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Abstract 

This thesis studies adaptive filters for the case in which the main input signal is not 

synchronized with the reference signal. The asynchrony is modelled by a time-varying delay. 

This delay has to be estimated and compensated. This is accomplished by designing and 

investigating joint delay estimation and adaptive filtering algorithms. First, a joint maxi

mum likelihood estimator is derived for input Gaussian signals. It is used to define a readily 

implementable join t estimator, composed of an adaptive delay element and an adaptive fil· 

ter. Next, two estimation criteria are investigatE:'d with that structure. The minimum mean 

squared error criterion is used with a joint steepest-descent adaptive algorithm and \Vith 

a joint least-mean-square adaptive algorithm. The general convergence conditions of the 

joint steepest-descent algorithm are derived. The joint LMS algorithm is analysed in terms 

of joint convergence in the mean and in the mean square. Finally, a joint recursive least 

squares adaptive algorithm is investigated in conjunction with the exponentially weighted 

least squares criterion. Experimental results are obtained for these different adaptive algo

rithms, in order to verify the analyses. The results show that the joint algorithms improve 

the performance of the conventional adaptive filtering techniques . 
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Sommaire 

Cette thèse examine d'une façon détaillée le problème de synchr.onisation entre le signal 

principal et le signal de référence utilisés par un filtre numérique adaptatif. Le manque de 

synchronisme est représenté par le modèle mathématique d'un délai temporel variable dans 

le temps. Ce délai doit être estimé et corrigé. Cette tâche est accomplie en concevant et 

en étudiant différents algorithmes effectuant conjointement une estimation de délai et le fil· 

trage adaptatif. Un estimateur conjoint, basé sur le critère de maximum de vraisemblance, 

est dérivé en premier lieu en utilisant un signal d'entrée Gaussien. Cet estimateur est utilisé 

comme base pour définir une forme d'estimateur conjoint facilement applicable, composée 

d'un délai adaptatif et d'un filtre adaptatif. En second lieu, cette structure est alors étudiée 

en utilisant deux critères d'estimation. Le critère d'erreur quadratique moyenne est utilisé 

avec un algorithme adaptatif conjoint à descente maximale et avec un algorithme adapta· 

tif conjoint LMS. Les conditions générales de convergence sont dérivées pour l'algorithme 

conjoint à descente maximale. L'algorithme conjoint LMS est analysé en termes de conver· 

gence des moments du premier et second ordres. Finalement, un algorithme conjoint de 

moindres carrés récursifs (RLS) à pondération exponentielle est utilisé avec le critère des 

moindres carrés. Des résultats expérimentaux sont obtenus pour vérifier les dérivations ana

lytiques. Les résultats montrent que les algorithmes conjoints améliorent les performances 

des techniques conventionelles de filtrage adaptatif. 
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Chapter 1 Introduction 

1.1 Conventional Adaptive Filtering versus Delay Estimation 

Adaptive digital signal processing has become an important part of many systems in

volving unknown components or nonstationary subsystems. Adaptive digital filters, under 

different forms, are commonly used in channel equalization [1], echo cancellation [2], noise 

cancellation [3], system identification [4], spectral analysis [5] and in many other signal 

processing tasks [6]. Much research related to adaptive filters is concerned with the con

vergence, the tracking and the computationdl complexity of the adaptive algorithms [7]. It 

is almost always assumed that the two main digital inputs to the algorithm, the adaptive 

fil ter input signal and the reference signal, are synchronized in time, i.e. that they are the 

sampled versions of two continuous signals, with the sampling clock being the same for 

both. 

But in sorne adaptive filtering applications, this assumption is not true. A sarnpling 

rate difference makes the input and reference signals jointly nonstationary, and the two 

sequences \lsed in the adaptive tilter experience a changing relative delay. The reference 

system, if it is linear, can then be rnodelled as a reference linear filter in series with a time

varying delay. This delay decorrelates the two signais as the time index increases. In sorne 

other forms of adaptive system modelling, the unknown system has an impulse response 

that can be explicitly modelled as a pure time delay in series with a linear filter. Exam

pIes of such systems occur in geophysical exploration [8], echo canceUing [9] or multipath 

communications [1]. 

The ability of an adaptive tilter, operating at or ab ove the signals Nyquist rate, to 

model a delay between the filter primary input and its reference, makes it a very versatile 

signal processing tool and, in many cases, the designer does not need to consider any other 
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delay compensation scheme. The adaptive filter essentially models the delay by shifting its 

impulse response by the proper arnount. The use of a simple adaptive filter, to identify the 

reference system, implies that the t:'lmbination of the delay and the filter will be modelled 

by the adaptive system, without any eXl'!icit separation between the delay and the fUter 

estimates. In sorne cas~s thi:- is sufficient, but it can also happen that the estimate of 

interest is the delay vahl<:, as in delay estimatlOn over an unknown channel, or that the 

channel impulse response is wanted, as in channel Identification with an unknown de/ay 

(thf le different interpretations are indeed very similar and are most often related to the 

perspective of the user). 

Ever if a s<'paration between the delay estimate and the channel estimate is not required, 

a simple adaptÎ\'e filter might rcquire a numbcr of fil ter weights, of which many may have 

no cffect upon the final model (because they are used only to delay the input signal), but 

increase both the computational complexity and the weight vector misadjustment, resulting 

in an increascd mean squared crror. For a given misadjustment, su ch a large number of 

weights has usually the effcct of reducing the convergence sp~ed of the adaptive filter and 

its tracking capability [10]. In the case of a t,ime-varying reference delay, the sampling rate 

evolution can evcn be rapid enough to prevcnt the tracking by a conventional adaptive fil ter 

[11], [12]. For sorne applications, it is thereforc imperative to have sorne appropriate means 

to "center" the impulse response of the adaptive filter within a finite time window. 

The separation of the estimation task. between a delay cstimator and a linear filter esti

mator, has been given very little attention in the adaptive filtering literature. The exception 

is in the field of clock or timing recovery used in conjunction with adaptive equalizers, in 

data communication systems [13]. In digital channel equalization, for example, the receiver 

input signal (or a filtered version of it) is sam pied and passed through an adaptive tilter (the 

equalizer). The reference signal is the demodulated data stream or a 10ca11y remodulated 

version of it. Due to channel delay distortion or sorne other nonstationary channel effects, 

the sampling phase has to be synchronized with the locally generated reference signal. Sorne 

forrn of equalization strategies will compensate for this sampling error, as in fractionally 

spaced equalizers (FSE), by adjusting their taps to model the corresponding delay [14]. 

But this scenario explicitly assumes that the sampling perhd has been recovered, and that 

only the clock phase has to be tracked (this implicitly means that a [orm of carrier phase 

recovery is performed independently from the equalizer). 

There are other applications in which the difference in s?.mpling rates, between the 

adaptive filter input and its reference signal is implicit. A particular example of such an 

application is the enhancement of speech in the presence of interfering music and noise [12]. 

- 2 -



{ 

An adaptive noise canceller is used to model the channel through which the speech and the 

interference are transmitted, and its output is subtracted from the composite signaI, in order 

to obtain the enhanced speech. But, due to different recording media, there is a difference 

in sampling rates betweeu the discrete composite signaI and the interference signaI. The 

signal decorrelation caused by 1 his difference renders the noise canceller useless after a few 

seconds of operation, and methods to "reaIign" the canceller input and its reference signal 

are essen tial. 

The study of such methods is the sllbject of this thesis Since time delay estimation is 

an inherent part of the algorithms considered in the next chapters. cOilventional methods to 

perform such a task are reviewed in the next section. Section 1.3 addresses briefly the subject 

of conventional adaptive filtering. The main thesis objectives are given in Section 1.4, where 

the estimator structure that is favollred ail along the work is introduced. Joint estimation 

algorithms involving adaptive filters are discussed in Section 1..5. 

1.2 Conventional Delay Estimation 

The signaI model, virtually always assumed in the delay estimation literature, is com

posed of two received noisy signals, one being a delayed and scaled version of the other. with 

additive noise processes uncurrelated with each other. As in most estimation problems, both 

open-Ioop and closed-Ioop methods have been proposed for time delay estimation. Most 

of these methods make use, either explicitly or implicitly, of the cross-correlation between 

the received signais or a filtered version of them. In the generali:ed correlation method, as 

discussed by Knapp and Carter [15], the two received signals are first filtered by different 

filters, and one output is delayed with respect to the other. The resu)ting signaIs are cor

related together, for different values of delays, until a maximum in the cross-correlation is 

obtained. This configuration is used with different fil ter combinations, each one emphasiz

ing a different characteristic of the signais. Assuming that aU the signaIs are stationary and 

Gaussian, Knapp and Carter derive the fiiters giving the maximum Iikelihood (ML) open

Ioop delay estimator for a constant delay. These results are generalized, for time-varying 

delays, by Stuller [16] and by Champagne et al. [1ï]. 

For time-va.rying delays, Meyr and Spies [18] propose the use of the ML est.ulator in a 

closed-Ioop configuration. Using a smaU error signal assumption, the system is anaIyzed by 

converting it into a mathematically equivalent delay-locked loop, bearing a great resemblance 

to the conventional phase-locked Ioop. The delay-locked loop is composed of a delay error 

generator, an integrator and a loop filter. Messer [19] analyzes the same type of closed-Ioop 
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configuration for different kinds of delay error generator, aU based on the cross-correlation 

approach. 

Closed-Ioop adaptive techniques using the minimum mean squared error (MM5E) or 

the least squares (LS) criteria have been proposed by many authors. The basic configuration 

adopted by these r-:>c;earchers is the system identification one. In this structure, one signal 

is processed byan adaptlve system and the output is compared to the other signal, in order 

to produce the error signal for adaptation. The conventional adaptive transversal filter 

was proposed for the modelling of the delay and attenuation experienced by the reference 

signal. This method relies on the fact that a pure time dclay can be imposed on a band

limited continuous lowpass signal by passing this signal through a lowpass filter with a 

frequency response constant in amplitude and linear in phase [20]. This frequency response 

corresponds to a sin x/x impulse responc;e and can be approximated by a digital finite 

impulse filter (FIR) of appropriate length. The least-mean-square (LMS) algorithm has 

been studied by Reed et al. [21] and I\rolik et al. [22] for static delays and by Feintuch et 

al. [23] as weIl as by Youn and Carter [2 t] for time-varying dplays. Chan et al. [25], [26] 

have considered the RLS algorithm In th('se methods, the adaptive filter converges to the 

WiE'ner solution and a subsequent Interpolation algorithm determines the delay estimate as 

the peak location of the adapted impulse response. This clelay estim;>t0r is biased becallse 

of the finite interpolation process between the adaptive filter coefficients [27]. Note that in 

these methods, the adaptive filter converges to a solution that IS a fllnction of the input 

signal autocorrelation. 

In the above adaptive method. the adaptive filter identifies the channel impulse response 

(the sin.L / x function) and the delay estimate is obtained by measuring the displacement 

of this response. Therefore, in order to estimate a scalar parame ter , the whole weight 

vector must be estimated and processed. Adaptive approaches, in which the delay value is 

directly estimated, have also been proposed. These use the basic identification configuration 

described above, with the exception that the conventional adaptive transversal filter is 

replaced by an adaptive delay element. The delay is adapted directly, until the MMSE or 

the L5 solution is reached. The LMS delay adaptation algorithm has been studied by Etter 

and Stearns [28], for integer delay values, and by Messer and Bar-Ness [29], for îractional 

delay values. 

Instead of the MMSE criterion, Smith and Friedlander [30] consider the weighted LS 

criterion and the Gauss-Newton adaptation method for a fra.ctional delay element. They 

daim that the method is better suited than the LMS algorithm for time-varying delay 

tracking,. 
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The delay estimations methods based on the use of a delay element are conceptually 

simpler than those based on the adaptive transversal filter, but they show one major draw

back; the algorithm is not guaranteed to converge to the delay corresponding to the global 

minimum of the performance surface, since this surface is not in general unimodal with re

spect to the adaptive delay value (it depends on the input signal autocorrelation function). 

This implies that in the case of a cold start of the algorithm, an acquisition procedure is 

necessary to bring the delay value in the vicinity of the global minimum and allow this 

minimum to be tracked by the algorithm. 

1.3 Conventional Adaptive Transversal Filtering 

Traditicnally, the subject of adaptive transversal filtering has h·, en divided into two 

subcbsses, referring to the two most popular estimation criteria u&Ld in the adaptation 

algorithm [7]. The gradient-based algorit.hms (steepest-descent and LMS), mak(! use of 

the MMSE criterion, while the recursive Ieast squares (RLS) algorithm is based on the LS 

criterion. 

The steepest-descent algorithm is based on the conventional nonlinear programming 

method bearing ~he same name [31]. In this method, the adaptive weight vector is updated 

using a scaled version of the gradient of the mean squared crror function, with respect to 

the weight vector. The MSE function is defined as the expected value of the squared error 

between the tilter output and the reference signal. This function is quadratic with respect 

to the weight vector, and its gradient is Iinear. The comp11tation of the gradient requires 

the input signal autocorrelation matrix, as weIl as the cross-correlation vector between this 

input and the reference signal. In practice, these values have to be estimated if the sn is to 

be applied. The J.MS dgorithm is an attempt to simplify the gr:ldient estimation, in which 

it is assumed that the MSE function is replaced by the squared error function. This gives 

a gradient vector estimate that is equal to minus twice the input signal vector multiplied 

by the error, which reduces considerably the algorithm's complexity. The LMS adaptation 

algorithm is therefore a stochastic gradient algorithm that is simple and relid,ble, and that 

has been used in many adaptive signal applications. A major problem related to the sn 
algorithm is its slow convergence properties, which are related to the magnitude f)f the 

smallest eigenvalue of the input signal autocorrelation matrix, as weIl as to the eigenvalue 

spread [6]. Methocls to speed up the convergence have been proposed. In these methods, a 

form of whitening of the input signal is performed or used, in order to lower the eigenvalue 

spread. 
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The above gradient-based methods are implerIlented, most of the time, in the time do

mair, aIthough various frequency-domain method have been proposed [32]. The advantage 

of this structure is that, for filters with a large number of coefficients, the use of fast Fourier 

transforms to con vert the diffNent signais in the frequency domain (where the adaptation 

and the filtering are accomplished) rcduces dramatically the computational complexity of 

the algorithm. 

The LS-based e!:>timation has for goal the minimization of the (weighted) sum of squared 

error over a window of increasing length. The weight is selected ta be less or equal ta one, 

which practically limits the memory of the algorithm and allows the tracking of nonsta

tionary systems and signais The computation of the L8 solution essentially involves the 

inverse of the deterministic input signal autocorrelation matrix, w!J.ich is obtained undcr a 

form of time average. This inverse can be computed recursively in time, and gives rise to 

the recursive LS (RLS) algorithm. Because this algorithm makes llS(l cf the matrÎx inverse 

at each iteration, which is cquivalcnt to an input whitening, its convergence rat(l is typi

cally an order of magnitude larger than that of the LMS algorithm [7]. The RLS algorithm 

is computationally involved and different forms of "fast" algorithms have been proposed. 

The drawback of these efficient methods is their Inherent computational instability on finite 

word length processors. 

As far as tracking possibihties are concerned, the RLS algorithm, although it converges 

faster, does not seem ta be super::>r to the LMS algorithm for filters of low or der [33], [34]. 

1.4 ThesÎs Objectives 

The main objective of the thesis is to obtain and analyze sorne adaptive structures 

that would allow one to estimate separately the delay and the channel that link together 

two observed signais. Since conventional adaptive filter theory is fairly weIl understood 

and Binee its application gives good practical results, the Ilew adaptive structures retain 

as mueh as possible the forms of the well known adaptive systems. In particular, the 

conventional estimation criteria, the minimum mean squared error criterion and the least 

squares criterion, are the main concerns of this thesis. In addition, the s~eepest-descent, 

least-mean-square and recursive least squares adaptation algorithms constitllte the core of 

the work, as in traditional adaptive filtering theory [7J. 

These Joint time de/ay and adaptive filtering algorzthms are composed of an adaptive 

delay element [29J operating in conjunction with a conventional adaptive transversal filter. 

The delay element is essentially a delay line (implcmenting the integer part of the delay) 
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in series with an interpolation filter [35] (implemen ting the fractional part of the delay 

by resampling the input signal). These new adaptive structures meet two fundamental 

objectives: first, the structure of the investigated joint estimation algorithms, although 

simple and seemingly ad hoc, follows a pattern that suggests itself in a rigorous derivation 

of the maximum likelihood joint estimator (see Chaptf'!' 2); second, the joint MMSE or 

LS estimators extend the capabilities of existing adaptive delay estimators or adaptive 

transversal filters. 

Hence, the analysis of joint algorithms, as presented in this thesis, has as an objective the 

extension of the existing adaptivc filtering and/or adaptive delay estimation theories. It is 

desired to derive the critical system parameters that govern both the convergence conditions 

and the steady-state performance of each of the joint algorithms. This theoretical objective 

motivates much of the research. Practical considerations, under the form of simulations, 

are also provided and discussed. 

1.5 A Survey of Joint Algorithms Involving Adaptive Filters 

Most of the work dealing with joint algorithms and involving a form of adaptive 

transversal filter was performed in the field of digital communications, where the adap

tive filter considered is a channel equalizer. Kobayashi [36] looks at the problem of deriving 

sirnultaneotls adaptive estimation and declsion algorithrn for carrier modulated data trans

mission systems. He seeks a joint estimator for the carrier phase, the bit timing and the 

symbol recovery for different forms of modulated signals. He considers the joint maximum 

likelihood estimator for which he defines a steepest-descent algorithm that se arches the ML 

performance function. 

Chang [37] considers the joint optimization of automatic equalization and carrier acqui

sition for BPSK signals, using the MMSE criterion and a joint steepest-descent algorithm. 

He studies the location and magnitude of the stationary points of the MSE function and finds 

that there is no local minimum or maximum and an infinitude of global minima, located 'Ir 

radians apart. He also derives necessary convergence conditions for the join t algorithm. Fal

coner addresses the same problem, for two-dimensioncll-motlulated suppressed-carrier data 

signals, proposing the jomt LMS carrier phase recovery and adaptive equalization algorithm 

[38], [39]. The algorithm is studied in order to establish the convergence bounds, as well as 

the response to different carrier phase excitations. 

Qureshi studies a joint timing recovery and adaptive equalization algorithm in [13], for 

partial-response systems. He proposes a joint LMS algorithm and discusses its practical 
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implementation. Previously, he had considered a gradient-directed search of the error pro

duced at the output of the adaptive equalizer, in order to find the optimum position of the 

reference tap [40]. 

The different fonns of adaptive equalizers-based joint algorithms presented above rep

resent the basic knowledge in the field and are expanded upon in this thesis. In particular, 

Qureshi's work is generalized in Chapter 3 and 4 (see also [41]). The convergence conditions 

and bounds are considered in details for general joint delay estimation and adaptive filtering 

algorithms. 

Recursive least squares adaptation algorithms, for the same kind of general joint adap

tive system, are proposed in Chapter 5 and are also discussed in [42]. 

1.6 Thesis Organization 

The thesis is organized as follows. The subject of the next chapter is the structure of 

joint time delay estimation and adaptive filtering algorithms. The problem of estimating 

the time delay and the correlation function between two received signals is introduced in 

this chapter. A mathematical model is initially discussed, and a possible form for the joint 

maximum likelihood estimator, for the time delay and the correlation function between two 

observed Gaussian signals, is presented. The joint MMSE and LS algorithms, as studied in 

the subsequent chapters, are then introduced. The objective of this brief theoretical chapter 

is twofold. First of aIl. the structure and interpretation of an optimum (in the maximum 

likelihood sense) processor, as derived in Appendix A, is discussed. This represents by itself 

an interesting exercise in estimation theory and the general results are new. ThG second 

objective of Chapter 2 is to highlight the motivation for simpler and more practical joint 

estimator structure, as studied in the subsequent chapters. 

Joint, gradient-based, MMSE time delay estimation and adaptive filtering algorithms 

are studied in Chapters 3 and 4. The MMSE theory, for joint estimation, is reviewed in 

Chapter 3 as a function of ~he different variants of the joint adaptive structure, and the 

joint steepest-descent algorithm is studied. In this algorithm, the derivative with respect 

to the delay and the gradient with respect to the weight vector are computed exactly. The 

convergence of the joint steepest-descent algorithm, from an arbitrary point, is studied. 

Then, the delay tracking properties are investigated, in general terms, and as functions of 

the system parameters. 

The joint LMS algorithm, in which bath the adaptive delay element and the adaptive 

filter are adapted using a stochastic gradient approximation, is studied in Chapter 4. The 
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convergence, from arbitrary initial conditions, is considered again, followed by an analysis 

of the conditions of convergence, in the mean. and in the mean square, of both the estimates. 

The excess MSE and the mis ad just ment expressions resulting from the stochastic gradient 

approximation are derived for different variants of the joint adaptive structure. 

The subject of Chapter 5 is the application of the recursive least squares algorithm 

(RLS) in the adaptation of the joint adaptive structure. A new fOrIn of RLS algorithm, 

in which the adaptive filter is adapted recursively, both in time and in the optimum delay 

direction, is derived. This chapter has a structure that is slightly different than the structure 

of Chapter 4, since it is mainly oriented toward the derivation of the joint LS algorithm, 

which is much more complicated than the joint sn or LMS algorithms. The excess MSE 

and misadjustment, caused by the fini te memory of the algorithm, are also computed. 

Following these theoretical chapters, Chapter 6 is more practically oriented. It presents 

and discusses the irnplementation of the joint LMS and LS algorithrns and present numerous 

simulation results. The goal of the chapter is to confirm the applicability of the joint algo· 

rithms in different situations, and to verify the different theoretical results of the previous 

chapters. 

Finally, Chapter 7 summarizes the thesis, di.'cusses the contributions and gives sorne 

future research avenues. 
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Chapter 2 

2.1 Introduction 

Joint Time Delay Estimation 

and Channel Identification 

The problem of estimating the time delay and the correlation function between two 

received signaIs is presented in this chapter. A mathematical model for the two signais 

is introduced. A form for the joint maximum likelihood estimator, for the delayand the 

correlation function, is derived, assuming Gaussian signaIs. Next, joint delay estimation 

and adaptive filtering algorithms, as studied in the subsequent chapters, are discussed. The 

goal of this chapter is to present the joint estimation problem in mathematical terms and 

to discuss the relative merits of the estimation algorithms based on different criteria. 

2.2 The Mathematical Model 

Two discrete signaIs, Yl (n) and Y2( n), are assumed to be available to the joint estimation 

algorithm. The mathematical model for the generation of these signaIs is 

YI (n) = sC n) + vI (n) 

Y2(n) = LDn,h(n)[s(n)] + V2(n), 
(2.1) 

where sen) is the transmitted stationary t signal and Dn is a delay, possibly time·varying. In 

addition, L Dn,h(n)(') is an unknown linear operator, takillg the form of a filtering operation, 

with the fil ter impulse response h(n), of a delayed by Dn version of the input signaI. The 

signals VI (n) and V2( n) ar(' zero-mean stationary noise processes, assumed uncorrelated with 

t Unless otherwise stated, sta.tionaflty means sta.tionarity in the wide sense. 
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each other, as weIl as with sen) and .cDn,h(n)[s(n)]. A block diagram corresponding to the 

mathematicaI model (2.1) is illustrated in Fig. 2.1. Note that aU the discrete signais defined 

ab ove are assumed to be the sampled versions, with sampling period T, of continuous-time 

signais that are strictly bandlimited to the frequency range -1/2T < f < 1/2T. 

s(n) 

}---- Yl(n) 

'----.-4 CD.,h(n)[s(n)] 1---,,( 

V2 (Il) 

Fig. 2.1 MathematicaI signal model 

It is assumed that .cDn,h(n)[s(n)] can take the two foUowing forms: 

.cbn,h(n)[s(n)] = h(n) 0 senT - Dn), 

corresponding to the filtering of a delayed version of s( n) or 

.ciIn,h(n)[s(n)] = h(t) 0s(t)lt=nT-Dn, 

(2.2) 

(2.3) 

corresponding to a filter followed by a delay. Note that the operator 0 is the convolution 

operator. The form of (2.2) is defined as a Type 1 system and the form of (2.3) as a 

Type II system. Note that because h(n) and sen) are the sampled version of h(t) and set), 

.c1Jn,h(n)[s(n)] is aIso given by 

II " sin[lI'(t - kT)/T] 
.cDI'I,h(n)[s(n)] = lJ[h(k)0 s(k)] lI'(t _ kT)/T It=nT-Dn' 

k 

(2.4) 

The Type 1 and Type II system models can be represented by the block-diagrams of Fig. 2.2. 

In the join t estimation problem, it is required that both the time- varying delay Dn and the 

reference fllter h( n), or its inverse h-1 (n), be estimated t. 

The rnathematicaI model presented in this section will be used, in Sections 2.3 and 2.4, 

to derive the structures of joint estimators based on the maximum likelihood criterion [43] 

and on the minimum mean squared error and least squares criteria [7]. 

t Note that the inverse of any hnear filterlng operation h(n) 18 denoted as h- 1(n). Therefore k(n) ® 
h-1(n) = 6(n). 
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sen) 
Dn 

Linear 
Filter h(n) 

r-

(a) 

sen) Linear 

Filter h(n) 
Dn ~ 

(h) 
Fig. 2.2 System models of interest; (a) Type 1 model, (b) Type II 

model 

2.3 The Joint Maximum Likelihood Estimator For a Type 1 System 

The ML estimator has been derived by a few authors, for the identification of a pure 

delay between two Gaussian signals [15], [16], [17]. New results, concerning the generaliza

tion of the pioneering work appearing in these articles, are presented in this section. The 

derivation of these results, mainly concentrated in Appendix A, is accompli shed by using 

basic tools in estimation theory [43]. The resulting form of the joint ML estimator provides 

the motivation for simpler and more practical join t estimator structures, as presented in 

Section 2.4 and studied in the subsequent chapters. The ML estimator fol' a finite observa

tion time is presented in the next subsection and its extension for long (infinite) observation 

interval is discussed in Subsection 2.3.2. 

2.3.1 The Joint ML Estimator for Finite Observation Interval 

The parameter estimation model of (2.1) is utilized with LDn,h(n)[s(n)] given in (2.2). 

The signal s( n) is assumed to he the sampled version of a continuous-time sample function 

s( t), from a stationary zero-mean Gaussian random process with an autocorr~lation function 

defined as <Pu ( T). The discrete-time noise processes vIC n) and V2( n) are sam pIed version of 

zero-mean stationary continuous-time Gaussian noise processes, assumed white with power 

spectral density No/2 W 1Hz. Hence, the discrete-time noise processes have the following 

autocorrelation functions 

(2.5) 
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with 6( k) defined as 

5(k) = {~ for k = 0 

otherwise. 
(2.6) 

For the analysis, the reference delay Dn and the reference filter h( n) are also assumed to be 

constant with time. Note that the assumption of equalnoise variances, although seemingly 

artificial, is a common one in the delay estimation literature. Furthermore, in the case of 

the derivation of the ML receiver, it simplifies considerably the computations. 

The objective is to derive an estimator producing the estimates of D and h( n), defined 

r«:'spectively as d and w( n), that maximizes the likelihood probability of the observed signaIs 

YI (n) and Y2( n), over a certain discrete-time interval [nI, n2]. In order to perform this task, 

the mathematical model of (2.1), given sorne values d and w( n), is expressed in the following 

vector form 

where the vectors are dE;fined as 

y(n) = s(nld, w) + v(n), 

y( n) = [YI ( n)] 
Y2(n) 

s(nld, w) = [8(/n) 1 
Ld,w(n)[S( n)] 

v(n) = [VI(n)]. 
v2(n) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The vector w is defined as the assumed reference filter weight vector, whose components 

are the samples of the impulse response w( n). The ML estimation problem is therefore the 

same as computing and maximizing the likelihood probability of the receivcd vector y( n), 

given the parameters d and w, over an interval [nb 112]' Since aIl signaIs are Gaussian, 

this is equi valent to the computation of a log-likelihood function C( d, w). The derivation of 

this likelihood function is given in Section A.1 of Appcndix A, using a vector form of the 

Karhunen-Loève decomposition [43]. The final form of this fUllction is found to be the sum 

of a noncausaI term Cy ( d, w) and a bias term i B( d, w). Thel'efore, 

C(d, w) = fy(d, w) + CB(d, w), (2.11) 

where 
n2 n2 

ly(d, w) = liNo 2: L yH (n)Q2(n, mld, w)y(m) (2.12) 
n=nl m=nl 

and 

lB(d, w) = -~ f ln [2À'~; w) + 1] . 
1=1 

(2.13) 
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In (2.12), Q2( n, mld, w) is the matrix impulse response of the noncausallinear MMSE point 

e::.tÏmator of s(nld,w), from the received vector yen), given the parameters d and w [43]. It 

is given by the solution of the "normal" equation 

N n2 -fQ2 ( n, mld, w) + L Q2( n, ~~Id, w )tss( k - mlll, w) = +ss( 71. - mld, w), (2.14) 

k=nl 

for nI $ n ::; 71.2, nI :$ m :$ n2. The matrix +ss(kld, w) is the covariance matrix of the 

vector s(nld, w), defined as (s(nld, w) is zero-mean) 

tss(kld, w) = E[s(n + kld, w)sll (nid, w)], (2.15) 

where II denotes complex conjugate transpose. In (2.13), >',(d, w) is the ith eigenvalue of 

+ss(kld, w). 

The form of the joint ML estimator, bascd on the abovc definitions, is given in Fig. 2.3. 

It is a noncausal processor, and a causal estimator cau he obtained by delaying the matrix 

impulse response and the input vector by a value equal to the estimation interval N = 

71.2 - n1 + 1, as shown in Fig. 2.4. The response Q2( n - N, mld, w) is d('fined over n) + N $ 

71. $ n2 + N, n1 $ m $ n2 and the hias term has to be delayed accordingly. Note that 

the form of Figs. 2.3 and 2.4 is only one possible realization of the ML estimatol' and that 

other structures are possible [43]. The form of Figs. 2.3 and 2,4 is similar to the canonical 

realization number 1 of [43] and [16]. 

Yl(n) 
Linear MMSE 

cstimator 

Q2(1I, mld, w) 

l(d, w) 
\-----~+J---

ln(d, w) 

Fig. 2.3 Blockdiagram of the noncausal joint maximum likelihood 
cstimator (canonical realizat.ioll num ber 1) 

The computation of the likelihood function can he expressed in a more appealing form 

by assuming that the observation time is long compared to length of the impulse response 

of the r€'ceiver. This is done in the next subsectioll. 
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Yl(n) 
--~ Linear MMSE 

Fig. 2.4 Blockdiagram of the causal joint maximum likelihood 
estimator (canonical realization number 1) 

2.3.2 The Joint ML Estimator for Long Observation Interval 

tB(d, w) 

The assumption oflong (infinite) observation interval simplifies the computation ofthe 

likelihood function i( d, w) by allowing the use of time-invariant filters and frequency domain 

relationships. This assumption is of practical importance because if the observation time is 

long compared with the time necessary for the system transients to die out, the estimator 

performs close to optimum [44]. The assumption of infinite interval is only used to solve 

the integral e~uations of the form of (2.14). The resulting receivers are still used over the 

interval [n}, n2] t. 

2.3.2.1 The Function iy(d, w) for Long Observation Interval 

Assume that nI -+ -00 and n2 -+ 00. Then (2.14) becomes 
00 

L Q2(kld, w)tyy(n - kld, w) = .ss(nld, w), 
1;=-00 

where 'n( kld, w) is defined as 

tyy(kld, w) = E[y(n + k)yH(n)ld, w] 

= E[s(n + kld, w)sH (nid, w)] + E[v(n + k)vH (n)] 

= +ss(kld, w) + ~OI6(k), 

(2.16) 

(2.17) 

t Note that Champagne et al. [17] use a dimensionality reduction technique that eases the solution of 
the integral equation, in the case of pure thlle-delay estimation, and leads to a signal processor (orm 
that computes exactly the ML pure time-delay estimator over an arbitrary observation tnterval. 
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with 1 representing the 2 x 2 identity matrix. 

Taking the Fourier transform and solving, the frequency domain solution is the matrix 

transfer function given by 

(2.18) 

Solving the above equation and using the result in (2.12) gives, after sorne manipulations 

(see Section A.3 in Appendix A) 

where 

ly(d, w) =1/2No I)w( -nlw) 0 Yi(nT - d)]Y2(n) 
n 

+ 1/2No L)w(nlw) 0 cw(n) 0 Yl(nT - d)]y2(n) 
n 

+ 1/2No ~:rw(nlw) 0 w(n) 0 Yl(n)]yi(n) 
n 

+ 1/2No L)w(nlw) 0 w(n) 0 Y2(n)]yi(n), 
n 

w(nlw) = F-I [2G(e
1W

)w.(e
1W

)] 
IW(e1W )12 + 1 

G e1W _ c)",,(elW)(IW(eJW)12 + 1) 
( ) - c)",,(eJW )(IW(eJW)12 + 1) + No/2 

cw(n) = w(n) 0 w(n) 

t",,(eJW ) = F[4>",,(n)] 

W(eJW ) = F[w(n)] 

and F[·] is the Fourier transform operator. 

2.3.2.2 Approximate Joint Maximum Likelihood Receivers 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

A possible realization of the receiver, based on (2.19) is illustrated in Fig. 2.5. This 

receiver is suboptimal, but the approximation becomes better when the observation interval 

increases. 

The open-Ioop estimator operates as follows: for each possible value of d and w( n) in a 

predetermined range of values, the likelihood l( d, w) is computed over the interval [nI, n2], 

using the processor of Fig. 2.5. The estimate (D, h) is the pair corresponding to the likeli

hood maximum, over the range of values considered. In open-Ioop operation, the estimator 

is therefore conceptually made of a number (possibly infinite) of receivers operating in par

allel. Every one of these parallel receivers effectively computes the likelihood of a certain 

couple. By quantizing the range of possible solutions, the number of receivers is reduced 

from an infinity to a finite number (although very large in the case of a multicomponent 

vector w) [43]. 
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111 (n) delay 
d 

(r 

()" 

Fig. 2.5 Blockdiagram of an approximate noncausal joint maximum 
likelihood receiver 

2.3.2.3 Adaptive Maximum Likelihood Estimation 

lB(d, w) 

The open-Ioop estimator described above can, in theory, he made adaptive in several 

ways. This is desirahle because the number of parall~l receivers, in the open-Ioop estimator, 

would clearly he too large for any practical channel h( n). Iterative search procedures, 

based on different forms of descent algorithm, can he used for the computation of local 

solutions [31]. These algorithms can also form the basis of suboptimum processors, for 

on-Hne estimation of ÎJ and h. 
Consider the noncausal joint ML receiver of Fig. 2.5. This receiver computes the like

lihood function for a block of data, which is assumed large compared to the time necessary 

for the system transients to die ,",ut. It makes use of noncausal filters, Le. at any iteration 

n, the output of the receiver is function of future input data. The estimation can be of 

the block type, in which the likelihood function is computed for fixed blocks of data and 
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the estimated values updated on a block-by-block basis. Within the ,th block, the values 

of D a.nd h can be estimated by performing an exhaustive search independent of the values 

estimated in the previous blocks, or by performing a limited search, based on sorne of the 

information obtained previously. Since the likelihood function for th{' ith block, denoted 

l(')(d, w), is generally multimodal with respect to both d and w, the latter procedure is 

preferable. Because l(')(d, w) is a random variable, the search should pcrforrr a form of 

average over the blocks. The update formulas can take the form of a general jai .. t algarithm 

W(I+1) = f(w('),l(')(d,w)) 

d(l+l) = g(d('), l(')(d, w)), 
(2.25) 

where the functionals f(·) and g(.) are updating directions. These functionals may be 

defined, for example, as 

f(W('), e(')(d, w)) = max E[é')(d, w)] 
w 

g( d('), e(1)( d, w)) = max E[é i)( d, w)] 
d 

for w E Rw{i + 1) 

for dE Rd(i + 1), 
(2.26) 

where the parameter ranges Rw( i + 1) and Rd( i + 1) are defined in relation with W(I) and 

d(') respectively, in order to narrow down the range of possible values for (d('+1), w(l+l)). 

The information from the previaus black is therefare utilized ta limit the range of parameter 

search in the actual black. 

Another definition for the functional could be 

f( W(I), l(')( d, w)) = W(I) + Jl \lw E[é' )( d, w))] 

g( d('), l(')(d, w)) = d(') + a aE[l('~~d, w ))] , 
(2.27) 

where Jl and a are small positive gain factors. This algorithm is a form of block joint 

steepest-descent algorithm ap;>lied on the likelihaod functian [31]. Note that the derivative 

information is added to the previous estimate value since the objfctive function l(')(d, w)) 

must be maximized. 

The receiver of Fig. 2.5 can be made causal by delaying the two input signals by a 

suita.ble number of samples. In this case, the likelihood function at iteration n, denoted 

ln(d, w), can be computed by using data only available at this time, and a .sample-by-sample 

search can be performed. It can be of the Corm 

Wn+l = Wn + Jl \lwn E[ln(d, w))] 
d d aE[ln(d,w))] 
n+l= n+ a ad ' 

(2.28) 

where a joint steepest-descent search is used to update the estimates at every iteration. This 

algorithm should converge asymptotically to a solution corresponding to a local maximum 
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of the objective function. It has also the potential ta track the variations of the parameters 

with time. 

Another form of adaptive ML estimator can be based on an hybrid system, in which 

a coarse open-Joop block search is first performed and is followed bya closed-Ioop search, 

around the values estimated III the open-Ioop search [43J. 

2.3.3 Discussion 

Different forms of the joint max..imum likelihood estimator, for time-invariant reference 

delay and fllter, have been derived in the above subsections. Every one of these forms is, 

without exception, difficult to implement. They involve the solution of integral equations, 

and tht> number of components in the veetol' w eomplicates even more any joint open-Ioop 

estimator. A closed-Ioop (adaptive) estimator reduees considerably the latter problem, at 

the exp en se of introducing convergpnce inaccuracies (convergence to local solutions). A 

hybrid system appears to be the best solution, at least conceptually. But the complexity 

inherent to the receiver of Fig. 2.5, and the computation in real time of the bias term remain 

problematie. 

Nevertheless, the structure of the ML receiver is of interest. First of aIl, note that jf 

the reference filter is absent, the receiver reduces to a cross-correlation receiver identical 

to the ML estimator for pure time delay estimation. When the reference filter has to be 

estimated, the joint ML receiver performs three distinct functions. First, it delays and 

filters the received signal Yl(n) before it correlat es it with Y2(n). Secondly, it performs 

two extra correlations, in the lower two branches of the receiver. Finally it computes and 

adds the bias term. Considering only the first function, the form of the receiver is that 

of a delay E'lement in cascade with a group of filters, both applied on one of the received 

signals, followed by a comparison (correlation) with the other recei ved signals. This form 

is appealing and can be retained in other types of joint estimators. 

