
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm mast&r. UUI films

the texl directly from the original or copy submitt8d. Thus. sorne thesis and

dissertation copies are in typewriter face. white 0IherS may be from any type ~

computer printer.

The quallty of thia rwproduction la dependent upon the quality of the

copy submitted. Broken or indistinct print. coIor8d or poor quality illustrations

and photographs. print bleecftlvough, substandard margins. and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI • complete manuscript

and there are miSSing pege5. these will be noted. Also. if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize mat8rials (a.g., maps, drawings, charts) are reproduced by

sectioning the original. begiming at the upper 1eft-t81d corner and continuing

from 18ft to right in equal sections with small overtaps.

Photographs indudecl in the original manuscript have been reproduced

xerographically in this copy. Higher quality 8- x sr black and white

photographie prints are available for any photographs or illustrations appearing

in this copy for an additional d\arge. Contad UMI directly to orcier.

Bell & Howell Information and Leaming
300 North Z8eb Raad. Ann Arbor, MI 481(&1348 USA

800-521-œoo

•

•

•

EARTH: AN EFFICIENT ARCHITECTURE

FOR RUNNING THREADS

by

Kevin Bryan Theobald

School of Computer Science

NlcGill University, Montréal

Québec, Canada

~lay 1999

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDfES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

OOCTOR OF PHILOSOPHY

Copyright © 1999 by Kevin Bryan Theobald

1+1 National Ubrary
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A ON'"
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1A 0N4
C8nBda

The author bas granted a non
exclusive licence allowing the
National Library ofCanada to
reproduce, loan, distribute or sen
copies of this thesis in microform,
paper or electronic fonnats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author' s
penmSSlon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-50269-4

Canada

•

•

•

Abstract

The two current approaches ta increasing computer speed are giving individual pro

cessors the ability to exploit instruction-Ievel parallelism (ILP), and harnessing mul

tiple processors to work together on a single problem. The first approach has worked

well so far, but more and more investments in instruction scheduling hardware seem

to be producing diminishing returns. Parallel processing, on the other hand, has

tremendous potential, but has been disappointing in practice. One reason is that

parallel computer designers cannot afford to put the same resources into building

processors as the makers of commodity chips, who command a much larger mar

ket. Therefore, most parallel architects have turned to off-the-shelf microprocessors,

which do not support parallel processing weIl.

Multithreaded systems based on dataflow principles promise a solution to the

problems inherent in many of today's parallel machines. A multithreaded proces

sor supporting a program execution model designed according ta such principles

would be a better building black for parallel machines than today's ILP processors,

because multithreading and dataflow address the problems facing contemporary par

allel machines, such as latency and synchronization. Acceptance of such systems in

a world ruled by commodity systems requires taking an evolutionary approach, in

which the multithreaded machine is initiallyemulated on an existing multiproces

sor based on off-the-shelf microprocessors, while still achieving good performance,

and then transformed into more powerful versions by gradually replacing the stock

components with custom hardware.

This dissertation is about EARTH (Efficient Architecture for Running Threads),

a multithreading model suitable for such an evolutionary approach. The thesis

begins with a study of program paral1elism which identifies important properties

which affect the design of a multithreaded system. The EARTH model is defined

at several layers of abstraction, and several implementations along the evolutionary

ii

•

•

•

path are discussed. The Threaded..C language, used for expressing algorithms in the

EARTH model, is presented, and severa! applications are written in this language

ta illustrate its use.

Experimental results show that EARTH lives up to its name, that it can run

parallel programs efficiently, and that this efliciency improves as the machine moves

along the evolutionary path and custom multithreading hardware replaces off-the

shelf hardware piece by piece.

iii

•

•

•

RésUlllé

Les deux approches actuelles utilisées pour accroître la vitesse des ordinateurs con

sistent à donner à chaque processeur la capacité d'exploiter le parallélisme niveau

instructions (PNI) et à charger plusieurs processeurs de travailler ensemble sur un

même problème. La première approche a bien fonctionné jusqu'ici, mais les in

vestissements grandissants dans le matériel d'ordonnancement des instructions sem

blent semblent donner des résutats décroissants. Le traitement parallèle, d'autre

part, offre des possibilités intéressantes, mais a été décevant dans la pratique. Ceci

s'explique par le manque de ressources des créateurs d'ordinateurs parallèles par

rapport au..x fabriquants de puces de produits qui ont accès à un marché beaucoup

plus grand. Par conséquent, la plupart des architectes parallèles se sont tournés vers

les microprocesseurs déjà disponibles qui ne con\;ennent pas bien au traitement par

allèle.

Les systèmes de multithread basés sur des principes de flux de données

promettent une solution aux problèmes inhérents à plusieurs machines parallèles

d'aujourd'hui. Un processeur multithread soutenant un modèle d'exécution des pro

grammes conçu selon un tel principe serait un meilleur fondement pour les ma

chines parallèles que les processeurs PNI d'aujourd'hui, parce que le multithreading

et le flux de données adressent les problèmes auquels font face les machines par

allèles contemporaines, tels le temps d'attente et la synchronisation. L'acceptation

d'un tel système dans un monde où règnent les produits systèmes exige une ap

proche évolutive; la machine multithread est initialelement émulée sur un multipro

cesseur utilisant des microprocesseurs présentement disponibles, tout en réalisant

une bonne performance d'exécution, et puis ensuite, elle est transformée en versions

subséquantes de plus en plus puissantes par substitution progressive du matériel

courant par des composantes matérielles faites sur mesure.

Cette dissertation porte sur EARTH (architecture efficace pour exécuter les

iv

•

•

•

threads) , un modèle multithread approprié à une telle approche évolutive. La

thèse commence par une étude du parallélisme de programme qui identifie les pro

priétés importantes qui affectent la conception d'un système multithread. Le modèle

EARTH est défini avec plusieurs couches d'abstraction, et plusieurs implantations

sont discutées tout au long du parcours évolutif. Le langage Threaded-C, utilisé pour

exprimer des algorithmes en modèle EARTH, est présenté, et plusieurs applications

sont écrites dans ce langage pour illustrer son utilisation.

Les résultats expérimentaux prouvent que EARTH fait honneur à son nom;

qu'il peut exécuter des programmes parallèles efficacement, et que cette efficacité

s'améliore au fur et à mesure que la machine évolue en remplaçant progressivement

le matériel existant par des pièces fabriquées sur mesure.

v

•

•

•

Contributions

The main original contributions of this research are summarized as follows:

1. The design and construction of a tool for analyzing the parallelism in pro

grams, and a study, using this tool, of representative benchmarks, identifying

fundamental properties that point to the need for multithreaded architectures;

2. A definition of the EARTH (Efficient Architecture for Running Threads) Pro

gram Execution ~Iodel, an abstract model describing a way to divide a parallel

program into threads and the operations performed on these threads;

3. Definitions of two EARTH Virtual j\!Iachines, one based on global addresses

and one based on frames, which present specifications of operation sets cor

responding to the abstract operations of the Program Execution ?Vlodel, at a

level of detail sufficient for implementation of a real system;

4. Detailed specification and high-level design of a custom hardware Synchro

nization Unit providing efficient support for the EARTH Program Execution

Model;

5. Development of a tool for accurate simulation of an existing off-the-shelf mul

tiprocessor, and the use of this tool t~:

(a) Measure the performance of the multiprocessor with a greater number of

processors than available with the current hardware;

(b) Measure the performance of the multiprocessor augmented by the custom

hardware SYDchronization Unit, thereby demonstrating the efficiency of

the EARTH model when there is hardware support for multithreading;

(c) Measure the performance of the multiprocessor, with and without the

custom SU, with different processor parameters to con6rm the bene6ts

vi

•

•

•

of the EARTH model on processors built aher those use<! in the multi

processor platform;

6. A study of possible extensions to EARTH and Threaded-C which could im

prove bath runtime efficiency and programmability.

As in any project developing a computer system, many people were involved in

EARTH's design, implementation and experimentation. The following contributions

are not the exclusive work of the author, but the author played a major role in their

execution:

1. A definition of the Earth Architecture Model, describing an architecture apprO

priate for executing programs under the EARTH Program Execution Model;

2. A definition of the Threaded-C language, an explicitly threaded language ex

tending standard C with EARTH operators;

3. Coding of various benchmarks in Threaded-C sa that they may be tested on

EARTH platforms;

4. Implementations of EARTH on several off-the-shelf platforms, and experi

ments showing the performance achieved by Threaded-C benchmarks on these

platforms.

vii

•

•

•

Ackno"WledgelIlents

Nly advisor, Prof. Guang R. Gao, was the inspiration for this thesis and the EARTH

project. He has the vision to conceive a great project, the wisdom to manage it weil,

and the drive and perseverance to carry it through. He encourages and inspires

everyone in his group to put out their best. He has taught me numerous valuable

lessons, and it was a privilege to work with him.

EARTH was a team effort, and would not have been possible without the efforts

of many other people. Prof. Herbert Hum was one of the co-originators of the

EARTH concept and the leader of the implementation effort. Dr. Olivier Maquelin

did a tremendous job coding the main parts of the EARTH system and Threaded-C

compiler almost singlehandedly. Andres Marquez taught me manY things about the

NIANNA memory system, and wrote the first version of the memory module for

the SENli simulator. He also performed the initial feasibility study of SU hardware

design. Shashank Nemawarkar and Dr. Xinmin Tian made important analyses of the

performance of EARTH. Dr. Maquelin, Dr. Tian, Xinan Tang, Nasser Elmasri and

Yingchun Zhu wrote sorne of the application benchmarks used in this study. Phillip

~1ueller and Pascal Davoust made contributions to the SE~Ii simulator. Haiying

Cai and Prasad Kakulavarapu made major improvements to the load balancers. On

the compiler side, Prof. Laurie Hendren was one of the principal designers of the

EARTH-C language, as weIl as the founder and leader of the McCAT compiler on

which the EARTH-C-to-Threaded-C translator is based. Xun Xue, Pierre Ouellet,

Xinan Tang, and Yingchun Zhu did most of the work on this translator. Prof. Gao

and Hendren also participated in the SITA studies of program parallelism which

preceded the start of the EARTH project.

The CAPSL group at the University of Delaware continues to make great strides

in their continuation of the EARTH project. Cheng Li did a major porting effort to

get EARTH working on Beowulf. 1 have had many insightful conversations about

viii

•

•

•

language design and applications with Dr. Gerd Heber, Parimala Thulasiraman, and

Dr. Jose Nelson Amaral, and with Thomas Geiger about SU design. Dr. Amaral

also wrote the Threaded-C code for the mutex example used in this thesis.

Thomas Geiger, Xinan Tang, Dr. Heber and Dr. Amaral reviewed portions of

my thesis. Etienne Gagnon (McGill) translated myabstract into French.

GMD (Gesellschaft für Mathematik und Datenverarbeitung) generously provided

the ACAPS group with a MANNA parallel machine, without which this study would

have been impossible, and provided excellent technical support. The National Sci

ences and Engineering Research Council (NSERC) of Canada provided the bulk of

the remaining funding for the EARTH project. Several American research agencies,

including DARPA, NASA, NSF and NSA, funded my research while 1 was working

in Delaware.

On a personal level, 1 have had the support of many friends and colleagues.

Among those not already listed are the ACAPS members Russ and Yoshiko Olsen,

Bob Yates, Cbandrika Mukerji, V. C. Sreedhar, and Erik Altman, with whom l had

many stimulating conversations. Ping Gao was a wonderful advisor in many areas

outside of the labo Outside of ACAPS, Honglang Li, Carol Novitsky, Risban Tan,

and Cameron Wakefield were always there for me, even if 1 couldn't always be there

for them. And Bing Wang gave me aIl of her love and understanding during the

difficul t final stages of research.

Finally, my family, especially my parents, \Vere tremendously supportive and

infinitely patient through these long years. They gave me far more than 1 couId ever

give back.

ix

•

•

•

In memory of my sister K athie

x

•

•

•

Contents

Abstract

Résumé

Contributions

Acknowledgements

1 Introduction

1.1 ILP and Multithreading

1.2 Fundamental Issues in l\1ultiprocessing

1.2.1 Latency

1.2.2 Bandwidth....

1.2.3 Synchronization ..

1.2.4 Programmability

1.2.5 Manufacturability.

1.3 An Evolutionary Approach to Viable Parallel Processing

1.4 The EARTH Project

1.5 Contributions

1.6 Synopsis.. ..

2 Parallelism in Computer Programs

2.1 The SITA Tooi .

2.1.1 Memory Renaming and Disambiguation

2.1.2 Control Barrier Elimination

2.1.3 Finite Resources

2.2 Experiments with SITA

xi

ii

iv

vi

viii

1

2

4

4

6

6

7

9

10

12

14

15

18

18

21

23

25

26

•

•

•

2.2.1 Control Dependence Experiments .

2.2.2 Register/Memory Renaming Experiments

2.2.3 Finite Window Experiments .

2.3 Speculative Execution and SITA

2.3.1 Adding Speculative Execution to the DCDT

2.3.2 SITA Experiments on Speculation .

2.4 Discussion....... ..

3 Predecessors of EARTH

3.1 Data80w Machines . .

3.1.1 Dataflow Graphs

3.1.2 Static Dataflow

3.1.3 Dynamic Dataflow

3.1.4 Semi-Dynamic Dataflow

3.1.5 Problems \Vith Datafiow

3.2 Hybrid Von Neumann/Datafiow ~Iachines

3.2.1 The Super Actor Machine

3.2.2 Other Dataflow-Based Multithreaded ~Iachines

4 Definition of the EARTH Model

4.1 The EARTH Program Execution Nlodel

4.1.1 EARTH Thread Madel .

4.1.2 EARTH Nlemory Model

4.1.3 EARTH Operations.

4.2 EARTH Architecture Model

4.2.1 Execution Unit ...

4.2.2 Synchronization Unit and Queues

4.2.3 Node Memory . . .

4.2.4 Network Interface .

4.2.5 Functions of the Synchronization Unit

4.3 Extensions to EARTH

4.3.1 Mutual Exclusion and Parallel Reduction ..

4.3.2 Support for Speculative Execution.

4.3.3 Other Extensions

xii

. . . . 26

28

29

29

31

32

33

37

38

38

41

50

51

53

54

54

56

59

63

64

81

84

94

95

97

98

99

99

· 103

· 104

. .106

· 107

•

•

•

5 The EARTH Virtual Machine

5.1 An EVM Based on Addresses

5.1.1 The EVM-A Memory Ivlodel .

5.1.2 The EVM-A Thread Model

5.1.3 Data Types of EVM-A

5.1.4 EARTH Instructions in EVIvI-A .

5.2 An EV1\.f Based on Frames

5.2.1 The EVM-F Memory rvlodel

5.2.2 The EVM-F Thread Model

5.2.3 Data Types of EVM-F

5.2.4 EARTH Instructions in EVIvI-F

6 The Threaded-C Language

6.1 Overview of Threaded-C .

6.1.1 Data Types and Qualifiers . .

6.1.2 Structure of Threaded-C Code . .

6.1.3 EARTH Operators in Threaded-C . .

6.1.4 Non-Automatic Variables.

6.2 Threaded-C Examples

6.2.1 Fibonacci

6.2.2 N-Queens

6.2.3 Ivlatrix Multiply .

6.2.4 Mutual Exclusion in Threaded-C

7 Im.plementation of EARTH on Off-the-Shelf Multiprocessors

7.1 Implementation of EARTH-MANNA '. . ..

7.1.1 Dual-Processor-Node Version of EARTH-MANNA .

7.1.2 Single-Processor-Node Version of EARTH-NIANNA

7.1.3 Compiling for EARTH-MANNA .

7.1.4 Performance of EARTH-IvIANNA .

7.2 Simulation of Alternate EARTH-MANNA Computers .

7.2.1 The SEMi Simulation Testbed .

7.2.2 Performance of Larger EARTH-MANNA Systems

7.2.3 Performance of Updated EARTH-MANNA Systems

7.3 EARTH on Other Multiprocessors

xiii

109

· III

· 111

· 114

· 114

· 116

· 120

· 121

· 122

· 123

· 123

126

.127

· 128

· 129

· 131

· 135

· 136

· 136

· 138

· 144

.154

158

· 159

· 161

· 164

.165

· 167

· 183

· 184

· 188

· 197

· 197

• 7.3.1

7.3.2

7.3.3

7.3.4

EARTH-SP-2 .

EARTH-Beowulf and Other Networks of \Vorkstations

Clusters of SMP Workstations .

Observations .

.197

. 199

.199

.200

•

8 Toward a Custom EARTH Implementation

8.1 An External Synchronization Unit.

8.1.1 An SU-Based EARTH Node

8.1.2 The SU Interface

8.1.3 SU Design and Simulation

8.1.4 Experimental Results ...

8.2 An InternaI Synchronization Unit

8.3 Future Directions

9 Other Related Work

9.1 l\tlultithreaded Architecture Developments

9.2 Software Multithreading Systems

10 Conclusions

10.1 Future Work .

Bibliography

A Previous Studies of Parallelism

B Definition of Threaded-C

B.1 Fibers and Procedures .

B.2 Fiber Synchronization .

B.3 Data Transfer Operations

B.4 Global Address Support .

B.5 Differences Between Threaded-C and ANSI C

C Summary of the Experiments

203

.204

.206

.208

.210

.212

.222

.227

231

.231

.236

240

.243

259

260

262

.262

.263

.265

.267

.267

269

•
D Performance of EARTH-MANNA Systems with Updated Hard-

ware 276

xiv

•

•

•

List of Figures

1.1 Performance Payoffs for Different Architectures

2.1 Trace Simulation tvlethodology .

2.2 Packing Parallel Instructions: An Example .

2.3 Control Dependence

2.4 Finite Speculation Depth

3.1 Datafiow Graph for Complex Multiply

3.2 Execution of Complex Multiply

3.3 Instruction Cell Program for Complex Multiply

3.4 Instruction Cell Program for 2-Input Sort.

3.5 Processing Element Block Diagram

3.6 Super-Actor States

4.1 Abstract Fiber Execution Engine

4.2 Sequential Fibonacci Example ...

4.3 CalI Graph for Sequential Fibonacci .

4.4 Threaded Fibonacci .

4.5 Snapshot of Threaded Fibonacci Contcxt State

4.6 Tree of Procedure Frames with Sequential Stack

4.7 Thread Graph for Fibonacci .

4.8 Pipelined Program Structure.

4.9 EARTH Fiber States

4.10 Two Instances of Same Fiber

4.11 EARTH Architecture

4.12 Steps in Split-Phase Transaction.

4.13 Reduction with Single Fiber .

4.14 Reduction with BinaI1" Tree .

4.15 Reduction with Mutual Exclusion

xv

9

19

. .. " 20

... " 23

34

39

40

43

44

45

56

66

67

67

69

70

72

77

77

78

92

95

. 101

.105

.105

.106

•

•

•

5.1 EVM-A Address Spaces 113

6.1 Parallel Hello World 132

6.2 Fibonacci Code Structure . . 137

6.3 Threaded-C Code for Fibonacci . 138

6.4 Sequential C Code for N-Queens . . . 139

6.5 Recursion in N-Queens, 140

6.6 Data Transfers and Synchronization in the N-Queens Solution . 141

6.7 Threaded-C Code for N-Queens (Recursive Procedure) . 142

6.8 Threaded-C Code for N-Queens (rvIAIN Procedure) 143

6.9 Threaded-C Code for N-Queens (Throttled Version) 143

6.10 Sequential C Code for ~latrix rvlultiply (Block Multiply) . 144

6.11 Sequential C Code for lVlatrix !vlultiply (Top-Level lVlultiply) 145

6.12 Sequential C Code for ~latrix Multiply (Main Routine) . 146

6.13 Block Rotation in Cannon's Algorithm 147

6.14 Threaded-C Code for Matrix Multiply (Declarations) 147

6.15 Threaded-C Code for Matrix Multiply (Block Procedure Initial Thread) 151

6.16 Threaded-C Code for Matrix l\IuItiply (Block Procedure Continued) . 152

6.17 Threaded-C Code for Matrix Multiply (MAIN Procedure) .. . 153

6.18 Threaded-C Code for Nlutual Exclusion (lVIAIN Procedure) . . . 155

6.19 Threaded-C Code for Mutual Exclusion (Produce Value) 156

6.20 Threaded-C Code for ~1utual Exclusion (Other Procedures) . 157

7.1 One lVIANNA Node. 160

7.2 ~'lemory !vlapping for Node 2 . 163

7.3 Cornpiling for EARTH-MANNA 166

7.4 Measuring Latency on EARTH-rvIANNA . 169

7.5 Relative Speedups on EARTH-!vIANNA-D . 180

7.6 Absolute Speedups on EARTH-MANNA-D . . 181

7.7 Relative Speedups on EARTH-MANNA-S . . . 182

7.8 Absolute Speedups on EARTH-lVIANNA-S . . . 183

7.9 Relative Speedups on EARTH-MANNA-S \Vith Polling Watchdog . . 184

7.10 Absolute Speedups on EARTH-MANNA-S with Polling Watchdog . 185

7.11 Large-Scale Topologies 187

7.12 Speedups on EARTH-MANNA-D for Fibonacci . . 189

7.13 Speedups on EARTH-MANNA-D for N-Queens-P ... 190

xvi

. 195

.196

· . 207

· .207

· . 210

.218

· . 219

. 219

· .220

.221

.224

.225

.225

.226

.226

.229

.239

.242

.268

.269

..... 269

.270

.270

. 190

. .. 191

. .. 191

· . 192

.192

.193

.193

.193

.194

.194

· . 195

7.14 Speedups on EARTH-MANNA-O for N-Queens-T

7.15 Speedups on EARTH-MANNA-O for Paraffins .

7.16 Speedups on EARTH-MANNA-D for Tomcatv ..

7.17 Speedups on EARTH-MANNA-S for Fibonacci ..

7.18 Speedups on EARTH-~IANNA-S for N-Queens-P

7.19 Speedups on EARTH-MANNA-S for N-Queens-T

7.20 Speedups on EARTH-MANNA-S for Paraffins . .

7.21 Speedups on EARTH-MANNA-S for Tomcatv . .

7.22 Speedups on EARTH-MANNA-SjWatchdog for N-Queens-T

7.23 Speedups on EARTH-~IANNA-SjWatchdogfor Paraffins ..

7.24 Speedups on EARTH-MANNA-SjWatchdog for Tomcatv ...

7.25 Breakdown of EU Use on EARTH-~IANNA-Dfor N-Queens-P (10)

7.26 Breakdown of EU Use on EARTH-l'vIANNA-S for N-Queens-P (10)

8.1 Node with Hardware SU (Separate Bus) ..

8.2 Node with Hardware SU (Integrated Link)

8.3 Synchronization Unit Block Oiagram .

804 Speedups on EARTH-NIANNA-SU for Fibonacci .

8.5 Speedups on EARTH-~IANNA-SUfor N-Queens-P

8.6 Speedups on EARTH-MANNA-SU for N-Queens-T

8.7 Speedups on EARTH-~IANNA-SUfor Paraffins ..

8.8 Speedups on EARTH-NIANNA-SU for Tomcatv ..

8.9 Speedups on EARTH-MANNA-SU (Internai) for Fibonacci .

8.10 Speedups on EARTH-MANNA-SU (Internai) for N-Queens-P .

8.11 Speedups on EARTH-MANNA-SU (Internai) for N-Queens-T

8.12 Speedups on EARTH-MANNA-SU (Internai) for Paraffins

8.13 Speedups on EARTH-MANNA-SU (Internai) for Tomcatv

8.14 Simple Multiple-CPU Organization on Single Chip .

9.1 Comparison of Ivlultithreaded Systems ..

10.1 Comparison of EARTH Implementations for N-Queens-P (10)

B.1 Examples of Illegal Use

C.1 Absolute Speedups for Fibonacci (15)

C.2 Absolute Speedups for Fibonacci (20)

C.3 Absolute Speedups for Fibonacci (25)

CA Absolute Speedups for Fibonacci (30) .

•

•

•
xvii

•

•

•

C.5 Absolute Speedups for N-Queens-P (8) 270

C.6 Absolute Speedups for N-Queens-P (10) 271

C.7 Absolute Speedups for N-Queens-P (12) 271

C.8 Absolute Speedups for N-Queens-T (8) 272

C.9 Absolute Speedups for N-Queens-T (10) 272

C.lO Absolute Speedups for N-Queens-T (12) . 272

C.ll Absolute Speedups for Paraffins (18) . 273

C.12 Absolute Speedups for Paraffins (20) . 273

C.13 Absolute Speedups for Paraffins (23) . 273

C.14 Absolute Speedups for Tomcatv (33) . 274

C.15 Absolute Speedups for Tomcatv (65) . 274

C.16 Absolute Speedups for Tomcatv (129) 274

C.17 Absolute Speedups for Tomcatv (257) 275

D.l Absolute Speedups on Fast EARTH-~IANNAfor Fibonacci (15) . 277

D.2 Absolute Speedups on Fast EARTH-l\JIANNA for Fibonacci (20) . 277

D.3 Absolute Speedups on Fast EARTH-l\JIANNA for Fibonacci (25) . 278

DA Absolute Speedups on Fast EARTH-NIANNA for Fibonacci (30) . 279

D.5 Absolute Speedups on Fast EARTH-!vIANNA for N-Queens-P (8) . . 279

D.6 Absolute Speedups on Fast EARTH-NIANNA for N-Queens-P (10) .. 279

D.7 Absolute Speedups on Fast EARTH-l\JIANNA for N-Queens-P (12) .. 280

D.S Absolute Speedups on Fast EARTH-~TANNAfor N-Queens-T (8) .. 280

D.9 Absolute Speedups on Fast EARTH-!vIANNA for N-Queens-T (10) .. 280

D.10 Absolute Speedups on Fast EARTH-J\.IANNA for N-Queens-T (12) .. 281

D.11 Absolute Speedups on Fast EARTH-NIANNA for Paraflins (18) . 282

D.12 Absolute Speedups on Fast EARTH-NIANNA for Paraffins (20) . 282

D.13 Absolute Speedups on Fast EARTH-lvIANNA for Paraflins (23) . 282

D.14 Absolute Speedups on Fast EARTH-tvIANNA for Tomcatv (33) ." 283

D.15 Absolute Speedups on Fast EARTH-tvIANNA for Tomcatv (65) . 283

D.16 Absolute Speedups on Fast EARTH-IvIANNA. for Tomcatv (129). . 283

D.17 Absolute Speedups on Fast EARTH-~L;\NNAfor Tomcatv (257). . 284

xviii

•

•

•

Chapter 1

Introduction

The 1980s saw the popularization and commercialization of parallel processing.

What was mostly confined in the 70s to university project laboratories moved to

industry as computer architects tried to bring the benefits of parallelism to the mar

ketplace. Many companies were formed during the 80s, and their competition led to

a diverse set of approaches to the problem of dividing a task among many proces

sors. However, commercial parallel processing has failed to live up to its promise.

yIost of the high-ftying parallel computer companies have gone bankrupt or have

re-oriented themselves toward specialized markets and applications.

There are several reasons for this. First, today's microprocessors are highly corn

plex and require a huge investment, which can only be recovered through high sales

volumes. Therefore, most parallel computer makers have had to turn to the "killer

micros" [16], off-the-shelfprocessors built for the workstation and personal computer

mass markets. These chips generally don't offer good support for multiprocessing.

Second, parallel computers have been notoriously difficult ta program, so that their

market has been limited ta a small number of institutions \Vith both the computing

needs and the available programming resources to justify buying one.

Nevertheless, there is still a need for parallel processing. Predictions that a

certain level of performance would be "enough" have time and time again been

proven wrong. Even though today's microprocessors have performances rivaling last

decade's supercomputers, applications expand to consume the available power, and

increases in power lay the ground for new applications to be created. Furtherrnore,

sorne useful applications are NP-complete, creating a potentially unbounded demand

1

•

•

•

for computing power. An application which is barely feasible on a given state-of

the-art computer becomes much more viable if it can be ron a hundred times faster_

It is only a question of whether that cao be done sufficiently cheaply [104].

Therefore, where should architecture go from here? Will the present trends in

processor evolution lead to any significant improvements? If not, what path should

be taken instead? Will parallel machines always remain at the mercy of the "killer

micro" market, or is it possible to serve both domains at the same time? It is the

goal of this research to find answers to these questions.

1.1 ILP and Multithreading

A traditionaI von Neumann processor has a single program counter which always

points to the next instruction to be executed. A processor built strictly accord

ing to this principle can execute at most one instruction per cycle (IPC). Modem

microprocessors go beyond this by exploiting Instruction-Level Parallelism (ILP) ,

parallelism through the simultaneous execution of individual instructions that are

near each other in the instruction stream. Both VLIW (Very Long Instruction

Word) and superscalar processors allow multiple instructions to execute simulta

neously, while still presenting the programmer \Vith the appearance of a sequential

program counter.

A superscalar processor is programmed by the user as if it were a single

instruction-per-cycle processor with the same instruction set. Correct functional

behavior of the code is described by the semantics of a sequential, instruction-by

instruction execution of the same code. However, the processor can dynamically

choose multiple instructions to execute at the same time, and may even issue in

structions out of arder, provided the sequential semantics are preserved. \Vhen

instructions execute simultaneously or out of order, the hardware checks to ensure

that only independent instructions are executed concurrently. The number of in

structions executed in a gÏven cycle can vary from cycle to cycle, and depends on the

number of instructions available for execution and the dependences between them.

In a VLIW processor, instructions representing basic operations are combined at

compile time into "very long instruction words" of fixed length. These long words

are scheduled at run time using an ordinary program counter, which reads and

executes them sequentially unless there is a branch. Typically, each field of a VLIW

2

•

•

•

instruction, corresponding to one basic operation, is sent to a different functional

unit, depending on its location in the instruction. There generally are restrictions

on how operations can fill instructions (e.g., each VLIW instruction can consist of a

floating-point add, a Boating-point multiply, two integer operations, and two load

store operations). If the code requires a different balance of operations, or if not

enough independent operations can be found to fill the long instructions, then sorne

fields are filled with NOPs.

VLIW and superscalar have succeeded in breaking the l-IPC barrier, but Dot

by much. In spite of ail the extra functional units, and aIl the extra hardware ta

allow simultaneous execution, most processor designers have not been able to achieve

even 2 IPC on representative benchmarks, despite having potential issue rates of 4 or

even 8 IPC. There are several reasons for this. As will be shawn in the next chapter,

the number of independent instructions within a single basic block (a sequence of

instructions that is always entered at the begjnning and exited at the end, with no

branches ta or from the middle) is limited. This problem is exacerbated by the fact

that aIl the additional hardware needed to support out-of-order execution adds so

much extra complexity to the processor that the number of stages in the fetch and

execution pipeline is usually much higher than in a simple RISC processor.

Getting parallelism beyond that available in a basic block requires looking be

yond conditional branches when scheduling instructions. A hardward-based ap

proach, for instance, would be ta use branch prediction, so that the processor cao

speculatively execute instructions beyond the branch and move the results of those

instructions into the permanent CPU state once the branch outcome is known. Un

fortunately, branch prediction is not always correct, and gjven the large number

of pipeline stages between instruction fetch and resolving a conditional branch, a

mispredictioo exacts a large penalty.

Therefore, it is not likely that the current path of processor development, which

attempts ta extract more and more parallelism from a single thread of code, will

yield many more architectural improvements (those Dot due merely to faster docks).

There are ambitious designs on the drawing boards for processors capable of exe

cuting larger numbers of instructions simultaneously, as many as 16 or more, but

experieoce with present processors is oot promising, and suggests that additional

hardware is likely ta produce diminishing returns.

3

•

•

•

Several architecture research projects have shown that multithreaded proces

sors [41, 65] can find and exploit more parallelism than processors that look only

for ILP. A multithreaded processor differs from a single-thread processor in that

the machine modei allows the concurrent execution of instructions from different

locations in the code. An advanced single-thread processor may allow different in

structions to execute simultaneously, but these aIl come from a single thread of

instructions. A multithreaded processor, in broadest terms, has "hardware support

for multiple program counters" [114]. By allowing execution from different sections

of code, a multithreaded processor has more places from which it can extract ILP.

IvIultithreaded machines are surveyed in Chapters 3 and 9.

1.2 Fundamental Issues in Multiprocessing

From the discussion in the previous section, it can be concluded that getting more

parallelism than the small-scale parallelism offered by the current-generation su

perscalar and VLIW processors will require exploiting multiple threads of control

simultaneously. Sorne recent proposaIs (included in the surveyed in Chapter 9) seek

to boost uniprocessor performance by using multithreading (with sorne speculation)

to expose more parallelism than just ILP, but they still try to extract this paral

lelism from sequential code. This will make their immediate acceptance more likely,

but it will also limit how much parallelism they can ultimately get.

Going beyond that will require running threaàs on multiple processors, which

will require a paradigm shift on the part of mainstream programmers. Unfortu

nately, while multiprocessors have been proposed for decades, there are sorne fun

damental problems with multiprocessing which most designs have not adequately

addressed. Arvind and Iannucci [9] identified two "fundamental issues" of multipro

cessing: latency and synchronization. Several other important issues are bandwidth,

programmability and manufacturability. These five issues are elaborated below.

1.2.1 Latency

One fundamental problem is based on a simple fact about today's technology: For

non-trivial applications, it is physically impossible ta keep aIl data required by the

computation close enough to the processor to he instantly accessible at aIl times.

4

•

•

•

For the purposes of this discussion, "instantly accessible" can be taken ta mean

~~without causing delay," which for RISC processors means a very small number of

cycles, preferably one.

The traditional solution for uniprocessors has been to form a memory hierarchy,

consisting of most of the following: registers, on-chip caches (single-level, twO-level,

or hybrid-access [121]), off-chip caches, main memory, and secondary storage (disks

and tapes). Elements higher in the hierarchy are placed physically doser to the

CPU than those below. This proximity means both that the storage locations closer

ta the CPU can be accessed more quickly, and that they are less numerous than

storage locations further away. The hierarchy is generally effective because most

programs exhibit temporal locality [110]. In most cases, objects which have been

accessed recently are more likely ta be referenced again in the near future than

objects which have not been accessed recently. Therefore, it is useful to keep these

objects doser to the CPU.

This technique breaks down when there is more than one processor, because the

memory hierarchy can no longer be viewed as a simple pyramid with the CPU at the

apex. Instead, the "hierarchy" becomes a set of pyramids, whose bases must merge

at some level in order for sharing of data to occur. For aH but so-called "embarass

ingly parallel" applications, whose computations can be divided into independent

sections running concurrently without any neecl for communication or cooperation,

data is likely to be needed by different processors at different times. Due to the

dispersal of processors, data cannot be kept physically close to ail processors at the

same time. If a processor requires a datum not close to it, it will have to wait

for that datum to be fetched from somewhere else in the system, such as another

processor.

How the processor handles this latency affects performance significantly. Mul

tiprocessors based on traditional processor designs typically staIl while waiting for

data ta return from the reroote fetch. The penalty, in terms of cycles lost, of this

stalling is generally more severe than the cost of a cache miss on a uniprocessor,

because the data will have to come from further away. The problem increases as

more processors are added, first, because the average distances, and hence latencies,

between processors increase, and second, because if the application is spread among

a greater number of processors, then more of the data needed by each processor will

be located on remote processors.

5

•

•

•

1.2.2 Bandwidth

One cannot successfully treat the latency problem without dealing WÎth another

problem: bandwidth. Since it takes longer to send a signal over an le pin than along

a wire in the interior of the chip, it follows that the throughput on that pin will

be lower than the throughput along the \Vire. The fact that lC pins must be much

larger than internaI wires restricts their numbers, which causes external throughput

to drop even further relative to internaI throughput.

A simple calculation will illustrate why latency can't he separated from hand

width considerations. Suppose that in a particular application, 30% of ail operations

are loads and stores (which is typical for numerical applications), and that 10% of

these require going off-chip (e.g., they miss the cache, write through the cache to

external memory, or perform explicit communications with remote processors). A

10% miss rate is a reasonable assumption for applications with large working sets;

it can even he seen on uniprocessors, and is more likely to he the case on large-scale

paraIlel processors, for the reason gjven at the end of Section 1.2.1. Suppose that

an average of 8 CPU cycles are required in the actual transfer of data to or from

the CPU (a reasonable assumption, given today's aggressive dock rates). Then 3%

of aU instructions executed will occupy the CPU's external interface for 8 cycles. A

processor running under these conditions will not he able ta execute, on average,

much more than 4 IPC, no matter what latency-handling mechanisms are installed!

1.2.3 Synchronization

If processors are working together on a non-embarassingly-parallel application, there

are times when one processor will require data created by another. They will have

to coordinate their activities so that the producer of data knows where and when

to send the data, and the consumer knows when the data has arrived.

In the simplest dass of multiprocessors, called SINID (Single Instruc

tion/~lultiple Data) machines [34], instructions are fetched from a single global

instruction stream and broadcast simultaneously to aIl processors. Thus, every pro

cessor performs the same operation simultaneously, but on different data. These

instructions generally include communications operations which allow processors to

transmit data to one another. Since ail processors are controlled hy the same in

struction, they aU must transmit data, or receive data, at the same time. This makes

6

•

•

•

synchronization an easy task on such machines, because the programmer (or com

piler) is forced to control every communication event, and every communication has

a uniform, predictable latency. It is mainly the extreme difficulty in programming

SIMD machines for most applications that has lirnited their commercial acceptance.

ln the more general MIMD (Multiple Instruction/Multiple Data) class of ma

chines [34], each processor is free to execute its own instruction stream. Since the

producer and consumer of data are no longer in lock-step, as in the SIMD machines,

they may be out of sync when the communication is to occur, e.g., either the con

sumer will not be ready when the producer sends the data, or the producer will

Dot be ready when the consumer wants it. The simplest solution is to have one

wait for the other, e.g., to have the producer wait for an acknowledgement from the

consumer hefore continuing, but this can waste a lot of processor cycles, particularly

if the communication events occur at different times on different processors.

A better solution is to have the processor do sorne other work while waiting

for the response, much as an operating system will swap to another process while

waiting for a page to be read from disk. But this imposes its own costs. The largest

overhead, and the focus of the paper by Arvind and lannucci, is the time to perform

the context switch, Le., ta save the state of the current computation (as contained

in the registers) and load the state of the new computation into the registers.

1.2.4 Programmability

As previously mentioned, SnviD machines did not gain \Vide popularity because they

were difficult ta program. They are hard ta program because most problems can't

be expressed as a uniforrn homogeneous computation over an array of elements,

which is what SIMD machines are designed to do. But SI1tID machines are only the

worst case of a problem facing aIl parallel machines: ease of programming. Simply

put, for generai applications it is difficult to program parallei machines and get per

formance anywhere near the theoretical performance level of the machine (generally

the performance of a single processor multiplied by the number of processors).

In sorne cases, poor performance on parallel machines may be due to an inherent

Iack of parallelism in the application itself. These cases are discussed at length in

the next section. Sometirnes: these can be improved by modifying the algorithm or

restating the prablem, but other tirnes the problem simply cannot be parallelized.

7

•

•

•

Usually, however, applications are difficult ta parallelize because there is no uni

versaI model for parallel machines. For decades, sequential machines have ail heen

based on the von Neumann model, with its program counter, arithmetic units, reg

ister(s), and addressable memory, augmented by indirect addressing and the use

of a stack. The basic model has rernained unchanged through aIl the architectural

enhancements over the years (virtual rnemory, caches, pipelining, even superscalar).

This has made it possible to write prograrns that are essentially portable from one

machine to the next, and for programmers ta become used ta a cornrnon paradigm

of programrning. On the other hand, there are many different models for parallel

machines; for instance, the memory hierarchies looks quite different (ta the pro

grammer) on shared-memory and message-passing machines.

Since there is no uniform model for parallel computing, designing an efficient

portable paraHel programming language is practically impossible. Thus, program

mers are forced to concern themselves with specifie details of the target machine,

and must extensively modify code written for other parallel machines. It is as if

the machine had no compiler, and programmers were forced to write in a machine

specifie assembly language. Attempts to develop languages that "abstract away" ail

details of the parallel machine from the programmer have not solved the problem,

because the great differences among the models require that so much be ahstracted

from the user that efficient code cannot he generated. (Languages Iike Fortran and

C have been successfui because they do not abstract too much away; the differences

in sequential models are sufficiently insignificant that it is possible to abstract away

enough low-Ievel details to make the languages useful while giving the programmer

access to enough details to generate efficient code.)

Another reason for the difficulty in programming parallel machines is that most

do not adequately address the problems of latency, bandwidth and synchronization

already discussed. Programmers must spend extra time trying to tune their pro

grams to compensate for the weaknesses of the architecture. If machines did not

have these deficiendes, programmers could spend more time concentrating on the

high-Ievel details of the program.

This idea is illustrated in Figure 1.1. In this graph, there are three architectures

(A, B, and C) \Vith identical peak performance levels, represented by the top dashed

lïne. The horizontal axis represents the amount of programmer effort required to

achieve a particular level of performance (plotted on the vertical axis) for a given

8

•

•

Maximum

performance

"Acœpcable"

performance

Progr.unmcr effon

Figure 1.1: Performance Payoffs for Different Architectures

application, which we assume has enough parallelism to make this effort worthwhile.

Architecture C exposes most of its details to the programmer, requiring a lot of effort

to fine-tune the program to get the most speed. Ultimately, given enough program

ming, machine C can run the application the fastest. However, if users decide that a

given fraction of peak performance is acceptable (represented by the hottom dashed

Line), then programmers will he able to reach '~acceptable" performance much more

quickly with architecture A.

1.2.5 Manufacturability

•

Even if one can overcome the fundamental problems just discussed, and design a

parallel architecture that can deliver good performance, one also has to be able to

build this machine in today's competitive market. Nlanufacturers of single-thread

processors have squeezed everything they can out of RISC technology by pouring

enormous resources into design efforts. Even with advanced CAD tools, a state-of

the-art processor takes hundreds of person-years to develop. This investment cao

only be recouped through high-volume sales, mostly in the workstation and high-end

PC uniprocessor markets.

If the processors in parallel computers don't Inatch the high-end microprocessors

in performance, or at lcast come dose, the benefits of combining processors in paral

leI will be erased by their inferior speed. This situation is what Eugene Brooks [16}

9

called "the attack of the killer micros." If parallel computer makers design proces

sors that only work in large parallel machines, they won't be able to make enough

sales to justify the design costs. They must either settle for inferior processor speed

and hope that massive parallelism will make up the difference, or eIse, following the

old maxim "if you can't beat 'em, join 'em," use off-the-sheif microprocessors.

Mainstream microprocessor manufacturers have responded by putting in sorne

basic multiprocessing support in their chips, such as support for local cache consis

tency. However, these features only begjn to address the problems outlined in the

preceding subsections. If parallel machines are to become cornmercially viable, they

will need ta be based on processors with more substantial support for parallel corn

puting. If rnicroprocessor manufacturers are to be persuaded to add these features

to their chips, then the features will have to give sorne henefit to the mainstream

uniprocessor market. If they don 't, they should at least not inter/ere \\;th uniprO

cessor performance, and should present as little cast (in extra chip area) as possible

sa that the costs of their addition can be recovered through increased sales ta the

parallel computer market.

•

• 1.3 An Evolutionary Approach to Viable Parallel

Processing

•

If a large quantum leap ta a full-featured microprocessor supporting parallel pro

gramming is not commercially viable in today's marketplace, then efficient support

for parallel processing will have to be introduced gradually. Such steps as can be

made must be small, relatively risk-free, and produce tangible benefits. Therefore,

it is most likely that muitiprocessing systems will take an evolutionary path. Each

step along the path should represent a small enough cost to allow a prototype to he

buBt, and should improve upon the performance of the preceding step to establish

the merits of the features added in that step. The following are the likely phases in

this evolution:

1. Use of an existing parallel system, based on off-the-shelf microprocessors, ta

emulate a multiprocessing model weIl enough ta demonstrate its viability.

2. Construction of a hybrid system, using off-the-shelf microprocessors ta per

form the regular computations, and custom auxiliary hardware to support

10

•

•

•

the instructions unique to the multiprocessing model. The custom hardware

should improve the performance of the machine compared to the first machine

(the emulated system).

3. Design of a hybrid chip containing the original core of the stock microprocessor

and the extra custom hardware. The combination of the two components on

one chip should reduce communication delays between the two and allow better

sharing of common resources, snch as caches.

4. Creation of a Cully-integrated processor for a parallel system, one which also

performs well in a uniprocessor environrnent.

The key to the success of such an approach is choosing a good programming

model which allows programmers to express parallelism without much difficulty

and without sacrificing efficiency, yet is fully portable along the evolutionary path.

The latter requirement is crucial, for if programmers, having spent the effort to

parallelize an application, have to redo this effort to take the next evolutionary

step, few will bother to take that step. Users should be able to write an application

once, according to the given programming model; as improved versions of the parallel

machine are introduced, the application should run on the new machines with no

more modification than recompiling. The model should be simple and efficient

enough to yield reasonable performance even in the early evolutionary stages, yet

ft.exible enough to produce even better results as the new machines are created.

To summarize, the main question driving this research is:

What should he the architecture of a parallel computing system which

can effectively handle the problems of latency, bandwidth, and synchro

nization, can provide a sufficiently general programming model, and can

provide a viable evolutionary path from mainstream architectures?

We believe that multithreaded computers based on the dataflow model of commu

nication and synchronization [24] have the potential to satisfy these requirements.

~1ultithreadingby itself addresses the latency problem, because the processor can

execute instructions from another section of code when one instruction is blocked

by a long-Iatency operation. On the other hand, dataftow scheduling provides an

efficient form of synchronization. It states that any instruction is eligible for execu

tion as soon as the operands it requires are ready. The two paradigms are combined

Il

•

•

•

to get both the latency-tolerating capabilities of multithreading and the flexible

synchronization of dataflow.

1.4 The EARTH Project

The Efficient Architecture far Running THreads (EARTH) [60, 61, 59, 83] project

at McGill University is intended to demonstrate that a programming model meeting

the requirements in Section 1.3 cao be designed and implemented. Table 1.1 lists the

major milestones in this project. EARTH is a large team effort; four professors, two

post-doctoral fellows, and more than a dozen graduate students have been involved.

EARTH began in the FaU of 1993, when the author, Prof. Guang Gao (McGill)

and Prof. Herbert Hum (Concordia University) developed a model for the efficient

implementation of multithreading on off-the-shelf microprocessors with minimal ad

ditional hardware support for multithreading. Each of the three had previously de

signed multiprocessors based on datafiow principles [37, 62, 122] (see Section 3) and

knew the tradeoffs associated with such machines. The ACAPS (Advanced Com

pilers, Architectures and Parallel Systems) group at McGill and Concordia formed

a partnership \Vith GlVID (Gesellschaft für lVIathematik und Datenverarbeitung) in

Berlin, which loaned a multiprocessor called NIANNA [17], developed at Gl\'ID, to

ACAPS.

Oevelopment of an emulator on an off-the-shelf multiprocessor, the first stage

in the evolutionary path, began in earnest in Spring, 1994, after the machine was

delivered to lVlcGill. 1 At that time, the Threaded-C language was defined as the

target language for application and compiler writers. Most of the design and impIe

mentation of the runtime system and back-end compilation environment (described

in Chapter 7) \Vas done by Dr. Olivier Maquelin, who joined ACAPS in 1994 after

previous research in dataflow [82]. Sorne benchmarks were running by July of that

year, and the MTA-l'vIANNA system was shown at Supercomputing '94.

Subsequent work has focused on porting the EARTH model to various machines,

IPrior to 1995, this project was called the Multi-Threaded Architecture (MTA). However, this
name is currently used by Tera Corporation for their multithreaded machine (see section 9.1).
Private discussions with Burton Smith revealed that both groups independently started using the
acronym ~MTA" at about the same time circa 1992. \Ve have changed the name of our machine
to avoid confusion (and because we lilce the new name better).

12

1 Participants1 Event or design
Sept. 1993 First MTA position paper Hum, Theobald, Gao
Sept. Partnership with GMD established ACAPS, GMD
Mar. 1994 2-node Mini-MANNA installed at McGill GMD, ACAPS
Jul. First programs on EARTH-MANNA-D Maquelin, ACAPS
Nov. MTA-~IANNA demo at SC'94 ACAPS
Dec. First i860 simulator (SEMi) Theobald, Mueller
Feb. 1995 Project formally renamed EARTH ACAPS
Feb. First "portable" version of EARTH Maquelin
Feb. First EARTH-C-to-Threaded-C translator Xue, Tang, Ouellet,

Hendren
Apr. SEMi extended to MANNA simulation Theobald, Marquez
Aug. 2D-node MANNA installed at !vIcGill GMD, ACAPS
Jul. EARTH-~IANNA-S implementation ~Iaquelin

Aug. Polling watchdog on EARTH-MANNA-S Nlaquelin, Theobald
Sept. Polling watchdog added to SE~1i Theobald
Mar. 1996 EARTH on SP-2 Maquelin, Cai
Nov. 1997 EARTH on 4-node Beowulf Cheng
Jan. 1998 EARTH on 6D-node Beowulf Theobald, Cheng
Apr. EARTH on Sparc SMP Cluster Cheng
Jul. Functional design of SU complete Theobald
Aug. Portable EARTH on PowerMANNA Heber, Theobald
Oct. SEMi extended to SU simulation Theobald
Nov. EARTH-PowerMANNA demo at SC'98 CAPSL, GMD

1 Time•

•
Table 1.1: Milestones in the EARTH Project

tuning the implementations for better performance, and experimenting with archi

tectural enhancements. A separate language development effort is running in par

allel, with the goal of creating a higher-Ievel parallel language without the need for

explicit threads, and writing a compiler ta translate this language to Threaded-C.

Major participants in the language effort include Prof. Laurie Hendren, Haiying Cai,

Pierre Ouellet, Xinan Tang, Xun Xue, and Yingchun Zhu. Other institutions that

have been involved in the EARTH project include the University of Delaware, the

University of Southern California, and GrvID.

•
13

• 1.5 Contributions

•

•

As in any project developing a computer system, many people were invoived. The

following original contributions are solely or primarily the work of the author:

1. The design and construction of a tool for analyzing the parallelism in pro

grams, and a study, using this tool, of representative benchmarks, identifying

fundamental properties that point to the need for multithreaded architectures

(this study actually preceded the start of the EARTH project);

2. A definition of the EARTH (Efficient Architecture for Running Threads) Pro

gram Execution Model, an abstract model describing a way to divide a paraliei

program ioto threads and the operations performed on these threads (while

the EARTH model was co-developed by Gao, Hum and the author, the author

provided the formaI definition);

3. Definitions of two EARTH Virtual rvlachines, one based on global addresses

and one based on frames, which present specifications of operation sets cor

responding to the abstract operations of the Program Execution Model, at a

level of detail sufficient for implementation of a real system;

4. Specification and high-Ievel design of a custom hardware Synchronization Unit

providing efficient support for the EARTH Program Execution rvlodel;

5. Development of a tool for accurate simulation of an existing off-the-shelf mul

tiprocessor, and the use of this tool to measure the performance of the multi

processor with more processors than available with the CUITent hardware (to

measure scalability) , a custom hardware Synchronization Unit (to test the

efficiency of the EARTH model when there is hardware support for multi

threading), and with different processor parameters (to confirm the benefits of

the EARTH model on processors built after those used in the multiprocessor

platform);

6. A study of possible extensions to EARTH and Threaded-C which couId im

prove both runtifie efficiency and programmability.

The following contributions are not the exclusive work of the author, but the

author played a major raIe in their execution:

14

•

•

•

1. A definition of the Earth Architecture Model, describing an architecture appro

priate for executing programs under the EARTH Program Execution Model;

2. A definition of the Threaded-C language~ an explicitly threaded language ex

tending standard C with EARTH operators;

3. Coding of various benchmarks in Threaded-C sa that they may be tested on

EARTH platforms;

4. Implementations of EARTH on several off-the-shelf platforms, and experi

ments showing the performance achieved by Threaded-C benchmarks on these

platforms.

1.6 Synopsis

This dissertation is organized as follows:

Before building a parallel processor to run a class of applications, one should

analyze the applications ta know bath how much parallelism is intrinsic to each ap

plication and what architectural properties are necessary to achieve this parallelisme

Chapter 2 reviews a study performed by the author for this purpose, based on real

applications. (A survey of previous studies is provided in Appendix A.) The results

show that most applications have enough inherent parallelism to keep at least a

moderately-sized parallel computer usefully busy, but very little parallelism exists

at the instruction level, meaning that the ILP techniques discussed in Section 1.1

will not produce the desired performance.

EARTH has its roots in the dataflow model of computation. Chapter 3 ex

plores the history and evolution of dataflow. 1t begins \Vith a review of basic data

fiow concepts, and surveys the machines designed according to datafiow principles,

focusing on those machines most related to EARTH. The chapter then discusses

multithreaded machines based on dataflow, particularly the multithreading work

at wlcGill which preceded EARTH, and includes a survey of other dataflow-based

multithreaded machines in the literature.

Chapter 4 defines the most fundamental properties of EARTH, the Program

Execution ModeZ (PXM) and Architecture Model. The first model describes how a

program is divided into threads, how these threads are created, coordinated and

synchronized, and how they share data. The second model describes, in general

15

•

•

•

terms, the structure of a multiprocessor appropriate for this model. The chapter

concludes by discussing possible future extensions to the models.

The PXM defines, in general terms, the types of operations on threads that need

to be performed for effective support of parallel programs on EARTH. More infor

mation is needed so that designers can have a target for implementation. Chapter 5

f111s in important details about these operations, including how data and threads

are addressed globally, and provides a complete specification of EARTH operations.

This is called an EARTH Virtual Machine because it is still more abstract than

a complete instruction set. (A complete instruction set for EARTH would be in

appropriate, as that would tie EARTH to a particular processor.) An altemate

virtual machine (addressing scheme and set of operations) is proposed; both virtual

machines are consistent with the specifications of the PXWI.

Chapter 6 defines the Threaded-C language. Threaded-C extends ANSI

standard C with functions corresponding to the EARTH operations defined in Chap

ter 5. This allows programmers to write applications for EARTH in a high-Ievellan

guage, though one which is explicitly threaded by the programmer. The language

is illustrated through programming examples.

The next two chapters present several implementations representing various

points along the evolutionary path listed in Section 1.3. Chapter 7 represents the

first step, the emulation of the EARTH model on an off-the-shelf multiprocessor

without specialized hardware support for EARTH. Two implementations based on

the GMD ~IANNA machine are described, one in which each node has two proces

sors, and one in which each Dode has a single processor. The chapter describes the

runtime system (software which supports the EARTH operations) and the compiler

(which compiles Threaded-C code with the help of an off-the-shelf compiler for the

NfANNA's processor).

Experiments on a 20-node MANNA show that the EARTH operations operate

very quickly, and latency and bandwidth measurements are far better than com

mercial parallel machines using comparable technology. Experiments with eleven

benchmark applications show that the multithreading support provided by EARTH

imposes only moderate overhead costs on the code, as measured by comparing mul

tithreaded code running on one node with sequential code. Furthermore, most of

these programs have good (nearly linear) speedups up to 20 nodes, showing that the

EARTH implementation on MANNA is good for many applications, even though it

16

•

•

•

is only the first evolutionary step.

SEMi, a simulator for the MANNA with high timing accuracy, is also presented

in this chapter. SEMi is used to extend the speedup curves of selected benchmarks

to 120 nodes, six times what is available on real machines. The accuracy of SEMi

gives confidence that these results are a reasonable estimate of the performance of

these benchmarks on a large MANNA, if one were constructed.

Chapter 8 considers the remaining evolutionary steps of Section 1.3. The second

and third steps involve developing special hardware to support EARTH operations

more efficiently, either as a separate module or as a component added to a micropro..

cessor core at the chip level. Complete interface specifications for this component

are given, along with a high-Ievel block design. The SEMi simulator is augmented

to simulate this hardware, and the selected benchmarks are run on the new sys

tem and compared to the original (software-only) configuration. The results show

that each evolutionary step leads to substantial speed improvements in individual

EARTH operations, reductions in latencies between threads and in multithread

ing overheads, and improvements in speedups for aH applications. With hardware

support, many of the applications tested have high speedups even on 120 nodes.

The end of the chapter discusses the possibilities for the final evolutionary step (to

full-custom hardware).

The dissertation then reviews other multithreading systems (excluding those

already covered in Chapter 3), including both architectures and software-based sys

tems (Chapter 9), and presents our final conclusions (Chapter 10).

There are several appendices. Appendix A surveys other studies of parallelism

related to Chapter 2. Appendix B is a complete list of the data types and operators

of the Threaded-C language. Appendix C recapitulates sorne of the experimental

results of Chapters 7 and 8 to allow a direct comparison of different implementations

of EARTH on MANNA. Appendix D presents the results of an auxiliary study which

uses the SEMi simulator to modify the performance pararneters of the MANNA

hardware to be more consistent with current off-the-shelf systems. The experiments

from Chapters 7 and 8 are repeated; the results show that the efficiency of the

EARTH model and the benefits of hardware support are applicable to contemporary

systems as weIl as the older MANNA hardware.

17

•

•

•

Chapter 2

ParallelisIIl in COlllputer Prograllls

In the introduction, it was shown that exploiting parallelism is a worthwhile pursuit

because there is a need for computers of greater and greater power. However, before

attempting to build a parallel processor to run a class of applications, one should

analyze the applications to know both how much parallelism is intrinsic to each ap

plication and what architectural properties are necessary to achieve this parallelism.

This section reviews a study performed by the author for this purpose, based on real

applications. (A survey of previous studies is provided in Appendix A.) The results

show that most applications have enough inherent parallelism to keep at least a

moderately-sized parallel computer usefully busy.

This section is divided into four parts. The first part describes the SrTA tool,

developed by the author to study program parallelism. An abstract model of exe

cution on parallel machines, called the Dynamic Control Dependence Tree, is also

presented. The next two parts present the expcrimental results obtained with this

too1. The section closes with a discussion of the conclusions that cao be drawn from

the SITA studies.

2.1 The SITA Tool

The current study is based on an analysis too1 developed at McGill, called SITA

(Sequential Instruction Trace Analyzer) [116, 119, 120]. Like sorne of the previous

studies, the SITA tooi analyzes traces of machine-Ianguage instructions generated

from executed code, rather than analyzing the high-Ievel source code. Figure 2.1

shows conceptually how SITA works.

18

Archilecture
par:unelers

•

•

•

Figure 2.1: Trace Simulation Methodology

In the fiowchart, the left fork rcpresents the compilation and execution of a pro

gram on an ideal machine with a given set of architectural characteristics. Lacking

such a machine, one can model it using trace simulation, as shown in the right fork.

First, a benchmark program is compiled into an executable file using a conventional

sequential compiler. Then the executable code is run through a trace generator,

which produces a program trace. This trace consists of a stream of operations rep

resenting the actual sequence of instructions executed (not the static object code).

Finally, the trace scheduler, modeling a machine \Vith the same architectural features

as the "ideal machine" in the left path, determines the time at which each individual

instruction appearing in the trace would be executed on that ideal machine. The

trace scheduler produces statistics on parallelism which should predict the behavior

of the code on the ideal machine.

Figure 2.2 illustrates the operation of the trace generator and scheduler. Part

(a) shows a fragment of Sparc executable code, a simple loop. The trace generator

produces a dynamic stream of instructions as shown in part (b). For each executed

instruction, the trace gives the opcode, PC address, the load or store address (if

any), and the outcome of the conditional branelI (if any). The trace scheduler reads

19

• 8 1: Id [Y.r2+7.rl] •y'fO 308
82 : Id [y'r3+7.rl] •Y.f1 216
83 : fmuls Y.fO.Yefl.Yef2
84 : st Yef2. [7.r4+Y.rl] 440

8 1: [Y.r2+Y.r1J.YefO
85 : subcc Y.r1.4. Y.r1

Id 86 : bg Sl Taken
82 : Id [Y.r3+Y.r1J.Yefl S7: nop
83 : fmuls Y.fO.Y.f1.Yef2 S'- Id [%r2+7.rlJ.Y.fO 304
54: st Y.f2. [%r4+Y.r1J 1-

S'- Id [Y.r3+Y.r1J •Y.f1 212
85 : subcc Y.rl.4.Y.r1

2-

S'- fmuls %fO.Y.fl.Y.f23·
86 : bg Sl S'- st y'f2.[7.r4+%rl] 4364-
87: nop S!- subcc Y.r1.4. %rl:>'

S'- bg Si Taken6'
S!.- nop,.
S"- Id [Y.r2+7.r1J •y'fO 3001 -

a) Executable code b) Dynamic trace

•

c) Scheduling (aIl dependences) d) Scheduling (no false dependences)

•

Figure 2,2: Packing Parallel Instructions: An Example

the operations from the stream and packs them into paraUel instructions (PI) _ As

the scheduler reads each operation in the trace, it inserts the operation into the

earliest PI possible, while simultaneously respecting the dependences between that

operation and aIl previous operations. The following types of dependences between

operation 5 i , inserted inta Pli, and a later operation 8 k mayexist:

20

•

•

•

• Flow dependence: if Sk reads a storage location (register or memory cell)

which was most recently written by Si, then Sk can be scheduled no earlier

than Pli +1 .

• Anti dependence: if Sk writes a storage location which was most recently read

by Sj, then Sk cao be scheduled no earlier than Pli- (It is assumed that the

write and read can occur simultaneously, and Si will read the proper value.)

• Output dependence: if Sk writes a storage location which was most recently

written by Si, then Sk can be scheduled no earlier than Pli +1 (assuming that

the storage location is read by a later instruction).

• Control dependence: if Sj is the most recent conditional branch in the trace

whose outcome must be decided before it is known whether or not Sk will be

executed, then Sk can be scheduled no earlier than Pli + 1 •

Figure 2.2 (c) shows how SITA would pack these operations into PIs if ail four

dependence types listed above were obeyed. (lt is assumed that ail memory accesses

take one cycle). Plain arcs are drawn ta show the How dependences between oper

ations. The arcs with small marks (e.g., from 5 .. to S5) indicate anti dependences.

The dashed line represents a barrier caused by the conditional branch at 56, which

may prevent future operations from being scheduled before that barrier. 1 Paral

lelism is defined as the total number of sequential operations divided by the total

number of PIs required by the scheduler.

The SITA tool is extremely Hexible in the features it can model. Sorne features

relax the dependence constraints, increasing the opportunities for exploiting paral

lelism in the program. Other features tighteo the resource limitations, forcing sorne

instructions whose dependences have been satisfied to wait for resources to become

free. The following subsections describe sorne of the architectural features which

SITA can model:

2.1.1 Memory Renaming and Disambiguation

A compiler can't always tell whether or Dot two memory accesses refer to the sarne

location. A conservative analysis would assume that any two memory references

1 For operations SI-53 and 55, there are also output dependences between corresponding oper
ations in different iterations; these have been left out of Figure 2.2 for c1arity.

21

•

•

•

could refer to the same memory location, in which case a dependence would exist

between them. Thus, for instance, a conservative scheduler would have to assume

that a flow dependence might exist between 8 4 in one iteration and SI in the next

iteration, making it harder to overlap separate iterations of the loop. However, SITA

can check the addresses in the trace to determine whether two memory references

really conflict. This models the potential effects of perfect compiler alias-analysis.

