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Abstract 

Additive manufacturing (AM), which is also widely known as three-dimensional (3D) 

printing, has been a new trend in the manufacturing process in recent years. It can produce parts 

following a generated 3D model by adding layers of materials and fusing them. The main 

advantage of AM is the ability to enable customization and fabrication of complex geometries such 

as lattice structures, which are extremely difficult to manufacture in the subtractive manufacturing 

process. Although AM has been employed in many industrial applications, it is still difficult for 

beginning users to ensure the success of every print. It requires users to have a deep understanding 

of AM techniques to fully utilize this technology. The printing may fail owing to many factors 

such as the poor selection of the build orientation, materials, process settings, and insufficient 

geometric support for overhangs. It is difficult for non-AM experts to determine whether their 

designs are printable through a selected AM process, and it is even more difficult for them to make 

proper modifications without expert guidance before the fabrication. To fill these knowledge gaps, 

this study investigated the use of machine learning (ML) to assess the manufacturability of designs 

for AM processes. A web-based automated manufacturability analyzer and recommender for AM 

was developed as the implementation of the developed hybrid ML models. This tool can be used 

for the first-level evaluation of designs for novice AM users such as designers to ensure efficiency 

in terms of time and cost required for AM fabrications. 

The major contributions of this thesis are listed as follows:  

1. Establishment of a unique database for the laser-based powder bed fusion (LPBF) process 

and fused deposition modeling (FDM) process. 
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2. Development of a novel approach on manufacturability analysis of LPBF using hybrid ML 

models. The models consider both process information and design perspectives.  

3. Development of a hybrid sparse convolutional neural network (CNN) to predict 

manufacturability to increase the efficiency and effectiveness of the ML models. 

4. Development of a recommendation system to provide potential modifications to assist 

users on AM printing. 

5. A web-based application of analyzer and recommender was implemented to provide a 

comprehensive and easy-to-access manufacturability analysis to novice AM users. 

6. Demonstration of how data-driven approaches can help on design and manufacturing 

processes and the framework can be extended to any process where parts can be classified 

based on visual inspection and basic labeling. 
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Résumé 

La fabrication additive (AM), également connue sous le nom d'impression 3D, est une 

tendance émergente du processus de fabrication gagnant en popularité. Cette méthode génère des 

pièces à partir d’un modèle 3D en ajoutant des couches successives de matériaux et en les 

fusionnant. Les principaux avantages de la AM est la possibilité de personnaliser les pièces et de 

fabriquer des géométries complexes telles que des structures en treillis qui sont extrêmement 

difficiles à fabriquer dans le processus de fabrication soustractive. Bien que la AM ait été utilisée 

dans de nombreuses applications industrielles, elle a une barrière à l'entrée très élevée pour les 

débutants. Pour tirer pleinement parti de cette technologie, une compréhension approfondie est 

nécessaire. L'impression 3D peut échouer pour de nombreuses raisons telles qu'une mauvaise 

sélection de l'orientation de fabrication, des matériaux, des paramètres de processus et un support 

insuffisant. Il est difficile pour les non-experts en AM de déterminer si leurs conceptions sont 

imprimables ou non via le processus sélectionné. Il leur est encore plus difficile d'effectuer seuls 

les modifications appropriées avant la fabrication. Pour combler ces lacunes, une recherche à été 

réalisée sur l'utilisation d’une méthode d'apprentissage automatique (ML) pour évaluer la 

fabricabilité des conceptions pour les processus de AM. Un analyseur ainsi qu’un outil de 

recommandation de fabricabilité automatisés avec une interface Web ont été développés en tant 

que mise en œuvre des modèles ML hybrides développés. Cet outil peut servir d'évaluation de 

premier niveau des conceptions pour les utilisateurs AM novices tels que les concepteurs afin de 

réduire la perte de temps et de coût dans les fabrications AM. 

Les contributions majeures de cette thèse sont les suivantes: 
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1. Une base de données unique pour le processus de fusion laser sur lit de poudre (LPBF) et 

le processus de modélisation de dépôt par fusion (FDM). 

2. Une nouvelle approche sur l'analyse de la fabricabilité du LPBF en utilisant des modèles 

hybrides ML. Les modèles prennent en compte à la fois les informations de processus et 

les perspectives de conception. 

3. Un réseau de neurones convolutifs (CNN) hybrides clairsemés à été développé pour prédire 

la fabricabilité afin d'augmenter l'efficience et l'efficacité des modèles ML. 

4. Un système à été développé pour aider les utilisateurs en impression AM en fournissant 

des recommandations sur les modifications potentielles. 

5. Une application Web d'analyseur et de recommandation est mise en œuvre pour fournir 

une analyse de fabrication complète et facile d'accès aux utilisateurs AM novices. 

6. Démonstration de la façon dont l'approche basée sur les données peut aider les processus 

de conception et de fabrication et le cadre peut être étendu à tout processus où les pièces 

peuvent être classées sur la base d'une inspection visuelle et d'un étiquetage de base. 

  



VI 
 

Acknowledgments 

First and foremost, I would like to take this opportunity to express my sincere thanks to my 

Ph.D. advisor, Prof. Yaoyao Fiona Zhao for her understanding, support, patience, and inspiration. 

Her experiences and insights gave me a deep understanding of this research. Her feedback from 

both academia and industry assured me of the practical values and the direction of this pioneering 

research. Without her help, this thesis would not be possible. 

I would also like to thank Prof. Larry Lessard and Prof. Jovan Nedic for being my 

committee members. Their suggestions and comments on the projects helped me to think deeply 

about the study. 

I was fortunate to have had the opportunity to work with my labmates at the Additive 

Design and Manufacturing Lab (ADML): Sheng Yang, Jinghao Li, Nikita Letov, Guoying Dong, 

Zhibo Luo, Xiaoyi Guan, Yunlong Tang, Mutahar Safdar, Jiarui Xie, Chonghui Zhang, Manual 

Sage, Pavan Velivela, Dawei Li, Siyuan Sun, Wenbo Min, and others for their help and suggestions 

for the past few years. They are the source of inspiration, collaboration, and friendship. I would 

also like to thank the members of the Strategic Network for Holistic Innovation in Additive 

Manufacturing (HI-AM). Special thanks to Lisa Brock and Baltej Rupal for sharing their 

experimental data with me. 

I thank all my friends at home and abroad for their friendships. They have provided me an 

enjoyable social atmosphere. I also thank McGill University for providing such a great place for 

me. I really enjoy the campus life and its academic support. 



VII 
 

I would also like to express my gratitude to Natural Science and Engineering Research 

Council of Canada (NSERC) HI-AM with NSERC Project Number: NETGP 494158 – 16, 

Collaborative Research and Development (CRD) CRDPJ 520348-17, and McGill Engineering 

Doctoral Award (MEDA) for the financial support to this research. 

Importantly, I would express my love and sincere thanks to my family. Without them, it 

would not have been possible to receive good education and lead life. First, I thank my parents, 

Zhengkang Zhang and Weifang Chen, for their support and understanding. I thank them for giving 

me the gift of life and raising me. I would also like to thank my younger sister, Yi Zhang, for 

taking care of my parents when I was away. Finally, I thank those who have loved me and whom 

I have loved.    

 

Ying Zhang 

September 22, 2021  



VIII 
 

Claim of Originality 

The author claims the originality of the main ideas and research results reported in this 

thesis. The major contributions from this thesis are listed as follows:  

1. It provides a comprehensive literature review of the manufacturability of the AM process.  

2. It establishes a unique database for the laser-based powder bed fusion process and material 

extrusion process. 

3. It presents a novel approach to manufacturability analysis of LPBF using hybrid machine 

learning (ML) models. The models consider both process information and design 

perspectives.  

4. It develops a hybrid sparse convolutional neural network for predicting manufacturability 

to increase the efficiency and effectiveness of the ML models. 

5. It develops a recommendation system to provide potential modifications to assist users on 

AM printing. 

6. It develops a web-based application of analyzer and recommender to provide a 

comprehensive understanding and realize easy-to-access manufacturability analysis for 

novice AM users. 

7. It provides an example of how data-driven approaches can help in design and 

manufacturing processes and the framework can be extended to any process where parts 

can be classified based on visual inspection and basic labeling. 

Some contents of this thesis have been published in some journal and conference articles. 

The abstracts of these papers are listed in Appendices II and III.  
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Chapter 1. Introduction and motivations 

Additive manufacturing (AM), which is also widely known as three-dimensional (3D) 

printing, has been a new trend in the manufacturing process in recent years. It involves building 

parts following a generated 3D model by adding layers of materials and fusing them. The main 

advantage of AM is the ability to enable customization and fabricate complex geometries such as 

lattice structures that are extremely difficult to manufacture in subtractive manufacturing (SM). 

Although AM has been employed in many industrial applications, it is still difficult for beginning 

users to ensure the success of every print. It requires users to have a deep understanding of the AM 

techniques to fully utilize this technology. The printing may fail owing to many factors such as the 

poor selection of the build orientation, materials, process settings, and insufficient geometric 

support for overhangs [1-8]. Non-AM experts may have difficulty in determining whether their 

designs are printable through the selected AM process, and it is even more difficult for them to 

make proper modifications before the fabrication. This thesis is dedicated to addressing these 

challenges. 

In this chapter, the background of AM technology is introduced. Two focused processes, 

material extrusion (ME) and laser-based powder bed fusion (LPBF) are briefly introduced in 

Section 1.1. The manufacturability challenges in AM are described and discussed in Section 1.2, 

which results in the motivation for this study. Section 1.3 explains why machine learning (ML) is 

used as the major approach to model the manufacturability of AM. The detailed research objectives 

are stated and explained in Section 1.4. This chapter ends with the organization of the thesis in 

Section 1.5.     
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1.1. Additive manufacturing  

As introduced by ISO/ASTM standards [9], AM techniques can be divided into seven 

categories: binder jetting, directed energy deposition, powder bed fusion, sheet lamination, 

material extrusion, material jetting, and vat photopolymerization. The first four can be used to 

produce metal products, and the remaining ones primarily focus on polymers. ME process and 

LPBF are the two focuses of this thesis as they are well known and widely used. The following 

sub-sections provide more details on each process. 

1.1.1. Laser-based powder bed fusion 

In the metal LPBF process, a laser beam as a power source melts and fuses the metal 

powder on each layer according to the given pattern. After one layer is complete, the next layer of 

metal powder is applied, and the laser is projected. The process continues layer by layer until the 

products are completely built [10-13]. The schematic of the LPBF process is shown in Figure 1-1. 

The LPBF process is ultimately about the successful control of heat transferred from an intense 

laser beam to a powder bed with poor heat conductivity to produce the geometrically precise 

localized fusion of powder [14]. The fusion mechanisms can be grouped into four groups, which 

are solid-state sintering, chemically induced binding, liquid-phase sintering (LPS), and full melting 

[15]. When metal is used, LPS and full melting are the two conventional approaches used to 

solidify metal powder.  
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Figure 1-1: Schematic of the LPBF process [11] 

Because of its relatively high resolution, numerous metallic powder material options, and 

potential for manufacturing virtually any shape, the LPBF process is widely used and studied in 

both academia and industry [13, 16-18]. LPBF is applied in the medical and dental, aerospace, 

automotive, energy, and tooling industries [16, 18-23]. Compared with conventional 

manufacturing (CM), the LPBF process is more suitable for prototyping and low production 

volumes of high complexity parts owing to its advantages in cost, production time, and 

machinability [17]. In contrast to SM methodologies, it provides more design freedom with the 

layer-upon-layer material addition approach [13]. As no tooling is required in the LPBF process, 

designers can consider more complex geometries that are not achievable with CM processes. The 

increasing market demand for the LPBF process has increased the research efforts in academia [16, 

24, 25].  

Over the past 20 years, significant research has been conducted in the field of LPBF. 

Process, materials, designs, applications, and constraints related to LPBF have been investigated 

extensively and were summarized in a recent survey paper [26]. With the rapid iterative 
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deployment of LPBF equipment, the process has been updated and improved and is considered to 

be a mature technology. An increasing number of materials have become available for LPBF 

processes such as aluminum AlSi10Mg, cobalt chrome MP1, Maraging steel MS1, nickel alloy 

HX, stainless steel 17-4PH, titanium Ti64ELI, and tungsten W1. [27] With the expansion of 

materials and equipment, industries attempt to employ LPBF to benefit their current design or 

manufacturing process in various applications. More recently, the LPBF process has been used to 

progress from more than only fabricating prototypes to the area of functional end-product 

fabrication. 

1.1.2. Material extrusion 

ME is a type of AM process in which a feedstock material (typically a thermoplastic 

polymer) is forced through a heated nozzle and selectively deposited layer by layer to create a 3D 

object. The most well-known example is fused deposition modeling (FDM), which is also known 

as fused filament fabrication. Figure 1-2 demonstrates the schematic of the FDM process [28]. 

Filaments are used in the printing process. Potential variants of the ME process include different 

extrusion processes such as the hot extrusion of rods, cold extrusion of slurries, and hot extrusion 

of pellets.   
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Figure 1-2: Schematic of the FDM process [28] 

 ME is typically not as fast or accurate as other types of AM technologies. However, ME 

technology and its compatible materials are widely available and inexpensive. It is the most 

popular process for hobbyist-grade or desktop-grade 3D printers. ME is often utilized in 

manufacturing and industrial contexts to create non-functional prototypes or cost-effective design 

iterations. ME also offers a wide selection of materials, including thermoplastics such as 

polylactide (PLA), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), nylon, polyether 

ether ketone (PEEK), and polyethylene terephthalate (PETG); ceramics such as alumina and 

zirconia; green metal mixtures such as stainless steel, titanium, and Inconel; food pastes; and 

biological materials.  

 This research used only the FDM process to validate the developed ML models with the 

material selection for thermoplastics, which are the most common type in ME. 
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1.2. Manufacturability of AM 

For the CM process, the study on manufacturability can be traced back to World War II 

[29] owing to the demand to build better weapons. Thereafter, increasing global competition and 

desire to reduce the time and cost resulted in the increasing awareness of the manufacturing 

considerations [30]. In the CM process, particularly for the SM process, the product is fabricated 

by removing the materials from solid blocks. Hence, the products resulting from the SM process 

are always considered to be dense. The only consideration in manufacturability is the geometric 

inconsistency and the tool accessibility.  

The definition of the manufacturability of AM is vague in the literature. For the AM process, 

the parts are generally built from materials layer by layer. The density of the part varies. As 

investigated in the literature, the mechanical and microstructural properties of specimens 

fabricated via the AM process may vary owing to the different building orientations or process 

parameters [31]. In the past, investigations using simulations, modeling, materials, and design 

optimizations of the AM process have been conducted extensively. However, gaps still largely 

exist in understanding and representing manufacturability. Designers are challenged with the lack 

of understanding of AM capabilities and the influence of process parameters on the final products 

[32].  

When considering the manufacturability of the AM process, two questions must be 

answered. The first question is whether the part can be successfully fabricated or not, i.e., whether 

all the geometry can be successfully built without considering their dimensional and geometric 

accuracy. Not all geometric features can be fabricated using AM. Many features present printing 

difficulties such as inclined surfaces, overhangs, holes, and walls. Figure 1-3a depicts an example 

of incomplete printing through the LPBF process. The bottom area of the objects failed to be 
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fabricated in this case because of the improper support structure added to the bottom. Designers 

may think the certain geometry is not printable through LPBF; however, Figure 1-3b shows a 

similar geometry printed from another printing direction using a different machine. Compared with 

Figure 1-3a, the lattice part in Figure 1-3b was successfully printed, but the flat top cover was 

warped and not completely printed. The entire circled area is considered to be not manufacturable. 

It is difficult for designers who are not experts in AM to determine these potential failures at the 

early design stage.  

 

Figure 1-3: Examples of unsatisfactory printing 

The second question is whether the fabricated parts are satisfactory to customers’ 

requirements in terms of dimensional accuracy, geometric accuracy, and mechanical properties. 

These technical requirements are the standards to determine whether the final products satisfy the 

required qualities [33-35]. For the AM process, the technical requirements can vary based on 

different applications. In addition, from most studies in the literature, researchers nearly always 

consider the geometric inconsistencies for the manufacturability analysis of the AM process just 

as is conducted in the manufacturability analysis of the SM process. However, as discussed earlier, 

considering only the geometric aspects may not be sufficient for the manufacturability analysis. A 

clear definition of the manufacturability of the AM process is critically required. A comprehensive 

manufacturability model is in demand, which motivated this research. 
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1.3. Why machine learning? 

ML is an artificial intelligence subset that offers the ability for machines to learn and 

improve through experience [36]. ML approaches have been successfully applied in various 

applications such as virtual personal assistants, email spam and malware filtering, product 

recommendations, and computer versions. ML can be the most suitable approach to solve problems 

with two main aspects as outlined in the following:  

First, if the problems to be solved are too complex for human capabilities or too complex 

to be systematically modeled, ML can provide the advantage of time cycle reduction and efficient 

utilization of resources. Second, the tasks often require adaptivity; thus, traditional approaches 

such as guidelines or mathematical models have a limitation on the rigidity of adapting changes. 

Once the guidelines and mathematical models are developed, they remain unchanged. However, 

with the ML approach whose behaviour is primarily affected by the input data, the model will have 

the ability to adapt to future variations without any further investigation or code implementation. 

These benefits support ML as a potential approach for many applications including AM 

technologies. Unlike the conventional manufacturing process, AM processes have not been 

standardized yet. There are seven AM techniques depending on the printing methods. Even for the 

same AM technique, the quality of products fabricated by the different machines varies 

significantly. The AM process is difficult to generalize owing to its uncertainty and variability. 

Mastering and modeling the knowledge of the AM process is a complex and extremely difficult 

task. Furthermore, most studies related to AM research produced a large set of numerical data such 

as experimental results, simulation results, material, and machine information, and the objective 

of these studies is to predict the incoming printing process or product quality, which are the 
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preconditions and the targets of the ML approach. These characteristics make ML a reasonable 

solution in AM studies. 

More importantly, compared to some traditional numerical methods such as simulation and 

morphological operations, ML is much faster. It may require a few hours of training. However, 

once the model is defined and trained, the prediction only takes seconds.        

1.4. Research objectives 

To enable the adoption of AM in real applications, this study investigated the use of ML to 

analyze the manufacturability of a given design for a selected AM process. This research aimed to 

develop an automated manufacturability analyzer and recommender for novice AM users (MAR-

AM) such as designers at the design stage. It is expected to achieve rapid evaluation before the 

fabrication on whether the given design is printable with the selected machine settings and material. 

Moreover, such an analyzer is expected to provide some suggestions for users to increase the 

printing success rates. More specially, the research objectives of this thesis are summarized as 

follows: 

1. To develop a more appropriate definition of manufacturability to guide designers toward 

AM design. The definition of the manufacturability of AM is still vague. The 

characteristics to be satisfied to consider manufacturability are first clarified and defined 

in this research.  

2. To develop an accurate ML model to effectively identify manufacturability challenges. It 

can be specified in two sub-objectives. The first is to develop an AM (in this thesis, LPBF 

and FDM are the focus) database. The datasets will be then used for ML training. The 
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second portion is to develop a general, efficient, and effective ML model to predict AM 

manufacturability.  

3. To develop an automated manufacturability analyzer and recommender for AM. Such an 

analyzer and recommender can predict the manufacturability of a given design and selected 

machine and material settings at the design stage. Meanwhile, it can provide suggestions 

to novice AM users to increase the printing success rate.  

1.5. Thesis organization 

This thesis consists of eight chapters. Chapter 1 introduces the background of AM 

technology with a focus on two AM processes: FDM and LPBF. Moreover, the reason for using 

ML as the solution for manufacturability is stated. The research objectives are addressed based on 

the research limitations and gaps in the literature. In Chapter 2, the existing studies on 

manufacturability analysis are discussed, and the fundamentals of ML methods are introduced.  

Chapter 3 first introduces the new definition of the manufacturability of AM. It clearly 

states the level of manufacturability used in this research. Thereafter, the methodological 

framework of the MAR-AM is described. The framework comprises three major parts: (1) dataset 

establishment, (2) ML model training, and (3) manufacturability prediction and suggestion, which 

are explained in detail in Chapters 4, 5, and 6. The basic assumptions and research focus are clearly 

identified at the end of Chapter 3. 

 Chapter 4 describes the methods for dataset establishment that are used to train the ML 

model. The entity-relationship diagram is shown. The experimental setup and design of 

experiments are explained, as well as the method of data labeling. An AM data port is finally 

proposed in this chapter to increase public data sharing.  
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The collected data is sent to either ML model training or manufacturability prediction and 

suggestion depending on whether it is labeled. Chapter 5 discusses the ML approach and model 

training on the manufacturability analysis. The voxel-based approach is first discussed to 

demonstrate the validation of the ML approach. Thereafter, an advanced approach, which involves 

sparse representation of the ML models, is developed to increase the model performance.   

Chapter 6 focuses on the methodology of the recommendation system, which uses the 

prediction from ML models. With a closed-loop process, suggestions on process parameters or 

designs are offered. Furthermore, users are invited to provide feedback on the prediction that will 

be sent to our database to update the ML model regularly. 

The proposed framework has been implemented into a web-based application. Case studies 

have been conducted to validate the proposed approach, and they are described in Chapter 7. 

Finally, the thesis conclusions and future perspectives and recommendations are provided in 

Chapter 8.  
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Chapter 2. Literature review 

This chapter provides the fundamentals related to this thesis and a comprehensive review 

of the existing studies on the manufacturability of AM. Section 2.1 first introduces the existing 

efforts in evaluating the SM process as a comparison and references to the manufacturability 

studies of AM. In Section 2.2, the major factors in evaluating the manufacturability of AM are 

reviewed and discussed. Based on that, the existing approaches on AM manufacturability analysis 

and non-computational methods are discussed in Section 2.3. The computational methods are 

listed and discussed in Section 2.4. Section 2.5 compares the existing manufacturability studies on 

SM and AM. ML is introduced in this thesis to solve the manufacturability challenges. The 

fundamental of ML is introduced in Section 2.6. Finally, this chapter is summarized.  

