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ABSTRACT

Privacy is a major concern for information gathering and data publishing across

a wide range of online applications. Various privacy-preserving algorithms and mod-

els have been extensively studied for relational data, network graph data, trajectory

data, and transactional data, etc. Among them, text data is the most prevalent

unstructured data on the Internet, but the studies on sanitizing textual data are

still preliminary. Most privacy protection studies for textual data focus on remov-

ing explicit sensitive identifiers. However, personal writing style, a strong indicator

of authorship, is often neglected. Most works focus only on removing or replac-

ing explicit sensitive phrases or personal identifiers in the text. Text data, such as

anonymous peer review comments or product reviews, carries an implicit personal

trait: writing style. Modern stylometric techniques can identify the actual author of

a given anonymous text snippet from 10,000 candidates. However, only a few works

are proposed for writing style anonymization, and the ones that satisfy privacy re-

quirements only treat text as numeric vectors that are difficult for the recipients to

interpret.

To tackle this problem we propose two novel text generation models for author-

ship anonymization. Combined with a semantic embedding reward loss function and

the exponential mechanism, our proposed auto-encoder can generate differentially-

private texts that have a close semantic and similar grammatical structure to the

original text while removing personal traits of the writing style. It does not require

any conditioned labels or paralleled text data during training. Another model uses
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a generative adversarial network with back-translation loss function; the model is

able to hide the authorship by imitating the writing style of a reference dataset. We

evaluate the performance of the proposed models on the real-life peer reviews dataset

and the Yelp review dataset. The result suggests that our models outperform the

state-of-the-art on semantic preservation, authorship obfuscation, and stylometric

transformation.

iv



ABRÉGÉ

La confidentialit est une proccupation cardinal pour lensemble dinformations et

la publication de donnes sur une grande gamme dapplications en ligne. Divers algo-

rithmes et modles prservant la confidentialit ont t largement tudis pour les donnes

relationnelles, les donnes de graphe de rseau, les donnes de trajectoire, les donnes

transactionnelles, etc. Parmi eux, les donnes textuelles sont les donnes non structures

les plus rpandues sur Internet, mais les tudes sur la dsinfection des donnes textuelles

sont encore prliminaires. La plupart des tudes de protection de la confidentialit des

donnes textuelles se concentrent sur la suppression des identifiants sensibles et ex-

plicites. Cependant, le style d’criture personnel, comme un indicateur fort d’auteur,

est souvent nglig. La majorit des travaux se concentrent uniquement sur la suppres-

sion ou le remplacement de phrases sensibles ou d’identifiants personnels explicites

dans le texte. Les donnes textuelles, telles que les commentaires anonymes par les

pairs ou les critiques de produits, comportent un trait personnel implicite: le style

d’criture. Les techniques stylomtriques modernes permettent d’identifier l’auteur rel

d’un extrait de texte anonyme parmi 10 000 candidats. Pourtant, seules quelques

uvres sont proposes pour l’anonymisation du style d’criture, et celles qui rpondent

aux exigences de confidentialit ne traitent le texte que comme des vecteurs numriques

difficiles interprter par les destinataires.

Pour rsoudre ce problme, nous proposons deux nouveaux modles de gnration de texte

pour l’anonymisation de la paternit. Combin une fonction de perte de rcompense in-

corpore smantique et au mcanisme exponentiel, notre encodeur automatique propos
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peut gnrer des phrases diffrentiellement-prives qui possdent une structure smantique

et grammaticale proche du texte original, tout en supprimant les traits personnels

du style dcriture. Il nexige pas dtiquettes conditionnes ni de donnes textuelles en

parallle pendant la formation. Un autre modle utilise un rseau contradictoire gnratif

avec une fonction de perte de traduction arrire; le modle peut masquer la paternit

en imitant le style d’criture d’un jeu de donnes de rfrence. Nous valuons la per-

formance des modles proposs sur l’ensemble de donnes de la critique relle et sur

celle de Yelp. Le rsultat suggre que nos modles surpassent ltat de la technique en

matire de conservation smantique, dobscurcissement de lauteur et de transformation

stylomtrique.
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CHAPTER 1
Introduction

Privacy is a vital issue in online data gathering and public data release. Vari-

ous machine learning models and privacy preservation algorithms have been studied

for relational data [Johnson et al., 2018], network graph data [Chen et al., 2014],

trajectory data [Chow and Mokbel, 2011], and transactional data [Li et al., 2012].

Some of them have been successfully adopted in real-life applications such as teleme-

try collection [Cortés et al., 2016]. However, the studies on privacy protection for

textual data are still preliminary. Most related works focus only on replacing the

sensitive key phrases in the text [Anandan et al., 2012, Sanchez et al., 2013, Vasude-

van and John, 2014] without considering the author’s writing style, which is a strong

indicator of an author’s identity. Even though some textual data, such as double-

blind academic reviews, is released anonymously, adversaries may recover an author’s

identity using the personal traits in writing. Stylometric techniques [Koppel et al.,

2011] can identify an author of a text from 10,000 candidates. The techniques are

effective across online posts, articles, emails, and reviews [Zheng et al., 2006, Ding

et al., 2015, 2017]. Nevertheless, traditional text sanitization methods [Narayanan

and Shmatikov, 2008] focus on anonymizing the contents, such as patient informa-

tion, instead of the writing style, so they are ineffective against writing style analysis.
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The original author can be easily re-identified even if protected by these traditional

approaches [Narayanan and Shmatikov, 2008].

Only a few recent studies focus on authorship anonymization, aiming to hide

the personal traits of writing style in the given textual data. Anonymouth [McDon-

ald et al., 2012] is a semi-automatic framework that offers suggestions to users to

change their writing style. Yet, this framework is not practical because it requires

two datasets as a reference to compare the change in writing style. Also, the user

has to make all the final modification decisions. SynTF [Weggenmann and Ker-

schbaum, 2018] represents a line of research that protects the privacy of the numeric

vector representation of textual data. It adopts the exponential mechanism for pri-

vacy guarantee, but the output is only an opaque term frequency vector, not an

interpretable text in natural language. Furthermore, its token substitution approach

does not consider the grammatical correctness and semantic aspects.

Style transfer is another line of research that tries to generate text with con-

trollable attributes [Shen et al., 2017, Hu et al., 2017, Sennrich et al., 2016, Yang

et al., 2018, Chen et al., 2018]. Representative models [Hu et al., 2017, Logeswaran

et al., 2018] can control the sentiment and tense of the generated text. However,

they do not modify the personal traits in writing. Their applications on sentiment

and word-reordering correspond to the content of the text more than the writing

style. We argue that their definition of styles, such as sentiment or tense, is differ-

ent from the personal linguistic writing characteristics that raise privacy concerns.

A4NT [Shetty et al., 2018] is a generative neural network that sanitizes the writing

style of the input text. However, it requires text samples to be labeled with known
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author identities. It is not applicable to any textual data. Additionally, according

to the samples provided in the paper, it has difficulties keeping the same semantic

meaning between the original and the generated text.

To address the aforementioned issues, we propose two models, one of which is

an Embedding Reward Auto-Encoder (ER-AE) to generate differentially-private text.

It protects an author’s identity through text distinguishability. ER-AE does not

assume any labels nor any parallel data. Relying on differential privacy, its privacy

protection is independent of an adversary’s background knowledge and does not

assume any specific adversarial scenarios. ER-AE receives the original text as input,

extracts latent features, and generates a new text using the exponential mechanism.

Inspired by the REINFORCE algorithm [Sutton et al., 2000], we include a semantic

embedding reward loss function. It is able to keep the generated text a close semantic

similarity to the original while protecting the text privacy.

Another model is a Generative Model with Back-Translation (GM-BT), which

hides the authorship of given text through transferring the input text into the writ-

ing style of the reference dataset. After processing, machine learning authorship

identifiers are not able to distinguish the real authorship. In our experiments, a

subset of Wikipedia dataset is utilized to be the reference dataset in the experiment

because it has a mixture of writing style and written by different authors. GM-BT

does not require any label or paired data in the training set. All the input tokens

are first encoded into a feature vector, the same as ER-AE. Then, the feature vector

is concatenated with the reference writing style embedding as a latent vector. Based

on the information in the latent vector, the generator produces new text that has
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a writing style similar to the reference dataset. We adopt the adversarial learning

method and back-translation loss function to train the generator. The generator can

anonymize the input by changing the text writing style while preserving the semantic

similarity.

1.1 Contributions

Unlike the aforementioned authorship anonymization works, both ER-AE and

GM-BT produce human-friendly text in natural language. Our key contributions are

summarized as follows:

Contributions of ER-AE Model:

• This is the first differentially-private authorship anonymization model that is

able to generate human-friendly text in natural language instead of a numeric

vector.

• We present a sequential text generator that employs exponential mechanism

to protect privacy through a sampling process.

• We propose a new semantic reward function that is able to better preserve the

semantic and sentiment similarity between the original and the generated text.

• We provide a theoretical analysis on the privacy properties of the proposed

model. By analyzing our proposed model ER-AE under the recently proposed

concept of document indistinguishability [Fernandes et al., 2018], we observe

that a large privacy budget is necessary to balance the utility and author

identity indistinguishability under the strictest adjacency definition. This ob-

servation also holds for other related work that builds on a similar concept of

document indistinguishaiblity.
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• Comprehensive evaluations on two real-life datasets, namely NeurIPS & ICLR

peer reviews and Yelp product reviews, suggest that ER-AE is effective in both

anonymizing the writing styles and preserving the semantics of the original

text.

Contributions of GM-BT Model:

• We propose a generative model without sampling operation to anonymize text

through writing style imitation.

• We combine the GAN framework with back-translation loss function to train

the model in an unsupervised way without requiring any labels in the training

dataset.

• Comprehensive evaluations on the same two datasets suggest that GM-BT is

also effective in both anonymizing the text and preserving the semantics of the

original text. In addition, GM-BT, which does not have a sampling operation,

can produce more human-friendly texts than ER-AE.

1.2 Contribution of Authors

I am responsible for all the implementations and experiments in all chapters. I

discussed the problem definitions and the methodologies with Professor Benjamin C.

M. Fung and Professor Steven H. H. Ding.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 presents recent works related

to our research topic and technologies. Chapter 3 proposes a differentially-private

text generation model to protect an individual’s privacy and presents the details
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and results of conducted experiments. Chapter 4 elaborates our second model that

protects privacy through writing style transfer via adversarial learning method and

back-translation loss function. Chapter 5 concludes this thesis and discusses the

future works.

