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ABSTRACT 

The suppression of the subsynchronous resonance (SSR) phenomenon 

that occurs in synchronous generators connected to series capacitor com­

pensated transmission lines ha-s been·in-vestigated. The synchronous 

machine field winding has been considered as a means of controlling this 

phenomenon. The physical concepts of how the above phenomenon can be 

suppressed by field current control are introduced, and the properties of 

the control signal required are explained. 

Among the different signals which can be used to suppress the SSR 

phenomenon, the signal composed of !::. P and A Q is adopted in the 

study. In confirming the physical concepts by a numerical example, the 

above signal is seen to give a flexible and a robust feedback. 

After understanding the principle of SSR suppression and after 

choosing the control signal, a feedback scheme which passes through the 

machine excitation system, is designed for the SSR suppression. The small 

perturbation analysis of a system incorporated with such a feedback scheme · 

has shown the effectiveness of this scheme in eliminating any undesirable 

SSR oscillation. 

After testing the above feedback scheme against small disturbances, 

it is necessary to see what is the situation under large disturbances. 

Digital simulations show that A P and !::. Q feedback alone is incapable 

of stabilizing the large unstable SSR oscillations. The reason is that 

the machine regulator saturation limits (voltage ceilings) prevent the above 

scheme from injecting a large enough stabilizing signal. To overcome this 

difficulty, a nonlinear resistor protection scheme connected across the 

series capacitor is added to the system. Results show that both the non­

linear resistor protection and the above feedback scheme working together 

are required for ensuring system stability under small and large disturbances. 

Next, the torsional resonance of the multi-inertia shaft system, 

as it is coupled to the SSR of the series capacitor compensated system, is 
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considered in the analysis. The feedback scheme with A. l? and A. Q 

as the control signal is tested against the instability arising from 

the torsional resonance interaction. Because the A. l? and A. Q 

scheme is unable to eliminate the above instability, a power blocking 

filter is used for this purpose. Its effectiveness under small and 

large perturbations has been investigated. 

Finally,instead of suppression, a fresh approach based on avoid­

ing SSR is introduced. A preliminary small perturbation analysi.s of a 

system, which is shunt compensated by a synchronous capacitor, has been 

included. 
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RESUME 

on a examine la suppression du phenomene de la resonance 

sous-synchrone (SRS) qui se produit dans les generateurs synchrones re­

lies aux lignes de transmission compensees par des condensateurs en serie. 

Pour controler ce phenomene, on a pris en consideration le bobinage in­

ducteur de la machine synchrone. On a presente les concepts physiques 

pour pouvoir supprimer le phenomene ci-haut mentionne par le contr6le du 

bobinage et on a explique les proprietes du signal·de controle requis. 

Parmi les differents signaux qui peuvent @tre employes pour 

supprimer le phenomene SRS, on choisit dans cette etude le signal compose 

~p et aQ • Afin de confirmer les concepts physiques par un exemple numeri­

que, ce signal semble donner une retroaction souple et solide. 

Apres avoir compris le principe de la suppression de SRS et 

apres avoir choisi le signal de controle, un arrangement retroactif qui 

passe par le systeme d 'amor~age de la machine est construit pour la suppres-

sion SRS. L'analyse de la petite perturbation d'un systeme incorpore a un 

tel arrangement retroactif a demontre l'efficacite de cet arrangement en 

eliminant toute oscillation SRS indesirable. 

Apres !'experimentation de !'arrangement retroactif ci-haut 

mentionne contre les petites perturbations, il faut etudier la situation 

contre les grandes perturbations. Les simulations digitales demontrent que 

la retroaction de ~p et aQ seulement est incapable de stabiliser les 

grandes oscillations SRS. Les limites de saturation du regulateur de la 

machine (limites de voltage) qui empechent cet arrangement d'injecter un 

signal stabilisateur assez grand en est la raison. Pour vaincre cette dif-

ficulte, on ajoute au systeme un arrangement de protection de resistance non 

lineaire rattache parallelement aux series du condensateur. Les resultats 

demontrent que la protection de resistance non lineaire et !'arrangement re­

troactif sont tous deux necessaires pour assurer la stabilite du systeme 

contre les petites et les grandes perturbations. 
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Puis on analyse la resonance de torsion et le systeme 

de puits a inerties multiples tel qu 1il est associe au SRS du systeme 

iv 

des series du condensateur. On verifie l'arrangement retroactif avec 

AP et AQ comme signal de contr8le centre l'instabilite provenant de 

!'interaction de la resonance de torsion. Parce que !'arrangement de 

AP et AQ est incapable d'eliminer'cette instabilite, on se sert d'un 

filtre bloquant l'energie. On a etudie son efficacite centre les grands 

et les petites perturbations. 

Enfin, au lieu de la suppression, on introduit un nouvel 

abord pour eviter le SRS. On a aussi inclus une analyse preliminaire 

des petites perturbations d'un systeme de compensation shunt par un con­

densateur synchrone. 
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·CHAPTER . I: 

INTRODUCTION 

1.1 The·use of Series Capacitors 

Stability studies have been considered as an essential part 

of power system planning. The task of achieving acceptable stability 

performance becomes more difficult as the power system expands and the 

distance over which the power is transmitted, increases. 

over the history of power system growth, stability was main-

tained without great difficulty. This is because the centres of 

consumption were close to the generation stations. Therefore, short 

transmission lines were satisfactorily used to transmit the necessary 

power. However, within the last decade the sources of generated electric 

power became increasingly further removed from the centres of consumption. 

Thus, long transmission lines are used to connect the sources of generated 

power with the centres of consumption. Therefore, system stability be-

comes a serious problem. 

From the standpoint of power system stability analysis, the 

most important function [1) is the power-angle curve as shown in Figure 

1.1. Assuming for simplicity a cylindrical synchronous generator connected 

to an infinite bus bar through a transmission line, the power transmitted 

(fel is sinusoidally v~in9 with the electrical angular displacement be-

tween the infinite bus and the generator rotor (Q)" Assuming that the 



2 

l
'·.· 
.• 

0 
Figure 1.1. fowe~-angle Curve. 

system ~esistances a~e neglected, then the peak of the curve in Figure 

1.1 is inve~sely p~opo~tional with the net effective ~eactance in the 

path of the cu~rent flowing between the gene~ato~ and the infinite bus 

[2] • 

In. the context of Figure 1.1 , the system steady state ope~at-

ing point is cha~acte~ized by the amount of the t~ansmitted po~ and the 

angul~ position of the machine roto~ with respect to the infinite bus 
' 

(e.g., point g in Figure 1.1). The system steady state stability is 

~elated to th.e slope of the power-angle curve at the system operating point 

13] • In fact this slope deterxn.Jnes th.e synchronizing to~que available on 

the generator .. When the operating point is at point, say . g, in which 

c the slope is positive, then the steady state is said to be stable. The 
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portion of the power...:angle curve in which the slope is negative corresponds 

to the unstable operating angles. As the steepness of the slope is an 

index of the electromechanical stiffness acting on the rotor during 

oscillations,it is desirable to operate at increased slope. 

However, the system transient stability is discussed on the 

basis of the equal area criterion I2J where the system is said to be 

stable folloWing a severe disturbance 1 if the total energy acting to 

accelerate the machine is equal to the total energy acting to decelerate 

the machine • 

In the light of the previous paragraph, one can improve the 

system stability by reducing the inductive reactance in the transmission 

circuit. This is because the power-angle curve takes the form of 

v1 v2 sin c I XL where v1 and v2 are the magnitudes of the-voltages of 

the generator and the infinite bus and XL is the inductive reactance be-

tween the voltages. Reducing XL clearly increases the peak of the power-

angle curve as shown in Figure 1.1. For the same power delivered, the 

operating point is shifted from g (for XLl) to g' (for X~l) • 

Firstly, we note that the slope of the power-angle curve at g' is greater 

than that at g, so that the system steady state stability is improved. 

Secondly, we note that g' is at a smaller operating angle than g. This 

is combined with the fact that the peak of the curve for X~ is greater 

than that for xLl • This i.IIlplies that the system with reduced reactance 

can withstand a 100re severe fault. In brief, the transient stability is 

improved {4]. 
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The conclusion to be drawn is that in order to improve the 

stability, it is necessary to reduce the net effective reactance in the 

4 

path of· the current'flowing in the transmission line. In systems where 

short transmission lines are used, the problem is already solved, since 

these lines have low inductive reactance. Whereas in long transmission 

lines, series capacitors are installed in series with these lines to 

compensate for their large inductive reactances IS, 6] • 

Series capacitors are the most economical and practical method 

of improving the system stability {7, 8] and they provide an excellent 

means of increasing the power transmission !9]. Series capacitors have 

been extensively used {8, 10, 11, 12] over the last two decades. However, 

their introduction in the transmission lines has brought about two damaging 

effects: the subsynchronous resonance (SSR) and the torsional resonance 

interaction where the latt~r resulted in the destruction of the two shafts 

at the same Mohave power station on December 9, 1970 and again on OCtober 

26, 1971 [13, 14]. 

1.2 What is SSR 

Although the series capacitor compensation effectively reduces 

the line reactance, th.e resonance associated with the L - C circuit may 

be undesirable. In the first place, the series capacitance is chosen 
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such that forced oscillation at the supply frequency does not occur. 

For stability reasons, the resonance is never chosen to be supersynchro-

nous [15] • Consequently, the L - C resonance frequency is always 

subsynchronous [16] • 

1.2.1 L - C Resonance 

The natural frequency of oscillation of the inductance and 

the series capacitor 

w = 
n 

where XL , and 

w 
n 

is [17] : 

electrical r I s 

are the line inductive, the series capacitive 

and the generator negative sequence reactances respectively. 

Whether the SSR is of any consequence to the system per-

(1.1) 

formance depends on whether the resonating mode is negatively or positively 

damped. Generally, it is expected that the resistance in the system will 

damp out this mode. However, the amortisseur windings in the rotor of the 

synchronous generator is effectively a negative resistance to this mode [18]. 

When this negative resistance dominates, the SSR mode is negatively 

da:mped. 
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1.2.2 Physical E~lanation of SSR Oscillation 

Under any disturbance, the resonance of the external L - C 

circuit (network) results in positive and negative sequence currents and 

consequently rotating mmfs in the stator of the synchronous generator 

at subsynchronous and supersynchronous frequencies respectively [19). 

The negative sequence current acts like a brake on the rotor, dissipating 

energy and helping to damp this component. This is because the synchro-

nous machine rotor behaves as a positive resistance when viewed by this 

current, therefore, it is damped out. 

frequency 

The positive sequence current which oscillates at subsynchronous 

w , 
n 

sets up a stator magnetic field rotating in the airgap at 

wn which is by design less than the synchronous speed w
0 

electrical r I s 

(20, 21). The synchronous generator rotor is rotating at a constant syn-

chronous speed w
0 

thus, currents at a frequency of w
0 

- wn electrical 

r I s are induced in the rotor circuits which in turn produce a rotor 

magnetic field in the airgap stationary with respect to the stator magnetic 

field produced by the positive sequence current. The interaction between 

these two subsynchronous fields will result in a time invariant counter 

torque component associated with this mode. 

The SSR positive sequence current oscillation will tend to be dampec 

by the line and transformer resistances. However, the synchronous genera-

tor acts as an induction generator to this current, since its rotor is 

rotating at a higher speed than that of the SSR positive sequence current. 
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That is, the rotor of the synchronous generator will behave as a nega-

tive resistance as viewed by the SSR positive sequence current. If the 

net resistance in the path of this current is negative, that is, if the 

energy fed by the rotating machine is more than that absorbed by the re-

sistance loss in the SSR positive sequence current circuit, then the 

oscillations will build up in time and cause system instability. This is 

known [19] as the induction generation effect giving rise to the unstable 

SSR oscillation. However, if under this induction generation effect the 

net effective resistance is positive, then the SSR oscillation will be 

damped. 

1.3 Torsional Resonance Interaction 

The generator shaft system usually has many torsional modes 

[22] and associated with each mode is the natural rrequency of the torsional 

resonance (in practice the torsional resonance frequencies range from 15 Hz 

to 45 Hz for steam turbo-generator stations and 10 Hz or below for 

hydro~generator stations [23, 24]). This arises from the fact that the 

rotors of the generator and the exciter, the high, the intermediate and the 

low pressure turbines (in the case of a steam station) may be modelled as a 

number of ineL·tias interconnected by elastic :;;hafts which may be mod~:lled 

as torsional springs [22]. The mode oscillations of the rotor of the 
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generator is of some importance because it carries with it the field 

excitation. The torsional oscillations of the field coil, therefore, 

has the possibility of inducing voltages across the stator windings [23]. 

When the electromechanical torque set up by these torsional induced 

stator currents is phased so as to reinforce positively the magnitude 

of the torsional vibration,. then an unstable situation exists. 

The detailed mechanism by which this electromechanical damp-

ing occurs is not yet understood, although the condition at which the 

unstable situation occurs have been identified. This condition is when 

the frequency of the L - C resonance w is approximately equal to 
n 

w - w , where w is anyone of the torsional resonance frequencies 
0 m m 

and WO is the rotor synchronous speed. It is known (23] that at this 

frequency-the electrical system will behave as a negative mechanical 

damping as viewed by the rotor system. If this negative damping is 

greater than the machine positive damping, then torque oscillation will 

build up until the shaft is highly stressed. This is known as the tor-

sional resonance interaction [18, 23}. 

1.4 Review of Previous Work 

Literature available prior to 1970 [5, 6, 25] described 

the concept of series resonance possible in transmission lines utilizing 

~eries capacitor. Some of the references have described the phenomenon 
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as a form of self-excitation. Reference [25] used the frequency domain 

method to map .the stability boundary on the series capacitive reactance 

and the line resistance plane. It was found that unstable SSR oscil-

lation is more likely to occur at low line resistance and high series 

capacitive reactance. 

Since the mechanical failure of 1970 at the Mohave power 

station, a great deal of effort has been concentrated on the study of 

SSR phenomenon, 

this phenomenon. 

notably, in the analysis, detection and prevention of 

Several mathematical techniques have been developed for 

large system planning [8, 12, 26, 27, 28, 29, 30]. 

Reference [26) calculated the negative damping coefficients 

which resulted from the torsional resonance interaction. The limit at 

which this negative damping exceeds the machine damping was predicted [26] • 

This method of calculation was applied in the planning of Kaiparowits 

power station in U.S.A. 

Reference [27] introduced a circuit analysis procedure for 

the subsynchronous resonance and formulas for calculating the effect of 

the SSR phenomenon, 'ilhile References [21, 31] used the Nyquist criterion 

for investigating the stability conditions in the multi-machine power 

system. The method of calculating the peaks of the SSR oscillations and 

the expected system condition of these oscillations was described [20] • 

Reference [32] used the eigenvalue technique to investigate the 
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effect of the torsional resonance interaction on the system stability. 

It was found that an additionaL region, of instability is caused by .this 

interaction. Reference [ 33] added the machine regulator and governor 

systems to the analysis of (32]. It was found [33) that the stability 

region under torsional resonance interaction can be improved by a proper 

design of electro-hydraulic governors while. the regulator system remains 

ineffective. 

The theoretical analysis carried out in [18] for the Mohave 

power station to explain the cause of the mechanical damage was confirmed 

by the experimental results conducted in [34] at the same power station. 

A detailed model of its mechanical system which is useful for the study of 

the torsional resonance interaction, is introduced in (35]. 

The other aspect of development consisted of finding protective 

devices and solutions to prevent any further damages at the Mohave power 

station. Most of the solutions for the SSR phenomenon were concerned 

with reducing the peak torque oscillations following system disturbances 

since the levels of series capacitor compensations were chosen so as not 

to cause unstable SSR oscillations. A prime concern is finding· 

practical methods to eliminate the most severe case of all viz: the inter­

action of a shaft system torsional mode whose resonant frequency is coin­

cident with the frequency of the pulsating torque arising from unstable 

SSR mode. 
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To eliminate the torsional resonance interaction, Reference 

[18] proposed a SSR power blocking filter to be installed in series 

with the series capacitor compensated transmission line. The SSR 

blocking filter is a L - C tank circuit which is tuned to the SSR 

frequency. It presents itself as a large resistance to the SSR current 

and in consequence dominates over the negative resistance associated with 

the induction generation action of the amortisseur windings. References 

[36, 37] installed this filter at the Mohave power station as its responses 

to temperature variations and to levels of series capacitor compensations 

were reported. Reference [38] introduced a feedback loop through the 

machine excitation system to control the torsional resonance interaction. 

It was shown [38] by eigenvalues analysis and analogue simulation that 

torsional resonance interaction can be eliminated at a point characterized 

by fixed values of a series capacitive reactance and a transmission line 

resistance. Reference [39] introduced a feedback loop through the tur-

bine governor and it was demonstrated by eigenvalues analysis and analogue 

simulation that torsional interaction is totally eliminated. However, it 

was recognized [39] that the turbine governor system had a time response 

which was too fast to be realistic. 

There are a number of schemes proposed to protect the series 

capacitor from the overvoltages which would occur under the condition of 

unstable SSR oscillation. Reference [18] proposed a tripping relay 

which trips the generator under sustained SSR oscillation. This relay 

was tested in the field and the results were reported in [40, 41] • A 
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dual-gap scheme connected across the series capacitor was proposed 

[18] to protect the series capacitor and to reduce the peak torque 

oscillation. Reference [42] introduced a nonlinear resistor protec-

tion scheme connected across the series capacitor for the same purpose. 

Tb control the unstable SSR oscillation, Reference [18] 

proposed a redesign of the generator rotor which has a low amortisseur 

resistance to eliminate the induction generation action. Reference [23] 

tested a dynamic filter which is added in series with the series capacitor 

transmission line to solve the unstable SSR oscillation problem. This 

filter generates a voltage equal in magnitude and opposite in phase to 

that produced by the rotor oscillation at subsynchronous frequency. 

There has been a number of papers on the control of the 

unstable SSR oscillation through feedback signals to the field current 

of the synchronous generator. The first attempt was made by Saito et 

al [17] when he introduced a negative damping stabilizer (NOS) feed-

back loop which injects current in the synchronous machine field winding 

to control the unstable SSR oscillation. The experimental and theore-

tical results reported in [17] demonstrated the possibility of suppress-

ing the SSR oscillations by field winding control. 

In this thesis, the ground work of [17] is followed up, 

and the machine excitation system is used as a means to control the SSR 

phenomenon. The two aspects of the series capacitors effect are con-

sidered and the analysis is carried out for small and large disturbances. 
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1.5 Outline of the Problem 

After the shaft failures at Mohave 113, 14], a number 

of serious and thorough analyses of the SSR instability began to appear 

in the literature~ Among this extensive work, a number of patchwork 

remedies exist. Firstly, one considers prevention: that is, designing 

for the degree of series capacitor compensation which avoids SSR and 

torsional interaction instabilities for all conceivable transmission net-

work configurations. Then, as discussed in the review (Section 1.4), 

one considers the many countermeasures which have been proposed to re­

duce the overvoltages and the torques of stable SSR to values below the 

ultimate yield or fatigue limits. However, because of the haste in which 

engineering solutions are conceived and implemented, and perhaps also 

because of the propriety and confidential nature of the results, complete 

analyses and evaluations of the effectiveness of the countermeasures have 

not been disclosed in print. 

The large subject of SSR is reduced to a manageable 

size in this thesis by selectively treating only two aspects of it viz: 

control. 

(a) SSR suppression by field excitation control. 

(b) SSR avoidance by shunt compensated synchronous capacitor. 

The bulk of the study is devoted to field excitation 

Much pioneering work on this aspect has been done by Saito, 



0 

c 

14 

Mukae and Murotani Il7] and this thesis makes advances on their work 

in asking the following unanswered questions: 

(1) What are the underlying principles in SSR suppression 

using field excitation control? 

{2) What feedback signals are the most appropriate?: 

(3) Is the excitation system which has already a voltage 

regulator feedback loop and a power system stabilizer 

feedback loop, capable of taking on the additional 

duty of SSR suppression without compromising its 

existing functions? 

(4) Does the fact that the excitation system has saturation 

limits mean that large unstable SSR oscillations 

cannot be controlled by field excitation? 

(5) Is the field excitation capable of controlling instabilities 

due to shaft torsional resonance interaction with the 

SSR ? 

(6) If large unstable SSR and torsional resonance inter­

action cannot be controlled from field excitation 

feedback, then are the protection·schemes against series 

capacitor overvoltages and the SSR power blocking 

filter capable of suppressing the instabilities? 
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In the course of answering these questions, one be­

comes impressed with the adage that 11prevention is better than cure". 

One is attracted to the idea that shunt compensation avoids SSR 

altogether, and in consequence a chapter is devoted to the concept of 

voltage support using synchronous capacitor. 

1.6 Methodology 

The main concern of this thesis is the analysis of the 

effect of the series capacitor on the system stability under large and 

small disturbances. For this purpose two sets of equations are used: 

(1) Linearized first order differential equations describing the 

synchronous machine and the electrical network. These equa-

tions are necessary for the small perturbation study. 

(2) Nonlinear first order differential equations describing the 

synchronous machine and the electrical network. 

used in the large perturbation study. 

These are 

A state space form of the linearized equations is ob­

tained and the concept of eigenvalues and eigenvectors technique is 

used to investigate the system stability under small disturbances. In­

stability of the system is recognized if one of the real parts of the 
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eigenvalues is positive. E.igenvectors are used to relate the eigen­

values with the physical system. 

Runge Kutta-Gill numerical integration method is used. 

to integrate the nonlinear first order differential equations in the in-

vestigation of the system stability under large disturbances. Instability 

is recognized if the system oscillations are building up with time. 

1.7 Physical Interpretation 

All the previous work that dealt with the SSR problem 

lacked the physical interpretation of the system eigenvalues. It was 

accepted that when the real part of one of the eigenvalues is positive, 

the system is unstable. Furthermore, the physical interaction between 

the machine excitation system and the SSR phenomenon was not explained. 

To remedy this deficiency, a physical interpretation is given to each of 

the modes of the system studied. With this insight, it is possible to 

distinguish instabilities as being to the hunting (mechanical) modet the 

SSR mode or the torsional mode. 

standing to the problem. 

Such a detailed picture gives under-

The magnetic field view~point is adopted to provide a 

physical understanding in the airgap of the synchronous machine. The 

space vector diagram of the machine airgap magnetomotive force -(mm£} phasors 
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is used to shed light on the condition of unstable SSR oscillation 

and how to compensate for the induction generation action. 

1.8 Contributions to Knowledge 

This thesis claims the following contributions as 

original to the best of the author's knowledge: 

Subsynchronous Resonance Problem 

(1) A physically based understanding of the principle of field 

current control of the SSR has been proposed and the 

theory verified. 

demonstrated in: 

The usefulness of this theory has been 

(a) establishing the frequency and time phase criteria 

of the feedback signal, 

(b) showing that: shaft speed, rotor currents, real 

power (8 P) and reactive power (8 Q) signals 

are acceptable candidates as feedback signals be­

cause they contain a component which satisfies the 

frequency criterion. However, their relative 

effectiveness is determined by their ability to 

satisfy the phase criterion as well, 
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(c) proposing a robust feedback based on a combination 

of A P and A Q signals, 

1_8 

(d) explaining why, even when small perturbation stability 

may be secured by feedback, the system is inherently 

inc~pable of withstanding large disturbances due to the 

physical constraint that the machine excitation system , 

saturates. 

(2) The merits of the field excitation system to control SSR in­

stabilities have been evaluated for the case of a feedbac~ 

strategy based on a combination of real (A P) and reactive 

(A Q) power signals. 

factors into account: 

This evaluation takes the following 

(a) the excitation system which has already a voltage re­

gulator feedback loop and a power system stabilizer 

(PSS) feedback loop , 

(b) the gain of the excitation system saturates (this'is 

modelled by voltage ceilings in the block diagrams), 

(c) the feedback system should not only be capable of 

suppressing small perturbation instabilities but also 
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the instabilities which follow from large disturbances 

such as three-linecto-ground fault or switching-out-of­

phase, 

(d) the shaft torsional resonance can interact with the 

SSR oscillations resulting in the most severe case 

of instability. 

(3) Recognizing the limitation of ~ P and ~ Q feedback to arrest 

SSR instabilities from large perturbations and shaft torsional 

resonance interactions, the merits of supplementary counter-

measures have been investigated. These are: 

(a) the dual level spark gap with nonlinear resistor 

employed to protect the compensating capacitor 

from overvoltages, 

(b) the SSR power blocking filter. 

we found out 

While these supplementary devices are needed, 

that the excitation feedback, nevertheless, plays 

important roles in ensuring that limit cycling does not occur and in 

providing improved damping. 
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Synchronous Capac~tor Shunt Compensator 

(4) Eigenvalue studies of a shunt compensated long transmission line 

using synchronous capacitor with a ljigh response voltage 

excitation have shown that SSR can be avoided while main­

taining transient stability and comparable power carrying 

capability. 

While not directly germane to the central theme of the 

thesis, the other contributions consist of: 

Sypchronization-out-of-Phase Peak Torque 

{5) While considering synchronization-out-of-phase as a source 

of the large perturbation studies, it becomes apparent 

that the peak torques associated with synchronization-out­

of-phase of the series capacitor compensated transmission 

line have not appeared in the literature before. It is 

shown in this thesis how the results for series capacitor 

compensated transmission line can be predicted from those 

of the uncompensated line provided that the equivalent line· 

reactance is XL - XC . 

Mode Identification 

(6) With the help of the weighted elements in each eigenvector, 

it has been possible to associate each eigenvalue (or com-
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plex conjugate pair} with physical mode. For example, 

each resonant circuit tn the armature has a positive 

sequence mode and a negative sequence mode. The reso-

nant circuit may be the series capacitor compensating, 

the line reactance, or it may be the parallel L - C 

tank circuit used as the SSR power blocking filter. 

For example, the instabilities may be due to the positive 

sequence SSR mode, the hunting mode, the torsional re-

sonant mode or the PSS feedback circuit mode. It is 

by recognizing the physical character of these modes that 

some understanding of the complex system is possible and 

hopefully sufficient insight can be gained to find solu­

tions to the problems. 

1.9 Outline of the Thesis 

21 

A step-by-step approach is adopted in this thesis for 

the purpose of understanding the complicated interactions of a very com­

plicated system consisting of a synchronous generator feeding a series 

capacitor compensated transmission line. The field excitation system 

has a voltage regulator feedback and a power system stabilizer. On top 

of these, an additional feedback loop is installed with the objective of 

suppression SSR instabilities and shaft torsional resonance interaction. 
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Rather than modelling the entire system at once, the approach is to 

start with the mathematical equations modelling a simple basic system 

where modes have already been identified. From the simple basic sys­

tem, the complexities are added one by one. By this method, it is 

possible to identify the mode associated with each addition. 

the thesis is organized as follows: 

(1} Chapter II 

Therefore, 

In Section 1.6, it was mentioned that the study requires 

mathematical equations to describe the system that consists of a synchro­

nous machine connected to a series capacitor compensated transmission line. 

Therefore, the basic synchronous machine equations, the machine reference 

frames and the per-unit quantities are reviewed in this chapter. More-

over, the mathematical models required for large and small disturbance 

studies are derived. 

(2) Chapter III 

Since our main concern is the field excitation control of 

the SSR phenomenon, then a wise beginning is to explain how it is 

possible to do so. This chapter is devoted to the theoretical explana­

tion of how SSR instability can be suppressed by field excitation control. 
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(3) Chapter IV 

Any engineering study becomes more convincing and 

practically acceptable if its theoretical background is backed up by 

numerical and experimental results. Therefore, in this chapter, the 

theory introduced in Chapter III is confirmed by a numerical example 

and the experimental results reported in [17]. 

(4) Chapter V 

From the review (Section 1.4), none of the previous workers 

considered the machine excitation system in eliminating the unstable 

SSR oscillations. Even Saito et al Il7], who made the first trial in 

this direction, bypassed the machine excitation system. A feedback 

loop {NDS') which considers the machine excitation system, is proposed 

in this chapter for SSR suppression. Eigenvalues are used to evaluate 

the effectiveness of this feedback loop in controlling the SSR in­

stability. 

(5} Chapter VI 

Chapter V evaluates the NOs• feedback loop suppression 

when the system is slightly disturbed from its steady state operating 

point. To have this feedback loop more accepted by power system engineers, 

it has to be tested against large disturbances. 
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This chapter examines the capability of the NOS' 

feedback loop in stabilizing the unstable SSR oscillation when the 

system is subjected to a severe fault. The NDS 1 feedback is found 

to be unable to handle large unstable SSR oscillation$ due to the 

machine excitation system limitations. To overcome this obstacle, a 

nonlinear resistor protection scheme which is now-in use [42], is used 

with the NDS' feedback·loop to eliminate the large unstable SSR os­

cillation. 

( 6) Chapter VII 

So far, the system torsional resonance has not been 

included in the analysis. However, torsional resonance interaction is 

known [32] _to_cause system instability. For a deeper understanding of 

the problems brought about by the use of series capacitors, the torsional 

resonance is added to the system. The main topic of this chapter is the 

analysis of the torsional resonance instability and its elimination by 

the SSR power blocking filter. 

(7) Chapter VIII 

Following the idea of avoiding the SSR instabilities 

by using shunt compensation instead of series compensation, an elementary 

analysis is performed on the system which is shunt compensated by a 

synchronous capacitor. The eigenvalues are used in the small perturba­

tion study to investigate the system instability. 
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CHAPTER II 

BASIC SYNCHRONOUS MACHINE THEORY 

2.1 Introduction 

The purpose of this chapter is to review the synchronous 

machine equations in the physical abc frame and the d-q rotating 

reference frame. The synchronously rotating reference frame is also 

described for further use in the analysis. 

Power system engineers used to write the machine equations in 

terms of per-unit quantities rather than in terms of voltages, amperes, 

ol:uns or henrie,s. In this chapter the most commonly used Xad - base is 

0 
, explained and the per-unit equations are derived. 

Per-unit time equations are sometimes used by power system 

engineers. The relation between real time (t) and per-unit time (t') 

equations was not well explained in the literature. Moreover, the 

mechanical equations were used in two different confusing forms. In 

this chapter these two confusing formulations are discussed and the usage 

of one form or another is explained. 

Finally, a mathematical model of the system used throughout 

this thesis is derived and the resulting nonlinear equations are 

linearized around the quiescent point and are put in a state space model 

necessary for subsequent analysis. 
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G 
In this thesis the following assumptions are made, 

(i) Saturation is neglected. 

(ii} The synchronous generator does not have a neutral 

return and in consequence the zero sequence does 

not exist. 

(iii} All harmonics are neglected. 

2.2 Machine ~tions in the abc Stationary Reference Frame 

The synchronous machine equations in the abc stationary 

reference frame are given by [43, 44] 

[R] i d 
1 (2.1) e = + dt 

where, 

[eT eT]T [ea eb 
. T 

(2.2) e = = e efd ekd ekq] -s -r c 

r·l [O]J -lRa -Ra _J Rfd, 
[R] = I [R J [R ] = ~d 0] [R ] s r 

r ~q 

(2. 3} 

the stator windings are assumed to have equal internal resistances, 
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i = IiT iT]T Ii ~ i ifd ikd 
. ] T = .l.kq -s -r a c 

{2. 4) 

.- T 

YJ_ ri! i!]T [lj!a lj!b 1jJ c lj!fd 1jJ . 
] 

= = 1/Jkq kd 
(2. 5) 

The subscripts s, r indicate the stator and the rotor respectively and 

the amortisseur windings are represented by two windings, one along the 

d-axis and the other along the q-axis. 

r 
[L ] 

[L ~ [~] ss sr 
t = [L) i = 

[L [L ] 
rs rr 

(2. 6) 

The sign co_nvention used in the above equations is as follows: 

c 
(i) The current flows out of the stator. 

(ii) The current flows in the rotor. 

L Lab L Lfad Lkad L 
a a ac kaq 

[L ] = Lba ~b ~c {L ] = ~fd Lbkd Lbkq ss sr 

L: Lcb L Lcfd Lckd L 
ea cc . ckq 

(2. 7) 

Lffd Lfkd 0 L 
afd Lfbd Lfcd 

[L ] 
rr 

= Lfkd Lkkd 0 [Lrs ] = Lakd Lk:bd Lkcd 

0 0 Lkkq L. Lkbq L 

c akq kcq 

(2. 8) 
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Under the assumption of sinusoidally distributed stator wind-

ings, the stator mutual and self inductances are sinusoidally varying, 

i.e., 

Lab 

L 
ac 

Lbc 

L cc 

[L ] 
rs 

= 

= 

= 

Lba 

L ::.: 
ea 

Lcb 

[L ]T = sr 

-L cos 
m 

(26 - 120) 

-L + Lo m 
cos (26 + 120) (Henry) (2. 9) 

-L cos (26} 
m 

cos 26 

cos 2 ce - 12o> (Henry) (2.10) 

cos 2 ce + 120> 

Lafd cos e Lakd cos e -L akq sin e 

Lafd cos (6-120} · Lakd cos(S-120) -Lakqsin(S-120) 

Lafd cos(6+120) Lakd cos(9+120) -Lakqsin(6+120) 

(2 .11) 

where e is the instantaneous angular position of the rotor in electrical 

degrees, 

and 

The electromechanical torque 

T 
e 

1 = -n 
2 

a 
ae 

.T 
l. 1 

and Lakq are constants in Henries. 

(T ) is given by, 
e 

where n is the number of pairs of poles. 

(2 .12) 

(Henr: 
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2.3 Reference Frames 

2.3.1 The d-q Rotating Reference Frame 

Park [45, 46] introduced a new practical set of equations 

in which those trigonometric functions in the inductance matrix (Equation 

2.6) no longer occur. · He assumed that both stator and rotor reference 

frames are rigidly connected to the rotor and rotate at the same speed 

as the rotor, Figure 2.1. 

The new equations do not h~ve the same form as Equation 

2.1, but contain an additional speed term known as the speed voltage. 

The new set of equations are given by, 

·0 ed id 1/Jd 1/Jq 

e i 1/Jq 1/Jd q q 

[R] ifd + d 
illfd + 0 (2.13) efd = - w dt 

0 ikd 1/Jkd 0 

0 ikq illkq 0 

1/Jd -L d 0 Lafd Lakd 0 •id 

illq 0 -L 0 0 Lakq i q q 

illfd 
3 0 0 ifd (2.14) = - 2 Lafd Lffd Lfkd 

ljlkd 
3. 

- 2 Lakd 0 Lfkd ~kd 0 ikd 

1/Jkq 0 3 
- '2Lakq 0 0 ~q ikq 

where 

c 
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e = wt + eo 
w = rotor speed in electrical r/s 

Figure 2&1. Three-phase synchronous machine with 

two amortisseur windingsa 

30 
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Ld = Loo + L + _2. L (Henry) 
m 2 0 

and 

3 (Henry) L = L + L - 2 Lo q 00 m 

where the zero sequence does not exist due to the assmnption that the 

machine is not grounded. 

T = 
e 

The electromechanical torque is given.by, 

The transformation from the stationary reference frame (abc) to the 

d-q rotating reference frame is shown in Appendix A-1. 

(2.15) 

(2.16) 

{2.17) 

In summary, the following points describe Park's transforma-

tion: 

(i) The inductance matrix is constant. 

(i,;) The voltage equation has an additional term called 

the speed voltage term. 

(iii) Park 1 s transformation is not orthogonal (Power 

invariant) [47]. 

(iv) The mutual inductances are not reciprocal, i.e., 

[L ] ~ [L JT as shown in equation 2.14. 
rs sr 
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2.3.2 The Synchronously Rotating Reference Frame 

The synchronously rotating reference frame is also called 

the system reference frame. This frame has the following properties : 

(i) It rotates at synchronous speed, electrical 

r/s , and it will be described in this thesis by 

D-Q axis. 

(ii) When the rotor of the machine rotates at synchronous 

speed, the angle between this frame and Park's 

(iii) 

frame is constant. 

The transformation from the abc stationary reference 

frame to this frame is carried out in a similar way 

to that explained in Appendix A-1, except that e is 

substituted by where is the 

synchronous speed. 

{iv) If the machine rotor is not rotating at synchronous 

speed, the machine equations in the synchronously rotat­

ing reference frame contain terms of the rotor position. 

This frame is very useful when :roore than one machine is con-

nected to the same network. However, this frame will be used in ~is 

thesis in deriving the linearized model necessary for stability analysis 

and when the synchronous capacitor is used for shunt compensation as will 

be shown in Chapter VIII. 
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2.4 l?er-Unit System 

The knowledge of the machines 1 transformers and transmission 

lines parameters are required in the analysis of power systems. Per-

unit quantities of impedances, currents, voltages and frequency are 

commonly used by power engineers due to the following reasons [49] : 

(i) The ordinary parameters vary widely with the physical 

size of.the machine. The per-unit quantities do not 

depend directly on the physical size and their values 

are of comparable magnitudes. 

(ii) In general, the per-unit parameters are small. 

(iii) In the 2-axis theory of synchronous machine, a per-

unit system is useful in removing those arbitrary numeri-

cal values, e.g., 
3 
2 

in equation 2.14. 

(iv) It is a set of dimensionless parameters which help in 

preventing from converting between different systems 

of units. 

When considering one apparatus, the following base values are 

usually adopted: 
' 

(i) The three-phase volt-ampere rating of the apparatus. 
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(ii} The r.ms line to line voltage. 

