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" Computational geometry is the study of the algorithmic propertiés of geometric objects.

Some of the favourite questions in computational geometry are aBout the intersection’

1 . LY P
properties of objects: determine.if some objects intersect, report ull the objects which do

. -
et -

intersect or find all the intersections. This thesi§ addressés a different type of intersection
problem. Given a.family okponvex polytopes, find a k-flat, an affine subspace of dimension
k, which ifitersects all members of the family. Examples of k-flats are points, lines, planes

and hyperplanes. Mathematicians are interested in a similar question. What are the

- »
»

necessary and sufficient conditions for the existence of a k-flat which intersects all members

~

[ ]

of a given family of convex sets? Such a
. L]

stabber. ' )

*
°

/" In this thesis, conditions are given for the existence of line and hyperplane transwersals.

"o

: . Theorems are presentéd about.the order in which a line transversal intersects a given family

- "

of convex sets. Algorithnis are developed for finding line transversals in 3-space.
) M ¢ - -~
' - Hyperplanes which separate convex sets play an important role in conditions {or the

Wy

P ] -

' ) intersect a family of convex sets. A chapter i thid thesis is devoted to studying some

. algorithmic questions concerning such separating hyperplanes. / -
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existence of hyperplane transversals. They also determine the order in which line transversals -
-< ! N

]

k-flat is. known a$ a common transyedsal or = ©.. X
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La géométrie informatique est I'étude des propriétés algorithmiques d'objects

géomkui?fues. Certaines des questions p?éferées en géométrie iﬁformatique concernent les

Ny . . K .

" propriétés d’intersection d’objects: déterminer si des objects se croisent, rapporter tous les
2 I 4

ogjecls qui se croisent ou trouver- toutes les intersections. . Cefter thise aborde un genre
' ' 4 % ! -
différent de probléme d’interséttion.  Etant donné une famille ¢’ensembles polyédraux

convexesidrouvez un sous-espace affin de dimension k qui rencontre tous les membres de 13

famille. Des exemples de sous-espace affin sont les points, droites, plans et hyperplans. Les

-

mathématiciens sont intéressés par une questidn similaire, Quelles sont les %onditions

nécessaires et suffisantes a 'existence d’un sous-espace affin de dimension k qui rencoptre
. . ’ ‘ ,
tous les membres d'une famille donnéged’ensembles convexes? Un tel sous-espace affin est

-
. 3

appelé sous-espace affin transvsr§al.

.

. Dans cette thése, des conditions sont données pour Pexistence d’une droibte transversale

et d’un hyperplan transversal, Des théorémes sont présentés sur l’ordre dans lequel une

r

droite transyersale mnmntrc une famille;donnée d’enscmbles convexes. Des éigont}uncs sont

développés pour trouver des droites transversales ilans un espace tri-dimensionel.

+

e
7

Les hyperplans qui séparent des ensembles convexes jouent un ;ﬁle important dans les

-“ 0 - >
conditions pour I’existence- d’un hyperplans transversal. Ils déterminent aussi 'ordre dans
lequel les droites-transversales rencontrent une famille d’ensembles ‘convexes. Un chapitre de

- . . 4

» cette thése est consacré 2 l’ét)ude de certaines questions algoritl’quiques concernant ces

N 4 } S

hyperplans séparants.

'—'a “

PR -

M‘M{m T T




~

following advice.

{

'

. Coo Acknowleogemoi‘its , -

S e ‘14\ ’
i
1

~
»

Any thesis is a long, arduous task, which-owes 1tself to many although its authorshnp is
¢
one. Without the help of my. advxsor, David Avis, I woufd never have completed this thesis.

A Py

I thank him for introdixcing me to computational ggometry. for working with me. on many of

, the problems which compose this thesis, And for showing me how to present my results in a

style which is concise and coigérent (his, not mine). Most of all, I thank him for telling me

to finish my thesis. For others who decide to pursue a doctorate, 1 can only quote the

"Begin aé the beginning and go on till you come to the' end: then
- ‘

stop.”[10]

I owe much to my parents, who sparked my initial interest in mathematics and computer

séience. I am also indebted to my undergfaduatz advisor, Kenneth Steiglitz, for guiding me

as an undergraduate at Princeton mto compuncr sc:ence Durmg mx years at McGill I was

supported by research grants from NSERC and CRIM Many of the students and faculty I -

s

encountered at McGill oonmbuted to my education in computer science. Hossam ElGindy,
Ryan Hayward, Bill Lenhart, David Rappaport, Tom Shermer zmd Godfried Toussaint
increased my.understanding through many, various discussions. Gilles Pesant translated the
thesis abtract‘ into French. Meir Katchalski from the Technion introduced me to stabbing
problems which form the basis of this thesis.
continual mspmmon and encouragegent, showmg great enthustasm for my research. Some

of the work in this thesls was done with hnn Finally I would llke to thank my wife, Shifra,

e

- without whom it wouldn't have been worth doing. - T ;i

&

Richard Pollack from N.Y.U. has béen a

A

-




~ Vo e, x N T P A
- AN O AL T S T S Lo ool
- R F— Y oL N - L DR . L + ; " 4
- . f—( N - i te PR . , ey 1 v
- - . , T . ) o . ;
ot . ! - ’ [ R i . .
h t * ' w - 2 >
. ‘ ' A VRN [ ‘o ' - . - 1 2 N
. . 0 , P .
* . . 9 .
‘ T " . 1 . . '
1 e i .
o o A Y , . ) . . i . .
h ‘y * + v [ » N .
‘ 7o [ ., f ’
¥ S, .
; [P _ ’ . '
d ”, "
LY “ .
: " . 3 Ny .
7 N -
° -
4 - . - R ,
Y . v - , ; .
Q‘,“ . Q. , - . a . ) /
o : " E . )
v a M N
"‘ v Va -~ 3
he 1]
"{
A * s
! ~
. ¢ N N
0 - )
’ ¥
= . a
‘ ’ 7 ¢ ~ .
! )
- . To my parents,
i . . ,
) .
* . ~ - B
,
) ) ’ thi
. - for vast and sundry things.
& . .
v hY
3 i . N s
4 > R
.
.
a - . 4 «
® - * ’
-~ M n.
.
' ' > g
.
‘ ~
+ ' .
$‘ .
.
! [4
.
: . . _
' ~
' 3
' 1
.
' ® o . .

- -
» . .
) ! . Al S
N -
® ' - . a~ 1
«
.
.
Ve
» ¢
- -
N v -
: I
v - "
- . .
! [ ————
- +
> 0 -
B P
« o
.
* v . * .
e b4 , ,
\ \ , .
* » .
. ) . ) v
, . . )
a \ o , ; . .
- . 1 . ) \
. »
~ - ~
- o ;
. \ N ,
Ll ¢ ,
“ N a
) ’ * < N .
-
v ' *n“ .
' - -~ - Y -
" - i4 - ,
R e¥e
~ ’. 5 R
- -
t . ' -
" Y ¥ L
! d v - - . -
, s . .
£ - - . . s ~ .
. . NN ® L. . )
a N v 2o ant e L [ - ., .
b T e i ¥ . f . o .
2 TN P 5 "éx‘“"‘:‘}z”‘k o b et - . ¥ w e . v Lo Y. T i
£C » L Yeeedy P ™ PR »
h@ Pttt o AT vﬁﬁré«w%uhé&m ¢ .




4

[

B
e

®
%
<
a
7
"
s‘l\.
H
H
%

¥
He

- =
Ty

o~

3

o - Table of Contents
Absm 3 vesend ] -:ononl‘ & -!t-'-oa'onn.noaaouu-.oonooob‘c--qoc-
N S ’ ) )

-

v
[ ] L

ACKDOWIEAZEMENLS .....lvuurvssrsssaessssssssssssevns snssssssssgoosssssinssssesssssssssnssssss sassasesssesas

TADIE Of CONIERLS ...oovriverirerirrreeemesemrersosesosssssssersssssssessmsssssesosssessssresaessssssssessenssnss

Chapter 1. IDIMOQUCHION ......cooeereciinionverscnssuisssesnsssensenmmssse sosassassssssesnsess ssssssnsases

Chapter 3. Hadwxger s Theorem and Generalizations ......"............
3.2 Permitting INtEISECtONS ...c.cocovivrrcnimeecequesssassssnsssrmmasssesassensinsesensanssssassidenes
3.3 Generalizations to Hyperplane TranSVerSals ..............ccsummursseersesssessnssens

Chapter 4. GEOMELTC PEMIULAHONS .............overssrrrenerssasssmrsssssssssrimsssssssssessassesens
4.1 INOQUCHON ...covvreririnsrercssssmmnsnssesesssssmmniiossassesmasissssassissssssaensessssssnunse
4.2 Upper Bounds in the Plane ...........c..ccovnnsmneeinins i ssonsesmmensees

‘4,3 Geometric Permutations in Higher Dimensions

Chaprer §. Stabbmg Algonthms eeeesatuinssae s st st stRs L e srsa RS sr B SR RO s bR e SR se R s
5,1 INMOQUCHION ...ccucins vorvinnieeens s csssssesmnsssnsssesn ssssumssnss saensmmsesss sessssassssssones
5.2 Theory for Line Stabbmg in Three Dimensidns ...........c.cocvminneescensesiunnsnins
5 3 Algorithms for Line Stabbing in Three Dimensions ............c.cuercsveessnnnns

Chapiter 6. Separation Algonthms et st ses bt s s e e e
6.1 INOQUCHON ..ocveueiiirniarnassssssnssimsmaesssassnssssediorsssssnsesnsssssassnsasssssssasnnsns sass gores

6.2 The Separation Set Problem ................cconimeimrrmsasmermsisensssemmissnsssasasessrsssssd™

6.3 The Separation Slope Problem and the Point Cover of Ares Problem ......

+

1Y .

R Chapner? CODCIUBION ...ocvrvcrccreresmvsinsinnnnss snesssminssussesssssmmsmmssssssssstsssssssassssssssssns

[y

Q
.
o

.
L]
e

LY * f v

[ T -
BibHOGIAPHY .....covoiisssuemmimimmsnensssnssesssmunmmmnassssnssssumssssnsssibosomppsnissassssmnsasssassrsnsssonas
:

. - v -
’
L]
< N L
A )
¢
.
«
’ -
i . .
. 7 , :
’ -
)
»
-
« S
) [
R} . A N
. L 4

L]

~ T
e 1

.;, (-'ﬁ::fk ..lf?'n'”f it et D T b

’




S

LS £ 4 et et TRSE Pt M. 1 %, g 0o, L TAT
7 L ORTT LT e PR Y gl T o v e
] A AR P

= Chapter 1 R

Introduction . | _

*
]

. /

" Mathematicians have long been interested in the necessary and sufficient conditions for -

the existence of a k:ﬂat, an affine Bub,spacé of’ dimension k, which intersect°s ;all members of

a given family of coﬂ:gex sets in E?, d dimensional Euclidean space. Recently computer -
- "scientists have asked their version .of this problem. Given a finite family of convex polytopes

in EY and a fixed k find some k-flat which intersects all members of the family.

Mathematiciafis refer to k-flats which fatersect all members of a family of sets as common

transversals while these objects are known as stabbers in the computer sciencg,literamre.

When & equals O, -the problem becomes one of finding a point which lik”'ab the

- .
intersection of a family of compact convex sets or conve)F polytopes. Helly found a
necessary and sufficient condition for the existence of such a point[34]. "Helly's Theorem and

refated others by Radon and Carathéodory ‘spawned a whole area of research.into similar

x
'

+ types of geometric theoremy.

The problem of finding a point stabber for a finite family of convex polytopes can be
onie way 61; ‘viewing problems in linear programming. If the convex polytopes—,are described
as the intersection of half-spaces, the problem becotqu one of finding & point which lies at
the intersect.ion of a finite family of half-spaces. Obviously this problem can be solved using
linear programming alggrithms. Bquall} (true, any linear nprogramming problem can be
reformulated as a problem of finding a point which lies at the intersection of a finite family

of half-gpaces.

' =
-
~
. ‘
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_The importance of Helly’s';lheotem to convexity theory and of linear program‘miilg“é
o(pemtiéns research andcomputer science motivated me m consider k-flat transver;;als f'or
" values of k greater than 0. By investigating \tfne mathematical 'properu'es of these tiansvessals;
I hoped to devise efficient algorithms to find them. i3y asking algorithmic questions at;;)ut
thcsé\t{ansvemals. I tried to probe th;air stmcture and so derive their mathematical properties.

Most research-in k-transversals for £ > 0 has centered on line trafmve‘rsals {n the plane
and hypelrpl;ne trahsversals in any dimension. Hadwiger found ncéessary and st‘xfﬁcient’
conditions for , the’ exis(ﬁence of line ransvegsils for families of pairwise disjoint convex
sets{31] in the plane. Katchalski[37i and Goodm:«;n and Pc;llack[29] generalized HadMéer’s .
Theorem in different ways to theorems about hyperplane transversals. Hadwiger’s Theorem
relies* upon the order in which a directed line intersects paxrwxse disjoint convex sets.

Katchalski and others studied this order, particularly for families of translates[38, 39, 40].

An important property of confex sets concerns separating hyperplane“s’;., Two convex
.sets are disjoint if and only if they can be stricily separated by a hyperplane. In this thesis I
show that st‘zparatin.‘é hyperpl;mesl play an important’ ro’i:; hyperplane transversals a; well.
Whether theres exists a hyperplane trahsversal depends upon whether the normals bf
separat‘ing _hyperplanes cover t.he unit sphere, Additioxfally, the pfder in /which a line
intgrsccts a fa.mily of convex sets is completely determinéd by the arrangement of lines which
separg;e the convex sets.

Algorithms for finding k-transversals have deen recently proposed” for line fransversals
in E* and hyperplane transversals in any dimension[2,4,18,19). Litle has been
accomplished on k-stabbix;g in E4 for values of k other than 0 and d-1. I provide an

( v
algorithin which D. Avis and I devised for finding line transversals in E>.

Lo

U - ' . ,
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T T . The relamnslup of separation to stabbmg led me to mvesugaw separauon propemes of *~
convex sets. For instarice, how many hyperplages are needed to separate every pmr in a
* family of n convex sets? How can theie hyperplanes be found? Deciding whether m ,
hyperplanes suffice to separate every pair is NP-complete but other questions admit efficient |
algorithms, ‘ ' - . -
Chapte& 2 containg background information on convex sets, polytopes, linear algebra,
. and some elementary topology ;nd graph theory. It also contains the definitions of thé
standard terms and the notations I will use. Any new terms which I create or which have
only been used recen;ly are hiso odeﬁned within the relevant chapter, so this chapter can be

used solely for reference. . \

o

. Chapter 3 has results on necessary and sufficient conditions for hyperplane transversals.

Hadwiger's Theorem is g{nerplized to families of compact convex sets which are not

necessarily pairwise disjoint. i\ sufficient condition is given fox: the gxisténce of hyperglane

transversals for many different families .of~compact convex sets. This condition inclu;les

. o ,

theorems (;fKatchalski and Goodman and Pollack on hyperglane transversals. The results in
*  .Section 3.2 are cont;ined in a paper "A generalization of Hadwiger’s Theorem to intersecting

4

sets" [58], which has been submitted for publication. The results in Section 3.3 are by

Richard Pollack and myself and will soon be, submitted for publication.

v

- Chapter 4 examines the number of different orders in which a line or hyperpiane can .

~. intersect a family of convex sets. As noted before, these orders are related to the

arrangement of hyperplanes\which separane the convex’ scfs. One of the lemmas in this ,
chapter is interestmg in its own right. A faxmly of compact convex sets can be embedded in

a famJIy of convex polygons using 'few’ edges. Section 4.2 is contained in 2 ‘paper "Upper

o - | .
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' '
bounds on geometric permutations"[59] which will appear in "Discrete and Computational

.

-

Geometry".

-

-

In Chapter S a theory. for line stabbers in E? is developed. A Helly-type theorem is
givgn for line stabbingm of lines in E3. The theory for line stabbing is uged in alg;)rithms fc;r
line stabbing in E3. The work in Section 5.2 wis done by David Avis and myself and was
presented at the 3rd ACM Conference on Computational Geometry u;der the title
"Algorithms for line stabbers in space”[S]. A modified version of this paper, entitled
"Polyhedral line transversals in space"[6], will appear in) a special issue of "Discrete and

Computational Geometry™.

Chapter 6 investigates some algorithmic questions about hyperplane separators for
families of convex sets. Finding a minimurg set of hyperplanes which separate a family of
.convex sets is NP-complete. However, a polynomial time algorithm is given for finding the
minimum number of slopes needed to ‘;eparate the family. An efﬁcjent algorithm is also

7

iven for finding the minimum size point set needed to cover a set of arcs on the circle.

{ i’inally, Chapter 7 vencludes with some open problems and areas of research.
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Background , - -

The computational problems considered in this thesis fall under the area in computer
science cal.led computational geometry. Computational geometry encompasses a wide range
of problems concerning the algorithmic \propcrties of geometric objects. Two texts are

particularly relevant for this thesis. "Compumﬁond Geometry” by Preparata and Shamos[48] .
is an introductory text to many of the basic problems and algorithms studied in computational
. geometry. "Algorithms in Combinatorial Geometry" by Herbert Edelsbrunner{17] is a more
advanced text which covers many of the cc;mputational problems relz;ted to stabbing. A

whole chapter in Edelsbrunner’s book is devoted to line stabbing in the plane.

