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Abstract

Additive manufacturing (AM), which is also widely known as three-dimensional (3D)
printing, has been a new trend in the manufacturing process in recent years. It can produce parts
following a generated 3D model by adding layers of materials and fusing them. The main
advantage of AM is the ability to enable customization and fabrication of complex geometries such
as lattice structures, which are extremely difficult to manufacture in the subtractive manufacturing
process. Although AM has been employed in many industrial applications, it is still difficult for
beginning users to ensure the success of every print. It requires users to have a deep understanding
of AM techniques to fully utilize this technology. The printing may fail owing to many factors
such as the poor selection of the build orientation, materials, process settings, and insufficient
geometric support for overhangs. It is difficult for non-AM experts to determine whether their
designs are printable through a selected AM process, and it is even more difficult for them to make
proper modifications without expert guidance before the fabrication. To fill these knowledge gaps,
this study investigated the use of machine learning (ML) to assess the manufacturability of designs
for AM processes. A web-based automated manufacturability analyzer and recommender for AM
was developed as the implementation of the developed hybrid ML models. This tool can be used
for the first-level evaluation of designs for novice AM users such as designers to ensure efficiency

in terms of time and cost required for AM fabrications.

The major contributions of this thesis are listed as follows:

1. Establishment of a unique database for the laser-based powder bed fusion (LPBF) process

and fused deposition modeling (FDM) process.
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Development of a novel approach on manufacturability analysis of LPBF using hybrid ML
models. The models consider both process information and design perspectives.
Development of a hybrid sparse convolutional neural network (CNN) to predict
manufacturability to increase the efficiency and effectiveness of the ML models.
Development of a recommendation system to provide potential modifications to assist
users on AM printing.

. A web-based application of analyzer and recommender was implemented to provide a
comprehensive and easy-to-access manufacturability analysis to novice AM users.
Demonstration of how data-driven approaches can help on design and manufacturing
processes and the framework can be extended to any process where parts can be classified

based on visual inspection and basic labeling.
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Résumé

La fabrication additive (AM), également connue sous le nom d'impression 3D, est une
tendance émergente du processus de fabrication gagnant en popularité. Cette méthode génere des
pieces a partir d’un modele 3D en ajoutant des couches successives de matériaux et en les
fusionnant. Les principaux avantages de la AM est la possibilité de personnaliser les pieces et de
fabriquer des géométries complexes telles que des structures en treillis qui sont extrémement
difficiles a fabriquer dans le processus de fabrication soustractive. Bien que la AM ait été utilisée
dans de nombreuses applications industrielles, elle a une barric¢re a l'entrée tres élevée pour les
débutants. Pour tirer pleinement parti de cette technologie, une compréhension approfondie est
nécessaire. L'impression 3D peut échouer pour de nombreuses raisons telles qu'une mauvaise
sélection de 1'orientation de fabrication, des matériaux, des parameétres de processus et un support
insuffisant. Il est difficile pour les non-experts en AM de déterminer si leurs conceptions sont
imprimables ou non via le processus sélectionné. Il leur est encore plus difficile d'effectuer seuls
les modifications appropriées avant la fabrication. Pour combler ces lacunes, une recherche a été
réalisée sur l'utilisation d’une méthode d'apprentissage automatique (ML) pour évaluer la
fabricabilit¢ des conceptions pour les processus de AM. Un analyseur ainsi qu’un outil de
recommandation de fabricabilité automatisés avec une interface Web ont été¢ développés en tant
que mise en ceuvre des modeles ML hybrides développés. Cet outil peut servir d'évaluation de
premier niveau des conceptions pour les utilisateurs AM novices tels que les concepteurs afin de

réduire la perte de temps et de cotit dans les fabrications AM.

Les contributions majeures de cette theése sont les suivantes:
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Une base de données unique pour le processus de fusion laser sur lit de poudre (LPBF) et
le processus de modélisation de dépdt par fusion (FDM).

Une nouvelle approche sur l'analyse de la fabricabilité du LPBF en utilisant des modeles
hybrides ML. Les mode¢les prennent en compte a la fois les informations de processus et
les perspectives de conception.

Un réseau de neurones convolutifs (CNN) hybrides clairsemés a été développé pour prédire
la fabricabilité afin d'augmenter 1'efficience et l'efficacité des modeles ML.

Un systéme a été développé pour aider les utilisateurs en impression AM en fournissant
des recommandations sur les modifications potentielles.

Une application Web d'analyseur et de recommandation est mise en ceuvre pour fournir
une analyse de fabrication compléte et facile d'acces aux utilisateurs AM novices.
Démonstration de la facon dont l'approche basée sur les données peut aider les processus
de conception et de fabrication et le cadre peut étre étendu a tout processus ou les pieces

peuvent €tre classées sur la base d'une inspection visuelle et d'un étiquetage de base.
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3. It presents a novel approach to manufacturability analysis of LPBF using hybrid machine
learning (ML) models. The models consider both process information and design
perspectives.

4. It develops a hybrid sparse convolutional neural network for predicting manufacturability
to increase the efficiency and effectiveness of the ML models.

5. It develops a recommendation system to provide potential modifications to assist users on
AM printing.

6. It develops a web-based application of analyzer and recommender to provide a
comprehensive understanding and realize easy-to-access manufacturability analysis for
novice AM users.

7. It provides an example of how data-driven approaches can help in design and
manufacturing processes and the framework can be extended to any process where parts

can be classified based on visual inspection and basic labeling.
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Chapter 1.  Introduction and motivations

Additive manufacturing (AM), which is also widely known as three-dimensional (3D)
printing, has been a new trend in the manufacturing process in recent years. It involves building
parts following a generated 3D model by adding layers of materials and fusing them. The main
advantage of AM is the ability to enable customization and fabricate complex geometries such as
lattice structures that are extremely difficult to manufacture in subtractive manufacturing (SM).
Although AM has been employed in many industrial applications, it is still difficult for beginning
users to ensure the success of every print. It requires users to have a deep understanding of the AM
techniques to fully utilize this technology. The printing may fail owing to many factors such as the
poor selection of the build orientation, materials, process settings, and insufficient geometric
support for overhangs [1-8]. Non-AM experts may have difficulty in determining whether their
designs are printable through the selected AM process, and it is even more difficult for them to
make proper modifications before the fabrication. This thesis is dedicated to addressing these

challenges.

In this chapter, the background of AM technology is introduced. Two focused processes,
material extrusion (ME) and laser-based powder bed fusion (LPBF) are briefly introduced in
Section 1.1. The manufacturability challenges in AM are described and discussed in Section 1.2,
which results in the motivation for this study. Section 1.3 explains why machine learning (ML) is
used as the major approach to model the manufacturability of AM. The detailed research objectives
are stated and explained in Section 1.4. This chapter ends with the organization of the thesis in

Section 1.5.



1.1. Additive manufacturing

As introduced by ISO/ASTM standards [9], AM techniques can be divided into seven
categories: binder jetting, directed energy deposition, powder bed fusion, sheet lamination,
material extrusion, material jetting, and vat photopolymerization. The first four can be used to
produce metal products, and the remaining ones primarily focus on polymers. ME process and
LPBF are the two focuses of this thesis as they are well known and widely used. The following

sub-sections provide more details on each process.

1.1.1. Laser-based powder bed fusion

In the metal LPBF process, a laser beam as a power source melts and fuses the metal
powder on each layer according to the given pattern. After one layer is complete, the next layer of
metal powder is applied, and the laser is projected. The process continues layer by layer until the
products are completely built [10-13]. The schematic of the LPBF process is shown in Figure 1-1.
The LPBF process is ultimately about the successful control of heat transferred from an intense
laser beam to a powder bed with poor heat conductivity to produce the geometrically precise
localized fusion of powder [14]. The fusion mechanisms can be grouped into four groups, which
are solid-state sintering, chemically induced binding, liquid-phase sintering (LPS), and full melting
[15]. When metal is used, LPS and full melting are the two conventional approaches used to

solidify metal powder.
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Figure 1-1: Schematic of the LPBF process [11]

Because of its relatively high resolution, numerous metallic powder material options, and
potential for manufacturing virtually any shape, the LPBF process is widely used and studied in
both academia and industry [13, 16-18]. LPBF is applied in the medical and dental, aerospace,
automotive, energy, and tooling industries [16, 18-23]. Compared with conventional
manufacturing (CM), the LPBF process is more suitable for prototyping and low production
volumes of high complexity parts owing to its advantages in cost, production time, and
machinability [17]. In contrast to SM methodologies, it provides more design freedom with the
layer-upon-layer material addition approach [13]. As no tooling is required in the LPBF process,
designers can consider more complex geometries that are not achievable with CM processes. The
increasing market demand for the LPBF process has increased the research efforts in academia [16,

24, 25].

Over the past 20 years, significant research has been conducted in the field of LPBF.
Process, materials, designs, applications, and constraints related to LPBF have been investigated

extensively and were summarized in a recent survey paper [26]. With the rapid iterative



deployment of LPBF equipment, the process has been updated and improved and is considered to
be a mature technology. An increasing number of materials have become available for LPBF
processes such as aluminum AlSi10Mg, cobalt chrome MP1, Maraging steel MS1, nickel alloy
HX, stainless steel 17-4PH, titanium Ti64ELI, and tungsten W1. [27] With the expansion of
materials and equipment, industries attempt to employ LPBF to benefit their current design or
manufacturing process in various applications. More recently, the LPBF process has been used to
progress from more than only fabricating prototypes to the area of functional end-product

fabrication.

1.1.2. Material extrusion

ME is a type of AM process in which a feedstock material (typically a thermoplastic
polymer) is forced through a heated nozzle and selectively deposited layer by layer to create a 3D
object. The most well-known example is fused deposition modeling (FDM), which is also known
as fused filament fabrication. Figure 1-2 demonstrates the schematic of the FDM process [28].
Filaments are used in the printing process. Potential variants of the ME process include different
extrusion processes such as the hot extrusion of rods, cold extrusion of slurries, and hot extrusion

of pellets.
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Figure 1-2: Schematic of the FDM process [28]

ME is typically not as fast or accurate as other types of AM technologies. However, ME
technology and its compatible materials are widely available and inexpensive. It is the most
popular process for hobbyist-grade or desktop-grade 3D printers. ME is often utilized in
manufacturing and industrial contexts to create non-functional prototypes or cost-effective design
iterations. ME also offers a wide selection of materials, including thermoplastics such as
polylactide (PLA), acrylonitrile butadiene styrene (ABS), polycarbonate (PC), nylon, polyether
ether ketone (PEEK), and polyethylene terephthalate (PETG); ceramics such as alumina and
zirconia; green metal mixtures such as stainless steel, titanium, and Inconel; food pastes; and

biological materials.

This research used only the FDM process to validate the developed ML models with the

material selection for thermoplastics, which are the most common type in ME.



1.2. Manufacturability of AM

For the CM process, the study on manufacturability can be traced back to World War 11
[29] owing to the demand to build better weapons. Thereafter, increasing global competition and
desire to reduce the time and cost resulted in the increasing awareness of the manufacturing
considerations [30]. In the CM process, particularly for the SM process, the product is fabricated
by removing the materials from solid blocks. Hence, the products resulting from the SM process
are always considered to be dense. The only consideration in manufacturability is the geometric

inconsistency and the tool accessibility.

The definition of the manufacturability of AM is vague in the literature. For the AM process,
the parts are generally built from materials layer by layer. The density of the part varies. As
investigated in the literature, the mechanical and microstructural properties of specimens
fabricated via the AM process may vary owing to the different building orientations or process
parameters [31]. In the past, investigations using simulations, modeling, materials, and design
optimizations of the AM process have been conducted extensively. However, gaps still largely
exist in understanding and representing manufacturability. Designers are challenged with the lack
of understanding of AM capabilities and the influence of process parameters on the final products

[32].

When considering the manufacturability of the AM process, two questions must be
answered. The first question is whether the part can be successfully fabricated or not, i.e., whether
all the geometry can be successfully built without considering their dimensional and geometric
accuracy. Not all geometric features can be fabricated using AM. Many features present printing
difficulties such as inclined surfaces, overhangs, holes, and walls. Figure 1-3a depicts an example
of incomplete printing through the LPBF process. The bottom area of the objects failed to be
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fabricated in this case because of the improper support structure added to the bottom. Designers
may think the certain geometry is not printable through LPBF; however, Figure 1-3b shows a
similar geometry printed from another printing direction using a different machine. Compared with
Figure 1-3a, the lattice part in Figure 1-3b was successfully printed, but the flat top cover was
warped and not completely printed. The entire circled area is considered to be not manufacturable.
It is difficult for designers who are not experts in AM to determine these potential failures at the

early design stage.
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Figure 1-3: Examples of unsatisfactory printing

The second question is whether the fabricated parts are satisfactory to customers’
requirements in terms of dimensional accuracy, geometric accuracy, and mechanical properties.
These technical requirements are the standards to determine whether the final products satisfy the
required qualities [33-35]. For the AM process, the technical requirements can vary based on
different applications. In addition, from most studies in the literature, researchers nearly always
consider the geometric inconsistencies for the manufacturability analysis of the AM process just
as is conducted in the manufacturability analysis of the SM process. However, as discussed earlier,
considering only the geometric aspects may not be sufficient for the manufacturability analysis. A
clear definition of the manufacturability of the AM process is critically required. A comprehensive

manufacturability model is in demand, which motivated this research.
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1.3. Why machine learning?

ML is an artificial intelligence subset that offers the ability for machines to learn and
improve through experience [36]. ML approaches have been successfully applied in various
applications such as virtual personal assistants, email spam and malware filtering, product
recommendations, and computer versions. ML can be the most suitable approach to solve problems
with two main aspects as outlined in the following:

First, if the problems to be solved are too complex for human capabilities or too complex
to be systematically modeled, ML can provide the advantage of time cycle reduction and efficient
utilization of resources. Second, the tasks often require adaptivity; thus, traditional approaches
such as guidelines or mathematical models have a limitation on the rigidity of adapting changes.
Once the guidelines and mathematical models are developed, they remain unchanged. However,
with the ML approach whose behaviour is primarily affected by the input data, the model will have
the ability to adapt to future variations without any further investigation or code implementation.
These benefits support ML as a potential approach for many applications including AM
technologies. Unlike the conventional manufacturing process, AM processes have not been
standardized yet. There are seven AM techniques depending on the printing methods. Even for the
same AM technique, the quality of products fabricated by the different machines varies
significantly. The AM process is difficult to generalize owing to its uncertainty and variability.
Mastering and modeling the knowledge of the AM process is a complex and extremely difficult
task. Furthermore, most studies related to AM research produced a large set of numerical data such
as experimental results, simulation results, material, and machine information, and the objective

of these studies is to predict the incoming printing process or product quality, which are the



preconditions and the targets of the ML approach. These characteristics make ML a reasonable
solution in AM studies.

More importantly, compared to some traditional numerical methods such as simulation and
morphological operations, ML is much faster. It may require a few hours of training. However,

once the model is defined and trained, the prediction only takes seconds.

1.4. Research objectives

To enable the adoption of AM in real applications, this study investigated the use of ML to
analyze the manufacturability of a given design for a selected AM process. This research aimed to
develop an automated manufacturability analyzer and recommender for novice AM users (MAR-
AM) such as designers at the design stage. It is expected to achieve rapid evaluation before the
fabrication on whether the given design is printable with the selected machine settings and material.
Moreover, such an analyzer is expected to provide some suggestions for users to increase the
printing success rates. More specially, the research objectives of this thesis are summarized as

follows:

1. To develop a more appropriate definition of manufacturability to guide designers toward
AM design. The definition of the manufacturability of AM is still vague. The
characteristics to be satisfied to consider manufacturability are first clarified and defined

in this research.

2. To develop an accurate ML model to effectively identify manufacturability challenges. It
can be specified in two sub-objectives. The first is to develop an AM (in this thesis, LPBF

and FDM are the focus) database. The datasets will be then used for ML training. The



second portion is to develop a general, efficient, and effective ML model to predict AM

manufacturability.

3. To develop an automated manufacturability analyzer and recommender for AM. Such an
analyzer and recommender can predict the manufacturability of a given design and selected
machine and material settings at the design stage. Meanwhile, it can provide suggestions

to novice AM users to increase the printing success rate.

1.5.  Thesis organization

This thesis consists of eight chapters. Chapter 1 introduces the background of AM
technology with a focus on two AM processes: FDM and LPBF. Moreover, the reason for using
ML as the solution for manufacturability is stated. The research objectives are addressed based on
the research limitations and gaps in the literature. In Chapter 2, the existing studies on

manufacturability analysis are discussed, and the fundamentals of ML methods are introduced.

Chapter 3 first introduces the new definition of the manufacturability of AM. It clearly
states the level of manufacturability used in this research. Thereafter, the methodological
framework of the MAR-AM is described. The framework comprises three major parts: (1) dataset
establishment, (2) ML model training, and (3) manufacturability prediction and suggestion, which
are explained in detail in Chapters 4, 5, and 6. The basic assumptions and research focus are clearly

identified at the end of Chapter 3.

Chapter 4 describes the methods for dataset establishment that are used to train the ML
model. The entity-relationship diagram is shown. The experimental setup and design of
experiments are explained, as well as the method of data labeling. An AM data port is finally

proposed in this chapter to increase public data sharing.
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The collected data is sent to either ML model training or manufacturability prediction and
suggestion depending on whether it is labeled. Chapter 5 discusses the ML approach and model
training on the manufacturability analysis. The voxel-based approach is first discussed to
demonstrate the validation of the ML approach. Thereafter, an advanced approach, which involves

sparse representation of the ML models, is developed to increase the model performance.

Chapter 6 focuses on the methodology of the recommendation system, which uses the
prediction from ML models. With a closed-loop process, suggestions on process parameters or
designs are offered. Furthermore, users are invited to provide feedback on the prediction that will

be sent to our database to update the ML model regularly.

The proposed framework has been implemented into a web-based application. Case studies
have been conducted to validate the proposed approach, and they are described in Chapter 7.
Finally, the thesis conclusions and future perspectives and recommendations are provided in

Chapter 8.
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Chapter 2.  Literature review

This chapter provides the fundamentals related to this thesis and a comprehensive review
of the existing studies on the manufacturability of AM. Section 2.1 first introduces the existing
efforts in evaluating the SM process as a comparison and references to the manufacturability
studies of AM. In Section 2.2, the major factors in evaluating the manufacturability of AM are
reviewed and discussed. Based on that, the existing approaches on AM manufacturability analysis
and non-computational methods are discussed in Section 2.3. The computational methods are
listed and discussed in Section 2.4. Section 2.5 compares the existing manufacturability studies on
SM and AM. ML is introduced in this thesis to solve the manufacturability challenges. The

fundamental of ML is introduced in Section 2.6. Finally, this chapter is summarized.

2.1. Existing Approaches on Evaluating the Manufacturability of SM

In the past, the manufacturability analysis was always conducted by a designer. Designers
use their experience to evaluate the manufacturability of their designs. Some guidebooks have
been published by the leading professional societies or manufacturers to provide design rules based
on a particular manufacturing process. Designers read carefully through these heavy guidebooks
to avoid these configurations that may result in poor manufacturability. The quality of the
manufacturability analysis is also highly dependent on their working experience. Automated
manufacturability analysis was developed to aid designers in manufacturability evaluations. After
years of research and development, manufacturability analysis has become an essential part of
computer-aided design (CAD)/computer-aided manufacturing (CAM) systems. Commercialized
software such as DFMXpress in Solidworks, VAYO, and DFMPro, have been released for users

to evaluate manufacturability. The manufacturability of SM can be defined under four
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characteristics: visibility, reachability, accessibility, and setup complexity [37]. Studies with
different approaches to evaluating the manufacturability of a selected SM process have been
published [30, 38-42]. According to the existing literature reviews, the main strategies for these
approaches can be classified into two groups based on the geometric interpretation: feature-based

and feature-less-based approaches [37, 42, 43]. More details are provided in the following.

2.1.1. Definition of the manufacturability of SM

Given the design and a selected SM process, the definition of manufacturability in SM is
straightforward. It is defined as whether the design is manufacturable in shape, dimensions,
tolerances, and surface finishes. The design or features are evaluated on manufacturability with
respect to four characteristics: visibility, reachability, accessibility, and setup complexity [37].
Figure 2-1 provides a geometric explanation for each characteristic. Visibility depicts the view
from the machine tool to the part. A part has high visibility if the surface area of the entire model
can be seen from the view of the machine tool. Reachability indicates the lengths required for the
machine tools to reach the surface of the model. A shorter length of the machine tool is preferred.
Accessibility measures the ability of a model to be machined without tool collisions. Accessibility
is dependent on both the surface geometry and tool size. Setup complexity measures the number
of setups required to fabricate a part. When machining a complex geometry, the tool may require
to be rotated to access certain features. In existing research publications, accessibility is the most

popular evaluation criterion for both the feature-based and feature-less-based approaches.
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Figure 2-1: Geometric explanation for machining characteristics: (a) visibility, (b) reachability, (c)

accessibility, and (d) setup complexity [37]

2.1.2. Feature-based Approach

The general concept of the feature-based approach is to extract the machining features such
as holes, pockets, slots, or machinable surfaces from the design features. The extracted features
are then used as the input of the manufacturability analysis. The feature-based approach can be
further categorized into the three most active approaches, according to Han’s review [42]: graph-
based, volumetric decomposition, and hint-based approaches. The graph-based approach
determines the feature types by translating the given design into multiple graph patterns. The part
graphs are analyzed to determine the features [44]. This approach has been successful in
recognizing some types of features but has some difficulties when faces are altered owing to
feature intersections. For the volumetric decomposition approach [45], the general concept is to
decompose the geometric input into volumes and interpret them to the machining features. The
decomposition operation can be either convex hull decomposition [46, 47] or cell-based
decomposition [48, 49]. The convex hull deposition is based on geometric Boolean operations,
and the cell-based deposition required that the volume be decomposed into the cells and then

composed to generate a volume for a machining feature. The challenge in the volumetric
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decomposition approach is that the result features may not match with any predefined feature types
after the decomposition. The hint-based approach determines the machining features by following
the defined rule that asserts a feature and its associated operation. The most recognized hint-based
reasoning algorithms were proposed by Regli for F-Rex [50], Han for an integrated incremental
feature finder [51], Brooks for a feature-based machining husk system [52], and Vandenbrande for
an object-oriented feature finder [53]. The major problem in the hint-based approach is that

interpreting all the machining features is difficult.

