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Abstract

In this dissertation, we consider some classical problems in source coding theory in general
and image sequence coding in particular. Shannon rate-distortion-function (RDI) provides
the unbeatable lower bound for a source coder’s performance with an arbitrary complexity.
In theory, for most cases of interest, the RDF is only achievable in the limit of infinite delay.
Practical communication systems impose constraints on the maximum coding delay and
complexity. Hence the objective of source coding is to achieve performance closest to the
RDF bound for a given delay and complexity. The fact that real-world input sources are
usually nonstationary 2.d have memory may make the achievement of the above objective
more difficult.

Vector quantization (VQ) is known to provide performance close to the RDF, given
sufficient delay and complexity. Such high VQ performance can become available through
the entropy constraint VQ (EC-VQ) strategy. To overcome the prodlem of impractical
delay and complexity of EC-VQ, we propose a new EC design technique which combines
the merits of EC design with tiie benefits of recursive and adaptive VQ. For historical
reasons, we will refer to this new scheme as EC code-excited linear predictive (EC-CELP)
quantization and will demonstrate that it has an excellent potential in accomplishing the
aforementioned source coding objective. In comparison with other schemes, it achieves the
closest performance to the rate-distortion bound for a given VQ dimension (delay) and with
a relatively low complexity. To quantify the EC-CELP’s superior performance we provide
new analysis for various EC quantizers which also includes the effects of quantization noise
at low bitrates. New formulations for the maximum available entropy-coded quantization
gains are developed which incorporate rate-distortion theoretic limitations at low bitrates.

In the video coding portion of this thesis we propose a recursive and mulli-frame



video coding system using EC-CELP quantization in the temporal domain. This new
video coding configuration is designed to overcome the performance limitations of the
commonly used differential pulse code modulation (DPCM) temporal video coding. lts
recursive nature sets this new technique apart among other recent non-recursive multi-
frame techniques which can not provide similar high temporal video compression with
minimal delay (few frames). A suitable motion estimation and coding configuration is
also suggested. Within the scope of this thesis, some of the problems and issues pertinent
to the proposed coding system are addressed. Significant bitrate reduction can be obtained

by using the proposed temporal quantizer over the conventional scheme.
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Résumé

Titre de thése: “Quantification vectorielle récursive avec contrainte d'entropic

et application au codage de séquences d’images”™

Dans cette these, nous considérons des problemes classiques de la théoric du codage de
source en genéral et de ses applications au codage de séquences dimages en particulier. La
courbe débit distorsion (“RDF”) de Shannon fournit la limite supéricure des performances
d’un codeur de source de complexité arbitraire. En théoric, cette *RDF™ ne pent étre
réalisée qu'a la condition d’un retard infini. En pratique, les systémes de communication
imposent des limites a la complexité et aun retard. L’objectif du codage de source est done
de s’approcher au plus prés de la “RDF” au sens débit-distorsion, pour une complexité et
un retard donnés. Cet objectil est rendu d’aatant plus difficile qu’en pratique les sources
sont généralement non stationnaires et & mémoire.

La quantification vectorielle (“3'Q") fournit des performances proches de la “RDF”,
avec le retard et la complexité idoines. De telles performances peuvent étre atteintes en
utilisant une méthode de “VQ" contrainte en entropie (“EC-VQ"). Pour surmonter les
problémes de retards et de complexité, nous proposvns dans cette thése une nouvelle tech-
rique de contrainte en entropie (“EC"): elle permet de bénéficier des avantages de ’EC
ainsi que de ceux de la quantification vectorielle récursive et adaptative. Pour des raisons
historiques, nous nommerons cette nouvelle méthode “EC code-excited linear predictive
(EC-CELF) quantization”, et nous montrerons qu’elle fournit une excellente réponse aux
probléemes du codage de source mentionnés auparavant. Par rapport a d’autres méthodes,
“EC-CELP™ atteint des performances plus proches de la limite fournie par la “RDF",

tout en gardant une complexité relativement faible. Pour estimer ces performances, nous

HH



fournissons une nouvelle technique d’analyse des quantificateurs & “EC™, qui tient compte
du bruit de quantification i bas débit, Ont également é1é développées de nouvelles formu-
lations du gain maximum qui peut étre atteint par quantification contrainte en entropie.
qui tient compte des limites théoriques au sens débit-distorsion i bas débit.,

Dans la partic de cette these concernant le codage vidéo, nous proposons un schéma de
codage récursif et multi-trame, qui utilise la méthode "EC-CELP™ de quantification dans
le domaine temporel, Ce nouveau schéma est étudié pour améliorer les performances de la
méthode classique “DPCMT. Sa nature récursive le distingue parmi les nouvelles techniques
multi-trames non récursives qui ne peuvent offtir de taux édlevés de compression vidéo avec
un retard minimal {quelques tramas). Un algorithme d’estimation de mouvement associé
et également proposé, Comparé aux méthodes classiques, ce schéma permet une réduction

notable du débit.
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Chapter 1

Introduction

In today’s world, digital signals are almost always preferred over analog ones. Processing
flexibility, random access in storage, and higher signal-to-noise-ratio (SNR) for transmis-
sion are among the advantages of digital signal processing. The drawback is the increased
bandwidth or raw data rate of the signal. In the case of time-varying imagery, if a typical
television signal is simply digitized, it amounts to a raw data rate of approximately 188
Mbit/sec.! For the HDTV, the data rate may be around 1880 Mbit/sec.? High data
volume means high storage capacity in the case of storage and high bandwidth or channel
capacity in the case of transmission. As another example, for 2 4 MHz television signal,
sampied at 8 bit per sample, with the required Nyquist rate and a PSK modulation scheme
(1 Hz per 2 bits), the required bandwidth is increased by 8 fold (32 MHz). Signal com-
pression reduces the bandwidth cost for the digitized signal. The above examples of the
data volume, typical of time-varying imagary, show the essential role of signal compression
or source coding for transmission and storage of such signals.

One may think of availability of more capacity both in wideband channel technologies
such as fiber optics and high capacity storage media such as optical disks. Also one
may consider the lower resolution images which do not necessarily have a very high data

volume. This may make the high data volurne argument seem less convincing. The counter

! Assuming 512x512x30 pixel/sec.x8 bit/pixel x 3 color.
2For example using 1125x1125x60 pixel/sec. x8 bit/pixel x 3 color,



2 CHAPTER 1.

arguments which are not limited to video compression are as follows. First. the number
of possible multiplexed signals per channel or media is always a consideration. Second.
there are cases of channels and media with limited capacity. Radio and telephony channels
arc examples of such cases. These factors are particularly important in view of the fact
that wircless communication and wmultimedia are the important technology trends into
the next century. Hence the need for compression is not only as strong as ever, but has
become crucial for matching the supply with the explosion of the new demands. As it was
demonstrated by earlier examples, for high volume signals such as video this need is most
crucial,

A gencral digital communication system model is shown in Fig. 1.1, where encoder
and decoder are divided into source and channel encoder and decoder. The purpose of
the source cncoder is to represent the source output as a sequence of binary digits with a
fixed or variable number of bits per unit time for this representation. The role of channel
encoder and decoder is to make a reliable reproduction of this binary sequence at the
channel decoder output possible. The overall goal of the system is reliable and efficient
transmission of source output over the channel, while meeting practical considerations
such as end-to-end coding delay and coding complexity.

The objective of source coding is to achieve efficient signal representation by reinoving
the redundancies in the signal. Two important categories which characterize the nature
of source coding methods are lossy or source coding with fidelity criterion and lossless
or noiseless source coding. The latter is also referred to as entropy coding. Shannon’s
first and third coding theorems provided non-constructive description for optimum lossy
and lossless coding and bounds [103], [104]. Due to compression limitation of lossless
coding alone, we have to resort to the use of lossy coding.® Lossless coding exploits
redundancy due to nonuniformly distributed source symbols and it operates on discrete
alphabet sources. Since the output of a lossy quantizer is discrete, we may decrease the
work for the lossy coder and increase the efficiency of system (as seen later) by a direct

SMlmlusmdinguchniquuwpﬁeddkecdyhvenapmﬁdedthemﬁndhigbmmprﬁﬁm ratio.
For example, only compression of 3:1 is reported with a lossless open-loop DPCM followed by a lossless
coding [57] (also see [73]).
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Fig. 1.1 A communication system model.

combination of the two schemes in a sequential lossy+lossless configuration represented
in Fig. 1.2. This configuration has advantages over the alternative of lossy coder alone.
However, the variable nature of the output rate of most lossless coders (variable-length-
coding (VLC)) can have some adverse effects in the case of channels which cannot tolerate
such fluctuations. There are means to alleviate such adverse effects. As well there are
situations where such variations may be tolerated [25], [86].

In the system of Fig. 1.2, the signal input symbol® u(k) is analyzed and a set of
parameters s(k) is extracted.® This set of parameters is quantized and represented by the
vector £(k). The combination of analyzer and quantizer blocks may be called the lossy
encoder block. This means that if the inverse block of lossy decoder at the source decoder
was to reconstruct the signal block using i(k), the resulting error distance between® w(k)
and @'(k) would be the coding distortion or loss. The output of the lossy encoder is
encoded by the lossless encoder to obtain the bit stream ¢(k) which is transmitted over
the channel. In the absence of channel noise, the bit stream ¢’(k) received by the decoder

“Bald face represents vector signal and k is the time index for the vector.

A less general case does not include the analysis block. In that case we will denote the input and
reconstructed signals as a{k) and 3(k) respectively.

SUnless otherwise stated we will be using a squared error distance measure.
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Fig. 1.2 A source coding system combining lossy and lossless coding.

is identical to ¢(k). At the decoder, the lossy and lossless decoder blocks perform the
reverse operation of their encoder counterparts. Parameter set ¢'(k) is obtained from the
bit stream c'(k) and the signal &'(k) is reconstructed from #'(k). As seen later, it is possible
to combine the lossless and lossy coders in this source coding system and to design them

in a joint fashion. Since throughout this thesis we assume an error-free channel, hereafter
we may assume ¢(k) = ¢’(k) and (k) = #'(k).

1.1. Source coding techniques

For the general case of coding with fidelity criterion, Shannon provided a theoretical
performance bound called the rate-distortion bound. However he did not provide an
instrumentable methodgﬁ:r obtaining such performance. The ultimate goal of source coding
is providing means to accomplish a performance as close as possible to the rate-distortion
bound. Also there are always other practical constraints such as coding delay, complexity,
and robustness that have to be taken into consideration.
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Let us assume that the source coder uses a lossy+lossless configuration as in Fig, L2
Huffman coding, Run-Length coding, Arithmetic coding, and many adaptive schemes are
among lossless coding techniques. Many variations and combinations of such coders may
also be used [107]. Among lossless coders, the VLC uses o smaller length bit stream
for the highly probable input blocks, and vice versi. Hence lossless or entropy coding
removes redundancies corresponding to the nonuniformly distributed quantized output
t(k) in Fig. 1.2, This kind of coding gain is sometimes referred to as shaping gain. The
goal is to make the average bitrate as close to the entropy of the quantized symbols as

possible (hence the name entropy coding).

Predictive coding /PC), transform coding (TC). subband and wavelet coding. and
vector quantization (VQ) constitute the main lossy coding techniques. Adaptive variations
of the above techniques and a variety of their combinations can also be used. DPCM is
the simplest and most common (linear} PC scheme and is frequently used in the temporal
component of image sequence coding. PC belongs to a more general class of recursive
coders. Block coding or VQ coding advantages, with respect to scalar quantization (5SQ),
are rooted in Shannon’s original coding theories. The advantage is due to the conclusion
that coding of symbols grouped in vectors or blocks results in a better performance than
scalar coding or coding of single symbols [48], [41].

VQ can not only exploit the memory redundancy (memory gain) in the signals but
will also provide coding gains in the case of independent-identically-distributed {iid.)
sources. Additional coding gains can be categorized as dimensionality or space filling and
shaping. For the entropy coded configuration in Fig. 1.2, in the absence of shaping gain,
the additional gain is limited to space filling.

It is well known that VQ can achieve performance near the rate-distortion bound. How-
ever the required dimension (delay) and complexity, especially in the case of nonstationary
signals, makes direct VQ impractical. We will see later that using hybrid techriques with
VQ, one may alleviate this problem. Among other means to address this problem are
the classes of constrained and structured VQ. Structured VQ techniques such as lattice
VQ are more suited for high rates and cases where low delay is not of consideration. For
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low rates, hybrid techniques using structured VQ are more appropriate and have been
successful [72), [99).7

TC and transform VQ can be considered to belong to the class of constrained VQ
[41]. Among the most widely used source coding techniques for spatial image coding is
the TC method using the discrete cosine transform (DCT). For nonstationary signals,
adaptive techniques are devised. T'C achieves decorrelation and what is referred to as
energy compaction. Subband and wavelet coding are closely related to TC. Wavelet coding
which has recently become an active research topic, particularly in image coding, can be
advantageous due to its interesting properties. An inherent multi-resolution representation
of signal is one advantage. Another potential advantage of wavelet transform in the case
of image signals is due to its regularity properties, which can provide good approximations
to a diversity of signals with relatively small number of coefficients.

Advantages of VQ and other methods may be combired ir hybrid (combinatory) coding
configurations. Among hybrid techniques, combining the advantages of recursive and
adaptive VQ, is the scheme of code-excited-linear predictive (CELP) quantization {101].
CELP has been the most successful speech coding scheme in the past decade and has a
central role in this thesis. However, we emphasize that we use the name CELP both in its
generic speech coding sense and in a sense of recursive and adaptive VQ, which may be
considered as a good general coding method for nonstationary input sources with memory.

The performance of the source coder of choice also depends on other considerations
such as design method and bit allocation where it may be applicable (e.g. bit allocation in
subband and TC). There are two classical approaches for designing quantizers. One uses
the criterion of minimization of average distortion for a fixed number of quantizer output
alphabet. This type of design is referred to as alphabet size or resolution-constrained (RC).
Alternatively, the minimization may be subjecttoa constraint on the output entropy (con-
stant entropy). For the configuration of Fig. 1.2, which uses an entropy coder, the second
alternative of entropy-constrained (EC) design is known to be advantageous {26], [14]. EC
design as applied to the CELP quantizer (EC-CELP) is one of the key contributions of

TAlso see [23], [22] for lattice quantization, [70) for scalar VQ (fixed rate structured VQ), [62] for
alternative fixed-rate structured VQ, and [83] for Trellis coded quantization based on [106).
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this dissertation.

1.2. Video coling techniques

The spatial and temporal characteristics of vidco signals are very different. For the spatial
domain, consideration with regard to representation of image edges significantly cffects
the outcome of the spatial compression performance. Motion and its characteristics play
the key role in the temporal domain compression. In this introductory section we will
briefly describe the elements of the common video coding techniques. We will postpone
the detailed discussion of common video coders, of more advanced techniques, and a more
exhaustive survey of relevant publications in high-compression video coding until chapters
2 and 5. We will see that there is a plethora of rescarch works responding to the need for
high compression video coding.

In common video <oding techniques, the temporal and spatial redundancics are pro-
cessed independently (although theoretically this is not optimum). As mentioned, the
spatial redundancies are often removed using TC schemes. In particular DCT, provid-
ing an order of 50:1 compression for still images, has been the method of choice. Other
than energy compaction and decorrelation properties of the DCT, the existence of fast
algorithms has made the DCT popular. The success of the DPCM configuration, as the
method of choice in temporal redundancy removal in most practical video coder, is due to
its good performance and its relative simplicity. Combining spatial TC and DPCM results
in the hybrid DPCM-TC video coding, the most common video coding configuration.

Motion-compensated video coding uses the a priori knowledge of motion characteristics
to provide a significant gain. The assumption is that, regardless of motion, there is a
kigh correlation among image pixels in successive frames projected from the same scene
points. Motion-compensated coding is also almost always used in the DPCM-TC hybrid
video coder. For motion estimation, both block (block matching) and pixel-based (dense)
motion estimation can be used. Almost all practical video coders up to now have used block
matching for reasons of complexity. Once the motion-compensated residual (difference)
image in 2 DPCM corfiguration is obtained, it is fed into the spatial block transform



b CHAPTER 1.

quantizer. Before sending them to the channel encoder, both motion parameters and
quantized residual image are entropy encoded. Sometimes temporal redundancies are

further exploited with motion compensated interpolation.

The above common approaches in video coding and available compression ratios to
these methods have limitations. Use of spatial square blocks in spatial coders at higher
compression poses problems which manifests itself in “blockiness” of the reconstructed
image. Temporally, reduced-frame-rate video coding may save additional bits at the cost
of further degradation in quality. Higher performance compression is also obtained with
modifications such as subpixel motion accuracy to the common motion-compensated hy-
brid DPCM configuration {Appendix E of Ref. [52]). However to obtain the magnitude of
compressions required by the new video applications, the video research community has
already made the conclusion that departures from the assumptions, models, and quanti-
zation methods used in the common hybrid coders will be unavoidable. As an example
of the new directions in the spatial domain, the region-based approach has the potential
benefits of more efficient representation (modeling and compression) of stationary patches
(regions) in the still image [76]. Coding techniques such as the wavelet transform have the
promise of bringing the benefits of multi-resolution and better time-frequency resolution
through time-localization. Also there has been occasional departure from the two frame
differential idea of DPCM (entailing SQ in the temporal domain). But the benefits of such
multi-frame schemes had not been shown until quite recently [94].

The video coding aspect of this dissertation also falls into this group of recent research.
But it will be seen, while all of the schemes in this new group are non-recursive in nature,
the proposed scheme in this thesis being recursive has important advantages. The proposed
motion-compensated recursive video coding system is based on the temporal EC-CELP
quantization. To our knowledge, prior to this work, no other temporally recursive multi-
frame system has been suggested.
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1.3. Overview of thesis motivation and contributions

The domains of this thesis are source coding theory in general and viaeco coding in par-
ticular. Therefore the contributions of this dissertation are also twofold: 1- Design and
analysis of a new efficient high compression source coder, entropy-constrained code-excited
linear predictive {EC-CELP) quantization, 2- A new high-compression multi-friune recur-
sive video coding configuration based on EC-CELP. The first part can be further divided
into two parts. a— Design of EC-CELP and its special cases. b— Entropy-coded quanti-
zation theory at low rates and analysis of EC-CELP and its special cases.

As mentioned, the video coding aspect of the thesis is in the context of the current
strive for pushing the frontiers of the state of art video coding by providing better quality
coded video at lower rates (high-compression). In motivating this work, we first make the
observation that the limits of performance of DPCM in temporal video coding plays a key
role. We proceed by investigating such limits and a search for more efficient quantization
techniques. The input sources of interest are sources with memory in general and highly
correlated sources in particular (intensities along motion trajectories in video coding}. The
above search leads to the new scheme of EC-CELP quantization.

As an alternative to DPCM, the new scheme of EC-CELP, not only provides near
rate-distortion performance at low bitrates for highly correlated signals but also this is
achieved at low delay and relatively low complexity. To fully understand the reasons for
such high performance, various quantization theoretic aspects of EC-CELP scheme and
other alternatives is analyzed. As another contribution of this dissertation, rate-distortion
coding gains at low bit rates are defined and numerical results are obtained. Analytical
formulations for low bitrate coding gains of EC-CELP and other coders are derived.

To bring the benefits of the new efficient recursive coding technique to video coding,
we then propose a suitable video coding configuration and investigate the performance
gains over the conventional and other non-recursive alternatives.

Due to fundamentally different elements in this new video coding configuration, there
are many problems and issues to be resolved. Within the scope of the thesis, we suggest

methods for resolving some of the main problems. We provide some preliminary simulation
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results which show the feasibility and success of the proposed temporal EC-CELP motion-
compensated video coding configuration. The proposed temporal EC-CELP quantization
can be incorporated in an all new motion-compensated video coding system which uses
spatio-temporal EC-VQ-CELP quantization. The multi-frame recursive video coding is
still in its carly phases. Future work should provide a more complete evaluation and

comparison of alternative schemes by conducting further simulation of full coders.

1.4. Thesis organization

In chapter 2, we first provide a more formal description of the motivation and the context
of the dissertation. This chapter contains both background and a survey of other relevant
works for source and video coding aspects of the thesis. For reference, some basic frequently
used concepts and formulas are furnished. Throughout this chapter, the notation used in
the thesis is also established.

The next two chapters are devoted to the source coding aspect of the thesis. Chapter
3 contains the design of EC-CELP quantizer. It presents the EC-CELP within the more
general class of EC recursive and adaptive VQ. It also presents EC-CELP as a general
configuration whose special cases include EC-VQ, EC-DPCM, and EC-PVQ. Simulation
results for the performance evaluation of EC-CELP and other alternatives are also included
in this chapter. Chapter 4 contains the analysis of the various EC predictive quantizers
especially EC-CELP and its special cases. It also contains a new classification and formu-
lation for the available coding gains at low bitrate using the entropy-coded quantization
theory. Numerical results for the above analysis and classifications are also included in
this chapter.

Chapter 5 is devoted to the video coding aspect of the thesis. The new multi-frame
recursive video coding configuration based on EC-CELP quantization along with related
issues are presented in this chapter. It includes investigation of suitablie motion estimation
techniques and issues related to the reconstruction of decoded motion-compensated multi-
frame images. The summary and conclusions of the dissertation are presented in chapter
6. Some of the techniques developed in this dissertation have been reported in conferences
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or are to be submitted to journals for publication [30]. [32]. [31]. [33]. [35)]. [$1).%

5The work for this thesis and the first draft of this dissertation were compicted in December 1994.
. Minor modifications and corrections were made to produce this final draft.



Chapter 2

Coding Techniques for Sources

with Memory and Video

In this chapter background, notations, a detailed description of motivation, and a survey
of past works both for the source coding and the video coding aspects of the thesis are
presented. This chapter is meant to facilitate the prescntation of other chapters and
provide the reader with the tools utilized. In section 2.1, the information-theoretic source
coding bounds for input sources with and without memory are reviewed. It also contains
some relevant results on high-rate quantization gain classifications which will be used in
chapter 4. In section 2.2, a history of the EC design and coding is presented. This will
allow the reader to see the place of EC-CELP among other EC coders. In the last two
sections, a survey of high-compression video coding activities along with a review of image
characteristics and modeling are given. Material in Appendix A, summarizing some basics
of information theory concepts, is included for reference and completeness.

It will be seen later that the adaptive feature of the EC-CELP quantizer is one of its
important features. For the case of nonstationary input sources with memory (e.g. speech
[35]), this feature can be most beneficial. However, for the video coding application pro-
posed in this thesis the adaptive feature is less crucial. To make our studies tractable,
throughout this work we often deal with the reference stationary Gauss-Markov (GM)
source model. Also it is already mentioned that one feature of EC-CELP is its use of VQ.
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In the next paragraph, we use the stationary GM process to introduce the vector notation
used throughout the thesis, We use this occasion to demonstrate some useful notions of
memory, pertinent to vector representations. We will come back to these notions later in

the thesis.

For the discrete asymptotically stationary M-th order GM process, GM(M) {s(n}}52

n={*

with regression coefficients {a,, : m = 1,.... M}, we have

M
s(a) = ams(n—m)+w(n), n=12,..., (2.1)

m=l
where {w(n)}52, is the iid. (white) Gaussian innovation sequence. For simplicity of

examples and notation, we will mostly use the first order (M = 1) GM process!
s(n) =as(n—1}+w(n), n=12,..., (2.2)

where a is the regression coefficient and s(0) = 0 is assumed. We sometimes refer to a
highly correlated source. By this we mean a ranging from 0.95 to close to 1.0. Note that
from the source coding perspective, the memory entails redundancy (higher correlation
means higher redundancy). The GM(1), or Gaussian autoregressive process AR(1), can
be generated by passing the innovation process {w(n)}32, through the synthesis flter
(having the Z-transform ;—}z;). The first order prediction filter coefficient is obviously
the regression coefficient a. Due to block nature of the flow of signals in the coders

!The higher order cases directly extend. However due to block nature of the study, cases of N > M
and N <= M have to be considered separately (N is the block size). The inter+intra-block memory
. description remains valid for both cases.
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considered, an equivalent block (vector) representation for the source {s(k)}5z, is useful:

sy (k)
sp(k)

s(ky=1| where si(k) = s((k= )N +0) [=12,...,N:k=12.....
si(k)

| sn(k) |

Using the above notation, we can describe the following useful equivalent block represen-
tation for the equivalent GM(1) source {s(k)}2,:

s (k) sn(k— 1) w, (k)
s2(k) s1(k) wa(k)
stk _J0 RS

si(k) si-1(k) wy(k)

L sn(k) ] Lsvak) || wa(R)

inter-block memory intra.-BlocAk memoty innovation
[ a ] 0 -0 0] wm® 1 [ w@]
a? a --- 0 0 wolk wa(k

= sn(k~1) + (k) + 28) {2.3)
all | V1 ... a2 0 JLlena(®) | | wn(k) |
Szm Szsm

for k = 1,2,...where k = [florn = (k= 1)N+I with I = 1,...,N. In the later
discussions we will see that the identification of the inter+intra block memory and the
separation of the zero-state-response (ZSR) and zero-input-response (ZIR) of the synthesis
filter provides means for better comparative analysis of EC-CELP and its special cases. In
addition, separated 2SR and ZIR are commonly used in reducing the coding complexity
in CELP. Eqn. 2.3 demonstrates that for a simple synthesis filter 1=}y = 1=b=r and its
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current state at vector time instant & (filter memory front previous ZSR filtering- in this
case we have a scalar state sy (k — 1)). the A-th ZIR is generated by passing a zero vector
of dimension N through this given filter. It also demonstrates that k-th ZSR is generated
by setting the state (memory) of the synthesis filter (mlzﬂ') to zero and then passing the
k-th innovation vector w(k) through this zero-state filter. The resulting memory will be

used for the next ZIR filtering. We will give further details of ZIR and ZSR in section 3.

2.1. Information theoretic source coding bounds

Digital compression in general {but not necessarily) entails the introduction of some kind of
coding distortion. The fundamental goal is to achieve the minimum possible distortion for
a given coding rate, or equivalently, to achieve a given acceptable level of distortion with
the least possible coding rate. There are usually factors of maximum allowable encoding
delay and coding complexity constraining this goal. Furthermore the following practical
considerations are of importance and make the achievement of the above constrained
fundamental goal more difficult. First, practical source coding is usually at low bitrates
which entails the effects of high quantization noise. The second factor is that the real
world signals are rarely stationary.

The maximum achievable lossless compression 2 is set by the Shannon noiseless source
coding theorem. It states that for a given source with entropy® H, using a sufficiently com-
plex encoding scheme, it is possible to encode losslessly with an average bitrate arbitrarily

(€) close to H,
R = H+e. (2.4)

From the definition of entropy one can easily see that for a given discrete symbol set V;

(1 being the number of symbols) and the corresponding index set Z,

Vi={v'ie1}, T={1,2,....7},

Ratio of average bitrate of raw data B to average bitrate of encoded data R in bits per sample (bpw).
3For definition of entropy of other information notions see Appendix A.
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the uniformly distributed set has the highest entropy rate H .oem = logz I. As a result,
for Lthe nonuniform set there is an associated redundancy which is exploited by the lossless
coders. Lossless coding (variable rate) methods include Huffman, arithmetic, and Lempel-
Ziv coding [6], [107], [6). For applications which usually cannot accommodate variable rate
fluctuations, buffering is required. There is a tradeoff between the associated cost and delay
against performance [25], [86], [65]. We may describe the set of output prefix-free codes

C; and the corresponding lossless coding mapping I as

Cr={cie1}, (2.5)
[:Z-Cr (2.6)

According to the more general fundamental rate-distortion theory, when we are only
willing to spend an average bitrate less than H, we have to tolerate some average distortion
D. For a given source, there exists the theoretical performance bound of rate-distortion
function R(D) (RDF), which may be computed. R(D) sets the limit for coding efficiency,
in a sense that for a given D, no coding scheme can do better than the RDF limit,

R > R(D). (2.7)

For a sufficient delay and complexity and a given D, the average rate R can be made
arbitrarily close to R(D).