(iii} The nominal frequency. 

The base values of currents and voltages and the base im-

pedances of the synchronous machine are not a simple matter to determine. 

However, the base values of the armature current and voltage are usually 

determined by the machine rating, hence the armature impedances ~e 

automatically defined. But the base values of the rotor currents are 

chosen so as to make the self inductances of the armature, field and the 

amortisseur circuits of about the same order of magnitude. The difficulty 

in determining the turn ratio between stator and rotor circuits due to 

the complications arising from the distributed nature of the windings has 

led Rankin {49, 50) to look for alternate approaches of defining the rotor 

base currents. 

The rotor base currents are defined in different ways for 

different purposes. The choice of the rotor base currents is totally 

free as long as it makes all the mutual inductances reciprocal and it is 

used in the calculation of the machine impedances in a consistent way. 

One of the definitions of rotor base values commonly used in 

the X - base ad 
is derived in Appendix A-2 • This base makes the 

mutual inductances reciprocal and those between stator and rotor windings 

on the same axis equal. 

c 
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2.5 Per-Unit Time (t') 

The synchronous machine equations are now written in the 

d-q axis in terms of per-unit quantities as shown in equation A-2.26 

of Appendix A-2. It is sometimes preferable to normalize the time, 

especially when working with linearized equations, which removes w
0 

from 

equation A-2.26. Per-unit time has been used quite often in the literature 

in deriving the synchronous machine equations [17, 28, 32) • 

Per-unit time t', is defined as, 

t' = 

In any equation which contains sin w t or cos w t, it should be replaced 

by a similar equation containing sin w t' and cos w t' (w is per-

unit speed). 

For the differential equation, the relations between first and second 

derivatives in real time t, and per-unit time are derived as follows; 

d z 
is a first derivative in real time of 

d t 

any variable z • 

d z d z d t' d z (2.18) = - = WO d t d t' dt d t' 

and 

d2 z d (d z1 
d (d z~ 2 d

2 
z (2.19) 

d t
2 = = WO = WO 

dt d t dt' d t dt 12 

c 
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Expressions 2.18 and 2.19 indicate that a real time dif-

ferential equation is changed to a per-unit time differential equation 

by multiplying the coefficients of the first and second derivatives with 

and 2 
WO respectively. 

2.6 Forms of the Mechanical EqUations 

Traditionally, the electrical engineers have used different 

forms of the mechanical equations. One of these forms is used in this 

thesis. However, it is a matter of clarity to summarize these ·forms and 

explain the different use of each of them. 

For a generator,the mechanical equations which govern the 

motion of the machine rotor are, 

d2 0 
J-= T-T 

d t2 m e 

d 0 
d t 

= w- w 
0 

{2. 20) 

where J is the moment of inertia of the rotating mass attached to the 

2 
shaft in Joule. sec., 

the shaft in Joule, 

T is the positive mechanical torque to accelerate 
m 

T is the positive electrical torque acting to de­
e 

celerate the shaft in Joule, and o is the rotor angular position in 

electrical radians. 
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Equation 2.20 is one of the forms used when the torque 

is expressed in Joule and the moment of inertia of the machine is given. 

The other forms of the mechanical equations are: 

(1) Using the mechanical and the electrical powers 

(P and P respectively) in watts and the 
m e 

angular momentum (M) instead of T , T and 
m e 

J respectively in equation 2.20. The new 

mechanical equations can be derived from 2.20 

as follows, 

p = WO T watts 
m m 

p = WO T watts 
e e 

M = WO J Joule. sec. 

multiplying the first equation of 2.20 by w
0

, 

and using 2. 21 · we obtain: 

d2 0 p - p M-- = 
d t2 m e 

d 0 
= w - w 

d t 0 

(2) The third form of the mechanical equations is 

that which contain per-unit mechanical and 

electrical torques T ··T m' e and the inertia 

constant (B) of the machine. This is simply 

(2.21) 

' {2. 22) 
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the per-unitized form of equation 2.20, 

and this can be derived as : 

SB is the base three-phase volt-ampere 

of the synchronous generator • 

TB is defined as the base torque. 

TB = SB I WO (KVA.s) , w
0 

electrical 

T T - m e 
T = T = m TB e TB 

Dividing equation 2.20 by = 
one has, 

WO J d2 0 -= T - T 

SB d t 2 m e 

and 

d 0 - = w- w 
d t 0 

substituting 2. 24 into 2. 23, we get, 

w 
0 d w 

sJd't = 
B 

T - T m e 

Using per-unit speed 

and 2.25, we have,. 

instead of w 

38 

r/s 

(2.23) 

(2.24) 

{2.25) 

in 2.24 
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... -= T ... T 
1ll e 

d 0 -- = d t 

H is defined as the kinetic energy of the rotor 

at synchronous speed w
0 

divided by the base volt­

ampere of the machine, SB • 

39 

{2.26) 

H = 1 
2 

(Joule I KVA) = (K Watts. sec I KVA) 

(2. 27) 

substituting H instead of J in equation 2. 26 we· 

obtain: 

2 H d w - -= T - T d t m e 
(2. 28) 

d 0 (;;'; - 1) d t = WO 

We arrive to the three forms of the mechanical equations 

by assuming that the damping and the stiffness coefficients, D and K 

respectively, do not exist. However, if damping exists, another torque 

acting to decelerate the shaft is added and has the form, D (w- w
0
). 

The existence of the stiffness coefficient will be explained in Chapter 

VII. 
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A final remark on the three forms is that the last form 

(equation 2.28} is widely used by power engineers. This equation is 

described in real time and it will be used in the following chapters to 

describe the rotor system of the synchronous machine. 

2.7 System Model 

The system used in the analysis of the subsynchronous re­

sonance (SSR} is simply a synchronous generator connected to a load, 

which is represented by an infinite bus bar, through a long transmission 

line, where a series capacitor is used. 

system is shown in Figure 2.2(a). 

The single line diagram of the 

The per-unitized synchronous machine equations given in 

equation A-2.26 of Appendix A-2 will be used. For notational simplicity 

the per-unitized quantities will be written without the dash on top of the 

variables except for per-unit speed w • In the present derivations as 

well as in the forthcoming analysis, real time equations will always be 

used. From equation A-2.26 of Appendix A-2, the per-unitized synchronous 

machine equations are, 
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b s 1 

~xy 
infinite bus be 

(a) Synchronous generator connected to an infinite bus through 
a seric~ capacitor compensated transmission line. 

~t? 0-0XIS 
et.<:> 

FiaurP ? ., 

(b) Relation between D-Q synchro­
nously rotating reference frame 
and Park's rotating reference 
frame. 

(c) . Steady state diagram for cal­
culating generator terminal 
voltages and currents. 
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ed -r 
a 

e -r q a 

efd = rfd 

0 rkd 

0 

and 

1/Jd -x 
d 

0 

0 
-x 

1/Jq q 

1/!fd = -x 0 ad 

1/Jkd -x 
ad 

0 

0 -x 1/Jkq aq 

The voltages ed 

i q 

ifd +L d 
WO dt 

~d 

ikq 

xad xad 0 

0 0 X aq 

xffd x~Otd 0 

xfkd ~d 0 

0 0 ~q 

and e in equation 
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1/Jd -1/Jq 

1/Jq 1/Jd 

1/!fd + w 0 

likd 
0 

1/Jkq 0 

(2.29) 

id 

i 
q 

ifd (2.30) 

ikd 

ikq 

2.29 represent the 

generator terminal voltage in the d - q rotating reference frame. The 

network voltage equations viewed from the generator bus are usually written 

in the D - Q synchronously rotating reference frame. T.herefore,to ex-

press the generator terminal voltages in terms of the network voltages, a 

transformation from one reference frame to another should be made. 

The one line diagram of the network is shown in Figure 2.2(a). 

It shows a lumped parameter representation of the transmission line, a per-

unit resistance ~ in series with a per-unit inductive reactance ~ 
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connected to a bus bar. The series capacitive reactance XC represents 

the level of the series capacitor compensation in p.u., since our aim is 

to investigate a system with a series capacitor compensated transmission 

line. 

2.7.1 Transformation 

From Figure 2.2(b) the variables in the D- Q and the d - q 

rotating reference frames are related as follows, 

red] = 1 cos cr 

~q [sin cr 

sin :] [::] (2.31) 
cos 

the inverse relation is: 

jo J [cos cr -sin 1 [e dl 
~Q = sin cr cos crJ eqj 

(2. 32) 

The relations between currents and fluxes on both rotating reference frames 

can be obtained from equations 2.31 and 2.32 by using i and ~ in-

stead of e • 

c 
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0 
2.7.2 Network Voltage Equations 

The voltages at the generator bus (bus 1 in Figure 

2.2(a)) can be expressed in the synchronously rotating reference frame 

D - Q as, 

= (2.33) 

and 

(2.34} 

where 

and the voltages at bus 1 along the synchronouSly 

rotating D and Q axes respectively. 

(a) erD = ~ iD the D - axis voltage across the line 

resistance ~ . 

(b) erQ = ~ iQ the Q - axis voltage across the line 

resistance rE . 

(c) 1 d 
iD -~ iQ the D - axis voltage eLD = ~ WO dt 

across the transmission line induc-

tive reactance ~-

{d) 1 d 
iQ iD the axis voltage eLQ = X E. +X Q-

wo dt E. 

c across the transmission line inductive 

reactance X 
E 
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(e) 

(f) 

(g) 

and 

2.7.3 

eCD = 
d 
dt 

the D - axis voltage across 

the series capacitive reactance XC • 

eCD - XC i 0 the. · Q - axis voltage across the 

series capacitive reactance XC • 

the voltages of the infinite bus bar 

along the .synchronously rotating D and 

Q axes respectively. 

Equations 2.33 and 2.34 can be written as, 

1' d 

Complete System Equations 

45 

(2.35) 

(2-. 36) 

So far, the electrical system of the synchronous generator is 

described in the .d - q axis by equation 2.29, and the network equations 

are described in the D - Q axis by equations 2.35 and 2.36. To obtain 
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a complete description of the system shown in Figure 2.2(a), one of the 

forms of the mechanical equations described in Section 2.6 should be 

added. Since the per-unit quantities are used in the present derivations, 

then equation 2.28 is used to describe the rotor system of the synchron-

ous generator. Therefore the mechanical equations are, 

2 H d w 
= T - T (2. 37) --d t m e 

d 0 
(w - 1} (2. 38) = WO d t 

where T T are used for per-unit torques. 
m e 

The last step in obtaining the system model is to transform 

all the equations to one reference frame by using the transformation matrix 

given in equation 2.31, and it is written here as: 

where 

edq = and i = dq 

= ~cos c sin cJ = re~· rcsl 
-sin c cos c 

iDQ 

(2. 39) 
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2.7.4 The d - q Nonlinear Model 

The d - q system model is obtained if the network 

equations 2.35 and 2.36 are transformed to the d - q axis frame1 

and this can be done by multiplying equations 2. 35 and 2. 36 by re J s 

as follows, 

and 

re J s ~:] - [e ] 
s 

L re] d 
w

0 
s dt 

are transformed to 

re J-1 
s [::] 

therefore, 

+ [e J 
s 

re J s 

L x re J d 
w

0 
E s dt ~:] 

(2.40) 

(2. 41) 

and eeq using relation 2.39 or, 



d 
dt 

(!L lC J -l) 
dt s 

+ IC·l-l 
s 

48 

(2.42) 

Substituting equation 2.42 for the currents in equation 2.40 

we get, 

+ L X d 0' 
(1)0 -"E d t ~1. (2.43) 

similarly, substituting equation 2.42 into equation 2.41 we get, 

a a -d t 

(2.44) 

The angle a is always expressed in terms of o , e.g., if 

we assume that the D - axis coincides with the reference voltage (usually 

the infinite bus voltage), then y is known and determined by the network 

parameters (see Figure 2.2(b)}, therefore, 

0 
0' = y + 6 - 90 

using equation 2.38 to obtain, 

(2 .45) 
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d 0 
d t 
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(2. 46) 

The time derivative of er in equations 2.43 and 2.44 are 

canc~lled by using relation 2.46. The resultant network equations in 

the d - q axis are: 

~: 
rE 

rJ 
id 

1 
XE 

d 
id 

= +-
WO dt 

i ~ i q q 

~ ~JhJ +b~ + 
eOd 

+ w 
(2.47) 

~ o 1q ecq + eoq 

and 

(2. 48) 

The combination of equations 2.29, 2.30, 2.37, 2.38, 2.47 

and 2.48, using the stator and the rotor fluxes as the state variables 

[51], the resultant model will be a set of nine nonlinear first order 

differential equations. This nonlinear model describes the system shown 

in Figure 2.2(a) when the per-unit quantities are used. This model is 

used in Chapter VI for transient stability studies. 
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2.7.5 Initial Conditions 

The steady state operating currents and voltages are assumed 

to be the initial values throughout this thesis. However, the infinite 

bus voltage, power and power factor are assumed to be constant and equal 

to unity. 

The steady state currents, voltages and fluxes are defined as: 

I = [IdO -s.s 0 (2.49) 

E = [EdO -s.s 0 (2.50) 

and 

(2 .51) 

The above steady state values can be calculated from the steady state 

vector diagram shown in Figure 2.2(c). The detailed calculations are 

given in [44] • 

2.7.6 The D ~ Q Linearized Model 

The linearized model is obtained from the nonlinear one by 

assuming that the steady state operating point is slightly perturbed. 

c Therefore, the linearized synchronous machine equations in the d - q 
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axis are obtained from equations 2.29 and 2.30 by taking the first 

two terms of Taylor series expansion. The linearized equations are, 

A ed A id A 1/Jd -A 1/1 q -1/JqO 

Ae Ai A 1/Jq A 1/Jd 1/JdO q q 

A efd [r] A·ifd +.L d 
A 1/Jfd + 0 + 0 A w = 

(1}0 dt 

0 A.ikd A 1/Jkd 0 0 

0 A . .'-Jt A 1/Jkq 0 0 

(2. 52) 

and 

A 1/Jd -X d 0 xad xad 0 .Ai 
d 

A 1/1 0 -X 0 0 X .A i q q aq q 

.A 1/Jfd :·":= -x 0 xffd xfkd 0 A . 
ad l-fd 

.A 1/Jkd -x 
ad 

0 xfkd ~d 0 .A • 
'ltd (2.53) 

.A 1/Jkq 0 -x 0 0 ~q 
.A • 

aq '-kq 

Similarly the linearized mechanical equations are obtained 

from equations 2.37 and 2.38, and written as; 

d . -
2 H dt (.A W) = AT -.A.T m e 

(2. 54) 
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d 
dt <A ol = 

and from equation 2.17 

and 

!::. T 
e = !::. iq ..pdO + IqO A ..pd - !::. id lj!qO - IdO ·t::. lj!q 

The 1inearized D - Q network equations are, 

52 

(2. 55) 

(2.56) 

(2.57) 

(2. 58) 

The 1inearized transformation equation is obtained from 2.31 

and has the form : 

~ ee~ = rcos cr 

~ '~ l:•in 0: 
cos 

-sin 

(2. 59) 
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where is the steady state angle between the d - q and the syn-

chronously rotating frames D - Q . 

are the steady state D and Q axes voltages at the 

generator bus. 

Assuming that er 
0 

= 0, which is used throughout this thesis, 

then, 

= and = (2.60) 

and from equation 2.45 the following relation is obtained.: 

A·cr = A o (2. 61) 

The D - Q linearized model is obtained by combining equations 

2.52, 2.53, 2.54, 2.55, 2.56, 2.57, 2.58, 2.59, 2.60 and 2.61, 

which results in, 



-(Xd+XE) 0 xad xad 0 

0 -ex +x > 0 0 ~aq q E 

-x 
ad 0 xffd xfkd 0 

-x ad 
0 xfkd ~d 0 

0 -x 0 0 ~q aq 

r +r -x -x X a E q E aq 

Xd+XE r +r 
a E -x 

ad 
-x 

ad 

-rfd 

-r 
kd 

~rkq 

A B -xadiqO -xadiqO xaqidO 

XC 

X c 

0 

0 0 0 

0 0 0 

0 0 0 

o· 0 0 

0 0 0 

2Hw
0 

1 

1 

A -B 

B A 

xadiqO 

xadiqO 

-x 

p 
s 

1 

0 

' 

0 

0 

0 

0 

L 

1 

-1 

54 

d 
dt 

1 

1 

1::. iD 

1::. iQ 

1::. 1fd 

1::. 1kd 

6 ik . q = 

1::. (I) 

6 0 

l::.eCD 

6 eCQ 
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A iD 0 

A i.Q 0 

A ifd A efd 

A ikd 0 

A i.kq + 0 (2 .62) 

-A w A T 
m 

A o 0 

A eCD 0 

A eCQ 0 

where 

A = ll'qo + xd IqO 

B = -11' - Xq IdO dO 

and 

p = A J:qO - B J:dO s 

Equation 2.62 is the D - Q linearized model for the system 

shown in Figure 2.2(a) when per-unit quantities are used. This model 

will be used in the analysis of the steady state stability in the forth-

coming chapters. 



0 

. 56 

Finally, the ~igenvalues calculated when.the D- Q 

linearized model is used are the same if the d - q linearized model is 

used [47]. This is because the real and the imaginary parts of these 

eigenvalues represent the inverse of the system time constants and the 

natural frequencies of the same system respectively. These are always · 

unique for a particular system. Moreover, since we are interested in in-

vestigating the system stability, therefore, we only assume that the system 

states are disturbed from their steady state values. This implies that 

0 in equation 2.62 • 
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CHAPTER II:t 

FIELD EXCITATION CONTROL OF . UNSTABLE . SSR 

IN SYNCHRONOUS . MACHINES 

3.1 Introduction 

57 

This chapter discusses the feedback loop introduced by Saito 

et al [17], which suppresses the SSR oscillations via the system field 

winding. Although, Saito et al Il7] have succeeded in solving the pro­

blem by field winding control, the principle of how this can be done was 

not explained. 

:m this chapter a theory is developed to explain how the SSR 

can be suppressed by field winding control. Also the use of a control 

signal formed by a linear combination of the subsynchronous reactive 

power (~ Q) and active power (~ P) instead of that used by .Jl7] 

{~ Q only) is explained. 

3.2 Synchronous Generator gperation 

In synchronous generators I52], the field winding is the source 

of the magnetic flux. A de source is connected across the field wind­

ing to inject a direct current which creates a constant magne~ic flux in 

the airgap of the machine. The armature windings are connected to the 

load. When either the armature or the field rotates, voltage is induced 
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in the armature windings. In synchronous generators,the armature 

windings are stationary on the stator and the fielq winding is rotating 

on the rotor. When current flows in the armature, its windings create 

a flux component in the airgap. This component interacts with that 

created by the field winding.to produce electromagnetic torque. In a 

synchronous generator, however, the field and. the armature flux components 

rotate at precisely the same speed (synchronous speed, w
0

) • Therefore, 

the rotating fields of the stator and the rotor are stationary with respect 

to each other. In this case the resulting torque is time invariant. 

The torque acts on the rotor in the direction opposite to the rotation of 

the flux wave in space. In order to keep the rotor revolving in the same 

direction as the stator flux, an external mechanical torque must be applied 

to overcome the electromechanical counter torque. 

3.3 Rotating Magne-Motive Force (nunf} Phasors 

3.3.1 steady State mmf Phasors 

In the steady state operation of synchronous machines, the mm£ 

waves of both the stator and the rotor currents are rotating at synchron-

ous speed in the airgap. These waves are represented in space by phasors 

characterized by magnitudes and phase angles. 

Figure 3.1 shows the nunf phasors of the stator and the 

rotor currents in the steady state operation of the synchronous machine. 
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Figure 3.1. Steady state stator 
and rotor rnmf phasors. 

Figure 3.2. d-q axis repre­
sentation of synchronou 
machine showing the pos 
tive and the negative 
sequence components of 
SSR airgap magnetic 
fields. 
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The magnitudes of these phasors, at a given instant of time, are propor-

tional to the peaks of the sinusoidally distributed mmf waves. By 

definition, the angular positions of these phasors coincide with the 

positions of the positive peaks of the sinusoidally distributed mmf waves. 

Assuming that the machine is rotating counterclockwise, then the positive 

direction of the speed w
0 

and the torque angle o defined in Figure 3.1 

are consistent. The electromagnetic co~ter torque acting on the rotor 

is given by the vector cross product of the two space phasors in Figure 

3 .1, or mathematicallY·: 

T = - F F sin o 
e s r 

(3 .1) 

. The negative sign comes from the assumption of generator action where the 

rotor flux is leading the stator flux in the direction of motion due to 

the application of the mechanical torque before inducing armature current. 

The south and north poles are assigned along the mmf phasor 

axes, as shown in Figure 3 .1, due to the fact that the magnetic flux 

emanates from the north poles. Using the physical notation that unlike 

magnetic poles attract the attraction of rotor.magnetic poles by the stator 

magnetic poles for the positive torque angle o , as defined in Figure 3.1, 

gives rise to a negative countertorque which is consistent with the nega-

tive sign in equation 3.1. Thus, interpreting from equation 3 .1, the 

generating and motoring regimes are defined as: 

0 
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(~) Generating regime corresponds to' 

(3.2) 

{~~) Motoring regime corresponds to 

(3,.3} 

3.3.2 Subsynchronous Resonance mm£ Phasors 

The synchronous generator under cons~deration is connected 

to the load through a long transmission line. When series capacitors are 

used for compensation, under disturbances, currents due to the resonance in 

the series L - C circuit flow in the stator winding of the generator. 

The frequency of these currents is w electrical 
n 

r/s as explained in 

Section 1.2.1 of Chapter I • In general, these currents are not balanced. 

When these currents flow in the stator windings of the generator, they pro-

duce mm£ waves in the airgap. For balanced three-phase stator windings 

with a pronounced fundamental mmf space harmonic, the magnetic field 

produced by the unbalanced resonant currents can be resolved into three 

mm£ space phasors, the zero sequence 

and the negative sequence F 
ssrn 

F , the positive sequence 
ssro 

F ssrp' 

The zero sequence component does not 

exist. The positive and negative sequence component phasors rotate at 

electrical r/s in the forward and backward directions respectively. 

The series capacitor compensation is designed so that w 
n 

is always less 
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than the machine synchronous speed w · electrical 
0 

r/s, i.e., 
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w > w • 
0 n 

The d - q axis is fixed on the rotor and rotating at w
0 

in the steady 

state. Thus, as viewed in the d - q representation of the synchronous 

machine, the positive and negative sequence phasors F , 
ssrp 

F 
ssrn 

are 

rotating backwards at speeds of w - w 
0 n 

respectively as 

shown in Figure 3.2. The electromagnetic induction action of these mmf 

phasors with the rotor windings are characterized by their slips as follows: 

F ssrp 

F 
ss m 

slip (3.4} 

slip (3. 5) 

The rotor interaction with the negative sequence mm£ F 
ssrn 

is one of induction braking, since As viewed in the induction s > 1.0 • 
n 

machine equivalent circuit, the rotor resistance is (R2 I sn), which is 

positive and in consequence this mode is positively d~ed. The synchronous 

machine behaves as an induction generator to the positive sequence component 

Fssrp' i.e., the rotor looks as a negative resistance when viewed by this 

component. Therefore, if the net resistance in the path of the positive 

sequence component is negative, then regeneration action occurs and this 
' 

component will grow exponentially in time. This is well known as the in-

duction generator action which is the basis for unstable SSR oscillation. 
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3.4 How SSR can be Suppressed by Field Excitation Control 

The positive sequence subsynchronous currents, which flow 

in the three-phase stator windings, create a magnetic flux wave in the 

airgap which rotates at an angular velocity w , 
n 

which is less than the 

rotor synchronous speed w
0 

. Due to the rotation of the machine rotor, 

currents are induced in the rotor circuits at a slip frequency of w - w • 
0 n 

These currents, once again, create a rotor flux wave rotating in the air-

gap at a speed of w 
n 

If the rotor is purely inductive,the angle o , 

between the two waves, is 180° • When the rotor is both inductive and 

resistive, as is the practical case, 90° < o < 180° electrical. The 

stator and rotor field waves at subsynchronous resonance frequency are 

stationary in space with respect to each other. Therefore, to construct 

a phasor diagram of these waves similar to that in Figure 3.1, the induc-

tion generation action is assumed to be just sufficient to sustain 

oscillatory positive SSR mode. Then the positive sequence SSR mmf 

phasor F ssrp' and the mmf phasor created by the induced rotor currents 

F , can be related in space as shown in Figure 3.3, where the two phasors 
r 

are rotating backwards at a speed of WO - w with respect to the d - q n 

axis and the torque angle between them is a constant obtuse angle 

From equation 3.1, the shaft torque is an electro-

mechanical counter torque and mechanical power is converted to electrical 

power to sustain the growth of SSR oscillations. 

The idea of damping SSR is to reverse the direction of power 

flow, i.e., the electrical energy should be converted to mechanical power 
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Figure 3 •. 3. Positive 
sequence SSR mmf 
diagram showing 
generating regime 
where 6 is an 
obtuse angle • 

Figure 3.4. The resultant 
mmf vector diagram 
after field injection 
showing motoring re­
gime where o is a 
reflex angle. 
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and absorbed by the shaft. This can be achieved by injecting a rotor 

flux component Fcb' rotating in the airgap at a speed of 

resultant rotor mmf phasor is FR, the phasor sum of F cb 

w 
n 

The 

and F 
r 

as shown in Figure 3. 4. This resultant mmf phasor F R is stationary 

with respect to the rotating F 
ssrp 

and the angle o , measured from 

F in the direction of motion, is 180° < o < 360° • ssrp The resultant 

shaft torque is the cross product of F 
ssrp and FR (or equivalently the 

algebraic sum of the cross products of F 
ssrp 

with F 
r 

and F. 
ssrp 

with 

Fcb) If this is a motoring torque, then the electrical power is drawn 

from the series L - C resonance in the transmission line and converted 

to mechanical power at the shaft, resulting in the SSR oscillations being 

positively damped. 

3.5 Field Winding Excitation of Fcb 

As mentioned in Section 3.2, the field winding always has its 

main de excitation. However, during SSR the field winding has an 

additional current that oscillates at a slip frequency of w
0 

- wn The 

magnetic field of this additional current is included in F 
r 

of Figure 3.3. 

We concern ourselves in this section as to how the mmf Fcb can be intro-

duced into the airgap so that the resultant FR from the addition of Fcb 

to F , is shifted into the motoring regime. 
r 

Note that this can be 

accomplished only when Fcb rotates at the same speed as F 
r 

As the 
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. subsequent paragraph shows, F cb is produced by injecting an ac 

current at an angular frequency of w - w 0 n r/s into the field wind-

ing. 

The de excitation current in the field winding creates a 

time invariant magnetic flux wave in the airgap, which is distributed 

sinusoidally with space angle around the airgap. When the oscillatory 

current at an angular frequency of w - w 0 n is injected in the field 

winding, its magnetic flux wave is a standing wave F 
c 

The mmf 

phasor representing it is sinusoidally varying with time, but the space 

angle of the wave is fixed along the d - axis. As is well known in 

single-phase ac motor theory [52) , the mmf phasor F 
c 

can be re-

solved into two phasors F cf and F cb' rotating forward and backward at 

absolute speeds of w respectively. 
n 

In the d - q axis 

representation, the two components are counter rotating at the same speed 

of w - w 0 n 
as shown in Figure 3.5. 

3.5.1 Feedback Signals of Fcb 

One of the important properties of Fcb is that its speed 

should be w electrical r/s • 
n 

current, necessary to produce Fcb, 

Hence, the frequency of the excitation 

should be w - w as shown in Figure 
0 n 

3.4. This can be obtained from any of the following signals: 
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Figure 3. 5. Oscillu.tinq mrnf 
vector F resolved 

c 
into forward nnd back­
wnrd componcntH • 

Figure 3.6. Controllable 
sectors as a ftmct ion 
of the maqnitudc of 

Fcb • 



3.5.2 

(i) The reactive and active powers Q and P 

respectively contain a component at frequency 

w
0 

- wn • This results from the product of 

the steady state and the subsynchronous compo~ 

nents of the line voltages and currents. 

(ii} The field and amortisseur windings currents, since 

(iii} 

SSR 

of 

induces a current component at the frequency 

w - w 0 n 

The shaft speed has a component of w
0 

- wn pro­

duced by the pulsating torque. 

F cb Magnitude and Phase Requirement 
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Let us consider the line AB in Figure 3.6 as the theore-

tical stability line Which separates the motoring and generating regimes. 

Thus, for stability FR should be to the left of AB in the direction of 

motion. However, to be able to shift F R to the left of AB, F cb should 

have the proper magnitude and space angle. 

The importance of F cb magnitude on the system stability 

can be explained from Figure 3.6. Circles F, D and G in Figure 3. 6 

represent different Fcb magnitudes and 

mm~ phasors in the induction action. 

F , 
r 

F 
s 

are the subsynchronous 

The line AB intersects circles 
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D and F at 2, 3 and l, 4 respectively. For stability the arrow 

tip of FR, which results from the vector smn of F cb and F , 
r 

should 

be on the solid arc 2 -3 or l-4. Thus, if F cb has a magnitude 

equal to the radius of circle G, the system will be unstable irrespec-

tive of the phase of Feb. This is because the vector sum of F and 
r 

Fcb will result in a phasor FR with the arrow tip on the dashed arc, 

that is the torque angle is obtuse and a generation action is obtained. Whereas 

if Fcb magnitude is equal to the radius of the circle D or the radius 

of the circle F, the system will be stable if Fcb falls in the angle 
') ... 

2c3 or lc4 respectively. 

The other requirement for shifting F R into the motoring 

regime is th~ proper choice of the space angle of Fcb" From Figure 3.4 

it is clear that should always lag F 
r 

in the direction of motion. 

This can be achieved by controlling the angle of the control signal injected 

in the field winding. The possibility of controlling the space angle of 

Fcb will be explained in more detail in Section 3.6.2 • 

3.6 Control Scheme 

The feedback loop used for SSR suppression in this study is 

shown in Figure 3.7. It consists of a transducer to detect the presence 

of SSR oscillation and a filter which admits signals at subsynchronous 

frequency and gives the control signal the proper phase and magnitude. 
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Figure 3.7. Feedback scheme for the suppression of SSR oscillations. 

llP 

Figure 3.8. A P - A Q plane showing the rotation of the 
control signal ~ • 
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3.6.1 Choice of Control Signal 

From the different signals discussed previously a combina-

tion between the active and reactive powers P and Q respectively is 

used for the following reasons: 

(i} The real (A ~) and the reactive (A Q) powers con-

(ii} 

(iii) 

tain the requisite feedback frequency <~0 - ~n) • 

Fcb generated from these signals will always have the 

same speed as F 
r 

The reactive power component at the frequency (~ - '~ ) 0 n 

lags the real power in time by 90°. Furthermore, 

their magni tudes are approximately the same. By com-

bining these two signals, F cb in Figure· 3. 6 can be 

varied in magnitude and space angle with respect to F • 
r 

Their linear combination allows for maximum flexibility 

in design. 

The virtue of using feedback signals based on detecting 

the SSR frequency is dependent on the degree of the 

series capacitor compensation. During faults and net-

work topological changes, the SSR frequency is altered. 

However, the feedback system as conceived is adaptive 

in tracking the frequency changes. 
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3.6.2 Reactive and Active Power Transducer 

The reactive power meter and the active power meter (watt-

meter) which record the product of line current and voltage,give the 

steady state values of the active and reactive powers, P
0 

and Q0 

respectively, and the transient powers at frequency of w
0 

matically: 

- w • 
n 

Mathe-

p = (3.6} 

{3. 7) 

From equations 3.6 and 3.7 the steady state reactive and 

active powers Q
0 

and P
0 

are 

= (3.8) 

(3.9) 

and the small perturbation power signals, 1:.. Q and 6. P, are : 

+ (3.10) 

The proposed control signal ~ can be expressed as 
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= A P (3.11) 

where any arbitrary constants. 

h p leads A Q by 90°, th f t ub h f u ere ore, a s sync ronous requency: 

ll Kl cos (w - w ) t + K2 sin (w - w ) t 
0 n 0 n 

or 

ll K12 cos ( (W -
0 

w ) 
n t - 4>1 (3.12) 

where 

I K~ + K2 4> tan -1 K2 
Kl2 = = 

2 Kl 

When ll is passed through the filter, the magnitude K
12 

is 

multiplied by the gain filter at w -w and the angle 4> is shifted by the a n 

is included in the filter filter angle at w
0

-wn • ~f the constant K12 

gain, then equation 3.12 can be expressed as : 

sin 4> A P + eos <j> A Q (3.13} 

From equation 3.13 the new combination between A Q and 

A P is to multiply the first by cos 4> and the second by sin 4> where 4> 

is constant • 

Equation 3.13 can be explained by the help of Figure 3.8, 

where the horizontal axis is assumed to be A Q and the vertical is A P, 
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since A l? leads A Q by 90 electrical degrees. From Figure 3.7 the 

injected signal into the field winding (eE) has the same frequency as 

~ which is the required frequency w
0 

- wn' and its phase angle is the 

algebraic sum of the filter angle calculated at w - w 
0. n 

and the control 

angle ~ • Therefore, the phase ~gle of eE (and hence the space angle 

of Fcb) can be controlled by the angle ~ , since the £ilter phase angle 

is constant. This indicates that by changing 4> the . space angle. F cb can 

be rotated over a complete cycle. Therefore, any required space angle 

of Fcb can be obtained by a proper choice of the control angle <j> • 

Furthermore,without using the combination of A P and A Q the only 

variable parameter by which the feedback loop can.be adjusted to achieve 

stability is the filter gain. By introducing the control angle ~ , 

another variable parameter is added; that is, another degree of freedom can 

be used to achieve stability. The implementation of the angle <!> is 

passing A P and A Q into ideal amplifiers with gains cos 4> and 

sin 4> as shown in Figure 3. 7 • 

3.6.3 Filter 

The combined outputs of the ideal amplifiers are passed through 

a filter. This filter should discriminate between the de and the re-

quired transient signals. In the steady state operation, the output signal 

from the filter should be zero. At subsynchronous frequency, the filter 

should amplify the control signal to the proper magnitude. 
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Finally, the feedback loop should inject Fcb with suitable 

magnitude and phase into the airgap of the synchronous generator when-

ever the subsynchronous resonance is detected. The filter gain and the 

control angle ~ should be adjusted at the subsynchronous frequency to 

ensure that F cb falls in the controllable sectors of Figure 3.6. The 

verification of this theory will be shown in Chapter rv by using eigen­

values to examine the stability of the system shown in Figure 2 .2 (a) with 

and without the feedback loop. 
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CHAP'l'ER IV 

SSR OSC!LLATION IN UNREGULATED SYNCHRONOUS :MACHINE 

A SMALL PERTURBATION STUDY 

4.1 Introduction 
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The purpose of this chapter is to demonstrate the validity 

of the theory introduced in Chapter III, using a numerical example of 

the system configuration shown in Figure 2 .. 2(a). ·The concepts which 

have been explained in the previous chapter of how SSR can be suppressed 

by field excitation control, are confirmed one at a time. 

For the sake of simplicity, the synchronous generator is 

assumed to be under constant excitation, i.e., the excitation system is 

neglected. Furthermore, the governor system is neglected as it will be 

the case throughout this thesis. However, the effects of the excitation 

system and any other supplementary loop will be considered in the next 

chapter. 

The reason for this simplification is to give a deep under­

standing to the SSR suppression by field excitation control. In 

addition, this simplification is part of a step by step approach adopted 

in this thesis to fully explain the effect of the SSR phenomenon and 

its control, as it will be shown in the next chapter. 

In the analysis, the system is assumed to be slightly per-

turbed from its steady state operation. Therefore, the linearized 

mathematical model described by equation 2. 62 is used. 
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The eigenvalues and eigenvectors {53] technique is used 

in the analysis of the system stability. Instability is judged to 

be the case when the real part of any eigenvalue. is positiv.e. Eigen-

vectors are used to construct the SSR mmf phasor diagram (Figure 3.4) 

and to classify the different eigenvalues. 

The effectiveness of the feedback loop under different 

operating points as well as the variation of the' different modes with 

the filter gain and the control angle ~ are shown. 

4.2 Eigenvalues and Eigenvectors 

The linearized model of the system of Figure 2. 2 (a) is 

described by equation 2.62 and it is written here as: 

1 [D) d X 
w

0 
dt = [F] X + U (4.1} 

where X is the state variable vector which contains the perturbations 

in the currents, speed, angle and the series capacitor voltages. lFl 

and [D] are the constant matrices in equation 2.62, and for stability 

analysis the forcing function £ is not perturbed. Therefore, equation 

4.1 can be written in the general time-invariant state space form as: 

d 
dt X = lA] X {4.2) 
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where {A] {DJ -l IF] 

Eigenvalues are defined by the singularity of the characteris-

tic matrix .I:\ I - A], i.e., the eigenvalues of matrix IAJ are those 

satisfying the following equation: 

det lA I - A] = 0 (4.3} 

where A denotes the unknown eigenvalues. 

