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ABSTRACT

In this thesis, we explore various aspects of the Ekedahl-Oort (E-O) strati-

fication of unitary Shimura varieties for any signature (m1,m2). We begin with

a detailed study of the E-O strata themselves, describing models for the corre-

sponding p-torsion group schemes, computing standard invariants of the strata and

exploring relationships between the E-O and Newton strata. We then explicitly

derive the E-O stratum of the reduction of a CM point from its CM type, hence

providing, under suitable conditions, concrete examples of abelian varieties lying

in given E-O strata. Following the techniques of Ekedahl and van der Geer in the

Siegel case, we show that the cycle classes of the E-O strata in the Chow group

can be written in terms of Chern classes of the Hodge bundle, and thus lie in the

tautological ring. Finally, we use calculations of Hasse-Witt matrices over certain

E-O strata to give new results on the geometry of these Shimura varieties.
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ABRÉGÉ

Dans cette thèse, on étudie plusieurs aspects de la stratification d’Ekedahl-

Oort (E-O) des variétés de Shimura associées aux groupes unitaires pour toute

signature (m1,m2). On commence par une étude détaillée des strates d’Ekedahl-

Oort elles-mêmes. Cette étude repose sur la description de certains modèles pour

les schémas en groupes associés à la p-torsion des variétés abéliennes paramétrées

par les différentes strates, sur le calcul des invariants de ces strates, et sur l’analyse

des relations entre les strates d’E-O et les strates de Newton. On montre ensuite

comment déduire explicitement la strate d’E-O de la réduction d’un point CM

en utilisant son type CM, fournissant ainsi des exemples concrets de variétés

abéliennes se trouvant dans une strate d’E-O donnée. Après les techniques de

Ekedahl et van der Geer dans le cas Siegel, on montre que les classes de cycle des

strates d’E-O dans le groupe Chow peuvent être écrits en termes de classes de

Chern du fibré de Hodge, et sont ainsi dans l’anneau tautologique. Enfin, on utilise

des calculs de matrices Hasse-Witt sur certaines strates d’E-O pour donner de

nouveaux résultats sur la géométrie de ces variétés de Shimura.
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Chapter 1
Introduction

Let M denote a unitary Shimura variety coming from the group GU(m1,m2)

in characteristic p > 0. These Shimura varieties correspond to moduli problems

of abelian schemes with polarization and endomorphism structure coming from a

quadratic imaginary field K. The p-torsion group scheme A[p] and the p-divisible

group A(p) of points A on M can be used to partition the moduli space into

locally closed subschemes called strata. In particular, the Ekedahl-Oort (E-O)

stratification on M is the stratification based on the isomorphism classes of the

p-torsion group schemes A[p], where the isomorphism classes take into account

extra structures coming from the endomorphism and polarization structures on A.

The E-O stratification is a particularly refined stratification and is a powerful

tool for understanding the geometry of Shimura varieties in positive characteristic.

Additionally, previous study of the E-O stratification has been used to solve

problems outside of number theory. For example, the Hecke correspondences away

from the prime p respect the E-O stratification and lead to representations of

the Hecke algebra. Representations of the Hecke algebra arising from the zero-

dimensional E-O strata alone have been shown to contain fascinating arithmetic

and combinatorial structures in the case of Siegel and Hilbert modular varieties

[Ghi03, Nic05], with applications to expander graph theory and cryptography

[CLG09, CGL09].
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The Ekedahl-Oort stratification was first studied extensively in the Siegel

case by Oort and others (see for instance [Oor01], [LO98]). A method for studying

the E-O strata by constructing a flag space over the Siegel moduli space was

carried out by Ekedahl and van der Geer in [EvdG09]—a technique we will apply

to the unitary case. Our approach to studying the Hasse-Witt matrices is due

to Norman [Nor75], Norman-Oort [NO80], and Koblitz [Kob75] in the Siegel

case. The E-O strata have been described for PEL Shimura varieties in general

[Moo01, MW04, VW13], and we build on this work to recover more detailed results

in the unitary case.

Previous study of the E-O strata of unitary Shimura varieties when m2 = 1

was done by Bultel-Wedhorn [BW06], Vollaard [Vol05], Vollaard-Wedhorn [VW11]

in the case when p is inert in K and Harris-Taylor [HT01] for the case when p is

split in K. More recently, Howard and Pappas [HP13] gave extensive results in the

inert case of signature (2, 2). Related results concerning the Hasse-invariants and

modular forms can be found in work of Goldring-Nicole [GN16], Reduzzi [Red12],

Boxer [Box15], and de Shalit-Goren [dSG15].

In this thesis we take up the study of unitary Shimura varieties in general

with no conditions on the signature, and in both cases where p is unramified in

K. This allows us to study two moduli problems that are in a sense opposites on

the moduli space of principally polarized abelian varieties. One the one hand, we

will show that the generic E-O stratum is almost never ordinary and the zero-

dimensional stratum is always superspecial when p is inert in K. When p is split

in K the generic E-O stratum is always ordinary and the zero-dimensional stratum
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is almost never supersingular, let alone superspecial. Despite these differences, the

E-O strata in both cases are parametrized by the same Weyl group coset allowing

for a unified treatment of the subject.

1.1 Structure of the thesis

Chapter 2 provides a definition of unitary Shimura varieties and an overview

of fundamental tools that can be used to study these varieties in characteristic p.

In Chapter 3, we describe specifics of the Ekedahl-Oort stratification based on

the classification of the strata via a Weyl group coset JW . Using this classification,

we obtain bases for the Dieudonné modules corresponding to each E-O stratum

and derive invariants of the associated p-torsion group schemes such as the a-

number, f -number and the minimal power of F that kills the p-torsion. We

show that there are four special strata of particular interest that arise from the

description of the E-O strata in terms of JW : the unique strata of dimensions 0, 1,

m1m2 − 1 and m1m2. We exhibit models for the p-torsion group schemes of these

strata and make use of them throughout the rest of the thesis.

In Chapter 4 we construct CM points on unitary Shimura varieties in charac-

teristic zero that reduce to a given E-O stratum mod p. To this end, we explicitly

derive the E-O stratum of the reduction of a CM point from its CM type. This

leads to a constructive proof that under certain suitable conditions the zero-

dimensional E-O stratum is non-empty (even when it is not supersingular).

Chapter 5 introduces the Newton stratification—a stratification whose

strata can be classified by a poset B(G, µ)—and explores its relationship with

the Ekedahl-Oort stratification. In the case where p is split in the field K, we
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effectively compute the map B(G, µ) ↪→ JW that takes a Newton stratum to the

minimal E-O stratum contained within it. This allows us to give a nearly complete

description of the Newton strata corresponding to the special E-O strata.1 While

we have not yet established as nice of a description for the relationship between

the Newton and E-O strata in the case where p is inert in K, we are still able to

give a complete description of the Newton strata corresponding to the special E-O

strata.

In Chapter 6, we adapt the techniques of Ekedahl and van der Geer from the

Siegel case [EvdG09] to the study of the E-O strata. In particular, we construct

a flag variety over M in such a way that the strata of the flag variety (coming

from its Schubert cells) map onto the E-O strata via finite étale surjective maps.

Therefore, the cycle classes of the closed E-O strata in the Chow group can

be written in terms of Chern classes of the Hodge bundle, and thus lie in the

tautological ring.

Finally, in Chapter 7 we calculate the Hasse-Witt matrices over the special

E-O strata from Chapter 3. These calculations show that the (partial) Hasse-

invariants vanish to order one on the non-ordinary stratum. Furthermore, in

the case where p is split in K, we show that the non-ordinary locus is not only

connected, but irreducible, with the corollary that the non-ordinary locus for a

Shimura variety coming from the group GU(2, 1) is a smooth, irreducible curve.

1 The exception is in the case of the one-dimensional E-O stratum when
m1 −m2 > 1 and m2 > 1.
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Chapter 2
Background

We begin this chapter by defining unitary Shimura varieties and the associ-

ated moduli problem of abelian schemes in Section 2.1. We then introduce the

basic tools, techniques and definitions for studying abelian schemes in character-

istic p throughout the rest of the chapter. In Sections 2.2.1 and 2.2.2 we review

the definitions of the p-torsion group schemes and p-divisible groups arising from

abelian schemes (with extra structures corresponding to the unitary moduli prob-

lem). These are the primary objects of study in this thesis. However, it is easier

to study them through linear algebraic data coming through Dieudonné theory

which we recall in Section 2.2.3. The classification of isocrystals by slope sequence

is given in Section 2.2.4 so that we can interpret the results on the Newton stratifi-

cation in Chapter 5 using the classical approach to slope sequences. We also briefly

review the theory of displays in Section 2.2.5 which will be used for studying the

local deformations of the Hasse-Witt matrices of points on M in Chapter 7.

2.1 Unitary Shimura varieties with good reduction at p

Shimura varieties, according to Deligne’s formulation [Del72], are defined

by so-called Shimura data. We begin by defining Shimura data with additional

structure at a fixed prime p according to Kottwitz [Kot92] in order to ensure that

we obtain models for the resulting Shimura varieties that have good reduction at

the given prime p.
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2.1.1 The Shimura datum

Fix a prime p > 2. Consider the following data.

• (B, ∗) = (K, ∗) is a quadratic imaginary extension of Q in which p is

unramified, and ∗ is the non-trivial automorphism of K/Q.

• (V, ψ) = (Kg, ψ) where ψ : V × V → Q is a non-degenerate alternating form

such that ψ(bu, v) = ψ(u, b∗v) for all u, v ∈ V and b ∈ B. Furthermore, let-

ting G denote the group of B-linear symplectic similitudes of (V, ψ), assume

that GR is isomorphic to the group GU(m1,m2) of unitary similitudes of the

diagonal matrix (1m1 ,−1m2).

• OB = OK ⊗Z Z(p), an ∗-invariant Z(p)-order of B such that OB ⊗Z(p)
Zp is a

maximal Zp-order of BQp .

• Λ = (OK ⊗Z Zp)g ⊂ VQp = (K ⊗Q Qp)
g, an OB-invariant Zp lattice on which

ψ is a perfect pairing.

• h : S → GR is the homomorphism of algebraic groups over R defined on

R-points by taking z ∈ C× to the diagonal matrix (zm1 , z̄m2). Note that

h is a Hodge structure of type (−1, 0), (0,−1) on V ⊗Q R making (G, h) a

Shimura datum as in Section 1.5 of Deligne [Del72].

Then D = (B, ∗, V, ψ,OB,Λ, h) is a PEL Shimura datum1 with good reduction

at p and in particular, we call D a unitary PEL Shimura datum of signature

(m1,m2) with good reduction at p.

1 PEL in this context refers to the polarization, endomorphism and level struc-
ture that appear in the corresponding moduli problems of abelian schemes.
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Not only is GR a unitary group, but G itself is a unitary group for K/Q. To

see this, begin by writing K = Q(
√
d) where −d > 0 is a non-square integer. Then

ψ can be written as

ψ(u, v) = TrK/Q(
√
dΨ(u, v))

for a unique non-degenerate ∗-Hermitian form Ψ : V × V → K (see [Del81] Lemma

4.6). The involution σψ on EndK (V ) induced by ψ is the same as the involution

σΨ induced by Ψ, and the group G defined by the involution σψ on EndK (V ) is

isomorphic as an algebraic group over Q to the group

GU(V,Ψ)(R) :=
{
g ∈ GLK⊗QR(V ⊗Q R)

∣∣ Ψ(gu, gv) = c(g)Ψ(u, v), c(g) ∈ R×
}

=
{
g ∈ (EndK (V )⊗R)×

∣∣ σΨ(g)g ∈ R×
}
.

Over R, GR becomes a unitary group with respect to C/R and such a group can

be uniquely identified up to isomorphism by its signature, (m1,m2).

There are two cocharacters of interest associated with h : S → GR. In order

to describe them, first make the identification of (C ⊗R C)× with C× × C× via

a⊗ z 7→ (az, āz), and then the canonical identification

G(C) = GU(m1,m2)⊗R C ⊆ GLg(C)×GLg(C)

M ⊗ z 7→ (Mz, (σΨ(M)z)t)

taking the involution (σΨ)C to the involution (M1,M2) 7→ (M t
2,M

t
1). Pre-

composing h(C) with the map Gm(C) → S(C) where z 7→ (z, 1) then gives

7



µh : Gm/C → GC where

µh : C× → GU(m1,m2)C ⊆ GLg(C)×GLg(C)

z 7→ (diag(zm1 , 1m2), diag(1m1 , zm2)).

On the other hand, pre-composing h with the map Gm → S taking r 7→ r−1 for

r ∈ R× gives the weight homomorphism

wh : R× → GU(m1,m2)

r 7→ r−1Ig.

By the definition of h : S → GR, the cocharacter µh induces a decomposition of

VC into weight spaces, VC = V0 ⊕ V1. The reflex field of a PEL datum D is the

field of definition ED of the isomorphism class of the complex representation V1 of

K. When D is a unitary PEL Shimura datum of signature (m1,m2), then either

ED = Q when m1 = m2 or ED = K when m1 6= m2.

As we will be mostly working with structures related to p, it is useful to let G

be the Zp-group of OB-linear symplectic similitudes of Λ. Note that this is a quasi-

split reductive group scheme with generic fibre GQp . Let Ḡ denote the special fibre

of G.

2.1.2 The moduli problem

Before stating the moduli problem associated to the Shimura datum D , we

begin with some necessary definitions. Let χi : K ↪→ C denote the two embeddings

of K into C and let E be the reflex field of D . Let S be a locally noetherian

scheme over OE ⊗Z Z(p), and let A be an abelian scheme over S of dimension
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g = m1+m2 together with a Z(p)-algebra homomorphism ι : OB → EndS (A)⊗ZZ(p).

Then (A, ι) is said to satisfy the determinant condition if

charpol(b,Lie(A)) = (X − χ1(b))m1(X − χ2(b))m2 ∈ OS[X],∀b ∈ OB. (2.1)

Suppose that f : A1 → A2 is a prime-to-p isogeny of abelian schemes over S. Then

the Z×(p)-equivalence class of f is defined by the equivalence relation f ∼ αf if

α : S → Z×(p) is a locally constant map.

Let D = (B, ∗, V, ψ,OB,Λ, h) be a unitary PEL Shimura datum with good

reduction at p and let ED be the reflex field of D . Let G be the group associated

with D and let Cp < G(Apf ) be an open compact subgroup (here Apf denotes the

finite adeles that are trivial at p). Then as in Kottwitz [Kot92, Section 5], D and

CP define a moduli problem in the following way.

Denote by M(m1,m2),CP the set-valued contravariant functor from the cat-

egory of locally Noetherian schemes S over OED
⊗Z Z(p) taking S to the set of

isomorphism classes of tuples (A, ι, λ, η) where

• A is an abelian scheme over S,

• ι : OB → EndS (A)⊗Z Z(p) is a Z(p)-algebra homomorphism,

• λ is a Z×(p)-equivalence class of an OB-linear Z×(p)-polarization of A with

respect to the OB-action induced by ι on A∨ i.e. b ∈ OB acts on A∨ through

ι(b∗)∨,

• η is a Cp level structure in the sense of [Kot92],
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such that (A, ι) satisfies the determinant condition defined in (2.1). Two tuples

(A1, ι1, λ1, η1) and (A2, ι2, λ2, η2) are isomorphic if there exists an OB-linear

quasi-isogeny f : A1 → A2 with prime-to-p degree taking λ1 to λ2 and η1 to η2.

Let s ∈ S be a geometric point, and suppose that S is connected. Then

a level structure, η, of type Cp for (A, ι, λ) is a Cp-orbit of isomorphisms of

VApf → H1(As,Apf ) of skew-Hermitian B-modules (up to a scalar multiple) such

that the Cp-orbit η is fixed by π1(S, s). Because η is fixed by π1(S, s), a choice of

level structure is independent of the choice of geometric point s ∈ S (see [Kot92,

Section 5]).

When Cp is sufficiently small, M(m1,m2),CP is representable by smooth quasi-

projective scheme over OED
⊗Z Z(p) [Kot92]. We will assume that Cp is “small

enough” throughout the entirety of this thesis.

Fix an embedding Q ↪→ Qp. Let p be the prime of the reflex field E lying

over the rational prime p that corresponds to the chosen embedding. Let κ(p)

denote the residue field of Ep. Our main object of study will be the special fibre of

M(m1,m2),CP at p,

M :=M(m1,m2),Cp ⊗OE,(p) κ(p).

To simplify notation, the fixed choices on which M depends—Cp, Q ↪→ Qp, D ,

and hence (m1,m2)—will be taken to be implied throughout.

2.2 Abelian schemes in positive characteristic

One of the most important features of varieties in positive characteristic is the

existence of the Frobenius morphism. To be precise, we begin by noting that for

any scheme X of characteristic p, there is an absolute Frobenius morphism
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Frabs : X → X coming from the pth-power map x 7→ xp on the structure sheaf OX .

In case of an abelian scheme π : A → S, the absolute Frobenius morphisms on A

and S give rise to the relative Frobenius morphism Fr : A → A(p), a degree p

isogeny where A(p) and Fr are defined by the diagram

A
Frabs

$$
π

��

Fr

!!
A(p)

��

// A

π
��

S
Frabs // S

where the square is cartesian. The Frobenius morphism has a dual Verschiebung

morphism Ver : A(p) → A satisfying Fr ◦Ver = [p]A and Ver ◦Fr = [p]A(p) where [p]

denotes the multiplication-by-p isogeny. This special feature of the multiplication-

by-p map underlies all of the tools we will use for studying abelian schemes in

positive characteristic.

The remainder of this section will be spent reviewing the basic theory

of “mod-p structures” that are arise on abelian schemes in characteristic p,

and especially structures that encode information about the Frobenius and

Verschiebung morphisms. We are particularly interested in the structures that

arise when studying geometric points on M. For each of the mod-p structures that

we introduce, we will begin with a brief general introduction over a perfect field k

of characteristic p, to be followed with a description of that mod-p structure on k-

points of M together with the contribution of the polarization and endomorphism

structure determined by the moduli problem for M. To do so, it will be necessary
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to also make sure that OK/(p) ⊗Fp k ∼= k1 ⊕ k2. In other words, we need k to be

any perfect extension of κ where κ = Fp when p is split in K and κ = Fp2 when p

is inert in K. Unless otherwise indicated, we will simply let k be an algebraically

closed field of characteristic p when considering structures arising from k-points of

M as this is all that will be needed in the sequel.2

2.2.1 p-torsion group schemes

Let π : A → S be an abelian scheme of relative dimension g. Then let the

n-torsion group scheme A[n] denote the kernel of the multiplication-by-n map

where n ∈ Z>0. As the kernel of a proper flat morphism, A[n] is a finite flat

group scheme of over S of rank n2g. When S is the spectrum of a perfect field

of characteristic p, the group scheme A[p] is particularly interesting and encodes

significant information pertaining to A.

Let G be a commutative algebraic group scheme over k where k is an al-

gebraically closed field of characteristic p . Let αp be the local-local p-torsion

group scheme of rank one, and let Z
/
pZ be the constant group scheme of the

group Z/pZ. Then, the f-number3 of G, f(G), is defined as the positive integer

such that f(G) = dimk Homk(Z
/
pZ, G), and the a-number of G, a(G), is given

by a(G) := Homk(αp, G). In case of an abelian variety A/k, the f -number and

2 even though the results and arguments often remain valid over perfect exten-
sions of κ.

3 The f -number of G is also known as the p-rank of G in the literature.
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a-number of A are defined to be the f -number and a-number of A[p] and have

alternate descriptions as

• pf(A) = #A[p](k),

• a(A) is such that the order of the maximal αp-elementary subgroup of A[p] is

pa(A), or such that the rank of α(A) := ker(Ver : A(p) → A) ∩ ker(Fr : A(p) →

A(p2)) is pa(A).

The f -number and a-number of A both range from 0 to g where g is the dimension

of A. An abelian variety with maximal a-number is called superspecial and an

abelian variety with maximal f -number is called ordinary.

Let (A, ι, λ, η) ∈ M(k) where k is an algebraically closed field of characteristic

p. The polarization λ makes A[p] self-dual as a group scheme as λ : A[p] → At[p]

is an isomorphism and At[p] ∼= A[p]∨ where A[p]∨ denotes the dual of A[p] as a

finite commutative group scheme. Furthermore, the endomorphism structure ι

induces an action of OK/(p) on A[p]. This determines a decomposition of A[p] via

the characters χ1, χ2 : OK/(p)→ k.

Let I be an ideal in OK . Then we define A[I] to be the group scheme

∩t∈Iker(t), which is closed under the induced OK-action. Note that if I | J

then A[I] ⊆ A[J ]. Furthermore, for (p) ⊆ OK , A[(p)] = A[p] as ι(p) = [p] so that if

p | (p), then A[p] ⊂ A[p] is an OK-subgroup scheme of A[p].

Lemma 2.2.1. Suppose that p splits as (p) = p1p2 in K where ker(χi) = pi. Then

A[p] decomposes under the OK/(p) ∼= OK/p1 ⊕OK/p2 action as

A[p] = A[p1]⊕ A[p2]

13



where A[pi] = ∩t∈piker(t) for i = 1, 2. Furthermore, A[p1] ∼= A∨[p2] ∼= A[p2]∨ and

vice versa.

Proof. Write A[p] = A1 ⊕ A2 as the decomposition of A[p] under the action

of OK/p1 ⊕ OK/p2 and let i = 1, 2. Suppose that B is an OK/(p)-submodule

of A[p] contained in Ai. Then for all t ∈ pi, χi(t) = 0 so that B ⊆ A[pi].

On the other hand, A[pi] is an OK/(p) submodule of A[p] and decomposes as

A[pi]1 ⊕ A[pi]2 under the action of OK/p1 ⊕ OK/p2. However, A[pi]j ⊆ A[pj], and

A[p1] ∩ A[p2] = A[p1 + p2] = ∩t∈OKker(t) = 0 so that if i 6= j, A[pi]j = 0. It follows

that Ai = A[pi].

Cartier duality gives A[p]∨ = A∨1 ⊕ A∨2 , where r in OK acts through the dual

map r∨ : A∨ → A∨. Note that A[r]∨ = A∨[r∨] for all r ∈ OK so that r∨ : A∨ → A∨

restricted to A[p]∨ = A∨[p] is same as r∨ induced by Cartier duality.

By the condition on the Rosati involution, r∨ = λ ◦ r̄ ◦ λ−1 for r ∈ OK , λ is

an OK-module isomorphism A → A∨ if we twist the OK action on A∨; that is, if

r ∈ OK acts as r̄∨ on A∨ where r̄∨ is the dual of the endomorphism r̄ : A → A.

Therefore, λ is an isomorphism A1
∼= A∨2 .

Note that his implies that the rank of A[p1] is equal to the rank of A[p2]

giving them both rank pg.

Remark. The fact that the p-torsion group scheme A[p] splits as a group scheme

under the OK-action whenever p splits in K will come up repeatedly. In many

cases, this results in simpler proofs for the case when p is split in K than for the

case where p is inert in K (for example see Proposition 7.1.1).
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2.2.2 p-divisible groups

A p-divisible group (also Barsotti-Tate group) H over a scheme S is

an inductive system of finite flat commutative group schemes over S and closed

immersions

0 ↪→ H1 ↪→ H2 ↪→ . . . ↪→ Hi ↪→ . . .

such that for every i ≥ 1, the sequence

0 //H1
//Hi+1

[p] //Hi
//0

is exact. If S is connected, there exists an integer ht(H) called the height of H

such that rank(Hi) = ph(H)i for all i ≥ 1. The dimension of H is its dimension as

a formal scheme.

A p-divisible group H, has an associated dual p-divisible group (or Serre

dual) H t defined by taking the inductive system obtained from the Cartier duals

[p]D : HD
i ↪→ HD

i+1.

A homomorphism f : H → H ′ between p-divisible groups is a family of

homomorphisms fi : Hi → H ′i such that the diagram

0 // H1
//

f1

��

H2
//

f2

��

. . . // Hi
//

fi
��

. . .

0 // H ′1 // H ′2 // . . . // H ′i // . . .

commutes. An isogeny f : H → H ′ is a homomorphism that is also an epimor-

phism with finite kernel. For example, for every n ≥ 0 and p-divisible group H, the

multiplication-by-pn map given by the family of maps [pn] : Hi → Hi is an isogeny
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with kernel Hn. A quasi-isogeny f : H → H ′ is a homomorphism such that

[pn] ◦ f is an isogeny for some n ≥ 0.

Let k be algebraically closed. Given a point A = (A, ι, λ, η) ∈ M(k)

corresponding to a PEL datum D , there is an associated p-divisible group A(p)

coming from A[pi] ↪→ A[pi+1] for all i ≥ 0. Since the construction of p-divisible

groups is functorial, A(p) comes with induced extra structures:

• an action ι(p) : OB ↪→ End (A(p)),

• an isomorphism λ(p) : A(p) → At(p) = A(p)t respecting ι(p) which is defined

up to a scalar in Z×p such that λ(p)t = λ(p).

The association of the data (A(p), ι(p), λ(p)) to the point A is well-defined up to

isomorphism.

In order to account for the extra structures on p-divisible groups that arise

from (unitary) PEL moduli problems in a more general setting, we define a

p-divisible group with D-structure over S, (H, ι, λ), for a PEL datum

D = (B, ∗, V, ψ,OB,Λ, h) where S is a Zp-scheme as follows:

• H is a p-divisible group over S of height dimQ(V )

• an action ι : OB ⊗Zp Qp ↪→ EndS (H),

• an OB-linear isomorphism λ : H → H t up to Z×p -equivalence such that

λt = λ,

• Lie(H) together with the OB-action satisfies a determinant condition (see

below).

The determinant condition for Lie(H) is the analogue of the determi-

nant condition for an abelian scheme defined in Section 2.1.2. We require
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that the characteristic polynomial of the action of b ∈ OB on Lie(H) to be

(X − χ1(b))m1(X − χ2(b))m2 .

2.2.3 Dieudonné theory

Let k be a perfect field of characteristic p, let W (k) be the Witt-vectors over k

with Frobenius morphism σ : W (k)→ W (k), and let Q(k) denote the fraction field

of W (k). Let Dk denote the non-commutative ring generated by F and V over

W (k) subject to the relations:

FV = V F = p, Fλ = λσF, λV = V λσ ∀λ ∈ W (k).

Then a Dieudonné module is a Dk-module that is a finitely generated W (k)-

module.

Given a Dieudonné module M of finite length over W (k), let M∨ denote the

dual of M as a Dieudonné module where M∨ = HomW (k)(M,Q(k)/W (k)) with

F, V -structure given by:

(Fφ)(x) = φ(V x)σ, (V φ)(x) = φ(Fx)σ
−1

for all x ∈ W (k) and φ ∈ HomW (k)(M,Q(k)/W (k)). Similarly, let M be a

Dieudonné module that is free over W (k). Then let M∨ = HomW (k)(M,W (k))

denote the dual of M as a Dieudonné module, where the Dk-module structure on

M is given by

(Fφ)(x) = φ(V x)σ, (V φ)(x) = φ(Fx)σ
−1

for all x ∈ W (k) and φ ∈ HomW (k)(M,W (k)).
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Proposition 2.2.2 (Dieudonné). There is an equivalence of categories D between

the category of finite commutative group schemes over k of p-power order and the

category of Dieudonné modules of finite length as a W (k)-module. Furthermore, D

satisfies the following properties:

1. If k′ is a perfect extension of k, then there exists a functorial isomorphism

D(H ⊗k k′) ∼= D(H)⊗W (k) W (k′). In particular,

D(H(p)) ∼= D(H)⊗W (k),σ W (k). (2.2)

2. Fr : H → H(p) corresponds with V : D(H) → D(H) and Ver : H → H(1/p)

correspond with F : D(H) → D(H) through 2.2. It follows that H is étale if

and only if VD(H) is an isomorphism and H is connected if and only if VD(H)

is nilpotent.

3. The rank of H is equal to pr where r is the length of D(H) as a W (k)-

module.

4. There is a functorial isomorphism:

D(HD) = D(H)∨

where HD denotes the Cartier dual of H.

Through the duality D(HD) = D(H)∨, we can define the contravariant

Dieudonné functor D by D(H) := D(HD). It is worth noting that Fr becomes

FD(H) and Ver becomes VD(H) when applying D instead of D.

On the level of p-divisible groups there is the following equivalence of cate-

gories.
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Proposition 2.2.3 (Dieudonné). There is an equivalence of categories D between

the category of p-divisible groups over k and the category of Dieudonné modules

that are free and finite rank as W (k)-modules. Furthermore, D satisfies the

following properties:

1. If k′ is a perfect extension of k, then there exists a functorial isomorphism

D(H ⊗k k′) ∼= D(H)⊗W (k) W (k′).

2. The height of H is equal to the dimension of D(H) as a W (k)-module.

3. There is a functorial isomorphism:

D(H t) = D(H)∨

where H t denotes the Serre dual of H.

Under this equivalence of categories, a p-divisible group (H, ι, λ) with D-

structure over k induces the following structure on its associated Dieudonné

module D(H) (see for instance [Red12, Prop2.6]):

• D(H) is free of rank dimQ V as an W (k)-module.

• D(H) has an induced OB-action and sympletic form 〈 , 〉 coming from ι and

λ respectively such that 〈bm, n〉 = 〈m, b∗n〉 for all b ∈ OB and m,n ∈ D(H).

• F is an injective W (k) ⊗OB-linear map preserving the symplectic form 〈 , 〉

up to the scalar p ∈ W (k).

Remark. A Dieudonné module with the above properties is called a D-module in

[VW11].

Now let k be algebraically closed and let χi : OK/(p) → k such that χ̄1 = χ2.

Let A = (A, ι, λ, η) ∈ M(k) and D be the covariant Dieudonné module of A(p).
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The extra structures on D induced by ι and λ are described in Proposition 2.2.4.

Write D = D1⊕D2 for the decomposition of D as a OK ⊗W (k) = W (k)1⊕W (k)2-

module.

Proposition 2.2.4. Let γ : C2 → C2 be the identity when p is split in K and let

γ(i) = i+ 1 when p is inert in K. Then

(a) F (Di) ⊆ Dγ(i) and V (Di) ⊆ Dγ(i);

(b) writing Fi[p], Vi[p] := F |Di[p], V |Di[p] : Di[p]→ Dγ(i)[p] we get that

ker(Fi[p]) = im(Vγ(i)[p]), ker(Vi[p]) = im(Fγ(i)[p]);

(c) dimk

(
Di

/
V (Dγ(i))

)
= mi, dimk (Di[p]) = m1 + m2, and dimk

(
V (Dγ(i))

)
=

dimk (ker(Fi)) = mi+1 for i ∈ {1, 2};

(d) under the pairing 〈 , 〉 : D×D→ k induced by λ : D→ D∨, Di ⊥ Di;

(e) when γ(i) = i, Di[p] ∼= Di+1[p]∨ as Dieudonné modules.

Proof. (a) This is immediate as σ ◦ χi = χγ(i).

(b) By combining ker(F )[p] = im(V )[p] with (a) we have that F = F1 +F2 and

V = V1 + V2, and hence

ker(F1[p])⊕ ker(F2[p]) = ker(F [p]) = im(V [p]) = im(V1[p])⊕ im(V2[p]).

This necessarily corresponds to the decomposition of D[p] as an W (k)1 ⊕W (k)2-

module. Therefore ker(Fi[p]) = im(Vγ(i)[p]) and ker(Vi[p]) = im(Fγ(i)[p]).

(c) The identity

Lie (A(p)) = D
/
VD = D1

/
V (Dγ(1))⊕D2

/
V (Dγ(2))
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corresponds to the decomposition of Lie (A(p)) as an OK⊗W (k) = W (k)1⊕W (k)2-

module. By the determinant condition for Lie (A(p)), dimk

(
Di

/
V (Dγ(i))

)
= mi for

i ∈ {1, 2}. Combining the determinant condition with (b) gives the desired result.

(d) For any r ∈ OK , we have that

〈r · x, y〉 = λ(y)(r · x)

= r∨ ◦ λ(y)(x)

= λ ◦ r̄(y)(x)

= λ(r̄ · y)(x)

= 〈x, r̄ · y〉

for all x, y ∈ D. In particular, if we take r ∈ OK such that r ⊗ 1 7→ (1, 0) under

χ1 : OK ⊗W (k)→ W (k)1 ⊕W (k)2, then

〈x, y〉 = 〈r · x, r · y〉 = 〈x, r̄r · y〉 = 0, ∀x, y ∈ D1.

Therefore D1 ⊥ D1. A similar argument shows that D2 ⊥ D2.

(e) This is a restatement of Lemma 2.2.1. Note that the pairing induced by λ

on D becomes a perfect paring 〈 , 〉 on D1[p]×D2[p].

2.2.4 Isocrystals

Let k be a perfect field of characteristic p. A (Q(k)-)isocrystal, (P, F ), is

a finite dimensional Q(k)-vector space P together with a σ-linear automorphism

F . The height of an isocrystal (P, F ) is the dimension of P a Q(k)-vector space.

An isomorphism of isocrystals is an isomorphism of vector spaces preserving F .
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If H is a p-divisible group then its Dieudonné module gives rise to the associated

Q(k)-isocrystal (P, F ) = (D(H)⊗W (k) Q(k), F ⊗ id).

Given an isogeny of p-divisible groups, f : H → H ′, applying the Dieudonné

functor gives rise to an injective morphism of Dieudonné modules D(f) : D(H) →

D(H ′). Since D(H) and D(H ′) have the same rank (as f is an isogeny), tensoring

with Q(k) produces an isomorphism of the resulting isocrystals. On the other

hand, if φ : D(H) ⊗W (k) Q(k) → D(H ′) ⊗W (k) Q(k) is an isomorphism, there

exists an m ∈ N such that φ(D(H)) ⊂ p−mD(H ′), making pmφ : D(H) → D(H ′)

correspond to an isogeny from H to H ′. In this way, we see that the category of

isocrystals up to isomorphism is equivalent to the category of p-divisible groups up

to isogeny.

Furthermore, if (H, ι, λ) is a p-divisible group with D-structure, then its

associated isocrystal comes with the extra structures that simply come from

tensoring with Q(k), and hence,

• P has height dimQ(V ).

• P has an induced OB-action ∗ and sympletic form 〈 , 〉 coming from ι and λ

respectively such that 〈bm, n〉 = 〈mb∗n〉 for all b ∈ OB and m,n ∈ D(H).

• F is a Q(k)⊗OB-linear isomorphism respecting the symplectic form.

2.2.4.1 Classification of isocrystals using slope sequences

There is a combinatorial approach to classifying isogeny classes of p-divisible

groups via isomorphism classes of isocrystals using what will be called slope

sequences. This idea will be generalized to p-divisible groups and isocrystals

with D-structure in Section 5. For now, we give the classical theorem by Manin
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classifying isogeny classes of p-divisible groups without additional structures. For

this section let k be algebraically closed.

Let λ = s
r
∈ Q≥0, r ≥ 1 and (r, s) = 1. Define an associated isocrystal

P λ := (Q(k)r,M · σ) where M is the r × r matrix of the form
0 . . . . . . 0 ps

1 0 . . . . . . 0

0 1 0 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 1 0

.

For λ ∈ Q ≤ 0, define P λ to be the dual of P−λ.

Theorem 2.2.5. [Dem72, p. 85] The category of isocrystals over k is semi-simple

with simple objects given by P λ where λ = s
r
∈ Q and (r, s) = 1.

A λ ∈ Q appearing in the decomposition of P is called a slope. For any

isocrystal P , the multiplicity of λ ∈ Q for P is the Q(k)-dimension of isotypic

component of P with slope λ. For example, the isocrystal P λ where λ = s
r

has

slope λ with multiplicity r. The slope sequence of an isocrystal P ∼= ⊕hi=1P
λi is

the sequence

λ1 ≤ λ2 ≤ . . . ≤ λh

such that each slope appears according to its multiplicity. Note that h will be

equal to the dimension of P over Q(k). The slope sequence of a p-divisible group

is the slope sequence of its isocrystal.

The Newton polygon of P with slope sequence

λ1 ≤ λ2 ≤ . . . ≤ λh
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is the polygon formed from the coordinates (0, 0), . . . , (i, λ1 + . . . + λi) for

1 ≤ i ≤ h. Notice that the polygon has integral break points and the slopes of

its segments are the λis. Furthermore, the Newton polygon of an isocrystal is

uniquely determined by its slope sequence and vice versa.

Newton polygons give rise to a poset structure on the set of isocrystals up to

isomorphism by setting P ≥ P ′ if and only if
∑r

i=1 λi ≤
∑r

i=1 λ
′
i for all 1 ≤ r ≤ h

if and only if the Newton polygon of P is below the Newton polygon of P ′ (that is,

no point of the Newton polygon of P is strictly above the Newton polygon of P ′).

The Newton polygon of a p-divisible group is the Newton polygon of its isocrystal.

The slopes of an isocrystal arising from a p-divisible group fall in the interval

[0, 1] [Dem72, p. 88] giving the following corollary of 2.2.5.

Corollary 2.2.6. Every p-divisible group H over k is isogenous to a p-divisible

group of the form ⊕λ∈Q∩[0,1](H
λ)mλ where mλ ∈ N and Hλ denotes the p-divisible

group whose isocrystal is P λ.

In other words, the isogeny classes of p-divisible groups over k of a fixed

height h can by classified by the set of slope sequences of the form

0 ≤ λ1 ≤ . . . ≤ λh ≤ 1.

Equivalently, isogeny classes of p-divisible groups correspond to Newton polygons

P such that

• P starts at (0, 0) and end at (h, h − d) where h is the height and d is the

dimension of the corresponding p-divisible groups,

• P is lower convex,
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• every slope λ of P is between 0 and 1.

Furthermore, if H has slope sequence λ1 ≤ λ2 ≤ . . . ≤ λh, then its Serre dual H t

has slope sequence 1− λh ≤ 1− λh−1 ≤ . . . ≤ 1− λ1.

Since the p-divisible group of an abelian variety A(p) is in the same isogeny

class as A(p)t, the isogeny classes of p-divisible groups coming from abelian

varieties correspond to Newton polygons P such that

• P starts at (0, 0) and end at (2g, g) where g is the dimension of the abelian

variety,

• P is lower convex,

• every slope λ of P is between 0 and 1,

• the Newton polygon is symmetric (i.e. λi = 1− λ2g−i+1 for all 1 ≤ i ≤ 2g).