2.1.1. Theories for sources with memory

Eqn. 2.7 expresses the fundamental theoretical performance limit set by the R(D) bound.
For sources with memory, being more amenable to compression due to inherent statistical
dependencies, based on N-tuple (rather than N = 1 ir the memoryless case) source symbot
mapping and corresponding average mutual information, the useful notion of N-th order
rate-distortion function ¥R(D) is defined (see Eqn. A.33). For large N and stationary
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sources, ¥ R(D) approaches R(D).
= bm -V
R(D)= lim “R(D).

In practical non-recursive quantizers. ¥ R(D) is actually more meaningful than K1) (the
N-tuple dependency is directly available). Note that if the source is memoryless, the
rate Y R(D) is independent of N. As scen from the preceding discussions, for a source
{s(n)}32, with RDF R(D), we may unambiguously speak of corresponding memoryless
source {s"(n)}5%, with rate R*(D) (from here on subscript » indicates whiteness or lack

of memory) [108].

For the Gaussian sources, the N-th order RDF and its limit R(D} are known and are

given by the following equation pairs,

Yog, = 0< D<ol
R-(D)=max{o,%logz%}={=°“-* nEpEa
0 D> ok

D~(R) = 22Rg2,,

NR(¢) = § Ty max{0, 4 log, %
ND(¢) = & TiL1 min{o, M},

R(¢) = & [7, max{0,} log, ZL"Vyay
D(¢) = 3 J7, min{9, S,s(e)}du,

White

Correlated {

Correlated { (2.8)
where Ay is the k-th eigenvalue of the correlation matrix ¥ R,, of the process S with power
spectral density (PSD) function S,,(e/). More details about the derivation of the above
formulas are provided in Appendix A. The RDF results for the low bitrate region can be
computed parametrically by varying ¢ > 0. For GM(1) source with regression coefficient
a, 152 < ¢ < 1£2. The high rate or small distortion cases of Dy = ¢ < min{M\:} and
¢ < min,{S,.(¢™)}, simplifies to the special cases of

LA b N
COrrela.ted{ NR(D)=%]°32mmD'L=';‘I°Ez'DQ

ND(R) =273R NQ,
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R(D) = }log, B2
Correlated 4 VD) = 21082 75~ (2.9)
D(R) = y22—*Rg2,
NQ &| ¥R,, |'/N is the N-th order entropy power (| . | indicating determinant), and 42

is the spectral flatness measure (SFM) for the process {s(n)}2=5°. SFM is defined as

, oxP[3 37 log. Sunie)d] g2
T T Saleds o

(2.10)

with 0 € 42 € 1 and %? as the minimum prediction error variance. For white Gaussian
process for which S,,(e™) = 62, we get 72 = 1. Process non-whiteness (color}, quantified
by 2, represents its memory redundancy. The related factor of spectral redundancy (ideal
memory) gain is the inverse of the SFM, (12)™}. As an example, for the GM(1) 72 = 1=a?
[58], [7]-

Comparing the correlated source and white source expressions, it is easy to verify
the widely held belief that memory decreases the required bitrate when comparing two
sources with the same given variance. For the high rate region, it is easy to verify that
the RDF of GM(1) process S or {s(n)}32,, generated by innovation process {w(n)}2,, is
the same as the non-redundant innovation process RDF (since we have 202 = ¢2). Also
as seen next, the entropy and RDF of a source with memeory is bounded by the entropy
and RDF of related memoryless source. For GM(1) source, this can be demonstrated by
the fact that, the higher the correlation, the lower the entropy or RDF curve. Note that
for other sources, explicit formulations of RDF as for the GM(1) source are not available.
However using the numerical algorithm of Blahut [8], algorithmic estimation of RDF may

be obtained for many sources.

In [108], [46], [47], the following more general bounds for rate-distortion of sources with
memory are provided. These bounds generalize the above conclusions (sometimes even for
nonstationary sources). The above GM source case is a special case of these studies. The
proposed bound is

R"(D) = ARuewery (N} < YR(D) < R*(D), (2.11)
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where

; no L MAC) Ly
High rate: ARpemony(N) = ¥Elog Po(s) = h(S) - v h(S).

and where &(:) is the continuous or discrete entropy and E{-) is the expectation opetitor.
For stationary memoryless (independent) .N-dimensional vector, we have the following
definition for the distribution ¥ P, (s) = [, 'P(x). The limit of the above as N = o
(D Remory(29)) is also defined. For this limit-bound for some cases. incluading the GN (1)
source, equality hotds for lower bound (assuming high-resolution). For such case. the

following relation with SFM can be easily verified
. 1 "
: T » f— o 2
High rate: ‘\;:_’rnm Al qemery(N ) = 3 logy ;-

Note that for the GM(1) source (with memory) the associated memoryless source (*) is

the Gaussian memoryless source with the same variance.

A somewhat more general classification by Lookabaugh and Gray, formulated to quan-
tify VQ advantages, includes other coding gains [80]%. The overall gain of the N-dimensional
VQ over SQ, using the relationship of distortion due to repeated SQ over distortion
due to VQ, is denoted by A(N). In order to use the units of dB * we define A(N) =
10» 10810(3%(9&7)- The gain is subdivided to memory, space filling, and shaping. Assum-
ing squared-error distortior ® and units of dB for the RC quantization® we have

High rate RC: A{N) = Apcmory (V) + Assing (V) + Anapng (N)- (2.12)

Memory gaiu is directly related to the spectral memory gain, (v2)~!, defined earlier.
Lookabaugh and Gray used the Zador [110] equation for the expected distortion for the
N-dimensional VQ and the Gersho’s conjecture [40] for the coefficient of quantization for

*Also see the alternative classification of granular and overload distortion as summarized in [71).

5We will use the operator dB(-)=10  log,(-)-

SThroughout this work we use squared-error

7As mentioned in chapter 1, for the resolution-constrained (RC) quantizer design, the entropy coding
in Fig. 1.2 is not assumed.
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high rate VQ to show that the high rate RC and EC memory gain would be given by

N -
High rate RC: A,.mery(V)=dB (“ Py (3)|1N/(N+2)) .

| ¥ Pu(s)lnpiv )
High rate EC: A, ....,(N)=dB (22l”(“"°»-f8”-“f*‘”” (NP | (2.13)

where || f(@)|l, = (f f(x)*)"/“. For the Gaussian sources such as GM{M) source, the high
rate gain for both RC and EC is shown to be [80]
. a2
High rate Gaussian: AJier(N)=dB T"a-) . (2.14)
Comparing the above with Gaussian VRDF in Eqn. 2.9, the consistency of the above

with RDF results is seen. The high rate memory gain for the GM(1) process is shown in
Fig. 2.1.

Space filling gain is related to the dimensionality of VQ and is given by

Ausae(N) = dB (&C(—(%) , (2.15)

where C(N} is the coefficient of quantization, as defined by Zador [110). For high reso-
lution, Gersho [40] has conjectured that C(N) is determined by the optimum regular cell
(Voronoi) shape for VQ matched to a uniform probability function. Based or Polytope
N-dimensional centroid and volume, bounds and approximation for the filling gains of
dimension N are provided in [80]. They suggest the following useful bounds (the detail of
which can be found in [80]): the spherical bound (approximation based on a partitioning
of input space using spheres), the Conway and Sloane conjectured bound [15], the known
lattice lower bounds, and Zador lower bound. We reproduce these high rate bounds for
filing gain in Fig. 2.2 [80]. Comparing the maximum filling gain with memory gain in
Fig. 2.1, it is obvious that for the highly correlated GM(1) source, the memory gin is the
more significant of the two.

Finally, as mentioned in chapter 1, shaping gdin is related to the possible coding gain
due to non-uniformly distributed source symbols (entropy or lossless coding provides this



SECTION 2.1. 21

18

18- a=0.99 .
14pF

12r
§‘°' an0.95
§ 8 am(.9
$4

sk

2F a=0$

oF

S VYR R

Dimension N

Fig. 2.1 High rate memory gain (VQ advantage nver SQ) for GM(1) source with coedi-
cient a.

gain). For the EC system analysis we need not to be concerned with the shaping gain

(shown to be zero) due to the use of entropy coding. Hence we will have

High rate EC: A(N) = Apcmory (V) + Baning (V)- (2.16)

The rigorous analytic expressions for the above gains at high rates, although informa-
tive, are not suited for low bitrates. This is mainly due to the {imits induced by RDF
“water-filling” concept at low bitrates. Since the above categorizations are powerful tools
and extremely useful as coding performance reference, in chapter 4 we develop alternative
formulation for these gains at low bitrates. The formulation incorporates dependence on
bitrate as well as dimension N. Such low bitrate categorization provides a reliable reference

for low bitrate coding and 2 better understanding of the advantages of EC quantization
at low bitrates. "
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Fig. 2.2 Bounds on high rate VQ space filling advantage.
2.2. EC history from EC-SQ to EC—CELP

In this section, we present the history and context of EC-CELP and its elements. It
was mentioned in chapter 1 that to combine the benefits of lossless coding with the lossy
coder, one direct approach is to use a configuration in which the lossy coder (quantizer
whose output symbols are not usually uriformly distributed) is followed by the lossless
(entropy) coding to obtain a more compact signal representation to be transmitted over
the channel or storage medium. The formal definitions for the two classical quantizer

design alternatives can be given as follows.

Definition 2.1. In a quantizer design, if the criterion of minimization of average distor-
tion is for a fized size of quantizer output alphabet, the design and quantizer are referred
to as alphabet size or (rate) resolution-constrained (RC).

Definition 2.2. In a quantizer design, if the criterion of minimization of average distor-
tion is subject to the constraint that the entropy of the quantizer output alphabet be below
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a certain level, the design and quantizer is referred to as entropy-constrained (FC).

The EC class has certain well-known advantages [[-], [110), [26]. Various numerical
schemes for the EC zero memory SQ (EC-SQ) design have been reported. In particular
the EC-SQ design algorithms by Wood. Berger, and Farvardin and Modestino [26] are
available. The classical results of Gish and Pierce {44]. under mild conditions. show the
asymptotic optimality of the uniform EC-8Q at high rates. The performance gap with
R(D) was shown to be within 0.25 bps. Since then it has been proved that at low bitrates,
neither uniform quantizer optimality nor the 0.25 bps gap hold [26].

The necessary condition for the optimality of EC-SQ algorithm for the general distor-
tion measure case is given in [26). Using the properties of EC quantizer and its relationship
with RC (Lloyd-Max) quantizer [41], the tedious EC-SQ design problem can be reduced to
a search among quantizers satisfying the necessary condition with an output entropy cqual
to a fixed level. The EC design algorithm which is a descent (Lagrangian) algorithm uses
the known fact that the average distortion of EC quantizer is a non-increasing function of
output entropy.

Other than zero-memory SQ, another important class of source coders, directly related
to the fundamental theories in information theory, is the class of delayed decision coders
(Tree, Trellis, and VQ). The Tree and Trellis quantization schemes can be considered as
special class of general VQ [41). Their merit is in providing coding gains (efficiency of rep-
resentation) for sources with memory as well as for memoryless sources (e.g. i.i.d. Gaussian
source). It was Shannon who showed that performance approaching the rate-distortion
theoretical limits is possible by quantization of blocks (VQ) of source symbols instead of
the individual! source symbols (SQ). To use a broader, more suitable terminology, we use
the N-dimensional general VQ which includes many VQ classes. Gersho and Gray [41]
have classified the general VQ to classes of constrained VQ (e.g. product VQ, multistage
or residual VQ, transform coding VQ), recursive VQ [63] (e.g. predictive VQ, finite-state
VQ), and adaptive VQ (e.g. gain adaptive VQ).

Chou et al. [14] made a Lagrangian extension of the EC-SQ algorithms to entropy-
constrained VQ (EC-VQ). The iterative descent minimization algorithm for EC-VQ has
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similarities to the Linde-Buzo-Gray (LBG) algorithm [78] and in the case of the memoryless
source is guaranteed to converge to a local minimum.

In the EC class of coders, if there were no constraint on the VQ dimension N and
codebook size I, the EC-VQ may be considered as the ultimate coding scheme. This
is due to Shannon source coding theories, that in effect says that for sufficiently large
N, there exists 2 VQ coding scheme with a codebook size J, which yields a rate that is
arbitrarily close to RDF. The high rate VQ memory and filling gain for EC-VQ were given
in Eqn. 2.16.

For sources with memory, the required delay (block size N) and complexity for VQ
can increase considerably and may not be practical. Means to address search complexity
have been provided at the cost of some degradation through the class of constrained VQ
[5] and structured VQ [41]. The delay requirements for satisfactory performance could still
be stringent. This is why recursive procedures of differential or predictive coding (PC)
such as DPCM are used in removing memory redundancies.

The numerical design algotithm of EC-SQ [26] or EC-VQ [14] set the path for the
design algorithms devised for EC-DPCM, EC block transform quantization (EC-BTQ)
[24], EC Trellis quantization (EC-TCQ) [28], [82], EC predictive Trellis quantization (EC-
PTCQ) [28], EC residual VQ (EC-RVQ) [68], EC predictive VQ (EC-PVQ) [64], and
in this thesis EC-CELP.® The results of EC-CELP formulated in this thesis were first
published in [32]. As well, the 2-dimensional (2-D) variations of these EC coders have
already been formulated for image coding. Examples of recent papers for 2-D EC coders
include 2-D EC-PVQ [87], 2-D EC subband coding (EC-SBC) [65], EC mean-gain-shape
VQ (EC-MGSVQ) [77), and EC frame-work for wavelet-based image coding [96]. Other
than video coding application in chapter 5, we have also studied speech coding application
of EC-CELP in [35] (extension to this thesis). Parts of the results of chapters 3 and 4,
devoted to EC-CELP design and analysis, are published in [32], [33], [34]).

Finally, we would [ike to motivate the EC-CELP work through looking at the EC-CELP
elements. As will be seen in detail in chapter 3, CELP uses PC and VQ. PC combined

*Many of these EC coders, appearing quite recently and sometimes in parallel, use the Lagrangian
approach of EC-VQ.
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with VQ belongs to the larger class of recursive VQ. Effective prediction of the signal in
the case of stationary or slowly time-varving signals (locally stationary) is possible. This
is done by the good estimation of predictor model parameters, In such cases, PC provides
higher memory gain than other alternatives, particularly the non-recursive schemes such
as TC [81], [58]. Other coding configurations which also use PC but cin be considered
as special case of CELP are DPCM and PVQ. Note that TC and other recursive schemes
such as RVQ belong to the constrained VQ class which are devised to deal with complexity
issues of VQ.

CELP also belongs to the class of adaptive VQ due to its analysis-by-synthesis feature
and other adaptive components. The closed-loop analysis-by-synthesis structure of CELP
easily lends itself to adaptation of memory removal procedure for the slowly time-varying
signal. In chapter 3, we describe the above elements in more detail. Among other things
we show that even for stationary signals, non-adaptive CELP has a PC memory advantage
over PVQ. For the nonstationary input signals, the advantages arc more eminent. We also
briefly discuss the low bitrate quantization noise effects. More rigorous analysis of such
effects are presented in chapter 4. In the absence of shaping gain due to entropy coding,
at low bitrates where the coding gains are scarce and interactive with quantization noise,
a joint coding configuration using VQ and EC design becomes preferable. This becomes
the motivation for the EC design in EC-CELP. In EC-CELP, the capabilities of VQ can be
concentrated on the space-filling gain and the remaining source and quantization memory
redundancies. The reasons for the more efficient near rate-distortion performance of EC-
CELP than the previous methods principally lie in the better joint memory/space-filling
gains in the presence of quantization noise feedback. High coding efficiency obtained is
both in the sense of rate-distortion and the imposed low delay (VQ dimension) and low
complexity constraints.

2.3. High compression video coding

For time-varying image sequence compression, classical and modern source coding theory
and the knowledge of the source characteristics and modeling are used. Various techniques
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have been suggested in removing the video signal temporal and spatial redundancies with
impressive results. Nevertheless, higher quality compression schemes operating at lower
bitrates are still in demand [54). As a result, there has been an intensified activity in video
communication rescarch particularly in this decade. Current and emerging technologies
and trends such as video telephony, multi-media, and wireless are the driving force behind
such demands. Video quality in different applications varies and ranges from large size
high quality HDTV to smaller size lower quality video telephony.

High compression video coding usually, but not necessarily, means very low bit rate
applications. Very low bitrate time-varying image sequence standards and initiatives such
as H.261 and MPEG-4 have been underway [88], [53], [56). [54], [69], [F4]. The H.261
standard (also referred to as Px64 where P is from 1 to 30) coders already produce good
low bitrate coders for ISDN telephony application. But for applications such as the basic
video telephony application?, considerable reseacch is still in progress. In particular, the
initiative under the name of MPEG-4, with target video bitrate of 4.8-64 Kbpsec, and
a time schedule between 1993 and 1998 has been very active. Table 2.1 summarizes the
format and parameters of some possible very low bitrate configurations {2, [54] '°. For
this thesis too, the target coder would be similar to the ones targeted by the MPEG-4,
with rates in the order of 10 Kbpsec. Such high-compression coders must produce high
quality coded video at low bitrates of less than one bit per source symbol (bps). Note
that for the case of MPEG-4 targets with rates above 4.8 Kbpsec., the bps is given in
Table 2.1. To make a meaningful interpretation of the bps, alternative configurations in
various coding schemes such as allocation of higher bps for reference frames (for which no
temporal redundancy exploitation is done) have to be taken into account.

The three industries of telecommunications, computer, and TV /film traditionally have
not had much interaction. Now an emerging intersection between these three industries
is the focus of MPEG-4 activity [55]. Such intersection entails mixed elements that have

*The channel is the basic twisted wire tclephone line with 3.3 KHZ bandwidth. The corresponding
current wodem rates over such channel and current speech coding technology allow for a video rate of
around 10 Kbpeee.

°Note that for our purposes, rates should always be compared for a given format. Alternatively, one
may consider down-sampling in format as part of rate reduction.
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format resolution raw rate | MPEG-4 rate | compression bpx
Mbpsec. Kbpsec,

QCIF || 176 x 144 x 30 x 8+ 9.1 G-i-16 142-569 0.056 -0.014
8AxT2IxI0x8x2
ATET || 128 % 112 x 10 x 8+ 1.3 4.8 269 0.013

2500 I2x2x10x8x2

Table 2.1 Examples of format, raw, and target MPEG-1 rates, and other parameters for
very low bitrate time-varying image sequence coders. Resolution parameters are B = Sbps
and spatio-temporal dimensions for luminance and color components. MPEG- target rate
is 4.8-64 Kbpsec.

historically belong to individual industries. This poses new challenges which include trends
such as interactive multi-media TV /film, multi-media in interactive computer, and finally
audio-visual wireless. A preferred multi-resolution video quality, has prompted research
to match this preference. Finally, if video communication is to become reality for the
wireless channels, the characteristics of wireless channels and required robustness have to
be taken into account.

In the next three subsections we look at the spatial and temporal video signal charac-
teristics from the perspective of video compression. More complex multi-frame modeling of
image sequence intensities along motion trajectories {MTs) is devised and the advantages
of such models over conventional methods are shown. The hybrid DPCM, the common
video coding configuration mentioned in chapter 1, is described. An overview of some of

the more advanced coding schemes provides the chronological context for the proposed
method of this work.

2.3.1. Image sequence characteristics and modeling

Let us assume that the video input to the source encoder is fully digital. Also without loss
of generality, let us focus on the predominant video information of luminance component!!
and assume a progressive scanning and sampling structure on a regular lattice grid [17],
[18]. In particular scanning format of QCIF in Table 2.1 can be used.

Let us denote z = (z,y) as the spatial coordinate of the image point. When explicit

1fom a luminance-chrominance color space video signal or a black and white video signal.
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dependence on time ¢ is needed, we will use (x(),¢) = (z(t),y(t).t). If the sampling

structure is represented by Az, we can use the discrete image sequence signal notation
9(3'3}»‘)» (I-yst) G Azt- (2.17)

For the QCIF luminance format Az = {(z..8): 0> 2 < 175,02 y € 143,t = 0,--}.
When only temporal notation is required. the spatial coordinates are eliminated and g(t)

notation is used. We also use

g(t) = {glz,thiz € Az} te€A, (2.18)

referring to a single image frame, with bold face indicating a vector.

The digital video signal g{=z,t) temporal ard spatial domains have different character-
istics. The coding configuration should take the difference and interaction between these
two domains into consideration. The important feature in spatial domain video signal is
the scene edges. In many traditional methods, square blocks of image are processed. As
a result at lower bitrates due to higher quantization noise, subjectively intolerable dis-
tortions commonly referred to as “blockiness™ will appear. Traditional methods, for the
sake of of simplicity, have not benefited from the more complex edge-based (region-based)
spatial modeling and coding methods. Region-based video compression schemes have re-
ceived most of the attention and focus of the recent research activities and obviously can
be extremely beneficial. However, since the main focus of the video coding aspect of this
thesis is the temporal domain, we will suffice to 2 brief review of the spatial methods
during the next sections. We do this to focus and provide a more detailed treatment of
the temporal domain video signal characteristics and modeling,.

In the case of temporal domain, the characteristics of the motion plays the important
role. Apparent motion in the image sequence is the result of either camera motion, motions
in the scene, or both. In video-phone applications, the camera is fixed and the apparent
motion (ordinarily low) is due to the person movements. In surveillance applications, most

of the apparent motion is due to camera movement (except during an “incident™), while
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in sports scenes both camera and scene movements may be highly active [19]. The camera
motion includes zooming, panning, and other motions. The objects in the scene may have
motion, described by translation, rotation and more complex deformation operators. le

make this more realistic. one should include light variations and the noise introduced by

the camera, sampling. etc.

MTs trace out the projection of scene points in the image plane during the time they
are visible in the image. The initial and final frames (¢; and #;) define the visible period and
correspond to the appearance and disappearance of the pixel point in the image sequence.
The initial and final points not only happen at the picture frame edges. but also take place
when a point is newly exposed or occluded [18]. Two examples of MTs are shown in Fig. 2.3,
Similar to the notation for the spatial coordinates of the image point = (z(t), y(¢}), the
trajectory coordinate in the 3-D zyt space is denoted by (z(t),y(1).f). The function
c(7;x,t) describes the 2-D trajectory or the spatial coordinate at time T of an image
point which was at location x at time ¢t. The 3-D trajectory (e(m; =, t), 7) = (2(7),y(7),T)
has a unique mapping to the above 2-D function and is defined during the time of visibility

in the image sequence. It provides the spatial location of an image point at time T.

The intensities along MTs which are highly correlated can be modeled as a stationary
GM(1) process with 0.95 < a < 1.0.

Motion compensated coding (along the MTs) is an efficient technique in removing
temporal redundancies in image sequence coding. Many qualitative (e.g. [53]) and some
quantitative arguments [88], [43] have been made to support motion-compensated coding
advantage over the alternative. Preferably MT estimation has to be incorporated into the
coding scheme or use a measure of rate-distortion (objective or subjective} performance
criteria. The idea behind the advantage of motion-compensated coding is that in an ideal
situation, given MT parameters, only the MT information and the initial frame need to
be coded. The idealization includes simple motion transformations, robust and accurate
motion parameter estimation, and low information content of MT parameters. In reality
above assumptions are violated and hence there would be residual motion-compensated

inlensity to be quantized and transmitted. As well, the required bitrate for transmission of
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Fig. 2.3 Two motion trajectories are shown. One trajectory lasts from the initial time
t; to the final time ¢;, the period during which the point is visible in the picture frame

sequence. The second trajectory from ¢'; to 'y traces out a newly exposed point up to the
time when it is occluded.

motion parameters can be substantial. It is obvious that the total average bitrate not only
includes the bitrate allocated for the coding of intensities but also the side information

allocated for the motion parameters

R = Riensiy + Runction s (2.19)

As seen from the above, there could be situations where the motion-compensated coding
is not advantageous. Such situations arrive when the Ry qon parameters €Xceeds the saving in
the bitrate due to motion-compensated coding.

As was pointed out in reviewing source coding principles in section 2.1.1, 2 highly ran-
dom source is more difficult t- code than a source with memory. The poor MT estimation
may induce random noisé_which would waste parts of the precious available bitrate. The
tradeoff between overhead MT information rate and saving in bitrate as a result of motion-
compensation (Eqn. 2.19) is an important consideration which needs future investigation.
For simplicity, in this work the MT estimation and coding are separate and not jointly
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done as suggested above. Further description of MTs and MT estimation is presented in

chapter 3.

2.3.2. Conventional techniques

The motion-compensated hybrid DPCM configuration video coding has remained popular
in recent standardization (H.261 and MPEG-1/2) and rescarch activities. Even among
many emerging MPEG-4 coders, underlying assumptions beyond this configuration are
kept and some elements of hybrid DPCM configuration are used without major modifi-
cation. The basic block diagram of this configuration is shown in Fig. 2.4, To show the
advantages and limitations of this configuration, we now briefly describe coding clements
and basic assumptions leading to such techniques.

Without considerations with respect to the important spatial feature, namely cdges,
this configuration uses a simple block-based TC to remove spatial correlations. The choice
of TC method to remove spatial redundancies is often DCT. At least at higher rates
(low quantization noise) good quality coding at low computational costs are produced.
DCT belongs to a more general class of unitary transforms. Unitary transformations
represent the signal vector in terms of a discrete set of basis functions. The signal vector
is only rotated and hence energy is conserved. This is without any loss of information
(conservation of entropy). The two most important characteristics of the transformed
signal is energy compaction and decorrelation. The tendency of packing a relatively large
fraction of the average signal energy into relatively few components is what is referred L0 as
energy compaction. Fine quantization of high energy components and coarser quantization
of low energy components results in an efficient use of the available bitrate (assuming
proper bit allocation) and a better distribution of distortion. The decorrelation property
means that the off-diagonal elements of the covariance matrix of the transformed signal
are relatively small and hence the signal is almost decorrelated. In the Karhunen-Loeve
optimum transform (KLT) (optimum in 2 mean-squared sense), the maximum average
energy is packed in a given number of coefficients and the signal is completely decorrelated.
The choice of TC not only depends on the above considerations, but also on the availability
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Fig. 2.4 Motion compensated DPCM configuration coder.

of fast algorithms [57], [58]. In hybrid DPCM-TC coding of Fig. 2.4, a VLC lossless coding
follows the spatial DCT transformation and quantization. In the temporal domain, the
common hybrid configuration incorporates the motion redundancies by using a motion
compensated DPCM scheme. However, it assumes a relatively simple motion characteristic
and modeling. Spatial blocks of image along the direction of motion for two neighboring
frames are matched. The motion estimation of choice hence is the well known block
matching, possibly using one of the existing fast algorithms [98], [79]. The fact that both
spatial coder and motion estimation are block-based, makes the signal processing less

complex.