It seems therefore appropriate ta consider simpler join t estimators based on different 

criteria and exhibiting the aforementioned form. These more practical estimators are the .,. 
subject of the next section, as weil as the main subject of this thesis. 

" . 

2.4 The Joint MMSE and LS Estimators 

( Taking into considerations the previous discussion, a form for the joint adaptive es-

timators, based on the MMSE or the LS estimation criteria, is readily obtained. It is 
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composed of an adaptive branch, with an adaptive delay element connected in cascade with 

and adaptive filter, and of a referenee branch used to generate an error signal. The adaptive 

braneh is either in Type 1 or in Type II configuration, and is used to estimate jointly the 

reference delay Dn and the reference filtel h( n), or their inverses. If the reference branch 

is estimatf'd, the configuration is the cancellation one, illustrated in Fig. 2.6. If the inverse 

of the reference branch is desired, the equalization configuration, as shown in Fig. 2.7, is 

used. In terms of adaptive delay and filter, Figs. 2.8 gives a detailed form of a Type 1 

joint estimator in cancellation configuration. Note that the cancellation of a certain Type 

of system (1 or II) is always performed by an adaptive system of the same Type, while 

the equalization is accomplished with the other Type. In the rest of this thesis, whenever 

it is question of a certain Type of configuration performing a certain task (eaneellation or 

equalization), the system to cancel or equalize (the reference system) is of this Type and it 

is implicitly assumed that the adaptive system has the proper structure. If it is clear that 

a specifie branch or system (adaptive or reference) is used, then the Type applies to this 

specifie system. 

, 
Yl(n) Estimat.or y(n) 

C· . [.] Dft,h(n) 

- .p 
+'r/ e(n) 

r(n) 

Fig. 2.6 System identification (cancellation) configuration 

These joint time delay estimation and adaptive filtering algorithms may be used in 

any application where both the reference delay and filter must be estimated. They may 

also find sorne applications in different areas of adaptive signal processing, especially in 

the enhancement of already existing techniques involving adaptive filters. The addition 

of an adaptive delay element to the usual adaptive filtering operation'i can improve the 

conventional adaptive parame ter estimation techniques that would otherwise be of limited 

usefulness. In or der to appreciate this fact, an adaptive filtering application, in whieh the 

input signal and the reference signal exhibit a different sampling rate, is considered in the 

next subsection. 
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r(n) 

+ 
+' ~ e(n) -

Estimator 

C-b",h- 1(n,[-J y(n) 

t 
Fig. 2.7 Inverse filtering (equalization) configuration 

1------1 
Adaptive y(n) 

Filter w(n) 

Reference 
Filter h(n) 

Fig. 2.8 Type 1 systems in cancellation configuration 

2.4.1 The Sampling Rate Difference Problem in Adaptive Filtering 

An adaptive system in which the input signal and the reference signal exhibit a different 

sampling rate may take dlfferent forms. One of these possible configurations is given in 

ii~. 2.9, where noiseless conditions have been assumed. The input signal s( n) and the 

reference signal r'(n) are sampled at the same rate. A time-variant sampling rate conversion 

is applied on r'(n), Le. the unifornùy sampled signal r'(n) îs ideally interpolated and 

resampled with a nonuniform sampling period T'( i) = T ~(i), for 1 ~ i :5 n and ~(i) a real 

number. 

In such a system, the input signal autocorrelation matrix R, defined as 

R = E[s(n)sH(n)] 

sen) = [s(n),s(n -1), . . ,s(n - M + l)]T 
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-
Adaptive 

algorithm 

) = senT) FIR yen) - e(n) 
Adaptive Filter tt 
Wn (Length. M) + 

sen 

r'(n ) = r(nT) Sarnpling rate 

Conversion '\(n) 
r(n) = r(L~=l T'(i)) 

Fig. 2.9 Adaptive system with sampling rate conversion 

is constant 'or a stationary input signai. The cross-correlation vector Pn, defined as 

Pn = E[s( n )r·( n)] 

E[s( n )r·( n)] 

E[s(n - l)r*(n)] 
= 

E[s(n - M + l)r·(n)] 

(2.31) 

is a function of time. This is the case since the (1 + 1 )th component of Pn is given by 

n 

= E[s(nT -IT)r*(L: T'(i))] 
.=1 
n 

= 4>.n[(n -1)T - ~ T'(i)], 
.=1 

(2.32) 

(2.33) 

where 4>,,( T) is the continuous complex cross-correlation function between the jointly sta-

tionary continuous signais s( t) and r( t) and T'( i) is the reference bran ch sampling period 

at the i th sampling instant. The continuous cross-correlation function is defined as 

(2.34) 

and, for wide sense stationary signais, is a function of T only [4.5]. Equation (2.33) can be 

written as n 

PI+1(n) = 4>~T[{n -1- L À(i)}T], (2.35) 

.=1 

- 22 -



( 

( 

which shows c1early the dependence ofp on n. If ~(i) = 1 for aIl i, there is no sampling rate 

conversion and p is not time-varying. This shows that even if the sequences s(n) and r(n) 

are individually stationary (when ~(i) is a constant for aU i), they are not jointly stationary 

when the sampling period ratio ~ is different from one. 

U sing the notation of [7], the output of the adaptive filter is defined as 

y(n)=w~s(n). (2.36) 

The MSE function, defined as ~n = E[le(n)12], is then of the form 

(2.37) 

where 4>,,(0) is the reference signal variance. Considering Wiener filter theory [43], the 

weight vector minimizing the MSE at time n is [7] 

(2.38) 

The MMSE weight vector is obviously time varying, Le. the quadratic performance surface 

is time-variant. Because the matrix R is constant, its eigenvalues and eigenvectors are 

constant and the quadratic performance surface is constant in shape, but varies its position 

with time. If, for example, the sampling rate ratio ~ is constant and different from one, 

and if it is assumed that <PIJT( T) -+ 0 as T -+ 00, then limn-oo Pn = 0 and Wopt( n) -+ 0 as 

n -+ 00. This particular case illustrates the limiting situation where the filter input and 

the reference signal are totaUy decorrelated and the adaptive filter is virtually useless. A 

similar situation happens when the adaptive filter time span is larger than the maximum 

time lag for which the fil ter input and the reference signal are carrelated. 

This decorrelation between s( n) and r( n) is equivalent ta a time-varying delay, which 

can be computed ae follows. Assume that for sorne integers !vI and f{, the following relation 

is true 
M M 

KT = LT'(i) = TL À(i), (2.39) 
1=1 1=1 

Le. r(n) and s(n) are time-aligned at time KT. Then, for n = J( + l, r(n) is 

1 

r(K + 1) = r(/{T + T L ~(I\ + i)) (2.40) 
Î=1 

and s(n) is 

s(K + 1) = s(KT + IT). (2.41) 
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--.J Then r(n) lags s(n) by the time-varying value Dn = T(l- E!=l >.(1( + i)). An additional 

adaptive delay element, connected in Type 1 or in Type II configuration with the adaptive 

ffiter, can therefore make viable the original adaptive solution by compensating for the 

sampling rate difference. An adaptive system, in cancellation mode and corresponding to a 

Type 1 configuration, is illustrated in Fig. 2.10. Note that the reference branch in Fig. 2.9 is 

of Type II. Note also that if the reference delay Dn is constant with time (Le. the sampling 

rates are the same), the two types of systems are equivalent t. 

Estimation 

algorithm 

Adaptive 

algorithm 

s(n) = s(nT) Adaptive - e(n) 
dn 

Filter ,~ Wn + 
-

Sampling rate - h(n) 
Conversion ..\(n) 

Fig. 2.10 Type 1 adaptive system with sampling rate conversion 

2.4.2 Discussion 

The (orm of joint MMSE or LS estimators that is favoured in this thesis has been 

introduced. It has the advantage to be very simple since it essentially mimics the form of 

the operator C Dn,h(n)(')' Its basis is the conventional adaptive filter, using the MMSE or the 

LS estimation criteria. The combination of an adaptive delay element and an adaptive filter 

constitutes by Itself a joint delay estimation and channel identification technique that can 
• 

be compared to any other form of such joint estimator, in particular the joint ML estimator 

1 If the sampüng rates are different, the sampling rate conversIOn IS equmùent to a \inear time-varia.nt 
system and such systems are not, in generai, commutative. Types 1 and II are therefore not equivalent 
in this generai case. 
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derived in Section 2.3. But it constitutes also an improved version of the convention ai 

adaptive filter, which increases its potential utility. 

2.5 Summary 

Three structures for performing joint time delay estimation and channel identification 

have been presented. A mathematical model for the received pair of signais has been 

introduced. The joint maximum likelihood estimator for Gaussian signals has been derived 

and its limited practical utility discussed. The ML estimator has heen used to specify 

a simpler joint estimator structure, composed of an adaptive delay element operated in 

conjunction with an adaptive filter. The MMSE and the LS estimation criteria are well 

suited for that new structure. It was finally noted that the joint delay estimation and 

adaptive filter algorithm can also he considered as an enhanced version of the conventional 

adaptive filter. 
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Chapter 3 

3.1 Introduction 

Joint Time Delay Estimation and Adaptive 

Minimum Mean Squared Error Filtering: 

The Joint Steepest-Descent Algorithm 

This chapter presents an analysis of joint delay estimation and channel identification 

based on the minimum me an squared error (MMSE) performance index, when the chan

nel identi~cation is specifically performed by an adaptive transversal filter and the delay 

estimation is accomplished independently from this filter, by an adaptive delay element. 

A joint steepest-descent algorithm is investigated here and a joint LMS algorithm will be 

considered in Chapter 4. 

The principal contributions of these two chapters are the generalization of existing 

gradient-based time delay estimation without the reference filter h( n), and the analysis of 

a new joint algorithm for the synchronization of the input and the reference signaIs used 

by an adaptive filter. The joint steepest-descent and LMS algorithms are generalizations of 

joint dock phase recovery and adaptive equalization based on MMSE phase tracking. This 

generalization is based on the facts that the sampling period and the sampling phase are 

tracked, and that the signaIs considered are general and not limited to data signals. These 

joint algorithms assume generally that the input signal and the reference signal fed to an 

adaptive fil ter are not sam pIed with the same dock period. They also allow the tracking of 

time-varying delays, in the reference path, by a process s~parated from the adaptive filter, 

which itself is free to perform the task of modeling the linear filter h( n) or its inverse. The 

material presented here and in Chapter 4 expands upon the work published in [13] and [29]. 
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The chapter is structured as follows. Sorne general theoretical concepts are presented 

in Section 3.2. In particular, the minimum mean squared (MSE) function is derived in 

general terms and a derivative-based search of its minimum, with respect to the adaptive 

delay, is discussed. These general concepts are then applied in Section 3.3, where the 

joint sn algorithm is considered in sorne details. Finally, the theoretical results derived in 

Sections 3.2 and 3.3 are applied to sorne special cases in Section 3.4. 

3.2 General MM SE Theory 

Recall that the model studied is (sef' Section 2.2) 

YI ( n) = s( n) + vI ( n ) 

Y2(n) = LDn,h(n)[s(n)] + v2(n). 
(3.1) 

Recall also that, depending on the problem at hand, the operator LDn,h(n)[s(n)] can take 

the form of the filtering of a delayed version of s( n) or the form of a filter followed by a 

delay. The former configuration is defined as a Type 1 system and the latter as a Type Il 

system. These two definitions also apply to the joint adaptive estimator. Note that the two 

types oC systems are equivalent if the corresponding delay is constant with time. 

The adaptive filter is a transversal filter, with a weight vector Wn oflength M. The goal 

of this filter is to estimate the impulse response h( n) or its inverse. It is desired that the 

reference delay value Dn be estimated separately from the adaptive filter, hyan adaptive 

delay element dn cascaded with the fil ter in Type 1 or Type II Corm. In joint MMSE 

delay estimation and adaptive filtering, the mean squared error surface is searched by both 

the adaptive filter estimation algorithm and the delay estimation algorithm. In system 

identification (cancellation) scenarios, YI(n) is filtered by an estimate of LDn,h(n)[s(n)] 

and the resulting signal is subtracted from Y2( n), in order to form the error signal. In 

inverse filtering (equalization), Y2(n} is passed through an estimate of L_Dn,h-1(n)[s(n)] 

and compared to Yl(n). This was illustrated in Figs. 2.6 and 2.7. 

3.2.1 The Mean Squared Errar Functian 

ln general, the output of the adaptive branch can he defined as y( n) and the reference 

signal as r( n}. Then the error signal is defined as 

e(n) = r(n) - yen), (3.2) 
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and the MSE function, at time n, as 

(3.3) 

The joint estimation can be thought of as taking place in a vector space made of a weight 

vector subspace and a delay subspace. The two subspaces are not orthogonal, which implies 

that the two estimation processes are not independent (because the adaptive filter can model 

a reference delay). 

The MSE function, for aU possible combinations of configurations (cancellation or equal

ization in Type 1 or Type II), can be represented by a general expression. In order to do so, 

define as u( n) the input to the adaptive branch, whether this bran ch is in Type 1 or Type II 

configuration. The output of the adaptive branch is y(n) and the reference signal is r(n). 

This is illustrated in Fig. 3.1. 

, , 
u(n) 

dn 
f\daptive y(n) - Filter w(n) 

-
+ 

+ 
e(n) 

r(n) 

(a) 

, , 
u(n) Adaptive 

dn 

y(n) - Filter w(n) 

-
+'" ,/ 

+ 
e(n) 

r(n) 

(b) 
Fig. 3.1 General model for ( a) a Type 1 adaptive system and for (b) a 

Type II adaptive system 
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Assume also that a correlation function <Pab( n, m), between two discrete signals a( n) 

and b( m), is defined in terms of the correlation function between the continuous signals a( t) 

and b(t) as 
<Pab(n,m) = E[a(n)b*(m)] 

= E[a(nT + ~n)b*(mT + ~m)] 
= <Pab(nT + ~n,mT + ~m), 

(3.4) 

where ~n and ~m are the delays imposed on the continuous signals at iterations n and 

m t. 

The MSE function can then be represented by either one of the following equivalent 

equations 

en = { 
<PTT(n, n) + W!nRnWdn - 2Re[wInPn] 

<PTT (n, n) + <pyy( n, n) - 2Re[ <Pyr (n,11)], 
(3.5) 

where Re[.] is the real value operator, <Prr(n,m) and <pyy(n,m) are respectively the auto-

correlation functions of the reference signal and the adaptive branch output, <Pyr( n, m) is 

the cross-correlation function between this output and the reference signal, Rn is the au

tocorrelation matrix of a delayed version of the adaptive branch input u( n) and Pn is the 

cross-correlation vector between the same delayed input and the reference signal. Finally, 

wdn is a delayed version of the weight vector Wn. 

The autocorrelation matrix and the cross-correlation vector are then expressed as 

Rn = E[unu~] 

Pn = E[unT*(n)], 

(3.6) 

(3.7) 

where Un is the equivalent vector of delayed input samples, stored at iteration n, in the 

adaptive filter delay Hne. For a Type 1 adaptive system, this vector is 

Un = ruenT - dn), u(nT - T - dn-d, ... , u(nT - MT + T - dn_M+1)]T. (3.8) 

For a Type II system, Un is 

Un = ruenT - dn),u(nT - T - ;,,), .. . ,u(nT - MT + T - dn)f. (3.9) 

Similarly, the weight vector is given by 

Wdn = { 

Wn = w(nT) 

wnT-dn = w(nT - dn) 

Type 1 

Type II. 
(3.10) 

t The difference between a discrete and a continuous correlation function is not explicitly denoted oth
erwise than by using discrete or contmuous time arguments. 
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Note that, as with aU signals and systems, the adaptive filter transfer function is assumed 

strictly bandlimited to -1!' < W < 1!'. The vector w( nT - dn ) is therefore obtained by resam

pling at nT - dn the continuous version of w( nT). Note also that the above relationships 

are true if the output of the ada.ptive branch is defined as 

(3.11) 

Sorne other variations of Type 1 and II adaptive systems, fN which the MSE function 

form of (3.5) applies, can also be defined. For example, a modification of a Type 1 system 

is one in which the delay dn propagates instantaneously through the adaptive filter delay 

Une, Le. where Un is represented as in (3.9). In Type II configuration, it is possible 

to transfer the adaptive delay to the reference branch. For the cancellation of a Type II 

configuration, this means that a negative delay dn is applier in the reference branch, instead 

of a positive de/a y dn in the adaptive filter branch. Such a system is illustrated in Fig. 3.2 

and is called a Type II-DRB (delay in reference branch) system. For the equalization of 

a Type 1 configuration, the adaptive delay can be made positive in the reference branch, 

instead of being negative in the adaptive branch. These particular adaptive Type II-DRB 

configurations have the advantage that Wdn = Wn and will be preferred in practice. The 

Type II adaptive system with a delay in the adaptive branch is called a Type II-DAB 

adaptive system. Note that a signal s(n) that enters a delay dn always becomes s(nT - dn ), 

and it is the sign of dn that indicates if the signal is retarded (positive ::,ign) or advanced 

(negative sign). Finally, note that a negative delay is always impiemented as a portion of a 

positive reference delay, and corresponds to a decrease of this reference delay. 

Adaptive y(n) 

Filter w(n) 

+ 
e(n) 

+ 
Reference 

Filter h(n) 
Dn dn 

r(nT - dn) 

Fig. 3.2 Type II systems, with negative delay, in cancellation 
configuration 
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The two forms of ~n, given in (3.5), reflect the nature of the joint estimator operation. 

In the weight vector subspace, associated to the first equation of (3.5), the MSE function 

is a quadratic surface [7]. The one-dimensionaI delay subspace is naturaIly linked to the 

correlation functions of the second equation of (3.5). The MSE function is not, in general, 

unimodal with respect to dn . In order to see this, note that ~n depends on correlation 

functions that vary according to the adaptive filter and the operator .e[s( n )], as well as 

to the autocorrelation function of the signaIs u( n) and r( n). AlI of these functions are 

multimodal with respect to their time argument, which in turn causes the MSE function to 

behave similarly with respect to dn and produces a multitude of local extrema. 

3.2.1.1 The MSE Function for Specifie Configurations 

The MSE function is explicitly derived below, for the two Types of joint adaptive 

configurations. The resulting expressions are instructive in that they show the relationship 

between the adaptive fil ter coefficients and the different correlation functions involving the 

time-varying delays. Note that the derivations are performed as functions of the general 

signaIs u( n), y( n) and r( n) defined above, and apply to both the system identification 

(cancellation) and inverse filtering (equalization) configurations. 

Type 1 Adaptive Configuration 

Using the second equation of (3.5), the MSE function is 

en =tPTT(n, n) + L L w~.wn1tPuu(nT - iT - dn-., nT - jT - dn- 1) 
} 

- 2Re[L W:.<PUT( nT - iT - dn_
" 

nT)], 

where Wni is the i'h component of the adartive filter weight vector Wn at time n. 

Type II·DAB Adaptive Configuration 

The MSE function is 

en =<Prr(n, n) + L L w{nT_dn),W(nT-dn)]tPuu(nT - iT - dn, nT - jT - dn) 
) 

- 2Re[L w(nT-dn)I<PUT( nT - iT - dn, nT)], 

where W(nT-dn). is the i th component of the delayed adaptive filter. 

(3.12) 

(3.13) 

Note the effect of the adaptive delay in these two configurations, in particular in the 

Type II structure, where the adaptive filter coefficients are directly affected by the delay. 
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Type II-DRB Adaptive Configuration 

In a modified Type II structure, as shown in Fig. 3.2, the delay is applied on the 

reference signaI only and the MSE function is of the form 

~n =4>rr(nT - dn, nT - dn) + L L w~,wnJ4>uu(nT - lT, nT - jT) 
J 

- 2Re[L: w~,rjJur(nT - iT, nT - dn)]. 
(3.14) 

The above expressions will be applied, in the subsequent sections, to the mathematical 

model of (3.1), used in the cancellation and equalization configurations. 

3.2.2 Derivative-Based Delay Estimation 

As argued in Subsection 3.2.1, the MSE function is multimodal with respect to the 

delay dn (consider (3.12) to (3.14)). This causes a problem in the search for the minimum 

oi ~n with respect to dn . In closed·loop estimation, this phenomenon leads to false lock 

problems, as in phase.locked loops. These problems are generally solved by designing an 

acquisition procedure, in which the delay estimate is varied until the algorithm faIls in its 

tracking region, near the MSE global minimum. Once in tracking mode, the estimation 

algorithm can compute the derivative of the MSE function with respect to the delay value, 

and generate a correcting signaI that brings the loop into lock. This is the essence of most 

closed-loop MMSE methods proposed for the simple signaI model in which 

(3.15) 

A general form of the derivative·based delay estimation algorithm can be such that dn is 

updated using a function JO of the previous delay estimate values, as well as a function of 

the MSE surface. This form can be expressed as 

(3.16) 

where "Yn(-) represents the MSE function or an estimate of it at time n and g(.) is a fune

tionaI that effectively computes a form of derivative of "Yn('), with respect to dn. Note that 

"Yn(-) is a funetion of n not only through dn , but also through W n and h(n). The form 

of (3.16) is motivated by existing recursive optimization algorithms [31] or recursive sys

tem identification algorithms [4]. Assume that J(-) and g(.) are real coefficients difference 
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equations of the form 

J 

f(dn } = L c,dn_, 

,=0 

1 

g[pn(dn)] ;: L o. ~~n-I. 
1=0 n-I 

(3.17) 

(3.18) 

Then, dn is updated using a filtered version of the. previous estimate values, as weU as a 

filtered version of the previous derivatives. This form is 

(3.19) 

In a first-order algorithm, Co = 1, 00 = ° and aU the other coefficients are zero. This 

transforms (3.19) into the steepest-descent or the LMS algorithm, having the form 

(3.20) 

A common assumption in the analysis of tracking algorithms is that the estimate is 

close to the optimum value, which allows the linearization of the tracking loop [46j, [29]. 

The Taylor expansion of În(dn ), around dn = en, is 

(3.21) 

where the dot den otes the derivative with resptct to dn . Assuming that en is close to a 

minimum (local or global) of the MSE function estimated by În(dn), the higher terms are 

neglected and the error function can be expressed as 

This approximation is used in order to linearize the delay estimation algorithm. In delay 

tracking conditions, the linearized gener:tl algorithm is obtained by combining (3.19) and 

(3.22), and assuming that i'n( 0 n ) :::::: 0 t. It is given by 

J 1 

dn+1 = L c,dn_, + L aa1n-,(0n- , )(0n- , - dn-,)' (3.23) 
,=0 1=0 

t Note that this assumption is true when î'n(dn ) is the MSE function and 0 n is a minimum, but that it 
can be false if a stochastic approximation of the MSE functlOn is used. 
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The linearized first-order algorithm is 

(3.24) 

which can be written as 

(3.25) 

Equation (3.25) models the behaviour of a first-order delay-Iock loop [46]. The variations of 

0n represent the variations of the minimum tracked by the loop and in(0n) represents the 

loop delay errol' generator characienstic for that minimum [19], i.e. the function of en by 

which the Ioop error is multiplied. At iteration n, (3.25) approaches the closest minimum 

en if Il - oin(0n)1 < l, Le. if 

(3.26) 

3.2.2.1 A Restricted Class of First-Order Delay Tracking Aigorithm 

The expresRion (3.25) is alinear difference equation with timc-varying coefficients, which 

makes difficuit any convergence and stability studies. It is a function of the variations with 

time, of both the error function In(-) and the value 0 n. A restricted class of problem 

allows the derivation of useful results. In this class, it is assurncd that the function in(en} 

is constant. This assumption implies that the delay error generator characteristic is not 

infiuenced by the adaptive or reference filters changing characteristics, nor it is by 0 n . 

Then, the first-order difference equation has for solution 

n-l 

dn = (1- ai)ndo + ai L(1- œ~d0n-l-l' 
(=0 

Equation (3.27) converges if Il - ail < 1, Le. for 

0< a < 2/i. 

(3.27) 

(3.28) 

The time constant of delay adaptation ca.n be defined by fitting the geometric ratio 1 - oi 
to an exponential with time constant Tdel 

] - oi = e-I/rdel 

::::: 1 - l/Tdel' 

The time constant of delay adaptation is therefore 

1 
Tdel :::::-", 

0 1 

- .14 -
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3.2.3 Discussion 

Sorne general results have been established in this section. The effeet of the adap

tive delay on the MSE function was shown to be dependent 011 the structure used in the 

estimation. If a Type 1 adaptive system (delay in front of filter) is such that the delay 

dn propagates instantaneously through the adaptive delay Jjne, or if the adaptive delay is 

transferred to the reference branch in a Type II-ORB adoptive configuration (delay after 

filter), then simplified expressions result. By using a truncated Taylor expansion of an esti

mate of the MSE function, it is possible to obtain general results about the adaptive delay 

steepest-descent algorithm. In particular, by restrictiag the second derivative of the MSE 

function estimate to be constant, the gain factor range insuring convergence of the adaptive 

delay SO algol'ithm can be cornputed, as well as the algorithm time constant. This special 

case is not tao restrictive and is applicable to systems in which the reference filter h( n) 

varies sIowly, in tracking mode. These results will be used in the subsequent sections with 

the function ')'n(-) specifie ta the joint steepest-descent algorithm. 

3.3 The Joint Steepest-Descent Aigorithm 

The simplest joint derivative-based algorithm is the first or der one, which is composed 

of the usuai steepest-descent (SD) 'LJaptive filter, of the form 

(3.30) 

and of the SO adaptive delay algorithrn, expressed as 

(3.31) 

Note that (3.31) is just equation (3.20) with 

(3.32) 

The combination of (3.30) and (3.31) allows sorne extra flexibility in the application of 

the joint sn algorithm. Define ~{dn, Wdn} as the MSE function for specifie valuec; of the 

adaptive delay and weight vector. Then the adjustments of dn and Wn can be based both 

on e { dn , Yi dn}, giving the following form of join t SO algorithm 

(3.33) 

- .JS -



The adaptive weight vector can he adjusted before the delay adaptation, producing the 

algorithm 

Wn+1 = Wn - l' \7wdn ~ {dn , wdn} 

ô~{dn, Wd(n+l)} 
dn+1 = dn - () ôd

n 
' 

or the delay element can he adjusted before the filter adaptation, giving 

d d 
ô~{dn, wdn} 

nH = n - () ôd
n 

wn+l = Wn -1' \7wdn ~{dn+l, Wdn}' 

(3.34) 

(3.35) 

The algorithms of (3.33) to (3.35) can he generalized even further hy allowing repeated 

adaptations on the same input data, which is referred to as data reuse [47]. This offers a large 

number of possibilities for the alternation of the two adaptive processes. The algorithms 

(3.33) to (3.35) will be the only ones considered in this chapter and the algorithm (3.33) 

will he referred ta most of the time~ when the expression "joint sn algorithm" is used. The 

two special forms of (3.34) and (3.35) will be called the joint alternate algorzthms. 

The convergence of the joint SD algorithm is considered in the next subsection. Then, 

Suhsection 3.3.2 treats of the delay tracking properties of the algorithm. 

3.3.1 Convergence of the Joint sn Algorithm 

A necessary condition for a specifie dn and Wn to be a stationary solution of the algo

rithms (3.33) to (3.35) is that both of the following equations be satisfied [3i] 

{ 

V'Wdn~n = 0 
ô~n _ 0 
ôdn - . 

(3.36) 

This condition is gen('ral and applies to any type of adaptive structure. Note that the first 

equation of (3 '36) is in fact a necessary und sufficient condition for convergence. This is so 

because ~n is quadratic with respect to Wdn' which implies that there is a unique minimum 

in wdn' for a given value dn . When the first equation of (3.36) is satisfied, this unique 

solution is attained, and any further modifications of dn will increase ~n. This is the case 

because the adaptive filter models both the relative delJ.Y and the reference filter in the 

minimum MSE sense. Then, this solution corresponds also to a minim um with respect to 

dn • The sufficiency orthe condition is due ta the uniqueness of the minimum with respect to 

wdn' A better idea of the convergence properties of the joint SD algorithm can be obtained 

by assuming a particular Type 1 or Type II structure. 
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3.3.1.1 Convergence Results for Particular Structures 

Assume an adaptive Type 1 configuration in which the delay dn propagates instanta

neously through the adaptive fil ter delay Hne, or an adaptive Type II-DRB configuration in 

which the adaptive delay is applied to the reference branch, as in Fig. 3.2_ ln this case, t~e 

first equation of (3.5) is such that the input signal autocorrelation matrix is constant and 

the adaptive weight vector is not function of the delay dn . Furthermore, assuming that the 

reference filter is stationary, 4>rr(nT - dn , nT - dn ) = 4>TT(O) and is not function of dn . The 

necessary condition of (3.36) reduces to 

{ 

R-I 
Wn = Pn 

Re[w!l Pn] = 0, 
(3.37) 

i.e. the weight vector solution is the Wiener solution when the delay dn is such that Wn is 

orthogonal to pn or the product w!! Pn is purely imaginary. Note that the solution of (3.37) 

is not unique, which constitutes one of the most important characteristic of the joint SD 

algorithm. This shows again the need for an acquisition algorithm that brings the estimates 

close to their global optimum, before any tracking algorithm takes over. 

The cross-correlation vector Pn is a function of the cross-correlation function between 

the delayed input signal and the reference signal. Its components are in fact the samples of 

the corresponding continuous cross-correlation function. This forces the vector Pn to follow 

a path, in the weight vector subspace, specified by the cross-correlation function and makes 

the weight solution R-1pn a member of a specifie subset of the weight vcctor subspace. In 

arder to see the nature of the solution in the delay subspace, express the MSE function as 

where the reference tilter has been assumed stationary. 

If the first condition of (3.37) is respected, the MSE function becomes 

~o(dn) = ~nlwn=R-1Pn 
= <l>rr(O) - p~ R -IPn. 

(3.39) 

The second condition of (3.37) is respected if dn is a minimum of ~o(dn), which is function 

of the cross-correlation between the delayed input signal and reference signal. 

Therefore, in arder to be a stationary solution, the couple (dn,wn) must be such that 

dn is a minimum of eo(dn } and Wn is given by R-1pn. The convergence towa. ~is solution 

can be interpreted by considering a small-signal representation of Pn' First, note that 

(3.40) 
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.. . ,. .. Using this expression, the joint gradient algorithm of (3.33) can he expressed as 

Wn+I = (1 - 2J.LR)wn + 2J.LPn 

dn+l = dn + 2QRe[w~Pn]' 
(3.41) 

If the gain constant Ct is small, the change from dn to dn+l is likely to he small also and 

then <Pur ( - jT ± dn+d (the (j + l)th component of pn) can be approximated as 

c/>ur( -jT ± dn+l) ~ </>ur( -jT ± dn) ± (dn+l - dn ) â<P~~(T) Ir=-JT±dn (3.42) 

for 0 $ j $ Al -1. Note that the plus sign applies to the Type II-ORB case and the minus 

sign to the special Type 1 assumed here (the delay propagates instantaneously through the 

adaptive tilter delay Hne). Then, Pn+l can he approxirnated as 

Using the second equation of (3.41), equation (3A3) becomes 

Pn+l :::::: Pn + 2QRe[w~ pn]Pn 

and the joint algorithm is then approximately 

wn+l = (1 - 2J.LR)wn + 2JLPn 

Pn+l :::::: Pn + 2QRe[w~ Pn]Pn. 

(3.43) 

(3.44) 

(3.45 ) 

The interpretation is that, as dn is rnodified, Pn moves along a predeterrnined path (deter

mined hy c/>ur(dn)), changing the location of the performance surface minimum, trying to 

reach the point where the adaptive filter does not need to compensate for any delay. This 

point is attained when Wn equals R-1pn. 

These results give a qualitative description of the convergence behaviour of the joint 

sn algorithm, independently of the way the two adaptation processes are alternated (Le. 

theyapply to algorithm (3.33), as weIl as to the algorithms (3.34) and (3.35) with minor 

modifications, as long as the special Type 1 or Type II-DRB structures assumed at the 

beginning apply). More rigorous results, that apply to the alternate joint algorithms of 

(3.34) and (3.35), are given next. 

3.3.1.2 A Condition of Convergence for the Joint Alternate Algorithm 

If the adaptation factors Il and Q are chosen sufficiently small, the process always 

reaches a limit point [48]. In what follows, a condition on Il and 0 is given, that ensures 

convergence of the joint alternate algorithms of (3.34) and (3.35), for both Types of systems. 
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This condition is derived in [37] for joint carrier phase acquisition and adaptive equalization, 

in digital communications. It is reformulated here for the problem at hand. This condition 

is general in that it establishes the stability range for the two adaptation factors such that 

the MSE is reducpd at each iteration, for both Type 1 and Type II systems, no matter 

how the two adaptive processes are alternated (i.e. data reuse can happen). It is aIso 

important hecause it confirms that, with the right parameters, the joint sn algorithm 

converges eventually to a stationary point. The condition does not strictly apply to the 

joint sn algorithm of (3.33), but it gives useful indica.tions about the convergence of this 

algorithm as weIl. 

First, assume that the adaptation factors can he time-variant and denote them as Jln 

and On. Express the MSE as an explicit function of dn and wdn' i.e. as ~{dn, wdn}' Deline 

a stationary poznt of ~{dn, Wdn} as a solution (dn , Wdr) of the necessary condition (3.36). 

It is said that ~{dn, Wdn} converges to a stationary point if, for every f > 0, there is an N 

such that 

(3.46) 

for aIl n > N. 

The decrease in MSE due to the nth adjustment is denoted by ~~n and is defined as 

(3.47) 

The quantity 6~n approaches zero when the partial derivatives of condition (3.36) approach 

zero. A stronger statement that may sometimes hold is that "~~n approaches zero only 

when the partial derivatives approach zero" [37]. Mathematically, this statement means 

that for every ( > 0, a 6 > 0 can he found such that 

(3.48) 

if 

[ô] 2 ôd~{dn, Wdn} + [\7wdn~{dn, Wdn}] H [V'wdn~{dn, WdnJ] 2: (. (3.49) 

The fol1owing lemma is stated and proven in [37]. 

Lemma. If ~en > 0 for all n and ~~n approaches zero only when the partial derivatives 

approach zero, en must converge to a stationary point. • 
This lemma provides a mean for determining the adaptation factors #ln and On, since 

the MSE will converge to a stationary point if the adaptation factors can he determined 

such that 6en > ° for all n and ~en approaches zero only when the partial derivatives 

approach zero. The next proposition establishes the gain factors range for the above lemma 

to he true. It is an adaptation of proposition 2 of [37]. 
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Proposition 3.1. Let the set of positive integers be divided arbitrarily into two disjoint 

subsets KI and K2, each containing an infinite number of positive integers. Let On = 0 when 

n E Kt, and /ln = 0 when n E "'2. Let '\max(n) be the maximum eigenvalue of the signal 

autocorrelation matrix Rn and iJn , the delay value closest to d,l, for which H dn, Wdn} is 

minim um. The MSE will converge to a stativnary poin t if 

(3.50) 

for n E Iq, and 

[ 
82 -1 

0<on<2 8d~~{t?n,Wdn}] , (3.51) 

for n E "'2. In (3.50), the constant 6 is liT in tlle case of a Type II-DAB adaptive system, 

and zero otherwise. The notation r dnol means "tlIe closest integer larger than dno". • 

Proo!: Consider first the condition n E "'1. In that case, 0',. = 0 and dn+1 = dn. 

This situation corresponds to the usual adaptive filter convergence case, in which the MSE 

function ~n is a quadratic surface in the weight vector subspace, with a unique minimum with 

respect to wdn' Then, equation (3.50) with 0 = 0 is the usual condition for convergence, 

at iteration n, of the adaptive transversal filter using the SD adaptation algorithm [6]. 

In the case of a Type II adaptive branch with the delay after the adaptive fil ter, (3.50) 

with ~ = liT is the stability condition for integer delayed adjustments [49]. Since the 

performance surface is quadratic, ~~n approaches zero only when the gradient w.r.t. Wn 

approaches zero, and the lemma ensures that a stationary point is reached. Note that if 

nE KI for AI consecutive iterations, where Mis the adaptive filtel' order, the autocorrelation 

matrix and its eigenvalues become time-independent in a Type 1 adaptive system. 

In the other situation where n E "'2, /ln = 0 and the adaptive filter stays stationary. 

Then, from (3.5), and fol' a stationary reference filter 

(3.52) 

and the variations of en w.r.t. dn are function of both the autocorrelation tPyy( n, n) of the 

adaptive filter output and of the cross-correlation function tPyr( n, n) between this output 

and the reference signal. This function is generally rnultimodal w.r.t. dn (see Section 3.2.1). 

It is therefore difficult to give a very precise ldea of the delay tracking algorithm without 

knowing the actual value of dn. Assuming a Taylor expansion of ~n around dn , the minimum 

closest to the actual value of dn , the MSE function evaluated at dn = iJn is constant and 

the restricted class analysis of section 3.2.2.1 holds. Then (3.51) results from (3.28), with 
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c "Y = e {17n , Wdn}, and ~{n approaches zero only when the derivative of the MSE function 

w.r.t. dn approaches zero. • 
This proposition states that, for any Type lor Type II structures, dn and Wn may be 

adjusted in any alternating fashion, and the MSE will converge to a stationary point if l'n 

satisfies (3.50) during the adjustment of Wn , and an satisfies (3.51) during the adjustment 

of dn. The above condition is important because it confirms that, with the right parameters 

used in alternat ion, the MSE is reduced at each iteration and the joint sn algorithm 

converges eventually to a stationary point. Therefore, the algorithms of (3.34) and (3.35) 

can be used to track the variations of the reference system, if conditions (3.50) and (3.51) 

are satisfied. As for the algorithm of (3.33), the conditions of the theorem do not insure 

convergence, but they constitute a reference point for the selection of the proper adaptation 

constants. 

3.3.1.3 Excess Mean Squared Error 

The minimum MSE, given a certain value of dn , was defined in (3.39) as eo(dn }. Denote 

the absolute MMSE as emin and define it as 

{min = ~o( Dn) 

= <P: ,(0) - pH (Dn)R;lp(Dn), 
(3.53) 

where p(Dn} is the cross-correlation vector evaluated for dn = Dn. Therefore, {min is the 

MSE for perfect cancellation or equalization by the joint adaptive structure. In steady

state conditions, any divergence from this perfect behaviour gives a MSE function greater 

or equal to emin' 

The (j + 1)th component of Pn is given by <Pu, ( - jT ± dn). Assuming steady-state 

conditions, <Pu, ( -jT ± dn} can be approximated closely by the first three tenns of its 

Taylor series expansion around the value dn = Dn, i.e. 