2.1. Existing Approaches on Evaluating the Manufacturability of SM 

In the past, the manufacturability analysis was always conducted by a designer. Designers 

use their experience to evaluate the manufacturability of their designs. Some guidebooks have 

been published by the leading professional societies or manufacturers to provide design rules based 

on a particular manufacturing process. Designers read carefully through these heavy guidebooks 

to avoid these configurations that may result in poor manufacturability. The quality of the 

manufacturability analysis is also highly dependent on their working experience. Automated 

manufacturability analysis was developed to aid designers in manufacturability evaluations. After 

years of research and development, manufacturability analysis has become an essential part of 

computer-aided design (CAD)/computer-aided manufacturing (CAM) systems. Commercialized 

software such as DFMXpress in Solidworks, VAYO, and DFMPro, have been released for users 

to evaluate manufacturability. The manufacturability of SM can be defined under four 
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characteristics: visibility, reachability, accessibility, and setup complexity [37]. Studies with 

different approaches to evaluating the manufacturability of a selected SM process have been 

published [30, 38-42]. According to the existing literature reviews, the main strategies for these 

approaches can be classified into two groups based on the geometric interpretation: feature-based 

and feature-less-based approaches [37, 42, 43]. More details are provided in the following. 

2.1.1. Definition of the manufacturability of SM 

Given the design and a selected SM process, the definition of manufacturability in SM is 

straightforward. It is defined as whether the design is manufacturable in shape, dimensions, 

tolerances, and surface finishes. The design or features are evaluated on manufacturability with 

respect to four characteristics: visibility, reachability, accessibility, and setup complexity [37]. 

Figure 2-1 provides a geometric explanation for each characteristic. Visibility depicts the view 

from the machine tool to the part. A part has high visibility if the surface area of the entire model 

can be seen from the view of the machine tool. Reachability indicates the lengths required for the 

machine tools to reach the surface of the model. A shorter length of the machine tool is preferred. 

Accessibility measures the ability of a model to be machined without tool collisions. Accessibility 

is dependent on both the surface geometry and tool size. Setup complexity measures the number 

of setups required to fabricate a part. When machining a complex geometry, the tool may require 

to be rotated to access certain features. In existing research publications, accessibility is the most 

popular evaluation criterion for both the feature-based and feature-less-based approaches. 
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Figure 2-1: Geometric explanation for machining characteristics: (a) visibility, (b) reachability, (c) 

accessibility, and (d) setup complexity [37] 

2.1.2. Feature-based Approach 

The general concept of the feature-based approach is to extract the machining features such 

as holes, pockets, slots, or machinable surfaces from the design features. The extracted features 

are then used as the input of the manufacturability analysis. The feature-based approach can be 

further categorized into the three most active approaches, according to Han’s review [42]: graph-

based, volumetric decomposition, and hint-based approaches. The graph-based approach 

determines the feature types by translating the given design into multiple graph patterns. The part 

graphs are analyzed to determine the features [44]. This approach has been successful in 

recognizing some types of features but has some difficulties when faces are altered owing to 

feature intersections. For the volumetric decomposition approach [45], the general concept is to 

decompose the geometric input into volumes and interpret them to the machining features. The 

decomposition operation can be either convex hull decomposition [46, 47] or cell-based 

decomposition [48, 49]. The convex hull deposition is based on geometric Boolean operations, 

and the cell-based deposition required that the volume be decomposed into the cells and then 

composed to generate a volume for a machining feature. The challenge in the volumetric 
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decomposition approach is that the result features may not match with any predefined feature types 

after the decomposition. The hint-based approach determines the machining features by following 

the defined rule that asserts a feature and its associated operation. The most recognized hint-based 

reasoning algorithms were proposed by Regli for F-Rex [50], Han for an integrated incremental 

feature finder [51], Brooks for a feature-based machining husk system [52], and Vandenbrande for 

an object-oriented feature finder [53]. The major problem in the hint-based approach is that 

interpreting all the machining features is difficult. 

2.1.3. Feature-less based Approach 

The feature-based approach primarily focuses on detecting manufacturable features in the 

selected machining process. In contrast, the feature-less approach analyzes the surface 

representation of the model to determine the manufacturability. It ideally operates with any 

arbitrary geometries without feature recognition [37]. Moreover, the feature-based approach 

mostly comprises all the geometric elements as an entity to be a machining feature. However, this 

constrains the manufacturability analysis. For instance, for multi-axis machining, a portion of the 

feature can be fabricated in one direction, and then the remaining portion is finished after changing 

the tool setup orientation. The feature-less approach can solve these challenges that are difficult to 

solve using the feature-based approach. Li proposed the feature-less-based strategy to determine 

the manufacturability of a part by slicing geometry files to map machinable ranges [43]. The slices 

are set orthogonal to the axis of the rotation. The accessibility is estimated using the visibility of 

the light line on a two-dimensional (2D) slice file. The machining simulation proposed by Jang 

offers another direction by using the voxel representation in generating collision-free tool paths 

and determining cutting parameters to increase the fabrication success rate. Kerbrat [38] presented 

a more advanced approach by decomposing the geometric model into octrees and evaluating the 



16 
 

manufacturability index on each octant (an example shown in Figure 2-2). Compared with the 

voxel-based and slice-based feature-less approach, the octree-based approach can acquire high 

accuracy relatively rapidly. His approach also offers the potential for evaluating manufacturability 

considering both machining and AM.   

 

Figure 2-2: Map of manufacturing difficulties and the associated color scale [38] 

2.2. Major factors on evaluating the manufacturability of AM 

When investigating the manufacturability of the AM process, three key aspects must be 

considered: design, process, and material (Figure 2-3). Manufacturability is the intersection of 

these three aspects. Thus, it is necessary to understand all three aspects. Process and material are 

often correlated to each other and combined as process parameters.  
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Figure 2-3: Manufacturability of AM 

2.2.1. Design aspects 

To consider the manufacturability of a manufacturing process, the geometric features that 

can be fabricated should be considered. In the SM process, the major design geometric features 

are defined as holes, slots, pockets, etc., which are typically associated with the type of the 

corresponding tooling required to create these features [42]. However, the design geometric 

features that the AM process can manufacture are dramatically different from those defined for 

SM processes. More importantly, a design geometric feature that is manufacturable using one AM 

machine with a given process parameter setting may not be manufacturable when the machine or 

process parameters are changed [6]. In Kruth’s research [6], the major design geometric features 

considered in AM were thin walls, overhangs in holes, self-supporting holes, one angled surface, 

and large radiuses. A few benchmark testing parts were designed to identify the limitations and 

accuracy of the AM process. For LPBF, Thomas [8] conducted numerous experiments to establish 

the design guidelines for the LPBF process. The main geometric features considered in this 

research were object orientation, surface roughness, minimum slot, and wall thickness, parallel 

edge, angular overhangs, fillet radii, holes, and channels, tapping, and reaming a self-supporting 
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hole, shrinkage, and stock on the material. Later, Adam [7] investigated the design rules for AM, 

including LPBF and FDM. The limitations of thickness, orientation, direction, and position of wall 

feature, as well as the length, inner radius, orientation, and outer radius of the cylinders, were 

studied. Similar studies were also conducted in industries to identify geometric feature limitations 

in AM processes. Materialise [54] provides design guides based on their machines for 20 different 

materials. Taking steel as an example, the main considerations are wall thickness, overhangs, 

connections, edges and transitions, holes, wireframe structures, hollows, nested objects, hinged 

and interlinking parts, connection marks, text, and surface details, shrinkage compensation, and 

dimensional accuracy [55]. Similar guidelines are given by Stratasys [56] in the form of design 

guides for different AM processes. In the most recent literature, major geometric features 

considered in the LPBF and FDM processes can be summarized as minimum feature size, 

overhangs, shrinkage, and object building orientations. 

2.2.2. Process aspects 

The process parameter is another consideration in the manufacturability analysis. Different 

AM technologies have different focuses on the process parameters.  

For the LPBF process, research shows that more than 130 process parameters influence the 

process, but only a few of them are critical [1, 57]. These process parameters are grouped into four 

groups: laser-related, scan-related, powder-related, and temperature-related. The laser-related 

group consists of laser power, wavelength, spot size, pulse duration, and pulse frequency. The 

scan-related group comprises scanning speed, scanning spacing, and scanning patterns. The 

powder-related group contains particle size and distribution, particle shape, powder bed density, 

layer thickness, and material properties. The temperature-related group contains the powder bed 

temperature, the powder feeder temperature, and the temperature uniformity. The full list of 
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process parameters is shown in Figure 2-4. Most of these parameters are strongly interdependent 

and interacting. For example, steel may require laser power at 150 W for better quality, but for 

other materials, such as aluminum, the preferred laser power is different [58]. Even for the same 

material, different particle sizes, shapes, and densities will require different laser powers to achieve 

the best quality. Other factors such as gas flow also have a significant influence on the quality of 

the final products [13]. Researchers have conducted many studies [2-4, 59-62] to investigate the 

interrelationship between process parameters and product qualities. 

 

Figure 2-4: Principle process parameters in LPBF [1] 

 Similar to the LPBF process, the FDM process has hundreds of process parameters. Most 

of the settings are recommended and settled as default by printer makers. Only a few of them 

require tuning from users. The most investigated process parameters for FDM are layer thickness, 

scanning speed, infill percentage and pattern, extrusion temperature, bed temperature, envelope 

temperature, and build orientation [63, 64]. According to a comprehensive review, layer thickness, 

infill density, and build orientation have been observed to have a significant influence on the 

mechanical properties of the final products [64]. Extrusion temperature is also a critical parameter 
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in the FDM process [63]. FDM has a straight requirement for the range of extrusion temperature 

for different materials. The extrusion temperature determines the bonding properties of materials, 

filament material liquidity, and extruded filament width. Envelope temperature has significant 

effects on the thermal stress inside a part [63]. Increasing thermal stress will result in part warpage. 

However, not all current FDM printers have an enclosed chamber. The control of the envelope 

temperature is an advanced option. Bed temperature affects the adhesion between a part and the 

build plate. The printing part is expected to adhere to the build plate until it is completely built. 

The bed temperature setting aids with the adhesion. Other options are available to increase the 

level of adhesion, such as printing a part with a brim and using glue. Scanning speed refers to the 

speed of nozzle movement, and it is divided into profile and filling scanning speeds. Higher 

scanning speeds can result in poor printing quality owing to the increase in the mechanical 

vibration. Lower scanning speeds may cause the hot nozzle to burn a part [64].       

2.3. Existing approaches on evaluating the manufacturability of AM 

Efforts on manufacturability analysis of the AM process have been conducted by a few 

researchers. To summarize the studies in the literature, the recent efforts to evaluate the 

manufacturability of AM are categorized into three groups (Table 2-1): design 

guidelines/checklists, real-time process monitoring, and computational methods in 

manufacturability analysis. Many studies have been conducted on real-time process monitoring in 

AM. In this section, current non-computational approaches in evaluating manufacturability are 

summarized and discussed. The computational approach is fully explained and discussed in the 

next section. The general concept of modeling manufacturability is similar for both LPBF and 

FDM. Therefore, the existing approaches are summarized together in the following sections. 
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Table 2-1: Recent efforts to evaluate the manufacturability of AM 

Approaches Description Reference 

Design guidelines/checklists 

Numerous experiments were conducted to 
provide a manufacturable range of 

geometric design features, including 
minimum thickness, part orientation, 

surface roughness, chamfers and radius, 
holes, and overhang. Designers are 

expected to follow these guidelines or 
checklists in their designs. 

[7, 8, 32, 
65-67] 

Real-time process monitoring 
Using image-based real-time monitoring to 

detect and predict potential failure and 
printing quality during the process. 

[68-82] 

Computational 
methods in 

manufacturability 
analysis 

Manufacturing 
features 

recognition 

Automate the identification of erroneous 
features that are under the capability of the 

selected printer. The general concept of 
this approach is to discretize the 3D model 

into 2D/2.5D segments to reduce the 
difficulty of the direct identification of 3D 
features. According to the types of input 

data for feature recognition, prior research 
can be classified as 3D feature-based 

approach, slicing data-based approach, 
voxel-based approach, etc. 

[83-94] 

Knowledge-
based or rule-

based 
approach 

Integrate the models of design aspects and 
the material and process aspects to predict 

the performances of the AM parts 
[95-97] 

ML approach 
Use ML as a black box to predict the 

manufacturability of the given design or in-
situ process 

[98-107] 

 

2.3.1. Design Guidelines/Checklists 

To bridge design to actual manufacturing, both academics and industries seek the answer 

modeling the manufacturability or manufacturing capabilities. Both industries and academics have 
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conducted research to represent manufacturability in the form of design guidelines for different 

AM processes [67, 108, 109]. Numerous experiments have been conducted to provide a 

manufacturable range of geometric design features including minimum thickness, part orientation, 

surface roughness, chamfers and radius, holes, and overhang. Designers are expected to follow 

these guidelines in their design. However, most of the design guidelines for the AM process focus 

only on the limitations of a single standard design feature, whereas high complexity designs that 

are specialized by the AM process to produce are rarely studied [110]. Moreover, most of the 

guidelines assume the users have prior knowledge and design experience with the AM process. 

This is a disadvantage for novice users.  

Booth et al. presented another approach called the design for additive manufacturing 

worksheet [67]. A worksheet (Figure 2-5) is provided as a checklist for the designer to validate in 

advance whether their design is manufacturable. For each category, the importance of weight is 

applied, and the final total score is calculated. The score is grouped into levels of manufacturability. 

It offers a simple visual list of details that addresses common mistakes in the AM process. 

Designers can evaluate the suitability of their designs in the AM process based on that checklist. 

The worksheet approach can provide an initial evaluation of the design, but it may not be 

applicable for complex designs because the worksheet simplifies the entire design guidelines by 

offering the most common suggestions. The limitation of both guidelines and worksheet 

approaches is that they consider only the design aspects. Each printer has some unique 

characteristics. By varying process parameters, some of the challenging geometric features may 

still be successfully manufactured. Such examples have been fully demonstrated in the literature 

where process parameter optimization is conducted to improve manufacturability [10, 59, 111, 

112].  
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Figure 2-5: AM worksheet provided by Booth et al. [67] 

 Based on these design guidelines or checklists, the manufacturable geometric features are 

summarized with design suggestions. They are primarily grouped into six categories: minimum 

feature size, support structure, part orientation, surface, hollow interiors, and overhangs (Figure 

2-6). In addition, these criteria are the major considerations for feature recognition in the 

computational methods, which are discussed in Section 2.4.1. More details on the manufacturing 

features for the AM process are provided in the following:  

Minimum feature size: Research shows that minimum manufacturable feature sizes exist in the 

LPBF process [113]. The minimum gaps between two features or the minimum wall thickness are 
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two critical examples. Thomas concluded that the minimum gap thickness for LPBF is 0.3 mm, 

and the minimum wall thickness is 0.4 mm ±0.02 [8]. These data are based on the machine and 

material used in this research. They offer a good reference but may not be applicable to all cases. 

The values vary slightly on different materials and machines. Kruth et al. [6] examined different 

LPBF machines with a benchmark to check the process limitations. They demonstrated that each 

machine has its own limitations in terms of the minimum feature size. Moreover, since materials 

used in the AM process are not standardized, and each company has its own proprietary 

information on the powder they provide, it is not comparable in this case.    

Support: A support structure is required in most of the AM processes for two main functions: 

holding the fabricated piece and resisting the thermal stress [114]. However, the support structures 

significantly reduce the surface finish [8]. Moreover, improper support structures may cause 

printing failure [114]. Moreover, for the LPBF process, since the support and structural materials 

are both metals, they are very difficult to remove. Removing the support structure may 

significantly reduce the surface finish [26, 115-119]. For the FDM process, although some soluble 

support materials are used, it only supports several material options such as PLA. Not all FDM 

materials have compatible soluble support materials. Therefore, support structures are expected to 

be minimized. The use of support is a prominent problem in the AM process. 

Part Orientation: There are two aspects to the part orientation. The first is the placement 

orientation of the entire part. The second is the angles of the features under the placement 

orientation of the part. If an overhang tilts at an angle less than a certain degree from the build 

direction, it may be able to be printed without support structures. The threshold of the overhang 

structure is defined based on different materials and machines. To minimize the support structures, 

the optimal placement orientation must be determined to minimize the surface that requires support 
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during printing [8, 26, 65, 66, 115, 118-123]. Most slicer software offer such functions to 

determine the best placement of the part. The part orientation has been observed to have significant 

effects on strength and surface finish. Vertically printed parts with the layers oriented 

perpendicular to load direction have better mechanical properties than horizontally printed parts 

with the layers parallel to load direction [124]. Part orientation dictates how many support 

structures are required to fabricate samples, and removing the support structures reduces the 

surface roughness [121].  

Surface: The surfaces of a part can be categorized into top, side, and bottom surfaces. As the 

characteristics of the LPBF process, the surface of the part is always attached with incompletely 

melted powders. To achieve a fully dense metal surface, the part will be printed oversize for post-

processing. However, for fine features, post-processing may not be applicable. Here, the surface 

roughness is affected [3, 8]. For non-flat down-facing surfaces, regardless of whether they are 

printed with or without support structures, the inclined surfaces may have a certain level of surface 

roughness challenges.      

Hollow interiors: A hollow interior is a type of feature that the AM process specializes in 

fabricating. Frequently, the traditional manufacturing process cannot produce an entire hollow part 

at once, but the AM process offers this possibility. When the functionality is promised, using a 

thick wall and hollow interiors significantly reduces printing time and part weight [26, 115, 125].  

Overhangs: Relative long overhangs without support are not printable in the AM process. The 

maximum overhang distance without support varies based on different process parameters. As 

mentioned earlier, it is recommended for designers to minimize the support structures when the 

functionality is promised. When applicable, concave and convex radii are alternative design 

features with self-supporting dimensions [116, 126-129]. 
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Figure 2-6: Examples of geometric features considered in LPBF: (a) minimum thickness [8], (b) support, 

(c) part orientation [26], (d) surface [8], and (e) holes (overhangs) [8] 

2.3.2. Real-time Process Monitoring 

Real-time process monitoring is often used to detect potential failure during printing time. 

Although the AM was invented decades ago, and many commercial machines are available on the 

market, process repeatability and stability are still a challenge for the industry's breakthrough. 

Hence, real-time process monitoring was introduced to improve process stability. It is also 

considered a real-time manufacturability detection. Image-based real-time monitoring is used to 

detect and predict potential failure and printing quality during the process. The scheme of the 

LPBF process monitoring setup is shown in Figure 2-7 as an illustration. Printing failure and 

unsatisfied printing quality such as surface finish, porosity, tolerance, and tensile stress [68-74] 
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can be observed and predicted before the printing process is complete to save time and money. 

Marco [68] conducted a comprehensive review of in-situ monitoring methods in metal powder bed 

fusions in 2017. In his review, he summarized the most common categories of detects in the LPBF 

process such as porosity, residual stresses, cracking and delamination, balling, geometric defects, 

and dimensional accuracy. A map of the main defects and their approaches causes in the literature 

was provided. The possible sources of defects can be grouped into four categories: equipment, 

process, build preparation choices, and material powders. The main set-up parameters and settings 

for the existing studies are also listed in his paper. Recently, research on using ML to assist real-

time process monitoring was proposed to aid in predicting the printing quality and possible printing 

failure [75-82]. The real-time process monitoring can aid in detecting the printing failure ahead of 

the completion of the printing and reduces the time and cost. It can effectively aid in solving the 

problem caused by the repeatability and stability of the process or machine. However, it cannot 

determine manufacturability in the design stage. It is not applicable if the printing failure is due to 

the geometric design rather than the printing process or machine. More details are discussed 

observed in Section 2.4.3 when the ML approach is introduced.   
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Figure 2-7: LPBF process monitoring setup scheme [68] 

2.4. Computational methods in manufacturability analysis 

 Manufacturability analysis at the design stage is expected to produce suggestions and 

recommendations for designers to evaluate their design and the selection of the manufacturing 

process. Automated manufacturability assessment is always sought to assist designers, particularly 

novice AM users, to fully utilize AM techniques. The manufacturability analysis is expected to be 

automated with requiring fewer user inputs, comprehensive with considering both design and 

process aspects, and recommendable with offering reasonable solutions and suggestions to aid 

users in the fabrication. Table 2-2 compares the related studies are compared based on these 

requirements. Overall, none of the previous studies provided the demanded manufacturability 

analysis for novice AM users at the design stage. More details are discussed in the following. 
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Table 2-2: Comparison of the existing computational methods 

 Automated Comprehensive 

Only 
require 
novice 

knowledge 

Recommended 
solutions 
provided 

Manufacturable 
feature 

recognition 

Slicing-based 
approach [90] 

Yes No Yes Yes 

Voxel-based 
approach [86] Yes No Yes Yes 

3D feature-
based 

approach [84] 
Yes No Yes Yes 

Knowledge-
based or rule-

based approach 

Knowledge 
management 
system [95, 

96] 

No Yes No No 

Ontology-
based 

management 
system [97] 

Yes Limited No Yes 

ML approach [98-107] Yes Limited Yes No 
 

2.4.1. Manufacturable feature recognition 

Manufacturing feature recognition is the most popular approach to analyzing 

manufacturability in AM. This approach automates the identification of erroneous features that are 

under the capability of the selected printer. The general concept of this approach is to discretize 

the 3D model into 2D/2.5D segments to reduce the difficulty of directly identifying 3D features. 

The detected features are then evaluated based on the similar criteria listed in the design guidelines 

(Section 2.3.1). Moreover, depending on the types of input data for feature recognition, prior 

research can be classified as 3D feature-based approach [83, 84], slicing data-based approach [93, 

94], voxel-based approach [85-90], and others [91, 92]. 
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2.4.1.1. Slicing data-based approach 

Chen and Xu [93] proposed a layered depth normal images (LDNI)-based offsetting 

method for computing thin features in sliced data (Figure 2-8). The tunable offset values are 

consistent with the manufacturing constraints. Nelaturi et al. [88] applied the medial axis theorem 

(MAT) to identify the thin features in the sliced model. However, MAT has some challenges with 

computing corners. In addition, it is sensitive to small noises and artifacts, which results in many 

unknown branches in the skeleton that require more work to remove. Because of these challenges, 

it requires extra computation, and thickness maps for intricate shapes are difficult to compute. A 

more recent advance was realized by the same authors [90] by extracting a “meso-skeleton,” which 

is the maximal area within each slice where a print head can be positioned during the printing 

process. It is topologically equivalent to the corresponding slice of the input shape. Their approach 

enables the topologically important area that is smaller than the single deposition path to be 

thickened. Build orientation is simultaneously optimized to minimize the modification of the 

original model. The correction of each slice is realized using pixels (Figure 2-9). 
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Figure 2-8: Illustration of computing infeasible features using the LDNI-based offsetting 

algorithm [93] 

 

 

Figure 2-9: (a) For the same slice (yellow), when the skeleton is obtained using the thinning 

process, the protrusion is elongated in the corrected model (gray). (b) Spur pixel removal achieves the 

intended length by deleting the end-point pixels (marked green). [90] 
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2.4.1.2. Voxel-based approach  

Tedia [86] proposed an automated manufacturability-analysis tool using voxel-based 

geometric modeling. The input design, which is a CAD file, is first converted into voxel 

representation. Thereafter, thin features and undersized negative features are identified. Support 

material generation, void detection, and build time estimation are also considered. The flowchart 

of his manufacturability analysis is shown in Figure 2-10. Several case studies have been 

conducted to validate his work. Results from the support material generation and build time 

estimation have been compared with commercial software to validate his approach. Although his 

case study was fabricated through the ME process, which is another type of AM process, the 

concept is similar in the LPBF process.  