The motion estimation block in Fig. 2.4, produces the description of motion vector
displacement fields from frame to frame (special simple case of MTs described earlier).
The displacement field description is used to obtain the motion-compensated neighboring
frame in the predictor of the DPCM coder. The estimation could be either based on
the reconstructed signal or, as often is the case, on the original signal. To make the

motion information available at the decoder, losslessly encoded motion parameters are
also transmitted.
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In MPEG-2, in addition to PC (DPCAl). inter-frame interpolation is used to further
increase the temporal domain compression. The lossless coding techniques of Run-Length
and Huffman coding are normally applied.

Using the QCIF format and the hybrid DPCM configuration. a H.261-like coder can
only produce acceptable quality at minimum bitrate of around 90 Kbpsee, As one example
of lower bitrate video coding using the hybrid coding configuration of Fig. 2.1, the AT& 1™
2500 video-phone obtained reasonable quality but with substantial spatial-temporal res.
olution reduction [21] (Table 2.1). To obtain higher quality with acceptable resolution
and without fundamental changes in the coding configuration, attempts in reducing the
bitrate, by say one order of magnitude or more, have produced mixed results. Henee, as
MPEG-4 study suggests, substantial innovations and higher quality advanced techniques

are required to produce high quality video coding at very low bitrate.

2.3.3. Advanced techniques

Most of the conventional methods assume medium to high rate, and hence the effective-
ness of these schemes at very low bitrates has to be reexamined. Until recently, image
sequence models have been kept simple to comply with the practical constraints imposed
by the available technology. Alternative schemes would emerge from a closer study of
the temporal and spatial video source characteristics and more complex models. As well,
better low bitrate source coding schemes and configurations have to be designed to match
such models. The results of many new image coding techniques have appeared in publica-
tions during the course of this work. In this introductory section we include references to
some of the more relevant works.}? Such intense research activity also demonstrates the
importance of much needed advanced techniques.

Most of the more recent attempts in providing higher compression have focused on
spatial domain modeling and compression techniques. As part of the current MPEG-4
and other low rate coders, new directions of morphology, fractals, model based (regional)
spatial coding, and alternative spatial source coders such as VQ, subband, and wavelet

12Most of the research work referenced appeared before the completion of the thesis work and first draft
in Decernber 1994. In this final draft some later references were also added.
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coding are considered [76] [85). Multi-resolution modeling and description have been
particularly popular in many of these recent techniques.

Among cfforts in reexamining the temporal domain aspects, there has been some suc-
cess in improving usage of motion cffects [52], [76]). Better motion estimation techniques
arc devised to increase motion accuracy and to match other components of the new con-
figurations [102].

Although many of the recent new video coding configurations still use the tempo-
ral DPCM coding component of the conventional configuration, its efficiency for higher
compression coding has to be questioned. The departure from the scalar nature of tem-
poral DPCM coding leads to multi-frame video signal modeling and coding. Although
multi-frame video coding has been around for some time, its practical use involving con-
siderations with regard to the choice of models and suitable motion compensation and
coding techniques are fairly recent research topics. When using multi-frame configura-
tions, it should be noted that we are also constrained by the maximum delay requirements
{100-150 msec.). This kind of delay is typical of the ones imposed in most low bitrate
situations [56] [74]. Also note that in the conventional schemes, to exploit redundancies
beyond two frames, of course one alternative already in use is the use of interpolation
[53].1%

Non-recursive multi-frame coding. Although 3-D spatio-temporal video coding
was suggerted as early as 1977, its success and popularity has been limited until recently.
This is due to the less than acceptable tradeoff offered between complexity and quality

-and also the available computing power. New focus of the more recent 3-D video coders

has been on the non-recursive techniques such as 3-D subband coding [11], [97], [94]. Some
of these techniques also include motion compensation. Among other suggested variations
to the conventional configurations is the use of VQ [11], [72]. -

Recursive multi-frame coding. Non-recursive (e.g. TC, VQ, subband) multi-frame
video coding has certain disadvantages. These disadvantages are due to the fact that the
temporal domain signal is highly correlated. For such signals, high-compression using non-

A8 an example of the new image sequence modeling using the multi-frames see [9].
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recursive coding requires long delays (number of frames). From the high rate memory gain
results in Fig. 2.1, one may conctude that to obtain good meriory gain, the required size
for the non-recursive temporal block will be more than ten frames, The proposed scheme
in this thesis which is based on EC-CELP falls into the alternative approach of mulli-
frame recursive temporal coding. To our knowledge, there has not been other video coding
schemes which suggest the use of such approach. The motivation for such an approach can
be best expressed by the above mentioned impractical delay requirement of multi-fraune
non-recursive schemes and by the study of expected saturation of the DPCM (single frame
recursive) alternative at low bitrates. At very low bitrates, the rate-distortion performance
of DPCM operating on the highly correlated GM model degenerates substantially. Later
in this thesis, we will examine the exact limitations of DPCM coding for such correlated
sources. To deal with this problem, we first propose improviag the performance of the
scalar DPCM configuration by adopting an EC-DPCM design strategy (scalar EC-CELP).
Next, we may further improve the coding performance by increasing the number of frames
(multi-frame EC-CELP coding).

To obtain higher video compression, in addition to the proposed new temporal domain
schemes in this thesis, as suggested by the MPEG-4 studies and the spatio-temporal
system in chapter 5, the spatial coding efficiency of the conventional configuration has to
be reexamined [534]. As well, the utilization of higher performance lossless coduers such as
Arithmetic coding raay be beneficial. In our coding configuration, we will use the higher
quality dense motion compensation. However as mentioned earlier, the tradeoffs of motion
and intensity information, refiected in Eqn. 2.1% needs future examination. As well, more

efficient representation of motion parameters will be beneficial (e.g. [90]).



Chapter 3

Entropy-Constrained
Code-Excited Linear Predictive

(EC-CELP) Quantization

3.1. Introduction

As a classical source coding task, it is desirable to obtain high quality low bitrate quan-
tization of (nonstationary) sources with memory while meeting practical constraints of
low delay and complexity. The criteria in the above task are in a sense contradictory.
For example, Shannon source coding theories suggest that, given sufficiently long delay
(dimension) and complexity, block quantization or VQ (EC and RC) can provide perfor-
mance near the rate-distortion. Practical source coders hence search for a tradeoff point
and in effect attempt to deliver the best performance for some practical delay and com-
plexity. Two important considerations which determine the outcome of this quest are the
choice of coding configuration and the method of quantizer design. The new method of
EC-CELP quantization, introduced in this chapter, offers excellent results with regard to
the aforementioned tradeoff. In fact, as will be seen in chapter 4, among a certain group
of quantizers and for the GM source, it has the best pof.ential. As mentioned above, the
choice of coding configuration, namely entropy-coded CELP and the method of EC design
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are the key considerations which make this possible.

EC-SQ is the simplest and the earliest EC quantization scheme and its advantages
at high rates and for memoryless sources are well known, There are also a variety of
algorithms for the design of this EC zero-memory quantizer [26] (section 2.2). For the
more practical cases of sources with memory and low bitrates, both EC-DPCM [27] and
EC-VQ [14] have been suggested. For the stationary GM(1) source, the advantage of
EC-DPCM is its single symbol delay, a consequence of SQ. The recursive nature or use
of PC in EC-DPCM results in efficient memory removal performance. However EC-VQ
can deliver an overall higher performance provided sufficient delay. thanks to the filling
and memory advantages of VQ. To combine the advantages of VQ and recumsive schemes,
EC-CELP is an excellent general method of choice and as will be scen. it has advantages

over its special cases EC-PVQ [87], [64] and EC-DPCM [27].

Similar to other EC coders, EC-CELP suffers from problems associated with variable
length code (VLC) transmission over fixed channels. Buffer overflow, underflow, and
delay as well as performance degradation in the presence of channel errors are among such
problems. However, in dealing with such draw-backs, it is expected that, through similar
techniques used for other EC schemes {e.g. [87]), the resulting degradations can be dealt
with and minimized. Better analysis of these issues for the EC-CELP will be the subject
of future research.

Temporal video coding is the focus application of this dissertatior, where a highly
correlated GM(1) source models the intensities along motion trajectories (chapter 5). Due
to its formulation, EC-CELP can also be particularly beneficial for nonstationary signals
such as speech [35}.

In this chapter, unless otherwise indicated, a lossy<+lossless coding configuration, in-
kerent to EC quantizers, is assumed. In section 3.2, we introduce the lossy CELP coder
as part of the more general class of adaptive and recursive VQ. At the same time, CELP
is presented in a fashion that will include two other important practical recursive coders,
namely PVQ and DPCM, as special cases. Advantages of CELP due to the choice and
configuration of its main componeats, PC, VQ, and analysis-by-synthesis are explained.
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In section 3.3, the EC design algorithm of EC-CELP along with its special cases is pre-
sented. The EC-CELP design algorithm can also furnish new. good. and compact design
algorithms for its special cases of adaptive EC-DPCM and EC-PVQ with advantages over
proviously published algorithms. Section 3.4 contains the simulation results and the con-
cluding remarks. Previous EC work and advantages of EC-CELP over these schemes are
given during the chapter presentation. Section 2.2 which already surveyed previous EC
quantizers and the history of EC quantization should be consulted for additional refer-

chces,

3.2. Entropy-coded CELP, adaptability and memory gain

CELP has undoubtedly been the most successful speech coding configuration in the last
decade [101], [13]. Recently 2-D CELP was also applied to image coding [91], [50], [1]. In
[90], a video coding application of CELP for coding the motion information is investigated.
As was mentioned in section 3.1, we may emphasize the nature of CELP by calling it an
(adaptive) analysis-by-synthesis PVQ or by referring to its class as recursive and adaptive
vQ.

The purpose of this section is to compare the minimum delay {measured in terms
of signal dimension N} memory gain and signal adaptation characteristics of the CELP
configuration with other alternatives which use PC (recursive) and TC (constrained) VQ
for memory redundancy removal. First we present the CELP configuration as a general
scheme in a fashion that easily shows that DPCM and PVQ are special cases of CELP. This
representation alone can give an intuitive and general characterization for the minimum
delay memory gain advantage of CELP over the special cases as well as the constrained
VQ alternatives. The robust adaptation characteristics of CELP are also discussed. We
will use the GM(1) source in Eqn. 2.3 as the example source. To support the intuitive
conclusions, we present the simulation results for the rate-distortion performance of the
entropy coded CELP coder without EC design (first published in [30]). EC consideration
and advantage will be considered in the following sections. A more detailed analytical
analysis is postponed to chapter 4.
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The CELP coder clements and features can be summarized as follows:
o implicit use of analysis-by-synthesis PC (inter-vector and intra-vector PCY,
o implicit use of VQ,
o closed-loop analysis-by-synthesis configuration,
o (optional) far-sample prediction filter (used for pitch in speech),
o {optional) adaptation of prediction filter (backward or forward),
o (optional) gain scaling and adaptation, and
o (optional) perceptual weighting (noise-shaping).

In this work we include the features which relate to the coding theory perspective for
sources with memory. In the above list of features, one consequence of closed-loop config-
uration is in the sense of PC being based on reconstructed signal rather than unquantized
signal (asin classical DPCM versus D*PCM [58]). Sometimes, the terms closed-loop search
and analysis-by-synthesis are used interchangeably. Analysis-by-synthesis or the so called
trial-and-error approach means that the (usually) exhaustive search through the excitation
codebook uses a copy of the decoder at the encoder. It is also the analysis-by-synthesis
which allows for intra-vector PC.

In [63], [41], the closed-loop or feedback PC is presented in a larger class of recursive
coders. Such a general class of recursive VQ can be depicted as in Fig. 3.1.! We will be
presenting CELP as 2 member of this class. Later we will see that in order to represent
and interpret the standard quantizer used by CELP in this general configuration, we would
have to use an effective quantizer. This is not the case for the DPCM or PVQ coders,
where the standard quantizer is a direct SQ or VQ. By a standard quantizer, we simply
mean a quantizer which maps from a well-defined or explicit inpﬁt. signal to an output
signal. From the source input process {s(k)}{2,, the encoder produces the output index
sequence (channel symbols or inputs to t.ht; entropy coder in case of EC coders) {i(k)}52,

!Throughout this wock, an erroc-free channel is assumed.
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Fig. 3.1 Recursive VQ lossy encoder and decoder.

by means of a state sequence {f(k}}52,. States describe the lossy encoder behavior. The
decoder produces the reproduction output sequence {S(k}}32, moving through the same
\tate sequence as the encoder {f(k)}i2,, provided common initial state and state transition
function as the encoder. The state of encoder and decoder at each time is determined from
the previous state and previous index output.

Let us assume that the input process values are in the set § and the states arein a
certain metric space . As well, the state transition function f, the lossy encoder mapping
@, and lossy decoder output mappings 3 are defined as?

s(k)es, f(k)e® keI (3.1)
a:SxQ27, B:Ix0—=S, (3.2)
[:IxQ-29. (3.3)
Additionally we describe the equivalent recursive encodex_-;nd decoder mappings
P = (o, f), (3.4)
¥ = (8, f). (3.5)

2See chapter 2 for clementary source coding notations used bere.
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In other words. operations by the state transition, encoder, and decoder for cach time

instant can be described by

[k + 1) = f (k) f(R)). (3.6
i(k) = a(s(k). (k) = &y (s(F)). (3.7)
3(k) = (IR J(R) = Wy ((R)) k= L2, (1.8)

Assuming the encoder and decoder are both in state [, the so called state codebook alphabet

of state f. a collection of state-dependent outputs, is defined by
Ap = {W,(i): all i € T}, (3.9)

This allows the definition of the required recursive V@Q nearest neighbor or minimum dis-

tortion property for a given state f3

or(s) = a.rgr.pei{_tp(s, W;(i)), or cquivalently, (3.10)
p{s, ¥ (Ps(s)})) = minp(s,3), (3.11)
ScA;

where p is the distortion measure (in this case squared-error). As mentioned carlier,
the analysis-by-synthesis configuration does not allow as to specify a quantizer (VQ) in
the conventional sense. However, the quantizer may be seen in the following conceptual
(effective) analysis-by-synthesis fashion. It is possible to show that an input to this VQ
exists in the analysis-by-synthesis sense. As an analogy to DPCM and PVQ cases, we will
use {d(k)}2, for the “difference” input signal to the quantizer. The N dimensional VQ
is defined as the mapping from D (subset of the N-dimensional Euclidean space for which
we have d(k) € D C RV) to a finite set of reconstruction codevectors in codebook V;.

*In general we will use the subscript of metric space © to indicate dependence on state or the recunive
nature of the coder. Other times for the encoder/decoder operations where being in a particular state is
meant, we will use subscript f or f(k).
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Fig. 3.2 Entropy-coded CELP and EC-CELP encoder and decoder block diagram

The quantization can be decomposed to encoder '5' and decoder da'

C:D=7, and $:T-V;, where (3.12)
k) =0 (d(k)) and d(k)=0 (i(k) k=1,2,..., (3.13)

where the codebook is defined as Vr = {v\);i € I}, T = {1,2,...,]} and we also have
{9 € RV :i ¢ I}. The partition cell (Voronoi cell) associated with every i €Z is

RO ={deD:Q (d) =i} (3.14)

so that the cells partition D or RY,

Prior to more detailed description of the CELP and its special cases let us provide
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some related definitions for the prediction and synthesis filters used. The Z transform of
the A-th order predictor and corresponding synthesis filter (the inverse of the prediction

error filter, ﬁz—,) are defined as

M
P(2)=%" amZ™™, (3.15)

m=]
1 1

BT = 7o ez

e ]
=D hmZ™™. (3.16)
m=0
For the A-th time index (dependence on & indicates the adaptiveness of PC), we may also
define the following useful N x N lower triangular matrix H(k) with its special simple
case for the stationary GM(1) case (kh = a)

(hoe O

0
HE=| ™ 2 oM@ | Ao (3.17)

-0 o O

| An—1 An-z -+ ko | AN=1 pN=2

As seen in Eqn. 3.16, in the above {hg, h;,...An-1} are samples of the impulse response
of the synthesis filter l—_—ﬁw- The choice of 2 = 2 for the stationary GM(1) source, as
seen in chapter 4, is close to optimum for most cases of interest. Note that if the synthesis
filter 1—_,!-(2)- is driven by the signal {ji(n)}2,, the synthesis filter output {§(r)}%, can

be written as

- M
{n)= 3 hmi(n-m)=4§(n)+ 3 ams(n—m). (3.18)

m=0 m=1

Next we look at the detailed operation of the CELP coder as shown in Fig. 3.2.% In this
figure CELP is the lossy coder in a lossy+-lossless configuration. When the EC strategy is
not used, we refer to the coder as entropy-coded CELP. The use of the EC strategy results
in the EC-CELP quantization. The block diagram also represents CELP as the general
recursive VQ with its stat.s as ;he M synthesis filter states or memories. For the M-th-

‘Also see [35] for the more general EC-CELP which includes other components required for a speech
% ot _ N
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order synthesis filter as in Eqn. 3.18. the recursive VQ coder will have M states which
at time instant n are {§(n — m) : m = 1,2,..., M}, M previous reconstructed samples.
For M = 1, matched to the GM(1) source, there is a single state or expressed in vector

notation

J(k)=sn(k=-1).

The CELP cncoder uses an exhaustive search through the excitation signal codebook.
The search proceeds by passing each of the I excitation vectors from the codebook Vi
through the synthesis filter to obtain the candidates for the current input vector. The
synthesis filters ZIR and ZSR are separated to reduce the complexity® and to help analyze
the coders. In chapter 2 we provided the definition for ZIR and ZSR in the context of
GM(1) vector representation. One representation of ZIR and ZSR in the context of CELP
will be given later in Eqn. 3.24. The CELP encoder first generates the ZIR difference signal
dzsr(k) (which can also be called ZIR residual or ZIR error). Then each of the excitation
vector candidates a(i)(k) from the codebook (where &“’(k) is the same as codevector
v} ;i € T) is passed through the gain scaling unit and the zero-state synthesis filter.
The results are the ZSR candidates 3;"5)3&), t € I for the current input signal vector
s{k). We identify the winning excitation codevector as d" """ (k) = vl®)(k) € V. For
the block (vector) processing, suitable for CELP, the block ZIR Szin (k) can be viewed as
the output of the synthesis filter driven by the signal

{5(1)1 5(2)7 sesy g(k - 1)& 0},

where 0 zero vector has dimension N. Also the ZSR signal Sz (k) can be represented as

the synthesis filter output driven by the ihput signal

. {9,0.....0,5(8).

k=1

3See the discussion and formulation details later in this section, comparing equations 3.34 and 3.20.
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Then it is clear that the reconstructed signal can be written as
S(k) = 3z (k) + Sz (k).

where only ZSR depends on (k) or (%),

The output of the codebook search module is the winning index (&) which yickls
minimum cost. As will be seen later, this cost for the case of entropy-coded CELP is the
squared error and in the case of EC-CELP is the EC squared error. This index is seut®
to the lossless entropy coder.” In the configuration of Fig. 3.2, with or without EC, we
are interested in entropy-coded performance and hence the coders always includes entropy
coding. For a given entropy rate, to measure the coding performance. the normalized
average distortion D/oZ, or the signal-to-noise ratio defined as SNR = 10log,, % and
measured in dB is used. For index k, the resulting error and squared-error between the

input vector s(k) and the reconstructed vector $(k) are given by

e(k)=s(k) — 5(k), (3.19)
D(k)=lle(k)|I. (3-20)

3.2.1. Comparisons between CELP and its special cases

To better demonstrate the comparisons of CELP with DPCM and PVQ coders, we rewrite
3(k) as the summation of the separated ZIR and ZSR. As mentioned, the ZIR vector
szir(k) is the “ringing” from the previouely coded vectors and is fixed throughout the
search. The ZSR is the resuit of passing the gain scaled codebook entry through the
zero-state synthesis filter, spen(k) = si(s'g(k). It is obvious that throughout the search,
the ZSR will be different for each codevector entry index i € Z. Let us denote d(k) =
[B(6)E(K) . . .dn (k)]T = o) (£) € Vr to be the selected codebook entry at time vector

®In the case of fixed-rate coding, this index is directly sent over the channel.

TCELP coding may have alternative parameter configurations. Note that the forward adaptation al-
ternative requires transmission of puadietor parameters. We couiine ourselves to the backward adaptation
case which is more appropriate for low delay oEng [36], [47]. Extcnsions of the formulations for other
configurations should be straightforward.
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instant k. Using the definition of / (k) in Eqn. 3.17, we may rewrite $(k) as
3(k)=3un(k) + Szsr (k) = Sz (k) + a(k)H(k)&(k). (3.21)
We may also represent the error vector for the CELP by

(CELP) e(k)=s(k) = 3zn(k) ~ Szsn(k)
=dpp (k) - a(k)H (k)d(k). (3.22)

For the stationary GM(1) source we have g(k) = 1 and we may use h = a. We may

write the reconstructed vector as

am ] [swk-n] [ &@ ]
S(k) = 82(k) =h s1(k) + dz(k) ! (3.23)
L av®) | | ava® | | v

The separated of ZIR and ZSR in Eqn. 3.21 can be rewritten in detail as

int.er-bloclc memory int.ra-Bloch memory “innovation”
[ h ] 0 -0 o]fam] [aw]
h? h -« 0 0 da(k da(k
3(k) = Sw(k-1) + P
| AN | A1 ok 0 ] du(k) [ | dn(®) |
Som Sasm
- (324)

" Using the above representation for 3(k) and the representation of GM(1) input signal
s(k) in Eqn. 2.3, it is interesting to see that the ZIR difference vector dyy (k) includes
the filtered excitation signal quantization error. For the case of stationary GM(1) source,
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using h = a, we get

a ] [ wr(k) ]
a? awy (k) + walk)
dyr(k) = en(k=1)+ 1 ( . (3.25)
I ﬂN ] I :1—[ “N—iwl.{k) |

where the first term of the LHS is the filtered excitation signal quantization error, en(k=1).

At this point we use Fig. 3.2, and Eqn. 3.24 to compare CELP and its special cases.
Table 3.1 summarizes the comparison of basic features of CELP and other coders. Among
the recursive coders, DPCM and PVQ can be considered as special cases of CELP. Con-
sequently, in the above equations for CELP, the scalar case of N = 1 furnishes the DPCM
signal formulations. To obtain the PVQ formulas, we need to eliminate the intra-block
memory term from the above CELP formulas. As an example, by removing such term

from Eqn. 3.22 we get the following description for the error signal in PVQ

(PVQ) e(k)=s(k) = Sz (k) — a(k)d(k)
=dyg(k) — o(k)d(k). (3.26)

From the above we can also easily verify that codebook search in PVQ does not involve
analysis-by-synthesis. It is obvious that by combining more features, CELP is providing
better performance. This for example is reflected in the synthesis structure of signais in
CELP (Equations 3.23 and 3.24) which resembles the GM(1) input process in Eqn. 2.3.

This cannot be said about the PVQ case. As another example, since the ZIR differcnce -
signal represented in Eqn. 3.25 is actually the input to the quantizer (VQ) in the PVQ case, B

this input still contains intra-block innovation correlations, whereas the intra-block PC
feature of CELP attempts to remove such correlations. This allows for a more efficient use
and design of VQ in CELP. The consequence of such-efficient PC metory removal results
in overall improved efficiency of CELP over PVQ, particularly in the case of nonstationary
signals. The result can be a smaller dimension (delay) or codebook size (complexity) for

Ry
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the VQ. In chapter 4, we will provide a more detailed analysis of available memory gain
for various coders and we will consider the effects of low bitrates on the available memory
gain. It is obvious that the advantages of VQ, available to PVQ and CELP, are absent from
DPCM and SQ. At low bit-rates, as seen from the simulation results, these advantages
play an important role.

We may use the above presentation of PVQ as a special case of CELP to draw the
following analogy for the effective VQ for CELP. A comparison of equations 3.22 and
3.26 demonstrates the nature of analysis-by-synthesis VQ mapping in CELP. We then
can easily derive the CELP analysis-by-synthesis conceptual VQ mapping and make the

following comparison with the PVQ case. Assuming no gain scaling, we have

(CELP) ‘0 0 '0d(k) = dan(k) — (H - D)aA(kK) —> d(k) = v'®  (3.27)
(PVQ) G o Bid(k) = dan(k) — d(k) = v, (3.28;

where [ is the identity matrix. We will reuse the above comparison between CELP and

its special cases in other places later on.

Quantization (inter-vector) PC VQ intra-vector PC

SQ
DPCM Vv
vQ v
PVQ v v
CELP v v v

Table 3.1 A comparison of basic features of CELP versus other coders is shown. DPCM
and PVQ are also recursive and can be considered as special cases of CELP.

3.2.2. Search and codebook design

In this subsection we describe the search module in Fig. 3.2 and present the codebook
design procedure in more detail. The search > design procedures in this subsection are
the well known classical techniques for CELP. While ;r;enting these techniques for the
non-EC case and as the background material for the EC case, we provide some analysis
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which will also be relevant for the EC case (section 3.3).
At time instant k and fc. an input signal s(k) and given codebook Vp = {ol)ii €
I}, I = {1,2,...,1}, the search through the codebook for the codevector with the

minimum cost (squared-crror distortion D) results in the winning output index (&),

i(k)=arg ng}lot"!(k) (3.20)
=arg minfls(k) - 3 (K)|}* (3.30)
=arg ngé.ndm(k) — a(k}H (k)ol|2, (330

where we know that &“"(k) = v{{*), Note that dyyn(k) depends on the result of the

quantization of the previous input vector due to the recursive nature,

The above search is usually exhaustive and hence has to be computationally simple.
Let us use the description of the error signal in Eqn. 3.22 and derive a simpler formulation
for DU)(k), the squared-error for each codevector with index i € Z. We denote the
gain normalized difference ZIR signal by dan(k) = dan(k)/o(k) and obtain the following

expanded expression

DO (k)=||dzn(K) — o (k) H (K)o = o*(k)lldun (k) - H(K)DI?  (3.32)
=02 (k) [z ()P + [ H (k)02 = 2o (KT H(KOD]. (3.33)

Since during the search, the first term is constant, the minimization argument can be
chosen to be

D (k) = =2pT (k)0 4+ EG}(k), where
p(k) = H(k) dzr(k), and EOK) = [H(K)oD)%; ieL. (3:34)

Notice that p{k) is calculated once during the search and is constant for all z. As well
EU)(K) for each i € T is precalculated and can remain constant as long as H (k) is not
updated (filter adaptation period).

Next we describe the codebook design procedure in CELP. We will be using the training
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sequence {8{k)}A_ . The codebook can be designed using closed-loop, epen-loop [37], [29].
or sucressive clustering [105] LBG-like algorithms for the CELP coder. We experimented
with all three schemes and it was confirmed that for low bitrates, where quantization noise
is high, the closed-loop design is more appropriate. The reason as seen shortly is that it
incorporates the effect of quantization error in the formulation. In all of these schemes,
ilerations on nearest neighbor search strategy and clustering and centroid calculations have
to done. The iteration is between new partitioning and new codcbook calculation. Let m
be the iteration index and let gl be the codebook at iteration m. In the nearest neighbor
search, for notational convenience we define the set of training indices included in the i-th

™m
partition RV} as

m m
KW= {k : arg min [|dap (k) — (k) H (k)d])? =o'} (3-35)
dev,
During the iteration, the N-dimensional space is divided into I non-standard® Voronoi
m
celis (Eqn. 3.14). During the clustering iteration, the i-th cell R} with i € Z will be
populated with K} elements.