. (dn -Dn)2 .. 
<Pu, ( -jT±dn) ~ 4>u,( -jT± Dn) + (dn - Dn}<Pu,( -jT ± Dn) + 2 <Pu,( - jT ± Dn), 

(3.54) 

where the dot denotes, as usual, the derivative with respect to dn . Then, expressing it as a 

function of dn , the cross-correlation vector can be approximated as 

(3.55) 
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Using (3.55) in (3.39) gives 

eo(dn} =4>rr(O) - pH (D,,)R;l p(D,,) 

- (dn - Dn)2 [Re[pH(Dn)R;lp(Dn)] + pH(Dn)R;;lp(Dn)] 

- 2(dn - Dn)Re[pH (Dn)R;lp(Dn)] + (dn - Dn)3Re[pH (Dn)R;lp(Dn)] 

- 1/4(dn - Dn)4pH (Dn}R;IP(Dn). 
(3.56) 

Assuming that dn is close to Dn, the last two terms of (3.56) can be neglected. Furthermore, 

the expression -2Re[pH(Dn)R;;lp(Dn)] represents the derivative of ~o(dn) evaluated at its 

minimum, which is zero. Therefore ~o(dn) is approximately given by 

~o(dn) :::::tPrr(O) - pH (Dn)R;lp(Dn) 

- (dn - Dn)2 [Re[pH (Dn)R;;lp(Dn)] + pH (Dn)R;lp(Dn)] , 
(3.57) 

and the excess MSE, defined as 

(3.58) 

is 

(3.59) 

Note that from (3.53), 

(3.60) 

Combining the results of (3.59) and (3.60), the excess MSE is 

(3.61) 

Note that if the joint algorithm has converged near a local solution d" = 11n, then the excess 

MSE from that local minimum is given by 

(3.62) 

where 

(3.63) 

The possibility of an excess MSE can be explained heuristically in the following way. For 

a finite-Iength adaptive filter of order M, the weight vector su bspace is of dimension M. The 

df:'lay subspace is always one-dimensional, irrespective of the value M. The adaptive filter 

attempts to model a time delay by shifting in time its weights by a corresponding amount. In 
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order to perform this operation without MSE increase, the weight vector subspace dimension 

has aIso to be increased by the same amount. If it is not, the adaptive tilter algorithm seeks 

a compr~mise, within the fixed weight vector subspace, between reference filter modelling 

and delay modelling. This vector space view shows the inefficiency of the adaptive filter, 

in term of delay modelling, since the fil ter attempts to model a one-dimensional parameter 

(the delay) with a multi-dimensional component (the time shift in the weight vector). 

3.3.1.4 Discussion 

The convergence of the joint sn algorithm is not easy to characterize. By specializing 

the study to two special classes of adaptive systems, the convergence can he studied in 

qualitative terms. In these classes of systems, the only delay-dependent term is the cross

correlation function given by 4>yr( n, n) = w[! Pn. The joint algorithm is then transformed 

to the one of (3.45). In this case the MSE function, as expressed in the adaptive weigt 

vector subspace, is constant in shape (because the autocorrelation matrix is constant). The 

joint adaptive algorithm is such that the instantaneous MSE moves on the surface of the 

"bowl-shaped" MSE function, aceording to the adaptive weight vector, and the minimum 

of this bowl is modified, aceording to the delay dn (sinee Pn is function of this delay). The 

adaptive process converges when the first equation of (3.37) is verified. 

As for the condition of convergence of the joint alternate algorithm given in Proposi

tion 3.1, it provides sorne indications about the parameters that play a role in the joint 

algorithm convergence. In partiClllar, if the MSE is close to its global minimum, the con

vergence bound for an is 2/~min' This second derivative influences also the excess MSE, as 

shown in the previous subsection. 

3.3.2 The Delay Tracking Properties of the Algorithm 

The delay tracking properties of the join t sn algorithm are specifically studied in this 

subsection, with a special attention given to the eancellation and equalization structures in 

both Type 1 and Type II mode. The MSE function, for these configurations, is first con

sidered. Then the sn delay tracking algorithm, as a constituent of the joint sn algorithm, 

is studied in details. The tracking mode assumption implies that bath the reference fil ter 

h( n) and the reference delay Dn are varying slowly. 

3.3.2.1 The MSE Function for Specifie Structures 

In arder ta specify the MSE function for specifie structures, the expressions of (3.12) 

to (3.14) are used with the proper value for u(n) and r(n) defined as in Figs. 2.6 and 2.7 . 
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Therefore, u(n) = Yl(n) and r(n) = Y2(n) in cancellation configuration, while the inverse is 

true for the equalization configuration. U sing the mathematical model of (3.1) and recalling 

that the noise processes are uncorrelated with every other signal, the following expressions 

for en in cancellation configuration are obtained. 

Cancellation Configuration-Type 1 (delay be/ore Jilter) 

e~C) =<PY2Y2(n, n) + L: L: w:1WnJ<PY1Yl (jT - iT + dn- J - dn - a) 
J 

- 2Re[L: l: w:,h*(j)4>~~(jT - iT + Dn- J - dn-a)]' 
J 

(3.64) 

Cancellation Configuration-Type II-DAB (delaya/ter fllter in adaptive branch) 

ef) =<PY2Y2(n,n) + LL w(nT-dn )a W(nT-dn)J4>YlYl(jT- zT) 
J 

- 2Re[L l: w(nT_dn),h*(j)<pss(jT - iT + Dn - dn)]. 
J 

(3.65) 

Cancellation Configuration-Type II-DRB (delay after fllter zn reference branch) 

For the alterna te Type II structure of Fig. 3.2, the MSE function is 

elC) = <PY2Y2 ( nT - dn, nT - dn) + 2: L W:a WnJ 4>Y1Yl (jT - iT) 
J 

- 2Re[L l: w:,h*(j)4>u(jT - iT + Dn + dn)]. 
J 

Similar expressions are obtained for the equalization configurations. 

(3.66) 

In tracking mode, it is assumed that the adaptive filter has fully adapted to the charac· 

teristics of h( n) and is at least as long as the impulse response h( n). For high signal·to-noise 

ratios, the ith adaptive filter coefficients Wna , at iteration n, is approx.imately of the form 

System identification (cancellation) 

Inverse filtering (equalization), 
(3.67) 

where h( i) is the ,th weight of the reference path filter, and is constant. In delay tracking 

mode, the only part of en that is of importance is the delay-dcpendent one. Deflne this 

- 44 -



( 

( 

quantityas Vn • Then, from (3.64) to (3.66), 

V~C,l) = ~ 2: h( i)h(j)* </>Y1Yl UT - iT + dn-) - dn-a) 
) 

- 2Re [~~h(i)h'(j)qI .. (jT - iT + Dn- J - dn-i)] Type 1 (3.68) 

vf·ll) = - 2Re [~>h (l)qI,,( -IT + D n ± d.)] Type II (3.69) 

v~E,I) = -2Re [~ ~ h -1 (i)h(j)qI,,( - JT - .r - Dn_ J ± dn)] Type 1 (3.70) 

v~E,Il) = ~ 2: h-1(i)h-hU)</>Y2Y2(jT - iT + dn-} - dn-a) 

1 

where Ph(k) is the determini&tic autocorrelation of the reference filter impulse response and 

is defined as 

Ph(k) = Lh(k + z)h*(i). (3.72) 

Note that in expressions (3.69) and (3.70), the plus sign in front of dn applies when the 

adaptive delay is transferred in the reference branch. 

It is interesting to compare the ab ove delay-dependent tel'ms, especially when it is 

assumed that the reference delay Dn varies slowly. In this case, it can be assumed that 

both Dn and dn are approximately constant over M samples (the filter time span), i.e. in 

both the reference and the adaptive filter delay lines, ail the samples are approximately 

influenced by a constant delay. Then, the type of structure does not affect Vn , which is now 

of the form 

v~C) '" -2Re [~>h(l)qI .. ( -fT + D. ± dn)] 

v~E) ~ -2Re[</>...,(Dn 1= dn )]. 

(3.73) 

(3.74) 

Comparing (3.73) and (3.74), it is noticed that the cancellation configuration is influenced by 

the forro ofboth the deterministic autocorrelation Ph (n) and the input signal autocorrelation 

c/>...,( T), while the equalization configuration is a function of only </>~~( T). Since 4>...,( T) 

exhibits a maximum at r = 0, v~E) has a global minimum at dn = ±Dn. In the cancellation 

scenario, the characteristics of the delay tracking loop are functions of the reference fil ter 
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h( n), but because of the definition of Ph( n), there is a single global minimum corresponding 

to dn = fDn (Ph(n) has a maximum at n = 0). The two expressions of (3.73) and (3.74) 

are used next to characterize the SO descent delay tracking algorithm. 

3.3.2.2 The sn Delay Tracking Aigorithm 

The results obtained in Subsection 3.2.2 are utilized in the following, in order to analyse 

the delay tracking portion of the join t SD algorithm. Therefore, /11( dn ) =:: ~n and 0 n ;;: Dn, 

for the cancellation configuration and 0 n = -Dn, for the equalization structure. It is also 

assumed that the adaptive filter has fully adapted to the time-invariant reference impulse 

resp'Jnse h(n), and that dn = ±Dn. Because ofthis assumption, the error is minimum and 

the corresponding MSE is equal to the MMSE ~min (see Subsection 3.3.1.3). Then ~n ;;: ~mtn 

and is constant with time, which allows the use of the results of Subsection 3.2.2.1. Making 

use of (3.28) and (3.29), the stability range for Q is 

and the time constant of delay adaptation is 

1 
Tdel::::: - .. -. 

a~mm 

Tighter or more explicit bounds for a can be easily obtained for particular cases. 

Bounds in High Signal-to-Noise Ratios Conditions 

(3.75) 

(3. ï6) 

The derivativeof a bandlimited continuous-time signal can be obtained from the samples 

of that signal by using a wideband differentiator with frequency rcsponse given by [50] 

-1I"<W<1I". (3.77) 

Then, for the cancellation configuration, ~~~)(n, n) can be exprcssed in the frequency do

main, withdn =:: dand Dn = D, as (seeequation (3.73)) 

4>~~)(n, n) ::::: - 27r~2 [
7r

7r w2IH(elW)12e-Jw(d±D)/7'tu(elW)dw, (3.78) 

where H(e1W ) is the transfer function of the reference filter and t",,(e1W ) is the power 

spectral density of the signal s( n). 

Defining the maximum value of the input signal power spectral density cIl.",(e1W ) as 

