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ABSTRACT

The suppression of the subsynchronous resonance (SSR) phenomenon
that occurs in synchronous generators connected to series capacitor com-
pensated transmission lines has been investigated. The synchronous
machine field winding has been considered as a means of controlling this
phenomenon. The physical concepts of how the above phenomenon can be
suppressed by field current control are introduced, and the properties of

the control signal required are explained.

Among the different signals which can be used to suppress the SSR
phenomenon, the signal composed of A P and A Q is adopted in the
study. In confirming the physical concepts by a numerical example, the

above signal is seen to give a flexible and a robust feedback.

After understanding the principle of SSR suppression and after
choosing the control signal, a feedback scheme which passes through the
machine excitation system, is designed for the SSR suppression. The small
perturbation analysis of a system incorporated with such a feedback scheme
has shown the effectiveness of this scheme in eliminating any undesirable

SSR oscillation.

After testing the above feedback scheme against small disturbances,
it is necessary to see what is the situation under large disturbances.
Digital simulations show that A P and A Q feedback alone is incapable
of stabilizing the large unstable SSR oscillations. The reason is that
the machine regulator saturation limits (voltage ceilings) prevent the above
scheme from injecting a large enough stabilizing signal. To overcome this
difficulty, a nonlinear resistor protection scheme connected across the
series capacitor is added to the system. Results show that both the non-
linear resistor protection and the above feedback scheme working together

are required for ensuring system stability under small and large disturbances.

Next, the torsional resonance of the multi~inertia shaft system,

as it is coupled to the SSR of the series capacitor compensated system, is
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‘considered in the analysis. The feedback scheme with AP and A Q

as the control signal is tested against the instability arising from
the torsional resonance interaction. Because the A P and A Q

scheme is unable to eliminate the above instability, a power blocking
filter is used for this purpose. Its effectiveness under small and

large perturbations has been investigated.

Finally,instead of suppression, a fresh approach based on avoid-
ing SSR is introduced. A preliminary small perturbation analysis of a
system, which is shunt compensated by a synchronous capacitor, has been

included.
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RESUME

On a examiné la suppression du phénoméne de la résonance
sous-synchrone (SBS) qui se produit dans les générateurs synchrones re-
liés aux lignes de transmission compensées par des condensateurs en série.
Pour contr8ler ce phénoméne, on a pris en considération le bobinage in-
ducteur de la machine synchrone. On a presenté les concepts physiques
pour pouvoir supprimer le phénoméne ci-haut mentionné par le contrSle du

bobinage et on a expliqué les propriétés du signal ‘de contrSle requis.

Parmi les différents signaux qui peuvent €tre employés pour
supprimer le phénoméne SRS, on choisit dans cette étude le signal composé
AP et AQ . Afin de confirmer les concepts physiques par un exemple numéri-

que, ce signal semble donner une rétroaction souple et solide.

Aprés avoir compris le principe de la suppression de SRS et
aprés avoir choisi le signal de contrSle, un arrangement rétroactif qui
passe par le systéme d'amorgage de la machine est construit pour la suppres-
sion SRS. L'analyse de la petite perturbation d'un systéme incorporé a un
tel arrangement rétroactif a demontré l'efficacité de cet arrangement en

éliminant toute oscillation SRS indésirable.

Aprés l'expérimentation de l'arrangement rétroactif ci-haut
mentionné contre les petites perturbations, il faut étudier la situation
contre les grandes perturbations. Les simulations digitales démontrent que
la rétroaction de AP et AQ seulement est incapable de stabiliser les
grandes oscillations SRS. Les limites de saturation du régulateur de la
machine (limites dé voltage) qui empéchent cet arrangement d'injecter un
signal stabilisateur assez grand en est la raison. Pour vaincre cette dif-
ficulté, on ajoute au systéme un arrangement de protection de résistance non
linéaire rattaché parallélement aux series du condensateur. Les résultats
démontrent que la protection de résistance non linéaire et l'arrangement ré-
troactif sont tous deux nécessaires pour assurer la stabilité au systéme

contre les petites et les grandes perturbations.
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Puis on analyse la résonance de torsion et le systéme
de puits & inerties multiples tel qu'il est associé au SRS du systéme
des séries du condensateur. On vérifie 1'arrangement rétroactif avec
AP et AQ comme signal de contrSle contre 1l'instabilite provenant de
1l'interaction de la résonance de torsion. Parce que l'arrangement de
AP et AQ est incapable d'éliminer cette instabilité, on se sert d'un
filtre bloguant 1l'énergie. On a étudié son efficacité contre les grands

et les petites perturbations.

§

Enfin, au lieu de la suppression, on introduit un nouvel
abord pour éviter le SRS. On a aussi inclus une analyse préliminaire
des petites perturbations d'un systéme de compensation shunt par un con-

densateur synchrone.
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'CHAPTER T

~ INTRODUCTION

1.1 The Use of Series Capacitors

Stability studies have been considered as an essential part
of power system planning. The task of achieving acceptable stability
performance becomes more difficult as the power system expands and the

distance over which the power is transmitted, increases.

Over the history of power system growth, stability was main-
tained without great difficulty. This is because the centres of
consumption were close to the generation stations. Therefore, short
transmission lines were satisféctorily used to transmit the necessary
power. However, within the last decade the sources of generated electric
power became increasingly further removed from the centres of consumption.
Thus, long transmission lines are used to connect the sources of generated
power with the centres of consumption. Therefore, sysfem stability be-

comes a serious problem.

From the standpoint of power system stability analysis, the
most important function [1l] is the power-angle curve as shown in Figure
1.1. Assuming for simplicity a cylindrical synchronous generator connected
to an infinite bus bar through a transmission line, the  power transmitted
(Pl is sinusoidally varying with the electrical angular displacement be-

tween the infinite bus and the generator rotor (4§). ' Assuming that the
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Figure 1l.l. Power-angle Curve.

system resistances are neglected, then the peak of the curve in Figure
1.1 is inversely proportional with the net effective reactance in the
path of the current flowing between the generator and the infinite bus

21 .

In the context of Figure 1.1, the system steady state operat-
ing point is characterized by the amount of the transmitted power and the
angular position of the machine rotor with respect to the inginite bus
(e.g., point g in Figure 1l.1). The system steady state stability is
related to the slépe of the power-angle curve at the system operating point
I31. In fact this slope determines the synchronizing torque available on
the generator: When the operating point is at point, say g, in which

the slope is positive, then the steady state is said to be stable. The
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portion of the power~angle curve in which the slope is negative corresponds
to the unstable operating angles. As the steepness of the slope is an
index of the electromechanical stiffness acting on the rotor during

oscillations,it is desirable to operate at increased slope.

However, the system transient stability is discussed on the
basis of the equal area criterion [2] where ;he system is said to be
stable following a severe disturbance, if the total energy acting to
accelerate the machine is equal to the total energy acting to decelerate

the machine .

In the light of the previous paragraph, one can improve the

‘system stability by reducing the inductive reactance in the transmission

circuit. This is because the power—angle curve takes the form of

vl V2 sin § / XL where Vl and V2 are the magnitudes of the-voltages of

the generator and the infinite bus and XL is the inductive reactance be~
tween the voltages. Reducing XL clearly increases the peak of the power-
angle curve as shown in Figure 1.1. For the same power delivered, the

operating point is shifted from g (for XL ) to g' (for X'.) .

1 Ll

Firstly, we note that the slope of the power-angle curve at ¢g' is greater
than that at g, so that the system steady state stability is improved.
Secondly, we note that g' is at a smaller operating angle than g. This
is combined with the fact that the peak of the curve for X£1 is greater

than that for Xq e This implies that the system with reduced reactance

" can withstand a more severe fault. In brief, the transient stability is

improved [4].



The conclusion to be drawn is that in orxder to improve the
stability, it is necessary to reduce the net effectiwve reactance in the
path of the current ‘flowing in the transmission line. In systems where
short transmission lines are used, the problem is already solved, since
these lines have low inductive reactance. Whereas in long transmission
lines, series capacitors are installed in series with these lines to

compensate for their large inductive reactances 15, 6] .

Series capacitors are the most economical and practical method
of improving the system stability [7, 8] and they provide an excellent
means of increasing the power transmission 1[9]. Series capacitors have
been extensively used [8, 10, 11, 125 over the last two decades. However,
their introduction in the transmission lines has brought about two damaging
effects: the subsynchronous resonance (SSR) and the torsional resonance
interaction where the latter resulted in the destruction of the two shafts
at the same Mohave power station on December 9, 1970 and again on October

26, 1971 [13, 14).

1.2 " 'What is SSR

Although the series capacitor compensation effectively reduces
the line reactance, the resonance associated with the L - C circuit may

be undesirable. In the first place, the series capacitance is chosen
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such that forced oscillation at the supply frequency does not occur.
For stability reasons, the resonance is never chosen to be supersynchro-
nous [15] . Consequently, the L - C resonance frequency is always

subsynchronous [16] .

1.2.1 L - C Resonance

The natural frequency of oscillation of the inductance and

the series capacitor 0 is [17] -

/ XC ’
W= W electrical r / s (1.1)

where XL ’ XC and X2 are the line inductive, the series capacitive

and the generator negative sequence reactances respectively.

Whether the SSR is of any consequence to the system per-
formance depends on whether the resonating mode is negatively or positively
damped.. Generally, it is expected that the resistance in the system will
damp out this mode. However, the amortisseur windings in the fotor of the
synchronous generator is effectively a negative resistance to this mode [18].

When this negative resistance dominates, the SSR mode is negatively

damped,



1.2.2 Pphysical Explanation of SSR Oscillation

Under any disturbance, the resonance of the external L - C
circuit (network) results in positive and negative sequence currents and
consequently rotating mmfs in the stator of the synchronous generator
at subsynchronous and supersynchronous frequencies respectively [19].

The negative sequence current acts like a brake on the rotor, dissipating
energy and helping to damp this component. This is because the synchro-
nous machine rotor behaves as a positive resistance when viewed by this

current, therefore, it is damped out.

The positive sequence current which oscillates at subsynchronous
frequency wn r Sets up a stator magnetic field rotating in the airgap at

wn which is by design less than the synchronous speed w electrical r / s

0
f20, 213. The synchronous generator rotor is rotating at a constant syn-

chronous speed w thus, currents at a frequency of w_ - W electrical

o' 0
r / s are induced in the rotor circuits which in turn produce a rotor

magnetic field in the airgap stationary with respect to the stator magnetic
field produced by the positive sequence current. The interaction between

these two subsynchronous fields will result in a time invariant counter

torque component associated with this mode.

The SSR positive sequence current oscillation will tend to be dampec

by the line and transformer resistances. However, the synchronous genera-
tor acts as an induction generator to this current, since its rotor is

rotating at a higher speed than that of the SSR positive sequence current.
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That is, the rotor of the synchronous generator will béhave as a nega-
tive resistance as viewed by the SSR positive sequence current. If the
net resistance in the path of this current is négative, that is, if the
energy fed by the rotating machine is more than that absorbed by the fe-
sistance loss in the SSR 'positive sequence current éircuit, then the
oscillations will build up in time and cause system instability. This is
known [19] as the induction generation effect giving rise to the unstable
SSR oscillation. However, if under this induction generation effect the
net effective resistance is positive, then the SSR oscillation will be

damped.

1.3 Torsional Resonance Interaction

The generator shaft system usually has many torsional modes
[22] and associated with each mode is the natural frequency of the torsional
resonance (in practice the torsional resonance frequencies range from 15 Hz

to 45 Hz for steam turbo~generator stations and 10 Hz or below for

hydro~generator stations [23, 24]). This arises from the fact that the

rotors of the generator and the exciter, the high, the intermediate and the
low pressure turbines (in the case of a steam station) may be modelled as a
number of inertias interconnected by elastic shafts which may be modelled

as torsional springs [22]. The mode oscillations of the rotor of the



generator is of some importance because it carries with it the field
excitation. The torsional oscillations of the field coil, therefore,
has the possibility of inducing voltages across the stator windings [23].
‘When the electromechanical torque set up by these torsional induced
stator currents is phased so as to reinforce positively theAmagnitude

of the torsional vibration, K then an unstable situation exists.

The detailed mechanism by which this electromechanical damp-
ing occurs is not yet understood, although the condition at which the
unstable situation occurs have been identified. This condition is when
the fregquency of the L - C resonance W is approximately egqual to
wo - where W, is anyone of the torsional resonance fregquencies
and wo is the rotor synchronous speed. It is known [23] that at this
frequency_the electrical system will behave as a negative mechanical
damping as viewed by the rotor system. If this negative damping is
greater than the machine positive damping, then torque oscillation will

build up until the shaft is highly stressed. This is known as the tor-

sional resonance interaction ([18, 23].

1.4 Review of Previous Work

Literature available prior to 1970 [5, 6, 25] described
the concept of series resonance possible in transmission lines utilizing

~series capacitor. Some of the references have described the phenomenon



as a form of self-excitation. Reference [25] used the frequency domain
method to map the stability boundary on the series capacitive reactance

and the line resistance plane. It was found that unstable SSR oscil-
lation is more likely to occur at low line resistance and high series

capacitive reactance.

Since the mechanical failure of 1970 at the Mohave power
station, a great deal of effort has been concentrated on the study of
SSR phenomenon, notably, in the analysis, detection and prevention of
this phenomenon. Several mathematical techniques have been developed for

large system planning [8, 12, 26, 27, 28, 29, 30].

Reference [261 calculated the negative damping coefficients
which resulted from the torsional resonance interaction. The limit at
which this negative damping exceeds the machine damping was predicted [26].
This method of calculation was applied in the planning of Kaiparowits

power station in U.S.A.

Reference [27] introduced a circuit analysis procedure for
the subsynchronous fesonance and formulas for calculating the effect of
the SSR phenomenon, while References [21, 31] used the Nyquist criterion
for investigating tﬁe stability conditions in the multi-machine power
system. The method of calculating the peaks of the SSR oscillations and
the expected system condition of these oscillations was described [20] .