2.1.3. Feature-less based Approach

The feature-based approach primarily focuses on detecting manufacturable features in the
selected machining process. In contrast, the feature-less approach analyzes the surface
representation of the model to determine the manufacturability. It ideally operates with any
arbitrary geometries without feature recognition [37]. Moreover, the feature-based approach
mostly comprises all the geometric elements as an entity to be a machining feature. However, this
constrains the manufacturability analysis. For instance, for multi-axis machining, a portion of the
feature can be fabricated in one direction, and then the remaining portion is finished after changing
the tool setup orientation. The feature-less approach can solve these challenges that are difficult to
solve using the feature-based approach. Li proposed the feature-less-based strategy to determine
the manufacturability of a part by slicing geometry files to map machinable ranges [43]. The slices
are set orthogonal to the axis of the rotation. The accessibility is estimated using the visibility of
the light line on a two-dimensional (2D) slice file. The machining simulation proposed by Jang
offers another direction by using the voxel representation in generating collision-free tool paths
and determining cutting parameters to increase the fabrication success rate. Kerbrat [38] presented

a more advanced approach by decomposing the geometric model into octrees and evaluating the
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manufacturability index on each octant (an example shown in Figure 2-2). Compared with the
voxel-based and slice-based feature-less approach, the octree-based approach can acquire high
accuracy relatively rapidly. His approach also offers the potential for evaluating manufacturability

considering both machining and AM.
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Figure 2-2: Map of manufacturing difficulties and the associated color scale [38]

2.2. Major factors on evaluating the manufacturability of AM

When investigating the manufacturability of the AM process, three key aspects must be
considered: design, process, and material (Figure 2-3). Manufacturability is the intersection of
these three aspects. Thus, it is necessary to understand all three aspects. Process and material are

often correlated to each other and combined as process parameters.
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Figure 2-3: Manufacturability of AM

2.2.1. Design aspects

To consider the manufacturability of a manufacturing process, the geometric features that
can be fabricated should be considered. In the SM process, the major design geometric features
are defined as holes, slots, pockets, etc., which are typically associated with the type of the
corresponding tooling required to create these features [42]. However, the design geometric
features that the AM process can manufacture are dramatically different from those defined for
SM processes. More importantly, a design geometric feature that is manufacturable using one AM
machine with a given process parameter setting may not be manufacturable when the machine or
process parameters are changed [6]. In Kruth’s research [6], the major design geometric features
considered in AM were thin walls, overhangs in holes, self-supporting holes, one angled surface,
and large radiuses. A few benchmark testing parts were designed to identify the limitations and
accuracy of the AM process. For LPBF, Thomas [8] conducted numerous experiments to establish
the design guidelines for the LPBF process. The main geometric features considered in this
research were object orientation, surface roughness, minimum slot, and wall thickness, parallel

edge, angular overhangs, fillet radii, holes, and channels, tapping, and reaming a self-supporting
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hole, shrinkage, and stock on the material. Later, Adam [7] investigated the design rules for AM,
including LPBF and FDM. The limitations of thickness, orientation, direction, and position of wall
feature, as well as the length, inner radius, orientation, and outer radius of the cylinders, were
studied. Similar studies were also conducted in industries to identify geometric feature limitations
in AM processes. Materialise [54] provides design guides based on their machines for 20 different
materials. Taking steel as an example, the main considerations are wall thickness, overhangs,
connections, edges and transitions, holes, wireframe structures, hollows, nested objects, hinged
and interlinking parts, connection marks, text, and surface details, shrinkage compensation, and
dimensional accuracy [55]. Similar guidelines are given by Stratasys [56] in the form of design
guides for different AM processes. In the most recent literature, major geometric features
considered in the LPBF and FDM processes can be summarized as minimum feature size,

overhangs, shrinkage, and object building orientations.

2.2.2. Process aspects

The process parameter is another consideration in the manufacturability analysis. Different

AM technologies have different focuses on the process parameters.

For the LPBF process, research shows that more than 130 process parameters influence the
process, but only a few of them are critical [1, 57]. These process parameters are grouped into four
groups: laser-related, scan-related, powder-related, and temperature-related. The laser-related
group consists of laser power, wavelength, spot size, pulse duration, and pulse frequency. The
scan-related group comprises scanning speed, scanning spacing, and scanning patterns. The
powder-related group contains particle size and distribution, particle shape, powder bed density,
layer thickness, and material properties. The temperature-related group contains the powder bed
temperature, the powder feeder temperature, and the temperature uniformity. The full list of
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process parameters is shown in Figure 2-4. Most of these parameters are strongly interdependent
and interacting. For example, steel may require laser power at 150 W for better quality, but for
other materials, such as aluminum, the preferred laser power is different [58]. Even for the same
material, different particle sizes, shapes, and densities will require different laser powers to achieve
the best quality. Other factors such as gas flow also have a significant influence on the quality of
the final products [13]. Researchers have conducted many studies [2-4, 59-62] to investigate the

interrelationship between process parameters and product qualities.

Process parameters in LPBF

Laser-related Scan-related Powder-related Temperature-related
- Laser power H Scanning speed | | Particle size and | | Powder bed
distribution temperature
L wavelength HScanning spacing - Powder feeder
' —  Particle shape =
temperature
— Spot size ! Scanning pattern ;
— Powder bed density Temperature

uniformity

— Pulse duration

Layer tluckness

— Pulse frequency

Material properties

Figure 2-4: Principle process parameters in LPBF [1]

Similar to the LPBF process, the FDM process has hundreds of process parameters. Most
of the settings are recommended and settled as default by printer makers. Only a few of them
require tuning from users. The most investigated process parameters for FDM are layer thickness,
scanning speed, infill percentage and pattern, extrusion temperature, bed temperature, envelope
temperature, and build orientation [63, 64]. According to a comprehensive review, layer thickness,
infill density, and build orientation have been observed to have a significant influence on the

mechanical properties of the final products [64]. Extrusion temperature is also a critical parameter
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in the FDM process [63]. FDM has a straight requirement for the range of extrusion temperature
for different materials. The extrusion temperature determines the bonding properties of materials,
filament material liquidity, and extruded filament width. Envelope temperature has significant
effects on the thermal stress inside a part [63]. Increasing thermal stress will result in part warpage.
However, not all current FDM printers have an enclosed chamber. The control of the envelope
temperature is an advanced option. Bed temperature affects the adhesion between a part and the
build plate. The printing part is expected to adhere to the build plate until it is completely built.
The bed temperature setting aids with the adhesion. Other options are available to increase the
level of adhesion, such as printing a part with a brim and using glue. Scanning speed refers to the
speed of nozzle movement, and it is divided into profile and filling scanning speeds. Higher
scanning speeds can result in poor printing quality owing to the increase in the mechanical

vibration. Lower scanning speeds may cause the hot nozzle to burn a part [64].

2.3. Existing approaches on evaluating the manufacturability of AM

Efforts on manufacturability analysis of the AM process have been conducted by a few
researchers. To summarize the studies in the literature, the recent efforts to evaluate the
manufacturability of AM are categorized into three groups (Table 2-1): design
guidelines/checklists, real-time process monitoring, and computational methods in
manufacturability analysis. Many studies have been conducted on real-time process monitoring in
AM. In this section, current non-computational approaches in evaluating manufacturability are
summarized and discussed. The computational approach is fully explained and discussed in the
next section. The general concept of modeling manufacturability is similar for both LPBF and

FDM. Therefore, the existing approaches are summarized together in the following sections.
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Table 2-1: Recent efforts to evaluate the manufacturability of AM

Approaches

Description

Reference

Design guidelines/checklists

Numerous experiments were conducted to
provide a manufacturable range of
geometric design features, including
minimum thickness, part orientation,
surface roughness, chamfers and radius,
holes, and overhang. Designers are
expected to follow these guidelines or
checklists in their designs.

[7,8, 32,
65-67]

Real-time process monitoring

Using image-based real-time monitoring to
detect and predict potential failure and
printing quality during the process.

[68-82]

Computational
methods in
manufacturability
analysis

Manufacturing
features
recognition

Automate the identification of erroneous
features that are under the capability of the
selected printer. The general concept of
this approach is to discretize the 3D model
into 2D/2.5D segments to reduce the
difficulty of the direct identification of 3D
features. According to the types of input
data for feature recognition, prior research
can be classified as 3D feature-based
approach, slicing data-based approach,
voxel-based approach, etc.

[83-94]

Knowledge-
based or rule-
based
approach

Integrate the models of design aspects and
the material and process aspects to predict
the performances of the AM parts

[95-97]

ML approach

Use ML as a black box to predict the
manufacturability of the given design or in-
situ process

[98-107]

2.3.1.

Design Guidelines/Checklists

To bridge design to actual manufacturing, both academics and industries seek the answer

modeling the manufacturability or manufacturing capabilities. Both industries and academics have
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conducted research to represent manufacturability in the form of design guidelines for different
AM processes [67, 108, 109]. Numerous experiments have been conducted to provide a
manufacturable range of geometric design features including minimum thickness, part orientation,
surface roughness, chamfers and radius, holes, and overhang. Designers are expected to follow
these guidelines in their design. However, most of the design guidelines for the AM process focus
only on the limitations of a single standard design feature, whereas high complexity designs that
are specialized by the AM process to produce are rarely studied [110]. Moreover, most of the
guidelines assume the users have prior knowledge and design experience with the AM process.

This is a disadvantage for novice users.

Booth et al. presented another approach called the design for additive manufacturing
worksheet [67]. A worksheet (Figure 2-5) is provided as a checklist for the designer to validate in
advance whether their design is manufacturable. For each category, the importance of weight is
applied, and the final total score is calculated. The score is grouped into levels of manufacturability.
It offers a simple visual list of details that addresses common mistakes in the AM process.
Designers can evaluate the suitability of their designs in the AM process based on that checklist.
The worksheet approach can provide an initial evaluation of the design, but it may not be
applicable for complex designs because the worksheet simplifies the entire design guidelines by
offering the most common suggestions. The limitation of both guidelines and worksheet
approaches is that they consider only the design aspects. Each printer has some unique
characteristics. By varying process parameters, some of the challenging geometric features may
still be successfully manufactured. Such examples have been fully demonstrated in the literature
where process parameter optimization is conducted to improve manufacturability [10, 59, 111,

112].

22



A quick method for reducing the number of printing and prototyping failures, by Joran Booth
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Figure 2-5: AM worksheet provided by Booth et al. [67]

Based on these design guidelines or checklists, the manufacturable geometric features are
summarized with design suggestions. They are primarily grouped into six categories: minimum
feature size, support structure, part orientation, surface, hollow interiors, and overhangs (Figure
2-6). In addition, these criteria are the major considerations for feature recognition in the
computational methods, which are discussed in Section 2.4.1. More details on the manufacturing

features for the AM process are provided in the following:

Minimum feature size: Research shows that minimum manufacturable feature sizes exist in the

LPBF process [113]. The minimum gaps between two features or the minimum wall thickness are
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two critical examples. Thomas concluded that the minimum gap thickness for LPBF is 0.3 mm,
and the minimum wall thickness is 0.4 mm £0.02 [8]. These data are based on the machine and
material used in this research. They offer a good reference but may not be applicable to all cases.
The values vary slightly on different materials and machines. Kruth et al. [6] examined different
LPBF machines with a benchmark to check the process limitations. They demonstrated that each
machine has its own limitations in terms of the minimum feature size. Moreover, since materials
used in the AM process are not standardized, and each company has its own proprietary

information on the powder they provide, it is not comparable in this case.

Support: A support structure is required in most of the AM processes for two main functions:
holding the fabricated piece and resisting the thermal stress [114]. However, the support structures
significantly reduce the surface finish [8]. Moreover, improper support structures may cause
printing failure [114]. Moreover, for the LPBF process, since the support and structural materials
are both metals, they are very difficult to remove. Removing the support structure may
significantly reduce the surface finish [26, 115-119]. For the FDM process, although some soluble
support materials are used, it only supports several material options such as PLA. Not all FDM
materials have compatible soluble support materials. Therefore, support structures are expected to

be minimized. The use of support is a prominent problem in the AM process.

Part Orientation: There are two aspects to the part orientation. The first is the placement
orientation of the entire part. The second is the angles of the features under the placement
orientation of the part. If an overhang tilts at an angle less than a certain degree from the build
direction, it may be able to be printed without support structures. The threshold of the overhang
structure is defined based on different materials and machines. To minimize the support structures,

the optimal placement orientation must be determined to minimize the surface that requires support
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during printing [8, 26, 65, 66, 115, 118-123]. Most slicer software offer such functions to
determine the best placement of the part. The part orientation has been observed to have significant
effects on strength and surface finish. Vertically printed parts with the layers oriented
perpendicular to load direction have better mechanical properties than horizontally printed parts
with the layers parallel to load direction [124]. Part orientation dictates how many support
structures are required to fabricate samples, and removing the support structures reduces the

surface roughness [121].

Surface: The surfaces of a part can be categorized into top, side, and bottom surfaces. As the
characteristics of the LPBF process, the surface of the part is always attached with incompletely
melted powders. To achieve a fully dense metal surface, the part will be printed oversize for post-
processing. However, for fine features, post-processing may not be applicable. Here, the surface
roughness is affected [3, 8]. For non-flat down-facing surfaces, regardless of whether they are
printed with or without support structures, the inclined surfaces may have a certain level of surface

roughness challenges.

Hollow interiors: A hollow interior is a type of feature that the AM process specializes in
fabricating. Frequently, the traditional manufacturing process cannot produce an entire hollow part
at once, but the AM process offers this possibility. When the functionality is promised, using a

thick wall and hollow interiors significantly reduces printing time and part weight [26, 115, 125].

Overhangs: Relative long overhangs without support are not printable in the AM process. The
maximum overhang distance without support varies based on different process parameters. As
mentioned earlier, it is recommended for designers to minimize the support structures when the
functionality is promised. When applicable, concave and convex radii are alternative design

features with self-supporting dimensions [116, 126-129].
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Figure 2-6: Examples of geometric features considered in LPBF: (a) minimum thickness [8], (b) support,

(c) part orientation [26], (d) surface [8], and (e) holes (overhangs) [§]

2.3.2. Real-time Process Monitoring

Real-time process monitoring is often used to detect potential failure during printing time.
Although the AM was invented decades ago, and many commercial machines are available on the
market, process repeatability and stability are still a challenge for the industry's breakthrough.
Hence, real-time process monitoring was introduced to improve process stability. It is also
considered a real-time manufacturability detection. Image-based real-time monitoring is used to
detect and predict potential failure and printing quality during the process. The scheme of the
LPBF process monitoring setup is shown in Figure 2-7 as an illustration. Printing failure and

unsatisfied printing quality such as surface finish, porosity, tolerance, and tensile stress [68-74]
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can be observed and predicted before the printing process is complete to save time and money.
Marco [68] conducted a comprehensive review of in-situ monitoring methods in metal powder bed
fusions in 2017. In his review, he summarized the most common categories of detects in the LPBF
process such as porosity, residual stresses, cracking and delamination, balling, geometric defects,
and dimensional accuracy. A map of the main defects and their approaches causes in the literature
was provided. The possible sources of defects can be grouped into four categories: equipment,
process, build preparation choices, and material powders. The main set-up parameters and settings
for the existing studies are also listed in his paper. Recently, research on using ML to assist real-
time process monitoring was proposed to aid in predicting the printing quality and possible printing
failure [75-82]. The real-time process monitoring can aid in detecting the printing failure ahead of
the completion of the printing and reduces the time and cost. It can effectively aid in solving the
problem caused by the repeatability and stability of the process or machine. However, it cannot
determine manufacturability in the design stage. It is not applicable if the printing failure is due to
the geometric design rather than the printing process or machine. More details are discussed

observed in Section 2.4.3 when the ML approach is introduced.
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Figure 2-7: LPBF process monitoring setup scheme [68]

2.4. Computational methods in manufacturability analysis

Manufacturability analysis at the design stage is expected to produce suggestions and
recommendations for designers to evaluate their design and the selection of the manufacturing
process. Automated manufacturability assessment is always sought to assist designers, particularly
novice AM users, to fully utilize AM techniques. The manufacturability analysis is expected to be
automated with requiring fewer user inputs, comprehensive with considering both design and
process aspects, and recommendable with offering reasonable solutions and suggestions to aid
users in the fabrication. Table 2-2 compares the related studies are compared based on these
requirements. Overall, none of the previous studies provided the demanded manufacturability

analysis for novice AM users at the design stage. More details are discussed in the following.
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Table 2-2: Comparison of the existing computational methods

Onl
re rlln}r] . Recommended
Automated | Comprehensive d . solutions
noviee rovided
knowledge P
Slicing-based Yes No Yes Yes
approach [90]
M -
anufacturable | Voxel-based Yes No Yes Yes
feature approach [86]
recognition 3D feature-
based Yes No Yes Yes
approach [84]
Knowledge
n:a:;ier;ge;t No Yes No No
Knowledge- Y ’
96]
based or rule- Ontolo
based approach basec%y
Yes Limited No Yes
management
system [97]
ML approach [98-107] Yes Limited Yes No

24.1.

Manufacturable feature recognition

Manufacturing feature recognition is the most popular approach to analyzing

manufacturability in AM. This approach automates the identification of erroneous features that are

under the capability of the selected printer. The general concept of this approach is to discretize

the 3D model into 2D/2.5D segments to reduce the difficulty of directly identifying 3D features.

The detected features are then evaluated based on the similar criteria listed in the design guidelines

(Section 2.3.1). Moreover, depending on the types of input data for feature recognition, prior

research can be classified as 3D feature-based approach [83, 84], slicing data-based approach [93,

941, voxel-based approach [85-90], and others [91, 92].
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2.4.1.1. Slicing data-based approach

Chen and Xu [93] proposed a layered depth normal images (LDNI)-based offsetting
method for computing thin features in sliced data (Figure 2-8). The tunable offset values are
consistent with the manufacturing constraints. Nelaturi et al. [88] applied the medial axis theorem
(MAT) to identify the thin features in the sliced model. However, MAT has some challenges with
computing corners. In addition, it is sensitive to small noises and artifacts, which results in many
unknown branches in the skeleton that require more work to remove. Because of these challenges,
it requires extra computation, and thickness maps for intricate shapes are difficult to compute. A
more recent advance was realized by the same authors [90] by extracting a “meso-skeleton,” which
is the maximal area within each slice where a print head can be positioned during the printing
process. It is topologically equivalent to the corresponding slice of the input shape. Their approach
enables the topologically important area that is smaller than the single deposition path to be
thickened. Build orientation is simultaneously optimized to minimize the modification of the

original model. The correction of each slice is realized using pixels (Figure 2-9).
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Figure 2-8: Illustration of computing infeasible features using the LDNI-based offsetting

algorithm [93]

....................................

(a)

Figure 2-9: (a) For the same slice (yellow), when the skeleton is obtained using the thinning
process, the protrusion is elongated in the corrected model (gray). (b) Spur pixel removal achieves the

intended length by deleting the end-point pixels (marked green). [90]
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2.4.1.2. Voxel-based approach

Tedia [86] proposed an automated manufacturability-analysis tool using voxel-based
geometric modeling. The input design, which is a CAD file, is first converted into voxel
representation. Thereafter, thin features and undersized negative features are identified. Support
material generation, void detection, and build time estimation are also considered. The flowchart
of his manufacturability analysis is shown in Figure 2-10. Several case studies have been
conducted to validate his work. Results from the support material generation and build time
estimation have been compared with commercial software to validate his approach. Although his
case study was fabricated through the ME process, which is another type of AM process, the

concept is similar in the LPBF process.

Voxel representation
Ray * Record intersections _ -
Input Polygonal | casting and store filled and Identify thin Identify undersized
model — empty voxels —) P negative features
*  Store normal vectors
of facets crossed l
Support Material Generation
®  Map normals stored during
. voxelisation to corresponding Void
Tool pa.th Bm_ Id tlrne vozels e e ion /
Generation Estimation ¢ s  Calculate volume of support Removal
material and surface contact arca

¢ Determine orientation
comesponding to minimum
support material requirement

Figure 2-10: Flowchart of the manufacturability analysis tool [86]

A more advanced approach proposed by Kerbrat et al. [85] introduced an octree-based

voxelization to decompose a CAD model for hybrid additive and subtractive manufacturing. The
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manufacturability index incorporates geometric information (maximum and minimum dimension,
geometric accessibility, radios, void volume, etc.), material information (material availability and
material properties), and technical specifications (tolerance and surface quality). An example of
2D octree-based voxelization is shown in Figure 2-11. The octants are categorized into three
categories: black, white, and grey octants. To construct an octree, the object is first enclosed by
the root octant that can completely contain the object in any direction. It is then subdivided into
eight sub-octants to obtain the first level of the octree representation. Black octants are those that
are completely inside the object. Grey octants depict those that are partially inside and outside the
object. White octants are those that are completely outside the object. The subdivision process is
performed on grey octants until the desired resolution is achieved. Based on the octree

decomposition algorithm, a map of manufacturing complexity is obtained.

(b) Level 2 of decompositicn

(d) Level fmpns ition

(a) Shape to decompose

Figure 2-11: Octree-based voxelization [85]

2.4.1.3. Mesh-based approach

Cabiddu and Attene [94] developed a mathematical model called epsilon shapes that can
detect and thicken the thin features of both 2D and 3D geometric models. In 2D geometry, the
thickness is computed at the local minimum of each vertex using triangulation. In the 3D model,
the polygonal model is first meshed using tetrahedrization, and then the local minimum thickness
of each vertex is computed to determine global thin features. Generally, the mesh-based approach

can be considered as a generalization of the voxel-based approach. A scheme of thickness
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computing for a 2D polygon is shown in Figure 2-12. One typical disadvantage of the voxel-based
approach is distortion in the voxelization step. In addition, to satisfy the high resolution of

industrial printers, a 103 cm cube would require more than a billion voxels.

(a) Convex hull and triangulation. (b) R(x) at the first iteration. (c) The disk at the first iteration.

(d) R(x) and the disk at the second (e) Ri(x) and the disk at the third

iteration {and last) iteration

Figure 2-12: Computing E for a single vertex. (a) Input polygon with both the convex hull and
the triangulation. (b) R(x) at the first iteration. (c) Disk at the first iteration (d) Disk at the second

iteration. (e) Final iteration in this case [94]

2.4.1.4. 3D feature-based approach

Shi et al. [84] first listed infeasible features including unsupported features, minimal
features, maximum vertical aspect ratio, minimum clearance, and minimum support-free angle.
Heat kernel signature (HKS) is adopted to cluster surfaces based on vertices with triangular meshes
as the original input. The basic concept of HKS is to compute the heat losses through time. The
heat diffusion rate is considered to be an indicator of topological and geometric entities. The heat
diffusion equation is applied to obtain the rate. The rate is represented by the quantity of heat

received by a point after a unit. With the heat persistence value and a percentage similarity, the
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vertices can be clustered into different sets to predict a mass distribution pattern and prepare the

potential shape recognition (Figure 2-13).
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Figure 2-13: Flow of feature recognition using HKS [84]

2.4.2. Knowledge-based or rule-based approach

Manufacturing feature recognition primarily considers the effects of the design aspects, but
not the process aspects. The performance of the printed part may vary owing to the variation in the
machine selections, material selections, and the setting of the process parameters. To fill this gap,
researchers such as Hossein et al. [96] integrated the performance of parts and the AM process into
a model to predict the performances of the AM parts and improve the design and processes. They
proposed the dimensional analysis conceptual modeling (DACM) framework to generate the
interrelationship between the performance and process models by producing a set of governing

equations.

A similar concept generated by Xu et al. [95] presented a knowledge management system
using Bayesian networks. The method was referred to as the Guide-to-Principle-to-Rule approach.