6



CHAPTER 2
Related Work

2.1 Differential Privacy

Differential privacy has recently received a lot of attention in the privacy pro-

tection and machine learning communities. The differentially-private deep learning

model [Abadi et al., 2016b] and the deep private auto-encoder [Phan et al., 2016]

are designed to preserve the training data privacy. Their purpose is to guarantee

that publishing the trained model does not reveal the privacy of individual records.

Our purpose is different. In our first model, we publish the differentially-private

data generated by the model, rather than the model itself. Most existing models for

differentially-private data release, such as Chen et al. [2014], Dankar and El Emam

[2012], focus on different types of data rather than text. One recent work [Weggen-

mann and Kerschbaum, 2018] aims to protect privacy in text data using the ex-

ponential mechanism. However, it releases the term frequency vectors instead of a

readable text. This approach limits the utility of published data to only the applica-

tions that assume term frequency as features. In contrast, the goal of our proposed

ER-AE model is to generate differentially-private text in a natural language while

anonymizing the writing styles.
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2.2 Writing Style Features

Writing style features usually contain a set of linguistic marks that represent

the writing characteristics of an author that could be used to distinguish different

authors. Various types of features have been introduced [Stamatatos, 2009], such as

lexical-level features, character-level features, syntactic features, etc. Many of them

are context-free manually-crafted stylometric features, for example, a set of features

including text length, word length, and word frequency are included in the study of

[Rudman, 1997]; also, the frequency of special tokens (e.g., /, @), the number of upper

case, and the position of quoted content are adopted in the framework proposed by

[Zheng et al., 2006]. In addition to manually-crafted styles, a representation learning

algorithm to learn stylometric through deep learning model in an unsupervised way

is proposed by [Ding et al., 2017]. In this thesis, by using the features proposed

in works [Iqbal et al., 2013] and [Zheng et al., 2006], we utilize the distance of the

stylometric features vectors to measure the change of writing style.

2.3 Generative Adversarial Networks

The Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] frame-

work is a hot topic in recent research on generative machine learning. It is a frame-

work to learn a generative model through an adversarial learning method with-

out paralleled training data. The work of conditional generative adversarial net-

works [Mirza and Osindero, 2014] is able to control the content of the generated

image based on the given label through an extra discriminator to guide the gen-

erator. A text to image generative model called StackGAN [Zhang et al., 2017] is

8



proposed to translate given text to image by utilizing the matching-aware discrimi-

nator. Their purpose is to generate a specific type of image data that is continuous,

according the given conditional information. However, our goal is to generate discrete

textual data.

2.4 Controllable Text Generation

Text generation is a trending topic in machine learning. It aims at generating

a text sample with changed attributes. Sennrich et al. [2016] propose a model to

change the degree of politeness while generating text. Hu et al. [2017] combine

the variational auto-encoders (VAE) with generative adversarial network (GAN) to

generate a text with different sentiment and tense. A4NT [Shetty et al., 2018] is

able to control the gender and age attribute of the generated text data through a

GAN model. Most of the literature on this direction name different attributes, such

as sentiment and tense, as style. However, these attributes correspond more to the

content itself, rather than the personal writing style. Our focus is different; we pay

more attention to the change of linguistic writing style.

2.5 Image Style Transfer

The style transfer on an image has been widely discovered by recent works [Gatys

et al., 2016, Wang and Gupta, 2016, Zhu et al., 2017, Isola et al., 2017]. Generally,

there are two ways to transfer the style of image. Gatys et al. [2016] propose a

framework to directly extract content and style information in the image and generate

the image with a specific style based on this information, whereas Wang and Gupta

[2016], Zhu et al. [2017], Isola et al. [2017] combine GAN with a convolutional neural
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network to transfer image to image via designing an adversary to guide the generator.

The key challenge in those projects is that it is non-trivial to verify the quality of the

content and style of the generated image. Due to the discreteness of textual data,

the style and content are even more difficult to determine in our task.

2.6 Writing Style Transfer

A substantial amount of research focuses on style transfer for text data. They

can be broadly categorized as writing style imitation, semi-automatic anonymization,

and the author’s attribute transfer. Although there are some methods that work on

sentiment transfer and claim themselves as “style transfer”, from the perspective of

authorship analysis, we do not consider sentiment as a writing style feature based

on the description of Stamatatos [2009]. Studies on writing style transferal try to

change the writing style revealed from the text according to a given author. Shetty

et al. [2018] design a GAN to transfer Obama’s text to Trump’s style. A sequence-

to-sequence (seq2seq) model is proposed by Jhamtani et al. [2017] to transfer mod-

ern English into Shakespearean English. Shen et al. [2017] design a model with a

cross-alignment method to control the sentence sentiment while preserving semantic.

These models can also be applied in writing style anonymization. However, these

studies require the data to be labeled with authorship identity. They assume a num-

ber of known authors. In contrast, our differentially-private and imitation solutions

do not assume any label information.
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2.7 Writing Style Obfuscation

Writing style obfuscation studies try to hide the identity of the author. Anony-

mouth [McDonald et al., 2012] is a tool that utilizes JStylo to generate writing at-

tributes. It gives users suggestions on how they can anonymize their text according

to two reference datasets. Kacmarcik and Gamon [2006] also propose a similar archi-

tecture to anonymize text. Instead of directly changing the text, they all work on the

term frequency vector, whose real-life utility is limited. Compared to semi-automatic

methods that require users to make a decision, our approach directly learns from the

raw textual data, providing an end-to-end solution.
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CHAPTER 3
Differentially-private Text

Generation
In this chapter, we present our first model, Embedding Reward Auto-Encoder

(ER-AE), to anonymize text. To protect the authorship of a given text, ER-AE

aims to generate differentially-private text. The generated text is expected not to

change the semantics of the given text. ER-AE consists of an auto-encoder with the

exponential mechanism. We propose a novel loss function, embedding reward loss

function, to help the model generate human-friendly text. A set of experiments are

conducted on Yelp reviews dataset and Conferences’ reviews dataset to evaluate the

performance of ER-AE on aspects of the privacy protection and utility preservation.

In addition, the intermediate results of the generator are shown to prove the impact

of the embedding reward loss function.

3.1 Preliminaries

3.1.1 Auto-encoders

Auto-encoders are prevalent in recent works on conditional generation. Tradi-

tionally, an auto-encoder is designed to extract features from a large dataset auto-

matically. Usually, it is trained through an unsupervised learning method from the
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Figure 3–1: Overall architecture of auto-encoders.

training dataset without a label or paired data, which means it is learned automati-

cally. An auto-encoder consists of an encoder and a decoder. As shown in Figure 3–1,

by receiving the input data the encoder outputs a latent vector that represents the

feature vector of input data, and the decoder reconstructs the original input data

based on the feature vector. If the size is equal to or larger than the input data, the

encoder can choose to cheat by producing exactly the same data, and it could only

copy and not extract any information. Therefore, the size of the feature vector is

usually designed to be smaller than the input data. In this case, the encoder is forced

to learn to compress the received information and removes less important features.

The encoder can be considered as a feature extractor.
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Formally, letX stand for the input data. Define E(.) as the encoder that extracts

the input X into a feature vector, and D(.) as a decoder that tries to reconstruct

the input data based on the feature vector produced by the encoder. Originally, the

decoder is to help the encoder produce the best feature vector for the input that

the decoder can reconstruct the data. Then, we have the objective function while

training a auto-enocoder through maximizing maximum likelihood:

L = − logD (X|E (X)) . (3.1)

By having the ability to compress the data, auto-encoders can also be used to

remove noise from the data. In addition, the ability of the decoder to reconstruct

the original input data based on the feature vector has many applications in data

generation tasks.

3.1.2 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a type of artificial neural networks that

play an important role in processing temporal sequence data. RNNs can be applied

to sequential data classification [Lai et al., 2015], sequential data generation [Yang

et al., 2018], speech recognition [Graves et al., 2013], etc.

Traditionally, artificial neural networks consist of an input layer, one or more

hidden layers, and an output layer. The hidden layer is usually a fully connected

layer that connects every node in the previous layer to every node in the current

layer. However, this type of hidden layer fails to capture the temporal information

in the data because temporal information is lost while treating every node without

14
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any temporal signal. RNN, as shown in Figure 3–2, maintains the sequential infor-

mation in the input data through the recursive process. The temporal information

is memorized in the RNN hidden state. Every time step, RNN receives the input

data and updates its internal hidden state to store all received information. Then, it

outputs the hidden state for further usage. For example, we can use the last hidden

state to do classification or prediction via a fully connected layer, also called the

many-to-one model.

Mathematically, given a sequential data X, Xt that stands for the t-th item in

X, and the t-th initial hidden state st, we have the update function in t-th time step

for the hidden state:

st = φ(UXt +Wst−1), (3.2)
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where φ is the activation function and U and W are the transformation matrices for

xt and st−1, respectively.

However, the training of traditional RNN is often non-trivial. There exists the

vanishing or exploding gradient problem caused by the recursive feature of RNN

while calculating the gradient based on the chain rule. According to Equation 3.2,

we have δst
δW

:

δst
δW

=
δst
δst−1

δst−1

δst−2

δst−2

δst−3

...
δs1

δs0

δs0

δW

=
t−2∏
i=1

Wφ
′
(Uxsi +Wsi−1)

δs0

δW
,

where φ
′
is the derivative of φ. Due to the large number of multiplication operations,

we can see that if φ
′

is smaller than 1, then the result of the whole equation tends to

be zero, which is called the vanishing gradient. On the other hand, while φ
′

is larger

than 1 it becomes the gradient explosion problem. In addition, because the hidden

state is updated in every time step by the same transformation matrices, the long-

term information is hard to propagate, which causes the calculation of the output to

be biased towards more recent inputs [Chung et al., 2015]. To overcome those issues,

Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] and Gated

Recurrent Unit (GRU) [Cho et al., 2014b] are proposed. Their general ideas provide

an alternative channel to propagate long-term yet important memory to the current

state.
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is a multiplication operation, 1− means one minus the input, and + is an addition
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3.1.3 Gated Recurrent Unit

Gated Recurrent Unit (GRU) [Cho et al., 2014b] is a new type of recurrent

neural network cell designed to solve the vanishing gradient and long-term memory

problems that come with the traditional RNN mentioned in Section 3.1.2. Unlike

the traditional RNN cell that only contains a hidden state, GRU (Figure 3–3)

additionally adopts an update gate and a reset gate that help the network remember

long-term information and avoid gradient vanishing and explosion. Generally, the

two gates are represented as two vectors that decide what information should be

forgotten and updated to produce the output.