Reference [32] used the eigenvalue technique to investigate the
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effect of the torsional resonance interaction on the system stability.
It was found that an additionalxregioq,offinstability is causéd‘by-thié
interaction. Reference [33] added the machine regulator and governor
systems to the analysis of [32]. It was found ([33] that the stability
region under torsional resonance interaction can be improved by a proper
design of electro-hydraulic governors while the regulator s?stem remains

ineffective.

The theoretical analysis carried out in [18] for the Mohave
power station to explain the cause of the mechanical damage was.confirmed
by the experimental results conducted in {34] at the same power stafion.
A detailed model of its mechanical system which is useful for the study of

the torsional resonance interaction, is introduced in [35].

The other aspect of development consisted of finding protective
devices and solutions to prevent any further damages at the Mohave power
station. Most of the solutions for the SSR phenomenon were concerned
with reducing the peak torque oscillations following system disturbances
since the levels of series capacitor compensatiéns were chosen so as not
to cause unstable SSR oscillations. A prime concern is finding’
practical methods to eliminate the most severe case of all viz: the inter-
action of a shaft system torsional mode whose resonant frequency is coin-
cident with the frequency of the pulsating torque arising from unstable

SSR mode.
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To eliminate the torsional resonance interaction, Reference
[18] proposed a SSR power blocking filter to be installed in series
with the series capacitor compensated transmission line. The SSR
blocking filter is a L - C tank circuit which is tuned to the SSR
freQuency. It presents itself as a large resistance to the SSR current
and in consequence dominates over the negative resistance associated with
the induction generation action of the amortisseur windings. References
[36, 37] installed this filter at the Mohave power station as its responses
to temperature variations and to 1levels of series capacitor compensations
were reported. Reference [38] introduced a feedback loop through the
machine excitation system to control the torsional resonance interaction.
It was shown [38] by eigenvalues analysis and analogue simulation that
torsional resonance interaction can be eliminated at a point characterizéd
by fixed values of a series capacitive reactance and a transmission line
resistance. Reference [39] introduced a feedback loop through the tur-
bine governor and it was demonstrated by eigenvalues analysis and analogue
simulation that torsional interaction is totally eliminated. However, it
was recognized [39] that the turbine governor system had a time response

which was too fast to be realistic.,

There are a number of schemes proposed to protect the series
capacitor from the overvoltages which would occur under the conditién of
unstable SSR oscillation. Reference [18) proposed a tripping relay
which trips the generator under sustained SSR oscillétion. This relay

‘was tested in the field and the results were reported in [40, 41] . A
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dual-gap scheme connected across the series capacitor was proposed
[18] +to protect the series capacitor and to reduce the peak torque
oscillation. Reference {42] introduced a nonlinear resistor protec-

tion scheme connected across the series capacitor for the same purpose.

To control the unstable SSR oscillation, Reference [18]
proposed a redesign of the generator rotor which has a low amortisseur
resistance to eliminate the induction generation action. Reference [23]
tested a dynamic filter which is added in series with the series capacitor
transmission line to solve the unstable SSR oscillation problem. This
filter generates a voltage equal in magnitude and opposite in phase to

that produced by the rotor oscillation at subsynchronous fregquency.

There has been a number of papers on the control of the
unstable SSR oscillation through feedback signals to the field current
of the synchronous generator. The first attempt was made by Saito et
al [17] when he introduced a negative damping stabilizer (NDS) feed-
back loop which injects current in the synchronous maching field winding
to control the unstable SSR oscillation. The experimental and theore-
tical results reported in [17] demonstrated the possibility of suppress-

ing the S8SR oscillations by field winding control.

In this thesis, the ground work of [17] is followed up,
and the machine excitation system is used as a means to control the SSR
phenomenon, The two aspects of the series capacitors effect are con-

sidered and the analysis is carried out for small and large disturbances.
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1.5 Outline of the Problem

After the shaft failures at Mohave [13, 14], a number
of serious and thorough anélyses of the SSR instability began to appear
in the literature. Among this extensive work, a number of patchwoik
remedies exist. Firstly, one considers preyention: that is, designing
for the degree of series capacitor compensation which avoids SSR and
torsional interaction instabilities for all conceivable transmission net-
work configurations. Then, as discussed in the review (Section 1.4),
one considers the many countermeaéures which have been proposed to re-
duce the overvoltages and the torques of stable SSR to values below the
ultimate yield or fatigue limits. However, because of the haste in which
engineering solutions are conceived and implemented, and perhaps also
because of the propriety and confidential nature of the results, complete
analyses and evaluations of the effectiveness of the countermeasures have

not been disclosed in print.

The large subject of SSR is reduced to a manageable

size in this thesis by selectively treating only two aspects of it viz:
(a) SSR suppression by field excitation control.
(b) SSR avoidance by shunt compensated synchronous capacitor.

The bulk of the study is devoted to field excitation

control. Much pioneering work on this aspect has been done by Saito,
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Mukae and Murotani [l1l7] and this thesis makes advances on their work

in asking the following unanswered questions:

(1) what are the underlying principles in SSR suppression

using field excitation control?
(2) what feedback signals are the most appropriatez:

(3) 1Is the excitation system which has already a voltage
regulator feedbaék loop and a power system stabilizer
feedback loop, capable of taking on the additional
duty of SSR suppression without compromising its

existing functions?

(4) Does the fact that the excitation system has saturation
limits mean that large unstable SSR oscillations

cannot be controlled by field excitation?

(5) Is the field excitation capable of controlling instabilities
due to shaft torsional resonance interaction with the

SSR ?

(6) If large unstable SSR and torsional resonance inter-
action cannot be controlled from field excitation
feedback, then are the protection' schemes against series
capacitor overvoltages and the SSR power blocking

filter capable of suppressing the instabilities?
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In the course of answering these questions, one be-
comes impressed with the adage that "preveﬁtion is better than cure".
One is attracted to the idea that shunt compensation avoids SSR
altogether, and in consequence a chapter is devoted to the concept of

voltage support using synchronous capacitor.

1.6 Methodologz

The main concern of this thesis is the analysis of the
effect of the series capacitor on the system stability under large and

small disturbances. For this purpose two sets of equations are used:

(1) Linearized first order differential equations describing the
synchronous machine and the electrical network. These equa-

tions are necessary for the small pertﬁrbation study.

(2) Nonlinear first order differential equations describing the
synchronous machine and the electrical network. These are

used in the large perturbation study.

A state space form of the linearized equations is ob-
tained and the concept of eigenvalues and eigenvectors technique is
used to investigate the system stability under small disturbances. In~

stability of the system is recognized if one of the real parts of the
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eigenvalues is positive. Eigenvectors are used to relate the eigen-

values with the physical system.

Runge Kutta-Gill numerical integration method is used.
to integrate the nonlinear first order differential equations in the in-
vestigation of the system stability under large disturbances. Instability

is recognized if the system oscillations are building up with time.

1.7 Physical Interpretation

All the previous work that dealt with the SSR problem
lacked the physical interpretation of the system eigenvalues. It was
accepted that when the real part of one of the eigenvalues is positive,
the system is unstable. Furthermore, the physical interaction between
the machine excitation system and the SSR phenomenon was not explained.
To remedy this deficiency, a physical interpretation is given to each of
the modes of the system studied. With this insight, it is possible to
distinguish instabilities as being to the hunting (mechanical) mode, the
SSR mode or the torsional ﬁode. Such a detailed picture gives undexr-

standing to the problem.

The magnetic field viewwpoint is adopted to provide a
physical understanding in the airgap of the synchronous machine. The

space vector diagram of the machine airgap magnetomotive force -(mmf) phasors
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is used to shed light on the condition of unstable SSR oscillation

and how to compensate for the induction generation action.

1.8 Contributions to Knowledge

This thesis claims the following contributions as

original to the best of the author's knowledge:

Subsynchronous Resonance Problem

(1) A physically based understanding of the principle of field
current control of the SSR has been proposed and the
theory verified. The usefulness of this theory has been

demonstrated in:

(a) establishing the frequency and time phase criteria

of the feedback signal,

(b) showing that: shaft speed, rotor currents, real
power (A P) and reactive power (A Q) signals
are acceptable candidates as feedback signals be-
cause they contain a component which satisfies the
frequency criterion. However, their relative
effectiveness is determined by their ability to

satisfy the phase criterion as well,
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(c) proposing a robust feedback based on a combination

of AP and A Q signals,

(d) explaining why, even when small perturbation stability
may be securéd by feedback, the system is inherently
incapable of witﬁstanding large disturbances due to the
physical constraint that the machine excitation system -

saturates.

(2) The merits of the field excitation system to control SSR in-
stabilities have been evaluated for the case of a feedback
strategy based on a combination.of real (A P) and reactive
(A Q) power signals. This evaluation takes the following

factors into account:

(a) the excitation system which has already a voltage re-
gulator feedback loop and a power system stabilizer

(pss) feedback loop,

(b) the gain of the excitation system saturates (this ‘is

modelled by voltage ceilings in the block diagrams),

{(c) the feedback system should not only be capable of

suppressing small perturbation instabilities but also
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the instabilities which follow from large disturbances
such as three-line-to-ground fault or switching-out-of-

phase,

(d) the shaft torsional resonance can interact with the
SSR oscillations resulting in the most severe case

of instability.

(3) Recognizing the limitation of A P and A Q feedback to arrest
SSR instabilities from large perturbations and shaft torsional
resonance interactions, the merits of supplementary counter-

measures have been investigated. These are:

(a) the dual level spark gap with nonlinear resistor
employed to protect the compensating capacitor

from overvoltages,
(b) the SSR power blocking filter.

While these supplementary devices are needed,
we found out that the excitation feedback, nevertheless, plays
important roles in ensuring that limit cycling does not occur and in

providing improved damping.
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Synchronous Capacitor Shunt Compensator

(4) Eigenvalue studies of a shunt compensated long transmission line
using synchronous capacitor with a high response voltage
excitation have shown that SSR can be avoided Wwhile main-
taining transient stability and comparable power carrying

capability.

While not directly germane to the central theme of the

thesis, the other contributions consist of:

Synchronization-out-of~Phase Peak Torgue

(5) While considering synchronization-out-of-phase as a source
of the large perturbation studies, it becomes apparent
that the peak torques associated with synchronization-out-
of-phase of the series capacitor compensated transmission
line have not appeared in the literature before. It is
shown in this thesis how the results for series capacitor
compensated transmission line can be predicted from those
of the uncompensated line provided that the equivalent line-

reactance is X_ - X_ .
L (o]

Mode Identification

(6) With the help of the weighted elements in each eigenvector,

it has been possible to associate each eigenvalue (or com-
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plex conjugate pair) with physical mode. For example,
each resonant circuit iIn the armature has a positive
sequence mode and a negative sequence mode. The reso-.
nant circuit may be the series capacitor compensating,
tﬁe line reactance, or it may be the parallel L - C

tank circuit used as the SSR power blocking filter.

For example, the instabilities may be due to the positive
sequence SSR mode, the hunting mode, the torsional re-
sonant mode or the PSS feedback circuit mode. It is
by recognizing the physical character of these modes that
some understanding of the complex system is possible and
hopefully sufficient insight can be gained to find solu-

tions to the problems.

1.9 Outline of the Thesis

A step-by-step approach is adopted in this thesis for
the purpose of understanding the complicated interactions of a very'cum—
plicated system consisting of a synchronous generator feeding a series
capacitor compensated transmission line. The field excitation system
has a voltage regulator feedback and a power system stabilizer. On top
of these, an additional feedback loop is installed with‘the objective of

suppression SSR instabilities and shaft torsional resonance interaction.
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Rather than modelling the entire system at once, the approach is to
start with the mathematical equations modelling a simple basic system
where modes have already been identified. From the simple basic sys-
tem, the complexities are added one by one. By this method, it is
possible to identify the mode associated with each addition. Therefore,

the thesis is organized as follows:

(1) Chapter II

In Section 1.6, it was mentioned that the study requires
mathematical equations to describe the system that consists of a synchro-
nous machine connected to a series capacitor compensated transmission line.
Therefore, the basic synchronous machine equations, the machine reference
frames and the per-unit quantities are reviewed in this chapter. More-
over, the mathematical models required for large and small diéturbance

studies are derived.

(2) Chapter TITT

Since our main concern is the field excitation control of
the SSR phenomenon, then a wise beginning is to explain how it is
possible to do so. This chapter is devoted to the theoretical explana-

tion of how SSR instability can be suppressed by field excitation control.



23

(3) Chapter IV

Any engineering study becomes more convincing and
practically acceptable if its theoretical background is backed up by
numerical and experimental results. Therefore, in this chapter, the
theory introduced in Chapter III is confirmed by a numerical example

and the experimental results reported in [17].

(4) Chapter V

From the review (Section 1.4), none of the previous workers
considered the machine excitation system in eliminating the unstable
SSR oscillations. Even Saito et al [17], who made the first trial in
this direction, bypassed the machine excitation system. A feedback
loop (NDS') which considers the machine excitation system, is proposed
in this chapter for SSR suppression. Eigenvalues are used to evaluate
the effectiveness of this feedback loop in controlling the SSR in-

stability.

(5) Chapter VI

Chapter V evaluates the NDS' feedback loop suppression
when the system is slightly disturbed from its steady state operating
point. To have this feedback loop more accepted by power system engineers,

it has to be tested against large disturbances.
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This chapter examines the capability of the NDS'
feedback ;oop in stabilizing the unstable SSR oscillation when the
system is subjected to a severe fault. The NDS' feedback is found
to be unable to handle large unstable SSR oscillations due to the
machine excitation system limitations. To overcome this obstaclé, a
nonlinear resistor protection scheme which is now.in use [42]), is used
with the NDS' feedback loop to eliminate the large unstable SSR os-

cillation.

(6) Chapter VII

So far, the system torsional resonance has not been
included in the analysis. However, torsional resonance interaction is
known [32] _to cause system instability. For a deeperlunderstanding of
the problems brought about by the use of series capacitors, the torsional
resonance is added to the system. The main topic of this chapter is the
analysis of the torsional resonance instability and its elimination by

the SSR power blocking filter.