A faIse dependence (anti or output) exists between two operations when one must

follow the other, not because the latter requires data produced by the former, but

merely because the latter needs to reuse a storage location (regÏster or memory cell)

used by the former. An example of this in the code sampie is the use of register %r1

for the loop index, which cannat be updated (by S5) before being used to construct

a memory address (by 84). Thus, overlapping the iterations of the loop body, as in

software pipelining, is impossible. FaIse dependences also frequently occur in main

memory, either through the update of data structures (such as arrays) in place, or

the sharing of the stack by different procedures at the same calI depth.

The inhibiting effects of faIse dependences can be eliminated by ensuring that

each regÏster or memory location is written only once. In the CPU, false dependences

can be reduced by creating extra physical registers, and dynamically mapping reg

isters in the instruction stream to these physical registers. This technique, called

register renaming, is used in many state-of-the-art RISC processors ta boost paral

lelism. False dependences in the memory can~ in principle, be eliminated by only

assigning to each variable once, as is done in prograrnming languages such as Sisal

[31J. False dependences in the stack can be eliminated~ by organizing the mem

ory frames for procedure invocation in a tree-like structure, as proposed in several

datafiow and multithreaded architecture models [21, 92, 99].

Infinite renaming, in which a regÏster or memory location can he renamed any

number of times, is equivalent ta ignoring aIl faise dependences between objects

of a particular type. For instance, if register renaming is applied ta the trace in

Figure 2.2(b), then 55 can be executed in parallel \Vith SI and 82 of the same

iteration, as the anti dependence with 84 no longer exists. This moves operation

86 up as weIl, so the conditional-branch barrier has rnoved up by 2 PIs. If perfect

disambiguation is also used, then the iteration issue rate increases ta once every

other cycle, raising parallelism to 3, as shown in Figure 2.2(d).

22

•
101

a) CFG b)CDG c) DCDT

•

•

Figure 2.3: Control Dependence

2.1.2 Control Barrier Elimination

In many of the previous parallelism experiments, the schedulers made pessimistic

assumptions about the effects of conditional branches on the instructions that fol

lowed. The most conservative assumption is that if a conditional branch instruction

is placed in Pli, then aIl instructions appearing later in the stream can be scheduled

no earlier than PIi + 1• However, this restriction goes beyond the definition of con

trol dependence in Section 2.1, because not aU future instructions are truly control

dependent on that branch.

This point is illustrated with the code fragment shown in Figure 2.3, in which a

small "loop body" does sorne calculation inside a simple two-dimensionalloop. Part

(a) shows the loop drawn as a Control Flow Gr·aph (CFG). The code is partitioned

ioto basic blocks, each block being a maximal set of contiguous instructions which

is only entered at the beginning and exited at the end. (Each set is maximal in the

sense that if either the instruction following or preceding the block is added to the

set, it no longer satisfies the definition.) The basic blocks are connected by arcs,

which connect a basic black to aU of its possible successors.

Only sorne basic blocks end with conditional branches, and each of those con

ditional branches only affects certain basic blocks. For instance, both block 3, the

23

•

•

•

body of the inner loop, and block 4, the end of the body of the outer loop, end with

conditional branches. However, block 4 is not control-dependent on black 3; black

4 will eventually execute once at the end of the loop no matter how many times the

ioner loop executes. The CFG can be converted ta a Control Dependence Graph

(CDG) [32} which conveys this information, as shawn in part (b). In this graph, the

arcs labeled "to 2" whose source is black 4 (for simplicity, the arcs are shawn as a

single arc which forks) indicate that if the conditional branch at the end of black

4 is taken (i.e., to black 2), then one more instance of each of blocks 2, 3, and 4 is

guaranteed.

\Vhat this means for code execution is shawn in part (c). This part shows a

Dynamic Control Dependence Tree (DeDT) [119], which is produced by dynamically

unrolling the CDG according ta the outcome of each conditional branch. The tree

shows the control dependences between particular instances of basic black. A block

is only control-dependent (according ta the definition in Section 2.1) on its parent

in the DCDT. Therefore, two blacks that do not have a direct ancestor relationship

are control-independent, and could mn in parallel provided there were no other

dependences (flow, anti or output) to impede them. For instance, what Figure 2.3(c)

shows is that while instances of the inner loop would have to be execnted sequentially,

the outer loops could be run in parallel. (This is assuming there are no other

dependences. Given the fact that the laop counters i and j are shared and updated

in place, a machine would have to use register or memory renaming, as described in

Section 2.1.1, in order to exploit this parallelism.)

SITA supports the following options (listed in arder of increasing power):

• The most pessimistic assumption is that aU future instructions are control

dependent on a given conditional branch.

• If procedure separation is used, the barrier created by a conditional branch

only affects other instructions in the same procedure, and those in procedures

called by that procedure.

• Control-dependence analysis uses a CDG, generated by SITA, ta limit the

effects of conditional branches to those instructions that are truely control

dependent on them.

• With the speculative execution option, SITA can model the behavior of a

24

•

•

•

machine which tries to execute instructions before the conditional branches

on which they are control-dependent have been executed.

• The oracle [90] makes the most optimistic assumptions by ignoring control de

pendences entirely, and provides an upper bound on parallelism by measuring

the effects of flow dependences only.

2.1.3 Finite Resources

SITA normaIly optimistically assumes resources are infinite and ail operations are

uniformly fast. However, the user can specify constraints on the window size, laten

cies, and number of processors.

Normally, SITA assumes that an operation from anywhere in the trace can he

placed in the earliest PI possible, subject to data and control dependences. In

theory, the last operation in the sequential trace could be packed into the first PI.

However, the user cao specify a lirnit on how far apart two operations cao be packed.

This model is based on the assumption that the parallel machine can only look so

far ahead of the program counter when looking for operations that are ready to be

executed, much as today's out-of-order superscalar processors do. With a limited

window size, SITA conceptually keeps future operations from the trace stream in

the window and packs them ioto PIs from the window. \\Theo the trace stream fHIs

the window, the analyzer must "issue" the lowest-oumbered unissued PI, thereby

making it unavailable for further packing, and remove the operations in that PI

from the window.

SITA normally assumes that every operation takes 1 cycle. SITA can be config

ured to give higher latencies to certain operations~ such as floating point operations

or remote memory accesses. It is difficuit to obtain accurate modeling for the latter

from a sequential trace, because the sequential compiler does not partition the data,

there being only one processor. Thus, the sequential trace provides no notion of '"lo

cal" and aremote" processors. SITA, therefore, models remote accesses statistically;

it designates, at run time, a randomly-selected number of memory accesses, giving

each a user-specified latency. The ratio of reroote accesses to total accesses is also

set by the user.2

2In principle, data partitioning could be done by hand for each benchmark. However, the
pattern of memory use on a sequential processor May be radically different from the pattern of

25

•

•

•

Source Program Description Test Case Ops % of ops.
(x106) FP Ld. St.

DLX Tex Text formatting draft (Il p.) 109 .04 15 8.0
Industry Speech Speech recognit. recognize "he" 551 4.5 14 2.8
SPEC89 Espresso Bool. minimization bea.in 469 <.01 23 2.5
test Eqntott Truth-table gen. inLprL3.eqn 1,770 0 33 0.7
suite Fpppp Quantum chem. NATO~fS=4 277 19 43 10

Tomeatv Data-parallel grid N=257 3,018 17 48 13
Dodue Simulation small 522 14 36 10

Table 2.1: Benchmarks Used in the Study

Finally, one can limit the number of processors that SITA models. Normally, the

trace scheduler places each trace instruction in the earliest P.I possible, consistent

with aIl dependences with earlier instructions. The user can specify a maximum

width to each PI, thus modeling a finite number of processors. If, after checking

for dependences, SITA finds that the earliest legal PI is full, it must place that

instruction in a later PI, the earliest one which is not full.

2.2 Experiments with SITA

Seven benchmarks were used in this study. They are presented in Table 2.1. The

first four are irregular applications written in C. The others are numerical, Boating

point-intensive applications written in Fortran.

2.2.1 Control Dependence Experiments

The first set of experiments measured the effccts of control Bow on parallelism.

Each benchmark was run under four machine models. AlI four models have infinite

renaming of registers and memory, perfect memory disambiguation, one-cycle oper

ations, and infinite resources. The only parameter that is varied among them is the

sensitivity to control dependences. The experiments explored the various options

discussed in Section 2.1.2, except speculative execution, which is covered in a later

memory use on a parallel processor. Thus, for ail but highly-regular benchmarks, a user-specified
partition is not likely to yield a more accurate predictor of remote memory accesses than SITA's
probabilistic approach.

26

•

•

•

Benchmark Omniscient Fine Coarse Smart
Oracle Dataflow Dataflow Superscalar

Tex 192 5.31 3.04 2.08
Speech 8,105 45.4 6.30 1.80
Espresso 1,224 2.81 1.78 1.47
Eqntott 43,298 2.24 1.66 1.46
Fpppp 4,978 1,179 52.7 30.1
Tomcatv 8,417 6,014 19.2 19.1
Doduc 615 566 32.8 4.92

Table 2.2: Effects of Control Dependence

section.

• The Smart Superscalar model assumes that any future instructions must be

control-dependent on a current conditional branch, and thus does not allow

that code to run before the current branch has been executed.

• The Coarse Dataflow model performs procedure separation; thus, conditional

branches only affects future code within the same procedure calI.

• The Fine Dataflow performs full control-dependence analysis, as described in

Section 2.1.2.3

• The Omniscient Oracle model pays no attention to control dependences \Vhen

scheduling code.

The results ofthese experiments are shown in Table 2.2. AIl show very high levels

of parallelism under the Oracle model. However, for lesser models, there are signif

icant differences between the performances of the non-numerical applications (the

first four) and the performances of the numerical applications. The non-numerical

applications show a severe 10ss of parallelism \Vhen aIl true control dependences

are obeyed, especially Tex and Eqntott. The numerical codes, on the other hand,

continue to have high levels of parallelism with the Fine Dataflow model. This is

because their control structures tend to he very simple and not dependent on the

data computed, e.g., a Ioop \Vith fLxed bounds rather than a 100p whose continuation

depends on data computed within the loop body.

3This is similar ta the CD-MF model used by Lam and \Vilson [77].

27

•

•

•

Bench- Omni. Tree % of Linear % of Frugal % of Smart Stupid % of
mark Ora. Ora. 00 Ora. 00 Ora. 00 Super. Super. Smart
Tex 192 75.8 39.4 167 86.9 71.5 37.2 2.08 1.66 80.8
Speech 8,105 136 1.68 57.1 0.70 53.6 0.66 1.80 1.62 89.9
Espresso 1,224 126 10.3 906 74.0 124 10.1 1.47 1.37 93.2
Eqntott 43,298 1,742 4.02 1,314 3.03 1,314 3.03 1.46 1.43 98.2
Fpppp 4,978 4,978 100 71.0 1.43 70.9 1.42 30.1 2.88 9.56
Tomcatv 8,417 457 5.43 155 1.84 155 1.84 19.1 2.74 14.3
Doduc 615 614 99.7 25.0 4.06 25.0 4.06 4.92 2.33 47.4

Table 2.3: The Effects of Frugal Use of Memory

The numerical applications suifer their greatest geometric 10ss when going from

the Fine DataBow to the Coarse DataBow model. This is mostly because they

contain two-dimensional loops. As the DCDT in Figure 2.3(c) shows, control

dependence analysis often allows outer loops to ron concurrently. Without this

analysis, aIl iterations must run in sequence. Control-dependence analysis is less

important for non-numerical applications; only Speech shows a loss greater than

50%.

2.2.2 RegisterjMemory Renaming Experiments

The second set of experiments measured how parallelism is affected by the reuse

of registers and memory. The SITA tool allows separate control over the renaming

of registers and of stack and heap objects. -1 The first three experiments were with

"frugal oracles." These oracles are just like the Omniscient Oracle, but they don't

have full memory-renaming capability. The Tree Oracle allows renaming of stack

variables, to measure the lirnits of parallelism exploitable by a machine using a tree of

stacks or sorne equivalent irnplementation, but does not allow renaming in the heap.

The Linear Oracle retains the linear stack model, by Dot allowing stack elements to

be renamed, but allows renaming in the heap. The Frugal Oracle has no memory

renaming. The results of these experiments, shawn in Table 2.3, demonstrate the

importance of avoiding false dependences between operations that reuse memory

abjects.

4In this study, "heap" includes bath dynamically-allocated and global (static) variables.

28

•

•

•

One final model, the Stupid Superscalar, tests the benefits of renaming and dis

ambiguation at the "low" end of the scale. The Stupid Superscalar is like the Smart

Superscalar, but has neither memory disambiguation nor register/memory renam

ing.5 Results for this model are given in the rightmost two columns of Table 2.3.

Both superscalar models have the property that a conditional branch affects the

scheduling of aH future instructions. Thus, these machines can generally only find

paral1elism within basic blocks. Indeed, the rightmost column of Table 2.3, which

gives the performance of the Stupid Superscalar relative to the Smart Superscalar,

shows that for irregular code, renaming and disambiguation by themselves produce

little benefit. Qnly Fpppp shows a big gain when renaming and disambiguation are

added, probably due to its large basic blocks and regular code structure. For codes

with frequent branches, we must go to more aggressive models, such as the Fine

Datafiow model.

2.2.3 Finite Window Experiments

The next set of experiments demonstrate that restricting the choice of instructions

to execute to a small "window" of instructions near a single program counter cao

significantly reduce parallelism. Two experiments were run, each with an Omniscient

Oracle whose window has been restricted as described in Section 2.1.3. Window sizes

of 64 and 2,048 were used. The results, shown in Table 2.4, show that even \Vith a

2K window, there is a significant loss of parallelism.

Additional experiments measured the effects of finite window sizes for less

capable machine moclels [117, 116]. In most cases, restricting the window size clown

to 64 ops had little effect on such machines, because their other limitations already

restricted parallelism to a high degree.

2.3 Speculative Execution and SITA

The data in Table 2.2 shows that, at least for non-numerical applications, there

is a large gap between what could be achieved by an ideal machine with perfect

5The Stupid Superscalar is similar to Wall's "Stupid" model [128], except that \Vall's model was
limited to 64 processors, and could only schedule operations from \\;thin a window of 2,048 instruc
tions. These limitations, however, had almost no additional impact on the Stupid model, since
register and memory reuse, control dependences, and lack of memory disambiguation generally
removed almost all available paral1elism except that within basic blocks.

29

•

•

•

Benchmark Omni. 2K ops % of 640ps % of
Oracle Window 00 Window 00

Tex 192 62.1 32.3 12.2 6.37
Speech 8,105 90.5 1.12 12.4 .154
Espresso 1,224 35.1 2.86 12.9 1.05
Eqntott 43,298 141 .325 19.6 .045
Fpppp 4,978 75.6 1.52 15.8 .317
Tomcatv 8,417 86.4 1.03 22.6 .268
Doduc 615 104 16.9 11.4 1.85

Table 2.4: The Effects of Finite Window Size

knowledge of every branch outcome, and what could be achieved by a machine which

is affected by control dependences. This observation and others have generated

increasing interest in getting more parallelism from programs through speculative

execution. This means executing the code at one or more destinations of a branch

before the branch outcome is known.

This has primarily been used to try to prevent branches from disrupting long

execution pipelines, as in superscalar machines. For instance, sorne machines use the

past history of branches to predict the most likely destination and prefetch along that

path. Various branch prediction techniques have been developed [78, 97, 105]. Sorne

machines speculate further ahead; one superscalar uses boosting [106] to speculate

past a branch many instructions before it is resolved, using "shadow registers" to

maintain two program states, which are made consistent once the branch has been

resolved.

With this in mind, we developed a model of speculative execution appropriate for

highly-parallel computers, and a new model of branch prediction appropriate for this

new model. This led to a new set of experiments with the goal of understanding the

interaction of speculative execution and branch prediction, ho\\' they affect program

parallelism, and what kinds of speculative execution and which branch prediction

strategies lead to the highest potential amounts of parallelism.

30

•

•

•

2.3.1 Adding Speculative Execution to the DeDT

Ideal paraIlel execution of programs which use control-dependence analysis to max

imize parallelism are modeled using the Dynamic Control Dependence Tree, de

scribed in Section 2.1.2. The CDG and the corresponding DCDT can he used to

create a model of parallel execution in which the effects of control dependence are

minimized. In the earlier section, as a CDG was "unroIled" into a DeDT, vertices

in the CDG were successively control-enahled, and each new "enahling" of anode

corresponded ta a node in the DCDT. Time can be added ta this modeI. We can

say that anode begins execution as saon as it is control-enabled, and that its chil

dren (if any) are control-enabled sorne time later, after its branch or jump has been

completed. We say that an instance of a block is resolved at the time that its branch

or jump has been computed. (This could occur before aIl instructions in that block

have completed, if the instructions are reordered sa that the branch predicate is

computed before the end of the block.)

The Fine Dataflow model, described in Section 2.2.1, is the base case ofa machine

with control-dependence analysis, but no speculation. For this reason, it can also be

called a O-Level Speculator [119]. Suppose a machine begins running according ta

the model, and starts executing blacks 2, 3, and 4 at the same time. If the branch in

block 3 is taken (destination is 3), then another instance of block 3 will be initiated.

A O-Level Speculator would have to wait until the first instance of block 3 is resolved

before starting another iteration.

However, a speculative machine could assume that the branch at block 3 will

be taken, and start executing the next iteration of the inner loop before the first

branch is resolved. Simultaneously, it may start new occurrences of blocks 2, 3, and

4 before the first occurrence of block 4 has finished. This would he an example of

l-LeveL Speculation. In general, an n-LeveL Speculator speculatively executes blocks

up to n conditional branches past the last resolved conditional branch, i.e., from

each resolved branch in the DCDT, it generates the descendants of that branch in

the OCDT, down n + 1 levels (the first level requires no speculation) and begins

executing aIl blocks in parallel.

There are two general techniques for predicting the outcome of a branch: static

and dynamic. Static prediction assigns a most likely outcome to each branch or

jurnp in the object code, and this prediction is made every time that particular

instruction is executed. This prediction can be hased on the direction of a branch

31

•

•

•

(e.g., backwards branches are always taken and forwards branches are never taken)

or on statistics gathers from a sample run of the program.

A dynamic predictor guesses the outcome of a branch or jump by looking at the

outcomes of previous occurrences of that instruction, and possible of other related

branches. It is hoped that the predictor can learn from and adapt to changing

branching patterns [78]. The conventional approaches used for sequential processors

were shawn ta be inappropriate for parallel machines, and a new method of dynamic

prediction, based on the DCDT, was developed [118, 119]. However, experiments

then showed that in almost aIl cases, static and dynamic prediction produced almost

the same amount of parallelism, so this section only reports on experiments using

static prediction.

2.3.2 SITA Experiments on Speculation

For the experiments, only the first five of the seven benchmarks in Table 2.1 were

used. The last two, Doduc and Tomcatv, show almost no difference between the 0

Level Speculator (Fine Dataflow model) and the Omniscient Oracle. In both cases,

there are a lot of loops in which the loop predicate is not data-dependent on the body

of the loop (e.g., iteration across a fi.xed range). In such a case, a O-Level Speculator

could iterate and test the loop counter as saon as the loop body begins, so one loop

iteration could begin every few cycles. Speculating past the test would save only

a few cycles, because the initiation of loop iterations would still be constrained by

the data-dependences involved in the incrementing of the loop connter. Since the

O-Level Speculator and Omniscient Oracle represent the lower and upper bounds of

what could be achieved with speculation, speculation has little poteotial benefit for

these two applications.

Each of the remaining five benchmarks were run through SITA nnder an ag

gressive speculative execution model (see Table 2.5. In this model, the machine

speculates an infinite nUlllber of levels past each resolved branch, but only executes

along the branch path chosen by the braoch predictor. Like the original Fine Data

flow machine and Omniscient Oracle, the speculators have unlimited processors,

scheduling windows, and registerfmemory renaming. The results show that specu

lative execution can produce significant increases in parallelism. Improvements were

moderate in only two cases: Tex, which does oot have much parallelism in any case,

32

•

•

•

O-Level Infinite Infinite/ Omniscient oracle/
Speculator Speculation O-Ievel Oracle Infinite

Tex 5.31 36.8 6.93 192 5.14
Speech 45.4 1,192 26.3 8,105 6.80

Espresso 2.81 53.0 18.9 1,224 23.1
Eqntott 2.24 2,625 1,172 43,298 16.5
Fpppp 1,179 4,166 3.53 4,978 1.19

Table 2.5: Speculation Success

and Fpppp, for which the O-Level Speculator already does so weIl.

These results assumed that SITA would speculate past an infinite number of

unresolved branches. Since that would be impossible in practice, a new group of

experiments was performed to measure the henefits of speculation when limited to a

finite number of levels. Figure 2.4 shows, for each benchmark, the parallelism result

obtained by SITA when speculation depth was limited to the number on the hori

zontal axis. Three of the five benchmarks achieved the same level of parallelism with

16 levels of speculation as with an infinite depth. so no experiments beyond 16 levels

were performed. Beyond 16 levels, Espresso showed only minuscule improvements.

Only Eqntott required more than 16 levels to get close to the performance of the

infinite-Ievel model. In fact, most of the benchmarks achieved significant benefits

even from only 2 or 4 levels of speculation.

2.4 Discussion

The SITA studies have shown the parallelism theoretically attainable for various

applications under various abstract architectural models. How applicable are these

studies to future research in parallel machines? What conclusions can he drawn

from these results?

One of the main goals of the SITA studies was ta see how much parallelism could

potentially be exploited in various applications. The first question to ask is: how do

the results produced by SITA apply ta parallel Inachines? After ail, SITA caiculates

parallelism by scheduling the instructions from a trace generated by the execution

of a sequential program. The control structures might he significantly different in a

parallel version of the program.

33

Espresso

~.-~~-.-------------------fTex

::E
~

::s 100 ;-#------7~-----------
tLI
...J
...J

~
~ 10 ;-~~~----------------

1.000 -r------"""7..-~--_::::i;;;:;;;;::;;;;.-=~~----"

•

o 2 4 8 16 32 64 128 256 inf

SPECULATION DEPTH

•

•

Figure 2.4: Finite Speculation Depth

However, SITA allows one to remove many of the artifacts of programming in

a sequential language. AIl models reported in this section, except the Stupid Su

perscalar model, assume adequate renaming mechanisms, single-assignment use of

memory, and effective alias analysis, and thus ignore the effects of false dependences.

AIl models, except those covered in Section 2.2.3, allow code frorn different parts

of the program, no matter how far "apart" in the sequential sense, ta execute at

the same tirne. As a result , rnodels such as the Fine DataBow machine were able to

achieve impressive amounts of parallelism for sorne of the applications.

But this reveals a limitation of these studies. High parallelism was possible under

the numerical applications because the control structures are simple, and they are

not likely to be substantially different in a parallel machine. The non-numerical ap

plications, on the other hand, are more problematic. We found disappointingly low

arnounts of parallelisrn for sorne of the irregular programs under the Fine DataBow

model. Other studies have seen sirnilar results.

However, it is possible that sorne of the control dependences which throttled the

performance of the Fine Dataftow model on these applications may also be simply

due to sequential prograrnming. Sorne applications, like Tex, intuitively seem to

have much more potential parallelism than found by our Fine Dataflow model (5.31)

or Lam and Wilson's similar Multithreaded model with control-dependence analysis

34

•

•

•

(6.18) [77]. This program performs the layout of an Il-page document, and it would

seem that each paragraph could be formatted independently, with its final vertical

position determined at the end of the program. obviously, there are control and

data dependences which prevent this from happening, but many of these may he due

to the programmer's assumption of a sequential execution model, not to inherent

sequentiality in the application.

This has important implications for future directions in architecture. It is sorne

times believed that to exploit maximum parallelism, we only need to rewrite existing

algorithms in a better language, such as a functional language, so that an efficient

compiler can extract aH the available parallelism without heing burdened by such

sequential artifacts as memory reuse. But the Fine DataBow model gets poor re

sults, even though it eliminates false data dependences, and represents what could

he achieved by an efficient parallel running well-compiled programs.

This would suggest that in many cases, large-scale paral1elism will not he

achieved rnerely by rewriting existing imperative-language programs in different

languages. They must he redesigned completely, starting at the algorithmic level.

Whether this is best done hy having the programmer write programs with an explicit

parallel machine model in mind, or use a more abstract programming paradigm, such

as logic programming, is an interesting and ongoing area of research.

In sorne cases, the Omniscient Oracle may give a hint of what could he achieved

with a suitably-programmed parallel machine. Our oracle models, like oracles in

other studies [90], ignored control dependences entirely. \Vhile the results obtained

from the oracle are an upper hound, and may be unrealistically high, we believe

that suitably-designed programs \Vith appropriate parallel algorithms can get par

allelism results which are much closer to the oracle. As an example, consider the

Eqntott program. This program is dominated by caUs to a quicksort routine, which

is inherently sequential. The control dependences force the swapping of elements on

either side of the pivot element to oecur sequentiaUy. Rcmoving these control de

pendences, as the oracle does, permits most of these swaps ta occur in paralleL The

only serializing is between different levels of recursion in quicksort; this serializing is

caused by the flow dependences. But this behavior represents what would happen

under an efficient parallel sorting algorithrn, which would allow rnany swaps on the

same levei of recursion to occur simultaneously.

If such changes are impractical, then one shouid consider sorne sort of speculation

35

•

•

•

for programs with irregular control ftow. SITA showed that this can significantly

improve program performance.

One other important result from the SITA studies was the importance of execut

ing code from different sections of the program at the same time. Performance was

severely degraded when instructions for parallel execution were limited to a small

window near a single "program counter." This is because the parallelism within a

basic block is limited (as shown by the performance of roodels such as the Smart

Superscalar, which only has good results for programs with unusually large basic

blocks such as Fpppp). This does not bode well for machines with a single thread

of control, such as the superscalar and VLI\rV machines, and suggests a reason for

their poor IPC ratings as reported in Section 1.1.

To come doser to the performance levels suggested by SITA, architects will need

to consider execution models which permit greater flexibility in the scheduling of

parallel instructions. The next section describe two such models, the dataftow model

and the multithreading model.

36

•

•

•

Chapter 3

Predecessors of EARTH

Section 1.2 identified several key issues which designers of multiprocessors need to

face, such as latency, synchroDizatioD, and programmability. It was argued in pre

vious chapters that SIMD and MIMD approaches to parallelism do Dot adequately

solve aIl of the major problems. It is our helief that multithreaded architectures

derived from dataflow principles have the potential for addressing the problems

inherent in these other machines, thereby fulfilling the promises of efficient multi

processing.

This chapter traces the evolution of ideas leading to the EARTH system. The

EARTH program execution model, presented in the next chapter, can trace its

roots back to the datafiow machines designed at NIIT in the 70s and 80s. Therefore,

Section 3.1 surveys datafiow concepts and traces the evolution of dataflow machines,

focusing on those that can be considered ancestors of EARTH. Experience with real

dataflow machines have shown that certain properties make efficient implementation

difficult, as shown at the end of Section 3.1. Recognition of these shortcomings have

led to attempts to combine dataBow with traditional von Neumann processing. in

a \Vay which allows characteristics of each model to compensate for weaknesses in

the other. This is covered in Section 3.2, which includes a survey of multithreaded

machines most relevant to EARTH.

Multithreaded machines based on conventional von Neumann principles, rather

than datafiow, have been investigated for a long time and are still an ongoing area

of research. Sorne of these machines are surveyed in Chapter 9.

37

• 3.1 Dataftow Machines

•

•

Dataflow machines [41,47] are a radical break from traditional von Neumann com

puters. The latter have a single program counter which determines which instruction

to execute next. This imposes a total order on the instructions. The order in which

two instructions are executed is fixed, even if there are no dependences between

them and a tool like SITA (see Section 2.1) would say that they could execute in

either order or at the same time. In the dataflow model, on the other hand, there

is only a partial order between instructions. The fundamental principle of dataflow

is that any instruction can be executed as long as its operands are present.

Programs are represented abstractly by dataflow graphs, which capture this con

cept. DataBow graphs are covered in the first subsection. The remainder of this

section describes various designs for machines that execute programs based on data

flow graphs.

Traditionally, the two major classes of dataflow machines have been static and

dynamic. These are covered in separate sections. Both of these classes have specifie

weaknesses, and attempts to eliminate these deficiencies have led to a convergence of

the two classes. They are identified in this paper as semi-dynamic and are covered in

the last section. One of the static designs, the argument-fiow machine, is described

in detail (in Section 3.1.2). For the other machines, it is only necessary to point out

how they differ frorn the argument-flow machine.

3.1.1 Dataflow Graphs

A dataflow graph is a directed graph. The vertices are called actors and the edges

are called arcs. An arc from node X to Ilorle }. is called an output arc of node X

and an input arc of node Y. Sorne special edges do not have nodes at both ends.

These are called input arcs, or output arcs, of the graph if the beginning of the arcs,

or the end of the arcs, respectively, are not connected ta any actors.

Figure 3.1 shows a dataflow graph which computes the product of the complex

numbers (a + bi) and (c + di). There are four input arcs (the real and irnaginary

components of the two numbers) and two output arcs. A token, drawn as a black

dot in the figure, represents one unit of data. The figure shows a complete set of

tokens at the input arcs. The "dataflow" is represented by tokens flowing through

the graph.

38

• a b

ac-bd

c

ad+bc

d

•

•

Figure 3.1: Dataflow Graph for Complex Multiply

The tokens flow according to set rules. Arcs simply propagate tokens from the

output of the actor at the source end of the arc to the actor at the destination

end. If an arc forks, the token is replicated and propagated to each destination. An

actor moves tokens along hy "consuming" tokens appearing at its input arcs and

producing tokens on its output arcs. This is called 'lfiring', an actor. Each actor

has a set of conditions indicating when and how it may tire, called the jiring rales.

These rules include the requirement that there he tokens on a pre-defined subset

of an actor's input arcs (usually the whole set). When an actor has met aIl the

conditions of its firing mIe, it is said to be "enabled." \Vhen the enahled actor does

tire, it removes the relevant tokens at its inputs and places tokens on some or aIl of

its outputs.

The most common actors are simple arithmetic operations, such as add and

multiply. These actors have simple firing rules: aIl input arcs must have tokens

present, and when the actor fires, ail input tokens are consumed. Dataflow graphs

also contain actors with specialized firing rules used to support conditionals and

function caUs [8, 24]. With the addition of these actors it is possible to support

loops and other such high-Ievel constructs.

Datafiow machines are divided into two general classes, static and dynamic,

based on the relationship between tokens and arcs [109]. In a static architecture,

two tokens cannot occupy the same arc at the same time. Therefore, the firing rules

include a stipulation that aIl output arcs which would receive tokens must be empty,

39

• a b c d a b c d

1) Tokens replicated
ac-bd ad+bc ac-bd ad+bc

2) x actors fire

a b c d a b c d

3) New tokens input•
ac-bd ad+bc ac-bd ad+bc

4) + and x actors fire; tokens replicated

•

Figure 3.2: Execution of Complex Multiply

so that t.hey have room to receive the new tokens. In a dynamic architecture, there

may be many tokens on an arc at a given time. These tokens represent the results

of different calculations using the same instructions (e.g., different iterations of a

loop, or different invocations of the same function). It is necessary to differentiate

between these tokens, so that two tokens representing different calculations do not

get rnixed together. Therefore, each token is given a tag (or COlOT) [8], which iden

tifies the function instance and/or iteration number, and the firing mIes include the

stipulation that aU tokens to be used in one firing of the actor must have identical

tags.

Figure 3.2 shows how an execution rnight proceed on the graph in Figure 3.1, if

static firing rules were used. The diagrams shmv four successive states of the graph,

representing the following stages of computation:

1. The tokens are propagated to the multiply actors, enabling them.

40

•

•

•

2. Each multiply actor may fire, producing a token at its output.

3. Once the input arcs have cleared~ new tokens may be put tbere. However, the

multiply actors may not fire, because their output arcs are occupied.

4. Once the addition actor fires, two multipliers may fire, but the other two

remain blocked by their occupied outputs.

Execution will continue until two pairs of tokens are taken from the output arcs.

The example above is a very simple graph. Graphs corresponding to actual

useful programs are much larger, and contain loops and function caUs. Techniques

exist for cooverting programs written in high-Ievel languages to dataHow graphs.

Conventional imperative languages can be cooverted to dataftow graphs, but the

sequential semantics of those languages tends to limit potential parallelism. High

level languages based on functionallanguage principles, such as Val [23], Sisal [31]

and Id [94], usually generate dataflow graphs with more parallelism.

3.1.2 Static Dataflow

AIl static dataflow machines share the property that in the dataftow graphs on \vhich

they are based, an arc cao ooly hold one token. Coosequently, if there is a section

of a program which is executed repeatedly (e.g., a loop body or a subroutine), the

corresponding section of the dataftow graph cannot allow simultaneous execution of

more than one instance of that code, as the example in Figure 3.2 illustrates. There

are two ways to solve this problem:

• Pipeline the execution of the graph (Figure 3.2 illustrates pipelining, as the

second set of input tokens can start ftowing through the graph before the result

of the first set of input tokens has been fully computed);

• Replicate the graph.

Pipelining the graph for maximal parallelism requires that the graph have a

structure analogous to pipelined processors. The graph must be organized neatly

into stages, with no internai cycles, and aU paths through the graph must have the

same length. Thus, shorter paths need to he filled with "identity" actors that simply

pass tokens along [46, 40].

41

•

•

•

Replicating the graph works weIl when the number of iterations can be deter

mined at compile time, as in regular numerical applications, but not when iteration

counts are determined dynamically, e.g., irregular loops or binary recursion. The

tradeoff between static and dynamic dataflow is that static dataflow puts more bur

den on the software (programmer and compiler), but reduces hardware complexity

because there is no need to check tags.

The fol1owing subsections outline the development of static dataflow machines,

starting at MIT in the 70s and continuing at !\1cGill University in the late 80s.

Argument-Flow Machines The earliest proposaI for an architecture to execute

dataflow graphs was by Dennis and lVlisunas at MIT [27]. The basic idea was to

convert a datafiow graph into an essentially isomorphic structure which would be

more amenable to execution on real hardware. Since the main characteristic of

dataflow graphs is that arguments to actors flow on arcs as tokens, machines similar

to the Dennis-l\Jlisunas architecture [26, 122] are known as argument-flow machines. l

In an argument-flow machine, each actor is converted to an instruction cell.

Thus, the abstract graph in Figure 3.1 is transformed into an instruction cell program

(lep) as shown in Figure 3.3. Each instruction cell has the following elements:

• An opcode identifies the type of function to be performed, e.g., a floating-point

multiply.

• There are storage locations for the operands of each instruction cell.

• Each cell has a destination List, consisting of the result List and the signaL List.

The result List lists the ceUs which are to receive the results of the com

putation, and corresponds to the output arcs in a dataflow graph. If the

result list has more than one destination, it corresponds to a split arc in

the graph. Each element of the list must specify both the destination cell

and the position of the specifie operand within that cell.

The signal List is needed ta enforce the firing rules for static dataflow

graphs. This rule is enforced by requiring a cell to send an acknowledg

ment to the source of each of its operands. A signal arc, represented bya

1This tenn was not used originally, but was coined later to distinguish this class of architectures
from argument-fetch machines, a newer class described in the next section.

42

Figure 3.3: Instruction Cell Program for Complex Multiply

~---II~ ac-bd

~---II~ ad+bc

add2
2 3

------------------,
1

"'-~-r-1 1sub2 __ 1

2 3

~ - - - - - - - - -1
r---~__ I

L.-_""--' 1

~ - - - - - - - - _1

~ - - - - - - - - -.
__ 1

'--_"""" 1

~ - - - - - - - - _1

~ - - - - - - - - -1
__ 1

"-_......... 1
~ 1

~ - - - - - - - - -1
__ 1

L.-_"""" 1

~ - - - - - - - - _1

c

a
c

b
d

d

a

b

Result arc

-----~

Signal arc

•

•
dashed line in Figure 3.3, tells the source ceU that the results have been

consumed, which means that the operand storage location is empty and

ready to receive a new datum.

•

• Finally, each ceU has two integer couots, the reset eount (ER in Figure 3.3)

and the syne count (Ec). The reset count specifies the total number of results

and signaIs which a cell must receive before it can fire. This number does not

change during program execution. The sync count specifies the current num

ber of results and signaIs which a cell needs before it can fire. This number

changes and typicaUy ranges from 0 to ER. When the sync count is decre

mented ta 0, the cell becomes enabled (rearly to fire). \Vhen a cell finally does

fire, the sync count is reset to ER.

Figure 3.3 shows the initial state of the code, before any tokens have entered.

(Since sync counts and operands change during execution, a drawing of an lep

can only represent a snapshot of program execution at a gjven time.) In this code,

43

max

min

- 1
1 1
1 1
1 1
1 1
1 1
-r --ID T

2 4 F+----+-t~

2

r----------
1 1

1 ID U ~1 _

~-------------I 2 4 F+----...
X T .J--+=;'"----:~

y--------+-......
......------------, ~--i

1 U -
1 1
------ 1

•

Figure 3.4: Instruction Cell Program for 2-lnput Sort

•

•

there are two input arcs labeled a, two labeled b, etc. Since the two arcs labeled

a represent the same value, they actually come from the same ceII, which therefore

has (at least) two destinations in its destination list. Both the acknowledgment arcs

corresponding to a (one in each of two mult2 cells) will go to that cell. Each ceU

needs two data tokens~ and must have room to output one token, so the reset count

of each cell is 3. Because there are no tokens currently in the graph, aIl output arcs

are free; since this means no further acknowledgement is needed, aIl sync counts

start at 2.

If maximal pipelining is not needed, then the code may be "linearized" by re

moving sorne of the signal arcs, which will lower the number of signa1s required

during execution. For instance, the sub2 and add2 cells could signal the producers

of the input tokens (a, b, c, and d) directly, rather than signaling the mult2 cells.

This would reduce the number of signaIs needed per iteration of the lep from 12 to

8. There is a tradeoff, for while this would cut both storage requirements and signal

traffic, the code could no longer be pipelined.

Figure 3.4 illustrates the role of conditional operators in argument-flow dataflow,

by showing one possible implementation of a simple program fragment that sorts

two numbers, producing the larger number at max and the smaller at min. First,

there are instructions with boolean outputs, snch as compare operators. In this

example, the comparison operator produces a boolean token indicating whether or

not x is smal1er than y. Second, any ordinary operator can be augmented to accept

a boolean value as an additional operand. In such an augmented instruction, each

44

• ~
RRAY

: MEMORY :
1 1

ROUTING
NETWORKFUNCTIONAL

UNIT

1
1
1
1

1--------

ENABlE
UNIT

•

•

Figure 3.5: Processing Element Block Diagram

entry in the destination list can he tagged T (true), F (false), or U (unconditional).

When the instruction fires! the special boolean value is used to determine which

result and signal arcs are used. If the boolean input is T, then only the arcs tagged

T or U are used. A boolean input of F selects only those arcs tagged with F or U. In

this example, identity ceUs (which output their input unchanged) are used to route

x and y to their proper destinations.

Note that there are no signal arcs from the ID ceUs to the comparison opera

tor. Since aIl of these ceUs depend on the same inputs, the comparison ceU can't

possibly receive aoy new inputs until the ID ceUs have consumed the result of the

old comparison and acknowledged their firing to the creators of x and y. Therefore,

there would he no benefit to adding signal arcs from the ID celIs to the comparison

celI; no pipelining is possible. Correct pipelining would require additional ID ceUs

hetween the creators of x and y and the existing ID ceIls.

One possible implementation of a processing clement (PE) to execute instruction

celI programs is shown in Figure 3.5. The PE can he divided into 4 pipeline stages

arranged in a loop. The path in the main pipeline is drawn with a solid line, while

auxiliary connections (e.g., to memory) are dashed.

There are five types of memory used in a Processing Element:

45

•

•

•

• The Operand Memory (OM) has a storage location for every input to every

instruction celi.

• The Instruction Memory (lM) stores the opcodes of the instruction ceUs. Its

contents do not change during run-time.

• The Destination Memory (DM) contains the result and signal lists for the

instruction ceUs, which also do not change during run-time.

• The Enable Memory (EM) holds the sync count and reset count of each in

struction ceU.

• The Array Memory (AM) stores large arrays of data used by the program.

Broadly, the non-memory units of the PE make up two main sections: the CeU

Execution section and the Execution Control section. The CeU Execution section

takes ceU numbers given to it by the Execution Control section, fetches operands,

and produces results. It is pipelined in a manner similar to the execution units of

modern conventional processors.

\Vhat makes data80w unique is the Execution Control section. In a conventional

processor, instruction execution is controlled by a simple counter with provision

for overriding by a jump instruction. In a static datafiow machine, the Execution

Control section is responsible for sequencing the firing of instructions. It must

propagate tokens from one celI to the next, keep track of how many tokens each ceU

has received, élnd determine when cells are enabled (ready to tire).

The first module in the Cell Execution section is the GeU Fetch Unit (CFU).

The CFU receives a cell number from the Execution Control section, fetches the

opcode from the lM, fetches the operandes) from Or..1, and passes the cell number,

opcode and operands to the next stage, the Functional Unit (FU).

The CFU also fetches the boolean control value from the aM. The control tags

in the DM determine whether or not the boolean value has any meaning. If a cell

is Dot conditional, then aIl of its result and signal arcs are treated as if tagged U,

and the boolean input will not be included in its reset count value. Therefore, the

CFU can retrieve the boolean bit, and it will be simply ignored by the Execution

Control section if the ceU is not conditional.

The Functional Unit (FU) decodes the opcode ta determine which operation

to perform on the operands, and decides which functional module is to be used

46

•

•

•

to compute the result. There may be several functional modules, sucb as floating

point arithmetic units: integer arithmetic units, and boolean logic units. The AM is

accessed as one of the modules. Since sorne of these modules may be pipelined (e.g.,

floating-point multipliers), the FU must keep track of the scheduling of operations

in the pipelines, in order to match results with the cell numbers that initiated them.

The FU outputs the cell number, the result of the operation, and the boolean control

value which had originally come from the OMo

The Result Unit (RU) is the first module of the Execution Control section. The

RU takes the cell number from the FU and fetches the destination list from the DM.

The RU reads the destination list, and writes the result from the FU into every

location in the DM specified in the list, provided that the tag in the List indicates

the arc is a result arc, and that the tag matches the boolean tag passed along by

the FU. For each entry in the list, result or signal, whose tag matches the boolean

tag from the FU, the RU outputs the specified cell number to the final stage of the

PEe The RU must write a result into the OM be/ore outputting the corresponding

ceU number to the next stage.

If the PE is part of a multiprocessor, then the RU also has an interface to an

interconnection network. In this case, cells may transmit results and signaIs ta cells

in other processors. Therefore, the destination list must include PE identifiers in

its addresses. If an entry in the destination list specifies a different PE, a packet is

formed (containing the PE number, cell number, operand number, and the value)

and sent over the network. \Vhen a packet is received from the network, the value

is written into the specified operand of the specified cell, and the cell number is sent

to the next stage, just as if it had been in the destination list of a local cell.

The cell numbers from the RU go to the Enable Unit (EU), which controis the

firing of instructions.2 When the EU receives a cell number, it decrements the sync

count for that cell. If the result is non-zero, the new sync count is put back into the

E!\1, as this cell is not yet ready to fire. If the result is 0, the cell is ready to tire.

The EU continuously looks for enabled cells to fire. \Vhen it fires a ceU, it copies

the reset count of that cell into the sync count, and outputs the cell number to the

CFU. This completes the cycle.

The four units described above forro a closed Ioop, and each is independent of

the others. Therefore, aIl units can operate in parallel, and each individual unit can

2 A prototype Enable Unit chip was designed and tested at MIT [38].

47

•

•

•

he pipelined.

An important property ta note is that there are no hazards in a proper dataflow

program. Pipelining a conventional processor introduces potential hazards. A read

after-write hazard, for instance, occurs when one instruction uses the result of a

preceding instruction which is doser than the length of the pipeline. Guarding

against these hazards is a major source of complexity in conventional pipelined

processors.

However, the datafiow conventions prevent these kinds of hazards in proper

datafiow programs.3 In a proper dataflow graph, a read-after-write hazard can't

occur, because if cell B requires an operand produced by cell A, then A must signal

B directIy or signal a chain of intermediate cells which signais B. In either case, B

cannot fire until the RU has sent B's cell number to the EU, which will eventually

fire B). However, the RU will not send B's cell number to the EU until it has written

the result of A's operation into the D~I, so that B is guaranteed to read the proper

data value.

Argument-Fetch Machines One shortcoming of the argument-flow implemen

tation is the need for excess storage for and copying of operands. For instance, the

complex components in the program in Figure 3.3 must be duplicated. The storage

overheads in the sort routine in Figure 3.4 are even worse due to the identity cells;

if maximal pipelining were not required it would be more efficient if x and y could

he compared, and swapped in place if necessary.

A rgument-fetch datafiow was proposed as a way ta address this weakness. In

an argument-fetch machine, data values are not attached to specifie cells, but can

be stored anywhere in the OMo This means that instruction cells must contain

references to those locations. Data no longer "flows" from one cell to another; only

signaIs fiow. The program in an argument-fetch machine looks much less like a

datafiow graph, though it is functionally equivalent if it is constructed properly.

The components of an argument-fetch processor are similar ta the argument-flow

PE shown in Figure 3.5. They differ in the following ways (terms from Section 3.1.2

are used even though they may he named differently on other machines):

• Each instruction must specify the address or addresses in the DM where the

3Loosely speaking, a proper dataflow program is one which is isomorphic to a classical dataflow
graph, meaning, for instance, that no operation reads an operand until being signaled (directly or
indirectly) by the producer of that operand, and the program is fully determinate.

48

•

•

•

operands for this instruction are located. The Cell Fetch Unit must perform

this fetch operation as well as fetching the original instruction.

• The Result Unit no longer has to write multiple copies of the result. Instead,

it writes it to a specifie place in the O~[, a location encoded in the instruction.

It still requires a destination list to teli successive ceUs that their inputs are

ready and to tell preceding ceUs that they can overwrite their previous results,

but these are now purely signaIs. They go directly to the Enable Memory and

have no effect on memory.

• The interconnection network may or may not support the argument-fetch prin

ciple. Fetching an item stored in a remote PE requires either performing a

round-trip through the network or adding support for shared memory. AI

ternately, one could require that interprocessor transfers be done according

to argument-HoVl principies, which would make network transfers simple and

fast, but at the cost of not having a single paradigm cover the entire machine.

These changes in the execution pipeline make the Cell Execution section (CFU

and FU) act more like a regular RlSC pipeline. In 1988, the CFU, FU, and result

writeback part of the RU were combined into a single unit, the Pipelined Instruction

Processing Unit (PIPU), and the remaining stages were combined into the Dataflow

Instruction Scheduling Unit (DISU) [25]. Essentially, those features of the argument

fetch machine which are unique to dataHow were placed in the DISU, leaving the

PIPU with aU the normal RlSC-like features. This made it feasihle to implement

the PIPU with a standard RISC pipeline unit with minimal modifications.

At the interface between the two halves, the DISU sends cell addresses to the

input of the PIPU, much as the EU sends cell IDs to the CFU in Figure 3.5. vVhen

the PIPU has finished exeeuting a eeU, it writes the computation's result back into

the OM and sends the celI identifier back to the DISU. The DISU then looks up the

signal list for that celI and updates the sync counts of aIl affected ceUs.

This is a naturai division for a dataBow processor. The PIPU performs the

actual execution of each dataBow instruction, while the DISU is responsible for

aIl the synchronization. This division of labor has since heen used in other data

flowjmultithreading systems, including EARTH.

49

•

•

•

3.1.3 Dynamic Dataflow

One shortcoming of static dataflow is that multiple loop iterations and multiple caUs

to the same function are not possible unless code is explicitly replicated at compile

time. Dynamic dataflow addresses this problem by allowing simultaneous use of

one section of dataflow code by more than one computation. This is equivalent to

allowing more than one token to be on an arc of a dataflow graph at the same time.

For instance, the 2 x 2 sorting code fragment in Figure 3.4 could be used as the basis

for a larger sorter using binary recursion. On a dynamic datafiow machine, a large

sort problem could be decomposed into a large number of 2 x 2 sort operations, and

aIl of these could be entered into the same piece of code. wIany 2 x 2 sorts could be

executed concurrently (subject to Oow dependences).

Data values can no longer be stored in specifie slots in memory, as in the

argument-Bow and argument-fetch machines. Their storage must be as dynamic

as the code itself. The solution is to keep data bound to the tokens aIl the way

until they are ready to be consumed. (By contrast, the static machine in Figure 3.5

separates data from control in the Result Unit, which writes result values to the

OM while sending the corresponding signaIs to the Enable Unit.)

It is also necessary to keep the various computations from interfering with each

other. To keep them apart, each token has a tag. This tag, first proposed for

the U-Interpreter (or Unraveling Interpreter) [8] has fields identifying the specifie

instruction in the code which is to receive the token, as weIl as which operand

it is ("left" or "right"; aH operations are monadic or dyadic). This is similar to

the argument-flow machine. However, there are two additional fields, one which

can uniquely identify different occurrences of the same function body, and another

which can identify different iterations of a loop. Whenever a function is called, a

new tag field for that function is created. Thereafter, tokens created within that

function bear that field, except those tokens explicitly being returned to the calling

function. Similarly, the first iteration of a loop is given an iteration field of 1, and

special explicit instructions are provided for generating new tags with an iteration

field which is 1 higher.

The Tagged Token Dataflow Architecture (TTDA) [10], based on the U

Interpreter, bas a pipeline structure similar to Figure 3.5, \Vith the following im

portant differences:

50

•

•

•

• Instead of an Enable Unit, there is a Waiting-Matching Section which con

tains an associative token-matching memory. Tokens generated as the output

of dataBow instructions go into this stage (possibly after going through the

interconnectioo network). Wheo a token goes into this stage, the associative

memory checks to see if the other token corresponding to the incoming token

is already there. If it is, then both data values are retrieved and passed to the

next stage of the execution pipeline. If the other one is not yet there, the oew

token is placed in the memory to wait for its partoer.

• The Result Unit does oot write directly to memory, but merely generates

tokens with the data values included, and sends these to the Waiting-Matching

Section.

\Vhile the TTDA has been simulated, other machines based on the same concepts

have been built. These include the Manchester Nlachine [48] and the Sigma-l [55].

3.1.4 Semi-Dynamic DataHow

The static dataflow machines io Section 3.1.2 are oot able to reuse the same code

to execute several instantiations of that computation at the same time. This makes

it impossible to execute something as simple as a binary-recursive function,4 even

sequentiaUy. If function 1 caUs itself, tokens belonging to the caller must rernain io

the instruction ceUs for l, which prevents a clean execution of aoother instance of 1.
Dynamic datafiow, as described in Section 3.1.3, allows simultaneous reuse of code

blacks, permitting full exploitation of paraUelism in recursive functions and loaps.

Hawever, this Bexibility cornes at a high price: the associative token-matchiog lagic

is simply too complex to be used in a practical machine [98].

Proponents of both static and dynamic datafiow have addressed their respective

shartcamings by adding features which amount to a convergence of the two styles

of computing. Ali of them essentially use static dataflow rules within a functioo

and dynamic dataHow to schedule functions, which basicaUy allows parallelism to

be exploited in recursive functions, but not in loops. We propose, therefore, that

machines fitting this description, such as the three designs surveyed here, constitute

a separate class called semi-dynamic dataftow machines.

4Tail recursion can he converted to an appropriate loop.

51

•

•

•

In the multiprocessor proposed by Rumbaugh [99}, functions are executed on sep

arate processors called activity processors. Each activity processor has local memory

which holds the state of one function invocation. called a procedure activation, which

contains instructions, sync counts and room for operands for one function invoca

tion. Within a function body, the activity processor acts much like a static dataflow

machine. Only one function may he run on an activity processor at a time, so if a

function is called (using the Apply operator), the called function must be started on

another processor. The new processor initializes its local memory with a procedure

activation for that function, and begins executing that function. The new procedure

activation has a pointer to the caller so that it knows where to retum the value of

the function. Thus, at any point in time the program state is represented by a tree

of procedure activations. If a function is called and no processors are available, an

existing procedure activation must be swapped out into an auxiliary swap memory.

The 1\-lonsoon multiprocessor built at MIT [98} evolved from the dynamic TTDA

(see Section 3.1.3). Thus, its internaI synchronization is more similar to dynamic

datafiow than to static dataflow. When a function is called, an activation frame

is allocated from general-purpose memory. If a function has n instructions, then

the frame holds an n x 2 array of values, each value tagged with a full/empty bit.

Each token includes the address of the base of its activation frame. AIl instructions

have only one or two operands. Together, these features eosure that any legally

generated token corresponds to a specifie place in memory, and if that operand is

part of a dyadic instruction, then the other operand is easily located. Therefore,

synchronization is straightforward. There are neither sync counts nor an enable

unit, just a simple mechanism that goes directly to the right place in memory and

checks the full/empty bit of the other operand if necessary.

The 1\-IcGill Data Flow Architecture (:MDFA) [42] is an enhanced version of the

argument-fetch machine described in Section 3.1.2, designed to address the lack of

recursion in static dataflow. Like the argument-fetch machine, the MDFA performs

dataflow scheduling in the DISU and instruction execution in the PIPU. The MDFA

processor includes a new unit, the Memory Overlay Manager (MOM), which handles

frame allocation. When a function is called, the NIO~'I allocates a frame from

memory and sends the frame's base address to the DISU. Thereafter, tokens in that

function invocation are tagged with this address. The frame itself cantains sync

counts and local variables. AIl addresses for sources and destinations of instructions

52

•

•

•

are coded as offsets from the base of the frame, and the actual base address is added

to these offsets at run time by the PIPU.

3.1.5 Problems with Dataflow

The dataflow machines discussed in this section offer superior primitives for fine

grain synchronization. However, these synchronizations aren't free, and the cu

mulative cast of fine-grained synchronization can be quite high [36, 62, 88]. For

instance, if most operations in a dataflow program are dyadic, then an average of

two synchronization events must occur for every instruction executed. Simulations

on the wIDFA have demonstrated the negative impact on program performance of

too many fine-grain synchronizations [62].

Another problem that results from requiring synchronizations between individ

ual instructions occurs when the program reaches a sequential section and, due to

dependences in the application, there are no other instructions outside of this sec

tion to execute. If a dataflow execution pipeline such as the one in Figure 3.5 has

n stages (meaning that if cell A signaIs cell B, and B has a sync count of 1, then

a minimum of n cycles elapse from the time A is fired to the time B is fired) , then

the processor utilization while executing a purely sequential piece of code (e.g., Dow

dependences between every pair of successive instructions) is only *.
A further shortcoming of dataflow machines is that they do not exploit locality

effectively [88, 89]. As described in Section 1.2.1, single-thread processors exploit

the fact that most data have short lifetimes, meaning most data are consumed and

discarded shortly aCter being produced. Therefore, single-thread processors can keep

most data in a small set of registers, which can be placed close ta the execution pipe

and consequently made fast. Though experiments have shown that such locality

also exists in dataflow programs (89L this locality is much harder to exploit in a

dataDow processor, because the indeterminate order of instructions will increase the

average lifetime of each datum, and make it impossible for a compiler to analyze

and predict these lifetimes. This is borne out by reviewing the dataflow machines in

the previous section. The space required to hold the operand memory in Figure 3.5

or any of the equivalent structures in the other programs is much larger than the

size of the register sets in a typical RISe processor. Requiring the execution pipe

to have fast uniform access to such a set can force a reduction in the clock speed

53

•

•

•

because of longer delays in the data paths.

3.2 Hybrid Von Neumann/Dataflow Machines

Hybrid von Neumann/dataBow architectures [64] seek to reduce fine-grain synchro

nization costs and improve use of locality in datafiow architectures by combining

dataflow actors into threads, or, altemately, ta add latency-tolerance and efficient

synchronization to conventional multithreaded machines by adding dataflow syn

chronization to the thread mode!. Hybrid machines use a dataBow-like form of

synchronization, but combine two or more dataflow actors into a thread which is ex

ecuted sequentially, as in a multithreaded machine. This "threading" of the dataflow

code leads to several henefits:

• The number of synchronizations between dataflow actors is reduced by a factor

equal to the average number of instructions per thread. For even a small thread

size, this reduces the cost of instruction synchronization from substantial (even

greater than the cost of the computation itself) ta manageable. There are

collateral reductions in the signallists and the space used for sync and reset

counts.

• By running a sequential thread, the processor can keep intermediate results

in a conventional set of registers, both increasing speed and decreasing the

memory needed to hold the program state (the operand memory in a static

datafiow machine or the activation frame in a semi-dynamic dataflow machine.

The Super Actor Machine at J\rIcGill followed the J\rIDFA (see Section 3.1.4)

and \Vas designed to address the problems encountered \Vith the MDFA (and \Vith

dataflow in general). This machine may be considered the closest to an immediate

ancestor of EARTH, and is discussed in detail in the next subsection. This is

followed by a brief survey of other multithreaded machines and models which are

derived from dataflow principles.

3.2.1 The Super Actor Machine

The Super Actor Machine (SAM) [56, 62] approaches the problem of making a hybrid

design from the dataflow sicle, so it is primarily datafiow-oriented. A program is

54

•

•

•

written in a high-Ievel language aod cooverted iota a dataHow graph using one of

many available translators. An algorithm is used to analyze the graph and combine

dataflow actors ioto multiple-actor units called super-actors [62]. The algorithm

attempts to minimize the number of synchrooization arcs that cross super-actor

boundaries. The super-actors are then translated ioto threads that cao be loaded

ioto the SAM.

Ioteroally, the SAM has a pipelined execution unit and a dataflow scheduliog

unit similar to the PIPU and DISU of the argument-fetch datafiow machine. The

bulk of data is stored in a standard main memory. An additional unit handles

remote accesses.

An innovative feature of the SAlvI is its Register Cache. The execution pipeline

has several sets of registers, ooly one of which can be accessed by a given thread.

A thread accesses its assigned register with short bit fields, as in a regular RISe

processor. While the thread is accessing these registers, another unit of the SAM

can be filling other registers with values that will be accessed by a thread that will

run later.

The benefit of this is the elimination of local memory latencies. The standard

dataflow scheduling paradigm eliminates busy-waits because consumers are not en

abled until all their inputs are ready. However, this does not guarantee that aIl

inputs are immediately accessible ta the execution pipe. Failure to guarantee this

cauId cause load stalls when a thread tries to access something which is in main

memory. (Dataflow machines get around this problem simply by assuming that

aIl operand memory is quickly accessible, an assumption we argued against in the

previous section.)

The SAM solves this problem by adding extra states to the normal dataflow actor

states (not-enabled and enabled), as shawn in Figure 3.6. First, because threads will

take much longer to execute than simple dataflow actars, there is an "active" state

which says that the super-actor is currently in the execution pipe. More important

is the distinction between the "enabled" and "ready" states. When the last required

input reaches a super-actor, the scheduling unit changes its state from "dormant"

to "enabled," as in a conventional static dataflow machine. However, the inputs

will be located in the processor's main memory, and would cause load stalIs in the

execution pipe if they were accessed directly. Therefore, when a super-actor becomes

enabled, an auxiliary unit takes an unused set of registers from the Register Cache

55

• DORMANT
complete

enable
regs loaded

ENABLED

ACTIVE

tire

READY

•

•

Figure 3.6: Super-Accor States

and begins copying the data from main memory to this set. \Vhen ail inputs have

been loaded ioto the registers~ the super-actor enters the "ready!' state, there to wait

until eventually being executed by the execution pipe. \Vhile the super-actor is in

the ;;readyl' state, the register set assigned to it must wait and cannot he deallocated.

"Voen a super-actor has finished, it goes hack into the '"dormant" state.

3.2.2 Other Dataflow-Based Multithreaded Machines

The ~Iulti-Level Execution model [88] was an early proposaI designed to address

the problems of high synchronizatioo overheads in pure dataBow. In this model,

individual scalar actors in a dataflow graph are combined ioto macro-actors to

amortize synchrooization overheads. ~Iacro-actorsare matched and synchronized in

a Matcking Store Unit similar to the "Vaiting-~IatchingSection of the TTDA (see

Section 3.1.3). Internally: these actors are converted to microcode aod executed

on parallel fllnctional llnits using ordinary registers with forwarding logic. The

execution of macro-actors is similar to the execlltion of sequential code on modern

multi-issue superscalar processors.

The Hybrid Multiprocessor [64, 63] combined dataBow ideas with sequential exe

cution to define a hybrid mode!. This eventually led to Empire, a multithreaded ar

chitecture project at IBM. This architecture uses local frames: like the semi-dynamic

dataflow machines in Section 3.1.4. Frame locations have presence bits indicating

whether or not the data is valid, and if a thread tries to read an invalid location, it is

suspended until the location is filled. Other featllres include processor rearly queues

with process and packet priorities, and support for efficient process migration to

facilitate dynamic load balancing.

Another descendent of the MIT dynamic dataflow work is P-RlSC [92], in which

56

•

•

•

sequential threads are controlled with fork and join primitives. The P-RISC pr~

posai explored the possibilities of constructing a multithreaded architecture around

a RlSC processor. The synchronization primitives were to be controlled by special

multithreading instructions added to a regular RlSC processor.

The Datarol processor [5] is a dataflow processor in which each instruction ex

plicitly identifies its successor instruction(s). Registers are used for short-term stOI

age. Its successor, Datarol-II [67], combines instructions into sequential thread.s,

but gives each thread its own set of registers. Each thread has a list of successors

which are signaled when the thread is finished: the successors are associated with

datafiow-style countees for controlling threads.

The EM-4 [102] is based on dYDamic datafiow principles, but uses frames for

local variables, and connects instructions within "strongly connected" subgraphs of

a function body into sequential threads. Continuation of this research has produce<l

the El'vIC-Y processor [70]. The RWC-l project [101] of the Real World Comput

ing Partnership in Japan aims to build multithreaded multiprocessors with RlCA

(Reduced Interprocessor Communication Architecture) nodes. A RICA node has a

custom microprocessor with a superscalar RISC core and embedded mechanisms for

fork-join thread synchronizations.

One characteristic of all the preceding designs is a eustom processing unit. Be

cause of the difliculties of building processors with performances approaching today'~

commodity sequentiaI processors, particular for academic and research groups, only

the EM-4 (among the list above) has actually been built. However, there are other

projects which have looked at supporting datafiow-based multithreading with off

the-shelf technology.

*T [91] is a multithreaded design which, like the Argument-Fetch machine (Sec

tion 3.1.2), separates datafiow-like synchronization and instruction execution into

different units. The difference is that these units are implemented with off-the-shelf

microprocessors, both of which are user-programmable. A follow-on architecture

called *T-NG [7J specifies the addition of a network interface unit to each of four

PowerPC 620s in a "site" where a multiprocessor system consists of many sites_

Built-in snoopy mechanisms in the processors are used for cache consistency in a.

site, while the tasks for cache consistency between sites are relegated to one of the

four processors in a site. The same processor dedicated to inter-site cache consis

tency is responsible for handling split-phase memory requests and sYDchronizations.

57

•

•

•

A completely different approach to multithreading is to build a translator for

converting multithreaded programs into code which can be run fairly efficiently on

off-the-shelf processors, rather than trying to specify a custom architecture. One

example of this approach with datafiow roots is the Threaded Abstract Machine

(TAM) [21]. TAM uses a tree of activation frames, like many of the semi-dynamie

datafiow machines, but the memory hierarchy is tailored to standard multiprocessor

hierarchies. Furthermore, synchronization between threads (e.g., passing data or

signais) is done in software, using inlets, small user-programmable message handlers

included in every function. Both conventional and functionallanguages are trans

lated to an intermediate language TLO, which is then compiled for one of several

target machines.