To better explain the mechanism of GRU, we show the internal architectures of

a traditional RNN cell and GRU cell in Figure 3–3. The traditional RNN is very

simple and only has one operation to update the hidden state. However, the GRU

is more complicated with reset gates and update gates to have better control of
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the received information. The left dashed rectangle marks the reset gate; it decides

what information in the past should be forgotten. At the same time, the update

gate controls how much previous information should be kept, which is similar to

the memory cell in LSTM. This design helps the model achieve a balance between

long-term and short-term memory.

Formally, at time step t, given the previous hidden unit ht−1 and the input data

Xt, the reset gate is defined as:

rt = σ(WrXt + Urht−1),

where σ is the logistic sigmoid function, and Wr and Ur are the transformation

matrices of the reset gate. Recall that the reset gate decides how much information

should be forgotten. We can get the temporal new hidden state:

h̃t = φ(WXt + U(rt � ht−1)),

where φ is the tanh activation function. In this function, if the model decides to

store all the previous information, then rt is close to 1. On the other hand, when rt

is close to 0, the previous information is dropped, and the hidden state is “reset” by

the recently received data.

Additionally, the updated date zt is also calculated by the previous hidden state

ht−1 and the input Xt:

zt = σ(WzXt + Uzht−1).
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After getting the zt and h̃t, the new hidden state can be calculated as:

ht = ztht−1 + (1− zt)h̃t. (3.3)

As shown in Equation 3.3, the update gate zt controls how much information from

the previous state is kept in the current hidden state. More previous information is

passed to the current state when zt is larger, which assists the model to remember

long-term information.

Utilizing the reset gate and update gate described above, GRU is able to capture

long-term and short-term dependencies. While GRU prefers to extract short-term,

the reset gate would mostly tend to be close to 1. On the other hand, while the

long-term dependent information is needed, the update gate would tend to be close

to 1 to pass more information from the previous hidden state to the next one.

Besides solving the long-term memory issue, the gradient vanishing and explo-

sion problem can be avoided during the training of GRU [Fu et al., 2016]. Compared

with LSTM, which can also solve those problems, GRU requires fewer computation

resources and achieves a competitive performance [Cho et al., 2014a].

3.1.4 Policy Gradient Methods and REINFORCE

Policy gradient [Sutton et al., 2000] methods are a family of reinforcement learn-

ing methods that have been widely used in recent works. Silver et al. [2016] use Policy

Gradient methods to train a network that can beat the best human Go player in the

world. Yu et al. [2017] utilize Policy Gradient to solve the discrete data genera-

tion problem in GAN. Usually, a reinforcement learning method makes a decision

based on the estimated value function, whereas the basic idea of Policy Gradient
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is to directly learn a parameterized policy to make the decision without knowing a

value function. Treating any differentiable function as a policy function, it can be

optimized through back-propagating the gradient while maximizing the final reward.

Given a differentiable function as policy π with parameters θ and a preferred

score function J(θ):

J(θ) = vπθ(s0),

where s0 is the initial state and vπθ is the value function under πθ.

According to the result of Sutton and Barto [2018], we can find the gradient to

optimize the policy:

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s, θ),

where the µ is the distribution of a state, qπ is the q value of a pair of state and action

under policy π. One popular policy-gradient method is REINFORCE [Williams,

1992], which is the policy gradient with Monte-Carlo sampling. The training of a

policy gradient requires simulated samples to calculate the gradient and optimize the

policy. In REINFORCE it adopts the complete samples that have complete return
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through Monte-Carlo sampling, then the gradient becomes:

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s, θ)

=Eπ

[∑
a

qπ (St, a)∇π (a|Stθ)

]

=Eπ

[∑
a

π (a|St, θ) qπ (St, a)
∇π (a|Stθ)
π (a|St, θ)

]

=Eπ
[
qπ (St, At)

∇π (At|St, θ)
π (At|Stθ)

]
=Eπ

[
Gt
∇π (At|St, θ)
π (At|St, θ)

]
,

where, at t-th time step, Gt is the sample return, At is the action in the sample, and

St is the state corresponding to the sample. Here, J(θ) becomes:

J(θ) = Eπ[Gt lnπ (At|St, θ)]. (3.4)

Having the Equation 3.4, we can train a differentiable policy function end-to-end

with Monte-Carlo sampling.

3.1.5 Differential Privacy

Differential privacy [Dwork et al., 2006] is a framework that provides a rigorous

privacy guarantee on a dataset. To protect the privacy of an individual, it requires

that the output from any analysis should not be sensitive to the change of a single

record in a dataset.
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Figure 3–4: Examples of two definitions of adjacent datasets.

Compared with k-anonymity [Sweeney, 2002] and `-diversity [Machanavajjhala

et al., 2006], which assume hackers do not have access to extra identical features, dif-

ferential privacy does not have any assumption on the attackers’ background knowl-

edge. Differential privacy has been applied in the data collection process by en-

terprises to obscure an individual’s identity. For example, Apple uses a differential

privacy mechanism to preserve users’ privacy while collecting data from the iPhone

so that they are able to extract patterns from a large group of users without com-

promising individual privacy [Cortés et al., 2016].

Adjacency is a key notion in differential privacy. In the original definition, as

shown in the Figure 3–4(1), datasets D1 and D2 are considered to be adjacent if

D2 can be obtained by adding or removing one record in D1. Another commonly

used adjacency definition (Figure 3–4(2)) is that D1 and D2 are adjacent if D2 can

be obtained by modifying one record in D1 [Dwork et al., 2010, Ding et al., 2018,

Soria-Comas and Domingo-Ferrert, 2013, Soria-Comas et al., 2017].

Differential privacy requires inherent randomness of a sanitization algorithm or

generation function:

Definition 3.1.1. Differential Privacy. Let ε > 0 be a privacy budget. Let

A : Dn −→ Z be a randomized algorithm. An algorithm A preserves ε-differential
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privacy if for any two adjacent datasets D1, D2 ∈ Dn, and for any possible set of

output Z ∈ im(A) where im produces the image of the input:

Pr [A (D1) ∈ Z] ≤ eε · Pr [A (D2) ∈ Z] �

Differential privacy guarantees that the result from a given algorithm A is

not sensitive to a modification of any individual record in D, which makes adja-

cent datasets probabilistically indistinguishable. ε denotes the privacy budget, the

allowed degree of sensitivity. Compared to k-anonymity [Sweeney, 2002] and `-

diversity [Machanavajjhala et al., 2006], differential privacy does not assume any

attacker’s background knowledge. A large ε implies a higher risk to privacy. How-

ever, ε is a relative value that implies different degrees of risk given different prob-

lems [Weggenmann and Kerschbaum, 2018]. Some studies use a large ε [Sala et al.,

2011], while others use a smaller value [Chen et al., 2014].

3.2 Problem Definition

Adversary Scenario. Generally in an authorship identification problem, one

assumes that the attacker holds an anonymous text authored by one of the suspects

from the dataset. The attacker aims to infer the true author of the anonymous text

based on a set of reference texts from each suspect.

However, this scenario assumes certain information on the applicable dataset,

such as author labels and labeled reference text samples. To make our algorithm

applicable to most datasets, we do not assume any labels in the dataset.
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This leads to the the strictest and most conservative definition of adjacency.

Following Weggenmann and Kerschbaum [2018], we define that any two texts can be

considered as adjacent.

Adjacency for Text Data. Any two texts can be considered adjacent in the

strictest scenario that datasets D1 and D2 both have only one record (text), and D2

can be obtained by editing the only one record in D1 following the second commonly

used definition of adjacency in Section 3.1.5.

Unlike the original differential privacy setting that one wants to privately release

the result of an algorithm on all or a subset of these records (n records input → 1

result output), our text anonymization problem is to release each anonymized text

independently (1 text input → 1 text output), which leads to the strictest scenario

that one dataset in the definition of adjacency only contains one text record. This

one-record-per-dataset setting also corresponds to the framework of local differential

privacy [Kasiviswanathan et al., 2011] that provides privacy guarantee between ar-

bitrary two individual records rather than any two adjacent datasets with multiple

records.

With differential privacy, we can have text indistinguishability: given adjacent

texts, one can hardly distinguish the identity of any text to another. In our case, the

identity of a text corresponds to the author that writes the text. Along with this, as

shown in Figure 3–5, the attacker would fail in the original authorship identification

scenario since the anonymous text is indistinguishable from the rest of texts.

There are works, such as Fernandes et al. [2018], that factor in a text’s topic

in the privacy model. However, the approach limits to the datasets that contain
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Figure 3–5: Differential privacy protects dataset identity.

explicit authorship and topic labels or indicators. Our definition follows Weggenmann

and Kerschbaum [2018] leading to the strictest and most conservative definition of

adjacency, which can apply to any text dataset.

With the concept of differential privacy we further define our problem:

Definition 3.2.1. Differentially-private Text Generation. Let D denote a

dataset that contains a set of texts where x ∈ D is one of them and |x|, the length

of the text, is bound by l. Given D with a privacy budget ε, for each x the model

generates another text x̃dp that satisfies εl-differential privacy. �

Following the above definitions, any two datasets that contain only one record

are probabilistically indistinguishable w.r.t. a privacy budget ε. It directly protects

the identity of an individual record, disregarding if some of the records belong to the

25



Input
Text Encoder Latent

Vector Generator Differentially
-private

Text

Exponential
Mechanism

0.1 0.6 0.05

0.1 0.01 0.6

0.7 0.0 0.2 Embedding Reward

Reconstruction
Loss

Random K

Top K

+ Data
Release

Training
... ... ...

Figure 3–6: Overall architecture of ER-AE.

same author or not. It assumes that every record is authored by a different author,

which is the strictest situation. Suppose that an author may write k different text

records, by achieving text indistinguishability, one cannot tell if any two of these k

text records are from the same author or not because they are all indistinguishable.

In this way, my definition does not assume k to be any number. Thus, it is in the

strictest form that can apply to any text dataset.

Technically, the proposed text generation approach protects the writing style by

reorganizing the text, replacing tokens with different spelling, removing the lexical,

syntactical and idiosyncratic features of the given text. The above problem definition

is based on SynTF Weggenmann and Kerschbaum [2018], but our target is text in

natural language rather than numeric vectors, which is more challenging.

3.3 ER-AE for Differentially-private Text Gener-

ation

In this section, we present our ER-AE model (see Figure 3–6). ER-AE contains

an encoder and a generator. Its encoder receives a sequence of tokens as input

and generates a latent vector to represent the semantic features. The generator,
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combined with an exponential mechanism, is able to produce differentially-private

text according to the latent vector. ER-AE is trained by combining a reconstruction

loss function and a novel embedding loss function.

