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Abstract

The two current approaches to increasing computer speed are giving individual pro-
cessors the ability to exploit instruction-level parallelism (ILP), and harnessing mul-
tiple processors to work together on a single problem. The first approach has worked
well so far, but more and more investments in instruction scheduling hardware seem
to be producing diminishing returns. Parallel processing, on the other hand, has
tremendous potential, but has been disappointing in practice. One reason is that
parallel computer designers cannot afford to put the same resources into building
processors as the makers of commodity chips, who command a much larger mar-
ket. Therefore, most parallel architects have turned to off-the-shelf microprocessors,
which do not support parallel processing well.

Multithreaded systems based on dataflow principles promise a solution to the
problems inherent in many of today’s parallel machines. A multithreaded proces-
sor supporting a program execution model designed according to such principles
would be a better building block for parallel machines than today’s ILP processors,
because multithreading and dataflow address the problems facing contemporary par-
allel machines, such as latency and synchronization. Acceptance of such systems in
a world ruled by commodity systems requires taking an evolutionary approach, in
which the multithreaded machine is initially emulated on an existing multiproces-
sor based on off-the-shelf microprocessors, while still achieving good performance,
and then transformed into more powerful versions by gradually replacing the stock
components with custom hardware.

This dissertation is about EARTH (Efficient Architecture for Running Threads),
a multithreading model suitable for such an evolutionary approach. The thesis
begins with a study of program parallelism which identifies important properties
which affect the design of a multithreaded system. The EARTH model is defined

at several layers of abstraction, and several implementations along the evolutionary
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path are discussed. The Threaded-C language, used for expressing algorithms in the
EARTH model, is presented, and several applications are written in this language
to illustrate its use.

Experimental results show that EARTH lives up to its name, that it can run
parallel programs efficiently, and that this efficiency improves as the machine moves
along the evolutionary path and custom multithreading hardware replaces off-the-

shelf hardware piece by piece.
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Résumé

Les deux approches actuelles utilisées pour accroitre la vitesse des ordinateurs con-
sistent 4 donner a chaque processeur la capacité d’exploiter le parallélisme niveau-
instructions (PNI) et a charger plusieurs processeurs de travailler ensemble sur un
méme probléme. La premiere approche a bien fonctionné jusqu’ici, mais les in-
vestissements grandissants dans le matériel d’ ordonnancement des instructions sem-
blent semblent donner des résutats décroissants. Le traitement paralléle, d’ autre
part, offre des possibilités intéressantes, mais a été décevant dans la pratique. Ceci
s’explique par le manque de ressources des créateurs d’ordinateurs paralléles par
rapport aux fabriquants de puces de produits qui ont acces & un marché beaucoup
plus grand. Par conséquent, la plupart des architectes paralleles se sont tournés vers
les microprocesseurs déja disponibles qui ne conviennent pas bien au traitement par-
allele.

Les systemes de multithread basés sur des principes de flux de données
promettent une solution aux problémes inhérents a plusieurs machines paralléles
d’aujourd’hui. Un processeur multithread soutenant un modele d’exécution des pro-
grammes congu selon un tel principe serait un meilleur fondement pour les ma-
chines paralleles que les processeurs PNI d’aujourd’hui, parce que le multithreading
et le flux de données adressent les problemes auquels font face les machines par-
alleles contemporaines, tels le temps d’attente et la synchronisation. L’acceptation
d’un tel systeme dans un monde ol régnent les produits systémes exige une ap-
proche évolutive; la machine multithread est initialelement émulée sur un multipro-
cesseur utilisant des microprocesseurs présentement disponibles, tout en réalisant
une bonne performance d’exécution, et puis ensuite, elle est transformée en versions
subséquantes de plus en plus puissantes par substitution progressive du matériel
courant par des composantes matérielles faites sur mesure.

Cette dissertation porte sur EARTH (architecture efficace pour exécuter les
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threads), un modeéle multithread approprié a une telle approche évolutive. La
thése commence par une étude du parallélisme de programme qui identifie les pro-
priétés importantes qui affectent la conception d’un systeme multithread. Le modele
EARTH est défini avec plusieurs couches d’abstraction, et plusieurs implantations
sont discutées tout au long du parcours évolutif. Le langage Threaded-C, utilisé pour
exprimer des algorithmes en modéle EARTH, est présenté, et plusieurs applications
sont écrites dans ce langage pour illustrer son utilisation.

Les résultats expérimentaux prouvent que EARTH fait honneur a son nom;
qu’il peut exécuter des programmes paralléles efficacement, et que cette efficacité
s’améliore au fur et a mesure que la machine évolue en remplagant progressivement

le matériel existant par des piéces fabriquées sur mesure.



Contributions

The main original contributions of this research are summarized as follows:

1.

[}

The design and construction of a tool for analyzing the parallelism in pro-
grams, and a study, using this tool, of representative benchmarks, identifying

fundamental properties that point to the need for multithreaded architectures;

A definition of the EARTH (Efficient Architecture for Running Threads) Pro-
gram Execution Model, an abstract model describing a way to divide a parallel

program into threads and the operations performed on these threads;

Definitions of two EARTH Virtual Machines, one based on global addresses
and one based on frames, which present specifications of operation sets cor-
responding to the abstract operations of the Program Execution Model, at a

level of detail sufficient for implementation of a real system;

. Detailed specification and high-level design of a custom hardware Synchro-

nization Unit providing efficient support for the EARTH Program Execution
Model;

. Development of a tool for accurate simulation of an existing off-the-shelf mul-

tiprocessor, and the use of this tool to:
(a) Measure the performance of the multiprocessor with a greater number of
processors than available with the current hardware;

(b) Measure the performance of the multiprocessor augmented by the custom
hardware Synchronization Unit, thereby demonstrating the efficiency of

the EARTH model when there is hardware support for multithreading;

(c) Measure the performance of the multiprocessor, with and without the

custom SU, with different processor parameters to confirm the benefits
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of the EARTH model on processors built after those used in the multi-
processor platform;

6. A study of possible extensions to EARTH and Threaded-C which could im-

prove both runtime efficiency and programmability.

As in any project developing a computer system, many people were involved in
EARTH’s design, implementation and experimentation. The following contributions
are not the exclusive work of the author, but the author played a major role in their

execution:

1. A definition of the Earth Architecture Model, describing an architecture appro-
priate for executing programs under the EARTH Program Execution Model,;

2. A definition of the Threaded-C language, an explicitly threaded language ex-
tending standard C with EARTH operators;

3. Coding of various benchmarks in Threaded-C so that they may be tested on
EARTH platforms;

4. Implementations of EARTH on several off-the-shelf platforms, and experi-
ments showing the performance achieved by Threaded-C benchmarks on these

platforms.
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Chapter 1
Introduction

The 1980s saw the popularization and commercialization of parallel processing.
What was mostly confined in the 70s to university project laboratories moved to
industry as computer architects tried to bring the benefits of parallelism to the mar-
ketplace. Many companies were formed during the 80s, and their competition led to
a diverse set of approaches to the problem of dividing a task among many proces-
sors. However, commercial parallel processing has failed to live up to its promise.
Most of the high-flying parallel computer companies have gone bankrupt or have
re-oriented themselves toward specialized markets and applications.

There are several reasons for this. First, today’s microprocessors are highly com-
plex and require a huge investment, which can only be recovered through high sales
volumes. Therefore, most parallel computer makers have had to turn to the “killer
micros” [16], off-the-shelf processors built for the workstation and personal computer
mass markets. These chips generally don’t offer good support for multiprocessing.
Second, parallel computers have been notoriously difficult to program, so that their
market has been limited to a small number of institutions with both the computing
needs and the available programming resources to justify buying one.

Neveftheless, there is still a need for parallel processing. Predictions that a
certain level of performance would be “enough” have time and time again been
proven wrong. Even though today’s microprocessors have performances rivaling last
decade’s supercomputers, applications expand to consume the available power, and
increases in power lay the ground for new applications to be created. Furthermore,

some useful applications are NP-complete, creating a potentially unbounded demand



for computing power. An application which is barely feasible on a given state-of-
the-art computer becomes much more viable if it can be run a hundred times faster.
It is only a question of whether that can be done sufficiently cheaply [104].
Therefore, where should architecture go from here? Will the present trends in
processor evolution lead to any significant improvements? If not, what path should
be taken instead? Will parallel machines always remain at the mercy of the “killer
micro” market, or is it possible to serve both domains at the same time? It is the

goal of this research to find answers to these questions.

1.1 ILP and Multithreading

A traditional von Neumann processor has a single program counter which always
points to the next instruction to be executed. A processor built strictly accord-
ing to this principle can execute at most one instruction per cycle (IPC). Modern
microprocessors go beyond this by exploiting Instruction-Level Parallelism (ILP),
parallelism through the simultaneous execution of individual instructions that are
near each other in the instruction stream. Both VLIW (Very Long Instruction
Word) and superscalar processors allow multiple instructions to execute simulta-
neously, while still presenting the programmer with the appearance of a sequential
program counter.

A superscalar processor is programmed by the user as if it were a single-
instruction-per-cycle processor with the same instruction set. Correct functional
behavior of the code is described by the semantics of a sequential, instruction-by-
instruction execution of the same code. However, the processor can dynamically
choose multiple instructions to execute at the same time, and may even issue in-
structions out of order, provided the sequential semantics are preserved. When
instructions execute simultaneously or out of order, the hardware checks to ensure
that only independent instructions are executed concurrently. The number of in-
structions executed in a given cycle can vary from cycle to cycle, and depends on the
number of instructions available for execution and the dependences between them.

In a VLIW processor, instructions representing basic operations are combined at
compile time into “very long instruction words” of fixed length. These long words
are scheduled at run time using an ordinary program counter, which reads and

executes them sequentially unless there is a branch. Typically, each field of a VLIW



instruction, corresponding to one basic operation, is sent to a different functional
unit, depending on its location in the instruction. There generally are restrictions
on how operations can fill instructions (e.g., each VLIW instruction can consist of a
floating-point add, a floating-point multiply, two integer operations, and two load-
store operations). If the code requires a different balance of operations, or if not
enough independent operations can be found to fill the long instructions, then some
fields are filled with NOPs.

VLIW and superscalar have succeeded in breaking the 1-IPC barrier, but not
by much. In spite of all the extra functional units, and all the extra hardware to
allow simultaneous execution, most processor designers have not been able to achieve
even 2 IPC on representative benchmarks, despite having potential issue rates of 4 or
even 8 IPC. There are several reasons for this. As will be shown in the next chapter,
the number of independent instructions within a single basic block (a sequence of
instructions that is always entered at the beginning and exited at the end, with no
branches to or from the middle) is limited. This problem is exacerbated by the fact
that all the additional hardware needed to support out-of-order execution adds so
much extra complexity to the processor that the number of stages in the fetch and
execution pipeline is usually much higher than in a simple RISC processor.

Getting parallelism beyond that available in a basic block requires looking be-
vond conditional branches when scheduling instructions. A hardward-based ap-
proach, for instance, would be to use branch prediction, so that the processor can
speculatively execute instructions beyond the branch and move the results of those
instructions into the permanent CPU state once the branch outcome is known. Un-
fortunately, branch prediction is not always correct, and given the large number
of pipeline stages between instruction fetch and resolving a conditional branch, a
misprediction exacts a large penalty.

Therefore, it is not likely that the current path of processor development, which
attempts to extract more and more parallelism from a single thread of code, will
yield many more architectural improvements (those not due merely to faster clocks).
There are ambitious designs on the drawing boards for processors capable of exe-
cuting larger numbers of instructions simultaneously, as many as 16 or more, but
experience with present processors is not promising, and suggests that additional

hardware is likely to produce diminishing returns.



Several architecture research projects have shown that multithreaded proces-
sors [41, 65] can find and exploit more parallelism than processors that look only
for ILP. A multithreaded processor differs from a single-thread processor in that
the machine model allows the concurrent execution of instructions from different
locations in the code. An advanced single-thread processor may allow different in-
structions to execute simultaneously, but these all come from a single thread of
instructions. A multithreaded processor, in broadest terms, has “hardware support
for multiple program counters” [114]. By allowing execution from different sections
of code, a multithreaded processor has more places from which it can extract ILP.

Multithreaded machines are surveyed in Chapters 3 and 9.

1.2 Fundamental Issues in Multiprocessing

From the discussion in the previous section, it can be concluded that getting more
parallelism than the small-scale parallelism offered by the current-generation su-
perscalar and VLIW processors will require exploiting multiple threads of control
simultaneously. Some recent proposals (included in the surveved in Chapter 9) seek
to boost uniprocessor performance by using multithreading (with some speculation)
to expose more parallelism than just ILP, but they still try to extract this paral-
lelism from sequential code. This will make their immediate acceptance more likely,
but it will also limit how much parallelism they can ultimately get.

Going beyond that will require running threads on multiple processors, which
will require a paradigm shift on the part of mainstream programmers. Unfortu-
nately, while multiprocessors have been proposed for decades, there are some fun-
damental problems with multiprocessing which most designs have not adequately
addressed. Arvind and Iannucci [9] identified two “fundamental issues” of multipro-
cessing: latency and synchronization. Several other important issues are bandwidth,

programmability and manufacturability. These five issues are elaborated below.

1.2.1 Latency

One fundamental problem is based on a simple fact about today’s technology: For
non-trivial applications, it is physically impossible to keep all data required by the
computation close enough to the processor to be instantly accessible at all times.



For the purposes of this discussion, “instantly accessible” can be taken to mean
“without causing delay,” which for RISC processors means a very small number of
cycles, preferably one.

The traditional solution for uniprocessors has been to form a memory hierarchy,
consisting of most of the following: registers, on-chip caches (single-level, two-level,
or hybrid-access [121]), off-chip caches, main memory, and secondary storage (disks
and tapes). Elements higher in the hierarchy are placed physically closer to the
CPU than those below. This proximity means both that the storage locations closer
to the CPU can be accessed more quickly, and that they are less numerous than
storage locations further away. The hierarchy is generally effective because most
programs exhibit temporal locality [110]. In most cases, objects which have been
accessed recently are more likely to be referenced again in the near future than
objects which have not been accessed recently. Therefore, it is useful to keep these
objects closer to the CPU.

This technique breaks down when there is more than one processor, because the
memory hierarchy can no longer be viewed as a simple pyramid with the CPU at the
apex. Instead, the “hierarchy” becomes a set of pyramids, whose bases must merge
at some level in order for sharing of data to occur. For all but so-called “embarass-
ingly parallel” applications, whose computations can be divided into independent
sections running concurrently without any need for communication or cooperation,
data is likely to be needed by different processors at different times. Due to the
dispersal of processors, data cannot be kept physically close to all processors at the
same time. If a processor requires a datum not close to it, it will have to wait
for that datum to be fetched from somewhere else in the system, such as another
Processor.