Using the equations 3.22 and 3.27, we can obtain the squared-error distortion for the

m
i-Lh Voronoi cell {with codevector v(®})

Di=—t— T f1s(k) - SOR? (3.36)
KO

= ¥ [dun®) - @ HE] [dam(k) - o) HED]. (337
K® kerc'?-')

When usi?.% the closed-loop design, we will find the unknown i-th cluster new centroid
m

codevector v(*), by minimizing

T ml ~(¥ T ~{
DY@ =2 3 [dm(k) - a(k)H(k)d"’] [dm(k) - a(k)fr(k)d”] . (339)
K kext

*Voronoi cells in the case of CELP are non-standard as VQ is an effective quantizer.
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. . . ~) L, . er
the total distortion for Lhe cluster with respect to d". The centroid condition i the

necessary and sufficient condition for the squared-error dirtortion minimization

m+l m m

vl = centroid(RY)) = arg llltil‘l Dy (:im}. (3.39)
d L]

L3 ]]

To minimize D() (d(')) with respect to d". we take the derivative of DU (dm) with

respect to @™ and we set the result to zero. As a result we get the following linear system

> k) [HTHEK)] &= 3 o(k)H () dyu (k). (3.10)
kexch) kex0)
The matrix a2(K)HT (k)H (k) and the vector o(k)dyn (k) are accumulated separately for
m+1
each cluster and the 7 linear systems are solved to obtain the J new codevectors { vl }.
The matrix H (k) implicitly incorporates the time variations of the predictor filter in the

formulation. The signal dynamic range variations are reflected in a(k). We refer Lo the

above as the closed-loop centroid rule for CELP quantization design.

Next we examine and compare the solutions of open-loop and closed-loop centroid
updates. To simplify this analysis, let us assume a stationary input signal. In that case
there is no need for solving a linear system and only the accumulation of the difference

m
vector dzg (k) for k €K' is sufficient and the closed-loop centroid rule simplifies as follows

m+1 -
v D= (78] BT T dan (h). (3.41)
K® kextn

The above simplification certainly makes the stationary design procedure simple. To
further examine the above expression, let us assume that the input source is a GM(1)

source with innovation signal {w(k)}2, (Eqn. 2.3). After some algebra, the centroid
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amounts to the following expression

[ aex(k = 1)+ uy (k) ]
m+l o (k
vll= —,i— > wa(k) . (3.12)
,\.{'l kEK:T.] e
L wn (k) |

it is casy to derive the expression for the open-loop design which is identical to the above
(accumulated innovation samples w) excepl it does not include the accumulated error

cffect reflected in the first dimension. l.e.

wy (k)
m+1 3
* 1 1 wo(k) o g
KO o LN
| wn(k) |

This further qualifies what earlier was said in favor of closed-loop design for low rate
coding. The above analysis can also be extended to the case of higher order GM input

source.

For the PVQ design, the special case of CELP, we assumed a first order prediction with
coefficient & which is matched to the GM(1) source regression coefficient h = a. Appendix
B provides details for the choice of predictor coefficients in PVQ. Similar to the case of

CELP, we may arrive at the following centroid rule for the PVQ

aen(k—1) + wy(k) |

m-i:l k k
W= Y em=—a ¥ | O T B
K® kext K® ke;c'?-)

L aen-1{k) + wn(k) |

Comparison of closzd-ioop case for CELP and PVQ shows how the focus of codevector
representation is deviated from representing innovation signal within the block. This is
due to the lack of memory in the PC ZSR. This amounts to “more work for VQ” and
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hence less coding efficiency “where it would be needed™ (eminent in the nonstationary
input signal case). <

Finally. one reason for the success of CELP for the slowly time-varying signals such as
speech is the ease and nature of adaptability in CELP. As scen. the formulation of closed-
loop design for CELP quantization, the synthesis filter (H (k) and gain o(k} variation are

casily and implicitly reflected in the nearest neighbor md eentroid design formulation.,

3.2.3. Rate-distortion performance of entropy-coded CELP

In this subsection, we present the rate-distortion results for the entropy coded CELP
(without EC). We used this configuration early in our work to cvaluate the performance
of CELP without entropy-constrained (EC) consideration. In the simulation results for
this case we allow the fiction that codewords can have non-integer length. We used the
first-order entropy of the lossy coder output (CELP) to represent the average rate {(entropy
of the index set {i(k)}$2,). To provide a basic theoretical justification for this, we first
extend a similar required theory, expressed for EC-DPCM [27], to the more general PC
case (CELP). This theory and the one in [27] extend the zero-memory case to CELP and
DPCM respectively. The theorem qualifies the utilized fact that the amount ol information
delivered by the output process about the input process equals the entropy of the output
process. It applies to the general entropy-coded CELP (with EC or without EC).

Theorem 3.1. Let us group K vecto.s, each with length N, to form the KN sample

veclor

KNg=(Ns(1), ¥s(2),--., Vs(K)), twhere

Na(k)=(s((k= 1N +1),s((k=1)N+2),...,8{(k=1)N + N)}.
For the CELP coder with reconstruction formulation described by 3.23, we then have

lim ——1 ("'Ns; KN&) = Ho(d),
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with 1(.;.) denoting mutual information and H..(d) being the entropy rate of {d}.

Proof: Using the property of mutual information we have
] (KNS; h'Na) = H(K gy - 1 (h‘N&'l Au\'s) .

Assuming common initial state and state transition rule for recursive encoder and decoder,

we now use the following one-to-one relationship for vectors of size N,
Nso Nd e Vd,
to arrive at the following one-to-one conclusion for blocks of size KN,
KNg oy KNg ., KNG
Hence there is no uncertainty for d or

H ('\'N&| KNs) =0 and hence
! (KNS; I\'N&) = H(RN&).

Now we can easily arrive at the desired result by dividing both sides by KN and letting

K — oo. D

Simulation results: The rate-distortion performance results of CELP (without EC de-
sign) in Fig. 3.3 were obtained using 10° samples from the input GM(1) source. The
goal of these experiments was to obtain enough rate-distortion performance data to char-
acterize the coder performance. To do this we designed CELP coders with a variety of
codebook sizes (7) and vector lengths (V). The maximum vector size N = 8 and maxi-
mum codebook size 7 = 512 were used. The simulations revealed that most points on the
rate-distortion curves were obtained using lower dimensions than the maximum values.
For comparison we used an ideal (“infinite” level I) entropy-coded uniform DPCM (UD-
PCM). As seen in the results of Fig. 3.3, the entropy-coded CELP coder provides close to
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Fig. 8.3 Quantizers rate-distortion performance versus RDF (solid) for various regres-
sion coefficients a. Performance of entropy coded CELP with maximum N = 8 and
various codebook sizes [ is shown in dash-dot (-.). Entropy-coded ideal DPCM (UDPCM)
is shown in cross (x). For a = 0.9, a second curve (the lower curve further from RDF) in
dash-dot (-.) shows the D4 Lattice performance as another reference.

RDF performance. From these results, there are two reasons to motivate the EC design,
the main subject of this work. First EC strategy matches the entropy-coded configuration
better than the above RC design approach. The second reason which follows from the Rrst,
is that lower delay (N) and complexity (efficiency of quantization through lower codrbook
size I'} may be possible. This was indeed verified as later EC-CELP resuits were compared
with the above case. These results showed that EC design strategy can provide substantial
reduction in coding delay and complexity for similar performance.

As seen in the results of Fig. 3.3, the performance gap between entropy-coded UDPCM
and CELP increases as the source correlation (regression coefficient) e is increased from
0.2 to 0.99. It is easy to verify that for the GM(M) source and the DPCM quantizer, the
input to the quantizer is also an M-th order Markovian process. In [3] it is shown that
although this process is not Gaussian it is close to Gaussian. There, based on numerical
results, it is shown that higher data rate saving over DPCM for higher correlation should
be possible. As explained in [3] and in chapter 4, the higher the correlation of the source,
the higher the correlation of the input to the quantizer. Later detailed analyses show at
lower bitrates the quantization noise feedback limits the performance of DPCM. We will
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also see that the EC-DPCM (not uniform) has similar trends. It is the VQ feature of
the CELP coupled with i's closed-loop configuration that reduces ihe quantization noise

effects particularly at very low bitrates.?

3.3. EC-CELP Design aigorithm

Results of section 3.2 showed that even at low bitrates and for highly correlated sources,
performance near the rate-distortion bound is possible by using the entropy-coded CELP.
This motivates the goal of designing the CELP quantizer codebook in a rate-distortion
theoretic sense. More precisely, we wish to minimize the overall average distortion, while
the average transmission rate or entropy rate is kept below certain level. This is the goal
of the EC quantization design. Using Theorem 3.1, we may restate the above problem
as designing a codebook for the EC-CELP quantization scheme such that the overall
average squared error distortion is minimized, while the entropy rate at the CELP output
(codevector indices) is held below a prescribed value say Hp. In this section we present
an iterative design algorithm for EC-CELP using a suitable empirical approach. The
simulation resuits in the next section show that the EC design strategy can significantly
improve the efficiency of RC entropy-coded CELP of previous section by reducing the delay
and coder complexity.!® The notations in this section correspond to the block diagram in
Fig. 3.2.

First let us summarize the recursive (predictive) and adaptive VQ (CELP) variable
rate encoder and decoder pair (®q, ¥q) by the following mappings:

$g=Todq: SmC, (3.45)
¥o=¥gol1: (w3, (3.46)

The implicit state-transition properties are shown by the subscript @ and the recursive

*The aforementioned advantages are not limited to CELP and extend to other delayed decision predic-
tive coders such as EC-PTCQ [28] [4] or predictive Tree coders.
: ‘;WcﬁmtwpwtedchacEC-CEIqunﬁzadonpufommrmﬂtsformﬁoury GM source in [32],
33].
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VQ lossy and lossless decomposition components are defined as before by

Pa:S—=7T and : I C, (3.47)
=7 and Yg:Im S, (318}

For EC-CELP quantization design. to obtain locally optimum variable-length recursive
and adaptive VQ (CELP) coding with respect to a fidelity criterion, an extension of
previous EC algorithms (particularly {14]) is formulated. Similar to [14]. the proposcd
EC-CELP algorithm uses a Lagrangian formulation. However it differs from such EC
formulations by being recursive in nature (indicated by the state space Q subscripts or [
subscript to indicate a particular state) and being empirical as opposed to analytical. As
in other empirical EC cases, the goal is to find the convex hull of the N -th order operational
distortion rate trajectory of the EC-CELP quantizer,!!

ND(R) =

. ) R S N N
N(l"o@;?,l!;nqr‘—l) {NE [P(S, 3)] I "N-E [Icn (3)] < R} ’ (3.49)

where p(s, 8) is the distortion (here squared-error} between s and 8. In the above equation
D = (1/N)}E (p(s,8)) is the average distortion and R = (1/N}E[len(s)] is the average
rate.!? len(s) = [I(i)| = |[F(®;(s))] is the length of the codevector'® representing s (an
approximation of self-information or an approximation to the optimal codeword length)
in bits.!?

1A given initial state for the recursive encoder/decoder system is assumed.

12 B(.) is the sample average or sample estimation of expectation operator.

len(s) depends on the initial state or state which is assumed to be given.

M For the case of EC-VQ, the lower bound to the N-th order operational {VQ) RDF i» the N-th order
RDF,

DRy = jnf {RED(e.3N| 319 < "R},
L1t

which as N goes to infinity (for squared-error) becomes RDF. In the case of EC-CELP, due to the recuniive
nature of PC, such a Jower bound can not be stated. Assuming signal stationarity and by wiing the effective
block length N corresponding to PC, the value of N can not be clearly defined. In the next chapter we
will see that effective quantizer error and overall error for the CELP coder are equal. From this, we may
speculate that the optimum operational performance by the EC-CELP sought in the EC-CELP algorithm
is related to the N-th order RDF of the residual signal d(k). This decouples the PC effective block size
from the residual signal d(k) block size N.
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The convex hull of the ‘VE(R) is found by minimization of the functional

J(®a, ¥a)=E[p(s,8)]+ AE[len(s)], or
Jy(®a, I, Wa)=E[p (s. U (@a(s))) + X | T (Dals)) ] (3.50)

where =) graphically represents the slope of the line passing through the point (R(¢q.T.
Vo), D(dq, . ¥q)) in the EC-CELP rate-distortion trajectory plane and supporting the

convex-hull.

3.3.1. Summary of algorithm

For each A, giving a point on the operational rate-distortion convex hull, starting from an
initial coder, the iterative descent algorithm repeatecly updates the mappings (3:1, 'Ir'",$n)
for increasing index m until some stopping criterion tor the convergence of the above
functional is met. The stacked index m annotates the design algorithm iteration index.
The resulting EC coder triplet, winning with the lowest EC cost, would be denoted by
(®a. T, ¥a)-

Each of the three main steps of algorithm fixes two of the triplet coding components
in order to obtain the third one,

+1 +1 m tep 3 ,m+1 +1 m+1
(e T B2) 2R ("o B By R (M6 e, T Be) 2R3 (", B )

First, for the given coding components ('f“, 39), the mapping (”'519) is obtained by using
the codebook search with the EC cost defined as p(s, Wy ('@ s (s))+AIT ("8 (s))] =
p(s,; () + Al T (9)]. This is the EC nearest neighbor rule. In the second step, given
(39, $2), the codevector lengths (T ) are updated. Finally, given (dg, I'), the mapping
( ';[c g) s obtained. This last step amounts to the EC centroid rule in the closed-loop
CELP design. As a result, as in the non-EC case of the previous section, for each nonempty
Voronoi cell, a set of linear equations has to be solved (Eqn. 3.40). The solution constitutes
the new codevector. As in [14], the empty Voronoi cell codevectors are discarded. Again
this formulation is necessary only for the general case of nonstationary Gauss-Markov
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source model, where the predictor P(Z) in the CELP coder is adaptive. For the stationary
Gauss-Markov case, there is no need for solving such linear systems. For each Voronoi cell,
it suffices to accumulate an N-dimensional vector and divide this vector by the Voronoi
cell population number. The accumulated vector is a simple function (scaled by fixed
matrix multiplication term} of the ZIR error signals (dz } for that cell (Eqn. 3.11).

For the EC-CELP nearest neighbor rule, the scarch procedure of previous section for
entropy-coded CELP has to be modified to include the EC component. We will use the
non-EC cost notation in Eqn. 3.33 to obtain the EC-CELP EC-squared-crror cost function.

The resulting EC cost function, for the codcbook entry i, will have the form

DL (R)=p(s(k), ¥ 1 (L x) (s(K))) + M{T(@ s (s (AW (3.51)
=DMk + Ajil. (3.52)

Similarly, the reduced complexity EC-squared-error cost function using Eqn. 3.34 has the

form

B (k) = DV + 2| (@)]. (3.53)

Before presenting the complete iterative algorithm, let us defire the following notations.
The relative frequency of an event or the empirical probability mass function (PMF) wilt
be denoted by P. Tke sample average or estimated expectation opcrator notation E[
and the Euclidean distance notation || - || 2re also used.

For a fixed N and a given A, providing a point in the N-th order rate-distortion
convex-hull, the algorithm will start with the following initial conditions:

(£) m =0, index of iteration,

(i) {s(k)}L,, training vectcr sequence,
(i#1) A, Lagrangian multiplier,

(iv) ?z: 0, the zero initial state,

(v} ﬁ;: ¥, a properly chosen random codebook, index set E: Z, and associated lossy
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m ™
encoder/decoder pair (®q.¥q).

(vi) {|i};ieI} = {ii] = —log, Pi);i € I} = {|i| = logy /:{ € I}, the equi-probable self-

« . m
information set associated with the Jossless coder [,
(vii) J= oo, aptimum EC cost.
We iterate on m according to the following algorithm steps and rules,

(1} Update EC Nearest neighbor rule by sequentially encoding s(k). k= 1,..., K, simpli-

fied using equations 3.31 and 3.34 in the following manner

"$ o (o) = i) = argmin [ols(0),Ep @) + N F @]
€T -
= srgaiy [Iden @) ~ o (0H®) 90 IF + 1 F (0
€T L
= argmin [ Bk + 3 ()
€T -

(2) Update the functional J= E [p(s, b7 I (mt-t!;l 7 (SN + Al P (m$l; (s))l].

r

(possibly reduced index set 7 and lossless coder,)

m
@ i< sl = T
V';= v‘}‘v

| i= F.

If m > m,,,, quit, otherwise set m = m + 1 and continue,

(-i) Update lossy coding rule for éach non-empty cell i emf ' (possibly reduced size) ac-
cording to -

It (m=-1og=ﬁ{"'$‘, (3):5}

(5) Update EC centroid rule (see equations 3.38 and 3.40 ), for.each non-empty cell i Emf '
m+1

m+1 m+1
with population K17, find v} ¥ according to
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mil _ oy, ML ;
Wy (i) =argmink |p(s.5)] @ ; (s}::].
ses m .
= arg_min == m {ls(k) = 3 (k)] = argmin DO @M.
sk Kt keX ) dm

nticful 201, . N B 1) .
satisfying (zkex'?-!a (k) [H(L)TH(&)]d = :ke?mU(L)H(L)rdm“(”) .

As seen in the above algorithm, unlike EC-VQ, for cach new A we initialized with a full
codebook size. The reason for this is the consequence of sensitivity to selection scheme of A
which is explained in next subsection. In our notation the minimum cost coder parancters
are indicated by stacked notation (x). In section 3.3.3 we will see that in some cases, due
to instability of the convergence, a “memory” of minimum cost coder parameters may be
required.

In our simulations, other than the above EC closed-loop design alternative, we experi-
mented with the EC open-loop and successive clustering alternatives. The previous section
ptovided some analysis for the CELP close-loop and open-loop; alternatives without EC
strategy. Consistent with those understandings in our experiments, the EC closed-loop
strategy provided better performance. Following the above procedure outlined for the
EC closed-loop centroid rule, the detailed open-loop and successive clustering EC centroid
rules can also be easily derived.

3.3.2. Initial codehook, choice of )\, and lossless coders

One of the important issues in general VQ design is the choice of initial codebook. For
the recursive VQ schemes such as EC-CELP, the choice of initial codebook can even have
greater consequences. In particular by using a “richer” initial codebook, the final perfor-
mance of the coding scheme can be substantially improved. In the case of stationary GM
source however, one easy choice would be a randomly selected codebook. Intuitively, sam- )
ples from 2 pseudo-random sequence close to the innovation process would be reasonable.
However, if the initial codebook size I is small, this may not result in very good perfor-
mance. Another alternative is to use the open-loop design strategy on random samples
from an innovation-like process sequence. The split method similar to simple VQ LBG-type
design [78] can also generate a richer initial codebook. For nonstationary signals such as
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speech, the process of selection of initial codebook is more problematic. ror these cases,
good results were obtained using the extension of the above ideas coupled with suitable
choices of nredictor and gain initial state and adaptation. Finally another alternative
which in cases of unknown input signal produced satisfactory results was structured VQ

codebook (designed based on variance of the innovation signal).

For the selection of A, the same strategy used for the EC-VQ design in [14] produced
satisfactory results in most stationary cases. In this strategy, the two extreme cases in the
range o¢ > A > 0 (A = 0 correspouding to non EC case and large A or oo corresponding
to rate zero) are designed first. The ordered sequence of A in between this two values were
selected by a certain intuitive rule. In our experiments, we encountercd great sensitivity

to the choice of A. Hence we used a priori selected values in between the two extreme A
values.

The lossless entropy coding alternatives have been the subject of many EC papers
(e.g. [51], [65], [60]). Both infinite buffer option and finite buffer cases include variations
of classical Huffman, Arithmetic, and Lempel-Ziv coding [6], [107]. For cases where long
delay can be tolerable, Jones [59] has suggested an efficient Arithmetic coding scheme.
Such entropy encoder maps long strings of lossy encoder output into long strings. Such
strategy requires either availability of length of string (at the encoder) to the decoder or use
of end of block special character to be used by encoder and decoder. For applications such
as transmission over fixed-rate channels which necessitate buffering, there is the associated

overflow/underflow prablems.

The common conclusion from previous investigations is that there is a tradeoff be-
tween performance and delay. It is also concluded that the advantages of EC strategy can
be maintained with small degradation in coder quality. In the EC formulation presented
earlier, it is easy to see that the infinite delay ideal entropy coder mapping can be easily
replaced by a specific entropy coder of choice. EC design procedure in that case will incor-
porate the-tradeoffs resulting from the lossless coding of choice. Note that in this thesis
minimum delay property refers to the VQ dimension delay. Considerations with regard
to the buffer delay are not taken into consideration. Harrison and Modestino [51] have
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studied a modified Huffman buffer-instrumented strategy which resulted in entropy cod-
ing with robust buffer management. Kim and Modestino [65] have suggested an adaptive
buffer control modification to Arithmetic coding of [59]. The long lossy encoder output
is divided into sub-blocks marked by end-of-block character. We have assumed that the
conclusions from the above studies will extend to the EC-CELP case. However further
simulations and studies will be required 1o obtain quantitative evaluation of delay and
performance tradeoffs. Such evaluations will be particularly important for the case of low

delay (end-to-end delay) applications.

3.3.3. Algorithm convergence

In [14], it is suggested that the EC-VQ design algorithm for the case of stationary signal
and under mild conditions has a stable convergence property. For the case of (closed-loop)
general EC-CELP design algorithm unlike EC-VQ (being empirical rather than analytical
as well as being recursive rather than non-recursive), derivation of such theoretical con-
vergence properties will be difficult. On one hand, for the open-loop design algorithm,
extension of similar conclusions as made in the case of EC-DPCM [27) may be possible.
The closed-loop CELP design case (and a nonstationary input signal) on the other hand is
known [12] not to have a monotonic convergence characteristics and the general EC-CELP
design case will obviously have similar unstable characteristics. Experimentally however,
certain conclusions regarding convergence properties of the EC-CELP algorithm can be
made which will be presented next.

Since closed-loop design convergence characteristics are not always monotonic, in our
design algorithm we used a similar strategy as for the CELP coder design [12]. This strat-
egy amounts to the following “memory” in the design. During the iterations, the minimum
cost coder parameters, indicated by stacked notation (x}, are remembered. This allows
for possible (numerical instabil*ty) violation of non-increasing behavior in cost function.
Note that for the stationary input case, there is no need for such strategy and changes

smaller than a given epsilon in the cost value can be used as a stopping criterion.’®

15Exception were numerically unstable cases where for example the GM(1) source regression - »cfficient
was very close to 1 (e.g. 0.999)
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Fig. 3.4 Trend of convergence of EC-CELP design algorithm for a given A: cost value as
a function of iteration number in stable cases (most stationary cases) and unstable cases
(nonstationary cases or stationary case with GM(1) regression coefficient a very close to
1.0). For the stable case changes less than an ¢ (epsilon value indicated by the gap between
the two dashed lines) in the cost value may be used as a stopping criteria.

In our simulations, other than the sensitivity of the algorithm convergence to A value
(EC-VQ algorithm is reported to have similar tendencies), the source characteristics played
the most . .aportant role in convergence. In Fig. 3.4, typically observed convergence trends
are depicted. Stationary GM(1) source generally showed a stable convergence property
while nonstationary source such as speech signal [35] showed mostly unstable property
(especially for non-zero A values). The GM(1) source with regression coefficient a very
close to 1.0 {e.g. a > 0.99), as may be expected, also showed unstable characteristics.

3.3.4. EC-DPCM and EC-PVQ special cases

As mentioned previously, both EC-DPCM and EC-PVQ can be considered as special
cases of EC-CELP. However, in our early survey of literature before and up to the time
of publication of EC-CELP results [32], we had only come across the EC-DPCM work
[27]. Later we learned about two independent works on EC-PVQ [64], [87). The authors
of these two independent works did not seem to know about the other work. The design
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approach in the above schemes are direct extensions of EC-8Q and EC-V'Q to differential
configurations. More spreifically, direct applications of FC-8Q and EC-PVQ to the scalar
(case of EC-DPCM) and vector (case of EC-PVQ) quantizer design are made. For the
recursive analysis-by-synrthesis configuration of EC-CELP, such approach would have not
been applicable. Moreover, as previous discussions suggested, the EC-DPCM and EC-
PVQ algorithm using the special cases of EC-CELP is formulated in the more suitable
recursive (predictive) frame work. The coupling and joint use of coding components in
design formulations of EC-CELP allows for an implicit and joint design that merges the
two steps of the previous algorithms. This coupling is especially bencficial in the case
of adaptive source signals.'® As later simulation results and analysis in chapter 1 show,
the EC-DPCM algorithm resulting from EC-CELP (N = 1) is both casier and shows
better numerical performance over the previously reported scheme [27]. Additionally this
approach can easily be used for an adaptive EC-DPCM (an obvious casy extension of the
algorithm of [27] is not possible). Similarly the additional step related to PC utilized in
EC-PVQ design of [64], [87] is absent from the EC-PVQ as special case EC-CELP (with no
ZSR). Hence in the case of EC-CELP algorithm, adaptiveness can be casily and implicitly
incorporated.

3.4. Simulation Results and Conclusions

In the presentation of selected simulation results in this section, the following objectives ate
pursued. First, the benefits of the EC design strategy (EC-CELP) over the entropy-coded
(with no EC) CELP configuration is shown. The second goal is to show the advantages
of EC-CELP special case algorithms, configured as EC-DPCM and EC-PVQ, over the
previously published algorithms for EC-DPCM and EC-PVQ. Finally simulation results

18For the non-adaptive case, from Eqn. 3.31 it is easy to see that by modifying the codebook of EC-
PVQ, Vr = {v" = Ho;i€ I}, T ={1,2,...,1}, we may obtain an equivalence between EC.PVQ
and EC-CELP. Nevertheless, due to the difficulties associated with the choice ol initial codebook and
as a consequence of other advantages of EC-CELP over EC-PVQ during the design {particularly in the
presence of quantization noise effects at low bitrates), EC-CELP should provide better overall results. For

the adaptive case or nonstationary input signal, the advantages of EC-CELP over EC-PVQ are obviously
more eminent.
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are used to show the EC-CELP advantages in comparison with s special recursive cases

and other non-recursive EC alternatives such as EC-VQ and EC-BTQ.

The results shown in this section are all based on a training sequence of 10° samples
from the simulation of stationary GM(1) input source with various regression coefficients a.
Thercfore, gain and predictor adaptation are not used. We did not optimize the predictor
coeflicient and used the suboptimal h = a. As analysis of chapter 4 and our experiments
showed, in the case of GM(1) input source, the effect of deviation of /& from a does not have
a sizable cffect on the performance (adaptation is important in the case of nonstationary
signals such as speech [35).). In our experiments, for block length values of N € {1,2,3}
and N = 8, the initial codebook sizes used are 7 = 512 and 1024 respectively.

As was shown in section 3.2, performance of an (RC) entropy-coded CELP configu-
ration for GM(1) input source is close to the rate-distortion-bound. However. in order
to show the EC design advantage, we compared the delay (block size N) and complexity
(codcebook size ;) at a given rate. We observed that for the GM(1) source, in almost all
cases of rate less than one bps, through EC design strategy, the delay N and complexity-
related codebook size ] was substantially reduced. Table 3.2 provides a comparison for
some selected rates. Although we may expect this trend, the required delay and complex-
ity for the high-quality EC-CELP are surprisingly low. This confirms the efficiency of the
combination of PC, VQ, analysis-by-synthesis , and EC in the algorithm.