3.3.1 Bi-directional RNN Encoder

Our ER-AE model starts with a basic sequence-to-sequence (seq2seq) auto-

encoder structure. Given a text x, its tokens 〈x1, . . . , xl〉 are first converted into

a sequence of embedding vectors 〈Em(x1), . . . , Em(xl)〉 by Em : V → Rm1 , where V

is the vocabulary across the dataset, and m1 is the embedding dimension. On the top

of the embedding vectors, we apply a bi-directional recurrent neural network with

Gated Recurrent Unit (GRU) [Cho et al., 2014a] that leverages both the forward and

backward information. GRU achieves a comparable performance to LSTM but less

computational overhead [Cho et al., 2014a]. Then, the produced final state vectors

from both directions, sf and sb, are concatenated and linearly transformed to be a

latent vector E(x). m is the hidden state dimension for the GRU function.

E(x) = Wh × concat(sf , sb), where sf , sb ∈ Rm, Wh ∈ Rh×2m (3.5)

3.4 Text Generator

The generator is another recurrent neural network with GRU. It generates a

text token-by-token. For each timestamp i, it calculates a logit weight ziv for every

candidate token v ∈ V , conditioned on the latent vector, last original token xi−1, and

the last hidden state si−1 of the GRU function.

ziv = w>v GRU(E(x), Em(xi−1), si−1) + bv (3.6)
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Let x̃i denote the random variable for the generated token at timestamp i. Its

probability mass function is proportional to each candidate token’s weight zti. This

is modeled through a typical softmax function:

Pr[x̃i = v] = exp (ziv) /
∑
v′∈V

exp (ziv′) (3.7)

A typical seq2seq model generates text by applying argmaxv∈V Pr[x̃i = v] for each

timestamp i. However, this process does not protect the privacy of the original data.

3.4.1 Differentially-private Text Sampling

To protect an individual’s privacy and hide the authorship of the original input

text, we couple the exponential mechanism [McSherry and Talwar, 2007] with the

above sampling process in the generator. The exponential mechanism can be applied

to both numeric and categorical data [Fernandes et al., 2018]. It has been shown

to be effective in various sampling processes for discrete data. It guarantees privacy

protection by injecting noise into the sampling process:

Definition 3.4.1. Exponential Mechanism. Let M and N be two enumerable

sets. Given a privacy budget ε > 0, a rating function ρ: M×N → R. The probability

density function of the random variable εε,ρ(m) is described as:

Pr [εε,ρ(m) = n] =
exp

(
ε

2∆
ρ(m,n)

)∑
n′ exp

(
ε

2∆
ρ (m,n′)

) (3.8)

where ∆, the sensitivity, means the maximum difference of rating function values

between two adjacent datasets, and m ∈M, n ∈ N . �
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The exponential mechanism protects privacy through disturbing the distribution

of the rating function using ε, and the data is randomly sampled based on the

disturbed distribution. This sampling process is ε-differentially private.

Following Weggenmann and Kerschbaum and by swappingM and N with text

dataset D and our vocabulary V . Assuming arbitrary x ∈ D, w ∈ V , and Dx stands

for the dataset that only contains the text x, our rating function and its sensitivity

for arbitary timestamp i can be described as:

ρi(Dx, w) =
exp (ziw)∑

w′∈V exp (ziw′)
∈ [0, 1]

∆ρi = max
t∈V

max
Dx∼Dx′

||ρi(Dx, t)− ρi(Dx′ , t)||1 ≤ 1

(3.9)

The rating function seeks alternative tokens w to the original tokens in the input

text dataset by considering the logit weight values from Equation. 3.6. It rates w by

considering the current context and encoded latent features. By adopting this rating

function, the sampling process considers both the grammatical and semantic context

to find an alternative token that can preserve one’s privacy. It is timestamp-specific,

and its sensitivity is bounded by 1. Let εε,ρi(x̃i) denote the random variable for the

generated token at timestamp i. By plugging our rating function into the exponen-

tial mechanism defined in Equation 3.8, we have the probability mass function for

εε,ρi(x̃i):

Pr[εε,ρi(x̃i) = v] =
exp

(
ε

2∆
ρi(Dx, v)

)∑
v′ exp

(
ε

2∆
ρ (Dx, v′)

) (3.10)

This function models the disturbed probability distribution for all the alternative

token v to replace the original one. According to Definition 3.4.1, sampling from

29



εε,ρi(x̃i) for each timestamp i is ε-differentially private. Recall that in Definition 3.1.1,

the timestamp is bound by l. To generate text x̃dp, the generator samples a token

for each timestamp i through Equation 3.10:

x̃dp[i] ∼ εε,ρi(x̃i) for i ∈ [1, l] (3.11)

The composition theorem [Dwork et al., 2014] (Theorem 3.16) is an extension to

differential privacy. By repeating n ε-differentially-private algorithms, the complete

process achieves an εn-differential privacy.

Theorem 1. Deferentially-Private Text Sampling Given a privacy budget ε >

0, and a sequence length l > 0, the generator’s sampling function in Equation 3.11

is εl-differentially-private.

Proof. At the generation stage, for each timestamp i, our model generates a token by

sampling from Equation 3.10, which follows the form of the exponential mechanism.

This process achieves ε-differential privacy as in Definition 3.4.1. By repeating this

process l times, the complete sampling function provides εl-differential privacy. x̃dp

is εl-differentially private.

With Theorem 1, we can protect the text privacy by achieving text indistin-

guishability (Figure 3–5) and writing style protection as explained in Section 3.2.

3.4.2 Reconstruction Loss

In order to generate a human-friendly text that has a close semantic to the orig-

inal text, we need to have a high-quality rating function ρi for Equation 3.9. This is

achieved by training the ER-AE model’s encoder to extract semantic information and
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its generator to learn the relationships among the tokens for prediction. We follow

an unsupervised learning approach since we do not assume any label information.

First, we adopt the reconstruction loss function:

Lrecon =
∑

xi∈x,x∈D

− logPr [x̃i = xi] (3.12)

It maximizes the probability of observing the original token xi itself for the ran-

dom variable x̃i. In the recent controllable text generation models, the reconstruction

loss function plays an important role to preserve grammar structure and semantics

of input data [Shetty et al., 2018, Shen et al., 2017] when combined with the other

loss functions.

3.4.3 Training with Embedding Reward

Diving into the optimization aspect of the softmax function, the reconstruc-

tion loss function above encourages the model to produce a higher probability on

the original token while ignoring the rest of the candidates. It does not consider

the other tokens that may have a similar meaning under a given context. This is-

sue significantly limits the variety of usable alternative tokens. Additionally, this

loss function relies on a single softmax function for multi-object learning; it cannot

provide the expressiveness required by the language model [Yang et al., 2017]. We

inspect the candidates and, in most of the cases, only the top-ranked token fits the

context in the text. This is problematic because the exponential mechanism for our

sampling process also relies on the other candidates to generate the text, as required

by Equation 3.10.

31



To address the above issue we propose a novel embedding reward function using

the pre-trained word embeddings. Word representation learning models [Mikolov

et al., 2013] show that discrete text tokens’ semantic can be embedded into a con-

tinuous latent vector space. The distance between word embedding vectors can be a

reference to measure the similarity between different words. To encourage our rating

function ρi to learn richer and better substitute tokens, we propose a reward function

that leverages the semantics learned from the other corpus. The text dataset to be

anonymized and released can be small, and the extra semantic knowledge learned

from the other corpus can provide an additional reference for our rating function.

This reward function is inspired by the Policy Gradient loss function proposed

by Sutton et al. [2000]:

Lembed = −
∑

xi∈x,x∈D

( ∑
v∈Ek(x̃i)

log(Pr[x̃i = v])γ(xi, v) +
∑
w∼Vk

log(Pr[x̃i = w])γ(xi, w)
)

(3.13)

Generally, this reward function assigns credits to the under-rated tokens in the re-

construction loss function. Recall that D is the original dataset and x is one of its

texts. At time step i, this reward function first assigns rewards to the top-k selected

tokens, denoted as Ek(x̃i), according to probability estimates for random variable x̃i

in Equation 3.7. The rewards are proportional to their semantic relationship to the

original token xi. It is defined as a function γ : V × V → R

γ(w, v) = min
(

cosine(Em(w), Em(v)), 0.85
)

(3.14)
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The min function avoids the generator only focusing on the original token. By

assigning rewards to Ek(x̃i) it encourages the other candidates also having a close

semantic relationship to the targeted one. However, it would fail to reach less frequent

tokens. Therefore, in the second part of the reward function, we encourage the model

to explore less frequent tokens by random sampling candidates as Vk.

This design can be interpreted as balancing the exploitation (top-k) and the

exploration (Vk) in reinforcement learning [Sutton et al., 1998].

During training, the model will first be pre-trained by minimizing the reconstruc-

tion loss in Equation 3.12 through the Adam optimizer and adopting the embedding

reward loss later. Then, the total loss is:

L = λrecon × Lrecon + λembed × Lembed (3.15)

Specifically, the reconstruction loss can lead the model to generate a grammatically

correct text, and the embedding reward loss encourages the model to focus more on

semantically similar tokens. To better fine-tune the model, the balance of the two

loss functions are controlled by λrecon and λembed.

3.4.4 Asymptotic Lower Bound of ε for Utility

Following the Theorem 3.6 in Weggenmann and Kerschbaum [2018], we also

need a large ε to produce meaningful results while the discrete output space of the

exponential mechanism is large.

Theorem 2. Necessary Condition on ε. Given rating function ρ: M×N → R,

global sensitivity ∆ and local sensitivity ∆. For any m ∈M, τ ∈ [min(ρ(m, .)), max(ρ(m, .))]

where max(ρ(m, .)) = max(ρ(m,n)) for n ∈ N , and min(ρ(m, .)) stands for the

33



minimum one. Now, split N into B and B, where B stands for the set of outputs

with score larger than τ and B contains other outputs in N , a probability p ∈ [0, 1],

we have the necessary condition on ε for Pr [εε,ρ(m) ∈ B] ≥ p, |.| denotes the input

size:

ε ≥ 2∆/(∆ ln (p/(1− p) ∗ |B|/|B|))

Proof.

Let ρmax = max(ρ(m, .))

Let Pr [εε,ρ(m) ∈ B] =

∑
n∈B exp( ε

2∆
ρ(m,n))∑

n∈N exp( ε
2∆
ρ(m,n))

=

∑
n∈B exp( ε

2∆
ρ(m,n))∑

n∈B exp( ε
2∆
ρ(m,n)) +

∑
n∈B exp( ε

2∆
ρ(m,n))

=
1

1 +
∑

n∈B exp( ε
2∆
ρ(m,n))/

∑
n∈B exp( ε

2∆
ρ(m,n))

≤ 1

1 + |B| exp( ε
2∆

(ρmax −∆))/(|B| exp( ε
2∆
ρmax))

= |B|/(|B|+ |B| exp (−ε∆/2∆)) ≥ p,

We get ε ≥ 2∆/∆ ln (p/(1− p) ∗ |B|/|B|).

