
Applications of Extensible Markup Language
to

Mobile Application Patterns

Hsueh-Ieng Pai

School of Computer Science

McGill University, Montreal

April 2002

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements of the degree ofMaster of Science

Copyright © Hsueh-Ieng Pai, 2002

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A ON4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4
canada

Your 6IfI VotnI rélétenœ

Our 6IfI Notre réMtsncs

The author bas granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, 10an, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts frOID it
may be printed or otherwise
reproduced without the author's
pemnSSlOn.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conselVe la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-78934-9

Canada

Abstract

Mobile applications provide servIces that can benefit various sectors of the

society. It is imperative that the realization of mobile applications be well-planned and

based on standards. The interplay of Extensible Markup Language (XML)-based

technologies, software engineering principles, and "best practices" formalized as patterns

provides such a systematic approach. This thesis formulates a rigorous classification of

mobile application patterns into four categories: architecture, process, product, and usage.

To express the patterns in a universal manner, an XML-based pattern notation, the

Mobile Application Patterns Markup Language (MAPML), is introduced. Based on a

requirements analysis and design description, the specification of MAPML is given.

MAPML is equipped with a collection of tools that includes formaI grammars for

MAPML, and solutions for authoring, processing, and presenting MAPML documents on

the Web. The thesis concludes with a discussion of the CUITent state of work and

directions for future improvement.

1

Abstrait

Les nouveaux logiciels dédiés à la mobilité, permettent à plusieurs secteurs de la

société d'en bénéficier. Il est impératif que la réalisation de ces nouveaux logiciels soit

bien organisée et qu'elle respecte une norme standardisée. Le rôle que joue les

technologies basées sur le langage XML (Extensible Markup Langage), les principes

d'ingénieries en informatique, ainsi que les meilleures réalisations formalisées sous

formes de modèles, fournissent une approche systématique. Cette thèse dresse une

classification rigoureuse des différentes configurations des applications mobiles en quatre

catégories: architecture, processus, produit, et utilisation. Pour expliquer cette

configuration d'une façon universelle, on introduit la notation de la configuration du

langage XML, ainsi que la configuration des applications mobiles du langage XML

(Mobile Application Patterns Markup Language (MAPML)). Basé sur les conditions

d'analyse et la description de la conception, on donne aussi le cahier de charges du

langage MAPML. Le MAPML est équipé d'outils pour l'édition, le traitement ainsi que

la présentation de documents MAPML sur le Web. La thèse se conclu par une discussion

sur l'état du travail courant et donne des directives pour une amélioration future.

11

Acknowledgements

1 would like to give my sincere gratitude to my thesis supervisor, Dr. Monty

Newbom, who has supported my work for aH these years with patience and kindness. He

has given me valuable suggestions, remarks, and clear guidelines that contribute to the

success of this thesis.

1 am also grateful to Mr. Pankaj Kamthan, Department of Computer Science,

Concordia University, for his illuminating discussions and support. Mr. Kamthan has

introduced me to the world of Extensible Markup Language. In addition, he has provided

me with pointers to many useful resources, and has given me critical feedbacks on the

thesis throughout the years. He has always been a source of guidance and inspiration.

1 would also like to thank my friends, Richard Francoeur and Omar Meghari, for

translating the abstract into French.

Last but not least, 1 would like to thank my family for their love and support.

111

Table of Contents

List of Figures vi

List of Tables vii

Chapter 1 Introduction 1

1.1. Limitations of Current Approaches Towards Realizing Mobile Applications
.. 1

1.2. Significance of a Systematic Approach Towards Realizing Mobile
Applications 2

Chapter 2 Mobile Applications, XML, and Patterns.................•...•........ 5

2.1. Significance of Mobile Applications 5
2.2. Extensible Markup Language (XML) in Mobile Applications 7

2.2.1. Motivation for Use ofXML in Mobile Applications: Business Perspective 7
2.2.2. Motivation for Use ofXML in Mobile Applications: Consumer Perspective 13

2.3. On the Definition of Patterns 14
2.3.1. On the Significance of Patterns 15

2.4. Classification ofPatterns in Mobile Environment 17
2.4.1. Classification ofMobile Patterns 17

2.5. Classification ofMobile Application Patterns 20
2.5.1. Relationship Across Patterns 20
2.5.2. Mobile Application Process Patterns 21
2.5.3. Mobile Application Architecture Patterns 22
2.5.4. Mobile Application Product Patterns 23
2.5.5. Mobile Application Usage Patterns 31
2.5.6. Relationship to General Pattern Taxonomies 31

2.6. Pattern Language 32
2.6.1. Limitations of Traditional Pattern Language Notation 32
2.6.2. The Significance ofXML Representation of Patterns and the Motivation for

MAPML 34
2.6.3. MAPML and XML 35

2.7. Summary 35

Chapter 3 MAPML Requirements and Design 36

3.1.MAPML Use Cases 36
3.2. MAPML Requirements 39
3.3. MAPML Design Description 45
3.4. Summary 50

IV

Chapter 4 MAPML Specification 51

4.1. MAPML Modules and Element Definitions 51
4.2. Properties ofMAPML Elements and Attributes 54

4.2.1. MAPML Data Types 54
4.2.2. Enumeration 54

4.3. Association Module 55
4.4. Meta-Information Module 58
4.5. Problem Module 65
4.6. Solution Module 67
4.7. Structure Module 74
4.8. MAPML Attribute Definitions 76
4.9. MAPML Identification 81

4.9.l.MAPML Internet Media (MIME) Type 81
4.9.2. MAPML Namespace 81
4.9.3. MAPML Filename Extension 82

4.10. MAPML Conformance 82
4.10.1. MAPML Document Conformance 82
4.10.2. MAPML Processor Conformance 83

4.11. Summary 83

Chapter 5 MAPML Utilities (MAPML-UTIL) 84

5.1. MAPML Grammars 84
5.1.1. EBNF Implementation for MAPML 85
5.1.2. XML DTD Implementation for MAPML 85
5.1.3. XML Schema Implementation for MAPML. 86
5.1.4. RELAX NO Implementation for MAPML 86

5.2. Authoring MAPML Documents 87
5.2.1. MAPML with XEENA 87
5.2.2. MAPML with VIM 88

5.3. Processing MAPML Documents 90
5.3.l.XML APIs and MAPML 90
5.3.2. MAPML and Data Binding 90

5.4. Presenting MAPML Documents 93
504.1. Direct Presentation of MAPML Documents 94
504.2. Indirect Presentation ofMAPML Documents Transformed to XHTML. 95
5.4.3. Associating Style Sheets with MAPML-Related Documents 96

5.5. Summary 98

Chapter 6 Conclusion 99

Bibliography 102

Appendix A 108

v

List of Figures

Figure 1.1. The "Quadrangle" of Relationships between Mobile Application, Extensible
Markup Language, Software Engineering, and Patterns 3

Figure 1.2. The MAPML Environment. 4
Figure 2.1. Mobile Applications in a Classification of Pervasive Internet Applications 5
Figure 2.2. A Panorama ofMobile Applications 6
Figure 2.3. A Snapshot ofXML Vocabulary Spectrum 8
Figure 2.4. The XML Document/Data Dichotomy 12
Figure 2.5. The Pattern Anatomy and Cycle 14
Figure 2.6. Classification of and Inter-Relationship among Mobile Patterns 17
Figure 2.7. Mobile System with Visual Interface Architecture Pattern 19
Figure 2.8. Mobile System with Speech Interface Architecture Pattern 20
Figure 2.9. Classification of and Inter-Relationship among Mobile Application Patterns.

.. 21
Figure 2.10. Mobile Application Architecture Patterns 22
Figure 2.11. Combination (Sequential and Hierarchical) Architecture Pattern 22
Figure 2.12. A Hierarchical Classification ofProduct Patterns in Mobile Applications.. 23
Figure 3.1. MAPML Transformation Use Case Diagram 38
Figure 3.2. MAPML Transformation Use Case Scenario 38
Figure 3.3. MAPML Modularization Process 47
Figure 4.1. Structure ofMAPML 53
Figure 5.1. MAPML Family ofUtilities (MAPML-UTIL) 84
Figure 5.2. Xeena-MAPML DTD Interface 88
Figure 5.3. MAPML Syntax File in the VIM Interface 89
Figure 5.4. MAPML Data Binding Process 92
Figure 5.5. Marshalling and Un-Marshalling MAPML Documents 92
Figure 5.6. The Two Approaches for Presentation ofMAPML Documents 93
Figure 5.7. Internal Structure ofa CSS Style Sheet.. 94
Figure 5.8. The MAPML to XHTML via XSLT Process 96
Figure 6.1. Role ofXML Transformations in Delivering and Presenting [XML]

Documents in Multiple-Environments 101
Figure 6.2. Transformations of XML Book Vocabularies to E-Book Vocabularies 101

VI

List of Tables

Table 2.1. Initial Product Patterns ofXML-Based Mobile Markup Language Elements
with Example Implementation(s) 24

Table 2.2. Non-Autonomous Intermediate Product Patterns with Example
Implementation(s) 27

Table 2.3. Autonomous Intermediate Product Patterns with Example Implementation(s).
.. 27

Table 3.1. Examples ofMAPML Use Cases 37
Table 4.1. MAPML Modules 52
Table 4.2. The class Element 56
Table 4.3. The link Element 56
Table 4.4. The pattern.related Element.. 57
Table 4.5. The reference Element.. 58
Table 4.6. The abstract Element 58
Table 4.7. The author Element 59
Table 4.8. The caption Element 60
Table 4.9. The date Element 60
Table 4.10. The description Element 61
Table 4.11. The keyword Element 61
Table 4.12. The license Element 62
Table 4.13. The metadata Element 63
Table 4.14. The name Element 64
Table 4.15. The term Element. 65
Table 4.16. The title Element. 65
Table 4.17. The constraint Element 66
Table 4.18. The context Element 67
Table 4.19. The problem Element.. 67
Table 4.20. The consequence Element 68
Table 4.21. The implementation Element.. 69
Table 4.22. The object Element 70
Table 4.23. The rationale Element.. 71
Table 4.24. The scenario Element. 72
Table 4.25. The solution Element 73
Table 4.26. The strategy Element 73
Table 4.27. The structure Element 74
Table 4.28. The body Element 75
Table 4.29. The head Element 75
Table 4.30. The mapml Element.. 76
Table 4.31. The pattern Element 76
Table 4.32. The alternate Attribute 77
Table 4.33. The event Attribute 77
Table 4.34. The id Attribute 78
Table 4.35. The impact Attribute 78

vu

Table 4.36. The media-type Attribute 79
Table 4.37. The object-type Attribute ~ 79
Table 4.38. The relation·Attribute 80
Table 4.39. The term-type Attribute 80
Table 4.40. The uri Attribute 80
Table 4.41. The version Attribute 81

viii

Chapter 1

Introduction

In the last few years, there have been significant changes in the way digital

information is disseminated, accessed, and processed. The proliferation of mobile

technologies has been exponential, and both support and use for it is gaining momentum.

This, as recent surveys indicate [14], will have a significant impact on enterprise-wide

information systems and pay-per-use public services. At the heart of these facilities are

mobile applications.

Currently, the technology for engineering mobile applications is mature.

However, there seems to be a lack of methodical approach in doing so. This thesis is an

effort to fill that gap by focusing on both functional and non-functional aspects in

realizing mobile applications.

1.1. Limitations of Current Approaches Towards Realizing
Mobile Applications

The current approaches for creating mobile applications have the following major

limitations:

• Orientation Towards Presentation. The development of most applications is

primarily focused on implementation, with the use of a few presentation-oriented

markup languages such as the Wireless Markup Language (WML) [67] and the

Compact HTML (cHTML) [46]. One of the major drawbacks ofthis approach is

data management. Presentation formats are less amenable to change. In particular,

it is very difficult to extract useful data for indexing and searching, and to make

timely adjustments to support multiple devices with diverse configurations.

• Lack of Process. The approach to create applications seems to be ad-hoc with

little emphasis on a methodology. In general, although this approach may work on

a small-scale, it can lead to various problems .on a large-scale. For example, it

1

becomes difficult to trace the evolution of the system, particularly when the

development team changes.

• Mixture of Responsibilities. There is often no c1ear division between

semantically different tasks. For example, the use of markup languages tends to

mix structure, presentation, and logic. This high coupling makes the system

difficult to manage.

It has been pointed out [40] that many companies have failed due to unsound

business practices and inadequate systems. There were various problems with these

companies' systems: were unable to handle the volume of business (scalability issues),

were unable to assure customer privacy and security (trust issues), did not maintain

consistently high-quality service (quality issues), were Inconvenient to use or access

(usability issues), and/or did not provide customers with reasonable response times

(performance issues). The issues of usability and performance become particularly

inflated in a mobile environment due to constrained capabilities of the devices and the

nomadicity of the user who may be accessing time-critical information.

1.2. Significance of a Systematic Approach Towarrls Realizing
Mobile Applications

The problems mentioned in the above section have underscored the importance of

using a systematic approach in the development of successful mobile applications. To do

that, one needs to take into consideration the most appropriate choices for both the

product (the mobile application) and the process. One way of doing so, as this thesis

proposes, is to use the Extensible Markup Language (XML) [55] for the product, and to

apply established principles and practices of software engineering in the process. We also

emphasize that both application of XML (for creation of the product) and of software

engineering (for creation of the process) can henefit from each other. To make optimal

use of XML and software engineering in mobile applications, one must take into account

thoroughly-tested andestablished best practices based on expert knowledge and

experience, that is, patterns. Figure 1.1 illustrates the interdependency of mobile

application, XML, software engineering, and patterns.

