9, 5.10).

5. We propose a Mixed Integer Linear Programming (MILP) based DSE ap-

proach for MCS that can tolerate permanent faults (Section 5.11). Relia-

bility is pro-actively considered as part of the initial design problem. The

MILP formulation finds, if it exists, a feasible: (a) task allocation, (b)

priority assignment, and (c) alternative assignment for each HI-criticality

task if the core to which it is initially assigned fails. Experiments illus-

trate the advantage of this pro-active approach to reliability compared

to a baseline 2-step exploration process. For example, in systems com-

posed of 20 tasks and 4 cores, a 3.2X improvement in schedulability is

observed.

5.1 Scheduling MCS with Transient Faults: Motivation

As discussed in Section 2.5, researchers have begun to evaluate MCS in

the context of transient faults. However, they often treat in the same way

task overruns (resulting from optimistic WCET estimates) and re-executions

(resulting from fault mitigation). For correct and efficient implementation,

the two scenarios must be differentiated, and sufficient—but not excessive—
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guarantees must be provided in each case. The work in [68] differentiates

each source of delay, but conservatively drops all LO tasks when either event

occurs. Dropping LO criticality tasks in MCS has drawn considerable concerns

from system engineers [45]. Systems integrators are increasingly having to

implement more features with fewer resources. MCS must therefore provide

as much QoS to LO tasks as possible.

In this work, we propose a novel, four-mode model for MCS that addresses

both certification and reliability requirements, while retaining as many LO

tasks as possible when either overruns or transient faults occur. The proposed

model differentiates between transient faults (TF mode), execution time over-

runs (OV mode), and their combination (HI mode). Transient faults require

re-execution, and overruns require task-dependent increases in execution bud-

get. When fault-tolerant MCS are implemented in two modes as in [68], de-

signers must assume these events, though different in their rates of occurrence

and consequences for task execution, always coincide. This results in overly

pessimistic restrictions on HI mode. Our experimental results demonstrate

that for single-core platforms, the new modes (TF, OV) of the four-mode sys-

tem improve LO task QoS by 20.2% and 42.9% respectively compared to a

two-mode model. Extended to partitioned, multi-core systems, the benefits of

the four-mode model are even more substantial.
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5.2 Assumptions and Notation

5.2.1 Task model

A system in our model consists of a set of N sporadic mixed-criticality

tasks Γ = {τ1, τ2, ..., τN}, and a supporting architecture which can be single-

core or multi-core consisting of L ≥ 1 processors. We assume that each core

p is characterized by a failure rate λp (failures per unit time). The task set

Γ can be divided into two subsets: high criticality tasks (ΓHI), and low criti-

cality tasks (ΓLO). We further assume that (a) tasks are independent (i.e., no

blocking due to shared resources), (b) tasks do not suspend themselves, other

than at the end of their execution, (c) the overheads due to context switch-

ing, migration, etc. are negligible. Each task τi has a 6-tuple of parameters

〈Li, Ci(LO), Ci(HI), Ti, Di, πi〉, where:

• Li ∈ {LO, HI} denotes the criticality level of τi.

• Ci(LO) is the designer-specified WCET for τi.

• Ci(HI) is the WCET specified by certification authority.

• If Li = LO, Ci(HI) = Ci(LO); otherwise Ci(LO) ≤ Ci(HI).

• Ti denotes the minimum inter-arrival time of τi.

• Tasks have implicit deadlines, i.e., Di = Ti.

• πi denotes the priority of τi.

ui = Ci/Ti is the utilization task of τi. Since tasks can have two C values,

there will be two corresponding utilization values: ui(LO), and ui(HI).
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Tasks are scheduled with fixed priority, and, if the architecture is multicore,

with partitioned scheduling. Each core implements a local scheduler. A global

priority order is enforced among all tasks regardless whether allocated to the

same core or not. Lower values indicate higher priorities.

5.2.2 Failure probabilities for transient faults

Each criticality level is characterized by a maximum probability of fail-

ure, given as a probability of failure per hour (PFH). Temporal and/or spatial

redundancy are used as the hardening mechanisms to achieve the required

reliability level. Each HI task τi must be guaranteed to be schedulable even

when it re-executes in response to faults to achieve a failure rate of at most

PFHi = PFH(HI). If a task has replicas on more than one core, all replicas

must be able to execute and re-execute if necessary before the task’s dead-

line. For LO-criticality tasks, we assume that they do not have specific PFH

requirements, hence they do not need to have temporal or spatial redundancy.

5.3 The Four-Mode System Model

To handle both task overruns and faults in the system efficiently, we propose

a system model with four system modes for tasks with two criticality levels.

In MCS, we cannot know a priori whether the task will actually overrun its

C(LO). These events are generally rare. Similarly, when considering faults,

we cannot know in advance if the task will experience a transient error during

its execution. If a task experiences a fault, it must be re-executed. These

re-executions are also rare, and have a different effect on execution time.
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Fig. 5.1: The four-mode system model

Figure 5.1 illustrates the four system modes and possible mode changes.

The modes are denoted LO (low), TF (transient faults), OV (task overruns),

and HI (high). We denote the system mode by S, S ∈ {LO, TF,OV,HI}.

The rationale for having four system modes, as opposed to the regular two-

mode model of MCS in [46, 68], is to distinguish between these two different

events (task overruns and transient faults) and provide suitable guarantees and

QoS in each case. From the original LO mode, each of these two independent

events will cause the system to enter a different mode with sufficient guarantees

(sufficient time for re-execution or overruns) for the corresponding type of

event. To be safe, a fourth mode, HI, is used if an overrun occurs while the

system is addressing a fault in TF, or vice versa. Most existing work on MCS

perform forward mode changes only (from a lower mode to a higher mode) [12].

We adopt a similar strategy here, and defer reverse mode changes to future

work.
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5.3.1 Re-execution requirements in lockstep cores

For lockstep, a transient fault results in a re-execution on the same core.

We denote the number of executions (including the initial one) required for

a HI task τi to achieve a certain reliability (PFH) level in mode S as ni(S).

The probability of failure per job of τi and the failure rate for a core per

τi’s execution can be obtained by scaling PFHi and λpi respectively where pi

denotes the core to which the task τi is assigned. Considering each execution

of task τi as independent, then Constraint (5.1) must be satisfied for TF and

HI modes. As a result, ni(S) is given by Equation (5.2).

PFHi · Ti ≥ (λpi · Ci(S))
ni(S) (5.1)

ni(S) =

⎧⎪⎪⎨
⎪⎪⎩

⌈
log(PFHi · Ti)

log(λpi · Ci(S))

⌉
, S ∈ {TF,HI}

1, S ∈ {LO,OV }
(5.2)

The variable ni can be written as a vector for all four modes (LO, TF, OV,

HI) which we refer to as the re-execution vector Ni. For lockstep, we have:

NLS
i = 〈1, ni(TF ), 1, ni(HI)〉 . (5.3)

Other mechanisms discussed in Section 2.5.1 combine both temporal and

spatial locality. Their re-execution profiles can differ from lockstep. We derive

their re-execution vectors in Section 5.5.
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5.3.2 System operation

Our system operates as follows:

1. The system starts in the LOmode, where all tasks i execute once (ni(LO) =

1) and can run up to Ci(LO).

2. In LO mode, if any task i executes beyond Ci(LO), the system moves into

overrun (OV) mode, where all HI-criticality tasks j can safely execute

once (nj(OV ) = 1) up to Cj(OV ) = Cj(HI).

3. Alternatively, in LO mode, if any HI-criticality task experiences a tran-

sient fault, the system moves into transient fault (TF) mode, where each

HI-criticality task i is guaranteed a sufficient number of re-executions to

satisfy their reliability requirements (ni(TF )). During the mode transi-

tion, the required re-executions for a HI task must be guaranteed to finish

before its deadline. In this way, reliability requirements are met even

when the task starts its execution in a mode that does not consider re-

executions. The original task and all re-executions are allowed to execute

up to Ci(TF ) = Ci(LO).

4. If any of the (re-)executions of task i in TF mode overruns Ci(LO), the

system moves into HI mode. A move to this mode is also possible if

the system is in OV mode and a transient fault occurs. In HI mode,

HI-criticality tasks i can execute up to Ci(HI) and re-execute ni(HI) ≥

ni(TF ) times.

Modes OV and TF cover the basic cases of task overruns and transient

faults respectively, by dropping some LO-criticality tasks to allow more time
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for HI tasks. Both events leading to HI have a low probability, however for

highly critical systems, it is important to consider all cases. It is worth noting

that in this mode, more re-executions for a HI-criticality task imight be needed

than in TF mode (ni(HI) ≥ ni(TF )), because HI-criticality tasks are assumed

to run longer (Ci(HI) ≥ Ci(TF )) and hence could experience more errors.

5.3.3 Providing QoS to LO-criticality tasks

One of the concerns on the two-mode MCS model (LO and HI) [46, 68] is

the assumption that all LO tasks are dropped in HI mode [12]. Our proposed

four-mode model does not drop all LO tasks in the modes OV, TF, and HI.

Instead, LO tasks are selectively allowed to run in the new mode as long as this

does not affect the schedulability of HI tasks. New schedulability analysis that

extends to the new model is presented in Section 5.4. This analysis provides

offline guarantees to all HI tasks and the selected subset of LO tasks. In this

way, the designer can ensure the schedulability of the task set regardless of

the runtime scenario. In this work, we simply maximize the number of LO

tasks scheduled in each mode. Alternatively, we may take into consideration

the designer’s preferences.

5.3.4 An illustrative example

To illustrate the benefit of the proposed model, we apply the proposed

four-mode model to the example task set in Table 5.1. The tasks are arranged

in priority order (the lower index, the higher priority). We assume the number

of executions for HI task τ1 is n1(TF ) = n1(HI) = 3. If an overrun occurs in



126 Tolerating Hardware Faults in Mixed-Criticality Systems

Table 5.1: An Example Task Set

Task C(LO) C(HI) T=D L

τ1 3 4 12 HI
τ2 4 - 12 LO
τ3 4 - 12 LO
τ4 1 - 12 LO

Fig. 5.2: An execution trace for the task set in Table 5.1 when (a) an overrun
occurs; (b) a fault occurs; (c) both occur.

task τ1 (Fig. 6.2a), the system moves into OV mode, where 12 − 4 = 8 time

units are available to run the LO-criticality tasks in the system. Therefore,

we only need to drop one task (τ4, for example). If τ1 needs to re-execute

due to faults (Fig. 6.2b), the system can still schedule one LO task (τ4), since

n1(TF ) = 3. If both fault and overrun occur (Fig. 6.2c), the system switches

to HI mode, and τ1 can still run safely with all re-executions. For a two-mode

model, any overrun or fault will lead to a scenario similar to Fig. 6.2c, and all

LO tasks will be dropped immediately. The four-mode model clearly improves

LO task QoS over the two-mode model.
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5.4 Schedulability Analysis with Transient Faults

Schedulability analysis for the four-mode system is derived by extending the

Adaptive Mixed Criticality response time bound (AMC-rtb) analysis, proposed

for the two-mode model with AMC scheduling [46]. We first present the basic

analysis assuming that lockstep cores are the deployment platform and that

sequential re-execution is the only fault tolerance mechanism. In Section 5.5,

we extend it to ODR with a range of platforms.

Under the basic analysis, a system is schedulable if:

1. HI tasks must be schedulable in all four modes;

2. LO tasks must be schedulable in the LO mode.

Therefore, for modes OV, TF, and HI we only need to check the schedulability

of HI tasks. It is not required to guarantee the schedulability of any LO task

in these three modes. However, through DSE, we try to schedule LO tasks in

these modes as long as the system schedulability is not affected.

For LO mode the response time of a task τi is given by:

R
(LO)
i = Ci(LO) +

∑
j∈hp(i)

⌈R(LO)
i

Tj

⌉
· Cj(LO) (5.4)

where hp(i) is the set of tasks on τi’s core that have higher priority than

τi (including both HI and LO tasks). The DSE algorithm dynamically re-

allocates tasks. Therefore, the set hp(i) is dynamically changing during DSE,

and it shall reflect the current task set on τi’s core.
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When evaluating schedulability in mode TF, we need to consider two cases.

First, the stable mode where all tasks released before the mode change have

either finished execution or been dropped. Second, we need to verify that

the mode change from LO to TF does not cause the given task to miss its

deadline. The worst case response time of a task in the mode change is larger

than that in the stable mode: In addition to the task τi under analysis and

higher priority tasks executing in the stable mode, we also need to consider

the effect of LO-criticality tasks that may be dropped in TF but have already

delayed τi’s execution. The worst case response time of a task in TF is hence

the response time of the mode change, and is given by Equation (5.5).

R
(TF )
i = ni(TF ) · Ci(LO)

+
∑

j∈hpC(TF,i)

⌈R(TF )
i

Tj

⌉
· nj(TF ) · Cj(LO)

+
∑

k∈hp(i)\hpC(TF,i)

⌈R(LO)
i

Tk

⌉
· Ck(LO)

(5.5)

In TF, we must account for task re-executions for HI-criticality tasks j,

hence Cj(LO) is multiplied by the number of re-executions nj(TF ). hpC(TF, i)

is the set of continuing tasks (i.e., tasks that continue to execute in the cur-

rent mode TF) that have higher priority than τi. This set of tasks contains

all HI tasks and those LO tasks selected to continue. The last summation

considers the tasks that are dropped in the LO-to-TF mode change (in the set

hp(i)\hpC(TF, i)). These tasks can only execute up to R
(LO)
i since a mode

change must occur before R
(LO)
i . Otherwise τi would have terminated before

the mode change. Since only LO tasks can be dropped, we use Ck(LO) and
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nk = 1 here.