Since ∆ ≤ ∆, when p = 1/2:

ε ≥ 2 ln (
p

1− p
∗ |B|
|B|

) = 2 ln (
|B|
|B|

) = 2 ln (
|N | − |B|
|B|

).

Usually, for textual data, the size of B, which contains meaningful token candi-

dates, is small while choosing meaningful outputs with an acceptable τ . According
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to the above equations, we have ε ∈ Ω(ln(|N |)) to get useful results, where Ω means

the asymptotic lower bound. For instance, if the vocabulary size is 20,000, then the

asymptotic lower bound for ε is Ω(9.9) to produce a meaningful result.

Algorithm 1 Training Procedure of Embedding Reward Auto-Encoder

INPUT: Dataset : D, learning rate : lr.
PARAMETERS: θ.
COMPONENTS: Encoder : Eθ(), Generator : Gθ().

Initialize θ.
for N epochs do

for Text x in D do
Produce the latent vector: Eθ(x).
Probabilities of new tokens: Pr[x̃]← Gθ(Eθ(x)).
Reconstruction loss: Lrecon ←

∑
xi∈x− logPr [x̃i = xi].

Embedding reward loss:

TOP k: Lembed ← −
∑

xi∈x

(∑
v∈Ek(x̃i)

log(Pr[x̃i = v])γ(xi, v)
)
.

Random K: Lembed ← −
∑

xi∈x

(∑
w∼Vk log(Pr[x̃i = w])γ(xi, w)

)
Total loss: L ← λrecon × Lrecon + λembed × Lembed.
Update parameters:

θ ← θ − lr∇L.
end for

end for

OUTPUT: θ

3.5 Experiment

All the experiments are carried out on a Windows Server equipped with two

Xeon E5-2697 CPUs (36 cores), 384 GB of RAM, and four NVIDIA TITAN XP GPU

cards. We evaluate ER-AE on two different datasets with respect to its effectiveness

for privacy protection and utility preservation.
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Algorithm 2 Evaluation Procedure of Embedding Reward Auto-Encoder
INPUT: Text : x.
PARAMETERS: θ.
COMPONENTS: Encoder : Eθ(), Generator : Gθ().

Load trained parameters: θ.
Produce the latent vector: Eθ(x).
Probabilities of new tokens: Pr[x̃]← Gθ(Eθ(x)).
for xi in x do

Apply exponential mechanism and get: Pr[εε,ρi(x̃i)].
Sample tokens: x̃dp[i] ∼ εε,ρi(x̃i).

end for

OUTPUT: Newtext : x̃dp

Table 3–1: Information of Datasets

Dataset #reviews #sentences #authors

Yelp Review Dataset 76,241 200,940 100
Academic Review Dataset 17,719 268,253 N/A

3.5.1 Datasets

• Yelp Review Dataset1 : All the reviews and tips that come from the top

100 reviewers ranked by the number of published reviews and tips. It contains

76,241 reviews and 200,940 sentences written by 100 authors.

1 http://www.yelp.com/dataset challenge
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• Academic Review Dataset: All the public reviews from NeurIPS (2013-

2018) and ICLR (2017) based on the original data and the web crawler pro-

vided by Kang et al. [2018]. It has 17,719 reviews, 268,253 sentences, and the

authorship of reviews is unknown.

Each dataset is divided into 70/10/20 for train/dev/evaluation, respectively.

3.5.2 Preprocessing

All the reviews are first tokenized into sentences through the API of NLTK

python package2 . Then, each sentence is tokenized into a vector of tokens using the

same package. The sentences that are longer than the maximum length are cut into

the maximum length, and the shorter ones are padded with zero. During training the

input sentences of the generator are inserted a start token at the sentence beginning.

The target sentences of the generator end with an end token. We also adopt the word

drop technology with a probability of 0.5 to avoid exposure bias problem during the

training of sequence generation.

3.5.3 Baselines

As mentioned in Chapter 2, most of the controllable text generation and style

transferal studies rely on known authorship or other labels [Shetty et al., 2018,

Hu et al., 2017]. They are not applicable to our problem. Therefore, we pick

SynTF [Weggenmann and Kerschbaum, 2018] and different generation and sampling

models for evaluation:

2 https://www.nltk.org/
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• Random Replacement (Random-R): This method generates a new text

by replacing each token in the text by randomly picking substitution from the

vocabulary.

• Auto-encoder (AE): A bidirectional auto-encoder trained using the recon-

struction loss in Equation 3.12.

• AE with Differential Privacy (AE-DP): Extended version of AE with

the added exponential mechanism for text generation. It does not include the

embedding reward from Equation 3.13.

• SynTF [Weggenmann and Kerschbaum, 2018]: We directly generate

the tokens through SynTF’s differentially-private sampling function without

further extraction of the frequency vector.

3.5.4 Experiment Setting

For ER-AE, we adopted a two-layers stacked GRU network for both the encoder

and the generator. There are 512 cells in each GRU layer. The vocabulary size in all

experiments is 20,000, separately built for each dataset. All the word embeddings in

our model come from the pre-trained BERT embeddings provided by [Devlin et al.,

2019], which has a dimension of 768 for each embedding. The maximum input length

of our model is 50, the learning rate is 0.001, the k for embedding reward loss function

is 5, the λrecon is 1, the λembed is 0.0 at the beginning, which is increased to 0.5 after

the first epoch, and the batch size is 128. ER-AE is implemented in python through

TensorFlow [Abadi et al., 2016a].
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3.5.5 Evaluation Metrics

All the models are evaluated from three aspects: semantic preservation, privacy

protection, and stylometric changes:

• Semantic Preservation (USE): A pre-trained Universal Sentence Embed-

ding Similarity (USE ) model3 from Google. It can embed a sentence into a

latent vector that represents its semantics [Cer et al., 2018]. It is widely used

for supervised NLP tasks such as sentiment analysis [Li et al., 2018]. We mea-

sure the degree of semantic preservation using the cosine similarity between

the latent vector of the original text and one of the generated text.

• Privacy Protection (Authorship): One of the state-of-the-art authorship

identification neural network models [Sari et al., 2017] is adopted to identify

the authorship of generated text. The model is first trained on the training

dataset, and the performance is evaluated on the testing set. An author’s

privacy is protected if s/he cannot be identified using authorship identification

techniques.

• Stylometric Changes: Well-established stylistic context-free features such

as text length and a number of function words. We adopt StyloMatrix [Ding

et al., 2017] for an aggregation of features in Iqbal et al. [2013], Zheng et al.

[2006]. The feature vector change before/after generation is measured by the

difference in L2 norm.

3 https://tfhub.dev/google/nnlm-en-dim128-with-normalization/1
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3.5.6 Results

In this section, we demonstrate the performance of our model through quanti-

tative evaluation and case study.

Quantitative Evaluation

The result of quantitative evaluation is shown in Table 3–2 and Table 3–3.

With a USE score around 0.2 for both the Yelp review dataset and the academic re-

view dataset, SynTF and Random-R generate grammatically incorrect text and com-

pletely change the meaning of the original one. Compared to SynTF and Random-R,

the texts generated by ER-AE achieve a significantly higher utility score, over 0.79

for Yelp reviews and 0.74 for academic reviews. SynTF and Random-R perform

better on authorship obfuscation and stylometric changes due to the fact that the

generated texts are almost irrelevant to the original.

AE and AE-DP generate texts that have a high utility score around 0.9, but

the chance of a successful authorship identification attack is also high. With 100

candidate authors in the Yelp dataset, the authorship identification model achieves

about 20% accuracy, which only drops by around half compared to the original 55%

identification risk. The generated texts are very close to the original. In contrast,

ER-AE achieves a significantly lower authorship identification score of 7%, which is

significantly lower than the original identification risk. It indicates that ER-AE hides

an author’s writing style much better than AE and AE-DP under the same settings.

Impact of Embedding Reward

We look into the top five candidates when the generator samples a token for our

model and the original auto-encoder. Table 3–5 shows that the embedding reward
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Table 3–2: Results for each evaluation metric on Yelp datasets. ↑ indicates the higher
the better. ↓ indicates the lower the better.

Model Yelp (100-author)

USE ↑ Authorship ↓ Stylometric↑
Original text 1 0.5513 0
SynTF [Weggenmann and Kerschbaum, 2018] 0.1955 0.0518 26.3031
Random-R 0.1183 0.0188 62.99
AE 0.9001 0.2312 5.5609
AE-DP 0.8966 0.1586 5.12
ER-AE (ours) 0.7963 0.0713 12.49

Table 3–3: Results for USE and Stylometric change metrics on conferences’ dataset.
↑ indicates the higher the better. ↓ indicates the lower the better.

Model Conferences’ Dataset

USE↑ Stylometric↑
Original text 1 0
SynTF [Weggenmann and Kerschbaum, 2018] 0.2161 25.95
Random-R 0.1356 65.624
AE 0.9114 4.339
AE-DP 0.8712 5.8389
ER-AE (ours) 0.7448 10.18

Table 3–4: The intermediate result of top five words and their probabilities at the
third and the fourth generation time steps

Input: there are several unique hot dog entrees to choose ...

several unique
AE-DP several 0.98, those 0.007, some 0.003, unique 0.99, different 0.0, new 3.1e-05,

various 0.002, another 0.001 nice 2.5e-05, other 2.1e-05
ER-AE many 0.55, some 0.20, several 0.14, unique 0.37, great 0.21, amazing 0.15,

different 0.04, numerous 0.03 wonderful 0.1, delicious 0.05
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plays an important role in selecting semantically similar candidates for substitution.

AE assigns a large probability to the original token and a tiny probability to the oth-

ers. If applied with the exponential mechanism, it needs a small ε value to sample

the other tokens than the original. ER-AE shows a smoother distribution on the vo-

cabulary and assigns higher probabilities to several top-ranked semantically relevant

tokens. Its generated candidates are better. By having this smoother distribution,

the exponential mechanism performs better on token substitution with a smoother

distribution and significantly higher probabilities on semantically similar tokens; the

model is able to preserve the semantics of the input text.