(7) Chapter VIII

Following tﬁe idea of avoiding the SSR instabilities
by using shunt compensation instead of series compehsation, an elementary
analysis is performed on the system which is shunt compensated by a
synchronous capacitor. The eigenvalues are used iﬂ the small perturba-

‘tion study to investigate the system instability.
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CHAPTER II

BASIC SYNCHRONOUS MACHINE THEORY

2.1 Introduction

The purpose of this chapter is to review the synchronous
machine equations in the physical abc frame and the d-qg rotating
reference frame. The synchronously rotating reference frame is also

described for further use in the analysis.

Power system engineers used to write the machine equations in
terms of per-unit quantities rather than in terms of voltages, amperes,

ohms or henries. In this chapter the most commonly used Xad - base is

. explained and the per-unit equations are derived.

Per-unit time equations are sometimes used by power system
engineers. The rélation between real time (t) and per-unit tiﬁe (")
equations was not well explained in the literature. Moreover, the
mechanical equations were used in two different confusing forms. In
this chapter these two confusing formulations are discussed and the usage

of one form or another is explained.

Finally, a mathematical model of the system used throughout
this thesis is derived and the resulting nonlinear egquations are
linearized around the quiescent point and are put in a state space model

necessary for subsequent analysis.
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In this thesis the following assumptions are made,

(i) Saturation is neglected.

(ii) The synchronous generator does not have a neutral
return and ih consequence the zero sequence does

not exist.

(iii) All harmonics are neglected.

2.2 Machine Equations in the abc Stationary Reference Frame

The synchronous machine equations in the abc stationary

reference frame are given by [43, 44]

. d . '
e = [RIi + ¥ (2.1)
where.,
- T T.T _ L
e = [gs ' _eT] = [eél e . : €3 ®a ekq], (2.2)
[Rs] [0] -Ra Rfd /
[R] = , [R1]1 = -R » [R1] =
(0] I[R] s : r Rea
a Req

(2.3)

the stator windings are assumed to have equal internal resistances,
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. o_ LT, DT . . .. . . T

R e T A B R (2.4)
T T.T ' 1T (2.5)

o= [Qs : 1£-r] = [wa lpb l,"c’: wfé wkd wké

The subscripts s, r
the amortisseur windings are represented by two windings, one.along the

d-axis and the other along the g-axis.

-— L 1
- [ ss] [Lsr] 5%
p = (L] i = (2.6)
- [L L i
rs rr -
The sign convention used in the above equations is as follows:
(i) The current flows out of the stator.
(ii) The current flows in the rotor.
E: L ] T S
Laa ab Lac Lfad Lkad kag
[Lss] = Lba Lbb Lb.c ! [Lsr = Lbfd Lbkd Lbkq
Lz L L L L L
ca cb c cfd ckd . ck
. . °Z a 9
(2.7)
Lega  Tga 0 Lfa Pma Tfea
= 0 =
[er Lixa kad ! [Lrs Laka Lkbd Leca
0 0 L L, L L
L_ kkag akqg kbq kegq
(2.8)

indicate the stator and the rotor respectively and
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Under the assumption of sinusoidally distributed stator wind-

ings, the stator mutual and self inductances are sinusoidally varying,

i.e.,

L L -L
ab ba m
L =|L = |-L + L
ac ca m 0
Loe Lo T
U — b — —
] N o
Laa FEOO cos 20
= + -
Lbb LOO LO cos 2 (8
L cos 2 (0 +
| ec| 109 |
Lafd cos 6
T .
[Lrs] = [Lsr] = Lafd cos (8-120
E?fd cos (84120

[cos (26 ~ 120) ]
cos (28 + 120) ‘(Henry) (2.9)
Eos (20)
120) | (Henry) (2.10)
120)
Lakd cos 6 _Lakq sin 6
). - Lakd cos (6=-120) —LaquLn(6-120)
+ - i +
) Lakd cos (6+120) Laquln(e 120)--J
(2.11)

where 9 is the instantaneous angular position of the rotor in electrical

degrees,

L and L

and L akd

L., L

00’ m’ 0 afd’

The electromechanical torque (Te)

_ 1 8 .1
Te = 27 558 2 @

where n is the number of pairs of poles.

are constants in Henries.

akq

is given by, |

(2.12)

(Henr
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2.3 Reference Frames

2.3.1 The d-g Rotating Reference Frame

Park [45, 46] introduced a new practical set of equations
in which those trigonometric functions in the inductance matrix (Equation
2.6) no longer occur. He assumed that both stator and rotof'reference'
frames are rigidly connected to the rotor and rotate at the same speed

as the rotor, Figure 2.1l.

The new equations do not have the same form as Equation
2.1, but contain an additional speed term known as the speed voltage.

The new set of equations are given by,

€a *a Vg = Vg
®q i wq Ya _
ey | = I i, + %E vy |+ 0 fu (2.13)
0 *xa Vea o
L.O B —lkq ] _wkqd i 0 _
[V, ] L, 0 Lafa  Taxa 0 ] Fd—
by 0 L 0 0 g i
Vea | = |7 % Lia © Legg Teka O deq (2.14)
Yka - '32' Laka © Leva  kka 0 ea
kaq_ | ° - %Lakq ° 0 Mok | | Pkq

where
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v
S

= +
°] wt 60

w = rotor speed in electrical r/s

Figure 2.1. Three-phase synchronous machine with

two amortisseur windings.
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and

where the zero

machine is not
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3
+ =
LOO + Lm > L0 (Henry) (2.15)
L + L - é-L (Henry) ’ (2.16)
00 m 2 0 *

sequence'does not exist due to the assumption that the

grounded. The eleétromechanical torgue is given. by,

(2.17)

The transformation from the stationary reference frame (abc) to the

d-g rotating reference frame is shown in Appendix A-l.

tion:

(1)

(ii)

(iid)

(iv)

In summary, the following points describe Park's transforma-

The inductance matrix is constant,

The voltage equation has an additional term called

the speed voltage term,

Park's transformation is not orthogonal (Power

invariant) [47].

The mutual inductances are not reciprocal, i.e.,

T . .
[Lrs] # [Lsr] as shown in equation 2.14.
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The Synchronously Rotating Reference Frame

The synchronously rotating reference frame is also called

the system reference frame. This frame has the following properties:

(1)

(ii)

(iii)

(iv)

It rotates at synchronous speed, mo electrical
r/s , and it will be described in this thesis by

D-Q axis.

when the rotor of the machine rotates at synchronous
speed, the angle between this frame and Park's

frame is constant.

The transformation from the abc stationary reference
frame to this frame is carried out in a similar way
to that explained in Appendix A-1, except that 8 is

. - + .
substituted by es wo t eso ; Wwhere wo is the

synchronous speed.

If the machine rotor is not rotating at synchronous
speed, the machine equations in the synchronously rotat-

ing reference frame contain terms of the rotor position.

This frame is very useful when more than one machine is con-

nected to the same network. However, this frame will be used in this

thesis in deriving the linearized model nécessary for stability analysis

-and when the synchronous capacitor is used for shunt compensation as will

be shown in Chapter VIII.
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- 2.4 Per-Unit System

The knowledge of the machines, transformers and transmission

lines parameters are required in the analysis of power systems. Pexr-

unit quantities of impedances, currents, voltages and frequency are

commonly used by power engineers due to the following reasons [48] :

(i)

(ii)

(iii)

(iv)

The ordinary parameters vary widely with the physical
size of the machine. The per-unit quantities do not
depend directly on the physical size and their wvalues

are of comparable magnitudes.
In general, the per-unit parameters are small.

In the 2-axis theory of synchronous machine, a per-
unit system is useful in removing those arbitrary numeri-

cal values, e.g., %- in eqguation 2.14.

It is a set of dimensionless parameters which help in
preventing from converting between different systems

of units.

When considering one apparatus, the following base values are

usually adopted:

(i)

The three-phase volt-ampere rating of the apparatus.
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(ii) The rms 1line to line voltage.

(iid) The nominal frequency.

The base values of currents and voltaées and the base im-
pedances of the synchronous machine are not a éimple matter to determine.
However, the base values of the armature current and voltage are usually
determined by the machine rating, hence the armature impedances are
automatically defined. But the base values of the rofor currents are
chosen so as to make the self inductances of the armature, field and the
amortisseur circuits of about the same order of magnitude. The difficulty
in determining the turn ratio between stator and rotor circuits due to
the complications arising from the distributed nature of the windings has
led Rankin [49, 50] to look for alternate approaches of defining the rotor

base currents.

The rotor base currents are defined in different ways for
different purposes. The choice of the rotor base currents is totally
free as long as it makes all the mutual inductances reciprocal and it is

used in the calculation of the machine impedances in a consistent way.

One of the definitions of rotor base values commonly used in
the xad - base is derived in Appendix A-2 . This base makes the
mutual inductances reciprocal and those between stator and rotor windings

on the same axis equal.
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2.5 Per-Unit Time (t')

The synchronous machine equations are now written in the
d-qg axis . in terms of per-unit quantities as showﬁ in equation A~2.26
of Appendix A-~2. It is sometimes preferable to norﬁalize the time,
especially When working witﬁ linearized equations, which removes wo from

equation A-2.26. Per-unit time has been used quite often in the literature

in deriving the synchronous machine equations [17, 28, 32] .

Per=-unit time t', is defined as,

In any equation which contains sin w t or cos w t, it should be replaced
by a similar equation containing sin wt' and cosw t', (0 is per-

unit speed).

For the differential equation, the relations between first and second

derivatives in real time t, and per-unit time are derived as follows;

az |, . . . . \
3¢ 1isa first derivative in real time of

any variable =z .

- = o 4z . (2.18)

and

(2.19)
dat dc 4zt at! dat dat!
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Expressions 2.18 and 2.19 indicate that a real time dif-
ferential equation is changed to a per-unit time differential equation
by multiplying the coefficients of the first and second derivatives with

0, and wg respectively.

2.6 Forms of the Mechanical Egquations

Traditionally, the electrical engineers have used different
forms of the mechanical equations. One of these forms is used in this
thesis. However, it is a matter of clarity to summarize these forms and

explain the different use of each of themn.

For a generator, the mechanical equations which govern the

motion of the machine rotor are,

&8 _ ¢ -
a t2 m e
(2.20)
dt 0

where J is the moment of inertia of the rotating mass attached to the
shaft in doule. sec%, Tm is'the positive mechanical torgue to accelerate
the shaft in Joule, Te is the positive electrical torque acting to de-
celerate the shaft in Joule, and & is the rotor‘angular position in

electrical radians.
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Equation 2.20 is one of the forms used when the torgue

is expressed in Joule and the moment of inertia of the machine is given.

The other forms of the mechanical equations are:

(l) Using the mechanical and the electrical powers
(Pm and Pe respectively) 'in watts and the
angular momentum (M) instead of Tm'. Te and
J respectively in equation 2.20. The new
mechanical equations can be derived from 2.20

as follows,

P = w_ T watts
m 0O m
P = w. T watts
e 0 e
M = mo J Joule. sec.

multiplying the first equétion of 2.20 by w

and using 2.21 we obtain:

2
M d g = P =P
at m
_d(S = W -0
dt 0
(2) The third form of the mechanical equations is

that which contain per-unit mechanical and
electrical torques Eﬁ’Ee and the inertia

constant (H) of the machine. This is simply

(2.21)

(2.22)
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the per-unitized form of equation 2.20,

and this can be derived as :

s is the base tﬁree—phase volt-ampere

of the synchronous generator .

TB is defined as the base torque.

TB = SB / wo (KVA.,s) vy electrical 1x/s
- Tm - Te

T = — ’ T = —

m TB e TB

Dividing equation 2.20 by 'I‘B = SB / Wy
one has,-
w J 2 L
5 = Tm- Te . (2.23)
SB dt
and
d 8
ce = - 2.24
dt © = Y% (220

substituting 2.24 into 2.23, we get,

w
0,40 _ 7 7% (2.25)
S t m e
B
Using per-unit speed w = -2—- instead of »y in 2.24
0

and 2.25, we have:.
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(2.26)

7] Bk
AN
ty .

fo
ol
I
1
B
1
31

a s -
It = Y% {(w - 1)

H 1is defined as the kinetic energy of the rotor

at synchronous speed ., divided by.ihe base volt-

0

ampere of the machine, SB .

H = 53 wé / sy (Joule / KVA) = (K Watts. sec / KVA)
(2.27)
substituting H instead of J in equation 2.26 we
obtain:
aw - -
2 H It = 'I'm Te
(2.28)
asé -
It = wo (w - 1)

We arrive to the three forms of the mechanical equations
by assuming that the damping and the stiffness coefficients, D and K
respectively, do not exist. However, if damping exists, another torgue
acting to decelerate the shaft is added and has the form, D (w - wo).
The existence of the stiffness coefficient will be explained in Chapter

VII.
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A final remark on the three forms is that the last form
{equation 2.28) is widely used by power engineers. This equation is
described in real time and it will be used in the following chapters to

describe the rotor system of the synchronous machine.

2.7 System Model

The system used in the analysis of fhe subsynchronous re-
sonance (SSR} is simply a synchronous generator connected to a load,
which is represented by an infinite bus bar, through a long transmission
line, where a series capacitor is used. The single line diagram of the

system is shown in Figure 2.2(a).

The per-unitized synchronous machine equatioﬁs given in
equation A-2.26 of Appendix A-2 will be used. For notational simplicity
the per-unitized guantities will be written without the dash on top of the
variables except for per-unit speed © . In the present derivations as
well as in the forthcoming analysis, real time equations wili always be
used. = From equation A-2.26 of Appendix A-2, the per-unitized synchronous

machine equations are,



bus 1 |
| infinite bus bc

(a) Synchronous generator connected to an infinite bus through
a series capacitor compensated transmission line.