The technique used to calculate the eigenvalues of matrix [A] is by 

similarity transformation which results in a diagonal matrix whose ele-

ments are the eigenvalues of {A], mathematically: 

I.l.J [P] [A] [R] (4.4} 

[A.] is the eigenvalues matrix, and the columns of matrix IPJ are the 

eigenvectors. The transformation in equation 4.4 has the following 

property: 

IRJ = [P] -1 {4. 5) 

Each eigenvector ~ is associated with each eigenvalue Ai 

such that; 

!A] (4.6) 

matrix IPl has the form: 



[l?] V ] -n. 

where n is the dimension of the square matrix IAJ • 
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(4. 7) 

In this thesis the eigerivalues are assumed to be distinct as 

in fact they are. Therefore~ the eigenvectors associated with these 

eigenvalues are linearly independent. 

From equation 4.6, it is clear that the components of the 

eigenvector v. 
--]. 

are the solutions to the system of n linear homogeneous 

algebraic equations, relating the n state variables defined by vector 

X for the eigenvalue. A, • 
~ 

The determinant of the coefficient matrix 

of these equations is zero, thus, they have to be reduced by one. 

Therefore, the components of the eigenvector v. are the state variables 
-:1. 

weighted in such a way as to reflect the content of the mode A, 
~ 

in each 

state variable • This property of the eigenvectors is useful in classify-

ing the eigenvalues, as it is followed from [47] • 

4.2.1 Eigenvalues and Eigenvectors Subroutine 

Eigenvalues and eigenvectors of the matrix [A] are calculated 

numerically using a subroutine, called EIGRE, available at McGill Uni ver-

sity computer library. The subroutine is in the IMSL Library 1 Fortran 

rv IBM system 1 370-360. 
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4.3 Numerical Example 

The calculations carried out in this chapter are organized 

as follows:: 

(i) Eigenvalues are calculated for th~ case when the 

synchronous generator is connected to the infinite 

bus bar through an uncompensated transmission line, 

Le., = 0.0 • 

(ii) The eigenvalues and sometimes the eigenvectors are 

calculated for the case of a series capacitor com~ 

pensated transmission line (Figure 2.2(a)) for two 

(iii) 

values of One, at which unstable SSR oscilla-

tion does not occur, i.e., the system is stable. The 

other, at which unstable SSR oscillation occurs, i.e., 

unstable system. 

The feedback loop of SSR suppression is added to the 

system in a manner described in Figure 3. 7, and the 

eigenvalues are calculated for different combinations 

of the control angle ~ and the filter gain. 

The system parameters, used in the calculations in this 

chapter, are those of the laboratory machine used by Saito et al [17]. 

This is used in this chapter to check the results with the experimental 
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data obtained by [17] • However, for a more realistic analysis, the 

parameters of the 10 GVA system of !17] will be used in the follow-

ing chapters. 

For the experimental system 117], the power delivered to 

the infinite bus bar is assumed to be 0.15 per-unit (0.15 p.u.l, and 

the infinite bus bar voltage is assumed to be constant and equal to 

1.0 p.u. In addition, the steady state voltages and currents are cal~ 

culated from the steady state vector diagram shown in Figure 2.2(cl using 

the above values of the infinite bus bar voltage and power. 

4.3.1 Open Loop System 

The system without any feedback loop to suppress the unstable 

SSR oscillations is referred to as the open loop system. The laboratory 

machine parameters used in this chapter are listed in Appendix B-1 • 

The seven eigenvalues for the case of an uncompensated trans-

mission line (XC= 0.0) is shown in Table 4.1(a). 

identified as follows [47] : 

). 
· stator 

). 
rnech. 

A 
amort. 

stator currents :mode, 

mechanical mode, 

amortisseur mode, 

field winding mode. 

The eigenvalues are 



Eigen­

values 

Eigen-

Values 

TABLE 4.1 

~a) Ei9envalues for the case of uncompensated 

transmission line. (Unregulated Machine}. 

A stator 

-60.5 :!:.. j 376. 

A mech. 

-1.72 :!:.. j 13.3 

A · amort. 

-27~7_~+ j 1.18 
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-1.56 

(b} Eigenvalues for the case of compensated transmission 

line, when XC== 0.092 (Unregulated Machine). 

A A A A 
ssrn ssrp mech. ·amor.t. 

·-42.7 
-32.8 :!:.. j 677. -6.78 :!:.. j 73.1 -4.90 + j 17.6 

-42.9 

· Afield 

-2.32 
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For the case of a series capacitor compensated transmission 

line, the two values of the series capacitive reactance XC are used. 

Table 4.l(b} shows the eigenvalues when the first value of XC = 0.092 p.u. 

is used. The. system is stable for this value and the stator currents 

mode is now resolved into two modes, defined here as: 

Assrn SSR negative sequence mode, 

A SSR positive sequence mode. ssrp 

The SSR negative sequence mode is identified by the large 

damping and it rotates at a supersynchronous speed of w
0 

+ wn , where 

wo is constant at 377 electrical r/s 

equation 1.1 for XC = 0.092 p.u. as: 

tu = 
n 

1 o.o92 
0.132 + 0.0112 * 

and tu 
n 

can be calculated from 

377 = 302.2 electrical r/s (4 .8) 

where 0.132 p.u. is the value of the negative sequence reactance x2 

and 0.0112 p.u. is the value of the line inductive reactance XE , both 

values are taken from Appendix B-1 • 

The SSR positive sequence mode rotates at a subsynchronous 

speed of (/J - (/J 
0 n 

and has low damping. The system is stable because the 

net effective resistance in the path of the SSR positive sequence current 

is still positive. 
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Using the other value of the series capacitive reactance 

XC = 0.107 , which is higher than 0. 092 p. u. , the system is now unstable 

as is clear frOin the aiganvaluas of Table 4. 2. Instability is due to 

the positive real part of the SSR positive sequence mode A. ssrp This 

implies that at this new value of XC the net effective resistance in the 

path of the SSR positive sequence currant is now negative. This is 

known as the induction generation effect and this instability is due to 

unstable SSR oscillations as it was explained in Chapter I • Further-

frequency of A · ssrp as shown in Table 4. 2, is 54.83 r/s more, the 

or e. 72 Hz which agrees with the experimental results obtained by [17] • 

4.3.2 Closed Loop System 

The closed loop system under study is shown in Figure 3.7. 

The feedback signal taken from real and reactive power transducers is 

fedback directly to the field winding. 

The transfer function of the filter (NOS) used is the same 

as that given by Saito et al [17], where the values of its time constants 

are listed in Appendix B-1. The control signal 1.1 , in our study,is taken 

as the combination of the reactive power A Q and the active power A P • 

In contras,t, the control signal used by {17] is A Q only. Mathematically., 

ll can.be written as: 
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11 = A. Q cos <1> + A. l? sin <1> (4.9) 

Substituting equation 3.10 into 4.9 we get: 

(4.10) 

where 

r in -r~· . sin ~ r ~~ f erj- fs • - sin~ f e~ 
~ ~~ [:s~ <1> cos.~ ~ ~J ~ eJ ~in <1> cos~ ~ eJ 

(4.11) 

and Eqe' EdO' IqO' IdO are defined in Section 2.7.5. 

The closed loop system cannot be represented by the state 

space form. similar to equation 4.2, unless the NOS is modelled by a set 

of first order differential equations. This can be done on the basis of 

equation B-2.4 given in Appendix B-2. Therefore, the state space model 

of the NDS is 

xl -a l l 0 xl bl 

d 
dt x2 ;::: -a2 0 1 x2 + 0 (4.12) 

x3 -a 
3 

0 0 X 0 
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where 

TNDl* TND2 +TNDJII TND2 + TNDl* TND3 
al ;:: 

TNDl TND2 TND3 

TNDl + TND2 + TND3 
a2 = 

TNDl TND2 TND3 

1 
a3 = 

TNDl TND2 TND3 

and 

bl = KND TNDl. TND2 

where the values of the time constants, TNDl' TND2' TND3 and the gain 

KND are given in Appendix B-1 • 

The output voltage of the NOS A ~ is : 

A e = a x 
E 3 1 

(4.13} 

this voltage appears across the field winding under any disturbance. 

Therefore, the perturbation field voltage, A efd' 

zero, which is not the case in the open loop system. 

expressed in terms of .the NOS state variables as: 

where X ad, rfd are given in Appendix B-1 • 

is now different from 

However, A efd is 

(4 .14) 
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The state space model of the closed loop system can be 

obtained by combining equations 4 .1, 4 .12 and 4 .14, which results 

in: 

rollJ 1012] 1 [Fll) IF12J i [Bl] 

d 
+ (4.15) ;:: )J dt 

[D211 [D22) X IF 21) X !B2] 

where 

[Dl1] is .!._ID] 
WO 

from equation 4.1, 

{Dl2] is a zero 9 * 3 matrix, 

[D22] is a 3 * 3 identity matrix, 

[D21] is a zero 3 * 9 matrix, 

[F11] is matrix [F] in equation 4.1, 

[Fl2] is a 9 * 3 matrix and equal to , 

~ 
0 dl 0 . . . . ~T rfd 
0 0 0 dl = a3 -

xad 
0 0 0 . . . . 

IF 21] is ·a zero 3 * 9 matrix, 

IF 22] is the 3 * 3 coefficient matrix on the 

right hand side of equation 4.12, 

[Bl] is a zero 9 * 1 matrix, 
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is a 3 * 1 matrix, equal to Ib 0 O] T ' 1 

i = 

{4.16} 

From equations 4.10 and 4.11, the control signal 1.1 can 

be expressed in terms of the state variables a i 0 , a ~Q' a eCD and a ecQ· 

Therefore, equation 4.15 can be written in a for.m similar to equation 4.1. 

The closed loop system is of twelfth order, with two addi-

tional parameters, the gain of the NDS filter KND, and the control 

angle q, • To calibrate the results obtained from the present analysis 

with that obtained by [17], the control angle ~is assumed to be zero 

which means that the control signal 1.1 is now the same as that used in [17] 

and equal to a Q only. 

Table 4.3 shows the eigenvalues and eigenvectors of the 

closed loop system for the other value of the series capacitive reactance 

(XC= 0.107 p.u.) at which the open loop system is unstable. The closed 

loop system is now stable and the three additional eigenvalues are defined 

as the NDS mode 

The eigenvalues in Table 4.2 and Table 4.3 are calculated 

for the same values of line resistance and series capacitive reactance rE 

and respectively, where the value of is that given in Appendix 

B-1"" However, these two parameters vary as the transmission lines are 
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'!'ABLE 4.2. 

EIGENVALUES AND EIGBNVEC'l'OliS FOR XC - 0.107 (ONiiEGULATED MACHINE). 

~ssrn l l 
~~~ech. 

l 
IUIIOrt. 

1neld ssrp 

Eigen- -33.8 -33.8 +2.32 +2.32 -6.90 -6.90 -51.7 -51.7 -2.51 

Values + -. + - + - + 
j 701. j 701 •. j 54.8 j 54.8 j 18.1 j 18.1 j 4.11 j 4.11 

0.834 0.834 2.37 2.37 0.39 0.390 3,80 3.80 7.90 
A i 0 0.0420 -.0420 -33.2 33.2 -58.9 58.9 -75.1 75.1 180. 

0.834 0.834 2.55 2.55 1.75 1.75 5.25 5.25 0.138 
A iQ 90.2 -90.2 64.1 -64.1 45.8 :-45.8 173. -173. o.o 

0,257 0.257 0.901 0.901 0.244 0.244 0.288 0.288 7.73 
Aifd -2.06 2.06 -52.4 52.4 -85.5 85.5 -98.2 98.2 180. 

.. 0.507 0.507 1.35 1.35 0.214 0.214 3.47 3.47 0.103 
I< 

~ Aikd 1.43 -1.43 -16.3 16.3 -6.44 6.44 -72.5 72.5 o.o 
~ 
Q 0.542 0.542 1.55 1.55 1.05 1.05 5.13 5.13 0.0148 ., 
IJ> Aikq -.1 91.6 -91.6 81.6 -81.6 97.1 -97.1 175. -175. 180. 
I'll 

0.000126 0.000126 0.00490 0.00490 0,00955 0.00955 0.0106 0.0106 0.00127 
A w 176: -176. 156. -156. 115. -115. 178. -178: 180. 

(X) 
\0 

0.000067 0.000067 0.0336 0.0336 0,185 0.185 0.0765 0.0765 0.191 
A 4 

84.0 -84.0 68.2 -68.2 3.74 -3.74 3.05 -3,05 o.o 
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A ssrn 

Eiqen- -33.8 

Values ... 
j 701. 

0.103 
AeCD -95.7 

0.103 

~ 
AeCQ -5.65 

B 
0 0.835 
iAQ -2.00 
0> 

-ri 
r4 

0.835 
A P 88.2 

e 

TABLE 4.2 (oont •a!_ 

A "-oh. ssx:p 

-33.8 +2.32 +2.32 -6.90 -6.90 

- + - + -
j 701. j 5~.8 j 54.8 j 18.1 j 18.1 

0.103 0.316 0.316 0.190 0.190 

95.7 62.9 -62.9 45.9 -45.9 

0.103 0.300 0.300 0.0500 0.0500 

5.65 147. -147. 128. -128. 

0.835 2.39 2.39 0.410 0.410 

2.00 -35.4 35.4 -67.3 67.3 

0.835 2.54 2.54 1.75 1.75 

-88.2 62.2 -62.2 45.3 -45.3 

Not&l For the eiqenvectors, the first number is the magnitude and the 

second number is the angle in degrees. 

>. AIIIDrt. 

-51.7 -51.7 

... 
j 4.11 j 4.11 

0.570 0.570 

168. -168. 

0.37 0.37 

94.5 -94.5 

3.88 3.88 

-72.5 72.5 

5.20 5.20 

174. -174. 

f) 

Afield 

-2.51 

0 .• 0203 

o.o 

.845 

o.o 

7.91 

180. 

0.144 

180. 

\0 
0 
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TABLE 4.3. 

EIGENVALUBS AND BIGENVEC'l'O:RS OF THE CLOSED LOOP SYSTEM fOR XC - 0.107. ~ •13, + • 0,0 (UNREGULATED MACHINE). 

). A "mech. 
). 
amort. >.field ANDS ssrn ssrp 

Biqen- -32,8 -32.8 -.223 -.223 -7.72 -7.72 -25.8 -25.8 -2.36 -139. -51.9 -44.4 

Values + - + ... + .. + 
j 701 j 701 j 34.9 j 34.9 j 18,5 j 18.5 j 55.5 j 55.5 

0.431 0.431 1.26 1.26 0.595 0.595 0.649 0.649 6.37 0.166 0.302 0.188 
A i 0 -176. 176. -120. 120. 62.0 -62.0 -137. 137. 180. 180. o.o o.oo 

0,432 0.432 0.863 0.863 1.41 1.41 0.651 0.651 0.114 0,134 5.28 0.0395 
A iQ -86.7 86.7 -18.0 18.0 132. -132. o.o o.o o.o o.o o.o 0.0 

0.130 0.130 0.881 0.881 0.368 0.368 0.586 0.586 6.24 0.280 2.27 3.29 

"' Aifd -178. 178. -132. 132. 61.9 -61.9 178. -178.· 180. 180. 180. o.oo lot 

H 0.264 0,264 0.371 0.377 0.215 0.215 0.439 0.439 0.090 0.104 2.53 3.11 ~ 
ti Aikd -176. 176. -88.2 88.2 77.9 -77.9 -71.8 11.8 o.o o.o o.o 180. 
0> 

rj 
0.281 0,281 0.502 0.502 0.875 0.875 0.461 0.461 0.012 0.100 5.19 0.0424 

Aikq -84.8 84.8 8.94 -8.94 -177 177. 15.8 -15,8 180. o.o o.o o.oo 

.00007 .00007 0.0026 0.0026 .0075 .00750 o.oou 0.00110 0.001· 0.0001 0.0110 0.0001 
A 111 -0.10 .10 70.5 -70.5 -160. 160. 64.2 -64.2 180. o.o o.o o.o 

0.00004 0.00004 0.0281 0.0281 0.141 0.141 .00680 .00680 0.155 0.0003 0,0780 0,0009 
A 6 

-92.8 92.8 -20.0 20.0 87.1 -87.1 . -51.1 51,1 o.o 180. 180. 180. \0 ..... 



{) 

A 
ssrn 

Bigen- -32.8 -32.8 

.values + -
j 701 j '701 

0.798 0.798 
68co 104. -104. 

12.2 12.2 
b.eCQ -170. 170. 

c 203.0 203. 

H x1 -170. 170. 

E 0.0535 0.0535 8. 
ori x2 87.7 -87.7 ... 

0.0535 0.0535 
x3 178. -178. 

e 

TABLE 4.3 (cont'd) 

l A 
~~~ech. 

A amort. Afield ssrp 

-.223 -.223 -7.72 -7.72 -25.8 -25.8 -2.36 -139. 

+ - + - + 
j 34.9 i 34.9 j 18.5 j 18.5 j ~5.5 j 55.5 

6.09 6.09 1.99 1.99 10\.0 10.0 0.300 13.1 

-41 41.0 -153. 153. -91.1 91.1 180. 0.0 

2060. 2060. 1090. 1090. 1610. 1610. 8220. 890. 

22.6 -22.6 -134 134.0 -42.2 42.2 o.o o.o 

31100.' 31100. 17700. 17700. 29100. 29100. 22600. 16900. 

48.3 -48.3 -a5.5 85.5 -26.5 26.5 180. o.o 

0.105 0.105 0.154 0.154 0.0816 ~0816 0.0164 0.0184 

-19.6 19.6 134. -134. -3.2 3.20 0.0 0.0 

0.145 0.145 .0719 .0719 0.0752 0.0752 0.681 0.0110 

60.7 -60.7 -118. 118. 52.7 -52.7 o.o o.o 

tlote: For the eigenvectors, the first number is the magnitude and the second number 

is the angle in degrees. 

ANDS 

-51.9 

37.0 

o.o 

5180. 

o.o 

127000. 

o.o 

0.551 

0 

0.108 

180. 

0 

-44.4 

41.9 

180. 

6300. 

180. 

168000. 

180. 

0.0018 

o.oo 

0.0200 

180. 

U) 
!:V 
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switched to different topological configurations. Therefore, the :mapping 

of the stability boundary in the. XC - rE plane is of practical advantage. 

Figure 4 .l shows the stability region in the XC - rE plane with and 

without the NDS feedback. It is obvious that the. closed loop system 

has a wider stability region. 

4.4 Confirmation of Theory 

In this section, the theory developed in Chapter III for SSR 

suppression will be confirmed using the results obtained in Table 4.2 and 

Table 4.3 for the open and closed loop systems respectively. The theory 

is said to be confirmed if the numerical results satisfy the following 

theoretical concepts, which have been explained in Chapter III: 

(a) The speeds of the SSR negative and positive 

sequence currents are and w - w 0 n 

respectively. 

{b) In case of unstable SSR the torque angle is 

obtuse and for stable SSR the torque angle is 

reflex. 

(c) For the closed loop operation, there exists a 

stability region in the ~ - $ plane for Which 
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.. 03 .035 
~ ~ 

Stability boundary in the X - r plane for the open C E · and closed loop systems. 
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unstable SSR is stabilized by the feedback. 

Referring to the mmf phasor diagram of Figure 

3.6, the feedback gain ~ controls the magni-

tude of Fcb· The angle~ rotates Fcb about 

the pivot point c • The controllable sectors 

of.Fi9Ure 3.6 corresponds to the stability region 

in the ~ - <P plane. 

4.4.1 Negative and Positive Sequence Concept 

It was explained in Chapter III that the unbalanced SSR 

currents flowing .i,nto the stator are resolved into negative and positive 

sequence mmf phasors. 

to the d - q axis, are 

The speeds of these mmf phasors with respect 

and (1,) - (1,) 
0 n 

respectively. 

From the results obtained in Tables 4.l(b}, 4.2 and 4.3, 

the SSR negative sequence mode A has a speed of w
0 

+ wn and the ss m 

SSR positive sequence mode . A has a speed of w
0 

- wn • ssrp For instance, 

in Table 4.l{b) (1,) 
n = 302 electrical r/s 

of 677 = 377 + 302 where (1,)0 = 377, and 

73.1 = 377 - 302, whereas in Table 4.2 

the speed of A ss m is 701 = 377 + 325 

54.8 = 377 - 325 • 

(XC ;.. 0.092), ·A. has ss m 

A has a speed of 
ssrp 

(1,) = 326 electrical r/s 
n 

and the speed of A. ssrp 

a speed 

and 

is 
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The damping of . A is large (32.8 in all Tables} ssrn 

due to its positive slip, while that of A ssrp 
is small ·and very much 

influenced by changing XC • This agrees with the first concept which 

was explained in Section 3.3.2. 

4.4.2 The SSR mm£ ~hasor Diagram 

The second concept of the theory of Chapter III is con-

cerned with stable and unstable SSR oscillations, and both were 

explained on the basis of the torque angle between the SSR stator and 

rotor phasors at the subsynchronous frequency. In the mmf phasor 

diagram of Figure 3.3, the stable SSR is defined as the case when . 

180 < o < 360, otherwise it is the case of unstable SSR. 

The purpose of this section is to demonstrate the validity 

of this concept using the numerical results. The SSR mmf phasor 

diagram can be constructed for stable and unstable SSR from the eigen-

vectors shown in Tables 4.3 and 4.2 respectively. 

The state variables of the positive sequence mode are 

sinusoidally varying with time at a frequency of (I). 
n 

electrical r/s. 

Their relative amplitudes and phase shifts are related to the eigenvector 

associated with A mode. 
ssrp 

Therefore, from Table 4.2, the free 

motion of the positive sequence SSR mode involves the following winding 

currents, 
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A ~(tl 2 .. 37 cos (54.8 t + 326. 0
) 

A iQ(t) 2.55 cos (54.8 t + 64.1°} 

11 ifd(t) exp (2 .. 32 tl 0 (4.17} == 0.901 cos (54.8 t + 307 ) 

A ~d(t) 1 .. 35 cos (54 .. 8 t + 343° ) 

A ~kq (t) 1.55 cos (54.8 t + 81.6°} 

The contribution currents to the stator mmf component are 

At an instant of· time t = 0 the stator mmf phasor 

can be computed in the d - q axis since the synchronously rotating frame 

and the d - q rotating frame are the same at this instant of time. 

Therefore, the two d and q axes stator mmf phasors are: 

Fsd = 2.37 cos 326° I 

2.55 0 F = cos 64.1 1 sq 

F = /F2 + F2 = 2.97 , 
s sd sq 

F 

6 Fs = arc tan (~) (stator mmf phase angle) . F sq 

The rotor mmf phasor can be calculated from the rotor 

currents A ifd' A ~d' A ~q 

and q rotor mmf phasors are: 

at the same instant of time. The d 
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Frd ... 0.901 cos 307 + 1.35 cos 343 , 

F = 1~55 cos 81.6 
rq 

F = /F2 + F2 = 1.85 , 
r rd rq 

F 

SFr = arc tan 'Frd ) (rotor mmf phase angle) . 
rq 

In the construction of the mmf phasor diagram, the stator 

mm£ is reversed,according to the sign convention adopted in Chapter II, 

where the currents are flowing out of the stator. The resultant mmf 

diagram for the open loop system is shown in Figure 4.2(a). The torque 

angle in Figure 4.2(a) is an obtuse angle which indicates generation 

action and this is the condition for unstable SSR which is· in fact the 

case. 

In a similar way the eigenvectors given in Table 4.3 can be 

used to construct the SSR mmf phasor diagram for the closed loop system, 

which is stable as indicated by the eigenvalues in the same table. Figure 

4. 2 (b.) shows the rmnf diagram of the closed loop system with the NDS 

gain K = 13 
ND . 

and the control angle cp = o, from which the torque angle 

is now reflex which means motoring regime. 

The mmf phasor diagrams in Figure 4. 2 demonstrate the 

validity of the stable and unstable SSR concept. In addition, the 

principle of stabilizing the unstable SSR by reversing the power flow 

or by shifting from the generating regime to the motoring regime is possible. 
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q-aXIS 

( a ) unstable 

d-aXIS 

q-OXIS 

b stable 

Figure 4.2. MMF phasor diagram for the SSR positive sequence 

mode constructed from the numerical results for: 

(a) Open loop system 

(b) Closed loop system 
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4.4.3 Fcb Phase and Magnitude 

The phase and magnitude of the phasor :F eh , the mm£ of the 

field winding produced by the feedback signal which is necessary for SSR 

suppression, are affected by the control angle ~ and the NDS gain of 

the feedback loop KND • The input signal to the NDS filter is the 

combination of the transducer active and reactive power outputs, P and Q 

respectively, where: 

p = and 

From the open loop eigenvectors shown in Table 4.2 A Q 

related to A ifd as: 

A Q = 2.39 /325. I 

A p = 2.54 /62.2 t 

A ifd = 0.901 ho1. , 

these values are taken from the eigenvectors associated 

Table 4.2 . 

A Q I A ifd 

A P I A ifd 

2.65 & 
= 

2.82 

(4 .18) 

and A P can be 

with :\ in ssrp 

(4 .19) 

From equation 4.19 it is clear that the outputs. of the transducers are 

two signals of approximately equal magnitude and which are approximately 

90° apart. This emphasizes the possibility of adding another degree of 
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freedom by combining the two outputs as it was explained in Section 

3.6.2. 

The output of the transducer passes through the NDS filter 

whose transfer function is given in Appendix B-1 and whose Bode plot is 

shown in Figure 4.3. The purpose of this transfer function is to filter 

out the de component of the 60 Hz active and reactive powers P
0 

and 

Q0 respectively. The gain ~ of the transfer function is chosen to 

give F cb the required magnitude. The NDS filter gives an angle of 

45° and a magnitude of 0.493 1)ro at the subsynchronous frequency of 

54.8 r/s as can be seen from Figure 4.3 • 

. Therefore, the Fcb space angle is determined from the 

NDS and the control signal angles. The magnitude of Fcb is determined 

by the transducer gain, the filter magnitude and the NDS gain l)ro· 

Since the filter phase and magnitude and the transducer gain are fixed for 

a given subsynchronous frequency, then 1)ro and ' are the two degrees 

of freedom by which Fcb can be injected to shift FR from the generating 

regime to the motoring regime. 

4.4.3.1 Stabilitx Boundary 

In the closed loop operation, we introduced two additional 

degrees of freedom; the NDS gain I)ro and the control angle ~ : 
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Suppression of SSR can be achieved if the right combination of ~ 

and q, is used. This 111eans that ~ and q, should be chosen in a way 

to fulfill the phase and magnitude requirements of Fcb as was explained 

in the previous section. Therefore, the stability boundary in the 

~- q, plane is necessary to verify the third concept dealing with Fcb 

phase and magnitude requirements. 

In the. SSR mmf phasor diagram shown in Figure 3. 4, AB 

was considered as the theoretical stability boundary. For stable sub-

synchronous resonance, the resultant mmf phasor FR should lie on the 

left hand side of the. line AB. A boundary line can be obtained from the 

current numerical analysis by changing ~ and 4> at the same time, while 

keeping XC, rE and P constants at 0.107 p.u., 0.0229 p.u. and 

0.15 p.u. respectively. 

The numerical stability boundary can be constructed using 

the mmf phasor diagram shown in Figure 4. 2 (a) • In Figure 4.2(a) the 

angle between F and the q - axis is 83. 7 degrees, and the q - axis 
r 

represents the horizontal line with 90° ahead of the d - axis in the 

direction of motion. The phasor diagram of Figure 4.2(a) can be trans-

ferred in a polar plane of different circles representing different values 

of ~ with their centres at the point of intersection of different 

straight linea, which represent different values of the control angle q, 

as shown in Figure 4 • 4. The d and q axes in Figure 4.2(a) coincide 

with the straight lines representing q, = 90, 360 in Figure 4.4 respec-



Figure 4.4. Stability boundary in the KND - f plane 

showing the comparison between the theore­
tical stability boundary (AB) and the 
numerical stability boundary (broken line). 
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tively. Therefore, the stator and rotor mm£ phasors of Figure 4.2(a) 

can be plotted on Figure 4.4, but with a slight change of the arrow tip 

of F 
r 

fixed to the centre of the circles. Now, the line AB 

in Figure. 4.4 represents the. theoretical stability boundary and the broken 

line is the stability boundary obtained from the eigenvalue analysis. 

This stability bo1;1ndary agrees with the line AB only approximately, be-

cause the closed loop system is a highly complex system of twelfth order. 

Figure 4.4 gives a clear strat.egy of how ~ and l)ro 

should be combined to ensure that the injected Fcb will have the required 

phase and magnitude to shift FR into the stable region (motoring regime). 

For instance, if ~ = 2 then for any value of the control angle .P , 

F eh will not shift F R into the stable region. Similarly, if$ = 90°, 

for any value of the NDS gain !)rot Fcb will also not shift FR into 

the stable region. Furthermore, for any fixed NDS gain, say ~)m = 12, 

the variation of .p from 20° to 00 in the counterclockwise direction 

will change the system from unstable to stable. This is because in chang-

ing $ , the phasor Fcb is rotated in a way such that when it is combined 

with Fr' the resultant phasor FR will in the first case ($ = 20°) 

fall in the generation regime and in the second case, .P 

the motoring regime. 

0 = 0 , fall in 

By this stability boundary, the concept of F cb phase and 

magnitude. requirement is now confirmed. Also, the possibility of rotating 

Fcb by changing the control angle .p is verified. 
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4. 5 Study of Effect of · J?ara.meter Variation 

In thi..s section, the effect of the NDS gain l)ror the 

control angle ' 1 and the effect of loading on the damping of different 

modes is studied. In the study, the line resistance rE is kept 

constant at 0.0229 p.u. Only one parameter at a ttme is varied in 

these studies, i.e., the other parameters are kept constant. 

4.5.1 Variation o£ ~ 

The effect of ~ on the SSR positive sequence mode can 

be explained from Figure 4.5, where the damping coefficient of the SSR 

mode -Xssrp 

values of 4> . 

is plotted against the variation of ~ for two different 

It is obvious that by changing ~ from 360° to 300° 

the damping of the SSR positive sequence mode is improved. However, 

the mechanical mode damping is worst for 4> = 300° as is clear from Figure 

4.6. In Figure 4.6 the loci of the amortisseur, the SSR, and the 

mechanical modes are plotted on the upper half of the s - plane. The 

loci are for the variations of the NDS gain, ~ • Two cases are pre-

sented for control angles 4> = 300 degrees and ~ = 360 degrees. The 

values of XC, rE and P are fixed at 0.107 p.u., 0.0229 p.u. and 

0.15 p.u. respectively. The negative sequence and the field winding 

modes do not change appreciably with ~ and thus are not plotted in 

Figure 4.6. 
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4.5.2 Variation of p 

Keeping !)m ftxed at a value of 13 and changing 4> 

over a complete cycle, tne d~ing of tne SSR posittve $equence mode 

varies in the. llWUler shown in Figure 4. 7. It; is clear that for the above 

value of the NDS gain !)m (!)m = 13), the system is unstable for 

5° < 4> < 235° and it is stable for 235° < ' < 365° • Furthermore, 

the damping'of A. 
ssrp is the worst at an angle of about 120° and it is 

the best at an angle of about 300° • 

...., The dampings of the other modes do not change appreciably 

with ' , except that the amortisseur mode .changes from two negative real 

modes to a complex conjugate mode. The damping of these modes are not 

plotted in Figure 4.7. 

4.5.3 Effect of Loading 

The previous results for the open and closed loop systems 

were obtained when the power deliverea to the infinite bus bar was kept 

constant at 0.15 p.u. When changing the power from 0.15 p.u. to 

1.0 p.u., the damping of the SSR mode is improved, while the damping 

of the mechanical mode is deteriorated. Figure 4.8 shows the loci of 

the damping of the~echanical and the SSR modes as !)m varies for two 

different values of loading. It is clear that for P = 1.0 p.u. the 
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range of ~ for which the system is stable lies between 1. 5 to 10, 

whereas for P =. 0.15 p.u., it lies between 2.5 and 18 • 

In a similar way, the two 1110de dampl:ngs. (the SSR and the 

mechanical modes) can be plotted against !)m for constant P, ~ , and 

using two values of the series capacitive reactance. Figure 4.9 shows the 

variation of the SSR and the mechanical mode dampings with ~ for two 

values of XC • It is clear that for a lower XC the system is stable for 

a wider range of KND • 

4.6 Discussion 

The experimental results obtained by {17] and the numerical 

results obtained in this chapter. support strongly the different aspects 

of the theory developed in Chapter III. Furthermore, the choice of the 

control signal as a combination between A P and A Q is superior to the 

use of A Q only. 

The mechanical and the SSR modes are the only two which 

cause system instability. The damping of the two modes vary in opposite 

directions, i.e. , when shifting one mode to the left of the imaginary axis 

on the s - plane, the other moves to the right. Therefore the practical 

choice is a compromise which gives both the necessary dampings. 



l)m and ~ 

by !17], 

114 

The stability boundary is a guidance for the choice of 

to achieve a robust system. Thus, the feedback loop used 

which has A Q only as an input signal, loses one degree of 

freedom in the cho.tce of the operating point. In the context of Figure 

4.4, the feedback loop of 117] corresponds to the 360° line and 

~ = 14.3 and it is presented by point 0 in the d.tagram which is very 

sensitive to slight changes in the NDS gain ~ • 
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The feedback $yste.In considered for the suppression of unstable 

SSR discussed in Chapter IV is impracticable. This is because the feed­

back signals are applied directly to ·the field winding with no regard to 

the fact that the power levels required to energize the field winding can 

be quite substantial. In practice, the synchronous generator field wind-

ing current is obtained from an excitation system which is capable of amplifying 

signals of the power levels of transducers outputs to the power levels 

capable of perturbing the airgap magnetic fields significantly. The modern 

excitation system usually has already a voltage regulator feedback loop and 

a supplementary stabilizing loop such as the power system stabilizer loop 

(PSS). Conceivably, therefore, the signals from the SSR stabilizing 

feedback loop should be amplified through the excitation system in the same 

way as the signals of the voltage regulator and the PSS feedback. 

This motivation of the study in this chapter is to show that 

the system of Chapter IV meets the stability performance requirements when 

the transfer function of the excitation system is included in the model and 

that there are no deleterl::ou$' interactions with the other feedback loops so 

as to degrade the overall.performance. 
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In this chapter, the synchronous machine is assumed to be 

equipped with Typa l excitation system ISS], and a power system stabilizer. 

Furthermore, the system under consideration is the 10 GVA. system used by 

Saito et al 1171 which is totally different from the one used in Chapter 

rv. However, the unregulated 1t1a.chine is first considered to help in 

clarifying the basic sub-systems functions. 

The system stability analysis begins with the basic system, 

i.e., the system without the excitation feedbacl<:. and without tha power 

system stab~lizer. Then, step-by-step, each complexity (sub~system) is 

added to glean an understanding of how each sub~system interacts with the 

rest. 

A more practical feedback loop than the one used in !17] is 

proposed for the SSR oscillation control. Results are presented to show 

the stability regions and the loci of the eigenvalues for changes in system 

parameters. 

5.2 Basic Sub-System Functions 

The 10 GVA system is associated with two sub-systems: (i) 

the exCitation system whj.ch. consists of the voltage regulator and the ex­

citer, (iil the pOwer system stabilizer PSS I56-6l]. The excitation 

system is Type 1 of Reference 155] • The values of the gains and the time 
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constants are taken from Il7J. Two kinds of systems are studied: 

(a) The conventional excitation system (CE). 

(b) The high response excitation system {HRE). 

The parameters of the above two excitation systems are within 

the range recommended by [55] and their values are listed in Table 5.1. 

In practice, the generator terminal voltage (et) is fedback 

to the input port of the excitation system through a low pass filter of the 

regulator which is neglected here. The output of this filter is amplified 

by the voltage regulator .amplifier (in actual fact the regulator amplifier 

saturates and this is modelled by a voltage ceiling, however, this non-

linearity cannot be treated by the small perturbation analysis used in this 

chapter and in consequence is neglected) and then fed to the exciter. Any 

changes in the generator terminal voltage is compensated by changes in the 

machine excitation voltage. The time response of the excitation system to 

any changes in et depends on the regulator and the exciter gains and time 

constants. 

The recent practice of power industry required a higher re­

sponse excitation system to ensure fast voltage regulation and transient 

stability. In using the high response excitation system, it is found that 

the electromech&nical stiffness is improved but there is a poor electro-

mechanical damping. To ensure dynamic stability by increasing the damping 
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when the higQ response excitation system is used, another feedback loop 

is necessa:ry and this is the. power system stabilizer (PSS 1 • 

The transient stabilizing signals of the PSS are usually 

obtained from th~ shaft speed (which is the one used in this chapter), 

the teminal frequency or the power transducers. The output of the PSS 

goes to the input port of the excitation system. 

5.3 Mathematical Formulation 

The state space form of the basic system (Figure 2.2(a)) is 

given by equation 4.1, where the only non-zero entry of the input vector U 

is a efd. The mathematical model of each sub-system is added to equation 

4.1 one at a time. 

feedback. 

Figure S.l(a) shows the basic system with the excitation 

The transfer function of the excitation system is shown in 

Figure S.l(b) where the different gains and time constants are defined in 

[55]. The state space model of the excitation system can be written on 

the basis of equation B-2.4 given in Appendix B-2 as follows: 
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Figure 5.1. (a) The basic system with the excitation feedback. 

(b) The transfer function of Type 1 excitation system. 
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Figure 5.2. (a) The basic system with the high response excitation 

system (HRE) and the power system stabilizer (PSS). 

