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ABSTRACT

In navigating and understanding an outdoor environment, our world often requires the abil-

ity to see. People with visual impairments are, therefore, faced with significant challenges

in exploring these environments. Deep learning has the potential to alleviate part of the

frustrations they face. In this thesis, we assess the effectiveness of using deep learning to

assist people with visual impairments.

One of the challenges faced by this user group is the crossing of intersections while

remaining within the crosswalk. Veering-avoidance systems are an important assistive

technology for visually impaired users, helping them when crossing intersections. The re-

liance of previous systems on specific features, such as zebra patterns or visible painted

lanes, may be a significant factor behind their limited adoption. In this thesis, we design

a mobile application that assists people with visual impairments in the task of crossing

intersections. The application employs recent advances in machine learning, specifically

deep learning, in combination with imitation learning. The use of convolutional neural

networks makes our approach relatively independent of specific features. We start with

the collection of demonstrative videos of intersection crossings executed by sighted individ-

uals who simulated the process of veering. The collection is performed following a series

of observational studies that allowed us to understand how blind people currently cross

intersections. The individual video frames are labeled with the optimal crossing direction

to gather the experts’ recommended actions. A policy derivation technique is applied to

extract the optimal behavior, resulting in an agent capable of providing the optimal cross-

ing direction. Building on this agent, a prototype smartphone application is designed to

provide users with real-time feedback both before and during intersection crossing. Re-

sults from our user study, conducted with eight blind participants, indicate that using the

application significantly increases the probability that users will correctly align themselves

before crossing, and reduces the probability that a user will veer outside the crosswalk. A

series of iterative experiments were conducted with a blind individual to address the limi-

tations we discovered through the user study. Our final solution employs a combination of

inertial measurement unit sensors and the imitation learning agent.

Another challenge faced by visually impaired people is the understanding of the vi-

sual content in their immediate surrounding. Recent deep learning models offer methods

that provide natural language descriptions of images. However, through our experience
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with such models, we found that they often provide irrelevant or inaccurate descriptions.

The question of inaccurate descriptions relies on algorithmic improvements and better as-

sessment strategies of the generated captions. To understand the relevancy problems, we

review previous literature that provided descriptions of visual content using crowd-workers

or automatic approaches. Through our review, we identify three main problems that need

to be addressed in order to provide relevant descriptions: the information contained in the

descriptions, the incorporation of crowd-workers to ensure accuracy of descriptions, and

to provide users with efficient mechanisms for capturing images. We provide a vision of a

mobile application that can result in the generation of an image description dataset geared

towards assisting the blind community.
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RÉSUMÉ SCIENTIFIQUE

La vision joue un rôle important dans notre capacité à se déplacer et comprendre le monde

qui nous entoure. Les personnes malvoyantes font face à des défis importants lorsqu’il s’agit

d’explorer l’environnement. L’apprentissage profond a le potentiel de réduire une partie des

frustrations auxquelles elles sont confrontées. Dans cette thèse, nous évaluons le potentiel

de l’apprentissage profond pour aider les personnes malvoyantes.

L’un des défis de ce groupe d’utilisateurs est le franchissement d’intersection tout en

traversant sur le passage piéton. Les systèmes d’évitement d’obstacle sont une technique

d’assistance importante pour les utilisateurs malvoyants lorsqu’ils traversent des intersec-

tions. Ces systèmes dépendent de variables spécifiques, telles que les motifs de zèbre ou les

marquages au sol ce qui explique qu’ils sont peu utilisés. Dans cette thèse, nous concevons

une application mobile qui aide les personnes malvoyantes à traverser les intersections.

Cette application utilise les dernières avancées en matière d’apprentissage automatique,

et en particulier d’apprentissage profond, en combinaison avec l’apprentissage par imita-

tion. L’utilisation de réseaux de neurones à convolution rend notre approche relativement

indépendante de certaines variables. Dans un premier temps nous avons collecté des vidéos

de personnes voyantes traversant des intersections en simulant le processus d’évitement.

La collecte est ralisée à la suite d’une série d’études d’observation qui nous a permis de

comprendre comment les personnes aveugles traversent actuellement les intersections. Les

sections (images) de vidéos individuelles sont étiquetées avec la direction optimale à prendre

pour traverser l’intersection afin de rassembler les actions recommandées par les experts.

Une technique de politique dérivative est appliquée pour extraire le comportement opti-

mal, ce qui donne un agent capable de fournir la direction optimale pour traverser. Un

prototype d’application pour smartphone est conçu pour fournir aux utilisateurs des infor-

mations en temps réel, avant et pendant le franchissement d’une intersection. Les résultats

de notre étude, menée auprès de huit participants aveugles, indiquent que l’utilisation de

l’application augmente considérablement la probabilité que les utilisateurs s’alignent cor-

rectement avant de traverser et réduisent la probabilité qu’un utilisateur quitte le passage

piéton. Une série d’expériences itératives a été menée avec un individu aveugle afin de

remédier aux limitations découvertes lors de l’étude. Notre solution finale est constituée de

la combinaison de capteur de mesure d’inertie et de l’agent d’apprentissage par imitation.

Les personnes malvoyantes doivent également comprendre le contenu visuel de leur envi-
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ronnement immédiat. Les modèles récents d’apprentissage profond proposent des méthodes

qui fournissent des descriptions d’images en langage naturel. Cependant, nous avons con-

staté qu’en pratique, ces modèles fournissaient souvent des descriptions non pertinentes

ou inexactes. Cela pourrait être réglée avec l’amélioration des algorithmes utilisés pour

résoudre ce genre de tâche mais aussi par l’utilisation de meilleures stratégies d’évaluation

des sous-titres générés. Afin de comprendre la raison sous-jacente à ces limitations, nous

avons réalisé une revue de littérature des méthodes utilisant des annotateurs humains ou

des approches automatiques pour la génération de sous-titres à partir de contenu visuel.

Cela nous a permis d’identifier trois problèmes principaux qui doivent être résolus afin

de fournir des descriptions pertinentes: les informations contenues dans les descriptions,

l’incorporation d’annotateurs humain pour s’assurer de l’obtention de descriptions précises

et fournir aux utilisateurs des mécanismes efficaces pour la capture d’image. Finalement,

nous décrivons une application mobile permettant la création d’un jeu de données de de-

scription d’images destiné à aider la communauté des aveugles.
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Chapter 1

Introduction

Independent navigation and exploration of a city has long been a daunting task for visually

impaired individuals. Guide dogs and canes have been the primary assistive devices used by

the blind community to assist them with outdoor navigation. Though they are indispens-

able to the population, they cannot help the user with understanding new environments

and navigating through them. This challenge is exacerbated when the environment the user

is navigating is unknown. For this reason, they tend to remain in known environments [11],

as they learn specific landmarks of those routes, such as intersection characteristics. Vari-

ous assistive devices have been proposed to help people with visual impairments with the

various tasks involved in this challenge, such as:

• Navigation through outdoor environments, e.g., talking GPS systems [12].

• Safe crossing at intersections, e.g., systems that employ inertial measurement sensors

to provide feedback regarding heading during crossing [13].

• Situational awareness, e.g., systems that provide information about points of interest

around the user [14].

While many research and development projects have been proposed to assist blind indi-

viduals with these challenges, they are not often used by the blind community [15]. There

are a few factors that result in the lack of adoption of these solutions. One contribut-

ing factor could be the elevated costs of implementing the proposed solutions widely, e.g.,

accessible pedestrian signals for crossing intersections. We can also attribute it to the dif-

ficulty of the task at hand, e.g., providing accurate and relevant descriptions of the world
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around the user in situ. A recurring problem with the solutions being proposed is that they

have not been properly tested with and tailored to the visually impaired community, i.e.,

ensuring adequate human-computer interaction.

The recent surge of deep learning research presents potential solutions to many of the

problems faced by the community. In particular, convolutional neural network (CNN)

architectures have been shown to outperform all other methods for image recognition and

classification tasks [16, 17, 18, 19, 1]. They have also been shown to produce state-of-the-

art results in object detection datasets [20, 21]. In addition, CNN architectures combined

with recurrent neural networks (RNN) have been employed to produce accurate captions

of images [2, 22, 23]. Indeed, these models have recently started being introduced into the

assistive technology domain, such as in mobile applications [24, 25, 26], or employed in

products developed by assistive technology companies for the blind [27, 28].

The ability to incorporate these models into mobile applications allows users the access

to (relatively) reliable and cost effective solutions to the challenges they face. Other recent

research in answering visual questions from visually impaired users [29, 30] provides a

glimpse of the human-computer interaction problems that need attention. In this thesis,

we apply and evaluate the suitability of deep learning on two of the tasks presented above:

safe crossing at intersections and situational awareness.
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1.1 Safe Crossing at Intersections

Crossing intersections is considered to be the most difficult and risky aspect of independent

travel for visually impaired individuals [31]. Challenges include determining whether the

intersection is one- or two-way, orienting in the correct direction for crossing, obtaining the

status of the pedestrian signal, and knowing when veering is occurring while crossing. In

this thesis, we focus on the last of these challenges.

The problem with visual impairments is that, in the absence of environmental cues,

humans tend to walk in circles [32], often with diameters of less than 20 meters. This has

obvious implications to crossing at intersections, which can be of similar length. Mobility

training focuses on techniques to keep the individual walking as straight as possible while

maintaining a safe distance from parallel traffic, i.e., remaining within the marked lines

designating pedestrian crossings. This is accomplished to a certain extent by using the

sound of traffic, as we discuss in Chapter 4. However, even after training, detection of

veering remains difficult [33]. Guth et al. [34] assessed the skill level of experienced blind

pedestrians in aligning themselves using traffic sounds, and found that they are useful but

cannot guarantee accurate alignment. In addition, they noted a trial-to-trial variability

large enough that every subject would have eventually walked out into the center of an

intersection following a sufficient number of re-starts. Technologies developed to overcome

these problems include accessible pedestrian signal (APS), embedded sensors, and mobile

vision systems. As discussed in further detail in Chapter 2, the shortcomings of these

previous efforts to address the veering problem for blind pedestrians motivated our deep

learning vision-based approach described in this thesis.

The process of development can be described at a high-level in the following five phases:

1. We conduct observational sessions with visually impaired people to analyze the steps

they follow when crossing at intersections.

2. We propose the use of four types of CNN models combined with imitation learning

to learn the optimal policy based on sighted individuals’ expert recommendation.

3. We implement an Android mobile application that employs auditory feedback to

provide users with directional cues.

4. We conduct an experiment with blind individuals to evaluate the proposed appli-
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cation. In analyzing the experimental data, we gained insights on requirements for

future developments.

5. Using the lessons learned from (4), we present an iterative improvement process of

the application where we periodically met with a visually impaired individual who

tested the application and provided us with further insights for improvements.

1.2 Situational Awareness

A memorable scene in “Le fabuleux destin d’Amélie Poulain” is when Amélie assists a

blind man with getting to the metro, while describing the surrounding environment. “We

just passed the drum major’s widow! She’s worn his coat since the day he died. . . The

horse’s head on the butcher’s wall has lost an ear . . . In the bakery window, there are

lollipops!. . . Sugarplum ice cream at this shop. . . We’re passing the pork butcher, ham for

79 francs, Spareribs for 45. . . Now we arrive at the cheese shop . . . At the butcher’s, a baby is

watching a dog that’s watching the chickens roasting. . . Now we’re in front of the newspaper

kiosk by the metro.” The blind man was of course astounded, stunned and surprised by all

the things he heard and learned as he walked down the street. This scene provides us with

inspiration for what we should strive to obtain from automatic scene description models.

Exploration of a city inherently demands an understanding of the world around. As

mentioned previously, guide dogs and white canes have long been the main assistive technol-

ogy used by the community in outdoor navigation, but these have little impact on helping

understand the surrounding environment. Many mobile systems, such as Autour [35] and

BlindSquare [36], have been proposed to provide the user with information regarding points

of interest. The problem with these systems is their reliance on GPS, which can exhibit

errors with means of 10-30 meters in areas with surrounding buildings, as reported by Blum

et al. [35, 37]. Google AI have also acknowledged the problem, noting in a recent article [38]

that “[GPS in dense urban environments] can result in highly inaccurate placements on the

map, meaning that your location could appear on the wrong side of the street, or even a

few blocks away”. They also indicate that they are working on a solution they call “global

localization, which combines Visual Positioning Service (VPS), [Google] Street View, and

machine learning to more accurately identify position and orientation”.

A more appropriate approach to understanding the immediate surrounding would be
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to directly analyze the rich visual content of those scenes. In recent years, we have seen

the introduction of many applications, whether mobile or desktop, that utilize images to

provide different kinds of descriptions to blind users [39, 29, 5, 40]. For instance, both

Be My Eyes [39] and VizWiz [29] allow the users to connect to remote sighted volunteers,

who respond to a question regarding the visual content sent by the user. Through our

experience with blind users while developing our iOS application Autour [41, 35], we have

found that users desire the ability to obtain descriptions of the visual world around them.

One user commented: “A dream would be if, in the future, we will be able to interact

with the AR-technology and even let the app discover and recognize obstacles, colors,

shapes and faces.” Another user mentioned that it is desirable to have access to a paid

human description service that connects a user to a remote audio description service where

a sighted visual describer awaits live feed from the user and provides descriptions of the

environment, similar to audio description of movies and TV-shows, “like a personal Amélie

Poulain.” It is clear that the blind population have a strong desire to understand the world

through its visual content especially since our environment often requires the ability to see.

The surge of deep learning in recent years has resulted in the availability of many models

capable of classifying images and generating descriptions of their contents. Unfortunately,

this has led to the misperception that these models are ready to be incorporated into mobile

applications and the problems of situational awareness for blind individuals would be solved.

However, through our testing with different models that produce image descriptions, we

have found that they often provide generic, irrelevant and/or erroneous descriptions of the

contents in the scene. This is the case even with models that achieved state-of-the-art

results in the image captioning task (such as the Neural Image Captioner [2] as of 2015).

There are multiple factors contributing to the poor performance of these models in prac-

tice. One such factor is that they were optimized using the maximum likelihood objective,

which tends to generate the most likely, and therefore generic, solution [42, 43]. Addressing

this phenomenon, both Shetty et al. [43] and Dai et al. [42] derive a generative adversar-

ial network (GAN) that has the capability of generating diverse captions. However, the

problem of irrelevant or erroneous descriptions cannot be circumvented by their proposed

improvements. The questions of relevancy and accuracy of descriptions cannot be auto-

matically discovered without having an oracle that knows the optimal image description

for blind people, which of course does not exist.

These issues are especially problematic for people with visual impairments when used
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in outdoor environments as they can lead to a great deal of confusion to the user, who has

minimal reference to the ground truth. As mentioned by one of our users, a potential use

case of such models would be to provide information of roadwork and sidewalk closures,

giving the user information of the surrounding that would allow them to choose the safest

walking path. Unfortunately, these performance issues would exacerbate the frustrations

of the blind community as we have no means of guaranteeing the relevancy or correct-

ness of the descriptions provided by these models. We attribute part of the problem of

relevancy to the fact that the training data has limited overlap with images acquired in

the wild. Most available scene captioning models were trained on the Microsoft COCO

dataset [44], a dataset not specifically designed for the visually impaired community. Re-

cently, VizWiz [29] released a dataset [45] on visual question answering, collected through

their application where blind people each took an image and recorded a spoken question

about it, together with 10 crowd-sourced answers per visual question. The release of this

dataset sparked a new computer vision challenge in the AI community with a workshop

held at the European Conference on Computer Vision (ECCV) in 2018 [46] devoted to algo-

rithmically learning this dataset. As of the time of writing this thesis, we are not aware of

an equivalent image description dataset or challenge geared towards the blind community.

In the second part of this thesis, we study the current status of describing visual content

to visually impaired people. The most common method to assess captioning models in the

computer vision literature is using automatic assessment metrics such as BLEU [47] or

using sighted human evaluators who rate the accuracy of the caption based on the image.

We present these methods in Chapter 2 and discuss why they are not sufficient when

the goal is to provide descriptions to blind people. In Chapter 5, we review previous

research that tackled the problem of describing visual content specifically to people with

visual impairments. We proceed to summarize the findings of those methods by providing

the lessons learned, with a focus on the type of visual content that should be described,

the framing of those descriptions and the human-computer interaction requirement for

capturing visual content from a blind user’s perspective. Finally, based on the lessons

learned, we propose an outline of a mobile application that provides descriptions of visual

content. Inspired by VizWiz [29] and Be My Eyes [39], the application would leverage

sighted crowd workers to ensure the accuracy of the description, and utilizes blind users to

ensure the relevancy and utility of those descriptions.
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1.3 Author’s Contribution

In this work, we explore the effectiveness of machine learning in various assistive technol-

ogy domains aimed at aiding people living with visual impairments in navigating outdoor

environments. Specifically, we focus on two challenges deemed important in outdoor explo-

ration: (1) The use of deep imitation learning in crossing intersections while maintaining a

path that keeps the user in the safe zone of the crosswalk; (2) Evaluating the current status

of computer-generated descriptions of outdoor scenes against ones generated by sighted

individuals. Concretely, the contributions of this work are as follows:

1. We propose the first mobile application that assists visually impaired individuals

in crossing intersections with minimal veering using deep imitation learning. We

demonstrate that the application can effectively assist this user population, especially

when it is combined with built-in Inertial Measurement Unit (IMU) sensor data, in

comparison to only using their mobility training.

2. Through a conducted literature review of prior work in scene understanding for vi-

sually impaired people, we identify the most important features that should be con-

tained in a scene description as well as the optimal evaluation questions that should

be posed to sighted and blind participants. To our knowledge, this is the first liter-

ature review investigating the question of optimal scene description content in order

for blind people to find deep learning description systems useful.
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Chapter 2

Literature Review

In this chapter, we review previously proposed assistive systems and on-going projects

designed for people with visual impairments. We start by focusing on prior work that

helps blind individuals with the task of crossing intersections, where we focus on systems

that rely on IMU sensors to provide heading measurements as well as systems that employ

computer vision. Next, we review current automatic assessment metrics and sighted human

assessment methods of the quality of image captioning models.
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2.1 Intersection Crossing and Veering-Avoidance Systems

Previous technologies have been developed to address the challenges associated with cross-

ing intersections as a blind pedestrian. One of the best solutions available to date is the

accessible pedestrian signal (APS). APS systems indicate when it is safe to cross [48], and

in certain cases, offer auditory cues that help the user determine orientation. Guidelines

suggest that the volume of such audible signals must be between 2 and 5 dB above the

ambient noise conditions at a distance within 3.5 m from the sound source in order to

avoid masking by ambient noise [49]. In practice, through our experience of working with

visually impaired people, this criterion is not always respected. More problematically, due

to their high cost estimated at over $25k (USD) per new installation, and approximately

$8k (USD) at intersections with existing poles [50], APS deployment remains limited. For

example, according to the Montreal Association for the Blind, only 133 APS systems have

been installed in the city of Montreal, Canada, with 1875 intersections [51, 52].

Other systems have been developed in an attempt to tackle the veering and intersection-

crossing problem encountered by the visually impaired community using relatively more

widely deployable approaches. We categorize these systems into non-vision-based and

vision-based technologies. While some are commercially available, many remain limited

to the research setting, and are still either in the experimental phase or would be too

expensive for widespread commercial deployment.