The model was set based on AM fundamentals. The structure of the system is presented in Figure

35



2-14. The knowledge management system was organized into three domains: process, material-
related, design-related, and part-related. Each domain was quantified. The manufacturability was
modeled numerically from the top level to the detail level. The system can learn conditional
probabilities in the model from different sources of information, and inferences can be conducted
in both forward and backward directions. Users are expected to use this management system to
determine the best AM process that can be used before the actual fabrication. Moreover, the
estimated dimensional accuracy, mechanical properties, and surface finish are given in a range.
Note that in contrast to other computational approaches that primarily focus on feature recognition,
Xu’s approach attempts to model the relationships among the process, design, and products. This
approach provides a general tool to explore the relationship among the process, design, and product
qualities of the AM process, but it was not intended for a precise prediction on the
manufacturability of a given design. It offers a well-modeled knowledge management system on
the AM process, and it is intuitive for users to understand the manufacturing process. However,
when applied to the specific design, uncertainties from different printing strategies and printers are
not considered. It can aid the designer in understanding the AM process better, but users still

require some knowledge to decide on whether their designs are manufacturable.
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Figure 2-14: Structure of the knowledge management system: (a) overall structure, (b) submodel for

LPBF [95]

37



A more recent and comprehensive method proposed by Kim et al. [97] offers an ontology-
based knowledge management system. The rules are developed to recognize manufacturable
features and analyze manufacturability. Moreover, their approach offers redesign suggestions to
designers to improve the printing success rate. However, their approach requires designers to
understand the information structure of the ontology and lacks the support of machine and material

selections.

2.4.3. Machine learning approach

Recently, the ML approach has been a new trend for solving industrial problems [130].
Studies in design and manufacturing are also attempting to utilize the benefits of ML [131, 132].
Several novel computational methods that apply ML to predict the manufacturability of the given
design through AM process have been proposed. Such applications include the prediction of visual
defects, surface roughness, microstructure, and machining features [98, 99]. The current
approaches to applying ML in AM manufacturability analysis can be categorized into two major

categories: real-time detection and analysis at the design stage.

Real-time detection has two main approaches. The first one is to use layer-wise images
from the in-situ sensor as input features to predict the defects. The prediction of the defects can be
an image or a simple yes or no value. Representative studies include those on detecting flaws [100]
and porosity defects [101] during the LPBF process, detecting warping [133] during the FDM
process, and a quality control study by Liu et al. [102]. The second approach is to use the process
information such as temperature, layer thickness, and scanning speed as the inputs to predict some
characteristics such as roughness, tolerance, and printability. Such studies include the research
proposed by Li et al. [103] to predict surface roughness with a set of input features in time and
frequency domain, and a similar approach by Cerda-Avila et al. [104] to predict the structural
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performance with the input features such as layer thickness, infill pattern, and build orientation.
However, as mentioned in Section 2.3.2, the real-time detection approach cannot determine the
manufacturability at the design stage. It is not applicable if printing failure occurs due to geometric

design instead of the printing process or machine.

The analysis at the design stage has two main approaches. The first is the use of 3D models
as inputs to predict a single value such as printability, which is a yes or no question. The most
common method is voxelization. For instance, Guo et al. [105] proposed a deep-learning-based
framework for assessing the manufacturability of cellular structures in the LPBF process (Figure
2-15). The voxelization of the design model was used as the input to predict manufacturability. An
auto encoder-generative adversarial network was developed as the classification model. The
results demonstrated the capability of the model for manufacturability analysis even with a small
amount of data. A similar concept was conducted by Mycroft et al. [106]. Their study proposed a
predictive model that could estimate the printability of a given artifact before the actual fabrication

is conducted. A voxel map was used as one of the geometrical descriptors.
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Cellular Structure Voxelized 3D Binary Arrary

Figure 2-15: ML-assisted manufacturability analysis by Guo et al. [105]

The second approach is to analyze the critical feature parameters of the design model (e.g.,
lattice type, strut diameters for the lattice structure) to predict the single values such as printability,

ultimate strength, and elastic modulus. Representative research includes the study by Hassanin et
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al. [107]. In their study, the strut length, strut diameter, and strut orientation angle were selected
as the input features to the ML model to predict the properties of the printed cellular structures. A
deep neural network was developed, and their results outperformed the statistical design of the

experimental approach.

In summary, most studies on manufacturability analysis in the ML approach fall into real-
time detection. Some ML approaches assist manufacturability analysis at the design stage.
However, none of them provide suggestions and recommendations to designers on the changes
they can implement to make the design printable. Moreover, none of them provide a

comprehensive analysis with the consideration of both design and process aspects.

2.4.4. Tested commercial software

While preprocess software exists, such as Magics, Nettfab, and online 3D printing service
providers such as Sculpteo, Shapeways, 3D hub, and 3DXpert, they are focused on examining the
validity of STL files and reparation of meshes and offering the functionality of slicing, toolpath
planning, infill pattern, Boolean operations, and support structure generation. More recently, some
software provide options for optimizing the build orientation and the support for a part. Some of
them offer the function of recognizing and examining small features that are under the resolution
threshold, such as thin walls; however, they are specific for a type of printer, and other types of

difficult-to-manufacture features are not included as void and minimum clearance.

2.5. Comparison of manufacturability analysis between SM and AM

For the manufacturability analysis in the SM process, the approaches are summarized into
two categories: feature- and feature-less-based approaches. The geometric algorithms are similar

in both approaches and are slice-based, volume-based, or hint-based. The difference is that, for the
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feature-based approach, the focus is on identifying the machining features such as holes, extrusion,
and planes. For the feature-less-based approach, the major investigation is to evaluate the four
machining characteristics, which are visibility, reachability, accessibility, and setup complexity,
directly on the geometries; thus, there are no feature extractions. The manufacturability analysis
of the AM process primarily focuses on the feature-based approach. Very few studies have been
conducted on the feature-less approach. The geometric algorithms for analyzing the shape are
similar to the SM process; however, the target features in the AM process are different from the
features in the SM process. The AM process focuses on features such as minimum thickness and
overhang. In addition, it has no defined manufacturing characteristics such as in the SM process.
The manufacturability analysis is based on the constraints on these target features. For instance,
the minimum gap thickness for LPBF is 0.3 mm, and the minimum wall thickness is 0.4 mm +0.02
[8]. Moreover, the SM process removes the volume from the raw materials; hence, the quality of
the same machining process should be nearly the same. However, for the AM process, the printing
quality with different selections of the AM machines might differ. It states that, when considering
the manufacturability of the AM process, in addition to the geometries of the design, the process
settings and material selections should be considered. To comprehensively model the
manufacturability model of AM with the coupled relationships among process, material, design,

and final product qualities, this thesis introduces the ML approach to solve the challenges.

2.6. Fundamentals of ML

ML systems automatically learn trends from data that enable them to make generalizations
about instances they have not encountered before. ML lies at the intersection of computer science
and statistics and has been applied to a wide variety of problems in which human intuition is

insufficient. Supervised, unsupervised, and reinforcement learning are three major categories in
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ML studies [36, 134]. This thesis focuses on supervised learning. Supervised learning uses labeled
input data and creates a model to generalize on unlabeled data of the same format. Supervised
learning can also be further categorized into regression and classification problems. Regression
means that the output of the model will be continuous values. An example of a “real-time”
regression problem is predicting the stock price. With the historic pricing data, the developed
regression model can predict the price of the stock in the near future. Statistical classification is
the most mature and widespread application of ML. Classifiers typically input a vector of feature
values and assign them to a discrete class. This is often accomplished using decision boundaries
to divide the input/feature space into regions, each representing a class, and observing where new
data lies. A typical classification problem is to recognize spam emails. By learning the
characteristics of what forms spam email, the classifier can be used to filter new incoming emails.
In this paper, manufacturability analysis is considered a classification problem to determine

whether the entire part or each voxel of the part can be fabricated.

Many ML algorithms have been investigated in the literature [36, 134]. The most common
algorithms are decision trees, support vector machines, naive Bayes, random forests, neural
networks (NNs), etc. NNs, including classic feedforward neural network (FNN), and convolutional
neural network (CNN), are the main algorithms applied in this thesis. The FNN is fully investigated
because of two main reasons. First, the FNN does not require any restrictions on the input data. It
does not have any assumption on the inputs or inputs distribution, and suitability for any case.
Second, the FNN has a good capability to learn and model nonlinear and complex relationships
between inputs and outputs, which suits the research objective very well. The universal theorem
states that a single hidden layer neural network with a linear output unit can approximate any

continuous function arbitrarily well when given sufficient hidden units [134]. Moreover, the FNN

42



can approximate any continuous function, but this does not mean there is a learning algorithm that
can determine the necessary parameter values. The learning algorithm may never reach the correct
parameters. Moreover, the number of hidden units required increases exponentially as the
complexity of the problem increases. Thus, FNN can be very time-consuming. However, owing to
its capability to learn complex models, it is still considered a very effective algorithm, and many
types of research have been conducted to improve its capability and reduce its computation cost.

The concept of the FNN is defined as follows:

ax) =w®x + b Eq. 2-1
h(x) = g(a(x)) Eq. 2-2
y = f(x) = 0(wPh(x) + b?®) Eq. 2-3

where x is the input feature, w(), w®, b»), and b® are the FNN parameters, a(x) is the hidden-
layer pre-activation function, h(x) is the hidden-layer activation, g() is the hidden-layer activation
function, O() is the output activation function, and y is the output. The graphical representation is

shown in Figure 2-16.
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Figure 2-16: Graphical representation of the FNN

Note that, here x, 4(x), and y are the general representation of the input, hidden, and output
layers, respectively. For the detailed representation, each layer consists of several neurons. The
number of input features defines the size of x, and +1 indicates the bias for the current layer. The
number of hidden layers, number of neurons, and function of g and O are the hyperparameters in
the FNN. These hyperparameters should be tuned and tested to determine the best model
performance. The hidden layer activation function g() should include some nonlinear activation
functions such as tanh, sigmoid, and rectified linear unit (ReLLU) to enable the entire process to
model a nonlinear relationship. The sigmoid and tanh activation functions are the most common
activation functions for the hidden layers, and they were selected for this research. For the output
layer, the activation function O(*) can be set based on the objective of the model. An identity
function can be used for the regression problem. A sigmoid function can be selected for a two-
class classification problem, and a SoftMax function can be used for a multi-class classification

problem.
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The objective of training an FNN model is to determine all the corresponding coefficients,
w, and b, to minimize the loss function, which varies among models. The loss function is computed

as the difference between the prediction and ground truth:

P
1
E= EZIIyi — ;|2 Eq. 2-4
=1

where yi is the output of the network for the i-th input, ti is the actual output, and P is the number
of examples. The selection of the loss function depends on the objective of the model. Popular loss
functions include hinge loss, binary cross-entropy, mean absolute error, and categorical cross-
entropy. The loss function can also be self-defined. To attain the minimum of the error function,
several learning algorithms are detailed in the literature, such as stochastic gradient descent and
quasi-Newton methods [134]. The process of minimizing the loss cost in the model’s prediction

and computing all the corresponding coefficients is called backpropagation [135].

Since the neurons for every layer in the FNN are fully connected, which produces
numerous coefficients, the FNN can be very time-consuming for a complicated problem,
particularly for multi-dimensional inputs such as images or 3D objects. CNN is frequently used to
address such challenges. In the convolutional layers, a set of “filters” are applied to a subset of the
input variables at a time and swept over the entire input; therefore, only nearby inputs are
connected, which results in significantly fewer weights than in the fully connected layer. The
convolution operation calculates the sum of the element-wise multiplication between the input
matrix and filter matrix; thus, it performs a many-to-one relationship. Figure 2-17 shows an
example of convolutions: If the input is an 8x8 matrix and the filter is a 2x2 matrix, The stride for
the filter map is 2, which results in a 4x4 output matrix. Similar to the fully connected layer, the

learning process will propagate forward and back to update the weight matrix in every epoch to
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minimize the loss function. The operation is still linear; therefore, the activation function will also

be applied in most cases.
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Figure 2-17: Graphical representation of convolutions

When considering the AM process, the manufacturability of one point is related to the
surrounding points in the current and previous layers. The manufacturability of a certain point is
related to surrounding points but only slightly for the further points. Thus, it is reasonable to apply

CNN s in the manufacturability analysis.

Other key ML operations include transpose convolution, pooling, and dropout. Transpose
convolution is the opposite of the convolutional operation, and it is also popularly known as
deconvolution [136, 137]. It operates in the backward direction of the convolution and performs a
one-to-many relationship. For the convolutional operation, the output is always downsizing, but
for the transpose convolution, a higher resolution output will be ultimately obtained. Pooling is the
operation of downsampling the input variables by summarizing the presence of features in each

patch [138, 139]. There are two common types of pooling operations. One is average pooling,
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which summarizes the average presence of the patch. The other is the max pooling, which utilizes
the most activated presence of the input patch. Dropout is an efficient method of preventing

overfitting in the ML [140]. It refers to dropping a certain percentage of the neurons in the FNN.

2.7.  Chapter summary

This chapter reviews the background and existing studies related to the research objectives.
Major effects on evaluating the manufacturability of AM and the previous manufacturability
studies have been reviewed and discussed. The manufacturability of SM is also summarized to
compare with the manufacturability studies in AM. ML is the methodology selected to solve the

remaining problems. The fundamentals of ML have been depicted in this chapter.

After reviewing previous studies, the major challenges are listed here:

1. No proper or clear definition of the manufacturability of the AM process exists.
The manufacturability of the AM must be defined and quantified first.

2. No suitable model exists to comprehensively represent manufacturability that
considers design features, process parameters, machine, and material selections,
and end part qualities at the design stage.

3. The major approach for the computational method offers a simple geometry check
for the design. It provides the recommended orientation and support structure for
the current design. However, in addition to the thin features and overhangs, it lacks
the ability to suggest to the designer whether their design features are

manufacturable. Moreover, it lacks the recommendation on the process aspects.
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Chapter 3.  Definition of manufacturability of AM and the methodological framework

for a manufacturability analyzer and recommender

The comprehensive reviews in Chapter 2 indicate that the definition of the
manufacturability of AM is still unclear. The definition should be first identified before the
investigation. Another challenge is quantifying manufacturability. Therefore, in Sections 3.1 and
3.2, the new definition of the manufacturability of AM and manufacturability levels are introduced
to clarify the statement. The review in Chapter 2 also highlights the need for manufacturability
analysis research that considers both design and process aspects. Most previous studies considered
only a single aspect, either design or process. Moreover, providing only the prediction of the
manufacturability is insufficient for novice AM users. Recommendations and suggestions should
be provided to increase the printing success rate. To fill these gaps, Section 3.3 proposes a
methodological framework, providing a structure for the manufacturability analyzer and
recommender for AM (MAR-AM). Thereafter, Section 3.4 discusses research assumptions and

lays out the research focus. Finally, the chapter is summarized.

3.1. New definition of the manufacturability of AM

As mentioned in Chapter 1, the definition of the manufacturability of the AM process is
vague. Depending on different applications, the required quality of the printed parts typically
varies. From Chapter 2, it is clear that manufacturability must consider the effects from each stage
of the general AM workflow including design, fabrication, and post-processing. For post-
processing, whether the fabricated parts can bear the force from the post-processing can also be a
challenge. The printed parts can be fractured during post-processing. In the fabrication process,

stability could be a critical problem during the printing process. Even after the part is successfully
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built, whether it satisfies the product’s requirement can be another problem. Therefore, no general
definition of the manufacturability of AM has existed. However, a proper definition of AM
manufacturability was a necessary first step in this research. Without it, setting the research scope
would be difficult. At the design stage, manufacturability has a clearer definition, referring to the
design characteristics that indicate the difficulty or ease of the design from a manufacturing
perspective [141]. When considering the design process, Figure 3-1 shows the role of
manufacturability analysis in the design process. Engineering analysis involves determining
whether the current design and materials can satisfy performance requirements. Manufacturability
analysis ensures that the part can be properly fabricated based on identified design, materials, and
manufacturing processes. The focus of manufacturability analysis is to determine whether the
specific design with the defined material can be fabricated in the desired shape using a selected
machine with the fixed process parameters. In the literature, common physical AM features
reported are dimensions, porosity, and density [142]. Cracks and pores are some of the terms
frequently used to determine the behaviour of the products [142, 143]. Generally, materials with a
lower amount of cracks and pores have higher tensile strength, Young’s modulus, strain-to-failure,
and fatigue strength [144]. Generally, if the product is a fully dense metal part, it is defined as a
qualified part for functionality in the manufacturability analysis. Hence, this thesis defines the

manufacturability of the AM at the design stage to consist two aspects:

¢ Geometric inconsistency between the design model and the built model, which includes
shape and dimensional error; whether the geometric features of the design can be built.

¢ Functional inconsistency between the design model and the built model, which includes
the manufacturing defects and heterogeneity in properties; whether the quantity of part

density satisfies the standard.
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Figure 3-1: Manufacturability analysis in the design process [145]

This definition can be used to guide future research on the manufacturability of the AM
process. The fabricated part that satisfies both defined aspects is considered to be manufacturable.

In this thesis, AM manufacturability is further elaborated to consist of three levels.

3.2. Proposed manufacturability levels

Based on the definition of AM manufacturability that consists of two aspects, three

manufacturability levels are proposed as follows:

Manufacturability Level 1: The printed part should be free of visual defects such as

geometric incompleteness and warping (Figure 3-2).
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Figure 3-2: Example of (a) geometric incompleteness and (b) warping

Manufacturability Level 2: At the second level, the printed part should first satisfy all the
requirements from Level 1. Subsequently, the part should be ensured to be a dense part. The
quantity of the density and porosity and cracks should be obtained at this level. Chee et al. [142]
explained the details of the metrology measurement methods on measuring these characteristics.
The printed part is considered to achieve Level 2 when it satisfies the requirements of the quantity
of the density and porosity and cracks (Figure 3-3). Note that not all AM techniques must consider
level 2 depending on the process techniques. As the LPBF process uses either a laser or electron
beam to melt and fuse the material powder, it is important to ensure the quality of the melting and
fusing process. The density of the part is utilized to measure the quality of the fabrication process.
However, for the FDM process, whether the density of the part is not critical as the filament
material is extruded by the nozzle and bonded together owing to the stickiness of the melted
material. In addition, FDM has the option to select different infill percentages. To decrease the
printing time and save the material cost, the default setting from the printer makers is 20%. As
FDM is always used to print non-functional prototypes or non-functional end-products, it is
acceptable to have partially infilled printed parts. As the consequence, FDM products are

considered to skip Level 2 in the manufacturability analysis.
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Figure 3-3: Example of (a) pores and (b) cracks [146]

Note that for LPBF, which is a powder-based process, the produced parts have a lower
density than the parts produced using SM from bulk materials owing to pores within the parts.
Therefore, a 100% relative density is not expected for the LPBF parts [147]. Most recent studies
demonstrated that the average relative density of the parts fabricated via LPBF processes can reach
above 98% [147]. For some certain materials and machines, it can even be above 99.5% [147-149].

For the manufacturability analysis at the design stage, the relative density is expected to reach the
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average of the literature records, which is currently above 98.5%. This value can be adjusted

according to the different materials and mature levels of the current LPBF systems.

Manufacturability Level 3: At this level, the printed part should first satisfy all the
requirements from Levels 1 and 2. Subsequently, it is compared with the original design to
calculate the dimensional error. The printed part is evaluated based on the customer requirements
to determine whether it satisfies Level 3. The requirement can be specified on certain dimensions
such as hole tolerance, roughness, straightness, and side dimension. Figure 3-4 shows examples of
scanning electron microscopy (SEM) results and a table that lists the measured roughness at
selected points [150]. Another requirement can be the overall dimensional error. It can be

calculated by comparing the dimensional profile of the printed part to the design file.
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Figure 3-4: Example of (a) SEM images and (b) roughness analysis for printed parts [150]

Finally, the printed part can be defined as manufacturable through the AM process when it
satisfies all the requirements of Level 3. The manufacturability analysis can be separated into
stages based on the manufacturability levels to achieve the objective step by step. This thesis

proposes and develops manufacturability analysis methods for Manufacturability Level 1.
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3.3. Proposed methodological framework

To achieve the research objective, this section proposes the ML-assisted manufacturability
analysis and recommendation (MAR-AM) system is proposed. As introduced in the previous
section, Manufacturability Level 1 ensures that the printed part is free of visual defects. Figure 3-5
shows the overall framework of MAR-AM, which comprises three main parts: (1) dataset

establishment, (2) ML model training, and (3) manufacturability prediction and suggestion.

For dataset establishment, this research gathered and generated training data for the
developed ML models. The training data were collected from three sources. The first one was
experimental data collected from experiments, research labs, and collaborative industry. The
second source was the literature review. Based on the existing experiments published in the articles
or data port, data was extracted in the desired input format to train the ML model. After the entire
predictive system is released to the public, any user with access to the entire predictive system can
provide new data to train the ML model continuously as the third source of the database and
improve its accuracy. The collected data will be sent to either ML model training or
manufacturability prediction and suggestion depending on whether it is labeled. More details on

dataset establishment are provided in Chapter 4.
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Figure 3-5: Overall framework of MAR-AM

For ML model training, this research developed a general, efficient, and effective ML
model to predict visual defects. The first step is the preprocessing of the data to extract the

demanded features. In the preprocessing, both the design file and process information are
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converted into the required input variables to be trained for the ML model. Additionally, the
ground truths of the targets to be predicted are labeled in the required format in this step. The input
variables and labels are directed into the ML model to develop the predictive model of visual
defects. The architecture of the ML model involves identifying the learning algorithms and all the
hyperparameters associated with the selected algorithms. The loss functions are optimized to tune
the model to identify the ideal parameters and hyperparameters based on the selected algorithm.
Finally, the models are compared with different learning algorithms and parameters, and the best
model is selected as the predictive model for the manufacturability analysis. More details are

provided in Chapter 5.

For manufacturability prediction and suggestion, the prediction is given based on the
trained and well-defined ML model. When a new unidentified instance is incoming, the prediction
is made to determine whether the given design is printable. If it is not printable, the file will be
sent to the recommendation system. With a closed-loop process, suggestions on process
parameters or designs are offered. Furthermore, users are invited to provide feedback on the
prediction, which will be sent to our database to update the ML model. Finally, the entire MAR-
AM was implemented into a web application. More details can be observed in Chapter 6 and

Chapter 7.

3.4. Basic research assumptions and research focus

The proposed framework provides a general approach to modeling the manufacturability
of AM and offers a platform to assist novice AM users to evaluate the manufacturability of their
designs with the selected manufacturing process at the design stage. The following are the research

assumptions to set the research scope and clarify the research objectives.
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e The selected commercial AM printers are considered to be reliable and reproducible.
The variations and uncertainties during the printing process are not considered at the
design stage.

e The humidity and room temperature might affect the printing process. However, these
special cases are not considered.

e For the FDM process, we focus only on the most common polymers, and for the LPBF
process, we focus only on the most common metals. Other potential materials or

process variations are not considered in this thesis.

Moreover, as mentioned in previous chapters, this thesis focuses on FDM and LPBF
processes, and Manufacturability level 1 is the main consideration. More specifically in the

research objectives, the following challenges are addressed in the remainder of the thesis:

e C(Create a database for AM to properly manage all the collected data. It should be easy
to use in the developed ML models.

e Develop a general, efficient, and effective ML model at the design stage to analyze
Manufacturability Level 1 of the given designs through the LPBF or FDM process.

e Develop a recommendation system to assist novice AM users in increasing the printing

success rate.

