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Abstract 

\..-.' 

.' 

, ' 

(~ • rI., • 

Computâtional geometty is the s~dy of the algorithmic properti~ of "geometric objects. 
\ 

Some of the favoJnte questionS in computational geometry are a&ut the intersection' 

" 
propertics of objects: detennine. if sorne objects intersect, report '1111 the objects which do . -inœrsect or find all the intersections. This thesis addresses' a different type of intersection 

. problem. Given ~'family o~ ~nvex polyto~s, find a k -Oat. an affine subspace of di.mensioq - . , 
k, which ilÎtersects a1l members of the family. Examples o~ k-ftats are points, Iines, planes 

and hyperplanes. Mathematicians are inœrested in a similar question. What are the 

necessary and sufficient conditions for the existence.of a k-ftat wbich intersects all mcmber~ 
... 

of a givcn family of convex sets? SUM a i-ftat is. known ~ a C<?mmon transye!&al or . 
~ . 

stabber. 

1 In this thesis, conditions are given for the e~stencc of line and hyperplane tranS.ersais. 

Theorems are prcscnté'd about.the arder in which a Une transversal intersecta a given family 
" v , 

of con~ex sets. Mgorithnts are developed for findin~ line transversals in 3-spaee. ... .. . 

~ Hyperplanes which separate convex sets play ,an important role in conditions for the 
, . ." 

existence of hypeQ>lane transversals. They also detemùne 'the arder in which line transversals ~ 
"f' , ,JI • 

interSect a family of convex sets. A chapter in this thesis is 4e'loted to studying sorne 

algo!ithmic questions conceminiiuch separating h)'perplanes. 
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Résumé. 

, ~ J 

La g~méttie informatique est 1'6rude des pro~6tis algorithmiques d'objects 

g60m6trièjUes. CertAines des questions ptferm ën géométtie iIÎfonnatique co~rnent les 
.--. . ' JI • 

• propri6tés d'intersection d' objects: déterminer si des objects se croisènt, rapporter tous les 
~ , 

~ . 
objects qui se croisent ou trouver. toutes les intersections. , Cetter thèse aborde un genre 

, If \ 

différent de problème d'lnterseètion. ,Etant donn6 une' famille d'ensembles polyédraux 
• 1 • ~ • - .' 

cohvexe~ouvez un sous-espace affin de dimension k qui rencontre tous les membres de hl 
. 

.., famille. Des exemples de' sous-espace affin sont tes points, droites, plans et hyperplaps. t..es 

p 

mathématiciens sont intéressés par une quesd~n similaire. QueUes sont lés conditions 
.' ~ 

nécessaires et suffisantes à l'existence "d'un sous-espaçe affin de dime~ion k qui renco~tre 
\ ' . 

tous les membres d'une famille do~'ensembles COI\vexes'1 Un tel sous-espace affin est 
". a . . 

appelé sous-espace affin transversal. ' 
.". \ 'li 

. Dans cette thèse, des conditions sont données pour )'eiistence d'une droite transversale 

et d'un hyperplan. transversal. Des théoremes sont ~~tés sur l'qrdre dans lequèl une 
• • s ~ • \ \, ;,' 

droite transversale rencontre une famill~donnée d'ensembÎes convexes. Des Mgorithmes sont . 
développés pour trouver des dPOites transversales (Jans un ëspace tri-dimènsionel. . . . 

,/ 

Les hyperplans qui séparent des ensembles convexes jouent un rôle important dans les 
; 

v r . > 

conditions p>ur l'existence" d'un hyperpl~ transversal. Ils déterminent aussi l'ordre dans 

lequel1es droites-transversales rencontrent une famille d'ensembles 'convexes. Un chapib'C de 

• cette th&e est consacré à 1'6tude ae certaines questions algorithmiques concernant ces < '."" . i , , 
h)ipçlans séparants. 
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~apter 1 
. . 

IntroductiO_D . 

• e 

/ 

Mathematicians have long been interested in the necessary and sufficient conditions for 

the existence of a k :ftat, an affine sub}paœ of dimension k, which intersects ail members of 
, . 

a given family of colvex sets in Ed , d dimensional Euclidean space. Recently computer' . . 
,,1 _ '\ scientists have asked their version ,of this problem. Given a fioite family of convex polytopes 

• 

. 
in Ed and a fixed k, find some k -fiat which intersects all members of the family. 

MathematiciaÏiS ref~r to k ·ttats which tiltersect ail members of a family of sets liS commol\ 
, 
transversals while these objects are known as stabbers in the.compuœr scien",literature .• 

When k . equals 0, .the problem becomes one of finding a point whic~ U~at the 

intersection of a family of compact convex 'sets or convex polytopes. Helly found a 
( 

necessary and sufficient condition for the' existence of such a point[34]. 'Helly's Theorem and 

relate<! others by Radon and Carathéodory 'spawned a whole area of research ... inio similar 

typeS of geome1!ic theoremt. 
f • 

" , 
\ . 

The pfoblem of finding a point stabber for a finite family of convex polytopes cao he 
j, , , 

• 10 

" 

orie way of viewing problems in linear programming. If the convex polytopes. are described ' 

as the intersection of half-spacès, the problem becom~s one of finding il point whlch lios at 
J 

the intersection of a Bnite family of half-spaces. Obviously this PJ:Oblem cao he solved using 
• T 

linëar program,mtng alg~rithms. Equally truc, any liqear . programming problem can he 

reformulated as a Problem of Bnding a point which .lies at the intefsection of a finite family 
(J 

of half-spaces. 

. , 

/ -1-
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, The ,importance of Helly's' Theorem' 10 conve~ty theory and of lipear pro~i~~ , . -. 
~peratiôDS rese~ch and -~Dlp\lieP science motivated me ~ consider k-ftat transversals f9r 

,values of le greater than O. Dy investigating the mathematical properties of tbeSe ttansvenals; 

1 hoped to devise efficient algorithms ~. find thenî'. Dy asking algorithmic questions a~ut 

~transversals, 1 tried to probe their sttÙcture and 59 derive their mathematical properties. . 
\ . . 

Most research -in Ie·rransversals for le > 0 bas centered on line ttansversals in the plane . , . 
~ , 

and hypeq,lane m&sversals in any dimension. Hadwiger found neéessary and suftlcient 

COn4itiOllS fOl; the 1 exis~nce of line transv~s for families of paitWise disjoint convex 

sets[31] in the plane. Katchalski[37] and Goodman and Pollack(29) generalized Hadwiger's 

11lèorem in different ways 10 theorems about hyperplane transversals. Hadwiger' s TheQrem 

relies' upon the arder in whi~ a directed Une intersects p,airwise disjoint co~vex sets. 

KatchàIski and others stu~d titis arder, particularly for families of translates[38, 39,40]. 
,~ , 

, ' 

An important pmpèrty of cop~ex sets concerns sep'arating hyperp1an~.' Two convex 

. sets are disjoint if and only if they cao he strictly separated b'y a hyperplane. In this thesis 1 
, '" " ~. , 

shÔW that separating hyperplanes play an important" role in hyperplane transversals as, weIl. 

, Whctbcr thcro exista a hyperplane transversal depends upon whether the normals ~ t)f 

separating _ hyperplanes cover'~ unit sphere. Additionally, the prder in Iwhich a line 

intersects a family of convex sets is completely detennin~ by the arrangement of lines whtch 

sepat"!lte the 06nvex setS. 

Algorithms for finding le -tranSversals have rbeen recently proposed" for tine ttansversals 

in El and hyPerplane ttansversals in ky ~nsion[2, 4, 18, 19]. Little hill been 

accomplished on k -stabblng in Ed for values of le other than 0 and d:"'1. 1 providc an 
(. . 

aJgoritl!Jn which D. Avis and 1 devised for finding tille traDSVersaJS in E3 
• 

Q ·2· , , 

'- .. 
JO 

. /\ p " 

"'~ ~" .. ,i!tJ.~. "',~,',,_ .. /.w5:,. .• ';i,.l, _ lu"- .~?'..J.. .~ .. ~,t~'*-.L.?;r ...... L~;i;",::;~ : t;' .U •. ".-.\~~ : .• :~~:-~J)y.Ji ~lj!., ",lb/ , .. ~{~"\I..~'" ~:,.!..:: ~ .. ~} ~~J'!:~._,.: _ ...... :*';'t'~ ~.i~o;'_~~ '". _ t'C •• , .... 
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Tbe' relationship of separàtÏon ln· 8tabb~~ led ~ tO investigate separation properti;' of 

convex sets. FOr instadce, 'how many hyperpIages" are'~ to .ate evefy'~ ~n a 
\. 

, / 

. family of n convex sets? How cao these h)!perplancs he found? Deciding whether m 

hyperplanes suffice to separate every pair is NP-completc but other questions admit efficient 

algori,thms. 

ChapJ 2 contains background information on convex sets, ~lytopes, linear a1gebra. 

. and some elementary tepology and graph theory: It also contains the definitions of tht 

standard terms and the notations 1 will use. Any new terms which 1 create or which have 
• c 

only been used recentIy are ll1so defined Within the relevant chapter, so this chapter can he 

used solely for reference. 

. Chapter 3 bas results on neœS8~ and sufficient conditions for hyperplane transversals. 
" 

Hadwiger's Theorem is gcfiIer.aIized to families of compact convex sets which are IlOt 

J , 

nccessa,rily pairwise disjoint. A -sufficient condition is givcn for the existence of hyperplane 
, Q 

transversa)s for many diffèrent families of compact convex sets. This condition includes .. ~', 

tbeorems of KatchaJski and Goodman and Pollack on hyperplane transversals. The, results in " ' , 
,Section 3.2 are contained in a paper "A generalization of Hadwiger' s Theorem to intersecting 

'r, 

sets" [58], which bas been submi~d for ppblication. The results in Section 3.3 are by 

R'ichard Pollack and myself and will soon be, submitted for publication. 

Chapter 4 examines the number of different orders in which a lioc or hyperplane càn 
-/ 

,}ntersect a family 'of convex sets. As noted befote, these order:s are telated to the . 
arrangement of byperplanes ~ which separate the convex" ~is. One of the lemmas in this 

chapter is interesting in its own right 'A family of compact convex sets can he embedded in 

a family of convex polygons using 'few' edges. Section 4.2 is contained in Ja paper "Upper ., . . ~ 

-3-
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bounds on geometric permutadonstl[S9] which will appear in Ifptscrete and Compùtadonal 

Geometry". 

In Chapter 5 a theory for line stabbers in E3 is developed. A Belly-type theorem is 
• 1 

giv~n for line stabbing of lines in E3. The theory for line stabbing is used in aliorithms for 
~ , 

line stabbing in E3. The work in Section 5.2 wàs done by David Avis and myself and was 

presented at the 3rd ACM Conference on Computational Geometry under the title 

"Algorithms for !ine stabbers in spaee" [5]. A modified version of this paper, entitled 

! 

"Polyhedral Hne transversals in space"[6], will appear in a speeial issue of "Diserete and 

Computational Geometry". 

Chapter 6 investigates sorne algorithmic questions about hyperplane separators for 

families of convex sets. Finding a rninirnuIQ set of hyperplanes whieh separate a famny of 

convex sets is NP-complete. However, a polynomial time a1gorithm is given for finding the 

minimum number of slopes needed 10 separate the family. An efficient algori thrn is also , 

giveil for finding the minimum size }?,Oint set needed to cover a set of arcs on the circle. 

(FinallY, Chapter 7 -œ.ocludes with sorne open problems and areas of research . 
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Chapter 2 

Background . , 

The computational problems considered in Ibis thesis fall under the area in computer 

science called computational geometty. Computational geometry encompasses a wide range 
• 

of problems conceming the algorithmic properties Of geometric abjects. Two texts are 

particularly, relevant for this thesis. "Computationai Geometty" by Preparata and Shamos[48] 

is an introductory text to Many of the basic problems and algorithms studied in computational 

geometry.-"Algorithms in Combinal?rial Geometry" by Herbert Edelsbrunner[17] is a more 

advanced text which cove~ Many of the computational problems related to stabbing. A 

whole chapter in Edelsbrunner's ~k is devoted to line stabbing in me plane. 

An invaluable reference for geometry, bpth Euclidean and projective, is " Analytic 

Geometry," by K. Borsuk[8]. Borsuk gives' an excellent treatment of homogeneous 

coordinates and duality. The c1assica1 work on convex pol~topes is "Convex Polytopes'" by . . . 

Grun~aum[30], who also gives a good introduction to convex Sets. 'A new book, "Cpnvex 

~ , 
Sets and their Applications" by S. Lay[42], als<> covers .eonvex ,sets, quite weIl. Many 

Q 

theorems on convex sets are included in Hadwiger, 'Debrunner and Klee's book, 
~ . 

"Combi~atorial Geometry ln th~ 'plane"[32], and in the article "Helly's 'Theorem and its 

'q Rela~ves" by D~r, Grunbaum and Klee[l3]. For topolog)' ~re are Many texts available. 

1 sugges! "~ciples of Mathe~atical Analysis" by Rudin[SO]. Standard ~xts on graph 

theory are "Graph Theory with Applications" by Bondy and Murty [7] and "Graph Theory" 
, 1 (, . 

by Hararyi33]. ' , 
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1be rest of dUs cbapter introduces the mathematical definidons and properties of Many 

of the mathematical and geometric objects in ~s thesis. Carresian and homogeneous 

coordinaœs, le -Bats, convex sets, polytopes, orientation. projective space, and sorne 

elementary topology and graph theOly are all discussed here. AlI tenns which aie new to this 

thesis or of recent origin will be defined as necessary within the main text, 50 this chapter 

can be merely used as reference by those familiar with the §ubject matter. 

1be objects which are studied in this the sis lie in d -dimensional Euclidean space, Ed . ?; 
, \ .. 

\ 

Bach point in ~ is represented by its Cartesian coordinates, (al" ., 0yJ), a' d-t' 

dimensional vector of real numbers. If x = (<Xl' .• ,"'ad) and ,Y = <131' '. , I3d) are two 

d 

points in Ed
, the inner product oi do' product of X" a~d y, x y, is 1:a,I3,. The norm of 

, , .. 1 

a vector v, denoted 1 1 vii, is ,...fVV" The distance between two points x and y is 

~. . ' 

'. Ilx':'y 1 1. R denotes the set of real numbers and Rd is the set of d-dimensional real vectors. 

o is used both for the 4al n~ber 0 and aie vector (0, ... , 0). The point (0, ... ) 0) is 

called the origin. , 

Two sets of points are i60metric if there is a 1-1 onto mapping between the two which 
, 

preserves distance. Such a mapping is called an isometric mapping or isometry. A set of 

points in ~d which is is~metric to EA: is known as an amne subspace of dimension le or a . 
k·flat. Points are O·ftats, Iines are I-flats and planes are 2-ftats. d-l-Ia'ts in ~ are known 

> • 

as hyperpranes. By convention, the empty set is a ftat of dimension -1. If X is a set of BI 

points, the· anine hull of X is the smallest k ·flat containing X. The dimension of X is the 

dimension of the affine hull of X. 

.! 

'\ 
• 

, 

\ .. , 
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A Jtypenphere is the set of aIl points a fixed positive distance from some. point x in 
. . 

The unit hypersphere in ~, denote ~d-l, i8 the set of all points-distance one from the 
~ ','. 

o~gin. A cirde i8 a hypersphere in E2 and a sphere i8:a 'hypersphere }n .E3• 

Often the homogeneous coordinates of points in Ed are useful. Homogeneous 
"'-

,roordinates afè d + 1 dimensional vectors. (O(). al, . . . , «ct), a; E R. Whe~ <l() ~ O. The 

poinl' x with Cârtesian coordinates (al'~' .. , ad) is assigned to-the set of vectors 

(~. ~lt~, ... , ~d) over aU ~ e R, ~ "# O. Any one of these d + I-vectors represents the 

in i homogeneous coordinates. Given the homogeneous coordinates 

, ad), <l() ~ O. of a point x E Ed
• the Cartesian coordinates of the points are 

ad ( 
. , -). Sometimes'the homogeneous coordinates of points in Ed will be 

0() 

restricted to (<l().<Xl' ... , Clcl) where 0() > O. 

Both Cartesian and homogen:us clordinates are useful for describing points in Ed • 
y -

f 

Thus we will define many. objects and properties in both Cartesian· and h07ogrneous 

coordina~s. It i~ left'to ~e readér to show 'that these definitions 'are equivalent. 

Lines bd hyperplanes have many different coordinate ~arameterizati:ns. If 

x = (al, . . . , Clcl~ and y = (Pl, . . . , Pd) are two points ln ~ repœsented in Cartesian 
, u • 

't. 

coordinates, the Une .through x and y is the set of all points of the form Âx + J!y where. 

i + J!' = 1. The closed line se...,gment or jusl lin~ segment xy joining x and y is the set of all 

~f the form Âx + J!y where ~ ~~. }l ~ 0 and ~ + }l =.-1. The open Hne se~nt 
\ ' . 

joining x and y is xy minus its endpoints, x and y. Lines can be parametrized by u y + x, 

wheœ U E Rd, x E Ed , and 'J varies over aIl the reaIs. In E2 the parameterization of a Une . . 

·7· 
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If % = (<Jo. à1, ••• , a.t) and y = (Po, Pl' . -.. , Pd) ,are tWo points in r represented-in 
, " 

'" 
homogeneous ~tes, tben the Ùne through x\and y is the set of a11 points of the fomi' 

A ~ ~ -

ÂX + J1Y, Â ~ 0 or Il;t: O. With the Bdditlonal restriction that CXo > 0 ~ Po > 0, the Une' 

segment:xy is the set of points of the form ~ + J.LY where Â ;l! 0, J.L ;l! 0 and Â ~ 0 ~r Il ~ O. • 

In Canesian coordinates a hyperplane h' is thè set {x : u . x = c, U E ~d, ç E R. and 

v • 

u ~ O}. The vector u is said to be a normal to the h~rplane. In homogeneous éoordinates 

l 'd 
.a hyperplane h is the set {x: u . x = 0, u É R +1 and u ~ O}. For convenience. we 

sometimes omit the conditions on u and C r-

A hyperpUme h divides [d into two parts known as half-spaces. h bounds these two 

half-spaces. These half-spaces or closed half-spaces are parametrized JIS {x : u . x ~ cl and 

{x: u . x Sc}. In homogeneous' coordinates these half-spaces are {x: u . x ~ O}, and 

{x : u . % S O}. A half-space in E2 is called a half-plane. An open half-space is a closed 
./ 

P half-space minus its bounding hyperplane h. AI set H of hyperplanes di vides Euclidean 

space into connected regions called cells. Such a division is calle4 an arrangement ot 

hyperplanes. 