The response time for mode OV can be similarly calculated. However, HI

tasks can execute up to C(HI) and no re-executions are considered (n = 1 for

all tasks). The response time in mode OV is given by:

R
(OV )
i = Ci(Li) +

∑
j∈hpC(OV,i)

⌈R(OV )
i

Tj

⌉
· Cj(Lj)

+
∑

k∈hp(i)\hpC(OV,i)

⌈R(LO)
i

Tk

⌉
· Ck(LO)

(5.6)

In mode HI, we need to consider both overruns (Ci(HI)) and re-execution

(ni(HI) ≥ 1). Transitions to the HI mode can originate from either TF or

OV mode. Both mode changes need to be verified. The worst case scenario

occurs when we encounter two consecutive mode changes in quick succession

(LO-to-TF-to-HI or LO-to-OV-to-HI).

Focusing on the LO-to-TF-to-HI mode change first (Equation (5.7)), the

task τi under analysis and the high priority continuing tasks in mode HI

hpC(HI, i) are allowed to execute n(HI) times (first and second terms on

the right hand side of the equation). For tasks that are allowed to continue

in TF mode but dropped in HI mode (i.e., in the set hpC(TF, i)\hpC(HI, i)),

we assume that the mode change from TF to HI has to happen before R
(TF )
i

(third term). Finally, for the remaining tasks in hp(i) (i.e., tasks that started

in LO and got dropped in TF), the interference is bounded by the fact that

the mode change from LO to TF has to happen before R
(LO)
i (last term). Note

that we do not consider re-executions for those dropped tasks (nk = nl = 1)
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as they are all LO-critical.

R
(HIa)
i = ni(HI) · Ci(Li)

+
∑

j∈hpC(HI,i)

⌈R(HIa)
i

Tj

⌉
· nj(HI) · Cj(Lj)

+
∑

k∈hpC(TF,i)\hpC(HI,i)

⌈R(TF )
i

Tk

⌉
· Ck(LO)

+
∑

l∈hp(i)\hpC(TF,i)

⌈R(LO)
i

Tl

⌉
· Cl(LO)

(5.7)

Similarly, the task response time of τi for LO-to-OV-to-HI transition is

presented in Equation (5.8):

R
(HIb)
i = ni(HI) · Ci(Li)

+
∑

j∈hpC(HI,i)

⌈R(HIb)
i

Tj

⌉
· nj(HI) · Cj(Lj)

+
∑

k∈hpC(OV,i)\hpC(HI,i)

⌈R(OV )
i

Tk

⌉
· Ck(LO)

+
∑

l∈hp(i)\hpC(OV,i)

⌈R(LO)
i

Tl

⌉
· Cl(LO)

(5.8)

The response time of τi in HI mode is the maximum of the two possible tran-

sitions:

R
(HI)
i = max(R

(HIa)
i , R

(HIb)
i ) (5.9)
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Table 5.2: An Example Task Set

C(LO) C(HI) T=D n L

τ1 3 4 20 2 HI
τ2 4 6 20 2 HI
τ3 4 - 20 1 LO
τ4 1 - 20 1 LO

5.4.1 Reducing model pessimism

It is unlikely that all tasks would be required to re-execute the maximum

number of times within a given period. Transient faults are rare, and the

number of faults can be limited with a parameter provided by the designer [68,

102]. Relaxing the assumption that failures are independent, let F be the

maximum number of faults expected in any interval of length Dmax where

Dmax is the largest relative deadline among the tasks in the task set. This

parameter can be obtained through fault analysis considering the expected

environmental conditions of the system.

If we limit the maximum number of additional re-executions that need to

be considered in the response time calculation F , it is possible to further im-

prove LO-criticality task QoS. For example, consider the task set in Table 5.2.

Assuming tasks are sorted by priority order (task τ1 has the highest priority).

The response time of task τ3 in mode TF assuming no tasks are dropped is

2 × 3 + 2 × 4 + 4 = 18. If the designer knows that a maximum of one error

can occur in 20 time units (F = 1), then only one job of either task τ1 or τ2

can fail within a single job of τ3. The worst case occurs when τ2 fails and the

response time can be bounded at 14.

More generally, for modes TF and HI, the analysis can be formulated as an
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ILP (Integer Linear Programming) problem, by slightly modifying and adding

constraints to Eqs. (5.5), (5.7), and (5.8). We replace ni (the number of re-

executions required by task τi to meet its PFH requirement) by 1 + fi where

fi is the number of re-executions we need to consider from τi in the worst case

response time calculation. In the case of TF, we then maximize:

R
(TF )
i = (1 + fi) · Ci(LO)

+
∑

j∈hpC(TF,i)

⌈R(TF )
i

Tj

⌉
· (1 + fj) · Cj(LO)

+
∑

k∈hp(i)−hpC(TF,i)

⌈R(LO)
i

Tk

⌉
· Ck(LO)

(5.10)

under the constraints:

1 + fi ≤ ni, f i ≥ 0 ∀τi (5.11a)

∑
i

fi ≤ F. (5.11b)

Similar formulations can be derived for the transitions to HI, Eqs. (5.7),

and (5.8), respectively. In practice, the maximum can be easily determined

with polynomial complexity by sorting the list of tasks with n > 1 by descend-

ing utilization, then adding the maximum number of re-executions for each

task in the list until there are F errors.

5.5 Generalization to ODR

We generalize the model and analysis presented in the previous sections

to the range of mechanisms discussed in Section 2.5.1. When a mechanism
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is applied to a given task set Γ, a transformation is needed to generate a

modified task set Γ′. Γ′ depends on the characteristics of the mechanism

applied. Each mechanism is characterized by three parameters: number of

replicas, re-execution profile N for each replica, and mapping constraints. The

number of replicas (including the original task) for Dual Modular Redundancy

(DMR), Triple Modular Redundancy (TMR), and Passive Replication (PR) is

2, 3, and 3, respectively. The re-execution profiles and mapping constraints

for each mechanism are shown in Table 5.3. The second column shows the

re-execution profiles for the different mechanisms. The tuple represents the

number of executions required for a given mechanism to meet the system’s

reliability requirements in the four modes (LO, TF, OV, HI). ni(TF ) and

ni(HI) are derived according to Equation (5.2). The last column in Table 5.3

shows mapping constraints that must be added in order to properly reflect

the semantics of the techniques. These constraints ensure that replicas of the

same task are assigned to different cores.

We now explain how we derive the re-execution profiles such that each

mechanism can recover from the same number of errors as lockstep execution

(Equations (5.2) and (5.3)). In lockstep with sequential re-execution, x ex-

ecutions are needed to recover from x-1 errors. The same is true for DMR.

Therefore, each DMR replica needs to be executed for the same number of

times as in lockstep. For TMR, one fault does not require re-execution as the

voter will have two correct values and can determine the correct output. In the

worst case, two faults would require one re-execution and hence the TF and HI

modes require �ni(TF )/2
 and �ni(HI)/2
 executions respectively. For PR,
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Table 5.3: Transformation parameters for the four fault-tolerance mecha-
nisms.

Replicas & Their Profile (N) Constraints

LS τi 〈1, ni(TF ), 1, ni(HI)〉 -

DMR τi 〈1, ni(TF ), 1, ni(HI)〉 pi 	= pi.1
τi.1 〈1, ni(TF ), 1, ni(HI)〉

TMR τi 〈1, �ni(TF )/2
, 1, �ni(HI)/2
〉 pi 	= pi.1 	= pi.2
τi.1 〈1, �ni(TF )/2
, 1, �ni(HI)/2
〉
τi.2 〈1, �ni(TF )/2
, 1, �ni(HI)/2
〉

PR τi 〈1, 1, 1, 1〉 pi 	= pi.1
τi.1 〈1, 1, 1, 1〉
τi.2 〈0, ni(TF )− 1, 0, ni(HI)− 1〉

two replicas execute one time in all modes. The other replica only executes if

an error is detected. Therefore, it has 0 executions in LO and OV modes. In

the unlikely event of another fault, it re-executes. Therefore we have ni(TF )−1

and ni(HI)− 1 executions in the TF and HI modes respectively.

Modified task sets are generated through a transformation from the original

task set using the profiles in Table 5.3. All replicas inherit the parameters of

their original tasks. An example of such a transformation is shown in Table 5.4.

When applying DMR (Table 5.4b), one replica for the HI criticality task τ1 is

added and its parameters are copied from the original task. The re-execution

profiles N for τ1 and its replica remain the same as in the lockstep case. A

mapping constraint is added to ensure that τ1 and its replica are assigned to

different cores. The LO task τ2 is not affected by the transformation. TMR

and PR transformations follow the same steps.

With this transformation, the operation of the system follows the steps

discussed in Section 5.3.2 after replacing the n values with the modified values



5.5 Generalization to ODR 135

Table 5.4: Task set transformation

(a) Example task set

C(LO) C(HI) T=D L N

τ1 5 10 25 HI 〈1, 2, 1, 2〉
τ2 5 - 20 LO -

(b) DMR transformation (Constraint:
p1 	= p1.1)

C(LO) C(HI) T=D L N

τ1 5 10 25 HI 〈1, 2, 1, 2〉
τ1.1 5 10 25 HI 〈1, 2, 1, 2〉
τ2 5 - 20 LO -

(c) TMR transformation (Constraint:
p1 	= p1.1 	= p1.2)

C(LO) C(HI) T=D L N

τ1 5 10 25 HI 〈1, 1, 1, 1〉
τ1.1 5 10 25 HI 〈1, 1, 1, 1〉
τ1.2 5 10 25 HI 〈1, 1, 1, 1〉
τ2 5 - 20 LO -

(d) PR replication (Constraint: p1 	=
p1.1)

C(LO) C(HI) T=D L N

τ1 5 10 25 HI 〈1, 1, 1, 1〉
τ1.1 5 10 25 HI 〈1, 1, 1, 1〉
τ1.2 5 10 25 HI 〈0, 1, 0, 1〉
τ2 5 - 20 LO -
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for the appropriate mechanism as in Table 5.3. The schedulability of the new

task set can be verified using the analysis presented in Section 5.4, which shall

use the new n values. We note that all techniques have n(LO) and n(OV )

values of either 0 or 1. When n = 0, the task replica is not executing and its

schedulability is not considered.

5.6 DSE with Transient Faults

Design space exploration is done using a genetic algorithm (GA) that takes

as input the modified task set and mapping constraints described in Section 5.5.

The GA explores different task mappings and redundancy techniques. The

objective is to find a hardened system configuration that satisfies certification

and reliability requirements while maximizing QoS provided to LO tasks. The

GA is divided into two nested stages as in [72]. It makes use of the new

schedulability analysis to express arbitrary fault tolerance strategies on a per-

task basis. The outer genetic algorithm explores techniques used to harden

each task while the nested genetic algorithm explores the core assignment for

a given fault tolerance configuration. The two stages of genetic algorithms

(GA) are implemented using JGAP [103].

The basic flow is shown in Fig. 5.3. First, the Reliability Aware (RA) stage

finds a fault tolerance mechanism for each task. The RA stage then generates

a chromosome structure for the Mapping and Scheduling (MS) stage. The MS

stage attempts to find an allocation for each task onto a core that maximizes

the average QoS across all modes using the four mode response time analysis.

The chromosome in the RA stage has one integer gene for each task rep-
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Fig. 5.3: DSE workflow using nested genetic algorithms.

resenting a fault tolerance mechanism. For instance, consider a task set with

two HI tasks τ1, τ2 being mapped onto a platform that supports LS, DMR, and

TMR. The chromosome would consist of two genes each limited to integers in

the range [0, 2].

The RA stage Fitness Function (RAFF) must determine the fitness (QoS)

for each configuration of fault tolerance mechanisms. The FF creates a new

task set using the transformations in Table 5.4 as well as the necessary con-

straints. The FF then creates a chromosome template for the MS stage based

on the transformed task set. It is important that the task and replicas are

represented by a single gene in the MS stage or else most chromosomes will

result in illegal configurations after mutation and crossover.

Given a list of candidate cores that a task can be mapped to, it is possible to

determine for each fault tolerance mechanism a mapping rule that generates a

unique configuration from a random integer. Letm be the number of candidate

cores and x be this random integer. Table 5.5 shows the number of possible

configurations (possible task to core mappings) and the conversion rule for

each type of mechanism. The conversion rule is a tuple with one entry per

replica. For each replica, the conversion rule provides an index into the ordered

list of candidate cores. The replica is mapped onto the core with this index.
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The core is then removed from the list once it is allocated.