An invaluable reference for geometry, both Euclidean and projective, is "Analytic

Geometry,” by K. Baorsuk{8]. Borsuk gives an excellent treatment of homogeneous N

~

coordinates and duality. The classical work on convex polthopes is "Convex Polytopes™ by |

Grunbaum[30], who also gives a good introduction to convex sefs. ‘A new book, "Convex

P .
Sets and their Applications” by S. Lay[42], also covers convex sets.quite well. Many
. <4

theorems on convex Qsets are included ix; Had(?/iger, ‘Debrunner and Klt?e’s book,
"Combinatorial Geometry in the Plane”[32], and in the article "Helly’s -Theorem and its \ . -
“ Rclatgve:;z" by Danzgr, Grunbaum and Klee[13]. For topology there are many texts available.
I sugges: "I;gi)jciples of Mathen}atiml Analysis" by Rudin{50]. Stm'mdard texts on graph

theory are "Graph Theory with Applications” by Bondy and Murty [7] and "Graph Theory" o v

by Harary(33). ° , : o

ol
+




The rest of this chapter introduces the mathematical definitions and properties of many
of the mathematical and geometric objects in ghis thesis. Cartesian and homogeneous
coordinates, k-flats, convex sets, polytopes, orientation, projective space, and some -
elementary topology ar;d graph theory are all discussed here. All terms which are new to this
thesis or of recent origin will be defined as necessary within the main text, so this chapter

can be merely used as reference by those familiar with the §ubject matter.

The objects which are studied in this thesis lie in d-dimensional Euclidean space, E“.

)

Each point in E4 is represented by itg Cartesian coordinates, (o, . ., 0y), a' d-p

dimensional vector of real‘numb’ers.' If x=(a; .., 0) and y =By, . .PBg) are two
Y .

d
points in E¢, the inner product of dot product of x- afid y, x y, is Y o, B,. The norm of

T |

-3

a vector v, denoted ||v ||, is ¥v v. The distance between two points x and y is

- - | |x=y i 1. R denotes the set of real numbers and R? is the set of d-dimensional real vectors.

v )
0 is used both for the réal number O and fhe vector (0, ..., 0). The point (0,...;0) is

called the origin. .

Two sets of points are isometric if there is a 1-1 onto mapping between the two which
preser;/es distance. Such a :‘napping is called an isometric mapping or isometry. A set of
points in E? which is isc;metric to»E" is known as an a}ﬂne subsbace of dimension k or a
k-flat. Points are 0-flats, lines are 1-flats and planes are 2-flats. d~1-ffats in B are known

as hyperplanes. By convention, the empty set is a flat of dimension -1. If X is a set of

[N

points, the affine hull of X is the smallest k-flat containing X. The dimension of X is the

o "
e

dimension of the affine hull of X. '




o L - n
. A hypersphere is the set o!; all points a fixed positive 1:iistan«ce from some.point x in
/\E“‘ . The unit hypersphe; in EY, denote §4°1, is the set of all poiﬁts-distance one from the

origin. A circle is a hypersphere in E? and a sphere is-ja~Mpemph;m }in'E3. «

. . ¢ )

; 1 " Often the homogeneous coordinates _of points in\ E? are useful. Homogeneous
rcoordinates aft d+1 dimensional vectors, (0, 0y, . . ., O0g), a,: € R, Wheré oo #0. The
poin# x with Cartesian coordinates (0,0, .., ) is assigned to-the set of vectorsl
) . (A, Aoy, Aary, . .., Aoy) over all A e R, A # 0. Any one of these d+1-vectors represents the

point x in *homogeneous coordinates. Given the homogeneous coordinates

ﬂ ¢

Ao, 0y, 0, , 0z), 0 #0, of a point x € E?, the Cartesian coordinates of the points are
: a a,
. (-u—;,%.. . '—ui-)' Sometimes the homogeneous coordinates of points in E¢ will be
{
restricted to (0, ¢, . . . , 0y) where ag > 0.

(o)
Both Cartesian and homogenegus c)>ordinates are useful for describing points in E?.
Thus we will define many .objects and pmperfies in both Cartesian- and ho?uogeneous

coordinates. It is left to éxe readér to show that these definitions ‘are equivalent.
-, ¢

. Lgncs and hyperplanes have many different coordinate parameterizations. If
ﬁ o x= (04, ..., am)‘ and y =B, . .., By) are two points in E’ repiaesen;ed in Cartesian
| coordina?"es, the line through x and y is the set of all points of the form Ax + py where,
A+ u' = 1. The closed line segment or jl{st line segment Xy joining x and y is the set of all *
p%f the form Ax + iy where A20, 020 and A+ p ="1. The open line segr;lent

joining x and y is Xy minus its endpoints, x and y. Lines can be parametrized by uy + x,

where u € R?, x e E?, and y varies over all the reals. In E? the parameterization of a line

is‘(a,,ag)y + (B1, B2). % is known as the slope. . :
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Ifx = (0004 ..., 0y) and y = (Bp By, .~ -, B4) are two points in E? represented in
» ' \

»

homogeneous coordinates, then the line through xtand y is the set of all points of the form’ —,.
At +Jty, A#0 or p¥0. With the additional restriction that 0g > 0 and Py > 0, the line’

segmentiy‘isthesetofpointsofmeformrlx + py wherekZO,p.ZOandk#Oc;ru?O.' o
. nﬁ °
In Cartesian coordinates a hyperplane h° is the set {x:u'x =c,u E\Rd,(;' € li, and

u 0}. The vector u is said to be a normal to the hyperplane. fh?lamogeneéus coordinates
‘ , Al
a hyperplane h is the set {x:u-x=0,u4 & R®! and u # 0}. For convenience, we

“ .
sometimes omit the conditions on ¥ and ¢ .-

A hyperplane k divides E? into two parts known as half-spaces. 4 bounds these two.
half-spaces. These half-spaces or closed half-spaces are parametrized as {x :u-x 2 c} and -
{x .:u ‘x S c}: In homogeneous' coordinates these half-spaces are {x :u-x 20}, and
{x:u-x <0}. A half-space in E? is called a half-plane. An open half-space is‘ a closed
~
* half-space minus its bounding hyperplane A. A'set H of hyperplanes divides Euclidean

/ space into connected regions called cells. Such a division is called an arrangement of

- ' hyperplanes.

,

If X and Y are two sets of points in E4, the hyperplane » separates X from Y if X

| ) lies in one half-space bounded by h} while Y lies in the other. :If, in addition,.X and Y do
: " ) e p ¢

.

’ A .
h- * not intersect h, then h strictly separates X from Y. If X lies in one half-space bounded by

. h and h intersects X, then A is a supporting hyperplane for X Two sets of points X and

-3

: . Y can be separated or strictly separated if. there exists a hyperplane which separates or -
strictly separates X from Y, . .
' . N .
! £ .- uyx is a polynomial of degree one in x. Hyperplanes are sets of points whose

Cartesian coordinates solve the equation f(x) = 0 ‘where f is a polynomial of degree one.
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surface. In homogeneous coordmanes a quadric surface is {x :f(x) RO all terms .of f
. hagq..degme two }. A quadnc surface is ruled if it fan be decomposed info a set of lines. A

ﬁxadﬁmﬁace is doubly ruled if there are two such-decompositions. v

Let X. be a set of points in E®..The uppor eiwelope of X is the set of points

_ ~ ‘ B
' ABu - Ba-tsPa):Bry - - - Bac1,Ba) € X and By 27 for all (By, ..., By e X}

’
¢

+ Ackerman’s function is defined inductively as follows:
] .

o ) Ain)=2n,
3 Am(l)=2,

¢ A,(n)=Ay1(Ax(n=1)), ma22,n22
The inverse of Ackerman’s function is o(n) = min(i :A;(i) 2 n). Sharir and Hart proved

- - that the upper envelope of n 'liﬁe segments is composed of at most O(n oun)) line

\ 1

I\ W A
.

- w segments[52]. -

X is a convex set if for each pair of"points x and y in }f& the l)ig(e segment Xy -is a

4

points, the convex hull of‘X , conv(X), is the smallest convex set containing X. For a family

A of sets of points, conv(A) will represent the convex hull of the union of all the sets in 4.

‘ There are three related theorems by Helly, Radon and Carathéodory on convex sets.
L Helly’s Theorem. - There exists a poixtt which intersects every member of a family of cofnpact

’ ~
convex sets in E? if and only if the intersection of every d+1 sets is non-empty.

-~ - N . ns
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The s® of points [x f(x)=0 F is a polynomial of degree two } is called a quadric

subset of X. Any two disjoint convex sets can be separated by a hyperplane. If X is a setof
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convex combination of d+1 or fewer points of X. \

Radon’s Theorem. Each set of d+2 or more points in E? can be ‘ex'pxessed as the union of

-

two disjoint sets whose convex hulls have a common point.
: N

A decomposition of a set X of points in E4 into two disjoint sets, X =Y UZ,Y NZ =@,

such that conv (Y) N conv(Z) # QD is called a Radon partition.

.

The convex hull of .a finite set of points is called a convex polytope. Since all

4

" polytopes in this thesis are convex, we \ﬁ‘ﬂ;‘simply refer to convex polytopes as polytopes.

The dimension of a polytope is the dimension of the smallest k-flat which contains the

polytope. A convex polygon is a polytope of dimension two. Sometimes line segments and

_ points will also be considered convex polygons, albeit degenerate ones. A polyhedral set is

the intersection of a finite n'umberv of halfspaces. All polytopes are polyhedral sets although .

%
not all polyhedral sets are polytopes.
-

Ifp {s a polytope, there is a smallest set-of points whose convex hull is p. A point ine

this set is known as a vertex of p. A k-dimensional simplex is a polytope with k+1

vertices and dimension k. A line segment is a 1-dimensional simplex, a_triangle is a 2-

v

dimensional simplex and a tetrahedron 1s a 3-dimensional simplex.

A face of p is a set of points which lies in the intersection of p and some supporting

L

hyperplane of p. Each face has a dimension which is the dimension of the smallest k-flat

which contains the face. A face of dimension k is known as a k-face. O-faces are just the

vertices of p. 1-faces are known as edges. If p is a d-dimensional polytope, the facets of

p are the d—1-faces of p. ‘ K R

\
. «
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A hyperplane h is defined as {x:u-x =0} in homogeneous coordinates. If
* u={l,04°.., 0y}, then replacing u by {, A0, ..., Aay} for any A e R, L0, will +
4, define the same hyperplane. Thus®h can be associated with the set of -vectors

{A, m,,'. .., Mg}. This is quite similar to ﬂw’ieﬁnition of points in homogeneous .
c?ordin;tes andQS{ggests ’a mapping between the two. The dual. map D maps points in E‘;

to hyperplanes and hyperplanes to points. For a point x in homogeneous coordinates in Ed’,
D(x)={u:x-u=0} For a h)yperplane h={x:u-x =0}, D(h)=u, the point with .
homogeneous coordinates u. D(D(x)) =x and D(D(h)y=h, so D is its own inverse, |
Conveniently, D preserves incidence relations between points and hyperpl;nes. 4f x lies on‘

h, then D (h) lies on D(x). D is undefined on the origin and on hyperplanes through the

origin.

A set of points is collinear if all of the points lie on a line. A set of points is co-

planar if all the points lie on,a plane. A set of points in E? is in general position if no k
of the poin.ts are contained in a k-2-flat, 2<k&d+1. A set of hyperplanes in E? is in genera‘l

~

position if the intersection of any k of the hyperplanes is contdined in.a d—k-flat, 2kSd+1.
Let (xy, ..., %z4) be an ordered sét of d+1 points in E? represented by their
. . tr
' + Cartesian coordinates whdre x; = (o, . .., 0 4), &, € R. Let M be the d+lxd+1

~
‘

matrix

1 am al’z T UTJ

-~

1 oy, 02 0 M4 ' ) p

A

lﬂaiﬂl.l‘ ar.i+2,2 *r Odeld ?
. 1]
det(M) is the detefminant of M. The orientation of (X1, - - -+ X441) is the sign of det(M)

o of sgn(det(M)). Note that the orientation depends upon the order of the points in .

L2

-'ll -
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1 .. ,,14641) In E? the orientation of (Jg,,xz.xg) is equivalent to whethér someone

y

traveling from x) to x, and then 10 x5 makes a left tum. a-right mrn. or eontmues straight, If

By, ..., ky 2T€ N vectors oflengthn then det(u,, . .. ,u,) 1sthedeterrmnantofme nxn

$

matnx ‘with rows u, through u,. The orientation of (x',’, . -+, X441) can then be described

as sgn(det(xy=xy,x3=xy, ..., Xg4q=x1)). If xy, ... .x,,:{ are- given in homogeneous
coordinates, x; = (0 0,0 1, - . - » O g2), 00> 0, theg the orientation of (xq, ..., x4,) is
sgn (det(xy, . - s xg,0). : )

)

k-flats can also be giveri an orientation. An isometry T from a k-flat to E* gives the

-~

k-flat an orientation by specifying the orientation of every k+1 points in general position in

",the k-flat. The crientation of the k+1 points is their orientation under I. The isometries

from the k-flat to E* .can be diyided into two equivalence classes where each eq\;ivalence
class gives the k-flat the same orientation. If two isometries I' and T’ are in the same
equivalence class, then the orientation of k+1 points under I is the same as the orientation of
k+1 points under I'". If two isoxileuies I" and T’ are in different equivalence classes, then

-

the orientation of k+1 points under I is the o;;posiw of the orientation of k+1 points under

¥ / L}
r’ N

Lines can also be given orientations or directions based upon their parametrization,. A
line parametrized by 1y + x can be given a direction u and js then referred o as a directed
line. A point y =uy+x comes before a point y’' =uy’ + x if AN y". Under a suitable
is‘pmetry of the line to R, this is equiv;lem to saying that the orientation of (y,y”) is
positive. ‘ . \’ .

Hyperplanes can be given an orientation based upon their normals, ‘A hyperplane

N

h = {x :u “x = c} in Cartesian coordinates has a normal u = (B, ..., By). If x5, ..., x4

1

¥ 1.




~

are d points in &, x; = (04 y,..., % 4), then u gives them the orientation sgn(det(M))

. where .
r 1
1 B B - Ba
X 1 al,l al'z R W] ) -
¢ ' M= 0,1 Oy *° 4
“ » . . e . .m‘
- ¥l ad,l ad’z i BN ad,d

/ . CA

- ;o

Let a set of poil;ts X be represented in Cartesian coordinates’ inrE®. X is centrally
symmetric if —x € X whenever x € X. Two isometric mappings of E* to itself aré*‘of
particular interest. X’ is a reflection of X about the’ hyperplane ah if
X'={y-Au:y+hu € X,y € h,h € R,u is a normal to h}. X’ is a translation of X if
X’ = {x+v:x € X} for some fixed v.€ l}_“. Two k-flats are parallel if one is a translation

of the other. . )

. Parallel k-flats must often be handled as special cases for theorems and algorithms in
Euclidean space. Projective ;pace avoids this annoying property of parallelism. Divide the

lines :f E? into disjoint sets of parallel lines. Projective space is constructed fromaEuclidean

space by adding a point for each such set of parallel lines. These new points are called
improper points. All the lines in a givem set of parallel lines are extended to include the

.improper point corresponding to that set. These extended lines are called projective lines.

A

There is no notion of\distance in P?, so isometric mappings which preserve distance

make no sense in P4. Instead a projective mappings is a 1-1 onto mapping of a ;et of

_ points to a set of points which preserves lines. A set of’points in P4 which is some

* projective map of E* is known as a k-flat.in projective space. d-1-flats in P4 are called

, N\
]
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o hyperplanes. Whether a k-flat or hyperplane is Euclidean or projective will be indersiood.
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from the context. Every two lines in P* intersect in a point ‘and every two planes in P° -

intersect in 3 line. This generalizes to every two hyperplanes in P? intersect in a d—2-flat. _
The points in P, d-dimensional projective space, are coordinatized using homogeneous

cogrdinates. Each point x in¥4 corresponds to the set of vectors (Ao, Aoy, . . ., Aoy)

over all A € R, A#0, (00 ...,04)#0  The homogeneous coordinates

(00 &, - - . » Oy) where 0p#0 comrespond to both a point in Euclidean space and a point in

pfojectjvé space. This isomorphism defines a natural embedding of Euclidean space into
projective space. The homogeneous coordinates (0, &y, . . ., Oy) w;lere oq}:(? conesi)ond
to the improper points in i);ojective space. d
fx=(0...,04) and y = (0, . . ., Oy) anel points in P?, the projective iine
through x and y is garamenerized;by Ax+ity, A#0 or u#0. A projective hyperplané is
{x:u-x=0,u ¢ R and u #0}). A quadric surface is {x :f(x)=ld.\ all terms .of f
have degree two }. The pointsit and y‘divide the projective line through x and y into two

connected pieces. These pieces are projective line segments with endpoints x and y.

A litt}é topology is necessary to describe some properties of sets of points. A b;ll

around a point x € E¢ is the set of all points whose distance from x is !ess than some_ ﬁ'h'.d

A

radids 7 > 0. An open set in E is the union of some collection of balls. A closed set ¥ in
E? is the complement of some open set X, Y = E4=X. Closed ling segmenis are closed sets

in E! while open line segments are open sets in E'. Closed half-spaces are closed sets while
. \
open half-spaces are open sets.