This software-hased approach yields results quickly, as a translator can he de

signed and implemented much more quickly than a eustom processor. Other parallel

systems using this approach are covered in Chapter 9. 1t is aIso shown in Chapter 7

to he one \Vay of implementing our EARTH mode!.

58

•

•

•

Chapter 4

Definition of the EARTH Madel

The previous section presented many possible designs for parallei computer systems.

In an ideal world, our desire would be to implement one of these, optimizing aIl com

ponents of the system for achieving large-scale parallelism. In the reai world, such

an undertaking would be difficult and expensive. Parallel machines must compete

with modern commodity microprocessors, whose thousands of engineer-years in de

sign time and billions of dollars in capital costs can be amortized over a large sales

volume. For this reason, most parallel machines today are based on off-the-shelf

processors and other components.

Unfortunately, neither these processors nor the programming systems that typ

ically run on them provide adequate support for features important to parallel ma

chines, such as latency tolerance and interprocessor synchronization. Section 1.2

argues that this will limit their effectiveness for many applications. But these pro

cessors are unlikely to include efficient hardware support for parallelism in the near

future, since they are designed for a highly competitive uniprocessor market. If we

want parallel systems ta make effective use of these processors, we must address the

problems at a different level.

Specifically, we need a parailei programming model which addresses the perfor

mance issues important ta parallel machines, yet which can be implemented on a

computer built with off-the-shelf processors. The performance of such an imple

mentation may not be ideal, for software cannat always compensate for hardware

deficiencies. Nevertheless, the establishment of this model can pave the way for

the addition of better hardware support for features of the programming model not

supported by current processors.

59

•

•

•

The problem statement of this dissertation proposes an evolutionary or graduaI

approach to building a full-scale multiprocessor. The basic plan is to start with a

parallel system based on stock hardware, and move step"by-step toward a Cully eus

tornized implementation. Each step should be a viable, functional system offering

improvernents over the preceding system, albeit at sorne cost. 1ntermediate steps

move sorne of the functions of the architecture to custom chips or dedicated copro

cessors, with the remainder being implemented in off-the-shelf hardware. Software

for such a system may follow a similar path making use of off-the-sheif packages,

since compilers and operating systems also require large investments.

It is important to keep transition costs down for each step of the way. This

includes not only design costs, but also the costs to the users. l\10ving an applica

tion from one machine to a more "evolved" machine should require no more than

recompiling. Since this means the application source code should remain the same

frorn one end of the evolutionary path to the other, the essential characteristics

of the model should remain constant over this path. (Of course, as performance

improves in each step, the programmer may modify the code to take advantage of

these improvements, e.g., to generate more parallelism, but this should not be a

requirement.)

The challenge is to construct a parallel programming model which is portable

along the path \vithout sacrificing efficiency. To elaborate, our goal is to design a

model with the following characteristics:

Efficiency: It adequately solves the performance issues discussed in Section 1.2

(latency, bandwidth, and synchronization).

Programmability: lt allows programmers to express parallelism in their applica

tions efficiently and easily. This should he true both for applications with

regular control and data distributions and for "irregular" applications.

Simplicity: 1t is simple enough to be implemented at the near end of the spectrum

(using an existing off-the-shelf multiprocessor) without sacrificing the perfor

mance gains that can be realized by moving to custom hardware at the far

end of the spectrum.

Flexibility: The machines at the Dear end of the spectrum will use commodity

hardware, and later machines, though custom-designed, may still make use

60

•

•

•

of existing component designs (e.g., processor cores or modules). This archi

tecture should have the flexibility to take advantage of different components

at different stages in the path, or even in the same stage to satisfy different

price-performance requirements. Therefore, the architecture shaH make as few

specifications as necessary of sucb features as the instruction set, clock speed,

bus and memory requirements, etc.

This chapter presents the Efficient Architecture for Running THreads (EARTH),

a multithreading model meeting these goals [60, 61, 59, 83]. EARTH faIls into the

class of hybrid von Neumann/dataflow machines described in Section 3.2. However,

unlike the designs covered there, EARTH is amenable to the kind of evolutionary

design process described above.

It is very important to clarify what EARTH is and what it is not. Since we are

proposing an evolving series of computers based on increasing amounts of custom

hardware, EARTH does not refer to any specific machine or design in this series.

Instead, it refers to a particular model of multithreading, as presented in this chap

ter, and any machine which can adequately implement this model can be calIed an

EARTH computer. Chapters 7 and 8 give examples of real and simulated machines,

which implement the EARTH model at various points in the evolutionary path.

An architecture can be presented at several levels. The most common view of

an architecture is the Instruction Set Architecture (ISA), which gives specifie details

of instructions, registers, and their interactions, usually including an operational

semantics \Vith enough detail that the programmer can accurately predict a given

program's behavior at a specified level of detail. The ISA. is generally specifie ta one

processor or family of processors. Alternatively: one can talk about the components

of a system at a more abstract level, describing, in general terms, the abjects visible

to the programmer, the operations which can be performed on these objects, and the

general method for representing and executing computations on this machine. We

use the term Program Execution Model (PXlVl) for this abstraction. 1 Somewhere

between these two points lies a high-Ievel abstraction of the components of the

machine and the way they interact, which we cali an Architecture Model.

The PXM for a conventional sequential machine would include an addressable

memory component, sorne of which is divided into frames placed on a stack. Pro

grams are divided into functions; when the machine executes a function, a frame on

IThis concept is similar to Valiant's concept of a "bridging mode}" [127].

61

•

•

•

the stack is assigned to this function for its private use. Instructions are executed in

sequential order, except when a branch instruction explicitly redirects execution to

another location. A program counter refers to the next instruction in the sequence

to execute. The PXM ignores ISA details such as the opcodes of specifie instruc

tions, and is thus universal for aIl modern general-purpose sequential processors. It

is this universality that has made standard programming languages based on this

PXM, such as C, so portable among ordinary processors.

We present the PXM for EARTH in the next section. The EARTH PXM extends

the conventional PXM above \Vith objects and operators specifically for supporting

parallel multithreading. We discuss the representation of programs as collections of

threads, the synchronization among these threads, and the context of each thread.

This section concludes with a discussion of a memory model and a basic set of

primitives supported by the PXM. In Section 4.2, we present an architecture model

for EARTH, a general hlueprint for all the implementations in Chapters 7 and 8.

We have deliherately kept EARTH simple to achieve our goal of portability

from one end of the evolutionary path to the other. The early papers on EARTH

[60, 61] suggested dividing EARTH into "levels" of complexity, in which higher levels

support more features. We sought to identify a minimum set of features necessary

to support efficient multithreading, so that an implementation using off-the-shelf

processors would be feasible. The implementations in this thesis are based on the

lowest leveI. However, many mechanisms have been proposed over the years for

expressing parallelism more easily or efficiently. In the last part of this chapter,

we consider sorne which could he added to EARTH, particularly further along the

evolutionary path where implementations would be more efficient.

The next chapter presents specifications for two slightly different complete sets

of EARTH operations. These serve the same function as an ISA, in as far as being

a target for compilation from a higher-Ievel language. However, a detailed ISA is

Dot suitable for this project, given our desire for f1exibility and platform portahility,

since an ISA would bind EARTH to a specific processor family. Instead, we descrihe

an EARTH Virtual Machine (EVM) for each. Each EV:NI is a partial specification

of the instruction set of an EARTH machine. The EV~I defines a set of instruc

tions which must he present in any EARTH computer, and defines the semantics of

these instructions in relation to the EARTH PXM. It leaves open both how these

EARTH instructions are implemented (e.g., in software or hardware) and how they

62

•

•

•

are represented (e.g., the opcodes used). Since sorne implementations of EARTH

use off-the-shelf processors, pre-specified opcodes would be meaningless to snch pro

cessors. Illegal-instruction traps could be used~ but these are generally inefficient

because of the operating system overheads involved in processing the trap. Instead,

the EARTH instructions could be signaled using accesses to memory-mapped 1/0 or,

in the case of a pure software implementation, could be converted to instructions

native to the off-the-shelf processor. The EVM only specifies which instructions

must exist, and describes the semantics of these instructions.

4.1 The EARTH Program Execution Model

The Program Execution l"'fodel for EARTH differs from the PXM of a sequential

computer in the following important respects:

• Instead of a single program counter, there can be multiple program coun

ters, allowing concurrent execution of instructions from different parts of the

program.

• Programs are divided into small sequences of instructions in a two-Ievel hier

archy of threads.

• The execution ordering among threads is determined by data and control de

pendences explicitly identified in the program, rather than by program order.

• Frames holding local context for functions are allocated from a heap rather

than a linear stack.

The following subsections present the EARTH PXM in more detail. The most

unique aspect ofthis PXM is its threading model, which is covered 6rst. Section 4.1.2

discusses the EARTH memory mode!. The final subsection gives a list of the fun

damental objects of the EARTH PXM and the operations on these objects which

are basic to the srnooth functioning of EARTH. Our goal in this section is to justify

the need for each feature of the PX!vl, rather than merely present it. Therefore, a

simple example, based on computing Fibonacci numbers, is developed during the

discussion

63

•

•

•

4.1.1 EARTH Thread Model

The EARTH thread model is the most important defining characteristic of EARTH,

distinguishing EARTH both from conventional parallel paradigms and from most

other multithreaded machines. What this model has in common with other mul

tithreaded machines is the division of a program into multiple sections of code,

generally called threads. ~Iultithreaded machines based on conventional process

ing models divide a program into threads to identify computations which can ron

concurrently; they parallelize a sequential program. ~[ultithreading models derived

from the dataflow model, such as those in the previous chapter, combine individual

instructions into threads to reduce and amortize the overheads of synchronization

and improve data locality; they sequentialize a parallel program.

Our goal of making EARTH's PXM suitable for off-the-shelf processors has led

to a two-Iayer hierarchy of fibers and threaded procedures. The following subsections

present this two-Iayer model and describe its individual components. The first

defines fibers, which are in the lower layer, and shows how their properties are

essential for an efficient off-the-shelf implementation. The second part gjves an

example of a simple parallel prograrn, and shows the difficulties that this program

can present for a parallel machine based on a single-layer model. We show how a

two-Iayer model is an effective solution. The remaining parts present the two layers

in greater detail.

4.1.1.1 EARTH Fibers

In ordinary sequential code~ the next instruction executed is completely determined

by the preceding instructions and the input data. The EARTH model maintains

the ordering constraints among instructions within one thread, but loosens the con

straints between different threads, allowing the processor ta adapt better to runtime

conditions such as unpredictable latencies. In the EARTH model, a thread is a

sequentially-executed, non-preemptive, atomically-scheduled set of instructions. AlI

three qualifiers are basic to the model, and are necessary for efficient execution on

conventional processors. Because many other multithreading systems, such as those

described in Section 3.2 and Chapter 9, use the term "thread'~ for entities with dif

ferent properties, the EARTH PXM introduces the term "fiber" to refer specifically

64

•

•

•

ta the type of thread above.2 We use the tenn ;·thread" only generically, to refer to

a block of instructions which can run concurrently with other blocks.

Sequentially-executed means that when a fiber is executed, instructions within

the fiber are scheduled according to a sequential semantics. In other words, in

structions within the fiber are ordered using an ordinary program counter, which

increments to the next instruction unless modified by a branch instruction. Both

conditional and uncooditional branches may be used, but only ta destinations within

the same fiber. Modem processors perform sequential execution very efliciently, even

when there are many dependences among the instructions: and cao takes advantage

of the data locality which is usually present due to these dependences. Techniques

used by modern superscalar processors ta increase the instruction issue rate, such

as out-of-order execution and branch prediction, may be used to exploit instruction

level parallelism within a fiber, so long as the results are the same as executing the

instructions in purely sequential order. "Sequentially-executed" in this case does

not mean "one instruction per cycle," but simply that the dynamic ordering of

instructions within a fiber conforms ta the sequential semantics of the code.

EARTH fibers are also non-preemptive. Once a fiber begins execution, it remains

active in the CPU until the last instruction in the fiber is finished. If the CPU

should staIl (e.g., due ta a cache miss), the fiber will not be swapped out. This is a

fundamental design decision based on the goal of using existing processors. At any

point in a fiber's execution, there is likely to be sorne essential context (such as live

register values). Ordinary processors don't support rapid context switching, so if a

fiber is interrupted, the CPU would have to save the live registers and load sorne

registers for the next fiber. 3 An automatic mechanism for fiber suspension, such as

one based on interrupts, would have to make conservative assumptions about which

registers are live and would probably save a large number of them. This takes time,

both for the triggering of the interrupt and the saving and restoring of registers, and

the frequent use of such a mechanism would severely limit system performance.

A corollary of non-preemptive execution is atomic scheduling. If a fiber cannot

he interrupted, then it should not be started until it is guaranteed to finish with

out any major stalls. The EARTH implementation is responsible for making this

2This tenn, like "thread" itself, cornes from the lexicon of textile making. A fiher is typically
a short strand of material. It is the smallest unit in the "thread model" of textiles.

3Fibers may he interrupted for special exceptions such as arithmetic traps, but these should be
assumed to be unusual cases and not normal occurrences such as cache misses.

65

• DORMANT
FIBERS

ENABLED
FIBERS

•

•

sSS\ - SSSSS55 5
h

~r

ACTIVE FIBER
PROCESSOR

Figure 4.1: Abstract Fiber Execution Engine

determination (using mechanisms discussed in a later section) and deciding wheo

a fiber cao start according to this restriction. Borrowing terms from dataflow (see

Section 3.1), we say that when the system decides a fiber is ready to execute, it

enables the fiber. Since the CPU may still be busy with other fibers at that time,

there may be a delay between the time a fiber is enabled and the time it starts

running. \Ve caU the first state enabled and the second state active. A fiber that is

not ready ta begin execution is donnant.

Figure 4.1 shows an abstract model of a machine for executing EARTH fibers.

There are two pools of fibers~ one for dormant fibers and the other for enabled fibers.

\Vhen fibers are enabled, they are moved from the dormant pool ta the enabled pool.

\tVhen the Active Fiber Processor has free resources for executing a fiber, it takes one

from the enabled pool, making it active, allocates the resources needed by this fiber

and begins execution. When a fiber finishes execution, the processor returns it to the

dormant pool and frees the resources. The EV~-I should specify a special instruction

marking the last instruction of a fiber, in order to simplify the implementation of

fibers on off-the-shelf processors, which need to know where the fiber "ends."

4.1.1.2 E_-\.RTH Thread Hierarchy

Figure 4.2 shows a simple recursive program for computing the n th Fibonacci num

ber. Notwithstanding that this is actually a terrible \Vay to compute Fibonacci

numbers, it's a good example ta illustrate the basic threading model, as well as a

66

• int fib(int n) {

int left, right;
if (n<2) { 1* S1 *1

return 1 1* 52 *1
} else {

left == fib(n-l); 1* S3 *1
right = fib(n-2); 1* S4 *1
return left+right; 1* 55 *1

}

}

Figure 4.2: Sequential Fibonacci Example

•

•

---41.~ Input value
- - -~ Return value

Figure 4.3: Call Graph for Sequential Fibonacci

good benchmark for measuring multithreading overheads, and will he used through

out this thesis. (More realistic examples of binary recursion are presented in Iater

chapters.) For simplicity, negative inputs aren't checked. Figure 4.3 illustrates the

call graph resulting from calling fib(4).

An obvious way to parallelize this program is to run separate function caUs in

paralleL For instance, the calI to fib(4) could spawn separate processes to compute

fib(3) and fib(2), and these could run on other processors. But what should be done

67

•

•

•

with the execution of fib(4) hefore fib(3) and fib(2) have retumed their results?

If we want ta use the processor for sorne other computation (such as one of the child

functions), we must suspend fib(4) and switch to another context.

However, this suspension would contradict the non-preemptiveness of EARTH

fibers. Furthermore, the commodity processors we would like to use in a multi

threaded machine have no mechanisms to check that data accessed by an executing

fiber is actually valid or to suspend the fiber if it isn't, except for normal register

checks such as register scoreboarding. Register checks are enough for sequential

computation, because program instructions are in strict sequential order, which is

enough to guarantee data dependences are satisfied. However, if fib(3) and fib(2)

run concurrently~ their results are retumed at indeterminate times, and f ib (4) must

have sorne way to know that both values have returned before it can add them. Even

if fib(4) were to caU one of the child functions sequentially and fork the other on

another processor, it would still need to staIl aCter the sequential retum and wait

for the return of the value from the parallel function.

The solution is to split the function into several fibers, each of which can ron

non-preernptively. Since the recursive function calls take indeterminate time, the

function body should he split after these calIs, into two fibers. The first fiber (fo)

executes statements SI-S4, that is, tests n and either retums 1 or invokes the chil

dren. The second fiber (fI) executes statement 55, adding the values produced by

the children and returning the SUffi to its parent. Figure 4.4 shows the tbreaded

version of the calI graph for fib(4). Each instance of fib has been replaced by a

pair of fibers fa and fI,

This example shows a tight coupling between fo and fI- Every instance of fI

must have been preceded by a corresponding instance of fo, and rnost instances of

fo (except for leaves) lead to a corresponding instance of fl. 4 Furthermore, paired

instances of fo and il need to share sorne data. For example, both fa and 11 need

access to the partial result variables left and right. This example shows tllat the

PXM requires something one level higher than an individual fiber.

This need leads to EARTH's two-level thread hierarchy. In the Fibonacci e:xample

of Figure 4.4, the fib routine is a threaded procedure, while fa and fl are fibers

within this procedure. Threaded procedures and fibers differ in their contexts, their

4Throughout this work, an instance of a fiber or procedure is a specifie dynamic instantiation
of a given fiber or procedure, with its own context.

68

• ~ Input vaJue
- - -~ Result vaJue

,
:5

•

•

Figure 4.4: Threaded Fibonacci

lifetimes, and their manner of invocation.

The context of an instance of a threaded procedure is similar to the context of a

function calI in a conventionallanguage such as C.s This context includes both local

variables and parameters passed to the procedure. Both are accessible by aIl fibers

contained within the threaded procedure. Variables and parameters persist from one

fiber to the next, and thus can be used for exchanging values between fibers within

the same procedure instance. Fibers have a much smaller conte>..rt, consisting only of

registers and specialized state variables (such as condition codes). Thus, fibers are

extremely lightweight, and can he entered and exited quickly, making them suitable

for fine-grained tasks where the overheads of normal function context-switching

would outweigh the costs of the computation performed. Register values do not

persist beyond a fiber's termination, but a fiber can exchange values with other

fibers in the same procedure by accessing variables in the procedure contexte

Procedures are invoked explicitly by the application program. When the program

invokes a procedure, the machine creates a context for this procedure, initializing

the input parameters with the values passed to this procedure. On the other hand,

5The term "threaded procedure" is used, rather than "threaded function," because threaded
procedures cannot retum values, for reasons explained later.

69

• CD No adive context

~ Uve function/thread context

fib(3)

4

10

,
:5 fib(4)

•

•

Figure 4.5: Snapshot of Threaded Fibonacci Context State

fibers are started automatically, using a mechanism described in Section 4.1.1.4.

Once a fiber finishes executing, the fiber and its context terminate and are removed

from the processor. On the other hand, a threaded procedure instance remains

"live" even if none of its fibers are active or enabled; a threaded procedure must

explicitly terminate itself.

Figure 4.5 illustrates context lifetimes. For clarity, procedure instances are la

beled, and multiple instances with the same arguments are subscripted a, b, etc.

This figure shows one possible state of a two-processor EARTH computer executing

fib(4). The topmost instance of fib has invoked fib(3) and fib(2)a. The left

child fib (3) has invoked its children, and fiber fl of its first child fib (2) b is cur

rently running on one processor. Thus, ft 's context (consisting of a few registers)

is live. The other child's context is not active, either because it has not been ini

tialized or because it has already run and terminated. Similarly, the other instance

fib(2)a has one child whose context is stillliye and has a fiber fa running on the

other processor. Thus, two fibers are currently active, and five procedure contexts

are live. Three procedure instances currently have no fibers active, but fiber fl in

each will run once data from their children have produced values.

70

•

•

•

Sorne objects may need to exist outside of a particular frame's contexte Ob

jects may have a lifetime beyond a single procedure, or may have a size which is

dynamic or which can't be detennined at the time a frame is allocated, or may

be shared among multiple procedures. For this reason, the EARTH PXM includes

static variables and a heap for allocating compound data structures such as arrays.

4.1.1.3 Threaded Procedures

In EARTH, a fiber is always part of an enclosing threaded procedure. AlI fibers

in a procedure share the local variables and input parameters of that procedure.

When a threaded procedure is invoked, a new frame is allocated in memory for this

particular instance of the procedure. AIl fibers access this frame through a frame

identifier (FID), which is part of a fiber's context and is normally kept in a register

for quick access. This is similar to the frame pointer found in conventional block

structured languages. Given a frame identifier, it is possible to access any local

variable or input parameter in the corresponding procedure instance's contexte

However, there are several essential differences between EARTH procedures and

conventional functions. The main differences are

1. Frame allocation

2. Invocation and scheduling

3. Parameter passing

Frame allocation: Conventional frames can be kept on a simple linear stack, due

to their sequential execution. The state shown in Figure 4.5 would be impossible for

a sequential implementation of Fibonacci because the two functions in the second

generation, fib(3) and fib(2)a, cannat he active at the same time. On a parallei

machine, there can be two sibling procedures active at the same time, or even a

parent and child procedure running on different processors. A linear stack would

not work in either situation.

Therefore, EARTH frames are dynamically allocated from a heap. (This was first

proposed for dataflow [100] and later used in other multithreaded systems [21, 91].)

When a procedure is invoked, the machine must allocate an appropriately-sized

black of memory from the heap, and initialize the input parameters with the values

71

•
stack

•

•

local vars

input params

function frame

Figure 4.6: Tree of Procedure Frames with Sequential Stack

passed to the procedure, before any fibers in that procedure instance can start

executing. Thereafter, the frame can he accessed via its frame identifier (FID).

vVhen a procedure terminates, the black is returned to the heap's free list. Because

procedures are explicitly terminated, no garbage collection of frames is needed.

To allow the use of libraries and legacy code, the EARTH PXM also supports

conventional sequential functions. A sequential function is called from a fiber in

the same way it is called from another sequential function. Sequential functions use

conventional call/return mechanisms, and a fiber which calls a sequential function

suspends until the function returns. While this may appear to violate the non

preemptiveness property, the digression into the sequential code should be viewed

as a part of the fiber itself. The sequential code is non-preemptive, and will retum

control to the calling fiber when completed. To guarantee this~ no calls to threaded

procedures are allowed within sequential code. Sequential functions require a stack

since they may calI other sequential functions. The stack is only needed while such

sequential code is executing, and can be removed when the current sequential cali

is terminated. (How the stack is allocated depends on the implementation.)

Figure 4.6 illustrates frame allocation for a typical recursive program. Most

threaded procedures neecl to communicate with other procedures, such as their

calIers. For this, they neecl references to the other procedures' frames or to variables

within the frames. Ifeach procedure has the identifier of the frame of its caller, a tree

of procedure frames is generated as shown in the figure. Aiso shown are two stacks

72

•

•

•

allocated for sequential calls originating from two of the procedure instances, both

of which are active. This example shows links from children to parents connecting

the call structure together. Most purely recursive divide-and-conquer algorithms

will show a similar structure, but the EARTH model is flexible enough to permit an

arbitrary interconnection pattern among a set of concurrently executing procedures,

such as peer procedures and producer-consumer relationships, as will be illustrated

in later chapters.

Invocation and scheduling: When a sequential program caUs a function, exe

cution of the caller suspends at the point of the function caU and does not continue

untU the caller returns. When EARTH code invokes a threaded procedure, the liber

invoking the procedure can continue to execute. This is one source of parallelism

in EARTH programs, for invoking a procedure can turn one execution stream ioto

two.

A threaded procedure consists of one or more libers. One fiber in each procedure

is called the initial fiber and has the special property that it is the first liber ta mn

when a procedure is invoked. When a procedure is invoked, the system must lirst

allocate and initialize the frame, as described above. Once this is done, the initial

fiber is enabled, meaning that as soon as there is spare processing power, the initial

fiber can begin executing. AlI other fibers in the procedure must rely on other

mechanisms (described in the next section) to become enabled. Once the initial

fiber has finished, it cannot run again in this procedure instance.

Since aIl libers within a threaded procedure share data in a single frame, all libers

in a given procedure instance must run on a processor or processors with access to

the same context. Typically, locality considerations will require aIl fibers in a proce

dure instance to run on the same processor. However, such concerns do not apply to

an invoked procedure, which can run on another processor if one is available. The

implementation of EARTH (whose programmer interface is specified in the EVM)

may allow the caller to select this processor, or the programmer can ask the EARTH

system to assign processing resources to the procedure instance automatically. In

the latter case, the system will attempt to assign it to lightly-Ioaded resources, with

the goal of achieving a uniform load distribution. The choice of manual or auto

matic selection of a processor depends on the application; sorne regular applications

have patterns which are easy to balance statically using manual selection, while

73

•

•

•

many irreguJar applications have a work distribution highly dependent on runtime

conditions, requiring dynamic Joad balancing.

Parameter passing: Threaded procedures, like sequential functions, can pass

scalar values to threaded procedures they invoke. However, a threaded procedure

cannat return a value to its caller using a conventionaJ value return mechanism.

This is because, as stated in the previous section, a fiber which invokes a procedure

continues ta execute: while the semantics of the return statement imply that the

caller waits until the calIee finishes so that the value cao be used. Therefore, a

threaded procedure must send values to its caller using the same mechanism as is

used to send data between fibers, which is covered in the next section.

4.1.1.4 Fibers and Synchronization

In EARTH's two-Ievel thread hierarchy, fibers are the smalIest unit of scheduling

above individual instructions. Fibers are non-preemptive, so a threaded procedure

should be divided into fibers wherever there are likely to be long or unpredictable la

tencies. This inc1udes threaded procedure invocations, as in the Fibonacci example,

and the fetching of data from remote processors.

Each fiber is part of an enclosing threaded procedure. A given instance of a fiber

is associated with one particuIar procedure instance. To maintain this association,

the context of a fiber includes a reference to the frame (FID) for this procedure

instance, narmally kept in a register which is loaded once when the fiber begins

executian. The frame identifier (FID) is essential, for it prevents two active instances

of a fiber from accessing the same contexte For instance, the two active fibers in

Figure 4.5 are supposed to read different copies of the input parameter n, and this

is guaranteed because they have different frame identifiers.

Within the code of a threaded procedure, each fiber is given a unique identifier

called the instruction pointer (IP). Each instance of a fiber can be uniquely identified

by a pair (FID,IP) consisting of a frame identifier, to uniquely identify the frame

for the particular instance of the procedure containing this fiber, and an instruction

pointer, to specify the fiber within the procedure. As a single unit, the pair (FID,IP)

is called a fiber identifier.

When a program is divided inta procedures and fibers, there will exist (in most

cases) data and control dependences among the fibers and procedures. Because the

74

•

•

•

EARTH model can allow fibers to be scheduled in arbitrary sequences, the machine

must check and verify dynamically that ail data and control dependences have been

satisfied before enabling a fiber. This is done explicitly using a mechanism adapted

from the statie dataflow machines reviewed in Section 3.1.2.

Control and data dependences are made explicit in the EARTH code using syn

ehronization signais and synehronization stoLs. A. synchronization (or syne) signal is

sent from one fiber to another, either in the same or another procedure instance, to

tell the recipient that a specifie control or data dependenee has been satisfied. For

instance, the sending fiber may have produced data required by the receiving fiber;

since the latter could not run before that data was produeed, the prorlucer must tell

the consumer that the data is now rearly. If a fiber depends on more than one datum

or control event, it needs to be sure that aU dependences have been satisfied before

it is enabled, since the fiber can't be preempted once started. A counter is used to

count the incoming signaIs sa it is known when a fiber is ready to be enabled.

In the Fibonacci example, each non-Ieaf instance of fib receives two integers

from procedures that it invokes. Since fiber fI adds these integers, it needs bath

before it can start. Therefore, a count of two is associated with fl at the time the

procedure instance is initiated. As each datum arrives from a child procedure, the

count is deeremented. When the count reaches 0, fI has aIl the data it needs and

can be enabled.

In static dataflow (see Section 3.1.2), a count is associated with each actor.

Rather than associating a counter with each fiber, the EARTH model separates the

caunters from the fibers, which allows reuse of the counters for controlling differ

ent fibers at differeot times, or allows several counters ta control the same fiber. 6

Couots are maintained in syoehronizatioo (or syne) slots. A sync slot is a triple

(SC, Re, 1P) containing respectively a sync count, a reset count, and an instruc

tion pointer. The instruction pointer (IP) hinds the sync siot ta one of the fibers

in the procedure. The sync count indicates the number of syne signais that have

to be received by the sync slot before the specified fiber can be enabled. When a

sync signal is received, the sync count is decremented. If the count reaches 0 the

fiber specified by the IP is enabled and the syne count is set back to the value of

the reset couot. The use of a reset conot allows fibers to he enabled multiple times,

as explained later.

6 An example of the latter is in Section 6.2.3.

75

•

•

•

Because sync counts are used for controlling the enabling of fibers, they must

persist beyond the lifetime of a fiber, and therefore must be part of the context of a

procedure rather than a fiber. They are, in fact, a type of local variable. However,

as is shown later, there are sorne strict ordering constraints between manipulation

of sync slots and the sending of sync signaIs. To ensure portability of the EARTH

model across different implementations, sync slots should not be accessible to the

user, except through special instructions, defined as part of the EVM, which guaran

tee these ordering constraints are obeyed. Since a sync slot is bound to a particular

procedure instance, it can only control fiber instances within that procedure in

stance. Thus, the third element of a slot only needs to be an IP, rather than a

complete fiber identifier, because the FID is fi..xed.

In the Fibonacci example, each non-root invocation of fib produces a value

which must be sent to its parent. The sync slot merely counts the number of integers

received; there has been no discussion yet of data transfer. Sending a sync signal

is sufficient if both sender and receiver are in the same procedure instance, since

local variables can be used to transfer the data from one fiber to another. However,

if sender and receiver are in different procedure instances, special mechanisms may

be needed to transfer the data, particularly if sender and receiver are on different

nodes in a distributed memory machine.

The EARTH PXlVI provides atomic operations for sending data and a sync signal

together, which guarantees that the data has been properly transferred before any

fibers are enabled as a result of the sync. Such a data-transferjsync-signal operation

may be initiated by the producer of data, which sends local data to another location,

or by the consumer of data, which sends a request for remote data to the system,

which retrieves the data and copies it into a local location before signaling the syne

slot. The latter operation is called a split-phase transaction because the request and

data transfer may occur in distinct phases.

Figure 4.7 shows a graphical representation of an EARTH implementation of

parallel Fibonacci, whieh would produce a caU graph like Figure 4.4. The code is

written in a C-like pseudocode since no programming language or EVM for EARTH

has yet been presented. The new fib procedure takes, in addition to the index

parameter D, two references result and done, which refer to an integer and a syne

slot, respectively. ACter fib(n) computes the nth Fibonacci number, it sends the

answer to the location referenced by result, and sends a sync signal to the slot

76

• FIBERO

ta parent

from left child
from right child

FRAME

if (n<2) {
send 1 ta resutt } t .
send sync ta done a omlC
terminate function input{ n} else (-parameters result -
initialize slot 0 with (2,2,1) done
invoke fib(rr1, &Ieft, &(51ot 0»

local { leftinvoke fib(n-2, &right, &(510t 0» variabtes right -}
sync stots -C slot 0 2 1 2 1 1

FIBER 1

~send (Ieft+right) ta result} t .
send sync to done a omlC
terminate function IP

Figure 4.7: Thread Graph for Fibonacci

Figure 4.8: Pipelined Program Structure•
... ...

•

referenced by done, bundIing the two in an atomic operation. The local variables

include two integers for holding intermediate results. if fib is not a leaf, it invokes

two instances of itself and passes references to these integer locations to the children.

A single sync slot is initialized with a count of 2~ and a reference to this slot is passed

to each child. Thus, when the recursive values are computed, they are stored in the

caller's local variables; after tbe second value arrives, fiber 1 is enabled.

The Fibonacci example bas been useful for introducing the EARTH PXM, but it

is a trivial example which is easily supported by parallel paradigms besides EARTH.

The EARTH thread model can be used ta partition programs in a way suited to a

particular application. Fibonacci is a simple example of binary recursion, in which

each fiber is only run once. But many applications require other program structures,

such as producer-consumer. For example, the pipeline structure in Figure 4.8 illus

trates an application in which each of a set of modules reads data from its input,

transforms it, and sends the result to the next module.

In this application, it is assumed there is a large set of inputs, and parallelism is

77

•

•

•

Figure 4.9: EARTH Fiber States

achieved by running the modules concurrently. Each module needs to run repeatedly

in order to process multiple data sets. Otherwise, one or more procedures need to

be invoked for each input datum. This could impose large overheads, especially if a

lot of state information needs to be passed to a procedure to get it started. It would

be better to invoke the procedures once, and allow a fiber to start again whenever

new data arrives. Fortunately, this is possible in EARTH.

The complete state diagram for an EARTH fiber is shown in Figure 4.9. \Vhen

a procedure is invoked and initialized, aIl fibers but the initiai fiber begin in the

dormant state; the initial fiber begins in the enabled state (which is why the "invoke"

arc leads to both states). Any active fiber in this procedure instance can initialize

sync slots in its frame. Once a sync slot is initialized, any fiber can send syne signais

ta that slot. If a sync count reaches 0, the fiber whose IP is in the slot is enabled.

An enabled fiber is fired (moved to the active state) when processing resources are

available to start executing the fiber. After an active fiber is completed, the fiber

returns to the dormant state, where it can be subsequently re-enabled if the sync

count returns to 0 again. Any active fiber can issue a command ta terminate the

entire procedure, which causes ail fibers in that procedure to be removed and the

frame deallocated.

It is the ability to re-enable a fiber that has already run that makes producer

consumer synchronizations possible. Fibers can be pipelined in a manner similar to

the pipelining used in dataBow graphs in Section 3.1.1. \Vhen a fiber has finished

processing data and has sent its output to the next module, the fiber terminates;

since its sync count was reset, it can be re-enabled when new input data arrives and

synchronizes the same sync slot. A real benchmark using this technique is described

in a later section.

78

•

•

•

4.1.1.5 Benefits of the EARTH Thread Model

The beginning of this chapter claimed that the EARTH model addresses issues that

affect paraUel processing as listed in Section 1.2: latency, bandwidth, synchraniza

tian, programmability, ànd manufacturability. Having presented the basic model,

we can now show in general how features of the EARTH PXM address these issues.

Latency: The multithreading in EARTH does not eliminate interprocessor laten

cies, but allows computers to to/erate latency by performing useful computa

tions while long-Iatency operations are io progress. This is -done by ensuring

that the initiators of such operations and the recipients of the data produced

by these operations are in different fibers, allowing other fibers to mn while

these operations are being performed.

Bandwidth: Latency-hiding is oot enough to guarantee a high degree of processor

utilization. If too many fibers issue remote reads or writes, the network will

become saturated and limit overall system performance. While good hardware

is important in applications with high communications requirements, the PXM

can play a major role as weIl. The use of frames local to procedure instances

encourages writing code with locality in mind. Requiring all dependences to

be satisfied before a fiber is enabled may encourage the movement of data in

blocks rather than in smaller units, causing network transfer overheads to be

amortized. The separation of data communication from the production and

consumption of this data removes data transfer from the critical path (because

the processor can switch to another fiberL which may give th.e system's trans

port layer opportunities to optimize network utilization (e.g., by combining

data transfers).

Synchronization: The EARTH PXM separates synchronizations from the compu

tation, allowing synchronizations to be performed independently, possibly by a

separate unit. Processors are not blocked waiting for other events to occur, as

long as there are other fibers eligible to run. The fiber synchronization mecha

nism enables the use of non-preemptive fibers, limiting contex:t-switching costs

to the boundaries of fibers, where they can be more easily controlled. Unlike

dataflow machines, synchronization costs are contained by restricting the in

structions within fibers to sequential ordering, where traditional superscalar

79

•

•

•

techniques are effective at achieving limited ILP.

Programmability: Section 1.2.4 argued that solving the three preceding problems

cao go a long way toward rnaking parallel machine easier to program. The

EARTH PXM further contributes to ease of programming by providing dif

ferent ways of expressing parallelism, such as divide-and-conquer or producer

consumer, according to what is best for the application. EARTH allows tasks

to be divided into an arbitrary and dynamically varying number of procedure

instances, and supports automatic load balancing of these instances, which is

a boon especially to irregular applications.

Manufacturability: EARTH was designed for efficient execution by off-the-shelf

processors. The properties of EARTH fibers (non-preemptiveness, sequential

execution, and atomic scheduling) eliminate the need for fine-grain switching

between multiple concurrent contexts (as is proposed for sorne multithreaded

processors) and make conventional sequential processors suitable for EARTH.

4.1.1.6 Summary of the EARTH Thread Model

Under the EARTH model, the instructions of a program are divided into three

layers:

1. Threaded procedures,

2. Fibers,

3. Individual instructions.

The upper two layers form EARTH's two-layer thread hierarchy. Each layer de

fines ordering constraints between components of that layer and a mechanism for

determining a schedule which satisfies those constraints.

Individual instnlctions are at the lowest leve!. Instructions obey sequential ex

ecution semantics, where the next instruction to execute immediately fo11o\'\"s the

current instruction unless the order is explicitly changed by a branch instruction.

Instruction-Ievel parallelism among these instructions is allowed so long as it is con

sistent \Vith this semantics.

Fibers are collections of instructions sharing a common context, cODsisting of a

set of registers and the identifier of a frame containing variables shared with other

80

•

•

•

fibers. When a processor begins executing a fiber, it executes the designated first

instruction of the fiber; subsequent instructions within the fiber are determined by

the instructions' sequential semantics. Branch instructions are allowed, but only

ta other instructions within the same fiber. CaUs to sequential procedures are also

permitted; such procedure caUs are part of the fiber, by definition, even if the code

is defined elsewhere. A fiber finishes execution when an explicit fiber-termination

marker is encountered. The fiber's context remains active from the start of the fiber

ta its finish.

Fibers are non-preemptive; once a fiber begins execution, it is not suspended, nor

is its context removed from active processing. Thus, fibers are scheduled atomically.

A fiber is "enabled" (made eligible to begin execution as soon as processing resources

are available) when all data and control dependences have been satisfied. Sync slots

and sync signais are used to make this determination. Sync signais (possibly with

data attached) tell the recipient that a dependence has been met. A sync slot

records how many dependences remain unsatisfied; when this count reaches 0, a

fiber associated \Vith this sync slot is enabled, for it now has aU data and control

permissions necessary to execute. The count is reset to allow a fiber to run multiple

times.

Threaded procedures are collections of fibers sharing a cornmon context which

persists beyond the lifetime of a single fiber. This context consists of a procedure's

input parameters, local variables, and sync slots. The context is stored in a frame,

dynamicaUy allocated from the heap wheo the procedure is invoked. Threaded

procedures are explicitly invoked by other procedures. \Vhen a threaded procedure

is invoked and its frame is rearly, the initial fiber is enabled, and cao only run once.

Other fibers in the same procedure instance may only be enabled using sync slots

and sync signaIs. An explicit terminate command is used to terminate both the fiber

which executes this command and its procedure instance, which causes the frame

ta be deallocated. Since procedure termination is explicit, no garbage collection is

needed for these frames.

4.1.2 EARTH Memory Model

As mentioned in Section 1.2.4, parallel programming is hobbled by the lack of a

universai program execution model. One of the fundamental issues dividing parallel

81

•

•

•

machines is the sharing of memory. Should memory be shared among all proces

sors, allowing a processor to access any memory location in the system, or does

each processor have its own private memory, inaccessible to others? To maximize

portability, the EARTH model does Dot take a firm stand on this issue.

Most large multiprocessors use either distributed memory or distributed shared

memory. Distributed memory architectures have separate memories for each pro

cessor, or group of processors. These are separate both physically and logically. A

process can access data in remote memory only indirectly, by communicating with

a process that has access to that memory. For this reason, they are sometimes

called message passing machines. Distributed shared-memory architectures have a

global address space, which allows a processor to access any memory location in

the system. Unlike centralized systems, the memory here is distributed among the

processors, with sorne memory physically close to a processor and the rest with

other processors. These are also called Non-Uni/oon Memory Access (NUMA) ma

chines. Conventional wisdom says that distributed memory scales more easily than

distributed shared memory, while shared memory computers are generally easier to

program.

The minimal requirements of the EARTH PXM fall somewhere between these

two options. To support the EARTH PXM, a machine's memory system must have

the following properties:

1. An active fiber must have direct, low-Iatencyaccess (through load and store

operations) both to its private fiber context and to the frame it shares with

other fibers in the same procedure instance.

2. An active sequential function calI must have direct, low-Iatency access both

ta its locallinear stack and to the frame belonging to the fiber which initiated

the sequential function caU (either directly or through other function caUs).

3. Instruction pointers are uniform throughout the system. The code for aIl

threaded procedures and sequential functions is accessible from a11 processing

elements of the machine, and a given IP value has the same meaning on aIl

such elements. The instruction addresses used in sequential function caUs must

be the same on aU processing elements.

4. AU abjects in the EARTH system which may be accessible by more than one

82

•

•

•

threaded procedure, including frame identifiers, sync slots, and any data ad

dresses which may be bound with sync signais (as described in Section 4.1.1.4)

must be globally unique and accessible by special EARTH operations.

The first two requirements are straightforward and ensure rapid execution within

a fiber. Requirement (1) would imply, for instance, that on a distributed-memory

machine, a threaded procedure instance cao ron on only one processor. Two fibers

from the same procedure instance could not run on different processors because they

would oot be able to share frame data. Requirement (2) ensures that sequeotial

functions are entered and exited quickly; the second part ensures a rapid retum to

the initiating fiber.

The third item requires code to be loaded on (or at least available to) aH pro

cessors. This guarantees that procedures and sequential functions cao be invoked

on any processing element without any restrictions (other than the first two points

above).

The last requirement is critical to the EARTH model, for it allows fibers to

communicate with other procedures. Consider the Fibonacci example of Figure 4.7.

When the fibO procedure invokes children, it passes references to local variables

to its children, and the children write their results to the referred locations usiog an

atomic data-transfer/sync-signal operator. If a child is invoked on aoother processor,

as EARTH allows, then when it does this transfer, the destination argument will

refer ta a non-local location. This reference must be meaningful on the processor

running the child.

Therefore, memory references, at least those passed between procedures, must be

globally unique across the machine, and each processor must be able to determine the

exact location of any given memory reference. However, note that the requirement

above only says that the address must be accessible to the EARTH operation; it

does not say that the address must be accessible by normal load/store operations.

Furthermore, accesses are not expected to be fast, as with the localloads and stores

in requirements (1) and (2). These "remote'~ accesses may have long latencies,

but will not necessarily staIl the processor because other fibers may run during the

accesses.

If loads and store instructions to remote addresses are not required, then it is

trivial to form a globally-shared address space by combining a local address \Vith

a node identifier. Such a pair can be used whenever an EARTH operator expects

83

1.

•

•

a reference. A processor or router that needs ta forward the message extracts the

Dode identifier ta find the destination of the message, while an SU that accesses

memory extracts the local address. Therefore, if a program, based on the EARTH

PXM, accesses non-local memory locations solely through EARTH synchronizing

operations, that program can be supported on a distributed memory computer.

However, it should be emphasized that EARTH's PX~I is neither restricted

to distributed memory machines nor limited by them. Sorne distributed shared

memory machines use local caches, driven by complex coherence protocols, to reduce

the costs of remote access (Cache Coherent NUMA or CC-NUMA architectures).

However, even with CC-NUMA machines, there are situations where EARTH's

model of fiber synchronization would bring benefits. Shared memory machines still

need to enforce data and control dependences, and EARTH provides a simple mech

anism which is independent of any mernory system. Also, remote latencies will still

exist in a shared memory computer even \Vith the addition of local caches.

For example, if the producer of sorne data signais a remote consumer that the

data is available, the producer likely has updated its copy recently, meaning the

consumer's cache copy is probably stale. If the consumer tries to read the stale

data, the load will miss and staIl pending the completion of the remote fetch. If,

on the other hand, the producer sends the data to the consumer using an atomic

data-transferlsync-signal operator, the data is guaranteed ta be in the consumer's

local memory, and no miss is possible. Similarly, explicit fetches by the consumer, if

they are likely to miss, can be made on an EARTH machine in a split-phase manner,

with the data being used in another fiber. This wouid allow the local processor to

continue execution (or switch to another fiber) in spite of the miss.

The two EVl\Is presented in the next chapter are designed to work for a dis

tributed memory machine with a globally-shared address space. But these will aIso

work for a shared memory architecture. In fact, shared memory might improve

performance by decreasing the fetch time of split-phase transactions.

4.1.3 EARTH Operations

The previous sections presented an abstract model for representing a program as

a hierarchy of instructions, fibers, and threaded procedures whose executions are

coordinated using sync slots and sync signaIs. A model for the execution of a

84

•

•

thread-hased program was discussed. This execution relies on various operations for

sequencing and manipulating the fibers in this hierarchy. These operations perform

the following functions:

1. Invocation and termination of procedures and fibers;

2. Creation and manipulation of sync slots;

3. Sending of sync signaIs to sync slots, either alone or atomically bound with

data.

Sorne of these functions are performed automatically, generally as a result of

other EARTH operations. For instance, the sending of a sync signal to a sync slot

\Vith a eurrent sync count of 1 causes the slot count to be reset and a fiber to becorne

enabled. Eventually, that fiber becomes active and begins execution. But sorne

operations, sucb as procedure invocation, are explicitly triggered by the application

code. The purpose of this section is to list and define eight explicit (prograrn-level)

operations which are essential to a machine implementing the EARTH thread model,

and argues why these are essential.

This is still a part of the description of the EARTH PXNI, so operations here are

still defined at an abstract level. The goal here is to define a common set of primitive

operations that must be present in any machine that supports the EARTH PXM.

The arguments are defined in general and minimal terms. An EVM, if desired, may

include a richer variety of operators or add more arguments to operators to improve

effieieney or expressiveness. The next chapter presents two different EARTH Virtuai

~Iaehines, one of which is used for the experimental studies in this work.

The following data types and functions are used by the eight operators:

FID A frame identifier is a unique reference to the frame containing

the local context of one procedure instance. It is possible to

access the local variables, input parameters, and sync slots of

this procedure, as weIl as the procedure code itself, using the

FID, in a manner specified by the EVM. The FID is globally

unique across all nodes; no t\\"o frames, even if on different nodes,

have the same FID simultaneously.

• IP An instruction pointer is a unique reference to the start of the

code of a particular fiber within a particular threaded procedure.

85

•

•

•

pp

5S

T

reference-ta-T

It does Dot specify a specific instance of the fiber. (An FID and

IP combined do this.)

A procedure pointer is a unique reference to the start of the code

of a particular threaded procedure (but not a specific instance).

Through this reference, the computer must be able to access all

information necessary ta start a new instance of a procedure.

This is a reference to a unique synchronization slot, coosisting

of a sync couot (SC), reset count (RC), aod fiber (F). The first

two are Don-negative integers and the third is an IP. The expres

sion SS.SC refers to the sync couot of SS, etc. However, this is

for descriptive purposes only; these fields should not he manip

ulated by the application program except through the special

EARTH operators listed below. Each 55 is associated with a

specific iostance of a procedure, hence a particular FID, which

cao be referred to as FID_of(SS).

The 55 type must include enough information to identify a sin

gle sync slot which is unique across all oodes. How much in

formation is required depends on the operator and the EVM.

In sorne cases, the sync slot may be restricted to a particular

frame, which means that only a number, identifying the slot

within that frame, is needed. In other cases, a complete global

address is required (such as a pair consisting of a frame ID and

a sync slot number).

In the list of EARTH operators, type T meaos an arbitrary

object, either scalar or compound (array or record). This class

of objects can inclucle any of the reference data types listed

above (FID, IP, PP, 5S), so that these objects can also he used

in EARTH operations (e.g., they can he transferred to another

procedure instance). Type T can also include any instance of

the reference data type that follows.

For each object of type T, there is a reference to that object, of

type reference-to-T, through which that object can he accessed

86

•

•

•

or updated. In accordance with the memory requirements in

Section 4.1.2, this must be globally unique and all processing

elements must be able to access the object of type T using the

reference. The term "reference" is used, instead of "pointer" or

"address," to prevent any unwarranted assumptions about the

kinds of operations that cao be performed with these references.

The fol1o",;ng lists the eight operations, describing the role of each operation, why

it is important, and the hehavior which must be supported by the EVM. The list also

suggests options which rnight he added in the EVM. In the List, the "cUITent fiber" is

the fiber executing the operation, and the "current frame" is the FID corresponding

to the CUITent fiber.

4.1.3.1 Thread Control Operations

Thread control operations control the creation and termination of threads (fibers

and procedures) based on the EARTH thread model described in the previous sec

tion. The primary operation is procedure invocation, as illustrated in the Fibonacci

example. There must also be operators to mark the end of a fiber and to terminate

a procedure. No explicit operators to create fibers are needed, as fibers are enabled

implicitly. One fiber is enahled automatically when a procedure is invoked~ and

others are enabled as a result of sync signaIs.

A program compiled for EARTH must designate one procedure which is auto

matically invoked when the progranl is started. Only one instance of this procedure

is invoked, even if there are multiple processors. Other processors remain idle until

procedures are invoked on them. This distinguishes EARTH from parallel models

such as SPMD, where identical copies of a program are started simultaneously on

aIl nodes.

INVOKE(PP proc, T argl, T arg2, ...)

This operator invoke procedure prOC. It allocates a frame appropriate for prOC,

initializes its input parameters ta argl, arg2, etc., and enables the IP for the initial

fiber of prOC. The EVM may set restrictions on what types of arguments can be

passed, such as scalar values only. The system must guarantee that the frame

87

•

•

•

contents, as seen by the proeessing element which executes proc, are initialized

before the execution of proc begins.

TERMINATE...FIBERO

This terminates the current liber. The processing element which ran this liber is

free to reassign the processing resources used for this liber, and ta begin execution

of another enabled liber, if one exists. (If there are none, the processing element

waits until one becomes available, and begins execution.)

TERMINATE-PROCEDUREO

This is similar to TERtvIINATE-FIBERO, but it also terminates the procedure

instance corresponding ta the current fiber. The current frame is deallocated. This

description does not specify what happens to any other fibers belonging to this

instance if they are active or enabled, or what happens if the contents of the eurrent

frame are accessed aCter deallocation. The EVNI may deline behavior which occurs

in these cases, or define sucb an occurrence as an error which is the programmer's

responsibility to avoid.

4.1.3.2 Sync 510t Control Operations

Sync slots are used to control the enabling of fibers and to count how many depen

dences have been satisfied. They must be initialized with values before they can

receive sync signais. It would be possible to make sync slot initialization an atomic

part of procedure invocation. But our experiences with programming multithreaded

machines have shown that the number of dependences may vary from one instance of

a procedure to the next, and may depend on conditions not known at compile time

(or even at the time the procedure is invoked). Therefore, it is preferable to have an

explicit operation for initializing sync slots. (Of course, a particular implementation

of EARTH may optimize by moving slot initialization iuto the frame initialization

stage if the initialization can be fixed at compile time.)

INITIALIZE..8LOT(SS slot, int SC, int Re, IP F)

88

•

•

•

This initializes sync slot slot, giving it a sync count of SC, a reset count of RC,

and an IP of F. GnIy sync slots in the current frame can be initialized (hence, no FID

is required). Normally, sync slots are initialized in the initial fiber of a procedure.

However, an already-initialized slot may be re-initialized, which aUows slots to be

reused much like registers. (Reusability is explored in a related architecture project

which is based on EARTH [86].)

There is the potential for race conditions between the initialization or re

initialization of a thread and the sending of sync signaIs to that thread. The EVM

and implementation should guarantee sequential ordering between slot initialization

and slot use within the same fiber. For instance, if an INITIALIZE-SLOT operator

which initializes slot is followed in the same fiber by an explicit sending of a sync

signal to slot, the system sbould guarantee that the new values in slot (placed there

by the initialization) are in place before the sync signal has any effect on the siot.

On the other hand, it is the programmer's responsibility to avoid race conditions

between fibers. The programmer should also avoid re-initializing a sync slot if there

is the possibility that other fibers in the system may he sending sync signaIs to that

siot.

INCREMENT...8LOT(SS slot, int inc)

This operator increments slot.SC by inc. Goly siots in the local frame cao be

affected. The ordering constraints for the INITIALIZE-SLOT operator apply to

this operator as weIl.

Although not mandatory for the EARTH thread model, this is a very useful

operation for procedures where the number of dependences is not only dynamic,

but cannot be determined at the time a sync slot would normally be initialized. An

example is traversing a tree where the branching factor varies dynamkally, such as

searching the future moves in a chess game, where the number of moves to search

at each level is determined at runtime. Such an application could be coded in the

following way (pseudocode used):

89

• Initial fiber Fiber 1

•

•

INITIALIZE_SLOT(st1t1,Fiber_2); m = 0;

for (aIl potential moves) {

if (potential maYe is legal) {

INCREMENT_SLOT(s, 1);

INVOKE(search_move,

~results[m++], s, ...);

}

}

INCREMENT_SLOTes, -1);

In this code, an array is aIlocated for holding result data, and each child is given

a reference to a different location to which the results of one move are sent. Each

children sends a sync signal to sync slot s, and fiber 2, which chooses a move from

among aIl the sub-searches, should be enabled when aIl children are done. Since

the number of legal moves varies from one instance ta the next, the total number

of procedures invoked is not known when the slot is initialized in the initial thread.

The INCREMENT.BLOT operation is used to add one to the sync count in s before

invoking a child. If, after the first child is invoked, the child sends a sync signal back

before the loop in fiber 1 performs another INCREMENT_SLüT, the count s.SC

could decrement to 0, prematurely enabling fiber 2. To avoid this possibility, the

count should start at 1, ensuring that the count is always at least 1 provided the

slot is incremented before the INVOKE occurs. \Vhen aIl increments have been

performed, it is safe to remove this offset, after which the last child to send a sync

signal back will trigger fiber 2. An INCRENIEI\T_SLOT with a negative count (-1)

does this. (Actually, a SYNC operation, covered next, would have the same effect,

and might be more efficient since it doesn 't need an argument.)

4.1.3.3 Synchronizing Operations

The synchronizing operators give EARTH the ability ta enforce data and control

dependences between procedures, even those not directly related, enabling the pro

grammer to create many parallel control structures besides simple recursion. Thus,

90

•

•

•

the programmer can tailor the control structures to the needs of the application.

These operators manipulate sync slots as described in Section 4.1.1.4. Each of

the following operators sends a SYDC signal to a specified slot, which is used to count

dependences. However, there may be fibers which only need to wait for one datum

or control event, which would imply a sync slot with a reset count of 1. For such

cases, the EV~I may define special versions of the operators which enable the fiber

directly rather than going through a sync slot, saving time and sync slot space.

These are optional, however, as the same effect cao be achieved with regular sync

slots.

The static datafiow machines in Section 3.1.2, the designs which inspired

EARTH's synchronization mechanism, had to avoid the erroneous condition in which

two tokens try to exist on the same arc at the same time. There are analogous race

conditions in EARTH. One example is enabling a fiber while another instance of the

same fiber in the same procedure instance is active or enabled. This could result

from ha,,;ng initialized the sync slot with too Iowa sync count, or, conversely, having

generated too many sync signais for that slot. Another error is sending a sync signal

to a slot before the slot has been initialized. The exact behavior is left undefined at

this level. A specific EV~[may specify behavior, or even pro\ride a non-erroneous

interpretation for such an occurrence, or indicate to what extent the programmer is

responsible to avoid such conditions.

The first case is Dot, strictly speaking, an error under the EARTH PXM, but will

work properly only under special conditions. Figure 4.10 illustrates the situation

arising from having two instances of the same fiber in the same procedure instance

simultaneously active. Technically, each fiber has its own context, 50 it would be

possible for the two to run concurrently without interfering with each other. How

ever, note that they still share the same frame, and any input data they require must

come from this frame, either directly (the data is in the frame itself) or indirectly

(a reference to the data is in the frame), since alliocai fiber context except the FID

itself come from the frame. If both fibers copy the same data and references, they

will operate redundantly. If each loads its initial regjster values from values in the

frame and then updates the frame values, it is possible for the fibers to work con

currently on independent data. The figure shows each fiber working with a different

element of an array x; the snapshot shows the state after each fiber has copied the

reference to regjster r2. But correct operation of this code under aIl circumstances

91

• FIBER 1

EE:l
~

FP r----:===k.
r1 0

r2i-----==~"

siols 1-----'-1-+-'-+-~

ABER 1

1~:~~l; 1

•

•

Figure 4.10: Two Instances of Same Fiber

requires two conditions:

1. If the hardware allows the two fibers to run concurrently, it must support

atomic access to the frame variable i, e.g., a fetch-and-add primitive. These

are Dot universal among processors and may require expensive OS solutions.

2. If the fibers were triggered by separate sync signaIs bound with atomic data

transfers (note the first slot in the frame has a count of 1 and triggers fiber

1), the two producers of the data (assume in this case that it is sent to x [])

must be programmed to send the two values to separate locations in x [] .

While it is possible to program around these restrictions, it would be better

if these situaiions were handled explicitly in the PX~L Section 4.3 discusses sorne

simple extensions to the EARTH PXM which would simplify this example.

Three basic synchronizing operations are offered by the EARTH PXM: syn

chronization alone, and both producer-oriented and consumer-oriented versions of

synchronization bound with data transfers.

SYNC(SS slot)

92

•

•

•

This is the basic synchronization operator. The count of the specified sync slot

(slot.SC) is decremented. If the resulting value is 0, the fiber (FID..of(slot) , slot.F)

is enabled, and the sync count is updated with the reset count slot.RC. Otherwise,

the sync count is updated with the decremented value. The implementation must

guarantee that the test-and-update access to the SC field is atomic, relative to other

operators that can affect the same slot (including the slot control operators).

SYNC_WITH-DATA(T val, reference-to-T dest, SS slot)

Section 4.1.1.4 mentioned the importance of binding data transfers with sync

signaIs, to avoid a race condition in which a sync signal indicates the satisfying

of a data dependence and enabled a fiber before the data in question has actually

been transferred. This binding is done in EARTH by augmenting a normal SYNC

operator with a datum and a reference. The system copies the datum val to the

location referenced by dest, then sends the syne signal to slot.

The system must guarantee that the data transfer is complete before the sync

signal is sent to slot. More precisely, the system must guarantee that, at the time a

processing element starts executing a fiber enabled as a direct or indirect result of

the syne signal sent to slot, that processor sees val at the location dest. (A direct

result means that the sync signal decrements the sync couot to 0, while an indirect

resuit means that a subsequent signal to the same siot decrements the count to O.)

The system must also guarantee that, aCter the sync slot is updated, it is sare to

change val (this is mostly relevant if val is passed "by reference," e.g., as is usually

done with arrays).

SYNC_WITH-FETCH(reference-to-T source, reference-to-T dest, SS,.

slot)

The final operator of the EARTH set aiso binds a syne signal with a data

transfer, but the direction of the transfer is reversed. \Vhile the previous op

erator takes a value as its first argument, which must be loeally available, the

SYNC_WITH-FETCH specifies a location which can be any,vhere, even on a re

mote node. A datum of type T is copied from the source to the destination. The

ordering eonstraints are the same as for SYNC_WITH-DATA, except that val (in

93

the previous paragraph) now refers to the datum referenced by source.

This operator is primarily used for fetching remote data through the use of split

phase transactions. If a procedure needs to fetch data which is Iikely to be on

another node, the liber initiating the fetch should not wait for the data, which may

take a long time. Instead, the consumer of the data should be in another liber,

with a SYNC_WITH-FETCH used to synchronize a slot and enable the consumer

when the data is received. The next chapter has examples of code using split-phase

transactions.

This operation is considered "atomic" only from the point of view of the liber

initiating the operation. In fact, the operation typically occurs in two phases: the

request is forwarded ta the location of the sonrce data (on a distributed-memory

machine), and then, after the data has been fetched, it is transferred back to the

original fiber. The 55 reference is bound to both transfers, so that the system

guarantees the data is copied to dest before any fibers begin execution as a direct

or indirect result of the sync signal sent to slot .

•

• 4.2 EARTH Architecture Model

•

The previous sections presented an abstract threading model and a set of opera

tions performing the necessary functions of this mode!. This section considers the

structure and organization of a real machine that can support this model. Since our

goal is to support a range of machines containing varying amounts of off-the-shelf

hardware, we can only present an abstract model of an architectural implementation

of EARTH. This section also clarifies terms which were intentionally left vague in

the previous section to avoid unwarranted or overly-restrictive assumptions about

the hardware architecture.

According to the model, an EARTH computer consists of one or more EARTH

nodes connected by a network. Each node has the following five essential campo

nents:

1. An Execution Unit (EU) for executing active libers;

2. A Synchronization Unit (SU) for scheduling and synchronizing libers and pro

cedures, and handIing remote accesses;

94

~a:

~
w
Z
Zo
§
wzz
8a:
w
~
Z

•••

node

node

node
. .. .

.

.
. .. .
... \

SU

Ra

""".

.
EU \.

........-----
-

.......
".........

'.'.

fram Ea

•

•
Figure 4.11: EARTH Architecture

3. Two queues, the Ready Queue (RQ) and Event Queue (EQ), through which

the EU and SU communicate;

4. Local memory, shared by the EU and SU:

5. An interface to the interconnection network.

This division allows the implementation of multithreading architectures with off

the-shelf microprocessors mass-produced for uniprocessor workstations [61], one of

our primary goals. An EARTH computer is shawn in Figure 4.11.

4.2.1 Execution Unit

•
The EU executes individual fi bers. As stated in Sections 4.1.1.1 and 4.1.1.6, the

instructions within fibers are ordered according ta sequential semantics. Modern

uniprocessors are very efficient at sequential execution. Mechanisms such as by

passing or forwarding [71, 124] reduce hazards due to sequential dependences, while

95

•

•

•

small-scale instruction-Ievel parallelism can he achieved with register renaming, out

of-arder execution, register scoreboarding, and branch prediction [105]. Processors

using these techniques would make good execution units for EARTH machines.

rvfost of the instructions executed in the EU are the normal arithmetic,

load/store, and branch instructions that come with stock processors. To ensure

flexibility, the EARTH model does not specify a particular instruction set. Instead,

ordinary arithmetic and memory operations use whatever instructions are native

ta the EU processors. The context of a fiher is whatever registers are provided by

the hardware. The EARTH operations specified by the PXM and EVM are for

synchronization and communication. These are unlikely ta exist in any form in or

dinary processors, but these cao be mapped ta native EU instructions according to

the needs of the specifie architecture. For instance, on a machine with ASIe SU

chips, the EU EARTH instructions would most likely be converted to accesses to

memory-mapped addresses, which would be recognized and intercepted by the SU

hardware.