If X and Y are two sets of points in E" J • the hyperplane h separates X from Y -if X 

lies in one half-space bounded by h while Y lies in the other:· If, in addition,.X and Y do 
• _ \ 1 • .' ' l' 

lA • 

not intersect h. then h strictly separates X from Y. If X lies in one half-space bounded by 

h and h intersects X, then h is a supporting hyperplane fqr X: 1'wo sets of points X and .. 
y çan be separated or strictly separated if. there exists 'a hyperplane wlùch separates or 

" 
'-. 

stricdy separates X mm Y. 1" ' 
u rx is a polynomial of degree one in x. Hyperplanes are sets of ~ints whose 

Cartesian coordinates solve the eqüation f (x) = 0 Iwhere f is a pOlynomial of degree one. 

.' 
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The st of points '{x :f(x) = o. f is a polynomial of degree two } i8 called a quadrl~ 
J 

surface. In homOgeneo~ coordinates a quadric surface ~ {x: 1 (x ~~ O. ail rerms .of f 

haveJiegree two }. A -qu1tthic surface is ruled if it &m he decomposed inlo a set of Unes. A. 
~ r .. ' .. 

~adri81llUrface is doubly ruled if there are tWo suclhlècompositions. \ 

l.et X. he a set of points in ~ ... The . upp~r envelope of X is the set of points 
........, II-

{(Pl'" ", Pd-l.Pd):(PI'·' ., Pd-I.Pd) E X and Pd ~1 for all (Pl" .' , Pd-I.'Y> EX J. 

\ Ackerman's funçtion is deftBed inductively as follows: 
~ 

Am(l) = 2, 

( A".(n).pA"'_I(A",(n-l». '!' ~ 2."n ~ 2. 

The inverse of Ackerman's function is a(n) = min (i :Aj(i) ~ n). Sharir and Han proved 

, .. 
that the upper envelope of n line segments is composed of at most 0 (11 a( n» line 

segments[52]. 

X is a conve?, set if for each pair of~points x and y in X J the ~e segment xy ·is a 
~ . . , 

sub~t of X. Any two disjoint conv~ sets can he separated by a hyperpl~e. If ~ is a set of , 
. 

points, the convex: bull of X. conv (X). i8 the smaIlest convex set containing X. For a tàmily 

A of seœ of points, conv (A) ~ll represent the convex hull of the union of aIl the sets i~ A . 

'There are three related theorems by Helly. Radon and Carathéodory on convex sets . 

.. 
HeUy'. Theorem.· There exists a poittt which intersects every member of a family of compact , .. 
convex .~IS in Ed if and only if the intersection of every d + 1 selS is non~mpty. 

.. 

. ,. 
l • . ~ . . 

" 

" 
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, 
Carathiodory's Theoreoi. Let ~ œ--a set of Points in F'. ~ch point in conv(X) ~tI. Jhe,.~ 

CQDYeX combination of d+l or fewer points of X. 

, t 

. ' 

RatIon'. Theorem. Bach set of d+2 or more points in ~ can he eXPressed as me union of 

two disjoint sets whose oonvex hulls have a cdmmon poipt. 
• ,\ ç. 

A decomposition of a set X of points in Ed into two disjoint sets, X ~ Y u Z, y (') Z = 0, 
, . 

such that conv(Y) (') conv(Z) ~ 0 is called a Radon pa~ition: 

The convex hull of. a finite set of points is caIled a conv.ex polytope. Sinœ all 

, . polytopes in this thesis are convex, we ~'simpl~ refer to conv,ex polytopes as polytopes. 

The dimension of a polytope is the dimension of thé srnallest k -tIat which CODtains the 

polytope. A convex j,olygon is a poly.tope of dimension two. Sometimes line segments and 
11 .. f " 

~, points will aIso he considered convex polygons. albeit degenerate ones. A polyhedral set is 

the intersection "of a finite ~umbero of halfc:spaces: AlI polytopes are polyhedral sets altho~gh 
\ 

oot all polyhedral sets are polytopes. 
'(" 

, 
If p is a polytope; there . is a smallest set'of points whose convex hull is p. A point in" 

this set is known as a vertex of p. A k -dlmenslonal simplex is a polytope with k + 1 
t . 

vertices and dimension k. A line segment ts a l-dimensional si~plex, ~_ triangle is a ,2- • 

dimensional simplex and a tetre&edron i~' a 3-$limensional sÎlpple~. 
, 

A ''!ce of p i8 a set of points which lies in the intersection of p and S'ome supporting -~ 

hyperp]ane of p. Each face bas a dimension which is the dimension of the smallest k-flat 

which contains the face. A face of dimension k is knoWn as a k-face. O-faces are just the 

vertlœs of p. 1-faces are known as edges. If p' is a d-dimensional polytope, the faœts of .... 

. -
p are the d-l-faces of p. 

;, 10· 
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A hypeq>lane h i8 defined as {x: u 'x = O} in homogeneous coordinates. - If ,. 

" u = {l, al' : ..• Clet}, thcn replaèing u by '{A, )..al' . , .• Mx.,} for any Â e R, Â;6 O. will • 
~ ...,.,....10 " ' 

", defirte the same hyperplane, Thus~ h can he associated with the set of ~vectors • 

{Â, Âal •...• ~}. This i8 quite sunilar to thetàefinition of points in homogeneous 

COO~te8 and~gests -a mapping between the two. The dual.Jl18p D maps points in Ed 

to hyperplanes and hyperplanes te points. For a point x in homogeneous coordinates in Ed , 
"'" , 

D(x) = {u:x·u = O}. For a hyperplane h =.{x:u·x = Ol, D(h) = u, the point with 

homogeneous coordinates u. D (D (x» = x and D (D (h )J = h, 50 D is its own inverse. 

Conveniently, D preserves incidence relations between pointj and hyperplanes .. .If x lies on 

h, then D (h) lies on D (x). D is undefined ,on the origin and on hyperplan~s through the 

origin. 

A set of points i8 colllnear if ail of the ~ints lie on a line. A set of Points i8 co· 

planar if ali the points lie on,a plane. A ~t of points in Ed i8 in general position if no k 

of the points are contained in a k-2-flat, 2Sk~+1. A set of hYpeIP.lanes in ~ i8 in generàl 
.,. 

position if the intersec~on of any le of the hyperplanes is contained i~ d-k-llat, 2Sk:;d+1. 

Let (Xl' '.' .• ~+l) be an orde~d sét of d+l points, in F' represented by their 
• 1 

. Carresian coordinates whère Xi = (ai,l' " ..• ai,d), aiJ E R. Let M be the d+l xd+1 

matrix 

1 al,l 01,2 
,., 

al,d 

1 ~I ~,2 
" 

(l,j,d 

.. , . 
1 ~+l,1 <XwI+2,2 

, , . 
Œa+l,d . 

det(M) i5 the detelÎninant of li. The orientation of (xl' ...• xd+l) is the sign of tht(M) 
. 

ot sgn(det(M». Note that the' orientation depends upon the orcier of the points in 

·-11· 
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(Xh .:: ~;~~~l). In E2 the orientation of ({bX2,X3) is equivalent to whetha' someone 
,,/' 1 r ~- .. 

't,f ~ _ 

traveling fiom XI to %.2 and then to %3 makes a left tum, a'tight turn, or contiDU~s straight If 

"1 •. : .• ",. are n vectors ôf length n • .thén ckt(" l' ... ,UII ) is the determinant of the n xn 
l, ' 

~attix -with rows "1 through ",.. The orientation of (x~ • ... , Xd+l) cao wn he described 

coordinates, Xj = (a;,O,~,I' ...• aird)' aj,o> 0, the~ the orie~tation of (XI •... "Xd+l) is 

sgn (det(XI: ... , xd+I»' ) C 

k-flats can also he givert an orientation. An isometry r from a k-flat to Et gives the 

k-flat an orientation by specifying the ,orientation of every k+l points in general position in 
, 

'" the k -fiat. The orientatiQn of the k+1 points is' their orientation under r. The isometries 

from the k -flat ta Et "can be diyided ioto two equivalence classes where each equivalence 
.... 

class gives the k -flat the same orientation If two isometries rand r' are in the same 

equivalence class, then the orlentation of f+l points under r is the same as the orientation of 

k+l points under r'. If two isometries rand r' are in different equivalence clas~es, then 
c, 

the orientation of k+l points under ris the opposite of the orientation of k+l points under 

r': 

Lines can also he given orientations or directions based upOn their parametrization. A 

Une paramëtrized by ""/ + X c~ he given a direction " and ~s then referred.ta as a directed 

Une. A point y = ""/ + X comes before a point y' = "y' + X if y~ "/'. Under a suitable ~ 

isometry of the line 10 R,' this is equivalem to saying that the "Orientation of (y, y'') is 

positive. 

Hyperplanes cao he given an orientation based upon theit normals. . A hy},erplane ' 
~ 

h = {% :" 'x = c} in Cartesian coordinates bas a nonnal " = (Pl' ... , Pd)' If % •••••• xd 

7 
", 
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are d points in h, %1 = (<<Xi.I ••••• «Xi.ll), men" gives them the orientation sgn(tkt{M» 

where 

1 ~1 P2 Pd 
1 al,l Œl,2 al,d 

M= 1 ~I au «2.a 

"', 
1 ~,1 Œd,2 

,., , . 
~.II 

/ 
1 \.t~ 

Let a set of points X be represented in Cartesi~n coordinates' i~. K is centrally 

symmetrlc if -x· e X whenever x EX. Two isometrÙ: mappings of Ed- to itself arië'of 

particular interest. X' is a reflection of X about the>' hyperplane h if 

X' = {y-Àu :y+À" E X,y E h.À ER." is a normal to hl. X' is a translation of X if 

x' = {x+v :x e X} for some fixed v~ e Rd. Two k-flats are paraDel if one is a translation 

of the other. 
,/ 

. Parallel k-flats must often be handled as special cases for theorems and algorithms in 

Euclidean space. Projective space av~ids this annoying property of parallelism. Divide the 

Unes 1 ~ intô disjoint sets of paran~ tines. Projective space is constructed from~uc1idean 
space by adding a point for each such set of parallel Unes. These new points are called 

improper points. AlI the Hnes in a gi ... set of parallel Hnes are e}tended to incl~de the 
. 

improper point corresponding to that sel These extended Unes are called projective Unes. 
\, .. .. 

~ 
~re is no notion of ~istance in pd. so isometric mappings .w~ch preserve distance 

. , 
make DO sense in pd. lnstead a projective mapplngs is a 1-1 onto mapping of a set of 

\ 

points to a set of points wbich preservps Iines. • A set of. points in pd which is some 

, projectiw)Ilap of Et is known as a k·flat.in projective spacc. d-l-flats in pi are called 

hyperplanes. Wbelber a k·tlat or h~lane is Euclidean or projective will be ûnderstood· - ~ ~ 
\ 
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from the conteXL Every two Unes in pl intersect in a pàint 'and every two planes in p3 

intersect in a line. This geoeralizes to e.,very two hyperplanes in pd interseét in" à d-2-ftaL " , 

, ' 

The points in pd, d-dimeosjonal projective space. are coordinatized using homolen~us 

coo~d.inates. Bach point x i~ ttt corresponds to the'" ~t of vectors' 0 .. 00. Â,(XI' •••• Â,<\l) 
1 

-. 
over all À E R. À ~ O. {ao. (XI •...• <ld) ~ O. The homogeneous coordinates , 

{ao. (XI' • . •• C4J) where 00 * 0 correspond to both a point in Euclidean space and a point in 
\ 

, pfojectivé space. This isomorphism defines a naturaI embedding of Euclidean space inte 1 ., 
... 

projective space. The homogeneous coonfinates (ao. (Xl •...• <Xâ) where ~ = 0 corresPond 
" ,. , 

to the im~per points in projective space. 

If x = (00 •... , <\l) and y ::: (ao •... , CltJ) are points in pd, the projective Une 

through % and Y is p,arameterized -by Â.x + ~y, À*,O or ~ *' O. À projective hyperplane is 

{x :" . x :: 0, ," é' Rd +1 and u * O}. A quadrh~~ surface is {x :j (x) = 'Ô~ aIl terms . .of f 

have degree two}. 1be points x and y divide the projective line through x and y into two 
. -

connected pieces. These pieces are projective Une segments with endpoints x and y . 

" 

A li~é 1opology is necessary 10 describe sorne properties of sets of points. A bail . . 

around a point x E Ed is the set of all poi;ts whose distance from x is !ess than some, ~d 
XI" '" d 

radiüs r :> O. ~ open set in F' is the union of sorne collection of balls. A closed set Y in 

~ is the complement of sorne open ~t X. Y = E" -X. Closed lin" segmen~ are closed sets 
g 

in El wlûle open Une segments are open sets, in El. Closec1 half-spaces are closed sets while 
, 

open ~f-spaces are open sets. 

If X is a subset' of gI • ,an open" set in X is a set X (") Y, where Y'is an open set in Ed • 

The open sets in pd are unio,ns of projective transformations of open sets in Ed • If X is 'a 

subset of pd, an open set in X is a set X f"\ Y. where Y is an open set in pd • 

., 

. , , 

) 
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• 
Por a funcdon f, a point' % and a set of points. X, f-l(%) = {y :f(y) = %} and 

• • • 
u f-l(X) = {y :f(y) e X}. A function f"u continuoUB if f-l(X) is an open set whencver X 

is an open.set. In W a function f is condnuous if aM only if limf (x) == f (a). 
, %~ 

~ . . 
The lnterlor of a set X. in! (X). is the largest open set contained in X. The closure of 

a set X, cl(X), is the smallest closed se~ containing X. The boundary of X, bd(X), is 

cl (X) - int'tX). The relative interior of a set X ~ Ed
, re/in/eX), where X bas dimension 

k, is the interior of X when X is embedded in Et. 

" 

A set is bounded if there is some bail whiè:h contains the set. A compact set is a set " 

which is closed and bounded. A cov~ring of a set X is a coIJection of sets whose union 

contains X. This collection is said te cover X. An open coverlng of a set X is a collection 
" , 

of open sets which coyer X. A subcovering of a set X is some subset of a coveri~g of X 

which also covers X. The subcovering is finite if it bas' a finite number of elements. The 

Heine·Borel Theorem states that any open covering of a compact set bas a finite 

suocovering. The proof is available in any standard topology text. 

Two theorems which use topological l''roperties are worth mentioning. A polytope is a 

bounded polyl}edral set. Any two compact convex sets can he strictly separated by a 
1 , 

hyperplane. See any standard text on convex sets for proofs. 

A set of points is cal~ discOnnected' if it can be split inta two cHsjoint open sets y. yi, 

neither of which is empty. A set nf points which is not disconnected is connected. A 

hypersphere ïs connected. Arcs are conne~ subsets or thè çircl~. Closed arcs are arcs 

which c(,utain their endpoints while open arcs are arcs which do not contain tbeir endpoints.-, '.. 

, ... 
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Finally, some telminology fi'om 'graph theory is useful. A arapb is a collectiorl" of . 
vertlces and edges, where each edge is Inddent with two verticeS. Two vertiees are 

adjaœnt or nelghbours if there is an edge between them, i.e. they are incident with the same 
" . 

edge. A graph wnere every edge is incident with two distinct verdees and no two edges are , 

incident with ,the same two verticës is known as a Simple graph. A cUqùe is a subset of the 

vertiees in a graph where every two vertices.in the clique are adjacent. An embedding of a 

) . 
graph is a drawing of the graph on a surfaee such that cdges only intersect at their endpoints, 

A straight Une embedding is an embedding where all edges are drawn as line segrnc;nts. ,A 

~ 

pl anar graph is a graph whlch can he embedded inl the plane. ,A sl!PPle planar graph always 

bas a straight line embedciing(23). A sttaight line embedcÎing of a pianu graph is also called 

a planar subdivision. 
~ 

An embedding of a. graph in the plape divides the plane into connec(ed regiorls called 

faces. One of these connected regions is not bounded and i~ called the extemal face. Ail 

other faces are internaI races. '&ch face is s~ounded by vertices ~d edges which form its 

boundary .. A planar subdivision is a triangulation if each internal face is a trilmgle. A . . \ ' . \ 

complete triangulatIon is a ~angulation where e~ery mce, includine the external one, is 

bounde,f by three edges. Any face of a planar subdivision ,~ be broke~to triangles" or 

triangulated, by the addruOJ,1 of line segme~ts between.vertices on the boundary of the faee . 

. 
Similarly a planar subdivis!on ~n he triangulated by triangulating eacb of its. faces. Euler's 

',/ 

forÎnula states that if n js the number of vertices in a planar gr~ph, m is the number of 
'. 4 G • 

edges, and f is the nomber of faces, then n ,+ J - m = 2. li In a complete triangulation, 

lm = 31 and m = 3n-6. 
• 

f 
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This thesis willloosely lidhere to some notational conventions. R is the set of reals and 

Rd i~ t.l)e set of d -dimemional real vectors. Euclldean d -space and projective d -space are 
( . , 

denoted ~ and pd, respectively. Sd-1 is the unit hypersphere in F'. Lower case greek 

letters will be~ used for real numbers arid u, li, W for real vectors. d is the dimension~of 

Euclldean or projective space. Points in Euclidean or projective space will he labelled x,y or 

z. Lines will he called l, Hne segments s, hyperplanes h, Bats g, and polytopes p. Half

spaces and half-planes will be labelled h + and h -. Sets ~ts will generally he in. capital 

letters. X, Y, Z will he sets of points, L, S , K , H , P will he se~ tines, line segments, arcs, 

hyperplanes and polytopes, respectively. E will he used for sets of edges and V for sets of 

vertices. Graphs are lahelled G. One exception to selS, heing capitalized is ~nvex sets 

~ 

which will he labc;lled a, b , C • a , b , c will also he' used for connected sets of points. 