We now compare the performance of EC-DPCM and EC-PVQ) using special case EC-
CELP design algorithm with previously published results for EC-DPCM [27] and EC-PVQ
[64]. The expected advantages of EC-CELP-special case algorithms are due to joint steps
in the closed-loop design which implicitly combine the features. The resulting advantage
manifests itself in two cases. First, at low rates when the quantization noise is high, the
joint steps in the closed-loop design is more effective. Hence for the GM(1) input source
with higher correlations, there is substantial improvement over the EC-DPCM results from
[27). This is seen in the results of simulations shown in Figure 3.5. The second case where
the joint steps in the closed-loop design should provide a better alternative is in the case
of a nonstationary input source. The previously published EC-PVQ adaptation strategy
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N (delay) ! (complexity) R SNR a
CELP T 128 1.0 18.5 0.98
EC-CELP 3 26 1.0 18.6 0.9%8
EC-CELP 1 B 1.0 16.7 0.9%
CELP 8 32 0.6 16.0 0.9%
EC-CELP 3 T 0.6 16.0 0.98
CELP 8 312 1.1 2.1 0.99
EC-CELP 3 31 1.1 224 0.99
EC-CELP 1 4 1.0 2041 0.99
CELP 8 32 0.6 18.9 0.99
CELP 3 8 0.6 18.3 0.99
EC-CELP 3 T 0.6 18.9 0.99

Table 3.2 Performance comparison between CELP (entropy-coded without EC design)
and EC-CELP, showing the EC lower delay and complexity advantages (a is the regression
coefficient of GM (1) source).
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Fig. 3.5 Rate-distortion performance of EC-CELP (N = 3,8, dashed), EC-VQ (N =
3,8,*), EC-BTQ (N = 8, dotted, expected to be similar to EC-VQ for a = .49), and RDF
(solid) for a=0.9 and a=0.98.
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is & elassified adaptation. One advantage provided by the EC-CELP-special case EC-PVQ
over such algorithms would be the implicit and continuous adaptation, which in the case
of nonstationary signals can be highly beneficial. Unfortunately. for better comparisons of
EC-CELP with previous EC-PVQ algorithms. reference simulation results from [64], [87)
with considerations of size of N and / were not available. However, the analytical analysis
provided in chapter 4, predicts the possible gains (reduced size of 7 and N) of EC-CELP
over special case EC-PVQ, cspecially in the nonstationary input signal case.

Figure 3.5 compares the EC-CELP and its special cases EC-DPCM performance with
other EC alternatives. The comparison is with alternative coding configurations of EC-
DPCM in {27]) and EC-VQ in [14], and entropy constrained block transform quantization
(EC-BTQ) [24]. The performance of EC-CELP was the closest to the RDF for a given
low delay (small block length N} with relatively low computational cost (small codebook
size [). EC-VQ results are our simulations (consistent with [14]) and EC-BTQ results
are taken from the available results in {24]. As expected, the EC-CELP performance gap
over EC-VQ increases as the correlation coefficient is increased (e.g. @ = 0.98). Since the
codebook size for rates below one bps becomes relatively sraall (} < I), the CELP coder
complexity is also low. More importantly, for highly correlated signals, the EC-CELP is
the only coder which can achieve close to RDF with practical block length N = 3 and
hence low delay. Although for 2 = 0.93, results for EC-BTQ were not available, it is safe
to predict that like EC-VQ for block size N = 8, only a fraction of possible memory gain
can be obtained using EC-BTQ (see chapter 4 for reasoning).

Results from the application of EC-CELP to speech signals in [35] and the video appli-
cation results in chapter 5 extend the GM(1) model results of this chapter to more practical
situations. The speech application also shows that the adaptation and EC strategy can be
effective. Future work should include lossless coding considerations. Also more extensive
investigations of full coders aimed at particular speech, image, and video applications is
NECEsSary.



Chapter 4

Low Rate Entropy-Coded
Quantization Theory and
Comparative Analysis of
Entropy-Constrained Predictive

Quantizers

4.1. Introduction

In chapter 3, the EC-CELP quantizer with its special cases of EC-DPCM and EC-PVQ
was introduced. The performance advantage of the recursive quantization technique of EC-
CELP over its special cases and the class of non-recursive EC quantizers such as EC-B'I'Q
and EC-VQ were shown. This chapter is devoted to some new rosults on low rate entropy-
coded quantization theory and a more rigorous analysis of va.ridus entropy-constrained
predictive quantizers.

The contributions of this chapter are divided into two parts. (1) Results are pro-

vided on quantization theory for EC quantizers at low bitrate and operating on correlated
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sonrces. Coding gains and classifications under such conditions are suggested and cal-
culated. These gain measures provide the reference for analysis of various quantizers in
the second part. (2) For various quantization schemes, analytical analysis with numerical
results are provided to give better insight into the EC-CELP performance advantages.
Factors such as quantization noisc effects at low bitrates, coding block size N (delay). and
coding complexity are taken into consideration.

In our analysis, we confine ourselves to the Gauss-Markov processes. The cioice of
Gaussian is primarily due to the fact that we will be dealing with entropy-coded quantiza-
tion for which effects of source symbol probability distribution function (PDF) or shaping
is absent. Simplicity of analysis and consequences of the Central Limit Theorem for real
world signals are other reasons for the choice of signal PDF.

The rigorous analytic expressions for memory and filling gains in the case of EC coders
at high rates [80] which were presented in section 2.1.1, although informative, are not
suited for low rates. Since the above categorization is a powerful tool and extremely
uscful for coding performance reference, in section 4.2, we make appropriate modifications
to adapt and formulate analogous gains for low bitrates. The modification incorporates
dependence on rate R as well as dimension N. The resulting categorization provides better
understanding of the advantages of EC quantization at low rates.

In section 4.3, we use the analytical formulations of 3], [9:], [93) on predictive coding
(DPCM) and make an extension to the vector generalized case: of PVQ and CELP. These

analyses provide insight into performance limits of various quantization schemes.

4.2. Rate-distortion theory analysis of maximum EC gains

In s :ction 2.1.1 we reviewed the categorization of maximum EC coding gains over basic EC-
SQ by Lookabaugh and Gray [80] to memory and dimensionality filling gains. However at
low rates, analytic expressions for these maximum gains are not available and the high-rate
formulations in equations 2.13 and 2.15 are not appropriate. In this section, we propose
two computational formulations for the memory and dimensionality filling maximum EC

coding gains. These formulations have an explicit dependence on average rate R as well as
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dimension N. As scen shortly, to obtain these gains we need the computed parametric RDIP
and N-th order RDF for GM(1}. As well. the results are based on EC quantization theory
and EC-VQ empirical performance. These gains will be used as an appropriate reference

in analyzing the available low rate coding gains and in evaluating the performance of the

EC coders at low rates.

Let us use the parametric formulas for R(D) and ™ R(D) of GM(1) from section 2.1
and compute these functions for various regression cocflicients a. Instead of normalized
distortion in RDF {D/0? versus R). we use SNR values dB (%) and denote these values by
SNRgpr. For the GM(1) soutce, the resulting low rate SNREse (R. N) and SNRES(R) =
SNRENY (R, 00) curves are shown in Fig. 4.1. The parametric formulation of RDF for
correlated Gaussian sources [84), [7] has the well known graphical interpretation of “water-
filling”. The total average distortion D of the error spectrum “fills up™ part of the arca
under the signal spectrum much as a liquid fills an irregular container. Frequency ranges
which are completely “filled up” make no contribution to the information rate. The above
parametric formulation for GM(1) RDF at low rates provided the intuition for the proposed
computational approach in this section. The analytical formulation ol such gains, as done

at high rates, does not seem feasible.

Eqn. 2.16 expressed the total EC coding gain at high rates as the sum of memory and
filling gains. ’.1‘0 extend this formulation for low bitrates, we must incorporate the “water.
filling” phenomenon as discussed above. This is done based on a parametric formulation
and will use a numerical procedure detailed in the next two subsections. The resulting
estimated maximum coding gains available to the EC coding is divided into RDF memory

gain and empirical space filling gain. For the source with memory S, we may write
AS(N, R) |norm AS, 0, (N, R) |nor +8gy (N R) lior - (4.1}

Note that dependence on R is emphasized by introducing the functional dependence on R
in the notation (compare this with Ean. 2.12). For the GM(1), case we use the following
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Fig. 4.1 RDF and N-th order RDF plots (SNR) for Gaussian and GM(1) sources with
cocflicient e (in the LHS top graph, the higher the graph the higher the a value). Note
the significance of N and R in SNR figures and the relationship with values of coefficient
a.

notition

AMOV(N, B) [nor= Aqeioty (N R) lror +84150, 5" (N, R) |nor - (4.2)

4.2.1. RDF memory gain

For 2 given dimension N and rate R, and for the source with memory S, {s{n)}%, and
its corresponding memoryless source {s"(n)}22,. we can describe the RDF memory gain
as

A emory(N, B) lnor= SNRRpe (N, R) = SNRz5p (R), (4.3)

where as in section 2.1, the memoryless source (*) can be unambiguously defined [108].
For the GM(1) source, the memoryless source is the memoryless (i.i.d.) Gaussian source,

with the same variance,

A (N, B |ns= SNRENO (N, R) — SNRi: == (R) (4.4)
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For the GM(1) source we use the explicit parametric formulations of RDE in section 2.1,
To extend this to a general source with memory and its corresponding memoryless souree
{*), the memeory gain dafinition relics on the availability of sonrce RDE. When generation
of typical memory and niemoryless sources is possible, we may use the numerical algorithm
of Blahut [8] for computation of the RDF to obtain the above maximum memory gain.
If the quantization method only uses block quantization of block size N (c.z. EC-VQ)
the above memory gain can be interpreted as (similar to [80]) maximum memory gain over
basic EC-SQ. For other quantization schemes such as DPCM or CELP which use recursive
schemes (e.g. PC), the block size N has to be interpreted as the effective infinite block

length. When prediction order in PC is appropriately selected. we may assume an infinite

cffective block length.

4.2.2. Space filling or dimensionality gain

Assuming relatively high correlation, at high rates and for the Gaussian memotyless source,
as shown in Fig. 2.2 and indicated by the small gap between the EC-SQ rate-distortion
performance and the RDF results in [14] [80], the filling gain advantage available through
dimensionality advantage of EC-VQ is consequently small. Available filling gain at low
rates decreases proportionally much like the memory gain does. Once again, for the filling
gain we need to impose the dependence on rate R as well as the dimension N. We propose
a new algorithmic definition for the filling gain whose computation particularly scems
reliable at low rates. We make the assumption that the algorithmic performance of a
well-designed N-dimensional EC-VQ is available. We can use such performance results 1o

quantify the maximum achievable filling gain for 2 memoryless source. *

For low rates and general EC coders and for memoryless source {*), we propose the

algorithmically computable maximum empirical space filling gain over basic EC-SQ as

A;usa; (N, R} [npp== SN R-;c.vq (N,R) - SNR'I-!C-SQ (R). (4.5)

!Such assumption is realistic since design of EC-VQ for low rates and low dimensions for memorylesm
sources has been successful.
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For the GM(1) source the memoryless source (*), is the memoryless { i.7.d.) Gaussian

source with the same variance.

4.2.3. Simulation results

To obtain numerical results for the maximum memory and filling gains of the GM(!)
source we proceeded as follows, We first computed parametric RDF results shown in
Fig. 1.1 and then simulated the EC-VQ rate-distortion performance results for various
black sizes N. The EC-VQ simulations were based on 10° samples and were obtained
using the EC algorithms in {14] [32]. Figures 4.2 and 4.3 show the simulation results for
RDF memoty and space filling gains for GM(1) input source. The RDF memory gains
for GM(1) source with a = 0.9,0.99, ASX) (N, R) |aps, are shown in two bottom graphs
of Fig. 4.2. High N gain, ASSY (o0, R) |ror, is shown in the top graph. Judging by
the ncar RDF performance of EC.CELP at low rates. one may postulate that EC-CELP
nearly provides the sum of empirical filling gain and the high ¥ RDF memory gain (top
graph) (due to PC’s effective high N). Note that an EC coder SNR is approximately
the SNR3c o+ coder memory gain-+filling gain. As may be concluded from the results
in Fig. 3.5, the combined memory and filling gains over EC-SQ of EC-CELP for a given
N and R is the highest. Hence it yields the highest SNR. Next in section 4.3, we will
provide a rigorous analysis of the memory gain for various EC quantizers which includes

the effects of high quantization noise at low bit rates.

4.3. Memory gain in EC-CELP and other EC-quantizers

In section 4.2, it was seen that for relatively highly correlated sources, the memory gain is
the dominant >~ailable coding gain, even at low rates. Nevertheless, due to reduced amount
of gains, “every bit” of gain may count. Among known techniques to exploit memory
redundancy in the source, (linear) PC, TC, and VQ have been popular. The objective, as
mentioned before, is achieving the highest SNR at low rates with the additional constraints
of minimum delay (dimension N) and low complexity and considerations with regard to

nonstationary input signal. This section investigates the available memory gain to coders
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Fig. 4.2 RDF memory gain for GM(1) source. Graphs from top down: High and low N
RDF memory gains for Gauss-Markov source with coeflicient a.
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Fig. 4.3 Low rate empirical filling gain for {memoryless) Gaussian source.
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which use these methods and suggests the full utilization of PC advantage as an important
factor among available choices. We analyze various recursive PC schemes namely CELD,
PVQ. and DPCM. We will see how at low bitrates a closer to optimal gain may become
possible. Since at low bitrates, the quantization error feedback effect is not negligible, we

have to take such effects into consideration.

Kolomogoroff provided the minimum prediction error variance p? (described in terms

of SFM in Eqn. 2.10) which also directly relates to the ideal maximum prediction gain

Hs =vio? (1.6)

1 -
Amemnry. PC ‘l-iul= dB(?) (:1.7)

This gain is defined for the asymptotic case of high bitrates.

The simplest practical coder is the memoryless PCM quantizer or SQ. The error vari-
ance for SQ is sometimes expressed in terms of the useful factor of quantizer performance

factor (qpf) [58),

(=]

a
02 = € 5q00. (1.8)

The analysis in this section incorporates the low bitrate effect through the qpl. This means
that higher qpf corresponds to coarser quantization. From the rate-distortion curves of a
quantizer, we may estimate the correspondence between the gqpf and the rate R using the
SNR value of the quantizer for a given rate and source, SNRvq = —dB(¢Z). For example
assuming a memoryless Gaussian source and using the EC-3Q or EC-VQ rate-distortion
curves we get the correspondence between rate and qpl in table 4.1. Note that for the
case of recursive quantizers, the qpf is different for the effective quantizer whose input was
previously denoted by the process {d(k)}32,. It is also important to note that the analysis
of this section based on qpf has to viewed in the light of the low-rate rate-distortion analysis
of section 4.2. The two approaches of these two sections provide complementary analysis
with dependency or rate and error feedback. Finally, in these analyses, we assun.e that
the PC order used for a given source is properly chosen. As a result, in the analysis of
memory gain for the PC, we do not need to consider any dependence on the block size N.
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SNR  4.64 5.02 1.69 1.69
e 0.34 0.31 0.68 0.68

Table 4.1 Correspondence between qpf (3 and rate R for Gaussian memoryless source
as function of rate R and dimension N,

In other words. an infinite effective N can be assumed.

4.3.1. Review of PC memory gain for DPCM case

In this subsection we review PC memory gain in the DPCM quantizer. DPCM is the
simplest quantization scheme which uses PC and may be characterized as a recursive SQ.
The analysis of DPCM has already been the subject of a large number of previous publi-
cations. New analysis of PC for other quantization schemes in the preceding discussions
will be essentially based on the conclusions of the previons section and extensions of the
DPCM case.

To demonstrate the role of memory, the SQ error variance in Eqn. 4.8 should be

contrasted against the DPCM case? given by
min{o?} lopen= €2ppen7202, Without feedback effect in PC. (4.9)

We assume that the qpf of the simple SQ case is approximately the same as the qpf of the
SQ within the DPCM (cim,c“),

‘g,npcu = f:.sq [i.i.6. Grussian -

Obviously similar assumption cannot be made about the qpf of the VQ and SQ. However,
once the input source characteristics to the VQ is known, we may obtain approximations

similar to the ones obtained for the memoryless Gaussian source in Table 4.1.

TEqn. 4.9 is the special case of Eqn. 4.13, where the formulation includes the effect of feedback in PC.
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Fig. 4.4 PVQ encoder block diagram

The block diagram of the PVQ encoder is shown in Fig. 4.4, This commonly used
representation, resembling the common DPCM structure. is equivalent to the special caxe
CELP representation provided in chapter 3. There, it was shown that both DPCM and
PVQ can be considered as special cases of the CELP quantizer.

In the current discussion, let us assume an additive (but not always white) noise model
for the quantization error. Without loss of generality of our discussion in most cascs, we
will be using the GM(1) source with the regression coefficient a as the input source. The
corresponding PC coefficient is denoted by k. Notations for DPCM correspond to the ones
in Fig. 4.4 with SQ replacing VQ. As seen in the figure, PC is based on the reconstructed
signal 5(k), and an additive quantizer model is used, d(k} = d(k) — g(k). Using simple
algebra describing the signals, we obtain

e(k) = q(k),
d(k) = s(k) — hs(k - 1) + hg(k — 1), (4.10)

Assuming vanishing correlation between the input signal and the quantization crror, we
get

a2 | = c
¢ lpreu=
1 = € ppenh®

(4.11)

The effect of feedback in DPCM is known to result in the following interesting con-
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clusions. For the additive quantizer model, although the output (?(k) signal is white. the
quantization noise q(k) and the input d{(k) are both non-white. no matter how fine the
quantization. However it is suggested that that ¢(k) is close to Gaussian [3]. [58]. Based
on these conclusions, by using the near optimum predictor hope = @ in equations .11 and

4.10, we get the following performance limits for the PC in the DPCM context

min{o2} lopon= — @ (4.12)
d} loren= T3 227 .
3.DPCM

min{e?} |ppeu= Gppen®3 = G ppenTel(l = Cppena’) ‘o7, feedback effect.(4.13)

Comparing this with Eqn. 4.9, reveals the effect of feedback on PC that appears as the

term in parentheses. The resulting memory prediction gain then may be defined as

o3 1- "',g.l:wcm“2 2y -1 2 2
A emory PC loren=dB 0—3 =dB - = dB (('T.;) 1- €q.orcud )) .

(4.14)
In Fig. 4.5, it is shown that even for very high qpf at low rates, the deviation of hopt from
the value of a is very small and has little effect on T»PCM performance gain (SNR or PC
gain). This justifies the choice of hopt = a. However from Eqn. 4.13 and Fig. 4.5, it is
easy to see that at low rates, where the qpf has a larger value, the memory gain due to
PC has a sizable decrease. It is due to such effect that VQ memory gain can supplement
the PC effective memory gain and improve the qpf. Hence through the use of PC, close

to maximum memory gain at lower rates becomes possible.

4.3.2. Prediction gain in CELP

Using the extension of the analysis used for DPCM, in this and the next subsection, we
derive expressions for prediction memory gain for CELP and PVQ. For the case of CELP,
since there is no direct quantizer in the usual sense (mapping from an input to an output),
we use its effective quantizer. The details of such an effective quantizer were explained
in chapter 3. This allows us to extend the DPCM formulation to the case of CELP.
This effective quantizer, just like the standard quantizer, has an input and an output and
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Fig. 4.5 Top two graphs show deviation of hgpt from matched b = @ in DPCM .d

corresponding gain in PC memory gain (or DPCM SNR). Bottom graph shows loss in PC
memory gain due to feedback in DPCM. These curves will also be valid for CELP with a
lower qpt value.
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Fig. 4.8 Lossy encoder in EC-CELP: encoder (CELP) block diagram.
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is based on an additive noise model g(k). Again a GM(1) input source is assumed for
simplicity. Te avoid repetition we first refer the reader to the notations and descripiion of
signals used in chapter 3. The block diagram of the CELP coder is shown in Fig. 4.6. The
codebook scarch module in CELP minimizes the squared error described by Eqn. 3.22.

The effective quantizer was shown in Eqn. 3.27 to be
(CELP)  d(k) = dza (k) — (H (k) - [) d(k). (4.15)
which allows us Lo rewrite the error in the normal fashion of (vector) quantizer
e(k) = d(k) — d(k). (4.16)

Note that the second term of the RHS in Eqn. 4.15, which represents the ZSR, results
from the analysis-by-synthesis operation and is absent in the case of PVQ. Using the above
effective VQ, we write the vector extension of DPCM derivations for PC memory gain for
the CELP

d(k)=d(k) — q(k), (4.17)
d(k)=s(k) — 3(k), (4.18)
e(k)=s(k) - S(k), (4.19)
3(k)=d(k) + 3(k), (4.20)
3(k)=3zm (k) + (H (k) — D) d(k) (4.21)
inter-blocl: memory intra.-Bloclc memory
[ b ] 0 - 0 | &) ]
2 7 (s
L P Ol =W . (4.22)
| AN | R 0 B (T

San due to ZSR filtering
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Again for the PVQ case. the intra-block PC memory or the RIS in the above equation
will be absent. Following similar algebra as for the DPCM case, we way now derive similar

results for the CELP. For the CELP coder we get,

e(k) = q(k) (1.23)
a® | [evte-n]  Javtk-1]

diy=| W [y 9B | e® (1:24)
| sn(k) | [ sn—1(k) [ on=t(k)

Let us assume equal per sample quantization noise characteristics for all samples within
the VQ block. As before let us also assume a vanishing correlation between input and
quantization error. Using similar steps as for DPCM for cach sample in the vector d we
get identical formulation as for DPCM for PC memory gain and hence

03 lceLe= %l:::‘of ' (4.25)

1-¢ a? "
Apemory pe lcere=dB (_lq%) =dB (‘}’,_ 2(1- f;‘cgwaz)) . (4.26)

As the dimension N of the VQ increases, we suggest that the following approximation

for the &, cerr value,

G:, CELP IGM(I)z 637 vQ li.i.d. Gauuasian 3
decreases (Table 4.1). In other words, due to use of VQ in CELP (N 2 1), for a given
rate, the qpf value will be the same or better (lower) than the one in DPCM case (N = 1).

Hence for the same rate, the PC memory gain of CELP will be equally good or better
than the one of DPCM. i.e. There will be less quantization error feedback in CELP,

G';..cgg_p S c:,bpcu = Ammory PC ICBLPz Ancmoq PC IDPCN . (4'27)

Evidently in the CELP case, VQ may also provide additional (not removed by PC) avail-
able memory gain. The total memory gain is the sum of PC and VQ memory gains.
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Fig. 4.7 PC memory gain for CELP and DPCM with (dot) and without (solid) feedback
effect. The input scurce is 2 GM(1) with e = 0.9,0.99.

Due to the similarity of the CELP PC memory gain expressions to the ones for the case
of DPCM, the results for the DPC! case in figures 4.5 (A, = a}, 4.7, and 4.5 will also
valid for the CELP case. Again, for the case of CELP we need to make the adjustment
that for the same input source to the effective quantizer, the gpf will slightly decrease as

values of N higher than one are used.

4.3.3. Prediction gain in PVQ

VQ is the common feature between PVQ and CELP. However, in these coders PC is not
used in exactly the same fashicn. The difference is that there is some loss in the PC memory
gain for the PVQ. This will become clear as PC memory gain for PVQ is formulated next.
This is done by eliminating the intra-block term in the expressions derived for CELP. As
a result, we will get an “unbalanced” (unequal for samples within a vector) quantization

noise effect as reflected in the following expression for the d(k)

e(k) = q(k), (4.28)
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s(k) h [ b
sa(k) h? h*
d(k) = - sy(k=-1)+ gu(k-1). (-1.29)
| sw(k) | [ AV Y|

In appendix B, we calculated the coefhicients of the predictor for the case of GAM{ 1} source,
when the quantization noise effect is not taken into consideration. These coefficients are
used in the above expression. Using similar assumptions as for CELP now we can derive

the “unbalanced™ expressions for quantizer input sample variances with the vector (size
N)

o} =0? (1 +h¥ —2(ah)® + hzicﬁxafw) , =1, N-1, (1.30)
2 _ 2{1+ RN —2(ah)?V) ..
adN_a-S 1 - cgth ] ( |.|jl)
D T = -
oe=7;{0an + Yo%) (4.32)

i=1

Using the above expression, in top graph of Fig. 4.8, we demonstrate that despite
different structure in PVQ difference sigual d, the optimum h value is also close to a.
But the final objective of this discussion was to compare the PC memory gains. Using
the apove relationships we oblain a closed form expression for the PVQ PC memory gain
which again includes the effects of feedback

Avenon e [pva=dB ( N (1 - £§,pvqazN) (1-a? ) .
N(1-a?) (1 - Gg‘WQazN) - (a2 - azmu)) (1 - ‘%.qu)

(4.33)
Unlike the CELP case, the qpf for PVQ cannot be assumed to be close to qpf of VQ for

i.i.d. Gaussian source. In this case since VQ input still carries intra-block correlations,
the VQ in PVQ has a higher {worse) qpf than the CELP case. Nevertheless we make this
assumption in view of the fact that the loss in PC memory gain due to lack of intra-block
memory is much more significant than the small degradation for small N and R.> The PC

3Note that theoretically speaking, in the case of the stationary input signal, if the design of the VQ
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memory gain for the case of ideal PVQ (wlien no feedback effect) in Eqn. -1.33 simplifies

to
_ (1 —a?)
Am-mory BC IPVQ"dB (N(]- - (12) - (02 - azh“-‘ﬂl) )
1
=dB | ————— without feedback effect. 4.34
(I—ﬁifﬂa") (34

As scen in the bottom two graphs in Fig. 4.8, as a result of lack of intra-block PC, as
the size of N is increased, there is loss in the overall PC memory gain. The loss is more
significant (np to 6 dB) in the case of highly correlated GM(1) process with e = 0.99 for
the vector length N == 10. In EC-CELP the analysis-by-synthesis feature provides the
intra-block PC gain and avoids such loss. The effect of quantization noise feedback. or the

difference between the equations 4.33 and 4.34 is depicted in Fig. 4.9,

4.3.4. Memory gain for VQ and TC

Eqn. 2.13 gave the general maximum memory gain formulation as a function of dimen-
sion size N. For the jointly Gaussian process, the following explicit formulation can be
computed [80] (Eqn. 2.14)

T ANMAR 03
High rate: AZNm*(N) lvq=dB (W) . (4.35)

For the GM(1) process, further simplification leads to the familiar formulation below
High rate: AZSY (V) ve=dB ((1- a%)~F"). (4.36)

TC, which can be considered as a constrained VQ [41], will provide the maximum
memory gain when the Karhunen-Loeve optimum transform (KLT) is used. Hence the

codebook in PVQ is properly done, the VQ memory gain should almost compensate for the intra-block
PC memory loss (see previous chapter). Nevertheless, such task may not prove to be fully practical due to
the difficultiex associated with the choice of initial codebook in the design and quantization noise effects at
low bitrates. Moveover, for the nonstationary input signal case which is often of interest, the PC memory
guin and other advantages of CELP over PVQ will obvicusly result in better overall PC+VQ memory gain
and coder performance.
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PVQ (Ned) PC memory pain as a function of h with qpl=0.3
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Fig. 4.8 Top graph: PC memory gain variation for an N = 4 dimensional PVQ as a
function of h value. The input source is the GM(1) source with a = 0.9,0.99. The qpf

is fixed at cg.wq = 0.3. The memory gain for optimum A is only nominally better than

the matched case of h = a. Bottom graphs: PC memory gain for PVQ (with no feedback
effect), showing the loss due to lack of intra-block PC for various a values.
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Ideal PC memory gain (sold) and PC gain for PVQ (with & without feadback)
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Fig. 4.9 PC memory gain for PVQ with VQ of dimension N = 3,8 with (dot) and
without (dash-dot) feedback effect. The Ideal PC gain is shown by solid lines. The input
source is a GM(1) with ¢ = 0.9,0.99.