2.1.1 Non-vision-Based Systems

One approach to tackle this challenge is to employ embedded sensors, such as accelerometers

or gyroscopes found in typical smartphones [13, 53, 33] to provide feedback with the goal of

preventing veering. However, these systems may suffer from problems of sensor instability in

addition to the potential need for frequent re-calibration, and do not address the challenge

of initial alignment in the correct direction at the start of crossing.

Ross et al. [53] developed a wayfinding guidance system comprised of a computer,

carried by the user in a backpack, with an array of speakers placed against the back,

a digital compass mounted either on the shoulder or in a hat, and a pair of ear buds

mounted on the hat. The array of speakers is used to provide the user with haptic feedback,

while the ear buds provide the user with two types of auditory feedback. The authors

compared three forms of directional feedback: 1) a spatialized tone rendered through the
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ear buds at repeated intervals; 2) spoken description of the direction, e.g., “one o’clock”;

3) a “shoulder tapping” method that provided directional haptic feedback through the

activation of different speakers. A second variable from their study was the position of the

compass, which was either placed on the shoulder to provide a body-referenced output or

in a hat to provide a head-referenced output. The authors found that the shoulder-tapping

method yielded the best performance, with the spatialized tone method coming as a close

second. The spoken description of the direction produced the worst results, obtaining the

least number of points across participants. In fact, the authors note that there was no

significant difference in performance between the two. In addition, subjects differed in

which mode produced the least veering during crossing. When participants used their best

method, they achieved a 31% improvement in veering performance when compared to a

no-feedback baseline. Another important finding from their work was that the shoulder

tapping approach performed best when the sensor data driving the feedback came from

a digital compass placed on the shoulder, rather than the user’s head. However, in the

spatialized tone method, positioning the compass on the head allowed the users to perform

slightly better than placing it on the shoulder. In both cases, the subjects preferred having

the compass positioned on the shoulder.

Ross et al. [53] had initially attempted to augment the orientation signal by installing

a special system at test intersections that would communicate with a detector installed in

the backpack computer. However, this could not be accomplished due to county versus city

jurisdiction over traffic lights issues. This further demonstrates the deployment difficulties

of such technologies that require changes to city infrastructure. These practical difficulties

would need to be overcome before the system could be widely deployed.

Guth [33] proposed the Anti-Veering Training Device (AVTD) that employs a solid-

state gyroscope to measure the user’s cumulative rotation as they walk along a path. The

gyroscope also provides tilt and temperature compensation for additional robustness. The

user is presented with veering-correction speech cues and feedback about performance.

While this system seemed promising, it did not undergo a thorough evaluation.

Panëels et al. [13] built on the AVTD with their Walking Straight application, which

also uses the gyroscope to measure body sway and orientation. The experiment consisted

of walking 15 m in a straight line towards a target after initially being positioned in the

correct orientation. Their testing was conducted in a controlled outdoor environment,

rather than at an actual intersection. They found that the system reduced veering to
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half that observed during the control condition. The authors also focused on the feedback

modality, recognizing that mobility training teaches blind individuals to move away from

a sound. As such, they concluded that the most effective method for providing veering

feedback was a continuous beep rendered in the ear on the side to which the user was

veering.

While the systems described above may be effective in an ideal setting, sensor stability

can prove problematic when it is used continuously. For example, Blum et al. [37, 35]

demonstrated the instability of orientation sensors when using the magnetometer (smart-

phones in 2012), finding that the mean heading error can reach 30o in areas with high-rise

buildings, making them entirely unreliable for the street-crossing task. More recently,

Mohssen et al. [54] evaluated a system that integrates the output of the gyroscope with the

magnetometer to obtain improved orientation of an Android smartphone, and still found

errors of 15◦, which would still be beyond the safety margins for the street-crossing task.

These errors force smartphone applications to operate under the assumption that the user

will be properly oriented at the onset of crossing. As noted in previous work [34], this is

not always the case.

2.1.2 Vision-Based Systems

Relying instead on visual information provided by a smartphone camera presents an attrac-

tive alternative to non-vision based sensing. This is especially the case considering that

non-visual understanding of the environment is not only less effective and less efficient,

but also potentially dangerous, compared to scanning the surrounding using vision [55].

However, processing the wide variety of street scenes to extract the appropriate features,

if present, for guidance has long been a daunting challenge.

Shen et al. [31] developed a prototype smartphone application, utilizing the camera

for detection of zebra crossings using segmentation of the edges of the stripes in the scene.

Taking advantage of improved camera systems in more recent mobile phones, Ahmetovic et

al. [56] developed a system that uses a five-step process, computing the position of the zebra-

crossing by using a combination of the camera and the device’s accelerometer as inputs.

The user detects and crosses an intersection by holding and panning the mobile phone

around, with the camera “looking” for the zebra-crossing. The output of the accelerometer

informs the user of the position of the phone relative to the ground. The results were
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promising, with all the subjects successfully capable of crossing a 6 m road in an average

3-5 s. One of the major limitations of such systems is their reliance on the zebra pattern,

precluding use for intersections that employ different markings. To overcome this limitation

in part, Ahmetovic et al. [57] mined existing image databases (e.g., Google Street View

images) to plan a route that only traverses zebra crossings, a solution that is obviously

inapplicable for many cities. Another limitation of such a system is its inability to deal

with partial occlusions due to erased markings or snow-covered crossings, which can direct

users to move in the wrong direction, leading to potentially dangerous situations.

Ivanchenko et al. [58] developed Crosswatch, which detects the more common two-stripe

crosswalk. They utilize computer vision techniques to model the stripes, providing audio

feedback to inform the user when the system detects at least one stripe of the crosswalk

and to inform the user when their feet are inside the two-lane corridor. In addition, they

use accelerometer readings to estimate the direction of gravity, making it easier for the user

to position the camera in the correct orientation. The preliminary experiments required

that the blind user correctly identify the location of a crosswalk. However, the reported

experiments did not include the actual task of crossing the intersection and, therefore, do

not allow for conclusions as to the effectiveness of their solution. Additionally, it is not clear

how such a system would handle partially or fully occluded stripes. Finally, from the user’s

perspective, after multiple discussions and observational sessions with visually impaired

individuals, we found that they prefer to keep their hands free, which is not possible with

the Crosswatch system.

Poggi et al. [59, 60] designed a pocket-sized device with an embedded CPU, coupled

with a custom depth-sensing camera attached to wearable glasses, to assist with initial

orientation of the user prior to crossing at an intersection. This device used the dense

disparity map from the depth-sensing camera to determine the ground plane, which served

as a reliable way to discriminate between the ground and the rest of the view in the image.

They also trained a CNN model, similar to the LeNet architecture [1], which takes as input

a warped image of the ground and, if a crosswalk is present, determines its orientation.

The authors obtained near-perfect accuracy on their test set, a testimonial to the power of

these models, although they did not report on any on-line testing to validate the system

in the real world. It is unclear whether the system can easily be adapted to provide users

with real-time veering feedback, beyond the initial alignment at the start of the intersection

crossing.
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Instead of relying on the availability of certain features at crosswalks, this thesis evalu-

ates the use of convolutional neural networks to develop an application that assists people

with visual impairments in crossing intersections with minimal veering. The challenge with

CNN models is their requirement of large amounts of data in order for them to converge to

good results. However, previous work [61] has shown that the features CNN models learn

can be transferred to tackle problems from different domains. This work allows the adap-

tation of models that achieved state-of-the-art performance on the Imagenet dataset [62]

to smaller datasets while preserving the performance they achieve.

2.2 Assessment Strategies of Captioning Models

There are two main approaches used in the literature to evaluate the quality of image

captions. The first and most prominent method is the use of automatic evaluation metrics,

which generally use a measure of similarity between the human-generated captions and the

ones obtained by the model to calculate the accuracy of the model. The second approach

is to employ human evaluators, whether in the lab or crowdsourcing, who are given an

image with the corresponding caption and are asked to score the accuracy of the model.

In this section, we present the various evaluation methods used in the literature for both

approaches.

2.2.1 Automatic Evaluation Metrics

With the surge of models generating captions for images, researchers have looked for ways

to automatically evaluate the performance of their models. Previous works [2, 22, 23] in

image captioning primarily use automatic assessment metrics as a way of evaluating their

models. These include the BLEU score [47], ROUGE [63], METEOR [64], CIDEr [65] and

SPICE [6]. We provide a brief description of these metrics in Table 2.1.
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Metric Description

BLEU [47] One of the first metrics proposed for measuring similarity

between two sentences, it is defined as the geometric mean

of n-gram precision scores, i.e., a measure of how many

words in the machine generated caption appear in the ref-

erence ground truth captions. It also has a penalty for

brevity of the caption.

ROUGE [63] As opposed to the BLEU score which measures precision,

ROUGE measures the n-gram recall score, i.e., how many

words in the ground truth caption appear in the caption

provided by the model.

METEOR [64] Originally proposed to address several weaknesses observed

in the BLEU score, this metric computes the harmonic

mean of precision and recall using the n-gram representa-

tion of the descriptions, automatically placing a penalty

on brevity as explained by Banerjee et al. [64]. It also uses

WordNet-based synonym matching to allow for some drift

from the ground truth.

CIDEr [65] A recently proposed metric specifically designed for eval-

uating the quality of image descriptions. It does so by

measuring the consensus between a candidate description

with the set of ground truth sentences for a given image,

e.g., in Microsoft COCO, each image has five ground truth

captions. The measure is calculated using n-gram repre-

sentations of the captions.

SPICE [6] The most recently proposed metric for image caption evalu-

ation, this metric uses scene graphs to determine the accu-

racy of a caption. This is accomplished by first computing

the scene graph of the ground truth and the generated cap-

tions, and calculates the F-score to evaluate the similarity

between the graphs.

Table 2.1: Brief description of the most popular automatic assessment metrics used for
the image captioning task. We invite the reader to read the papers for more details.
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The prominence of these metrics can be attributed to the fact that, excluding SPICE,

they correspond to the ones used on the official Microsoft COCO evaluation server [44].

However, as noted by Anderson et al. [6], there are a few problems with using these evalua-

tion metrics to evaluate image captioning models. Firstly, BLEU, METEOR and ROUGE

were primarily designed for the machine translation community, and therefore are not good

indicators of correctness on a vision-to-language task. In addition, even though it was de-

signed for the image captioning task, CIDEr [65] is based on n-gram similarity metrics,

meaning the output score can be tricked by having similar combination of words. For ex-

ample, taken from Anderson et al. [6], “A young girl standing on top of a tennis court.”

and “A giraffe standing on top of a green field.” would produce a high similarity score due

to the 5-gram “. . . standing on top of a. . . ”

More problematic is the fact that none of the four metrics have shown good correlation

with human judgment. As detailed in the human evaluation study performed by Anderson

et al. [6], SPICE significantly outperforms the other metrics, achieving the highest correla-

tion with human judgments on the Microsoft COCO dataset. In addition, as part of their

study, they found that only SPICE rewards detailed captions, with BLEU and ROUGE

penalizing the score for too much details. Important to note that SPICE is the only one

to rank human generated captions first, with CIDEr and METEOR ranking them 7th and

4th, respectively. Their findings are aligned with Elliot and Keller’s work [66] who found

that METEOR, BLEU and ROUGE were all weakly to moderately correlated with human

judgment.

At the time of writing, we are not aware of an automatic evaluation metric that provides

measures of relevancy geared towards the visually impaired community. As we explore in

Chapter 5, the needs of visually impaired individuals differ greatly from those of sighted

individuals as spatial awareness becomes an important aspect of the description. We can

see that from the analysis presented above by Anderson et al. [6], SPICE seems to be the

best automatic assessment metric for the image captioning task, having good agreement

with human judgment of captions. It would be interesting to evaluate a model that gener-

ates descriptions for visually impaired people using this metric, providing researchers with

insight on how well the captions align with a blind user’s detail requirement. A possible

outcome of our work is the creation of an application that results in a scene description

dataset for the blind community. If such a result is achieved, the use of SPICE to evaluate

models trained on this dataset would be an approach to assess the amount of detail and
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relevancy of captions.

2.2.2 Human Evaluation of Image Captions

In this section, we review previous work that employed sighted individuals to evaluate the

correctness of various captioning models. We also present their captioning method at a

high level, giving the reader an overview of the design of such models.

Vinyals et al. [2] proposed one of the first approaches that leverages the power of deep

learning producing an end-to-end system tackling the image captioning problem. Their

model consisted of a CNN that encodes the image into a vector that is then read by an

LSTM, a type of recurrent neural network, to produce a caption word by word. Since the

authors have made their code available, we use this model in our framework to evaluate

its effectiveness at providing captions for the blind community. The authors evaluate

their approach using the BLEU, METEOR and CIDEr metrics, achieving state of the art

performance compared to previous methods. In addition, they perform a human evaluation

step where raters are asked to rank image descriptions on a scale of 1 − 4 based on how

well they match the image. This was accomplished using Amazon Mechanical Turk where

two workers were employed to rate the captions, having an average agreement level of 65%.

In this evaluation, 1 corresponded to “Unrelated to the image”, 2 to “Somewhat related to

the image”, 3 to “Describes with minor errors” and 4 to “Describes without errors”. On

a 1000-image subset from Microsoft COCO’s test set, they produced an average score of

2.72. Moreover, the authors also evaluated on the Flickr8k test set obtaining an average

score of 2.37 compared to the ground truth average score of 3.89. The authors note that

their results show that BLEU and other metrics are not perfect metrics for this task. Note

that this work was published before the introduction of the SPICE metric.

Fang et al. [67] proposed an approach that first uses weakly supervised learning to

create detectors for different sub-regions of an image, then produced sentences that are

likely given the detections from the first stage, and finally ranks the sentences using a Deep

Multimodal Similarity Model, resulting in the most likely description for a given image.

Using Mechanical Turk workers from CrowdFlower, which avoids spammers, they perform

a human evaluation of their model where each worker is presented with an image and two

captions. One of the captions is automatically generated by the model while the other is

chosen from the dataset. The worker is asked to select the caption that better describes
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the image or to choose a “same” option when they are equal in quality. Their experiment

consisted of having 250 humans compare 20 caption pairs each, with five humans judging

each caption pair. They found that 34% of the descriptions produced by their model were

judged to have the same or better quality than the human-written descriptions.

Tran et al. [68] hypothesize that while previous methods (such as that of Vinyals et

al. [2]) perform well on automatic assessment metrics in the ideal experimental setting with

test images collected in controlled environments, it is unclear how they would perform on

open-domain images. They also note that most of these image captioning systems describe

generic visual content without identifying key features such as landmarks or celebrities.

Their model builds on the model from Fang et al. [67] by enriching the initial phase of

detection to include broader visual contents. In addition, they build a model that estimates

the confidence score for a caption output based on the vision and text features, providing a

“back-off” caption for difficult cases. Using CrowdFlower, they perform a series of human

evaluation experiments where evaluators are asked to rate images as Excellent, Good, Bad

or Embarrassing. The authors compare their model to that of Fang el al. [67] on images

from Microsoft COCO’s test set as well as images collected from 100 popular Instagram

accounts, providing the images from the wild. On the COCO test set, they obtained 51.8%

excellent rating compared to 40.6% from [67], and obtained 25.4% versus 12.0% of [67] on

the Instagram test set. Their proposed model resulted in the release of CaptionBot [5].

Dai et al. [42] proposed another image captioning model based on generative adversarial

networks (GANs) [69] with the goal of avoiding the use of the maximum likelihood objective

that typically results in generic and repetitive captions. This is accomplished by employing

the discriminator (a second neural network) portion of GANs as an evaluator of the caption,

with its goals being to obtain descriptions that are natural and semantically relevant to

the image. To assess their model, they use the metrics we describe in Section 2.2.1 as

well as a user study with qualitative comparison. Their user study consisted of 30 human

evaluators who are each presented with an image and two sentences, and are asked to choose

the better description for the image. This method of choosing the better of two captions

was also previously explored by Devlin et al. [70] where they analyzed different language

models for captions given the same image feature extracting CNN. In [42], the origin of the

descriptions varies as they not only compare their model to ground truth captions, but also

to the model presented by Vinyals et al. [2]. They found that their model was better than

or equivalent to the one proposed by Vinyals et al. 61% of the time, and that their model
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was better than or equivalent to the ground truth 24% of the time while [2] was better 9% of

the time. Interestingly, when using the automatic assessment metrics, the model proposed

by Vinyals et al. [2] consistently performed better than both the proposed model and the

human ground truth (except on SPICE, where it came in 2nd after humans). This further

shows the deficiencies of the automatic assessment metric we presented in Section 2.2.1.

Aditya et al. [71] present a model that integrates deep learning based vision, which

detects objects, scenes and constituents, with concept modelling of commonsense knowledge

constructed from text. The authors use commonsense knowledge acquired from image

annotations combined with a Bayesian network to capture how objects interact in the

scene. This output of their model is a Scene Description Graph (SDG) that depicts how

different entities relate to and interact with each other. The SDG can then be used for

further reasoning about the scene and to generate captions. After turning this model to

a caption generator, the authors perform a human evaluation qualitative study on their

captions using Amazon Mechanical Turk. Evaluators were asked to rate the image captions

based on relevance, i.e., how much the description conveys the image content, as well as

thoroughness, i.e., how much of the image content is conveyed by the description. This

was done using a discrete scale ranging from 1− 5, where 1 indicated low relevance or low

thoroughness, and 5 indicated high relevance or high thoroughness.

In their assessment of their proposed SPICE metric, Anderson et al [6] performed a hu-

man evaluation study to decide the correlation between different metrics (including SPICE)

and human evaluation. As we already discussed various parts of the assessment of their

metric, here we would like to focus on the human evaluation portion. In rating the captions,

evaluators answered five questions:

1. Choose the better caption between two captions.

2. Choose which caption was machine generated, i.e., passing the Turing Test.

3. Rate the correctness of the caption on a scale from 1− 5 (incorrect - correct).

4. Rate the amount of detail contained in the caption on a scale from 1 − 5 (lacking

details - very detailed).

5. Decide whether the machine-generated caption captures the same idea as the human

one.
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Here, 1 and 2 provided a measure of the caption’s overall quality, 3 measured its correctness,

4 measured the amount of detail and 5 measured its saliency. In our opinion, their method

is the most complete evaluation guidelines one should follow for the assessment of image

captions.



21

Chapter 3

Technical Preliminaries

In this Chapter, we describe the technical preliminaries that enabled the design of our inter-

section crossing assistant presented in Chapter 4. Next, we present the approach of Vinyal

et al. [2] who integrate deep learning models to generate natural language descriptions of

images. We review the basic theory of imitation learning, a learning technique we use to

formulate our street crossing model. Finally, we present the Kalman filtering algorithm

employed in our final street crossing mobile application.
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3.1 Deep Learning Architectures

Most of the content presented in this section is summarized from Chapter 6 of the Deep

Learning textbook by Bengio et al. [72]. We refer the reader to this chapter for more

information about feed-forward neural networks.

Deep learning architectures have produced state-of-the-art results in many application

areas such as image classification [16], object detection[20] and machine translation[73].

The basic building block of these models are multi-layered perceptrons (MLP), which have

been widely used in supervised and unsupervised learning problems.

In supervised learning, given a dataset consisting of an input X and a target output

Y , the goal is to obtain f(x) that matches f ∗(x), the true data generating function. The

training data provides noisy approximates of f ∗(x), i.e., given an input x, the model should

output a value close to y. In an MLP, the non-linear function f is defined by its learnable

parameters θ, and the goal is to learn θ such that f (x; θ) = f ∗(x). We show an example of

an MLP with a single hidden layer in Figure 3.1. The trainable network parameters θ are

comprised of all layer parameters, e.g., W (1), w(2), b(1) and b(2) from the example MLP of

Figure 3.1.