Familles of convex sets will he A, B , C. AlI objects cm he subscripte4 or p~~ed ta refer ta 

many different objects of the same, type. (x l' ..• XII) is the set of Il points from XI' to XII • 
t; 

(x l' . . . • x;. . . . • XII), is the set of n -1 ~ints fro.m ~ 1 to XII excluding Xi' D a the dual 

map which takes points ta hypeq)lanes and hyperplanes to points. ~Y s~~ard conv~ntion, 

Am(n) is Ackenn~'s func;âon and a(n) i~.the inverse of Ackerman's function. IS 1 is used 

~ 

for the size of set S . . ' 
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Chapter 3 
'l • 

.- Hadwiger' s Thediiem and Qenerali~atiôns ./ 

3.1 Introduction 

Let A be a family of compact ionvex~ts in ~. A k -transversal or k -stabber of A 

\ 

is a k -fiat which intersects every member of A. I-transversals, 2-transversals and d -1-

transversals in Ed will also be called Une transversals. plane transversals and hyperplane 
"'-. 

transversals, respectively. If the line intersec~ng evèry member of A is directed, then we 

will refer ta it as ~directed'line transversal. Similarly, if the k-ltat-infersecting every 
"\ 

member of A is o'riented. we will refer to it as an oriented k -transversal. What are 

necessary and sufticient conditions for the existence of a k -transvers~l of A ? 

In 1913, HeUy proved his famo\lS theorem on convex sets which is restated here using 

the termin910gy of transversals[34]. 
) 

Helly's Theorem. A family of compact con~ex sets in Ed has a O-transversal if and oniy if 
) 

. every d + 1 of tJÎe sets have 'a O-transversal. 

Helly's 'I1leorem makes no restt1ction that the family of eompact convex sets be finite. The 

theorem also applies 'to finite families of convex sets which are not necessarily compact. 

, 
Helly' s Theorem is 50 useful QeCause a property of the entirè family can be found by 

e 

only looking ar.. smalt subsets of the . family. In fact, if there exists a polynomial rime , 

aIgorithm fer determining whether every d + 1 sets in some family of convex sets have a 0-

transversal. lhen Helly's Theorem gives a polynomial time algorithm for determining whether 

/" 
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o 
the enrr;'famiIY ~ a O-transversal. 

r 
Simply'examine every d+f subsets of )he family to 

... 
determfne if.they have a Q-transversal. This algorithm mns in polynomi~l rime for fixed d ~ 

After HeUy publisheCt-his theorem, mathematicians started looking for theorems with a 

si~ilar fOTm. They w~ted to show \that sorne property w~ trhe for a set A if and .only it 

was true for every m elements of A. For tine transversals this produces the conjecture that a 

famil)" A of compact convex sets in E2 ha~e a Ii~ transversal if and only if eyery m of them 

have one, for sorne fixed m. l!nfortunately, this c~jectute is false. Figure 3.1, consisting of 

a family of four lille segments and a point, is a counterexample for m = 4. It is a 

modification of an example by Lewis[43]. Any line transversal must go through the point but 

any line waugh the point misses one of the Hnes The four line segments have a line 

tr3f1Sversal and every three line segments and the point have a lin~ansversal. It is easy /0 

see how this example may he extended for any m . 

A directed line transversal for a family of pairwise disjOlDt compact convex sets 

~ 
generates an ordering on those sets. A directed line transversal is consistent with sorne 

, ordering of the family if the arder generated by the transversal is the same as the given 

-/ 

ordering. In 1957, Hadwiger provided the following necessary and sufficient condition for 

line ~ansve~a1s i~ E2[31]. 

Hadwiger's Theorem. A family of pairwise disjoint compact convex sets in E2 has a line 

transversal if and ooly if there exists sorne ordering of the family such that every three of the 

sets ha\e a directed line transversal consistent with the ordering. 

Like Helly's Theorem, Hadwiger's Theorem is no! restricted to finite famUies. However, the 

condition thet the sets are compact and pairwise disJ int irnplies that the families must he 

• .. 
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Figure 3.1. Pive Convex Sets with No Une Transversal 

, '. 
Hadwiger's Theorem in~ludes an ordering condition. ,ThiS orderihg conen makes it 

difflcu1t turn Hadwiger's Theorem into a polynomial algorithm for fineling a Hne 

transve hl on a family of sile n because a-prio~ there could he up to n !,orderings ta check. 

As we sl1all sec in Chapter 4, there are ôrlly a polynomial ~bèr of orderings in which a , \ 

tine can intetsect a family of n compact convex sets. 

1 
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~wiger's\ Theorel11 only giv~ neçessary and sufficient conditions for families of 
.. 4\ 

paiiwise disjoint compact CODvex sets. What of families in which sorne sets intersect? 
A' • 

Section 3.2 g;.ves a generalization pf Hadwiger's Theorem to neœssary and sufficient 
L 1 

conditions for the existence of a line"t'ransversal for any family of compact co~vex sets in E2. 

, 
In fact, the theorem applies to the even more general category of families of compact '" . ( . . 

<connected sets in E2• The theorem applies to infinit6 families of compact connected. sets, 

even those that are not countable. 

Hadwiger's Theorem dOès not give any information about the order in which the line 

-
transversal intersects the entire farnily. One conjecture is that an ordered family of pairwise 

disjoint compact. FOnvex sets in E2 has a directed Hne transversal consistent with the ordering .. 
,JO fi _ 

if and ooly if every furee of the sets have a directed lire transversal consistent with the 

ordering. This conjecture is false a's can be seen from Figure 3.2, where the ordering is 
<fi ) 

(a, b, c, d). However, if we replace the condition that every three ~ts have a !ine transversal 
~ ,î 

consistent with the 'brdering With the conditi~n that e~ry four sets have such a transversal, 
. ,. 

then the conjecture is true.· Section 3.2 provides a proof of this theorem and its 

gen~~izatiOn to families of compact co~vex sets which are not necessarily pa~iSjOint. 

~ Lines are hyperplanes in E2, In 1980, Katchalski gave a sufficient condition for the 

.. 

existence of a hyperplane transversal for a family of pairwisc' disjoint compact convex sets in 

2"[37], 

Katcbals~'s 'lbeorem. A famil~ of pairwise dlsjoint compact convex sets in Ed bas a .. 
hyperplane transversal if there exists sorne ordering ()f the family 8uch that .every three of the 

sets ha" a directed line transversal which intersecta them consistent with the ordering. . ' 

, 
• 21 ~ 
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Figure 3.2. Four Line Segments with No Line Transversal in Order "abcd" 

The family in Katchalhi's Theorem may he infinite but ~ust he countable. K'atchalski's 

Theorem is only a sufficient, not a necessary. condition for the existence of a h)'perplane 

transversal. It also includes the pairwise disjointness condition of Hadwiger's Theorem. . .. 
-J. In 1986, Goodman and Pollack were able to provi~e necessary and sufficient conditions 

for the existence of hyperplane transversals(29). Ta do 50, they.needed to generalize the 

ideas of ordering and pairwise _disjointness. The order type of a set of points in Ed is the 
" ~ 

famiIy of ôrientations of ilS d+i- lUples(27). The arder ~ of po~nts in El is the family of 

relative orders in which an) two points lie on El. A k-orderlna of a set is the order type 
• 

produced by the association of each element of the set with some point in Et. 



o 

\ 

• 1 

o. 

A family A of sets of points is le -separable if every j sets can he strictly separated by 

1 ~ 

a hyperplane from every otber k+2-j sets in A, 1 S j S k+1. A family is O-separ~ble if 

every set can he strict1y separaied from every oîper set and a fa;ruly is l-separable if every 

two sets can he strictlY separated from every other set. Separable may he used as a 

syrionym for O-separable. If a family_ is k -separable, then there exists no k -transversal for 

any k+2 sets in the family. 'or a fainily of convex sets, this is a n~ssary and sufficient 

condition. A-family of convex sets is k-separable if and only if there exists no k-transversal 
n 

n 

for any k+2 sets in the family. Proofs follow the argument in Lemma 3.7 afld-are left to the 

reader. Associating each set a in a.tJ -l-separable family in Ed with sorne point in a 

1 
generates a d -ordering on' me family. Since the family is d -l-separable, this d -ordering is 

independent of the choice of points and is unique. 

An oriented k-flat g which irltèrsects a k-l-separ~ble family generates a k-ordering by 

. " ~ 

assoe:iating each set a with sorne pomt in a r.g. As with d -orderings above, this k -ordering 

is independent of the choicc of points. An ori~nted k -transvFrsal is consistent with a k-. 
ordering of a k-l-separable family of convex sets if the, k-ordering generated by the 

trahsversal is the saII}e as the given k -ordering. 

Goodman and Pollack's Tbeorem. A d-2-separable ~ly Qf compact conve~ts in ~ bas 

a hyperplane transversal if and only- if there exists a d-l-ordering of the family such that 

every a+l sets have an oriented hyperplane transversal which is consistent with the d ... l-

ordeting. ~ 
.-, .. ) . 

This theorem is also a generalization 'of a .-esult by Valtntine[56]. Again the theorem is only 
7> 

true for certain f4milies in Ed , those which are d-l-separable. 'These .families may he 

~' 
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in1inite but must he countable. 

< 

. 
p 

Both Katc~ld's result and Goodman and Pollack's result are generalizations of 

Ha~wi~r's Theorem 10 hyperplane transversals. However, neither of these generaIizations 
, . 

contains the other. In fact, these tWo theorems applX to different families of convex sets. 
~ , 

Eamiliès in KatchaJski's Theorem have the propeny that every three have a Hne transversal , 
-: whereas d;-2-separability for families in Goodman and Pollack's Theorem implies that no 

three have a line transveBaI when d ~ 3. I;Iadwiger's Theorem with suitable modifications is 

true for aIl families of compact convex sets. not only families which are pairwise disjoint or 

O-separable. This suggests th'at Goodman and Pollack's 'Theorem could be generalized ta ail 

famUies aIso, not only d -l-separable ones. Unfortunately, 1 was unable to prave such a 

,. generalization: Instead R. Pollack and 1 praved a theorem about hyperplane transversals for 

-0 

'" 
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k-separable families where k is IlOt restricted to 0 or d-2. This result, presented in Section 

3.3, includes Katchalski's result where k = 0 and Goodman and Pollack's 'result where 

.-"2 

k = d -2. The proof uses Many of the tèchniques presented in their papers. 
, ~ - \ . 

3.2 Pennitting Intersections 

Hadwiger's ~rem contains the condition that every three convex sets' have a dirécted 
. 

line transversal consistent with some ordering. If convex sets are permi~. 10 intersect, tlÎen 

it is no longer clear when a transversal intersects the sets "consistent" with a given ordering. 
, . . 

Furthermore, if compJct convex sets are replaced by compact connected sets, then a 
Q 

transversal may intersect 'these sets more than once. Again it is un~ear in what order a 

) transversal intersects these sets. To generalize H~wiger' s Theorem, ~e must generalize this . 
• 

notion ofOttconsiste~cy". Wc do this by ignoring pairs of sets which are not separable. 

.24· 
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Let A he a tamily of Compact connected sets ln E2• A direçted Une 1 is consistent with .. '" • 
an.ordering if, for every separable pair of sets a and -Il intersectèd by l, a precedes b in ~ 

ordering if and oo1y if 1 intersects a before b. Note ~t if a and b intersect, 1 May . ~ 

intersect b hefore a and still be consistent with the prdering ab. The following 'tlleorem 
. -

generalizes Hadwiger's Theorem to families of connected sets in E2. 

Tbeore'; 3.1. A fa~ly of compact connected sets in E2 has a Une transversal if and ooly if 
~ . 

there exists sorne ordering of the family such that every three of the set! have a directed Hne 

transversal consistent with the ordering. 

A few lemmas precede the proof of Theorem 3.1. 

., 
« 

Let A be a family of compact connected sets in Ed
• A nonnal to a hypérplane 

transversal for A is called a stabbing normal for A . 

Lemma 3.1. A family of compact connected sets in ~ has a hyperplane transversal if and 
, 

ooly if Ïhere exists sorne non-zero vector which is a stabbing normal for ev~ry pair of sets in 

the family. 

~ t' .-

Proor: If a family bas a hyperplan~ transversal, then a nonnal ta that hyperpla,ne transversal 

is a stabbing normal" for every pair of sets in the f~mily. Assume there exists some non-zero . 
'-'" 

veCl!>r v which is a stabbing DOnnaI for every two sets. Project the sets onto a line with . \ 

direction v. The sets are compact and connected, so the projection of each set is a closed 

(line segment. Every pair of these line segments inte~t. By Helly's Theorem there exists 
~ 

some poin.. in the intersection of ail the tine segments. The hyperplane through this point 

with normal., is a hyperplane transversal for me family .• 

·25· 
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If ID orielUed hyperplane with normal v stric::tly separat.ea two seU, a, b, theD. V is"p 

separation DOrmaI for a and b. 
• J .. 

Lemma 3.2. If Y non-zero vector !n ~ is either a stabbing normal or f separation nonnal 
. ~ 

for a pair of conwact connected sets but not both . . . 
Proor: Let a, b he two l compact connected sets and Jet v he a non-zero veetor in Ed

• 

Project a and b onto a linc with direction v. The two projections form two elosed line 

segments. If the tine segments intersect at sorne point. the hyperplane through this point with 

normal v intersects a and b. If the line segments do oot intersect, there is sorne poiot.on the - ~ 

Une which separates the two. The hyperplane through' this point with normal v separates a 
.. 

from b .• 

Lemma 3J. 1bere exists a hyperplane transversal for a family of compact connected sets in 

Ed if and ooly if the union of the sets of sep8f8tion normals over all paifS of sets in th~ 

family does (lot cover the unit hypersphere sd-1• 

Proor: By Lemma 3.1 there exists a hyperplane transversal if and ooly if there exists some 
\ 

non-zero vector which is a. stabbing normal for e'Very pair of sets. By Lemma 3.2 there 

exists a non-zero vector whieh is a stabbing normal for every pair of sets in the family if and 1 •. •• 
only if that normal is not a separation normal for any pair of sets. Sorne normal is not a 

separation ~rmal ~or any pair ~f sets i~ ~ ooly if the scparatiQJl no~als oveJ' aU pairs of 

sets do not cover gd-l .• 

·26· 
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1 
Let A he a family of compact convex sets .. If every pair of sets in A inlersect then no . 

p 

non-zero vcctor J'ta separation DOrmal for any pair. By Lemma 3.1 every non-zero vector is 
,.. 

a stabbing normal for A. If every non-zero vector is a stabbing normal for A, then no non-. , 

zero vector separates any pair of sets in À by Lemma 3.2. Thus every pair of sets in a 

family A of compact convex sets intersect if and only if every non-zero V'ector is a stabbing 

nomal for the pair. 

Lemmas 3.1, 3.2 and 3.3 make no assumption that the families are finite. The 
ç 

foIlowing lemma reduces the problem of hyperplane transversals for infinite families to the 
, . 

problem of hyperplane transversals for finite families. It is a simple application of the 

Heine-Borel Theorem, any open covering of a compact set has a finite subcovering. 

Lemma 3.4. There exists a hyperplane transversal for a family of compact connected sets in 

Ed if and ooly if there exists a hyperplane transversal for every finite subfamily of the 
" 

family. \ 

Proot: Let A he a family of compact connected sets in Ed • I~ A has a hyperplane 

transversal, then e,:ery subfamily of A has the same hyperplane transversal. Assume there' 

exists no hyperplane transversal for A. By Lemma 3.3 the separation normaIs for all pairs of il> 

sets' in A cover gd-J. For each pair of sets· a, b e A. let Cab he the set of' all separation . 
d~ . 

normals for the pair a, b. Cab is an open set in E . Let C he a collection of aIl such sets of 
(" 

separation normaIs. C i8 an open ,covering of Sd~1 !and Sd-l i8 a compact set. By the 

Heine-Borel Theorem, C bas a finite subcovèring C'. Let A' = {a :c4 b e C' for sorne 
. 

b. e AJ. Si~ C' i8 finite, ~te. C' coven Sd-l, 50 by Lemma 3.3 A' ~ A bas no 

hyperplane transvers •• .. 

\, 

\ 
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Lemmas 3.1, 3.2, and 3.3, have special formulations in El. Let A be a family-of 

<! 1 

compact connected sets in E2
• The directi~n of a directed Une transvers~ tor ~ is called a 

, . 
stabbing direction for A: If a directed line 1 strictly separates two sets a, b, then the 

, 

direction of 1 is a separation direction for a and b: Stabbing directions and separation 

directions are merely stabbing normaIs and separation normals in E 2 rotatel ninety d~s. 

It is more convenient to use stabbing" directions and se~ation directions in the proof of 

Theorem 3.1. In'this terminology, Lemma 3.1 states ~t a family of compact connecte<! sets 

ii4. E 2 has a line transversal if and ooly if there exists. sorne direction which is a stabbing 

direction for every pair of sets. By 4rnma 3.2 a direction is either a stabbing di~ction or a 
c 

\. 

separapon direction for a pair of compact convex sets but not hoth. Lemrna 3.3 is dlere 
';J 

exists a line tJ:ansversai for a family of compact connecte<! sets in E 2 if and ooly if the 

separation directions over aIl pairs of sets in the family do not coyer the unit circ1e. 

ln E2 aU tines with the same direction intersect a separable pair of connected sets in the 

same oroer. Thus a stabbing direction inc:l\lces an ordering on separable pairs, namely tht: 
, 

order in which any directed line with the given direction stabs the pair. 

Lem'ma 3.5. An ,ordered family of compact' connected sets in E2 bas a directed line 

transversal consistent with the ordering if and ooly if there exists sorne direction which is a , ~ . 

stabbing direction for every two sets and the ioduced. ordering 00 separable pairs of sets is 

consistent with the.given ordering. 