2

Mobile
Application

~
, Extensible _«< """,,«<,""... software
; Markup language'" geneflt@@"«<<<<= Enginee:rîng,

~~~ ~~
Patterns

Figure 1.1. The "Quadrangle" ofRelationships between Mobile Application, Extensible
Markup Language, Software Engineering, and Patterns.

For a consistent representation and machine-to-machine interchange, patterns

need to follow a notation. This thesis introduces an XML-based formaI notation for

mobile application patterns, the Mobile Application Patterns Markup Language

(MAPML), and builds a set of supporting tools for MAPML.

The thesis is organized as follows. Chapter 2 functions as the domain analysis for

MAPML. It provides the background on patterns necessary for the definition ofMAPML.

Moreover, it discusses the advantages that XML offers in general, and to mobile

applications, in particular. Finally, a classification of mobile patterns that addresses both

visual and speech modalities is provided. Chapter 3 discusses the MAPML use cases,

which are then used to elicit MAPML requirements. The requirements in tum lead to

design issues and descriptions. This sets the stage for a formaI definition of MAPML.

Chapter 4 provides the complete MAPML specification with the details of its syntax and

semantics. Chapter 5 includes· a set of supporting utilities for MAPML users. The

MAPML environment that presented from chapters 2 to 5 is shown in Figure 1.2. Final1y,

Chapter 6 concludes with remarks on the current state of MAPML and directions of

evolution.

3



MAPMl Domain Analysis

1
MAPMl Requirements~ MAPMl Use Cases

1
!

MAPMl Design

1..
r4APMl Definition

+MAPMl·UTIl

Figure 1.2. The MAPML Environment.

4



Chapter 2

Mobile Applications, XML, and Patterns

This chapter provides the motivation and background on mobile applications,

XML, and patterns. Section 2.1 discusses the significance of mobile applications to both

business and consumer. The advantages of using XML in mobile applications are

discussed in Section 2.2. Section 2.3 gives the definition of pattern, and elicits several

characteristics of patterns that make them suitable for mobile application development.

Section 2.4 classifies patterns that occur in mobile environment in general, while Section

2.5 classifies patterns that occur in mobile applications in particular. Finally, Section 2.6

introduces the notation currently used to express patterns, points out its limitations in a

mobile application setting, and outlines the advantages that XML offers as a form for

representing patterns.

2.1. Significance of Mobile Applications

Mobile applications are characterized by the use of resource-constrained devices

to access various services where the user-location is often not fixed. These applications

are part of the general framework of pervasive computing applications (Figure 2.1).

Figure 2.1. Mobile Applications in a Classification of Pervasive Internet Applications.

Figure 2.2 shows a set of possible mobile applications. Location-based services

[64] provide access to information depending on user's geographicallocation. Examples

5



include map servers that provide road maps (and local weather/traffic conditions) of the

region in real-time to a traveler who is driving through. Mobile office allows access to

corporate information by employees on the road (or in the air). Examples include update

of inventories, price, and client lists by sales people. Syndication services provide

information that may be of interest to the user who has subscribed to the service.

Examples include news, advertisements, stock quotes, and so on. Mobile commerce

refers to electronic transactions for the exchange of goods or services for monetary

consideration via mobile devices. In other words, mobile commerce is electronic

commerce using a mobile device such as a mobile phone or a personal digital assistant

(PDA). Electronic books (E-Books) [19] provide small interactive books that can be

accessed via mobile devices such as a PDA or a special-purpose digital book reader.

Examples include trave1 guides with information that is navigable and searchable, and

incorporates media clips of sites that are popular tourist attractions.

Mobile Applications

Figure 2.2. A Panorama of Mobile Applications.

There are both similarities and differences between the mobile and Web

environments [48]. Mobile applications leverage on the existing infrastructure of the Web

for the server-side technologies, the network (Internet), the resource addressing schemes,

and the data communication protocols (TCP/IP). They differ mainly on the client-side,

where the accessing devices have limited resources (of memory, size, weight, range of

connectivity, and processing power), and the user location can be dynamic. These

6



similarities and differences come into play during the transition of an existing knowledge

and resource-base from one environment to another.

2.2. Extensible Markup Language (XML) in Mobile
Applications

The purpose of markup is to associate "context" with data so that machine

processing becomes more "intelligent." XML is a meta-language that provides the

direction for syntax for markup languages.

There are several characteristics of XML that make it the de facto standard of

choice for data interchange. The advantages of using XML for mobile applications, both

from business and consumer's perspective, are discussed in detail in the following

sections.

2.2.1. Motivation for Use of XML in Mobile Applications: Business
Perspective

This section describes the benefits that XML offers to a business creating mobile

applications.

Standardization

It is important for both B2B and B2C e-commerce to standardize the information

representation. XML is a system-independent, vendor-independent, and application­

independent open standard that is itse1f based on standards such as Unicode for character

encoding, SGML for syntax, EBNF for grammar, and URIs for name identifiers. Hence,

from device manufactures' point ofview, no license will be needed for producing devices

that support XML. In addition, from application developer's view, as long as the

information is encoded in XML, it can be displayed on any wireless device that supports

XML without having to re-write the document for displaying on each type/variety of

device.

7



XML is a W3C Recommendation. XML is therefore deemed "stable" and ready

for widespread deployment. Standardization of XML creates a common ground for

business communication.

Business-Data-Sensitivity

XML, as a meta-language, provides a standard framework to create business­

oriented markup vocabularies. It is now possible to design industry-specific data formats

with atomic level of granularity (coarse-graininess) that are intimately sensitive to the

business data context. Severa! vocabularies targeting specific industries have come into

existence in the last 2 to 3 years. Figure 2.3 provides a glimpse of the application

domains that have been "captured" in XML.

Graphies
SVG VMl

X3D

Commerce

ebXMl FpML
Of){

MultImedia
SMIl MPEG~7

MusicML

Metadata
RDF P3P

Dublin Core
Metadata

Figure 2.3. A Snapshot of XML Vocabulary Spectrum.

Content Management

As information increases, it becomes necessary to have a system in place to

archive, retrieve, and query it with ease and efficiency. There are three factors that

contribute to advantages of using XML towards content management:

1. Timelessness. Proprietary or binary data formats restrict the range of usability of

a content management system. XML provides data longevity, a crucial factor for a

long-term data management strategy.

2. Reusability. For data reusability, it is important that what is represented (content)

be separated from the way itls rendered (presentation).

8



3. Transformability. The fact that XML documents are in plain text and structured

leads to prospects of customized data delivery to multiple devices with different

user requirements.

By mixing structure and presentation, a document becomes "inclined" towards a

specific-device and hence becomes inflexible (for reusability). XML separates structure

from presentation. Hence, the same XML document can be transformed to produce

different types of outputs for different mobile devices without the need to modify the

original content. For the application developers, this means that they no longer need to

keep different versions of the same document for displaying on mobile devices that have

different capabilities. In addition, when modifications are required, only the original

version of the content needs to be edited before republishing to the various target devices.

This leads to efficiency and ease-of-maintainability, without the inherent problems of

version control and the effort required in making modifications in medium-specific

document versions. Hence, the developers can concentrate on authoring rather than

formatting, and thus be more productive.

Data Storage

XML content can be stored in Tables, as Documents, as übjects, and Natively,

providing various benefits (depending on the requirements for scalability, stability, and

reliability). As a result, various XML retrieval (query languages) and archivaI (database)

schemes are emerging.

Data Interchange

XML allows interoperable data interchange between distributed networks. This is

especially important when the business is conducted in a wireless environment. For

example, for employees who need to work on the field (such as salesmen), the most up­

to-date information (such as the number of product in stock) can be retrieved from the

company database by simply accessing the company's Web site from a mobile device.

There is no need to install any proprietary software on the mobile device in order to view

the data represented in company's internaI format (which is very important since the

9



mobile devices have limited capability, including the memory). AlI that is required is that

the company develops the mapping to transform the internaI format used by the back-end

systems into XML documents.

Internationalization

A major advantage of conducting business on the Web is that it broadens the

customer-base towards globalization, without the necessity of having physical office

locations. This philosophy is only strengthened in the mobile arena. However, in order to

communicate, a business must still "speak" the language ofthe region in context.

With the Unicode support in XML, mobile sites can be multilingual. This allows

businesses to deploy location-sensitive applications in the language-of-choice of

customers.

Data Conformance

As data interchange becomes more and more important in a distributed

networking environment, the need for data quality assurance increases. Lack of

systematic techniques for validation can lead to disastrous consequences, such as

corruption of one business's data entering another business's database, crash of the user

client, abrupt delays in transit, and so on.

XML provides a powerful mechanism of structural, syntactical, and data type

validation via XML Schema Languages. XML grammars can function as "legal

contracts" between businesses. One business can develop more trust in other business's

data if it is known to be validated. Such trust is particularly crucial in a mobile commerce

arena where data from one business has to often go through an intermediary

(middleware) for adaptation (transcoding). For example, a proxy that is receiving news

data (say, in NewsML) from a broadcasting company to be transformed to a mobile

markup language (say, WML) would like to he assured that the data is uncorrupted

before it enters its adaptation engines.

10



Interoperability

When businesses exchange data, it is imperative that when one (human, machine)

"talks", other "listens". Universal interoperability is a long-term ideal goal that involves

cooperation between several parties: operating systems, data processing programs, and so

on. XML provides the first step toward data interoperability by creating a standard

framework on which businesses can agree upon.

Cost Effectiveness

When a business deploys a data format in its systems, it is important that the data

has a long life span. Re-engineering data to conform to different platforms or software

can be resource intensive and expensive. An XML-based framework is a long-term

investment (compared to a proprietary data format/corresponding system). XML also

eliminates the need for developing multiple versions of the same document to be

displayed on mobile and non-mobile devices, thereby reducing the cost.

Processability

There are three factors that contribute to advantages of XML towards

processability:

1. Universality. Any plain text editor can be used to author XML documents. Any

pattem-matching languages, including existing shell and scripting languages, can

be used to process XML documents.

2. XML Duality: Process as Data, Present as Document. There are dual roles

played by XML: Human-to-Machine (Presentation) and Machine-to-Machine

(Data Interchange). XML, as data, is highly structured and machine-centric

(oriented towards exchange). XML, as document, is less structured and human­

centric (oriented towards readability). Figure 2.4 illustrates the XML

Document/Data Dichotomy mode!.

11



Style Madllne-tQ-Human
Transformation

XML as Document

Translation Machine·to-Madline
11'ansformatlon

XML as Data

Figure 2.4. The XML Document/Data Dichotomy.

3. APIs and Software. There has been an increasing base for standard APIs (with

bindings to a variety of widely-used programming languages) and (open source)

software for XML processing. This levels the playing field for independent

developers and software engineers. The growing pool of (widely and freely)

available software allows Small and Medium Size Businesses (SMEs) to become

participants. Mobile applications can leverage on and leam a lot from that

expenence.

Since XML separates structure from presentation, automated machine processing

(for which presentation is irrelevant) becomes possible. (This is a major improvement

over HTML that allows the mixture of structure and presentation.) The content marked­

up in XML can be intelligently searched, manipulated, and rearranged. For example, with

the help of Composite Capabilities/Preference Profiles (CC/PP) [59] and its

implementations [66] that describe device capabilities and user preferences, the business

can now serve the customer with personalized information. Instead of filling up the whole

screen with sorne irrelevant information, only what's interested to the user will he

displayed. In addition, the display will be customized to the mobile device used by the

user. This is especially important since the mobile devices generally have low bandwidth,

limited screen size, and a variety of display capabilities.

12



2.2.2. Motivation for Use of XML in Mobile Applications: Consumer
Perspective

This section describes the benefits that XML offers to a consumer (user)

accessing mobile applications.

Personalization

When marked in an XML format, "smart" agents can customize the information

to be viewed on the mobile device according to the preferences of the end user and the

capabilities of the client device. Rence, the user could receive personalized information

on the wireless device with appropriate display format. This means that, instead ofhaving

to scroll down through a lengthy document on small mobile device screen, only the

limited and relevant information is shown to the user. In addition, since the size of the

personalized document is smaller than the complete document, the time that the user has

to wait for the information loading is lessened.

Accessibility

The Web is increasingly being accessed by customers using a variety of devices

with different screen capabilities and computing power - personal digital assistants,

cellular phones, and so on. XML, being platform-independent, scales well to provide

information on these devices without the need for the user to make adjustments at his/her

end. So, the user is able to access the same mobile site anywhere, any time, and using any

device, no matter if it is text-based, graphics-based, or voice-based.

Interactivity

XML has been used to create more flexible user interface components than that

have been previously possible. With structure, presentation, and logic de-coupled, it is

now possible to develop neutral mechanisms for document models (artifacts of how a

document is structured), to formulate standard interface-independent event models

(artifacts of how a events are associated with document objects), and to create

programming language bindings for them.

13



2.3. On the Definition of Patterns

A pattern [4] expresses a relationship between a certain context, a problem, and a

solution. A context is the environment, situation, or interrelated conditions within the

scope of which something exists. A problem is an issue that needs to be investigated and

resolved, and is typically constrained by the context in which it occurs. The solution is a

response to the problem in a context that helps resolving the issue(s).

The most important defining characteristics of a pattern are: identification (of the

problem in context and with imposed constraints), existence (of the solution),

recurrence (of the problem), invariance (of aspects of the solution), practicality (of the

solution, which needs to strike a balance between optimality and objectivity), and

communicability (of the problem and the process of arriving at the solution to the user).

Sorne ofthese characteristics are illustrated in Figure 2.5.

Pattern

~ll~
Context

=/~r.... ·..... PP.·.rr.. oblem ... Ptadiœl. .. SolutionV ~
~

Figure 2.5. The Pattern Anatomy and Cycle.

The concept of patterns was originated in the late 1970's [1] in the civil

engineering and urban planning domains as an approach to design buildings, roadways,

and towns. The notion of patterns was introduced to the object-oriented software

engineering community [16] in the late 1980's. The view taken by this thesis is that, if

14



patterns can describe aspects of software, they can also be used to describe process,

architecture, components, and usage ofmobile applications.

2.3.1. On the Signiflcance of Patterns

There are several features that make patterns useful:

Formality

Patterns are formaI. There have been several efforts [20, 44] that provide

strategies and suggest guidelines for Web application design. However, one of the

limitations of these guidelines is that they make broad use of natural language for

description, and hence are less formaI and vague. Frequently Asked Questions (FAQs)

also help answer user questions but they are usually focused on a single topic, often

specific to a technology, and rarely provide reasoning for their answers. Patterns are more

formaI in their approach and exist at a higher level of abstraction than the strategies or

guidelines. Patterns offer various advantages over guidelines [18] and are anticipated to

play an essential role in information technology [20]. Still, patterns do not attempt to

necessarily replace the FAQs, strategies, or guidelines in every manner. Rather, they

should be considered as a key complement to the overall initiative of a business

application realization.

Nomenclature

Patterns (and therefore the concepts they represent) are assigned names. This

expedites further discussion, analysis, and reference of previously internalized concepts.

Practicality

Patterns provide practical "ready-to-go" solutions. A pattern describes "good"

practical solutions to a common problem within a certain context. by describing the

invariant aspects of all those solutions. Given a problem, patterns include a compact,

focused, complete, and straightforward way of describing a solution. Since they provide

the consequences of applying that solution, the user can decide and act upon in a timely

manner if the solution is applicable to his/her situation.

15



Experience

Patterns form an "expert" system in practice. Patterns, when well-defined and

coordinated, are more than a mere static disjoint "collections" of recipes. Patterns are

tried-and-tested ways to deal with problems that recur. It is expected that those who have

experience in a particular field of knowledge will have internalized certain solutions to

these problems. As a result, they recognize a problem to be solved and know which

solution to apply in the particular situation. A pattern describes this internalized expert

knowledge and states the problem, context, and solution, so that others with less

experience can benefit from this knowledge. In this sense, patterns themselves can be

considered as a "smart FAQ" or an "expert system" that encapsulates the knowledge and

experience of the author; This enables them to be used as a knowledge base.

Re-Usability

A pattern presents a higher-Ievel view of the same problem inflicting often

multiple industries and provides a solution for it. It can also connect to other patterns in

existence (in the same or other catalogs) for whole or in part of its solution (inheritance).