 

Figure 2-10: Flowchart of the manufacturability analysis tool [86] 

A more advanced approach proposed by Kerbrat et al. [85] introduced an octree-based 

voxelization to decompose a CAD model for hybrid additive and subtractive manufacturing. The 
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manufacturability index incorporates geometric information (maximum and minimum dimension, 

geometric accessibility, radios, void volume, etc.), material information (material availability and 

material properties), and technical specifications (tolerance and surface quality). An example of 

2D octree-based voxelization is shown in Figure 2-11. The octants are categorized into three 

categories: black, white, and grey octants. To construct an octree, the object is first enclosed by 

the root octant that can completely contain the object in any direction. It is then subdivided into 

eight sub-octants to obtain the first level of the octree representation. Black octants are those that 

are completely inside the object. Grey octants depict those that are partially inside and outside the 

object. White octants are those that are completely outside the object. The subdivision process is 

performed on grey octants until the desired resolution is achieved. Based on the octree 

decomposition algorithm, a map of manufacturing complexity is obtained.   

 

Figure 2-11: Octree-based voxelization [85] 

2.4.1.3. Mesh-based approach  

Cabiddu and Attene [94] developed a mathematical model called epsilon shapes that can 

detect and thicken the thin features of both 2D and 3D geometric models. In 2D geometry, the 

thickness is computed at the local minimum of each vertex using triangulation. In the 3D model, 

the polygonal model is first meshed using tetrahedrization, and then the local minimum thickness 

of each vertex is computed to determine global thin features. Generally, the mesh-based approach 

can be considered as a generalization of the voxel-based approach. A scheme of thickness 



34 
 

computing for a 2D polygon is shown in Figure 2-12. One typical disadvantage of the voxel-based 

approach is distortion in the voxelization step. In addition, to satisfy the high resolution of 

industrial printers, a 103 cm cube would require more than a billion voxels.  

 

Figure 2-12: Computing E for a single vertex. (a) Input polygon with both the convex hull and 

the triangulation. (b) R(x) at the first iteration. (c) Disk at the first iteration (d) Disk at the second 

iteration. (e) Final iteration in this case [94] 

2.4.1.4. 3D feature-based approach 

Shi et al. [84] first listed infeasible features including unsupported features, minimal 

features, maximum vertical aspect ratio, minimum clearance, and minimum support-free angle. 

Heat kernel signature (HKS) is adopted to cluster surfaces based on vertices with triangular meshes 

as the original input. The basic concept of HKS is to compute the heat losses through time. The 

heat diffusion rate is considered to be an indicator of topological and geometric entities. The heat 

diffusion equation is applied to obtain the rate. The rate is represented by the quantity of heat 

received by a point after a unit. With the heat persistence value and a percentage similarity, the 
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vertices can be clustered into different sets to predict a mass distribution pattern and prepare the 

potential shape recognition (Figure 2-13). 

 

Figure 2-13: Flow of feature recognition using HKS [84] 

2.4.2. Knowledge-based or rule-based approach 

Manufacturing feature recognition primarily considers the effects of the design aspects, but 

not the process aspects. The performance of the printed part may vary owing to the variation in the 

machine selections, material selections, and the setting of the process parameters. To fill this gap, 

researchers such as Hossein et al. [96] integrated the performance of parts and the AM process into 

a model to predict the performances of the AM parts and improve the design and processes. They 

proposed the dimensional analysis conceptual modeling (DACM) framework to generate the 

interrelationship between the performance and process models by producing a set of governing 

equations. 

A similar concept generated by Xu et al. [95] presented a knowledge management system 

using Bayesian networks. The method was referred to as the Guide-to-Principle-to-Rule approach. 

The model was set based on AM fundamentals. The structure of the system is presented in Figure 
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2-14. The knowledge management system was organized into three domains: process, material-

related, design-related, and part-related. Each domain was quantified. The manufacturability was 

modeled numerically from the top level to the detail level. The system can learn conditional 

probabilities in the model from different sources of information, and inferences can be conducted 

in both forward and backward directions. Users are expected to use this management system to 

determine the best AM process that can be used before the actual fabrication. Moreover, the 

estimated dimensional accuracy, mechanical properties, and surface finish are given in a range. 

Note that in contrast to other computational approaches that primarily focus on feature recognition, 

Xu’s approach attempts to model the relationships among the process, design, and products. This 

approach provides a general tool to explore the relationship among the process, design, and product 

qualities of the AM process, but it was not intended for a precise prediction on the 

manufacturability of a given design. It offers a well-modeled knowledge management system on 

the AM process, and it is intuitive for users to understand the manufacturing process. However, 

when applied to the specific design, uncertainties from different printing strategies and printers are 

not considered. It can aid the designer in understanding the AM process better, but users still 

require some knowledge to decide on whether their designs are manufacturable. 
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Figure 2-14: Structure of the knowledge management system: (a) overall structure, (b) submodel for 

LPBF [95] 
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A more recent and comprehensive method proposed by Kim et al. [97] offers an ontology-

based knowledge management system. The rules are developed to recognize manufacturable 

features and analyze manufacturability. Moreover, their approach offers redesign suggestions to 

designers to improve the printing success rate. However, their approach requires designers to 

understand the information structure of the ontology and lacks the support of machine and material 

selections.  

2.4.3. Machine learning approach 

Recently, the ML approach has been a new trend for solving industrial problems [130]. 

Studies in design and manufacturing are also attempting to utilize the benefits of ML [131, 132]. 

Several novel computational methods that apply ML to predict the manufacturability of the given 

design through AM process have been proposed. Such applications include the prediction of visual 

defects, surface roughness, microstructure, and machining features [98, 99]. The current 

approaches to applying ML in AM manufacturability analysis can be categorized into two major 

categories: real-time detection and analysis at the design stage.  

Real-time detection has two main approaches. The first one is to use layer-wise images 

from the in-situ sensor as input features to predict the defects. The prediction of the defects can be 

an image or a simple yes or no value. Representative studies include those on detecting flaws [100] 

and porosity defects [101] during the LPBF process, detecting warping [133] during the FDM 

process, and a quality control study by Liu et al. [102]. The second approach is to use the process 

information such as temperature, layer thickness, and scanning speed as the inputs to predict some 

characteristics such as roughness, tolerance, and printability. Such studies include the research 

proposed by Li et al. [103] to predict surface roughness with a set of input features in time and 

frequency domain, and a similar approach by Cerda-Avila et al. [104] to predict the structural 



39 
 

performance with the input features such as layer thickness, infill pattern, and build orientation. 

However, as mentioned in Section 2.3.2, the real-time detection approach cannot determine the 

manufacturability at the design stage. It is not applicable if printing failure occurs due to geometric 

design instead of the printing process or machine. 

The analysis at the design stage has two main approaches. The first is the use of 3D models 

as inputs to predict a single value such as printability, which is a yes or no question. The most 

common method is voxelization. For instance, Guo et al. [105] proposed a deep-learning-based 

framework for assessing the manufacturability of cellular structures in the LPBF process (Figure 

2-15). The voxelization of the design model was used as the input to predict manufacturability. An 

auto encoder-generative adversarial network was developed as the classification model. The 

results demonstrated the capability of the model for manufacturability analysis even with a small 

amount of data. A similar concept was conducted by Mycroft et al. [106]. Their study proposed a 

predictive model that could estimate the printability of a given artifact before the actual fabrication 

is conducted. A voxel map was used as one of the geometrical descriptors. 

 

Figure 2-15: ML-assisted manufacturability analysis by Guo et al. [105] 

The second approach is to analyze the critical feature parameters of the design model (e.g., 

lattice type, strut diameters for the lattice structure) to predict the single values such as printability, 

ultimate strength, and elastic modulus. Representative research includes the study by Hassanin et 
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al. [107]. In their study, the strut length, strut diameter, and strut orientation angle were selected 

as the input features to the ML model to predict the properties of the printed cellular structures. A 

deep neural network was developed, and their results outperformed the statistical design of the 

experimental approach.  

In summary, most studies on manufacturability analysis in the ML approach fall into real-

time detection. Some ML approaches assist manufacturability analysis at the design stage. 

However, none of them provide suggestions and recommendations to designers on the changes 

they can implement to make the design printable. Moreover, none of them provide a 

comprehensive analysis with the consideration of both design and process aspects. 

2.4.4. Tested commercial software 

While preprocess software exists, such as Magics, Nettfab, and online 3D printing service 

providers such as Sculpteo, Shapeways, 3D hub, and 3DXpert, they are focused on examining the 

validity of STL files and reparation of meshes and offering the functionality of slicing, toolpath 

planning, infill pattern, Boolean operations, and support structure generation. More recently, some 

software provide options for optimizing the build orientation and the support for a part. Some of 

them offer the function of recognizing and examining small features that are under the resolution 

threshold, such as thin walls; however, they are specific for a type of printer, and other types of 

difficult-to-manufacture features are not included as void and minimum clearance. 

2.5. Comparison of manufacturability analysis between SM and AM 

For the manufacturability analysis in the SM process, the approaches are summarized into 

two categories: feature- and feature-less-based approaches. The geometric algorithms are similar 

in both approaches and are slice-based, volume-based, or hint-based. The difference is that, for the 
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feature-based approach, the focus is on identifying the machining features such as holes, extrusion, 

and planes. For the feature-less-based approach, the major investigation is to evaluate the four 

machining characteristics, which are visibility, reachability, accessibility, and setup complexity, 

directly on the geometries; thus, there are no feature extractions. The manufacturability analysis 

of the AM process primarily focuses on the feature-based approach. Very few studies have been 

conducted on the feature-less approach. The geometric algorithms for analyzing the shape are 

similar to the SM process; however, the target features in the AM process are different from the 

features in the SM process. The AM process focuses on features such as minimum thickness and 

overhang. In addition, it has no defined manufacturing characteristics such as in the SM process. 

The manufacturability analysis is based on the constraints on these target features. For instance, 

the minimum gap thickness for LPBF is 0.3 mm, and the minimum wall thickness is 0.4 mm ±0.02 

[8]. Moreover, the SM process removes the volume from the raw materials; hence, the quality of 

the same machining process should be nearly the same. However, for the AM process, the printing 

quality with different selections of the AM machines might differ. It states that, when considering 

the manufacturability of the AM process, in addition to the geometries of the design, the process 

settings and material selections should be considered. To comprehensively model the 

manufacturability model of AM with the coupled relationships among process, material, design, 

and final product qualities, this thesis introduces the ML approach to solve the challenges. 

2.6. Fundamentals of ML 

ML systems automatically learn trends from data that enable them to make generalizations 

about instances they have not encountered before. ML lies at the intersection of computer science 

and statistics and has been applied to a wide variety of problems in which human intuition is 

insufficient. Supervised, unsupervised, and reinforcement learning are three major categories in 
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ML studies [36, 134]. This thesis focuses on supervised learning. Supervised learning uses labeled 

input data and creates a model to generalize on unlabeled data of the same format. Supervised 

learning can also be further categorized into regression and classification problems. Regression 

means that the output of the model will be continuous values. An example of a “real-time” 

regression problem is predicting the stock price. With the historic pricing data, the developed 

regression model can predict the price of the stock in the near future. Statistical classification is 

the most mature and widespread application of ML. Classifiers typically input a vector of feature 

values and assign them to a discrete class. This is often accomplished using decision boundaries 

to divide the input/feature space into regions, each representing a class, and observing where new 

data lies. A typical classification problem is to recognize spam emails. By learning the 

characteristics of what forms spam email, the classifier can be used to filter new incoming emails. 

In this paper, manufacturability analysis is considered a classification problem to determine 

whether the entire part or each voxel of the part can be fabricated.  

Many ML algorithms have been investigated in the literature [36, 134]. The most common 

algorithms are decision trees, support vector machines, naïve Bayes, random forests, neural 

networks (NNs), etc. NNs, including classic feedforward neural network (FNN), and convolutional 

neural network (CNN), are the main algorithms applied in this thesis. The FNN is fully investigated 

because of two main reasons. First, the FNN does not require any restrictions on the input data. It 

does not have any assumption on the inputs or inputs distribution, and suitability for any case. 

Second, the FNN has a good capability to learn and model nonlinear and complex relationships 

between inputs and outputs, which suits the research objective very well. The universal theorem 

states that a single hidden layer neural network with a linear output unit can approximate any 

continuous function arbitrarily well when given sufficient hidden units [134]. Moreover, the FNN 
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can approximate any continuous function, but this does not mean there is a learning algorithm that 

can determine the necessary parameter values. The learning algorithm may never reach the correct 

parameters. Moreover, the number of hidden units required increases exponentially as the 

complexity of the problem increases. Thus, FNN can be very time-consuming. However, owing to 

its capability to learn complex models, it is still considered a very effective algorithm, and many 

types of research have been conducted to improve its capability and reduce its computation cost. 

The concept of the FNN is defined as follows: 

 a(x) = 𝑤𝑤(1)𝑥𝑥 + 𝑏𝑏 Eq. 2-1 

 h(x) = 𝑔𝑔(𝑎𝑎(𝑥𝑥)) Eq. 2-2 

 y = f(x) = 𝑂𝑂(𝑤𝑤(2)ℎ(𝑥𝑥) + 𝑏𝑏(2)) Eq. 2-3 

where x is the input feature, w(1), w(2), b(1), and b(2) are the FNN parameters, a(x) is the hidden-

layer pre-activation function, h(x) is the hidden-layer activation, g() is the hidden-layer activation 

function, O() is the output activation function, and y is the output. The graphical representation is 

shown in Figure 2-16.  
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(a) General representation of the FNN  (b) Detail representation of the FNN 

Figure 2-16: Graphical representation of the FNN 

Note that, here x, h(x), and y are the general representation of the input, hidden, and output 

layers, respectively. For the detailed representation, each layer consists of several neurons. The 

number of input features defines the size of x, and +1 indicates the bias for the current layer. The 

number of hidden layers, number of neurons, and function of g and O are the hyperparameters in 

the FNN. These hyperparameters should be tuned and tested to determine the best model 

performance. The hidden layer activation function g(∙) should include some nonlinear activation 

functions such as tanh, sigmoid, and rectified linear unit (ReLU) to enable the entire process to 

model a nonlinear relationship. The sigmoid and tanh activation functions are the most common 

activation functions for the hidden layers, and they were selected for this research. For the output 

layer, the activation function O(∙) can be set based on the objective of the model. An identity 

function can be used for the regression problem. A sigmoid function can be selected for a two-

class classification problem, and a SoftMax function can be used for a multi-class classification 

problem. 
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The objective of training an FNN model is to determine all the corresponding coefficients, 

w, and b, to minimize the loss function, which varies among models. The loss function is computed 

as the difference between the prediction and ground truth: 

 
E =  

1
2
�‖𝑦𝑦𝑖𝑖 − 𝑡𝑡𝑖𝑖‖2
𝑃𝑃

𝑖𝑖=1

 Eq. 2-4 

where yi is the output of the network for the i-th input, ti is the actual output, and P is the number 

of examples. The selection of the loss function depends on the objective of the model. Popular loss 

functions include hinge loss, binary cross-entropy, mean absolute error, and categorical cross-

entropy. The loss function can also be self-defined. To attain the minimum of the error function, 

several learning algorithms are detailed in the literature, such as stochastic gradient descent and 

quasi-Newton methods [134]. The process of minimizing the loss cost in the model’s prediction 

and computing all the corresponding coefficients is called backpropagation [135].  

Since the neurons for every layer in the FNN are fully connected, which produces 

numerous coefficients, the FNN can be very time-consuming for a complicated problem, 

particularly for multi-dimensional inputs such as images or 3D objects. CNN is frequently used to 

address such challenges. In the convolutional layers, a set of “filters” are applied to a subset of the 

input variables at a time and swept over the entire input; therefore, only nearby inputs are 

connected, which results in significantly fewer weights than in the fully connected layer. The 

convolution operation calculates the sum of the element-wise multiplication between the input 

matrix and filter matrix; thus, it performs a many-to-one relationship. Figure 2-17 shows an 

example of convolutions: If the input is an 8×8 matrix and the filter is a 2×2 matrix, The stride for 

the filter map is 2, which results in a 4×4 output matrix. Similar to the fully connected layer, the 

learning process will propagate forward and back to update the weight matrix in every epoch to 
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minimize the loss function. The operation is still linear; therefore, the activation function will also 

be applied in most cases. 

 

Figure 2-17: Graphical representation of convolutions 

When considering the AM process, the manufacturability of one point is related to the 

surrounding points in the current and previous layers. The manufacturability of a certain point is 

related to surrounding points but only slightly for the further points. Thus, it is reasonable to apply 

CNNs in the manufacturability analysis. 

Other key ML operations include transpose convolution, pooling, and dropout. Transpose 

convolution is the opposite of the convolutional operation, and it is also popularly known as 

deconvolution [136, 137]. It operates in the backward direction of the convolution and performs a 

one-to-many relationship. For the convolutional operation, the output is always downsizing, but 

for the transpose convolution, a higher resolution output will be ultimately obtained. Pooling is the 

operation of downsampling the input variables by summarizing the presence of features in each 

patch [138, 139]. There are two common types of pooling operations. One is average pooling, 
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which summarizes the average presence of the patch. The other is the max pooling, which utilizes 

the most activated presence of the input patch. Dropout is an efficient method of preventing 

overfitting in the ML [140]. It refers to dropping a certain percentage of the neurons in the FNN. 

2.7. Chapter summary 

This chapter reviews the background and existing studies related to the research objectives. 

Major effects on evaluating the manufacturability of AM and the previous manufacturability 

studies have been reviewed and discussed. The manufacturability of SM is also summarized to 

compare with the manufacturability studies in AM. ML is the methodology selected to solve the 

remaining problems. The fundamentals of ML have been depicted in this chapter.  

After reviewing previous studies, the major challenges are listed here: 

1. No proper or clear definition of the manufacturability of the AM process exists. 

The manufacturability of the AM must be defined and quantified first. 

2. No suitable model exists to comprehensively represent manufacturability that 

considers design features, process parameters, machine, and material selections, 

and end part qualities at the design stage.  

3. The major approach for the computational method offers a simple geometry check 

for the design. It provides the recommended orientation and support structure for 

the current design. However, in addition to the thin features and overhangs, it lacks 

the ability to suggest to the designer whether their design features are 

manufacturable. Moreover, it lacks the recommendation on the process aspects.  
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Chapter 3. Definition of manufacturability of AM and the methodological framework 

for a manufacturability analyzer and recommender 

The comprehensive reviews in Chapter 2 indicate that the definition of the 

manufacturability of AM is still unclear. The definition should be first identified before the 

investigation. Another challenge is quantifying manufacturability. Therefore, in Sections 3.1 and 

3.2, the new definition of the manufacturability of AM and manufacturability levels are introduced 

to clarify the statement. The review in Chapter 2 also highlights the need for manufacturability 

analysis research that considers both design and process aspects. Most previous studies considered 

only a single aspect, either design or process. Moreover, providing only the prediction of the 

manufacturability is insufficient for novice AM users. Recommendations and suggestions should 

be provided to increase the printing success rate. To fill these gaps, Section 3.3 proposes a 

methodological framework, providing a structure for the manufacturability analyzer and 

recommender for AM (MAR-AM). Thereafter, Section 3.4 discusses research assumptions and 

lays out the research focus. Finally, the chapter is summarized. 

3.1. New definition of the manufacturability of AM 

As mentioned in Chapter 1, the definition of the manufacturability of the AM process is 

vague. Depending on different applications, the required quality of the printed parts typically 

varies. From Chapter 2, it is clear that manufacturability must consider the effects from each stage 

of the general AM workflow including design, fabrication, and post-processing. For post-

processing, whether the fabricated parts can bear the force from the post-processing can also be a 

challenge. The printed parts can be fractured during post-processing. In the fabrication process, 

stability could be a critical problem during the printing process. Even after the part is successfully 
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built, whether it satisfies the product’s requirement can be another problem. Therefore, no general 

definition of the manufacturability of AM has existed. However, a proper definition of AM 

manufacturability was a necessary first step in this research. Without it, setting the research scope 

would be difficult. At the design stage, manufacturability has a clearer definition, referring to the 

design characteristics that indicate the difficulty or ease of the design from a manufacturing 

perspective [141]. When considering the design process, Figure 3-1 shows the role of 

manufacturability analysis in the design process. Engineering analysis involves determining 

whether the current design and materials can satisfy performance requirements. Manufacturability 

analysis ensures that the part can be properly fabricated based on identified design, materials, and 

manufacturing processes. The focus of manufacturability analysis is to determine whether the 

specific design with the defined material can be fabricated in the desired shape using a selected 

machine with the fixed process parameters. In the literature, common physical AM features 

reported are dimensions, porosity, and density [142]. Cracks and pores are some of the terms 

frequently used to determine the behaviour of the products [142, 143]. Generally, materials with a 

lower amount of cracks and pores have higher tensile strength, Young’s modulus, strain-to-failure, 

and fatigue strength [144]. Generally, if the product is a fully dense metal part, it is defined as a 

qualified part for functionality in the manufacturability analysis. Hence, this thesis defines the 

manufacturability of the AM at the design stage to consist two aspects: 

• Geometric inconsistency between the design model and the built model, which includes 

shape and dimensional error; whether the geometric features of the design can be built. 