For example, consider a task and two replicas using TMR in a system

with 5 processing cores. All three tasks must go on different cores. The

number of configurations is 5 · 4 · 3 = 60. The GA will generate a random

integer in the range [0, 59] representing a unique mapping of the three tasks

onto the system, say 47. The number 47 is converted using the TMR rule to

(47/(4 · 3), (47 mod (4 · 3))/3, 47 mod 3) = (3, 3, 1). Suppose the core list is

{π1, π2, π3, π4, π5}. The first copy is allocated to π3 and π3 is then removed

from the list. The next copy is assigned to π4 (now at index 3) and the third

copy is assigned to π1.

Table 5.5: Rules for generating unique MS configurations from an integer x
for n cores

Technique # Configurations Conversion Rule

none m (x)
LS m (x)
DMR m(m− 1) ( x

m−1
, x mod (m− 1))

TMR m(m− 1)(m− 2) ( x
(m−1)(m−2)

, x mod ((m−1)(m−2))
m−2

, x mod (m− 2))

PR m2(m− 1) ( x
m(m−1)

, x mod (m(m−1))
m−1

, x mod (m− 1))

A unique MS stage is instantiated for each chromosome in the RA stage

population. The MS stage generates a population based on the chromosome

built by the RAFF. The Mapping and Scheduling stage Fitness Function

(MSFF) builds each chromosome into a schedule and passes it along to the

schedulability analysis. If the system is schedulable then the chromosome is

assigned a fitness value equal to the average QoS across all four modes (defined

as percentage of LO tasks that have not been dropped). If the analysis fails
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then the chromosome is assigned a fitness value of 0.

It is possible to decouple the two stages of the genetic algorithm, for exam-

ple to use a different DSE approach to perform the RA stage. However, the

MS stage relies on the RA stage to prepare the chromosome structure so the

new RA stage will need to provide this.

5.7 Experimental Results: Transient Faults

We conducted several experiments to compare the proposed model with

the two-mode model and also to evaluate the DSE approach with ODR.

For all experiments, the periods of tasks were randomly selected from the

set {10, 20, 40, 50, 100, 200, 400, 500, 1000} ms with uniform distribution.

The utilization of each task in LO mode was generated using the UUnifast

algorithm [101], such that the total LO-mode utilization across all tasks meets

a given target, on average 80% for a pair of lockstep cores by default. We

then calculated Ci(LO) = ui(LO).Ti. For HI-criticality tasks, CFactor =

C(HI)/C(LO) is then randomly selected within the range [1, 2] with uniform

distribution, and C(HI) was calculated as C(HI) = CFactor ·C(LO). By de-

fault, half of the tasks were HI-critical. The HI mode PFH was set to 1×10−9,

equivalent to the avionics safety standard DO-178C level-A requirements. We

assumed λp = 1× 10−4. 1000 systems were generated for each combination of

resource utilization, fraction of HI-criticality task utilization, and task count.

We will first discuss the experiments performed on single core architectures

then present the experiments utilizing our DSE approach on multicore archi-

tectures.
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5.7.1 Experiments on single core architectures

First, we compare the LO-criticality task QoS (the fraction of LO tasks

scheduled in a given mode) achieved by our four-mode model with the tradi-

tional two-mode model in a variety of scenarios. We varied system utilization,

the total number of tasks, and the fraction of HI tasks.

Figure 5.4 shows the performance of each mode as utilization is increased

for a single-core architecture. 20 tasks were scheduled, half of which are HI.

We observe that in general, LO task QoS is better in OV and TF than HI: on

average OV and TF execute 42.9% and 20.2% more LO-criticality tasks than HI

respectively. The benefit is relatively small at low processor utilization: CPU

idle time is available to execute longer tasks (OV mode) and task re-executions

(TF mode), or even a combination (HI mode). As utilization increases, the

QoS in HI mode degrades as more LO-criticality tasks must be dropped to

accommodate HI-criticality tasks.

Figure 5.5 shows the performance of each mode as the percentage of HI

tasks is increased from 20% to 70% while utilization is maintained at 80%.

All other parameters are similar to the ones in Figure 5.4. Modes OV and

TF maintain better QoS than HI throughout the experiment. The benefit of

these two modes becomes higher as the percentage of HI tasks in the system

increases, hence requiring more CPU time for overruns and re-executions.

Figure 5.6 shows the average improvement for modes OV and TF compared

to HI as a function of the maximum number of faults (F ) considered. When

fewer faults are considered, the HI mode performs better and the relative

improvement is lower: less time is needed for task re-execution, freeing more
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Fig. 5.4: Modes OV and TF achieve better QoS than HI for all utilizations
(F not bounded).

Fig. 5.5: Modes OV and TF achieve better QoS than HI for different per-
centages of HI tasks (F not bounded).

resources for LO-criticality tasks in HI mode. Also, limiting pessimism on

the analysis is an effective way to improve QoS. For example, in mode TF

(Figure 5.7), when F = 2, a 20.2% improvement in QoS is achieved by using

the analysis in Section 5.4.1.
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Fig. 5.6: Average improvement over all system utilizations for OV and TF
modes compared to HI mode.

Fig. 5.7: Performance of TF mode for different F .

5.7.2 Experiments on multicore architectures

For multicore architectures, We conducted experiments to compare the LO

tasks QoS achieved for various platform configurations. We first examined four
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core systems with: (a) two pairs of lockstep (LS) cores, (b) one lockstep pair

and one ODR pair (MIX), and (c) two ODR pairs (ODR) with only DMR.

Additionally, we examined schedulability and QoS for the ODR system with

DMR compared to a system capable of DMR, TMR, and PR. We varied system

utilization and the fraction of HI tasks.

Fig. 5.8 compares the QoS for the different configurations as system utiliza-

tion varies. 20 tasks were scheduled with half on average HI. The QoS for MIX

and ODR is on average 20% better than for LS and 30% in the worst case.

Fig. 5.9 shows similar results with the percentage of HI tasks varied while uti-

lization is held constant at 0.7. In both cases, we observe that ODR provides

better resource utilization on average as demand for the core increases with

an overall average improvement of 29.8% for MIX and 28.5% for ODR. These

figures indicate that combining ODR with MCS design allows providing more

service to non-critical tasks without sacrificing reliability guarantees provided

to critical ones. The results do not take into account possible voting over-

heads or recovery delays that might further differentiate the MIX and ODR

platforms.

Figs. 5.10 and 5.11 compare the QoS and schedulability, respectively, for

two ODR platforms. The first is only capable of DMR while the second is

capable of all three varieties of ODR studied (DMR+TMR+PR). We observe

that in general having more varieties of ODR improves both schedulability

(8.3% improvement on average) and QoS (25% improvement on average). The

different techniques provide greater flexibility in how to distribute the workload

across the cores. This leads to an increase in schedulability, which allows us to
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Fig. 5.8: ODR provides better QoS in multicore systems as utilization in-
creases.

Fig. 5.9: ODR provides better QoS in multicore systems as the percentage of
HI tasks increases.

utilize the available processing power in a more efficient manner, thus saving

hardware resources while still maintaining safety when transient faults occur.
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Fig. 5.10: Combining ODR techniques improves QoS.

Fig. 5.11: Combining ODR techniques improves schedulability.

5.8 Scheduling MCS with Permanent Faults:

Motivation

Most of the work on MCS has largely focused on execution time and, lately,

transient faults. However, implementing MCS that are resilient to permanent

faults has largely remained unaddressed [104]. In the remaining part of this

chapter, we address this issue by presenting a design approach for MCS sched-

uled under permanent processor failures.
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In MCS, the system copes with task overruns (which can be considered

a type of fault) by moving into a new mode and dropping the non-critical

tasks. We apply the same concept to deal with both processor failures and

task overruns. Processor failures are tolerated by migrating the critical tasks

from the failed processor to other working processors and dropping non-critical

functions. For this purpose, we extend the MCS model and analysis to rake

into consideration the case where one of the processors in the system fails.

While previous works targeting permanent faults in MCS (discussed in

Section 2.5.3) focus on proposing reactive solutions to the case of a processor

failure, our objective here is to consider the possibility of a processor failing

when making the initial system design decisions. By incorporating task migra-

tion in design process, the reliability of the system is increased and the system

is guaranteed to survive the failure of any single processor. Experiments show

that this technique is able to schedule more systems than a 2-step process

where migration is considered after the initial mapping is derived, and hence

the proposed approach requires less resources to achieve similar reliability. To

perform DSE, we propose a MILP-based process. The MILP finds (a) task

allocations, (b) priority assignments, and (c) alternative assignments for each

HI-criticality task if the core to which it is initially assigned fails.

5.9 System Operation with Permanent Faults

System operation proceeds as follows:

1. The system starts its operation by default in the LO mode. With all

processors functional, each task executes on its original designated core.
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All tasks, whether LO or HI, are allowed to execute. The task with the

highest priority, regardless of its criticality level is executed.

2. While in LO mode, if any task executes beyond its C(LO), the system

moves into the HI mode. Under the HI mode, only HI tasks can execute

and all LO tasks are dropped. Consistent with the previous works on

MCS, we assume all processors enter the HI mode at the same time when

a task executes beyond its C(LO).

3. At any point and regardless of the system’s mode, if a processor fails, then

all of its HI-criticality tasks are distributed among working processors. If

the system is in LO mode when the failure occurs, functional processors

move immediately into the HI mode, dropping all LO-criticality tasks.

Regardless of the system mode, once a processor failure is detected, its

tasks migrate to predefined backup processors. Each working processor

starts executing in the HI mode with a task set consisting of its own HI

tasks and a subset of the failed processor’s HI tasks.

The system must be able to accommodate all critical tasks even when a

processors fails. A maximum of one failure is tolerated. Task allocations are

determined offline. Each HI-criticality task has a primary processor on which

it executes under normal scenarios and a backup processor on which it executes

when the primary one fails. LO-criticality tasks only have a primary processor.

We denote the primary processor for any task τi by ai and the backup processor

for any HI-criticality tasks τj by bj.
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Table 5.6: An Example Task Set

Li ai bi πi

τ1 HI p1 p2 7
τ2 HI p1 p2 6
τ3 HI p2 p1 5
τ4 HI p2 p3 4
τ5 HI p3 p1 3
τ6 LO p1 - 2
τ7 LO p2 - 1

5.10 Schedulability Analysis with Permanent Faults

The schedulability conditions are derived by extending the AMC-rtb [46]

analysis. As described in Section 5.9, when a processor fails, its tasks are

migrated to other processors. These processors drop their LO-criticality tasks

and continue to execute both their HI tasks in addition to the migrating HI

tasks from the failed processor. Schedulability analysis must take into account

the requirements of these additional tasks. We will illustrate the different

failures scenarios with the following example:

Assume the task set given in Figure 5.6 is allocated to three processors as

shown in Figure 5.12. We will center the discussion around the lowest priority

task τ1. We need to make sure that τ1 is schedulable when any processor in

the system fails:

• If p1 fails, tasks τ1 and τ2 will migrate to p2 (depicted with black arrows

in Figure 5.12. The LO-criticality task τ6 is dropped. p2 detects that p1

failed, drops all LO tasks (in this case τ7) and moves into the HI mode

as described in Section 5.9. Now the task set running on p2 consists of
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τ1
τ2
τ6

τ3
τ4
τ7

τ5

p1 p2 p3

Fig. 5.12: An example system to illustrate the different scenarios to be con-
sidered in the schedulability analysis with failures.

four tasks (τ1,τ2,τ3,τ4). τ1 can be preempted by any of the other three

but it cannot be preempted by τ7 since τ7 was dropped at the same time

that τ1 migrated.

• If p2 fails, task τ3 will migrate to p1 and τ4 will migrate to p3 (red arrows

in Figure 5.12). Processor p1 moves into the HI mode and drops τ6.

Tasks τ2 and τ3 can interfere with τ1’s execution. Furthermore, in the

worst case τ6 can delay τ1’s execution before the mode change. A safe

upper bound on τ1’s response time can be obtained in a similar way

to the regular mode change analysis since the mode change must occur

before R1(LO) (otherwise τ1’s job would have finished), thus capping the

maximum interference of τ6 at R1(LO).

• If p3 fails, tasks τ5 migrates to p1 (blue arrow in Figure 5.12). p1 moves

into HI and drops τ6. This is similar to the previous case and mode

change analysis is applicable.

Generalizing from this example, five cases must be checked for each task:
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1. No failures, LO : verify the schedulability of all tasks in LO mode on

their primary processors (Eq.(2.16)).

2. No failures, MC : verify the schedulability of HI tasks on their primary

processors in the LO to HI mode change (Eq.(2.18)). This is subsumed

by case 5 below.

3. Primary processor failure: verify the schedulability of each migrating HI

task on its backup processor in the HI mode (the system moved into the

HI mode when the failure occurred). LO tasks are dropped at the same

time as migration and cannot affect the migrating task. The response

time in this case is:

R2
i (HI) = Ci(HI) +

∑
j∈hp2H(i)

⌈
R2

i (HI)

Tj

⌉
· Cj(HI) (5.12)

where R2
i (HI) denotes the HI mode response time of task τi after mi-

grating to its backup processor. hp2H(i) is the set of HI-criticality high

priority tasks on τi’s backup processor including those that migrated

with τi. I.e., hp2H(i)={j: (aj = bi ∨ (aj = ai ∧ bj = bi)) ∧ πj < πi ∧

Lj = HI}.