There are two extremes in terms of possible slope sequences for A(p): at one

extreme, all the slopes are equal to 1/2 and A is called supersingular; at the

other extreme, A(p) has slope sequence (0g, 1g) and A is called ordinary.

2.2.5 Deformation theory via displays

Let k be a field of characteristic p. There is a well-known equivalence of

categories between local deformations in characteristic p of an abelian variety A/k

and local deformations of its p-divisible group A(p) by the Serre-Tate theorem.

In this context a local deformation is taken to mean deformations over local

artinian rings (R,mR) that are W (k)-algebras together with a fixed isomorphism

R/mR
∼= k. The local deformation functor for a point A ∈ M(k) where k is

field of characteristic p is pro-representable by the completed local ring ÔM,A, its

universal deformation ring. We have already seen that there is an equivalence
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of categories between p-divisible groups and Dieudonné modules, and we would

like to study the deformations of structures on A via the deformations of the

corresponding Dieudonné modules. Techniques of Norman [Nor75], Norman-Oort

[NO80] and Zink [Zin02] allow one to study the local deformations of A via the

theory of so-called displays through a particular choice of basis for the Dieudonné

module. We now outline a simplified version of displays that is suitable for our

purposes.

Let G be a p-divisible group over a perfect ring R of characteristic p, and let

D = D(G) be its covariant Dieudonné module. Then a displayed basis for D is

a set of generators {e1, . . . , ed+n} for D as a W (R)-module such that there exist

αij ∈ W (R) satisfying:

• F (ej) =
∑d+n

i=1 αijei, j ∈ {1, . . . , d},

• ej = V (
∑d+n

i=1 αijei), j ∈ {d+ 1, . . . , n}.

The matrix

(αij) :=

A B

C D


is called a displayed matrix for D. The matrix (αij) is invertible and F is given

by A pB

C pD

.
For an abelian variety over a field k, the matrix A (mod p) from displayed matrix

of its Dieudonné module is called the Hasse-Witt matrix, and it is the matrix of

F on D/VD.
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The universal local deformation ring for a p-divisible group over k of height h

dimension and d is isomorphic to k[[tij : 1 ≤ i ≤ d, 1 ≤ j ≤ h− d]], and its universal

displayed matrix has the form A+ TC B + TD

C D


where T = (tij)1≤i,j≤g. The deformation of F on D/VD is then captured by the

universal Hasse-Witt matrix A+ TC (mod p), which will be studied in Chapter 7.

In case G is a p-divisible group coming from an abelian variety of dimension g,

the universal deformation ring respecting the polarization structure has the form

k[[tij : 1 ≤ i < j ≤ g]] and the condition on the universal display is that T is

symmetric.

We now consider what happens if we want to incorporate endomorphism

structure coming from OK as well. Let k be algebraically closed, and let the

Dieudonné modules and displays below be considered over k.

Lemma 2.2.7. Suppose p is split in K. Then there exists a displayed basis for the

Dieudonné module D of A(p) of the form {e1, . . . , eg; f1, . . . , fg} such that

• B1 = {e1, . . . , em1 , fm1+1, . . . , fg} is a basis for D1, and B2 =

{em1+1, . . . , eg, f1, . . . , fm1} is a basis for D2

• V (D) = span {f1, . . . , fg},

• 〈ei, fj〉 = δij = −〈fj, ei〉
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and the displayed matrix for D has the form

A B

C D

 =


A1 0 0 B1

0 A2 B2 0

0 C2 D2 0

C1 0 0 D1


with respect to the basis {e1, . . . , eg; f1, . . . , fg}, and satisfies the relationA pB

C pD

−pDt pBt

Ct −At

 = pId2g×2g. (2.3)

Furthermore, the universal display of D preserving OK-action and prime-to-p

polarization has the form A+ TC B + TD

C D


where

T =

0m1 M

tM 0m2

.
Proof. The construction of a basis satisfying the desired properties is immediate

from Proposition 2.2.4. Since we have a symplectic basis for D, we can obtain

V =

−pDt pBt

Ct −At

 as a σ−1-linear operator from F =

A pB

C pD

 (a σ-linear

operator) via the relation 〈Fx, y〉 = 〈x, V y〉σ so that F ◦ V = [p] gives relation

(2.3).

Consider now the universal display. In order to preserve polarization, we

require that T = T t by work of Norman [Nor75] and Norman Oort [NO80].

Furthermore, in order to preserve the OK-structure we require that the lifted
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OK-action commutes with F ; i.e. we need FΣ(a)σ = Σ(a)F for all a ∈ OK where

F =

A pB

C pD


and

Σ(a) = diag(

m1︷ ︸︸ ︷
σ1(a), . . . σ1(a),

g︷ ︸︸ ︷
σ2(a), . . . , σ2(a),

m2︷ ︸︸ ︷
σ1(a), . . . , σ1(a)).

Since M is known to be smooth of dimension m1m2 the result follows from the

calculation.

Lemma 2.2.8. Suppose p is inert in K. Then there exists a displayed basis for the

Dieudonné module D of A(p) of the form {e1, . . . , eg; f1, . . . , fg} such that

• B1 = {e1, . . . , em1 , fm1+1, . . . , fg} is a basis for D1, and B2 =

{em1+1, . . . , eg, f1, . . . , fm1} is a basis for D2,

• V (D) = span {f1, . . . , fg},

• 〈ei, fj〉 = δij = −〈fj, ei〉

and the displayed matrix for D has the form

A B

C D

 =


0 A1 B1 0

A2 0 0 B2

C2 0 0 D2

0 C1 D1 0


with respect to the basis {e1, . . . , eg; f1, . . . , fg} and satisfies the relationA pB

C pD

−pDt pBt

Ct −At

 = pId2g×2g. (2.4)
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Furthermore, the universal display of D preserving OK-action and prime-to-p

polarization has the form A+ TC B + TD

C D


where

T =

0m1 M

tM 0m2

.
Proof. This result follows from Proposition 2.2.4 in a similar manner to the proof

of the case where p is split in K given above (Lemma 2.2.7).

We are now ready to begin our examination of the Ekedahl-Oort stratification

of unitary Shimura varieties.
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Chapter 3
The Ekedahl-Oort stratification

The Ekedahl-Oort stratification is way to decompose M using the isomor-

phism type of the p-torsion group schemes A[p] that arise from A ∈ M(k), where

k is an algebraically closed field of characteristic p. It is important to note that

the isomorphism type takes into account the extra structures on A[p] coming from

the endomorphism and polarization structures on A as described in Section 2.2.1.

In order to be precise, let a stratification be a partition of a scheme into locally

closed subschemes called strata. In this chapter, we will define the strata that

arise in the Ekedahl-Oort stratification, their connection to Weyl group cosets, and

explore the structure of the Ekedahl-Oort stratification in detail for the unitary

Shimura varieties that come from the Shimura datum described in Section 2.1.1.

Throughout the remainder of this thesis, we will be most interested in k-

points of M where k is an algebraically closed field of characteristic p. As such,

let k be an algebraically closed field of characteristic p throughout the rest of this

chapter and even thesis, except where otherwise indicated (Section 6.4).

3.1 Combinatorics of Coxeter systems

As the Ekedahl-Oort stratification will be parametrized by Weyl group cosets,

it is necessary to begin by covering some combinatorial details of Coxeter systems.

This section only states basic facts; proofs of these statements and further details

may be found in Chapters 1 and 2 of [BB05].
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A Coxeter system is a pair (W,S) such that W is a group with a presenta-

tion

〈s1, s2, . . . , sn | (sisj)rij = 1〉 ,

where S = {s1, . . . sn} ⊂ W and rij ≥ 2 for i 6= j and rii = 1 for all i = 1, . . . , n.

We call W the Coxeter group and S the set of simple reflections. The set

T =
{
wsw−1

∣∣ s ∈ S,w ∈ W}
is called the set of reflections. In general, Coxeter groups may be infinite,

however, all of the Coxeter groups that we will consider will be finite.

We define the length, `(w), of an element w ∈ W to be the length of a

shortest expression for w as an S-word. If w = s1 . . . s`(w) then the word s1 . . . s`(w)

is called a reduced word for w. Note that a reduced word representation need

not be unique.

There is an partial order on W called the Bruhat order defined as follows:

for u,w ∈ W , u ≤ w if there exists a sequence

u0 = u, u1, . . . , um = w

of ui ∈ W such that `(ui−1) ≤ `(ui) and u−1
i−1ui is a reflection (i.e. an element

of T ) for i = 1, . . . ,m. It immediately follows that if u ≤ w but w � u, then

`(u) < `(w). The identity element e is the unique minimal element under the

Bruhat order. To see this, write any w as one of its reduced word representations,

w = s1 . . . sm. Then the sequence ui = s1 . . . si is such that `(ui) = `(ui−1) + 1 and

u−1
i−1ui = si ∈ S ⊆ T for all i = 1, . . . ,m. The order makes W a directed poset with
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a unique maximal element which we denote by w0 [BB05, Proposition 2.3.1]. We

now highlight some of the properties of w0 as they will be used extensively as facts

throughout the rest of this thesis.

Proposition 3.1.1. The element w0 has the following properties:

• w2
0 = e,

• `(w0) = #T ,

• `(w0w) = `(ww0) = `(w0)− `(w) for all w ∈ W ,

• `(w0ww0) = `(w) for all w ∈ W ,

• the maps w 7→ w0w and w 7→ ww0 are automorphisms of Coxeter groups that

reverse the Bruhat order,

• the map w 7→ w0ww0 is an automorphism of the Coxeter group (W,S) that

respects the Bruhat order.

Proof. [BB05] Propositions 2.3.2 and 2.3.4.

Let J ⊆ S. Let WJ denote the subgroup of W generated by J and let w0,J

be its unique maximal element. Each coset of WJ\W has a unique minimal length

representative which gives rise to a bijection

WJ\W ↔ JW := {w ∈ W | w < sw ∀s ∈ J}

under the identification taking a coset WJw to its minimal length representative

[BB05, Proposition 2.4.4].

The set JW inherits a poset structure from W as JW ⊂ W . The poset JW

is also a directed poset. This follows from the facts that W is directed and the
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projection map W → WJ\W → JW is order preserving [BB05, Proposition 2.5.1].

Call the induced order on JW the Bruhat order denoted by u ≤ w.

Example 3.1.2. Let W = Sg be the symmetric group on g elements, and

S = {si = (i, i+ 1) | i = 1, . . . , g − 1} its subset of simple reflections. Then (W,S)

is a Coxeter group. Writing permutations as x =
( 1 2 ··· g
x(1) x(2) ··· x(g)

)
∈ Sg or more

compactly, x = [x(1)x(2) · · · x(g)], the maximal element of (W, s) is given by the

reversal permutation w0 = [g g − 1 . . . 1].

There is a convenient description of JW in case J = S \ {sj} for sm ∈ S. In

particular,

JW =
{
x ∈ Sg

∣∣ x−1(1) < · · · < x−1(m) and x−1(m+ 1) < · · · < x−1(g)
}
.

Note that in the extreme case where m = 1,

JW =
{
x ∈ Sg

∣∣ x−1(m+ 1) < · · · < x−1(g)
}

and when m = g − 1,

JW =
{
x ∈ Sg

∣∣ x−1(1) < · · · < x−1(m)
}
.

Therefore, the set JW can be identified with the set of shuffles of the sequences

1, . . . ,m and m + 1, . . . , g (i.e. any linear order of 1, . . . , g that preserves the order

of 1, . . . ,m and m + 1, . . . , g). It follows that the size of JW is
(
g
m

)
. Furthermore,

the length of an element x ∈ JW is given by

`(x) =
m∑
a=1

(x−1(a)− a).
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For example, if g = 3 and m = 2, the shuffles of the sequence 1, 2 with

the single element sequence 3 are [123] , [132] , [312]. These give precisely the

elements of JW as
(

1 2 3
1 2 3

)
,
(

1 2 3
1 3 2

)
,
(

1 2 3
3 1 2

)
. The lengths of these elements are 0, 1, 2

respectively.

We will also need to use another partial order on JW derived from the Bruhat

order. Let ψ : (W,S) → (W,S) be an automorphism of Coxeter systems. Then for

w,w′ ∈ JW

w′ 4ψ w ⇐⇒ ∃y ∈ WJ such that yw′xψ(y−1)x−1 ≤ w (3.1)

where x = w0w0,ψ(J). This is a partial order by Corollary 6.3 of [PWZ11] (see also

[He07, Proposition 3.13]).

Example 3.1.3. For (W,S) coming from the symmetric group as described above

in Example 3.1.2, there are two standard automorphisms of the Coxeter system:

the identity automorphism, and conjugation by the reverse permutation w0. We

now give examples showing how 4ψ differs from the Bruhat order in each of these

cases.

If ψ = 1, then 4ψ is given by

w′ 4ψ w ⇐⇒ ∃y ∈ WJ such that yw′w0w0,Jy
−1w0,Jw0 ≤ w. (3.2)

In the example above, when g = 3 and m = 2, 4ψ is same as the Bruhat order.

However, this is not always the case. For example, when g = 6 and m = 3, the

length 2 element w′ = [124536] is less than the length 3 element w = [412356]
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under 4ψ, as yw′w0w0,Jy
−1w0,Jw0 = [14325] ≤ w when y = [13245]. But [124536]

and [412356] are unrelated under the Bruhat order.

Suppose that ψ(w) = w0ww0, then for J = S \ {sm}, ψ(J) = S \ {sg−m}, and

w0w0,Jw0 = w0,ψ(J). It follows that w′ 4ψ w if and only if there exists a y ∈ WJ

such that

yw′(w0w0,ψ(J))(w0y
−1w0)(w0,ψ(J)w0) = yw′w0,Jy

−1w0,J ≤ w. (3.3)

Again, in the example when g = 3 and m = 2, 4ψ is same as the Bruhat order.

However, when g = 5 and m = 3, [41235] 4ψ [14523] but [41235] � [14523]. Here

`([41235]) = 3 and `([14523]) = 4.

3.2 The relative position of two parabolics

Coxeter groups arise naturally in the theory of connected reductive groups,

especially in the context of describing the relative positions of parabolic subgroups.

We review some of these connections following [Bor91] Section IV.14.

Recall that k is an algebraically closed field, and let G be a connected

reductive algebraic group k. Fix a maximal torus T and a Borel B containing T .

Then the Weyl group W = W (T,G) := NG(T )/ZG(T ) of G relative to T can be

generated by a subset of simple reflections S corresponding to B—together, (W,S)

is a Coxeter system.

Every subset J ⊆ S corresponds to a parabolic containing B by letting

PJ = BWJB for J 6= ∅ where WJ is the subgroup of W generated by J , and

P∅ = B. Every parabolic subgroup of G containing B corresponds to a subset

J ⊆ S in this way—such a parabolic PJ is called a standard parabolic. Recall
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that every parabolic subgroup of G is conjugate to a unique parabolic subgroup

of G that contains B. A parabolic has type J if it is conjugate to the standard

parabolic PJ . Furthermore, for I, J ⊆ S there is a canonical bijection

WI\W/WJ → PI\G/PJ

obtained by sending WI ·w ·WJ to PI ·w ·PJ induced by the Bruhat decomposition

G =
∐

w∈W BwB.

Let B denote the set of Borels of G, and let BT denote the set of Borel

subgroups containing T . Recall that the group of inner automorphisms of G

acts transitively on the set of pairs (B′, T ′) consisting of a Borel subgroup and a

maximal torus T ′ ⊆ B′, and that the Weyl group acts simply transitively on BT

by conjugation by NG(T ) [Bor91, Proposition IV.11.19]. For g ∈ G and H < G, let

gH denote gHg−1.

The following definition plays a key role in the sequel. Consider G\(B ×B)

where g ∈ G acts on B ×B by (gB, gB). Let (B1, B2) ∈ G\(B ×B) and let T ′ be

a torus contained in both B1 and B2. Then by conjugacy of tori, there is a g ∈ G

such that gT ′ = T . Thus gB1 and gB2 are both in BT and there exists an h ∈ W

such that hgB1 = B. It follows that [B1, B2] = [hgB1,
hgB2] = [B, wB] for some

w ∈ W . By the Bruhat decomposition, this gives a bijection W → G\(B ×B) via

the map w 7→ (B, wB). The inverse of this map will be denoted by w(B1, B2), and

the resulting Weyl group element w(B1, B2) is called the relative position of B1

and B2.
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Similarly, given two standard parabolics P1, P2 of types I, J respectively, we

define an element w(P1, P2) ∈ WI\W/WJ , the relative position of P1, P2, by

setting w(P1, P2) to be the class of w(B1, B2) ∈ WI\W/WJ where Bi is a Borel

contained in Pi. Alternately, if gP1 = PI and hP2 = PJ , then w(P1, P2) is the image

of gh−1 under the bijection PI\G/PJ → WI\W/WJ . See Section 3 of [Moo01] for

more details.

3.3 The Ekedahl-Oort stratification

Let A = (A, ι, λ, η̄) ∈ M(k) and let D = D(A[p]) be the contravariant

Dieudonné module of A[p]. Then recall from Section 2.2.3 that by functoriality of

the Dieudonné functor, D has the structure of a k-vector space with a symplectic

form 〈 , 〉 coming from λ and a compatible OK/(p)-module structure with

involution induced by ι (i.e. 〈bm, n〉 = 〈m, b̄n〉 for all b ∈ OK/(p), m,n ∈ D). Let

G be the group of symplectic similitudes of D ∼= k2g respecting the OK/(p)-module

structure.

By applying F, V −1 to (0) ⊂ D until it stabilizes, we obtain an F, V −1-stable

flag of D,

C• : C0 = (0) ⊂ . . . ⊂ Cg = D[V ] = F (D) ⊂ . . . ⊂ C2g = D

where dim Ci = i, called the canonical flag (of A). This fact will be explored

in more detail in Section 6.3, and follows from Lemma 6.3.1 when S = Spec(k).

Observe that the canonical filtration is an OK-invariant symplectic flag. Refer to

[Moo01, Sections 2.5, 4.4, 6.3] for more details on the canonical filtration.
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Let any extension of C• to a complete OK-invariant symplectic flag of D be

called a conjugate flag (of A).1 Let C• denote a conjugate filtration of A and

let Q = Stab(C•) ⊂ G. Since C• is a maximal flag, Q is a Borel, and its type is the

empty set.

Let J be the type of the parabolic P = Stab(D[F ] ⊂ D) ⊂ G (typically D[F ]

is not part of C•). The type J of P is determined by the moduli problem and does

not depend on the choice of A as D[F ] is a maximal isotropic subspace of D, and

the OK/(p)-structure on D[F ] in relation to D is fixed by the signature condition.

We can associate to A an element w(A) := w(P,Q) ∈ WJ\W/W∅ = WJ\W . By

construction, the element w(A) measure the relative position of D[F ] with respect

to the canonical filtration C•.

Proposition 3.3.1 (Theorem 6.7 [Moo01]). The element w(A) ∈ WJ\W is

well-defined and does not depend on the choice of refinement of the canonical flag

of A. Furthermore, the element w(A) ∈ WJ\W determines the isomorphism class

of A[p] as a p-torsion group scheme with polarization and endomorphism structure.

From now on, identify WJ\W with JW as in Section 3.1. The Ekedahl-Oort

(E-O) stratum associated to w ∈ JW is the locally-closed reduced subscheme V w

of M with geometric points given by

V w := {A ∈M | w(A) = w} .

1 A choice of such an extension is equivalent to choosing a Borel contained in
the parabolic subgroup stabilizing the canonical flag.
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The following Theorem combines Theorems 2 and 3 of [VW13]. Note that

parts of this theorem were known prior to [VW13]. For instance, the result on

dimension was previously shown by Moonen in [Moo04a] under the assumption of

non-emptiness of the strata. Furthermore, non-singularity was shown by Vasiu in

[Vas08].

Theorem 3.3.2. [VW13] The Frobenius map on G given by the pth-power map

induces an automorphism of the Coxeter system, ψ : (W,S) → (W,S). Let 4ψ

denote the partial order on JW as defined by Equation (3.1).

• For all w ∈ JW the E-O stratum V w is non-empty and equidimensional of

dimension `(w) (where `(w) is the length of w as a Weyl group element of

W ).

• The E-O strata are non-singular and quasi-affine.

• The closure of an E-O stratum is a union of E-O strata with respect to a

partial order 4ψ on JW . That is,

V
w

=
∐

w′4ψw

V w′ .

The unique 0-dimensional E-O stratum corresponding to the identity element

of the Weyl group will be called the core locus in this thesis. This is non-

standard notation. Note that in [VW13], the 0-dimensional E-O stratum is called

the superspecial stratum; we choose to call the 0-dimensional stratum the core

stratum as the underlying abelian varieties may or not be superspecial or even

supersingular. The unique E-O stratum corresponding to the maximal element of

the Weyl group is called the µ-ordinary stratum.
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Remark. In [VW13] the language of so-called D-Zips is used to encode the

isomorphism class of D with extra structure to produce an element of w(A) ∈ JW

corresponding to A. In the case we are considering the procedures for obtaining

w(A) are equivalent.

3.4 E-O stratifications of unitary Shimura varieties

The k-points of the group G that appears from the unitary PEL datum of

type (m1,m2) (see Section 2.1) is the group GU(k2g,Ψ) where Ψ is a Hermitian

form. Such a group is isomorphic to GLg(k) × Gm(k), and can be identified with

the subgroup of GLg(k)×GLg(k),

GU(k2g,Ψ) ∼= {(M,aM∨) ∈ GLg(k)×GLg(k) | a ∈ k∗}

where M∨ = (M t)−1. Let B be the Borel subgroup of G given by the subset of

elements of the form (b, ab∨) ∈ G(k) ⊆ GLg(k)×GLg(k) where b is upper triangular

and a ∈ k∗. This isomorphism identifies the action of b ∈ OK/(p) on D with the

matrix (χ1(b)Ig, χ2(b)Ig).

Using the description of G(k) ⊆ GLg(k) × GLg(k), the Weyl group of G is

W = {(w1, w2) ⊆ Sg × Sg | w2 = w0w1w0} where w0 = [g g − 1 . . . 2 1]. The set of

simple reflections corresponding to B is then identified with

SB := {(si, w0siw0) ∈ Sg × Sg | si = (i i+ 1)} .

Observe that by projection onto the first coordinate W ∼= Sg (the Weyl group of

GLg(k)) and SB corresponds to the standard choice of simple reflections of Sg.
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Lemma 3.4.1. Let S denote the set of simple reflections of Sg given by si =

(i i + 1) for i = 1, . . . , g − 1. The parabolic P stabilizing the flag D[F ] ⊂ D

corresponds to the set of the simple reflections

J = {(s, t) ∈ S \ {sm1} × S \ {sm2} | s = w0tw0} ⊆ SB.

Proof. Let D = D1 ⊕D2 be the decomposition of D under its OK/(p)-action—note

that this corresponds to the identification of G(k) as a subset of GLg(k)× GLg(k).

The elements (g1, g2) ∈ P satisfy the property that gi is in the stabilizer of the

flag Di[F ] ⊂ Di for i = 1, 2. The stabilizer of D1[F ] ⊂ D1 as a subgroup of

GL(D1) ∼= GLg(k) is a maximal parabolic P1. Then W (Sg, S) is the Coxeter group

of GL(D1) ∼= GLg(k) with respect to the upper triangular Borel of GLg(k), and

the type of P1 (with respect to the set of simple reflections S) is S \ {sd} where

d = dimD1[F ]. Similarly for D2[F ] ⊂ D2, and since dimDi[F ] = mi,

J ⊆ (S \ {sm1} × S \ {sm2}) ∩ SB = {(s, t) ∈ S \ {sm1} × S \ {sm2} | s = w0tw0} .

On the other hand, since the standard parabolic subgroup of G with type

{(s, t) ∈ S \ {sm1} × S \ {sm2} | t = w0sw0}

preserves the flags Di[F ] ⊂ Di, it also preserves D[F ] = D1[F ] ⊕ D2[F ] ⊂ D.

Therefore, J is the type of the parabolic stabilizing the flag D[F ] ⊂ D.

Corollary 3.4.2. JW can be presented as the set

{
(w1, w2) ∈ J1Sg × J2Sg

∣∣ w2 = w0w1w0

}

42



where Ji = S \ {smi} and w0 = [g g − 1 . . . 2 1].

Recall from Example 3.1.2 that JiSg where Ji = S \ {smi} can be identified

with the set of shuffles of 1, 2, . . . ,mi with mi + 1, . . . , g by writing the permutation( 1 2 ··· g
x(1) x(2) ··· x(g)

)
as the shuffle [x(1)x(2) · · · x(g)]. For w = (w1, w2) ∈ JW , the

length of w as an element in W ⊆ Sg × Sg is equal to `(w1) = `(w0w1w0) = `(w2)

as (W,SB) is isomorphic to (Sg, S) by projecting onto one of the coordinates.

Therefore, for w ∈ JW ,

`(w) =

m2∑
a=1

(w−1
1 (a)− a) =

m1∑
a=1

(w−1
2 (a)− a) (3.4)

by Example 3.1.2.

We now explore the poset structure on JW as defined in Theorem 3.3.2 that

describes the closure relations on the E-O strata associated with the elements of

JW . In this case, Ḡ is defined over Fp and Frobenius is an automorphism of Ḡ,

that takes a k-point of Ḡ to its pth power. Recall that the isomorphism of G(k)

with a subset of GL(k) × GL(k) identifies the action of b ∈ OK/(p) on D with the

matrix B = (χ1(b)Ig, χ2(b)Ig). When p is split in K, Bp = B, but when p is inert

in K, Bp = (χ2(b)Ig, χ1(b)Ig). Therefore, when p is split, ψ : (W,SB) → (W,SB)

is simply the identity, but when p is inert, ψ : (W,SB) → (W,SB) is given by the

non-trivial automorphism ψ(w) = w0ww0 which when w = (w1, w2) means that

ψ(w) = (w2, w1). Thus, 4ψ can be described by using the two examples for ψ given

in Example 3.1.3. From now on we will suppress the ψ in the notation, and use 4

for 4ψ.

Example 3.4.3 (G has signature (m1,m2) = (2, 1)). In this case:
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• S = {s1, s2} ⊂ S3

• J1 = S \ {s2} , J2 = S \ {s1}

• w0 = [321] =
(

1 2 3
3 1 2

)
Therefore J1S3 is the set of shuffles of the sequence 1, 2 with 3:

J1S3 = {[123] , [132] = s2, [312] = s2s1} ,

and similarly, J2S3 is the set of shuffles of 1 with the sequence 2, 3:

J2S3 = {[123] , [213] = s1, [231] = s1s2} .

Now, JW =
{

(w1, w2) ∈ J1S3 × J2S3

∣∣ w2 = w0w1w0

}
. Therefore,

JW = {(312, 231), (132, 213), (123, 123)} .

Remark. The use of braces is dropped for elements of JW so as to keep the nota-

tion from becoming too cumbersome. For instance, (312, 231) means ([312] , [231]).

By Equation 3.4,

`((312, 231)) = 2, `((132, 213)) = 1, `((123, 123)) = 0

which implies that JW has minimal length SB-word representatives of the form

(312, 231) = (s2s1, s1s2), (132, 213) = (s2, s1), (123, 123) = (1W , 1W ).

Thus the Bruhat order on JW is

(123, 123) ≤ (132, 213) ≤ (312, 231).
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Now, WJ = {(1W , 1W ), (s1, s2)}, and Ww0Jw0 = {(1W , 1W ), (s2, s1)} so that

x1 = w0w0,J = (231, 312), x2 = w0w0,w0Jw0 = (312, 231).

Then for y = (s1, s2) ∈ WJ ,

w′ yw′x1y
−1x−1

1 yw′x2w0y
−1w0x

−1
2

(123, 123) (231, 312) = (s2s1, s1s2) (123, 123)

(132, 213) (213, 132) = (s1, s2) (321, 321) = (s2s1s2, s1s2s1)

(312, 231) (312, 231) = (s2s1, s1s2) (231, 312) = (s1s2, s2s1)

Therefore, for both p split and p inert, the partial order giving the closure relations

on the E-O strata is given by

(123, 123) 4 (132, 213) 4 (312, 231)

Using the description of JW as shuffles, the following figures represent the

poset structure on JW and give an idea of how the E-O stratification works in

certain low dimensional examples. Here, the minimal element (core stratum)

appears at the bottom of each diagram. The black edges represents ≤ in the

Bruhat order, the red edges represent 4 but not ≤ where ψ is the identity (as

in the case where p is split in K), and the blue edges represent 4 where ψ is

Int(w0) but not ≤ (the case where p is inert in K). The braces in the notation

for permutations [w(1) . . . w(g)] are dropped so as to make the diagrams easier to

read.
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In general, the problem of determining whether two elements are related

under the Bruhat order is not clear; however, there exist effective methods for

checking this relationship (for example, by application of Theorem 2.1.5 or

Theorem 2.6.3 of [BB05]). The diagrams below were calculated by brute force:

first by calculating the Bruhat order using the above method, then calculating

yww0w0,ψ(J)y
−1w0,ψ(J)w0 for all y ∈ WJ and w ∈ JW , and finally checking the

Bruhat order for new relations coming from 4ψ.

(132, 213)

(312, 231)

(123, 123)

(1…g-2 g g-1, 213…g)

(g12…g-1, 23…g1)

(12…g, 12…g)

(1243, 2134)

(1423, 2314)

(1234, 1234)

(4123, 2341)

Figure 3–1: GU(2, 1),GU(3, 1),GU(g, 1)
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(1234, 1234)

(1342, 3124)(3124, 1342)

(1324, 1324)

(3142, 3142)

(3412, 3412)

Figure 3–2: GU(2, 2)
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(31245, 12453)

(12345, 12345)

(13425, 14235)

(31425, 14253) (13452, 41235)

(34125, 14523) (31452, 41253)

(34152, 41523)

(34512, 45123)

(13245, 12435)

Figure 3–3: GU(3, 2)
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(123456, 123456)

(124356, 124356)

(142356, 124536) (124536, 142356)

(142536, 142536)(412356, 124563) (124563, 412356)

(412536, 142563) (145236, 145236) (142563, 412536)

(415236, 145263) (412563, 412563) (145263, 415236)

(451236, 145623) (415263, 415263) (145623, 451236)

(451263, 415623) (415623, 451263)

(451623, 451623)

(456123, 456123)

Figure 3–4: GU(3, 3)
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(123456, 123456)

(132456, 123546)

(312456, 123564) (134256, 125346)

(314256, 125364) (134526, 152346)

(314526, 152364)(341256, 125634) (134562, 512346)

(341526, 152634) (314562, 512364)

(345126, 156234) (341562, 512634)

(345162, 516234)

(345612, 561234)

Figure 3–5: GU(4, 2)
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Proposition 3.4.4. The E-O stratification of a unitary Shimura variety of

signature (m1,m2) has the following properties:

1. There are
(
g
m1

)
strata.

2. The number of strata of a given dimension d is equal to f(m,n, g) where

∑
f(m,n, g)smqn = (1 + sq)(1 + sq2) . . . (1 + sqg)

n = d+m1(m1 + 1)/2, g = m1 +m2 and m = m1.

Proof. Observe that a m-shuffle is completely determined by the choice of m

positions for the first m elements since the 1, . . . ,m and m + 1, . . . , g must be

linearly ordered.2 The first statement now follows immediately from the fact that

there are
(
g
m1

)
=
(
g
m2

)
shuffles of 1, 2, . . . ,mi with mi + 1, . . . , g for i = 1, 2.

The function

∑
f(m,n, g)smqn = (1 + sq)(1 + sq2) . . . (1 + sqg)

is the generating series for the number of partitions of n into m distinct parts that

are less than or equal to g. In other words, we need to show that the number of

strata of a given dimension d is equal to the number of partitions of d + m1(m1 +

1)/2 into m1 distinct parts that are less than or equal to g.

Recall that for w = (w1, w2) ∈ JW , the length of w as an element in

W ⊆ Sg × Sg is equal to `(w1) = `(w2) by considering w1 and w2 as elements in Sg.

2 As a permutation, a choice of m distinct values between 1 and g for w−1(a)
where a = 1, . . . ,m determines the element w in S\{sm}Sg since w is an m-shuffle.
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Therefore, the number of strata of dimension d is equal to the number of elements

of JW of length d which, as noted above, is equal to the number of elements of

JiSg of length d. If `(w) = d, then for i = 1, 2,

d = `(wi) =

mi∑
a=1

(w−1
i (a)− a) =

mi∑
a=1

w−1
i (a)− mi(mi + 1)

2
.

In other words, the number of elements of length d is the number of elements of Sg

such that

d+
mi(mi + 1)

2
= w−1

i (1) + w−1
i (2) + . . .+ w−1

i (mi)

where 0 < w−1
i (1) < w−1

i (2) < . . . < w−1
i (mi) < g. This is the number of partitions

of d+mi(mi + 1)/2 into mi distinct parts that are less than or equal to g.

Corollary 3.4.5. There are unique elements in JW of length 0, 1,m1m2 − 1 and

m1m2. In particular,

1. there is a unique 0-dimensional stratum, the core locus, corresponding to

the identity element of JW ;

2. there is a unique 1-dimensional stratum corresponding to the element (w1, w2)

where

wi = [1 2 . . .mi − 1 mi + 1 mi mi + 2 . . . g]

called the almost-core locus;

3. there is a unique codimension 1 stratum corresponding to the element

(w1, w2) where

wi = [mi + 1 mi + 2 . . . g − 1 1 g 2 . . .mi] ,
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called the almost-ordinary locus3

4. the µ-ordinary locus has dimension m1m2 and corresponds the element

w0,J = (w1, w2) where

wi = [mi + 1 mi + 2 . . . g 1 2 . . .mi] .

Proof. As JW is a directed poset under the Bruhat order, it follows directly from

Proposition 3.4.4 that there is a unique 0-dimensional stratum (the core locus),

and a unique maximal-dimensional stratum, the µ-ordinary locus.

Furthermore, from Proposition 3.4.4 the elements in JW of length d are

related to partitions of d+mi(mi + 1)/2. In case d = 0, the number of partitions of

mi(mi + 1)/2 into mi distinct parts is exactly 1 as mi(mi + 1)/2 =
∑mi

a=1 a, which

corresponds to the identity permutation as previously expected. When d = 1, the

only way to partition 1+
∑mi

a=1 a into mi distinct parts is by taking 1+2+. . .+(mi−

1)+(mi+1). This corresponds with the shuffle [12 · · ·mi − 1 mi + 1 mi mi + 2 · · · g].

By the requirement that each part in the partition is less than or equal to g,

we see that the maximum possible length of an element in JiSg is
∑g

a=g−mi+1 a −∑mi
a=1 a = m1m2, and even more, the sum (g −mi + 1) + (g −mi + 2) + . . . + g

is the only way to partition m1m2 + mi(mi + 1)/2 into mi distinct parts with

each part less than or equal to g. Similarly, there is only one way to partition

3 The use of almost-ordinary is meant to convey the notion of almost µ-ordinary
in the sense of E-O strata and not almost ordinary in the sense of abelian varieties
as in the Siegel case.
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m1m2 − 1 + mi(mi + 1)/2 into mi distinct parts with each part less than or equal

to g: (g−mi) + (g−mi + 2) + (g−mi + 3) . . .+ g which corresponds to the desired

element in JW .

Proposition 3.4.6. The poset diagram of the E-O strata for GU(m1,m2) has a

line of vertical symmetry when m1 = m2.

Proof. To show the poset diagram of the E-O strata has a vertical axis of sym-

metry when m1 = m2, it suffices to show that JW has an order preserving

automorphism. Consider the isomorphism J1Sg × J2Sg → J2Sg × J1Sg given by

(w1, w2) 7→ (w2, w1) or rather w 7→ ŵ := w0ww0. Since J = J1 = J2, this is an

automorphism preserving the Bruhat order.

It remains to show that w 7→ ŵ preserves 4 for ψ = 1 and ψ(w) = w0ww0. Let

x = w0w0,ψ(J). Again, since J = J1 = J2, and w 7→ ŵ is a Bruhat order preserving

automorphism, x is the same for both choices of ψ, namely, x = (x1, x2) = w0w0,J

and x = x̂.

Suppose that w 4 w′. Then there exists a y ∈ WJ ×WJ such that

ywxψ(y)−1x−1 ≤ w′.

For either choice of ψ, ψ(ŷ) = ψ̂(y). Then,

ŷŵxψ(ŷ)−1x−1 = ŷŵxψ̂(y)
−1
x−1 = w0(ywxψ(y)−1x−1)w0 ≤ ŵ′.

Since WJ is preserved by w 7→ ŵ, it follows that ŷ ∈ WJ and ŵ 4 ŵ′. Therefore 4

is preserved.
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Remark. Note that the map w 7→ w0ww0 on strata comes from the automorphism

on the unitary Shimura variety of signature (m,m) that arises by twisting the

OK-action by complex conjugation.

It is also natural to ask if and when there may be a horizontal line of sym-

metry to the diagrams. The map α : w → w0,Jww0 is an anti-automorphism of

JW with respect to ≤ [BB05, Prop 2.5.4]. Therefore, when the Bruhat order is the

same as 4ψ, if m1 and m2 are odd, or when every element of length m1m2+1
2

is fixed

under α, then there is a horizontal line of symmetry. These are necessary condi-

tions as the diagram for signature (4, 3) under the Bruhat order does not have a

horizontal line of symmetry. In general there is no horizontal line of symmetry,

as α is not an anti-automorphism of JW with respect to 4ψ. As examples, see

Figures 3–4 and 3–5.

3.5 Models for mod p Dieudonné modules

The explicit presentations of JW obtained above can also be used to construct

models for the Dieudonné modules of the p-torsion corresponding to each given

stratum using the proof of [Moo01, Theorem 4.7]. Throughout this section assume

that m1 ≥ m2 ≥ 1.