• Functional inconsistency between the design model and the built model, which includes 

the manufacturing defects and heterogeneity in properties; whether the quantity of part 

density satisfies the standard. 
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Figure 3-1: Manufacturability analysis in the design process [145] 

This definition can be used to guide future research on the manufacturability of the AM 

process. The fabricated part that satisfies both defined aspects is considered to be manufacturable. 

In this thesis, AM manufacturability is further elaborated to consist of three levels. 

3.2. Proposed manufacturability levels 

Based on the definition of AM manufacturability that consists of two aspects, three 

manufacturability levels are proposed as follows: 

Manufacturability Level 1: The printed part should be free of visual defects such as 

geometric incompleteness and warping (Figure 3-2). 
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   (a)         (b)  

Figure 3-2: Example of (a) geometric incompleteness and (b) warping 

Manufacturability Level 2: At the second level, the printed part should first satisfy all the 

requirements from Level 1. Subsequently, the part should be ensured to be a dense part. The 

quantity of the density and porosity and cracks should be obtained at this level. Chee et al. [142] 

explained the details of the metrology measurement methods on measuring these characteristics. 

The printed part is considered to achieve Level 2 when it satisfies the requirements of the quantity 

of the density and porosity and cracks (Figure 3-3). Note that not all AM techniques must consider 

level 2 depending on the process techniques. As the LPBF process uses either a laser or electron 

beam to melt and fuse the material powder, it is important to ensure the quality of the melting and 

fusing process. The density of the part is utilized to measure the quality of the fabrication process. 

However, for the FDM process, whether the density of the part is not critical as the filament 

material is extruded by the nozzle and bonded together owing to the stickiness of the melted 

material. In addition, FDM has the option to select different infill percentages. To decrease the 

printing time and save the material cost, the default setting from the printer makers is 20%. As 

FDM is always used to print non-functional prototypes or non-functional end-products, it is 

acceptable to have partially infilled printed parts. As the consequence, FDM products are 

considered to skip Level 2 in the manufacturability analysis.     
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(a) 

 

(b) 

Figure 3-3: Example of (a) pores and (b) cracks [146] 

 Note that for LPBF, which is a powder-based process, the produced parts have a lower 

density than the parts produced using SM from bulk materials owing to pores within the parts. 

Therefore, a 100% relative density is not expected for the LPBF parts [147]. Most recent studies 

demonstrated that the average relative density of the parts fabricated via LPBF processes can reach 

above 98% [147]. For some certain materials and machines, it can even be above 99.5% [147-149]. 

For the manufacturability analysis at the design stage, the relative density is expected to reach the 
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average of the literature records, which is currently above 98.5%. This value can be adjusted 

according to the different materials and mature levels of the current LPBF systems.  

Manufacturability Level 3: At this level, the printed part should first satisfy all the 

requirements from Levels 1 and 2. Subsequently, it is compared with the original design to 

calculate the dimensional error. The printed part is evaluated based on the customer requirements 

to determine whether it satisfies Level 3. The requirement can be specified on certain dimensions 

such as hole tolerance, roughness, straightness, and side dimension. Figure 3-4 shows examples of 

scanning electron microscopy (SEM) results and a table that lists the measured roughness at 

selected points [150]. Another requirement can be the overall dimensional error. It can be 

calculated by comparing the dimensional profile of the printed part to the design file.  
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(a) 

 

(b) 

Figure 3-4: Example of (a) SEM images and (b) roughness analysis for printed parts [150] 

Finally, the printed part can be defined as manufacturable through the AM process when it 

satisfies all the requirements of Level 3. The manufacturability analysis can be separated into 

stages based on the manufacturability levels to achieve the objective step by step. This thesis 

proposes and develops manufacturability analysis methods for Manufacturability Level 1.   



55 
 

3.3. Proposed methodological framework 

To achieve the research objective, this section proposes the ML-assisted manufacturability 

analysis and recommendation (MAR-AM) system is proposed. As introduced in the previous 

section, Manufacturability Level 1 ensures that the printed part is free of visual defects. Figure 3-5 

shows the overall framework of MAR-AM, which comprises three main parts: (1) dataset 

establishment, (2) ML model training, and (3) manufacturability prediction and suggestion.  

For dataset establishment, this research gathered and generated training data for the 

developed ML models. The training data were collected from three sources. The first one was 

experimental data collected from experiments, research labs, and collaborative industry. The 

second source was the literature review. Based on the existing experiments published in the articles 

or data port, data was extracted in the desired input format to train the ML model. After the entire 

predictive system is released to the public, any user with access to the entire predictive system can 

provide new data to train the ML model continuously as the third source of the database and 

improve its accuracy. The collected data will be sent to either ML model training or 

manufacturability prediction and suggestion depending on whether it is labeled. More details on 

dataset establishment are provided in Chapter 4. 
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Figure 3-5: Overall framework of MAR-AM 

For ML model training, this research developed a general, efficient, and effective ML 

model to predict visual defects. The first step is the preprocessing of the data to extract the 

demanded features. In the preprocessing, both the design file and process information are 
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converted into the required input variables to be trained for the ML model. Additionally, the 

ground truths of the targets to be predicted are labeled in the required format in this step. The input 

variables and labels are directed into the ML model to develop the predictive model of visual 

defects. The architecture of the ML model involves identifying the learning algorithms and all the 

hyperparameters associated with the selected algorithms. The loss functions are optimized to tune 

the model to identify the ideal parameters and hyperparameters based on the selected algorithm. 

Finally, the models are compared with different learning algorithms and parameters, and the best 

model is selected as the predictive model for the manufacturability analysis. More details are 

provided in Chapter 5. 

For manufacturability prediction and suggestion, the prediction is given based on the 

trained and well-defined ML model. When a new unidentified instance is incoming, the prediction 

is made to determine whether the given design is printable. If it is not printable, the file will be 

sent to the recommendation system. With a closed-loop process, suggestions on process 

parameters or designs are offered. Furthermore, users are invited to provide feedback on the 

prediction, which will be sent to our database to update the ML model. Finally, the entire MAR-

AM was implemented into a web application. More details can be observed in Chapter 6 and 

Chapter 7. 

3.4. Basic research assumptions and research focus 

The proposed framework provides a general approach to modeling the manufacturability 

of AM and offers a platform to assist novice AM users to evaluate the manufacturability of their 

designs with the selected manufacturing process at the design stage. The following are the research 

assumptions to set the research scope and clarify the research objectives.  
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• The selected commercial AM printers are considered to be reliable and reproducible. 

The variations and uncertainties during the printing process are not considered at the 

design stage. 

• The humidity and room temperature might affect the printing process. However, these 

special cases are not considered.  

• For the FDM process, we focus only on the most common polymers, and for the LPBF 

process, we focus only on the most common metals. Other potential materials or 

process variations are not considered in this thesis.  

Moreover, as mentioned in previous chapters, this thesis focuses on FDM and LPBF 

processes, and Manufacturability level 1 is the main consideration. More specifically in the 

research objectives, the following challenges are addressed in the remainder of the thesis: 

• Create a database for AM to properly manage all the collected data. It should be easy 

to use in the developed ML models. 

• Develop a general, efficient, and effective ML model at the design stage to analyze 

Manufacturability Level 1 of the given designs through the LPBF or FDM process. 

• Develop a recommendation system to assist novice AM users in increasing the printing 

success rate. 

3.5. Chapter summary  

In this chapter, a clear definition of the manufacturability of AM is provided as well as 

three manufacturability levels. This thesis focuses on Manufacturability Level 1, which is free of 

visual defects. Based on that, the framework of the MAR-AM, which provides an overview of the 

developed system, is introduced. This analyzing and recommendation system is expected to predict 
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the manufacturability of a given design with the selected process settings. Moreover, based on the 

prediction, MAR-AM is proposed to provide recommendations to users to increase the printing 

success rate. Finally, the research assumptions and research focuses are summarized to focus the 

research scope on several more specific research questions, which result in the remaining contents 

of this thesis. 
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Chapter 4. Establishment of AM datasets for manufacturability analysis 

The dataset is an extremely important aspect of ML research. The quality and quantity of 

the dataset can directly affect the performance of ML models. ML models can be only as good as 

the quality of the datasets. High-quality training datasets with labels for supervised and semi-

supervised learning are considerably difficult and expensive to produce. Most existing well-

developed datasets are for decision making, vision recognition or detection, and biological data. 

No well-defined AM data exists, and data sharing is extremely limited in AM domains. Section 

4.1 introduces how data for ML models were collected in this research. The AM database 

management system for these collected data is established in Section 4.2 to better organize them. 

To increase data sharing and data access, Section 4.3 provides an AM port, followed by a summary.  

4.1. Data acquisition 

For the training of the ML model, the data was sought to be established with the 

consideration of high accuracy, reliability, consistency, completeness, and diversity. The data in 

this research was proposed to be obtained from three main resources: reported literature, 

experiments, and user contribution. For the current database, data was primarily obtained from 

experiments and contributions from academic collaboration. As introduced earlier, FDM and 

LPBF were the two focuses of this research. The following sections will depict the details on data 

collection for each AM process. 

4.1.1. Design of experiments 

Based on the literature, the most critical geometric features are listed in Table 4-1. These 

features must be included in the dataset. Various designs with various critical features must be 

collected in the developed database.  
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Table 4-1: Most critical geometric features in AM 

Category Graphical illustration  Category Graphical illustration 

Wall 

thickness  
 Overhangs 

 

Minimum 

features  
 

Angled 

surface  

Clearances 
 

 
Down and up 

faces 
 

Holes 
 

 Islands 
 

Extreme 

points 
 

 Corners 
 

Chamfers & 

fillets  
  

 

 With the consideration of all the critical features, benchmarks were first selected. Some 

examples are shown in Figure 4-1. They include complex benchmarks such as in Figure 4-1a and 

multiple simple benchmarks such as in Figure 4-1b.  
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    (a)            (b)  

Figure 4-1: Example benchmarks 

 Including only benchmarks with single geometric features is insufficient. Therefore, more 

complex geometries with multiple critical features were also selected. The designs were selected 

from personal design and the open-source repository, Thingi10K, which is a dataset of 3D-printing 

models [151]. The designs were filtered to have high genus numbers. The genus of a part indicates 

the number of holes. For instance, a sphere has a genus number as 0, and a torus has a genus 

number as 1. They were selected because these parts are more suitable for AM process compared 

with the traditional manufacturing process. In addition to the part with high genus numbers, some 

customized mechanical parts and model figures portraying humans or other living creatures were 

also printed as they are the most popular applications in AM prints. Example designs are shown in 

Figure 4-2. A total of 133 designs were used. All the designs are ensured to be dissimilar to each 

other in order to increase the variation. Even for the same category, the designs are ensured to have 

enough variations between each other. 
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Figure 4-2: Example designs in the database 

In addition to the design variations, various process settings were expected to be collected 

as well. As the starting point, only the most critical process parameters were varied and collected. 

Different materials were also used. Note that the Taguchi method was not used as a design of 

experiments method. The Taguchi method assumes that the individual or main effects of the 

independent variables on performance parameters are separable. Under this assumption, the model 

assumes that there are no cross-product effects among the individual factors. However, the process 

parameters in AM are correlated, thus breaking the assumption of the Taguchi method. Therefore, 

the data was expected to be collected with all the possible variations. 
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4.1.2. FDM setup 

For FDM, Ultimaker 3 (Figure 4-3) was used to print the selected designs with various 

process settings and materials. Before the fabrication, selected designs were planned for printing 

with different build orientations, materials such as PLA, ABS, nylon, and PC, and machine settings 

such as layer thickness, printing speed, adhesion selection, nozzle temperature, and bed 

temperature. These parameters were selected according to the literature review in Chapter 2 and 

the ease of the control. Those parameters are shown in their slicing software as default settings and 

users can easily control those parameters. 

 

Figure 4-3: Photograph of Ultimaker3 in the laboratory 

After the printing, expert inputs were required to determine the manufacturability of the 

printed parts. To ensure data integrity, AM experts with experience in both AM manufacturing 

and design voted to assess the manufacturability of the printed part. They will make the agreement 

on whether the part satisfies the requirement of manufacturability level 1. If the printed part was 
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free of visual defects, the result would be marked as yes for manufacturable. If the printed part was 

observed to have any geometric incompleteness or warping challenges, the result would be marked 

as no for non-manufacturable, and the area of the failure would be labeled. The detailed labeling 

process is described in Chapter 5 when the ML algorithms are introduced.  

Up to the time of this report, 491 printed FDM samples were collected. An increasing 

number of samples are being printed to expand the database. 

4.1.3. LPBF setup 

For LPBF, a significant portion of data was donated from other researchers in the 

laboratory and collaborative partners outside of the laboratory. The data included lattice structures, 

benchmarking, special designs, and simple geometries such as cubes, cylinders, channels, tensile 

bars, slots, and thin walls with various materials, process parameters, and LPBF machines.  

In addition to the data donated from laboratory and collaborative partners, some 

experiments were conducted to obtain the LPBF data. The samples were printed with a Renishaw 

AM 250. The selected designs were from the list used in FDM printing. They were filtered to select 

the most suitable for LPBF as determined by AM experts. A total of 52 designs were selected to 

be printed using four materials, different building orientations, and different settings of laser power, 

printing speed, and hatch space. This experiment is still being planned and data has not been 

collected into the current database.  

Note that, for both FDM and LPBF, the building orientation and supports are considered 

to be a part of the design. The entire design file is stored with the selected building orientation and 

proper supports. There is no specific requirement for the dataset. All the printed parts fabricated 

by any AM machine can be updated to the dataset. 
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Up to the time of this report, 246 printed LPBF samples have been collected. More samples 

are being printed to expand the database. 

4.2. Database management system 

All the data were stored based on the entity-relationship model. Figure 4-4 shows the 

structure of the database. Based on the AM process chain, the proposed database can be grouped 

into three entity clusters: design, manufacturing process, and product. To satisfy the demand of 

the current research, the database is restricted to the most important entities such as keys that aid 

in managing the database and decisive AM parameters that have been used in ML models. Some 

details of AM process may be ignored at the current stage. The database will be expanded 

continuously in the future. The relational database was the type of database used in this research. 

It provides access to data points that are related to one another. A rational database means the data 

tables are connected logically. As shown in Figure 4-4, not only are the attributes listed but the 

actions are clearly defined, which enables applications to manipulate the data and structures of the 

database.   
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Figure 4-4: Entity relationship diagram of the developed database 

 The aim of the AM database is to facilitate easy navigation of the data, increase data-

sharing, and reduce seamless storage. The purpose is to follow the distinct steps of the AM process. 

Each step of the process requires unique sets of data. Without a database, it is difficult to follow 

and manage. The non-relational database alternative is the current standard. However, in the AM 

process, most entities are closely related. It is difficult for users to search for the exact information 

they seek. Moreover, the non-relational database requires a higher skill level of AM knowledge to 

install and maintain the database. Although the design files are often unstructured, they are always 

converted into binaries when they are used in the AM process. Therefore, a relational database was 

considered reasonable.  

At the design or preparation stage, three tables were created: manufacturer, production plan, 

and design model. Table 4-2 shows the attributes and data types of each table; thus, each record 

included the information of manufacturer email, last name, first name, country, affiliation, 
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production plan ID, and fabrication setup ID. For each table, the bold and underlined attribute 

denotes the unique ID (a primary key), which is used to identify each record. It cannot contain null 

values and every record must have a primary key value for each table. Italic attributes indicate a 

foreigner key. The foreigner key is also the primary key in another table, which provides a link 

between two tables. For instance, “ManufacturerEmail” is set to be the primary key in the 

“Manufacturer” table, and it is the foreigner key in the “ProductionPlan” table, which connects 

two tables.  

Table 4-2: Attributes and data types of each table at the design or preparation stage 

Manufacturer 

Attributes Datatype Description 

ManufacturerEmail VARCHAR (50) 

Manufacturer’s email address, which 

can be used as the personal account ID 

and as contact information. 

LastName VARCHAR (50) Last name of the manufacturer. 

FirstName VARCHAR (50) First name of the manufacturer. 

Country VARCHAR (25) Country of the manufacturer. 

Affiliation VARCHAR Academic or industrial organization. 

 

ProductionPlan 

Attributes Datatype Description 

ProductionPlanID AUTOINCREMENT 
Unique ID for the test/production 

plan/experiment. 

FabricationSetupID INT 
Foreigner ID here to link fabrication 

setup to the production plan. 

DesignModelID INT 
Foreigner ID here to link the design 

model to the production plan. 
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ManufacturerEmail VARCHAR (50) 
Foreign ID here to the link 

manufacturer and the production plan. 

 

DesignModel 

Attributes Datatype Description 

DesignModelID AUTOINCREMENT Unique ID to track the design file. 

FileName VARCHAR (50) Filename for the design file. 

Description VARCHAR (255) Brief description of the printed design. 

DesignAttachment BINARY Attachment of the design file. 

The manufacturing stage comprises six tables (Table 4-3): fabrication setup, AM machine, 

machine setting, material, ME setting, and PBF setting. ME and PBF are used here instead of FDM 

and LPBF as the big picture for the AM technology types. However, as stated in Section 3.4, this 

thesis only focuses on LPBF and FDM. Only the data for LPBF and FDM have been obtained in 

the developed database.   

Table 4-3: Attributes and data types of each table at the manufacturing process stage 

FabricationSetup 

Attributes Datatype Description 

FabricationSetupID AUTOINCREMENT 
Unique ID to track the settings for 

machines and materials. 

MachineID INT 
Foreigner ID here to link AM 

machine to the fabrication setup. 

MaterialID INT 
Foreigner ID here to link material to 

the fabrication setup. 

MachineSettingID INT 
Foreigner ID to link machine setting 

to the fabrication setup. 
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AM_Machine 

Attributes Datatype Description 

MachineID AUTOINCREMENT 
Unique ID of the 3D printer (machine) 

used for the building. 

MachineBrand VARCHAR (50) Brand of the 3D printer. 

SeriesNo NUMBER Series number of the printer. 

TechnologyType VARCHAR (50) 

Type of AM techniques (defined by the 

ASTM standard): PBF, ME, etc. 

(currently only for PBF and ME). 

 

MachineSetting 

Attributes Datatype Description 

MachineSettingID AUTOINCREMENT 
Unique ID of the machine settings used 

for this build. 

PrintingSpeed Number Printing speed used for this build. 

LayerThinkness Number Layer thickness that used for this build. 

 

Material 

Attributes Datatype Description 

MaterialID AUTOINCREMENT 
Unique ID of the used material for this 

build. 

Brand VARCHAR (50) Brand of the used material. 

Type VARCHAR (50) Material type. 

TotalCost CURRENCY(USD) Unit price for the material. 

Density Number Density of the material. 

 

MEsetting 

Attributes Datatype Description 
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MachineSettingID AUTOINCREMENT 
Unique ID of the machine settings used 

for this build. 

Infill percentage Number 
Specific setting for ME indicating the 

“fullness” of the inside of a part. 

AdhesionType VARCHAR (50) 

Specific setting for ME indicating the 

adhesion type used to increase the 

ability of printed material to adhere to 

the build plate including skirt, brim, and 

raft. 

NozzleTemperature Number 
Specific setting for ME indicating the 

nozzle temperature to melt the material. 

BedTemperature Number 
Specific setting for ME indicating the 

temperature for the build plate. 

 

PBFsetting 

Attributes Datatype Description 

MachineSettingID AUTOINCREMENT 
Unique ID of the machine settings used 

for this build. 

Infill percentage Number 
Specific setting for PBF indicating the 

“fullness” of the inside of a part. 

LaserPower Number 

Specific setting for PBF indicating the 

power of the laser used to melt the 

material powder. 

HatchSpace Number 

Specific setting for PBF indicating the 

separation between two consecutive 

laser beams. 

 

The product level has only one table (Table 4-4) at the current status to record the printing 

performance of the design. The quality of the printed part has been recorded as yes or no, indicating 
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if the design is printable or not based on Manufacturability Level 1. Further product-related 

properties such as dimensional accuracy, surface roughness, and mechanical properties can be 

included in the future if required.  

Table 4-4: Attributes and data types of each table at the product level 

PrintedPart 

Attributes Datatype Description 

ProductID AUTOINCREMENT Unique ID for the printed part (final 

production). 

PrintingHour TIME Number of printing hours. 

PrintingQuality Y/N Whether the quality of the printed part 

passes the evaluations of the manufacturer 

in geometric completeness. 

Functionality Y/N Whether the quality of the printed part 

passes the evaluations of the manufacturer 

in density and dimensional accuracy. 

ProductionPlanID INT Foreigner ID to link production plan to 

the printed part. 

 

Figure 4-5 shows some example records that have been established in the database. For 

instance, the general machine setting information is saved in the entity set “MachineSetting.” It 

has three entities: “MachineSettingID,” “PrintingSpeed,” and “LayerThickness.” 

“MachineSettingID” is a unique ID to identify each setup. As the printing speed and layer thickness 

can be collected for both ME and PBF processes, they are recorded in the upper level to avoid 

repetition. More detailed settings for different AM technique types are stored in lower levels such 

as “ME_Setting” or “PBF_Setting.” 
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Figure 4-5: Example tables in the database 
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To satisfy the demand of the current research, the database is restricted to the most 

important entities including keys that aid in managing the database and decisive AM parameters 

that have been used in ML models. Some details of AM process may be ignored at the current 

stage. It can be expanded in future research. This approach provides a well-organized data structure 

to store and manage AM data. However, it is limited in data searching and sharing. It is more 

appropriate for institutes, industries, or organizations to internally store and manage data. A public 

and easily accessible data repository is also expected to spread the existing data and advance the 

ML application in AM. Therefore, in addition to the AM database management system, this thesis 

proposes an AM data port is proposed. The details are provided in the following section.  

4.3. AM data port 

No public standard dataset on AM studies is available in the literature. Most existing 

databases or datasets are private and difficult to access. The existing databases are neither designed 

for AM nor more suitable for an organization to manage its internal data. No simple data port has 

been designed for sharing and accessing AM data publicly. A data port for AM is required, and it 

is expected to be simple, easy-access, and systematic so that datasets from different studies can be 

collected. Researchers can save time on collecting and sharing data, which in turn encourages 

connection and collaboration between researchers. Moreover, some small datasets can be 

combined to generate a larger and richer dataset that can be beneficial for all AM researchers.  

Hence, based on the best understanding of the author, a simple data port is proposed here 

and ready for data uploading and query. This data port is expected to be web-based and shared 

with the public. Everyone is welcome to provide their open data or download and reuse the data. 