Patterns thus encourage re-use.

Abstract, Modular Framework

Complex problems are often composed of several steps that need to be dealt with

independently and then combined to arrive at a solution. Patterns represent these steps at

a high-Ievel via "intelligent" distribution and allocation of responsibilities. They provide

a framework that works in unison to fulfill a given task.

Community

Patterns help a broad community. Patterns communicate solutions to a community

of architects, designers, and engineers, who make use of them at different levels and for

different purposes. The goal of the pattern community is to build a re-usable body of

knowledge to support design and development in general.

16



2.4. Classification of Patterns in Mobile Environment

This section presents a classification scheme for patterns in a mobile environment,

specifically that are related to mobile applications. These patterns can be viewed as a

group of reusable assets that can help expediting the development of mobile applications.

We calI our mobile pattern classification scheme MAPCLASS. Software engineering

principles that form the basis of the classification are separation of concerns (separation

into parts -- abstraction, modularity), incrementality, generality, and anticipation of

change.

2.4.1. Classification of Mobile Patterns

At the most basic level, mobile patterns can be classified into three classes:

Mobile Business Patterns, Mobile System Architecture Patterns and Mobile Application

Patterns. The requirements of the Mobile Business will usually determine the Mobile

System Architecture and the Mobile Application. Figure 2.6 illustrates the hierarchy and

dependency of these patterns.

. " ........................... , ,. .,

weI<~ney '----~==-----'

Figure 2.6. Classification of and Inter-Relationship among Mobile Patterns.

2.4.1.1. Mobile Business Patterns

The Mobile Business Patterns encapsulates the different processes followed to

successfully realize the business solution. Identification of these is necessary as they

17



provide directions and constraints that lead to the completion of business objectives and

goals.

2.4.1.1.1 Relatianship ta IBM E-Business Patterns

The IBM Patterns for E-Business [20] represent common e-business problems and

are classified into six categories.

1. Business Patterns identify and describe the most commonly observed interactions

between the participants in an e-business solution (Users, Businesses, and Data)

and are the fundamental building blocks of most e-business solutions. Given a

business's requirements, an appropriate Business pattern can be chosen for that set

of requirements, and used as a "stepping-stone" for further analysis.

2. Integration Patterns do not themselves automate specifie business problems.

Instead, combining multiple Business Patterns together to build advanced e­

business applications, or to make Composite Patterns feasible by allowing the

integration of two or more Business patterns. For example, integrating the Self­

Service Pattern with the Information Aggregation Pattern to improve the

personalization of a customer self-support system.

3. Composite Patterns are combinations of Business Patterns and Integration

Patterns that have themselves recurrently been deployed to solve the problems of

businesses across a wide range of industries.

4. Custom Designs, like Composite Patterns, combine Business Patterns and

Integration Patterns to create e-business applications to solve the e-business

problems of one specifie company, or perhaps several enterprises with similar

problems. However, Custom Design Patterns do not meet the status of a

Composite Pattern, and do not give as great a reassurance of reusability, because

they have not been "recurrendy employed to solve the problems of businesses

across a wide range of industries."

5. Application Patterns are driven by the customer requirements and describe the

shape of the e-business application. They are chosen after a Business Pattern,

Integration Pattern, or Composite Pattern is selected. Application Patterns

18



describe how the data and logic of the application are partitioned into tiers and

how these tiers interact. The choice of Application Pattern typically leads to an

underlying Runtime Pattern.

6. Runtime Patterns are also driven by the customer requirements and describe the

supporting runtime needed to build the e-business application.

These basic models are themselves further classified into sub-categories, and

eventually mapped onto products. It is recommended that they be applied in a certain

order, and used together with guidelines appropriate to the respective business, to arrive

at an e-business solution successfully.

The IBM Patterns for E-Business have also been adapted to the context of mobile

business. We therefore adopt (and thus re-use) the classification of IBM Patterns for E­

Business as our Mobile Business Patterns. The IBM Patterns for E-Business are, for large

part, restricted to suggesting proprietary solutions and products developed by IBM and its

satellite companies and/or affiliates (IBM WebSphere, IBM Edge Server, IBM DB2,

Lotus Domino).

2.4.1.2. Mobile System Architecture Patterns

Mobile System Architecture Patterns ref1ect the system environment in which the

mobile application operates. The two patterns that we have identified are Visual Interface

Architecture Pattern and Speech Interface Architecture Pattern (Figures 2.7 and 2.8).

.
: Applications

TCP/!P

Internet

.
i.

Intermediary ... :
Data comlnl.lllicatiofi i

Wlreless Network

.. 1

!Data C<>mmunlœtiOO,
user

,,,
POA 1V Phone !
\1/ ;

Wireless Protoall
III

Figure 2.7. Mobile System with Visual Interface Architecture Pattern.

19



aient~Side ''Volee'' Network! Intermediary
(PSTN) , (GaœwaylPl'0XY)

"Volœ".~

(VOIP/SlP)
Of

AudIO outPUt
(P1ay~

lTel«ommool.<:atiOM
Unr Infmst:ructure

Internet

__",;;;XM;.:;:.l_..

TCP/Ir>
(H'lTP).. ~
~

.~~.

VOlee
Applications

Figure 2.8. Mobile System with Speech Interface Architecture Pattern.

2.4.1.3. Mobile Application Patterns

Mobile Application Patterns are the different types of mobile applications with a

recurring theme. There are several components that constitute a mobile application,

leading to further layers of patterns. We discuss them in detail in the next section.

2.5. Classification of Mobile Application Patterns

Engineering a mobile application requires a process leading to a final product (the

application itself). The product is then ultimately used by a user. This phenomenon

presents a recurring theme, leading to four classes of patterns: Mobile Application

Process Patterns, Mobile Application Architecture Patterns, Mobile Application Product

Patterns, and Mobile Application Usage Patterns.

2.5.1. Relationship Across Patterns

The business requirements will drive the Mobile Application Process, which will

lead to a definition of a Mobile Application Architecture. The Mobile Application

Architecture in tum will assess the necessary Mobile Application Products, which in tum

will affect the Mobile Application Usage. Mobile Application Usage practices give rise

20



to use cases that can influence the Mobile Application Process. Figure 2.9 reflects this

inter-relationship.

Mobile Application
Patterns

!-

Figure 2.9. Classification of and Inter-Relationship among Mobile Application Patterns.

2.5.2. Mobile Application Process Patterns

The Mobile Application Process Patterns encapsulate the different processes

followed to realize the mobile application. They involve a combination of managerial,

strategie, and technical decisions. Identification of these is necessary, as they not only

provide directions and constraints that lead to the completion, but also determine the

quality of the mobile application. Although the Mobile Application Process will be

driven by Business Patterns, a certain level of decoupling is necessary for insulation. This

is because the impact of changes in the business requirements needs to be minimized and

should not entirely altering the Mobile Application Process.

For our Mobile Application Process Patterns, we adopt the most widely tested and

deployed Software Process Models: the Waterfall Model, the Evolutionary (IncrementaI

Model), the Prototyping Model, and the Spiral Model. Each of these models has their

own advantages and disadvantages. The suitability is determined by the nature of the

application on a case-by-case basis.

21



2.5.3. Mobile Application Architecture Patterns

The Mobile Application Architecture Patterns represent the information

architecture of a mobile application. It addresses how the mobile application is organized,

what the resulting topology is, and how the different components are related to each

other. Figure 2.10 shows four commonly used architecture patterns: Sequential,

Hierarchical, Grid, and Star Architecture Patterns. Figure 2.11 shows how Sequential and

Hierarchical Architecture Pattern can be combined to yield a new pattern.

(b) Hierarchical Architecture Pattern

(c) Grid Architecture Pattern (d) Star Architecture Pattern

Figure 2.10. Mobile Application Architecture Patterns.

Figure 2.11. Combination (Sequential and Hierarchical) Architecture Pattern.

22



2.5.4. Mobile Application Product Patterns

The Mobile Application Product Patterns encapsulate the different products that

engineers use or create to finally form the mobile application. Identification of these is

necessary, as they shape the mobile application itself.

2.5.4.1. A Tiered Architecture of Mobile Application Product Patterns

Product Patterns can be classified further into patterns at three levels: Initial,

Intermediate (or "Middle") and Final. Intermediate Product Patterns can be further

divided into Autonomous (Independent or Standalone) and Non-Autonomous Patterns.

Figure 2.12 provides an illustration of the tiered classification ofProduct Patterns.

There are four tiers (or layers) in the architecture to which, for traceability, we assign

levels 0, 1 (1.1, 1.2) and 2. There is a uni-directional dependency among these tiers -- the

outer tiers are dependent on the inner tiers. It is clear that the complexity increases as we

move from the inside to the outside.

Figure 2.12. A Hierarchical Classification ofProduct Patterns in Mobile Applications.

We now describe each tier in detail.

2.5.4.2. Initial Product Patterns

The Initial Product Patterns are the primitives that form the foundation on which

we build applications. They are the atomic units that constitute a mobile application.

Table 2.1 shows sorne Initial Product Patterns and example implementations based upon

XML-related technologies.

23



-',

Pattern Example Implementation(s)

Text Block abject Paragraph • XHTML Basic Structure Module

Table abject • XHTML Basic Table Module

List abject • XHTML Basic Structure Module
• XHTML Basic Menu

Menu abject • VoiceXML Menu
• XHTML Basic Form

Form abject Visual Interface • WMLForm
Form • XHTML Basic Form

• Mobile Web Forms

Speech Interface • VoiceXML Form
Form

Generic Form • XFormsForm

Link abject Simple Link Model • VoiceXML Link
[Motivated by • WMLLink
HTML] • XHTML Basic Link

Generic Link • XLink

Namespace abject • XHTML Namespace

Resource Identifier Addressing • URI [URL 1URN]
übject • IRI

Embedded abject Mechanism abject • XHTML Basic abject Module

• XHTML Basic Image Module

• VoiceXML Audio Element

Documentation Comments • XML Comments
übject

Table 2.1. Initial Product Patterns ofXML-Based Mobile Markup Language Elements
with Example Implementation(s).

24



REMARKS

• An important consideration for this thesis is that the Initial Patterns must be

implemented in XML and related technologies. Non-XML data formats will only

be used in cases where either an XML solution is not available or is not feasible.

• We could consider the universe of mobile applications as a vector space. This

class of Initial Patterns generates (when aggregated in a semantically meaningful

way) other elements ofthis vector space, that is, Intermediate and Final Patterns.

(We could also view Initial Patterns as the "Basis" Patterns, inspired by the notion

of the basis of a vector space.)

2.5.4.3. Intermediate Product Patterns

Initial Patterns can be combined to form Intermediate Product Patterns. This can

be carried out in different ways, giving cise to (at least) two different types of

Intermediate Product Patterns.

2.5.4.3.1 Non-Autonomous Intermediate Product Patterns

Non-Autonomous (Dependent) Intermediate Product Patterns are directly

composed of the Initial Patterns. They do not function entirely on their own and require

other patterns to be functional. Table 2.2 shows sorne Non-Autonomous Intermediate

Product Patterns and example implementations based upon XML-related technologies.

Pattern Example Implementation(s)

[Business- Visual-Interface • SMIL Basic Document
Specific/Arbitrary] Document abject • Mobile SVG Document
XML Document 0 SVG Basic Document
abject 0 SVG Tiny Document

• WML Document [WML Card]
• XHTML Basic Document

Speech-Interface • VoiceXML Document
Document abject

Image abject • lPEG File
• PNG File

25



• WBMPFile

Animation abject • Flash File
• SMIL Basic Animation Module

Audio abject • MP3 File

Video abject • MPEG-4 File

User Agent Extension Mechanism abject • ActiveX Control
• Java Applet

• Plug-In

Style Sheet • CSS Style Sheet
• XSL Style Sheet

Transformer • XPathScript Script
• XSLT Style Sheet
• XTAL Script

Transclusion (Dynamic Data • ASP
Inclusion)/Server Extension Mechanism • CGI
abject • Enterprise Java Beans (EJBs)

• Java Servlet

• JSP Document
• JSP Page
• PHP

Client-Side Script abject • ECMAScript [JavaScript, JScript]

• VBScript

• WMLScript

Grammar abject Document Definition • XML DTD
Grammar • XML Schema

Speech Grammar • JSGF
• W3C XML Grammar

• W3C ABNF Grammar

Annotation abject Metadata Formats • DCMES
• RDF
• SVG Metadata

26



• XHTML Metadata Module

Table 2.2. Non-Autonomous Intermediate Product Patterns with Example
Implementation(s).

2.5.4.3.2 Autonomous Intermediate Product Patterns

Autonomous (Independent or Standalone) Intermediate Product Patterns are

composed of the Non-Autonomous Intermediate Patterns. They are functional on their

own. Table 2.3 shows an instance of an Autonomous Intermediate Product Pattern and

example implementations based upon XML-related technologies.

Pattern Example Implementation(s)

Navigation System Visual-Navigation • Mobile SVG
System 0 SVG Basic

0 SVGTiny
• WML
• XHTMLBasic

Speech-Navigation • VoiceXML
System

Table 2.3. Autonomous Intermediate Product Patterns with Example Implementation(s).

2.5.4.4. Final Product Patterns

Final Product Patterns are composed of the Autonomous Intermediate Patterns.

They are the "last stage" in the mobile application development, and provide a complete

solution to a mobile business problem. That is, a Final Product Pattern is a functional

mobile application itself. Examples of Final Product Patterns are mobile location-based

services, map servers, transactional services (such as mobile payments and mobile

banking), mobile shopping carts, public information services (such as emergency 911

response systems, and travel and tourism information systems), mobile office, and mobile

portaIs.

27



2.5.4.5. Example. Classification of a Mobile Commerce Application into
Components

This example illustrates how a given mobile shopping portal application can be

decomposed into sub-parts up to a semantically-related and meaningful level of

graininess to yield different pattern levels.

Figure 2.13 shows the abstract relationship between the example scenario

discussed above and our pattern classification.

28



Mobile Shopping Portal

/~
Shopping System Payment System

l !
Produet catalog calculatlcm SOipt

5essIoll Management Credit Card Veritlcaœn
Scrlpt SOipt

t t
Paragraph Thbre Menu Form UnI<
sales Th'x Function Total Priee fuocmn

Level2..
Fînal Patterns

level1.2
Autem<>mous

Irltermediate Patterns

LM!.!
Non-AutonomOlls

Intermediate Patterns

LevelO.
Initial Patterns

Figure 2.13. A Mobile Commerce Application Scenario with Pattern Levels.

2.5.4.6. Relationship to XML Vocabulary Design Pattern Collections

There are several independent collections of patterns [5, 6, 17, 36] for designing

XML-based vocabularies. XML Accessibility Guidelines [62] also provide sorne

suggestions towards designing vocabularies that could be encapsulated and formalized

into patterns. The markup language element patterns (such as, Form, Link and so on), a

subset of our Initial Product Patterns, are directly related to these XML Structural Design

Patterns.

The languages that have taken the above patterns into consideration are likely to

have a better design than those that have not. This can play a significant role in making a

suitable choice when deciding upon' a markup language for mobile applications. For

example, document instances of languages that are based upon Separate Metadata and

Data Pattern (say in a Head-Body Pattern and Metadata First Pattern) [36], are likely to

be more human-readable and more comprehensible.

2.5.4.7. Relationship to J2EE Patterns

J2EE Patterns [3] is a collection of J2EE-based solutions to common problems,

reflect the collective expertise and experience of Java technology architects at the Sun

29



Microsystems Java Center. A tiered approach is used to organize the J2EE patterns

according to functionality. The resulting pattern catalog consists offive categories.

1. Client Tier patterns represent aIl device or system clients accessing the system or

the application. A client tier pattern can, for example, be a WAP phone, or some

device.

2. Presentation Tier patterns encapsulate aIl presentation logic required to service

the clients that access the system. The presentation tier intercepts the client

requests, provides single sign-on, session management and accesses business

services, constructs the response, and delivers the response to the client. The

presentation tier patterns can, for example, be servlets and JSPs.

3. Business Tier patterns provide the business services required by the application

clients. The tier contains the business data and business logic. AlI business

processing for the application is centralized into this tier. The business tier

patterns can, for example, be EJBs.

4. Integration Tier patterns are responsible for communicating with external

resources and systems, such as data stores and legacy applications. The business

tier plays the role of middleware -- it is coupled with the integration tier whenever

the business objects require data or services that reside in the resource tier. The

integration tier patterns can, for example, be patterns related to JMS and JDBC.

5. Resource Tier patterns contain the business data and external resources. The

resource tier patterns can, for example, be patterns related to legacy systems and

business-to-business (B2B) systems, and services such as credit card

authorization.

The Product Patterns that we have identified are related to J2EE Patterns

collection. For example, Java implementations of our Transclusion Patterns in the

Intermediate Product Patterns category are related to the J2EE Presentation Tier patterns.

J2EE Patterns are limited to Java based enterprise solutions.

30



2.5.4.8. Relationship to Web Application Design Patterns

Hypermedia Design Patterns Repository [68] includes patterns for use in

hypermedia design. They provide patterns for Interface/Layout, StructurelNavigation,

and Content Design in hypermedia and Web applications. The collection is primarily

limited to visual interfaces inspired by HTML, and does not include any implementation

details. Our Initial, Autonomous, and Non-Autonomous Mobile Product Patterns that can

give rise to mobile visual interfaces (such as, XML Visual-Interface Document, Menu,

Form, Animation File, Video File, and so on) are related (at least in principle) to

Hypermedia Design Patterns.

2.5.5. Mobile Application Usage Patterns

Mobile Application Usage Patterns encapsulate the different scenarios that the

user cornes across when interacting with the mobile application. Identification of these is

the critical first step towards formalizing use cases and resolving usability issues.

Examples include "Navigate", "Login/Logout" and "Fill-a-Form".

2.5.5.1. Relationship to Web Usability Patterns

User interfaces for the Web give rise to Usability Patterns. Several such patterns

have been identified [39] in the UPADE Framework with a focus on "ease-of-use". The

collection is primarily limited to visual interfaces inspired by HTML, and does not

include any implementation details.

Our Initial, Autonomous, and Non-Autonomous Mobile Product Patterns that can

give rise to mobile visual interfaces (such as, XML Visual-Interface Document, Menu,

Form, Animation File, Video File, and so on) are related (at least in principle) to these

Web Usability Patterns.

2.5.6. Relationship to General Pattern Taxonomies