Let (w1, w2) ∈ JW and let D = D(w1, w2) be the contravariant Dieudonné

module of the p-torsion group scheme (up to isomorphism) corresponding to the

E-O stratum of (w1, w2). Recall from Proposition 2.2.4, that D decomposes as

D1 ⊕D2 under the OK/(p)-action on D. By [Moo01, Theorem 4.7] there is a model
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for D such that each Di has a basis ei,1, . . . , ei,g and F, V act on D as follows:

F (ei,j) =

 0 wi(j) ≤ mi

eγ(i),a wi(j) = mi + a
(3.5)

V (ei,j) =

 0 j ≤ mγ(i+1)

eγ(i),b j = mγ(i+1) + wγ(i)(b)
(3.6)

where γ(i) = i for p split and γ(i) = i + 1 (considered as the cyclic group of

order 2) for p inert. This choice of basis has the property that D is self-dual as a

Dieudonné module under the transformation taking ei,j to ei+1,w0(j).

3.5.1 Invariants of p-torsion group schemes

Some basic invariants of commutative p-torsion group schemes are their

a-number, f -number, and the minimal power of Frobenius that kills them as

introduced in Section 2.2.1. The latter is finite if the group scheme has no étale

part and is equal to the power of Verschiebung that kills the group scheme if it is

a self-dual group scheme (as in this case). For example, let A be a g-dimensional

principally polarized abelian variety. If a(A) = g then A[p] is uniquely determined,

and by a theorem of Oort, A is superspecial [Oor75, Theorem 2]. At the other

extreme if f(A) = g then A[p] is again uniquely determined and A is ordinary.

Likewise, if f(A) = g − a(A), then A[p] is uniquely determined by its a-number

and f -number. Or, in case g = 2, a = 1 and A[p] is killed by F 2, the E-O stratum

of A is uniquely determined by the a-number and the minimal power of Frobenius

that kills A[p]. In other words, there are circumstances where one can determine

the E-O strata by other invariants. This motivates the following discussion.

56



Proposition 3.5.1. Let w = (w1, w2) ∈ JW . Then the E-O stratum associated to

w has a-number

a(w) =

 # {(i, j) | i ∈ {1, 2} , 1 ≤ j ≤ mi+1, 1 ≤ wi(j) ≤ mi} p is split,

# {(i, j) | i ∈ {1, 2} , 1 ≤ j ≤ mi, 1 ≤ wi(j) ≤ mi} p is inert,

Proof. The a-number of the E-O stratum of w is equal to dimD/(FD + VD)

where D = D(w) is the contravariant Dieudonné module (up to isomorphism)

corresponding to the E-O stratum of w. When p is split,

F (ei,j) =

 0 wi(j) ≤ mi

ei,a wi(j) = mi + a
V (ei,j) =

 0 j ≤ mi+1

ei,b j = mi+1 + wi(b).

Therefore,

FD = span
{
ei,1, . . . , ei,mi+1

}
i=1,2

, VD = span
{
ei,w−1

i (a)

∣∣∣ 1 ≤ a ≤ mi

}
i=1,2

.

For a set S, let wi(S) := {wi(s) | s ∈ S}. Now, wi is a bijection so for a fixed i,

{
a ∈ {1, . . . ,mi}

∣∣ 1 ≤ w−1
i (a) ≤ mi+1

}
= wi

({
w−1
i (1), . . . , w−1

i (mi)
}
∩ {1, . . . ,mi+1}

)
= {1, . . . ,mi} ∩ {wi(1), . . . , wi(mi+1)}

= {j ∈ {1, . . . ,mi+1} | 1 ≤ wi(j) ≤ mi} .
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Therefore the dimension of FD + VD is given by

dimFD + VD = dimFD + dimVD − dim(FD ∩ VD)

= 2g −#
{
a ∈ {1, . . . ,mi}

∣∣ 1 ≤ w−1
i (a) ≤ mi+1, i = 1, 2

}
= 2g −# {j ∈ {1, . . . ,mi+1} | 1 ≤ wi(j) ≤ mi, i = 1, 2} ,

and dimD/(FD + VD) = # {j ∈ {1, . . . ,mi+1} | 1 ≤ wi(j) ≤ mi, i = 1, 2}.

On the other hand, when p is inert, FD = span {ei,j | 1 ≤ j ≤ mi}i=1,2 and

VD = span
{
ei,w−1

i (b)

∣∣∣ 1 ≤ b ≤ mi

}
i=1,2

. Thus, the dimension of FD + VD is

dimFD + VD = dimFD + dimVD − dim(FD ∩ VD)

= 2g −#
{
b ∈ {1, . . . ,mi}

∣∣ 1 ≤ w−1
i (b) ≤ mi, i = 1, 2

}
= 2g −# {j ∈ {1, . . . ,mi} | 1 ≤ wi(j) ≤ mi, i = 1, 2} ,

and dimD/(FD + VD) = # {j ∈ {1, . . . ,mi} | 1 ≤ wi(j) ≤ mi, i = 1, 2}.

Proposition 3.5.2. Let w = (w1, w2) ∈ JW . Then the E-O stratum associated to

w has f -number

f(w) =

 # {(i, j) | wi(j) = j +mi} p is split,

# {(i, j) | wi+1(wi(j)−mi) = j +mi+1} p is inert.

Proof. Begin with the following observation. Recall that since wi is a shuffle,

w−1
i (mi + 1) < w−1

i (mi + 2) < . . . < w−1
i (g). In particular,

a ≤ w−1
i (a+mi) a ∈ {1, . . . ,mi+1} (3.7)
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as w−1
i (mi + 1), w−1

i (mi + 2), . . . , w−1
i (mi + a − 1) must all be smaller than

w−1
i (mi + a); that is,

1 ≤ w−1
i (mi + 1) < w−1

i (mi + 2) < . . . < w−1
i (mi + a).

The identity (3.7) will be used repeatedly in what follows.

The f -number can be calculated by finding the dimension of FND where N is

large enough to kill everything except for the étale part of D. Recall that when p

is split,

F (ei,j) =

 0 wi(j) ≤ mi

ei,a wi(j) = mi + a

and F (ei,j) = ei,j if and only if wi(j) = j +mi. It then suffices to show that

FND = span {ei,j | F (ei,j) = ei,j}i=1,2 , N >> 0.

We begin by showing that if F (ei,j) = ei,a 6= 0, then a ≤ j. Suppose that

F (ei,j) = ei,a 6= 0 where a = wi(j)−mi. Then wi(j) = a+mi where 1 ≤ a ≤ mi+1,

and by identity (3.7) above,

a ≤ w−1
i (a+mi) = j.

Fix i ∈ {1, 2}. Now we show that FNDi = span {ei,j | F (ei,j) = ei,j} for

N >> 0. Trivially, the span of {ei,j | F (ei,j) = ei,j} is a subset of FNDi. On

the other hand, suppose that ei,j ∈ FND. Then there must be an m such that

Fm(ei,j) = ei,j. But if F (ei,j) = ei,a 6= 0, then a ≤ j, and in particular, if a < j,

Fm(ei,j) = ei,` where ` ≤ a < j for all m ≥ 1. Therefore F (ei,j) = ei,j.
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The proof in the inert case is like that of the split case, only F 2 will need to

be considered instead of F . Indeed, when p is inert,

F (ei,j) =

 0 wi(j) ≤ mi

ei+1,a wi(j) = mi + a
(3.8)

and if F 2(ei,j) 6= 0,

F 2(ei,j) = F (ei+1,wi(j)−mi) = ei,wi+1(wi(j)−mi)−mi+1
.

Therefore, F 2(ei,j) = ei,j if and only if wi+1(wi(j)−mi)) = j + mi+1. It remains to

show that

FND = span
{
ei,j
∣∣ F 2(ei,j) = ei,j

}
i=1,2

, N >> 0.

Similar to the proof of the split case, this can be done by showing that if

F 2(ei,j) = ei,b 6= 0, then b ≤ j. Suppose that F 2(ei,j) = ei,b 6= 0 so that

wi+1(wi(j)−mi)−mi+1 = b. Setting a = wi(j)−mi, (3.7) gives

b ≤ w−1
i+1(b+mi+1) = a ≤ w−1

i (a+mi) = j

completing the proof.

When f(w) is zero, there is a minimal power of Frobenius that kills A[p].

Denote this invariant by minF(w), and let minFi(w) be the minimal power of F

that kills Di where D(A[p]) = D1 ⊕ D2. If S is a set of integers, then for a ∈ Z

write

S − a := {s− a | s ∈ S} .

60



Proposition 3.5.3. Suppose m1 ≥ m2. When p is split, minF(w) = minF2(w) and

can be calculated as follows. Let S1 = {m2 + 1, . . . , g} and for i ≥ 2, let

Si = S1 ∩ w2(Si−1 −m2).

Then minF(w) is the smallest i such that Si is empty.

On the other hand, when p is inert, let

S1 = {m1 + 1, . . . , g} , T1 = {m2 + 1, . . . , g} ,

and inductively for i ≥ 2

Si = S1 ∩ w2(Ti−1 −m2), Ti = T1 ∩ w1(Si−1 −m1).

Then minF(w) is the smallest i such that Si ∪ Ti is empty.

Proof. The calculation of minF2(w) (and likewise minF1(w)) in the split case and

minF(w) in the inert case follows directly from Equation 3.5. Since m1 ≥ m2, when

p is split, minF1(w) ≤ minF2(w) so that minF(w) = minF2(w).

When m1 = m2 = 1, there are two strata, the core stratum and the µ-ordinary

stratum which have the following invariants both when p is split and when p is

inert:

• µ-ordinary: f = 2, a = 0

• core: f = 0, a = 2, minF = 2.

As a further application of Propositions 3.5.1, 3.5.2, and 3.5.3, the Tables 3–1 and

3–2 give the a-numbers, f -numbers and smallest powers of F killing A[p] for the
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Table 3–1: Invariants of E-O strata when p is split

p is split a(w) f(w) minF(w)

Core 2m2 0 d g
m2
e

Almost-core

m1 = m2 = m 2m− 2 0 3

m1 −m2 ≥ 1, m2 = 1 2m2 = 2 1 —

m1 −m2 ≥ 1, m2 > 1, m2 | m1 2m2 0 g
m2

+ 1

m1 −m2 ≥ 1, m2 > 1, m2 - m1 2m2 0 d g
m2
e

Almost-ordinary 2 g − 2 —

µ-ordinary 0 g —

Table 3–2: Invariants of E-O strata when p is inert

p is inert a(w) f(w) minF(w)

Core g 0 2

Almost-core
m1 ≥ m2 > 1 g − 2 0 3

m1 > m2 = 1 g − 2 0 4

Almost-ordinary

m1 = m2 = m 2 2m− 2 —

m1 −m2 = 1,m2 = 1 m1 −m2 2m2 − 2 = 0 4

m1 −m2 = 1,m2 > 1 m1 −m2 2m2 − 2 —

m1 −m2 > 1 m1 −m2 2m2 − 2 —

µ-ordinary m1 −m2 2m2 —

E-O strata of particular interest in all cases where m1 ≥ m2 ≥ 1 (excluding the

case where m1 = m2 = 1).
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Note that in the case where p is split, the core locus consists of superspecial

abelian varieties if and only if m1 = m2, but the µ-ordinary locus is always

ordinary. At the other extreme, when p is inert the core locus always consists of

superspecial abelian varieties, but the µ-ordinary locus is ordinary if and only if

m1 = m2. This result for the µ-ordinary locus is consistent with [Moo04a, 1.3.10].

For the most part, we see that these invariants can be used to distinguish

the almost-core locus from the core locus and the almost-ordinary locus from the

µ-ordinary locus. However, it is worth pointing out that when p is split even the

combination of the a-number and the minimal power of Frobenius that kills the

group scheme is not sufficient to distinguish the core locus from the almost-core

locus in the most generic case.

3.5.2 p inert in K

Recall from Corollary 3.4.5 that there are 4 strata of particular interest,

the core stratum, the almost-core stratum, the almost-ordinary stratum and the

µ-ordinary stratum. In this section we give models for the p-torsion of these strata

when p is inert by computing models for the covariant Dieudonné modules.

The signature (n, 0) and (1, 1) cases are special cases in which there are 1 and

2 strata respectively. The results in these cases are well-known and follow from

Deuring’s Theorem. They are recorded in Table 3–3 for completeness. Here G

denotes the p-torsion group scheme of a supersingular elliptic curve, and subscripts

are used to indicate the action of K (i.e. G1 has signature (1, 0) and G2 has
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Table 3–3: E-O strata when p is inert

Signature Stratum A[p]

(m, 0) Core Gm
1

(0,m) Core Gm
2

(1, 1) µ-ordinary (OK ⊗ µp)⊕OK/(p)

(1, 1) Core G1 ⊕ G2

signature (0, 1)). Having taken care of the (m, 0) and (1, 1) cases, for the rest of

this section, assume that m1 ≥ m2 ≥ 1 and if m2 = 1, m1 > 1.

Proposition 3.5.4 (The core locus). The p-torsion group scheme of a point in the

core locus is isomorphic to

A[p] ∼= Gm1
1 ⊕ Gm2

2 .

Proof. Equations (3.5) and (3.6) give that

i j F (ei,j) = V (ei,j)

1 1 ≤ j ≤ m1 0

1 m1 + 1 ≤ j ≤ g e2,j−m1

2 1 ≤ j ≤ m2 0

2 m2 + 1 ≤ j ≤ g e1,j−m2

and in particular, for 1 ≤ j ≤ mi,

ei+1,j+mi+1

F

!!

V

<<
ei,j

F

��

V

BB 0 .
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Therefore D(Gmi
i ) ∼= span {ei,1, . . . , ei+1,mi , ei+1,mi+1, . . . , ei+1,g}, and

A[p] ∼= Gm1
1 ⊕ Gm2

2 .

Proposition 3.5.5 (The almost-core locus). Let AC(m1,m2) denote a model for

the p-torsion group scheme of the almost-core locus of signature (m1,m2). Then

AC(m1,m2) is isomorphic to the following group schemes

• m1 ≥ m2 > 1: AC(2, 2)⊕ Gm1−2
1 ⊕ Gm2−2

2

• m1 > m2 = 1: AC(2, 1)⊕ G g−3
1 .

Letting // denote F and // denote V , D(AC(2, 2)) has a basis where

0 e1,1

||
bb e2,1

""
<< 0

0 e1,2

88

oo e2,2

ff

// 0

0 e1,3
oo

@@

e2,3
//

^^

0

e1,4

@@

77

e2,4

^^

gg

and D(AC(2, 1)) has a basis where

0 e1,1

||
bb e2,1

oo // 0

0 e1,2

77

oo e2,2

gg

// 0

0 e1,3
oo

77

e2,3 .

gg

oo
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Proof. The almost-core locus corresponds to the element (w1, w2) where

wi(j) =


mi + 1 j = mi

mi j = mi + 1

j otherwise.

By equations (3.5) and (3.6), bases for D(w) are described in the following

tables—there are two cases depending on whether m2 = 1 or m2 > 1.

p is inert and m1 ≥ m2 > 1

i j F (ei,j) V (ei,j)

1 1 ≤ j ≤ m1 − 1 0 0

1 m1 e2,1 0

1 m1 + 1 0 e2,1

1 m1 + 2 ≤ j ≤ g − 1 e2,j−m1 e2,j−m1

1 g e2,m2 e2,m2+1

2 1 ≤ j ≤ m2 − 1 0 0

2 m2 e1,1 0

2 m2 + 1 0 e1,1

2 m2 + 2 ≤ j ≤ g − 1 e1,j−m2 e1,j−m2

2 g e1,m1 e1,m1+1
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For 2 ≤ j ≤ mi − 1,

ei+1,j+mi+1

F

!!

V

<<
ei,j

F

��

V

BB 0 ,

corresponding to mi − 2 copies of D(Gi), and the remainder consists of

0 e1,1
zz
dd e2,1

$$
:: 0

0 e1,m1

66

oo e2,m2

hh

// 0

0 e1,m1+1
oo

==

e2,m2+1
//

aa

0

e1,g

==

66

e2,g

aa

hh

which is a basis for D(AC(2, 2)) by setting m1 = m2 = 2 and g = 4 in the diagram.

p is inert and m1 > m2 = 1

i j F (ei,j) V (ei,j)

1 1 ≤ j ≤ m1 − 1 0 0

1 m1 = g − 1 e2,1 0

1 m1 + 1 = g 0 e2,2

2 m2 = 1 e1,1 0

2 m2 + 1 = 2 0 e1,1

2 m2 + 2 ≤ j ≤ g − 1 e1,j−1 e1,j−1

2 g e1,m1 e1,g
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For 2 ≤ j ≤ m1 − 1,

e2,j+1

F

��

V

>>
e1,j

F

��

V

AA 0 ,

which gives m1 − 2 = g − 3 copies of D(G1) and

0 e1,1

{{
cc e2,1

oo // 0

0 e1,g−1

77

oo e2,2

gg

// 0

0 e1,g
oo

77

e2,g

gg

oo

which is isomorphic to D(AC(2, 1)) by setting g = 3 in the diagram.

Remark. Note this is consistent with the results of [BW06] in the m2 = 1 case as

AC(2, 1) is the dual of a braid of length 3.

Proposition 3.5.6 (The almost-ordinary locus). Let AO(m1,m2) be a model for

the p-torsion group scheme of the almost-ordinary stratum with signature (m1,m2).

Then, depending on the difference between m1 and m2, AO(m1,m2) is isomorphic

to:

• m1 −m2 > 1: AO(3, 1)⊕ (OK ⊗ µp)m2−1 ⊕ (OK/(p))m2−1 ⊕ Gm1−m2−2
1

• m1 −m2 = 1: AC(2, 1)⊕ (OK ⊗ µp)m2−1 ⊕ (OK/(p))m2−1

• m1 = m2 = m: (OK ⊗ µp)m−1 ⊕ (OK/(p))m−1 ⊕ G1 ⊕ G2.
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Letting // denote F and // denote V , D(AO(3, 1)) has a basis of the

form

0 e1,1

||
bb e2,1

//oo 0

0 e1,2

88

oo e2,2

ff

oo

0 e1,3

||
bb e2,3

//oo 0

0 e1,4
oo

88

e2,4

ff

oo

.

Proof. The locus with codimension 1 corresponds to the element (w1, w2) where

wi(j) =



j +mi 1 ≤ j ≤ mi+1 − 1

j −mi+1 mi+1 + 2 ≤ j ≤ g

1 j = mi+1

g j = mi+1 + 1.

When m1 −m2 > 1, D(w) has a basis as described in the following table.
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p is inert m1 −m2 > 1

i j F (ei,j) V (ei,j)

1 1 ≤ j ≤ m2 − 1 e2,j 0

1 m2 0 0

1 m2 + 1 e2,m2 0

1 m2 + 2 ≤ j ≤ m1 − 1 0 0

1 m1 0 0

1 m1 + 1 0 e2,m1

1 m1 + 2 ≤ j ≤ g 0 e2,j

2 1 ≤ j ≤ m2 e1,j 0

2 m2 + 1 e1,j e1,m2

2 m2 + 2 ≤ j ≤ m1 − 1 e1,j e1,j

2 m1 0 e1,j

2 m1 + 1 e1,m1 e1,j

2 m1 + 2 ≤ j ≤ g 0 e1,j

For m2 + 2 ≤ j ≤ m1 − 1 (when such a j exists),

e2,j

F

��

V

??
e1,j

F

��

V

AA 0 ,
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which gives Gm1−m2−2, D((OK ⊗ µp)m2−1) ∼= span {ei,j | mi + 2 ≤ j ≤ g}i=1,2, and

D(OK/(p)m2−1) ∼= span {ei,j | 1 ≤ j ≤ m2 − 1}i=1,2. What remains is

0 e1,m2

zz
dd e2,m2

//oo 0

0 e1,m2+1

66

oo e2,m2+1

hh

oo

0 e1,m1

zz
dd e2,m1

//oo 0

0 e1,m1+1
oo

66

e2,m1+1

hh

oo

corresponding to D(AO(3, 1)).

p is inert m1 −m2 = 1

i j F (ei,j) V (ei,j)

1 1 ≤ j ≤ m2 − 1 e2,j 0

1 m2 0 0

1 m1 = m2 + 1 e2,m2 0

1 m1 + 1 0 e2,m1

1 m1 + 2 ≤ j ≤ g 0 e2,j

2 1 ≤ j ≤ m2 e1,j 0

2 m1 = m2 + 1 0 e1,m2

2 m1 + 1 e1,m1 e1,m1+1

2 m1 + 2 ≤ j ≤ g 0 e1,j
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When m1 − m2 = 1, D((OK ⊗ µp)m2−1) ∼= span {ei,j | m1 + 2 ≤ j ≤ g}i=1,2, and

D(OK/(p)m2−1) ∼= span {ei,j | 1 ≤ j ≤ m2 − 1}i=1,2. This leaves

0 e1,m2

zz
dd e2,m2

oo // 0

0 e1,m1

66

oo e2,m1

hh

// 0

0 e1,m1+1
oo

66

e2,m1+1

hh

oo

which is isomorphic to D(AC(2, 1)) as desired.

p is inert m = m1 = m2 ≥ 2

j F (ei,j) V (ei,j)

1 ≤ j ≤ m− 1 ei+1,j 0

m 0 0

m+ 1 ei+1,m ei+1,m

m+ 2 ≤ j ≤ g 0 ei+1,j

Finally, when m = m1 = m2 ≥ 2, D((OK ⊗ µp)
m−1) is isomor-

phic to span {ei,j | m+ 2 ≤ j ≤ g}i=1,2, and D(OK/(p)m−1) is isomorphic to

span {ei,j | 1 ≤ j ≤ m− 1}i=1,2 which leaves

ei+1,m+1

F

  

V

<<
ei,m

F

��

V

AA 0

for i ∈ {1, 2} giving rise to G1 ⊕ G2.
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Proposition 3.5.7 (The µ-ordinary locus). The µ-ordinary locus corresponds to

A[p] ∼= (OK ⊗ µp)m2 ⊕ (OK/(p))m2 ⊕ Gm1−m2
1 .

Proof. The µ-ordinary locus corresponds to the element (w1, w2) where

wi(j) =

 j +mi 1 ≤ j ≤ mi+1

j −mi+1 mi+1 + 1 ≤ j ≤ g

Then D(w) has a basis such F and V are given by

i j F (ei,j) V (ei,j)

1 1 ≤ j ≤ m2 e2,j 0

1 m2 + 1 ≤ j ≤ m1 0 0

1 m1 + 1 ≤ j ≤ g 0 e2,j

2 1 ≤ j ≤ m2 e1,j 0

2 m2 + 1 ≤ j ≤ m1 e1,j e1,j

2 m1 + 1 ≤ j ≤ g 0 e1,j

D((OK ⊗ µp)
m2) is isomorphic to span {ei,j | m1 + 1 ≤ j ≤ g}i=1,2,

D(OK/(p)m2) is isomorphic to span {ei,j | 1 ≤ j ≤ m2}i=1,2, and D(Gm1−m2
1 ) ∼=

span {ei,j | m2 + 1 ≤ j ≤ m1}i=1,2 .
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Table 3–4: E-O strata when p is split

Signature Stratum A[p]

(m, 0) Core (OK/p1 ⊗ µp)m ⊕ (OK/p2)m

(0,m) Core (OK/p1)m ⊕ (OK/p2 ⊗ µp)m

(1, 1) µ-ordinary OK/(p)⊗ (µp ⊕ Z
/
pZ)

(1, 1) Core G1 ⊕ G2

3.5.3 p split in K

As in the previous section, the cases where m2 = 0 or m1 = m2 = 1 are

treated separately and are given in Table 3–4. For what follows in this section,

assume that m1 ≥ m2 ≥ 1 and if m2 = 1, m1 > 1.

Proposition 3.5.8 (The core locus). Let C (m1,m2) denote the p-torsion group

scheme of the core locus of signature (m1,m2). Then, if d = gcd (m1,m2),

C (m1,m2) ∼= ⊕di=1C
(m1

d
,
m2

d

)
.

In particular, when m1 = m2 = m,

C (m,m) ∼= ⊕mi=1C (1, 1) ∼= (G1 ⊕ G2)m.

Proof. When p is split, Equations (3.5) and (3.6) give a basis for the Dieudonné

module of the core stratum as in the table below.
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i j F (ei,j) V (ei,j)

1 1 ≤ j ≤ m2 0 0

1 m2 + 1 ≤ j ≤ m1 0 e1,j−m2

1 m1 + 1 ≤ j ≤ g e1,j−m1 e1,j−m2

2 1 ≤ j ≤ m2 0 0

2 m2 + 1 ≤ j ≤ m1 e2,j−m2 0

2 m1 + 1 ≤ j ≤ g e2,j−m2 e2,j−m1

Let d = gcd (m1,m2). Then for a fixed t ∈ {g − d+ 1, . . . , g}

span {ei,t−sd | s ∈ {0, . . . , g/d− 1}}i=1,2

is a submodule of D(w) that is stable under F and V . By sending ei,t−sd 7→ ei,g/d−s

we obtain an isomorphism of

span {ei,t−sd | s ∈ {0, . . . , g/d− 1}}i=1,2

with D
(
C
(
m1

d
, m2

d

))
respecting F , V and the OK-action. Since this is true for

every t ∈ {g − d+ 1, . . . , g}, it follows that

C (m1,m2) ∼= ⊕di=1C
(m1

d
,
m2

d

)
.

Recall that AC(m1,m2) denotes a model for the p-torsion group scheme of a

the almost-core E-O stratum.
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Proposition 3.5.9 (The almost-core locus). The group scheme AC(m1,m2) is of

the form:

• m1 = m2 = m: AC(2, 2)⊕ (G1 ⊕ G2)m−2

• m1 −m2 ≥ 1,m2 = 1: (OK/p1 ⊗ µp)⊕ (OK/p2)⊕ C (m1 − 1, 1)

• m1 −m2 = 1,m2 > 1: C (m2,m2 − 1)⊕ G1 ⊕ G2

• m1 −m2 > 1,m2 > 1: There is no obvious way to consistently describe the

models in this case. For example,

(m1,m2) AC(m1,m2)

(4, 2) AC(4, 2)

(5, 2) C (3, 1)⊕ C (2, 1)

(5, 3) C (3, 2)⊕ C (2, 1)

(6, 2) AC(6, 2)

(6, 3) AC(4, 2)⊕ C (2, 1)

(6, 4) AC(6, 4)

(7, 2) C (4, 1)⊕ C (3, 1)

(7, 3) C (5, 2)⊕ C (2, 1)

(7, 4) C (5, 3)⊕ C (2, 1)

(7, 5) C (4, 3)⊕ C (3, 2)

Note that D(AC(2, 2)) has a basis {ei,j | 1 ≤ j ≤ 4}i=1,2 where for i ∈ {1, 2},

F and V are given by

ei,4
&&

66 ei,3
))

88ei,2
''

88ei,1
''
77 0.
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Proof. The almost-core locus corresponds to the element (w1, w2) where

wi(j) =


mi + 1 j = mi

mi j = mi + 1

j else.

There are different cases depending on the difference between m1 and m2.

p is split m1 −m2 ≥ 1

i j F (ei,j) V (ei,j)

1 1 ≤ j ≤ m2 0 0

1 m2 + 1 ≤ j ≤ m1 − 1 0 e1,j−m2

1 m1 e1,1 e1,m1−m2

1 m1 + 1 0 e1,m1−m2+1

1 m1 + 2 ≤ j ≤ g − 1 e1,j−m1 e1,j−m2

1 g e1,j−m1 e1,m1+1

2 1 ≤ j ≤ m2 − 1 0 0

2 m2 e2,1 0

2 m2 + 1 0 0

2 m2 + 2 ≤ j ≤ m1 e2,j−m2 0

2 m1 + 1 ≤ j ≤ g − 1 e2,j−m2 e2,j−m1

2 g e2,j−m2 e2,m2+1
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First consider the case where m1 −m2 ≥ 1 and m2 = 1. Then F (e1,m1) = e1,1 =

em1−(m1−1) and V (e2,g) = e2,m2+1 = e2,g−(m1−1). Since j −m2 = j − 1,

span {e1,j | 1 ≤ j ≤ g − 1} ⊕ span {e2,j | 2 ≤ j ≤ g}

is isomorphic to D(C (m1 − 1, 1)). This leaves the one-dimensional submodules

span {e1,g} and span {e2,1} corresponding to (OK/p1 ⊗ µp) and (OK/p2) respec-

tively. Therefore,

AC(m1,m2) ∼= (OK/p1 ⊗ µp)⊕ (OK/p2)⊕ C (m1 − 1, 1) .

Now suppose that m1 −m2 = 1 and m2 > 1. Observe that

e1,m1

F

��

V

>>
e1,1

F

��

V

AA 0

and

e2,g

F

��

V

>>
e2,m1

F

��

V

AA 0

giving rise to G1 ⊕ G2. By relabelling:

• e1,j 7→ f1,j−1 for 2 ≤ j ≤ m2 = m1 − 1 and m1 + 2,≤ j ≤ g,

• e1,m1+1 7→ f1,m2

then F and V on span {f1,j | 1 ≤ j ≤ 2m2 − 1 = g − 2} are determined by,

F (f1,j) =

 0 1 ≤ j ≤ m2

f1,j−m2 m2 + 1 ≤ j ≤ g − 2
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and

V (f1,j) =

 0 1 ≤ j ≤ m2 − 1

f1,j−(m2−1) m2 ≤ j ≤ g − 2.

Similarly, for i = 2, relabelling by:

• e2,j 7→ f2,j for 1 ≤ j ≤ m2 = m1 − 1

• e2,j 7→ f2,j−1 for m1 + 1 = m2 + 2 ≤ j ≤ g − 1

means that F and V on span {f2,j | 1 ≤ j ≤ 2m2 − 1 = g − 2} are determined by,

F (f2,j) =

 0 1 ≤ j ≤ m2 − 1

f2,j−(m2−1) m2 ≤ j ≤ g − 2

and

V (f2,j) =

 0 1 ≤ j ≤ m2

f2,j−m2 m2 + 1 ≤ j ≤ g − 2.

Therefore,

AC(m1,m2) ∼= C (m2,m2 − 1)⊕ G1 ⊕ G2.

p is split m1 = m2 = m

j F (ei,j) V (ei,j)

1 ≤ j ≤ m− 1 0 0

m ei,1 0

m+ 1 0 ei,1

m+ 2 ≤ j ≤ g − 1 ei,j−m ei,j−m

g ei,j−m ei,m+1
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Finally, consider the case when m = m1 = m2. For 2 ≤ j ≤ m− 1,

ei,j+m

F

��

V

>>
ei,j

F

��

V

BB 0

giving m − 2 copies of G1 ⊕ G2. This leaves the submodule

span {ei,j | j ∈ {1,m,m+ 1, g}}i=1,2. Here F and V are given by

ei,g
''

44 ei,m+1
))

77ei,m
''

99ei,1
&&
88 0

which means that span {ei,j | j ∈ {1,m,m+ 1, g}}i=1,2 is isomorphic to

D(AC(2, 2)). Therefore

AC(m,m) ∼= AC(2, 2)⊕ (G1 ⊕ G2)m−2.

Proposition 3.5.10 (The almost-ordinary locus). There is a model for the

p-torsion group scheme of the almost-ordinary locus of the form

(OK/p1 ⊗ µp)m1−1 ⊕ (OK/p1)m2−1 ⊕ G1 ⊕ (OK/p2 ⊗ µp)m2−1 ⊕ (OK/p2)m1−1 ⊕ G2.

Proof. The locus with codimension 1 corresponds to the element (w1, w2) where

wi(j) =



j +mi 1 ≤ j ≤ mi+1 − 1

j −mi+1 mi+1 + 2 ≤ j ≤ g

1 j = mi+1

g j = mi+1 + 1

thus giving a basis
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j F (ei,j) V (ei,j)

1 ≤ j ≤ mi − 1 ei,j 0

mi 0 0

mi + 1 ei,mi ei,mi

mi + 2 ≤ j ≤ g 0 ei,j

Then span {ei,j | 1 ≤ j ≤ mi − 1} is isomorphic to D(OK/pi ⊗ µp)
mi−1 and

span {ei,j | mi + 2 ≤ j ≤ g} is isomorphic to D(OK/pi)mi+1−1. Finally,

ei,mi+1

F

  

V

==
ei,mi

F

��

V

AA 0

for i ∈ {1, 2}, and

AO(m1,m2) ∼=(OK/p1 ⊗ µp)m1−1 ⊕ (OK/p1)m2−1 ⊕ G1

⊕ (OK/p2 ⊗ µp)m2−1 ⊕ (OK/p2)m1−1 ⊕ G2.

Proposition 3.5.11 (The µ-ordinary locus).

A[p] = (OK/p1 ⊗ µp)m1 ⊕ (OK/p1)m2 ⊕ (OK/p2 ⊗ µp)m2 ⊕ (OK/p2)m1

Proof. The µ-ordinary locus corresponds to the element (w1, w2) where

wi(j) =

 j +mi 1 ≤ j ≤ mi+1

j −mi+1 mi+1 + 1 ≤ j ≤ g
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The basis in this case is particularly straightforward as the µ-ordinary locus

consists of ordinary abelian varieties. In other words,

j F (ei,j) V (ei,j)

1 ≤ j ≤ mi+1 ei,j 0

mi+1 + 1 ≤ j ≤ g 0 ei,j

hence span {ei,j | 1 ≤ j ≤ mi+1} corresponds to the OK/pi part and

span {ei,j | mi+1 + 1 ≤ j ≤ g} corresponds to the OK/pi ⊗ µp part.
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Chapter 4
CM points on unitary Shimura varieties

4.1 CM points over the complex numbers

Let E be a CM field—that is, E is a quadratic imaginary extension of a

totally real field E+. Let ρ denote the non-trivial automorphism of E over E+. A

CM type of E is a subset Φ of Hom (E,C) such that

Hom (E,C) = Φ t ρΦ

where ρΦ := {ρ ◦ ϕ | ϕ ∈ Φ}. A pair (E,Φ) for which Φ is a CM-type for E is

called a CM pair. A CM-pair (E,Φ) is said to be primitive is there are no

proper CM subfields E ′ of E for which Φ|E′ is a CM-type for E ′.

Let A be a simple abelian variety over C of dimension g = [E+ : Q], and

suppose that there is an embedding ι : E ↪→ End0 (A). Then A has complex

multiplication (by E). Furthermore, ι induces an action of E on Lie(A), and

Lie(A) ∼=
g⊕
i=1

Lieϕi

where ϕi : E → C and a ∈ E acts on Lieϕi via ϕi(a). Then Φ = {ϕ1, . . . , ϕg}

is a CM-type of E, and A is said to have CM type (E,Φ). This CM type is

necessarily primitive as A is simple [Lan83, Theorem I.3.5].
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Given a primitive CM-type (E,Φ), and a lattice a in E, define an associated

complex torus AΦ := CΦ/Φ(a) where

CΦ :=
⊕
ϕ∈Φ

Cϕ =

g⊕
i=1

Cϕi

such that Cϕ denotes a copy of C indexed by ϕ, and

Φ(a) := {(ϕ1(a), ϕ2(a), . . . , ϕg(a)) ∈ CΦ | a ∈ a} .

By construction AΦ comes with an injective homomorphism ιΦ : E → End0 (A),

which is in fact an isomorphism, by letting E act on AΦ through ϕi on the Cϕi

component. When the choice of lattice a is relevant, we will write (AΦ; a) for the

abelian variety CΦ/Φ(a).

Proposition 4.1.1. The complex torus AΦ is a simple abelian variety with CM-

type (E,Φ). The map (E,Φ) → (AΦ, ιΦ) is a bijection between primitive CM types

of E up to isomorphism and simple abelian varieties with CM by E up to isogeny.

Furthermore, for (AΦ, ιΦ; a), the subring R = {α ∈ E | αa ⊂ a} satisfies

ιΦ(R) = ιΦ(E) ∩ End (AΦ) .

Proof. [Lan83, Theorem I.4.1, I.4.2].

It is worth noting that a simple CM abelian variety (AΦ, ιΦ) with CM type

(E,Φ) is not only defined over C, but can be defined over any field containing the

reflex field of the CM type (E,Φ) (see [Lan83, Theorem3.1.1]). As such, unless

otherwise specified, we fix an embedding Q̄ ↪→ C and will consider all the CM

abelian varieties that follow to be defined over Q̄.
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Polarizations on (AΦ; a) correspond to Riemann forms ψ : a × a → Z such

that ψR is symmetric and positive definite. Polarizations that respect ιΦ are

the Riemann forms for which the associated Rosati involution induces complex

conjugation on E. The elements λ ∈ E× such that

• ρλ = −λ

• =(ϕ(λ)) > 0 for all ϕ ∈ Φ

give rise to non-degenerate Q-bilinear forms:

ψλ : E × E → Q

(x, y) 7→ TrE/Q(λxρ(y))

with the properties that

• the involution on E induced by ψλ is ρ,

• ψλ is alternating,

• the associated form ψλ(x, JΦy) on E ⊗ R is symmetric and positive definite

where JΦ is the isomorphism a⊗Z R→ CΦ induced by Φ.

Furthermore, any non-degenerate Q-bilinear form E × E → Q satisfying the above

properties has the form ψλ for some λ ∈ E× such that ρλ = −λ and =(ϕ(λ)) > 0

for all ϕ ∈ Φ (see [Mil06, 2.9] or [Lan83, Theorem I.4.5]). Given a λ ∈ E×

such that ρλ = −λ and =(ϕ(λ)) > 0 for all ϕ ∈ Φ, every other element of E×

satisfying these properties is equal to aλ where a is a totally positive element of

E+. Even more, for any such ψλ there exists an m ∈ N such that mψλ restricted

to a × a is a Riemann form. This gives a description of the polarizations on AΦ in
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terms of elements of E×. Note that such an element always exists so AΦ is always

polarizable, making it an abelian variety.

The condition that ψλ is integral on a × a corresponds to the condition that

λ ∈ (DE/Qaρ(a))−1 where DE/Q denotes the different ideal of E/Q. In case a = OE,

the degree of the polarization associated with λ is NmE/Q(λ)dE where dE is the

discriminant of the field E; for p unramified in E, finding a prime-to-p polarization

when a = OE amounts to finding a λ ∈ D−1
E/Q as above where NmE/Q(λ) is

prime-to-p.

For example, suppose that E+ has strict class number 1 and DE/E+ = (α).

Then DE+/Q = (β) for a totally positive element β so that αβ ∈ DE/Q and

αβ = −αβ. Furthermore, since E+ has strict class number 1, there are units with

all the signs in OE+ , and there exists an ε ∈ O×E+ such that λ = 1/εαβ gives a

principal polarization on any (AΦ, ιE;OE) with CM type (E,Φ).