For each dataset, the donator must fill five required fields and five optional fields. The required 

fields include AM technique type, raw input data type, application/targets, whether the data is 
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labeled, and a zip file for the data. The optional fields include raw output data type, reference 

source, contact information, machine type, and material type. Machine type and material type 

include the brand and series information for selected machines and materials. This information can 

be observed in the “more details” panel. The preliminary design for the AM data port is shown in 

Figure 4-6. On the left of the page, users have the option to filter the database to what they seek 

based on “AM technique type,” “applications/target,” “raw data type,” and “labeled or not?”. This 

simple and informative AM data port is aimed to increase data sharing in the AM community and 

accelerate the ease of data gathering. This data port will not recommend any data handling process 

or ML algorithm to users. Raw datasets are provided, and users have unlimited freedom to process 

the data. The data is expected to be used in various research. 

 

Figure 4-6: Preliminary design for the AM data port 
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4.4. Chapter summary 

This chapter first describes how experimental FDM and LPBF data are conducted and 

collected on both selections of the design and process variations. Various designs focusing on wall 

thickness, minimum features, clearances, holes, extreme points, chamfers and fillets, overhangs, 

angled surfaces, down and up faces, islands, and corners have been printed through the selected 

AM machines with different materials and machine settings. These experimental samples were 

collected to establish the dataset for training the ML models that will be introduced in the next 

chapter. 

For systematic management of these collected data, the database management system is 

developed and introduced. It aids in better organizing and accessing the data. In addition to the 

database management system, this research observed that an AM data port is in demand to increase 

the data sharing and data searching for ML in AM applications. Therefore, a public and easily 

accessible web data port is proposed at the end of this chapter.   
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Chapter 5. Hybrid machine learning models for manufacturability prediction 

In this chapter, a detailed explanation of the development of hybrid ML models for 

manufacturability prediction is provided. The voxel-based approach is first introduced, followed 

by an advanced sparse-based approach. The developed hybrid ML models demonstrated promising 

performance compared with the existing commercial software. Moreover, the models consider 

both design and process information to predict Manufacturability Level 1, which is the potential 

visual defects of the given design through the selected AM process and settings. In the remainder 

of this chapter, the initial voxel-based approach is fully described in Section 5.1, and the advanced 

sparse-based approach is introduced and compared in Section 5.2. Finally, this chapter is 

summarized. 

5.1. Voxel-based CNN model 

The proposed model was inspired by the application of ML in biomedical engineering, 

wherein several well-developed ML models efficiently detect and locate brain tumors [152-155]. 

Additionally, certain studies have identified the CNN as a promising approach in 3D model 

analysis [156-158]. The ML model in this study is developed specifically for the AM process. 

Although voxelization and CNNs are used to manage the 3D objects in this model, the ML 

architecture differs from that of the existing models. Moreover, the model combines the input 

variables with the design, material, and printing process, which is a combination of 3D objects, 

text, and values. To the best of the author’s knowledge, this has not been investigated thus far.  

Moreover, supervised learning is selected in this thesis as the starting point of the ML 

approach. Compared with the other two types of ML, unsupervised and reinforcement learning, 

supervised learning has been used more widely, demonstrating its feasibility and effectiveness in 
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AM applications. In recent years, supervised learning has exhibited a high success rate in AM 

applications such as candidate selections [159], surrogate models in design optimization and 

simulation [160-162], and predictions on the quality of fabricated components [80, 103, 163]. 

Supervised learning learns from labeled training data to predict unforeseen data. It obtains the 

benefits of existing experience, whereas unsupervised learning relies on algorithms to determine 

structured patterns [164]. Furthermore, reinforcement learning requires more data and more 

computations to achieve a prediction. This technique is preferred to achieve long-term results [165]. 

Since the proposed approach is part of a closed-loop manufacturability analysis system, the 

effectiveness of the ML model is important for subsequent research on design modification 

recommendations. For this thesis, the prediction (output of the ML model) can be clearly classified 

and labeled. Beginning to develop the model with supervised learning is easy and beneficial. More 

details are given in the following content. 

5.1.1. Proposed ML algorithm and architecture 

Figure 5-1 depicts the flowchart of the developed system to predict the manufacturability 

of a given design using the AM process. The developed system has two potential outputs. The first 

output is a single metric generated from Model 1, which is a simple yes or no answer. It indicates 

whether the entire design can be printed completely using the selected LPBF machine. If the part 

is not printable, it is redirected to Model 2, wherein the potential failure areas are predicted. If the 

part is predicted as printable, it can be sent for printing or further evaluations on Manufacturability 

Levels 2 and 3. The two groups of input variables for the ML model are the design parameters and 

material and printing process information. The design parameters are represented in a 3D matrix 

that indicates the occupancy of each voxel. The material and printing process information, which 

includes machine settings and details of the materials for the printing process, are represented as 
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text or values. Section 5.1.4 explains the data generation in detail. Output 1 is a single-dimension 

yes or no result, whereas Output 2 is the printability map with a dimension identical to that of the 

input data. As the manufacturability analysis system is separated into two ML models, Model 2 

analyzes only the non-printable designs, increasing the efficiency of the analysis process. 

 

Figure 5-1: Flowchart of the developed system 

 AM machine 
settings, material 

selection, etc. 
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Figure 5-2 presents the ML architecture of Model 1, wherein the initial prediction of 

whether the entire part is printable occurs. In the material and printing process, each neuron in one 

layer is fully connected to the neurons in another layer through the activation function based on 

the principle of the FNN; these are referred to as dense layers. The frequently used convolution 

and pooling in the general CNN are applied to the design representations. The final convolutional 

layer of the design is multi-dimensional, and it is flattened and concatenated to the 1D model of 

the material and printing process information to generate the joint model of the design and process. 

Subsequently, several dense layers are applied to the joint model, and each neuron in the final layer 

is fully connected to predict the value of Output 1. 

 

Figure 5-2: ML architecture of Model 1 performing the initial analysis 
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Figure 5-3 depicts the ML architecture of Model 2, wherein the potential failure areas are 

predicted. The initial steps in predicting Output 2 are similar to those of Model 1. However, the 

combination of the NN layers of the design and processing information generates a reshaped multi-

dimensional layer. Therefore, a transpose convolutional layer is added to the reshaped layer for 

upsampling the inputs. Subsequently, the transpose convolutional layers are concatenated with the 

previous convolutional layers, guiding the learning process. Finally, the model is transferred to 

other convolutional layers to predict Output 2. The number of transpose convolutional layers 

equals that of the previous convolutional layers. Moreover, the number of layers in each ML 

operation constitutes the hyperparameters, which can be tuned to achieve the best performance in 

the ML method. The proposed architectures are inspired by commonly used models, such as U-

Net and VGG16 [152, 166]. However, unlike the architectures in these models, a modified 

architecture integrating the CNN for 3D objects and the classic FNN for text and numerical 

parameters is developed here. 
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Figure 5-3: ML architecture of Model 2 performing the printability map analysis 
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5.1.2. Loss function and evaluation metrics 

The loss function in the first ML model uses a binary cross-entropy, calculated using Eq. 

5-1.  

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  −(𝑝𝑝 ∙ log(𝑝̂𝑝) + (1 − 𝑝𝑝) ∙ log(1 − 𝑝̂𝑝)) Eq. 5-1 

where p and 𝑝̂𝑝 represent the ground truth in the training sample and the prediction, respectively. 

The evaluation metric is based on the accuracy of the prediction.  

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  −
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 Eq. 5-2 

where TP is the true positive, wherein both the prediction and actual output are YES; TN is the 

true negative, wherein both the prediction and actual output are NO; FP is the false positive, 

wherein the prediction is YES, but the actual output is NO; and FN is the false negative, wherein 

the prediction is NO, but the actual output is YES. 

The second ML model uses the weighted dice coefficient loss function. The general dice 

coefficient loss can be calculated using Eq. 5-3 [167]. 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  −
2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
= −

2𝑝𝑝 ∙ 𝑝̂𝑝
𝑝𝑝 + 𝑝̂𝑝

 Eq. 5-3 

Typically, the dice coefficient loss is the sum of each class involved in the task. In this thesis, it is 

the sum of three classes, namely the empty, printable, and non-printable voxels. However, the 

empty and printable voxels in the dataset are more in number than the non-printable voxels. In this 

scenario, class imbalance occurs, which can be solved using Eq. 5-4. 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = α𝐷𝐷𝐷𝐷1 + 𝛽𝛽𝐷𝐷𝐷𝐷2 + (1 − 𝛼𝛼 − 𝛽𝛽)𝐷𝐷𝐷𝐷3 Eq. 5-4 

where 𝛼𝛼 and 𝛽𝛽 are the weight coefficients, and DCi indicates the dice coefficient of each class. In 

this paper, 𝛼𝛼 and 𝛽𝛽 are set to 0.1 to request the loss function to pay more attention to the non-
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printable voxels. The printable and empty voxels are considered to be equally weighted. No 

significant variations are observed in the model performance until the sum of 𝛼𝛼 and 𝛽𝛽 attain a 

value larger than 0.3. Beyond this, the performance decreases steeply, particularly in the non-

printable voxels. 𝛼𝛼 and 𝛽𝛽  cannot be 0; otherwise, the model ceases the learning process. The 

intersection over union (IoU), which describes the similarity between any two validation samples, 

is used as the evaluation metric in the second model. The IoU is calculated using Eq. 5-5 [168]: 

 𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 Eq. 5-5 

To present the results clearly, the IoU of each class is calculated together with the mean IoU. All 

the ML model weights are updated by minimizing the loss function, and the iteration is completed 

when the convergence of the loss function occurs. 

5.1.3. Hyperparameters 

Hyperparameters in ML must be manually set before activating the model. Based on the 

recommendations from other similar models developed and the results obtained from the 

experiments in the literature, the hyperparameters are set to attain the minimum loss and maximum 

model performance. The general structure is reconstructed based on the frequently used VGG16 

and 3D U-Net models that analyze 2D or 3D images [152, 166]. Initially, the hyperparameters are 

set considering the general guidelines and then tuned to identify the best performance based on the 

loss function and evaluation metrics. The details of the hyperparameters and how they are 

determined can be briefly summarized as follows. 

• Activation functions: ReLU, the frequently used activation function that can achieve the 

best model performance, is adopted in the proposed ML model [169, 170]. The output layer 
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uses the sigmoid function to predict whether the entire part is printable, whereas the 

printability map is predicted using the SoftMax function.  

• Learning rate: The learning rates in both models are set to 1e-5 to balance the learning 

speed and model performance. Lower learning rates may slow down the learning process, 

and higher learning rates may prevent the convergence of the functions.  

• Kernel size: Typically, the values of kernel size vary from 1×1×1, 3×3×3, 5×5×5, to 7×7×7. 

As the input dimension of the proposed design model is 128×128×128, a 3×3×3 kernel size 

is selected for each layer. 

• Number of filters: The number of filters is always recommended to begin from the range 

of [32, 64, 128] and can be increased in the deeper layers. However, the proposed model 

begins with 16 filters owing to the large input dimension, and the number can vary at each 

layer. 

• Stride size: All convolutional layers maintain a stride of 1. 

• Padding: Padding is set to be the same in convolutional layers. 

• Number of layers: For every ML operation such as convolutions and dense layers, the 

number of layers varies from 1 to 6. Although deeper layers may slightly enhance the model 

performance, the learning speed and computational capability are significantly affected. 

• Number of neurons in the dense layer: The number of neurons varies between 64 and 512.  

• Dropout rate: The dropout rate is set to 0.5 to reduce overfitting and improve the 

generalization error. 
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Figures 5-4 and 5-5 depict the detailed model architectures. After the initial values are set, 

the hyperparameters are manually tuned to attain the best model performance based on the existing 

dataset and computational power.  
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Figure 5-4: Detailed ML model architecture (Model 1) 
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Figure 5-5: Detailed ML model architecture (Model 2) 
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5.1.4. Input data generation and preprocessing 

The training data used in this approach are obtained from the LPBF process introduced in 

Section 4.1.2. All the designs are voxelized using binvox, a well-developed voxelizer [171] with 

a size of 128×128×128. Considering the resolution of the LPBF process and the general building 

chamber size, 512×512×512 is the ideal voxelization size of the geometric design to analyze the 

manufacturability. However, to maintain a balance in the computational cost, time consumption, 

and geometric resolution, the selected voxelizer has a size of 128×128×128. 512×512×512 is out 

of the capability of the current computer setup. In total, 196 samples are selected in the training 

data, wherein 49 samples constituted the validation set. The output values of 1 and 0 imply that 

the voxel is occupied and empty, respectively. Figure 5-6 shows some examples of voxelized 

geometric 3D models. 
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Figure 5-6: Examples of voxelized geometric 3D model 

Table 5-1 presents some examples of the different materials and printing processes used 

for data training. These features were selected owing to the available data and existing studies of 

major factors on evaluating the manufacturability, which are explained in Section 2.2. Moreover, 

those selected process parameters are easily understood for novice AM users. They do not need 

extra time to understand those parameters and those parameters can be easily modified in the 

machine settings or in their slicing software. Scale is a parameter associated only with the design 
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aspect and not the manufacturing process; it refers to the size of a part. The scale is considered as 

a reference because the ML model fails to recognize the overall size of the given object owing to 

the identical voxelized geometries that maintain uniformity in the input dimension. As the samples 

in the existing dataset were printed using the default settings of the LPBF printers based on the 

material selection, the process parameters, such as laser power, printing speed, and hatching space 

were not considered in this study. However, when the dataset is expanded in the future, certain 

data samples may be printed using customized settings, wherein all the critical process parameters 

must be considered. This will not affect the developed ML architecture, as more input variables 

from the process parameters can be included to improve the model performance. 

Table 5-1: Examples of the material and printing process used for data training 

No. Sample 
name 

Material 
type 

Material 
brand 

Material 
density in loose 
form (g/cc) 

Machine 
brand 

Machine 
type 

Scale 

1 v_Inco Inconel 
625 

EOS 8.4 EOS M270 33.46 

2 c_Inco Inconel 
625 

EOS 8.4 EOS M270 29.20 

3 x_Steel Maraging 
steel 

EOS 8 EOS M270 31.33 

4 bm_001 AlSi10Mg EOS 2.67 EOS M270 52.5 

5 channels_
01 

AlSi10Mg Renishaw 2.68 Renishaw AM 400 15 

6 Tensile_0
1 

AlSi10Mg Renishaw 2.68 Renishaw AM 400 74.12 

7 201904_1
2 

SS 316L Renishaw 7.99 Renishaw AM 250 106.3
5 

. 

. 



92 
 

. 
 

5.1.5. Data Labeling 

To generate the ground truth for the ML models, the corresponding printed result to the 

given design is obtained. If the design is successfully printed with associated processing 

information, and the printed result does not have visual defects, the ground truth is given a value 

of 1 as printable for the initial prediction. If the design is not printable, the truth is given a value 

of 0 as non-printable. Moreover, if the design is not printable, the printability map will be generated. 

The original voxelized models are sent to an annotation tool to label the non-printable voxels. An 

example of the annotation tool is shown in Figure 5-7. The tool was developed based on VoxCad 

[172]. The non-printed voxels were manually labeled with red layer by layer according to the 

printed result. Subsequently, the labeled results are transferred to the dense matrix. Each voxel in 

the design representation is labeled, wherein 1, 0, and 2 imply that the voxel is printable, empty, 

and not printable, respectively. Figure 5-8 shows an example of data labeling.  
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Figure 5-7: Interface of the annotation tool 

 

Figure 5-8: Examples of data labeling 



94 
 

5.1.6. Results and discussion 

Sections 5.1.5.1 and 5.1.5.2 demonstrate and discuss the validations of the ML Models 1 

and 2 results, respectively. The proposed models were verified by evaluating the trained models 

using the validation dataset with the defined evaluation metrics listed in Section 5.1.2. The 

developed ML models were implemented using Python on an NVIDIA GeForce RTX 2080 Ti. 

The TensorFlow, Keras, and Scikit-learn libraries [173] were used in the implementation. 

5.1.6.1. Results of Output 1 Predicting the Printability of the Entire Part 

The entire dataset was randomly split into training and validation datasets in the ratio of 

4:1 to calculate Output 1. To decrease the variations among samples, five-fold cross-validations 

were performed, and the results are listed in Table 5-2. The average accuracy was approximately 

0.8408. We consider this result to be satisfactory at the current state owing to the following reasons. 

First, no standardized dataset exists to measure the accuracy of different ML models. Thus, in the 

reported studies such as [105, 174, 175], the accuracy of the ML model was discussed in 

dramatically different ways. Second, examining the accuracy in Table 8 of [175], the testing 

accuracy reported for two different scenarios was 84% and 38%, respectively. Thus, the result 

from this approach was considered satisfactory. Additionally, the result for each iteration did not 

exhibit major fluctuations, verifying the stability and repeatability of the developed ML model.     
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Table 5-2. Cross-validation results of the prediction in the initial analysis 

Iteration Accuracy 

1 0.8367 

2 0.8367 

3 0.8776 

4 0.8367 

5 0.8163 

Average 0.8408 

 

When the training dataset was applied to a model that considers only the design aspect, the 

average accuracy in predicting the manufacturability of the part decreased to 0.7805. This implied 

that the effects of excluding the material and printing process model are not significant as the 

training dataset is not sufficiently large. Moreover, the ratios of the failure samples, which are 

primarily caused by the material and printing process, are low. However, the impact can be 

significant with a larger dataset, reducing the accuracy further.  

The effects of the voxelization size on the computing cost and performance were also 

investigated for this model. As mentioned in Section 5.1.4., the maximum size reached in this 

approach was 128×128×128 owing to the restrictions in computational capability and time. The 

maximum memory was attained when the model is trained at 128×128×128 resolution. Table 5-3 

summarizes the comparison between different voxel sizes tested using the same ML architecture, 

hyperparameters, and computational hardware. The results indicated that, despite the longer 

running time, the accuracy is high at a higher voxelization resolution. At a lower resolution, the 

performance of the ML model is affected owing to the loss of certain features in the voxelization 

process. Therefore, higher voxelization resolution to execute the model learning is highly 
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encouraged, which is the key motivation for the sparse-based approach. It is fully explained in 

Section 5.2. 

Table 5-3. Effects of voxelization resolution on the computing cost and performance 

Voxel size Accuracy Training time (s) 

128×128×128 0.8408 8480 

64×64×64 0.7503 1000 

32×32×32 0.6341 240 

 

Furthermore, the model was also run with a smaller dataset comprising fewer training 

samples than the original test. Only 190 samples were selected in the smaller-dataset training rather 

than the original 245 datasets. The samples were split into training and validation datasets at a ratio 

of 4:1, identical to the original test. The average accuracy obtained was 0.7436, which was lower 

than the result presented in Table 2. This demonstrated a potential statement that with more and 

more data, the prediction accuracy will be better.  

The ideal method to identify the size of data is to generate a learning curve for the model 

performance on datasets [176]. The required number of data sizes can be obtained when the 

learning curve reaches the saturation point. To make it simple, some common rules from the ML 

community can be used to identify the ideal size of the dataset. These rules are generally a factor 

of certain characteristics of the prediction problem. For example, some researchers indicated that 

the data size must be at least 50 to 1000 times the number of prediction classes [177]. Another rule 

states that the data size must be at least 10 to 100 times the number of the features [178, 179]. The 

most common method is to include at least 10 times the number of weights in the network if neural 

network models are used [180, 181]. However, a later study [176] indicated that a factor of 10 is 
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insufficient, and they concluded that the data size must be at least 27 to 31 times the number of 

weights in the network. Although the data size may also vary on the different applications, these 

common rules can provide a general concept of how many samples are sufficient for their studies.  

The training datasets in most existing ML applications of AM are less than 100 [174], and 

their results prove that small datasets can make reasonable predictions. With more data inputs in 

the future, the coefficient of the proposed hybrid ML model can be updated to obtain enhanced 

results. 

5.1.6.2. Results of Output 2 Predicting the Printability Map 

Cross-validations were also conducted for Output 2. As mentioned in Section 5.1.2., the 

prediction was evaluated based on the IoU calculations (Table 5-4). The mean IoU calculated was 

a reasonable value of 0.7951. As indicated in Table 5-4, the model performed excellently in the 

empty voxels, whereas the performance in the non-printable voxels was slightly weaker. However, 

it is important to note that the goal of this research was to provide early indicators of potential 

manufacturability challenges for designers or AM process engineers before fabrication. The 

benefit of such an early indicator is that the designer or AM process engineer could modify some 

design geometries or process parameters to guarantee a successful fabrication. There is insufficient 

research in the literature to provide a printability map through an ML model as a method of 

indicating potential printing challenges. The result demonstrates the feasibility of such a 

printability map that can be successfully generated via the joint ML model with decent accuracy.  
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Table 5-4. Cross-validation results of the printability map prediction 

Iteration IoU_mean IoU_empty IoU_print IoU_non_print 

1 0.7866 0.9854 0.8006 0.5737 

2 0.7821 0.9899 0.7777 0.5787 

3 0.8092 0.9869 0.8355 0.6052 

4 0.7918 0.9873 0.7465 0.6416 

5 0.8056 0.9860 0.8353 0.5954 

Average 0.7951 0.9871 0.7991 0.5989 

 

Figure 5-9 shows three examples depicting the results of the printability map. The top row 

depicts the ground truth of the samples, labeled based on the experiments. The second row 

indicates the prediction of the ML model, and the final row is the prediction obtained from the 

commercial software. Figure 5-9(a) depicts a diamond lattice structure fabricated from AlSi10Mg 

using an EOS machine. Figure 5-9(b) illustrates a benchmark wherein the needles on the plate are 

extremely small, and the printer fails to print the precise shapes. Figure 5-9(c) shows an AlSi10Mg 

tensile bar printed using Renishaw; it suffered from severe warping on the sides. The green and 

orange regions in Figure 5-9 indicate the printable area and the area with a potential risk of failures, 

respectively. The prediction obtained from the proposed ML model exhibited competitive results 

compared with that of the commercial software. Although certain differences existed between the 

ground truth of the printability map and the prediction of the proposed ML model, the results 

exhibited the trend of the potential failure areas. Therefore, they can be considered acceptable in 

predicting part manufacturability.  
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Figure 5-9: Test cases of the validation set. (a) Diamond lattice structure fabricated from 

AlSi10Mg using an EOS machine, (b) benchmark with tiny needles, and (c) AlSi10Mg 

tensile bar printed using Renishaw. 