Q-axis

&

(b) Relation between D-Q synchro-
nously rotating reference frame
and Park's rotating reference
frame,

(c) - Steady state diagram for cal-
culating generator terminal
voltages and currents.,
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ea | -, RV B’ [ - “’q-
eq —ra iq %q Wd
e = r i + L4 + W 0]
£d ) £d £d w, dt Yeq
0 Tkd ka ¥ea 0
L...O - L "kq L_ikq _¥xq 0
(2.29)
and
] [ 0 Faa P O ] [
Iy o Xg o 0 X, i
Vea | T | ®aa ° *ega Xgxa © Tta (2.30)
¥iq Xa ° *ka Faka 0 'xa
L_lpkq B 0 -xaq 0 0 xkkq B __ikq_

The voltages ey and eq in equation 2.29 represent the

generator terminal voltage in the d - q rotating reference frame. The
network voltage equations viewed from the generator bus are usually written
in the D - Q synchronously rotating reference frame. Therefore, to ex-

press the generator terminal voltages in terms of the network voltages, a

transformation from one reference frame to another should be made.

The one line diagram of the network is shown in Figure 2.2(a).
It shows a lumped parameter representation of the transmission line, a per-

unit resistance e in series with a per-unit inductive reactance XE
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connected to a bus bar. The series capacitive reactance XC represents
the level of the series capacitor compensation in p.u., since our aim is

to investigate a system with a series capacitor compensated transmission

line.

2.7.1 Transformation

From Figure 2.2(b) the variables in the D - Q and the d - g

rotating reference frames are related as follows,

cos O in ¢
ed s sin eD
= . (2.31)
e e -sin © cos O e
© a o

‘the inverse relation is:

e cos © -sin © e

= (2.32)
e sin © cos O e

The relations between currents and fluxes on both rotating reference frames

can be obtained from equations 2.31 and 2.32 by using i and ¢y in-

stead of e .
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2.7.2 Network Voltage Egquations

The voltages at the generator bus (bus 1 in Figure
2.2(a)) can be expressed in the synchronously rotating reference frame

D—Q as,

D rD LD CD )] (2.33)
and
e = e +e _ +e +e (2.34)
Q rQ + LQ cQ 0Q
where
eD and eQ the voltages at bus 1 along the synchronously
- rotating D and Q axes respectively.
(a) er = % i the D - axis voltage across the line
resistance ;E .
(b) erQ = ;E lQ the Q - axis volt;ge across'the line
resistance . -
(c) e = = 4 i - i the D - axis voltage
LD wy Xa b % o] g
across the transmission line induc-
tive reactance xE .
(a) e = X o i +X i the Q - axis voltage
LQ b, B 4t 7Q E "D

across the transmission line inductive

reactance XE .
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(e) eCD = - %;— gE- eCQ + XC iQ the D - axis voltage across
the series capacitive reactance Xc .
(£) ) = = & e =X_ i the- axi volﬁa e across the
co w, 4t o~ c b e Q s g
series capacitive reactance Xc .
(g9) €0 and 'eOQ the voltages of the infinite bus bar

along the synchronously rotating D and

Q axes respectively.

Equations 2.33 and 2.34 can be written as,

p _ | 7E L, L% a ('], |%p" %
w dt .
+
eQ XE 0 XE. lQ co eOQ
(2.35)
and
I
1 a €cp Xs 0 €op
E—'d—g = + ' (2.36)
0 eCQ XC eCQ

2,7.3 Complete System Equations

So far, the electrical system of the synchronous generator is
described in the .4 - q axis by equation 2.29, and the network equétions

are described in the D - Q axis by equations 2.35 and 2.36. To obtain
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a complete description of the system shown in Figure 2.2(a), one of the
forms of the mechanical equations described in Section 2.6 should be
added. Since the per-unit quantities are used in the present derivations,
then equation 2.28 is used to describe the rotor system of the synchron-

ous generator. Therefore the mechanical equations are,

dw
2 H It = Tm Te . : | (2.37)
d 6 -
._._d T = wo (w - 1) | (2.38)

where Tm ' Te are used for per-unit torques.

The last step in obtaining the system model is to transform
all the eguations to one reference frame by using the transformation matrix

given in equation 2.31, and it is written here as:

— DQ L] — m 3
edq = [qu] eDQ and i aq - [qu] lDQ
where
cos O sin ¢
D = _
[cdgj, = Ic) (2.39)

-sin o cos ©
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2.7.4 The 4 - g Nonlinear Model

The d - g system model is obtained if the network
equations 2.35 and 2.36 are transformed to the d - g axis framé;
and this can be done by multiplying equations 2.35 and 2.36 by [Cs]

as follows,

D E B '
-1 1 a
= + — el
ICs] . [Cs] X . [Cs] [Cs] o XE ICs] 3t
Q E E
3
®op T ®cp
+ [C ] (2.40)
S e +e
09 cQ
and
e 1
1 d cD ° -1 “cp
—Icd 3¢ = X, fc 1 + Ic.) | ICs] ICS]
0 e -1 0 e
i_cQ cQ
(2.41)
°op and eCQ are transformed to ®cq and ecq using relation 2.39 or,
e e
-1
Pl = e ca
s
e
cQ ®cq

therefore,
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g | fop 4 oy | Cca 1 g | e
—— = — + . — .
ac . (dt [CSJ ) . [Cs] at . (2.42)
cQ Cq Cq
Substituting equation 2.42 for the currents in equation 2.40
we get, . ¢

le

e X r i 0 Xz at +

Sca 7 oq

®a T %||%a g 1a ®ca * oa
qu

t|Q

0 -1 i
. %_ XE"—d d (2.43)
1. 0 i
| q

similarly, substituting equation 2.42 into equation 2.41 we get,

e 0 1lile X 0 e
1oa |9, L ac “l. | A
w dt w dt
0 ec 0 el 0 ec 0 XC ecd
(2.44)

The angle ¢ is always expressed in terms of § , e.g., if
we assume that the D - axis coincides with the reference voltage (usually
the infinite bus voltage), then y is known and determined by the network

parameters (see Figure 2.2(b)), therefore,

¢ = y +6 - 90° (2.45)

using equation 2.38 to obtain,
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dag aé = o
It - daT - Y (w - 1) (2.46)

The time derivative of ¢ in equations 2.43 and 2.44 are
cancelled by using relation 2.46. The resultant network equations in

the 4 - g axis are:

%4 T Xg g
= + L a_
w dt
0
e X i
q 'r_TJ q
- T3 o+
0 -xg]Ti4 €ca T ©oa
+ a . + (2.47)
0 i + e
% I ca * oq
and v - -
: eCd XC 0 0 1 eCd
i— g—t- = + @ (2.48)
0 eCq 0 XC —l. 0 eCq

The combination of equations 2.29, 2.30, 2.37, 2.38, 2.47
and 2.48, using the stator aﬁd the rotor fluxes as the state variables
[51), the resultant model will be a set of nine nonlinear first order
differential egquations. This nonlinear model describes the system shown
in Figure 2.2(a) when the per-unit quantities are used. This model is

used in Chapter VI for transient stability studies.
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2.7.5  Initial Conditions

The steady state operating currents and voltages are assumed
to be the initial values throughout this thesis. However, the infinite

bus voltage, power and power factor are assumed to be constant and equal

to unity.
The steady state currents, voltages and fluxes are defined as:
T = Iz T I o 07 (2.49)
=s.s 40 q0 £40 :
E = |[E E E 0 O]T (2.50)
-s.s ao q0 £40 -
and
Yao | 7 [ X4 Tao * *aq Teao
= (2.51)
v -
g0 X Iqo

The above steady state values can be calculated from the steady state
vector diagram shown in Figuré 2.2(e). The detailed calculations are

given in [44]) .

2.7.6 The D = O Linearized Model

The linearized model is obtained from the nonlinear one by
assuming that the steady state operating point is slightly perturbed.

Therefore, the linearized synchronous machine equations in the 4 - g
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axis are obtained from equations 2.29 and 2.30 by taking the first

two terms of Taylor series expansion.:

and

A ¥y
Ay

A Veq

A ¥q

A wkq

[r]

E'H
"

ad

££4d

fkd

The linearized equations are,

A wd

ad

fkd

kkd

from equations 2.37 and 2.38, and written as;

| % 1xq |

(2.53)

Similarly the linearized mechanical equations are obtained

(2.54)
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a B - ' '
T @8 = u G (2.55)

and from equation 2.17

= i - 2.
A Te A lq wdo + Iqo A wd 4 la wqo Ido A wq (2.56)
The linearized D - Q network equations are,
A eD rE —XE A lD XE A.%D , A eCD
1 d
= + — — +
Ae X r A i “o X dt A i A e
Q E E Q E Q cQ
(2.57)
and
. 4 A eCD xc A lD o] 1 A eCD
(_D— EE = + . (2.58)
0 A eCQ XC Ai -1 0 A eC

The linearized transformation equation is obtained from 2.31

and has the form :

A ed cos c sin o - sin o
A e -sin c cos c - cos
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where o is the steady state angle beﬁween the 4 - g and the syn-

0
chronously rotating frames D - Q .

®p0  and er are the steady state D and Q axes voltages at the

~ generator bus.

= 0, which is usedvthroughéut this thesis,

Assuming that %

then,

e = E and e = E : (2.60)

Ao = A8 (2.61)

The D - Q linearized model is obtained by combining equations
2,52, 2.53, 2.54, 2,55, 2.56, 2.57, 2.58, 2.59, 2.60 and 2.61,

which results in,
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- Q 3
x d+xf_;) xa a xa a 0 0 0 |o i
0 -X+x) |0 0 0 o|lo |o i
4 E Xaq Q
—xad 0 Xeeq | Xeq 0 0 o |0 |0 icg
2.4 © Xera | Fxxa |© S A EL A *xd
0 - 0 0 o oo ol i
ag xkkq dt - kg
2Hw ©
§
1 eCD
1. ecQ
r +r -X -X X A -B 1
a E aq
+ - -
X ¥Xp r_tr, xad X 4 B A 1
“Tfa Xaatqo
- I
kd xad go
-frkq -X
- -x .I ' P
A B XaquO Xad g0 Xanc?lO '
1
X c 1
X -1
c

L]
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A lD 0
A i 0
Q
A1y A erq
A lkd 0
. A i + | o o . (2.62)
kg
A w AT
m
A S 0
Ae 0
A eCQ 0]
where
= +
A qu xd q0
B =¥ - %5 Tao
and
Py = AI "B Iy

Equation 2.62 is the D - Q linearized model for the system
shown in Figure 2.2(a) when per-unit quantities are used. This model
will be used in the analysis of the steady state stability in the forth-

coming chapters.
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Finally, the eigenvalues calculated whén.the D~-0Q
linearized model is used are the same if the 4 - q linearized model is
used [47]. This‘is because the real and the imagipary paris of these
elgenvalues represent the inve;se of the system time constants and the
natural frequencies of the same system respectively. These are always
unique for a particular system. Moreover, since we are interested in in—
vestigating the system stability, therefore, we only assume that the system
states are disturbed from their steady state Qalues. This implies that

A Tm = A efd £ 0 in equation 2.62 .
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CHAPTER ITII

FIELD EXCITATION CONTROL OF "UNSTABLE SSR

IN SYNCHRONOUS MACHINES

3.1 ‘Introduction

This chapter discusses the feedback loop introdﬁced by saito
et al [17], which suppresses the SSR oscillation; via the systemlfield
winding. Although, Saito et al [17] have succeeded in solving the pro-
blem by field winding control, the principle of how this can be done was

not explained.

In this chapter a theory is developed to explain how the SSR
can be suppressed by field winding control. Also the use of a control
signal formed by a linear combination of the subsynchronous reactive
power (A Q) and active power (A P) instead of that used by [17]

(A Q only) is explained.

3.2 Synchronous Generator Operation

In synchronous generators [52], the field winding-is the source
of the magnetic flux. A dc¢ source is connected across the field wind~
ing to inject a direét current which cfeates a constaﬁt magnetic flux in
the airgap of the machine. The armature windings are.connected to the

load. When either the armature or the field rotates, voltage is induced
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in the armature windings. In synchronous generators,the armature

windings are stationary on the stator and the.field winding is rotating

on the rotor. When current flows in the armature, its windings create

a flux component in the airgap. This component interacts with that
created by the field winding to produce electromagnetic torﬁue. | In a
synchronous generator, however, the field and. the armatﬁre fluax components
rotate at precisely the same speed (synchronous speedf wo). Therefore;
the rotating fields of the stator and the rotor are stationary with respect
to each other. In this case the resulting torgue is time invariant.

The torque acts on the rotor in the direction opposite to the rofation of
the flux wave in space. In order to keep the rotor revolving in the same
direction as the stator flux, an external mechanical torque must be applied

to overcome the electromechanical counter torque.

3.3 Rotating Magne-Motive Force (mmf) Phasors

3.3.1 steady State mmf Phasors

In the steady state operation of synchronous machines, the mmf
waves of both the stator and the rotor currents are rotating at synchron-
ous speed in the airgap. These waves are represented in space by phasors

characterized by magnitudes and phase angles.

Figure 3.1 shows the mmf phasors of the stator and the

rotaor currents in the steady state operation of the synchronous machine.
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Fs - stator mmf.

Fr - rotor mmf.

Figure 3.1. Steady state stator
and rotor mmf phasors.

&
N
>

\y~)4.0rq

Figure 3.2. d-q axis repre-
sentation of synchronou
machine showing the pos
tive and the negative
sequence components of
SSR airgap magnetic
fields.
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The magnitudes of these phasors, at a given instant of time, are propor-
tional to the peaks of the sinusoidally disﬁributed mnf waves. By
definition, the angular positions of tﬁese phasors coinciée with the
positions of the positive peaks of the sinusoidally distributed mmf waves.
Assuming that the machine is rotating counterclockwise, then the positive
direction of the speed mo and the.torque angle § defiqed in Figure 3.1
are consistent. The electromagnetic counter torque aéting on the rotor
is given by the vector cross product of the two spaée phasors in Figure

3.1, or mathematically:
T = -F F sin § ' ‘ (3.1)
s r : .