Recall that K denotes quadratic imaginary field used in the definition of

a unitary Shimura datum D in Section 2.1.2, and χ1, χ2 denote the distinct

embeddings of K into C. We assume that p is unramified in K.

Lemma 4.1.2. Fix a prime p. Let E be a CM field containing K such that p is

unramified in E, OE is a free OK-module of rank g = [E : K], and λ ∈ D−1
E/Q of

prime-to-p norm. Let (E,Φ) be a CM type and let mi = # {φ ∈ Φ | φ|K = χi}.

Then there exists a complex abelian variety with CM by (E,Φ) on a unitary

Shimura variety with good reduction at p with level structure Cp corresponding to

the group GU(m1,m2) as in Section 2.1.2.
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Proof. First consider the case where (E,Φ) is simple. Let (AΦ, ιΦ, λ;OE) be a

corresponding abelian variety where λ ∈ E× represents a primte-to-p polarization

on (AΦ, ιΦ;OE) coming from the construction above. Then let ιK be the restriction

of ιΦ to OK as

ιK : OK ⊆ OE � � ιΦ // End (AΦ) .

Since the Rosati involution induces ρ on E/E+, it restricts to the non-trivial

Galois automorphism of K/Q, and therefore λ respects the OK-action coming from

ιK . Let χi : K → C be the two embeddings of K into C. It follows that

det(a; Lie(AΦ)) = (T − χ1(a))m1(T − χ2(a))m2

for a ∈ OK where mi = # {φ ∈ Φ | φ|K = χi}.

By assumption, there exists an OK-module isomorphism f : OgK → OE.

Write ψ2(v, w) := TrE/Q(λf(v)f(w)) for v, w ∈ Kg (f is the induced isomorphism

Kg → E). Then ψ2 is an alternating form on Kg over Q, corresponding to

GU(m1,m2) over R. Suppose that D is a unitary Shimura datum of signature

(m1,m2) where ψ : V × V → Q. Then from the description of the complex points

of Shimura varieties in Section 8 of [Kot92], f will produce a level structure η of

type Cp for any D of signature (m1,m2) as long as ψ and ψ2 are equivalent up to

a scalar multiple after tensoring with Qq for all primes q. Then (AΦ, ιK , λ, η) is a

C-point of M(m1,m2),Cp .

Suppose that (E,Φ) is a lift of a simple CM type (E ′,Φ′) such that [E : E ′] =

d and OE′ is a free OK-module of rank g/d. Then λ′ = TrE/E′(λ) is an element

in D−1
E′/Q such that NmE′/Q(λ′) is prime-to-p, ρ(λ′) = −λ′, and =(φ(λ′)) > 0
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for all φ ∈ Φ′. Then E ′ contains K and by the preceding argument, there is

an abelian variety with CM by (E ′,Φ′) of the form (AΦ′ , ι
′
K , λ

′) together with a

symplectic isomorphism f ′ : Og/dK → O′E for some unitary Shimura datum with

signature (m1/d,m2/d). Then the product B = (AdΦ′ , (ι
′)dK , λ

′d) is an abelian

variety with CM type (E,Φ) and f ′ induces an isomorphism f : OgK → O′dE that

induces a level structure on B for some unitary Shimura datum with signature

(m1,m2). Therefore B gives rise to a C-point on a unitary Shimura variety with

good reduction at p coming from the group GU(m1,m2).

4.2 Reduction of CM points

Fix embeddings Q ↪→ Qp ↪→ C allowing the identifications Hom (E,C) =

Hom (E,Qp) and Hom (K,C) = Hom (K,Qp). For the remainder of this chapter,

let M := M(m1,m2),Cp , the unitary Shimura variety of signature (m1,m2) and

level structure Cp with good reduction at p as defined in Section 2.1.2, and let M̄

denote its special fibre defined over κ(p). Furthermore, let k = Fp.

Suppose that A = (A, ι, λ, η) is a CM point of type (E,Φ) ∈ S in M(C). Then

A reduces mod p to a point M(k). We now determine the Ekedahl-Oort stratum

in which the reduction of A lies.

Let A ∈ M(C) be a CM point of type (E,Φ). Then write (AΦ, ιE, λ; a) for an

abelian variety with CM by (E,Φ) such that (AΦ, ιE|OB , λ, η) is a representative

for the class A where ιE denotes an E-structure on AΦ that restricts to ι on

OB = OK ⊗Z Z(p).

Recall that the E-O strata of M̄(k) are in bijection with the elements of the

Weyl group coset JW as in Section 3.4.
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Proposition 4.2.1. Let m1 ≥ m2 6= 0, and let p be a prime that is unramified in

K. Let S(E,m1,m2) be the set of CM types (E,Φ) such that

• E is a CM field containing K such that [E : K] = g = m1 + m2 and p is

unramified in E,

• Φ is a CM type of E such that mi = # {φ ∈ Φ | φ|K = χi}.

Let A ∈ M(C) be a CM point of type (E,Φ) ∈ S(E,m1,m2) and let (AΦ, ιE)

be a corresponding abelian variety with CM by (E,Φ). Then there is a map

ν : S(E,m1,m2) → JW with the property that if O := ι−1
E (ιE(E) ∩ End (AΦ))

is maximal at p, the reduction of A is in the Ekedahl-Oort stratum associated to

ν((E,Φ)). Moreover, the map ν can be calculated explicitly.

Proof. Let A ∈ M(C) be as in the proposition and let (AΦ, ιE, λ; a) be a corre-

sponding abelian variety with CM type (E,Φ). Then AΦ is defined over a number

field L where AΦ has good reduction at a prime p|p of L. Let (ĀΦ, ῑK , λ̄; a) be the

reduction of A mod p.

Let Φ0 be the image of Φ under the identification

Hom (E,C)→ Hom (E,Qun
p )→ Hom (O/pO, k) =

∏
P|p

Hom (O/P , k),

and let σ denote the Frobenius element of k. Then there is a model for the

Dieudonné module of ĀΦ[p] with a k-basis {eφ | φ ∈ Hom (O/pO, k)} where

• F (eφ) = eσ◦φ if φ /∈ Φ0, and F (eφ) = 0 otherwise.

• V (eσ◦φ) = eφ if φ ∈ Φ0, else V (eσ◦φ) = 0.
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Additionally, the element x ∈ O/pO acts on eφ as multiplication by φ(x). This

means that OK/pOK acts on eφ through χi where φ|K = χi. Therefore, Di has a

basis {eφ | φ ∈ Φ0, φ|K = χi}.

We can now use the methods from Chapter 3 to identify the E-O stratum

of A. As in Section 3.3, applying F and V −1 to the flag (0) ⊂ D = ⊕φ∈Φ0keφ

gives rise to a canonical flag. This can be completed to a conjugate flag, which

is a complete, OK-invariant symplectic flag, using the basis elements given above

in a way that only depends on Φ and w. The relative position of the conjugate

flag and the Hodge flag gives an element ν((E,Φ)) of JW by Proposition 3.3.1

and (AΦ, ιK , λ; a) reduces mod p to a point in the E-O stratum associated with

ν((E,Φ)).

In Sections 3.4 and 3.5, a presentation for JW was given corresponding to

a particular choice of basis for D. We now explicitly describe the procedure for

obtaining ν((E,Φ)) = (w1, w2) ∈ JW with respect to that presentation.

The conjugate flag decomposes as two flags, one of D1 and another of D2.

Now, make an identification between the labels for the basis of Di, {φ | φ|K = χi}

with {1, . . . , g}, so that the conjugate flag has the form:

(0) ⊂ {ei,1} ⊂ {ei,1, ei,2} ⊂ . . . , {ei,1, . . . , ei,g} = Di,

and the Hodge flag takes the form

(0) ⊂ {ei,j | ei,j = eφ, φ ∈ Φ0} ⊂ D.
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Then define ν((E,Φ)) to be (w1, w2) where wi is the image of any permutation

taking {j | ei,j = eφ, φ ∈ Φ0} to {1, 2, . . . , g} under the map Sg → JiSg.

Observe that the procedure from obtaining ν((E,Φ)) ∈ JW from a Dieudonné

module with basis {eφ | φ ∈ Hom (O/pO, k)} as constructed above can be carried

out completely formally. In this way one defines ν : S → JW independently from

any reference to a point in M(C).

Corollary 4.2.2. Let (E,Φ) be a CM type as in Proposition 4.2.1 and let Φ0 be

the image of Φ under the map Hom (E,C)→ Hom (OE/pOE, k). Then

a (ν(E,Φ))) = # σ(Φc
0) ∩ Φ0

and

f (ν((E,Φ))) = #
{
φ ∈ Φc

0 ∩ σ(Φc
0)
∣∣ σ2 ◦ φ = φ

}
where σ(S) = {σ ◦ s | s ∈ S}.

Proof. From the proof of Proposition 4.2.1, the size of ker(F ) ∩ ker(V ) is

# {eφ | φ /∈ Φ0, σ ◦ φ ∈ Φ0} giving the a-number. As for the f -number, the proof

of Proposition 3.5.2 showed that for w ∈ JW , f(w) = # {eφ | F 2(eφ) = eφ}. The

result follows.

4.3 Examples

Example 4.3.1. Let (E,Φ) be as Proposition 4.2.1 such that p splits completely

in E. This implies that p also splits in K. Then F acts as 0 on eφ when eφ ∈ Φ0

and as the identity otherwise, and V acts as 0 on eφ when eφ /∈ Φ0 and the identity
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otherwise. Therefore, ν((E,Φ)) corresponds to the ordinary locus (see Example

3.5.11).

Example 4.3.2. Let E be a CM field and suppose further that

• E = KE+,

• p splits in K,

• p is inert in E+,

• E+ is cyclic Galois of order g,

• Φ is a CM type of E as in Proposition 4.2.1.

Then E/Q is Galois with Galois group Z/2Z× Z/gZ where Z/2Z corresponds with

complex conjugation on E so that the complex conjugate of an element (a, b) is

(a+ 1, b) and (0, b) restricts to χ1 on K. Then the CM type Φ of E has the form

{(ai, i) | 0 ≤ i ≤ g − 1}

where ai ∈ {0, 1}. For convenience, denote the CM type Φ of E as the binary

string a = a0a1 . . . ag−1. Observe that m1 is equal to the number of 0’s in a and m2

is equal to the number of 1’s in a.

Since σ acts on Φ as right shift, by Corollary 4.2.2

a (ν((E,Φ))) = # {ai | ai + 1 = ai+1 (mod 2)}

and

f (ν((E,Φ))) = 0.

In particular, ν((E,Φ)) is never almost-ordinary (unless g = 2) and never µ-

ordinary. Furthermore, if the CM type is chosen so that a has the maximal
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number of alternating 0s and 1s, then a (ν((E,Φ))) = 2m2 and ν((E,Φ)) has

maximal a-number among E-O strata of signature (m1,m2). Note that this does

not mean that ν((E,Φ)) corresponds to the core locus (see Section 3.5.1 and the

examples below).

Table 4–1 gives ν((E,Φ)) = (w1, w2) for all CM types up to signature (5, 2).

Observe that for every signature in the table, there is a CM type Φ such that

ν((E,Φ)) is the identity Weyl element; that is, ν((E,Φ)) corresponds to the core

locus. These CM types have the property that the 1’s are as evenly spaced among

the 0’s as possible. This pattern continues, and was checked1 for m1,m2 ≤ 200,

supporting the following conjecture.

Conjecture 4.3.3. Let E be a CM field such that

• E = KE+,

• p splits in K,

• p is inert in E+,

• E+ is cyclic Galois of order g.

Then for every signature (m1,m2) such that m1 + m2 = g, there exists a CM type

Φ for E such that ν((E,Φ)) is the identity Weyl element.

Remark. One may ask why we have yet to obtain a proof of this conjecture.

Constructing Φ with the property that the 1’s and 0’s are as evenly spaced as

1 This check was done using a Python implementation of the map ν following
the proof of Proposition 4.2.1.
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Table 4–1: E-O strata by CM type

CM type (m1,m2) w1 w2 `(w) a(w) Type of Stratum

001 (2, 1) 123 123 0 2 Core

0001 (3, 1) 1234 1234 0 2 Core

0011 (2, 2) 1324 1324 1 2 Almost-core

0101 (2, 2) 1234 1234 0 4 Core

00011 (3, 2) 14235 13425 2 2 —

00101 (3, 2) 12345 12345 0 4 Core

000111 (3, 3) 145236 145236 4 2 —

001011 (3, 3) 142356 124536 2 4 —

010011 (3, 3) 124536 142356 2 4 —

010101 (3, 3) 123456 123456 0 6 Core

000011 (4, 2) 152346 134526 3 2 —

000101 (4, 2) 123546 132456 1 4 Almost-core

001001 (4, 2) 123456 123456 0 6 Core

0000111 (4, 3) 1562347 1456237 6 2 —

0001011 (4, 3) 1523647 1425637 4 4 —

0100011 (4, 3) 1256347 1452367 4 4 —

0010011 (4, 3) 1253467 1245367 2 4 —

0100101 (4, 3) 1234567 1234567 0 6 Core

0000011 (5, 2) 1623457 1345627 4 2 —

0000101 (5, 2) 1236457 1342567 2 4 —

0001001 (5, 2) 1234567 1234567 0 4 Core
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possible is quite subtle, which means that the interaction between F and V that

give rise to ν(E,Φ) is difficult to characterize in general. For instance, when the

signature is (12, 5), the choice of Φ = (10001000100100100) does not correspond

to the core locus and instead corresponds to ν((E,Φ)) = (w1, w2) ∈ JW where

`(w) = 2 and

w1 = [1234567891011131412151617] .

The core locus for (12, 5) corresponds to Φ = (10001001000100100).

This conjecture has the following application: under the additional assump-

tions that E has a relative integral basis over K (i.e. OE is a free OK-module of

rank g) and that there exists an element λ ∈ D−1
E/Q satisfying:

• ρ(λ) = −λ,

• =φ(λ) > 0 for all φ ∈ Φ,

• NmE/Q(λ) is prime-to-p

then by Lemma 4.1.2 there exists an abelian variety with CM by (E,Φ) giving rise

to a point in the core E-O stratum of M̄ by Proposition 4.2.1.

Remark. The previous examples show that CM points occur in the most extreme

strata for M̄ when p is split (and when CM fields with the appropriate properties

exist). It follows that on the level of CM points of type (E,Φ) (where E has

degree 2(m1 + m2) over Q), the restriction on the splitting behaviour of p in the

CM field E coming from the prescribed splitting behaviour of p in the CM subfield

K is reflected in the possibilities for the types of the extreme E-O strata for M̄:

since p cannot be completely inert, this dictates how close to superspecial a point
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in the core locus of M̄ may be. However, p can split completely in E, and this is

reflected by the fact that the µ-ordinary stratum is always ordinary.

Example 4.3.4. Let E be a CM field and suppose that

• E = KE+,

• p is inert in K,

• E+ is cyclic Galois of order g

• Φ is a CM type of E as in Proposition 4.2.1.

Write DE (or DK , DE+) for the decomposition group of E (resp. K and E+) over

p. Since K ∩ E+ = Q,

Gal(Fpf/Fp) ∼= DE = DK ×DE+
∼= Z/2Z× Z/hZ

where h = f/2. It follows that h is an odd number such that Z/hZ is a subgroup

of Z/gZ. Then under

Hom (E,C) 7→
∏
P|p

Hom (OE/POE, k) ∼=
g/h∏
i=1

Gal(Fp2/Fp)

complex conjugation maps to σh.

If h = 1, then p splits completely in E+. Furthermore, DE
∼= Gal(Fp2/Fp), and

every P|p is fixed by complex conjugation. Under

Hom (E,C) 7→
∏
P|p

Hom (OE/POE, k) ∼=
g∏
i=1

Gal(Fp2/Fp)

complex conjugation maps to σ. Then φ ∈ Φ0 if and only if σ ◦ φ /∈ Φ0 and

σ2 ◦ φ = φ. Then σ(Φc
0) = Φ0 and a (ν(E,Φ))) = # σ(Φc

0) ∩ Φ0 = g by Corollary

96



Table 4–2: E-O strata by CM type

CM type (m1,m2) w1 w2 `(w) a(w) Type of Stratum

001 (2, 1) 132 213 1 1 Almost-core

00011 (3, 2) 14235 13425 2 3 —

00101 (3, 2) 14523 34125 4 1 —

0000111 (4, 3) 1253647 1425367 3 5 —

0010011 (4, 3) 1256374 4152367 5 3 —

0001011 (4, 3) 5162347 1456273 7 3 —

0100011 (4, 3) 1562374 4156237 7 3 —

0100101 (4, 3) 1567234 4561237 9 1 —

0000011 (5, 2) 1263457 1345267 3 5 —

0000101 (5, 2) 1627345 3451627 7 3 —

0001001 (5, 2) 1263745 3415267 5 3 —

4.2.2. It follows that ν(E,Φ) is the identity Weyl element corresponding to the

core locus which is also superspecial when p is inert.

At the other extreme, suppose that h = g and hence p is inert in E+. Then

the image Φ0 of a CM type corresponds to a choice between σi and σg+i for each

i = 1, . . . , g. Since g is odd, exactly one of i and g + i is even for each i. Then Φ0

can be represented as binary string of length g, a = a1a2 . . . ag where σi ∈ Φ0 if

and only if i ≡ ai (mod 2). We may assume that, the signature of the CM type is

(#ai = 0,#ai = 1) (as opposed to (#ai = 1,#ai = 0)). Since σ2 ◦ φ 6= φ for all
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φ ∈ Gal(Fpg/Fp), it follows that the f -number of a CM type of this form is always

0. Low dimensional examples of these CM types are listed in Table 4–2.
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Chapter 5
The Newton stratification

Chapter 3 gave rise to a stratification of the moduli space M by isomorphism

classes of p-torsion group schemes with extra structure. We now study another

stratification of the moduli space that can be obtained by considering p-divisible

groups with extra structure up to isogeny—the Newton stratification. We will

ultimately demonstrate the relationship between the Newton stratification and

the E-O stratification of unitary Shimura varieties—reflecting the often subtle

relationship between the isogeny class of a p-divisible group and the isomorphism

class of its p-torsion part.

5.1 Group theoretic classification of isocrystals

In Section 2.2.4, we introduced isocrystals, and recalled how they can be

used to classify the isogeny classes of p-divisible groups of abelian varieties with

prime-to-p polarization using slope sequences. However, we will see that this is

not always enough to classify p-divisible groups with additional endomorphism

structure up to isogeny.1 In order to obtain a classification of p-divisible groups

with D-structure—where D is a unitary PEL Shimura datum—we require the

1 For example, this can be easily inferred from the diagram in Section 5.3.1.

99



classification of isocrystals with additional structures due to Kottwitz [Kot85].

This is the subject of this section.

Let D = (B, ∗, V, 〈 , 〉,OB,Λ, h) be a PEL Shimura datum with good

reduction at p, and let G be the Zp-group of OB-linear symplectic simili-

tudes of Λ with Borel B and maximal torus T as defined in Section 2.1.1. Let

(X∗(T ),Φ, X∗(T ),Φ∨,∆) be the corresponding based root system (i.e. ∆ is an or-

dered basis for Φ corresponding to the choice of Borel B). Furthermore, recall from

Section 2.1.1 that there is a cocharacter µh of G over C coming from h, such that

µh(z) = h(C)(z, 1) and the G(C)-conjugacy class of µh is defined over the reflex

field of D , a finite extension of Q. Then by fixing an embedding of Q ↪→ Qp where

Q ⊆ C, the conjugacy class of µh can be considered a G(Qp)-conjugacy class [µ]

of cocharacters of G. In turn, [µ] can be thought of as a W (G, T )-orbit of X∗(T ),

where W (G, T ) is the Weyl group of G with respect to T . Define µ ∈ X∗(T ) to be

the representative for the class [µ] that is dominant with respect to ∆∨.

There is way to classify p-divisible groups with D-structure using the group

G of OB-linear sympletic similitudes of Λ by passing through its associated

Dieudonné module and isocrystal. We follow the presentation of [VW13] closely

throughout this section, and more details can be found in [RR96].

Recall that k is an algebraically closed field of characteristic p and that Q(k)

denotes the fraction field of W (k). Consider the following observation, given the

Dieudonné module D coming from a p-divisible group with D structure, there

exists an isomorphism α : D → Λ ⊗Zp W (k) where Λ is the Zp-lattice from D

[RZ96, Theorem 3.16]. Then F corresponds to b(id⊗ σ) for some b ∈ G(Q(k)), and
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for any other choice of isomorphism α′ : P → Λ ⊗Zp W (k), there exists a unique

g ∈ G(W (k)) such that F corresponds to b′(id ⊗ σ) on Λ ⊗Zp W (k) through α′

where b′ = gbσ(g)−1. It follows that the set of isomorphism classes of p-divisible

groups with D-structure up to isomorphism injects into the set G(Q(k))/ ∼ where

b ∼ b′ if b′ = gbσ(g)−1 for some g ∈ G(W (k)). Thus, considering p-divisible

groups with D-structure up to isogeny requires taking elements b ∈ G(Q(k)) up to

G(Q(k))-σ-conjugacy instead of G(W (k))-σ-conjugacy.

Let the G(Q(k))-σ-conjugacy class of b ∈ G(Q(k)) be denoted by [b], i.e.

[b] =
{
gbσ(g)−1

∣∣ g ∈ G(Q(k))
}
.

Let B(G) denote the set of all G(Q(k))-σ-conjugacy classes of G(Q(k)). The

considerations above give an injection p-divisible group with

D-structure up to isogeny

 ↪→ B(G). (5.1)

Finally, let B(G, µ) be defined to be the image of this map taking p-divisible

groups to B(G).

5.1.1 Description of B(G, µ)

In order to properly define the Newton stratification, we need a poset struc-

ture on B(G, µ) that corresponds to the closure relations on the Newton strata.

The poset structure on B(G, µ) is not immediately accessible by the definition

given in the previous section. Work by [RR96, KR03, Luc04, Gas10] shows that

there is another description of B(G, µ) that can be used to endow it with a poset

structure that will reflect the closure relations on the Newton strata as desired.
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Following Kottwitz [Kot85], define N (G) to be the set of σ-invariants in the

set of conjugacy classes of homomorphisms DQ(k) → GQ(k):

N (G) = (Int(G(Q(k)))\HomQ(k)(D, G))〈σ〉.

As in [RR96], we make the identifications

N (G) = (Int(G(Q(k)))\HomQ(k)(D, G))〈σ〉

= (X∗(T )Q)Γ
dom

where Γ = Gal(Qp/Qp) and (X∗(T )Q)dom is defined by as the set of representatives

from X∗(T )Q that are dominant with respect to the Borel B.

Theorem 5.1.1. [Kot85, Section 4] Let b ∈ G(Q(k)). Then there exists a unique

ν(b) ∈ Hom (D, G) for which there exists s ∈ Z>0 and c ∈ G(Q(k)) such that

• sν(b) ∈ Hom (Gm, G),

• Int(c) ◦ sν(b) is defined over the fixed field of σs in Q(k)

• cbσ(b) . . . σs(b)σs(c)−1 = c(sν(b)(p))c−1.

The morphism ν(b) satisfying the above criterion satisfy the following properties:

• gbσ(g)−1 7→ Int(g) ◦ ν(b) for all g ∈ G(Q(k)),

• σ(b) = σ(ν(b)),

• ν(b) = Int(b) ◦ σ(ν(b)).

Succinctly, there is a map called the Newton map, νG, given by

νG : B(G)→ N (G).
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The image under ν of an element b ∈ B(G) is called the slope or Newton

polygon of b. These terms originate from the terminology for G = GLh where

N (G) corresponds to the classification of isocrystals of height h by slope sequence

and Newton polygons as in Section 2.2.4.1. As an example, we now show how νG

captures the classical information of the slope sequence for an isocrystal of height

h (as in Section 2.2.4.1).

In particular, any isocrystal (P, F ) of height h, can be written as

(P, F ) = (V ⊗Qp Q(k), b(idV ⊗ σ))

where b ∈ GLh(Q(k)). Suppose that (P, F ) has slope sequence

λ1 < . . . < λr

and isotypic components Pi corresponding to each λi. Then

νGLh(b) = ⊕ri=1λi, λi : D→ Gm ↪→ GL(Pi).

The Newton map for GLh is injective by the classification of isocrystals by slope

sequence.

While the slope morphism νG captures all of the information necessary to

classify the elements of B(GLh), this is not the case in general. Therefore, an

additional map is required to classify the elements of B(G) for other reductive

groups G. There is a map κG : B(G) → π1(G)Γ where π1(G) := X∗(T )/Φ∨2 and

2 recall that Φ∨ is the coroot lattice of the root system for (G, T )
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π1(G)Γ denotes taking the independent of π1(G) under the Galois group Γ. See

[Kot85] and [RR96] for the general description of κG. Denote by λ[ the image of

λ ∈ X∗(T ) in π1(G). Given a b ∈ G(Q(k)) there exists a unique λ ∈ X∗(T )dom such

that b ∈ G(W (k))λ(p)G(W (k)) by the Bruhat decomposition of G. Then κG has

the simple description:

κG : B(G)→ π1(G)Γ

[b] 7→ λ[.

In particular, when b = λ(p) for some λ ∈ X∗(T )dom, κG([λ(p)]) = λ[. Together,

νG(b) and κG(b) determine an element b ∈ B(G) uniquely.

Now, (X∗(T )⊗Z Q)dom has a partial order given by ν ≤ ν ′ if and only if ν ′ − ν

is a non-negative linear combination of positive coroots. This induces a partial

order on B(G) via b ≤ b′ if and only if ν(b) ≤ ν(b′) and κG(b) = κG(b′). In the

case when G = GLh, the condition that κG(b) = κG(b′) corresponds to the Newton

polygons (in the sense of Section 2.2.4.1) of b and b′ having the same endpoints,

and if κG(b) = κG(b′), then ν(b) ≤ ν(b′) if and only if the Newton polygon of

b lies above the Newton polygon of b′ [RR96, Proposition 2.4]. In other words,

the partial order on B(GLh) corresponds to the familiar partial order on Newton

polygons as described in Section 2.2.4.1.

Let Γµ be the stabilizer of µ in Γ and set

µ̄ := [Γ : Γµ]−1
∑

τ∈Γ/Γµ

τ(µ) ∈ (X∗(T )Q)Γ
dom,
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then

B(G, µ) =
{
b ∈ B(G)

∣∣ ν(b) ≤ µ̄, κ(b) = µ[
}
.

By [RR96, Proposition 2.4], B(G, µ) is finite. This last characterization of B(G, µ)

will be used to construct the stratification of M by isogeny classes of p-divisible

groups.

5.2 The Newton stratification

We are now in a position to define the Newton stratification. Recall that M

denotes the special fibre at κ(p) of the Shimura variety corresponding to the PEL

datum D with level structure Cp ⊆ G(Apf ) as defined in Section 2.1.2. Following

[VW13, Section 8], define

Nt :M→ B(G, µ)

by taking a point A = (A, ι, λ, η) ∈ M(k) to the image of its p-divisible group A(p)

with D-structure in B(G, µ) under (5.1). Nt(A), is called the Newton point of A.

Let b ∈ B(G, µ). Then by [RR96, Section 3], [VW13, Theorem 11.1], [Ham14,

Theorem 1.1] the set

Nb = {A ∈M(k) | Nt(A) = b}

is a non-empty locally-closed subset of M(k), and

Nb =
⋃
b′≤b

Nb′ . (5.2)

The Newton stratum of b ∈ B(G, µ) is then Nb endowed with its corresponding

reduced subscheme structure.
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There are two extreme strata that come from the maximal and minimal

elements of B(G, µ). In particular, B(G, µ) has a unique maximal element, bµ, by

construction, and a unique minimal element, bbasic, by [RR96, Proposition 2.4].

The element bµ is characterized by the property that ν(bµ) = µ̄, and the element

bbasic is characterized by the property that ν(bbasic) ∈ X∗(Z)Q where Z is the centre

of G. The stratum Nbµ is called the µ-ordinary stratum and Nbbasic
is called the

basic stratum. By the closure relation in (5.2), the basic stratum is closed and

the µ-ordinary stratum is open in M.

Let N (G)µ be the image of B(G, µ) under νG : B(G) → N (G). By con-

struction, every element ν ∈ N (G)µ satisfies ν ≤ µ̄. Suppose that ν ′ ≤ ν for

ν, ν ′ ∈ N (G)µ. Then a chain between ν ′ and ν is a sequence:

ν ′ = ν0 ≤ ν1 ≤ . . . ≤ νn = ν

where νi ∈ N (G)µ. A chain is called maximal if it is not a proper subsequence

of another chain between ν ′ and ν. By work of Chai [Cha00, Theorem 7.4] and

Hamacher [Ham14], maximal chains exist between ν ′ and ν, and every maximal

chain has the same length (which is independent of µ̄). We write length([ν ′, ν]) for

the length of a maximal chain between ν ≤ ν ′ in N (G)µ.

Theorem 5.2.1 ([Ham14, Theorem1.1]). Let b ∈ B(G, µ). The Newton stratum

Nb is equidimensional and

dimNb = m1m2 − length([ν(b), µ̄]).
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Remark. For our purposes, this description of the dimension of Nb is sufficient,

although there are explicit formulae for how to calculate the dimension of Nb. See

[Ham14] for details.

5.3 Newton stratifications of unitary Shimura varieties

In this section, we calculate B(G, µ) and its poset structure for a unitary

PEL Shimura datum D with signature (m1,m2) and good reduction at p. In the

end, we will give a description of B(G, µ) together with its poset structure using

classical slope sequences by embedding G into general linear groups, making it

easier to visualize and understand the results.

We begin by describing the structure of the group G arising from D . In

a similar manner to Section 3.4, the group G(Q(k)) can be identified with the

subgroup of GLg(Q(k))×GLg(Q(k)), given by

GU(Q(k)2g,Ψ) ∼= {(M,aM∨) ∈ GLg(Q(k))×GLg(Q(k)) | a ∈ Q(k)∗} (5.3)

where M∨ = (M t)−1. Under this isomorphism, the involution σΨ corresponds

to the involution ε : (M1,M2) 7→ (M t
2,M

t
1). Let T be the diagonal torus of

G; i.e. the torus whose Q(k)-points are given by pairs (M,aM∨) where M is a

diagonal matrix and a ∈ Q(k)×. Let B be the Borel subgroup of G corresponding

to the subset of elements of the form (M,aM∨) where M is upper triangular and

a ∈ Q(k)∗.

Let φi denote the cocharacter given by sending t to (Mi,M
∨
i ) where Mi is

the matrix with t in the ith position on the diagonal and 1’s on the rest of the
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diagonal, and let φ be the cocharacter taking t to (1, t). It follows that

X∗(T ) = 〈φi, φ | i = 1, . . . , g〉 ∼= Zg × Z.

On the other hand, Φ∨ = 〈φi − φj, φ|1 ≤ i 6= j ≤ g〉 and (X∗(T )Q)dom corresponds

to situation where φi − φj is positive if i < j. Furthermore, π1(G) ∼= Z and

(−)[ : Zg × Z→ Z

(a1, . . . , ag, a) 7→
g∑
i=1

ai.

For a unitary PEL datum with signature (m1,m2), µh is the cocharacter

z 7→ (diag(zm1 , 1m2), diag(1m1 , zm2)).

Therefore, µ is the character (1m1 , 0m2 , 1) ∈ X∗(T ) or (1m1 , 0m2), (0m1 , 1m2) if

viewed inside GLg(Qp) × GLg(Qp) with respect to the standard 2g cocharacters.

So far, the Galois action on X∗(T ) has not been taken into account. The next two

sections consider the two cases arising from when p is either split or inert in K.

5.3.1 p split in K

In the situation where p splits in K, even the Qp-points of G can be viewed

as a subgroup of GLg(Qp) × GLg(Qp) via (5.3) and σ acts trivially on X∗(T ). It

follows that µ̄ = µ and µ[ = m1. Therefore,

B(G, µ) = {b ∈ B(G) | ν(b) ≤ µ, κ(b) = m1} .

B(G, µ) can be described in terms of its embedding into B(GLg) × B(GLg).

Using the description of the B(GLg) in terms of Newton polygons to describe the
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first factor of the embedding, bµ can be recognized as corresponding to the Newton

polygon having endpoint (g,m1) and slope sequence (0, 1) with multiplicities

(m2,m1). On the other hand, bbasic corresponds to the Newton polygon with

endpoint (g,m1) and all slopes equal, that is, slope m1/g with multiplicity g. The

rest of the elements on B(G, µ) correspond to Newton polygons with integral

breakpoints and endpoint (g,m1) lying between bbasic and bµ. The second factor in

the embedding into B(GLg) × B(GLg) can be obtained by taking the dual of the

Newton polygon of the first factor. This discussion leads to the following corollary.

Corollary 5.3.1. When p is split in K, the total Newton polygon (as embedded in

B(GL2g)) of bbasic has slopes (m2/g,m1/g) each with multiplicity g, and bµ is the

ordinary Newton polygon.

The following figures represent B(G, µ) as embedded in B(GLg) × B(GLg).

In order to better explain the diagrams, suppose that A ∈ M(k) lies in the

Newton stratum defined by b ∈ B(G, µ). Then the embedding of b into B(GLg) ×

B(GLg) corresponds to the decomposition of the Dieudonné module of A into two

Dieudonné modules D = D1 ⊕D2 under the OK/(p)-action as in Proposition 2.2.4.

The Newton polygon with height equal to mi is the Newton polygon for Di. Each

slope b corresponding to a Dieudonné module D = D1 ⊕ D2 is depicted in such

a way that D1 and D2 are depicted using the same colour on both diagrams. The

blue lines represent the Newton polygons for the µ-ordinary locus, and the red

lines represent the Newton polygons of the basic locus.
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Figure 5–1: GU(2, 1)
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Figure 5–2: GU(3, 1)
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Figure 5–3: GU(2, 2)
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Figure 5–4: GU(3, 2)
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Figure 5–5: GU(3, 3)
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5.3.2 p inert in K

In this case, only the L-points of G can be embedded into a product of GLg

where L is field containing Q(Fp2), and σ acts on X∗(T ) as φi 7→ φ−1
g−i+1φ and

φ 7→ φ1φ2 . . . φg. Then,

σ(µ) = (1m2 , 0m1 , 1)

and

µ̄ = (1m2 , 1/2m1−m2 , 0m2 , 1).

In this case it is easiest to describe the Newton polygons that arise via the

representation of ρ : G ↪→ GL2g/Qp taking the character (a1, . . . , ag, a) ∈ X∗(T ) to

(a1, . . . , ag, a− a1, . . . , a− ag) ∈ X∗(D)

where D is the standard diagonal torus and dominant coroots of X∗(D) are taken

with respect to the upper triangular Borel. The corresponding action of σ on

(d1, . . . , d2g) ∈ X∗(D) is given by di 7→ d2g−i+1.

Under this description,

µ̄ = (1m2 , 1/2m1−m2 , 0m2 , 0m2 , 1/2m1−m2 , 1m2)

and µ[ = g. The conditions for b ∈ B(GL2g) to be in the subset B(G, µ) become:

• b lies above bµ, the Newton polygon with slopes (0, 1/2, 1) and multiplicities

(2m2, 2(m1 −m2), 2m2);

• every slope of b has even multiplicity;
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• if b has slope sequence (λ1, . . . , λr) with multiplicities (2h1, . . . , 2hr), the

polygon of (λ1, . . . , λr) with multiplicities (h1, . . . , hr) is symmetric in the

sense that λi = 1− λr+1−i and hi = hr−1+i.

In this case bbasic is always supersingular, as the Newton polygon with slope 1/2 to

multiplicity 2g will always satisfy the above criteria and factors through the centre

of G. This is consistent with results for m2 = 1 that can be found in [BW06] and

[VW11]. The figures below give a visual representation of the Newton polygons of

low dimensional examples. As in the previous section, the blue lines represent the

Newton polygon for the µ-ordinary locus, and the red lines represent the Newton

polygon of the basic locus.
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Figure 5–6: GU(2, 1)
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Figure 5–7: GU(3, 1)
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Figure 5–8: GU(2, 2)
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Figure 5–9: GU(3, 2)
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Figure 5–10: GU(3, 3)
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Figure 5–11: GU(4, 2)
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5.4 Relationship with E-O strata

The Newton and E-O stratifications have an interesting relationship. Given a

point A = (A, ι, λ, η) ∈ M(k), its Newton stratum corresponds to the isogeny class

of its p-divisible group, and its E-O stratum corresponds to the isomorphism class

of its truncated p-divisible group—that is, its p-torsion part. For abelian varieties

in general, this relationship is rather subtle (see for instance [Oor05]) and we will

see that this is no different for abelian varieties with extra structures on M.

In particular, a p-divisible group (H, ι, λ) with D-structure is called distin-

guished if the isomorphism class of (H, ι, λ)[p] determines its isomorphism class

as a p-divisible group. A point A ∈ M(k) is called distinguished if its p-divisible

group is distinguished. Likewise an element w ∈ JW representing an E-O stratum

is called distinguished if there exists a point A in the E-O stratum V w that is

distinguished.

Remark. Note that we are using the term distinguished p-divisible group in place

of the more common minimal p-divisible group (see [Oor05] or [VW13]) so as

to not confuse the use of minimal in the context of p-divisible groups with the

minimal elements with respect to the partial orders we’re discussing.

Proposition 5.4.1 ([VW13, Proposition 8.17] [Moo04b, Theorem 0.3]). The core

E-O stratum is distinguished and contained in the basic Newton stratum. Likewise

the µ-ordinary E-O stratum is distinguished and the same as the µ-ordinary

Newton stratum.

Observe that this means that there is a consistent notion of a µ-ordinary

stratum between the Newton and Ekedahl-Oort stratifications.
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5.4.1 p split in K

When p is split in K, the group G itself is split and results from [VW13,

Section 9] and [Oor05] can be combined with the explicit models of E-O strata in

Section 3.5.3 to give a thorough description of how the Newton strata and E-O

strata are related.

Theorem 5.4.2 ([VW13, 9.10, 9.20, 9.22]). There is an injective map of posets:

w : B(G, µ) ↪→ JW

such that V w(b) ⊆ Nb and w(b) is distinguished. Furthermore, w(b) is the unique

minimal element in the set

JWb :=
{
w ∈ JW

∣∣ V w ∩Nb 6= ∅
}
.