~1any details of the EU's behavior have been left unspecified in the EARTH

PXM in order to leave considerable latitude in the design of the EU. Nothing in

the preceding discussions of the EU should be taken to mean the EU is a single

uniprocessor or superscalar executing one fiber at a time, even though this would be

a correct implementation. In fact, the EU in the model can have processing resources

for executing one or more fibers simultaneously. This is shawn in Figure 4.11 as

a set of parallel Processing Elements (PEs). These elements have the following

properties:

1. Each PE mns a separate fiber independent of the other PEso

2. Each PE has a logically private context for that fiber.

3. PEs share access to the memory system.

4. AIl PEs share access to the same Event Queue and Ready Queue, though each

PE accesses the queues asynchronous with the other PEso

Consequently, programmers should avoid unwarranted assumptions about concur

rent fiber execution.

The drawing of the EU in Figure 4.11 is only an abstraction. Any structure

96

•

•

•

may he used so long as it can adhere to this abstraction. For instance, the Execu

tion "Unit" could be a set of conventional processors, each executing one fiber at

a time (EARTH has been implemented on a system consisting of clusters of Sparc

processors, as mentioned in Chapter 7). Another possible choice for an EU would

he a processor which holds multiple register contexts simultaneously and interleaves

between them [3, 4, 103J. Even thongh snch a processor would seem to eliminate the

need for a non-preemptiveness requirement, such processors still have only a limited

number of register coutexts, and can't afford to have too many of them inactive while

waiting for hazards to he resolved. The EARTH model would prevent snch a situ

ation from happening while taking advantage of an interleaving processor's ahility

to tolerate short-term latencies, such as fioating-point operations. Finally, severa!

processor organizations have heen proposed in which multiple execution pipelines

feed shared functional units. For instance, Simultaneous Multithreading [126] has

demonstrated an ahility to use multiple functional units efliciently by sending several

threads of instructions to superscalar-like instruction scheduling units feeding the

functional units, provided there are enough independent threads to hide instruction

latencies. A processor based on such principles would be an excellent platform for

EARTH, because EARTH's PXM can provide aIl the threads needed while EARTH's

fiber scheduling policies would reduce the need for these threads.

4.2.2 Synchronization Unit and Queues

Off-the-shelf processors are suitable for dYllamic scheduling of instructions within a

single fiber. But they are not good for general-purpose multiprocessing, since they

do not adequately address the performance issues discussed in Section 1.2: latency,

bandwidth and synchronization. EARTH's solution is to separate the tasks not

supported weIl by existing processors into a separate unit, called the Synchronization

Unit, leaving the EU free to perform the tasks it does best. This has its roots in

the Argument-Fetch Datafiow Architecture [25]~ discussed in Section 3.1.2).

The EU and SU messages to each other are huffered using queues called the

Ready Queue (RQ) and Event Queue (EQ). These may be implemented using off

the-shelf devices such as FIFü chips, incorporated into a custom SU, or implemented

in software. Variaus implementations are discussed in later chapters.

The EU executes fibers as if they were normal sequential code. The SU does not

97

•

•

•

execute any user code, so aIl the EARTH operators in Section 4.1.3 are executed

within active fibers running on the EU. When the EU encounters one of these

operators, it forwards the operator ta the SU, which actuaIly handles the request.

The EU writes the request to the EQ, where it stays until being read by the SU.

The SU processes each event it reads from the EQ. Sorne events will lead to

fibers being enabled. Enabled fibers (each fiber is a pair (FID, l P» are placed in

the RQ. When a PE in the EU terminates a fiber, it reads the next entry from the

RQ and begins executing that fiber. If the RQ is empty, then the PE becomes idle

and must wait until the SU writes a fiber into the RQ. If there is enough paraIlelism

in the program, there will usually be at least one fiber in the RQ, and the EU will

never be idle.

4.2.3 Node Memory

In the EARTH model, each Dode has memory which is accessible by the SU and

a11 Processing Elements within the EU. Whether this memory is physically and

logically local to the Dode or shared with other nodes depends on the implementation

(memory issues are discussed in Section 4.1.2). There may also be memory which

is private to the SU, but sorne of its functions (such as data transfers) require that

it use the memory which is common with the EU.

Memory in most small-scale multiprocessors (as might be used for a single

EARTH node) is sequentially consistent, because it is easy ta support in a single-bus

system with snooping caches.7 However, an EARTH node can get by \Vith a weaker

consistency model, so long as it runs correct code which conforms to the EARTH

thread model, avoiding the race conditions and other operation errors mentioned

in Section 4.1.3. The use of synchronizations ta arder fibers according ta data and

control dependences ensnre that fibers can run only when explicit sync signais tell

the SU that these dependences have been satisfied. Therefore, it is only necessary

that data accesses be ordered relative to these sYQchronization operations (as de

scribed in Section 4.1.3.3), which makes the minimal consistency requirements more

like weak ordering.

7This refers only to consistency within a single node.

98

•

•

•

4.2.4 Network Interface

On a multinode machine, the final component of an EARTH node is the interface

to the network connecting the node to other nodes. To maintain the portability of

EARTH applications across machines with different network interfaces, the EARTH

model does not provide for direct access to the network by the application codp (i.e.,

the active fibers). As shown in Figure 4.11, all network traffic goes through the SU.

AIl the synchronizing operators in Section 4.1.3.3, as weIl as the INVOKE op

erator of Section 4.1.3.1, can specify remote destinations. Sorne operations may

involve both local and remote references, but snch operations will have multiple

phases, and the message in each phase will have a specifie destination. For instance,

a SYNC_WITH-FETCH operation used for a split-phase transaction will usually

specify a remote source and a local destination. A message must first go to the re

mote node where the source is located; this node will send back a message containing

the data.

As with other components of the EARTH architecture, the behavior of the net

work is minimally specified ta broaden design choices. However, several general

izations about the network cao be made. First, to allow nodes to operate asyn

chronously, there should be no synchronization required between sender and re

ceiver. For instance, a sender should be able to send a message to another node

even if the other node is busy and not explicitly waiting for a receive. This impHes

a reasonable amount of buffering \vithin the network and the network interface, and

sorne kind of automatic flow control. Second, the implementation (either in the SU

or in the network itself) should guarantee reHable end-to-end transmission. Third,

ta improve performance, sorne networks may have multiple paths between a given

pair of nodes or message priorities allowing sorne messages to overtake others. Ap

plications programs should not assume that messages are received in the same order

as sent, and should strictly rely on the EARTH fiber synchronization operations to

guarantee correct program behavior.

4.2.5 Functions of the Synchronization Unit

The SU's primary task is to support the EARTH threading model by implementing

the operations listed in Section 4.1.3. To implement these operations, the SU must

perform the following functions:

99

• 1. EU and Network Interfacing,

2. Event Decoding,

3. Sync Slot Management,

4. Data Transfers,

5. Fiber Scheduling,

6. Procedure Invocation and Load Balancing.

This section summarizes each of these functions.

•

•

EU and Network Interfacing The SU's interfaces with the EU are the Event

and Ready Queues. The SU reads the Event Queue regularly and dequeue events

from this queue as quickly as possible, in arder to prevent the EQ from becoming

full, which might cause the EU ta staIl (either by blocking the write or ~ausing an

exception in the EU to be generated, depending on implementation). On the other

side, the SU tries to keep at least one enabled fiber in the Ready Queue at ail times

so that the EU never goes idle.

The SU also needs to maintain contact \Vith the network, since aIl network

traffic must go through the SU. The SU monitors the network interface regularly

and reads any incoming messages promptly, and sends outgoing messages to remote

nodes whenever the network is available. The interface does whatever protocol

conversions are required by the network.

Event Decoding AIl events (operators) received from either the EQ or the net·

work are deeoded to determine what operation is needed. The SU needs to know if

the destination is on its node or a remote node. (For split-phase transactions, the

SU determines the specifie destination of the first uneompleted phase.) For opera·

tions with remote destinations, messages are sent ta the network interface with the

destination Dode indicated. Local operations are queued for local processing.

Sync Slot Management To support fiber synehronization, the SU manages syne

~lots, being respoDsible for their allocation, initialization, and maintenance. The SU

decrements slots in response to synchronizing operations, and decides when fibers

are enabled.

100

•
su

EU EU
.... >
Ca::
8~ Ra EO

® ~~
su rr® •[El ® 5 \.U

L....-------=------=.....f-f~~

1: @ SYNC_WITH_FETCH(a,b,ss) 1:
.'----------------------------------,
I -----------------------------~@ SYNC_WITH_DATA(v,b,ss)

1. Local EU sends SYNC_WITH-FETCH(a, b, ss) to EQ
2. Local SU reads event from EQ
3. Local SU determines location of a, sends request there
4. Network transfers message
5. Remote SU reads message from network
6. Remote SU reads value v from reference a in its memory
7. Remote SU sends message to network
8. Network transfers message
9. Local SU reads message from network

10. Local SU writes value v to reference b in its memory
11. Local SU decrements sync count of ss, places fiber in RQ
12. Local EU reads fiber from RQ

•
Figure 4.12: Steps in Split-Phase Transaction

•

Data Transfers The data transfer operations (SYNC_WITH-DATA and

SYNC_\VITH-FETCH) require reading and writing local memory, and transfer

ring scalar data and blocks of data over the network. The SU must ensure that

each transfer is properly bound with its synchronization signal, so that the ordering

constraints in Section 4.1.3.3 are obeyed.

One benefit of the division of labor between the EU and SU is that split-phase

transactions (remote fetches) do not require the intervention of the EU on the remote

node. When an SU receives a SYNC_WITHJ'ETCH request from its local EU, the

SU sends a message to the remote node. The remote SU decodes the message,

fetches the requested memory contents, and sends the data back to the originating

SU. This is illustrated in Figure 4.12.

101

•

•

•

Fiber Schedulïng The Ready Queue pictured in Figure 4.11 suggests a simple

FIFO between EU and SU for enabled fibers. However, the only restrictions imposed

by the EARTH model on fiber scheduling are the synchronization mIes implemented

by the sync slots. A fiber cao begin execution aoy time after the sync count in

its corresponding sync slot reaches O. While the simplest scheduling policy is a

FIFO scheduling in which newly-enabled fibers are placed at the end of the RQ

and the EU always read from the beginning, more elahorate policies are possible in

implementations that allowefficient random access to this queue [61]. For instance,

fibers cao be prioritized to favor fibers known to he on critical paths, or fibers can

be scheduled in LIFû order to henefit from register locality.

The need for register spills and reloads can be reduced by taking advantage of

temporal locality in the scheduling of fibers. This means that the SU can favor

(prioritize) fibers in the RQ which are immediately related to the currently exe

cuting fiber. (In the Threaded Abstract ~dachine [21], this would refer to fibers in

a quantum.) For instance, if the SU determines that a fiber just enabled uses the

same frame as a currently-executing fiber, and the registers corresponding to these

frame values are the same, it cao put the new fiber at the head of the RQ and

advance the IP past the (now-redundant) register-Ioading section of the fiber. If the

processor has multiple register sets (as in sorne current off-the-shelf processors), a

Register Use Cache (RU-Cache) can keep track of which register set is assigned to

which procedure instance. For example, a register file with n register sets will have

an RU-Cache of n entries. The RU-Cache would be visible to the SU so that when

a new fiber is enabled, the RU-Cache would be associatively searched for a frame

identifier which matches the FID of the new fiber. A match in the cache would

indicate that that thread should be prioritized. Moreover, the register set to which

it is assigned should be included in the RQ entry so that when that fiber identifier

is read by the EU, the proper r~gister set would he used.8

Procedure Invocation and Load Balancing The final task of the SU is proce

dure invocation. Upon receiving an INVOKE request, the SU allocates a frame from

the heap, initializes the frame with the procedure's input parameters, and enables

the procedure's initial liber, taking care to obey the ordering constraints given in

8This is a simple fonn of the registering process in the register-cache of the Super-Actor Machine
[62, 57].

102

Section 4.1.3.1.

That section only stated that procedures are invoked, but did not talk about

where they are invoked, leaving the details to the specification of the EVM. Since

the initial procedure begins on only one node, there must be sorne way to invoke

procedures on other nodes. Two straightforward choices are to let the programmer

choose the node or let the EA.RTH's runtime system or hardware decide. The first

choice is highly effective for applications with predictable load distributions, for the

programmer has explicit control over where each procedure runs.

However, for many applications, especially irregular ones, the programmer may

oot have a good understanding of how to distrihute data and the workload of the

computations, or explicit programmer decision may simply be inconvenient. (An

example would be the Fibonacci example used throughout this chapter.) For these

cases, it is best to let the EARTH system deeide where to invoke the procedure.

The system uses various heuristics based on the enrrent state of the nodes to choose

what it thinks is the hest node to run the procedure.

•

• 4.3 Extensions to EARTH

•

EARTH was originally designed to be a programming model that could he easily

implemented on parallel machines based on off-the-shelf processors. For this reason,

the operation set was kept to a minimum to reduce implementation complexity,

while including enough operators to support efficient parallel processing. While the

results of the next four chapters show that we have largely achieved our goal, there

is room for improvement. Our original position papers on the design of EARTH

[60, 61] suggested dividing EARTH ioto "levels" of complexity, in which higher

levels support more features. The PXM presented so far in this chapter re8ects,

with minor changes, level 0 in the original concept. Certain features were seen

as having potential benefits, but were postponed pending construction of the base

machine.

Experience with implementations of our hase model has shown that while most

parallel algorithms can he represented io EARTH, sorne operations which are com

mon in parallel programs require somewhat complex or convoluted programming in

the EARTH PXM. Sorne of these were anticipated in our original paper, while oth

ers were discovered while programmers were attempting ta port specific programs

103

•

•

•

to EARTH. The following extensions to the EARTH PX~f involve no fundamental

changes to EARTH and could be integrated into the current model.

4.3.1 Mutual Exclusion and Parallel Reduction

The deterministic nature of EARTH execution makes reduction operations (e.g.,

adding a set of numbers or finding the max of the set) diflicult. Consider the problem

of finding the maximum of n floats, each of which is generated by a separate instance

of procedure Pl, and using the maximum in a procedure P2. There are several ways

to do it:

1. Allocate an array of n floats in P2 's frame, and pass to each instance of Pl a

reference to a different element of that array. Create a sync slot in P2 with a

count of n. Each Pl sends its value to its element and syncs the slot in P2 .

Then P2 finds the max in a sequentialloop. This is shown in Figure 4.13.

This does no more work than any other method (n - 1 comparisons are needed

in any case), but this can be a bottleneck if getting the final max answer in

P2 is in a critical path (as in the tomcatv benchmark, used in later chapters,

in which the reduction in P2 is part of a barrier synchronization). It can also

he problernatic if n is unknown or unbounded at compile time.

2. Create a binary compare tree with n/2 leaves (a fragment is shown in Fig

ure 4.14). If sorne of the instances of Pl send values before others, then there

will be sorne work to do in the tree while other work is still outstanding (as

suming there are spare processing resources). This will shorten the amount of

time needed by the sequential part which occurs when the last (Nth) instance

of Pl returns a value. However, this is complex and requires each caU of Pl to

point to one of the [eaves of the binary tree. This implies transferring point

ers to the instances of Pl through P2 • The effort might be worthwhile if this

reduction is performed repeatedly, but would be a large overhead for a single

event. This technique also has difficulties if n changes from one reduction to

the next.

3. Traditional methods for guarding critical sections of code (e.g., semaphores)

can be employed in the application code. But these impose high overheads on

fine-grain applications and are an extra burden to the programmer.

104

• ~----------------~~-r~
-------------------- ----------------~~--~

~~--_4 ...-

""" max

Figure 4.13: Reduction with Single Fiber

max

max

-------------~~~~

max

-------------~~--~

•
Figure 4.14: Reduction with Binary Tree

•

AlI three methods have been successfully used for benchmarks in EARTH. Sorne

of the programming effort could be removed by providing special reduction library

routines. But given the other disadvantages cited above, a more natural and efficient

solution would look something like the abstract dataflow graph of Figure 4.15, in

which aIl values are sent to a single fiber, which saves the internai state (the largest

value found so far) until aIl values have been sent.9

9This non-deterministic merging solution would Dot work for numerical analysis prohlems in
which the order of floating-point operations is important to the correctness of the a1gorithm. In
such cases, one of the other solutions can he used.

105

•

•

•

Figure 4.15: Reduction with Nlutual Exclusion

The current PXM cannot support this type of graph, for two reasons:

1. If two values are sent to the same place at about the same time, one could

overwrite the other before the latter has been used.

2. The general EARTH Architecture Model allows Execution Units to have mul

tiple processing elements. Therefore, there is no way to guarantee atomic

access to the critical resource (in this case l the partial maximum).

An enhanced EARTH PXM should include sorne support for mutual exclusion. For

tunately, this is possible with little change.

One of the higher "levels" in the first EARTH design paper [61] allows sync

slots ta be designated mutually exclusive. If the count in such a slot is decremented

and it reaches 0, the fiber is fired as usuaI, but the sync count is not reset. This

"locks" the fiber, which should have exclusive access to the critical resource (this

is the programmer's responsibility). Any subsequent SYNC_\VITH..DATA transfers

involving the same sync slot are placed in a queue without updating the memory.

'VVhen the fiber terminates, the slot's sync couot is reset, "unlocking" the fiber.

\Vhen this occurs, any pending SYNC_WITH..DATA transfers to the same slot may

continue.

4.3.2 Support for Speculative Execution

Many non-numerical programs, and even some numerical programs, have the poten

tial for big improvements in speed if sorne computation is performed speculatively,

106

•

•

•

i.e., before its need has been determined [119]. There are also many applications in

which the program can search down many paths in the search space simultaneously,

but a success in any subsearch satisfies the search conditions, i.e., an OR condition.

The subsearches can often be done in parallel. The generation of parallel searches

and speculative procedures and fibers is easy enough, but combining the results in a

meaningful way is more complex, because nondeterminism is required. An efficient

para11el search creates a race hetween the subsearches; the (temporalIy) first sub

path to return a successful result is chosen as the solution to the next higher level

of the search.

The previous extension for supporting mutuai exclusion can be further modi

fied to support this kind of merging. The mutex mechanism allows a11 incoming

SYNC_\VITH-DATA messages to be processed eventually. A modified mechanism

would permit only one, or perhaps a predetermined number, of such signais to he

accepted, causing aIl athers to be discarded.

This wouId be far more efficient if there were a rnechanism for killing computa

tions whose results are no longer needed (e.g., parallel subsearches still in progress).

A procedure that wished to kill sorne of the procedures that it invoked could send a

signal to those procedure instances, which in turn would have to kili any processes

they created, propagating down the calI tree until aH descendents are killed. Most

of this could he donc using the basic PXM, e.g., adding a special "kill" fiber to

each threaded procedure. However, the more such features are built into the PXM,

the hetter the hardware support for such operations can he made, leading to fewer

redundant or unnecessary computations as superfluous fibers are killed faster.

4.3.3 Other Extensions

Section 4.2.5 suggested that the SU could make sorne fibers jump to the front of

the Ready Queue in arder to take advantage of register locality. This would he

transparent to the programmer. However, priorities could also he made explicit to

the programmer (or compiler) by introducing a more general priority mechanism, in

which each thread (fiber or procedure instance) is given a priority level. Thus, one

could identify critical paths in the code that nccd to be run quickly, and other parts

that can be deferred until processor load is light. Such a priority scheme would also

assist in the speculative execution raised in the previous section.

107

•

•

•

I-structures [11] have been proposed as a convenient way of decoupling produc

ers and consumers, so that consumers could request data without knowing if the

data has been produced yet, so long as the consumers know where the data will he

when it finally is produced. The semantics of I-structures are similar to the EARTH

SYNC_WITH-FETCH operator; the consumer requests data in a split-phase trans

action. The key difference is that the SYNC_\VITH-FETCH operator assumes the

data is already present at the specified source location. An I-structure read opera

tion, on the other hand, checks to see if the data has been produced, and does not

return data from that location until it is known to he valid. Presense or absence

of the data is detennined by a fulljempty bit attached to each I-structure loca

tion. This bit starts empty and is set when a producer writes data to that location.

~1ultiple reads from the same location can be pending; when the location is finally

written, the pending split-phase transactions are completed and the data is sent to

each requester. A recent extension [14] allows these objects to he reused.

I-structures would sirnplify sorne programming, particularly in the heginnings of

programs where parallel data and control structures are initialized. Several programs

written for EARTH could benefit frorn I-structures. The semantics of I-structures

are close enough to the EARTH SYNC_WITH-FETCH operator that the latter

could be easily modified ta support the former. The remote SU would simply have

to hold onto the SYNC_WITH-FETCH until the data is written. (The PXM should

require that the write be done with a SYNC_WITH.DATA operator rather than an

ordinary store, so that the SU is alerted when the write occurs.) In fact, I-structures

have already been implemented on EARTH in software [6], so it is oot essential to

add them to the PX~L However, including them in the PXM would mean that they

would be supported in the EARTH hardware or system software, aod this support

would be more efficient than appHcatioDs-level code.

108

•

•

Chapter 5

The EARTH Virtual Machine

The previous chapter presented the EARTH Program Execution Model (PXM).

The PXM consists of a high-Ievel view of the structure of an EARTH computer,

an abstract model of how a program is divided ioto threads and how the threads

are synchronized, and a set of eight fundamental operations which are essential to

execute the threads correctly and efficiently. As stated in the chapter, much has

been left unstated, ranging from specifie details such as how the EARTH operations

are encoded, to fundamental questions such as if and how memory is shared among

nodes. The EARTH PX1'I is intended to be a general model for multithreaded

execution which is applicable to as many platforms as possible.

An actual implementation of EARTH requires a more precise definition of the

EARTH operations. This definition cannot be a complete Instruction Set Archi

tecture (ISA) , for that would bind the definition to a particular processor family.

However, it should still fill the rSA's traditional role of specifying the interface be

tween the programmer/compiler and the hardware. Our goal is to define a cornmon

set of operations in sufficient detail to permit bath multiple hardware platforms and

multiple high-Ievellanguages to he designed around this set.

A definition at this level is called an EARTH Virtual Machine (EV~I). An

EARTH Virtual Machine defines the following:

•
Mernory model: How memory is distributed among the nodes, if and how

it is shared, how mernory locations are represented, what

operations are available to the processors, and what form

of rnemory consistency is supported (if any);

109

• Thread model:

Data types:

EARTH instructions:

How procedures and fibers (and their contexts) are rep

resented, how they are invoked, and how sync slots are

represented;

A set of data types used by the EARTH operators in this

EVM;

A set of functions based on the EARTH operations out

lined in Section 4.1.3, as weil as restrictions on their

use or constraints on tbeir ordering. (Sucb constraints

need to be specified so that code generators for EARTH

can make optimizations, such as code reordering, without

causing incorrect code behavior.)

•

•

Functions are chosen as the form for representing EARTH instructions because

they are a suitable target for compilation. Furthermore, a function instantiation cao

easily be translated into a form suitable for whatever platfonn along the evolutionary

path is desired. For an off-the-shelf multiprocessor without special SU hardware, a

function calI can be left as is (calling a library function) or replaced with inline code

(see"Section 7.1.3). At the other end of the path, where it is assumed the EU has

builtin support for EARTH, the function cali can be replaced \Vith special opcodes.

This flexibility makes it possible, in principle, to compile code in two stages.

First, a compiler converts a high-Ievel language which supports EARTH (such as

the Threaded-C language in the next chapter) ta native processor code interspersed

with the EARTH function caUs. In the second pass, a post-processor, programmed

for a specifie implementation, converts the EARTH instructions ta the native equiv

alents, whatever they may be. This allows use of existing compilers for off-the-shelf

processors when they make up the EU. (Direct conversion from the high-Ievel lan

guage would probably produce more efficient code, because function caUs generally

require fixed registers for parameter passing, which constrains the ability of the

compiler's register allocator ta optimize.)

This thesis proposes two virtual machines, bath for distributed-memory comput

ers. Both machines assume that memory is Dot shared, meaning that accesses to

remote memory are not possible using ordinary load and store instructions. Since

the EARTH model requires explicit communication of data and synchronization

110

•

•

•

between specified locations in different nodes, there must be sorne way to specify

remote memory locations to EARTH operations.

The main difference between the two machines is the way in which memory loca

tions are represented. The first uses "global addresses" to refer to rnemory locations.

It is assumed that processors cannot use ordinary load and store operations to access

memory on remote nodes, but that they can use global addresses, which are unique

across the machine, to access remote locations indirectly using the provided set of

EARTH instructions. The second virtual machine uses unique "frame identifiers"

to refer to the contexts of threaded procedure instances, \Vith frame ofIsets used to

access individual memory locations within these contexts.

5.1 An EVM Based on Addresses

The simplest way to make it possible to reference memory locations globally is to

extend the basic concept of a memory address to make it global. This is the basis

of the first virtual machine, which is called EV~:[-A (an EV~l based on Addresses).

The next section presents an alternative machine based on frames .

5.1.1 The EVM-A Memory Model

The EVM-A assumes the platform is a nearly-homogeneous system in which aIl

Execution Dnits are object-code compatible. The number of nodes is not determined

at compile time, so the code should be designed to work with difIerent numbers of

nodes, but the number is fixed at the time a program begins execution. As previously

stated, memory in this machine is not shared. Instead, each node in the EVM-A

has its own memory and its own private address space. At least sorne part of the

address space must be identical on aIl nodes. This part of the address space, called

the replicated address space, is used for the following:

1. A copy of the executable code, consisting of ail threaded procedures, sequential

functions, constants, and static variables (not bound to a particular procedure)

used by the program, is placed at the same address in the replicated space on

each Dode. The threaded code is linked assuming that address as the base ad

dress. This ensures that any addresses appearing in the executable (branches,

caUs to sequential functions, or addresses of constant data structures) reCer

111

•

•

•

to the identical object or code on every node. It also guarantees that each

threaded procedure is associated with a single starting address which is iden

tical on ail nodes, which is important to the function invocation operations

described later.

2. In sorne cases, objects are placed in the replicated space so that they may be

found by the program in a fixed location independent of the node. For example,

if an oodes in the machine share sorne read-only data which is generated at

runtime (so that it can't be loaded with the program), this data can be copied

to a predefioed address in each node's replicated space. Subsequently, a thread

running anywhere in the machine can access the same data by looking up the

cornmon address.

At least sorne part of the address space is ::non-replicated." This is not to say

that the address spaces must be distinct on different nodes; on most platforms, they

are likely ta be identical. It means that this memory is intended for non-replicated

objects. Mainly, this storage is used for:

1. Frames holding the contexts of instances of threaded procedures;

2. Dynamically-allocated objects, i.e., a heap.

Figure 5.1 shows the memory for a four-node EARTH machine based on EVl\1-A.

The code (e.g., the procedures fib and func2) is replicated on aIl nodes such that

any given procedure or fiber has the same address everywhere (e.g., address le560

for the start of func2). Frames for instances of fib are shown in the non-replicated

address spaces.

As pointed out in this chapter's introduction, it is essential for fibers ta send

data to remote locations, which means that addresses must he glohally unique. For

instance, if the instance of fib(l) on node 3 (Figure 5.1) sends its result ta fib(2)

on node 2, it must be able to specify that location in node 2's non-replicated address

space. The solution is to create a special type of address, a global address, which

uniquely identifies a particular local address on a specifie node.

Global addresses cannot be used in load and store instructions, for memory is not

shared. Even if the SU could be programmed ta respond to such requests by asking

a remote SU for memory contents, the EU would be stalled during this time, so it

is more efficient to use the split-phase transactions introduced in Section 4.1.3.3.

112

•
1e560

REPLICATED
ADDRESS

SPACE

NON-REPLICATED
ADDRESS

SPACE

NODE 0 NODE 1 NODE 2 NODE 3

1e560

•

•

Figure 5.1: EVrvl-A Address Spaces

Instead, global addresses are passed ta the SU using the EARTH operations. From

any given global address, it must be possible to extract both the identity of the node

and the local address on that node. The former is needed by the SU on the node that

originates the EARTH operation, because it needs to know where to forward the

request. The latter is needed on the node containing the specified memory location,

since that node needs to access the local contents.

The non-replicated memory on a Dode contains dynamic state which is unique

to that node. This mainly consists of heap and stack areas. For each Processing

Element in the EU, there is a separate stack, which permits sequential function caUs

to be performed on that PE using conventional caU instructions (see Section 4.1.1.3).

The heap is used for allocating and deallocating both frames (contexts of procedure

instances) and blocks of memory (e.g., dynamically-allocated arrays).

The latter can be created using conventional memory allocation techniques and

shared among different procedures. Two procedures on the same Dode cao share an

object directly using loads and stores (with the object's local address). Procedures

can access data structures on remote nodes, but only indirectly through global

addresses, by using EARTH operations to read and write these structures.

113

•

•

•

5.1.2 The EVM-A Thread Model

The code for a threaded procedure is stored at the same address in each node (in the

replicated space), so this address can serve as a globally-uniform reference to that

procedure (a Procedure Pointer in Section 4.1.3). The same is true of individual

fibers within a procedure. AlI information needed by the SU to invoke and initialize

a procedure, including the address of the initial fiber, must be accessible given the

address of the start of the procedure.

Within the code of a procedure, each fiber except the initial fiber is identified with

a positive number. The initial fiber is oot oumbered because 00 EARTH instruction

needs to identify this fiber; it is autornatically enabled by the SU during procedure

invocation. Fibers rnay have arbitrary numbers, but sorne implementations may

produce more efficient code if oumbers are consecutive.

Within a procedure, sync slots are nurnbered with consecutive oon-negative in

tegers starting from O. Sync slots can only enable local fibers. To support synchro

nization with other procedures and other nodes, one must be able to reference a

sync slot using a global address. From this address, the SU must be able to deter

mine both the frame containing the sync slot and the oumber of that slot. These

addresses may or may not point to the actual storage location of the slot, depeoding

on the implementation, so user code should oot attempt to access sync slot contents

through these pointers, and should stick to the EARTH operations to manipulate

slots.

When a PE in the EU takes a fiber from the Ready Queue, it needs to have

access to that fiber's cootext, including its procedure frame. The RQ pairs the

address of a fiber's code with the address of the frame associated with the instance

of that fiber. The PE stores this frame address ioto a register and uses offsets from

this register to access variables local to the frame, as in conventional programs. The

stack pointer for the PE is also part of the context of a fiber.

5.1.3 Data Types of EVM-A

Section 4.1.3 defined several data types which \Vere fundamental to the EARTH

PXM. The following are the equivalent data types as represented in EVM-A. These

are used within EARTH instructions, which are executed by fibers. The term "cur

rent fiber" refers to the fiber instance currently in the PE executing the EARTH

114

• instruction, and the "CUITent procedure" is the procedure instance corresponding to

the current fiber. The current procedure's context is the "current frame."

•

•

fid

ip

fibnum

sptr

ssnum

nodeid

T

T*

A frame identifier is a global address painting to the base of a

frame.

An instruction pointer is a regular (local) address to the first

instruction of the code for a fiber or procedure. Only a local ad

dress is needed because the code is stored in replicated memory,

sa an ip is identical on aIl nodes.

A fiber number is a positive integer which must correspond ta

one of the fibers in the current procedure.

A slot pointer is a global address referring to a unique sync slot

within one procedure instance. As previously mentioned, the

code should not attempt to access a sync slot directly through

its sptr.

Certain EARTH instructions in EVM-A can refer ta sync slots

by number rather than by global address. In snch cases, the sync

slot referred ta is ahvays in the current procedure, and must be

less than the number of sync slots allocated by that procedure.

This is a non-negative integer large enough to contain the total

number of nodes in the system. If used to specify a node's

number, it ranges from 0 to n - 1 (n is the number of nodes).

As in Section 4.1.3, the instructions defined below use T ta

refer to an arbitrary data type, except that EVM-A restricts T

only to scalar abjects, local pointers and global addresses (i.e.,

arrays are not allowed, although pointers to arrays are allowed).

Movement of compound objects is handled in EVM-A using an

explicit "black move" operator.

For each abject of type T, there is a local pointer ta that abject.

115

• T*G For each object of type T, there is also a global address which

refers to that abject. The global qualifier is abbreviated "G" for

compactness.

•

•

5.1.4 EARTH Instructions in EVM-A

One requirement of any EARTH Virtual Machine is that the EARTH instruction

set contains at least the core EARTH operations of Section 4.1.3, implemented

consistent with the memory model and data type set for this EVM. Refinements

and extensions are permissible once the basic requirement is met.

EVM-A extends the basic operation set in several ways:

1. The basic operation set uses generic sync slot references and instruction point

ers. EVM-A recognizcs that many operations will involve data and SYQC slots

local to the current frame. For instance, a SYNC_WITH-FETCH will usually

fetch data to a local location and synchronize a local sync slot. Code cao be

optimized by avoiding the need to convert to and from global addresses, or by

making the SU handle the conversions.

Therefore, each of the synchronizing operators has two forms, one for local

references, and one for remote references. In this context, "local" and "remote"

describe locations relative ta the CUITent node. When a fiber refers to a location

outside of its current frame, the programmer or compiler should conservatively

assume that that location is on a remote node, particularly if the programmer

or compiler makes aggressive use of parallelism and load balancing. While it

is possible, in principle, to use local references to refer to abjects in different

frames that are on the same node, this should only be done if the programmer

or compiler is 100% certain of the locality.

2. The basic synchronizing operators do aIl synchronization using sync slots.

There are many cases where a fiber has only a single data or control depen

dence. While a sync slot with a reset count of 1 can be used, it is often

more convenient for the fiber which satisfies the dependence ta synchronize

the dependent fiber directly rather than go through a sync slot. This is called

spawning a fiber in EVM-A. A spawned fiber immediately goes into the Ready

Queue of the node where that fiber's frame resides, while the spawning fiber

continues execution.

116

• INAME 1 ARGUMENTS 1 DESCRIPTION

•

•

sync ssnum Signal local sync slot
rsync sptr Signal remote sync slot
spawn fibnum Spawn local fiber
rspawn fid, ip Spawn remote fiber
data-syuc T, T*[G], ssnum SYNC_WITH..DATA, local slot
data.Jsync T, T*[G], sptr SYNC_WITH..DATA, remote slot
data-spawn T, T*[G], fibnum Atomic send/spawn local fiber
data-rspawn T, T*[G], fid, ip Atomic send/spawn remote fiber
get..syuc T*G, T*[G], ssnum SYNC_\VITH-FETCH, local slot
geLrsync T*G, T*[G], sptr SYNC_WITH-FETCH, remote slot
get..spawn T*G, T*[G], thnum Atomic retch/spawn local fiber
get..l'spawn T*G, T*[G], fid, ip Atomic retch/spawn reroote fiber
blkmov..sync void*[G], void*[G], int, ssnum Block move with local sync
blkmov..l'sync void*[G], void*[G], int, sptr Block move with reroote sync
blkmov..spawn void*[G], void*[G], int, fibnum Block move with local spawn
blkmov...rspawn void*[G], void*[G], int, fid, ip Block move with remote spawn

Table 5.1: EVM-A Synchronizing Instructions

3. EVM-A provides several functions that are used for converting between local

and global addresses, which are not a part of the abstract model.

Table 5.1 lists the synchronizing operators, which perform the SYNC,

SYNC_WITH-DATA and SYNC_\VITH-FETCH operations. Each basic operator

type has four variants, depending on whether the synchronization is local to the

frame or remote, and whether a sync slot is used or the fiber is spawned directly.

The local variants only require the numher of the slot or thread. Remote synchro

nization requires a global address for the sync slot. Spawning a fiber outside the

current frame requires a global address for the fiber's frame and the address of the

fiber code.

The first three basic types correspond ta the SYNC, SYNC_\VITH-DATA, and

SYNC_WITH.FETCH operations in the abstract model. The operations beginning

with "data_" take a scalar value for their first argument; this scalar is copied to the

location referenced by the second argument. Operators in the third group (beginning

\Vith "geL") take references to both the source (first argument) and the destination

(second argument) of a copy. Sorne address arguments in the latter two groups may

be local or global. These operators are therefore overloaded, and this is indicated

by placing the optional "G" (abbreviation for GLOBAL) in square brackets. This

117

• INAME 1 ARGUMENTS 1 DESCRIPTION

•

•

data.syncfspawn T, T*, ... Send data locally
dataJ'Syncfrspawn T, T*G, .,. Send data remotely
get.syncfspawn T*G, T*G, ... Fetch local copy of remote data
blkmov.syncf spawn void*, void*, ... Copy block locally
blkmov.syncfspawn void*G, void*, ... Fetch local copy of remote block
blkmov...rsyncfrspawn void*, void*G, .., Send local block to remote dest.

Table 5.2: Common Data Transfer Instructions (EVM-A)

allows different types of transfers to be synchronized. For instance, a data.spawn

can take a global address, meaning that the value is sent outside of the current

frame but a local fiber is enabled. (The EVN[-A implementation must guarantee,

at a minimum, that the fiber does not enter the RQ until the remote location has

been written.)

The last set of operators (beginning with "blkmov_") handle the special case of

moving compound abjects (arrays and records), and work with untyped addresses

and a size count (number of bytes in the object). Since a black move's source

argument is passed "by reference," if it copies a local object to another location,

the copying will be concurrent with the continued execution of the fiber, despite

the appearance of atomicity. If the fiber modifies the object before the transfer is

complete, there will be a race condition between the transfer and the update, and

the destination object could end up with incorrect data.

Although the EVwI-A data transfer operations allow flexibility in choosing the

location of the source, destination, and sync slot or fiber, we expect that most of

the operations used will be initiated by the direct producers or consumers of data,

and will have the following properties:

1. The sync slot or fiber specified is in the same frame as the destination of the

transfer.

2. The source, or destination, or both, are in the current frame.

The operations with these properties are listed in Table 5.2.

Table 5.3 lists the remaining operations of EVM-A, corresponding to the remain

ing five operators listed in Section 4.1.3. Sync slot initialization only works on local

118

1 DESCRIPTION1 ARGUMENTS
init...sync ssnum, int, int, fibnum Initialize local sync slot
incr...sync ssnum, int Increment local sync slot
incr...rsYnc sptr, int Increment remote sync slot
invoke nodeid, ip, T, --- Invoke procedure on specified node
tokeD ip, T, ... Invoke procedure, node unspecified
endJi.ber - Terminate CUITent fiber
end_procedure - Terminate CUITent procedure

INAME•

Table 5.3: EVM-A Additional Instructions

1 RET. 1 DESCRIPTIONIARGS
node.id - nodeid Local Dode number
num-Dodes - nodeid Total Dumber of nodes
to~lobal T* T*G Global address referring to local address
make_global Dodeid, T* T*G Global address on specified node
to-local T*G T* Local address component
owoer_of T*G nodeid Node number component
slot..adr ssnum sptr Global address for sync slot (id. by number)
frame..adr - fid Frame identifier for CUITent frame
ip-adr fibnum ip Instruction pointer for fiber (id. by number)

INAME

•
Table 5.4: EVrvI-A Support Functions

•

slots. Both local and remote variants of the INCREMENT-SLOT operator are pro

vided. Two types of function invocation are supported, one in which the program

chooses the node where the function is invoked~ and one in which the EARTH sys

tem makes the decision. (In the latter case, the procedure caU becomes a "token"

which enters a special queue; this is discussed in a later chapter.)

Finally, EVM-A provides several built-in functions and variables, listed in Ta

ble 5.4. The two predefined variables identify the local node number and the total

node count (runtime constants, not compile-time constants). These are useful to

programs which distribute procedures manually (using the invoke operation rather

than the token operation) - The next four convert between local and global ad

dresses. The final three convert local slots, fibers aod frame ioto global addresses

which can be used by remote procedures to rerer to these items.

119

• 5.2 An EVl.\1 Based on Frames

•

•

The current implementations of EARTH, presented in Chapters 7 and 8, are based on

the EVM-A virtual machine. When EARTH was implemented on its first platform

[59,58], a variant of the EVM-A was chosen because this made code generation easier

and more efficient. However, there are several shortcomings with the EVM-A:

1. Frequent conversions between local and global addresses are required. The

distinction between local and global addresses is made necessary by machines

in which the cornbined total of all the local non-replicated address spaces is

larger than the entire virtual address space of one processor. For instance, a

machine with 32-bit addresses, 256 megabytes per node, and 20 nodes would

not be able to use a regular (32-bit) pointer for a global address; at least 33

bits would be required. 64-bit processors may solve this particular problem,

provided enough bits are provided for virtual addresses, but such machines still

require manipulating the virtual memory system (as described in Section 7.1.1)

to avoid explicit conversions.

2. As with any pointer-based system, it is easy to write code that generates

invalid addresses and then tries to dereference them. This can happen for

conventional reasons, such as exceeding array bounds, but cao also happen

for EARTH-specifie reasons such as attempting to synchronize a SYDC slot

after its frame has been terminated and deallocated. Since global addresses

have been separated from their relevant contexts (e.g., the frames to which

they belong), it is difficult to perform runtime error deteetion such as frame

bounds checking. (Although extensive runtime ehecking would slow down

a purely software-based implementation of EARTH, such cheeking rnight be

done in parallel in a hardware SU.)

3. If the assumption made in Section 5.1.4, that most data transfers synchronize

syne slots in the same frame as the destination of the transfer, is true, then

the arguments to such operations have considerable redundaney. Two global

addresses (possibly 64 bits each) are used to specify a destination and a syue

slot, yet these t\vo addresses are usually quite close together. Removing sorne

of this redundancy would free up register space in the EU, reduce the time to

send messages to the SU, and reduce traffie on the network.

120

•

•

•

The early papers on EARTH [61] specified EARTH instructions that use

frame/offset pairs1 rathee than global addresses, to refer ta memory locations not in

the current frame. This developed ioto a virtual machine independent of EVM-A,

called EVl\tI-F (an EVM based on Frames). Although there are no current impIe

mentations of EVM-F, it is being considered for future implemeotations of EARTH.

It is currently an incomplete definition, but is presented here to show that the ba

sic EARTH PXM can be supported by multiple vietual machines. Many features of

EV~1-F are identical to EVM-A, so only the differences are presented in this section.

5.2.1 The EVM-F Memory Model

The EVM-F relaxes the homogeneity requirements of EVM-A by allowing different

processor architectures to reside in the same machine. This would allowan impIe

mentation of EARTH based on a cluster of diverse workstations. Furthermore, no

part of the address space needs to he replicated on aIl nodes. The only requirement

for compatibility is that aIl data representations (sizes, bit definitioos, endianness,

record Iayouts, etc.) must be the same on aIl nodes, to allow data structures to

be transferred between nodes without costly conversion routines. (Data structures

with pointers present a problem if the addresses on two nodes are different, unless

the pointers are explicitly converted. But this problem also exists in EVM-A, uoless

the data structures are stored in the replicated address spaces. EVM-F provides an

alternative to replicated address spaces, described below.)

Instead of using global addresses to refer ta remote locations, the EVM-F uses

a frame/offset pair. Each frame is assigned a unique identifier, which is used in

EARTH instructions rather than global addresses. As \Vith global addresses, it

should be possible for the SU to extract from the frame identifier the node number

and local address base of a frame. Gnly the SU where the frame resides needs ta

know its local address; the others only need to know the frame's node number. A

memory location for data is referenced using a frame identifier and a byte offsets

from the start of the area of the frame reserved for local variables. A sync slot is

referenced usiog a frame identifier and the number of the local slot.

Thus, frames become somewhat analogous to segments in segmeoted virtual

memory, except at a finer level of granularity. With 32-bit pointers, there can he

up to 232 globally-unique frames. If deallocated frame identifiers are eventually

121

•

•

•

recycled, then the addressing space on a 32-bit machine can he exhausted only if

more than four billion procedure instances are active simultaneously.

As with segments, there is the possibility of checking for violations (exceeding

frame bounds, accessing deallocated frames, etc.). With a hardware SU, these checks

could be performed concurrently to avoid slowing the rest of the SU. In a pure

software SU, these checks would probably be too expensive, but couId be switched

on for debugging.

In EVM-A, a portion of the address space is replicated on aIl nodes. In EVM-F,

a portion of the frame space is replicated. Sorne frame identifiers rerer to frames

which are assumed ta be on aIl nodes, though they may be stored locally in different

places. As with EVNI-A, these can be used for shared data, though, as with EVM-A,

writing ta one frame does not affect the corresponding frames on other nodes.

Sorne of these replicated frames have special functions:

1. At least one frame is reserved for static variables which are not bound to a

particular procedure instance, Le., their lifetime is the lifetime of the program.

2. Sorne replicated frames can be designated broadcast frames, meaning they are

intended for storing identical copies of shared read-only data on ail nodes. If

the producer sends data ta such a frame, the SU should send copies of the

data ta aIl nodes, taking advantage of any broadcast capabilities the network

may have.

3. Finally, sorne frame identifiers are used as global labels for threaded proce

dures, as explained below.

In addition, frames can be used ta identify heap-allocated data structures such

as arrays, allowing these structures ta be shared among procedures. (This does not

include structures of fixed size declared as local variables \vithin a procedure, which

are part of the procedure's frame). Special memory-allocation routines are provided

that produce frame identifiers rather than addresses.

5.2.2 The EVM-F Thread Model

The code for each procedure is stored on aIl nodes. The executable codes may vary

from Dode ta Dode if not aIl Dodes are abject-code compatible, though aIl copies are

functionally equivalent. A frame identifier from the replicated frame space is used

122

•

•

•

to refer to this procedure on all nodes. Thus, this frame identifier corresponds to

the pp (procedure pointer) in the ahstract PXIvI (see Section 4.1.3). Note that this

frame identifier refers to the procedure code rather than a particular instance of that

procedure, and thus would be used for function invocation operations rather than

synchronizing operations. Therefore, we calI this special frame identifier a procedure

identifier.

A fiber numher (fibnum in EVM-A) identifies a particular fiber. A fibnum in

conjunction with a procedure identifier specifies the code for one fiber. A fihnum in

conjunction with a regular frame identifier specifies a fiber instance.

5.2.3 Data Types of EVM-F

Sorne of the special data types in EVM-F are changed to refiect the use of frames

rather than global addresses. The frame identifier (fid) is now an abstract value not

connected to any global address. The types ip and sptr are eliminated, their roles

being filled by fibnum and ssnum, respectively, in conjunction \Vith frame identifiers.

Similarly, the GLOBAL qualifier is elirninated, since there are no longer aDY global

addresses. Finally, the offset type represents the byte offset into the data area of a

frame.

5.2.4 EARTH Instructions in EVM-F

The EVM-F synchronizing operations, listed in Table 5.5, are analogons to the

operations in EV~1-A. Global addresses are replaced with frame identifiers, offsets,

and slot and fiber numbers. As with the EV~vl-A equivalents, sorne destinations

can be either remote or local (relative to the current frame), so the fid is optional.

Again, the operators listed in the table are overloaded and the optional arguments

are enclosed in square brackets.

The use of frame identifiers allows more optional arguments to be omitted. Both

the frame identifiers in data..rsync are marked as optional. At least one is required,

since data-rsync synchronizes a remote slot, by definition. However, if this sync slot

is in the same frame as the (remote) destination, then the second fid can he omitted,

since it is identical to the first. If the destination is local, then the first fid can he

omitted. Only if the destination is remote and in a different frame than the sync

slot are two frame identifiers needed.

123

1DESCRIPTION1ARGUMENTS
sync ssnum Signal local sync slot
rsync fid, ssnum Signal remote sync slot
spawn fibnum Spawn local fiber
rspawn fid, fibnum Spawn remote fiber
dat~ync T, [fid,] off., ssnum SYNC_\VITH-DATA, local slot
data....rsync T, [fid,] off., [fid,] ssnum SYNC_WITH...DATA, remote slot
dat~pawn T, [6d,] off., 6bnum Atomic send/spawn local fiber
data....rspawn T, [6d,] off., [fid,] fibnum Atomic send/spawn remote fiber
geLsync fid, off., [fid,] off., ssnum SYNC_WITH..FETCH, local slot
get....rsync fid, off., [fid,] off., [fid,] ssnum SYNC_WITH..FETCH, remote slot
geLspawn fid, off., [fid,) off., thnum Atomic fetcb/spawn local fiber
get....rspawn fid, off., [fid,] off., [fid,] fibnum Atomic fetch/spawn remote fiber
blkmov..sync [fid,] off., [fid,] off., int, ssnum Block move with local sync
blkmov-rsync [fid,] off., [fid,] off., int, [fid,] ssnum Block move with remote sync
blkmov..spawn [fid,] off., [fid,] off., int, fibnum Black move with local spawn
blkmov.rspawn [fid,] off., [fid,] off., int, [fid,) fibnum Black move with remote spawn

1NAME•

1DESCRIPTION1ARGUMENTS

Table 5.5: EVM-F Synchronizing Instructions

data...5ync/spawn T, off., ssnum/fibnum Send data locally
data-rsync/rspawn T, fid, off., ssnum/fibnum Send data remotely
get...5ync/spawn fid, off., off., ssnum/fibnum Fetch remote data
blkmov-sync/spawn off., off., int, ssnum/fibnum Copy block locally
blkmov-sync/spawn fib, off., off., int, ssnum/fibnurn Fetch remote block
blkmovJsync/rspawn off., fid, off., int, ssnum/fibnurn Send local block remotely

INAME•
Table 5.6: Cornmon Data Transfer Instructions (EVM-F)

•

As \Vith EVM-A, we expect that most operations will synchronize a slot or fiber

within the same frame as the destination, and that either the source or destination

will be in the current frame. Therefore, these cornmon cases fall within the list of

operations listed in Table 5.6.

The other operations in the EARTH instruction set are the same as those listed

in Table 5.3, with the following exceptions:

1. The incrJsync operator takes a frame identifier and ssnum instead of a sync

slot pointer.

124

•

•

•

2. The invoke and token operators take a frame identifier (acting as a procedure

identifier) rather than an instruction pointer.

3. The invoke operator retums a value directly (it is the only function to do so),

which is the fid corresponding to the procedure instance.

The return of a frame identifier by invoke is a useful feature that cao simplify

procedure linkage. In a procedure such as fib (as presented in the previous chapter),

procedures need to send data to the procedures that invoked them. This is simple to

do because the invoking procedure can pass global addresses pointing to its variables

and sync slots to the invoked procedure. However, once the calIee has been invoked

and started, it is more difficult to send data trom caller to callee because the caller

doesn 't know where the callee is located. Some of the EARTH coding examples in

the next chapter show how this is done. But if the invoke operation retums the

frame identifier right away, the caller knows right away how to send data to the

procedures it invokes.

There are several ways to implement this. \\l'hat they have in common is that

the SU can assign a frame identifier for a frame on a remote Dode before that frame

has been allocated. One method is to allocate ranges of frame identifiers for specifie

node numbers on each SU. Another is to keep~ in each SU ~ a small pool of frame

identifiers pre-allocated for each remote node. In either case, the invoking procedure

may try to transfer data to or from the frame whose fid it just received before the

frame has actually been allocated on the remote node. The implementation must

buffer these requests until the frame allocation is finished.

125

•

•

•

Chapter 6

The Threaded-C Language

The previous chapter defined two possible "virtual machines" implementing the

EARTH Program Execution Model on distributed-memory machines. Each defines

a set of primitive EARTH operations that are supported by the implementation.

These operations serve as an interface between a high-Ievellanguage and the machine

code. The machine code (both ordinary instructions and the translations of EARTH

operations) may vary widely, given our desire for portability along the evolutionary

path, but compilers can assume these operations exist for aIl versions supporting

a given EV~I and target these operations. In principle, a compiler could include

EARTH operations in its intermediate representation, which is used to separate the

high-Ievellanguage's structure from the code generation details.

Once a particular EV~I has been defined, the next logical step is to develop a

high-Ievel language which supports the EV~[, so that applications can be written

for EARTH. The simplest approach is to present the EARTH constructs directly

to the programmer. The programmer thus has control over the partitioning of

programs into threads, the distribution of tasks among the processors, and so forth.

It is straightforward to translate the program to the EVlvI layer by mapping the

EARTH constructs to their EVM equivalents.

The EARTH group took this approach, developing a language called Threaded-C.

This is ANSI-standard C with extensions corresponding to the EARTH operations

and other constructs defined in EVM-A. A C compiler, written for the EU processor

(and typically off-the-shelf), translates the regular Cinto native EU instructions,

while provisions are made for converting the Threaded-C extensions. The Threaded

C language may he used as a user-Ievel, explicitly-threaded programming language.

126

•

•

•

Threaded-C is also suitable as a compilation target for another high-level lan

guage. Part of the EARTH project team has been working on translating non

threaded languages, such as ordinary C or EARTH-C [52], a parallel language

designed for EARTH but which hides threading details from the programmer, to

Threaded-C. One important part of this work has been the developIDent of an effi

cient algorithm to partition a procedure into fibers automatically [111].

Several dialects of Threaded-C have been written. The first versio-n was written

specifically for the MANNA multiprocessor [17]. This platform is very 8exible and

coding cao be done at a very low level. Even the on-chip memory-management

unit can be manipulatOO, something normally restricted to the OS kEmel. Several

features of "EARTH-MANNA Threaded-C" make it unsuitable for larger architec

tures such as high-end IBM SP-2 machines. In particular, that m~hine has the

problem mentioned in Section 5.2; the aggregate address space is too large to fit

in an ordinary address. This 100 to the introduction of explicit global addresses in

both EVM-A and Threaded-C.

The remainder of this chapter is devoted to this version of Threaded-C. It begins

with an overview of the essentials of Threaded-C, based on the description of EVM

A in Section 5.1. Since Threaded-C extends standard C with objects and operators

corresponding to the elements of EVM-A, the presentation in Section 6.1 assumes

familiarity with both C and EVM-A. Section 6.2 presents examples of Threaded-C

programs, an of which are used in the experiments described in later chapters. A

complete list of Threaded-C keywords, data types and operators is in Appeodix B.

6.1 Overview of Threaded-C

Threaded-C constructs correspond very c10sely to abjects and operations in EVM-A.

Keywords, data types and operation names specifie ta Threaded-C are in uppercase

to distinguish them from standard C. EARTH operations in Threaded-C are writ

ten as function caUs, and their names and semantics are almost identical to the

operations listed in Tables 5.1, 5.3 and 5.4.

127

• 6.1.1 Data Types and Qualifiers

While a rich set of data types are listed for EVM-A in Section 5.1.3, most of these

conveniently map to standard C data types. Only the following types and qualifiers

are added:

•

GLOBAL

SLOT

SPTR

THREADED

The GLOBAL keyword is a type qualifier, much like the C const

keyword. It indicates that a pointer should reCer to a global

address rather than a local address. For instance, the fol

lowing lines declare x to be the global address of an int and f

to he a function taking a global address (of a 80at) as its argument:

int *GLOBAL x

void f (int *GLOBAL)

This is the data type of a synchronization slot.

This is a shorthand for a global reference to a SLOT. The following

two declarations are equivalent:

SPTR ss

SLOT * GLOBAL ss

This is the data type of an threaded procedures.

•

A global address is associated with a specifie node, so an EARTH operator can

determine the Dode ID containing a speci6c address. One cannot dereference a global

address directly. An operation such as *x is illegal (where x is the int pointer de6ned

above). On the other hand, standard pointer arithmetic is allowed. For instance,

(x+k) would be a global address pointing to the kth element of an array of integers,

assuming x is the address of the base. Pointer arithmetic always produces addresses

on the same node; data structures cannot span multiple nodes unless cornponents

are explicitly linked with global addresses.

Since the internal form of a global address is implementation-dependent, there

are special functions corresponding to the conversion functions in Table 5.4. The

most cornmon are TO_GLOBAL and TO-LOCAL, which convert between local and

global addresses. Programmers should use these macros and not make assumptions

128

•

•

about the internai representations of these pointers. l Other functions are Iisted in

Appendix BA.

6.1.2 Structure of Threaded-C Code

Programs written in Threaded-C look very similar to ordinary C programs, \Vith

sorne small differences.

First, threaded procedures don't return data. The function name is preceded by

the keyword THREADED, rather than a data type declarator. Threaded procedures

currently cannot he declared static (this might change in the future). Also, the

top-Ievel function is called MAIN (upper case) rather than the standard lower-case

'"main." (This function only executes on one node; no other nodes run fibers until

procedures are explicitly invoked on that node.)

Second, the body of a normal C function is defined as a compound-statement

in the reference manual of Kernighan and Ritchie [69]. A threaded procedure has

a more specifie structure called a threaded-procedure-body. Using the same style as

Kernighan and Ritchie, this is defined as follows:

threaded-procedure- body:

{ declaration-listopt fiber-list threaded-procedure-terminator }

fiber-list:

statement-list

statement-list fiber-delimiter fiber-list

jiber-delimiter:

END_THREAD () THREAD_integer:

•

threaded-procedure-terminator:

END-FUNCTION () ;

RETURN () ;

l If the global address space in a particular machine is small enough to fit in a reguJar pointer,
then the EARTH implementation on that machine may use regular pointers for global addresses,
in which case the GLOBAL keyword is ignored. Howcver, programmers should always use the
GLOBAL keyword ta ensure portability.

129

•

•

•

The declaration-List, defined in Kernighan and Ritchie, is nonnally optional.

But if syne slots are used in a threaded procedure body, then the declaration-List is

required, and the first item declared must have the fonn

SLOT SYNC..sLOTS[constant-expression];

This declares the number of sync slots used in the procedure. This must be

the first declaration in the procedure body.2

The procedure body consists of one or more fibers. The first is the initial fiber

(see Section 4.1.1.3), which is automatically enabled when the procedure is invoked.

AIl other fibers must begin with a label of the form THREAD_i: (ending with a colon),

where i is a positive integer.3 Space between THREAD_ and the fiber label i is not

alIowed.

Each fiber but the last ends with a caU to the EllD_THREAD () function. If the

procedure is to be invoked \Vith either the INVQKE or TûKEN operators (the

Threaded-C operators corresponding to the invoke and token operators described in

Section 5.1.4)! then the last fiber ends with a calI to END-FUNCTION(). If the proce

dure is to he invoked with the CALL command (described in Section 6.1.3.2), the

last fiber must end hy calling RE!URN(). In either case, the procedure is terminated

when the last fiber finishes executing.

Thus, the body of a threaded procedure is partitioned into a set of fibers. Vari

ables in the procedure's parameter list, and variables in the top-Ievel declaration-List,

are part of the context of the proeedure's frame, and are visible to ail fibers in the

procedure. Variables declared within compound statements inside the procedure

body ohey normal C scoping mIes.

In general, a compound statement (below the top level), such as a loop or condi

tional, should be contained completely within one fiber. However, it is possible for

a fiber delimiter to he in the middle of a compound statement. This might simplify

the code structure in sorne cases. For instance, a for loop in which each iteration

2This requirement, and sorne other seemingly arbitrary language requirements, were imposed
to simplify the translators discussed in the nen chapter- These are not inherently required by the
needs of EARTH and \\;11 probably be relaxed in future versions of the language.

3The terrns "fiber" and "threaded procedure" did not come into use until after Threaded-C
was first defined. For this reason, the terms "thread" and "function" are used as keywords in this
version of the language.

130

•

•

•

fetches reroote data using a split-phase transaction could put the fiber boundary

(corresponding to the split phase) inside the loop. However, like gatas, such con

structs should be used sparingly, if at all. In the loop example, the processor would

jump from one fiber to an earlier fiber when the end of the loop body is reached.

This bypasses the normal fiber scheduling mechanism (taking fibers from the Ready

Queue), and sorne implementations may not be able ta handle a jump into the mid

dIe of a fiber. In such cases, it would be necessary for the compiler to split fibers at

these locations.

6.1.3 EARTH Operators in Threaded-C

~/[ost of the EVM-A operators in Tables 5.1, 5.3 and 5.4 have corresponding

Threaded-C functions with the same names and argument types, except that the

function names are in upper case. However, many of the operators in EVl\1-A are

overloaded, which is not allowed in C. To rnaintain consistency with C semantics,

the argument types of EARTH operations in Threaded-C are limited, and separate

typed functioos are provided in sorne cases. In particular,

1. In EVM-A, sorne operators, such as data-sync, allowan address argument to

be local or global. In Threaded-C, ail such addresses must be global.

2. The further overloadiog of operators in E\rM-A, in which different data types

are allowed (e.g., short or double), is oot allowed in Threaded-C. Instead, dif

ferent operators for each data type are provided, distinguished by extensions:

-B for char (byte), ...s for short, -L for long, l' for float, -D for double, and _G

for global addresses.

Figure 6.1 illustrates the structure of Threaded-C code and the use of EARTH

operators in a parallel version of "hello world." The MAIN functioo invokes, on each

node, an instance of the print-hello procedure, which prints a message identifying

the location (node number) of each instance. The following describes the actions at

each statement:

Line 3: The print...hello procedure takes a reference to a sync slot as argument

(SPTR).

131

• .include <stdio.h>

THREADED print_hello (SPTR done)
{

printt("Hello World trom Yod!\n", NODE_ID);
RSYNC (done) ;
END_fUNCTION 0 ;

}

THREADED MAIN (int argc, char-- argv)
{

/* line 3 */

/* line 5 */
/- line 6-/

SLOT
int i;

/- line 12 -/

INIT_SYNC(O, NOM_NODES, NOM_NODES, 1); /- line 15 -/
for (i = 0; i < NOM_NODES; ++i)

INVOKE(i, print_hello, SLOT_ADR(O»; /- line 17 -/
ENO_THREAD(); /* end of initial tiber-/

THREAD_1:
RETURNO;

/- line 20 */

•

•

}

Figure 6.1: Parallel Hello World

Line 5: Sequential functions are called from threaded procedures in the same way

they are called from other C functions. NODE_ID is a built-in constant identi

fying the node number.

Line 6: When print...hello finishes printing, it sends a sync signal to the sync

slot. This is the "remote" fonn of synchronization, corresponding to the rsync

operation in Table 5.1. Note that in this context, "remote" does not necessarily

mean "on a different node," but merely ~;in a different frame" (though it also

means the former in this example). An SPTR is needed to refer to a sync slot

in a different frame, even if that procedure invocation happens to be running

on the same processor.

Line 12: Only a single slot is needed, but SYNC-SLOTS is still declared an array.

Line 15: The first argument to INIT-SYNC indicates which slot is being initialized

(slot 0). Since we expect a sync signal from each node, we set the initial sync

count and reset count to NUM-NüDES. The last argument identifies the fiber

(THREAD_l) to execute when NUM-l'J'ODES syncs have been received.

132

•

•

•

Line 17: SLOT....ADR(i) is a built-in macro generating a pointer to sync slot i (type

SPTR). This is what gets assigned to done in Hne 3. SLDT....ADR corresponds ta

the slot..adr function in Table 5.4.

Line 20: THREAD_l plays the role of a barrier. It won!t run until all nodes have

finished their printing.

If Hne 17 in Figure 6.1 is replaced with the Hne

TOKENCprint_hello. SLOT_ADR(O»;

the same nurnber of Hnes would be printed. However, the node numbers output

would probably be different, because the system is making its own decisions about

where ta run each procedure. It is highly unlikely that each node would run exactly

one procedure invocatioll. Indeed, rnany of the procedures would probably ron

on node 0, for these procedures are tiny, and sorne of thern may finish before aIl

the TOKEN commands have been executed. Furtherrnore, sorne load balancers

(depending on implementation) weigh the cost of sending something to another

node against the benefit of sending work to an unloaded node.

There is one restriction on EARTH operators, which is that they cannat be

performed within normal sequential functions: \Vith the exception of the POLLO

command (described below). This is another artifact of the simplified compiler

implementation, and may change in the future.

6.1.3.1 Polling

Implementations of EARTH on nodes without a second processor or hardware to

support communication have to perforrn both the EU and SU functions in the same

processor. A problem arises when a node issues a request for data on a remote

processor (get...sync or block move) and the remote processor is executing a fiber.