Since the active use of patterns in Computer Science and related fields in the past

decade, a reasonable consensus seems to have been reached on taxonomy of patterns. The

31



ones relevant in our case are the following:

1. Architectural Patterns. These deal with the highest levels of the system under

design and capture recurring solutions to architectural problems. Our class of

Mobile Application Process Patterns and Mobile Application Product Patterns

overlaps with this category.

2. Design Patterns. These capture recurring solutions to the creation, structure, or

behavioral characteristics of objects in object-oriented systems. Our class of

Mobile Application Product Patterns and Mobile Application Usage Patterns

overlaps with this category.

3. Idioms. These represent recurring solutions to the problerns faced by writers of a

specifie formal (rnarkup, programming) language. Our sub-class of Mobile

Application Initial Product Patterns overlaps with this category.

2.6. Pattern Language

A pattern language [4] formalizes the definition of a pattern by providing a

vocabulary and helps a user in understanding that pattern. It also provides a notation for

writing future patterns, thereby extending the existing pattern catalog in a uniform

fashion.

Sorne of the defining characteristics of a pattern language inspired by software

engineering principles are: abstraction, anticipation of change, generality, sernantic­

relationship (among patterns) that rnay lead to inheritance (of the solution of one pattern

by the other, in whole or in part), and consistency (that one pattern should not provide a

solution that conflicts with that of the other).

2.6.1. Limitations of Traditional Pattern Language Notation

The "traditional" pattern language notation that has been often used looks like the

following:

32



This form has been extended in sorne cases to accommodate patterns for specific

areas [16, 39]. However, this notation (and its variations) has severallimitations:

• The traditional pattern language notation makes broad use of natural language­

based prose and has little context. Hence, the patterns hased on them are strongly

"document-oriented", and can seem vague and open to interpretation. This limits

their use in automated processing environments and interchange.

• The notation is paper-printing oriented and does not provide any means of using

the potential and henefits offered hy the electronic medium of communication.

This has several implications:

o There is no standard way in which non-text objects related to pattern (say,

solution or scenario-of-use) can be included.

o There is no standard way in which instances of pattern expressed in the

notation can he interchanged across a broad range of devices.

o There is no explicit support for presenting patterns expressed 111 the

traditional notation on Internet-based information systems, such as the

Web. (The patterns could he written using sorne word processing package

that can associate presentation and linking semantics, and the result can he

converted to, for example, HTML. However, such process is not automatic

and resulting documents are highly inefficient.)

• There is no standard way to verify whether a pattern is compliant with the

notation.

• There is no standard way 111 which pattern solution implementations can he

included.

• There is no explicit support for Internationalization, in particular, for non-English

language characters or other special symbols.

33



These limitations have motivated us to take an alternative approach to devise a

pattern notation that can resolve these issues as weIl as to provide other features that can

adequately represent mobile application patterns. Expressing mobile patterns in XML

bypasses above issues and provides various advantages.

2.6.2. The Significance of XML Representation of Patterns and the
Motivation for MAPML

Apart from the benefits of XML mentioned in Section 2.2, there are several

advantages of expressing mobile patterns in XML:

1. XML provides a standardized way patterns are written, and hence facilitates the

share and re-use of patterns.

2. XML is more expressive and provides a higher level of granularity than that is

possible by pure naturallanguage use.

3. XML provides a way to more formally specify patterns.

4. XML allows a pattern service provider (a pattern server) to vary pattern

presentations to suit different situations, such as, different client-side

requirements.

5. XML makes it feasible to verify (validate against a grammar) the pattern format.

6. XML enables cross-referencing ofpatterns using hyperlinking mechanisms.

7. XML enables automated programs to extract summaries or descriptions of

patterns for the purpose of indexing and use in pattern catalogs.

8. XML provides structure, which facilitates contributors in submitting patterns via

the Web orotherwise. Making pattern catalogs available on the Web provides

various advantages: evolution (for maintenance, extension), global instant access,

inclusion of "dynamic" objects as part of solution, and so on.

9. XML makes it easier for users to (via links) navigate or (via forms) search the

pattern collection.

10. XML enables Pattern Catalogs to be used as a knowledge base.

Inspired by above possibilities, we propose MAPML - an XML-based notation to

represent patterns in MAPCLASS. Note that a pattern expressed in MAPML can always

34



.,.--,

be down-transformed to a traditional text-based notation, such as the one mentioned in

Section 2.6.

2.6.3. MAPML and XML

MAPML, as a markup language based on XML, inherits many of its properties.

This section summarizes the key notions necessary for the thesis.

Each MAPML document consists of a sequence of characters, which may

represent markup or character data (non-markup). Each character belongs to the ISO/IEC

10646 [28] character set. ISO/IEC 10646 is character-by-character equivalent to Unicode

[45], which is a standard, interoperable way to implement ISO/IEC 10646. When

MAPML documents are sent by servers as a stream of bytes, user agents interpret them as

a sequence of characters. User agents must know the underlying character encoding to

correctly interpret MAPML documents. Character encoding is a method of converting a

sequence of bytes into a sequence of characters, and vice versa. Commonly used

character encoding that supports most Western European languages on the Web are ISO­

8859-1 ("Latin-l ") and UTP-8 (encoding of ISO 10646 using a different number of bytes

for different characters).

Markup provides logical structure to a MAPML document and is responsible to

represent the element and attribute types of MAPML. MAPML element types (or just

elements) represent capabilities (structure or desired behavior) of the mobile patterns

described in Section 2.4. MAPML attribute types (or just attributes) provide properties

associated with these elements.

2.7. Summary

Mobile applications provide various benefits to businesses and to the consumer.

XML can play a key role in constructing these mobile applications. The classification of

mobile application patterns presented in this chapter helps us to visualize the macroscopic

and microscopie structure of a pattern. Patterns must have a notation that is interoperable,

interchangeable, and presentable across different computing environments. XML

provides such a notation.

35



Chapter 3

MAPML Requirements and Design

For both longevity and traceability, it is necessary that MAPML follow a planned

approach. This chapter provides an insight into the process of creating MAPML. Section

3.1 lists the use cases that present instances of how MAPML could be used. Section 3.2

describes the functional and non-functional requirements that outline the goals and scope

of MAPML. Finally, Section 3.3 discusses the architectural and detailed design

considerations based on the constraints set by the requirements.

Software engineering principles that have guided the MAPML requirements and

design are separation ofconcerns, generality, anticipation of change, and rigor.

To indicate requirement or design levels, a prioritization scheme is desirable. The

keywords "MUST", "MUST NOT", "REQUlRED", "SHALL", "SHALL NOT",

"SHOULD", "RECOMMENDED", "MAY", and "OPTIONAL" used in Sections 3.2 and

3.3 are to be interpreted as described in IETF RFC 2119 [9]. For the sake of consistency

and flow with the rest of the text, they may not appear in uppercase.

3.1. MAPML Use Cases

A use case [30] describes the sequence of interactions between actors and the

system necessary to deliver the service that satisfies a certain goal. It captures who (actor)

does what (interaction) with the system, for what purpose (goal), in an implementation­

independent and system-independent manner.

Use cases have been widely used for primarily functional requirements elicitation.

Table 3.1 provides a summary of sorne typical MAPML use cases that have been

identified. The first column of the table indicates the actors. The three major actors are

the pattern author, the pattern user, and the pattern (catalog) administrator. The next two

columns of the table indicate the corresponding interactions and goals, respectively. The

36



last column of the table includes the labels ofrequirements (from Section 3.2) that these

use cases have helped define.

Actor Interaction Goal- Associated Requirement(s)

Pattern Author Include an SVG To Provide a [MAPML-Requirement-
Basic Fragment in Graphie Solution to Extensibility]
aMAPML the Pattern Problem.
Document.

Transform a To Read the Pattern [MAPML-Requirement-
MAPML Description on a Interoperability], [MAPML-
Document to Plain TTY Terminal. Requirement-Presentability],
Text. [MAPML-Requirement-

Transformability]

Pattern User Search Pattern To Find a Related [MAPML-Requirement-
Catalog by Pattern Pattern. Identifiability-l], [MAPML-
Name orby Requirement-Identifiability-2]
Pattern Author.

Navigate through To View AlI Sub- [MAPML-Requirement-
a Mobile Patterns ofa Final Genericity-2], [MAPML-
Application Product Pattern. Requirement-Navigability]
Pattern Collection.

Pattern Extract a List of To Index. [MAPML-Requirement-
Administrator Pattern Authors. Processability-l], [MAPML-

Requirement-Processability-2]

Validate a To Check if the [MAPML-Requirement-QA]
MAPML Pattern Format is
Document. Correct before

Adding it to the
Pattern Catalog.

Table 3.1. Examples ofMAPML Use Cases.

The Unified Modeling Language (UML) [42] is a general-purpose object-oriented

modeling language for specifying, visualizing, constructing, and documenting the

artifacts of systems. UML has explicit support for use cases. Figure 3.1 illustrates a UML

Use Case diagram for MAPML Transformation use case described in Table 3.1.

37



1
,«extend»

.i' .....

«include» .i'.i' ..........«include»
.i' .....

"" ........."" .....~ ~

-~-"---- ~........-~---

Pattern Author

Style Sheet Author

Figure 3.1. MAPML Transformation Use Case Diagram.

Scenarios are use case instances. Figure 3.2 shows a UML Sequence Diagram for

MAPML Transformation use case scenario. A MAPML document goes through a

sequence of events and is transformed to a text format. A rejection reflects a failure

scenario that can occur if, for example, the input MAPML document or the style sheet is

invalid.

liIuthor . input

suthor - output

reject
? -- --- ---- ---

input --
...-- --- ----- --- - reject

Figure 3.2. MAPML Transformation Use Case Scenario.

38



3.2. MAPML Requirements

This section outlines MAPML requirements in the categories of Association,

Demonstrability, Documentation, Evolvability, Extensibility, Genericity, Identifiability,

Interoperability, Legality, Minimality, Modularity, Navigability, Presentability,

Processability, Quality Assurance, Re-Usability, Transformability, Uniqueness, and

Usability. These categories are inspired by the IEEE 830 Recommended Practice for

Software Requirements Specifications [26]. Each requirement is equipped with an

identification label for traceability, and inc1udes a rationale.

MAPML Requirements for Association

• [MAPML-Requirement-Association] MAPML must be able to show

relationships among patterns.

Rationale. Patterns have interrelationships within and across pattern catalogs.

MAPML Requirements for Demonstrability

• [MAPML-Requirement-Demonstrability] MAPML must be able to

demonstrate pattern solutions.

Rationale. A pattern needs to demonstrate that the solution it suggests actua1ly

works in the "real world".

MAPML Requirements for Documentation

• [MAPML-Requirement-Documentation] MAPML must be well documented.

Rationale. For pattern problems and solutions expressed by MAPML to be

understandable and for MAPML evolution to be traceable, components of

MAPML need to be well documented. (See also, [MAPML-Requirement­

Evolvability-l], [MAPML-Requirement-Evolvability-2], [MAPML-Processability

-2], and [MAPML-Requirement-Usability-l].)

39



MAPML Requirements for Evolvability

• [MAPML-Requirement-Evolvability-l] MAPML shaH be evolvable.

Rationale. Patterns and their taxonomies are not static. Practices that are

considered "experimental" could lead to patterns in the future that may require

changes in the definition of MAPML. Therefore, MAPML must be prepared to

evolve.

• [MAPML-Requirement-Evolvability-2] MAPML documents shaH be

manageable. SpecificaHy, MAPML documents must be self-sufficient for basic

configuration management.

Rationale. If the pattern content changes (for example, changes in author address

or ownership), MAPML documentes) will need to be adjusted accordingly.

Hence, MAPML documents should not depend on external means for basic

configuration so that the modification process can be autonomous. For

sophisticated management, one can resort to tools such as RCS/CVS.

MAPML Requirements for Extensibility

• [MAPML-Requirement-Extensibility] MAPML documents shaH be extensible.

In particular, MAPML should provide the ability to include fragments of non­

MAPML XML-based vocabularies in MAPML documents.

Rationale. Pattern solutions may need to make use of markup languages as part

of the implementation. Markup based on these languages (that is not native to

MAPML) will then need to be included in MAPML documents.

MAPML Requirements for Genericity

• [MAPML-Requirement-Genericity-l] MAPML shaH be generic enough to be

able to express all the aspects of the definition and all the components of a

pattern.

40



Rationale. The fundamental objective of MAPML is to be able to completely

represent the components of a pattern. According to the Patterns-Discussion FAQ

[37], "a formaI notation is not a pattern if it omits descriptions of context, the

problem(s) it solves, evidence for adequacy of the solution, construction or

implementation guidelines, or relations with other patterns."

• [MAPML-Requirement-Genericity-2] MAPML shaH be generic enough to be

able to express aH the classes ofmobile patterns.

Rationale. MAPML needs to represent aH patterns in MAPCLASS. Furthermore,

it should also be prepared for any additions to it.

MAPML Requirements for Identifiability

• [MAPML-Requirement-Identifiability-l] MAPML must provide support for

pattern name and its identifier.

Rationale. There must be a way to uniquely identify a pattern entry in a catalog.

• [MAPML-Requirement-Identifiability-2] MAPML must provide support for

metadata related to the pattern and its author.

Rationale. Both the pattern catalog administrator and the pattern user need to

know the details about the pattern, its author, and status to make further decisions.

MAPML Requirements for Interoperability

..--......-.

• [MAPML-Requirement-Interoperability] MAPML shaH be interoperable. In

particular, MAPML shaH be useful with other data formats desirable for mobile

patterns, be platform-independent, be vendor-neutral, and be device independent.

Rationale. MAPML documents need to function in unison with a variety of

language environments, not be restricted by any proprietary

hardware/network/software technology, and interoperate across a broad range of

devices.

41



MAPML Requirements for Legality

• [MAPML-Requirement-Legality] MAPML shaH support the legal rights of the

pattern author.

Rationale. With the evolution of electronic media of information distribution

such as the Web, the intellectual property rights of a pattern author are

chaHenged, and should be protected at aH times.

MAPML Requirements for Minimality

• [MAPML-Requirement-Minimality] MAPML shaH be minimal.

Rationale. Although the traditional notation has several limitations, it is simple.

MAPML needs to be simple and comprehensible so as to ease the transition.

MAPML Requirements for Modularity

• [MAPML-Requirement-Modularity] MAPML structure shaH be modular.

Rationale. Modular structures significantly improve the evolvability, including

maintainability and extensibility.

MAPML Requirements for Navigability

• [MAPML-Requirement-Navigability] MAPML documents shaH be navigable

within themselves and across other documents.

Rationale. MAPML document collections need to be navigable so that they can

be cross-referenced, and related patterns can be discovered.

MAPML Requirements for Presentability

• [MAPML-Requirement-Presentability] MAPML shall be presentable on a

broad range of devices. However, this should not impede the development of

MAPML.

42



Rationale. MAPML documents need to be presentable in situations with "lowest

common denominator" (monitors with limited capability for colors and resolution,

limited font support, and so on), particuiarly on the Web. Still, following the

Separation of Quality principle, the primary focus of MAPML is to interchange

patterns. Presentation ofpatterns is secondary.

MAPML Requirements for Processability

• [MAPML-Requirement-Processability-l] MAPML shouid separate information

internaI to a pattern from information external to the pattern. Specincally, any

pattern meta-information or information related to pattern presentation should not

be part of pattern core.

Rationale. Decoupling pattern core from related information eases pattern

processing and management.

• [MAPML-Processability-2] MAPML shall have coarse-graininess to be equally

machine-processable ("data-oriented") and human-readable ("document­

oriented").

Rationale. MAPML-based markup needs to be read by humans and processed by

machines.

MAPML Requirements for Quality Assurance

• [MAPML-Requirement-QA] MAPML shaH provide formaI grammars with

respect to which MAPML documents can be validated.

Rationale. Quality assurance of MAPML documents is critical. Existence of

formaI grammars makes it possible to test MAPML documents for conformance

when required.

43



MAPML Requirements for Re-Usability

• [MAPML-Requirement-Re-Usability] MAPML shaH make optimal use of the

existing XML pattern taxonomies.

Rationale. To be weH-defined, robust, and manageable, MAPML needs to

consider existing "best practices" in XML.

MAPML Requirements for Transformability

• [MAPML-Requirement-Transformability] MAPML shaH foHow a format that

can be easily transformed to other XML languages, particularly with "lower­

structure". However, this shaH not impede the development ofMAPML.

Rationale. MAPML documents need to be transformable to formats that can be

read by a user with minimal client-side requirements (such as a plain-text editor).

MAPML Requirements for Uniqueness

• [MAPML-Requirement-Uniqueness] MAPML syntax must be universaHy

unique.

Rationale. There always exists the potential that the syntactical constructs of two

or more markup languages are in conflict. Furthermore, MAPML documents may

need to be heterogeneous. Therefore, MAPML syntax needs to be uniquely

identifiable among the presence ofnon-MAPML objects in MAPML documents.

MAPML Requirements for Usability

• [MAPML-Requirement-Usability-l] MAPML syntax shaH be comprehensible

to the pattern community.

Rationale. MAPML needs to leverage on a vocabulary that is widely-used and

understood by existing base of pattern users.

44



• [MAPML-Requirement-Usability-2] MAPML shaH be expressed in a format

that supports accessibility.

Rationale. MAPML documents need to have as broad user-base as possible,

particularly since it expresses patterns for both visual and speech interfaces.

• [MAPML-Requirement-Usability-3] MAPML shaH provide support for

internationalization.

Rationale. MAPML documents needs to have as broad user-base as possible,

particularly since the pattern users are spread aH around the world.

3.3. MAPML Design Description

This section outlines the MAPML design descriptions corresponding to the

categories of Section 3.2. Sorne of the design decisions have been inspired by the IEEE

STD 1016-1987 Recommended Practice for Software Design Descriptions [25]. Each

design description is equipped with an identification label for traceability.

MAPML Design Description for Association

• [MAPML-Design-Association] MAPML must provide an e1ement name

pattern. related that provides the names, type of re1ationship, and links to

related patterns.

MAPML Design Description for Demonstrability