Fig. 3.1: Example of a multi-layered perceptron with a single hidden layer.

An MLP is formulated by the composition of multiple non-linear functions. For example,

a network with n layers can be formulated as f(x) = f (n)(f (n−1)(. . . f (1)(x) . . .)) where each

layer f (j) = g(w(j)h(j−1) + b(j)). It is also known as a feed-forward neural network because

information flows from x, through the intermediate computations defined by f , and to
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the output y without any feedback connections. Networks with feedback connections are

known as recurrent neural networks (RNN), and are explained in Section 3.1.2.

Hidden layers in an MLP allow learning of non-linear transformations of the input data.

As the hidden units do not have a label, the learning algorithm must decide the network

parameters θ that produce the desired output y. The transformed view of the data, φ(x),

can be viewed as a set of features describing the input x, providing a new representation.

Theoretically, a feed-forward neural network with a single hidden layer can represent any

function [72]. However, that layer may be too large as well as fail to learn and generalize

to the data distribution. Instead, increasing the number of layers provides more layers

of abstraction of the input data. From a computational perspective, it is more efficient

to include depth in a network than width as the number of hidden units required by a

“shallow” model is exponential in the number of datapoints.

A deep network’s ability to learn depends on the type of non-linear activation function

(the function g(.) above) used. Without a non-linear activation function, an MLP would

have the capacity to only learn functions for linearly separable data [72]. Many activation

functions have been proposed in the past and it is still an active area of research, according

to Bengio et al. [72]. The most popular one previously used is the Sigmoid function, shown

in Equation 3.1, which produces an output bounded between 0 and 1.

g(z) =
1

1 + e−z
(3.1)

The hyperbolic tangent function, shown in Equation 3.2, produces an output bounded by

−1 and 1.

g(z) =
ez − e−z

ez + e−z
(3.2)

Their use in feed-forward neural networks has become less prevalent, and even discouraged,

as they saturate to their high value when z is very high or to their low value when z

is very low, making learning very difficult when using a gradient-based approach. The

Rectified Linear Units (also known as ReLU ) activation function, shown in Equation 3.3,

was proposed to alleviate these problems.

g(z) = max{0, z} (3.3)

Unlike the other two methods, the ReLU function is linear in one portion of its input with a
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slope of 1, meaning that the derivatives through it remain large whenever the unit is active,

i.e., z > 0. The introduction of ReLU, along with better Graphical Processing Units, has

allowed efficient learning in models with many hidden layers, hence the word “deep” in

deep learning.

The output layer of an MLP also has an activation function, the form of which depends

on the task at hand. For a classification task, the number of neurons in the output layer

is the number of classes of the dataset labels y, and the goal is to predict the correct

class using a Softmax distribution layer, which follows the form in Equation 3.4. This

distribution provides a real value between 0 and 1 representing the probability of each class.

The predicted class is chosen as the class with the highest probability, i.e., an argmax over

the output vector of the softmax layer.

g(z) =
ezj∑
k e

zk
(3.4)

For a regression task, the goal is to approximate a real-valued quantity, and is typically

obtained by having a linear output of the final layer composed of a single neuron. The form

of the final layer is shown in Equation 3.5

g(z) = wTz + b (3.5)

To train an MLP, we need to consider a cost function that minimizes the discrepancy

between the output and the target. In modern neural networks, the maximum likelihood

objective is used to train neural networks. The cost function, shown in Equation 3.6, is

therefore the negative log-likelihood of the function, which can equivalently be expressed

as a measure of the cross-entropy between the training data and the model distribution.

J(θ) = − E
x,y∼p̂data

log[pmodel(y|x)] (3.6)

For a classification task, it is sufficient to use the output Softmax distribution directly in

Equation 3.6 to evaluate the current loss of the model. For a regression task, expanding

Equation 3.6 will result in minimizing the mean squared error, shown in Equation 3.7.

J(θ) =
1

2
E

x,y∼p̂data
‖ y − f(x; θ) ‖2 (3.7)
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Finally, training of a feed-forward neural network is accomplished using the backpropa-

gation algorithm. This algorithm describes how one should update the parameters θ to min-

imize the cost function J(θ) using gradient descent. For each layer f (j) = g(w(j)h(j−1)+b(j))

in the network, the gradients of the cost function are first computed with respect to the

layer’s output f (j), and the gradient of the layer output f (j) is computed with respect to

the parameters θj, where θj = {w(j),b(j)},. Then, using the chain rule, the gradient of the

cost with respect to the parameters of that layer is obtained, shown in Equation 3.8.

∇θjJ =
δJ

δf (j)
∇θjf

(j) (3.8)

The parameter update rule is shown in equation 3.9, with α being the learning rate.

θj ← θj − α∇θiJ (3.9)

Both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)

build on feed-forward neural networks, and are geared towards specific types of data. In

the following sections, we delve into the technical details of these models. In addition, we

present an integration of these models that results in an image captioning model trainable

in an end-to-end fashion.

3.1.1 Convolutional Neural Networks

An image is a high-dimensional form of data, and can be thought of as a 2-D grid of pixels

with a certain number of color channels (1 channel for grayscale or 3 channels for RGB

colors). It is possible to reshape this data into a column vector and design an MLP to

process this form of data. However, as the dimensions of the image increase, the number

of parameters in the MLP would become computationally infeasible. Convolutional neural

networks (CNNs) are a specialized type of neural network designed to efficiently and ef-

fectively handle grid-like data, such as images. The name “convolutional neural network”

is given to any feed-forward neural network that has a layer employing the convolution

operation instead of the general matrix multiplication presented above.

The primary objective of the convolution operation is to extract features from an input

image. The operator preserves the spatial relationship between pixels by learning features

over square portions of the input. A kernel, known as the convolutional filter, is slid across
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the input, and an element-wise multiplication with the filter weight matrix followed by a

sum produces the output feature map. This operation is shown graphically in Figure 3.2,

where the convolutional filter values are the learned parameters of the neural network.

Fig. 3.2: Example of the application of a 3 × 3 convolutional filter over a 5 × 5 input
image. The output, named a feature map, is 3×3 since the stride is 1 and no zero padding
is used.

The convolution operation has several hyperparameters associated with it. For instance,

one can control the stride with which the convolution is applied, i.e., the number of

pixels by which the filter is slid over the input matrix. Another hyperparameter is the

amount of zero-padding applied to the input Map, which allows the filter to be applied

to the bordering elements of the input map. In the example shown in Figure 3.2, a stride

of 1 is used and no zero padding is applied. The final, and perhaps most important,

hyperparameter is the depth, or number of filters, applied per layer. Typically, the number

of filters applied to an input is on the order of 64. The output feature maps are stacked

along the third dimension along the channel axis. In the example of Figure 3.2, if we used

64 filters each being 3 × 3 in size, the output feature maps would have a dimension of

3× 3× 64.

There are interesting properties associated with the convolution operator. In the MLP

model, every output unit in a layer interacts with every input unit since the weight matrix

contains a separate parameter describing every interaction. In contrast, the convolution
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operator has sparse interactions accomplished by having the filter smaller than the

input map, i.e., each output node in a feature map is connected to a specific group of

input nodes. The advantages associated with sparse interactions are a reduction in the

memory requirements of the model, improved statistical efficiency, and a reduction in the

number of operations in computing the output. In addition, each element of the weight

matrix in an MLP model is used exactly once during the computation of the output layer,

making it expensive in storage requirements. The convolution operator overcomes this

via parameter sharing, achieved by the sliding of the convolutional filter over the input

map. A consequence of sharing the parameters across different areas is that the value of

the weight applied to one area is tied to the value of the weight applied in another area.

Therefore, we learn a single set of parameters for the whole input rather than learn a

separate set of parameters for every location. This makes sense in the image domain since

we expect the occurrence of specific features in one area to be equally likely to appear in

another area. This is also known as equivariance to translation, i.e., if the input map

changes, we expect the output map to change in the same way.

Typically after a convolutional operation, the output feature maps are put through

a non-linearity function such as the ReLU layer (see Equation 3.3). Many models then

put the output of the non-linearity through a pooling layer. Pooling layers operate over a

certain location and replace the values with summary statistics of the nearby outputs. For

example, the average pooling operation computes the average of a rectangular area in

the non-linearly transformed feature maps and provides a new feature with values of the

average. In general, pooling operations help make representations approximately invariant

to small translations of the input. Some literature groups the convolution operator with the

non-linearity layer and the pooling layer into one, which we refer to as CONV-NLIN-POOL.

In a typical CNN, there are a few rounds of CONV-NLIN-POOL layers, followed by

fully-connected layers, and a final output layer which depends on the task at hand, whether

classification or regression. We present one of the first convolutional neural networks ever

proposed in Figure 3.3.
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Fig. 3.3: Example of the LeNet CNN architecture proposed by Lecun et al. [1]. Note that
“subsampling” is another way of saying pooling.

3.1.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are specialized models designed for sequential data

x1, . . . , xτ , such as data from the natural language domain. This is accomplished through

feedback loops in the network, allowing it to hold information about all previous inputs

from x1 to xt−1. Just as CNNs are efficient for processing images of increasing size, RNNs

are well-equiped to handle variable-length sequences of data. Figure 3.4 shows the directed

cyclic graph representing an RNN.

Fig. 3.4: A directed cyclic graph representing a recurrent neural network.

The dot product UTxt (usually followed by a non-linear activation function) is a way

for the hidden layer to extract important information from the input. WTht−1 provides
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the network a way of extracting information from the entire history of past inputs x1 to

xt−1. For this reason, the hidden state can also be viewed as the memory of the network as

it holds information about previous inputs. This information, along with the information

obtained from the current input xt, is used to calculate the new hidden state ht. Finally,

the dot product VTh, followed by an activation layer, is trained to produce the desired

output yt using maximum likelihood.

As we can see from the diagram of Figure 3.4, the weights are shared across timesteps.

Th use of parameter sharing allows RNNs to extend and generalize to examples of different

lengths. This works well for sequential data since we are typically performing the same task

at each timestep, only with different inputs. Similar to CNNs, the sharing of parameters

results in a more time and storage efficient graph as less parameters need to be learned

compared to standard feed-forward neural networks.

Recurrent neural networks and their variants have been widely used in sequential data

domains, e.g., machine translation, text generation, language modelling, speech recogni-

tion. In the next section, we present an image captioning application that employs CNNs

combined with RNNs. As we do not directly employ RNNs in this thesis, we refer the

reader to Chapter 10 of the deep learning textbook by Bengio et al. [72] for more details

regarding training and extensions of the basic architecture shown in Figure 3.4.

3.1.3 Combination of Recurrent Models with CNNs

Since we discuss image captioning models in this thesis, it is important that the reader

knows one previously proposed deep learning model to accomplish this task. Motivated by

work in machine translation, Vinyals et al. [2] proposed an encoder-decoder architecture,

shown in Figure 3.5. In this model, a CNN (encoder) is used to compute features that are

used as the initial input to an RNN (decoder). The RNN is then tasked with generating

each word of the caption.

The CNN they use is the Inception-V3 model proposed by Szegedy et al. [74], which

was pre-trained on the Imagenet classification dataset[62]. As we explore in Section 4.1.4.1,

using a pre-trained model for image classification provides an effective image feature extrac-

tor. In CNNs, this is accomplished by removing the final classification layer (and perhaps

more layers from the end), and using the output vector as the new representation of the

image.
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Fig. 3.5: Image captioning model proposed by Vinyals et al. [2].

In their work, the authors use a more efficient RNN named the Long-Short Term Mem-

ory (LSTM) proposed by Hochreiter et al. [75] to overcome many of the challenges faced

when training a standard RNN. The decoder of their architecture, i.e., the LSTM, ob-

tains the encoded feature vector of the image, and produces the initial hidden state h0.

At the next timestep, the LSTM obtains the starter-token word (shown by XS in Figure

3.5), which informs the model to start producing an output. Every word, including the

starter-token, is encoded through a pre-trained word embedding matrix (We) producing

a vector representation of the word. After passing through the LSTM layer, the decoder

outputs a probability distribution over the vocabulary of words in the dataset. The word

with the highest probability is the predicted word of the model. In the caption generation

stage of the model, i.e., after it has been trained, the predicted word is used as the input

in the next timestep. During training, the input word at the next timestep is the target

caption’s next word obtained from the dataset. Once the end-of-sentence token (shown by

XE in Figure 3.5) obtains the highest probability in the output, the generation process is

complete. This model is trained using the maximum likelihood objective, minimizing the

classification loss between the output probability distribution and the target correct word

in the caption viewed as a one-hot vector. Here, the one-hot vector is a sparse vector with

a dimension equal to the number of words in the vocabulary of the dataset, and a value of

1 at the index of the target correct word, 0 otherwise.
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3.2 Imitation Learning

Imitation learning, also known as Learning from Demonstration (LfD), is based on the

idea of transferring human behavior to intelligent agents [76] [77]. Employing this learning

approach provides practitioners with an intuitive way of teaching agents a certain task as

humans communicate knowledge in this way. The main goal of imitation learning is to

implicitly give the agent prior information about the task at hand. This is accomplished by

showing it examples of human behaviour while performing the task, and having the agent

analyze the data to extract the policy humans follow.

An agent’s policy is a function that maps every state s ∈ S to an action a ∈ A, i.e.,

π : S → A. Conceptually, algorithms in the LfD domain aim to acquire the optimal

policy π∗ for a task from a series of demonstrations D = {d1, d2, ..., dm} that can guide an

agent while autonomously performing the task. To completely formulate an LfD solution,

one must establish the structure of the world states s ∈ S that the agent may reach, the

actions a ∈ A that the agent is capable of performing, and a transition function T (s′|s, a)

that expresses the probability of landing in s′ ∈ S given that the agent executes action a

from state s. In most real-life scenarios, the state is not fully observable. Most LfD models

handle this uncertainty by relying on the agent’s observations of the world, z ∈ Z, instead of

the complete representation of its internal structure [77]. Therefore, our LfD method must

determine the optimal policy, π∗ : Z → A using demonstrations di = (zi, ai) ∈ D : Z ×A.

There are many application areas that have employed imitation learning. These include

autonomous vehicles, such as learning to fly an aircraft from demonstrations provided via

remote control, or self-driving road vehicles. Other areas include Humanoid robots, which

allows robots to replace some of the workload that humans do, and electronic games, which

can allow an enhanced game experience and immersion in games. Relevant to our work

is the area of assistive robotics, such as intelligent robots learning to help elderly people

with daily activities or help recovering individuals with daily activities. Assistive agents

can also help with sociological and mental problems. For such agents to be useful in

social contexts, their behaviour should be human-like allowing the person being assisted

to recognize the robots behaviour, providing further motivation for the use of imitation

learning. In Chapter 4 of this thesis, we gather the knowledge of sighted “experts” on the

intersection-crossing task, and transfer it to an intelligent assistive agent for the visually

impaired using convolutional neural networks.
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3.3 Kalman Filter Algorithm

Kalman Filtering [78] is an algorithm that produces estimates of unknown variables using

a series of noisy measurements observed over time. These filters have been applied in

numerous application domains such as in navigating and controlling autonomous vehicles.

There are two steps in Kalman filtering: the prediction step and the update step. The

first part of the prediction phase, shown in Equation 3.10, decides what the current state

should be based on the previous state, the transition function of the system, and the control

action taken.

x′ = Fx+ u (3.10)

where x is the object state. F is the state transition matrix, i.e., a matrix that transforms

the previous state x. u incorporates information about external actions that may affect the

system. x′ is the predicted object state according to the state transition matrix F and the

action u taken.

The second part of the prediction phase, shown in Equation 3.11, provides an estimate

of the uncertainty in the predicted state x′.

P ′ = FPF T +Q (3.11)

where P ′ is the predicted object uncertainty. P is the uncertainty of the object’s state, and

is related to error in the measurements. Q is the uncertainty of the process.

The update phase takes measurements from the input sensors, including the noise of the

sensor, and provides a new estimate of the state. The first step is to calculate the Kalman

gain using Equation 3.12. This gain informs the algorithm of how much we should let the

new measurements effect our prior belief in the state, as calculated in Equation 3.10.

K = P ′HT (HP ′HT +R)−1 (3.12)

where H is a model of the sensor used to provide the measurement, and is typically difficult

to determine its value. H can also be viewed as transforming our prediction x into the space

of our measurements. R represents the uncertainty of the sensor measurements. K is the

Kalman gain value, with smaller values signifying the prior beliefs are less affected by new

measurements.
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Next, we calculate the new object state based on the new measurement from our sensor,

the Kalman gain, and the predicted state from Equation 3.10. This calculation is performed

in Equation 3.13.

x = x′ +K(z −Hx′) (3.13)

where z is the input measurement obtained from the sensor.

The last step is to update the process uncertainty P using the Kalman gain. This

update is calculated using Equation 3.14. Intuitively, P decreases with every update by an

amount that depends on our certainty of the measurement.

P = (I −KH)P ′ (3.14)

As an example, we explain at a high-level how a Kalman filter can be applied to deter-

mine the location and velocity of a vehicle we are tracking. The vehicle’s state x is a vector

holding its location and velocity, both in two dimensions. The state transition matrix F

represents the model of the vehicle in the world, and is used to predict the next location

and velocity. The action u is an action that a controller (such as a driver) has taken, e.g.,

braking. The uncertainty in the state P represents how sure we are of the measurements

we obtained from the sensors. The process uncertainty Q captures the mistakes in our as-

sumptions of F , such as the car never accelerating when in reality it might. If our location

measurements are in centimeters while our state units are in meters, H converts the state

values into the measurement units. R is the error in the obtained GPS coordinates.
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Chapter 4

Assisting Blind People with

Intersection Crossing

Despite the recent surge of work in intelligent robotics, to our knowledge, the results from

this research field have scarcely been applied to alleviate sensorial, motor and cognitive

impairments in humans [79]. We believe that such research, in particular the technique of

learning from demonstration in imitation learning, is well suited to addressing the problem

of veering during street crossing. In this chapter, we present our solution to the street

crossing challenge for blind individuals. We present the methodology followed in preparing

the model and the quantitative assessment of the model in the lab. Next, we present the

motivation behind many design choices of our mobile application. Following the completion

of the mobile application, we conduct an experiment with visually impaired participants to

assess the effectiveness and feasibility of the proposed solution. Finally, we conduct a series

of iterative experiments with a visually impaired volunteer to improve our mobile applica-

tion incrementally, preparing for future work that will perform a larger scale experiment of

the application.
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4.1 Methodology

In this section, we describe our formulation of the problem as an imitation learning problem.

Furthermore, we describe the data acquisition strategy as well as the policy derivation

method.

4.1.1 Task Demonstrations

To reproduce the veering behavior that may be exhibited when crossing, we first famil-

iarized ourselves with the crossing behaviors of visually impaired individuals through two

observation sessions, which found the following:

• Visually impaired individuals rely on a constant flow of traffic to orient themselves

accurately.

• Even with the help of their mobility training, guide-dog, or cane, orientation can

be problematic when traveling through environments with low traffic flow, such as

suburban areas. This can result in long wait times at intersections.

• As deviations into the traffic flow are a worst-case scenario, individuals with vision

impairments tend to veer to the interior side of the crossing.