How the processor handles this latency affects performance significantly. Mul-
tiprocessors based on traditional processor designs typically stall while waiting for
data to return from the remote fetch. The penalty, in terms of cycles lost, of this
stalling is generally more severe than the cost of a cache miss on a uniprocessor,
because the data will have to come from further away. The problem increases as
more processors are added, first, because the average distances, and hence latencies,
between processors increase, and second, because if the application is spread among
a greater number of processors, then more of the data needed by each processor will

be located on remote processors.



1.2.2 Bandwidth

One cannot successfully treat the latency problem without dealing with another
problem: bandwidth. Since it takes longer to send a signal over an IC pin than along
a wire in the interior of the chip, it follows that the throughput on that pin will
be lower than the throughput along the wire. The fact that IC pins must be much
larger than internal wires restricts their numbers, which causes external throughput
to drop even further relative to internal throughput.

A simple calculation will illustrate why latency can’t be separated from band-
width considerations. Suppose that in a particular application, 30% of all operations
are loads and stores (which is typical for numerical applications), and that 10% of
these require going off-chip (e.g., they miss the cache, write through the cache to
external memory, or perform explicit communications with remote processors). A
10% miss rate is a reasonable assumption for applications with large working sets;
it can even be seen on uniprocessors, and is more likely to be the case on large-scale
parallel processors, for the reason given at the end of Section 1.2.1. Suppose that
an average of 8 CPU cycles are required in the actual transfer of data to or from
the CPU (a reasonable assumption, given today’s aggressive clock rates). Then 3%
of all instructions executed will occupy the CPU’s external interface for 8 cycles. A
processor running under these conditions will not be able to execute, on average,

much more than 4 IPC, no matter what latency-handling mechanisms are installed!

1.2.3 Synchronization

If processors are working together on a non-embarassingly-parallel application, there
are times when one processor will require data created by another. They will have
to coordinate their activities so that the producer of data knows where and when
to send the data, and the consumer knows when the data has arrived.

In the simplest class of multiprocessors, called SIMD (Single Instruc-
tion/Multiple Data) machines [34], instructions are fetched from a single global
instruction stream and broadcast simultaneously to all processors. Thus, every pro-
cessor performs the same operation simultaneously, but on different data. These
instructions generally include communications operations which allow processors to
transmit data to one another. Since all processors are controlled by the same in-

struction, they all must transmit data, or receive data, at the same time. This makes



synchronization an easy task on such machines, because the programmer (or com-
piler) is forced to control every communication event, and every communication has
a uniform, predictable latency. It is mainly the extreme difficulty in programming
SIMD machines for most applications that has limited their commercial acceptance.

In the more general MIMD (Multiple Instruction/Multiple Data) class of ma-
chines [34], each processor is free to execute its own instruction stream. Since the
producer and consumer of data are no longer in lock-step, as in the SIMD machines,
they may be out of sync when the communication is to occur, e.g., either the con-
sumer will not be ready when the producer sends the data, or the producer will
not be ready when the consumer wants it. The simplest solution is to have one
wait for the other, e.g., to have the producer wait for an acknowledgement from the
consumer before continuing, but this can waste a lot of processor cycles, particularly
if the communication events occur at different times on different processors.

A better solution is to have the processor do some other work while waiting
for the response, much as an operating system will swap to another process while
waiting for a page to be read from disk. But this imposes its own costs. The largest
overhead, and the focus of the paper by Arvind and lannucci, is the time to perform
the contezt switch, i.e., to save the state of the current computation (as contained

in the registers) and load the state of the new computation into the registers.

1.2.4 Programmability

As previously mentioned, SIMD machines did not gain wide popularity because they
were difficult to program. They are hard to program because most problems can’t
be expressed as a uniform homogeneous computation over an array of elements,
which is what SIMD machines are designed to do. But SIMD machines are only the
worst case of a problem facing all parallel machines: ease of programming. Simply
put, for general applications it is difficult to program parallel machines and get per-
formance anywhere near the theoretical performance level of the machine (generally
the performance of a single processor multiplied by the number of processors).

In some cases, poor performance on parallel machines may be due to an inherent
lack of parallelism in the application itself. These cases are discussed at length in
the next section. Sometimes, these can be improved by modifying the algorithm or
restating the problem, but other times the problem simply cannot be parallelized.



Usually, however, applications are difficult to parallelize because there is no uni-
versal model for parallel machines. For decades, sequential machines have all been
based on the von Neumann model, with its program counter, arithmetic units, reg-
ister(s), and addressable memory, augmented by indirect addressing and the use
of a stack. The basic model has remained unchanged through all the architectural
enhancements over the years (virtual memory, caches, pipelining, even superscalar).
This has made it possible to write programs that are essentially portable from one
machine to the next, and for programmers to become used to a common paradigm
of programming. On the other hand, there are many different models for parallel
machines; for instance, the memory hierarchies looks quite different (to the pro-
grammer) on shared-memory and message-passing machines.

Since there is no uniform model for parallel computing, designing an efficient
portable paraliel programming language is practically impossible. Thus, program-
mers are forced to concern themselves with specific details of the target machine,
and must extensively modify code written for other parallel machines. It is as if
the machine had no compiler, and programmers were forced to write in a machine-
specific assembly language. Attempts to develop languages that “abstract away” all
details of the parallel machine from the programmer have not solved the problem,
because the great differences among the models require that so much be abstracted
from the user that efficient code cannot be generated. (Languages like Fortran and
C have been successful because they do not abstract too much away; the differences
in sequential models are sufficiently insignificant that it is possible to abstract away
enough low-level details to make the languages useful while giving the programmer
access to enough details to generate efficient code.)

Another reason for the difficulty in programming parallel machines is that most
do not adequately address the problems of latency, bandwidth and synchronization
already discussed. Programmers must spend extra time trying to tune their pro-
grams to compensate for the weaknesses of the architecture. If machines did not
have these deficiencies, programmers could spend more time concentrating on the
high-level details of the program.

This idea is illustrated in Figure 1.1. In this graph, there are three architectures
(A, B, and C) with identical peak performance levels, represented by the top dashed
line. The horizontal axis represents the amount of programmer effort required to

achieve a particular level of performance (plotted on the vertical axis) for a given
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Figure 1.1: Performance Payoffs for Different Architectures

application, which we assume has enough parallelism to make this effort worthwhile.
Architecture C exposes most of its details to the programmer, requiring a lot of effort
to fine-tune the program to get the most speed. Ultimately, given enough program-
ming, machine C can run the application the fastest. However, if users decide that a
given fraction of peak performance is acceptable (represented by the bottom dashed
line), then programmers will be able to reach “acceptable” performance much more

quickly with architecture A.

1.2.5 Manufacturability

Even if one can overcome the fundamental problems just discussed, and design a
parallel architecture that can deliver good performance, one also has to be able to
build this machine in today’s competitive market. Manufacturers of single-thread
processors have squeezed everything they can out of RISC technology by pouring
enormous resources into design efforts. Even with advanced CAD tools, a state-of-
the-art processor takes hundreds of person-years to develop. This investment can
only be recouped through high-volume sales, mostly in the workstation and high-end
PC uniprocessor markets.

If the processors in parallel computers don’t match the high-end microprocessors
in performance, or at least come close, the benefits of combining processors in paral-
lel will be erased by their inferior speed. This situation is what Eugene Brooks [16]



called “the attack of the killer micros.” If parallel computer makers design proces-
sors that only work in large parallel machines, they won’t be able to make enough
sales to justify the design costs. They must either settle for inferior processor speed
and hope that massive parallelism will make up the difference, or else, following the
old maxim “if you can’t beat ’em, join ’em,” use off-the-shelf microprocessors.
Mainstream microprocessor manufacturers have responded by putting in some
basic multiprocessing support in their chips, such as support for local cache consis-
tency. However, these features only begin to address the problems outlined in the
preceding subsections. If parallel machines are to become commercially viable, they
will need to be based on processors with more substantial support for parallel com-
puting. If microprocessor manufacturers are to be persuaded to add these features
to their chips, then the features will have to give some benefit to the mainstream
uniprocessor market. If they don’t, they should at least not interfere with unipro-
cessor performance, and should present as little cost (in extra chip area) as possible
so that the costs of their addition can be recovered through increased sales to the

parallel computer market.

1.3 An Evolutionary Approach to Viable Parallel

Processing

If a large quantum leap to a full-featured microprocessor supporting parallel pro-
gramming is not commercially viable in today’s marketplace, then efficient support
for parallel processing will have to be introduced gradually. Such steps as can be
made must be small, relatively risk-free, and produce tangible benefits. Therefore,
it is most likely that multiprocessing systems will take an evolutionary path. Each
step along the path should represent a small enough cost to allow a prototype to be
built, and should improve upon the performance of the preceding step to establish
the merits of the features added in that step. The following are the likely phases in

this evolution:

1. Use of an existing parallel system, based on off-the-shelf microprocessors, to

emulate a multiprocessing model well enough to demonstrate its viability.

2. Construction of a hybrid system, using off-the-shelf microprocessors to per-

form the regular computations, and custom auxiliary hardware to support
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the instructions unique to the multiprocessing model. The custom hardware
should improve the performance of the machine compared to the first machine

(the emulated system).

3. Design of a hybrid chip containing the original core of the stock microprocessor
and the extra custom hardware. The combination of the two components on
one chip should reduce communication delays between the two and allow better

sharing of common resources, such as caches.

4. Creation of a fully-integrated processor for a parallel system, one which also

performs well in a uniprocessor environment.

The key to the success of such an approach is choosing a good programming
model which allows programmers to express parallelism without much difficulty
and without sacrificing efficiency, yet is fully portable along the evolutionary path.
The latter requirement is crucial, for if programmers, having spent the effort to
parallelize an application, have to redo this effort to take the next evolutionary
step, few will bother to take that step. Users should be able to write an application
once, according to the given programming model; as improved versions of the parallel
machine are introduced, the application should run on the new machines with no
more modification than recompiling. The model should be simple and efficient
enough to yield reasonable performance even in the early evolutionary stages, yet
flexible enough to produce even better results as the new machines are created.

To summarize, the main question driving this research is:

What should be the architecture of a parallel computing system which
can effectively handle the problems of latency, bandwidth, and synchro-
nization, can provide a sufficiently general programming model, and can

provide a viable evolutionary path from mainstream architectures?

We believe that multithreaded computers based on the dataflow model of commu-
nication and synchronization [24] have the potential to satisfy these requirements.
Multithreading by itself addresses the latency problem, because the processor can
execute instructions from another section of code when one instruction is blocked
by a long-latency operation. On the other hand, dataflow scheduling provides an
efficient form of synchronization. It states that any instruction is eligible for execu-

tion as soon as the operands it requires are ready. The two paradigms are combined
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to get both the latency-tolerating capabilities of multithreading and the flexible

synchronization of dataflow.

1.4 The EARTH Project

The Efficient Architecture for Running THreads (EARTH) [60, 61, 59, 83] project
at McGill University is intended to demonstrate that a programming model meeting
the requirements in Section 1.3 can be designed and implemented. Table 1.1 lists the
major milestones in this project. EARTH is a large team effort; four professors, two
post-doctoral fellows, and more than a dozen graduate students have been involved.

EARTH began in the Fall of 1993, when the author, Prof. Guang Gao (McGill)
and Prof. Herbert Hum (Concordia University) developed a model for the efficient
implementation of multithreading on off-the-shelf microprocessors with minimal ad-
ditional hardware support for multithreading. Each of the three had previously de-
signed multiprocessors based on dataflow principles [37, 62, 122| (see Section 3) and
knew the tradeoffs associated with such machines. The ACAPS (Advanced Com-
pilers, Architectures and Parallel Systems) group at McGill and Concordia formed
a partnership with GMD (Gesellschaft fiir Mathematik und Datenverarbeitung) in
Berlin, which loaned a multiprocessor called MANNA [17], developed at GMD, to
ACAPS.

Development of an emulator on an off-the-shelf multiprocessor, the first stage
in the evolutionary path, began in earnest in Spring, 1994, after the machine was
delivered to McGill.! At that time, the Threaded-C language was defined as the
target language for application and compiler writers. Most of the design and imple-
mentation of the runtime system and back-end compilation environment (described
in Chapter 7) was done by Dr. Olivier Maquelin, who joined ACAPS in 1994 after
previous research in dataflow [82]. Some benchmarks were running by July of that
year, and the MTA-MANNA system was shown at Supercomputing ’94.

Subsequent work has focused on porting the EARTH model to various machines,

!Prior to 1995, this project was called the Multi-Threaded Architecture (MTA). However, this
name is currently used by Tera Corporation for their muitithreaded machine (see section 9.1).
Private discussions with Burton Smith revealed that both groups independently started using the
acronym “MTA” at about the same time circa 1992. We have changed the name of our machine
to avoid confusion {(and because we like the new name better).
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[ Time Event or design Participants

Sept. 1993 | First MTA position paper Hum, Theobald, Gao

Sept. Partnership with GMD established ACAPS, GMD

Mar. 1994 | 2-node Mini-MANNA installed at McGill | GMD, ACAPS

Jul. First programs on EARTH-MANNA-D Maquelin, ACAPS

Nov. MTA-MANNA demo at SC’'94 ACAPS

Dec. First i860 simulator (SEMi) Theobald, Mueller

Feb. 1995 | Project formally renamed EARTH ACAPS

Feb. First “portable” version of EARTH Maquelin

Feb. First EARTH-C-to-Threaded-C translator | Xue, Tang, Ouellet,
Hendren

Apr. SEMi extended to MANNA simulation Theobald, Marquez

Aug. 20-node MANNA installed at McGill GMD, ACAPS

Jul. EARTH-MANNA-S implementation Maquelin

Aug. Polling watchdog on EARTH-MANNA-S | Maquelin, Theobald

Sept. Polling watchdog added to SEMi Theobald

Mar. 1996 | EARTH on SP-2 Magquelin, Cai

Nov. 1997 | EARTH on 4-node Beowulf Cheng

Jan. 1998 | EARTH on 60-node Beowulf Theobald, Cheng

Apr. EARTH on Sparc SMP Cluster Cheng

Jul. Functional design of SU complete Theobald

Aug. Portable EARTH on PowerMANNA Heber, Theobald

Oct. SEMi extended to SU simulation Theobald

Nov. EARTH-PowerMANNA demo at SC’98 CAPSL, GMD

Table 1.1: Milestones in the EARTH Project

tuning the implementations for better performance, and experimenting with archi-

tectural enhancements. A separate language development effort is running in par-

allel, with the goal of creating a higher-level parallel language without the need for

explicit threads, and writing a compiler to translate this language to Threaded-C.