(b) The transfer function of the PSS. 
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X El -~1 1 0 X El bE.l 

d 
dt .xE2 

::::; -aE2 0 1 :XE2 + bE2 ( ... A et} (5.1) 

.xE3 -aE3 0 0 XE3 bE3 

where 

aEl = 
~F.~A.+ ~ATE+ TE TF 

TF TA TE 

T + T + T + K T T 

aE2 = A F E F A F 
T T T 

F A E 

a = · E3 
I 

and 

bEl = 0 

bE2 = KA T 
F 

bE3 = KA 

The output of the excitation system ~ eE is: 

= (5.2) 

in a similar way to equation.4.14, A.efd· canbe obtained from equation 

5.2 as : 
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= (5.3) 

The state space equation of the basic system with the excita-

tion feedback, Figure 5.1 Cal , can be obtained by combining equations 4.1, 

5.1, and 5.3. The resulting equation is a homogeneous equation describing 

the above system which is of 12 state variables. 

A final remark on equation 5.1 is that, it represents the 

mathematical model of the excitation system of Type 1 of Reference !55] 

for both·,the HBE and the CE systems. The input signal to the excitation 

system which is A et in equation 5.1, is always associated with a negative 

sign since any increase in the generator terminal voltage will be compensated 

by decreasing its excitation voltage. 

Figure 5.2 (a) shows the basic system with both the excitation 

system and the power system stabilizer. It is worth reminding that the 

power system stabilizer is needed when the high response excitation system 

HBE is used. The transfer function of the PSS is shown in Figure 5.2(b). 

Once again, the state space model of the PSS can be written in a way 

similar to that of the excitation. system which has the following form: 

xPl ~al?l l a xl?l bl?l 

d .... 
dt ..xl?2 ... a. 0 1 :xP2 + bl?2 A w (5.4) 

P2 

XP3 ... ~3 0 0 bP3 
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where 

= 

= 

= 

and 

= 

= 

= 

~.1,'l.'l'3:+.i.t~:l'~ 

'1'1 '1'3 'r3 

2 '1'3 + '.1:1 

'1'1 '1'3 '1'3 

1 

'I'he output of the PSS eP is 

= 

'I'he combination of equations 4.1, 5.1 (with the input 
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(5.5) 

~ et ~ep1aced by ~ et ~ e~l and equations 5.3, 5.4, 5.5 gives a 

homogeneous state space equation which describes the system of Figure 5.2(a). 

'I'he constant coefficient matrices of this equation are of dimension 15 * 15 • 
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5.4 Feedback Scheme of the SSR Suppression 

Tha feedback scheme proposed by Saito et al 117] for the 

field winding control of ~e SSR o~cillation is shown in Figure 5,3(a}. 

The transfer function of the filter used which was defined as ~e negative 

d~ing stabilizer (NDS} , is shown in Figure 5. 3 (b) • The output of this 

filter was added to the output of the excitation system. 

In practice,it is necessary to power amplify the feedback 

signal to a level sufficient to derive the field current. Consequently, 

the output of the above NDS filter should be added to the input port of 

the excitation system. Therefore, the above feedback scheme is not 

realistic from the practical point of view. Nevertheless, this feedback 

loop is used in this thesis for the calibration of the proposed feedback 

loop. The mathematical derivation and the eigenvalues of the above scheme 

are shown in Appendix C. 

In this chapter, a feedback loop which passes through the 

excitation system is proposed for the suppression of the unstable SSR 

oscillation. This scheme (see Figure 5.4(a)) will be referred to as the 

NDS' feedback scheme where its filter transfer function is shown in Figure 

5.4 {b). The state space model of the NDS 1 filter is obtained from Appen-

dix B-2 as: 



0 
~1 -aN1 1 0 

d 
0 1 - :XN2 ,..a 

dt N2 

~3 -~ 0 0 

where 

' 

and 

T~2 T~3 + T~3 T~4 
= ~1 

T.:W2 T.:W3 T~ 

T' ND2 + T~3 + T~4 
aN2 = 

T~2T~3T~4 

1 
aN3 ""' 

T~2 T~3 T' 
ND4 

bN1 = K' - K' T' a 
ND ND ND1 N1 

bN2 = - K' T' a ND ND1 N.2 

The output f~o~ tne NDS filter e is 
N 
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.xN1 bN1 

~2 + bN2 1l (5.6) 

~3 bN3 

+ T.:W2T~4 

(5. 7) 
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where ').I is defined by equation 4.10. 

The output of ~e NDS' feedback scheme is now added to the 

input port of the excitation system- This means, that when the closed 

loop system of Figure 5. 4 (al is used in the analysis, the input signal 

of the excitation system which is 11 eE in equation 5.1, is now replaced 

by A et - eN - ep • Furthermore, the system is now of eighteenth order. 

It has 18 eigenvalues: 9 corresponding to the basic system, 3 to the 

excitation system, 3 to the power system stabilizer PSS and 3 to the 

NDS' filter. 

5.5 Sub-Systems Eigenvalues 

In order to understand the interaction of the excitation, J? SS 

and NDS' feedbacks, it is necessary to identify the eigenvalues associated 

with each sub-system. Because the system equations are augmented to a 

high order and because a numerical subroutine is involved to solve for the 

eigenvalues of matrix [A] , we quickly lose sight of the practical process 

involved. For this reason, the eigenvalues are calculated for the systems 

arranged as (l) system of Figure S.l(a), (2) system of Figure 5.2(a}, 

(3} system of Figure 5.4(a). The identification of the eigenvalues is 

accomplished by giving a physical interpretation to the weights in each 

element of each of the eigenvectors. 

~ystem eigenvalues are: 

The steps taken to identify the sub-
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(i) The basic system eigenvalues are calculated 

using equation 4.1. The nine eigenvalues 

obtained are identified in a way similar to 

that discussed in Chapter IV. 

(ii) The eigenvalues are calculated for the basic 

system with the excitation system (Figure 5.l(a)). 

The state space equation used is that obtained 

from combining equations 4.1, 5.1 and 5.3. The 

additional three eigenvalues are related to the 

excitation system, and they will be called AEXC. 

(iii) The basic system with the excitation system and the 

PSS (Figure 5.2(a}) is considered. The state 

space equation used is the combination of the one 

used in item (ii) and equations 5.4, 5.5. The 

additional three eigenvalues are related to the 

PSS and they will be called Apss· 

(iv) The system of Figure 5.4(a} is considered with the 

state space equation obtained by combining the one 

used in item (iii) and equations 5.6 and 5.7. 

The additional three eigenvalues are related to the 

NDS' filter and they will be called ANDS' • 
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Finally, all the sub-systems state space models derived in this 

chapter are in real time, and the basic system equation (equation 4.1) 

is also in real time. Therefore, all the eigenvalues are in real time 

which means that all the dampings and the natural frequencies associated 

with these eigenvalues are the physical dampings and frequencies of the 

system. 

5.6 Numerical Example 

The system under consideration has the following parameters: 

TABLE 5.1 

PARAMETERS OF THE 10 GVA 117] SYSTEM 

Synchronous generator (reactances and resistan:ces in p. u., 

when the base volt-ampere is 10 GVA and the base voltage is 500 KV). 

H = 2.83 sec. xad = 1.31 x2 = 0.250 r = 0.00150 
a 

xd 1.50 xffd = 1.42 ~kd = 1.40 rfd = 0.000630 

X = 1.49 X = 1.29 ~q = 1.34 rkd = 0.0153 
q aq 

rkq = 0.0207 
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Excitation System (Type l of Reference (55], Time Constants in Seconds). 

HRE . CE 

KA 500. 171. 

TA 0.0100 0.100 

TE 0.0250 3.00 

l)r 0.00621 0.100 

TF o.soo 2.50 

Power System Stabilizer, PSS (Time Constants in Seconds). 

= 

= 

20.0 

5.00 

= 

= 

0.143 

0.0670 

NDS' Filter (Time Constants in Seconds). 

= 0.00100 = 0.0100 

T~3 = 0.00600 T~4 = 0.0150 

Network· (in p.u. values). 

= 0.0295 = 1.34 

= 0.100 

Variable 
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TABLB 5.2 (oont'd) 

(b} - XC 
.. 0.1 , rE .. 0,0295 -

Row System ). ). ). ). Afield ).EXC >.PSS 
No. Configuration ssrn ssrp mech. amort 

Basic System - 3.8 - 3.12 + 2.21 - 32.8 - 3.3 - 70.8 - 3.30 

5 + ±. ±. ±. - 8.4 + + 

i HRE j 472 j 282 j 6.08 j 5.8 j 109 j 5.80 

1 Basic System - 3.8 - 3.1 .. 10.6 - 37 - .26 - 70.8 -.260 - 2.5 

![6 + ±. ±. ±. - 8.6 + ±. - ±. - 0.34 

HRB + PSS j 472 j 282 j 3.2 j 4.1 j 109 j 4.10 j 13.0 

CE Convention excitation systam, 

HRB High response excitation system, 

PSS Power system stability. 

E 
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5.6.3 Basic System and High Response Excitation System 

Row No. 3 of Table 5.2 shows the eigenvalues of the same 

system (Figure 5.1 (a} ) but the CE excitation system is now replaced 

by the high response excitation system (HRE). A quick look on all the 

eigenvalues reveals that the mechanical mode is the only one which is 

largely affected by the use of the HRE system. The real part of this 

mode is now positive, indicating another kind of instability. This in-

stability is known as the dynamic instability which is explained [56] as 

the building up oscillation of the rotor system of the synchronous genera­

tor against the infinite bus bar (Hunting). However, the field mode is 

complex with higher damping than in the case of CE and the response of 

the excitation system is now higher. This is indicated from the frequency 

and the damping associated with the excitation system eigenvalues 

(-70.8 ±. j 109). Therefore, the addition of the HRE system to the basic 

system gives fast voltage regulation and ensures the transient stability 

but results in dynamic instability. To ensure dynamic stability with the 

use of the HRE system, another supplementary signal is added to the input 

port of the excitation system through the power system stabil~zer (PSS). 

5.6.4 Basic System + HRE + PSS 

Row No. 4 of Table 5. 2 shows the eigenvalues of the system 

shown in Figure 5. 2 (a) , where the PSS is now added to the system of 
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S.l(a). The addition of the PSS improves the mechanical mode by in-

creasing its damping, but decreases the field mode damping to almost its 

value in the case of the system without the excitation feedback (Row No.l 

in Table 5.2). Furthermore, the positive sequence SSR mode becomes more 

positive with a slight decrease in its natural frequency, and the amortis-

seur mode is improved. Physically, the introducti6n.of the PSS 

produces damping torque which damps any mechanical oscillation, but inter-

acts with the SSR positive sequence mode, since the inppt signal to the 

PSS is the shaft speed which contains a signal component at an angular 

frequency of (w0 - wn) • Remembering from Section 3.5.1 that the field 

excitation at this frequency affects the positive sequence SSR mode, it is 

not surprising that the PSS feedback will influence A Using the ssrp 

phasor diagram Figure 3.6, it is evident that the phasor Fcb , which is 

introduced by the PSS signal,causes FR to lie more in the unstable 

region. 

The question which arises, is how does the level of series 

capacitor compensation influence the above conclusion ? This is answered 

in .the fifth and sixth rows of Table 5.2 where the eigenvalues are cal-

culated for a value of the series capacitive reactance XC of 0.1 p.u. 

The exciter system is the HRE • The difference between the results in 

Rows Nos. 5 and 6 lies in the fact that the PSS feedback is absent 

and present respectively in the analysis. Comparing the results of Row 

No. 3 with Row No. 5 and Row No. 4 with Row No. 6, the SSR positive 

sequence mode has a higher frequency (see equation 1.1 and the concept of 
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the speed of the SSR positive sequence mmf phasor in the d-q 

rotating reference frame which was discussed in Section 3.3.2) and the 

frequency of the SSR negative sequence mode decreases. It is signi-

ficant to note that the positive sequence SSR mode of >. , which 
ssrp 

is unstable in Rows Nos. 3 and 4, becomes stable in Rows Nos. 5 and 

6. This is because by decreasing XC , the negative resistance, viewed 

by the SSR positive sequence current, decreases and at the value of XC , 

where the net resistance in the path of the SSR positive sequence current 

is positive, stability is maintained and this is what happens at the low 

value of XC . As is to be expected, the lower level of the series capaci-

tor compensation implies that there is a lower frequency in the mechanical 

mode for XC = 0.1 than XC = 1.2 , and this is apparent in the imaginary 

part of >. • 
mech. 

Again, because the HRE system is used, the mechanical 

mode A 
mech. 

is unstable without the PSS feedback as shown in Row No. 5. 

The need of the PSS feedback to stabilize the mechanical mode is demon-

strated in Row No. 6. 

5.6.5 The NDS' Feedback Loop 

The proposed A P and A Q feedback scheme which is added to 

the system in the manner shown in Figure 5.4(a), is now considered in the 

analysis for evaluating its effectiveness in eliminating the unstable SSR 

oscillations. The transfer function of the NDS' filter is shown in 
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Figure 5.4(b) and the values of gain and time constants are given in 

Table 5.1. The transfer function of the NOS' filter is obtained from 

the following considerations: 

(i) The NOS' filter is a band pass filter designed to 

provide the required magnitude and phase at the sub-

synchronous frequency, as it was explained in Chapter 

(ii) The NOS' feedback loop should not disturb the nor-

mal function of the PSS and the excitation system. 

This has been achieved by adjusting its gain and time 

constants. 

However, the NDS' feedback scheme is calibrated against the scheme which 

was used in [17] as it is explained in Appendix c. 

In Table 5. 2, we noticed that the mode of A is unstable ssrp 

for Our objective is to show that the NDS' feedback will 

stabilize this mode. Furthermore, our concern is that the fast voltage 

regulation and the transient stability of the HRE and the PSS systems 

are not deteriously affected by the new NDS' feedback loop. 

Table 5.3 shows the eigenvalues of the closed loop system of 

Figure 5.4(a) for different values of the control angle ~ • The eigen-

values in the first row of Table 5.3 demonstrate the dynamic 
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instability in the absence o:f the power system stabilizer when the HRE 

excitation system ~s used. Collll?aring these. eigenvalues with those in 

the third row of Table 5. 2, we notice that the SSR fl:egative sequence 

mode A does not ch.ahge.. '!he SSR posit:t:ve sequence mode is now 
ssrn 

stabilized as the real part of ·t. 
ssrp is now negative. The real part 

of the mechanical mode is more positive and the field mode is a real 

negative eigenvalue with high damping. However, the excitation system is 

still characterized by high damping and high frequency of oscillation as 

it is clear from the real and the imaginary parts of its eigenvalues 

(-81.0 + j 76.7). Therefore 1 the addition of the NOS' feedback loop 

does not disturb the normal function of the excitation system and it 

effectively suppresses the SSR mode. However, the mechanical mode be-

comes worse with the NOS' feedback loop which means that the NOS' feed-

back reduces the damping torques in the system, as it was noticed in Chap-

ter IV. The second row of Table 5.3 shows the eigenvalues of the system 

of Figure 5.4(a}, i.e., the PSS is now added to the system of the eigen-

values shown in the first row of the same table. A comparison between the 

eigenvalues in the first and second rows of Table 5.3 shows the interaction 

between the PSS and the SSR mode which reduces the damping of the SSR 

mode when the PSS is added~ 

The eigenvalues in the last three rows of Table 5.3 show the 

effect o:f changing the control angle ~ from which it is clear that the 

SSR positive sequence mode ~ · ssrp is improved for posi-

tive control angles (~ > 360} and it is worsened for negative control 
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.TABLE Sd,-

EIGENVALIJES OF '!'HE 10 GVA SYSTEM WITH THE NDS' FEEDBACK LOOP FOR XC .. 1.2, r 8 • 0.0295, 1)., ... 001 

Row System l l 1meoh. l 1f1eld +sxc "Pss "rms• 
No. Configu. ssrn ssrp amort. 

-
Basic 
System - 4.23 - 5.20 + 2.00 - 23.1 - 81.0 - 118.1 

1 •• 00 + :!:. :!:. :!:. :!:. - 2.27 :!:. - 4.20 :!:. - 9.23 

NDS'+lmB j 705 j 55.9 :I 11.1 j 17.7 :I 76.7 j 45.7 

System - 4.22 - 3.38 - 7.02 - 27.1 - 1.54 -81.6 - 1.54 - 4.24 - 118.2 

2 ... 00 of :!:. :!:. :!:. :!:. + :!:. - :!:. "" .212 +. - 10.8 

Ill 
Fig.5.4 (a) :I 705 j 49.7 j 4.03 ::1 a.oo j 1.21 j 77.2 j 1.21 j 33.7 j 45.4 

~ 
'iil 

System - 4.23 - 12.1 - 6.80 - 27.1 - 1.54 - 80.7 - 1.54 + 5.22 - 120. i 
013 + .. 30o of :!:. :!:. :!:. :!:. + :!:. - :!:. - .212 :!:. - 11.0 
~-

Fig.5.4(a) :I 705 j 39.6 j 3.96 j 7.39 j 1.21 :I 82.8 j 1.21 j 41.0 j 39.7 

System - 4.20 - 1.04 - 7.44 - 28.3 - 1.54 - 71.8 - 1.54 - 5.52 - 122. 
4 + •330° of :!:. :!:. :!:. :!:. + :!:. - :!:. - .212 :!:. - 10.5 

Fig. 5.4(a) j 705 j 55.6 j 3.86 j 7.67 j 1.21 :I 85.0 j 1.21 j 27.5 j 33.8 

System - 4.18 + .504 - 7.73 - 29.3 - 1.54 - 74.6 - 1.54 - 5.90 - 125. 
5 + •315° of :!:. :!:. :!:. :!:. + :!:. - :!:. - .212 :!:. - 10.2 

Fig.5.4(a) j 705 j 56.8 j 3.67 j 7.11 j 1.22 :I 91.1 j 1.22 :1 25.2 :1 22.3 

A The eigenvalues related to the NOS' filter. .... NDS' w 
(X) 
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angles (<j> < :360} • In addition, the damping of the. mechanical mode is 

improved for negative. value.a of th.e. con:trol angle., <j> C<t> ,..; 360}. However, 

for positi:ve. control angles the dampi.ng of the. PSS mode . 'APSS decreases 

and for high positi:ve. value of <j> (say, 30° in Table 5.3}, the l?SS mode 

i.s unstable as it is shown i.n the third row of Table 5.3 .. 

5.6.6 Eigenvectors and . .llllllf l?hasor Di.agra:m of. ). · · · · · · · ssrp 

The system under consideration is unstable in the open loop 

operation when the value of the series capacitive reactance, XC is 1.2 p.u. 

This is clear from the positive real part of the SSR mode in the eigen-

values of the fourth row of Table 5.2. As it was explained in Chapter III, 

this instability is due to the induction generation effect which occurs at 

the subsynchronous frequency. This can be explained on the basis of the 

SSR mm£ phasor diagram constructed from the eigenvectors of the open loop 

system listed in Table 5.4 as shown in Figure S.S(a). The torque angle is 

an obtuse angle which according to equation 3.1 indicates a generating re-

gime. 

The addition of the NDS' feedback loop stabilizes the system, 

as judged from the negative real parts of the eige.nvalues of the second and 

fourth rows of Table 5.3. In the light of the. concept of the field e.xcita-

tion control of the. SSR oscillations which. is i.ntroduced i.n Chapter III, 

the stabilization of the system under SSR oscillation is possible if the 
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0 NDS • feedbaclt loop is capable of eljJ:ninating th.e inCluction generation 

action. 'l'b.i:s is d~onat:t:'ated by the SSR. 1ll1l1f pha.so:t:' diagram const;ructed 

from the closed loop eigen-vectors of Table 5. 5 1 as show in Figure 5. 5 (b) • 

The torque angle in F_igure 5. 5 (b! is a reflex angle which indicates 1n0tor-

ing regi::me. 

5. 7 The XC - rE . StabilitY. ~gion 

In the current analysis 1 three modes have been noticed to be 

the cause of system instability. The first mode is the positive sequence 

SSR mode A.·. which causes building up oscillation at high level of 
ssrp 

series capacitor compensation, and this is stabilized by the NDS t feed-

back scheme. The second mode is the mechanical mode which causes the 

rotor system to oscillate against the electrical system and this is 

associated with the use of the HRE excitation system. This mode is 

stabilized by the introduction of the power system stabilizer with the shaft 

speed as the stabilizing signal. The third mode is the power system 

stabilizer mode and its instability occurs ~t high level of series capaci-

tor compensation when the NDS' feedback scheme is used to suppress the 

SSR oscillation (see the third row of Table 5.~). This results from the 

interactton between the.. shaft speed s.tgnal .feedback looJ? in the J?SS and 

the A P and A Q feedback, si:nce both of them ha:ve a frequency component. 

This is stabilized by ~e proper choice of the control angle ~ • 

Furthermore, it was noticed from Table 5.2 that the use of the PSS and 
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Bigenvaluea 

C1assifiC4tion 

Eigenvalues 

Ai
0 

AiQ 
:: 
i 6 Aifd 
D> 
;1 

Aikd 

ukq 

EIGENVALUBS AND 

A ss m 

- 4.174 - 4.174 

+ -
j 705 :i 705 

125.8-5 125.E-5 

166. -166. 

124.E-5 124.E-5 

-104. 104. 

54.8-5 54.E-5 

163. -163. 

66.B-5 66.E-5 

168. -168. 

l2.E-4 12.8-4 

-103. 103. 

B:J:GENVEC'l'ORS FOR TUB OPEN 

A ssrp 

+ 7.73 + 7.73 

t ... 
j 43.8 j 43.8 

BB.E-6 BB.E-6 

-165. 165. 

ao.E-5 so.E-5 

-75. 75. 

72.8-6 72.E-6 

145. -145. 

.. 52.E-6 52.E-6 

145. -145 •• 

75.E-6 75.E-6 

-67.5 67.5 

e 

'I'ABLB 5.4 

LOOP SYS'l'EM 01' FIGURE 5.2 (a) 

Amech. 

- 7.52 - 7.52 

+ -
j 1.71 j 1. 71 

122.E-6 122.8'-6 

-92.7 92.7 

l34.E-6 l34.E-6 

-135. 135. 

9.0E-5 9.0E-5 

-82.4 82.4 

70.08-6 70.0E-6 

-105. 105. 

4l.E-5 4l.E-5 

-102. 102. 

WEN XC • 1.2, r 8 • 0.0295 

A amort. 

- 36.2 - 26.3 

36.E-5 67.E-5 

o.o o.o 

43.8-5 140.8-5 

180. -180. 

0.00260 0.00260 

180. -180. 

0.00312 0.00312 

o.o o.o 

SOO.E-6 170.E-5 

180. -180. 

e 

Afield 

- .745 

+ 
j 2.13 

214.E-5 

-58.9 

3B.B-4 

123. 

26.8...:4 

-55.1 

24.E-5 

-140. 

150.E-5 

-150. 

1-' 
.1:=-
1-' 
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TABLB 5.4 (oont'd) 

Eigenvalues A A ).mecb. 
). 
amort~ Afield 

Classification ssrn ssrp 

- 4.174 - 4.174 + 7.73 + 7.73 - 7.52 - 7.52 - .745 

+ - + - 1' - - 36.2 - 26.3 + 

Eigenva1ues j 705 j 705 j 43.8 j 43.8 j 1.71 j 1.11 j 2.13 

3.E-7 J.E-7 40.E-8 40.8-8 388.8-8 388.E-8 380.8-9 840.E-9 20.E-6 

Ai:i - 51.9 51.9 - 18.6 18.6 - 96.0 96.0 o.o 180. - 145. 

184.8-9 184.E-9 34.E-7 34.E-7 19.E-5 19.E-5 390.E-8 120.E-7 34.8-4 

A 6 -142. 142. - 98.6 98.6 97.1 - 97.1 180.0 0.0 106. 

17.8-4 17.8-4 ll.E-5 11.8-5 16.0E-5 16.08-5 560.£-6 170.E-5 46.E-4 

ra A eCD 

I 
75.4 - 75.4 - 76.2 76.2 - 135. 135. 180. - 180. 123. 

~ 17.E-4. 17.8-4 12.E-5 12.E-5 15.0£-5 15.08-5 400:8-6 400.8-6 26.8-4 

!\' A eCQ 166. -166. 13.4 - 13.4 86.3 - 86,3 180. - 180. 122 •. 
1'1 

32.8-7 32.E-7 883.8-7 883,8-7 46.08-5 46.08-5 750.8-6 310,£-5 0.0662 

X81 39.7 - 39.7 10.2 - 10.2 21.6 - 21.6 o.o o.o 23.0 

23.8-4 23.8-4 0.014 0.014 0.0620 0.0620 . 0.0796 0.356 9.35 

x82 119. - 119. 26.5 - 26.5 22.3 - 22.3 o.o o.o 23.9 ...... 
oil> 
N 
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Eigenvalues 
A 

Classification ssrn 

- 4.174 - 4.174 

+ -
Eigenvalues j 705 j 705 

1.57 1.57 

XE3 - 152. 152. 

13.E-5 l3.B-5 

i XPl 140. -1;'0. 

~ 0.0942 0.0942 

I ~2 - 143. 143. 

1.54 1.54 

XP3 - 142. 142. 

e 

'l'ABLE 5.4 (cont'd) 

A Amech. ssrp 

+ 7. 73 + 7.73 - 7.52 - 7.52 

+ - + - 36.2 

j 43.8 j 43,8 j 1.71 jl.71 

1.55 1,55 7.29 7.29 9.84 

33,3 - 33.3 22.4 - 22.4 o.o 

375,B-5 375,E-5 .00210 ,00210 0.00970 

- 26.0 26.0 88.1 - 88.1 o.o 

• 693. 693 • 0.339 0.339 1.32 

- 12.2 12.2 88.7 - 88.7 0.0 

21.9 21.9 760. 760. 90.0 

51.9 - 51.8 84.5 - 84.5 o.o 

E represents Exponent, e.g., l25.B-5 ... 125 X 10-5 

Note: The first row of the eigenvectors correspond to the magnitude of the 
---- state variable. 'l'he second row corresponds to the phase of the 

state variable. 

1amort. 

- 26.3 

42.7 

o.o 

.0310 

180. 

4.50 

180. 

386. 

180. 

e 

).field 

- .745 

+ 
j 2.13 

1110. 

24.0 

0.055 

- 158. 

9.48 

- 157. 

2550. 

41.0 

.... 
~ 
w 
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TABLE 5.4 (cont'd) 

E~genvalues 
AEXC APSS 

Classification 

- 7.45 - 70.8 - 70.8 - 7.3 - 7.3 

+ - - .211 + 
Eigenvalues j 2.13 j 109 j 109 j 27.2 j 27.2 

214.E-5 .0370 .0370 3S.E-7 124.B-S 124.E-5 

Ai0 58.9 98.6 - 98.6 o.o 94.9 - 94.9 

38.E-4 0.0597 0.0597 55.E-7 58.E-5 58.E-5 

AiQ - 123. - 64.0 64. 180. -175. 175. 

26.£-4 98.£-11 98.E-ll 42.B-7 222.E-5 222.E-5 .. M Aifd 55.1 90.4 - 90.4 o.o 133. - 133. 

I 24.B-5 90.£-11 90.E-ll 36.E-9 14.E-4 14.E-4 
Q\ 

j;J Aikd 140. - 88.4 88.4 o.o - 7.26 7.26 

150.E-5 59.E-12 59.E-12 20.£-8 58.£-5 58.£-5 

Aikq 150. - 61.3 61.3 0.0 - 163. 163. 

20.£-6 48.£-15 48.E-15 27.E-10 70.£-7 70.£-7 

A;;; 
145. 75.2 - 75.2 o.o - 163. 163. 

..... ,. ,. 
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TABLE 5.4 (cont 'd) 

Eigenva1ues 
AEXC '-pss 

Classification 

- 7.45 - 70,8 - 70.8 - 7.3 - 7.3 

+ - - .211 + 

Eigenva1ues j 2.13 j 109 j 109 j 27.2 j 27.2 

34.E-4 14.E-14 14.E-14 49.E-7 934£-7 934E-7 

AO 
- 106. - 47.8 47.8 180. 91.9 - 91.9 

46.E-4 80.E-12 80.8-12 67.E-7 8l.E-5 81.E-5 

t.eCD - 123 - 68.1 68.1 180. - 173. 173. 

:: 26.E-4 3l.B-12 ll.E-12 42.E-7 154.£-5 154.E-5 

B AeCQ - 122. - 43.3 43.3 180. - 85.0 85.0 1,1 

E 
& 0.0662 36.E-4 .... 36.E-4 80.E-5 98.E-5 98.E-5 
f4 

~El - 23.0 81.8 - 81.8 180. . - 121. 121 • 

9.35 0.467 0.467 0.115 0.134 0.134 

XE2 - 23.9 138.6 - 138.6 180. - 110. 110. 

1110.0 0.221 0.221 13.7 15.2 15.2 

XE3 - 24.0 139. - 139. 180. - 109. 109. 

1-' 
oil> 
VI 
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'l'ABLB 

Eiqenva1ues 
AEXC 

Classification 

- 7.45 - 70.8 

+ 

Eigenva1ues j 2.13 j 109 

0.055 36.E-4 

~1 158 • - 98.2 .. 
~ 
j) 

9.48 0.533 u 

i XP2 157. - 51.2 
..... 
1'1 

2550. 14.7 

XP3 - 41.0 - 44.;1. 

~-

5.4 (cont'd) 

- 70.8 

- - .211 

j 109 

36.E-4 82.E-5 

98.2 o.o 

0.5:U 0.14 

51.2 o.o 

14.7 16.9 

44.1 o.o 

1PSS 

- 7.3 

+ 

j 27.2 

0.0763 

- 146. 

12.7 

- 137. 

750. 

-.75.6 

0 

- 7.3 

j 27.2 

0.0763 

146. 

12.7 

137. 

750. 

75.6 

..... 
~ 
0'\ 
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'l'ABLE 5.:,! 

EIGENVALUBS AND EIGENVEC'l'ORS OF 'BIB SYS'Di:M OF FIGURE 5.4 (a) 

(CLOSED LOOP SYS'Di:M) FOR • - o.o, KND .. 0.001, XC "' 1.2, r
2 

• ,0295 

Eiqenvalues A A A A Afield 
Classification ssm ssrp mech. amort. 

- 4.22 - 4.22 - 3.38 - 3.38 - 7.02 - 7.02 - 27.1 - 27.1 - 1.54 

+ - + - + - + - + 

Eiqenvalues j 705 j 705 j 49.7 j 49.7 j 4.03 j 4.03 j 7.95 j 7.95 j 1.21 

0.0324 0.0324 0.0641 0.0641 .632 0.632 3.32 3.32 7.33 

AiD 158. - 158. - 102. 102. - 123. 123. 88.2 - 88.2 - 112 

0.0321 0.0321 0,0604 0.0604 .427 .427 3.57 3.57 11.4 

AiQ - 112. 112. 9.00 - 9.00. 115. - 115. - 60.5 60.5 73.5 

c .s 0,0141 0.0141 0.111 .111 .174 .174 10.6 10.6 6. 70 
0 

~ Aifd s 157. - 157. - 129. 129. - 32.5 32.5 - 129. 129. - 95 

0\ ..... 
1'4 .0171 .0171 0.0573 0.0573 .818 .818 14.5 14.5 3.24 

Aikd 159. - 159. 26.3 - 26.3 - 135. ll5. 62.1 - 62.1 - 150 

0.0309 0.0309 0.0576 0.0576 .288 .288 4.18 4.18 1.16 

Aikq - 112. 112. 16.7 - 16.7 - 133. 133. - 55.4 55.4 - 151 

1-' 
~~loo 
-.,J 
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TABLE 5.5 (cont'd) 

Eigenvalues >,. >. >. >. "field Classification ssrn ssrp me eh. amort. 

- 4.22 - 4.22 - 3.38 - 3.38 - 7.02 - 7.02 - 27.1 - 27.1 - 1.54 

+ - + - + - + - + 
Eigenvalues j 705 j 705 j 49.7 j 49.7 j 4.03 j 4.03 j 7.95 j 7.95 j 1.21 

90.£-7 90.£-7 202.8-6 202.E-6 0,0100 0.0100 904.£-5 904.£-5 0.0533 
A iii 

- 60.4 60.4 41.7 - 41.7 - 116. 116. 68.6 - 68,6 - 148 

48.£-7 48.£-7 153.£-5 153.E-5 .469 .469 0.121 0.121 10.2 

A a - 151. 151. - 52.2 52.2 93.6 - 93.6 - 94.8 94.8 70.6 

5.18 5.18 6.81 6.81 19.6 19.6 69.5 69.5 99.4 

01 AeCD 55.8 - 55.8 - 135. 135. 57.5 - 57.5 - 37.0 37.0 30.4 
B 
t) 
41 .329 .329 4.41 4.41 23.6 23.6 183. 183. 103. 
~ !I' AeCQ - 31.3 31.3 - 67.1 67.1 50,5 - 50.5 - 68.6 68.6 28.6 
lil 

29.£-7 29.£-7 55.E-5 SS.E-5 0.02280 0.0228 0.0432 0.0432 .497 

X El 5a.5 - 58.5 21.3 - 21.3 89.3 - 89.3 50.9 50.9 139. 

0.0445 0.0445 0.0838 0.0838 .514 .514 4.47 4.47 13.7 

~2 66.9 - 66.9 7.02 - 7.02 113. - 113. - 63.1 63.1 73.4 

~ 
~ 
Q) 
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Eigenvalues ).. ). 

Classification ssrn ssrp 

- 4.22 - 4.22 - 3.38 - 3.38 

+ - + -
Eigenva1ues j 705 j 705 j 49.7 j 49.7 

0.0444 0.0444 0.0873 0.0873 

XE3 157. - 157. 81.0 - 81.0 

42.8-8 · 42.E-8 129.£-6 129.£-6 

XP1 30.8 - 30.8 149. - 149. 

~ 47.E--7 47.E-7 143.8-5 143.E-5 
B 
0 XP2 
~ 30.9 - 30.9 151. - 151. 
t:; 

& ll5.B-8 llS.E-8 354.E-6 354.8-6 .... 
1'1 

XP3 30.6 - 30.6 146. - 146. 

155.E-9 155.8-9 121.E-8 121.8-8 

XNl - 137. 137. 16.2 - 16.2 

f) 

TABLE 5.5 (cont•d) 

). 
mech. 

- 7.02 - 7.02 

+ -
j 4.03 j 4.03 

.748 .748 

57.2 - 57.2 

.0235 .0235 

55.3 - 55.3 

.218 .218 

67.5 - 67.5 

.0238 .0238 

41.1 - 41.1 

lll.B-7 lll.E-7 

80.3 - 80.4 

J. amort. 

- 27.1 - 27.1 

+ -
j 7.95 j 7.95 

3.66 3.66 

- 92.9 92.9 

0.0253 0.0253 

109. - 109. 

.303 • 303 

lll. - 111. 

.0651 .0651 

109. - 109. 

100.E-6 lOO.B-6 

- 79.1 79.1 

G 

Afield 

- 1.54 

+ 

j 1.21 

8.73 

68.6 

.0900 

28.4 

.816 

27.1 

.464 

- 91.0 

205.8-6 

71.0 

.... 
ol). 
\0 
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Bigenvaluea A 
Classification ssrn 

- 4.22 

+ 
Eiqenva1ues j 705 

142.E-7 
Ill 

B XN2 - 136. 
0 

I 123.E-6 
01 

~ ~3 -135. 

- 4.22 

-
j 705 

142.£-7 

136. 

123.E-6 

135. 

f) 

TABLE 5.5 (aont'd) 

A. 1mecb. ssrp 

- 3.38 - 3.38 - 7.02 - 7.02 

+ - + -
j 49.7 j 49.7 j 4.03 j 4.03 

957.E-7 957.E-7 732.B-6 732.E-6 

23.3 - 23.3 92.5 - 92.5 

82l.E-6 823.E-6 0.0118 o.oua 

33.2 - 33.2 174. - 174. 

E 
-6 represents Exponent, e.g., .30.E-4 • 30 x 10 

l amort. 

- 27.1 - 27.1 

+ -
j 7.95 j 7.95 

697.£-5 697.E-5 

- 75.0 75.0 

0.0843 0.0843 

- 67.8 67.8 

Note: The first row of the eigenvectora represent the magnitude of the state variable 
and the seaond row is the phase of the vector in elec. degrees. 

0 

Afield 

- 1.54 

+ 

j 1.21 

.0134 

72.4 

.0315 

- 155. 