5

If X is a subset of E4,-an open.set in X is a set X N ¥, where Y-is an open set in E.

o

The qpen sets in P? are unions of projective transformations of open sets in E. If X isa

subsetofl”,an’open set in X isaset X N Y, where Y is an open set in P4,

- v
Al
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.
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For a function f, a point'x and a set of points. X, f~'(x)={y :f(y) =x} and
. o B
fX)={y:f(#) € X}. A function f is continuous if £ ~'(X) is an open set whenever X

is an open set. In B a function f is continuous if and only if im (x) = f (a).
~ X —»a

@ P .
The interior of a set X, int(X), is the largest open set contained in X. The closure of
a set X, cl(X), is the smallest closed set containing X. The boundary of X, bd(X), is
cl(X) - int€X). The relative interior of a set X < E7, relinf(X), where X has dimension

k, is the interior of X when X is embedded in E*. . “

-

A set is bounded if there is some ball which contains the set. A compact set is a set

which is closed and bounded. A covering of a set X is a ;:ol_lection of sets whose union
contains X. This c;ollecq‘on is said to covér X. An open covering of aset X is a collection
of open sets which cover X. A subcovering of a set X is some subset of a covering of X
which also covers X. The subcovering is finite if it has’a finite number of elements. The
Heine-Borel Theorem states that any open covering of a compact set has a finite

subcovering. The proof is available in any standard topology text.

B

Two theorems which use topological properties are worth mentjoMng. A polytope is a
bounded polyhe?ral set. Any two compact convex sets can be strictly separated by a
hyperplaﬁe. See any standard text on convex sets for proofs.

A set of points is called disc'onnected‘ if it can be split into two dfsjoint opensets Y,Y’,
neither of which is empty. A set c;f points which is not disconnected is connected. A
hyperspﬁem ‘is connected. Arcs are connected subsets of the circle. Cl(;sed arcs are arcs

©

which ceutain their endpoints while open arcs are arcs which do not contain their endpoints:
. . :
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Finally, some terminology from graph theory is useful. A graph is a collection” of

vertices and edges, where each edge is incident with two vertices. Two vertices are
adjacent or nejghbours if there is an edge between them, i.e. they are incident with the same
edge. A graph where every edge is incident with two distinct vertices and no two edges are

3

incident with the same two verticés is known as a Simple graph. A clique is a subset of the

vertices in a graph where every two vertices in the clique are adjacent. An embedding of a

graph is a drawing of the graph on a’surface such that edges only intersect at their endpoints,
A straight line embedding is an embedding where all edges are drawn as line segments. A
planar graph is a graph which can be embedded inlthe plane. A s}g?ple planar graph always
has a straight line embedding[23]. A straight line embedding of a planat graph is also called
a planar subdivision.

) * ,

An embedding of a. graph in the plane divides the plane into connected regiorns called
faces. One of these connected regions is not bounded z;nd i» called the external face. All
other faces are internal faces. 'Each face is surrounded by vertices and edges which form its
boundary. "A planar subdivision is a triangulation if each innen;al face is a trihngle.\ A
complete triangulation is a t;iangulatic;n where ev'ery face, including the external one, is
bounded by three edées. Any face of a planar subdivision can be brbkcn\Qto triangles, or
triangulated, by the add}ion of line segme;xts between.vertices on the boundary of the face.
Similarly a pla.nar subdivision can be triangulated by triangulating each of its faces. Euler’s
forh’;la states that if » js the number of vertices in a planar graph, m is the number of
edgt;s, and f is the nun;ber of faces, then n+f —m = 2] I:l a co;nplete triangulation,

3

2m =3f and m =3n-6.

s :
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This thesis w‘ill loosely ddhere to some notational conventions. R is the get of reals and
R? is the set of d -dimensional real vectors. Euclidean d-space and projective d-space are
denoted E? and P4, ;espécﬁvely. §91 ig the unit hypersphere in E4. Lower case greek
letters will be’ used for real numbers and u,v,w for real ;'ectors. d is the dimension-of
" Euclidean or projective space. Points in Euclidean or projective space will be labelled x, y ‘or
z. Lines will be called /, line segments s, hy;'x:rplanes h, flats g, and polytopes p. Half- N
spaces and half-planes will be labelled h* and 4™, Sets of objects will generally be in capital
. letters: X,Y,Z will be sets of points, L,S,K ,H,P wilhlines, line segmengs, arcs,
hyperplanes ‘and polyiopes. respectively. E will be used for sets of edges and V for sets of
vertices. Graphs are labelled G. One exception to sets. being cépitalized is convex sets
which will be labglled a,b,c. a,b,c ‘will also be used for connected sets of " points.

Families of convex sets will be A, B,C. All objects can be subscripted or ptfmed to refer to

many different objects of the same type. (x;, .., x,)is ﬂ‘!e set of n points from x;’to x,.

(®p oo Xy , X,) is the set of n—1 pojints from x; to x, exclu&ing x;. D 1% the dual
map which takes points to hyperplanes and hyperplanes to points. @y standard convgntion,

An(n) is Ackerman’s function and o(n) is the inverse of Ackerman’s function. |S | is used

A b

N ¢

for the size of set .

@
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Chapter 3 -

< Hadwiger’s Thedtem and Generalizations

s

v
N

3.1 Introductiori ‘ .

*

- 7
Let A be a family of compact Eonverets in E4. A k-transversal or k-stabber of A

is a k-flat which intersects every member of Al 1-transversals, 2-transversals and d-1-

LY
transversals in E? will also be called line transversals, plane transversals and hyperplane

-

- "m,
transversals, respectively. If the line intersectjng evety member of A is directed, then we
will refer to it as a_directed’ line transversal. Similarly, if the k-fat imtersecting every

N
member of A is oriented, we will refer to it as an oriented k-transversal. What are

necessary and sufficient conditions for the existence of a k -transversal of A ?

In 1913, Helly proved his famops theorem on convex sets which is restated here using

the terminglogy of transversals[34].
)

Helly’s Theorem. A family of compact con;'ex sets in E4 has a O-transversal if and oniy if

* -
-

)
.every d+1 of the sets have a O-transversal. . -

Helly’s Theorem makes no restriction that the family of eompact convex sets be finite. The

.

theorem also applies-to finite families of convex sets which are not necessarily compact.

Helly’s Theorem is so useful because a px{;operty of the entire family can \be found by

‘ only looking at small subsets of the ‘family. In fact, if there exists a polynomial time .

algorithm fer determining whether every d+1 sets in some family of convex sets have a 0-

transversal, then Helly's ';‘héorem gives a polynomial time algorithm for determining whether
7

-

-18- ) -~
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4

the enﬁf'family has’ a 0-transversal. Six;lply ‘examine every d+I subsets of the family to'—
determine if_t;ley have a O-transversal. This algorithm runs in polynomi‘al time for fixed d.
After Helly published-his theorem, mathematicians started looking for theorems with a
sir;nilar form. They wanted to show jthat some property wz;s true for a set A if and .only it
was true for every m elements of A. For line transversals this produces the conjecture that a
family A of compact convex sets in E? have a line transversal if and only if eyery m of them
ha;ve one, for some fixed m. Unfonunately, this cmjectuge is false. Figure 3.1, consisting of '
a family of four line segments and a point, is a counterexample for m =4. It is a
modificaton of an example by Lewis[43]. Any line transversal must go. through the point but
any line through the point misses one of ;he lines The four line segments have a line

tra’nsvemal and every three line segments and the point have a linbﬁansversal. Itis easy"to

see how this example may be extended for any m.

A directed line transversal for a family of pairwise disjoint compact convex sets
{

generates an ordering on those ses. A directed line transversal is consistent with some
ordering of the family if the order generated by‘the transversal is the same as the given
ordering. In 19;7, Hadwiger provided the following necessary and sufficient condition for
line transversals in E2(31],

Hadwiger's Theorem. A family of pairwise disjoint compact convex sets in E? has a line
transversal if and only if there exists some ordering of the family such that every three of the

sets have a directed line transversal consistent with the ordering.

Like Helly’s Theorem, Hadwiger’s Theorem is not restricted to finite families. However, the

- 1Y

i / condition that the sets are compact and pairwise disjbint implies that the families must be

- - »
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countable,

-

Hadwiger’s Theorem includes an orderfng condition. This orderihg conditipn makes it

difficult % turn Hadwiger's Theorem into a polynomial algorithm for finding 2 line
transversal on a family of size n because a-priori there could be up to n !9orderings to check.

As we shall see in Chapter 4, there are only a polynomial humbker of orderings in which a
line can intersect a family of n compact convex sets. C ' A,
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Hégwiger’s‘ Theorem only gives necessary and sufficient conditions for families of
o q .
paifwise disjoint compact convex sets. What of families in which some sets intersect?

' Section 3.2 ‘gives a generalization of Hadwiger’s Theorem to necessary and sufficient
L H

conditions for the existence of a line’ffransversal for any family of compact convex sets in E2.
In fact, the theorem 'applies to‘ the even more general category of families of compact
(con.I;ected sets in E% The theorem applies to infinitd families of compact conm;:ted'sets,

even those that are not countable.

&
v

Hadwiger’s Theorem do¢s not give any information about the order in which the line

transversal intersects the entire family. One conjecture is that an ordered family of pairwise

disjoint compact- convex sets in E? has a directed line transversal consistent with the ordering

-
i

» [ -
if and only if every three of the sets have a directed line transversal consistent with the

ordering. This comjecture is false as can be seen from Figure 3.2, where the ordering is

-

(a,b,c,d). However, if we\mplace the condition that every three sets have a line transversal

5

consistent with the drdering with the condition that e%ery four sets have such a transversal,

A D then the conjecture i true.' Section 3.2 provides a proof of this theorem and its

1
generalization to families of compact convex sets which are not necessarily pairv'Qe(\disjoint.

.

4 . " Lines are hyperplanes in E2. In .1980. Katchalski gave a sufficient condition for the

1 v

existence of a hyperplane transversal for a family of pairwise' disjoint compact convex sets in

. oal £ 7) R “ . .

.~

+  Katchalski’s Theorem. A famiﬂy of pairwise djsjoint compact convex sets in E? has a

-
' - hyperplane transversal if there exists some ordering of the family such that every three of the

sets hav s a directed line transversal which intersects them consistent with the ordering.

d ' Y
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- Figure 3.2. Four Line Segments with No Line Transversal in Order "abcd"

The family in Katchal\ski’s Theorem may be infinite but must be countable. Katchalski's

' Theorem is only a sufficient, not a necessary, condition for the existence of a hyperplane

transversal. It also includes the pairwise disjointness condition of Hadwiger’'s Theorem. .

%
L4

2 . In 1986, Goodman ahd Pollack were able to provide necessary and sufficient conditions

for the existence of hyperplane transversals[29]. To do so, they.needed to generalize the

ideas of ordering and pairwise disjointness. The order type of a set of points in E? is the -
. ’ L .
family of orientations of its d+ituples[27]. The order type of points in E' is the family of

relative orders in which ary two points lie on E!. A k-ordering of a set is the order type
1]

produced by the association of each element of the set with some point in E*. - ,

¢ .
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A family A of sets of points is k-separable if every j sets can be ;uicﬂy separated by |
a hyperplane from every other k+2-j sets in A, 15/ Sk+. A family s O-separable if
every set can be strictly separated from every onr set and a fa;nily i\s 1-separable if every
two sets can be strictly separated from every other set. Separable may be used as a
synonym for O-separable. If a family is k-separable, then there exists no k-transversal for

any k+2 sets in the family. ,l-’or a fainily of convex sets, this is a necessary and sufficient

condition. A-family of convex sets is k-separable if and only if there exists no k-transversal

Fl n

for any k+2 sets in the family. Proofs follow the argument in Lemma 3.7 ahd-are left to the

reader. Associating each set a in a «d—1-separable family in E? with some point in a
) s

generates a d-ordering on thie family. Since the family is d—1-separable, this d-ordering is

independent of the choice of points and is unique.

An oriented k-flat g which irftersects a k—1-separable fa}rﬁly generates a k-ordering by

assoeiath;g each set a with some point in ang. As with d -orderings above, this k-orderfhg

is independent of the choice of points. An oriented k-transversal is consistent with a k-
I -
’ ordering of a k—l-separable family of convex sets if the k-ordering generated by the

[} , . s
transversal is the same as the given k-ordering.

Goodman and Pollack’s Theorem. A d-2-separable family of compact convex:gets in E¥ has

-

a hyperplane transversal if anci only- if there exists a d—1-ordering of the family such that

every d+1 sets have an oriented hyperplane transversal which is consistent with the d-1-

ordering, 2

* /
This theorem is also a generalization of a result by Valentine[56]. Again the theorem is only e

¥

true for certain families in E?, those which are d-1-separsble. These families may be

i
. ‘
.
’ a9
RS
- .
.




- infinite but must be countable. - -

Wy

Both Katchalgki’s result and Goodman and Pollack’s result are generalizations of

Hadwiger’s Theorem to hyperplane transversals. However, neither of these generalizations

contains the other. In fact, these two theorems appl;r to different families of convex sets.
. :

Families in Katchalski’s Theorem have the property that every three have a line transversal
ld

s

whereas d-2-separability for families in Goodman and Pollack’s Theorem implies that no
three have a line transversal when d = 3. Hadwiger's Theorem with suitable modifications is
true for all families of compact convex sets, not only families which are pairwise disjoint or
0-separable. This suggests thiat Goodman and Pollack’s Theorem could be generalized to all
. .
families also, not only d—1-separable ones. Unfortunately, I was unable to prove such a
generalization.” Insteazi R. Pollack and I proved a theorem about hyperplane trdnsversals for
k -separable families where k is not restricted to 0 or d~2. This result, presented in Section

3.3, includes Katchalski’'s result where £k =0 and Goodman and Pollack’s "resultwwhere

k =d-2, The proof uses many of the téchniques presented in their papers.

~

3.2 Permitting Intersections

Hadwiger’s Theorem contains the condition that every three convex sets have a dirécted
line ransversal consistent with some ordering. If convex sets are permitted to intersect, then
it is no longer clear when a transversal intersects the sets "consistent" with a given ordering.

Furthermore, if compact convex sets are replaced by compact connected sets, then a

s s .

N ] . h )
transversal may intersect 'these sets more than once. Again it is unclear in what order a
Ytransversal intersects these sets. To generalize Hadwiger’s Theorem, we must generalize this.

' notion of "consistency”. We do this by ignoring pairs of sets which are not separable.
) W,
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Let A be a family of compact comnected sets in E2. A directed line / is consistent with
’ r . a
an ordering if, for every separable pair of sets @ and § intersected by I, a precedes b in the

. ordering if and only if / intersects a before 5. Note that if a and b intersect, / may
‘ ) . >
intersect b before a and still be consistent with the ordering ab. The following theorem

generalizes Hadwiger’s Theorem to families of connected sets in E2.

¢

Theorem 3.1. A family of compact connected sets in E2 has a linie transversal if and only if

there exists some ordering of the family such that every three of the sets have a directed line

transversal consistent with the ordering. ’ <

-

A few lemmas precede the proof of Theorem 3.1.

Let A be a family of éompact connected sets in E?. A normal to a hypérplane

transversal for A is called a stabbing normal for A, .

Lemma 3.1. A famiiy of compact connected sets in E? has a hyperplane transversal if and
only if there exists some non-zero vector which is a stabbing normal for evéry pair of sets in

the family. -

-

Proof: If a family has a hyperplane transversal, then a normal to that hype‘rplgne transversal

. | .
is a stabbing normal for every pair of sets in the family. Assume there exis\us some non-zero
vectrr v which is a stabbing normil for every two sets. Project the sets onto a line with
\ ' $

direction v. The sets are compact and connected, so the projection of each set is a closed

g]ine segment. Every pair of these line segments intersect. By Helly’s Theorem there exists
%
some poin. in the intersection of all the line segments. The hyperplane through this point

with normal .7 is a hyperplane transversal for the family, ll -

*
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If an oriented hyperplane with normal v strictly separates two sets, a, b, then v is 2
separation normal for @ and b. '
Lemma 3.2. A\.{ly non-zero vector in E? is either a stabbing normal or & separation normal

for a pair of compact connected sets but not both. - :

: Proof: Let a,b be two:compact connected sets and lgt v be a non-zero vector in EX.
Project a and b onto a line with direction v. The two projections form two closed line
segments. If the line segments intersect at some point, the hyperplane through this point with
normal v intersects a a‘nd b. If the line segments do not intersect, there is‘ some point.on the

v line which separates the two. The hyperplane through this point with normal v separates a

[ . hd

from .8

4

~

Lemma 33. There exists a hyperplane transversal for a family of compact connected sets in

E? if and only if the union of the sets of separation normals over all pairs of sets in thé

1
*

family does not cover the unit hypersphere §4-1,

Proof: By Lemma 3.1 there exists a hyperplane transversal if and only if there exists some
% ’ ‘ \ .
non-zerd vector which is a stabbing normal for every pair of ses. By Lemma 3.2 there

ex}sts a non-zero vector which is a stabbing normal for every pair of sets in the family if and
».

only if that normal is not a separation normal for any pair of sets. Some normal is not a

separatioiz normal for any pair of sets if and only if the separation normals over all pairs of

sets do not cover $4 1.1 .‘
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Let A be a family of compact convex sets. If every pair of sets in A intersect then no
non-zero vector f:“a separation normal for a;y pair. By Lemma 3.1 every non-zero vector is
a stabbing normal for A. If every non-zero vector is a stabbi‘ng normal for A, then no non-
zero vector separates any pair of sets in A by Lemma 3.2. Thus every pair of sets in a

family A of compact convex sets intersect if and only if every non-zero vector is a stabbing

norinal for the pair.

Lemmas 3.1, 3.2 and 3.3 make no assumption that the families aré finite. The
1Y

foliowing lemma reduces the problem of hyperplane transversals for infinite families to the

problem of hyperplane transversals for finite families. It is a simple applicafion of the

Heine-Borel Theorem, any open covering of a compact set has a finite subcovering.