• [MAPML-Design-Demonstrability] MAPML must provide an element name

scenario that can include examples in different forms (narrative text, figure,

code, markup) to demonstrate evidence of pattern solution in use.

MAPML Design Description for Documentation

• [MAPML-Design-Documentation] MAPML must provide elements for figure

caption, pattern terminology, and for including arbitrary text.

45



MAPML Design Description for Evolvability

• [MAPML-Design-Evolvability-l] MAPML must allow changes to its modules

as weIl as addition of other modules to it.

• [MAPML-Design-Evolvability-2] MAPML must provide an attribute name

version to track changes in MAPML Specification and MAPML documents.

MAPML Design Description for Extensibility

• [MAPML-Design-Extensibility] MAPML can be extended both at the grammar­

level and at the document-Ievel. A modular approach to MAPML (see [MAPML­

Design-Modularity]) will ease the future extensions to MAPML grammars.

MAPML documents can be extended to include fragments of non-MAPML

XML-based vocabularies once MAPML elements and attributes have been

uniquely identified (see [MAPML-Design-Uniqueness]).

MAPML Design Description for Genericity

• [MAPML-Design-Genericity-l] MAPML must provide elements that can

encapsulate aIl aspects of a pattern: problem, context, constraint(s), solution, the

impact of the solution, as completely as possible. These elements should be the

children of the element name pattern.

• [MAPML-Design-Genericity-2] MAPML must provide an attribute name

class, possible values of which are the different classes of mobile patterns

identified in Chapter l, Section 1.5.

MAPML Design Description for Identifiability

• [MAPML-Design-Identifiability-l] MAPML must provide an element for

pattern name and an attribute name id that associates a unique identifier with

each pattern.

• [MAPML-Design-Identifiability-2] MAPML must provide an element for

encapsulating pattern metadata. This element should allow elements for pattern

related information and pattern author related information to be its children.

46



MAPML Design Description for Interoperability

• [MAPML-Design-Interoperability] MAPML must follow the Deviee

Independenee Principles [61] and should not allow any deviee-specifie

information in its syntax.

MAPML Design Description for Legality

• [MAPML-Design-Legality] MAPML must provide an element whieh allows

inclusion of copyright information regarding the pattern owner, type of pattern

lieense, and terms-of-use of the pattern.

MAPML Design Description for Minimality

• [MAPML-Design-Minimality] MAPML should avoid verbosity by re-usmg

established modules. MAPML should allow the elements and attributes that are

not part of pattern core to be optional. This eould be established by what is and

what is not required in a pattern definition.

MAPML Design Description for Modularity

• [MAPML-Design-Modularity] MAPML should be struetured into semantically­

related modules. At the grammar-Ievel, these modules should be implemented in

XML Schema Languages (see Figure 3.3) that provide extensibility, namely XML

Schema and RELAX NG.

Implementation
XML Grammar language

li n

Document Instanœ

Figure 3.3. MAPML Modularization Proeess.

47



MAPML Design Description for Navigability

• [MAPML-Requirement-Navigability] MAPML must provide an element for

linking resources that can be identified via a URI. MAPML should also adhere to

a structure that is close to that of a tree.

MAPML Design Description for Presentability

• [MAPML-Design-Presentability] HTML [54] (along with its variants in the

XHTML Framework [58]) is the predominant language on the Web for

presentation, and therefore provides a viable option as a format to which MAPML

documents can be transformed to. Therefore, MAPML should follow a format so

that the documents based on it are readily transformable to XHTML Basic [57]

and XHTML 1.1 [63]. MAPML must not provide any presentational elements or

attributes. Presentation semantics should be relegated to style sheet languages.

MAPML Design Description for Processability

• [MAPML-Design-Processability-l] MAPML must have two element names:

one for information internaI to a pattern, and the other for information external to

a pattern. These elements should be isolated from each other, that is, none is a

child of the other. Specifically, MAPML could have a head and a body element

names that allow inclusion of pattern metadata in the former and pattern content

in the latter.

• [MAPML-Processability-2] MAPML should allow use of naturallanguage text

in its elements wherever necessary. It should provide elements for pattern

metadata, abstract, and description.

MAPML Design Description for Quality Assurance

• [MAPML-Design-QA] MAPML grammars should be as expressible as possible.

MAPML must provide formaI grammars based on XML Schema (normative),

EBNF (informative), XML DTD (informative), and RELAX-NG (informative).

These grammar themselves must also be validated.

48



MAPML Design Description for Re-Usability

• [MAPML-Design-Re-Usability] MAPML should refer to patterns in taxonomies

for XML structural design, such as, in XML Characterization Project [32] and the

XML Patterns Catalog [36].

MAPML Design Description for Transformability

• [MAPML-Design-Transformability] MAPML should follow a format so that a

transformation code, script, or style sheet can easily observe the structure of an

arbitrarily complex document instance. Mixed content models should be avoided

as far as possible.

MAPML Design Description for Uniqueness

• [MAPML-Design-Uniqueness] MAPML must support Namespaces in XML

[49], providing both a URI and a prefix. MAPML namespace can then be used to

uniquely identify MAPML elements and attributes in MAPML documents that

contain fragments of non-MAPML XML-based vocabularies.

MAPML Design Description for Usability

• [MAPML-Design-Usability-l] MAPML should use pattern terminology in its

element names as much as possible. Any extensions should be clearly justified.

To help a pattern user, MAPML should provide elements that can express the

rationale behind the pattern, the pattern solution structure, the pattern solution

strategy, example implementation of the pattern solution, and the scenario where

the pattern has been used.

• [MAPML-Design-Usability-2] MAPML should conform to Web Content

Accessibility Guidelines 1.0 [50] in general, and XML Accessibility Guidelines

[62] in particular. These guidelines provide in-depth details of how, in general,

documents based on markup languages can be made accessible to an audience that

is geographically-dispersed and/or with physiological disabilities. In particular,

MAPML should provide an alternate means to describe the information contained

in non-textual objects (such as, images).

49



• [MAPML-Design-Usability-3] MAPML should make use of the global attribute

provided by XML (xml: lang) to support Intemationalization. Furthermore, for

documents that claim conformance to MAPML, inclusion of the character

encoding attribute in the XML processing instruction should be made a

requirement. That is, all MAPML documents should begin with

where appropriate value of the character encoding is included. For example, a

MAPML document containing only English language characters can begin with

3.4. Summary

In this chapter, we described the ideological, social, and technical decisions

behind the definition of MAPML. The objectives and constraints set in the requirements

and approaches in the design lead to the implementation of MAPML Specification

(Chapter 4) and MAPML utilities (Chapter 5).

50



Chapter 4

MAPML Specification

This chapter completely defines the syntax and semantics of the MAPML 1.0

Specification. Section 4.1 lists the MAPML modules and the elements they consist of.

Section 4.2 lists the basic properties of elements and attributes, inc1uding conditions on

their data types and enumeration. Sections 4.3 to 4.7 provide definitions of individual

elements along with the details of corresponding attributes, sub-elements, and examples.

Section 4.8 provides definitions of each of the attributes. Section 4.9 provides objects of

MAPML identification, namely MAPML media type and MAPML namespace. Finally,

Section 4.10 discusses the issue of conformance with respect to MAPML.

The current status, unless stated otherwise, of all MAPML related documents,

grammars, and software is Version 1.0.

4.1. MAPML Modules and Element Definitions

MAPML is composed of five sets of semantically-related elements and attributes

called modules: Association Module, Meta-information Module, Problem Module,

Solution Module, and Structure Module.

MAPML has thirty elements, each responsible for a specifie functionality of the

language.

Table 4.1 lists the MAPML modules along with the alphabetical list of

corresponding elements.

Module Elements

Association c1ass, link,. pattem.related, reference
Module

Meta-
abstract, author, caption, date, description, keyword, license, metadata,

Information
Module

name, term, title

51



Problem
constraint, context, problem

Module

Solution consequence, implementation, object, rationale, scenario,
Module solution, strategy, structure

Structure
body, head, mapml, pattern

Module

Table 4.1. MAPML Modules.

Figure 4.1 gives a structural overview ofMAPML that display its key elements.

52



Figure 4.1. Structure of MAPML.

53



4.2. Properties of MAPML Elements and Attributes

The two properties of interest are data type and enumeration.

4.2.1. MAPML Data Types

MAPML data types determine the type of data aHowed in element content and

attribute values.

A "Singleton" data type indicates that the element content consists of only

character data and does not have any sub-elements. An "Aggregate" data type indicates

that the element content consists of only sub-elements. A "Mixed" data type indicates

that the element content is a mixture of character data and sub-elements. The class of

characters aHowed as character data are determined hy the XML 1.0 Specification (see

Section 2.6.3). For the types of character data in element content and attrihute values, a

lihrary of data types such as the one provided hy XML Schema [59] can he used.

Empty elements do not contain any content. AH MAPML elements, unless stated

otherwise, are non-empty.

4.2.2. Enumeration

Enumeration determines the numher of times an element can occur, that is, its

multiplicity.

The occurrence of e1ements is classified as Required, Conditional, or Optional.

An element that is laheled as "Required" must he present in every MAPML document;

an element that is labeled as "Conditional" must be present in a MAPML document

under the given conditions; an element that is labeled as "Optional" may not be present

in every MAPML document. Related to occurrence is the concept of cardinality, which

indicates the numher of times an element can occur, if at aH. If an element is a child of

another element, the cardinality indicates the numher of times the child element can occur

in its parent. A cardinality of "N" indicates that the element occurs N times, where N=l,

2, ... A cardinality of "N..M" indicates that the element can occur N to M times, where

N=O, 1,2, ... , M=l, 2, ..., and M>=N. A cardinality of "N..Unhounded" indicates that the

54



element can occur N or more times, where N=O, 1, 2, ... An element whose occurrence is

Required will have a cardinality of (at least) 1; an element whose occurrence is either

Optional or Conditional will have a cardinality of (at least) O. Note that the root element

is always Required with cardinality = 1.

The occurrence of attributes is c1assified as Required, Conditional, or Optional,

and is indicated in the parenthesis next to its name. An attribute that is labeled as

"Required" must always be present in its corresponding element; an attribute that is

labeled as "Conditional" must be present in its corresponding element under the given

conditions; an attribute that is labeled as "Optional" may not always be present. A

"None" indicates that the element does not have any attribute. An attribute can occur only

once in an element.

The foregoing sections specify the individual definitions of elements and

attributes.

4.3. Association Module

The Association Module signifies association of the pattern to its c1ass, to other

pattern(s), or to a reference. The association is made possible by the linking mechanism.

The cJ.ass Element

Element Name class

Related [MAPML-Requirement-Association], [MAPML-Requirement-
MAPML Genericity-2]
Requirement(s)

Module Association Module

Description Mobile application patterns are c1assified into several categories as

discussed in Chapter 2, Sections 2.4 and 2.5. The class element

names thec1assification scheme to which the pattern belongs to.

Data Type Singleton

Attribute(s) id (Optional)

Parent metadata
Element(s)

Child Element(s) None

55



Example <class>Initial Product Pattern</class>

Table 4.2. The class Element

The l:i.nk Element

Element Name link

Related [MAPML-Requirement-Navigability]
MAPML
Requirement(s)

Module Association Module

Description Patterns belonging to one catalog, like MAPCLASS, are closely

interconnected. The notion of linking makes these interconnections

possible and provides a functionality for local and global cross-

referencing.

The purpose of the link element is to provide linking semantics to

the pattern elements it is associated with.

Data Type Not Applicable (Empty Element)

Attribute(s) id (Optional), uri (Required)

Parent object, reference
Element(s)

Child Element(s) None

Example <link uri=''http://www.mapml.com/images/ebook.svg''/>

Table 4.3. The link Element

REMARKS

When transforming a MAPML document to other formats, the link element can

be mapped to sophisticated hyperlinking schemes such as XLink [62], which provides

support for both uni-directional and bi-directionallinking.

The pattern. related Element

Element Name pattern.related

Related [MAPML-Requirement-Genericity-l]
MAPML
Requirement(s)

Module Association Module

56



Description The pattern.related element provides information on other pattern(s)

that is related to the pattern being described. It may include

relationship to the described pattern, class to which it belongs to, and

pointer to where it can be found.

Data Type Aggregate

Attribute(s) id (Optional), relation (Required)

Parent body
Element(s)

Child Element(s) name (Required, Cardinality = 1), class (Required, Cardinality = 1),
link (Optional, Cardinality = 0..1)

Example <pattern.related relation="subordinate">
<name>MAPCLASS.Navigation</name>
<class>Autonomous Intermediate Product Pattern</class>

</pattern.related>

Table 4.4. The pattern.related Element

The reference Element

Element Name reference

Related [MAPML-Requirement-Documentation], [MAPML-Requirement-
MAPML Usability-l]
Requirement(s)

Module Association Module

Description The reference element includes information on references related to

the pattern problem and/or solution that may be helpful towards

further understanding. It is suggested that a referenced item should be

canonical and follows standard guidelines of a bibliography. If a

referenced item is accessible via the Web, the URL should be

provided.

Data Type Aggregate

Attribute(s) id (Required)

Parent problem, solution
Element(s)

Child Element(s) title (Required, Cardinality = 1), author (Required, Cardinality =
l..Unbounded), date (Required, Cardinality = l..Unbounded),
link (Required, Cardinality = 1)

Example <reference id="appleton2000">
<title>Patterns and Software: Essential Concepts and

57



Terminology</title>
<author>Appleton, B.</author>
<date>2000</date>
<link uri="http://www.enteract.com/-bradapp/docs/

patterns-intro.html"/>
</reference>

Table 4.5. The reference Element

4.4. Meta-Information Module

Literate Programming [33] advocates program literacy and emphasizes that

programs should be written in a fashion that can be read by people as weIl as by

compilers. MAPML documents should follow a similar approach, hence, the motivation

for the Meta-Information Module.

The abstract Element

Element Name abstract

Related [MAPML-Requirement-Usability-l]
MAPML
Requirement(s)

Module Meta-Information Module

Description The abstract element provides a brief abstract of the pattern. It

could, for example, be used by automated indexing programs.

Therefore, it should be precise and minimal. UsuaIly, the abstract

would be a short-version of the description.

Data Type Mixed

Attribute(s) id (Optional)

Parent metadata
Element(s)

Child Element(s) term (Optional, Cardinality = O..Unbounded)

Example <abstract>
A E-Book Pattern solves the problems associated with
making electronic books available on a <term>PDA
</term>. It provides an <term>XML</term>-based
solution to circumvent those problems.

</abstract>

Table 4.6. The abstract Element

58



The author Element

Element Name author

Related [MAPML-Requirement-Identifiability-2]
MAPML
Requirement(s)

Module Meta-Information Module

Description The author element contains the name ofthe author(s) in different

contexts in the pattern: pattern author, reference author, or author of

the MAPML document itself. The names could be expressed in first

name~last name or last name-first name forms.

Data Type Singleton

Attribute(s) id (Optional)

Parent metadata, reference
Element(s)

Child Element(s) None

Example <!-- Different Formats for Author Names. -->
<author>Monty Newborn</author>
<author>Pai, Hsueh-Ieng</author>

Table 4.7. The author Element

The caption Element

Element Name caption

Related [MAPML-Requirement-Documentation]
MAPML
Requirement(s)

Module Meta-Information Module

Description The caption element provides a caption for an object (such as the

figure, markup, or code) included in a MAPML document.

Data Type Mixed

Attribute(s) None

Parent object
Element(s)
Child Element(s) term (Optional, Cardinality = O..Unbounded)

Example <object id="eb123" media-type="image/png" object-type=
"figure" alternate="Snaphot of an E-Book">

<link uri="ebook.png"/>
<caption>

An <term>OEBPS</term> <term>E-Book</term> in

59



<term>MobiPocket Reader Emulator</term>.
</caption>

</object>

Table 4.8. The caption Element

The date Element

Element Name date

Related [MAPML-Requirement-Evolvability-2]
MAPML
Requirement(s)

Module Meta~InformationModule

Description The date element provides a timestamp (namely, pattern creation,

publication, and revision) to MAPML elements. It could be used to

tabulate the datees) of evolution of the pattern. It can also be used for

date of a reference. The date could be expressed in a Gregorian form

ofrecurring day, month, and year.

Data Type ISO 8601 [35] Format

Attribute(s) event (Optional)

Parent metadata, reference
Element(s)

Child Element(s) None

Example <!-- The 10th Day of January of the Year 2002. -->
<date event="publication">2002-01-10</date>

Table 4.9. The date Element

The description Element

Element Name description

Related [MAPML-Requirement-Usability-l ]
MAPML
Requirement(s)

Module Meta-Information Module

Description The description element provides a synopsis of the pattern. This

description is mainly for the benefit of the pattern user and should be

sufficiently detailed. The description could include motivation for the

pattern.

60



Data Type Mixed

Attribute(s) None

Parent body
Element(s)

Child Element(s) term (Optional, Cardinality = O..Unbounded)

Example <description>
The <term>E-Book</term> Pattern is motivated by
the rapid ascent of electronic books that are now
becoming widely-available on small devices.

</description>

Table 4.10. The description Element

The keyword Element

Element Name keyword

Related [MAPML-Requirement-Identifiability-2], [MAPML-Requirement-
MAPML Navigability]
Requirement(s)

Module Meta-Information Module

Description Includes a sequence ofterm(s) relevant to the pattern.

Data Type Mixed

Attribute(s) None

Parent metadata
Element(s)

Child Element(s) term (Required, Cardinality = 1..Unbounded)

Example <keyword>
<term>XML</term>, <term>Mobile</term>

</keyword>

Table 4.11. The keyword Element

The license Element

Element Name license

Related [MAPML-Requirement-Legality]
MAPML
Requirement(s)

Module Meta-Information Module

Description The pattern may be associated with a license or intellectual property

right statements. A license element consists of components such as

copyright, license owner, and conditions for its use. It may include

61



information on the type of license such as GNU Free Documentation

License (GNU FDL), Open Content License, Open Publication

License, and so on.

Data Type Mixed

Attribute(s) None

Parent metadata
Element(s)

Child Element(s) author (Required, Cardinality = 1..Unbounded), date (Required,
Cardinality = l..Unbounded)

Example <license>
Copyright (c) <date>2001<date>, <date>2002<date>.
<author>Hsueh-Ieng Pai</author>. Ali Rights Reserved.
Permission is granted to copy, distribute, and/or
modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later
version published by the Free Software Foundation.

</license>