Major participants in the language effort include Prof. Laurie Hendren, Haiying Cai,

Pierre Ouellet, Xinan Tang, Xun Xue, and Yingchun Zhu. Other institutions that

have been involved in the EARTH project include the University of Delaware, the
University of Southern California, and GMD.
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‘ 1.5 Contributions

As in any project developing a computer system, many people were involved. The

following original contributions are solely or primarily the work of the author:

1. The design and construction of a tool for analyzing the parallelism in pro-
grams, and a study, using this tool, of representative benchmarks, identifying
fundamental properties that point to the need for multithreaded architectures
(this study actually preceded the start of the EARTH project);

2. A definition of the EARTH (Efficient Architecture for Running Threads) Pro-
gram Execution Model, an abstract model describing a way to divide a parallel
program into threads and the operations performed on these threads (while
the EARTH model was co-developed by Gao, Hum and the author, the author
provided the formal definition);

3. Definitions of two EARTH Virtual Machines, one based on global addresses
and one based on frames, which present specifications of operation sets cor-
. responding to the abstract operations of the Program Execution Model, at a

level of detail sufficient for implementation of a real system;

4. Specification and high-level design of a custom hardware Synchronization Unit
providing efficient support for the EARTH Program Execution Model;

5. Development of a tool for accurate simulation of an existing off-the-shelf mul-
tiprocessor, and the use of this tool to measure the performance of the multi-
processor with more processors than available with the current hardware (to
measure scalability), a custom hardware Synchronization Unit (to test the
efficiency of the EARTH model when there is hardware support for multi-
threading), and with different processor parameters (to confirm the benefits of
the EARTH model on processors built after those used in the multiprocessor
platform);

6. A study of possible extensions to EARTH and Threaded-C which could im-
prove both runtime efficiency and programmability.

. The following contributions are not the exclusive work of the author, but the

author played a major role in their execution:
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1. A definition of the Earth Architecture Model, describing an architecture appro-
priate for executing programs under the EARTH Program Execution Model;

2. A definition of the Threaded-C language, an explicitly threaded language ex-
tending standard C with EARTH operators;

3. Coding of various benchmarks in Threaded-C so that they may be tested on
EARTH platforms;

4. Implementations of EARTH on several off-the-shelf platforms, and experi-
ments showing the performance achieved by Threaded-C benchmarks on these

platforms.

1.6 Synopsis

This dissertation is organized as follows:

Before building a parallel processor to run a class of applications, one should
analyze the applications to know both how much parallelism is intrinsic to each ap-
plication and what architectural properties are necessary to achieve this parallelism.
Chapter 2 reviews a study performed by the author for this purpose, based on real
applications. (A survey of previous studies is provided in Appendix A.) The results
show that most applications have enough inherent parallelism to keep at least a
moderately-sized parallel computer usefully busy, but very little parallelism exists
at the instruction level, meaning that the ILP techniques discussed in Section 1.1
will not produce the desired performance.

EARTH has its roots in the dataflow model of computation. Chapter 3 ex-
plores the history and evolution of dataflow. It begins with a review of basic data-
flow concepts, and surveys the machines designed according to dataflow principles,
focusing on those machines most related to EARTH. The chapter then discusses
multithreaded machines based on dataflow, particularly the multithreading work
at McGill which preceded EARTH, and includes a survey of other dataflow-based
multithreaded machines in the literature.

Chapter 4 defines the most fundamental properties of EARTH, the Program
Ezecution Model (PXM) and Architecture Model. The first model describes how a
program is divided into threads, how these threads are created, coordinated and

synchronized, and how they share data. The second model describes, in general
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terms, the structure of a multiprocessor appropriate for this model. The chapter
concludes by discussing possible future extensions to the models.

The PXM defines, in general terms, the types of operations on threads that need
to be performed for effective support of parallel programs on EARTH. More infor-
mation is needed so that designers can have a target for implementation. Chapter 5
fills in important details about these operations, including how data and threads
are addressed globally, and provides a complete specification of EARTH operations.
This is called an FARTH Virtual Machine because it is still more abstract than
a complete instruction set. (A complete instruction set for EARTH would be in-
appropriate, as that would tie EARTH to a particular processor.) An alternate
virtual machine (addressing scheme and set of operations) is proposed; both virtual
machines are consistent with the specifications of the PXM.

Chapter 6 defines the Threaded-C language. Threaded-C extends ANSI-
standard C with functions corresponding to the EARTH operations defined in Chap-
ter 5. This allows programmers to write applications for EARTH in a high-level lan-
guage, though one which is explicitly threaded by the programmer. The language
is illustrated through programming examples.

The next two chapters present several implementations representing various
points along the evolutionary path listed in Section 1.3. Chapter 7 represents the
first step, the emulation of the EARTH model on an off-the-shelf multiprocessor
without specialized hardware support for EARTH. Two implementations based on
the GMD MANNA machine are described, one in which each node has two proces-
sors, and one in which each node has a single processor. The chapter describes the
runtime system (software which supports the EARTH operations) and the compiler
(which compiles Threaded-C code with the help of an off-the-shelf compiler for the
MANNA'’s processor).

Experiments on a 20-node MANNA show that the EARTH operations operate
very quickly, and latency and bandwidth measurements are far better than com-
mercial parallel machines using comparable technology. Experiments with eleven
benchmark applications show that the multithreading support provided by EARTH
imposes only moderate overhead costs on the code, as measured by comparing mul-
tithreaded code running on one node with sequential code. Furthermore, most of
these programs have good (nearly linear) speedups up to 20 nodes, showing that the
EARTH implementation on MANNA is good for many applications, even though it
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is only the first evolutionary step.

SEMi, a simulator for the MANNA with high timing accuracy, is also presented
in this chapter. SEMi is used to extend the speedup curves of selected benchmarks
to 120 nodes, six times what is available on real machines. The accuracy of SEMi
gives confidence that these results are a reasonable estimate of the performance of
these benchmarks on a large MANNA| if one were constructed.

Chapter 8 considers the remaining evolutionary steps of Section 1.3. The second
and third steps involve developing special hardware to support EARTH operations
more efficiently, either as a separate module or as a component added to a micropro-
cessor core at the chip level. Complete interface specifications for this component
are given, along with a high-level block design. The SEMi simulator is augmented
to simulate this hardware, and the selected benchmarks are run on the new sys-
tem and compared to the original (software-only) configuration. The results show
that each evolutionary step leads to substantial speed improvements in individual
EARTH operations, reductions in latencies between threads and in multithread-
ing overheads, and improvements in speedups for all applications. With hardware
support, many of the applications tested have high speedups even on 120 nodes.
The end of the chapter discusses the possibilities for the final evolutionary step (to
full-custom hardware).

The dissertation then reviews other multithreading systems (excluding those
already covered in Chapter 3), including both architectures and software-based sys-
tems (Chapter 9), and presents our final conclusions (Chapter 10).

There are several appendices. Appendix A surveys other studies of parallelism
related to Chapter 2. Appendix B is a complete list of the data types and operators
of the Threaded-C language. Appendix C recapitulates some of the experimental
results of Chapters 7 and 8 to allow a direct comparison of different implementations
of EARTH on MANNA. Appendix D presents the results of an auxiliary study which
uses the SEMi simulator to modify the performance parameters of the MANNA
hardware to be more consistent with current off-the-shelf systems. The experiments
from Chapters 7 and 8 are repeated; the results show that the efficiency of the
EARTH model and the benefits of hardware support are applicable to contemporary
systems as well as the older MANNA hardware.
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Chapter 2
Parallelism in Computer Programs

In the introduction, it was shown that exploiting parallelism is a worthwhile pursuit
because there is a need for computers of greater and greater power. However, before
attempting to build a parallel processor to run a class of applications, one should
analyze the applications to know both how much parallelism is intrinsic to each ap-
plication and what architectural properties are necessary to achieve this parallelism.
This section reviews a study performed by the author for this purpose, based on real
applications. (A survey of previous studies is provided in Appendix A.) The results
show that most applications have enough inherent parallelism to keep at least a
moderately-sized parallel computer usefully busy.

This section is divided into four parts. The first part describes the SITA tool,
developed by the author to study program parallelism. An abstract model of exe-
cution on parallel machines, called the Dynamic Control Dependence Tree, is also
presented. The next two parts present the experimental results obtained with this
tool. The section closes with a discussion of the conclusions that can be drawn from
the SITA studies.

2.1 The SITA Tool

The current study is based on an analysis tool developed at McGill, called SITA
(Sequential Instruction Trace Analyzer) [116, 119, 120]. Like some of the previous
studies, the SITA tool analyzes traces of machine-language instructions generated
from executed code, rather than analyzing the high-level source code. Figure 2.1

shows conceptually how SITA works.
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Figure 2.1: Trace Simulation Methodology

In the flowchart, the left fork represents the compilation and execution of a pro-
gram on an ideal machine with a given set of architectural characteristics. Lacking
such a machine, one can model it using trace simulation, as shown in the right fork.
First, a benchmark program is compiled into an executable file using a conventional
sequential compiler. Then the executable code is run through a trace generator,
which produces a program trace. This trace consists of a stream of operations rep-
resenting the actual sequence of instructions executed (not the static object code).
Finally, the trace scheduler, modeling a machine with the same architectural features
as the “ideal machine” in the left path, determines the time at which each individual
instruction appearing in the trace would be executed on that ideal machine. The
trace scheduler produces statistics on parallelism which should predict the behavior
of the code on the ideal machine.

Figure 2.2 illustrates the operation of the trace generator and scheduler. Part
(a) shows a fragment of Sparc executable code, a simple loop. The trace generator
produces a dynamic stream of instructions as shown in part (b). For each executed
instruction, the trace gives the opcode, PC address, the load or store address (if
any), and the outcome of the conditional branch (if any). The trace scheduler reads
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S1:  1d [%r2+%ri] ,%f0 308
So:  1d [%r3+%r1] ,%f1 216
Si: fmuls %f£0,%f1,%£2

Sy: st %£2, [Ur4+%r1] 440
Ss: subcc %ri1,4,%r1

SII 1d ['/.r24"/.r1] .'/.fO 56: bg S1 Taken
S,: 1d [%r3+%ri],if1 Sr:  nop
53: fmuls %fO,'/.fi,'/.f2 ;.: 1d [./.I'Z""/.I'l] ,'/.fO 304
Sq: st %f2, Dird+iri] Sy 1d [4r3+%r1l %f1 212
Ss: subcc %r1,4,%r1 " fmuls %f0,%f1,%f2
Se:  bg S1 Si: st %f2,[irasiril 436
S7: nop t:  subcc %ri1,4,%r1

Si: bg S1 Taken

’:  nop

Si’: 1d [%r2+’r1],%f0 300

a) Executable code b) Dynamic trace
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PL. 59\ + Pl sg' \
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c¢) Scheduling (all dependences) d) Scheduling (no false dependences)

Figure 2.2: Packing Parallel Instructions: An Example

the operations from the stream and packs them into parallel instructions (PI). As
the scheduler reads each operation in the trace, it inserts the operation into the
earliest PI possible, while simultaneously respecting the dependences between that
operation and all previous operations. The following types of dependences between

operation S;, inserted into PI;, and a later operation Sx may exist:
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e Flow dependence: if Si reads a storage location (register or memory cell)
which was most recently written by Sj;, then Sy can be scheduied no earlier
than P I,'.§.1.

e Anti dependence: if Si writes a storage location which was most recently read
by S;, then Sk can be scheduled no earlier than PI;. (It is assumed that the

write and read can occur simultaneously, and S; will read the proper value.)

e Qutput dependence: if Sy writes a storage location which was most recently
written by Sj, then Si can be scheduled no earlier than PI;;; (assuming that

the storage location is read by a later instruction).

e Control dependence: if S; is the most recent conditional branch in the trace
whose outcome must be decided before it is known whether or not S will be

executed, then Sx can be scheduled no earlier than PI;,,.

Figure 2.2 (c) shows how SITA would pack these operations into Pls if all four
dependence types listed above were obeyed. (It is assumed that all memory accesses
take one cycle). Plain arcs are drawn to show the flow dependences between oper-
ations. The arcs with small marks (e.g., from S; to Ss) indicate anti dependences.
The dashed line represents a barrier caused by the conditional branch at Sg, which
may prevent future operations from being scheduled before that barrier.! Paral-
lelism is defined as the total number of sequential operations divided by the total
number of Pls required by the scheduler.

The SITA tool is extremely flexible in the features it can model. Some features
relax the dependence constraints, increasing the opportunities for exploiting paral-
lelism in the program. Other features tighten the resource limitations, forcing some
instructions whose dependences have been satisfied to wait for resources to become
free. The following subsections describe some of the architectural features which
SITA can model:

2.1.1 Memory Renaming and Disambiguation

A compiler can’t always tell whether or not two memory accesses refer to the same

location. A conservative analysis would assume that any two memory references

!For operations S,-S3 and S, there are also output dependences between corresponding oper-
ations in different iterations; these have been left out of Figure 2.2 for clarity.
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could refer to the same memory location, in which case a dependence would exist
between them. Thus, for instance, a conservative scheduler would have to assume
that a flow dependence might exist between S, in one iteration and S; in the next
iteration, making it harder to overlap separate iterations of the loop. However, SITA
can check the addresses in the trace to determine whether two memory references
really conflict. This models the potential effects of perfect compiler alias-analysis.

A false dependence (anti or output) exists between two operations when one must
follow the other, not because the latter requires data produced by the former, but
merely because the latter needs to reuse a storage location (register or memory cell)
used by the former. An example of this in the code sample is the use of register %r1
for the loop index, which cannot be updated (by Ss) before being used to construct
a memory address (by S;). Thus, overlapping the iterations of the loop body, as in
software pipelining, is impossible. False dependences also frequently occur in main
memory, either through the update of data structures (such as arrays) in place, or
the sharing of the stack by different procedures at the same call depth.

The inhibiting effects of false dependences can be eliminated by ensuring that
each register or memory location is written only once. In the CPU, false dependences
can be reduced by creating extra physical registers, and dynamically mapping reg-
isters in the instruction stream to these physical registers. This technique, called
register renaming, is used in many state-of-the-art RISC processors to boost paral-
lelism. False dependences in the memory can. in principle, be eliminated by only
assigning to each variable once, as is done in programming languages such as Sisal
[31]. False dependences in the stack can be eliminated, by organizing the mem-
ory frames for procedure invocation in a tree-like structure, as proposed in several
dataflow and multithreaded architecture models [21, 92, 99].