3.5. Chapter summary

In this chapter, a clear definition of the manufacturability of AM is provided as well as
three manufacturability levels. This thesis focuses on Manufacturability Level 1, which is free of
visual defects. Based on that, the framework of the MAR-AM, which provides an overview of the

developed system, is introduced. This analyzing and recommendation system is expected to predict
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the manufacturability of a given design with the selected process settings. Moreover, based on the
prediction, MAR-AM is proposed to provide recommendations to users to increase the printing
success rate. Finally, the research assumptions and research focuses are summarized to focus the
research scope on several more specific research questions, which result in the remaining contents

of this thesis.
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Chapter 4.  Establishment of AM datasets for manufacturability analysis

The dataset is an extremely important aspect of ML research. The quality and quantity of
the dataset can directly affect the performance of ML models. ML models can be only as good as
the quality of the datasets. High-quality training datasets with labels for supervised and semi-
supervised learning are considerably difficult and expensive to produce. Most existing well-
developed datasets are for decision making, vision recognition or detection, and biological data.
No well-defined AM data exists, and data sharing is extremely limited in AM domains. Section
4.1 introduces how data for ML models were collected in this research. The AM database
management system for these collected data is established in Section 4.2 to better organize them.

To increase data sharing and data access, Section 4.3 provides an AM port, followed by a summary.

4.1. Data acquisition

For the training of the ML model, the data was sought to be established with the
consideration of high accuracy, reliability, consistency, completeness, and diversity. The data in
this research was proposed to be obtained from three main resources: reported literature,
experiments, and user contribution. For the current database, data was primarily obtained from
experiments and contributions from academic collaboration. As introduced earlier, FDM and
LPBF were the two focuses of this research. The following sections will depict the details on data

collection for each AM process.

4.1.1. Design of experiments

Based on the literature, the most critical geometric features are listed in Table 4-1. These
features must be included in the dataset. Various designs with various critical features must be

collected in the developed database.
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Table 4-1: Most critical geometric features in AM

Category Graphical illustration Category Graphical illustration
Wall NN
he Overhangs {?l?iil
thickness g‘\\.}
Minimum Angled
a < 45°
features surface
Up-facing surface
Down and up
Clearances :
faces down-facing surface
Holes Islands
Extreme 0.1
Corners
points
Chamfers & j j
fillets

With the consideration of all the critical features, benchmarks were first selected. Some
examples are shown in Figure 4-1. They include complex benchmarks such as in Figure 4-1a and

multiple simple benchmarks such as in Figure 4-1b.
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Figure 4-1: Example benchmarks

Including only benchmarks with single geometric features is insufficient. Therefore, more
complex geometries with multiple critical features were also selected. The designs were selected
from personal design and the open-source repository, Thingi10K, which is a dataset of 3D-printing
models [151]. The designs were filtered to have high genus numbers. The genus of a part indicates
the number of holes. For instance, a sphere has a genus number as 0, and a torus has a genus
number as 1. They were selected because these parts are more suitable for AM process compared
with the traditional manufacturing process. In addition to the part with high genus numbers, some
customized mechanical parts and model figures portraying humans or other living creatures were
also printed as they are the most popular applications in AM prints. Example designs are shown in
Figure 4-2. A total of 133 designs were used. All the designs are ensured to be dissimilar to each
other in order to increase the variation. Even for the same category, the designs are ensured to have

enough variations between each other.
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Figure 4-2: Example designs in the database

In addition to the design variations, various process settings were expected to be collected
as well. As the starting point, only the most critical process parameters were varied and collected.
Different materials were also used. Note that the Taguchi method was not used as a design of
experiments method. The Taguchi method assumes that the individual or main effects of the
independent variables on performance parameters are separable. Under this assumption, the model
assumes that there are no cross-product effects among the individual factors. However, the process
parameters in AM are correlated, thus breaking the assumption of the Taguchi method. Therefore,

the data was expected to be collected with all the possible variations.
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4.1.2. FDM setup

For FDM, Ultimaker 3 (Figure 4-3) was used to print the selected designs with various
process settings and materials. Before the fabrication, selected designs were planned for printing
with different build orientations, materials such as PLA, ABS, nylon, and PC, and machine settings
such as layer thickness, printing speed, adhesion selection, nozzle temperature, and bed
temperature. These parameters were selected according to the literature review in Chapter 2 and
the ease of the control. Those parameters are shown in their slicing software as default settings and

users can easily control those parameters.

Figure 4-3: Photograph of Ultimaker3 in the laboratory

After the printing, expert inputs were required to determine the manufacturability of the
printed parts. To ensure data integrity, AM experts with experience in both AM manufacturing
and design voted to assess the manufacturability of the printed part. They will make the agreement

on whether the part satisfies the requirement of manufacturability level 1. If the printed part was
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free of visual defects, the result would be marked as yes for manufacturable. If the printed part was
observed to have any geometric incompleteness or warping challenges, the result would be marked
as no for non-manufacturable, and the area of the failure would be labeled. The detailed labeling

process is described in Chapter 5 when the ML algorithms are introduced.

Up to the time of this report, 491 printed FDM samples were collected. An increasing

number of samples are being printed to expand the database.

4.1.3. LPBF setup

For LPBF, a significant portion of data was donated from other researchers in the
laboratory and collaborative partners outside of the laboratory. The data included lattice structures,
benchmarking, special designs, and simple geometries such as cubes, cylinders, channels, tensile

bars, slots, and thin walls with various materials, process parameters, and LPBF machines.

In addition to the data donated from laboratory and collaborative partners, some
experiments were conducted to obtain the LPBF data. The samples were printed with a Renishaw
AM 250. The selected designs were from the list used in FDM printing. They were filtered to select
the most suitable for LPBF as determined by AM experts. A total of 52 designs were selected to
be printed using four materials, different building orientations, and different settings of laser power,
printing speed, and hatch space. This experiment is still being planned and data has not been

collected into the current database.

Note that, for both FDM and LPBF, the building orientation and supports are considered
to be a part of the design. The entire design file is stored with the selected building orientation and
proper supports. There is no specific requirement for the dataset. All the printed parts fabricated

by any AM machine can be updated to the dataset.
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Up to the time of this report, 246 printed LPBF samples have been collected. More samples

are being printed to expand the database.

4.2. Database management system

All the data were stored based on the entity-relationship model. Figure 4-4 shows the
structure of the database. Based on the AM process chain, the proposed database can be grouped
into three entity clusters: design, manufacturing process, and product. To satisfy the demand of
the current research, the database is restricted to the most important entities such as keys that aid
in managing the database and decisive AM parameters that have been used in ML models. Some
details of AM process may be ignored at the current stage. The database will be expanded
continuously in the future. The relational database was the type of database used in this research.
It provides access to data points that are related to one another. A rational database means the data
tables are connected logically. As shown in Figure 4-4, not only are the attributes listed but the
actions are clearly defined, which enables applications to manipulate the data and structures of the

database.
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Figure 4-4: Entity relationship diagram of the developed database
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The aim of the AM database is to facilitate easy navigation of the data, increase data-

sharing, and reduce seamless storage. The purpose is to follow the distinct steps of the AM process.

Each step of the process requires unique sets of data. Without a database, it is difficult to follow

and manage. The non-relational database alternative is the current standard. However, in the AM

process, most entities are closely related. It is difficult for users to search for the exact information

they seek. Moreover, the non-relational database requires a higher skill level of AM knowledge to

install and maintain the database. Although the design files are often unstructured, they are always

converted into binaries when they are used in the AM process. Therefore, a relational database was

considered reasonable.

At the design or preparation stage, three tables were created: manufacturer, production plan,

and design model. Table 4-2 shows the attributes and data types of each table; thus, each record

included the information of manufacturer email, last name, first name, country, affiliation,
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production plan ID, and fabrication setup ID. For each table, the bold and underlined attribute
denotes the unique ID (a primary key), which is used to identify each record. It cannot contain null
values and every record must have a primary key value for each table. Italic attributes indicate a
foreigner key. The foreigner key is also the primary key in another table, which provides a link
between two tables. For instance, ‘“ManufacturerEmail” is set to be the primary key in the
“Manufacturer” table, and it is the foreigner key in the “ProductionPlan” table, which connects

two tables.

Table 4-2: Attributes and data types of each table at the design or preparation stage

Manufacturer

Attributes Datatype Description

Manufacturer’s email address, which

ManufacturerEmail | VARCHAR (50) | can be used as the personal account ID

and as contact information.

LastName VARCHAR (50) Last name of the manufacturer.
FirstName VARCHAR (50) First name of the manufacturer.
Country VARCHAR (25) Country of the manufacturer.
Affiliation VARCHAR Academic or industrial organization.
ProductionPlan
Attributes Datatype Description

Unique ID for the test/production
ProductionPlanID | AUTOINCREMENT

plan/experiment.
Foreigner ID here to link fabrication
FabricationSetupID INT _
setup to the production plan.
Foreigner ID here to link the design
DesignModellD INT

model to the production plan.
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Foreign ID here to the link
ManufacturerEmail VARCHAR (50)

manufacturer and the production plan.

DesignModel

Attributes Datatype Description

DesignModellD | AUTOINCREMENT Unique ID to track the design file.

FileName VARCHAR (50) Filename for the design file.
Description VARCHAR (255) Brief description of the printed design.
DesignAttachment BINARY Attachment of the design file.

The manufacturing stage comprises six tables (Table 4-3): fabrication setup, AM machine,
machine setting, material, ME setting, and PBF setting. ME and PBF are used here instead of FDM
and LPBF as the big picture for the AM technology types. However, as stated in Section 3.4, this
thesis only focuses on LPBF and FDM. Only the data for LPBF and FDM have been obtained in

the developed database.

Table 4-3: Attributes and data types of each table at the manufacturing process stage

FabricationSetup

Attributes Datatype Description

Unique ID to track the settings for
FabricationSetupID | AUTOINCREMENT

machines and materials.

Foreigner ID here to link AM

MachinelD INT
machine to the fabrication setup.
Foreigner ID here to link material to
MateriallD INT o
the fabrication setup.
Foreigner ID to link machine setting
MachineSettinglD INT

to the fabrication setup.
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AM_Machine

Attributes Datatype Description
MachinelD AUTOINCREMENT Unique ID of the 3D printer (machine)
used for the building.
MachineBrand VARCHAR (50) Brand of the 3D printer.
SeriesNo NUMBER Series number of the printer.
Type of AM techniques (defined by the
TechnologyType VARCHAR (50) ASTM standard): PBF, ME, etc.
(currently only for PBF and ME).
MachineSetting
Attributes Datatype Description
MachineSettineID | AUTOINCREMENT Unique ID of the machine settings used
for this build.
PrintingSpeed Number Printing speed used for this build.
LayerThinkness Number Layer thickness that used for this build.
Material
Attributes Datatype Description
MateriallD AUTOINCREMENT Unique ID of the used material for this
build.
Brand VARCHAR (50) Brand of the used material.
Type VARCHAR (50) Material type.
TotalCost CURRENCY(USD) Unit price for the material.
Density Number Density of the material.
MEsetting
Attributes Datatype Description
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Unique ID of the machine settings used

for this build.

MachineSettinglD | AUTOINCREMENT

Specific setting for ME indicating the
Infill percentage Number
“fullness” of the inside of a part.

Specific setting for ME indicating the
adhesion type used to increase the
AdhesionType VARCHAR (50) ability of printed material to adhere to
the build plate including skirt, brim, and
raft.

Specific setting for ME indicating the
NozzleTemperature Number ‘
nozzle temperature to melt the material.

Specific setting for ME indicating the
BedTemperature Number ]
temperature for the build plate.

PBFsetting

Attributes Datatype Description

Unique ID of the machine settings used

for this build.

MachineSettingIlD | AUTOINCREMENT

Specific setting for PBF indicating the
Infill percentage Number
“fullness” of the inside of a part.

Specific setting for PBF indicating the
LaserPower Number power of the laser used to melt the

material powder.

Specific setting for PBF indicating the
HatchSpace Number separation between two consecutive

laser beams.

The product level has only one table (Table 4-4) at the current status to record the printing

performance of the design. The quality of the printed part has been recorded as yes or no, indicating
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if the design is printable or not based on Manufacturability Level 1. Further product-related
properties such as dimensional accuracy, surface roughness, and mechanical properties can be

included in the future if required.

Table 4-4: Attributes and data types of each table at the product level

PrintedPart

Attributes Datatype Description
ProductID AUTOINCREMENT Unique ID for the printed part (final

production).
PrintingHour TIME Number of printing hours.
PrintingQuality Y/N Whether the quality of the printed part

passes the evaluations of the manufacturer

in geometric completeness.

Functionality Y/N Whether the quality of the printed part
passes the evaluations of the manufacturer

in density and dimensional accuracy.

ProductionPlanlD INT Foreigner ID to link production plan to
the printed part.

Figure 4-5 shows some example records that have been established in the database. For
instance, the general machine setting information is saved in the entity set “MachineSetting.” It
has three entities: “MachineSettingIlD,”  “PrintingSpeed,” and “LayerThickness.”
“MachineSettingID” is a unique ID to identify each setup. As the printing speed and layer thickness
can be collected for both ME and PBF processes, they are recorded in the upper level to avoid
repetition. More detailed settings for different AM technique types are stored in lower levels such

as “ME_Setting” or “PBF_Setting.”
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MachineSettinglD PrintingSpeed LayerThinkness

1 80 0.15
2 80 0.1
3 60 0.15
4 60 0.1
ProductiD PrintingHour Fail? ProductionPlaniD
1 9293 No 7
2 61769 No 8
3 5061 No 9
4 14798 Yes 10
5 12918 Yes 11
ProductionPlanID ManufacturerEmail FabricationSetuplD PartiD
3 ying.zhang8@mail. mcgill.ca 1 4
4 ying.zhang8@mail. mcgill.ca 2 6
ying.zhang8@mail. mcgill.ca 2 5
6 ying.zhang8@mail.mcgill.ca 1 7
PartiD FilelD Description DesignAttachment
1 103354 biology;bone;human_skull;teeth;tomography 1
2 106831 customizer;parametric;snowflake 1
3 108147 decoration;heart;house;LED 1
4 39247 household;bowl;jar;pot;honeycomb 1

Figure 4-5: Example tables in the database
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To satisfy the demand of the current research, the database is restricted to the most
important entities including keys that aid in managing the database and decisive AM parameters
that have been used in ML models. Some details of AM process may be ignored at the current
stage. It can be expanded in future research. This approach provides a well-organized data structure
to store and manage AM data. However, it is limited in data searching and sharing. It is more
appropriate for institutes, industries, or organizations to internally store and manage data. A public
and easily accessible data repository is also expected to spread the existing data and advance the
ML application in AM. Therefore, in addition to the AM database management system, this thesis

proposes an AM data port is proposed. The details are provided in the following section.

4.3. AM data port

No public standard dataset on AM studies is available in the literature. Most existing
databases or datasets are private and difficult to access. The existing databases are neither designed
for AM nor more suitable for an organization to manage its internal data. No simple data port has
been designed for sharing and accessing AM data publicly. A data port for AM is required, and it
is expected to be simple, easy-access, and systematic so that datasets from different studies can be
collected. Researchers can save time on collecting and sharing data, which in turn encourages
connection and collaboration between researchers. Morcover, some small datasets can be
combined to generate a larger and richer dataset that can be beneficial for all AM researchers.

Hence, based on the best understanding of the author, a simple data port is proposed here
and ready for data uploading and query. This data port is expected to be web-based and shared
with the public. Everyone is welcome to provide their open data or download and reuse the data.
For each dataset, the donator must fill five required fields and five optional fields. The required

fields include AM technique type, raw input data type, application/targets, whether the data is
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labeled, and a zip file for the data. The optional fields include raw output data type, reference
source, contact information, machine type, and material type. Machine type and material type
include the brand and series information for selected machines and materials. This information can
be observed in the “more details” panel. The preliminary design for the AM data port is shown in

Figure 4-6. On the left of the page, users have the option to filter the database to what they seek

99 ¢¢ 99 ¢¢

based on “AM technique type,” “applications/target,” “raw data type,” and “labeled or not?”. This
simple and informative AM data port is aimed to increase data sharing in the AM community and
accelerate the ease of data gathering. This data port will not recommend any data handling process
or ML algorithm to users. Raw datasets are provided, and users have unlimited freedom to process

the data. The data is expected to be used in various research.

Welcome to AM data port

Home Share your data

AM technique type
que typ No AM technique type Application/Target Raw data type Labelled or not?
/ PeF
ME 1 PBF product-related; visual defects graphic Yes More details %,
BJ
— :;Jmtopdymenahon 2 PBF product-related; visual defects graphic Yes More details %
sL
DED 3 PBF product-related; visual defects graphic Yes More details 4
Application/Target . .
PP 9 4 PBF product-related; visual defects graphic Yes More details &
| |HDesign-related
EProcass-related 5 PBF product-related; visual defects graphic Yes More details &
j Product-related
Raw data type 6 PBF product-related; visual defects graphic Yes More details &
[ Tabular
&/ Graphics 7 PBF product-related; visual defects graphic Yes More details &
3D data
Spectrum data 8 PBF product-related; visual defects graphic Yes More details 4
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Figure 4-6: Preliminary design for the AM data port
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4.4. Chapter summary

This chapter first describes how experimental FDM and LPBF data are conducted and
collected on both selections of the design and process variations. Various designs focusing on wall
thickness, minimum features, clearances, holes, extreme points, chamfers and fillets, overhangs,
angled surfaces, down and up faces, islands, and corners have been printed through the selected
AM machines with different materials and machine settings. These experimental samples were
collected to establish the dataset for training the ML models that will be introduced in the next

chapter.

For systematic management of these collected data, the database management system is
developed and introduced. It aids in better organizing and accessing the data. In addition to the
database management system, this research observed that an AM data port is in demand to increase
the data sharing and data searching for ML in AM applications. Therefore, a public and easily

accessible web data port is proposed at the end of this chapter.
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Chapter S. Hybrid machine learning models for manufacturability prediction

In this chapter, a detailed explanation of the development of hybrid ML models for
manufacturability prediction is provided. The voxel-based approach is first introduced, followed
by an advanced sparse-based approach. The developed hybrid ML models demonstrated promising
performance compared with the existing commercial software. Moreover, the models consider
both design and process information to predict Manufacturability Level 1, which is the potential
visual defects of the given design through the selected AM process and settings. In the remainder
of this chapter, the initial voxel-based approach is fully described in Section 5.1, and the advanced
sparse-based approach is introduced and compared in Section 5.2. Finally, this chapter is

summarized.

5.1. Voxel-based CNN model

The proposed model was inspired by the application of ML in biomedical engineering,
wherein several well-developed ML models efficiently detect and locate brain tumors [152-155].
Additionally, certain studies have identified the CNN as a promising approach in 3D model
analysis [156-158]. The ML model in this study is developed specifically for the AM process.
Although voxelization and CNNs are used to manage the 3D objects in this model, the ML
architecture differs from that of the existing models. Moreover, the model combines the input
variables with the design, material, and printing process, which is a combination of 3D objects,

text, and values. To the best of the author’s knowledge, this has not been investigated thus far.

Moreover, supervised learning is selected in this thesis as the starting point of the ML
approach. Compared with the other two types of ML, unsupervised and reinforcement learning,

supervised learning has been used more widely, demonstrating its feasibility and effectiveness in
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AM applications. In recent years, supervised learning has exhibited a high success rate in AM
applications such as candidate selections [159], surrogate models in design optimization and
simulation [160-162], and predictions on the quality of fabricated components [80, 103, 163].
Supervised learning learns from labeled training data to predict unforeseen data. It obtains the
benefits of existing experience, whereas unsupervised learning relies on algorithms to determine
structured patterns [164]. Furthermore, reinforcement learning requires more data and more
computations to achieve a prediction. This technique is preferred to achieve long-term results [ 165].
Since the proposed approach is part of a closed-loop manufacturability analysis system, the
effectiveness of the ML model is important for subsequent research on design modification
recommendations. For this thesis, the prediction (output of the ML model) can be clearly classified
and labeled. Beginning to develop the model with supervised learning is easy and beneficial. More

details are given in the following content.

5.1.1. Proposed ML algorithm and architecture

Figure 5-1 depicts the flowchart of the developed system to predict the manufacturability
of a given design using the AM process. The developed system has two potential outputs. The first
output is a single metric generated from Model 1, which is a simple yes or no answer. It indicates
whether the entire design can be printed completely using the selected LPBF machine. If the part
is not printable, it is redirected to Model 2, wherein the potential failure areas are predicted. If the
part is predicted as printable, it can be sent for printing or further evaluations on Manufacturability
Levels 2 and 3. The two groups of input variables for the ML model are the design parameters and
material and printing process information. The design parameters are represented in a 3D matrix
that indicates the occupancy of each voxel. The material and printing process information, which

includes machine settings and details of the materials for the printing process, are represented as
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text or values. Section 5.1.4 explains the data generation in detail. Output 1 is a single-dimension
yes or no result, whereas Output 2 is the printability map with a dimension identical to that of the
input data. As the manufacturability analysis system is separated into two ML models, Model 2

analyzes only the non-printable designs, increasing the efficiency of the analysis process.
Design Model Material and Processing Information

AM machine e

. . l'ext file with
settings, material P
K material and
selection, etc. e
. processing

information

ML Model 1
|

Voxelized 3D

geometric model

-

No (Not Manufacturable)

Yes (Manufacturable)
Y v
ML Model 2 Printing

Predicted
Printability Map

Figure 5-1: Flowchart of the developed system
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Figure 5-2 presents the ML architecture of Model 1, wherein the initial prediction of
whether the entire part is printable occurs. In the material and printing process, each neuron in one
layer is fully connected to the neurons in another layer through the activation function based on
the principle of the FNN; these are referred to as dense layers. The frequently used convolution
and pooling in the general CNN are applied to the design representations. The final convolutional
layer of the design is multi-dimensional, and it is flattened and concatenated to the 1D model of
the material and printing process information to generate the joint model of the design and process.
Subsequently, several dense layers are applied to the joint model, and each neuron in the final layer

is fully connected to predict the value of Output 1.

Design Input Process Input

4

Convl-1
Conv1-2

Dense 1

Dropout

Pooling

Convm-1

Convm-2

Pooling

Flatten

Concatenate

Dense 1

Output 1

Figure 5-2: ML architecture of Model 1 performing the initial analysis
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Figure 5-3 depicts the ML architecture of Model 2, wherein the potential failure areas are
predicted. The initial steps in predicting Output 2 are similar to those of Model 1. However, the
combination of the NN layers of the design and processing information generates a reshaped multi-
dimensional layer. Therefore, a transpose convolutional layer is added to the reshaped layer for
upsampling the inputs. Subsequently, the transpose convolutional layers are concatenated with the
previous convolutional layers, guiding the learning process. Finally, the model is transferred to
other convolutional layers to predict Output 2. The number of transpose convolutional layers
equals that of the previous convolutional layers. Moreover, the number of layers in each ML
operation constitutes the hyperparameters, which can be tuned to achieve the best performance in
the ML method. The proposed architectures are inspired by commonly used models, such as U-
Net and VGGI16 [152, 166]. However, unlike the architectures in these models, a modified
architecture integrating the CNN for 3D objects and the classic FNN for text and numerical

parameters is developed here.
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Figure 5-3: ML architecture of Model 2 performing the printability map analysis
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5.1.2. Loss function and evaluation metrics

The loss function in the first ML model uses a binary cross-entropy, calculated using Eq.

5-1.

Cross Entropy = —(p -log(®) + (1 — p) -log(1 —p)) Eq. 5-1
where p and p represent the ground truth in the training sample and the prediction, respectively.

The evaluation metric is based on the accuracy of the prediction.