Table 4.12. The license Element

The metaciata Element

Element Name metadata

Related [MAPML-Requirement-Identifiability-2]
MAPML
Requirement(s)

Module Meta-Information Module

Description The Web was originally built for human consumption and, although

everything on it is machine-readable, this data is not always "machine-

understandable." It is very difficult to automate tasks such as indexing,

filtering, and searching on the Web.

The solution proposed here is to use metadata ("data about data")

information to describe MAPML documents published on the Web.

Any information that is "about" the pattern is known as pattern

metadata.

The metadata element is a container for pattern metadata, including

the pattern name, the classification scheme to which the pattern

belongs to, pattern author-related information, pattern history and

62



CUITent status, a brief synopsis, and keywords related to the pattern.

Data Type Aggregate

Attribute(s) None

Parent head
Element(s)

Child Element(s) name (Required, Cardinality = 1), class (Required, Cardinality = 1),
author (Required, Cardinality = l..Unbounded), date (Optional,
Cardinality = O..Unbounded), abstract (Required, Cardinality = 1),
license (Optional, Cardinality = 0..1), keyword (Optional,
Cardinality = 0.. 1)

Example <pattern>
<head>

<metadata>
<!-- Include Elements for Pattern Name, Class -->

<name> ... </name>
<date event="creation">2001-12-15</date>
<abstract> ... </abstract>

</metadata>
</head>
<body>

<!-- Include Other Elements. -->
</body>
</pattern>

Table 4.13. The metadata Element

REMARKS

The metadata scheme in MAPML has been kept intentionally to a minimum in

accordance with the traditional pattern notation. More sophisticated schemes than the

above (such as Dublin Core with XML [43]) are possible.

The name Element

Element Name name

Related [MAPML-Requirement-Genericity-l], [MAPML-Requirement-
MAPML Identifiability-l ]
Requirement(s)

Module Meta-Information Module

Description The name element encapsulates the name of the pattern. A pattern

should have a meaningful name that represents the problem it is

addressing. A good name is vital, because it will become part of the

design vocabulary. A name is usually a string of alphabetic characters.

63



It could be a single word or a short phrase to refer to the knowledge a

pattern encompasses.

Patterns often make connections to other available patterns, and

may need to be referenced from contexts outside their scope of

existence (the catalog). The pattern names alone can not guarantee

globally unique identification. The hierarchical nature of our pattern

classification can be useful in devising a universal naming scheme for

cross-referencing. We could adopt the Java package specifying

convention to serve as a resource identifier. Then, for example, for a

Speech Form Pattern, we could write:

MAPCLASS.Product.Intermediate.Non-Autonomous.Form.Speech

or for short

MAPCLASS.Form.Speech

without loss of generality.

Data Type Singleton

Attribute(s) id (Optional)

Parent metadata
Element(s)

Child Element(s) None

Example <name>MAPCLASS.E-Book</name>

Table 4.14. The name Element

The term Element

Element Name term

Related [MAPML-Requirement-Identifiahility-2]
MAPML
Requirement(s)

Module Meta-Information Module

Description The subjects ofpatterns, mobility, XML, Software Engineering, and the

application domain in which the pattern itself exists, all have their own

"vocahulary". The terms can, for example, he used in the metadata

keywords, extracted to form a glossary, and so on. The term element

encapsulates the terminology related to the pattern.

64



Data Type Singleton

Attribute(s) term-type (Optional)

Parent abstract, caption, description, keyword, implementation, structure,
Element(s) strategy

Child None
Element(s)

Example <terrn>IBM WebSphere Application Server</terrn>

Table 4.15. The term Element

The title Element

Element Name title

Related [MAPML-Requirement-Identifiability-2]
MAPML
Requirement(s)

Module Meta-Information Module

Description The ti tle element provides the title of the document. This title could

be used either as the title of the MAPML document or the title of a

reference in the pattern.

Data Type Singleton

Attribute(s) None

Parent mapml, reference
Element(s)

Child None
Element(s)

Example <title>Surveys on Mobility</title>

Table 4.16. The title Element

4.5. Problem Module

The constraint Element

Element Name constraint

Related [MAPML-Requirement-Genericity-l]
MAPML
Requirement(s)
Module Problem Module

65



Description The eonstraint element describes relevant constraints (known as

forces in the traditional notation) of the problem and how they

interact/conflict with one another. They are used by the engineers to

justify the technical decisions of their design. Constraints provide a

clear picture of the complexities of the problem(s) and help defining the

kinds of trade-offs that must be considered.

Data Type Mixed

Attribute(s) id (Optional)

Parent body
Element(s)

Child term (Optional, Cardinality = O..Unbounded)
Element(s)

Example <eonstraint>Limited <term>Memory</term>.</eonstraint>
<eonstraint>Small Sereen Size.</eonstraint>

Table 4.17. The constraint Element

The context Element

Element Name eontext

Related [MAPML-Requirement-Genericity-l]
MAPML
Requirement(s)

Module Problem Module

Description The eontext element outlines the conditions under which the problem

recurs, and for which the solution is desirable. These conditions may be

characteristics of the user, tasks, as well as the technical, physical, and

organizational environment. Apart from the problem description, the

context also provides criteria for determining when the pattern is

applicable.

Data Type Mixed

Attribute(s) id (Optional)

Parent body
Element(s)

Child term (Optional, Cardinality = O..Unbounded)
Element(s)

Example <eontext>
Mobile Computing Environment. Visually-Disabled User.

66



I</context>

Table 4.18. The context Element

The problem Element

Element Name problem

Related [MAPML-Requirement-Genericity-l]
MAPML
Requirement(s)

Module Problem Module

Description While constructing a mobile application, engineers can face aH sorts of

problems that are typicaHy task related. The problem elements

describes the problem the pattern attempts to solve within the given

context and constraints of the problem.

Data Type Mixed

Occurrence Required

Attribute(s) id (Optional)

Parent body
Element(s)

Child reference (Optional, Cardinality =O..Unbounded), term (Optional,
Element(s) Cardinality = O..Unbounded)

Example <problem>
To create an <term>E-Book</term> that is <term>device
independent</term>.

</problem>

Table 4.19. The problem Element

4.6. Solution Module

The consequence Element

Element Name consequence

Related [MAPML-Requirement-Genericity-l]
MAPML
Requirement(s)

Module Solution Module

Description The consequence element describes impact and trade-offs from the

67



application of the pattern. It is likely that a pattern may improve one

aspect at the cost of deteriorating others. In general, this section focuses

on the results ofusing a particular pattern, and notes the pros (such as,

what aspects have been improved) and cons (such as, what aspects have

worsened) that may result from the application of the pattern.

Data Type Mixed

Attribute(s) impact (Required)

Parent body
Element(s)

Child term (Optional, Cardinality =O..Unbounded)
Element(s)

Example <consequence impact="positive">
Provides instant access to different parts of the book.

</consequence>
<consequence impact="negative">

Reader oriented towards paper-based books or unfamiliar
with the linking mechanism may experience a learning
curve.

</consequence>

Table 4.20. The consequence Element

The implementation Element

Element Name implementation

Related [MAPML-Requirement-Usability-2]
MAPML
Requirement(s)

Module Solution Module

Description The implementation element includes an actual implementation of the

solution suggested by the pattern. Mobile application patterns, upon

implementation, can exist in forms of various objects -- figure, markup,

or code -- that explain how the pattern can be implemented.

Data Type Mixed

Occurrence Required

Attribute(s) id (Optional)

Parent strategy
Element(s)

Child obj ect (Optional, Cardinality = O..Unbounded), term (Optional,
Element(s) Cardinality = O..Unbounded)

68



Example <implementation>
<object id="eb456" object-type="markup" media-type=

"text/xml">
<oeb:package unique-identifier="uid">

<oeb:metadata>
<!-- Dublin Core Metadata. -->

</oeb:metadata>
<oeb:manifest>

<!-- List of E-Book Files. -->
</oeb:manifest>
<oeb:spine>

<!-- Linear Reading Order. -->
<oeb:itemref idref="Cover"/>

</oeb:spine>
</oeb:package>

</object>
</implementation>

Table 4.21. The implementation Element

The object Element

Element Name object

Related [MAPML-Requirement-Extensibility]
MAPML
Requirement(s)

Module Solution Module

Description A MAPML document can include a variety of external objects to assist

with the pattern solution or to describe a scenario. The obj ect element

is the container for the possible objects: figure, markup, or code.

Contents of both the mar kup and code are to be presented as listings --

it is not required that either the markup or code be processed. When a

MAPML document is presented to a user agent, it may process the

markup (if it supports the corresponding vocabulary) and include the

results.

Data Type Mixed

Occurrence Required

Attribute(s) id (Optional), media-type (Required), obj ect-type (Required),
alternate (Conditional; Required if the object-type is a figure)

Parent implementation, scenario, structure
Element(s)
Child caption (Optional, Cardinality = 0..1), link (Conditional; Required if
Element(s) the obiect referenced is external to the MAPML document, Cardinalitv

69



Example

= 0..1)
<object object-type="figure" media-type="image/png"

alternate="Snaphot of an E-Book">
<link uri="ebook.png"J>
<caption>

An <term term-type="abbreviation">OEBPS</term>
<term>E-Book</term> in
<term term-type="tool">MobiPocket Reader

Emulator</term>.
</caption>

</object>

This object may appear on rendering as

An OpenE-Boo........ (t'!J~ .N..

eBooklnfo
Identifier:

OE8 Tour

Title:
An Open E-8ook is Forever

Creator:
Hsueh-Ieng Pai

Date:
2/41D1

Copyrigh1s:
2001, Hsueh-Ieng PaL

Table 4.22. The object Element

The rabonale Element

Element Name rationale

Related [MAPML-Requirement-Usability-l]
MAPML
Requirement(s)
Module Solution Module

Description Given a problem and a large collection of patterns, one faces the issue

ofmaking a viable choice. The rationale element describes, in a

solution-independent manner, the reasoning behind and suitability of

the pattern as ajustified choice towards solving the problem. The

70



rationale assists an engineer in making the appropriate choice by

describing how and why the pattern works, with an insight into the

internaI structure and key mechanisms of the system.

Data Type Mixed

Attribute(s) None

Parent body
Element(s)

Child term (Optional, Cardinality = O..Unbounded)
Element(s)

Example <pattern>
<!-- Other Elements -->
<name>MAPCLASS.E-Book</name>
<solution>

<rationale>
The rationale for presenting a solution based on
<term>XML</term> is that it has several advantages.
By the application of the single-source approach,
it is possible to author documents once and serve
them everywhere.

</rationale>
</solution>

</pattern>

Table 4.23. The rationale Element

The scenario Element

Element Name Scenario

Related [MAPML-Requirement-Genericity-l ]
MAPML
Requirement(s)

Module Solution Module

Description The scenario e1ement gives instance(s) of "real-world" situations

where the specified pattern has been used by the author and/or by other

users. The section may also include counter examples -- examples of

cases where the pattern should have been used but was not, and "non-

examples" -- examples of cases where the pattern should not have been

used but was.

The examples included in this section help engineers to understand

the scope and domain of applicability of the pattern. They also enforce

71



the fact that the pattern describes a proven solution. This is crucial in

~udging the viability of and quantifying the actual use of the pattern.

The example(s) can be provided in several ways: prose, figure,

markup, and so on that illustrate the use of the pattern.

Data Type Mixed

Occurrence Required

Attribute(s) None

Parent Body
Element(s)

Child obj ect (Optional, Cardinality =O..Unbounded), term (Optional,
Element(s) Cardinality = O..Unbounded)

Example <scenario>
The <term>E-Book</term>s are used by established book
distribution enterprises (such as, Amazon.com, and
Barnes and Noble) and by noted publishers (such as,
Addison-Wesley) .

</scenario>

Table 4.24. The scenario Element

The solution Element

Element Name solution

Related [MAPML-Requirement-Genericity-l ]
MAPML
Requirement(s)

Module Solution Module

Description The solution element includes a description ofthe actual solution

provided by the pattern to solve the problem. It describes the solution

approach briefly and the solution aspects themselves in detai!. The

solution aspects identify the pattern's structure, presentation, logic, and

behavior.

Data Type Mixed

Attribute(s) None

Parent body
Element(s)

Child reference (Optional, Cardinality = O..Unbounded), structure

Element(s) (Required, Cardinality = 1), strategy (Required, Cardinality = 1)

Example <solution>
<!-- Structure and Strategy -->

72



I</solution>

Table 4.25. The solution Element

The strategy Element

Element Name strategy

Related [MAPML-Requirement-Usability-2]
MAPML
Requirement(s)

Module Solution Module

Description Engineers discover and invent new ways to implement the pattern,

producing new strategies for well-known patterns. To accommodate

that, strategies provide an extensibility point for each pattern. The

strategy element includes a description of different ways a pattern

can be implemented.

Data Type Mixed

Attribute(s) None

Parent solution
Element(s)

Child implementation (Required, Cardinality = l..Unbounded), term
Element(s) (Optional, Cardinality = O..Unbounded)

Example <strategy>
The tree structure of an <term>E-Book</term> can be
implemented in several ways. The most reader-friendly
way is to follow the format of a regular book. There
is a cover page, table of contents, and a set of
chapters. The items in the table of contents link to
preface, individual chapters, and sections. ...
<implementation> ... </implementation>

</strategy>

Table 4.26. The strategy Element

The structure Element

Element Name structura

Related [MAPML-Requirement-Usability-2]
MAPML
Requirement(s)

Module Solution Module

Description The structure element includes a description of a pattern at a high

73



level abstraction. This could be done by using prose or by using a

visual modeling notation. For example, use of the UML Diagrams can

be made to show the basic structure and data flow of the solution.

Data Type Mixed

Attribute(s) None

Parent solution
Element(s)

Child obj ect (Optional, Cardinality = O..Unbounded), term (Optional,
Element(s) Cardinality = O.•Unbounded)

Example <structure>
The solution structure of MAPCLASS.E-Book is a tree
where all the nodes are accessible from the root.

</structure>

Table 4.27. The structure Element

4.7. Structure Module

The body Element

Element Name body

Related [MAPML-Requirement-Navigability], [MAPML-Requirement-
MAPML Processability-1], [MAPML-Requirement-Usability-1]
Requirement(s)

Module Structure Module

Description The body element is the container that holds the actual content of a

mobile application pattern.

Data Type Aggregate

Occurrence Required

Attribute(s) !None

Parent pattern

Element(s)

Child description (Required, Cardinality = 1), context (Required,
Element(s) Cardinality = 1), problem (Required, Cardinality = 1), constraint

(Required, Cardinality = l..Unbounded), rationale (Required,
Cardinality = 1), solution (Required, Cardinality = 1), consequence
(Required, Cardinality = 1..Unbounded), pattern. related (Required,
Cardinality = 1..Unbounded), scenario (Required, Cardinality =
1..Unbounded)

74



Example <body>
<!-- Other Elements Here. -->

</body>

Table 4.28. The body Element

The head Element

Element Name head

Related [MAPML-Requirement-Navigability], [MAPML-Requirement-
MAPML Processability-l ], [MAPML-Requirement-Usability-l ]
Requirement(s)

Module Structure Module

Description The head element is a container of information that is not directly

related to the pattern. It provides a separation of pattern core from

pattern metadata.

Data Type Aggregate

Attribute(s) None

Parent pattern

Element(s)

Child metadata (Required, Cardinality = 1)
Element(s)
Example <head>

<metadata>
<!-- Other Elements Here. -->

</metadata>
</head>

Table 4.29. The head Element

The mapml Element

Element Name mapml

Related [MAPML-Requirement-Genericity-l]
MAPML
Requirement(s)
Module Structure Module

Description The mapml element is the root element of a MAPML document. It can

contain one or more pattern elements.

Data Type Aggregate

Attribute(s) id (Optional). version (ReQuired). xml: lanq (ReQuired). xml: space

75



(Optional)

Parent None
Element(s)
Child pattern (Required, Cardinality = l..Unbounded), title (Required,
Element(s) Cardinality = 1)

Example <mapml version="l.O" xml:lang="en">
<pattern>
<!-- Other Elements Here. -->
</pattern>

</mapml>

Table 4.30. The mapml Element

The pattern Element

Element Name pattern

Related MAPML [MAPML-Requirement-Genericity-1], [MAPML-Requirement-
Requirement(s) Identifiability-1], [MAPML-Requirement-Processability-1], [MAPML-

Requirement-Usability-1 ]

Module Structure Module

Description The pattern element is a container for pattern information organized

into head and body.

Data Type Mixed

Attribute(s) id (Required), version (Required)

Parent mapml

Element(s)

Child Element(s) head (Required, Cardinality = 1), body (Required, Cardinality = 1)

Example <pattern>
<head>

<!-- Other Elements Here. -->
</head>
</body>

<!-- Other Elements Here. -->
<body>

</pattern>

Table 4.31. The pattern Element

4.8. MAPML Attribute Definitions

MAPML defines ten attributes: alternate, event, id, impact, media-type,

object-type, relation, term-type, uri, and version. They are described in the

fol1owing tables.

76



MAPML "borrows" two attributes from the XML 1.0 Specification [55]:

xml: lang and xml: space. xml: lang is used to indicate the naturallanguage being used

in the document, xml: space gives directions to the processor for controlling white

space. MAPML also uses an attribute from Namespaces in XML Specification [49],

xmlns, to uniquely identify its elements and attributes.

A "1" indicates an exclusive or.

The alternate Attribute

Attribute Name alternate

Related [MAPML-Requirement-Usability-2]
MAPML
Requirement(s)
Description The purpose of the alternate attribute is to make objects other than

plain text accessible. It provides a short text description for non-textual

objects included in MAPML documents.

Data Type Character Data

Related object
Element(s)

Table 4.32. The alternate Attribute

The event Attribute

Attribute Name event

Related [MAPML-Requirement-Evolvability-2]
MAPML
Requirement(s)
Description The event attribute provides the context oftimestamping. For example,

the context could be related to the evolution -- creation, publication or

modification -- of the pattern.

Data Type creation 1 publication 1 revision

Related date
Element(s)

Table 4.33. The event Attribute

77



The id Attribute

Attribute Name id

Related [MAPML-Requirement-Identifiability-1]
MAPML
Requirement(s)
Description The id attribute uniquely identifies an element within a document. Its

value is an XML identifier.

Data Type XML ID. For acceptable values, see the XML 1.0 Specification [55].

Related implementation, mapml, pattern, reference
Element(s)

Table 4.34. The id Attribute

The impact Attribute

Attribute Name impact

Related [MAPML-Requirement-Genericity-1 ]
MAPML
Requirement(s)
Description The impact attribute provides the type of consequence that a pattern

can have when applied to a given situation.

Data Type positive 1negative

Related consequence
Element(s)

Table 4.35. The impact Attribute

The media-type Attribute

Attribute Name media-type

Related [MAPML-Requirement-Processability-1]
MAPML
Requirement(s)
Description The purpose ofthe media-type attribute is ta provide user agents clue

of the data format of the external object being included in a MAPML

document.

Data Type MIME (Internet Media Type). For acceptable values, see the IETF RFC
2045 [15].

78



IRela!ed IObjeC!
Element(s)

Table 4.36. The media-type Attribute

The object-type Attribute

Attribute Name abject-type

Related [MAPML-Requirement-Extensibility]
MAPML
Requirement(s)
Description The abject-type attribute states the types of object inc1uded in the

MAPML document. The possibilities are: figure, markup, or code. A

figure can be used to describe the structure of the pattern solution, the

pattern implementation, or the pattern scenario. Markup provides an