1-' 
Ul 
0 
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TABLE 5.5 (oont'd) 

Eigenvalues 
lBXC 1PSS 1NDS' Classification 

- 81.6 - 81.6 - 1.54 - 4.24 - 4.24 - 118,0 - 118.0 

+ - - + - - .212 + - - 10.8 

Eigenva1ues j 77.2 '!7.2 j 1.21 j 33.7 33.7 j 45.4 j 45.4 

.201 :201 7.33 • 712 .112 .946 0.0975 0.0975 7.35 

AiD 106. - 106. 112. - 199 • 161. 180. - 136. 136. o.o 

• 258 .258 11.4 .377 .317 1.50 0.0985 0.0985 .800 

AiQ - 67.1 . 67.1 - 73.5 - 52.0 52.0 o.o 50.1 - 50.1 180. . 
4.68 4.68 6.70 1.34 1.34 1.10 2.72 2.72 1.47 

11 Aifd 106. . - 106. 95. - 140. 140. 180. - 131. 131. 180. 
B 

I 4.30 4 .. 30 3.24 .661 .661 .0431 2.53 2.53 10.7 

~ A~d - 71.6 71.6 150. 68.3 - 68.3 180. 49.9 - 49.9 o.o 
lil 

.257 ,257 1.16 .367 .367 .0148 0.0988 0,0988 4.10 

Aikq - 65.0 65.0 151. - 38.1 38.1 180. 51.1 - 51.1 o.o 

162.£-6 162.E-6 0.0533 305.E-5 305.E-5 726.E-6 794.£-7 794.£-7 .0938 

A w 87.2 - 87.2 148. - 46.0 46.0 180. - 139. 139. o.o 

.... 
U1 .... 
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TABLB 5.5 (cont'd) 

Eigenvalues 
AEXC 1PSS ANDS' 

Classification 

- 81.6 - 81.6 - 1.54 - 4.24 - 4.24 - 118.0 - 118.0 

+ - - + - - .212 + - - 10.8 

Eigenvalues j 77.2 77.2 j 1.21 j 33.7 33.7 j 45.4 j 45.4 

544.E-6 544.£-6 10.3 0.0339 0.0339 1.29 236.E-6 236.£-6 3.27 

A 6 - 49.4 49.4 - 70.6 - 143. 143. o.o 62.5 - 62,5 180. 

1020. 1020. 99.4 58.3 58.3 0,061 658. 658. 201. 

AeCD - 10.0 10.0 - 30.4 - 20. 20. o.o 172. - 172. 180. 

467. 467. 103. 47.5 47.5 0.0613 291. 291. 275. 

f: AeCQ - 128. 128. - 28.6 - 63.0 63.0 o.o 22.3 - 22.3 180. 

j 262.£-4 262.£-4 .497 873.E-5 873.B-5 213.E-6 0.0145 0.0145 .194 
~ ;i XE1 - 84.1 84.1 - 139. 23.5 - 23.5 180. 43.6 - 43.6 180. 

.357 .357 13.7 0.532 0.532 1.80 0.142 0.142 1.21 

XE2 - 70.8 70.8 - 73.4 - 53.0 53.0 o.o 47.3 - 47.3 180. 

.174 .174 8.73 0.898 0.898 1.13 0.0729 0.0729 8.79 

XE3 - 50.4 50.4 - 68.6 20.1 - 2o.1 o.o 54.7 - 54.7 180 

..... 
U1 

"' 
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TABLE 5.5 (cont'd) 

Eigenvalues 
AEXC ).PSS ).NDS' 

Classification 

- 81.6 - 81.6 - 1.54 - 4.24 - 4.24 - 118.0 - 118.0 

+ - - + - - .212 + - - 10.8 

Eigenva1ues j 77,2 77,2 j 1.21 j 33.7 33.7 j 45.4 j 45.4 

S3S.B-7 53S.E-7 ,0900 .276E-2 .276E-2 388.1!:-5 238.B-7 238.E-7 .0228 

XP1 138. - 138. 28.4 68.3 - 68.3 180. - 114. 114. 180. 

605.£-6 605.1!:-6 .816 0.0307 0.0307 .140 270.1!:-6 270.E-6 2.65 

XP2 139. - 139. 27.1 70.5 - 70.5 180. - 114. 114. o.o 

146.E-6 146.1!:-6 .464 0.00750 0.00750 1.13 648.E-7 648.£-7 .697 

M XP3 137. - 137. 91.0 63.5 - 63.5 180. - 114. 114. 0.0 
~ 

I l45.B-7 145.E-7 205,E-6 l09.E-7 109.£-7 266,B-7 143.E-7 143.£-7 155.E-6 
tll 

;,1 XNl - 117. 117. - 71~0 - 21.0 21.0 o.o 11.4 - 11.4 180. 

ll7.E-5 l37.E-5 .0134 832.1!:-6 832.B-6 177.E-5 157.E-5 157.£-5 .0206 

XN2 - 105. 105. - 72.4 - 14. 14. o.o 22.0 - 22.0 180. 

0.0125 0.0125 .0315 717.E-5 717 .B-5 385.B-6 0.0145 0.0145 .875 

XN3 - 102. 102. 155. o.o o.o 180. 23.5 - 23.5 180. 

...... 
IJ1 
w 
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Q-OXIS 

( a) unstable. 

d-aXIS 

q-aXIS 

Figure 5.5. 

( d ) stable 

MMF' phasor diagram for the SSR positive 
sequence mode constructed from tJ\e numerical 
results for: 

(a) Open loop system (Figure 5.2(a)) 
(b) Closed loop system (Figure 5.4(a)) 
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the HRE sub~systems makes the real part of the open loop positive 

sequence S~ .Il}Ode ~ :.Il}O;re nosi:ti-ve. Thus r lt)B.pping th.e stability 
· SSX'J? ~" 

boundary on the XC ~ rE plane will explain the effect of the system com-

plexit;i:es on its stability. Practically, the values of the line resistance 

commonly used lie in the range of 0.01 - 0.06 p.u. Therefore, this 

range is going to be used in the ~c - rE plane for the stability 

boundary. 

5.7.1 Effect of HRE and PSS 

Figure 5.6 shows the stability boundary on the XC - rE plane 

for the same operating condition given in Table 5.1. The solid line re-

presents the case when the basic system or the bas~c system with the conven-

tional excitation system {CE) are used. The broken line represents the 

case when the basic system, the high response excitation system HRE and 

the power system stabilizer PSS are used. It is clear that in the case 

of the HRE and the PSS systems, the stability region is now smaller. 

5~7.2 .Effect of NDS' Gain ~ and Angle ~ . 

:e'i:gure 5, 7 show::r the stability boundary of the closed loop 

systeiil of Fi:gu:re 5.4(al for different combinations of the NDS' gain 

~ and the control angle ~ • The stability boundaries in Figure 5.7 
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Xc 
1.4 

::s .. 
.0.. ' 

1.2 
c. - unstable 

~1.0 
.8 
~ 
~.8 

stable 
(1J 

$.6 -
~ 
& u.4 

---Basic system J Bas1c system+ CE 

U1 
<lJ 
c 

-~-Basrc system + HRE + PSS 

JS .2 

0------~------~------~----~----~~--~ .01 .02 .03 .04 .05 
L1ne res1stance Jn p.u 

Figure 5.6. Stability boundary in the XC - rE plane for the 

open loop system showing the effect of the HRE 
and PSS systems (broken line) • 
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Xc 

1-4 

:::J 
0.. 
c 1.2 

(I) 
u c1.0 
a 
+' u 
0 

~-8 

<lJ 
> 
-2.6 
u 
a 
8-U.4 
V) 
(I) -L 

. <lJ 2 
(/) . ' 

0 
.01 

unstable 

................. -- .. - -

stable 
0 / 

-·· cD = 330 ' KND = ·001 

• CD = 00 J KND = -001 

--- <D =30° .} KND : .. 001 
0 -- <i> = 330 ) KND = -0014 

<D = 30° ~ KND = 0014 

.02 .03 .04 ,05 
~1ne res1stance 1n p.u 

Fi9ure 5.7. Stability boundary on tne XC ~rE plane for the 

closed loop system CFi9ure 5.4(a)} for different 
combinations of the NDS ' gain l)ro and the 
control angle ~ • 
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explore tQe possibility of ~roving tQe stability ~egion of tQe closed 

loop system by a proper col!lbinat.:t.on of the. NDS_. parameter ~D and • ) • 

5.7.3 Effect of ~ss gatn ~ 

It was explained previously that for high levels of series 

capacitor compensation and when the NDS' feedback loop is used to stabi-

lize the system, the new unstable mode is that from the PSS • Therefore, 

a change in the PSS transfer function parameter may improve the stability 

regions. Figure 5.8 shows the case when the NDS' feedback scheme is 

used (see Figure 5.4(a)} for two different values of the PSS gain KP • 

It shows that decreasing ~ the stability region becomes wider. 

5.8 Effect of KNo 

The 10 GVA system under consideration is unstable in the 

open loop operation at high levels of series capacitor compensation (see 

the broken line in Figure 5.6}. This instability is because of building 

up SS:R. oscUlations. However 1 tn the. closed loop opel;'ation and under . . ' 

hi.gn levels of Sel;'te.s capacitor compensation, the closed loop is also un-

stable because of the shaft speed loop. This .:ts clear from the positive 
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unstable 

------------ ........ ........ , 

stable 

Kp = 15 

--- Kp = 20 

K'ND =-001 

<P = 33cf 

o------~------~------~----~------~----
·01 -02 ·0·3 ··04 ·05 

Line resistance 1n p.u 

Figure s.a. Stability boundary on the XC - rE plane of the 

closed loop system {Figure 5.4(a)) for two 
values of PSS gain KP , KP = 20, 15 • 
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real :part o:i; the J?SS 100de . ),fS& shown in the third row of Table 5. 3. 

The practical choice of t.he NDS t gain ~ 1 for a certain value of 

cp 1 is that which shifts the SSR mode -A ssrp and the J?SS mode APSS 

in the left hand side of the s-plane. 

The effect of KNo on the real parts of the above two modes 

can be examined by tracking the variations of these real parts as KNo 
varies. In Figure 5.9 these real parts are plotted against KNo for a 

fixed level of series capacitor compensation (XC = 1) and fixed line 

resistance (rE = 0.0295). The results are presented for two values of 

the control angle cp, which are 0 
<P = 30 and cp = 

From Figure 5.9, it is clear that for cp = 30° (the solid 

curves) the value of K~ which ensures good damping for A. 
ssrp and 

A.PSS is around 0.0008. 

5. 9) the value of 

around 0.0012. 

K' 
ND 

While for cp = 330 (the broken curves in Figure 

which ensures good damping for the same modes is 

5.9 Effect of the Control Angle ~ 

The variation of the real parts of the positive SSR sequence 

and the J?SS .modes w:i:tb.. . t i:s shown in Figure 5 .10. The value of ~ is 

kept constant at 0.001. It is clear from the variation of the SSR mode, 

that if the control signal is a P only, i.e. 1 

. 0 
cp :: 90 1 then the system 
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Figure 5.10. Variation of the SSR positive sequence and the PSS complex mode 

dampings with the control angle $ . 
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From Figu;re 5 ~ 10, we ce;n $ee that fo:r: the 

~ mode is unstable. · ssrp Unlike ;Figu:r:a 5 .. 9 1 the I? SS 1UOde does not be-

come unstable as ; varies from 0° ~ $ ~ 360° , In the region 

0 0 
- 3 < <I> < 62 , the J?SS 1UOde is more. lightlV' damped than th.e. A. mode. 

· 4 · ssrp 

and in fact, the maximum and the lllinimum of the two curves occu:r: in this 

region. 

5.10 Eige.nvalues Loci on S-J?lane 

In Section 5.2, it was mention~d t~at the function of the 

PSS feedback is to ensure dynamic stability, i.e., to shift the mechanical 

mode A 
mech. 

into the left hand side of the s-plane, and this is necessa:r:y when 

the high response excitation system (HRE) is used. It is to be reminded 

that the mechanical mode has been noticed (see Figure 4.6} to cause system 

instability as the filter gain I)ro and the control angle <1> vary. Further-

more, the NOS' feedback loop is added to the 10 GVA system to shift the 

A mode into the left hand side of the s-plane. 
ssrp Therefo:r:e, the objective 

of this section is to investigate the effect of the variations of KND 
and eft on the A and the A 

ssrp mech. 
modes. 

On the upJ?er hal~ o~ the. ~,..J?lane the loci of the SSR 

positive. sequence. and the lllechan.l;cal modes for variations of ~ and <1> 

are shown in Figures 5.11 and 5.12 respectively. In Figure 5.11, the 
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lmag. 

Xc=to 

cp = 330° 

40 

mech mode SSR mode 
. / 20 

KND :.0016hK~' ·~- 0 0 . 
.. 4 NO- · 0 

-8 -6 -4 -2 0 

upper half of s-plane 

·Figure 5.11. The loci of the SSR po~itive sequence and the 
mechanical modes as K~0 varies on the upper 
half of the s-plane. 
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lmag. 

<t>=o cD=:- 90° 
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KNo=·001 40 

mech mode20 SSR mode 

<D=-9d'..- ~ ~=120° 0 
-8 -6 -4 -2 0 2 4 Real 

half of. s-plane 

Figure 5.12. The loci of the SSR positive sequence and the 
mechanical modes as ~ varies on the upper half , 
of the. s-plane. 
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V'alue of 4> is 330° and !)ID. i--s va,;ried,. The. $S~ pos..t.tiye. sequence. 

mode moves from tb.e. ri'.gh.t hand side to the left hand side of the s-plane 

and· back again to the right hand side..·· However, the ·mechanical mode is 

always in the left hand side of the . s-plane and moves · in a small region. 

The variations of the. above two modes with 4> , which is shown in Figure 

5.12, are. similar to their variations with KMo . 

Thus, we can conclude that the NDS ~ feedback does not 

affect the stability of the mechanical mode (hunting) significantly. This 

is to be contrasted by the results of Figures 5.9 and 5.10 where the mode 

of the PSS feedback filter is considered. 

5.11 Effect of Loading 

The last point to discuss is the effectiveness of the feed-

back scheme of Figure 5.4{a) under different loadings. All the results 

already discussed in this chapter are obtained for the operating conditions 

described in Table 5.1. 

The two parameters which are always adjusted to stabilize 

the syste1Il operating in the closed loop of .Fi<;Jure 5. 4 (a} are. <1> and K' 
ND" 

Our interest is to find a co..mbinati'.on of ~ and <j> in which stability 

is achieved under all considerable operating conditions. 
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c Figure 5.13. Stability boundary in the K~0 - ~ plane 
for different loadings. 
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Figure 5 ~ 13 maps the stability region on the ~ ... 4> 

plane for different values of loading~ For light loading th.e stability 

region is wider than that for heavy loading .. This is because the steady 

state stability is more secure under light loading (see Figure l.l) than 

under heavy loading. 

From Figure 5 .13 it is apparent that the choice of 

(~ , 4> ) to yield stability under a wide range of loading conditions is 

found in the region of intersection of all the stability regions. We may 

choose ~ = 0.001, ~ = 30° and from Figures 5.9, 5.10, 5.11 and 5.12 

we find that the damping for the A.ssrp , 

acceptable. 

5 •. 12 Conclusion 

A. mech. and . A.PSS modes are 

The concluding remarks from this chapter can be summarized 

by the following points: 

(i) · The control signal formed from the combination 

of ~ P and A Q is emphatically superior to 

A Q alone in eliminating the unstable SSR 

osc$.:llations. 



Ctil The 10 GVA systeun which is equipped with high 

response. excitation sy$tem . (liR&l and power 

system stabilizer cPSSl, , is unstable 1mde.r high 

levels of se.ri:e.s capacitor compensation because 

of the following: 

(a) SSR oscillations, when the NOS' feed­

back is disconnected, Figure 5.2(a). 

(b) PSS feedback loop, when the NOS' feed­

back is added to the system, Figure 5.4(a}. 
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(iii) The introduction of the NOS 1 feedback scheme through 

the excitation system to damp out the unstable SSR 

oscillations, does not interfere with the basic func­

tions of the excitation system. 

The application of· the NOS 1 feedback scheme raises the 

problem of how large the disturbance this scheme can handle. In other 

words, if the regulator voltage ceilings which were neglected in the small 

perturbation study are considered and the system nonlinear model, derived in 

Section 2.7, is used, then to what extent the above scheme can suppress the 

unstable SSR oscillations. 

chapter~ 

This problem will be discussed in the next 
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The NDS t feedback scheme proposed in this thesis to 

suppress the unstable subsynchronous resonance {SSR) oscillations, has 

been tested against small disturbances. The analytical technique consists 

of small perturbation, linearization of the original nonlinear equations 

and finding the eigenvalues of the matrix IAl of the entire closed loop 

system~ Stability is assured when all the eigenvalues lie on the left 

hand side of the s-plane. The numerical results obtained in Chapter V 

have demonstrated the capability of this scheme to suppress the unstable 

SSR oscillation without disturbing the normal function of the machine ex­

citation system. Nevertheless, some approximations, such as the neglecting 

of the regulator voltage ceilings and the use of the linearized machine 

equations, were made in the previous analysis. 

The small perturbation approximations are justified if 

.the system is subjected only to a small disturbance from its steady state 

operation. However, under large disturbances such as instantaneous 

three-line-to-ground or synchronization-out-of-phase faults, the small per-

turbati'On appxaxilna.tion$ are. no lon~er Yal.l.,d. This is because firstly, 

the quadratic p,roduct 'Variables .tn the. Taylor series expansion of the 

original nonlinear generator equations cannot be neglected. Secondly, 
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the voltage regulator becames saturated for any corrective ~ignal that 

goes beyond its ceilings. 'l'his -means that the NDS' feedback output 

is subjected to a practical constraint (voltage ceili;:ngs} which l:ilnits 

its magnitude before it is injected in the field winding to suppress the 

SSR oscillations. 

This chapter examines the capability of the NDS t feedback 

loo~ to suppress the SSR oscillations when the closed loop system of 

Figure 5. 4 (a) is assumed to be disturbed by a severe fault. The mathe­

matical nonlinear model derived in Section 2.7.4 with both the excitation 

~d the power system stabilizer models given by equations 5.1 and 5.4 

respectively,are used in describing the above_syatem. 

In cases where the NDS' feedback scheme is unable to 

suppress the large unstable SSR oscillations, another external (outside 

the synchronous machine) scheme, which is a nonlinear resistor protection 

scheme, is added in parallel with the series capacitor to stabilize these 

oscillations. It is shown by digital simulations that this additional 

scheme plays a complementary role (working at the same time) with the 

NDS' feedback scheme in effectively suppressing the large unstable SSR 

oscillations. 
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6.2 Sources of Large Disturbance 

The common sources of large disturbance considered in 

practice [62] are: 

(i) Synchronization-out-of-phase fault. 

(ii) Three-line-to-ground fault. 

(iii} Line-to-line fault. 

(iv) One-line-to-ground fault. 

Among the above faults, the first two ((i), (ii)) are 

used in this chapter as sources of large disturbance. 

6.2.1 SyPchronization-out-of-phase Fault 

This di~turbance happens in faulty switching operations due 

to human, electrical or mechanical error. It also occurs in reclosure 

after system faults have caused the generators to swing apart electrically. 

Synchronization-out-of-phase has been studied by Wood 

{63] and Hammons {64] for the case of transmission lines without series 

capacitor compensation. In these studies, the principal subject of in-

terest is the maximum peak torque ,P)::.oduced during the transients as a 

function of the switching angle a . These studies provide the essential 
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data for mechanical design where the maximum yield stress and the stress 

for fatigue failure must not be exceeded [29] • To the author's know-

ledge, this kind of investigation has not been extended to the case of 

series capacitor compensated transmission line and for this reason, ·.it·· is 

felt important to enquire into this unknown territory. 

6.2.2 Three-Line-to-Ground Fault 

This fault originates from natural.sources, like lightning 

strokes, storms, etc. It is assumed that the fault is located at the 

receiving end, that is, between the series capacitor and the infinite bus 

bar in Figure ~.2(a). The fault is assumed to last for 6 cycles (~ 0.1 s) 

as is a reasonable period for power system transient stability studies. 

The reason for using this fault is because it represents 

a very severe event from the standpoint of transient torques [13] • How­

ever, the peak torque in general is higher as the location of the fault is 

closer to the synchronous generator. 

the higher is the peak torque. 

Further, the longer the fault lasts 
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6.3 Mathematical Reformulation 

6.3.1 Synchronous Generator 

The nonlinear mathematical equations describing the 

synchronous generator in Figure 2.2(a), which are derived in Section 2.7, 

can be rewritten as: 

1/Jd - e - r 
d a 

- 1/! - e - r q q a 

d 
1/Jfd = WO - efd + WO rfd dt 

1/Jkd 0 rkd 

1/Jkg_j 0 rkq 

id - 1/J q 

i 1/Jd q 

ifd + WO w 0 (6 .1) 

ikd 0 

ikq 0 

The mechanical equations are: 



d w 
2 H d t 

d 0 
d t 

T = 
e 

= 

= T - T m e 
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(6.2} 

(6. 3) 

(6. 4) 

Equations 6.1 6.4 can be put in a form suitable for 

numerical- integration if the currents, ikq are 

expressed in terms of the fluxes This can 

be done by introducing the following definitions, which were reported in 

[51] : 

lj.!ad 
1 1/Jd 1/Jfd 1/Jkd 

= + -- + -] 
Al x1d xfd xkd 

(6. 5) 

1/Jaq 
1 _.!s. lj.!kq 

= [ X + X ] 
A2 lq kq 

(6. 6) 

where 

xld = X - xad d 

X lq = X - X q aq 

xfd = xffd - X ad 
(6. 7) 

xkd = xkkd - X 
ad 

xkq = X - X 
kkq aq 

and 



176 

1 1 1 
+ 

l (6.8) Al = + + -
xad xfd xld ~d 

A2 
1 

+ 
1 

+ 
1 {6.9) = - - -X xlq ~q aq 

also 

id 
l 

(Wad - Wd) = :::::-

xld 

i 1 
(Waq - Wq) = q xlq 

ifd 
l 

(Wfd - wad) = (6.10) xfd 

~d = 
1 

{Wkd - Wad) 
~d 

~q 
l 

(Jiikq - Waq ) = 
~q 

6.3.2 Network 

The network of Figure 2.2(a) was described by equations 

2. 4 7 and 2. 48 which are written in real time as: 

c 
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ed rE id XE id 

+ 
d 

(1)0 = (1)0 dt 
' . 

XE i e rE l. 
q 

0 -x i ecd + eOd E d 

+ (1)0 (I) + (1)0 

~ 0 i eeq + eOq 

{6.11) 

and 

ecd X 0 
c. id 0 1 eC4 

d 
+ = (1)0 (1)0 (I) dt 

eeq 0 XC i -1 0 ecq q 

(6.12) 

A complete model describing the system of Figure 2.2 (a) in the d-q 

rotating reference frame when the excitation system of the synchronous 

generator is neglected, can be obtained by substituting equation 6.10 into 

equations 6.1, 6.4, 6.11 and 6.12: to eliminate the currents and by ·com-

bining the resulting equations. This results in a set of first order nonlinear 

differential equations which are written in ·the state space form as: 

d 
dt X = f (X} 

X (0) = ~ 

+ u 

the steady state values 

(6.13) 
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where 

I 1/ld 1/lfd - ]T X • 1/lq 1/lkd 1/lkq w e e 
Cd cq 

and 

0 - [ 6 0d eOq efd a 0 T - w 0 a- lT 
m a 

6.3.3 The Excitation System Mathematical Model 

I 

The state space equation describing the excitation system of 

the transfer function shown in Figure S.l{b} is given by equation 5.1. 

However, the regulator voltage ceilings were not described in this equation. 

Therefore,a new set of first order differential equations will be derived 

to describe the excitation system with the voltage ceilings nonlinearity as 

shown in Figure 6.1. Figure 6.1 shows the same excitation system used in 

Chapter V, which is Type l of Reference [SS], but with the voltage ceil-

ings. The differential equations describing this system are: 

d l ~ 
(Eref \)f) {6.14} dt x2 

a - --x + et TA 2 TA 

x2 if vmi.n < x2 
<V 

ma.x 

xl = V if x2 > V (6.1Sa) 
max ma.x 

V. if x2 < V. m1.n ml.n 
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l - -e 
TE E 

+ K:e: 
T xl 

E 
(6.15b) 

l 
- -v 

TF f 
(6.16) 

The values of the gains and time constants of the excitation, which will 

be used in this chapter, are those listed in Table 5.1 for the HRE system. 

The voltage ceiling limits V , V. are used as + 8 p.u., - 8 p.u. 
max ID.J.n 

respectively according to the standard values described in [55] • 

6.3.4 The Power System Stabilizer (PSS) Mathematical Model 

Since the PSS c which has the transfer function shown in 

Figure 5.2 (b) is a linear system, then its mathematical model used in the 

small perturbation study, which is given by equation 5. 4, will be used in 

this chapter for the large perturbation study, This-is rewritten here as: 

XPl - aPl l 0 XPl bPl 

d 
0 l + bP2 (6.17) XP2 = - ~2 XP2 1.1) 

dt 

XP3 - aP3 0 0 XP3 bP3 

where ~l , ~2 I ~3 I bPl I bP2 and bP3 are the same as defined 

·in Chapter V • 



e 

0 

t +~r Et .....,, KA x2 V m~ x, KE 
, 1-

~·ut 
1 + TAS _/ymn 1 + TES 

TFs 
KF 1 +TFS 

... 

Vmax =+8 P·U 

Vmin =-8 P·U 

Figure 6.1. Tran.sfer function of the excitation system 
including the voltage ceilings. 
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6.3.5 The NOS 1 Filter Mathematical Model 

In a similar way to the PSS, the NOS 1 filter which has 

the transfer function shown in Figure 5.4(b), is also a linear system. 

Therefore, equation 5.6 will be used in the large perturbation study and 

it is rewritten here as: 

XNl - aNl 1 0 XNl bNl 

d 
0 1 + bN2 (6.18) XN2 = -a XN2 dt N2 

XN3 - aN3 0 0 XN3 bN3 

where and ll are the same as de-

fined in Chapter v • 

In summary, the nonlinear mathematical models which are going 

to be used in the forthcoming analysis to describe different system con-

figurations, are listed in Table 6.1. 

6.3.6 System Nonlinearities 

The nonlinearities included in the mathematical models are: 

(i) The product terms appearing in the synchronous generator 

equations, such as the rotor shaft speed w with the 
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TABLE 6.1 

MATHEMATICAL MODELS:. OF DIFri.R.E.NT SYSTEM: C(jNFJ:GU:RATIONS 

SYSTEM CONFIGURATION 

Basi.c system 

(Figure 2. 2 (a) ) 

Basic system + Excita-

tion system, or Open 

loo~ Sl!:Stem , {Figure 

5.2(a), and Figure 

6.1 for the HRE system). 

Basic system + Excita-

tion system + NDS' 

feedback loop , or Closed 

loo;e s~stem, {Figure 

5.41a) and Figure 6.1 

for the HRE system). 

Closed loop system ·with- • 

out voltage ceilings, 

(Figure 5.4 (a)) • 

NONLINEAR MATHEMATICAL MODEL 

Equation 6.13. 

Combi.nation of equations 6.13, 

6.14, 6.15(a), 6.15(}:)), 6.16 

and 6.17~ 

Combi.nation of equations 6.13, 

6.14, 6.15{a), 6.15(:b), 6.16, 

6.17 and 6.18. 

The combination of the same 

equations in (3), except equa­

tion 6.15(a), becomes x
1 

= x
2 

• 



sta;tor f1uxes and in equation 6 .1 

and the stator currents 

stator fluxes in equation 6.4. 

(ii) The regulator voltage ceilings nonlinearity as 

shown in Figure 6.1 and is described by equation 

6.1S(a).. 
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The ferromagnetic saturation of the iron core of the synchro­

nous generator is neglected as it was assumed in Chapter II. 

6.4 Numerical Integration 

The solution to the nonlinear first order differential equa-

tions described in Section 6.3 is analytically intractable. The two 

methods generally used for their solutions are by simulation using an 

analogue computer or by numerical integration using a digital computer. 

In this study, the numerical integration will be pursued. 

Many excellent books [65 -66] cover the various methods of 

numerical integration. One of these methods, which is used here, is based 

on the fourth order Runge Kutta method with the modification due to Gill 

[65]. A computer subroutine using this method to solve the nonlinear first 

order differential equations, called RKGS [67], was used in the digital 

computer calculation of the numerical solutions. 



0 

184 

The tm~lementation of this method requires a considerable 

amount of computation time. However, to achieve economy of computer 

time, two things can be done: 

{i) Since the central idea of numerical integrations is based on 

knowing the states of the system at time t, one could evaluate 

the gradient and use the gradient information to extrapolate 

to later time t + h, where fi is the step size, in order to arrive 

at the solution. In the 4th order RKGS subroutine, the 

processing of this information consists of evaluating 

f (X (t+h)) four times at each step. Therefore it is im­

portant to ensure that f (X) is presented to the computer to 

minimize the computer time. The form of f (X) described in 

equation 6.13 is very economical in computation time [51]. 

(ii) The computer time can be reduced by choosing as large a· step 

size h as it is permitted by the required accuracy. Many 

workers, including the author, have found h = 1 ms to be 

adequate in power system studies. 

6.4.1 Computer Program Checking Procedure 

The difficulty in using computer programs is the task of 

proving the correctness of the results. This is solved by calibrating 
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the digital outputs with exPerimental or analytical results obtained by 

other workers. In addition, the computer program has been spot checked 

against programming mistakes or wrong formulation by the following tests: 

(i} Synchronization-in-phase of the generator should not pro-

duce any transients. This means that if the generator is 

switched to the infinite bus bar when its terminal voltage 

has the same magnitude and phase as the infinite bus bar 

voltage, then no transients should occur. 

(ii) The program must be able to simulate the steady state solu­

tions , whi.ch in the d-q axis frame are constant time 

invariant quantities. In other words, if the initial values 

of the states , which are fed to the computer, are the same 

as the system steady state values, then the computer output 

plot should be straight lines representing the states steady 

state values. 

6.5 Results 

6.5.1 Synchronization-out-Of-Phase 

Figure 6. 2 shows the maximmn peak torque of the transients 

of the generator plotted as a function of 6 , the switching angle, at 
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which the generator is synchronized to the infinite bus. The curves are 

for different values of XC , the series capacitive reactance, and their 

shapes take the same form of Reference f63] for the uncompensated trans-

mission line. 

The maxima of the curves of Figure 6. 2 occur for the 

switching angle ~ = 120° • The results are for the basic system whose 

parameters are listed in Table 5.1 • There is no excitation feedback for 

these results, since previous work by Hammons [64] showed that the excita-

tion system has no effect on the peak torque. 

The similarity between the curves of Figure 6.2 with that 

of the uncompensated transmission line of Reference f63], invites the 

conjecture that one can treat the effect of the compensating capacitance 

on the peak torque transients as simply as that of a reduced inductive re-

actance whose value is X' = X - X • 
E E C 

6.5.1.1 Torque Peaks for Compensated and Uncompensated Lines 

Figure 6.3 plots the maximum peaks ·of the torque transients 

following switching angle ~ = 120 electrical degrees. The solid line 

is for the case of a fixed inductive reactance X = 
E 

1.34 p.u. 

different values of XC • The abscissa of the solid line is 

but for 

x• = x E E 

The broken line is for the case of uncompensated transmission line and the 
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Te 

XE-XC 
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L1ne reactance 

Figure 6.3. Maximum peak torque for synchronizatia&-ou~f-phase 
angle of 1200 as a function of X - X (solid 

E C 
line) in series capacitor compensated line and 
as a function of the line inductive reactance 
XL (broken line) in uncompensated line. 
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Figure 6.4. Stability boundary in the XC - rE plane of the 

10 GVA system, without the NOS' feedback, 
showing the three points which are taken as the 
steady state operating points in the digital 
sim.ulations. 
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abscissa is the inductive reactance XL • The very close agreement 

between the two curves validates the conjecture and shows that the case 

of the series capacitor compensated lines can be unified with the results 

of Reference [63] • 

6.5.1.2 The NDS' Feedback Capability 

In this section the capability of the NDS~ feedback scheme 

to suppress the large unstable SSR oscillations is examined by graphical 

display of the 10 GVA system time response to the synchronization-out-of-

phase fault which is obtained from the numerical integration. Table 6.2 

lists the feedback connections, the switching angles, and the operating 

impedances for Figures 6.5, 6.6 and 6.7. 

Figure 6.5 shows the torque, line current and capacitor 

voltage time responses for the system of Figure 5.4(a} and the excita-

tion system is represented by Figure 6.1. The steady state operating 

point used is point ~ on Figure 6.4 which has the line,parameter values 

XC= 0.8 p.u., rE= .025 p.u. At this point, the open loop system is 

originally unstable, and it was stabilized against small perturbations by 

the NDS' feedback scheme as it was shown in Chapter V • The synchroni-

zation-out-of-phase angle A is assumed to be 15 electrical degrees. 

The time responses in Figure 6. 5 indicate that the system is unstable and 

the NDS' feedback scheme is not capable of stabilizing the system after 

a severe disturbance. 



,f) 

Figure 
Number 

Fig. 6.5 

Fig. 6.6 

Fig. 6.7 

e _, 

TABLE 6.2. 

THE 10 GVA SYSTEM TIME RESPONSES TO THE SYNCHRONIZATION~UTWOF-PHASE FAULT 

Operating 
NDS* Voltage Point in 

HRE PSS Scheme Ceilings Fig. 6.4 

X X X X t 

X X x; R. 

X X X X t 

Synchroni-

XC rE zation 
Phase A 

0.8 0.025 15° 

0.8 0.025 15° 

0.8 0.25 50 

..System 
Configuration 

Fig. 5.4(a) with 

Fig. 6.1 for HRB • 

Fig. 5.4(a) with 

Fig. 5.1(b) for HRE. 

Fig. 5.4(a) with 

~ig. 6.1 for .HRE • 

.... 
1.0 .... 
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0 
However, the question is whether the NDS' feedback 

scheme can suppress the large unstable SSR oscillations if the voltage 

ceilings are neglected. Figure 6. 6 shows the torque, the line current 

and the capacitor voltage time responses when the simulation of Figure 

6.5 is repeated but the regulator voltage ceilings are now neglected. 

It is clear from Figure 6.6 that the closed loop system is stable under 

the absence of the voltage ceilings. This will be explained in detail 

in Section 6.6. 

Figures 6.5 and 6.6 show that when the system is stable, 

the electrical torque, the line current and the capacitor voltage time 

responses are damped out, and they are building up with time when the 

system is unstable. In addition, their responses have the same frequency 
-

and shape in spite of their differences in peaks and steady state values 

(for stable system). Therefore,·because of space economy, only the torque 

response will here after · be displayed for the results. 

The other question to settle is to what degree of fault 

severity the NDS' feedback scheme is capable of damping out the large un-

stable SSR oscillations. Figure 6.7 shows the torque time response of 

the 10 GVA system when the synchronization angle fl is reduced to 5 

electrical degrees. Point i on Figure 6.4 is still considered as the 

system stea~y state ope~ating point.· In the results shown in Figure 6.7, 

the closed loop system is considered with Figure 6.1 to represent the 

HRE system. Figure 6.7 indicates that the system is stable and the 
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Figure 6.5 (a). Torque transients following synchronization-out-of­
phase at~= 15° (system with NDS', Figure 6.1 for HRE, 
parameter point t). 
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6.5 (b). Line current transients following synchronization­
out-of-phase at~= 15° (system with NDS', Figure 6.1 for 
HRE, .parameter point t). 
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Figure 6.5 (c). Capacitor voltage transients following synchronization­
out-of-ph~se at~.= 15° (system with NDS', Figure 6.1 for 
HRE, parameter point t). 
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Figure 6.6 (a). Torque transients following synchronization-out­
of-phase at~= 15° {system with NOS', Figure 5.1 {b) for 
HRE, parameter point z). 
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Figure 6.6 (b). Line current transients following synchronization­
out-of-phase at~= 15° {system with NOS', Figure 5.1 (b) 

~ for HRE, parameter point z). 
=:~ 
Q.. 

w 
z~ -. _;C) 

Cl 
C) 

9:1.00 

C) 
0 

N 

0.20 0.60 0.80 l. 00 I. 20 1.110 1 •• 60 l. 80 2.00 
TJME SEC 
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::>~ HRE, parameter point z). · 
a..-
w 
l.") 

rt.o 
1-g 
_J • 
u­
> 

Cl 
0 

9:1.00 0.20 0.110 0.60 0.80 I. 00 I. 20 
TIME SEC 

1.60 I. BO 2.00 



0 
0 

0 

CID 
C) 

195 

Figure 6.7. TOrque transients following synchronization-out-of­
phase at 6 =5° (system with NOS', Figure 6.1 for HRE, 
parameter point 1) • 
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Figure 6.8. TOrque transients in the three-line-to-ground fault 
(system with NOS', Figure 5.1 (b) for HRE, parameter 
point z). 
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NDS t feedbaCk ache.Ig.e is capable oe atabilizing t.he. aystem when the ex-

citation system is incorporated with the regulator voltage ceilings. 

6.5.1.3 Time Response Fres.}l:ency of Oscillation 

It is worth mentioning that the frequency of the time 

responses in Figures 6.5, 6.6 and 6.7 is approximately 110 electrical r/s. 

This frequency (110 r/s) is approximately equal to where 

is 377 r/s and c.o is 
n 

267.4 r/s for XC = 0.8 (see equation 1.1). 

This agreement can be explained ~s -~ollows: 

(a) It was explained in Section 1.2 .. 2 , a,.t · $ubsyncltronous 

frequency, a pulsating torque at a frequency of c.o - c.o 
0 n 

is produced on the rotor shaft by the SSR positive · 

sequence current. Therefore, in display~g the torque 

response, its frequency of oscillation should be c.o
0 

- c.on 

as is in fact the case. 