Proof: If an ordered family bas a directed line transversal consistent with the ordering, then 

the direction of the line transversal is the desired stab6ing direction for every two sepatable 
- ,A 

~ts. Astume that there exists sorne direction which is a stabbing direction for every tw~ ~ts 

- 28· 
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, \ .. 
and the ioduced orderiog on separabll' pairs ~s eonsistent with the given ordering. Sy Lemma· '. 
3.1, there exista a directe<! line'with the given stabbing direction which stabs the fainily. 

• "Jo( 

J ,_ ~ 
Every two separable sets are stabbed by SQr;ne translate of dûs di.rected Une in the given order 

so the dfrc~ted line must stab every two separable sets consistent widl the given ordering •• 

Directiqps in E2 can he mapped to poi~ on the unit circle. The stabbing directions of 

• 
two compâ:ct connected sets which are not separable map 10 the entire circle. The stabbi,gg 

~ , 

directions of two separable sets, a, b, map 10 two disjoint closed arçs on the circ1e. Eaèh of 

these arcs can be associated with.,a different ordering of the sets, either ab or ha. The 
" 0 

separation directions aIso map to tWo disjoint open arcs on the circle. Each of these arcs can 
\ 

I?e associated with a different ordering qf the sets, eilher ab or ba, representing a to the left 

of b or b 10 the left of a. By Lemma 3.2 the circle is covered by the' four arc§ representing 
... 

stabbing and separation directions ~d the -intersection of any two of these' arcs is disjoint 

We are now ready f! the proof of Theorem 3.1. 

Proof or Theorem 3.1: By Lemma 3.4 if the theorern is true for any finite family then it is 
" 

also true for infinite families. . A family that bas a line, transversal bas a dirècted line 

transveFSal. This directed line transversal generates an ordering on the family and intersects 
\ 

.f 

every three sets consistent with that ordering. 

Let A he a finite family of compact, connected sets. Assume that there exists sorne 

ordering of A such that every three sets in A have a directed line transversa~ consistent with 

"" the ordering. Let K he ,the finite set o~ aIl arcs corrésponding to separation directions for 
. 

every pdir of separable sets in A. Associate with each arc in K a unique label ab or ha 
, . . 

depending on whether a or b is ID the left of separating iUleS with the given direction. Let 

... 
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KI he the set of aIl arcs labclled ab wbere a precedes b in the given ordering and let K 2 be 

the set of aIl other arcs. o 

/ 

We wish to.prove that the intersection of any arc in KI with any arc in K 2 is empty. 

, 
Certainly 'the intersection of arcs ab and. ha is empty. If arcs' ab e KI and ab' e K 2 

1 

interse4 then there must be some line 1 separating a from band b'. Since ab e KI and 

ab' e K 2' a precedes b and b' precedes a in the ordering. By assurnption there must be 

some directed line which intersects b " a ,b in that order. This directed line would have to 

. éross line 1 twice, an impossibility. Therefore the intersection of arcs ab and ab' must be 

empry. 

A 

If 8fCtS ab E KI and b' a e K 2 intersect, then there must be some line 1 separating b' 

from a and b and a parallel1ine l' &eparating b from a and b'. There must also be sorne 

directed line ~hich intersects a and then b and b'. This !ine would have to intersect 1 or l' 

twice. ~refore!he intërsectiop of arcs ab and b'a is empty. Similarly, the injetion of 

arcs ab and a' b and the intersection of arcs ab 'and ba l ,are empty. , o 
1be case where arcs ab E KI and a' b' E K 2 intersect, a, b ,a', b' distinct, reduces to 

tbe previous cases. Let 1 b8ttpe line separating a from b with direction represented by the 

point of intersection. Since there is a line parallel to 1 which sep;u-ates a~ from b ' , 1 also 

separates (} from b' or b from a'. Assume 1 separate$ a from b'. Then arc ab', intersects 
. 1 i, '" 

ab , Since we proved. that ab e KI and' ax e K 2 cannat intersect, ab' must lie in KI' 
0, 

Similarly, db' intersects a'b' and so ab' must lie in K2' a contradiction. Therefore'l does 

not separate a from b' ,· By the same reasoning, '1 does not separate b from a': Therefore 

ab an~ a 'b 1 do ~ot intersect ad<J the inte~ctiOn of any tw~ arcs :iDf 1 ~d K 21s e~~ty, 
Î 

, , . ' • 

,(. " 
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Assume' aU the arcs in K cover the circ1e. K must IlOt be empty, so KI and K 2 must 
, ., , . 

not he empty. Let X 1 he all the points covered by arcs in KI and let X 2 he all the points . , 

XI Iî X 2 = 0. Since the circIe is connected, Xl U X 2 must not cover 'the circle. We 

conclude that K does not cover the circle. By Lemma 3.3 there exists a Hne transversal for 

~ 

The importance of ordering in Hadwiger' s Theorem suggests the problem of finding 

necesiary ~d sufficient conditions f;r the existence of a line transversal which intersects a , , 

family consistent with a given order. The following theorem gives such conditions for 

families of compact connected sets. \ 

Tbeorem 3.2. An ordered family of compact connected sets in the plane has a directed Hne 
l' 

transversal consistent with the ordering if and on1y if every six sets bave a directed line 

transversal consi.stent with the ordering. 

ProoT: If an ordered family bas a directed line tranSversal consistent with the ordering, then 
• 

that directed line transversal intersects every six sets consistent with. the ordering. Let K be 

the set of a11 arcs corresponding ta stabbing directions for pairs of disjoint sets which are 

consistertt with the given ordering. Since every six sets cao he intersected by sorne di4cted 
~ 

liné consistel)t with the given ordering, every three arcs intersect. -Since each arc bas measure 

less than 180 degrees, the intersection of two arcs is still an arc. Choose one arc arbitrarily, 

say ab, and intersect each of the other arcs with this arc. Let K' b:e the set of new arcs 
• > 

formed. A;U arcs in K' lie on arc ab and every two stes in K' intersect. Applying Helly's 

, Theorem, there exists some point at the intersection of aU the .arcs. By Lemma 3.5 there 
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exists a line transvèrSaI consistent with the given o,rdering .• 
t 

'The number six in Theorem 3.2 c~ot he reduced as can he seen from Figure '3.3. 

Every five sets can he intersected consistent widl the ordering abcdef but there is no line 
1 

tranSversal- for ail six consisœn,\ith mat Ordiring. The number six in Theorem 

replaced by four for families of comPact convex setS which are pairwise disjoint. 

3.2 is 

Theorem 3.3. An ordered family of pairwise disjoint compact convex sets in the plane has a 

directè(l liue transversal consistent with the ordering if and only if every four sets can be 

intersected by sorne directed lioe consistent with the ordering. 

IL 

Figure 3.3. Six Line segments with No Line Transversal in Order "abcde~' 
j 
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Proqf; lf an ordered family bas a directed line transversal consistent with the ordering, then 

that l:ted Une transversal intersccts every four sets consistent with the ordering. We first 

show that Theorem 3.3 is true for a familyof live sets. Let {a, b, c, d, e} be a family of 

pairwise disjoint compact convex sets in the plane with the alphabetic ordering. For every 

four sets there is a directed line stabber consistent with the alphabetic arder. Let xabc4t. he the 

point on the circle cbrresponding ta the stabher of abcd. In the same manner define points 

Xabc., Xabdc' xacdc and xbctU. Any three of these points are covered by sorne arc 

corresponding ta a stabbing direction for a pair of ordered sets. For instance xabcd' xabc. and 

XabtM are covered by the arc corresponding to the stabbing directions for ab. Thus every 

three of these points must lie within sorne half-ci.rcle. If the center of the circle lies within 

the convex hull of these five points, then It lies within the convex hull of three of the points 

by Carathéodory's Theorem, and these three IX>ints would not lie in a half-circle. It follows 

that ail the points must lie in sorne half-circle e. 

Let K he the set of aU arcs corresponding to stabbing directions for pairs of disjoint sets 

which are consistent with the alphahetic ordering. Intersect each of the arcs in K with the , 

half -circle e to form the set of arcs K'. The intersection of each pair of arcs in K contains 

one of the five poin:s, xabcd' Xabce' Xabdc' Xaccü or XbctU. These points line in e, so the 

intersection of each pair of arcs in K' is non-empty. By HeUy's Theorem and Lemma 3.5, 

the intersection of ail the arcs is non-empty and there exists a line transversal consistent with 

the alphabetic ordering. 

We now show that Theorem 3.3 is true for a family of six sets, {a, b, c, d, e, f} 

where_ evp.ry four, sets have a stabber consistent with the alphabetic ordering. 8y the 

argument above, every five of the sets have a stabber consistent with the alphabetlc ordering. 

'J ·33 -
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Choose"~ points x";', xlIbcd/' X4lbc:./'tatG6dc/. xtJCtJc/ and 'Xbcdc/ colTe8ponding 10 the six 

stabbers. By the sante 'argument as befoTe, all these points lie in some half-circle 8, the pairs . ~ 

of arcs corresponding to stabbing directions intersect in 8 and there is a stabbèr consistent 

with the alphabetic ordering. 

Given any ordered family of pairWise disjoint compact convex sets in the plane we just 

showed that if every four sets cao be intersected by sorne directed line consistent with the 

given ordering, then every six sets can he 50 intersected. By Theorem 3.2, there exists a line 

transversal for the entire fanli1y consistent with the given ordering .• 

As shoWQ before in ngure 3.2, the nurnber four in Theorern 3.3, cannot he reduced. 

Hadwiger, Debrunner and Klee used the intersection of arcs corresponding to stibbing 

directions for proving the following theorem, Proposition 27 in their book "Cornbinatorial 

Geometry in the Plane" [32]. Let A be a family of compact convex sets in the plane where 

every pair of sets in A can be strictly separated by a vertical Hne. A bas a line transversal if 

and only if three sets in A have a line transversal. The theorern was originally proposed by 

P.- Vincensini with the condition duit every four sets in A have a line transversal [S7]. V.L. 

"'"'-
Klee, Jr. improved the condition to every three sets have a liJ:\C transversal[41). ... , 

) 

1be same arguments for generalizing Hadwiger's .Theore~ eliminate the pairwise 

disjointness condition in Katchalski's Theorem. Jacob E. Good~n and Rithard' Pollack 

/' observed that the arguments would aHow an e~en ,re general statement ~f Katchal~'s 

Theorern. ~ely: 0 

., 
) 

.. 
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Tbeorem 3.4. Let e be a CODneCtéd, centrally sypunetric region on ~ hypersphereUn Ed • 
+ , 

A family of compact coimec_'8ets in Ed bas a hyperpla.ie transversal with normal in 8 if 

there exists~me ordering of the sets such tftat every three of dl" sets have a directed Hne ....... f . transversai consistent \ ,ith the. o~ting. . , 
The proof follows ~f of Theorem 3.1 afI!I is left ta the reader. 

3.3 Generalizations to Hyperplane Trans'lersals 

A Radon partition of a set X of points in Ed is a decoRlpOsition of X into two disjoint 

selS, X ~ Y u Z and y (\ Z ~~uch.~ conv(Y) "conv(Z) '" "', Radon', Theorem is 

that any set of d+2 or more points in E<' bas a Radon .partition. If a set has exactly dJ \ 

points in general position in Ed
, Goodman and Pollack proved that the set has a unique . ~ 

"'-
Radon partition which is determined by the brder type of the set[29]. Their lemma is restated 

\ 

. here ta include the converse that the unique Radon partition detennines the order type up to 
1 

reflection. The reftection of an order type is the order type obtained by reftecting the points 

in Ed 
•• The notation x h .... :ij , ... , xdtl refem to all elements from xl to xd+l excluding Xj • 

Lemma 3.6. There exists a unique Radon partition for each ordttr type of d +2 points in 

'general position such mat any set with the given order type bas the given Radon partition. 

Conversely. there exists an order type. unique up to reflection. for each\adon partition on a 

set of d +2 points in general position, sùch that every set with the given Radon partition f\as 

the yiven ~rder type. 

.. 
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-ProoI: ,Let:X = {XI' , , , • Xd+2} be a set of d+2 points reprësented in hoa'Dogeneous 
• '1 

coordinaces where xI:: {Œ;,Ot ai,l, "" Œj,dh <1;,0> O. A point 'x is a conve~ combination of 

d+2, ~ 

the Xj if X = 1: (JjX" for sorne Oj ~ O. Given some Radol! 'partition:J = Y u Z; there exist ' 
j-1 

, 
Clj not all equal to 0, such that 

d+2 
tOjXj = 0, 
j-l 

(3.1) 

where aj > 0 wben Xj e Y and Oj S 0 when Xi 1!' Without 10ss of generality, assume Xl , 
is an element of Y, i.e, 0'1 >. O. 

\ 
d~ d~ 

det(1:0jX"X2,X3' . , .• Xj • ...... Xd+2) =: 1:0 , det(Xj,X2,X3' ...• Xl' .. ',' Xd+2) 
j-l ;-1 t 

= al det(XI' ...• x, . .... Xd+V + 0, (-lY det{X2, ...• Xd+Û . ' (3.2) 

From equayïon (3.1), 

d+2 

det( 1:0j%; ,X2'X3' .•. , Xj' ... , Xd+2) = det{O,%2,x3 • ..• , x" ... , Xd+V 
1.1 

1 =0. 

Equating equations (3.2) and (3.3) gives 

,.., 
a. = (_ly+1

01
_de_t...;(X.-;..1,_X;;;..2'_'_'_' _' .... .f, .... ,_. _. _' _' X..;;d;..;.+V;;.. 

J tkt(X2' •. , , Xct+v 
and 

(3.3) 

(3.4) , 

\i+l (Jj 
det(xI,X2' .. , , .fj , , , •• Xd+V = (-Ir det(xl' , . , , Xd+V ' (3.S) 

(J) 

Since al >"0. sgn(aj) is dependem upon the signs of the detenninants 'in (3.4) which are . 
decermined by the order type of X. Xj belongs 10 Y or Z depending upon sgn(oj) and the 

. 
Radon partition of X is determined by the order type of X. Similarly, by reftection of X we ' __ 

- ~ -
may assume that det(x2' ... , Xd+V > O. Then sgn(det<: .. , . , . ,:.fi' ' , . , %,I+v) ,in (3.5) is 

... 

1 

1 

~ ~~~~~~1k~:~ __ :~ .. ~.:.,.J.f~~:-,,~\.: _ .,:.,._."t .. ~, ~ ... ,._ .. 1 >.~ ,. . • .J._'': 
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completely detcrmined by sgn (::.L) which depends upon the Radon partition of X. a 1\ 
al ..... 

Let A he a k"l-separable family of k+2 compact convex sets in F' with a given Ie-
.r />00 

orderirtg. This le -ordering correspoods to an order type on k+2 points in Ek. By Lem~a 3.6 

there is a unique Radon partition of these k+2 points which d~nds s~lely upon the order 

type. By transforming these points into the corresponding elements of A. this partition 

becomes a partition A = BuC of the convex sets in A . 

\ 

LelJ)ma 3.7. Let A = {al' .. • ak+2} be a k-l-separable family of k+2 compact convex 

sets in ~ with a given Ie-ordering. Let A = BuC be the partition of A corresponding ta . 
!he unique Radon partition of points with the given arder type. There exists a k -tIat which 

o 
stabs A consistent with the given k-ordering if and ooly if 

cony(B) fi cony(C) f! 0 . 

Proor: Without loss of generality, assume B = {al • ...• aj} and C = {aj+l' ...• ak+21. 

Assume there exists a le-tIat which stabs A consistent with the given Ie-ordering. There exist 

points Xj e ai. i = 1, ... , 1e+2. aIl of which lie on the le-fiat Furthebnore. there exists a 

Radon partition Y and Z of the Xi such tha~ sorne point x lies in cony (f) and conv (Z). The 

partition of A into B and C corresponds to this\Radon panition into Y and Z. TItus, ail the 

points in Y lie in cony (B) and ail the points in Z lie in conY (C). It follows that 
<l 

x e cony(B) ra cony(C). 

For the converse assume that theii exists some x e cony (B) n conv (C ). Let Y he a 

set of j-l'Oints each from a diffèrent convex set in B sucb that x e conv(Y). Similarly, let \i 
r 

Z he. a set of le-j+2 points each from a different convex set in C such that % e conv(Z). 

·37. 
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Tbere exists SOlDe j-l-flat containing al1 the points in Y and ~e k-j+1-1Iat contai~ng aIl 

the. points in Z. Since both the j-l-fiat and the Je-j+l-flat contain x. they are oontained in 
, . 

some Je·fiat. Fwthermoil', Y and Z are the Radon pa11Ïtion of the points Xi in the Je·fiai By . . . " . " Lemma 3.6. there is an order type. unique up to reflection. associated with dûs Radon 

partition. By properly choosiag the orientation of the Je -fiat, dûs order type is the same as • 

the given Je -ordering .• 

< 

Goodman and Pollack inttoduced the following crucial lemma[29]. The proof is " 

repeated here for completeness. 

Lemma 3.8. Let Y. Z he the Radon partition of a set X = {xl' ...• Xd+Û of d+2 points in 
c 

~ . 
generaI position in g1. If Xd+3 is any point of Ed in general position with respect to the 

points in X. then there exists a point Xi_ E X such that Y',Z' is the Radon partition of 

" 
J: Represent the points in bomogeneous coordinates where Xi = {Il; o. Il; 1 ••.. • Il;,eI}. 

<l ' , , 

ai,O > O. Since Y. ~ is ~ Radon partition o~ X, 

d+2 

1:ajX; = 0 
1-1 

(3.6) 

for, some 0;, i=l, ... , d+2 where 0', > 0 if Xj e rand ai < 0 if Xi e Z. d+l points in 

general position in F! do not have a Radon parJition, sa 0'; ~ 0, i=l, ... , d+2. 