implementation of the pattern solution in form of a complete document

or fragment based on a markup language, preferably based on XML. A

snippet ofcode (script, or a style-sheet, or a program) provides an

implementation of the pattern solution based on a formaI (non-markup)

language.

Data Type figure 1 markup 1 code

Related object
Element(s)

Table 4.37. The object-type Attribute

The relation Attribute

Attribute Name relatian

Related [MAPML-Requirement-Genericity-l]
MAPML
Requirement(s)

Description Therelatian attribute symbolizes the type ofrelationship that the

related pattern has with the pattern under study.

The relationship can be categorized as superordinate, subordinate,

sibling, or competitor. A superordinate pattern is the super set of the

described pattern. It can therefore contain the described pattern and

79



possibly other patterns. A subordinate pattern is a subset of (that is, it

can be embedded into) the described pattern. It is therefore a part of the

described pattern. A sibling pattern belongs to the same pattern

category as the described pattern. It provides either replaceable or

enhanced function to the described pattern, but not necessarily in the

same context. Finally, a competitor pattern can provide the identical or

similar function as the described pattern. Thus, it can replace the

described pattern in the same context.

Data Type superordinate 1 subordinate 1 sibling 1competitor

Related pattern.related

Element(s)

Table 4.38. The relation Attribute

The term-type Attribute

Attribute Name term-type

Related [MAPML-Requirement-Processability-2]
MAPML
Requirement(s)

Description The term-type attribute symbolizes the nature of the term that can

exist if various forms.

Data Type abbreviationlconcept Iprinciple 1 technology 1 tool

Related term
Element(s)

Table 4.39. The term-type Attribute

The uri Attribute
Attribute Name uri

Related [MAPML-Requirement-Navigability]
MAPML
Requirement(s)

Description The uri attribute provides the URl of the content it is associated with.

Data Type URl. For acceptable values, see IETF RFC 2396 [7].

Related link
Element(s)

Table 4.40. The uri Attribute

80



The version Attribute

Attribute Name version

Related [MAPML-Requirement-Evolvability-2]
MAPML
Requirement(s)

Description The version attribute provides a numerical value of the release date of

either the MAPML document or the pattern.

Data Type decimal

Related mapml, pattern
Element(s)

Table 4.41. The version Attribute

4.9. MAPML Identification

MAPML documents need to be identified by user agents and processors. This

section describes the facilities provided by MAPML in that direction.

4.9.1. MAPML Internet Media (MIME) Type

In accordance with IETF RFC 3023 [34], Appendix A.l5, MAPML documents

should be served as the media type

Until user agents recognize the '+xml' suffix for XML-based MIME types,

MAPML documents could be served as the media type text/xml (IETF RFC 3023,

Appendix A.l).

4.9.2. MAPML Namespace

The XML Namespace assigned to MAPML is

81



The prefix mapml: is used by convention to denote the MAPML Namespace,

although any prefix can be used. This is necessary when authoring and de1ivering

MAPML documents, particularly those that contain non-MAPML markup fragments.

4.9.3. MAPML Filename Extension

The use of mapml as the filename extension for MAPML documents IS

recommended.

4.10. MAPML Conformance

This section provides the desirable criteria for conformance of a MAPML

document and that of a MAPML processor.

4.10.1. MAPML Document Conformance

A MAPML conforming document must satisfy the following criteria:

1. It must conform to the XML 1.0 Specification. In particular, it must be well-

formed, as defined in the Section 2.1 of the XML 1.0 Specification [55].

2. It must specify a character encoding in the XML processing instruction.

3. It must dec1are mapml as its root element.

4. It must contain at least one pattern element.

5. It must validate against the MAPML Schema (Appendix A).

6. If any namespaces other than MAPML are used in the document, it must conform

to the Namespaces in XML [49]. In particular, if it inc1udes any fragments of non­

MAPML markup, it must specify the MAPML Namespace URI in its root

element and prefix all MAPML elements with "mapml : ".

7. Ifit makes any use of CSS, it shall conform to Cascading Style Sheets, Leve12

Specification [47].

82



8. If it makes any references to external style sheets, it shaH conform to Associating

Style-sheets with XML Documents [52].

4.10.2. MAPML Processor Conformance

A MAPML processor must be an conforming XML processor as defined in

Section 5 of the XML 1.0 Specification [55].

4.11. Summary

MAPML provides several features to capture mobile application patterns. These

features are expressed as elements and attributes, and organized in form of modules.

To perform certain desirable tasks such as authoring, presenting, processing, and

validating, various tools are required. Chapter 5 gives an overview of MAPML Utilities

(MAPML-UTIL).

83



Chapter 5

MAPML Utilities (MAPML-UTIL)

This chapter presents a collection of utilities for validating, authoring, processing,

and presenting MAPML documents. These utilities can help a pattern author or user in

carrying out various tasks required to create quality patterns. MAPML-UTIL is based on

technologies and toolsthat are available freely and/or as Open Source. Figure 5.1

provides a schematic.

MAPML.uTIL

Figure 5.1. MAPML Family ofUtilities (MAPML-UTIL).

S.l. MAPML Grammars

A formaI grammar provides rules for syntax, structure, and data types of MAPML

documents. It provides a means to validate MAPML documents for conformance.

We have included grammar descriptions in EBNF, XML DTD, XML Schema,

and RELAX NG. Among these, XML Schema and RELAX NG belong to the family of

XML Schema Languages -- grammar languages of XML vocabularies in XML syntax.

84



The rationale to provide more than one grammar description is that each has its own

advantages and disadvantages [38]

5.1.1. EBNF Implementation for MAPML

Extended Backus-Naur Form (EBNF) [27] is a notation for syntax specification of

formaI (context-free) languages. It is a successor ofBNF that is semantically equivalent,

more readable, and more succinct. EBNF is ISO/ŒC 14977 Standard. It provides the

advantage of automatically generating parsers and syntax checkers. However, EBNF

provides only a limited support for data types and does not provide explicit support for

some other desirables in an XML document such as character entities.

We have created an EBNF grammar for MAPML, and used that to generate a

basic MAPML parser inC language.

5.1.2. XML DTD Implementation for MAPML

SGML Document Type Definition (DTD) is an ISO/ŒC Standard. XML DTD is

based on SGML DTD and is defined in the XML 1.0 Specification. The advantages of

XML DTD are that it is simple, leverages on the experience of a broad user-base, and has

a rich tool support. XML DTDs provide support for character entities. However, XML

DTDs have some limitations. For example, they do not support XML namespaces

explicitly, do not support type inheritance, and have very limited support for data types.

An XML DTD implementation for MAPML has been created. The MAPML DTD

was validated using various means (including the DTDParser, Tibco Extensibility

TurboXML, and XML Spy) to ensure its correctness and robustness.

REMARKS

An early attempt to provide an XML DTD for patterns was made in [65].

However, the details are sketchy and the DTD syntax seems to be incorrect. A collection

of patterns in user interface design [68] also provides an XML DTD for its pattern

collection. However, the low level of granularity of the grammar makes it less expressive,

and hence it will not be able to capture all aspects of patterns in a mobile setting. These

85



efforts evidently also possess the inherent limitations of the DTD. Furthermore, the

documents based on the DTDs mix structure and presentation.

5.1.3. XML Schema Implementation for MAPML

XML Schema [59] is a schema language for XML developed under the auspices

of W3C. It offers facilities for describing the structure and constraining the contents of

XML documents. The advantages of XML Schema are that it supports XML namespaces,

provides a rich library of data types, facilitates inclusion of user-defined types, and is

expressed in XML syntax making it useful to the existing XML software-base. However,

XML Schema has sorne limitations. For example, it does not support entities, and does

not allow the relationships between the values of different attributes and contents of

elements to be validated.

An XML Schema implementation for MAPML has been created. (See Appendix

A.) The MAPML XML Schema was validated with the W3C XML Schema Validator

and Tibco Extensibility TurboXML, and checked for quality with the IBM XML Schema

Quality Checker.

5.1.4. RELAX NG Implementation for MAPML

REgular LAnguage for XML Next Generation (RELAX NG) [41] is a schema

language for XML developed under the auspices of OASIS. It focuses upon description

and validation of the structure and content of an XML document without attempting to

specify application processing semantics (interpretation). RELAX NG offers a middle

ground between XML DTDs and XML Schema. The advantages of RELAX NG are that

it is simple in design, has a shallow learning curve, is expressed in XML syntax, does not

change the information set of an XML document, supports XML namespaces, treats

attributes unifonnly with elements as far as possible, has unrestricted support for

unordered content, has unrestricted support for mixed content, and can partner with a

separate data typing library. However, RELAX NG places certain restrictions in trade-off

for simplicity. For example, it does not allow defaults for attributes to be specified, does

not allow entities to be specified, and does not specify whether white space is significant.

86



We have created a RELAX NO implementation for MAPML. MAPML RELAX

NO Schema was validated with Jing, a RELAX NO validator in Java, and checked with

the RELAX NO Verifier.

5.2. Authoring MAPML Documents

Any text editor can be used to author MAPML documents. In particular, Emacs

(or its variants) using an XML mode should suffice. However, syntax-sensitive editing

provides several advantages. In this section, we discuss two editing solutions that we

have configured specifically for MAPML documents.

5.2.1. MAPML with XEENA

Xeena [21] is a visual XML editor in Java for editing valid XML documents

derived from any valid XML DTD or XML Schema. The editor takes as input a given

XML DTD or XML Schema, and automatically builds a palette containing the elements

defined in the XML DTD or XML Schema. A key feature of Xeena is its syntax directed

editing ability. Xeena is aware of the XML DTD or XML Schema. By making only

authorized elements icons active, it automatically ensures that all documents generated

are valid according to the given XML DTD or XML Schema.

We have created a basic MAPML DTD Profile so that Xeena can be readily used

with MAPML DTD and MAPML documents. Figure 5.2 illustrates the Xeena Interface

with this profile.

87



"1lC1'11l version="1 J1' encoding="UTF·8"'?"

"1 OOClYPE DTOProfile SYSTEM ·proflle.dtd" ,.

".OTOP/ofile: tille: mapml.dtd Editor

fm): defaults: systemuteral: flle:J1tocalhoslll:JIeng/lanaplmapml.dtd, encodlng: UTF·ll

~-11 etement4

il·,,· -el element name: acronym, toOlllp: ac/onym's contenUs: .... !
~. -el element name; autho/.email, 1oolllp; lilulhor.emlilil's content 18: ...
1j'" -el element name: autho/.name, toolllp: autho/.name's content IS: ...

1··· -el element name: capfion, 1ooltip; eaptlon's content le: ...

-el element name: code, toolllp: cOde'il contenUs: ...

1· ..·13 attrlbute: name: language, tooltip: language COATAfilMPUEO

L.I\I attrlbute: name: lCI'IItspace, tooltip: lCI'IIl:space (defaultlpreserve) #IMPUED

Figure 5.2. Xeena-MAPML DTD Interface.

5.2.2. MAPML with VIM

VIM (VI "Improved") editor is a major improvement of the UNIX standard text

editor Vi that is available for many platforms including MacOS, VMS, Windows, and

various derivatives of UNIX and Linux. VIM adds multi-level undo, syntax highlighting,

command line history, filename completion, block operations, GUI support, and many

more features.

We have created a VIM Syntax File for MAPML that could be useful for

authoring mobile patterns. Figure 5.3 shows a sample MAPML document in the VIM

Interface with the MAPML Syntax File.

88



?xm1 version = "1.0"?>
IlaplÜ version = "string" xm1:lang "name" xml:space = "optional">
!--(pattern+)-->
pattern id = "required">

<!--(pattern.name • pattern.alias? • pattern.head • pattern.body)-->
<pattern.name>
<!--(text • link)-->
text>only text</text>
link uri = "required">only text</link>

</pattern.name>
<pattern.a1ias>only text</pattern.alias>
<pattern.head>
<!--(pattern.metadata)-->
<pattern.metadata>
<!--(text* • pattern.author+ • date • pattern.uersion? • pattern.abstract

• pattern"license? • pattern.keywords)-->
<text>only text</text>
<pattern.author>
<!--(author.name • author.affiliation? • author.email?)-->
<author.name>only text</author.name>
<author.affiliation>only text</author.affiliation>
<author.email>only text</author.email>

(a) A MAPML Document in the VIM Editor.

(b) Location of the MAPML Syntax Option in the VIM Interface Syntax Menu

Figure 5.3. MAPML Syntax File in the VIM Interface.

89



5.3. Processing MAPML Documents

For processing XML documents, there are two major approaches: event-based

processing and tree-based processing. In an event-based approach, the processing is

sequential and an XML document is treated like a text stream (a string of characters).

When an "event" (say, startlend of an element) is "discovered", it triggers a function caU

(to an event handler). This caUback mechanism is similar to that of a GUI's event

handling. There is no need to cache the entire document in-memory or secondary storage.

The limitation of this approach is that it is resource intensive when the structure is very

hierarchical (tree-oriented). In an tree-based approach, the processing is hierarchical and

an XML document is treated as an in-memory tree of nodes (objects). The limitation of

this approach is that in-memory data structures are resource intensive when the document

size is large.

5.3.1. XML APIs and MAPML

To standardize the implementations of event-ca1lback and tree-construction-and­

traversa1 mechanisms, several XML Application Programming Interfaces (APIs) have

been developed. Simple API for XML (SAX) [11] is widely-used example of the former

case, and Document Object Model (DOM) [56] of the latter case. There are also sorne

APIs, such as JDOM [10], that are based on a hybrid model of the two. There are several

parsers in a variety of programming languages are available today that implement these

APIs and can be used to process MAPML documents.

5.3.2. MAPML and Data Binding

Lower level XML APIs like SAX, DOM, and JDOM provide generic views of an

XML document. However, a document that represents a pattern description is most easily

worked with using methods "tailored" for it. For example, it is preferable to use methods

such as getPattern (String problem), rather than getElement (String name) and

setContent (String content). This can be accomplished by data binding.

90



XML Data Binding [8] is mapping an instance of an XML grammar into the

appropriate object model (set of classes and types which represent the data). That is, with

XML data binding, XML grammar definitions (such as, XML DTD or XML Schema)

can be automatically translated into programming language code (say, in C++ or Java).

The data binding facility can significantly improve the performance and

functionality of server-based programs and other applications that process XML, while at

the same time reducing both development and maintenance costs. The generated classes

include the code required to validate data content as weIl as data structure, thus relieving

the programmer from the necessity of doing so. These classes are "lightweight" in the

sense that they carry no unnecessary functionality. As a result, data binding applications

will use a minimum amount of memory and mn as efficiently as possible. XML data

binding allows applications to manipulate content that has been serialized as XML in a

way that is more natural than using the general-purpose APIs. For example, an

application that uses the generated classes can build a Java object tree representing an

XML document, manipulate the content of the tree, and re-generate XML documents

from the tree -- aIl without requiring the developer to write complex parsing and

processing code. The generated application runs with a speed comparable to that of a

SAX application, and builds an in-memory data structure similar (but without the

additional overhead intrinsic) to a DOM. The use of data binding, coupled with high­

performance virtual machines like the Java HotSpot Virtual Machine, makes it possible

to deliver and maintain high-performance XML-processing applications with minimum

development effort. If the underlying XML grammar changes, aIl that is required is a

"recompilation" to generate the classes again, without making modifications to the

underlying application that uses those classes. This reduces maintenance costs as weIl as

the original programming effort.

91



MAPMLSd1ema
language Definition

* Structure Element

•~&merlt
...

MAPMbJava
BlndÎng Classes

Code fOI'
Proœssing

Figure 5.4. MAPML Data Binding Process.

MAPMl Document
Fragment

MAPML-)ava
SollJtkm Class

MAPML-Java
Objeœ

Figure 5.5. Marshalling and Un-Marshalling MAPML Documents.

We have created MAPML-Java Data Binding (MAPML2J) and MAPML-C++

Data Binding (MAPML2C). Figure 5.4 shows how data binding operates by "compiling"

a schema specification to produce Java classes. Figure 5.5 shows the process of

marshalling (converting an in-memory structure of objects to an XML data stream) and

un-marshalling (converting an XML data stream to an in-memory structure of objects)

between MAPML documents and MAPML-Java objects.

REMARKS

• The code that is automatically generated via XML data binding should be used

with care [2]. This is because neither XML DTDs nor XML Schemas have a

complete one-to-one mapping with various object-oriented programming

language concepts. Although mapping of simple concepts, such as parent-child

associations with aggregations is possible, concepts such as derivation by

restriction do not have analogs in programming languages. Thus, XML data

92



Source

'--)(5-.·-LT.......St.yIet-Sh-.-ee-t----IXHTMll--css--.-s! Sheet

binding should be viewed as a useful complement, but not a replacement of

application-specifie low-Ievel programming code.

5.4. Presenting MAPML Documents

MAPML, by applying the principle of Separation of Qualities, separates structure

from presentation. As a result, it does not provide any presentation semantics. The task of

rendering MAPML documents is relegated to style sheet languages.

The style sheet approach has several advantages towards document engineering.

They enable documents to remain vendor, platform, and device independent. The style

sheets themselves are also vendor and platform independent. Referring to style sheets

from documents can simplify maintenance and retain consistent look-and-feel throughout

a pattern catalog collection. In case of any modifications, only the style sheet fileCs) needs

to be changed. It is also easy to change the style sheet with little or no impact on the

markup.

There are two approaches for using style sheets with MAPML documents:

1. Direct Presentation. Presentation ofMAPML documents natively.

2. Indirect Presentation. Transformation ofMAPML documents to a presentational

format.

Figure 5.6 illustrates the two approaches, which we describe in detail below.

1
-------î·-------~I·_.II.I~ 1CSS Style Sheet

1-----1

Presentation

Figure 5.6. The Two Approaches for Presentation of MAPML Documents.

93



I

5.4.1. Direct Presentation of MAPML Documents

MAPML documents can be presented directly in a generic XML-aware user agent

that supports a style sheet language. We have chosen Cascading Style Sheets (CSS) [47]

as our style sheet language. CSS is a simple style language for structured documents, and

is machine processable, human readable, and writable. It associates style with the nodes

of a MAPML document tree, but does not alter the structure or content of the document

itself.

The two key characteristics of CSS that are of interest to us are cascading and

inheritance. CSS allows more than one style sheet from multiple sources (author, user,

and user agent) to be associated with and influence the presentation of a single document.

This feature is known as cascading where the different style sheets are viewed as being

applied in a sequence. A tree of MAPML elements can inherit stylistic properties.

Through inheritance, CSS property values set on one element will be transferred down