Figure 5-10 compares the predictions obtained using two different materials with varying 

strut thicknesses. The green and orange regions indicate the printable and failure areas, 

respectively. They were printed using the default machine settings for the selected material. The 

best process parameters were identified to print the selected material tested by the printer maker. 

As indicated in the figure, the proposed model provided outstanding results owing to the significant 

number of lattice structures used in the dataset. This demonstrated that with more data included in 
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the database, the model performance can be enhanced. Moreover, Figures 5-10(b) and 5-10(c) 

indicate a green layer at the bottom of the lattice structures. This layer was not labeled in the 

ground truth data because when the final printed part was obtained, the initial layers may be 

ignored and eliminated from the building plate. However, these layers were predicted by the 

proposed ML model as the initial layers can be printed successfully, and the subsequent layers 

may fail owing to the overhang constraints in the LPBF process.  

 

Figure 5-10: Comparison of the predictions obtained using two different materials with varying 

strut thicknesses 

The ML architecture used to predict the printability map was inspired by 3D U-Net, which 

is frequently used in medical image detection. A similar approach is adapted here with a modified 

ML architecture, wherein the process and design models are combined. Moreover, the loss 

function is specifically developed for the manufacturability analysis in the LPBF process. The ML 

method requires multiple hyperparameters that must be determined before training the model. 

Owing to the limitations of the dataset, the hyperparameters used in this study are not the ideal 

values for the prediction in the manufacturability analysis. However, the values were selected 

considering the existing dataset under the current computational power, as described in Section 
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5.1.3. As more data are collected in the future, the values of the hyperparameters will be 

continuously tuned and improved iteratively.  

Precise labeling of the dataset is essential in manufacturability analysis. Currently, all the 

datasets are labeled manually based on the printed part. However, precise labeling of every voxel 

cannot be achieved as the ground truths of the samples can be subjective owing to the manual 

detection. Although the printed part can be scanned using computed tomography to obtain a more 

accurate labeling result, it can be time-consuming and is not cost-effective. Therefore, even for 

industrial purposes, the parts are not scanned to obtain dimensional accuracy unless their 

printability is determined. Despite the subjectiveness of manual labeling, it facilitates an initial 

verification for the designers. Thus, the evaluating criteria in this study were to verify whether the 

part can be printed completely. In this regard, manual labeling is acceptable, and the results 

obtained from the prediction notify the designers of the potential design failures. The part is 

determined to be printable if it is suitable for the subsequent stages, such as dimensional accuracy 

evaluation or mechanical performance test.  

Figure 5-11 depicts the ML prediction of a long-overhang bridge, which is not shown in 

the dataset. It was a bridge with an 80 mm overhang, and it was printed without any support. ML 

Model 1 predicted the bridge as not printable, and ML Model 2 provided a predicted failure area 

(Figure 5-11). The blue and red regions indicate the printable and failure areas, respectively. 

Several existing studies have proven that the long overhang bridge cannot be completely printed 

without support structures [128, 182, 183]. Although the prediction may not be identical to the 

experimental results, it depicts the trends of the potential failure. Moreover, when the bridge was 

laid down, it was considered by ML Model 1 to be printable.  
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Figure 5-11: Prediction of a long overhang bridge 

5.2. Advanced sparse-based CNN model 

The voxel-based CNN demonstrated in Section 5.1 was investigated as a potential solution 

for design shape analysis. This approach is limited by the computational capability available, and 

only the lower resolution was performed. However, a low resolution is insufficient for precisely 

analyzing the AM process. Some detailed features may be omitted through the voxelization 

process. Moreover, as shown in Section 5.1.6.1, a higher voxelization resolution has a better 

performance. Therefore, to solve this problem, a more efficient CNN is proposed in this chapter. 

Design data is stored in a sparse matrix for CNN operations to train only the occupied voxels. It 

combines with the process data to make the prediction of manufacturability. By performing the 

generalized convolutions, the computational costs decrease significantly compared with the voxel-

based CNN, which offers the advantage of performing with high resolutions. The approach was 

validated in terms of effectiveness and efficiency on the manufacturability prediction for the LPBF 

process. More details are provided in the following. 
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5.2.1. Framework of the sparse-based CNN model 

Figure 5-12 shows the general framework of the sparse-based CNN model. Instead of using 

a voxelized 3D geometric model directly as the design input to the ML models, the voxelized 3D 

geometric model is preprocessed into a sparse matrix, which is combined with a coordinate matrix 

and feature matrix. Only the occupied voxels are stored in the sparse matrix, and the ML operation 

is applied only in the sparse matrix, which significantly decreases the computational cost and 

improves the performance of the models. The integration of the input features for design and 

material and processing information is first sent to a two-class manufacturability classifier to 

determine whether the given design is manufacturable with the given material and processing 

information. If it is printable, the given design is ready for printing. If it is not printable, the input 

features are sent to a semantic manufacturability segmentation step to determine which voxels are 

not printable to provide a printability map to designers. With the printability map, the potential 

failure area can be visualized to aid designers in future design improvement.  
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Figure 5-12: Framework of the ML-assisted manufacturability analysis 

 AM machine 
settings, 
material 

selection, etc. 
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5.2.2. Data generation and preprocessing 

As introduced in Section 5.1.4, the first step to preprocessing the design models is to 

voxelize the STL files using Binvox [171]. After parsing, the result of the voxelization is turned 

into a 3D matrix. The value 1 indicates occupied voxels, which are the main body of the designs, 

and 0 indicates the non-occupied voxels, which are the background. For most existing studies, the 

voxelization resolution is low. Higher voxelization resolutions cost more computational power, 

which results in a slow training process, and it may run out of computational capability. When 

observing the 3D design matrix, most of the elements in the design matrix are zero, which results 

in a super sparse matrix. Particularly for the high-resolution voxelized matrix, the sparsity is even 

higher. Figure 5-13 shows an example comparison between different voxel sizes for the same 

design model. For a conventional CNN, the operation is applied to every element in the matrix. 

However, it is not necessary to apply the operations to all the zero elements, particularly the zero-

elements that are far from the main body of the design. The redundancy wastes the computational 

memory and slows down the training process. To solve these challenges and improve the 

performance, the design matrix is preprocessed and stored into a sparse matrix, and ML operations 

are only applied to these occupied voxels, which is explained in Section 5.2.4. The sparse matrix 

is stored as the combination of a coordinate matrix (C) and a feature matrix (F), which can be 

represented as follows:  

 𝐶𝐶 = �
𝑥𝑥1 𝑦𝑦1 𝑧𝑧1
⋮ ⋮ ⋮
𝑥𝑥𝑁𝑁 𝑦𝑦𝑁𝑁 𝑧𝑧𝑁𝑁

� , 𝐹𝐹 =  �
𝑓𝑓1
⋮
𝑓𝑓𝑁𝑁
� Eq. 5-6 

where xi, yi, and zi are the coordinates, N is the number of the non-zero elements, and fi is the 

associated feature values. For the input data in this thesis, feature values are uniform, which is 1 

indicating occupied voxels.  
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Figure 5-13: Comparison between different voxel sizes for a given design 

The same strategy is used from the voxel-based approach to preprocessing the material and 

processing information data. One-hot encoding is applied to convert the categorical text variables 

into numerical variables to be provided to the ML model to perform a better prediction. Such 

material and processing information includes material types and brands, material density in loose 

form, and machine brand and type.  

The data labeling process for the sparse-based approach first follows the same procedure 

described in Section 5.1.5. Subsequently, the results of the voxelization are transferred to the 

sparse matrix with coordinates and features as in Eq. 5-6. Note that the coordinate matrix should 

be the same as the one in the input. For the feature values in the ground truth, 1 denotes the 

printable voxels, and 0 denotes the non-printable voxels. Figure 5-14 shows an example of the 

labeling process. 



107 
 

 

Figure 5-14: Examples of data labeling for sparse-based approach 

5.2.3. Network operations on sparse-data structure 

The convolution is the most important operation in CNNs. For the conventional 

convolution operation, it is frequently used for images or 3D objects that are multi-dimensional. 

In the conventional convolutional layers, a set of “filters” is applied to a subset of the input 

variables at a time and swept over the entire input; thus, only nearby inputs are connected, which 

results in significantly fewer weights than the fully connected layer. The convolution operation 

calculates the sum of the element-wise multiplication between the input matrix and filter matrix; 

therefore, it performs a many-to-one relationship. Although it costs much less than the fully 

connected layer, it is still a very expensive operation in deep convolutional networks. In our 

generalized convolution, the operation only applies to the occupied voxels such that it requires 

much less computational power than the standard convolution operations. It can be represented as 

the following equation: 

 𝑂𝑂(𝑛𝑛)
𝑖𝑖,𝑗𝑗,𝑘𝑘 =  �𝑊𝑊(𝑛𝑛)𝐼𝐼(𝑛𝑛)

(𝑖𝑖,𝑗𝑗,𝑘𝑘) , (𝑖𝑖, 𝑗𝑗,𝑘𝑘) ∈ 𝐶𝐶 Eq. 5-7 

where 𝑂𝑂(𝑛𝑛)
𝑖𝑖,𝑗𝑗,𝑘𝑘 is the n-th channel of the output value on voxel (i, j, k). 𝑊𝑊(𝑛𝑛) represents the weights 

of the operation, which is the filter described above. 𝐼𝐼(𝑛𝑛)
(𝑖𝑖,𝑗𝑗,𝑘𝑘) represents the n-th channel of the 

input features on voxel (i, j, k). C is the coordinate matrix generated in Section 5.2.2. To better 
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illustrate the generalized operation, Figure 5-15 shows a graphical explanation. It provides a 

comparison between the standard convolution operation and the generalized convolution operation. 

On the left-hand side, the standard convolution operation swept over the entire input; however, for 

the convolution on the sparse matrix, it only sweeps over the occupied elements. When calculating 

the output value on the selected elements, it first obtains the values from all the neighbors for the 

selected elements based on the stored coordinates. Subsequently, the “filters” are applied to the 

pattern, which consists of the selected point and surrounding neighbors to compute the output. 

 

Figure 5-15: Graphical explanation of convolution on a sparse matrix 

Pooling is the operation of downsampling the input variables by summarizing the presence 

of features in each patch [138, 139]. There are two common types of pooling operations. One is 

average pooling, which summarizes the average presence of the patch. The other is max pooling, 

which obtains the most activated presence of the input patch. Pooling for sparse data has a similar 
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concept to the conventional pooling operation. The difference is that the pooling for the sparse 

data only applies to the occupied voxels instead of the entire 3D matrix. Max pooling is used in 

this thesis, and it can be represented numerically as 

 𝑂𝑂𝑖𝑖,𝑗𝑗,𝑘𝑘 = max 𝐼𝐼(𝑛𝑛)
(𝑖𝑖,𝑗𝑗,𝑘𝑘) , (𝑖𝑖, 𝑗𝑗,𝑘𝑘) ∈ 𝐶𝐶 Eq. 5-8 

where 𝑂𝑂(𝑛𝑛)
𝑖𝑖,𝑗𝑗,𝑘𝑘 is the n-th channel of the output value of voxel (i, j, k), and 𝐼𝐼(𝑛𝑛)

(𝑖𝑖,𝑗𝑗,𝑘𝑘) is the n-th 

channel of the input features of voxel (i, j, k).  

Transpose convolution on the sparse matrix has the same concept as the standard transpose 

convolution. It is the opposite of the convolutional operation on the sparse matrix, which is also 

popularly known as deconvolution [136, 137]. It operates in the backward direction of the 

convolution and performs a one-to-many relationship. For the convolutional operation, the output 

is always downsizing, but for the transpose convolution, a higher resolution output is ultimately 

obtained. Another new operation used in our network structure is broadcast, which was proposed 

by Choy [184]. It can be represented as the following equation:  

 𝐹𝐹𝑢𝑢 = 𝑥𝑥2 𝑓𝑓𝑓𝑓𝑓𝑓 𝑢𝑢 ∈  𝐶𝐶𝑖𝑖𝑖𝑖 Eq. 5-9 

It is the operation that copies the value 𝑥𝑥2 for all input coordinates, and 𝐹𝐹𝑢𝑢 is the new feature values 

for the input coordinate. 

5.2.4. Network structure and learning parameters 

Figure 5-16 shows the network structure and major-related hyperparameters for the two-

class manufacturability classification. It uses a similar network structure as the voxel-based 

approach. As mentioned earlier, the design inputs are primarily processed using the sparse 

convolution operation, and the material and processing inputs pass through an FNN. The two 

models are integrated and pass through another two fully connected layers to make predictions of 
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printability. Major hyperparameters include the number of filters or neural units, activation 

functions, kernel size, and stride size.  

Figure 5-17 shows the network structure and major-related hyperparameters for the 

semantic manufacturability segmentation. As mentioned earlier, the network structure was 

inspired by the popular ML model, 3D U-net [166]. Unlike the network structure in 3D U-net, our 

model has two different inputs: design aspects and material and processing aspects. The two inputs 

are first processed using separatable ML operations and then joined to predict the printability map.  

In this approach, the best learning rate is set to 1e-4, the batch size is set to 4, and the epoch 

number is set to 40 to converge the loss function. These learning parameters are manually tuned 

to determine the best performance for the current dataset. 
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Figure 5-16: Network structure for two-class manufacturability classification 
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Figure 5-17: Network structure for semantic manufacturability segmentation 
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5.2.5. Results and discussions 

The same dataset as the voxel-based approach was used, and it was split into a 4:1 ratio 

into training and validation datasets. The training dataset was used to train the ML model, and the 

validation dataset was used to validate it. Five-fold cross-validation was used for each training to 

avoid overfitting. The remainder of this chapter discusses the results in predicting whether the 

given design is printable as well as the generated printability map. It demonstrates that the 

developed sparse-based CNN model can accurately analyze manufacturability with better 

performance compared with the voxel-based approach with the same computational capability. 

The developed models were implemented in Python 3.7 on an NVIDIA GeForce RTX 2080 

Ti. Relevant libraries included Scikit-learn [173], PyTorch, and MinkowskiEngine [184].  

5.2.5.1. Two-Class Manufacturability Classification 

Table 5-5 shows the cross-validation result for the two-class manufacturability 

classification at the resolution of 1283. The model performance was evaluated on its accuracy, 

which is represented as (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹), where TP indicates a true positive, 

in which both the prediction and truth are printable. TN indicates a true negative, in which both 

the prediction and truth are non-printable. FP indicates a false positive, in which the prediction is 

printable, but the truth is non-printable. FN indicates a false negative, which depicts the opposite 

results of the FP. The loss function was again selected as the cross-entropy. Cross-entropy is 

commonly used in ML applications, and it offers the best performance in accuracy for the two-

class manufacturability classification. The detailed equation is described in Section 5.1.2. After 

calculating the average of the cross-validation cases, the accuracy was approximately 0.9174. 

Compared with the voxel-based approach, which applies convolution to every element in the 



114 
 

matrix, the sparse matrix solution exhibited a better performance with an accuracy of 0.9174 

compared with the dense matrix with an accuracy of 0.8404. Moreover, as the cross-validation 

indicated, the accuracy of each case did not fluctuate significantly which demonstrated the stability 

of the proposed model, and the model did not suffer overfitting in this dataset. As the dataset is 

relatively small, a maximum of 8% variations do not consider as a significant change.   

Table 5-5: Cross-validation results of the two-class manufacturability classification 

Cross-validation Case Accuracy in 

sparse matrix 

Accuracy in 

dense matrix 

1 0.8776 / 

2 0.9388 / 

3 0.9592 / 

4 0.8776 / 

5 0.9388 / 

Average 0.9174 0.8408 

 

A memory cost comparison between the sparse and dense matrices is shown in Figure 5-18. 

The sparse matrix required significantly less memory than the dense matrix for all the voxelization 

sizes. Note that the sparse matrix could easily fit into a GPU’s memory (12 GB) for the resolution 

of 128. In contrast, the same-size dense matrix could not fit in a single GPU. Computing in the 

CPU would require more running time.    
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Figure 5-18: Memory cost comparison between the dense and sparse matrices 

Overall, using the sparse matrix input data structures significantly decreased the 

computational cost and improved the model performance. By only considering the occupied voxels 

and removing the most useless elements which are background, the model demonstrated its 

capability in predicting the manufacturability of a given design. 

Note that the voxel size can be applied up to 256 with a single GPU and the sparse-based 

approach. However, 128 is used here to compare the results with the voxel-based approach. 

5.2.5.2. Semantic Manufacturability Segmentation 

Cross-validations were conducted for the semantic manufacturability segmentation. For 

semantic manufacturability segmentation, the same evaluation metrics, IoU, and loss function, the 

weighted dice coefficient loss, were used. They are fully explained in Section 5.1.2. For 

convenience, the weighted dice coefficient is shown here again: 
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 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = α𝐷𝐷𝐷𝐷0 + (1 − α)𝐷𝐷𝐷𝐷1 Eq. 5-10 

 𝐷𝐷𝐷𝐷 =  −
2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 Eq. 5-11 

 𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 Eq. 5-12 

Where 𝐷𝐷𝐷𝐷𝑖𝑖 is the dice coefficient for the i-th class, and α is the weight coefficient to balance the 

two classes. α was set to be 0.6 in this approach to emphasize the importance of the non-printable 

class. A set of selections for 𝛼𝛼 as 0.55, 0.7, and 0.8 was also tested. The value 0.6 was selected 

because of the best performance. The background, which is the empty class, was not stored in the 

sparse matrix; hence, it was not trained in the sparse CNN. Therefore, the background was the 

same as the original, which was counted as 100% correct to compute the mean IoU. Table 5-6 

shows the cross-validation result of IoU for each class, as well as the mean IoU, on the resolution 

of 128.   

Table 5-6: Cross-validation results of the semantic manufacturability segmentation 

Iteration IoU_mean IoU_empty IoU_print IoU_non_print 

1 0.8386 1 0.7964 0.7195 

2 0.8366 1 0.8217 0.6882 

3 0.8359 1 0.8105 0.6972 

4 0.8293 1 0.7865 0.7013 

5 0.8382 1 0.8153 0.6994 

Average 0.8357 1 0.8061 0.7011 

 

Table 5-7 compares the average IoU for the voxel-based and sparse-based approaches. The 

sparse-based approach had a better performance than the voxel-based approach. Particularly for 
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the non-printable class, the sparse CNN demonstrated a better predictive result than the 

convolution on a dense matrix.  

Table 5-7: Comparison of the dense and sparse matrices 

 Average IoU_mean 

Sparse Matrix 0.8357 

Dense Matrix  0.7951 

 

Qualitative results for two samples are shown in Figures 5-19 and 5-20 to demonstrate the 

capability of the proposed manufacturability prediction. Figure 5-19 is an example of the solid 

lattice hybrid structure printed using a Renishaw machine with the material selection of AlSi10Mg. 

The original design is depicted in Figure 5-19a. It was predicted as fully printable through the 

proposed sparse-based ML model (Figure 5-19b). Figure 5-19c shows the prediction from the 

commercial software Materialise Magics. Figure 5-19d shows the experimental result that 

validated the prediction of the proposed sparse-based ML model. Note that for the figure of the 

printed result, the support structure has been removed. 
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Figure 5-19: Comparison of the (a) original design model, (b) prediction from the two-class 

manufacturability classification, (c) prediction from the commercial software Materialise Magics, and 

(d) printed result [185]. 

Another example is shown in Figure 5-20 of a thin tensile bar printed using a Renishaw 

machine with the material selection of AlSi10Mg. Figure 5-20b shows the prediction of the 

proposed sparse-based ML model. The blue color indicates the printable area, and the red color 

indicates the non-printable area. The result from the commercial software is shown for comparison 

in Figure 5-20c. The entire tensile bar was defined as non-printable since it suffered from warping 

(Figure 5-20d. The prediction of the proposed sparse-based ML model was much better than the 
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prediction of the commercial software. Note that for the figure of the printed result, the support 

structure has been removed. 

 

Figure 5-20: Comparison of the (a) ground truth (labeling), (b) prediction from the semantic 

manufacturability segmentation, (c) prediction from the commercial software Materialise Magics, and 

(d) printed result. 

5.3. Chapter summary 

This chapter presents the development of hybrid ML models using both voxel-based and 

sparse-based approaches as the solution for manufacturability analysis. It introduces the voxel-

based approach since it is one of the most popular shape representation types for 3D geometries. 

A CNN model is applied to the design input and a classic FNN model is applied to the material 
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and processing input. The two models are merged to make the prediction of manufacturability. 

The result demonstrates that ML models are suitable approaches to solving manufacturability 

challenges in AM process. However, the limitation of the voxel-based approach is shown to be the 

dramatic increase in computational cost when a higher voxelized resolution is used. To solve this 

problem, an advanced approach using a sparse CNN model is applied in the manufacturability 

model. The results present a better performance and much lower computational cost than the voxel-

based approach. The ML-assisted models are the key to this thesis, and they are utilized in the 

recommendation system, which is introduced in the next chapter.  
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Chapter 6. MAR-AM Recommendation system 

This aims to develop a recommendation system as part of the MAR-AM to provide 

recommendations to assist novice AM users to obtain printable parts. In Chapter 5, the developed 

ML models are evaluated in the LPBF process. The network structures and learning parameters 

are tuned to fit the best of the current dataset. However, the framework can also be adapted to other 

AM techniques with simple modifications to the parameters of ML models and selections of the 

process parameters. For the recommendation system, instead of the LPBF process, FDM is 

introduced to validate the approach owing to the larger amount of valuable data. Section 6.1 

explains the ML model development for FDM. Thereafter, the methodology for the 

recommendation system is introduced in Section 6.2. Sections 6.3 and 6.4 describe the methods to 

generate the potential variations in design aspects and material and processing information, 

respectively. Finally, this chapter is summarized. 