Lemma 34. There exists a hyperplane transversal for a family of 'compact connected sets in
E? if and only if there exists a hyperplane transversal for every finite subfamily of the

fanﬁly. : . ; \

Proof: Let A be a family of compact connected sets in E4. If A has a hyperplane

transversal, then every subfamily of A has the same ;}yperplane transversal. Assume there’

@

exists no hyperplane transversal for A. By Lemma 3.3 the separation normals for all pairs of
sets in A cover 841, For each pair of sets'a,b € A, let c;5 be the set of all separation
normals for the pair a,b. c,, is an open set in E“'.r Let C be a collection of all such sets of
separation normals. C is an open covering of‘rS“"l and S9! is a compact set. By the
Heine-Borel Theorem, C has a finite subcovering C’. Let A" ={a:c,, € C’ for some
be A]: Since C’ is ﬁnite, f’\i)jg’he. C’ covers $4-1, 50 by‘Lemma 33A’C A hasno
h&perplane transversak il .

. -27-
]
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Lemmas 3.1, 3.2, and 3.3, have special formulations in E2. Let A be a family of o

compact connected sets in EZ. The direction of a dnecw; line transversal for A is called a

stabbing direction for A. If a directed line / strictly separates two sets a,b, then the(
direction of [ i3 a separation direction for a ané b. Stabbing directions and separation

directions are merely stabbing normals and separation normals in E2 rotated ninety dagrees. -
It is more convenient to use ﬂstabbing directions and separation directions in the proof of -
Theorem 3.1. In'this terminology, Lemma 3.1 states dlat a family of compact connected sets

ia E2 has a line transversal\if and only if there exists. some direction which is a stabbing

direction for every pair of sets. By Lemma 3.2 a direction is either a stabbing direction ora

z
separation direction for a pair of compact convex sets but not both. Lemma 3.3 is there

|
(:ll }
' |

exists a line transversal for a family of compact connected sets in E? if and only if the

separation directions over all pairs of sets in the family do not cover the unit circle.

In E2 all lines with the same direction intersect a separable pair of connected sets in the

: : »

same order. Thus a stz.xbbing direction induces an ordering on separable pairs, namely the

érder in which any directed line with the given direction stabs the pair.

{
. Lemma 35. An.ordered family of compact connected sets in E? has a directed line
B transversal consistent with the ordering if and only if there exists some direction :vl;ich is a
stabbing direction for every two sets and the induced ordering on separable pairs of sets is

consistent with the given ordering.

Proof: If an ordered family has a directed line transversal consistent with the ordenng, then

ol

the direction of the line transversal is the desued stabbing direction for every two sepai’able
~ A . |
Sets. Asgume that there exists some dxrecuon which is a stabbing direction for every two sets

.

[
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and the induced orderifig on separable pairs is consistent with the given ordering. By Lemma.

.

3.1, there exists a directed line>with the given stabbing direction which stabs the faimily, .
. ~r

§ . 5
- . Every two separable sets are stabbed by same translate of this directed ljne in the given order

i

so the direfted line must stab every two separable sets consistent with the given ordering. Il :

~

- a

Directiqps in E? can be mapped to point; on the unit circle. The stabbing directions of
. . L]
two compdct connected sets which are not separable map to the entire circle. The stabbigg

directions of two separable sets, a,b, map to two disjoint closed arcs on the circle. Each of !

S

these arcs can be associated witha different ordering of the sets, either ab or ba. The

separation directions also map to two disjoint open arcs on the circle. Each of these arcs can
A

be associated with a different ordering ¢f the sets, either ab or ba, representing a to the left

of b or b to the left of a. By Lemma 3.2 the circle is covered by the' four arcs representing

-

stabbing and separation directions and the -intersection of any two of these arcs is disjoint.

We are now ready f&r the proof of Theorem 3.1.

Proof of Theorem 3.1: By Lemma 3.4 if the theorem is true for any finite family then it is

also true for infinite families. - A family that has a line transversal has a directed line

transversal. This directed line transversal generates an ordering on the family and intersects ’
. £

%
every three sets consistent with that ordering.

' ’

Let A be a finite family of compact connected sets. Assume that there exists some

ordering of A such that every three sets in A have a directed line transversal consistent with

o the ordering. Let K be ,tl.Ie finite set of all arcs corrésponding to separation directions for
ever;' pair of separable sets in A. Associate with each arc in X a unique Iabv;l ab or ba

;iepending on whether @ or b is to the left of separating fines with the given direction. Let
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K, be the set of all arcs labelled ab where a precedes b in the given ordering and let X5 be

the set .of all other arcs., “ o
/

- /\ We wish to. prove that the intersection of any arc in X, with any arc in K, is empty.

Certainly the intersection of arcs ab and.ba is empty. If arcs ‘ab € K, and ab’ e K,
t

inwrsegt, then there must be some line / separating a from & and 4”. Since ab € K; and

ab’ €K, a precedes b and b’ precedes a in the ordering. By assumption there must be

som;: directed line which intersects b’,a, & in that order. This directed line would have to

w— ;

. cross line I twice, an imbossibility. Therefore the intersection of arcs ab and ab’ must be

empty. .

A

If arcs ab € K| and b’a € K, intersect, then there must be some line ! separating b’

"

from a and b and a parallel line !’ separating b from a and b’. There must also be some

. directed line which intersects a and then b and b’. This line would have to intersect [ or [’

[N

twice. Therefore the intérsection of arcs ab and b’a is empty. Similarly, d;e intefection of

arcs ab and a’b and the intersection of arcs ab-and ba’are empty.

¥ The case where arcs ab eO Kyada'b’ ek, inuerse&, a,b,a’,b’ distinct, reduces to
th-e previous c;ases. Let ! brthe line separating a from b with direction represenu;d by the
poirit of intersection. Since there is a line parallel to I which separates a’ from b’, [ also

separates ¢ from b’ or b from a’. Assume [ separates from b’. Then arc ab’, 'igx.ltersccts
. 4{ v

ab. Simce we proved that ab € K, and ax € K, cannot intersect, ab’ must lie in K.

Similarly, ab’ intersects a’b’ and so ab’ must lie in K3, a contradiction. Therefore ! does

- L.

not separate a from b’.. By the same reisoning, ! does not separate b from a’. Therefore
ab and a’b’ do not intersect & the intersgctidn of any tw,<( arcs 1:71( j and X5 is erﬁpty.

'
- -

{
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Assume’ all the arcs in K& cover the circle. X must not be empty, so K{ and K5 must
. . ,
14 e .
not be empty. Let X; be all the points covered by arcs in K, and let X, be all the points
covered by arcs in Kj. X, and X, are open sets in the circle, and X, # O, X, # @,

X1 NX,=0. Since the circle is connected, X, UX, must not cover the circle. We

conclude that K does not cover the circle. By Lemma 3.3 there exists a line transversal for

AR

&
The importance of ordering in Hadwiger’s Theorem suggests the problem of finding

necess(ary ‘and sufficient conditions for the existence of a line transversal which intersects a |

\

family consistent with a given order. The following theorem gives such conditions for

families of compact connected sets.

Theorem 3.2. An ordered family of compact connected sets in the plane has a directed line
' T
transversal consistent with the ordering if and only if every six sets have a directed line

transversal consistent with the ordering.

o

Prool: If an ordered famfly has a directed line transversal consistent with the ordering, then
that directed line transversal intersects eve}y six sets consistent wnh the ordering. Let K be
the set of all arcs corresponciing to stabbing directions for pairs of disjoint sets which are
consisterit with the given ordering. Since every six sets can be inmers;ecned by some dirgcted
liné consistent with the given ordering, ever}; three arcs intersect. -Since each arc has measure
less than 180 degrees, the intersection of two arcs is still an arc. Choose one arc arbitrarily,
say ab, and inwmfct each of the ?ther arcs with this arc. Let K’ be the set of new arcs
formed. Alt arcs in K’ lie on arc ab and every two atcs in K’ intersect. Applying Helly’s

. Theo‘rem, there ex{sts some point at the intersection of all the arcs. By Lemma 3.5 there

e




4 exists a line transversal consistent with the given ordering. ll

The number six in Theorem 3.2 cannot be reduced as can be seen from Figure 33.
Every five sets can be intersected consistent with the ordering abcdef but there is no line
transversal for all six eonsisten*vith that ordering. The number six in Theorem 3.2 is
replaced by four for families of compact convex seté which are pairwise disjoint.

Theorem 3.3. An ordered family of pairwise disjoint compact convex sets in the plane has a

~  directed line transversal consistent with the ordering if and only if every four sets can be

intersected by some directed line consistent with the ordering.

Figure 3.3. Six Line segments with No Line Transversal in Order "abcdef”

= J

-3.
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Proof: , If an ordered family has a directed line transversal consistent with the ordering, then
that di ‘ ted line transversal intersects every four sets consistent with the ordering. We first
show that Theorem 3.3 is true for a family of five sets. Let {a, b, ¢, d, e} be a family of
pairwise disjoint compact convex sets in the plane with the alphabetic ordering. For every
four sets there is a directed line stabber consistent with the alphabetic order. Let Xsbeq_be the
point on the circle corresponding to the stabber of abcd. In the same manner define points
Xabces Xabder ¥acde AWM Xpoq,. Any three of these points are covered by some arc
corresponding to a stabbing direction for a pair of ordered sets. For instance x,,.4, x5, and
X pde are covered by the arc corresponding to the stabbing directions for ab. Thus every
three of these points must lie within some half-circle. If the center of the circle lies within
the convex hull of these five points, then 1t lies within the convex hull of three of the points

by Carathéodory’s Theorem, and these three points would not lie in a half-circle. It follows

that all the points must lie in some half-circle 0. {

Let K be the set of all arcs corresponding to stabbing directions for pairs of disjoint sets
which are consistent “(im the alphabetic ordering. Intersect each of the arcs in K with the
half-;:i}cle 0 to form the set of arcs K’. The intersection of each pair of arcs in K contains

- one of the five poinis, X;u.4, Xapcer Xabder Xacde OF Xpede- These points line in 6, so the
intersection of each pair of arcs in X’ is non-empty. By Helly’s Theorem and Lemma 3.5,

the intersection of all the arcs is non-empty and there exists a line transversal consistent with

the alphabetic ordering. {
" We now show that Theorem 3.3 is true for a family of six sets, {a, b,c,d, e, f} \
1 where._ every four sets have a stabber conmsistent with the alphabetic ordering. By the

argument ébove, every five of the sets have a stabber consistent with the alphabetic ordering.

¢ | ¥ |
‘ - )

-33.
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Choosc"ﬂ‘xe points x.ud;, Xabedf s Xaboef§ Xabdef » Facdef and'xm,, corresponding to the six

stabbers. By the same argument as before, all these points lie in some half-circle 0, the pairs
of arcs corresponding to stabbing directions intersect in 6 and there is a stabber consisu;nt
with the alphabetic ordering.

Given any ordered family of pairwise disjoint compact convex sets in the plane we just
showed that if every four sets can be intersected by some directed line consistent with the

given ordering, then every six sets can be so intersected. By Theorem 3.2, there exists a line

transversal for the entire family consistent with the given ordering.ll

As shown before in iigure 3.2, the number four in Theorem 3.3 cannot be reduced.

Hadwiger, Debrunner and Klee used the intersection of arcs corresponding to stabbing

directions for proving the following theorem, Proposition 27 in their book "Combinatorial

o

Geometry in the Plane"[32). Let A be a family of compact convex sets in the plane where

every pair of sets in A can be strictly separated by a vertical line. A has a line transversal if

and only if three sets in A have a line transversal. The theorem was originally proposed by

P.- Vincensini with the condition that every four sets in A have a line transversal{57]. V.L.
N

Klee, Jr. improved the condition to every three sets have a lie transversal{41]. . N

The same arguments for generalizing Hadwiger’s .Théore eliminate the pairwise
disjointness condition in Katchalski’'s Theorem. Jacob E. Goodman and Rithard Pollack

observed that the argumenis would allow an even n?ne general statement of Katchal{ki's

Theorem, namely: 0
4
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Theorem 34. Let © be a connectéd, centrally symmetric region on the hyperspherenin E¢,
A family of compact connectgg-sets in E* has a hyperplane transversal with normal in © if
there exists _spme ordering of the sets such that every three of tHE sets have a directed line

-
transversal consistent 61"&1 the ordeting.

The proof follows theﬁmof of Theorem 3.1 and is left to the reader.

3.3 Generalizations to Hyperplane Transversals

A Radon partition of a set X of points in E? is a decomposition of X into two disjoint
sets X=YuZadYNnZ= uch that conv(Y) N conv(Z) # @ . Radon’s Theorem is
that any set of d+2 or more points in EY has a Radon partition. If a set has exactly d+/

points in general position in E?, Goodman and Pollack proved that the sit has a unique

Y A

Radon partition which is determined by the order type of the set[29]. 'I‘he\irTemma is restated

_here w include the converse that the unique Radon partition determines the order type up to

"general position such that a;ly set with the given order type has the given Radon partition.

l
reflection. The reflection of an order type is the order type obtained by reflecting the points

L

in E4., The notation x1, ..., £, ..., x4 refers to all elements from x; to x,,, excluding x;.

~ ! *
Id

Lemma 3.6. There exists a unique Radon partition for each order type of d+2 points in
Conversely, there exists an order type, unique up to reflection, for each Radon partition on a

set of d+2 points in general position, such that every set with the given Radon partition has

the given f)rder type. .

‘35‘ [
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Proof: - Let X ={x},...,x2} be a set of d+2 points represented jin ;;x;lbgeneous
[ ] s )
coordinates where x; = {0y 5, O; 1, - Oz} % 0>0. A pBint 'x is & convex combination of

o

d+2 - ) *
the x; if x = Eo,-.?. for some ¢; 2 0. Given some Radon partition X =Y U Z, there exist
iml

L2V

a; not all equal to 0, such that

d+2 . ¢
Yoix; =0, 3.1

iml
where 0; >0 when x; € Y and o; < 0 when x; iz. Without loss of generality, assume x,
' v

-

is an element of ¥, i.e. O} > 0. \
d+2 d+2 - )
det(Zo,-x,,xz,x3, e ey ij. e sy xd,,,z)‘-'—" 20, det(x,-,xz,x3, ey 'ij’ R x‘;ﬂ)
in] iml
=0 det(xy, ... R, x40, (1Y det(xy .. xu42) .(32)

From equation (3.1),

d+2

&t(§0115,12,X3, .. ,fj, e Xgp) =det(0,x5,x3, . . . 'ij. ey Xg42)
‘=0, (33)
Equating efuations (3.2) and (3.3) gives ) , N
, det(xl,xz, .. ,f',r.\. . ,xd.,_z)

N o; = (-1Y*lo L , and 34

J ( )I l det(xz,...,xd+2) ( ).
... O;
det(xp,x .- -0 Ry ..., Xg0) = (~1y* -;i-det(xz, Ce 0 Xga2) 3.5)

Since 6, >§O, sgn(0;) is dependent upon the signs of the determinants ‘in (3.4) which are
determined by the order type of X. x; belongs to Y or Z depending upon sgn(0;) and the
Radon partition of X is determined by the order type of X. Similarly, by reflection of X we . _

-

may assume that det(xy, . . ., X442) > 0. Then sgn(det(xy, . . 9, £, ..., x449) in (3.5) is




o ) r L
completely determined by sgn (-3-:-) which depends upon the Radon partition of X "
"

-

Let A be a k-i-separable family of k+2 compact convex sets in E? with a given k-
.
ordering. This k -ordering corresponds to an order type on k+2 points in E*. By Lemma 3.6

there is a unique Radon partition of these k+2 points which depends sélely upon the order
. .

type. By transforming these points into the corresponding elements of A, this partition

becomes a partition A =B U C of the convex sets in A.

¢ \
Lemma 3.7. Let A ={a,,.. , a,,;} be a k—1-separable family of k+2 compact convex
sets in E¥ with a given k-ordering. Let A =B U C be the partition of A corresponding to

the unique Radon partition of points with the given order type. There exists a k-flat which

o
stabs A consistent with the given k-ordering if and only if

conv(B) Neonv(C)# D .
> ’ A}
.Proof: Without loss of generality, assume B = {a,,.. .,q;} and C = {aj,y, . .., q43}.

Assume there exists a k-flat which stabs A consistent with the given k-ordering. There exist

3

points x; e a;,i = 1,..., k+2, all of which lie on the k-flat. Furthetmore, there exists a
v Radon partition Y and Z of the x; such that some point x lies in conv(Y) and conv(Z). The

partition of A into B and C' corresponds to this,Radon partition into Y and Z. Thus, all the

} points in Y lie ig conv(B) and all the points in Z lie in conv(C). It follows that

x € conv(B) N conv(C).