4. Other processor failure, HI : verify the schedulability of HI tasks on their

primary processors in the HI mode after migrations caused by a failure

in another core. The response time must be checked for all L−1 one-core

failure scenarios and is given by:

∀px 	= ai, R3
i,px(HI) = Ci(HI)+

∑
j∈hp3H(i,x)

⌈R3
i,px

(HI)

Tj

⌉
· Cj(HI)

(5.13)
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where R3
i,px(HI) is the HI mode response time of task τi on its primary

processor when processor px (px 	= ai) fails. hp3H(i, x) is the set of HI-

criticality high priority tasks on τi’s primary processor including those

that migrated from px. i.e. hp3H(i, x)={j: (aj = ai ∨ (aj = px ∧

bj = ai)) ∧ πj < πi ∧ Lj = HI}. This case is subsumed by case 5.

5. Other processor failure, MC : verify the schedulability of HI tasks on

their primary processors in the LO to HI mode change caused by task

migration from each other processor. The response time in this case is

given by:

∀px 	= ai, R3
i,px(MC) = Ci(HI)

+
∑

k∈hp1L(i)

⌈Ri(LO)

Tk

⌉
· Ck(LO)

+
∑

j∈hp3H(i,x)

⌈R3
i,px

(MC)

Tj

⌉
· Cj(HI)

(5.14)

Case 5 needs to be checked with px set to each of the other L-1 processors in

the system (excluding τi’s primary processor). Eq.(5.14) provides a safe upper

bound regardless of the scenario. A mode change caused by a processor failure

is a worse scenario than a mode change caused by a task overrun as the latter

does not introduce new tasks. The worst case scenario occurs when a processor

failure causing a mode change occurs immediately after all LO-criticality high

priority jobs finish their execution. For this scenario, the maximum possible

contribution for the LO tasks is considered in the second term in Eq.(5.14).

The additional computation required by the migrating tasks is considered as

part of the third term.
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It is clear that case 5 subsumes 4 since Eq.(5.14) has an additional term.

Moreover case 5 subsumes 2 since Eq.(2.18) uses the set hpH(i) which is a

subset of hp3H(i, x). In practice, we need to check cases 1 (Eq.(2.16)), and 3

(Eq.(5.12)) once, and case 5 (Eq.(5.14)) L-1 times.

5.11 MILP-Based DSE with Permanent Faults

In this section, we show how a mixed-criticality task set can be imple-

mented on a multicore platform such that it remains schedulable even under a

processor failure. Three design variables can be controlled for each task: pri-

mary allocation, backup allocation (for HI tasks), and priority. The remaining

task parameters (C(LO),C(HI), T , D) are considered constants in the for-

mulation. The main design constraints are the scheduling constraints given

by Eqs.(2.16), (5.12), and (5.14). All the MILP variables have non-negativity

constraints.

5.11.1 General system variables and constrains

The allocation of tasks to their primary processors is represented by the

binary variable (Ai,x). This variable is set to 1 if processor px is τi’s primary

processor and 0 otherwise. Each task has exactly one primary processor. This

is expressed by the following constraint:

∀τi :
L∑

x=1

Ai,x = 1 (5.15)

Similarly, we define the binary variable Bi,x for backup allocations. Bi,x

is set to 1 if processor px is HI-criticality task τi’s backup processor and 0
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otherwise. For LO-criticality tasks, Bi,x is set to 0.

∀τi ∈ ΓHI :

L∑
x=1

Bi,x = 1

∀τi ∈ ΓLO : Bi,x = 0

(5.16)

The task’s primary processor and backup processor must be different. This

is expressed by the following constraint:

∀τi, ∀px : Ai,x +Bi,x = 1 (5.17)

For defining scheduling constraints, it is important to recognize tasks allo-

cated to the same core. For this, a binary variable Gi,j is defined and set to 1

if tasks τi and τj are assigned to the same primary processor and 0 otherwise.

This is expressed by the following two constraints:

∀τi, τj , τi 	= τj , ∀px : Gi,j ≥ Ai,x +Aj,x − 1 (5.18)

∀τi, τj , τi 	= τj , ∀px, py, px 	= py :

Gi,j ≤ 2−Ai,px −Aj,py

(5.19)

The first constraint ensures that Gi,j is set to 1 if they are on to the same

primary processor px, and the second ensures it is set to 0 if they are on to

different ones (px and py).

When failures occur, task allocations change. For this, another binary

variable Hi,j is defined. Hi,j is set to 1 if the HI-criticality tasks τi and τj are

allocated to the same core when τi’s processor fails. This happens either if

(a) τi’s backup processor is τj’s primary (Eq.(5.20)) or (b) τi and τj migrate

together and hence have the same primary and backup processors (Eq.(5.21)).

Otherwise, the constraints in Eqs.(5.22) and (5.23) ensure Hi,j is 0.
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∀τi, τj ∈ ΓHI , τi 	= τj , ∀px : Hi,j ≥ Bi,x +Aj,x − 1 (5.20)

∀τi, τj ∈ ΓHI , τi 	= τj , ∀px : Hi,j ≥ Gi,j +Bi,x +Bj,x − 2 (5.21)

∀τi, τj ∈ ΓHI , τi 	= τj , ∀px, py, px 	= py :

Hi,j ≤ 2−Bi,px −Aj,py +Gi,j

(5.22)

∀τi, τj ∈ ΓHI , τi 	= τj , ∀px, py, px 	= py :

Hi,j ≤ 3−Bi,px −Bj,py −Gi,j

(5.23)

Task priority is specified by another binary variable, πi,j. This variable is

1 if task τi has higher priority than task τj and 0 otherwise. To ensure the

correctness of this variable, antisymmetry and transitivity properties must be

enforced on π. This is done with the following two constraints:

∀τi, τj , τi 	= τj : πi,j + πj,i = 1 (5.24)

∀τi, τj , τk, τi 	= τj 	= τk :

πi,k ≥ πi,j + πj,k − 1

(5.25)

5.11.2 Schedulability constrains

A system is schedulable if the response times calculated using Eqs.(2.16),

(5.12), and (5.14) are all less than the task’s deadline. These response times

are represented by the ILP variables R1
i , R

2
i and the array R3

i,x respectively.

The system is schedulable if the following constraints are satisfied:

∀τi : R1
i ≤ Di (5.26)

∀τi : R2
i ≤ Di (5.27)

∀τi, ∀px : R3
i,x ≤ Di (5.28)
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To formulate Eq.(2.16) we need to linearize the ceiling function that rep-

resents the number of preemptions by high priority tasks that have the same

primary processor as the task τi. We define an integer variable P 1
i,h representing

the number of such preemptions caused by τh. P
1
i,h is bounded by:

∀τi, τh, τi 	= τh : P 1
i,h ≥

R1
i

Th
−M ∗ (1−Gi,h)−M ∗ πi,h (5.29)

∀τi, τh, τi 	= τh : P 1
i,h ≤ 1− ε+

R1
i

Th
(5.30)

where ε is a very small value and M is a large integer constant. The constraint

in Eq.(5.29) is disabled whenever τh has a different primary processor (Gi,h=0)

or has a lower priority than τi (πi,h=1). This ensures that only tasks in the

set hp(i) are accounted for. The constraint in Eq.(5.30) ensures that the left

side value does not exceed
R1

i

Th
by more than 1. The response time R1

i is then

given by:

∀τi : R1
i = Ci(LO) +

N∑
h=1,h �=i

Ch(LO).P 1
i,h (5.31)

In a similar way, we formulate Eq.(5.12). We define P 2
i,h to be the number

of preemptions by a high priority HI-criticality task τh that executes on the

same core as τi when τi’s primary fails (the set hp2H(i)). P 2
i,h is bounded by:

∀τi, τh, τi 	= τh, τh ∈ ΓHI : P 2
i,h ≥

R2
i

Th
−M ∗ (1−Hi,h)−M ∗ πi,h (5.32)

∀τi, τh, τi 	= τh, τh ∈ ΓHI : P 2
i,h ≤ 1− ε+

R2
i

Th
(5.33)

Hi,h as mentioned earlier is 1 when τi and τh are allocated to the same core

if τi’s primary processor fails, hence the constraint in Eq.(5.32) is disabled
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whenever τh is not in the set hp2H(i). The response time R2
i is then given by:

∀τi ∈ ΓHI : R2
i = Ci(HI) +

N∑
h=1,h �=i

Ch(HI).P 2
i,h

∀τi ∈ ΓLO : R2
i = 0

(5.34)

Finally, we need to check if a HI task is schedulable on its primary processor

when another processor fails (Eq.(5.14)). We define a variable P 3
i,h,x to denote

the number of preemptions by a high priority HI-criticality task τh that exe-

cutes on the same processor as τi when processor px fails (the set hp3H(i, x)).

P 3
i,h,x is constrained by the following:

∀τi, τh, τi 	= τh, τh ∈ ΓHI , ∀px : P 3
i,h,x ≥

R3
i,x

Th

−M ∗ (1−Hh,i)−M ∗ πi,h −M ∗Ai,x −M ∗ (1−Ah,x)

(5.35)

∀τi, τh, τi 	= τh, τh ∈ ΓHI , ∀px : P 3
i,h,x ≥

R3
i,x

Th

−M ∗ (1−Gi,h)−M ∗ πi,h −M ∗Ai,x

(5.36)

∀τi, τh, τi 	= τh, τh ∈ ΓHI , ∀px : P 3
i,h,x ≤ 1− ε+

R3
i,x

Th
(5.37)

The first constraints ensures that P 3
i,h,x accounts for preemptions by any

migrating HI task τh that: (1) is allocated initially to the failing core, px

(Ah,x = 1), (2) moves to the same core as τi when its core fails (Hh,i=1), and

(3) has higher priority (πi,h=0). The term M ∗ Ai,x is used in both Eq.(5.35)

and Eq.(5.36) and ensures disabling the constraints if px is τi’s primary and

hence P 3
i,h,x is 0 when ai = px. The constraint in (Eq.(5.36)) ensures that

P 3
i,h,x accounts for preemptions by HI tasks that: (1) are allocated to τi’s core

(Gi,h=1), and (2) have higher priority (πi,h=0). With these constraints, the
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set hp3H(i, x) is fully accounted for. The third constraint places an upper

bound on P 3
i,h,x. Finally R3

i,x is given by:

∀τi ∈ ΓHI , ∀px : R3
i,x = Ci(HI) +

N∑
h=1,h �=i

Ch(HI).P 3
i,h,x

∀τi ∈ ΓLO, ∀px : R3
i,x = 0

(5.38)

The values of the MILP variables A, B, and π respecting these constraints

represent a system configuration that is both schedulable and tolerant of any

single processor failure.

5.12 Experimental Results: Permanent Faults

We conducted experiments to evaluate the performance of our proposed

approach on MCS task sets. Since no similar relocation approach exists for

the the standard MCS model, we compared our work with a baseline 2-step

design approach. In this approach, an MILP formulation is first used to find

an initial allocation assuming no failures. Based on this allocation, another

formulation is used to find backup processors for failing HI tasks. HI tasks on

the working processors remain while HI tasks on the failed core migrate. The

formulations were implemented in CPLEX [92] and run on servers equipped

with Intel Xeon X5650 processors running at 2.67 GHz and with 4GBs of

memory. CPLEX was set to time out after two hours if no feasible solution

had been found.

We generated task sets with the following parameters: The periods were

randomly selected from the set {10, 20, 40, 50, 100, 200, 400, 500, 1000} ms
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with uniform distribution. The utilization ui(LO) of each task in the LO mode

was generated using the UUnifast algorithm [101] such that the total LO mode

utilization meets a given target. We set the LO mode WCET for any task τi to

Ci(LO) = ui(LO)/Ti. For HI tasks, the HI mode WCET (Ci(HI)) was then

randomly selected in the range [Ci(LO),3Ci(LO)] with uniform distribution.

By default, half of the tasks were HI-criticality. The number of tasks and total

LO mode utilization were varied on a platform consisting of four homogeneous

cores. 100 systems were generated for each parameter configuration.

Figure 5.13 shows the percentage of systems that are both schedulable and

can survive a processor failure at different LO-mode utilizations for both the

proposed approach and the baseline 2-step approach. For this experiment

20 tasks were scheduled on 4 cores. The proposed approach achieves a 3.2X

increase in the number of schedulable systems compared to the 2-step process

over the utilization range. Another way to look at it is that the proposed

approach can be used to ensure reliability through proper system configuration.

Achieving similar reliability against processor failures would otherwise require

additional resources. A similar result is obtained for systems composed of 3

cores and 12 tasks (Figure 5.14).

We also performed an experiment to observe the behavior of the ILP as the

size of the task set changes. Figure 5.15 shows the percentage of: schedulable,

unschedulable, and timed out systems using the proposed formulation and the

2-step formulation. Systems consisting of 10-40 tasks and an overall LO mode

utilization of 0.7 were scheduled on 4 cores. The proposed approach schedules

more systems at each size. For systems with 10-25 tasks, the number of systems
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Fig. 5.13: Schedulability at different utilizations (N=20, L=4).
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Fig. 5.14: Schedulability at different utilizations (N=12, L=3).

scheduled by the proposed approach increases with N as the average task size

(0.7*L/N) decreases and hence these smaller tasks allow more flexibility in

scheduling. With N ≥ 30, we see an increase in the number of systems that

the solver cannot find a solution for within the 2-hour limit. For moderate size

systems, this can be addressed by increasing this limit. The task allocation

problem is known to be NP-hard, therefore, the solver might not find feasible

solutions within an acceptable time for larger systems. Sub-optimal solutions

can be found using heuristics which will be the subject of future research.
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Fig. 5.15: Schedulability at different task set sizes (U(LO)=0.7, L=4): pro-
posed (top), 2-step baseline (bottom).