. The negative sign comes from the assumption of generator action where the
rotor flux is leading the stator flux in the direction of motion due to

the application of the mechanical torque before inducing armature current.

The south and north poles are assigned along the mmf phasor
axes, as shown in Figure 3.1, due to the fact that the magnetic flux
emanates from the north poles. Using the physical notation that unlike
magnetic poles attract the attraction of rotor magnetic poles by the stator
magnetic poles for the positive torque angle § , as defined in Figure 3.1,
gives rise to a negative countertorque which is consistent with the nega-
tive sign in equation 3.1. Thus, interpreting from equation 3.1, the

generating and motoring regimes are defined as:
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(1) Generating regime corresponds to

0° < & < 180° . (3.2)
(i;) Motoring regime corresponds to

180° < § < 360° L (3.3)

3.3.2 Subsynchronous Resonance mmf Phasors

The synchronous generator uﬁder consideration is connected
to the load through a long transmission line. When series capacitors are
used for compensation, under disturbances, currents due to the resonance in
the series- L -~ C circuit flow in the stator winding of the geﬁerator.

The frequency of ﬁhese currents is wn electrical r/s as explained in
Section 1.2.1 of Chapter I . In general, these currents are not balanced.
When these currents flow in the stator windings of the generator, they pro-
duce mmf waves in the airgap. For balanced three-phase stator windings -
with a pronounced fundamental mmf space harmonic, the magnetic field
produced by the unbalanced resonant currents can be résolved into three

mmf space phasors, the zero sequence Fssro' the positive sequence Fs '

srp
and the negative sequence Fssrn . The zero sequence component does not
exist. The positive and negative sequence component phasors rotate at

wy electrical r/s in the forward and backward directions respectively.

The series capacitor compensation is designed so that Wy is always less
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than the machine synchronous speed mov electrical r/s, i.e., mo > mn .

The d - q axis is fixed on the rotor and rotating at w_  in the steady

0

state. Thus, as viewed in the 4 - g representation of the synchronous
machine, the positive and negative sequence phasors Fssrp' F are

rotating backwards at speeds of w_ - w and o + mn respectively as

0 0

shown in Figure 3.2. The electromagnetic induction action of these mmf

phasors with the rotor windings are characterized by their slips as follows:

Fssrp slip o

w
n

(wn - mo) / w ' (3.4)

F slip s

ssrn n (wo + wn) / wn_ (3.5)

The rotor interaction with the negative'sequence mmf Fssrn

is one of induction braking, since s, > 1.0 . As viewed in the induction
machine equivalent circuit, the rotor resistance is (Rz / Sn), which is.
positive and in consequence this mode is positively damped. The synchronous
machine behaves as an induction generator to the positive sequence component
Fssrp' i.e., the ;otor looks as a negative resistance when viewed by this
component. Therefore, if the net resistance in the path of the positive
sequence component is negative, then regeneration action occurs and this

component will grow exponentially in time. This is well known as the in-

duction generator action which is the basis for unstable SSR oscillation.
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3.4 How SSR can be Suppressed by Fieid Excitation Control

The positive sequence subsynchronous currents, which flow
in the three-phase stator windings, create a magnetic flux wave in the
airgap which rotates at an angular velocity w which is less than the
rotor synchronous speed Wy - Due to the rotation of the machine rotor,
currents are induced in the rotor circuits at a slip frequency of Wy T W,
These currents, once again, create a rotor flux wave rotating in the air-
gap at a speed of w, o If the rotor is purely inductive,the angle § ,
between the two waves, is 1800 . When the rotor is both inductive and
resistive, as is the practical case, 90o < § < 180o electrical. The
stator and rotor field waves at subsynchronous resonance frequency are
stationary in space with respect to each other. Therefore, to construct
a phasor diagram of these waves similar to that in Figure 3.1, the induc-
tion generation action is assumed to be juét sufficient to sustain

oscillatory positive SSR mode. Then the positive sequence SSR mmf

phasor Fssrp' and the mmf phasor created by the induced rotor currents

Fr' can be related in space as shown in Figure 3.3, where the two phasors

are rotating backwards at a speed of Wy = W with respect to the 4 - g
axis and the torque angle between them is a constant obtuse angle

(o]
(90 < 6§ < 1800). FProm equation 3.1, the shaft torque is an electro-

mechanical counter torque and mechanical power is converted to electrical

power to sustain the growth of SSR oscillations.

The idea of damping SSR is to reverse the direction of power

flow, i.e., the electrical energy should be converted to mechanical power
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Figure 3.3. Positive
sequence SSR mmf
diagram showing
generating regime
where 6 is an
obtuse angle.

q-axis
<

q-axis
< Figure 3.4. The resultant
rmmf vector diagram
after field injection
showing motoring re~
gime where 6§ is a
reflex angle.
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and absorbed by the shaft. This can be achieved by injecting a rotor

flux component Fc rotating in the airgap at a speed of W, - The

b'
resultant rotor mmf phasor is FR, the phasor sum of Fcb and Fr

as shown in Figure 3.4. This resultant mmf phasor F

R is stationary

with respect to the rotating Fssrp and the angle § , measured from

Fssrp in the direction of motion, is 180° < § < 360O . The resultant

shaft torque is the cross product of FS and FR - (or equivalently the

sSrp

algebraic sum of the cross products of F with F and F with
Ssrp r ssrp

Fcb) . If this is a motoring torque, then the electrical power is drawn

from the series L - C resonance in the transmission line and converted

to mechanical power at the shaft, resulting in the SSR oscillations being

positively damped.

3.5 Field Winding Excitation of F b

As mentioned in Section 3.2, the field winding always has its
main dc excitation. However, during SSR the field winding has an

additional current that oscillates at a slip frequency of wo - wn . The

magnetic field of this additional current is included in F_ of Figure 3.3.

We concern ourselves in this section as to how the mnf Fcb can be intro-

duced into the airgap so that the resultant FR from the addition of Fcb

to Fr' is shifted into the motoring regime. Note that this can be

accomplished only when Fc rotates at the same speed as Fr . As the

b
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- subsequent paragraph shows, Fcb is produced by injecting an ac

current at an angular frequency of wo - mn r/s into the field wind-

ing.

The dc excitation current in the field winding creates a
time invariant magnetic flux wave in the airgap, which is distributed
sinusoidally with space angle around the airgap. When the oscillatory

current at an angular frequency of w_ - W is inﬁected in the field

0

winding, its magnetic flux wave is a standing wave Fc . The mmf
phasor representing it is sinusoidally varying with time, but the space
angle of the wave is fixed along the 4 - axis. As . is well known in
single-phase ac motor theory [52], the mmf .phasor Fc can be re-

solved into two phasors Fcf and Fcb' rotating forward and backward at
absolute speeds of 2 wo - wn and wn respectively. In the 4 - g axis

representation, the two components are counter rotating at the same speed

of wo - wn as shown in Figure 3.5.

3.5.1 Feedback Signals of Fcb

One of the important properties of Fc is that its speed

b

should be w electrical «r/s . Hence, the frequency of the excitation

current, necessary to produce F should be w_ = wn as shown in Figure

cb’ 0

3.4. This can be obtained from any of the following signals:
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Figure 3.5. Oscillating mm{
vector FC resolved

into forward and back-
ward components.

Figure 3.6. Controllable
scctors as a function
of the magnitude of
F

cb °
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(i) The reactive and active powers Q and P
respectively contain a component at frequency
Wy = mn . This results from the product of
the steady state and the subsynchronous compor

nents of the line voltages and currents.

(ii) The field and amortisseur windings currents, since
SSR induces a current component at the frequency
of w, - w_ .
n

0

(iii) The shaft speed has a component of wo - wn pro-

duced by the pulsating torque.

3.5.2 Fcb Magnitude and Phase Requirement

Let us consider the line AB in Figure 3.6 as the theore-
tical stability line which separates the motoring and generating regimes.
Thus, for stability FR should be to the left of AB in the direction of

motion. However, to be able to shift FR to the left of AB, Fcb should

have the proper magnitude and space angle.

The importance of Fc magnitude on the system stability

b

can be explained from Figure 3.6. Circles F, D and G in Figure 3.6

represent different Fc magnitudes and Fr, Fs are the subsynchronous

b

mmf phasors in the induction action. . The line AB intersects circles
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D and F at 2, 3 and 1, 4 respectively. For stability the arrow

tip of FR, which results from the vector sum of Fc

b and Fr' should

be on the solid arc 2-3 or 1-4. Thus, if Fc has a magnitude

b

equal to the radius of circle G, the system'will be unstable irxrrespec—

tive of the phase of F This is because the vector sum of Fr and

b
F, Will result in a phasor F_ with the arrow tip on the dashed arc,

that is the torque anglé is obtuse and a generation action is obtained. Whereas

if Fcb magnitude is equal to the radius of the circle D or the radius

of the circle F, the system will be stable if Fcb falls in the angle

a ~

2c3 or lc4 respectively.

The other requirement for shifting F_ into the motoring

R

regime is the proper choice of the space angle of Fc From Figure 3.4

b

it is clear that Fc should always lag Fr in the direction of motion.

b
This can be achieved by controlling the angle of the control signal injected
in the field winding. The possibility of controlling the space angle of

Fcb will be explained in more detail in Section 3.6.2 .

3.6 Control Scheme

The feedback loop used for SSR suppression in this study is
shown in Figure 3.7. It consists of a transducer to detect the presence
of SSR oscillation and a filter which admits signals at subsynchronous

frequency and gives the control signal the proper phase and magnitude.
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Figure 3.7. Feedback scheme for the suppression of - SSR oscillations

Figure 3.8.

AP - AQ plane showing the rotation of the
control signal u .
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Choice of Control Signal

From the different signals discussed previously a combina-

tion between the active and reactive powers P and Q respectively is

used for the following reasons:

(i)

(ii)

(iidi)

The real (A P) and the reactive (4 Q) powers con-
tain the requisite feedback frequency (mo - mn) .
Fcb generated from these signals will always have the

same speed as Fr .

The reactive power component at the frequency (mo -}wn)
lags thé real power in time by 90°. Furthermore,

their magnitudes are approximately the same. By com-
bining these two signals, Fcb in Figure-3.6 can be
varied in magnitude and space angle with respect to Fr .

Their linear combination allows for maximum flexibility

in design.

The virtue of using feedback signals based on detecting
the SSR frequency is dependent on the degree of the
series capacitor compensation. During faults and ﬁet-
work topological changes, the SSR 'freqﬁency is altered.
However, the feedback system as conceived is adaptive

in tracking the frequency changes.
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3.6.2 Reactive and Active Power Transducer

The reactive power meter and the active power meter (watt-
meter) which record the product of line current and voltage,give the

steady state values of the active and reactive powers, P and Q0

0
respectively, and the transient powers at frequency of wo - wn. Mathe-
matically:
= i + i : 3.6
P ey i, eQ lQ (3.6)
= i - i ' 3.
0 eQ i ey lQ | (3.7)

From equations 3.6 and 3.7 the steady state reactive and

active powers QO and P0 are :

Fo T Tao Tao * Fgo g0 (3.8)

% T Eqo Tao T Fao Tqo (3.9)
and the small perturbation power signals, A Q and A P, are:

A Q ] —Iqo Ido A ey . ‘ qu -Edo A i, 3.10)

AP Ido Iqo A eQ EdO qu A lQ

The proposed control signal u can be expressed as
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= .1
" K, 80 + K AP . (3.11)

where Kl and K2 any arbitrary constants.

AP leads A Q by 900, therefore, at subsynchronous frequency:

= - + i - t
H Kl cos (wO wn) t K2 sin (wo mn)
or
= W - w - 3.12
i Kl2 cos [( o n) t - ¢] ( )
where
K
2 2 -1 2
=y kS + K = t =
K12 p TR 0 an K

When p is passed through the filter, the magnitude K12 is
multiplied by the gain filter at wo-wn and the angle ¢ is shifted by the
filter angle at mo-m .. Tf the constant Kl2 is included in the filter

n

gain, then equation 3.12 can be expressed as

¥ = sin¢ AP + cos ¢ AQ (3.13)

From equation 3.13 the new combination between A Q and
& P is to multiply the first by cos ¢ and the second by sin ¢ where ¢

is constant .

Equation 3.13 can be explained by the help of Figure 3.8,

where the horizontal axis is assumed to be A Q@ and the vertical is A P,
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since AP leads AQ by 90 electrical degrees. From Figure 3.7 the
injected signal into the field winding (eE) has the same fregquency as
# which is the required frequency wo - wn, and its phase angle is the

algebraic sum of the filter angle calculated at wo - wn and the control
angle ¢ . Therefore, the phase angle of eE (and hence the space angle

of Fcb) can be controlled by the angle ¢ , since the filter phase angle

is constant. This indicates that by changing ¢ the 'space angle_ Fcb can
be rotated over a complete cycle. Therefore, any required space angle

of Fcb can be obtained by a proper choice of the control angle ¢ .
Furthermore,without using the combination of A P and A Q the only
variable parameter by which the feedback loop can.be adjusted to achieve
stability is the filter gain. By introducing the control angle ¢ ,
another variable parameter is added; that is, another degree of freedom can
be used to achieve stability. The implementation of the angle ¢ is

passing AP and A Q into ideal amplifiers with gains cos ¢ and

sin ¢ as shown in Figure 3.7 .