P ~ TP + TN e o
Ceuracy = T TP Y FP+ TN + FN @

where 7P is the true positive, wherein both the prediction and actual output are YES; TN is the
true negative, wherein both the prediction and actual output are NO; FP is the false positive,
wherein the prediction is YES, but the actual output is NO; and FN is the false negative, wherein

the prediction is NO, but the actual output is YES.

The second ML model uses the weighted dice coefficient loss function. The general dice

coefficient loss can be calculated using Eq. 5-3 [167].

2TP _ 2p-p
2TP+FP+FN  p+p

Dice coef ficient loss = — Eq. 5-3

Typically, the dice coefficient loss is the sum of each class involved in the task. In this thesis, it is
the sum of three classes, namely the empty, printable, and non-printable voxels. However, the
empty and printable voxels in the dataset are more in number than the non-printable voxels. In this

scenario, class imbalance occurs, which can be solved using Eq. 5-4.

Loss = aDC; + fDC, + (1 —a — B)DC5 Eq. 5-4
where o and [ are the weight coefficients, and DC: indicates the dice coefficient of each class. In

this paper, @ and £ are set to 0.1 to request the loss function to pay more attention to the non-
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printable voxels. The printable and empty voxels are considered to be equally weighted. No
significant variations are observed in the model performance until the sum of ¢ and £ attain a
value larger than 0.3. Beyond this, the performance decreases steeply, particularly in the non-
printable voxels. @ and 8 cannot be 0; otherwise, the model ceases the learning process. The
intersection over union (loU), which describes the similarity between any two validation samples,

is used as the evaluation metric in the second model. The /oU is calculated using Eq. 5-5 [168]:

loU = il Eq. 5-5
T TPYFP+FN 4

To present the results clearly, the loU of each class is calculated together with the mean /oU. All
the ML model weights are updated by minimizing the loss function, and the iteration is completed

when the convergence of the loss function occurs.

5.1.3. Hyperparameters

Hyperparameters in ML must be manually set before activating the model. Based on the
recommendations from other similar models developed and the results obtained from the
experiments in the literature, the hyperparameters are set to attain the minimum loss and maximum
model performance. The general structure is reconstructed based on the frequently used VGG16
and 3D U-Net models that analyze 2D or 3D images [152, 166]. Initially, the hyperparameters are
set considering the general guidelines and then tuned to identify the best performance based on the
loss function and evaluation metrics. The details of the hyperparameters and how they are

determined can be briefly summarized as follows.

e Activation functions: ReLU, the frequently used activation function that can achieve the

best model performance, is adopted in the proposed ML model [169, 170]. The output layer
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uses the sigmoid function to predict whether the entire part is printable, whereas the

printability map is predicted using the SoftMax function.

Learning rate: The learning rates in both models are set to le-5 to balance the learning
speed and model performance. Lower learning rates may slow down the learning process,

and higher learning rates may prevent the convergence of the functions.

Kernel size: Typically, the values of kernel size vary from 1x1x1,3x3x3, 5x5%5, to 7x7x7.
As the input dimension of the proposed design model is 128128128, a 3x3x3 kernel size

is selected for each layer.

Number of filters: The number of filters is always recommended to begin from the range
of [32, 64, 128] and can be increased in the deeper layers. However, the proposed model
begins with 16 filters owing to the large input dimension, and the number can vary at each

layer.

Stride size: All convolutional layers maintain a stride of 1.

Padding: Padding is set to be the same in convolutional layers.

Number of layers: For every ML operation such as convolutions and dense layers, the
number of layers varies from 1 to 6. Although deeper layers may slightly enhance the model

performance, the learning speed and computational capability are significantly affected.

Number of neurons in the dense layer: The number of neurons varies between 64 and 512.

Dropout rate: The dropout rate is set to 0.5 to reduce overfitting and improve the

generalization error.
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Figures 5-4 and 5-5 depict the detailed model architectures. After the initial values are set,
the hyperparameters are manually tuned to attain the best model performance based on the existing

dataset and computational power.
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Figure 5-4: Detailed ML model architecture (Model 1)

87




Design Input

Sparse matrix with a coordinate matrix and a
feature matrix

T

Convolution

Number of filters=16, Kernel size=3,
Stride=1, Activation function = ‘RelU’,

T
Convolution

Number of filters=32, Kernelsize=3,
Stride=1, Activation function = ‘RelLU’,

A
MaxPooling ‘

Material and Processing Input

Kernel size=2,Stride=2 \

LPBF machine settings, material
selection, etc. (1D array)

L

T
Convolution

Fully-Connection

Number of filters=32, Kernel size=3,

Stride=1, Activation function = ‘RelU’, Number of units=256, Number of units=32,
T Activation function = ‘ReLl’, Activation function = ‘RelU’,
- ]
Convolution ~ -
- Fully-Connection
Number of filters=64, Kernel size=3, Fully-Connection A -
Stride=1, Activation function = ‘ReLU’, Number of units=64, Number of units=64,
T Activation function = ‘ReLU’, Activation function = ‘Rell)’,
MaxPooling ‘ 1 I
Kernel s'\ze:]lz, Stride=2 | Concatenate Fully-Connection

Convolution

Number of filters=128, Kernel size=3,

Number of units=128,
Activation function = ‘Rell’,
Dropout rate =0.5

Stride=1, Activation function = ‘RelLU’,

I
Fully-Connection

Convolution
Flatten

Number of filters=128, Kernel size=3,
Stride=1, Activation function = ‘RelLU’,

Number of units= 256,
Activation function = ‘RelLU’,
Dropout rate = 0.5
|

I
— A
MaxPooling Convolution

Kernel size=2, Stride=2 ‘ Number of filters=128, Kernel size=3,
Stride=1, Activation function = ‘ReLU’,

]

Convolution

Number of filters=256, Kernel size=3,
Stride=1, Activation function = ‘ReLU’,

Transpose Convolution
Number of filters= 256, Kernel size=3,
Concatenate Stride=1, Activation function = ‘RelLU’,
]

e
Convolution

Number of filters=128, Kernel size=3,
Stride=1, Activation function = ‘ReLU’,

L

Convolution

Number of filters=128, Kernel size=3,
Stride=1, Activation function = ‘ReLU’,

L
Transpose Convolution

Number of filters= 128, Kernel size=3,

Concatenate Stride=1, Activat\'or‘w function = ‘RelU’,
Convolution
Number of filters= 64, Kernelsize=3,
Stride=1, Activation function = ‘ReLU’,
Convolution
Number of filters= 64, Kernel size=3,
Stride=1, Activation function = ‘ReLU’,
Transpose Convolution
Number of filters= 64, Kernelsize=3,
Stride=1, Activation function = ‘ReLl)’,
Concatenate

1

Convolution
Number of filters= 32, Kernelsize=3,
Stride=1, Activation function = ‘ReLU’,

Convolution

Number of filters= 32, Kernelsize=3,
Stride=1, Activation function = '‘ReLU’,

Convolution

Number of filters= 3, Kernel size=1,
Stride=1, Activation function = "Softmax’

L
ML Model 2

Printability map

Figure 5-5: Detailed ML model architecture (Model 2)
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5.1.4. Input data generation and preprocessing

The training data used in this approach are obtained from the LPBF process introduced in
Section 4.1.2. All the designs are voxelized using binvox, a well-developed voxelizer [171] with
a size of 128x128%128. Considering the resolution of the LPBF process and the general building
chamber size, 512x512x512 is the ideal voxelization size of the geometric design to analyze the
manufacturability. However, to maintain a balance in the computational cost, time consumption,
and geometric resolution, the selected voxelizer has a size of 128x128%128. 512x512x512 is out
of the capability of the current computer setup. In total, 196 samples are selected in the training
data, wherein 49 samples constituted the validation set. The output values of 1 and 0 imply that
the voxel is occupied and empty, respectively. Figure 5-6 shows some examples of voxelized

geometric 3D models.
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Table 5-1 presents some examples of the different materials and printing processes used
for data training. These features were selected owing to the available data and existing studies of
major factors on evaluating the manufacturability, which are explained in Section 2.2. Moreover,
those selected process parameters are easily understood for novice AM users. They do not need
extra time to understand those parameters and those parameters can be easily modified in the

machine settings or in their slicing software. Scale is a parameter associated only with the design
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aspect and not the manufacturing process; it refers to the size of a part. The scale is considered as
a reference because the ML model fails to recognize the overall size of the given object owing to
the identical voxelized geometries that maintain uniformity in the input dimension. As the samples
in the existing dataset were printed using the default settings of the LPBF printers based on the
material selection, the process parameters, such as laser power, printing speed, and hatching space
were not considered in this study. However, when the dataset is expanded in the future, certain
data samples may be printed using customized settings, wherein all the critical process parameters
must be considered. This will not affect the developed ML architecture, as more input variables

from the process parameters can be included to improve the model performance.

Table 5-1: Examples of the material and printing process used for data training

No. Sample Material Material Material Machine Machine  Scale
name type brand density in loose brand type
form (g/cc)
1 v_Inco Inconel EOS 8.4 EOS M270 33.46
625
2 ¢ Inco Inconel EOS 8.4 EOS M270 29.20
625
3 x_Steel Maraging EOS 8 EOS M270 31.33
steel
4 bm_ 001 AlSilOMg EOS 2.67 EOS M270 52.5
5 channels  AlSilOMg Renishaw  2.68 Renishaw  AM 400 15
01
6 Tensile 0  AlSil0Mg Renishaw  2.68 Renishaw  AM 400 74.12
1
7 201904 1 SS316L  Renishaw  7.99 Renishaw  AM 250 106.3
2 5
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5.1.5. Data Labeling

To generate the ground truth for the ML models, the corresponding printed result to the
given design is obtained. If the design is successfully printed with associated processing
information, and the printed result does not have visual defects, the ground truth is given a value
of 1 as printable for the initial prediction. If the design is not printable, the truth is given a value
of 0 as non-printable. Moreover, if the design is not printable, the printability map will be generated.
The original voxelized models are sent to an annotation tool to label the non-printable voxels. An
example of the annotation tool is shown in Figure 5-7. The tool was developed based on VoxCad
[172]. The non-printed voxels were manually labeled with red layer by layer according to the
printed result. Subsequently, the labeled results are transferred to the dense matrix. Each voxel in
the design representation is labeled, wherein 1, 0, and 2 imply that the voxel is printable, empty,

and not printable, respectively. Figure 5-8 shows an example of data labeling.
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5.1.6. Results and discussion

Sections 5.1.5.1 and 5.1.5.2 demonstrate and discuss the validations of the ML Models 1
and 2 results, respectively. The proposed models were verified by evaluating the trained models
using the validation dataset with the defined evaluation metrics listed in Section 5.1.2. The
developed ML models were implemented using Python on an NVIDIA GeForce RTX 2080 Ti.

The TensorFlow, Keras, and Scikit-learn libraries [173] were used in the implementation.

5.1.6.1. Results of Output 1 Predicting the Printability of the Entire Part

The entire dataset was randomly split into training and validation datasets in the ratio of
4:1 to calculate Output 1. To decrease the variations among samples, five-fold cross-validations
were performed, and the results are listed in Table 5-2. The average accuracy was approximately
0.8408. We consider this result to be satisfactory at the current state owing to the following reasons.
First, no standardized dataset exists to measure the accuracy of different ML models. Thus, in the
reported studies such as [105, 174, 175], the accuracy of the ML model was discussed in
dramatically different ways. Second, examining the accuracy in Table 8 of [175], the testing
accuracy reported for two different scenarios was 84% and 38%, respectively. Thus, the result
from this approach was considered satisfactory. Additionally, the result for each iteration did not

exhibit major fluctuations, verifying the stability and repeatability of the developed ML model.
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Table 5-2. Cross-validation results of the prediction in the initial analysis

Iteration Accuracy

1 0.8367
2 0.8367
3 0.8776
4 0.8367
5 0.8163

Average 0.8408

When the training dataset was applied to a model that considers only the design aspect, the
average accuracy in predicting the manufacturability of the part decreased to 0.7805. This implied
that the effects of excluding the material and printing process model are not significant as the
training dataset is not sufficiently large. Moreover, the ratios of the failure samples, which are
primarily caused by the material and printing process, are low. However, the impact can be

significant with a larger dataset, reducing the accuracy further.

The effects of the voxelization size on the computing cost and performance were also
investigated for this model. As mentioned in Section 5.1.4., the maximum size reached in this
approach was 128x128x%128 owing to the restrictions in computational capability and time. The
maximum memory was attained when the model is trained at 128x128x128 resolution. Table 5-3
summarizes the comparison between different voxel sizes tested using the same ML architecture,
hyperparameters, and computational hardware. The results indicated that, despite the longer
running time, the accuracy is high at a higher voxelization resolution. At a lower resolution, the
performance of the ML model is affected owing to the loss of certain features in the voxelization

process. Therefore, higher voxelization resolution to execute the model learning is highly
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encouraged, which is the key motivation for the sparse-based approach. It is fully explained in

Section 5.2.

Table 5-3. Effects of voxelization resolution on the computing cost and performance

Voxel size Accuracy Training time (s)
128x128x128 0.8408 8480

64x64x64 0.7503 1000

32x32x32 0.6341 240

Furthermore, the model was also run with a smaller dataset comprising fewer training
samples than the original test. Only 190 samples were selected in the smaller-dataset training rather
than the original 245 datasets. The samples were split into training and validation datasets at a ratio
of 4:1, identical to the original test. The average accuracy obtained was 0.7436, which was lower
than the result presented in Table 2. This demonstrated a potential statement that with more and

more data, the prediction accuracy will be better.

The ideal method to identify the size of data is to generate a learning curve for the model
performance on datasets [176]. The required number of data sizes can be obtained when the
learning curve reaches the saturation point. To make it simple, some common rules from the ML
community can be used to identify the ideal size of the dataset. These rules are generally a factor
of certain characteristics of the prediction problem. For example, some researchers indicated that
the data size must be at least 50 to 1000 times the number of prediction classes [177]. Another rule
states that the data size must be at least 10 to 100 times the number of the features [178, 179]. The
most common method is to include at least 10 times the number of weights in the network if neural

network models are used [180, 181]. However, a later study [176] indicated that a factor of 10 is
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insufficient, and they concluded that the data size must be at least 27 to 31 times the number of
weights in the network. Although the data size may also vary on the different applications, these

common rules can provide a general concept of how many samples are sufficient for their studies.

The training datasets in most existing ML applications of AM are less than 100 [174], and
their results prove that small datasets can make reasonable predictions. With more data inputs in
the future, the coefficient of the proposed hybrid ML model can be updated to obtain enhanced

results.

5.1.6.2. Results of Output 2 Predicting the Printability Map

Cross-validations were also conducted for Output 2. As mentioned in Section 5.1.2., the
prediction was evaluated based on the IoU calculations (Table 5-4). The mean IoU calculated was
a reasonable value of 0.7951. As indicated in Table 5-4, the model performed excellently in the
empty voxels, whereas the performance in the non-printable voxels was slightly weaker. However,
it is important to note that the goal of this research was to provide early indicators of potential
manufacturability challenges for designers or AM process engineers before fabrication. The
benefit of such an early indicator is that the designer or AM process engineer could modify some
design geometries or process parameters to guarantee a successful fabrication. There is insufficient
research in the literature to provide a printability map through an ML model as a method of
indicating potential printing challenges. The result demonstrates the feasibility of such a

printability map that can be successfully generated via the joint ML model with decent accuracy.
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Table 5-4. Cross-validation results of the printability map prediction

Iteration IoU mean IoU empty IoU print IoU non_ print

1 0.7866 0.9854 0.8006 0.5737
2 0.7821 0.9899 0.7777 0.5787
3 0.8092 0.9869 0.8355 0.6052
4 0.7918 0.9873 0.7465 0.6416
5 0.8056 0.9860 0.8353 0.5954
Average 0.7951 0.9871 0.7991 0.5989

Figure 5-9 shows three examples depicting the results of the printability map. The top row
depicts the ground truth of the samples, labeled based on the experiments. The second row
indicates the prediction of the ML model, and the final row is the prediction obtained from the
commercial software. Figure 5-9(a) depicts a diamond lattice structure fabricated from AISi10Mg
using an EOS machine. Figure 5-9(b) illustrates a benchmark wherein the needles on the plate are
extremely small, and the printer fails to print the precise shapes. Figure 5-9(c) shows an AlSi10Mg
tensile bar printed using Renishaw; it suffered from severe warping on the sides. The green and
orange regions in Figure 5-9 indicate the printable area and the area with a potential risk of failures,
respectively. The prediction obtained from the proposed ML model exhibited competitive results
compared with that of the commercial software. Although certain differences existed between the
ground truth of the printability map and the prediction of the proposed ML model, the results
exhibited the trend of the potential failure areas. Therefore, they can be considered acceptable in

predicting part manufacturability.
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Figure 5-9: Test cases of the validation set. (a) Diamond lattice structure fabricated from
AlSi10Mg using an EOS machine, (b) benchmark with tiny needles, and (c) AlSi10Mg

tensile bar printed using Renishaw.

Figure 5-10 compares the predictions obtained using two different materials with varying
strut thicknesses. The green and orange regions indicate the printable and failure areas,
respectively. They were printed using the default machine settings for the selected material. The
best process parameters were identified to print the selected material tested by the printer maker.
As indicated in the figure, the proposed model provided outstanding results owing to the significant

number of lattice structures used in the dataset. This demonstrated that with more data included in
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the database, the model performance can be enhanced. Moreover, Figures 5-10(b) and 5-10(c)
indicate a green layer at the bottom of the lattice structures. This layer was not labeled in the
ground truth data because when the final printed part was obtained, the initial layers may be
ignored and eliminated from the building plate. However, these layers were predicted by the
proposed ML model as the initial layers can be printed successfully, and the subsequent layers

may fail owing to the overhang constraints in the LPBF process.

Inconel 625 X shape Inconel 625 X shape SS 316L X shape SS 316L X shape
lattice structure with lattice structure lattice structure with lattice structure
thicker struts thicker struts
(a) (b) (c) (d)

Figure 5-10: Comparison of the predictions obtained using two different materials with varying

strut thicknesses

The ML architecture used to predict the printability map was inspired by 3D U-Net, which
is frequently used in medical image detection. A similar approach is adapted here with a modified
ML architecture, wherein the process and design models are combined. Moreover, the loss
function is specifically developed for the manufacturability analysis in the LPBF process. The ML
method requires multiple hyperparameters that must be determined before training the model.
Owing to the limitations of the dataset, the hyperparameters used in this study are not the ideal
values for the prediction in the manufacturability analysis. However, the values were selected

considering the existing dataset under the current computational power, as described in Section
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5.1.3. As more data are collected in the future, the values of the hyperparameters will be

continuously tuned and improved iteratively.

Precise labeling of the dataset is essential in manufacturability analysis. Currently, all the
datasets are labeled manually based on the printed part. However, precise labeling of every voxel
cannot be achieved as the ground truths of the samples can be subjective owing to the manual
detection. Although the printed part can be scanned using computed tomography to obtain a more
accurate labeling result, it can be time-consuming and is not cost-effective. Therefore, even for
industrial purposes, the parts are not scanned to obtain dimensional accuracy unless their
printability is determined. Despite the subjectiveness of manual labeling, it facilitates an initial
verification for the designers. Thus, the evaluating criteria in this study were to verify whether the
part can be printed completely. In this regard, manual labeling is acceptable, and the results
obtained from the prediction notify the designers of the potential design failures. The part is
determined to be printable if it is suitable for the subsequent stages, such as dimensional accuracy

evaluation or mechanical performance test.

Figure 5-11 depicts the ML prediction of a long-overhang bridge, which is not shown in
the dataset. It was a bridge with an 80 mm overhang, and it was printed without any support. ML
Model 1 predicted the bridge as not printable, and ML Model 2 provided a predicted failure area
(Figure 5-11). The blue and red regions indicate the printable and failure areas, respectively.
Several existing studies have proven that the long overhang bridge cannot be completely printed
without support structures [128, 182, 183]. Although the prediction may not be identical to the
experimental results, it depicts the trends of the potential failure. Moreover, when the bridge was

laid down, it was considered by ML Model 1 to be printable.

101



Figure 5-11: Prediction of a long overhang bridge

5.2. Advanced sparse-based CNN model

The voxel-based CNN demonstrated in Section 5.1 was investigated as a potential solution
for design shape analysis. This approach is limited by the computational capability available, and
only the lower resolution was performed. However, a low resolution is insufficient for precisely
analyzing the AM process. Some detailed features may be omitted through the voxelization
process. Moreover, as shown in Section 5.1.6.1, a higher voxelization resolution has a better
performance. Therefore, to solve this problem, a more efficient CNN is proposed in this chapter.
Design data is stored in a sparse matrix for CNN operations to train only the occupied voxels. It
combines with the process data to make the prediction of manufacturability. By performing the
generalized convolutions, the computational costs decrease significantly compared with the voxel-
based CNN, which offers the advantage of performing with high resolutions. The approach was
validated in terms of effectiveness and efficiency on the manufacturability prediction for the LPBF

process. More details are provided in the following.
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5.2.1. Framework of the sparse-based CNN model

Figure 5-12 shows the general framework of the sparse-based CNN model. Instead of using
a voxelized 3D geometric model directly as the design input to the ML models, the voxelized 3D
geometric model is preprocessed into a sparse matrix, which is combined with a coordinate matrix
and feature matrix. Only the occupied voxels are stored in the sparse matrix, and the ML operation
is applied only in the sparse matrix, which significantly decreases the computational cost and
improves the performance of the models. The integration of the input features for design and
material and processing information is first sent to a two-class manufacturability classifier to
determine whether the given design is manufacturable with the given material and processing
information. If it is printable, the given design is ready for printing. If it is not printable, the input
features are sent to a semantic manufacturability segmentation step to determine which voxels are
not printable to provide a printability map to designers. With the printability map, the potential

failure area can be visualized to aid designers in future design improvement.
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Figure 5-12: Framework of the ML-assisted manufacturability analysis
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5.2.2. Data generation and preprocessing

As introduced in Section 5.1.4, the first step to preprocessing the design models is to
voxelize the STL files using Binvox [171]. After parsing, the result of the voxelization is turned
into a 3D matrix. The value 1 indicates occupied voxels, which are the main body of the designs,
and 0 indicates the non-occupied voxels, which are the background. For most existing studies, the
voxelization resolution is low. Higher voxelization resolutions cost more computational power,
which results in a slow training process, and it may run out of computational capability. When
observing the 3D design matrix, most of the elements in the design matrix are zero, which results
in a super sparse matrix. Particularly for the high-resolution voxelized matrix, the sparsity is even
higher. Figure 5-13 shows an example comparison between different voxel sizes for the same
design model. For a conventional CNN, the operation is applied to every element in the matrix.
However, it is not necessary to apply the operations to all the zero elements, particularly the zero-
elements that are far from the main body of the design. The redundancy wastes the computational
memory and slows down the training process. To solve these challenges and improve the
performance, the design matrix is preprocessed and stored into a sparse matrix, and ML operations
are only applied to these occupied voxels, which is explained in Section 5.2.4. The sparse matrix
is stored as the combination of a coordinate matrix (C) and a feature matrix (F), which can be

represented as follows:

X1 Y1 7y fi
c=|: + |, F=|: Eq. 5-6

Xy YN Zn

N

where x;, yi and z; are the coordinates, N is the number of the non-zero elements, and f; is the
associated feature values. For the input data in this thesis, feature values are uniform, which is 1

indicating occupied voxels.
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Voxel Size Sparsity
32x32x32 95.24%
64x64x64 96.60%
128x128x128 98.20%
256x256x256 98.16%
512x512x512 98.20%

Figure 5-13: Comparison between different voxel sizes for a given design

The same strategy is used from the voxel-based approach to preprocessing the material and
processing information data. One-hot encoding is applied to convert the categorical text variables
into numerical variables to be provided to the ML model to perform a better prediction. Such

material and processing information includes material types and brands, material density in loose

form, and machine brand and type.