5.13 Conclusion

In this chapter, we presented solutions for designing efficient and reliable

MCS. First, to deal with transient faults, we proposed a four-mode model

for fault-tolerant multi-core MCS. This model differentiates between overruns

and faults, and also supports on-demand redundancy and heterogeneous sys-

tems, to improve LO-criticality task QoS without affecting the reliability and

scheduling guarantees provided to HI-criticality tasks. A novel task set trans-

formation approach facilitates an efficient implementation of nested genetic

algorithms that perform redundancy technique assignment and task mapping.

Supported by our analysis, design space exploration over heterogeneous hard-

ware configurations and arbitrary ODR mechanisms demonstrated that in gen-

eral, systems with at least partial support for ODR outperform static lockstep,



5.13 Conclusion 161

achieving 29% higher QoS on average. We further demonstrated that support

for several types of ODR can further improve both the average schedulability

and QoS.

For tolerating permanent faults, we extended the MCS model to support

such failures and derived the new model’s schedulability analysis. Moreover,

we proposed a design space exploration approach that considers fault-tolerance

an essential part of the design problem, thereby producing efficient and reliable

systems. Experimental results show that our approach outperforms a baseline

2-step exploration process. For example, in systems composed of 20 tasks and

4 cores, a 3.2X improvement in schedulability is observed while maintaining

guarantees of safe operation in case of any single processor failure.
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Chapter 6

Implementing Synchronous

Reactive Models of

Mixed-Criticality Systems

In this Chapter 1, we turn to more practical problem faced by designers

when designing complex Mixed-Criticality Systems (MCS). Complex embed-

ded designs in many instances are designed using a model-based design process

enabling early verification of functionality and automatic synthesis of imple-

mentation. The functionality of the system is specified using high level formal

models such as Synchronous Reactive (SR) models. It is important in a model-

based design process to preserve the semantics of the model in the generated

implementation regardless of the platform and scheduling model used. To syn-

thesize a correct, semantics-preserving implementation from an SR model, the

1The work in this chapter was done in close collaboration with Qingling Zhao. My con-
tribution was being the main developer of the branch-and-bound based algorithm and phase
2 of the heuristic with input from Ms. Zhao. I also implemented the parts I contributed.
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signal flow relationships among nodes in the ideal logical time execution must

be preserved, regardless of possible preemptions or variable execution times. A

multi-task implementation may not be schedulable unless the designer modifies

the model by adding functional delays on selected edges, with costs in terms of

degraded control performance, representing a tradeoff between schedulability

and control performance.

In this chapter, we consider the problem of optimizing the implementation

of mixed-criticality SR models with fixed-priority scheduling on a uniprocessor,

with the following problem formulation: find the schedulable implementation

that requires addition of the minimum weighted sum of functional delays for

a mixed-criticality SR model on a single processor platform with fixed priority

scheduling. We present an optimal algorithm based on Branch-and-Bound

search, and an effective heuristic algorithm.

The rest of this chapter is organized as follows, In Section 6.1, we elaborate

more on the schedulability vs functional delay tradeoff with a concrete exam-

ple. In Section 6.2, we present the system model. In Section 6.3, we discuss the

schedulability analysis. In Section 6.4, we discuss the priority assignment algo-

rithm reused here. In Section 6.5, we present our two optimization algorithms.

The experimental results are presented in Section 6.6. Finally Section 6.7

concludes the chapter.
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6.1 Schedulability vs Functional Delay Tradeoff:

Example

As the Simulink example in Section 2.6.1 showed, there is a cost to adding

functional delays to communication links in an SR model. While some delays

can be avoided, sometimes it is necessary to add functional delays to ensure

semantics-preserving schedulable implementations. We will illustrate this with

the example in Figure 6.1:

A
TA=2

(a) no edge delay

B
TB=1

A
TA=2

B
TB=1

A B B B

(b) with unit edge delay

A B

AB B B BA

(c) schedule and dataflow for (a)

(d) schedule and dataflow for (b)

Fig. 6.1: Multirate SR models without edge delay, shown in (a), and with
unit edge delay, shown in (b), and the corresponding schedules, shown in (c)
and (d).

Figure 6.1 shows a multi-rate SR model with or without unit delay on a

low-rate-to-high-rate dependency edge. Assuming each node is mapped to a

task, the two tasks A and B are periodic, independent tasks, triggered by the

OS clock tick. In (a), task A with period TA = 2 produces output that is con-

sumed by task B with period TB = 1, without any delay on the edge between

A and B. In the corresponding schedule in (c), there is a precedence constraint,
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i.e., task A must execute before a simultaneously-released task B in order to

ensure the correct dataflow from A to B, as denoted by the dotted arrows. This

can be achieved by assigning A a higher priority than B. Since tasks A and B

execute on the same processor and are driven by the same OS clock tick, the

higher-priority task A is always placed ahead of a simultaneously-released task

B in the OS ready queue, and executed before B. In (b), there is a unit delay

on the edge between A and B. In the corresponding schedule in (d), there is

an additional latency of one period of A (TA = 2) for the dataflow from A to

B, hence the precedence constraint from A to B is eliminated, so we can adopt

the priority assignment that maximizes schedulability. It is well-known that

the rate monotonic priority assignment is optimal for fixed-priority scheduling,

where each task’s priority is inversely proportional to its period. We adopt the

rate monotonic priority assignment in (d) to maximize schedulability. Sup-

pose A’s Worst Case Execution Time (WCET) is increased slightly, then the

schedule in (c) will incur deadline misses for B, while the schedule in (d) will

continue to be schedulable, thanks to the optimality of rate-monotonic priority

assignment. Note that tasks A and B are always periodic, independent tasks,

and the correct inter-task communication semantics is guaranteed by priority

assignment and/or delay insertion, not by explicit precedence constraints on

task releases.

This example illustrates the tradeoff between adding edge delays for im-

proved schedulability, and not adding edge delay for reduced end-to-end dataflow

latency and improved control performance. If it is not possible to find a schedu-

lable implementation, edge delays can be added to remove the precedence
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constraints and improve schedulability, at the cost of degraded control per-

formance. In this chapter, we propose algorithms targeting this tradeoff for

MCS.

6.2 System Model

In this chapter, we use two MCS task models: the basic Adaptive Mixed-

Criticality (AMC) model (described in Section 2.4.1, schedulability analysis in

Section 2.4.2), and a modified version of the Elastic Mixed-Criticality (EMC)

model presented in Section 4.1.

6.2.1 Task model

In a mixed-criticality SR model, the output nodes of the model (those gen-

erating output values used by actuators, or other nodes outside of the model)

are designated with a criticality level by the designer based on application-

level semantics. The criticality level is prorogated backwards from the output

nodes, i.e., the criticality level of a non-output node is assigned HI if it is a

predecessor of a HI-criticality node, or LO otherwise, i.e., a non-output node

is HI-criticality if it is a predecessor of both HI-criticality and LO-criticality

nodes. There is a many-to-one relationship between node and tasks, i.e., one

or more nodes are grouped into a single task. In this work, we assume that the

grouping has been performed, hence each node Ni in the SR model corresponds

to a task τi, with the following parameters:

〈Li, Ti, Di, Ci(LO), Ci(HI)〉
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– Li is its criticality level, HI or LO.

– Ti is its nominal period.

– Di is its relative deadline. We assume the implicit deadline model (Di = Ti).

– Ci(LO) is its WCET in LO-criticality mode.

– Ci(HI) is its WCET in HI-criticality mode. We assume that Ci(LO) ≤

Ci(HI) if Li = HI; Ci(LO) = Ci(HI) if Li = LO.

6.2.2 EMC model with no mode change task dropping

For most applications, it is desirable to provide some degraded Quality of

Service (QoS) to LO-criticality tasks in HI-criticality mode, instead of dropping

them completely as in AMC. We define our EMC model for fixed-priority

scheduling, by allowing a LO-criticality task τi to have a LO-criticality period

Ti(LO) equal to its nominal period, i.e., Ti(LO) = Ti; and a HI-criticality

period Ti(HI) ≥ Ti(LO), reflecting a reduced QoS of LO-criticality tasks in

HI-criticality mode. After mode switch to HI-crit, τi can still be executed

but with an extended period Ti(HI). The period scaling factor ki is defined

to be ki = Ti(HI)/Ti(LO) ≥ 1. A larger value of ki implies lower QoS for

LO-criticality tasks in HI-criticality mode, but better schedulability, hence ki

is a tunable parameter that controls the QoS vs. schedulability tradeoff. Each

task τi’s relative deadline is always kept to be equal to its period (Di = Ti).

In Chapter 4, due to the nature of the problem considered (multicore

scheduling with migrations in mode changes), we made the assumption that

LO tasks are dropped during a mode change, then they start on their new

cores when the mode change terminates. We target single core architectures
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in this chapter and make a more conservative assumptions that LO tasks must

be executed during a mode change. This requires changing the schedulability

conditions. The modified schedulanbility analysis for EMC will be presented

in Section 6.3.

6.2.3 System operation

For AMC, system operation proceeds as described in Section 2.4.1

The scheduling rules for EMC are similar to those for AMC, except the

following change to step 4 in the system operation description in Section 2.4.1:

4- When this happens (a task executes beyond C(LO)), LO tasks are al-

lowed to continue execution with an extended period Ti(HI) ≥ Ti(LO). HI

tasks are allowed to execute upto their certification authority accepted WCET

estimate (C(HI)).

Consider two special cases: if ki = 1, then task τi keeps running with the

same period Ti(LO) in HI-criticality mode, so the task model is equivalent

to the non-mixed-criticality regular task model; if ki = ∞, then task τi is

effectively dropped in HI-criticality mode, so the task model is equivalent to

the AMC model. Note that the EMC model corresponds to the Extended

Elastic Mixed-Criticality task model in [97], which uses EDF scheduling instead

of fixed-priority scheduling as in this work. [93] also proposed to assign a

pair of minimum and maximum periods to each LO-criticality task, but a

LO-criticality task may execute with any period within [Ti(LO), Ti(HI)] by

exploiting runtime slack in the static schedule, without a distinct time instant

of mode switch from LO-criticality to HI-criticality mode.



6.2 System Model 169

0.6 OUT1 (LO)

OUT2 (HI)

0.4

(20) (10)

(16)

1 2

3

Fig. 6.2: An example mixed-criticality SR model. The number in parentheses
above a block denotes its period, and the number along the edge denotes its
cost.

Table 6.1: Timing parameters for the example in Figure 6.2.

τi Li Ti(LO) Ti(HI) Ci(LO) Ci(HI) pri

τ1 HI 20 20 3 4 3
τ2 LO 10 20 4 4 2
τ3 HI 16 16 4 5 1

Figure 6.2 shows an example of mixed-criticality multi-rate synchronous

program, with timing parameters specified in Table 6.1. The output block τ2

is LO-criticality and τ3 is HI-criticality; the non-output blocks τ1 is assigned

with HI criticality since it is a predecessor of HI-criticality output block τ3.

Priority order from high to low is: τ1, τ2, τ3.

3  (HI)

2  (LO)

Switch to HI-criticality mode 

1  (HI)

Fig. 6.3: An example of EMC.

Figure 6.3 shows a possible schedule of the EMC model, with a criticality
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change from LO to HI-criticality mode at time 15 when task τ3 exceeds its

LO-criticality WCET C3(LO). Afterwards, jobs from LO-criticality task τ2

will be released with extended period 20 instead of 10, so the third job of τ2

is released at time 30 instead of 20.

We develop algorithms that intend to assign optimal values to two design

variables: functional delay addition and priority assignment. The optimiza-

tion objective is to minimize the sum of edge delays, where the edge weight

is determined based on the effect of unit delay on the control performance.

6.3 Schedulability Analysis

Table 6.2 lists some notations used in this chapter.

Table 6.2: Notations used in this chapter

hp(i) The set of (LO-criticality and HI-crit) tasks with higher priority
than τi

hpL(τi) The set of LO-criticality tasks with higher priority than τi
lpL(τi) The set of LO-criticality tasks with lower priority than τi
hpH(τi) The set of HI-criticality tasks with higher priority than τi
lpH(τi) The set of HI-criticality tasks with lower priority than τi

Schedulability analysis for AMC was presented in Section 2.4.2. We now

present our schedulability test for EMC, which is based on AMC-rtb [46].

In LO-criticality mode, there is no difference between EMC and AMC,

hence τi’s Worst Case Response Time (WCRT) in LO-criticality mode, Ri(LO),

can be computed with the same Equation (2.16).