Corollary 5.4.3. When m2 = 1, there is as a one-to-one correspondence

between Newton strata and E-O strata. Furthermore, the map B(G, µ) ↪→ JW

takes b = (b1, b2) ∈ B(G, µ) where b1 has slopes
(

d
d+1

, 1
)

with multiplicities

(d + 1, g − d − 1) for 0 ≤ d ≤ g − 1 to the unique element w ∈ JW such that

`(w) = g − d.

Proof. In this case there are exactly g + 1 Newton strata and g + 1 E-O strata, so

the one-to-one correspondence follows immediately from Theorem 5.4.2. The rest

follows from Theorem 5.2.1 by a comparison of dimensions.

This map b 7→ w(b) can be made explicit. Given a slope λ = r
s

such that

(r, s) = 1 and r, s ∈ N, define the p-divisible group Hs−r,r as in [dJO00, 5.3] by

giving a model for its covariant Dieudonné module. It has a basis {e0, e1, ..., es−1}
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over W (k). For j ≥ s, write ej = paei, for j = i + as. Then define F (ei) = ei+s−r

and V (ei) = ei+r. The p-divisible group Hs−r,r has dimension s − r, its Serre-dual

has dimension r, it is isosimple with slope r/s, its endomorphism ring is a maximal

order in its endomorphism algebra (over k), and these properties characterize it

completely as a p-divisible group over k [dJO00, 5].

Furthermore, for an element b ∈ B(GLg) with slope sequence (λ1, . . . , λh) and

multiplicities (n1, . . . , nh), where λi = ri
si

such that (ri, si) = 1, define H(b) to be

the p-divisible group with covariant Dieudonné module,

⊕ri=1(Hsi−ri,ri)
ni/si .

In [Oor05], Oort shows that the isomorphism class of H(b)[p] determines the

isomorphism class of H(b).

Write b = (b1, b2) ∈ B(G, µ) ⊆ B(GLg) × B(GLg), and let w(bi) be the

isomorphism class of H(bi)[p] in JiW . Then w(b) = (w(b1), w(b2)). Since the model

for the covariant Dieudonné module of H(bi) is given, w(b) can calculated directly

from the models for H(bi)[p]. The following Figures represent the map b 7→ w(b)

in low dimensional examples. The underlying poset diagram corresponds to the

E-O stratification as derived in Section 3.4, and the blue ovals represent the map

b = (b1, b2) 7→ w(b) in the sense that b1 is the blue label for the oval around the

element w(b). In many cases, the diagrams imply more relationships between the

E-O and Newton strata. For example, Figure 5–13 implies that the two smallest
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E-O strata comprise the basic Newton stratum and in all other cases the Newton

and E-O strata agree.
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Figure 5–12: GU(2, 1),GU(3, 1),GU(g − 1, 1)
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Figure 5–13: GU(2, 2)
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Figure 5–14: GU(3, 2)
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Figure 5–15: GU(3, 3)
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Figure 5–16: GU(4, 2)
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5.4.1.1 The Split Case: Special E-O Strata

Proposition 5.4.1 describes the Newton strata of the core and µ-ordinary E-O

strata, but what are the Newton strata corresponding to the almost-ordinary and

almost-core E-O strata?

Proposition 5.4.4. There exists a unique codimension one Newton stratum, and

it is the same as the almost-ordinary E-O stratum.

Proof. Consider the Newton stratum associated b = (b1, b2) such that b1 has slope

sequence (0, 1/2, 1) with multiplicities (m2 − 1, 2,m1 − 1). This is the unique

codimension one Newton stratum. By Theorem 5.4.2 it suffices to show that w(b)

corresponds to the almost-ordinary E-O stratum.

This is straightforward as w(b1) corresponds to H0,1[p]m1−1 ⊕ H1,0[p]m2−1 ⊕

H1,1[p], and this is isomorphic to µm1−1
p ⊕ Z/pZm2−1 ⊕ G1. Therefore w(b)

corresponds to the almost-ordinary E-O stratum by Example 3.5.10.

Proposition 5.4.5. Either the almost-core E-O stratum is distinguished or it is

contained in the basic Newton stratum. Furthermore, if the signature (m1,m2)

satisfies

• m1 = m2 ≥ 2: the almost-core E-O stratum is basic,

• m1 −m2 ≥ 1,m2 = 1 or m1 −m2 = 1,m2 > 1: the almost-core E-O stratum

is distinguished.

Proof. Let w ∈ JW be the element corresponding to the almost-core stratum.

Suppose that V w ∩ Nb 6= ∅ for some b ∈ B(G, µ) where b is not basic. But

w ≤ w′ for all w′ ∈ JW \ id. Therefore w is the minimal element in JWb :=
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{
w ∈ JW

∣∣ V w ∩Nb 6= ∅
}

and by Theorem 5.4.2, w = w(b) and the almost-core

stratum is distinguished.

Suppose that m = m1 = m2 ≥ 2. Then by Example 3.5.9, the almost-core

E-O stratum has a model of the form AC(2, 2) ⊕ (G1 ⊕ G2)m−2. In the case where

m1 = m2 = 2, Figure 5–13 together with Theorem 5.4.2 shows that AC(2, 2)

is contained in the basic locus and is isotypic of slope 1/2. On the other hand,

(G1 ⊕ G2)m−2 is the core locus for (m− 2,m− 2) and is therefore distinguished and

isotypic of slope 1/2. It follows that the almost-core E-O stratum is contained in

the basic Newton stratum.

Next, suppose that m1 −m2 ≥ 1,m2 = 1. Then the fact that the almost-core

E-O stratum is distinguished follows immediately from Corollary 5.4.3.

Finally, suppose that m1 − m2 = 1,m2 > 1 so that the almost-core E-

O stratum has a model of the form C (m2,m2 − 1) ⊕ C (1, 1). Then since the

core stratum is distinguished for C (m2,m2 − 1) and C (1, 1), it follows that the

almost-core E-O stratum is distinguished, and furthermore, it has slope sequence(
1
2
, m2

2m2−1

)
with multiplicities (2, 2m2 − 1).

In the remaining cases, where m1 −m2 > 1,m2 > 1, determining which choices

of (m1,m2) correspond to a distinguished almost-core E-O stratum is not clear.

Recall from Example 3.5.9 that even determining a model for the almost-core E-O

stratum in this case is subtle. Even so, observe that if there exists a b ∈ B(G, µ)

such that w(b) corresponds to the almost-core locus, then necessarily b ≤ b′ for all

b′ ∈ B(G, µ) such that b′ is not basic.
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Necessary conditions for the existence of a b ∈ B(G, µ) such that w(b) is the

almost-core E-O stratum are that either

• m2 - m1 and m2 - m1 − 1 and m1 + 1 6= gcd (m1,m2) + gcd (m1,m2 − 1), or

• m2 | m1 − 1.

Interestingly, even under these conditions w(b) may not correspond to the almost-

core stratum. For example, if (m1,m2) = (6, 4), the element b ∈ B(G, µ) such

that b1 has slope sequence (4/7, 2/3) with multiplicities (7, 3) is less than or

equal to every element in B(G, µ) except for the basic element. Here w(b1) =

[1 2 3 4 5 7 8 6 9 10] is a 2-dimensional stratum and does not correspond to the

almost-core locus. This demonstrates, once again, the intricate relationship

between the signature (m1,m2) and the possibilities for the almost-core E-O

stratum as was previously encountered in Section 3.5.

5.4.2 p inert in K

In the inert case, much less can be shown as the analogue of Theorem 5.4.2 is

not true for general signatures (m1,m2). However, we are still able to determine

the relationship between the E-O strata and the Newton strata on a case-by-case

basis. We give results for the almost-core and almost-ordinary E-O strata in this

section.

In the case where the signature is (g − 1, 1), the distinguished strata were

determined in [BW06], leading to the following lemma:

Lemma 5.4.6. Let p be a prime that is inert in K, and let (m1,m2) = (g − 1, 1).

Then

127



1. the basic locus is supersingular and corresponds to the closure of the Weyl

element w ∈ JW such that `(w) = b(g − 1)/2c. That is,

w1 =

[
1 2 . . .

⌈
g − 1

2

⌉
− 1 g

⌈
g − 1

2

⌉
. . . g − 1

]
w2 =

[
2 3 . . .

⌊
g − 1

2

⌋
1

⌊
g − 1

2

⌋
+ 1 . . . g

]
;

2. every non-basic E-O stratum is distinguished.

Proof. (1) is simply a combination of [BW06, 5.4] and [BW06, Proposition 5.5]

with the observation that there is a unique element w ∈ JW (the one given above)

such that `(w) = b(g − 1)/2c. Claim (2) is exactly [BW06, Theorem 5.3].

Another case that follows from [BW06] is when m2 = 0:

Lemma 5.4.7 ([BW06, Lemma 3.4]). If (H, ι, λ) is a p-divisible group of signature

(m, 0) or (0,m) whose slopes are all 1/2, then H is superspecial, that is FD(H) =

VD(H), and H̄ ∼= Gm
1 (resp. Gm

2 ).

We now extend these results to get an understanding of the relationship

between the Newton stratification and the Ekedahl-Oort stratification in other

cases.

Proposition 5.4.8. If m1 = m2, or m1 − m2 > 1, then the almost-ordinary

E-O stratum is distinguished and is equal to the codimension 1 Newton stratum. If

m1 −m2 = 1, the almost-ordinary E-O stratum is contained in the Newton stratum

having slopes (0, 1/2, 1) with multiplicities (2(m2 − 1), 6, 2(m2 − 1)).

Proof. Begin with the situation where m = m1 = m2. Then the slope sequence of

the µ-ordinary stratum is (0g, 1g) and the codimension 1 Newton stratum has slope
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sequence (0g−2, 1/22, 1g−2). Let (H, ι, λ) be the Dieudonné module of the p-divisible

group of a point in the codimension 1 Newton stratum. Then H decomposes into

étale-local, local-étale, and local-local pieces, H ét-0 ⊕ H0-ét ⊕ H0,0. Therefore,

H ét-0 ⊕ H0-ét corresponds to the slopes (0g−2, 1g−2), and this p-divisible group

has signature (m − 1,m − 1). The p-torsion of H ét-0 ⊕ H0-ét then must have the

form OK/(p)m−1 ⊕ (OK/(p) ⊗ µp)m−1. This leaves the self-dual p-divisible group

H0,0 with signature (1, 1), which corresponds to the basic locus for the signature

(1, 1) case. The only possibility for the p-torsion of H0,0 is then G1 ⊕ G2 where

G1 (resp. G2) is the p-torsion of a supersingular elliptic curve with signature (1, 0)

(resp. (0, 1)) as in Section 3.5.2. Therefore, there is only one isomorphism class of

p-torsion group schemes with extra structure corresponding to the Newton stratum

of H, which corresponds by Proposition 3.5.6 to the almost-ordinary E-O stratum.

Conversely, suppose that decomposition of (H[p], ι, λ) is a model for the

almost-ordinary E-O stratum as in Proposition 3.5.6. Then the decomposition of

H[p] into étale-local, local-étale, and local-local pieces and its decomposition under

the OK/(p)-action correspond to the respective decompositions of the isogeny class

of any lift of H[p] to a p-divisible group with extra structure, H. The étale-local

and local-étale parts correspond to OK/(p)m−1 ⊕ (OK/(p) ⊗ µp)
m−1 which lift

uniquely to p-divisible groups with slopes (0g−2, 1g−2), which leaves G1 ⊕ G2 which

lifts uniquely to the local-local isogeny class with slope sequence (1/22). Therefore

the almost-ordinary E-O stratum is contained in the codimension 1 Newton

stratum and it is distinguished. This proves the desired result for the case when

m1 = m2.
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The argument for the case where m1 − m2 > 1 is similar to the previous

argument. In this case the codimension 1 Newton stratum has slope sequence

(0m2−1, 1/4, 1/2(m1−m2−2), 3/4, 1m2−1). By separating off the étale-local and local-

étale parts, we are left with slopes (1/4, 1/2(m1−m2−2), 3/4) and H0-0 has signature

(m1 − m2 + 1, 1). On the other hand, the analogous local-local part of the

almost-ordinary E-O stratum has the form

AO(m1 −m2 + 1, 1) ∼= AO(3, 1)⊕ Gm1−m2−2
1

by Proposition 3.5.6. As H0-0 is not basic, Lemma 5.4.6 completes the proof.

Now consider the case m1 −m2 = 1. The almost-ordinary E-O stratum has a

model of the form

H[p] = AC(2, 1)⊕ (OK ⊗ µp)m2−1 ⊕ (OK/(p))m2−1.

There exists a unitary p-divisible group with slope sequence 1/2 whose reduction

mod p is AC(2, 1) by the (m1,m2) = (2, 1) case. Again, since the étale-local

and local-étale parts of H[p] lift uniquely, it follows that the almost-ordinary

E-O stratum has non-empty intersection with the Newton stratum with slope

sequence (02(m2−1), 1/26, 12(m2−1)). However, the Newton stratum with slope

sequence (02(m2−1), 1/26, 12(m2−1)) is the unique codimension one stratum, and

since the µ-ordinary Newton stratum is equal to the µ-ordinary E-O stratum, it

follows that the almost-ordinary E-O stratum is contained in the codimension one

Newton stratum. In this case, the almost-ordinary E-O stratum is not equal to the
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codimension 1 Newton stratum as the E-O stratum with model:

G 2
1 ⊕ G 1

2 ⊕ (OK ⊗ µp)m2−1 ⊕ (OK/(p))m2−1

is also contained in the codimension 1 Newton stratum.

Our next goal is to find the Newton stratum corresponding to the almost-core

E-O stratum in general (Proposition 5.4.10); however, we begin with the specific

situation of signature (2, 2).

Lemma 5.4.9. The almost-core E-O stratum AC(2, 2) of signature (2, 2) is

contained in the basic Newton stratum.

Proof. Recall that the E-O stratification for GU(2, 2) was given in Figure 3–2.

By Proposition 5.4.8, the almost-ordinary E-O stratum and the codimension 1

Newton stratum are the same. Passing to the next codimension, we find two E-O

strata of dimension 3 whose p-torsion only differ in that their OK-action differs by

the non-trivial automorphism of OK . Dimension considerations from Proposition

5.2.1 as applied to Figure 5–8 show that the two 3-dimensional E-O strata are

in the Newton stratum with slopes (1/4, 3/4) and multiplicities (4, 4). Since the

basic Newton stratum is one dimensional, it must contain the almost-core E-O

stratum.

We can now prove the general case:

Proposition 5.4.10. The almost-core E-O stratum is contained in the basic

Newton stratum.

Proof. Recall from Example 3.5.5 that the almost-core E-O stratum has the form:
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• m1 ≥ m2 > 1: AC(2, 2)⊕ Gm1−2
1 ⊕ Gm2−2

2

• m1 > m2 = 1: AC(2, 1)⊕ G g−3
1

The case where m2 = 1 was already proved in Lemma 5.4.6. Suppose that

m1 ≥ m2 > 1. Then AC(2, 2) ⊕ Gm1−2
1 ⊕ Gm2−2

2 has all slopes equal to 1/2 as a

consequence of Lemma 5.4.9. This proves the result since the basic locus has slope

sequence 1/2 by Section 5.3.2.
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Chapter 6
Cycle classes of E-O strata

This chapter develops a relationship between the Schubert cells of flag spaces

of a g-dimensional vector space and the flag spaces over M that come from

extending the Hodge filtration E ⊆ H. We will ultimately show that these are

locally isomorphic in the étale topology. This gives finite étale covering maps from

strata in a flag space lying over M (coming from extending the Hodge filtration),

onto the Ekedahl-Oort strata of M. One consequence of this result (to be pursued

in future work) is that the cycle classes of the closed E-O strata in the Chow group

can be studied by pushing down cycle classes of strata from the overarching flag

space. A significant intellectual debt is owed to Ekedahl and van der Geer for

their work in the Siegel case. Many of the proofs that follow are closely related

to those in [EvdG09], and complete details are included for the purpose of being

self-contained. There are two salient features that allow us to take advantage of

their approach: the interaction of the OK-action on the de Rham cohomology H

of the universal abelian variety A →M with the symplectic pairing on H induced

by a prime-to-p polarization; and a combinatorial description of the map on strata

from M to the Siegel space (see Proposition 6.1.4).

6.1 Combinatorial preliminaries

Recall from Example 3.1.2, that (Sg, S) where Sg is the symmetric group on

g elements and S is the set of reflections S = {si = (i, i+ 1)|i = 1, . . . , g − 1} is
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a Coxeter group, and in case J = S \ {sm} is a subset of simple reflections, the

quotient group SgJ\Sg has a choice of minimal coset representatives with respect

to the Bruhat order on Sg;

JSg =
{
x ∈ Sg

∣∣ x−1(1) < · · · < x−1(m) and x−1(m+ 1) < · · · < x−1(g)
}
.

Let WJ denote the subgroup of W = Sg generated by J . Then there is a

projection map Sg → WJ\Sg ∼= JSg taking w 7→ Jw where Jw denotes the

minimal length representative of the coset WJw, and another projection map

Sg → Sg/WJ
∼= SJg taking w 7→ wJ , where wJ denotes the minimal length

representative of the coset wWJ . The first map, Sg → JSg consists of taking the

element w = [w1w2 . . . wg] and permuting the order of the elements w1, w2, . . . , wg

so that the set of wj ∈ {1, . . . ,m} still appear in the same places, but now appear

in ascending order, and likewise for the set of wj ∈ {m+ 1, . . . , g}. That is,

{
Jw−1(a) ≤ m

∣∣ 1 ≤ a ≤ g
}

=
{
w−1(a) ≤ m

∣∣ 1 ≤ a ≤ g
}

= {wj | 1 ≤ wj ≤ m}

and

{
Jw−1(a) ≥ m+ 1

∣∣ 1 ≤ a ≤ g
}

=
{
w−1(a) ≥ m+ 1

∣∣ 1 ≤ a ≤ g
}

= {wj | m+ 1 ≤ wj ≤ g} ,

but now the elements of these sets appear in ascending order in Jw =
[
Jw1 . . .

Jwg
]

so that Jw−1(1) < . . . < Jw−1(m) and Jw−1(m + 1) < . . . < Jw−1(g). On the other

hand, Sg → SJg consists of taking w = [w1w2 . . . wg] and putting each of the first
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m-entries w1, . . . , wm and the last (g−m)-entries wm+1, . . . wg into ascending order.

For example, if J = S \ {s4}, then in the first case

w =
[

341 5 2 76
]
7→
[

123 5 4 67
]

= Jw,

and in the second case,

w =
[

3415 276
]
7→
[

1345 267
]

= wJ .

Let

W = {(w1, w2) ⊆ Sg × Sg | w2 = w0w1w0} ,

where w0 = [g g − 1 . . . 2 1]. Recall that this is the Weyl group of the unitary

group of signature (m1,m2) where m1 + m2 = g. From Section 3.4, (W,S) is a

Coxeter group where

S = {(si, w0siw0) ∈ Sg × Sg | si = (i, i+ 1)} .

For

J = {(s, t) ∈ S \ {sm1} × S \ {sm2} | s = w0tw0} ,

one has

JW =
{

(w1, w2) ∈ J1Sg × J2Sg
∣∣ w2 = w0w1w0

}
where Ji = S \ {smi}. Furthermore, (w1, w2) ≤ (w′1, w

′
2) under the Bruhat order if

and only if w1 ≤ w′1 if and only if w2 ≤ w′2. The maps W → JW and W → W J

arise from taking Sg → JiSg (resp. Sg → SJig ) on each component.
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For a permutation w ∈ Sg, and integers 1 ≤ j, n ≤ g, define

rw(j, n) := # {a ≤ j | w(a) ≤ n} .

This function will give the analogue of a final type in the Siegel case.1 For

example in the Siegel case, ν(j) = j − rw(j, g) is the final type associated to

the Weyl group element w ∈ S\{sg}S2g, and there is a one-to-one correspondence

between final types and elements in S\{sg}S2g [EvdG09, Section 1].

Lemma 6.1.1. Let w ∈ Sg and w0 = [g g − 1 . . . 2 1]. For all 1 ≤ j, n ≤ g,

rw0ww0(j, n) = j + n− g + rw(g − j, g − n).

In particular, for (w1, w2) ∈ W ,

rw1(j,m1) = j −m2 + rw2(g − j,m2).

1 in the language of Oort
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Table 6–1: w = ([1235467] , [1243567])

j 0 1 2 3 4 5 6 7

rw1(j, 4) 0 1 2 3 3 4 4 4

rw2(j, 3) 0 1 2 2 3 3 3 3

rw1(j, 4)− rw2(7− j, 3) -3 -2 -1 0 1 2 3 4

Proof.

rw0ww0(j, n) = # {w0ww0(1), . . . , w0ww0(j)} ∩ {1, . . . , n}

= # {w0w(g − j + 1), . . . , w0w(g)} ∩ {1, . . . , n}

= # {w(g − j + 1), . . . , w(g)} ∩ {g − n+ 1, . . . , g}

= j −# {w(g − j + 1), . . . , w(g)} ∩ {1, . . . , g − n}

= j − (g − n−# {w(1), . . . , w(g − j)} ∩ {1, . . . , g − n})

= j + n− g + rw(g − j, g − n).

As an example consider the element (w1, w2) ∈ W for (m1,m2) = (4, 3) of

length 1 where

w1 = [1235467] , w2 = [1243567] .

Then Table 6–1 shows the values of rwi(j,mi) for i = 1, 2 and the difference

rw1(j,m1)− rw2(g − j,m2).

Proposition 6.1.2. Let w ∈ Sg. Then

1. rw(i, j) = rw−1(j, i)
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2. Let J = Sg \ {sm}. Then for w ∈ Sg, rJw(j,m) = rw(j,m) for all 1 ≤ j ≤ g

and rwJ (m, j) = rw(m, j) for all 1 ≤ j ≤ g.

3. 0 ≤ rw(s, n)− rw(t, n) ≤ s− t for 0 ≤ t < s ≤ g, n ∈ {0, . . . , g}.

Proof. First, rw(i, j) = rw−1(j, i). That is,

rw(i, j) = # {a ≤ i | w(a) ≤ j}

= #({w(1), w(2), . . . , w(i)} ∩ {1, 2 . . . , j})

= #({1, 2 . . . , i} ∩
{
w−1(1), w−1(2), . . . , w−1(j)

}
)

= #
{
a ≤ j

∣∣ w−1(a) ≤ i
}

= rw−1(j, i).

As the map Sg → JSg consists of taking w = [w1w2 . . . wg] and linearly ordering

1 ≤ wi ≤ m and m + 1 ≤ wj ≤ g on the same places, it follows that w(i) ≤ m if

and only if Jw(i) ≤ m. Therefore,

rw(i,m) = # {a ≤ i | w(a) ≤ m} = #
{
a ≤ i

∣∣ Jw(a) ≤ m
}

= rJw(i,m).

On the other hand, the map Sg → SJg consists of taking w = [w1w2 . . . wg] and

linearly ordering w1, . . . , wm and wm+1, . . . , wg. In particular,

{w(1), . . . , w(m)} =
{
wJ(1), . . . , wJ(m)

}
.
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Therefore,

rw(m, j) = # {a ≤ m | w(a) ≤ j}

= #({w(1), w(2), . . . , w(m)} ∩ {1, 2 . . . , j})

= #(
{
wJ(1), wJ(2), . . . , wJ(m)

}
∩ {1, 2 . . . , j})

= rwJ (m, j).

Finally, it follows from the definition that rw(s + 1, n) is either rw(s, n) or

rw(s, n) + 1 depending on whether w(s + 1) is greater than n or not. In other

words, 0 ≤ rw(s, n)− rw(t, n) ≤ s− t for 0 ≤ t < s ≤ g, n ∈ {0, . . . , g}.

For 1 ≤ t ≤ g, let

µwi(t) := min {0 ≤ j ≤ mi+1 | rwi(t,mi + j) = t}

and

νwi(t, u) := t− rwi(t, u). (6.1)

Lemma 6.1.3. The inequality µwi(t) ≥ νwi(t,mi) holds for all 1 ≤ t ≤ g.

Furthermore, the following are equivalent:

• µwi(t) = νwi(t,mi),

• w = (w1, w2) ∈ JW ,

• rwi(t,mi + νwi(t,mi)) = t.

Proof. Let 1 ≤ t ≤ g. Then µwi(t) = s implies that

{wi(1), . . . , wi(t)} ⊆ {1, . . . ,mi + s}
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and

rwi(t,mi) = # {wi(1), . . . , wi(t)} ∩ {1, . . . ,mi} ≤ t− s.

In other words, µwi(t) ≥ t− rwi(t,mi) = νwi(t,mi).

Recall that w ∈ JiWi if and only if w−1
i (1) < . . . < w−1

i (mi) and w−1
i (mi + 1) <

. . . < w−1
i (g). Hence if µwi(t) = s,

# {wi(1), . . . , wi(t)}∩{1, . . . ,mi + s} = # {1, . . . , t}∩
{
w−1
i (1), . . . , w−1

i (mi + s)
}

= t

and there exists 1 ≤ r ≤ t such that wi(r) = mi + s. Thus,

# {1, . . . , t} ∩
{
w−1
i (1), . . . , w−1

i (mi + s)
}

= t.

Since wi ∈ JiWi, w
−1
i (mi + 1) < . . . < w−1

i (mi + s) = r ≤ t. Therefore

# {1, . . . , t} ∩
{
w−1
i (mi + 1), . . . , w−1

i (mi + s)
}

= s

and

# {1, . . . , t} ∩
{
w−1
i (1), . . . , w−1

i (mi)
}

= t− s,

giving µwi(t) = νwi(t,mi).

On the other hand, suppose that µwi(t) = νwi(t,mi) for all 1 ≤ t ≤ g. It is

enough to show that w−1
i (mi + 1) < . . . < w−1

i (g) for i = 1, 2 as w−1
i (mi + 1) <

. . . < w−1
i (g) if and only if w−1

i+1(1) < . . . < wi+1i
−1(mi+1).

By the definition of µwi , for each t, either wi(t) ≤ mi and νwi(t,mi) =

νwi(t − 1) or wi(t) = mi + µwi(t) and νwi(t,mi) = νwi(t − 1) + 1. Since

µwi(t) = νwi(t,mi), either wi(t) ≤ mi or t = w−1
i (mi + νwi(t,mi)). But νwi is

non-decreasing, (either νwi(t + 1) = νwi(t,mi) or νwi(t + 1) = νwi(t,mi) + 1), and
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hence, w−1
i (mi + 1) < . . . < w−1

i (g) for i = 1, 2. Therefore, w ∈ JW . This also

shows that if µwi(t) = νwi(t,mi) for all 1 ≤ t ≤ g, then rwi(t,mi + νwi(t,mi)) = t

for 1 ≤ t ≤ g.

Finally, if rwi(t,mi + νwi(t,mi)) = t, then νwi(t,mi) ≥ µwi(t) by the definition

of µwi . But we always have that νwi(t,mi) ≤ µwi(t), so equality holds.

Define γ : C2 → C2 (where C2 is the cyclic group of order two) by either

γ(i) = i + 1 for i = 1, 2 or γ(i) = i. These two choices will again allow us to

differentiate between the two different cases for unitary Shimura varieties that we

are considering.

Proposition 6.1.4. Fix a choice of γ as above. Let (w1, w2) ∈ W (i.e. wi ∈ Sg

and w2 = w0w1w0). Then there exists a choice of functions

di : {0, . . . , 2g} → {0, . . . , g}

satisfying

1. d1(j) + d2(j) = j,

2. 0 ≤ di(j)− di(n) ≤ j − n for j < n;

3. di(2g − j) = g − di+1(j).

and a unique w ∈ S2g such that

w−1(1) < . . . < w−1(g), w−1(g + 1) < . . . < w−1(2g),

rw(j, g) = rw1(d1(j),m1) + rw2(d2(j),m2),

and

dγ(i)(νw(j, g)) = νwi(di(j),mi)
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for all 0 ≤ j ≤ 2g.

Proof. Begin by defining functions di and ν inductively on a subset of {0, . . . , 2g}.

Let ν(0) = di(0) = 0 and di(2g) = ν(2g) = g for i = 1, 2 (this is forced by

properties (1) and (3) of the di. Let T be the subset of {0, . . . , 2g} on which the di

are defined. Then, for j ∈ T such that
∑
νwi,i(di(j),mi) /∈ T , set

ν(j) :=
∑

νwi(di(j),mi),

dγ(i)(ν(j)) := νwi(di(j),mi),

di(2g − ν(j)) := g − di+1(ν(j)),

and

ν(2g − ν(j)) :=
∑
i=1,2

νwi(di(2g − ν(j),mi)

for i = 1, 2. Repeat until
∑
νwi(di(j),mi) ∈ T for all j ∈ T .

Then di : T → {0, . . . , g} satisfies the following properties:

1. d1(j) + d2(j) = j,

2. 0 ≤ di(j)− di(n) ≤ j − n for j < n;

3. di(2g − j) = g − di+1(j).

Properties (1) and (3) of di are immediate from the definition. For (2), we prove it

by induction on the size of T (starting with T = {0, g, 2g} and increasing the size

as new elements are added to T by the above construction, in particular, if j ∈ T ,

then so it 2g − j).

Suppose first that 0 ≤ n < j ≤ g. Then there exists some j′, n′ ∈ T such that

j = ν(j′) and n = ν(n′). Since ν(n′) < ν(j′), νwi(di(n
′),mi) < νwi(di(j

′),mi) for at
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least one of i = 1, 2. We may assume that it is true for i = 1. Then d1(n′) < d1(j′)

as νwi is non-decreasing by Proposition 6.1.2. By the inductive hypothesis, n′ < j′

and d2(n′) ≤ d2(j′). Therefore,

νwi(di(n
′),mi) ≤ νwi(di(j

′),mi)

for i = 1, 2, and

0 ≤ νwi(di(j
′),mi)− νwi(di(n′),mi)

= dγ(i)(ν(j′))− dγ(i)(ν(n′))

= dγ(i)(j)− dγ(i)(n)

≤
∑
i=1,2

νwi(di(j
′),mi)− νwi(di(n′),mi)

= ν(j′)− ν(n′) = j − n.

On the other hand, suppose that g ≤ n < j ≤ 2g. Then there exists some

j′, n′ ∈ T such that j = 2g − ν(j′) and n = 2g − ν(n′). Then, without loss of

generality, νw1(d1(j′),m1) < νw1(d1(n′),m1) and d1(j′) < d1(n′). By the inductive

hypothesis, j′ < n′ and

νwi(di(j
′),mi) ≤ νwi(di(n

′),mi)
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for i = 1, 2. Therefore,

0 ≤ νwi(di(n
′),mi)− νwi(di(j′),mi)

= (g − dγ(i)(ν(j′))− (g − dγ(i)(ν(n′))

= dγ(i)(j)− dγ(i)(n)

≤
∑
i=1,2

νwi(di(n
′),mi)− νwi(di(j′),mi)

= ν(n′)− ν(j′) = j − n.

Finally suppose that 0 ≤ n < g < j ≤ 2g. By the previous two cases,

0 ≤ di(g)− di(n) ≤ g − n

and

0 ≤ di(j)− di(g) ≤ j − g

which combine to give the desired result. Therefore di : T → {0, . . . , g} satisfies the

given properties for i = 1, 2.

Now, the stopping condition implies that ν : T → T ∩ {0, . . . , g}. Furthermore,

ν and T satisfy the following properties:

1. T is stable under t 7→ 2g − t;

2. ν(2g) = g and ν(0) = 0;

3. 0 ≤ ν(j)− ν(n) ≤ j − n for n < j ∈ T ;

4. for any two consecutive elements in T , n < j, then ν(j)−ν(n) = j−n implies

that ν(2g − j) = ν(2g − n);

5. ν is surjective.
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Now, items (1), (2) and (5) are immediate by definition. For (3),

ν(j)− ν(n) =
∑
i=1,2

(νwi,i(di(j))− νwi,i(di(n))),

=
∑
i=1,2

di(j)− di(n)− (rwi(di(j),mi)− rwi(di(n))).

But di(j) ≥ di(n), 0 ≤ rwi(s,mi) − rwi(t,mi) ≤ s − t for 0 ≤ s ≤ t ≤ g and

d1(j) + d2(j) = j. Thus

0 ≤ ν(j)− ν(n) ≤
∑
i=1,2

di(j)− di(n) = j − n.

Finally, for (4), suppose that n < j such that there is no k such that n < k < j

and ν(j)− ν(n) = j − n. Then

ν(2g − j)− ν(2g − n) =
∑
i=1,2

νwi(di(2g − j),mi)− νwi(di(2g − n),mi)

=
∑
i=1,2

νwi(g − di+1(j),mi)− νwi(g − di+1(n),mi)

= j − n−
∑
i=1,2

rwi(g − di+1(j),mi)− rwi(g − di+1(n),mi)

= j − n−
∑
i=1,2

rwi(g − di+1(j), g −mi+1)

= j − n−
∑
i=1,2

(rwi(di(j),mi)− di(j)−mi + g)

+
∑
i=1,2

(rwi(di(n),mi)− di(n)−mi + g)

= j − n− ν(j) + ν(n)

= j − n− (j − n) = 0.
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The properties (1) − (5) of ν and T are exactly the properties needed to satisfy

[EvdG09, Lemma 2.11], which in particular, means that either ν(n) = ν(n′) or

ν(n) − ν(n′) = n − n′ for all n, n′ ∈ T , and that ν : T → {0, . . . , g} ∩ T can

be extended linearly to a non-decreasing surjective function ν : {0, . . . , 2g} →

{0, . . . , g} satisfying ν(2g − j) = ν(j) − j + g for 1 ≤ j ≤ g. Furthermore, by

[EvdG09, Corollary 2.13], there exists a unique element w ∈ S2g such that

w−1(1) < . . . < w−1(g), w−1(g + 1) < . . . < w−1(2g),

and ν(j) = νw(j, g) for all 0 ≤ j ≤ 2g.

Note that the statement rw(j, g) = rw1(d1(j),m1) + rw2(d2(j),m2) is equivalent

to νw(j, g) =
∑

i=1,2 νwi(di(j),mi). Therefore, di and w satisfy the requirements of

the proposition for all j ∈ T . It remains to extend di to the rest of {0, . . . , 2g}.

Claim. Let n, n′ be two consecutive elements in T where n+ 1 < n′. Then either

• νw(n, g) = νw(n′, g) and 1 ≤ wi(j) ≤ mi for all di(n) + 1 ≤ j ≤ di(n
′), or

• νw(n, g) − νw(n′, g) = n − n′ and mi + 1 ≤ wi(j) ≤ g for all di(n
′) + 1 ≤ j ≤

di(n).

First suppose that νw(n, g) = νw(n′, g). Then,

νwi(di(n),mi) = dγ(i)(νw(n, g)) = dγ(i)(νw(n′, g)) = νwi(di(n
′),mi).

But νwi(−,mi) is non-decreasing, so νwi(j,mi) = νwi(di(n),mi) for all di(n) ≤

j ≤ di(n
′). By definition of νwi(j,mi), this means that 1 ≤ wi(j) ≤ mi for all

di(n) + 1 ≤ j ≤ di(n
′).

146



On the other hand, suppose that νw(n, g) − νw(n′, g) = n − n′. Then

νw(2g − n, g) = νw(2g − n′, g) so that for di(2g − n) + 1 ≤ j ≤ di(2g − n′),

1 ≤ wi(j) ≤ mi. But

g − di+1(n) + 1 = di(2g − n) + 1 ≤ j ≤ di(2g − n′) = g − di+1(n′)

and di+1(n′) + 1 ≤ g− j+ 1 ≤ di+1(n). Then mi+1 + 1 ≤ wi+1(g− j+ 1) ≤ g proving

the desired result.

Now, we can define di on the rest of {0, . . . , 2g}. Set T0 to be the original

set on which ν and di were defined. Let S be the set on which di has yet to be

defined. Then as long as S is not empty, let j be the smallest element in S and let

n = max {t ∈ T0 | t < j} , n′ = min {t ∈ T0 | t > j} .

In particular, n < j < n′ where n, n′ are two consecutive elements in T0. Then

either νw(n, g) = νw(j, g) or νw(j, g)− νw(n, g) = j − n.

First, suppose that νw(n, g) = νw(n′, g). Then νw(n, g) = νw(j−1, g) = νw(j, g).

Since j was the smallest element for which di was not yet defined, di is defined for

j − 1. Fix i such that di(n
′)− di(j − 1) > 0. Then by the claim,

νwi(di(n),mi) = νwi(di(j − 1),mi) = νwi(di(j − 1) + 1,mi) = νwi(n
′,mi).

Set di(j) := di(j − 1) + 1, di+1(j) = di+1(j − 1), di(2g − j) = g − di+1(j) and

di+1(2g − j) = g − di(j).
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Now, suppose that νw(n′, g) − νw(n, g) = n′ − n, and hence νw(n′, g) − νw(j −

1, g) = n′ − (j − 1) > 0. Fix i so that

dγ(i)(νw(n′, g))− dγ(i)(νw(j − 1, g)) > 0.

Then set di(j) := di(j − 1) + 1, di+1(j) = di+1(j − 1), di(2g − j) = g − di+1(j) and

di+1(2g − j) = g − di(j). Observe that di(n) + 1 ≤ di(j − 1) + 1 = di(j) ≤ di(n
′),

and by the claim,

νwi(di(j),mi) = νwi(di(j− 1),mi) + 1, νwi+1
(di+1(j),mi+1) = νwi+1

(di+1(j− 1),mi+1).

By induction on the construction, at each step di satisfies

1. d1(j) + d2(j) = j,

2. 0 ≤ di(j
′)− di(n′) ≤ j′ − n for j′ < n′, j′, n′ ∈ {0, . . . , 2g} \ S,

3. di(2g − j) = g − di+1(j), and

4. dγ(i)(νw(j)) = νwi(di(j),mi),

completing the proof.

Remark. Lemma 6.1.4 provides a canonical map from JW to J ′W ′ where W ′ is

the Weyl group of the symplectic group with 2g elements and J ′ is the subset of

standard simple reflections for W ′ with sg removed.