Infinite renaming, in which a register or memory location can be renamed any
number of times, is equivalent to ignoring all false dependences between objects
of a particular type. For instance, if register renaming is applied to the trace in
Figure 2.2(b), then S5 can be executed in parallel with S; and S; of the same
iteration, as the anti dependence with S; no longer exists. This moves operation
Se up as well, so the conditional-branch barrier has moved up by 2 Pls. If perfect
disambiguation is also used, then the iteration issue rate increases to once every

other cycle, raising parallelism to 3, as shown in Figure 2.2(d).
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Figure 2.3: Control Dependence

2.1.2 Control Barrier Elimination

In many of the previous parallelism experiments, the schedulers made pessimistic
assumptions about the effects of conditional branches on the instructions that fol-
lowed. The most conservative assumption is that if a conditional branch instruction
is placed in PI;, then all instructions appearing later in the stream can be scheduled
no earlier than PI;.,. However, this restriction goes bevond the definition of con-
trol dependence in Sgction 2.1, because not all future instructions are truly control
dependent on that branch.

This point is illustrated with the code fragment shown in Figure 2.3, in which a
small “loop body” does some calculation inside a simple two-dimensional loop. Part
(a) shows the loop drawn as a Control Flow Graph (CFG). The code is partitioned
into basic blocks, each block being a maximal set of contiguous instructions which
is only entered at the beginning and exited at the end. (Each set is maximal in the
sense that if either the instruction following or preceding the block is added to the
set, it no longer satisfies the definition.) The basic blocks are connected by arcs,
which connect a basic block to all of its possible successors.

Only some basic blocks end with conditional branches, and each of those con-

ditional branches only affects certain basic blocks. For instance, both block 3, the
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body of the inner loop, and block 4, the end of the body of the outer loop, end with
conditional branches. However, block 4 is not control-dependent on block 3; block
4 will eventually execute once at the end of the loop no matter how many times the
inner loop executes. The CFG can be converted to a Control Dependence Graph
(CDG) [32] which conveys this information, as shown in part (b). In this graph, the
arcs labeled “to 2” whose source is block 4 (for simplicity, the arcs are shown as a
single arc which forks) indicate that if the conditional branch at the end of block
4 is taken (i.e., to block 2), then one more instance of each of blocks 2, 3, and 4 is
guaranteed.

What this means for code execution is shown in part (c). This part shows a
Dynamic Control Dependence Tree (DCDT) [119], which is produced by dynamically
unrolling the CDG according to the outcome of each conditional branch. The tree
shows the control dependences between particular instances of basic block. A block
is only control-dependent (according to the definition in Section 2.1) on its parent
in the DCDT. Therefore, two blocks that do not have a direct ancestor relationship
are control-independent, and could run in parallel provided there were no other
dependences (flow, anti or output) to impede them. For instance, what Figure 2.3(c)
shows is that while instances of the inner loop would have to be executed sequentially,
the outer loops could be run in parallel. (This is assuming there are no other
dependences. Given the fact that the loop counters i and ; are shared and updated
in place, a machine would have to use register or memory renaming, as described in
Section 2.1.1, in order to exploit this parallelism.)

SITA supports the following options (listed in order of increasing power):

e The most pessimistic assumption is that all future instructions are control-

dependent on a given conditional branch.

e If procedure separation is used, the barrier created by a conditional branch
only affects other instructions in the same procedure, and those in procedures
called by that procedure.

e Control-dependence analysis uses a CDG, generated by SITA, to limit the
effects of conditional branches to those instructions that are truely control-
dependent on them.

o With the speculative ezecution option, SITA can model the behavior of a
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machine which tries to execute instructions before the conditional branches

on which they are control-dependent have been executed.

e The oracle [90] makes the most optimistic assumptions by ignoring control de-
pendences entirely, and provides an upper bound on parallelism by measuring
the effects of flow dependences only.

2.1.3 Finite Resources

SITA normally optimistically assumes resources are infinite and all operations are
uniformly fast. However, the user can specify constraints on the window size, laten-
cies, and number of processors.

Normally, SITA assumes that an operation from anywhere in the trace can be
placed in the earliest PI possible, subject to data and control dependences. In
theory, the last operation in the sequential trace could be packed into the first PI.
However, the user can specify a limit on how far apart two operations can be packed.
This model is based on the assumption that the parallel machine can only look so
far ahead of the program counter when looking for operations that are ready to be
executed, much as today’s out-of-order superscalar processors do. With a limited
window size, SITA conceptually keeps future operations from the trace stream in
the window and packs them into Pls from the window. When the trace stream fills
the window, the analyzer must “issue” the lowest-numbered unissued PI, thereby
making it unavailable for further packing, and remove the operations in that PI
from the window.

SITA normally assumes that every operation takes 1 cycle. SITA can be config-
ured to give higher latencies to certain operations, such as floating point operations
or remote memory accesses. It is difficult to obtain accurate modeling for the latter
from a sequential trace, because the sequential compiler does not partition the data,
there being only one processor. Thus, the sequential trace provides no notion of “lo-
cal” and “remote” processors. SITA, therefore, models remote accesses statistically;
it designates, at run time, a randomly-selected number of memory accesses, giving
each a user-specified latency. The ratio of remote accesses to total accesses is also

set by the user.?

2In principle, data partitioning could be done by hand for each benchmark. However, the
pattern of memory use on a sequential processor may be radically different from the pattern of
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Source |Program | Description Test Case Ops| % of ops.
| (x10%) [ FPJLd.][St.
DLX Tex Text formatting draft (11 p.) 109| .04| 15|8.0
Industry | Speech | Speech recognit. recognize “he” 351 4.5{ 14|28
SPECS9 | Espresso | Bool. minimization | bca.in 469 | <.01| 23(2.5
test Egntott | Truth-table gen. int_pri_3.eqn 1,770 0f 33(0.7
suite Fpppp [Quantum chem. NATOMS=4 277 19| 43| 10
Tomcatv | Data-parallel grid | N=257 3,018 17| 48| 13
Doduc | Simulation small 522 14| 36| 10

Table 2.1: Benchmarks Used in the Study

Finally, one can limit the number of processors that SITA models. Normally, the
trace scheduler places each trace instruction in the earliest PI possible, consistent
with all dependences with earlier instructions. The user can specify a maximum
width to each PI, thus modeling a finite number of processors. If, after checking
for dependences, SITA finds that the earliest legal PI is full, it must place that

instruction in a later PI, the earliest one which is not full.

2.2 Experiments with SITA

Seven benchmarks were used in this study. They are presented in Table 2.1. The
first four are irregular applications written in C. The others are numerical, floating-

point-intensive applications written in Fortran.

2.2.1 Control Dependence Experiments

The first set of experiments measured the effects of control flow on parallelism.
Each benchmark was run under four machine models. All four models have infinite
renaming of registers and memory, perfect memory disambiguation, one-cycle oper-
ations, and infinite resources. The only parameter that is varied among them is the
sensitivity to control dependences. The experiments explored the various options

discussed in Section 2.1.2, except speculative execution, which is covered in a later

memory use on a parallel processor. Thus, for all but highly-regular benchmarks, a user-specified
partition is not likely to yield a more accurate predictor of remote memory accesses than SITA'’s
probabilistic approach.
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section.

e The Smart Superscalar model assumes that any future instructions must be

control-dependent on a current conditional branch, and thus does not allow

Benchmark || Omniscient Fine Coarse Smart
|| Oracle | Dataflow | Dataflow | Superscalar
Tex T 192 5.31 3.04 2.08
Speech 8,105 45.4 6.30 1.80
Espresso 1,224 2.81 1.78 1.47
Eqntott 43,298 2.24 1.66 1.46
Fpppp 4,978 1,179 52.7 30.1
Tomcatv 8,417 6,014 19.2 19.1
Doduc 615 566 32.8 4.92

Table 2.2: Effects of Control Dependence

that code to run before the current branch has been executed.

e The Coarse Dataflow model performs procedure separation; thus, conditional

branches only affects future code within the same procedure call.

e The Fine Dataflow performs full control-dependence analysis, as described in

Section 2.1.2.3

e The Omniscient Oracle model pays no attention to control dependences when

scheduling code.

The results of these experiments are shown in Table 2.2. All show very high levels
of parallelism under the Oracle model. However, for lesser models, there are signif-
icant differences between the performances of the non-numerical applications (the
first four) and the performances of the numerical applications. The non-numerical
applications show a severe loss of parallelism when all true control dependences
are obeyed, especially Tex and Eqntott. The numerical codes, on the other hand,
continue to have high levels of parallelism with the Fine Dataflow model. This is
because their control structures tend to be very simple and not dependent on the
data computed, e.g., a loop with fixed bounds rather than a loop whose continuation

depends on data computed within the loop body.

3This is similar to the CD-MF model used by Lam and Wilson [77].
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Bench- [ Omni. || Tree | % of || Linear | % of | Frugal | % of || Smart [Stupid | % of
mark Ora. || Ora. | OO | Ora. | OO || Ora. | OO | Super.|Super. | Smart
Tex 192 || 75.8 | 39.4] 167 |86.9] 715 |37.2] 2.08 | 1.66 | 80.8
Speech 8,105 || 136 |1.68(| 57.1 {0.70( 53.6 |0.66| 1.80 1.62 | 89.9
Espresso || 1,224 || 126 | 10.3|| 906 |74.0]| 124 |10.1) 1.47 1.37 | 93.2
Eqntott |143,298({1,742]4.02 || 1,314 [ 3.03 | 1,314 {3.03 | 1.46 1.43 | 98.2
Fpppp 4,978_;4,978 100 jf 71.0 {143} 709 (142} 30.1 2.88 | 9.56
Tomcatv || 8,417 || 457 |5.43| 155 |[1.84| 155 |1.84| 19.1 2.74 14.3
Doduc 615 614 [99.7} 25.0 |4.06] 25.0 [4.06| 4.92 233 | 474

Table 2.3: The Effects of Frugal Use of Memory

The numerical applications suffer their greatest geometric loss when going from
the Fine Dataflow to the Coarse Dataflow model. This is mostly because they
contain two-dimensional loops. As the DCDT in Figure 2.3(c) shows, control-
dependence analysis often allows outer loops to run concurrently. Without this
analysis, all iterations must run in sequence. Control-dependence analysis is less
important for non-numerical applications; only Speech shows a loss greater than
50%.

2.2.2 Register/Memory Renaming Experiments

The second set of experiments measured how parallelism is affected by the reuse
of registers and memory. The SITA tool allows separate control over the renaming
of registers and of stack and heap objects.! The first three experiments were with
“frugal oracles.” These oracles are just like the Omniscient Oracle, but they don’t
have full memory-renaming capability. The Tree Oracle allows renaming of stack
variables, to measure the limits of parallelism exploitable by a machine using a tree of
stacks or some equivalent implementation, but does not allow renaming in the heap.
The Linear Oracle retains the linear stack model, by not allowing stack elements to
be renamed, but allows renaming in the heap. The Frugal Oracle has no memory
renaming. The results of these experiments, shown in Table 2.3, demonstrate the
importance of avoiding false dependences between operations that reuse memory

objects.

‘In this study, “heap” includes both dynamically-allocated and global (static) variables.
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One final model, the Stupid Superscalar, tests the benefits of renaming and dis-
ambiguation at the “low” end of the scale. The Stupid Superscalar is like the Smart
Superscalar, but has neither memory disambiguation nor register/memory renam-
ing.5 Results for this model are given in the rightmost two columns of Table 2.3.

Both superscalar models have the property that a conditional branch affects the
scheduling of all future instructions. Thus, these machines can generally only find
parallelism within basic blocks. Indeed, the rightmost column of Table 2.3, which
gives the performance of the Stupid Superscalar relative to the Smart Superscalar,
shows that for irregular code, renaming and disambiguation by themselves produce
little benefit. Only Fpppp shows a big gain when renaming and disambiguation are
added, probably due to its large basic blocks and regular code structure. For codes
with frequent branches, we must go to more aggressive models, such as the Fine

Dataflow model.

2.2.3 Finite Window Experiments

The next set of experiments demonstrate that restricting the choice of instructions
to execute to a small “window” of instructions near a single program counter can
significantly reduce parallelism. Two experiments were run, each with an Omniscient
Oracle whose window has been restricted as described in Section 2.1.3. Window sizes
of 64 and 2,048 were used. The results, shown in Table 2.4, show that even with a
2K window, there is a significant loss of parallelism.

Additional experiments measured the effects of finite window sizes for less-
capable machine models {117, 116]. In most cases, restricting the window size down
to 64 ops had little effect on such machines, because their other limitations already

restricted parallelism to a high degree.

2.3 Speculative Execution and SITA

The data in Table 2.2 shows that, at least for non-numerical applications, there

is a large gap between what could be achieved by an ideal machine with perfect

5The Stupid Superscalar is similar to Wall's “Stupid™ model [128}, except that Wall’s model was
limited to 64 processors, and could only schedule operations from within a window of 2,048 instruc-
tions. These limitations, however, had almost no additional impact on the Stupid model, since
register and memory reuse, control dependences, and lack of memory disambiguation generally
removed almost all available parallelism except that within basic blocks.
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Benchmark || Omni. | 2Kops | % of || 64 ops | % of

Oracle || Window | OO {| Window | OO
Tex 192 62.1 323 12.2 6.37
Speech 8,105 90.5 1.12 124 .154
Espresso 1,224 33.1 2.86 12.9 1.05
Eqntott 43,298 141 325 19.6 .045
Fpppp 4,978 75.6 1.52 15.8 317
Tomcatv 8,417 86.4 1.03 22.6 .268
Doduc 615 104 16.9 11.4 1.85

Table 2.4: The Effects of Finite Window Size

knowledge of every branch outcome, and what could be achieved by a machine which
is affected by control dependences. This observation and others have generated
increasing interest in getting more parallelism from programs through speculative
erecution. This means executing the code at one or more destinations of a branch
before the branch outcome is known.

This has primarily been used to try to prevent branches from disrupting long
execution pipelines, as in superscalar machines. For instance, some machines use the
past history of branches to predict the most likely destination and prefetch along that
path. Various branch prediction techniques have been developed [78, 97, 105]. Some
machines speculate further ahead; one superscalar uses boosting [106] to speculate
past a branch many instructions before it is resolved, using “shadow registers” to
maintain two program states, which are made consistent once the branch has been
resolved.