6.1. ML-assisted manufacturability model for FDM 

The hybrid sparse-based models developed in Section 5.2 are introduced here to train the 

FDM data with the same ML architectures as LPBF. However, as the process settings and material 

selection differ between FDM and LPBF, the input features for material and processing 

information are reselected, and example input features are shown in Table 2. Note that scale is a 

special factor in the table, and it is obtained from the design model. The scale parameter is also 

indicated as it is also considered a decisive parameter.  
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Table 6-1: Selected ML input features for material and processing information 

Decisive parameters Units Source Example # 1 Example # 2 

Material type  User PLA ABS 

Material density g/cm3 User 1.24 1.04 

Printing speed mm/s User 80 60 

Layer thickness mm User 0.15 0.15 

Infill percent % User 20 20 

Adhesion type  User Brim Brim 

Nozzle temperature °C User 200 235 

Bed temperature °C User 60 80 

Scale  CAD 5.23 1 

 

A graphical view of the general training procedure for developed ML models is presented 

in Figure 6-1. The entire ML-assisted manufacturability model comprises two submodels: two-

class manufacturability classification and semantic manufacturability segmentation. To train the 

two-class manufacturability classification model, the geometric 3D model in STL format is first 

converted into a sparse matrix. Meanwhile, the material and processing information in tabular 

format is applied with a one-hot encoding method. The label with the mark of printability is turned 

into the number (0 or 1). Thereafter, the data with labels, the design matrix, and material and 

processing information array are used to train the two-class manufacturability classification model. 

The semantic manufacturability segmentation model operates similarly to the two-class 

manufacturability classification, the only difference being the data preprocessing for labels. 

Instead of using a single number to indicate manufacturability, the area of failure is marked in 



123 
 

voxels and converted into a sparse matrix. It indicates the printability map of the given design. 

Finally, the hyperparameters must be tuned to obtain the best performance. The accuracy for the 

two-class manufacturability classification model after the five-fold cross-validations in FDM data 

was 0.9674. The average IoU_mean after the five-fold cross-validations was 0.8564.   

 

Figure 6-1: Graphical view of ML training procedure 

When the two sub-ML models are trained, the models are saved and used as the 

manufacturability analyzer. When the new data is input, the design file is transferred to the sparse 

matrix and the selections of the material and processing information are transferred to an array 

using one-hot encoding. Thereafter, the input data is sent to the saved two-class manufacturability 

classification model to make the prediction. Furthermore, if the given design with the selected 

material and processing information is predicted as non-printable, the same input data is then sent 
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to the saved semantic manufacturability segmentation model to predict the printability map. The 

printability map is given to users to demonstrate the problematic geometric features. These saved 

trained ML models are the key to the recommendation system. 

6.2. Proposed structure and algorithm of closed-loop recommendation system 

The recommender system is expected to produce suggestions to assist users in making 

decisions for potential changes. In the manufacturability recommender system, when the given 

design passes the manufacturability analyzer, users can expect successful printing with the selected 

machine and material settings. However, if the assessment fails, the recommendation of potential 

changes to obtain a successful printing is required. With the aid of the recommender system, users 

are more likely to have their design successfully printed through AM process. More details on the 

operation of the closed-loop recommendation system are described in the following. 

Figure 6-2 shows the flowchart of the recommender system. With the well-trained saved 

ML models, it provides predictions according to the user input. If the input of the given design and 

selected process settings is not printable, it will then pass through a closed-loop process to 

determine the first possible variation that can pass the ML prediction. The variation is served as 

recommendations for the user to increase their printing success rate. More than one solution may 

be available to make the printing successful. However, in this case, the first potential variation is 

provided as the recommendation since there is no optimal option, and the variation is analyzed in 

the order of time and cost consumption. The details on generating variations are depicted in the 

next sections. Moreover, the recommendation system was validated using case studies, which are 

described in Chapter 7. 
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Figure 6-2: Flowchart of the recommender system 

To better illustrate the systematic recommendation approach, the proposed algorithm is 

presented in the following with step-by-step produce. Ultimaker 3 is the only AM machine 

recorded for ME in the current developed database. Therefore, the factor, AM machine, is not 

considered in the current recommendation system. However, it can be included in future 

development. 

Step 1. Obtain user inputs of design model and material and processing settings.  

Step 2. Obtain the manufacturability prediction with the selected design model and 
material and processing settings 

a. if the result is not printable, obtain and printability map and go to step 3.  

b. else go to step 14. 
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Step 3. Determine the build orientation for the least overhangs, and obtain the 
manufacturability prediction with the new design model. 

a. if the result is not printable, go to step 4. 

b. else store the variation made and go to step 13. 

Step 4. Determine the build orientation for the most contacting faces to the build plate, and 
obtain the manufacturability prediction with the new design model. 

a. if the result is not printable, go to step 5. 

b. else store the variation made and go to step 13. 

Step 5. Based on the material selection, change all the material and processing settings to 
the default, and obtain the manufacturability prediction with new material and processing 
settings 

a. if the result is not printable, go to step 6. 

b. else store the variation made and go to step 13. 

Step 6. Vary the bed_temp from the leftmost element of the bed_temp variations, and one 
by one obtain the manufacturability prediction with the new bed_temp setting. 

a. If the prediction result is not printable, go to step 7. 

b. else store the variation made and go to step 13. 

Step 7. Vary the nozzle_temp from the leftmost element of the nozzle_temp variations, and 
one by one obtain the manufacturability prediction with the new nozzle_temp setting. 

a. If the prediction result is not printable, go to step 8. 

b. else store the variation made and go to step 13. 

Step 8. Vary the adhesion from the leftmost element of the adhesion variations, and one by 
one obtain the manufacturability prediction with the new adhesion setting. 

a. If the prediction result is not printable, go to step 9. 

b. else store the variation made and go to step 13. 

Step 9. Vary the printing_speed from the leftmost element of the printing_speed variations, 
and one by one obtain the manufacturability prediction with the new printing_speed setting. 

a. If the prediction result is not printable, go to step 10. 

b. else store the variation made and go to step 13. 

Step 10. Vary the infill_percent from the leftmost element of the infill_percent, and one by 
one obtain the manufacturability prediction with the new infill_percent setting. 
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a. If the prediction result is not printable, go to step 11. 

b. else store the variation made and go to step 13. 

Step 11. Vary the layer_thick from the leftmost element of the layer_thick variations, and 
one by one obtain the manufacturability prediction with the new layer_thick setting. 

a. If the prediction result is not printable, go to step 12. 

b. else store the variation made and go to step 13. 

Step 12. Vary the mat_type from the leftmost element of the mat_type variations one by one 
and go back to step 5. 

Step 13. Check if your variation is empty or not 

a. If yes, return “Your part needs some design modifications before you print it’ and 
the printability map 

b. If no, return “Your part needs some modifications before you print it, and here is 
the recommendation:”, the printability map and variation made. 

Step 14. Return “Congratulations! Your part is ready to print” 

6.3. Potential variations in the design aspect 

Potential changes can be made in either machine and material settings or specifications of 

the design. For the design aspect (Table 6-2), build orientation is considered as a potential change 

that can be made to improve the printing process. Some of the existing studies considered the build 

orientation as the process setting. In this thesis, the build orientation is considered a design-related 

factor since by changing the build orientation, the design matrix is modified in our approach. It is 

combined with the selected process settings as the new ML inputs. Many studies on optimizing 

build orientation have been conducted [122, 186, 187]. For single-objective optimization, the 

optimal build direction can be detected by optimizing for a single factor without considering the 

conflicts with the other factors. Such studies include minimizing the support volume, volumetric 

error, or cylindricity and flatness error, build time and maximizing the surface quality. An 

advanced approach with multiple objective optimizations has also been proposed. This approach 

considers multiple factors and expresses a weight function for each factor. For the recommendation 
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system in this thesis, as part of manufacturability analysis, the easiness of printing is the focus. 

Factors such as build time and flatness error are not considered at the current stage. Moreover, as 

mentioned in Section 6.2.1, there is no optimal case and only the first variation that makes the 

printing successful is provided. Therefore, for the current recommendation system, the build 

orientation with the least overhangs and the build orientation with the most contacting area to the 

build plate are the two potential changes. Moreover, to indicate problematic areas, the printability 

map predicted by the ML model is provided. Designers can make design modifications based on 

the indication of the potential failure areas. 

Table 6-2: Potential variations for design aspects 

 Variations 

Build orientations Least overhangs 
Most contacting areas to the build 

plate 

Problematic areas The printability map is provided. 

 

6.3.1. Build orientation with the least overhang 

Build orientations with the least overhangs refers to minimizing the total area of the 

downward-facing facets. It is considered to have more impact on the object accuracy than the 

support volume [188, 189]. The objective function is expressed as 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆 =  �𝐴𝐴𝑖𝑖
𝑖𝑖

�𝑑̂𝑑 ∙ 𝑛𝑛𝚤𝚤� �∅ Eq. 6-1 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ∅ = �1 𝑖𝑖𝑖𝑖 𝑑̂𝑑 ∙ 𝑛𝑛𝚤𝚤� < 0 
0 𝑖𝑖𝑖𝑖 𝑑̂𝑑 ∙ 𝑛𝑛𝚤𝚤� > 0
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where 𝐴𝐴𝑖𝑖 is the area of the i-th facet,𝑑̂𝑑 is the unit vector of the build direction, and 𝑛𝑛𝚤𝚤�  is the unit 

normal vector of the i-th facet. The build direction is obtained from the generated list of build 

orientations. To decrease the number of loops, the list of orientations is gathered from the area 

cumulation approach and death star algorithm [190]. The principle of the area cumulation is to 

cumulate the facet’s sizes with identical orientations to identify the first several potential 

candidates for the optimal orientation. The death star algorithm functions as the complementary of 

the area cumulation algorithm when the bottom area is a circle without any resulting area.  

6.3.2. Build orientation with the most contacting area to the build plate 

To determine the build orientation with the most contacting area, the first step is to 

determine the orientated bounding box (OBB) of the given design and determine the direction with 

the largest contacting face between the design and the face of the OBB. The main steps of the 

algorithm are presented as 
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Algorithm: Determine the build orientation with the most contacting area to the build 

plate 

Input: Design mesh file: design 

Output: Build direction with the most contacting area to the build plate 

1. function design_opt_most_contact(design)  

2.         obb_design = Flat(OBB(design)) 

3.         scale = max bound extents(obb_design) 

4.         voxels = Voxelized(obb_design, scale/64) 

5.         target_list = [sum(voxels[0, : , :]), sum(voxels[-1, : , :]), sum(voxels[: , 0 , :]),         

sum(voxels[: , -1 , :]), sum(voxels[: , : , 0]), sum(voxels[: , : , -1])] 

6.         index = target_list.index(max(target_list)) 

7.         direction_list = [[0,1,0],[0,1,0],[1,0,0],[1,0,0],[1,0,0],[1,0,0]] 

8.         return direction = direction_list (index)   

9.         end function 

 

The input of this algorithm is the design mesh file, and the output is a new build direction. 

The new design matrix is computed by applying the rotation matrix of both the new build direction 

and rotating the angle of the OBB to the original design matrix. The new design matrix is then sent 

to the ML models for another round of the prediction.  

6.4. Potential variations in material and processing information 

The potential variations in material and processing information result from the decisive 

parameters used in ML models. Table 6-3 presents the potential variations for material and 

processing information aspects. For the process aspect, the default settings are selected for the first 
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attempt. The default settings are recommended by the machine and material makers or AM experts. 

If the default values fail, the remaining potential variations are tested accordingly. All the 

variations differ from a certain range of the default value. The priority order is increasing from the 

top to the bottom, which means that the recommender considers varying the setting in the order of 

bed temperature, nozzle temperature, adhesion type, printing speed, layer thickness, and material 

type.   

Table 6-3: Potential variations for process aspects 

Parameters Default Variations 

Machine Ultimaker 3 Only Ultimaker 3 for now. Can be expanded in the future 

Mat_Brand Ultimaker Only Ultimaker for now. Can be expanded in the future 

Mat_Type PLA [PLA, ABS, PC, nylon] 

Layer_Thin

kness 
0.15 [0.15,0.1,0.2,0.06] 

Infill_Perce

nt 
20 [20,40,60,80,100] 

Printing_Sp

eed 

 

80 for PLA; 

60 for ABS; 

50 for PC; 

70 for nylon 

[80, 70, 90, 

60, 100, 50, 

40] for PLA 

[60, 50, 70, 

40, 80] for 

ABS 

[50, 40, 60, 

30, 70] for PC 

[40, 50, 60, 

70, 80, 90] for 

nylon 

Adhesion 

 

Brim for 

PLA, ABS, 

nylon; 

Raft with gap 

of 0.25 mm 

for PC 

[Brim, Raft with a gap of 0.25 mm, None, Raft with a gap of 

0.15 mm, Raft with a gap of 0.05 mm] 
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Nozzle_Tem

p 

 

200 for PLA; 

235 for ABS; 

280 for PC; 

250 for nylon 

[200, 205, 

195, 210, 190, 

215, 185, 220, 

180, 225, 

230] 

for PLA 

[235, 240, 

230, 245, 225, 

250, 220, 215, 

210] 

for ABS 

[280, 285, 

275, 290, 270, 

265, 260] 

for PC 

[250, 255, 

245, 260, 

240] 

for nylon 

Bed_Temp 

 

60 for PLA; 

80 for ABS; 

107 for PC; 

60 for nylon 

[60, 65, 55, 

70, 50, 75, 45, 

40] for PLA 

 

[80, 85, 90, 

95, 100, 105, 

110] for ABS 

 

[107, 110, 

105, 115, 100, 

120, 95, 90, 

85, 80] for PC 

[60, 65, 70, 

75, 80, 85, 90, 

95, 100] for 

nylon 

 

At the current stage, variations result from the decisive parameters. As some of the key 

parameters have not been considered in this model, such as chamber temperature due to the 

limitation of the experimental setup, the potential variations related to these parameters have not 

been listed here. However, it is worth investigating these parameters and including them in the 

database. Case studies to validate the recommendation system, with the implementation of the tool 

and deployment, are described in the next chapter.    

6.5. Chapter summary 

This chapter proposes a recommendation system that aims to provide suggestions for users 

to increase the printing success rate. The proposed methodology is validated in the next chapter as 

the final delivery of this thesis. The FDM is discussed here to validate the capability of MAR-AM, 

and a general training procedure for the developed ML models is provided. With the ML 

architectures remaining the same, the developed ML models can be adapted to other AM 

technologies through a small number of changes in the selection of the input features and 

hyperparameters. The input features include geometric information and process and material 
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information. As the process and material information are different for each AM technique, these 

features are reselected based on the understanding of the FDM process. By following the proposed 

ML training procedure, the developed ML model for analyzing the manufacturability of FDM has 

good performance with satisfying accuracy. The well-trained model is then used as the 

manufacturability prediction model in MAR-AM.   

To support the closed-loop recommendation system, the input of the design, material, and 

process first pass through the well-trained ML model to predict printability. If the part is not 

printable, the recommender searches all the potential variations in build orientations, material 

settings, and processing settings to determine the solution. The algorithms to generate these 

variations are also explained in this chapter. Moreover, if there are no possible solutions, the 

printability map is provided for users to make the decisions on the design modification. The next 

chapter describes the methodology of the recommendation system combined with the well-trained 

ML models being implemented into a web-based application, and case studies to validate the 

approach are described.      
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Chapter 7. Implementation and case studies 

Based on the proposed core flows of the MAR-AM, a web-based tool has been developed 

to better assist engineers to utilize the MAR-AM. The main aim is to provide novice AM designers 

with an automated, easy-to-access, and comprehensive analyzer and recommender to avoid 

unnecessary printing failure before the real fabrication. In this chapter, the web-based 

implementation and deployment are fully explained. User interfaces are demonstrated to illustrate 

the operation of the developed MAR-AM. Finally, multiple case studies are described to 

demonstrate the capability of the developed MAR-AM, and the limitation is discussed based on 

the case studies. This chapter is concluded with a summary of the contribution and future research. 

7.1. Web-based implementation and deployment 

The proposed framework of MAR-AM has been implemented into a web-based application. 

The new user data will be collected regularly to update the ML models to provide the best 

performance for users. The developed tool is available on GitHub. The architecture and user 

interface of the MAR-AM are depicted in the following contents. 

7.1.1. Architecture 

The web-based application primarily consists of two parts: frontend and backend (Figure 

7-1). The frontend provides a user-friendly interface, and the backend addresses business logic and 

data storage. In the application, the frontend was developed using JavaScript, CSS, and HTML. 

Three.js [191] was used as the STL viewer. It is an open-source JavaScript library used to create 

and display 3D computer graphics. The backend was developed using Python. Flask was also used 

as the web framework to connect the user interface and backend logic, including ML prediction 
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and closed-loop recommendation. It operates as the liaison to communicate the frontend and 

backend.  

 

Figure 7-1: High-level architecture of the developed webpage 

The overall framework of the developed web-based MAR-AM is presented in Figure 7-2. 

The application consists of three hierarchical layers: UI, logic, and data access layers. The UI layer 

provides an interactive layer to acquire necessary inputs from users and visualize the results. As 

Figure 7-2 shows, there are two main web pages for this application: the main and result pages. 

The main page was designed to request users to input setup information including uploading the 

design and defining the AM process, AM machine, material, and machine settings. All the 

extracted texted information is saved in a JSON file. The screen module is responsible for 

visualizing 3D models for both the original model and printability map to aid users to have a better 

concept of their design. On the result page, users are also encouraged to provide feedback based 

on the performance of the MAR-AM. 

The logic layer provides the most critical functions for MAR-AM. Modules in this layer 

were developed for specific functions. As shown in Figure 7-2, this layer includes a data 

preprocessing module, ML prediction module, closed-loop recommendation module, build 

orientation module, printability map generation module, and auto ML model update module. The 

auto ML model update module is included only for completeness, but they are not developed in 

the current version. The data preprocessing module is dedicated to processing the user inputs to 
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the demanded ML inputs. The ML prediction module makes the prediction of the 

manufacturability for the given inputs. The closed-loop recommendation module generates the 

suggestion for users to increase the printing success rate with the aid of the build orientation 

module to generate the potential build orientations. The printability map generation module 

generates the printability map to demonstrate potential problematic areas to users.  

The data access layer contains the following modules: file read and write module, AM 

database, and user feedback database. The file read and write module was developed to serialize 

and deserialize JSON and STL files (STL is the only design file format accepted in the current 

version). The AM database was established to train the ML models. The user feedback database is 

not included in the current version but is described here for completeness. It will be used to store 

the user feedback, which will be used to update the ML models.  
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Figure 7-2: Framework of the developed web-based tool 

7.1.2. User interfaces 

The user interfaces consist of two major web pages: the main and result pages. As shown 

in Figure 7-3a, the main page was developed for users to input their selections for process settings 

and upload their design files in STL format. On the right panel of the webpage, the user can view 

their uploaded design file. When all the required fields are filled, the user can click the submit 

button to analyze the design (Figure 7-3b).  
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Figure 7-3: User interfaces of the MAR-AM: Main page 

MAR-AM begins to analyze your input and the analysis is often less than a minute (Figure 

7-4a). Figure 7-4b shows the result webpage. On this page, users can view the prediction results 

as well as recommendations for potential modifications. The visualization of the results is placed 

on the top of the webpage. The original design is in blue, and the potentially problematic areas are 

marked in red. 
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Figure 7-4: User interfaces of the MAR-AM: Results page 

Furthermore, users are invited to provide their feedback for MAR-AM by clicking the 

feedback button. As shown in Figure 7-5, a simple survey appears to let users express their 

opinions and agreement with the prediction. Their feedback is uploaded continuously to the 

developer side. The trained ML model is updated based on users’ agreement with the predictions 

regularly. 
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Figure 7-5: User interfaces of the MAR-AM: Feedback page 

7.2. Case studies 

In this section, multiple case studies to validate the effectiveness of the proposed web-

based MAR-AM are described. Four cases are fully explained in the following sections to 

demonstrate how MAR-AM works. These cases are selected to demonstrate the capability of the 

manufacturability prediction and the effectiveness of the recommendation in both material and 

machine settings and design modification. The presented material and machine selections are the 

original user inputs to the web-based MAR-AM.  
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7.2.1. Case 1: Simple customized mechanical parts  

The first sample was a simple mechanical bevel gear obtained from the Thingi10K database. 

The detailed printing information for the gear is listed in Table 7-1. It was originally selected to 

be printed in ABS with default machine settings. The potential problem in this part was the two 

lateral holes. Large round lateral holes may need support for printing, otherwise, distortion may 

occur. There is a certain limitation on the hole size to avoid support structures. For the selected 

mechanical bevel gear, the two lateral holes were under the limit and can be printed without any 

support structures. The MAR-AM offered the prediction result as printable (Figure 7-6a). To 

validate the approach, the part with selected settings was printed, and the experimental result is 

presented in Figure 7-6b. The MAR-AM successfully predicted the printability of the simple 

mechanical bevel gear. 

Table 7-1: Detailed printing information of the gear 

Name Figure of design 

Machine 
brand 

Machine 
series 

Material type 
Material density 

(g/cm3) 

Layer thickness (mm) 
Infill percent (%) 

Printing speed (mm/s) 
Adhesion type 

Nozzle Temperature (°C) 
Bed Temperature (°C) 

Bevel gear 

 

 

Ultimaker 
Ultimaker 3 

ABS 
1.04 

0.15 
20 
60 

Brim 
235 
80 
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Figure 7-6: (a) Prediction of bevel gear (b) printing result of bevel gear 

Several similar samples (listed in Table 7-2) were conducted to validate the proposed 

methodology. They were customized parts selected from some industrial applications. They were 

predicted as printable by the MAR-AM, and experimental results were conducted to validate the 

predictions.  
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Table 7-2: More successfully printed case studies 

Name Figure of design 

Machine 
brand 

Machine 
series 

Material 
type 

Material 
density 
(g/cm3) 

Layer thickness (mm) 
Infill percent (%) 

Printing speed (mm/s) 
Adhesion type 

Nozzle Temperature (°C) 
Bed Temperature (°C) 

MAR-AM prediction Experimental 
validation 

Adapter 

 

 

Ultimaker 
Ultimaker 3 

ABS 
1.04 

0.15 
20 
60 

Brim 
235 
80   

Knob 

 

Ultimaker 
Ultimaker 3 

ABS 
1.04 

0.15 
20 
60 

Brim 
235 
80  

 

Connector 

 

Ultimaker 
Ultimaker 3 

ABS 
1.04 

0.15 
20 
60 

Brim 
235 
80   

Ring 

 

Ultimaker 
Ultimaker 3 

PC 
1.19 

0.15 
20 
50 

Raft with gap of 0.25 mm 
280 
107   
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7.2.2. Case 2: Material-related and process-related demo 

The first sample demonstrated in the second case was a hexagonal organizer provided by 

a fellow AM expert. It was originally selected to be printed in ABS with default machine settings 

(Table 7-3). As demonstrated in Figure 7-7a, the MAR-AM predicted that the part was not 

printable and required some modification. Moreover, it also provided the recommendation to 

change the material type from ABS to PLA.  