t max , the cross-correlation function is, when d = fD, 

~~~)(n,n) ~ ~;;; [
7r

7r _w2 IH(e1w )l2dw. (3.79) 
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But 

- 1T2 jll' w2IH(eJW)12dw = p~(O), (3.80) 
2 if' _li' 

where the prime denotes the derivative with respect to the continuous-time correlation 

argument. Then 
.. (C) " 4>yr (n,n) ~ ~maxPh(O). (3.81) 

Noting that, for sIowly varying delays, ~min = -2Re[4>~~)(n, n)], (3.7.5) becomes 

-1 
o < 0' < ~ R r "(0)] max elP 

Cancellation. 

Using the same type of development for equalization, (3.75) becomes 

3T2 
O<O'<~ 2 

max1r 
Equalization. 

The following proposition has therefore been established. 

Proposition 3.2. In tracking mode and in high signal-to-noise ratios conditions, a sufflcient 

range of convergence for the delay gain factor is 
-1 

0< 0' < ~maxRe[p"(O)] 
for the cancellation configuration and 

3T2 
0<0'< 4'> 2 

max1r 

for the equalization configuration. 

Bounds for White SignaIs 

(3.82) 

(3.83) 

• 

Assume that the input signal and the noise signals are white with respective power 

spectral densities 4'>"", U;1 and U~2' Then, it can be shown that the optimum impulse 

response of the adaptive filter, in steady-state conditions, is 

~"" 2 h*(n) 
tu + O'Vl 

Wor,t(n) == 
1 jll' H(e-JW )4'>"" Jwnd - e w 

21r _lI'IH(e-JW )124'>".9 + O'~l 

Cancellation 

(3.84) 
Equalization, 

where a noncausal system, with an infinite impulse response, is assumed for the equalization 

case. Then, using a development analog to the high SNR one, the following double derivative 

for the cross-correlation functions are of the form 

"(C) 4'>2" 
4>yr (n, n) = 4'> ~"2 Ph(O) 

u O'Vl 

(3.85) 

"(E) _ -4'>;" Ill' 2 IH(eJW )1 2 

rPyr (n,n) - 21rT2 _li' w IH(eJw)12t"" + O'~l dw. (3.86) 

The hound of (3.75) can then he written with ~min = -2Re[ 4>yr( n, n )]. Note that these 

hounds for white signais reduce to the previous on es if the signal-to-noise ratios are high. 
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Relation Between the Adaptive Delay and the Adaptive Filtering Processes 

In general, it is desired that the compensation for the reference delay, in the adaptive 

hranch, he performed by the adaptive delay element alone. Since the adaptive filter can 

potentially adapt to the reference delay, the time constant of adaptation of the delay element 

should be smaller than the time constant for the adaptive fil ter . The time constant T1 of 

the jth mode of adaptation of the normalized adaptive filter wcight vector is [il, 

(3.87) 

where >'1 is the jth eigenvalue of the input signal autocorrelation matrix R. 

The adaptation time constant of the jth mode of the MSE function, as a function of 

the adaptive weight vector, is 
T1 1 

(Tmse)1 :::::: "'2 = 4/L),] , (3.88) 

Le. the MSE function converges twice as fast as the adaptive weight vector when the delay 

element is assumed fixed. The fastest influence of the adaptive lUter on the MSE curve 

therefore has the time constant 

1 
(Tmse)mlll ::::::: 4 À 

Il max 
(3.89) 

A speed of convergence constraint can he applied on the adaptive filter, in order to restrict 

the influence of any reference delay variations on its hehaviour, i.e. the condition that the 

adaptive delay time constant should be much smaller than (Tmse)nun is imposed. Assuming 

that the adaptive delay element settles down after 5 time constants, an upper hound on 

Tdel is 

or, using equation (3.89), 
1 

Tde\ < -~-
20Il>'max 

(3.90) 

Equations (3.76) and (3.90) give a lower bound on the delay adaptation factor Il, Le. 

20llÀmax .. < a. 
~min 

(3.91) 

This gives a relation between the adaptation factors, Il and a, of the cou pied processes, 

when the constraint is applied. Equations (3.82) and (3.83) can be comhined with (3.91) in 

order to obtaill the following proposition. 
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Proposition 3.3. Assuming that the adaptive delay element has a time constant five times 

sm aller th an the time constant of the fastest adaptive filter mode of adaptation, tfHm the 

delay element gain factor satisfies the following conditions 
20llÀmax -1 

.. <0< [" 1 ~min +mu Re Ph(O) 
Cancellation 

and 

Equalizatioll. 

Adaptive Delay Respanse ta a Reference Delay Step 

(3.92) 

(3.93) 

• 

The use of the linearized version of the adaptive delay equation (equation (3.25), with 

ln = ~n) assumes implicitly that the main lobe of the MSE function (the main lobe is 

defined as the region between the two inflexion points, Ul and U2, located on each side 

of the global maximum at dn = Dn) can be closely approximated by a quadratic function 

of dn (Le. the higher terms in (3.21) are neglected). In addition to the fact that this 

approximation becomes worse as dn gets further away from DII' it is also limited by the 

width of the main lobe of the MSE function. The main lobe has a width defined as lUI - U21 

and, assuming dlat the adaptive delay element tracks perfectly DII' the maximum allowable 

input delay step is 

(3.94) 

sinee, for slowly varying delays, the MSE function is symmetric with respect to Dn (see 

equations (3.73) end (3.74)). If ~max is larger than the main lobe width, the adaptive delay 

is likely to converge to a local minimum of the MSE funetion. In general, the main lobe 

width ais function of both the reference tilter and the input signal autocorrelation function, 

as shown in (3.73). Assume that +",,(eJW ) is white with unit variance and that the reference 

filter is an ideallowpass filter, Le. 

othf'rwise. 
H(eJW

) = { ~ -'Ir :5 w :5 'Ir 

Then, from (3.73), the delaywdependent part of the MSE function is 

v = .:.! ll1' e-Jw(d-D}/T dw 
'Ir -li' 

= _2Tsin 1r(D - d)jT 
1r(D - d) 

(3.95) 

(3.96) 

for which the main lobe is symmetric and approximately 2 samples wide. For a coloured 

input and a non-fiat filter, the main lobe is likely to he of larger width, and the following 

proposition has been established . 
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- Pror.osition 3.4. For any type of configuration in tracking mode and for slowly varying 

delays, a conservative upper bound on the maximum allowable instantaneous reference 

delay deviation is on the order of one sample (or T seconds). • 

In order to see the effect of a delay step on the adaptive delay, assume that at iteration 

n = 0, a constant delay of ~ samples is applied in excess of Do, i.e. the reference delay Dn 

is 

Dn = Do + ~ 

for 0 < n. Assume also that ~ is lower than one, and that (3.92) or (3.93) are satisfied. The 

adaptive delay value, in excess of Do, is given in (3.27), with 1 = ~mlD and 0 n-l-1 = ~, 

Le. 
n-l 

dn = (1 - O'~mln)n Do + O'~~min L (1 - O'~mtn )i. 
l=O 

Equation (3.97) can he written as 

which, if the algorithm converges, tends toward dn = ~ when n - 00. 

(3.97) 

(3.98) 

In summary, the response of the joint sn algorithm with Iinearized delay equation, 

when the time constant of delay adaptation is much smaller th an the time constant of the 

filter adaptation, is such that the delay element compensatcs completcly for the delay step, 

after a transient period. 

Adaptive Delay Response ta a Reference Delay Ramp 

The reference delay is assumed to he of the form 

Dn = Do + An 0< n, 

where A is the slope of the delay ramp, in samples/sample. 

Assuming that conditions (3.92) or (3.93) are satisfied, an analysis similar to the one 

given for the delay step shows that, after a transien t period, the delay element value is 

and lags the input hy 

dss = An _ " _ A(1 ~. o€rnm) 
o~mln 

A 
lag = -.-. -. 

Oemin 
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Using (3.76) in (3.100) gives 

(3.101) 

This lag error constitutes the residual error that the dclay element cannot cope with. 

It appears as a constant delay at the input of the adaptive filter and can therefore be 

compensated for by the tilter, after a transient period t. 

The maximum allowable slope in the input delay is dictated by the wid,h of the main 

lobe of the MSE function. In order to allow continuous tlacking of the input, the delay 

element lag error must be sm:tller than the maximum allowable input delay step, detined in 

(3.94), Le. 

lag < ~max 

or 

~ < lUI - U21. (3.102) 
o~min 2 

The slope of the input ramp must also be such that the delay change occurring over one 

sample is less than ~max, i.e. such that 

(3.:03) 

The following proposition is then established. 

Proposition 3.5. An upper bound on the maximum allowable input slope is 

if 
(3.104) 

if 1 :5 o~mm' 

From t/le conservative upper boulld derived in Proposition 3.4, a cOllservative upper bound 

on the slope is 
if 

if 

o~mm < 1 

1 :5 Q~min' 
(3.105) 

• 
Note that these bounds can be very loose. This is so because they make use of the 

maximum allowable input step (.:lmax) to bound th2 input change over one sam pie. Since the 

adaptive delay algorithm does not allow for a perfect correction in a one sam pie time, further 

input change by ~max will bring the adaptive loop out of its tracking range. Therefore, the 

bound of (3.104) can correspond sometimes only to a gross indication of the value of the 

input dope. 

t Note that if the adaphve delay elempnt were not present. the adaptlve tiller would face a nonstationary 
delay, whlch would producc an e'l(CCSS MS E that mcreases with lime The combmatlOn of the adapttve 
dc1ay and the adaphve tilter results ln a fixed excess MSE 
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Adaptive Delay Response to a Sinusoidally Changing Reference Delay 

Assume that the reference delay is of the form 

Dn = Do + A sin(271"n/ P) 0< n, 

where A is the waveform amplitude and Pis its period, both expressed in samples. Assume 

again that conditions (3.92) or (3.93) are satisfied. 

With Dn ;: A sin(271"n/ Pl, the linearized d('lay equation becomes 

After sorne manipulations, the solution is 

where 
e 2'1r/P 

/(1 = ----- .... IP .. 
2j sin(2tr / P)( 1:' 11" - (1 - Q~min)) 

/\",.,= ',., (1-Q~"!Jn) . 
w (1 - Q~min)- - 2( 1 - Q'~min) cos 271" / P + 1 

the variable (J is the phase of 1\'1 and U~(n) is the unit step function defined as 

U,(n) = {~ n<O 

0$ n. 

Equation (3.107) shows that after a transition period, the steady-state delay is 

dss = 2Q'A~mtn sin(271" / P)I/\" 11 cos[271"( n - 1)/ P + el· 

Using (3.108) and (3.111), the magnitude of this sinusoidal waveform is 

1 = 2oA~minsin(271"/P)11\'11 
a€min A = ----,---=.,:.:.:.:.:.;.:-----

leJ2 '1r/P+ at. -11' "'mlll 

(3.106) 

(3.108) 

(:J.109) 

(3.110) 

(3.111) 

(3.112) 

If P is assumed large, compared to the time constant ideb the denominator of (3.112) is 

approximately equal to a~min and 1 ~ A. The steady-state delay solution is then 

dss ~ A cos[2tr(n - 1)/ P + el 
(3.113) 

~ A sin[271"n/ P + fJ + 71" /2 - 271" / Pl. 
Therefore, if (3.92) or (3.93,\ ~,e satisfied, the delay element follows closely the reference 

delay, with a phase lag (271" / P - 71" /2 - fJ) and a slightly smaller am plit ude. The steady-state 

difference between Dn and dn is sinusoidal and influences the adaptive filter behaviour. In 

steady-state, the adaptive tilter coefficients therefore vary sinusoidally. 
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3.3.2.3 Discussion 

RecalJ the main assumptions used in Subsection 3.3.2 for the study of the delay tracking 

properties of the joint sn algorithm: 

1. The signal-to-noise ratios are often assumed high enough such that the adaptive tilter 
Wiener solution is approximately equal to the reference filter h( n) or its inverse. 

2. The adaptive filter has fully adapted to the Wiener solution. 

3. The dclays Dn and dn \'ary slowly such that the samples across any filter delay Hne 
are affected by the same delay. 

4. The reference tilter is time-invariant. 

5. The s('cond derivative of the MSE function, when evaluated at dn = Dn, is constant 
and equal to ~mln' 

6. The adaptive fil ter time constant of adaptation is much smaller than the adaptive 
delay time constant. 

The first and second assumptions were essentially used to simplify the study of the delay 

tracking aIgorithm. The first one is not necessarily true in practice, but it simplifies the 

analysis and gives useful results. The second assumption is jtlstified, since one is interested 

primarily in perfect delay tracking, which happens when the Wiener solution is attained. 

The results obtained using this assumption, essentially the restricted convergence ranges of 

Proposition 3.2, are therefore significantly useful in the application of the delay tracking 

algorithm. The third and fourth assumptions are also used for the sake of simplicity and are 

not necessarily true in practice. In particular, the function of the adaptive fil ter is to track 

the variations of the reference fil ter. When this happens, assumption 5 is hardly justified 

and assumption 6 limits the tracking ability of the adaptive filter. But when the reference 

filter variations are slow, compared to the reference delay variations, h( n) is quasi-stationary 

over a limited period of time, and both assumptions 5 and 6 are just.ified. In fact, the last 

three assumptions are intimately linked, since practical considerations justify assumption 6, 

which itself supports assumptions 4 and 5. 

In practice, the adaptive filter is expected to compensate for sorne of the reference delay 

variations. But the effect of these compensations, in the adaptive delay vector space, is to 

change the minimum location, without affecting significantly the second derivative of {n at 

this minimum. The results ohtained with assumption 5 are therefore of importance, since 

assumption 6 should be met in practice. 

A major problem couid nevertheless happens in the case of a practicaI finite-Iength 

adaptive filter. In this case, the joint aigorithm could converge to a stationary solution for 
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which the MSE is higher than the optimum that could be achieved if the adaptive delay dn 

models perfectIy Dn (Le. the excess MSE is nonzero). This could be so because, if dn 1- Dn, 

the adaptive filter converges to a solution where the optimum weight vector is shifted, in 

order to compensate for delay difference, and modified to obtain the MMSE corresponding 

to this shift. If the adaptive filter is of infinite length and noncausal, aU such solutions reach 

the same MMSE, but if the filter If'ngth is limited, so is its modelling capability and the 

MMSE is then at least as large as for the optimum solution. The difference between the 

MMSE and the actual MSE is the excess MSE, as defined in Subsection 3.3.1.3. 

3.4 Application of the Joint sn Algorithm 

In this section, the results derived for the SD de!ay tracking algorithm are specialized 

to sorne specifie cases. The application of the algorithm, for the tracking of the reference 

branch variations, is governed mainly by four expressions. These f'quations are (3.50), 

(3.75), (3.76) and (3.61) and are reproduced next. 

1 . [ ~ ] 
0<11< Àmax(n)SIn 2(2rdnél+l) 

0<0: < 2/ëmin 
1 

Tdel:::::: -,,-
Q~mJn 

3.4.1 The Function ëmin in Cancellation Configuration 

The function €min is examined in sorne detai! in this subsection, since it is used in every 

expression of importance in the sn delay tracking algorithm. The investigation is limited 

to real signais and systems in cancellation configuration. 

From (3.73), (3.74) and (3.78), ~min is given by (for the high signal-to-noise ratio case) t 

(3.114) 

(3.115) 

t This equation applies to both the cancellation and the equalization scenarios. For the latter one, 
H(e J"') is simply taken to be unit y for -li' < w < 11'. 
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If the reference bran::h signal-to-noise ratio is high enough, note that the integrat of (3.114) 

is approximatelyequal to -2<1>~r(O), where the prime denotes the derivative with respect to 

the correlation argument. In this case, 

.. {-2·",,2 <I>~r(O) 
~min ~ .u + O'V1 

-2</>~r(O) 

White processes 
(3.116) 

High SNR's. 

The quantity ~min can be approximated by different numerical methods [51]. A simple, 

although not very reliable one, is obtained by differentiating twice Stirling's formula for 

polynomial approximation of the function </>rr( r). This gives 

(3.117) 

for a smaU constant k. 

Bandlimited Reference fllter 

Assume that the reference filter is limited to the range -411 5 41 5411. Then, because 

the function 412 is positive and because of the real system assumption, (3.114) can be 

transformed, using the me an value theorem, to 

.. 1 j W
1 2 ') 

~min ~ T2 w IH(eJW)lw.ss(eJW)d ...... 
1r - I0Il1 

2B412 {'..J 1 

= 1rTi Jo IH(eJW)12tss(eJW)dw, 

(3.118) 

and (3.115) to 

.. . _ 2Bwi.;s lnW1 JW 2 
~mtn - (. 2 ) T2 IH(e)1 dw 

SS+O'V1 1r 0 

2·;sBwi ( 
= (. + 0'2 )T2 Ph 0) ss V1 

(3.119) 

2·;swr ( ) 
5 (... + 2 )T2 Ph 0 , 't'ss O't'1 

where 8 is a real constant between zero and one. For a large reference branch sÎgnal-to-noÎse 

ratio 

(3.120) 

$ (.u + (T~1)T2</>rr(0). 
Note that, from (3.115) and (3.119), 

(3.121) 
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and for large reference branch signal-to-noise ratios 

-T24>" (0) 
B "'" rr 

"'" 2 • 
W} 4>rr(O) 

(3.122) 

3.4.2 Discussion 

The results of Subsection 3.4.1 can be used in practice, for determining the gain factor 

Q, the time constant Tdel and the excess MSE ~ex. For a high reference branch signal-to-noise 

ratio, ~min can be approximated directly, using (3.117), by measuring the reference signal 

power and its autocorrelation at a smalliag. The quantity can also be upper-bound by the 

value 2~ss1!'21>rr(0)/(~ss + 0'~1)T2, obtained with Wl = 1!' in (3.120). Equations (3.118) to 

(3.120) also show that ~mln is proportion al to the reference filter bandwidth, to the input 

signal power and to Ph(O). Therefore, these three parameters limit both the gain factor and 

the time constant, and increase the excess MSE. This is illustrated in Table 3.1, where oc 

means proportlOnal to and (oc )-1 denotes mversely proportlOnal to. 

Qmax Tdel ~ex 

~.u (oc)-l ( oc)-l ex 

Wl (oc)-l (oc )-1 ex 

Ph(O) (oc)-l (oc)-1 ex 

Table 3.1 Critical parameters in the joint SO algorithm 

3.5 Summary 

Joint ttme delay estimation and adaptive MMSE filtering, Ilsing the steepest-descent 

algodthm, has been studied in detail in this chapter. The MSE function was shown to 

be dependent on the form of the joint structure, and the evolution of the joint algorit.hm 

estimates was investigated qualitatively. The conditions of convergence of the joint SO 

algorithm were investigated, when the adaptive delay element and the adaptive filter are 

adapted alternatively. The excess MSE was derived, in order to express how well the joint 

algorithm tracks the optimum solution. When the reference delay is assumed to evoh'e 
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1 
slowly, the adaptive delay adaptation factor and time constant are shown to he inversely 

proportion al to the second derivative of the MMSE. Sorne hounds on the reference delay 

variations w~re derived, in order to allow proper delay tracking. Finally, sorne details were 

given about the practical application of the joint sn algorithm. The material presented 

in thia chapter shows the possibilities and limitations of the joint time delay estimation 

and adaptive filtering algorithm hased on the MMSE criterion, when a steepe&t-descent 

algorithm is used. It is useful in the design of more practical algorithms in which the 

gradient and derivative have to be estimated, and is of importance in the application of the 

joint LMS algorithm presented in the next chapter. 
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Chapter 4 

4.1 Introduction 

Joint Tinle Delay Estimation and Adaptive 

Minimum Mean Squarcd Error Filtering: 

The Joint Least-Mean-Square Algorithm 

In order to implement the joint steepest-descent algorithm presented in the previous 

chapter, the MSE gradient with respect to the adaptive weight vector and the MSE deriva

tive with respect to the adaptive delay both have to be estimated. This can be accomplished 

in various ways, in particular by approxi;nating the derivatives with difference equations 

[6], or by approximating the MSE function {n = E[le(n)1 2] with the instantaneous squared 

error 'Yn = le( n)l2, and by applying the sn algorithm. This last option corr<,sponds to the 

least-mean-square (LMS) algorithm (10] and is the subject of this chapter. 

Consider a cancellation configuration. In order to derive the LMS algorithm. rewrite 

the error in equation (3.2) as e( n, dn ), whel'e the dependence on the delay estimate is 

denoted explicitly. In a Type 1 adaptive system, it is assumed that the delay dn propagates 

instantaneously into the adaptive filter delay line and the error can be expressed as 

e(n,dn } = r(n) - y(n,dn} Type 1, (4.1) 

where the adaptive branch output y( n, dn } is defined as 

(4.2) 

and u( nT- dn) is the delayed vector of input samples defined in equation (3.9). In a Type II 

structure, the adaptive delay can be located in either the adaptive branch or the reference 
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branch and the error can take two forms. If the delay element is in the adaptive branch, 

the error is defined as 

e(n,dn) = r(n) - y(nT - dn } Type II-DAB, ( 4.3) 

where 

y(nT - dn) = W~T-dn u(nT - dn). ( 4.4) 

If the delay is in the reference branch, thp f'rror is 

e(n,dn) = r(nT - dn) - y(n) Type II-DRB. (4.5) 

In the adaptive weight vector subspace, it is weIl known that the LMS algorithm is 

given by 

(4.6) 

where Un is the vector of delayed input samples, defined in equations (3.8) or (3.9), and 

the error e(n,dn) is any of the errors in (4.1) to (4.5). In the adaptive delay subspacf~, the 

derivative estimate is given by 

-2Re [e+( n, dn) aY~~ndn)] Type 1 

-2Re [e+(n,dn)ay(~: dn)] Type II-DAB ( 4.7) 

2Re [e+(n,dn)ar(n~:dn)] Type II-DRB, 

corresponding to the three cases considered previously. The LMS adaptive delay algorithm 

is obtained by using the result of (4.7) in the sn adaptive delay algorithm, defined in 

equation (3.31). 

The purpose of this chapter is to study the behaviour of the three forms of the joint 

LMS algorithm, defined by 

Wn+l = Wn + 2Ile+(n,dn)un 

dn+I = dn - OVdn~n, 
( 4.8) 

where (4.7) is used to define the derivative estimate. The only type of algorithm considered 

is the one corresponding to equation (3.33). In order not to obscure more than necessary 

the derivations, aIl signais and systems will be considered real in the analyses. 

This chapter is mainly theoreticaI and addresses mostly the behaviour of the joint LMS 

algorithm in steady-state conditions. The convergence of the algorithm, from arbitrary 
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conditions, is considered first in Section 4.2. The analysis of the joint algorithm, in steady

state conditions, is perforrned in Section 4.3 for the Type 1 and the Type II (DAB and DRB) 

adaptive systems in cancellation configuration. The analyses presented in this section are 

for convergence in the rnean and in the mean square, of both estimates dn and Wn. The 

excess MSE and mis ad just ment are also considered for the three algorithms. A discussion 

of the results of Section 4.3 is then presented in Section 4.4 and thcir application in sorne 

special cases is considered in Section 4.5. 

The main contributions of this chapter are the generalizations of LMS time delay esti

mation, and the extension of LMS adaptive filtering to the situation where the filter input 

signal and the reference signal experience different sampling rates. New results are derived 

about the convergence, in the rnean and the me an square, of the two portions of the joint 

algorithm, as weil as about the excess MSE and the misadjustrnent of the joint algorithm. 

4.2 Convergence of the Joint LMS Algorithm Using the ODE Method 

The convergence study of recursive stochastic algorithms is a difficult 'ùask and has been 

only partially successful. One type of algorithm has been analysed in some depth by Ljung 

[52] and is of the form 

I(n + 1) = I(n) + l(n)R-l(n)1j1(n)f(n), (4.9) 

where I( n) denotes the vector estimate at itcration n, 1( n) den otes a matrix gain sequ~nc2, 

~(n) is a regression vector (a data vector indicating a gradient search direction) and f( n) 

represents an estimation error. The joint algorithm (4.9) is equivalent to (4.8) with the 

following definitions 

'(n) = [:: 1 
l(n) = [J-ln 0] o an 

R(n) = 1 

f(n) = e(n,dn ). 
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and 

"'( n) = 

[

2U(nT - dn )] 

2iJ(n,dn ) 

[ 

2u( nT - dn )] 

2iJ(nT - dn ) 

[
2U(n) 1 
- 2f(nT - dn ) 

Type 1 

Type II-DAB (4.14) 

Type II-DRB. 

Note that it is explicitly assumed that the adaptation factors Iln and an are function of 

time. 

The matrix R(n) in (4.9) allows for the possibility of a Newton step, in which case R( n) 

is chosen as [53] 

R(n + 1) = R(n) + 'Y(n + 1)[tP(n + l)tJ,T(n + 1) - R(n)]. (4.15) 

Ljung proposes in [52] an approach that relies on relating the asymptotic trajectories of the 

algorithm of( 4.9) and (4.15) to the solutions of a system of ordinary differential equations 

(ODE), when the gain matrix is of the form 

""(n) - [l/n 0] , - 0 l/n' ( 4.16) 

This form of the gain matrix is restrictive since it corresponds to infinite memory for the 

adaptive algorithm, and therefore does not allow the tracking of time-varying parameters. 

But the application of Ljung's approach is nevertheless instructive since it relates formally 

the joint LMS algorithm to the joint steepest-descent algorithm. 

A heuristic discussion about the method, ba&ed on the material presented in [53] and 

[4], is given in Appendix B. The method has been called the ODE approach and is used 

here to assess the convergence of the joint LMS algorîthm. Define 

f[8 D (r)] = E[tP(n)€(n,dn )] ( 4.17) 

and 

C[8D(r)] = E[tP(n)tPT(n)], ( 4.18) 

where 8D(T) is the mapping ofl(n), using the following transformation 

n 

r=I:l/k, (4.19) 
k=l 
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and the expected value is taken over the input random variables. Then, the associated ODE 

is [4] 
d9D(r) = R-1(r)f[6D(r)] 

dr 
dR(r) -;r;- = G[6D(r)] - R(r), 

The following theorems are given in [53] and proven in [52]. 

(4.20) 

Theorem 4.1. c,et D ~ den ote the stabiIity domain for 6( n) such tlIat the dynamical systems 

giving rise to "'( n) and f( n) are stable. Su bject to the boundedness conditions B( n) E D s 

and 1"'< n)1 < C innnitely often a.s., wllere C is a random variable, and to the Lyapunov 

condition requiring the existence of a positive twice differentiable function V whose time 

derivative aJong the solu tions of (4.20) satisnes 

dV < 0 r 8 D , lor DEs, 
dT -

R>O 

then either (i) 

Hm B(n) E De w.p.1 
n-oo 

where 

Dc={8D,RI8DEDs,~~ =o}, 
or (il) {B(n)} has a cluster point on the boundary of Ds. 

( 4.21) 

( 4.22) 

( 4.23) 

• 
Theorem 4.2. The trajectories of the ODE (4.20) are the asymptotic patlls of the estimates 

generated by the algorithm of (4.9) and (4.15). • 

Consider (4.13) and (4.14) for a certail' value 8. Then, from (4.1i), and for a Type 1 

system 

[

2E[U(nT - dn)€(n,dn)]] 
f(8) = 

2E[y( n, dn)e( n, dn}] 

= [-It] 
= - \l9~' 

( 4.24) 

The same result is obtained for the twoother forms of (4.14). Considering the MSE function 

as a function of 8 D( r), its derivative with respect to r is 

d~(6D(r)) = ~(B)I d9D(r) 
dT \l8 8=6D (r) dT 

= - fT(6 D(T))f(6D(T)) ( 4.25) 

= -lf(6D(T))\2, 
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'-c, 

( 

.. '" 

where (4.20) and (4.24) were used and R(n) = 1. 

AssumÎng that the observed signais are gcnerated by stable dynamical systems and 

that the boundedness conditions of Thcorcm ·U ar(' satbficd (if thcy are not satlsfied, 

the algorithm is not of practic,tl IIlterest). then the function \' can he taken to be the 

MSE fllnction since its time derivative is given hy (1.25) and i:, Ilf'gdti\'e. Theretore, from 

Theorems -4.1 and 4.2, the vector 6( n) con\,('fgp~ to lorally <jlable 'itilt ionary poirlts of the 

MSE fllnction. since f(9D(r)) has to be ofsquared magnitude leru whell 9(n) EDe which, 

from (4.24), is true only whcn the necessary conditIOn of (3.:Ui) of ChaptC'f 3 is respected. 

Therefore, by using the ODE method it is shown tltat whcIl lhe adaptation factors ILn 

and an both tend to zero, the joint LMS algorithm convergp<, to a local minimum of the ~ISE 

function. like the exact \'(lfsion of the joint steeppst-de<;rcnt alr1;ol it hm This result. even if 

it does not apply directly to algorithm (., H). is important by it'ielf "inc(' it shows that if the 

adaptation factors are chos('!l sllfficÎf'ntly small. th(' estllnat('s produced by the algorithm 

will be, on average, close to a stahle stationary point of th!' ~ISE function. Furthermore, 

the above result shows that if the gain factors are constant but small, convergence cannot 

be attained in the sense that th{'fC' exists (l Il III t pgr'r N suc h t hat 6( 11 + 1 ) = 9( 11) for N ~ n, 

but the difference between the parame'ter estimate and a ~tablc stationary point will be 

smaU as n becomes hrge and can he m,ride smaller hy derrl'asing thl' gain factors. 

Therefore, the ODE method. although applicablC' in a rC'stflcti\'e context, can justify, 

at least partially, the assurnption of con\'ergence of the joint L~IS algorithm to solutions 

close to those of the joint steepest-descent algorithm. 

4.3 Analysis of the Joint I.MS Aigorithm in Steady-State 

The quality of the joint LMS algorithm can be studied by considering the quality of 

the two estimates that it gener.ttes. The delay and weight v('clor estimates heing ra.ndom 

variables, the joint algorithm can he analysed in terms of convergrnce in the mean and 

in the mean square of either estimate Decause of the coupling hetween the t\\'o adaptive 

processes, ~he gradient noise will affect the dday tracking allo the derivative noise will itself 

influence the adaptive tilter. Thesc mutual effccts cal, be included in the dday variance and 

weight noise vector correlation matrix. in steady-state conditions. The bounds for J1 and 0' 

will he determined, for both types of convcrgpnce. and for the thrce forllls of joint algorithms 

detined by (4.7) and (4.8). In every ca<;e, the analY8is of the delay estimator is performed 

first. Then the' eight vector estimator is considered and fin<.Jly the two analyses are 

combined together. to obtain sOITlPlllisadjll~tnH'nt expres<;ioll'i for thr joint L~IS algorithm. 
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Such a separation of the allalysis is artificial, but it allows the determination of tractable 

results. 

In the course of the analyses, in addition to the general real signals and systems as

sumption mentioned in the introduction, the following assumptiolls are used: 

1. The input and noise signal1> are zero-meall Gaussian rail dom processes. The noise 
~jgnals are also assumed to b!' white noise processe~. 

2. The adaptive system is III slcadY-8lalt and the referenc!' sybtem is stationary, i.e. the 
refercnce delay is constant at Dn = D and the refcr('nc(' filter is also fixe rl in time. 

3. Independ<,nce theory holds, i.e. the lero-mean input d,lta vectors are uncorrelated 
with each other and wit h r( k). Then 

E[u(n)uT(k)] = 0 

E[u(lI)l'(k')]-= 0 

for k = 0, L ... , n - 1 

for k = 0, l, ... , 11 - 1. 
( ·1.26) 

The terminology mdepcndf'71ce thcory is rom mOIl III th!' allalysis of adaptive al go
rit hms (see [il for exam pIe). 

4. In steady-state, the adaptlve weight vcctor W II cali he expl'essed as 

W n = Wopt + 'III 
where Wopt is the optimum \Veiner solution giv{'n by 

Wopt = R-1Pllldn=D 

and 'In is a noise weight vector. 

( 4.27) 

(.1.28) 

5. In the analysis of th~ delay <,stimator, the v<,ctor 'III is a zero mean Gaussian vectof, 
uncorrelated with the data veclors (becausc of(4.26)) and such that 

for t f:. ). ( ·1.29) 

The noise vector correlation rnatrix. defined as 

K'1 = f, [fIn 'lI]. ( 4.30) 

is therefore diagonal wlih the value~ E[ll;(n)] on the main diagonal. 

6. The system is in cancellation configuration. Th' rrsul tli can he extended in a straigh t
forward manner to the equalization case. 

7. When the slgnal-to-noise ratios are a1>~urned high, the adaptive filter Wiener solution 
is approximately equal to the reference filter (in praltice, thib arnounts ta SNR's 
greater than 10 dB). 

Note that Assurnption 3 can hardly be justdlcd in practice, hut has been used with 

success in the analysis of stochastic algorithms [7]. The noise vl'ctor properties stated in 

Assumption 5 ar(; of the sarne kind and will prove to be useful in the analyses. Note in 

particular, that K'1 was round to be apr.oxirnately l'quai to Il~m1111 in [6], for the LMS 

algorithrn. The lise of the centrallimit theorl'm supports the Gaussian assumption about 

'In' This asslllnption is also commonly used in the analysis of the LMS algorithm [22]. [27]. 
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4.3.1 The Joint LMS Aigorithm in Type 1 Configuration 

As mentioned in the introduction, it is assumed that Un = u(nT - dn ), i.e. that any 

adaptive delay modification is reflected on every !>ample of the adaptive filter delay line. This 

simplifies the analyses by making the input signal autocorrelation matrix time-invariant and 

by making the adaptive fil ter output equal to 

The join t LMS algorithm is then of the form (for real signais) 

Wn+l = W n + 2Jlf:(n,du )u(nT - d,d 

dn+l = ~n +2ae(n,(!II)wrü(nT-dn ). 

4.3.1.1 Analysis for the LMS Delay Estimator in Steady-State 

(4.31 ) 

(4.32) 

(4.33) 

The LMS delay tracking algorithm, in (4.33), is analyzed in terms of convergence of the 

delay estimate, in the mean and in the mean square. The following analysis p:uallels and 

extends that of Messer [29]. 

For dn = D, the output of the adaptive brancl can be expressed as 

(4.34) 

The first term on the right is defined as the optimum output r(11), since it represents the 

adaptive bran ch output for perfect modelling in the MSE sense. The second term on the 

right is defined as the output steady-state noise \(n, D). Define elllln(n,D) as the error 

between the optimum adaptive branch and the refereuce branch, i.e. 

emin(n,D) = r(n)- ;(n), ( 4.35) 

and the corresponding MSE as (also given in equation (3.53)) 

~min = E[e~in(n,D)]. (4.36) 

Note that because uf Assumption 5, the steady-state noise output is zero-mean and uncor

related with T( n) and r( n). In effect, 

E[r(n)x(n, D)] = E[wIptu(nT - D)TJI u(nT - D)] 

= WrPtE[u( nT - D)uT(nT - D)]E['1r,] 

=0 
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-- and, 
E[r( nh(n, D)] = E[(f( n) + emm ( n, D))\( n, Dl] 

= E[emm(n,D)'1r u(nT - D)] 

= E[emm(n,D)uT(nT- D)]E['1Il] 

= O. 

(4.38) 

The approximationofequation (3.22) in Chapter 3 can be used with ""(n(dn) = e2(n,dn) 

and 0 n = D (for rcal signais). Then 

and 

1n{ Dl = 2e(n, D)é(n, D) 

= -2c(n,D)fj(n,D) 

711(D} = 2ê2(n, D) + 1c(n, D}ë(n. D) 

= 2y2(n, D) - 2p(n, Dl.V(n, D). 

( 4.39) 

(4..tO) 

In (4.39) and (4..t0), the dot and double dot denote respectively the first and second deriva

tive with rrspect to dn. Thercforc, using equatioll (:3.~2), the ~ISE estilllatc can be approx

imated as 

I,,(d,d = (2(n, d,,) 

~ e2 (n, D) - 2( dn - D )e( n, D)i;( n, D) + (dn - D):![y2( n, D) - e( n, D )y( n, D)]. 
(4,41) 

The derivative estimate is then (for real sign rus 1 
. ~ _ ô/lI (d ll l _ oe2(n,dn ) 
\ldn n- Ddn - Delli (4.42) 

= -2e(n, D)iJ(n, D) + 2(dn - D)[y2(n. D) - e(n. D)jj(n, D)]. 

If the derivative noise Nn is dcfined as 
b. • 

Nn = 'Vdnçnldn=D' 

then, comhining (4.42) and (4.43), the derivativc noise is expre!>sed as 

N n = -2e(n,D)y(n, D) (4.44) 

and represents the error between 9dnçn and Dçn/adn, when dn = D. Defining the quantity 

Gn as 
Gn = l(2Nn 

= iJ2(n, D) - e(n, D)]j(n, D), 

equation (4.42) can he expressecl a.s 

9dn Çn = 2(dn - D)Cn + Nil 

=(dn-D)Nn+Nn 

and the LMS delay tracking algorithm is therefore approximately expressed as 

dn+l = dn - 2a(dn - D)Gn - ('(Nn . 
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Convergence in the Mean of the Delay Estimate 

Take the expected value on both sides of (4..17), and rearrange. The result is 

E[dn+tl = E[(l - 2aGn )dn ] + 2DaE[GII ]- oE[NII ]. ( 4.48) 

The following proposition simplifies expression (4..18). 

Proposition 4.1. dn is uncorrelated wit h the deri\'ative noise Nil and its rate of dange Gn . 

• 
Proo/: From (·tAï), it is seen that dn is a function of dn-l, G rI - l and ,Vn - I . But. from 

(4.44) and (4.4.5), Gn-I and N li - i are fllnctions of r(n - 1) and yen - 1). The dclay dn 

is then a function of r(n - 1 - 1) and yen - 1 - 1), for l = O.l •...• n - 1. Dut Gn and 

N n are functions of r(n) and yen). From (4.32), the vector Wu is a fllpction of u(nT

T - d,,-d, u(nT - 2T - dn-2)," ,u( - !o). In 5teady-state. dn- , ::::: D and because of 

Assumption 3, W n is approximately uncorrelated with u( 1/1' - d,,) This faet allows the 

following computation, for k = 1,2, ... , n, 

E[y(n)y(n - k)] = E[w; u( nT - dn)w?:_J. u( nT - kT - dll-d] 

= E[uT(nT - dn ))E[wr'Wn __ kU(lIT - kT - tin-";)] (4.49) 

= 0, 

since u( n) is zero-mean. If the signal portion of 1'( n) is obtained by filtering u( n) with an 

FIR filter of length equal to the adaptive fil ter length and silice the noisy portion is white, 

then Assumption 3 implies that E[r( n )r(n - k)] = E[1'( n )y( n - k)] = 0, for k = 1,2, ... , n. 

Therefore dn is uncorrelated with Gn and N n. • 

Equation (-1.48) becomes 

E[dn+t) = (1 -- 2aE[G Il])E[dn ] + 2DoE[Gn)- aE[Nn]. 

In Appendix D, E[Gn] is found to be 

and 

because 

E[Nnl == 0 

E[Nn] = a~n E[e~in(n, dn)lIdn =D 

= ~min 
= O. 
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(4.51 ) 

( 4.52) 

( 4.53) 



Then (4.50) simplifies to 

E[dn+1] = (1 + 204>~,(O))E[dn]- 2Do4>~r(O). ( 4.54) 

Note that, for a Type 1 or a Type II-DAD adaptive system, 

(4.55) 

The second term on the right is zero and the quantity ~mm is 

( 4.56) 

This result is also valid for a Type II-DRU adaptivesystem. Using the l'esults of Appendix C, 

(4.56) can a150 be expressed as 
.. • 1/ 
~min = -2<prr (Ol 

~ -21>~r(0) 

for high sig"'lal-to-noise ratios t. Note that bcc3use of orthogonality principles [ï] 

4>T'(O) = E[r(n)r(nl] 

= E[(r(n) + Cmin(n, D))r(n)] 

= E[r2(n)] 

= 4>,;(0). 

Therefore, (4.54) can be written as 

(4.59) 

which shows the same form as the SD delay tracking algorithm of (3.25) with 7n(0n) = ëmin 

and en = D. 

Equation (4.59) converges if Il - oëminl < 1, and from the above derivations, the 

following proposition emerges. 

1 Note that d>~f(O) = 4>~,(O) when the mput and the noise signaIs are white 
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Proposition 4.2. ln steady-state conditions, the deJay estimator, given by the LMS de/ay 

tracking algorithm operating jointly with ail adaptive fi/ter in Type 1 configw ation, is an 

unbia.~ed estimator if 
2 

0< 0 < -.. -. 
~min 

( 4.60) 

• 
Note that, in interpreting Proposition 4.2, it is important to keep in mind that the result 

is true if no false lock happens, i.e. if no noise samples force the delay estimate ta lock on 

a local solution, or if the adaptive filter does not compensate at aIl for the delay reference. 

In this case, the first order lineariz(ld model leading to (4..1 i) applies and Proposition 4.2 

can be used. 

Convergence in the Mean Square oC the Delay Estimate 

Subtract the value D from each si de of (-lA i) and rearrange. This gives 

(4.61) 

Square each "ide of (4.61) and take the expected value 

Use Proposition 4.1, which states that dn is uncorrelated with Cil and Nn . Equation (4.62) 

simplifies to 

E[(dn+1- D)2] = E[(1-2oGn )2]E[(dn - D)2] - 2oE[(1-2oG,dNn]E[(dn - D)] +02 E[N~]. 

( 4.(3) 

It can be shawn that E[(l - 20Gn )Nn ] = 0 (Appendix D) and, defining the time-varying 

delay estimate variance Vn as 

equation (4.63) simplifies to 

Equation (4.65) indicates that there is convergence in the mean square sense if 

U sing the result of (4.51), the expected value is equal ta 

E[(l- 20Gn )2] = 1 - 4oE[Gn] + 402 E[G~] 

= 1- 20~min + 402 E[G~]. 
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( 4.65) 

( 4.6~) 
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The value of E[G~] is found to be (Appendix D) 

E[G~]::::: 3(<1>~f(0))2 + 64>~r(O)4>~1I(0)tr[Kl1] + 3(4)~u(0)tr[Kl1])2 
+ (<1>,,(0) - 4>fr(O) + 4>uu(O)tr[K'I])(4>~~)(O) + <f>!,~l(O)tr[Kl1]) 
+ 24>~r(0)(4>~r(0) - 4>~f(O) - 4>~u(O)tr[K'I])' 

which, for high signal-to-noise ratios, can be approximated by (using (4.5ï)) 

( 4.68) 

(4.69) 

where tr[·] is the trace operator, K" is the weight noise correlation matrix defined in (4.30) 

and <1>(4)(0) denot(>s a44>(r)/ôr4 at r = O. The condition of (1.66) can be expressed as 

-1 < 1 - 2o~mJn + 4o~ E[C:~l < 1 ( 4.70) 

or 

(4.71) 

Equation (4. il) is true if the follo\\ ing conditions are simultaneously verified 

(a) 

( aa). 

Condition (a) implies that a quadratic function in Q must always be positive. This is true 

if the following condition is met 
8E[G~] 

1 < '2 . 
~Inln 

(4.72) 

Using (4.57) in (4.69), the numerator is given by 

where J( is always positive. Therefore, (4.72) is always truc and condition (a) is always 

verified for any value of (}. This leaves condition (aa) to fix the range of (} for convergence 

in the mean square. The foUowing proposition has therefore becn proven. 

Proposition 4.3. In steady-state conditions, tlJe delay estimator, given by the LAIS delay 

tracking algorithm operating jointly with an adaptive fi/ter ill Type 1 cOIlfiguration, is 

convergent in the mean square if 

o ~min 
< 0 < 2E[G~]' (4.73) 
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where the quantity E[G~] is given in (4.68). • 
Because, in steady-state, the expected values in (4.65) are time-invariant, the stcady

state delay estimate variance is given by 

Vss = Hm Vn n ..... oo 

_ a2E[N;J 
- 1 - E[(l - 2aGn )2] 

aE[N~] 
- 2~min - 4aE[G~]' 

where E[NJ] can be shawn to be (Appendix D) 

(J..74) 

(4.75) 

Note that the steady-state variance is approached at the fastest rate when the quantity 

E[(l - laGn )2] in (4.65) is minimum. This happens when the adaptation constant is 

~mlD 
aopt = 4E[G~]' 

which is one half the maximum adaptation constant allowed by (4.73). 

4.3.1.2 Analysis for the LMS Adaptive Filter in Steady-State 

(4.76) 

As with the LMS delay tracking algorithm, the LMS weight vcctor adaptive algorithm 

of (4.32) can be analyzcd in terms of convergence in the mean and the mean square of the 

weight vector estimate. 

Convergence in the Mean of the Weight Vector Estimate 

Take the expected value of each side of the first 'i!quation of (4.32). The result is 

E[wn+d = E[wn] + 2JlE[e(n,dn)u(nT - dn)] 

= E[wnl + 2Jl(E[r(n)u(nT - dn)]- E[u(nT - dn)uT(nT - dn)wn]). 
(4.77) 

From equation (3.7), the second expectation on the right hand side of (4.77) is equal to pn. 

But the cross-correlation vector is a function of the delay dn , which is a random variable in 