With this in mind, we developed a model of speculative execution appropriate for
highly-parallel computers, and a new model of branch prediction appropriate for this
new model. This led to a new set of experiments with the goal of understanding the
interaction of speculative execution and branch prediction, how they affect program
parallelism, and what kinds of speculative execution and which branch prediction

strategies lead to the highest potential amounts of parallelism.
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2.3.1 Adding Speculative Execution to the DCDT

Ideal parallel execution of programs which use control-dependence analysis to max-
imize parallelism are modeled using the Dynamic Control Dependence Tree, de-
scribed in Section 2.1.2. The CDG and the corresponding DCDT can be used to
create a model of parallel execution in which the effects of control dependence are
minimized. In the earlier section, as a CDG was “unrolled” into a DCDT, vertices
in the CDG were successively control-enabled, and each new “enabling” of a node
corresponded to a node in the DCDT. Time can be added to this model. We can
say that a node begins execution as soon as it is control-enabled, and that its chil-
dren (if any) are control-enabled some time later, after its branch or jump has been
completed. We say that an instance of a block is resolved at the time that its branch
or jump has been computed. (This could occur before all instructions in that block
have completed, if the instructions are reordered so that the branch predicate is
computed before the end of the block.)

The Fine Dataflow model, described in Section 2.2.1, is the base case of a machine
with control-dependence analysis, but no speculation. For this reason, it can also be
called a 0-Level Speculator [119]. Suppose a machine begins running according to
the model, and starts executing blocks 2, 3, and 4 at the same time. If the branch in
block 3 is taken (destination is 3), then another instance of block 3 will be initiated.
A 0-Level Speculator would have to wait until the first instance of block 3 is resolved
before starting another iteration.

However, a speculative machine could assume that the branch at block 3 will
be taken, and start executing the next iteration of the inner loop before the first
branch is resolved. Simultaneously, it may start new occurrences of blocks 2, 3, and
4 before the first occurrence of block 4 has finished. This would be an example of
1-Level Speculation. In general, an n-Level Speculator speculatively executes blocks
up to n conditional branches past the last resolved conditional branch, i.e., from
each resolved branch in the DCDT, it generates the descendants of that branch in
the DCDT, down n + 1 levels (the first level requires no speculation) and begins
executing all blocks in parallel.

There are two general techniques for predicting the outcome of a branch: static
and dynamic. Static prediction assigns a most likely outcome to each branch or
jump in the object code, and this prediction is made every time that particular

instruction is executed. This prediction can be based on the direction of a branch
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(e.g., backwards branches are always taken and forwards branches are never taken)
or on statistics gathers from a sample run of the program.

A dynamic predictor guesses the outcome of a branch or jump by looking at the
outcomes of previous occurrences of that instruction, and possible of other related
branches. It is hoped that the predictor can learn from and adapt to changing
branching patterns [78]. The conventional approaches used for sequential processors
were shown to be inappropriate for parallel machines, and a new method of dynamic
prediction, based on the DCDT, was developed [118, 119]. However, experiments
then showed that in almost all cases, static and dynamic prediction produced almost
the same amount of parallelism, so this section only reports on experiments using

static prediction.

2.3.2 SITA Experiments on Speculation

For the experiments, only the first five of the seven benchmarks in Table 2.1 were
used. The last two, Doduc and Tomcatv, show almost no difference between the 0-
Level Speculator (Fine Dataflow model) and the Omniscient Oracle. In both cases,
there are a lot of loops in which the loop predicate is not data-dependent on the body
of the loop (e.g., iteration across a fixed range). In such a case, a 0-Level Speculator
could iterate and test the loop counter as soon as the loop body begins, so one loop
iteration could begin every few cycles. Speculating past the test would save only
a few cycles, because the initiation of loop iterations would still be constrained by
the data-dependences involved in the incrementing of the loop counter. Since the
0-Level Speculator and Omniscient Oracle represent the lower and upper bounds of
what could be achieved with speculation, speculation has little potential benefit for
these two applications.

Each of the remaining five benchmarks were run through SITA under an ag-
gressive speculative execution model (see Table 2.5. In this model, the machine
speculates an infinite number of levels past each resolved branch, but only executes
along the branch path chosen by the branch predictor. Like the original Fine Data-
flow machine and Omniscient Oracle, the speculators have unlimited processors,
scheduling windows, and register/memory renaming. The results show that specu-
lative execution can produce significant increases in parallelism. Improvements were

moderate in only two cases: Tex, which does not have much parallelism in any case,
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0-Level Infinite Infinite/ || Omniscient | Oracle/

Speculator || Speculation | 0-level Oracle Infinite
Tex 5.31 36.8 6.93 192 9.14
Speech 45.4 1,192 26.3 8,105 6.80
Espresso 2.81 53.0 18.9 1,224 23.1
Eqntott 2.24 2,625 1,172 43,298 16.5
Fpppp 1,179 4,166 3.53 4,978 1.19

Table 2.5: Speculation Success

and Fpppp, for which the 0-Level Speculator already does so well.

These results assumed that SITA would speculate past an infinite number of
unresolved branches. Since that would be impossible in practice, a new group of
experiments was performed to measure the benefits of speculation when limited to a
finite number of levels. Figure 2.4 shows, for each benchmark, the parallelism result
obtained by SITA when speculation depth was limited to the number on the hori-
zontal axis. Three of the five benchmarks achieved the same level of parallelism with
16 levels of speculation as with an infinite depth. so no experiments beyond 16 levels
were performed. Beyond 16 levels, Espresso showed only minuscule improvements.
Only Eqntott required more than 16 levels to get close to the performance of the
infinite-level model. In fact, most of the benchmarks achieved significant benefits

even from only 2 or 4 levels of speculation.

2.4 Discussion

The SITA studies have shown the parallelism theoretically attainable for various
applications under various abstract architectural models. How applicable are these
studies to future research in parallel machines? What conclusions can be drawn
from these results?

One of the main goals of the SITA studies was to see how much parallelism could
potentially be exploited in various applications. The first question to ask is: how do
the results produced by SITA apply to parallel machines? After all, SITA calculates
parallelism by scheduling the instructions from a trace generated by the execution
of a sequential program. The control structures might be significantly different in a

parallel version of the program.
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Figure 2.4: Finite Speculation Depth

However, SITA allows one to remove many of the artifacts of programming in
a sequential language. All models reported in this section, except the Stupid Su-
perscalar model, assume adequate renaming mechanisms, single-assignment use of
memory, and effective alias analysis, and thus ignore the effects of false dependences.
All models, except those covered in Section 2.2.3, allow code from different parts
of the program, no matter how far “apart” in the sequential sense, to execute at
the same time. As a result, models such as the Fine Dataflow machine were able to
achieve impressive amounts of parallelism for some of the applications.

But this reveals a limitation of these studies. High parallelism was possible under
the numerical applications because the control structures are simple, and they are
not likely to be substantially different in a parallel machine. The non-numerical ap-
plications, on the other hand, are more problematic. We found disappointingly low
amounts of parallelism for some of the irregular programs under the Fine Dataflow
model. Other studies have seen similar results.

However, it is possible that some of the control dependences which throttled the
performance of the Fine Dataflow model on these applications may also be simply
due to sequential programming. Some applications, like Tex, intuitively seem to
have much more potential parallelism than found by our Fine Dataflow model (5.31)

or Lam and Wilson’s similar Multithreaded model with control-dependence analysis
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(6.18) [77]. This program performs the layout of an 11-page document, and it would
seem that each paragraph could be formatted independently, with its final vertical
position determined at the end of the program. Obviously, there are control and
data dependences which prevent this from happening, but many of these may be due
to the programmer’s assumption of a sequential execution model, not to inherent
sequentiality in the application.

This has important implications for future directions in architecture. It is some-
times believed that to exploit maximum parallelism, we only need to rewrite existing
algorithms in a better language, such as a functional language, so that an efficient
compiler can extract all the available parallelism without being burdened by such
sequential artifacts as memory reuse. But the Fine Dataflow model gets poor re-
sults, even though it eliminates false data dependences, and represents what could
be achieved by an efficient parallel running well-compiled programs.

This would suggest that in many cases, large-scale parallelism will not be
achieved merely by rewriting existing imperative-language programs in different
languages. They must be redesigned completely, starting at the algorithmic level.
Whether this is best done by having the programmer write programs with an explicit
parallel machine model in mind, or use a more abstract programming paradigm, such
as logic programming, is an interesting and ongoing area of research.

In some cases, the Omniscient Oracle may give a hint of what could be achieved
with a suitably-programmed parallel machine. Our oracle models, like oracles in
other studies [90], ignored control dependences entirely. While the results obtained
from the oracle are an upper bound, and may be unrealistically high, we believe
that suitably-designed programs with appropriate parallel algorithms can get par-
allelism results which are much closer to the oracle. As an example, consider the
Eqntott program. This program is dominated by calls to a quicksort routine, which
is inherently sequential. The control dependences force the swapping of elements on
either side of the pivot element to occur sequentially. Removing these control de-
pendences, as the oracle does, permits most of these swaps to occur in parallel. The
only serializing is between different levels of recursion in quicksort; this serializing is
caused by the flow dependences. But this behavior represents what would happen
under an efficient parellel sorting algorithm, which would allow many swaps on the
same level of recursion to occur simultaneously.

If such changes are impractical, then one should consider some sort of speculation

35



for programs with irregular control flow. SITA showed that this can significantly
improve program performance.

One other important result from the SITA studies was the importance of execut-
ing code from different sections of the program at the same time. Performance was
severely degraded when instructions for parallel execution were limited to a small

1

window near a single “program counter.” This is because the parallelism within a
basic block is limited (as shown by the performance of models such as the Smart
Superscalar, which only has good results for programs with unusually large basic
blocks such as Fpppp). This does not bode well for machines with a single thread
of control, such as the superscalar and VLIW machines, and suggests a reason for
their poor IPC ratings as reported in Section 1.1.

To come closer to the performance levels suggested by SITA, architects will need
to consider execution models which permit greater flexibility in the scheduling of
parallel instructions. The next section describe two such models, the dataflow model

and the multithreading model.
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Chapter 3

Predecessors of EARTH

Section 1.2 identified several key issues which designers of multiprocessors need to
face, such as latency, synchronization, and programmability. It was argued in pre-
vious chapters that SIMD and MIMD approaches to parallelism do not adequately
solve all of the major problems. It is our belief that multithreaded architectures
derived from dataflow principles have the potential for addressing the problems
inherent in these other machines, thereby fulfilling the promises of efficient multi-
processing.

This chapter traces the evolution of ideas leading to the EARTH system. The
EARTH program execution model, presented in the next chapter, can trace its
roots back to the dataflow machines designed at MIT in the 70s and 80s. Therefore,
Section 3.1 surveys dataflow concepts and traces the evolution of dataflow machines,
focusing on those that can be considered ancestors of EARTH. Experience with real
dataflow machines have shown that certain properties make efficient implementation
difficult, as shown at the end of Section 3.1. Recognition of these shortcomings have
led to attempts to combine dataflow with traditional von Neumann processing. in
a way which allows characteristics of each model to compensate for weaknesses in
the other. This is covered in Section 3.2, which includes a survey of multithreaded
machines most relevant to EARTH.

Multithreaded machines based on conventional von Neumann principles, rather
than dataflow, have been investigated for a long time and are still an ongoing area

of research. Some of these machines are surveyed in Chapter 9.

37



3.1 Dataflow Machines

Dataflow machines [41, 47] are a radical break from traditional von Neumann com-
puters. The latter have a single program counter which determines which instruction
to execute next. This imposes a total order on the instructions. The order in which
two instructions are executed is fixed, even if there are no dependences between
them and a tool like SITA (see Section 2.1) would say that they could execute in
either order or at the same time. In the dataflow model, on the other hand, there
is only a partial order between instructions. The fundamental principle of dataflow
is that any instruction can be executed as long as its operands are present.

Programs are represented abstractly by dateflow graphs, which capture this con-
cept. Dataflow graphs are covered in the first subsection. The remainder of this
section describes various designs for machines that execute programs based on data-
flow graphs.

Traditionally, the two major classes of dataflow machines have been static and
dynamic. These are covered in separate sections. Both of these classes have specific
weaknesses, and attempts to eliminate these deficiencies have led to a convergence of
the two classes. They are identified in this paper as semi-dynamic and are covered in
the last section. One of the static designs, the argument-flow machine, is described
in detail (in Section 3.1.2). For the other machines, it is only necessary to point out

how they differ from the argument-flow machine.

3.1.1 Dataflow Graphs

A dataflow graph is a directed graph. The vertices are called actors and the edges
are called arcs. An arc from node X to node Y is called an output arc of node X
and an input arc of node Y. Some special edges do not have nodes at both ends.
These are called input arcs, or output arcs, of the graph if the beginning of the arcs,
or the end of the arcs, respectively, are not connected to any actors.

Figure 3.1 shows a dataflow graph which computes the product of the complex
numbers (a + b2) and (c + di). There are four input arcs (the real and imaginary
components of the two numbers) and two output arcs. A token, drawn as a black
dot in the figure, represents one unit of data. The figure shows a complete set of
tokens at the input arcs. The “dataflow” is represented by tokens flowing through

the graph.
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Figure 3.1: Dataflow Graph for Complex Multiply

The tokens flow according to set rules. Arcs simply propagate tokens from the
output of the actor at the source end of the arc to the actor at the destination
end. If an arc forks, the token is replicated and propagated to each destination. An
actor moves tokens along by “consuming” tokens appearing at its input arcs and
producing tokens on its output arcs. This is called “firing” an actor. Each actor
has a set of conditions indicating when and how it may fire, called the firing rules.
These rules include the requirement that there be tokens on a pre-defined subset
of an actor’s input arcs (usually the whole set). When an actor has met all the
conditions of its firing rule, it is said to be “enabled.” When the enabled actor does
fire, it removes the relevant tokens at its inputs and places tokens on some or all of
its outputs.

The most common actors are simple arithmetic operations, such as add and
multiply. These actors have simple firing rules: all input arcs must have tokens
present, and when the actor fires, all input tokens are consumed. Dataflow graphs
also contain actors with specialized firing rules used to support conditionals and
function calls [8, 24]. With the addition of these actors it is possible to support
loops and other such high-level constructs.

Dataflow machines are divided into two general classes, static and dynamic,
based on the relationship between tokens and arcs [109]. In a static architecture,
two tokens cannot occupy the same arc at the same time. Therefore, the firing rules

include a stipulation that all output arcs which would receive tokens must be empty,
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Figure 3.2: Execution of Complex Multiply

so that they have room to receive the new tokens. In a dynamic architecture, there
may be many tokens on an arc at a given time. These tokens represent the results
of different calculations using the same instructions (e.g., different iterations of a
loop, or different invocations of the same function). It is necessary to differentiate
between these tokens, so that two tokens representing different calculations do not
get mixed together. Therefore, each token is given a tag (or color) [8], which iden-
tifies the function instance and/or iteration number, and the firing rules include the
stipulation that all tokens to be used in one firing of the actor must have identical
tags.