Case Study

Table 3–5 shows that both SynTF and Random-R cannot generate human-

friendly text. Due to the issue of reconstruction loss function [3.12], AE and AE-DP

generate samples that rarely change the original. ER-AE, powered by embedding

reward, can substitute some tokens with semantically similar ones: “asian” is re-

placed by “portuguese”, and the whole sentence still makes sense. In addition, it

can preserve the grammatical structure of the input text. However, due to some

missing information from word embeddings, the model fails to generate good can-

didates for sampling. The last sample replaces “reduce” with “dig”, which changes

the semantics of the input.

Utility vs. Privacy

The relative performances of semantic preservation (USE Similarity), author-

ship obscuration (Authorship Error rate), and writing style change (Stylometric L2

distance) are used to show the trade-off between privacy and utility. In Figure 3–7,
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Table 3–5: Sample Texts Generated by Models

Input maybe , i just missed this point in the proof.
SynTF cayman stunts accounts pierced nickel mai aisles maddox possesses ...
Random-R establishments morning intercepted fragrance penny ...
AE maybe , i just missed this point in the proof .
AE-DP maybe , i just missed this point in the proof .
ER-AE maybe , i just missed this restoration in the proof .

Input the novelty is combining several known ideas , which is perfectly acceptable .
SynTF sherwood few mats confronts biceps shuffled whereby magical confirming...
Random-R coulter twice illuminating affair bavarian schooling...
AE the novelty is combining several known ideas , which is perfectly acceptable .
AE-DP the novelty is combining several known ideas , which is perfectly acceptable .
ER-AE the novelty is decoder-based coincides known ideas , which

read/compose/write perfectly acceptable .

Input attitude of the old asian lady did not help either.
AE attitude of the old asian lady did not help either .
AE-DP attitude of the old asian lady did not help either .
ER-AE attitude of the old portuguese lady did not salute either .

Input please reduce it or move some of the results to an appendix section.
AE please reduce it or move some of the results to an appendix section.
AE-DP please reduce it or move some of the results to an appendix section.
ER-AE please dig it or move confounded of the results to an appendix section.

the privacy budget ε controls the privacy and utility of generated data. A larger ε

means better utility but less privacy protection and vice versa. By observing those

results, the optimal ε for the Yelp dataset is 30, and for conferences reviews the

dataset is 32. The choice of an ε is very flexible, another ε value could be picked to

fit the requirements of generated data.

Theoretically, an ε of around 30 cannot provide a strong privacy guarantee. To

provide a stronger privacy guarantee typically one derives a tight local sensitivity

denoted as ∆local rather than using the global maximum sensitivity. Then the expo-

nential mechanism actually provides (ε ·∆local)-differential privacy. However, in our
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Figure 3–7: Privacy vs. Utility. Comparing USE similarity (utility), authorship
identification error rate (privacy), and Stylometrics L2 distance (privacy) for different
εs on applicable datasets. For all blue lines belonging to USE similarity metrics, the
first red line is authorship identification error rate, and the last two red lines are
Stylometrics L2 distance metric

.

case as well as all the existing work that builds on the concept of document indistin-

guishability, this tighter bound is intractable without putting a semantic limitation

on the adjacency definition. Given two texts, x1 and x2, if they are very similar in

topic, sentiment, semantics, etc., then ∆local should be very small because our gener-

ator produces results based on the semantics and the generated texts x̃1dp and x̃2dp

should also share a similar semantic similarity. In this case, the model provides a

strong privacy guarantee because (ε ·∆local) becomes small when ∆local is very small.

However, when x1 and x2 are very different, ∆local would be close to the global max-

imum sensitivity of 1 since they can be easily distinguished in the aspect of semantic

similarity. Since it is nontrivial to prove the tight sensitivity of this model, the upper

bound of sensitivity is required during the generation stage in Equation 3.10.

However, ε is a relative value that implies different degrees of risk given different

problems [Weggenmann and Kerschbaum, 2018, Fernandes et al., 2018]. Empirically,

we show that an ε of 30 is already enough to significantly reduce the chance of a
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successful authorship identification attack. Theoretically, we offer two reasons that

a large ε is necessary to produce meaningful texts:

First, by analyzing the privacy properties under the recently used concept of

document distinguishability [Fernandes et al., 2018], we observe that a large ε is nec-

essary to allow the generated text can be distinguished by the semantic information

such as topic and sentiment under the strictest adjacency definition. ε bounds the

impact of an individual has on a query result, however, usually, it does not directly

relate to the disclosure of the individual’s information [Lee and Clifton, 2011, Clifton

and Tassa, 2013]. Text indistinguishability considers all aspects of a text including

the topic, sentiment, semantics, and authorship, etc. For instance, for two completely

indistinguishable texts, one cannot distinguish their authorship, sentiment, and even

topics. They all look random. This case corresponds to the scenario when the user

sets a very low ε. If the ε is set to be very high, it means that the two adjacent

texts are very different in all aspects. The privacy budget ε controls the degree of

such indistinguishability. However, as ε decreases, our model can change writing

style information first and try to retain as much as semantic information. This is

achieved by the REINFORCE training. It is able to arrive at a point where only

the authorship identity is indistinguishable and other aspects are kept (i.e. topic,

sentiment, semantics, etc.) at best. Therefore, a large ε is necessary to allow the

generated text can be distinguished by the semantic information such as topic and

sentiment under the strictest adjacency definition. However, this larger ε does not

mean that the author’s identity is also distinguishable. As mentioned earlier, a large
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ε of 30 can already protect an author’s identity by reducing the chance of a successful

authorship identification attack from 55% to 7%.

Second, theoretically, a large ε is necessary for the exponential mechanism to

produce meaningful text with a large discrete output space. As shown in the proof of

Theorem 2, a higher ε is intrinsically necessary for a large discrete space, in our case

the vocabulary, to generate meaningful and relevant text. The best ε of around 30

satisfies the proved asymptotic lower bound of Ω(9.9) for a vocabulary size of 20,000.

This large ε issue is well-known in recent works [Sala et al., 2011, Weggenmann

and Kerschbaum, 2018, Fernandes et al., 2018]. Sala et al. [2011] utilize an ε of

100 for edge privacy, and Weggenmann and Kerschbaum [2018] use an ε of 42.5.

Fernandes et al. [2018] leverage an ε of 30. They all still claim their methods are

differentially-private.

Our model also satisfies the definition of differential privacy, though, theoreti-

cally, the privacy guarantee is weak. However, we have already significantly reduced

the optimal ε value of 42.5 used by Weggenmann and Kerschbaum [2018] to around

30 given the same dataset. One possible way to lower the bound of ε is to directly

factor in authorship and utility, such as topics, into the privacy model. However, it

limits applicable to datasets.

3.6 Summary

In this chapter we propose a novel model and loss function to protect an indi-

vidual’s privacy and anonymize authorship by generating differentially-private text.

To the best of our knowledge, this is the first model to apply the exponential mech-

anism into auto-encoder and generate differentially-private text. Though, our model
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requires an ε of around 30, we provide two reasons that a large ε is necessary to pro-

duce meaningful texts. First, a large ε is necessary to allow the generated text can be

distinguished by the semantic information under the strictest adjacency definition.

Second, as shown in the proof of Theorem 2, a large ε is necessary for the exponen-

tial mechanism to produce meaningful text with a large discrete output space. We

demonstrate the ability of our model to generate differential-private text with correct

grammar and similar semantic on the Yelp dataset and NeurIPS & ICLR reviews

datasets. The experiments show that our model outperforms on authorship obscura-

tion and semantic preservation. The human-friendly text generation ability is shown

by the samples in Table 3–5. By observing the intermediate results of the generator,

the ability of the embedding reward loss function is proved to be efficient to help the

generator assign higher probabilities to semantically similar tokens. The trade-off

between utility and privacy is shown by visualizing the relative performances of USE

and authorship attack under different levels of privacy budget ε.
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CHAPTER 4
Generative Adversarial Network

with Back-Translation
In this chapter, we introduce our second model, Generative Model with Back-

Translation (GM-BT), for text anonymization. Given a reference dataset, GM-BT

learns to transfer the writing style of input text into the writing style of the reference

dataset without changing its semantics. With an auto-encoder and a discriminator,

GM-BT is trained by the adversarial learning method and the back-translation loss

function. The effectiveness of GM-BT is evaluated through experiments on two differ-

ent reviews dataset on semantics preservation, writing style change, and authorship

obscuration. We compare GM-BT with all baselines and previous proposed ER-AE

through quantitative analysis and case study.

4.1 Preliminaries

4.1.1 Generative Adversarial Network

The Generative Adversarial Network (GAN)[Goodfellow et al., 2014] is a frame-

work to train a generative model through an adversarial learning method, which has

been widely applied in text generation tasks [Yu et al., 2017, Shetty et al., 2018, Hu

et al., 2017]. A basic GAN consists of two components: a discriminator and a gen-
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Figure 4–1: Overall architecture of GAN.

erator. The goal of GAN is to train a generator that creates fake data objects that

look real. The discriminator has access to real objects and generated data objects as

training data. Its mission is to learn to differentiate fake data objects from real data

objects. The training process of a GAN is in an iterative way. The discriminator tries

to distinguish fake objects generated by the current generator from real objects. As

shown in Fig. 4–1, the discriminator receives both generated objects and real objects

offers the feedback to the generator. The generator improves the generated objects

based on the feedback of the new discriminator. A GAN is considered successful if

the discriminator can no longer clearly differentiate whether the fake objects from

the generator are real or fake.

The training process of a GAN starts with the discriminator that learns to rec-

ognize whether a data is real. At the beginning, the discriminator is easy to converge

because the generator is too weak to generate good samples. To beat the discrim-

inator, the generator tries to produce better samples than before. After repeating

this for a couple of times, we get a powerful discriminator and a strong generator.
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This process is called adversarial training. Formally, according to Goodfellow et al.

[2014], given a discriminator D, a generator G, the distribution of real data objects

p data (x), and a distribution of input noise variables pz(z), we have the minimax

value function:

min
G

max
D

V (D,G) = Ex∼p data (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (4.1)

The discriminator wants to maximize this value function, while the generator tries

to minimize it.

4.1.2 Conditional Generative Adversarial Network

The original GAN receives a vector sampled from a normal distribution, and

there is no conditional constraint for generated data. However, generating data

based on given information is demanded in data generation tasks. For example,

one would not only want to generate human faces but also would like to control

the attributes of generated faces. The conditional GAN [Mirza and Osindero, 2014]

extends the ability of a discriminator. In addition to telling whether a generated

sample is real or not, it can also justify whether the generated sample satisfies the

given information. Therefore, to beat the discriminator the generator is required to

produce the real-looking data that satisfies the given information. Then, the loss

function of conditional GAN is:

min
G

max
D

V (D,G) = Ex∼p data (x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))]. (4.2)

Compared with the Equation 4.1, the value function of the conditional GAN includes

conditional information y.
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4.1.3 Gumbel-softmax

Gumbal-Softmax [Jang et al., 2017] is designed to solve the non-differentiable

issue of the discrete selection operation after softmax function in GANs through

estimating the non-differentiable discrete selection operation with a differentiable

function.