We divided our collection of demonstrations into two steps: (i) demonstrations acqui-

sition and (ii) expert’s knowledge extraction. Each demonstrator was asked to stand at

the corner of an intersection, holding a smartphone at chest level, and capture, from a

first-person perspective, the sequence of actions required to cross the intersection. The

motivation for this particular position of the smartphone is the outcome of previous exper-

iments carried out with visually impaired users [14, 13]. As our interpretation of the street

crossing task also included an initial orientation phase to the correct direction towards the

goal, demonstrators were asked to record the procedure of rotating within a range of ±45o

about the appropriate heading from the starting corner to the goal corner.

Furthermore, as suggested by previous work [80, 81, 82], the high sensitivity of LfD

techniques to the quality of demonstrations greatly impacts their generalization ability. A

comprehensive set of samples (z, a) ∈ D should capture not only the optimal behavior of

the task, but also states that could only be reachable by some suboptimal action sequence.
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To ensure that this was the case, the demonstrators were asked to include suboptimal

behaviors in their crossings, along with the corresponding corrective actions.

Our demonstrators recorded 215 videos of approximately 25 s each from street inter-

sections in downtown Montreal, Canada, registering the sequence of states transitioned by

sighted individuals performing the task. As a compromise between data quantity and a

desire to minimize redundancy of frames at a high framerate of 30 frames per seconds (fps),

we extracted frames from the collected videos at a rate of 2 fps, which resulted in a total

of 8125 observations.

4.1.2 Experts’ Knowledge Extraction

In LfD, a transition t ∈ T between states occurs when an agent executes the actions

specified by its policy. We choose to discretize the space of possible actions by dividing

the agent’s field of view into 12 evenly spaced vertical bins as presented in Figure 4.1,

following a similar approach taken in previous research [82, 83, 84]. Each bin, v ∈ V ,V =

{v1, v2, ..., v12}, is an action in A an expert would recommend to execute given an observed

state in the street crossing task. The bins are intended to capture the heading of the goal

relative to the expert’s field of view, with bin v1 corresponding to the agent having to veer

maximally to the left, and bin v12 representing having to veer maximally to the right.

Fig. 4.1: Action space discretization into vertical bins V = {v1, .., v12} from left to right.

For situations where an expert could not identify the bin including the goal, for example,
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in the scenario shown in Figure 4.2a, our problem model also included an action unknown ∈
A. As we will discuss in Section 4.2.1, this representation allowed us to experiment with

different levels of granularity for the action space.

As our method did not incorporate a technique to capture the demonstrators’ actions

on-site, we relied on three experts’ knowledge to extract optimal behavior from those ob-

servations, in a post-demonstrations procedure. For this, each expert was presented with

frames randomly sampled from the observations, in a structure similar to the one depicted

on Figure 4.1. They were then asked to select the bin v ∈ V that contained the position of

the goal.

To ensure some resiliency to occlusions in the derived policy, we instructed the experts

to choose the bin closest to the presumed goal position in scenarios in which the goal

was occluded or otherwise not visible, provided that its location could be assumed (e.g.,

Figure 4.2b). We expected that under most conditions, a sighted individual could quickly

estimate the relative orientation towards the goal from a single observation. For those

exceptional cases where it was not possible to infer the target position, the experts were

asked to assign unknown as the recommended action (e.g., Figure 4.2a).

By virtue of symmetry, we were able to mirror each image around its central vertical

axis and associate the flipped image with the corresponding inverse action (i.e., swapping

left-to-right with right-to-left). This allowed us to create a set of synthetic observations

which, combined with the demonstration examples gathered, doubled the size of D and

ensured a balance between the states explored and the optimal behavior observed.
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(a) total occlusion of the environment (b) Optimal action inferred with goal not visible.

Fig. 4.2: Examples of demonstration frames including corner cases in our dataset.

4.1.3 Policy Derivation Technique

The literature on LfD suggests the existence of three categories of policy derivation meth-

ods: direct learning, indirect learning, and execution plans, only differentiated by how

much understanding of the environment each algorithm requires while inferring a policy

[76, 77]. The algorithms contained in the Direct Learning category are mostly independent

of beliefs about the internal state of the environment, thus easier to implement. Then, the

family of direct policy learning algorithms was our preference to solve the street crossing

veering problem.

Based on the discretization of our actions space and the reduction of the observations to

features, we choose to implement our policy extraction strategy as an image classification

problem. A classification problem is one where a classifier c(x) : X → Y is used to predict

the class y of an instance x, having y ∈ Y , Y = {y1, y2, ..., ym} a discrete set of classes.

Usually, x ∈ X is a vector ~f = {f1, f2, ..fn} of features that reduce the dimensionality of the

samples in X. In a supervised learning setting, the classifier is trained using a dataset N of

samples in the form (~fi, yi). Thus, we established the equivalence: D ≡ N ,Z ≡ X, Y ≡ A
where the classifier c(x) : Z → A, a CNN model, was trained to infer our policy π∗ directly

from samples on D.
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4.1.4 CNN for Classification Tasks

As an image usually contains irrelevant and redundant information for the resolution of vi-

sual tasks, it is better to deal with a condensed representation of such knowledge. Computer

Vision techniques often rely on the extraction of salient attributes as a way to minimize

the dimensionality of the information contained in an image. Manual extraction of those

features requires a comprehensive understanding of the environment and the task at hand.

The appearance of Convolutional Neural Networks (CNN) has come to alleviate this need

while achieving human-level performance on computer-assisted visual tasks.

Notably, CNN architectures have eliminated the prerequisite of hand-crafted feature

extraction algorithms by learning the required features and the task at hand, simultane-

ously [72]. Since ImageNet Large Scale Visual Recognition Challenge 2012 [85], CNN have

obtained state of the art results [86] on benchmark datasets in image classification, seg-

mentation or object detection like ImageNet or PASCAL Visual Object Classes Challenge

(VOC) [87].

Yosinksi et al. [88] analyzed why CNN has performed remarkably well on visual tasks

and concluded that the way convolutional filters are organized explains this success in

part. In a CNN, each convolutional filter learns to search for specific patterns in an image.

Filters on first layers of these models learn to detect low-level characteristics (e.g., edges),

while filters in deeper layers are fine-tuned to compose the low-level patterns into high-level

features (e.g., the shape of a flower), according to a hierarchical structure. Therefore, we

used CNN architectures to convert our z component of the demonstrations di = (zi, ai) to a

vector z : ~f = {f1, f2, ..., fn} of features and to map these features into our discrete action

space A, thus generating an optimal policy π∗.

4.1.4.1 Transfer Learning

Training a CNN for classification using randomly initialized filters, or even with traditional

heuristics [89], is usually a challenging and time-consuming task as the space of the mod-

els’ hyper-parameters has to be explored. Moreover, our dataset had significantly fewer

instances than the ImageNet dataset (8725 vs. 1.2 million instances) and the dimensional-

ity of the classification task is significantly lower (13 vs. 1000 classes). Consequently, the

direct application of models designed for ImageNet could lead to overfitting our dataset

and to the loss of generality on the predicted actions.
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In this regard, the notion of transfer learning helped us to overcome those obstacles.

The theory of transfer learning establishes that the knowledge on a source problem space Ps
of a learned task Ts could help improve the learning of a target task Tt on a target problem

space Pt. How much knowledge is transferable from one domain/task to the another is

directly associated with the amount of overlap between the problem areas in both [90].

Therefore, there exists a proven transferability property between features of a CNN

trained on different visual tasks [61]. Although the overlapping between our demonstrations

and the training samples on the ImageNet dataset is not clear, we still relied on models pre-

trained on the latter as a starting point for fine-tuning different classifiers. Consequently,

the high-level features of our problem were built upon the low-level features in the pre-

trained models by re-training the appropriate deeper layers in each model.

Interestingly, the derivation of policies with supervised learning has presented some

weakness in the past when the independence and identical distribution of the samples col-

lected on D cannot be guaranteed (i.i.d principle)[82]. To guarantee such independence,

each frame and the corresponding expert’s action was considered a self-contained demon-

stration. Recent applications of LfD and CNN to navigation problems in robotics [83, 91, 84]

have disregarded the sequential interpretation of a go-to-goal process thus inferring a sta-

tionary (time independent) policy. Moreover, the observations presented to the experts for

labeling were randomized, ensuring their action (class) recommendation was independent

of a sequential analysis of the frames.

4.2 Model Results

4.2.1 Training the Agent

The accuracy of CNN models has significantly improved in recent years relative to their

computational complexity [92]. However, state of the art results remain dependent on mod-

els relying on high-performance hardware, especially Graphics Processing Units (GPUs) to

carry out their inference within adequate time constraints for real-life or real-time applica-

tions. Recent work [19, 18, 93, 94] has explored CNN architectures that aim to achieve a

balance between the human-level accuracy results of their predecessors and the prediction

time, thus making the application of deep learning techniques to a real-time problem, such

as street crossing, feasible.
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In this work, we experimented with four state of the art CNN architectures. Firstly,

Resnet50 [16] and Xception [17] have a reported top-5 accuracy over 90% on the ImageNet

dataset. This motivated our exploration of their potential as policy extractors. Moreover,

we were curious to investigate the performance of network models that have been designed

specifically to achieve a balance between classification accuracy and training/inference time.

Thus, we selected Squeezenet [19] and Mobilenet [18] as our testbed for a mobile deployable

solution.

Our transfer learning approach was based on the fine-tuning of each model by removing

the latest layers, containing high-level features, and training our custom structure from

scratch. In the cases of Xception, Mobilenet and Squeezenet, after removing those high-

level-feature layers from each model, we added a 3 × 3 × 32 convolutional layer, followed

by a 1× 1× |A| convolutional layer, both activated with ReLUs [95]. Finally, we added a

softmax activation layer with a size of |A|. Because of the particular structure of residual

networks [16], we could only add to Resnet50 an extra fully connected layer converging

to the number of actions and, similarly to the models above, this layer was followed by a

softmax activation layer.

After introducing these modifications, we fine-tuned the models by holding the pre-

trained layers constant, and only training the final layers we added. Each model was

trained with a small learning rate (0.0002), using the RMSprop optimizer [96] (ρ = 0.9, ε =

1×10−8, δ = 0.0) and a categorical cross-entropy loss. The values of these hyper-parameters

were selected empirically. With this configuration, we aimed to ensure the stability of the

pre-trained values of each model.

We then experimented with reducing the dimensionality of the action space. Starting

from the arrangement of 12 bins, we generated the following three configurations:

• 4-actions space: V1, by combining {v1, ..., v4}, {v5, ..., v8} and {v9, ..., v12} into

{vleft, vstraight, vright} respectively, plus the unknown action, as shown in 4.3a.

• 8-actions space: V2, by combining {v2, v3}, {v4, v5},..., {v10, v11}, reserving bins {v1}
and {v12} for those situations when the goal is not visible but its position can be

inferred, as shown in Figure 4.3b.

• 13-actions space: V3, retaining the full configuration of as shown in Figure 4.3c.
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For each of these configurations, we modified the associated Softmax layer to accord

with the sizes of A1 = V1,A2 = V2,A3 = V3, and added v0 = unknown. We then trained

the CNN classifiers and evaluated their performance.

(a) 4-actions configuration (b) 8-actions configuration (c) 13-actions configuration

Fig. 4.3: All actions-space configurations experimented while training and testing the
agent.

4.2.2 Testing the Agent

To evaluate the generalization of the learned policy, we created a second demonstration

dataset from different intersections that were not included in the training set. Following

the procedures described in Section 4.1.1, a supplementary collection of 51 videos was

acquired, resulting in a new set O : Zo ×Ao of 1170 observations. The optimal action for

those samples was crowd-sourced to another ten experts who labeled each sample at least

five times. The conditions described for labeling the initial set D were also followed here.

Table 4.1 presents the accuracy of the derived policy, applied over the observations on

O. These results are computed based on the best-predicted action of the classifier compared

to the action that received the most votes from our experts. However, we note that best-

action accuracy metrics are not meaningfully indicative of the model’s actual performance

on a practical task. Instead, Table 4.2 presents the mean absolute error in the agent’s

predicted action, a measurement computed by taking the absolute difference between the

index of the action inferred by the policy from an observation and the index of the winning
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vote from the experts. Considering that our distribution of the action space is dependent

on the spatial arrangement of the bins, we excluded the results of the action unknown in

this calculation.

Model 4-Action 8-Action 13-Action

ResNet-50 0.746 0.635 0.503

Xception 0.822 0.615 0.526

Squeezenet 0.775 0.483 0.393

Mobilenet 0.822 0.599 0.467

Table 4.1: Accuracy of each model in predicting the correct action, compared to the
experts’ optimal action.

Model 4-Action 8-Action 13-Action

ResNet-50 0.27± 0.03 0.61± 0.07 1.14± 0.12

Xception 0.20± 0.03 0.59± 0.07 1.05± 0.12

Squeezenet 0.26± 0.03 0.83± 0.07 1.37± 0.12

Mobilenet 0.20± 0.03 0.71± 0.08 1.24± 0.12

Table 4.2: Each model’s mean absolute difference between predicted action and the ex-
perts’ optimal action, presented with the corresponding 95% confidence margin.

As can be seen, relying solely on the accuracy metric would suggest that the agent

exhibits poor performance. However, given the mean absolute error reported—typically

within a difference of a single bin—the average performance of the system is actually

satisfactory across all model types and action space configurations. This can be verified

by analysis of the confusion matrix for each action-space configuration. One can observe

in Figure 4.5 a strong tendency around the diagonal in all four models, indicating that

errors in the agent’s prediction are most often the result of confusion with an adjacent, i.e.,

very similar, action. Thus, a mean absolute error metric is more appropriate than a simple

correctness percentage score to characterize the performance of the model. Although we

only present here the 8-actions configuration, similar behavior was exhibited for the other

action-spaces tested.
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(a) experts’ prediction (b) agent’s prediction (c) activation map

Fig. 4.4: MobileNet top-3 predictions (blue, green, red) vs. experts’ predictions on the
8-action-space. A missing bin corresponds to unknown. (c) shows the CNN activation
maps [3].
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It is also interesting to note that for situations where the experts’ optimal action was

unknown (i.e., the correct label is 0), the agent would most often confuse it with the

extreme veering conditions (i.e., actions 1 and 7). This suggests that when the expert

is unsure of the required action, the agent’s predictions is to preform a large rotation.

We suspect that this behavior is related to the way experts chose the optimal action in

the training demonstrations; when the goal was not seen, the expert would choose the

edge column that they guessed was the best direction to which one should rotate. It is

evident from the last row of Figure 4.4 and Figure 4.5 that the agent has also learned this

behavior. Although some perfect agreements between the policy and the expert’s judgment

are represented in the first row of Figure 4.4, there are still scenarios in which the goal is

occluded and the policy is not capable of inferring the correct behavior, as shown in the

third row of Figure 4.4.

(a) Resnet50 (b) Xception

(c) SqueezeNet (d) MobileNet

Fig. 4.5: Confusion Matrix for each model trained on the 8-action-space configuration.
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4.3 Mobile Application Design

4.3.1 Model Selection

For spatial tasks, performance evaluation of the resulting models based on the mean abso-

lute error metric is more meaningful than using the accuracy of the best action selection [10].

While all the models we tested exhibited consistent performance on the prediction of the

optimal action, they differed significantly in computational cost. Since we were focused on

deployment in a real-time mobile environment on a resource-constrained Android platform,

we considered factors of inference time, memory, off-line storage requirements, and battery

consumption.

We also examined the impact of action-space configuration when mapped to an auditory

feedback method. While the 4-actions (3 actions plus the unknown) arrangement achieved

the best prediction results, it did not produce sufficient spatial information to present

continuous feedback across the different possible veering conditions. We ruled out use of

the 13-actions discretization due to its overly small level of granularity. This left the 8-

actions (7 spatial actions plus the unknown action) discretization as the best choice for the

experiments we conducted.

Table 4.3 shows the measurements1 obtained for each of the CNN architectures on our

test device (a Samsung Galaxy Note 5), which exhibited the best performance across the

sample set of smartphones available. Our target is to obtain at least two predictions per

meter of travel. Considering that an average sighted individual walks at a speed of 1.4 m/s

and that a blind pedestrian tends to walk at a slightly slower rate [97], inference times above

500 ms fall at the limit of what we deem acceptable. For this reason, we considered Xception

and Resnet50 models inadequate for the real-time mobile context (1256 and 1052 ms per

prediction, respectively), even if their mean absolute error was the best among all trained

architectures. On the other hand, MobileNet and Squeezenet were sufficiently fast (309 and

163 ms per prediction, respectively) that we could update the optimal action at a higher

rate. Thus, we based our experiment setup on MobileNet, ignoring the lower-performing

Squeezenet, with the aim of balancing between the inference time and mean absolute error

of the predictions. As more computationally powerful devices become the prevailing norm

in the smartphone market, we expect these models might become feasible.

1All models were quantized, when applicable, before deployment. See
https://www.tensorflow.org/performance/quantization
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Criteria Resnet50 Xception MobileNet Squezeenet

Inference time (ms) 1052± 160 1256 ± 150 309± 40 163 ± 12

CPU load (%) 41.13 43.47 31.43 20.13

Power consumption (mAh) 4166 3941 5294 2980

Memory footprint (MB) 116.18 103.85 26.17 16.23

In-disk size (MB) 90 82 14 3

Table 4.3: Mean inference time (milliseconds) and standard deviation, mean CPU load
(percentage), battery consumption (milliampere hour), memory footprint (megabytes) and
in-disk size (megabytes) factors across the trained CNN models, evaluated using our pro-
totype application deployed on a Samsung Galaxy Note 5.

Fig. 4.6: Users’ setting carrying the smartphone in a lanyard worn around the neck.

Despite the accuracy observed in these models in a static-frame setting, real-world

testing conditions were less forgiving. Since our test users carried the phone in a lanyard

worn around their neck (Figure 4.6), the camera view constantly oscillated as a result of

body sway while walking. This is shown in Figure 4.7 where a tester crossed an intersection

with this setup, and the heading angle (in degrees) was recorded. This would negatively

impact the results for both of the evaluated feedback methods, as the location of the goal

was similarly oscillating during the crossing.
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Fig. 4.7: The heading angle (in degrees) of a tester crossing an intersection while carrying
the smartphone in a lanyard worn around the neck, where the angle was recorded using
Android API’s TYPE GAME ROTATION VECTOR [4] (this sensor fusion is further ex-
plained in Section 4.5). Since the tester was walking a straight path, ideally the angle
would be in the proximity of 0 degrees.

To mitigate these effects, we implemented a weighted voting scheme (Equation 4.1)

that updates its output as a function of previous optimal actions predicted by the CNN

architecture, giving more weight to recent predictions. This resulted in the rendering of a

more stable output signal, as tested on the authors.

Vi := γ · Vi, ∀i : 1..n

Vaction := Vaction + 1.0

output = argmax
i

(Vi)

(4.1)

Where V is a vector holding the current voting power of each action and 0 < γ < 1

represents how quickly we want to forget the previous voting powers. Vaction is the voting

power of the newest predicted action provided by the model. The action with the highest

voting power is selected as the optimal action to render.
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4.3.2 Feedback Modality

Many rendering methods have been explored in previous work, including both auditory

and haptic signals. As representative examples, Panëels et al. [13] designed a constant

auditory signal whose balance between the two ears indicated the direction of veering, and

Ross et al. [53] delivered haptic feedback with an array of body-worn actuators. However,

a constant auditory stimulus would distract the user from focusing on the natural sounds

of the environment, and a haptic array remains impractical for widespread deployment.