Figure 3.2 shows how an execution might proceed on the graph in Figure 3.1, if
static firing rules were used. The diagrams show four successive states of the graph,

representing the following stages of computation:

1. The tokens are propagated to the multiply actors, enabling them.

40



2. Each multiply actor may fire, producing a token at its output.

3. Once the input arcs have cleared, new tokens may be put there. However, the
multiply actors may not fire, because their output arcs are occupied.

4. Once the addition actor fires, two multipliers may fire, but the other two
remain blocked by their occupied outputs.

Execution will continue until two pairs of tokens are taken from the output arcs.

The example above is a very simple graph. Graphs corresponding to actual
useful programs are much larger, and contain loops and function calls. Techniques
exist for converting programs written in high-level languages to dataflow graphs.
Conventional imperative languages can be converted to dataflow graphs, but the
sequential semantics of those languages tends to limit potential parallelism. High-
level languages based on functional language principles, such as Val [23], Sisal [31]
and Id [94], usually generate dataflow graphs with more parallelism.

3.1.2 Static Dataflow

All static dataflow machines share the property that in the dataflow graphs on which
they are based, an arc can only hold one token. Consequently, if there is a section
of a program which is executed repeatedly (e.g., a loop body or a subroutine), the
corresponding section of the dataflow graph cannot allow simultaneous execution of
more than one instance of that code, as the example in Figure 3.2 illustrates. There

are two ways to solve this problem:

e Pipeline the execution of the graph (Figure 3.2 illustrates pipelining, as the
second set of input tokens can start flowing through the graph before the resuit
of the first set of input tokens has been fully computed);

e Replicate the graph.

Pipelining the graph for maximal parallelism requires that the graph have a
structure analogous to pipelined processors. The graph must be organized neatly
into stages, with no internal cycles, and all paths through the graph must have the
same length. Thus, shorter paths need to be filled with “identity” actors that simply
pass tokens along [46, 40).
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. Replicating the graph works well when the number of iterations can be deter-
mined at compile time, as in regular numerical applications, but not when iteration
counts are determined dynamically, e.g., irregular loops or binary recursion. The
tradeoff between static and dynamic datafiow is that static dataflow puts more bur-
den on the software (programmer and compiler), but reduces hardware complexity
because there is no need to check tags.

The following subsections outline the development of static dataflow machines,
starting at MIT in the 70s and continuing at McGill University in the late 80s.

Argument-Flow Machines The earliest proposal for an architecture to execute
dataflow graphs was by Dennis and Misunas at MIT [27]. The basic idea was to
convert a dataflow graph into an essentially isomorphic structure which would be
more amenable to execution on real hardware. Since the main characteristic of
dataflow graphs is that arguments to actors flow on arcs as tokens, machines similar
to the Dennis-Misunas architecture [26, 122] are known as argument-flow machines.!

In an argument-flow machine, each actor is converted to an instruction cell.
Thus, the abstract graph in Figure 3.1 is transformed into an instruction cell program

. (ICP) as shown in Figure 3.3. Each instruction cell has the following elements:

e An opcode identifies the type of function to be performed, e.g., a floating-point

multiply.
e There are storage locations for the operands of each instruction cell.
e Each cell has a destination list, consisting of the result list and the signal list.

— The result list lists the cells which are to receive the results of the com-
putation, and corresponds to the output arcs in a dataflow graph. If the
result list has more than one destination, it corresponds to a split arc in
the graph. Each element of the list must specify both the destination cell
and the position of the specific operand within that cell.

— The signal list is needed to enforce the firing rules for static dataflow
graphs. This rule is enforced by requiring a cell to send an acknowledg-

ment to the source of each of its operands. A signal arc, represented by a

!'This term was not used originally, but was coined later to distinguish this class of architectures
from argument-fetch machines, a newer class described in the next section.
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Figure 3.3: Instruction Cell Program for Complex Multiply

dashed line in Figure 3.3, tells the source cell that the results have been
consumed, which means that the operand storage location is empty and

ready to receive a new datum.

e Finally, each cell has two integer counts, the reset count (Eg in Figure 3.3)
and the sync count (E¢). The reset count specifies the total number of results
and signals which a cell must receive before it can fire. This number does not
change during program execution. The sync count specifies the current num-
ber of results and signals which a cell needs before it can fire. This number
changes and typically ranges from 0 to £r. When the sync count is decre-
mented to 0, the cell becomes enabled (ready to fire). When a cell finally does

fire, the sync count is reset to F'r.

Figure 3.3 shows the initial state of the code, before any tokens have entered.
' (Since sync counts and operands change during execution, a drawing of an ICP

can only represent a snapshot of program execution at a given time.) In this code,
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Figure 3.4: Instruction Cell Program for 2-Input Sort

there are two input arcs labeled a, two labeled b, etc. Since the two arcs labeled
a represent the same value, they actually come from the same cell, which therefore
has (at least) two destinations in its destination list. Both the acknowledgment arcs
corresponding to a (one in each of two mult2 cells) will go to that cell. Each cell
needs two data tokens, and must have room to output one token, so the reset count
of each cell is 3. Because there are no tokens currently in the graph, all output arcs
are free; since this means no further acknowledgement is needed, all sync counts
start at 2.

If maximal pipelining is not needed, then the code may be “linearized” by re-
moving some of the signal arcs, which will lower the number of signais required
during execution. For instance, the sub2 and add2 cells could signal the producers
of the input tokens (a, b, ¢, and d) directly, rather than signaling the mult2 cells.
This would reduce the number of signals needed per iteration of the ICP from 12 to
8. There is a tradeoff, for while this would cut both storage requirements and signal
traffic, the code could no longer be pipelined.

Figure 3.4 illustrates the role of conditional operators in argument-flow dataflow,
by showing one possible implementation of a simple program fragment that sorts
two numbers, producing the larger number at maz and the smaller at min. First,
there are instructions with boolean outputs, such as compare operators. In this
example, the comparison operator produces a boolean token indicating whether or
not z is smaller than y. Second, any ordinary operator can be augmented to accept

a boolean value as an additional operand. In such an augmented instruction, each
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entry in the destination list can be tagged T (true), F (false), or U (unconditional).
When the instruction fires, the special boolean value is used to determine which
result and signal arcs are used. If the boolean input is T, then only the arcs tagged
T or U are used. A boolean input of F selects only those arcs tagged with F or U. In
this example, identity cells (which output their input unchanged) are used to route
z and y to their proper destinations.

Note that there are no signal arcs from the ID cells to the comparison opera-
tor. Since all of these cells depend on the same inputs, the comparison cell can’t
possibly receive any new inputs until the ID cells have consumed the result of the
old comparison and acknowledged their firing to the creators of z and y. Therefore,
there would be no benefit to adding signal arcs from the ID cells to the comparison
cell; no pipelining is possible. Correct pipelining would require additional ID cells
between the creators of z and y and the existing ID cells.

One possible implementation of a processing element (PE) to execute instruction
cell programs is shown in Figure 3.5. The PE can be divided into 4 pipeline stages
arranged in a loop. The path in the main pipeline is drawn with a solid line, while
auxiliary connections (e.g., to memory) are dashed.

There are five types of memory used in a Processing Element:
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e The Operand Memory (OM) has a storage location for every input to every

instruction cell.

e The Instruction Memory (IM) stores the opcodes of the instruction cells. Its
contents do not change during run-time.

e The Destination Memory (DM) contains the result and signal lists for the

instruction cells, which also do not change during run-time.

e The Enable Memory (EM) holds the sync count and reset count of each in-

struction cell.
e The Array Memory (AM) stores large arrays of data used by the program.

Broadly, the non-memory units of the PE make up two main sections: the Cell
Execution section and the Execution Control section. The Cell Execution section
takes cell numbers given to it by the Execution Control section, fetches operands,
and produces results. It is pipelined in a manner similar to the execution units of
modern conventional processors.

What makes dataflow unique is the Execution Control section. In a conventional
processor, instruction execution is controlled by a simple counter with provision
for overriding by a jump instruction. In a static dataflow machine, the Execution
Control section is responsible for sequencing the firing of instructions. It must
propagate tokens from one cell to the next, keep track of how many tokens each cell
has received, and determine when cells are enabled (ready to fire).

The first module in the Cell Execution section is the Cell Fetch Unit (CFU).
The CFU receives a cell number from the Execution Control section, fetches the
opcode from the [M, fetches the operand(s) from OM, and passes the cell number,
opcode and operands to the next stage, the Functional Unit (FU).

The CFU also fetches the boolean control value from the OM. The control tags
in the DM determine whether or not the boolean value has any meaning. If a cell
is not conditional, then all of its result and signal arcs are treated as if tagged U,
and the boolean input will not be included in its reset count value. Therefore, the
CFU can retrieve the boolean bit, and it will be simply ignored by the Execution
Control section if the cell is not conditional.

The Functional Unit (FU) decodes the opcode to determine which operation

to perform on the operands, and decides which functional module is to be used
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to compute the result. There may be several functional modules, such as floating-
point arithmetic units, integer arithmetic units, and boolean logic units. The AM is
accessed as one of the modules. Since some of these modules may be pipelined (e.g.,
floating-point multipliers), the FU must keep track of the scheduling of operations
in the pipelines, in order to match results with the cell numbers that initiated them.
The FU outputs the cell number, the result of the operation, and the boolean control
value which had originally come from the OM.

The Result Unit (RU) is the first module of the Execution Control section. The
RU takes the cell number from the FU and fetches the destination list from the DM.
The RU reads the destination list, and writes the result from the FU into every
location in the OM specified in the list, provided that the tag in the list indicates
the arc is a result arc, and that the tag matches the boolean tag passed along by
the FU. For each entry in the list, result or signal, whose tag matches the boolean
tag from the FU, the RU outputs the specified cell number to the final stage of the
PE. The RU must write a result into the OM before outputting the corresponding
cell number to the next stage.

If the PE is part of a multiprocessor, then the RU also has an interface to an
interconnection network. In this case, cells may transmit results and signals to cells
in other processors. Therefore, the destination list must include PE identifiers in
its addresses. If an entry in the destination list specifies a different PE, a packet is
formed (containing the PE number, cell number, operand number, and the value)
and sent over the network. When a packet is received from the network, the value
is written into the specified operand of the specified cell, and the cell number is sent
to the next stage, just as if it had been in the destination list of a local cell.

The cell numbers from the RU go to the Enable Unit (EU), which controls the
firing of instructions.? When the EU receives a cell number, it decrements the sync
count for that cell. If the result is non-zero, the new sync count is put back into the
EM, as this cell is not yet ready to fire. If the result is 0, the cell is ready to fire.
The EU continuously looks for enabled cells to fire. When it fires a cell, it copies
the reset count of that cell into the sync count, and outputs the cell number to the
CFU. This completes the cycle.

The four units described above form a closed loop, and each is independent of

the others. Therefore, all units can operate in parallel, and each individual unit can

2A prototype Enable Unit chip was designed and tested at MIT [38].
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be pipelined.

An important property to note is that there are no hazards in a proper dataflow
program. Pipelining a conventional processor introduces potential hazards. A read-
after-write hazard, for instance, occurs when one instruction uses the result of a
preceding instruction which is closer than the length of the pipeline. Guarding
against these hazards is a major source of complexity in conventional pipelined
Processors.

However, the dataflow conventions prevent these kinds of hazards in proper
dataflow programs.® In a proper dataflow graph, a read-after-write hazard can’t
occur, because if cell B requires an operand produced by cell A, then A must signal
B directly or signal a chain of intermediate cells which signals B. In either case, B
cannot fire until the RU has sent B’s cell number to the EU, which will eventually
fire B). However, the RU will not send B’s cell number to the EU until it has written
the result of A’s operation into the OM, so that B is guaranteed to read the proper

data value.

Argument-Fetch Machines One shortcoming of the argument-flow implemen-
tation is the need for excess storage for and copying of operands. For instance, the
complex components in the program in Figure 3.3 must be duplicated. The storage
overheads in the sort routine in Figure 3.4 are even worse due to the identity cells;
if maximal pipelining were not required it would be more efficient if z and y could
be compared, and swapped in place if necessary.

Argument-fetch dataflow was proposed as a way to address this weakness. In
an argument-fetch machine, data values are not attached to specific cells, but can
be stored anywhere in the OM. This means that instruction cells must contain
references to those locations. Data no longer “flows” from one cell to another; only
signals flow. The program in an argument-fetch machine looks much less like a
dataflow graph, though it is functionally equivalent if it is constructed properly.

The components of an argument-fetch processor are similar to the argument-flow
PE shown in Figure 3.5. They differ in the following ways (terms from Section 3.1.2
are used even though they may be named differently on other machines):

e Each instruction must specify the address or addresses in the OM where the

3Loosely speaking, a proper dataflow program is one which is isomorphic to a classical dataflow
graph, meaning, for instance, that no operation reads an operand until being signaled (directly or
indirectly) by the producer of that operand, and the program is fully determinate.
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operands for this instruction are located. The Cell Fetch Unit must perform

this fetch operation as well as fetching the original instruction.

e The Result Unit no longer has to write multiple copies of the result. Instead,
it writes it to a specific place in the OM, a location encoded in the instruction.
It still requires a destination list to teli successive cells that their inputs are
ready and to tell preceding cells that they can overwrite their previous results,
but these are now purely signals. They go directly to the Enable Memory and

have no effect on memory.

e The interconnection network may or may not support the argument-fetch prin-
ciple. Fetching an item stored in a remote PE requires either performing a
round-trip through the network or adding support for shared memory. Al-
ternately, one could require that interprocessor transfers be done according
to argument-flow principles, which would make network transfers simple and

fast, but at the cost of not having a single paradigm cover the entire machine.

These changes in the execution pipeline make the Cell Execution section (CFU
and FU) act more like a regular RISC pipeline. In 1988, the CFU, FU, and result-
writeback part of the RU were combined into a single unit, the Pipelined Instruction
Processing Unit (PIPU), and the remaining stages were combined into the Dataflow
Instruction Scheduling Unit (DISU) [25]. Essentially, those features of the argument-
fetch machine which are unique to dataflow were placed in the DISU, leaving the
PIPU with all the normal RISC-like features. This made it feasible to implement
the PIPU with a standard RISC pipeline unit with minimal modifications.

At the interface between the two halves, the DISU sends cell addresses to the
input of the PIPU, much as the EU sends cell IDs to the CFU in Figure 3.5. When
the PIPU has finished executing a cell, it writes the computation’s result back into
the OM and sends the cell identifier back to the DISU. The DISU then looks up the
signal list for that cell and updates the sync counts of all affected cells.