6.1.0.1 Examples

We now give examples of how Proposition 6.1.4 works for the element

([1235467] , [1243567]) ∈ JW and (m1,m2) = (4, 3) for both choices of γ : C2 → C2.

First consider the case where γ(i) = i. The first step of the construction of
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Table 6–2: w = ([1235467] , [1243567]), γ(i) = i

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d1(j) 0 0 0 0 1 2 3 3 3 4 5 6 7

d2(j) 0 1 2 3 4 4 4 5 6 7 7 7 7

ν(j) 0 0 0 1 1 1 1 2 3 5 5 6 7

νw1(j,m1) 0 0 0 0 0 0 0 0 0 1 1 2 3

νw2(j,m2) 0 0 0 1 1 1 1 2 3 4 4 4 4

Table 6–3: First choice of d1, d2

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d1(j) 0 0 0 0 0 1 2 3 3 3 3 4 5 6 7

d2(j) 0 1 2 3 4 4 4 4 5 6 7 7 7 7 7

ν(j) 0 0 0 1 1 1 1 1 2 3 4 5 5 6 7

νw1(j,m1) 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3

νw2(j,m2) 0 0 0 1 1 1 1 1 2 3 4 4 4 4 4

Table 6–4: Second choice of d1, d2

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d1(j) 0 0 0 0 1 1 2 3 3 3 4 4 5 6 7

d2(j) 0 1 2 3 3 4 4 4 5 6 6 7 7 7 7

ν(j) 0 0 0 1 1 1 1 1 2 3 4 5 5 6 7

νw1(j,m1) 0 0 0 0 0 0 0 0 0 0 1 1 1 2 3

νw2(j,m2) 0 0 0 1 1 1 1 1 2 3 3 4 4 4 4
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Table 6–5: w = ([1235467] , [1243567]), γ(i) = i+ 1

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d1(j) 0 1 3 4 5 6 7

d2(j) 0 1 2 3 4 6 7

ν(j) 0 0 0 2 2 5 7

νw1(j,m1) 0 0 0 1 1 2 3

νw2(j,m2) 0 0 0 1 1 3 4

Table 6–6: First choice of d1, d2

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d1(j) 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

d2(j) 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7

ν(j) 0 0 0 0 0 0 1 2 2 2 3 4 5 6 7

νw1(j,m1) 0 0 0 0 0 0 0 1 1 1 1 2 2 3 3

νw2(j,m2) 0 0 0 0 0 0 1 1 1 1 2 2 3 3 4

Table 6–7: Second choice of d1, d2

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d1(j) 0 0 1 2 2 3 4 4 5 5 5 6 6 6 7

d2(j) 0 1 1 1 2 2 2 3 3 4 5 5 6 7 7

ν(j) 0 0 0 0 0 0 1 2 2 2 3 4 5 6 7

νw1(j,m1) 0 0 0 0 0 0 1 1 1 1 1 2 2 2 3

νw2(j,m2) 0 0 0 0 0 0 0 1 1 1 2 2 3 4 4
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Proposition 6.1.4 partially defines the functions ν, d1 and d2, and this is exhibited

in Table 6–2 as determined immediately from (w1, w2). As expected, the partial

function ν(j) in Table 6–2 extends uniquely to a non-decreasing function. In this

example, ν corresponds to the element of length 9 in S2g,

w = [1 2 8 3 4 5 6 9 10 11 12 7 13 14] .

Since Table 6–2 is not complete, extending d1 and d2 to all of {1, . . . , 14} involves

making choices, and in this example there are two possible choices for the pair of

functions d1 and d2, as in Tables 6–3 and 6–4 respectively.

For the other choice of γ : C2 → C2, the first step of Proposition 6.1.4

partially defines the functions ν, d1 and d2 as in Table 6–5. The partial function

ν(j) in Table 6–5 extends uniquely to a non-decreasing function ν : {1, . . . , 14} →

{1, . . . , 7}. This time, the element w ∈ S2g corresponding to ν is the element of

length 4,

w = [1 2 3 4 5 8 9 6 7 10 11 12 13 14]

and there are again two choices for the pair d1, d2 satisfying the desired conditions.

Tables 6–6 and 6–7 give the two choices for d1 and d2.

6.1.1 Complementary elements and canonical domains

Let (w1, w2) ∈ JW . Then the canonical domain for (w1, w2) is the smallest

pair of sets (D1, D2) where {0, g} ⊆ Di ⊆ {0, 1, . . . , g} for i = 1, 2 such that if

j ∈ Di then g − j ∈ Di+1 and νwi(j,mi) ∈ Dγ(i).

Lemma 6.1.5. Let w ∈ S2g and d1, d2 : {0, . . . , 2g} → {0, . . . , g} be the resulting

element and functions associated to (w1, w2) from Proposition 6.1.4. Let D be the
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smallest set containing {0, 2g} such that if j ∈ D, so is νw(j, g) and 2g − j. Then

di(D) = Di for i = 1, 2.

Proof. This follows by induction from the construction of D and (D1, D2) together

with the properties that follow from Proposition 6.1.4 that

νwi(di(j),mi) = dγ(i)(νw(j, g))

and

di(2g − j) = g − di+1(j).

Corollary 6.1.6. If ti < si are successive elements in Di, then either:

νwi(si,mi) = νwi(ti,mi)

or

νwi(si,mi)− νwi(n,mi) = si − n

for all ti ≤ n ≤ si.

Proof. Suppose νwi(si,mi) 6= νwi(ti,mi). Since Di = di(D), there exist elements s, t

in D such that di(s) = si and di(t) = ti. Let s be the smallest element in D such

that di(s) = si and let t be the largest element in D such that di(t) = ti, so that

t < s are consecutive elements in D. Then by Lemma-Definition 2.11 of [EvdG09],

νw(s, g)− νw(t, g) = s− t. By Proposition 6.1.4,

∑
i=1,2

νwi(di(s),mi)− νwi(di(t),mi) = νw(s, g)− νw(t, g) = s− t =
∑
i=1,2

di(s)− di(t)
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but by Proposition 6.1.2,

0 ≤ νwi(di(s),mi)− νwi(di(t),mi) ≤
∑
i=1,2

di(s)− di(t),

and hence νwi(si,mi)− νwi(ti,mi) = si − ti.

For J ⊆ Sg, write w0(J) for the longest element of the subgroup of Sg gener-

ated by the elements of J . For an element wi ∈ JiSg, define its complementary

element vi ∈ Ji+1Sg to be the element vi = w0w0(Ji)wi, and let the complemen-

tary element of (w1, w2) ∈ JW be (v1, v2) where vi is the complementary element

of wi ∈ JiSg.

Remark. The map taking wi to it complementary element vi is the composition of

two maps. First, the order reversing automorphism [BB05, Prop 2.5.4]

JiSg → JiSg

wi 7→ w0(Ji)wiw0

and secondly,

JiSg → Ji+1Sg

wi 7→ w0wiw0.

Lemma 6.1.7. Let w = (w1, w2) ∈ JW and let (v1, v2) be the complementary

element of w. Then

1. 1 ≤ wi(a) ≤ mi if and only if mi+1 + 1 ≤ vi(a) ≤ g, and

2. if νwi(j,mi) 6= νwi(j − 1,mi) then vi(j) = νwi(j,mi), otherwise, if νwi(j,mi) =

νwi(j − 1,mi) then vi(j) = g − νwi+1
(g − j,mi+1).
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Proof. First, note that w0(Ji) = mi mi − 1 . . . 1 g g − 1 . . .mi + 1 implies: 1 ≤

wi(a) ≤ mi if and only if 1 ≤ w0(Ji)wi(a) ≤ mi if and only if g ≥ w0w0(Ji)wi(a) ≥

mi+1 + 1. Therefore, 1 ≤ wi(a) ≤ mi if and only if mi+1 + 1 ≤ vi(a) ≤ g, as

Suppose that νwi(j,mi) 6= νwi(j−1,mi). Then j = w−1
i (n) for some n ≥ mi+1.

Since wi ∈ JiSg, w
−1
i (mi + 1) < . . . < w−1

i (n) = j so that νwi(j,mi) = n −mi. On

the other hand,

w0w0(Ji)wi(j) = w0w0(Ji)(n) = w0(g − (n−mi) + 1) = n−mi

and v(j) = νwi(j,mi).

Finally, suppose that νwi(j,mi) = νwi(j − 1,mi). Then j = w−1
i (n) for some

n ≤ mi, and

w−1
i (1) < . . . < w−1

i (n) = j.

Since wi = w0wi+1w0,

w−1
i+1(mi+1 + 1) < . . . < w−1

i+1(g − n) ≤ g − j

and νwi+1
(g − j,mi+1) = mi − n. But

vi(j) = w0(mi − n+ 1) = g −mi + n = mi+1 + n

and the desired result holds.

Example 6.1.8. The complementary element of (w1, w2) where w1 = [1235467]

and w2 = [1243567] is (v1, v2) where v1 = [4561723] and v2 = [5617234]. The
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canonical domain of w is (D1, D2) depending on γ : C2 → C2. Therefore,

D1 = {0, 1, 2, 3, 4, 5, 6, 7} , D2 = {0, 1, 2, 3, 4, 5, 6, 7} , γ(i) = i

and

D1 = {0, 1, 3, 4, 5, 6, 7} , D2 = {0, 1, 2, 3, 4, 6, 7} , γ(i) = i+ 1.

Let vi ∈ Ji+1Sg and vi+1 = w0viw0. Then a canonical fragment for

vi is a maximal interval (j, j′] ⊆ {1, . . . , g} such that vni ((j, j′]) where vni :=

vγn−1(i) ◦ . . . ◦ vγ(i) ◦ vi stays an interval for all n. We will use (i, (n, n′]) to denote

a canonical fragment of vi when we want to keep track of whether (n, n′] is a

canonical fragment for vi or vi+1. In that case, we will let v((i, I)) := (γ(i), vi(I))

to simplify notation.

Proposition 6.1.9. Let w ∈ JW , and v = (v1, v2) be the complementary element

of w. Then

1. {1, 2, . . . , g} is a disjoint union of the canonical fragments for vi, and the

canonical fragments of v1 and v2 are permuted by vni for i = 1, 2.

2. If (j, j′] is a canonical fragment for vi, then (i+1, (g−j′, g−j]) is a canonical

fragment for vi+1.

3. The set of upper endpoints of the canonical fragments of vi together with 0 is

exactly Di where (D1, D2) is the canonical domain of (w1, w2).

Proof. For every j ∈ {1, 2, . . . , g}, vni ((j − 1, j]) stays an interval for all n, so

every element in {1, 2, . . . , g} is in a canonical fragment. Now, suppose that two

different canonical fragments I and J for vi have non-empty intersection. Then

155



vni (I ∪ J) = vni (I) ∪ vni (J) is an interval for all n, so by maximality I = J , proving

part (1).

Part (2) follows from the observation that vni+1 = w0v
n
i w0 as γn(i + 1) =

γn(i) + 1 for all n. Then for any interval (j, j′],

vni+1((g − j′, g − j]) = g − vni ((j, j′]) + 1 (6.2)

so that vni ((j, j′]) is an interval for all n if and only if vni+1((g − j′, g − j]) is an

interval for all n.

Let Ri be the set of upper endpoints of the canonical fragments of vi together

with 0. In order to show that Ri ⊇ Di, we need to show that if j ∈ Ri, then

g − j ∈ Ri+1 and νwi(j,mi) ∈ Rγ(i). By (1), if (j′, j] is a canonical fragment

for vi, then both j and j′ are in Ri. Therefore, (2) implies that if j ∈ Ri, then

g − j ∈ Ri+1.

Let j′ ∈ Ri. Then j′ is the upper endpoint of a canonical fragment (j, j′] for

vi. If νwi(j
′,mi) 6= νwi(j

′ − 1,mi), then by Lemma 6.1.7 vi(j) = νwi(j,mi) so

that vi((j, j
′]) = (vi(j

′) − (j′ − j), vi(j
′)] as vi((j, j

′])) is an interval. Therefore,

vi(j
′) ∈ Rγ(i).

Now, suppose that
{
a ∈ Ri

∣∣ νwi(a,mi) /∈ Rγ(i)

}
is non-empty, and let j′ be

the smallest such element. Then νwi(j
′,mi) = νwi(j

′−1,mi) 6= 0. Let j ∈ {1, . . . , g}

be such that νwi(j,mi) = νwi(j
′,mi) but νwi(j − 1,mi) 6= νwi(j,mi). Then by

Lemma 6.1.7, j and j′ cannot be in the same canonical fragment, and there exists

an j ≤ n < j′ such that (n, j′] is a canonical fragment. But the n ∈ Ri and
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νwi(n,mi) = νwi(j
′,mi) /∈ Rγ(i), but j′ was the smallest such element by definition.

Therefore νwi(j,mi) ∈ Ri for all j ∈ Ri.

To show the reverse inclusion, it suffices to show that if j < j′ are successive

elements in Di, then vni ((j, j′]) is an interval and vni (j′) is an endpoint of vni ((j, j′])

for all n. This would mean that I = (j, j′] is contained in a canonical fragment for

vi and j′ is the only element of Di that can be in Ri. Therefore Ri ⊆ Di.

We now show that if j < j′ are successive elements in Di, then vni ((j, j′]) is

an interval and vni (j′) is an endpoint of vni ((j, j′]) for all n. First, observe that if

j ∈ Di, then vni (j) ∈ Dγn−1(i) and even more, vni ((j, j′]) ∩ Dγn−1(i) = vni (j) by

Lemma 6.1.7 and the definition of the canonical domain. Suppose that vni ((j, j′])

is an interval and vni (j′) is an endpoint of vni ((j, j′]) for some n. Then since

vni ((j, j′]) ∩ Dγn−1(i) = vni (j), it follows that either νwi(−,mi) is constant on

vni ((j, j′]) or νwi(vi(j
′),mi) − νwi(a,mi) = vi(j

′) − a for a ∈ vni ((j, j′]) by Corollary

6.1.6. If νwi(−,mi) is constant on vni ((j, j′]), and (a′, vni (j′)] = vni ((j, j′]), then

νwi(v
n
i (j′),mi) = νwi(a,mi) and νwi(g − vni (j′),mi) − νwi(g − a,mi) = vni (j′) − a

for all a′ ≤ a ≤ vni (j′) as vni (j′) ∈ Dγn−1(i) but a is larger than the next element to

vni (j′) in Dγn−1(i).

On the other hand, if νwi(v
n
i (j′),mi)−νwi(a,mi) = vni (j′)−a for a ∈ vni ((j, j′]),

then by Lemma 6.1.7, vi(a) = νwi(a,mi) for a′ < a ≤ vni (j′) and vn+1
i ((j, j′]) =

(νwi(a
′,mi), v

n+1
i (j′)].

Let (i, I) be a canonical fragment for vi. Then the orbit O of I is defined to

be

O := {(γn(i), vni (I)) | n ∈ N} .
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Note that vni (I) is a canonical fragment for vγn(i), as the first coordinate keeps

track of whether vni (I) is a canonical fragment for vi or vi+1. For a canonical

fragment (i, I) ∈ O, define its dual to be ˜(i, (n, n′]) := (i + 1, (g − n′, g − n]).

By (6.2), for (i, I) ∈ O, ˜(γ(i), vi(I)) = v((̃i, I)), and taking duals commutes with

applying v. Therefore,

Õ :=
{

(̃i, I)
∣∣∣ (i, I) ∈ O

}
.

is another orbit under v, called the dual orbit of O. An orbit O is said to be

self-dual if O = Õ. If O is not self-dual, then
{
O, Õ

}
is said to be a pair of

dual orbits.

Example 6.1.10. Recall that the complementary element of (w1, w2) where w1 =

[1235467] and w2 = [1243567] is (v1, v2) where v1 = [4561723] and v2 = [5617234].

When γ(i) = i, there is one orbit of canonical fragments for v1 that is dual to

the one orbit of canonical fragments for v2. All of the fragments are singletons

(i.e. (j, j + 1] for some j ∈ {0, . . . , 6}). This is consistent with the fact that the

canonical domain for w is D1 = {0, 1, 2, 3, 4, 5, 6, 7} , D2 = {0, 1, 2, 3, 4, 5, 6, 7}.

When γ(i) = i+ 1, the orbits of canonical fragments are

O1 : (0, 1]
v1 //(3, 4]

v2 //(6, 7]
v1 //(2, 3]

v2 //(0, 1]

O2 : (3, 4]
v1 //(0, 1]

v2 //(4, 5]
v1 //(6, 7]

v2 //(3, 4]

O3 : (1, 3]
v1 //(4, 6]

v2 //(1, 3]

O4 : (5, 6]
v1 //(1, 2]

v2 //(5, 6].

Then Õ1 = O2 and the orbits O3 and O4 are self-dual.
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6.2 Hodge flags

Let π : A → M be the structure map of the universal abelian variety A over

M. Recall that in general M can be taken to be a scheme over residue field of the

reflex field ED at a prime lying above p, κ(p), as in Section 2.1.2 (in particular,

over Fp or Fp2 depending on the choice of (m1,m2)). Throughout this chapter, we

will additionally take M to be defined over κ where κ = Fp or κ = Fp2 according

to whether p is split or inert in K to ensure that the OK/(p)-action on A can be

decomposed via the two characters χi : OK/(p) → κ for i ∈ {1, 2}. Recall that

there is an exact sequence of locally free sheaves on M:

0→ π∗(Ω
1
A/M)→ H1

dR(A/M)→ R1π∗(OA)→ 0

which we will denote by

0→ E→ H→ E∨ → 0

where E = π∗(Ω
1
A/M) is the Hodge bundle and H = H1

dR(A/M). The Frobenius

map F : A → A(p) and Verschiebung map V : A(p) → A are isogenies and induce

linear maps on the cohomology groups:

F : H(p) → H, V : H→ H(p).

Furthermore, im(V ) = ker(F ) = E(p), OK acts on E and H, and both FV and V F

are multiplication by p. Even more, F and V commute with the OK-action. Under

the OK ⊗Fp κ = κ1 ⊕ κ2-action, H and E decompose as

E = E1 ⊕ E2, rank(Ei) = mi,
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H = H1 ⊕H2, rank(Hi) = g.

The prime-to-p polarization on A induces a perfect pairing H1 × H2 → OM.

Furthermore, let γ : C2 → C2 be defined so that V (Hi) ⊆ H(p)
γ(i); that is γ(i) = i + 1

when p is inert in K and γ(i) = i when p is split in K.

Fix i = 1, 2 and consider the flag space Fi of complete flags of Hi,

Ei,• : 0 = Ei,0 ( Ei,1 ( . . . ( Ei,mi = Ei ( . . . ( Ei,g = Hi

such that the mth
i term is equal to Ei. Flags in Fi are called Hodge flags. Given

a Hodge flag Ei,•, construct an associated flag Ei+1,• by setting

Ei+1,j = E⊥i,g−j ∩Hi+1.

In particular, Ei+1,• is a flag in Fi+1 as Ei,j1 ) Ei,j2 implies that Ei+1,g−j1 ( Ei+1,g−j2

and E⊥ = E implies that Ei+1,mi+1
= Ei+1. Call Ei+1,• the complementary Hodge

flag to Ei,•, and a pair (E1,•, E2,•) such that

Ei+1,j = E⊥i,g−j ∩Hi+1, i ∈ {1, 2}

a complementary pair of Hodge flags.

Given a complementary pair of Hodge flags (Ei,•), define another pair of flags

as follows. For 0 ≤ j ≤ mγ(i), set

Di,mγ(i)+1+j := V −1(E (p)
γ(i),j) ∩Hi

and then let

Di,j := D⊥i+1,g−j ∩Hi
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for 0 ≤ j ≤ mγ(i)+1. Di,• is called the conjugate flag to Ei,• and the pair (Di,•) is

called the pair of conjugate flags to (Ei,•). It is a complementary pair as well.

Note that these constructions can be made in families over any scheme S in

characteristic p. That is, for A → S an abelian scheme over S coming from the

specialization of A → M over S →M, a Hodge flag for A → S is any complete

flag E• of Hi such that Emi is Ei. A Hodge flag for A → S is then the same as a

lifting of the classifying map S →M to a morphism S → Fi.

Let Gi be the flag space of complete flags of Hi over Fi (sic ). Then Gi → Fi is

a G/B-bundle where G is the group GL(Hi) and B is the Borel stabilizing Ei,•. Let

s : Fi → Gi be the tautological section and let t be the section defined by taking

Ei,• to its conjugate flag Di,•. Let Sg be the Weyl group of GL(Hi). As in Section

4.1 of [EvdG09], locally choose a trivialization of Gi such t is a constant section, so

that the trivialization s corresponds to a map Fi → G/B. Let Uw be the inverse

image of BwB under s, and let Uw be the inverse image of BwB. These definitions

are independent of the choice of trivializations and give rise to global subschemes

of Fi. Then a Hodge flag Ei,• is said to have relative position w if Ei,• ∈ Uw

and is said to have relative position ≤ w if Ei,• ∈ U
w

. Combinatorially, the

condition that a Hodge flag Ei,• has relative position w ∈ Sg then corresponds to

the condition that

rank(Di,j ∩ Ei,n) = rw(j, n),∀1 ≤ j, n ≤ g

and a Hodge flag Ei,• has relative position ≤ w if and only if

rank(Di,j ∩ Ei,n) ≥ rw(j, n),∀1 ≤ j, n ≤ g.
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Proposition 6.2.1. A Hodge flag Ei,• has relative position (≤)w if and only if its

associated Hodge flag Ei+1,• has relative position (≤)w0ww0.

Proof. Let 1 ≤ j ≤ n. Then Di+1,j = D⊥i,g−j ∩ Hi+1 and Ei+1,n = E⊥i,g−n ∩ Hi+1.

Therefore,

Di+1,j ∩ Ei+1,n = D⊥i,g−j ∩ E⊥i,g−n ∩Hi+1 = (Di,g−j ∩ Ei,g−n)⊥ ∩Hi+1.

Since Ei,• has relative position (≤)w, it follows from Lemma 6.1.1 that

rank(Di+1,j ∩ Ei+1,n) = 2g − rank(Di,g−j ∩ Ei,g−n)⊥ − g

= g − (2g − j − n− rank(Di,j ∩ Ei,n))

= j + n− g + rank(Di,j ∩ Ei,n)

(≥) = j + n− g + rw(j, n)

= j + n− g + rw(j, n)

= rw0ww0(j, n).

Now, consider the Weyl group,

W = {(w1, w2) ⊆ Sg × Sg | w2 = w0w1w0} .

A complementary pair of Hodge flags (Ei,•) is said to have relative position

(≤)(w1, w2) if Ei,• has relative position (≤)wi for i = 1, 2. By Proposition 6.2.1, the

relative position of a complementary pair of Hodge flags is an element in W .
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Proposition 6.2.2. Let X ∈ M(S) and let (Ei,•) be a complementary pair of

Hodge flags for X/S with conjugate flags (Di,•) and relative position ≤ (w1, w2)

such that (w1, w2) is the smallest element in W with that property. Then

1. for 1 ≤ n ≤ mγ(i) and 1 ≤ j ≤ mγ(i+1), rwi(mγ(i+1) + n, j) = j if and only if

V (Ei,j) ⊆ E (p)
γ(i),n with i = 1, 2;

2. for 1 ≤ n ≤ mi+1 and 1 ≤ j ≤ mi + n, rwi(j,mi + n) = j implies that

F (Di,j) ⊆ D(p)
γ(i),n, and the converse is true when S is reduced.

Proof. Since E• has relative position ≤ w, it follows that

j ≥ rank(Di,mγ(i+1)+n ∩ Ei,j) ≥ rwi(mγ(i+1) + n, j) = j,

and Ei,j ⊆ Di,mγ(i+1)+n = V −1(Eγ(i),n) ∩ Hi as 1 ≤ n ≤ mγ(i). This happens if and

only if V (Ei,j) ⊆ E (p)
γ(i),n.

Suppose that rwi(j,mi + n) = j. Then

j = rwi(j,mi + n) ≤ rank(Di,j ∩ Ei,mi+n) ≤ j

and Di,j ⊆ Ei,mi+n. But then,

D(p)
i,j ⊆ E

(p)
i,mi+n

= (E (p)
i+1,mi+1−n)⊥ ∩H(p)

i = V (Dγ(i+1),g−n)⊥ ∩H(p)
i .

In other words, for all u ∈ D(p)
i,j and v ∈ Dγ(i+1),g−n, 〈u, V v〉 = 0, and

〈Fu, v〉 = 〈u, V v〉 = 0.

Therefore,

F (D(p)
i,j ) ⊆ D⊥γ(i+1),g−n = Dγ(i),n ⊕Dγ(i+1),g
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and hence F (D(p)
i,j ) ⊆ Dγ(i),n as desired. The converse holds by reversing the

argument when S is reduced.

6.3 Canonical flags

Similar to [EvdG09, Section 3.2], we now construct the analogue of the

canonical filtration of the p-torsion group scheme of A[p] for vector bundles. See

[Box15, Section 4.2.3] for the construction of the canonical filtration on the level of

p-torsion group schemes.

Let S be a Noetherian scheme in characteristic p. For any abelian scheme

A/S coming from S →M, let Dg denote ker(V : H1
dR(A/M)→ H1

dR(A/M)(p)) or

its specialization over S → M. This is the same as V −1(0).We will also use H to

denote H1
dR(A/S). Under the OK/(p)-action,

Dg = D1 ⊕ D2, rank(Di) = mγ(i)+1.

For simplicity of notation, for any D ⊆ H, write F (D) for F (D(p)) and

V −1(D) for V −1(D(p)) as necessary so that for any finite word R in F and V −1,

the resulting R(D) ⊆ H. We also need to ensure that we get subbundles of H

at every step in order to check for equality. Now, if D is a subbundle of H over

a base T , then the rank of F (D(p)) is locally constant over T , and there exists a

unique minimal and canonical decomposition of T into locally closed subschemes

such that the rank of F (D(p)) is constant on each subscheme. Similarly, since

V −1(D(p)) = (F (D(p))⊥)⊥, the analogous property holds for V −1. Therefore,

for every word R, there exists a minimal decomposition of S into locally closed

subschemes such that over each subscheme the rank of R(D) is constant. For what
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follows, suppose that the base scheme S has been replaced by the requisite disjoint

union of subschemes so that the comparison between R1(Dg) and R2(Dg) for two

different words R1 and R2 in F, V −1 makes sense.

Lemma 6.3.1. Let Dg = V −1(0) for some A/S. Suppose that R1, R2 are two

words in F, V −1 of finite length. Then either R1(Dg) ⊆ R2(Dg) or vice versa.

Proof. This is the vector bundle analogue of [Box15, Lemma 4.2.2] and [Moo01,

Section 2.5]. First, note that for any D ⊆ H, F (D) ⊆ Dg ⊆ V −1(D), and this

also settles the case where one of the Ri is the empty word. Now, when R1 and R2

both start with the same letter, the result follows by induction on the length of

R1, R2. Otherwise, we may assume that R1 = FR′1 and R2 = V −1R′2. Then

R1(Dg) = FR′1(Dg) ⊆ Dg ⊆ V −1R′2(Dg) = R2(Dg)

and the result follows.

Let R be the set of all finite words in F and V −1. Then by Lemma 6.3.1, the

set {R(Dg) | R ∈ R} is finite, and can be ordered by inclusion giving a filtration:

C• : 0 = C0 ( C1 ( . . . ( Cc = Dg ( . . . ⊆ Cn = H.

This is called the canonical flag of A/S.

Lemma 6.3.2. The canonical flag C• is the coarsest F, V −1-stable symplectic flag

of H such that each Cj is OK-stable. Even more, C⊥j = C2c−j for 0 ≤ j ≤ c where

Cc = Dg.
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Proof. C• is the coarsest F, V −1-stable flag of H by construction, and the Cj are

OK-stable as F and V commute with the OK-action. Furthermore, the length of

the filtration is 2c where Cc = Dg.

It remains to show that C• is symplectic. This is analogous to [Box15,

Proposition 4.2.14]. Let C ⊆ H. Under the pairing 〈 , 〉 induced on H by the

polarization λ on A, F (C)⊥ = V −1(C⊥) and F (C⊥) = V −1(C)⊥. Furthermore,

Cc = Dg = D⊥g = C⊥c . For R ∈ R and let R′ be the opposite of R in that F

and V −1 are exchanged. Therefore, for any C ⊆ H, R′(C) = R(C)⊥ so that C• is a

symplectic flag and C⊥j = C2c−j for 0 ≤ j ≤ c as desired.

Since each Cj in C• is OK-stable, C• decomposes under the OK ⊗Fp k =

k1 ⊕ k2 action into two separate flags Ci,• for i ∈ {1, 2}. Let the canonical

decomposition of S be the minimal decomposition of S into locally closed

subschemes S =
∐
Sα such that each Ci,j in the flag Ci,• for i ∈ {1, 2} has

constant rank over Sα (see [Box15, Thm 4.2.18] for more details). The Sα are

called the strata of S. For what follows, the pair of canonical flags (C1,•, C2,•)

will be viewed as being defined over the canonical decomposition of S. It will be

convenient to index the elements of the of the canonical flags by their ranks; that

is,

Ci,• : 0 = Ci,j1 ( Ci,j2 ( Ci,mγ(i)+1
= Di ( . . . ( Ci,g = Hi

for i = 1, 2 where Dg = D1 ⊕ D2 is the decomposition of Dg under k1 ⊕ k2 and

jn = rank(Ci,jn).

Recall the definition from (6.1) that for wi ∈ Sg, νwi(t, u) = t − rwi(t, u) =

# {a ≤ t | w(a) > u}.
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Proposition 6.3.3. Let A ∈ M(S), let C• be the canonical flag of A/S and let

(C1,•, C2,•) be its associated pair of canonical flags. For each stratum Sα in the

canonical decomposition of S, there exists an element w = (w1, w2) ∈ JW such that

F (C(p)
i,j ) = Cγ(i),νwi (j,mi)

, V −1(C(p)
i,j ) = Cγ(i),g−νwi+1 (g−j,mi+1)

for all Ci,j in Ci,•. The element w ∈ JW is called the canonical type of Sα, and

the induced locally constant function S → JW is the canonical type of A/S.

Proof. Let T be the set of ranks that appear in the flag C• over Sα. Then by

Section 3.2 of [EvdG09], there exists an element w ∈ S2g satisfying

w−1(1) < . . . < w−1(g), w−1(g + 1) < . . . < w−1(2g),

with the properties that for j ∈ T , F : C(p)
j → Cνw(j,g). Let di : T → {0, . . . , g}

be the maps defined by the decomposition of C• into the pair of flags Ci,•, that is,

if Cj has rank t, then Cj = C1,d1(t) ⊕ C2,d2(t) (recall that the flags Ci,• are indexed by

their ranks). By construction of the di and the canonical flag, there exists a unique

(w1, w2) ∈ JW satisfying the conditions

νw(j, g) = νw1(d1(j),m1) + νw2(d2(j),m2), (6.3)

and

dγ(i)(νw(j, g)) = νwi(di(j),mi) (6.4)

for all j ∈ T . Together, these statements imply that F (C(p)
i,j ) = Cγ(i),νwi (j,mi)

. On

the other hand, Cj is self-dual, F (C⊥) = V −1(C)⊥, C⊥i,j = Ci+1,g−j, (6.3) and (6.4)

together imply that V −1(C(p)
i,j ) = Cγ(i),g−νwi+1 (g−j,mi+1).
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Proposition 6.3.4. Let A ∈ M(S), and let (Ei,•) be a complementary pair of

Hodge flags of relative position Jw = (w1, w2) ∈ JW . The conjugate flags (Di,•) are

refinements of the canonical flags (Ci,•). That is, Jw is determined by A/S and

rank(Di,j ∩ Ei,n) = rwi(j, n)

for i = 1, 2, 1 ≤ j, n ≤ g. In particular, the canonical decomposition of S with

respect to A/S consists of a single stratum and the canonical type of A/S is Jw.

Proof. By Proposition 6.1.4, let w ∈ S2g and di : {0, . . . , 2g} → {0, . . . , g} for

i = 1, 2 satisfy

1. d1(j) + d2(j) = j,

2. 0 ≤ di(j)− di(n) ≤ j − n for j < n,

3. di(2g − j) = g − di+1(j),

4. νw(j, g) = νw1(d1(j),m1) + νw2(d2(j),m2), and

5. dγ(i)(νw(j, g)) = νwi(di(j),mi).

Let D• be the flag constructed from Di,• by setting

Dj := D1,d1(j) ⊕D2,d2(j).

Properties (1), (2) and (3) imply that

0 = D0 ( D1 ( . . . ( D2g = H1 ⊕H2 = H

is a complete symplectic flag where rank(Dj) = d1(j) + d2(j) = j. Showing that D•

is F, V −1-stable means that D• is a refinement of the canonical flag C• for A/S and
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hence Di,• is a refinement of Ci,• for i = 1, 2. Therefore it remains to show that D•

is F, V −1-stable.

Define ei : {0, . . . , 2g} → {0, . . . , g} for i = 1, 2 by

ei(j) := mi − dγ(i)+1(g − j) = dγ(i)(g + j)−mi+1

and

ei(2g − j) := g − ei(j)

for all 0 ≤ j ≤ g. Then setting

Ej := E1,e1(j) ⊕ E2,e2(j)

gives a complete symplectic flag of H with Eg = E. Furthermore, by the construc-

tion of (Di,•), for 0 ≤ j ≤ g,

V −1(E(p)
j ) = V −1(E (p)

1,e1(j))⊕ V
−1(E (p)

2,e2(j))

= Dγ(1),m2+e1(j) ⊕Dγ(2),m1+e2(j)

= Dγ(1),dγ(1)(g+j)
⊕Dγ(2),dγ(2)(g+j)

= Dg+j.
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On the other hand, since rwi(j,mi + νwi(j,mi)) = j for all 1 ≤ j ≤ mi by Lemma

6.1.3,

F (D(p)
j ) = ⊕i=1,2F (Di,di(j))

= ⊕i=1,2Dγ(i),νwi (di(j),mi)

= Dνw(j,g)

by Proposition 6.2.2.

Corollary 6.3.5. Let Di be the set of ranks that appear in the canonical flag Ci,•.

Then (D1, D2) is the canonical domain of (w1, w2). If (v1, v2) is the complementary

element of (w1, w2), then for j < n successive elements in Di either

F (C(p)
i,n/C

(p)
i,j ) = Cγ(i),vi(n)/Cγ(i),vi(j) (6.5)

if νwi(n,mi) 6= νwi(n− 1,mi) or

V −1(C(p)
i,n/C

(p)
i,j ) = Cγ(i),vi(n)/Cγ(i),vi(j) (6.6)

if νwi(n,mi) = νwi(n − 1,mi). In other words, if I is a canonical fragment for vi,

then there is an isomorphism

C(p)
i,I → Cγ(i),vi(I)

induced by F or V −1 where Ci,(j,n] := Ci,n/Ci,j.

Proof. Recall that the canonical domain for (w1, w2) is the smallest pair of sets

(D1, D2) where {0, g} ⊆ Di ⊆ {0, . . . , g} for i = 1, 2 such that if j ∈ Di then

g − j ∈ Di+1 and νwi(j,mi) ∈ Dγ(i). But the construction of the canonical flags
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are the result of applying F and V −1 repeatedly to D1 ⊕ D2. By Proposition 6.3.3,

F (C(p)
i,j ) = Cγ(i),νwi (j,mi)

and V −1(C(p)
i,j ) = Cγ(i),g−νwi+1 (g−j,mi+1) when Ci,• has canonical

type (w1, w2), so it follows that the canonical domain for (w1, w2) is the set of

ranks that appear in the canonical flags.

The map F : C(p)
i,n/C

(p)
i,j → Cγ(i),νwi (n,mi)

/Cγ(i),νwi (j,mi)
is always surjec-

tive. By Corollary 6.1.6, if νwi(n,mi) 6= νwi(j,mi) then the dimension of

Cγ(i),νwi (n,mi)
/Cγ(i),νwi (j,mi)

is equal to the dimension of C(p)
i,n/C

(p)
i,j and F is an isomor-

phism. Otherwise, F is the zero map and νwi+1
(g − j,mi+1)− νwi+1

(g − n,mi+1) =

n − j so that V −1 is an isomorphism on C(p)
i,n/C

(p)
i,j . Then the result follows from

Lemma 6.1.7.

As a converse to Proposition 6.3.4, consider the following.

Proposition 6.3.6. Let A ∈ M(S). Suppose that S is reduced and the canonical

decomposition of S with respect to A/S consists of a single stratum. Let w =

(w1, w2) ∈ JW be the canonical type of the canonical flag. Let (Ei,•) be a pair of

complementary Hodge flags with relative position w′ = (w′1, w
′
2) ∈ W and associated

pair of conjugate flags (Di,•). Then if the conjugate flags (Di,•) are refinements

of the canonical flags (Ci,•) for A/S such that F (D(p)
i,j ) ⊆ Dγ(i),νwi (j,mi)

for all

1 ≤ j ≤ g, then w = w′. In particular, w′ is in JW .

Proof. Let (D1, D2) be the canonical domain of w. Since Di,• is an extension of Ci,•

it follows that

νwi(j,mi) = νw′i(j,mi)
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for all j ∈ Di. Therefore, w′ 7→ w under the map W → JW . The condition that

F (D(p)
i,j ) ⊆ Dγ(i),νwi (j,mi)

= Dγ(i),νw′
i
(j,mi) implies that rw′i(j,mi + νw′i(j,mi)) = j for

all j ∈ {1, . . . , g}. Then by Lemma 6.1.3, w′ ∈ JW so that w = w′.

6.4 Local structure of the E-O strata

By the definitions given in the previous section, the condition that A/S has

canonical type w ∈ JW specializes when S is the spectrum of an algebraically

closed field k of characteristic p to the condition that A/k is in the E-O stratum

of w, denoted V w, as in Chapter 3. By the theory of degeneracy loci of flag

varieties, the Schubert cells of the flag variety Fi give a stratification of Fi where

the strata correspond to elements in Sg. We now consider what happens to the

strata of Fi under the natural map Fi → M. In particular, we will see that if

w = (w1, w2) ∈ JW , then Fi → M restricted to Uwi is a finite surjective étale

covering map Uwi → V w. Note that Proposition 6.2.1 and Lemma 6.4.1 show that

the choice of i ∈ {1, 2} does not matter in this context. This section closely follows

Section 8 of [EvdG09], as the results of the previous section allow us to apply their

techniques to the unitary Shimura varieties under consideration.