Instead, we compared two techniques that had been employed successfully by previous

systems. The first renders a “warning-style” tone on the side of the direction of veering, but

remains silent when the user is not deviating [13]. The second produces spatialized audio

to render the location of the goal as a virtual beacon [53] similar to that of an actual APS

system [98]. The stimulus used is the same as the APS sound, presented every 1200 ms.

Hereafter, we will refer to this method as the “beaconing-style” method. Both types of

stimuli were produced using an open source implementation of the OpenAL platform API

for Android-based systems.

4.4 Evaluation with Visually Impaired People

The evaluation of the system consisted of a two-step process. First, a pilot study was

conducted with sighted participants in order to compare the two auditory feedback designs

described above. The application was then updated with the preferred feedback design.

The full experiment, conducted with fully blind participants, evaluated the performance of

the system in helping people with visual impairments align themselves with the crossing

and remain within the limits of the crosswalk while crossing.

4.4.1 Intersection and Environment

The same test intersection was used for both the pilot study and the full experiment. This

intersection was chosen with the criteria of proximity to the university to ensure a short

experiment, and a low-to-moderate amount of traffic flow, thus, minimizing stress on both

the participant and experimenter. Each crossing had unfaded two-line pedestrian markings,

thus facilitating determination of veering of the participant outside of the crossing lanes.

The longer crossing was 11 meters wide with two vehicle lanes while the shorter one was
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8 meters wide with a single vehicle lane. The longer crossing also included a bicycle path,

providing another factor that may influence misalignment from hearing a bicycle. Both

roads had one-way traffic flow, which may pose an additional challenge to participants who

try to align themselves using this cue.

4.4.2 Task Procedure

The same process was followed for each crossing in both the pilot study and the full ex-

periment. Each trial consisted of two phases: initially aligning with a given crossing and

then crossing the intersection. To reduce the impact of learning on the results, each par-

ticipant first went through both phases at a training intersection (different from the test

intersection) to familiarize themselves with the auditory feedback provided by the appli-

cation.Then, after proceeding to the test intersection, they carried out a series of crossing

trials under the two test conditions. For the pilot, these conditions were the two auditory

feedback approaches, whereas for the full experiment, with blind subjects, we tested with

and without the auditory feedback active.

Each trial followed the same procedure. Participants were kept 3 meters away from the

first corner. The experimenter then guided the participant to the corner of the intersection,

ensuring that their initial heading deviated approximately 30◦ from the correct orientation,

i.e., the center of the intersection. The experimenter then gave the participant a hint as to

the location of the goal, e.g., “Your goal is towards your left”.

At this point, the experimenter instructed the participant to orient towards the goal

without taking steps in any direction, ensuring the participant remained in a safe state at

the corner. The experimenter then took three steps away and waited for the participant

to indicate when they thought they were properly oriented. If the participant was judged

to be misaligned, the experimenter would orient them in the correct direction. Once the

traffic lights indicated that it was the pedestrians’ turn to cross, the experimenter confirmed

that it was safe, and accompanied the participant throughout the entirety of the crossing,

remaining a few steps away to ensure that the participant did not use the experimenter for

guidance. If the participant happened to veer outside of the crossing lanes, the experimenter

halted the participant, moved them sideways to the center of the crossing, corrected their

heading towards the goal, and instructed the participant to continue.

Each trial was recorded with a video camera by a second experimenter who remained
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at the starting corner, observing the crossing behaviour of the participant from behind.

In addition, user comments following each trial were written by the experimenter on a

paper pad. At the end of the experiment, for the pilot and the full study, participants

were asked to complete a Likert-scale questionnaire that assessed their comfort with the

auditory feedback, their level of annoyance with the system, and the confidence they had

in the application.

4.4.3 Pilot Study: Choosing the Better Audio Feedback Design

To choose the better feedback method, we conducted a pilot study with sighted partici-

pants, who were asked to keep their eyes closed during each trial. Initially, we intended

to blindfold the participants but decided against it for safety reasons, since we can warn

participants to open their eyes at any time should a dangerous situation arise. During

the pilot, participants first trained with their eyes open to learn how much they would

need to pivot during the initial alignment. At the test intersection, before approaching the

corner, the experimenter asked the participant to close their eyes and to try to keep them

closed unless instructed otherwise, or if they felt uneasy. At the end of each crossing, the

participants was allowed to open their eyes while providing their comments.

Figure 4.8 shows the crossing pattern followed throughout the pilot study. All users

began at origin O1 crossing in the upward direction then returned to O1, before crossing in

the left direction. This was done twice, once with each feedback method. Once participants

had completed both crossings starting from O1, we proceeded to O2. The initial auditory

feedback condition was balanced across participants, i.e., participants who started with

the beaconing-style guidance at O1 started with the warning-style feedback at O2 and vice

versa.
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Fig. 4.8: Crossing pattern followed during the pilot study with sighted participants.

For the pilot experiment, six sighted volunteers (4F/2M), ages 21-28, were recruited

from our research laboratory at the university. Qualitative results from the pilot study

demonstrated the superiority of the warning-style feedback. Four of the six participants

expressed a preference for this method. Although none of the participants reported any

hearing impairments in the pre-test questionnaire, three of them demonstrated a great

deal of difficulty with the beaconing-style guidance. One participant, whose first trial was

conducted with this feedback method, expressed anxiety during the first trial, and sub-

sequently commented, “This is really scary. I can’t tell if the sound is centered or if I

should go towards the right.” Another participant expressed how much she preferred the

warning-style feedback, saying, “The goal of keeping the system quiet is a much easier one

to follow in a high risk environment such as crossing an intersection”. Another surprising

finding from the pilot was the degree of confidence gained by participants while crossing

intersections with their eyes closed. One participant expressed this in the post-test ques-

tionnaire, stating, “If someone that is used to seeing feels very safe after a few rounds of

crossings, I would assume a blind person would be very comfortable with it”. In addition,

we observed an apparent higher cognitive load under the beaconing-style guidance condi-

tion. Some participants when crossing under this condition would take one step forward,

then stop and listen to the feedback. This is clearly undesirable when crossing intersections

as we would not want users to stop and think after every step.

Panëels et al. [13] explored the differences between two different beaconing-style feed-

backs with sighted individuals. The authors also conducted the pilot tests with two blind

participants. After these pilot tests, the blind participants informed the authors that a



4 Assisting Blind People with Intersection Crossing 53

beaconing-style feedback goes against what they are thought during orientation and mo-

bility training. Combining this result with our observations from the pilot study, the

warning-style feedback was chosen for the evaluation of the application’s performance with

blind participants.

4.4.4 Full Study: Evaluating Performance with Blind Participants

To carry out ecologically valid assessment of the effectiveness of our system, the exper-

iments were conducted with blind participants. The intention was to replicate what a

blind individual would encounter when exploring new environments, or at intersections in

a known environment without a large amount of traffic flow, both scenarios having been

identified as challenging for people with visual impairments.We began with the following

hypotheses about the potential impact of our system:

• H1: Before crossing, users are more likely to be correctly aligned with the opposite

corner using the application than they would be without it.

• H2: Using the application, users take a shorter amount of time to initially align

themselves with the opposite corner.

• H3: The application reduces the likelihood that a visually impaired user will veer

outside the crosswalk.

• H4: Using the application does not increase the total amount of time a user takes

while crossing.

4.4.4.1 Methodology

Figure 4.9 shows the crossing pattern followed throughout the experiment. As shown, par-

ticipants were given the task of crossing all four sides of the intersection starting from the

origin O1 moving in a counter-clockwise loop. At each intersection, an image was cap-

tured on the experiment phone when the participant indicated they felt properly oriented,

capturing the orientation of the participant relative to the target corner. This cycle was

repeated four times, twice using the application (condition A) and twice relying only on

their mobility training techniques (condition B), for a total of 4× 4 = 16 trials.



4 Assisting Blind People with Intersection Crossing 54

Fig. 4.9: Crossing pattern followed during the full experiment with blind participants.

For this experiment, ten blind participants (5F/5M), ages 26-58, were recruited from

[Institute name omitted for blind review] and compensated with $20 for their time plus

transportation cost. All participants were fully blind, mostly from birth. One participant

(F) had to leave early and did not complete the final trial under condition B, so their data

was excluded from the analysis. Another participant (M) who exhibited a visible walking

problem was unable to complete the experiment, and was therefore also excluded from the

analysis. Six of the remaining participants used a white cane during the experiment and

two used a guide dog. Four of the participants followed an ABBA circuit, i.e., one full

cycle with the application (A) followed by two full cycles without the application (BB) and

one last cycle with the application (A). The four other participants followed the opposite

(BAAB) cycle.

4.4.4.2 Results

We start by testing the first hypothesis (H1). Four raters were tasked with determining

whether the participant was correctly aligned, based on the images recorded prior to each

crossing. These raters, one of which is an author of this work, were presented with each

image in random order, without knowledge of the experimental condition, and asked to

assign a binary label (aligned/not aligned) to each image. The raters had a Fleiss-Kappa

value of 0.810, which represents an almost perfect level of inter-rater agreement. Figure

4.10 shows the results for the eight participants. As an example, P5 was misaligned four out

of eight trials under the control condition and twice misaligned under the auditory feedback

condition. Running a paired t-test showed a statistically significant (p = 0.0103) difference



4 Assisting Blind People with Intersection Crossing 55

between the two conditions, supporting our hypothesis that the application reduces the

likelihood that a blind individual will initially be incorrectly aligned. In addition, we found

an effect size of 1.56 indicating a very large effect between our two conditions.

Fig. 4.10: Comparison of the number of misalignments with and without the application
for each participant.

To test our hypotheses H2, H3, and H4, we analyzed the video recordings from each

trial. We extracted the time each participant took to initially orient themselves, starting

from the moment the experimenter backed away, the number of times participants veered

outside the crosswalk during the crossing phase, and the time to cross the intersection,

starting from the first step. Unfortunately, due to an error in the recordings, data from

one participant’s data (F) was missing some of the parts required to extract the useful

information to assess H2, H3 and H4. This unexpected situation left us with only seven

participants to test the three remaining hypotheses.

We proceeded to test our second hypothesis, H2. As we noted in our observation sessions

with visually impaired individuals, the orientation time does not depend on the current

corner but rather on the amount of traffic flow at the intersection. This is particularly the

case for intersections in unknown neighborhoods, such as the one used in our experiments,

allowing us to compare all orientation trials with and without the system, regardless of

which crossing corner the participant was located. Since we avoided rush hour traffic during

the timing of the experiments, we can reasonably assume that traffic flow was reasonably

similar across participants.
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During the experiments, we perceived a large variance in each participant’s first and

second trial under the auditory feedback condition. For example, one participant took

237 seconds to orient himself in the first trial while, in the second trial, he only took 21

seconds. As such, we run a paired t-test to test the assumption that there is a significant

learning effect between the first and second trial with the system. As a result, we obtained

a p-value of (p = 0.014) which supports this conjecture. To test H2, we conducted another

paired t-test comparing only the second trials of using the application versus the control

condition. This was done to avoid biases caused by learning effects from first use with the

system. The results are statistically significant (p = 0.0269) allowing us to conclude that,

following an initial training session with the application, participants can align themselves

faster with the opposite corner.

Next, we test our third hypothesis, H3: The application reduces the likelihood that a

visually impaired user will veer outside the crosswalk. To determine whether participants

will be less likely to veer, we extracted the number of times each participant deviated

outside the crosswalk under each condition. Figure 4.11 displays the number of times each

participant veered outside the crosswalk with and without the application. For example,

P2 veered outside the crosswalk in three out of eight trials under the control condition, and

veered once out of eight trials under the auditory feedback condition. There is only one

participant (P3) whose data show a negative outcome while using the application. We note

that this participant used a guide dog during the test and, following the trial, she reported

that even though the application was telling her to correct, she ignored it since she did

not want to correct the dog’s behavior. Although we cannot yet reject the null hypothesis

that the system reduces the likelihood of veering (paired t-test p = 0.0519), we observe a

positive trend towards the validation of this position. Observing the results in Figure 4.11,

it would appear to support our hypothesis, with only one participant exhibiting a negative

response when using the application versus the control condition. In addition, we found

an effect size of 0.98 indicating a large effect between our two conditions. With further

testing on more blind participants and addressing some of the apparent shortcomings of

the current application (as detailed in the Section 4.5) we anticipate it will show statistical

significance.
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Fig. 4.11: Comparison of the number of veerings with and without the application for
each participant.

In testing the last hypothesis (H4), we average each participant’s two trials under each

condition. We then conduct four paired t-tests evaluating the difference in crossing times

between each crossing under both experimental conditions and found no significant differ-

ence in crossing times (Intersection 1: p = 0.7833, Intersection 2: p = 0.1340, Intersection

3: p = 0.1755, Intersection 4: p = 0.1106). This outcome supports our hypothesis that

using the application does not increase the total time it takes to cross a given intersection.

4.5 Iterative Improvements of the Application

The qualitative and quantitative analysis of the collected data pointed to several areas

where the user experience could be improved or the perfomance of the application was

lacking.

First, having the smartphone held by a lanyard around the neck did not take into

account the variations in abdomen size of the participants. This significantly affected

the viewpoint of the camera in a few cases (example shown in Figure 4.12), resulting in

a completely transformed perspective of the image frames fed into the model, relative to

those employed during training. Examination of the qualitative data obtained from affected

participants indicates that this issue heavily impacted prediction, resulting in poor accuracy

of the feedback. Another major drawback of this configuration is the camera sway caused by

human walking. Although we addressed this problem in part through Equation 4.1, our use
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of a weighted average over the last five predictions is of questionable robustness. Improved

solutions could range from a video stabilization procedure, to some form of frame filtering,

taking advantage of the built-in sensors of the smartphones to determine the appropriate

instant to acquire a frame.

Fig. 4.12: Distorted image perspective due to the user’s anatomical characteristics.

Although Panëls et al. [14] reported that the phone in the lanyard configuration is the

preferred one by blind participants, this may not be true when dealing with camera-based

applications. Furthermore, the qualitative data collected indicates a few blind individuals

may opt out of wearing their smartphone in this fashion due to security concerns. Conse-

quently, future studies should resolve the appropriateness of smartphone-only systems or if

a mixed wearable-smartphone solution could help improve blind users’ experience to a less

constrained environment. In order to further improve the application from a robustness

perspective, we solve the problem by employing a torso-strapped solution that holds the

mobile phone as shown in Figure 4.13. We acknowledge that this solution may not be pre-

ferred by users, however we choose to focus on other aspects of the application and leave

this issue for future work.
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Fig. 4.13: New body harness to hold the smartphone for future experiments.

Secondly, further opportunities for improvement were apparent in the design of our

feedback, which rendered a continuous sound on the side of the veering and no sound when

the users’ alignment with the opposite corner was accurate. The 8-action model, which

divided the camera image with a field of view of 77◦ into seven directional bins, proved

to be excessively pedantic regarding what constituted correct alignment. Only the central

bin was mapped to the “silent zone”, and thus, corrective feedback was provided overly

frequently, alternating between the left and right channels, even when the users’ orientation

was reasonably well aligned with the opposite corner. We found that this uncompromising

feedback was necessary in determining the correct location of the opposite corner when the

users were initially aligning themselves. However, once the correct heading is determined,

there is no need for the application to be so meticulous.

This effect can be mitigated by applying a Kalman filter [78] on the predicted bin.

This was done as a replacement to the current historical averaging algorithm described

in Equation 4.1. Since we are in a one-dimensional space in this work, the vectors and

matrices in Equations 3.10-3.14 are all scalar values. In our application, the state is the

orientation of the phone represented by the action values from 1 to 7. The state transition

value F , which represents the model of the phone in the world, is assumed to be 1 since we

do not have a model of how the phone might rotate, and we assume little rotation between

predictions. We omit the action u in this work as we have no means of modelling how the

user will rotate based on the feedback she obtains. Since our state and our measurement

are in the same numerical space, H is assigned a value of 1. As we noted in Section 3.3,
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it is difficult to estimate the process uncertainty Q. We therefore assign it a value of 0.01,

determined through empirical testing. The value of the error in our obtained measurements

(R) is assigned a value of 0.8, which is the mean absolute error of the model. We initialize

the state of the phone as properly oriented, i.e., x = 4, and the uncertainty of the phone’s

orientation as having an uncertainty equal to the mean absolute error of the model, i.e.,

P = 0.8.

Figure 4.14 shows a graph comparing simulated raw predictions from the model com-

pared to filtered predictions from the weighted average approach (from Equations 4.1) and

from the application of the Kalman filter. As we can see, the most stable signal is the one

filtered through the Kalman filter, with the predictions obtained from the weighted average

approach having responses to the noise of the raw output, such as between 40th and 110th

time-steps.
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Fig. 4.14: A comparison between the simulated raw predictions from the CNN model
compared to filtered predictions using the weighted averaging algorithm from Equations
4.1, and the application of the Kalman filter.

Thirdly, solely relying on the model is perhaps not the ideal way to provide heading

feedback. As we mentioned earlier in this chapter, the model is not always accurate and the

oscillations in the feedback, which occur at times even when users are completely stationary,

can be problematic. In addition, as we can see from Table 4.3, the battery consumption is

relatively high, even when using the agent with the MobileNet CNN for policy extraction.

Using this CNN results in the feedback to the user being delayed by 300 milliseconds (in-

ference time in Table 4.3), which would be acceptable, provided the model was generalizing

well. However, correcting the model’s inaccuracies by means of historical averaging (Equa-

tion 4.1) or Kalman filtering makes the application too slow in providing feedback while

walking. To mitigate these effects, we can build on previous work [13, 33, 53] by using
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the built-in IMU sensors now available in commercial smartphones to provide directional

feedback. As noted by Panëels et al. [13], the compass can be influenced by magnetic

interference from the environment, e.g., cars or larger vehicles, which can cause offsets of

over 30 degrees. Fortunately, the Android API provides access to various fusions of IMU

sensors. In particular, in this work we use the TYPE GAME ROTATION VECTOR [4],

which does not depend on the magnetometer, and, according to the documentation [4], if

the phone is rotated and returned to the same real-world orientation, it should report the

same rotation vector. The data provided by TYPE GAME ROTATION VECTOR fuses

the built-in gyroscope and accelerometer to provide stable and accurate readings regarding

the phone’s rotation. We refer the reader to the documention for more information on the

specifics of the sensor fusion algorithm [4]. For this work, we do not require knowledge of

the direction to the magnetic north since we can use the model to inform us of the correct

heading angle. With the use of IMU data combined with the model, one can use different

schemes to provide the user with heading feedback. In this work, we choose to have the

model be the initializer for the IMU data. This can be explained by the following three

steps:

1. The model determines the correct heading by obtaining ten consecutive predictions

of the 4th (central) bin. This threshold was determined empirically.

2. The IMU sensors are started, taking the first angle as the reference angle, which was

determined by the model as the correct heading.

3. From thereon, the model ceases to provide predictions, and only the sensor readings

are used for heading feedback.

Finally, we note that the model, in its current state, is not ready for full deployment

as we cannot guarantee its performance. This was apparent primarily during the crossing

phase where much of the feedback provided was oscillatory. We are confident that the

new harness shown in Figure 4.13 would alleviate some of these problems, but would not

completely eliminate them. We hypothesize that improvements in the architecture and

the collection of more data should improve its performance. However, first we wanted to

observe the marginal effects of switching to the new harness and to the use of IMU data.