This is a natural division for a dataflow processor. The PIPU performs the
actual execution of each dataflow instruction, while the DISU is responsible for
all the synchronization. This division of labor has since been used in other data-
flow/multithreading systems, including EARTH.
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3.1.3 Dynamic Dataflow

One shortcoming of static dataflow is that multiple loop iterations and multiple calls
to the same function are not possible unless code is explicitly replicated at compile-
time. Dynamic dataflow addresses this problem by allowing simultaneous use of
one section of dataflow code by more than one computation. This is equivalent to
allowing more than one token to be on an arc of a dataflow graph at the same time.
For instance, the 2 x 2 sorting code fragment in Figure 3.4 could be used as the basis
for a larger sorter using binary recursion. On a dynamic dataflow machine, a large
sort problem could be decomposed into a large number of 2 x 2 sort operations, and
all of these could be entered into the same piece of code. Many 2 x 2 sorts could be
executed concurrently (subject to flow dependences).

Data values can no longer be stored in specific slots in memory, as in the
argument-flow and argument-fetch machines. Their storage must be as dynamic
as the code itself. The solution is to keep data bound to the tokens all the way
until they are ready to be consumed. (By contrast, the static machine in Figure 3.5
separates data from control in the Result Unit, which writes result values to the
OM while sending the corresponding signals to the Enable Unit.)

It is also necessary to keep the various computations from interfering with each
other. To keep them apart, each token has a tag. This tag, first proposed for
the U-Interpreter (or Unraveling Interpreter) [8] has fields identifying the specific
instruction in the code which is to receive the token, as well as which operand
it is (“left” or “right”; all operations are monadic or dyadic). This is similar to
the argument-flow machine. However, there are two additional fields, one which
can uniquely identify different occurrences of the same function body, and another
which can identify different iterations of a loop. Whenever a function is called, a
new tag field for that function is created. Thereafter, tokens created within that
function bear that field, except those tokens explicitly being returned to the calling
function. Similarly, the first iteration of a loop is given an iteration field of 1, and
special explicit instructions are provided for generating new tags with an iteration
field which is 1 higher.

The Tagged Token Dataflow Architecture (TTDA) [10], based on the U-
Interpreter, has a pipeline structure similar to Figure 3.5, with the following im-

portant differences:
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e Instead of an Enable Unit, there is a Waiting-Matching Section which con-
tains an associative token-matching memory. Tokens generated as the output
of dataflow instructions go into this stage (possibly after going through the
interconnection network). When a token goes into this stage, the associative
memory checks to see if the other token corresponding to the incoming token
is already there. If it is, then both data values are retrieved and passed to the
next stage of the execution pipeline. If the other one is not yet there, the new

token is placed in the memory to wait for its partner.

e The Result Unit does not write directly to memory, but merely generates
tokens with the data values included, and sends these to the Waiting-Matching

Section.

While the TTDA has been simulated, other machines based on the same concepts
have been built. These include the Manchester Machine [48] and the Sigma-1 [55].

3.1.4 Semi-Dynamic Dataflow

The static dataflow machines in Section 3.1.2 are not able to reuse the same code
to execute several instantiations of that computation at the same time. This makes
it impossible to execute something as simple as a binary-recursive function,* even
sequentially. If function f calls itself, tokens belonging to the caller must remain in
the instruction cells for f, which prevents a clean execution of another instance of f.
Dynamic dataflow, as described in Section 3.1.3, allows simultaneous reuse of code
blocks, permitting full exploitation of parallelism in recursive functions and loops.
However, this flexibility comes at a high price: the associative token-matching logic
is simply too complex to be used in a practical machine [98].

Proponents of both static and dynamic dataflow have addressed their respective
shortcomings by adding features which amount to a convergence of the two styles
of computing. All of them essentially use static dataflow rules within a function
and dynamic dataflow to schedule functions, which basically allows parallelism to
be exploited in recursive functions, but not in loops. We propose, therefore, that
machines fitting this description, such as the three designs surveyed here, constitute

a separate class called semi-dynamic dataflow machines.

4Tail recursion can be converted to an appropriate loop.
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In the multiprocessor proposed by Rumbaugh [99], functions are executed on sep-
arate processors called activity processors. Each activity processor has local memory
which holds the state of one function invocation. called a procedure activation, which
contains instructions, sync counts and room for operands for one function invoca-
tion. Within a function body, the activity processor acts much like a static dataffow
machine. Only one function may be run on an activity processor at a time, so if a
function is called (using the Apply operator), the called function must be started on
another processor. The new processor initializes its local memory with a procedure
activation for that function, and begins executing that function. The new procedure
activation has a pointer to the caller so that it knows where to return the value of
the function. Thus, at any point in time the program state is represented by a tree
of procedure activations. If a function is called and no processors are available, an
existing procedure activation must be swapped out into an auxiliary swap memory.

The Monsoon multiprocessor built at MIT [98] evolved from the dynamic TTDA
(see Section 3.1.3). Thus, its internal synchronization is more similar to dynamic
dataflow than to static dataflow. When a function is called, an activation frame
is allocated from general-purpose memory. If a function has n instructions, then
the frame holds an n x 2 array of values, each value tagged with a full/empty bit.
Each token includes the address of the base of its activation frame. All instructions
have only one or two operands. Together, these features ensure that any legally-
generated token corresponds to a specific place in memory, and if that operand is
part of a dyadic instruction, then the other operand is easily located. Therefore,
synchronization is straightforward. There are neither sync counts nor an enable
unit, just a simple mechanism that goes directly to the right place in memory and
checks the full/empty bit of the other operand if necessary.

The McGill Data Flow Architecture (MDFA) [42] is an enhanced version of the
argument-fetch machine described in Section 3.1.2, designed to address the lack of
recursion in static dataflow. Like the argument-fetch machine, the MDFA performs
dataflow scheduling in the DISU and instruction execution in the PIPU. The MDFA
processor includes a new unit, the Memory Overlay Manager (MOM), which handles
frame allocation. When a function is called, the MOM allocates a frame from
memory and sends the frame’s base address to the DISU. Thereafter, tokens in that
function invocation are tagged with this address. The frame itself contains sync

counts and local variables. All addresses for sources and destinations of instructions
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are coded as offsets from the base of the frame, and the actual base address is added
to these offsets at run time by the PIPU.

3.1.5 Problems with Dataflow

The dataflow machines discussed in this section offer superior primitives for fine-
grain synchronization. However, these synchronizations aren’t free, and the cu-
mulative cost of fine-grained synchronization can be quite high [36, 62, 88]. For
instance, if most operations in a dataflow program are dyadic, then an average of
two synchronization events must occur for every instruction executed. Simulations
on the MDFA have demonstrated the negative impact on program performance of
too many fine-grain synchronizations [62].

Another problem that results from requiring synchronizations between individ-
ual instructions occurs when the program reaches a sequential section and, due to
dependences in the application, there are no other instructions outside of this sec-
tion to execute. If a dataflow execution pipeline such as the one in Figure 3.5 has
n stages (meaning that if cell A signals cell B, and B has a sync count of 1, then
a minimum of n cycles elapse from the time A is fired to the time B is fired), then
the processor utilization while executing a purely sequential piece of code (e.g., flow
dependences between every pair of successive instructions) is only ;’;

A further shortcoming of dataflow machines is that they do not exploit locality
effectively (88, 89]. As described in Section 1.2.1, single-thread processors exploit
the fact that most data have short lifetimes, meaning most data are consumed and
discarded shortly after being produced. Therefore, single-thread processors can keep
most data in a small set of registers, which can be placed close to the execution pipe
and consequently made fast. Though experiments have shown that such locality
also exists in dataflow programs [89], this locality is much harder to exploit in a
dataflow processor, because the indeterminate order of instructions will increase the
average lifetime of each datum, and make it impossible for a compiler to analyze
and predict these lifetimes. This is borne out by reviewing the dataflow machines in
the previous section. The space required to hold the operand memory in Figure 3.5
or any of the equivalent structures in the other programs is much larger than the
size of the register sets in a typical RISC processor. Requiring the execution pipe

to have fast uniform access to such a set can force a reduction in the clock speed
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because of longer delays in the data paths.

3.2 Hybrid Von Neumann/Dataflow Machines

Hybrid von Neumann/dataflow architectures [64] seek to reduce fine-grain synchro-
nization costs and improve use of locality in dataflow architectures by combining
dataflow actors into threads, or, alternately, to add latency-tolerance and efficient
synchronization to conventional multithreaded machines by adding dataflow syn-
chronization to the thread model. Hybrid machines use a dataflow-like form of
synchronization, but combine two or more dataflow actors into a thread which is ex-
ecuted sequentially, as in a multithreaded machine. This “threading” of the dataflow

code leads to several benefits:

e The number of synchronizations between dataflow actors is reduced by a factor
equal to the average number of instructions per thread. For even a small thread
size, this reduces the cost of instruction synchronization from substantial (even
greater than the cost of the computation itself) to manageable. There are
collateral reductions in the signal lists and the space used for sync and reset

counts.

e By running a sequential thread, the processor can keep intermediate results
in a conventional set of registers, both increasing speed and decreasing the
memory needed to hold the program state (the operand memory in a static

dataflow machine or the activation frame in a semi-dynamic dataflow machine.

The Super Actor Machine at McGill followed the MDFA (see Section 3.1.4)
and was designed to address the problems encountered with the MDFA (and with
dataflow in general). This machine may be considered the closest to an immediate
ancestor of EARTH, and is discussed in detail in the next subsection. This is
followed by a brief survey of other multithreaded machines and models which are

derived from dataflow principles.

3.2.1 The Super Actor Machine

The Super Actor Machine (SAM) [56, 62] approaches the problem of making a hybrid
design from the dataflow side, so it is primarily dataflow-oriented. A program is
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written in a high-level language and converted into a dataflow graph using one of
many available translators. An algorithm is used to analyze the graph and combine
dataflow actors into multiple-actor units called super-actors [62]. The algorithm
attempts to minimize the number of synchronization arcs that cross super-actor
boundaries. The super-actors are then translated into threads that can be loaded
into the SAM.

Internally, the SAM has a pipelined execution unit and a dataflow scheduling
unit similar to the PIPU and DISU of the argument-fetch dataflow machine. The
bulk of data is stored in a standard main memory. An additional unit handles
remote accesses.

An innovative feature of the SAM is its Register Cache. The execution pipeline
has several sets of registers, only one of which can be accessed by a given thread.
A thread accesses its assigned register with short bit fields, as in a regular RISC
processor. While the thread is accessing these registers, another unit of the SAM
can be filling other registers with values that will be accessed by a thread that will
run later.

The benefit of this is the elimination of local memory latencies. The standard
dataflow scheduling paradigm eliminates busy-waits because consumers are not en-
abled until all their inputs are ready. However, this does not guarantee that all
inputs are immediately accessible to the execution pipe. Failure to guarantee this
could cause load stalls when a thread tries to access something which is in main
memory. (Dataflow machines get around this problem simply by assuming that
all operand memory is quickly accessible, an assumption we argued against in the
previous section.)

The SAM solves this problem by adding extra states to the normal dataflow actor
states (not-enabled and enabled), as shown in Figure 3.6. First, because threads will
take much longer to execute than simple dataflow actors, there is an “active” state
which says that the super-actor is currently in the execution pipe. More important
is the distinction between the “enabled” and “ready” states. When the last required
input reaches a super-actor, the scheduling unit changes its state from “dormant”
to “enabled,” as in a conventional static dataflow machine. However, the inputs
will be located in the processor’s main memory, and would cause load stalls in the
execution pipe if they were accessed directly. Therefore, when a super-actor becomes

enabled, an auxiliary unit takes an unused set of registers from the Register Cache
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and begins copying the data from main memory to this set. When all inputs have
been loaded into the registers, the super-actor enters the “ready” state, there to wait
until eventually being executed by the execution pipe. While the super-actor is in
the “ready” state, the register set assigned to it must wait and cannot be deallocated.
When a super-actor has finished, it goes back into the “dormant” state.

3.2.2 Other Dataflow-Based Multithreaded Machines

The Multi-Level Execution model [88] was an early proposal designed to address
the problems of high synchronization overheads in pure dataflow. In this model,
individual scalar actors in a dataflow graph are combined into macro-actors to
amortize synchronization overheads. Macro-actors are matched and synchronized in
a Matching Store Unit similar to the Waiting-Matching Section of the TTDA (see
Section 3.1.3). Internally, these actors are converted to microcode and executed
on parallel functional units using ordinary registers with forwarding logic. The
execution of macro-actors is similar to the execution of sequential code on modern
multi-issue superscalar processors.

The Hybrid Multiprocessor [64, 63] combined dataflow ideas with sequential exe-
cution to define a hybrid model. This eventually led to Empire, a multithreaded ar-
chitecture project at IBM. This architecture uses local frames, like the semi-dynamic
dataflow machines in Section 3.1.4. Frame locations have presence bits indicating
whether or not the data is valid, and if a thread tries to read an invalid location., it is
suspended until the location is filled. Other features include processor ready queues
with process and packet priorities, and support for efficient process migration to
facilitate dynamic load balancing.

Another descendent of the MIT dynamic dataflow work is P-RISC [92], in which
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sequential threads are controlled with fork and join primitives. The P-RISC pro-
posal explored the possibilities of constructing a multithreaded architecture around
a RISC processor. The synchronization primitives were to be controlled by special
multithreading instructions added to a regular RISC processor.

The Datarol processor [5] is a dataflow processor in which each instruction ex-
plicitly identifies its successor instruction(s). Registers are used for short-term stox-
age. Its successor, Datarol-II [67], combines instructions into sequential threads,
but gives each thread its own set of registers. Each thread has a list of successors
which are signaled when the thread is finished: the successors are associated with
dataflow-style counters for controlling threads.

The EM-4 [102] is based on dynamic datafiow principles, but uses frames for
local variables, and connects instructions within “strongly connected” subgraphs of
a function body into sequential threads. Continuation of this research has produced
the EMC-Y processor [70]. The RWC-1 project [101] of the Real World Comput-
ing Partnership in Japan aims to build multithreaded multiprocessors with RICA
(Reduced Interprocessor Communication Architecture) nodes. A RICA node has a
custom microprocessor with a superscalar RISC core and embedded mechanisms for
fork-join thread synchronizations.

One characteristic of all the preceding designs is a custom processing unit. Be-
cause of the difficulties of building processors with performances approaching today’s
commodity sequential processors, particular for academic and research groups, only
the EM-4 (among the list above) has actually been built. However, there are other
projects which have looked at supporting dataflow-based multithreading with off-
the-shelf technology.