For the converse assume that they exists some x € conv(B) Nconv(C). LetY be a

set of j-points each from a different convex set in B such that x € conv(Y). Similarly, let |,
Z be.a set of k~j+2 points each from a different convex set in C such that x € conv(Z).
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There exists some j—1-flat containing all the points in ¥ and some k—j+1-flat containing all

the points in Z. Since both the j~1-flat and the k-}+1-ﬂat contain x, they are contained in

some k-flat. Funhermore, Y and Z are the Radon pamuon of the pomts x; in the k-flat. By

Lemma 3.6, there is an order type, umque up to reﬁection, associated with this Radon
partition. By properly choosing the orientation of the k-flat, this order type is the same as

the given k -ordering. ll

Goodman and Pollack intr‘éduoed the following crucial lemma[29]. The proof is -

repeated here for completeness. L /

Lemma 3.8. Let Y, Z be the Radon partition of a set X = {x, ..., x4,2} of d+2 points in
2 »

general position in E?. If x,,5 is any point of E? in general position with respect to the

points in X, then there exists a point x;, € X such that Y’,Z’ i§ the Radon partition of

X~-{x; 4{xy43) where x; 3 € Y', Y'~{xy3} cY and Z' ¢ Z. ‘¢

Proxr Represent the points in homogeneous coordinates where x; = {¢; o, idr -1 Oigh
0;0>0. SinceY,Z is a Radon partition oAX ,

* d+2

Yoix; =0 ’ (3.6)

im]

for some ©;, i=1,...,d+2 where 6, >0 if x; € ¥ 'and 0; <0 if x; € Z. d-+1 points in

general position in E? do not have a Radon parfition, so 0; # 0, i=1, . . ., d+2.

EN d+2 ). .
X443t Z%x = . . 3.7

i=]

for some ¢;, i=1, ..., d+2. Let i = min [—g—'—- ] By subtracting equation (3.6) multiplied

by_‘u from equation (3.7), we get




- d+2 . -
X3+ 56 - 1)) x; =0. (

il

Let Y =& —po;, i=l, ..., d+2, and yga=1) -:—fzu,i=1,...,d+z. If o; >0,

’ 1}

y;=¢; —uo; 20. If 6; <0, y; =¢; ~puo; S0. For some i#*, y;,=0. Since x;,; is in

general position with respect to the point in X, y;#0 for all i#i* Thus,

Y={x;: v, >0}, Z'={ x; = y; <0 } form the desired Radon partition of
X - {xit} + {xd+3}'l

‘t
] - 1 .

Theorem 3.5 is the generalization of Katchalski’s Theorem and Goodman and Pollack’s

4w
Theorem from O-separable and d—1-separable families to k-separable families. .

Theorem 3.5. A family of k~1-separable compact convex sets in E¢ has a d~1-transversal if
there exists some k-ordering of the family such that every k+2 sets are intersected by some

.

oriented k-flat consistent with the k -ordering. >
8

infinite families, Let A = {#y,a,, . .., a,} be a finite family of »n k—1-separable compact
convex sets in E4. For each g; € A, choose a point x; € a;. For y e [0,1], let a;(7) be the

contraction of a; by a factor of y about x; where:

aM={x+10 -x)lyea}.
Here x; and y are represented in Cartesian coordinates. Let T be’the largest number such thiat
forany y< 1 some k+2 sets of A(Y) = {a;(y)} have no oriented k-flat which intersects them
consistent with the k-ordering. For all y> 1, every subfamily of k+2 convex sets,

{a; (M a;, (Y - - -, a,-:ﬂ(y)}, has a k-transversal consistent with the k-ordering. By Lemma

3.7 there exists a unique partition of this subfea\mily corregponding to the Radpn partition of

) .39-

Proof: B\y Lemma 34 if tbe theorem is true for any finite fanfily, then it is also true for ‘

w




G

e

e
their k-ordering. Let B(¥) U C(Y = {a; (1), a;, (1), e a; (0}, be this partition. All the
sets in B(y) and C(Y) are compa.ct, so conv(B(Y)) and conv(C (y)) are compact sets and
conv(B (1)) O conv(C(¥)) is a compact set. For all ¥ >°t, conv(B (¥)) N conv(C(¥)) # @, so
conv(B (1)) N conv(C (1)) # O. By Lemma 3.7 every k+2 sets in A(T) have some k-flat

which intersects them consisfent with the k-ordering.

If T =0, each of the sets is contracted to a point. These pgints all must lie on some -

{

flat and be contained id some hyp%alane, so the theorem is trivial. Hence we may assume

t>0. >

Without loss of generality, assume that for y < T the convex sets a(y), . . . , @p42(Y)
have no oriented k-flat which iptersects them consistent with the Ié-ordering7 Let B, C be

the unique partition of a(t), .., @42(7) corresponding to the Radon pani.tion of the k-

“ordering. relint(conv(B)) N relint(conv(C)) = @, or else the convex sets in B and C could

still be shrunk and by Lemma 3.7, -there would still be a k-flat which. intersects thém
consistent with the k-ordering. Thus there is a hyperplane 4 which separates conv(B) from

conv(C). We claim that & is the desired d—1-transversal.

f.et h* be a closed hal;‘-space bounded by A4 and oontainir?g ¢:'onv (B) and let £~ be the
other closed half-space which contains conv(C). We first show that A* N g; # @; for any
a;. By Lemma 3.8 there exists some a, € BUC such that B’,C’ is the the Radon partition
of BUC—{a,}+{a;} where B’ C B, a;.€ C’ and C}—{a;} < C. There exists sore point
y € conv(B’yconv(€’). Since B’ c B andic'onv(B) lies in A%, y must lie in A*. Since |

A (Y) is k—1-separable, C’~{a;} and B’ can be strictly separated by some hyperplane. y lies

» in conv(B’) so y‘cannot lie in conv(C’—{a;}). conv(C'~{a;}) lies in ™. Fory to lie in h*

some point of a; must lie in A*. Thus A* N a; # &. By the same reasoning, A~ N a; # @.

e f
3 -40- s -
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. Therefore h  a; # @ and h is a d~1-transversal which intersects all the elements of A. |
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‘ ' _ Chapter 4 -

Geometric Permutations

*y

A

Orderingg can also be examined for lines which intersect only some of the elements of 5

" '

1
In how many different orders can a directéd line intersect A? Restricted to lines which
. intersect all the elements of A, ie. line transversals for A, the question is equivalent to

asking for an upper bound on the number of different geometn{c permutations on A.
)

Katchalsl\d, Lewis, Zaks and Liu gave an upper bound of [’2'] ’ .

P

‘ o In Section 4.2 I show that the directed lines in EZ can be partitioned into at most 12n

sets where any two lines in the same set which intersect any A’ < A generate the same .

ordering on A’. mNunds the number of geometric permutations of A by 6n. In my

bound I prove that n disjoint compact convex sets in the plane can be embedded in » disjoi“rit

cconvex polygons with a total of at most 12n edges- These edges have at most 6 distinct

[
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slopes. 'Edelsbrunner, Robison, a;xd Shen in;pmved h;;on this theorem by showing that »
convex sets can be embedded in n convex polygons with a total of at most 61-9 edges and,
_at most 3n—6 slopes[20]. Their theorem implies that the directed lines in E2 can be
partitioned into at most 6n~12 sets where any twb lines in the same set which intersect any
A' c A~ generate the same ordering on A’. This decreases the bound on the r;umber of ‘
geomemc permutauots to In-6. Edels%runner and Shatir m&ependendy showed that that the

maximum number of geometric permutations for A is 2n-2[21]. However, their, argument

does not extend to lines which’intersect only a swillet of A~

A

.(*’

~

The number of geometric permutations can be studied for line transversals in higher

dimensions. Let H be a finite set of hyperplanes in E4. Define ¥(H) to be the number of

cells in the arrangement obtained by translating the hyperplanes in H to the origin. Let

¥4 (m) be the maximum number of cells in any arrangement of m hyperplanes through 5-0:

d-1 .
" origin in E“ R. Winder proved that ¥¢(m) =2 Z [ i—l][60]. The directed lines in E¢

'

\ can be partitioned into ¥ ( &]) sets, where any two lines in the same set which intersect
' - 4

A’ c A generate the same order on A’. The number of georr;etric permutations is bounded

by -;- ‘P"( [;]) This is the only known bound.

Geometric permutations can also be defined on hyperplane transversals or even on k- }
transversals for any k. A geometric permutation of k-transversals for a family of k-2-
separable convex sets in E? is the k -ordering produced by an oriented hyperplane transversal

and the reverse k-ordering produced by the same hyperplane with reverse orientation.

! Section 4.3 presents a result on geometric permutations of plane mnsvirs,als in E*. For

o ‘ “hyperplane transversals in lﬁgher dfmensions, I only have a conjecture which is included at

3
-43.




the end of the section. Unformnaueb, even the theorem proven in section 4.3 does not give ‘
. S \ ..
' good bounds on the number of different 2-orderings generated by plane transversals for a

family in E3, , ‘ ;

- )

4.2 Upper Bounds in the Plane . - )

A separation set for A is a set H of hyperplanes such that every pair of elements, .
& "

' "a,b € A, is separated by some hype;x;plane in H. A strict separation set is a separation set

- . H where every pair of elements is strictly separated by some hyperplane in<# .

Theorem 4.1. Let A be a family of pairwise disjoint gompact convex sets in E? and let

H={hy,... ,h,} be some strict separation set for A. The directed lines in E? can be

%

partitioned into W(/) sets such that any two lines in the same set which intersect any

>

N

A’ C A generate the same.order on A’.

* {
' Proof: Let {uy,...,u,} be a set of normal vectors for H where h; = {x:4;-x =¢; }.

Let v be a vector in E% and let L be the set of all lines with direction v. Leta, b be two
‘ ¢

sets in A represented in Cartesian coordinates and let A; be the hybexplane separating a from
b, Assume u;-(y-x)>0, forall xe d, y € b. If v -u; > 0, then any line in L must
intersect a before b. If v-u; <0, then any line in L must intersect b ‘before }1 Thus

sgn(v-u;),i=1,...,m, determines the relative ordering of @ and b generated by lines in
L. 4
' §

1

Consider the arrangement created by hyperplanes through the origin with normals

5
u;, i = 1,..,m. There are at most ‘W(H) cells in this arrangement. Partition the directed

lines in E¥ into at most ‘Y(H ) sets, assigning directed lines which point into the same cell to

> ;
" N - .o ‘

AN s T R7 - 1 .
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o

, the same sets. The values of sgn(v ‘u;), k. =1,...,m, are determined by the cell into
which v points. Any two directed lines which intersect a,b € A and point to the same cell v
generate the s¥me relative ordering on a and &. For any A" < A the order il‘l which a line
in;ersectsa A’ is completely determined by the relative order in which a line intersects

a,b e A’. Thus any two directed lines which intersect A’ < A and lie in the same set

generate the same ordering on A’.l

13

We next show how to find a strict separation set for a family of convex polygons in the

plane. Here polygons are non-degenerate, i.e. not line segments or points. $

Theorem 4.2. If P is a family of pairwise disjoint convex polygons in E?, then there exists a

strict separation set L for A where each line in L is parallel to some edge of a polygon in A.

L Proof: Leta and b be any two polygons in P and let I* be some line separating a from b»
and tangent to a at some vertex. Let /, and I, be the two lines containing the edges of a
which meet at that vertex. /; and !, divide the plane into four cells or quadrants,

91,9293, 94, With a lying wholly in one quadrant, say ¢. (See Figure 4.1.) The boundary of '

each quadrant is included in that quadrant.
- -

Since [* separates a from b, b does not intersect quadrant ¢,. If b does not intersect

’ . quadrant q,, then !, separates a from b. If b does not intersect quadrant g4, then [/,
" \ o
separates @ from b. Translating either of these.separators slightly toward &, produces a line

strictly separating a from b and'parallel to a line through an edge of a.
Assume b contains a point from quadrant ¢, and from quadrant q,. Some edge of b
N :
must intersect ;. Let I3 be the line containing that edge. [/ separates a from & so by

9
B
o 7 l
>
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. Pigure 4.1. Tonvex Polygons a and b.

«

\

translating it slightly toward a we have a line strictly $¢parating a from b and parallel to an

edge of b.

-

¢

.
For every pair of polygons a,b € P, add to L a line strictly separatipg a from & and
parallel to some edge in a or b. L is a separation set for P such that every linegn L is

parallel to some edge of a polygon in P. M )
/
NG

s
Let P be a finite family of pairwise dgoint convex polygons. P can be cgnsidered as

a planar subdivision. A complete triangulation of Pisa planar sbbdivision which contins

.«‘u‘;k ;
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P and some additional l‘i segments between vertices of distinct polygons in P such that
e.éch fa;e which is not a polygon is bounded by three additional line segments and three
polygons. (Sge Figure 4.2.) A cotﬁp:ete triangulation of P defines a graph whose vertices
are the polygons in P and whose edges are the additional line segments placed between

polygons. This graph may contain multiple edges, i.e. more than one edge between any two

vertices. Any straight edge embedding of this graph in the plane is a triangulation.

The following theorem shows that convex sets can be embedded in polygons with few
edges. Using such an embedding, we can then find a separation set for the pol;'gons and

Y -
hence for the convex sets. Bill Lenhart provided the inspiration for this theorem.

Figure 42. A Complete Triangulation of Convex Polygons

- 47«
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pairwise disjoint convex polygons containing the n convex sets.

K
LN

Theorem 43. Let A be a finite family of n pairwise disjoint compact convex sets in E2,
There exists a family P of-n pairwise disjoint compact convex polygons, such that:
i) each convex set in A is entirely contained in a unique polygon in P,

ii) the total number of edges in all the polygons in P is at most 12n and

AN
iii) if L is the set of lines containing the edges of the polygons in P, then YAL) < 12,

Proof: We first embed the convex sets in A in a family Q of n pairwise disjoint convex
polygons. Choose some convex set @ € A and find n—1 lines separating a from the n-1
ogher convex sets. These n—1 lines bound n—1 half-planes containing a. If the intersection
of these half-planes is unbounded, we can add three suitable half-planes containing a such

that the intersection of all the half-planes is bounded. The intersection of these half-planes
v

forms a polygon which contains a. Repeat the procedure n times to get the family Q of n

/

Let ¢ be some polygon in Q which lies on the boundary of conv(Q). Add to Q two
small triangles, d and d’:j‘to form Q' such that the boundary of conv(Q’) is three line
segments between ¢, d and d°. We construct a complete triangulation of Q’. Q' forms a
planar subdivision. Triangulate the external face of this planar subdivision by adding

triangulation line segments between vertices o\f porlygons. The triangulation faces are

bounded by two or three triangulation line segments. If a face is bounded by only two

triangulation line segments, one of the bounding line segments is redundant. Remove the

redundant line segments until all faces are bounded by three triangulation line segments and
; .

three polygons of Q. The resultant subdivision is & complete triangulation of Q’. Let G be

the planar graph whose vertices are polygons in Q' and whose edges are the triangulation

line segments.




[

For each edge e of G, let [, be the line conigining ¢. For each pair of polygons
a,be Q' let] , besome line slr/ictly separating a from b. For each polygona € Q’, let
N (a) be a list of all the neighbours of a i:x the graph G. Let F (a) be a list of the faces
which are bounded i)y a. Let Li@a)={l,, - b e N(a)} and let Ly(a)= {l, :e lies on a
fac;. of F(a) and connects b, b’ € N(a)}. Let Ly(a) be the union of the lines in L,(a) and
L(a) slightly translated towards a. Let P(a) be the intersection of the half-planes
containing @ and bounded by the lines in Lo(a). For any ae Q other than ¢, P(a) is
bounded by the cycle of the neighbours of @ and the triangulation line segments between
them. (See Figure 4.3.) Thus P (a) is a convex polygon containing a. By a jt}diciousc choice
of [, and I, 4, P(c) is also a convex polygon containing c. We claim that
P ={P(a):a e Q } is a family of n pairwise disjoing compact convex polygons such that
each a ¢ Q is contained in P (a) and the total number of edges in the polygons in P is 12n.

Assume a,b € Q are neighbours in G. P(a) and P(b) are both bounded by a
translation of the same separator, [, , of a and b. Since P(a) and P(b) are in different

™

halfplanes bounded by /; ,, I, , must separate P(a) from P(b) and P(a} and P(b) are
pairwise disjoint. °

Now, assume a, b € A are not neighbours in G. (’(a_) is iﬁmly contained in a cycle
of the neighbours of a while P(b) is entirely contained in a cycle of the neighbours of b.
Since b is not & neighbour of a, these two cycles must contain different regions in the plane
and so P(a) and P(b) must be pairwise disjoint.

Let m be the number of edgesin G. G is a complete triangulation and there are 2 + 2

v [
vertices in G, so m = 3n. Bach edge connects two neighbours, so the total number/of

neighbours over all vertices in the graph is 6n. The total number of edges in the polygons in

/ -49-
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Figure 4.3. Cycle of Neighbours of a.

7 v

| P is at most the total number of lines in Ly(a) over all a’e Q.

{ T ilo@ s ¥ ILka)l = Y ILya)| + X [Lxa)] S6n +6n =12n '4
aeQ aeQ’ aeQ’ ae’ |

) Therefore, the total number of edges in the polygons in P is at most 12n.

Let L be the set of lines containing the edges of the polygons in P. L is a subset of

L'= (U Ly(a). Each line in Lo(a) is parallel to some line in somo- Lo(b), a,h € Q’. .

ca€Q’
¢ v -

\ - Since the total number of lines in'L” is st most 126, ¥(L") S 12n and s0 ¥(L) S 121. M

¥ -




For every pair of disjoint compact convex sets; there exists some hyperplane which

strictly separates the pair. Construct a separation set H for a fa:-:iily of n compact convex
. . S

sets by choosing a separating hyperplane for each pair. The size-of H, |H |, is at most (’2']

- 1 .
Since ‘(H) S W*(|H |), the following is a corollary to Theorem 4.1:

Corollary,4.1. Let A be a family of n pairwise disjoint compact convex sets in E4. The

-

directed lines in E4 can be partitioned into ‘I"‘( [’2'] ) sets such that any two lines in the

same set which intersect some A’ ¢ A generate the same order on A’.