For efficiency reasons! the incoming message should not necessarily interrupt the

running fiber. Polling is much more efficient than interrupts, 50 the processor should

finish the fiber, and then poIl the network for incoming messages.

Therefore, on single-processor-node implementations without special hardware

support, the EU will poli the network every time it switches to a new fiber. However,

if the fiber is long, the processor which issued the request may have to wait a long

time for the data it requested! which could cause it to stail if that data is on a

133

•

•

•

critical path. Sorne Threaded-C cornpilers may try to insert polIs into the code that

it generates if it determines that a fiber may be long. However, the compiler may

oot always guess correctly, and is likely to be conservative in order not to impede

the normal running fibers.

Therefore, Threaded-C provides a POLLO operation, which takes no arguments.

The POLL command has no effect 00 the semantics of the Threaded-C code. It

is merely a hint to the compiler (a pragma) suggesting that that location would

be a good place to polI the network. Sorne compilers may choose to make their

own decisions about where to put polIs. On machines which can automatically

address incoming messages without EU intervention (e.g., the MANNA), the POLL

command is sirnply ignored. But programmers may wish to insert them into long

fibers for portability.

POLL commands cao be used inside of both threaded procedures and sequential

functions. They are currently the only Threaded-C command which can be used

inside a sequential function.

6.1.3.2 The CALL Operation

The TüKEN and INVOKE commands are the normal operators used for invoking

threaded procedures. Each gives the name of a threaded procedure and zero or more

arguments ta that procedure; in addition, the INVOKE command specifies anode

number. With each of these, the calling fiber continues execution, and the initial

fiber of the specified procedure begins execution at an indefinite time in the future.

Threaded-C also provides a special procedure invocation operator GALL. A

GALL command takes the same arguments as a TüKEN command: the proce

dure name followed by the arguments to the procedure. Like a TüKEN command,

a CALL command creates a frame for the indicated procedure, and begins running

the initial fiber of that procedure. The differences between GALL and the other two

invocation commands are:

1. The specified procedure always runs on the same node as the fiber that exe

cuted the CALL.

2. The fiber that executed the GALL is irnmediately suspended, and control

passes to the start of the initial fiber in the called procedure, even if there are

fibers waiting in the Ready Queue.

134

•

•

•

3. When the called procedure terminates, the calling fiber resumes execution at

the statement after the CALL. Again, the RQ is bypassed.

Thus, the control flow of a CALL is similar ta a standard sequential function

caU. The difference is that if the called procedure has multiple fibers, then these

fibers obey the normal fiber scheduling mIes. This means that if there are fibers

outside of this procedure in the RQ, then these fibers may mn before the called

procedure terminates.

In general, the linkage involved in a CALL is different from that in an INVOKE

or TOKEN. For instance, when the procedure terminates, the EU must remember

to jump back to the statement after the CALL, rather than taking the next fiber off

the RQ. Thus, the code may be different for a procedure invoked with CALL. For

this reason, procedures which are invoked \Vith CALL must end with RETURNO

rather than END...FUNCTIONO in order to tell the compiler which type of linkage

to use.

6.1.4 Non-Automatic Variables

As previously mentioned, the executable code is replicated on aU nodes, so that any

procedure can run on any node. A function or threaded procedure has the same

local address on a11 nodes, as described in Section 5.1.1. Automatic variables and

parameters, on the other hand, reside in procedure frames, whose addresses are

specifie to the nodes where they were invoked.

For consistency with C semantics, non-automatic variables have scoping rules

similar to procedure and function addresses. These variables include global-scope

variables, which are variables declared not within any sequential functions or

threaded procedures, and static variables declared withio functions or procedures.

Such variables are replicated over oodes without explicit coherence mechanisms.

Therefore if we declare such a variable, the address of this variable wiU be the same

on aIl nodes. However, each node will have its own independent copy of the vari

able. Such variables obey normal C scoping rules; static variables declared within

a procedure are accessible only within that procedure, and variables not within any

function or procedure are either accessible within the module (if static) or anywhere

(if external).

Global-scope variables can be useCul in sorne situations. For instance, suppose

135

•

•

•

a program generates many tokens, each of which may read data from a read-only

array (for instance, a lookup table of pre-computed values). Each procedure could

fetch individual data it needs from a cornmon source using get-'iync operations, or

could load the entire table using a block move. However, the former rnight introduce

too much latency, and the latter would be wastefully redundant if each node were to

ron many instances of the same procedure. Instead, it would he better to make one

copy of the table on each node, and put each copy in a place where any procedure

knows where to find it.

While global-scope variables can be useful, they, like global variables in general,

should be "considered harmful" and used only when necessary.

6.2 Threaded-C Examples

This section presents several examples of applications written in Threaded-C. AlI

but the last are used in the experimental studies in the next two chapters. In

these cases, the sequential C code is shown for comparison. In most cases, the

Threaded-C code borrows sorne of the functions used in the sequential version, either

without modification or with only slight modification. This demonstrates that it is

possible, in many cases, to port existing sequential C code to parallel Threaded-C

code without having to rewrite everything from scratch.

6.2.1 Fibonacci

The first example computes Fibonacci numbers using the naïve recursive algorithm

used throughout Chapter 4. The sequential code is listed in Figure 4.2. While

this is not an efficient way to compute Fibonacci, it is a simple illustration of how

divide-and-conquer can be implemented on EARTH.

The parallel implementation was discussed in Chapter 4. The linkage of one

procedure instance with its children is illustrated in Figure 6.2. The diagram shows

each procedure instance as a light box, with two darker boxes representing the two

fibers. Box 0 in each procedure represents the initial fiber, which is not explicitly

numbered; the other box is fiber 1. Each fiber (except initial fibers) shows the init

couot and sync COllnt for the sync slot that controls that fiber. (It is assumed here

that each fiber is controlled by a single sync slot. This is usually true in practice, but

136

•

•

•

,--"

"'c:~ :
,'<~".Q~ .:, "l" ,"l ,

:~.. f:oc; .'
:c;- ~ /' i-1: ,~.., .
." -~.'

Figure 6.2: Fibonacci Code Structure

it is legal to have more than one sync slot control the same fiber, and Section 6.2.3

show an example of this.)

It is hard to determine a priori how to distribute the procedure instances evenly

across the nodes, especiaUy in this case where the calI tree (see Figure 4.3) is Dot

perfectly balanced. In fact, a perfect static distribution of the procedure instances

in a parallel Fibonacci (such as in Figure 4.4) would require knowing ahead of time

the number of children of each node. Since this information is related to the answer,

knowing this at compile time would eliminate the need to run the program!

Therefore, we use tokens to take advantage of EARTH's load balancer. The code

for the Fibonacci recursive implementation is shown in Figure 6.3. The resulting

code looks similar to the pseudocode in Figure 4.7.

Since threaded procedures don't return values, the fib procedure must be called

"by reference" in order to return its result to its caller. The variable result

is a global reference for this purpose. In the recursive invocations, the macro

TG_GLOBAL converts the local addresses &r1 and &r2 into global addresses so

that the two instances of fib can send their results back properly even if they are

not executed on the same node as their parent.

137

• 'include
'include

<stdio.h>
<stdlib.h>

THREADED fib (SPTR done, int n, int. GLOBAL result)
{

SLOT
int

SYNC_SLOTS(1);
rl, r2; /* Intermediate result8 ./

INIT_SYNC(O, 2,
if Cn < 2) {

r1 = 1; r2
SPAWN(l) ;

} else {
TOIŒN(fib,
TOIŒN(fib,

2, 1); /* 2 children => count of 2 ./
/. This i5 a leaf - no recursion */

= 0; /* Set up result of 1 ./
/. Will "return" value of 1 ./

/* Binary recursion: results go to ri, r2 ./
SLOT_ADR(O), n-l, TO_GLOBAL(ar1»;
SLOT_ADR(O), n-2, TO_GLOBAL(tr2»;

THREAD_l:
DATA_RSYNC_L(rl + r2, result, done);
ENO_FUNCTION () ;

}

THREADED MAIN (int argc, char.. argv)
{

• SLOT
int

smC_SLOTS(1):
N, res;

•

N = atoi(argv(1]); /. No checking for bad args ./
INIT_SYNC(O, 1. l, 1);
INVOKE(NODE_ID, fib, SLOT_ADR(O), N, TO_GLOBAL(tres»;
END_THREAD 0 ;

THREAD_l:
printf("fib(%d) = %d\n", N, res);
RETURN() ;

}

Figure 6.3: Threaded-C Code for Fibonacci

6.2.2 N-Queens

The N-Queens code is also a divide-and-conquer program, but, unlike Fibonacci, it

is not contrived. The N-Queens code counts the number of ways in which n Queens

can be placed on an n x n chessboard so that no queen can attack any other queen

(under normal chess rules). The code uses a recursive divide-and-conquer strategy.

A queen is considered to be in a valid position if it cannot attack any other

queen in the chessboard. A partial solution is represented by a 1-dimensional array.

138

• .include <stdlib.h>
.include <stdio.h>
.define MAX_QUEENS 24

int safe (int boardO, int rov, int col)
{ /. Return 1 if new queen can go in (rov,eol) on board ./

int rovchk, colchk;

for (rovchk = 0; rovchk < rov; rovchk++) {
eolchk = board[rovchk];
if «col == colchk) Il (rov - rovchk == col - colchk> II

(rov - rovehk == colchk - col» /. Conflict? ./
return 0;

}

}

return 1; /* No conflicts ./

•

int sequeens(int n, int rov, int start_col, int boardO)
{

int col, num;

if (rov >= n) return 1; /* Board full => this is 1 solution ./
for (col = start_col; col < n; col++) {

if (safe(board, rov, col» { /* Queen fits in this col ./
board[rov] = col;
num = sequeens(n, rov+l, 0, board);
return (num + sequeens(n, rov, col+l, board»;

}

}

}

return 0; /* Reached right end of board and no cols match ./

•

main Cint argc. char *argv 0)
{

int n. result, board[MAX_QUEENS];

n = atoi(argv[l]); /* No check for bad args ./
printf (lIqueens (%d) running on %d processors\n", n, 1);

result = sequeens(n, 0, 0, board);
printf("Number of solutions: %d\n". result);

}

Figure 6.4: Sequential C Code for N-Queens

Each element of this array corresponds to a row of the chess board and contains the

column in which a queen is positioned in that row.

Sequential code is shown in Figure 6.4. As with the Fibonacci program, code to

check for correct command-line arguments has been omitted for brevity. A search

procedure is called with a row number rOll, a column number start_col, and a

139

•
w

~

- ~

\ W
:t

o

•
7

\If

W
MI

- *\ W
t

o
•
7
1 w

*- Mt
\. W
t

o
•
1

•

•

Figure 6.5: Recursion in N-Queens

partial solution array, in which rows 0 through row-l have been filled with Queens

in valid positions. The procedure returns the number of complete solutions in which

rows 0 through rov-l match the initial configuration, and in which the queen in

row rov is somewhere between columns start_col and n - 1 (inclusive). It works

by trying the queen in all positions from column start_col to the right side of the

board. If it finds a valid position, it splits the search into two sub-searches, as shown

in Figure 6.5:

• Add the new queen to the chessboard and start searching the next row.

• Keep trying positions ta the right of the CUITent position.

The top-Ievel procedure caUs the search procedure with an empty board.

The call structure is similar ta our Fibonacci example, suggesting that a code

structure similar ta Figure 6.2 is appropriate. But there is a problem. The state of

the computation is represented by a one-dimensional array. In a sequential impIe

mentation, this array can be continually updated in place, but parallel procedure

instances would interfere with each other. Furthermore, procedure instances on dif

ferent nodes can't share the same array, since EVw[-A assumes a distributed memory

machine. Instead, we need ta replicate the state whenever we start a new procedure.

However, since arrays can't he passed "by value" in C, the partial solution can't he

directly passed to the next level in the parameter list.

140

• -- Explicit

- - - Implicit
s

•

•

Figure 6.6: Data Transfers and Synchronization in the N-Queens Solution

The solution is for a procedure to fetch a copy of its parent's state. Since this

may involve fetching from a different Dode, a split-phase transaction is used. We

need to split the initial fiber in Figure 6.2, which performs the recursion, into two

fibers: one to initiate the fetch and one to perform the recursion once the fetch has

completed. The caller passes a global address which points to its copy of the partial

solution. The callee then fetches the block with a block-move. Since the destination

is local, this block move is similar to get..sync operators (which copy remote data

to local memory in a split-phase transaction), except that more than one datum

is moved. Since we are syncing a local sync slot (0), we use BLKMOV...s\TNC,

whose last argument specifies a local slot number. In our implementation, the

initial fiber issues the block move request, and fiber THREAD_1 processes the data.

This fiber then invokes the new search procedures (using TOKEN commands), and

the results must synchronize THREAD-2. The structure is illustrated in Figure 6.6,

where dashed Hnes indicate data transfers that are performed automatically by the

EARTH runtime system (as a consequence of the EARTH operations used in the

code).

Figure 6.7lists the recursive search routine. The threaded code uses the sequen

tial function safe (see Figure 6.4) to verify the validity of a partial solution. The

MAIN routine, which makes the initial caU to queens, is listed in Figure 6.8.

The recursive routine in Figure 6.7 fully traverses the calI tree. The number of

procedure instances grows exponentially as n increases. The number of instances cao

141

• THREADED queens(int *GLOBAL result,
SPTR done,
int n,
int rov,
int start_col,
int *GLOBAL previous)

/* Where to send result */
/* Slot to sync: vhen sent */

/* Size of board */
/* Current rov (fixed above) */

/* Check from here to end */
/* Caller' s board state */

{

SLOT SYNC_SLOTS[2]j
int col, /* Column index */

oVD_board(MAX_QOEENSl. /* Local copy of board */
sols_this_col, /*. solutions vith this position */
sols_other_cols; /* • solutions to right side */

INIT_SYNC(O. 1. 1. 1);
INIT_SYNC(l. 2. 2. 2);
BLKMOV_SYNC(previous, TO_GLOBAL(ovn_board). rov*sizeof(int), 0);
sols_this_col = sols_other_cols = 0; /* Preset sub-solutions */
END_THREAD();

•
THREAD_l: /* Activated vhen block move is complete */

for (col = start_col; col < n; col++) { /* Rere to right end */
if (safe(oVD_board, rov. col» {

oVD_board [rov] = col;
if (rov+l == n) { /* Board full? This is a solution! */

sols_this_col = 1; /* Set the partial result */
SYNC(l)j /* Sync directly instead of TOKEN */

} else { /* Hov many solns vith this partial? */
TOKEN(queens, TO_GLOBALeasols_this_col), SLOT_ADR(1),

n. rov+l, O. TO_GLOBAL(ovn_board»;

/* Last column? No more solutions */
/* Sync directly instead of TOKEN */

/* Hov Many solutions to the right? */
TO_GLOBALCasols_other_cols), SLOT_ADRel),
col+1, TO_GLOBAL(ovn_board»;n, rov,

}

if (col+l == n) {

SYNC(t) ;
} else {

TOKEN(queens,

}

break;
}

}

if (col = n)
SPAWN(2);

END_THREADC);

/* No safe position found? Then return 0 */
/* Sub-solns already 0; start final thread nov */

THREAD_2: /* Activated vhen both sub-solutions computed */
DATA_RSYNC_L(sols_this_col + sols_other_cols, result, done);
END_FUNCTIONO;

}

•
Figure 6.7: Threaded-C Code for N-Queens (Recursive Procedure)

142

• THREADED KAIN (int argc. char .ugv[])
{

SLOT SYNC_SLOTS[l];
int n. result. place;

n = atoi(argv[l]);
INIT_SYNC(O. 1. 1. 1);
INVDKE(O. queens. TO_GLOBAL(iresult). SLOT_ADR(O).

n. O. O. TO_GLOBAL(aplace»;
END_THREAD 0 j

THREAD_l:
printf ("Humber of solutions: %d\n". result) j

RETURNO;
}

Figure 6.8: Threaded-C Code for N-Queens (MAIN Procedure)

/. Hov Many solutions to the right? -/
TO_GLOBAL(asols_other_cols), SLOT_ADR(l),
col+1, TO_GLOBALCoVD_board»;n. rov,

if (safe(oVD_board, rov, col» {
oVD_board(rov] = col;
if (rov+l == n) { /* Board full? This is a solution! */

sols_this_col = 1; /* Set the partial result -/
SYNC(1)j /- Sync directly instead of TOKEN -/

} else if (rov >= THRESHOLD) {
sols_this_col = sequeens(n, rov+l. 0, ovn_board);
SYNC(1) ;

} else { /* Hov many soIns vith this partial? ./
TOKENCqueens, TO_GLDBALcasols_this_col). SLOT_ADR(1).

n. rov+l, 0, TO_GLOBAL(own_board»;
}

if (col+l == n) { /* Last column? No more solutions */
SYNC(1); /- Sync directly instead of TDKEN -/

} else if (row >= THRESHOLD) {
sols_other_cols = sequeens(n, rov. col+l, oVD_board);
SYNC(1) ;

} else {
TDKENCqueens,

•

}

break;
}

Figure 6.9: Threaded-C Code for N-Queens (Throttled Version)

•
be reduced by "throttling" the growth of parallelism. If the body of the for loop in

fiber THREAD_l of Figure 6.7 is replaced by the code in Figure 6.9, then recursion

cao be halted after going down THRE8HüLD levels, after which the sequential

143

•

•

•

'define real double

void MM(const real -A. const real -B, real -C, int size)
{

int i, j, k;
real .Cij, dAik;
const real -Aik = A, .Bkj;

for (i = 0; i < size; i++) {
for (k =0; k < size; k++) {

Cij = ~C[i-size];

Bkj =~[k-size];

dAik = -Aik;
for (j = 0; j < size; j++)

.Cij++ += dAik • -Bkj++;
Aik++;

}
}

}

Figure 6.10: Sequential C Code for ivIatrix lVIultiply (Black Multiply)

recursive routine in Figure 6.4 is called. Bath the throttled and unthrottled versions

of N-Queens are studied in the experimental chapters.

Other improvements are possible. For instance, if for a given partially-filled

board, there are k positions in the next row in which a queen can he placed, then both

the sequential and parallel programs can calI (or invoke) aIl k sub-problems from

within the same for loop, rather than forking as soon as one legal position is found.

For the parallel code, this would require allocating enough space to hold k separate

return values. Since k varies from one instance ta the next, one would have ta use

the INCR-SYNC operator ta change the sync count dynamically. Section 4.1.3.2

describes one correct way to do this.

6.2.3 Matrix Multiply

Dense matrix multiplication is a highly-regular application, in terms of both data

movement and control structures. A simple sequential version is shown in Fig

ures 6.10-6.12. This program uses blocking to improve the cache hit rate, by keeping

the working data set small enough to fit in the LI cache. Figure 6.10 is a function

which Dlultiplies two square matrices of a gjven dimension, and adds the resulting

product ta a third matrix. Figure 6.11 uses the first function ta multiply two larger

144

•

•

•

.define real double

void multiply(const real -A. const real -8, real -C, int size, int block)
{

int blocks = size/block;
real *tmpA, *tmpB, *tmpC;
int ii. j j, kt, i. j. k;

tmpA = (real *) malloc(block - block • sizeof(real»;
tmpB = (real .) malloc(block * block * sizeof(rea!»;
tmpC = (rea! *) malloc(block * black * sizeof(real»;
for (i = 0; i < blocks; i++) {

for (j = 0; j < blocks; j++) {
for (ii = 0; ii < block; ii++)

for (jj = 0; jj < block; jj++)
tmpC[ii*block+jj] = C[(i*block+ii)*size+j*block+jj];

for (k = 0; k < blocks; k++) {
for (ii = 0; ii < block; ii++)

for (kt = Oi kk < block; kt++)
tmpA[ii*block+kk] = A[(i*block+ii)*size+k*block+kk];

for (kk = Oi kk < block; kt++)
for (jj = 0; jj < block; jj++)

tmpB[kk*block+jj] = B[(k*block+kt)*size+j*block+jj];
KK(tmpA. tmpB, tmpC. block);

}

for (ii=O; ii<block; ii++)
for (jj = 0; jj < block; jj++)

C[(i*block+ii)*size+j*block+jj] = tmpC[ii*block+jj];
}

}

free(tmpA); free(tmpB); free(tmpC);
}

Figure 6.11: Sequential C Code for Matrix Multiply (Top-Level Multiply)

square matrices. The multiply function copies blocks from the large matrix ta

temporary blocks sa that contiguous memory is used; otherwise, a large power of 2

for the problem size would lead ta cache line conflicts. On the platforms tested, this

blocked multiplier runs 20-100% faster than using KM ta multiply the entire matrix

in one call.

The main function in Figure 6.12 allocates and initializes the matrix, and com

putes a "magic number," or checksum, over the result. The matrix is initialized

in place using a function (declared but not shawn) which takes several seed values.

The magic....number function (also not shawn) computes and returns the checksum.

Again, command-line arguments are not checked for correctness; also, the blacks

145

• 'include <stdlib.h>
.include <stdio.h>
'define real double

extern real .initmatri%(int. real, real, real);
extern double magic_number(const real ., int);

main (int argc, char .argv 0)
{

int size, block;
real .A, *B••C;
double magic;

/. Int is size ./

•

•

sscanf(argv[l]. "'lad ll
, taize); /. Dimension of big matrix .1

sscanf (argv[2]. "Yed ll
, tblock); 1* Dimension of block -/

printf(IlStarting computation of Yed x 'lad result\n ll
, size, size);

A = initmatrix(size, 1.0. -2.02. 3.0);
B = initmatrix(size. -5.5•.82, 10000.0);
C = Creal .) calloc(size - size, sizeof(real»; /. Assume all -1
multiply(A, B, C. size. block); /. zero bits =0.0 -/
magic = magic_number(C, size);
printt(IlKagic' is Yef\n ll

, magic);
}

Figure 6.12: Sequential C Code for Matrix Multiply (l\1ain Routine)

returned by malloc are not checked for validity.

The parallel version of matrix multiply uses Cannon's algorithm [20]. In this

algorithm, the A, Band C matrices are blocked and distributed among the nodes in

a grid fashion. The blocks of the result matrix C remain in place, while the blocks

for multiplicands A and B are shifted after each block multiplication. In order for

the blacks of A and B to be in the right place at the right time, they must begjn in

a staggered state.

Figure 6.13 shows the initial state of the blocks if the main matrix dimension

is 4 times the black dimension. In each phase of the computation, corresponding

blocks of A and B align at each grid point to contribute a partial sum ta the block C

kept at that point. AIl 16 block multiplications can run concurrently, after which aIl

blocks of A are passed to the left and aIl blacks of 8 are passed upward. After 4 snch

computation-communication stages, the distributed C blocks contain the product

of A and B.

The Threaded-C implementation of Cannon's algorithm is listed in Figures 6.14

6.17. Figure 6.14 contains declarations of data types and external functions. The

146

•

A B

•

Figure 6.13: Block Rotation in Cannon's Aigorithm

'include <stdlib.h>
'include <stdio.h>
'define real double

void KM(const real *. const real *. real *. int);
void initmatrix (int. real. real, real. int. int, real *);
double magie_number(const real *, int. int, int);

typedef struet ptr_and_syne {
real *GLOBAL ptr;
SPTR slot;

} ptr_sync;

'define SYNC_NOMEM
'define SnIC_INIT
'define SYNC_READY
'define 5YNC_READY2
'define SYNC_MAGIC

o
1
2
3
4

/* Malloe failed (out of memory?) */
/* AlI procedures have been invoked ./
/. Perform one eommunieate/compute stage ./

/. Compute magie number ./

•

Figure 6.14: Threaded-C Code for Matrix Multiply (Declarations)

black multiplier is identical to the sequential code in Figure 6.10. The matrix initial

ization function and magic number generator are modified somewhat ta account for

the fact that the matrices are distributed and aren't initialized in one place. Bath

now take additional arguments to indicate the position of the black within the larger

matrix, because the initial values and checksum are dependent on this information.

The initializer also now writes to a block already allocated, rather than allocating

a black itself. The ptr_sync data type has fields pointing (via global addresses) to

147

•

•

•

a black and ta a sync slot. These are combined iota one struct because they are

often sent bundled in a single block-move. Finally, the end of Figure 6.14 contains

symbolic definitions for sync slots, used by both threaded procedures.

Each block of C is computed by one instance of procedure block. It is perhaps

best to understand this kind of threaded program by first considering the steady

state, which in this case is fiber THREAD-2 of black (see Figure 6.16). This fiber,

which is executed k times per procedure instance (where k is the number of blocks

per row or column of the whole matrix, e.g., 4 in Figure 6.13), does the following:

1. Send the block of A to the neighbor on its left.

2. Send the block of B to the oeighbor above.

3. Multiply the blocks (the same blocks that were just sent) and add the product

to the resident block of C.

4. Inform the neighbor to the right and the neighbor below that they are free to

send new blocks.

5. Inform itself that it is free to start the next iteration.

This Threaded-C program achieves good performance (as will be shown in the

next chapter) because the communication (steps 1-2) are initiated before the compu

tation starts, allowing communication and computation to be overlapped. However,

this kind of overlap can be dangerous if Dot implemented correctly, because one of

the block-moves in step 1 or 2 cao overwrite a block in one of its neighbors before the

neighbor has finished using the previous data, which would lead to erroneous results.

The following features of this Threaded-C code prevent this from happening:

1. When memory is allocated for A and B, each black is large enough to hoId two

blocks. The block-moves send blocks to alternating halves. An odd iteration

of THREAD-2 uses the lower halves of the buffers holding A and B, while

sending those same haives to the upper haives of the buffers in its neighbors.

2. Two sync slots (symbols SYNC-READY and SYNC-READY2) are used to

control altemate executions of THREAD-2. This is essentiai because other

wise, sync signaIs corresponding to different iterations couId arrive at the same

sync siot at the same time, Ieading to premature enabling of a fiber before the

148

•

•

•

data is actually ready. Note that the sync slot semantics allow more than one

sync slot to enable the same liber.

3. The sync signais sent downward and rightward (step 4) aren't sent until the

computation (step 3) has been completed.

4. Each procedure instance sends a sync to itself, ensuring that a fiber won't be

come enabled while the same liber in the same procedure instance is currently

running.

The remaining parts of Figures 6.15-6.1ï are there to set up this steady state

and to clean up when it is over. There are k 2 instances of black. The first instance,

corresponding to the upper left block in the matrix, is invoked by MAIN, and each

instance invokes the next instance. INVOKE is used to place the distribution under

program control, and nodes are assigned cyclically, ensuring the most even distribu

tion possible. Each instance of black invokes its neighbor to the right; the rightmost

block in each row invokes the leftmost block in the row below.

For THREAD-2 to work, each procedure instance must have a global reference

to:

1. Its left neighbor's buffer for A blocks;

2. Its upper neighbor's buffer for B blocks;

3. The sync slots of aIl four neighbors.

Linking a procedure to its left oeighbor is easy in most cases, since it is invoked by

that neighbor, who cao send it the appropriate global addresses. A special provision

must be made for the leftmost block in each row, since its "left" neighbor is at the

right end of the row. Linking a procedure to its right neighbor's sync slots can

be done by passiog ta that neighbor (in the argument list) a reference to a global

address, which the invoked neighbor theo lills \Vith a reference ta its own SYDc slots;

this is done by liber THREAD_l. Again, coonecting a right-end block to its "right"

neighbor at the other end is handled as a special case.

What is more difficult is connecting ta neighbors above and below, since there

may be many instances in between. A straightforward way ta do this is for each

instance ta send references to its own B block and sync slots to a central table,

allocated by HAIN. This occurs at the end of the initial liber. When MAIN receives

149

•

•

•

a pair of references from each of the k2 instances, it (in fiber THREAD-2) sends

a sync signal to the rightmost block in each row, which starts a wave of synchro

nizations propagating to the left (THREAD_l in bloek). Each instance of that

fiber fetches the references from the appropriate entries in the central table, using

a BLKMOV-SYNC and a GET..BYNC_G.

Once these last two fetches have completed. a procedure instance has all data it

needs to begin the first block multiplication. From the preceding description of the

steady state, one cao see that each instance will receive 5 syoc signaIs per iteration,

which means that the counts for syoc slots S·YNC..READY and S'YNC-READY2

should be 5. However, the initial count for the former should be 2 rather than 5.

This is because for the first iteration, the buffers already have their data, and only

the two fetches ioitiated by THREAD_l need to be completed.

The remaining code mainly has to do with error detection and the computation of

the magic number. Both use the original chain of communication from a procedure

to its caller, which eventually propagates back ta MAIN. This sequeotial chain is used,

rather than a more advanced parallel communication, because the error handling

(THREAD_4) is an exceptional occurrence, and the magic number computation

(THREAD_3) is ooly for checking the correctness of the result. Both cause "clean"

terrnination, i.e., by the time HAIN executes the RETURN command, aIl other

procedures have been terminated.

In a real application using matrix multiply, it will probably he useful to multiply

matrices many times in one run. Once the function linkage has been performed

(THREAD_l and the initial tiber of block), the procedure instances can retain

their connections. The code can be easily modified so that completing the multiply

leads to the distribution of new matrices rather than termination of the procedures.

This program also illustrates the use of conventional (malloe) function caBs.

Each procedure instance's buffers for A and B are allocated from the node's heap.

They are made accessible to other procedure instances via EARTH operations by

using TO_GLOBAL to convert the address returned by malloe into a global address.

Two more small points need to be made about this code. First, the use of the tirst

argument to block to pass two separate values is merely an artifact of the !vlANNA

implementation (see Section 7.1), which allows only ten integer arguments. Second,

this program does not work if there is only one block in the matrix, but a slight

modification to the code can accommodate this special case.

150

SYNC_SLDTS(SYNC_MAGIC + IJ;
blocks. size. blocksize. rov. col, count. odd,
offset_nev, offset_old. slot_num;
-A. -B. -C;
magic_num. local_magic;
A_ptr, B_ptr;
slot_right. slot_dovn;

• THREADED block

{

SLOT
int

real
double
ptr_sync
SPTR

(long
iut
ptr_sync .GLOBAL
SPTR
real. .GLOBAL
SPTR
SPTR .GLOBAL
ptr_sync .GLOBAL
SPTR
double -GLOBAL

block_and_size.
blockcnt.
main_table.
slot_main.
A_left.
slot_left.
slot_link.
'_vrap,
slot_vrap.
magic_left)

/- Dimensions ./
/. Position -/
/. Put B. slot here -/
/. MaiD 8lots */
/. Send A here */
/. and sync here */
/. Put ovn slot here -/
/. Rightmost A here -/
/. Leftmost slot */
/- -> Left magic • */

•

•

blocks block_and_size t Oxffff; size = block_and_size » 16;
blocksize = size - size;
A = (real -) malloc(blocksize - 2 • sizeof(real»;
B = (real .) malloc(blocksize - 2 * sizeof(real»;
C = (real -) calloc(blocksize, sizeof(real»; /* lnit C to alIOs */
if (A == HULL liB == NULL 11 C = HULL) {

SPAWN(4); /- Out of memory */
} else {

int nextblock = blockcnt + 1;
rov = blockcnt / blocks; col = blockcnt % blacks;
INIT_SYNC(SYNC_NOMEM, 1, 1,4); INIT_SYNCCSYNC_MAGIC, 1. 1, 3);
if (col == 0) {

INIT_SYNC(SYNC_INIT, 3, 1. 1);
A_vrap = TO_GLOBAL(tA_ptr); slot_vrap = SLOT_ADR(O);

} else {
INIT_SYNC(SYNC_INIT, l, l, 1);
A_ptr.ptr = '_left; A_ptr.slot = slot_left;

}

if (nextblock < blocks - blocks)
INVDKE«NODE_ID + 1) % NOM_NODES. block, block_and_size, nextblock,

main_table, slot_main, TO_GLOBAL(A) , SLOT_ADR(Q),
TD_GLOBAL(tslot_right). A_vrap, slot_vrap, TO_GLDBAL(tmagic_num»;

INIT_SYNC(SYNC_READY. 2, 5, 2); INIT_SYNC(SYNC_READY2, 5, 5. 2);
B_ptr.ptr = TD_GLOBAL(B); e_ptr.slot = SLOT_ADR(O);
initmatrix(size. 1.0, -2.02.3.0, rov-size, «rov+col)%blocks)-size. A);
initmatrix(size. -5.5 •. 82, 10000.0. «rov+col)%blocks).size. col-size. B);
BLKMOV_RSYNC(TO_GLOBAL(tB_ptr). main_table + blockcnt.

sizeof(ptr_sync). slot_main + SYNC_INIT);
} END_THREAD(); /* lnitialize A and B in staggered form -/

Figure 6.15: Threaded-C Code for Matrix Multiply (Black Procedure Initial Thread)

151

•

•

THREAD_l: 1- Spavned after global table ready -1
if Ccol != 0)

DATA_RSYNC_G(SLOT_ADR(O), slot_link, slot_1eft + SYNC_INIT);
if (col == blocks - 1) {

DATA_RSYNC_G(TO_GLOBAL(A), ~A_vrap->ptr, slot_vrap + SYNC_IHIT);
DATA_RSYNC_G(SLOT_ADR(O), ~A_vrap->slot, slot_vrap + SYNC_IHIT);
slot_right = slot_vrap;
magic_num = 0.0: 1- Init needed if lover right corner _1

}

BLKMOV_SYNC(maïn_table + (blockcnt - blocks + (rov=-O ? blocks-blocks 0»,
TO_GLOBAL(~_ptr), sizeof(ptr_sync), SYNC_READY);

count = 0;
GET_SYNC_G(t(main_table[rov == (blocks-l) ? col: blockcnt+blocks].slot),

TO_GLOBAL(~slot_dovn),SYNC_READY):
END_THREAD();

THREAD_2: 1- Multiply local blocks and add to C -1
odd = count a 1;
if (odd) {

offset_new = 0; offset_old = blocksize; slot_num = SYNC_READY;
} else {

offset_old =0; offset_nev = blocksize; slot_num = SYNC_READY2;
}

BLKMOV_RSYNC(TO_GLOBAL(A + offset_old), A_ptr.ptr + offset_new,
blocksize - sizeof(real), A_ptr.slot + slot_num);

BLKMOV_RSYNC(TO_GLOBAL(B + offset_old), B_ptr.ptr + offset_nev,
blocksize * sizeof(real), B_ptr.slot + slot_num);

MM(A + offset_old, B + offset_old, C, size):
if (++count == blocks) 1- Kultiply is finished -1

RSYNC(slot_main + SYNC_READY):
else

SYNC(slot_num); 1* Enable next iteration of same location -1
RSYNCCslot_right + slot_num): 1- Tell owners of next A ~ B it's OK to send -1
RSYNCCslot_down + slot_num):
END_THREAD () ;

THREAD_3: 1- Compute local part of magic. and pass *1
local_magic =magic_number(C, size, rov - size, col. size);
DATA_RSYNC_D(local_magic + magic_num, magic_left, slot_left + SYNC_KAGIC);
SPAWNCS);
END_THREAD();

Figure 6.16: Threaded-C Code for Matrix l'vlultiply (Block Procedure Continued)•

THREAD_4:
RSYNCCslot_left +
SPAWN(S);
END_THREAD () ;

THREAD_S:
END_FONCTIONO;

}

1* Spawned when someone's malloc fails _1
SYNC_NOMEM) j

152

•
THREADED MAIN (int argc, char .argv0)
{

SLOT
int
ptr_sync
double

SYNC_SLOTS[SYNC_MAGIC + IJ;
size, blocksize, blocks_per_row, i, total_blocks;
·main_table;
magic_num = 0.0;

•

•

sscanf (argv [1], "1.d", tsize);
sscanf (argv [2], "1.d", I:blocksize);
blocks_per_rov = size / blocksize;
total_blocks = blocks_per_raw • blacks_per_ravi
main_table = (ptr_sync .) malloc(total_blocks • sizeof(ptr_sync»;
INIT_SYNC(SYNC_NOMEM, l, l, 1);
INIT_SYNC(SYNC_INIT, total_blocks, total_blocks, 2);
INIT_SYNC(SYNC_READY, total_blocks, total_blocks, 3);
INIT_SYNC(SYNC_MAGIC, l, l, 4);
if (main_table == HULL) {

SPAWN(4);
} else {

INVOKE(NUM_NODES>l ? 1 : 0, block. (blocksize« 16) 1 blocks_per_row, 0,
TO_GLOBAL(main_table), SLOT_ADR(O), HULL, SLOT_ADR(O), HULL,
HULL. HULL. TO_GLOBAL(l:magic_num»;

printf("Starting computation of 1.d x 1.d result\n". size, size);

THREAD_l: /. Spawned vhen someoneJs malloc fails ./
printf(ItNot enough memory\n lt

);

SPAWN(4);
END_THREAD () ;

THREAD_2: /. Spawned after all blocks initialized */
for (i = blocks_per_rov - 1; i < total_blocks; i += blocks_per_rov)

RSYNC(main_table[iJ.slot + SYNC_INIT); /* Sync right end in each rov */
END_THREAD 0 ;

THREAD_3: /. Spawned after multiply finished */
RSYNC(main_table[total_blocks - tJ.slot + SYNC_MAGIC); /* Get magic. -/
END_THREAD () ;

THREAD_4: /* Spawned after magic number computed */
printf("Magic. is 1.f\n", magic_num);
RETURNO i

}

Figure 6.1ï: Threaded-C Code for Matrix Multiply (lVIAIN Procedure)

153

•

•

•

6.2.4 Mutual Exclusion in Threaded-C

The last example of Threaded-C shows one way that new primitives can be made

available to the programmer even if they are not currently supported in Threaded

C. Currently, Threaded-C does not provide direct support for the implementation

of mutuaI exclusion based on atomic operations.4 However~ there is a straightfor

ward implementation of mutual exclusion using the currently available primitives in

Threaded-C. This implementation assumes that the procedure containing the mu

tuaI exclusion computation consists of a single fiber, and that the shared variables

used in the mutual exclusive computation are Dot modified by any other procedure.

The mutual exclusion code presented in this section also assumes that the

Threaded-C implementation adheres to the following assumptions:

1. Fibers are non-preemptive.

2. Only a single fiber can run on anode at a time.

Observe that while condition 1 is inherent to the EARTH model, condition 2

might not be valid in future implementations (in S~IP clusters for example). How

ever, it is true for aIl current implementations of EARTH systems.

vVe illustrate the use of mutual exclusion assuming a "black board" multiprü

cessing organization in which each individual node performs its computation and

occasionally reports its intermediate results to a shared data structure. The report

ing node receives an answer with the best value reported so far. If a node reports

the best value, it will receive its own value back. The mutual exclusion is necessary

to ensure that the updating of the shared value is an atomic operation.

We choose to use static variables to store the shared memory values that must

persist throughout the computation. The drawback of this implementation is that

the address of this variable needs to be passed as an argument to aIl procedures that

interact with the corresponding mutual exclusion regjon. Alternative implementa

tions could use dynamic allocation in the heap of the node that is in charge of the

mutual exclusive computation or variables in global scope.

The IDlltuaI exclusion is based in the fact that a single node, called the MU

TEX-l'\IODE in our code, is chosen to process all the mutual exclusive computation.

4However, atomic operations on shared variables are supported in EARTH-C [52].

154

• /- Line 1 -/

THREADED MAIN (in1; argc. char-- argv)
{

SLOT SYNC_SLOTS[3];
int i;
int final;
in1; -GLOBAL shared_value;

INIT_SYNC(O, 1. 1. 1);
INIT_SYNC(l. HUM_NODES. NOM_NaDES. 2);
INIT_SYNCC2, l, 1, 3);
INVOKE(MOTEX_NODE, initialize_shared_value, 0,

TO_GLOBAL(~shared_value),SLOT_ADR(O»;
ENO_THREAO 0 ;

/- Lina 13 */

•

•

THREAD_l:
forCi = 0; i < HUM_NaDES; ++i)

INVOIŒ(i, produce_value, MtTŒX_NODE, shared_value. SLOT_ADR{l»;
END_THREAD C) ;

THREAD_2:
INVOKE(MOTEX_NODE, print_shared_value, shared_value, SLOT_ADR(2»;
END_THREAO C) ;

}

Figure 6.18: Threaded-C Code for tvfutual Exclusion (MAIN Procedure)

Because we assume that at most one fiber can be active in each node, mutuai ex

clusion is guaranteed. AIl the nodes that need to interact through mutual exclusion

must invoke the corresponding fiber in the mutex node.

Figures 6.18-6.20 present the code that implements a mutex synchronization

mechanism for a black board architecture using standard Threaded-C primitives.

The first figure shows the MAIN procedure, which illustrates use of the mutex

procedures (Figures 6.19-6.20):

Line 1: This specifies that node 4 is in charge of the mutuai exclusion region pro

ccssing.

Line 13: This invokes a fiber to initialize the shared value in the Dode that is

the bookkeeper of the shared value (mutex node). We have to pass to the

procedure the address of our pointer that will store the global address of the

155

• THREADED produce_value(int Dlutex_node. int -GLOBAL shared_value.
SPTR produced)

{

SLOT
int

SYNC_SLOTS [1] ;
local_value;

•

•

INIT_SYNC(O,l.1.1);
local_value = NODE_ID;
INVOKE(mutex_node. mutex_update. local_value. shared_value.

TO_GLOBAL(alocal_value). SLOT_ADR(O»;
ENO_THREAD 0 ;

THREAD_l:
RSYNCCproduced);
END_FONCTION() ;

}

Figure 6.19: Threaded-C Code for Mutual Exclusion (Produce Value)

shared variable. The initializing procedure will write to our pointer. Therefore,

we can pass this global address to all the procedures that use the mutual

exclusion region.

Fiber THREADJ: This invokes the procedure that produces new values in each

node in the system, this procedure receives the number of the mutex node,

and a sync slot to be synchronized at the end of the computation. Remember

that shared_value contains now the global address of the shared value.

Fiber THREAD.-2: This is spawned when aIl the nodes have reported (through

synchronization of slot 1) that they have finished performing their computa

tions. \\Te now ask the mutex node to print the final shared value.

Fiber THREAD_3: This ensures the computation does not terminate before the

final value is printed.

The procedure produce_value (Figure 6.19) illustrates how a new local value is

reported ta the Dode that keeps the shared value. We are assuming that we also want

a reply with the current shared value before we proceed with the computation. When

fiber THREAD_I is spawned, the variable locaLvalue has the most recent shared

value reported by the mutex node. We could 1l0W proceed with local computation

using this new value, though in this example, we simply report to the node that

invoked this procedure.

156

•

•

•

THREADED mutex_updateCint new_value, int GLOBAL .shared_value,
int GLOBAL .reply_address, SPTR reply_slot)

{

printf("Value Y-d was reported. ",new_value);
ifC.shared_value < new_value)

.shared_value = new_value;
printf("Mutex node replied with Y-d.\n", .Cint .)TO_LOCAL(shared_value»;
DATA_RSYNC_L(.shared_value, reply_address, reply_slot);
ENO_fUNCTIONO;

}

THREADED initialize_shared_value(int initial_value,
int GLOBAL ••shared_value,
SPTR initialized)

{

static my_shared;

my_shared = initial_value;
DATA_RSYNC_G(TO_GLOBALCtmy_shared), shared_value, initialized);
ENO_FUNCTION 0 ;

}

THREADED print_shared_value (int .GLOBAL shared_value. SPTR printed)
{

printf("Final maximum value: rod.\n", .(int .)TO_LOCALCshared_value»;
RSYNC (printed) ;
END_FONCTION () ;

}

Figure 6.20: Threaded-C Code for Mutuai Exclusion (Other Procedures)

The mutex_update procedure (Figure 6.20) contains the computation to he done

in the mutually-exclusive region. In this simple example \'le just maintain the max

imum value reported hY aIl the nodes in the shared variable. We report the new

maximum value to the Dode that iDvoked this procedure.

The initialize_shared_value procedure (Figure 6.20) must allocate aIl the

static variables necessary for the computation in the mutual exclusion region. The

address of the allocated variable is returned to the main procedure using the

DATA-.RSYNC_G primitive. These addresses will he passed to aIl the nodes that

interact through the mutual exclusion region.

157

•

•

•

Chapter 7

Implementation of EARTH on

Off-the-Shelf Multiprocessors

The first step in the evolution of EARTH toward a full-custom implementation is

its emulation on an existing multiprocessor. !vlost sucb machines have commodity

microprocessors with minimal support for parallelism, and no special support for

the kinds of operations needed by EARTH. Therefore, EARTH operations must be

emulated in software. This chapter describes severai systems implemented in this

manner.

To implement EARTH on an off-the-shelf muitiprocessor, we begin with the

following:

1. A collection of nodes, each \Vith one or more processors, and each witb its own

memory (if a distributed-memory or distributed shared-memory machine).

2. A communications network. EARTH operations involve their own special

messages, wbich are usually quite short, so it is better if the EARTH impie

mentation can get access to low-ievei networking commands rather than try

to use a higher-ievei communications layer. However, implementations have

been done both ways.

3. A uniprocessor compiler for the processors. Since writing an effective com

piler for modern processors takes considerable effort, EARTH cao be impIe

mented far more quickly by wrapping translators around existing compilers.

Unfortunately, compilers written expressly for conventional multiprocessing

158

•

•

•

are not very useful because their prograrnming rnodels are not compatible

with EARTH's.

From this, a complete implementation of EARTH should provide:

1. A compiler for translating high-Ievel code based on EARTH (such as

Threaded-C) into an executable form which includes the EARTH operations.

Our compiler is known as the BARTH Threaded-C Compiler.

2. Software for emulating the SU tasks and other EARTH operations (the

EARTH Runtime System or RTS). This is generally fixed and runs alongside

the compiled applications code.

3. Utilities for downloading and starting the executable);

The bulk of our research has involved a rnultiprocessor called the MANNA. The

first section describes this machine and two implementations of EARTH (based

on EVM-A and Threaded-C). These are called EARTH-MANNA-D and EARTH

MANNA-S, though they are so similar that the label EARTH-MANNA is used

when discussing their cornmon elements. This section also presents experimental

results showing the performance, on both systems, of individual features of the sys

tem and of a set of benchmarks. The second section presents a simulator for the

MANNA called SElvIi, used for performing further experiments, including increas

ing the number of processors and improving processor performance. Experimental

results for these implementations are given as weIl. The final section briefly lists

implementations of EARTH on other multiprocessors.

7.1 Implementation of EARTH-MANNA

The rvIANNA 2.0 (Massively parallel Architecture for Non-numerical and Numerical

Applications) was developed at GMD-FIRST in Berlin, Gerrnany in the early 90s

[17]. A MANNA node, shown in Figure 7.1, contains two 50-MHz Intel i860XP RISC

processors [66], each \Vith 16 Kbytes of on-chip data cache and 16K of instruction

cache. l The two processors share 32 Mbytes of DRA~I on a cornmon bus, and

IThe i86DXP is part of a smaIl family of processors. In this writing, the label "i86D" is used
when describing properties common to aIl members of the family, while "i860XP" refers specifically
to the chip used in the MANNA.

159

• 1 1

MEM AP
(32M) (EU)

•

•

Figure 7.1: One MANNA Node

stay coherent with this memory and each other using bus snooping and the MESI

protocol. The bus also mns at 50MHz, and memory access is fast compared to the

processor; a cache miss takes 12 cycles (2400s) to load the line (a load followed

immediately by a use of the loaded register imposes a 9-cycle penalty.) There is no

L2 cache. The bus also connects to seriai 1/0 devices and, on node 0, an Ethemet

port for outside communication only.

Each node has a custom-designed link chip providing an interface between the in

terconnection network and the memory bus through memory-mapped 1/0 addresses.

The link chip can transfer a byte to and from the network every bus cycle, at the

same time if necessary, giving it a total unidirectional bandwidth of 50 megabytes

per second (100 MB/s bidirectional). The bus interface to the link chip is 64 bits

wide, and the link itself has internaI buffering, making it possible to transfer blocks

to and from the network interface in bursts. The link chip has 9 cycles (180ns)

internaI delay in each direction.

l\rIANNA computers with more than 2 nodes are connected using custom

designed 16 x 16 packet-switched crossbars. Each input port cao accept one data

byte per 20ns cycle, and the input is buffered by a FIFO. The handwidth of the

crossbar is 800 MB/s if aIl 16 inputs arE in use and each transmits to a different

output port. The latency through the crossbar of a new packet is between 10 and

25 cycles, provided the requested output node is not in use. For machines with

more than 16 nodes, the network can be organized as a hierarchy of crossbars. The

most common configuration available, the one used for most of our experiments,

is a 20-node MANNA consisting of two crossbars with 10 nodes apiece and two

bidirectionai links between them.

The l\rIANNA is a standalone system intended for dedicated single-user paraIlel

applications. There is a small operating system for this machine, but the EARTH

system doesn't use it. Instead, system functions are linked with the executable.

160

•

•

•

Executables are downloaded from a host machine which also acts as a file server

to the MANNA. The MANNA system includes a commercial uniprocessor compiler

(\vritten by the Portland Group, Inc.) which can exploit sorne of the more complex

features of the i860, such as explicitly-pipelined ftoating point instructions and a

switchable VLIW mode known as Dual Instruction Mode. This compiler is at the

heart of our Threaded-C compiler.

7.1.1 Dual-Processor-Node Version of EARTH-MANNA

The two-processor structure of NIANNA closely matches the EARTH architecture

model, permitting an efficient emulation of EARTH on the MANNA system. This

is called EARTH-MANNA-D, and was the first working implementation of EARTH.

One processor (called the Application Processor or AP in the MANNA) is assigned

the task of emulating the Execution Unit, the other (the Communication Processor

or CP) runs the RTS, i.e., emulates the Synchronization Unit. The CP regularly

polIs the link chip for incoming messages, and sends outgoing requests to this link.

The Event Queue and Ready Queue are stored in memory shared by the two CPUs.

The SU's tasks are well-defined (see Section 4.2.5) and fixed; they don't change

from one application to the next. Therefore, the RTS code is the same no matter

what runs on the AP. While most of the RTS runs on the CP, sorne of the tasks

belonging ta the SU (according to the architecture model) are actually performed

by the AP. Frame allocationjinitialization is one example. This simplifies code

generation.

Ta repeat from Section 4.2.5, the functions of the RTS are:

1. EU and network interfacing,

2. Event decoding,

3. Sync slot management,

4. Data transfers,

5. Fiber scheduling,

6. Function invocation and load balancing.

161

••

•

•

Most of the RTS is a straightforward implementation of EV~l-A and the semantics

of the EARTH operations. Sync slots are stored in the frame (actually, they are

declared as local variables in Threaded-C) at a known offset from the base address

of the frame. The queues between the EU and SU are stored in memory. They are

implemented as linked lists, and enqueueing and dequeueing are made atomic by

changing single pointers, eliminating the need for locked access to the list.

Fibers are placed in the RQ in the order in which they are enabled. When the

EU finishes a fiber, it reads the next (FID, I P) pair from the RQ, copies the FID to

the register normally used for the frame pointer (normally r3 in the i860), and jumps

to the instruction address. If the RQ is empty, the EV continues to check the queue

periodically (there is nothing else for it to do). A procedure invocation is represented

by a special record in the RQ. This record has a pointer to an invocation handler

instead of an IP, and a pointer to an argument list instead of a frame identifier. The

special handler copies the arguments to the local registers and then jumps to the

initial fiber, whose address is included in the argument liste The initial fiber handles

the frame allocation for that procedure. Deallocated frames are kept on special free

lists for efficient reuse.

Because there is no operating system in the EARTH-MANNA, the RTS has

control over the Memory rvlanagement V nit and the page tables of the virtual mem

ory system. EARTH-~IANNAtakes advantage of this to make translation between

global and local addresses automatic. The 32 megabytes of physical memory are 10

cated at the end of the physical address space. The virtual address space is divided

ioto 128 32-megabyte blocks: numbered 0-12ï. In each node, two virtual blocks

are mapped to the same physical block: the black with the same number as the

Dode, and block 127. The latter is used for the replicated address space (the code,

the stack, and the "global scope variables" of Threaded-C are located there). The

former is used for dynamically-allocated memory including procedure frames. The

heap boundaries are set sa that the two areas avoid using the same physical space.

Figure 7.2 illustrates the memory mapping for Dode 2. This figure also shows that

sorne physical addresses in the bottom 256 Mbytes are reserved for the 1/0 and link

chips. This means EARTH-MANNA can have no more than 120 nodes with this

mapping scheme.

One important task of the SU is choosing where ta run procedures that are

invoked with the TOKEN operator, since that operator doesn't specify anode.

162

• o
2000000
400000o
600000o

EEOOOOOO
FOOOOOOO
F2000000
F4000000
F6000000
F8000000
FAOOOOOO
FCOOOOOO
FEOOOOOO

0 1 riôdë 1
1 31 25 24

~ -1\ GL

~ ~
117
118
119

- link
ua

memory-

_.....;,;Ioca~I;..;;a;;;.;;d;.;;d;;..re;;.;;ss~__......1
o

OBALADDRESS

•

••

Figure 7.2: Memory Mapping for Node 2

This is an opportunity to improve runtime efficiency by balancing the workload

evenly among the nodes. Once a procedure has started execution on anode, it is

nearly impossible to move it or its frame, because other procedures may have global

addresses pointing to the frame. Before the frame begins execution, however, the

SU tries to move the TOKEN operator to a lightly-Ioaded node. Our method of

load balancing is derived from the method of token management used in the ADAM

dataflow architecture [82, 84].

Each SU has a queue of outstanding TüKEN operators, called the Token Queue

(TQ). When the EU executes a TüKEN operation, the SU forms a "token" encap

sulating the procedure call with its arguments, and puts it on top of the local TQ.

\Vhen the RQ becomes empty, the SU removes a token from the top of the TQ and

invokes the procedure locally. Note that putting Iocally-generated tokens on top of

the queue and then removing tokens from the top results in depth-first traversaI of

the call graphe This generally leads to better control of functional parallelism, i.e.,

it diminishes the likelihood of parallelism explosion which can exhaust the memory

resources of anode.2

If both the RQ and TQ are empty, the SU sends a message to a neighboring

processor requesting a token, in effect performing work stealing. The neighboring

processor, if it has tokens in its queue, takes one from the bottom of its queue and

2 A similar technique was first used in the Concert system [49].

163

•

•

•

sends it back to the requestor. In this manner, breadth-first traversaI of the call

graph is implemented across processors, hopefully resulting in a better spreading

of tasks. If the neighboring processor does not have any tokens to satisfy a token

request, the oeighbor's neighbor is queried, and so 00. Either a token will he found,

or the request cannot be fulfilled. Idle processors periodically query their neighbors

for work.

Our subsequent experiments show that the quality of the load balancer cao have

a significant impact on the performance of divide-and-conquer programs such as

N-Queens. However, there is a tradeoff, for the performance benefits of making an

optimal choice where to mn a token must be balanced against the costs of getting

the information necessary to make that decision. Load balancing has been explored

more thoroughly in sorne of the other EARTH implementations [19].

7.1.2 Single-Processor-Node Version of EARTH-MANNA

Since most multiprocessor systems have only a single CPU per node, an obvious

question was whether the EARTH model can be implemented with competitive

performance and efficiency on sucb machines, and what key issues and challenges

must be addressed. To answer these questions~ we did another implementation of

the EARTH model on MANNA, called EARTH-MANNA-S, which uses only one of

the two CPUs to perform the functions of both the EU and SU.

vVith only a single CPU to execute both the program code and the multithreading

support code, it is necessary to find an efficient \Vay to switch from one to the

other. For performing synchronizing operations, initiating external requests, and

even context switching this is not tao much of a problem, for these occur where

the EARTH operations are performed. Thus, it is only a question of replacing the

EARTH operations with inline code ta carry out the operations directIy, rather than

inline code to send the request to the EQ. For sorne simple operations, doing them

inline in the EU may even take less of the EU's time than sending the request to

the SU. Other aspects of the implementation are identical ta the duai-CPU version,

such as address mapping.

The biggest challenge with single-CPU nodes is extemal messages, such as remote

function invocations, token requests, and SYNC_WITH.EETCH requests initiated

remotely. Asynchronous reception of such messages has to be merged into the Oow

164

•

•

•

of control dynamically, at run-time. (Others besides EARTH have encountered

similar difficulties [108].) On most single-CPU machines, one of two mechanisms is

used to handle incoming messages. Either there are explicit polIs in the application

code (added by the user or compiler), or incoming messages generate interrupts in

the CPU. However, using either polling or interrupts exclusively can be inefficient,

especially when message traflic is high and its irregular pattern is not statically

analyzable. If polling is used, but the message frequency is much lower than the

polling frequency, the polling overhead will be incurred many times for each message.

If the polling frequency is too Low, the CPU may take too long to respond to remote

requests which may be on the critical path of the computation. H, on the other

hand, interrupts are used and the message frequency is high, the interrupt costs

can be significant, even if the interrupt handler is able to service aIl outstanding

messages when it is invoked.

Our single-CPU version of EARTH-MANNA is implemented two ways. In the

first implementation, the link is polled whenever the EU reads a new fiber from

the RQ. This is a good time to poli the liok since the EU already is switching

contexts at this time, so there are no extra costs for saving registers as would be

the case if the poil occurred in the middle of a liber. However, the frequency of

oetwork eveots cao vary dramatically from program ta program and even during

one program's execution, which means the response time to remote messages cao be

unpredictable. An alternative implementation augments this scheme with a polling

watchdog [83], which ioterrupts the EU if it has gone too long without polling the

liok. Although the polling watchdog is Dot a standard part of the MANNA, it would

be simple to build in hardware and can, in fact~ be emulated using the second CPU

of the MANNA.

7.1.3 Compiling for EARTH-MANNA

In order to minimize the design effort required, the code generator uses the PGI C

compiler to do most of the actual compilation and code generatioo. There are code

generators for both the dual-processor and single-processor versions, but these are

almost identical, with differences ooly in the RTS libraries, sorne include files, and

sorne of the inline code substitutions. Code is generated for EARTH-MANNA in

stages, as shown in Figure 7.3:

165

•

•

•

- ----------
t EAR1lf.C JC ~

.... - -'--- ---

Anembler and IInk.r

Figure ï.3: Compiling for EARTH-~IANNA

1. The source code is either Threaded-C, or another high-Ievellanguage which is

translated into Threaded-C.

2. Threaded-C code is passed through a regular C pre-processor to expand

macros, delete comments, etc. AIso, sorne EARTH operations defined in

Threaded-C are not implemented in the RTS, but simply are macros that cali

other EARTH operations. These substitutions are made here, using standard

C include files.

3. The next stage uses a custom Threaded-C pre-processor. The main task here

is to prepare the C code for processing by the standard C compiler. Threaded

C constructs must be converted into ordinary C constructs sa that they can

be recognized by the compiler. EARTH operations are converted into func

tion caUs. Fibers are converted into individual cases of a switch statement

at the top level of a procedure. This makes it necessary to insert extra C

statements to "fool" the compiler into not performing certain optimizations,

such as common subexpression elimination, which would otherwise move code

166

•

•

•

from one fiber to another. Also, pragmas are inserted at varions places in the

code, including fiber boundaries, to "annotate" the code for the benefit of the

post-processor.

4. The source code is now legitimate C code (albeit with annotations) and can be

sent to the regular C compiler. The PGI compiler makes whatever optimiza

tions it can within a fiber, including minimizing register use. The output is

assernbly code. Sorne of the assernbly code consists of non-existent instructions

produced by the pragmas.

5. The assembly code is rearl and interpreted by a post-processor, which recog

nizes and removes the illegal instructions and other false code stemming from

the Threaded-C pre-processor, and replaces the function caUs representing

EARTH operations with inline code (e.g.: to insert a request into the Event

Queue in the case of the dual-processor version).

6. The final, pure assembly code is linked \Vith other modules in the program

and \Vith the RTS.

One of the most important tasks of the post-processor is generating spiU code.

vVhen the Threaded-C pre-processor converts the fibers into switch statement cases,

the C compiler will naturally assume sequential execution when it performs def-use

and liveness analysis. It doesn't understand that when the EU reaches the end of

a fiber, the next fiber in the RQ may be in a completely different procedure, which

might overwrite the live registers. The EU needs to save whatever registers are live

in the current frame. The post-processor anaIyzes the code to determines exactly

which registers are "live" at the beginning and end of each fiber, and inserts code

for reading or writing these registers at the beginning or end, respectively, of a fiber.

The number of registers needing to he saved between fibers is actually quite small,

usually only 2 or 3 registers per fiber [85]. Optimizing in this \Vay helps tremendously

to produce faster code.

7.1.4 Performance of EARTH-MANNA

This section presents the main results of extensive performance studies invoiving

both irnplementations of EARTH on the ~IANNA. The first part measures and

compares the performance of individual EARTH operations using simple programs

167

•

•

•

designed to isolate specific costs. This is followed by a study involving applica

tion benchmarks written in Threaded-C and compiled for EARTH-MANNA. The

following are our major observations:

1. The EARTH operations can be dispatched and executed reasonably quickly.

The latencies and bandwidth achieved with EARTH-MANNA compare favor

ably with other parallei systems (Section 7.1.4.1).

2. Multithreading operations can be added without imposing large overheads on

the code, provided the granularity of the code is not too fine. This is confirmed

by comparing multithreaded code running on a single node to sequential code

(Section 7.1.4.3).

3. This performance scales well as one moves from single processors to small

scale parallel systems. AlI benchmarks achieved near-lïnear speedups in the

range of processor counts available on the MANNA (Section 7.1.4.4). (Larger

configurations are considered in Section 7.2.2.)

From this we can conclude that the goal of effective parallel processing using off-the

shelf technology is achieved with the EARTH PXM and the ~'IANNA implementa

tion.

7.1.4.1 Performance of Individual Operations

The case has been made that effective use of large-scale parallel machines requires

exploitation of fine-grain parallelism [22, 54]. Unfortunately, most conventional

parallel systems discourage fine-grain code by imposing large overheads that can

dominate sucb code. In many systems, multithreading is only supported at the OS

level, and programmers must endure large OS overheads. In other machines, the OS

guards access to the communications network, again imposing its extra costs on the

programmer. If fine-grain parallelism is to be exploited weIl, it is crucial to reduce

the costs of small operations, snch as individual synchronization operations, small

data transfers and procedure invocations.

The fol1owing tests measure the following characteristics of EARTH-MANNA:

1. Simple communication latency and bandwidth,

2. Latency and throughput of EARTH operations,

168

• nodeO

node 1

.....--- latency --- ~

•

•

Figure 7.4: wleasuring Latency on EARTH-MANNA

3. EU overheads of EARTH operations.

The first test is a simple measurement of raw latency and bandwidth. Two

tests were performed on a 20-node MANNA using two nodes connected to the same

crossbar (so that a message from one to the other passes through only one crossbar).

Latency is measured by invoking a simple procedure on both nodes. Each procedure

has a smaIl fiber, which sends a sync signal (using the RSYNC operation) to a sync

slot on the other node, whose IP field refers to the same fiber in the other procedure

instance. The slot in each instance has a reset count of 1, so that the sync signal

immediatelyenables the fiber. The nodes have no other work during this time, and

are therefore idle when not running these fibers.

This is il1ustrated in Figure 7.4. Latency is measured by running the "pingpong"

back and forth many times and dividing the total time by the number of iterations.

As the figure shows, this measures not only the transmission time of the sync signal,

but also the time it takes for the sync to have its effect, i.e., for the remote sync

count ta be updated, the fiber enabled, and the fiber read from the RQ. Thus, it is a

practical measure of latency as seen by the program. This latency also includes the

code at the start of the fiber, but this only consists of loading the remote sync slot

address in preparation for the RSYNC operation; the address should be in cache

and hence cost only 1-2 cycles. The end of the fiber tests the loop count, but this

is overlapped with the transmission of the sync signal over the network, and hence

does not contribute to the latency.