3.6.3 Filter

The combined outputs of the ideal amplifiers are passed through
a filter. This filter should discriminate between the dc and the re-
quired transient signals. In the steady state operation, the output signal
from the filter should be zero. At subsynchronous frequency, the filter

should amplify the control signal to the proper magnitude.
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Finally, the feedback loop should inject Fcb with suitable
magnitude and phase into the airgap of the synchronous generator when-
ever the subsynchronous resonance is detected. The filter gain and the
control angle ¢ should be adjusted at the subsynchronous frequency to
ensure that Fcb falls in the controllable sectors of Figure 3;6. The
verification of this theory will be shown in Chapter v by using eigen-

values to examine the stability of the system shown in Figure 2.2(a) with

and without the feedback loop.
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CHAPTER IV

SSR OSCILLATION IN UNREGULATED SYNCHRONOUS MACHINE -

A SMALL PERTURBATION “STUDY

4.1 - Introduction

The purpose of this chapter is to demonstrate the validity
of the theory introduced in Chapter III, using a numerical example of
the system configuration shown in Figure 2.2(&). ‘The concepts which
have been explained in the previous chapter of how SSR can be suppressed

by field excitation control, are confirmed one at a time.

For the sake of simplicity, the synchronous generator is
assumed to be underAconstant excitation, i.e., the excitation system is
neglected. Furthermore, the governor system is neglected as it will be
the case throughout this thesis. However, the effects of the excitation
system and any other supplementary loop will be considerea in the next

chapter.

The reason for this simplification is to give a deep under-
standing to the SSR suppression by field excitation control. In
addition, this simplification is part of a step by step approach adopted
in this thesis to fully explain the effect of the SSR phenomenon and

its control, as it will be shown in the next chapter.

In the analysis, the system is assumed to be slightly per-
turbed from its steady state operation. Therefore, the linearized

mathematical model described by equation 2.62 is used.
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The eigenvalues and eigenvectors [53] technique is used
in the analysis of the system stability. Instability is judged to
be the case when the real part of any eigenvalue is positive. Eigen-
vectors are used to construct the SSR mmf phasor diagram (Figure 3.4)

and to classify the different eigenvalues.

The effectiveness of the feedback loop under different
operating points as well as the variation of the different modes with

the filter gain and the control angle ¢ are shown.

4.2 Eigenvalues and Eigenvectors

The linearized model of the system of Figure 2.2(a) is

described by equation 2.62 and it is written here as:

1 d _
JC;ID] ot £ = [F1x+U (4.1)

where X is the state variable vector which' contains the pertuxbations
in the currents, speed, angle and the series capacitor voltages. [F)
and [D] are the constant matrices in equation 2.62, and for sfability
analysis the forcing function U is not perturbed. Therefore, equation

4.1 can be written in the general time-invariant state space form as:

X = [A] X (4.2)
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where [al] = w [D] IF]

Eigenvalues are defined by the singularity of the characteris-
tic matrix JA I - A]l, i.e., the eigenvalues of matrix JA] are those

satisfying the following equation:

det A I -A] = 0 o (4.3)

where A denotes the unknown eigenvalues.
The technique used to calculate the eigenvalues of matrix [A] is by
similarity iransformation which results in a diagonal matrix whose ele-

ments are the eigenvalues of [A], mathematically:

IA) [p] [A] [R] (4.4)

[Al 1is the eigenvalues matrix, and the columns of matrix [P] are the

eigenvectors. The transformation in equation 4.4 has the following

property:
—1 '
[R] = [P] (4.5)
Each eigenvector zi is associated with each eigenvalue Ai
such that:
Al v, = ), v, (4.6)
=i B e §

matrix [P] has the form:
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[Pl = Iv. v v e e e ae . ] (4.7)

where n is the dimension of the square matrix I[A] .

In this thesis the eigenvalues are assumed to be distinct as
in fact they are. Therefore, the eigenvectors associated with these

‘eigenvalues are linearly independent.

From equation 4.6, it is cleai that the components of the
eigenvector Zi are the solutions to the system of n linear homogeheous
algebraic equations, relating the n state variables defined by wvector
X for the eigenvalue Ai . The determinant of the coefficient matrix
of these equations is zexro, thus, they have to be reduced by one.
Therefore, the components of the eigenvector Xi are the state wvariables
weighted in such a way as to reflect the content of the mode Ai in each
state variable . This property of the eigenvectors is useful in classify-

ing the eigenvalues, as it is followed from 1[47] .

4.2.1 Eigenvalues and Eigenvectors Subroutine

Eigenvalues and eigenvectors of the matrix [A] are calculated
numerically using a subroutine, called EIGRE, available at McGill Univer-
sity computer library. The subroutine is in the IMSL Library 1 Fortran

IV IBM System / 370-360.
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4.3 Numerical Example

The calculations carried out in this chapter are organized

as follows:

(i) Eigenvalues are calculated for the case when the
synchronous generator is connected to the infinite
bus bar through an uncompensated transmission line,

i.e., XC = 0.0 .

(ii) The eigenvalues and sometimes the eigenvectors are
calculated for the case of a series capacitor com-
pensated transmission line (Figure 2.2(a)) for two
vglues of Xc . One, at which unstable SSR oscilla-
tion doés not occur, i.e., the system is stable. The

other, at which unstable 8SSR oscillation occurs, i.e.,

unstable system.

(iii) The feedback loop of SSR suppression is added to the
system in a manner described in Figure 3.7, and the
eigenvalues are calculated for different combinations

of the control angle ¢ and the filter gain.

The system parameters, used in the calculations in this
chapter, are those of the laboratory machine used by Saito et al [17].

This is used in this chapter to check the results with the experimental
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data obtained by [17] . However, for a more realistic analysis, the
parameters of the 10 GVA system of [17] will be used in the follow-

ing chapters.

For the experimental system [17], the power delivered to
the infinite bus bar is assumed to be 0.15 per-unit (0.15 p.u.), and
the infinite bus bar voltage is assumed to be cohstant and equal to
1.0 p.u. In addition, the steady state voltages and currents are cal-
culated from the steady state vector diaéram shown in Figure 2.2(c) wusing

the above values of the infinite bus bar voltage and power.

4.3.1 Open Loop System

The system without any feedback loop to suppress the unstable
SSR oscillations is referred to as the open loop system. The laboratory

machine parameters used in this chapter are listed in Appendix B-1l .

The seven eigenvalues for the case of an uncompensated trans-
mission line (XC = 0.0) 1is shown in Table 4.1l(a). The eigenvalues are

identified as follows [47] :

%stator stator currents mode,
A mechanical mode,
- “'mech.
amortisseur mode,
amort.
A field winding mode.

field



TARLE 4.1

éa) Eigenvalues for the case of uncompensated

transmission line.

(Unregulated Machine).
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stator mech. %amort. : Afield

Eigen-
values -60.5 + j 376. -1.72 + j 13.3 -27.7'% j 1.18 ~1.56

(b) Eigenvalues for the case of compensated transmission

line, when XC = 0.092 (Unregulated Machine).
-Assrn Assrp Amech. Aamort.- Afield

Eigen- =42.7

-32.8 + j 677. -6.78 + j 73.1 -4.90 + j 17.6 -2.32
Values : -42.9
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For the case of a series capacitor compensated transmission

line, the two values of the series capacitive reactance XC are used.

Table 4.1(b} shows the eigenvalues when the first value of X, = 0.092 p.u.
is used. The system is stable for this value and the stator currents

mode is now resolved into two modes, defined here as:

-Assrn SSR negative sequence mode,

'Assrp SSR positive sequence mode.

The SSR negative sequence mode is identified by the large

damping and it rotates at a supersynchronous speed of mo + mn , where

wo is constant at 377 electrical r/s and W can be calculated from

equation 1.1 for XC = 0,092 p.u. as:

- 0.092 * _ .
wn = ¢/0.132 + 00112 377 = 302.2 electrical r/s (4.8)

where 0.132 p.u. is the value of the negative sequence reactance X2

, both

and 0.0112 p.u. is the value of the line inductive reactance xE

values are taken from Appendix B-1 .

The SSR positive sequence mode rotates at a subsynchronous
speed of mo - wn and has low damping. The system is stable because the
net effective resistance in the path of the SSR positive sequence current

is still positive.
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Using the other value of the series capacitive reactance
Xc = Of107 , which is higher than 0.092 p.u., the system is now unstable
as is clear from the eigenvalues of Table 4.2. Instability is due to
the positive reai part of the SSR positive sequence mode 'Assrp . This
implies that at this new value of X the net effective resistance in the

C
path of the SSR positive sequence current is now negative. This is
known as the induction generation effect and this instability is due to
unstable SSR oscillations as it was explained in Chapter I . Further-

more, the frequency of A ; as shown in Table 4.2, is 54.83 r/s
- 'ssrp

or 8.72 Hz which agrees with the experimental results obtained by [17] .

4.3.2 Closed Loop System

The closed loop system under study is shown in Figure 3.7.
The feedback signal taken from real and reactive power transducers is

fedback directly to the field winding.

Tpe transfer function of the filter (NDS) used is the same
as that given by Saito et al [17], where the values of its time constants
are listed in Appendix B-l. The control signal ﬁ . in our study,is taken
as the combination of the reactive power A Q and the active power A P .
In contrast, the control signal used by [17] is A Q only; Mathematically.,

u can.be written as:
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# = AQ cos ¢+ AP sin ¢ (4.9)
Substituting equation 3.10 into 4.9 we get:
T T - T t
qu A i } Iqo A eD
p o= (4.10)
- 7t t
Edo Ai Ido A eQ
where i
. . . : o as
A lD _ cos ¢ 81nf] A lD A eD B cos ¢ . sin ¢ A eD
= . = »
A it -sin cos.’ Ai Ae! sin cos Ae
5 in ¢ ¢ o ¢ M 0
(4.11)
and E , E I I

90 30" qO' a0 are defined in Section 2.7.5.

The closed loop system cannot be represented by the state

space form. similar to equation 4.2, unless the NDS is modelled by a set
of first order differential equations. This can be done on the basis of
equation B-2.4 given in Appendix B-2. Therefore, the state space model
of the NDS is :

X -

a_ =

dt x, = ~a, 0 1 X, + 10 n (4.12)
X -a 0 0 X 0




where
. ~ Tvor Two2 t Tio Twp2 * Tworr Tpa
1
Twi Tnpz Tnp3
a - Twor ¥ "2 * Twps
2
Tyo1 Tnp2  Txp3
3 T T T
NDL ~ND2 ~ND3
and
by Xpo Twor Tho2

where the values of the time constants, TNDl' T , T

K.ND are given in Appendix B-1 .

The output voltage of the NDS A e is:
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and the gain

(4.13)

this voltage appears across the field winding under any disturbance.

Therefore, the perturbation field voltage, A e

fa’ is now different from
zero, which is not the case in the open loop system. However, A efd is
expressed in terms of the NDS state variables as:
' = 4,14
A egq (reg / Xaq! 33 % (4.14)
where Xad' r.q @are given in Appendix B-1 .



obtained by combining equations 4.1,

in:
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The state space model of the closed loop system can be
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%—-[D] from equation 4.1,
0

a zero 9 * 3 matrix,

a 3 * 3 identity matrix,

a zero 3 * 9 matrix,

matrix [F] in equation 4.1,

a 9 * 3 matrix and equal to ,

‘a zero 3 * 9 matrix,

the 3 * 3 coefficient matrix on the

right hand side of equation 4.12,

is

a zero 9 * 1 matrix,

4,12 and 4.14,

which results

[B.]

18]

(4.15)
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[le is a 3 * 1 matrix, equal to [bl 0 0]T '
. s & N N . - T
i _IALDA:LQAlfdAldeJ.kqu AGAeCDAecQJ
= ' . 4.16
X le x, x3] ( )

From equations 4.10 and 4.11, the control signal § can
be expressed in terms of the state variables A 1 , A LQ' A e, and A eCQ'

Therefore, equation 4.15 can be written in a form similar to equation 4.1.

The closed loop system is of twelfth ordef, with two addi-
tional parameters, the gain of the NDS filter KND' and the control
angle ¢ . To calibrate the results obtained from the present analysis
with that obtained by [17], the control angle ¢ is assumed to be zero
which means that the control signal p is now the same as that used in [17]

and equal to A Q ohly.

Table 4.3 shows the eigenvalues and eigenvectors of the
closed loop system for the other value of the series capacitive reactance
(XC = 0.107 p.u.f at which the open loop system is unstable. The closed
loop system is now stable and the three additional eigenvalués are defined

as the NDS mode ANDS .

The eigenvalues in Table 4.2 and Table 4.3 are calculated
for the same values of line resistance and series capacitive reactance re
and XC respectively, where the value of re is that given in Appendix

B-1. However, these two parameters vary as the transmission lines are



TABLE 4.2.

EIGENVALUES AND EIGENVECTORS FOR XC = 0.107

(UNREGULATED MACHINE).

Assrn Asstp xamort:. field
Eigen~ ~-33.8 *  =33.8 +2.32 +2,32 -6.90 -6.90 -51.7 -51.7 -2.51
Values + - + - + - + -
j 701. j 701. . 3 54.8 3 54.8 j 18.1 j 18.1 j 4.11 j 4.11
0.834 0.834 2.37 2.37 0.39 0.390 3.80 3.80 7.90
a iD 0.0420 -.0420 -33.2 33.2 -58.9 58.9 -75.1 75.1 180.
0.834 0.834 2.55 2.55 1.75 1.75 5.25 5.25 0.138
4 iQ 90.2 -90.2 64.1 -64.1 45.8 -45.8 173. ~-173. 0.0
0.257 0.257 0.901 0.901 0.244 0.244 0.288 0.288 7.73
Aifd -2.06 2.06 -52.4 52.4 -85.5 85.5 -98.2 98.2 180.
A 0.507 0.507 1.35 1.35 0.214 0.214 3.47 3.47 0.103
0 .
5 Aikd 1.43 -1.43 ~16.3 16.3 ~6.44 6.44 -72.5 72.5 0.0
2
8 0.542 0.542 1.55 1.55 1.05 1.05 5.13 5.13 0.0148
o
a Aikq 91.6 -91.6 81.6 ~-81.6 97.1 -97.1 175. -175. 180.
_ 0.000126 0.000126 0.00490 0.00490 0.00955 0.00955 0.0106 0.0106 0.00127
4w 176. -176. 156. ~156. 115, -115. 178. -178. 180.
0.000067 0.000067 0.0336 0.0336 0.185 0.185 0.0765 0.0765 0.191
as 84.0 -84.0 68.2 -68.2 3.74 -3.74 3.05 -3.05 0.0

68



TABLE 4.2 (cont'd)
Assrn s8xp Amech. xamort. lfield
Eigen~ -33.8 -33.8 +2.32 +2,32 -6.90 -6.90 -51.7 -51.7 -2.51
Values + - + - + - + - )
j 701. j 701. j 54.8 j 54.8 j 18.1 j 18.1 j 4.11 j4.11
0.103 0.103 0.316 0.316 0.190 0.190 0.570 0.570 0.0203
AeCD -95.7 95.7 62.9 -62.9 45.9 -45.9 168, -168. 0.0
0.103 0.103 0.300 0.300 0.0500 0.0S00 0.37 0.37 .845
P beg ~5.65 5.65 147. -147. 128. -128. 94.5 -94.5 0.0
8
§ 0.835 0.835 2.39 2.39 0.410 0.410 3.88 3.88 7.91
5 40 -2.00 2.00 ~-35.4 35.4 -67.3 67.3 -72.5 72.5 180.
;]
0.835 0.835 2,54 2.54 1.75 1.75 5.20 5.20 0.144
Ar 88.2 -88.2 62.2 -62.2 45.3 -45.3 174. -174, 180,

Note:

For the eigenvectors, the first number is the magnitude and the

second number is the angle in degrees.