Finally, by Theorems 4.2 and 4.3, there exists a separation set L for n convex sets in E?
(.a

such that WL) S 12n. Applying Theorem 4.1, we have the following corollary:

Corollary 4.2. Let A be a family of n pairwise disjoint compact convex sets in E2. The

W lines in E? can be partitioned into 127 sets such that any two lines in the same set

which intersectsome A’ < A generate the same order on A’.
Each geometric permutation corresponds to two sets of directed lines in the partition of
directed lines in E¢. Thus the number of ge‘yafetn'c permutations on A is bounded by half’the
/
size of the partition., Corollaries 4.1 and 4.2 imply that there are at most -—;— we( [’2'] )
e
geometric permutations of A in E? and at most 6n geometric permutations of A in E2,

Katchalski, Lewis and Zaks asserted that for every d, there exists a constant B, and a

family A of n pairwise disjoint compact convex sets in E? such that there are at léast B;n%™!

2
geometric permutations of A [40]. Corollary 4.1 implies an upper bound of O (n%4~?) for the

. L
° npumber of geometric permutations of A, leaving amvaide gap for improvement. Villanger

.51.

o




showed that for any » there exist families of » line segments in E* in which any hyperplane

separates at most one line segment from one other line segment{55]. Thus, there exist.; a

family A of n compact convex sets in E¢, for any d 2 3, .such that aﬁy separation set of A

1

xﬁﬁt have [;] clements. In fact, by embedding Villanger's line segments in rectangular
prisms, we see that Theorem 4.2 does not generalize to two dimensions. Reduction of the

upper bounds must come from other directions. y

4.3 Geometric Permutations in Higher Dimensions

3 .
Let A be a k—1-separable family of n compact convex sets in EY. How many different

k-orderings are generated by oriented k-flat stabbers of A? If k =d—1, any hyperplane
transversal can be continuously transformed until it is tangent to d convex sets. For any d
conveéx sets which are d—2 separable, there are at most 24*! tangent oriented hyperplanes,
depending upon which half-space bounded by the hyperplane contains which convex set.
This gives a trivial bound of 2441 [;]

If A is d~2-separable in E?, any two hyperplane transversals for A with the same
normal must generate the same d—1-ordering on A. This motivates the following problem:
Given a d-2-separable family A of compaét convex sets in E¥, partition the space of all
normals such that any two hyperplane stabbers with normals in the same partition generate
the same d-1-ordering on A. Such a partition is constructed in the proof of Theorem 4.1 for

line transversals in E2. Theorem 4.4 provides a partition for normals in E>.

The definition of separation sets must be extended to k-separable families. A k-

separation set for a k-separable family of sets is a set of hyperplanes such that every j sets
%
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are strictly separated from every k+2-j sets by some hyperplane, 1</ S k+l. The

previously defined “separation set” becomes a O-separation set under this notation.

-

‘Theorem 44. LetA be a lh-separablc family of compact convex sets in E> and let H be a
1-separation set for A. For every seta € A and every other pair of sets b, ¢ € A“, let ug |pe
be a normal to the plane in H separating a from b and c. The 2-ordering generated by any
planc stabber with normal u is determined by sgn(det(s, u,|pc, Uc|ap)) lover all

a,b,c € A.

Theorem 4.4 means hat E° can be partitioned by the set of planes containing the origin
and vectors u, (5. and u. g over all a,b,c € A. All the plane stabbers with normals,

pointing into a given oom.;. in the partition generate the same 2-ordering of A.

Before proving Theorem 4.4, we need the following lemma relating the orientation of
three points in the plane to the orientation of three vectors separating them. All points and
vectors are represented in Cartesian coordinates. The order type of three points in Cartesian
coordinates is sgn (x;=xq, X,—xg). The cone formed by two vectors vo, v, € E? is the set of
vectors {Ggvo+0yv1:0020,0,2 0}. If u lies in the cone formed by vy vy,

u = Gpvo+0O;v), then

sgn(det (v u)) = sgn(det(vg, O1vy)) = sgn(det(vovy)) . and

sgn(det(u,v,)) = sgn(det(CGoW, V1)) = sgn(det(vgyy)). .
I v=(0y,0), then vP=(-0pa;), a vector perpendicular and to the left of v.

.

vP-v/ = det(v,v"). Subscripts are computed mod 3 where appropriate.
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. Lemma 4.1 -Let xp,%;,%2 be three points in E> and let uo,u,,u; be three vectors in E2.. If
u; -(x;-x,)>0,j=t.i,d\en ! 4
sgn(det(x —xg, X3—xq)) = sgn(sgn(det(ug,uy)) + sgn(det(uy,u3)) + sgn(det (uz,up))) -

Proof: If xb,x,,xz were collinear, u; - (x;—x;) would equal 0 for some i, j, i #j, so =

Xg, X1, X2 must form a triangle. Let v, vy, v5 be outward pointing normals to the sides of |

this triangle, where

~

' C
Vi* (Ga—xis2) =0, and ¥ - (5=x)<0, j=i.
(See Figure 4.4.) It is easy to see that Uovg + Wyv) + vy =0, for some g, By, Y3 > 0, and
that u;,; lies in the cone formed by v; and v;,;. Furthermore, l :
4 :
3

X0

jure 4.4, Triangle x 1, x2, x3.




L3

s (det(v; vi41)) = sgn(det(v;, u4)) = sgn (det (4342 Vi1))-
We show that the orientation of any two of the outward pointing normals, v;, v;,q, is
the same as the orientation of xg, x;, x,. For some ‘a,Be R, x-xo=ov) and
“xypxo=PvP. By taking the dot product with v, and v,, respectively, we find
odet(vy,vy) = «(x~xp)v; >0, and Bdet (v{,vy) = (x2=x0)v2 < 0 .

Therefore, sgn (&) = —sgn(f). It follows that

‘9

sgn(det e o x7-%0)) = sgn (det(av ], Br))
= sgn (0fdet (vy, vy))
= sgn(det(vy, v,)).
Since pgvg + Byvy + v, =0, -
sgn(det(vo,vy)) = sgn(det (~it;v1—Wavy, v1))== sgn(det(vy,vy))  and
sgn (det (vy,vo)) = sgn(det(vy, 1V 1—Hyv3)) = sgn (det(vy,vy)) -

Therefore, ) . v

sgn(xy—xq, xy—x0) = sgn (det(vq,v1)) = sgn(det(vy,v,)) = sgn(det(vy,vp)) .
It remains to show that

sgn(det(vy,vy)) = sgn(sgn(det(ug, uy)) + sgn(det(uy,u,)) + sgn(det(uy, up))).
If sgn(det(u;j, u;,1)) = sgn(det(v),vy)) for all values of j, then the claim is obviously

true. Assume sgn(det(ug,u,)) = —sgn(det(vy,v,)). ug=av, +pv, and uy=a'v; + f'vq,
for some o, B, o, B’ > 0. If sgn(det(vy,u,)) = sgn(det(vy,v,)), then

sgn(det(ug, u,)) = sgn(0det(vy, uy) + Bdet (vy, 1)) = sgn(det(vy,vy)) .
Therefore, sgn (det(vy, u 1)) = ~sgn (det(v{,v3)). -

sgn (det(uy, uy)) = sgn(o’det(uy, v1) + p'det (uy,vq)) = sgn(det(vy,vy)) . ,
By a similar argument, sgn (det(u), u5)) = sgn (det(vy,v,)). It follows that

o N : 4
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sgn (sgn(det(ug, uy)) + sgn(det (1, u2)) + sgn (det(u2, ug)y= sgn (det(vy, v2)

= sgn (det (x~xq, x2—xo)) W

If two vectors v,w in lie on a plane with normal » in E3, this plane can be mapped to
, E2 under an isometry I" to preserve orientation, i.e. sgn(det(u ,v,wi) = sgn(det (T'(v),[(w)).
Thus Lemma 4.1 also applies to three vectors and three points which lie on an oriented plane

in E3. Theorem 4.4 follows immediately.

-

Proof of Theorem 4.4: Let u be the normal to any plane stabber A of A. Let ag,ay,a, be
% Lo
three sets in A, and let & intersect a, at point x;. The orientation of xg, x, x5 with respect

p to h is sgn(det(u, x~xg, x;~xg)). For i =0, 1,2, let 4; be the normal to the plm/

o
separating a; from a;,, and a;,5. Since sgn(det(u,v,w)) is determined by

sgn(det(u, v, -w)), we may assume u; - (x;—x;) >0, j #i. Let u be the projection of u,
, :
?» b onto k.

q .

det(u, ll,", u,-“') = det(u » ¥y ut'+l) .

By Lemma 4.1,

-

P

sgn(det(u, x\—xq, Xy~x0)) = sgn(sgn(det(u, ug, uy)) + sgn(det(u, uj, uz))
- - .. + sgn (de\t(u , U3, 4g)))

= sgn (sgn (det(uo U, ul')) + sgn (det(u » %3, u2))

+ sgn(det(u, us, ugp)) . W

Unfortunately, Theorem 4.4 by itseﬁ(does not generate a good bound on the number of

k-orderings generated by plane stabbers of A. If H~is the set of all planes containing the

(2

*
origin and the vectors u, )5, and u.,, over all a,b,c ¢ A, then H has size 3 g] or

O(n®). Applying Winder's Theorem[60], H partitions E? into O (n%) cones, a worse bound

-~
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than the trivial one. Many of the planes in H contain the same lines so it is possible that
' ’
there is a tighter bound for H. Also open is a tight bound on the size of the 1-separation set

for A. The trivial bound is O (n3) but this may not be optimal. :

5

“ While I was unsble to extend Theorem 4.4 t dime;xsioﬁs greater than three, I do have

the following conjecture. !
Conjecture 4.1. Let A be a d-2-separable family of compact convex sets in E? and let H be
a d-2-geparation set for A. For every.subset B of d elements of A, let H gy be a subset of
H ‘which forms a d-2-separation set for B and let U (p) be the set of all normals to the
hyperplanes in H (g}. The d-l-ordering generated by any hyperplane stabber with normal v
is completely determined by sgn(det(v, u;, 4;,, - . ., "";-1))' u; € Uis), over all subsets of

. d-1 elements of U 5, for all B'; A, |B|=d. ,
N
T 4




/Stabbing Algorithms ’

5.1 Introduction

Given a finite set of m polytopes in E? and an integer k, find a k-transversal or -
st{bber for the set. 'When k& = 0, the problem reduces to a linear programming problem. For
a fixed dimension d, Megiddo’s algorithm solves this problem in time proportional to_the
number of hyperplanes bounding the polytopes[44, 45].

When & =1, the problem becomes one of finding a line stabber for a family of
polytopes. Line stabbing has applications for hidden line problems[19], set pmﬁﬁoﬂng[S]
and updating triangulations[22]. Edelsbrunner, Maurer, Preparata, Rosenberg, Welzl and
Wood found an O (n logn) algorithm for line stabbing # -line segments in E2[19]. This
algorithm was generalized by Atallsh and Bajaj to line stabbing of convex polygons in E*{2).
The algorithm runs in 0 (nlogna(n)) time, where n is the total number of edges over all

bolygons an;l afn) is the inverse of Ackem;an’s function.

Edelsbrunner, Guibas and rShan'r extended the algorithm for line stabbing convex
polygons in the plane to an O (n%a(n)) algorithm for plane stabbing of convex polytopes with
a total of n edges in E* and an O(n?) algorithih for plane stabbing of n line segments in
E3[18]. In higher dimensions, Avis and Doskas gave an O (n%~'m) algorithm for hyperplane

stabbing of m convex polyhedra with a total of n edges in d-space[4].
1 ui

Lemma 3.3 states that a family of compact connected sets has-a hyperplane transvexsal

in E4 if and only if the set of separation normals for all- pairs of sets in the family do not




cover §771. All the algorithms’ above can be considered as algorithms for determining

whether these normdl§ cover this hypersphere.

The algorithm of Atallah and Bajaj for line stabbing in the plane constructs &
representation of all the line stabbers in the dual space. From this representat%on one can
detérmine which ‘ﬁ.irections are the stabbing directions. As observed in Section 3.2, every
pair of convex set’s in a family of compact convex sets intersect if and only if every direction
is a stabbing direction. Thus Atallah and Bajaj’s algorithm also determines in
O (n logn on)) time whether every pair of convex polygons in a family of convex polygons

intersect.
%

Little is known about algorithms for k-stabbing when £ is not 0 or d—1, d 23. Itis
noteworthy that the values of & for which computer scientists have found polynomial
algorithms are the same values of k for which mathematicians have devised good necessary

and sufficient conditions.

D. Avis and I developed an O(n“logn) time algorithm for line stabbing'of polytopes
with a total of n edges in E>. Section 5.2 presents some theoretical results aboutr how lines
intersect lines} 1'{13{‘ fegmenm and po!ytopes in E3. These results are used to develop line
st;abbmg algorithms in Secition 5.3. Jaromczyk and Kowaluk subsequently improved upon
these results with an algorithm for line stal:abing of polytopes which runs in 0£n3 20 (53¢n )
time[36].

5.2 Theory for Line Stabbing in Three Dimensions .

]

In the study of line intersections parallel lines must be handled as special cifes. To

avoid these extra cases it is convenient to study line intersections in projective space, where

+

T oA

Ror
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) . ¢
every two lines whiclylie on some projective plane must intersect. ¢ i

" Two lines which do not lie imthe sam® plane in E° or P are called skewed. In P3 this

t
is equivalent to the two lines not intersecting. A set of lines is skewed if every two lines in
the set are skewed. A set of line segments is collinear if one line eontains all the segments.

A set of line segments is co-planar if one plane contains all the line segmenis. A set of\q‘ne

segments is skewed if the set of lines containing the line segments is skewed.

Let x and'y be the coordinates of two distinct points ix}/;’:’ parametrized in
homogeneous coordinates. The unique lin/e through x and y is parametrized by Ax + Wy
where A and W vary over R and either A # Q or |r> 0 If two lines ; and /, parametrized by
Apxy + pyy and Ax, + Wyy; intersect, then there e;usts A1 Iy, Ay, Wy, not all zero, such that

JAixy + Hyyy = Axg + oy, Equivalently, /) and {, intersect 'if and only if

de’("l-)’lsx2,YZ)=0- \

I

\
Lemma 5.1. Two skew lines /; and /, and a point z which 1s not on /,-or /, admit one
stabber. If /, and /, are parametrized by Aux,+ W;y; and A,xj + oy, then this stabber

)

intersects /; at
z% =det(x2,y52,y1) %1 —~ det(x3,y2,2,%1) 1
Proof: There is a unique hyperplane 4 containing /5 and z. Since [, and {, are skew, 0,
intersects h at exactly one point. The line ! #* through this point and z" is the um'qu‘e stabber
of Iy, {; and z Y
The hyperplane k is given by the following equation:

h={x: det(xz,}z,z,x) =0,x ¢ P?}.
Let z% = det(xz,y;z,y,)x,, ~ det(x9,y5,2,%1)y;. Since x, and y, cannot both lie on A,

n

@
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either det(x3,y,2,y1) # 0 or det(x3,y3,2,%;) # 0 and so z#* is a point in P lying on ;.
'

Now z * lies on A since
re

det(xy,y2,2,2%) = det(xy,y,,2,det(x3,y5,2,y1) x| — det(x2,¥2,2,x1)¥))
= det(xy,x2,2,x))det(X5,y2,2,y1) — det(xy,y2 2,y ) der(x2,y2,2,%,)

=0. !
Thus the stabber of {,,{, and z intersects /, at z+. W

Lemma 52. The stabbers of three skew lines in P> form a quadric surface Q.

3

Proof: We first show that the line stabbers of three skew lines he on a quadric surface. Let

L = {l},1515} be a set of three skew lines in P> where I, is parametrized by Ax, + JLy,,
i

x,y: € P, A1 e R Let!’ be a line stabber of L and let z be a point on !’ which does not

‘lie on 1,15 or /5. By Lemma 5.1, {” intersects /, at .

> z* =det(x2,y,2,y1) X — det(x2,y3,2,X1)y;

and hence

det(x3,y3,2,2%) = det(x3,y3,2,det(x3,y,, z,yl)lxl - det(xzfyz, z,x)y1)

= det(x;;,y:,,z,x,)det(xz,yz,z,y|) -

s ’ det(x;,y;;.z,'y/l)det(xz,yz,z.xl). “

-

Since 1’ \ntersects l4, det(x3,y4,2,2%) =0, and \

%
det(x3,y3,2,xy)det(x3,y2,2,y1) — det(x3,y3,2,y1)det (x3,y5,2,%1) = 0. (6.1) —~

If/ lies on ] or [/, or I3, z also satisfies equation 5.1. Equation 5.1 has degree two in the

coordinates of z and defines a quadric surface Qj so if  lies on a stabber of L then z must

-~
lie on this, quadric surface. 7 s /
o e e N
SR | »
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We now show that evély point on the quadric surface Q lies on some stabber. Let z be
any point on Q. If z lies on I;, then by Lemma 5.1 there is a'stabber of L and z. If z does
not lie on /;, then by Lemma 5.1 there is some point z* on /; such that the line through z

and z#* stabs I; and /5. Since z lies on the quadric surface defined above,

det(rs,¥3,2,2*) = 0 and this stabber of /,,/, and z also stabs /5. 1

Any line which does not lie on a quadric surface intersects the quadric surface in at
most two points. Thus any four skew lines have at most two stabbers or an infinite number

of stabbers. It is easy but tedious to check that this statement is true for any four lin% which

are not skew.