Table 7-3: Detailed printing information of the organizer 

Name Figure of design 

Machine 
brand 

Machine 
series 

Material type 
Material density 

(g/cm3) 

Layer thickness (mm) 
Infill percent (%) 

Printing speed (mm/s) 
Adhesion type 

Nozzle Temperature (°C) 
Bed Temperature (°C) 

Hexagonal 
organizer 

 

 

Ultimaker 
Ultimaker 3 

ABS 
1.04 

0.2 
20 
60 

Brim 
235 
80 

 

To validate the prediction and recommendation, the hexagonal organizer was printed using 

both ABS and PLA, and the printing results are shown in Figure 7-7b. The experimental results 

confirmed the effectiveness of the proposed MAR-AM. The main problem with the hexagonal 

organizer was cracks on the wall. They were caused by the release of residual stress during the 

printing process. The hexagonal organizer consisted of large and thin walls, which could not 

endure the residual stress while printing. Thus, cracks occurred on the fabricated part. Compared 

with the ABS, PLA has a lower thermal expansion coefficient, which resulted in less deformation 

during the printing. Another solution might be available, which is to have a closed chamber with 
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a higher chamber temperature for printing ABS. However, the current database only contains 

Ultimaker 3, which is an open-chamber printer. The chamber temperature can be included as a 

decisive parameter in the future version of the MAR-AM. 

 

Figure 7-7: (a) Prediction of the hexagonal organizer, (b) printing results of the hexagonal 

organizer before implementing the suggestion, and after implementing it 
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Table 7-4 shows another example, which is a polyhedron model. The MAR-AM predicted 

that the part could be printed. However, the experimental result (Figure 7-8) shows that the part 

failed. This was caused by the weak adhesion between the part and build plate. The polyhedron 

model had a small contacting area to the build plate, which contained fewer adhesions. The part 

lost adhesion to the build plate in the middle of the printing process and slipped. With more 

experimental investigations, the part was observed to be printed successfully by increasing the bed 

temperatures or changing to other materials. The potential reason for the wrong prediction was the 

lack of data. In the current database, the geometric information has been varied and considered 

carefully, but for process variations, less data was collected, which motivates the future direction 

of this study. More printings with various process parameters must be conducted to improve the 

model performance. 

Table 7-4: Detailed printing information of the polyhedron model 

Name Figure of design 

Machine 
brand 

Machine 
series 

Material type 
Material density 

(g/cm3) 

Layer thickness (mm) 
Infill percent (%) 

Printing speed (mm/s) 
Adhesion type 

Nozzle Temperature (°C) 
Bed Temperature (°C) 

Polyhedron 
wireframe 

 

 

Ultimaker 
Ultimaker 3 

Nylon 
1.14 

0.15 
20 
70 

Brim 
250 
60 
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Figure 7-8: (a) Prediction of polyhedron model, (b) printing results of polyhedron model 

7.2.3. Case 3: Design-related demo 

The first sample in the third case was an art creative obtained from Thingi10k. Table 7-5 

lists all the detailed printing information. It can be considered as a porous structure, which is 

challenging for the conventional manufacturing process. It was initially selected to be printed using 

PLA with its default setting. The MAR-AM suggested changing the original build orientation to 
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flip the geometry as shown in Figure 7-9a. The developed viewer is a 3D object viewer and users 

can rotate the viewer to identify the suggested orientation for better printing. The experiments were 

conducted to validate the prediction and recommendation. The problem with the original setting 

was the long overhang. It is not printable through the AM process without any support structures. 

Table 7-5: Detailed printing information of the art creative 

Name Figure of design 

Machine 
brand 

Machine 
series 

Material type 
Material density 

(g/cm3) 

Layer thickness (mm) 
Infill percent (%) 

Printing speed (mm/s) 
Adhesion type 

Nozzle Temperature (°C) 
Bed Temperature (°C) 

Single tear 

 

 

Ultimaker 
Ultimaker 3 

PLA 
1.24 

0.15 
20 
80 

Brim 
200 
60 
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Figure 7-9: (a) Prediction of art creative, (b) printing results of art creative for both before and 

after the suggestion 

Another example was a steam locomotive component. It was a channel-like type of 

geometry and was designed to be printed without any support. The design was initially selected to 

be printed using ABS with its default setting. The MAR-AM suggested changing the original build 

orientation to lay down the geometry as presented in Figure 7-10a. The experiment (Figure 7-10b) 
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was conducted to validate the prediction and recommendation. The part with the original settings 

failed in the middle owing to the loss of the adhesion to the build plate. The part slipped to the side 

and the printing failed. This was caused by the small contacting area to the build plate that 

contained insufficient adhesion. It was similar to the sample of the polyhedron model demonstrated 

in case 2. Moreover, this part contained not only the problem of adhesion but also of suspending 

geometries. By changing the build orientation, the suspending geometries were avoided and the 

contacting areas to the build plate increased. 

Table 7-6: Detailed printing information of a steam locomotive component 

Name Figure of design 

Machine 
brand 

Machine 
series 

Material type 
Material density 

(g/cm3) 

Layer thickness (mm) 
Infill percent (%) 

Printing speed (mm/s) 
Adhesion type 

Nozzle Temperature (°C) 
Bed Temperature (°C) 

Steam 
locomotive 
component 

 

Ultimaker 
Ultimaker 3 

ABS 
1.04 

0.15 
20 
60 

Brim 
235 
80 
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Figure 7-10: (a) Prediction of the steam locomotive component, (b) printing results both before and after 

the suggestion 

7.2.4. Case 4: Skulls 

Case 4 contained two different skull models: a skull lamp cover and a skull bowl. They 

were initially selected to be printed using PLA with a thick layer. Although these two models had 
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similar geometries and were set to be printed with the same materials and same machine settings, 

MAR-AM predicted that the skull lump cover was not printable (Figure 7-11a) and the skull bowl 

is printable (Figure 7-12a). For the skull lump cover, MAR-AM could not determine the potential 

solution by simply changing the build orientation or process parameters. It provided a printability 

map to support the potential design modifications. The experimental results, shown in Figures 

7-11b and 7-12b validate the predictions of MAR-AM. The main problem with the skull lump 

cover was the suspending areas. It could not be printed without support structures. The printability 

map is provided to assist users to generate the proper support structures.   

Table 7-7: Detailed printing information of skulls 

Name Figure of design 

Machine 
brand 

Machine 
series 

Material type 
Material density 

(g/cm3) 

Layer thickness (mm) 
Infill percent (%) 

Printing speed (mm/s) 
Adhesion type 

Nozzle Temperature (°C) 
Bed Temperature (°C) 

Skull 
lump 
cover 

 

Ultimaker 
Ultimaker 3 

PLA 
1.24 

0.2 
20 
80 

Brim 
200 
60 

Skull 
bowl 

 

Ultimaker 
Ultimaker 3 

PLA 
1.24 

0.2 
20 
80 

Brim 
200 
60 
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Figure 7-11: (a) Prediction of the skull lamp cover, (b) printing results of the skull lamp cover. The red 

boxes indicate the problematic areas 
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Figure 7-12: (a) Prediction of the skull bowl, (b) printing results of the skull bowl 

In conclusion, these case studies demonstrated the capability of the proposed MAR-AM in 

both prediction and recommendation. It provides promising and satisfying performance to novice 

AM users at the design stage. It assists users in increasing the printing success rates and benefits 

from AM techniques in their product development process. Some limitations remain at the current 
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stage. First, the proposed MAR-AM has weaker performance on the process-related samples 

owing to the insufficient data in the developed AM database. However, as more data is incoming, 

particularly with different process settings, the performance of MAR-AM will be improved. 

Second, the printability map is provided to support the design modification for designers. However, 

the main causes of these challenges and how to modify designs to overcome them are still not clear. 

Certain AM knowledge is required to justify what modifications can be conducted. For future 

research, more investigations on guiding users on design modifications can be conducted. 

7.3. Chapter summary 

This chapter describes the implementation and deployment of the developed MAR-AM. It 

is implemented into a web-based application. With the web application, users can easily access the 

developed tool and share feedback with developers to improve the application. The tool was 

developed in Python language with a JavaScript-based viewer and Flask backend framework.  

Multiple case studies are presented in this chapter to validate the recommendation system 

and the entire flow of the proposed MAR-AM. These case studies validate the performance of the 

proposed MAR-AM on both prediction and recommendation. Only one sample in the discussed 

eleven case studies had the incorrect prediction, which motivates more data gathering on process 

variations.  

The current MAR-AM is still at the beta version. Thus, some additional features and 

functions can be added to increase its functionality. These future developments are summarized as 

follows. 

1) The developed web application can join the AM data port together to offer a better 

environment for users to use the applications and contribute their efforts. 
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2) The model is expected to perform better with a more extensive database, particularly for 

the process-related samples. More data must be collected to mature the methodology and 

developed applications. 

3) The current database is stored locally. It will be better to upload it online. Moreover, 

filtering and utilizing the user feedback to improve the developed model must be 

investigated. 

4) The use of the given printability map to support the design modification can be further 

investigated. The current printability map still requires some AM knowledge to justify the 

potential challenges. It will be better to categorize these problematic challenges into groups 

to provide designers with a better concept of how to modify their designs for a successful 

print.  
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Chapter 8. Conclusions and future research 

8.1. Conclusions 

At the current stage, the AM process still has a very high threshold for novice users to fully 

utilize its capabilities in fabricating complex parts. It has a large number of selections on materials, 

machines, and even parameter settings. It requires designers to have extensive knowledge of the 

AM process to make the design manufacturable. Even for an advanced commercial AM machine, 

printing may fail owing to many factors such as build orientations, support structures, and 

minimum features. There are still limitations on printable geometrical features. The relationships 

of geometric information, material information, process information, and final part qualities are 

closely coupled. Identifying whether a given design is printable and what modifications are 

possible to make the design more suitable for AM is one of the major challenges limiting the wide 

adoption of AM in the industry. Therefore, an automated, easy-to-access, and comprehensive 

manufacturability analysis before fabrication is significantly important to stimulate the application 

of AM technology. There are seven different types of AM techniques, and each technique has a 

different manufacturing process. This thesis focuses on two AM techniques: LPBF and FDM. They 

were selected owing to their wide applications and popularity. To develop the desired 

manufacturability model, this thesis answers three research questions: 1) how to define the 

manufacturability of the given design in AM, particularly for LPBF and FDM processes; 2) based 

on the definition, how to predict what geometries with corresponding material and process 

information is not printable; 3) if the given design is not printable, what modification can be 

conducted to make the design printable. To solve the above challenges, the following efforts are 

performed in this thesis. 
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At the beginning of the thesis, a comprehensive literature review is conducted over the 

topics of manufacturability analysis for both AM and SM. Existing methodologies of 

manufacturability analysis on SM are provided to understand how manufacturability analysis is 

conducted for the traditional processes, and they are compared to motivate the manufacturability 

analysis on AM process. Thereafter, the major effects on evaluating manufacturability are 

reviewed and summarized. Without the understanding of these factors, the manufacturability 

model of AM cannot be fully developed. In the past, similar to the conventional manufacturing 

process, design guidelines or checklists are the most common methods to aid designers in 

evaluating the manufacturability of their designs. It provides a manufacturable range of 

geometrical design features including minimum thickness, part orientation, surface roughness, 

chamfers and radius, holes, and overhang. Designers are expected to follow these guidelines in 

their product design process. However, this approach is limited, as the relationships among the 

process settings, materials, and quality of parts are not considered. Moreover, it requires manual 

scanning through the checklist, and designers are expected to have certain AM knowledge. To 

assist non-AM experts in better determining whether their designs are printable through AM 

processes, a few methods such as heuristic and computational approaches are reported. These 

approaches consider either only the process aspect or the design aspect. None of the previous 

studies simultaneously considered the effects of design and process. The relationships among the 

process, design and printing qualities of the parts are highly coupled and difficult to model. The 

literature review also indicates that there is no proper definition of the manufacturability of AM. 

Moreover, previous methods on manufacturability analysis offer limited evaluation at the design 

stage in terms of efficiency, effectiveness, and comprehensiveness, and lack of recommendation 

to users. No well-defined, automated, and easy-to-access manufacturability analysis is available 
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in the literature. To comprehensively model the manufacturability model of AM with the coupled 

relationships among process, material, design, and final product qualities, the ML approach is 

developed in this thesis as the potential solution owing to its capability in solving complex 

problems. 

To solve the problems summarized in the literature review, this thesis first defines the 

manufacturability of AM. The manufacturability analysis is differentiated from the engineering 

analysis to ensure that a part is properly fabricated with the given design, material, and 

manufacturing process. Based on that definition, three manufacturability levels are introduced. 

Level 1 checks visual defects of the printed part to ensure geometric completeness. Level 2 

evaluates the micro-level structure to ensure the printed part is dense without any significant pores 

or cracks. Finally, Level 3 ensures the geometric resolution in terms of dimensional accuracy, 

surface roughness, etc. These levels are expected to be achieved in a step-by-step manner to 

guarantee the manufacturability of a given design. This thesis focuses on Manufacturability Level 

1, which is to detect the visual defects to ensure geometric completeness at the design stage with 

given designs under the selected material and process settings. Subsequently, a methodological 

framework of MAR-AM enabling the manufacturability analysis on Level 1 is proposed. This 

framework is comprised of three main parts: data establishment, ML-assisted manufacturability 

model development, and a manufacturability recommendation system. Experimental data was 

designed and collected to train the ML model. With the gathered data, ML models were developed 

to analyze manufacturability in terms of printability value and the printability map. With the 

trained ML-assisted manufacturability model, when the design and corresponding settings are 

given, the ML model will make a prediction on the printability of the given design. If the part is 

predicted as non-printable, the geometric, material, and process information are then sent to the 
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recommendation system to determine the potential solutions to avoid printing failure. As the 

support of the potential design modification, a printability map is also provided.  

In the use of ML, data is extremely important as it can directly affect the performance of 

the ML models. In this study, both FDM and LPBF data were collected to train the ML models. 

The experiments were designed to create a rich and comprehensive dataset. The critical 

geometrical consideration and material and process considerations are summarized based on the 

literature reviews. The dataset was set to include all the variations on both design and process 

aspects. Moreover, to better manage these data, a well-organized relational database was 

developed. All the data is stored in the developed database. With the well-defined data organization 

structure, the data can be easily extracted and used. Furthermore, an AM data port was developed 

to increase the data sharing and popularize ML approaches in AM applications. Data can be 

extremely expensive in AM studies. However, with the AM data port, users are encouraged to 

share their experimental data. AM researchers can reuse, reunion, and reorganize data 

contributions from other users. They are expected to fully utilize the existing experimental results 

in their own studies.  

The initial approach to developing the ML-assisted manufacturability model is to use 

voxel-based geometrical information combined with the material and process settings to make the 

prediction of the Manufacturability Level 1—visual defects. The design model is represented as 

voxels and applied using a CNN model. The material and process aspects are applied using an 

FNN model. The two models are then combined to predict the manufacturability of a given design 

in the selected AM process settings. The specific loss function is developed for model training to 

avoid challenges resulting from the imbalanced class. The hyperparameters of the ML models are 

tuned to determine the best performance. The results verified that the developed model can 
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accurately predict the manufacturability of the specific design. However, the voxel-based model 

is restricted by the available computational capability and only lower resolution was performed. A 

low resolution is insufficient for precisely analyzing the AM manufacturing process. Some detailed 

features may be omitted through the voxelization process. To solve this problem, this thesis 

establishes a more efficient CNN. Design data is stored in a sparse matrix such that only the 

occupied voxels are trained by CNN operations. It joins with the process data, which is trained 

using an FNN model to make the prediction of manufacturability. By performing the generalized 

convolutions, the computational costs decrease significantly compared with the voxel-based model, 

which offers the advantage of performing with high resolutions. The approach was validated in 

terms of effectiveness and efficiency on the manufacturability prediction. 

To guarantee a successful print, novice AM users also seek recommendations on their 

designs and selections of material and process settings to avoid potential printing failure before 

the actual fabrications. Therefore, a recommendation system is developed in this thesis. The user 

inputs of design and selections of material and process are first analyzed by the trained ML models 

to make the prediction of printability. If the given input is not printable, the recommendation 

system determines the potential variations in either design or process aspects. The entire process 

repeats until all the variations have been attempted. If there is no printable solution, the printability 

map is generated for users to modify their designs. The printability map indicates the problematic 

area, which can aid users in modifying their designs. 

 To validate the proposed MAR-AM and recommendation system, a web-based application 

was developed and presented at the end of this thesis. The web-based application provides a rapid, 

automated, and easy-to-access tool for novice AM designers to evaluate their designs before the 

real fabrication. Moreover, it provides a friendly user interface and enables users to provide their 
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feedback. The feedback is sent to the developed database to update the ML model. With continuous 

updates, the ML models can be improved and provide better and more mature performance. Finally, 

multiple case studies are discussed as validation of the effectiveness of the proposed methodology. 

In conclusion, the proposed MAR-AM fills the research gap in the manufacturability 

analysis of the AM process. The MAR-AM provides the prediction of printability with the 

consideration of both the given design and selected material and process information. More 

importantly, it can provide promising suggestions for users to avoid printing failures before the 

actual fabrication, and these were validated using multiple case studies. The MAR-AM can serve 

as a first-level evaluation of designs for novice AM users such as designers to reduce the waste of 

time and cost in AM fabrications. Moreover, the MAR-AM is easily accessible and useable as a 

web application. While training an ML model can take a few hours, the prediction only takes 

seconds. This thesis provides insightful and useful methods and tools to lower the threshold of AM 

processes and support wider AM applications in the future. 

8.2. Future research 

This research had some limitations. For instance, this thesis only focuses on 

Manufacturability Level 1, which is the visual defects. Manufacturability Levels 2 and 3 are not 

investigated. To overcome these limitations, future research is planned in the following areas: 

1) The current database should be expanded. The number of instances in the current database 

is still under expectation, particularly for the process-related samples. More data must be 

collected to mature the methodology and developed applications. Moreover, with more 

data, a recommendation system can be developed for LPBF. 
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2) The current data labeling process requires a large amount of manual work, particularly to 

create the data to train the ML model to predict the printability map. A potential automated 

annotation tool should be developed to reduce the amount of manual work.  

3) More ML algorithms can be investigated such as recurrent neural networks (RNN). RNNs 

facilitate temporal dynamic behaviours as AM manufacturing processes. The parts are 

printed layer by layer in AM processes, particularly for LPBF and FDM. The consequence 

from the previous layers can be fed as the input to the current layer, which can be conducted 

in an RNN.  

4) The current recommendation system searches for all the potential variations in the design, 

material, and process aspects. However, there are still some limitations. First, to generate 

variations, only a single feature is varied. The current recommendation system does not 

consider varying multiple settings simultaneously. Second, for the build orientation, 

current variations may not be the optimal build orientations. More investigations can be 

conducted in future research. Finally, although the printability map is provided to support 

the design modification, more specific design solutions can be investigated and provided 

as the next step. The reasons for the printing failure of each problematic area can be 

categorized and offered to users, which can further aid designers in making modifications. 
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APPENDIX I: Investigations of effects on varying processing parameters 

Major investigated 

parameters  

Materials Key findings Reference 

Laser power; Scan 

speed; Hatch 

distance; Build 

orientation 

TI-6Al-4V Scan velocity has the most significant 

effect on mechanical properties. 

Laser power has some effect on ductility, 

but not as significantly as scan velocity. 

Hatch distance exhibits relatively no 

effect on the ductility of the AM parts. 

Orientation does not have a significant 

effect on fatigue behaviour 

[3, 4, 192] 

Layer thickness; 

Laser beam power; 

Speed hatch 

distance; Building 

direction  

Inconel 718 

alloy 

For a larger layer thickness, it has lower 

strength properties and higher plasticity. 

 

[2, 193, 

194] 

Laser power; Scan 

speed; Thickness of 

layer; Overlap rate; 

Building direction 

Steel The samples of steel produced by AM 

method has better tensile test result than 

ANSI samples. 

Laser power stings and scanning speeds 

have the most significant effects on 

mechanical properties. 

The deterioration in mechanical and 

geometrical properties occurs when the 

building angle is less than 45 °. 

[59, 195-

197]  
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The layer thickness has more effects on 

surface roughness than the mechanical 

properties. 

Powder bed 

temperature 

Aluminum 

alloy 6061 

Optimized parameters are recommended 

based on the author’s machine and printed 

materials. 

Preheating of the powder bed is very 

useful in producing crack-free parts. 

[198] 

Laser power; Build 

Orientation; Layer 

Thickness; Defocus 

Distance 

17-4 PH 

stainless steel 

Optimized laser power, orientation, layer 

thickness and defocus distance are 

observed based on microhardness and 

ultimate compressive strength. Machine 

and material are fixed. 

Building orientation exhibits a noticeable 

effect on the mechanical properties 

[199-202] 

Scanning speed Al-Zn-Mg-

Cu alloys 

The effect of scanning speed on porosity 

development and crack behaviour is 

investigated. The best scanning velocity is 

observed with fixed material and machine.  

[203, 204] 

Scanning speed; 

Heat treatment; 

Laser energy 

density;  

Al-Cu-Mg 

alloy 

Scanning speed and laser energy density 

are observed to influence the products’ 

qualities. Heat treatment was proved to 

increase the mechanical properties. 

[205-207] 
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Scanning speed; 

hatch spacing; 

Scanning strategy; 

Build orientation; 

Thermal post-

processing 

AlSi10Mg The best parameters and scan strategies 

are observed for AlSi10Mg using the 

printer SLM-50 

The influence of post-processing on the 

microstructural and tensile properties is 

investigated.  

[1, 208, 

209] 

 

Hatch distance; 

Layer thickness 

Stainless steel 

grade 904L 

Morphology of the first layer and surface 

structure of the thin walls is studied.  

[210] 

Scan speed; Pulse 

width; Pulse 

energy; Repetition 

rate 

Inconel 625 Higher peak power has a better top and 

side surface. Increased repetition rate and 

decreased scan speed have better top 

surface roughness but worse side 

roughness.  

[211, 212] 
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