06



TABLE 4.3.

EIGENVALUES AND EIGENVECTORS OF THE CLOSED LOOP SYSTEM FOR Xc = 0.107. KND =13, ¢ = 0.0 (UNREGULATED MACHINE).

Eigenvectors

Assrn -Assrp Amech. Aamort. Afield XNDS
Elgen- -32.8 -32.8 -.223 -.223 -7.72 -7.72 -25.8 -25.8 -2,36 -139. -51.9 -44.4
values + - + - + - + - .
j 701 j 701 3 34.9 j 34.9 j 18,5 j 18.5 § 55.5 j 55.5
0.431 0.431 1.26 1.26 0.595 0.595 0.649 0,649 6.37 0.166 0. 302 0.188
4 iD -176. 176. ~120. 120. 62.0 -62.0 -137. 137. 180. 180. 0.0 0.00
0.432 0.432 0.863 0.863 1.41 1.41 0.651 0.651 0.114 0.134 5.28 0.0395
a 1Q -86.7 86.7 ~18.0 18.0 132. -132. 0.0 0.0 0.0 0.0 0.0 0.0
0.130 0.130 0.881 0.881 0.368 0.368 0.586 0.586 6.24 0.280 2.27 3.29
Aifd -178. 178. -132. 132. 61.9 -61.9 178. -178. 180, 180. 180. 0.00
0.264 0.264 0.377 0.377 0.215 0.215 0.439 0.439 0.090 0.104 2.53 3.11
Aikd -176. 176. -88.2 88.2 77.9 -77.9 -71.8 71.8 0.0 0.0 0.0 180.
0.281 0.281 0.502 0.502 0.875 0.875 0.461 0.461 0.012 0.100 5.19 0.0424
Aikq -84.8 84.8 8,94 -8.94 -177 177. 15.8 ~-15.8 180. 0.0 0.0 0.00
. 00007 .00007 0.0026 0.0026 .0075 .00750 0.0011 0.00110 0.001" 0.0001 0.0110 0.0001
4w -0.10 .10 70.5 -70.5 -160. 160. 64.2 -64.2 180. 0.0 0.0 0.0
0.00004 0.00004 0.0281 0.0281 0.141 0.141 . .00680 .00680 0.155 0.0003 0.0780 0.0009
a6 -92.8 . 92.8 -20.0 20.0 87.1 -87.1 .~51.1 51,1 0.0 180. 180. 180.

16




Eigenvectors

TABIE 4.3 (cont‘'d)
Assm Assrp Amech. Aamort. field A
Eigen~ -32.8 -32.8 -.223 -.223 -7.72 -7.72 -25.8 -25.8 -2.36 -139. -51.9 -44.4
Values + - + - + - + -
i 701 j 701 j 34.9 i 34.9 j 18.5 j 18.5 j 85.5 § 55.5
0.798 0.798 6.09 6.09 1.99 1.99 10.0 10.0 0.300 13.1 37.0 41.9
beqp 104. -104. -41 4.0 -153. 153. -91.1 91.1 180. 0.0 0.0 180.
12.2 12.2 2060. 2060. 1090. 1090. 1610. 1610. 8220. 890. 5180. 6300.
Aecg -170. 170. 22.6 -22.6 -134 134.0 -42.2 42.2 0.0 0.0 0.0 180.
203.0 203. 31100.. 31100, 17700. 17700. 29100. 29100. 22600. 16900. 127000, 168000,
* -170. 170. 48.3 -48.3 -85.5 85.5 -26.5 26.5 180. 0.0 0.0 180.
0.0535 0.0535 0.105 0.105 0.154 0.154 0.0816 .0816 0.0164 0.0184 0.551 0.0018
* 87.7 -87.7 -19.6 19.6 134, -134, ~-3.2 3.20 0.0 0.0 0 0.00
0.0535 0.0535 0.145 0.145 .0719 .0719 0.0752 0.0752 0.681 0.0110 0.108 0.0200
*3 178. -178. 60.7 -60.7 -118. 118. 52.7 -52,7 0.0 0.0 180. 180.

Note: For the eigenvectors, the first number is the magnitude and the second numbe;

is the angle in degrees.

Z6
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switched to different topological configurations. Therefore, the mapping

of the stability boundary in the X 6 - re plane is of practical advantage.

C

Figure 4.1 shows the stability region in the XC - Tg plane with and
without the NDS feedback. It is obvious that the closed loop system

‘has a wider stability region.

4.4 Confirmation of Theory

In this section, the theory developed in Chapter III for SSR
suppression will be confirmed using the results obtained in Table 4.2 and
Table 4.3 fqr the open and closed loop systems respectively. The theory
is said to be confirmed if the numerical results satisfy the following

theoretical concepts, which have been explained in Chapter III:

(a) The speeds of the SSR negative and positive
sequence currents are w_ +w and w_ - W
0 n 0 n
respectively.
(b) In case of unstable SSR the torque angle is

obtuse and for stable SSR the torque angle is

reflex.

(c) For the closed loop operation, there exists a

stability region in the KND - ¢ plane for which
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- unstable SSR is stabilized by the feedback.
Referring to the mmf phasor diagram of Figure
3.6, the feedback gain KND controls the magni-~

tude of Fc The angle ¢ rotates FC about

b
the pivot point ¢ . The controllable sectors

b.

of Figure 3.6 corresponds to the stability region

in the KND - ¢ plane.

4.4.1 Negative and Positive Sequence Concept

- It was explained in Chapter III that the unbalanced SSR
currents flowing into the stator are resolved into negative and positive
sequence mmf phasors. The speeds of these mmf phasors with respect

to the 4 - g axis, are wo + wn and wo - wn respectively.

From the results cbtained in Tables 4.1(b), 4.2 and 4.3,

the SSR negative seguence mode Assrn has a speed of w_+ wn and the

0
SSR positive sequence mode -Assrp has a speed of wo - wn . For instance,
in Table 4.1(b) w = 302 electrical r/s (xC = 0.092), /Assrn has a speed

of 677 = 377 + 302 where w_ = 377, and A has a speed of
0 - ssrp

73.1 = 377 - 302, whereas in Table 4.2 mn = 326 electrical r/s and

the speed of ) is 701 = 377 + 325 and the speed of A is
- "ssrn - SssIp

54.8 = 377 -~ 325 .
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The damping of Assrn is large ' (32.8 in all Tables)
due to its positive slip, while that of Assrp is small -and very much
influenced by changing XC . This agrees with the first concept which

was explained in Section 3.3.2.

4.4.2 The SSR mmf Phasor Diagram

The second concept of the theory of Chapter III is con-
cerned with stable and unstable SSR oscillations, and both were
explained on the basis of the torgue angle between the 8SR stator and
rotor phasors at the subsynchronous frequency. In the mmf phasor
diagram of Figure 3.3, the stable SSR is defined as the case when .

180 < § < 360, otherwise it is the case of unstable SSR.

The purpose of this section is to demonstrate the validity
of this concépt using the numerical results. The SSR mmf phasor
diagram can be constructed for stable and unstable SSR from the eigen-

vectors shown in Tables 4.3 and 4.2 respectively.

The state variables of the positive sequence mode are
sinusoidally varying with time at a frequency of wo electrical r/s.
Their relative amplitudes and phase shifts are related to the eigenvector
associated with Assr; 'mode. Therefore, from Table 4.2, the free
motion of the positive sequence SSR mode involves the following winding

currents,
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— — '™
A & (€) 2.37 cos (54.8 t + 326.°)
A iQ(ti 2.55 cos (54.8 t + 64.1°%)
Bi e = exp (2.32 8] 0.901 cos (54.8 t + 307°) (4.17)
A i, (t) 1.35 cos (54.8 t + 343° ) /
_f ifkq(t_:j | 1.55 cos (54.8 ¢ + 81.63

The contribution currents to the stator mmf component are
A iD and & iQ . At an instant of time t = 0 the stator mmf phasor
can be computed in the d - g axis since the synchronously rotating frame

and the d - g rotating frame are the same at this instant of time.

Therefore, the two d and g axes stator mmf phasors are:

(e}
Fsd = 2.37 cos 326 ,
o
F = 2.55 cos 64.1,
sq :
F = F2 + F2 = 2,97 ,
s sd sq
Fsa
BFs = arctan (=22 (stator mmf phase angle) .
sq

The rotor mmf phasor can be calculated from the rotor
s ‘ . - s . . N d
currents A legr A g’ A qu at the same instant of time The

and gq rotor mmf phasors are:
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Frd = 0.901 cos 307 + 1.35 cos 343 ,
F = 1.55 cos 8l.6 ,
rq
F = F2 + P> = 1.85 ,
r rd rq
F d
BFr =  arctan (Fr ) (rotor mmf phase angle) .
rq

In the construction of the mmf phasor diagram, the stator
mmf is reversed,according to the sign convention adopted in Chapter II,
where the currents are flowing out of the stator. The resultant mmf
diagram for the open loop system is shown in Figure 4.2(a). The torque.
angle in Figure 4.2(a) is an obtuse angle which indicates generation
aétion and tﬁis is the condition for unstable SSR which is’'in faét the

case.

In a similar way the eigenvectors ¢iven in Table 4.3 can be
usea to construct the SSR mmf phasor diagram for the closed loop system,
which is stable as indicated by the eigenvalues in the same table. Figure
4.2 () shows the mmf diagram of the closed loop system with the NDS
gain KND = }3 and the control angle ¢ = 0, from which the torque angle

is now reflex which means motoring regime.

The mmf phasor diagrams in Figure 4.2 demonstrate the
validity of the stable and unstable SSR concept. In addition, the
principle of stabilizing the unstable SSR by reversing the power flow

or by shifting from the generating regime to the motoring regime is possible.



d-axis

q-axis &’ Sy

(a) unstable

b stable

Figure 4.2. MMF phasor diagram for the SSR positive scquence
mode constructed from the numerical results for:

(a) Open loop system

(b) Closed loop system
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4.4.3 Fcb Phase and Magnitude

The phase and magriitude of the phasor Fcb ; the mmf of the
field winding produced by the feedback signal which is necessary for SSR
suppression, are affected by the control angle ¢ and the NDS gain of |
the feedback loop KND . The input signal to the NDS filter is the
combination of the transducer active and reactive power outputs, P and Q
respectively, where:

P = PO+ AP and Q=Q0+ AQ (4.18)

From the open loop eigenvectors shown in Table 4.2 A Q and A P can be

related to A lfd as:

‘ AQ = 2.39 /fa2s. ,

AP = 2.54 [62.2 ,
£4 0.901 /307. ,

>
-
]

these values are taken from the eigenvectors associated with -xssrp in
Table 4.2
AQ/Ai 2.65 72
f£d4 '
- . (4.19)
P i 2. N
AP/ A lfd 82 115

From equation 4.19 it is clear that the outputs. of the transducers are
two signals of approximately equal magnitude and which are approximately

90o apart. This emphasizes the possibility of adding another degree of

<
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freedom by combining the two outputs as it was explained in Section

3.6.2.

‘The output of the transducer passes through the ND§ filter
whose transfer function is given in Appendix B-1 and whose Bode plot is
shown in Figure 4.3. The purpose of this transfervfunction is to filter
out the dc¢ component of the 60 Hz active and reactive powers Po and
Q0 respectively. The gain KND of the transfe; function is chosen to
_ givé Fcb the required magnitude. The NDS filter gives an angle of
45° and a magnitude of 0.493 KND at the subsynchronous frequency of

54.8 r/s as can be seen from Figure 4.3 .

Therefore, the Fcb space angle is determined from the

NDS and the control signal angles. The magnitude of Fcb is determined

by the transducer gain, the filter magnitude and the NDS gain KND'

.

Since the filter phase and magnitude and the transducer gain are fixed for
a given subsynchronous frequency, then KND and ¢ are the two degrees
of freedom by which Fcb can be injected to shift FR from the generating

regime to the motoring regime.

4.4.3.1 stability Boundary

In the closed loop operation, we introduced two additional

degrees of freedom; the NDS gain KND and the contrel angle ¢ .
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Suppression of SSR can be achieved if the right combination of KND
and ¢ is used. This means that KﬁD and ¢ should be chosen in a way

to fulfill the phase and magnitude requirements of Fc as was explained

b
in the previous section. Therefore, the stability boundary in the
KND - ¢ plane is necessary to verify the third concept dealing with Fcb

phase and magnitude requirements.

In the SSR mmf phasor diagram shown in Figure 3.4, AB
was considered as the theoretical stability boundary. For stable sub-
synchronous resonance, the resultant mmf phasor FR should lie on the
left hand side of the line AB. A boundary line can be obtained from the
current numerical analysis by changing KND and ¢ at the same time, while
keeping X , rE and P constants at 0.107 p.u., 0.0229 p.u. and

C
0.15 p.u. respectively.