Originally, softmax function parameterizes the multinomial distribution on one-

hot-encoding outputs in terms of a continuous d-dimensional vector h as:

[softmax(h)]i =
exp (hi)∑
j exp (hj)

, for i = 1 . . . d.

Jang et al. [2017] show that sampling result according to probability produced by

the above equation is equal to the following:

output = one hot(argmax
i

(hi + gi)),

where gi are independent and follow a Gumbel distribution with zero location and

unit scale.

Since the one hot operation is non-differentiable, Gumbel-softmax approximates

it through the differentiable function:

output = softmax(1/τ(h+ g)),

where τ is the inverse temperature. A lager τ would result a smoother distribution.

When τ → 0, the above output would be very close to a one-hot encoding.
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4.2 Problem Definition

Definition 4.2.1. Text Anonymization through Style Transfer. Let Di denote

a text dataset that contains a set of texts, where x ∈ Di is one of them. Let Dt denote

the reference dataset. Given any authorship identifier Dai, for each x ∈ Di, the model

transfers x into x̃ that has the writing style of Dt, and Dai cannot identify the real

author while receiving x̃. The generated text x̃ is expected to have a close semantic

similarity to the original text x. �

Definition 4.2.2. Reference Dataset. Given a text dataset D, a reference dataset,

Dt, is expected to have a similar number of texts with D, be written by multiple

authors with a mixture of writing styles, and have a vocabulary that is mostly over-

lapped with the one of D. �

The model hides the authorship of a given text and protects privacy by imitat-

ing the writing style of the reference dataset (Dt). Given the reference dataset, in

the GAN framework, the discriminator tries to distinguish whether the input text

satisfies the expected writing style or not. The generator would learn how to transfer

the writing style according to the feedback from the discriminator with adversarial

training. For the back-translation part, the model takes input from the training set

and reference dataset randomly. It “translates” the input into a random writing style

and “translates” it back to the original writing style. The model learns to transfer

the writing style based on the back-translation loss function.
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4.3 Generative Model with Back-Translation

In this section, we provide an overview of the proposed model and explain every

component in detail. Generative Model with Back-Translation (GM-BT) is a combi-

nation of conditional GAN and back-translation loss function. It contains an encoder

and a decoder. In order to hide the authorship of the given text, another dataset

is required to be a reference dataset. The model receives a sequence of tokens as

input, and the encoder extracts content information in the input data and outputs

a feature vector. The feature vector is fed into the decoder after being concatenated

with a writing style embedding of the reference dataset. The decoder generates new

style text based on given information. GM-BT is trained by the reconstruction loss

function, the GAN loss function, and the back-translation loss function. The GAN

loss function, as shown in Figure 4–2, guides the encoder and the generator through

providing feedback from the discriminator based on current generated text. The

back-translation loss function, as shown in Figure 4–3, firstly “translates” the input

text into a text with a random writing style, then, it “translates” the text back

to have the same writing style with the input text. It provides feedback through

calculating the reconstruction loss between the back-translated text and the input

text. The reconstruction loss function can speed up the training process and help

the generator learn the grammar structure in the beginning. The back-translation

loss function can not only guide the generator to preserve the semantics of input

but give freedom to the generator to change words. The GAN loss function offers

feedback on the quality of the generated samples to the generator.
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Figure 4–2: The GAN architecture of GM-BT.

However, there exists a differentiability issue while training GANs for tex-

tual data. The gradients cannot be backpropagated from the discriminator be-

cause the original generation process that contains the discrete selection is non-

differentiable [Yu et al., 2017]. To make this process differentiable, we apply the

Gumbal-softmax [Jang et al., 2017] to replace the original softmax function and

discrete selection during adversarial training. The Gumbel-softmax produces soft

vectors through approximating the discrete selection process with a differentiable

function instead of one-hot vectors, which allows gradients to flow from the discrim-

inator to the generator.

4.3.1 Encoder

Similar to the encoder in Chapter 3, GM-BT also includes a Bi-directional RNN

with a GRU cell as the encoder. The encoder produces a feature vector E(x) after

receiving a text x as input that is converted to a sequence of token embeddings

〈Em(x1), . . . , Em(xl)〉 after being tokenized into tokens. Unlike ER-AE that directly

feeds the feature vector into the generator, GM-BT concatenates the feature vector
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Figure 4–3: Overall architecture of the back-translation loss of GM-BT.
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with a writing style embedding, the conditional code C. C is a one-hot encoding

that controls the expected writing style of the produced text. For the training set

writing style, C is [1, 0], for the reference dataset, C is [0, 1]. We have the final

latent vector:

latx,C = concat(E(x), C),

where concat(, ) is the concatenation function on the last axis.

4.3.2 Generator

The generator receives the latent vector latx,C that contains the context infor-

mation of the original input data x and the desired writing style C. It is also a

RNN with GRU, which is similar to the one in Chapter 3. In addition, we adopt

an attention mechanism [Bahdanau et al., 2014] into the generator. The Bahdanau

attention enables the generator to make the prediction by looking back at the rel-

evant information in historical hidden states of the encoder. During the i-th time

step, given a sequence of the encoder’s hidden states S respected to x, the context

vector ci is a weighted summation of the hidden states:

αij =
exp(a(sgi−1, Sj))∑l
k−1 exp(a(sgi−1, Sk))

,

ci =
l∑

j=1

αijSj,

where S is the concatenation of the forward and backward states in the encoder, αij

is the weight of Sj, a(, ) is a feedforwad neural network model, and sgi is the i-th

hidden state of the generator. To plug ci into a GRU cell, instead of feeding the
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embedding of input token into the cell it is concatenated with the context vector:

Emnew(xi) = concat(Em(xi), ci).

Then, the hidden state update and token prediction are made based on the new

input vector. The generator learns to produce text based on the content information

E(x) and conditional code C. C controls the expected style of the text produced by

the generator.

4.3.3 Discriminator

The discriminator D is a Convolutional Neural Network (CNN) text classifier

proposed by Kim [2014]. CNNs were originally designed for computer vision tasks;

they play an important role in most computer vision systems. Following the success

of CNNs in computer vision, current studies find that it is also powerful in natural

language processing problems. Instead of using image pixels, the text can be repre-

sented as a numerical matrix. Given a text x, after tokenizing the text each token

xi is converted into a token embedding Em(xi), which is the corresponding row in

the matrix.

The architecture of CNN is straightforward. A couple of convolutional layers

with different kernel sizes extract various feature vectors 〈vec1, . . . , veci〉 from the

input data x. Then, a max pooling layer with output size 1 is applied on each

feature vector. All the results produced by the pooling layer are concatenated as the

final feature vector vecfinal. The prediction is made through a fully connected layer
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based on the feature vector:

prediction = Softmax(Wf × vecfinal),

where Wf ∈ Rnclass×vf are the weights in the fully connected layer, nclass is the

number of classes, and vf is the dimension of the final feature vector.

The input to the discriminator is the Gumbel-softmax output of current gener-

ator and the randomly sampled text from the reference dataset and the training set.

The one-hot-encoding writing style code C can be treated as the target label. The

discriminator tries to distinguish whether the input text satisfies the desired writing

style code C (label). This is a widely used setting in conditional GANs [Mirza and

Osindero, 2014, Hu et al., 2017, Shetty et al., 2018]. The discriminator is trained

through maximizing:

max
D

V (D,G) = Ex∼p data (x)[logD(x|C) + log(1−D(Ggb(latx,C |C)))], (4.3)

where Ggb(.) is the function of the generator with Gumbel-Softmax that is to avoid

the non-differentiability issue introduced in Section 4.3.

4.3.4 Back-Translation Loss Function

Reconstruction loss function (Equation 3.12) is a prevalent loss function in the

text generation problem. By learning to reconstruct the original input text a gener-

ator learns to generate text with correct grammatical structure and keep the seman-

tics. However, only optimizing the original input tokens strongly limits the generator

on exploring other expressions for the same semantics in the style transfer problem.

The model tends to generate the exact same tokens as the input rather than other
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options. Therefore, the generator demands a weaker loss function that allows it to

produce different text. Subramanian et al. [2018] propose the back-translation loss

to control the attributes in the generated text. Given the input text x and a random

code Cr, we have the generated text x̃ and xbt, which is the generated text with the

input of x̃ and x’s writing style code Cx, then the loss function can be formed as:

Lbt = λrecon
∑
xi∈x

− logPr [x̃i = xi|Cr] + λbt
∑
xi∈x

− logPr
[
xbti = xi|Cx

]
. (4.4)

The input x is first “translated” into x̃, and then x̃ is “translated” into xbt. The loss

function is called back-translation because xbt is expected to be the same as x when

the conditional code C is Cx. Under this condition we can use the reconstruction

loss between xbt and x to train the generator, which is weaker than the original

reconstruction loss because x̃ does not have direct constraint when λrecon is zero.

λrecon linearly decreases from 1 to 0 after a couple of epochs to release the power of

reconstruction loss, whereas λbt is always 1.

4.3.5 Adversarial Training

Adversarial training is a vital part of a GAN framework. Proved by Yu et al.

[2017], the pre-training of the generator with reconstruction loss function is necessary

to speed up the whole training progress. Therefore, as shown in Algorithm 3, our

model is first pre-trained for one epoch. Then, the discriminator is trained based on

the current generator and the real data. After that, the generator learns to beat the

discriminator while minimizing the back-translation loss function. This is repeated

until the generator is convergent.
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Algorithm 3 The Training Procedures of GM-BT
INPUT: Dataset : D
PARAMETERS: θ
COMPONENTS: Encoder : Eθ(), Generator : Gθ()., Discriminator : Dθ().

Initialize θ.
Pre-training using reconstruction loss Lrecon.
while Eθ() and Gθ() do not converge do

Update the Discriminator:
for Nd times do

Generative faked samples based on current generator.
Update Dθ() through maximizing Equation 4.3.

end for

Update the Encoder and the Generator:
for NGAN times do

Update Eθ() and Gθ() through minimizing the combination of the conditional
GAN loss function Equation 4.2 and back-translation loss function Equa-
tion 4.4.

end for
Update the hyper-parameter λrecon.

end while
OUTPUT θ
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4.4 Experiment

In this section, we present the details of the conducted experiments. The plat-

form of all experiments is the same as the one in Chapter 3.