TC maximum memory gain for the GM(1) source will also have the form [58]

High rate:  ASMY) (N) |zo= A (N) [xer= dB(1 — a?)~F* (4.37)

Due to non-recursive nature of VQ and TC schemes, it is clear that there is no need
for feedback considerations at low bitrates. Rather than using qpf, we can directly use
the rate dependent results from section 4.2. Hence, at lower rates we have the maximum

memory gains

Aoy (B, N) [ve= AZLLL(R, N) lre= AT (R, N) [ror, (4.38)

where ASNG) (R, N) |nor was given in Eqn. 4.4,

Throughout this thesis, the objective has been to obtair close to RDF performance with
low delay and complexity for sources with memory in general and highly correlated source
in particular. For such sources, a significant part of memory extends beyond the block size
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Fig. 4.10 Analysis to show a comparison of theoretical memory gains between VQ/TC.
Straight solid lines show the ideal PC memory gain. The PC memory gain will be similar
to the ones for TC/VQ for large N (effective N is PC)

N. Therefore low delay non-recursive quantizers such as VQ and TC cannot provide fuil
memory gain advantage. On the other hand, such techniques may have advantages over PC
in the case of highly nonstationary signals, where PC adaptation may be difficult. However,
for the locally stationary or slowly time-varying signals such as speech and temporal video
signals, (adaptive) PC with its recursive advantage is more effective. Common examples
for the above two cases are the use of DCT in spatial video coding and the use of CELP in
speech coding. For the temporal video coding application considered in this thesis, the PC
(commonly used DPCM or the proposed CELP configuration in chapter 5) would clearly
be preferred. Asshown in Fig. 4.10, for the GM(1) source with regression coefficient 0.99,
modeling the intensities along MTs in video signals, the required delay by VQ or TC
which could provide sufficiently high memory gain is not practical. From the analysis in
this section, it is clear that the evaluation of memory gain in recursive and non-recursive

alternatives highly depends on the particular input source and application.
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4.4. Delay and complexity

ln section 4.2, we saw that at lower rates, due to the “water-filling” phenome.non, the
size of RDF maximum available coding gains are reduced. In section 4.3, we separately
analyzed the memory gain for PC and VQ. Such analysis has to be considered in the
light of RDF maximum available gains of section 4.2. The analysis of those two sections
facilitated the assessment of tradeoffs in using various schemes (DPCM. PVQ. CELP)
and provided means to assess the overall performance of a coding configuration. We have
been using the quantizer rate-distortion performance, delay, and complexity to evaluate
the effectiveness and efficiency of the technique. In this section, once again we review and
reconsider some delay and complexity issues.

From the analysis of section 4.3 for PVQ, one may suggest that VQ can partly exploit
the memory which PC fails to remove. However, this can be both inefficient and inefisctive.
it is clear that the advantage of CELP over PVQ is in removing “maximum” possible
memory available to PC. This allows the VQ in CELP to focus on the residual memory in
the (nonstationary} signal and on the available filling gain. Therefore, the result of better
efficiency not only may appear in rate-distortion gain for a given delay N, but also in the
size I of the final codebook (complexity). In our experiments these trends were clearly
observed. i.e. the codebook of a less efficient system had to be richer. This often meant a
larger N and J.

In chapter 3, we first showed that entropy coded CELP without EC feature provides
near rate-distortion performance. Design under the EC criterion resulted in improving
the quantizer efficiency. The EC design not only reduces the required block size N or
delay, but also the codebook size J which directly dictates coding complexity. Table 4.2
shows the delay/complexity results for GM(1) source with regression coefficient 0.9. More
results were provided in Table 3.2

Previously, we saw that the special cases of design algorithm of EC-CELP for EC-
DPCM and EC-PVQ showed performance advantages over the previously reported simiiar
algorit;hms (see chapter 3 for a comparison with EC-DPCM results of [27] with special
case EC-CELP). Close to rate-distortion performance for EC-PVQ has been reported for
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N {delay) } {complexity) R SNR

EC-CELP 3 28 1.0 s
EC-CELP 1 1 1.0 10.7
EC-CELP 3 1 0.6 9.0

Table 4.2 Examples of order of coding complexity (codebook size }) and delay (N) or
various coders for GM(1) input source with a = 0.9.

GM(1) with coefficient a = 0.9 [64], [87]. Since the results in [64], [87] are limited and do
not include codebook size, proper comparisons with EC-CELP to support the theoretical
conclusions in this chapter would not be possible. Nevertheless for higher correlations.
from the analysis here we may expect that the performance may not be as close to the
rate-distortion of EC-CELP, particularly in the case of nonstationary input signal. In
Table 3.2, the improved coder efficiency, resulting from addition of EC feature (EC-CELP
over CELP), was shown to be reflected in the reduced codebook size I or complexity and
in the size of delay N. Similarly here, the improved coder efficiency of EC-CELP over EC-
PVQ, resulting from addition of intra-block PC feature, will also be reflected in reduced
codebook size J or complexity and in the size of delay N.

4.5. Conclusion

In section 4.2, a new formulation for low rate entropy-coded quantization gains was devised.
Based on low rate rate-distortion theory, we formulated RDF memory gain and empirical
space filling gains for EC coding. Using GM(1) source, we evaluated and verified these
formulations. In section 4.3, we presented new analytical results for available PC memory
gain in EC-CFLP and its special cases. These analyses in conjunction with RDF gains in
section 4.2 provided better insight for the low rate quantization using alternative schemes.
The benefit of these tools is not limited to the EC quantization but can also extend to
the RC case. We paid special attention to the analysis of PVQ in comparison with CELP.
This provided a clear picture of different combinations of PC and VQ and differences of

CELP and PVQ. These differences can be a source of confusion, as we have experienced
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this in discussions with some of the source coding rescarchers (particularly the ones who
are not very familiar with CELP).

The analyses of this chapter have shown how EC-CELP configuration allows for the
joint full benefits of PC and VQ (particularly in the nonstationary input signal case). The
analysis presented addressed the contradicting issues of high quality and low delay and
complexity in source coding of (nonstationary) sources with memory. As a consequence of
efficient PC memory removal in EC-CELP, VQ can concentrate on the remaining memory
redundancies® and the filling gain. This makes the low delay and complexity high quality
quantization possible.

In this thesis, the name EC-CELP is chosen to implicitly imply adaptiveness. Adap-
tiveness is both in the sense of PC adaptation and the VQ capability to remove the linear
and non-linear memory. In this chapter, we did not consider an extensive analysis of the
adaptive features of EC-CELP. Nevertheless, many of the issues discussed, would still have
pertinence. This is reflected in the results of the application of EC-CELP to speech signals
[35]. More rigorous analysis has been reported for the Adaptive DPCM [39), [67]. Future
work may extend such analysis to the case of CELP.

‘montly due to coarse quantization



Chapter 5

Multi-Frame Recursive
Motion-Compensated Image

Sequence Coding Using EC-CELP

5.1. Introduction

In this chapter we introduce and evaluate a new motion-compensated image sequence
coding technique. The proposed new video coder has a recursive (predictive) multi-frame
VQ configuration. The quantization technique of EC-CELP in chapter 3 is used to provide
high performance low delay quantization in the temporal domain.

Chapter 2 introduced the motivation and context of high compression video coders.
We mentioned that in motion-compensated video coding, the input source to the quantizer
is the set of intensity signals along the MTs. This source is modeled as a highly correlated
GM(1) source with a regression coefficient close to one. It was then suggested that for
such highly correlated source and at low bitrates, the commonly used temporal DPCM
quantization is in its performance saturation region. Using GM(1) models, chapters 3
and 4 quantified the above suggestion and offered the alternative of EC-CELP. Simulation
results and theoretical analyses demonstrated close to optimal performance of the EC-

CELP quantization technique under the assumed coding cenditions and source model.
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Advantages of EC-CELP were shown over non-recursive and other alternatives.

The goal of this chapter is to provide a framework, a feasibility study, and a pre-
liminary evaluation of a new recursive multi-frame video coding configuration based on
EC-CELP quantization. Prior to this work only multi-frame non-recursive video coding
configurations have been suggested [94]. As seen later in the chapter, there are a number
of issues and problems pertinent to the proposed new coding system. For instance, a new
motion estimation scheme suitable for the multi-frame recursive configuration is needed.
Also since the outputs of the temporal EC-CELP quantizer are codebook indices. spatial
lossy coding in the usual fashion is not possible. We will suggest a number of solutions
to the above problems and we will use simulations {2 examine the performance of the
proposed solutions. We will show that significant bitrate reduction over the conventional
schemes using the proposed temporal compression technique is possible. Full treatment
of the above and other issues for this new system will be beyond the scope of this thesis
and should be the subject of future research.

The chapter is organized in the following manner. In section 5.2, we introduce the non-
recursive and recursive multi-frame video coding techniques. In section 5.3, we present
several motion estimation schemes and a suitable configuration for the proposed recursive
multi-frame coding system. The temporal redundancy reduction scheme using EC-CELP
is presented in section 5.4. The full multi-frame hybrid EC-CELP image sequence coding
system is described in section 5.5. Simulation results along with discussions on alternative
schemes are given in section 5.6. Appendix C provides some details for the basic muiti-

frame MT estimation algorithm.

5.2. Multi-Frame Motion-Compensated Video Coding

Before introducing the multi-frame motioncompensated coding configurations, the pre-
sentation of the following remarks and underlying assumptions is in order. The efficiency
of the motion-compensated hybrid video coding (Fig. 2.4) or any alternative video coding
technique is dependent on the quality and accuracy of its components, namely spatio-
temporal redundancy removal and qaantization. In particular, the accuracy of motion



94 CHAPTER 5,

estimation and compensation plays an important role in the temporal redundancy re
moval and the overall performance of the coder. In fact it has been suggested [13] that if
an accurate motion compensation is available. the additional gain by the spatial encoding
of the prediction crror in the hybrid DPCM configuration will be small. To incorporate
this conclusion and to maximize the motion compensation gain, in this chapter we will
use the dense motion-compensation of [20], [66] as opposed to the commonly used block
matching techniques [94]. The general formulation of dense motion-compensated tech-
niques with fractional pixel accuracy that is used encompasses cases of pixel or subpixel
accuracy block matching techniques. As well, when desired, such a formulation can be
adapted for the region-based video coding systems. It is obvious that the gain due to
motion compensation highly depends on the particular input sequence. It has been also
suggested [43) that such gain for moving areas is limited. On the other hand, as was
pointed out in section 2.3, the coder total bitrate includes the allocated bitrate for the
motion parameters (Eqn. 2.19),

R = &n.udw + Rmot.ion paramelers®

Any high performance motion-compensated coding scheme should take the tradeofls re-
flected in the above formula into consideration. Some detailed discussion concerning such
tradeoffs for hybrid video coding systems is found in [42], [43]. 1n summary, one may con-
clude that in using motion-compensated coding, particularly at low bitrates, the benefits
and tradeoffs of motion compensation have to be treated with some caution.

The primary goal of this chapter being the evaluation of the temporal quantization
component in the video coder, we need to minimize the effects of the above tiadeoffs in our
evaluation. To do this, we assume that all coding systems evaluated benefit equally from
the dense motion compensation and consequently the cost R, ,iom parameters €20 be assumed
to be equal for all systems. Therefore the presented bitrates will only be for the Riueniry-
Additional considerations for the above tradeoff should be investigated as a topic of future
research.

Finally, some treatment of the spatial redundancy removal aspect of the proposed
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recursive multi-frame coder will be investigated but will be postponed until section 3.5.
However for the rest of this chapter, to simplify the simulations, we have assumed that
due to accuracy of motion parameters and efficiency of temporal compression, the addi-
tional gain by the intra-frame spatial encoding is small ([43]). As a result we will not be
considering the cffects of such gains in our simulations. This assumption or condition is
again similar for all coding configurations compared. It is obvious that = target maximum
compression video coder can derive a benefit (however small) from the exploitation of
the spatial coding gains. Nevertheless the above assumption permits us to conduct the
required simulations within the scope of this thesis and to draw important conclusions.

We now proceed with the introduction of the multi-frame coding configuration. As
mentioned, the motivation for using a multi-frame video configuration is to overcome
the limitations of singie-frame or temporal differential scalar quantization (DPCM) at low
bitrates. The aim is to apply the theoretical conclusions of previous chapters on EC-CELP
quantizer {and its special cases) operating on the GM(1) source model to the video signals.
Other than the multi-frame (VQ) quantization advantage, due to additional data available
in the case of multi-frame motion estimation, more effective motion compensation should
be possible (assuming the use of a suitable multi-frame motion estimation model). This can
also lead to better temporal redundancy reduction through better motion compensation.

Fig. 5.1 shows a proposed general motion-compensated multi-frame image sequence cod-
ing configuration. The encoding process involves multi-frame motion estimation (module
2) and compensation {module 3) and multi-frame quantization (module 4). The decoder
performs the inverse operations (modules 5 and §). The buffer module 1, groups a se-
quence of image frames into multi-frame coding blocks or coding image decks of temporal
size N,

D) ={gkN - N+D:1=12...N} k=12.... (5.2)
TEA:

The grouping of the frames into image decks, for the non-recursive and recursive cases, is

demonstrated in figures 5.2 and 5.3 respectively.! Note that temporal block index & is dif-

ferent from the time index ¢. Assuming that the quantizer (e.g. EC-CELP, EC-PVQ) uses
'Only spatial y dimension is shown.
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Fig. 5.1 Motion-compensated multi-frame image sequence coding configuration block
diagram.

temporal coding blocks of N samples, the encoder will have a coding delay of N frames.
The motion compensated samples along a single MT form a signal vector into the encoder
which belong to the motion-compensated coding deck D'(k). For each spatial position
z € Ag in D'(k), the above temporal vector is denoted by s(k) = [s;(k)s2(k) . ..sn(k)]T
as depicted by figures 5.3 and 5.5. Also note that in s(k)}, the implicit dependence on
x € Az is not represented. Although the coding image decks in both recursive and
non-recursive cases are identical, in the case of recursive coding, the recursive predictor
incorporates the effect of “infinite” past memory. This effect requires changes in deck
configuration shown in Fig. 5.3. Further details regarding this effect will be discussed

later.

Recent implementations of non-recursive multi-frame video coding configurations have
shown the benefits of the use of multiple frames. The three-dimensional motion-compen-
sated subband coding of [94], [95] is an example of such a class. In previous chapters, using
the GM(1) model of the temporal signal, we made the following important conclusion,

comparing the non-recursive and recursive class. To obtain similar predictive coding gains
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Coding image deck: k-2 k-1 k
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Fig. 5.2 Demonstration of non-recursive image deck D(k) with temporal block size
N = 3, the corresponding motion-compensated coding deck D'(k) (a single vector s(k) =
[s1(k)s1(k)...sn(k)]T is shown), and the N frame MT estimation image deck Darr(k).
withZ, = {t, - N~ 1,...,t, = 1,t,} and t. = kN.

Coding image deck: k2 k! 3

FOSN— | - | .
MT extimation &2 k! k
deck: fr3. 12 12l t)

Fig. 5.3 Demonstration of recursive coding image deck D(k) with temporal block size
N =3, the corresponding motion-compensated coding deck D’(k) (a single vector s(k) =
[s1(R)s1(K)...sn (k)T is shown), and the N+1 frame MT estimation image deck Dasr(k),
with Z,, = {t, - N,...,t, — 1,t.} and ¢, = kN,
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as provided by the recursive approach. a non-recursive multi-frame scheme would require
much larger number of frames or delay (an order of 10 frames was estimated).

Other than the impractical delay and complexity of uon-recursive schemes, as will be
explained next, as the number of [rames increase, the adverse effect of higher interpolation
error due to “sparse” MTs worsens. Consequently, for the non-recursive configurations,
the simultaneous maintenance of the benefits of motion compensation and non-recursive
decorrelation becomes difficult.

The difficulty of “sparse” and non-homogencous MTs. inherent to all motion-compen-
sated multi-frame configurations, arises in reconstruction of pixel intensity values at the
decoder for positions beyond the immediate neighboring frame of the reference frame.
This phenomenon is due to the fact that as motion compensation extends to a higher
number of frames, the effects of occlusion and newly exposed arcas, defining the motion
boundaries, becomes more complex. In fact there may be positions where MTs densely
overlap or certain positions in the image where no MT hits within a large distance. [t
is the latter case with the “sparse” MT region which poses difficulty. This difficulty is
particularly acute for the conditions of highly moving regions, dilation, occluded/newly
exposed regions, and large number of utilized frames N. This is demonstrated in Fig. 5.4
(also see Fig. 2.3). One may also see how various kinds of object motions (i.e. translational,
rotation, and dilation) will result in phenomena such as occlusion and new exposition with
not necessarily homogeneous MTs (e.g. “sparse” MTs in k-th deck in Fig. 5.4).

The solution to the above difficulty lies in the more complex modeling and signal pro-
cessing for motion compensation. The previous research on multi-frame video coders
has been limited and as mentioned has been done in the context of a non-recursive
configuration.? In [94], for the case of non-recursive multi-frame, relatively simple so-
lutions to the above problem are based on classification to “covered” and “uncovered”
areas with respect to the reference frame. Focusing on the original goals of this chapter

and in view of emerging region-based video coders, we will not consider any complex MT

*The emerging direction of region-based motion-compensated video coding will have an important
impact on this topic and future research probably should be in the context of region-based configurations.
Region-based video coding can alleviate the “sparse” MT problem but other issues as discursed in [94]
may rise.
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Fig. 5.4 Demonstration of non-recursive coding image deck types with locally moving
object (deck ), change of scale (deck j), “sparse” non-homogeneous motion trajectory
(deck k), and homogeneous motion trajectory (deck ). In this example MTs have a half-
pixel accuracy and the block size is N = 3.
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treatments and assume low motion activity® and MT “connectivity™ (terminology in [94]).1
Betier understanding and thorough research on more complex motion treatment especially
in the context of region-based coders would play an important role in full realization of

practical multi-frame video coders.,

5.3. Multi-Frame Trajectory Estimation

Since motion is not directly observable and mecasurable, it has to be estimated. It is
known that the estimation process is uncertain, complicated. and ill-posed. There are
a variety of existing practical motion estimation schemes, some particulerly oriented for
specific applications. Here, the goal would be to find a suitable framework, to configure,
and to formulate the estimation process for the multi-frame quantizer in general and
the recursive multi-frame quantizer in particular. As the starting scheme, among many
existing approaches we chose the mazimum a posteriori probability (MAP) criterion and
cost function formulation of [20] due to ease of adaptation for multi-frame MT estimation.
Unlike the commonly used block matching schemes, an elegant statistical approach is used
which simplifies to a non-statistical formulation of the cost minimization. Markov random
field (MRF) models are used both for observation process and MT description. It is the
Hammersley-Clifford theorem that makes the simplification of characterization of MRF for
the MAP estimation to a minimization of a cost function possible. This cost function is
the weighted sum of certain “energies” (see Appendix C).

MT estimation can be done in backward, forward, or combined fashions [20]. To
obtain the motion-compensated coding deck D’(k), we need to estimate the required MT
parameters. Hence a corresponding MT estimation image deck Dprr(k)} is defined. For
the case of the non-recursive configuration, this deck is the same as the coding deck D(%)
{Fig. 5.2) with size N. For the recursive configuration (Fig. 5.3), we propose that the
backward MT estimation to be carried out over N + 1 frames of the MT estimation deck.

3 Any higher motion activity while using this strategy would result in reconstruction with interpolation
of values from a larger neighborhood in regions with “no-hit™ MTs,
*For real video sequence, the simple strategy of motion edaptive as discussed in {34] may also be adopted.
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From here on we will concentrate on the recursive case which is of particular interest.
By proper modifications, the simpler case of non-recursive configuration can be easily
obtained.

In cach of th + MT estimation decks k -2,k —1. and k in Fig. 5.3, onc MT is illustrated
within cach estimation deck. In deck 4. the actual MT (dotted) is shown to be lincar over
the estimation deck. The MT of deck (& — 1) is quadratic. Finally a higher order MT is
shown for the deck (k — 2). Notice that the MT estimation deck in Fig. 5.3 includes a
frame from the previous coding deck. The reason for this becomes clear as the required
“continuity” for the MTs is explained later. This “continuity™ requirement is due to the
recursive nature and need for incorporation of “infinite” past memory in the multi-frame
configuration used.

For the reference time instant ¢, = &N in the MT estimation image deck Dyyr(k).
we define the set Z,, to denote the finite set of time instants of image frames in temporal
block k, used to estimate trajectory ¢, (see section 2.3.2 or the MT model later in this

section for definition of ¢, },

I;.={7 : g. is used in estimation of ¢;, }, (5.2)

{backward MTs) ={r=t.-1l:l=N,...,1,0}={t, - N,....t, - 1,t.}. (5.3)

As seen in Fig. 5.3, each MT passes through one spatial sampling point of the reference
frame (.) and extends to the last frame in the previous block (¢, — N). The k-th MT
estimation deck, with MTs passing through the grid points at time instant t,, may therefore

have the following representation

Dz (k)={g(7) : T € Ziv}, (5.4)
={g(kN-1):{=N,...,1,0}. (5.5)

The output of image deck MT estimator (module 2) is the MT parameter field P(k) =
{P2(k) : = € Az}, where each MT is described by a set of parameters® p (k). P{k)

>The motion parameters are similar to the motion vector data in the conventional video coders.
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parameter field is used to obtain the N frame motion-compensated coding image deck by

the motion-compensated image deck interpolator module 3.

D'(k)={gkN-N+D:I= N 21L (5.4)

rEAr
In Egn. 5.6, g(7) is the motion-compensated image at discrete time index 7 which is
obtained using the MT parameters estimated from MT deck Dayr(k). Such image at
non-grid image points along the MTs are obtained using one of the known two dimensional

interpolation schemes. Obviously this operation (indicated by tilde} introduces sotne noise,

The estimation criterion. The estimation of MT's can be [ormulated ax minimization
of an objective function decomposed into a structural model and a motion field model
energy [18]. The structural model corresponds to the assumptions about the properties
of objects undergoing motion. More sophisticated models represent true motion with
increased degrees of quality at the cost of increased complexity. Frequently, the simplificd
assumption of constant brightness along MTs is used. This assumption obviously is loss
valid for larger frame size N. As seen in more detail in Appendix C, the structural term
of the objective function amounts to the sample variance along MTs. The MT ficld model
energy captures the a priori knowledge about motion fields or the spatial smoothness of
MT's over certain neighborhoods. The discontinuities of the motion process over borders of
objects may be captured using region-based motion estimation or the use of occlusion and
line fields [20]. In [20], a formulation based on MRF description and Gibbs distribution
is formulated. A more popular and simpler approach simply uses rectangular blocks to
force the coherence of motion fields. A weighting factor for the motion field model energy
enforces the desired relative importance of the spatial smoothness. The above objective
function can be derived using a Bayesian formulation and MRF statistical modeling of
the observation process (MAP criterion) and motion fields. Alternatively, a deterministic
formulation such as regularization can be used.

MT models. We will adopt and adapt the approach and notation of [20] [18], with
no occlusion model, for our multi-frame recursive MT estimator as follows. We first let
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the “visible™ period be {r : 7 € I, }. Then, the MT function ¢(r:x.1,) describes the
spatial position at time 7 of an image point which at time (. was located at spatial
location © € Ag. ¢(7ix.t,) describes a 2-dimensional trajectory in the image plane while
(e(r; =, t.), 7) = ¢(x(7), y(7). 7) describes a 3-dimensional trajectory in the zyt space with
a one-Lo-one correspondence. The instantaneous velocity v and acceleration® a are defined
as the first and second derivative of ¢(7; 2, ¢}, 7) with respect to + and evaluated at 7 = 1.
Each motion trajectory ¢ is superscripted by vector of motion parameters p as ¢P. Hence,
for the lincar and quadratic trajectory model, we have p =v and p =[v a] respectively,

which may also be explicitly given for the position £ and time reference ¢, as
plz.tr) = [v(z.tr) a(z,t). (5.7)

The MT estimation is primarily based on a motion model. The multi-frame linear
or quadratic motion models (constant v or a) for the configuration in Fig. 5.3 can be

respectively described by

P(mz, )= + v(z, b, ) (T — t.), (5.8)
P(rzt)=z+ v(z, ) (T =t ) + %a(:c,t,.)(r -t.)% te{l, -{t}} =z€Ax,

where for the linear backward MTs, also a corresponding displacement field d(7;2,t,) =
z-c(r;2,t,) = v(z,t,)(t, ~ 7) is defined. Consequently, for each pixel (z,t.) in reference
frame t, where 2 MT passes, the task is to find two or four parameters or components of

v or [v a], depending on the use of linear or quadratic motion parameters.

Minimization of the cost function. Among the spatio-temporal domain approaches
to minimization of the cost function, the simplest is the block-oriented direct search,
commonly referred to as block matching (use of above structural model term is easily
possible). Gradient-based descent algorithms can provide better results which utilize both

terms of the cost function. Since the resulting cost function has sum of square terms, the

*Row vectors v and a are two dimensional vectors with z and y components.
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Gauss-Newton algorithm or an equivalent form algorithm can be used [20).7 As shown in
{20], multi-resolution estimation provides better cfficiency and improves the performance

of the algoritl.m.

MT estimation alternativ:s for multi-frame coding. \We propose the following
three alternatives for computing the multi-frame MT paramecters. The first alternative
is to use the linear model over the N + 1 frame MT estimation deck. Since the MT
estimation is meant to be carried over several frames. this simple model (p =v) may not
correspond to realistic image motion situations. A sccond aliernalive of quadratic motion
model, requiring twice as many parameters, is more suitable yet more complex [20] [10].

Some details of the above alternatives are presented in Appendix C. ®

The third allernative is a MT estimation with a picce-wise lincar model. The basic
linear model estimation is carried out over each of the NV overlapped pair of frames (v, r+1)
of the estimation deck. The resulting MT parameter field can be described by P = {v, :
T € {T;, — {t-}}. When N > 2 this alternative has larger number of parameters over
the above quadratic model. The advantage of this alternative, as shown by the solid
displacement vectors in Fig. 5.3, is that all three MT types shown, including higher than
quadratic motion model, can be approximated closely. The basic lincar estimation has
to be carried out for pairs of consecutive neighboring frames starting from the spatial

sampling points of the last frame in the deck.

Each MT in the third method formed by the N-piece trajectory between the N pairs of
frame (7, 7+ 1), traces a2 non-grid image point (z(t, — ), ¢, — ) to the corresponding non-

grid point in the neighboring frame (2(t, —{ - 1), t. == 1). The MT can be described

FAt the cost of increased complexity, one may pursue a rather globally optimum approach, using
stochastic relaxation algorithms such as simulated annealing as suggested by [20].