The numerical stability boundary can be constructed using
the mmf .phasor diagram shown in Figure 4.2(a). In Figure 4.2(a) the
angle between Fr and the q - axis is 83.7 degrees, and the q - axis
represents the horizontal line witb 90o ahead of the d - axis in the
direction of motion. The phasor diagram of Figure 4.2(a) can be trans-
ferred in a polar plane of different circles representing different values
of KND with their centres at the point of intersection of different
straight lines, which represent different values of the control angle ¢
as shown in Figure 4.4. The d and g axes in Figure 4.2(a) coincide

with the straight lines representing ¢ = 90, 360 in Figure 4.4 respec-
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Figure 4.4. Stability bouhdary in the KND - ¢ plane

showing the comparison between the theore-
tical stability boundary (AB) and the
numerical stability boundary (broken line).
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tively. Therefore, the stator and rotor mmf phasors of Figure 4.2(a)
can be plotted on Figure 4.4, but with a slight change of the arrow tip

of Fr fixed to the centre of the KﬁD circles. Now, the line AB

in Figure 4.4 represents the theoretical stability boundary and the broken
line iS the stability boundary obtained from the eigenvalue analysis.
This stability boundary agrees with the line AB only approximately, be-

cause the closed loop system is a highly complex system of twelfth order.

.

Figure 4.4 gives a clear strategy of how ¢ and KND

should be combined to ensure that the injected Fc will have the required

b

phase and magnitude to shift FR into the stable region (motoring regime).

For instance, if KND = 2 then for any wvalue of the control angle ¢ ,

F will not shift F_ into the stable region. Similarly, if ¢ = 90°,

for any value of the NDS gain KND’ Fcb will also not shift FR into

the stable region. Furthermore, for any fixed NDS gain, say KND =12,

(o}

the variation of ¢ £from 20° to O in the counterclockwise direction

will change the system from unstable to stable. This is because in chang-

ing ¢ , the phasor Fc is rotated in a way such that when it is combined

b

with F_, the resultant phasor F_ will in the first case (¢ 20°)

fall in the generation regime and in the second case, ¢ = Oo, fall in

the motoring regime.

By this stability boundary, the concept of Fcb phase and
magnitude requirement is now confirmed. Also, the possibility of rotating

Fcb by changing the control angle ¢ is verified.
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4.5 Study of Effect of Parameter Variation

In this section, the effect of the NDS gain KﬁD' the
control angle ¢ , and the effect of loading on the damping of different
modes is studied. _ In the stﬁdy, the liné iesisténce rE is kept
constant at 0.0229 p.u. Only one parameter at a time is vafied in

these studies, i.e., the other parameters are kept constant.

4.5.1 Variation of KﬁD

The effect of KND on the SSR positive sequence mode can
be explained from Figure 4.5, where the damping coefficient of the SSR

mode 9 is plotted against the variation of KND for two different

ssrp
values of ¢ . It is obvious that by changing ¢ from 360o to 300o

the damping of the SSR positive sequence mode is improved. Howevér,

the mechanical mode damping is worst for ¢ = 300o as is clear from Figure
4.6. In Figure 4.6 the loci of the amortisseur, the SSR, and the
mechanical modes are plotted on the upper half of the s - plane. The
loci are for the variations of the NDS gain, KND . Two cases are pre-
sented for control angles ¢ = 300 degrees and ¢ = 360 degrees. The
values of XC, rE‘ and P are fixed at 0.107 p.u., 0.0229 p.u. and
0.15 p.u. respectively. The negative sequence and the field winding

modes do not change appreciably with KND and thus are not plotted in

Figure 4.6.
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4,5,2 Variation of ¢

Keeping Ko fixed at a value of 13 and changing ¢
over a complete cycle, the damping of the SSR positive sequence mode
varies in the manner shown in Figure 4.7. It is clear that for the above
valug of the FDS gain KﬁD (KﬁD = 13), the system is unstable for
5° < ¢ < 235° and it is stable for 235° < ¢ < 365° . Furthermore,

the damping of Assrp is the worst at an angle of about 120° and it is

the best at an angle of about 300° .

.. The dampings of the other modes do not change appreciably
with ¢ , except that the amortisseur mode changes from two negative real
modes to a complex conjugate mode. The damping of these modes are not

plotted in Pigure 4.7.

4.5.3 Effect of Loading

The previous results for the open and closed loop systems
were obtained when the power delivered to the infinite bus bar was kept
constant at 0.15 p.u. When changing the power from 0.15 p.u. to
1.0 p.u., vthé damping'of the SSR mode is improved, while the damping
of the mechanical mode is deteriorated. Figure 4.8 shows the loci of

the damping of the mechanical and the SSR modes as KND varies for two

different values of loading. It is clear that for P = 1.0 p.u. the
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range of KﬁD for which the system is stable lies between 1.5 to 10,

whereas for P = 0.15 p.u., it lies between 2.5 and 18 .

In a similar way, the two mode dampings (the §SSR and the
mechanical modes] can be plotted against KﬁD for constant P; ¢ , and
using two values of the series capacitive reactance. Figure 4.9 shows the
variation of the SSR and the mechanical mode dampings with Ko for two
values of X _ . It is clear that for a lower X, the system is stable for

C o]

a wide f K .
wider range o ND

4.6 Discussion

The experimental results obtained by [17] and the numerical
results obtained in this chapter. support strongly the different aspects
of the theory developed in Chapter III. Furthermore, the choice of the
control signal as a combination between A P and A ¢ is superior to the

use of A Q only.

The mechanical and the SSR modes are the only two which
cause system.instability. The damping of the two modes vary.in opposife
directions, i.e., when shifting one mode to the left of the imaginary axis
on the s - plane, the.other moves to the right. Therefore the practical

choice is a compromise which gives both the necessary dampings.



114

The stability boundary is a guidance for the choice of
KND and ¢ to achieve a robust system. Thus, the feedback loop used
by 1171, which has 4 Q only as an input signal, loses one degree of
freedom in the choice of éhe operating point. In the context of Figure
4.4, the feedback loop of [17] corresponds to the 360o line and
KND = 14.3 and it is presented by point 0 in the diagram which is very

sensitive to slight changes in the NDS gain KND .
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CHAPTER V

- §SR"OSCILLATION ‘IN REGULATED ‘MACHINE -

‘A SMALL PERTURBATION - -STUDY

5.1 Introduction

The feedback system considered for the suppression of unstable
SSR discussed in Chapter IV is impracticable. This is because the feed-
back signals are applied directly to“the field winding with no regard to
the fact that the power levels required to energize the field winding can
be quite substantial. In practice, the synchronous generator field wind-
ing current is obtained from an excitation system which is capable of amplifying
signals of the power levels of transducers outputs to the power levels
capable of perturbing the airgap magnetic fields significantly. The modern
excitation system usually has already a voltage regulator feedback loop and
a supplementary stabilizing loop such as the power system stabilizer loop
(pss). Conceivably, therefore, the signals from the SSR stabilizing
feedback loop should be amplified through the exc¢itation system in the same

way as the signals of the voltage regulator and the PSS feedback.

This moti&ation of the study in this chapter is to show that
the system of Chapter IV meets the stability perfoimance requirements when
the transfer function of the excitation system is included in the model and
that there are no deleterious interactions with the other feedback loops so

as to degrade the overall performance.
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In this chapter, the synchronous machine is assumed to be
equipped with Type 1 excitation system [55], and a power system stabilizer.
Furthermore, the system under consideration is the 10 GVA system used by
Saito et al [17] which is totally different from the one used in Chapter
Iv. However, the unregulated machine is first considered to help in

clarifying the basic sub-systems functions.

The system stability analysis begins with the basic system,
i.e., the system without the excitation feedback and without the power
system stabilizer. Then, step-by~step, each complexity (sub-system) is
added to glean an understanding of how each sub-system interacts with the

rest. ‘ - -

A more practical feedback loop than the one used in [17] is
proposed for the SSR oscillation control. Results are presented to show
the stability regions and the loci of the eigenvalues for changes in system

parameters.

5.2 Basic Sub-System Functions

The 10 GVA system is associated with two sub-systems: (i)
the exditation system which consists of the voltage regulator and the ex-
citer, (if)] the power system stabilizer PSS [56-61]. The excitation

system is Type 1 of Reference [55]. The values of the gains and the time
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constants are taken from [17]. Two kinds of systems are studied:

(a) .The conventional excitation system (CE).

(b) The high response excitation system (HRE).

The parameters of the above two excitation systems are within

the range recommended by [55] and their values are listed in Table 5.1.

In practice, the generator terminal voltage (et) is fedback
to the input port of the excitation system through a low pass filter of the
regulator which is neglected here. The output of this filter is amplified
by the voltage regulator amplifier (in actual fact the regulator amplifier
saturates and this is modelled by a voltage ceiling, however, this non-
linearity cannot be treated by the small perturbation analysis used in this
chapter and in consequence is neglected) and then fed to the exciter. Any
changes in the generator terminal voltage is compensated by changes in the
machine excitation voltage. The time response of the excitation system to

any changes in et depends on the regulator and the exciter gains and time

constants.

The recent practice of power industry required a higher re-
sponse excitation system to ensure fast voltage regulation and transient
stability. In using the high response excitation system, it is found that
the'electromechanical stiffness is improved but there is a poor electro-

mechanical damping. To ensure dynamic stability by increasing the damping
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when the high response excitation system is used, another feedback loop

is necessary and this is the power system stabilizer (PSS).

The transient stabilizing signals of the PSS are usually
obtained from the shaft speed (which is the one used in this chapter),
the terminal frequency or the power transducers. The output of the PSS

goes to the input port of the excitation system.

5.3 Mathematical Formulation

The state space form of the basic system (Figure 2.2(a)) 1is
given by equation 4.1, where the only non-zero entry of the input vector U
is A erq” The mathematical model of each sub-system is added to equation

4.1 one at a time.

Figure 5.1(a) shows the basic system with the excitation
feedback. The transfer function of the excitation ;ystem is shown in
Figure 5.1(b) where the different gains and time constants are defined in
[55]. The state space‘mﬁdel of the excitation system can be written on

the basis of equation B-2.4 given in Appendix B-2 as follows:
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" Figure 5.1. (a) The basic system with the excitation feedback.

(b} The transfer function of Type 1 excitation system.
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Figure 5.2. (a) The basic system with the high response excitation

system (HRE) and the power system stabilizer (PSS).

(b) The transfer function of the PSS.
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A e = = a b4 (5.3)

The state space equation of the basic system with the excita-
tion feedback, Figure 5.1(a], can be obtained by combining equations 4.1,
5.1, and 5.3. The resulting equation is a homogeneous equation describing

the above system which is of 12 state variables.

A final remark on equation 5.1 is that, it represents the
mathematical model of the excitation system of Type 1 of Reference [55]
for both-:the HRE and the CE systems. The input signal to the excitation
system which is A e, in equationb 5.1, is always associated with a negative
sign since any increase in the generator terminal voltage will be compensated

by decreasing its excitation voltage.

Figure 5.2(a) shows the basicrsystem with both’the excitation
system and the power system stabilizer. It is worth reminding that the
power system stabilizer is needed when the high response excitation system
HRE is used. The transfer function of the PSS is shown in Figure 5.2(b).
Once again, the state space model of the PSS can be written in a way

similar to that of the excitation system which has the following form:

X -,
4 x = b ® 5.4
at P2 | mag, 0 1 X5y + pp | Aw  (5.4)
x -
1793 _ e @0 0| [ Fes | | Ppa ]
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where

2T T AT
4 T :
1 T3 73
2 + T
_ ;47
3y T
- T T, T,
a4y = —
3
T, 5T,
and
bpy = _?'KP"Psz"K,P""P3T1T2T2(2""'1T3+T3'1'3l
by, = KT -Ka T T, T, (2T, +T)
S e T e T

The output of the PSS e, is :

e = aP3 xPl + aP3 KP Tl T2 T2 (5.5)
The combination of equations 4.1, 5.1 (with the input
4 et replaced by & et - ePl and equations 5.3, 5.4, 5.5 gives a

homogeneous state space equation which describes the system of Figure 5.2(a).

The constant coefficient matrices of this equation are of dimension 15 * 15 .
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(a} The NDS' feedback scheme proposed in this

(b) The transfer function of the NDS' filter.
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5.4 Feedback Scheme of the SSR Suppression

The feedback scheme proposed by Saito et al [17] for the
field winding control of the §SR oscillation is shown in Figure 5.3(a).
The transfer function of the filter used which was defined'as'the negative
damping stabilizer (NDS), is shown in Figu?e 5.3(5). The output of this

filter was added to the output of the excitation system.

In practice,it is necessary to power amplify the feedback
signal to a level sufficient to derive the field current. Consequently,
the output of the above NDS filter should be added to the input port of
the excitation system. Therefore, the above feedback scheme is not
realistic from the practical point of view. Nevertheless, this feeéback
loop is used in this thesis for the calibration of the proposed feedback
loop. The mathematical derivation and the eigenvalues of the above scheme

are shown in Appendix C.

In this chapter, a feedback loop which passes through the
excitation system is proposed for the suppression of the unstable SSR
oscillation. This scheme (see Figure 5.4(a)) will be referred to as the -
NDS' feedback scheme where it§ filter transfer'function is shown in Figure
5.4(b). The state space model of the NDS' filter is obtained fromiAppené

dix B~2 as:
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(5.6)

5.7
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where u is defined by equation 4.10.

Thejoutput of the NDS' feedback scheme is now added to the
input port of the excitation system. This means, that when the closed
loop system of’Eigure 5.4(a) 1is used in the analysis; the input signal
of the excitation system which is 4 ep in equation 5.1, is now replaced
by A e, - ey e, - Furthermore, the system is now of eighteenth order.
It has 18 eigenvalues: 9 corresponding to the basic system, 3 to the

excitation system, 3 to the power 