6.4.1 Extensions of the canonical flags

We would like to find the number of extensions of a pair of canonical flags

(Ci,•) of type (w1, w2) ∈ JW to a pair of conjugate flags (Di,•) of type (w1, w2) ∈
JW for i = 1, 2 over an algebraically closed field k of characteristic p. This will

eventually be the degree of the maps Fi → M when restricted to Uwi → V w.

To this end, recall the following definitions and results from Section 6.1.1. Let

v = (v1, v2) be the complementary element of w. Then the canonical fragments
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of v1 and v2 can grouped into distinct orbits by letting the orbit of a canonical

fragment (i, I) of vi be its orbit under v for all n (this is possible by Proposition

6.1.9). Note if γ(i) = i, then the orbit of a canonical fragment of vi only contains

canonical fragments of vi, but if γ(i) = i + 1, the orbit of a canonical fragment

contains canonical fragments of both v1 and v2.

Let N e
n(m) be the number of complete Fpm-flags in Fnpm , and let N o

n(m) be the

number of complete Fp2m-flags in Fnp2m that are self-dual under the unitary form

〈(uj), (vj)〉 =
n∑
j=1

ujv
pm

j . (6.7)

Finally, let

N(w) :=


∏

O1
N e

# I(O1)(#O1) γ(i) = i∏
O=ÕN

o
# I(O)(#O/2) +

∏
{O,Õ}N

e
# I(O)(#O) γ(i) = i+ 1

(6.8)

where the products are taken over the orbits O1 of the canonical fragments of v1 in

the first case, and over the orbits O of the canonical fragments of vi for i = 1 and 2

in the second case; in both cases # I(O) is the size of the fragments in O.

Lemma 6.4.1. Let A ∈ M(k), w ∈ JW be the canonical type of A/k, and (Ci,•)

be its canonical flags. Then N(w) is the number of extensions of Ci,• to a complete

flag Di,• such that (Di,•) are the conjugate flags for a pair of Hodge flags of relative

position w.

Proof. The proof is similar to that of [EvdG09, Lemma 4.6], except that we need

to account for the OK-action on the flags. Since we are working over a perfect

field k, Proposition 6.3.6 implies that a pair of conjugate flags for a Hodge flag
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of relative position w is the same as a pair of conjugate flags (Di,•) extending Ci,•

such that F (D(p)
i,j ) ⊆ Dγ(i),νwi (j,mi)

for all 1 ≤ j ≤ g. But then by Proposition 6.3.4,

F (D(p)
i,j ) = Dγ(i),νwi (j,mi)

for all 1 ≤ j ≤ g.

Now, since Di,• is an extension of Ci,• for i ∈ {1, 2}, it is determined by the

flags of Di,I for all of the canonical fragments I of vi. However, by Corollary 6.3.5

there is an isomorphism D(p)
i,I → Dv(i,I), so that a choice of flag for Di,I determines

the flags for Di′,I′ for all (i′, I ′) in the orbit O of (i, I). Therefore the problem can

be considered on an orbit-by-orbit basis. For any (i, I) in an orbit O of length m,

the condition that F (D(p)
i,j ) = Dγ(i),νwi (j,mi)

for all 1 ≤ j ≤ g translates into the

condition that the flag for Di,I is stable under the isomorphism D(pm)
i,I → Dv(i,I).

The notation has been set up in such a way that the proof now follows the proof of

[EvdG09, Lemma 4.6] essentially verbatim. However, we will continue the rest of

the proof for completeness.

Suppose that O is not equal to its dual Õ. Then the flags for (i, I) ∈ O

determine the flags for (̃i, I) ∈ Õ by duality under the symplectic form

(i.e. Di+1,g−j = D⊥i,j ∩ Hi+1). Therefore, for each orbit pair,
{
O, Õ

}
, the flag

for Di,I for a single (i, I) ∈ O determines the flags for all of the blocks correspond-

ing to the canonical fragments in O and Õ. The only remaining condition is that

the flag of D = Di,I is stable under the isomorphism tm : D(pm) → D. As D is

a vector bundle over an algebraically closed field k, Dp = {v ∈ D | tm(v) = v} is

an Fpm-vector space such that the Dp ⊆ D induces an isomorphism Dp ⊗ k → D.

Therefore, the number of flags of Di,I that are stable under tm is equal to the
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number of complete flags of Dp. This completes the proof in the case when p is

split.

When p is inert, we also have to consider the case where O = Õ. The size

of the orbit O is even, say 2m, and we require that D = Di,i is stable under

t2m : D(p2m) → D, and that tm : D(pm) → Dĩ,I . Therefore, the number of possible

flags for Di,I corresponds to the number of complete Fp2m-flags of F# I
p2m that are

self-dual under the unitary form of equation (6.7).

6.4.2 Stratified spaces

In order to show that the maps from Fi → M are locally like maps from

GLg/B → GLg/Q where B is a Borel and Q is a parabolic of GLg, we introduce

the notion of diagrams of stratified spaces.

A stratified space is a scheme with a partition into locally closed sub-

schemes; that is, a scheme together with a stratification on it. A morphism of

stratified spaces is a morphism of schemes taking strata to strata in the sense

that the pre-image of a stratum is a union of strata. Let P be a poset. Then a

diagram of stratified space is a contravariant functor from the category of the

poset P to the category of stratified spaces.

There are two particular diagrams of stratified spaces that we will be con-

cerned with. Let F`•i to be the following diagram of stratified spaces. Let P be

the set of all subsets of {1, . . . , g − 1} containing mi and choose a vector space

W of dimension g. For T ∈ P , let F`•i (T ) be the flag space of partial flags of W

whose dimensions are the values that appear in T . Then F`•i (T ) has the structure

of a stratified space by defining its strata to be its locally closed Schubert cells
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with respect to a fixed complete flag of W . For T ⊆ T ′, there is a map from

F`•i (T ′) → F`•i (T ) that comes from forgetting elements in the flag of dimensions

T ′ \ T . This map takes strata to strata.

Likewise, let F•i to be the diagram over the same P , where F•i (T ) is the space

of partial flags Ei,• of Hi extending the flag Ei ⊆ Hi with dimensions in T . To a

partial flag Ei,•, we can associate a partial conjugate flag Di,• by the same method

use for complete Hodge flags. That is, first construct a partial complementary

flag Ei+1,• by setting Ei+1,j := E⊥i,g−j ∩ Hi, and then use V −1 and take duals to get

another partial flag Di,• of Hi as in Section 6.2. Then F•i (T ) has the structure of

stratified space by considering the relative positions of Ei,• and Di,•. For T ⊆ T ′,

there is again a forgetful map from F•i (T ′)→ F•i (T ) of stratified spaces that comes

from forgetting elements in the partial flags Ei,• in F•i (T ′) of dimensions T ′ \ T .

Let k be a perfect field of characteristic p. We will need to introduce the

notion of a height 1-neighbourhoods of a k-point. Over such a neighbourhood, the

deformation theory of a k-point A in the moduli space of principally polarized

abelian schemes corresponds to the local deformation of a Grassmanian variety

coming from the variation of the Hodge filtration E ⊆ H of A by Grothendieck-

Messing theory. Ekedahl and van der Geer show that these ideas can be extended

to certain flag spaces over M by considering the variation symplectic flags of H

containing E ⊆ H ([EvdG09]). In Theorem 6.4.2, we show that this can be done

incorporating OK-action as well. We now make this precise.
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Let R be a local ring in characteristic p with maximal ideal mR, and let

m
(p)
R denote the ideal generated by the pth-powers of elements in mR. Follow-

ing [EvdG09], the height 1-hull of the local ring R is the quotient R/m
(p)
R .

If S is a characteristic p scheme and x a k-point of S, then the height 1-

neighbourhood of x is the spectrum of the height 1-hull of its completed local

ring Spec(ÔS,x/m(p)
x ). For instance, if x is a smooth k-point of S, then the height

1-neighbourhood of x has the form Spec(k[[t1, . . . , tn]]/(t1, . . . , tn)(p)). The opera-

tion of taking height 1-neighbourhoods of k-points is functorial in the sense that if

f : S → S ′ is a morphism of schemes such that f(x) = y on k-points x and y, then

f induces a map from height 1-neighbourhood of x to the height 1-neighbourhood

of y. The height 1-neighbourhoods of two k-points x and y are said to be height

1-isomorphic if the height 1-hulls of their completed local rings are isomorphic

and are also isomorphic to k[[t1, . . . , tn]]/(t1, . . . , tn)(p) for some n.

A k-point of a diagram of stratified spaces F• over P is a k-point of F•(T )

for some T ∈ P together with its diagram of restrictions to F•(T ′) for all T ′ ≤ T .

For a k-point x of F•, its height 1-neighbourhood (resp. Hesenlization) is taken to

be the height 1-neighbourhood (resp. Hesenlization) as a point of F•(T ) together

with its diagram of compatible restrictions to the height 1-neighbourhoods (resp.

Hesenlization) of x as a point in F•(T ′) for all T ′ ≤ T .

Theorem 6.4.2. For each perfect field k of characteristic p and each k-point

x of F•i , there is a k-point y of F`•i such that the height 1-neighbourhood of x

is isomorphic to the height 1-neighbourhood of y by a stratified isomorphism of

diagrams.
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Proof. A point x ∈ F•i corresponds to a partial flag Ei,• of Hi extending Ei ⊆ Hi,

together with all restrictions Fi(T ) → Fi(T ′) for T ′ ⊆ T , where T is the set

dimensions appearing in Ei,•. Let X• be the height 1-neighbourhood of x ∈ F•i .

Now, the de Rham cohomology has a canonical trivialization over the height

1-neighbourhood X of x: HX
∼= X ×W ′ which is horizontal with respect to the

Gauss-Mannin connection. Furthermore, HX
∼= X ×W ′ induces isomorphisms

(Hi)X → X ×Wi where W1 ⊕W2 = W ′. The absolute Frobenius map factors

through the closed point, so that E (p)
i,• is constant. Even more, applying V −1 and

taking duals are horizontal operations, so that the conjugate flag Di,• is also

horizontal.

Choose an isomorphism of Wi with the fixed reference space W for F`i so that

the flag Di,• gets mapped into the fixed complete reference flag of W . Then Ei,•

gets taken to a partial flag of W corresponding to a point y ∈ F`i(T ). Further-

more, this map preserves strata as the relative position of Ei,• and Di,• corresponds

to the relative position of the partial flag corresponding to y with respect to the

reference flag of W . The isomorphism Wi with W also induces morphisms on all

the partial flag spaces lying below x in the diagram by restriction, so we get a

map from x ∈ F•g to y ∈ F`•i . By Grothendieck-Messing theory, this gives an

isomorphism on height 1-neighbourhoods of the diagrams.

Remark. It is worth noting that the reason we can work with Schubert cells of

F•i instead of the product (F1 × F2)• is because H1, H2, and E are all maximal

isotropic subspaces under the symplectic form on H induced by the polarizations

of the underlying abelian schemes. This means that the flag Ei ⊆ Hi completely
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determines both E ⊆ H and Dg ⊆ H. Furthermore, a (partial) Hodge flag Ei,•

of Hi completely determines a complementary pair of (partial) Hodge flags and

hence the pair of (partial) conjugate flags Di,• as well. In other words, the relative

position of Ei,• with respect to Di,• determines the relative position of Ei+1,• with

respect to Di+1,•. This was shown in Proposition 6.2.1.

Theorem 6.4.3. For each perfect field k of characteristic p and each k-point x of

F•i , there is a k-point y of F`•i such that the Henselization of x is isomorphic to

the Henselization of y by a stratified isomorphism of diagrams.

Proof. Let X• and Y • be the height-1 hulls of x and y respectively. Then Theorem

6.4.2 gives a stratified isomorphism X• → Y • between the height-1 hulls which

can be extended to an isomorphism between the local rings X̃• → Ỹ • of x and

y by extending the trivialization of HX → X ×W ′ to a trivialization of H over

OFi,x so that the isomorphism between Wi and the fixed reference space W for

F`i takes the trivialization of Di,• to the fixed flag of W over y (see [EvdG09] or

[DP94] for more details). This gives a isomorphism on tangent spaces, and both

F•i (T ) and F`•i (T ) are smooth of the same dimensions for all T ∈ P . Therefore

this trivialization gives an isomorphism on the Henselizations and proves the

theorem.

Lemma 6.4.4. Let A ∈ M(k) where k is an algebraically closed field and suppose

that A has canonical type w = (w1, w2) ∈ JW . Then if (Ei,•) is a pair of Hodge

flags for A with type w′ = (w′1, w
′
2) ∈ W such that w′ ≤ w, then w = w′ ∈ JW .
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Proof. Let (Di,•) be the pair of conjugate flags corresponding to (Ei,•). First, the

condition that w′ ≤ w means that νw′i(j, n) ≤ νwi(j, n) for all 1 ≤ j, n ≤ g, and

hence

F (D(p)
i,j ) ⊆ Dγ(i),νwi (j,mi)

for all 1 ≤ j ≤ g.

Define Ji ⊆ {1, . . . , g} to be the set of indices such that Di,j is part of the

canonical flag. Trivially {0, g} ⊆ Ji and if j ∈ Ji then g − j ∈ Ji+1. Furthermore,

for j ∈ Ji, F (D(p)
i,j ) = Dγ(i),νwi (j,mi)

, so that νwi(j,mi) ∈ Jγ(i). By the definition of

the canonical domain of w, (J1, J2) contains the canonical domain for w, and the

conjugate flags (Di,•) are refinements of the canonical flags for A/k. Proposition

6.3.6 then gives the desired result.

Corollary 6.4.5. For each wi ∈ JiSg, the stratum Uwi of Fi is smooth of

dimension `(wi). Furthermore, the closed stratum Uwi (as defined in Section 6.2) is

the closure of Uwi in Fi and is Cohen-Macaulay, reduced and normal of dimension

`(wi).

Proof. As in the proof of [EvdG09, Corollary 8.4], the facts that Uwi is smooth

of dimension `(wi) and Uwi is Cohen-Macaulay, reduced and normal of dimension

`(wi), follow from the analogous results for the Schubert cells of the flag varieties

F`i as these are all properties that pass from the Henselization of the local ring at

a point to the local ring itself.

To show that Uwi is the closure of Uwi , consider the following. By construc-

tion, Uwi is a closed set containing Uwi , in fact, Uwi = ∪w′≤wiUw
′
. But when
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w′ ≤ wi, `(w
′) = `(wi) if and only if w′ = wi. Since `(w′) is the dimension of each

Uw′ , the closed stratum Uwi must be the closure of Uwi in Fi.

Proposition 6.4.6. For w = (w1, w2) ∈ JW , the restriction to Uwi of the

projection Fi → M is a finite surjective étale covering from Uwi to V w of degree

N(w) where N(w) is given in (6.8).

Proof. First of all, Proposition 6.3.4 shows that a conjugate flag Di,• for wi is

as refinement of the canonical flag Ci,• for w, and hence the image of Uwi under

Fi → M is V w. It follows from Theorem 6.4.3 that the map Uwi → V w is

unramified, as the analogous map on Schubert cells is unramified by [BGG73,

Proposition 5.1].

Next we show that Uwi → V w is proper. Let R be a DVR, then

x : Spec(R) ↪→ V w corresponds to an abelian scheme over R with extra struc-

ture such that the canonical type of both its special and generic points is w, and

hence its canonical decomposition is a single stratum, Spec(R). Suppose that we

have a Hodge flag Ei,• of type wi over the generic point of x. Then its correspond-

ing pair of Hodge flags (Ei,•) has relative position w ∈ JW and the associated pair

of conjugate flags are refinements of the canonical flags of the generic point of x.

Uwi is proper over M since Fi → M is proper. Therefore, the flag Ei,• extends to

a Hodge flag and therefore a pair of Hodge flags (Ei,•) over Spec(R). But then the

pair (Ei,•) gives Hodge flags over the special point of Spec(R) with relative position

w′ ≤ w. Lemma 6.4.4 shows that w′ = w. Therefore, the Hodge flag Ei,• over the

generic point of x can be extended uniquely to a Hodge flag over Spec(R) with

relative position wi, thus proving that Uwi → V w is proper.
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Finally, Lemma 6.4.1 shows that the fibres of the map Uwi → V w are finite of

constant rank N(w). It follows that Uwi → V w is finite and flat, thus completing

the proof that Uwi → V w is a finite surjective étale covering of degree N(w).
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Chapter 7
Hasse-invariants and Hasse-Witt matrices

This chapter introduces the (partial) Hasse-invariants on unitary Shimura

varieties. In the case of elliptic modular curves, the Hasse-invariant is a mod p

modular form of weight p − 1 that vanishes precisely on the complement of the

µ-ordinary stratum, the supersingular points. We show that a similar phenomena

occurs with unitary Shimura varieties, in particular, the Hasse-invariants are mod

p modular forms and they vanish on the complement of the µ-ordinary stratum,

the non-ordinary locus (i.e. the closure of the almost-ordinary E-O stratum).

We then use deformations of Hasse-Witt matrices to obtain further geometric

information about the E-O strata.

In order to keep this chapter as self-contained as possible, we begin by

recalling the definitions of the Hodge filtration and related vector bundles from

Section 6.2. Let π : A → M be the structure map of the universal abelian variety

A over M defined over the finite field κ(p). Let k be the algebraically closed field

extension of κ where κ = Fp when p is split and Fp2 when p is inert. There is an

exact sequence of locally free sheaves on M:

0→ π∗(Ω
1
A/M)→ H1

dR(A/M)→ R1π∗(OA)→ 0

which we will denote by

0→ E→ H→ E∨ → 0
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where E = π∗(Ω
1
A/M) is the Hodge bundle and H = H1

dR(A/M).

Over a k-point (A, ι, λ) of M this specializes to the sequence of vector spaces

over k,

0→ H0(Ω1
A)→ H1

dR(A)→ H1(OA)→ 0

which can be identified through contravariant Dieudonné theory with

0→ D[F ]⊗k,σ−1 k → D → D/VD → 0

where D = D(A) denotes the contravariant Dieudonné module of A and D[F ]

denotes the kernel of F on D [Oda69, Corollary 5.11].

Let R be an κ-algebra such that ER and HR are locally free over R. The

bundles E = ER and H = HR split under the OK/(p) ⊗Fp R = R1 ⊕ R2-action as

E = E1 ⊕ E2 and H = H1 ⊕ H2 via the characters χ1, χ2 : OK → k. Therefore,

det(E) = det(E1) ⊗ det(E2). Let j = 1 if γ(i) = i (p is split) and j = 2 if γ(i) 6= i

(p is inert). Then a unitary (m1,m2) modular form mod p of weight χbi over

R is a global section of det(Ei)⊗b ⊗R over M⊗Fp R.

7.1 Hasse invariants

The morphisms Fr : A → A(p) and Ver : A(p) → A induce linear maps in

cohomology Fr∗ : H(p) → H and Ver∗ : H → H(p) (these maps correspond to the

σ-linear map F and σ−1-linear map V respectively on the contravariant Dieudonné

modules) such that Fr∗i : H(p)
i → Hγ(i) and Ver∗i : Hi → H(p)

γ(i).

Let j = 1 if p splits in K and j = 2 if p is inert in K. Then

(Ver∗i )
j : Hi → H(pj)

i
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and the resulting map

∧mi(Ver∗i )
j : det(Ei)→ det(Ei)(pj)

gives rise to a global section

hi ∈ H0(det(Ei)⊗(pj−1)).

The hi have the following vanishing properties depending on the splitting be-

haviour of p in K.

Proposition 7.1.1 ([GN16, 4.1, 4.2]). Let A ∈ M(k) and let p be split in K.

Then h1(A) 6= 0 if and only if h2(A) 6= 0 if and only if A is µ-ordinary.

Proof. For completeness, we include a simple proof of this fact. We actually show

that h1(A) = 0 if and only if h2(A) = 0 if and only if A is not µ-ordinary. As

was seen in Section 3.5, the µ-ordinary locus is actually ordinary in this case,

and a(A) = 0 if and only if A is in the µ-ordinary locus. On the other hand,

hi(A) = 0 if and only if the a-number of Ai is non-zero, so it suffices to show that

a(A1[p]) > 0 if and only if a(A2[p]) > 0. But for any finite commutative group

scheme G that is killed by p, a(G) > 0 means that there is an embedding αp ↪→ G,

and since αp is self-dual, there is a surjection G∨ → α∨p
∼= αp. Thus G∨ has a

non-trivial local-local part and a(G∨) > 0. Since A1[p] ∼= A2[p]∨ as group schemes,

the result follows.

On the other hand, when p is inert in K, we have the following.
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Proposition 7.1.2. Let A ∈ M(k) and let p be inert in K. If m1 = m2, then

h1(A) 6= 0 if and only if h2(A) 6= 0 if and only if A is µ-ordinary. If m1 > m2, then

h1 vanishes everywhere, and h2(A) 6= 0 if and only if A is µ-ordinary.

Proof. By Proposition 3.5.7, the p-torsion group scheme of the µ-ordinary locus

has the form

(OK ⊗ µp)m2 ⊕ (OK/(p))m2 ⊕ Gm1−m2
1 .

Since Ver2 is an isomorphism on (OK ⊗ µp)m2 and zero on (OK/(p))m2 ⊕ Gm1−m2
1 ,

h2 6= 0 and h1 = 0 if and only if m1 > m2 on the µ-ordinary locus.

By Proposition 3.5.6, the p-torsion group scheme of the almost-ordinary locus

has the form

• m1 −m2 > 1: AO(3, 1)⊕ (OK ⊗ µp)m2−1 ⊕ (OK/(p))m2−1 ⊕ Gm1−m2−2
1

• m1 −m2 = 1: AC(2, 1)⊕ (OK ⊗ µp)m2−1 ⊕ (OK/(p))m2−1

• m1 = m2 = m: (OK ⊗ µp)m−1 ⊕ (OK/(p))m−1 ⊕ G1 ⊕ G2.

Now, Ver is nilpotent on AO(3, 1), AC(2, 1), G1 and G2. Therefore, h1 = h2 = 0

on the almost-ordinary E-O stratum and its closure, the complement of the

µ-ordinary stratum.

When p is split in K, the hi for i ∈ {1, 2} are called the partial Hasse

invariants and are modular forms of weight χp−1
i over k. The product h := h1h2

is called the (total) Hasse invariant. When p is inert in K, h := h2 is called the

Hasse invariant, and it is a modular form of weight χp
2−1

2 over k.
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7.2 Hasse-Witt matrices of E-O strata

In this section, we will work with covariant Dieudonné theory. To that end,

let D = D(A[p]) be the covariant Dieudonné module of A[p]. Now, Ver∗ : E → E

corresponds to F on D(A[p])/VD(A[p]), so the vanishing of hi can be studied in

more detail by studying the Hasse-Witt matrix of A as introduced in Section 2.2.5.

In particular, we will be interested in studying the Hasse-Witt matrices of various

Ekedahl-Oort strata as a tool for understanding the deformation of V ∗ on the

Hodge bundle.

Let w = (w1, w2) be an element in the Weyl group coset JW as described in

Section 3.3. By Section 3.5, we know how to associate models for the contravariant

Dieudonné module (modulo p) D = D(w) of the Ekedahl-Oort stratum associated

to w. However, in order to compute the Hasse-Witt matrices of the E-O strata, we

need to find a displayed basis for the covariant Dieudonné modules.

The general strategy we take for this is as follows. Recall that for A =

(A, ι, λ, η) ∈ M(k), the prime-to-p polarization λ : A → A∨ induces an

isomorphism of Dieudonné modules µ : D → D∨ that is conjugate-linear with

respect to the OK/(p) action on D coming from ι on A. The isomorphism µ gives

rise to a non-degenerate alternating bilinear form:

Ψ : D ×D → k

(d1, d2) 7→ µ(d1)(d2)
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such that Ψ(bd1, d2) = Ψ(d1, b̄d2) for b ∈ OK/(p) and Ψ(Fd1, d2) = Ψ(d1, V d2)σ for

all d1, d2 ∈ D. By [Moo01, Theorem 6.7], there exists a unique such µ : D(w) →

D(w)∨ for a given w ∈ JW up to isomorphism.

The proof of [Moo01, Theorem 6.7] is constructive and shows how to find a

bilinear form Ψ : D × D → k corresponding to µ. Then by finding a symplectic

basis for D from the bases as described in Section 3.5, applying µ(d) = Ψ(d,−)

gives a symplectic basis for D∨ = D. Furthermore, µ takes Di to Di+1, so by

keeping track of the OK-action on the basis, we can choose a symplectic basis

for D such that its image in D is the reduction modulo p of a displayed basis for

D(A). Finally, applying the results of Section 3.5 allow us to find the action of F

on the displayed basis, giving the Hasse-Witt matrices for D(w).

Recall from Section 2.2.5 that a displayed basis for D(A) is a basis of the form

B = {e1, . . . , eg; f1, . . . , fg} where

• B1 = {e1, . . . , em1 , fm1+1, . . . , fg} is a basis for D(A)1, and

B2 = {em1+1, . . . , eg, f1, . . . , fm1} is a basis for D(A)2,

• the set {e1, . . . , eg} spans D(A)/VD(A) and {f1, . . . , fg} spans D(A)[F ],

• B is a standard symplectic basis for D(A); i.e. Ψ(ei, fj) = δij = −Ψ(fj, ei).

We will also call a basis for D = D(A[p]) a displayed basis if it satisfies the

analogues of the above properties for D. Implicit in our methods is the fact that a

displayed basis for D(A[p]) can be lifted to a displayed basis for the full Dieudonné

module D(A). Since we are primarily interested in the Hasse-Witt matrices, we

will work directly with a basis for D and all the matrices in this chapter will be

taken modulo p.
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7.2.1 p split in K

Recall that K denotes the quadratic imaginary field coming from the Shimura

datum D for the Shimura variety M. When p is split in K, the decomposition

of D as D1 ⊕ D2 as an OK/(p)-module actually makes D1 and D2 sub-Dieudonné

modules of D as in Proposition 2.2.4. Therefore, finding an isomorphism of

µ1 : D1 → D∨2 of Dieudonné modules gives µ : D → D∨ as desired by taking

µ = µ1 ⊕ (−µ∨1 ).

Observe that the models for the Dieudonné modules of the p-torsion given in

3.5.3 have built in isomorphisms µi : Di → D∨i+1 that come from taking ei,j to

e∨i+1,w0(j). Therefore,

µ(ei,j) = (−1)i+1e∨i+1,w0(j)

gives the desired self-duality for D. Setting

ew1(j) =

 −µ(e2,w0(j)) w1(j) ≤ m1

µ(e1,j) w1(j) ≥ m1 + 1
(7.1)

fw1(j) =

 µ(e1,j) w1(j) ≤ m1

µ(e2,w0(j)) w1(j) ≥ m1 + 1
(7.2)

gives a standard symplectic basis for D with respect to Ψ induced by µ such that

D1 = {e1, . . . , em1 , fm1+1, . . . , fg} and D2 = {f1, . . . , fm1 , em1+1, . . . , eg}.
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Recall the notation from Section 2.2.5; i.e. the matrix of the display of D

when p is split in K has the form

A B

C D

 =


A1 0 0 B1

0 A2 B2 0

0 C2 D2 0

C1 0 0 D1

.

Let M = (tij) for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2, and let T =

 0 M

M t 0

. Then the

matrix

A+ TC =

A1 +MC1 0

0 A2 +M tC2

 (mod p)

is the Hasse-Witt matrix. Letting A1 = (aij), C1 = (cij), A2 = (a′ij), C2 = (c′ij), it

follows that

A1 +MC1 =

(
aij +

m2∑
k=1

tikckj

)
1≤i,j≤m1

and

A2 +M tC2 =

(
a′ij +

m2∑
k=1

tkic
′
kj

)
1≤i,j≤m2

.

Writing F in terms of the new basis gives

F (ej) =



ew1(j+m2) 1 ≤ j ≤ m1, w1(m2 + j) ≤ m1

fw1(j+m2) 1 ≤ j ≤ m1, w1(m2 + j) ≥ m1 + 1

ew1(j−m1) m1 + 1 ≤ j ≤ g, w1(j −m1) ≥ m1 + 1

fw1(j−m1) m1 + 1 ≤ j ≤ g, w1(j −m1) ≤ m1.
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Note that F (fj) = 0 for 1 ≤ j ≤ g by construction. With this basis, aij ≡ 1

(mod p) for i = w1(m2 + j) and 0 otherwise, and cij ≡ 1 (mod p) for i =

w1(m2 + j) − m1 and 0 otherwise. We get similar conditions for A2 and C2.

Therefore, A1 +MC1 = (mij)1≤i,j≤m1 where

mij =

 1 i = w1(m2 + j)

tik k = w1(m2 + j)−m1

and A2 +M tC2 = (m′ij)1≤i,j≤m2 where

m′ij =

 1 i = w1(j)−m1

tki k = w1(j).

Example 7.2.1 (The almost-ordinary stratum). Consider the case where `(w) =

m1m2 − 1. Then,

A1 =

01×1

Im1−1

 A2 =

Im2−1

01×1

 ,

and

C1 =

 0m2−1×m1−1

1

 C2 =

 1

0m1−1×m2−1

 .

It follows that

A1 +MC1 =


t1m2 0

... Im1−1

tm1m2


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A2 +M tC2 =


t11

Im2−1
...

0 t1m2

 .

and hence det(A1 +MC1) = det(A2 +M tC2) = t1m2 .

Example 7.2.2 (The codimension 2 strata). Consider the case where `(w) =

m1m2 − 2. Then either

w1(j) =



1 j = m2 − 1

j −m2 m2 + 2 ≤ j ≤ g

j +m1 1 ≤ j ≤ m2 − 2

g − 1 j = m2

g j = m2 + 1

(7.3)

or

w1(j) =



1 j = m2

2 j = m2 + 1

j −m2 m2 + 3 ≤ j ≤ g

j +m1 1 ≤ j ≤ m2 − 1

g j = m2 + 2.

(7.4)

Note that w1 can only have the form of (7.3) if m2 > 1. Suppose that w1 is as in

(7.3). Then

A1 +MC1 =


t1m2 0

... Im1−1

tm1m2


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A2 +M tC2 =



t11 0

Im2−2
...

...

t1m2−1 1

0 t1m2 0


.

and det(A1 +MC1) = − det(A2 +M tC2) = t1m2 .

Similarly, suppose that w1 is defined as in (7.4). Then

A1 +MC1 =



0 t1m2 0

1 t2m2 0

...
... Im1−2

0 tm1m2



A2 +M tC2 =


t11

Im2−1
...

0 t1m2

 .

and hence det(A1 +MC1) = − det(A2 +M tC2) = −t1m2 .

Example 7.2.3 (The codimension 3 strata). Assuming that m1m2 ≥ 3, there

exists at least a codimension 3 stratum. For w ∈ JW such that `(w) = m1m2 − 3,
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either

w1(j) =



1 j = m2 − 2

j −m2 m2 + 2 ≤ j ≤ g

j +m1 1 ≤ j ≤ m2 − 3

g − 2 j = m2 − 1

g − 1 j = m2

g j = m2 + 1

(7.5)

giving

A1 +MC1 =


t1m2 0

... Im1−1

tm1m2

 , A2 +M tC2 =



t11 0 0

Im2−3
...

...
...

t1m2−2 1 0

03×m2−3 t1m2−1 0 1

t1m2 0 0


,

and det(A1 +MC1) = det(A2 +M tC2) = t1m2 ;

w1(j) =



1 j = m2 − 1

2 j = m2 + 1

j −m2 m2 + 3 ≤ j ≤ g

j +m1 1 ≤ j ≤ m2 − 2

g − 1 j = m2

g j = m2 + 2

, (7.6)
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giving

A1 +MC1 =



0 t1m2 0

1
...

0 Im1−2

0 tm1m2


, A2 +M tC2 =



t11 0

Im2−2
...

...

t1m2−1 1

0 t1m2 0


,

and det(A1 +MC1) = det(A2 +M tC2) = −t1m2 ; or

w1(j) =



1 j = m2

2 j = m2 + 1

3 j = m2 + 2

j −m2 m2 + 4 ≤ j ≤ g

j +m1 1 ≤ j ≤ m2 − 1

g j = m2 + 3

. (7.7)

giving

A1 +MC1 =



0 0 t1m2 0

1 0 t2m2 0

0 1 t3m2 0

... 0
... Im1−3

0 0 tm1m2


, A2 +M tC2 =


t11

Im2−1
...

0 t1m2



and det(A1 +MC1) = det(A2 +M tC2) = t1m2 .

Note that the w in situation (7.5) can only occur if m2 ≥ 3, (7.6) can only

occur if m2 ≥ 2, and (7.7) always occurs as long as m1m2 ≥ 3.
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Proposition 7.2.4. When p splits in K, the partial Hasse-invariants h1, h2 over

M both vanish to order one on the non-ordinary locus, and the intersection of a

connected component of M with the non-ordinary locus is irreducible.

Proof. Example 7.2.1 immediately gives vanishing to order one.

Let C be the intersection of a connected component of M with the almost-

ordinary E-O stratum, and let Z be the closure of C. Then Z is precisely the zero

locus of h1 and h2 on C. Indeed, it is the zero locus of h1h2, a global section of

det(E)p−1. But det(E) is ample, so Z is connected [Har77, Cor. III.7.9].

Suppose that Z decomposes into irreducible components Z1, . . . , Zn, where

n > 1. We may assume that Z1 ∩ Z2 6= ∅. Since the almost-ordinary (open) E-O

stratum is smooth over k by Theorem 3.3.2, Z1 ∩ Z2 is codimension one in Z.

Let z be a generic point in this intersection—then there is a w ∈ JW such

that z ∈ V w where `(w) = m1m2−2. By Example 7.2.2, the local equation defining

Z in k[|tij, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2|] at z is ±t1m2 , and Z is smooth at z. But then

it follows that Z1 ∩ Z2 has codimension at least 2 and therefore must be empty.

Therefore Z is irreducible.

Example 7.2.5 (The almost-core stratum). Here, the matrices depend on the

relationship between m1 and m2. When m1 > m2, it follows that

A1 +MC1 =



t11 0 t12 . . . t1m2

0m2×m1−m2−1 t21 0 t22 . . . t2m2

Im1−m2−1
...

...
...

...

0 tm11 1 tm12 . . . tm1m2


.
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A2 +M tC2 = (tij)
t
1≤i,j≤m2

.

Then

det(A1 +MC1) = (−1)m2(m1−m2)+1 det(A2 +M tC2)

= (−1)m2(m1−m2)+1 det (tij)1≤i,j≤m2 .

On the other hand, when m1 = m2 = m,

A1 +MC1 =



0 t12 . . . t1m

0 t22 . . . t2m
...

...
...

1 tm2 . . . tmm


A2 +M tC2 =



t11 . . . tm−11 1

t12 . . . tm−12 0

...
...

...

t1m . . . tm−1m 0


and

det(A1 +MC1) = det(A2 +M tC2)

= (−1)m−1 det (tij)1≤i≤m−1
2≤j≤m

.

Example 7.2.6 (The core stratum). In this case, w1 = w2 is the identity element,

and it follows that there is no m1 + 1 ≤ k ≤ g such that w1(k −m1) = k −m1 ≤

m1 + 1. Thus A2 = 0. On the other hand,

A1 =

0m2×m1−m2 0m2×m2

Im1−m2 0m1−m2×m2

 ,

C1 =

(
0m2×m1−m2 Im2

)
,
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C2 =

 Im2

0m1−m2×m2

 .

It follows that

A1 +MC1 =


0m2×m1−m2

M

Im1−m2

 ,

and

A2 +M tC2 = (tij)
t
1≤i,j≤m2

.

Then,

det(A1 +MC1) = (−1)(m1−m2)m2 det(A2 +M tC2)

= (−1)(m1+1)m2 det (tij)1≤i,j≤m2 .

These last two examples can be summed up by the following corollary.

Corollary 7.2.7. The vanishing locus of the partial Hasse-invariants on the

core and the almost-core locus are given locally formally by the same equation,

det(tij)1≤i,j≤m2. Thus, the non-ordinary locus is locally irreducible on the core and

almost-core strata. Furthermore, it is smooth at core or almost-core points if and

only if m2 = 1.

The previous corollary together with Proposition 7.2.4 shows that the closed

almost-ordinary stratum is a smooth irreducible curve in the case of GU(2, 1).

Remark. In the low-dimensional situations that we’ve calculated, the determinants

of the Hasse-Witt matrices have been determinants of square matrices in the tij for

all of the E-O strata (except for the ordinary stratum). It seems probable that this
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phenomenon continues which would imply that the non-ordinary locus becomes

nonsingular by moving down the poset diagram of E-O strata until the E-O strata

are reached where det(Hi) becomes the determinant of a two-by-two matrix. This

will not happen when m2 = 1, so we expect that the non-ordinary locus is also

smooth when m2 = 1.

7.2.2 p inert in K

In the case when p is inert in K, the construction of µ is more involved as F

and V on D take Di → Di+1, so that neither Di is ever a sub-Dieudonné module

of D. In order to obtain µ : D → D∨, we’ll follow the general notion of [Moo01,

Section 5.7] as adapted to this context.

Recall the terminology of Section 6.1.1 on complementary elements and

canonical fragments. In particular, the complementary element v of w = (w1, w2) ∈
JW , is the permutation defined by vi = w0w0(Ji)wi, and a canonical fragment

for vi is a maximal interval (j, j′] ⊆ 1, . . . , g such that vni ((j, j′]) where vni :=

vγn−1(i) ◦ . . . ◦ vγ(i) ◦ vi stays an interval for all n. For a fixed i = 1, 2, {1, . . . , g} is a

disjoint union of the canonical fragments of vi by Proposition 6.1.9.

Let

A = {(i, I) | i ∈ {1, 2} , I is a canonical fragment for vi} .