(b) Under any disturbance,the L - C circuit derives a line 

current component at a frequency of c.o {see Section 1.2.2) 
n 

The frequency of this eurrent, when viewed by the d-q 

axis, is c.o0 - c.on {see Section 3.3.2. Therefore, when 

displaying the line current, its frequency of oscillation 

is c.o -
0 

w 
n 

as it is the case in the present analysis. 
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(c) Since the voltage drop across the series capacitor is 

6.5.2 

the integral of the line current, there exists a capaci-

tor voltage component at a frequency of w and/or at a 
n 

frequency of l.il -
0 

l.il 
n 

in the d-q axis representation. 

This frequency is the frequency of oscillation of the 

graphical display in Figures 6.5 and 6.6 • 

rnstantaneous Three-Line-To-Ground Fault 
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The other source of disturbance used in this study is the 

three-line-to-ground fault located at the receiving end. The period of 

fault is assumed to last 6 cycles of the supply frequency. In the 

graphical displays of the result~, the fault occurs at O.OSs from the 

time origin. In the period 0 < t < O.OSs the graphs show the steady 

state solutions prior to the occurrence of the fault transients. The 

10 GVA system of parameters and operating conditions described in Table 

5.1 is used in the digital simulations. 

6.5.4.1 Effect of Voltage Ceilings 

It was mentioned in Section 6.5.1.2 that the NDS 1 feed-

back scheme is capable of suppressing the large unstable SSR oscillations 
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in the absence of the regulator voltage ceilings. In this section, this 

is emphasized by simulating the 10 GVA system subjected to the three­

line-to-ground fault when the voltage ceilings are neglected as shown in 

Figure 6.8 and when they are included in the excitation system as shown. 

in Figure 6.9. 

Figure 6.8 shows the torque response of the closed loop 

system when the HRE excitation system is represented by Figure S.l{b) 

(without the voltage ceilings). The steady state operating point is 

considered to be point z (XC= .9 p.u., rE= .. 025 p.u.) in Figure 6.4 

which is further inside the unstable region than the point t . The time 

response shown in Figure 6.8 demonstrates the elimination of the large 

unstable SSR oscillations. The peak torque is more than 6.0 p.u. 

which is much higher than that in Figures 6.5- 6.7. 

Figure 6.9 repeats the simulation of Figure 6.8 but the 

excitation system is now represented by Figure 6.1 (with the voltage 

ceilings) and the steady state operating point is considered as point t 

in Figure 6.4. Figure 6.9 indicates that the closed loop system is now 

unstable and the NDS' is not capable of suppressing the large unstable 

SSR oscillations under the limitation of the regulator voltage ceilings. 
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6. 6 Uncontrollability of Lar,ge ·· · SSR Oscillations 

The failure of the NDS 1 feedback loop to control the 

large unstable SSR oscillations is explained in the light of the mm£ 

phasor diagram developed in section 3.3.2. The basic idea of controlling 

the SSR oscillations by field excitation is to inject current in the 

field winding which produces a phasor Fcb in the air gap rotating at 

the same speed as F Damping of SSR oscillations is achieved if the r 

torque angle is a reflex angle. For the sake of clarity, the nun£ phasor 

diagram of Figure 3.3 is replotted in Figure 6.10. 

The effect of the voltage ceilings on the output signal of 

the NDS' feedback loop can be explained as a circle with fixed radius 

representing the voltage ceiling limitations. Any corrective signal of 

magnitude inside this circle will see a linear excitation system, whereas 

any corrective signal of magnitude exceeding this circle will be circum-

scribed as shown in Figure 6.10. 

Under large disturbances the nun£ phasor magnitudes F 
s 

F increase. 
r 

Consequently, the magnitude of Fcb required to shift FR 

into the motoring regime should also increase. In more detail, let us 

assume that two different faults occur on the system, one is severer 

than the other. In the context of Figure 6.10 the phasors Frl and 

Fsl represent the nun£ phasors of the less severe fault. 

are the nun£ phasors of the severe fault. The magnitude of Fcb has 

a maximum value equal to the radius of the circle imposed by the voltage 
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Figure 6.10. MMF phasor diagram of the positive sequence 
SSR mode showing the principle of stabiliza­
tion through the excitation phasor Fcb • The 
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magnitude of Fcb is limited by the voltage 

ceilings and this limit is illustrated by circles. 
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ceilings. Figure 6.10 shoW$ that for the.. case of th..e. 1~$ ~eve.J;e 

fault, the magnitude of Fcbl is sufficient to shift FRl into the 

motoring regime ~f its phase is within the angle a: • But for the 

severer fault the magnitude of Fcb2 cannot go beyond th..e circle limit, 

which means that the system cannot be stabilized irrespective of the 

phase of Fcb2 • 

6.7 Suppression of the Large Perturbation SSR 

by··a- Nonlinear Resistor Protection ·scheme 

Due to the inherent limitation of the field excitation feed­

back to stabilize the large unstable SSR oscillations, one looks into the 

capacitor protection schemes, now in use to limit capacitor over voltage 

[8, 42] as a means of suppressing the large unstable SSR oscillations 

also. Typically; the schemes consist of a spark gap connected in parallel 

with the series compensating capacitor. 

The idea of these protection schemes is to remove the series 

capacitor from the line when a fault is detected and reinsert it after a 

few cycles from clearing_the fault. The most common scheme now in use is 

the one witll.· the line diagram shown in Figure 6.11 (a) • This accomplishes 

the shunting of the series capacitor bank with a parallel spark gap set to 

spark-over when the short-time over-voltage rating of the capacitor is 

exceeded. A low reactance is usually included in series with the spark gap 
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to limit the capacitor dischatge current at gap spark-over. A switch 

is connected in parallel with the spark gap to protect it from heavy 

currents and to de-ionize it before reinserting the series capacitor as 

shown in Figure 6.ll{a}. 

The series capacitor is usually reinserted in the circuit 

after a few cycles (usually 5 to 8 cycles [8]) from clearing the 

fault. This is done by extinguishing the spark gap (when the switch is 

not used for this purpose) to transfer the line current back to the capaci­

tor. Different methods are employed to interrupt the bypass current. 

One of these methods uses a blast at high pressure air to extinguish the 

spark gap current. 

The interruption of the spark current leads to a transient 

capacitor voltage. The act of reinsertion will stimulate the unstable 

SSR oscillations unless they are properly time phased. The capacitor 

voltage will grow again and cause re-ignition of the spark gap, especially 

if the line current is high and no insertion resistor is used. To limit 

the reinsertion transient voltage across the capacitor to a value less than 

the maximum gap setting, Hartley et al [8] suggested the use of the non­

linear resistor in series with the spark gap. Reference [8] showed that 

a value of the nonlinear resistance, at reinsertion, between 3 and 4 

times the capacit·i-ve r~ctance,limits the transient reinsertion voltage to 

90 % of the maximum gap spark-over voltage. 
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Reference £42] explored the idea of using the nonlinear 

resistor by implementing a new protection scheme that consists of a 

spark gap in series with the nonlinear resistor and both connected in 

parallel with the series capacitor bank as shown in Figure 6.ll(b). The 

nonlinear resistor saturation level was designed to the flash over level 

of the spark gap. The nonlinear resistor conducts high current by the 

time the spark gap flashes over and gradually diverts some of its current 

through the capacitor while the fault is clearing. The reinsertion of 

the series capacitor occurs gradually and by the time the spark gap is ex­

tinguished, the line current passing through the nonlinear resistor is 

very small. Therefore, the transient reinsertion voltage is reduced to 

a great extent. 

All the above protection schemes reported in the literature 

were associated with a system which is stable in the open loop operation, 

i.e., the system with the steady state operating points lying in the stable 

region of Figure 6.4, e.g., point Y . Therefore,·after controlling the 

reinsertion transients by the nonlinear resistor, it is unlikely that these 

transients will build up in time, since the system is originally stable. 

In this chapter the nonlinear resistor protection scheme 

shown in Figure 6.ll(b} is not only used to reduce the capacitor transient 

voltage, which results from severe faults, but also to bring down the large 

unstable SSR oscillations to a level where the NDS' feedback loop can 

effectively suppress these oscillations. Without the NDS' feedback the 

unstable SSR would grow again as the nonlinear protection scheme is not in 
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operation below the flash over voltage. In other words, the schemes 

complement each other in eliminating the large unstable SSR oscilla-

tions. This can be achieved by a proper design of the nonlinear 

resistor to limit the reinsertion transients to a level determined by 

the capability of the NDS' feedback loop. Therefore, the protection 

scheme of Figure 6.ll(b) will be used with a different nonlinear resistor 

from that used in [42] and it is proposed in this thesis to reduce the 

transients and to stabilize the unstable SSR oscillations. 

6.7.1 Volt-Ampere Characteristic of the Nonlinear Resistor 

The volt-ampere characteristic of the proposed nonlinear 

resistor is shown in Figure 6.12 where for programming, the curve is 

approximated by piece-wise continuous straight lines. The spark-over 

voltage of the spark gap is set to three times the steady state capacitor 

voltage. On spark-over, the nonlinear resistor effectively shunts out the 

capacitor and on reinsertion the nonlinear resistor is disconnected by 

opening the switch s-1. 

6.7.2 Results 

The function of the nonlinear resistor protection scheme is 

demonstrated by the digital simulations of the 10 GVA system when it is 
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Figure 6.11. (a) The conventional protection scheme. 
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Figure 6.12. Volt-ampere characteristic of the nonlinear 
resistor for digital simulation. 
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disturbed by the three-line-to-ground fault. The operating condition 

used in the simulation are those described in Table 5.1. The simulations 

are done for both the open loop system, i.e., ~e 10 GVA system without 

the NDS' feedback scheme as shown in Figure 5. 2 (a} , and for the closed 

loop system shown in Figure 5.4(a). The synchronous generator is always 

assumed to have the HRE excitation system represented by Figure 6.1 and 

the power system stabilizer PSS with a transfer function shown in Figure 

5.2 (b). Table 6.3 s~izes all the time responses obtained to evaluate 

the performance of the nonlinear resistor protection scheme shown in Figure 

6.ll(b) in two cases: (a) when the SSR oscillations are originally 

stable without the NDS' feedback scheme, (b) when the SSR oscillations 

are originally unstable. 

6.7.2.1 Effect of the Nonlinear Resistor on Large Stable SSR 

Figure 6.13 shows the torque, the line current and the 

capacitor voltage time responses when the open loop system is subjected to 

the three-line-to-ground fault. The system is operating without the NDS' 

feedback and without the nonlinear resistor protection schemes. The 

steady state operating point is considered as point Y in Figure 6.4 at 

which the open loop system was stable when tested against the small perturba-

tion. The time responses of Figure 6.13 indicate that the open loop system 

is stable with a peak torque of 3.3 p.u. 
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Figure 6.13 (a}. Torque transients in the three-line-to-ground ::>~ fault (system without NDS', Figure 6.1 for HRE, 
6:"' parameter point Y). 
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Figure 6.14 shows the torque, the line current and, the 

capacitor voltage time responses of the above system working under the 

protection of the non1inear resistor scheme. The system is still working 

without the NDS' feedback scheme and with point Y as the steady state 

operating point. The nonlinear resistor is disconnected after 0.2s 

from the commencement of the fault. A comparison between Figure 6.13 and 

Figure 6.14 shows that the nonlinear resistor reduces the peaks of the 

torque, the line current and the capacitor voltage from 3.3 p.u., 2.8 p.u. 

and 2.6 p.u., in Figure 6.13 to 1.63 p.u., 2.6 p.u. and 2.3 p.u. in 

Figure 6.14 respectively. Furthermore, the reinsertion transients are 

very small and damp out quickly. 

The inclusion of the line current and the capacitor voltage 

responses in Figures 6.13 and 6.14 is to show the similarity between 

their behaviour and the torque behaviour in both figures. Therefore,only 

the torque time response will be used in the next presentation of simulation 

results. 

The above simulations establish the role of the nonlinear 

resistor in reducing the peak oscillations in the absence of the NDS' 

feedback loop. However, it is worth investigating how the NDS' feedback 

scheme can effect the large stable SSR oseillations in the presence of 

the nonlinear resistor protection scheme. Figure 6.15 shows the torque 

time response when the same sy:stem of time responses shown in Figure 6.14 

is simulated with the NDS' feedback scheme in operation. The torque 
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response in Figure 6.15 shows that the NOS' feedback loop does not 

effect the peak torque but damps out quickly the reinsertion transients 

as it is clear from the comparison of Figure 6.15 with Figure 6.14. 

6.7.2.2 Effect of the Nonlinear Resistor on Large Unstable SSR 

In Section 6.7.2.1 the system has been considered as a 

stable system in the open loop operation. In this section the system under 

consideration is unstable under the open loop operation that is its steady 

state opeating point falls in the unstable region of Figure 6.4 such as 

points t and z • 

Figure 6.16 shows the torque time response of the closed 

loop system (with the NOS' feedback loop) working under the nonlinear 

resistor protection scheme when it is subjected to the three-line-to-ground 

fault. Its steady state operating point is assumed to be point tin Figure 

6.4 at which the open loop system is unstable under small disturbances 

(see Chapter V) and it was stabilized by the NOS • feedback loop. How-

ever, the closed loop system is also unstable at this point when it is 

subjected to the three-line-to-ground fault as it was shown in Figure 6.9. 

It is to be reminded that the excitation system (HRE) of the synchronous 

generator includes the voltage ceilings and the operating conditions are the 

same as. those described in Table 5.1. The nonlinear resistor is disconnected 

a£ter 0.95s from the beginningof the fault. The torque response in 
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Figure 6.16 indicates the elimination of any building up oscillations 

after disconnecting the nonlinear resistor. Therefore, the system is 

stable and the NDS' feedback loop damps the reinsertion oscillations. · 

To demonstrate the complementary role of both the nonlinear 

protection and the NDS' feedback schemes in effectively suppressing the 

large unstable SSR oscillations, the simulation of Figure 6.16 is repeated 

but withput the NDS' feedback loop as shown in Figure 6.17. Figure 6.17 

shows the torque response of the open loop system with point 1 as its steady 

state operating point and the nonlinear resistor is disconnected after 

0.95s from the beginning of the fault. Figure 6.17 shows that after dis­

connecting the nonlinear resistor, the reinsertion transients build up in 

time which eventually reach the level at which the spark gap sparks-over! Then 

the nonlinear_xesistor is reinserted to reduce the UnStable oscillations and 

when it is disconnected these oscillations will build up again and the same 

process is repeated. This is because the steady state operating point 

{point 1) of the open loop system is originally an unstable point. 

The simulation results in Figures 6.16 and 6.17 em­

phasizes the necessity of using both the nonlinear resistor and the NDS' 

feedback loop to damp out the large unstable SSR oscillations. Their 

effectiveness in eliminating these oscillations is assessed by simulating 

the closed loop system associated with the nonlinear resistor protection 

scheme when it is subjected to the three-line-to-ground fault. -The steady 

state operating point considered ~ ""Fi.gux:e..--'6.4 · i.s'point z which is deep in 
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the unstable region as shown in Figure 6 .18. The torque response in 

Figure 6.18 clearly demonstrates a stable system. 

6.7.3 Time Response Frequency of Oscillation 

The other point to discuss is the frequency of the torque 

oscillation (since the oscillations of the other quantities are similar) 

in the absence of the nonlinear resistor protection scheme and when it is 

engaged with the system during fault conditions. For instance, in the 

torque time response in Figure 6.14, the frequency of oscillation in the 

period of 0.05s < t < 0.2s, i.e., when the nonlinear resistor is in opera-

tion, is different from that in the period of t > 0.2s or when the 

nonlinear resistor is disconnected. This is because the effective series 

capacitive reactance · xc' in both periods is different that is, when the 

spark gap flashes over (the nonlinear resistor is connected) 

zero. Therefore, the subsynchronous resonance frequency (I) 
n 

X is almost c 
is very small 

(see equation 1.1). Hence, the speed of the SSR positive sequence current 

which is w0 - wn in the d-q axis rotating frame, is approximately equal 

to or the frequency of oscillation in the beginning of the period 

0.05 < t < 0.2 in Figure 6.14 is about 60 Hz. Gradually, the series 

capacitor is inserted in the circuit during the same period (0.05 < t < 0.2), 

which means that w increases and the frequency of the torque oscillation 
n 

decreases until switch s-1 is opened (the nonlinear resistor is dis-
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fault, when the nonlinear resistor protection scheme 
of Figure 6.11 (b) is added (system without NDS', 
Figure 6.1 for HRE, parameter point R.). 

215 

~o~.~o~o----co~z~--~~;---~~;---~~;---~~=---~~=---~~~----~------r-------~--. o o.~o o.so o.so t.oo 1.20 t.~o t.so t.so 2.00 

0 
(10 

TIME sec 

Figure 6.18. Torque transients in the three-1ine~to-ground 
fault, when the non1inear resistor protection scheme 
of Figure 6.11 (b) is added (system with NDS', 
Figure 6.1 for HRE, parameter point z). 

~ot.~o~o----~20----~~----cr~----~~----~~----~~----~~-----r------~------~--o.2o o.llo o.6o o.ao .t.oo 1.20 1.110 1.60 I. 80 2.00 TJME sec 



216 

c connected) ~ Then the frequency of the torque oscillation is 1.1.) - 1.1.) 
0 n 

as shown in Figure 6.14 for the period t > 0.2s • Therefore, the 

frequency of this oscillation lies in the range between w ~.w ··and w • 
0 n . 0 

6.8 Discussion 

The suppression of the large unstable SSR oscillations 

by the nonlinear resistor protection scheme and the NDS' feedback loop 

can be explained in the light of Figure 6.19. In Figure 6.19 the high 

order system is represented for simplicity by a two dimensional system with 

the origin as its steady state operating point. In the context of Figure 

6.4, this origin is a stable point if it lies in the stable region of 

Figure 6.4, e.g., point. Y, otherwise, it is unstable, e.g., points i and 

z. Let us assume that the open loop system has a steady state operating 

point which is unstable under any kind of disturbance, therefore the origin 

in Figure 6.19(a) is an unstable point and under disturbance, the oscilla-

tions divert away from this point. 

Consider the system of the same steady state operating point, 

but working in the closed loop manner (sys~em of configuration shown in 

Figure 5.4(a)) and with the presence of the voltage ceilings. The NDS 1 

feedback loop is capable of suppressing the SSR oscillations if its size 

is within the circle imposed by the voltage ceilings as shown in Figure 

6.19(b). Therefore, any oscillation inside the circle will converge to the 
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origin by the NOS' feedback action, and any oscillation outside the 

circle will divert away from the origin. 
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Similarly, consider the open loop system shown in Figure 

5.2{a) which is incorporated with the nonlinear protection scheme and 

its steady state operating point lies in the unstable region of Figure 

6. 4. Under severe disturbance, the nonlinear resistor brings down the 

oscillation to a low level •. ~his means that at the time the spark gap flashes 

over, the nonlinear resistor clamps the peak oscillation by providing 

another passage to current rather than flowing in the series capacitor. 

Since the system is unstable in the open loop, therefore, the small oscilla­

tions resulting from disco~eqting the nonlinear resistor will build up in 

time. In the context of Figure 6.19, the effect of the nonlinear resistor 

can be represented by a circle, where any oscillation outside this circle 

is brought down by the nonlinear resistor. But any oscillation inside this 

circle is not influenced by the nonlinear resistor, and it diverts away from 

the origin, since the origin is an unstable point as shown in Figure 6.19(c). 

To stabilize the large SSR oscillations, the two schemes 

should be incorporated with the system in such a way that the nonlinear re­

sistor protection scheme limit should fall within the voltage ceilings 

limit. In the context of Figure 6.19, the circle of Figure 6.19(c) should 

fall inside the circle of Figure 6.19(b) as shown in Figure 6.19(d}. 



The conclusion of this chapter is that unstable SSR 

oscillation that occurred in the synchronous machine connected to a 

series capacitor compensated transmission line is eliminated during 

severe faul.ts by the complementary action of both the NDS t feedback 
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and the nonlinear resistor protection schemes. 

Figures 6.16 and 6.17. 

This is very clear from 

The other conclusion concerns the peak torque characteris­

tics of the synchronous generator in case of compensated transmission line 

during synchronization-out-of-phase in Figure 6.2. The results obtained 

in Figure 6.2 take the same shape as those obtained in [63] for the 

case of uncompensated transmission lines. 
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CHAPTER VII 

TORSIONAL RESONANCE INTERACTION 

7.1 Introduction 

Chapters V and VI have discussed the phenomenon of sub-

synchronous resonance in series capacitor compensated transmission lines 

without considering the interaction of torsional resonance of the turbine-

generator shaft inertia systems. The torque amplifications in the shaft 

can be disastrously large when the SSR resonance frequency w is nearly 
n 

equal to is any one of the mechanical resonant frequencies. 

The torsional resonance of the turbine-generator shaft in-

ertias is considered in this chapter, and its effect on the system stability 

is demonstrated by mapping the stability boundary on the XC - rE plane. 

Furthermore, the protection of the system from the torsional resonance in-

teraction damaging effect is removed by installing a power blocking filter 

on the terminal of the gene~ator. 

7.2 Mathematical Formulation 

In this chapter the analysis and the mathematical formulation 

are restricted to the multi-inertia system of the hydro-turbine power station, 

since the principle of the analysis and formulation of the multi-inertia systems 

of other power stations. (e.g-;., steam-turbine power station) is the same. The 
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stability of the hydro-turbine syst~ under torsional resonance interaction 

is investigated by the same methodologies used in Chapters V and VI, 

which are: 

(i} The small perturbation study. 

(ii} The large perturbation study. 

(i) In the small perturbation study that is, when the system 

of Figure 7.1 is slightly disturbed from its steady state operation, the 

system stability is studied by calculating its eigenvalues. The linearized 

differential equations describing the generator, the network, the machine 

excitation system, the PSS and the NDS' feedback loop are those derived 

in Chapters II and v. These equations are: equations 2.52 and 2.53 

for the synchronous generator, equations 2.57 and 2.58 for the network, 

equation 5.1 for the excitation system, equation 5.4 for the PSS and 

equation 5.6 for the NDS' feedback loop. 

The mechanical equations which are described by equations 

2.54 and 2.55 are replaced here by a new set of ~echanical equations. 

This new set includes the mechanical dynamics of the hydro-turbine system 

necessary for st~dying the torsional resonance interaction effect. The 

new mechanical equations are derived in Appendix D. The rotor system of 

the hydro-turbine system is modelled by two moments of inertia connected by 

a torsional spring. One moment of inertia (2 HG) represents the genera-

t9r and the other (2 HT) represents the water turbine. These equations 
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are written in linearized form as: 

2 HG A wG 

2 HT d A wT = dt 

l A oG 

l A oT 

where A T is described in equation 2.56. e 
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HG and HT are the generator and the water turbine inertia constants. 

KGT 

-KGT 

0 

0 

(7 .l) 

and are the generator, the water turbine and the shaft damp-

ing coefficients. 

KGT is the torsional spring stiffness coefficient. 

A wG and A oG are the perturbations in the generator inertia 'angular 

speed and position. 

A wT and A oT are the perturbations in the water turbine inertia 

angular speed and position. 
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The linearized model of the system shown in Figure 7 .1 is 

obtained by combining equations 2. 52, 2. 53, 2. 57 and 2. 58 {after 

transforming ~ to the D-Q synchronously rotating reference frame) 

with equation 7.1. The resultant model does not include the machine excita­

tion system. To obtain the linearized model for the regulated open loop 

system, the above model should be combined with equations 5.1 c ·and 5.4 

for the HRE and the PSS systems respectively. The final linearized 

model is required for the closed loop system. This can be obtained from 

the linearized model of the regulated open loop system with equation 5.6, 

which describes the NDS' filter state space model. 

(ii) In the large perturbation study that is, when the system of 

Figure 7.1 is disturbed by the three-line-to-ground fault discussed in 

Chapter VI, the system stability is studied by the numerical integration 

of its nonlinear differential equations. For this purpose, two nonlinear 

models are required. The first one is to describe the regulated open loop 

system and this is obtained by combining equations 6.1, 6.4, D .2 (from 

Appendix D), 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.17 (for the PSS) and 

equations 6.14 - 6.16 for the HRE excitation system. The second one 

is to describe the regulated closed loop system and this is obtained by com­

bining the first model with equation 6.18 for the NDS' filter. 
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7.3 Simplified View 

As it was mentioned in Section 1.3, torsional resonance 

interaction occurs when the frequency of the pulsating torque, which is 

produced by the interaction between the subsynchronous stator magnetic 

field component with the steady state airgap magnetic field, is approxi-

mately equal to one of the rotor system resonance frequencies. The 

physics of this interaction is that under any disturbance, the rotor os-

cillation at a frequency of f Hz will produce a velocity component [23]. 
m 

This velocity component will produce in the stator of the generator a 

positive sequence voltage component at a frequency of f
0 

- fm Hz. If 

this frequency is approximately equal to the L - C resonance frequency 

f , then a large positive sequence current at a frequency of f will 
n n 

flow in the external circuit. This current, when it flows in the generator 

stator windings, will produce a magnetic field component rotating in the 

airgap at a frequency of f 
n 

The interaction between the Hz air-

gap field and this magnetic field component will produce a pulsating torque 

at a frequency of f - f or at a frequency of f approximately. 
0 n m 

This 

pulsating torque will produce a positive sequence current in the stator 

windings of the generator in phase with the oscillating current at a frequency 

of fn [23]. This amplifies the stator current at the frequency of f 
n 

and hence the pulsating torque at the frequency of 

results in a positive feedback on the rotor shaft. 

f 
m 

This process 

Ultimately the torque 

level is sufficiently high so as to cause the mechanical damage. 
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In other words, this torsional resonance interaction is due 

to" a negative damping. The rotor oscillation at a frequency of f 
n 

limited only by the mechanical damping (D) • Since the oscillating 

is 

current produces .· a pulsating torque in phase with the rotor oscillation, 

then the.generator stator with ~e network behaves as a negative damping 

as viewed by the rotor. If this negative damping is greater than. D then 

the pulsating torque will be amplified to cause shaft damage. 

The hydro-system, which is described by all the parameters 

in Table 5.1, except those for the damping (D) and the inertia constant 

(H), has one mechanical resonance frequency, 

calculated from the following equation : 

- 14 KGD 
fo f • Hz 

m 1f fO HR 

where fo = 60 Hz the synchronous frequency 

HR 
HG HT 

= HG + H T 

w , which is approximately 
m 

(7. 2) 

(7. 3} 

The values of the mechanical parameters are [39] 

KGT = 22.5 I 

DT = DG = 0.5 

DGT = 0.6 I 
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HG = 2.22 s 

H.r = 0.633 s . 

The system of Figure 7.1 has its L-e circuit resonating 

at the subsynchronous frequency f 
n 

Hz (w 
n 

r/sl corresponding to a fixed 

value of the series capacitive reactance XC • Torsional resonance inter-

action occurs if the following condition is satisfied : 

f = f - f m 0 n 
(7 .4) 

In the current analysis, one expects that there is one value of XC 

around which torsional resonance interaction occtirs, since the rotor system 

has one resonance frequency. 

7.4 Torsional Interaction -The Small Perturbation Study 

7.4.1 Torsional Resonance Mode 

The mechanical system, which was described by two equations 

in Section 2.6, is now described by four first order differential equations 

(see equation 7.1). Therefore, the eigenvalues of the unregulated system 

are now 11 instead of 9 previously, and of the regulated system without 

the NDS' feedback is 17 instead of 15 in Chapter V • Finally, the 

eigenvalues of the regulated system with the NDS' feedback are now 20. 
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The torsional inertia system of the rotor system adds on two differential 

equations. The question raised is whether the eigenvalues associated 

with them will ever go unstable. 

In answer to this question, it is found that the additional 

eigenvalues exist in complex conjugate pairs which will hereafter be iden-

tified as X • tor It is also found that the stability boundary in the 

XC - rE plane takes the form ,as shown in Figure 7. 2, where the indentation 

around XC = 0.89 1 rE = 0.1 is caused by the torsional interaction mode 

A going unstable. tor 

Table 7.1 lists the eigenvalues of the unregulated system 

for a.number of sample operating parameter points in and As 

can be seen, the instability in column l and 4 are due to positive real 

parts in Ator • Instability in columns 2, 3 and 6 are due to the 

SSR mode whose eigenvalues, ). , have positive real parts. ·ssrp 

Based on equations l.l, 7.2 and 7.4, the value of 

whose L-C resonance frequency interacts with the torsional resonant fre-

quency is XC = 0.89 p.u. Not surprisingly, A is unstable in columns , tor 

l and · 4 because the values of are 0.89 and 0.90 p.u., respec-

tively. 

The sample XC in columns · 2, 3, 5 and 6 are delibe-

rately chosen to avoid torsional interactions. In the cases where the 

system is unstable as in columns 2, 3 and 6, the instability is due 

to A ssrp Column 5, however, is stable. 
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Col. No. 

Instability 

Parameters 

l 
ss m 

l$srp 

l 
amort 

0 

TABLE 7.1 

EIGENVALUES OF THE UNREGIJLl\TED MACHINE WITH THE RaroR DYNAMICS 

1 2 

Torsional Reso- SSR 
nance Interaction Oscillation 

r8•o.o35, xc~.ag r
8
•.035, xc•.93 

- 4.95 - 4.95 

.:!:. .:!:. 

j 660. j 666. 

- 2.28 + .142 

+ .:!:. 

j 96.2 j 88.8 

- 33.1 - 33.2 

- 15.4 - 16.0 

3 

SSR 
Oscillation 

r 8•.035, xc""•97 

- 4.96 

.:!:. 

j 67~. 

+ .523 

.t. 
j 82.4 

- 33.2 

- 16.6 

4 

Torsional Reso-
nance Interaction 

r
8 
... os, xc•.9 

- 6.73 

.:!:. 

j 661. 

- 2. 71 

.t. 
j 94.0 

- 33.1 

- 15.5 

5 

r
1
ro.os, xc•.97 

- 6.75 

+ 

j 672. 

- 1.30 

.:!:. 

j 82.3 

- 33.3 

- 16.6 

e 

6 

SSR 
Oscillation 

r 8•.05, Xc•l,l 

- 6.17 

.t. 
j 691. 

+ .415 

.t. 
j 63.2 

- 33.6 

- 19.2 

t..l 
t..l 
ID 
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TABLB 7.1 (oont 1d) 

COl. No l 2 3 

'l'Orsiona1 lleso-. SSR SSR 
Instability nance Interaction Oscillation Oscillation 

Parameters r 2•0.035, xc•.89 r 2•.035, xc•.93 r 2•.035, xc•.97 

- .605 - .649 - .698 

\~eh !. !. + - '· 
j 9.36 j 9.60 j 9.86 

+ 1.52 - .527 - .502 
;\ !. !. !. tor 

j 96.0 j 97.1 j 97.4 

Afield 
- .187 - .189 - .191 

4 5 

'l'Orsional Reso-
nance Interaction 

r 2•.05, xc•.9 r 2•o.o5, xc•.97 

- .613 - 0.693 

!. + -
j 9.54 j 10.0 

+ .262 - 0.457 

!. !. 
j 96.5 j 97.4 

- .188 - .191 

0 

6 

SSR 
Oscillation 

rE•.05, xc•l.l 

- .910 

+ -
j ll.l 

- .480 

!. 
j 97.7 

- .198 

N 
w 
0 
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7.4.2 Identification of At · or 

In Table 7.1, the instability has been classified as due 

to either Assrp or Ator • In this section, it will be shown how the 

distinctions are made, based on the expected frequency and also on the 

eigenvectors. 

In part, the eigenvalue can be related to the mode from 

the imaginary part, which gives angular frequency of oscillations. Using 

the approximate formula of equation 7.2 and referring it to the d-q re-

ference frame, one can recognize the numerical value for the torsional mode. 

Likewise, using the approximate formula in equation 1.1 for the SSR 

angular frequency, and again referring it to the d-q reference frame, the 

two modes A and A can be easily recognized. ssrp ssrn 

However, when the imaginary values of A ssrp and A tor are 

approximately equal, it is necessary to examine their eigenvectors to tell 

the difference. The eigenvectors, for the cases when 

are exclusively unstable, are shown in Tables 7.2 and 

A ssrp 

7.3 

A tor 

respectively. 

As the elements of the eigenvectors of A and A are compared, the ssrp tor 

significant information is that the magnitudes of A wG , A oG , A wT 

and A oT are substantially larger in the columns of A than those of tor 

A ssrp The entries in the current and voltage state variables are of 

comparable magnitudes. 
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The eigenvectors in Table 7.2 are calculated for the 

case where SSR instability occurs (XC = 0.93, rE = 0.035) • The SSR 

mode A. is identified by the unstable mode, since at this point there ssrp 

is no torsional resonance interaction. The torsional mode A. is 
tor 

identified from its frequency (see equation 7.2). Basically A tor 
and 

A modes in Table 7.3 are not identified, since in this case there is ssrp 

torsional resonance interaction only (XC = 0.9 , rE = 0.05) and the two 

modes have the same frequency which is not the case in Table 7. 2. However, 

by comparing the eigenvectors in Table 7. 3 with those in Table 7. 2, the 

two modes can be identified. This is achieved as follows: 

In the third and fifth columns of Table 7.2, the angle 

between AeCD and AeCQ is about 90° in both columns, and their 

magnitudes are almost equal. However, the rotor state variables, a;;;G , 

AwT , AoG and AoT I magnitudes in the third column are much less than 

their magnitudes in the fifth column. This is expected since the fifth 

column is associated with the At mode. or Following the same procedure 

and comparing the third and fifth columns of Table 7. 3, one can see that the 

appreciable changes between the eigenvectors in the third and the fifth 

columns occur in the magnitudes of AwG , AoG , AwT and 

implies that the fifth column is associated with " tor 

t:.OT which 

In conclusion, we must exercise some care in distinguishing 

the causes of instability because the unstable mode can be due to torsional 

resonance interaction or due to SSR. At present, the physical mechanism 
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TABLE 1.£ 

BIGENVEC'l'OBS FOR UNREGULATED MACHINE WITH ROTOR DYNAMICS FOR XC .. 0.93, rE • 0.035 

). ). 
>.tor 

). 
amort. >.mech. ).field ssrn ssrp 

- 4.95 - 4.95 + .143 + .143 .,. .527 - .527 - .649 - .649 

Eigenvalues + - + - + - - 33.2 - 16.0 ,. - - .189 

j 666. j 666. j 88.8 j 88.8 j 97.1 j 97.1 j 9.60 j 9.60 

.545 .545 .553 .553 .455 .455 .0943 .0789 1.37 1.37 1.36 

AiD 
178. • - 178 - 59.1 59.1 114. - 114 180. 0.0 - 151 151. o.o 

.541 .541 .544 .544 .400 .400 .0364 2.45 2.19 2.19 2.49 

AiQ 
- 91.6 91.6 34.9 -.34.9 - 143 143. o.o 180. - 137 137. 180. 

.237 .237 .279 .279 .220 .220 .634 .300 1.90 1.90 1.84 

Aifd 
175. - 175 - 75.5 75.5 94.1 - 94.1 o.o o.o - 158 158. o.o 

.289 .289 .276 .276 .225 .225 .717 .105 .351 .351 .0692 

Aikd 
- 179 179. - 41.1 41.1 126. - 126 180. 180. - 86.'0 86.0 o.o 

1\J 
w 
w 
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TABLB 

A ). ). 
ssrn .ssrp 

- 4.95 - 4.95 + .143 + .143 - .527 

Eigenva1ues + - + - + 
j 666. j 666. j 88.8 j 88.8 j 97.1 

.521 .521 .523 .523 .432 

Aikq 
- 91.1 91.1 38.5 .;.. 38.5 -:.14'4 

.227E-3 .227E-3 .46E-3 .46E-3 .0178 

A111G 
- 31.8 31.8 .., 105 105. 93.4 

.llE-3 .llE-3 .00195 .00195 .0691 

Ac5G 
- 122 122. 165. - 165 3.04 

.660 ~660 .663 .663 .511 

AeCD 
81.2 - 87.2 34.1 - 34.1 - 146 

7.2 (cont'd) 

I ). 
tor a1110rt. 

~ .527 

- - 33.2 - 16.0 

j 97.1 

.432 .0386 4.10 

144. o.o 180. 

~' 

.0178 .33E-3 .0122 

- 93.4 180. - 180 

.0691 .00379 .288 

- 3,04 o.o o.o 

.511 .0412 2.28 

146. o.o 180. 

J. 
-eh. 

- .649 

+ 

j 9.60 

.675 

- 81.5 

.044 

- 55 

1.70 

- 149 

2.05 

- 136 

- .649 

-
j 9.60 

.675 

81.5 

.044 

55.0, 

1.70 

149. 

2.05 

136. 

e 

Afield 

- .189 

.0175 

0.0 

.00111 

o.o 

2.22 

180. 

2.32 

180. 

1\) 

w 
oSloo 
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). 

- 4.95 

Eiqenvalues + 
j 666. 

.658 

AeCQ 
117. 

.4E-5 

A~>~'.l' 
150. 

.22E-5 

M'.l' 
59.4 

0 

TABLE 7.2 (cont'd~ 

). . ). 
ssrn ssrp 1tor amort. 

- 4.95 + .143 

- + 
j 666. j 88.8 

.658 .670 

-117 122. 