A set of skew lines that admit an infinite number of stabbers is called ruled. The

A derives from the fact that the set of stabbing lines forms a doubly ruled surface.

skewed lines is trivially ruled. A doubly ruled quadric surface can be
partitioned inty two sets of lines: every pair of lines from the same set is skewed; every pair

of lines{from different sets is intersecting. There is thus an obvious duality between the

stabbing lines WCS to be stabbed.

Lemma 5.3. Fo; m23, let L ={l;,...,1,} be a ruled set of lines lying on the quadric
|
surface Q formed by the stabbers of [4,l5,{5. For every point z € Q there is a unique

stabbing line through z that intersects each line in L.

-

Proof: We prove the lemma by induction. If m =3, the lemma is true by Lemma 5.2. For
\ R

m 2 4, assume the lemma is true for m—1. Let z be a point on Q. By Lemma $.1, there is

a unique stabber I* of [},/, and z. By the inductive assumption, there is a unique stabber /’

of L’={ly,l5, ..., 1, ,} and z. Since !’ stabs {,,l5, 15 and z and /* is the unique stabber

o

.62.
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s
there is a unique stabber [!” of

v

L4

of I35 and z, Is=l

L"={lly, ..., I,,,_z.l,,,}. and and !+ =1". Thus I+ is the unique stabber of
L=L'UL”and:.0

- LetL = {l,,,lz,l3} and let /; be parametrized by Axp + yty,. Given the%quadn'c surface
Q formed by the stabbers of L, define a function ® which n;aps every point z on Q to the

unique point z* on /; such that the line through z and z * is a stabber of If Formally,

{
det(x,¥2,2,y1) X1 = det(xz,y5,2,Xx1)y;  z € Q-3 (5.2)
@) = det(x3,y3, 2,y1) x; ~ det(x3,y3,2,x1)y, z el  (53)

It follows from Lemmas 5.1 and 5.2 that ¢ performs the function described above. In the

sequel we will need the following fact about ®(z).
Lemma §4. @ is a continuous function from Q to {,.

Proof: For every point z € Q—[,, we define a neighbourhood N(z) which does not
intersect /,. For every point 2’ € N(z),
D(z') = det(x3,y2,2°,y1)xy — det(x3,y02",x1)y; -

Note that if 2’ € I,, this formula sets ©(z’}=z’. Thus @ is continuous at z. Now suppose
z € Iy, and consider a neighbourhood N (z) small enough to be disjoint from /5. If we first
ap‘ply Lemma 5.1 to /| and !/, and then reapply it to /[, and /3, we see that equations (5.2)
and (5.3) agree up to a non-zero multiple for any point not on either /, or /3. Therefore, for
any z* € N(z), ®(z*) is given by equation (5.3) and is thereforé continuous in this region.

Again @ is continuous at z. Il

Applying Lemma 5.4, if s is a line segment on Q with endpoints x and y, then ®(s) is

a line segment on /, with endpoints ®(z) and @(y). Note that a line segmdnt in projective
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space may correspond to either a segment or two half-lines in affine space.

If p is a polyhedron which intersects Q, then &»(Qyp) is a closed set in /; and is
. h
composed of the union of line segments in /,. If N is an open set inside p, then (@ NN) is
, an open set in Iy, Therefore, the etfdpoinfs of the line segments forming ¥(Qrp) must

A

correspond to stabbers which do not intersect the interior of p. Thez; stabbers must pass
through some edge of p.

[

As a consequence of Lemmas 5.1 and 5.2, we have the following Helly-like theorem.

-

Theorem 5.1. A set of m26 lines in P> have a stabbing line if and only if every six of the

, lines has a stabbing line.

.

Proof: LetL ={l,,...,1,} denote the set of lines. Assning at first that they are skewed. '
If some set of four lines admits a unique stabber, then the conclusion is immediate. Suppose

A

next that some set of four lines, say {,/,, 15,14, admits e),tactly two stabbing lines /" and 1”. !
If neither is a stabber for L, then there is some line /; missed by !’ and some line l; missed
by [”. But this is impossible, since then there would be no stabber of /y,15,13,141;,1;, a
contradiction. There remains the case that each set of four lines admits an infinity of
stabbers. But in this case, it follows from Lemma 5.2 that all of the lines must lie in a
quadric surface Q. Any line in this surface that intersects three of the lines must intersect all _—

- of them. " '

Now suppose that the lines are not skewed. Two lines, say /, and /,, intersect at point

z. If all the lines contained point z, the conclusion is immediate, so assume some line /5

does not contain z. Let h denote. the plane containing /; and /5, let A’ denote the plane '
r . )

‘-a-\t '

-
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3

containing /3 and z and let / be the line A NA’. If all the lines lie in plane & or 4" or
.intersect /, then / is stabbing line for L. Otherwise some line I, does not lie in & or h” and
does not intersect [. Iy, }i, 13, 1, have at most two stabbers so we' can proceed as above.
The theorem follows. ll

The theorem generalizes to‘all dimensions. A skewed set of line segments is ruled if
the set of lines c;ataining the line segments is ruled. Theorem 5.1 has the following

corollary.

Corollary 5.1. A set of m26 skewed segments in E? that are not ruled have a stabbing line

if and only if every six segments has a stabbing line.

We now turn to the problem of finding stabbing lines for convex polyhedra in E3, Let
P={p,...,pn}be asetof disjoint polyhedra in E*. Using the previous lemmas, we can
prove an ‘extremal’ theorem for {)olyhedra. We first need a lemma about 'extremal’ stabbing

lines in the plane.

.
Lemma 55. Let P ={p,,...,pns} be a set of m 22 disjoint convex polygons, in the

plane that admit a sta/bbing line. There exist two distinct polygons pi and p; and vertices

xep;andy € p_;-, s,ﬁch that the line through x and y is a stabbing line for P.

Proof: Let! be a stabber for P. Translate / until it goes through some vertex x of some
polygon p;. Rotate / about x, until it passes through a vertex y of some polygon p; #p;.

is still a stabber for P and ! is the line through x and'y.li

-65.




-

Theorem 52. P ={py,. ...pm}m22, khas a stabbing line if and only if ti;ere exists a
stabbing line through: $

(a) Two vertices in two distinctyp; ; 6r
(b') One vertex ;nd two skewed edges in three distinct p;; or

(c) Two co-plana} non-collinear edges in two distinct p, ; or

(d) Three skew edges in three distinct p;.

Proof: Assume there is a stabbing line of P. There are two cases.

&

Case 1. There exists a stabbing line ! of P which passes through a vertex of so;ne
polyhedron in P.

Assume ! passes through the vertex x of polyhedron p;. Rotate ! around x in any
direction, until it passes through an edge e of some polyhedron p;# p;. Let h be the plane
containing x and e, let p/ =x,p;/ =e¢, and p =h N p,, k #i,j. By Lemma 5.5, there
exists a stabbing line I’ through two vertices of two distinct polygons. p; = x is a point, so
I’ must contain x. [/’ must also contain so'me‘ other vertex y belongix;g to some py #p/. If
y is a vertex of py, then I’ is a stabbing line through two vertices, x,y, satisfying con;iition
a). If y is not a vertex of p,, then it must lic on some edge ¢” which is not contained in A,

and I’ is a stabbing line through x,e and ¢’, satisfying condition b).

Case 2. No stabbing line of P passes through a vertex of any polyhedrén in P.

Let I be a stabbing line of P. Translate / in any direction, until it intersects an edge ¢
of some polyhedron p;. Let & be the plane containing / and e, let p/=¢ and let

pi=hNpy, k#i. By Lemma$5.5, there exists a line stabber /” through vertices x € p;

Qs

andy e p/. Line I’ mugt not go through an endpoint of e or else I’ would be a line stabber

)
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through a vertex of p;. Therefore p{,p/ and p,’ are distinct ;;olygons.

Let x and y lie on edges e’ and e” of p; and’ Pr» respectively. By assump;ion I’ does
not intersect the endpoints of e’ or e”, s0 ¢’ and e” dc; not lie in & and are not collinear. If
e’ and e” are co-planar, then condition c) is satisfied. Otherwise, e;e',e" form three skew

edges and condition d) is satisfied.

5.3 Algorithms for Line Stabbing in Three Dimensions

/

The algoﬁﬂlméf'follow quite naturally from the theory. Given aset S ={s;, ..., s}
of n pairwise disjoiﬁt line segments in E*, we can find a stabber of § in O (n logn) time,

Choose three line segments s, 55, 53. If two of these line segmen&_are collinear, then
the line containing the line segments is the only candidate stabber. Check whether this line
stabs § in O(n) time. If two of these line segments are co-planar, then a stabber of S ‘must

lie in the plane containing the line segments. Apply the algorithm of Edelsbrunner et al. for

stabbing line segments in the plane in O (nlogn ) time[19].

If the three line segments, 5,5, 53, are skew embed-E* in P3 and let /,,1,, I3 be the

projective lines containing sy, 55,53, respectively. The stabbers of these lines form a quadric

surface Q. Check in constant time whether each s; lies on Q. If some s; does not lie on Q,
then it intersects Q in at most two points. By lemma 5.3, there are at most two stabbers of

)

$1,52,53 and 5;. Check whether these stabbers stab § in O (n) time.

Finally, if all s; lie on @, define the function ® as in Lemma 5.4 which maps every
point of @ onto /; such that the line from z to @X(z) is a stabber of /,, I; and /5. By sorting

the endpoints of the line segments @(s;), we can find the intersection of all the line segments
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®(s;) in O (nlog n) time. To each point in that intersection there corresponds a line stabber

of S. .

4

Let P ={p),...,pm}, m 22, be a set of disjoint polyhedra in E3. Let n be the total
number of vertices and edges in P. We will show how\to find a line stabber for P in
O (n*logn) time.
Let 1; be any polyhedra with ¢ edges which has been preprocessed using the t;chr‘xiques
‘ given by Dobkin ami Kirpatrick in [14] for fast reporting of polf/hedral intersections; Let Q
be a quadric surface formed by the stabbers of%;ree skew lines, Iy,1,,15, and let ® be the
" function defined in Lemma 5.4 ma£>ping Q to l;. We can construct ©(Qry) in O(tlog?)
time. Let X = {®(QNe) : e is an edge of p which does not lie in @ }. X is composed of at

,}
most 2¢ points on /;. Sort the points of X. These points divide /; into é most 2t line

2

segments, each of whose interiors is either contained in ®(Q ry) or in !, ~ ®(Qp). For
A} )
every such line segment s;, determine if the interior of s; is in ©(Q rp) by choosing some

_point x from the interior of 5; and querying wl}ether the uniqué stabber of x, 5 and [ also

stabs p. ©(Q ) is the union of il the line segments s; whose interior lies in ®(Qp) and

the points in X .
23

Since p has been preprooesseii using the techniques in [14], it takes O(log ¢) time to

find if a line intersects p. There are at most 2¢ such queries. Sorting takes O (¢ logt) time

y 3

so the total complexity for this algorithm is O (tlog t).

j: o To find a line stabber for the polyhedra in P we ﬁrst preprocess the’ polyhedra as

in[14]. We then test for the four possible cases in Theorem 5.2:

f
i

//l'or every two vertices in distinct polyhedra p;,p;:
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Check.if the line through the two vertices stabs all the polyhedra.

For every vertex and two skew edges in distinct polyhedra p;, p;, p:
Find the stabber of the vertex and two edges if it exists and check if it stabs all the

polyll}edra.

For every two co-planar edges in distinct polyhedra p;, p: \‘(
Let & be the plane containing the two edges. Intersect each of the polyhedra with 4
to fom{*”;;t polygc;ns and yse the algorithm of Edelsbrunner et al(19]. to find any
stabbers of P which lie in A. ‘

For every three skew edges in distinct polyhedra p;, p;, p; :
Embed E? in P? and let 1,,1,,1; be the projective lines containing the three skew
edges. Let Q be the quadric surface formed by the stabbers of these lines. Define @
as in Lemma 5.4. Apply the algorithm above to construct ®(Q ryp) for eachp € P.
Let X be the set of all the endpoints of segments ’in DQrp),pe P. X is a
collection of at most 2z points. Sort the points in‘X . By scanning the points in X in

order, intersect all the ®(Qrp),p € P. A point in this intersection has a unique

stabbing line which stabs all the elements in P.

Preprocessing all the polyhedra takes O (n?) time. The total time of this algorithm is
dominated by _the last step. This step takes a total of O(nlogn) time to construct F(Qryp)
for each polyhedron p. It also takes O (n logn) time to sort X. The last step is executed

0(n35 times for a total of d(n‘log n) time complexity.
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Chapter 6

Separation Algorithms

6.1 Introduction N
Let A be a family of n pairwise disjoint convex polygons in the plane. Line segments

and points are also considered convex polygons, albeit degenerate ones. The upper bounds

on the number of orders in which directed lines can intersect A is a function of the size of

the minimum strict separation set for A. If a family A has a small strict separation set, then

by Theorem 4.1 there are few geometric permutations on A. This property of separation sets

suggests the problem of finding small ones.

Theorems 4.2 and 4.3 ensure that there exists a strict separation set for a family of »
pairwise disjoint convex polygons with size 12n. In fact, the. proof of Theorem 4.3 is a
construction which can be turned into an algorithm for finding a strict separation set of size
12n. As in Theorem 4.3, triangulate the fatixily of polygons and find the neighbours of each
polygon. Strictly separate each of the polygons from each of its neighbours and from each of
the triangulation edges between neighbours. These separation lines strictly slaparafe a polygon
not only from its neighbours but from all other polygons, as argued in Theorem 4.3. There
are at most 12n separation lines and they form a strict separation set of size 12n." The
algprithm is dominated by the triangulation time. Using standard techniques[48],

t

triangulation takes O (m logm) time where m is the number of edges.

Given a family of convex polygons in the plane, decide if there exists a separation set

\

of size k. Given a family of convex polygons in the plane, decide if there exists a strict
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separation set of size k. These problems we call the the separation set problem and the j
strict separation set problem. In Section 6.2 it will be shown that both these problems are

¥

NP-complete.

Theorem 4.1 does not really depend upon the size of a strict separation sel, but on the
number of different slcpes of lines in the set. Each strict separation set has an associated set
of slopes which are the slopes of all the lines in ~the set. Given a family A of n convex
polygons with a total of m edges in the plane, find the minimum size set of slopes associated
with any strict separation set for A. This problem is called the separation slope problem.
By mapping slopes to points on a circle, this problem can be transformed to one of finding a
minimum point cover for a set of k& open arcs on the circle, called the point cover of arcs

problem. Section 5.2 solves the point cover of arcs problem in O (k logk) time. Finding the

minimum set of slopes takes 0(n2logn + n2logm) time.

6.2 The Separation Set Problem

The proof that the separation set problem is NP-complete is a reduction from vertex
cover for planar graphs. A vertex cover is a set of vertides such that every edge is incident

with some vertex. The vertex cover problem for planar graphs is decide if there exists a

vertex cover of size & for a given planar graph. The vertex cover problem for planar graphs

is NP-complete[24]. D is a dual transform which maps points to lines and lines to points,

For a point x in homogeneous. coordinates, D(x) = {u:x-u =0}. For a hygrplane

h={x:u-x=0},Dh)=u.
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Theorem 6.1. The separation set problem is NP-complete.
p ‘ .
Proof: Let A ‘be a family of convex polfgons in the plane. The lines in any separation set

can be perturbed until they go through two vertices o{ two distinct polygons. The possible
separation sets for A need only be chosen from the polynomial number of lines which pass
through two vertices of polygons in A. In polynomial time a non-deterministic Turing
machine could guess a separation get of size k and check whether it did in fact separate all

the pairs of polygons in A. Thus the separation set problem is in NP,

A Y

/ Let sy and 5; be two line segments which intersect at their endpoints. All the ‘lines
which separate s; from s, lie in the cone formed by s; and s,. (See Figure 6.1.) If no line
through the origin separates s, and s,, then D maps the separators of s, and s, to a line

segment in the dual space. (See Figure 6.2.)

*

The process can be reversed, mapping a line segment in the dual space to the separators
of a pair of line segments in-the primal. Given some line segment in the dual space with
endpoints x,y, let z be the point D(x) N D(y) in the primal space and let ! be the line
through z and the origin. Let 5, and s, be two line segments lying on D(x) and D (y),

respectively, which share a common t;ndpoint z and lie to one side of /. The line segment in

" the dual space with endpoints x,y maps under D to the set of line separators of s; and 5.

Note that s, and s, may have any positive length.
N

We are now ready to show how an instance of the planar vertex cover problem
transforms to an instance of the weak separation problem. Let G be any planar graph. G
has anstraight line embedding in the plane. (See Figure 6.3.) Perturb the vertices of this

planar embedding so that no two graph edges lie on the same line and no edge lies on a line
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Figure 6.2. Separators of Two Line Segments in Dual.
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Figure 6.3. Straight Edge Embedding of Planar Graph.

»

mrougl; the origin. Transform the lines containing graph edges to points under the mapping
D a;xd let X be the set of these points. Each edge in the planar embedding now corresponds
to a unique point in X. Let £>0 be a lower’\bound on the vertical and horizontal distance
between any two points in X. For gach edge in the planar embedding construct a pair of line
segments such that the ‘points on the edge are mapped to the séparators of these line segments

under the transform D. (See Figure 6.4.) Let T be a set of these pairs of line segments,

Each edge in G corresponds to an element, a-pair of line segments, in T. Choosing each line
Ve ’ i X .
segment to have a positive length less than e ensurs that every two elements of T, i.e.

every two pairs of line segments, can be separated by a vertical or horizontal line.