Since LO-criticality tasks continue to execute in HI-criticality mode, we

need to verify the schedulability of both HI-criticality tasks and LO-criticality
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tasks in HI-criticality mode. In the steady HI-criticality mode, each HI-

criticality task τj has WCET Cj(HI) and period Tj, and each LO-criticality

task τk has WCET Ck(LO) and period Tk(HI), hence task τi’s WCRT in the

steady HI-criticality mode is:

Ri(HI) = Ci(Li) +
∑

j∈hpH(i)

⌈Ri(HI)

Tj

⌉
· Cj(HI) +

∑
k∈hpL(i)

⌈Ri(HI)

Tk(HI)

⌉
Ck(LO)

(6.1)

where Ci(Li) is τi’s WCET at its own criticality level Li = LO ∨HI.

For the Mode Switch (MS), we consider a crossing job Ji of task τi that

is released in LO-criticality mode but finished in HI-criticality mode. The

worst-case interference to Ji from each τj ∈ hpH(i) is the same as in AMC:

⌈Ri(MS)

Tj

⌉
· Cj(HI) (6.2)

A job of LO-criticality task τk ∈ hpL(i) that is both released and finished

in LO-criticality mode has period Tk(LO). The maximum number of such jobs

of task τk ∈ hpL(i) that can cause interference to Ji is:

nLO
k =

⌊Ri(LO)

Tk(LO)

⌋
(6.3)

A job of LO-criticality task τk ∈ hpL(i) that is either released in HI-

criticality mode, or released in LO-criticality mode but finished in HI-criticality

mode, has period Tk(HI). The maximum number of such jobs of task τk ∈
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hpL(i) that can cause interference to Ji is:

⌈Ri(MS)− nLO
k · Tk(LO)

Tk(HI)

⌉
(6.4)

Since a LO-criticality task τk has the same WCET of Ck(LO) in both LO-

criticality mode and HI-criticality mode, the worst-case interference to Ji from

task τk ∈ hpL(i) is upper-bounded by:

(
nLO
k +

⌈Ri(MS)− nLO
k · Tk(LO)

Tk(HI)

⌉)
· Ck(LO) (6.5)

The WCRT of the crossing job Ji of task τi is:

Ri(MS) = Ci(Li) +
∑

j∈hpH(i)

⌈Ri(MS)

Tj

⌉
· Cj(HI)

+
∑

k∈hpL(i)

(
nLO
k +

⌈Ri(MS)− nLO
k · Tk(LO)

Tk(HI)

⌉)
· Ck(LO) (6.6)

where nLO
k =

⌊
Ri(LO)
Tk(LO)

⌋
. Note that the last term in Equation (6.6) is never

negative since Ri(LO) ≤ Ri(MS).

The taskset is schedulable by EMC if :

⎧⎪⎪⎨
⎪⎪⎩
∀(i|Li = LO), Ri(LO) ≤ Di ∧max(Ri(MS), Ri(HI)) ≤ Di(HI)

∀(i|Li = HI), max(Ri(LO), Ri(HI), Ri(MS)) ≤ Di.

(6.7)

Consider the two special cases mentioned earlier: if the period scaling factor
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ki = Ti(HI)/Ti(LO) = 1, then Equation (6.5) becomes:

⌈Ri(MS)

Tk(HI)

⌉
· Ck(LO) =

⌈Ri(MS)

Tk(LO)

⌉
· Ck(LO) (6.8)

and Equation (6.6) becomes:

Ri(MS) = Ci(Li)+
∑

j∈hpH(i)

⌈Ri(MS)

Tj

⌉
·Cj(HI)+

∑
k∈hpL(i)

⌈Ri(MS)

Tk(LO)

⌉
·Ck(LO)

(6.9)

This is the same as the classic Response-Time Analysis equation for a regular

task model, with each task’s WCET equal to its WCET at its own criticality

level in the mixed-criticality model. Hence it verifies that the task model is

equivalent to the non-mixed-criticality regular task model if ki = 1.

If ki =∞, then Equation (6.5) becomes:

(⌊Ri(LO)

Tk(LO)

⌋
+ 1

)
· Ck(LO) (6.10)

and Equation (6.6) becomes:

Ri(MS) = Ci(Li) +
∑

j∈hpH(i)

⌈Ri(MS)

Tj

⌉
· Cj(HI)+

∑
k∈hpL(i)

(⌊Ri(LO)

Tk(LO)

⌋
+ 1

)
· Ck(LO) (6.11)

Compare this to Equation (2.18) for AMC-rtb, we can see that Equation (6.6)

is a slightly more pessimistic version of (2.18) (with ��+1 instead of �
 operator
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in the last term). Hence it verifies that the task model is equivalent to the

AMC model if ki =∞.

6.4 Priority Assignment with Audsley’s Algorithm

Audsley’s Optimal Priority Assignment (OPA) algorithm [105] is a well-

known algorithm for priority assignment in fixed-priority scheduling. The al-

gorithm tries to assign the lowest priority level (= 1) to a task. Once a task is

feasibly assigned the lowest priority, remove it from consideration, and iterate

until all tasks are assigned feasible priorities, and the algorithm succeeds; or

no task can be feasibly assigned the lowest priority, and the algorithm fails.

The OPA algorithm is applicable if the following four conditions are satis-

fied [105, 106]:

• A task’s WCRT is dependent on the set of higher priority tasks, but not

on the relative priority ordering of those tasks.

• A task’s WCRT may be dependent on the set of lower priority tasks, but

not on the relative priority ordering of those tasks.

• When priorities of any two tasks are swapped, the WCRT of the task be-

ing assigned a higher priority cannot increase with respect to its previous

value.

• When priorities of any two tasks are swapped, the WCRT of the task be-

ing assigned a lower priority cannot decrease with respect to its previous

value.
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An inspection of the scheduling equations for both of both AMC and EMC

indicates that these properties hold true, hence OPA is applicable to both

AMC and EMC.

6.5 Optimization Algorithms

Recall that our optimization objective is to minimize the total system cost,

defined as the sum of costs of all edges with a unit delay, while guarantee-

ing schedulability. We present two optimization algorithms for assigning task

priorities, and selectively adding delays to edges to generate a schedulable

semantics-preserving implementation: an optimal BnB algorithm that guar-

antees to find the solution with minimal cost and an efficient greedy heuristic

algorithm that can find close-to-optimal solutions.

6.5.1 The Branch-and-Bound algorithm

We note two special cases: the AllDelay configuration with delays added

to all edges (Ed = E), where all intertask precedence constraints are elimi-

nated; and the NoDelay configuration with no delays added to any edge (

Ed = φ), where all intertask precedence constraints are preserved. All other

delay configurations lie between the two special cases. For a given SR model,

the AllDelay configuration has the highest cost and the best schedulability,

and the NoDelay configuration has the lowest cost and the worst schedulabil-

ity. If the NoDelay configuration is schedulable, then it is the optimal solution;

otherwise, the BnB algorithm starts from the root node of the NoDelay config-

uration and gradually adds edge delays to find the optimal delay configuration
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that is barely schedulable and minimizes the total system cost. Each node

in the search tree represents a unique delay configuration. We consider two

alternative approaches to constructing the BnB search tree:

• Consider each edge and make a 0-1 decision, with 0 indicating no delay,

and 1 indicating one delay on that edge. Each node of the resulting

search tree has two children nodes, corresponding to either 0 (no delay)

or 1 (one delay). Each child node has the same delay configuration

as its parent node plus one additional delay on a new edge. In order to

minimize the total system cost, the edges in the SR model are considered

in the order of increasing cost, reflecting the preference to add delay to

an edge with lower cost than another edge with higher cost. The full

search tree, if no branches are pruned, is a balanced binary tree.

• Consider each delay as a token, and make a decision on which edge to

place it on. Each node of the resulting search tree may have multiple

children nodes, corresponding to the different choices of the next candi-

date edge to place a delay token onto. Again, each child node has the

same delay configuration as its parent node plus one additional delay on

a new edge. For example, The root node is the NoDelay configuration.

It has E child nodes, where E is the total number of edges in the SR

model, reflecting the E possible choice edges to place a delay token onto.

The full search tree, if no branches are pruned, is a skewed tree that

is deep and bushy on the left-hand side and shallow and sparse on the

right-hand side.
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One important factor that determines the efficiency of BnB search is the

bounding function for effective search tree pruning, which determines the lower

bound for each search tree node, as the lowest cost of all possible configurations

that can be obtained by expanding this node and exploring future configura-

tions starting from this node’s configuration. The search tree is pruned at this

node if its lower bound exceeds the cost of the current best configuration seen

so far. While the first approach is simple and intuitive, it is difficult to design

a good bounding function. We adopt the second approach, as proposed in [84].

To determine the ordering among edges for adding delays to, we define Λe as

the list of all edges in the SR model sorted in the order of increasing cost; in case

of a tie, where multiple edges have the same cost, the same-cost edges are sorted

in decreasing execution rate of their sender tasks, reflecting the preference to

add delay to an edge whose sender task has a higher execution rate (smaller

period), since each added delay implies increased end-to-end latency on the

edge by an amount equal to the sender task period. Each search tree node p

corresponds to a delay configuration, that is, the set of edges with one delay on

each edge, denoted as p.config. Each child node c of the parent node p has the

configuration obtained by adding one additional delay to an unexplored edge

in parent node p’s configuration, where the list of unexplored edges consists

of all edges in the sorted list Λe after (with costs higher than or equal to)

all edges with delays in node p’s configuration. Node c’s cost is computed as

the sum of costs of all the edges with delays in its configuration; its bound is

computed as node p’s cost plus cost of the next edge, also the minimum-cost

edge, in the list of unexplored edges. This prevents adding redundant nodes to
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the search tree with configurations that have already been considered before.

The BnB search proceeds according to A* search, that is, at any time during

the search, we always expand the node on the frontier of the search tree (the

set of candidate nodes to be expanded next) with the lowest bound. In order

to implement Best First Search (BFS), we keep the list of candidate nodes in

a priority queue OPEN sorted by increasing bound. Algorithm 6.1 shows the

pseudocode for the BnB algorithm:

Algorithm 6.1: Branch-and-Bound Algorithm BnB()

1: Λe.sortByIncreasingCost()
2: node0.delays=φ
3: OPEN.enqueue(node0)
4: optimalsol.cost ←∞
5: while OPEN not empty do
6: p = OPEN.dequeue()
7: if p.bound < optimalsol.cost then
8: for each child c of p do
9: if OPA4SR(c.Config) then then

10: if c.cost < optimalsol.cost then
11: optimalsol = c
12: Remove from OPEN all candidate configurations with bounds

higher than optimalsol.cost
13: end if
14: else
15: if c.bound < optimalsol.cost then
16: OPEN.enqueue(c)
17: end if
18: end if
19: end for
20: end if
21: end while

• Lines 1-4: Initialize the sorted list of edges Λe, the root node node0, the

priority queue OPEN sorted by increasing bound, and the lowest cost of

the configurations seen so far (optimalsol.cost).
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• Lines 5-21: The main loop of the algorithm, which terminates when

OPEN is an empty set, that is, all search tree nodes have either been

expanded or pruned.

• Line 6: Take the configuration in front of the priority queue OPEN (p

= OPEN.dequeue()).

• Lines 7-20: If p’s bound is less than the minimum cost among all config-

urations seen so far (p.bound < optimalsol.cost), the node is expanded

further to search for a possible better configuration with lower cost than

optimalsol.cost.

• Lines 8-19: Consider each child node c of the parent node p.

• Lines 9-13: If the procedure OPA4SR() finds a feasible priority assign-

ment for c’s configuration, and if c’s cost is lower than optimalsol.cost,

then set c to be the new optimalsol. In addition, remove from OPEN all

candidate configurations with bounds higher than optimalsol.cost, since

they cannot produce any better configurations.

• Lines 14-18: If the procedure OPA4SR() fails to find a feasible priority

assignment for c’s configuration, and if c’s bound is lower than opti-

malsol.cost, then it may be possible to find a better configuration by

expanding its child nodes, so add c to OPEN to be expanded next.

Note that line 12 (removing from OPEN all candidate configurations with

bounds higher than optimalsol.cost), and line 15 (checking of c.bound < opti-

malsol.cost) are both redundant given the check on line 7 for c.bound < op-
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timalsol.cost. Line 12 is for early removal of unpromising nodes fromOPEN,

and line 15 is for preventing unpromising nodes from being added into OPEN.

They are both performance optimizations that can be omitted without affect-

ing algorithm correctness.

Fig. 6.4: Example of a Branch-and-Bound search tree.

As an example, Figure 6.4 shows an example of the BnB search tree for a

system with 3 edges a, b and c, with costs of 0.1, 0.35, and 0.55, respectively.

They are sorted by increasing cost, with Λe as the sorted list of edges a, b, c.

The search starts from the root node of the NoDelay configuration, and first

tries to add a delay to edge a, generating the configuration with Delays={a},

Cost=0.1. The lower bound of all possible solutions from the current search

tree node is equal to cost of this node plus the minimum edge cost in the

remaining edges in the list Λe, which is equal to 0.1+min(0.35,0.55)=0.45.

The other search nodes can be constructed similarly. Note that the rightmost
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search tree node has delays={c} and cost=0.55. There is no edge with cost

higher than c in OPEN, hence it should not have any children node. We assign

its bound to be a large value (represented by infinity ∞ in the figure) higher

than the maximum solution cost, to indicate to the algorithm that it should

stop and not explore any children of this node.