After updating our method of harnessing the smartphone to the user, and switching

to the use of IMU data following the established correct heading by the model, a series of
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experiments were performed with one of our blind colleagues who has been an enthusiastic

test user of our system since the outset of this project. This participant is experienced

with beta testing mobile applications for the visually impaired community, and a frequent

outdoor traveller of various areas in downtown Montreal (Canada). In the following sub-

sections, we will go through the three iterative rounds of improvements of the application,

presenting the feedback we received and reflecting on our observations. The assessment we

present here is purely qualitative, with the knowledge that a quantitative assessment of the

application will be required before it can be deployed. We leave quantitative assessment of

the application for future work.

4.5.1 First Round of Improvements

We met with the participant near the Loyola campus of Concordia University in Mon-

treal, and proceeded to testing the updated application at six intersections. The following

describes a series of observations and enhancements made in response:

• Before testing the application with the user, the experimenter explained what the

auditory feedback meant, i.e., that feedback is rendered on the same side of veering,

that it will be quiet if they are walking in the correct direction and also demonstrated

what the unknown sound is. Instead of having to say this before every experiment,

we integrated a tutorial using Android’s text-to-speech engine to inform the user of

the feedback every time the application is started. This tutorial plays as follows:

– “Rotate away from the auditory cues as slowly as possible. If no sound is pro-

duced, it means you are correctly oriented.”

– Left Ear Cue “indicates you should rotate right.”

– Right ear Cue “indicates you should rotate left.”

– Unknown Cue “indicates something is obstructing the view.”

• Since we do not want the user to begin crossing unless the correct heading was

determined by the model and the application switched to using IMU data to provide

the feedback, it would be informative to have a speech feedback that indicates that

the correct heading was found. This was determined to be critical as the experimenter

would constantly have to inform the user when the correct heading was determined.
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To solve this, we use the text-to-speech engine provided by the Android API [4] which

renders the following at the start of the application: “Please begin slowly rotating

while I determine the correct heading”, and renders the following when the correct

heading is determined: “Correct heading determined. When you know it is safe,

begin crossing”.

• Observing the user while using the application, it was apparent that in the initial ori-

entation phase, he would try to rotate quickly to locate the opposite corner. However,

this causes problems in determining the initial heading direction as it can result in

the model overshooting the prediction from bin 1 to bin 7, making it difficult for the

user to stabilize the prediction. Reflecting on this finding, we recall that from the full

experiment described in Section 4.4.4, this phenomenon was observed with several of

the participants where the experimenter was forced to repeatedly tell the participant

to rotate slower. To solve this problem, we implemented a method that obtains the

angular speed of the phone, and therefore the angular speed of the user, using the

built-in gyroscope calibrated using the Android API [4]. If the gyroscope reads an

angular speed of 30o/s, using the text-to-speech engine it reads “rotate slower”. This

was implemented for the entire crossing, i.e., in the initial orientation phase which

uses the model, and the subsequent crossing phase which uses IMU data for feedback.

4.5.2 Second Round of Improvements

With the adjustment from the first round, we met with the participant again and experi-

mented with crossing three intersections near the Loyola Campus of Concordia University.

We present the feedback and observations we obtained in the following:

• A problem with the gyroscope is that it can have random peaks in its readings during

walking. This can be due to the compensation of the gyroscope performed by the

Android API, which uses the accelerometer. And since the accelerometer readings

are affected by sudden impacts, such as every step, this has an effect on the final

gyroscope readings. This resulted in the frequent rendering of the “rotate slower”

feedback method while crossing, causing some confusion to the participant. We could

try to correct this by choosing when the readings should be obtained and assessed,

e.g., acquiring the readings shortly after we know the user has taken a step to avoid
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the sudden spikes in accelerometer readings. However, we hypothesize that this is

not necessary during the crossing phase since the users should naturally be walking

without too many abrupt rotations. In addition, slow rotations are mainly necessary

when the model is determining the correct heading, and not so important when

we switch to IMU-based heading determination. Indeed, this was also the user’s

recommendation. Therefore, to solve this problem, we will only use the “rotate

slower” method when we are using the model to determine the reference heading.

• The participant also suggested we implement spoken instructions in the application

instead of the spatialized warning-style tones currently implemented. This would

entail having the application use the text-to-speech engine to provide directional

words that instruct the user to rotate in a certain direction, e.g., rotate right or

rotate 10 degrees. Recalling that Ross et al. [53] tested this approach and found it

had the worst performance, we decided not to implement it for the third iterative

experiment and leave it for future work to test.

• The next two observations point to the deficiencies of the model in its current state.

– At the second intersection, the model was incapable of stabilizing on the correct

heading as it oscillated between the three central actions (3, 4 and 5) even

though the participant held his position still. As a result, the user was confused

as to what he was doing wrong and kept trying to rotate to re-adjust it. An

example of this is shown in Figure 4.15. The image shown in Figure 4.15a

represents a scene that was relatively unchanged, i.e., little rotation by the

user, and the corresponding 82 predictions from the model, which oscillated,

are shown in Figure 4.15b. Note that these predicted values have already been

filtered through the Kalman layer. We would expect the behaviour of CNNs

to be deterministic as they consist of a series of frozen matrix multiplications.

However, deep neural networks have recently been found vulnerable to well-

designed input samples, called adversarial examples, where small perturbations

in the input can provide substantially different outputs [99]. Adversarial defenses

remains an active area of research. One way to address these issues is to draw

from research in Bayesian deep learning [100], providing an additional output

that indicates the uncertainty of the predictions. We leave the development
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of such models for future work, and, in this work, we re-train the model with

additional data as well as modifications in the architecture, which we present

below.

(a) Scene as presented to the model. (b) Corresponding 82 predictions.

Fig. 4.15: An example of the model having 82 different predictions for the same input
image.

– At the third intersection of the experiment, the model predicted that the user

was correctly oriented. Figure 4.16 shows that input image. As we can see,

the user is clearly not properly aligned with the crosswalk, which points to the

deficiency of the model.
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Fig. 4.16: A scene for which the model incorrectly found the heading that should be
followed by the user. The correct heading would be found by rotating the user to the left
as it would allow the model to locate the curb at the end of the crosswalk.

These problems prompt us to delve deeper into the model to find what causes these

issues. As we explained in Section 4.2.2, using the mean absolute error was a more

meaningful indicator of the model’s performance. However, we originally trained all

models using a classification objective. We hypothesized that re-training them to

reduce the mean absolute difference would provide substantial improvements. This

was accomplished by transforming the classification task into a regression task (see

Section 3.1 for details of the difference). Since the unknown action has no spatial

relationship with the other possible actions, we cannot include it as a possible action

in this new objective. We address how we include the unknown action in this new

model later in this section. Indeed, after modifying the objective and re-training

the model, we tested it on the original test set from Section 4.2.2 and obtained a

mean absolute error of 0.49±0.05 (95% confidence interval). This is an improvement

compared to the original classification model that obtained 0.71 ± 0.08, which also

did not include the unknown action in the calculation of the mean absolute error

as noted in Section 4.2.2. These values represent the distance between the model’s

prediction and the true (optimal) action determined by sighted experts.
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After re-training the model with the new objective, we proceeded with the collec-

tion of 50 more training videos from different intersections than the original dataset.

Following the strategy in Section 4.1.2, we extracted the expert’s optimal crossing

direction by using a single sighted individual, and we re-trained the model with the

newly acquired data. The inclusion of the new data provided marginal improvements

(mean absolute error of 0.47± 0.05 on the original test set), pointing to the fact that

more data may not always result substantial improvements. To obtain a glimpse of

the improvement in the model, we also tested it on the image in Figure 4.16, which

was not part of the new training data. The model predicted action 1, i.e., the user

should rotate left to locate the curb on the opposite side of the intersection, the

correct action that should be taken.

With this new model, we have no way of informing the user that the view is blocked,

i.e., no way of rendering the unknown action. Since the initial model appeared (empir-

ically) to accurately predict an unknown situation, we use it in the mobile application

as a binary classifier with its goal being to determine if the view is unknown. However,

running these two models in series would mean that predictions would be provided

with a delay of approximately 450 milliseconds, which is too long for this task. In

order to balance the latency of the application, we run inference using the unknown

classifier every three runs of inference with the orientation model. If a scene is classi-

fied as unknown, then we enter a mode where only the unknown model is used until

it predicts otherwise. This schedule was chosen through empirical testing. Future

work can explore multi-task learning where the two objectives would be to classify a

scene as unknown, and to predict the location of the goal.

4.5.3 Third Round of Improvements

We conducted a third experiment with the same blind colleague following the improvements

from Section 4.5.2. At the intersections where the model had incorrectly predicted the

location of the curb or where it continuously oscillated around the correct heading, the

user was now able to quickly and correctly become oriented. However, there was one minor

issue we discovered during the last crossing.

At that intersection, the participant’s starting orientation, i.e., before starting the appli-

cation, was pointed towards the outside of the intersection, similar to the scenario depicted
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in Figure 4.2b. In determining the initial correct heading, the model instructed the user

to keep rotating towards the outside until he was eventually facing the sidewalk. At that

point, the model provided ten action-4 predictions and, therefore, transitioned to using

IMU data. We believe that the model rotated the user almost 90 degrees due to the way

we trained it to search for the opposite corner when it is not in the frame, i.e., by choosing

the left-most or right-most spatial action continuously. This was odd behaviour, however,

since the training and testing data included examples where the user was oriented towards

the outside of the intersection, as is the image in Figure 4.2b. This points to the need of fur-

ther improvements to the model architecture, and/or further efforts to extend the datasets

to include more examples of this configuration. As for the model predicting the correct

heading when it faced the sidewalk, this behaviour can be explained due to the training

data. When we extract frames from the initial crossing videos to create the dataset, the

last few frames always included views of the sidewalk since we are at the end of the cross-

ing. And these frames were labelled with the central bin since it is the correct heading the

user should follow. These effects can be mitigated by excluding images from the end of

crossings from the dataset. This intuitively makes sense since we are only using the model

for initial orientation. We note that although this behaviour is undesirable, it is does not

pose a safety issue. We discuss further improvements to the model in Section 4.6.

Interestingly, the user did not realize he had rotated almost 90 degrees to the outside.

We note that this would probably not have occurred if the user was not using the applica-

tion, since he would have relied on his orientation and mobility training instead. We had

not observed users putting more trust in the application during our experiment with blind

participants (presented in Section 4.4.4), which is understandable since the experiment’s

time span was at most 1.5 hours. However, since this participant had now become a fre-

quent tester of the application (having tested it on three separate occasions), it would seem

he has now reduced his reliance on his own abilities, and has put more trust in the appli-

cation. Although anecdotal, this shows the importance of providing accurate feedback to

users in the assistive technology domain as their reliance on these applications can increase

with time.
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4.6 Limitations and Future Work

While the application we designed produced good results overall, we note that there still

exist areas for continued development. One area of improvement lies in the design of the

final layer and the loss function. While the new model we proposed in Section 4.5.2 yielded

improvements in the overall mean absolute error of the predictions, we hypothesize that

this can be further improved by applying methods from ordinal classification [101]. This

new objective offers a way of performing standard classification while taking into account

the order of classes. That is, a higher loss is obtained if the model predicts a class (e.g.,

action 6) farther from the true class (e.g., action 3) compared to if it predicts a class (e.g.,

action 4) closer to the true class. This is precisely the behaviour we desire from the model if

we remove the unknown class, which has no spatial relationship to the other classes. Using

methods from multi-task learning [102], one can design an architecture with one task being

to determine if a scene should be classified as unknown, and a second task that predicts

the optimal direction, given that the scene is not unknown.

Another area of improvement is the design of the architecture. A decision we made

was to use single-state-single-action imitation learning, i.e., taking into account a single

timestep to make a prediction. That is, in making a decision, the model only looks at

the most recent image. Future work should experiment with using the sequence of prior

frames of the current crossing combined with the current frame to decide on the optimal

action. This can be accomplished by employing a recurrent neural network, where at every

timestep, it obtains features of the current image through a CNN, and the hidden state

vector holding information from all previous inputs. Further design efforts would be needed

to make such a model operate efficiently in a mobile application.

Analyzing the training/testing losses can result in better model performance. Even

with the improvements we applied and the additional data we collected (Section 4.5.2),

the model still seems to overfit to the training data. This could be due to the model

having too much capacity allowing it to learn visual features specific to the training data

[103]. We can improve the model’s performance by training it with more data. After the

release of this work and the improvements we proposed in Section 4.5, we discovered the

Freiburg Street Crossing Dataset [104], which contains images from first-person perspective

originating from the corner of intersections, similar to the ones we collected. Future work

should employ sighted individuals to label the images from this dataset with heading targets
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following the instructions from Section 4.1.2. We expect this additional training data will

reduce the overfitting we are observing.

It is important to note that we constructed this dataset by learning how visually im-

paired individuals cross intersections through observation sessions with only two users.

While this has provided us with an overall understanding of the problems, it does not rep-

resent the full range of strategies employed by visually impaired individuals in intersection

crossing. The procedure employed in this chapter to construct a dataset may need to be

repeated prefaced by more observation sessions with individuals from the blind community.

These sessions can be further enhanced by working closely with orientation and mobility

specialists who train blind individuals in outdoor navigation.

In designing computer vision applications for people with visual impairments, an im-

portant consideration is the image acquisition method. The body harness used in Section

4.5 (shown in Figure 4.13) provided a stable method of holding the smartphone for camera-

based computations. While the participant of Section 4.5 preferred this harness over the

original lanyard design, shown in Figure 4.6, we hypothesize that this may not be the case

with other blind individuals due to cosmetic acceptability and social impact. Further re-

search should explore user preference between these two approaches as well as using glasses

with an embedded camera, such as the Horizon Smart Glasses developed by Aira Tech

Corp [105].

Following the improvements of our application from Section 4.5 and the modifications to

the model discussed above, more experiments with blind individuals should be conducted.

These experiments can also explore different camera positions to answer the questions of

user preference, and to find out how the position affects the performance of users. As

opposed to the experiment we conducted in Section 4.4, these experiments should be con-

ducted at more than one intersection to test the system’s robustness. In addition, since

the amount of traffic is an important signal that visually impaired individuals rely on for

orientation and crossing, future studies should record the number of cars during trials; this

is one of the limitations of our study. Another consideration for subsequent studies is to

conduct them with only one type of assistive device, i.e., guide dog or white cane. As we

have seen with one participant who used a guide dog, the application may provide feedback

that opposes the guide dog’s guidance.

During our experiments of Section 4.5, it was important that we balanced the tension

between customizing the system to one user’s preferences and ensuring that the system
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is generalizable. These preferences were expressed by the volunteer when he requested

spoken instructions rather than audible tones, or when he indicated that the body harness

is a better alternative to the original lanyard. In the current stage of the application, it

is important that the basic components for functionality (i.e., the model) perform well

in the simplest testing scenarios. These preferences can then be addressed with a more

comprehensive pool of participants to ensure that the system can meet the preferences of

the community as a whole.

The objective of this work is to eventually release a mobile application on smartphone

application stores. For this application to be useful for the visually impaired community,

it will need to tackle all the challenges involved in crossing an intersection, as identified

in Chapter 1. Radwan et al. [104] propose a multimodal CNN architecture for predicting

an intersection’s safety by jointly predicting the state of the traffic light and the future

trajectories of surrounding traffic participants. Future work can explore the integration of

their work with our approach, and intersection configuration data (e.g., two-way vs. four-

way) obtained from Open Street Map, to provide a solution that tackles all subchallenges

of intersection crossing.
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Chapter 5

Describing Visual Content to Blind

Individuals

The recent surge of deep learning has presented new opportunities in understanding and

describing visual content, with models capable of classifying objects in images [17, 16,

18, 1] and providing natural language descriptions of those images [42, 43, 2, 22]. The

inception of these models has led many to believe that they are ready for deployment

in applications tailored for the blind community. Although the potential they offer is

attractive, further research is required before such captioning models are ready to be applied

for the visually impaired community. We attribute the problems with these models in part

due to the disparity between the data used to train these models and the requirements

of visually impaired users. In addition, the frequent inaccuracies of current models make

them unreliable and even unusable by this user group. In this chapter, we review previous

approaches that study describing visual content to visually impaired people. We then

summarize the lessons learned by these various methods, with emphasis on the type and

quality of the descriptions required as well as the human-computer interaction challenges

associated with obtaining images from the blind user’s perspective. Finally, we suggest

future directions we believe researchers and AI practitioners should follow when designing

scene description systems for this community.
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5.1 Assessment of Current Models

We start with the presentation of results from recently proposed image captioning models,

shown in Table 5.1. CaptionBot [5] is an open API powered by Microsoft Cognitive Services,

and provides image captions that start with “I think” to promote skepticism in the captions.

Neural Image Captioner (NIC) is the model proposed by Vinyals et al. [2], which we

described in Section 3.1.3. We can see that only the first example in Table 5.1 provides

an accurate and satisfactory description of the image. From our experience, the errors we

encountered here occurred frequently throughout our testing of deep learning models on

images which were acquired outside of the training distribution, i.e., images outside of the

Microsoft COCO dataset [44].

Firstly, although the models are partially correct in most of the cases, as we can observe,

the amount of detail provided is limited. Furthermore, the additional detail they provide

is typically the source of the errors. This can be observed, for example, in the second

image-captions pair where both models make the error of predicting the presence of traffic.

As we have previously discussed, these models often provide repetitive captions. This can

also be observed by comparing NIC ’s captions in the second and third examples. Finally,

some of the errors make these models unusable by the blind community as users would

likely be led to potentially dangerous situations. As we mentioned in Chapter 1, one of

our Autour users indicated that a potential use case for these models would be to identify

sidewalk closures and other roadwork. We see in the last example of Table 5.1 that users

would be misinformed by the generated captions.

The incorrect “assuming” of the presence of an entity, while understandable in most

cases, suggests that the models associate specific entities in the image (street) with other

details not necessarily present (cars). This was a recurring source of error throughout our

experience, and can be observed in almost all the image-captions examples. We hypothesize

that these errors are due to training the models with a maximum likelihood objective, which,

by definition, provides for the most likely prediction. However, without properly grounding

the caption generation process in the image through an alternative objective function, it

seems inevitable that the models will make such errors.
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Image Descriptions

• CaptionBot: I think its a group of people walk-

ing on a city street.

• NIC: A group of people walking down a city

street.

• CaptionBot: I think it’s a close up of a busy city

street.

• NIC: A city street filled with lots of traffic.

• CaptionBot: I think it’s a view of a city street.

• NIC: A city street filled with lots of traffic.

• CaptionBot: I think it’s a fire hydrant on a city

street.

• NIC: A red fire hydrant sitting on the side of a

road.

Table 5.1: Images taken while walking in Downtown Montreal with a smartphone worn
in a lanyard as in Figure 4.6. CaptionBot captions are generated using the CaptionBot
API [5]. Neural Image Captioner (NIC) is a trained version of the model we presented in
Section 3.1.3, which is based on the model proposed by Vinyals et al.[2].
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5.2 Survey of Previous Work

In recent years, many systems and research projects have been proposed to assist visually

impaired people with the understanding of visual content, whether in indoor and outdoor

environments [39, 29, 106, 7, 25, 24, 107, 26] or on social media platforms [108, 8, 9]. In

this section, we describe the projects that performed a formal analysis of their proposed

systems with blind individuals, describing how they analyzed the problems, the solutions

they propose and the lessons they learned from their studies.