The latency costs for both the dual-processor implementation (separate proces

sors for EU and SU) and the single-processor implementation (one processor for

bath) are listed in Table 7.1. To put this in perspective, these latencies can be

compared with the measurements from a survey of parallel machines [28] in which

messages were sent between neighboring processors (minimizing network delay). The

169

• 1 Par~eter ~ Dual-processor 1 Single-processor 1

•

•

Latency (ns) 4091 2450
Latency (cycles) 204.5 122.5
Bandwidth (MB/s) 42.0 28.8
Bandwidth (% of peak) 83.9 57.5

Table 7.1: Latencyand Bandwidth on EARTH-MANNA

only machine in the survey with a lower latency than the EARTH-M.-\NNA-S is the

shared-memory Convex SPP1200 (2.2JLS). This machine runs at 120~IHz, so its la

tency is 264 processor cycles, more than both versions ofEARTH-MANN.-\. Even the

slower EARTH-MANNA-D is surpassed only by the Convex and the shared-memory

Cray T3D (3Jls) , but the Cray mns at 150rvIHz. The fastest distributed-memory

machine in the survey has a latency of 10lts.

Note that this test measures latency that immediately affects the other node.

Sync signais to slots with higher counts take less time. Aiso note that most of

this 2-4Jls can be gainfully utilized if other enabled fibers are waiting in the Ready

Queues.

Bandwidth is measured with a similar pingpong technique, but the sync signaIs

going from node 1 to node 0 are replaced with block moves (BLK~IOV.-R5YNC)

of 1 million bytes apiece. Thus, the overhead of sending the acknowledgment sync

signal back is insignificant to the total calculation. Table 7.1 shows high bandwidth

utilization by both implementations. EARTH-~[ANNA-D beats EARTH-MANNA

S because the extra processor can work full-time on the block transmission. Most

of the rather small loss (16%) is due to packetization overhead; large blacks are

split ioto manageable packets, but each packet has a header. Furthermore, a new

packet reaching the crossbar may incur a variable stall (200-500ns) due ta the cross

bar's arbitration scheme. Even so, both systems achieve a much higher fraction of

their theoretical bandwidth than the low-Iatency systems in the survey (37% for the

SPP1200 and 43% for the T3D)). The only systems \Vith comparable bandwidth

utilization rates have much higher latencies, such as the Meiko CS2, with a band

width of 43 MB/s out a possible 50 (almost identical to EARTH-MANNA) but a

latency of 83Jls.

170

•

•

•

Operation Dual-processor nodes Single-processor oodes
Sequential Pipelioed Sequential Pipelioed

Loc. Rem. Loc. Rem. Loc. Rem. Loc. Rem.
(r)sync 2327 3982 841 994 1000 2290 380 668
(r)spawn 2252 4266 NIA NIA 920 2500 NIA NIA
geLsync 2824 6968 1137 1880 1440 4666 700 1502
data_(r)sync 2767 6667 1060 1814 1280 4340 560 1200
iovoke (1 arg) 5011 9011 3188 2794 2300 5360 1611 2165
invoke (5 args) 6217 10240 3879 2984 2460 5640 1768 2231
invoke (9 args) 6826 10727 4260 3504 3060 6500 2368 3165
invoke (18 args) 8192 12552 5529 4456 3220 7620 2528 3537

Table 7.2: EARTH Operation Latencies (nsec.) on EARTH-MANNA

These simple tests were followed by a more comprehensive set of experi

ments measuring the latencies of specifie EARTH operations. Measurements were

made using the same technique of repeating the operation many times and di

viding the total time by the loop couot. Latencies were measured for four

basic synchronization operations: sending a sync signal, spawning a fiber di

rectly, data rearl (SYNC_\VITH.EETCH or split-phase transaction), and data write

(SYNC_WITH-DATA). The data transfers were of single words. ~Ieasurements

were also made for procedure invocations with four different argument couots. Like

the previous experiments, these tests used only two nodes. However, these tests

were made on a 2-node "~IiniMANNA" in which the link chips of the two nodes

are connected to each other directly, rather than to a crossbar. This removes the

uncertainty of the crossbar delay.

Table 7.2 lists the latencies measured. For each operation, there are four values.

Bath local and reroote versions of each operation are performed. Local operations

stay entirely on node 0, while rernote operations are executed on the EU of node

o but involve sorne interaction with node 1. For example, '~remote invoke" means

invoking the procedure on node 1 using the INV·OKE operation.

For both local and reroote versions of each operation, there are two measure

ments, one for sequential latency and one for pipelined latency. Sequential latency

is similar to the pingpong latency experiment; the code is designed so that the EU

which executes the operation stalls until the operation finishes. Pipelined latency

measures throughput; the EU executes the operation repeatly as quickly as it cano

171

•

•

•

The pipelined latency figures show the ability of the EARTH Implementation to

overlap long-Iatency operations with useful work (in this case, other EARTH ops).

(Spawning is not pipelined because the Immediate enabling of fibers would interfere

with the pipelining of the SPAWN operations, making the timing meaningless.)

The results in Table 7.2 show relatively low latencies for EARTH operations.

Nlore importantly, they demonstrate the ability of the multithreading system to

pipeline EARTH operations for greater throughput. Synchronizing operations (the

most frequent EARTH operations as seen in our benchmark programs) have a

pipeline throughput typically 3-4 times higher than pure sequential latency for re

mote operations, and 2-3 times higher for local operations. The pipeline depth is

somewhat greater when there are separate processors for EU and SU, because there

cao he more "stages" in the pipeline. Nevertheless, even the EARTH-MANNA

S exhihits sorne pipelining for local operations, mainly hecause the RTS effectively

combines the SU components of several EARTH operations into one unit, amortizing

the costs of switching between the EU and SU contexts.

The tables show EARTH-NIANNA-S coosistently outperforming EARTH

MANNA-D, but this is partly due to the nature of the experiment, in which the EU

doesn't do any computations except for the EARTH operations. The next experi

ment measures the costs to the local EU of various operations~ meaning the amount

of time taken by the EU ta execute each operation. For EARTH-MANNA-D, this

is the cost of forming a request message and writing it to the EQ in memory; for

EARTH-NIANNA-S, this is the cost of stopping and performing the entire operation

(if local) or forming a request message and writing it to the link chip (if remote).

The resuIts in Table 7.3 show that for remote ops, EARTH-NIANNA-D can take

advantage of a separate processor by having that processor send messages to the

network, freeing the EU for other tasks. Overall, if most operations are local to

the Dode, EARTH-MANNA-S should run faster. But this outcome should not be

used to reject d ual-processor configurations entirely. The i860XP is Dot designed for

efficient processor-to-processor transfer of short messages, hence the software-based

queues are curnhersome. A processor with better support for direct interprocessor

communications should produce a dual-processor Dode that runs faster than a single

processor node in all operations. (The next chapter shows the simulation of a custorn

hardware SU producing significantly reduced latencies in transferring requests he

tween EU and SU.) Furthennore, a separate SU processor has other benefits: its

172

•

•

•

Operation Dual-processor nodes Single-processor nodes
Local Remote Local Remote

(r)sync 504 504 300 588
(r)spawn 721 580 323 640
end.Jiber 530 NIA 441 NIA
incr_(r)sync 561 554 300 620
data_(r)sync 580 606 480 660
get....sync 580 620 620 700
invoke (1 arg) 760 620 479 806
end_procedure (1 arg) 794 NIA 760 NIA
invoke (5 args) 1039 907 599 936
end_procedure (5 args) 1203 NIA 800 NIA
invoke (9 args) 1223 1210 960 1406
end_procedure (9 args) 1372 NIA 1040 NIA
invoke (18 args) 1766 1512 1099 1670
end_procedure (18 args) 1728 NIA 1060 NIA

Table 7.3: EU Costs (nsec.) of EARTH Operation on EARTH-MANNA

ability to monitor the network independently improves perfonnance for applications

with widely-varying fiber lengths, as shown in the next section. Also, stress tests

have shown that an independent SU can handle large increases in network traffic

without significantly siowing down programs [58, 59].

7.1.4.2 Benchmarks Used

The remaining studies use real application programs written in Threaded-C and

compiled for both versions of EARTH-MANNA. Table 7.4 lists the sequential run

ning time of each benchmark under Tseq • This denotes the execution time of an

optimized sequential version of the program running on one i860XP processor of

the MANNA, i.e., without the execution of multithreading instructions (and their

overheads). The code is compiled using the same PGI sequential C compiler as the

core of the Threaded-C code generator.

Several programs representative of traditional scientific applications are tested to

demonstrate that EARTH can handle large data-paraUel applications. These aU use

static work distribution directed by the program (using the invoke operator) rather

173

1 T~eq (sec.) 1 DescriptionInput

FFT 211) 0.866 Regular; frequent data moves
Fibonacci 30 0.969 Recursive; high overheads
MatrLx multiply 512 x 512 36.6 Regular, data-parallel
N-Queens-P 12 Queens 17.2 Fully para. recursive enumeration
N-Queens-T 12 Queens " Partially sequentialized
Paraffins 1'1= 23 3.69 Recursive enumeration
Povray shapes (256)~ 69.4 Task-parallel
Protein folding 3x3x3 7.43 Recursive search
SLT-2D 80 x 80 2.60 Regular~ data-parallel
Tomcatv lV = 257 48.6 Regular, data-parallel, barrier
TSP 10 cities 38.2 Recursive search

1 Benchmark•

Table 7.4: Benchmarks and Sequential Performance

•

•

than the automatic load-balancer. Fast Fourier Transform (FFT) is a regular appli

cation which requires frequent exchanges of data between distant points. Our FFT

is a decimation-in-time algorithm written in a dataflow-like producer-consumer style

in which elements involved in butterfly exchanges also exchange pointers to their

neighbors, setting up the next butterfly (whose interval is twice the interval of the

previous butterfly). Matrix multiply multiplies two 512 x 512 matrices using the code

presented in Section 6.2.3, with a block size of 32. The time measurements, for both

seQuential and parallel code, excludes the time needed to initialize the matrLx and

compute the checksum. SLT-2D uses a semi-Lagrangian time discretization scheme

to simulate a global atmospheric model in two dimensions; these experiments use

80 x 80 meshes. In Tomcatv, a floating-point benchmark from the SPEC89 and

SPEC92 suites, each iteration updates a pair of 257 x 257 meshes, using indepen

dent nearest-neighbor ca1culations and calculations with horizontal loop-carry de

pendencies. Iterations continue until the maximum change drops below a threshold;

this involves a global reduction and barrier (discussed in Section 4.3.1). Separate

rows synchronize with each other and the top-Ievel function using a dataflow-like

paradigm.

The Fibonacci program is the code used for illustration in Chapters 4 and 6.

\Vhile this is a contrived application, it is a useful benchmark for parallel systems

because very little computation is done within the function body. Almost aIl the

code is involved with function linkage. Since many of the overheads in parallel

174

•

•

•

programs involve interactions between different functions, this benchmark gives a

good upper bound on the overheads encountered by a parallel system.

The N-Queens problem, a familiar benchmark that typifies searching problems,

was presented in Section 6.2.2. Two versions are used in this study. N-Queen.r;-P is

the maximally parallel version presented in Section 6.2.2. N-Queens- T is a modified

form of N-Queens-P in which the parallelism is 'throttled" algorithmically, as shown

in Figure 6.9. When the numher of Queens successfully placed on the board reaches a

threshold (4 in this case), the program switches from parallel execution to sequential

execution. Comparing the performance of these two benchmarks allows us to explore

the tradeoff between expressing maximal parallelism in a program and restraining

parallelism through program modifications. The latter is generally more difficult for

the programmer (especially if good performance across a large number of machine

sizes is desired) but generally yields better speedups by reducing overheads.

Paraffins is one of the four "Salishan problems" from the 1988 Salishan High

Speed Computing Conference, regarded as being challenging to parallelize [93J. This

application enumerates aIl distinct isomers of each paraffin (molecule of the fonn

Cn H2n+2) of size up to a given maximum (23 in our experiments). The total number

grows exponentially with this maximum. A paraffin is equivalent to an unrooted

4-ary tree; thus the problem is essentially the same as the problem of detecting iso

morphisms in labeled free trees. The program generates lists of paraffins in a pointer

data structure and returns an array filled with the number of distinct paraffins of

each size up to and including the maximum. Parallelism is exploited by invoking

functions on aIl the processors to compute the radicals (basic reaction units to fonn

larger molecules) and then forming tokenized fUfictions which compute the paraffins

for the required sizes.3

The Persistence Of Vision Ray Tracing (Povray) program reads in a text file

that describes the objects and lighting in a scene and generates a three-dimensional

256 x 256-pixel image using the ray-tracing rendering technique. This program has

at its core a doubly-nested loop which iterates over each pixel. The Threaded

C implementation performs this loop in parallel. As the amount of work needed

for each pixel can vary widely, this implementation takes advantage of EARTH's

dynamic load-balancing mechanism.

The Protein folding chemistry application finds aU possible polymers of a 3 x 3 x 3

3The algorithm is explained in greater detail in the programmer's Master's thesis [30].

175

•

•

cube, where a polymer is defined as a chain of monomers and each monomer may

represent a number of amino acids. It is assumed that each monomer is situated on

a lattice point (i.e., a point on a 3-D grid). Each possible folding of the polymer

can then be described as sorne path along the set of lattice points. Two kinds

of parallelism are exploited in this program. The first is the loop-level parallelism

exploited for aIl possible start paths provided in the original data-set using a dynamic

token-driven mechanism. Another is the token-Ievel medium-grained parallelism

exploited at each lattice point for finding possible foldings using tail-recursive and

token mechanisms.

For the Traveling Salesman Problem (T8P), a graph with 10 vertices is used.

Branch-and-bound is used to exploit two types of parallelism in this program. The

first is the loop-Ievel parallelism exploited for aIl possible paths described in the

original path-set, using EARTH's dynamic load-balancing mechanism to get good

processor utilization. Another Corm of parallelism is the token-Ievel medium-grained

parallelism exploited for ail arrived cities to find a minimal-cost Hamiltonian tour

using a threshold-controlling mechanism.

7.1.4.3 Single-Node Performance

To measure the cost of multithreading in the EARTH-~fANNAplatform (and thus

the EARTH model), the following experiments run the compiled multithreaded

(Threaded-C) code on one processor, and compare this to the speed of the sequential

code in Table 7.4. The ratio is the Uni-Node Support Efficiency, or "USE factor,"

of the platform, defined as

(7.1)

•

where Tseq , as previously defined, is the best sequential running time, and Tl de

notes the execution time of a program written for the EVM (i.e., in Threaded-C)

running on one processor node with multithreading support. Measuring this pa

rameter guages how much processing power is lost due to multithreading overheads,

while excluding losses which may be due to load imbalances among multiple nodes.

When running EARTH code on EARTH-MANNA, one may choose how many

nodes ta ron. Of course, one may produce code which checks the number of pro

cessors assigned to the task and then simply branches to a sequenti~l version of the

program if only one node is used. However, these programs don't do this. They

utilize multithreading operations as if they were run on multiple nodes; thus, the

176

•

•

•

Benchmark USE factor (%)
Dual-processor Single-processor

FFT 59.8 75.6
Fibonacci 7.55 13.9
Matrix multiply 99.9 100.3
N-Queens-P 52.5 67.0
N-Queens-T 98.8 99.3
Paraffins 91.4 99.4
Povray 94.0 100.0
Protein folding 95.0 98.8
SLT-2D 88.5 99.9
Tomcatv 95.0 100.0
TSP 98.9 99.6

Table 7.5: Uni-Node Support Efficiencies on EARTH-MANNA

version running a single node would execute the same number of multithreading

operations no matter how many nodes are used.4 A USE value close to unity for

such programs can be attributed to many factors:

1. There are enough parallel threads to hide the latency of multithreading oper

ations, i.e., there are enough fibers for execution while multithreading opera

tions in other fibers are performed by the SU;

2. The total overhead for performing multithreading operations as seen by the

EU is minimal (this can occur if the parallelism is sufficiently coarse-grained

to keep the number of multithreading operations to a minimum);

3. The support for multithreading operations is not intrusive on sequential code.

The eleven benchmarks running on one processing Dode of the EARTH-MANNA

platform produce the USE factors listed in Table 7.5. The results show that in most

cases, executing multithreading instructions in a uniprocessor does Dot degrade per

formance very much. In sorne cases, they do not degrade at all!5 One could suggest

4Sorne programs deviate from this slightly. In Povray, for instance, a single black of data is
initialized on one node and then copied ta every node; each copy takes one EARTH operation.
However, this is insignificant compared ta the total number of multithreading operations executed
in that program.

5This does not mean there are no multithreading overheads. Modem compilation is 50 complex
that even minor code changes can lead to unexpectedly large changes in code performance due to

177

•

•

•

that the Threaded-C versions of the programs were well-written to minimize the use

of multithreading operations, but what it also indicates is that the multithreading

support does not have a huge negative impact on sequential code within a thread

as in machines which require the interleaving of threads.

Gnly the Fibonacci benchmark does poorly. Its low USE factor is to be expected.

The overheads of recursion far outweigh the actual computation performed even in

the sequential code (one test per instance, and three adds per non-Ieaf instance).

But function linkage is efficient in sequential code, especially if the compiler is aware

of how little context there is in each function calI (reducing the number of registers

saved each call). The synchronizing operations of EARTH have to be more 8exible

than simple stack frame linkage, and consequently are far more expensive. When

the dominant part of the code increases in cost, the USE factor suffers.

The fully-parallel version of N-Queens does moderately weIl, though on EARTH

MANNA-D it runs only half as fast as the sequential code. The throttled version

achieves almost full performance. A count of procedure instances shows that the

fully-parallel version generates over 1.6 million threaded procedure instances, though

it takes less than twice as much time as the throttled code, which generates fewer

than 10,000 such instances. (Of course, the use of a dequeue for the Token Queue,

as described in Section 7.1.1, eDsures that iD both cases, Dot many of these instances

are active at the same time.)

A comparison of the two N-Queens cases gives a glimpse of the tradeoff between

expressing parallelism at a fine grain versus investing extra effort into programming

to "coarsen" the threads. The throttled code represents how programmers can

boost performance by controlling parallelism directly in the code, if they are willing

to spend more time with the code (see Section 1.2.4). In this case, the modification

is trivial and yields large improvements, so the outcome clearly justifies the extra

effort. But the results show that letting parallelism "run wild" doesn't drag down

performance too much.6 This suggests that in cases where coarse-grain parallelism

is more difficult to express without sacrificing scalability, the fine-grain alternative

may run almost as weIl.

optimization anomalies. When the 6rst Threaded-C version of Tomcatv was tested, it had a use
factor of 1.07 [59J. Later analysis showed this was due to high register pressure in the sequential
version (Tomcatv is notorious for this) which was relieved when the code was threaded. Subsequent
rewriting of the sequential code reduced the USE factor to its current value.

6The next chapter shows that a hardware SU reduces the difference between the two
considerably.

178

•

•

One final observation ta make is that the implementation with single-processor

nodes does consistently better than the dual-processor-node system. This could

he predicted from Table 7.3, because aIl operations are local to the node (there is

onlyone). That table also suggests that on multiple nodes, applications with many

remote operations may mn faster on EARTH-MANNA-D. This is verified in the

next section.

7.1.4.4 Parallel Performance

The final experiments with the actual NIANNA hardware involved running the mul

tithreaded henchmarks from Table 7.5 on multiple processors and measuring the

gain in speed over one processor. Two different measurements can he made. The

relative speedup on k nodes is the speedup relative to the same multithreaded version

running on a single node:

(7.2)

If the USE factor for this program is poor, then Rk cao be a misleading measure

of the Inultiprocessor's speed, though one that is oCten used [13]. An ideal linear

speedup (Rk = k) would indicate that the work is distributed evenly. However, if

multithreading the program has high overhead costs, the benefit would he much

smaller. That is why we also report the absolute speedup, which compares the speed

to the sequential version:

Ak = TseqfTk

Relative and ahsolute speedup are related by the USE factor:

(7.3)

(7.4)

•

Figures 7.5-7.10 show both absolute and relative speedups for the variants of

EARTH-MANNA discussed in this chapter. The first two give relative and ab

solute speedups, respectively, for the ~IANNAwith dual-processor nodes (EARTH

MANNA-D). The next two show the same for the single-processor-node version

(EARTH-MANNA-S). The last two are also for EARTH-MANNA-S, but use the

second CPU ta emulate the watchdog timer (see Section 7.1.2).

The large amount of data necessitated using a 3-dimensional representation he

cause many speedup curves would he superimposed in a 2-dimensional graphe One

can best understand each curve by looking at the right endpoint, from which one

179

•
20

16

Benchmark
#1 of nodes

.. FFT
- -e- Fibonacci

Matrix
- ... - N-Queens-P

B N-Queens-T· .

- -te- Paraffins
0 Povray· .

-~- Protein
• SLT-2D

'. - -El- Tomcatv
A TSP· ,

20

•

•

Figure 7.5: Relative Speedups on EARTH-NIANNA-D

can read the speedup for 20 nodes. From there~ the shape of the curve gives a good

impression of the performance over the rest of the node counts.

For instance, it can he seen in Figure 7.5 that most of the benchmarks have

relative speedups very close to 20 on 20 nodes on EARTH-NIANNA-D; only SLT

2D and FFT has much performance loss at 20 nodes (R2D = 16.7). Also, the

curves are almost completely linear, again with the exception ofSLT-2D and FFT?

vVhen multithreading overheads are factored into the picture (Figure 7.6), speeds for

sorne of the benchmarks decline, especially for the worst-case Fibonacci example.

Nevertheless, 7 of the Il benchmarks still have speedups greater than 17 on 20

nodes. This means that for these benchmarks, each EU processor in a 20-node

configuration is utilized 85% as much as a single processor running sequential code.8

7The dip at 12 nodes with SLT-2D is due to the static task distribution; the SQ-row anay is
divided by rows, but 12 does not divide 80 evenly. The FFT code uses round-robin distribution of
the elements, which works much better with powers of 2 because that causes many butterflies to
be completely local (both elements in the exchange are on the same node).

BOf course, this ignores the second CPU, which doesn't contribute to this utilization figure.
However, the use of a processor equal to the EU for SU functions is somewhat wasteful. Most of
its capabilities, including built-in ftoating point, go unused. A small, cheap integer-only processor
should work just as weIl.

180

"of nodes

.. FFT
20 - -€)- Fibonacci

1 Matrix
16 - .- N-Queens-P

B N-Queens-T
%12 - -te- Paraffins
'C
CD 0 Povray8. 8

UJ - -+- Prolein
• SLT-2D

- "€J- Tomcatv
~ là TSP

20

•

•
Figure 7.6: Absolute Speedups on EARTH-MANNA-D

Figures 7.7 and 7.8 show declines in performance for most of the benchmarks on

single-processor-node machines with larger numbers of processors, even though the

USE factors reported in Table 7.5 were better for MANNA-SPN across the board.

\Vhile a single processor on anode may be suflicient for handIing multithreading

operations 10cally, it can slow down multiprocessors in several ways:

1. If there is a lot of interprocessor traffic (e.g., many smaU messages due to a

large number of invocations, or sorne large messages due to large block moves),

the traffic may be a heavy burden on the single processor, which must stop to

read all of it, rather than letting the other processor respond to the messages.

•

2. If fibers are long, requests from other nodes may go unfulfilled for quite a

while. The EARTH-~IANNA-SRTS only checks for incoming messages when

one fiber terminates and another is about to begin. Remote requests that are

on critical paths could stall the entire computation.

The second problem, at least, can be ameliorated somewhat \Vith a watchdog

timer. The timer is supposed to monitor the link chip and interrupt the EU if an

181

•
20

16

4 .

f

Benchmark

..
• FFT

- -E)- Fibonacci
Matrix

- - N-Queens-P
0 N-Queens-T

D·.
- -te- Paraffins.;;'

0 Povray..
-+- Protein

• SLT-2D
- ~- Tomcatv

é. TSP

20

, of nodes

•

•

Figure 7.7: Relative Speedups on EARTH-MANNA-S

incoming message has waited at the link chip for more than a specified threshold

(50tLs in these experiments). Lacking the internai hardware needed for this function,

the EARTH-~IANNA-Simplementation does the next best thing by using the second

CPU, now unused, to monitor the link and generate the interrupt. This is more

coarse-grained than an ideal timer, for the CPU can't monitor the link continuously

without tying up the system bus. Nevertheless, it gives a good approximation to

what a real watchdog timer cao do.9 Figures 7.9 and 7.10 show the benefits of

raster response to messages, particularly for the coarse-grained applications Povray,

Protein and Torncatv.

9 See the original polling watchdog paper [831 for more details.

182

•

Il of nodesBenchmart<

•• FFT
20 - ~- Fibonacci

1 Matrix
16 - - N-Queens-P

B N-Queens-T
g.12 - -te- Paraffins
'0
QI a Povray
~ 8en - -+- Protein

• SLT-2D
- -El- Torncatv

~ A TSP

20

• 7.2

Figure 7.8: Absolute Speedups on EARTH-MANNA-S

Simulation of Alternate EARTH-MANNA

Computers

•

This dissertation has proposed a series of design extensions to an off-the-shelf mul

tiprocessor representing an evolutionary progression toward more customized ma

chines executing EARTH programs. To demonstrate the benefits of each step in

the series without actually building the custom hardware requires a simulator which

can model each proposed nlachine. For this purpose, we have developed an accurate

simulator for the MANNA hardware called SE1n (Simulator for EARTH, MANNA

and the i860) [58, 112, 115]. SEMi is mainly intended for measuring the benefits of

adding new modules to the basic MANNA configuration (e.g., a hardware SU), and

these experiments are discussed in the next chapter.

However, we cao also make modifications to SEMi's default MANNA configu

ration that don't involve adding new hardware. In this section, we use SEMi to

simulate two extensions to the MANNA hardware that do Dot exist, but still repre

sent conventional multiprocessors at the begioniog of the evolutionary path. These

183

, ofnodes

Figure 7.9: Relative Speedups on EARTH-NIANNA-S with Polling Watchdog

M FFT
20 - ~- Fibonacci

Matrix
16 - .. - N-Queens-P

8 N-Queens-T
~12 - -t(- Paraffins
~

0 PovrayCI'

~ 8 - ~- ProteinU)

• SLT-2D
- ~- Tomcatv

~ A TSP

20

machines run the same applications code as the EARTH-rvIANNA machines covered

in the previous section. The first modification extends the existing MANNA ma

chine from 20 nodes to 120 nodes. With this, the speedup curves from Section 7.1.4

can be extended ta see if the EARTH model is scalable into the range of large-scale

machines. The second modifies the performance parameters of the i860 to refiect

sorne of the improvements in processor design made since the i860 was made. This

is to test whether the good results obtained for EARTH on the MANNA may be

applicable to other multiprocessors or are dependent on sorne specific performance

characteristics of the i860.

The first part ofthis section describes SEIvIi, and the modified MANNA machines

simulated using SENIi. The second part presents the experimental results.

•

•

7.2.1 The SEMi Simulation Testbed

•
SEMi (Simulator for EARTH, MANNA and the i860) is a functional simulator for

i860-based uniprocessors and multiprocessors. It was originally inspired by DLXsim

[53], and uses a similar interface. SEMi currently has modules for simulating the

184

Figure 7.10: Absolute Speedups on EARTH-~'IANNA-Swith Polling \Vatchdog

, of nodesBenchmark

N FFT
20 - -€)- Fibonacci

1 Matrix
16 - ~- N-Queens-P

B N-Queens-T
g.12 - -'C- Paraffinsn
aJ 0 PovrayX. 8en - -+- Protein

• SLT-2D
- ~- Tomcatv

~ A TSP

TSP

20

i860XP processor, the MANNA bus and memory system, the 1/0 and link chips,

and the crossbars, i.e., aIl components of the ~L\NNA, as weIl as extensions to the

base ~IANNA (described in the next chapter).

SEMi is primarily a "functional" simulatoL meant to product correct program

results and a cycle count equivalent to a real ~IANNA. Therefore, SEMi only sim

ulates the details needed to model the interactions between components that affect

the program state or timing. The real hehavior of individual circuits are not simu

lated (this simulation is not intended for synthesis). For instance, SEMi models the

fact that instructions are fetched 2 cycles before they are executed. This is necessary

for the correct modeling of delay slots and bus interactions. The arder of operations

in a pipeline affects the latter because bus cycles can be generated from both the

fetch stage (l-cache miss) and the cache load stage (D-cache miss). However, the

write-back stage isn't modeled since it doesn't affect the timing behavior (due to

bypass logjc).

The henefit of this approach is that sErvn is far faster than a logjc simulation.

A SErvli simulation of a MANNA uniprocessor takes about 300 processor cycles

for each cycle in the simulated machine. If clock frequencies are normalized, a•

•

•

185

•

•

•

dual-processor node runs about 500 times slower. As nodes are added, the ratio

grows slightly more than linearly, as extra crossbars are added and the expanding

simulation state overwhelms the cache. Nevertheless, even a large simulated machine

with n nodes (n > 100) runs no worse than 2000n times slower. Thus, we are able

to simulate realistic problem sizes in which Tseq is around one minute. 10

One criticism commonly leveled at simulators is that they are inaccurate and

only reflect the wishes of their programmers. SEMi was designed for accuracy to

avoid this objection. SEMi carefully roodels actual processor behavior in terms of

cycle counts, and accounts for resource hazards~ load stalls, and bus delays. SEMi

has been run side-by-side with a real MANNA to measure its accuracy, in terms

of the number of clock cycles reported, and its timing figures are typically within

0.2% of the timing reported by a real MANNA for sequential uniprocessor code, and

within 5% for dual-CPU and multiprocessor runs. Il This proven accuracy of our

simulator makes us confident that if we make small modifications to the MANNA

architecture, the timing measurements will be close to what we could expect if such

modifications were made to a real IvIANNA.

One of the options of SEMi selects a topology from a file of predefined config

urations. An arbitrary network of n x n routers, based on the MANNA's crossbar

chip, cao be defined. To extend the speedup curves of the EARTH benchmarks,

we created several extensions of the standard topology. Figure 7.11(a) shows the

20-node topology which is standard in the MANNA. Two crossbars coonect to ten

nodes apiece, \Vith two bidirectional connections running between the crossbars. If

anode sends a packet to a destination that is not attached ta the same crossbar,

the route through the network is deterministic and determined by a static routing

table, even if there are multiple paths to that destination. Figure 7.11(b) shows a

40-node network formed by tying two 20-node ~IANNA's together. (This topology

has actually been constructed by G~ID although it is never maintained very long

and always subsequently broken back inta 20-node machines.) Figures (c) and (d)

show further extensions ta 80 and 120 nodes, respectively. (120 nodes is the upper

limit of EARTH-MANNA without a substantial rewrite of the RTS and compiler,

10 A near-lînear application speedup mostly offsets the growth in simulation time as more nodes
are added.

llThe greater error for multiple-CPU simulations is due in part to the greater complexity and
unpredictahility of these systems. Also, sorne non-determinism is to he expected from the real
machine. However, repeated experiments on the real machine with a given benchmark and input
show very little variance in running times.

186

•
a) 20 nodes b) 40 nodes c) 80 nodes d) 120 nodes

•

•

Figure 7.11: Large-Scale Topologies

for reasons given in Section 7.1.1.) AIl routing tables are deterministic and designed

ta be deadlock-free. (In parts (b)-(d), the 10 nodes connected to each crossbar have

been omitted for cIarity.)

Other options to SEMi change various parameters of the system (e.g., cache sizes,

memory delays) or make small changes to the behavior of the processor, which by

default emulates the i860XP as closely as possible. Although the i860 was a big step

forward in RISC processing at the time it was released, sorne design compromises

had to be made due to the lower level of integration at that time. Among these:

• There is no scoreboard logic for the floating point unit. Instead, there is a

simple lock, which blocks access to the unit until a scalar FP op is finish€d,

even if succeeding FP ops are independent.

• The LI on-chip cache is blocking. If the CPU misses the LI cache and starts

loading a cache Hne, subsequent accesses to the cache are blocked until the

load is finished, even if they would hit the cache.

• There is a simple fonn of dYDamically-switchable VLIW processing called Dual

Instruction ~Iode, but no other form of multiple-instruction issue.

Changes selected in the SEMi command line may alter the number of dock cycles

needed to execute a given program, but normally do not change the functional

behavior of the processor. Generally, a sequential program compiled for MANNA

runs the same on both the base configuration and a modified configuration. A

parallel program may run differently if the program is inherently non-deterministic,

since the options may affect the relative order of two events on different processors.

For our last set of experiments we want to configure the MANNA and its under

lying i860 processors to look more like the systems used today. The i860XP dates

187

•

•

•

back to the early 90s and only mns at 50MHz. To bring the i860-based experiments

a bit doser to the processors of today, we configured SEMi to simulate a MANNA

with the following processor and system changes:

• Processors have iDcreased in speed faster than memory chips and buses. To

account for this effect, we have slowed down the memory system and bus,

but we have also added an L2 cache. The performance parameters of the

new memory and cache are taken from the Power~[ANNA, a successor to

the J\'IANNA also built by GMD. The PowerMANNA is based on a 200MHz

PowerPC 620 processor instead of the i860.

• The limitations of the i860 have been removed where possible. The options

make the cache non-blocking, add hazard detection logic to the FP unit, and

allow multiple-instruction issue (though only in-order issuing is allowed at this

time).

1.2.2 Performance of Larger EARTH-MANNA Systems

The first use of sErvn to enhance the existing MANNA architecture is extending

the speedup CIIrVeS of Section 7.1.4.4 to see how scalable are the CUITent programs.

Five of the benchmarks were chosen for further study. To measure how weIl EARTH

scales for smaller problems, we ran simulations for smaller problem sizes for each

of the benchmarks, as weIl as the problem sizes used in the real MANNA studies.

Table 7.6 lists the benchmarks used, the problem sizes for each, the sequential

running time, and the USE factors for EARTH-MANNA-D and EARTH-MANNA

S under these simulations.

Speedup curves for the five benchmarks are shown in Figures 7.12 through 7.24.

The data from these experiments are shown in separate graphs for each bench

mark/implementation combination, with each graph displaying relative and absolute

speedups for aIl input sizes. This allows the impact of problem size on scalability

to be viewed. Results for EARTH-J\'IANNA-S are shown both without a polling

watchdog (Figures 7.17-7.21) and with a watchdog (Figures 7.22-7.24), except that

watchdog results are not shown for Fibonacci and N-Queens-P. Since the EARTH

~1ANNA-SpoIls the network at the end of each fiber, and the maximum fiber length

in these two programs is far less than the watchdog timeout interval, the watchdog

188

•

•

Benchmark Input T~f!q USE factor (%)
(sec) Dual-processor Single-processor

Fibonacci 15 0.000831 S.6 15.7
20 O.OOSOl 7.7 14.1
25 0.0875 7.6 13.9
30 0.969 7.6 13.9

N-Queens-P 8 0.0223 39.9 51.7
10 0.541 46.S 56.1
12 17.3 53.9 65.6

N-Queens-T S 0.0223 68.5 7S.5
10 0.541 93.1 95.3
12 17.3 99.1 99.3

Paraffins 18 0.0394 82.1 97.6
20 0.228 85.4 101.4
23 3.69 84.7 100.6

Tomcatv 33 0.721 89.3 92.2
65 2.94 91.4 93.7

129 12.0 93.2 95.6
257 4S.7 93.7 96.5

Table 7.6: Uni-Node Support Efficiencies on SE~1i Simulation of EARTH-MANNA

48 .. 30 (rel)
%32 -

- -te- 30 (abs)..
"t:I 0 25 (rel)
Q)
Q) - -€)- 25 (abs)
~16 20 (rel)

8 . - +- 20 (abs)
e 15 (rel)

8 16 48 64 80 96 112 128 - ~- 15 (abs)
, of nodes

Figure 7.12: Speedups on EARTH-lvIANNA-D for Fibonacci

•

never generates an interrupt and the results arc identical. 12

Comparing these results with the timings from the real NIANNA in Section 7.1.4

leads ta severaI observations.

12 This is not always true for the implementation on the real MANNA, due to the inexact nature
of the timing as explained at the end of Section 7.1.4.4.

189

48....--r-"""'T""--or----."..--r----,...--T----,.-----,
12 (rel)
12 (abs)
10 (rel)
10 (abs)
8 (rel)
8 (abs)

o

- -+
e

- ~-

- ~-

112 1289648 64 80
Il of nodes

32

_ •• _ i __ ••••• • ••••••••••.•••••• _ ••.•
, '

8 16

~32 ...
"l:'
CD

8-Cf) 16 ... '_ _ _ _ _

8 - . .,A~~,;;....=.-.,,~.-:-:::.-._=-' -'=-,-=-:-.~-::.::..w;~~~~I-=-~:....:;~

•

Figure 7.13: Speedups on EARTH-~'1ANNA-Dfor N-Queens-P

112

96 - '

80 . ' 0'

c. 64 " .
::J
'C
CD
CDc.

48 - -en

• 32

16 - .

8

8 16 32 48 64 80
" ofnodes

96 112 128

o
- ~-

- -+
e

- ~-

12 (rel)
12 (abs)
10 (rel)
10 (abs)
8 (rel)
8 (abs)

Figure 7.14: Speedups on EARTH-rvIANNA-D for N-Queens-T

•

Load Balancing: First, sorne of the speedups 'that looked sa promising in Fig

ures 7.5-7.10 fail ta extend much beyond 20 nodes, particularly for the fine-grained

applications (Fibonacci and N-Queens-P). This appears to be due ta poor load

balancing. This was deterrnined by rneasuring the total time spent by aIl proces

sors in different parts of the prograrn. This breakdown is shown for N-Queens-P

(10 queens) running on EARTH-MANNA-D (Figure 7.25) and EARTH-rvIANNA-S

(Figure 7.26).

Five cornponents are shawn: the three fibers (fibers 1, 2, and the initial fiber),

the sequential function safe(), which is called from fiber 1, and idle tirne. Any time

when an EU is not actively running a fiber (e.g., it reads the RQ when nothing

190

23 (rel)
23 (abs)
20 (rel)
20 (abs)
18 (rel)
18 (abs)

o
- -E)-

- -+
e

-~-

12811296

_0- _ - ~ - - e - - ~ - 0

48 64 80
Il of nodes

32

48 --

8 16

Q.
~

'i 32 .-
Q)
Q.

C/)

16 ...

8 ..

•

Figure 7.15: Speedups on EARTH-JMANNA-D for Paraffins

128

M 257 (rel)
- -t{- 257 (abs)

0 129 (rel)
- -€)- 129 (abs)

65 (rel)
- -+- 65 (abs)

e 33 (rel)
- ~- 33 (abs)

.........

1129648 64 80
Il of nodes

328 16

16 ..

8 ..

64·

80

Q.
~
~

~ 48 ..
Q.

C/)

32 ._-•
Figure 7.16: Speedups on EARTH-~IANNA-Dfor Torncatv

•

is there) is counted as idle time. Each graph shows the time totals for each Dode

count in the experimeDts. For comparison, an analogous breakdown is given for the

sequential code at the left side of each graph. ID this case, since there are no fibers in

the sequential code, the times shown for these three components are for the sections

of the recursive function which correspond ta the three fibers.

The graphs show that the safe() function (which is identical in the sequential

and threaded codes) is used about the same amount of time in an runs. Each of the

three fibers takes longer in the parallel code than the corresponding code fragment in

the sequential code. This graphically shows the source of the USE factors observed

for this benchmark. Once this overhead is paid, the total time spent in the fibers

191

• 80.--..,...---r--..,.-----.,.--"T-----.---..,...---..,---,
Il 30 (rel)

- .- 30 (abs)
0 25 (rel)

- ~- 25 (abs)
20 (rel)

- ~- 20 (abs)
e 15 (rel)

- -()- 15 (abs)

112 1289648 64 80
It of nodes

328 16

64 ..

16 .,

8 .. Ita-oA-oe'-&-~-A-_r-=__;;;e;;;~--...........-=-~=-=:v

g.48 ..
~
QJ

i32 ..

Figure '7.17: Speedups on EARTH-NIANNA-S for Fibonacci

0 12 (rel)
- ~- 12 (abs)

10 (rel)
- ~- 10 (abs)

e 8 (rel)
0 -~- 8 (abs)

112 12896

~ - ...,..--+_ --r .

48 64 80
"of nOdes

32

.... ~ - - - - - + - _:-"- - G-- - - ~-o

8 16

32 .

16 ... _.

8 ..

g. 64' .
~
Q)
Q)

/li 48 .

80 .

112 -r-----r---~--r---r---"""'T'"""--r-----r-~~

96 .

•

Figure 7.18: Speedllps on EARTH-NIANNA-S for N-Queens-P

•

stays fairly constant for ail node counts. If these were the only costs, then the code

ShOllld enjoy a linear relative speedllp. ThllS, the only cause of the poor speedups

is the idle time, which grows rapidly, especially for dual-processor nodes.

This suggests there are shortcomings in the Joad balancer. The runtime system

was originally developed for real !vIANNA machines, which have at most 40 nodes.

These simulations used the same RTS, without any attempt to tune it for a larger

number of nodes. l\lore research will be needecl to see if the Joad balancer can he

192

12 (rel)
12 (abs)
10 (rel)
10 (abs)
8 (rel)
8 (abs)

o
- -E)

1

- -+
e

-~-

1281129648 64 80
"of nodes

328 16

g.32
'C
Q
Q

~16 -

8-

•

Figure 7.19: Speedups on EARTH-rvIANNA-S for N-Queens-T

Figure 7.20: Speedups on EARTH-~IIANNA-Sfor Paraffins•
8 16 32 48 64

"of nodes
80 96 112 128

o
- ~-

- -+-
&

-~-

23 (rel)
23 (abs)
20 (rel)
20 (abs)
18 (rel)
18 (abs)

optimized for larger node counts, and whether this tuning can be done automatically

at runtime or should he accomplished by using different load balancers for different

configurations.

The much better performance of N-Queens-T shows the benefits of reducing the

64r--"T""'"""-r--__r---....,...--"""""':"'r----r-----r---r----,

48
c.
;:,

't:l
~ 32 -
c.

C/)

16 .-

8

------ 257 (rel)
- -te- 257 (abs)
~ 129 (rel)
- ~- 129 (abs)
-+- 65 (rel)
- -+- 65 (abs)
~ 33 (rel)
- ~- 33 (abs)

Figure 7.21: Speedups on EARTH-MANNA-S for Tomcatv•
8 16 32 48 64 80

"of nodes
96 112 128

193

12811296

0 12 (rel)
..... - ~- 12 (abs)

10 (rel)
- -+- 10 (abs)

e 8 (rel)
- ~- 8 (abs)

~--

48 64 80
, of nodes

328 16

16
8 . -.itlHl1i;":::=1!t:-=--=-::=-=:""-=""=*=--,=_--::_~.=_-:_=-=--a:-=-=:'""':"'-:=Q

64 -

80·

32 -

96r--~--r----r----,.--~-~r---~--y---.....,•

Figure 7.22: Speedups on EARTH-MANNA-SjWatchdog for N-Queens-T

23 (rel)
23 (abs)
20 (rel)
20 (abs)
18 (rel)
18 (abs)

o

- -+
e

- ~-

- ~-

1281129648 64 80
Il of nodes

328 16

48....--r--_..._--r---.....,.,..---r-----'T--"""T""""-.--,--.....

•
Figure 7.23: Speedups on EARTH-MANNA-SjWatchdog for Paraffins

•

number of fibers executed at runtime. On the other hand, the Paraffins application

is even more coarse-grained, and does only moderately weIl for the largest problem

size. Sorne effort was spent by the programmer to keep the number of threads 10w,

in order to get a high USE factor by reducing multithreading overheads. The code

\Vas not modified for this set of experiments, so as the number of nodes increases,

the nllmber of procedure instances per Dode correspondingly drops. Since the work

stealing algorithm can't predict the running tirne of a token before the procedure

begjns executioo, it does Dot work weIl when there are only a few tokens per node,

because there are fewer opportllnities for load imbalances to be corrected.

194

•
64 .

g-48 " ...
~
Cl)

~en 32 .

16 ..

8

8 16 32 48 64 80
Il of nodes

96 112 128

.. 257 (rel)
- 1(- 257 (abs)

0 129 (rel)
- -E)- 129 (abs)

65 (rel)
- +- 65 (abs)

e 33 (rel)
- ~- 33 (abs)

Figure 7.24: Speedups on EARTH-l\iIANNA-S/Watchdog for Tomcatv

•
8000

7000

'" 6000"t:'

)5000

E4000 ..

~
~3000

2000

1000

0
seq 2 4 8 12 16

Il of nodes

•

Figure 7.25: Breakdown of EU Use on EARTH-MANNA-D for N-Queens-P (10)

Benefits of Multithreading: The most coarse-grained application in this set is

Tomcatv, in which the N x N matrix is divided into N - 2 procedures, one for each

row (excluding the top and bottom). For each row, three fibers are run in sequence

for each of the 100 iterations in the program. The load is the same in each row,

so the rows are distributed among the nodes statically and evenly. This places an

upper bound on the speedup, and leads to uneven loads if the number of rows is not

an even multiple of the number of nodes. For instance, Tomcatv with N = 257 (i.e.,

255 active rows) should get a speedup of at most 85 (255/3) on 120 nodes, since at

195

•
fiber2
fiber 1

init

200
safeO

1209664322012 16
• of nodes

842

a"-J

SeQ

Figure 7.26: Breakdown of EU Use on EARTH-MANNA-S for N-Queens-P (10)

•
least sorne of the nodes must have three rows instead of two.

The curves in Figure 7.16 show Tomcatv achieving close to its theoretical

speedups for the larger problem sizes. The results for the two smaller sizes

((N = 33and65) show the benefits of muitithreading by demonstrating what hap

pens when there is only one thread. \Vhen the number of nodes equals the number

of rows, there is only one procedure per node. \Vhen a fiber sends a black of data ta

another fiber and then terrninates, there is no work to be done while the block is be

ing moved, and no work can become enabled until the block move is finished. Thus,

there is excess idle time, and Torncatv achieves only about 3/4 of its theoreticai

relative speedup for these two sizes.

•

Dual-Processor Nodes Versus Single-Processor Nodes: It was shown pre

viously that EARTH-NIANNA-S generally has better USE factors; the overhead

of communicating between processors outweighs the costs of performing the op

erations on one processor. Comparing Figures 7.17-7.18 with Figures 7.12-7.13

show that for the fine-grain applications, the single-processor implementation gives

better speedups for larger node counts. Once again, this may be due to better per

formance of the load balancer, and tuning of the balancer on each implementation

might change this advantage. However, the trend seen in Section 7.1.4, in which

196

•

•

•

programs with longer threads suffer on EARTH-MANNA-S due to long network re

sponse delays, is seen even more clearly as the node count gets large. In fact, in this

case the fully-parallel version of N-Queens outperforms the throttled version! As in

the earlier experiments, adding a watchdog timer improves things considerably, as

seen in Figures 7.22-7.24.

7.2.3 Performance of Updated EARTH-MANNA Systems

The final experiments performed with simulated off-the-shelf hardware involved a

siffiulated "modernized" i86o-based multiprocessor. USE factors and speedup curves

\Vere obtained for the 13 benchmark/platform combinations, using a simulated sys

tem \Vith processor and memory parameters improved to levels corresponding to

the PowerPC 62o-based PowerMANNA, as described at the end of Section 7.2.1.

\Vhile the improvements in speed varied from application to application, the rel

ative performance of the various implementations, and the speedup curves, were

not significantly different from the results in the previous section, except for a few

anomalies. Thus, our main conclusions from the previous sections still hold true,

and the EARTH multithreading model will benefit modern processors just as well

as the i860. The data from these experiments are therefore placed in Appendix D.

7.3 EARTH on Other Multiprocessors

The :MANNA was the first off-the-shelf platform on which EARTH was implemented.

The first working version of EARTH-MANNA-D, including the runtime system de

scribed at the begjnning of the chapter and the compiler outlined in Section 7.3, was

completed in four months by a single designer. Since then, the EARTH team has

successfully implemented EARTH on other off-the-shelf platforms. Although these

systems are not the focus of this dissertation, they are discussed in this section to

demonstrate the generality of the EARTH model and to draw conclusions from the

results obtained.

7.3.1 EARTH-SP-2

The first non-MANNA platform running EARTH was the IBM SP-2 multiprocessor.

This platform is a little more "off-the-shelf' than the MANNA, which \Vas a research

197

•

•

•

machine specifically intended for multithreading and whose production was limited.

The SP-2 is widely used in large research laboratories and is thus a good bench

mark for testing the portability of the EARTH PXM. Furthermore, IBM generously

assisted us by providing proprietary low-Ievel information on the communication

layer in their system, allowing us to make interprocessor communication far more

efficient.

There are two major differences between the SP-2 implementation and the orig

inal MANNA version. First, changes to Threaded-C were mandatory. In EARTH

MANNA it is possible to reference the entire global address space with 32 bits (the

largest NIANNA implemented having only 1.28 Gbytes). Therefore, the original im

plementation of Threaded-C on EARTH-MANNA stored global addresses in regular

pointers, and there was no GLOBAL keyword. However, a larger SP-2 machine has

more memory than will fit into the address space of a single processor (4Gbytes) ,

so regular pointers won't be big enough to accommodate global addresses.

Therefore, explicit support for global addresses had to be added to Threaded-C.

The new type specifies (internally) both a processor-node number and an address

within that node. It is necessary to distinguish between global and local addresses

explicitly, for the EU may only access local addresses; the EU must send global

addresses to the SU for processing. This distinction was achieved by introducing a

GLOBAL type qualifier for pointers and by providing explicit conversion operations

between local and global pointers. (Support for GLOBAL handles has been added

to EARTH-MANNA, but this is only for code compatibility; the EARTH-MANNA

compilers ignore the keywords and use the original Ml'vlU-based translation scheme.)

The other change was to the methods used for compilation. Although the

EARTH-MANNA compilers have a processor-specific C compiler at their core, the

pre- and post-processors in Section 7.3 are finely tuned both to this compiler and

the i860 instruction set. Ta reduce further the development time of the implemen

tation on a given platform, it was decided ta make the Threaded-C compiler more

generic by expanding the source transformation of the pre-processor and eliminating

the post-processor entirely. Any processor-specific post-compilation tuning of the

abject code must be done at runtime by the runtime system, which is still tuned to

the specifie platform.

198

•

•

•

7.3.2 EARTH-Beowulf and Other Networks of Worksta

tions

The SP-2 is built of tightly-coupled off-the-shelf uniprocessors. An even more generic

approach to building inexpensive multiprocessors is the Network Of Workstations

(NOW) approach, exemplified by the Beowulf system [15]. Beowulf-class systems are

formed quickly and easily by connecting ordinary microcomputers (e.g., Pentium

based PCs) together with fast Ethernet (100BASE-T) switches. These systems

typically run a standard operating system such as Linux.

Because the Beowulf is gaining in popularity as a low-cost alternative to tightly

coupied multiprocessors, EARTH was ported to this system to make it available for

experimental use. (The Beowulf implementation was first publically demonstrated

at CalTech in January, 1998, with 60 nodes running the Povrayapplication.) The

compiler is the same as the portable compiler used for the SP-2. Like the SP-2

implementation, EARTH-Beowulf uses inlined code for EARTH operations as in

EARTH-MANNA-S. The user code and the runtime system (i.e., the EU and SU)

run as separate OS processes, but the EU runs as a single process, and aIl switching

between fibers is the responsibility of the runtime system. Finally, the internode

communication uses TCPIIP, since the low-level communication primitives of the

SP-2 are unavailable here.

The Beowulf system is the most generic version of EARTH available, though

this portability cornes at the price of performance. It was recently ported to a

PowerMANNA (the PowerPC 620-based successor to the j\;IANNA), requiring only

a few hours of effort. (This system was first demonstrated, again using Povray, at

Supercomputing '98.) The TCPIIP layer on the PowerMANNA uses the MANNA

link chips and crossbars, rather than a standard Ethernet system, and is thus much

faster, but it still incurs the OS overheads associated with TCPIIP. (There are plans

to make a more finely-tuned implementation specifically for the PowerMANNA,

similar to the MANNA implementations.)

7.3.3 Clusters of SMP Workstations

Tightly-coupled multiprocessors and networks of single-processor workstations rep

resent the endpoints on a !ine representing the distribution of processors and mem

ory. Sorne researchers have suggested the benefits of systems between these two

199

•

•

•

extremes, in which small multiprocessors with local shared memory are intercon

nected, but two different clusters either do Dot share memory or have much higher

latencies for shared-memory access than two processors in the same cluster. The

EARTH Architecture Model already accounts for this possibility; Section 4.2.1 aI

lows the EU to have multiple processors.

EARTH has been ported to a network of 16 workstations at the University of

Delaware [80]. Each machine has 4 250MHz UltraSPARC-II processors, shared mem

ory connected to the processors through a local crossbar, and a high-speed Myrinet

network interface. The implementation of EARTH is based on the generic EARTH

Beowulf system with Tep/IP, but the runtime system has been modified to handle

multiple EU processors. Each CPU is a separate single-processor node, but the load

balancer favors local processors when distrihuting tokens~ on the assumption that

the invoked procedure is likely to access data stored on the originating processor.

The Delaware team is currently investigating an implementation more like EARTH

MANNA-D, with separate EU and SU, except that the EU consists of three of the

four processors.

7.3.4 Observations

This chapter has presented several implementations of the EARTH EVM-A on off

the-shelf multiprocessors. The main focus of this dissertation is the MANNA-hased

implementatioDs, and a repeating of the experiments on aIl the additional platforms

discussed in this section would lead to an overwhelming amount of data to present.

Rather than present ail the data, this chapter will conclude with a general ernpirical

comparison of the systems and sorne conclusions which can he drawn.

One important lesson is the importance of removing as many overheads as pos

sible from the synchronization and communication operations. Unfortunately, these

are the areas in which traditional multiprocessing systems often place the most over

heads. Of aU the EARTH implementations, the ~1ANNA platform is the fastest, if

dock speeds are normalized. AIl essential multithreading operations (thread gener

ation, thread synchronization, and passing of data hetween threads) are performed

at the user level, eliminating the overheads of interacting with the operating system.

The systems discussed in this section all require OS intervention to cornmunicate

200

•

•

•

between processors, and performance varies inversely with the amount of interven

tion needed. The generic system, which uses separate processes for EU and SU,

and uses Tep!IP for communications, does the worst, especially for fine-grained

programs, while the SP-2 does much better, thanks ta the low-level access that the

EARTH RTS bas. From this it can be inferred that OS-Ievel threading would he

even less appropriate for an EARTH-like system.

Of course, one reason for requiring OS intervention for certain operations is

to keep access ta certain essential resources under the protection of the kemel,

especially in multiuser environments. A dual-processor system such as EARTH

MANNA-D provides an opportunity for such a protection scheme without sacrificing

performance. In EARTH-MANNA-D, only the Communication Processor (emulat

ing the SU) needs to access the network. The SU can therefore run as a privileged

process while the EU only runs user code, interacting with the SU only through the

EQ and RQ (which also can have access restricted for greater protection).

Another observation is that it is difficult to develop a single system wbich works

optimally for ail applications. The experimental results in Sections 7.1.4 and 7.2.2

show that sorne implementations work better for fine-grain paraIleIism, but worse

for coarse-grain programs. Since different levels of granularity are appropriate for

different applications, it is important ta find a system that works reasonably weil

for most applications rather than working best for only a few.

Our experiences with "generic" implementations of EARTH that rely entirely

on native compilers for code generation show that portable versions of EARTH are

possible, and can be brought up quickly on new multiprocessors so long as they

support the standards on which the portable irnplementations are based. This is

much more in Hne with the idea of EARTH as a programming model rather than

an architecture. However, such generality cornes at the price of performance. For

best performance, both the runtime system and the compiler need to be tuned to

the specific characteristics of the architecture. Higher-Ievel abstractions such as

EVM-A and Threaded-C are sufficient to ensure portability of applications across

platforms, provided they are well-planned. Portable systems, however, rnay be ideal

for one-of-a-kind systems where the effort of a fine-tuned implementation cannat he

supported.

Our final observation is that parallel computers based entirely on off-the-shelf

processors can go only sa far without specialized hardware support. Such parallel

201

•

•

•

machines offer a quick and law-cast means ta get started in general-purpose parallel

programming, but they have limitations. \Vhile aIl implementations of EARTH

were able ta exploit modest amounts of parallelism in aU applications, none were

able to extend this ta a larger number of procesors (a hundred or more) on enough

applications ta be considered a general solution to the problem of attaining sucb

levels of parallelism.

Therefore, it is time to start moving along the evolutionary path toward ma

chines specifically built for multithreading and parallelism. The next chapter takes

up the issue of specialized hardware support for machines still primarily based on

commodity processors. Experiments there show that snch hardware goes a long way

toward addressing the performance concerns raised here.

202

•

•

•

Chapter 8

ToW"ard a CustOlll EARTH

IlllpleOlentation

The previous chapter demonstrated that a viable EARTH system could he emulated

on an off-the-shelf multiprocessor and achieve good ahsolute and relative speedups

on many applications.

Nevertheless, our experimentations with the EARTH-NIANNA system, the most

efficient of the EARTH implementatioDs so far, showed that there are limitations to

this approach. The system works quite weil when threads are coarse and synchro

nizations are not too frequent, for the overheads of fiher switching and interacting

with the Event and Ready Queues take a small fraction of the total computation

time. But as threads become smaller and more oumerous, these overheads start to

dominate and drag down total performance.

One result of this is that programmers have to spend extra time thinking about

how to coarsen their programs without sacrificing parallelism (or rely on compil

ers, such as the EARTH-C translator [52], to do this for them). When members

of the EARTH team were writing applications in Threaded-C (sorne of which are

used in this study), sorne found that a large part of their effort was spent in such

coarsening. For divide-and-conquer programs this rnay iovolve simply writing both

a parallel and a sequential version of the sarne routine, and switching from parallel

recursion to sequential execution after descending enough levels in the caU tree (as

in the N-queens program in our study). In other cases, coarsening might he more

complicated, requiring algorithmic changes to achieve the same results with fewer

threads, or figuring out ways to combine tiner threads into larger units to amortize

203

•

•

•

synchronization and communication costs.

In either case, this effort goes against our stated goal of programmability. In

our comparison of hypothetical architectures in Section 1.2.4 (see Figure 1.1), we

said that architecture A \Vas the ideal vehicle for quick implementations of parallel

programs with acceptable performance. Yet for sorne applications. our EARTH

MANNA programmers followed a curve more like B due to the extra effort of coars

ening. Furthermore, such efforts are even more difficult to program into a high-Ievel

translator that is targeting Threaded-C code.

Reducing the number of threads to improve speedup for a small number of nodes

may end up hanning the program's scalability on larger machines. Coarsening a pro

gram reduces the supply of tokens available for load halancing, while enlarging the

machine increases the need for tokens. Furtherrnore, as the number of tokens per

node decreases, the variability of token execution times becomes a bigger factor in

the success of the load balancer, as there will be fewer tokens to "average ouf' the

running times. The programmer may compensate for these problems, by making

the number of tokens generated proportional to the node count (NUM-NODES in

Threaded-C, for example), and by trying to make sure the threads have roughly

equal running times. But these added burdens rnerely exacerbate the programma

bility problern.

Our goal, therefore, is ta lessen the need for programming effort (and transla

tor/ compiler complexity) by making the machine better able to support fine-grain

parallelism. The architectural model for EARTH describes the SU as a separate

unit with specialized functions. The first section in this chapter demonstrates that

a module specialized to the 5U's tasks can support srnaller grain sizes effectively,

leading to improvements in bath absolute and relative speedups. The second section

looks at further henefits in combining and partially integrating the EU and SU cores,

which is the next step in the evolutionary path. The final section considers sorne of

the ramifications these findings may have for future high-end processor design.

8.1 An External Synchronization Unit

Implementing the SU functions in a custorn unit would produce a machine with

many advantages over the multiprocessor platforms in the previous chapter. Overall,

a specialized SU \Vould he able to perform EARTH operations much faster than

204

•

•

•

a general-purpose processor executing RTS code. Anode based on a hardware

SU would retain the advantages of a dual-processor system, such as removing the

hurden of network interaction from the main processor, while eliminating the speed

disadvantages that made sorne of the henchmarks ron slower on the dual-CPU nodes

than on the single-CPU nodes.

First, communication between the EU and SU would he faster. Typical proces

sors are not designed to act as simple slave devices on a bus. It is difficult for one

processor to communicate with another without incurring a lot of overhead. The

software queues between the AP and CP in EARTH-MANNA are about the best

that can be done with snch a system.

A hardware SU would perform its specialized tasks much faster than a general

purpose processor executing RTS code. Even a simple operation such as a synchrû

nization operation iDvolves fetching a sync count, decrementing, testiog for zero and

writing back, which cao take more than a dozen instructions io the i860. Logic built

for this purpose, with sync slots stored in a special cache, should be able to do this

in a few cycles at most. This would decrease the latency of EARTH operations,

which would reduce idle time in cases where these operations are on a critica! path.

Furthermore, a hardware SU couId have severa! semi-independent modules op

erating in parallel, since it isn't constrained by the semantics of a single sequential

stream. For instance, one part couId be receiving messages from the EU, another

part polling the link chip, and a third module making load balancing decisions, aIl

at the same time. This would further decrease the latency of EARTH operations,

for interactions on one interface would not be stalled while the CPU is working on

the other interface.

Both the faster execution of SU functions and their execution in parallel would

increase the throughput of the SU, making it hetter able to handle higher workloads.

Preliminary experiments with an EARTH implementation on 4-CPU workstations

suggest that, for fine-grain applications, a single CPU emulating an SU can hecome

overloaded if it tries to support the other three CPUs at the same time. A hardware

SU would be better able to handle a multiple-PE Execution Unit.

The faster and parallei execution of SU functions would allow greater complexity

in the tasks performed. The operations on an emulated SU must be kept simple to

avoid overloading the CPU. Thus, sorne components are implemented in the mast

straightforward way. The Ready Queue, for instance, is a simple FIFü queue in the

205

•

•

•

off-the-shelf EARTH emulators. However, the EARTH model allows events in the

RQ to he reordered, and this could he done to optimize for locality, for instance.

Load balancing is another area for improvement. The load balancer on EARTH

MANNA has to avoid using too much network bandwidth in distributing workload

information, since traffic between the SU and link competes with the EU for bus

access. Furthermore, the RTS can't spend much time processing token requests

or making an optimal decision where to send tokens. CODsequently, the RTS load

balancer often makes suboptimal choices, and sorne nodes take a long time to receive

any work. Our speed-up curves in Section 7.2 often show performance leveling off

as the number of nodes increases, mostly reflecting the worsening effectiveness of

the load balancer.

Finally, if produced in suflicient volume, a hardware SU would be much cheaper

than a state-of-the-art microprocessor of comparable performance. Major sections

of the typical microprocessor are irrelevant to the SU and could he eliminated, sucb

as the floating point logic and instruction cache. Other components of the modern

superscalar processor, sucb as the reorder buffer and register renaming logic, would

not he needed by a hardware SU hecause it would not he trying to extract maximum

paral1elism from a piece of sequential code.

This section proposes an SU interface and top-Ievel design, and performs SEMi

simulations to measure the henefits of this design compared ta the multiprocessor

versions. The SU proposed here is designed specificaUy for the MANNA system.