" d+2 .' 
xd+34 !+iXi = 0 

p i-1' 
(3.7) 

for some ./. i=l • ...• ~+2. Let Il = mia [*. J. By sublracting equatlon (3.6)-"'Uldplied 

by JI. hm equaâon (3.7). we get 

·38· 

~ ~:~i'!.,: .:i'~~~:'~'I~jI/'':. ~,,!_'j.' .• :,:', ._:.-r..f''--~ ... "-""" .. *~ __ ., ,~,h. __ ... ".~ ... '.~ ... ..-L •• 

, 



,0 

o 

( 

d+2 
~ %4+3 + I<+; "T ~j)%i = 0 . 

i-l 

Let -~ = 'j ~J.lOj, i=t ... ,d+2, and 'Vd+3 = 1.\ .!!.. ~ JI. , i=l • ...• d+2. If (Ji > 0, 
• 1 ~ 

'Vi = ,; - JLC1j ~ O. If 0; < 0, 'Vi = 'i -J.lOi S O. For some i., 'Vi. = O. Since %d+3 is in 

genetal position with respect to the point in X, 'V;' ~ 0 for all i tt i.. Thus, 

Y' = {%j : 'V
1 

> O}, Z' = { %i "": 'Vi < 0 } fonn the desired Rad~n partition of 
~ 

Theorem 3.5 is the generalization of Katchalski's Theorem and Goodman and Pollack's 
... 

Theorem from O-separable and d-l-separable families to k-separable families .• 

Tbeorem 3.5. A family of k-l-separable compact convex sets in E4 has a d-l-transversal if 

there exists some k-ordering of the family such that every k+2 sets are intersected by some 

oriented k -fiat consistent with the le -ordering. 

iJ 

Proor: B'y Lemma 3.4 if ~ theorem is true for any finite fatdîly, then it is also true for 

infinite families. Let A = {h'lt a2, ... , ail} he a finite family of n k-l-separable compact 
, . 

convex sets in Ed
• For each ai e A. choose a point %i e ai' For 'Ye [O,l}, let ai("() be the 

contraction of ai by a factor of y about %i where: 

. 
aj(y) = { %1 + y(y - %1) 1 y e ai } . 

Bere %i and y are represented in Cartesian coordinates. Let 't be'the largest number such tl'iat 

for any 'Y < 't some k+2 sets of A (y) = {aj(y)} have DO oriented k-fiat which intersects them 

consistent with tJte k-ordering. For ail 'Y> 't, every subfamily of k+2 convex sets, 

{ajl("(),~jlt •... , aj.t~(y)}' bas a k-transversal consistent with the k-ordering. By Lemma .~ \ 
~, 

o' 1)-. 

3.7 there exista a unique panition of this subfamily correplnding to the Radpn partition of 
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their k-ordering. Let B(y) u C("" = {tlï/'(),ail(), ... , ail+l(Y}}. he ~s partition. Ail the 

se~ in B (i) lU1d C (1) are compact, 50 conv (B ("() and COin' (C (y» are compact sets and 

conv(B(y» f'\ conv(C(",,) is a comPact ~l For alt y>"t. conv(B(Y» f'\ conveC(..,,) __ 0, so 

conv(B(t» f'\ conv(C(t» ~ 0. By Lemma 3.7 evCfY k+2 sets in A(t) have sorne k-flat 

which intersects" them consisfent with the k -ordering. 

, 
If t = 0, each of the sets is contracted to a point. These points all must lie on some °k_ 

lIat'and be contained i~ sorne h~lane. so ~ Iheorem is tri~aI. Bence wc May assume • 

'\ 
t > O. 

Without Joss of generality, assume that for 'Y < t the convex SCfts a 1(y)' ... , aI:+2(Y) . . 

have no oriented k -tlat which lptersects them consistent with the k -ordering7 Let B ,C be 

the "',nique partition of a let), ... , ak+2(t) corresponding to the Radon partition of the k- ~ 

. ordering. relint(conv(B» Iî relint(conv(C» = 0, or else the convex sets in Band C could 

still he shrunk and by Lemma 3.7 • .'there wouId still be a k-flat wruch, intersects thèrn 

consistent with the k -ordering. Thus there is a hyperplane h which separates con\! (B) from 

conv(C). We cl~m that h i,S the desired d-l-transv~rsal. ," 

~t h + he a closed balf-space bounded qy h and contai~ ~onv (B) and let ~ - be the 

other closed half-space which contains corav(C). We first show that h+ f"'\ ai ;1: 0, for any . 
ai' By Lemma 3.8 there exists sorne al ~ BuC 8uch that B', C' is the the Radon partition 

~ 0 

of BUC-{a,}+{aj} where B'ç;;.B, 0i,e C' and C'-{ai}ç;;.C. There exists sorne point 

y e .cony (B ')f'\conv ~ '). Since B' s;;: B and conv (B) lies in h +. y must lie in h +. Since 

A ("() is k-l-separable, C'-{a;} and B' can he sttictly separated by sorne hyperplane. y lies 

.... in conv (B î so y'" cannot lie in conv (C' -{ aj }). conv (C' -{ aïl) lies in h -. For y te lie in Il + 

+ ' + some point of ai must lie in h . Thus h () aj ~ 0. By the same reasoning, h - f"'\ ai :#. 0. 

, . 
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Tbe(efore h ("\ al ~ fa 8JId h is ~ d-l-lraDSvenal Whfclt ~ aU the olemeots of Â .• 
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4.1 Introduction 
l 

Let A 

transversal for A 

important role i 

Chapter 4 
~ 

Geometrie Permutations 

" 

disjoint compaçt convex sets in E2• A directed line 

g on the elements of A. This ordering plays an 

Katchalski, Lewis, Zalcs and Liu called this ordering 

a geometric permutation of the family [39.40]. 

can also be examined for lines which intersect only sorne of the elements of 
"\ 

A. ted tine whlch intersects A' !:: A, 1 generates an ordering on A '. Any"two 

dire Unes with the same direction which intersect A' !:: A generate the same ordering on 

A'. 

In how many different orders can a directed line intersect A? Restricted ta lines which 

i_ 'ail .... eleu:-nts of A. i.e. line traD8~. for A. !he question is equiv~ent io /' 

asJdng for an upper !?,>und on the number of different geometrf'c permutations on A. l. 
Katcha1sJd, Lewis, Zab and Liu gave an upper bound of ~). 

In Section 4.2 1 Show that the directed tines in E2 can he partitioned into at most 12n 

selS where any two lines in the same set which inte~t any A' ~ A generare the same 

orderlng on A '. Thi~unds the numher of geomettic permutations of A by 6n. -ID my' 
...- !li CI ,.", .. 

bound 1 prove that n disjoint compact convex sets in the plane can he embedded in n disjoint 
< 

convex polygons wim a total of al most 12n edges.o These edges have at most 6n distinct .. 
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sJopes. 'Edelsbrunner. Robison, and Shen improved upon this theorem by showing that n 
1 

convex selS cao be embedded in n convex polygons with a total ~f at most 6,,-9 edges and, 

, at most 3n -6 slopes[20]. Their theorem implies that the directed Unes in E2 cm be 

partitioned into at most 6n-12 sets where any twb lines in the same set which intersect any 

A'!:;; A generate the same ordering ()n A '. This decreases the bound on the number of 
~ . 

~eometric permutatio~ to 3n -6. Edelstrunner, ~d Shaiir in~nde,~t1y show~d ~at that the 

maximum number of geometric permutations for A is 2n-2[21]. ·However, their, argument 

does not extend to Hnes which' intersect ooly a' ~t of k. 

1be number of geometric permutations can be studied for Hne transversals in higher 

dimensions. Let H be a finite set of hyperplanes in Ed • Define 'J:'(H) to be the number of 

cells in the arrangement obtained by translating ~ hyperplanes in H to the origin. Let 

~ (m) be the maximum number of cells in any arrangement of m hyperplan~s ~ugh ~e 
- d-l ~ 1) -, 

origin in ~. R. Winder proved that ':F (m) = 2 1: m:- [60]. The directed Hnes in Ed 

_ i-o ' 
1 • 

can be partitioned into ~ ( &]) sets, ~here any two lines i!l the same set whieh intersect 
/ ~ . , 

A' !:;; A geœrate the same order on A'. The number of geometric permutations is bounded 

by ~ ~(&). This is the only known bound. 

Geometrie permutations cao also be defined on hyperplane transversals or oyen on k - ) 

transversals for any k. A geometric permutation of k-transversals for a family of k-2-

separable convex sets in Ed is the k -ordering produced by an oriented hy'pcrplane transversal 

and the reve~ k -ordering produced by the same hyperplane with reverse orientation. 

Section 4.3 presents a resuIt on geometric peimutations of plane transve~s in E3. For ... 
<, • 

"'byperplane uansversals in higher dimensions, 1 ooly have a conjecture which is included at 
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the end of the section.° unfo~œijr. even the theorem proven in section 4.3 does ~t give ' 
. " \ 

good bounds on the number of differcnt 2-orderings geoerated 'by plane transvm;sals for a 

family in E3• 
,~ . 

4.2 Upper Bounds in the Plane .. ) 
A separation set for A is a set H of hyperplanes such that every pair of elements, . 

.d 

. a , b e A, is separated by some hype~la~ in H. A strict separation ~t is a se~ation set 

H where every pair of elements is strictJy separated by some hyperplane in (Il . 

:rheorem 4.L Let A be a family of pairwise diSjOin:rmpact convex sets, in Ed and let 

H = {h 1- ' ,', _ hm} be sorne strict separation set for . The directed, lines in Ed can be 

~ partitioned into 'l'(H) sets such that any two Iines 

1 l , 

in the same set which intersect any 

A' s;; A generate the same.order on A . 

1 
Prool: Let {u 1- •• '.' UIft} .he a set of normal vectors for H where hi = {x :"j . x = Cj }. 

Let v be a vector in Ed and let L he the set of ail Iines with direction v. Let a, b he two 

_ sets in A represented in Cartesian coordinates and let hi he the hyperplane separating a from 

. br Assume ui . (y-x) > 0, for ail x E à, y _E b. If V'"j > 0, then any line in L must 
, . 

intersect a before' b . If v . Uj < 0, then any line in L must intersect b 'before ~. 'Thus 
" 

sgn(v ·ui). i = 1, ... ,m. determines the relative ordering of a and b generated by lines in 

L. 

Consider the arrangement creaœd by hyperplanes through the origin W!th. normais 

Ui. i = l, ••.• m. There are at, Most 'l'(H) cells in this arrangement. Partition the directed 

lines in Ed into at most 'PeR) sets, assigning directed ünes which point into the same œil to 

v, ., \ 

-< < '- ;-?-~"j;~\,\tt/~I t (4" ..... ~~i'i:a~~l}J~;.-;._.~. '.: .... ,. ,~.~., ~ ... .J • ',_ 
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• the same ~ts. The values of sgn(v . uDt k- = 1, ... , m; are determined by the ccli jota 
o 

which y points. Any two directed Unes which' ioœrsect a, b e A and poim to the same ecU 

generate the Slime relative ordering 00 a and b. For any A ' ~ A the arder in which a lioc 

intersects A' is completely determined by the relative arder in which a tine intersects 

1 

a r b E A'. Thus any two directed tines which intersect A' ~ A and lie in the same set 

generate the same ordering on A' .• 

.,. 
We next shtJW how to find a strict separation set for a family of eonvex polygons in the 

plane. He're polygons are non-degenerate, Le. IlOt line segments or points. 

Theorem 4.2. If P is a fa!Dily of pairwise disjoint convex polygons in E2, then there exists a 

strict separation set L for A where each line in L is parallel ta sorne edge of a polygon in A . 

Proot: Let a and b he any two polygons in P and let 1. he sorne line separating a frorn b\ 

and tan~eIlt to a at sorne vertex. Let Il and 12 be the two lines containing the edges of a 

which rneet at that vertex. Il and 12 divide the plane inta four cells or quadrants, / 

Ql,Q2,Q3,q4, wi$h a lying wholly in one qùadrant, say QJ. (See Figure 4.1.) The boundary of 

each qua~t is included in that quadrant 
/' 

Since 1. separates a from b! b does not intersect quadrant Q 1. If b does not intersect 

quadrant Q 2' then 12 separates a from b. If b does not intersect quadrant q 4, then Il 
(J \ ~ 

separates a frorn b. Translating either of these. separatars slightly toward b. produces a line 

strictty separating a from b and 'parallel to a line through an edge of a. 

f 

Assume b cootains a point from quadrant q 2 and from quadrant q 4' Sorne edei' of b 

"-
must intersect Il' Let 13 he the line containing that odge. '3 separates a from b sa by 
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Figure 4.1. tonvex Polygons a and b. 

\ 
translating il slightly toward a we have a line strictly ~pararing a from band parallel to an 

edge of b. 

r" 

For every pair of polygons a, b e P. add to L a line sttictly separa~g a frorit band 

parallél to sorne edge in il or b. L is a separation set for P such that every linef\n L is 

para11el to so~e edge of a polygon in P .• 

0#' '/, 

Le P he fi , ~ '1 f ' , .J~, \ '\ 1 J'p he ·d-...1 t a mte ,BUll y 0 .Jl&U'W1SC UUiJOlnt convex po ygons. can cons! ereu as 
~ ~ 

1 

a planar SU~viSioD. A complete triangulation of ''Pis a planat s~ivision which contàins 
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P and some addidonal Ifne segments between vertices of distinct polygons in P such that 

o 
, , , 

" 

eâch face whi,ch is not a polygon is bounded by dvee additional Hoc segments IlBd three 
If 

polygons. (See Figure 4.2.) A complete- triangulation of P defines a graph whose vertices 

are the polygons in P and whose edges are the addidonal line segments placed between 

polygons. This graph may contain multiple roges. i.e. more than one edge between any two 

vertices. Any straight edge embedding of this 'graph in the plane is a triangulation. 

1be following theorem shows that convex sets can he embedded in polygons with few 

. 
edg~s. Using such an embedding, we can men find a separation set for the polygons and 

, -
hence for the convex sets. Bill Lenhan provided the inspiration for this theorem. 

Figure 4.2. A Complete' Triangulation of Convex Polygons 
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Theorem 4.3. Let Â he a finite family of n pairwise disjoint compact convex sets in E2• 

There exists a family P of...,. pairwise disjoint co~pact convex polygons, such that: 

i) each convex set in A is entirely contained in a unique polygon in P , 

ii) the total number of edges in all the polygons in P is at Most 12n and 

iü) if L is the ~t of linetontaining the edges of the polygons in P, then 'P2(L) S 12n. 

Proo(: We first embed the convex sets in A in a family Q of n pairwise disjoint convex 

polygons. Choose sorne convex set a E A and find n-l lines separating a from the n-l 

other convex sets. These n -1 Hnes bound n -1 half-planes containing a. If the intersection . 
of these half-planes is unbounded, we can add three sui table half-planes containing a such 

that the intersection of all the half-planes is bounded. The intersection of these half-planes 
.,J 

forms a polygon which contains a. Repeat the procedure n rimes to get the family Q of n 
-) 

pairwise disjoint convex polygons containing the n convex sets. 
/ 

Let c be some polygon in Q which lies on the boundary of conv (Q ). Add to Q two 

small triangles, d and d'. to form Q' such that the boundary of conv (Q ') is three line 
--Y> 

segments between c, d and d', We consttuct a complete triangulation of Q'. Q' forms a 

plaIIlI' subdivision. Triangulate the external face of this planar subdivision by adding 

triaDgul~tion Une segments between vertices o( pdiygons. The triangulatipn faces are 

bounded by two or three triangulation line segments. If a face is bounded by ooly two 

triangulation line segmepts, one of the bounding Une segments is redundant. Remove the 

redundant Une segments until all faces ~e bounded by three triangulation line segments and 

• 
three polygons of Q'. The resultant subdivision is à complete triangulation of Q'. Let G be 

the planar graph whose venices are polygons in Q' and whose edges are the triangulation 

line segments. 

" l, 

1 

1 
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For each edge e of G, let 1. ~ be the line CO~ning e. For each pair of polygons 

a, b E Q', let la b he some liue strict1y separating a lm b. For each polygon a e Q', let . / .. 
N(a) he a list of aU the neighbours of a in the graph G. Let F(a) he a-list of the faces 

, 
which are bounded bya. Let LI(a) = {la,b : b e N(a)} and let L 2(a) = {le :e lies on à 

face of F (a) ~nd connects b, b' e N (a n. Let Lo(a) be the union of the lines in LI (a) and 

L 2(a) slightly translated towards a. Let P (a) he the intersection of the half-planes 

containing a and bounded by the lines in Lo(a). For anyaeQ other than c, P(a) is 

bounded by the cycle of the neighbours of a and the triangulation line segments between 

them. (See Figure 4.3.) Thus P (a) is a convex polygon containing a. By a judicious choice 
, J. 

of lc,d and lc,d" PCc) is also a convex polygon containing c. We claim that 

P = {P (a ) : a E Q } is a family of n pairwise disjoin) compact convex polygoDS such that 

each a e Q is contained in P (a) and the total number of edges in the polygons in P is 12n. 

Assume a, b E Q are neighbours in G. P(a) and P(b) are both bounded by a 

translation of the same separator, ltJ,b of a and b. Since P(a) and P(b) are in different 

halfplanes bounded by la, b. la. b must separate P (a) from P (b) and P (a} and P (b) are 

pairwise disjoint. 

Now, assume a, b e A are not neighbours in G. ~ (a ~ is relY contained in a cycle 

of the neighbours of a white P(b) is entirely contained in a cycle of the neighbours of b. 

Since b is DOt a neoighbour of a, ~ese lWO cycles must coIltain different regions in the prane 

and so P (a) and P (b) must be pairwise disjoint. 

Let m be the number o( edges in G. G is a complete triangulation and there are la + 2 

& 

vertices in G, so m = 3n. Bach edge connects two neighbours, 50 ~ total number/of 

neighbours over ail vertices in the graph is 6n. 1be total number of edges in the polygons in 
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Figure 4.3. Cycle of Neighbours of a. 
- . 

P is at most the total number of lines in Lo(a) over all a 'e Q. 

l ILo(a)1 S ~ ILo<a) 1 = L IL1(a)1 + L ILia)1 s6n +6n = 12n 
GEe! GEQ' uQ' GeQ' 

Therefore, the total number of edges in the polygons in P is at most 12n. 