Now we turn to the priority assignment algorithm for SR models. Al-

gorithm 6.2 shows the algorithm OPA4SR(), that is, the Optimal Priority

Assignment algorithm for SR models. It takes as argument a given delay con-

figuration Ed, and tries to assign priority level k to a task so that the task is

feasible, starting from the lowest priority-level 1 to the highest priority-level

|N |, assuming each task τi ∈ N is assigned a unique priority. Different from

the original OPA algorithm, OPA4SR() must take into account the priority as-

signment constraints imposed by feedthrough edges, that is, the sender must

have higher priority than the receiver if there is a feedthrough edge between

them. For the AllDelay configuration of an SR model, where all intertask de-

pendency relationships are eliminated, the OPA can be applied directly, where

all remaining tasks whose priorities have not been assigned are possible candi-

dates to be assigned the lowest available priority. For all other configurations

of an SR model, a task Ni whose priority has not been assigned can be a

candidate to be assigned the next lowest available priority, only if there is no

feedthrough edges Ni → Nj to a receiver task Nj that has not been assigned a

priority yet. In other words, the order of priority assignment is from receiver

tasks to sender tasks in reverse order of the feedthrough edges. We define the

set of candidate tasks Nc to be assigned the next lowest available priority, as
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Algorithm 6.2: OPA4SR(Ed)
1: for k = 1 to |N | do
2: Construct the set of candidate tasks Nc ⊆ N based on the current delay

configuration.
3: for each τi ∈ Nc do
4: if τi is schedulable at priority level k then
5: pi = k
6: Nc.remove(τi)
7: break
8: end if
9: end for

10: if no task is schedulable at priority level k then
11: return FALSE
12: end if
13: end for
14: return TRUE

the set of tasks with no feedthrough edges Ni → Nj to receiver tasks that have

not been assigned priorities yet. If any task τi ∈ Nc can be feasibly assigned

the next lowest priority k, then assign pi = k, remove τi from Nc, and try the

next higher-level priority k+1 at the next iteration; if none of the tasks in Nc

can be feasibly assigned the next lowest priority k, then declare the task set

to be infeasible with any priority assignment. The main difference from the

original OPA lies in lines 2 and 3, where the pool of candidate tasks Nc needs

to be updated at every iteration of the for loop, that is, after an additional task

is feasibly assigned a priority. This difference affects the order in which task

priorities are assigned, not the schedulability analysis equations for AMC and

EMC, or the four conditions for OPA to be applicable. Therefore, OPA4SR() is

applicable to priority assignment for a mixed-criticality SR model with either

an AMC or EMC scheduling algorithm.
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Consider a SR model withN nodes and E low-rate-to-high-rate dependency

edges. The optimal algorithm needs to explore at most 2E different delay con-

figurations. For each configuration, the function Audsley Schedulable() is

called, which performs a maximum of N(N + 1)/2 schedulability tests. So

the overall worst-case running time of the algorithm is O(2E ×N2) number of

schedulability tests. (The schedulability tests in Section 2.2 based on recur-

sive equation solving is pseudo-polynomial, but it is generally very efficient in

our experience). Due to its worst-case exponential running time, BnB is not

scalable to large systems, hence we present an efficient heuristic algorithm as

an alternative to BnB.

6.5.2 The heuristic algorithm

Algorithm 6.3 is an efficient greedy algorithm for simultaneous priority

assignment and delay optimization. We define each task’s cost as the sum

of the costs of its outgoing feedthrough edges to receiver tasks that have not

been assigned priorities yet. Nu is the list of tasks that have not been assigned

priorities yet, sorted by increasing cost. In case of a tie, where multiple tasks

have the same cost, the same-cost tasks are sorted in increasing execution

rate (decreasing period), reflecting the preference to assign lower priority to

tasks with lower execution rate (larger period), consistent with rate-monotonic

policy (even though rate-monotonic policy is no longer optimal in this context,

it is still a useful heuristic). Nu is initialized to be the full task set N , and

should be gradually reduced to the null list if a feasible priority assignment

is found. Eu is the set of candidate edges for delay addition, initialized to
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Algorithm 6.3: Heuristic()

1: {Phase 1}
2: Nu ← N , Eu ← E , sysCost← 0
3: for k = 1 to |N | do
4: compute costs of tasks in (Nu) and sort Nu by increasing cost
5: for each τi ∈ Nu do
6: if τi is schedulable at priority level k then
7: pi = k
8: Nu.remove(τi)
9: Eu.add delay(τi.outgoingFTEdges)

10: Eu.remove(τi.incomingFTEdges)
11: sysCost += τi.cost
12: break
13: end if
14: end for
15: if no task τi ∈ Nu is schedulable at priority level k then
16: return FAILURE
17: end if
18: end for
19: Ed ← Eu
20: {Phase 2}
21: Sort all edges with delays Ed by decreasing cost
22: for each edge Ei ∈ Ed do
23: Ed.remove(Ei)
24: if OPA4SR(Ed)=FALSE then
25: Ed.add(Ei)
26: else
27: sysCost -= Ei.cost
28: end if
29: end for
30: return SUCCESS

be the full set of edges E , and should be gradually reduced to Ed, the set of

edges with delays on them, each pointing from a lower-priority sender task to

a higher-priority receiver task. (The subscript u means unassigned.)

Lines 1-19 describe Phase 1, an OPA-based algorithm that performs prior-

ity assignment from the lowest to the highest level by assigning the next lowest
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priority level to the feasible task with minimum cost. Lines 20-30 describe

Phase 2, which attempts to remove some edge delays while still guaranteeing

schedulability. More specifically, Algorithm 6.3 proceeds as follows:

1. Line 2: Initialize Nu, Eu, and the system cost.

2. Line 4: Compute costs of tasks in Nu, and sort them by increasing cost.

3. Lines 5-14: If any task τi ∈ Nu can be feasibly assigned the next lowest

priority k, then assign pi = k; remove τi from Nu. At this point, all

of τi’s neighbor tasks connected by feedthrough edges have not been

assigned priorities, and τi has lower priority than all of its neighbor

tasks. τi’s outgoing feedthrough edges connect lower-priority sender task

τi to higher-priority receiver tasks, so add delays to them, and add costs

of these edges, which sum to τi.cost, to the system cost; τi’s incoming

feedthrough edges connect higher-priority sender tasks to lower-priority

receiver task τi , so remove all such edges from Eu, since no delays should

be added to such edges.

4. Lines 15-17: If none of the tasks in Nu can be feasibly assigned the

next lowest priority k, then declare the task set to be unschedulable and

return FAILURE.

5. Line 19: Set Ed to be equal to Eu.

6. Lines 20-30: Attempt to remove delays from the set of edges with delays

Ed. For each edge Ei ∈ Ed in the order of decreasing cost (in case of a

tie, the same-cost edges are sorted in decreasing execution rate of their
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sender tasks), remove its edge delay and invoke OPA4SR() in Algorithm

6.2 for priority assignment. If OPA4SR() fails to find a feasible priority

assignment, then add back the edge delay; otherwise, actually remove the

delay and subtract the edge cost from sysCost. Continue to try to remove

delay from the next edge, until all edges in Ed have been processed.

An illustrative example

To illustrate the heuristic algorithm, consider the example in Figure 6.5,

with timing parameters in Table 6.3. The output block τ3 is HI-criticality,

and the output block τ4 is LO-criticality; the non-output blocks τ1 and τ2 are

both assigned HI criticality, since they are predecessors of HI-criticality output

block τ3.

0.25

0.4

OUT1 (HI)

OUT2 (LO)

0.35

(14)

(12) (7)

(3)

1

2

3

4

E1

E2E3

Fig. 6.5: An example mixed-criticality synchronous program. The number in
parentheses above a block denotes its period.

Table 6.3: Timing parameters for the example in Figure 6.5.

τi Li Ti Di Ci(LO) Ci(HI)
τ1 HI 12 12 2 3
τ2 HI 14 14 1 2
τ3 HI 7 7 1 2
τ4 LO 3 2 1 -
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Phase 1: Try to find a feasible priority assignment:

1. Try to find the task that can be assigned the lowest priority. We compute

the cost of each task as the sum of the cost of all its outgoing edges, and

we can get cost(τ1) = 0.6, cost(τ2) = 0.4, cost(τ3) = 0,cost(τ4) = 0.

Then we search for the task that can be assigned the lowest priority in

the order of increasing cost, which is τ3, τ4, τ2, τ1. WCRT of τ3 if assigned

the lowest priority is R∗
3 = 9 > D3 = 7; WCRT of τ4 if assigned the lowest

priority is RLO
4 = 5 > D4 = 2; WCRT of τ2 if assigned the lowest priority

is R∗
2 = 11 ≤ D2 = 14, we assign τ2 the lowest priority. Because there is

a writer-to-read dependency between τ2 and τ1 and writer τ2 has lower

priority than reader τ1, an edge delay is added between them, with a

cost of 0.4.

2. Try to find the lowest priority task among the remaining tasks, in the

order of increasing cost τ3, τ4, τ1. WCRT of τ3 if assigned the lowest

priority is R∗
3 = 7 ≤ D3 = 7, we assign τ3 the lowest priority. Because

writer τ1 has higher priority than reader τ3, an edge delay is not needed

between them. Now we have cost(τ1) = 0.35, cost(τ4) = 0.

3. Try to find the lowest priority task among the remaining tasks, in the

order of τ4, τ1. WCRT of τ4 if assigned the lowest priority RLO
4 = 3 >

D4 = 2; WCRT of τ1 if assigned the lowest priority is R∗
1 = 3 ≤ D1 =

12, we assign τ1 the lowest priority. Because there is a writer-to-read

dependency between τ1 and τ4 and writer τ1 has lower priority than

reader τ4, an edge delay is added between them, with a cost of 0.35.
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4. WCRT of τ4, with the highest priority, is RLO
4 = 1 ≤ D4 = 2. So we

have found a feasible priority assignment, from lowest to highest priority

τ2, τ3, τ1, τ4, with total system cost 0.4 + 0.35 = 0.75.

Phase 2: Try to remove some unnecessary delays. There are two delays,

one on the edge E21 from τ2 to τ1 with cost of 0.4; the other on the edge E14

from τ1 to τ4, with cost of 0.35. We try to remove the delays in descending

order of cost.

1. Try to remove the delay on the edge E21 from Ed = {E21, E14}. If the de-

lay on the edge E21 is removed, OPA4SR(E14) as shown in Algorithm 6.2

fails, so we cannot remove the delay on the edge E21.

2. Try to remove the delay on the edge E14 using OPA4SR(E21). This

attempt also fails.

Therefore, Phase 2 was not able to remove any edge delay from Ed = {E21, E14},

and so the final result by the heuristic algorithm is a feasible priority assign-

ment from lowest to highest priority τ2, τ3, τ1, τ4, with total delay cost 0.75.

Consider a SR model withN nodes and E low-rate-to-high-rate dependency

edges. The first phase of the heuristic algorithm is based on Audsley’s OPA

and performs a maximum of N(N + 1)/2 schedulability tests. In the second

phase, the heuristic algorithm needs to process at most E edges. For each edge,

the function Audsley Schedulable() is called, which performs a maximum of

N(N + 1)/2 schedulability tests. So the overall running time of the heuristic

algorithm is O(E × N2) number of schedulability tests, much more efficient

than the exponential complexity of O(2E ×N2) of the optimal algorithm.
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6.6 Experimental Results

We use Task Graph For Free (TGFF) [107] to generate random DAGs of

SR models for performance evaluation. The maximum fan-in of each node

is 3 and the maximum fan-out is 2. 1000 random systems are generated for

each data point. We assume that each node corresponds to a task, so each SR

model corresponds to a taskset with size equal to the number of nodes in the

model.
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Fig. 6.6: Schedulability of different algorithms vs. ULO for AMC.

Taskset generation is controlled by the following parameters: number of

tasks in each taskset N (default=12 if unspecified); system CPU utilization in

LO-criticality mode ULO; percentage of HI-criticality tasks PHI (default=50%

if unspecified); Each HI-criticality task τi’s criticality factor, defined as Fi =

Ci(HI)/Ci(LO) (default=2 if unspecified); Each LO-criticality task τi’s period

scaling factor ki = Ti(HI)/Ti(LO) (default=2 if unspecified). In general, Fi
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Fig. 6.7: Schedulability of different algorithms vs. ULO for EMC.

and ki can have different values for different tasks, but we assume them to

be the same for all tasks in the experiments, denoted as F and k. Each task

τi is generated as follows: its criticality level Li = HI with probability PHI ;

its nominal period Ti is randomly selected from the set {10, 20, 40, 50, 100,

200, 400, 500, 1000} ms with uniform distribution; its LO-criticality utilization

(Ui(LO) = Ci(LO)/Ti) is generated with UUnifast [101], with maximum value

of 49%; its LO-criticality WCET Ci(LO) = Ui(LO) · Ti; its deadline Di = Ti;

its HI-criticality WCET Ci(HI) is min(Di, FHI ·Ci(LO)) if Li = HI; Ci(HI) =

Ci(LO) if Li = LO. Recall that unit delays are always added on all high-rate-

to-low-rate dependency edges, so we only consider delays added to the low-rate-

to-high-rate dependency edges. Each low-rate-to-high-rate dependency edge

is assigned a random cost according to the uniform distribution such that the

sum of the costs equals 1, to simulate the relative impact of functional delays
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Fig. 6.8: Schedulability of EMC vs. minimum period scaling factor kmin, for
different ULO.

on different edges on application-level control performance. The optimization

objective is to minimize the total system cost, defined as sum of all costs of

low-rate-to-high-rate dependency edges with a unit delay. Two extreme cases

are the AllDelay configuration, where all edges have unit delays on them, with

total cost of 1; and the NoDelay configuration, where no low-rate-to-high-

rate dependency edge has a unit delay. Obviously, for a given SR model, the

AllDelay configuration has the highest cost and the best schedulability, and the

NoDelay configuration has the lowest cost and the worst schedulability. If the

NoDelay configuration is schedulable, then it is the optimal solution; otherwise,

our objective is to find the delay configuration that is “barely schedulable” and

has the minimum cost. The experiments are performed on a computer with

CPU speed of 2.8 GHz, and 8 GB RAM.