the joint LMS algorithm. Therefore, Pn is now a conditional (lxpectation, conditioned on 

dn and E[r(n)u(nT- dn)J is equal to E[Pn], with the expectation taken with respect to the 

adaptive delay value. 

From (4.32), it is noticed that the estirnated weight vector W n is a function of the past 

input vectors u( nT-T -dn-d, u( nT -2T -dn-2)"'" u( -do). Assuming that indepcndence 
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tbeory holds, since dn- , :::::: D in !:teady-state, the weight vector Wn is uncorrelated with 

u( nT - dn ) and the third expectati on on the right hand side of (4.77) can he expressed as 

E[u(nT - dn)uT(nT - dr )wn] == E[u(nT - dn)uT(nT - dn)]E[wn] 

= RE[wn]. 

(4.78) 

Therefore, (4.ïï) can he expressed as 

(4.79) 

In order to compute E[Pn], express Pn as a function of dn, as in equation (3.54). This 

expression is 

. . '. (dn - Dn}2.. . 
f/Jur{-JT-dn) ~ 4>ur(-JT- Dn}+(dn- Dn)</Jur(-JT- Dn}+ 2 lPur(-JT-Dn). 

(4.80) 

Therefore, because the delay estimator is assumed unbiascd and in steady-state, the ex

pected value of the cross-correlation vector is 

E[Pn] ~ p(D) + l/2vss p{D) 

= RWopt + l/2vssp{D), 
(4.81) 

where Vss is the steady-state delay estimate variance, and equation (4.28) was used. Using 

(4.81) in (4.i9) gives 

E[Wn+l] = (1 - 2IlR)E(wnl + Jl(2RWop t + vssp{ D)). (4.82) 

This equation can also he expressed as 

E[wn+l] = {I - 2JlRtE[wo] + Wopt + 1/2vssR- 1p(D)[1 - (1 - 2/LR)n]. (4.83) 

Therefore, E[wn ] convergps ~o ~opt + l/2vssR-lp(D) if the gain factor JL is smaller than 

the inverse of the maximum eigenvalue of R [7]. This can be formalized in the following 

proposition. 

Proposition 4.4. In steady-state conditions, the weight redor cstimatol', givcn by the adap

tive filter LUS a/gorithrn operating jointly with a mean square convergent delay tracking 

algorithrn in Type 1 configuration. converges in the mean if 

1 
0< Il < -, -, (4.84) 

"max 

where Àmax denotes the maximum value of the input signal autocorrelation matrix R. The 

weight vector estimate experiences a bias given by 

(4.85) 

• 
Note that the convergence condition of (4.84) is identical to the usual condition for 

convergence in the mean of an LMS adaptive filtcr [7]. 

- 7:! -



c 

( 

Convergence in the Me!ln Square of the Weight Vector EstÎmate 

The weight noise vector correlation matrix K T1 ( n + 1), at itcration n + 1, is computed 

in this section and a condition for its convergence, in the matrix norm sense, to a finite 

steady-state value is estahlished. From equatiolls (4.27) and (4.:l2), the noise vector can he 

written as 

"n+1 = wn+1 - Wopt 

= Wn + 2Jle(n,dn)u(nT - dn) - Wopt 

= [1 - 2Jlu(nT - dn)uT(nT - dn )]71n 

+ 2Jl[u(nT - dn)r(n) - u(nT - dn)uT(nT - dn)woptl. 

Then, K'I{ n + 1) can he expressed as 

K'I(n + 1) = E[71n+l'1~+11 
= E[(I - 2Jlu(nT - dn )uT(nT - dn))71n'1~ 

(1 - 2JLU( nT - dn luT (nT - dn»Tj 

+ 2JlE[(1 - 2JLu(nT - d,duT(nT - dn»71n 

( 4.86) 

(u(nT - dn)r(n) - u(nT - dn)uT(nT - dn)wopdTj (4.87) 

T + 2JlE[(u(nT - dn)r(n) - u(nT - dn)u (nT - dn)wopd 

'1r(I - 2JLU(nT - dn )uT(nT - dn))Tj 

+ 4Jt2 E[( u( nT - dn )r( n) - u( nT - cln luT (nT - cln )wopt) 

(u(nT - dn)r(n) - u(nT - dn )uT(nT - d" )wopt}Tj. 

The four terms of equation (4.8ï) can be evaluated individ ually as follows: 

lst term. 

E[(I - 2JLu( nT - dn luT (nT - dn) ) 'ln 'Ir (1 - 2Jlu( nT - dn luT (nT - dn) )T] 

= E[71n,,~j 
- 2JlE['1n'1rjE[u(nT - dn)uT(nT - cln )] 

- 2JlE[u(nT - dn)uT(nT - dn)]E['1n'1rj 

+ 4Jl2 E[u(nT - dn)uT(nT - dJl)'7n'1~ u(nT - cln)uT(nT - cln)] (4.88) 

= K'I{ n) - 2'lK7J( n)R - 2JlRK,,( n) 

+ 4Jl2 E[u( nT - dn)uT (nT - dn)'7n"r u( nT - dn luTe nT - dn)] 

~ K7J(n) .. 2JlK7J(n)R- 2ILRK'1(n) + 4JL2Rtr[RK 7J(n)]. 
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where the last step follows from the Gaussian and independence assumptions and can be 

carried out in details as in [54] (see also [7], pp. 221-224). 

2nd term. 

'T' T T E[(1-2JLU(nT-dn)u (nT-dn ))'1n(u(nT-dn)r(n)-u(nT-d,,)u (nT-dn)wopt) ] 

= E['1n(u(nT - dn )r(n) - u(nT - dn)uT(nT - d n )wopt}T] 

- 2JŒ[u(nT - dn)uT(nT - dn)'1n(u(nT - dn)r(n) - u(nT - dn)uT(nT - dn)wopt)T] 

= E['1n]E[(u(nT - dn)r(n) - u(nT - dn)uT(nT - dn)woptl] 

- 2/lE[u(nT - dn)uT(nT - dn)'1nuT(nT - dn)r(n)] 

+ 2/lE[u( nT - dn luT (nT - dn)'1nwrpt u( nT - dn)uT (nT - dll )] 

~ bbTR - 2j.lRbwrptR - 2JLRbbTR + 2JLRbw~)tR 
= bbTR - 2/lRbbTR, 

( 4.89) 

where (4.81) and (4.85) were used. But note that the vector b is proportional to the 

delay estimate variance VSS ' Assuming that this variance is 1>mall, then the second term is 

approximately zero since it is proportional to the square of the variance. 

3rd term. 

The third term of equation (4.87) is the transpose of the second term and is therefore 

approximately zero. 

4th term. 

4112 E[(u(nT - dn)r(n) - u(nT - dn)uT(nT - dn)wopd 

(u(nT - dn)r(n) - u(nT - dn}uT(nT - dn)wopdT] 

= 4112 E[u(nT - dn)r(n)r(n)uT(nT - dn)] 

- 4j.l2E[u(nT - dn)uT(nT - dn)woptuT(nT - dn)r(n}] 

- 4Jl2E[u(nT - dn)r(n)wrPtu(nT - dn)uT(nT - d,dl 
( 4.90) 

+ 4j.l2 E[u( nT - dn)uT (nT - dn )woptWrpt u( nT - dn luTe nT - dn)]. 

Reasoning as in [7], the four expectations of equation (4.90) are round to be 

E[u(nT - dn)1'(n}r(n)uT(nT - dn}] ~ Rc/>rr(O) (4.91) 

E[u(nT- dn)uT(nT - dn)woptuT(nT - d,dr(n)] ~ RE[pr]wopt (4.92) 

E[u( nT - dn )1'( TI )w~)tu( nT - dn)uT (nT - dn )] ~ RW~ltE[Pn] (4.93) 

E[u(nT - dn)uT(nT - dn)woptWrptu(nT - d,duT(lIT - dn )] ~ RwrptRwopt. (4.94) 
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Using (4.81), the four th term is given by 

4p2 E[(u( nT - dn)r( n) - u( nT - dn)uT( nT - dn)wopt} 

(u(nT - dn)r(n) - u(nT - dn)uT(nT - dn)wopt}Tj 

= 4p2R[tPrr(O) - wrPt,RwoPt - If2vss (pT(D)wopt + wIptp( l)))] 
2 .. 

= 4Jl R[~min + ~mIn vss /2], 
(4.95 ) 

where ~min is the minimum MSE attainable as defined in (4.36), and its second derivative 

with respect to the delay, when dn = D, is detined in (4.57) and can take the form 

because 
wrptP(D) = E[wrptü(nT - D)r(n)] 

= E[(ô2fjéJd;)r(n)] 

= 4>~r(O) 
= -~mInj2. 

( 4.96) 

( 4.97) 

Collecting the four terrns, the tirne evolution of the weight-error correlation rnatrix is 

KI/(n + 1) = K71(n) - 2Jl[KI/(n)R + RKI/(n)] + 4Il2Rtr[RKq(n)] + .tll2R[~min + ~mInvssj2]. 
(4.98) 

Except for the term involving the delay estimate variance. equation (4.98) is identical to the 

one for an adaptive tilter operating alone ([7], equation (.J. 74)). In order to have con vergence 

in the mean square of the weight vector estimate, the correlation matrix must stay bounded 

in sorne sense. The norm of this matrix can be used with that effect. 

The norm of a matrix A, denoted by IIAII, is the number defined by [55] 

IIAxli 
IIAII = ~;6I1xll' (4.99) 

It can also be shown that IIAI12 is equal to the largest eigenvalue of the product AH A [f.=;~. 
When A is an autocorrelation matrix, the norm IIAII is then equal to the largest eigenvalue 

of A. Note that the definition based on the largest eigenvalue is not necessarily unique. 

Proceeding as in [7], equation (4.98) is first expressed in normal form by using the 

unitary similarity transformation 

( 4.100) 

where Q is a unitary matrix with the orthonormal eigenvectors of R as columns and A is 

a diagonal matrix with the corrE:'sponding eigenvalues on the main diagonal. Using this 

transformation in (4.98), with 

(4.101 ) 
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gives 

X( n + 1) = X( n) - 2jL[X( n)A + AX( n)] + 4tt2 Atr[AX( n)] + 4Jt2 A[~mm + ~min vss /2]. (4.102) 

Because the matrix Q is unitary, the norm of KI/( n) is equal to the norm of X( n). 

Therefore, the weight vector estimator converges in the mean squale if and only if the largest 

eigenvalue of the matrix X(n), when n tends to infinity, is finite. Since an autocorrelation 

matrix is always nonnegative definite [7], the largest eigenvalue of X( n) is finite if and only 

if the trace of KI/(n), which is eqllal to the trace of X(n), is finite. A recursive equation fol' 

the diagonal element of X(n) can be obtaincd by procceding as in [il, pp. 229-2:30. The 

relation is 

2" -1 ') .. • -1 x(n) = Bn[x(O) - 4/1 (~min + ~mlnvss/2)(I - B) ,x] + 4W(~lmll + ~minVss/2)(I - B) ,x, 

where the AI x 1 vectors x( n) and .x are defined as 

x(n) = [xt(n),xz(n)"",xM(n)]T 

.\ = [À 1,À2, ... ,ÀM]T, 

( 4.103) 

(4.104) 

( 4.105) 

with the x,(n)'s being the diagonal elements of the rnatrix X(n), the À~s being the eigen

values of the input signal autocorrelation matrix R and the AI X !If matrix B has elements 

defined as 
l = J 

( 4.106) 

Since the matrix B is symmetric, a unitary sirnilarity transformation similar to that de

scribed in (4.100) can be round su eh that 

where the matrix C is diagonal with elements that are the eigenvalues of B. Therefore, 

(4.103) converges to its steady-state componrnt 

(4.107) 

if and only if the eigenvalues of matrix B ail have magnitude less than one. It is demonstrated 

in [il that this is the case if and only if the parametcr IL sal ibfies the condition 

1 
0< Il < tr[R]' 

Therefore, if the delay estimate variance Vss is fiuite, the tr~cc of the weight-error correlation 

ma1.rix KI/ is finite and the condition for converrence in the tIlcan square is givcn in the 

following proposition. 
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Proposition 4.5. In steady-state conditions, the weight vector estimator, given by the adap

tive filter LMS a/gorithm operating jointly with a mean square convergent de/ay trading 

a/gorithm in Type 1 configuration, is convergent in the mean square if 

1 o < Il < AI ' ( 4.108) 
L:.=l ,x, 

where 'xl is the ith eigenva/ue of tlle 1 f x M input signal autocorre/ation matrix R. • 

This condition for convergence in the mean square sense is identical to the one for an 

adaptive filter operating alone. 

From the similarity transformation of (4.101), with the matrix Q being unitary, the trace 

of the matrix KIl( n) is equal to the trace of the matrix X( n). Then, from the defi nitions of 

the vector x(n) in (4.104), the following is true 

tr[KIll = tr[Xssl 
M 

= LX,(ss)' 
1=1 

( 4.109) 

where Xss is the steady-state version of X( n) and X,(ss) is the ith element of the correspond

ing steady-state version of x( n). The elements of the vector Xss can be found from (4.107), 

or by letting n tend to infinity in (4.103). The result is that evcry component of Xss is equal 

to [il 
( 4.110) 

Therefore, 

t IK 1 - M~mm + ~minVss/2 
1 1'/ - JL 1 _ /ltr[R] . (4.111) 

If the adaptation constant IL is smaU enough to make 

/ltr[R) ~ 1, 

then (4.111) can be written as 

(4.112) , .. = tr[K'11 + IlM~min vss/2, 

where tr[K~l is defined as the trace of the weight-error correlation matrix specifie to the 

adaptive filter and is given as 

tr[K~] = ILM~min' ( 4.113) 
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4.3.1.3 Excess Mean-Squared Errar and Misadjustment with the Joint LMS 
Algorithm 

The steady-state MSE, for the joint LMS algorithrn, is first cornputed and the excess 

MSE is deduced. Then, a mis ad just ment expression is derived. From equation (3.5), the 

steady-state USE function is 

(4.114) 

Equa.tion (4.27) transforms (4.114) into 

_ T T .:r T .:r ess - 4>rr(O) + woptRwopt + E['1n R'1nJ + 2E['1 RWopt,J - 2woptE[PnJ - 2E['ln PnJ. (4.115) 

The use of ( 4.81) gives 

ess = 4>rr(O) + WrptRwopt + E['1rR'lnJ - 2wrptRwopt - vsswrptp(D) - bvssp(D) 

::::: 4>rr(O) - WrptRwopt - vsswoptp(D) + E['l~R'1nl 
.. T 

= emin + Vssemln/2 + E['ln R'1nl, 

(4.116) 

where the expression 4>rr(O) - WrptRwopt is explicitly defined as emin, the expression 

Wrptp( D) is replaced by its equivalent given in (4.97) and the steady-state delay variance 

VS8 is assumed small. The last term of (4.116) can be expressed as 

E['lIR'1nl = tr[RKql 

= tr(AXssl 

= ).,T Xss. 

Combining (4.107) and (4.117) ~ives 

T 2 .. T -1 E['1n R'lnl = 4/-L (emin + emin vss /2)'\ (1 - B) '\, 

which can be shown to be equal to [7] 

El TR ]_ Jl(emin + ~minVss/2)tr[R] 
'ln '1n - 1 - Jltr[Rl . 

Use (4.119) into (4.116) gives the final expression for the joint MSE function 

t _ t . + V ' , /2 + Jl(~min + ~min vss/2)tr[R] 
.. ss - .. mm ss .. mm 1 - Jlh [R] . 

The excess MSE is then 

eex = ess - emin 

_ ë. /2 + Jl(emin + ~minvss/2)tr[Rl 
- vss",mm 1 - JltrlR] 

_ td + tl + cdl 
- lOex "ex 'ex' 
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--, , 
~ where the excess MSE specifie to the adaptivc delay element is defined as 

ë - vssemin 
ex - 1 ' 

the excess MSE specifie to the adaptive filter is defined as 

ë - IL~mintr[R) 
ex - 1 - JLtr[R] , 

and the cross-product excess MSE 15 defined as 

ëf _ J1~ min 1)58 tr[R] 
ex - 2( 1 - jLtr[R]) . 

(4.122) 

(4.123) 

(,U24) 

Note that the expression for e~x is equal ta the expected value of the excess MSE given in 

(3.61). This expression is also valid for pure LMS delay estimation [19] and the expression 

for ~!x is valid for an adaptive LMS filter operating without an adaptive delaj [7]. 

The misadjustment is defined as the ratio of the excess MSE to ~min' Therefore, the 

mis ad just ment expression is 

M = Md + Mf + M df 

= Md + Mf + .I\.1dM f 

where the misadjustmellt specifie to the adaptive delay eiement is defined as 

Md = Vss~mJh, 
2~min 

the mis ad just ment specifie to the adaptive filter is defined as 

Mf _ Iltr[R] 
- 1 - 11tr[R)' 

and the cross-produet mis ad just ment is defined as 

MdC = l-l~mmvsstr[Rl 
2~min( 1 - ILtr[RJ) 

= ."",d MC. 

(4.125 ) 

(4.126) 

(4.127) 

(4.128) 

4.3.2 The Joint LMS Aigorithm in Type II Configuration: Delay in Adaptive 
Branch 

The particularity of the Type I1-DAB configuration is that the adaptation is a rune

tion of the delayed adaptive filter (see equation (3.10) and equations (3.33) ta (3.35) in 

Chapter 3). The adaptive branch output is given in (4.4) and the corresponding joint LMS 

algorithm is 
Wn+l = Wn + 2Jl€(n,dn )u(nT - dn ) 

dn+I = dn + 2oe( n, dn)y( nT - dn), 

where e( n, dn ) is given in (4.3). 
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4.3.2.1 Analysis for the LMS Delay Estimator in Steady-State 

Because the output of the adaptive brauch is given by (4.4), the output steady-state 

noise x( n, D) is given by 

x(n, D) = "';T_Du(nT - D), (4.130) 

and the derivative of \(n, D) with respect to the delay is a function of the derivatives of 

both "rT-D and u(nT - D). This fact does not affect, for the most part, the derivations 

of the convergence conditions presented in Su bsection 4.3.1.1. Proposition 4.2 is unchanged 

and Proposition 4.3 still holds with E[G~J given by 

E[G~] ::::::3(4)~r(0))2 + 64>~r(0)[cP~u(0)tr[KI11 + 4>uu(O) 2: 4>~;IT/1 (0)] 

+ 3[<?~u(0)tr[K71] + 4>u,,(O) 2: 4>~I71. (0)]2 

+ 24>~r(0)(4>~r(0) - 4>~f(O) - [4>~u(O)tr[KT/] + 4>uII(O) L 4>~IT/. (0)]) 

+ (4)rr(O) - 4>",,(0) + <puu(O)tr[K 71D 
(4)~!) (0) + 4>~4J (0)tr[K I11 + <PUll ( 0) L 4>~~~. (0) + 6<1>'~u (0) L 9~,T/, (0»_ 

The steady-state delay variance is still given by (4.74) with 

(4.131 ) 

E[N~l = -4(4)rr(0) - 4>fT(O) + <puu(O)tr[K'1])( 4>~r(O) + 4>~u(O)tr[KT/l + 4>uu(O) L </>~,T/,(O». 
(-1.132) 

Note that equations (4.131) and (4.132) reduce to (4.68) and (.Li.) when the adaptive 

weight vector is not a function of the delay (4)~,T/, (0) = q.,~~~, (0) = 0). 

The second derivative 4>~,T/1(0) can be approximated by Stirling's formula 

(4.133 ) 

It is shown below that 4>".'1,(1) :::::: 4>'1,,,,(0), which, when used in (-4.133), implies that 

4>~I"i(O) :::::: O. This result can be heuristically explained by noting that if Jl is small (as 

it is in practice), the correction made to the weight veetor is smaU (see equation 4.129), and 

the autocorrelation of the noise veetor components is approximately constant around a lag 

of zero. Therefore, the results of Subsection 4.3.1.1 can be \lsed without any modifications, 

unless the adaptation factor J1. is su ch that the approx.imation (obtained from (4.1 ;2») 

'Vi (4.134) 

is not true. 
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4.3.2.2 Analysis for the LMS Adaptive Filter in Steady-State 

Sorne complications appear in the analysis of the LMS adaptive filter. From (4.129), 

the weight vector adaptation is performed according to 

wn+l = Wn + 2/te(n,dn)u(nT - dn) 

= Wn + 21l[r(n)u(nT- dn) - u(nT -- dn)uT(nT - du}wnT-dnl. 
( 4.135) 

This type of algorithm has been analysed for a constant l1Itcgcr delay [-19], [56]. The use 

of a fractional and stochastic delay complicatcs greatly the problem. Tn order to simplify 

the analysis, it will he assumed, throughout Subsection 43.2.2, that the referenre delay 

D. = DIT is an integer. 

Convergence in the Mean of the Weight Vector Estimate when D. is an Integer 

Taking the expected value on each side of (.1.135), making use of the independence 

assumption and using (4.81), the following equation is obtaincd for the update of the average 

weight vector 

( 4.136) 

U se the similarity transformation of (4.100) and defi ne the normalized error "ector En and 

the normalized cross-correlation vector c( dn ) as 

Equation (4.136) then hecomes 

En == QT {E[wn]- wopd 

c:(dn ) == QT p(dn ). 
(.1.13ï) 

(4.138 ) 

Note that the expected values are taken over the input data, whirh amounts ta expectations 

taken jointlv over the adaptive weight vector and the adaptive delay. Denote an expected 

value with respect to the weight vector as Ew['] and an expectation takcn with respect to 

the delay as Ed[-]. Consider wn(dn) as a function of d". If tlH' delay steady-state variance 

is smaU, wn(dn } can he represented approximately as 

(4.139) 

Since the delay estimate is unhiased, the expected value of wn{dn) with respect to dn is t 

(4.140) 

t Note that in order ta be consistent with prevlOus results, a term proportion al to the dclay va.riance Vu 

should be present Bu t ln a. first ana.lyls, thls term 15 neglectcd 111 order ta avoid expressIons containmg 
denva.tives of the welght vector 
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and 

(4.1-11) 

Equation (4.138) then hecomes 

(4.142) 

Denoting the ith component of Ew[En] as ënl! the transfer function between IlVssë,( D) and 

t\i is 
~D. 

t,(=) = D '" D . z .+1 - Z • + 21l).., 
( 4.143) 

Then (4.142) converges if and only if, for each l, ail of the roots of the characteristic 

polynomial 

(4.144) 

lie within the unit circle. This is exactly the result obtained in [.19] and the hound on Il is 

round to he 

(4.145) 

Using the final value theorem [Si], the steady-state value of the zlh error vector component 

is 

( 4.146) 

which indicates that there is a bias on the weight \'ector cstimate identical to the one in 

(4.85). The following proposition characterizes th{' convergence in the mean of the weight 

vector. 

Proposition 4.6. In steady-state conditions, the weight vector estimator, gh'en by the adap

tive filter LlvfS algorithm operating join tly with a dclay tracking algorithm in Type II-D.4.B 

configuration, converges in the mean if 

O 1.[ 7r ] < Il < --Sin , 
)..max 2(2D. + 1) 

( 4.147) 

where Àmax denotes the maximum valu'! of the input signal autocorrelation matrix Rand 

D. = DIT is the mean of the delay estimate. The weigh t vector estimate experiences a 

bias given by 
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Convergence in the Mean Square of the Weight Vector Estimate when D. is 
an Integer 

From (4.135), the weight noise vector is 

'In + 1 = 'In + 2W( Il, tin )u( nT - dn). ( 4.149) 

Using the assumptions and the procedure of Subsectioll 4.3.1.2, the wcight noise correlation 

matrix KI)( n + 1) is found to be similar to ( 1.98) and is of the form 

K71(n + 1) =KI){n) - 2J.l[KI){n - D.)R+ RK~(n - D.)] + 4Ji2Rtl[RKI){n - D.)] 
'). ') l' (4.150) 

+ tll-R[çmm + çnllnl'~~/2J + 4W D•R[Kl(n - D.) + KI (n - D.)]R, 

where KII( n - D.) is defined as 

( 4.151) 

which is obtained through an argumentation similar to the one of (4.139) ta (4.141), and 

K D.( n) Îs defi ned as 

for D. an integer. Note in particular, that ( 1.1.50) is ('quai to (·"DR) when D. = O. 

Then, using (·1.149), the matrix KD.(lI) is giv(,l1 by 

T KD.(n) = E[('1,,-I + 2w(n - 1,dn_tlu(nT - T -' dn-l ))71I11'-IInJ 

( 4.152) 

= E['1n-l'1~T-dflJ - 21IE [u{nT - T - dn_IluT(nl' - T - dn -Il'1nT-1'-dn _ 1"rT-dn l 
= KD._I(n - 1) - 2/lRK1(n - D.), 

( 4.153) 

where (4.152) is used and the term of the farm of (,LS9) is neglected for a small delay 

variance. Applying (4.1.5:1) successively, the following result i'i obtained. 

(4.154) 

Then 

Kl(n - D.) = KI)(n - D. - 1) - 2IlRKT(n - D. - 1) 

l' 2 2 = Kl1 (n - D. - 1) - 21lRKl1(n - D. - 2) + 4p. R KI(n - D. - 2) (4.155) 
n-D.-I 

= L (-2J.lR)tK~t(n - D. - 1 - i), 
,=0 

where 
for i even 

for i odd. 
( 4.156) 
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Using the result (4.155) and the definitions of(4.100), (4.101), (4.104) and (4.10.5) in (4.150) 

gives the following recursive equation for the diagonal vector x( n) of the normalized corre

lation matrix X( n); 

x( n + 1) =x( n) - 4J1Ax( n - D.) + 411 2 ~~T x( n .. D.) 
n-D.-I 

+ 4J.l2 .\[~mln + ~mln l'ss/2] + 8J12 D.A 2 ~ (-2JlA)'x(n - D. - 1 - il· 
1=0 

(4.15i) 

In order to obtain a bound on JI that insurps convergence of this equation. it is easier to 

use (4.157) in the computation of the quantity ~(n). defined as 

- , T 
~(n) = E['7nR'7,,], (4.158) 

which -::an be shown to be equal to ~T x(n) (see equation (-I.11i)). The 'antity ~(n) is a 

constituent of the excess ~ISE (see (4.116)) and must therefore be finite in order to have 

convergence in the mean square. 

In order to simplify the results. assume that the eigenvalues ,\ are nearly equa1 t and 

that the average eigenvalue is denoted as ~ (thls assumption was used \\ith success in [56]). 

Then, prernllitiplymg both si des of (4.1.5i) by).,T and using the definition of (·1.158) results 

in 

~(n + 1) =~( Tl) - .IJl~~( nT - D) + 4Jl2tr[R2]~( 7IT - D) 

n-D.-l 

+ ,lIL2tr[R2][~mln + ~mln t'ss/2] + 8'l2 D.>.2 L (-2J1~)I~( n - D. - 1 - il. 
1=0 

Taking the z-transform and rearranging gives 

[ { 

? -)} ] - ) ? - 8 -D.À- -~(z) = z-I + 4W tr[R-]- 4J1À + Il _ z-D.-I ~(.:) 
z + 2J.lÀ 

? 2 .. 1 + 4wtr[R ][~mm + ~mlnvss/21--· 
.: - 1 

The characteristic polynomial is 

F(z) =zDo+2 - (1 - 2J.l~):D.+l - 2J.l~zD. 

+ 4J1(~ -tttr[R2])z + 8J.l2X [X - D.X - Iltr[R21] . 

( 4.159) 

(4.160) 

(4.161) 

In order for (4.159) to be stable, the characteristic polynomial must have aU i ts roots within 

the unit circle. J ury's test [58] establishes four necessary and sufficient conditions for the 

characteristic polynomial to have such roots. The first condition is 

F(1) > 0, 

t This situation is deslred in practice ta lnsure reasonable convergence speed of the LMS adaptlve tiller. 
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which reduces ta 

( 4.162) 

This equation represents an upward parahola in Jl with a negative minimum. The positive 

range of values of Jl for which thl' (lquation is lH'gative is 

O 
' J('2D.'\.! + tr[R~]- 2,\2)2 + R,\2Ir[R2]- (2D.~2 + tr[R2]- 2X2) 

u< , . 
\.~tr[R-] 

(.1.163 ) 

which is identlcal fo the bOlllld rll'fined in [.')G]. In this ilrtirh'. if i" shawn that the second 

and third condltlOlls of .Jur~··<; tf'~t hold \~h(lll thi'i houlld is Il,,('d. The fourth condItion 

cannot hl' verificd analytically. hut 11 1<; Ilf'\rr violdtf'd 111 the .. ill\ulatioll'i performed III [.56J 

and it is thNefore conjcctured tltat it is truC' 

Deranse ~(1I) = ). T x( n). 1 hl' above st rtbllily range is also applicahle to the convergence 

of x(n) given in (·ll.5ï) The stl'ady-<;tatt' \ahll' of ~(n) is obtaJlled by applying the final 

vainc theorem to (~.I()O). For ,l). ~ Ih the f(~~ult IS 

~ '" Iltr[R2][~'nln + ~1I11111\,)21 
~~ - ,\( 1- 'lllD.'\) -lltr[R2] 

;:::: _ JlX[~nlln -'r ~lIl1nr'<;~/2] J lTl, 
).( 1 - 2IlD.'\) - ptr[R-] 

(4.164) 

where 1 is an JI x 1 umt t'crtor, i.e. it has ail It" f'lenH'nts ('quaI to 1 and the s(>cand 

equation is abtained hy assuming nearly equal (·Jgellvalues. Theil 

x~s;:::: _ Jl~[(lllll\ + ~lIIln 1 ... ~/2] , l. 
• À( 1- 2JtD.'\) - Jltr[R-] 

The convergence in the rnean square is thereforp formalized 111 the following proposition_ 

Proposition 4.7. In steady-statp conditions. the " {\Ight \'ertor(,5timator. gi\!cll by thearlap

live filtel LMS a/gorithm operating Jointly Wilh a mean square convergent integcr delay 

tracking a/gorithrn in Type II-DAB configuratIOn. is con\ergent in the mean square if 

o J(2D.À2 + tr[R2]- 2À2)l + 8).ltr[R2] - (2D.~2 + tr[R2] - Û 2 ) 

< Il < Ütr[R2] , ( 4.166) 

where À, is the zlh eigenva/ue of the JI x M input signal autororrclation matrix R, ~ is the 

average eigem'a/ue and D. = D /T is the mean of t/Je delay estimator. • 

From (4.16.5), the trace of the correlation rncltrix is 

At 

tr[K'1] = 2: XI(S~) 
.=1 

AI :X[(min + ~min vss /2] 
::::: JL ~(1 - 2jlD.:X) - jltr[R2]' 

(4.167) 

Note that if D. = 0, (4.167) rednces to (t.111). when the eigenvalues are nearly equal. 
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Approximation of 4>~,I1, (0) 

In order to compute the approximation (lf (4.133) for k = 1, the diagonal elements of 

the cross-correlation matrix Kl(n) must be available. From (·U5.!)), this matrix is given by 

Kl(n) = E['1n'1n-d 
n-l 

= 2:': (-2JlR)'K~'( n - 1 - 1), 
1=0 

from which the normalized diagonal vector can be obtained. It is given by 

n-l 

Xt(n) = 2:':( -2JlA)'x(n - 1 - il, 
1=0 

where 

(-1.168) 

( 4.169) 

(4.1 iO) 

and x(n) is defined in (.Ll04). The i th component of Xl(ll) can be expressed as (using 

(4.154) with D. = 1) 

(4.171) 

Assuming that the conditions of convergence are respected. the steady-state value of x 1)( n) 

is 
x)(oc) 

Xl)(oo)= 1 +2JL)..) , (4.1 72) 

which is approximately equal to x J{ 00) when the condition of (-l.131) is respected. There

fore, <1>'1,'1'( 1) is approximately equal to 4>11,'1,(0), and <1>~.'1I(O) is approximately zero. 

4.3.2.3 Excess Mean-Squared Error and Misadjustment with the Joint LMS 
Algorithm in Type II-DAB Configuration 

Proceeding as in Subsection 4.3.1.3. the MSE function is 

.. T 
~ss = ~min + Vss~mln/2 + E['1nT-dn R'1nT-dnJ· 

From (4.117) and (4.164), the last term of (4.1 i3) is given by 

E['1~T-dr. R'1nT-dnJ = tr[RK'1( oo)J 

= ÀT 
Xs& 

= ~ss 
2 .. 

Jltr[R ][~min + €min vss /2J 
:::::: 5.(1- 2/LD.À) - Jltr[R2J . 
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Therefore, the excess MSE has the same form as for the Type 1 configuration and is given 

by 
, _ ,d ,r ,df 
,l'X - 'l'X + "ex + 'ex' (4.175) 

where 

(4.176) 

ë - JI~nl\ntr[R21 
ex - ~(1 - 2JlD.,\) - Jltr[R2]' 

(4.177) 

ë f = Il€mli1 l\str[R2] 
l'X 2("( 1 - 2}ID.") - }ltr[R.!J)· 

( ·1.l78) 

The mis ad just ment hd.s the form 

,\1 = ,\.id + .\lff + .\tfdf 

= Md + .\tf f + .W' ,,\tff, 
(".179 ) 

where the different terms are trivially relateo ta the corresponding exces& !\ISE terms of 

(4.175) ta (LliR). 

4.3.3 The Joint LMS Algorithm in Type II Configuration: Delay in 
Reference Branch 

A Type II-DRB system in rancellation mode is illu~trated in Figure 3.2 of Chapter 3. 

This type of COll figuration "implifies consider,tuly the analY5is of the Type II e;;ystem and 

makes it more practiral since it a\oide;; the delay u<,tween the filtpr ad<lpt.ation ,lIld the error 

signa1. The negative delay -du is implemented in practire Ilv intlOducing; il fixcd d(llay 

before the adaptive tilter_ The error signal is glVl'1l in (·1 5) alld the rorresponding joint 

LMS algorithm is 
Wn+l = Wn + 2Jl€(n,dn)u(nT) 

(4.180 ) 
dn+! = dn - 2Q,,(n,dn )r(nT - d,do 

4.3.3.1 Analysis for the LMS Delay Estimator in Steady-State 

Because of the adaptive dday location, the oU~I~at of the adaptive fil ter is independent 

of dn . But the optimum adaptive filter output r(n) is still a function of dn = D and the 

noisy output is defined as 

y(n, D) = f(n) + x(n, D), (4.181) 

where 

f(n) = Wrptu(nT) (·Ll82) 
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and 

\(n,D) = '1ru(nT}ldn=-D. 

The Taylor approximation of i'n(dn ) = e2(n,dn ) is stillllsed with 

1'n(D) ::'- 2e(n, D)r(lIT + D) 

ill(n) = 2r.!(nT+ D)+ 2t'(lI,D)f(nT+ D). 

Defining 

l\'n = 2e(n, D),,(nT + D) 

and 

Gn = r2(nT + D) + e(n, D)r(nT + D), 

the approximate LMS dclay tracking algorithm is (compare to equation ClAï)) 

Convergence in the Mean of the Delay Estimate 

( 4.183) 

( 4.184) 

( 4.185) 

(4.186) 

(4.187) 

Proceed as in Subscction ·1.3.1.1, i.e. take the expected value of (·t.18ï). Note that 

Proposition ·U holds and that 
E[Gn ] = -<p~f(D) 

- 1/)' - ~ ... nlln 

E[Nn] = 0, 

( .1.188) 

as in (4.51) and (.L5;). Then Proposition ·1.2 applies in the present case, i.e. the condition 

of convergence in the mean is 
2 

0<0< -. 
~nlln 

Convergence in the Mean Square of the Delay Estimate 

( -1.189) 

Apply the procedure of Subsection 4.3.1.1. Note that E[(1 - 20Gn )Nn ] = 0 again. 

Then the same m~an square analysis applies and Proposition 4.3 is valid with 

E[G~] =3(<t>~, (0))2 - 2~~T(0)[<t>~T(0) - <t>~f(D)] + 2[<t>~T(0) - 9~,,(D)]2 

+ (4)rr(O) - Q"r(0) + <Puu(O)tr[K'7])4>~~)(O). 
The steady-state delay estimate variance is still given by (see (4. ï4)) 

. _ oE[N~] 
Iss - . ? • 

2~min - 4QE[Gnl 
where E[N~l can be shown to be 
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-- 4.3.3.2 Analysis for the LMS Adaptive Fitter in Steady-State 

Cornbining the first equation of (4.180) and the error definition of (4.5), the LMS 

adaptive fUter algorithm is 

( 4.193) 

The mean and mean square analyses, based on (4.193), give the same results as those of 

Subsection ·1.3.1.2, wlth D replacl'd by -D. and Propositions ·1.1 and ·1.5 arc valid in the 

present case. 

4.3.3.3 Excess Mean-Squared Error and Misadjustment with the Joint LMS 
Algorithm 

The results of Subsection .1.:3.1.:3 apply intcgrally, wlth the obviolls changes in E[G~] 

and [N;] according to (1.190) al~d (4 192) (for the computation of 1'88)' 

4.4 Discussion 

As pointecl ont. in Chapter :1, the joint steepcst·descent algorithm and il', c;tochastic 

collnterpart. the joint LMS algorithrn, reprrsent the generalizations of either the con ven

tional sn (L}"IS) delay tracklIlg algorithm [29] or the COIlH'ntloIlal SD (Li\IS) (Idaptive 

transversal filtN algorithm [10]. It is tlH'rrfore not ~urpribing 10 filld that ail tll(' results of 

Subsections 1.3.1.1,4.32.1 and !.:J.3.l, abont the drlay algonthrn, dcgencr,lle to thr results 

of [29] when the signals are properly interpreted, and that the result .... of Sub~ectlon~ 4.3.1.2, 

4.3.2.2 and .1.3.3.2 come down to thr L~tS adaptlve filter result", wlH'n the dplcl)' f) and the 

variance are set equal ta zero. 

Another point to not<' I~ the fact that, as long as the delay estimation algorithm is 

convergent in the mean square (v,~ is finite), the conditions for convergence of the LMS 

adaptivefilter, in the me an and in the mean squar(', arp. IdenticaJ tü the usual conditions for 

a similar adaptive filter operating alone or with a fixed delay clement, i.e th!' convergence 

depends on the eigenvalues of the input signal autocorrelation matlÎx. Note also that, 

because of the adaptive delay element, the weight vcclor estimatc is biased. 

As eqllations (4.73) and (4.H) sllggest it, the convergence 01 t!lC LMS adaptive delay 

element depends on ~mln' E[G~] and E[N~], for the three types of sy'items. Using (4.57) 

and the fact that 

~mln = 4>rr(O) - 0;;(0), ( 4.194) 
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equations (4.69) and (4.75) can take the form t (Types 1 and II-DAB) 

E[G;J ~ 3/4~~in - Ihemine~!n 

+ [emin<t>~~(O) - l/2e~ln<Puu(O) - 2~rnIn<P~u(O)ltr[K'1] 

+ [3( cP~u(0))2 + <PUtt(0)<p~~(0)ltr2[Kl/l 
2 .. 

E[Nnl ~ 2erninemm 

+ [2~mm<t>uu(0) - 4ernm<P~u(0)ltr[K'11 

- 4<Puu(O)<p~u(O)tr2[K'11, 

and equations (4.190) and (4.192) become (Type II-DRB) 

? " 2 Il Il .. Il .. 2 E[G~l ~3(<PrT(0)) - 24>rT(O)[<Prr (0) + Ihernml + 2[<prr (0) + l/2~minl 

+ (ernin + 9uu(O)tr[K'I])<p~~)(O) 
E[N~l ~ -·Hernin + <t>1J1J(O)tr[K'1])d>~r(O). 

( 4.195) 

( 4.196) 

( 4.197) 

( 4.198) 

Equations (4.195) to (4.198) indicate that the convergence of the LMS adaptive delay ele

ment depends on the input signal power 9uu(0) and the minimum MSE ~mIn in the Types 1 

and II-DAB, as weIl as on the reference signal power <Prr(O) in the Type I1-DRB case. 

The expression (4. ï 4) (valid for the three types of systems) for the delay estimate vari

ance is complicated by the presence of the adaptive filter-related terms. The delay estimate 

variance is also encountered in the excess MSE and misadjustmen t expressions, like (4.121) 

and (4.125). Once the delay variance is computed or fixed, these two quantities are seen to 

be functions of two terms specifie to the adaptive delay element and to the adaptive filter, 

respectively, and of a cross-product term (note that the delay specifie term being function 

of Vss, it is indirectly function of the adaptive filter). Note that the expressions for ~~x and 

e!x arc identical to those obtained for the respective adaptive algorithms operating alone 

[29], [7]. The cross-product terms ~~! and MdC are essentially the result of gradient and 

derivative estimation noise in the two adaptation processes. For stationary input ano :efer

ence processes, the estimation noise in one adaptive algorithm is increased by the gl·?dient 

estimation noise present in the other adaptive system. Therefore, the total mis ad just ment 

M is not merely the sum of the adaptive delay element and adaptive fil ter mis ad just ment 

expressions Md and Mf, but also inc\udes a term due to the joint estimation noise. Note, 

however, that the cross-produet mis ad just ment Mdf is equal to the produet of Md and 

Mf, whieh makes it a second-order term that ean be, in praetical situations, one order of 

magnitude smaller than the individual terms. 

, Note that these expreSSIOIIS are exact for whIte input and nOIse signaIs. 
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-- The results obtained in this chapter are based on a number of a.ssumptions, as listed 

at the beginning of Section 4.3. These assumptions may seem restrictive, but they can 

be justified as follows. The Gaussian assumption is a common one and has been used 

in most of the more mvolved analyses, as in [59J, [60J or [7J. The whiteness assumption 

in the noise processes is more specifie, but it is often met in practice and is used only 

in the proof of Proposition 4.1. Assumption 2 about the stationarity of the reference 

signal is used to limit the analysis to the effects of the gradien t and derivative noises on 

the steady-state behaviour of the joint algorithm. The E'xcess MSE and misadjust~ent 

caused by the trading lag, in the case of nonstationary reference signais, was therefore not 

considered in the analysis. The independence assumptions 3 and .5 are also common in the 

analysis of stochastic algorithms. The zero-mean Gaussian assumption about the weight 

noise vector (Assumption .5), when the adaptive delay element is considered, j" c1early 

wrong in view of the bias in the adaptive noise vector (see Proposition 4.4). But practlcal 

considerations ask for a small delay variance, in which case the weight vector bias is also 

small and Assumption .s almost valid. Finally, the assumption of high signal-to-noise ratio 

is used. as in Chapter 3, to simpüfy the results and obtain useful indications about the 

algorithm. 

4.5 Application of the Joint LMS Algorithm 

The application of the various results obtained in this chapter is not an obvious task, 

due mainly to the complexity of the different formulas and to the relationships among them. 

But as shown above, the different bounds are functions of the input and reference signais, 

and can therefore be estimated. 

Note that if Il and ~min are small, the quantity tr[K'1J is approximat(lly zero and E[G;] ~ 

3/4~~in for a Type 1 system (see (4.195)). In this case, convergence in the mean square 

happens for 
2 0<0<-.. -, 

3~min 
which is 1/3 of the upper bound for convergence in the me an (see Proposition 4.2). 

ln order to use the convergence bounds on 0 and Il, it is nccessary to know the delay 

estimate variance Vss, which itsli!lf is a function of cr. Since, in practice, a certain variance is 

desired or desirable, Vss can be used as a design variable that is fixed a priori. The different 

quantities which are functions of this variance are then computed more easily. 

A Type 1 system design procedure, for the determination of cr and Il in high signal-ta

noise conditions, can take the following form 
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1. 

2. 

3. 

4. 

5. 

6. 

Assume an acceptable delay steady-state variance Vss. 

Estimate {min' 4>uu(O) and its derivatives (proceed as in Section 3.4.1, in particular 
equation (3.117)). 

Compute tr[K'1]' E[G;] and E[N~], as functions of Il, using equations (4.111), (4.195) 
and (4.196). 

Obtain a relationship between (} and l', using equation (4.74). 

Use equation (3.91) of Chapter 3 to get a second relationship between (} and l'and 
solve for these two factors. 

Verify that the convergence bounds, for both (} and l', are satisfied. 

Similar procedures can be described for the two other types of systems. Because of 

the assumptions used, these design. procedures are useful only if they are used with caution 

to obtain approximate information about the algorithms. More results concerning the 

applicability of the procedures are given in Chapter 6. 

The different bounds developed in Chapter 3 are useful in the application of the joint 

LMS algorithm. In particular, note that the conditions for convergence in the mean of the 

delay estimator in Type 1 or Type II- ORB (equation (4.60)) is the same as the stability range 

for the SD delay estimator (equation (3.75)). Then the tighter bounds of Proposition 3.2 

(equations (3.82) and (3.83)) can be used to predict the convergence in the mean of the 

delayestimator. The other results of Subsection 3.3.2.2 can also be Uf>e with profit in the 

application of the joint LMS algorithm. 

Finally, note that the analysis and the results obtained for the Type II-DAB adaptive 

system (Subsection 4.3.2) are the least appealing and realistic ones. These results should 

mainly be considered as indicative of the fact that a Type I1-DRB configuration is more 

attractive and should be preferred. Nevertheless, practical situations may dictate the choice 

of a Type II- DAB form, in which case the theoretical results could be of interest. 

4.6 Summary 

Joint time delay estimation and adaptive MM~E filtering, using the least-mean-square 

algorithm, has been studied in details in this chapter. The differences between three Types 

of joint algorithms (l, II-DAB and II-ORB) were established, and in the Type 1 case, it was 

assumed that the delay dn propagates instantaneously into the adaptive filter delay line. 

The ODE method was used to show that when the adaptation factors (} and l' both tend 

toward zero, the je,mt LMS al~orithm converges to a local minimu1l1 of the MSE function, 
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like the exact version of the joint steepest-descent algorithm. This supports the fact that, 

when the factors are small, the joint LMS algorithm converges to solutions close to those 

of the joint SO algorithm. 

The three types of joint LMS algorithm were studied in steady-state conditions, when 

the reference signal is stationary. It was established that the adaptive delay element con

vergence bounds are governed by the input signal power and the second derivative of the 

MSE fUIl/:tion at its minimum in a Type 1 system, and by the same quantities, plus the 

reference signal power, in the Type II-ORB case. In these two types, the adaptive fil ter 

convergence bounds were found to be given by expressions identical to those obtained for 

an adaptive filter operating alone. It was also found that the delay estimate is unbiased, 

while the weight vector estimate is biased by a quantity proportional to the delay estimate 

variance. It was also argued that a Type II-DRB adaptive system should be preferred to 

a Type II-OAB system. A design procedure for the choice of the adaptation factors was 

discussed, and it was pointed out that the results of Subsection 3.3.2.2 could be used with 

profit, in the application of the joint LMS algorithm. 

The material presented in this chapter shows explicitly the complexity of the analysis 

of stochastic joint algorithms, and could be seen as an attempt to unify the analyses of 

LMS adaptive delay and adaptive filter algorithms, as weil as a unification of the analyses 

of different types of joint LMS delay estimation and adaptive filte1'Îng algorithms. 
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Chapter 5 

5.1 Introduction 

Joint Time Delay Estin1ation and Adaptive 

Recursive Least Squares Filtering: 

Fast Transversal Filter Aigorithms 

The third joint time delay estimation and channel identification method proposed in 

Chapter 2 is based on the combination of an adaptive delay element and an adaptive filter, 

as used in Chapters 3 and 4, and the least squares (L5) estimation criterion. Using the 

notation of the previous chapter, the prewindowed form of this method is based on the 

minimization, with respect to bath the adaptive delay and the adaptive filter weight, of the 

SUIll of ezponentially weighted error squares î( n), deflned as 

n 

î(n) = L4n-'le(t,d,)12, (5.1) 
,=1 

where {J is a constant positive weighting factor close to, but less than one [7J. Note that the 

memory of any algorithm based on the criterion (5.1) grows with n. Strictly speaking, this 

type of algorithm is therefore not completely suitable for tracking nonstationary reference 

signais, since it never completely "forgets" the past data. But for {3 lower than one, the 

tracking capabilities are generally acceptable [61J. 

A joint LS algorithm can take a form similar ta the joint SD algorithm of Cha~,ter 3, 

Le. the delay adjustments can be based on explicit error derivative measurements a.nd 

the fllter adaptation can rely on the recursive least squares (RLS) algorithm. In su ch a 

philosophy, the two adaptation processes are based on independent computations, and one 

algorithm does not use any information processed by the other algorithm (each adaptive 

- 94 -



" , 

1 

t 
system acts as if the other system was not present). This philosophy can be applied to any 

type of adaptive configuration, as defined in Chapter 3 (Type 1, II-DAB or II-DRB). But 

the particularity of the RLS adaptive tilter algorithm is that it computes the true solution of 

the LS problem at each iteration, which typically insures a rate of convergence an ordu of 

magnitude faster than the simplt> SO or LMS algorithms [7]. This characteristic can prevent 

the use of an independent delay estimation algorithm, as in the joint MMSE algorithm of 

Chapter 3. This is 50 because the adaptive filter converges so quickly t~at it will model 

by itse1f the most part of any reference delay hefore the adaptive delay loop can converge. 

ln most occasions, the joint LS algorithm must therefore intimately Iink the two adaptive 