*T [91] is a multithreaded design which, like the Argument-Fetch machine (Sec-
tion 3.1.2), separates dataflow-like synchronization and instruction execution into
different units. The difference is that these units are implemented with off-the-shelf
microprocessors, both of which are user-programmable. A follow-on architecture
called *T-NG [7] specifies the addition of a network interface unit to each of four
PowerPC 620s in a “site” where a multiprocessor system consists of many sites.
Built-in snoopy mechanisms in the processors are used for cache consistency in a
site, while the tasks for cache consistency between sites are relegated to one of the
four processors in a site. The same processor dedicated to inter-site cache consis—

tency is responsible for handling split-phase memory requests and synchronizations.
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A completely different approach to multithreading is to build a translator for
converting multithreaded programs into code which can be run fairly efficiently on
off-the-shelf processors, rather than trying to specify a custom architecture. One
example of this approach with dataflow roots is the Threaded Abstract Machine
(TAM) [21]. TAM uses a tree of activation frames, like many of the semi-dynamic
dataflow machines, but the memory hierarchy is tailored to standard multiprocessor
hierarchies. Furthermore, synchronization between threads (e.g., passing data or
signals) is done in software, using inlets, small user-programmable message handlers
included in every function. Both conventional and functional languages are trans-
lated to an intermediate language TLO, which is then compiled for one of several
target machines.

This software-based approach yields results quickly, as a translator can be de-
signed and implemented much more quickly than a custom processor. Other parallel
systems using this approach are covered in Chapter 9. It is also shown in Chapter 7
to be one way of implementing our EARTH model.
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Chapter 4

Definition of the EARTH Model

The previous section presented many possible designs for parallel computer systems.
In an ideal world, our desire would be to implement one of these, optimizing all com-
ponents of the system for achieving large-scale parallelism. In the real world, such
an undertaking would be difficult and expensive. Parallel machines must compete
with modern commodity microprocessors, whose thousands of engineer-years in de-
sign time and billions of dollars in capital costs can be amortized over a large sales
volume. For this reason, most parallel machines today are based on off-the-shelf
processors and other components.

Unfortunately, neither these processors nor the programming systems that typ-
ically run on them provide adequate support for features important to parallel ma-
chines, such as latency tolerance and interprocessor synchronization. Section 1.2
argues that this will limit their effectiveness for many applications. But these pro-
cessors are unlikely to include efficient hardware support for parallelism in the near
future, since they are designed for a highly competitive uniprocessor market. If we
want parallel systems to make effective use of these processors, we must address the
problems at a different level.

Specifically, we need a parallel programming model which addresses the perfor-
mance issues important to parallel machines, vet which can be implemented on a
computer built with off-the-shelf processors. The performance of such an imple-
mentation may not be ideal, for software cannot always compensate for hardware
deficiencies. Nevertheless, the establishment of this model can pave the way for
the addition of better hardware support for features of the programming model not

supported by current processors.

39



The problem statement of this dissertation proposes an evolutionary or gradual
approach to building a full-scale multiprocessor. The basic plan is to start with a
parallel system based on stock hardware, and move step-by-step toward a fully cus-
tomized implementation. Each step should be a viable, functional system offering
improvements over the preceding system, albeit at some cost. Intermediate steps
move some of the functions of the architecture to custom chips or dedicated copro-
cessors, with the remainder being implemented in off-the-shelf hardware. Software
for such a system may follow a similar path making use of off-the-shelf packages,
since compilers and operating systems also require large investments.

It is important to keep tranmsition costs down for each step of the way. This
includes not only design costs, but also the costs to the users. Moving an applica-
tion from one machine to a more “evolved” machine should require no more than
recompiling. Since this means the application source code should remain the same
from one end of the evolutionary path to the other, the essential characteristics
of the model should remain constant over this path. (Of course, as performance
improves in each step, the programmer may modify the code to take advantage of
these improvements, e.g., to generate more parallelism, but this should not be a
requirement.)

The challenge is to construct a parallel programming model which is portable
along the path without sacrificing efficiency. To elaborate, our goal is to design a

model with the following characteristics:

Efficiency: It adequately solves the performance issues discussed in Section 1.2

(latency, bandwidth, and synchronization).

Programmability: It allows programmers to express parallelism in their applica-
tions efficiently and easily. This should be true both for applications with

regular control and data distributions and for “irregular” applications.

Simplicity: It is simple enough to be implemented at the near end of the spectrum
(using an existing off-the-shelf multiprocessor) without sacrificing the perfor-
mance gains that can be realized by moving to custom hardware at the far

end of the spectrum.

Flexibility: The machines at the near end of the spectrum will use commodity

hardware, and later machines, though custom-designed, may still make use
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of existing component designs (e.g., processor cores or modules). This archi-
tecture should have the flexibility to take advantage of different components
at different stages in the path, or even in the same stage to satisfy different
price-performance requirements. Therefore, the architecture shall make as few
specifications as necessary of such features as the instruction set, clock speed,

bus and memory requirements, etc.

This chapter presents the Efficient Architecture for Running THreads (EARTH),
a multithreading model meeting these goals [60, 61, 59, 83]. EARTH falls into the
class of hybrid von Neumann/dataflow machines described in Section 3.2. However,
unlike the designs covered there, EARTH is amenable to the kind of evolutionary
design process described above.

It is very important to clarify what EARTH is and what it is not. Since we are
proposing an evolving series of computers based on increasing amounts of custom
hardware, EARTH does not refer to any specific machine or design in this series.
Instead, it refers to a particular model of multithreading, as presented in this chap-
ter, and any machine which can adequately implement this model can be called an
EARTH computer. Chapters 7 and 8 give examples of real and simulated machines,
which implement the EARTH model at various points in the evolutionary path.

An architecture can be presented at several levels. The most common view of
an architecture is the Instruction Set Architecture (ISA), which gives specific details
of instructions, registers, and their interactions, usually including an operational
semantics with enough detail that the programmer can accurately predict a given
program’s behavior at a specified level of detail. The ISA is generally specific to one
processor or family of processors. Alternatively, one can talk about the components
of a system at a more abstract level, describing, in general terms, the objects visible
to the programmer, the operations which can be performed on these objects, and the
general method for representing and executing computations on this machine. We
use the term Program Ezecution Model (PXM) for this abstraction.! Somewhere
between these two points lies a high-level abstraction of the components of the
machine and the way they interact, which we call an Architecture Model.

The PXM for a conventional sequential machine would include an addressable
memory component, some of which is divided into frames placed on a stack. Pro-

grams are divided into functions; when the machine executes a function, a frame on

'This concept is similar to Valiant’s concept of a “bridging model” [127].

61



the stack is assigned to this function for its private use. Instructions are executed in
sequential order, except when a branch instruction explicitly redirects execution to
another location. A program counter refers to the next instruction in the sequence
to execute. The PXM ignores ISA details such as the opcodes of specific instruc-
tions, and is thus universal for all modern general-purpose sequential processors. It
is this universality that has made standard programming languages based on this
PXM, such as C, so portable among ordinary processors.

We present the PXM for EARTH in the next section. The EARTH PXM extends
the conventional PXM above with objects and operators specifically for supporting
parallel multithreading. We discuss the representation of programs as collections of
threads, the synchronization among these threads, and the context of each thread.
This section concludes with a discussion of a memory model and a basic set of
primitives supported by the PXM. In Section 4.2, we present an architecture model
for EARTH, a general blueprint for all the implementations in Chapters 7 and 8.

We have deliberately kept EARTH simple to achieve our goal of portability
from one end of the evolutionary path to the other. The early papers on EARTH
(60, 61] suggested dividing EARTH into “levels” of complexity, in which higher levels
support more features. We sought to identify a minimum set of features necessary
to support efficient multithreading, so that an implementation using off-the-shelf
processors would be feasible. The implementations in this thesis are based on the
lowest level. However, many mechanisms have been proposed over the years for
expressing parallelism more easily or efficiently. In the last part of this chapter,
we consider some which could be added to EARTH, particularly further along the
evolutionary path where implementations would be more efficient.

The next chapter presents specifications for two slightly different complete sets
of EARTH operations. These serve the same function as an ISA, in as far as being
a target for compilation from a higher-level language. However, a detailed ISA is
not suitable for this project, given our desire for flexibility and platform portability,
since an ISA would bind EARTH to a specific processor family. Instead, we describe
an EARTH Virtual Machine (EVM) for each. Each EVM is a partial specification
of the instruction set of an EARTH machine. The EVM defines a set of instruc-
tions which must be present in any EARTH computer, and defines the semantics of
these instructions in relation to the EARTH PXM. It leaves open both how these

EARTH instructions are :mplemented (e.g., in software or hardware) and how they
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are represented (e.g., the opcodes used). Since some implementations of EARTH
use off-the-shelf processors, pre-specified opcodes would be meaningless to such pro-
cessors. lllegal-instruction traps could be used. but these are generally inefficient
because of the operating system overheads involved in processing the trap. Instead,
the EARTH instructions could be signaled using accesses to memory-mapped I/0 or,
in the case of a pure software implementation, could be converted to instructions
native to the off-the-shelf processor. The EVM only specifies which instructions

must exist, and describes the semantics of these instructions.

4.1 The EARTH Program Execution Model

The Program Execution Model for EARTH differs from the PXM of a sequential

computer in the following important respects:

e Instead of a single program counter, there can be multiple program coun-
ters, allowing concurrent execution of instructions from different parts of the

program.

e Programs are divided into small sequences of instructions in a two-level hier-

archy of threads.

e The execution ordering among threads is determined by data and control de-

pendences explicitly identified in the program, rather than by program order.

e Frames holding local context for functions are allocated from a heap rather

than a linear stack.

The following subsections present the EARTH PXM in more detail. The most
unique aspect of this PXM is its threading model, which is covered first. Section 4.1.2
discusses the EARTH memory model. The final subsection gives a list of the fun-
damental objects of the EARTH PXM and the operations on these objects which
are basic to the smooth functioning of EARTH. Our goal in this section is to justify
the need for each feature of the PXM, rather than merely present it. Therefore, a
simple example, based on computing Fibonacci numbers, is developed during the

discussion
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4.1.1 EARTH Thread Model

The EARTH thread model is the most important defining characteristic of EARTH,
distinguishing EARTH both from conventional parallel paradigms and from most
other multithreaded machines. What this model has in common with other mul-
tithreaded machines is the division of a program into multiple sections of code,
generally called threads. Multithreaded machines based on conventional process-
ing models divide a program into threads to identify computations which can run
concurrently; they parallelize a sequential program. Multithreading models derived
from the dataflow model, such as those in the previous chapter, combine individual
instructions into threads to reduce and amortize the overheads of synchronization
and improve data locality; they sequentialize a parallel program.

Our goal of making EARTH’s PXM suitable for off-the-shelf processors has led
to a two-layer hierarchy of fibers and threaded procedures. The following subsections
present this two-layer model and describe its individual components. The first
defines fibers, which are in the lower layer, and shows how their properties are
essential for an efficient off-the-shelf implementation. The second part gives an
example of a simple parallel program, and shows the difficulties that this program
can present for a parallel machine based on a single-layer model. We show how a
two-layer model is an effective solution. The remaining parts present the two layers

in greater detail.

4.1.1.1 EARTH Fibers

In ordinary sequential code, the next instruction executed is completely determined
by the preceding instructions and the input data. The EARTH model maintains
the ordering constraints among instructions within one thread, but loosens the con-
straints between different threads, allowing the processor to adapt better to runtime
conditions such as unpredictable latencies. In the EARTH model, a thread is a
sequentially-ezecuted, non-preemptive, atomically-scheduled set of instructions. All
three qualifiers are basic to the model, and are necessary for efficient execution on
conventional processors. Because many other multithreading systems, such as those
described in Section 3.2 and Chapter 9, use the term “thread” for entities with dif-
ferent properties, the EARTH PXM introduces the term “fiber” to refer specifically
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to the type of thread above.2 We use the term “thread” only generically, to refer to
a block of instructions which can run concurrently with other blocks.

Sequentially-ezecuted means that when a fiber is executed, instructions within
the fiber are scheduled according to a sequential semantics. In other words, in-
structions within the fiber are ordered using an ordinary program counter, which
increments to the next instruction unless modified by a branch instruction. Both
conditional and unconditional branches may be used, but only to destinations within
the same fiber. Modern processors perform sequential execution very efficiently, even
when there are many dependences among the instructions, and can takes advantage
of the data locality which is usually present due to these dependences. Techniques
used by modern superscalar processors to increase the instruction issue rate, such
as out-of-order execution and branch prediction, may be used to exploit instruction-
level parallelism within a fiber, so long as the results are the same as executing the
instructions in purely sequential order. “Sequentially-executed” in this case does
not mean “one instruction per cycle,” but simply that the dynamic ordering of
instructions within a fiber conforms to the sequential semantics of the code.

EARTH fibers are also non-preemptive. Once a fiber begins execution, it remains
active in the CPU until the last instruction in the fiber is finished. If the CPU
should stall (e.g., due to a cache miss), the fiber will not be swapped out. Thisis a
fundamental design decision based on the goal of using existing processors. At any
point in a fiber’s execution, there is likely to be some essential contezt (such as live
register values). Ordinary processors don’t support rapid context switching, so if a
fiber is interrupted, the CPU would have to save the live registers and load some
registers for the next fiber.3 An automatic mechanism for fiber suspension, such as
one based on interrupts, would have to make conservative assumptions about which
registers are live and would probably save a large number of them. This takes time,
both for the triggering of the interrupt and the saving and restoring of registers, and
the frequent use of such a mechanism would severely limit system performance.

A corollary of non-preemptive execution is atomic scheduling. If a fiber cannot
be interrupted, then it should not be started until it is guaranteed to finish with-
out any major stalls. The EARTH implementation is responsible for making this

2This term, like “thread” itself, comes from the lexicon of textile making. A fiber is typically
a short strand of material. It is the smallest unit in the “thread model” of textiles.

3Fibers may be interrupted for special exceptions such as arithmetic traps, but these should be
assumed to be unusual cases and not normal occurrences such as cache misses.
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Figure 4.1: Abstract Fiber Execution Engine

determination (using mechanisms discussed in a later section) and deciding when
a fiber can start according to this restriction. Borrowing terms from dataflow (see
Section 3.1), we say that when the system decides a fiber is ready to execute, it
enables the fiber. Since the CPU may still be busy with other fibers at that time,
there may be a delay between the time a fiber is enabled and the time it starts
running. We call the first state enabled and the second state active. A fiber that is
not ready to begin execution is dormant.

Figure 4.1 shows an abstract model of a machine for executing EARTH fibers.
There are two pools of fibers, one for dormant fibers and 