Let L he the set ef lines containing the edges of the polygons in P. L is a subset of 

L' = U Lo(a). Bach line in LoC.a) is parallel tO some uÎle in somo- Lo(b), a 1 ~ e Q ' . . fi. Q' 

Since the total numbcr of lines in'L' ii; at most 12n, 'l'(L') S 12n and 50 'l'(L) S 12n .• 
",,' 

'. 

,< 
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For every pair, of disjoint compact convex sets; there exista sorne hyperplane which 

strict1y separates the pair. Construct a separation set H for a iamily of n compact convex 
J ' 

sets by choosing a separating hyperplane for eacll pair. The size..of H. 1 Hl: is at mo~t ~). 
- \ 

Since 'P(H) S ~ ( 1 HI).' the following is a corollary ~ Theorem 4.1: 

Corollary,4.1. Let A he a family of n pairwise disjoint compact convex sets in Ed
• The 

... 
directed lines in Ed can be partitioned into tpd( ~J) sets such that any two lines in the 

same set which intersect sorne A' ~ A generate the same order on A'. 

Finally, by 1beorems 4.2 and 4.3, there exists a separation set L for n convex sets in E2 

<1 
such that 'l'2(L) S 12n. Applying Theorem 4.1, we have the foUowing corollary: 

CoroUary 4.2. Let A be a family of n pairwise disjoint compact convex sets in E2• The 

~ lines in E' con Ile panitioned into 12n ~ sud1 that any IWO lines in !he ..... set 

which intersec~me A' ~ A generate the same order on A'. 

Bach geom~tric permutation corresponds to two sets of directed lines in the partition of 

directed lines in t,d. Thus the number of g~etric permutations on A is bounded by half'the 

size of the ~artition. Corollaries 4.1 and 4.2 imply that there are at Most ~ ~( ~] ) 
.,/ 

geometric permutations of A in ~ and at Most 6n geometric permutations of A in E2• 

Katchalski, Lewis and Zaks asserted that for every d. there exists a constant ~d and a 

family A of n pairwise disjoint compact convex sets in Ed such that there are at léast Pdnd-1 

A. 

geometric permutations of A [40]. Corollary 4.1 implies an upper bound of o (n2d-2) for the _04 

§l;J < 
• number of geometric permutations of A, leaving a Wide gap for improvement Villanger 
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• 
show.ed that for any Il tbere exist families of Il line segments in E3 in which any hyperplane 

separates at, most one Une segment ftom one other line segment[SS). Thus, there ex,ists a 

family A of Il compact convex sets in Ed
, for any d ~ 3, .such that ~y separation set of A 

~t ~ve ~] ~lements. In fact, by embedding Villanger's _l~ne segments in rectangular 

prisms. ,we sec that Theorc:m 4.2 docs not generalize to two dimensions. Reduction of the 

upper bounds must come from other directions. 

4.3 Geometrie fennutations in Higher Dimensions / 

/,.~ , : , 

Let,A he a k-l-separable family of n compact convex sets in Ed• How many different 

k-orderings are generated by oriented k-flat stabbers of A? If k = d-l, any hyperplane 

transversal cao be continuously transformed until it is tangent to d convex sets. For any d 

convex sets which are d-2 separable. there a.re at most 2d+1 tangent oriented hyperplanes, 

depending upon which half-space bounded by the hyperplane contains which convex set 
, 

~s gives a trivial bound of 2d+1 ~). 

If A is d-2-separable in Ed
• any two hyperplane transversals for A with the same 

-1 

normal must generate the same d-l-ordering on A. This motivates the following problem: 

Giv~n a d-2-separable family A of compaCt conve.x sets in Ed
• partition the space of all 

normals such that any two hyperplane stabbers with normals in the same partition generate 

the same d-l-ordering on A. Such a partition is constructed in the proof of Theorem 4.1 for 

tine transversals in E2
• Theorem 4.4 provides a partition for normals in E3 

• 

. 
The definition of separation sets must he extended to k -separable families. A k· 

separation set for a k -separable family of sets is a set of hyperplane8 8uch mat every j sets 
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are sttictly separated (rom every k+2-j sets by sorne hyperplane, 1 S j S k+1. The 

previously defined "~on set" becomes a O-separatio~ set under this notation. .. ", " , 

\ Theore ... 4.4. Let A he a l~separable family of compact convex sets ln E3, and let H be a 

l-separation set for A. For -every set a e A and every other pair of sets b, c e A, let Ua 1 he 

" 
be a normal to the plane in H separating a from b and c. The 2-ordering generated by any 

plane stabber with normal U is determined by sgn(det(u, uQllbc, Uclab» over ail 

a,b,ceA. 

Tbeorem 4.4 means ôhat E3 c8n he partitioned by the set of planes containing the origin 

and vectors ua 1 bc and Uc lab over aU a, b, c e A. Ali the plane stab~ with normals, 

pointing into a given CODe in the partition generate the same 2-ordering of A. 

BefOl'C proving Theorem 4.4, we need the following lemma relating the orientation of 

three points in the plane to the orientation of three vectors separating them. AlI points and 

veetors are represented in Canesian coordinates. The order type of three points in Cartesian 

eoordinates is sgn(xl-xo> x2-xO)' The cone formed by two vectors va. VI E E2 is the set of 

sgn (det(vo, u» = sgn{det{vo.olvl» = sgn(det(vO,vI» , and 
, , ' 

sgn(det(u, vI» = sgn!det(ao~, Vt» = sgn(det(vo>Vt». 

If v = (al'~' men y' = (~, al), a veetor perpendicular and to the left of v. 

li P • y' = det(v, li '). Subscripts are computed mod 3 where appropriate. 
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Lemma 4.1. -Let XO • .l'hX2 he d:vee points in El and let U()OU(OU2 he three vectors in E2._ -If 
• f 

r~ 

\ 

. , 
Prao': If .l'o, Xh.l'l were collinear, "j ·,(Xj-.l'j) would equàl 0 for some i, j, i ;e j. so -

.l'o. Xl' X2 must form a triangle. Let VOt VI' v2 he outward painting normals to the sides of , 

this biangle, where 

Vi· (Xi+l-Xi+l) = 0 , and Yi . (Xi-X,) < 0, j;e i . 

(See Figure 4.4.) It is easy ta see that J.1ov o + ~lv 1 + ~2v2 = 0, for sorne ).10. Ill' ~2 > 0, and 

that "i+2 lies in the cone fonned by Vi and Vi+l. Furthennore. 

J 

XI 
1 
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$8~ (tkl(V; ,V;+I» == 88" (Jet (v; ,Ui+V) =:= s8n (det(Ui+2' vi+I»' 

We show that the orientation of any two of the outward pointing normall, Vi. vi+lt is 

the same as the orientation of Xo. XI_ x2' For some n, p e R, xl-xO = av! and 

'·X,..-,xo = pv",. By taking the Got product with VI and V2, respectively, we find r adet(Y,"Y,) = -(Xl-':O>oYl > O. and ~t(Y'"Y,) = (X,....Xo)°Y2 < 0 0 

Therefore, sgn (a) = -sgn (P). It folJows that 

-/J 

sgn (det(x I-XQ. X2-xO»::: sgn(det(avl, pvr» 1 

::: sgn (apdet(V2' vI» 

= sgn (det(Vl' vv). 

and 

sgn (det(v2' vo» = sgn (det(v2' -J.l.lv I-J.12vÛ) = sgn (det(V., vû) . 
1 

Therefore, 

sgn(xl-x O. xrxo) = sgn (det(vo," 1» ::: sgn(det(vl' "2» = sgn(det(V2' vo» . 

It remains to show that 

sg{l (det(v l' v2» = S8n (sgn (det(uo, U 1» + sgn (det(u 1. U~) + sgn (det(U2, Uo») • .. 
If sgn(tkt(uj' Uj+l» = sgn(det(vI,vv) for all values of j, then the claim is obviously 

for sorne a.p,a',P' > O. If sgn(det(vllUI» = sgn (det(vI' vùj, then 

sgn (det(uep U 1» = sgn (adet(v l' U 1) + pdet(v2, u 1» ::: sgn (det(v l' v2») . 

Therefore, sgn (Jet (v t, U 1» = -sgn (det(vi' l'v). 

sgn (det(ulo U2» = sgn(a'det(ut, VI) + P'det(Ul, v 0» ::: sgn(det(vl' v2» . 
1 

Bya simUar argument, sgn(det(u t, u,»::: ~gn (det(Vt, vll). Il follows that 

o .. 
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"""(I,,,(cIe!(uOtU1» + sgn(clet(ubU-z» + sgn (clet(U2' uo»}>= sgn(clet(v., v:z}) 

= ~gn(clet(%l-XOtXrXo» .• 

If two vectors v., w in lie on a plane with normal u in E3, this plane cari be mapped to 

E2 onder an isometr'Y, r to preserve orientation, i.e. sgn (clet(u, v. w» ~ sgn (det(rev), r(w». 
- , 

Thus Lemma 4.1 also applies to three ovectors and me points which lie on an oriènted plane , 

in E3• Theorem 4.4 follows immediately . 

Proo( o( Theorem 4.4: Let u he the nonnal 10 any plane Btabber h of A. Let a o. QI' a 2 he , ~-

three selS in A, and let h intersect a, at point Xi' The orientation of %0, x 10 x 2 with respect 

10 h is sgn(det(u, x1-xO, xrxo». For i = 0, 1,2, let Ui be the normal 10 th~ pl~ 

separating ai from ai +1 and ai+2' Since sgn (det(u, v, w» is determined by 

sgn(det(u, v, -w»,'we may assume Ui' (Xi-Xj) > 0, j ~ i. Let u; be the projection of u, 

omo h. 

By Lemma 4.1, 
-A 

• 

$ 

sgn(det(u, %l-XOt %2-xO» = sgn (sgn (det(u, uo. u in + sgn(det(u, Ut' "2» 
+ sgn (del(U, u5., u6))) 

= sgn(sgn(det(u, Uo, U1.» + sgn(det(u, Ul> U2» 

+ sgn (det(u, "2, "o)}) .• 

~nfortunately, Tbeorem 4.4 by itse~does not generate a good bound on the num~r of 

k -ordering& gcnerated by plane stabbers of A. If H ;is the set of all planes containing the 
, / 

origin and 'the vcctors ual he ànd ut: 1 ab over ail a, b, c e A, then H ~ size 3 & ] or . 

o (n3). 'Applying Winder', Theorem[60), H partitions E3 in10 O(n' CODes, a worse bound 
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tban the trivial one. Many of the planes in H contaÎn the same Unes 50 it is possible that 
\ ' / 

tlîCre is a tighter bound for H. AIso open is a tight bound on the size of tbe l-separation set , , 

for A. The trivial bound is 0 (n 3) but this may not be optimal. 
\ , 

While 1 was unable to extend Theorem 4.4 to dimensions greater than three, 1 do have 
( 

~e following conjecture. 

Conjecture 4.1. Let A be a d-2-separable family of compact oonvex sets in F' and let H be 

a d -2-S'èparation set for A. For every. subset B of d elements of A, let H {B} he a subset of 

H which fonns a d -2-separation set for B and let U {B} he the set of ail nonnals to the 

hyperplanes in H {B}' The d-l-ordering generated by any hyperplane stabber with normal v 

is completely determined by sg'n(det(v, "il' Ui
l

, ... , Uiol) , "iJ e U{B}, over all subsets of 

f' 
d -1 elements of U {B} for ail B ç: A, 1 B 1 = d .' 

" 

, 
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Chapter 5 ï r 1 

rtabbing Algorithms 

5.1 Introduction 

Given a finire set of m polytopes in E'" and an integer k, find a k -transversal or k· 

sta,bber for the set. When k = 0, the problem reduces to a linear programming ptoblem. For 

a fixed dimension d. Megiddo's algorithm salves this problem in time proportionai to. the 

number of hyperplanes bounding the polytopes[44, 45J, 

When k = 1, the probleqt becomes one of finding a Hne stabber for a family of 

polytopes. Line stabbing bas applications for hidden line problems[191, set partitioning[31 

and updatlng triangulatioos[22]. Edelsbrunner. Maurer. Prep8l1lta. R~. Welzl and 

Wood found an O(n log"') algorithm for Hne stabbing n -Iine segments in E2[19], This 

algorithm was generalized by Atallah and Bajaj to line stabbing of convex polygons in E2{21, 

The algorithm runs in 0 (n logn c:x(n)} time, where n is ~e total number of edges over all 
, . 
polygons and a(n) is the inverse of Acke~'s fonction. 

Edelsbrunner, Guibas and Sharir extended the algorithm for line stabbing convex 

polygons in the plane to an 0 (n 2a(n» algorithm for plane stabbing of convex polytopes with 

a total of n eclges in E' and an 0 (.2) a1gorim\ for plane stabbing of n line segments in 

E3[IS]. In higher dimensions, Avis and Doskas gave an o (nd-lm) algorithm for hyperplane 

stabbing of m convex polyhedra with a total of n edges in d -space[4]. 
,1 

• 
Lemma 3.3 s~tes rhat a family of compact connected sets has--a hyperplane ttansveltS8l 

in r if and only if the set of separation normals for all" pairs of sets in the family do DOt 
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coYer gd-l. AlI the algorithms above cao be considered as algorithms for determining 

whether these normâls cover this hypersphere. 

-
The algorithm of, Atallah and Bajaj for line stabbing in the plane constructs a 

representation of all the lioe stabbers in the dual space. From this representation one can 

detërmine which retions are the stabbing directions. As observed in Section 3.2, every 

, ' 
pair of convex sets in a family of compact convex sets iotersect if and ooly if every direction 

is a stabbing direction. Thus Atallah and Bajaj's algorithm aIso detenhines in 

o (n log n <X(n» lime whether every pair of convex polygons in a fanuly of convex polygons 

intersect. 

Little is known about ~gorithms for k -stabbing when f. is not 0 or d -1. d ~ 3. It is 

noteworthy that the values of k' for which computer scientists have found polynomial 

algoritluns are the same values of k for which mathe~aticians have devised good necessary 

and sufficient conditions. 

D. A vis and 1 developed an 0 (n 410g n) time algorithm for line stabbing of polytopes 
r 

with a total of n edges in E3• Section 5.2 presents sorne theoretical results about how lines 

intersect line~~e,_segments and polytopes in E3
• These results ,are used to develop line 

, ? . 
stabbmg algorithms in Section 5.3. Jaromczyk and Kowaluk subsequently improv~d upon 

~ ,,' 
these res~lts with an algorithm for line sta~bing of polytopes which ru~ in 0 (~ 3 2aJ..1I

) fô, n ) 

time[36]. 

5.2 Theory for Line Stabbing in Three Dimensions 
.., 

In the study of line intersections parallel Unes mœt he hand1ed as special çdes. To 

avoid these extra cases it is c:onvenient to study tine intersections in projective s~, where 
" ,0 
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.~ IWO liDo. ~some projective pI_ must i......... ' '~. , 
'Two lines which do DOt lie ilNhe ~Iane in E' or pl are called skewed. " ln pl !hi. 

is equivalent 10 the two Hnes not intersecting. A set of tines is skewed if every two lines in 

the set -are skewed. A set of line segments is collinear if one line oonfains ail the segments. 

"' 
A set of Une segmem is c:o-planar if one plane contai .. ail the line se~enîS. A set of\ne ~ 

segments Is skewed if the set of lines containing the line segments l, Slœ~. .Ji. 
Let x and' y be the coordinates of two distinct points i~3 parametrized in 

homogeneous coordi na tes , The unique l~e through x and y is paramettized by Àx + IlY 

where À and Il vary over R and either À ~ 0 or j.C)I!: 0, If two lines II and 12 parametnzed by 

f) À,lxI + JltYI and ~2 + Jl2Y2 intersect, then there eXlsts À,,,IlI,~,Jl2' DOt aIl zero, such that 

Equi v alently , II and /2 i ntersect if and only if 
.~ 

" '" 
1 , 

.. Lemma S.1. Two skew Hnes 1} and 12 and a point z which IS not OD II 'or 12 admit one 

stabber. If l} and /2 ace parametrized by Â,IX 1 + illY 1 and ~2 + Jl2Y.2, then \bis stabber 
\" 

intersects II at î 

Proof: There is a unique hyperplane h coDtaining /2 and z. Since Il and 12 are skew. l} 

intersects h al exactly one point. The Hne 1* through this point and z' is the unique stabber 

of Il' /2 and z. 

The hyperplane h is given by the following equation: 

~ = {x : det(X2,YZ,Z,X) = 0, X E pl}. 
-Let z. = det(X2,Y2,%'Yl)X" - det(X2,Y2,z,Xl)Yl' Since-x} Imd YI cannot both lie on h, 
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either det(x2'Y2>z,yl) rP 0 or det(Xz,YZ,%,Xl) ~ 0 and 50 z. is a point in fllying on Il' 
1 

Now z * lies on h sinee 
r 

= O. 

Thus the stabber of 11,12 and z intersects Il at z •.• 

Lemma 5.2. The stabbers of three skew tines in p3 fonn a quadric surface Q. 

Proor: We first show that the line stabbers of three skew tines he on a quadric surface. Let 

L = {Il' 12, IJ} he a set of three skew !ines in p3 where l, is parametrized by Â.x, + IlY" 
i 

x, , Yi E p3, Â., ~ e R. Let l' be a Une stabber of L and let z he a point on l' which does IlOt 

(lie on I l ,12 or 13' By Lemma S.}. l' intersects Il at 

and hence 

1 _ 

det(x3,YJ' z, z *) = det(x3. YJ, z, det(x2.Y2, z. y I)xl - det(x2'Y2, z ,xI)Y 1) 

.. ~ . det (x3. YJ. z .Y/det(X2,Y2. z ,Xl)' 

Since l' ~ntersects lJ, det(xJ.YJ, z. z *) = 0, and 

~ 

.-

det(x3.YJ,Z ,Xl) det(X2.Y2. z 'YI) - det(xJ'Y3,z .YI)det(xz.Yz,z ,Xl) = O. (5.1)~ 

IJ · If lies on II or 12 or 13. z also satisfies equation 5.1. Equation 5.1 has degree two in the 

coordinates of z and defines a quadric surface Q 1 50 if,z lies on a stabber of L then z must 

lie on this) quadric surface. : ~ 1 

'\ /: ~ 
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We DOW show that e~ point on the quadric surface Q lies on sorne stabber. Let z he 

any poÎlU on Q. If z lies on '1' tben by temma S.l there is a- stabber of L 'and z. If z does 

not lie on lit then by Lemma 5.1 there is sorne point z. on II such that ·the liue through z 
. 

and z. stabs I} and 12, Since z lies on the quadric surface defined above, 

det(.T), Y3, z , z *) = 0 and this stabber of 11,/2 and z aIse stabs 13'. 