processes. 

Another problem with the use of the RLS adaptive filter algorithm is its inherent com

putational complexity (the LS solution involves in fact the inversion of the input signal 

autocorrelation matrix). The use of a fractional delay element Jnvolves an additional com

plexity that is not welcome. 

These problems can be partially circumvented by using an mteger delay element that 

is not updated only in the direction of the least squares solution, as in a gradient-type 

algorithm, but that selects a value that truly minimizes E( n) at cach iteration, within a 

finite set of possible delay values. This type of joint algorlthm computes the two estimates 

such that they correspond to the joint L8 solution at each iteration. 

In this chapter, two new joint delay and reference filter tracking algorithms of this kind 

are proposed. One is based on the Type 1 configuration (the adaptive delay is located before 

the adapt:ve filter) and the other assumes a Type II-DRU adaptive system (the adaptive 

delay is located in the reference branch). Oefine the integer time delay as a time lag and 

denote it by l. Then, the error e(i,d.) in (5.1) can be expressed as 

e(r,d.} = e(i,l) 

= r(i) - wH{n)u(i - e) Type l, (5.2) 

= r(i + l) - wH(n)u(i) Type II - ORB. 

For an adaptive filter with a given number of taps M, define the minimum sum of weighted 

squared errors ~M( n) as 

~M( n) == min î( n), 
w(n),l 

(5.3) 

where the minimization with respect to l is accomplished over a finite set of lag values. 

Then, for a given value of l, define the minimum sum ~Mo( n, f) as (compare with the 

definition of {o(dn} in equation (3.39)) 

êMo(n,l) = min î(n). 
w(n) 
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The weight vector for which this minimum is attained is defined as w1ttn). If the adaptive 

delay di is not equal to the reference delay DI, for aU i, the sum of errors êMo( n, dn ) 

is not minimum with respect to dn , unless the adaptive filter length is large enough to 

accommodate both the modelling of the reference filter h( n) and the reference delay (Le. 

M is large enough such that the delayed optimum adaptive weight vector is not truncated). 

The RLS algorithms derived in this chapter exploit the data structure in order to 

compute the adaptive weight vector and the lag value, within a finite set, corresponding to 

the joint LS solution. In order to perform such a task, the SUIn of squared errors ~Mo( n, l) 

is cornputed for each value of l in the set of interest. and the delay value corresponding to 

the lowest value is retained. The set of possible delay values is chosen to he {l- 1, l, l + 1}. 

The joint LS lag estimation and adaptive filtering algorithms can he cast into the 

foUowing general algorithmic form 

1. Apply the Recursive Least Squares (RLS) algorithm in order to ohtain w~( n) and 

êMo(n,i) 

2. Adapt i hy using derivative information from €Mo( n, i) and update wif( n) and 

êMo(n,i). 

Conceptually, the first part of the algorithrn can be implemented hy using any of the 

computationally efficient forms of the RLS algorithm, and the second part can he imple

mented as a gradient search, with respect to i, of ~Mo(n, l). The gradient can he given, for 

example, by 

ôêMo(n, i) = { ~1 
Be 

o 

if êMo(n, i + 1) < {Mo(n, e) and €Mo(n, l + 1) < €Mo(n,l- 1) 

if êMo(n,l- 1) < êMo(n,i) and €Mo(n, i - 1) < €Mo(n,l + 1) 

otherwise, 
(5.5) 

and the Iag value updated as 

(5.6) 

where (-) den otes a form of time average and w is a positive constant t. 

t The constant t:7 is taken to be eqnal to one ID the rest of the thesis. It is explicitly shown in the lag
update equation in order to relate this equation to the SO delay adaptation algorithm of the previons 
chapters. 
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Another form of lag update can rely on C'~ time average of the sum of squared errors, 

Le. the derivative can be implemented as 

if (~Mo(n,e + 1)) < aMo(n,l)) and ({Mo(n,e + l)} < ({Mo(n,e - l)} 

if ({J!o( n, e - l)} < ({Mo( n, e)) and ({Mo( n, e - l)} < (éMo( n, et 1)} 

otherwise, 
(5.7) 

and the lag value updated as 

(5.8) 

This form of joint RLS algorithm is significantly different from the joint LMS and 

sn algorithms, since it relies on the ability of the adaptive filter to model a delay. The 

integer delay (lag) estimation is performed by extracting the time shift information from 

the adaptive filter, in order to keep it "centered" to the nearest sample. The fractional part 

of the reference delay is still modelled hy the adaptive tilter. Note that e does not carry 

a time index because. in the RLS algorithm, it is assumed that the signaIs are stationary 

within the memory of the algorithm (defined by j3), which implies that e applies tu ail the 

previous data. Note also that when f is updated, w~\I( n) must a1so he corrected. in order 

to obtairl the joint solution of (5.3). 

In order to compute (5.5) or (5.7), the optimum weight vectors for lags (+ 1 and e - l 

must be available. This extra information can he obtained by computing the RLS algorithm 

two more times, in a parallel fashion. This implies an increase in bath the computation 

count and in the storage requirement. Another method of doing the same thing consists 

in applying the RLS algorithll1 once, and in deriving the extra mformation from this single 

application. This method is made possible by using a set of lag-recursive relations, for 

the two types of adaptive system considered in (5.2), that allow the exact computation 

of êMo(n,e + 1), êMo(n,e - 1), w~tl(n) and w~fl(n) from the knowledge of w~(n) and 

éMo(n, l). These lag-recursive relations are derived in this chapter as functions of variables 

encountered in the different forms of fast transversal LS adaptive filters [62]. [61], and are 

naturally appended to these algorithms. The original form of the lag-recursive r('lations was 

derived by Kalouptsidis et al. [63] and is extended in the n('xt sections. 

The main contributions of this chapter are twofold. Firstly, a new geometrical derivation 

of the lag-recursive equations, for both éMo( n, e) and w~f( n), is performed in Section 5.3. 

The relations derived in [63] are based on a fixed block of data, while their on line coun

terpart was first presented in [42]. The second contribution is the description of a new 

joint time delay estimation and adaptive RLS filter, in Section 5.4. The effects of the delay 

estimation on the RLS algorithm, in steady-state conditions, are considered in Section 5.5. 
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Finally, note that ev~ry explicit derivation presented in this chapter is for a Type 11-

DRD adaptive system configuration in cancellation mode, of the form of Figure 3.2. 'f"'.e 

reason for this fad is that the Type II-DRB system is the most practical of the two forrns. 

An integer-value adaptive delay element before the adaptive filter (as in Type 1) implies 

that the whole set of RLS filter recursions is function of l (for a list of these recursions, see 

Appendix F), and that this entire set has to be updated in the case of lag update. This 

increases considerably the algorithm computational complexity. In practice, it is preferable 

to assume that a slowly varying reference delay is present in the reference branch and to use 

a Type II-DRB adaptive ',ystem in all cases. The lag-update relations for a Type 1 adaptive 

system will be given and discu~sed, but they are not the main focus of the chapter. 

5.2 Background Theory 

In this section, sorne definitions and notational conventions are pr~sented, along with 

sorne geometrical considerations. This background material is used, in the subs~quent 

sections, to derive the lag-recursive relations and to link thern to existing fast transversal 

tilter (FTF) algorithms. Sorne shift invariance properties and corn mon recursions used in 

the RLS algorithm are discussed in Appendix E. The FTF algorithm that will be considered 

is discussed in Appendix F. 

5.2.1 Notation and Definitions for a Type I1-DRB Configuration 

ln the prewindowed weighted recursive [east squares adaptation algorithm for adaptive 

transversal filters of order M, the index of performance to he minimized, at iteration n, 

and for a lag e in the reference data, is 

n 

[(n) = ~t1n-lleM(i,l)l2, 
1=1 

where the a posteriori estimation error is defined by 

with 
UM(i) = [u(i), u(z - 1), ... , u(i - Al + l)]T 

w~(n) = [wfM(n), w~M(n), ... , W1f M(n)]T. 

(5.9) 

(5.10) 

(5.11) 

Note that the prewindowed rnethod assumes that the data is zero prior to iteration n = 1 

[7]. Define also the a priori estimation error ° AI (i, e) as 

0M(i,i) = r(i + e) - w~r (n -l)uAdi). (5.12) 
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Another set of vectors can be defined in the complex vector space cn of order n. The 

n-vectors U(n), Dl(n) and E~f(n) are defined as 

U(11) = [u(n),u(n- l), ... ,u(l)]T 

Dl(n) = [r(n + il, r(n + f - 1), ... , r(l + l)]T 

E~f(n) = [€A[(n,l),eA[(n - l,n, .. . ,eM(l,f)]T. 

The vector shift operator z-J is defined III cn by 

(5.13) 

(5.14) 

(5.15) 

.:-JU(n) = [u(n -j),u(n-J -l), ... ,u(l),O •... ,O]T E Cn • (5.16) 

Then, the matrix A(nll, JI) is defined as 

( 5.17) 

and the vector subspace spanned by the columns of A( nli, M) as S( nll, M). 

The deterministic autocorrelation matrix is defined as (using the notation in [7]) 

Il 

•. u( n) = Lon-lU,\[ (l)u~(i), (5.18) 
1=1 

and the detcrministic cross-correlation vector with lag e as 

n 

~\f(n) = Lj3f1-IU,l!f1)r*(i + f). (5.19) 
I=! 

The least squares weight vector at iteration n, for lag e, is 

( 5.20) 

and the corresponding minimum of squared errors is 

n 

{Mo(n,f) = m~nf(n) = L!3n- J lr(l + l) - w~y(n)uM(i)l2. (.5.21) 
,=1 

Note that the data is assumed such that the detcrministic autocorrelation matrix is non

singular. 

Denote the optimum weight vector for the one-step forward \inear predictor of order m 

as am( n). This vector minimizes the sum of weighted forward a posteriori prediction-error 

squares, defined as 
n 

Fm(n) = Lj3n-1Ifm(i)1 2, (5.22) 
1=1 
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where 

( 5.23) 

The forward a priori prerliction-error 17m( z) is defined as 

17m(l) = u(i) - a~(n -l)um(z-l). (5.24) 

Similarly, the optimum weight vector for the one-step backward linear predictor of order mis 

the vector hm ( n) that minimizes the sum of weighted backward a posteriori prediction-error 

squares, defined as 
n 

Bm(n) = 2:.L3Il -'lbm (i)1 2
• (5.25) 

1=1 

with 

(5.26) 

Then the hackward a priori prediction-error U'm (1) is defined as 

~'m(l) = u(i - m) - h~(n - l)um(i). (5.27) 

Define the vectors E~f -1 (n) and E~f -1 (n) as 

E~_1(n) = [JM-]{n),hl-1(n-l), ... ,!M-l(1)f (.5.28) 

E~/_I (n) = lb,\[ -d n), hM -1( n - 1), ... , bM -l( l)]T. (5.29) 

5.2.1.1 Shift Invariance Properties 

In a geometrical framework, it is noted that the suhspace 5(nIO, AI -1) can be expressed 

either as 

5(nI0, U - 1) = 5(nll, AI - 1) (El U(n), (5.30) 

or as 

5(nI0, M - 1) = 5'(nIO, M - 2) EB z-M+1U(n), (5.31) 

where the operation EB stands for the direct sum operation. Note also that 

S(nll,M -1) = span{z- IU(n),z-2U(n) .... ,z-M+IU(n)} 

= span{U(n -l),z-lU(n - l), ... ,z-M+2U(n -1)} (5.32) 

and that 

= 5(n -110,111 - 2) 

nl( n) = [r( n - 1 + e + 1), r( n - 1 t i), ... , r(e t 1 )]T E en 

=[D(l+l)T(n_l) r(ltl)f. 
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5.2.2 Notation and Definitions for a Type 1 Configuration 

In the Type 1 configuration, the notation is complicated by the fact that the adaptive 

filter input u(n) is a function of the dE'lay e. The input data vcctor is 

U~\f(l):: [U(I -C), U(l- 1 - C) •...• U(l - .\1 + 1- f)]T 

and the errors are defined as 

(MU, f) = rU) - w~~1 (11 )u~\f( i) 

Oi\l(i, C) = r(i) - wW(n - l)U~H(i). 

(5.34) 

(5.35 ) 

Note that, as in Chapter 3, each input samplc in uSr(n) expericnces the same delay t. The 

data vector is not a function of î and is 

D(n) = [r(n).r(n-l), ... ,r(l)]T. (5.36) 

AU the quantities defined in Su bsection .5.2.1, and that are fllnctions of u( n), are now 

functions of f. These quantities are AI(nll.M), SI(nlt,M), .~\l(1l), F~(ll). f,~,(i), 1]~(i), 

Bfn(n), b~(i), lL'fn(i), E{i_l(n) and E~)_I(lI). 

5.2.3 Geometrical Considerations 

This subsection presents some definitions and considerations about projection operators 

in a Hilbert space. This projectIOn o[JeratoT' fOT'11wbsm is lI~ed to derive gcometrically the 

lag- recu rsi ve relations. 

Fir!'t, an inner product is defined in cn (Cil exhibits an inrreasing dimenslOnality n). 

The inner product between two arbitrary vectors x and y is 

n 
~ I~n-I • 

=~!.I X1YI, 
(5.37) 

1=1 

where the weighting matrix is 

W d· [j3n-1 /3n-? (,12 3 1J n = lag , -, .. . ,}J ,J, . (05.38) 

Defining the norm of a vector x as 

(5.39) 
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each n-dimensional vector in en with finite components has a finite norm and en is a 

Hilbert space [2] t. Denote the projection of a vectar x anta a subspace S as P Sx. The 

orthogonal projection of x onto s1Ibspace S is written as 

(5.40) 

and is the error vector between x and its projection on S. The projection of the vector y 

on the vector x is 

P < x, y >- (5 /1) 
xY = IIxll 2 x. . .'t 

Two order updates for the proj2ction operatOls ale useflll They arc based on the fact 

that the vector c;pace spanned b) a subspace S dnd a. vertor x Ilot in S, denoted Su {x}, 

can be decomposed as [2] 

5 u {x} = S ft {ptx}, (.5.42) 

where the notation {v} denotes the vector space spanned by v. Since 5 and {ptx} are 

two orthogonal subspaces, the following order updates can be derived from geometrical 

considerations 

psu{x}Y = PSY + p{Ptx}Y 

ptU{x}Y = pt y - p{Ptx}Y' 

(5.43) 

(5.44 ) 

The linear least-square estlmate of Dl( n), given the \ectors U( 11 l, .:-1 U( n), .. " :-Af + 1 U( n), 

is defined as the linear comblllation orthose vectors which is close~t ta Df(n) in the LS sense 

[2]. The optimum weight vector w~H( n) is therefol'l' the vector minimizing the norm of the 

error vector E~\I (n). i.e., for a Type 11- DRD adaptive system, the vector whose coefficients 

minimize 
.\1 

t'(n) = IIE~f(n)1I2 = IIDt(n) - L U'f.\/(n):-(I-l)U(nlll!· (5.45) 
1=1 

The optimum LS estimate ])l(n) is the projection on the sllbspace S(nIO, Al - 1) of the 

vector Dl(n) [2]. Then, from (5.4.5), the followlllg t\VO projection equations emerge 

JI 

Ôl(n) = L tÎJ~,tf(n)z-(I-l)U(n) = PS(nIO,M-l)D((n) ( 5.46) 

1=1 

(5.47) 

Note that 
M 

bl(n) = 2: lÛ~Âf(n)='-(I-l)U(n) 
.=1 

= A(nIO, AI - l)w~i(n). 

1 Strictly speaking, a Hilbert space IS an inner product space that IS complete [64]. The vector space en 
satisfies this condition, i e every Cauchy sequence of vectors converges III en. 
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5.3 Geometdcal Derivation of Lag-Recursive Relations 

For a fixed black of data, it is possible to derive a series of rcnmions that compute 

the least sum of squared errors and the :>ptimum LS weight vector at every possible lag, 

from the current values at lag f. These recurSlOllS are derived, using vector and matrix 

manipulatIOns, in [63]. 

Fast RLS adaptive filter algorithms can be deIived using geometrical arguments. Cioffi 

and Kailath [61] derive the fast transversal filter using a geometrical lUL.:10d and Alexander 

[65] gives a tutorial review of the same subject Another very good geometrical derivation 

is found in [2] and will be relied upon in this section. Lag-update Iclations are similarly 

derived in this section. for on-fzne computations of (\/ o( n, e + 1), ~,\fo( n, e - 1 ). w~\tl( Tl) and 

w~ïl(n) from €.\!o(n, C) and w~/( Tl) In order to perform this new derivation, the projection 

operatOl formahsm presented in Section .).2.3 is Ilsed. 

A first series of reeursions, in term of th lag C, is derived for the computation of 

~Afo(n,e + 1) and ~Mo(n, f - 1), from ~Mo(n,C). A second series allows the computation of 

w~\tl(n) and w~ïl(n), from w~\I(n). An alternate derivation is given in Appendix Gand is 

based only on matrix manipulations. 

The lag-recursive relations are first derivecj for a Type II-DRIl system, breause the 

derivation is simpler and gives results more readily applicable iu practice. The lag-updates 

for a Type 1 configuration can be derived the saille \Vay. TIH>y are given and diseussed in 

Su bseetion 5.3.2. 

5.3.1 Derivation for a Type II Dllô Configuration 

ihè derivation is first performed for the sum of squared errors. It is followed by a 

similar derivation for the LS weight veetor. 

5.3.1.1 RecursÎons for the Error 

Using (5.30) and (5.44), (5.17) can be expressed as 

E~(n) = P~(nll Af_l)Dl(n) - p{p.L U(n)}D(n). 
, S(nll,M-l) 

Then, making use of (5.32) and (5.33), 

P~(nll,M_1)Dl(n) = pt(n_llo,M_2)Dl+
1
(n -1) 

= E~t~l(n - 1). 

- 103 -

(5,48) 

(5.49) 

r 



(' Furthermore, the order M - 1 optimum LS one-step forward prediction of u( n) is obtained 

through the projection of the vector U(n) on the subspace S(nll, M - 1) and the forward 

error prediction vector E~ -1 (n) is given by 

(5.50) 

Equation (5.48) can then be written as 

E~[(n) = E~"t~l(n - 1) - PEi'_l(n)n
l
(n). (5.51) 

Using (5.41), the followillg expressio;t is obtailled 

< Ef (n) nl(n) > 
p nl(n) = M-l ' El (n). 

E'M_l(n) IIE{f_l(n)112 M-l 
( 5.52) 

From the definition of the inner product (5.37), it is found that 

n 

< E{f_l(n),Ol(n) >= L,Bn-lfÂf_l(t)r(i+ C). (5.53) 
1=1 

Define V~ -1 (n) as the complex conjugate of the illner product of the forward error predic

tion vector and the desired response vector, i.e. 

(5.54) 

AIso, referring to (5.22) and (5.28), it is seen that (using (5.37) and (5.39) for the norm 

definition) 

(5.55) 

Then, (5.52) can be written as 

le. ( ) l vM _ 1 n 1 
PEI (n)D (n) = F ()EM_1(n). 

M-l Af-I n 
(5.56) 

Using (5.56) in (5.51) gives 

fi. ( ) 
l l+1 vM_l n f 

EM(n) = EM_I(n -1) - F ()EM_1(n). 
M-l n 

(5.57) 

Noting that 

(5.58) 

and taking the squared norm on both sides of (5.57), and because the vectors E~(n) and 

PE'M_l(n)Dl(n) are orthogonal (see (5.30), (5.48) and (5.51», 

.. IvILI (n )1 2 

~Mo(n,t)=~(M_l)o(n-l,C+l)- F ()' (5.59) 
M-l Tl 
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which is the first recursion ofinterest. It gives ~(M-l)O(n -1,t + 1) in terms of êMo(n,l). 

A relation linking ê(M_l)O(n,l + 1) to êMo(n,l + 1) can be derived in a similar way. 

First, write (5.47) for l + 1 

El+l( ) _ p.l ni+l( ) 
JI n - S(nIO,M-l) n . (5.60) 

Then use (5.31) and (5.44) ta write (5.60) as 

Noting that 

P.l nl+l( ) _ Ei+l ( ) 
S(nIO,M-2) n - M-l n (5.62) 

and that 

Pl. -Af+1U( ) - Eb () S(nIO,M-2)z n - M-l n , (5.63) 

then 

(5.64) 

Proc(:eding as in (5.52) 

6(l+1).() Eb () Dl+l( ) vM_l n =< M-l n , n >, (5.66) 

can be written as 
6(1+1). 

t + 1 v JI -1 ( n ) b 
p~ (n)D (n) = B () EM _ 1(n). 

M-l .\1-1 n 
(5.67) 

Then, (5.64) becomes 

6(1+1). 
i+1( 1+1 ( VU _ 1 (n) b 

EM n) = EM_l n) - B () EM _1(n), 
M-I n 

(5.68) 

and taking the squared norm on both sides of(5.68), and using the orthogonality ofE~l(n) 

and E~_l(n) gives 

(5.69) 

which is the third required recursion. It links ~(M_l)O(n,e+ 1) ta ~.\lo(n,e+ 1). 
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Pictorially, these derivations can he performed with the help of Figures 5.1 and 5.2. 

The suhspaces S( n11, M - 1) and S( nlO, M - 2) are represented as one-dimensional vector 

spaces. Then, the subspace S( nlO, M - 1) is the two-dimensional vector space spanned 

by U(n) and S(nI1,M -1) or the one spanned by z-.M+IU(n) and S(nIO,M - 2). The 

vector E~_l(n) is orthogonal to S(nI1,M - 1) and links the latter to U(n), while E~I(n) 

is orthogonal to S ( nlO, M - 1) and joins ni ( n ). The error vectors E~I -1 ( n) and E~:E 1 (n) 

are similarly represented in Figure 5.2. Then, the orthogonal equations (5.51}1 and (5.64) 

are obvious from the figures. 

Finally, a time update recursioll is necessary for {(M -1)o(n - 1, e + 1). This recursion is 

corn mon and can also be derived geometrically, although it requires more work than for the 

ab ove recursions [2]. It is derived using matrix manipulations in Appendix Gand involves 

both the a priori and a posteriori estimation crrors. The recursion is 

Collecting (5.59), (5.70) and (5.69), the recursions for computing ~Mo(n,e + 1) from 

~Mo( n, i) are 

. • IV{:_1(n)12 

~(M_l)O(n-1,e+1)=~Mo(n,i)t F () (5.71) 
M-l n 

~(M_l)o(n,e+1) = .at(M_l)O(n-1,it 1)+ 0M_l(n,i+ l)eM_l(n,f+ 1X5.72) 

1 
b(l+l)( )1 2 

• • VAl -1 n 
~Mo(n,e t 1) = ~(M_l)o(n,e + 1) - B ()' (5.73) 

M-l n 

Using the above expressions i .. reverse order gives the backward computation of the error. 

5.3.1.2 Recursions for the LS Weight Vector 

Figures 5.1 and 5.2 can also be used to perform the derivations of the weight vector 

recursions. From Figure 5.1, the following equation is obtained 

(5.77) 
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S(nI1, M -1) = Sen -110, Al - 2) 

Fig. 5.1 Geometrical interpretation of (5.51) 

S(nIO, M - 2) 

El+1(n) = El+l (n) - P 6 nl+1(n) M AI -1 EM_1(n) 

Fig. 5.2 Geometrical interpretation of (5.64) 
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where 

(5.78) 

and 

A(n - 11o,M - 2)w~~~V·(n - 1) = PS(n- 1Io,M_2)D i (n). (5.79) 

Using (5.52) in (5.77) and noting that 

E~_l(n) ;;; U(n) - A(n - 110, AI - 2)alf_l(n), ( 5.80) 

the following expression is obtained 

A(nIO, Al - l)w~i(n) = 

< El (n) Di(n) > 
A(n -110, Al - 2)w~~~V·(n -1) + M ï/ '() [U(n) - A(n -110, M - 2)aÂf_l (n)]. 

M-l n 
(5.81) 

This equation can also he written as 

tôfM(n)U(n) +A(n -lID,U - 2)lwii(n)JM-l;;; 

A( 110 '1 2)[_(1+1)*( 1) • ()t'~tl(n)l v!J~l(n)U() n - ,1~ - W AI -1 n - - a AI -1 n F ( + F () n, 
AI-l n) M-l n 

(5.82) 

where l v J M -1 stands for the vector made of the AI - 1 last components of the vector v. 

Equating sinùlar terms, the following recursion is ohtained 

( 5.83) 

aIong with 

-l vii_l(n) 
wIM(n) = F ()' 

M-l n 
(5.84) 

Equation (5.83) is the recursion linking w~f(n) to w~~t~l(n - 1). 

Similarly, from Figure 5.2, the following is ohtained 

A(nIO,M - l)w~+1)*(n) = A(nIO, AI - 2)w~~~\)·(n) + PEb (n)Dl+1(n) 
M-l 

< Eb (n) Di+l(n) > 
- A( 10 M - 2)' (1+1)*( ) + M -1 , Eb () - n, w!If_l n B () M-I n 

M-l n 

( 1 ) .(1+1)*( ) = AnD, M - 2 w!If -1 n 
b(l+l). 

+ V;_1 /~)[Z-M+IU(n) - A(nIO,M - 2)b~[_I(n)]. 
M-l n 

(5.85) 
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Write (5.85) as 

(5.86) 

where rWit(n)lM-1 is defined as the (M - 1 \-vectol' corresponding to thefirst components 

of w~(n) and w}L\f(n) is the A/th componellt of the same Ycctor. Equating similar terms, 

the following cquations are ohtaincd 

b( t'+ 1) 
iil+1 (n) = VM _ 1 (n) 

MM B.\[_d n) 

rw~tl(n)hf-l = w~t~l(n) - w~tlf(n)bM-l(n). 

( 5.8i) 

(5.88) 

Then, by combining these two equations, a recursion linking w~t~l(n) and wit1(n) is 

obtained. It is 

-l+l( ) _ .\1-1 + M-l 
[
Wl +1 (n)] v

b
(l+l)(n) [ - bM- dll)] 

wM 71 - . o BM-l(n) 1 
(5.89) 

The recursion necessary to link (5.83) and (5.89) is a common time update recursion and 

involves the Kalman gain vector gAl -1 (11) and the a posterIOri estimation error eu-d n, i + 
1) and is [7] 

w~t~l (71) = w~t~l (n - 1) - /3-I gM -1(n)eJ[ _1(11, e + 1). (5.90) 

Collecting (5.83), (5.90) and (5.89), the set of recursions for the upward weight vector 

corn putation is 

(5.91) 

(5.92) 

(5.93). 

Using the upward recursions in reverse order, the following two downward recursions are 

obtained 

(5.94) 

(5.95) 
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5.3.2 Leg Recursions for a Type 1 Configuration 

Following a procedure sinùlar to the prcvious one, the following set of lag-update re

cursions for the error and for the LS wei~ht vcctor can be obtained. 

5.3.2.1 Recursions for the Error 

( 5.96) 

( 5.97) 

Using the above expressions in reverse order gives the backward computation of the error. 

(5.98) 

(5.99) 

5.3.2.2 Recursions for the LS Weight Vector 

(5.100) 

(5.101). 

Using the upward recursions in reverse order, the following two recursions are obtained 

(5.102) 

(5.103) 

Note that the main difference in the lag-update relations between the two types of 

systems lies in the fact that no time-update Equations as (.5.72), (5.75) or (5.92) is required 

in the Type 1 relationships. 
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5.3.3 Discussion 

Recall that the on-li ne lag-update recursions can also be derived using matrix manip

ulations, as it is performed in Appendix G. It is interesting to relate the propertics of cach 

of the two approaches. For th,,' matrix manipulations derivation of Appendix C, the key 

equation is the shift invariance (EA) given in Appendix E in which a lag l cross-correlation 

vector is partitioned in terms of a l + 1 cross-correlation veetol'. In the geometl'ical ap

proach, the key equation is (5.33) and relates a lag f desired l'espollse vector to a lag l + 1 

desired response vector. In both cases, the lag e + 1 vector is givcIl for time n - 1 and 

involves (M -1)-order prediction (see (EA) and (,5 -10)). Therefore, time update and arder 

update relations are necessary steps in the Jag update, for a Type II-ORB adaptive system 

configuration. In the case of a Type 1 system, the key relations are 

since 

and 

since 

[ 
Ô~f (11 ) l, 
SHI (n) M-I 

[

U( i - f.) , 

u~(i) == Hl (.)J, 
UM-l 1 

Sl(nll,M -1) = Si+l(nIO,M - 2), 

(5.104) 

(5.105) 

(5.106) 

(5.107) 

These relations show that, in the Type 1 case, M - l-order predictol's are still required, but 

that the time n - 1 is not involved anymore. 

The geometrical derivations give a picture of how the (M - l)-order predictors get 

involved in the algorithm. Considering Figures 5.1 and 5.2, if an initial relation starting 

with E~(n) (or (Mo(n,f)) is required, it is natural to express it as a fUlIction ofEit~l(n) 

and E~_l(n). Similarly, it is natural to express the requircd vector E~tl(n) in terms of 

Etr~l (n) and E~_l(n). This gives a relation involving the error for the current lag l 

and another involving the error for the updated Jag e + 1. The relation linking these two 

equations nicely involves the time update of E~t~l(n - 1) in the Type I1-DRB case and no 

time update in the Type 1 case. Such nice and simple interrelations between tlw variables 

of the algorithm do not seem to exist for .M -order predictors. 

Note that the lag-recursive relations, for both the errors and the weight vectors, mostly 

involve parameters and quantities that are compllted by the FTF algorithm (see Ap

pendix F). One major difference resides in the arder of the predictors, which is M - 1 
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in the lag-recursive equations. But the FTF can be redefined easily for (Al - 1 )-order 

predictors, as indicated in the next section. 

5.4 Joint Time Delay Estimation and Adaptive RLS Algorithms with 
the Lag-Recursive Relations in Type II-ORB Configuration 

Based on the error and weight vector recursions developed in the previous section, dif

ferent variants of joint time delay and FTF algorithms can be obtained. These algorithms 

are composed of three distinct computational phases. The first phase is essen tially the pre

liminary computations phase of the FTF algorithm, given in equation (F.1) of Appendix F 

for AI-order predictors. In the joint algorithm, this order is changed to M - 1. The second 

computational phase involves the computation of the cIment weight vector w~f( n) and the 

computation of the three errors ~Mo(n,e), ~Mo(n,e + 1) and ~Mo(n,l- 1). These com

putations are performed by using the lag update recursions for the error and the weight 

vector. In the joint aIgorithms considered in this chapter, the computation of w~il(n) and 

~Mo( n, f. - 1) is first performed, using the usual FTF equations. Then the upward lag recur

sions for both the error and the weight vector are used twice, in order to get the errors for f. 

and l+ 1 and the weight vector for l. These successive applications of the upward recursions 

produce the least number of computations, compared for example to the application of the 

upward and downward recursions on the error and weight vector at lag e. This choice also 

simplifies the third computation al phase, which involves a decision on the lag update and 

the computations of the new corresponding variables. 

The joint algorithm is given only for a Type II-DRB configuration, since the corre

sponding algorithm for a Type 1 system can be expressed in a straightforward manner. 

Note however that when the lag gets updated in the latter system, the variables involved 

in the preliminary computations phase have to be updated also. This produces a seri

ous increase in the computational complexity and makes the joint Type 1 system not very 

appealing in practice. 

Schematically, the preliminary and error computations phases of the algorithm can be 

represented as in Figure 5.3, where six parallel digital filter are represented. The top three 

filters are essentially the same as the ones used in the conventional fast transversal filter [61], 

[7], except for the difference in predictors order (compare Figures 5.3 and F.I). The fûurth 

filter is for the computation of ~Mo(n,i-l) and w~ïl(n-l). Notice that ~(M-l)O(n -l,i) 

is aIso obtained from that filter, using (5.71) and (5.84). A fifth fil ter , with weight vector 

w~/_l (n-1) obtained from (5.91), is used to obtain v1~ -1 (n), from which ~Mo( n, i), w~(n) 
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and ~(M_l)O(n,l + 1) are computed. Finallya sixth transversal filter, with weight vector 

w1t~l(n - 1), is used in the computation of v~~l~ll)(n) and ~Mo(n,l + 1). 

The joint algorithm, based on Fig. 5.3, is given in the next subsection. Parts a) and 

b) of this algorithm correspond to the figure, while part c) constitutes the lag update 

section. The decision about this update may involve the time average of the sum of squared 

errors, as indicated in Section 5.4.1, or another form of average. Note that in the case of 

positive update, in (5.113), only a. simple transfer of information from f + 1 quantities to 

e ones and the reinitialization of certain variables, are required. In the case of negative 

update, in (5.114), sorne int-!rmediate computations, involving 8~ïl(n) an'} 8~2(n), are 

necessary. These quantities are used with sorne of the backward lag-recursive relations, in 

the computation of the new values of w~~ïl(n) and ~Mo(n, e -1). 

8M-l(n - 1) 

. t-l( 1) wM n-

t 

t 
WH1 (n - 1) M-l 

7)M-l(n) 

fM-l(n) 

FM-l(n) 

lPM-I(n) 

bM-I(n) 

BM-l(n) 

OM(n, e - 1) 

eM(n, e - 1) 

{
iMO(n,i-l) 
-ê(M-l)o(n -l,el 

(lM-l(n, i) ~,(n) 
eM-dn,f) -- V~~_l(n) 

OM-l(n, f + 1) 

eM-I(n, f + 1) - v~t!ll)(n) 

Fig. 5.3 Interpretation of the lag i - 1, land e + 1 error 
computations, in terms of transversal filters 
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C 5.4.1 The Joint Algorithm for a Type II-DRB Configuration 

( 

a) Preliminary Computations 

TlM-I(n) = u(n) - aft_l(n - l)uM_I(n - 1) 

T7M-I(n) 
IM-dn) = tM-l(n - 1) 

aM-I(n):: aM-l(n ·-1) + ,o-lgM_I(n - 1)111_l(n) 

FM-l(n):: j3FM-I(n -1) + 1JM-l(n)!.\I_l(n) 

[0 1 T7M-I(n) [1 1 
gA/(n):: SM-I(n -1) + FM-I(n - 1) - aM-I(n-1) 

gM-I(n):: rgM(n)lM-l + gMM(n)bM-l(n - 1) 

I1JM-I(n)l2 
IM(n) = tM-I(n - 1) + ,oFM-l(n _ 1) 

tPM-l(n):: gMM(n)BM-l(n -1) 

"YM-l(n):: tM(n) - j3-lgMM(n)"'~I_l(n) 

b () - tPM-l(n) 
M-l n - ( ) IM-I n 

b,U-I(n):: bM-l(n -1) + ,o-lgM_l(n)b~\1_1(n) 
BM-l(n):: j3BM-I(n - 1) + tPM-I(n)bÂI_I(n) 

b) Errors and weight vedor computations 

Extra recursions for update smoothness 

'iï 1(n) = j3rM"l(n - 1) + UM(n)r*(n + l- 1) 

stM"2(n) = j3stM"2(n - 1) + uJl[(n)r*(n + l- 2) 

Lag l - 1 computations 

G:M(n,i - 1):: r(n + e - 1) - w~-I)H (n -l)uM(n) 

( l_l)_oM(n,l-l) 
fM n,(. - ( ) 

"YM n 

wt"l(n) = wiï1(n - 1) + ,o-lgM(n)eM(n,l- 1) 

êMo(n,i - 1) = ,oêMo(n - 1,i -1) + oÂl(n,e - l)eM(n,e - 1) 
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Lag l computations 

W~'_l(n -1) = lw~\ïl(n)JM-l tIlM-l(n)ut,lt n) 

aM-l(n, e) = r(n t C) - w~Y_l(n - l)uM_l(n) 

( 0) °M-l(n,f) 
eM-l n,t. = 

"YM-l(n) 

W~_l(n) = W~/_l (n - 1) + /3-1gM -1 (n)eAf -1 (n, i) 

1J~~ -1 ( n) = ~ v~~ -1 (n - 1) + lb AI -1 ( n )<\1-1 ( n , C) 

• l [W~f -1 ( n ) ] v\) -1 ( n) [- b M -1 ( n ) 1 
wM(n}= t---"~~ 

o BM-d n } 1 

• • 1-1 ? 
{(M-l)o(n - 1,e) = {Mo(n,e - 1) + FU-l(n)lwur(nW 

~(M_l)O(n,C) = l'~(M-l)o(n - 1,l) + 1'M_I(n)leM_I(n,C)I~ 
1 bl l') • • vM_l(n) -

{Mo(n,e) = {(M-l)o(n,C)- B () 
M-l n 

Lag et 1 computations 

w~t~l(n - 1) = Lwir(n)JM-l t IlM_l(n)wfM(n) 

aM_l(n,et 1) = r(n+lt 1) -w~~:"?H(n-l)uM_l(n) 

( ftl)
_oM-l(n,etl) 

e M -1 n, - -=~'--:---:--....:.. 
1'M-I(n) 

wtr~l(n) = w~t':l(n -1) + !rlgM_l(n)e~\f_l(n,i + 1) 

v~l~ll)(n) = /3v~l~II)(n-l) + tI'M-l(n)<U_l(n,l+ 1) 
• . l ') 
{(M -l)o( n - 1, et 1) = ~Mo( n, f) + FM -1 (n)lwlAf(n )1-

~(M_l)o(n,l+ 1) = ~ê(M-l)o(n -l,e+ 1) + IM_l(n)leM-l(n,f + 1)1
2 

1 
b(l+I)( )12 

A • vM_l n 
eMo(n,i+l)={(M_l)O(n,ftl)- B () 

M-l n 
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c) Updates 

Ir (êMo( n, 1 + I)} < <êMo( n, i)} and (êMo(n, e + I)} < (êMo(n,1 - 1)} then 

Endie 

w~Ïl(n) <-- wil(n) 

~Mo(n,e-l) - êuo(n,l) 

v~~ -1 ( n) .- v~~f~ll) ( n) 

~~ï2(n) - 9~\ïl(n) 

'~\ïl(n) = UM(n)r*(n + i) 
b(l+l)( ) - 0 VM_ 1 n -

e;- e + 1 

If (êMo(n,e -1)} < <êMo(n, el} and (êMo(n,e - 1)} < (êMo(n,1 + 1)} then 

'iï1(n) ;- 'iï2(n) 

'iï2(n) = uAf(n)r*(n + e - 3) 

1-1-1 

Endie 

5.4.2 Discussion 

( 5.113) 

(5.114) 

• 

The originaIity of the joint LS aIgorithm presented in Subsection 5.4.1 resides in the 

seriai computations, from wt' 1( n -1), ot ail the necessary errors and weight vectors forlags 
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land l + 1. One consequence of this serial approach is a reduction in the memory needed 

to store the different quantities of interest. The lag-update recursions append themselves 

nicely to the FTF algorithm of the form given in Appendix F. Note however that two 

extra recursions (equations (.5.109)) are necessary to ensure update smoothnes!'i when the 

lag is updated from e to e - 1 (equations (5.l14)). In this case, the quantities ~ïl(n) and 

~f2(n) are neccssary to update v~S_l(n) and to compute v{j~~2)(n) (necessary to update 

w~l(n)). Note also that 9~\Jl(n), ~~2(n) and v~~e~ll)(n) must be lcinitializcd in the case 

of lag update (in equations (.5.113) and (.5.114)). These reini tializations constitute the only 

approximations of the joint 1,S dlgorithm and are justified by the limited memory of the 

algorithm (defincd by ;3). Furthermore, the reinitialization of the cross-correlation vectors 

does not involve any of the algorithm 's internaI variables since t he input signal u( n) and 

the reference signal r(n) are the only variables used in these computations. 

In contrast, the application of three paraUel versions of the RLS algorithm, one for 

each possible lag, requires the initialization pf both the sum of squarcd errors and the 

weight veetor, when the lag is updated. The initialization must be done assuming zero 

input data. This typically introduces an error in both of thesc qllantities because their 

computation involves the internaI variables IM(n) and gM(n) (see equations (5.110)), that 

were ohtained from a totally different set of initial condi~ions (non-zero input data). In 

order to allow a smooth transition in the case of lag update, t\\'o extra parallel branches, 

one for e + 2 and one for î - 2, must be computcd, which g,ives a final parallel algorithm 

involving five branches. This algorithm requires a fair amount of memory in order to store 

an the previous values of the variables used in the crrors and weight vectors computation 

(equation (5.110)). 

At the start of the joint aigorithm, the internaI variables of the FTF are initialized 

exactlyas proposed by Cioffi [61], and the extraerror and correlation variables are initialized 

to zero. 

Finally, it is a custcm with fast RLS algorithms to establish thcir computational com

plexity and to comilare it to other types of algorithms. The complexity of the joint LS 

algorithrn can he compared here to the that of the simple FTF algorithm. As in [7], this 

complexity is measured by the number of operations required to perform one iteration of the 

algorithm. An operation is eithcr a multiplication, a division or an addition/subtraction. 

It is further assumed that aU signals are real-valued. The operation count of the joint RLS 

algorithm of Su bsection 5.4.1 is presented in Table 5.1, along with thE' counts for the simple 

FTF algorithm and for the parallel applicatIOn of five RLS algorithms, in FTF form and in 

LS lattice farm. These figures conrern only the first two phases of the algorithms, i.e. the 
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prelimina.ry a.nd the errors and weight vectors computations phases. This choice reflects 

the fact that in ~racking mode, the lag update is expected to be performed after many 

iterations, and therefore does not increase the computation al count significantly. 

Number of operations per iteration 

Algorithm 

M ulti plications Divisions Additions/Su btractions 

Simple 
7.\1+6 9 6Mt3 

FTF 

Joint 
16Mt17 

LS (5.4.1) 
16 16Mt2 

Parallel 
15Mt14 17 15Mt5 

FTF 

Parallel 

Lattice 
22M-7 llM-6 16M-6 

Table 5.1 Comparison between the computational complexities of the 
ordinary FTF algorithm, the joint time delay and FTF 
RLS algorithm of Section 5.4.1 and the parallel FTF and 
Lattice algorithms. 

This table shows that the joint algorithm is twice as computationally involved as the 

FTF algorithm of Appendix F (with (Al - 1 )-order predictors). It also shows that the 

parallel FTF al~orithm and the joint LS algorithm are about as computationally intensive 

and that the lattice-based parallel algorithm is much more computationally involved. 

5.5 Analysis of the Joint LS Algorithm in Steady-State 

The convergence of the two estimates produced by the joint LS algorithm is studied in 

this section. In so doing, Assumptions 1 to 7 of Section 4.3 are retained, with the reference 

delay D being equal to an integer number of sampling periods. 

5.5.1 The Joint LS Algorithm in Type II-DRB Configuration 

The algorithm is studied in two phases; the adaptive delay estimate is considered first, 

followed by the adaptive filter analysis. The results are then used to obtain the excess 

MSE produced by the joint algorithm. The next section does not give a full analysis of 
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the L5 delay estimation, but it points out the factors that influence the estimate mean and 

variance. The adaptive filter analysis, in Subsectioll 5.5.1.2, is more complete. 

5.5.1.1 Considerations about the LS Delay Estimator in Steady-State 

Considering the joint algorithm of Section 5.4, the delay estimate is obtained by com

paring the three random variables (êMo(n,l - 1)), (êMo(n,l)} and (~Mo(n,l + 1)}. A 

typical form of the function (êMo( n, dn)} is illustrated in Fig.5A. It has a minimum equal 

to (êMo( n, D)) and was obtained with the system parameters described in Section 6.2. 

-. 
M 
1 
o 
~ 

X 
~ 

= 
J 
1 --..J 
i 

'-" o 
~ 

'\J.J' -
-4 -2 0 2 4 , 

Delay value dn - D (samples) 

Fig. 5.4 Minimum SGm of squared errors versus the continuous delay 
dn , f3 = 0.9 

Assuming that the adaptive delay is initially equal to the value l, the probability of 

staying at this value is given by 

and the probability of going from l to e + 1 or l - 1 is given respectively by 

Pl(l+l)(n) = Pr[{({Mo(n,l+ 1)) < (êMo(n,l)}} n {({Mo(n,lt 1)) < (êMo(n,l-l))}] 
(5.116) 

Pl(l-l)(n) = Pr[{({Mo(n,l-l)) < ({Mo(n,l))} n {{êMo(n,l-l)} < (êMo(n,l+ 1))}1· 
(5.117) 
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Because the variables ~M o( n, l) are obtained from a first or der difference equation 

(equation of the form of (5.70)), the transitions from one delay value to the other can 

be represented as a Markov chain [66]. The corresponding state-diagram has a state for 

each possible delay value and the transition probabilities are computed as in (5.115) to 

(5.117). The transition probability matrix is a band matrix, with nonzero entries on the 

main diagonal and on the two adjacent diagonals. The transition probabilities are functions 

of the input signal and noise statistics. Assuming, as in Chapter 4, that the MSE function 

has a symmetrical global minimum at dn = D, and that there is no occurrence of faise lock 

on any local minimum, then the delay estimator is unbiased and its variance is a function 

of the steady-state probabilities of being in the different states. 

5.5.1.2 Analysis for the L8 Adaptive Filter in Steady-State 

From equation (F.2), the weight vector is updated as 

(5.118) 

where the Kalman gain vector is given in (E.l6) and the error is defined in (5.10). Using 

the matrix recursion (E.13), the weight vector update can be expressed as 

(5.119) 

Convergence in the Mean 

Take the expected value on each side of (5.119) and assume, as in [33], that + M( n) is 

independent of uM(n) and r*(n + l) t. Assume also that, in steady-state, til(n)+ M(n-

1) ::::: I. Then 

E[w~(n)] = (3E[wSf(n -1)] + E[t:\/(n)]E[uM(n)r*(n + i)]. (5.120) 

From (5.18), the expected value of the deterministic autocorrelation matrix is 

n 

E[tM(n)] = L{3n-1E[u,\f(i)uft(i)] 
1=1 

n 

= R 2: {3n-1 (5.121) 

1=1 
{3n - 1 

=R . 
(3-1 

t This is an assumption difficult to justify, but its use by Eleftheriou and Falconer leads to use fuI results 
[33]. 



The expected value of the matrix inverse is then [34] 

E[t-1( )] = R-1 {3 - 1 
M n (3n _ l' 

and (5.120) becomes 

E[w~/(n)] ::: {JE[w~(n - 1)] + tn ~ \ R- 1 E[Pn] 

::: {Jn E[w~(O)l + R- 1 E[Pnl. 

Because!1 is lower or equal to one, the above equation converges to 

Hm E[w~(n)] == R-1 E[Pn] 
n-oo 

== Wopt + 1/.lvssR- 1p(D), 

where equation (4.81) was used and the delay estimator is assumed unbiased. 

The weight vector is therefore biased, with a bias vector given by 

as in the joint LMS algorithm. 

Convergence in the Mean Square 

Rearrange (5.119) as 

and subtract the vector +M(n)wopt from each side of (5.126), whcre 

Wopt =: R-1pnll=_D' 

The following update equation for the weight noise vector is then obtained 

where the error is defined as 

The weight noise correlation matrix is then 

K,,(n) =E['IM(n)"ft(n)] 

=(32 E[+;i/(n)+ M(n - l)'1M(n - l)'1ft(n - 1)+ M(n - 1)IA/(n)] 

+ ,l3E[t~l(n)+M(n - 1)t]M(n - l)u!,~(n)t;il(n)eo(n,f)l 

+ ,l3E[e~(n,i).Al(n)uM(n)'1~(n -l)tM(n - 1)+,~/(n)1 

+ E[leo( n, i)12t~1 (n )UM( n )u~ (n )+fi (n )] . 

. 121 • 

(5.122) 

(5.123) 

(5.124) 

(5.125) 

(,5.126) 

( 5.127) 

(5.128) 

( 5.129) 

(5.130) 



Using the assumptions leading to (5.120), the second and third terms of (5.130) are ap

proximately zero, because, by orthogonality principles, E[uM(n)e~(n,l)] ~ 0 [33]. The 

correla.tion matrix is then of the form 

K'7(n)::::: j32K'7(n - 1) + E[leo(n, l)1 2]E[+A"l(n)R+A"/(n)]. 

It is shown in [33] that the last expectation of (5.131) can he written as 