5To complete the formulation for the MT estimation process, the basic quadratic MT estimation al-
gorithm of Appendix C additionally uses the structural model and spatial smoothing term. A Gibbs-
Markovian model and MAP criterion are used to formulate an objective function to be minimized. Multi-
resolution deterministic relaxation [10] is the method of choice for this minimization.
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by the recursive MT piccewise-lincar estimate?

P, ==Lz, =) t, =) =2(t, =) +v (2. =), t, =) (-1),
where z(t, - l)=P (L, - Liz(t, = =1),t,=1-1) for I=N-1...., 0.

The basic algorithm outlined in Appendix C again would be used for each of the linear
MT cstimation operating on each pair of frames. Simulation results shown in section 5.6
confirms the tradeoffs of complexity and accuracy among the above three image deck MT
parameter estimation alternatives.

Using the above notations and assuming Z;, and N as in Fig. 5.3, intensities along a

single MT {output of module 2), can be represented in the following fashion

[ sik) | [5(P-N-1;2,8), 6N =1) ]
210 "P'__ —2;srsr_ -
N OB IR CICER A SO S0 I 65:9)
X sn(k) i i g(cP(te;=,te),t0) J

Note that in the above g (cP(¢,; =, t/), t,) = g(2, t,.), the grid or pixel values at 2 € Az. For
the required MT “continuity”, the last frame of the previous deck is obtained similarly but
interpolated at MT position, based on the reconstructed samples (video decoder output)

of that previous deck, i.e.
Sn(k=1) =3 (cP (t - N5z, t,) ,tr = N), (5-10)

where " indicates the reconstructed nature of the signal and ~ indicates the interpola-
tion operation. This means that using the reconstructed signals at grid positions x, the
interpolated values at non-grid MT positions are obtained.

*Note that for the special case of I =0 and ! = —1, we have

ep(t.- - Lz t)=z+vizt)-1) =0,
Ptz )=z I=-1 zeAz.

The special case of { = =1 shows the exception of the initial coordinate of the piece-wise linear MT pivoted
at the spatial grid points of the last frame.
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5.4. Temporal EC-CELP Quantization

Let us now describe the configuration and formulation of the EC-CELP quantizer as
applied to temporal redundancy removal in motion-compensated image sequence coding.
In this section we will not be concerned with the spatial redundancies, the treatment of
which is postponed until section 5.5. The raster-scanned temporal signal vectors from
the motion-compensated coding image deck D'(k) described in the previous section will
be the input to the temporal EC-CELP. In an inverse operation at the decoder, the
outputs will form the reconstructed motion-compensated coding image deck B'(k). The
prediction filter of the EC-CELP operates on the highly correlated samples along cach
of the MTs or temporal vectors (Fig. 5.3), modeled by the stationary GM(1) process.
Although MT continuity is violated at the image deck boundary, their “continuity™ is
emulated as described by Eqn. 5.10.

Fig. 5.5 shows the block diagram of the temporal EC-CELP encoder and decoder. A
buffer in the front end of the encoder will hold the temporal vectors, grouped into the
motion-compensated coding image deck D’(k). Each vector is associated with the corre-
sponding MT “continuity” sample, interpolated based on the reconstructed previous image
deck (Eqn. 5.10). First using P(k) and the last frame of the previous reconstructed deck,
g (=t — N) € D'(k), the MT “continuity” or ZIR memory is obtained by interpolation
(Eqn. 5.10). Then the raster-scanned vectors in D’(k) along with the corresponding ZIR
memory are fed into the encoder. Note that as before the dependence of the signal s(k)

on z (i.e. s(z, k)) is not shown.

Apart from this special treatment of the ZIR memory and input/output signal bufier-
ing, the temporal EC-CELP encoder and decoder in Fig. 5.5 are similar to the ones for
the EC-CELP described in Fig. 3.2. As shown in the figure, lossy+lossless coding config-
uration is inherent in the EC-CELP configuration. However, the simplified lossy coder in
temporal EC-CELP in Fig. 5.5, uses a non-adaptive prediction and does not include gain
scaling and adaptation. Nevertheless, as previously discussed, the EC-CELP allows for a
combined advantages from entropy coding, analysis-by-synthesis PC, VQ, and closed-loop
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EC design.'?

As shown in the block diagram of EC-CELP quantization in Fig. 5.5, the CELP encoder
with an analysis-by-synthesis structure uses an exhaustive search through the excitation
signal codebook. The filter ZSR and ZIR are separated to reduce the complexity. However.
as cxplained carlier using the formulation in Eqn. 5.10 and as seen in Fig. 5.3, due to
discontinuity of the signal at the image deck boundaries. s(k) at position ¢ is not the
“continuation” of s(k — 1) at the same position = but rather as an emulated (interpolated
reconstructed) version of it.!! As scen from the later simulation results, the introduced

interpolation and MT estimation error have a tolerable adverse effect, particularly in the
closed-loop CELP.

The N sample temporal input, vector, is raster-scanned by the front-end encoder buffer
from the coding image deck k. From each vector s{k) = (s1(k), s2(k), sn(k)) the CELP
encoder (®;(x)) generates the output index i(k) € Z. This index is the input to the entropy
encoder (') which results in the output c(k) € C ({C = {Ci}iez)- The inverse of the
entropy coder at the decoder (I™!) generates the output (k). The CELP decoder (¥ (y)
reconstructs the signal $(k) from this index. Similar to encoder front-end buffer, buffering
at the tail-end of the decoder will form the reconstructed motion-compensated image deck
B’(k) along with the required associated ZIR memory or emulated ZIR memory samples
Sn(k-1).

As shown in Fig. 5.5, the CELP encoder first generates the ZIR difference signal
dzn(k) with the above MT “continuity” consideration. Then each code vector v (k)
(with index ¢ € Z) from the codebook is passed through the zero-state synthesis filter to
obtain ZSR candidates 3., for the current input signal vector s(k). The index of the

1*Note that a multi-frame recursive video coder based on an adaptive {general) EC-CELP has obvious
advantages. The investigation of such coding system and the corresponding performance and complexity
tradeoffs should be the subject of future research. In the non-adaptive case, chapters 3 and 4 suggested
that an equivalence between the EC-CELP and its special case EC-PVQ can be derived. Consequently, a
watisfactory tradeoff between performance and complexity may be possible through the use of appropriately
modified EC-PVQ-based coder i place of the more general EC-CELP. Note that both EC-CELP and its
special case EC-PVQ can be the temporal quantizer of choice in the proposed recursive video coding
system. Obviously we are treating the more general cxse of EC-CELP in this chapter.

'This value must also be available to the decoder which is the reason why the reconstructed signal is
used.
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Fig. 5.5 Non adaptive EC-CELP encoder and decoder block diagram {motion-compen-
sated image deck temporal coding with first order predictor P(Z) = aZ™!)
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codevector which yields minimum entropy-constrained cost, i(k). is sent to the lossless
entropy coder. We have assumed a stationary GM(1) source and hence the predictor
coefficient value is the same as the GM(1) coefficient a (P(Z) = aZ~!). The reconstructed
vector is the summation of ZIR of ZSR of the synthesis filter using the excitation signal

ak) = [a,(k)aa(k) .. .&N(k)]T = oltkN(k) € V.,

int.er-blocl: memory im.ra—BlocAk memory codevector
T a ] o T 0 1T a; (kr‘
3(k) = a? Ivk-1) + adi(k) + Ak | (5.11)
| aV | | eN-ldy (k) +-ccadn(R) | [ dn(R) |

Note that as in chapter 3, we may also use the more compact notation 3,p (k) = H (k)a(k)
which uses the filter response lower triangular matrix H. Using the stationary assumption

H{k) = H has the representation

1 0 . 0]
a 1 ... 0
H=| o a .. 0]. {5.12)
: : . 0
Il S BTN O

In the above {1,a,a%,...2" !} are the N samples of the impulse response of the synthesis
filter l—‘—r.

It is obvious that due to the absence of gain scaling and adaptation and the assumption
of stationarity for the source model, the complexity cost for the exhaustive search reduces
considerably (see equations 3.34 and 3.53). Pre-calculation and lookup tables, as described
in section 3.3, must be used to help the reduction of computation cost.

As far as the codebook design for the temporal EC-CELP is concerned, it is the special
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case of the general design procedure in section 3.3. As it was seen there, the algorithm
simplifies considerably due to stationarity and absence of the gain scaling and adaptation.
Other factors in low complexity here (as seen in the results of section 5.6) are the relatively

small codebook size and low vector dimension N.

5.5. Hybrid temporal EC-CELP Image Sequence Coder

In this section we will review the complete coding procedure of the proposed hybrid mo-
tion-compensated multi-frame temporal EC-CELP image sequence coder referring to the
coder’s modules as was shown in Fig. 5.1. We then proposc some suitable spatial decor-
relation configurations.

For the &-th deck, N 4+ 1 and N input image frames ate buffered in decks D(k) and
Dpr(k) as inputs into image deck MT estimator and motion-compensaled image deck
interpolator modules (modules 2 and 3 in Fig. 5.1) respectively. The estimation module 2
calculates the MT parameter field P(k), using one of the methods of section 5.3. Using
P(k}, the interpolator module 3 obtains the image values along the MTs. To do this, one
of the known two dimensional interpolation schemes such as Keys® bicubic interpolation
scheme [61] is used. The output of this module is the (motion-compensated) coding image
deck D’(k). The motion-compensated image deck encoder 4 encodes D'(k). The EC-CELP
encoder described in section 5.4 is the main element of this module. As well, the MT
parameter field P(k) is to be coded by this module (MT parameter encoder). The decoder
performs the reverse operation of the encoder. Module 5 generates the reconstructed
motion-compensated image deck, B'(k). The EC-CELP decoder described in section 5.4
and the decoder of choice for the MT parameter field P(k) would form this module.

To obtain the image deck at image grid points forming D (k), module § needs to perform
scattered data to grid data an interpolation. Note that such interpolation operation is mcre
complex and introduces more error than the interpolation operation performed by module
3. The need for this operation is one disadvantage and difficulty associated with the multi-
frame coding. There are 2 number of grid data interpolation algorithms in the literature.
We used the method of [100] for this grid data interpolation. Since most of the gain



SECTION 5.5. 111

ol the EC-CELP is obtained with low temporal block size (N =2 or 3). the relatively
regular scattered data (motion-compensated deck} does not result in large errors (see
experimental results of the next section). Although we managed to provide alternative
simpler interpolation methods for the special scattered data interpolation problem at hand.
further work on this module may be needed. We refer the reader for a discussion on this

topic in [100].

To obtain the EC coder codebook, a training image sequence is used. Using the
modules 1-3 we generate a sequence of training motion-compensated image decks D'(k),
(k = 1,2,...). The corresponding training signal from this deck sequence is used to
design an EC codebook and the corresponding codevector code length book as described

in chapter 3. Obviously any test sequence is not included in the training image sequence.

When using the EC-CELP coding scheme, the output of the EC-CELP is a spatial
field of integer-valued indices of the codevectors i(k). From the indices i(k) of all spatial
coordinates # € Ay, we construct the index field of the image deck & denoted by I(k) =
{iz(k) € Z:z € Az}. The entropy of these indices constitutes the rate for the coding
scheme. In real situation, lossless coding has to be applied to these index fields. For a
simple comparison of the above EC-CELP configuration with the common motion-com-
pensated coding, the EC-CELP may be replaced with DPCM coder, and the first order
entropy of J(k) for the configurations can be compared. As mentioned in our experiments,
we also did not consider the coding of the trajectory parameter fields, P(k). Section 5.2
assumed that the cost of such coding will be similar for the compared coders. Similarly,
we obtained results for an EC-DPCM as a special case of EC-CELP with temporal block
size N = 1 (see results in the next section). This design approach showed improvement
over the alternative design method of EC-DPCM in [27] for GM(1) source for rates less
than one bps. Obviously it is expected that the performance of EC-CELP improves as
larger N values are used. Due to the EC design advantage, even an EC-CELP with N =1
(our EC-DPCM) outperforms the simple DPCM significantly.

The encoder and decoder blocks should include both temporal and spatial lossy and
lossless compression techniques. As mentioned before, in this study we emphasized the
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examination of advantages of better exploitation of temporal redundancy. To simplify
the simulations, we assumed that the EC-CELP is to code intensities along MTs without
being concerned with the spatial redundancies of the EC-CELP codevector index fields.
Nevertheless in the next two subsections we will consider the particularity of the spatial
redundancy removal in the hybrid temporal EC-CELP video coding configuration. A
number of proposals!? with regard to spatial redundancy removal using lossless and lossy

coding will be presented.

5.5.1. Spatial redundancy reduction using lossless coding

Up to this point we have focused on the temporal redundancy removal coding gains.
Subsequent to the use of temporal EC-CELP, direct use of conventional spatial redundancy
removal schemes (i.e. hybrid DCT-VLC) will not be applicable. This can be casily observed
from the fact that the EC-CELP output index field I(&) can only be losslessly encoded.
Similar to the case of one dimensional temporal signal, discussed in previous chapters, the
spatial coding gains may be classified into the three categories of memory, shaping, and
space filling. The first order entropy coding can only provide the shaping gain.

High order lossless coding. In the conventional video coding of hybrid DCT-
entropy, DCT furnishes the memory coding gain and first order entropy coder provides the
shaping gain. One alternative is not to use any spatial lossy coder. If we were to use only
the first order entropy coding of EC-CELP output index field I{(k}, any possible spatial
memory gain, provided ordinarily by the DCT in conventional hybrid video coder, would
not be available. To maintain lossless coding while exploiting memory, onz may resort to
one of higher order entropy coding schemes such as the one in [75]. The spatial memory
coding gain will be additional to the excellent temporal coding efficiency obtained by the
EC-CELP. Such overall spatio-temporal coding efficiency then should be superior to the
one of the conventional schemes.

The advantage of higher-order entropy coding over the normally used first order en-

tropy coding is obtained by using the joint or conditional entropy. In our case of an image

12Providing simulations for the proposed schemes would have been out of the scope of this thesis.
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sequence coder, the higher order lossless coding would be applied on the output index field
I(k) with joint/conditional entropy set selected on the immediate spatial neighborhoods.
The fundamental information theory [38] reveals that the conditional entropy approach
potentially has a lower rate than the joint entropy approach. Obviously such gain is at
the cost of increased complexity. In [75]. it shown how to reduce the normally impractical

higher-order entropy complexity.

5.5.2. Spatial redundancy reduction using lossy coding

Due to the particularity of the temporal EC-CELP configuration, combining such a config-
uration with both lossy and lossless spatial coding would require a coupled spatio-temporal
quantization structure. Such a coupled configuration is in fact advantageous due to its joint
spatio-temporal quantization. In this configuration a spatial intra-frame coding scheme,
namely a 2D-lossy coder (a simple and suitable EC or non-EC lossy coder), would be
coupled with the temporal EC-CELP coder. The encoding will be done in a joint spatio-
temporal fashion using small spatial blocks of image decks. This means that at each coding
instant the encoder will encode a small 3-dimensional volume of the motion-compensated
image deck with an index k = [kRA¥k!] (horizontal-vertical-temporal) by generating a
spatio-temporal codevector index i(k). The minimization of the coding cost for volume
k in such configuration could be formulated as the joint spatio-temporal lossy+lossless
coder. The codevector spatial (horizontal-vertical [N*N"]) dimension can be simply cho-
sen so as to have the image spatial dimension ([M*M"]) as its multiple. The temporal
vector dimension will be denoted by N*.

Joint spatial EC-VQ temporal EC-CELP. The following proposed configuration
combines spatial EC-VQ quantization and temporal EC-CELP quantization. At the cost
of increased complexity, it allows for simultaneous and joint memory, space-filling, and
shaping gains both in spatial and temporal domains.!® Such a coder, which we may refer to
as spatio-temporal EC-VQ-CELP (spatial VQ and temporal CELP with EC), is depicted

An even more general configuration would combine temporal EC-CELP with spatial EC-CELP. This
alternative which is in fact a spatio-temporal domain EC-CELP may particularly be attractive in the case

of region-based video coders where spatial signal is locally stationary and spatial predictive coding can be
most effective.
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Fig. 5.6 VQ-CELP spatio-temporal lossy encoder (lossy coder in EC-VQ-CELP).

in Fig. 5.6. As seen in this figure the codebook is 2 3-domain'* spatio-temporal VQ
(each vector has 3 domains). Obviously, J(satic-temporal) the size of the 3-domain codebook
yprrasewempotl) has to be larger than the temporal codebook V™™ = V;. In fact, if
we were to use spatial and temporal codebooks of sizes J*patial) apd J=mpord) for separate
EC-VQ and EC-CELP respectively, one would expect that the 3-domain spatio-temporal
combined size would be Jtempersh i Jlwstiall | I Fig, 5.6, the 3-domain VQ is shown to have
domain dimensions N = [N, N¥ N¥| = [2,2, 3], resulting in the total VQ dimension 12.
In the figure, the depicted codebook size is 8.

Direct extension of formulations of signal representation in chapter 3, to the spatio-

1*We use 3-domain rather than 3-dimension to refer to image sequence spatio-temporal dimensions in
order to reserve the term dimension for VQ.



SECTION 5.6. 115

temporal domain signals is possible. To illustrate an example, let us represent the for-
mulation of the k-th reconstructed sample {extension of Eqn. 3.23). We may group the
temporal vectors to provide a more compact temporal signal representation (with index

K =1,2,..) to get

Spp go,1 (k) Spn o e (kP KV, R = 1) dp o1 (k)
S o olk S gy (KD, R, R dph v ok
Sn o (k) = th 1v 2 (k) —h th v (RO RV RN + 1 v 2(K) . 5.13)
| Sn e e (K) | | Snpvea (KRR | | dpge (k)

The temporal domain CELP using the first order prediction with coefficient k is combined

- - -~ - T
with the spatial VQ. The three domain excitation signal is d(k) = [d, (k)da(k) .. .dN(k)] =
ol (k) g pyrsietemsod) e have the following corresponding spatial vector indices

(k*, k*) as well as the associated sample (within each vector) indices (I, ),

k*e{1,2,...,M*/N*} and k¥ e {1,2,...,M*/N"}
hef1,2,...,N*} and Y€ {1,2,...,N"}.

The evaluation of the above spatial lossless or lossy redundancy removal techniques is
beyond the scope of this thesis. As mentioned, simulation results in the next section (5.6)
does not include spatial coding. It solely focuses on an evaluation of the EC-CELP config-
uration temporal coding efficiency. The choice of spatial coding for any future EC-CELP
full video coder would depend primarily on tradeoffs between complexity and available
gains, which needs further research.

5.6. Simulation Results and Conclusions

In this section we present the simulation results and draw some concluding remarks. We
first examine the proposed multi-frame MT estimation techniques. Then we present the

results related to the coding gains of the proposed temporal EC-CELP video ¢oding con-
figuration.



116 CHAPTER 5.

Multi-frame MT estimation results. As the fisst set of experiments, the theee
alternatives of MT estimation for multi-frame coding in section 5.3, were simulated and
compared. They all successfully, but with varving quality (consistent with the coneluxions
of section 5.3). resulted in generating highly correlated signal with “continuity™ of MTs,
Fig. 5.7 pictorially demonstrates the resulting motion compensated image deck D'(A) using
the second (quadraetic} MT estimation alternative. 1t is clearly seen that the signal after
motion compensation has higher correlation along the tempotal axis (for three frames from

the sequence Miss America).

Next, to have a more quantitative comparison among the three alternatives, we re
quired a precise knowledge of the real motion in the image sequence. To guarantee such
knowledge while maintaining near “real™-vidco quality we used the ray tracing software
Persistence of Vision Ray-tracer (POV) [109]. Experiments with a number of test syn-
thetic sequences with varied image and motion description were conducted. The synthetic
motion had a fractional pixel accuracy based on different motion types with different nio-
tion orders (constant v or constant a, etc). We then compared the MSE of the known true
motion field and the estimated motion field P(k), as defined in section 5.3. For acceler-
ated motion, as expected the simulations showed that the second model using a quadratic
motior model over the MT estimation deck is more suitable than the first model (lincar
motion model over deck). The piecewise-linear (third) alternative is superior to the other

two alternatives if higher than quadratic synthetic motion test sequence were used.

As previously discussed, another factor playing an important role, is the number of
frames used the MT estimation. As shown in Table 5.1, lower MSE of the MT parameters
is possible when higher estimation window N 41 (the size of MT estimation deck) is used.
This of course is a2 function of the known MT parameters and in practice may not be as
important. Using the above results and subjective evaluation, we may conclude that for
coding configurations discussed here, the quadratic (second) alternative probably produces
sufficiently satisfying results in most cases with acceptable complexity.

Figures 5.9 and 5.10 depict some simulation results using real image sequences of
Salesman and Miss America. These results were consistent with the above conclusions,
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comparing various MT estimation alternatives. In these figures using third piccewise-
lincar alternative, estimated MTs with Z,, = {¢, = 3.....t, — 1.1,} arc depicted. A
visual inspection verifies the advantage of higher order MT estimation. particularly for

the rapidly moving arcas (hand in Salesman).

I, Ve oV a: ay,

{t- - 1.1} 0.04 004 03 08
{t, -=2.t, ~ 1.t,}  0.06 0.07 0.02 0.03
{t, -3.t, - 2,t,— 1,t,} 0.04 0.04 0.02 0.02

Table 5.1 MSE between the known MT parameter and the estimated MT parameters
for a selected spatial moving region and frame of a synthesized test sequence with known

p: [1.5 1.50.5 1.0)7 for different sets Z,.

Temporal coding gains after motion compensation. To focus the simulations
on temporal coding gains, we chose to minimize the effects of motion estimation and the
grid data interpolation error on the second set of simulations. We generated synthetic
image sequences (using POV) with known simple (translation, rotation, etc) motion and
with homogeneous MT fields. For such test sequences, the moiion estimation methods of
section 5.2 resulted in near perfect trajectory description. One example sequence used is
the sequence marble!® which has a simple fractional pixel translational motion. As seen
in Fig. 5.8, the sequence does not include occlusion or newly exposed areas except at
the image borders. As a result, the MTs sufficiently away from the image borders are
homogeneous.

Both subjective and objective evaluation of of temporal coding performance for al-
ternative coders was used. For the subjective measure, informal viewing of the sequence
and the individual image frames was used. For the objective measure the commonly used
measure of Peak-SNR (PSNR)!® were used. Using the test sequence marble, we proceeded
by fixing the coded image (subjective and objective) quality while comparing the required
average bitrate in terms of estimated first order entropy for each quantization scheme.

Fig. 5.8 and Table 5.2 compare the average bit rates and quantization performance

A camera moves in frout of the textured marble wall.
'$Using the usual defiition of PSNR= dp (Pesk vgluerai?)
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time (1)

(b)

Fig. 5.7 Three-dimensional depiction of 3 frames from Miss America sequence as (a)
original image deck and (b) motion-compensated image deck.
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(@) (b) (c)

Fig. 5.8 Image sequence marble, (a) frame 5 of original (b) frame 6 of reconstructed
sequence (overall in Table 5.2) using EC-CELP N = 2 (similar quality for EC-CELP
N =1 and DPCM, rates of Table 5.2 (c) frame 5 of reconstructed sequence (overall)
using EC-CELP N = 2 showing adverse effect of grid data interpolation. As also shown
in Table 5.2 DPCM rate is 1.2 bps, EC-CELP N = 1 rate is 0.6 and EC-CELP N =2
rate is 0.4 bps.

| coder || PSNR, coder | PSNR, overall | Rate

DPCM | 404 40.4 1.2
ECCELPN=1] _ 40. 40.1 0.6
ECCELPN=2| 403 394 0.4

Table 5.2 Performance comparison among DPCM and EC-CELP (N = 1,2) for image
sequence marble, excluding few image border samples. Overall PSNR means that both
reconstruction and when applicable grid data interpolation effect are included.

quality for EC-CELP with block sizes N =1 and 2 (N = 1 is EC-DPCM) with DPCM.
The significant performance advantage of EC-CELP demonstrates that EC and EC-CELP
can overcome the DPCM performance saturation at lower bitrates. The simulations using
the synthetic sequences also showed that this improved performance is possible at nominal
cost. Such cost is evaluated in terms of marginal increase in complexity and delay. In
particular as seen from the results, the vector dimension or delay of 2 can already provide
most of available memory gain. The complexity is directly related to the codebook size
which in these simulations were quite low. In these experiments however, the effect of
complex and non-homogeneous motion as well as the effect of spatial redundancy were
deliberately not considered. Obviously such cases would arise in more realistic image
sequences. The non-homogeneous motion in particular can result in some adverse effects
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on the proposed system results. On the other hand. particularly in the context of region-
based coders and by utilization of sufficiently comprehensive motion classification, such
adverse cffects can be minimized. Other improvements may come through the adaptation

of PC in the quantizer.

The above comparison mainly demonstrates the coding gain due to better temporal
redundancy removal. The EC gain is shown by comparing the DPCM results and the
results of EC-CELP with N = 1 (our EC-DPCM). EC-CELP with N = 2 gives another

substantial improvement over N = 1.

Previously we mentioned that one disadvantage of the motion-compensated schiemes
is in possible grid data interpolation crror accumulation, particularly for larger N. In
the image border area in Fig. 5.7-¢ this effect is clearly visible. Computation of PSNR
for the affected arcas showed a loss of about 1 dB for border arcas for N value as small
as 2. Again this problem would be less significant in the emerging region-based systems
were the moving areas are better defined and have a more homogencous characteristic.
Obviously the difficulties resulting from the grid data error accumulation, particularly for

larger N. needs further investigation.

To summarize, the simulation results in this section demonstrated that EC and EC-
CELP (multi-frame recursive system) can overcome the DPCM performance limitation
at low bitrates. The gain was shown to be substantial for the case of synthetic moving
image sequences and was shown to come at relatively low cost in terms of delay and
increased coding complexity. Equivalent coding performance using non-recursive multi-
frame configuration which in theory can only be provided using a large number of frames
would probably suffer from motion compensation adverse effects for large temporal blocks.
In these experiments however, the effect of MT estimation for non-homogeneous motion
and consequent adverse effects were deliberately isolated and eliminated. In region-based
coding, and by using sufficiently complex classified MT estimation, it should be possible to
lower such adverse effects. Nevertheless the future investigation of the above issues plays
an important role in maintaining the demonstrated temporal coding gain advantages.
This study would be in the context of full coders, operating on real image sequences with
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varied motion characteristics. Finally as mentioned. the feasibility of the proposed spatial
redundancy removal in spatio-temporal coding configuration needs further investigation.
Although, as shown in [43], for accurate motion-compensated coding, the spatial coding
gain could be small, at low bit rates such coding gain could be needed (however smail). The
necessity for spatial lossy coding however depends on the required quality and tolerable
complexity as well as the size of the coding gain due to better temporal coding. Future
work should also include investigation of interpolation effects for real image sequences with
various motion cffects (occlusion, ctc), performance and complexity tradeoffs resulting

from PC adaptation, and other aspects of the complete coder described in this chapter.

(@) )

Fig. 5.8 Image sequence Salesman (face) with I,, = {t, — 3,...,¢, = 1,t,} MTs, (=)
reference frame £, = 12 (b) reference frame t. = 18 (c¢) reference frame ¢, = 18, also
showing reference and MT points.
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ig. 5.10 Image sequence Miss America (face) with Z,, = {t, - 3,...,4 — 1,4, } MTs,
al)greference t'r;ﬁe t. = 6 (b) reference frame ¢, = 9 (c) reference frame ¢, = 21.