The data labeling process for the sparse-based approach first follows the same procedure
described in Section 5.1.5. Subsequently, the results of the voxelization are transferred to the
sparse matrix with coordinates and features as in Eq. 5-6. Note that the coordinate matrix should
be the same as the one in the input. For the feature values in the ground truth, 1 denotes the

printable voxels, and 0 denotes the non-printable voxels. Figure 5-14 shows an example of the

labeling process.
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Figure 5-14: Examples of data labeling for sparse-based approach

5.2.3. Network operations on sparse-data structure

The convolution is the most important operation in CNNs. For the conventional
convolution operation, it is frequently used for images or 3D objects that are multi-dimensional.
In the conventional convolutional layers, a set of “filters” is applied to a subset of the input
variables at a time and swept over the entire input; thus, only nearby inputs are connected, which
results in significantly fewer weights than the fully connected layer. The convolution operation
calculates the sum of the element-wise multiplication between the input matrix and filter matrix;
therefore, it performs a many-to-one relationship. Although it costs much less than the fully
connected layer, it is still a very expensive operation in deep convolutional networks. In our
generalized convolution, the operation only applies to the occupied voxels such that it requires
much less computational power than the standard convolution operations. It can be represented as

the following equation:

0, iy = Z WM., G k)eC Eq. 5-7
where 0™ i,jk 18 the n-th channel of the output value on voxel (i, j, k). W™ represents the weights

of the operation, which is the filter described above. I (")(i’ j k) represents the n-th channel of the

input features on voxel (i, j, k). C is the coordinate matrix generated in Section 5.2.2. To better

107



illustrate the generalized operation, Figure 5-15 shows a graphical explanation. It provides a
comparison between the standard convolution operation and the generalized convolution operation.
On the left-hand side, the standard convolution operation swept over the entire input; however, for
the convolution on the sparse matrix, it only sweeps over the occupied elements. When calculating
the output value on the selected elements, it first obtains the values from all the neighbors for the
selected elements based on the stored coordinates. Subsequently, the “filters” are applied to the

pattern, which consists of the selected point and surrounding neighbors to compute the output.
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Figure 5-15: Graphical explanation of convolution on a sparse matrix

Pooling is the operation of downsampling the input variables by summarizing the presence
of features in each patch [138, 139]. There are two common types of pooling operations. One is
average pooling, which summarizes the average presence of the patch. The other is max pooling,
which obtains the most activated presence of the input patch. Pooling for sparse data has a similar
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concept to the conventional pooling operation. The difference is that the pooling for the sparse
data only applies to the occupied voxels instead of the entire 3D matrix. Max pooling is used in

this thesis, and it can be represented numerically as

Oy jic = max 1™ 1y, (i,),k) € C Eq. 5-8
where 0™ i,jk 18 the n-th channel of the output value of voxel (i, j, k), and (”)(i, j k) 1s the n-th

channel of the input features of voxel (i, j, k).

Transpose convolution on the sparse matrix has the same concept as the standard transpose
convolution. It is the opposite of the convolutional operation on the sparse matrix, which is also
popularly known as deconvolution [136, 137]. It operates in the backward direction of the
convolution and performs a one-to-many relationship. For the convolutional operation, the output
is always downsizing, but for the transpose convolution, a higher resolution output is ultimately
obtained. Another new operation used in our network structure is broadcast, which was proposed

by Choy [184]. It can be represented as the following equation:

E,=x, forue Cc™ Eq. 5-9
It is the operation that copies the value x, for all input coordinates, and F, is the new feature values

for the input coordinate.

5.2.4. Network structure and learning parameters

Figure 5-16 shows the network structure and major-related hyperparameters for the two-
class manufacturability classification. It uses a similar network structure as the voxel-based
approach. As mentioned earlier, the design inputs are primarily processed using the sparse
convolution operation, and the material and processing inputs pass through an FNN. The two

models are integrated and pass through another two fully connected layers to make predictions of
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printability. Major hyperparameters include the number of filters or neural units, activation

functions, kernel size, and stride size.

Figure 5-17 shows the network structure and major-related hyperparameters for the
semantic manufacturability segmentation. As mentioned earlier, the network structure was
inspired by the popular ML model, 3D U-net [166]. Unlike the network structure in 3D U-net, our
model has two different inputs: design aspects and material and processing aspects. The two inputs

are first processed using separatable ML operations and then joined to predict the printability map.

In this approach, the best learning rate is set to 1e-4, the batch size is set to 4, and the epoch
number is set to 40 to converge the loss function. These learning parameters are manually tuned

to determine the best performance for the current dataset.
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Figure 5-16: Network structure for two-class manufacturability classification
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5.2.5. Results and discussions

The same dataset as the voxel-based approach was used, and it was split into a 4:1 ratio
into training and validation datasets. The training dataset was used to train the ML model, and the
validation dataset was used to validate it. Five-fold cross-validation was used for each training to
avoid overfitting. The remainder of this chapter discusses the results in predicting whether the
given design is printable as well as the generated printability map. It demonstrates that the
developed sparse-based CNN model can accurately analyze manufacturability with better

performance compared with the voxel-based approach with the same computational capability.

The developed models were implemented in Python 3.7 on an NVIDIA GeForce RTX 2080

Ti. Relevant libraries included Scikit-learn [173], PyTorch, and MinkowskiEngine [184].

5.2.5.1. Two-Class Manufacturability Classification

Table 5-5 shows the cross-validation result for the two-class manufacturability
classification at the resolution of 128°. The model performance was evaluated on its accuracy,
which is represented as (TP + TN)/(TP + TN + FP + FN), where TP indicates a true positive,
in which both the prediction and truth are printable. 7N indicates a true negative, in which both
the prediction and truth are non-printable. FP indicates a false positive, in which the prediction is
printable, but the truth is non-printable. FN indicates a false negative, which depicts the opposite
results of the FP. The loss function was again selected as the cross-entropy. Cross-entropy is
commonly used in ML applications, and it offers the best performance in accuracy for the two-
class manufacturability classification. The detailed equation is described in Section 5.1.2. After
calculating the average of the cross-validation cases, the accuracy was approximately 0.9174.

Compared with the voxel-based approach, which applies convolution to every element in the
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matrix, the sparse matrix solution exhibited a better performance with an accuracy of 0.9174
compared with the dense matrix with an accuracy of 0.8404. Moreover, as the cross-validation
indicated, the accuracy of each case did not fluctuate significantly which demonstrated the stability
of the proposed model, and the model did not suffer overfitting in this dataset. As the dataset is

relatively small, a maximum of 8% variations do not consider as a significant change.

Table 5-5: Cross-validation results of the two-class manufacturability classification

Cross-validation Case | Accuracy in | Accuracy in
sparse matrix | dense matrix

1 0.8776 /

2 0.9388 /

3 0.9592 /

4 0.8776 /

5 0.9388 /

Average 0.9174 0.8408

A memory cost comparison between the sparse and dense matrices is shown in Figure 5-18.
The sparse matrix required significantly less memory than the dense matrix for all the voxelization
sizes. Note that the sparse matrix could easily fit into a GPU’s memory (12 GB) for the resolution
of 128. In contrast, the same-size dense matrix could not fit in a single GPU. Computing in the

CPU would require more running time.
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Figure 5-18: Memory cost comparison between the dense and sparse matrices

Overall, using the sparse matrix input data structures significantly decreased the
computational cost and improved the model performance. By only considering the occupied voxels
and removing the most useless elements which are background, the model demonstrated its

capability in predicting the manufacturability of a given design.

Note that the voxel size can be applied up to 256 with a single GPU and the sparse-based

approach. However, 128 is used here to compare the results with the voxel-based approach.

5.2.5.2. Semantic Manufacturability Segmentation

Cross-validations were conducted for the semantic manufacturability segmentation. For
semantic manufacturability segmentation, the same evaluation metrics, loU, and loss function, the
weighted dice coefficient loss, were used. They are fully explained in Section 5.1.2. For

convenience, the weighted dice coefficient is shown here again:
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loss = aDCy + (1 — a)DC; Eq. 5-10

DC = 2TP Eq. 5-11
~ T2TP+FP+FN 4>
IoU = P Eq. 5-12
T TPYFP+FN 4>

Where DC; is the dice coefficient for the i-th class, and a is the weight coefficient to balance the
two classes. a was set to be 0.6 in this approach to emphasize the importance of the non-printable
class. A set of selections for a as 0.55, 0.7, and 0.8 was also tested. The value 0.6 was selected
because of the best performance. The background, which is the empty class, was not stored in the
sparse matrix; hence, it was not trained in the sparse CNN. Therefore, the background was the
same as the original, which was counted as 100% correct to compute the mean IoU. Table 5-6
shows the cross-validation result of IoU for each class, as well as the mean IoU, on the resolution

of 128.

Table 5-6: Cross-validation results of the semantic manufacturability segmentation

Iteration | IoU mean | IoU empty | IoU print | IoU non print
1 0.8386 1 0.7964 0.7195
2 0.8366 1 0.8217 0.6882
3 0.8359 1 0.8105 0.6972
4 0.8293 1 0.7865 0.7013
5 0.8382 1 0.8153 0.6994
Average 0.8357 1 0.8061 0.7011

Table 5-7 compares the average loU for the voxel-based and sparse-based approaches. The

sparse-based approach had a better performance than the voxel-based approach. Particularly for
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the non-printable class, the sparse CNN demonstrated a better predictive result than the

convolution on a dense matrix.

Table 5-7: Comparison of the dense and sparse matrices

Average IoU mean
Sparse Matrix 0.8357
Dense Matrix 0.7951

Qualitative results for two samples are shown in Figures 5-19 and 5-20 to demonstrate the
capability of the proposed manufacturability prediction. Figure 5-19 is an example of the solid
lattice hybrid structure printed using a Renishaw machine with the material selection of AISi10Mg.
The original design is depicted in Figure 5-19a. It was predicted as fully printable through the
proposed sparse-based ML model (Figure 5-19b). Figure 5-19c¢ shows the prediction from the
commercial software Materialise Magics. Figure 5-19d shows the experimental result that
validated the prediction of the proposed sparse-based ML model. Note that for the figure of the

printed result, the support structure has been removed.
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Figure 5-19: Comparison of the (a) original design model, (b) prediction from the two-class
manufacturability classification, (c) prediction from the commercial software Materialise Magics, and

(d) printed result [185].

Another example is shown in Figure 5-20 of a thin tensile bar printed using a Renishaw
machine with the material selection of AlSil0Mg. Figure 5-20b shows the prediction of the
proposed sparse-based ML model. The blue color indicates the printable area, and the red color
indicates the non-printable area. The result from the commercial software is shown for comparison
in Figure 5-20c. The entire tensile bar was defined as non-printable since it suffered from warping

(Figure 5-20d. The prediction of the proposed sparse-based ML model was much better than the
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prediction of the commercial software. Note that for the figure of the printed result, the support

structure has been removed.

(a) (b) B Printable

B Non-printable

(© B Printable (d)

B High-risk
| Low-risk

Figure 5-20: Comparison of the (a) ground truth (labeling), (b) prediction from the semantic
manufacturability segmentation, (c¢) prediction from the commercial software Materialise Magics, and

(d) printed result.

5.3. Chapter summary

This chapter presents the development of hybrid ML models using both voxel-based and
sparse-based approaches as the solution for manufacturability analysis. It introduces the voxel-
based approach since it is one of the most popular shape representation types for 3D geometries.

A CNN model is applied to the design input and a classic FNN model is applied to the material
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and processing input. The two models are merged to make the prediction of manufacturability.
The result demonstrates that ML models are suitable approaches to solving manufacturability
challenges in AM process. However, the limitation of the voxel-based approach is shown to be the
dramatic increase in computational cost when a higher voxelized resolution is used. To solve this
problem, an advanced approach using a sparse CNN model is applied in the manufacturability
model. The results present a better performance and much lower computational cost than the voxel-
based approach. The ML-assisted models are the key to this thesis, and they are utilized in the

recommendation system, which is introduced in the next chapter.
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Chapter 6. MAR-AM Recommendation system

This aims to develop a recommendation system as part of the MAR-AM to provide
recommendations to assist novice AM users to obtain printable parts. In Chapter 5, the developed
ML models are evaluated in the LPBF process. The network structures and learning parameters
are tuned to fit the best of the current dataset. However, the framework can also be adapted to other
AM techniques with simple modifications to the parameters of ML models and selections of the
process parameters. For the recommendation system, instead of the LPBF process, FDM is
introduced to validate the approach owing to the larger amount of valuable data. Section 6.1
explains the ML model development for FDM. Thereafter, the methodology for the
recommendation system is introduced in Section 6.2. Sections 6.3 and 6.4 describe the methods to
generate the potential variations in design aspects and material and processing information,

respectively. Finally, this chapter is summarized.

6.1. ML-assisted manufacturability model for FDM

The hybrid sparse-based models developed in Section 5.2 are introduced here to train the
FDM data with the same ML architectures as LPBF. However, as the process settings and material
selection differ between FDM and LPBF, the input features for material and processing
information are reselected, and example input features are shown in Table 2. Note that scale is a
special factor in the table, and it is obtained from the design model. The scale parameter is also

indicated as it is also considered a decisive parameter.
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Table 6-1: Selected ML input features for material and processing information

Decisive parameters | Units Source | Example # 1 Example # 2

Material type User PLA ABS
Material density g/cm’ User 1.24 1.04
Printing speed mm/s User 80 60
Layer thickness mm User 0.15 0.15
Infill percent % User 20 20

Adhesion type User Brim Brim
Nozzle temperature °C User 200 235
Bed temperature °C User 60 80

Scale CAD 5.23 1

A graphical view of the general training procedure for developed ML models is presented
in Figure 6-1. The entire ML-assisted manufacturability model comprises two submodels: two-
class manufacturability classification and semantic manufacturability segmentation. To train the
two-class manufacturability classification model, the geometric 3D model in STL format is first
converted into a sparse matrix. Meanwhile, the material and processing information in tabular
format is applied with a one-hot encoding method. The label with the mark of printability is turned
into the number (0 or 1). Thereafter, the data with labels, the design matrix, and material and
processing information array are used to train the two-class manufacturability classification model.
The semantic manufacturability segmentation model operates similarly to the two-class
manufacturability classification, the only difference being the data preprocessing for labels.

Instead of using a single number to indicate manufacturability, the area of failure is marked in
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voxels and converted into a sparse matrix. It indicates the printability map of the given design.
Finally, the hyperparameters must be tuned to obtain the best performance. The accuracy for the
two-class manufacturability classification model after the five-fold cross-validations in FDM data

was 0.9674. The average loU mean after the five-fold cross-validations was 0.8564.
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Figure 6-1: Graphical view of ML training procedure

When the two sub-ML models are trained, the models are saved and used as the
manufacturability analyzer. When the new data is input, the design file is transferred to the sparse
matrix and the selections of the material and processing information are transferred to an array
using one-hot encoding. Thereafter, the input data is sent to the saved two-class manufacturability
classification model to make the prediction. Furthermore, if the given design with the selected

material and processing information is predicted as non-printable, the same input data is then sent
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to the saved semantic manufacturability segmentation model to predict the printability map. The
printability map is given to users to demonstrate the problematic geometric features. These saved

trained ML models are the key to the recommendation system.

6.2. Proposed structure and algorithm of closed-loop recommendation system

The recommender system is expected to produce suggestions to assist users in making
decisions for potential changes. In the manufacturability recommender system, when the given
design passes the manufacturability analyzer, users can expect successful printing with the selected
machine and material settings. However, if the assessment fails, the recommendation of potential
changes to obtain a successful printing is required. With the aid of the recommender system, users
are more likely to have their design successfully printed through AM process. More details on the

operation of the closed-loop recommendation system are described in the following.

Figure 6-2 shows the flowchart of the recommender system. With the well-trained saved
ML models, it provides predictions according to the user input. If the input of the given design and
selected process settings is not printable, it will then pass through a closed-loop process to
determine the first possible variation that can pass the ML prediction. The variation is served as
recommendations for the user to increase their printing success rate. More than one solution may
be available to make the printing successful. However, in this case, the first potential variation is
provided as the recommendation since there is no optimal option, and the variation is analyzed in
the order of time and cost consumption. The details on generating variations are depicted in the
next sections. Moreover, the recommendation system was validated using case studies, which are

described in Chapter 7.

124



|
|
| . Material and :
I Geometric rocessing |
! model P e I
: information I
o b
L
~ Initial ML
inputs
Make the prediction /' NewML
for manufacturability inputs

l

ML predictions for
manufacturability

L

< Printable? ~>———————> Generate variations

TYES

Ve N
[ Done |
N S

Figure 6-2: Flowchart of the recommender system

To better illustrate the systematic recommendation approach, the proposed algorithm is
presented in the following with step-by-step produce. Ultimaker 3 is the only AM machine
recorded for ME in the current developed database. Therefore, the factor, AM machine, is not
considered in the current recommendation system. However, it can be included in future

development.

Step 1.  Obtain user inputs of design model and material and processing settings.

Step 2.  Obtain the manufacturability prediction with the selected design model and
material and processing settings

a. if the result is not printable, obtain and printability map and go to step 3.

b. else go to step 14.
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Step 3.  Determine the build orientation for the least overhangs, and obtain the
manufacturability prediction with the new design model.

a. if the result is not printable, go to step 4.
b. else store the variation made and go to step 13.

Step 4.  Determine the build orientation for the most contacting faces to the build plate, and
obtain the manufacturability prediction with the new design model.

a. if the result is not printable, go to step 5.
b. else store the variation made and go to step 13.

Step 5.  Based on the material selection, change all the material and processing settings to
the default, and obtain the manufacturability prediction with new material and processing
settings

a. if the result is not printable, go to step 6.
b. else store the variation made and go to step 13.

Step 6.  Vary the bed temp from the leftmost element of the bed temp variations, and one
by one obtain the manufacturability prediction with the new bed temp setting.

a. If the prediction result is not printable, go to step 7.
b. else store the variation made and go to step 13.

Step 7.  Vary the nozzle temp from the leftmost element of the nozzle temp variations, and
one by one obtain the manufacturability prediction with the new nozzle temp setting.

a. If the prediction result is not printable, go to step 8.
b. else store the variation made and go to step 13.

Step 8.  Vary the adhesion from the leftmost element of the adhesion variations, and one by
one obtain the manufacturability prediction with the new adhesion setting.

a. If the prediction result is not printable, go to step 9.
b. else store the variation made and go to step 13.

Step 9.  Vary the printing_speed from the leftmost element of the printing_speed variations,
and one by one obtain the manufacturability prediction with the new printing_speed setting.

a. If the prediction result is not printable, go to step 10.
b. else store the variation made and go to step 13.

Step 10. Vary the infill percent from the leftmost element of the infill percent, and one by
one obtain the manufacturability prediction with the new infill percent setting.

126



a. If the prediction result is not printable, go to step 11.
b. else store the variation made and go to step 13.

Step 11. Vary the layer thick from the leftmost element of the layer thick variations, and
one by one obtain the manufacturability prediction with the new layer thick setting.

a. If the prediction result is not printable, go to step 12.
b. else store the variation made and go to step 13.

Step 12. Vary the mat type from the leftmost element of the mat_type variations one by one
and go back to step 5.

Step 13. Check if your variation is empty or not

a. Ifyes, return “Your part needs some design modifications before you print it and
the printability map

b. If no, return “Your part needs some modifications before you print it, and here is
the recommendation:”, the printability map and variation made.

Step 14. Return “Congratulations! Your part is ready to print”

6.3. Potential variations in the design aspect

Potential changes can be made in either machine and material settings or specifications of
the design. For the design aspect (Table 6-2), build orientation is considered as a potential change
that can be made to improve the printing process. Some of the existing studies considered the build
orientation as the process setting. In this thesis, the build orientation is considered a design-related
factor since by changing the build orientation, the design matrix is modified in our approach. It is
combined with the selected process settings as the new ML inputs. Many studies on optimizing
build orientation have been conducted [122, 186, 187]. For single-objective optimization, the
optimal build direction can be detected by optimizing for a single factor without considering the
conflicts with the other factors. Such studies include minimizing the support volume, volumetric
error, or cylindricity and flatness error, build time and maximizing the surface quality. An
advanced approach with multiple objective optimizations has also been proposed. This approach

considers multiple factors and expresses a weight function for each factor. For the recommendation
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system in this thesis, as part of manufacturability analysis, the easiness of printing is the focus.
Factors such as build time and flatness error are not considered at the current stage. Moreover, as
mentioned in Section 6.2.1, there is no optimal case and only the first variation that makes the
printing successful is provided. Therefore, for the current recommendation system, the build
orientation with the least overhangs and the build orientation with the most contacting area to the
build plate are the two potential changes. Moreover, to indicate problematic areas, the printability
map predicted by the ML model is provided. Designers can make design modifications based on

the indication of the potential failure areas.

Table 6-2: Potential variations for design aspects

Variations
Most contacting areas to the build
Build orientations Least overhangs
plate
Problematic areas The printability map is provided.

6.3.1. Build orientation with the least overhang

Build orientations with the least overhangs refers to minimizing the total area of the
downward-facing facets. It is considered to have more impact on the object accuracy than the

support volume [188, 189]. The objective function is expressed as

Minimize SA = )" 4;|d- |0 Eq. 6-1
i
where @ = 1lfdA.rff<0
0ifd-n, >0
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where 4; is the area of the i-th facet,d is the unit vector of the build direction, and 7, is the unit
normal vector of the i-th facet. The build direction is obtained from the generated list of build
orientations. To decrease the number of loops, the list of orientations is gathered from the area
cumulation approach and death star algorithm [190]. The principle of the area cumulation is to
cumulate the facet’s sizes with identical orientations to identify the first several potential
candidates for the optimal orientation. The death star algorithm functions as the complementary of

the area cumulation algorithm when the bottom area is a circle without any resulting area.

6.3.2. Build orientation with the most contacting area to the build plate

To determine the build orientation with the most contacting area, the first step is to
determine the orientated bounding box (OBB) of the given design and determine the direction with
the largest contacting face between the design and the face of the OBB. The main steps of the

algorithm are presented as

129



Algorithm: Determine the build orientation with the most contacting area to the build

plate

Input: Design mesh file: design

Output: Build direction with the most contacting area to the build plate

1.

2.

function design_opt most contact(design)

obb_design = Flat(OBB(design))

scale = max bound extents(obb_design)

voxels = Voxelized(obb_design, scale/64)

target list = [sum(voxels[0, : , :]), sum(voxels[-1, : , :]), sum(voxels[: , 0, :]),
sum(voxels[: , -1, :]), sum(voxels[: , :, 0]), sum(voxels[:, :, -1])]

index = target_list.index(max(target list))

direction_list = [[0,1,0],/0,1,0],/1,0,0],[1,0,0],[1,0,0],[1,0,0]]

return direction = direction_list (index)

end function

The input of this algorithm is the design mesh file, and the output is a new build direction.