E[tA"l(n)RtA"l(n)] = E[tA/(n)Rt~l(n)R]R-l 

::::: (1- (3)2 E[(I - P(n))2]R-1 

::::: (1- f3)2(1+ E[p2(n)])R-l, 

(5.131) 

(5.132) 

where P(n) is a zero-mean fluctuation matrix that manifests the fluctuations of the product 

til(n)R around the identity matrix l, and is defined as 

(5.133) 

where iM(n) is assumed to he a Hermitian perturbation matrix such that (using equa

tion (5.121») 
tM(n) == E[tM(n)] + tU(n) 

on - 1 -
==Rf3_1 +tu(n). 

Note that the entries Si) of the matrix S = E[p2( n)] can he computed as [33] 

1-13 M 
SI) :::::-1 ~ [L: n,}var{u(n - j + 1)u*(n - k + 1)}nU 

+ /J 1.=1 

M 

+ L: 'RlkE[(u(n - k + l)u*(n - j + 1) - rk})2]n}k] ' 
1:=1 
I:~) 

where ri] and nlj represent respectively the entries of Rand a- l . 

The expectation of the error squared in (5.131) is 

(5.134) 

(5.135) 

(5.136) 

where eo(l) is defined in equation (3.39) and the expected value in the right hand side is 

taken with respect to the delay value. Collecting (.5.131), (5.132) and (5.136), the update 

p.quation for the correlation matrix is 

Kf1(n)::::: j32K'7{n - 1) + (1 - (3)2(1 + E[p2(n)])R-1 E[~o(l)] 

::::: j32nK,,(0) + ~ ~ ~(I + E[p2(n)])R-1 E[eo(l)](l - (32n). 
(5.137) 

Letting n tend to infinity and using equation (3.57), the steady-state weight noise correlation 

matrix is 

(.5.138) 
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...... 5.5.1.3 Excess Mean-Squared Error and Misadjustment with the Joint LS 
Algorithm 

Proceeding as in Subsection 43.1.3, the excess USE is given by 

The last term of (5.139) is given by 

which gives, using (5.138), 

For Gaussian signals, the trace in (5.141) was computed, in [33], to be 

tr[I+ E[p2(n)11 ~ M, 

and (5.139) becomes 

Therefore, equation (4.121) applies with ~~x defined as in (4.122) and 

cf = (1 - {3)M~min 
'>ex 1 + j3 

,df = (1 - {3)M Vss~min 
"'ex 2(1 + {3l . 

The mis ad just ment expression is like equation (4.125), i.e. 

where Md is as in (4.126) and 

and 

M == Md + Mf + .V/df 

== Md + Mf + j\tfd Mf, 

Mf = (1- {3)Af 
1+{3 

MdC = (1- {3)MVss~min 
2( 1 + ,l3)~lIIin 

= MdM C • 

. 123· 

(5.139) 

(5.140) 

(5.141) 

(5.142) 

(.5.143) 

(5.144) 

(5.145) 

(5.146) 

(5.147) 
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5.5.2 The Joint LS Algorithm in Type 1 Configuration 

The steady-state considerations of Subsection 05.5.1.1 apply in the Type 1 case and, 

since the delay is assurned to be transferred to every sam pIe of the adaptive filter line, 

the ab ove results of the filter analysis are also valid here. Therefore, the excess MSE and 

mis ad just ment expressions of Subsection 5.5.1.3 cali be used in the study of the joint LS 

algorithm in Type 1 configuration. 

5.5.3 Discussion 

The analyses performed in this section have a goal slightly different from the sirnilar 

analyses of Chapter 4. In the joint LMS algorithrn of the previous chapter, the adaptation 

factors a and J.l influence Jirectly the stability, as well as the steady-state properties of 

the algorithrn (the excess MSE and the mis ad just ment). The first goal of Section 43 is 

the determination of the ranges of values that both the adaptation factors can take, while 

producing estimates whose mean and variance are finite in steady-state conditions. The 

excess MSE and mis ad just ment expressions are useful in determining the quality of the 

estimates and follow easily frorn the stability analysis. 

In the present section, there is no such stability 1 anges, since the LS algorithrn is inher

ently stable, when infini te precision arithrnetic is used. The weighting factor f3 influences 

the convergence speed and the precision of the estimation, and its range of value is usually 

between 0.9 and 1.0. The goal of this section was thcrefore to deterrnine the quality of the 

joint estimation, by deriving (lxcess MSE and mis ad just ment expressions. This is why the 

discussion about the delay estimate rnean and variance, perforrned in Su bsection 5.5.1.1, is 

only qualitative. The analysis of the adaptive filter given in Subsection 5.5.1.2 is rnainly 

useful Hl the computation of the excess MSE. Note however that the expressions obtained 

for the me an and correlation matrix of the weight vector are similar to those ohtained in 

Chapter 4. In particular, the weight vector is biased by the same vector in both cases and 

both the correlation matrices are functions of the expression [~mIn + l/2vss~minl (compare 

equations (4.110) and (5.138)). Note also that ~!x has again a form identical to the form 

for a filter operating alone [33]. 

As for the expressions (5.143) and (5.147), they show again that the mis ad just ment is a 

function of three terms, one more specifie to the adaptive delay, one related to the adaptive 

tilter and finally one equal to the product of the first two terrns. 
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5.6 Summary 

Joint time delay estimation and adaptive RLS filtering, using a fast transversal filter 

implementation, has been considered ih this chapter. The philosophy adopted here was 

fairly different than the orientation of the previous chapters, since the most part of the 

sections was devoted to the derivation and description of a new form of LS algorîthm. This 

joint delay estimation and LS adaptive filtering algol'ithm allows the efficient computations 

of the current optimum weight \'('ctor, and of the optimum integer delay (lag). 

A set of lag-recursive relations was derived geometrically, for the computation of bath 

the LS weight vector solution and the minimum sum of squared errors. These relations are 

functions of the same internaI variables used in the fast transversal adaptive filter, and the 

lag-recursive relations are appended to a form of FTF algorithm, to produce the joint LS 

algorithm. The order of the predictors used in the FTF algorithm must be M - 1, if the 

adaptive filter or der is M. The lag-recursive relations were also used to derive a lag-update 

algorithm, which was used to adapt the integer delay estimator. 

The delay estimate behaviour was considered qualitatively and the steady-state weight 

error correlation matrix was derived. Finally, the excess MSE and mis ad just ment were 

found to be functions of the term [~min + l/2vss~nllll], as in the joint LMS algorithm. 

The material presented in this chapter is mainly theoretical, although the final joint LS 

algorithm of Section 5.4.1 can be implemented as such. More practical consideratIOns are 

given ln the next chapter where numerous simulation results are given. 
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Chapter 6 

6.1 Introduction 

Experimental Results: 

The Joint LMS Aigorithm 

and the Joint RLS Aigorithm 

So far, the work presented in this thesis has bcen analytical. Chapter 3 served the 

purpose of investigating the theoretical behaviour of the joint steepest-descent algorithm. 

In particular, the possibility of convergence ta a multitude of stationary points has been 

dernonstrated. The role of the second derivative of the MSE function, in the stability of 

the delay tracking portion of the joint algorithrn, was derived. Sorne bounds, useful in the 

practical application of the joint SD algorithm, were derived and discussed. In the present 

chapter, the properties of the SD algorithm are illustrated with practical exarnples and the 

stability bounds are cornputed. 

The joint LMS algorithm was presented in Chapter 4 as a stochastic irnplementation 

of the joint SD algorithm. Its analysis was performed for joint convergence in the me an 

and in the rnean square. Sorne theoretical bounds on the two gain factors involved in the 

algorithm were derived and the expressions for the excess MSE and the misadjustrnent of 

the joint algorithrn Wf::re obtained. A design procedure, for the determil1a.tion of the two 

gain factors, was presented. The bounds and the excess MSE are cornputed in the following 

sections, and the critical parameters used in the design procedure are illustrated. 

In Chapter 5, the focus was given ta the derivation of sorne lag-recursive relations and to 

the definition of a new form of RLS algorithrn. The joint algorithm is fairly cornplicated and 

no theoretical study was perforrned about its behaviour. The expressions for the excess MSE 
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and the mis ad just ment were obtained. The joint RLS algorithm is implemented integrally 

as derived and its practical behaviour is studied in the actual chapter. 

This chapter is therefore structured as follows. In Section 6.2, an experimental set-up 

is defined for the simulations of the joint algorithms. In particular, the reference tilter that 

is used in most of the simulations is described, and the implementation of the algorithms 

is discussed. Then the results of Chapters 3 and <1 are investigated in Section 6.3, and the 

joint RLS algorithm is simulated in Section 6.4. A hybridjoint algorithm is briefly discussed 

in Section 6.5.2. This algorithm is made of an LMS adaptive delay algorithm and an RLS 

adaptive filter algorithm. 

6.2 Experimental Set-Up 

All the simulations were implemented in a system identification (cancellation) config

uration (see Figs. 2.6, 2.8 and 3.2). Unless it is otherwise specifically noted, the noiseless 

input signal s(n) is a zero me an and white Gaussian process. as are the two noise sources. 

AU the signals and systems are real. 

Unless otherwise noted, the reference filter is a 21-tap lowpass transversal filter, with a 

3dB bandwidth approximately equal to O. 7rr. It!'> impulse response and its transfer function 

are illustrated in Figs. 6.1 and 6.2. This choice is somewhat arbitrary and is dictated by 

the ease the filter can be implemented in the actllal simulations. Sorne results with a more 

realistic filter are presented in Sections 6.5.1 and 6 . .1.2. 

The reference filter can be made tirne-varying by changing its amplitude and/or phase 

response with time. A very specifie reference fil ter nonstationarity is simulated. The varia

tions of the filter amplitude and phase responses are constant over the whole fil ter frequency 

range. This implies that no frequency selective nonstationarity is applied and that the ref

erence transfer function is of the form 

where H( ej",) is the stationary reference filter transfer function and A( n )e,8(n) Îs a frequency 

independent time-varying gain. 

The cases simulated are for linearly and sinusoidally varying amplitude and phases of 

the form 

with 

" 

{
A(n):l+f(n) 
8(n): f(n)rr/2, 

f(n):S·n S = slope, 
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or 

f(n) = sin(21!'nj P) P = period. 

Note that when both the alllplitude and the phase are time-varying, they experience the 

same kind of nonstationarity (linear or sinusoidal). 

The delays are implemented as follows. Con SI der a sequence s( n) and its delayed version 

s( nT - D), w herc D is a constan t. 1 t is desÎl cd to obt ai n s( nT - D) hy passing s( n) through 

a time·invariant filter whose impulse response is [6i] 

_ ( ) _ sin 1i( n - D jT) 
ad n - 1!'( n _ DIT) . (6.1 ) 

This impulse response is infinite in time and must he truncated and delayed if it is to 

he irnplernented as a causal transversal digital filte!'. Since the functiol1 9d( n) approaches 

zero a~ n increascs, the truncation can takc place with minimal effects [6i], [26]. It is also 

shown experimentally in [6i] that the modelling error is largest at DjT == 0.25 and that it 

is lower than 1 percent for an impulse response in excess of 60 weights. 

Therefore, the fractwnal part of both the adaptive delay dn and the reference delay Dn 

are irnplemented using a delayed ïS-tap version of (6.1), i.e. 

() 
sin 1i( n - 3i - DIT) 

9d n = 1!'(n - 3i - DIT) 
o ~ n ~ 74. (6.2) 

In order to allow for integer delays, the shift register on which 9d( n) is applied has a length 

N larger than 75. By sliding the 7.5-tap impulse lCspOllse along the shift register, an overall 

dela.y of A + D fT samples can bc obtained, where il is an intcger number cornprised between 

zero and N - 75, and D fT is a rational number lower tl-tan one. The delay of 37 samples 

introduced by 9d( n) is fixed and is taken into consideration in the simulations. 

The adapti\'e negative delay -dn , present in the reference branch of the Type II-DRB 

cancellation configuration (Fig. 3.2), is implemented by applying a fixed delay Df on the 

adaptive filter input signal u( n) and by redefi ning the adaptive delay as D f - dn . 

6.3 Results with The Joint LMS Algorithm 

The first part of this section is devoted to a dic;cussion about the simulation implemen~ 

tation. Then the general results ohtained in Chapter 3 for the joint SD algorithm, and their 

application in the joint LMS algorithm are consideled. The specifie results of Chapter 4 

are investigated in Suhsection 6.3.i. 
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6.3.1 Simulation of the LMS Algorithm 

The joint LMS algorithm in Type 1 configuration, given in equations (4.32) and (4.33), 

is simulated according to the blockdiagram of Fig. 6.3. The derivative of the adaptive filter 

output, with respect to the delay dn, is given by 

(6.3) 

It is implemented by passing the delayed input signal derivative through a replica of the 

adaptive filter. This derivative can be obtalned from u(nj with a filtering operation. The 

following development, analog to the one performed in [13], leads to tit.:: ùeli~dtive fil ter 

impulse response. 

The continuous signal u( t) can be ohtalned from we sequence u( n) by the interpolation 

operation [20] 

( ) =" ( )sin 7r{t - nT)/T (6.4) 
u t ~ u n 7r(t _ nT)/T . 

n 

The derivative of u( t) with respect to t is then 

8u(t) = 2: u(n) [cOs7r{t-nT)/T _ Sin7r(t-nT)/T], 
8t n t - nT 7r(t - nT)2/T 

and the derivative of u( t) with respect to dn is 

8u(t) ôu(t) Dt 
8dn = -at Ddn ' 

Therefore, using (6.5) ahd (6.6), 

8u(nT - iT - dn) _ 
8dn -

_" C) [cOS7r(nT - iT - JT - dn)/T _ sin 7r(nT -zT - jT - dn)/T] 
L- U

) nT-lT-jT-dn 7r(nT-iT-JT-dn)2/T' 
J 

Equation (4.33) can then be implemented as 

L 

dn+1 = dn - 2ae(n) L wn1q(n - il, 
1=0 

where q(n) is the output of the derivative filter \Vith impulse response 

b (n)= cos7r(nT-dn)/T _ siu7r(nT-dn)/T 
d nT - dn 7r(nT - dn)2/T 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

As with the delay elements simulation, this impulse res}Jonse has to he truncated and 

delayed in order to ohtaln a causal filter r~sponse. The truncation window is again of length 

75 and the derivative filter is implemented with weights 

b ( ) _ cos7r(n - 3i - dn/T) sin 7r(n - 3ï - dn/T) 
d n - T(n-3ï-dn/T) - T7r(n-3ï-dn/T)2 

o ::; n ::; 74. (6.10) 
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By assuming that the sampling period is T = 1, both the impulse responses gd(n) and bd(n) 

can he easily adapted to th<.' variations of dn · 

The Type II-DAB and Type II-DRB configurations can be implemented in a similar 

way hy applying the derivative lUter directly on the adaptive filter output or on the reference 

signal. Note the differenc(' between the Type 1 and Type II implementations. In the former, 

the derivative filter being located before the adaptive filter repli ca, the derivative applies 

only to one sam pIe in the filter delay !ine, as does the adaptive delay in the adaptive branch. 

In the latter, the derivative being taken on the adaptive filter output, aIl the Eamples of the 

delay line are implicitly derived. 

s(n) 

Derivative 

Filter 

Adaptive 

Filter W n 

Adaptlve 

Fllter W n 

Reference 
1----4 

Flltcr h(n) 

IJ~( n) 

Fig. 6.3 Blockdiagram of the simulation of a Type 1 configuration 

2a 

The systems parameters needed to apply the analytical results of the previous chapters 

are ohtained as foIlows. The deterministic autocorrelation corresponding to the reference 

filter of Fig. 6.1 is shown in Fig. 6.4. The value Ph(O) corresponds ta the maximum in 

this figure. From this function, the second and fourth derivatives p%(O) and p~4)(0) can be 

round. These values are 

{ 

Ph(O) = 0.6661 

p%(O) = -0.9753 

p~4)(0) = 2.6508. 

(6.11) 

The minimum MSE ~min and its second and fourth derivative are also necessary in the 

application of the results of Chapters 3 and 4. The MMSE is given by equation (4.194) and 
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Fig. 6.4 Reference filter detE'rministic autocorrelation function Ph( n) 

for white signals and equal noise variances this equation can he expressed as 

(6.12) 

where PWoPt(k) is the deterministic autocorrelation of the optimum filter, for a given signal

to-noise ratio. This optimum fUter is given in equation (3.84) for the can'.ellation scenario 

considered in this chapter. Comhining (3.84) and (6.12), the following expression for the 

MMSE is obtcined 

2 [ Ph(O)] [ 1] 
emin = "VI 1- (1 + 1jSNRt}2 + 4» .. sPh(O) 1 - (1 + 1/SNRd2 ' (6.13) 

where SNRI is defined as 

(6.14) 

The second derivative is given in equation (3.115) as 

(6.15) 

and the Courth derivative can he derived in the same way as 

(6.16) 

- 132-



-, The derivative of the input signal is also necessary for the application of the results of 

Chapter 4. For white signal processes, it can be derived to be 

-/..(1)(0) = (2.)1 (t"" + 0';'1)11'1 
'f'uu T i + 1 

for i even, ( 6.17) 

where j = R and the sampling period is taken ta be one. Finally, unless otherwise noted, 

the input signal power spectral density is 

1 
t ss = 12' 

(6.18) 

which implies that the maximum eigenvalue of the input signal autocorrelation matrix is 
') 

>'max = cf» ss + lT~1 
= 1/12+lT~l' 

6.3.2 Multiple Convergence Points and Excess MSE 

(6.19) 

The presence of multiple convergence points is first illustrated. The reference delay is 

fixed at a certain value and the adaptive filter is allowed to adapt to this condition, while 

the adaptive delay is frozen (0 = 0.0). The optimum weight vector is then obtained for the 

ref~rence delay fixed at 0, 0.5, 1.0 and 1.5 samples and the MSE function ~n is measured, 

as a function of the relative delay Dn - dn, using these different weight vectors. The results 

are given in Figs. 6 .. 5 and 6.6. It is first noted that the USE function exhibits a well defined 

minimum at dn = 0, for each case. This shows that the condition \7w€n = 0 implies 

ôen/8dn = 0, as pointed out in Subsection 3.3.1. Furthermorc. each of these minimum 

corresponds ta the function eo(dn ), with dn = 0, defined in equation (3.39) as 

(6.20) 

The value of the MSE function at each of these minimums corresponds to the excess MSE 

defined in equation (3.58). Note that, in none of these cases can the ex cess MSE be ap

proximated by equation (3.61), because the relative delay is tao large. 

6.3.3 Delay Tracking Bounds 

As derived in Chapter 3, the stability bounds involved in the joint sn algorithm are 

functions of the quantity ~min' For the white sigI1als case, ~min is given in (6.15). Using 

(6.11) and (6.18), Table 6.1 can be computed, where 0max is defined as 

2 
Omax = -,,-. 

~min 
(6.21 ) 
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.... 

SNRI (dB) !min ll'max 

0 0.0813 24.6 

10 0.14ï8 13.53 

20 0.1609 12.43 

30 0.162-1 12.32 

00 0.1626 12.3 

Table 6.1 Values of ~mm and 0max = 2/~l1lin for different 
signal- to- noise ratios 

Note that, bpcause white signals al J used, the hound (3.82) of Proposition 3.2 is equal to 

Û'max for infinite SNR. Note a180 that this value of Û' corresponds to a safe upper hound, since 

a11 other values are superior to it for finite SNR 's. This value is also used in Proposition 3.3, 

in order to define a range of values for alpha such t hat the adaptive delay is fi ve times raster 

than the adaptive filter. The range of values, determined with equations (3.92) and (6.19), 

is illustrated in Fig. 6.7 as a function of 11. The computations were performed for a SNR 

of 0 dB and for an infinite S NR. The allowable range for Q is to the left of the dashcd 

curves and below the continuous curve. Note that for high SNR 's, Proposition 3.3 states 

that 0 should be larger than 1.0, when Jl = 0.1 and that a value 0 = 0.1 is sufficient when 

Il = 0.01. 

O'max(SNRI = (0) 
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Fig. 6.7 Range of 0' satisfying Proposition 3.3 
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6.3.4 Delay Tracking Simulations in Type 1 

For the joint LMS algorithm in Typ(' 1 configuration, Proposition 4.5 (equation (4.108)) 

states that a condition on p, for convergence in the mean square in noiseless conditions, is 

(all the eigenvalues are equal to Àmax) 

o < 1-' < 21 1 = O.5i. 
2:'=1 1/12 

(6.22) 

It is found experimentally that Il should be below 0..1 for convergence of the adaptive filter in 

noiseless conditions. This is weil below the bound for convergence in the mean established in 

Proposition 4..1 (equation (4.84)). which indicates that IL should be lower than 1/ ).,max = 12. 

Similarly, the theoretical bound for con vergence in the mean of the adaptive delay, in 

noiseless conditions. is found to be much larger than the bound found in practice. The 

theoretical arna" gi\'en in Table 6.1 is 12.3. while it is found experimentally that o.n a 

superior to 0.9 makes the algorithm unstable in Iloiseless conditions. These experiments 

indicate that for Jl's larger than 0.1, it is not. possible for fi to meet the lower bound 

established in Fig. 6.7 and still produce a stable algorithm. 

6.3.4.1 Adaptive Delay Response to a Reference Delay Step 

Based on these results, four combinat ions of a and Il are first simulated, when a unit 

delay step is applied in the reference branch. Note that white signais and noiseless conditions 

are assumed. The results are gi\'en in Figs. 6.8 to 6.11. Figs. 6.8 and 0.9 illustrate cases 

where the lower bound of Proposition 3.3 is Ilot respected. In both cases, the adaptive 

delay element has a time constant too large to allow close trac king of the reference delay 

variations. For a fairly large adaptive delay gain factor, Fig. 6.8 shows that the behaviour 

of the delay adaptation algorithm is that of a higher order system. This implies that the 

first order approximation made in equation (3.21), based on the truncation of the Taylor 

expansion of equation (3.21), is not totally right in this case. When 0' is weil within the 

bound of Proposition 3.3, as in Fig. 6.10, the adapti ,'e delay element follows closely the 

reference delay. Note the higher variance in the delay value when 0 is larger. Finally, 

Fig. 6.11 illustrates a smooth delay adaptation case. 

It was established in Proposition 3.4 that a rcference delay step of one sam pIe consti

tutes a safe upper bound for adequate delay tracking of such variation. This bound was 

determined from the width of the MSE function around its minimum. On Fig. 6 . .5, it is seen 

that the main lobe width is on the order of 4 samples, i.e. twice as wide as the width used 

in Proposition 3.4. It is therefore expected that the adaptive delay can cope, in the actual 
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simulation, with a reference delay step of 2 samples. The response of the delay estimator, 

for five different reference delay steps, is shown in Fig. 6.12. As long as the reference delay 

is within 2 samples, the delay tracking is inàeed adequate. But for a step of 2.2 samples, the 

tracking is less accu rate and the time constant is significantly larger. This last behaviour is 

due to the decrease in the MSE second derivative, as the operating point of the algorithm 

gets further away from the global minimum. 

iteratioll Humber 

Fig. 6.12 LMS Adaptive delay response to different reference delay 
stepi dashed curves: reference delaysi IL = 0.01, Q = 0.5 

From equation (3.76), it is seen that the time constant of delay adaptation is given by 

1 
Tdel:::::-.. -· 

aemin 
(6.23) 

Using the vaIue of ~mlD for infini te SNR, the time constant is on the order cl 12 samples 

for a = 0.5 and around 60 samples for a = 0.1. These figures are largely confirmed by 

Figs. 6.10 and 6.11. The learning curves, corresponding to these two figures. are shown in 

Figs. 6.13 and 6.14. These curves were obtained by averaging 10 different l'rror curves. 

Since Proposition 3.3 is true in these cases, the error curve is mainly influenced by 

the delay adaptation. The time constants of the learning curves is therefore approximately 

equaI to the delay time constant. Fig. 6.13 shows a time constant approxirnately equal to 

15 samples, while the time constant in Fig. 6.14 is on the order of 60 samples. These results 

confirm the figures computed above with the help of (6.23). 
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6.3.4.2 Adaptive Delay Response to a Reference Delay Ramp 

In processing an audio surveillance tape, it was found in [12J that an adaptive noise 

canceller can face both linearly and sinusoidally changing reference delays. These variations 

are essentially caused by the differences in the rotating speed of the recording devices used 

in the surveillance and in the processing. 

The adaptive delay responses to a linearly changing reference delay are presented in 

Figs. 6.15 and 6.16. The reference slope is 0.01 sample/sample, exceeding the linear vari

ations measured in [12J. This siope is also well below the upper bound on the maximum 

allowable value computed using Proposition 3.5. Fig. 6.15 illustrates the case where the 

adaptation speed constraint of Proposition 3.3 is satisfied. The delay ,~Iement is seen to 

track very weil the delay reference variations. When the constraint is not satisfied, a frac

tion of the delay variations is compensated for by the adaptive filter, which causes an 

increasing error between the adaptive and the reference delays, as shown in Fig. 6.16. Note 

also that in this particuJar case, the adaptive filter cannot track properly such a rapid ref· 

erence delay variation and the joint algorithm does not perform satisfactorily after 2000 

iterations. The corresponding learning curve is shown in Fig. 6.17. 

iteration number 

Fig. 6.15 LMS Adaptive delay response to a reference delay ramp of 
0.01 sample/sample; dashed curve: reference delay; 
Il = 0.01, Q :; 0.5 

6.3.4.3 Adaptive Delay Response to Sinusoidal Reference Delay Variations 

The maximum amplitude and period of the sinusoidal variations that can be tracked 
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are functions of the time constant of adaptation (see Subsection 3.3.2.2). Furthermore, it is 

argued in the same subsection that, as long as the adaptive delay has a much smaller time 

constant than the adaptive filter, the former tracks closely the sinusoidal variations if 

') IP" .. 
le)wll' + O:~mîn - 11 ::::: a~mîn' 

For 0: = 0.5 and ~mJn = 0.1626 (SNRI = 00 in Table 6.1), the above approximation is 

precise to 1% if the period P is about 500 samples, and to 0.27% if the period is 1000 

sarnples. Figs. 6.18 and 6.19 illustrate the delay tracking for these two cases. Note that the 

tracking is slightly better for the 1000 period case, because the maximum rate of reference 

:ielay variations is smaller. Fig. 6.20 illustrates the case where sorne of the reference delay 

variation~ are compensated by the adaptive fil ter. The resulting adaptive delay response 

shows a reduced amplitude and a phase lag with respect to the reference. 
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1600 2000 

Fig. 6.18 LMS Adaptive delay response to a sinusoidal reference 
dE'lay variation, period = 500 samples, amplitude = 1 
samplej dashed curve: reference delaYi Il ::: 0.01, 0: = 0.5 

6.3.4.4 Adaptive Delay Response in Noisy Conditions 

The above simulation results were obtained in noiseless conditions and show the delay 

tracking ability of the joint algorithm. When noise is present, the delay estimation is less 

accurate and the variance of the estimator is increased. This is illustrated in Figs. 6.21 to 

6.23, for the three types of reference delay variations considered above. The signal-to-noisc 
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Fig. 6.19 LMS Adaptive delay response to a sinusoidal reference 
delay variation, period = 1000 samples, amplitude = 1 
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Fig. 6.20 LMS Adaptive delay response to a sinusoidal reference 
delay variation, period = 1000 samples, amplitude = 1 
sample; dashed curve: reference delay; Il = 0.01, Q = 0.1 
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t ratio was 10 dB in each of the two noise sl)urces present in the system. The delay tracking 

is seen to be satisfying, even for this fairly low SNR. The degradation for lower SNR's is 

bentle, and the delay tracking still takes place at 0 dB. 

6.3.4.5 Adaptive Delay Response with a Nonstationary Reference Filter 

The purpose of the adaptive filter is to track the variations in the reference filtcr. In 

audio surveillance tape analysis, it is likely that these variations are slow, as noticed in 

[12]. Therefore, a gain factor p. on the or der of 0.01 is weB above what is necessary in that 

kind of experimcnt (p. = 10-10 was used in [12]). Dcpending on the kind of reference tilter 

variations, the adaptive delay can be influenced in a more or less adverse fashion. ConsideT' 

a reference filter which experiences phase and amplitude variations that are both linear. 

Since the variations simulated are constant across the whole frequency range, the amplitude 

variations correspond to a simple scaling of the refclcnce filter impulse response. The phase 

variation lS more problematic since it changes the shape of the impulse response. These 

variations incur sorne modifications in the 1uantity ~mln' which causes the delay tracking 

characteristics to change also. As an example, linear amplitude and phase variations were 

sirnulated, while the reference delay was kept fixed. The adaptivc delay rcsponse, for a 

linear variation of 0.001 sample/sample, is shown in Fig. 6.24. This figure shows that the 

adaptive delay rcacts to the variaI ions in the refcrence fil ter. The corresponding adaptive 

fil ter impulse response, after 1000 iterations, is given in Fig. 6.2.5. It shows the variations 

in the impulse response that cause the peculiar behaviour of the adaptive delay. 

6.3.5 Delay Tracking Simulations in Type Il 

ln order to compare the behaviour of the Type 1 and the Type Il configurations, the 

adaptive delay response was simulated for a reference unit delay step, when Jl. = 0.01 and 

Ct = 0.5, in Type II-DAB and Type II-DRD mode. The results, for noisele5:è con<htlOns, are 

illustrated in Figs. 6.26 and 6.27. Note that the short reference impulse respOiU'p of Fig. 6.1 

is used. These figures should be compared to their Type 1 counterj>arts, in Figs. fi 10 and 

6.11. Note first of ail, that there is no overshoot in the Type II case, whcn Ct = 0.5. The 

first order approximation of equation (3.24) is therefore more realistic in this case. Note 

also how weIl the adaptive delay tracks the reference delay in the ':'ype 11- DAD case, even 

for Ct = 0.1. This last characteristic is related to the fact that the convergence speed of 

the adaptive filter is reduced by a delay in Type II-DAD configuration [49]. Intuitively, 

this fact can be explained by noting that the delay reduces the maximum gain factor IL for 
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Fig. 6.21 LMS Adaptive delay response to a reference delay unit step 
in noisy conditions, SNR = 10 dB; dashed curve: reference 
delaYi J.l = 0.01, Q = 0.5 
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Fig. 6.22 LMS Adaptive delay response to a reference delay ramp of 
0.01 sample/sample in noisy conditions, SNR = 10 dB; 
dashed curve: reference delay; J.l = 0.01 and Q = 0.5 
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Fig. 6.23 LMS Adaptive delay response to a sinusoidal reference 
delay variation in noisy conditions, period = 1000 samples, 
amplitune = 1 sam pie, SNR = 10 dB; dashed curve: 
reference delay; Jl. = 0.01. 0 = 0 . .1 

convergence in the mean (see equation (·U'l.))), which itself reduces the maximum speed of 

convergence. Furthermore, the location of the delay after the adaptive filter "delays" the 

effect of any filter modifications on the error signal, which tends to slow down the speed of 

convergence. The time constant of delay adaptation is therefore mainly due to the adaptive 

delay time constant, and is similar to that of the Type 1 case. 

In Type H· DRB configuration, this speed reduction ln the adaptlve filter does not exist, 

and the filter compensates for a portion of the delay when 0 = 0.1. as in the Type 1 case. But 

note in Fig. 6.27 that there is a lag between the reference delay modifiration and the adaptive 

delay initial reaction. This is due again to the delay between the modification and its 

appearance in the error signal. Also, it is noticed that this lag reduces the delay convergence 

speed. Finally, the Type II configurations were simulated for linear and sinusoidal reference 

delay variations, in noiseless and noisy conditions. The results are similar to the ones for 

the Type 1 cases. 

6.3.6 Discussion 

The results presented in Suhscdions 6.3.1 to 6.3.5 establish the typical behaviour of 

the joint 5D and LMS algorithms and make use of most of the conclusions of Chapter 3. 
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AlI the relations involving ~min were computed using the true value of this parameter. In 

practice, it can be estimated by various means, one ofthem being the use of equation (3.117). 

Note however that this method can be the source of large errors. Better methods can be 

devised with the help of least-squares polynomial approximation or Chebyshev (min-max) 

polynomial approximation [51]. 

6.3.7 Steady-State Results 

The results of Chapter 4, for the joint LMS adaptive algorithm in Type 1 and Type II 

configurations, are considered more closely in this subsection. The expected values E[G~l 

and E[N~], which are used in the convergence bound for (} and in the steady-state delay 

variance l'5S, arc first computed for a Type 1 and a Type II- DRD configurations. Then these 

quantities arc used in determining Ct as a function of Il and VSS' Finally, the excess MSE is 

computed for rlifferent practical cases. 

6.3.7.1 Convergence Bounds and Gain Factors 

The expressions for E[G~] and E[N~], for white input and noise signais, are given by 

equations (4.195) ta (4.198). These quantities are functiens of tr[K'11, which is given in 

equation (4.111). This equation shows that tr[K,,] is proportional to Il and Vss. Since E[G~] 

and E[S;] are proportional ta tr[K'1]' these expectations are aiso proportional to Il and Vss. 

For a Type 1 system, it is found that E[G~] and E[N~] are approximately con"tant for Vss 

and Jllower than 0.01. For the Type II-DRB case, the two expectations exhibit a fairly flat 

response for values of Vss lower than 1.0 and for values of Il lower than 0.1. This smaller 

sensitivity in the latter case reflects the fact that the trace operator app'_'ars only once in 

the Type Il expectation expressions. 

The expression (4.74) can he used, as suggested in the design procedure of Section 4.5, 

to ohtain plots of Ct versus t'ss and Il. Figs. 6.28 and 6.29 show the theoretical behaviour of 

Cl as a function of Il, for bath types of systems and for three different values of steady-state 

variance. The gain factor Ct increabes with Vss and for a typical variance of 0.01, the value of 

Cl is approximately constant with Il, and is around 0.5. This inciicates that, for low variance, 

the adaptive filter does not influence much the noisy behaviour of the adaptive delay. The 

upper bound on Q for convergence in the mean square (equation (4.;3)) is illustrated in 

Figs. 6.30 and 6.31 for the same conditions. The delay variance does not influence much 

this upper bound, which is approximately constant for Il < 0.01. 

The theoretical behaviour of (} as a function of vss , and for two different signal-to-noise 

ratios, is illustrated in Figs. 6.32 ta 6.35. The gain factor (} is seen ta be proportion al ta the 
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variance for lower values of Vss . For higher values of Vu, lt is limited by the upper bound 

for mean square convergence. 

The design procedure of Section 4.5 is based on plots similar to those of Figs. 6.28 and 

6.29. In this particular case, these plots show that, for a given variance, IL can he chosen 

over a large range without affecting the behaviour of the delay estimation. This fact was 

already noticed in the simulations. 

6.3.7.2 Excess Mt:!8D Squared Error 

A major result from Chapter 4 is the expression for the excess MSE at the output of 

the joint LMS algorithm. For ail types of joint algorithms, the expression is of the form 

_ d e de 
~C~ - ~ex +~ex + ~ex' 

or, in term of mis ad just ment s, 

These results are verified for a Type 1 system by computing the theoretical value of ~!x' using 

equation (4.123), and by ohtaining ~~x as weIl as ~ex b'y simulations. The results. for five 

different combinations of lt and IL, are presented in Table 6.2. The corresponding measured 

total misadju~tment .A1 is obtained from ~ex by dividing by ~mln' while the theoretical 

total misaJjllstment . ..\.1 th is obtained using equatioll (4.125). This table shows the good 

agreement betweell the measured and the theoretical quantities. Note that the cross-product 

term Md Mf being a second order component, its effect is therefore small or negligible, as 

can he seen from the fact that ~ex is always approximately l'quai to the sum of ~!x and ~~x' 

IL lt ~!x ~~x ~ex M Mth 

0.1 0.5 0.00312 0.00193 0.00563 40.S% 39.4% 

0.05 O.S 0.00141 0.00193 0.00308 22.1% 25.4% 

0.1 0.1 0.00312 0.00010 0.00313 22 .. 5% 23.3% 

0.01 0.5 0.00026 0.0019:~ 0.0019.5 14.0% 16.0% 

0.05 0.25 0.00141 0.00051 0.00163 11.7% 14.2% 

Table 6.2 Excess mean squared errors and misadjustments for 
di fferen t corn hinations of lt 's and IL 's 
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( The total misadjustment, for a Type 1 system, is illustrated in Fig. 6.36 as a function 

of the steady-state delay D, for an adaptive filter operating alone and for a joint adaptive 

systel'ïl. The mis ad just ment for the latter system is essentially constant with respect to the 

delay, while it is a function of D in the former case. This figure shows that for a delay 

lower than 9 samples, the adaptive filter alone pl'Oduces a smaller relative error, but for 

larger delays, the mis ad just ment due to the cou pied adaptive proccsses is inferior to the 

mis ad just ment produced by the single filter. 
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Delay D 

Fig. 6.36 Measured mis ad just ment for a Type 1 system versus the 
steady-state delay D, SNR = 10 dB, Il = 0.01, fi = 0.5; 
continuous curve: aoaptive filter alone, dashed curve: joint 
adaptive system 

It was noted theoretically in Chapter 4 that, in a Type II-DAR system, the excess MSE 

is increased by the presence of the adaptive delay after the fil ter (see equations (4.177) and 

(4.178)). Thi" result is confirmed in practice in Fig. 6.37 where the total measured excess 

MSE is illustrated as a function of the steady-state delay D. 

6.4 Results with the Joint RLS Algorithm in Type II-DRB 
Configuration 

( The behaviour of the sum of squared errors ~A1o( n, d) with respect to d and f3 is first 

investigated in this section. The numerical stability of the algorithm is discussed in Subsec-
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tion 6.4.2. The tracking propcrties of the algortthm are then wnsidered in Subsection 6A.:J, 

where the simulations results are given for differen t channel characteristics. 

The only configuration simulated with the joint RLS algorithm was the Type Il-DRD 

one. The algorithm of Subsection 5.4.1 was essentially implement,ed integrally, except for 

an extra set of computations Ilsed to stabilize it numerically. 

6.4.1 The Sum of Squared Errors 

In order to verify the behaviour of the sum of squared errors, when there is a nonzero 

relative delay ~ between the reference delay D and the adaptive integer delay i, the sum of 

squared errors is first obtained as a function of ~ and is illustrated in Figs. 6.38 and 6.39. 

Note that the adaptive system is in steady-state prior to time n = 0 and that the delay 

difference is applied at n = o. 
It is noticed that after a transient period of approximately 200 iterations, ~Mo(n,f) 

takes an average value that increases wlth the absolute value of~. Note also that the 

randomness in ~.\lo( 71, l) is due to the input signals fltochastic behaviour. The steady-state 

expected value of ~Mo( n, d) versus ~ = D - dis given in Fig. 6.40. Note that the oscillatory 

behaviour of E[~Mo( n, d)] is due to the oscillations in the reference filter and in the input 

signal autocorrclation (see the expressions for the MSE funetions in equations (3.64) to 

(3.66)). Note also that in this particular case, as long as the relative delay is smailer than 
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2 samples, a delay adaptation based on êMo{n,i - 1), êMo{n,i) and hlo(n,l + 1) has the 

potential to bring the relative delay to zero. But for a larger initial relative delay, it is also 

possible that, because of the oscillations in E[~Mo( n, d)], the delay adaptation algorithm 

locks on a false value. 

0.3~------~------~--~--~--~--~--~~ 

0.2 -...., .. 
1:: --0 

~ ,.....,. 
0.1 

l No-... ~ 
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Iteration number 

Fig. 6.38 Minimum sum of squared errors versus time. for different 
relative delays A and for (3 = O.9i; the lowest curve is for 
A = -1, the middle curve is for ~ = 2 and the upper one if 
for A = 6. 

Another interesting characteristic of tMo( n. f) is its behaviour with respect to {J. From 

equations (5.1) and (5..1), it is seen that the memory of the algorithm is proportional to {J. 

This irnplies that when the forgetting factor increases. the number of significant terms in 

{Mo(n, l) also increases, causing the value of the SUlll to grow. This illustrated in Figs. 6.41 

and 642 for three values of ;3. The measured expected value and variance of tMo( n, i), in 

steady-state and for a relative delay of two sample, are silOwn in Figs. 6.43 and 6.44. 

6.4.2 Nurnerical Stability 

It is weil known that the FTF implernentation of the RLS algorithms is inherently 

unstable, when a finite word length machine and a forgetting factor f3 lower than one are 

used [68]. This phenomenon is due to the instability of the system through which the finite 

precision error is propagated. Since the introduction of the different forms of the fast RLS 

algorithrns, severa! methods were proposed to stabilize their behaviour. 
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Lin suggested the monitoring of a specifie variable, in the fast algorithm, which is shown 

by simulations to become negative when the algorithm diverges [69]. This rescue devlce 