For a = (i, I) ∈ A then υ(a) := (i + 1, vi(I)) and ã := (i + 1, Ĩ) where

(̃n, n′] := (g − n′, g − n]. By Proposition 6.1.9, υ(a) and ã are also elements of A ,

and A decomposes into a disjoint union of orbits under υ. If O is an orbit of A ,

then recall that O is called self-dual if O = Õ := {ã | a ∈ O}.
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Write

Ci,• : 0 = Ci,j1 ( Ci,j2 ( . . . ( Ci,g = Di

for the canonical filtration of D, that is, the decomposition of the coarsest F ,

V −1-stable symplectic OK-flag of D. Then for a = (i, (n, n′]) ∈ A , define

Ba := Ci,n′/Ci,n+1

which has a naturally ordered basis {ei,n+1, . . . , ei,n′}. Observe that since a = (i, I)

where I is a canonical fragment for vi, there is a σ-linear isomorphism

Ba → Bυ(a)

induced by either F or V −1 that preserves the ordering of the basis elements as vi

is order preserving on canonical fragments (see Corollary 6.3.5).

We can now define a form Ψ on D by specifying its values “block-by-block” as

Ψa : Ba × Bã → k for all a ∈ A . For each self-dual orbit O of A , let 2s be the

length of the orbit O. Then define constants c(a) ∈ Fp2s such that c(a)p
s

= −c(a)

and c(υ(a)) = c(a)p, so that c(ã) = −c(a) for all a ∈ O. If a = (i, I) is not in a

self-dual orbit, then set c(a) := (−1)i+1. Finally let Ψ be the direct sum of forms

Ψa : Ba ×Bã → k defined by the matrix
c(a)

. . .

c(a)

.
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These matrices are given in terms of the ordered bases for Ba and Bã. By [Moo01,

Theorem 6.7], Ψ induces the desired self-duality µ : D → D∨ uniquely up to

isomorphism. If (i, j) ∈ a = (i, (n, n′]) set j[ := g − n− n+ j . Then

Ψ(ei,j, ei+1,j[) = c(a)

and hence

µ(ei,j) = c(a)e∨i+1,j[ .

Next we need to a find a transformation of the basis {ei,j | 1 ≤ i, j ≤ g} for D

into a symplectic basis for D with respect Ψ. This can by done orbit-by-orbit.

Suppose that O is a self-dual orbit of A of length 2s. Fix a0 = (1, I) ∈ O as a

base point for the orbit. Then there exists as x(a0) = x ∈ k such that

xp
2s

= −x, (−1)sxxp
s

c(a0) = 1 (7.8)

(potentially adjusting c(a0) and c(a) for a ∈ O). Indeed, starting from an x that

satisfies xp
2s

= −x,

c−1 := ((−1)sxxp
s

c(a0))p
s

= (−1)sxxp
s

c(a0) ∈ Fps

as c(a0)p
s

= −c(a0). Replacing c(υn(a0)) by c−p
n
c(υn(a0)) and x by cx(a0) gives

the desired result. Define constants for all of a ∈ O by setting

x(a) := (−1)nx(a0)p
n

where a = υn(a0) for 0 ≤ n ≤ 2s− 1.
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Then for 1 ≤ n ≤ s,

x(υn(a0))x(υ̃n(a0))c(υn(a0)) = (x(a0)x(ã0)c(a0))p
n

= 1.

and for s+ 1 ≤ n ≤ 2s, υn+s(a0) = υn−s(a0), and

x(υn(a0))x(υ̃n(a0))c(υn(a0)) = − (x(a0)x(ã0)c(a0))p
n

= −1.

Finally for a = (1, I) ∈ A , such that a = υn(a0) define

ε(a) =

 1 0 ≤ n ≤ s− 1

−1 s ≤ n ≤ 2s− 1
.

Set ε(a) = 1 for all a = (2, I) ∈ A .

If O is not self-dual, set ε(a) = x(a) = x(ã) = 1 for all a ∈ O.

Lemma 7.2.8. The basis {bi,j = ε(a)x(a)ei,j | (i, j) ∈ a, a ∈ A } is a symplectic

basis for Ψ such that

Ψ(b1,j, b2,j[) = 1 = −Ψ(b2,j[ , b1,j)

for 1 ≤ j ≤ g.

Proof. By definition, for (i, j), (i, k) ∈ a,

Ψ(ε(a)x(a)ei,j, ε(ã)x(ã)ei+1,k[) = Ψa(ε(a)x(a)ei,j, ε(ã)x(ã)ei+1,k[)

= ε(a)ε(ã)x(a)x(ã)c(a)δjk

= −ε(a)ε(ã)x(a)x(ã)c(ã)δjk

= −Ψã(x(ã)ei+1,k[ , x(a)ei,j)

= −Ψ(x(ã)ei+1,k[ , x(a)ei,j).
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Therefore, we need to show that

ε(a)ε(ã)x(a)x(ã)c(a) = 1

for all a ∈ A such that a = (1, I). This is immediate if a is not in a self-dual orbit

as

ε(a) = ε(ã) = x(a) = x(ã) = 1 = (−1)2 = c(a).

On the other hand, suppose that a is in a self-dual orbit O with base point a0

and length 2s. Then a = υn(a0) for some n. If 0 ≤ n ≤ s− 1, then,

ε(a)ε(ã)x(a)x(ã)c(a) = x(a)x(ã)c(a) = x(υn(a0))x(υ̃n(a0))c(υn(a0)) = 1.

Likewise if s ≤ n ≤ 2s− 1

ε(a)ε(ã)x(a)x(ã)c(a) = −x(a)x(ã)c(a) = −x(υn(a0))x(υ̃n(a0))c(υn(a0)) = 1.

The preceding discussion and lemma can be summed up in the following

proposition.

Proposition 7.2.9. The basis B = {e1, . . . , eg; f1, . . . , fg} for D defined by

ew1(j) :=

 −µ(x(ã)e2,j[) w1(j) ≤ m1

µ(ε(a)x(a)e1,j) w1(j) ≥ m1 + 1
(7.9)

fw1(j) :=

 µ(ε(a)x(a)e1,j) w1(j) ≤ m1

µ(x(ã)e2,j[) w1(j) ≥ m1 + 1
(7.10)
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where (1, j) ∈ a is a standard symplectic basis for D such that D1 =

{e1, . . . , em1 , fm1+1, . . . , fg} and D2 = {f1, . . . , fm1 , em1+1, . . . , eg}. In other

words, B is a displayed basis for D.

Finally, recall the notation from Section 2.2.5 where the matrix of the display

of D with respect to B has the form

A B

C D

 =


0 A1 B1 0

A2 0 0 B2

C2 0 0 D2

0 C1 D1 0

.

Setting M = (tij) for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2, so that T =

 0 M

M t 0

 gives

the Hasse-Witt matrix,

H = A+ TC =

 0 A1 +MC1

A2 +M tC2 0

 (mod p).

The matrix H ·Hp corresponds to F 2 and

H ·Hp =

H1 0

0 H2

 =

(A1 +MC1)(A2 +M tC2)p 0

0 (A2 +M tC2)(A1 +MC1)p

 .

Then the vanishing of det(Hi) coincides with the vanishing of the partial Hasse-

invariant hi.
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Example 7.2.10 (The almost-ordinary stratum). The almost-ordinary locus

corresponds to the element (w1, w2) where

wi(j) =



j +mi 1 ≤ j ≤ mi+1 − 1

j −mi+1 mi+1 + 2 ≤ j ≤ g

1 j = mi+1

g j = mi+1 + 1.

Recall that w0(Ji) is the element

w0(Ji) = [mi . . . 1 g . . . mi + 1] .

Its complementary element is

vi = w0w0(Ji)wi = [1 . . .mi+1 − 1 mi+1 + 1 mi+1 mi+2 . . . g] ,

with the appropriate meaning when m2 = 1.

As was seen in Chapter 3, there are 3 different situations to consider depend-

ing on the difference between m1 and m2:

• m1 −m2 > 1,

• m1 = m2 = 1,

• m = m1 = m2.

Each of these cases will be considered in turn.

Begin with the case when m1 − m2 > 1. There are 5 orbits of canonical

fragments if m2 > 1 and 3 orbits when m2 = 1. The orbits

(0,m2 − 1]
v1 //(0,m2 − 1]

v2 //(0,m2 − 1]
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and

(m1 + 1, g]
v1 //(m1 + 1, g]

v2 //(m1 + 1, g]

only appear when m2 > 1. These two orbits are dual to each other. The next two

orbits have length 4 and are also dual to each other:

(m2 − 1,m2]
v1 //(m2,m2 + 1]

v2 //(m2,m2 + 1]
v1 //(m2 − 1,m2]

v2 //(m2 − 1,m2]

(m1 − 1,m1]
v1 //(m1 − 1,m1]

v2 //(m1,m1 + 1]
v1 //(m1,m1 + 1]

v2 //(m1 − 1,m1].

Finally, there is an single self-dual orbit, given by:

(m2 + 1,m1 − 1]
v1 //(m2 + 1,m1 − 1]

v2 //(m2 + 1,m1 − 1].

Let x, c ∈ k satisfy

• cp = −c

• xp2
= −x

• −xxpc = 1.

Then letting a0 = (1, (m2 + 1,m1 − 1]) to be the base point of its orbit, set

x(a0) = x, x(ã) = −xp, c(a0) = c and c(ã0) = −c. For all a = (i, I) in the other

orbits, set c(a) = (−1)i+1 and x(a) = x(ã) = 1.
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Then {e1, . . . , eg; f1, . . . , fg} gives a displayed basis for D where

ej =



−µ(e2,m1+1) j ∈ (0, 1]

µ(xpe2,j+m2) j ∈ (1,m1 −m2 − 1]

−µ(e2,m2+1) j ∈ (m1 −m2 − 1,m1 −m2]

−µ(e2,m2) j ∈ (m1 −m2,m1 −m2 + 1]

−µ(e2,j+m2−m1−1) j ∈ (m1 −m2 + 1,m1]

µ(e1,j−m1) j ∈ (m1, g − 1]

µ(e1,m2+1) j ∈ (g − 1, g]

fj =



µ(e1,m2) j ∈ (0, 1]

µ(xe1,j+m2) j ∈ (1,m1 −m2 − 1]

µ(e1,m1) j ∈ (m1 −m2 − 1,m1 −m2]

µ(e1,m1+1) j ∈ (m1 −m2,m1 −m2 + 1]

µ(e1,j+m2) j ∈ (m1 −m2 + 1,m1]

µ(e2,j+1) j ∈ (m1, g − 1]

µ(e2,m1) j ∈ (g − 1, g].
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F (ej) is given by

F (ej) =



−fm1−m2 j ∈ (0, 1]

−fj j ∈ (1,m1 −m2 − 1]

−eg j ∈ (m1 −m2 − 1,m1 −m2]

−fj j ∈ (m1 −m2,m1 −m2 + 1]

ej+m2−1 j ∈ (m1 −m2 + 1,m1]

−ej−m2+1 j ∈ (m1, g − 1]

−em1−m2+1 j ∈ (g − 1, g].

Writing M = (tij), the Hasse-Witt matrix for the almost-ordinary locus has the

form

A1 +MC1 = A1 =



0(m1−m2)×m2

0 . . . 0 −1

0

−Im2−1
...

0


and

A2 +M tC2 =



−t(m1−m2)1 0 −t(m1−m2+1)1

... (tij)
t

1≤i≤m2
2≤j≤m1−m2−1

...
... Im2−1

... 0
...

−t(m1−m2)m2 −1 −t(m1−m2+1)m2 0


.
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It follows that

H1 =



0(m1−m2)m1

tp(m1−m2)m2
−tp2m2

. . . −tp(m1−m2−1)m2
1 0

tp(m1−m2)1 −(tpij)
t

1≤i≤m2−1
2≤j≤m1−m2−1

0

...
... −Im2−1

tp(m1−m2)(m2−1) 0


and

H2 =


t(m1−m2+1)1

−Im2−1
...

0 . . . t(m1−m2+1)m2

 .

When m2 = 1, this simplifies to

H1 =

 0(m1−1)×m1

tp(m1−1)1 −t
p
21 . . . −tp(m1)1 1 0

 , H2 = (tm11).

In both cases for m2, detH2 = (−1)m2−1t(m1−m2+1)m2 and there are zero rows in

H1. This is consistent with the result that h1 = 0.

Now suppose that m1 = m2 +1. Then there are 3 orbits of canonical fragments

in general and one orbit if (m1,m2) = (2, 1). The orbits

(0,m2 − 1]
v1 //(0,m2 − 1]

v2 //(0,m2 − 1]

and

(m1 + 1, g]
v1 //(m1 + 1, g]

v2 //(m1 + 1, g]
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do not appear when m2 = 1. These two orbits are dual to each other. The third

orbit is the single self-dual orbit, given by:

(m2 − 1,m2]
v1 //(m2,m1]

v2 //(m1,m1 + 1]
v1 //(m1,m1 + 1]

v2 //(m2,m1]
v1 //(m2 − 1,m2]

v2 //(m2 − 1,m2].

Let x, c ∈ k satisfy

• cp3
= −c

• xp6
= −x

• −xxp3
c = 1.

Take a0 = (1, (m2 − 1,m2]) to be the base point of the self-dual orbit. Set

x(a0) = x and c(a0) = c. Then set x(a), c(a) and ε(a) for the rest of the orbit

accordingly. Note that ε ((1, (m2,m1])) = −1. For all a = (i, I) in the other orbits,

set c(a) = (−1)i+1 and ε(a) = x(a) = x(ã) = 1.
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Then a displayed basis B = {e1, . . . , eg; f1, . . . , fg} for D can be defined by

ej =



µ(xp
3
e2,m1+1) j ∈ (0, 1]

µ(xp
5
e2,m2) j ∈ (1, 2]

−µ(e2,j−2) j ∈ (2,m1]

µ(e1,j−m1) j ∈ (m1, g − 1]

−µ(xp
4
e1,m1) j ∈ (g − 1, g]

fj =



µ(xe1,m2) j ∈ (0, 1]

µ(xp
2
e1,m1+1) j ∈ (1, 2]

µ(e1,j+m2) j ∈ (2,m1]

µ(e2,j+1) j ∈ (m1, g − 1]

−µ(xpe2,m1) j ∈ (g − 1, g]

,

and F (ej) is

F (ej) =



−eg j ∈ (0, 1]

−f1 j ∈ (1, 2]

−ej+m2−1 j ∈ (2,m1]

−ej−m1+2 j ∈ (m1, g − 1]

−e2 j ∈ (g − 1, g].
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Writing M = (tij), the Hasse-Witt matrix for the almost-ordinary locus has

the form

A1 +MC1 = A1 =



0 . . . . . . 0

0 . . . 0 −1

0

−Im2−1
...

0


and

A2 +M tC2 =



0 −t21

...
... −Im2−1

0
...

−1 −t2m2 0


.

It follows that

H1 =



0 0 0 . . . 0

1 tp2m2
0 . . . 0

0 tp21

...
... Im2−1

0 tp2(m2−1)


and

H2 =


t21

Im2−1
...

0 . . . t2m2

 .

Again, H1 has a zero row, and in this case detH2 = t2m2 .
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Finally suppose that m = m1 = m2. Then there are 4 orbits. The first two are

dual to each other:

(0,m− 1]
v1 //(0,m− 1]

v2 //(0,m− 1]

and

(m+ 1, g]
v1 //(m+ 1, g]

v2 //(m+ 1, g].

The other two orbits are self-dual and given by:

(m− 1,m]
v1 //(m,m+ 1]

v2 //(m− 1,m]

and

(m,m+ 1]
v1 //(m− 1,m]

v2 //(m,m+ 1].

Let x, c ∈ k satisfy

• cp = −c

• xp2
= −x

• −xxp2
c = 1.

Take a0 = (1, (m − 1,m]) and (1, (m,m + 1]) to be the base points of their

respective self-dual orbits. Set x(a0) = x and c(a0) = c. Then set x(a), c(a) and

ε(a) for the rest of the orbit accordingly. For all a = (i, I) in the other orbits, set

c(a) = (−1)i+1 and ε(a) = x(a) = x(ã) = 1.
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Then D has a displayed basis where B = {e1, . . . , eg; f1, . . . , fg} is defined by

ej =



µ(e1,j−m) j ∈ (m, g − 1]

µ(xpe2,m+1) j ∈ (0, 1]

µ(xe1,m+1) j ∈ (g − 1, g]

−µ(e2,j−1) j ∈ (1,m]

(7.11)

fj =



µ(e2,j+1) j ∈ (m, g − 1]

µ(xe1,m) j ∈ (0, 1]

−µ(xpe2,m) j ∈ (g − 1, g]

µ(e1,jm) j ∈ (1,m].

(7.12)

F (ej) is then given by

F (ej) =



−f1 j ∈ (0, 1]

−ej+m−1 j ∈ (1,m]

−ej−m+1 j ∈ (m, g − 1]

−fg j ∈ (g − 1, g].

The Hasse-Witt matrix for the almost-ordinary locus when m = m1 = m2 has

the form

A1 +MC1 =


0 . . . 0 −t1m

−Im−1
...

−tmm


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and

A2 +M tC2 =


−t11

... −Im−1

−t1m 0 . . . 0

 .

Finally,

H1 =



tp+1
1m 0 . . . 0

tp11 + tp1mt2m
... Im−1

tp1(m−1) + tp1mt(m−1)m

tp1mtmm


and

H2 =



0 . . . 0 t11t
p
1m + tp2m

t12t1mp + tp3m

Im−1 t13t1mp + tp4m
...

t1(m−1)t1mp + tp2m

tp+1
1m


.

In this case, detH1 = (−1)m−1 detH2 = (−1)m−1tp+1
1m .

The results from the previous example can be summed up by the following

proposition.

Proposition 7.2.11. When m1 > m2 the Hasse-invariant vanishes to order one

on the almost-ordinary E-O stratum, however, when m1 = m2, the Hasse-invariant

vanishes to order p+ 1.
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Example 7.2.12 (The almost-core stratum). The almost-core locus corresponds

to the element (w1, w2) where

wi(j) =


mi + 1 j = mi

mi j = mi + 1

j otherwise.

Then the complementary element v where vi = w0w0(Ji)wi of w is given by

vi = [mi+1 + 1 mi+1 + 2 . . . g − 1 1 g 2 . . .mi+1] .

There are two distinct situations to cover, when m2 > 1 and when m2 = 1.

First, suppose that m2 > 1. In this case there are four orbits and two different

kinds of orbits:

(0, 1]
vi //(mi+1,mi+1 + 1]

vi+1 //(g − 1, g]
vi //(mi+1 − 1,mi+1]

vi+1 //(0, 1]

and

(1,mi − 1]
vi //(mi+1 + 1, g − 1]

vi+1 //(1,mi − 1]

where we are starting from a canonical fragment of vi. The two orbits of length

four are dual to each other, and the orbits of length two are self-dual.

Let

A (1)
i = {(i, I) | I ∈ {(0, 1], (mi − 1,mi], (mi,mi + 1], (g − 1, g]}}
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be the canonical fragments for vi whose orbits are not self-dual. Then for a ∈ A (1)
i ,

ã ∈ A (1)
i+1 and υ(a) ∈ A (1)

i+1. Let

A (2)
i = {(i, I) | I ∈ {(1,mi − 1], (mi + 1, g − 1]}}

be the canonical fragments for vi whose orbits are self-dual.

For a ∈ A (1)
1 set c(a) = 1, c(ã) = −1, and ε(a) = x(a) = x(ã) = 1. For

a ∈ A (2)
1 , set c(a) = c and x(a) = x where x and c satisfy,

• cp = −c

• xp2
= −x

• xpxc = −1.

Then c(a) = cp = −c and x(a) = −xp for a ∈ A (2)
1 . Choose base points

a0 ∈ {(1, (1,m1 − 1]), (1, (m2 + 1, g − 1])} for the two orbits of length two. Then

there are no elements a = (1, I) ∈ A such that ε(a) = −1.
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The following gives a displayed basis for D. For (1, j) ∈ a = (1, I),

ew1(j) =



−µ(e2,g) j ∈ (0, 1]

µ(xpe2,j+m2) j ∈ (1,m1 − 1]

−µ(e2,m2) j ∈ (m1,m1 + 1]

µ(e1,m1) j ∈ (m1 − 1,m1]

µ(xe1,j) j ∈ (m1 + 1, g]

µ(e1,g) j ∈ (g − 1, g]

fw1(j) =



µ(e1,1) j ∈ (0, 1]

µ(xe1,j) j ∈ (1,m1 − 1]

µ(e1,m1+1) j ∈ (m1,m1 + 1]

µ(e2,m2+1) j ∈ (m1 − 1,m1]

µ(−xpe2,j−m1) j ∈ (m1 + 1, g − 1]

µ(e2,1) j ∈ (g − 1, g].

This means that

F (ej) =



em1+1 j ∈ (0, 1]

−fj j ∈ (1,m1 − 1]

−f1 j ∈ (m1 − 1,m1]

fg j ∈ (m1,m1 + 1]

−fj j ∈ (m1 + 1, g − 1]

−em1 j ∈ (g − 1, g].
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It follows that H is given by

H1 =



t1m2

M1 ~y1

tm1m2 ~x1 z1


where

M1 =

((
m1−1∑
n=2

tint
p
jn

)
− tim2t

p
j1

)
1≤i≤m1−1
2≤j≤m1−1

~x1 =

(
m1−1∑
n=2

tm1nt
p
jn

)
− tm1m2t

p
j1 + tpjm2

,

~y1 =

(
m1−1∑
n=2

tp+1
in

)
− tim2t

p
11,

z1 =

(
m1−1∑
n=2

tp+1
m1n

)
− t1m2t

p
11 + tp1m2

.

and

H2 =



z2 ~x2 t11

~y2 M2

t1m2


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where

M2 =

((
m1−1∑
n=2

tnit
p
nj

)
+ t1it

p
m1j

)
1≤i≤m1−1
2≤j≤m1−1

~x2 =

(
m1−1∑
n=2

tn1t
p
nj

)
+ t11t

p
m1j
− tp1j,

~y2 = −

(
m1−1∑
n=2

tnit
p
nm2

)
− t1itpm1m2

,

z2 =

(
m1−1∑
n=2

tn1t
p
nm2

)
+ tp1m2

− t11t
p
m1m2

.

Now consider the case where m2 = 1. Then

v1 = [2 3 . . . g − 1 1 g . . .mi+1] ,

v2 = [1 g 2 . . . g − 1] ,

There are two different orbits of canonical fragments here:

(0, 1]
v1 //(1, 2]

v2 //(g − 1, g]
v1 //(g − 1, g]

v2 //(g − 2, g − 1]
v1 //(0, 1]

v2 //(0, 1]

and

(1, g − 2]
v1 //(2, g − 1]

v2 //(1, g − 2]

where in each case we are starting from a canonical fragment of v1. Both orbits are

self-dual. Let y, d ∈ k such that

• dp3
= −d
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• yp6
= −y

• −yyp3
d = 1

and let x, c ∈ k such that

• cp = −c

• xp2
= −x

• −xxpc = 1.

For a0 = (1, (0, 1]) set x(a0) = y, c(a0) = d and x(υn(a0)) = (−1)nyp
n

for

1 ≤ n ≤ 5. Similarly, c(υn(a0)) = dp
n

for 1 ≤ n ≤ 5. Likewise, for a0 = (1, (1, g−2])

set x(a0) = x, c(a0) = c, which determines the values of x(υ(a)) = x(ã) = −xp and

c(υ(a)) = c(ã) = −c.

The following gives a displayed basis for D.

ej =



µ(yp
3
e2,g) j ∈ (0, 1]

µ(xpe2,j+1) j ∈ (1, g − 2]

µ(yp
4
e1,g−1) j ∈ (g − 1, g]

µ(yp
5
e2,1) j ∈ (g − 2, g − 1]

fj =



µ(ye1,1) j ∈ (0, 1]

µ(xe1,j) j ∈ (1, g − 2]

µ(−ype2,2) j ∈ (g − 1, g]

µ(yp
2
e1,g) j ∈ (g − 2, g − 1].
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Consequently,

F (ej) =



eg j ∈ (0, 1]

−fj j ∈ (1, g − 2]

eg−1 j ∈ (g − 1, g]

f1 j ∈ (g − 2, g − 1].

Since m2 = 1, the matrix M = (tij) consists of a single column, so write

tj := t1j. Then

A1 +MC1 = (0, . . . , 0, 1)t

and

A2 +M tC2 = (1,−t2,−t3, . . . ,−tg−1, t1).

Therefore,

H1 =



0

... 0m1−1

0

1 −tpm2+1 . . . −tpm1
tp1


, H2 = (t1).

Example 7.2.13 (The core stratum). Here wi is the identity element, and

vi = w0w0(Ji) = [mi+1 + 1 . . . g 1 . . .mi+1] .
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The orbits of the canonical fragments of vi are given by:

(0,m1]
v1 // (m2, g]

v2 // (0,m1]

(m1, g]
v1 // (0,m2]

v2 // (m1, g]

meaning that the canonical fragments of vi are (0,mi] and (mi, g]. Both orbits

have length 2 and are self-dual.

Let Ai = {a ∈ A | a = (i, I)} and choose the base points to be the elements of

A1. Then set c(a) = c and x(a) = x for a ∈ A1 where x and c satisfy,

• cp = −c

• xp2
= −x

• xpxc = −1.

This determines the values of c(a) and x(a) for a ∈ A2. Since the orbits are both

of length 2, ε(a) = 1 for all a ∈ A . Thus, D has a displayed basis where

ej =

 µ(xpe2,j+m2) j ≤ m1

µ(xe1,j) j ≥ m1 + 1
(7.13)

fj =

 µ(xe1,j) j ≤ m1

−µ(xpe2,j−m1) j ≥ m1 + 1
(7.14)

and

F (ej) =

 −µ(xe1,j) j ≤ m1

µ(xpe1,j−m1) j ≥ m1 + 1
=

 −fj j ≤ m1

−fj j ≥ m1 + 1
.
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Therefore, the Hasse-Witt matrix has the form: H = A+ TC = −T . It follows

that

H = T (T p) =

(
M(Mt)p 0

0 Mt(M)p

)
.

Since M = (tij)1≤i≤m1,1≤j≤m2 there is not a particularly simple description in

general for the determinants of the Hi. However, when m1 = m2, the matrix M is

square and we see directly from the matrices that detH1 = detH2.

Fortunately, the case where m2 = 1 is easy enough to describe, as M is a

single column. Writing tj := t1j gives

H1 = (tit
p
j)1≤i,j≤m1 , H2 =

( ∑
1≤j≤m1

tp+1
j

)
.

Now, all the rows of H1 are linearly dependant as dividing the ith row of H1 by ti

gives the same result for all 1 ≤ i ≤ m1, once again confirming that detH1 = 0,

and locally formally the non-ordinary locus is cut out by the equation of a Fermat

hypersurface

tp+1
1 + tp+1

2 + . . .+ tp+1
m1

= 0.
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Chapter 8
Conclusion and future work

In this thesis, we have extensively studied the Ekedahl-Oort stratification of

unitary Shimura varieties. By describing the Weyl group coset JW that classifies

the E-O strata as a subset of Sg × Sg, we were able to characterize many properties

of the stratification combinatorially. This had the immediate consequence of

allowing us to demonstrate the symmetry of the stratification under complex

conjugation on M in case m1 = m2, and to count the number of strata of a given

dimension. It then followed that not only are there unique strata of dimension 0

and m1m2 (the core stratum and µ-ordinary stratum respectively), but there are

also unique strata of dimension and codimension-one, corresponding to the almost-

core and almost-ordinary strata. By giving models for the Dieudonné modules

based on the corresponding element in JW (following [Moo01]), we calculated

invariants such as the a-number and f -number. This showed that generally,

when p is split in K, the core stratum is not superspecial, and there is no way

to distinguish the core stratum from the almost-core stratum based on standard

invariants. We also gave models for the p-torsion groups schemes of the special

strata of interest, which allowed us to describe in detail both the most generic and

most degenerate behaviours of the strata throughout the course of the thesis.

As the points in the core strata where p is split were unlike the core strata of

other Shimura varieties examined in previous work, we had no immediate models
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for the core points in terms of well-understood abelian varieties. In order to tackle

this problem, we showed how to explicitly derive the E-O stratum of the reduction

of a CM point from its CM type in a general setting. This allowed us to give

concrete examples of abelian varieties that lie in given E-O strata, including the

mysterious core stratum of the Shimura variety when p is split.

The study of the E-O stratification would not be complete without also

comparing it to the Newton stratification—that is, comparing the p-divisible

groups and p-torsion group schemes of the abelian varieties on the moduli space.

In the case where p is inert, we demonstrated the relationship of the special

E-O strata with the Newton stratification using the models for their p-torsion

group schemes. In the case where p is split, we effectively computed the map

B(G, µ) ↪→ JW from [VW13] that takes a Newton stratum to the minimal E-

O stratum contained within it. This showed that the core stratum is not even

supersingular (unless m1 = m2). In low dimensional examples we saw that the

calculation of the map B(G, µ) ↪→ JW and the closure relations on E-O strata

completely determined the relationship between the Newton and E-O strata.

In order to understand the cycle classes of the E-O strata, we then con-

structed a flag space Fi over M using the de Rham cohomology. A crucial

combinatorially calculation showed how to construct a complete symplectic flag

extending the Hodge filtration (together with its corresponding Weyl group ele-

ment) from a flag extending Ei ⊆ Hi, which allowed us to take advantage of the

techniques of Ekedahl and van der Geer from the Siegel case [EvdG09]. We showed

that the map Fi → M takes strata to strata and is isomorphic to a map from
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GLg/B → GLg/P locally in the étale topology. As a consequence, we showed that

the maps between strata are finite étale surjective maps. In the future, this will

allow us to study the cycles classes of E-O strata in the Chow group by pushing-

down cycles of closed strata in Fi. Furthermore, the cycle classes of the closed

E-O strata can be written in terms of Chern classes of the Hodge bundle and

consequently lie in the tautological ring. This is a topic that we intend to pursue

further in future work.

Finally, we calculated the deformation of the Hasse-Witt matrices over the

special E-O strata in order to study the Hasse-invariants via local equations giving

results on the geometry of its vanishing locus—the closure of the almost-ordinary

stratum. These calculations show that the (partial) Hasse-invariants vanish to

order one on the almost-ordinary stratum. When p is inert in K we show that

the vanishing locus of the Hasse-invariant is locally formally cut-out at the core

points by the equation of a Fermat hypersurface when m2 = 1. Furthermore, in

the case where p is split in K we show that the non-ordinary locus is not only

connected, but irreducible, with the corollary that the non-ordinary locus for a

Shimura variety coming from the group GU(2, 1) is a smooth, irreducible curve.

There are two main directions we intend to pursue in future work. First,

we would like to continue extending the program of Ekedahl-van der Geer in the

Siegel case to both unitary Shimura varieties and Hilbert modular varieties. We

hope to obtain similar results such as irreducibility of many of the E-O strata. We

will also provide formulae for the cycle classes and expect to be able to use these

calculations to determine the number of core points on unitary Shimura varieties.
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Another direction is to examine the action of the prime-to-p Hecke operators

on the E-O stratification. We expect that phenomena similar to the Siegel and

Hilbert modular case will arise when studying the effect on the core stratum,

with applications to mod p modular forms as well as expander graph theory. This

thesis gives a good foundational understanding of the core E-O stratum of unitary

Shimura varieties—one previously missing from the literature—enabling the study

the Hecke action on the core stratum of unitary Shimura varieties. Along the same

lines, we will also study the prime-to-p Hecke operators on the entire stratification,

as in the work of Goren-Oort on Hilbert modular varieties [GO00].
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Index

a-number, 12

almost-core locus, 52

almost-ordinary locus, 53

Barsotti-Tate group, see p-divisible

group

basic stratum, 106

Bruhat order, 32

canonical decomposition, 166

canonical domain, 151

canonical flag, 165

pair of canonical flags, 166

canonical fragment, 155

dual, 158

canonical type, 167

chain, 106

maximal, 106

CM

CM field, 83

CM pair, 83

CM type, 83

primitive, 83

complementary element, 153

complex multiplication (by E), 83

conjugate flag, 161

pair of conjugate flags, 161

core locus, 40

Coxeter group, 32

length, 32

reduced word, 32

Coxeter system, 32

determinant condition, 9

Dieudonné module, 17

dual, 17

displayed basis, 26, 188

displayed matrix, 26

Ekedahl-Oort (E-O) stratum, 39
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f -number, 12

Frobenius

absolute Frobenius morphism, 10

relative Frobenius morphism, 11

Hasse invariant, 186

(total) Hasse invariant, 186

partial Hasse invariants, 186

Hasse-Witt matrix, 26

height 1

height 1-hull, 177

height 1-isomorphic, 177

height 1-neighbourhood, 177

Hodge bundle, 159, 184

Hodge flag, 160, 161

complementary, 160

complementary pair, 160

isocrystal, 21

height, 21

isomorphism, 21

slope sequence, 23

isogeny

Z×(p)-equivalence class, 9

level structure, 10

µ-ordinary stratum, 40, 106

n-torsion group scheme, 12

Newton map, 102

Newton point, 105

Newton polygon, 23, 103

symmetric, 25

Newton stratum, 105

non-ordinary locus, 183

opposite, 166

orbit, 157

dual orbit, 158

pair of dual orbits, 158

self-dual, 158

ordinary, 13, 25

p-divisible group, 15

determinant condition, 16

dimension, 15

distinguished, 117

dual, 15

height, 15

homomorphism, 15
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isogeny, 15

quasi-isogeny, 16

Serre dual, 15

slope sequence, 23

with D-structure over S, 16

PEL Shimura datum, 6

reflections, 32

reflex field, 8

relative position, 37, 38

relative position ≤ w, 161

relative position (≤)(w1, w2), 162

relative position w, 161

Shimura datum, 6

shuffles, 34

simple reflections, 32

slope, 23, 103

multiplicity, 23

standard parabolic, 36

strata, 31, 166

stratification, 31

stratified space, 175

diagram of stratified space, 175

morphism of stratified spaces, 175

supersingular, 25

superspecial, 13

type, 37

unitary (m1,m2) modular form mod p

of weight χbi over R, 184

unitary PEL Shimura datum of

signature (m1,m2) with good

reduction at p, 6

universal deformation ring, 25

Verschiebung morphism, 11

weight homomorphism, 8
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List of Notation

ã, 199

AC(m1,m2), 65

a(G), 12

A[I], 13

A[p], 12

A(p), 11

∗, 6

B, 6

B, 37

[b], 101

Ba, 200

B(G), 101

B(G, µ), 101

BT , 37

C•, 38

Cϕ, 84

D, 18

D, 18

D , 6

dE, 86

DE/Q, 86

Dg, 164

Dk, 17

ED , 8

f(G), 12

Fr, 11

G, 8

Ḡ, 8

G, 6

g, 9

Γ, 102

Γµ, 104

GU(m1,m2) , 6

h, 6

Hλ, 24
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(i, (n, n′]), 155

j[, 201

K, 6

κ, 12

k, 12, 31, 88

κg, 103

κ(p), 10

Λ, 6

λ[, 104

≤, 32

4ψ, 35

`(w), 32

M, 10, 88

µ, 100

m1, 6

m2, 6

minF(w), 60

minFi(w), 60

µh, 8

µwi(t), 139

N (G), 102

AO(m1,m2), 68

ν, 102

νwi(t, u), 139

νG, 102

OB, 6

π1(G), 104

PJ , 36

ψ, 6

Q(k), 17

rw(j, n), 136

T , 28

Uw, 161

Uw, 161

V , 6

υ(a), 199

Ver, 11

V w, 39

w0, 33

w0(J), 153

w0,J , 33
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wh, 8

WJ , 33

JW , 33

wJ , 134

Jw, 134

W (k), 17

(W,S), 32

W (T,G), 36

[x(1)x(2) · · · x(g)], 34
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École Norm. Sup 43 (2010), 1017–1038.

[Ghi03] Alexandru Ghitza, Siegel modular forms (mod p) and algebraic modular
forms, Ph.D. thesis, Massachuesetts Institute of Technology, 2003.

[GN16] Wushi Goldring and Marc-Hubert Nicole, The µ-ordinary Hasse
invariant of unitary Shimura varieties, Journal für die reine und
angewandte Mathematik (Crelles Journal) (2016), To appear.

[GO00] Eyal Z. Goren and Frans Oort, Stratifications of Hilbert modular
varieties, Journal of Algebraic Geometry 9 (2000), no. 1, 111–154.

[Ham14] Paul Hamacher, The geometry of Newton strata in the reduction modulo
p of Shimura varieties of PEL type, Ph.D. thesis, Technische Universität
München, 2014.

[Har77] Robin Hartshorne, Algebraic geometry, vol. 52, Springer Science &
Business Media, 1977.

[He07] Xuhua He, The G-stable pieces of the wonderful compactification,
Transactions of the American Mathematical Society 359 (2007), no. 7,
3005–3024.

[HP13] Benjamin Howard and George Pappas, On the supersingular locus of the
GU(2, 2) Shimura variety, 2013.



237

[HT01] Michael Harris and Richard Taylor, The geometry and cohomology of
some simple Shimura varieties, vol. 151, Princeton University Press,
2001.

[Kob75] Neal Koblitz, p-adic variation of the zeta-function over families of
varieties defined over finite fields, Compositio Mathematica 31 (1975),
no. 2, 119–218.

[Kot85] Robert E. Kottwitz, Isocrystals with additional structure, Compositio
Mathematica 56 (1985), no. 2, 201–220.

[Kot92] , Points on some Shimura varieties over finite fields, Journal of
the American Mathematical Society (1992), 373–444.

[KR03] Robert E. Kottwitz and Michael Rapoport, On the existence of F -
crystals, Commentarii Mathematici Helvetici 78 (2003), no. 1, 153–184.

[Lan83] Serge Lang, Complex multiplication, vol. 255, Springer Science, 1983.

[LO98] Ke-Zheng Li and Frans Oort, Moduli of supersingular abelian varieties,
vol. 1680, Springer, 1998.

[Luc04] Catherine Lucarelli, A converse to Mazur’s inequality for split classical
groups, Journal of the Institute of Mathematics of Jussieu 3 (2004),
no. 02, 165–183.

[Mil06] Joseph S. Milne, Complex multiplication, 2006.

[Moo01] Ben Moonen, Group schemes with additional structures and weyl group
cosets, Moduli of abelian varieties, Springer, 2001, pp. 255–298.

[Moo04a] , A dimension formula for Ekedahl-Oort strata, Annales de
l’Institut Fourier, vol. 54, 2004, pp. 666–698.

[Moo04b] , Serre–Tate theory for spaces of PEL type, Annales Scientifiques
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