The new design matrix is computed by applying the rotation matrix of both the new build direction

and rotating the angle of the OBB to the original design matrix. The new design matrix is then sent

to the ML models for another round of the prediction.

6.4.

Potential variations in material and processing information

The potential variations in material and processing information result from the decisive

parameters used in ML models. Table 6-3 presents the potential variations for material and

processing information aspects. For the process aspect, the default settings are selected for the first
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attempt. The default settings are recommended by the machine and material makers or AM experts.

If the default values fail, the remaining potential variations are tested accordingly. All the

variations differ from a certain range of the default value. The priority order is increasing from the

top to the bottom, which means that the recommender considers varying the setting in the order of

bed temperature, nozzle temperature, adhesion type, printing speed, layer thickness, and material

type.
Table 6-3: Potential variations for process aspects
Parameters Default Variations
Machine Ultimaker 3 Only Ultimaker 3 for now. Can be expanded in the future
Mat_Brand Ultimaker Only Ultimaker for now. Can be expanded in the future
Mat_Type PLA [PLA, ABS, PC, nylon]
Layer_Thin
0.15 [0.15,0.1,0.2,0.06]
kness
Infill_Perce
20 [20,40,60,80,100]
nt
80 for PLA;
Printing_Sp (80, 70, 90, [60, 50, 70, [40, 50, 60,
60 for ABS; [50, 40, 60,
eed 60, 100, 50, 40, 80] for 70, 80, 90] for
50 for PC; 30, 70] for PC
40] for PLA ABS nylon
70 for nylon
Brim for
PLA, ABS,
[Brim, Raft with a gap of 0.25 mm, None, Raft with a gap of
Adhesion nylon;
0.15 mm, Raft with a gap of 0.05 mm]
Raft with gap
of 0.25 mm
for PC
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[200, 205,
[235, 240,
200 for PLA; | 195, 210, 190, [280, 285, [250, 255,
Nozzle Tem 230, 245, 225,
235 for ABS; | 215, 185, 220, 275, 290, 270, 245, 260,
Y 250, 220, 215,
280 for PC; 180, 225, 210] 265, 260] 240]
250 for nylon 230] for PC for nylon
for ABS
for PLA
60 for PLA; [60, 65, 55, [80, 85, 90, [107, 110, [60, 65, 70,
Bed_Temp 80 for ABS; | 70, 50, 75,45, | 95,100, 105, | 105, 115, 100, | 75, 80, 85, 90,
107 for PC; 40] for PLA | 110] for ABS 120, 95, 90, 95, 100] for
60 for nylon 85, 80] for PC nylon

At the current stage, variations result from the decisive parameters. As some of the key
parameters have not been considered in this model, such as chamber temperature due to the
limitation of the experimental setup, the potential variations related to these parameters have not
been listed here. However, it is worth investigating these parameters and including them in the
database. Case studies to validate the recommendation system, with the implementation of the tool

and deployment, are described in the next chapter.

6.5. Chapter summary

This chapter proposes a recommendation system that aims to provide suggestions for users
to increase the printing success rate. The proposed methodology is validated in the next chapter as
the final delivery of this thesis. The FDM is discussed here to validate the capability of MAR-AM,
and a general training procedure for the developed ML models is provided. With the ML
architectures remaining the same, the developed ML models can be adapted to other AM
technologies through a small number of changes in the selection of the input features and

hyperparameters. The input features include geometric information and process and material
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information. As the process and material information are different for each AM technique, these
features are reselected based on the understanding of the FDM process. By following the proposed
ML training procedure, the developed ML model for analyzing the manufacturability of FDM has
good performance with satisfying accuracy. The well-trained model is then used as the

manufacturability prediction model in MAR-AM.

To support the closed-loop recommendation system, the input of the design, material, and
process first pass through the well-trained ML model to predict printability. If the part is not
printable, the recommender searches all the potential variations in build orientations, material
settings, and processing settings to determine the solution. The algorithms to generate these
variations are also explained in this chapter. Moreover, if there are no possible solutions, the
printability map is provided for users to make the decisions on the design modification. The next
chapter describes the methodology of the recommendation system combined with the well-trained
ML models being implemented into a web-based application, and case studies to validate the

approach are described.
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Chapter 7. Implementation and case studies

Based on the proposed core flows of the MAR-AM, a web-based tool has been developed
to better assist engineers to utilize the MAR-AM. The main aim is to provide novice AM designers
with an automated, easy-to-access, and comprehensive analyzer and recommender to avoid
unnecessary printing failure before the real fabrication. In this chapter, the web-based
implementation and deployment are fully explained. User interfaces are demonstrated to illustrate
the operation of the developed MAR-AM. Finally, multiple case studies are described to
demonstrate the capability of the developed MAR-AM, and the limitation is discussed based on

the case studies. This chapter is concluded with a summary of the contribution and future research.

7.1. Web-based implementation and deployment

The proposed framework of MAR-AM has been implemented into a web-based application.
The new user data will be collected regularly to update the ML models to provide the best
performance for users. The developed tool is available on GitHub. The architecture and user

interface of the MAR-AM are depicted in the following contents.

7.1.1. Architecture

The web-based application primarily consists of two parts: frontend and backend (Figure
7-1). The frontend provides a user-friendly interface, and the backend addresses business logic and
data storage. In the application, the frontend was developed using JavaScript, CSS, and HTML.
Three.js [191] was used as the STL viewer. It is an open-source JavaScript library used to create
and display 3D computer graphics. The backend was developed using Python. Flask was also used

as the web framework to connect the user interface and backend logic, including ML prediction
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and closed-loop recommendation. It operates as the liaison to communicate the frontend and

backend.
%+§+ + @ —  Flask 4 @ python’

three.js

Frontend

Figure 7-1: High-level architecture of the developed webpage

The overall framework of the developed web-based MAR-AM is presented in Figure 7-2.
The application consists of three hierarchical layers: UlI, logic, and data access layers. The Ul layer
provides an interactive layer to acquire necessary inputs from users and visualize the results. As
Figure 7-2 shows, there are two main web pages for this application: the main and result pages.
The main page was designed to request users to input setup information including uploading the
design and defining the AM process, AM machine, material, and machine settings. All the
extracted texted information is saved in a JSON file. The screen module is responsible for
visualizing 3D models for both the original model and printability map to aid users to have a better
concept of their design. On the result page, users are also encouraged to provide feedback based

on the performance of the MAR-AM.

The logic layer provides the most critical functions for MAR-AM. Modules in this layer
were developed for specific functions. As shown in Figure 7-2, this layer includes a data
preprocessing module, ML prediction module, closed-loop recommendation module, build
orientation module, printability map generation module, and auto ML model update module. The
auto ML model update module is included only for completeness, but they are not developed in

the current version. The data preprocessing module is dedicated to processing the user inputs to
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the demanded ML inputs. The ML prediction module makes the prediction of the
manufacturability for the given inputs. The closed-loop recommendation module generates the
suggestion for users to increase the printing success rate with the aid of the build orientation
module to generate the potential build orientations. The printability map generation module

generates the printability map to demonstrate potential problematic areas to users.

The data access layer contains the following modules: file read and write module, AM
database, and user feedback database. The file read and write module was developed to serialize
and deserialize JSON and STL files (STL is the only design file format accepted in the current
version). The AM database was established to train the ML models. The user feedback database is
not included in the current version but is described here for completeness. It will be used to store

the user feedback, which will be used to update the ML models.
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Figure 7-2: Framework of the developed web-based tool

7.1.2. User interfaces

The user interfaces consist of two major web pages: the main and result pages. As shown
in Figure 7-3a, the main page was developed for users to input their selections for process settings
and upload their design files in STL format. On the right panel of the webpage, the user can view

their uploaded design file. When all the required fields are filled, the user can click the submit

button to analyze the design (Figure 7-3b).
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Step2: Load your STL medel (it should include your support)

You are all set! Please submit to see the results.

(b) Loading inputs
Figure 7-3: User interfaces of the MAR-AM: Main page

MAR-AM begins to analyze your input and the analysis is often less than a minute (Figure
7-4a). Figure 7-4b shows the result webpage. On this page, users can view the prediction results
as well as recommendations for potential modifications. The visualization of the results is placed
on the top of the webpage. The original design is in blue, and the potentially problematic areas are

marked in red.
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(a) Analyzing

(b) Result page

Figure 7-4: User interfaces of the MAR-AM: Results page

Furthermore, users are invited to provide their feedback for MAR-AM by clicking the
feedback button. As shown in Figure 7-5, a simple survey appears to let users express their
opinions and agreement with the prediction. Their feedback is uploaded continuously to the
developer side. The trained ML model is updated based on users’ agreement with the predictions

regularly.
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Overall, do you satified MAR-AM?
Ves v

Do you agree with our prediction?
Yes v |

Have you print it to validate our analysis?
Yes v

Any comments?

Feedback page

Figure 7-5: User interfaces of the MAR-AM: Feedback page

7.2. Case studies

In this section, multiple case studies to validate the effectiveness of the proposed web-
based MAR-AM are described. Four cases are fully explained in the following sections to
demonstrate how MAR-AM works. These cases are selected to demonstrate the capability of the
manufacturability prediction and the effectiveness of the recommendation in both material and
machine settings and design modification. The presented material and machine selections are the

original user inputs to the web-based MAR-AM.
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7.2.1. Case 1: Simple customized mechanical parts

The first sample was a simple mechanical bevel gear obtained from the Thingi10K database.
The detailed printing information for the gear is listed in Table 7-1. It was originally selected to
be printed in ABS with default machine settings. The potential problem in this part was the two
lateral holes. Large round lateral holes may need support for printing, otherwise, distortion may
occur. There is a certain limitation on the hole size to avoid support structures. For the selected
mechanical bevel gear, the two lateral holes were under the limit and can be printed without any
support structures. The MAR-AM offered the prediction result as printable (Figure 7-6a). To
validate the approach, the part with selected settings was printed, and the experimental result is
presented in Figure 7-6b. The MAR-AM successfully predicted the printability of the simple

mechanical bevel gear.

Table 7-1: Detailed printing information of the gear

Layer thickness (mm)

Machine . Infill percent (%)
Material type o .
. . brand . . Printing speed (mm/s)
Name Figure of design . Material density .
Machine (g/cm’) Adhesion type
series & Nozzle Temperature (°C)
Bed Temperature (°C)
0.15
20
Bevel eear Ultimaker ABS 60
vele Ultimaker 3 1.04 Brim
235
80
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(b)

Figure 7-6: (a) Prediction of bevel gear (b) printing result of bevel gear

Several similar samples (listed in Table 7-2) were conducted to validate the proposed
methodology. They were customized parts selected from some industrial applications. They were
predicted as printable by the MAR-AM, and experimental results were conducted to validate the

predictions.
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Table 7-2: More successfully printed case studies

Layer thickness (mm)

Machine Material Infill percent (%)
brand type Printing speed (mm/s) Experimental
Name Figure of design . Material . MAR-AM prediction e
Machine density Adbhesion type validation
series Jem’ Nozzle Temperature (°C)
(g/cm’) Bed Temperature (°C)
0.15
20
Adapter Ultimaker ABS 60
Ultimaker 3 1.04 Brim
235
80
0.15
20
Ultimaker ABS 60
Knob Ultimaker3  1.04 Brim
235
80
0.15
20
Connector Ul.timaker ABS 69
Ultimaker 3 1.04 Brim
235
80
0.15
3 20
Ring Q Ulj[imaker PC ‘ 50
_ Ultimaker 3 1.19 Raft with gap of 0.25 mm
280
107
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7.2.2. Case 2: Material-related and process-related demo

The first sample demonstrated in the second case was a hexagonal organizer provided by
a fellow AM expert. It was originally selected to be printed in ABS with default machine settings
(Table 7-3). As demonstrated in Figure 7-7a, the MAR-AM predicted that the part was not
printable and required some modification. Moreover, it also provided the recommendation to

change the material type from ABS to PLA.

Table 7-3: Detailed printing information of the organizer

Layer thickness (mm)

Machine . Infill percent (%)
Material type o .
. . brand . . Printing speed (mm/s)
Name Figure of design . Material density .
Machine (g/cm’) Adhesion type
series & Nozzle Temperature (°C)
Bed Temperature (°C)
0.2
20
Hexagonal Ultimaker ABS 60
organizer Ultimaker 3 1.04 Brim
235
80

To validate the prediction and recommendation, the hexagonal organizer was printed using
both ABS and PLA, and the printing results are shown in Figure 7-7b. The experimental results
confirmed the effectiveness of the proposed MAR-AM. The main problem with the hexagonal
organizer was cracks on the wall. They were caused by the release of residual stress during the
printing process. The hexagonal organizer consisted of large and thin walls, which could not
endure the residual stress while printing. Thus, cracks occurred on the fabricated part. Compared
with the ABS, PLA has a lower thermal expansion coefficient, which resulted in less deformation

during the printing. Another solution might be available, which is to have a closed chamber with
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a higher chamber temperature for printing ABS. However, the current database only contains
Ultimaker 3, which is an open-chamber printer. The chamber temperature can be included as a

decisive parameter in the future version of the MAR-AM.

Before

(b)

Figure 7-7: (a) Prediction of the hexagonal organizer, (b) printing results of the hexagonal

organizer before implementing the suggestion, and after implementing it
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Table 7-4 shows another example, which is a polyhedron model. The MAR-AM predicted
that the part could be printed. However, the experimental result (Figure 7-8) shows that the part
failed. This was caused by the weak adhesion between the part and build plate. The polyhedron
model had a small contacting area to the build plate, which contained fewer adhesions. The part
lost adhesion to the build plate in the middle of the printing process and slipped. With more
experimental investigations, the part was observed to be printed successfully by increasing the bed
temperatures or changing to other materials. The potential reason for the wrong prediction was the
lack of data. In the current database, the geometric information has been varied and considered
carefully, but for process variations, less data was collected, which motivates the future direction
of this study. More printings with various process parameters must be conducted to improve the

model performance.

Table 7-4: Detailed printing information of the polyhedron model

Layer thickness (mm)

Machine . Infill percent (%)
Material type o .
. . brand . . Printing speed (mm/s)
Name Figure of design . Material density .
Machine (g/em’) Adhesion type
series & Nozzle Temperature (°C)
Bed Temperature (°C)
0.15
20
Polyhedron Ultimaker Nylon 70
wireframe Ultimaker 3 1.14 Brim
250
60
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(b)

Figure 7-8: (a) Prediction of polyhedron model, (b) printing results of polyhedron model

7.2.3. Case 3: Design-related demo

The first sample in the third case was an art creative obtained from ThingilOk. Table 7-5
lists all the detailed printing information. It can be considered as a porous structure, which is
challenging for the conventional manufacturing process. It was initially selected to be printed using

PLA with its default setting. The MAR-AM suggested changing the original build orientation to
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flip the geometry as shown in Figure 7-9a. The developed viewer is a 3D object viewer and users
can rotate the viewer to identify the suggested orientation for better printing. The experiments were
conducted to validate the prediction and recommendation. The problem with the original setting

was the long overhang. It is not printable through the AM process without any support structures.

Table 7-5: Detailed printing information of the art creative

Layer thickness (mm)

Machine . Infill percent (%)
Material type o .
. . brand . . Printing speed (mm/s)
Name Figure of design . Material density .
Machine (g/em’) Adhesion type
series & Nozzle Temperature (°C)
Bed Temperature (°C)
0.15
20
Sinele tear Ultimaker PLA 80
& Ultimaker 3 1.24 Brim
200
60
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Figure 7-9: (a) Prediction of art creative, (b) printing results of art creative for both before and

after the suggestion

Another example was a steam locomotive component. It was a channel-like type of
geometry and was designed to be printed without any support. The design was initially selected to
be printed using ABS with its default setting. The MAR-AM suggested changing the original build
orientation to lay down the geometry as presented in Figure 7-10a. The experiment (Figure 7-10b)
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was conducted to validate the prediction and recommendation. The part with the original settings
failed in the middle owing to the loss of the adhesion to the build plate. The part slipped to the side
and the printing failed. This was caused by the small contacting area to the build plate that
contained insufficient adhesion. It was similar to the sample of the polyhedron model demonstrated
in case 2. Moreover, this part contained not only the problem of adhesion but also of suspending
geometries. By changing the build orientation, the suspending geometries were avoided and the

contacting areas to the build plate increased.

Table 7-6: Detailed printing information of a steam locomotive component

Layer thickness (mm)

Machine . Infill percent (%)
Material type o .
. . brand . . Printing speed (mm/s)
Name Figure of design . Material density .
Machine (g/em’) Adhesion type
series g Nozzle Temperature (°C)
Bed Temperature (°C)
0.15
Steam 20
locomotive Ultimaker ABS 60
componle\rll ¢ Ultimaker 3 1.04 Brim
235
80
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Before After
(b)

Figure 7-10: (a) Prediction of the steam locomotive component, (b) printing results both before and after

the suggestion

7.2.4. Case 4: Skulls

Case 4 contained two different skull models: a skull lamp cover and a skull bowl. They

were initially selected to be printed using PLA with a thick layer. Although these two models had
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similar geometries and were set to be printed with the same materials and same machine settings,

MAR-AM predicted that the skull lump cover was not printable (Figure 7-11a) and the skull bowl

is printable (Figure 7-12a). For the skull lump cover, MAR-AM could not determine the potential

solution by simply changing the build orientation or process parameters. It provided a printability

map to support the potential design modifications. The experimental results, shown in Figures

7-11b and 7-12b validate the predictions of MAR-AM. The main problem with the skull lump

cover was the suspending areas. It could not be printed without support structures. The printability

map is provided to assist users to generate the proper support structures.

Table 7-7: Detailed printing information of skulls

Layer thickness (mm)

Machine . Infill percent (%)
Material type o .
Name Figure of design bran-d Material density Printing P ced (mmys)
Machine (g/cm?) Adhesion type
series Nozzle Temperature (°C)
Bed Temperature (°C)
0.2
20
lsé‘r‘;g Ultimaker PLA 80
cover Ultimaker 3 1.24 Brim
200
60
0.2
20
Skull Ultimaker PLA 80
bowl Ultimaker 3 1.24 Brim
200
60
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(b)

Figure 7-11: (a) Prediction of the skull lamp cover, (b) printing results of the skull lamp cover. The red

boxes indicate the problematic areas
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Figure 7-12: (a) Prediction of the skull bowl, (b) printing results of the skull bowl

In conclusion, these case studies demonstrated the capability of the proposed MAR-AM in
both prediction and recommendation. It provides promising and satisfying performance to novice
AM users at the design stage. It assists users in increasing the printing success rates and benefits

from AM techniques in their product development process. Some limitations remain at the current
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stage. First, the proposed MAR-AM has weaker performance on the process-related samples
owing to the insufficient data in the developed AM database. However, as more data is incoming,
particularly with different process settings, the performance of MAR-AM will be improved.
Second, the printability map is provided to support the design modification for designers. However,
the main causes of these challenges and how to modify designs to overcome them are still not clear.
Certain AM knowledge is required to justify what modifications can be conducted. For future

research, more investigations on guiding users on design modifications can be conducted.

7.3.  Chapter summary

This chapter describes the implementation and deployment of the developed MAR-AM. It
is implemented into a web-based application. With the web application, users can easily access the
developed tool and share feedback with developers to improve the application. The tool was

developed in Python language with a JavaScript-based viewer and Flask backend framework.

Multiple case studies are presented in this chapter to validate the recommendation system
and the entire flow of the proposed MAR-AM. These case studies validate the performance of the
proposed MAR-AM on both prediction and recommendation. Only one sample in the discussed
eleven case studies had the incorrect prediction, which motivates more data gathering on process

variations.

The current MAR-AM is still at the beta version. Thus, some additional features and
functions can be added to increase its functionality. These future developments are summarized as

follows.

1) The developed web application can join the AM data port together to offer a better

environment for users to use the applications and contribute their efforts.
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2)

3)

4)

The model is expected to perform better with a more extensive database, particularly for
the process-related samples. More data must be collected to mature the methodology and
developed applications.

The current database is stored locally. It will be better to upload it online. Moreover,
filtering and utilizing the user feedback to improve the developed model must be
investigated.

The use of the given printability map to support the design modification can be further
investigated. The current printability map still requires some AM knowledge to justify the
potential challenges. It will be better to categorize these problematic challenges into groups
to provide designers with a better concept of how to modify their designs for a successful

print.
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Chapter 8.  Conclusions and future research

8.1. Conclusions

At the current stage, the AM process still has a very high threshold for novice users to fully
utilize its capabilities in fabricating complex parts. It has a large number of selections on materials,
machines, and even parameter settings. It requires designers to have extensive knowledge of the
AM process to make the design manufacturable. Even for an advanced commercial AM machine,
printing may fail owing to many factors such as build orientations, support structures, and
minimum features. There are still limitations on printable geometrical features. The relationships
of geometric information, material information, process information, and final part qualities are
closely coupled. Identifying whether a given design is printable and what modifications are
possible to make the design more suitable for AM is one of the major challenges limiting the wide
adoption of AM in the industry. Therefore, an automated, easy-to-access, and comprehensive
manufacturability analysis before fabrication is significantly important to stimulate the application
of AM technology. There are seven different types of AM techniques, and each technique has a
different manufacturing process. This thesis focuses on two AM techniques: LPBF and FDM. They
were selected owing to their wide applications and popularity. To develop the desired
manufacturability model, this thesis answers three research questions: 1) how to define the
manufacturability of the given design in AM, particularly for LPBF and FDM processes; 2) based
on the definition, how to predict what geometries with corresponding material and process
information is not printable; 3) if the given design is not printable, what modification can be
conducted to make the design printable. To solve the above challenges, the following efforts are

performed in this thesis.
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At the beginning of the thesis, a comprehensive literature review is conducted over the
topics of manufacturability analysis for both AM and SM. Existing methodologies of
manufacturability analysis on SM are provided to understand how manufacturability analysis is
conducted for the traditional processes, and they are compared to motivate the manufacturability
analysis on AM process. Thereafter, the major effects on evaluating manufacturability are
reviewed and summarized. Without the understanding of these factors, the manufacturability
model of AM cannot be fully developed. In the past, similar to the conventional manufacturing
process, design guidelines or checklists are the most common methods to aid designers in
evaluating the manufacturability of their designs. It provides a manufacturable range of
geometrical design features including minimum thickness, part orientation, surface roughness,
chamfers and radius, holes, and overhang. Designers are expected to follow these guidelines in
their product design process. However, this approach is limited, as the relationships among the
process settings, materials, and quality of parts are not considered. Moreover, it requires manual
scanning through the checklist, and designers are expected to have certain AM knowledge. To
assist non-AM experts in better determining whether their designs are printable through AM
processes, a few methods such as heuristic and computational approaches are reported. These
approaches consider either only the process aspect or the design aspect. None of the previous
studies simultaneously considered the effects of design and process. The relationships among the
process, design and printing qualities of the parts are highly coupled and difficult to model. The
literature review also indicates that there is no proper definition of the manufacturability of AM.
Moreover, previous methods on manufacturability analysis offer limited evaluation at the design
stage in terms of efficiency, effectiveness, and comprehensiveness, and lack of recommendation

to users. No well-defined, automated, and easy-to-access manufacturability analysis is available
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in the literature. To comprehensively model the manufacturability model of AM with the coupled
relationships among process, material, design, and final product qualities, the ML approach is
developed in this thesis as the potential solution owing to its capability in solving complex

problems.