We first evaluate how added delays can improve system schedulability. We

compare the following approaches: the optimal branch-and-bound based al-
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Fig. 6.9: System cost vs. ULO for AMC.

gorithm (AMC-BNB/EMC-BNB), the heuristic algorithm (AMC-Heur/EMC-

Heur), the configurations (AMC-AllDelay/EMC-AllDelay), and the configura-

tions (AMC-NoDelay/EMC-NoDelay). The number of tasks in each taskset

is 12. Figures 6.6 and 6.7 plot the percentage of schedulable tasksets vs. the

system CPU utilization in LO-criticality mode ULO. We can see that the per-

centage of schedulable tasksets is much higher for the implementations with

delays than those without delays. Among the approaches based on AMC, it

is obvious that AMC-AllDelay, where all dependency relationships are elimi-

nated, has the best performance in terms of schedulability; and AMC-NoDelay

has the worst preformance. AMC-BNB and AMC-Heur have the same per-

formance as AMC-AllDelay, since AMC-BNB and AMC-Heur try to remove

delays while guaranteeing schedulability, so in the worst-case, no delays can be

removed, and they yield the same solution as AMC-AllDelay. Similarly, EMC-

BNB, EMC-Heur and EMC-AllDelay have the same performance in terms
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Fig. 6.10: System cost vs. ULO for EMC.

of schedulability. The AMC-based algorithms generally have better schedu-

lability than the EMC-based algorithms for the same taskset, since all LO-

criticality tasks are dropped in HI-criticality mode in AMC, resulting in lower

CPU utilizations in HI-criticality mode than EMC.

We then evaluate the impact of the EMC model on schedulability. We

only consider tasksets that are schedulable with AMC-AllDelay, by discard-

ing all tasksets that are not schedulable with AMC-AllDelay during taskset

generation. We define the minimum period scaling factor kmin as the mini-

mum k such that the system is schedulable when all LO-criticality tasks have

Ti(HI) = k · Ti(LO). Larger value of kmin indicates more QoS degradation for

LO-criticality tasks in HI-criticality mode. The number of tasks in each taskset

is 20. Figure 6.8 shows the percentage of schedulable tasksets at each kmin for

different ULO. As the system utilization becomes higher, more systems require
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a larger kmin to be schedulable, i.e., more QoS degradation of LO-criticality

tasks is needed to make the system schedulable.

In the following experiments, we only consider tasksets that are schedulable

with both AMC-AllDelay and EMC-AllDelay, by discarding all tasksets that

are not schedulable with AMC-AllDelay during taskset generation.

Figures 6.9 and 6.10 plot system cost vs. LO-criticality CPU utilization

ULO. For every taskset where the optimal algorithm finds a feasible solution,

the heuristic algorithm is also able to find a feasible solution, and the solution

it finds (dashed line) has system cost close to the optimal solution (solid line)

(about 3% higher). The system cost increases with ULO for AMC, since it is

necessary to add more delays to make the system schedulable with higher CPU

utilization; the system cost increases with ULO for EMC, but shows a small

decrease when ULO goes from 0.9 to 0.95. We find this decrease to be due
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to the biased generation of tasksets: since we only consider tasksets that are

schedulable with both AMC and EMC, most randomly-generated tasksets with

ULO = 0.95 are discarded due to non-schedulability. The surviving tasksets

tend to have relatively few low-rate-to-high-rate dependency edges, so it is

not necessary to add many edge delays to make them schedulable, hence the

system cost is not large.

For Figures 6.11, and 6.12, the system cost decreases with increasing taskset

size N . Increasing taskset size N cause the following: the number of edges

become larger, the cost of each edge becomes smaller, and the average value of

each task’s CPU utilization (Ui(LO) becomes lower. Hence the optimization

algorithm has more freedom in choosing the edges to place the delays. Com-

bined with the effect due to biased generation of tasksets mentioned before,

the overall effect is that the system cost decreases with increasing N .
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Fig. 6.13: System cost and runtime of the heuristic for larger systems.

In Figure 6.13, we vary the task set sizeN from 10 to 90, keeping ULO = 0.8,

and plot the total system cost, algorithm running time of the heuristic algo-

rithm. (The optimal algorithm cannot scale to large task sets, so its solutions

are not plotted here.) The results verify the efficiency of the heuristic algo-

rithm, which takes only around 1 second for taskset size of 90.

6.7 Conclusions

In this chapter, we consider the optimization of the multitask implementa-

tion for mixed-criticality synchronous models with fixed-priority scheduling on

a uniprocessor. To provide minimum service level for low criticality tasks, we

define the Elastic Task Model, and present schedulability analysis for it. We
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develop an exact algorithm based on Audsley’s Optimal Priority Assignment

algorithm for task priority assignment, and use branch-and-bound search for

assigning delays, with the objective of minimizing the weighted sum of the

functional delays. We also propose an efficient heuristic. Experiments at dif-

ferent parameter settings showed that the proposed heuristic obtains close-to-

optimal results, performing only 3% worse than the optimal branch-and-bound

algorithm. Our experiments also showed that the heuristic is scalable to large

systems as it takes only around 1 second for systems of 90 tasks.
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Chapter 7

Conclusion and Future Work

Embedded systems will continue to shape our lives in ways that a few

decades ago were not possible. A large part of these systems are real-time

systems that have externally defined timing constraints. Advances in embed-

ded design open up new application opportunities by enabling systems that

process more information faster, cost less, and tolerate more faults. This can

be done in two different ways: improving the platform or improving the design

process. In this thesis, we use the latter approach; assuming a fixed platform,

propose improved models, analysis, and design techniques to produce more

efficient and more robust systems. We summarize our key contributions next:

7.1 Key Contributions

7.1.1 Resource-sharing multicores

With the prominence of multicore architectures in embedded computing

today, the first additional challenge introduced by these systems is allocating
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tasks across the different cores efficiently. This is complicated by resource

sharing as tasks in multicore systems often share resources such as variables

and data structures. Access to the shared resource can be managed by different

mechanisms with varying blocking and memory penalties. Previous work has

addressed the problems of task allocation and resource management separately

leading to inefficient solutions.

In Chapter 3, we proposed to jointly optimize task allocation and the se-

lection of resource protection mechanisms. Two methods were presented to

solve this optimization problem; an optimal Mixed Integer Linear Program-

ming (MILP) and a sub-optimal but efficient heuristic. Experiments showed

that the proposed approach significantly extends the range of systems that

can be scheduled on a given platform. More specifically, the critical utilization

(maximum utilization at which at least 95% of systems are found schedula-

ble) is improved from the 57%-70% range in state-of-the-art task allocation

heuristics to the 76%-88% range.

7.1.2 Multicore mixed-criticality systems

In Chapters 4, 5 and 6, we discussed the design of Mixed-Criticality Sys-

tems (MCS) that have been proposed to address the need to certify embedded

designs. MCS design balances the requirements of the certification authori-

ties to provide sufficient computing resources to handle worst case scenarios

with the needs of manufacturers for efficiency and cost reduction. In Chap-

ter 4, we showed that when MCS are implemented on a multicore architec-

ture, the variations in execution times at different criticality levels can lead
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to inefficient designs. To address this issue, we proposed the Dual-Partitioned

Mixed-Criticality (DPM) task allocation approach. The DPM approach allows

the system to have different partitions at different modes, while maintaining

the property that in any stable mode, the system is fully partitioned. DPM

provides more efficiency for non-critical tasks while maintaining safety require-

ments for critical ones. Experiments showed a 17% improvement in systems

schedulability using DPM for systems of 80% utilization or more.

7.1.3 Fault-tolerant mixed-criticality systems

In Chapter 5, we argued that reliability must be pro-actively considered

in the design process of MCS since they contain a safety critical part. To

this end, we proposed a new model and analysis for MCS that simultaneously

address hardware transient faults, certification and quality of service. To aid

in the use of the new model in developing systems, we proposed a Design Space

Exploration (DSE) approach that is based on the proposed model and supports

a variety of fault-tolerance mechanisms. For tolerating permanent hardware

faults, we extended the standard MCS model and analysis to support the

failure of one processor in the system. An accompanying MILP-based DSE

approach is also proposed that is shown to achieve a a 3.2X improvement in

schedulability.
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7.1.4 Implementing synchronous reactive models of

mixed-criticality systems

In Chapter 6, we focused on model-based design, specifically, using the

popular Synchronous Reactive (SR) model and proposed algorithms to opti-

mize the implementation of MCS SR models onto the underlying platform.

Our objective was to find the schedulable implementations that preserve the

semantics of the SR model (by adding functional delays when necessary to

preserve communication flows) while reducing the performance penalty of the

added delays. To this end, we proposed an optimal Branch-and-Bound based

algorithm and an efficient heuristic.

7.2 Summary of Best Practices

Throughout this work, we made a few observations that could be useful for

future industrial or academic works. We summarize them below:

• The efficiency of multicore architectures can be significantly improved

by using different resource protection mechanisms and having knowledge

of the mechanisms used for each resource when making task allocation

decisions.

• Partitioned scheduling can be inefficient in mixed-criticality systems due

to their inherent nature (having different utilizations in different modes).

Semi-partitioned scheduling can improve efficiency while keeping the de-

sired features of partitioned scheduling.
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• To achieve both efficiency and reliability, it is important to think about

reliability early in the design process. Scheduling Models, analysis tech-

niques, and design processes explicitly modelling fault-tolerance can help

in this regard.

• On-demand redundancy can have significant advantages in a mixed-

criticality context. Achieving efficiency in MCS requires flexibility which

can be provided by ODR.

7.3 Future Work

The research presented in this thesis can be further developed to increase its

applicability to embedded designs. Possible future research directions include:

7.3.1 Resource-sharing multicore mixed-criticality systems

In Chapter 3, we studied task allocation in resource sharing multicore sys-

tems. Resource locking was managed using the Multiprocessor Priority Ceiling

Protocol (MPCP) and the Multiprocessor Stack resource Policy (MSRP). For

resource-sharing MCS, a different approach based on resource servers is pro-

posed in [44]. While this approach has strong guarantees for isolation, it can

be costly. It is worthwhile to investigate whether MPCP or MSRP is appli-

cable in a mixed-criticality context and whether changes are needed to these

protocols to suit an MCS context. An important issue would be providing

isolation with MPCP/MSRP. Furthermore, the issue of resource-aware task

allocation will need to be re-investigated.
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7.3.2 Platform variations

In this thesis, we focused on single core and homogeneous multicore plat-

forms. Experiments were often conducted on systems composed of 1-8 cores.

It would be interesting to investigate how the proposed algorithms would scale

to 16-32 cores, or to many core platforms. Another interesting dimension to

these problems is the consideration of heterogeneous platforms where different

cores have different capabilities and/or different speeds.

7.3.3 Considering multiple viewpoints

In industrial standards such as AUTOSAR, and ARINC 653, schedulability

needs to be considered together with multiple viewpoints. Each viewpoint

comes with own sets of constraints. It would be interesting to investigate

how models and design approaches proposed in this thesis can be adapted to

consider multiple viewpoints.

7.3.4 Considering and quantifying migration overheads

A common simplification made in many real-time studies is neglecting real

system overheads such as migration overheads. A migration occurs when a task

is moved at runtime from one core to another often requiring some processing

time. Future work can focus on methods for quantifying migration overheads in

real-time systems. The DPM approach in Chapter 4 and the permanent fault

tolerant MCS design approach (Sections 5.8 - 5.12) can then make use of the

calculated overheads. These works can be extended to model a non-negligible

impact of migrations on the model and the design approaches.
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7.3.5 MCS under multiple processor failure

In Chapter 5, we proposed a design approach for MCS that can tolerate

the failure of one processor. Designers might need to design systems that

tolerate the failure of multiple processors to satisfy more stringent reliability

requirements. The analysis and DSE approach could be extended to cover the

failure of any number of processors. Moreover, a scalable but efficient heuristic

can be developed for DSE in large systems where an MILP solution might not

be feasible.

7.3.6 A holistic fault-tolerant MCS model

A robust MCS design should be tolerant to any type of faults. It would

be worthwhile to investigate whether a holistic model that combines both

transient and permanent faults in addition to certification would be relevant

or whether it would be too complex for practical use.
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