.4E-5 .0076 

- 150 88.7 

,22B-5 .0322 

- 59.4 - 1.2 

-3 1.0 E-3 • 1,0 X 10 • 

Note: 

+ .143 - .527 - .527 - .649 

- + - - 33.2 - 16,0 + 
j 88.8 j 97.1 j 97.1 j 9.60 

.670 .553 .553 .0841 .0233 1.29 

- 122 - 63.8. 63.8 o.o o.o 26.5 

~-

.0076 .0667 .0667 .298-3 .0118 .044 

- 88.7 - 86.8 86.8 180. - 180 - 55 

.0322 .260 .260 .00331 .279 1.73 

1.2 -177 177. o.o o.o ,.. 149 

The first line in the eigenvectors indicate the magnitude of the state. 

The second line in the eigenvectors indicate the phase of the state. 

l-ch. 

- .649 

-
:1 9.60 

1.29 

- 26.5 

.044 

55. 

1.73 

149. 

e 

1field 

- .189 

1.26 

180. 

.00111 

o.o 

2.22 

180, 

N 
w 
01 
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A 

- 6. 73 

Eigenva1ues + 
j 661. 

.549 

Ai
0 - 179 • 

• 545 

AiQ .:.. 88.3 

.239 

Aifd 179. 

.291 

Aikd - 176. 

C) 

TABLE 7. 3 

BIGEIJIVEC'l'ORS FOR UNREGULATED MACHINE Wl:TH llOTOR DYNAMICS FOR XC "' 0,9, r
8 

• 0,05 

(TORSIONAL RESONANCE INTERACTION) 

A A tor A amort. aarn aarp 

- 6.73 - 2. 71 - 2.71 + ,262 + .262 

- + - + - - 33.1 - 15.5 

j 661. j 94.0 j 94.0 j 96.5 j 96.5 

.549 .570 .570 .552 .552 .0925 .141 

179. - 93.4 93.4 - 134. 134. 180. o.o 

.545 .548 .548 .543 .543 .0300 2.36 

88.3 .300 - .300 - 35 35.0 o.o 180. 

.239 .283 .283 .265 .265 .636 .378 

- 179. .;.. 110. 110. - 151. 151. o.o o.o 

.291 .290 .290 .270 .270 • 777 .127 

176. - 76.7 76.7 - 118. 118. 180. - 180 

A meoh. 

- .613 - .613 

... -
j 9.54 j 9.54 

.451 .451 

- 111. 111. 

.790 • 790 

- 96.2 96,2 

.646 .646 

-·u1. 117. 

.119 .119 

- 45.1 45.1 

0 

Afield 

- .188 

1.36 

0.0 

2.49 

180. 

1.835 

o.o 

.0692 

o.o 

"' w 
0'\ 
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TABLE 7.3 

:A. ). 
:A. tor ssrn ssrp 

- 6.73 - 6.73 - 2. 71 - 2. 71 + .262 

Eigenva1ues + - + - + 
j 661. :1 661. :1 94.0 :1 94.0 j 96.5 

.525 ,525 .537 ,537 .535 

dikq - tH.8 87.8 4.10 - 4.10 - 35 

• 24£-3 .24B-3 .00287 .00287 .0104 

dbiG .. 27,9 27.9 - 76.6 76.6 167. 

.134E-3 .1348-3 .0115 .0115 .0406 

MG - 118. 118. - 168. 168. 77.3 

.654 .654 .662 ,662 .657 

AeCD 90.1 - 90.1 .100 - .100 - 37.0 

• 653 .653 .678 .678 .664 

deCQ 180. - 180. 87.9 - 87.9 47.8 

(cont'd!. 

:A. 
amort. 

+ .262 

- - 33.1 - 15.5 

j 96.5 

.535 .0310 4.01 

35. o.o 180. 

.0104 .35E-3 .0118 • 

~ 167 180. :- 180. 

.0406 .00402 .286 

- 77.3 o.o o.o 

.657 .0341 2.12 

37.0 0.0 180 • 

.664 .0803 ,0393 

- 47.8 o.o 180. 

:A. raech. 

- .613 

+ 
j 9.54 

.242 

- 42 

.0155 

- 13.9 

.611 

- lOB. 

.114 

- 95.4 

.412 

66,8 

- .613 

-
:1 9.54 

.242 

42.0 

,0155 

13.9 

.611 

108. 

.114 

95.4 

.412 

,.. 66.8 

e 

).field 

- .188 

.0172 

o.o 

.00112 

o.o 

2.23 

180. 

2.24 

180. 

1.22 

180. 

tiJ 
w ..... 
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). 

- 6.73 

Eigenvalues + 

:l 661. 

.41E-S 

a;;'l' 154. 

.23E-5 

A4'1' 62.9 

ssrn 

- 6.73 - 2. 71 

- + 
j;661. j 94.0 

.41E-5 .0147 

- 154. 86.5 

.23E-5 .0592 

- 62.9 - 5.15 

-3 
1,0~-3 • 1 X 10 

). 

0 

TABLE 

SSql 

- 2. 71 + .262 

- + 
:l 94.0 j 96.5 

.0147 .0413 

- 86.5 - 8.4 

.0592 .1612 

5.15 - 98.2 

7.3 (cont'a}._ 

).tor ). 
amort. 

+ .262 - .613 

- -33.1 - 15.5 + 
j 96.5 j 9.54 

.0413 ,31E-3 .0114 ,0157 

8.4 180. - 180. - ll.9 
~ 

.1612 .00351 .277 .618 

98.2 0.0 o.o .. 108. 

~; The first line in the eigenvectors indicate the magnitude of the state. 

The second line in the eigenvectors indicate the phase of the state. 

e 

).-eh. 

- .613 

-
j 9.54 

.0157 

13.9 

.618 

108. 

Afield 

- .188 

.00112 

o.o 

2.23 

180, 

t-.J 
w 
(X) 
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of torsional resonance interaction is not altoge~er clear. It is 

believed that the instability is due to negative electromechanical damp-

ing from the synchronous generator associated with the currents induced 

in the generator windings by the rotor oscillations. As these currents 

are at a frequency near the L-e resonance of the series capacitor 

compensated transmission line, these currents have a propensity to be 

large. Furthermore, as the angular frequency is below the synchronous 

speed at which the rotor is turning, induction generator action takes 

place. Whether the induction generator action is self-sustaining depends 

on the value of rE in the armature circuit. As Section 7.4.2 shows 

that A is unstable for values of rE at which A is still stable, tor ssrp 

it appears that the negative electromechanical damping contributes to the 

instability. The origins of the negative electromechanical damping has 

not been unravelled. It is conjectured here as being due to the positive 

slope of the torque - speed curve associated with the induction generator 

action. 

7.4.3 Stability Boundary of Unregulated System 

. Figure 7. 2 maps the stability boundary in the - r E 

diagram for the system of Figure 7 .1. The excitation system is not in-

eluded in the synchronous generator. The operating conditions are the 

same as described in Table 5 .1. The significant addition to the system 

0 
model is the elaboration of the mechanical system as two moments of in-
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-ertias and are connected by an elastic shaft of torsional 

spring constant KGT , as described in equation 7.1. The inclusion 

of the shaft torsional resonance results in the indentation of the unstable 

region as shown in Figure 7.~. This is already well known in the litera-

ture [ 32] • For completeness, we shall list here the three aspects of 

instability which affect the stability boundary of Figure 7.2. 

l. SSR Instability (A ) • This occurs at low line resistance 
ssrp 

and high capacitive reactance XC . 

2. Mechanical Instability or Hunting (A h ) . 
mec . This is associated 

with the combined inertias (HG + HT) as they swing tog~ther with respect 

to the electromechanical stiffness of the generator. The mechanical damp-

ing of this mode is directly proportional to the ratio of line reactance to 

line resistance [32, 33] . In consequence, the portion of the stability 

boundary associated with this mode is where 

3. Torsional Resonance Interaction 

with this mode is around X :::: 0 9 c . . 

( :\ ) . 
tor 

in Figure 7.2 

takes large values .. 

The instability associated 

where the unstable region 

engulfs into the stable region. This is the mode which is the subject of 

this chapter and Section 7.4.1 has already devoted description and identifi-

cation of this mode. 
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7 .4.3 .•. 1 Effect of Generator Inertia on Torsional Resonance Interaction 

Figure 7. 3 shows the stability boundary of the same 

system used in Section 7.4.2 but with the inertia constants switched 

around, i.e., HG is now equal to 0.633s and HT= 2.22s • The un-

stable region caused by the torsional resonance interaction is now larger 

than that in Figure 7. 2. This was also noticed by [39]. The question 

is why this happens, and why for large range of XC , still there is 

torsional resonance interaction. 

The enlargement of the unstable region in Figure 7. 3 can 

be explained as follows: 

As the torsional resonance interactions have their origins 

from mechanical vibrations, it is useful to firstly consider the amplitudes 

of the torsional vibrations. For the case of Figure 7. 2 in which 

HG I HT= 2.22 I 0.633, we know from Table 7.3 that 

I A wG I I I A ooT I = 0.0104 I 0.0413 and I A oG I I I A oT I = 0.0406 I 0.1612 

for the torsional mode A. • tor We know also from Table 7 .3 , that the 

phase angles between the angular velocity and the angular displacement are 

approximately 180° apart showing that the two inertias are twisting the 

torsional shaft at either ends. However, as we reverse the inertia ratio 

so that HG I HT= 0.633 I 2.22 as is the case for Figure 7.3, we expect 

that I A wG I I I A wT I = 0.0413 I 0.0104 and I A oG I I I A oT I 
= o.l612 1 o.o4o6 • Physically, this means that both the amplitude and 

the velocity of the generator shaft oscillations would have increased. 
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Since tne f~equency of torsional resonance and the electrical system para­

meters remain tne same, the induced electrical vol tages and currents would 

likely to be so much tne larger for the case in Figure 7.3 than for 

Figure 7. 2 for each point in the XC - rE plane. In consequence, the 

unstable indent enlarges in the rE direction because the equivalent 

negative resistance associated with the induced voltage of the larger 

torsional oscillations would take a larger value of rE to stabilize it. 

·The unstable indent also enlarges in tne XC di~ection. 

As we have indicated before, XC = 0.9 p.u. represents the value in which 

the electrical circuit is tuned to resonate with the torsional resonance. 

As we move in the direction of XC away from XC = 0. 9 1 we move away from 

the resonant frequency and effectively the electrical gain is diminished. 

But because the oscillation , of the generator inertia is very large now, 

then,the degree of electrical detuning can be worse before the system passes 

from instability to stability. 

7.4.4 Stability Boundary of Regulated system 

In mapping out the stability boundary in the XC - rE 

diagram, Reference [32] has disregarded the effects of the excitation sys-

tem and the feedback loops in the synchronous generator. However, 

Reference !33] showed that the excitation system is not effective in im-

proving the system stability boundary. It is of importance to study the 
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way the high response excitation system (HRE) and the power system 

stabilizer feedback alter tne stability boundary. Will the indentation 

due to torsional resonance enlarge? This is a subject which (to the 

author's knowledge) has not been studied before. 

Figure 7.4 shows the stability boundaries of the system 

of Figure 7 .l when the synchronous generator is unregulated and when it 

is equipped with the HRE excitation system and the PSS feedback loop. 

The abscissa is plotted with an expanded scale with the ordinate inter­

secting at rE = 0.01 p.u. The stability boundary for the case of un­

regulated machine is plotted for the sake of comparison with the case of 

pnregulated machine. The important point to note is the enlargement of 

the unstable indentation caused by the inclusion of the excitation ~ystem 

and the feedbacks. It was noticed that the terminal voltage feedback 

loop through the excitation system has little effect on the unstable re-

gion caused by the torsional resonance interaction while the PSS feed­

back loop does effect this unstable region. 

7.4.4.1 Effect of PSS 

Curves 2 and 3 in Figure 7. 4 show the reduction of the 

unstable region caused by the torsional resonance interaction when the PSS 

gain 1), is reduced from 20 to 5. It is to be reminded tnat the input 

signal t9 the PSS is the generator rotor speed. The enlargement of the 
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indentation caused by tne torsional resonance interaction when ~ = 20 

is explained as follows: 

As the generator rotor oscillates at a resonant frequency 

f , the PSS input picks up this signal and transmits it throuqh the 
m 

excitation system to produce a rotor field current at tnat frequency. 

The field winding is physically rotating at synchronous speed, and the 

stator currents induced by this alternating field current component coming 

from the PSS loop, will have positive and negative sequence components 

at frequencies of (60 - f: ) Hz and (60 + f: } Hz respectively. 
m m 

Note that in Section 7.3, we have already argued that stator 

currents at these frequencies are already being produced by the de 

currents of the field winding as the generator rotor oscillates about the 

synchronous speed at the torsional resonant frequency f 
m 

The inter-

action of the positive sequence components of the stator currents at 

(60 - f ) Hz are believed to produce the negative electromechanical damp­
m 

ing which gives rise to instability of A. • 
tor 

It seems highly probable that the (60 - £ ) Hz produced 
m 

by the PSS feedback will contribute to aggravate the unstable region if 

they are phased so as to reinforce the torsional vibration effects. The 

solution consists of redesigning the PSS filter so that the (60 - f ) Hz 
m 

stator current 1 which is produced by the PSS signal, cancels the stator 

current at the same frequency that is produced by the de rotor field in 
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torsional vibration. However, the ~ss has already the function of 

ensuring dynamic stability. A redesign of the PSS transfer func-

tion to satisfy dynamic stability and to suppress torsional resonance 

interaction is an interesting and challenging problem. 

7.4.4.2 Effect of the NDS 1 Feedback LOop 

Figure 7.5 shows the stability boundary for the system of 

Figure 7.1 where the NDS' feedback is included in the excitation system 

in addition to the voltage regulator feedback and the PSS feedback. 

Both the gain ~ and the control angle $ of the NDS' feedback turned 

out to have negligible influence on the size of the unstable indenta-

tion. However, the control angle $ does shift the position of the unstable 

region due to the torsional resonance interaction up and down along the 

XC axis as is shown in Figure 7.5. 

At this point, we abandon further attempts of controlling 

the A instability by the A P and A Q feedback through the NDS' tor 

filter. Two courses are open to us: 

(a) redesigning of the:· ~ss feedback, 

(b) adopting the ~ower Blocking Filter • 
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7.5 Power Blocking Filter 

One of ~e proposed solutions IlS, 36, 37, 38, 39] for 

the torsional resonance interaction instability is to install an L-e 

tank circuit in series with the generator as shown in Figure 7.6. The 

tank circuit of the filter is tuned to filter out the positive sequence 

current associated with the torsional resonance frequency (60 - f ) • 
m 

Reference [36] has used such filtersifor Navajo power station, but un-

fortunately there are no quantitative results reported to show its 

effectiveness in eliminating torsional resonance interaction under small 

and large disturbances. Therefore, the rest of this chapter is devoted 

to the evaluation of this filter for the hydro-system under small and large 

disturbances. To do this, the filter mathematical model and the parameter 

values should be derived. 

7.5.1 Filter Parameter Values 

The power blocking filter shown in Figure 7.6 has its 

resonant frequency f 
r 

related to its inductance, capacitance and resis-

tance, Lf , Cf and Rf respectively as follows: 

f 
r = 1 

2 ~ 
I 1 Hz {7.5) 



0 e 6 

l ~ ~ ~L,___,-_: 
r---- ----, 
I I 

I I 

I 
I 

I xLt 
I 
I 

. I I 

I Xct 
I 

I rf 
I 

I I 

I ' l 
I 
I 

I I 
I 
L __ _____ I 
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(7. 6) 

(7.7) 

(7.8) 

This resonance frequency should be equal to the frequency of the oscillat-

ing current (f ) 
n 

produced by the rotor oscillation at a frequency of 

-2 -2 
w = w = r n 

(1 - f I 60) 
2 

m 

at this resonance frequency the filter impedance 

z 
r 

(at f ) 
m 

in p.u. 

Z is: 
r 

f : 
m 

(7. 9) 

(7.10) 

In the steady state operation, the filter impedance should not effect the 
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operating conditions specified before inserting the filter. At steady 

state, the filter per-unit impedance zf is: 

zf (at 60 Hz} (7.11) 

therefore, 

< < (7.12) 

For the hydro-system under consideration, the filter resonance frequency 

w is a 0.74 p.u. 
r 

. Substituting this value in equation 7. 8, we obtain: 

0.74 (7 .13) 

By considering equations 7.13, 7.12, and 7.10 the filter parameters 

are chosen as follows: 

XCf = 0.055 p.u., 

XLf = 0.1 p.u., 

rf = 0.00033 p.u. 

The above design values have been adopted in the study. 

The quality factor of the filter is 300 which is conservative and there-

fore, attainable by the manufacturer. Further, it adds a resistance of 
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f ..- f which is in o m 

the range reported in {18] • The economic design depends on the cost 

trade-offs of their relative values. As no design values have been re-

parted in the literature, this study will accept these values tentatively. 

In any case, the objective is to demonstrate the effectiveness of the 

power blocking filter in elimination of torsional resonance. 

7.5.2 Filter Mathematical Model 

The differential equations describing the blocking filter 

can be derived on the basis of the voltage drop across the line resistance, 

the inductance and the series capacitor which are defined in Section. 2.7.2 

in the D-Q synchronously rotating reference frame. Let us define the 

currents passing through the filter inductance and in the D 

and Q axes respectively as shown in Figure 7.7. Therefore, the currents 

passing through the filter capacitance are: 

iDCf = iD - i (7.14) 
DLf 

iQCf = i - iQLf (7.15) 
Q 

where iD and iQ are the line currents in the D-Q synchronously 

rotating reference frame. The voltage drops across the blocking filter 

capacitance eDCf , eQCf can be written in a similar way to that given 

in Section 2.7.2 as: 



eDCf = 

eQCf = 

. 
1DLf . 
10Lf 

!o 
IQ 

~DCfl 
1QCf 

Figure 7.7. Circuit diagram of the 

power blocking filter. 

1 d 
+ XCf (iQ - iQLf) eQCf WO dt 

1 d 
XCf (iD - iDLf) eDCf -

WO dt 

,, . 

The voltage drops across the blocking filter inductance and resistance 

255 

(7 .16) 

(7.17} 

eDLf , eQLf , eDrf ; eQrf respectively, can be related to eDCf and 

as: 

(7 .18) 

{7 .19) 
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On the basis of Section 2.7.2 the expressions of eDLf , eQLf , eDrf , 

eQrf are: 

XLf 
1 d . 

iQLf eDLf = dt J.DLf - XLf WO 
(7.20) 

XLf 
1 d 

iDLf eQLf = dt iQLf + XLf WO 
(7. 21) 

eDrf = rf iDLf (7. 22) 

(7 .23) 

The mathematical model of the power blocking filter suitable 

for numerical integration can be obtained from the combinations of equations 

7.16 - 7.23 and it is written as: 

eDCf 0 1 -xcf 0 eDCf 

eQCf -1 0 0 -xcf eQCf 
d = WO dt 

iDLf 1/XLf 0 -rf/XLf 1 iDLf 

iQLf 0 1/XLf -1 -rf/XLf iQCf 

0 
(7. 24) 

0 

0 0 
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Equation 7. 24 will be used in the large perturbation 

study. However, the linearized model of equation 7.24 which will be 

used in the small perturbation study is: 

ll.eDCf 0 1 -xc£ 0 ll.eDCf 

d ll.eQCf -1 0 0 -XC£ ll.e~f 
= WO dt 

ll.iDLf 1/XLf 0 -rf/XLf 1 ll.iDLf 

ll.iQLf 0 1/XLf -1 -rf/XLf ll.iQLf 

XC£ 0 

0 XC£ 

~:J 0 + (I) 
0 (7. 25) 

0 0 

0 0 

7.5.3 Results of Small Perturbation Study 

Figure 7.8 shows the stability boundaries for the following 

systems: 

Curve 1 the basic system with HRE and PSS systems. 

Curve 2 the system of curve 1 with the blocking filter. 

Curve 3 the system of curve 2 with the NDS' for <P = o.o. 

Curve 4 the same system of curve 3, but 4> = 30°. 
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action when added to the system as in Figure 7.6 (curve 2) and the effect of the NDS' in 
improving the stability region in the presence of the blocking filter (curves 3 and 4). 



0 

259 

The blo~King·filter removes the torsional resonance inter-

action but lowers the stability boundary as it is clear from the comparison 

between curve l and curve 2. In addition, the blocking filter shifts 

the subsynchronous frequency, since at the steady state it adds to the 

series oapacitive reactance XC an amount of: 

and to 

2 
r * f 

an amount of: 

= 

+ 

(7. 26) 

(7.27) 

Curves 3 and 4 of Figure 7. 8 show the effect of the 

NOS' feedback loop on the stability of the system associated with the 

power blocking filter. It is clear that the NOS' feedback and the block-

ing filter give a wide stability region in which the instability region due 

to the torsional resonance interaction is completely removed. 

7.5.3.1 Effect of Filter Parameters 

Figure 7. 9 shows the stability boundary of the system with 

the blocking filter (curves b and ~, but the blocking filter parameters 

are assumed to be: 



0 

t4 

c1. 

~ 
u a.a ...... 
u 
0 
~ 
'-.6 

~ 
> 
.;:; .4 

g. 
u .2 

Xc 

~ 

e 

Figure 7.9. Stability boundary in the XC - r 2 pl~e for: 

/ 

(a) The system under torsional resonance interaction. 

unstabla 

..:::::=: , rc:;:-.' 
,.. • • • J!li• r !t! •JI'. I I 

•• •J• • I ... , .. ' 
.~. -r-,. r-r . r-r-·r-r 

~ stabta 

- -
••••••••• 

(a) 

(b) 

(C) 

, 
KND =.001 
~ 4> = 30° 

0----~----~----~--~~--~------· 
~1 .02 .03 

L1ne. 
.. 04 

res1stance 
.05 .06 
1n p.u 

. -s Figure 7.9. (b) When ~he blocking filter with parameters rf • l x 10 , 
XLf • 0.01 p.u., is added to the system. 

(c) The effect of the NDS' in the presence of this filter. 

rE 

XCf • 0.0055 p.u., 

e 

t-J 
0'1 
0 



261 

rf = 0.000001 p.,u., 

XCf = o.ooss p.u., 

XLf = 0.01 p.u., 

for these parameters the filter quality factor is high and the resistance, 

which the blocking filter adds to the circUit at its resonance frequency 

w . (see equation 7.10) 
n 

is also high .. Curve b in Figure 7.9 shows 

the stability boundary when the system of curve a (basic system + HRE 

+ PSS) is incorporated with the blocking filter. This filter is effective 

in removing the indentation due to the torsional resonance with little 

change of the system stability boundary. The addition of the NDS' feed-

back loop to the system of curve b improves the stability region in which 

the system is protected against torsional resonance instability. 

7.5.4 Results of Large Perturbation Study 

In the previous section, the capability of the blocking 

filter was evaluated under small disturbances. Figure 7.8 shows the 

elimination of the torsional resonance interaction by this filter, and 

the improvement of the stability region by the NDS 1 feedback loop. For 

completeness, the blocking filter should be tested against large distur-

bances as well as the improvement by the NDS' feedback loop. 
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Figures 7.10 .and 7 .1'1 show the torque, the line current 

and the capacitor voltage time responses of the 10 GVA system incorpora-

ted with the blocking filter and the closed loop system with the blocking 

filter respectively. The source of disturbance is assumed to be the 

three-line-to-ground fault located at the receiving end for a period of 

6 cycles. The steady state operating point is assumed to be point g on 

Figure 7.8 which has the coordinates of x = .a c and rE = .06 • It is 

to be reminded that at this point the system is unstable due to the torsional 

resonance interaction without the blocking filter and it is stabilized by 

the introduction of the blocking filter. 

F~gure 7.10 demonstrates the capability of the blocking 

filter · of the design parameters derived in Section 7. 5.1 in damping out 

the unstable oscillations resulting from the torsional resonance interaction~ 

Figure 7.11 shows the additional damping produced by the NOS' feedback 

loop, which is apparent in the tail end of the oscillations. However, the 

effect of the NDS' feedback loop is small because of the regulator voltage 

ceiling limits which are considered in the above simulations. 

7.6 Discussion of Results 

From the analysis of the torsional resonance interaction, 

the following points are.concluded: 
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{i) Torsional resonance interaction causes an indenta-. 
' 

tion in the stable region in the XC - rE plane. 

(ii} At torsional resonance interaction, the torsional 

mode Ator goes unstable. 

(iii) The NDS' feedback loop shifts the unstable region 

caused by the torsional resonance interaction but it 

does not remove this instability. 

(iv} The Power Blocking filter is effective in eliminating 

the torsional resonance interactio~ instability as is 

demonstrated by the small and the large perturbation. 

studieso Furthermore, the NDS' feedback gives an 

additional damping to the system during the torsional 

resonance interaction. 

c 
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Figure 7.10. Torque (a}, line current (b) and capacitor voltage 

(c) transients in the three-line-to-ground fault, when the 
power blocking filter (Figure 7.6) is added (system with­
out NDS', Figure 6.1 for HRE, parameters XC= o.s, 
rE= 0.06). 
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Figure 7.11. Torque (a), line current (b) and capacitor voltage 
(c) transients in the three-line-to-ground fault, when the 
power blocking filter (Figure 7.6) is added (system with 
NDS', parameters XC= 0.8, rE= 0.06). 
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CHAPTER VIII 

. AVOIDANCE OF SSR PHENOMENON 

BY SHUNT COMPENSATION 

8.1 Introduction 

266 

In the previous chapters, the main concern was the analysis 

and the determination of the power system stability as affected by the 

series capacitor compensation. It was mentioned before, that the series 

capacitor compensation is required in long transmission lines to increase 

the power transfer capability and to improve the transient stability. 

However, series capacitor compensation is not the only means to ensure the 

transient stability in the UHV transmission system when long transmission 

lines are used. 

In this chapter, the possibility of avoiding subsynchronous 

resonance phenomenon is achieved by using shunt compensation [1] instead of 

series capacitor compensation. A synchronous capacitor connected to the 

middle of the transmission line is considered he~e as a means of shunt com­

pensation. 

The improvement of the steady state stability by shunt com-

pensation is demonstrated by a numerical example. Since our objective in 

thi.s chapter is to show that a system which is. unstable in the steady state 

when connected to a long transmission line, can be stabilized by shunt 

compensation, then the ei.genvalues are calculated only for two cases'! 



1a) A synchronous generator connected to an infinite bus 

through a long transmission line. In this case, such a 

system is unstable for high value of the line reactance. 

{b) The above system with a synchronous capacitor connected 

to the middle of the transmission line. This system 

is stable for the same line reactance at which the system 

in item (a) is unstable. 
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As this is the penultimate chapter of this thesis, the purpose 

here is not to open up a new extensive area of investigation. Rather the 

objective is to close the subject~fsubsynchronous resonance by pointing 

out that the patchwork solutions of field excitation control, nonlinear 

resistor protection, power blocking filter would not be necessary if the 

transmission system does not give rise to the SSR problems in the first 

place. Shunt compensation is believed to avoid this SSR £1]. 

8.2 Basic Idea of Shunt C9SPensation 

It is well known that if the machine rotor angle o at 

which the electrical power is transmitted is approximately more than 90 

electrical degrees (assuming all resistances are neglected and constant ex­

citation systeml, then the system is unstable (see Figure 1 .. 1}. In the 

case where the system is shunt compensated, the above condition (when 
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o > 90°} for system instability is not valid any more Ill. To explain 

" 
this, Figure 8.1 (al shows the voltage diagram where I E

0 
t t.O and 

H 

I Et I 1.. S represent the voltage of the generator and the bus end of the 

transmission line whose impedance is zE • The circumscribing circle 

shows that the voltages at the two terminals are kept at equal magnitudes. 

The closing side of the phasor triangle represents the voltage drop due to 

the current across the line reactance ~ 

Clearly if ~ exceeds 90° (constant terminal and infinite bus voltages) . 

the system is unstable {68]. 

However, if we add a voltage support half way between the 

line, then the situation is shown by the vector diagram as shown in Figure 

8.1 (b). Assuming the voltage support provided by a synchronous capacitor 

or a static compensation regulator, the voltage half way between is at 

a fixed magnitude = I E
0 

I , then the three bus voltages 

lie on the circumference of the same circle. 

The voltage drops across each half of the transmission line are now 

Note that dtiring mechanical disturbances, 

the generator bus voltage Et swings against the voltage support bus Etl 

so that (~ - 6
1

) (the infinite bus is taken as a reference) between the 

generator and the voltage support is less than 90° which means a stable 

system. In other words, the condition of instability of the system shown 

in Figure 8,3 is when the. angle between tw:o adjacent constant voltages 

exceeds 90 electrical degrees {69] 
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(a) (b) 

Figure 8.1. Effect of shunt compensation device on system stability. 

r:· 
E 

Figure 8.2. Single machine connected to an infinite bus through 
an uncompensated transmission line. 

1to 

Figure 8.3. Synchronous capacitor connected to the middle 
of the transmission line. 
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As. is evident in Figure 8.1 (b) 1 the power angle between 

the transmitting voltage Et and the receiving end voltage E
0 

is 

13 = 2B
1 

which can now exceed 90° • In this chapter 1 only one synchro­

nous capacitor will provide voltage support at the midpoint of the trans-:-

mission line. However, in principle any number of synchronous capacitors 

can be strung along at inter.mediate points of a very long line. 

The question is whether there are any problems associated with 

the shunt compensation which might affect the system behaviour. In fact 

these are problems which differ from one voltage support equipment to 

another as it will be mentioned in the next section. 

8.3 Methods of Shunt Compensation 

The methods reported in the literature for controlling the 

voltage along the transmission line are [70]: 

(i) linear reactors and linear capacitors [71], 

(ii) synchronous capacitor [69, 72, 73, 74], 

(iii) d.c. controller reactors [75], 

(ivl thyristor controlled reactors [76, 77, 78], 

(vl saturated reactors 179]. 



0 

0 

271 

Linear reactors (inductors) are switched to the line, 

especially under light load to reduce the over voltages and to compensate 

for the line shunt reactive power !71]. The line inductors are either 

connected permanently to the line or switched in and out depending upon 

load conditions. Linear capacitors are connected to the line to supply 

reactive power when the line voltage is reduced. They are also used for 

power factor correction. The other four devices, which are now in use, 

support the voltage along the transmission line by absorbing or supplying re­

active power- since they have variable reactances. 

The problems associated with the variable reactance devices 

(the last three devices} are the generation of time harmonics !79, 80]. 

The problem of a synchronous capacitor is believed to be the slow voltage 

response. However, the recent advancement in the excitation system 

technology which can produce faster response excitation system, has re­

newed the prospects of using the synchronous capacitor in shunt compensation. 

8.4 Steady State Stabilit¥ of Uncompensated sxstem 

It is well known in the literature [68] that the system 

which consists of a cylindrical synchronous generator connected to an in­

finite bus, is unstable if the generator terminal angle (~) with respect 

to the infinite bus exceeds 90 electrical degrees (assuming all resis­

tances are neglected and constant terminal voltage). 
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Table 8.1 shows the eigenvalues of the systemof Figure 

8.2 for different values of the transmission line reactance XE • The 

system under consideration is completely different from the one used in 

the previous chapters. The data of this system (Figures 8.2 and 8.3) 

are taken from a collaborating group of investigators [ 81] working on the 

analogue simulation of this system when it is shunt compensated by a 

synchronous capacitor. Therefore, the machine parameter and its regulat-

ing system are given in Append~ces E-1 and E-2 respectively. 

The calculation of the eigenvalues in Table 8.1 are for the 

regulated machine and the ~enerator terminal steady state voltage_ 
~ 

!Etl: is always unity. The infinite bus bar steady state voltage is 

always kept constant at 1.0 ,o.o. In addition, the power delivered to 

the infinite bus bar is always unity. 

The eigenvalues of Table 8.1 show that the system is stable 

when X = 0.586 p.u. 
E 

and the steady state generator terminal angle 

a = 36.3. The more XE is increased, the more S is increased until the 

system is unstable as shown from the eigenvalues of the mechanical mode in 

the third column of Table 8.1. The identification of the eigenvalues is 

followed from [47]. 
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TABLE 8.1 

.EIGENVALUES OF ':CHE SYS'l'EM SHOWN IN FIGURE 8. 2 FOR OIFFERE!:tn' . VALUES OF XE. 

{THE MAGNITUDES . OF . THE GENERATOR TERMINAL . AND THE INFINITE BUS VOLTAGES 

ARE. KEPT. CONSTANT. AT. l p~u.) 

A. stator 

A amort. 

A h" mec 

A. field 

Load 
PF (Leading) 

XE == 0.586 

- 9.64 

+ -
j 377. 

- 15.8 

- 10.6 

- 2.15 

+ -
j 3.30 

- 61.2 
... 3.01 

+ -
j 9.66 

- 0.685 

0.94 

XE = 0.85 

- 7.38 

+ -
j 377. 

- 15.1 

- 6.53 

- 0.0340 

+ -
j l. 77 

- 60.9 
- 6.93 

+ -
j 9.77 

- 0.634 

0.840 

60.1° 

XE = 0.98 
\ 

- 6.49 

+ -
j 377. 

- 14.5 

- 5.13 

- 2.30 

+ 4.70 

- 60.7 
- 8~84 

+ -
j 10.9 

- 0.735 

0.700 

A : stator mode. · stator 

A : amortisseur mode. amort. 

A mech. 

Afield 

mechanical mode. 

excitation mode. 

field mode. 

P.F. The infinite bus bar power factor. Leading pf means that the 
current flowing into the infinite bus is leading its voltage. 

: The steady state phase angle between the generator terminal volt­
age and the infinite bus 'VOltage. 
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S.S Effect of the Synchronous Capacitor 

The results obtained in Table 8.1 demonstrate the diffi­

culty in maintaining stability at large line inductive reactance or in 

long transmission lines when the power transmitted is kept constant at 

1.0 p.u. However, by shunt compens~tion the system stability can be 

improved without decreasing the power transmitted. 

Figure 8.3 shows the system of Figure 8.2 when it is shunt 

compensated by a synchronous capacitor. The synchronous capacitor is 

connected to the middle of the transmission line. The parameters and the 

excitation system of the synchronous capacitor are given in Appendices 

E-3 and E-4 respectively. The infinite bus bar steady state voltage 

and the power delivered are always assumed to be l ,o and 1.0 p.u. re-

spectively. The magnitudes of the synchronous capacitor steady state 

terminal voltage and the generator steady state terminal voltage are always 

assumed to be unity. 

8.5.1 Mathematical Formulation 

The system under consideration is a multi-machine system as 

shown in Figure 8.3. The small perturbation study of this system requires 

a linear:ized ::Ig.a,thematical model which describes the system behaviour when 

it is subjected to a small disturbance from its steady state operating 
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point. Undrill I82] has discussed the problem of multi~chine system 

in which he derived a mathematical model for two machines system. The 

idea behind the derivation [82] is to assume a common (D - Q) synchronously 

rotating reference frame for the bus system and the transmission network. 

The equations of each of the two synchronous machines are written for their 

respective local d
1 

- q1 , d2 - q
2 

reference frames. The point to 

stress ±s that as each synchronous machine hunts during the electromechani-

cal transients, each of the d1 - q
1 

, d2 - q
2 

axes rock with respect to 

the synchronously rotating (D - Q) frame. This is because the d1 - q1 

d2 - q2 axes are conceptually fixed to the rotors of the machine. The 

formal procedure to relate the electrical equations of the synchronous machines 

to the equations of the transmission system is through reference frame trans-

formation. 

For the system of Figure 8.3 the Q - Q synchronously rotat-

ing reference frame will be used as the common frame, and the D axis of 

this frame coincides with the infinite bus bar voltage as shown in Figure 

8.4. The transformation matrix which relates the quantities in the synchro-

nous machine d1 - q1 and the synchronous capacitor d2 - q2 reference 

frames to the D - Q reference frame is: 

eDl cos ~1 ,... sin (jl 0 0 e.dl 

eQl sin Q"l cos <rl 0 0 eq:l 
F 

eD2 ,.Q 0 cos (/2 - sin 0': 
2 ed2 

eQ2 0 0 sin 0'2 cos 0"2 eq2 

(8.1} 
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(8 .. 2) 

(8.3) 

where and are the synchronous generator rotor speed and the 

synchronous capacitor rotor speed in electrical r I s respectively. 

Q 

Figure 8.4. Relation between:. the d1 ... q1 , the d2 ... q2 
and the D.- Q reference frames, 
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eDl and eQl are the voltages in the D - Q axis at bus 1 

eD2 and eQ2 are the voltages in the D- Q axis at bus 2 . 

edl and eql are the synchronous generator terminal voltage. 

in the dl - ql reference frame. 

ed2 and eq2 are the synchronous capacitor terminal voltage 

in the d2 - q2 reference frame. 