Any Hne which does Dot lie on a quadric surface i~tersects the quadric surface in at 

most two points. Thus any four skew Hnes have at most two stabbers or an infiDÏte number 

of stab~rs. It is easy but tedious to check that this starement is true for any four lin~ which 

are not skew. 

A set of skew Hnes that admit an infinite number of stabbers is called ruled. The 

i terminolo derives. from the fact that the set of stabbing Hnes forms a doubly roled surface. 

slêewed Iines is trivially ruled. A doubly ruled quadric surface can be 

partitioned in two sets of lines: every pair of lines from the same set is skewed; every pair 

of Unes from different sets is intersecting. There is thus an obvious duality between the 

stabbing 'nes ~es to be stabbed . 

. 
Lemma 5.3. For m ~3, let L = {Ill ... , l",} he a ruled set of lines lying on the quadric 

, 
surface Q formed by the stabbers of 11.12,/). For every point z e Q there is a unique 

stabbing Une through z that intersects each Hne in L. 

'(\ 

Prool: We prove the lemma by induction. If m = 3, the lemma is truc by Lemma 5.2. For 
\ 

m ~ 4, assume the lemma is true for m-l. Let z he a point on Q. By Lemma 5.1, there is • 

a unique stabber 1. of I l ,12 and z. By the indu~tive assumption, there is a unique stabber l' 

\ 

.
) 

, 



o 

o 

l 

.. 

''-
of 1.,/2.13' and z, 1* = l'. S~ there is a unique stabber 1" of 

L" = {ll./t, ... ,lm-2,lml and Vand 1*:: 1". "TItus 1. is the unique stab~ of 

L =' L' u L" and z .• 

• Let L = {lb 12,/)} and let II be paramettized by Mi) + I1Y,. Given the -"quadric surface 
1 

\ Q formed by the stabbers of L, define a function fil which maps every point z on Q te the 

unique point z. on II such that the line through z and z. is a stabber of y Pormally, 

1 
z E Q-12 (5.2) 

z E 12 (5.3)' 

It follows from Lemmas 5.1 and 5.2 that cz, performs the function described above. In the 
\ 

sequel we will need the following fact about cz,cz). 

Lemma 5.4. cz, is a continuous function from Q ta II' 

Proo/l For every point z e Q - 1" wc S define a neighbourbood N (z) whicb doe. DOt 

intersect 12, For every point z' E N (z ), \ 

cz,cz') = det(x2'Y2,Z"YI)XI - det(X2'Y2,Z',Xl)YI . 

Note that if z' E 11' this formula sets cz,cz')-= z'. TItus 4P is continuous at z. Now suppose 

Z E 12, and consider a neighbourhood N(z) small enough to be disjoint from 1). If we first 

apply Lemma S.1 to II and 12 and then reapply it ta Il and 1), we see that equations (5.2) 

and (S.3) agree up ta a non-zero multiple for any point not on either 12 or 13' Therefore, for 

any z. E N (z), cz,cz.) is given by equation (5.3) and is thereforè continuous in this region. 

Again cz, is continuous at z.. _ 
Applying Lemma 5.4, if s is a line segment on Q with endpc;>ints x and y, then ~s) is 

a line segment on 11 with endpoints ~z) and 4P(y). Note that a tine segm~ in projective 
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space may correspond to citbér a segment or two half-lines in affine space. 

If p is a polyhedron which intersectS Q, then «lt(Q ryJ) is a closed set in Il and is 

composed of the union of line segments in 11' If N is an open set inside p, then «P(Q nN) is 

, an open set in 11' Thereforc, the eri'dpoints of the line segments fonning c»(Q ryJ) must 

cor:.espond to stabbers which do oot intersect the interior of p. Ther, stabbers must ~s 
through some edge of p. 

As a consequence of Lemmas 5.1 and 5.2, we have the following Helly-like theorem. 

Theore~ 5.1. A set of m ~ lines in p3 have a stabbing li~e if and only if every six of the 

,.Iines bas a stabbing ,lire. . \ 

Proot: Let L = {Il • ... , I",} denote the set of lines. ASS~ at first that they are skewed. ~ 
If some set of four lines admits a unique stabber, then the conclusion is imm~ate. Suppose 

next that sorne set of four lines, say 11,/2, IJ , 14, admits exactly two stabbing Hnes l'and 1". 

If neither is a stabber for L, then there is some line li missed by l'and sorne Hne Ij missed 

contradiction. There remains the case that each set of four lines adroits an infinity of 

stabbers. But in this case, il follows from Lemma 5.2 that all of the Unes must lie in a 

quadric surface Q. Any line in this surface that intersects three of the lines must intersect all 

- of them. 

Now suppose ,that the Unes are not skewed. T"o Unes, say 11 and 12> intersect at point 

z. If aIl the Unes contained ('Oint z, the concl~ion is immediate, so assume some line '3 
docs not conrain z. Let h denote. the plane containing Il and 12, let h' denote the plane 1 

r 

, 

, 
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c:ontainiDg 13 and z and let 1 be the line h n h '. If aIl the Unes lie in plane h or h' or 
) 

Jntcrsect 1, then 1 is stabbing Une for L. Otherwisc some Une 14 does, not lie in h or h' and 

does Dot intersect 1. 11,12,,13• 14 have at Most two stabbers 50 we' can proëeeCîas above. 

The theorem follows .• 

• 
Thé theorem generaIizes to aIl dimensions. A skewed set of line segp1ents is ruled if , 

the set of tines C~ning the Une segments is ruled. Theorem 5.1 bas the following 

corollary. 

CoroDary 5.1. A set of m ~ skewed segments in E3 that are not ruled have a stabbing line 

( if and only if every six segments bas a stabbing line. 

• 

We now turn to the problem of finding stabbing lines for convex polyhedra in E3• Let 

P = {Pl' ...• Pm} be a set of disjoint polyhedra in E3. Using the previous lemmas, we can , 
prove an 'extremal' theorem for ~lyhèdra. We first need a lemma about 'extremal' stabbing 

tines in the plane. 

.... 
Lemma S.S. Let P = {Pl' ...• Pm} be a set of m ~ 2 disjoint conVex polygons, in the 

plane that admit a s~bbtng line. There exist two distinct polygons fj and Pl and vertices 
. , 

.t e' Pi and y e Pj' ~uch that the line through.t and y is a stabbing line for P. 

Proor: Let 1 be a stabber for P. Translate 1 until it goes through some vertex x of'some 

polygon Pi. Rotate 1 about.t 1 until it passes through a vertex y of some polygon P j ~ PI_ 1 

is still a stabber for P and 1 is the Une through.t and y .• 

-
, , 
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Theorem 5.1. P = {Pl' .' .. • p",}, m è: 2, bas a stabbing line if and only if there exista a • 
stabbing Une througb: 

(a) Two vertices in two distincttp;; or 

1 (b) One vertex and two skewed edges in three distinct Pi; or 

(c) Two co-planar non-collinear edges in two distinct p,; or 

(d) Three skew edges in three distinct Pi' 

Proof: Assume there is a stabbing line of P. There are two cases. 

Case 1. There exists a stabbing line 1 of P which passes through a vertex of sorne 

po]yhedron in P. 

Assume 1 passes through the vertex x of po]yhedron Pi' Rotate 1 around :t in any 

direction, until it passes through an edge e of sorne polyhedron P j . '# Pi . Let h he the plane 

containing x and e, let p! == x, p; == e, and Pk = h ("\ Pico k ~ i, j. By Lemma 5.5, there 

exists a stabbing line l' through two vertices of two distinct polygons. pi == x is a point, so 

l' must contain x. l' must also contain some, other v~rtex y belonging to sorne Pk ~ pro If 

y is a vertex of p", then l' is a stabbing Une through two vertiees, x, y, satisfying condition 

a). If Y is not a vertex of Pk, then it must lie on sorne edge e' which is not contained in h, 

and l' is a stabbing Hne through x, e and °e', satisfyi~g condition b). 

f 

Case 2. No stabbing line of P passes through a vertex of any polyhedrtln in P. 

Let 1 he a stabbing line of P. Translate 1 in any direction, until it intersects an edge e 

of some polyhedron Pi' Let ,h be the plane containing 1 ~ e, let pi = e and let 

Pk == h ("\ Pl' k '* i. By Lemma 5.5, there existS a line stabber l' through veroces x e pf 
l, 

and Y e' Pt. Une l' rnUft not go through an ~ndpoint of e or else l' would he 'a Une stabber 
o '. 
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through a vertex of Pj. 'Iberefore pf,p; and p{ are distinct polygoDS. 

Let x and y lie on edges e' and e" of Pj and Pkt respectively. By assumption l' does 
" 

net intersect the endpoints of e' or e". 50 e' and e" do not lie in h and are not collineâr. If , 

e' and e" are co-planat, then condition c) is satisfied. Otherwise. e, e'. e" fonn three skew 

edges and- condition d) is satisfied .• ... 

5.3 Algorithms for Line Stabbing in Three Dimensi~ns 

1 

The algorithm~follow quite naturally from the theory. Given a set S = {sI' ... , SIl} 

of n pairwise disjoi~t line segments in E3• we can find a stabber of S in 0 (n log n) time. 

Choose three line segments S lt s2. S3' If two of these line segmen~ are collinear. then , . . 

tRe line containing the line segments is the only candidate "stabber. Check whether this line 

stabs S in O'(n) time. If two of these line segments are co-pl anar. then a stabber of S'must 

lie in the plane containing the line segments. Apply the' algorithm of Edelsbrunner et al. for 

1 

" ., 

stabbing line segments in the plane in 0 (n log n) time[l9]. - - ----------1 

projective lines containing SI. S 2. S 3. respectively. The stabbers of these lines fonn a quadric 

sUrface Q. Check in constant time whether e,ach Si lies on Q. If some Si does not lie on Q. 

then it intersects Q in at most two points. By lemma 5.3. there are at most two stabbers of 

Sl.S2.S3 and Si. Check whether these stabbers stab S in O(n) time. ' 
.. 

Finally. if all Si lie on Q, define the function cp as in Lemma 5.4 whiclt maps every 

point of Q onto 11 such that the line from z to <p(z) is a stabber of I l .12 and 13' By sorting 

the endpoirits. of the Une segments q)(s;). we can find the intersection of all the line segm~nts 
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tb(Si) in 0 (n/Qg n) lime. Ta eaeh point in that intersection ~ corresponds a line stabber 

ofS. 

Let P = {Pl' ... , Pm}, m ~ 2, he a set of disjoint polyhedra in El. Let n he me total 

number of vertices and edges in P. We will sho~ how to find a Une stabher for P in 

o (n410gia) time. 

, 
Let P he any polyhedra with t edges which bas been preprocessed using the techniques 

given by Dobkin and Kirpatrick in [14] for fast reporting of polyhedral intersections. Let Q 
,> 

~'? 
he a quadric surface formed by the stabhers of lhree skew Unes, Il' 12.13. and let ~ he the 

function defined in Lemma 5.4 mapping Q to Il- We can construct ~Qr-p) in o (tlogt) 

time. Let X = {tl>(Q ne) : e is an edge of P which does not lie in Q }. X is composed of al 

mo_st 21 points on Il' Sort the points of X. These points divide Il into ~ most 2t line 

segments. each of whose interiors is either contained in ~(Q r'tp) or in Il - cz,(C2 t'"yJ ). For 
) 

every such line segment si. determine if the interior of Sj is in ~(Q ryJ) by choosing sorne 

, point x from the interiocQf Si and querying whether the unique stabber of x ,/2 and 13 also -- - ---- -- - - ---- ----- -~~ -, .. 

stabs p. tl>(Q flJ) i8 the union of'à11 the line segments Sj whose interior lies in q,cQ ryJ) and .. 
the points in X. 

Since p lias been preprocessed using the techniques in [14], it takes o (log t) time to 

find if a Hne intersects p. There are at most 2t such queries. Sorting takes 0 (t log t) time 

-
50 the total complexity for t!lls algorithm is 0 (t/Qg t). 

To Bnd a Une srabber for the polyhedra iJl P we first preproccss the" polyhedra as 
>, 

in'[14]. We tben test for the four possible cases in Theorem 5.2: 

, 1 
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Checkc if the line through the two vertices stabs aU the polyhedra. 

Por every vertex and two skew edges in distinct polyhedra Pi. P j ,Pk: 

Pind the stabber of the vertex and two edges if it exists and check if it stabs aIl the 

poly~dra. 

Por every two co-planar edges in distinct polyhedra P j t Pt: 

Let h be the plane containing the two edges. Intersect each of the polyhedra with h 

ta fomi' polyg~ns and \Ise the algorithm of Edelsbrunner et al[19]. to find any 
f 

stabbers of P which lie in h . 

For every three skew edges inotstinct polyhedrapi.Pj.PA:: 

Embed E3 in ,pl and let 11.12.13 be the projective lines containing the three skew 

edges. Let Q he the quadric surface formed by the stabbers 'of these lines. Define tl> 

as in Lemma 5.4. Apply the algorithm above to construct q,(Q ryJ) for each pEP. 

Let X be the set of all the endpoints of segments in q,(Q r.p ). peP. X is a 

collection of at most 2n points. Sort the points in ,X. By scanning rpe points in X in 

order, intersect ail the cI»(Q fYJ), pEP. A point in this intersection has a unique 

stabbing linc which stabs all the clements in P. 

Preprocessing aIl the polyhedra takes 0 (n 2) time. The total time of this algorithm is 

? dominated by ... the last step. This step takes a total of 0 (n log n) time to construct F (Q rp ) 

for each polyhedron p. It also takes 0 (n 10$ n) time to sort X. The last step is executed 

o (n 3) times for a total of 0 (n 4108 n) time complexity. 

. " 
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Chapter 6 \ . 
Separation Algorithms 

6.1 Introduction 
) 

\. 

Let A be a family of n pairwi~ disjoint convex polygoDS in the plane. Une segments 

and points are also considered convex polygons, a1beit degenerate ones. The upper bounds 

on the number of orders in which directed Hnes can intersect A is a function of the size of 

the minimum strict separation set for A. If a family A bas a small strict separation set, then 

by Theorem 4.1 there are few geometric permutations on A. This property of separation sets 

suggests the problem of finding small ones. 

Theorems 4.2 and 4.3 ensure that there exists a strict separation set for a family of n 

pairwise disjoint convex polygons with size 12n. In fact, the praof of Theorem 4.3 is a 

construction which can be turned into an a1gorithm for finding a strict separation set of size 

12n. As in Theorem 4.3, triangulate the family of polygons and find th!r neighbours of each 

polygon. Strictly separate each of the polygons from each of its neighbours and from each of 

the triangulation edges between neighbours. These separation lines strictly separate a polygon 

not ooly from its neighbours but from aU other polygoDS, as argued in Theorem 4.3. There 

are at most 12n separation Hnes and they form a strict separation set of size 12n.' The 

alsprithm is dominated by the triangulation time. Using standard techniques [48 l, 

triangulation takes 0 (m log m) time where m is the number of edges. 

Given a family of convex polygons in the plane, decide if there exists a separation set 

of size k. Given a family of convex polygons in the plane. decide if there exists a strict 
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seParation set of size le. 1bese • problems we caU the the separation set problem and the 

strict separation set problem. In Section 6.2 it will he shown that both these problems are , 

NP-complete. 

1beorem 4.1 does n~t really depend upon the size of a strict separation set, but on the 

number of different slopes of lines in the set. Bach strict separation set has an associated set 
'. 

of slopes which are the slp~s of all the lines in the set. Given a family A of n convex 

polygons with a total of m edges in the plane, find the minimum size set of slopes associated 

with any strict separation set for A. This problem is called the separation slope problem . .. 
By mapping slopes to points on a circle, this problem cao he transformed to one of finding a 

minimum point cover for a set of k open arcs on the circle, called the point cover of arcs 

problem. Section 5.2 solves the point cover of arcs problem in 0 (k log k) time. Finding the 

minimum set of slopes takes O(n 210gn + n21ogm) time. 

6.2 The Separation Set Problem 

The proof that the separation set problem is NP_!lete is a reduction from vertex 

cover for pl anar graphs. A vertex cover is a set of verti s such that every edge is incident 

with some venex. The vertex cover problem for planar aphs is decide if there exists a 

vertex cover of size k for a given planar graph. The vertex cover problem for planar graphs 

is NP-complete[24]. D is a dual transform which maps points to lines and Hoes to points. 

For a point x in homogeneous.. coordinates, D(x) = {u:x· u = O}. For a hy~rplane 

h ={x:u·x ::O},D(h)=u. 

" 
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Theorem '.1. The separation set problem is NP-complete. 
9 

1 
... 

Proof: Let A ·he a family of convex polygons in the plane. The Unes in any separation set 

c'an he penurbed until they go through two vertices of two distinct polygons. The possible 
'" 

separation sets for A need ooly he chosen from the polyn<?mial numher of Hnes which pass 

through two vertices of polygons in A. In polynomial time a non-detenninistic Turing 

cr 
machine could guess a separation set of size k and check whether it did in fact separate a1l 

the pairs ~f potygons in A. Thus the separation set problem is in NP. 
, 

1 Let s 1 and s 2 be two line segments which intersect at their endpoints. AlI the -lines 

which separate sI from $2 lie in the cone formed by $ 1 and $2' (See Figure 6.1.) If no line 

through the origin separates S 1 and S 2, then D maps the separators of s 1 and s 2 te a line 

segment in the dual spa,ce. (See Figure 6.2.) 