However, with minor modifications it should be equaUy suitahle for anode based

on another processor, or can he made more portable by having an interface for a

common bus standard such as pel.

8.1.1 An SU-Based EARTH Node

The EARTH architecture in Figure 4.11 shows separate modules for the EU, SU,

and queues (EQ and RQ), and separate paths to memory. However, a MANNA

based SU would need ta read and write program data on the same bus as the EU,

because the i860XP's cache coherence is based on bus snooping. However, if the SU

hardware and memory system can support dual ports, a separate bus can he used

for SU-specific traflic, as shown in Figure 8.1. This traffic would include aU link

traffic (since the EU no longer needs to access the link) and any memory which is

206

US

EU BUS
1 1 1

EU va SU UNK r-t--

1 TSU B
1

L2

MEM

•

Figure 8.1: Node with Hardware SU (Separate Bus)

EU BUS
1 1 1

EU 1/0 SU LINK h-

I

SU BUS1

_______ 4

1

L2

MEM•
Figure 8.2: Node with Hardware SU (Integrated Link)

•

specifie to the SU (since coherence with the EU's cache is not needed). The latter

includes sync slots (which are fiot be manipulated directly by the EU) and any extra

buffering needed because it doesn't fit in the SU chip.

An alternative design is to integrate the link and SU into a single chip. A major

part of the link chip's logic is occupied by a general interface to the MANNA's 64-bit

data bus and 32-bit address bus, including special control and status registers used

by the processors. This logie is no longer needed if a regular processor is not using

the link. It should be possible to integrate the link's FIFü queues and crossbar

interface into the SU, especially since the SU in Figure 8.1 requires its own driver

for the general-purpose link chip, and this driver could be eliminated as part of the

integration. The alternative configuration is shown in Figure 8.2. Here the SU bus

is shawn merely as an option because, given a sufficiently large cache in the SU,

there should be so little need for accessing the main memory from the SU that using

207

•

•

•

the EU bus should not hurt performance signifkantly.

In these configurations, the EQ and RQ are included in the SU. Although there

are off-the-shelf FIFO units that could he used for the queues, they are not expected

to he very large, and integrating them ioto the SU allows random access to the

qu~ues by the SU, making possible the reordering of rearly fibers, as previously

described. Furthermore, direct contact between the EU and SU allows for auxiliary

information to be passed from the EU to the SU through the address lines, as

explained in the next section.

8.1.2 The SU Interface

How do the EU and SU communicate in anode such as Figure 8.2? The link chip

in the MANNA currently allows data written to the link's FIFû to be tagged by

writing to different addresses in the link chip's address space. This idea can be

extended to create different addresses for each of the EARTH operations. It would

Dot be necessary to send an operator tag on the data bus, meaning that EARTH

operations could be sent over the bus more quickly.

Use of tagged addresses can be extended even further by using sorne of the

address bits to send small pieces of data. There are not many EARTH operations,

so they should require only a small number of bits. On the other hand, many

EARTH operations have operands which in most cases are very small integers. Local

synchronizing operators typical1y select a small sync slot or fiber number (less than

10 in aIl our benchmarks). Block moves of structs and arrays of fixed size often have

small byte counts which are compile-time constants, and procedure invocations have

short argument lists of fixed length.

In this implementation, the address space of the SU covers a region of the memory

address space reachable using a single immediate offset from a base address. The

i860 has 16-bit immediate offsets which may be used in load and store instructions.

The EU has a base address which is permanently stored in a register set aside for

addressing the SU (or which can be regenerated in a single instruction). From this

hase, a range of 2 L6 addresses can he specified in a single memory access using a

constant offset.

This 16 bits can be divided into a basic tag field and a number field for passing

short integers, e.g., small sync slot numbers. There can be two variants of each

208

•

•

•

operation, a "compressed form 7
' using the number field and a "long" fonn using the

data bus to pass this information. The long form is used if the value that would go

in the number field (e.g., the sync slot number) is too large, or unknown at compile

time.

NIost EARTH operations have more than one operand (particularly when the

long form is used) and consequently will require writing to the SU more than once.

Thus, each EARTH operation requires a particular sequence of reads or writes. The

first access in a sequence identifies the operation; from there the SU knows the

identity and purpose of each subsequent field read or written so that the transfers

can occur without any additional tagging. Sorne operations may allow tagging of

sorne additional fields ta permit more options, and may allow additional address

fields to be used to transmit small integers.

With synchronizing operations that specify local slot or fiber numbers, snch as

SYNC or SPA\VN, the slot and fiber numbers are only meaningful in the local

frame context. Therefore, the SU must know the CUITent frame when it receives

these events from the EU. The SU keeps a register with the current frame identifier

so that it can produce the proper sync slot locations and instruction pointers. This

register is updated whenever a new fiber is removed from the RQ.

Remote sync and spawn always require using the data bus, because they must

pass global addresses to the SU (sync slots or instruction pointers). Remote spawn

passes both an IP and an FID to the SU. They may be passed one at a time or

together in a single double-word store (the system bus includes bits to indicate the

data size, which can be seen by the SU). The latter may be useful if register pairs

are used to hold (FID,ID) pairs, since register pairs may be used in double-ward

store instructions.

Most of these operators are executed by writing ta addresses in the SU ad

dress space. Two operators, however, use load instructions rather than stores. The

NEXT-FIBER operation reads an entry from the RQ and returns the (fid, ip) pair.

Either the two addresses can be read sirnultaneously (as a double-word), or the

IP is read first, in which case the next load reads the frame address. The opera

tion also copies the pair read from the RQ into the SU's context register, so that

slot and fiber numbers from the new fiber are matched to the right frame. The

END-PROCEDURE operation also fetches the next fiber from the RQ. It also tells

the SU to terminate the CUITent procedure and deallocate the current frame.

209

• System bus Network

•

•

t t
1 EU interface Network interface1 1

~

EU message Remote msg.
assembly assembly

~ ~

1 .l- I 1 .l- I uUlgolng...._..._._.._.
..1- . --

Igauy gygln Queue

aueue Queue :
1 • t

•• Tok9n

1 Internai cache 1 1
FID/IP's Queue

Figure 8.3: Synchronization Unit Block Diagram

Finally, sorne addresses are reserved for configuration. The simulated SU in

the next section doesn't need this, for it has been tuned to the MANNA and i860.

However, the SU cao be made more portable if the system cao configure it by

writing to certain memory-mapped registers ta set system parameters. For instance,

if the SU is used with a Sparc-based system, the data fields should be reduced by

three bits because Sparc processors only have 13-bit immediate offsets in load/store

instructions.

8.1.3 SU Design and Simulation

While an actual hardware design is beyond the scope of this dissertation, a basic

top-level design \Vas done in order to guide the construction of the simulator. A

black diagram is shown in Figure 8.3.

The SU has the following storage areas:

210

•

•

•

• The core of the SU is the internai Event Queue, which is a pool of uncom

pleted events waiting ta he finished or fonvarded to another node. There may

he times when many events are generated at the same time, which will 611 the

queue faster than the SU can process them. For practical reasons, the SU can

work on only a small numher of events simultaneously. The others wait in a

suhstantial overflow section.

• The internai Ready Queue holds the list of enabled (f id, ip) pairs.

• An outgoing message queue buffers messages that are waiting ta go out

over the network.

• The Token Queue hoIds all tokens (generated by the TOKEN instruction)

on this node that have not yet been assigned ta a Dode.

• The FID/IP section stores the frame identifier and instruction pointer for

each PEe

• An internaI cache holds recently-accessed sync slots and data read by the

SU (e.g., during data transfers).

These storage units are controlled by the following logic blacks:

• The EU interface handies loads and stores coming from the system bus. For

a load, the EU interface either reads an entry from the Internai RQ and puts

it on the data bus, or puts the FID left over from a previous load on the data

bus. In the former case, it identifies the PE from the address and updates

the corresponding entry in the FID/IP table. \Vrites are forwarded ta the EU

message assembly area.

• The EU message assembly area collects sequences of stores from the EU

and converts slot and fiber numbers to actual addresses. Completed events

are put inta the EQ.

• The Network interface drives the link chip (if the link is external) or the

link interface (if the link is internai). Outgoing messages are taken from the

outgoing message queue. Incaming messages are fonvarded ta the remote

message assembly area.

211

•

•

•

• The Remote message assembly area is like the EU message assembly area.

It injects completed events iuto the EQ.

• The Internai Event Queue has logic for processing aU the events in the EQ.

It accesses aH the other storage areas of the SU.

To compare the performance of an EARTH computer with hardware SUs to an

off-the-shelf multiprocessor emulation of EARTH without actually building an SU

requires an accurate simulator. The SEMi simulator, described in Section 7.2, was

primarily built for this purpose. After SEMi was able ta simulate the base MANNA

machine successfully at an acceptable level of accuracy, a module simulating the

behavior of a hardware SU was added. This module (2,400 lines of C code, induding

statistics-gathering and error-checking) was modeled aCter the design in Figure 8.3.

In keeping with our goal of realistic simulations, the parameters of the module

are based, whenever possible, on hardware already existing on the MANNA. The

speed of loads and stores to the SU, for instance, are the same as loads and stores

ta the IvIANNA's link chip. InternaI operations in the SU are programmed with

conservative timing assumptions.

The final step needed in order to make realistic experiments is to modify the

Threaded-C compiler so that the executable accesses the SU's memory-mapped

addresses rather than the software queues. This required small changes to the

Threaded-C pre-processor (see Figure 7.3), and slightly more substantial modifica

tions to the Threaded-C post-processor. However, the changes amounted to less than

10% of the source code lines in both modules, for the basic conversion techniques

are the same.

8.1.4 Experimental Results

The beginning of Section 8.1 gave a list of reasons why an EARTH computer based

on a custom SU should perform much better than a system based on a stock proces

sor emulating SU functions. To validate the performance daims, the experiments

from Sections 7.2.2 and 7.2.3 were repeated using the hardware-SU incarnation of

SEMi, described in the previous subsection. The experimental results demonstrate

the foUowing benefits of a hardware SU:

Faster operations: The basic EARTH operations are faster, many considerably

so, both in the dispatching of operations from the EU to the SU and in the

212

•

•

•

processing of these requests within the SU itself. This decreases message

latency substantially and brings bandwidth close ta the network maximum

(Section 7.1.4.1).

Single-node gains: Single node performance, as measured by USE factors (see

Section 7.1.4) increases for all benchmarks. The improvement is most dra

matie for benchmarks with poorer USE factors in the EARTH-MANNA sys

tem (Section 8.1.4.2).

Improved scalability: Speedups (even relative speedups) are higher for all bench

marks. For most benchmarks, the "kneé" of the curve occurs at a much higher

number of nodes for the hardware-SU system than for EARTH-~[ANNA (Sec

tion 8.1.4.3).

Simpler programmability: Speedups \Vere respectable, if not optimal, for

"naive" programs in whieh no programmer effort was made to control paral

lelism. This suggests that less programmer effort is required to achieve a given

level of performance on a hardware-SU system than on a software-emulation

platform (Section 8.1.4.3).

8.1.4.1 Performance of Individual Operations

First, the performance of individual operations was measured using the same pro

cedures as in Section 7.1.4.1. Table 8.1 shows the results of the pure latency and

bandwidth tests (see Figure 7.4) applied to an SU-enhanced system, \Vith the results

from Table 7.1 included for comparison. The hardware SU shows a dramatic drop

in raw latency (42% lower than the faster of the two off-the-shelf systems), making

EARTH-MANNA-SU faster than aIl the commercial systems surveyed [28]. This is

due to an across-the-board drop in delays for aIl parts of the synchronization opera

tion except the network delay itself, which is not affected by the node architecture.

(Indeed, our analysis shows that almost a quarter of the remaining latency is caused

by the network.)

The bandwidth achieved is slightly higher than EARTH-MANNA-D, though the

latter already does a good job of using available bandwidth. Most of the improve

ment is due to smaller packet headers in the block move. The hardware SU only

needs a few bits to identify the type of the block, because it can use an internaI

213

~ su 1 Dual-processor 1 Single-processor 1

Latency (ns) 1414 4091 2450
Latency (cycles) 70.7 204.5 122.5
Bandwidth (MB/s) 44.4 42.0 28.8
Bandwidth (% of peak) 88.8 83.9 57.5

1 Parameter•
Table 8.1: Latency and Bandwidth on EARTH-MANNA-SU vs. EARTH-MANNA
DIS

•

Operation Nades with hardware SU Single-processor Dodes
Sequential Pipelined Sequential Pipelined
Loc. Rem. Loc. Rem. Loc. Rem. Loc. Rem.

(r)sync 480 1130 120 340 1000 2290 380 668
(r)spawn 480 1350 - - 920 2500 - -
get...sync 1060 2280 480 440 1440 4666 700 1502
data_(r)sync 600 2160 360 380 1280 4340 560 1200
invoke (1 arg) 1740 2640 1125 735 2300 5360 1611 2165
invoke (5 args) 2220 3660 1506 997 2460 5640 1768 2231
invoke (9 args) 2660 4361 1868 1105 3060 6500 2368 3165
invoke (18 args) 3020 5400 2148 1658 3220 7620 2528 3537

Table 8.2: EARTH Operation Latencies (nsec.) on EARTH-MANNA-SU vs.
EARTH-MANNA-S

•

hardware lookup table ta dispatch the incoming block. The software emulators in

EARTH-MANNA-D/S send the 32-bit address of the handler for the block move

because that is more efficient than looking up the tag in software.

The experiment measuring the latencies of individual EARTH operations, in

both sequential and pipelined modes, was repeated for the SU. The results are

in Table 8.2, with the results for single-processor nodes included for comparison.

(EARTH-MANNA-S is faster than EARTH-NIANNA-D in aU cases.) The table

shows that aU EARTH operations are faster on the hardware SU than on the emu

lated systems, 2 to 3 times faster in many cases. Especially important ta note is the

improvement in the pipelioed cases, which gives an indication of the performance

benefits which cao be realized if the code effectively overlaps communication and

computation.

214

•

•

•

Operation SU Dual
1. Local EU sends GET...5YNC to EQ 120 780
2. Local SU reads event from EQ 80 500
3. Local SU determines location of source~ sends request there 40 500
4. Network transfers message 600 600
5. Remote SU reads message from network (+ polling delay) 100 610
6. Remote SU reads value from source reference in its memory 40 300
7. Remote SU sends message ta network 60 500
8. Network transfers message 600 600
9. Local SU reads message from network (+ polling delay) 100 610

10. Local SU writes value ta destination reference in its memory 80 200
Il. Local SU decrements local sync count, places fiber in RQ 40 600
12. Local EU reads fiber from RQ 420 720
__________~_o_tal 12280 1 6520 1

Table 8.3: Component Latencies (nsec.) for GET...s\~C on EARTH-MANNA-SU
and EARTH-rvIANNA-D

The sources of the improvements can be seen by analyzing~ using SEMi, the num

ber of cycles taken in each step of an EARTH operation. Table 8.3 breaks down the

time taken by each phase in a remote GET..5YNC operation on EARTH-MANNA

SU and EARTH-rvIANNA-D. The twelve phases listed are the twelve phases shown

in Figure 4.12, which illustrate GET..sYNe in an architecture with separate EU

and SU. 1

The final test of individual EARTH operations in Section 7.1.4.1 measured the

time taken by the EU to execute specifie operations (either by dispatching them

to the SU, or performing the operations within the EU itself in single-processor

nodes). Table 8.4 shows the data from Table 7.3 along with the times achieved

by the hardware-SU simulation. The table lists only the time needed by the EU

to initiate the operation on EARTH-MANNA-SU and EARTH-MANNA-D, not to

finish them. They are therefore relevant ooly if there is other work which can be

done while the SU is completing the operation, e.g., the operation is executed in

the middle of a fiber or there are other fibers waiting in the RQ. If this is not the

case, and the EU stalls until the operation is completed, then the eosts will more

resemble the numbers in Table 8.2.

IThe slight discrepancy between the total time for EARTH-MANNA-D and the sequential
latency for GET..5YNC reported in Table 7.2 reftects the inaccuracy of the simuJator.

215

•

•

•

Operation Hardware-SU Dual-CPU Single-CPU
Local Remote Local Remote Local Remote

(r)sync 40 60 504 504 300 588
(r)spawn 40 100 721 580 323 640
end-fiber 282 - 530 - 441 -
incr_(r)sync 60 60 561 554 300 620
data_(r)sYDC 80 100 580 606 480 660
get...sync 100 180 580 620 620 700
invoke (1 arg) 198 200 760 620 479 806
end_procedure (1 arg) 287 - 794 - 760 -
invoke (5 args) 557 400 1039 907 599 936
end_procedure (5 args) 303 - 1203 - 800 -

invoke (9 args) 677 640 1223 1210 960 1406
end_procedure (9 args) 312 - 1372 - 1040 -
invoke (18 args) 877 820 1766 1512 1099 1670
end_procedure (18 args) 312 - 1728 - 1060 -

Table 8.4: EU Costs (nsec.) of EARTH Operation on EARTH-MANNA-SU vs.
EARTH-MANNA-D/S

Once again, the hardware SU is significantly faster for aIl operations. The im

provement is greatest for the smaller operations such as SYNC and DATA...sYNC.

This is important, because the EARTH PXM was specifical1y designed to support

a style of multithreading in which small threads (fibers in our lexicon) synchronize

and exchange data with each other frequently. The results in Table 8.4 show that

these types of operations can be made to operate very quickly on an off-the-shelf

processor with only a small hardware extension. This means that this programming

paradigm can be supported efficiently, encouraging its use.

8.1.4.2 Single-Node Performance

The superior performance of the hardware-SU system for individual operations nat

urally suggests that complete programs will run Caster tao. The benchmarks used in

Section 7.1.4.3 \Vere therefore run on EARTH-rvIANNA-SU. The results for a single

node machine are shown in Table 8.5, with the numbers from Table 7.5 included for

comparison.

As expected, the improvements in latency for individual operations translates

into improved performance for aIl benchmarks. Most significant is the fact that

216

•

•

•

Benchmark Input USE factor (%)
Hardware SU Dual-processor Single-processor

Fibonacci 15 25.5 8.6 15.7
20 23.1 7.7 14.1
25 22.9 7.6 13.9
30 22.9 7.6 13.9

N-Queens-P 8 65.6 39.9 51.7
10 71.7 46.8 56.1
12 77.0 53.9 65.6

N-Queens-T 8 85.9 68.5 78.5
10 97.2 93.1 95.3
12 99.4 99.1 99.3

Paraffins 18 98.9 82.1 97.6
20 101.5 85.4 101.4
23 100.5 84.7 100.6

Tomcatv 33 96.8 89.3 92.2
65 98.9 91.4 93.7

129 101.0 93.2 95.6
257 101.9 93.7 96.5

Table 8.5: Uni-Node Support Efficiencies on EARTH-~IANNA-SUvs. EARTH
NfANNA-DjS

the poor performers on the off-the-shelf machines showed the greatest improvement.

Fibonacci, a worst-case scenario for multithreading overheads, runs nearly twice

as fast with a hardware SU as on EARTH-MANNA-S. N-Queens-P, in spite of its

unthrottled parallelism, achieves better than three-quarters the processor utilization

of the sequential version. The other benchmarks show smaller improvements, since

they \Vere already doing weIl on the off-the-shelf machines, but the reduction in

rnultithreading overheads helps these applications as weIl. Thus, a custornized SU

is not merely a special tool to help fine-grained applications only.

Furthermore, two benchmarks show USE factors above unity for sorne cases.

The USE factor obtained for Paraffins is similar to the USE factor on EARTH

l\rIANNA-S, which could be a compiling anomaly as suggested in Section 7.1.4.3.

The superunity USE factors for the larger Tomcatv runs seem to be partially due

to the large block mayes; the SU is effectively providing the same benefit as a DMA

chip.

217

• 80 . -_.

64 -
Q.
;:1

i48
8-

Cf)

32

• 30 (rel)- ~- 30 (abs). .

0 25 (rel)
- ~- 25 (abs)

1 20 (rel)
- ~- 20 (abs)

e 15 (rel)
- ~- 15 (abs)

8 16 32 48 64 80
Il of nodes

96 112 128

•

•

Figure 8.4: Speedups on EARTH-~IANNA-Sl!for Fibonacci

8.1.4.3 Parallel Performance

It is to be expected that the improvement in USE factors provided by the custom

SU will automatically boost absolute speedups by a corresponding factor. However,

it was argued in the beginning of Section 8.1 that such an SU would improve rela

tive speedups as weIl, because it could interact with the SUs on other nodes more

effectively than a software-based SU. Tables 8.2 and 8.3 show that remote fetching

is faster on EARTH-MANNA-SU, which can affect computations on critical paths

(as can be seen in Sections 7.1.4.4 and 7.2.2,by comparing the performance of ma

chines with single-processor nodes with and without polling watchdogs). Section 8.1

claimed that load balancing would also be more efficient, because the network could

be polled without interfering with local memory access, allowing more frequent ex

change of load information, and because specialized hardware could afford to make

better balancing decisions.

Figures 8.4-8.8, which show absolute and relative speedups on MANNA

EARTH-SU for the benchmarks tested in S~ction 7.2.2, confirm this prediction.

(Appendix C shows experimental results in a different format, allowing a direct

comparison of different implementations on the same benchmark.) AlI benchmarks

on EARTH-MANNA-SU show considerable improvements in absolute speed over

both the dual-processor-node and single-processor-node emulated systems. Almost

aIl benchmarks show better relative speedups as weIl, the only exceptions being the

218

12 (rel)
12 (abs)
10 (rel)
10 (abs)
8 (rel)
8 (abs)

- -+
~

a
- ~-

- ~-

128

....

",D

112

/.... '-- .. ~.. ~-
;'

96

--o--_:....~-~.:- .~ ---_ .. - . - ~ -

48 64 80
Il of nodes

32

• 128

112

96 . .

80
Q.
:::::1

"l:)

64CI)

!.en
48·

32

16 ..

8 ..

8 16

0 12 (rel)
- ~- 12 (abs)

10 (rel)
- ~- 10 (abs)

e 8 (rel)
- ~- 8 (abs)

1281129648 64 80
1# of nodes

328 16

16 .. - ,.

8-

Figure 8.5: Speedups on EARTH-~1ANNA-SUfor N-Queens-P

80 -

96 -

32 -

112,....-~-r---r-----r---r----r----,r---~----,

g. 64 .-
"t:l
CI)
<Il

~ 48 -

•

Figure 8.6: Speedups on EARTH-MANNA-SU for N-Queens-T

•
largest input case of Tomcatv, in which R 12D is 4% less on EARTH-MANNA-SU

than on EARTH-MANNA-D (nevertheless, A 120 is still higher).

Both factors mentioned above, improved load balancing and faster interaction,

have an effect on the improvement of the relative speedup. In most cases, the former

219

23 (rel)
23 (abs)
20 (rel)
20 (abs)
18 (rel)
18 (abs)

o
- -€)-

- ~-

- -+-

1281129648 64 80
"of nodes

328 16

64 ..

16 .

8

80.....-......----r---r-----,r---""""""T""--,.----r---r----,•

Figure 8.7: Speedups on EARTH-~IANNA-SUfor Paraffins

•

•

is the dominant factor. This is especially true for the first three benchmarks, which

have enough parallelism to avoid critical paths.

The effect of poor balancing can be seen in Table 8.6, which shows the evenness of

load distributions for the first two benchmarks on intermediate problem sizes running

on the largest simulatable configuration (120 nodes). In each of these benchmarks,

procedure instances have the same running time, within a factor of 2 or 3, making

the number of instances a reasonable approximation of the amount of work assigned

to a node. The table lists, for each combination of benchmark and platform, the

total number of procedure instances, the minimum load (number of instances on

the least-used node), maximum load (number of instances on the most heavily-used

Dode), and the standard deviation of the load distribution. Each of the last three is

expressed as a percentage of the average; a minimum and maximum of 100% wouJd

indicate the work is perfectly balanced.

Faster responses ta remote requests play less of a role in improving relative

speedups for these benchmarks, but are still a factor. This is particularly true

at the beginning of program execution, when only node 0 is executing the MAIN

procedure and all other nodes are idle. Here, the MAIN function is dearly in the

critical path, and the faster tokens and invokes can be sent ta other nodes, the

higher the speedup will be, especially for smaller problem sizes.

The benefits of faster responses can be seen most clearly in the Tomcatv bench

mark, which uses static partitioning rather than dynamic Joad balancing. In Sec

tion 7.1.4.4, Tomcatv was shown to lose sorne performance when each node has only

220

• 96 __.....--.....---......---y---.....,....--r---....,......----r--.

80 ...

64 : .

32 ...

16 ... , ...

8 ..

Il 257 (rel)
- - --- - ~- 257 (abs)

~ 129 (rel)
- -e- 129 (abs)

65 (rel)
- -+- 65 (abs)

e 33 (rel)
- ~- 33 (abs)

8 16 32 48 64 80
, of nodes

96 112 128

•

•

Figure 8.8: Speedups on EARTH-~IANNA-SUfor Tomcatv

Benchmark Total proc. Platform % of average on node 1

instances Min. Max. 0-

Fibonacci (25) 242,785 EARTH-MANNA-D 0 704 227
EARTH-~IANNA-S 66.8 182 26.4

EARTH-MANNA-SU 59.0 171 36.2
N-Queens-P (10) 67,150 EARTH-MANNA-D 0 723 222

EARTH-MANNA-S 60.9 153 26.9
EARTH-~IANNA-SU 88.8 110 5.17

Table 8.6: Comparison of Load Distributions on 120 Nodes in EARTH-MANNA
Implementations

one procedure instance, because computation and communication can no longer be

overlapped. This fact is not changed by a custom SU, but speeding up the com

munication reduces the performance loss. Switching from a processor-emulated SU

(EARTH-MANNA-D) to a custom device raises the relative speedup for N = 33

from 24.2 to 27.9, and for N = 65 from 47.8 to 55.3; each cuts the distance to its

theoretically maximum soeedup (31 and 63, respectively) by about half.

These improvements have corollary effects both on scalability and programma

bility. First, by comparing the speedup curves of different problem sizes for one

benchmark: one can see the relationship between problem size and scalability. In

aIl tests in this study, scalability improves as the problem size increases. But this is

221

•

•

•

true in general for more parallel programs, so it is more interesting to see how well

a given program scales with smaller sizes.

In each case, the hardware SU produces a curve with a much higher limit of

parallelism then the software SU. This holds true for the smaller problem sizes as

well, though their limits are lower. In sorne cases, the software SU's curve peaks at a

fairly low level of parallelism while the hardware SU's curve continues growing at the

high end of the curve. The Paraffins benchrnark (size 20) is one notable example: the

software-SU versions (Figures 7.15, 7.20 and 7.23) reach their maximal parallelism

before reaching 32 nodes, above which speed actually dedines, while the hardware

SU continues on an upward slope at 120 nodes (Figure 8.7).

The final observation concerns the impact of the SU on programmability. At the

beginning of this chapter, it was argued that reducing the overheads associated with

fine-grain parallelism would allow prograrnmers to expose parallelism freely rather

than make extra efforts to constraint it, which is sometimes difficult to do without

losing performance. While we have not made any systematic study of this issue

(the focus here being on maximizing parallelism), the two versions of N-Queens can

be viewed as representative of the two alternate approaches. The algorithmically

constrained N-Queens-T clearly outperforms the unconstrained N-Queens-P on the

software-emulated platforms. The difference is much smaller when a custom SU is

used; in fact, for 8 Queens, the fully-parallel version has a higher absolute speedup!

This suggests that going to a custom SU will reduce the programmers' need to write

coarse-grain code to maximize performance.

8.2 An InternaI Synchronization Unit

The preceding section demonstrated positive results for taking the first evolutionary

step away from pure off-the-shelf computers. A system containing custom SU hard

ware performs much better than a system with the same processor that emulates

the SU functions in software. The guideline in Section 1.3 suggests that the next

logical step would be to add the SU logic to an existing EU core. This would he

an intermediate stage between an external SU and a complete integration of the

SU functions into the EU (e.g., adding new opcodes to the EU's instruction set).

1t would be a more conservative jump, one that could use an existing processor

core design without significant design changes, and use any compiling technology

222

•

•

•

developed for the external SU version of EARTH.

In this phase, the SU would be placed on the periphery of the core of an off-the

shelf processor. The EU would still trigger the EARTH operations hy loading or

storing special memory addresses; thus, no changes to the SU's instruction pipeline

would be required. There would need to be modifications to the bus interface, since

the loads and stores would need to be redirected to the SU hardware.

Similarly, it would he useful if the SU were to share the data cache of the EU,

for data could be transferred between the two without invoking cache coherence

mechanisms. For instance, if the EU writes to an aITay and then tells the SU to do

a block move of that array, an external SU will likely trigger cache writehacks by

the EU's data cache when the SU starts to load the array into its internaI buffer.

Sharing the cache would avoid the extra cycles needed for these writehacks.

Thus, there would he two primary benefits in taking this step:

1. Operations would be dispatched to the SU even faster, further reducing laten

cies. More importantly, fiber switching times would decrease, because the EU

would be able to read the next fiber address from the RQ without the latency

of going off-chip.

2. Bus traffic would be reduced. This is most important for applications that

use EARTH operations frequently. Statistics gathered by SEMi show that

fine-grain applications often saturate anode 's local bus, causing the EU stail

not because there is no work to do, but because the SU is using the bus.

The benefits of this next evolutionary step can be tested by making minor mod

ifications to the SEMi simulator with its external SU module. An option was added

to this version of SEMi to enable dispatching of EARTH commands directly to the

SU and the sharing of caches between the EU and SU. No changes to the compiler

(for the external SU) were needed.

Experimental results demonstrate the benefits of this next evolutionary step.

Table 8.7 shows USE factors for the five benchmarks studied, and compares the re

sults obtained from an internal SU to the external-SU results from Table 8.5. While

aIl applications show improvements, except for the largest cases for Paraffins and

Torncatv, the most significant improvement is seen by the fine-grain applications.

These programs make the most use of EARTH operations, and hence suffer the

most from their overheads. The overheads of the fully-parallel version of N-Queens

223

•

•

Benchmark Input USE factor (%)
InternaI SU External SU Net Improvement

Fibonacci 15 56.8 25.5 +31.3
20 54.7 23.1 +31.6
25 54.6 22.9 +31.7
30 54.5 22.9 +31.7

N-Queens-P 8 89.7 65.6 +24.1
10 92.6 71.7 +20.9
12 94.2 77.0 +17.3

N-Queens-T 8 95.1 85.9 +9.2
10 98.8 97.2 +1.7
12 99.6 99.4 +0.1

Paraffins 18 100.2 98.9 +1.3
20 101.8 101.5 +0.3
23 100.5 100.5 0.0

Tomcatv 33 98.1 96.8 +1.3
65 102.5 98.9 +3.6

129 101.1 101.0 +0.1
257 101.9 101.9 0.0

Table 8.7: Uni-Node Support Efficiencies with InternaI and External SU

48
Q.
~

~
CI) 32 ..
8-

Cf)

16 ..

8 ..

8 16 32 48 64 80
"of nodes

96 112 128

..
- ~-

o
- -€)-

- ~
e

- ~-

30 (rel)
30 (abs)
25 (rel)
25 (abs)
20 (rel)
20 (abs)
15 (rel)
15 Cabs)

•

Figure 8.9: Speedups on EARTH-MANNA-SU (Internai) for Fibonacci

drop below 10% for all sizes tested, compared to the sequential recursive code. Even

Fibonacci now loses less than half of its performance to muitithreading overheads

even though these operations make up such a dominant part of its code.

The benefits of fast internaI sharing between EU and SU carry through ta parallel

performance. Figures 8.9-8.13 repeat the experiments of Section 8.1.4.3 with the

224

128 r-.....-.....,....---r------r---r----r----,~-.....,....-__:"1

Figure 8.10: Speedups on EARTH-MANNA-SU (InternaI) for N-Queens-P

•

•

112

96 ...

80 ..
Q.
~

'i 64 .. ~.
8-en

48 .

32 ..

16 ..

8 ..

8 16

112

96

80

Q. 64:::1
'0
CD
CD
Q.

48en

32

16 ..

8 ..

8 16

32

32

48 64 80
, of nodes

48 64 80
1# of nodes

96

96

112

112

128

128

----ET- 12 (rel)
- ~- 12 (abs)
--+-- 10 (rel)
- -+- 10 (abs)
~ 8 (rel)
- ~- 8 (abs)

--e-- 12 (rel)
- ~- 12 (abs)
--+- 10 (rel)
- -+- 10 (abs)
~ 8 (rel)
- ~- 8 cabs)

•
Figure 8.11: Speedups on EARTH-MANNA-SU (Internai) for N-Queens-T

new configuration. Most of the absolute speedups show improvements over the

external SU. However, in this case most of the improvement is attributable to the

gains in the USE factors. This makes sense, as the primary benefit of combining the

225

23 (rel)
23 (abs)
20 (rel)
20 (abs)
18 (rel)
18 (abs)

8
- ~-

- ~-

- -+
e

1281129648 64 80
Il of nodes

328 16

64 .

80r--~~--r---""""'--""---"---""----r-----'

16 .
8 ..

•

Figure 8.12: Speedups on EARTH-l'vfANNA-SU (Internai) for Paraffins

96 .. 257 (rel)
80 . - -te:- 257 (abs)

0 129 (rel)
- ~- 129 (abs)

64
1 65 (rel)

Co - -+- 65 (abs)• :l
't:'
~ 48 e 33 (rel)
Co - ~- 33 (abs)(J)

32

16

8

8 16 32 48 64 80 96 112 128
Il of nodes

Figure 8.13: Speedups on EARTH-rvIANNA-SU (InternaI) for Tomcatv

•

EU and SU is improving local interaction between the two; the speed of external

access is the same as before. In fact, sorne of the rela~ive speedup curves actually are

worse when the EU is internaI, though the absolute speedups still show improvement.

In these cases, the internaI connection enables Execution Units to start new fibers

more quickly, which causes them to grab more work from the SU before the load

balancer has had a chance to distribute the tokens ta other nodes.

226

• 8.3 Future Directions

•

•

This dissertation has presented a program execution model for parallel multithread

ing, and outlined an evolutionary path hy which this model can he introduced to

paraliei machines based on off-the-shelf processors, which are then improved by the

graduaI introduction of hardware customized for this model. The progression of

experimental studies from the previous chapter and this chapter demonstrate the

improvements which can he expected by following sucb an evolutionary path. But

what are the implications of these results for future architecture development?

In the short term, computer designers may wish to consider starting down the

path outlined by this work, supporting the EARTH PX?vl or a similar model. The

risks are minimal, hecause the EARTH architecture features are extensions to a

conventional machine. They do not affect the performance of programs that already

run on that machine (sequentiai programs, or parallei programs using an off-the

sheif system such as MPI), which is Dot the case if one immediately jumps to a

custom parallel machine.

The next step after combining the EU and SU cores, as outlined in Section 1.3,

is to integrate the PXM fully into a processor. This wouid mean, for instance,

supporting EARTH operations directly using special opcodes rather than accesses

to memory locations. This would make fine-grain code even more efficient. For

instance, a get-rsync-l operator takes three full addresses (not slot numbers) as

arguments, which means that an i86D processor driving an external SU would Deed

three store instructions. Such a sequence might look like the following:

st.l r16, Ox2400(r15)

st.l r17, O(r15)

st.l r1S, Ox20(r15)

where it is assumed that

• Register r15 contains the base address of the SU unit;

• Register r16 contains the sync siot address;

• Register r17 contains the source address;

• Register r18 contains the destination address;

227

•

•

•

• The immediate offsets encode tag information for the SU.

This could be replaced by a single instruction, such as

getsync.l r17, rlS, r16

which can easily fits into the format of 3-register instructions in the i860 and most

other RISC processors. Further experimentation will be needed to see how much

improvement is possible.

There are other possibilities for improvements to the base architecture. Sec

tion 4.3 proposed extensions ta the EARTH PXM to simplify programming the

EARTH, and sorne of these work best if supported in hardware. Adding intelligence

ta the Ready Queue to prioritize fibers to exploit locality was also recommended in

Section 4.2.5. These can be added to an external SU, though their incorporation into

an internai SU would provide even greater benefits. Other potential improvements

primarily affect the architecture and are transparent ta the PXM. For instance, just

as the Register Use Cache (proposed in Section 4.2.5) could enable an EU with

multiple register sets to use these efficiently, an analogous module could speculate

merIlory accesses, based on the state of the RQ, and try ta manipulate the L2 or

LI cache accordingly. For instance, if the SU sees that a particular fiber is about to

be read from the RQ, the SU could ensure that certain parts of that fiber's frame

are in the L2 or LI cache (depending on \Vhether the SU is externat or internai)

on the assumption that the fiber is likely ta access them soon. Another possible

improvement, appropriate for an SU which is fully integrated into a processor with

multiple register sets, is for the SU to preload a register set \Vith values from the

frame before a fiber begins execution.

In the long term, there will be fundamentai changes in processor design as chips

continue ta get larger and denser. The question often asked during the past decade

by architects who expect conventional ILP methods ta yield diminishing returns is:

how can the extra transistors brought by increasing integration he exploited? It is

generally assumed that there will he more than one processing element on a single

chip, though there are many ways tbese can he organized.

For instance, the simplest organization scheme is to build independent processor

nodes on a single chip, as shown in Figure 8.14. In this abstract architecture, it is

assumed tbat each of the "execution pipelines" fetches and dispatches instructions

from a separate thread, and bas its own memory, registers and functional units.

228

• MEM

EXEC.
PIPE

MEM

EXEC.
PIPE

•••

•

•

Figure 8.14: Simple ~Iultiple-CPUOrganization on Single Chip

"Memory" is used here in a generic sense; sorne have proposed placing large RAM

blocks on the processor chip [72], but this could also be a second-Ievel cache.

~Ifost other proposed organizations can he viewed as a variant of this structure

with sorne components shared between common elements:

1. Functional units can be shared among the execution pipelines, provided that

the latency of the interconnections can he kept low. This can increase uti

lization of the functional unit hardware, as functional units driven by single

instruction strearns tend to be underutilized due to unevenness in the mix of

instructions perfonned.

2. The preceding structure can be enhanced by giving each execution pipeline

a superscalar-like multiple-issue capability, and by sharing register sets and

memory. This is the Simultaneous !vIultithreading architecture [126], whose

simulation has dernonstrated efficient use of the functional units, leading to a

high instruction issue rate, provided there are enough independent threads.

3. Either of the precediog two cao have separate cache/memory units, possibly

connected internally for maintaining sorne coherence, or cao share the same

cache lines and rnemory through a fast interconnection network.

229

•

•

•

Arguments have been made for many of the possible multiple-CPU organizations,

and it is difficult to predict which will prevail, because the tradeoffs mostly depend

on details of the implementatioo, many of which are unknown at this time. Yet aIl

of these architectures require multiple streams of instructions in order to achieve

their potential, and EARTH provides the means for programmers to generate these

threads easily. EARTH's two-Ievel thread hierarchy allows different fibers to run

with different contexts, so the simpler organizatioDS above would support EARTH

adequately, meaning that the EARTH model does Dot mandate one organization or

the other. Synchronizatioo Units could be incorporated ioto one of these chips, and

programmed to exploit whatever sharing is provided.

In conclusion, these multi-CPU designs could aU benefit from supporting the

EARTH PXM. This would complete the last link in the evolutionary chain from

off-the-shelf hardware to full-custom support for our execlltion model. We have

shown io the last two chapters that efficient parallel programs can be writteo in

a language based 00 the EARTH PXM, and that they cao be run with increasing

levels of efficiency as the architecture evolves. vVhile this chapter has presented, in

a fair amollnt of detail, possible designs for sorne of the intermediate points in the

path, ooly tirne (and much cootinued research) will tell the best way ta incorporate

this model ioto the high-performance chips of the future.

230

•

•

•

Chapter 9

Other Related Work

Chapter 3 surveyed dataBow machines and multithreaded machines which are based

on dataflow principles. Other models of multithreading also have long and rich

traditions of research and innovation. This chapter covers sorne of the work which

is most relevant ta EARTH.

As with the datafiow-style multithreaded systems in Section 3.2, there are two

basic approaches to implementing a multithreaded system. The first is to design

custorn hardware and the software to drive it, and the second is to focus on software

systems for existing multiprocessors. The first approach, covered in Section 9.1, has

the potential for greater performance in the long run, but has high short-term costs,

especially for academic research projects. Software systems, described in Section 9.2,

define a programming model, often in the form of a language or a library of functions,

and provide a means of translating the user's application to code which can run on

an off-the-shelf system. This is the approach taken by EARTH at the begjnning of

the evolutionary path (see Section 7.1). Most of the programming models discussed

in this section make no reference to specifie architecture features, or to hardware

support, but it is clear that many could benefit from specialized hardware support

for their specifie program execution models, as does EARTH.

9.1 Multithreaded Architectl1re Developments

This section primarily focuses on the thread models of the various machines rather

than performance issues. A thread model is mainly concerned with how a program

is divided into threads, how threads are created and terminated, how they share

231

•

•

•

data, and how they are coordinated. Many of the multithreaded machines discussed

herein have multiple active threads, each with its own set of registers, allow sorne

sharing of these registers among different threads, and use variations of fulllempty

bits to synchronize the producers and consumers of data.

In this scheme, a regÏster or memory location is tagged with an extra bit which

is set when a value is written into that location. A location with an unset tag is

considered "empty." If the consumer attempts to read an empty location or write

a full location, the transfer is aborted. In sorne cases, the consumer must keep

trying the same operation ("busy-waiting"), while other machines have mechanisrns

for suspending and automatically restarting such threads (a luxury not available to

EARTH).

Threads are typically initiated by special instructions contained within other

threads and terminated by special instructions \vithin the same thread. This allows

various kinds of scheduling mechanisms, snch as fork-join, to be implemented. In

sorne cases, these mechanisms are made explicit in the programming language.

Since off-the-shelf processors are designed for execnting ooly single threads efli

ciently, with no provision for switching to other threads quickly, the focus in EARTH

has been on running threads quickly and without stalls, which means running a

thread only when it is ready. Custom processors can employ hardware to switch

between threads rapidly, allowing multiple threads to be active at the same time.

This ability to schedule from multiple threads addresses the latency problem

(see Section 1.2.1). Long-Iatency operations won't cause the functional units to lie

idle, as in a single-thread processor, because the processor will be able to fill up

the idle space \vith work from other threads. Exactly how the processor chooses

which thread(s) ta execute varies from machine ta machine. The two most common

approaches are interleaving ("round-robin") and switch-when-needed. Examples of

machines using interleaving include HEP (Heterogeneous Element Processor), Hori

zon, MTA (Multi-Threaded Architecture), MASA (Multilisp Architecture for Sym

bolic Applications), and the M-Machine. Machines which only switch threads when

the current thread stalls include Alewife and the J-Machine.

HEP [73] has a simple form of interleaving. There are sixteen task queues, eight

for user tasks and eight for supervisor tasks. Each queue can hoId up to 64 activity

specifiers. When the execution pipeline needs work to do, it dequeues the activity

specifiers at the heads of aIl the queues, and then feeds them one by one into the

232

•

•

•

execution pipe. The other end of the pipe generates updated activity specifiers that

are put back into the task queues. The execution pipe itself has eight stages, and

has no logic for checking for hazards. If fewer than eight task queues are non-empty

when the pipeline fetches activity specifiers from them, then there will he hubhles

in the pipeline.

One problem with this arrangement is that at least eight threads must be present

on a processor in order to get full use of that processor. This may not always he

possible, particularly when executing a sequential portion of the program. Horizon

[75] and rvlTA [4] have a more sophisticated Conn of interleaving. There still is

no hazard-checking logic in the execution pipe. However, a special field in each

instruction is set to n to indicate that the next n instructions in the same thread

are guaranteed not ta have any hazards with the CUITent instruction. Therefore, it

is Dot necessary to have as many threads as pipeline stages, so long as the existing

threads have enough independent instructions among them to prevent hubbles in

the pipeline. Because instructions in a thread are executed in sequential order, the

compiler can analyze the code and ca1culate the value of n for each instruction.

This form of interleaving makes scheduling more flexible. For instance, if the

sequential section of code is short, it is easier to keep the operations in one thread

than to create separate parallel threads. However, it still requires that the number

of independent instructions that can run in parallel be at least equal to the number

of pipeline stages.

Processors which perform extensive thread interleaving dernand compilers capa

ble of finding this parallelism. Tera, which builds the NITA, the most ambitious

multithreaded project to date, has put as much effort in compiler development as in

hardware, with the result that they can extract, from many application programs,

enough parallelism to support this interleaving, even when there are high memory

latencies.

MASA [50] employs a HEP-like interleaving of threads, with each thread (called

a task) having a separate register set. MASA was intended primarily for parallel

symbolic computations, and was designed to support the language MultiLisp [49],

which uses a form of lazy evaluation called futures. Because this language involves

heavy use of recursion, MASA allows parent and child functions ta share register

sets, improving efficiency of function caUs.

233

•

•

•

The M-Machine [33] is an advanced successor to the J-~Iachine (described he

low). The M-Machine has a sophisticated hierarchy, both of threads and of pro

cessing units. The processor is called the Multi-ALU Processor (MAP) [68], which

contains three execution clusters, each of which can issue up ta three instructions

per cycle (two integer, one FP) in a VLIW-like manner.

An instruction stream is partitioned into horizontal threads (H- Threads) and

vertical threads (V- Threads). Each H-Thread runs on a specifie cluster and instruc

tions are grouped in triples to exploit the 3-instruction-issue capability of the cluster.

H-Threads are then grouped into V-Threads (up to 3 per V-Thread) and when a

V-Thread runs, each of its H-Threads runs on a separate cluster. H-Threads cao

communicate with other H-Threads in the same V-Thread and synchronize with

them through registers. Up to five V-Threads may be active at the same time. In

each cycle, each c1uster chooses one of the five H-Threads (the H-Threads on that

cluster belonging to the active V-Threads) and issues aB three instructions. The

H-Threads are interleaved cycle-by-cycle.

The Alewife machine [1] only interleaves when necessary. Alewife is based on the

Sparcle chip, a modified Sparc processor [2]. This processor can use the bypass logic

that cornes with a normal sequential processor. Therefore, the processor executes

one thread sequentially until the thread encounters a long-Iatency operation, such

as a remote fetch, and then switches to another thread. Sparcle takes advantage

of the multiple register windows present in the normal Sparc processor by creating

separate thread contexts. Since the Sparc already has logic for rapid switching

between register windows, thread switching is very fast. Since the Sparc has only

enough registers for four independent contexts, software tries to stay within one

group of threads as much as possible, because it is much faster to switch register

windows than to load in a new cootext.

The J-Machine [95] is based 00 a processor supporting efficient message passing.

Context-switch times are kept low by only having four registers per context, allowiog

contexts to be switched in 10 cycles. A second register set allows the processor to

handle two priority levels without s·witching.

Machines such as EARTH must adapt ta whatever instruction set cornes with

the off-the-shelf processors on which they are based. \Vith a custom processor,

designers have the ability to support a specifie multithreading program execution

model more fully in hardware, which gives them more flexibility in choosing such a

234

•

•

•

mode!. Therefore, when comparing one of these machines with EARTH, one should

remember that the two architectures \Vere built for different purposes. EARTH is

intended for off-the-shelf processors, with at most only moderate hardware augmen

tation, and is thus necessarily kept simple. It is also usefuI to keep in mind that

many of the machines described in this section, as weIl as most of those in Chapter 3,

have never actually been built, while other machines that were constructed had such

a large lag time that their single-node performance lagged behind state-of-the-art

microprocessors. This does not mean that the designs are impractical, but they

do suffer the problems of competing with the ""killer micros" as mentioned in the

Introduction.

Recently, there has been a flurry of research in the use of multithreading to

boost the performance of a single processor rather than to drive a large parallel

machine. These proposaIs don't provide programming models for exploitation of

large-scale parallelism, but rather a framework for improving the speed of programs

executed according to ordinary sequential semantics. Nevertheless, the ideas may be

applicable to EARTH and couid he used to increase the speed of Execution Units on

an EARTH machine. Since they are intended for conventional sequential programs,

it is possible that one or more of these ideas could find their \Vay into off-the-sheif

processors in a few years.

Simultaneous Muitithreading [126], which was discussed in Sections 4.2.1 and

8.3, combines the moderate leveis of ILP within individual threads exploitable by

superscalar units \Vith the parallelism and latency-tolerance of running multiple

threads concurrently. Up to eight threads may he active (meaning that they are al

located registers) at one time. In each cycle, the instruction fetch unit chooses two

threads that are not currently stalled (e.g., due to an I-cache miss) and fetches eight

instructions from each. It then narrows this group down to a total of eight indepen

dent instructions, and sends these to the functional units. Simulations show that

high functional unit utilization rates can be achieved with this organizatioo. Simul

taneous Multithreading is not designed specifically for single applications which are

multithreaded for speed, but is intended for merging separate task streams together,

such as in database programs [81].

Thread-Ievel speculation cao also be used to get higher performance out of a

multithreaded processor. In Multiscalar Processors [107], a program is divided ioto

tasks, where a task is a section of the control flow graph (CFG) whose execution

235

•

•

•

corresponds to a contiguous region of the dynamic instruction sequence (e.g., a loop

body). There is a sequential order among the tasks defined by the program seman

tics, and tasks are speculatively sent to processing nnits for execution by a global

sequencer in this order. Hardware continually checks for dependences between in

structions in different tasks. If the hardware determines that a data or control

dependence was violated (e.g., a later task consumed a value before that value was

properly produced by the consumer), then the later task, and any tasks following

that task that were speculatively started, are squashed. A similar form of specu

lation, used for speeding up single-thread programs, is found in the Superthread

Architecture [125].

A more restricted form of task speculation is done by the Single-Program Spec

ulative Multithreading (SPSM) architecture [29]. At certain points in a program,

fork instructions may be added to start another stream of execution at a specified

address later in the instruction stream. Execution simultaneously continues at the

instruction following the fork. The new thread stops when it executes an explicit

suspend instruction, and is merged with the original thread when the latter catches

up to the address where the new thread started. As with the previous two machines,

there are mechanisms to squash the new thread if hardware subsequently detects a

dependence that was violated.

9.2 Software Multithreading Systems

One of the premises of the EARTH project is that it is possible to implement an

efficient multithreading system using off-the-shelf hardware, rather than building

specialized processors. Other projects have also demonstrated this. The TA~1

project, which is based on dataflow principles, is discussed in Section 3.2.2. There

are other software systems, not based on dataflow. which we cover here.

One popular approach is adding support for multithreading as a library or ex

tension to a normally non-multithreaded system. This can be done with a threads

package such as POSIX Threads or Solaris Threads [ï9]. These provide libraries

of functions which can be called from user programs. These functions provide

for the creation, termination, and sYDchronization of "lightweight" threads with

much less state than a typical OS-level process. Most libraries provide a diverse

set of functions supporting many different types of communication patterns, such

236

•

•

•

as divide-and-conquer and producer-consumer, and provide most of the well-known

synchronization techniques sucb as fork-join and mutual exclusion. Threads have

also been included as a basic part of the Java language [96].

With such systems, it is possible to implement coarse-grain multithreaded pro

grams much more efficiently than if conventional OS processes were used. Unfortu

nately, these systems are typically built on top of kernel-Ievel threads, and rely on

the kernel for thread interaction. These make the overheads of calling these func

tions much higher than for an implementation such as EARTH. Furthermore, the

state of a lightweight thread, though much smaller than the state of a process, is

still considerably larger than the state of a procedure instance or liber in EARTH.

These systems, therefore, are not practical for fine-grain parallel programming.

The Cilk system [35] solves this problem by taking the OS out of the picture.

Cilk is a programming language in which standard C is augmented with special key

words for supporting parallel function caUs and synchronizations between a function

and its children. It has been implemented on several uniprocessors and symmetric

multiprocessors with shared memory.

The primary source of parallelism in Cilk programs is parallel function invoca

tion. Functions spawn other functions, much like the token operator in EARTH,

except that Cilk functions have an explicit return value. Barriers are used to block

execution of the function until the child function(s) have returned their values.

One of the unique features of Cilk is the elision property: if all Cilk keywords

are removed from a semantically correct Cilk function without race conditions, the

result is a sequential fnnction which is equivalent to the original parallel function,

producing the same results. The advantage of this is that the compiler can generate

two versions of the code for each function, called the fast clone and the slow clone.

The fast clone is simply a sequential version of the function (made by ignoring the

Cilk keywords), and the slow clone is the parallel version \Vith aIl of its overheads.

Function caUs are placed in a dequeue pending invocation, much as EARTH places

tokens in the Token Queue~ and both systems use work-stealing to distribute work

among nodes. The difference between the two is when the Cilk runtime system re

moves a function instance from the top of its local dequeue, it invokes the fast clone,

avoiding the overheads of a parallel function call. The use of a dequeue prevents the

number of simultaneously-active instances from growing exponentially in recursive

programs, much as it does in EARTH. More importantly, however, it causes most of

237

•

•

•

the function instances to be executed sequentially, improving efficiency considerably.

A Cilk system running smaIl, highly-recursive functions (such as N-Queens) does

not need to rely either on special hardware (such as an SU) to reduce the overheads

of multithreading or on efforts by the programmer to restrain paraIleIism (as with

the EARTH implementation of N-Queens-T).

This makes Cilk highly effective for divide-and-conquer programs. The utility of

Cilk in this area has been demonstrated; chess programs written in Cilk have won

awards at several international computer chess toumaments. There are, however,

two disadvantages to Cilk:

1. In its current form, it can run efficiently only on shared-memory machines.

Execution on distributed-memory machines would conflict with the elision

property. Consider the N-Queens problem, described in Chapter 6. Each

procedure instance needs to make a private copy of the data structure hold

ing the CUITent state of the board, in order to avoid interfering with other

procedures running in parallel. To maintain elision, this would have to he

written as a plain copy (e.g., assignment of aITay elements within a loop).

On a shared-memory system, this simply reads from shared memory. On a

distributed-memory system, if the child and parent function are on different

nodes, then the copy might be disallowed~ or copy from a local address rather

than the desired remote address, or trigger a remote load which would stall

the processor.

2. Maintaining the elision property limits the types of programming paradigms

which are supported. Communication is normally between parent and child

only. Peer communications, such as in a producer-consumer relationship or

bidirectional data exchange (as used in sorne of the applications coded in

Threaded-C, such as Tomcatv) are difficult to express in Cilk.

Figure 9.1 compares the performance of threaded implementations of Fibonacci

running various problem sizes on one processor. The runtimes for CiIk, Java and

p-Threads were reported in a multithreading workshop in 1998 [113] and were taken

from a 167MHz UltraSPARC processor. The ruotimes for EARTH are taken from

the MANNA, with its 50MHz i860 processor (the EARTH-MANNA-SU results were

obtained using SEMi).

238

•

•

•

100

~

"10 ..,..- .,.
",'- -...

1 -
-~ - ...- - _... --",,-

0.1 -
a;" --- --- -ii .- ~---

_..
û~ -=.: -..:: -0.01 --- -~.Sl --- ~---~~-e ,.--- e:----GIS ",--- --- - .~ -.E~ .- .. - -~~ l'a 0.001
~ -
do -

0.0001
10 11 12 13 14 15 16 17 18

Cilk Command User Time 0.0181 0.0196 0.0205 0.022 0.0236 0.0267 0.0303 0.0375 0.0498

- - - Java Command User Time 0.345 0.426 0.596 0.906 1.675 3.519 8.063 19.487 51.461

. - - - - POSIX Command User Time 0.029 0.038 0.051 0.074 0.117 0.232 0.482 1.121 2.993

EARTH-MANNA-SU Time .00046 00067 .00101 .00154 .00241 .00380 .00606 .00972 .01562

- - - EARTH·MANNA-S Time .00070 .00105 .00160 .00248 .00391 .00521 .00994 .01597 .02572._---_. EARTH-MANNA-O Time .00124 .00187 .00289 .00454 .ooïl8 .01145 .01145 .01836 .02953

Fibonacci Number (n)

Figure 9.1: Comparison of ~[ultithreadedSystems

239

•

•

•

Chapter 10

Conclusions

This dissertation has presented EARTH, an Efficient Architecture for Running

Threads, which is a multithreaded system based on dataftow principles, but de

signed to he efficiently implemented using off-the-shelf processors.

For years, computer architects have been drawn to the promise of paraliei com

puting, only to be disappointed by the results. The problem with paraliei computing

in the 90s is primarily economic; custom processors designed to support special par

aBel paradigms can't command the same resources as mass-market microprocessors

in a fiercely-competitive market. Most parallel systems, therefore, have been built

around these "killer micros," only to suifer problems with latency, sYDchronization,

and programmability because off-the-shelf processors haven't had the need to ad

dress these issues.

In order to penetrate the market successfully, parallel systems need two things.

First, they need a programming model which allows programmers to express par

allelism easily, but efficiently. Second, there must be an evolutionary path which

allows a graduaI migration from a simple multiprocessor based on off-the-shelf com

ponents to a custom hardware implementation specifically designed to support the

programming mode!. The programming model should enable most programs ta he

implemented reasooably efficiently 00 off-the-shelf multiprocessors at the beginning

of the evolutionary path, while permitting performance gains as custom hardware

support for the model is added little by little. Such custom improvements should not

hinder ordinary sequeotial code in any way, for that would simply cause a rejection

of snch improvements by most of the market.

240

•

•

•

EARTH is a multithreaded machine based on dataftow principles. Multithread

ing solves the problem of latency in multiprocessors, because a processor can switch

to another thread whenever there is a long-Iatency operation sucb as a remote fetch.

Dataflow provides an effective method of synchronization, based on the simple prin

ciple that a thread should not commence until its operands are ready. Combining

the two yields a machine with the strengths of both.

The requirement for efficient execution on off-the-shelf processors imposes con

straints on the types of threads that can he used on EARTH. The EARTH Program

Execution ~10del (PXM) is based on a two-Ievel hierarchy of fibers and procedures.

The former are non-preemptive, eliminating the need to s\\;tch threads in mid

stream, which can be costly on commodity processors. Fibers in the same proce

dure instance share data in a frame seen by aH these fibers. Fibers synchronize

their activities with each other through special EARTH operations, which enforce

the dataflow principles on which EARTH is based.

The EARTH Architecture Model describes the components and behavior of a

generic machine implementing the EARTH PXM. In this model, an EARTH node

consists of an off-the-shelf microprocessor for executing fibers (Execution Unit) and

a second unit for synchronizing between threads. This second unit (the Synchro

nization Unit) can be implemented in custom hardware as a small, simple ASIC

chip (its functionality is not complex) or hy an off-the-shelf co-processor running a

software emulator of the SU's functions.

For the first step in the evolutionary chain~ the PX~I was implemented on the

~1ANNA multiprocessor, which is based on the i860 processor. First, the abstract

PX1;[\Vas fleshed out more fully, in a form called the EARTH Virtual Machine, which

serves as a specification of the EARTH data types and operations while leaving nor

mal processor-dependent components unspecified, for ma.ximal flexibility. Then the

Threaded-C language was constructed based on the EV1vL Finally, a runtime system

was constructed to emulate the behavior of the SU on the second processor of each

MANNA node. Results showed good speedups up to 20 nodes on most applications,

and reasonably low overheads for the multithreading operations, provided they do

not dominate the code.

Extending the speedup curves out to 120 nodes using a simulator with accu

rate timing revealed limitations in the load balancer and other components of the

emulated-SU system. Use of the same tool to simulate a custom SU with special

241

• 96 - -:-

80 - - ~-

g. 64 .. :. _.: - -. - -' -- .. -
i
~en 48 .-

32 --

16 - - ..
8 --

.~. -

- -€)

e
Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

8 16 32 48 64 80
lIofnodes

96 112 128

•

•

Figure 10.1: Comparison of EARTH Implementations for N-Queens-P (10)

support for the EARTH operations demonstrated that moving along the evolution

ary path, first by constructing a separate hardware SU external to the EU, and then

by placing the SU on the same chip as the EU, would further reduce multithread

ing overheads, reduce the latencies between 6bers in different nodes, and improve

load balancing dramatically. (Figure 10.1 shows a sampie comparison between four

implementations on the path running the fully-parallel version of N-Queens for 10

Queens, showing that a custom SU improves both the overall speed and the scalabil

ity, i.e., the speedups are far more linear at the high end.) ivloving along the path

would therefore reduce the penalties for having excess parallelism in a program,

which would spare the programmer the effort of having to reduce the number of

threads in a program through algorithmic changes.

We can conclude that the EARTH model does provide the basis for efficient

parallel programming using off-the-shelf technology, even for the machines at the

near end of the evolutionary path, and that the costs and risks of moving along the

path are fairly small, since the bulk of the costs, as measured by design time, are

still represented by the core logic of the off-the-shelf processor.

242

• 10.1 Future Work

•

•

This dissertation has defined an abstract programming model, specified a virtual

machine implementing the model, developed a programming language with which

one can write code for this machine, and presented implementations of this virtual

machine on various platforms along the evolutionary path. Although this research

has achieved its goals by demonstrating the viability of this evolutionary approach,

the tapie is not closed by any means. There are many directions for future research,

sorne of which have already been discussed in previous chapters or which can be

inferred from their contents.

One obvious continuation of the current work is to continue ta fi11 in data points

along the evolutionary path. This means, for instance, building a hardware SU

according ta the specifications in Chapter 8 or something similar. The far end of the

path mapped out in Section 1.3, integrating an SU into the logic of a microprocessor

and adding EARTH operations to its instruction set, was discussed in Section 8.3

but not carried out. Clearly this step would improve the speed of an EARTH

Dode but it would be interestiog to see hy how much. Another interesting area ta

explore would be EU design, constructing an EU which cao execute multiple threads

simultaneously. Cao such processors, such as Simultaoeous Multithreadiog, work

\Vith the EARTH model, as claimed in Chapter 8? What about Multiscalar and

other multithreaded processors discussed at the end of Section 9.1?

Several previous chapters have discussed possible improvements to the PXIvI and

the EVM. Section 4.3 listed several features which would he desirable additions ta

the EARTH PXM, such as support for mutual exclusion and speculative execu

tian. Section 5.2 proposed an alternate EARTH Virtual wlachioe based on abstract

frame identifiers rather than absolute addresses. Sorne benefits were listed, such as

enhanced error detection.

Another, more useful henefit of EVM-F would he the possibility for dynarnic

procedure migration, i.e., moving a procedure instance to another node after the

procedure has started execution. This would he difficult with global addresses,

because other procedures which have references to objects in the frame being moved

would have to be given new addresses, but easy if the mapping from FID to node

Dumber could be changed dynamically. Of course, changes to the SU or runtime

system would be required ta support such migration, and further research would

243

•

•

•

need to determine if migration should be automatic or controlled by the program.

This feature would be most useful for applications in which fibers in a procedure

are executed and exchange data with other procedures repeatedly, l especially if the

work load changes unpredictably over time. One important class of problems with

these characteristics is the c1ass of adaptive mesh applications, in which an irregular

mesh changes over time to adapt to changes in the objects being modeled by the

mesh [51].

One important issue affecting parallel systelns is deadlock. Up to now, deadlock

has not been addressed in the EARTH project. While the pure dataOow model un

derlying EARTH is deadlock-free, EARTH gives more flexibility to the programmer,

and it is possible to write Threaded-C programs that reach a deadlock state because

two or more fibers are waiting for sync signais from the other. EARTH programs

can also deadlock because system resources are exhausted during program execu

tian. Further research should be done in both areas. First, programming tools can

be developed to detect deadlock, or the programming language can be restricted ta

make it impossible to write deadlocking programs. Second, the resource limitation

problem should be addressed by adding mechanisms ta detect resource constraints

at runtime.