Bigham et al. [29] designed VizWiz, a crowdsourced iOS mobile application that allows

blind users to obtain answers to questions regarding images, which are taken from their

phone, by asking multiple volunteers on the web. The authors also introduced quikTurkit,

an approach to intelligently recruit sighted workers in advance with the goal of reducing

latency. When a user starts the application, VizWiz pings the server to start recruiting

participants in anticipation of an incoming question. quikTurkit maintains a pool of work-

ers by displaying questions that were asked previously to keep them busy until the new

questions arrive. quickTurkit accomplished this seamlessly by posting previous Human In-

telligence Tasks (HITs) on the Mechanical Turk server. The workers interacted with the

image and question through a web page. The authors conducted multiple user studies with

blind individuals to assess and iteratively improve their application. An interesting finding

was participants’ frustrations with being unable to take good pictures, with 11% of ques-

tions being discarded due to image problems, which was later partially addressed by the

group in their second study by means of detecting blur and darkness. After analyzing the

questions typically asked by users, the authors found that many questions were motivated

by the users’ desire to locate a certain object. The authors proposed VizWiz::LocateIt, a

prototype system that combined the VizWiz question-answering approach with computer

vision to help users locate certain objects in an image. The system follows an informa-

tion visualization scheme that consists of an overview stage, followed by a zoom and filter

stage, and allows for details on-demand. To assess their method, the authors designed

a within-subject lab-based study where participants were asked to find a desired cereal

box using LocateIt and a commercially available barcode scanner with a talking interface.

While their study showed that LocateIt was slower and less accurate than using the barcode

scanner, its advantage is that it has the capability of scaling to objects that do not have

a barcode. Their study revealed that some participants had difficulties keeping the phone
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perpendicular to the ground, and that all participants had difficulties judging how far back

they should hold the phone from a cereal box when they tried to center it in the frame.

After a one-year deployment of VizWiz Social, an application derived from VizWiz,

Brady et al. [30] analyzed 1, 000 questions asked by visual impaired users, which were

sampled from a dataset of 40, 000 questions posed by 5, 000 users. While VizWiz can only

send questions to Mechanical Turk, VizWiz Social users can employ different answer sources

such as VisionIQ, a computer vision service that uses human workers to manually identify

unrecognized objects, or use friendsourced workers using email or Facebook. Their analysis

provided insights into the common question types typically asked, and helped understand

the photography challenges faced by this user group. We present the four main categories

the authors found in Table 5.2.

Category % of Questions Description Subcategories

Identification 41% An object to be iden-

tified by name or type.

No Context, Contextual,

Medicine, Currency, Me-

dia

Reading 17% A user requests the

text be transcribed.

Information, Mail, Dig-

ital Displays, Number,

Bathroom, Cooking

Description 24% A user requests a de-

scription of visual or

physical properties of

a depicted object.

Appearance, Color,

Clothing Color, Clothing

Design, State(on/off),

Computer/TV Screen

Other 17% A question that was

unanswerable.

Outside of Range, About

VizWiz, Unanswerable

(e.g., audio issues)

Table 5.2: Categories of questions asked by VizWiz Social users after a one-year deploy-
ment. Percentages do not add up to 100%.

A rater placed each image-question pair into one of the categories in Table 5.2, and

then further into one of its sub-categories. We can see that most of the questions were

related to the identification of an object, e.g., identifying what kind of soda can the user

is holding or what object is shown in the picture. The second most common question type
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was the description of certain scenes such as how old a person looked or the color of the

flowers shown. The authors also performed a classification of the images alone without

having context from the question, which provided insight into the categories users were

most interested in accessing. They found that 76% of the photographs fell into the Object

category while 5% and 4% focused on Person/Animal and Setting categories, respectively.

Next, an evaluation of the photograph quality was conducted based on blur, lighting,

framing (are parts of the item in question outside the frame?), and composition (is an item

obscured by other objects?). Using a researcher, each photograph was initially given a

score of 5 with a point being deducted for each error found until the minimum score of 1.

They found that only 15% of photographs obtained a perfect score, with 33% scoring 4, 29%

scoring 3, and an average score of 3.41. Despite the errors however, only 5% of photographs

with scores of 3 or 4 were determined not to have an identifiable object. It would be

interesting to see if this recognition rate would differ with deep learning approaches. In

addition to analyzing the questions and images, the authors also examine the behaviour

of users to offer insight into the challenges and successes of adopting access technology

for blind individuals. Analysis of the 25 most active users was conducted, who asked an

average of 283 questions through an average of 295 days of usage. For each user, the authors

analyzed the first and most recent five questions. The first five questions’ analysis showed

that the majority of questions related to identification (73%), followed by Description

(14%), Other (9%), and Reading (4%). The latest five questions consisted of 46% Reading,

25% Identification, 21% Other, and 8% Description. In addition, they found a significant

improvement in photograph quality from an average of 3.32 to 3.62. The authors also found

a higher-than-usual abandonment rate when users had a poor first experience either due to

poor quality of their question-image inquiry or a poor answer from the crowd, pointing to

the importance of usability as well as utility in the adoption of assistive technologies. They

provided more insight into the urgency of questions as well as the level of subjectivity vs.

objectivity of the questions for which we choose not to report in this thesis. In 2018, the

VizWiz application resulted in the release of a new visual question answering dataset [45]

tailored for blind individuals, sparking a new computer vision challenge held at ECCV

2018 [46].

One of the limitations of VizWiz is that the user can only send images to a group of

workers one at a time, which makes it ineffective in supporting users over the course of

a sequential interaction. Lasecki et al. [106] addressed this with Chorus:View, a system
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designed to enable the user to have a consistent and reliable conversation with the crowd

through a video stream from the user’s phone. To motivate the use of video streaming,

they analyzed a one-month period of questions asked on VizWiz Social and found that 18%

of those questions are likely to require a sequential interaction. The sequential requirement

related to a scenario where a user needs to ask multiple questions about an image that

cannot be answered in one shot, or a scenario where photographic errors require correc-

tive instructions from a crowdworker before an answer can be provided. They conducted

multiple user studies that tested blind users’ ability to use the Chorus:View approach in

completing a set of tasks in comparison to VizWiz. In a preliminary study that used a

Wizard-of-Oz design, six blind users were paired with six students (workers) where users

submitted questions by streaming video using the Apple FaceTime application, and workers

replied to questions via text messages that are then read by VoiceOver. The results showed

that users spent less time finding the information using the Chorus:View approach, and on

a 7-point Likert scale where 1 was “strongly disagree” and 7 was “strongly agree”, users

rated the approach of Chorus:View to be easier to use than VizWiz with a Likert score of

6.0 versus 3.0.

Next, we review some details of the Chorus:View application. Users stream video

through the application and record their questions via audio at any time throughout the

stream, and the workers’ feedback to those questions is provided in a text area that is

automatically read using VoiceOver. As users had difficulties stabilizing the camera, the

interface allowed workers to capture individual frames from the video stream, helping them

focus on specific details. In addition, the worker interface allowed multiple workers to

contribute to an answer by allowing them to interactively vote on existing responses as well

as propose new ones. Workers were not only rewarded for quickly generating answers but

also for coming to agreement with others. A second study was conducted with 34 distinct

crowd workers and found a significant improvement in the speed and accuracy of answers

generated by five workers compared to a single worker. The authors conducted a third user

study with ten blind participants and 78 unique crowdworkers where the tasks were the

following:

• Product Detail, accomplished by finding a specific piece of information about a prod-

uct, such as expiration date.

• Sequential Information finding, accomplished by asking users to find a package of
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food which is not identifiable by shape.

• Navigation, by simulating the finding of an accidentally dropped shirt.

The authors found a significant improvement in response time and accuracy when com-

pared to VizWiz. Moreover, with a set limit of 10 minutes for each question sequence,

Chorus:View had a significantly higher completion rate (95%) than VizWiz (40%). Users

expressed enthusiasm and excitement regarding the potential usefulness of Chorus:View

while stating that VizWiz is also useful for non-sequential tasks. Interestingly, the authors

also reported feedback from workers, noting that although it is rare for Mechanical Turk

workers to provide positive feedback after their study, they received multiple emails ex-

pressing workers’ desire to continue participating as they felt good contributing to helping

others.

As Chorus:View uses a video stream, it can potentially be very expensive using up the

data quota, as noted in [106]. In addition, a video-based approach can be difficult for the

user who must wait, holding the camera steady, while the crowd determines a response

[7]. The goal of RegionSpeak, proposed by Zhong et al. [7], was to account for many of the

tasks that fall between what can be solved by single-image approaches, e.g., VizWiz, and

the continuously-engaged interaction, e.g., Chorus:View. Their approach allowed users to

capture more information per interaction by stitching multiple images together, as well as

having the crowd workers focus on describing specific regions in the stitched scene using

natural language sentences. Users explored the scene by moving the camera in any direc-

tion and, using a key frame extraction algorithm, the application instructed the user to

hold their position while it captured a new image automatically. The application sends

three to six frames, which was determined through a pilot test, to a remote server that

performs the stitching. The authors conducted two main experiments to test the usability

and effectiveness of different parts of their applications. The first confirmed that their

stitching interface was easy to learn and use by blind people, with an observation that

users felt it easier and less stressful to follow the application’s framing instructions versus

following crowd workers’ instructions, which caused them to retake photos several times.

Their second experiment, which consisted of three parts, dealt with the elicitation of vi-

sual descriptions. The first part introduced five experimental images extracted from 1000

questions from VizWiz that could not be answered, and used in all future experiments to

evaluate RegionSpeak. This part employed ten Mechanical Turk workers who were asked to
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describe the content of the image with a single sentence, providing a total of 50 datapoints.

The authors evaluated the quality of those descriptions using the following metrics:

• Validity: if an object is described as being in the image, is it actually shown?

• Minimalist: Does the answer appear to be the answer requiring the least effort?

• Distinct Items: How many distinct items are named in the answer?

• Details: How many explanatory details are provided beyond the core description?

• Spatial Information: How many spatial cues are provided in the answer?

In the second part, the authors selected the most complex scene (an outdoor scene) and ex-

plored increasing the descriptive level of the answers through an iterative process. This was

accomplished by iterating over the ten initial descriptions provided by the first part of the

experiment three times with crowd workers. After the iterative process, the authors found

a significant improvement in the number of objects described, details provided and spatial

information provided, and found a near-significant decrease in the number of minimalist

answers compared to the answers from the first part of the experiment. One problem with

the iterative process was the time costs of generating the final description, which can take

four times longer to return to the user than with a single description author [7]. Another

problem was the fact that crowd workers’ workload was not equal and difficult to predict

since each workload depends on the quality of the previous worker’s description. The third

part of the experiment addressed this issue where the authors propose a parallelized ap-

proach to providing labels for different objects in the image. The crowd workers were asked

to select the object through a rectangular selection tool, and provide a description of it.

All crowd workers were able to see a list of the set of objects that others had labeled up to

that point. The final description that a user received was a stitching of all the descriptions

received, each associated with a specific area. Unfortunately, the authors did not provide

a direct comparison with the iterative process from the second part, which had only used

one of the initial five images. The authors note that while workers were able to see the

set of objects that others had finished labelling, this did not guarantee the prevention of

duplication of labels being provided simultaneously unless each label was obtained in se-

ries, which would result in the same latency as the iterative approach. Ideally, RegionSpeak

would maintain a shared state that shows the workers’ annotations in real-time.
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Wu et al. [108] proposed the automatic alt-text (AAT ), a method that provides blind

users on Facebook with automatically generated captions describing images. The advan-

tage of using machine-generated captions is that they can be provided in real-time, which

improves the browsing experience of people with visual impairments. In their work, the

authors trained a model on 97 concepts that are made up of objects and themes. These con-

cepts were selected based on their prominence in Facebook photos, which was determined

by having 30 human annotators label three to ten things in each photo. After selecting the

200 most frequent concept candidates from these photos, and through further filtering, the

authors selected the 97 concepts that covered the major categories of tags. The authors

performed an in-lab study and a field study. Interestingly, the in-lab study showed that

blind users preferred to hear the constructed alt-text in a form of a complete sentence as

it is more natural and friendlier. However, due to limited accuracy and consistency of

current image captioning systems, the authors decided against a free-form sentence model

and instead opted for a fixed sentence that started with “Image may contain:”, followed by

the list of tags. As the authors noted, “may” was used to convey uncertainty. The in-lab

study showed that all participants would like to have more tags, with one user explicitly

indicating that she’d rather have more detail even if it means the accuracy of the informa-

tion might be incorrect as opposed to having no information at all. Noting that balancing

between the amount of information provided and the risk of wrong information is a lim-

itation of AAT, the authors applied a threshold on the tags choosing to render concepts

that obtained a confidence score of 0.8 or higher for a smooth experience. This work also

included a two-week field study with 9000 visually impaired Facebook users separated into

a test group, for which images were annotated with AAT, and a control group who used

Facebook as they normally did. This study showed that the test group found Facebook

more useful to them, that photos were easier to interpret, and users indicated they were

more likely to socially interact with the photos. However, the last of these was not found

when the authors analyzed the logged data of the users. An analysis of the write-in feed-

back was conducted, classifying a given feedback into three themes: useful, not useful, and

improvements. While over 90% of the feedback was classified as useful, the authors note

that it is a biased feedback since this user community might provide positive feedback to

show appreciation for accessibility efforts. Some users had found AAT not useful, pointing

to vagueness or accuracy issues of the descriptions. In general, users who pointed to im-

provements focused mainly on two avenues: extracting and recognizing text, and obtaining
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more details about people including identity, age, clothing, action and emotional state.

Finally, the authors noted that future work should not only identify objects and themes

but also say something about their relationship, similar to natural descriptions provided

by RegionSpeak.

Macleod et al [8] noted that most image captioning systems have been evaluated based

on how well they correlate with sighted individuals. Instead, the authors focused on as-

sessing blind people’s experiences with automatically generated image captions, specifically

focusing on the role of phrasing on a blind person’s trust in a caption. They conducted

an initial user study with six blind participants to understand their current experiences

navigating images on Twitter and their feeling of computer-generated image captions.

Participants were directed to an artificial account made by the authors with 14 images,

an associated tweet text and a computer-generated caption obtained from CaptionBot [5],

which provides some level of uncertainty in its descriptions. Of these samples, six captions

were accurate and complete, four were accurate but lacked information, and four were com-

pletely wrong. The authors found that participants: (1) would assess the accuracy of a

caption based on how well it matched the associated tweet text, (2) showed signs of being

aware of the confidence warnings provided by the model, and (3) had a varying willingness

to encounter wrong captions.

To further understand blind individuals’ experiences, the authors conducted an online

experiment with 100 visually impaired participants. Participants were again presented

ten tweets that contained an image, a tweet text and a generated caption. After the

presentation of each tweet, to assess their understanding, participants were asked to

rate on Likert scales the extent to which the caption (1) improved their understanding of

the image, (2) improved their understanding of the tweet as a whole, and (3) would be

helpful to other visually impaired people (a method of eliciting truthful subjective data

[109]). After experiencing all ten tweets, to assess their overall trust, the participants

were questioned regarding their trust in the caption, and asked to rate the intelligence

of the computer algorithm generating the descriptions. Finally, to assess the amount of

detail, participants were also asked if they would like more information on any images,

and why or why not. As stated above, the authors wanted to learn more about framing

effects, i.e., how does the phrasing affect trust and understanding. They varied the framing

by providing the confidence either as numerical or in natural language, and by providing it

positively or negatively (“10% chance that’s. . . ” versus “90% chance that I’m wrong but
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I think. . . ”), resulting in four possible study groups to which participants were randomly

assigned. In addition, they selected images that allowed for a range of congruence with

the tweet, i.e., how well the caption matched the user’s expectation based on the tweet

text. Some of the results presented by the authors are the following:

• Participants, as a whole, found the captioning system to be fairly trustworthy and

useful in understanding the tweet regardless of the study group, with scores slightly

over three on the five-point Likert scales.

• Participants found tweets with high congruence to be more useful and more trust-

worthy, as one would expect.

• Negatively framed captions with high congruence were more helpful to understanding

the image then negatively framed ones with low congruence.

• Positively framed captions with low congruence were more helpful than ones with

high congruence, suggesting that positively framed captions are perceived as adding

to the understanding of the image when there is a mismatch with the tweet text.

• Analyzing low congruence captions only, participants receiving negatively framed

captions trusted them significantly less often than people who received positively

framed captions.

• On framing, the authors found that participants trusted tweets with high reported

confidence significantly more than tweets with low reported confidence. Although

this result is intuitive, it is important to note that the reported confidence, which is

obtained from the model, does not always align with the accuracy a human evaluator

would assign.

• Participants found tweets with reported low confidence and negatively framed cap-

tions significantly more detailed than ones with positively framed captions.

Salisbury et al. [9] investigated ways of combining crowd input with existing automated

image captioning approaches to assist blind people in accessing visual content on social

media. The authors designed four workflows for providing understanding of images with

associated tweets to visually impaired users. The first workflow used CaptionBot [5] alone

to provide a caption of the tweet’s image. The second workflow, called Human-Corrected
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Captions, provided crowd workers with the tweet text, the image and the caption obtained

from CaptionBot. The worker must then improve the caption given the context of the tweet

text and image with the goal of explaining the image to a blind user. The third workflow,

called the TweetTalk conversational assistant, built on the two other workflows by providing

blind people, or simulated blind people, a conversational assistant platform. This workflow

connects two workers together, one who plays the simulated visually impaired user (SVIU)

and the other plays the sighted assistant role. These workers then followed these steps:

1. Read the tweet: Both workers are shown the tweet’s text and baseline image

caption, which can be empty or can originate from the first or second workflows.

The “sighted assistant” is the only one shown the image associated with the tweet.

2. Rate the caption: The SVIU is asked to rate the baseline caption, if there is one.

This provides an initial assessment of the blind user’s trust and usefulness.

3. Ask/Answer questions: With access to a chat box, both workers participate in a

question-answer conversation regarding the image.

4. Write a Description: Following the rounds of questions, the SVIU then generates

a new description of the image, providing an understanding of their gained insight.

5. Feedback: The SVIU is shown the image and asked to rerate the baseline caption

and the new one she generated in step 4.

In rating the captions (steps 2 and 5), the SVIU was asked the same question as Macleod

et al. [8], i.e., “I think visually impaired people would find this caption helpful” on a Likert

scale. The time it took two workers (one SVIU and one assistant worker) varied in this

workflow ranging from 2 to 20 minutes with an average of 8 minutes.

The fourth workflow, named Structured Questions workflow, was streamlined based

on the most common question types asked in TweetTalk Conversation Assistant. This

workflow followed the same procedure as TweetTalk Conversations replacing step 3 with

structured questions, presented in the following list:

• Who are the main subjects of the image (people, animals, notable objects, etc.)?

Describe their physical characteristics (notable features, clothes, poses, relative posi-

tions, etc.)
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• Where is this set? Describe the location and the prominent features of the back-

ground.

• What are the subjects of the image doing? Describe their actions, and their intent.

• What emotion does this image evoke? Or what are the emotions of those present in

the image?

• Describe any noteworthy aspects of the images visual style.

• Is this tweet intended to be humorous? Explain how.

• Is this a famous or well-known image?

• Does this tweet contain a meme (meme images, hashtags, etc.)? If so, describe what

the meme is about.

The first four items from this list are relevant to describing general environments, i.e.,

environments not particular to social media platforms. Given this list of questions, the

“sighted” workers decided on whether or not each question was useful given the tweet text

and image, and provided an answer to the questions they found useful. The question with

the most votes was chosen as the source question, and then the longest answer for that

question was provided to the user (The authors note that other mechanisms are possible).