1be process cao he reversed, mapping a line segment in the dual space to the separators 

of a pair of line segments in 'the primai. Given some line segment in the dual space with • 

endpoints x, y, let z he the point D (x) n D (y) in the primaI space and let 1 he the line 

tbrough z and the origin. Let SI and s 2 he two 1ine segments lying 00 D (x) and D (y ), 

respectively, which share a commoo eodpoiot z and lie 10 one side of 1. The line segment in 

the dual space with endpoints x. y maps under D to the set of line separaters of $ 1 and s 2. 

Note that sI and S 2 May have any positive Iength. 

"-
We are now ready te show how an instance of the planar vertex cover problem 

transforms to an instance of the weak separation problem. Let G he any planar graph. G 

has a straight line embeddiog in the plane. (See Figure 6.3.) Perturb the vertices of this 

plinar embedding 50 that DO two graph edges lie on the same line and no edge lies on a line 

·71. 
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Figure 6.1. SeparatorS of Two Une, Segments 

1 

Figure 6.2. Separators of Two Une Segments in Dual. \ 
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Figure 6.3. Straight Edge Embeddîng of Planar Graph. 

( through the origin. T~ansfoFD1 the fines containing graph edges to points under the mapping 

D and let X be the set of these points. Each edge in the planar embedding now corresponds 

a. " _, 

'\ 

to a unique point in X. Let t > f be a lower bound on the venica1 and horizontal dist:mce 

beN/een any two points in X. For Fach edge in th~ planar embedding construct a pair of Une 

segments such that the points on the edge are mapped to the separators of these line segments 

under the transform D. (See Figure 6.4.) Let T be a set of these pairs of line segments. 

Each edge in (J correspon!is to an element, ai'air of line segments, in T. Choosing each line 

segment to have a positive length less than ,~, ensurJ that every two ~lements of T, i.e. . 4 

every ~o ~ of line segments, can he separa~,by a vertical or horizontalline. 

• .74· 
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Figure 6.4.\ Pairs of Line Segments Corresponding to Edges. 

Consider the problem of finding a set of k points such that each edge in the planar 

-e.mbedding of G conqrins at least one point. Such a set of points will be called a point 
" . 

cover' for G, Sincc the relative interiors of no two ,edges intersect, each point can be movea 

to an edge endpoint to form a vertex cover. Thus, a point coyer for G of size k gives a 

venex coyer of G of the same size. The mapping D transfonns a point covering of edges in 

G to! set of lines 8uch that each pair of Une segments which are an element of T is 

se~by some line. Similarly, D transforms a set of lines which se.,a&te every clement 

of T to a point cover tif G • TherefoI1P. there exists a set of k lines which separate every 

element of T if and ooly if there exists a vertex cover of size k for G . 

Let L" be a set of vertical and hori~ntal line segments which separate every two pairs 

of Une 'segments in T but do not separate any two tine segments wbich are paired. ut II be 
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a translate of the X-UÎs which lies ~ the pain of Une segments in T. Let 12 he a 

transl;te of the y-axis which lies to the left ~ all dW pairs of line segmerus in T. Place 

abutting rectangles along Il and 12 50 that the each of the lines in L" is the unique separator 
, . 

for two adjacent rectangles as in Figure 6.5. ~t L' he the minimum separation set for these 

rectangles. L' conwn8 L ". 

Let A be the set of rectangles plus the Hne segments which fonn the pairs in T. L' is a 

subset of every separation set for A. The two lines separating the rectangle in the left, 

bottom corner from its neighbours also separate all the rectangles from all the line segments. 

Let L be a separation set for A of size k + 1 L' 1. Removing L' from L leaves a set of k 
r 

tines which separate every element of T. Transforming the lines in L - L' to points in the 

r---

" --

. 
1 1 1
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Figure 6.5. Ahutting Rectangl~. 
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dual space and DlOving the points to vertice8, prodqces a vertex cover of 'size le. A vertex 

cover of size le si~es a set of le Unes which separate every element of T. Adding.L' to this 

set, would resuIt in a separation set of size le + 1 L ' 1. Thus there exists a vertex cover of G 

of size k if and ooly ~ there exists a separation set of size k + 1 L' 1 for A . 

Finding a straight line embedding of a planar graph takes polynomial time[54]. In this 

straight line embedding vertices are mapped to points with integer coordinates. By scaling up 

aH the coordinates by a suitable factor, polynomial in the number of vertices and the 

coordinates of the vertices, the vertices in the embedding can be perturbed to new integer 

coordinates sa that no two edges lie on the same line and no edge lies on a line through the 

origin. The transformation of edges to points~ the creation of line segments and of rectangles, 

and determining the size of L' all use polynomial time. Therefore, in polynomial time an 

instance of the vertex cover problem can be reduced to . an instance' of the separation set 

problem and the separation set problem is NP-complete .• 

Given a set X of points in Ed and a closed half-space h+, X ("'\ h+ is called a k-set ~ 

where k is the number of points in X n h +. The number of different le -sets over aIl k is 

O(nd ) and these le-sets can be constructed in O(nd
) time[17]. 

Tbeorem 6.2. The strict separation set problem is NP-complete. 

Prool: Let A he _a family of convex polygons in the plane and let X he the set of all 
. ~ 

ve~ces of pt>lygons in A. For aIl le, construct the k -sets for X. For each k -set choose a Une 

which strictly separates the k -set from.. the rest of the points in X. Let L he the set of all 

such cltc;sen lihes. Lines in a ~trict separation set cao always he perturbed so tIlat the strict 

separation set is -a subset of L. In polynomial time a non-deterministic Turing machine could 
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guess a strict scp8!ation set of size " from the Unes in L and check whether it did in fact 
.-

strictly separate all the pairs of polygons in A. Thus the strict separation set probIem is in 

NP. 

To prove NP-~mpIeteness a special version of the separation set problem is reduced to 

the strict separation set probIem. Let A be a set of convex polygons in the plane whose 

relative interiors are pairwise disjoint In' the proof of Theorem 6.1, the vertex coyer problem 

is reduced to de~rmining whether there exists a separation set of a given size for this 

restricted family of convex polygons. Thus determining whether there exists a separation set 

of a given size for a family of convex polygons whose relative interiors are pairwise disjoint 
~ 

is a1so NP-complete. Wc show how to reduce this problem to the strict separation set 

problem. 

If the polygons in A are pairwise disjoint, then the lines in a separation set for A can 

he perturbed in polynomial time to form a strict separation ~t for A. A strict separation set 

for A is also a separation set for A. Thus finding a separation set or a strict separation set of 

size k is equivalent for a family of pairwise disjoint polygons. 

\. However. Amay be a famiIy of polygons whose relative in~riors ere pairwise disjoint 

but which are not themselves pairwise disjoipt. In this case, A bas a separation set but no 

strict separation set. Each polygon in A will hé shrunk ta form a new family of polygons A' 

such that the A ' has a separation set of size k if and ooly if A bas one. , 

~ 

For every pair of polygons A which intersect, there must he sorne vertex x in one of 

the polygons.a wJùch does not lie in the other polygon, b. For "f e [0,1], let a(y) he the 

contraction of a by a faètor of y about Je where: 
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a (y) = {x + y (y - x)f y e a } . 

x and y are represented iq Cartesian coordinates. For each line through two vertices in A. 

there is a set of vertices DOt contained in that line. Let y' be the maximum value of y such 

that a line through two vertices \1 and \l'in A -{a }+{a (y)} contains a point which is IlOt 

contained in the line through li and li' in A. y' is a rational number whose numerator and 

denominator are bounded by polynomial functions of the coordinates of the vertices. Shrink 

a by some "(* = 1'; 1 and scale up ail the coordinates by a suitable factor so that the 

" 
vertices of a ("(*) have integer coordinates. "(* is less than one, the relative interiors of a and 

b are disjoint. and x does not lie in b, so a ("(*) does not intersect b. 

Let A' = A - {a }-+ {a()II')}. By the choice of "(*, any line through two vertices \1 and 

li' in A' separates the sam€!' sets as the line through thé two vertices li and v' in· A ~d vice 

versa. A separation set for A is obviously a separation set for A'. A separation set for A.' 

can be transformed to a separation set for A of the same size. periurb the Iines in the 

separation set in A' so that evefr line goes through two vertices. Transform the lin~ which 

goes through vertices \1 and 1 in A' to the line which goes ough vertices v and v' in A . 

Since each line separates the same polygons after the transformation, the 

transformation maps a separation set for A' to a~.y_._ 

Repeating the shrinking p ure for each pair of intersecting sets, produces a family 
~ 

1 A' of pairwise disjoint convex sets which has a separation set of si:r.e k if and ooly if A has a 

separation set of size, k. Stoce A' is pairwise disjoint, A' , has a separation set of size k if 

. ,. and only if A' bas a strict separation set of size k. Thus the separation set probleni .reduces _ 

, to ~ strict separation set problem in polynomial time •• 
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6.3 The Separation Slope Problem and the Point Coyer of Arcs Problem 
t:, 

Let A be a family of n pairwise disjoint convex polygons with a total of m edges. 

Assume that the relative interiors of the polygons in A are pairwise disjoint 50 A has a strict 
~ 

~~ separation set The slopes of the strict separators of a pair of W1ygons in A map ta an open 

arc b on the unit circle. This pair of polygons has two critical separators which are tangent 

ta both polygo~ in the pair. The slopes of the critical separators map to the endpoints of arc 

b. The critica1 separators can he found in 0 (log m) time[ 49], so each arc can he constructed 
1 

,in 0 (log m) rime. The entire set of fu) arcs can he constructed ifl 0 (n 210gm ) tÏme. 

Bach point which lies in an ope~ arc generated from a pair of polygons corresponds to 

the slope of sorne stric1 separator of the pair. Findil'\&"a minimum size set of separation 

810~ correspon~ ta fi~ding a roinir set 0\ points on the circle such that each open arc 

contalns sorne pomt. ! 
J 

Problems con~œïng arcs on' the circle have been stu,died in graph ÛJeory where arcs are 
'" 

ttansformed to circular-arc graphs[9, 25, 26]. Circular arc graphs are created by mapping 

the arcs on a ciÎcle ta ,vertices of a graph. l'wo vertices are joined by an edge if their 

'corresponding arcs imersect 

Bach point on tht;nit circle corresponds ta a clique in the_circular-arc ~ph. A clique 

cover of a graph is a set 'of cliques such that each vertex is in sorne clique. Finding a ' 

minimum ,P9int cover seems quite like finding a Jnirnu~ clique cover of the circular-arc 

~ 
'graph. Unfortunately, each clique in a circular arc graph does not correspond to one point' on 

the unit circle. (See Figure 6.6.)"1 saw no way ta transform the point cover of arcs problern 

10 a problem on circular arc graphs and 50 was forced to develop my own algorithm. 
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Figure 6.6. Three Arcs in a Clique. 

c.. 
Let K he a set of open arcs on a circle. If the endpoiot."f some arc is DOt the endpoint 

of any other arc, the arc can be lengthened and the sile of the minimum cover will not 

change. If some arc romains some other arc, then the first arc can he removeji and the sile 
, ' 

of the minimum point cover will ag~ IlOt change. A. normalized set of arcs is a _set of ar~ 

, \ '" 
where every endpoint of arl"arc is the endpoint of some other arc and no arc contains any 

, , , 

other arc in the set If an arc extends in the elockwise direction from an endpoint. then the 

endpoint is called a left endpoiot Otherwise, the endpoint is ca1led, a right endpoint In a ' 

nol1l)a1ized set of arcs, no point may be the left endpàint or the right endpoint of two arcs. 
! -

/ , 
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Given a set K of" open arcs, a nbrmalized set of arcs K' with the same size mini~um 

cover can be consttucted from K in 0 (k log Ir.) time. lnitialize K' to be the set of arcs K. 
. , 

Sort the endpoints of the arcs' ~n K' on the circle. By scanning the endpoints first in 
\ ; \ 4t!Jt. • 

clockwise and then in counter-clockwise order, lengthen each arc until bOth i~ left endpotnt 
If 

\ 

lies on the right endpoint of some other arc and its right endpoint lies on the left endpoint' of 

some other arc. 

Scan.the circle in a c10ckwise direction. At each left endpoint encountered in the scan, 

add the new arc to the beginning of a list LARC. At each right endpoint belonging to sorne 

arc a, check 'whether a is contained in list lARC. If a is in the list, aIl the arcs behind it in 

the ~st,contain a. 'Mark these arcs for deletion, push them onto l\ stack ADEL and remove 
, , 

them and arc a from list LARe. 
() 

For each endpoÎQt position x on the éircle, there is some smallest arc a whose left 
,.r 

endpoint lies ~t x and some smallest arc ~ Whose right endpoint lies at x. Set pointers frorn 
, 

the left endpoint of a to b and from the right endpoint of b to a . 

Pop an arc a from the top of stack ADEL and delete a from K'. If the left endpoint of 

a contains a pointer to the right endpoint of some aic b, move the right endpoint of b 

• 
clockwise around the circle to the position y of the closest left endpoint of some arc. -- Let c ; 

~ the smallest arc with left endpoint at y. The left endpoint of c, points to some arc d. If 
, , 

b is smaller than d, set the right endpoint of b to point -to c and the left endPoint of c to 
1 _ 

Point to b. Mark d for deletion and push d on stack ADEL 1 if it is ~ot already:there. If d 

, ~ 

is smaIler than b, mark b for deletion and push b on stack ADEL, if t is not aIready there~ 

Repeat this procedure until stack ADEL is empty. 
~ 

r 
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K' wSS produced by moving the endpoïnts of arcs not marked for deletion in stack 

ADEL to meet other arcs and by deleting redundant arcs, 50 K and K' have the same size 

minimum cover. The endpoints of each arc DOt marked for deletion are always moved so that ' 

they always coincide with the endpoints of some other arc. The deletions ensure that no arc 

may he-- coritained in any other arc. Thus K' is a normalized set of arcs. The time ta 

consttuct a. normalized set of arcs is dominated by the initial sorting which takes 0 (k log k) 

time. 

Given a normalized set K' of k' arcs, a minimum cover can be found for K' in 

o (k'iog k') time. Sort the endpoints of arcs in K'. An arc a in K' connects to an arc b on 

its right if the right endpoint of a meets the left endpoint of b. a connects to b on its left if 

the left endpoint of a meets the right endpoint of b. A chain of arcs from alto aj is a set 

of arcs {a 1- ...• al} where ai connects to ai+l on its right. 

Let x he a point on the circle which is not an endpoint of some arc and let m he the 

number of arcs containing x. Let y be any other point which is no~int' The m 

arcs containing x begin ~ chains which lead to IV: arcs containing y. If m' > m arcs . " ,,;g , , 

contained y, these m'arcs would begin m' chains leading to m' arcs containing x. Thus 

ev~ry point in the circle which is not an endpoint is contained in exacdy marcs. 

, ' 

" i 
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Assume rhore was • POin~ cove, Y of.1u Iess!ban r ~ llf a point in Y u.. on Ibo 

~ 

left endpoint of some arc,- the point'can he moved slighdy and Y will remain a point coyer of 

the arcs. Assume no point in Y lies on a left endpoint. Sort the points in Y in.order around 

the circle. Between some two adjacent points x, y E Y, there must lie at least 

r r ~ki _1 1 ," m+l left endpoiDlS of arcs. There are ~n1y m chains of arcs eXlending from 

x -10 y. One of the chains must contain two left endpoints. This means that some arc lies 

between x and y. This arc is not covered by Y and Y is not a point coyer for K'. It follows 

that X is a minimum point coyer fo~ K'. 

Sorting the points in K' takes 0 (k' log k') rime. Finding a set Y takes Q (k') time. A 

minimum point coyer for K' can beffound by reversing the process by which K' was derived 
" .. 

from K. A point coyer of arcs for K can he found in 0 (k log k) time. 

1be separation slope problem on n polygons with m edges can be reduced te a point 

coyer of 0 (n 2) arcs problem in 0 (n210g m) lime. ApplyiIW the algorithm above for the arc 

coyer problem gives an O(n210gm + n 210gn) algorithm for solving the separation slope 

problem. 
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Chapter 7 

Conélusion 

This thesis grew out of a number of questions, both mathematical and algorithmic, , 
which tumed out to be intelTelaœd. Questions about ordering, separation, the necessity of 

certain conditions in Hadwiger's Theorem, -aIl pointed to the relationship between stabbing 

and separation. 

~Some progress was made in generaIizing Hadwiger's Theorem. The pairwise 

disJommess condition was eliminated from the theorem. Theorems by Katchalski and 

Goodman and Pollack, themselves generalizations of Hadwiger's Theorem, were generalized 

to new familles of compact convex sets. However. a necessary and sufficient condition for 

the existence of hyperplane transversals for unrestricted families of compact convex sets is 

still unknown. Just as Hadwiger's Theorem was true without the pairwise disjointness 

condition, 1 conjecture that Goodman and Pollack's Theorem is true without the d-2-, 

separability condition. Necessary and sufficient conditions for the existence of Iç -transversals 

for k-flats other than points or hyperplanes are even more of a mystery. 

'I11ç number of ways ip which a line intersects a family of convex sets was shown to 
, 

relate to the arrangement of hyperplane separators. The number of ways in which a plane in 

E3 intersects a family also Telates to 8uch an arrangement. For higher dimensions, 1 

conjecture but cannot prove that there is aiso such a relation. 

Much work bas been done 0 by computer scientists and mathematicians on point and 

hyperplane stabbing. The algoritluitS in Chapter 5 for line stabbing in E3 are a tint attempt 

at k-flat stabbing for k-fiats other than points and hyperplanes. It is bighly unlikely that the 
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aJgorithm for stabhlng pôlyJiedra is optimal. With the toots of algebraic geometty. it May he 

possible to generalize these algorithms to le-fiat stabbing in higher dimensions. 

Chapter 6 comains sorne pi"oblems about the construction of separation sets. Other 

problems on separation sets are still unexplored. How does one construct se~aration sets of 

smaU size in higher dimensions? How does one construct small le -separation sets for Ie-

separable families? 
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