4.4.1 Datasets and Baselines

In the experiments, we also adopt the Yelp Review dataset and the Peer Review

Dataset described in Chapter 3 and Table 3–1. The baselines and evaluation metrics

are also the same. We further compared GM-BT with the previously proposed ER-

AE model.

4.4.2 Experiment Setting

Both the encoder and the decoder utilize a one layer GRU network. Each GRU

layer has 512 cells. We built vocabulary for each dataset separately with a size of

20,000. All the token embeddings come from the pre-trained BERT model, which has

a dimension of 768. Our model has a maximum input length of 50, a learning rate of

0.001, λrecon of 1 that is reduced to 0 after 5 epochs, λbt of 1, Nd of 1, NGAN of 5, and

a batch size of 128. During the training, the temperature of the Gumbel-softmax

is linearly annealed, from 1.0 for iterations 1 to 19,000 and then kept at 0.5 until

training ends. The reference dataset is a subset of Wikipedia dataset1 because it has

a mixture of writing style and written by different authors. We created the subset

with a similar size to our training set through randomly sampling texts whose tokens

are mostly included in the vocabulary of the training set. During training, reference

1 https://en.wikipedia.org/wiki/Wikipedia:Database download
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Table 4–1: Results for each evaluation metric on Yelp datasets. ↑ indicates the higher
the better. ↓ indicates the lower the better.

Model Yelp (100-author)

USE ↑ Authorship ↓ Stylometric↑
Original text 1 0.5513 0
SynTF [Weggenmann and Kerschbaum, 2018] 0.1955 0.0518 26.3031
Random-R 0.1183 0.0188 62.99
AE 0.9001 0.2312 5.5609
AE-DP 0.8966 0.1586 5.12
ER-AE (ours) 0.7963 0.0713 12.49
GM-BT (ours) 0.814 0.0634 10.06

Table 4–2: Results for USE and Stylometric change metrics on conferences’ dataset.
↑ indicates the higher the better. ↓ indicates the lower the better.

Model Conferences’ Dataset

USE↑ Stylometric↑
Original text 1 0
SynTF [Weggenmann and Kerschbaum, 2018] 0.2161 25.95
Random-R 0.1356 65.624
AE 0.9114 4.339
AE-DP 0.8712 5.8389
ER-AE (ours) 0.7448 10.18
GM-BT (ours) 0.831 13.72

texts are randomly sampled from the reference dataset. This model is implemented in

Python with TensorFlow python library. The sentence tokenizer and word tokenizer

come from NLTK Python library.

4.4.3 Results

In this section, we present the results of our experiments and compare them

with all baselines and ER-AE in three aspects, namely semantic preservation, privacy

protection, and writing style changes.
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Quantitative Evaluation

Quantitative results are shown in Table 4–1 and Table 4–2. As described in

Chapter 3, with a USE score of around 0.2, SynTF and Random-R cannot generate

grammatically correct texts. Our proposed model GM-BT achieves a phenomenally

higher USE score of above 0.81 on both datasets, suggesting that GM-BT has a

significantly better utility. Although SynTF and Random-R can better obfuscate

the authorship and change the writing style, they sacrifice too much text structure

and semantics. As a result, the generated text is not even a proper text.

On the other hand, AE and AE-DP have good utility, but the generated text

is too easily attacked. Compared with them, GM-BT achieves a competitive util-

ity performance on both datasets while significantly reducing the identification risk

of authorship from 55% to 6%. In addition, the changes of writing style on both

datasets are much higher than the two baselines. It reveals that GM-BT can protect

authorship privacy much better than AE and AE-DP while performing competitively

on utility.

Comparing with previously proposed ER-AE, GM-BT performs better on data

utility on both datasets. On the conferences’ dataset, the USE score of GM-BT is

higher than the one of ER-AE with almost 0.1. At the same time, GM-BT achieves

similar performance on privacy protection and writing style change with ER-AE.

GM-BT reduces the identification risk from 55% to 6%, which is even better than

ER-AE. This result indicates that GM-BT performs better than ER-AE on data

utility with competitive performance on privacy protection and writing style change.
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Table 4–3: Sample Texts Generated by Models

Input maybe , i just missed this point in the proof.
SynTF cayman stunts accounts pierced nickel mai aisles maddox possesses ...
Random-R establishments morning intercepted fragrance penny ...
AE maybe , i just missed this point in the proof .
AE-DP maybe , i just missed this point in the proof .
ER-AE maybe , i just missed this restoration in the proof .
GM-BT maybe , i just missed this point in the proof .

Input the novelty is combining several known ideas , which is perfectly acceptable .
SynTF sherwood few mats confronts biceps shuffled whereby magical confirming...
Random-R coulter twice illuminating affair bavarian schooling...
AE the novelty is combining several known ideas , which is perfectly acceptable .
AE-DP the novelty is combining several known ideas , which is perfectly acceptable .
ER-AE the novelty is decoder-based coincides known ideas , which

read/compose/write perfectly acceptable .
GM-BT the novelty is combining several ideas , which is perfectly acceptable known .

Input attitude of the old asian lady did not help either.
AE attitude of the old asian lady did not help either .
AE-DP attitude of the old asian lady did not help either .
ER-AE attitude of the old portuguese lady did not salute either .
GM-BT copies of the old asian did not have earned either .

Input please reduce it or move some of the results to an appendix section.
AE please reduce it or move some of the results to an appendix section.
AE-DP please reduce it or move some of the results to an appendix section.
ER-AE please dig it or move confounded of the results to an appendix section .
GM-BT reduce it or please add some of the results to an appendix section .

Case Study

In Table 4–3 we show the generated text of models on four input texts. From

the first two texts we can see that SynTF and Random-R fail to generate readable

text. There is no cohesion between generated words, whereas AE and AE-DP can

make little change in generated texts. They just produce the exact same texts that

have high identification risk. Basically, ER-AE can preserve the content of the input
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data and change some words in the text. However, the model fails to pick a good

substitution word because of the limitation of word embeddings. In the last sample,

ER-AE changes the semantic by replacing “reduce” with “dig”. GM-BT does not

have this issue; it changes the writing style by reordering words and substituting

tokens if necessary. In the second and last samples, GM-BT changes the position of

“known” and “please” to change the writing style. In the last text it replaces “move”

with “add”. According to the generated samples, GM-BT has a higher chance to

produce a fluent and grammatically correct text. GM-BT also has weaknesses, such

as the first sample, when the text is too short it would fail to change the writing

style.

GM-BT vs. ER-AE

Generally, GM-BT performs better than ER-AE on USE scores, which means the

generated data has better utility than that of ER-AE. In terms of privacy, GM-BT

also achieves a significantly lower identification risk than ER-AE on the authorship

attack and a competitive change on the writing style. We also carefully examine the

generated samples from both models. Due to the sampling processing, ER-AE is

more likely to generate some irrelevant vocabularies for substitutions. In contrast,

GM-BT does not have a sampling operation in the generator, and therefore it has a

higher chance to generate a human-friendly text that preserves the semantics of the

input data.

4.5 Summary

In this chapter we propose the second novel method to imitate the writing style of

a reference dataset to protect the privacy of authorship. To the best of our knowledge,
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this is the first model to anonymize authorship by automatically imitating a writing

style. The attention mechanism is utilized to improve the power of the generator.

We avoid the limitation of the reconstruction loss function by replacing it with back-

translation loss. Combining the back-translation loss function with GAN loss, the

model can be trained end-to-end, which means it is easy to train. We evaluate our

model and show a competitive ability to generate text that preserves the semantics

while changing the writing style on the Yelp dataset and NeurIPS & ICLR reviews

datasets. By showing samples generated from all models, we observe that GM-BT

generally performs better than ER-AE on text fluency and grammatic correctness.
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CHAPTER 5
Conclusions & Future Work

In this thesis we propose two novel models, Embedding Reward Auto-Encode

(ER-AE) and Generative Model with Back-Translation (GM-BT), to tackle the au-

thorship anonymization problem while releasing textual data. ER-AE extends the

auto-encoder with an exponential mechanism to generate differentially-private text.

Though the privacy guarantee is not strong, which is due to the lack of provable

tight sensitivity bound, we give two reasons that a large ε is necessary to produce

meaningful texts. First, a large ε is necessary to achieve only the author’s identity

indistinguishability while allowing the generated text can be distinguished by the

semantic information under the strictest adjacency definition. Second, we theoret-

ically prove that a large ε is necessary for the exponential mechanism to produce

meaningful and relevant text with a large discrete output space. To train the model

and overcome the limitation of the exponential mechanism, the embedding reward

loss function is designed to improve the performance of the generator. GM-BT is

generally a GAN model, which utilizes an attention generator. During training it

combines the back-translation loss with GAN loss. We evaluate both models using

real-life datasets. The results show that both models can generate human-friendly

text with correct grammar while preserving the semantic of the input and protecting
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an individual’s privacy. They have different strengths and weaknesses. ER-AE would

generate texts that may contain grammatical mistakes due to the sampling opera-

tion in the exponential mechanism. Whereas, by avoiding the sampling operation,

GM-BT usually generates a better understood text. However, its privacy protection

is not guaranteed. Both models outperform on the quantitative experiments and

show the ability to defend an authorship identification attack through changing the

writing style.

We find that ER-AE performs well on short sentences but cannot handle long

texts well. Also, the grammar structure is not always correct. Our future research

will focus on its performance on long sentences, paragraphs, and correct grammatical

structure. The following are some potential directions for improving ER-AE:

• The embedding reward loss function is well defined but not perfect. It can in-

crease the probability of some semantically similar words, but it has a problem

for multi-object learning. It can be further improved by adopting loss functions

from that area.

• The exploration part of the embedding reward loss function is in an intuitive

way; the way to choose tokens can also be investigated.

• New differentially-private mechanisms can be further studied since most of the

bad samples generated by ER-AE are caused by the non-zero items produced by

the exponential mechanism. A mechanism that can produce sparse distribution

would significantly improve the performance of ER-AE.
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• ER-AE does not perform well on long texts. The recent proposed Trans-

former [Vaswani et al., 2017], which can better process long-term information

in sequence data, would be a good direction for further exploration.

On the other hand, GM-BT could produce a better grammatically correct text

than ER-AE, but the writing style change on short texts is not significant. The

following are some potential directions for improving GM-BT:

• Design a better loss function to replace the back-translation loss. Although

it is weaker than the reconstruction loss function, a new way to learn the

grammatical structure and content preservation is desired to encourage the

model to make more changes on generated texts.

• Find a way to encourage the generator to make changes in a generated text.

Reinforcement learning method would be a good choice to provide more types of

feedback on the quality of generated text, e.g., the change of the text structure

reward and the change of words reward.
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