Note that the Structured Questions workflow was easier and faster for recruiting workers

as it did not require the pairing of workers. Through the structured questions, the time it

took for workers to answer questions ranged from 3 seconds to 14 minutes with an average

of one minute.

To assess the baseline captions and the descriptions generated through the workflows,

the authors conducted an experiment using crowdsourced workers. We want to emphasize

the type of data obtained from their experiments. If a baseline caption was provided from

the Vision-to-Language model or the Human-Corrected model, that caption received two

Likert scores from the SVIU, one at the very beginning of the workflow (whether TweetTalk

Conversations or Structure Questions) before seeing the image, and another score at the

end of the workflow after seeing the image. The descriptions generated from step 4 of the

third and fourth workflows were also rated by the SVIU after seeing the image. In addition,

a third-party worker, who had no knowledge of the conversation, was employed to rate the
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captions before and after the workflows. The authors refer to ratings provided by the

SVIU who participated in the conversation as first-party ratings, and ratings provided by

the third-party worker as third-party ratings. We present some of the results found in their

study:

• Regardless of the seed caption (or no caption), the descriptions generated by users

working through the TweetTalk workflow, with or without the structured questions,

had no significant difference in rating when assessed after the users viewed the image.

• In the generated descriptions workflows, first-party ratings were consistently higher

than third-party ratings. After confirming that the disparity was not due to first-party

raters having gained intrinsic value through the conversation, the authors suggested

that the disparity is due to workers rating their own generated descriptions higher

than they should.

• AI-generated captions had significantly worse accuracy then any other caption source,

i.e., human-in-the-loop corrections, Conversational Assistant or Structured Questions.

• Structured Questions workflow improved understanding of the image better than all

other approaches, according to the third-party ratings.

• Seeding conversations with AI-generated captions resulted in significantly less satis-

faction by first-party and third-party raters after having seen the image. The authors

note that these findings are due to blind users (or SVIU) initially placing too much

trust in AI-generated captions, as found by Macleod et al. [8], and that the inaccu-

racies of these seed captions often led people astray in properly framing questions.

• Time cost of answering structured questions is significantly lower than going through

step 3 of the TweetTalk Conversational Assistant workflow.

Although their study employed simulated blind workers, the authors validated the list of

questions through a subsequent study with seven blind participants using TweetTalk (the

third workflow), finding no significant difference in the questions asked. In addition, using

third-party sighted raters, there was no significant difference in the ratings of the generated

captions of step 4 in the TweetTalk Conversational Assistant workflow between the blind

participants and the simulated blind workers from the first study.



5 Describing Visual Content to Blind Individuals 88

5.3 Lessons Learned

The literature we reviewed provided us with a glimpse of the current state of research in

describing visual content to visually impaired people. In this section, we provide a summary

of the lessons we learned through this review. We begin by focusing on specific requirements

for providing general image descriptions to blind individuals, with the assumption that

the knowledge from research in social media descriptions can be transferred to general

descriptions. Next, we provide a summary of successful ideas employed in crowdsourcing

for visually impaired individuals. Finally, we analyze the general challenges faced by this

community in taking good, stable and properly framed images with the goal of obtaining

more information about them.

5.3.1 Description Requirements

Through the review of the literature in Section 5.2, we can identify the most important

features that an image description should contain for a blind user. As previous research

suggests [29, 30], the identification and localization of objects is an important feature for

this community. In rendering the objects to users, one could take the approach followed by

Wu et al. [108] by stating a start message “Image may contain:” followed by a list of objects

contained in an image. This kind of visual description was useful for blind Facebook users,

resulting in an increase of their likelihood to participate in social media picture sharing,

commenting and liking. However, as they note, if automatic image captioning systems can

provide accurate and consistent image descriptions in fully-formed natural language sen-

tences, the experiences of blind individuals would be more natural and friendlier. Visually

impaired people desire descriptions that not only provide a list of objects and visual con-

cepts, but also provide information about their relationships. Contextual information such

as identity, age, clothing, actions and emotional state are important parts of understanding

a scene [108]. All of the questions asked in the Structured Questions workflow by Salisbury

et al. [9] address many of these requirements, with half of them being relevant to describing

scenes not restricted to social media (e.g., Tweets). We provide these relevant questions in

Table 5.3.
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Question

Who are the main subjects of the image (people, animals, notable objects, etc.)? Describe

their physical characteristics (notable features, clothes, poses, relative positions, age, etc.)

Where is this set? Describe the location and the prominent features of the background

(weather conditions, architecture of surroundings, landmarks, etc.).

What are the subjects of the image doing? Describe their actions, and their intent.

What are the emotions of those present in the image?

Table 5.3: Guideline questions to ask when describing an image to a visually impaired
individual.

These questions provide substantially more details compared to the instructions subjects

were provided when generating captions for the Microsoft COCO dataset. The prescriptive

nature of the latter instructions, which are presented below [110], is less useful as guidelines

in determining relevance for the visually impaired community.

• Describe all the important parts of the scene.

• Do not start the sentences with There is.

• Do not describe unimportant details.

• Do not describe things that might have happened in the future or past.

• Do not describe what a person might say.

• Do not give people proper names.

• The sentences should contain at least 8 words.

We note that the amount of information required may vary depending on the knowledge

and desire a user might have to obtain certain types of detail, such as color [9]. The

literature we reviewed suggests that the majority of blind users would prefer the maximum

amount of information, even at the cost of possibly obtaining incorrect information [108].

These users then have the choice of trusting the provided information [108], and their

thresholds for accepting wrong captions varies [8]. As determined by previous research

projects [8, 108] and our general experience with these models outlined in Section 5.1,
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current image captioning systems often provide inaccurate or inadequate descriptions for

visually impaired people. Even if an automatically generated seed caption is provided to

a sighted conversational assistant, the blind user is often incapable of gaining an accurate

understanding of the image as the caption completely misleads the conversation [9]. As

Macleod et al. [8] explored and Salisbury et al. [9] found, users tend to place too much

trust in automatic captioning systems. As noted above, Wu et al. [108] phrased their

automatically generated descriptions with “may contain” with the goal of giving the user

a sense of uncertainty in the information. The choice of trusting a caption can be made

easier if the descriptions are rendered with a confidence score, which we know blind people

pay attention to [8]. Ideally, scores should reflect the accuracy of the model, which is not

the case with current models [8]. In determining the level of trust they should place in

image descriptions, blind people tend to look for congruence with external signals, e.g.,

tweet text [8]. We hypothesize that they would also look for congruence between a scene

description and the environmental sounds. In addition, the framing of the confidence scores

has an effect on the understanding and trust placed on these systems. Negatively framing

captions in situations with high congruence seems to produce the ideal behaviour by having

blind individuals place the least amount of trust in the captions [8]. We believe promoting

skepticism is a desirable property from automatic caption generators since they are still

prone to errors and current confidence measures provided by models do not reflect their

accuracy.

Moreover, from our review in Section 5.2 and Section 2.2.2, we can identify the best

practices for evaluating a description’s accuracy and relevancy from both a blind user’s

perspective and a sighted individual’s perspective. A sighted individual can rate an image

description based on its validity and the amount of detail it contains [6, 7]. The set of

questions that a sighted rater should be asked are presented in Table 5.4.
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Subject Questions

Validity If subjects are mentioned in the description, are they actually present?

Are described actions of people actually occurring? Are the described

relationships between objects actually present?

Detail Are the most salient subjects (objects, persons, etc.) identified in the

description? Does the description identify the relationship between all

important subjects? Does the description contain information regarding

weather conditions, notable architecture/landmarks, emotional state of

persons, color of objects, clothes, poses, age, etc.?

Table 5.4: Guideline questions to ask a sighted individual when assessing the quality of a
caption. These questions are based on previous findings [6, 7].

A blind user can rate a description based on the understanding it provides, the amount

of trust they put in it, and relevancy of the details [8]. The set of questions that a visually

impaired rater should be asked are presented in Table 5.5. These questions presume that

the visually impaired user would provide their feedback immediately following the rendering

of the description, and would, thus, still perceive the auditory scene and other contextual

cues.
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Subject Questions

Understanding Does the description improve the understanding of the surround-

ing? Would this description be useful to other blind individuals in

understanding their surroundings?

Trust Quantify the amount of trust placed in the description. Does this

description align with what you think is going on around you based

on the sound of the surrounding and why? Do you think the de-

scription provided is machine-generated or generated by a sighted

individual? How intelligent would you rate the entity that provided

this description?

Detail Are the details provided relevant in understanding the surrounding?

Would you prefer to obtain more or less information than what was

provided and why?

Table 5.5: Guideline questions to ask a blind individual when assessing the quality of a
caption. These questions are based on previous findings [8, 9].

5.3.2 CrowdSourcing Success

Ideally, image description can be provided automatically through an AI system [108]. As we

discussed above, this is not a viable solution as models remain inaccurate and inadequate

for the blind community [29, 7, 8]. Many successful approaches [29, 106, 7, 9] have explored

the use of crowdsourcing in assisting blind people with understanding visual content. As

noted by Lasecki et al. [106], sighted people enjoy being part of such projects as they feel

they are positively contributing to helping others. This is also indicated by the number of

blind users (102, 133 individuals) compared to the number of sighted volunteers (1, 767, 370

individuals) on the Be My Eyes mobile application.

All the crowdsourcing approaches we explored in Section 5.2 employed multiple workers

in providing an answer. This allows the user to obtain different workers’ perspective on

an answer [29] or improves the quality of the answer [106, 7]. Bigham et al. [29] provide

responses to user questions by sending the request to multiple workers who must each pro-

vide an answer. In all cases of their study, a correct response was received by the third

answer, with the first one being correct 86.6% of the time. Having multiple crowdwork-

ers discussing solutions together is more effective than having segregated workers provide
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separate answers. Lasecki et al. [106] provided workers with an interface where they can

vote on existing answers as well as provide new answers. The user receives the most voted

answer from the crowd-workers resulting in improved accuracy and speed. After receiving

an initial description of an image, Zhong et al. [7] instructed workers to iteratively improve

the description by increasing the amount of detail. As this approach resulted in an increase

of the time cost, a parallelized approach would be more appropriate as workers can focus

on describing different parts of the image [7]. We infer that to optimize between speed and

quality, one should incorporate parallel descriptions and iterative improvements of each

description.

The literature we reviewed in Section 5.2 provides other lessons one should incorporate

when dealing with crowdsourcing for describing images to people with visual impairments.

It is important to keep workers engaged and ready to provide descriptions to incoming

queries. One could keep them engaged by instructing them to provide descriptions of

previous query images or rate descriptions based on Table 5.4 [29]. Since sighted individuals

can be employed as simulated visually impaired users [9], one could also have them rate

descriptions without the associated image following the questions of Table 5.5. Finally, in

describing images (as in other crowdsourcing tasks), it is generally helpful to have examples

of good and bad descriptions, and to provide workers with interactive tutorials [7].

5.3.3 Photographic Issues

Many of the approaches we described in Section 5.2 required users to take photographs

of certain scenes for which they had an inquiry. These studies uncovered the difficulties

visually impaired users encountered while performing this task. Blind people have pre-

viously expressed their frustrations in not being capable of taking good quality pictures

[29, 111]. For example, VizWiz:LocateIt [29] found that users have difficulty keeping the

phone perpendicular to the ground. In addition, in trying to orient themselves to zoom into

a specific view, they require constant guidance to the object, as we have found through our

work in crossing intersections. Moreover, the studies revealed that visually impaired users

have difficulties framing a view as they do not know how far they are from the entity, e.g.,

an object or a person. Brady et al. [30] evaluated the image quality based on blur, lighting,

framing and composition (obscured objects), and found that only 15% of images taken by

blind people were evaluated as perfect by sighted individuals, with an average of 1.6 errors
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per image, where an error, for example, was counted when the image was blurry or if the

object was not contained in the frame or it was obscured, etc. This is not necessarily an

issue when crowdsourcing is used as sighted people can still infer the correct answer [30],

but can be detrimental for automatic systems.

An encouraging result is that after a one-year deployment of VizWiz, the authors dis-

covered that users became better at taking pictures, with a reduction of 0.30 errors. Instead

of individual images, a better approach would be to have a video stream with a sighted

individual as it would allow the worker to instruct the user in real-time. This allows for

sequential interaction, and was found to alleviate many of the stability issues by helping

users properly orient the camera [106]. The problem with video streaming is the associated

costs as we expect users would go through their data quota quickly. Image stitching can

capture a larger view of the scene using only two frames while keeping data usage low.

Zhong et al. [7] designed a user interface that guided users to pan the camera while it

captured key frames for the stitching process, which used three to six frames. This was

preferred by the blind participants as they felt it was easier and less stressful than following

a sighted worker’s instructions.

5.4 A Future Direction

Based on the literature we reviewed in this chapter, in future work, we would like to design

a crowd-sourcing mobile system that provides blind individuals with visual descriptions of

their surroundings. This application would draw inspiration from the approach of the Au-

tour smartphone application, which renders the places around users spatially using Google

Places or Foursquare, with Open Street Map for intersections and parks data. The pro-

posed application would provide descriptions of various objects and people around the user,

including information regarding their relationships and/or the actions they are perform-

ing. Upon receiving a new query image, we can instruct sighted crowdworkers to follow

the guideline questions presented in Table 5.3. As other approaches have found, it would

be beneficial to have workers collaborate while generating the description, which can be

achieved through their user interface. To ensure they understand the requirements, we can

provide an interactive tutorial as well as examples of good and bad descriptions through

the interface, similar to previous approaches [7].

Such an application should maintain a pool of workers available to provide descriptions
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of new query images from blind users, as was done by previous methods [29]. This can

be accomplished by having crowdworkers provide descriptions of previous query images.

Workers can also be employed to rate the descriptions given the associated images by

following the guidelines of Table 5.4. In addition, workers can be employed to play the role

of simulated blind individuals by only showing them descriptions and an audio recording

of the environment, and asking them to rate the description based on the guidelines of

Table 5.5. To increase user engagement, we can incorporate concepts from gamification in

crowdsourcing [112]. The ESP game proposed by Ahn et al. [113] explored labelling images

in the context of an interactive and fun computer game. Ratings obtained from workers,

with the role of a sighted or simulated blind worker, can be used to provide a score to the

original description provider(s).

Acquiring images would be an important and challenging part of this application. As

we have already explored in this chapter, previous approaches have required the user to

point the camera of the phone towards the target entity for the query image. The most

efficient and preferred approach was the use of image stitching employed by Zhong et al. [7].

Their method generated detailed descriptions as we could parallelize the workers’ workload,

with each one focusing on specific regions in the image to describe. Aira [105], a recently

proposed paid service, connects users to specialized workers who are hired by the company,

and assist the user with various visual tasks including micro-navigation, i.e., the task of

assisting the user in navigating to a nearby location when the GPS is unreliable. The user

can choose to use the application directly on their smartphone or using Horizon Smart

Glasses equipped with a video camera for an extra cost of $25 (USD) per month. Instead,

using an omnidirectional camera offers an opportunity to view the complete surrounding

of the user. Following a similar framework as Zhong et al. [7] did, we can describe different

areas of the 360-degree view and inform the user of the scene using spatialized audio

rendering, similar to the approach by Blum et al. [35] employed in Autour. The social

acceptability of this camera, and its positioning on the user, would have to be evaluated

through user studies.

As Brady et al. [30] found, blind users have a higher-than-usual rate of abandonment

due to usability issues. We expect that this rate could rise if the barrier for entry is too

high due to high associated costs of using the application, e.g., the cost of the glasses

or omnidirectional camera. As such, we believe it will be important to provide a second

mode of interaction such as the image stitching approach of RegionSpeak. Other aspects
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of such an application, such as the gamification of the descriptions, the usability of the

rating system for both the users and the workers (or volunteers), would have to be assessed

through user studies.

The end goal of this application would be to release an image description dataset with

the special property that descriptions are useful and adequate to blind individuals. This

dataset would allow AI practitioners to build deep learning models that provide rich scene

descriptions. This corpus would also contain information about how blind people rate

descriptions, which could serve as data to train a model that automatically scores the

usefulness of a description. We expect the release of such a dataset would have the same

effect on the blind community as the release of the VizWiz dataset [45].



97

Chapter 6

Conclusion

The exploration of new environments is a challenging task for people living with visual

impairments. Deep learning offers a way to analyze the world around the user using visual

content. In this thesis, we explored the effectiveness of using deep learning in assistive

technologies for the blind community. We focused on two main challenges associated with

the exploration of outdoor environments: crossing intersections with minimal veering, and

providing descriptions of scenes surrounding the user.

To understand how blind people cross intersections, we conducted observational studies

where participants were asked to qualitatively explain the steps they follow. Using the

lessons we learned, a dataset was collected from various intersections in urban areas of

downtown Montreal, Canada. Using sighted individuals (task experts), this dataset was

labelled with the correct heading that should be followed before and during crossing. An

imitation learning agent was trained to learn a policy that maps from a camera’s field of

view to the correct heading to follow. We designed a mobile application that assists visually

impaired users to cross intersections using the trained agent, with heading information

provided through auditory feedback. To assess the application’s effectiveness, we conducted

a user study with eight blind participants. This initial study showed that the application

significantly improved users’ ability to locate and align themselves faster with the target

crossing, and it did not affect their speed of crossing. Although not statistically significant,

the study showed that the application also reduced the likelihood that a user veered outside

the crossing lanes. To address some of the limitations we identified in the user study, we

conducted a series of iterative experiments with a blind colleague. A final application was
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designed to address many of these limitations, employing a combination of on-device IMU

sensors and the imitation learning agent.

To understand the challenges faced by visually impaired users with understanding their

surrounding, we surveyed recent literature that provided users with descriptions of visual

content, or answered questions regarding this content. The literature included methods

that used automatically generated image descriptions as well as methods that employed

crowdsourced workers. In Section 5.3, we summarize our findings by identifying key fea-

tures required by this community. In order for descriptions to be useful to this community,

it is important that they identify specific features of the image. In the context of exploring

outdoor environments, we also present the lessons learned regarding the challenges faced

by blind people in capturing images. For these descriptions to eventually be automati-

cally generated, future work should design a mobile application that employs crowdsourced

workers who follow the instructions we identified in Section 5.3.1 combined with the lessons

we learned from crowdsourcing approaches, presented in Section 5.3.2, such as the proposed

direction in Section 5.4. A successful application would result in the generation of a new

general image-description dataset geared towards the visually impaired community.

The research we presented in this thesis suggests that deep learning has the potential

to be an effective tool for assisting visually impaired users in various parts of outdoor

exploration, and possibly with indoor scene understanding. The ability to have these models

operate on mobile devices makes them suited for the assistive technology domain. For these

models to be effective, it is important to have training data that reflects the needs of this

user population. To obtain such data, designers should understand the potential user’s

capabilities and requirements by including members of the blind community in the collection

process. The resulting models would provide information that adequately addresses their

needs.

An important consideration for future designers is the fact that blind people place a

great deal of trust in assistive technologies, suggested through our repeated trials with

the same participants in Section 4.5, and was found from previous research in automatic

image descriptions for alternative text [8, 9]. Unfortunately, as we have found through

our research, deep learning models can fail at times in unexpected and incomprehensible

ways. One should provide users with a level of confidence in the predictions to promote user

skepticism by incorporating this information in the feedback. Bayesian Deep Learning [100]

has recently been used in autonomous vehicle safety as it provides a measure of uncertainty
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in neural networks. We expect that this approach will be equally important in assisting

blind people with autonomous outdoor exploration.
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