To solve the problems summarized in the literature review, this thesis first defines the
manufacturability of AM. The manufacturability analysis is differentiated from the engineering
analysis to ensure that a part is properly fabricated with the given design, material, and
manufacturing process. Based on that definition, three manufacturability levels are introduced.
Level 1 checks visual defects of the printed part to ensure geometric completeness. Level 2
evaluates the micro-level structure to ensure the printed part is dense without any significant pores
or cracks. Finally, Level 3 ensures the geometric resolution in terms of dimensional accuracy,
surface roughness, etc. These levels are expected to be achieved in a step-by-step manner to
guarantee the manufacturability of a given design. This thesis focuses on Manufacturability Level
1, which is to detect the visual defects to ensure geometric completeness at the design stage with
given designs under the selected material and process settings. Subsequently, a methodological
framework of MAR-AM enabling the manufacturability analysis on Level 1 is proposed. This
framework is comprised of three main parts: data establishment, ML-assisted manufacturability
model development, and a manufacturability recommendation system. Experimental data was
designed and collected to train the ML model. With the gathered data, ML models were developed
to analyze manufacturability in terms of printability value and the printability map. With the
trained ML-assisted manufacturability model, when the design and corresponding settings are
given, the ML model will make a prediction on the printability of the given design. If the part is

predicted as non-printable, the geometric, material, and process information are then sent to the
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recommendation system to determine the potential solutions to avoid printing failure. As the

support of the potential design modification, a printability map is also provided.

In the use of ML, data is extremely important as it can directly affect the performance of
the ML models. In this study, both FDM and LPBF data were collected to train the ML models.
The experiments were designed to create a rich and comprehensive dataset. The critical
geometrical consideration and material and process considerations are summarized based on the
literature reviews. The dataset was set to include all the variations on both design and process
aspects. Moreover, to better manage these data, a well-organized relational database was
developed. All the data is stored in the developed database. With the well-defined data organization
structure, the data can be easily extracted and used. Furthermore, an AM data port was developed
to increase the data sharing and popularize ML approaches in AM applications. Data can be
extremely expensive in AM studies. However, with the AM data port, users are encouraged to
share their experimental data. AM researchers can reuse, reunion, and reorganize data
contributions from other users. They are expected to fully utilize the existing experimental results

in their own studies.

The initial approach to developing the ML-assisted manufacturability model is to use
voxel-based geometrical information combined with the material and process settings to make the
prediction of the Manufacturability Level 1—visual defects. The design model is represented as
voxels and applied using a CNN model. The material and process aspects are applied using an
FNN model. The two models are then combined to predict the manufacturability of a given design
in the selected AM process settings. The specific loss function is developed for model training to
avoid challenges resulting from the imbalanced class. The hyperparameters of the ML models are

tuned to determine the best performance. The results verified that the developed model can
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accurately predict the manufacturability of the specific design. However, the voxel-based model
is restricted by the available computational capability and only lower resolution was performed. A
low resolution is insufficient for precisely analyzing the AM manufacturing process. Some detailed
features may be omitted through the voxelization process. To solve this problem, this thesis
establishes a more efficient CNN. Design data is stored in a sparse matrix such that only the
occupied voxels are trained by CNN operations. It joins with the process data, which is trained
using an FNN model to make the prediction of manufacturability. By performing the generalized
convolutions, the computational costs decrease significantly compared with the voxel-based model,
which offers the advantage of performing with high resolutions. The approach was validated in

terms of effectiveness and efficiency on the manufacturability prediction.

To guarantee a successful print, novice AM users also seek recommendations on their
designs and selections of material and process settings to avoid potential printing failure before
the actual fabrications. Therefore, a recommendation system is developed in this thesis. The user
inputs of design and selections of material and process are first analyzed by the trained ML models
to make the prediction of printability. If the given input is not printable, the recommendation
system determines the potential variations in either design or process aspects. The entire process
repeats until all the variations have been attempted. If there is no printable solution, the printability
map is generated for users to modify their designs. The printability map indicates the problematic

area, which can aid users in modifying their designs.

To validate the proposed MAR-AM and recommendation system, a web-based application
was developed and presented at the end of this thesis. The web-based application provides a rapid,
automated, and easy-to-access tool for novice AM designers to evaluate their designs before the

real fabrication. Moreover, it provides a friendly user interface and enables users to provide their
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feedback. The feedback is sent to the developed database to update the ML model. With continuous
updates, the ML models can be improved and provide better and more mature performance. Finally,

multiple case studies are discussed as validation of the effectiveness of the proposed methodology.

In conclusion, the proposed MAR-AM fills the research gap in the manufacturability
analysis of the AM process. The MAR-AM provides the prediction of printability with the
consideration of both the given design and selected material and process information. More
importantly, it can provide promising suggestions for users to avoid printing failures before the
actual fabrication, and these were validated using multiple case studies. The MAR-AM can serve
as a first-level evaluation of designs for novice AM users such as designers to reduce the waste of
time and cost in AM fabrications. Moreover, the MAR-AM is easily accessible and useable as a
web application. While training an ML model can take a few hours, the prediction only takes
seconds. This thesis provides insightful and useful methods and tools to lower the threshold of AM

processes and support wider AM applications in the future.

8.2. Future research

This research had some limitations. For instance, this thesis only focuses on
Manufacturability Level 1, which is the visual defects. Manufacturability Levels 2 and 3 are not

investigated. To overcome these limitations, future research is planned in the following areas:

1) The current database should be expanded. The number of instances in the current database
is still under expectation, particularly for the process-related samples. More data must be
collected to mature the methodology and developed applications. Moreover, with more

data, a recommendation system can be developed for LPBF.
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2)

3)

4)

The current data labeling process requires a large amount of manual work, particularly to
create the data to train the ML model to predict the printability map. A potential automated
annotation tool should be developed to reduce the amount of manual work.

More ML algorithms can be investigated such as recurrent neural networks (RNN). RNNs
facilitate temporal dynamic behaviours as AM manufacturing processes. The parts are
printed layer by layer in AM processes, particularly for LPBF and FDM. The consequence
from the previous layers can be fed as the input to the current layer, which can be conducted
in an RNN.

The current recommendation system searches for all the potential variations in the design,
material, and process aspects. However, there are still some limitations. First, to generate
variations, only a single feature is varied. The current recommendation system does not
consider varying multiple settings simultaneously. Second, for the build orientation,
current variations may not be the optimal build orientations. More investigations can be
conducted in future research. Finally, although the printability map is provided to support
the design modification, more specific design solutions can be investigated and provided
as the next step. The reasons for the printing failure of each problematic area can be

categorized and offered to users, which can further aid designers in making modifications.
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APPENDIX I: Investigations of effects on varying processing parameters

Major investigated | Materials Key findings Reference
parameters
Laser power; Scan | TI-6Al-4V Scan velocity has the most significant | [3, 4, 192]
speed; Hatch effect on mechanical properties.
distance; Build s
istance u Laser power has some effect on ductility,
orientation . .
but not as significantly as scan velocity.
Hatch distance exhibits relatively no
effect on the ductility of the AM parts.
Orientation does not have a significant
effect on fatigue behaviour
Layer  thickness; | Inconel 718 | For a larger layer thickness, it has lower | [2, 193,
Laser beam power; | alloy strength properties and higher plasticity. | 194]
Speed hatch
distance; Building
direction
Laser power; Scan | Steel The samples of steel produced by AM | [59,  195-
speed; Thickness of method has better tensile test result than | 197]

layer; Overlap rate;

Building direction

ANSI samples.

Laser power stings and scanning speeds
have the most significant effects on

mechanical properties.

The deterioration in mechanical and
geometrical properties occurs when the

building angle is less than 45 °.
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The layer thickness has more effects on
surface roughness than the mechanical

properties.

Powder bed | Aluminum Optimized parameters are recommended | [198]
temperature alloy 6061 based on the author’s machine and printed
materials.
Preheating of the powder bed is very
useful in producing crack-free parts.
Laser power; Build | 17-4 PH | Optimized laser power, orientation, layer | [199-202]
Orientation; Layer | stainless steel | thickness and defocus distance are
Thickness; Defocus observed based on microhardness and
Distance ultimate compressive strength. Machine
and material are fixed.
Building orientation exhibits a noticeable
effect on the mechanical properties
Scanning speed Al-Zn-Mg- The effect of scanning speed on porosity | [203, 204]
Cu alloys development and crack behaviour is
investigated. The best scanning velocity is
observed with fixed material and machine.
Scanning  speed; | Al-Cu-Mg Scanning speed and laser energy density | [205-207]
Heat treatment; | alloy are observed to influence the products’
Laser energy qualities. Heat treatment was proved to
density; increase the mechanical properties.
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Scanning  speed; | AISi10Mg The best parameters and scan strategies | [1, 208,
hatch spacing; are observed for AISilOMg using the | 209]
Scanning strategy; printer SLM-50
Build ientation;

u1 oriertation; The influence of post-processing on the
Thermal post- . . .

microstructural and tensile properties is

processing investigated.
Hatch distance; | Stainless steel | Morphology of the first layer and surface | [210]
Layer thickness grade 904L structure of the thin walls is studied.
Scan speed; Pulse | Inconel 625 | Higher peak power has a better top and | [211, 212]

width; Pulse
energy; Repetition

rate

side surface. Increased repetition rate and
decreased scan speed have better top
surface roughness but worse side

roughness.
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Abstract

The laser-based pow der bed fusion (LPBF) process is able to produce complex part geometries. The fist development of the
LPBF process offers new opportunities for the industries. Most research done to date has focused on the modeling of the process,
which shows that both part peometries and process parameters play an essential role in the result of end-product quality. The
definition of the manufacturability of the LPEF is vague. In this review, the focus is set on the manufacturability of the metal-
LPEBF pmocess, What manufacturability is in the LPBEF process and how it is investigated so fir are discussed. All process
parameters and design constrints for LPBF processes ane introduced. The relationship between process parameters and design
constraints and how they affect the manufacturability are discussed as well, A detailed discussion on how other researchers
evaluate manufacturability analysis of LPBF s conducted. Finally, the manufactumbility of LPBF is defined, and future pros-
pects on filling the reserch gaps on the manufacturability analysis of the LPBF are presented.

Keywords Manufctumbility - Laser-hased powder bed fusion - Additive manufacturing

1 Introduction and background

Laser-based powder bad fusion, referred to as LPBF is a type
of additive manufacturing (AM) process. In the metal-LPBEF
process, a laser beam as a power source will melt and fuse the
metal powde acconding to the given pattem on each laver,
After one layer is done, the next layer of metal powder will be
applied, and the laser is projected. The process continues layer
by layer until the products are completely built [1-4], The
schematic of the LPBF process is shown in Fig, 1. The
LPBF process is ultimately about the suecessful control of
heat transferred from an intense laser beam to a powder bed
with poor heat conductivity to produce the geometrically pre-
cie localized fusion of powder [5]. The fusion mechanisms
can be grouped into four groups, which are solid-state

240 Yaoyao Fiona Zhao
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Ying Zhang
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smtering, chemically induced binding, liquid-phase sintering
(LPS), and full melting [6]. When metal is used, LPS and full
melting are two conventional apprmaches to solidify metal
povwder.

Because of its relatively high resolution, numerous material
choices, and potentials on manufacturing virtually any shape,
the process is widely used and studied in both academics and
industries [4, 7-9]. The application of LPBF can be found in
medical and dental, agrospace, automotive, energy, and
tooling ndustries [7, 9-14]. Compared with conventional
manufacturing (CM), the LPBF process is more suitable for
prototyping and low production volumes of high complexity
parts dug to its advantages on the cost, production time, and
machinability [8]. Opposite to subtractive manufacturing
methodologies, it provides more design freedom with the lay-
er upon layer maténal addition approach [4]. As no tooling is
needed in the LPBF process, designers could consider more
complex geometries that are not achievable by CM processes,
The growing market demand on the LPBF process boosts
increasmy research efforts in academa [7, 15, 16].

Owver the past 20 vears, significant resenrch has been carnied
out in the figld of LPBF. Process, materials, designs, applic-
tions, and constraints reldtad to LPBF have been investignted
extensively and summarized in a recent survey paper [17].
‘With the rapid iterative deployment of LPBF equipment, the

ﬂ Spr:ngﬂ

180



Journal publication D2

Additive Manufacturing 41 (2021) 101946

FI.SEVIER

Jjoumnal home page: www.elsevier.comlocate’add ma

Contents lists available at ScienceDirect x =

AR TACTUANG
Ml

Additive Manufacturing —

Research Paper

Predictive manufacturability assessment system for laser powder bed fusion
based on a hybrid machine learning model

T

Ying Zhang, Sheng Yang, Guoying Dong, Yaoyao Fiona Zhao

Deparmment of Mechareiea! Engineering, MoGill Diebhversity, Monte!, Quebec HIADG, Canada

ARTICLE INFO ABSTRACT

Fyeords:
Laser powdies bl Fusicn
Hybeid machine lnaming moded
Wiomed brati e

30 objert printing

Laser powder bed fusion (LFEF) is an additive manufacturing (AM) process widely adopted in multiple industries
for varions parposes. When LPBEF is need for part fBabrication, determining the manofacturability of a aeecific
design is a challenge. Therefore, this study aimed to identify a printable design wsing a novel approach te predict
the potential printing failures of a given design via the LPBF process. A voxcel-besed convolstional neural network
(CMM) model is developed for analyzing the design aspect, and a nearal netwark (KN) maode] is applied o the

process aspect. The two models are then combined to predict the manufsctarability of the given design in the
sedected LPBF process settings. The validation samples were selected randomly, and the resales verified that the
developsd model can accurately predict the manufacturability of the specific desizn. However, the proposed
misdel is restricted by the computational power and the oumber of training datasets and thersfore requines
further investigation in this regard.

1. Introduction

Lager p-m'rﬂl-_"r bed fugion (LPBF) & a cman.u]j wmed additive
manufacturing (AM) process to develop three-dimensional (300 objects
and affords more freedom in termaz of hisraschical and chape complex-
itisz than the conventional manufacturing processes [1]. In the LPEF
procesz, a power source melts and fuses the powderad material spread
on a layer bazed on a specific pattern. The process is repeated on each
layer until the entire part iz completely fabricated [2-5]. Vadous in-
duatries, such 2z automotive, snergy, asrospace, tooling, medical, and
dental industries, widely udlize the LPBF techmique to fabricate
numerouz componentz [6]. Although the LPBP process has several ad-
wantages, certain limitations exizt during itz application. Por instance,
the LPBP process requires an extremely high threchold, and the de-
zigners must possess extensive Iu:mw]:vslgc of the entire procesa to ensure
fabricable dezignz. The manufacturing process can fail sven when an
aidvanced commercial LPBP machine iz used owing to the minimum
features, cupport structures, orentation of builds, and other factorm.
Hence, 2 manufacturability ascecement iz critical at the =arly stage to
evaluate the design before the actual fabrication. To identify the man-
ufacturability of a gpecific design, the printability of the decign in the
dezired chape uging the selected LPBP procesz must be determined [7].

* Cormesponding author.

E-mull addresses ying.zhang
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Therafore, thiz study aimed to predict the complatensc: of the chape in
the printing partz before examining the mechanical performances, az the
investigation of mechanical properties becomes futile if the part failz to
be printed complately.

The proces: parameters of the LPEP, material selection, and design
characterictics are the three primary aspectz that zignificantly affect
manufacturability [7]. To verify the manufacturabilicy of the given
decign uning the LPEP process, it iz amsential to identify the relagonship
betwesan these thres aspects and the quality of the final product. To thiz
end, numerous studies have imcestigated the nfluence of =ach aspect
[3-15]. In termaz of manufacturability analyziz, the reported techniques
include the decign guidelines [14-19], nowledge management syotem
[20], real-time monitoring [21-23], and offline automated mamufac-
turability checker [24 25]. However, these approaches do not provide
aptomatic manufacturability assesament at the early design stage.
Maoreower, most studies conzider the influence of sither the decign or the
procesn scpect mﬂ.rnd'ua]]; -] m:al:me the n:nnuf:mmbi].ity. Therefore,
we propose a machine learning (ML) azzisted manufacturability pre-
diction of a cpecific design in the LPBF process, combining the design
and procesa aspectz to fll the gapa in the litsrature.

In the proposed method, a voxel-bazed convolutional nevral network
{CNN) model iz used for dezlgn mﬂlﬁiz. while a neural network (NN
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This paper presents a movel sohetion to predict the visaal defects, one of the major oriteria for analyzing mam

wfactarability for the Laser-based Powder Bed Fusion (LPEF) process. For the existing manufacturability in

vestigations, the key challenge is how to moded the complex interrelationships amaong the design, process, and
final quality. The recent research proposed machine lsaming methods to model the manufacturability analysis,
Vaxel-based Convoleticnal Nearal Metwork (CNM) has been investigated as one pobential solotion far design
shape analysizs, Thoes approsches are Hmited by the computational capability available and caly lower reschetion
was performed. However, low resohstion is not enoagh for analyring the LPRF manufsctaring process precisely.
Some detadled featuress may be omitted through the voxelization process. To solve this isue, a more efficient CNIN
is proposed in this paper. Design data is stored in a sparse matrix so that oaly the ecoupied voxels are trained by
CHNN pperations. It joins with the process data, which is trained by a Neurl Network (NN) model to make the
prediction of manufacturability. By performing the genembized convolutions, the computational costs decrease
sharply compared to voxel-based (NN, which offers the advantage of performing with high resolutions. The
appraach is validated in terms of effectivensss and efficiency on the manufacturalility prediction for the LPREF
process.

1. Introdustion demonctrated ito capability of producing metal or polymer partz for a

wide range of applications. The manufacturing failures this research

In the past decade yearn, Additive Manufacturing (AM) has rapidly
expanded in wvarious arear such az asrocpace, automotive, tooling,
medicals, stc. [1-3]. It opens new opportunities in both dezign and
manufacturing by removing the comstraint: imposed by conventional
manufactering (CM) such 2z machining or casting. However, not all
dezigne can be fabricated by AM. Thers are ofill some limitations that
nead to be conzidered befors fabrication to be carried out. These con-
straints include but are not limited to the narrow printable material
selections, poor curface roughnes:, pores, and unfeazible features (=.g.,
overhangz) [4-11]. Pailure in identifying the decign features or printing
procesz parameter setups often leads to printing failure, which eventu-
ally leads to increased manufacturing costz and a clower product
development procese. To solve thiz issue, manufacturability analysiz
regearch haz been conducted to dcvdnp methods or tools to enmure the
dezign could be succemfully printed at the early decign rtage. In thiz
paper, the mamuifarmorabilisy for the Laser Powder Bed Fusion (LPEF)
process - one of the AM technigues - iz the forua. LPEP procesa hac
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aimz to detect are vinual defects such 2z geometwic incompletensaz,
cracking, and warping.

Exizting main strategien for analyzing mannfacturability in the LPEP
process have been identifisd 2z design guidelines, real-time procem
monitoring, manufacturing featwre recognitionn, amd  integrased
modeling [12]. These approaches provide some banic functions of
quality check, reparation of 5TL meches, dlicing, support structure
genesation, and limited functionality of cverhang and thin feature
detection. However, none of them offerz an avtomated and
well-modeled manufacturability analyziz for 2 given design to be fabri-
cated via the LPBP procesz. These haz been an increazing demand for
automated computational applications for LPBF, on which the tool helps
to wizualize the roublecome areaz and give feedbacks for modification.
Recently, 2 new approach of applying the Machine Leaming (ML)
method o analyze manufacrurabilicy hae been widely investigated [135].
Comparing to conventional mechods, ML han ceveral advantages in
polving manufactorabilicy izoues. When evaluating manufacturabiling,
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ABSTRACT

Kiepmrehi:
Machine bearning applicatios
Belanialactusabding
Revimmendalion sysiem
Auditive stiesbactaring

Additive manufacharing (AM) offers the potential 1o fabricate complex design and funcrional assembly which
‘opens up new appantunities for product design. One of the current challenges for novice AM users is the difficulty
to guarantes their design to be manuicturable through the seleceed AN printer. To address this issue, this paper
presenis a web-based aiomated manefacherability amalyzer and recommender for additve mansfacharing
[MAR-AM) assisted by a hybrid machine learning (ML) madel. This toal provides a quick, automated, ssy-to-
arcess and comprehensive manufacmmbility analysis on a given design with the selecoed machine and mate.
rial setiings for novice AM users at the design stage. Moreover, to ensure users get a sucoessful print, a
recommender sysiem & developed to provide appropriate changes as recommendations for a sucossshl fabri-
cation. Fimally, the effectiveness of MAR-AM is demonstrated using a number of case siudies. MAR-AM dem-
onsirates the capability of predicring the printabdlity of a given design with selected material and process
parameters. The recommendations provided by MAR-AM reduce the potential faihires before the real fabrication.
At the current smge, MAR-AM s still limited at the initial stage of iesting. The performance s weaker in the
process-related samples. Moreover, in this research, the approach is only applied to material extnesion and anly
Ultimaker is utilized. More data needs oo be gathersd to tradn the ML model for other types of AM processes and

process seitings. With more data obtained, the approach can be applied o different AM technigues.

1. Introduction

Additive mamifacturing (AM], which is alio wellkknown as 3D
printing, is a new trend of the manufaduring process in recent years. It
bailds parts following a generated 30 mode] by adding layers of mate-
rials and fusing them together. As introduced by [S0/ASTM standards
{150, 3015), AM techniques can be divided into seven categories: binder
jetting, directed energy deposition, powder bed fosion (PBF), sheet
lamination, material extrusion (ME), material jefting, and vat photo-
palymerization. The frst fiour hawe the ability to prodoce metal prod-
ucts, and the rest mainly focus on polymers. The main advantage of AM
i% the ability to allow customization and the ability to fabricate complex
geametries such as lathice structures which are extremely hard o be
manufactured in the subtractive manufaciuring process. Though AM has
been emploved in many industrial applications, it still has a very high
threshold for beginming wsers. [t requirss users o have a desp under-
standing on the AM technigues in order to take full advantage of this
technalogy. The printing may fil doe to many factors such as the poor
selection of the build orientaton (Yicha Zhang, Bermard, Harik, &

* Corresponding awthar.

K n, 2017, FTwier & Wik, 2016), materials (Po
Suf . neki, Vervoort, Mindt, & Megahed, 2017), layer
thickness (MNguyen et al, 2018; Sufiiarov et al, 2017), process seitings
[Chen & Zhao, 2006; H. Eim, Lin, & Tseng, 2018; Pegues et al., 2017),
and insufficient support (Jiang, Xu, & Stringer, 2018; Stringer, X,
fheng, & Jiang, 2018). It is hard for non-AM experts to determine
whether their designs are printable through the seleced AM process,
and it is even more difficult for them to make proper modifications alone
before the fabrication.

Identifring whether the given design is printalde or not and what
mudification can be done to make the design more suitable for AM is one
of the major challenges for AM to be widely adopted in the industry. In
the past, similar to the conventional mamufacturing process, design
guidslines {Greer et al., 2009 Mand, Witherell, & Jee, 200 7; Materialise,
201 E; Stratasys, 2018) or checklists (Booth et al, 2017) are the most
commaon methods to help desig to evaluate the facturability of
their designs. It provides a manufacturable range of geometrical design
festures including minimuom thickness, part orfentation, surfsce roagh-
ness, chamfers and radiug, holes, overhang, etc. Designers are expected

rov, 201
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