N

-
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Figure 6.4, Pairs of Line Segments Corresponding to Edges.

Consider the problem of finding a set of k points such that each edge in the planar

embedding of G contains at least one point. Such i set of points will be called a poi;xt

cover'for G. Since the relative interiors of no two edges intersect, each point can be movea

to an edge endpoint to form a vertex cover. Thus, a point cover for G of size k gives a

. vertex cover of G of the same size. The mapping D transforms a point covering of edges in
G to z set of lines such that each pair of line segments which are an element of T is
separated’ by some line. Similarly, D transforms a set of lines which sepaf"atepcvery element . 07
of T to a point cover of G. Therefore, there exists a set of k lines which separate every

element of T if and only if there exists a vertex cover of size k for G.

Let L” be a set of \r'em’cal and horizontal line segments which separate every two pairs

2

o “ of line segments in T but do not separate any two line segments which are paired. Let /; be

@ - »
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a translate of the é—axis which lies w all the pairs of line segments in T, Let I3 be a
translate of the y-axis which lies wb:hjz\;;t\of'all the pairs of line segments in T. Place
abutting rectangles along !; and I, so that the each of the lines in \L " is the unique separator
for two adjacent rectangles as in Figure 6.5. Let L’ be the minimum separation set for these
rectangles. L’ contains L”,

Let A be the set of rectangles plus the line segments which form the pairs inT. L’ is a
subset of every separation set for A. The two lines separating the rectangle in the left,
bottom corner from its neighbours also separate all the rectangles from all the line segments.
Let L be a separation set for A of size k + |L’|. Removing L’ from L leaves a set of k

-

lines which separate every element of T. Transforming the lines in L — L’ to points in the

y , I

Figure 6.5. Abutting Rectanglgs.
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dual space and moving the points to vertices, produces a vertex cover of ‘size k. A vertex

cover of size k gives a set of k lines which separate every element of T. Adding.L’to this

set, would result in a separation set of size k + [L’|. Thus there exists a vertex cover of G

NG
of size k if and only if there exists a separation set of size k + |L’| for A.

Finding a straight line embedding of a planar graph takes polynomial time[54]. In this
straight line embedding vertices are mapped to points with integer coordinates. By scaling up
all the coordinates by a suitable factor, polynomial in the number of vertices and the
coordinates of the vertices, the vertices in the embedding can be perturbed to new integer

coordinates so that no two edges lie on t‘he same line and no e&ge lies on a line through the
™

origin. The transformation of edges to points, the creation of line segments and of rectangles,

and determining the size of L’ all use polynomial time. Therefore, in polynomial time an

instance of the vertex cover problem can be reduced to an instance of the separation set
problem and the separation set problem is NP-complete.ll

Given a set X of points in E? and a closed half-space h*, X N h* is called a k-set
where k is the number of points in X N A*, The number of different k-sets over all £ is

0(n?) and these k-sets can be constructed in O (n?) time[17).

Theorem 6.2. The strict separation set problem is NP-complete.

ot

Proof: Let A be a family of convex polygons in the plax;e and let X be the set of all

vertices of polygons in A. For sl k, construct the k-sets for X . For each k-set choose a line
which strictly separates the k-set from the rest of the points in X. Let L be the set of all

;uch chosen lines. Li;nes in a strict separation set can always be perturbed so that the strict

o

separation set is a subset of L. In polynomial time a non-iietcrministic Turing machine could
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guess a strict separation set of size £ from the lines in L and check whether it did in fact

¥

strictly separate all the pairs of polygons in A. Thus the strict separation set pfoblem is in
NP.

To prove NP-completeness a special version of the separation set problem is reduced to
the strict separation set problem. Let A be a set of convex polygons in the plane whose
relative interiors are pairwise disjoint. In'the proof of Theorem 6.1, the vertei‘ cover problem
is reduced to determining whether there exists a separation set of a given size ,for this
restricted family of convex polygons. Thus determining whether there exists a separation set
of a given size for a family of convex polygons whose relative interiors are pairwi;e»7 disjoint

is also NP-complete. We show how to reduce this problem to the strict separation set

problem.

-~

If the polygons in A are pairwise disjoint, then the lines in a separation set for A can
be perturbed in polynomial time to form a strict separation set for A. A strict separation set

for A is also a separation set for A. Thus finding a separation set or a strict separation set of

size k is equivalent for a family of pairwise disjoint polygons.
¥

C However, A may be a family of polygons whose relative interiors are pairwise disjoint
but which are not themselves pairwise disjoint. In this case, A has a separation set but no
strict separation set. Each polygon in A will be shrunk to form a new family of polygons A’

such that the A’ has a separation set of size k if and only if A has one.
i \ _

For every pair of polygons A which intersect, there must be some vertex x in one of

the polygons .a which does not lie in the other polygon, b. For y € [0,1], let a(y) be the

contraction of a by a factor of ¥ about x where:



a={x+yy-x)lyeal.
x and y are represented in Cartesian coordinates. For each line through two vertices in A,

there is a set of vertices not contained in that line. Let y’ be the maximum value of y such
that a line through two vertices v and v’ in A~{a }+{a(y)} contains a point which is not
contained in the line through v and v/ in A. ¥’ is a rational number whose numerator and

denominator are bounded by polynomial functions of the coordinates of the vertices. Shrink

a by some y* = -'Y—;-'—l- and scale up all the coordinates by a suitable factor so that the

L4

vertices of a(y*) have integer coordinates. y* is less than one, the relative interiors of @ and

b are disjoint, and x does not lie in b, so a(y*) does not intersect b.

Let A’ =A — {a}-+ {a(y*)}. By the choice of y*, any line through two vertices v and
v’ in A’ separates the samé sets as the line through the two vertices v and v’ in’A and vice
versa. A separation set for A is obviously a separation set for A’. A separation set for A’
can be transformed to a separation set for A of the same size. Perturb the lines in the

separation set in A’ so that evefy line goes through two vertices. Transform the line which

goes through vertices v and 4 in A’ to the line which goes through vertices v and v’ in A,

Since each line separates the same polygons before dnd after the transformation, the

transformation maps a separation set for A’ to a tion set for A.

ure for each pair of intersecting sets, produces a family -

: A’ of pairwise disjoint convex sets v\;hich has a separation set of size k if and only if A has a

separation set of size k. Since A’ is pairwise disjoint, A’ /has a separation set of size k if

" ..and only if A’ has a strict separation set of size k. Thus the separation set problem reduces _

1o the strict separation set problem in polynomial time.




6.3 The Separation Slope Problem and the Point Cover of Arcs Problem
.

Let A be a famxly of n pairwise disjoint convex polygons with a total of m edges.
Assume that the relative interiors of the polygons in A are pairwise disjoint 5o A has a strict
separation set.@The slopes of the strict separators of a pair of pplygons in A map to an open
arc b on the unit circle. This pair of polygons has two critical separators which are tangent

to both polygons in the pair. The slopes of the critical separators map to the endpoints of arc

b. The critical separators can be found in O (log m ) time[49], so each arc can be constructed

’

,in O (log m) time. The entire set of [Z] arcs can be constructed ip O (n’logm) time.

Each point which lies in an open arc generated from a pair of polygons corresponds to
the slope of some stricf separator of the pair. Finding-a minimum size set of separation
slopes cdmspox;ds to finding a mim}mm set ofj points on the circle such that each open arc
contains some point. \

Problems‘ concgmi\ng arcs on the circle have been studied in graph theory where arcs are
transformed to circular-arc graphsf9,25,26). Circular arc graphs are created by mapping
the arcs on a circle to vertices of a graph. Two vertices are joined by an edge if their
‘corresponding arcs imersect.

Each point on the unit circle corresponds to a clique in the circular-arc haph. A clique
cover of a graph is a set of cliques such that each vertex is- in some clique. Finding a
minimum point cover seems quite like finding a ngnimurh clique cover of the circular-arc
‘graph. Unfortunately, each clique in a circular arc graph does not correspond to one point on

the unit circle. (See Figure 6.6.)'] saw no way to transform the point cover of arcs problem

to a problem on circular arc graphs and so was forced to develop my own algorithm,
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Figure 6.6. Three Arcs in a Clique. 3 “

Let K be a set of open arcs on a circle. If the endpoint-ef some arc is not the endpoint
of any other arc, the arc can be lengthened and the size of the minimum cover will not

change. If some arc contains some other arc, then the first arc can be removeg and the size

B

of the minimum point cover will again not change. A normalized set of arcs is a set of ar

where every endpoi;xt of aﬁ\a?c is the endpoint of some other arc and no arc contains any
other arc in the set. If an arc extends in the clockwise direction from an endpoint, then the
endpoint is called a left endpoint. Otherwise, the endpoint is called a right endpoint. In a
normalized set of arcs; no point may be ;he left ellldpéint or the ﬁght endpoint of two arcs.

A
’

\('

i
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Given a set X of £ open arcs, a normalized set of arcs K’ with the same size minimum

cover can be constructed from K in O(k log k) time. Initialize X’ to be the set of arcs K.

Sort the endpoints of the arcs’ in X’ on the circle. By scanning the endpoints first in

\\ «

clockwise.and then in counter-clockwise order, lengthen each arc until both itg left endpoint

4

lies on the right endpoint of some other arc and its right endpoint lies on the left endpoint of
some other arc.

Scan.the circle in a clockwise direction. At each left endpoint encountered in the scan,
add the new arc to the beginning of a list LARC. At each right endpoint belonging to some
arc a, check'whether a is contained in list LARC. If a is in the list, all the arcs behind it in

the list.contain a. 'Mark these arcs for deletion, push them onto g stack ADEL and remove

them and arc a from list LARC.

O

For each endpoint position x on the circle, there is some smallest arc ¢ whose left

g

endpoint lies at x and some smallest arc ? whose right endpoint lies at x. Set pointers from

-

the left endpoint of a to b and from the right endpoint of b to a.

Pop an arc a from the top of stack ADEL and delete a from K’. If the left endpoint of
a contains a pointer to the right endpoint of some arc b, move the right endpoint of b
clockwise around the circle to the position y of the closest left endpoint of son;e arc. "Let ¢
be the smallest arc with left endpoint at y, The left endpoini of ¢, points to some arc 4. If
b is smaller than d, set the right endpoint of & to point-to ¢ and the; left endpbint of ¢ to
i)oint to b. Mark d for deletion and push d on stack ADEL, if it is not already there. If d

is smaller than b, mark b for deletion and push & on stack ADEL, if t is not already there’,t

Repeat this procedure until stack ADEL is empty.
‘ §
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, K ’ was produced by moving the endpoints of arcs not marked for deletion in stack

ADEL to meet other arcs and by deleting redundant arcs, so K and K’ have the same size

minimum cover. The endpoints of each arc not marked for deletion are always moved so that ’

they always opincide with the endpoints of some other arc. The deletions ensure that no arc
may be- contained in any other arc. Thus K’ is a normalized set of arcs. The time to
construct a normalized set of arcs is dominated by the initial sorting which takes O (k log k)
time.

Given @ normalized set K’ of k’ arcs, a minimum cover can be found for K’ in
‘. O (k'log k') time, Sort the endpomts of arcs in K’. An arca in K’ connects to an arc b on
its right if the right endpoint of a meets the left endpoint of b. a connects to b on its left if
the left endpoint of @ meets the right endpoint of 5. A chain of arcs from a; to a; is a set

of arcs {a@,, . . ., a,} where a; connects to g;,, on its right,

Let x be a point on the circle which is not an endpoint of some arc and let m be the
number of arcs containing x. Let y be any other point which is noWinL‘ The m
arcs coxitaining' x begin m chams which lead to ig? arcs containing y. If\m’ >’ m  arcs
cqhtained y, these m’ arcs would' begin s’ chains leading to m’ arcs containing x. Thus

every point in the circle which is not an endpoint is contained in exactly m arcs.

Let € be the mipimum distance between any two left endpoints of arcs in X’. Choose

’

sbmé arc a from K’. There is a chain C of [%] arcs starting at a whose closure covers

the circle. Let X be the set of [fn l points distance < from the left endpoints of arcs in C.

2

Since C covers the circle and no arc may be contained in an arc of C, X is a point cover for

2

all the arcs in K’.
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Assume there was a point cover ¥ of size less than [% ] If a point in Y lies on the

¢ 9 3
left endpoint of some arc, the point'can be moved slightly and ¥ will remain a point cover of
the arcs. Assume no pointin ¥ lies on a left endpoint. Sort the points in Y in.order around

the circlee Between some two adjacent points x,y € Y, there must lie at least

k 2 m+1 left endpoints of arcs. There are only m chains of arcs extending from

L2
m

xto y. One of the chains must contain two left endpoints. This means that some arc lies
between x and y. This arc is not covered by Y and Y is not a point cover for K’. It follows

that X is a minimum point cover for K’.

Sorting the points in K’ takes O (k’logk’) time. Finding a set Y takes O (k) time. A
minimum point cover for K’ can be' found by revérsing the process by which X " was derived
frc;m K. A point cover of arcs for K can be found in Q(k logk) time.

The separation slope problem on » polygons with m edges can be reduced to a point
cover of O(n?) arcs problem in O (n’logm) time. Applying the algo;’ithm above for the arc
cover problem gives an O (n*logm + n*logn) algorithm for solving the separation slope

problem.
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Chapter 7

Conclusion

This thesis grew out of a number of questions, both mathematical and algorithmic,

{
which turned out to be interrelated. Questions about ordering, separation, the necessity of
certain conditions in Hadwiger’s Theorem, all pointed to the relationship between stabbing

and separation. v

Some progress was made in generalizing Hadwiger’s Theorem. The pairwise
disjointness condition was eliminated from the theorem. Theorems by Katchalski and
Goodman and Pollack, themselves generalizations ‘of Hadwiger's Theorem, were generalized
to new families of compact convex sets. However, a necessary and sufficient condition for
the existence of hyperplane transversals for unrestricted families of compact convex sets is
still unknown. Just as Hadwiger's Theorem was true without the pairwise disjointmess

condition, I conjecture that Goodman and Pollack’s Theorem is true without the d-2-

separability condition. Necessary and sufficient conditions for the existence of k -transversals

v
for k-flats other than points or hyperplanes are even more of a mystery.

The number of ways in which a line intersects a family of convex sets was shown to
relate to the arrangement of hyperplane separators. The mnﬁber of ways in which a plane in
E? intersects a family also relates to such an arrangement. For higher dimensions, I

conjecture but cannot prove that there is also such a relation.

Much work has been done by computer scientists and mathematicians on point and
hyperplane stabbing. The algorithms in Chapter 5 for line stabbing in E? are a first attempt

at k-flat stabbing for k-flats other than points and hyperplanes. It is highly unlikely that the
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algorithm for stabﬁing polyﬁ;zdra is c;pﬁmal. With the tools of algebraic geometry, it may be .
possible to generalize these algorithms to k-flat stabbing in higher dimensi;ns.
Chapter 6 contains some problems ab<;ut the construction of separation sets. Other
problems on separation sets are still unexplored. How does one construct separation sets of
' small size in higher dimensions? How does one construct small k -separation sets for k-

separable families?
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collinear 11 60 | . g:m 1166
common transversal I, . Hadwiger's Theorem 19 3134 4285
compact set 15 / ) ] half-space 8 T . L
. cone 53 closed 8 14 '
connected 15 open8 14
. comnects 83 Heine-Borel Theorem 15 27
consistent 1923 25| . Helly'sTheorem 91825310 - - .
o continuous 15 ;/ ' homogeneous cooxdi‘lmnes 714 X
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hyperplane 6 17
\. projective 13 14
supporting 8

hypersphere 7
unit 717 26

incident 16
inrfer product 6

interior 15
“relative 15

isometric 6
isometry 6 12 13
k-set 77
* Katchalski’s Theorem 21 34 39 85

line segment 7 810 17
closed 7 14
open 7 14 -
projective 14

line678 17 L

~

projective 13 14
mapping

isometric 6

projective 13
neighbour 16
norm 6 »
normal 8 _
normalized set of arcs 81
open covering 15
open set 14
order type 22
ordéring 22 &
orientation 11 12 13 .
origin 6
parallel 13
planar subdivision' 16

plane 6
paz:l: cover of arcs problem 71 80 84

’ pgint'cover 75
point 6

>

improper 13

polygon
convex 10

polyhedral set 10

polytope 17
convex 10°
dimension 10

projective space 13 17 |

quadric surface 9 61
projective 14

Radon partition 10 35 37 38 39
Radon’s Theorem 10 35
ection 13

ed 962
doubly 9 62

separaPle 2352

separated 8
strictly 8

separates 8
strictly 8

separation direction 28

" sepgration normal 26

separation set probleﬁ\1 M7277

separation set 44 52 70 86
strict 44 70 * .

separation slope problem 71 80 84,

. separator 85

simplex 10

skewed 60

slope 7

sphere 7

stabber 1 18 i
stabbing direction 28 .

- stabbing normal 25

stabbing
hyperplane 58
« line 58 59 85
plane 58
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strict separation set problem 71 77 _ > ~
subcovering 15 ’ .
tetrahedron 10 ~ _ ' .
' translation I3 - ‘ |
\ transversal 18 85 ' ;
, directed line 18 28 31 32 :
. hyperplane 18 21 23 252627 39 . !
~  line1819 34 , ‘ f
. i -
oriented 18 . ' !
plane 18 ‘
_ triangle 10
triangulated 16
triangulation 16 ¢
complete 16 46 47 N
upper envelope 9
. vertex cover problem 71 72 ’
vertex cover 71

vertex 10 16 17
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