The linearized differential equations describing each machine 

are the same as equations 2.52, 2.53, 2.54 and 2.55 with the quanti-

ties in each of these equations written with suffix d
1

, q
1 

for the 

synchronous generator and d
2

, q
2 

for the synchronous capacitor, e.g., 

A e for the synchronous generator. 
q 

The differential equations describing the network of Figure 8.3 are usually 

written in the D - Q axis frame . ~ese are derived in a similar way to 

that used in Section 2. 7 ·~ 2, and result in: 

1 0 -1 0 A eDl XE 0 0 0 A iDl 

0 1 0 -1 A eQl 0 XE 0 p A iQl 
1 d =--

2w dt 
0 0 1 0 6. eD2 

. 0 
XE 0 XE 0 6. iD2 

0 0 0 1 A eQ2 0 XE 0 XE A iQ2 

rE -x E 
0 0 A ~1 

1 XE rE 0 0 ts. :tQl 
+ 2 (8.4) 

rE -x rE -x 6. iD2 E E 

XE rE XE rE A i.Q2 
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where i 01 , iQl are the D and Q axes currents injected from the 

... , , · ·~generator into Bus 1 , 

i 02 , iQ2 are the D and Q axes currents injected from the 

synchronous capacitor into Bus 2 • 

The linearized mathematical model describing the systE;m of 

Figure 8.3 can be obtained by transforming the machine equations (equations 

2.52, 2.53, 2.54, 2.55) to the D - Q axis frame using the linearized 

form of equation 8.2 which can be derived in a similar way to that used 

in deriving equation 2.59. The resultant model will consist of 14 first 

order differential equations describing the system of Figure 8.3 with un­

regulated machines. 

When the machines are incorporated with excitation systems 

where the excitation system of the synchronous machine is shown in Appendix 

E-2 and that of the synchronous capacitor is shown in Appendix E-4, the 

system has 19 state variables and the differential equations describing 

each excitation system can be obtained on the basis of equation B-2.4 in 

Appendix B-2. However, it is to be reminded that the governor system of 

the synchronous generator is neglected and there is no governor system for 

the synchronous capacitor since it has no mechanical input. 
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8.5.2 Results 

Table 8. 2 (a) shows the eigenval ues of the system of Figure 

8.3 for different values of the transmission line reactance XE and when 

the synchronous machines are regulated. The calculations are carried out 

under the assumption that the infinite bus bar has a unity voltage, Le., 

l LO and the power delivered is l p.u. In addition, the magnitudes of 

the voltages of the synchronous capacitor and the generator terminals are 

fixed to unity with unknown phase angles relative to the infinite bus. The 

other constraint on the system is that there is no power delivered to the 

synchronous capacitor. 

The eigenvalues in the first three columns of Table 8.2(a) 

are calculated for the same line reactances which are used in Table 9·.1. 

By comparing the results obtained in Table 8.2 (a} with those in Table 8.1, 

the following points are concluded: 

(i) In case of shunt compensation (Figure 8.3) the system is 

stable at high values of the line reactance ~ • In 

contrast, the system of Figure 8.2 is unstable at XE = 0.98 p.u. 

(ii) With shunt compensation, the synchronous generator synchro­

nizing torque is improved and this is apparent from the 

.imaginary part· of the mechanical mode , A.mech · in Table 8.2 (a}. 

'l'hi.s is because the line reactance XE viewed by ~e genera­

tor is half, in case of shunt compensation (Figure 8.3), of 

that in case of Figure 8.2 (without shunt compensation}. 
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(iii} The system of Figure 8.3 · is stable, although the phase 

angle between the generator terminal and the infinite 

bus 6 is more than 90° as shown in the last column 

of Table 8.2(b). 

(iv) The synchronous capacitor divides the phase angle between 

the generator and the infinite bus into approximately half. 

This is clear from the comparison of the angle 6 iri Table 

8.1 and 6., 6
1 

in Table 9.2(b). 

(v) The synchronous capacitor improves the power factor for the 

same line reactance and power transmitted. This is demon-

strated from the load power factors in Tables 8.1 and 

9.2 (b). 

8.6 Conclusion 

280 

The numerical results obtained in Tables 8.1 and 8.2 show 

that it is possible to improve the.system steady state stability by shunt 

compensation. In addition, it is clear from Table 8.2 that the 

shunt compensated system is stable at high values of line reactance 

(XE 1=1 1.6 p.u.}. 
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From this chapter, .one can see that the system stability 

can be maintained in long-line transmission ldthout risking the SSR 

problem. This is possible by substituting the series compensation by 

shunt compensation. 

As the subject of shunt compensation is still in its infancy,. 

it is still too early to judge whether shunt compensation will supercede 

series capacitor compensation. Further, experience in the field may re-

veal unsuspected pitfalls arising from shunt compensation. However, a 

detail study which takes into consideration the economical aspects over 

the series capacitor compensation, is required. 
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TABLE 8. 2 (a) 

EIGENV.ALUES O:F . Tal:! . SYS"1.$M OF :FIGURE 8 • 3 FOR DIFF!'.:RENT VALUES OF XE • 

(THE MAGNITUDES OF THE GENERATOR TERMINAL; THE SYNCHRONOUS CAPACITOR TERMI­

NAL AND THE INFINITE BUS VOLTAGES ARE KEPT CONSTANTS AT 1.0 p.u~) 

"E = 0.586 "E = 0.850 "E = 0.980 XE = 1.60 

- 10.3 - 7.63 - 6.78 - 4.33 

A + + + + - Astator:sta~o fl) 
stator 

Q) j 377. j 377. j 377. j 377. mo e 
:::t 

r-1 
liS 
> 
~ 

- 16.3 - 14.3 - 13.5 - 14.9 Q) 

"' •.-! 
A l':r.l + + + A t:amor-amort. - - -1-1 amor tisseu 0 

t; j 2.4 j 1.85 j 1.18 - 7.2 mode 
1-1 
Q) 
~ 

~ - 61.4 - 61.0 - 60.6 - 55.5 
fl) 

6 - 1 .. 72 - 1.96 - 1.97 - 5.23 
~ x- · AEXC :excita-
0 EXC + + + + tion ~ - -
0 j 2.43 j 2.81 j 3.15 j 8.1· mode 
~ ,,, 
:>.. 
(ll 

Afield - .672 - .679 - .680 - .672 Afield=!!::d 
fl) 

$ 
r-1 

~ - 6.94 - 6.04 - 5.68 - 4.51 
~ 
Q) 

.A "' + + + + .... stator l':r.l 
1-1 j 377. j 377. j 377. j 377. 0 
+l 
•.-! 

~ 
~ - 126. - 126. - 126. - 126. 
u 
en Aamort. - 73.1 - 66.8 - 64.7 - 61.7 
:::t g 
~ - 28.7 - 27.6 - 27.0 - 24 .. 6 0 

~ + + + + 
Ul · ~EXC - -

j 54.9 j 59.6 j 61.3 j 66.9 
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TABLE 8.2(a) (cont'd) 

~ = 0.586 ~ = 0.850 XE = 0.980 ~ = 1.60 

·Afield - 3.30 - 3.37 - 3.38 - 3.43 

- .900 - 1.40 -·1. 79 - .. 463. 

+ + + + -
:A 
mech. j 8.44 j 7.6 j 7.21 j 3.0 

- 1.29 - 1.5 - 1.52 - .94 

+ + + + - - -
j 11.96 j 11.4 j 11.0 j 9.43 

0 



· '"TABLE B.2 (b) 

STEADY STATE VALUES OF THE . SYSTEM .. OF .. FIGURE . 8. 3 

Load 
.:pp (Leading) 

PF 

XE = .586 XE = 0.85 ~ = 1 .. 6 

.984 .97 .962 

34.4 47.5 55.0 

17.2 25.0 29. 

Generator steady state terminal voltage angle 
relative to the infinite bus. 

Synchronous capacitor steady state terminal 
voltage angle relative to the infinite bus. 

.887 

107 

54. 

Load power factor (at the .infinite bus) and when 

it is leading·means that Ita is leading t 0 • 

284 
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CHAPTER IX 

.. SUMMARY. AND CONCLUSroNS 

9.1 s~ 

Thi.s study has dealt with the problem of SSR suppression 

in series capacitor compensated lines. Thi.s thesis has been organized 

as a systematic attack based on first understanding the principle of 

field current control of the SSR phenomenon in the basic system consist­

ing of a synchronous generator supplying a load through a series capacitor 

compensated transmission line. After this understanding, a feedback 

strategy has been proposed. The feedback scheme uses a combination of 

a P and a Q signals which pass through an NDS' filter before being 

inputted to the excitation system. The basic system is increased in com-

plexity by adding mathematical models of the voltage regulator and the 

power system stabilizer (PSS} feedback. The study is oriented towards 

ensuring that the excitation system can take on the additional duty of 

SSR suppression without impairing its normal voltage regulation and fast 

stabilization functions. Numerical analyses show that the SSR mode can 

be stabilized against small perturbation, but because, of the voltage ceil­

ings in the excitation system, large SSR instabilities which follow 

line-to-ground faults or synchronization-out-of-phase cannot be suppressed 

by the field excitation feedback. In order to suppress large perturba­

tion SSR instabilities, a nonlinear resistor protection scheme connected 

across the compensating capacitors has been tested and has been shown to 
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be successful. Kowever, because all voltages below ~e spark-over 

limit in the nonlinear resistor system lie in the dead-band, it has been 

shown that the system would limit cycle unless the field excitation 

feedback is also present to suppress the small perturbation instability. 

Next, the system complexity is augmented one step further by modelling 

the generator shaft system as distributed inertias connected by torsional 

springs. It has been shown that in addition to the SSR mode, the 

torsional resonant interactional mode is added. It is found that the 

d P and A Q feedback cannot suppress the torsional mode instability. 

In consequence, the power blocking filter is added to the system and this 

has been found to be effective. 

Finally, in the philosophy that prevention is better than 

cure, a complete different approach based on avoidance of SSR ra~er 

than suppression has been touched on. This has been demonstrated by a 

modest study based on shunt compensation using a single synchronous capaci­

tor to provide voltage support at an intermediate point of a long trans­

mission line. 

9.2 Conclusion 

The conclusions listed below include the outcome of this 

study which are felt to be of particular significance and are believed to 

be extensions to the knowledge of the subsynchronous resonance .. 
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(i) A definitive theory of field excitation control of SSR 

has been presented. Field excitation control of un-

stable SSR oscillation is achieved by making an electro-

111echanical motoring process dominate over the induction 

generation process (see Section 3.4}. The properties of 

the control signal necessary for this matter are given 

(Section 3.5.1) {84]. 

A combination of A P and A Q as the control signal 

is found to be superior to the other control signals. The numerical 

results obtained in Chapter rv and the experimental results reported in 
. 

[17] give strong support to this theory. 

0 
(ii) The study showed that the machine excitation system can take 

on an additional function of suppressing the unstable SSR 

oscillations. The NDS' feedback with A P and A Q as 

the control signal is effective in stabilizing the SSR mode 

without impairing the basic functions of the machine excita-

tion system. 

The power system stabilizer loop which takes the shaft 

speed as its input signal, does interact with A P and A Q loop. 

This interaction can cause the PSS mode to go unstable (see Section 5.7). 

The PSS interaction has been found to put an upper limit to the improve-

ment of the SSR damping mode 185] .. 
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{iii} I.t is found that the voltage ceiling li.mi.ts in the excita­

tion system prevents the NDSt feedback scheme from 

suppressing the large unstable SSR oscillation (see 

Section 6.5.1.2) {86]. Because of the voltage ceiling 

li.mi.tations, it was shown that the nonlinear ·resistor pro­

tection and the NDS • feedback schemes are both necessary 

for damping the large unstable SSR oscillations (see 

288 

Section 6.7) [86]. Since the nonlinear resistor protection 

scheme is good for large perturbations and the NDS • scheme 

damps out the small perturbations, then their combination will 

ensure stable operation under any disturbance. 

(iv) When testing the NDS' scheme against the torsional resonance 

interaction instability, it is found that this scheme is not 

effective. However, the NDS' scheme shifts the unstable 

region caused by the torsional resonance interaction {see Sec­

tion 7 .4.4.2) [87]. 

However, the shaft speed loop through the PSS is shown 

to effect the torsional resonance interaction. Therefore, a proper de-

sign of the PSS may·help in. eliminating torsional resonance,instability 

(see Section 7.4.4.1). 

The above instability is effectively removed under small 

and large disturbances by installing a power blocking filter in series 
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with the generator. This filter should be tuned to the frequency of 

oscillation of the SSR currents produced by this interaction (see 

Sections 7.5.3 and 7.5.4) !87]. 

(v) Steady state stability and power transmission capability 

of a system where long transmission lines are used, are 

improved by shunt compensation. The preliminary study 

presented in Chapter VIII which considered only one shunt 

compensation device, promises the possibility of having 

better improvement of system stability by connecting more 

than one shunt compensation device along the transmi.ssion 

line. 

As a by-product of this study, it was shown 186] that the 

synchronization-out-of-phase torque characteristic of the series capaci­

tor compensated system takes the same shape as for an uncompensated 

system when its line inductive reactance is reduced. 

9.3 Suggestions for Future Work 

(l) A theoretical basis for the design of the NDS' feedback 

loop based on knowing the system modes. 



(2) A redesign of the PSS to reduce the interaction with 

the SSR mode and to eliminate the instability region 

caused by the torsional resonance interaction. 

(3) Since the system topological network changes under load 

and fault conditions, it is very interesting to study 

the possibility of stabilizing the system over a wide 

range of subsynchronous frequencies. 

(4) Shunt compensation is a new area of investigation. The 

economical aspects of it and its theoretical analysis are 

new topics of research. 

290 
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e 
t APPENDIX A-1 

0 

0 

a.bc TO odq TRANSFORMATION 

In general, the transformation from the abc stationary 

reference frame to the odq reference frame can be written in terms of 

the transformation matrix [Cabc] as follows: 
odq 

The voltage and flux relations between the two frames 

(A-1.1) 

can be obtained from (A-1.1) by using e, 1/J instead of i, and since 

[Cabc] is the only transformation matrix used in the current derivations, 
odq 

it will be used as [C] • 

Park used the following transformation; 

i 1/2 1/2 1/2 i 
0 a 

id 
2 

ib (A-1.2) = cos e cos (9 - 120) cos {9 + "120) 3 

i -sin e -sin q ce - 120> -sin ce + 12o) i 

The above transformation is not power invariant, i.e., the transformation 

matrix in equation {A-1.2} does not satisfy the following equation, 

(A-1.3) 
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Note, power invariant is the same as orthogonal. Modern theories 

on transformation from the abc frame to the odq frame have used the 

orthogonal form given by, 

i 1/h~ 1/h l/12 i 
0 a 

id = I! cos e cos (6 - 120) cos (6 + 120) ~ 3 

i -sin a -sin 
q 

(6 - "120) -sin (6 + 120} i 
c 

(A-1.4) 

The two forms of transformation given in equations 

(A-1.3) and (A-1.4) can be written in a general form necessary .for 

further analysis as, 

= K 
3 

cos 6 cos (6 - 120) 

-sin 6 -sin (6 - 120) 

The transformation matrix [C] is defined as, 

cos (6 + 120) 

-sin (6 + 120) 

(A-1.5) 
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K4 K4 K4. 

[e] = K3 IWJ = K3 C:os e cos (6 - 120) cos (8 + 120) 

-sin e -sin <e - 12o> -sin <e + 12o> 

(A-l. 6) 

and 

cos 6 -sin (6) 

= 2 [G] 
3K

3 
(e] -1 = cos (8 - 120) -sin (6 - 120) 

cos (6 + 120) -sin (6 + 120) 

(A-l. 7) 

The condition for orthogonal transformation (see equation (A-1.3)) is 

fulfilled if K = h/3 and K = 1!;2 
3 4 

where Park used K
3 

= 2/3 and 

K
4 

= 1/2 . 

The constant inductance matrix that appeared in equation 

(2.14) , can be obtained by substituting equation {A-1.5) for currents . 

and fluxes in equation (2.6) as follows, 

re] ol [~] = re] ~ 
Lo [I~ ~ Lo rrj [

[L ] 
ss 

[L ] 
rs 

[L ~ sr 

lL ] 
rr [ 

-1 ~ [. J ~J e] 0 [e] 0 i 

0 [I]. 0 [I] ~ 
(A-1.8) 



C) 

or 

~dq b
C] [L ] (C] -l 

ss 

= 
[C]-l (L ] 

rs 

[C] [L ] 
sr 

[L ] 
rr 

i -odq 
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(1\-l. 9) 

substituting equations (A-1.6) and (A-1.7) into (A-1.9) we get: 

~dq = 

Irrespective of 

the expressions 

( 2 o 7) 1 (2.8), 

-K
3 

[W] [L ] 
2 

[G] ss 3K
3 

K
3 

(W] [L ] 
sr 

2 
[G] [L ] 

3K< rs 

the value of K4 in 

of [L ] ' [L ] ' ss sr 

(2.9), (2.10) and 

[L ] 
rr 

equation (A-1. 5) , 

[L 
rs 

] and [L 
rr 

] 

i -odq 

when one 

given in 

(A-1.10) 

substitutes 

equations 

(2.11) in equation (A-1.10), the 

resultant equation after neglecting the zero sequence will be, 

ljlfd = 

ljlkd 

-L 
d 

0 

0 

0 

-L 
q 

0 

~fd 
2 3 
3K (2 L k ) O 

3 a q 

0 

0 

~kd 0 

0 

(A-1.11) 

i 
d 

i 
q 



0 
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-where 

respectively. 

L are given in equations 
q 

(2.15) 
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and (2.16) 

For K
3 

= 213, which is the value used by Park, equation 

(A-1.11) is the same as equation (2.14). For K
3 

= f2/3, which is 

used for orthogonal transformation, the resultant inductance matrix in 

equation (A-1.11) will have a coefficient of 13/2 in the off diagonal 

submatrices. Because of the widespread use of Park's transformation 

which has been used quite generally in industry, the nonsymmetry in equa-

tion (2.14) , ignoring the negative sign, is removed usually by the per-

unitization procedure. 
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APPENDIX A-2 

PER-UNIT SYSTEM [47] 

In this Appendix the per-unitized equations in the d - q 

rotating reference frame are derived using the Xad - base as the per-

unit system. The base quantities selected for the stator of the 

synchronous machine are: 

(i) The rrns line current, which is the same as the rrns 

phase current, defined as .!ss . 

(ii) The line to neutral rrns voltage defined as ~B . 

(iii) The rated synchronous speed w
0 

• 

From the above defined base values the following base quanti-

ties are also defined. 

(A-2.1} 

The following notation ~ I !e is defined in the following way: 

= = = (A-2. 2) 

0 



From equation {A-2.1) 

zdB EdB I 1
dB 

[ZSB] = 

zqB EqB I IqB 

and 

tVSB ~:] 1 ~:] [- LSB] !sB =c~ = = = 
WO 

Stator Voltage Equations (See Equation (2.13)) 

e 
s 

e 
s 

ESB 

where 

= -

~B = 

[R ] 
s 

(ZSB] 
-1 

(ZSB] 

[R ] 
s 

1
SB 

i tjls 

~ -:J s d w - + + --
1

sB 
dt WO ~B WO 

= WO !sB 
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(A-2. 3) 

LJ~j 
(A-2.4) 

(A-2.5) 

1/J ---s 

tjiSB 

( A-2 .61 

From equation (A-2.6) the per-unitized stator voltage· equation 

is 



0 

or 

e = -s 

= 
-R 

a 

Stator Flux Equations 

1 + --
WO 
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d 1/Jd - 1/J 

+ 00 
q 

dt 

1/Jd 

(A-2. 7) 

From equation (A-1.11) the stator flux equations are, 

and 

The per-unitized flux equations are;. 

and 
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{A-2~81 

where I fdB , IkdB , ~qB are assumed to be the rotor field, direct 

amortisseur and quadrature amortisseur base currents respectively, which 

are unknown for the time being. 

From equations (A-2.8) 

(A-2.91 

where 

-
Lafd Lakd 0 

= 

3 Lafd 1£dB 3 Lakd 1kdB 
0 2 LdB 1dB 2 LdB I dB 

-0 0 Lakq 
• 

3 L k Ik B 
0 0 aS S 

2 LqB IqB 

(A-2.10) 

Rotor Voltage Eguations 

Assume that the rotor base voltages are, 

!..s = !EfdB E._ E._ J T ... k.dB -k.qB (A-2.11) 



so 

where 

~B 

[LrBJ 

e = -r 

= 

= 

1 

WO ErB 

LffdB 

= 

z 
kqB 

= [tjlfdB 

LkkdB 

= 

tjlkdB 

LkkqB 

From equation 2.13 

[R ] 
r 

d i +- T1J -r dt '"-r 

divide equation (A-2.14) by base values 

e 
-r 

;.B = 

EfdB/IfdB 

T 
tjlkqBJ = 

d .ix: 
dt T1J 

..L.rB 

[LrB] I -rB 
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E 
kqB/IkqB 

(A-2.12) 

(A-2 .13) 

(A-2 .14} 
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rR. J i +....L d 
ix: e = -r r -r WO dt 

or 

- - ~fd efd Rfd ~fd 

... 1 d 
0 = ~d ikd + - lPkd (A-2.14) 

WO dt 

-0 ~ lPkq 

Rotor Flux Voltages 

From equation (A-1.11) 

lPfd 
2 3 

id Lffd ifd Lfkd ~d = -- (2Lafd) + + 3 K
3 

2 3 
id Lfkd ifd ~d ikd lPkd = -- (2 Lakd) + + 3 K

3 
@.-2.15} 

lPkq 
2 3 

i Lkkq ikq = -- (2 Lakq) + 3 K
3 q 

divide equation (A-2.15) by base values, 



0 

2 

ljJfd 

2 
ljJkd = 

K3 

ljJkq 

where 

IdB + Lffd ifd 

IdB LffdB IfdB 

Lfkd IkdB 

+ LffdB IfdB • ~d IkdB 

~fd 1
fd 

~dB IkdB 

3L i IB Lkk ik 
~...;;a=k._.q__.q.___ • ~ + g g 
2 LkkqB IkqB IqB . ~qB IkqB 
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(A-2.16} 

From equation (A-2.16) the per-unitized equations are, 

Lafd 0 Id Lffd Lfkd 0 1£d 

- + -
~d· Lakd 0 i Lkfd 0 1kd q 

- -0 Lakq 0 0 ~q ikq 

(:A-2 .17} 



0 

-
Lafd 

-
Lakd 

0 

and 

-
Lffd 

-
!;ad 

0 
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0 
3 Lafd IdB 

0 
2 LffdB IfdB 

0 

-
Lakq 

= 3 Lakd IdB 
0 

. .:... ~@. ~dlL. 3 Lag rg;;-
0 

-
2 LkkqB IkqB 

~_(A-2 .18) 

-
Lfk.d 0 

Lffd Lfkd IkdB 
0 

LffdB LffdB IfdB 

-
~d 0 = Lkfd IfdB Lkkd 

0 
~dB IkdB ~dB 

-0 ~q 0 0 Lkk s 
~B 

(A-2.19) 

The condition of having I L ] ~~ L ] T is by comparing 
--rs -sr 

each ter.m in equation (A-2.10) with those in equation (A-2.18) or 

2 3 Lafd IdB 
3 K3 2 LffdB IfdB 

2 3 Lakd IdB 
K3 

3 Lakd IkdB 
= 3 K

3 
2 ~dB IkdB 2 LdB IdB 

(A-2.20) 

2 3 Lak I B 3L ~ 
.q s = . K3 

akg; g;B 
3 K3 2 LkkqB IkqB 2 LqB IqB 

From equation (A-2.20) the following relations are 

obtained: 
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2 2 . 2 2 
Lffd.B 1fdB = LdB 1dB = Lkkd Ikd.B 

3 K
2 
3: 

(A-2.211 

and 

2 2 
LqB 

12 
~qB 1kqB "" 

3 K2 qB 
3 

(A-2.22} 

Relations (A-2.21) and (A-2.22} indicate that the rotor 

volt-ampere = 2 the stator volt-ampere. 

Note: For Park's transformation where K3 = 2/3 the rotor volt-

3 ampere = 2 the stator volt-ampere and for orthogonal trans-

formation where K3 = 12/3 the rotor volt-ampere = the stator 

volt-ampere. 

The condition for Xad - base is to make all the mutual 

inductances between the stator and the rotor windings in one axis equal, 

Lafd = Lakd = Lad = Ld - R.d 

and tA-2.23} 

Lakq "" L = L - R. aq q q 

where R.d and R. ·are leakage inductances. 
q 

Condition (A-2.23) can be derived by equating the 

mutual flux linkages in each winding. 
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and {A-2.24} 

From equation (A-2.24) 

IfdB 
2 Lad 

I dB == -3 K
3 Lafd 

Ikd.B 
2 Lad 

I dB = 
3 K

3 Lakd 
(A-2 .25) 

2 L 

IkqB = ~ I 
3 K

3 Lakq qB 

where Lad ' 

in HeJiries. 

L I Lakq I and Lafd are constant inductances 
aq 

From equation (A-2.25} the rotor base currents necessary 

to satisfy the Xad - base are obtained. As a summary the definitions of 

the base values can be divided into two parts. 

(i} For the stator, the base voltage is usually defined from 

the knowledge of the transmission voltage. The base 

current can be obtained from the machine rating, which 

is usually known, and from the defined base voltage. Know-

ing the base voltage and the base current, then the stator 

base flux, impedances and the self inductances are cal-

culated according to equations (A-2.3) and (A-2.4}. 



(ii) For tne rotor, the base values are usually not known. 

By forcing the mutual inductances to be reciprocal 
. / 

(IL J = IL ] T} , a relation between the stator and the sr rs 

rotor volt-amperes is found as in equations (A-2.21) 

and (A-2.22) Then by choosing another definition for 

rotor currents, which is Xad - definition in this 

case, a relation between base stator and rotor currents 

· can be obtained from which the base rotor currents are 

defined as in equation (A-2.25). Knowing the rotor 

base volt-ampere and the rotor base currents, the rotor 

base voltages, impedances and self inductances are auto-

matically defined. 
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The per-unit equations obtained from the combination of 

equations (A-2.7), (A-2.14) and- equations (A-2.8), (A-2.16) are, 

fd 
id llld -$ 

q 

e i lllq llld q q 

,efd I= [r] ifd + 
l d 

lllfd + 0 (A-2.261 - w 
WO dt 

la J - -1kd lllkd 0 

~ ~ lllkq 0 

where 
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-
ljld -x d 

0 -
xad xad 0 id 

-ljlq 0 -x 0 0 X i q aq q 

-
ljlfd "" -x 0 xffd xfkd 0 ifd (A-2.27} 

ad 

lllka -x ad 
0 xfkd ~d 0 ~d 

ljlkq 0 -x 0 0 xkkq ikq aq 

and 

-r 
a 

-ra 

[rJ = (A-2.281 

where X is used for per-unit inductances, 

r is used for per-unit resistances, 

and is per-unit rotor speed. 
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APPENDIX B-1 

LABORATORY MACHINE . DATA . !17] 

30 ~A BASE 

R 4.75 sec. rfd 0.00109 

D 0.1 ~fd 0.185 

r 0.0158 rkd 0.0112 
a 

xd 0.75 \:d 0.094 

X 0.238 X 0.163 q aq 

x2 0.132 rkq 0.0117 

xad 0.675 
\:q 0.088 

NETWORK. PARAMETERS 

rE = 0.0229 , XE = 0.0112 , XC variable 

NDS. Filter 

input .... .__output - .. 

Figure B.l. NDS Filter transfer function !17] • 
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TNDl = 0.033 sec. 

TND2 = 0.017 sec. 

TND3 = 0.01 sec. 

variable. 

0 



or 

APPENDIX B-2 

STATE SPACEMODEL OF GENERAL TRANSFER FUNCTION {54] 

y(s) 

u (s) 
= 

The general transfer function is, 

b 
m 

a 
n 

m 
s 

n 
s 

+ • 

+ • • 

+ = 

n > .m > 0 
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(B-2.1) 

(B.2.2) 

The state space model of this transfer function may be 

obtained by defining the state variables x
1

. 

= a y 
n 

b u 
n 

= d 
dt 

x
1 

+ a y - b 
1 

n 
n-1 n-

d x = -x 
n dt n-1 

+ 

x as, 
n 

(B-2. 3} 

combining equation B-2.2 with equation B-2.3 and eliminating y, the 

state equation will be, 
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e 
x1 -a a 0 0 xl 

n-1 n 

x2 -a 
n-2 

0 a 0 
n 

0 x2 

d = 1 
dt a 

n 

X -a 0 0 0 a X 
n-1 n-1 1 n 

X -a 0 X 
n n 0 

a b a b 
n n-1 n-1 n 

a b 
n-2 

a b 
n n-2 n 

+ 1 
u 

a 
n 

(B-2.4) 
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APPENDIX C 

CALIBRATION OF THE NDS 1 FEEDBACK. SCHEME 

The proposed NOS' feedback scheme is calibrated against 

the feedback scheme used by [17] which was called the NOS feedback 

scheme and it is shown in Figure 5.3. The mathematical state space 

model of this scheme (NOS scheme} is obtained from Appendix B-2 as, 

~DJ ~· :][:J d 01 

b~ = + '1.1 (C.l} dt 
02 _ao2 02 

:,. 

where 

0 
T NDl + TND2 

aol = .T T 
. NDl ND2 

1 
aD2 = 

TNDl TND2 

and 

bDl = - K (T . + TND2) ND NDl 

bD2 = - K ND 

The output of the NOS filter \) 

D 
is 

v = aD2 xfJl + KND \.1 (C .2} D 



The values of tile gain and the. time constants are ~ = lOO , 

TNDl = 0.0200 sec., TND2 = 0.0400 sec. 
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The eignevalues shown in Table C.l are for the following 

systems, 

First row, for the basic system incorporated with HRE excitation system 

and the NDS feedback loop for the control angle ~ = 0. 0, system model 

is the combination of equations 4.1, 5.1, and C.l • 

Second row 1 for the system of Figure 5. 3 (a) with the control angle 

~ = 0. 0, . system model is the combination of the above model and equation 

5.4 • 

Third row, the same as in the second row but for 

Fourth row, the same as in the second row but for 

Fifth row, the same as in the second row but for 0 
~ = 240 • 

The calibration of the NDS' feedback scheme with that 

used by [17] is achieved by comparing the eigenvalues in Table 5.3 

and those in Table c.! . The first row of both tables show that the above 

schemes are similar in their effect on the SSR positive sequence mode. 

The mechanical mode in both Tables is unstable 1 but it is better in case 

of the scheme of Reference [17] • However, the change in its damping is 

not large. The excitation system is still performing its normal function 

of fast regulation with both schemes. The last four rows of Tables 5.2 
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·and c.l show the direction of + by which the SSR mode damping is 

improved. In both schemes the choice of $ in the first quadrant 

improve the SSR mode damping but reduces the damping of the PSS mode. 



0 e e 

'l'ABLB C.1 

EIGENVALUES 01!' 'l'HR PRACTICAL SYSTEM WREN THE NDS I!'EEDBACK ~BMB 01!' REI!'ERENCE (17) IS CONSIDERED 

System 
I 

Configuration >. A A mech. A amort. Afield 1sxc APSS ANOS ssrn ssrp 
\ 

Basic System - 3.65 - 5.48 + 1.21 - 58.3 - 2.53 - 70.8 - 2.53 - 16.5 

+ .. 00 + :t + :t + :t - !:. 
NOS +HRE j 705 j 52.3 j 8.04 - 10.8 j 5.0 j 109 j 5.0 j 21.5 

System - 3.65 - 8.54 - 7. 72 - 58.3 - 0.770 - 70.8 - 0.770 + 4.48 - 20.8 
+ .. 00 of !:. !:. !:. + !:. - ;t - 0.211 !:. 

Fig.5.3(a) j 705 j 47.6 j 1.80 - 20.1 j 2.10 j 109 - j 2.10 j 31.3 j 14,6 
Ul 

~ System - 3.46 - 12.9 - 7.60 - 58.1 - .170 - 70.8 - • 770 + 9.34 - 20.3 

~ + .. 30° of + + !:. + !:. - !:. - .211 !:. 0. 

"" Fig.5.3(a) j 705 j 43.7 j 2.00 - 20.5 j 2.2 j 109 j 2.2 j 33.9 j 13.3 111 

System - 4.20 - 2.06 - 7.70 - 57.0 - .770 - 70.8 - • 770 - 1.04 - 25.6 

+•315° of :t !:. :t + !:. - + - .211 :t -
l!'ig.5.3(a) :1 705 j 51.2 j 1.43 - 20.1 j 2.1 j 109 j 2.1 j 25.7 j 15.2 

; 

System - 4.90 + 8,5 - 7.50 - 55.7 - .730 - 70.8 - ,730 - 4.7 - 21.3 

... 240° of !:. :t :t !:. + :t - + - .211 !:. -
Fig.5.3(a) j 705 j 50.1 j 1.23 j 14.6 j 2.14 j 109 j 2.14 j 21.2 j 3.54 

XC "' 1.2 p.u., rE - 0.0295 p.u., 'No . lOO w .... 
ANDS The eigenvalues associated with the filter. 

111 
NOS 
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AI>l?ENDIX D 

DERIVATION OF THE HYDRO-SYSTEM M&CHANICAL EQYATIONS 

The mechanical part of the hydro system is modeled by 

two inertias, one representing the generator HG and the other re-

presenting the turbine, HT • The two inertias are connected by a spring 

with stiffness ~ , and shaft friction is modeled by a dash-pot 

connected between the two inertias. The model diagram is shown in 

Figure D.l. 

DGT 

---+--lE C:"' (~{ ) J 
KGT T p.u. 

T p.u. e 
m 

Figure D.l. Hydro-turbine inertia system model. 

Since the quantities are in per-unit values, therefore 2H is used to 

represent J in Figure D.l. 

The equations of motion of the system in Figure D.l can 

be derived as follows, 

The total kinetic energy of the system ~ is, 



l 
2 
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(Do'l} 

are the. per unit speeds of the turbine and the generator 

respectively. 

E = 
p 

l 
2 

The total potential energy of the system 

<o - o > 
2 

G T 

E 
p 

is, 

where oG , eT are the angular positions of the turbine and the genera-

tor respectively. 

d 
dt (Total energy) = Power supplied - Power dissipated. 

since the turbine and the generator speeds are different from zeros 

therefore, 

d WT 
2 HT~ - KGT (oG - oT> - T + D 00T + 0GT <wT - ;;; ) = 0 

m T G 

and 

2 
d WG 

(&G - oTl 
... 

c;G - ;;;T) H -- + KGT + T e + 0G 00G + 0GT = 0 G dt 



- d aT 
- 1 = WT dt 

d Q __ G 
= WG - 1 dt 

in matrix form, the mechanical equations are, 

2 HG 1ilG -D -D. DG -K 
G GT GT 

2 HT d WT DT -D -D 
T GT KGT 

= 
dt 

1 oG 1 0 0 

1 c;'t.i 0 1 0 

WG -T 
e 

WT T 
+ m 

oG -1 

0 
L..T 

-1 

DGT , DG and DT are the damping coefficients of the shaft, the 

generator and th~ turbi~ respective~y. 

318 

K 
GT 

-KGT 

0 

0 
.._J 

(D. 2) 
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. . AP!?-ENDIX . E .... l 

CALCULATION OF SYNCHRONOUS GENElU\TOR 'l'ARAMETERS · I 81] 

The machine p. u. parameters supplied by the manufacturer 

are usually given as 

Base KYA = 2 GVA 

Base Voltage = 735 KV 

H = 4.00 sec. X" = 0.200 x.t = 0.150 Td.o = 8 sec. 
d 

X = 1.00 X = 0.700 r = 0.00230 T" = 0.07 sec. d q a dO 

x• = 0.300 xn = 0.300 T = 160 msec. T" = 0.09 sec. d q a qO 

The machine parameters necessary for theoretical analysis can be obtained 

from the above data as follows [83] 

X = X - X = 0.55 
aq q R. -

xffd = xad + ~fd = 1.032 



0 
·xkkd = xad + ~d = .925 

~q 
... X [ (X" - X ) I (X - X"} J = 0.206 

aq q ~ q q 

~q = X aq + ~q = 0.756 

TdO (rad.) = WO * TdO (sec .. ) = 3016 

rfd = xffd 1 TdO = 0.000342 

T" (rad) 
d 

= Td"o (sec.) * w * X" I X' = 17.6 
0 d d 

T" (rad) 
qO 

= T" (sec.) * w
0 

= 33.93 
qO 

rkq = xkkq I T~0 = 0.0223 

320 



321 

APPENDIX E-2 

EXCITATION SYSTEM OF THE SYNCHRONOUS . GENERATOR [91] 

The leading circuit and the excitation system of the 

synchronous generator are: 

E 
ref 

- + p 
2.5 •200 . .. 

r 

(1+1.4s} (1+.4sl 1 + O.Ol6s -
et 

Lead Circuit Excitation System 

Q 
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SYNCHRONOUS CAPACITOR PARAMETERS !81] 

Manufacturer data 

H = 2.22 sec. 

xd = 1.60 

X' = 0.300 
d 

The calculated data 

xad = 1.47 

X 
q 

= 0.824 

X" = 0.197 
d 

X = 0.950 
q 

X" = 0.230 
q 

(see Appendix E-l) 

1.67 

xkkd = 1.59 

X~ = 0.126 Td_o = 8.3.-5 sec. 

r = 0.00274 T" = 0.0120 sec. 
a dO 

T = 0.200 sec. T" = 0.0370 sec. 
a qO 

0.943 = 0.0676 

= 0.000670 rkd = 0.0645 
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0 
APPENDIX E-4 -

SYNCHRONOUS .. CAPACITOR EXCI'.i'AT:ION .. SYSTEM .. I 81] 

The excitation system and the lead circuit transfer 

functions of the synchronous capacitor are, 

E 
ref 

+ 
et ... 200 · 1 ·+ o~2ss .. - -1 +- o.o16s 1 + o.oss -

Excitation System Lead Circuit 
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