Chapter 6

Summary and Conclusions

The first focus of this dissertation was source coding theory for input sources with memory.
In Chapter 3, we addressed the problems associated with practical high quality, low delay,
low complexity, low bitrate source coding of nonstationary sources with memory. Although
VQ with a sufficiently high dimension, can yield performance close to the rate-distortion
bound, for (nonstationary) sources with memory, the required VQ dimension or delay and
complexity is usually not practical. Other than the class of constrained VQ techniques,
classes of recursive (eg. predictive} and adaptive VQ techniques have been already used
to deal with this problem. To effectively combine the benefits of the latter two class with
entropy coding, we introduced the EC-CELP quantization design scheme. EC-CELP im-
plicitly and jointly combines the advantages of adaptive VQ, PC, and analysis-by-synthesis
with merits of EC codebook design. We also showed that the EC-CELP design algorithm
in its special cases can be used to design the EC adaptive predictive VQ (EC-APVQ)
and EC-ADPCM. For these coding configurations, good general algorithms did not exist.
Simulation results showed that, at low bitrates and for a given signal dimension N (delay),
compared to all known EC alternatives, EC-CELP provides the closest performance to the
rate-distortion bound for the Gauss-Markov source. Due 1o the efficiently designed small
size codebook, the complexity of the coding scheme is also relatively low. As the success
of CELP in the past decade and the follow up studies of the application of EC-CELP to
speech coding have suggested, for nonstationary signals such as speech and still images,



124 CHAPTER 6.

the adaptive VQ feature of EC-CELP can be most beneficial. The obvious disadvantage
comes from the complexity and adverse effects associsted with entropy coding. Studies
in the case of other EC coders have shown that such adverse effects can be minimized.,
Future work must verify that one may draw similar conclusions in the case of EC-CELP

quantization.

[n Chapter 4, we presented some new results on low rate entropy-coded quantization
theory for sources with memory and analyzed the advantages of EC-CELP in compari-
son with other EC quantizers, especially the EC predictive quantizers. The analysis and
comparisons were at low bitrates and took the quantization noise cffects at such bitrates
into consideration. Based on N-th order RDF, EC quantization theory, and empirical
methods, RDF memory gain and empiricel space filling gain (dimensionality N) at low
bitrates were formulated and calculated. These gains categorized and helped us analyze
and compare the available coding gains for various EC coders for a given rate and de-
lay (V). Based on extensions of previous prediction coding analyses to predictive VQ
and CELP. closed-form formulations for predictive memory gain for various quantization

schemes were obtained.

The second focus of this thesis was problems associated with high-compression video
coding. The current intense demand for high-compression image sequence coding is ex-
pected to continue into the next century. Better temporal and spatial modeling of the
video signal and suitable high quality quantizers play vital roles in the required coding
systems. Motion is the key factor in the temporal domain signal. Conventional entropy-
coded motion-compensated differential pulse code modulation (DPCM) quantization of
temporal video signals and its performance limitations at low bitrates is one of the bot-
tlenecks in achieving higher compression video coding. For the first order Gauss-Markov
source, modeling the intensities along motion trajectories (MTs), we observed that due
to the high quantization noise feedback at low bitrates, DPCM performance is very poor.
Simultaneous quantization of temporal multi-frame blocks is one alternative to overcome
this performance bottleneck. Although the idea of multi-frame video coding has been
around for some time, the feasibility of high performance practical multi-frame systems
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was not shown until quite recently. All such new techniques, however, belong to the class
of non-recursive quantizers. For this class and for the highly correlated input source.
performance near the rate-distortion is only possible with large delay {number of image
frames) and complexity. In the video coding portion of this thesis in chapter 5. we pro-
posed a recursive and multi-frame video coding system using EC-CELP quantization in
the temporal domain. The conclusions of chapter 3 and 4 were utilized and provided
solid theoretical basis for better temporal video coding. The proposed new approach can
provide low delay (few frames) high temporal video sighal compression at low bitrates, A
suitable motion estimation and coding configuration is also suggested. Within the scope
of this thesis, some of the problems and issues pertinent to the proposed coding system
are addressed. Significant bitrate reduction can be obtained by using the proposed muiti-
frame temporal quantizer over the conventional scheme. The proposed scheme can play a

role in high compression video coding systems at low bitrates,

6.1. Future work

In chapter 3 we used the fictional assumption that entropy coding codewords can have
non-integer length. We did not concern ourselves with the type of lossless coding used.
We also did not took into consideration the drawbacks and difficulties associated with
VLC over fixed channels such as buffer delay, overflow, and underflow or adverse effects
in the presence of channel errors. Such problems have been studied previously both for
variations of Huffman and Arithmetic lossless coders [51], [65]. Effects of the utilization of
such practical lossless coding techniques in EC-CELP and proper tradeoff between delay
and performance have to be investigated.

More work is warranted on the multi-frame recursive video coding system proposed
in chapter 5. A full coding system based on EC-CELP or its special case EC-PVQ for
the temporal domain coding needs to be simulated and compared against the alternative
full coder of conventional hybrid DPCM and recursive multi-frame configurations [94]. In
chapter 5, it was suggested that to incorporate spatial redundancy removal in the EC-
CELP-based multi-frame coder, high order lossless coding of spatial index fields is one
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alternative. Implementation of this alternative and other suggested alternatives should be
the subject of future research.

For still image coding applications and as was suggested in chapter 3, as an alternative
for spatial redundancy removal in video coding. spatial multi-domain EC-CELP quanii-
zation or EC-VQ schemes can be formulated. Such formulations will use the extension of
the formulation of single domain (e.g. temporal dimension) EC-CELP iu Chapter 3 and
details of existing results on application of spatial CELP to image coding [91]. [50] [1].
[87]. Finally. the simulation of the proposed spatio-temporal EC-VQ-CELP in chapter 5
and evaluation of its performance and complexity tradeoffs should be the subject of future

research.
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Appendix A

Basics of Information

A.l. Introduction

In this appendix some of the basics of information and some of the theories of source
coding are reviewed for reference [16], [7], [58], [S], [38]-

Fig. A.l1 shows a discrete transition mapping model, where the mapping may be due
to the channel or the source encoder. The finite set Ay = {a;,az,...,a;} of size J is
referred to as the alphabet and is used to represent the specific discrete symbol source
output {random variable (r.v.) X, the input to the mapping). A probabilily mass function
(PMF) P is defined and the pair (AJ, P) is referred to as the finite ensemble. Therelore
X assumes letter j with probability p(j). For the pair of alphabets A; and By, we
may define their product space, with joint PMF P(j, k) abbreviated as P;;. The output
of the mapping (channel or source encoder output), the r.v. ¥ takes values in the set
By. The conditional probability distribution, called transition matrix, is denoted by Q
with elements Qpy; (pjx = p;jQu;). Often one may speak of N-tuple source output, the
random vector X, with each of N random variables in the vector assuming values from the
alphabet. If the probability of a N-tuple block is equal to the product of the probabilities
of the individual letters, the source is independent, identically distributed (i.i.d.). A source
with f.i.d. probability distribution is also called a memoryless source.

self-information J{1) is the basic measure of information upon receiving the r.v. 7 (unit
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Teansition Mapping
Ay ={ay,ea,....ay} Br ={b.ba..... by}
as Source Encoder or Channel o
X p={p;} Qs Y. gq={o}
g =3 piQuy

Fig. A.1 A model for source mapping.
is bit for base 2 log and nat for natural log)
1(§) = - loga p;. (A.)

The conditional self-information is a measure of information one acquires upon being told
§

that event X = j has occurred given event Y = k
I(jlk) = —logap;)k- (A2)

The mutual information, the difference between self-information of r.v. j and the condi-
tional self-information Z(j|k}, (F(j; k) = I(j) — I(j|k)) may also be expressed as

) ) Pilk Qu; Pik
I3 k) = Ik 7) = logy, = = log, — = log, ==, Al
(73 k) = I(k; 7) = log, P 82— 82 Pide (A3)

The expected values of the above information measures are of essential interest. The

cxpected value of the self-information is the entropy
H(X)=E{I(z)} =~ p;log. pj (A4)
b

which is the average amount of information upon acquiring the knowledge of the value of
r.v. X. Also entropy is interpreted as the measure of average a priori uncertainty regarding
which value r.v. X will assume. The conditional entropy is the average conditional self-
information or the measure of average uncertainty remaining regarding which value X
has assumed after the knowledge of value of r.v. Y. The above entropy definition is the

single symbol entropy (which requires the assumption of independence among consecutive
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symbols X). From the case of N-th order or length-N svmbol entropy (unit is bit por
length-V symbol or. 1/N of that has unit bit per symbol (bps) where svmbols miy have
dependence). the more appropriate entropy definition (per symbol) for source, specially

for the one with memory, is defined as the limit:

“H(X)= im <Hy(X)
=lim =TT T pX) log, p(X)).
|

Nasw: N X

The limit exists for the asymptotically mean stationary process with discrete alphabet.

For the stationary case, ¥ H(X)/N is non-increasing in N, hence
1
o -t N r
H{X)= :Rr[' N H({X) (A.5)

and N = 1 for single symbol entropy (H{X) = 'H(X)). For the i.i.d. source ®H(X) =
H(X). For the sources with memory and without memory (with identical alphabet and

probabilities) we have

o0 — )
H(X)I with memory < H(X)I memoryless < logyJ = HU('Y)I (A.6)

memoryless

where subscript U stands for Uniform distribution. This inequality clearly demonstrates
that the nonuniform distribution of the PMF and the presence of memory constitute
the source redundancies which is the difference between log,J and entropy H{X). The
redundancy is only zero for the equi-probable (uniformly distributed PMF, p; = 1/J)
memoryless source (H {5(X)] memoryless = 1082 J)-

Since the entropy of a continuous-amplitude r.v. is infinite, differential entropy is de-

fined analogously as
h(X) = - j fx(z)log, fx(z)dz, (A7)

where fx () describes the probability density function (PDF). But the differential entropy

may also have negative or infinite value. It measures randomness relative to the coordinate
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system [7]. It is not the limiting case of entropy and the entropy of r.v. with a continuous
distribution is infinite. Consequently, when such sources are represented with a finite num-
ber of bits, distortion must always occur, Lossless coding or data compaction do not have
interesting generalizations but mutual information (defined shortly) notion and lossy or
compression coding, formulated based on such notions do have interesting generalizations
(all well-behaved in the continuous case). For the above reasons, the following relationship
{Appendix C in [58]) between the differential entropy of various continuous sources (with
a given variance ¢2) prove to be informative, We have

. 1 .
h(.x)] < = log,(27ea?) (A.8)

it
t(x)l memoryless = 2

. <
with memory

where the RHS limit is for the discrete memoryless i.i.d. Gaussian source

- 1 Sy
h (X )I memoryless = 3 loga(27eoy:). (A.9)

and

.1
Th(X)=lim <hyn(X)

=Jim (= [ [ [ 5 PV logap(XL

Eqn. A.8 states that the redundancies are due to non-Gaussian PDF and presence of
memory which amounts to non-flat PSD or SFM or 7% < 1 (for a source with variance

o RHS is the bound for 2(X)).! The notion of entropy power is defined as
Q.(X) = (2me)~122R1%) (A.10)

which has the maximum value for the Gaussian i.i.d. memoryless source equal to 0% .2

"The above relationships can be easier interpreted in the context of lossy or compression RDF formu-
lations [7], [8] later summarized in section A.1.2.
3Q«. G(X)| with memory = T
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The average mutual information another important measure, is defined as

HQ.PY=1(X:V) =3 pjilog, &2 (A1)

ok Pitk

which is the measure of average uncertainty remaining regarding which value rov, N has
assumed given the value of Y. Alternatively, 7{X:Y). is the average information given
by ¥ value about the value of X, or vice versa (/{}Y:X) = 7(X:Y)). It can be shown
that J{X;Y) € H(X} in general and we also have J{(X:Y) = H(X) - H(X|Y) for the
discrete case and 7(X;Y) = A(X) - A{X|Y) for the continuous case. Also the above
definition of average mutual information is valid for the random vector if r.v. are replaced
by random vectors (assuming they are finite valued). For the cases of infinite valued and
continuous, integral replaces sum and PDF replace PMF, Ao random vector may be
used with appropriate modifications to the definitions. For example for the random vector

continuous valued case we have

Q. fx(N= _L v fx y(zy)log, I{%;?—(sg)‘dzdy- (A.12)

For coders with fidelity criterion (lossy or compression), we measure the performance
of the coding using the tradeoff between code rate and distorlion measure p. If we have a
mapping from random process {X} with r.v. values in alphabet A to {¥Y} (alphabet A’)
{e.g. Fig. 1.2), the distortion is a mapping p: A x A’ = [0, 0). The choice of distortion
measure is varied. The most common one is the MS error defined for the N-dimensional

vectors ¢ (e.g A = RMand A’ a subset of RV) is

N
1
plz,y) = 'ﬁZ(-’ci - ) (A.13)
=1
Any norm, semi-norm or distance measure (with conventional definitions of norm, semi-
norm and distance) provides a distortion measure. The frequently used L, distance is
defined as

N
lle = 2P = (3 (21 — 277> (A.14)
i=1
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Also a difference distortion measure using only dependence on @ —  is commonly used.
Other distortion measures such as weighted squared-error may also be used

The family of distortion measures for N-dimensional sequences Yz, {Vp : N =
1,2,...} called fidelity criterion. The special case of single letter or additive fidelity crite-

riou has the additive property

‘\P
Mo(N2, ¥y) =3 ol m). (A.15)
=1

where 2y is the I-th element of vector @ (time average distortion for sequence). The long

term time average distortion

- 1E,
A}LTNEE plzr w)s (A.16)

measures sumple performance with such distortion. This limit exists for asymptotically
mecan stationary process pair. With the additional characteristic of ergodicity, the time
average is the expected distortion D. The single-letter distortion may be represented by
the J x K distortion matrix compartly with entries p;. = 'p(z;, yx) (the discrete alphabet

case).

A.1.1. Data compaction theories

For data compaction (lossless coding), there are fixed and variable categories of codes. The
Jized-length block or vector codes, encodes N-dimensional input vector X into r bits where
N and r are fixed. This is done for each input vector independent of previous vectors.
Another case is the Zree code case where encoding is done with some krowledge of earlier
ones. The special case of N = 1is the scalarcoder. If thesource is discrete and memoryless
and each source symbol (r.v. X) takes values from alphabet A7 with probability p, there
are JV possibilities for source output (fogy JV bits for each vector). This results in a
loga J bit per symbol. This is one way of measuring rate. The alternative is to measure
rate by the source entropy (about H(X) bit per symbol). But for the block codes this
efficient coding is only possible if N is large and the 2V#(X) codeword are assigned to
high probability source vectors and as a result there is arbitrary small probability of an
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error (undecodable source vector). It is of related interest to mention at this point that
that the concave entropy function of the discrete memorvless source has the property of

H{(X)<log, K.

Theorem A.l1 . Shannon first coding Theorem For a discrete memorgless source,
a fired code with block length N can be produced mapping source blocks of length N into
codewords of length r and with alphabet Ax so the probability of crror p, can be made
smaller than ¢ (¢ > 0). This is provided that N is large enough and

%logz K> H(X). (A1)

The rate %’ (bit per source symbol) here is related to information content as entropy {for
K =2, log, K = 1). The converse theorem states that il the rate is less than the source
entropy, for large block length the decoding error approaches 1. There are important
bounds [8] which show that the probability of crror decreases exponentially with the

increase in the block length N.

With veriable length codes, the N ot r, or both are variable and thete is no need for
the probability of error allowed for the fixed length code, while still allowing coding at a
rate close to source entropy. OFf practical importance are only the code classes uniquely
decodable codes (reverse mapping unambiguous) and prefiz codes. The uniquely decodable
codes with code alphabet By (K = 2 for binary) with M code words, the m-th one having
length I, satisfy the Kraft inequality

M-l

S K=<, (A.18)
m=0

and the average code length I per source letter of uniquely decodable codes and profix

codes satisfies

- H(X)
12 1k (A.19)
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There is a theorem for a memoryless discrete source stating that there exists a prefix code

with average code length close (¢ > 0, e.g. ¢ = 1/N) to the entropy

HX) ;  HX)

T < -+ ¢ (A.20)
log ik log K

The proof is using the application of law of large numbers. For the more general case
of discrete stationary but not memoryless source, the above theorem holds if we use the
definition of entropy per source symbol earlier expressed for such sources (NH(X)/N or
®H(X))

Theorem A.2 . Theorem (Variable Length codes) there exists a prefiv code with
average code length close to the entropy per symbol (¢ > 0}

Nex) - YH(X) 1
< -_— o
Niogk ' Nigk TN (A.21)

If N is large enough, “H(X) is used in place of YH(X)/N and ¢ replaces 1/N.

Huffman coding is a practical and optimum (minimum average codeword length) code
of this kind [38]. This kind of VLC has limitations (e.g. buffer length selection and e priori
knowledge of probabilities). Practical solutions to these limitations makes the code sub-
optimum. The vector Huffman coder with inputs of “extended source” (blocks on N} can
achieve in principal rates close to the limit in the above theorem. The minimum average
length has to be taken over all N which is essentially achieving entropy rate *H(X).
This scheme which belongs to the class of vector entropy coding is however complex and
sub-optimum methods again have to be used.

The other class of codes for data compaction are the tree codes where, unlike block
codes, the blocks are not independent (e.g. Elias code). For example for the Elias code,
a classification tree is used. This tree has as input real numbers r € [0, 1} which results
in a node 0 or 1. For this code unlike vector entropy codes, the number of input symbols
grouped together will vary. Asymptotically, the average word length for this code will
converge to the input entropy. The infinite precision resulting from the binary expansion of
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r makes the code impractical. Arithmetic codes are like the Elias code but with finite (not
arbitrary) precision. This makes the coding more complex and sub-optimal. Nevertheless,
it performs better than the Huffman coder at the cost of inereased complexity, This cade

is quite popular for its high performance.

When the source statistics are incompletely or inaccurately specified, the source is
stationary but not etgodic. or the source is known to be a member of some class (this
third class includes the first two), Universal codes perform well. These codes are known o
perform asymptotically as well as the custom designed code for the source. Alternatively,
adaptive Huffman codes can be used when there is no a priori knowledge of the input
probabilities. Ailso among more popular data compaction codes are: Run-Length codes,
Ziv-Lempel, and Markor codes as well as various adaptive schemes [107), [41].

A.1.2. Data compression and Rate-Distortion theories

Data compression codes or coding with a fidelity criterion, unlike data compaction allows
distortion between the input and output sequence. The resulting theories are also referred
to as rate-distortion theories. Starting with discrete memoryless sources (d.m.s.), the
theories are stated, with a brief statement of the generalizations to ergodic stationary
sources. Using the transition mapping of Fig. A.1, single letter distortion and conditional
transition elements (p;r and Qu;) and appropriate probability measure (p), the average
distortion associated with this mapping is defined as (distortion being a r.v.)

D(Q) =3 _ piQujPik- ' (A.22)
Jk
Additionally, we define the set of D-admissible transition mappings as

Qp = {Qu; : p(Q) < D}. (A-23)
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Also associated with the mapping is the average mutual information (7(Q. p) as defined

in Equ. A1), The Rate Distortion Funetion (RDF) is defined as the
RID) = min 1Q.p) = gnin [3° p,Qu, lo: 2], (A21)
Q€Qp QeQsl 4 * T

Note that as was inentioned before, for the case of continuous amplitude stationary sources,
we need to use the appropriate formulation for average mutual information, replace PMFs
with PDFs, and use integrals in place of sums in the formulations (c.g. compare equations
Al and A12).

R(D) is a positive continuous monotonic decreasing convex U function in the interval

of interest 0 < D < Dyay. Where
Dmax = mkin z PiPjk (A25)
J

R(D) vanishes for D > Dypax. When the reproduction alphabet 4z is an image of source
alphabet 4; (for cach source alphabet j. there is reproducing letter k(j) € Ay with
25k = 0}, then R(0) = H(X).

The RDF can be obtained analytically for simple sources or as a minimization problem
using the Lagrangian convex programming problem. Given probability p, the problem is to
minimize the average mutual information 7(Q, p) by choosing a proper transition mapping

Q subject to constraints
lej 20,
5,4 PiQuipie = D.

The Kuhn-Tucker conditions on the solutions of the minimization problem are

a =3 per At <1, (A-26)
k)
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where A, = 37, qee®* The RDF is sometimes expressed as maximization formulation

- av | ., AT
RD) = .-<|tlrt.‘\lé\.\.[‘ D+ ¥p,ing,:\J] ) (A
where
A={AeRI 1A, 203 pae™ < 1) (A.28)
)

and s is the Lagrangian multiplier. The argument of the maximization is a Lower Bound

for RDF often expressed in the alternative form

R(D)2 sD+3 pilogadj = H+sD+ ) piloga(;p;). (A.29)
J J

Blahut, before providing a detail iterative algorithm [or solving the problem (Theorem

6.3.8 and 6.3.10 in [8]), expresses it in terms of the following double minimization prablem

with parameter s

S Q :
R(D) =sD+ mqm len [2 ijkL’- log2 ;:J - SZ ijkb-p_,‘k] ' (A.-‘O)
Jk gk
where
D=3 piQu;pik (A1)
aok

and Q" achieves minimum. For fixed Q, the RHS is minimized by g = 3°; p;Qy; and for
fixed g, the RHS is minimized by

gre"

—— A32
2ok Qretfo ( )

Qui=

N-th order RDF For discrete time continuous stationary sources with memory
(e.g. GM(1)), with a better potential for compression due to inherent statistical dependen-
cies, we can define the useful notion of N-th order rate-distortion function in the following
manner. To incorporate the N-tuple symbol memory effects, for the N-tuple source out-
puts X, the joint PDF governing such random vectors and all conditional PDF, fyix OR
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are considered. Parallel to the formulation of d.m.s. (Eqn. A.24), for the N-tuple source
with the above modifications to the source mapping model (using random vector PDF in
place of PMF in Fig. A.1), using appropriate definition of average mutual information in
Eqn. A.12, we can define N-th order RDF

NR(D) = 5 Jnf 1(Q.fx (). (A33)

The limit of ¥ R(D) for large N becomes the RDF R(D). and it can be shown that

for stationary sources the limit always exists,
R(D) = lim N p(D). (A.34)

Theorem A.3 . Shannon third coding Theorem For the d.m.s. {X} with finite al-
phabet, and using a single-letter fidelity criterion, it is possible to find a block code with

rate R and average distortion per letier less than D, if
R 2> R(D), (A.35)

and block length N is sufficiently large. As seen before, for the code of size M = K*
(e.g. K =2) and block length N, the rate is R = §; bit per source symbol.

The converse theorem states that every block code for data-compression of block length
n and average per-letter distortion D for a finite alphabet d.m.s. has rate R satisfying
R > R(D).

For the continuous amplitude sources, differential entropy A(X) is used in place of
entropy H(X) and integrals replace summations to obtain formulation analogous to the
discrete case. It is obvious that PDF will replace the PMFs. However, an important
difference is that, unlike the discrete-case, the continuity at D = 0 does not hold for the
continuous case. In most cases R(D) = oo as D — 0. due to the fact that absolute
entropy of the continuously distributed r.v. is infinity (unlike discrete case, where H(X)
is the upper bound, k(X) is not).
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N-th order RDF for Gaussian sources with memory As is discussed in detail by
Berger in 7], the derivation of N-th order RDF for GM sources is based on properties of
symmetric Toeplitz correlation matrix of time-discrete stationary Gaussian sources, Using
cigenvalue representation of N x N correlation matrix and the following Corollary (2.8.3

in [7]) we can arrive at the N-th order RDF in Eqn. 2.8.

Corollary A.1 . For an N-fold product of statistically independent disercte memoryless
sources with RDFs Ry, k = 1,2,....N. and per symbol N-fold distortion wmeasure, the

paramelric representation of the RDF is

N
1 :
D= ,E Dy, (A.36)
and
1 & -
R(D) = % g R3(Dy). (A37)

To arrive at the RDF we use

R(D)= lim_ N R(D)

and the Toeplitz Distribution theorem [49] which provides the limit behavior as N — oo

for correlation matrix.
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PVQ predictor for the GM(1)

In this appendix we provide the derivation of prediction coefficients for the PVQ PC
in the case of GM(1) irput source. Here the quantization noise effect is not taken into
consideration. In chapter 4, the quantization noise effect is also taken into consideration.
The block diagram of the PVQ encoder used here is shown in Fig. 4.4. The encoder
has a vector-generalized DPCM closed-loop structure. The residual vector which is the
difference between the input vector and the predicted signal is the input to the VQ block.
An exhaustive search through the residual codebook of size I, finds the closest codevector
to represent this residual vector. The reconstructed vector becomes available with one
vector delay at the predictor input of the encoder. The first order (one prior block)
predictor operation based on the unquantized signal is 3(k) = A;s{k). To obtain the
optimum prediction coefficients for the case of (open-loop) PVQ, we use the formulation
of [41) and for N =3 we get

Ay = E{s(k)s7 (k- 1)}R5} = RuR;}. (B.1)
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For the Gauss-Markov process we have

1 a a* 0 0 a
a |l a =100 a* |. (B.2)
@ a 1 0 0 &



Appendix C

Multi-frame motion trajectory

estimation

The goal of this appendix is to summarize the basic estimation method of MT parameter p
for a linear or quadratic motion from an image sequence (first proposed in [20], [10]}. The
objective function whose minimization will yield an estimate p,,,,...,. of the true motion
field, is composed of a structural model term and an @ priori motion model term that
enforces spatial smoothness [20]. The structural model term S(p) at (z,t.) is chosen to

be defined as the sample variance:

N N
S@) =Y Bt~ Dt =D =C,tdFs  Clmt) = £ 3 F(~ 1t~ D) (1)

=t =1

where g(z(t. = I),t. — I) is the interpolated intensity at time ¢, — [ and position =(t, —{)

obtained using the linear or quadratic motion model in Eqn. 5.9.

The overall objective function for the quadratic motion model to be minimized over
the entire frame (total size in pixels) at time ¢, is then expressed as follows:

toral no of pixels

N
Up = 3 {E |6 (s + ot 21+ Jate, )P0, 0 - 1) - Gla, xt,)]2
i=1

i=1



144 APPENDIN C,

'i')“I Z I] P — Py ”2}

{®m.Znl}eC

where p; is defined at position z;. The second term in the equation represents the cost
associated with the smoothness of the motion field over the ensemble of all 2-clement
cliques € [10]. X’ is the regularization parameter that plays a vital role in weighting the
importance of the a priori motion model with respect to the structural model. Using
the Taylor expansion of (-} about some intermediate solution p. the non-lincar objective
function in the above equation is approximated by a quadratic function of p.

The resulting motion field estimate is given by:

plul.imnl.c = a.l'g mpin (;(p) ((‘-2

Calculating the necessary condition for optimality aU(p)/dp; = 0, and letting p, = p, at
every iteration, where p; is the average motion vector at pixel i. the resulting estimate
Pieotimute 3L €Very iteration can be determined by solving a linear system of the form
Ap; = b. The Gauss Seidel relaxation method is used in iterating a complete motion ficld,
and this process is repeated until a suitable convergence s achieved. The computational
efficiency of the algorithm, and the likelihood of convergence to the global optimum are
improved by considering a multi-resolution approach. For more details of the estimation

algorithm see [20] [10].
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