Another area where improvements would he quite useful is the Threaded-C lan

guage. Historically, Threaded-C was seen primarily as a target for translation from

a language which hides threading details from the programmer, 50 the mapping

from Threaded-C to EVrvl-A \Vas made very direct ta simplify compiliog and aUow

the use of C compilers native to the target processors. However, for many appli

cations, programmers cao produce more efficient code if given explicit control over

the threads. For these uses, Threaded-C should be restructured and made more

programmer-friendly. For instance, mechanisms could be added to count synchro

nizations and set the initial and reset couots of SYQC slots automatically (wrong

counts are a common bug in Threaded-C code). Another possibility is creating

a library of communication templates (e.g., the nearest neighbor communication

pattern used in Section 6.2.3) and allowing the programmer to express the data

dependences in terms of these templates.

Other languages could also be given support for EVrvI-A or EVM-F. C++ and

Java, which have become popular since the introduction of Threaded-C, come to

lIt would be useless for one-time fibers like those in Fibonacci or N-Queens.

244

•

•

•

mind. Even Fortran could he threaded. 1t would be another interesting research

project to see if library-based parallel programming systems, snch as P-Threads and

MPI, can be converted to EARTH through translation of the library calls.

Another interesting topic to explore is the addition of improved multiproces

sor memory models to EARTH. SECtion 4.1.2 states that the EARTH PXM does

not include a memory model, since that would limit its portability across off-the

shelf platforms. However, this essentially limits EARTH to a distributed-memory

model, though EARTH could be run on a shared-memory machine as pointed out

in Section 4.1.2. Recent research in memory models has shown that the Location

Consistency model [43,44] addresses problems with traditional shared-memory sys

tems and can lead to a highly-efficient cache-coherence implementation. It would be

interesting to see if this model can he integrated with the EARTH PXM to simplify

writing code for EARTH by reducing the need for programmers to include explicit

split-phase transactions in their code.

EARTH was primarily designed for supporting off-the-shelf processors. However,

this does not mean the EARTH PXM is not useful for non-commodity processors.

Several ongoing projects involving custom-designed processors have program execu

tion models based on EARTH.

The Superstrand Architecture [87] shows that the adoption of EARTH-style

fibers (synchronized and non-preemptive) can reduce the hardware requirements of

modern uniprocessors substantially~ \vithout losing performance. In this architec

ture, strands are similar ta EARTH fibers, but do not allow conditional branches,

avoiding the need for branch prediction. Flow control is handled by conditional

synchronizations, and sync slots are handled efficiently by a unique hardware mech

anism similar to scoreboarding. Automatic thread-partitioning techniques can be

used ta convert ordinary sequential code into threaded code with a moderate amount

of parallelism, enough to take adva"Dtage of a Superstrand uniprocessor.

The Hybrid Technology Multi-Threading (HTMT) project [39] is a long-term

study of the feasibility of achieving a. sustained speed of 1 petaFLOPS (10 15 FLOPS)

by combining high-speed superconductor processors, semiconductor memories with

built-in processors, high-speed optical interconnects, and high-density holographie

storage. Roughly a dozen research groups across the United States are involved.

Memory latencies are expected to range from a few dock cycles for processor regis

ters to the order of a million cycles for the largest memories, so latency tolerance is

245

•

•

•

crucial for HTMT. Therefore, its Program Execution Model [45] builds on the knowl

edge and experience gained from EARTH. The HTMT PX~1 is partiaUy based on

the EARTH PXM, but adds astringent requirement that before a fiber can begin

execution, the data it needs must be not only present, but also physically close to

the processor, to avoid huge miss penalties. HTJ\iIT's Processor-In-Memory modules

[72] collect data and contexts and "percolate" them to and from the processors.

This dissertation bas shown that the EARTH model leads to efficient parallel

systems which can be built from off-the-shelf processors intended for the uniprocessor

market. The preceding two projects show that the basic principles of EARTH go

beyond its original intended domain, and that many applications which face the

challenges of large-scale multiprocessing can benefit from the ideas in this thesis.

246

•

•

•

Bibliography

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David

Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth !vIackenzie, and Donald

Yeung. The MIT Alewife machine: Architecture and performance. In Proc.

of the 22nd Ann. Inti. Symp. on Computer Architecture, pages 2-13, Santa

Margherita Ligure, Italy, Jun. 1995.

[2] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Ye

ung, Godfrey D'Souza~ and Mike Parkin. Sparcle: An evolutionary processor

design for multiprocessors. IEEE Micro, 13(3):48-61, Jun. 1993.

[3] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz.

APRIL: A processor architecture for multiprocessing. In Proc. of the 17th

Ann. Intl. Symp. on Computer Architecture, pages 104-114, Seattle, Wash.,

!vIay 1990.

[4] Robert Alverson, David Callaban, Daniel Cummings, Brian Koblenz, Allan

Porterfield, and Burton Smith. The Tera computer system. In Conf. Proc.,

1990 Intl. Conf. on Supercomputing, pages 1-6, Amsterdam, The Netherlands,

JUD. 1990.

[5] Makoto Amamiya. An ultra-multiprocessing architecture for functional lan

guages. In Gaudiot and Bic [47], chapter 3, pages 95-119.

[6] José Nelson Amaral and Guang R. Gao. Implementation of I-structures as a

library of functions in Portable Threaded-C. CAPSL Tech. Note 04, Dept. of

Elec. and Computer Eng., U. of Delaware, Newark, Delaware, Jun. 1998.

[7] Boon Seong Ang, Arvind, and Derek Chiou. StarT the Next Generation: Inte

grating global caches and dataftow architecture. CSG !v[emo 354, Computation

Structures Group, MIT Lab. for Comp. Sei., Aug. 1994.

[8] Arvind and Kim P. Gostelow. The V-Interpreter. Computer, 15(2):42-49, Feb.

1982.

247

•

•

•

[9] Arvind and Robert A. Iannucci. A critique of multiprocessing von Neumann

style. In Proc. of the 10th Ann. Intl. Symp. on Computer Architecture, pages

426-436, Stockholm, Sweden, JUD. 1983.

[10] Arvind and Rishiyur S. Nikhil. Executing a program on the MIT tagged-token

dataflowarchitecture. IEEE Trans. on Computers, 39(3):300-318, Mar. 1990.

[11] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: Data struc

tures for parallel computing. A CM Trans. on Programming Languages and

Systems, 11(4):598-632, Oct. 1989.

(12] Todd M. Austin and Gurindar S. Sohi. Dynamic dependency analysis of or

dinary programs. In Proc. of the 19th Ann. Inti. Symp. on Computer Archi

tecture, pages 342-351, Gold Coast, Australia, May 1992.

[13] David H. Bailey. Misleading performance in the supercomputing field. In

Proc. of Supercomputing '92, pages 155-158, Minneapolis, Minn., Nov. 1992.

Invited talk.

[14] P. S. Barth, R. S. Nikhil, and Arvind. ~\'[-structures: Extending a parallel,

non-strict, functional language with state. CSG Memo 327, Computation

Structures Group, rvIIT Lab. for Comp. Sei., Mar- 1991.

[15] Donald J. Becker, Thomas Sterling, Daniel Savarese, John E. Dorband,

Udaya A. Ranawak, and Charles V. Packer. Beowulf: A parallel worksta

tion for scientific computation. In Proc. of the 1995 Inti. Conf. on ParaUel

Processing, volume 1, Oeonomowoc, Wisconsin, Aug. 1995.

[16] Eugene Brooks. The attaek of the killer micros, Nov. 1989. Presentation in

the Teraflop Computing Panel Discussion at Supercomputing '89.

[17] U. Bruening, W. K. Giloi, and W. Schroeder-Preikschat. Latency hiding in

message-passing architectures. In Proc. of the 8th Intl. Parallel Processing

Symp., pages 704-709, Cancun, Mexico, Apr. 1994. IEEE Comp. Soc.

[18] Michael Butler, Tse-Yu Yeh, Yale Patt, Mitch Alsup, Hunter Scales, and

Michael Shebanow. Single instruction stream parallelism is greater than two.

In Proc. of the 18th A nn. Intl. Symp. on Computer A rchitecture, pages 276

286, Toronto, Ontario, May 1991.

[19] Haiying Cai. Dynamic load balancing on the EARTH-SP system. Master's

thesis, McGill U., Ivlontréal, Qué., May 1997.

248

•

•

•

[20] L. E. Cannon. A Cellular Computer to Implement the Kalman Filter Algo

rithm. PhD thesis, !\1ontana State U., Bozeman, J\tIontana, 1969.

[21] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and

John Wawrzynek. Fine-grain parallelism with minimal hardware support: A

compiler-controlled threaded abstract machine. In Pme. of the Fourth Intl.

Conf. on Architectural Support for Programming Languages and Operating

Systems, pages 164-175, Santa Clara, Calif., Apr. 1991.

[22] William J. DaIly. Directions in concurrent computing. In Proc. of the IEEE

Inti. Conf on Computer Design, pages 102-106, Port Chester, N. Y., Oct.

1986.

[23] Jack B. Dennis. First version of a data-flow procedure language. In Proc. of

the Colloque sur la Programmation, number 19 in Lec. Notes in Comp. Sci.,

pages 362-376, Paris, France, Apr. 9-11, 1974. Springer-Verlag.

[24] Jack B. Dennis. Data flow supercomputers. Computer, 13(11):48-56, Nov.

1980.

[25] Jack B. Dennis and Guang R. Gao. An efficient pipelined dataflow processor

architecture. In Proc. of Supercomputing '88, pages 368-373, Orlando, FIor.,

Nov. 1988.

[26] Jack B. Dennis, Guang-Rong Gao, and Kenneth W. Todd. Modeling the

weather with a data flow supercomputer. IEEE Trans. on Computers,

33(7):592-603, JuI. 1984.

[27] Jack B. Dennis and David P. Nlisunas. A preliminary architecture for a basic

data-flow processor. In Proc. of the 2nd Ann. Symp. on Computer Architecture,

pages 126-132, Houston, Tex., Jan. 1975.

[28] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and Henk A. van der

Vorst. Numerical Linear Algebra for High-Performance Computers. Soc. for

Industrial and Applied Mathematics, Philadelphia, Penn., 1998.

[29] Pradeep K. Dubey, Kevin O'Brien, Kathryn O'Brien, and Charles Barton.

Single-program speculative multithreading (SPSM) architecture: CompiIer

assisted fine-grained multithreading. In Proc. of the IFIP WG 10.3 Working

Conf. on ParaUd Architectures and Compilation Techniques, PACT '95, pages

109-121, Limassol, Cyprus, Jun. 1995.

249

•

•

•

[30] Nasser Elmasri. TCL: Experiences on a multiprocessor with dual-processor

nodes. lvIaster's thesis, McGill U., lvIontréal, Qué., Jul. 1995.

(31] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the Sisal

language project. J. of Parallel and Distrib. Computing, 10(4):349-366, Dec.

1990.

[32] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program de

pendence graph and its use in optimization. A CM Trans. on Programming

Languages and Systems, 9(3):319-349, Jul. 1987.

[33] Marco Fillo, Stephen \V. Keckler, William J. Dally, Nicholas P. Carter, An

drew Chang, Yevgeny Gurevich, and \\'bay S. Lee. The M-Machine multi

computer. In Proc. of the 28th Ann. Inti. Symp. on Microarchitecture, pages

146-156, Ann Arbor, Mich., Nov.-Dec. 1995.

[34] Michael J. Flynn. Sorne computer organizations and their effectiveness. IEEE

Trans. on Computers, 21(9):948-960, Sep. 1972.

[35] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementa

tion of the Cilk-5 multithreaded language. In Proc. of the ACM SIGPLAN '98

Conf. on Programming Language Design and Implementation, pages 212-223,

rvlontréal, Qué., Jun. 1998.

[36] Daniel D. Gajski, David A. Padua, David J. Kuck, and Robert H. Kuhn. A

second opinion on data flow machines and languages. Computer, 15(2):58-69,

Feb. 1982.

[37] G. R. Gao. An efficient hybrid dataBow architecture model. J. of Parallel and

Distrib. Computing, 19(4) :293-307, Dec. 1993.

(38] G. R. Gao and K. Theobald. An enable memory controller chip for a statie

data flow computer. CSG Note 18, Computation Structures Group, MIT Lab.

for Comp. SeL, Jan. 1985.

[39] Guang Gao, Konstantin K. Likharev, Paul C. Messina, and Thomas L. Ster

ling. Hybrid technology multi-threaded architecture. In Proc. of Frontiers '96:

The 8ixth Symp. on the Frontiers of Massively Parallel Computation, pages

98-105, Annapolis, Nlaryland, Oct. 1996.

[40] Guang R. Gao. Maximum pipelining linear recurrence on static data Bow

computers. IntI. J. of Parallel Programming, 15(2):127-149, Apr. 1986.

250

•

•

•

[41] Guang R. Gao, Lubomir Bic, and Jean-Luc Gaudiot, editors. Advanced Top

ies in Dataflow Computing and Multithreading. IEEE Comp. Soc. Press, 1995.

Book contains papers presented at the Second IntI. Work. on Dataflow Com

puters, Hamilton Island, Australia, May 1992.

[42] Guang R. Gao, Herbert H. J. Hum, and Yue-Bong Wong. Parallel function

invocation in a dynamic argument-fetching datafiow architecture. In Proc.

of PARBASE-90: IntI. Gonf. on Databases, ParaUel Architectures, and Their

Applications, pages 112-116, Miami Beach, Fior., Mar. 7-9, 1990. IEEE Comp.

Soc.

[43] Guang R. Gao and Vivek Sarkar. Location consistency: Stepping beyond

memory coherence barrier. In Proe. of the 1995 InU. Gonf. on Parallel Pro

cessing, volume II, pages 73-76, Oconomowoc, Wisconsin, Aug. 1995.

[44] Guang R. Gao and Vivek Sarkar. On the importance of an end-to-end view of

memory consistency in future computer systems. In Proc. of the IntI. Symp.

on High Performance Gomputing, pages 30-41, Fukuoka, Japan, 1997.

[45] Guang R. Gao, Kevin B. Theobald, Andrés Mârquez, and Thomas Sterling.

The HTMT program execution model. CAPSL Tech. Memo 09, Dept. of

Elec. and Computer Eng., U. of Delaware, Newark, Delaware, Jul. 1997. In

ftp://ftp.capsl.udel.edu/pubjdocjmemos.

[46] Guang Rong Gao. A pipelined code mapping scheme for static dataflow com

puters. Tech. Rep. ~UT/LCSjTR-371,NIIT Lab. for Comp. Sci., Aug. 1986.

PhD thesis.

[47] Jean-Luc Gaudiot and Lubomir Bic, editors. Advaneed Topies in Data-Flow

Computing. Prentice-Hall, Englewood Cliffs, N. Jersey, 1991. Book contains

papers presented at the First Workshop on Data-Flow Computing, Eilat, Is

rael, May 1989.

[48] J. R. Gurd, C. C. Kirkham, and 1. Watson. The rvlanchester prototype data

flow computer. Comm. of the ACM, 28(1):34-52, Jan. 1985.

[49] Robert H. Halstead, .Ir. Multilisp: A language for concurrent symbolic compu

tation. AGAf Trans. on Programming Languages and Systems, 7(4):501-538,

Oct. 1985.

[50] Robert H. Halstead, Jr. and Tetsuya Fujita. MASA: A multithreaded processor

architecture for parallel symbolic computing. In Proc. of the 15th Ann. Inti.

251

[51]

[52]

•

•

•

Symp. on Computer Architecture, pages 443-451, Honolulu, Haw., May-Jun.

1988.

Gerd Heber, Rupak Biswas, and Guang R. Gao. Using multithreading for the

automatic 10ad balancing of adaptive finite element meshes. In H. D. Simon,

editor, Proc. of the 5th Symp. on Solving Irregularly Structured Problems in

ParaUel, volume 1457 of Lec. Notes in Camp. Sci., Berkeley, Calif., 1998.

Springer-Verlag.

Laurie J. Hendren, Xinan Tang, Yingchun Zhu, Guang R. Gao, Xun Xue,

Haiying Cai, and Pierre Ouellet. Compiling C for the EARTH multithreaded

architecture. In Proc. of the 1996 Conf. on Parallel Architectures and Com

pilation Techniques (PACT '96), pages 12-23, Boston, Mass., Oct. 1996.

[53] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan

titative Approach. Morgan Kaufmann Pub., Ine., San Mateo, Calif., 1990.

[54] Dana S. Henry and Christopher F. Joerg. A tightly-coupled processor-network

interface. In Proc. of the Fifth Inti. Conf. on Architectural Support for Pro

gramming Languages and Operating Systems, pages 111-122, Boston, Mass.,

Oct. 1992.

[55] Kei Hiraki, Satoshi Sekiguehi, and Toshio Shimada. Status report of SIGMA

1: A data-Oow supercomputer. In Gaudiot and Bic [47], chapter 7, pages

207-223.

[56] Herbert H. J. Hum and Guang R. Gao. A novel high-speed memory organiza

tian for fine-grain multi-thread computing. In Proc. of PARLE '91 - ParaUel

Architectures and Languages Europe, volume l, number 505 in Lee. Notes in

Comp. Sei., pages 34-51, Eindhoven, The Netherlands, Jun. 1991. Springer

Verlag.

[57] Herbert H. J. Hum and Guang R. Gao. A high-speed memory organization

for hybrid datafiow/von Neumann computing. Future Generation Computer

Systems, 8(4):287-301, Sep. 1992.

[58] Herbert H. J. Hum, Olivier ~Iaquelin, Kevin B. Theobald, Xinmin Tian,

Guang R. Gao, and Laurie J. Hendren. A study of the EARTH-MANNA

multithreaded system. Intl. J. of Parallel Programming, 24(4):319-347, Aug.

1996.

252

•

•

•

[59] Herbert H. J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Xinan

Tang, Guang R. Gao, Phil Cupryk, Nasser Elmasri, Laurie J. Hendren, Al

berto Jimenez, Shoba Krishnan, Andres rvIarquez, Shamir Merali, Shashank S.

Nemawarkar, Prakash Panangaden, Xun Xue, and Yingchun Zhu. A design

study of the EARTH multiprocessor. In Proc. of the IFIP WG 10.3 Working

Conf. on ParaUel Architectures and Compilation Techniques, PACT '95, pages

59-68, Limassol, Cyprus, Jun. 1995.

[60] Herbert H. J. Hum, Kevin B. Theobald, and Guang R. Gao. Definition of the

Multi-Threaded Architecture (MTA) model. ACAPS Tech. Note 40, Sch. of

Camp. ScL, McGill U., Montréal, Qué., Oct. 1993.

[61] Herbert H. J. Hum, Kevin B. Theobald: and Guang R. Gao. Building multi

threaded architectures with off-the-shelf microprocessors. In Proc. of the 8th

Inti. ParaUel Processing Symp., pages 288-294, Canctin, Mexico, Apr. 1994.

IEEE Camp. Soc.

[62] Herbert Hing-Jing Hum. The Super-Actor Machine: a Hybrid Dataflow/von

Neumann Architecture. PhD thesis, McGill U., Montréal, Qué., May 1992.

[63] Robert A. Iannucci. A dataflow/von Neumann hybrid architecture. Tech.

Rep. MIT/LCS/TR-418, ~nT Lab. for Comp. SCÎ., Jui. 1988. PhD thesis,

wIay 1988.

[64] Robert A. Iannucci. Toward a dataflow/von Neumann hybrid architecture. In

Proc. of the 15th Ann. Inti. Symp. on Computer Architecture, pages 131-140,

Honolulu, Haw., rvlay-Jun. 1988.

[65] Robert A. Iannucci, Guang R. Gao, Robert H. Halstead, Jr., and Burton

Smith, editors. Multithreaded Computer Architecture: A Summary o/the State

of the Art. Kluwer Academie Pub., Nonvell, Mass., 1994. Book contains papers

presented at the Workshop on Multithreaded Computers, Albuquerque, N.

Mex., Nov. 1991.

[66] Intel Corporation. i860 Microprocessor Family Programmer's Reference Man

ual. Santa Clara, Calif., 1992. Order number 240875-002.

[67] Tetsuo Kawaoo, Shigeru Kusakabe, Rio ichiro Taniguchi, and Makoto

Amamiya. Fine-grain multi-thread processor architecture for massively par

allel processing. In Proc. of the First Inti. Symp. on High-Performance Com

puter Architecture, pages 308-317, Raleigh, North Carolina, Jan. 1995.

253

•

•

•

[68] Stephen W. Keckler, William J. Dally, Daniel Maskit, Nicholas P. Carter, An

drew Chang, and Whay S. Lee. Exploiting fine-grain thread level parallelism

on the MIT multi-ALU processor. In Proc. of the 25th Ann. Inti. Symp. on

Computer Architecture, pages 306-317, Barcelona, Spain, Jun.-Jul. 1998.

[69J Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.

Prentice-Hall, Inc., Englewood Cliffs, N. Jersey, 2nd edition, 1988.

[70] Yuetsu Kodama, Yasuhito Koumura, ~Iitsuhisa Sato, Hirohumi Sakane,

Shuichi Sakai, and Yoshinori Yamaguchi. EMC-Y: Parallel processing ele

ment optimizing communication and computation. In Conf. Proc., 1993 Inti.

Conf. on Supercomputing, pages 167-174, Tokyo, Japan, Jul. 1993.

[71J Peter M. Kogge. The Architecture of Pipelined Computers. McGraw-Hill Book

Co., New York, N. Y., 198!.

[72J Peter M. Kogge, Steven C. Bass, Jay B. Brockman, Danny Z. Chen, and

Edwin Sha. Pursuing a petaflop: Point designs for 100 TF computers using

PIM technologies. In Proc. of Frontiers '96: The Sixth Symp. on the Frontiers

of Massively ParaUel Computation, pages 88-97, Annapolis, Maryland, Oct.

1996.

[73J Janusz S. Kowalik, editor. ParaUel MIMD Computation: The HEP Supercom

puter and its Applications. MIT Press, 1985.

[74J David J. Kuck, Yoichi Muraoka, and Shyh-Ching Chen. On the number of

operations simultaneously executable in Fortran-like programs and their re

sulting speedup. IEEE Trans. on Computers, 21(12):1293-1310, Dec. 1972.

[75] James T. Kuehn and Burton J. Smith. The Horizon supercomputing sys

tem: Architecture and software. In Proc. of Supercomputing '88, pages 28-34,

Orlando, Fior., Nov. 1988.

[76J 1v[anoj Kumar. Measuring parallelism in computation-intensive scien-

tificjengineering applications. IEEE Trans. on Computers, 37(9):1088-1098,

Sep. 1988.

[77J ~[onica S. Lam and Robert P. Wilson. Limits of control ftow on parallelisme

In Proc. of the 19th Ann. Inti. Symp. on Computer Architecture, pages 46-57,

Gold Coast, Australia, May 1992.

[78] Johnny K. F. Lee and Alan Jay Smith. Branch prediction strategies and

branch target buffer design. Computer, 17(1) :6-22, Jan. 1984.

254

•

•

•

[79] BH Lewis and Daniel J. Berg. Threads Primer - A Guide to Multithreaded

Programming. Prentice-Hall, Inc., Englewood Cliffs, N. Jersey, 1996. Copy

right Sun Microsystems, Inc.

[80] Cheng Li. Efficiently supporting EARTH on a cluster of SMPs. Master's

thesis, U. of Delaware, Newark, Delaware, Jun. 1999. (Expected).

[81] Jack L. Lo, Luiz André Barroso, Susan J. Eggers, Kourosh Gharachorloo,

Henry M. Levy, and Sujay S. Parekh. An analysis of database workload per

formance on simultaneous multithreaded processors. In Proc. of the 25th Ann.

Inti. Symp. on Computer Architecture, pages 39-50, Barcelona, Spain, Jun.

Jul. 1998.

[82] Olivier Maquelin. The ADAM architecture and its simulation. TIK-

Schriftenreihe 4, Computer Engineering and Networks Laboratory, Swiss Fed

eral Institute of Technology, Zürich, Switzerland, 1994. PhD thesis, 1994.

[83] Olivier Maquelin, Guang R. Gao, Herbert H. J. Hum, Kevin B. Theobald,

and Xin-Min Tian. Polling Watchdog: Combining polling and interrupts for

efficient message handling. In Proc. of the 23rd Ann. Inti. Symp. on Computer

Architecture, pages 178-188, Philadelphia, Penn., May 1996.

[84] Olivier C. Maquelin. Load balancing and resource management in the ADAM

machine. In Gao et al. [41], pages 307-323.

(85] Olivier C. rvIaquelin, Herbert H. J. Hum, and Guang R. Gao. Costs and

benefits of multithreading with off-the-shelf RISC processors. In Proc. of the

First Intl. EURO-PAR ConJ., number 966 in Lec. Notes in Comp. Sci., pages

117-128, Stockholm, Sweden, Aug. 1995. Springer-Veriag.

[86] Andrés Marquez, Kevin B. Theobald, Xinan Tang, and Guang R. Gao.

A superstrand architecture. CAPSL Tech. !\1emo 14, Dept. of Elec.

and Computer Eng., U. of Delaware, Newark, Delaware, Dec. 1997. In

ftp://ftp.capsl.udel.edu/pub/doc/memos.

[87] Andrés Mârquez, Kevin B. Theobald, Xinan Tang, and Guang R. Gao. A su

perstrand architecture and its compilaton. In Proceedings of the 1999 Work

shop on Multi- Threaded Execution, Architecture and Compilation, Orlando,

FIor., Jan. 1999. Heid in conjunction \Vith the Fifth IntI. Symp. on High

Performance Computer Architecture.

255

•

•

•

[88] W. Najjar and J.-L. Gaudiot. ~Iulti-Ievel execution in data-flow architec

tures. In Proc. of the 1987 Intl. Conf. on Parallel Processing, pages 32-39, St.

Charles, Ill., Aug. 1987.

[89] Walid A. Najjar, William l\'Iarcus Miller, and A. P. Wim Bohm. Locality and

latency in hybrid dataHow. In Gao et al. [41], pages 417-434.

[90] Alexandru Nicolau and J. A. Fisher. NIeasuring the parallelism available

for very long instruction word architectures. IEEE Trans. on Computers,

33(11):968-976, Nov. 1984.

[91] R. S. Nikhil, G. M. Papadopoulos, and Anind. *T: A multithreaded massively

parallel architecture. In Proc. of the 19th Ann. Intl. Symp. on Computer

Architecture, pages 156-167, Gold Coast, Australia, May 1992.

[92] Rishiyur S. Nikhil and Arvind. Can dataflaw subsume von Neumann comput

ing? In Proc. of the 16th Ann. Intl. Symp. on Computer Architecture~ pages

262-272, Jerusalem, Israel, May-Jun. 1989.

[93] Rishiyur S. Nikhil and Arvind. Id: a language \Vith implicit parallelism. CSG

Memo 305, Computation Structures Group, MIT Lab. for Comp. SeL, Feb.

1990.

[94] Rishiyur Sivaswami Nikhil. The parallel programming language Id and its

compilation for paraUel machines. Inti. J. of High Speed Computing, 5(2):171

223, 1993.

[95] Michael D. Noakes, Deborah A. Wallah, and William J. Dally. The J-Machine

multicomputer: An architectural evaluation. In Proc. of the 20th Ann. Inti.

Symp. on Computer Architecture, pages 224-235, San Diego, Calif., May 1993.

[96] Scott Oaks and Henry Wong. Java Threads. D'Reilly & Associates, Inc.,

Cambridge, 1997.

[97] Shien-Tai Pan, Kimming So, and Joseph T. Rahmeh. Improving the accu

racy of dynamic branch prediction using branch correlation. In Proc. of the

Fifth Inti. Conf. on Architectural Support for Programming Languages and

Operating Systems, pages 76-84, Boston, Mass., Oct. 1992.

[98] Gregory Michael Papadopoulos. Implementation of a general purpose dataflow

multiproeessor. Tech. Rep. MIT/LCS/TR-432, MIT Lab. for Camp. SeL, Aug.

1988. PhD thesis.

256

•

•

•

[99] James Rumbaugh. A data flow multiprocessor. IEEE Trons. on Computers,

26(2):138-146, Feb. 1977.

[100] James Edward Rumbaugh. A parallel asynchronous computer architecture for

data flow programs. Tech. Rep. MIT/LCS/TR-150, MIT Lab. for Comp. Sei.,

May 1975. PhD thesis.

[101] Shuichi Sakai, Kazuaki ükamoto, Hiroshi Matsuoka, Hideo Hirono, Yuetsu

Kodama, and Mitsuhisa Sato. Super-threading: Architectural and software

mechanisms for optimizing parallel computation. In Conf. Proc., 1993 Inti.

Conf. on Supercomputing, pages 251-260, Tokyo, Japan, JuI. 1993.

[102] Mitsuhisa Sato, Yuetsu Kodarna, Suichi Sakai, Yoshinori Yamaguchi, and Ya

suhito Koumura. Thread-based programming for the EM-4 hybrid dataOow

machine. In Proc. of the 19th Ann. Intl. Symp. on Computer Architecture,

pages 146-155, Gold Coast, Australia, tvlay 1992.

[103] Burton Smith. The architecture of HEP. In Kowalik [73], pages 41-55.

[104] Burton Smith. The end of architecture. Computer Arch. News, 18(4):10

17, Dec. 1991. Keynote address at the 17th Ann. IntI. Symp. on Computer

Architecture, Seattle, \Vash., May 29, 1990.

[105] James E. Smith. A study of branch prediction strategies. In Proc. of the 8th

Ann. Symp. on Computer Architecture, pages 135-148, Minneapolis, Minn.,

May 198!.

[106] Nlichael D. Smith, tvlonica S. Lam, and ~Iark A. Horowitz. Boosting beyond

static scheduling in a superscalar processor. In Proc. of the 17th Ann. Intl.

Symp. on Computer Architecture, pages 344-354, Seattle, Wash., May 1990.

[107] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar proces

sors. In Proc. of the 22nd Ann. IntI. Symp. on Computer Architecture, pages

414-425, Santa Margherita Ligure, Italy, Jun. 1995.

[108] Ellen Spertus, Seth Copen Goldstein, Klaus Erik Schauser, Thorsten von

Eicken, David E. Coller, and William J. Dally. Evaluation of rnechanisms

for fine-grained parallel programs in the J-Machine and the CM-5. In Proc.

of the 20th Ann. Intl. Symp. on Computer Architecture, pages 302-313, San

Diego, Calif., May 1993.

[109] Vason P. Srini. An architectural comparison of data80w systems. Computer,

19(3):68-88, Mar. 1986.

257

•

•

•

[110] Harold S. Stone. High-Performance Computer Architecture. Addison-Wesley

Pub. Co., 2nd edition, 1990.

[111] Xinan Tang, Jian Wang, Kevin B. Theobald, and Guang R. Gao. Thread

partitioningand scheduling based on cost model. In Proc. of the 9th Ann. ACM

Symp. on ParaUel Algorithms and Architectures, pages 272-281, Newport,

Rhode Island, Jun. 1997.

[112] Maria-Dana Tarlescu, Kevin B. Theobald~ and Guang R. Gao. Elastic history

buffer: A low-cost method to improve branch prediction accuracy. In Proc. of

the 1997 Intl. IEEE Conf. on Computer Design, pages 82-87, Austin, Tex.,

Oct. 1997.

[113] Scott R. Taylor. A-comparison of multithreading implementations. In Proc.

of the Yale Multithreaded Programming Work., New Haven, Conn., Jun. 1998.

[114] Kevin B. Theobald. Panel sessions of The 1991 Workshop on Multithreaded

Computers. Computer Arch. News, 22(1):2-33, Mar. 1994. Workshop heId at

Supercomputing '91,Albuquerque, N. Mex., Nov. 1991.

[115] Kevin B. Theobald. SEMi: A simulator for EARTH, rvIANNA, and the i860

(version 0.15). ACAPS Tech. Note 43 (Revised), Sch. ofComp. Sei., McGill V.,

Montréal, Qué., Oct. 1996.

[116] Kevin B. Theobald, Guang R. Gao, and Laurie J. Hendren. On the limits

of program parallelism and its smoothability. In Proc. of the 25th Ann. Intl.

Symp. on Microarchitecture, pages 10-19~ Portland~ Ore., Dec. 1992.

[117] Kevin B. Theobald, Guang R. Gao, and Laurie J. Hendren. On the lim

its of program parallelism and its smoothability. ACAPS Tech. Mema 40,

Sch. of Comp. Sei., !\lcGill V., Montréal, Qué., Jun. 1992. In ftp://ftp

aeaps.cs.mcgill.ca/pub/doc/memos.

[118] Kevin B. Theobald, Guang R. Gao, and Laurie J. Hendren. Speculative exe

eution and branch prediction on parallel machines. ACAPS Tech. Memo 57,

Sch. of Comp. Sei., rvlcGill V., Montréal, Qué., Dec. 1992. In ftp://ftp

acaps.cs.mcgill.cafpubfdocfmemos.

[119] Kevin B. Theobald, Guang R. Gao, and Laurie J. Hendren. Speculative exe

cution and branch prediction on parallel machines. In Conf. Proc., 1993 Inti.

Conf. on Supercomputing, pages 77-86, Tokyo, Japan, Jul. 1993.

258

•

•

•

[120] Kevin B. Theobald, Guang R. Gao, and Laurie J. Hendren. The effects of

resource limitations on program parallelism. In Gao et al. [41], pages 367-392.

[121] Kevin B. Theobald, Herbert H. J. Hum, and Guang R. Gao. A design frame

work for hybrid-access caches. In Proc. of the First Inti. Symp. on High

Performance Computer Architecture, pages 144-153, Raleigh, North Carolina,

Jan. 1995.

[122] Kevin Bryan Theobald. Adding fault-tolerance ta a static data flow supercom

puter. Tech. Rep. MIT/LCS/TR-499, ~nT Lab. for Camp. Sei., Apr. 1991.

Master's thesis, Dec., 1990.

[123] Garold S. Tjaden and Michael J. Flynn. Detection and parallel execution of

independent instructions. IEEE Trans. on Computers, 19(10) :889-895, Oct.

1970.

[124] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic

units. IBM J. of Res. & Dev., 11(1):25-33, Jan. 1967.

[125] Jean-Yuan Tsai and Pen-Chung Yew. The superthreaded architecture: Thread

pipelining with run-time data dependence checking and control speculation. In

Proc. of the 1996 Conf. on ParaUd Architectures and Compilation Techniques

(PACT '96), pages 35-46, Boston, Mass.~ Oct. 1996.

[126] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multi

threading: Maximizing on-chip parallelism. In Proc. of the 22nd Ann. Inti.

Symp. on Computer Architecture, pages 392-403, Santa Margherita Ligure,

Italy, Jun. 1995.

[127] L. G. Valiant. A bridging model for parallel computation. Comm. of the A CM,

33(8):103-111, Aug. 1990.

[128] David W. Wall. Limits of instruction-Ievel parallelism. In Proc. of the Fourth

Inti. Conf. on Architectural Support for Programming Languages and Operat

ing Systems, pages 176-188, Santa Clara, Calif., Apr. 1991.

259

•

•

•

Appendix A

Previous Studies of Parallelism

Most previous studies on the limits of program parallelism have taken one of two

approaches. One approach is ta analyze a benchmark at either the source-code

or object-code level, usually with a special interpreter that is based on a specifie

parallel machine mode!. The other approach, used in Chapter 2, is ta schedule

machine instructions from a trace generated by an actual run of the executable

code.

An early experimental tool, designed by Kuck, ~Iuraoka and Chen [74], com

piled small Fortran programs ta run on an abstract parallel machine. By recogniz

ing parallelism at the source code level Ce.g., parallel iterations of DO-Ioops) and

by aggressively reordering complex expressions~ they were able ta speed up most

programs by a factor of 2-7, and speed up sorne by as much as 25. Tjaden and

Flynn built a simulator based on the superscalar model [123]. Their simulator could

execute ordinary IBM 7094 machine code, but attempted to reschedule operations

dynamically using a look-ahead window of between 2 and 10 operations. They ob

tained speedups of up to 3 on a suite of 31library routines. 80th studies got modest

results because they only looked for parallelism within small blocks, and could not

execute independent instructions from separate blocks. These blocks are typically

separated by conditional branches, and if the decision whether to execute one block

is controlled by the outcome of a conditional branch in another block, the first block

can't begin execution until the branch has been resolved.

Nicolau and Fisher wrote an interpreter for intermediate code generated by a

compiler front-end, and a tool to analyze the instruction trace generated by the in

terpreter [90]. Theyaddressed the shortcomings of the previous studies byallowing

260

•

•

•

operations from many parts of the program to execute concurrently. They intro..

duced the oracle model, which they added ta their analysis tool. The analyzer also

ignored any dependence which was not a "true~' data dependence. They were able

to obtain respectable speedups from small scientific routines.

Kumar [76] developed a tool that automatically added statistics-gathering state

ments to Fortran code. By running the modified programs, he was able to measure

parallelism in scientific applications. The tool also perfonned control-dependence

analysis, 50 that independent statements separated by barriers could still run concur

rently. Kumar found the potential for high levels of parallelism in regular numerical

code.

\Vall [128] analyzed benchmarks (SPEC89 programs, system utilities, and toy

benchmarks) in which the number of executed operations ranged from 1 million to

2 billion. He developed a series of models representing various levels of optimism

about what the hardware and compiler could do. He then ran the benchmarks on

a MIPS R3000 processor, and analyzed the instruction traces in a manner similar

to Tjaden and Flynn, and Nicolau and Fisher. Even under his "perfect" model,

with oracle-like branch prediction, parallelism rarely exceeded 40. This is because

his scheduler used only 64 processors, a finite (2K) input window from which to fi11

parallel instructions, and no memory renaming (register renaming only).

Two recent studies measured the effects of limiting the size of the scheduling

window, which determines how broad the search for parallelism in the sequential

trace can be, on the parallelism available in SPEC89 benchmarks. Butler, et al [18],

ran each trace for 10 million instructions on an NI88000 processor, while Austin and

Sohi [12] ran each trace for up to 100 million instructions on a MIPS processor.

Both assumed perfect (oracular) branch prediction, but limited how far apart two

instructions could be in the sequential trace and still be scheduled in the same

parallel instruction. They both concluded that instructions must be drawn from

regions far apart in order to achieve significant amounts of parallelism.

\Vilson and Lam studied the way control f10w limits parallelism [77]. They

demonstrated that substantially higher parallelism can be achieved by relaxing the

constraints imposed by control flow on parallelism using control-dependence analy

sis, executing multiple flows of control simultaneously, and performing speculative

execution. They tested sbc SPEC89 programs and 4 other programs, running each

program on a MIPS R3000 for up to 100 million instructions.

261

•
Appendix B

Definition of Threaded-C

This appendix gives a complete list of ail the EARTH Threaded-C operations and

briefly explains how they are used.

THREADED
Keyword for a threaded procedure declaration.•

B.I Fibers and Procedures

•

THREADJ1
rvlarks the beginning of a fiber. The fiber label within a procedure, n, is an

integer greater than o.

void END_THREAD(void)
Marks the end of a fiber. When an END_THREAD is found, the control

switches to another ready fiber.

int NUM...NODES
Run-time system variable set to the number of nodes available in the system.

int NODE.J:D
Run-time system variable set to the number of the local node. This number

ranges from 0 to NUrvI_1\10DES - 1.

void POLLevoid)

262

•

•

PolIs the network and handles any available messages. Along with the

NUM-NODES and NODE.JD constants, this is one of the only Threaded

C components that can be used in non-threaded functions. Inserting POLL

statements into long fibers can significantly improve overaIl performance be

cause it allows for the faster handIing of extemal requests.

void CALL(func-Ilame, ...)
CaUs function func_name sequentially and blocks until that function termi

nates. Functions invoked with CALL must terminate with RETURN instead

of END-FUNCTION.

void RETURN(void)
Ends a procedure that is called with the CALL operation. This tells the

compiler to generate sequential entry/exit code.

void INVOKE(int node, func-name, ...)
Starts the execution of func...name on the node specified by the pro-

grammer without blocking. Procedure func_name must terminate with

END..FUNCTION.

void TOKEN(func-Ilame, ...)
Starts the execution of func...name on anode selected by the runtime system.

The node is selected trying to optimize the distribution of the workload in

the machine. Procedure func_name must terminate with END-FUNCTION.

void END...FUNCTION(void)
Nlarks the end of a threaded procedure that is calIed with INVOKE or TO

KEN.

B.2 Fiber Synchronization

•
Fibers are often associated with a synchronization siot. The sync count in that slot

represents how many signaIs the fiber has ta wait for before it can be activated.

The programmer can initialize the sync count and update the count to control the

firing of a fiber. We use the following EARTH operations ta operate on the sync

263

•

•

•

slots:

SLOT
A pre-defined type used to allocate the synchronization 810ts that will he used

in the procedure.

SLOT SYNC-SLOTS(N]
This is the declaration of synchronization slots using the pre-defined type

SLüT. This declaration must appear at the beginning of a procedure.

SPTR
A pre-defined type for global sync slot addresses. It is defined as: typedef

SLOT *GLOBAL SPTR.

void *GLOBAL FRAME-ADR(void)
Returns the global address of the current frame.

void *IP.A.DR(int liber-Dum)
Returns a (local) pointer ta the first instruction of fiber fiber_num. Notice

that the pointer returned does not need ta be a global address because each

node has a copy of the program code loaded at the same address.

SPTR SLOT-ADR(int slot....num)

Returns the global address of sync slot sloLnum.

void INIT-SYNC(int slot-num, int init_cnt, int reset_cnt, int liber-Dum)

Initializes sync slot sloLnum \Vith the initial counter value iniLcnt, the reset

value reseLcnt, and the ip corresponding to fiber fiber_num.

void SYNC(int slot-num)

Decreases the sync count of slot sloLnum by one. If the count reaches zero

the corresponding fiber is scheduled for execution.

void RSYNC(SPTR slot..adr)

Same as SYNCO, but the sync slot is specified by a global address.

264

• void INCR..8YNC(int slot...num, int val)
Increases the sync count of slot sloLnum by val. If the connt becomes zero

the corresponding fiber is scheduled for execution.

void INCR...RSYNC(SPTR slot-adr, int val)
Same as INCRJ;YNCO, but the sync slot is specified by a global address.

void SPAWN(int fiber-DUU1)
Schedules local fiber fiber_num for execution.

void RSPAWN(void *GLOBAL FP, void *IP)
Schedules local fiber fiber_num for execution. The fiber is specified throngh

its frame and instruction pointers.

Implicit sync operation
AIl data transfer operations also perform a sync operation after the data has

reached its destination.

• B.3 Data Transfer Operations

•

The data transfer operations support remote memory accesses and block data trans

fers. Short data transfers of single bytes or words of memory are supported by the

GET..8YNC-x and DATA.BYNC-x. Several versions of these operations exist, which

are distinguished by their suffixe For example, the suffix -L is used for 32-bit (long

word) values. Here is the complete list of suffixes:

...B (char): Single byte (8 bits) .

.J3 (short): Short word (16 bits).

-L (long): Long word (32 bits) .

...F (Boat): Float size (32 bits).

-D (double): Double size (64 bits).

_G (void *GLOBAL): Global address (either 32 or 64 bits, depending on impie

mentation) .

265

•

•

•

In addition, the sync slot that should be signaled when the operation terminates

can either be specified as a (local) slot number (.BYNC_ variants), or as a global

address (...RSYNC_ variants). Here are the basic communication operations:

void DATA...8YNC...x(T datum, void *GLOBAL dest, int slot-»um)
Sends a value to the destination address and then update the specified sync

slot. The type of the value has to be either a byte, a short, a long, a float, a

double, or a global address.

void DATA..RSYNC~(Tdatum, void *GLOBAL dest, SPTR slot...adr)
Same as DATA-SYNC-xO, but the sync slot is specified as a global address.

void GET...8YNC-x(void *GLOBAL src, void *GLOBAL dest,

int slot-Ilum)

Reads a value from the source address and copies it to the destination address,

then updates the specified sync slot.

void GET-RSYNC...x(void *GLOBAL src, void *GLOBAL dest,

SPTR slot...adr)

Reads a value from the source address and copies it to the destination address,

then updates the specified sync slot. The sync slot is specified as a global

address.

void BLKMOV-SYNC(void *GLOBAL src, void *GLOBAL dest,

long length, int slot-l1um)
Copies length bytes of data from the source to the destination address and

updates the specified syne slot.

void BLKMOV..RSYNC(void *GLOBAL src, void *GLOBAL dest,

long length, SPTR slot...adr)
Same as BLKMOV-SYNCO, but the syne slot is specified as a global address.

266

• B.4 Global Address Support

•

GLOBAL
Type qualifier used ta distinguish global addresses (64-bit entities) from local

(normal) pointers.

T *GLOBAL TO_GLOBAL(T ·ptr)

Turns a local pointer into a global address that points to address ptr on the

local node. In the porta.ble implementation the type of the result depends on

the type of the argument. On MANNA, the result is of type pointer to void.

T *TO-LOCAL(T *GLOBAL gptr)
Turns a global address into a local pointer (extracts the address part of a

global address). Note tl:1at it is possible ta dereference a global address with

out first turning it into a local pointer. On MANNA, the result is of type

pointer to void.

T *GLOBAL MAKE_GPTR(T ·ptr, iot Dode)

Takes anode number and a local address and returns the corresponding global

address. On MANNA., the result is of type pointer to void.

iot OWNER_OF(T *GLOBAL gptr)
Returns the node pointed to by gptr (extracts the Dode part of a global

address).

iot IS_OWNER(T *GLOBAL gptr)
Returns true if gptr points ta the local node.

B.5 Differences Between Threaded-C and ANSI

C

•
The programmer should he aware that sorne standard C features are not supported

in the eurrent version of Threaded-C. Many of these features are related to the static

and extern keywords. This section Iists the unsupported features .

• A threaded procedure cannat be static.

267

• THREADED foo 0
{

static int i = 1; /- not alloved -/

THREADED foo (int y); /- NO -/

THREADED foo (int X); /- Yea -/

int x = 0; /. not alloved ./
THREADED foo(int x)
{

}

(a) Static and lnitialized Variables
}

(h) Prototypes

•

•

Figure B.1: Examples of Illegal Use

• In the declaration of a threaded procedure, the extern specifier must be omit

ted.

• When defined within the scope of a threaded procedure, a static variable

cannot be initialized. For example, in Figure B.1 (a), the initialization of static

variable i is illegal.

• A threaded procedure is not allowed to initialize variables in their definitions.

As shown in Figure B.I(a), initializing variable x is forbidden.

• Forward declarations of threaded procedures (prototypes) are supported, but

in a limited fashion. If the programmer wants an ANSI prototype declaration,

the parameter names must he the same as the original procedure declarations.

For example, in Figure B.I (h), using a different parameter name y is Dot

allowed. However, using the same parameter name x is OK.

In the current version, the Threaded-C compiler does Dot check for the "illegal"

usages above. It is up to the programmer ta avoid using them.

268

•
Appendix C

SUlllnlary of the Experirnents

•

The following figures (C.I-C.17) show the absolute speedups achieved with EARTH

MANNA-D, EARTH-MANNA-S, and the two hardware-SU platforms, for the five

benchmarks fully studied. Unlike the graphs in Chapters 7 and 8, these graphs

place aIl experiments corresponding to one benchmark and input in a single graph,

allowing an easy comparison of the different implementations.

~32 00

1:1
al _

8.
16

. 0-·en 0 o-

B o. :0 0

- ~
~

- ... -
.

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

B 16 32 48 64 80
Il of nodes

96 112 128

Figure C.I: Absolute Speedups for Fibonacci (15)

Figure C.2: Absolute Speedups for Fibonacci (20)

-~--€I---

- ... -

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

96 112 12848 64 80
Il of nodes

- -€)

e

328 16

%32 0

'C
al
al

c% 16 .

B

•
269

•
§-32 '
'l:'
cP

~ 16 __ ~_'~": _ ~ 'B - ~ - -0 ' ,

8~~fb::~:::=;:::=:;~;:±;:;:~~~~;LJ

- ~
()

- ~-

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

8 16 32 48 64 80
• of nodes

96 112 128

Figure C.3: Absolute Speedups for Fibonacci (25)

48 "'--~"""'----r-----:''---'''''''-----r-----''--~-.....,

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)- ... -

- ~
()

96 112 128

, '

.:.:~:.;.'~.'; -,-~~-:-.- ~<?.,

48 64 80
, of nodes

328 16

§-32 '
'i :, ,.' ,
8. .'

en 16 ., ':' '.:~""'" ,
8 .•

Figure CA: Absolute Speedups for Fibonacci (30)

48 r--~~---r----'r---.......----'T""---"--"""'---'

- '-€>
()

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

Figure C.S: Absolute Speedups for N-Queens-P (8)•
8 16 32 48 64 80

, of nodes
96 112 128

270

•
112...-........--.......----.---r---.........--...........---..---r--------.

Int. SU (abs)
&t. SU (abs)
Single Cabs)
Dual (abs)

112 12896

A'J":'". ..

48 64 80
'ofnodes

328 16

96

16 ..
8 ,,_......... .~ -:-.-~_.-- _._ - - _.-.

. .

32 ..

80 ... ' -

g. 64 :.
'0

:E
fj; 48 ..

•
Figure C.6: Absolute Speedups for N-Queens-P (10)

112 ...-........--.......--__._--r---.........--...........---..---r--~

96 ...

80

g. 64 .
'0
al
al
fj; 48 .

32

16

8

- -€)

~

- -.-

Int. SU (abs)
&t. SU (abs)
Single (abs)
Dual (abs)

8 16 32 48 64 80
"of nodes

96 112 128

•
Figure C.7: Absolute Speedups for N-Queens-P (12)

271

• 48~~""'---~---:~-""'------r-----r--~-..., .. Int. SU (abs)

_é·~·~.;.. -- _':"'-:E>'
- -€)- Ext. SU (abs)

El Single (abs)
- ... - Dual (abs)

8 16 32 48 64 80 96 112 128
Il of nodes

Figure C.8: Absolute Speedups for N-Queens-T (8)

96

80 . . _."-" .

64
a.
:::::1

'g48
Q)
a.en

32

16

• 8

8 16 32 48 64 80
Il of nOdes

-.... - - -.

96 112 128

Il

- -€)

l;)
- ... -

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

Figure C.9: Absolute Speedups for N-Queens-T (10)

Int. SU (abs)
Ext. SU (abs)
Single Cabs)
Dual (abs)

- -€)

o

96 112 12848 64 aD
Il of nodes

32

Figure C.lO: Absolute Speedups for N-Queens-T (12)

8 16

96 .

16 .
8 ..

32 .

80 .

112 ,....-..---.------r---,.-----~-__r_-..........-_.-___.

•
272

•
Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)- -.-

96 112 128

- -€)

$

48 64 80
, ofnodes

328 16

g.32 .
'0cu

!16 .
8 .

Figure C.Il: Absolute Speedups for Paraflins (18)

•
48

~
~
'0
cu 32
8-en

16
8 -

8 16 32 48 64 80
If of nodes

96 112 128

- -€)

El
- ... -

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

Figure C.12: Absolute Speedups for Paraffins (20)

64

16
8 .

)Il

- -€)

El
- -.-

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

Figure C.13: Absolute Speedups for Paraffins (23)•
8 16 32 48 64 80

If of nodes
96 112 128

273

•
Int. SU (abs)
Ext. SU Cabs)
Single (abs)
Dual (abs)

g.32 ... c ••
"t:l
CD .

8. •en 16 .
8 ..

8 16 32 48 64 80
"of "odes

96 112 128

Figure C.14: Absolute Speedups for Tomcatv (33)

•
64r--r-~--""'--~-"""":T"""---r---r--"""'T'"'----'

48
a-
::3

ai 32 .
CDam

- -E)

e
Int. SU (abs)
Ext. SU Cabs)
Single Cabs)
Dual (abs)

8 16 32 48 64 80
" of nodes

96 112 128

Figure C.15: Absolute Speedups for Tomcatv (65)

64r-.--....-----r--r--.....--.,.--_--...-.......---,

48 .
a
::3

i 32 -
CD
Q.
m

16 ..
8 .-

- -E)

e
Int. SU Cabs)
Ext. SU (abs)
Single Cabs)
Dual (abs)

Figure C.16: Absolute Speedups for Torncatv (129)•
8 16 32 48 64 80

Il ofnodes
96 112 128

274

•

80

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)- ... -

- ~
e

16
8 ...

64 .
0
~

't:Ji 48 ..
0
en

32 .•
8 16 32 48 64 80

Il of nodes
96 112 128

Figure C.17: Absolute Speedups for Torncatv (257)

•
275

•

•

•

Appendix D

Performance of EARTH-MANNA

Systenls \Vith U pdated Hard\Vare

This appendix presents the data from the enhanced-CPU experiments, first de

scribed in Section 7.2.1. In these experiments, experiments from Chapters 7 and

8 (recapitulated in the previous appendix) are repeated on the SEMi simulator

with different parameters for the processor and memory system. These parameters

are listed, along with the original parameters of the i860XP and MANNA, in Ta

ble 0.1. The parameters for the faster "MANNA" are mostly taken from the new

PowerMANNA, which is based on the PowerPC 620 processor. Other differences

are discussed in Section 7.2.1.

The sequential running times and USE factors for aIl benchmarks and inputs on

the four simulated systems are listed in Table 0.2. The sequential running times

are computed assuming a 200MHz processor. To see how the modifications affect

the instruction issue rate of the i860, the Tseq times should be multipled by 4 and

compared with the Tseq times in Table 7.6.

The remaining figures (D.l-D.l7) show the absolute speedups for the seventeen

benchmarkjinput combinations. As in the previous appendix, they are grouped by

benchmark and input, sa that different implementations can be compared.

\Vhile sorne differences in performance can be seen between the two versions

of the machine, there is no definite trend; sometirnes the speedups are better on

the raster machine, and sometimes they are worse. Speedups drop considerably for

Fibonacci. This is because the multiple-issue capabilities of the modified processor

work very weil on the sequential code (it is more than 50% faster on the modified

276

•

•

Module Parameter Original Faster
MANNA "MANNA"

CPU Clock speed (MHz) 50 200
IPC single or dual multiple

(explicit) (in order)
FP reservatioo table no yes
FP load stalls CPU yes 00

LI cache (I,D) Size (Khytes) 16 32
Line size (bytes) 32 32
Set associativity 4 8
Hit read time (CPU cycles) 1 1
Access blocking oon-blocking

Bus Clock speed (lVIHz) 50 66.7
L2 cache (uoified) Size (Mbytes) NIA 1

Lioe size (bytes) NIA 32
Set associativity NIA 1
Hit read time (CPU cycles) NIA 6

Memory Miss read time (CPU cycles) 8 20

Table 0.1: Parameters of Original and Modified MANNA

%32
"C
Q)
Q)

c% 16
8 ... - -

- -€l
e

- -.-

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

8 f6 32 48 64 80 96 112 128
, of nodes

Figure 0.1: Absolute Speedups on Fast EARTH-MANNA for Fibonacci (15)

Figure 0.2: Absolute Speedups on Fast EARTH-MANNA for Fibonacci (20)•
8 16 32 48 64 80 96 112 128

, of nodes

- -€l
e

- -.-

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

277

•

•

Benchmark Input Tseq USE factor (%)
(sec) Dual-proc. Single-proc. Ext. SU Int. SU

Fibonacci 15 0.000126 11.3 16.4 26.5 45.3
20 0.00112 9.8 13.8 23.2 41.2
25 0.0122 9.6 13.5 22.8 40.8
30 0.135 9.6 13.5 22.8 40.8

N-Queens-P 8 0.00347 42.8 53.0 63.1 82.0
10 0.0887 51.1 58.7 70.8 87.3
12 2.94 59.1 68.9 76.3 90.4

N-Queens-T 8 0.00347 70.5 79.0 83.9 91.7
10 0.0887 93.7 95.2 96.6 97.9
12 2.94 98.8 98.9 99.0 99.1

Paraffins 18 0.0182 80.5 97.5 98.3 98.7
20 0.108 81.1 98.5 98.7 98.8
23 1.82 81.9 99.4 99.4 99.4

Torncatv 33 0.117 80.1 83.4 90.4 94.3
65 0.479 64.3 71.6 92.6 94.3

129 1.96 44.7 56.3 92.0 92.8
257 8.45 27.6 42.4 97.1 97.4

Table D.2: Uni-Node Support Efficiencies on SEMi Simulation of Faster EARTH
MANNA

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual Cabs)

- -€>
El

- ... -
96 112 128

. __ - - -. -E).-:- . - -:. - - . - - - ~

8 16 32 48 64 80
Il of nodes

§- 32 : ~ .
"CI .
CI>
CI>

~16
8 .

Figure D.3: Absolute Speedups on Fast EARTH-MANNA for Fibonacci (25)

•

processor in terms of cycles), while the multithreaded codes require frequent bus

transfers, which we assume cannat be mn in parallel. (Fully integrating the SU

with the EU, as described in Section 8.3, may improve the issue rate on the faster

CPU.)

Sorne anomolous results can also be seen \Vith the last two benchmarks. With

Paraffins, the external-SU speedups for the largest problem size become much worse,

278

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

•
- -E)

El
- ... -

%32 :... - _ _.... - .

'i :!. .. 'en 16 ... ' .0·

s

•
8 16 32 48 64 80

, of nodes
96 112 128

Figure D.4: Absolute Speedups on Fast EARTH-MANNA for Fibonacci (30)

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

Il

- -€)

El
- ... -

§-32 .. ;-
-g :
QJ •

c% 16 .. -;
8 -. :;-

Figure D.5: Absolute Speedups on Fast EARTH-MANNA for N-Queens-P (8)•
8 16 32 48 64 80

"of nodes
96 112 128

yet the internaI-SU speedups become rnuch better, where bath the absolute and rel

ative speedup become almost linear (compare Figures C.13 and D.13). The behavior

64
a.
;:,

"0
~ 48
a.

C/)

32

16
8

- -€)

El
- ... -

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

Figure 0.6: Absolute Speedups on Fast EA.RTH-MANNA for N-Queens-P (10)•
8 16 32 48 64 80

"of nodes
96 112 128

279

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

- -E)-

---+---
- .. -

96 112 12848 64 80
"of nodes

32

"",:.-. - - :.:- -:...,-. _. - ~ - .- :...-.~. - - - ..

96 .. ,.

8 16

80 .

16
8 ..

32 ..

§- 64 .
'1:1

lB
~ 48-

•

Figure D.7: Absolute Speedups on Fast EARTH-MANNA for N-Queens-P (12)

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

- -E)-

---+-
- .. -

96 112 128

- -;.... - -0- - --

48 64 80
Il of nodes

328 16

§-32 .
"i
!16·

8 ..-...~Mt-.;....:..;.+-....;..;..,;,~----~-.:....;.~~...:..;....;.....-~-.....•
Figure D.8: Absolute Speedups on Fast EARTH-MANNA for N-Queens-T (8)

Figure D.9: Absolute Speedups on Fast EARTH-MANNA for N-Queens-T (10)

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

------ -E)-

---+---
- .. -

96 112 128

_.... - - - -- - - -.

48 64 80
"of nodes

328 16

80 .

16 .

8

64
Q.
::;,

'1:1
~ 48 .
Q.

Cf)

32

•
280

80 .

96

32 -

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)- ... -

- ~
e

16 ... ; ..

8 -

•

8 16 32 48 64 80
, of nodes

96 112 128

Figure 0.10: Absolute Speedups on Fast EARTH-MANNA for N-Queens-T (12)

•

•

of the SU module, as coded in SEMi, was not tuned for the new performance pa

rameters; a more detailed analysis could he used to adjust the load balancer. The

most unusual results came from Tomcatv. The USE factors for Tomcatv on the

software-based SU platforms drop sharply as the problem size increases, and the

prohlem is compounded by relative speedups that level off far below their theoreti

cal maxima. Cache statistics gathered by SEMi showed that the large block moves

inherent in this application are the cause; there is significant contention in the EU

on-chip caches between the fibers running in the EU and the SU copying or transfer

ring entire rows, and a high volume of cache-coherence traffic on the memory bus,

exacerbated by the lower relative performance of the main memory. Tuning the

8U's runtime system could help, but itis also interesting to note that this problem

disappears in both of the hardware-SU-based platforms.

The results from these experiments suggest that the main conclusions of this dis

sertation, the ability to support multithreading on off-the-shelf systems and the ben

efits of custom hardware to support the multithreading program execution model,

apply not ooly to older processors such as the i860, but to higher-performance su

perscalar processors \vith multiple-instruction issue and higher clock speeds.

281

Int. SU (abs)
Ext. SU (abs)
Single Cabs)
Dual (abs)

- -€)

e
- -

96 112 128

- .
: - - --0- - - -0

48 64 80
, of nodes

328 16

~32 .. :
oc -
fi) -

8. :en 16 . --.-

8 ..•-........~~------'-----=A='""=_="""'_=".'-::_="""'_~~-'-,--~

•

Figure 0.11: Absolute Speedups on Fast EARTH-MANNA for Paraflins (18)

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)- -

- -€)

e

96 112 12848 64 80
, of nodes

328 16

64 -

80 '--~""'------T-----r---r--""""-----r------''------'

16 .
8 .

§-48 .
oc
fi)
fi)

c%"32 -

•
Figure 0.12: Absolute Speedups on Fast EARTH-MANNA for Paraffins (20)

•

112
Il Int. SU (abs)

96 - -€)- Ext. SU (abs)
G Single (abs)

- ... - Dual (abs)
80 . -

a. 64 ..
~

oc
fi)
fi)
Q. 48 -CI)

32 . -

16
8 .

8 16 32 48 64 80 96 112 128
, of nodes

Figure D.13: Absolute Speedups on Fast EARTH-MANNA for Paraffins (23)

282

•
••

- ~
&

- ... -

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

8 16 32 48 64 80
Il of nodes

96 112 128

Figure D.14: Absolute Speedups on Fast EARTH-MANNA for Tomcatv (33)

_... - - :- - -~ - - - .
Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

- ~-
--+-- ... -

96 112 12832 48 64 SO
Il of nodes

S 16

48 .
Cl.
::s

'1:'
Q) 32 ... ;. ... :.
!. .•

CIJ .
16 . _.;. -.

s··d·~~•
Figure D.IS: Absolute Speedups on Fast EARTH-MANNA for Tomcatv (65)

64..---r--r----r----.------:-r--......---~-_.._-____,

48 .
Cl.
::s

'1:'
Q) 32 ... : ..
!.

CIJ
16 ..

S .

-- ~-
--+-- ... -

Int. SU (abs)
Ext. SU (abs)
Single (abs)
Dual (abs)

Figure D.16: Absolute Speedups on Fast EARTH-MANNA for Tomcatv (129)•
S 16 32 48 64 SO

ft of nodes
96 112 128

283

•

Int. SU (abs)
Ext. su (abs)
Single (abs)
Dual (abs)

- -€)

El
- -

--0" :
_0:;.-

-or
i7:

80 - ~

64 0 - 0 ~ 0 0

c..
~

'0œ 48 - _-:_0
8. -
en

32 0 --•
8 16 32 48 64 80 9ô 112 128

Il of nodes

Figure 0.17: Absolute Speedups on Fast EARTH-MAoNNA for Tomcatv (257)

•
284