the tree to its descendants. This enables style sheets to become simpler and more efficient

(shorter).

We have created a simple CSS style sheet for MAPML documents. The basic idea

is as follows. A CSS style sheet consists of a list of rules. A rule is a combination of a

selector and a declaration block. A selector is the connection between the XML document

and style. A declaration consists of a property and its value. The declarations are grouped

within a block enclosed by curly braces ({ ...n. Each style property in a declaration starts

with the property's name, then a colon (:), and lastly the value for this property. Figure

5.7 shows the anatomy of a CSS style sheet.

Rule
_~~~_1 _

Declaration
=----:""_l_~_
Property Value

----L- .-L
seleotor {property value}

Delitltet' Deliliter

Figure 5.7. InternaI Structure of a CSS Style Sheet.

94



Now, style rules can be associated with MAPML elements by using them as

selectors and attaching desired property-value pairs. This is illustrated in the following

fragment.

When associated with the CSS style sheet, MAPML documents can be directly

presented in a XML/CSS-aware user agent, such as Amaya, Opera, Microsoft Internet

Explorer, and Mozilla.

5.4.2. Indirect Presentation of MAPML Documents Transformed to
XHTML

MAPML documents could be (down) transformed to a format oriented towards

presentational purposes. This is especially useful as an alternative to user agents that do

not support XML or those with constrained capabilities, to support legacy user agents, or

to add extra presentational capabilities. For this purpose, we have adopted XHTML Basic

as the language of choice for presentation as it is simple, has adequate features to present

the descriptive elements of MAPML, and is applicable to devices in both Mobile and

Web environments. (With minor changes to the grammar declaration, MAPML

documents can also be easily transformed to XHTML 1.1.) As the transformation

language, we have chosen XSL Transformations (XSLT) [52]. XSLT is a high-level

declarative language designed for transforming the structure of XML documents. It

allows the result tree to be serialized as XML as weIl as non-XML.

We have created an XSLT style sheet that transforms arbitrary MAPML

documents to XHTML Basic documents. The most critical aspect of the transformation is

the mapping of elements in MAPML to those in XHTML Basic. For example, the

MAPML text element could be mapped to a p (paragraph) element in XHTML. This

mapping is not unique and there is (an obvious but not unacceptable) information loss

using this approach as the structure of the source document can be altered. Figure 5.8

95



shows a simplified version of a scenario where a MAPML document is mapped to an

XHTML Basic document using XSLT. The resulting XHTML Basic document is

associated with a CSS style sheet and can be viewed in a XHTML Basic-compliant user

agent, such as Amaya, Nokia Mobile Browser and Openwave Mobile Browser.

.probIem conte<t d.Ition~

). i'-
œrm strt.Icture .sttategv

(~)i).

• figure

i~

~ XHiMl Rest/ft Tree

tead·hv
T
div

.h
~
~ P div cb

-~--- ). tf).
ml'Jf1ym p p

tf'-
p lmg

lS<mallzallon

XHfMl
Document

Figure S.S. The MAPML to XHTML via XSLT Process.

5.4.3. Associating Style Sheets with MAPML-Related Documents

Once a style sheet for a MAPML has been authored, it needs to be processed in

order for the mIes in it to be applied to the MAPML document instance to obtain the final

presentation. The same applies to an XHTML document instance resulting from a

MAPML to XHTML Basic transformation. A style sheet processor needs a formalism for

identifying the style sheet mIes associated with the document. Therefore, XML-syntax

based documents (and vocabularies, in general) need a standard way to associate style

sheets.

96



5.4.3.1. XML Documents with Internai Style Sheets

Style information can be expressed within an XML document via internaI style

sheets. In case of XHTML, style sheet rules can be including in the document in the

following form:

5.4.3.2. XML Documents with External Style Sheets

Style information can also be attached to an XML document via external style

sheets. For example, in XHTML we can have:

A general mechanism to associate a style sheet with an XML document is

provided by the Associating Style Sheets with XML Documents Version 1.0

Specification [53]. The association consists of inserting the special XML processing

instruction at the top of the document, before the root element of the XML document.

The processing instruction has two required attributes, type and href, which respectively

specify the style sheet type (Internet Media Type [34]) and its address (local directory

path or the URI). An example is:

REMARKS

Neither the CSS style sheet nor the XSLT style sheet that we have created is

unique. This is one significant advantage of the separation of structure and presentation.

97



The user has the freedom to create and associate their own style mIes, complementing or

replacing the ones that are already in existence.

In case of languages such as XHTML, style information can also be attached to

elements via style attribute. For example:

This practice mixes structure and presentation, and is discouraged.

5.5. Summary

This chapter presented the tools that are essential for working with MAPML:

grammars that provide a formaI description of the structure and syntax of MAPML and

allow the validation of MAPML documents for conformance, authoring modes that

enable syntax-sensitive editing, data binding code that facilitates the manipulation

MAPML documents, and style sheets that enable the presentation of MAPML documents

on the Web.

98



Chapter 6

Conclusion

Mobile applications are an important class of pervasive computing applications

that provide the prospects of information and services available in multiple media

formats, anytime, anywhere, in different modalities, and on a variety of devices with a

diverse range of interfaces.

This thesis emphasizes a systematic approach of engineering mobile applications.

Constructing these applications using XML under the direction provided by software

engineering principles have various long-term benefits, both to the businesses and to the

users. For these applications to achieve a high quality (be interoperable, be efficient, be

usable, and so on), it is also important that use of open and standard technologies be

made.

The patterns arising from the mobile application development can be classified

into several semantically-separated categories: mobile business, mobile system

architecture, mobile application process, mobile application architecture, mobile

application product, and mobile application usage. The patterns in these classes can be

represented using MAPML and interchanged in a device independent manner across a

broad variety of devices and natural language environments. Using the utilities in

MAPML-UTIL, MAPML documents can be authored on various platforms using simple

editing modes, tested for conformance with respect to a variety of grammars, presented

using style sheets on the Web in different ways, and processed in Java and C++.

There are several directions towards which MAPML and its supporting

environment can be enhanced and/or improved:

• Chapter 5, Section 5.1 presented severa! ways of expressing a grammar for

MAPML. The Schematron [31] is an XML Schema Language that is based on

tree-patterns rather than regular-grammars such as XML DTD, XML Schema, and

RELAX NO. Schematron can be implemented as XSLT style sheet. This makes

Schematron processing widely available. There are severa! MAPML instances

99



where Schematron Schema would be useful. For example, if the abject-type in

the object element in MAPML is a figure, the alternate attribute should also

be present. This co-occurrence constraint cannot be expressed in the grammar

languages mentioned above, but it is possible to do that in Schematron. Therefore,

the development of Schematron Schema for MAPML would be of interest.

• Limitations of current XML grammar languages towards data type validation

were pointed out in Chapter 5, Section 5.1. Sorne ofthese can be circumvented by

deploying a combination of techniques. This is the idea behind Document Schema

Definition Language (DSDL) [29], a framework in progress under the auspices of

ISO/IEC. Under DSDL, multiple validation tasks of different types can be applied

to an XML document to achieve more complete validation results than just the

application of a single technology. As the initiative matures, it would be of

interest to examine how MAPML grammar support can be strengthened further.

• MAPML (and in general, XML) documents give rise to directed graphs (mostly

trees) that can be modeled as objects. Artifacts of these object models and of

those of associated grammars can be created using a visual modeling languages

such as Unified Modeling Language (UML) and conceptual modeling techniques

such as Object Role Model (ORM). There have been sorne (non-standard) early

efforts in generating XML Schema Languages from these models [12]. It would

be of interest to reverse-engineer MAPML XML Schema, express it in these

models, and re-generate it. In that direction, the critical issue of the semantic

transparency of the model-to-schema mapping is yet to be resolved.

• The thesis does not provide any new mobile application patterns. The work on

creating the Mobile Application Patterns Catalog (MAPCAT), a catalog that

consists of patterns for mobile devices with visual and speech interfaces, is in

progress. Among the patterns that we have identified is the Single Source

Transcoding Pattern where a single source is transformed to multiple formats for

delivery and presentation to a range of different devices with a diverse range of

capabilities. Figure 6.1 shows a schematic ofthis "author once, serve everywhere"

approach. Figure 6.2 illustrates this in a specific case where documents based

100



upon book-oriented vocabularies can be transformed to the format of e-book

vocabularies.

[~l--

Desktop
Computer

Celktlar
Phone

PDA

Volee
Browser

Television

Figure 6.1. Role of XML Transformations in Delivering and Presenting [XML]
Documents in Multiple-Environments.

XHTMLBasic

XML Vocabulary
for Books

IX$JXSLT
OEBPS

Figure 6.2. Transformations ofXML Book Vocabularies to E-Book Vocabularies.

• Finally, it would also be useful to store patterns in MAPCAT in an XML database

so that they can be readily submitted, automatically validated before storage, and

precisely queried. We leave this work for future investigation.

101



Bibliography

[1] Alexander, C. "The Timeless Way of Building", Oxford University Press, 1987.

[2] Allamaraju, S. "Programming to XML - Data Binding Sï1ver Bullet. Approaches and

Alternatives", Presentation at XML 2001, Orlando, Florida, December 2001.

URL: <http://www.idealliance.org/papers/xmI2001/papers/html/04-01-03.html>.

[3] Alur, D., Crupi, J., Malks, D. "Pattern Template in Sun Java Center J2EE Patterns",

Sun Java Center, March 2001.

URL: <http://developer.java.sun.com/developer/technicaIArtic1es/J2EE/patterns/

PatternTemplate.html>.

[4] Appleton, B. Patterns and Software: Essential Concepts and Terminology". 2000.

URL: <http://www.enteract.com/~bradapp/docs/patterns-intro.html>.

[5] Arciniegas, A. F. "Design Patterns in XML Applications, Part 1: Traditional Patterns

in XML applications", XML.com, January 2000.

URL: <http://www.xml.com/pub/2000/01/19/feature/index.html>.

[6] Arciniegas, A. F. "Design Patterns in XML Applications, Part II: XML-specifie

patterns", XML.com, February 2000.

URL: <http://www.xml.com/pub/2000/02/16/feature/index.html>.

[7] Berners-Lee, T., Fielding, R., Masinter, L. "RFC 2396: Uniform Resource Identifiers

(URI): Generic Syntax",IETF, August 1998.

URL: <http://www.ietf.org/rfc/rfc2396.txt>.

[8] Birbeck, M. et al. "Professional XML", Second Edition, Chapter 15: XML Data

Binding, Wrox Press, 2001.

[9] Bradner, S. "RFC 2119: Key words for use in RFCs to Indicate Requirement Levels",

IETF, March 1997.

URL: <http://www.ietf.org/rfc/rfc2119.txt>.

[10] Biggs, W. and Evans, H. "Simplify XML programming with JDOM", IBM

developerWorks, May 2001.

URL: <http://www.ibm.com/developerworks/java/library/j-jdom/>.

[11] Browne1l, D. "SAX2", O'Reilly & Associates, January 2002.

102



[12] Carlson, D. "Mode1ing XML Applications with UML", Addison-Wesley, 2001.

[13] Crocker, D. H. "RFC 822: Standard for ARPA Internet Text Messages", IETF,

August 1982.

URL: <http://andrew2.andrew.cmu.edu/rfc/rfc822.html>.

[14] Durlacher Corporation PIc. Mobile Commerce Report - Durlacher Corporation PIc.

Research Report, 1999.

URL: <http://www.durlacher.com/research/res-reports.asp>.

[15] Freed, N. and Borenstein, N. "RFC 2045: Multipurpose Internet Mail Extensions

(MIME) Part One: Format ofInternet Message Bodies", IETF, November 1996.

[16] Gamma, E., Helm, R, Johnson, R, Vlissides, J. "Design Patterns -- Elements of

Reusable Object-Oriented Software", Addison Wesley Professional Computing Series,

1994.

[17] Graham, 1., Quin, L. "Introduction to XML Design Patterns", 1999.

URL: <http://www.groveware.com/>.

[18] Griffiths, R, Pemberton, L. "Don't Write Guidelines, Write Patterns", University of

Brighton, Brighton, UK, 2001.

URL: <http://www.it.bton.ac.uk/staff/lp22/guidelinesdraft.html>.

[19] Guenette, D., Trippe, B. "E-books: Technology for Enterprise Content

Applications?", The Gilbane Report on Open Information & Document Systems, Volume

8, Number 9, November 2000.

[20] IBM. "Patterns for E-Business", IBM, 1999.

URL: <http://www.ibm.com/developerworks/patterns/.

[21] IBM. "Xeena", IBM alphaWorks, March 1999.

URL: <http://www.alphaworks.ibm.com/tech/xeena>.

[22] IBM. "XML Generator", IBM alphaWorks, September 1999.

URL: <http://www.alphaworks.ibm.com/tech/xmlgenerator>.

[23] IBM. "IBM Ease-of-Use > Web Design Guidelines > Design", IBM, July 2001.

URL:<http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/574>.

[24] IBM. "IBM Web Design Guidelines", IBM, July 2001.

URL: <http:/www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/572>.

103



[25] IEEE, "Recommended Practice for Software Design Descriptions", IEEE STD 1016­

1987, 1987.

[26] IEEE, "Recommended Practice for Software Requirements Specifications", IEEE

STD 830-1998, 1998.

[27] ISO/IEC. "ISO/IEC 14977:1996. Information technology - Syntactic metalanguage ­

Extended BNF", ISO/IEC, 1996.

[28] ISO (International Organization for Standardization). "ISO/IEC 10646-1 :2000.

Information technology -- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1:

Architecture and Basic Multilingual Plane", International Organization for

Standardization, 2000.

[29] Bryan, M. (Project Editor). "ISO/IEC JTC l/SC34 Information Technology -­

Document Description and Processing Languages", Working Draft, October 22,2001.

[30] Jacobson, 1., Christerson, M., Jonsson P., Overgaard, G. "Object-Oriented Software

Engineering: A Use Case Driven Approach", Addison-Wesley, 1992.

[31] Jelliffe, R. "The Schematron Assertion Language", Academia Sinica Computing

Centre. October 2000.

URL: <http://www.ascc.net/xmllresource/schematron/>.

[32] Kamthan, Pankaj. "XML Characterization ProjectIf, September 2001.

[33] Knuth, Donald E. "Literate Programming", CSLI Lecture Notes, Number 27, 1992.

[34] Kohn, D., Murata, M., St. Laurent, S. "RFC 3023: XML Media Types", IETF,

January 2001.

URL: <http://www.ietf.org/rfc/rfc3023.txt>.

[35] Kuhn, Markus. "A Summary of the International Standard Date and Time Notation",

University of Cambridge, November 2001.

URL: <http://www.cl.cam.ac.uk/~mgk25/iso-time.html>.

[36] Lainevool, Toivo. "XML Patterns", XMLPatterns.com, 2000.

URL: <http://www.xmlpattems.com/>.

[37] Lea, D. Patterns-Discussion FAQ - By Doug Lea. November 2000.

URL: <http://g.oswego.edu/dllpd-FAQ/pd-FAQ.html>.

[38] Lee, D., Chu, W. W. "Comparative Analysis of Six Schema Languages", University

of California, Los Angeles, August 2000.

104



.---- URL: <http://www.cobase.cs.uc1a.edu/tech-docs/dongwon/uc1a-200008.html>.

[39] Li, Ning. "Usability Patterns-Assisted Design for Web User Interfaces", Masters

Thesis, Concordia University, Canada, October 2001.

[40] Lord, John. "Facilitating the application development process using the IBM

Patterns for e-business", IBM, August 2001.

URL: <http://www-106.ibm.com/developerworks/patterns/guidelines/lord.pdf.>.

[41] Clark, J., Murata, M. (Editors) "RELAXNG Specification", OASIS Committee

Specification, December 2001.

URL: <http://www.oasis-open.org/committees/relax-ng/spec-20011203 .html>.

[42] Object Management Group (OMG). "Unified Modeling Language, Version 1.4

Specification", Object Management Group, Inc. 2001.

[43] Powell, A. and Pete Johnston, P. "Guidelines for implementing Dublin Core in

XML", UKOLN, University of Bath. January 2002.

URL: <http://www.ukoln.ac.uk/metadata/dcmi/dc-xml-guidelines/>.

[44] Rosenfeld, L., Morville, P. "Information Architecture for the World Wide Web.

Designing Large-Scale Web Sites", O'Reilly & Associates, Inc., 1998.

[45] The Unicode Consortium. "The Unicode Standard, Version 3.0". Addison-Wesley,

2000.

[46] Tomihisa Kamada, T. (Author). "Compact HTML for Small Information

Appliances", W3C Note, February 9, 1998.

URL: <http://www.w3.org/TR/1998/NOTE-compactHTML-19980209>.

[47] Bos, B., Lie, H-W., Lilley C., Jacobs, 1. (Editors). "Cascading Style Sheets, Level2

(CSS2) Specification", W3C Recommendation, May 1998.

URL: http://www.w3.org/TR/REC-CSS2.

[48] Hjelm, J., King, P., Martin, B. (Authors). "WAP Forum - W3C Cooperation White

Paper", W3C Note, October 1998.

URL: <http://www.w3.org/TR/NOTE-WAP>.

[49] Bray, T., Hollander, D., Layman, A. (Editors). "Namespaces in XML", W3C

Recommendation, January 1999.

URL: <http://www.w3.org/TR/REC-xml-names>.

105



[50] Chisholm, W., Vanderheiden, G., Jacobs, 1. (Editors). "Web Content Accessibility

Guidelines 1.0 - W3C Recommendation", W3C Recommendation, May 1999.

URL: <http://www.w3.org/TR/WAI-WEBCONTENT>.

[51] Dawkins, S., Hjelm, J., Reynolds, F., Singhal, S. (Editors). "Composite

Capability/Preference Profiles (CCIPP): a user-side framework for content negotiation",

W3C Note, July 1999.

URL: <http://www.w3.orgiTR/NOTE-CCPP>.

[52] Clark, J. (Editor). "XSL Transformations (XSLT) Version 1.0", W3C

Recommendation, November 1999.

URL: <http://www.w3.org/TR/xslt>.

[53] Clark, J. (Editor). "Associating Style Sheets with XML Documents Version 1.0",

W3C Recommendation, June 1999.

URL: <http://www.w3.orgiTR/xml-stylesheet>.

[54] Hors, A., Jacobs, L, Raggett, D. (Editors). "HTML 4.01 Specification - W3C

Recommendation", W3C Recommendation, December 1999.

URL: <http://www.w3.org/TR/htmI40l/>.

[55] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. (Editors). "Extensible

Markup Language (XML) 1.0 (Second Edition)", W3C Recommendation, October 2000.

URL: <http://www.w3.orglTRlREC-xml>.

[56] Davis, M., Hors, A., Robie, J., Wood, L. et al. (Editors). "Document Object Model

(DOM) Level2 Core Specification", W3C Recommendation, November 2000.

URL: <http://www.w3.org/TR/DOM-Level-2-Core/>.

[57] Baker, M., Ishikawa, M., Matsui, S. et al. (Editors). "XHTML Basic", W3C

Recommendation, December 2000.

URL: <http://www.w3.orgiTR/xhtml-basic>.

[58] Altheim, M., Boumphrey, F., Dooley, S., McCarron, S., Schnitzenbaumer, S.,

Wugofski, T. (Editors). "Modularization of XHTMLTM", W3C Recommendation, May

2001.

URL: <http://www.w3 .orgiTR/xhtml-modularization>.

[59] Fallside, David C. (Editor). "XML Schema Part 0: Primer", W3C Recommendation,

May 2001.

106



~. URL: <http://www.w3 .orglTRlxmlschema-O>.

[60] DeRose, S., Maler, E., Orchard, E., (Editors). "XML Linking Language (XLink)

Version 1.0 - W3C Recommendation", W3C Recommendation, June 2001.

URL: <http://www.w3 .orglTRlxlink>.

[61] Gimson, Roger. (Editor). "Deviee Independence Principles", W3C Working Draft,

September 2001.

URL: <http://www.w3.orglTRIdi-princ/>.

[62] Dardailler, D., Palmer, S. B. (Editors). "XML Accessibility Guidelines", W3C

Working Draft, August 2001.

URL: <http://www.w3 .orglTRlxmlgl>.

[63] Altheim, M., McCarron, S. (Editors). "XHTMLTM 1.1 - Module-based XHTML",

W3C Recommendation, May 2001.

URL: <http://www.w3.orglTRlxhtm111>.

[64] W3C, WAP Forum. "Position Dependent Information Services", W3C-WAP Forum

Workshop, February 2000.

URL: <http://www.w3.orgIMobile/posdep/>.

[65] Waldhoff, Rod. "Towards a DTD for Documenting Patterns and Pattern Languages

in XML", June 1998.

URL: <http://members.tripod.com/~rwald/patterns/pat_dtd.html>.

[66] Wireless Application Group. "User Agent Profile Specification", WAP Forum,

November 1999.

URL: <http://www.wapforum.orglwhat/technical.htm>.

[67] Wireless Application Group. "Wireless Markup Language (WML). Version 2.0.",

WAP Forum, January 2002.

URL: <http://www.wapforum.org/what/technical.htm>.

[68] Welie, M. V. "Web Design Patterns", Welie.com, 2001.

URL: <http://www.welie.com/patterns/>.

107



--,..~

AppendixA

108



109



110



111



112





114



115