is therefore used to decidc upon when the algorithm bhould be reinitialized, such that the 

finite precision error accum ulatlG!l is zcroed. Eleftheriou and Fakonrr used a p~riodic restart 

procedure in which the fast algorithm is interrupted and restarted at pt>riodic intervab. with 

a parallel LMS algorithm taldng over for the reinitialization period [33J. ~lorc rccently, ~ome 

researchers proposed more fundamental modifications to the algorithm ~uch that the error 

propagation mechanism is dirrctly stauilized. Siock and Kailath introduced redundr\llcy 

in the algorithm, which allows the feedback of numerical errors and th<, "correctIOn" of 

such errors in a channel coding manner [70]. nenalla! and Gillolre applied sorne control 

principles to the linear system governing the error propagrttion. such that the systelJ\ is 

stabilized without changing the th('oretical form of the overall algorithm [7l]. 

The foc us of the pres(,lIt research being on the joint delay ebtnnation and adaptive 

filtering capabilities of the algorithms, it was fdt 'hat only a ratht>r erude stabilization 

Inf'chanism was necessary in the simulations. Therefore. a periodir restart proced ure was 

introduced, in which a paraUd v('rsion of the FTF algonthm was periodicrllly start<,d, and 

its resulting parameters transferred to the mam FTF algorithm after a numbl'r of Iterations 

large enough to ensure con vergence. This paraUd periodic restart pro~ed ure is rellllllislent 

to the method used by Elcftheriou and FaJcon<'f. although more cOlnputatlOnaJly lnvolvl'd. 

It was felt that this method would interfere the lea5t into the other asp('cts of thl' joint 

algorithm. 

In the simulations performed, it was noticed that the joint algorithm beCOIllPS unstlble 

after 600 to 700 iterations, especially for lower values of /3. The restart period was therefore 

fixed to .500 iterations for most of the simulations. The paraUd algorithm hegins 200 

iterations before the transfer of the newly computed intermediate van ables. 

The resulting behaviour of the su ms of squared errors if, Illustrated in Fig. 6..1.5, where 

~Mo(n,i - 1) is plotted for 3000 iterations and !3 = 0.92. The algorithm is thercfore 

see'1 to be stabilized by the paraUel restart procedure. The behaviour of the error in the 

parallel implementation is iIIustrated in Fig. 6,46, where the sum of squared errors is seen 

to experience a suciden increase every 500 iterations and settles down weil within the LUO 

iterat.ions period aUocated before the transfer of information ta the main algorithm. These 

two figures ilIustrr..te that the stabilization procedure performs as expected and that th~ 

simulation results obtained in the next section are illustrative of the potential of the joint 

algorithm. 
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6.4.3 Tracking Propertiell 

The tracking properties of the joint RLS algorithm are simulated in this section. In 

order to perform the lag-update decision (Part c of Subsection 5.4.1) tbe time average of 

the sum of squared errors must be computed. This is done by accumulating the sum of 

squared errors over 50 iterations. 

The adaptive delay responses to a lin(larly changing reference delay are presented in 

Figs. 6.4 7 to 6.40. The reference slope is 0.01 sam pIe/sam pIe, as for the join t LMS algorithrn 

case. The noiseless case is shown in Fig. 6.4 ï, and the results for SNR's of 30 dB and 20 

dB appear in the two other figures. Except for a granular-type of noise, the adaptive delay 

tracks weIl the reference delay. Note that the forgetting factor (3 was set to 0.92, in order to 

allow good tracking. The results for a sinu!>oida! rf'ference delay are .llustrated in Figs. 6 .. 50 

to 6.52. Adequate tracking is again demonstrated in this case. 

6.4.4 Discussion 

The simulations of the joint RLS algorithm presented in this section indicate that the 

development of Chapter .5 leads to a potentially very useful algorithm. By averaging the 

minimum sums of errors over .50 samples, and by comparing tlnee of these sums of errors, 

the delay tracking is very good in ail cases for SNR's as lowas 20 dB. Below this va:ue, 

the performances degrade very quickly. But for each application. there is an optimum 

strategy for dclay ('stimation. and the particular one chosen here is fairly empirical. This 

simple method shows that the jomt RLS algorithrn can keep the adaptive filtrr impulse 

response approximately centered in many different kinds of scenarios. It indicates also that 

if rapid adaptation to the reference fil ter is required and that computational complexity is 

a secondary issue, the conventional RLS adaptive filter can be favorably enhanced by the 

delay estimation based on the lag-recursive relations. 

6.5 Results for a Reverberant ROOITl Reference Impulse Response 

In order to test the joint LMS algorithm in a mOle practical context, an impulse response 

typical of a reverberant room is used in the reference filter. This response is 200-tap long 

and is generated using the method proposed by Allen and Berkley [72]. It simulates the 

behaviour of a 6 metres by 6 metres room with a height of 3 metres. The reflection coefficient 

of the walls is 0.8, the sound source is assumed located about 0.5 metre away from one of 

the corners and the location of the receiver is about one metre from the same corner . 
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The corresponding impulse response is given in Fig. 6.53. Note that the response is not 

symmetrical with respect to any point, as is the 21-tap response of Fig. 6.1, and that it 

exhibits three largE' reftection peaks as weIl as five smaller ones. 
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Fig. 6.53 Impulse response of the reverberant room 

6.5.1 Results with the Joint LMS Aigorithm in Type 1 

The joint LMS algorithm, with a 200-tap adaptive filter, is first simulated with a white 

and a coloured input Gaussian signal, in noiseless conditions. Then a digitized speech 

segment input is used with a normalized form of the adaptive delay algorithm. For the 

Gaussian input case, it is noted that the a~aptive filter gain factor IL has to be lower than 

tha.~ for the short impulse response, otherwise the algorithm is unstable. This is predicted 

in Proposition 4.5, which states that, for convergence in the meah square, IL must be lower 

than the inverse of the trace of the input signal autocorrelation matrix. With an adaptive 

filter that has an order of magnitude more coefficients, it is expected that the maximum 

on Il be consequently smaller. In practice, it is found this maximum must be around 0.01. 

This value is used in the simulations, which prevents the adaptive filter from tracking fast 

channel variations, in particular fast reference delay nonstationarities. 
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6.5.1.1 White Gaussian Input 

The delay tracking of the joint algorithm is shown in Figs. 6.54 and 6.55, for a reference 

delay ramp and a sinusoi~al reference delay in noiseless conditions. 

The delay tracking is seen to be good. Note the different behaviour of positive and 

negative delay tracking, ef pecially in Fig. 6.:;5. This difference is related to the fact that 

the reference lI11pulsc respctlse is not symmetrical with respect ta any of its points. In order 

to appreLÎate the effectiveness of the joint algorithm, the learnillg curve corresponding to the 

joint algorithm facing a linearly changing delay (corresponding to Fig. 6.54) is illustrated in 

Fig. 6 . .56, and the learning curve corresponding to the adaptive filter rcping a/one with the 

same linear refcrence delay is illustratcd in Fig. 6 . .5;. As before, these curves were obtained 

by averaging JO error curve!'. Note the scale differcnre bctween Fi/;!;. 6}j6 and Fig. 6.5i. It 

is obvious from these figures that the joint algorithm gcnerates a I\f~E lower than the MSE 

for the slIlgle adaptive filter. This is also the case for a sinusoldal reference delay, as it is 

illustrated III Figs. 6 .. 58 and 6 .. 59. Note that there is a factor of 10 between the vertical 

scales of the&e two figures. 

It is also interesting to compare the adaptive filter impulse response, in the joint al

gorithm, to the reference one. The former one is illustrated in Fig. 6.60 for the ca&e of a 

refcrence delay ramp in noiseless conditions and after 1000 iterdtions. Note the algorithm 

error that is &uperimposcd on the rderence filter estimate. This error is responsible for fi. 

portion of the steady-state MSE generated by the algorithm. 

6.5.1.2 Coloured Gaussittn Input 

In order to generate a coloured Gaus!>ian input, a white Gaussian signaJ is passed 

through a filter with a non-fiat transfer function. The selected frequency response is illus

trated in Fig. 6.61. It exhibitl' in-band amplitude variations on the order of 10 dB. 

The delay tracking, by the joint algorithm, of a reference delay ramp and a sinusoidal 

reference delay is illustrated in Figs. 6.62 and 6.63 in noiselcss conditions. The adaptive 

delay is again seen to be adequate. 

6.5.1.3 Speech Input 

The segment of digitized speech used for the experimentations is illustrated in Fig. 6.64. 

It is part of a speech data file sam pIed at 8 kHz. This segment was selected such that a large 

range of amplitude variations is present over its span. The dashed line indicates the range 

of data used for initializing and training the different algorithms, and the range actually 

- 169 -



( 

• 
--(Il 
~ 6 -Q.. 

~ 
(Il 

'-" 

~ 4 -~ 
"0 

2 

Iteration number 

Fig. 6.54 LMS Adaptive delay response to a reference delay ramp of 
0.01 sample/sample and for a 200-tap referenee impulse 
response; dashed curve: reference delay; Il = 0.01, () = 0.02 

used for delay tracking. The data up to the dashed line is used for training and the rest is 

uscd for tracking. 

Because of larger input data spectral variations, which translate into a larger eigen value 

spread, the adaptive tilter gain factor has to be lowered. A value of Il = 10-5 is used. The 

input signal variations prevent the adaptive delay algorithm to perform properly when the 

input ampli tude decreases too mueh. The algorithm of equation (4.33) is therefore modified 

into the normalized form 

d - d 2oe(n,dn )wrü(nT - dn } 
11+1 - n + Il Un 11 4 ' 

(6.24) 

where the square of the input power is defined as 

199 

Il Un 11 4 = (L u2(n - i))2. (6.25) 

1=0 

A fourth power is needed for amplitude normalization, since the error and the input vector 

are each proportional to the amplitude, while the weight vector is proportional to its square 

(see equation (4.32)). 

Once normalized, the adaptive delay can track more adequately the reference delay 

variations, even when the amplitude is reduced, as it is the case around the 2500th iteration 

on Fig. 6.64. Note however that the adaptive delay gain factor a has to be increased by four 
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Fig. 6.61 Filter transfer function for coloured input generation 

orders of magnitude, in order to compensate for the division by the fourth power. Therefore, 

0: = 1000 is used in the delay tracking simulations of a d(>lay ramp and a sinusoidal delay. 

The results are illustrated in Figs. 6.65 and 6.66. Note that the tracking is good as long 

as the input amplitude is large, but that it becomes less accurate when the input samples 

size drops (aroUlld iteration 1400 on Figs. 6.65 and 6.66). Despite these problems, the 

normalized adaptive delay algorithm performs far better than the ordinary LMS algorithm 

of equation (4.33) when the input amplitude experiences large variations. 

6.5.2 Results with a Joint Hybrid LMS Delay - RLS Filter in Type II-DRB 

The joint RLS algorithm has been tested with the long reference filter impulse rcsponse 

used in Section 6.5.1 and illustrated in Fig. 6.53. Both the delay estimator and the adaptive 

weight vector give unsatisfactory results. By using the RLS adaptive filter alone, it was 

found that the filter could not track any of the linearly or sinusoidally changing reference 

delay that the shorter filter could easily follow before. This result was unexpected, since 

the tracking time constant of the RLS algorithm was derived to b~ [73], [33] 

which is independent of the number of adaptive fil ter coefficients. But in practice, it appears 

that the RLS adaptive filter is slowed down by an increase of its time span. Even a decreaso:! 
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Fig. 6.64 Speech segment used for simulations; the dashed line 
indicates the range of data used for delay tracking 

of the weighting factor (3 does not allow adequate tracking t. This is disastrous for the joint 

RLS algorithm derived in Chapter 4, since the delay estimat!on is based on the tracking, 

by the adaptive filter, of the delay reference variations. 

In order to make the RLS adaptive filter solution viable, even in the presence of rapid 

reference delay variations, a hybrid adaptive system has been tested in Type II-DRB con

figuration. The delay estimation is performed by an adaptive delay element working in 

conjunction with an LMS adaptation algorithm of the form 

dn+l = dn - 2oe(n)r(nT - dn ). (6.26) 

The adaptive filtering is performed with the fast RLS algorithm of Appendix F. The joint 

hybrid algorithm is therefore of the form of equation (4.180), with the obvious change in 

the weight vector adaptation. 

The hybrid algorithm has been tested with a white Gaussian input and a speech input. 

During these tests, the numerical stability problem appeared again. It could not be solved 

as before, by the implementation of a parallel restart algorithm, because of the way the 

error signal is used in the LMS delay algorithm of (6.26). Recall that in the parallel restart 

algorithm, a parallel RLS algorithm is started from scratch on a regular basis, and its 

t In fact, reducing the weighting factor increases the tendency for the RLS algorithm to become numer
ically unstable [68). 
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.. .. internai variables, as weIl as its weight vector, are transferred to the main RLS algorithm 

before numerical problems happen. This process, although very smooth, is not totally free 

of transition errors. The weight vector, before and after the transfer, is slightly different, 

which cause a certain jump in the error signal. This error burst is uSllally big enough to 

disturb greatly the LMS delay estimation and to cause the joint algorithm to lose track 

of the right estimates. Note that this problem did not appear in the joint RLS algorithm. 

No investigations were performed to find ways to overcome the instability problem, as it 

appears to be a fundamental limitation of the fast implementations of the RLS adaptive 

filter algorithm. The results given about the join. t hybrid algorithm were therefore obtained 

before the instability appeared, and are good enough to ilIustrate the behaviour of the 

algorithm. 

6.5.2.1 White Gaussian Input 

The delay tracking by the joint hybrid algorithm is shown in Figs. 6.67 and 6.68, for a 

reference delay ramp and a sinusoidal reference delay in noiseless conditions. 

Note the lag between the application of the reference delay and the response of the 

adaptive delay. This phenomenon was already noticed for the joint LMS algorithm in 

Type II-ORB. Note also that the difference between the reference delay ramp and the 

adaptive delay increases with time, and that th\.. sinusoidal adaptive delay variations have 

ln amplitude smaller than the reference delay variations. These discrepancies betwecn the 

reference and the estimate delays are due to the adaptive filter action. Since the adaptive 

delay takes care of the biggest part of the reference delay, the variations seen by the adaptive 

fil ter are reduced accordingly, and they can be in part tracked by the RLS algorithm. The 

dramatic improvement of the joint hybrid algorithm over the single adaptive RLS filter, 

when rapid reference delay variations occur is illustrated by the learning curves of Figs. 6.69 

and 6.70. Note the scale difference between these two figures. 

6.5.2.2 Speech Input 

The segment of speech used is again the one shown in Fig. 6.64. The RLS adaptive 

filter algorithm is essentially not unaffected by the eigenvalue spread of the input signal 

autocorrelation matrix [7], but the adaptive LMS delay hd.S to be normalized as in Sec

tion 6 . .).1. The results are illustrated in Figs. 6.71 and 6.72 for a reference delay ramp and 

a sinusoidal delay respectively in noiseless conditions. Note that, as in the case of the joint 

LMS algorithm with normalized delay, the delay tracking is good, but that the amplitude 

variations are nevertheless detrimental to the delay estimate quality. 
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6.6 Summary 

Numerous experimental results about the joint LMS and the joint RLS algorithms were 

presented in this chapter. A typical reference filter was chosen, and white signals were 

utilized in most of the simulations. The joint LMS alg'lrithm was considered first. The 

non-unique convergence property of the algorithm wal; illustrated and the theoretical de~ay 

tracking bound5 wefe computed. llased on these results. the delay tracking capabilities 

of the algorithm were investigated. fOf a reference delay step and for a linearly and a 

sinusoidally changing reference delay. Both the Type 1 ilnd the Types II configurations 

were considNed. in noiseless and noisy conditions. The two types were compared together 

and it was found that the Type II-DAB tracks bl!tter the reference delay variations. while 

the Type II- DR B retards the adaptl\'C' delay reSponse. 

The theoretlcal r(lsults of Chapter -1 Were computed and showed good agreement with 

the simulations. The tracking capabilities of the joint RLS algorithm were simulated for a 

short adaptive fil ter length. Both linearly and si n usoidally changing reference delays can 

be tracked. in nOlscless and nois)' conditIOns. 

The joint LMS algorithm. with a typical reverberant room 200-tap impulsC' rpspon!:;c, 

\Vas simulated in Type 1 configuration. with white, coloured and speech inputs. A normal

ized LMS adaptive delay algorithm wdS used in the last case. The delay tracking charac

teristics are found to be adequate, even in these more practical examples. Finally. a joint 

hybrid algorit hm, made of an LMS adaptive delay and an RLS adapti\'e fil ter , wa!> consld

ered when the number of coefficients in the fil ter is large. In this case. it was found that 

even the RLS algorithm cannot cope properly with rapid reference delay variations. The 

joint RLS algorithm is therefore not appropriate, and the addition of an LMS delay element 

allowed the use of the filter in these adverse conditions . 
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Chapter 7 Conclusions 

7.1 Summary 

The work reported in this thesis represents a con tribu tion to the subjects of ad'.1ptive 

time delay estimation and adaptive filtering. The conventional model used in time delay 

estimation is first enlarged. in order to include an unknown linear refcrence filter. The 

joint estimation problem is then formulated as a combined estimation of the delay and the 

reference fil ter. Two types of combined systems are to be estimated; the Type 1 ~ystem, 

in which the reference delay is located in front of the refercnce fil ter and the Type II 

configuration, where the delay follows the filter. 

Three estimation criteria are first considered. The maximum Iikelihood (ML) estimator, 

for a finite observation interval and Gaussian signais, is derived in terms of a two-dimensional 

noncausal linear MMSE point estimator anô of a bias term. This joint estimator is then 

specialized to the long observation interval case. The result is a new joint open-Ioop esti

mator involving time-invariant filters, which can be made causal and uscd as a suboptimal 

receiver for finite obs~rvation illtervals. Closed-Ioop forms of this receiver are mtroduced 

and discussed. It is concluded that the form obt<.Jned for the ML estimator is not weil 

suited for a practical application. But this form is instructive in that it is c.omposed of a 

delay element, in series with a group of filters derived from the estimate of the reference 

filter. The structure of the joint MMSE and LS estimators is then introduced. It retains 

the delay-filter form of the ML estimator, and is composed of an adaptive delay element in 

series with an adaptive filter. The estimation criterion is used to minimize a function of the 

squared error between the joint adaptive system and the reference system outputs. 

The first derivative-based joint algorithm considered is the Steepest-Descent (SD) algo

rithm. In this algorithm, the adaptive delay element is adjusted in the dir(.ction opposite to 
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the deri vative of the MS E funrtion with respect to the delay. The filter adaptation algorithm 

is the conventional SO algorithm, ln which the filter response is adapted in the direction 

opposite to the gradient of the MSE function with respect to weight veetor. The MSE 

function 15 derived and is shown to be related to both the adaptlve fi\t(lr and the reference 

filter impube response". as ",cll a." to th(' input signal power spectral dellsity. This typically 

taUse5 the performancE' surface ta be Illllitimodai with resp('ct ta the adaptiv(' delay value. 

A closed-Ioop derivative-hased delay estimation IS ther('fore subject ta convergence ta local 

solutions In the w('ight vectw suhspace. the convergencp is ullimodal 'ilnce the jlSE func· 

tion is qu<\dratlc with respect tn the w('ight vcctor. It if; sllown that when the gradient with 

resw'ct ta t h(' w('igh t vector i 5 ZNO. t hl5 COTT('sponds t 0 a nere~~ary and Sil ffi C1en t rondi tian 

for COIl\ergence of the joillt sn algorithm This imphe5 that tl)(' JOint algorithm suffers also 

from non-unique solutlOllS lJl t,he joint welght vertor-<It'Ia)' v{'ctor space. 

The joint SD algonthm h(llll~ composed of two adaptatlOll algorithms, the alternation 

of the two proress('s changes the cOl1\ergence characteristics. For a joint algorithm which 

alternates ItS two components ln any fashion, simple condition~ for ronvcrp;t~nC(l on the two 

gain factors Jl and a are found. The bound on the filt('r gaIn factor Jl IS Identica.l to the one 

for the usual SD adaptive filtN. ft 15 equal to the IIlVNSe of the maximum ('igenvalue of 

the input signal autocorrelation rnatrix. Th(l bound on thE' delay )?;a.in factor ib bhown ta be 

such that cr mUbt be smaller than t.wice the inverse of the MSE functlOn secolld dpmative. 

evaluated at the closest minimum. If the delay vair'.:' is c\o'ie to the optimum tlolution, 

than cr must be 5rnaller than twice the Î:lverse of ~11l111' It IS abo d(lrlved that, III trac king 

conditions, this second derivativ(I is also invcr5ely proportlOnal ta th(' delay time constant 

of adaptation. If is demonstrated that the gain factors can b(' r{'lated to each other by 

applying a constramt on the relative speed of convergence of the two adaptive processes. 

The constraint is such that the adaptive delay is faster than the adaptive filter 

The joint Least-Mean-Square (L~tS) algorithrn is then prebented as a stochastic im

plementation of the joint SO algorithm. This algorithrn is definf'd hy replaring the MSE 

function by the squared error in the SD algorithm. Three versiom of the jomt LMS algo

rithm ar~ shown to be of interest. The Type 1 configuration mimics the reference system of 

the same type. The Type 11- DAB form reproduces the Type II rcference system where the 

delay is located directly after the filter. The Type 11- ORB estimates a Type II reference 

system by using a negative adaptive dela'.' in the reference branch. lt is shown. by using the 

ODE method, that if the adaptation factors arc time-variant and both tend toward zero, 

the joint LMS algorithm converges to a local minimum of the MSE function, like the exact 

version of the joint SO algorithm. This result confirms the conjecture that If thp adaptation 

- 184 -



" 

( 

( 

... ~--- .. .. ",Af 1 i 1 _ \ Je,,; (t'O Iii ;, 

factors are smaU enough, the joint LMS algorithm and the joint SO algorithms tend to 

similar solutions. 

Using a series of commonly made assumptions, the conditions on each gain factors, 

for convergence in the mean and in the mean square, are derived for the three types of 

configuratIOns. It is found that the bounds on ct and J..L, for convergence In the mean 

of the LMS estimates, are loentical to the bOllnds for the SD estimates in every type of 

configuration. The bOllnds on n, for delay converg('nce in the mean square, are functiùl\s of 

the ratio betw<,cn ~mm and E[G~], a quantity that is a function of the input sIgnal power, 

the second denvative ~mm' the referpnce power and the variance in the adaptive filter .... elght 

vector estimate. The L~tS delay estimate is shown to be unbiased and Its variance is denved 

to be a func1.ion of ~III\1l and E[G;], as weil as a function of the variance of the delay derivative 

noise estimate. The weight v~ctor estimate is shown to be bia~ed by a vector proportion al 

to the delay estlmate \'aflance and lilversely proportional to the lIlpllt signal autocorrelation 

matrix. In Type 1 and Type II- ORO configurations, the conditIon for convergencp in the 

mean square of the wpight vector estlmate is found to be identicaJ to the usual condition for 

a single adaptive filter, i.e. 'l must be lower than the inverse of the trace of the input signal 

autocorrelation matrix. For the Type II-DAO, the condition is more eomplicated, but it is 

also identical with and without the adaptive delay. In ail the configuratiom" the trace of 

the weight noise vector correlation matrix is found to be proportional ta the M~IS E, ta the 

second .~erivative of the ~ISE funetion at its minimum and to the delay estimate varian('e. 

The expressions for the ex cess MSE and for the mis ad just ment a.<isociated to the joint LMS 

algorithm are derivcd. In every type of configuration, these expressions are shown to be 

equal to the sum of three term.,; a term specifie to the delay estimate, a term specifie ta 

the adaptive fil ter and a cross-product term related ta bath estimates. The cross-product 

mis ad just ment is equai to the product of the two specifie misadjnstments Among the 

three types of joint configurations, the Type II-DAB is round to be the less appealing. The 

location of the delay, after the adaptive filter, limits the traekmg ability of the filter by 

reduciZ'g the stability bound on Il, and increases the excess ~'1SE. 

For faster tracking of reÎerenee variations, the joint reeursive least squares algorithm 

is presented. It is based on the least squares (LS) estimation criterion and minimizes 

the sum of exponentially weight('d squared errors, with respect to both the integer delay 

estimate, defined as the "lag", and the weight vector. Because of the short convergence 

time of the RLS filter algorithm, the delay estimation and the adaptive filtering parts of 

the joint algorithm have to be intimately linked to ea('h other. This task is done by first 

computing the RLS adaptive filter, and then by "extracting" the delay information from 
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the resulting error and weight vector. Two Joint RLS algorithms are derived and exploit the 

data structure, in order to compute the adaptive weight veftor and the lag value, within a 

finite set, corresponding to the joint LS solution. In order to perform such a task, the sum of 

squared errors is computed for each value of the integer delay e~tirnate in the set uf interest, 

and the de1ay value corresponding to the lowest value is retained. This is accomplished by 

using a series of lag-recursive relations that allows the effiCIent computation, based on the 

LS solution for the current lag, of the sum ofsqllared errors for other values of the lag. These 

lag-recursive relations are derived, for both a Type 1 and a Type 11- DRB configurations, 

by using a geometrical approach, and are appended to the fast transversal filter (FTF) 

adaptive filtering algorithm, in order to form th(' joint RLS algorithm. This new algorithm 

is composed of tllfee distinct phases. The fir:,t one involves the update of the forward and 

backward linear predietors used in both the FTF and in the lag-recursive relations. The 

second phase involves the use of the lag,-r<,eursive relations, in ordf'r to compute the enrrent 

optimum weight vecter and to derive the sum<; of squared errOTS for the lags comprised in 

the set of interest. The tlmd computational phase IIIvolve[, d decislon on the lag update and 

the computations, in the case of update, of the new corr<,spondillg variables. Thif> last task 

is made easier by the use of sorne of the lag-recuTsive relation~. ThiS new joint algorithm 

exploits fully the lag recursions in order to allow the seriaI ('am pu t atioll, from a si ngle set 

of stored weight veetor and error variables, of the information nc('cssary for thc decisions 

about the lag updatc. 

fhe analysis of the joint RLS algorithm shows that the delay adaptation process is 

characterized by a discrete-time Markov chain, which rend('rs t;'e analysis difficult. U nder 

the assumptions used in the anaIysis of the joint LMS al):;'lrithm, the LS delayestimator 

is shown to he unhiased, while the wp.Ight vector estimatùr is riased by the f>ame quantity 

found in the joint LMS algorithm. The weight noise vpctor correlation matrix is found to 

be proportional, as in its joint LMS counterpart, to the MMSE, to the second dcrivative of 

the MSE function at its minimum and to the delay estimate variance. The expression for 

the excess MSE is derived to be also composl:'d of three tcrms, bearing a form very similar 

to the farm found in the LMS algorithm 

The joint LMS and RLS alg,orithms are then si,odated. The expcrimentaI set-up is 

that of a system identification (cancellation) configuration. Spectrally white signais, as weIl 

as ('oloured and speech inputs are considered. A short reference Impulse response is used, 

as weIl as a longer one, typical of a reverberant room. The delay estimation of time-varying 

reference delays is illustrated, for bath linearly and sinusoidaUy changing conditions and for 

noiseless and noisy cases. For the short reference impulse response, the LMS adaptive filter 
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can compensate for sorne of the reference delay variations, white for the long response, the 

adaptive delay allows a considerable reduction of the mean squared error. For the case of a 

speech input, a normalized form of the LMS adaptive delay is introduced, in order to cope 

with the large input amplitude variations. In the joint RLS algorithm, the delay estimation 

allows the adaptive fil ter to stay "centered" and to better model the reference filter. For a 

long adaptive filter impulse response, a hybrid LMS delay-RLS filter is defined and reduces 

considerably the mean squared error. 

The analyses and the simulations of the joint LMS and RLS algorithms demonstrate 

the ability of the joint techniques to improve upon the performances of the conventional 

methods, when there is a relative delay between the main input and the reference signal. 

In general, the joint algorithms produce a lower me an squared error between their outputs 

and the reference signal. Furthermore, they allow the use of adaptive filters with a smaller 

number of coefficients. 

7.2 Contributions 

This thesis has contributed to the theories of delay estimation and of adaptive digital 

filtering, as weB as to the field of joint adaptive algorithms. The major contributions of this 

work can be summarized as follows: 

1. The joint maximum likelihood estimator for a reference delay and a reference filter 
has been derived for Gaussian signals, using both a finite and an infinite observation 
interval. This estimator has been used to define the structure of the joint MSE and 
LS adaptive estimators. 

2. The joint steepest-deseent and least-mean-square adaptive algorithms, composed of 
an adaptive delay element and of an adaptive transversal filter, have been analysed 
[41]. These algorithms constitute the generalizations of existing gradient-based time 
delay estimation algorithms without reference filter. They can also be regarded as 
upgrades of the conventional SD or LMS adaptive filter algorithms, sinee they allow 
the synehronization, in a general framework, of the input and the reference signals 
used by an adaptivt' fiHer. The joint LMS algorithm has been implemented and 
tested unùer various conditions. 

3. The interaction between the LMS adaptive delay and the LMS adaptive filter esti
mates has been derived for three types of delay and filter arrangements. The joint 
excess MSE expression was shown to be a funetion of three termsj one term specifie 
to the adaptive delay, one term specifie to the adaptive tilter and one eross-product 
term related to both e"timates. Experiments have confirmed the form of the MSE 
expression. 

4. An existing set of block-based lag-recursive relations has been extended to a set 
of on-line relations. A new geometric1.1 derivation has been used to obtain and 
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) .... interpret these relations. This set of relations allows the seria! computation, from 

an initial value of the RLS soh.1tion at a certain lag, of the LS weight vector and the 
corresponding sum of squared errors for other lag values. These relations have been 
verified by simulations. 

5. A new type of joint adaptive delay and adaptive filter RLS algorithm has been 
designed by appending the lag-recursive relations to the fast transversal RLS filter 
algorithm and by using a seriaI computation of the critical parameters used for lag 
update [42]. This algorithm has been implemented and tested for different conditions. 

6. The joint RLS algorithm has been shown to produce an excess MSE bearing a great 
resemblance with the excess MSE produced by the joint LMS algorithm. 

7. For applications where la,rge adaptive filters are required, the joint algorithms have 
been shown to produce a significantly lower me an squared error. A hybrid joint 
algorithm, formed of an RLS adaptive filter and an LMS adaptive delay, has been 
successfully implemented for that purpose. 

7.3 Future Work 

The following points could constitute the basis for future research. 

1. It has been assumed, throughout this thesis, that the delay estimate is close enough 
to the global minimum of the MSE function such that convergence to this minimum 
happens. This assumption, a.though common in the delay estimation literature, is 
not necessarily true in practice. Sorne form of delay acquisition procedure is necessary 
and should be studied. The LS estimation criterion could be used for that purpose by 
observing a block of input signal, and by applying an algorithm similar to the joint 
RLS algoritlun, for an extensive set of possible lags. This optimum lag algorithm has 
been proposed in [63] and could wnstitute a parallel processor of the form proposed 
in [43, p. 279], for minimum searching of a multimodal function. 

2. The problem of multitude ,o:onvergence points and false lock of the delay estimator 
has to be studied and solved. One solution is to periodically realign the adaptive filter 
input and reference by acquiring a delay estimate close to the optimum. This could 
be done off-line, by using a procedure similar to the one proposed for acquisition. 

3. In the joint sn or LMS algorithms, a higher order delay loop could be used to speed 
up the convergence rate. 

4. Data reuse could be implemented in the joint SD or LMS algorithms by repeating one 
of the two ada.ptive processes on the same input vector, as proposed in Section 3.3. 

5. The joint SD ami LMS algorithms could merge in sorne manner the two adaptive 
processes. For example, the interpolator implementing the fractional delay element 
could be incorporated into the adaptive filter. This would create a new class of joint 
adaptive algorithm. 

6. The possibility of implementing a computationally efficient joint RLS algorithm with 
a fractlOnal delay estimator could be investigated. 
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7. The numerical stability of the RLS adaptive filter algorithm has to be reconsidered, 
in light oi its influence on the delayestimation. 
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Appendix A. Derivation of the Joint Maxinlum Likelihood Estimator 
For a Type 1 System 

Based on a vector mathematical model, the form of the joint ML estimator, over an 

interval ln}, n2], is derived. The likelihood prohahility and the likelihood function are 

computed in Section A.1. The likelihood function is shown to he the sum of a noncausal 

term ly(d, w) and a hias term lB(d, w). As noticed in Section 2.3.1, the function ly(d, w) 

is expressed in terms of MMSE estimation. The MMSE estimator necessary to compute 

ly( d, w) is explicitly derived in Section A.2. The funetioll l}~( d, w) is computed for long 

observation intervals In Section A.3. The material presented in this appendix is an extension 

of the work reported by Stuller in [16]. The extension is dalle for a reference brandI including 

a linear filter, and the results are given here for discrete-time signais and systems. Most of 

the derivations follow closely Stuller's procedures, and it would make the reading easier if 

his article would he eonsulted from time to time. 

A.l Derivation of The Log-Likelihood Function 

The derivation is based on the mathematical model of equations (2.7) to (2.10). These 

equations are reproduced here for convenience. 

yen) = s(nld, w) + ven), 

yen) = [YI(n)] 
Y2(n) 

s(nld, w) = [seIn) 1 
Cd,1v(n)[S( n)] 

ven) = [VIen)]. 
V2(n) 

(A.i) 

(A.2) 

(A.3) 

(A.4) 

Based on these vector definitions, the log-likelihood fllJletion is derived as in Stllller. First 

of aIl, the received vectors y(n) is exprcssed as an infinite-dimensional vector y, using 

the discrete-time normalized vector eigcnfunctions f,(nld, w) of the input signal covariance 

matrix +ss(kld,w),overan observation interval [nl,n2], i.e. 

where 

N 

yen) = Hm "y,f.(nld, w), 
N-+oo ~ 

.=1 

n2 

Yi = ~ fll/ (nid, w)y(n). 
"=n1 
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The covariance matrix is defined as 

+ss(kld, w) = E[s(n + kld, w)sll(nld, w)], (A.7) 

and the normaJized vector eigenfunctions are 2 X l column vectors satisfying the equations 

n2 

À.(d, w)((nld, w) = L +ss(n - mld, w)r,(mld, w) (A.8) 
m=nl 

for i = j 

for i f. j. 
(A.9) 

Note that À.(d, w) is the scalareigenvalue associated with r,(nld, w). It is assumed that the 

covariance matrix +ss(kld, w) is a positive definite function, i.e. that [43] 

n2 n2 

L L rH(n)+ss(n-mlll,w)f(m) > 0, (A.IO) 
n=nl m=nl 

for any vector C( n) with finite energy over [1l}, n2] t. In this case, aIl the eigenvalues are 

real and strictly positive numbers, and the set of eigenfunctions is a complete orthonormal 

set over the interval [nt,n2], Le. 

n2 [N ]2 
Hm L x(n)-Lx,C,(nld,w) =0, 

N-+oo 
n=nl 1=1 

(A.11) 

for any finite energy deterministic vector func tion x( n) over [n}, n2] and 

(A.12) 

for any finite energy random function u(n) over [n}, 112]' 

Therefore, aIl the information present in y( n) is present in the vector y N = 

[YI, Y2, ••• , YN] for N tending to infillity. Given the parametcrs d and w, the YI'S are 

independent zero-mean Gaussian random variables with variance 

(A.13) 

, A finite energy veetor function x( n) over [ni, 1l2] is sneh that 

n~ 

L xH(n)x(n) < 00. 
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,. '. The joint probahility density function of the Yi 's, for 1 ::; i :5 N, and given the parameters 

d and w, is therefore 

d Tt' - 1 ex _! Y. A 14 
[ 

N 1 [ N 1 1
2 1 

P'YNID,w(YNI , ) - g V21r['x.(d, Tt) + No/2] P 2 ~ 'x.(d, w) + No/2 . ( . ) 

The likelihood function lN(d, w) is obtained by taking the logarithrn of PVNID,w(YNld, w), 

when N tends toward infimty, and by rnaking use of equation (A.6), which gives 

1 00 

l'(d, w) = - 2 L In[21rp.(d, w) + No/2}] 
.=} 

_! ~ ~ H()~ r.(nld,w)CiH(mld,w) ( ) 
2 n~1 m~1 y n::r 'x.(d, w) + No/2 y m . 

(A.15) 

Define the inner sum as Q(n, mld, w), for n} :5 n :5 n2, nI :5 m ~ n2. This function can be 

expanded as 

Q(n, mld, w) = f: C.(nld, w)r.H(mld, w) 
'x.(d, w) + No/2 .=} 

2 ~ [H >'.(d, w) H] = No ~ C.(nld, w)C. (mld, w) - >'.(d, w) + No/2r.(nld, w)C, (mld, w) 

_ 2 2 ~ >'. ( d, w) H 
- No c5(n - m)I - No ~ 'x.(d, w) + No/2C.(n1d, w)f. (mld, w), 

for nt::; n S n2,nt:5 m ~ n2. Defining the function Q2(n,mld,w) as 

Q2(n, mJd, w) = t. >'.(d~~~;1,/2~(nJd, w)~H(mJd, w), 

for nI ::; n :5 n2, nI ::; m :5 n2, the likelihood function of (A.15) can be written as 

1 00 

l'(d, w) = -2 L In[21r{À.(d, w) + No /2}] 
.=} 

1 n2 n2 

+N L L yH(n)Q2(n,mld,w)y(m) 
o n=n1 m=n1 

1 n2 n2 

- N L L yH (n)y(m)c5(n - ml· 
o n=n1 m=n1 

(A.16) 

( A.17) 

(A.lB) 

The likelihood of (A.18) can he simplified by dropping the last term and adding the term 

In[J;rNo] sinee none of these terms depends on the estimates. This finally gives the desired 

likelihood function 

i(d, w) = iy(d, w) + in(d, w), (A.19) 
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where 
1 n2 n2 

ly(d, w) = N L E yH (n)Q2(n, mld, w)y(m) 
o n=nl m=nt 

(A.20) 

and 

(A.21) 

In (A.20), Q2(n, mld, w) is is the matrix impulse response of the noncausallinear MMSE 

point estimator of s(nld, w), from the received vector yen), given the parameters d and w 

[43]. It is given hy the solution of the "normal" equation 

N n2 -fQ2(n, mld, w) + L Q2(n, kld, w)+ss(k - mld, w) = +ss(n - mld, w), 
k=nt 

(A.22) 

for nI ~ n :5 n2, nI ::; m ~ n2. The fo~m of the estimator is given in Fig. A.1. 

Yl(n) 
Linear MMSE 

estimator 

Q2(n, mld, w) 

i(d,w) 
}-----c:+)---

Fig. A.1 Blockdiagram of the noncausal joint maximum likelihood 
estimator (canonical realization number 1) 

A.2 Derivation of Entries of Q2(n, mld, w) 

The form of the entries of Q2( n, mld, w) are derived, for an observation interval [nI, n2], 

by using Stuller's constructive method [16]. The first step in the derivation of Q2( n, mld, w) 

is to noncausally transform the received vector yen) into a new vector r( n). The transforma

tion is linear and invertihle and, by the reversihility theorem, does not affect the performance 

of the system [43]. !ts role is to transform the received vector, assuming the parameters 

d and w, into a 2 X 1 vector r(n) in which the second component does not depend on the 

- 193-



1 transmitted signal s(n) and the first component does. A transformation that accomplishes 

this task is 

[~d.~[Y2(n)l] , nI - LdlTJ :5 n < nI 

r(n) = 
! [Y1(n) tCd.~[Y2(')l] , 

nI :5 n < n2 - l dIT J (A.23) 
2 Yl(n) - .cd~[Y2(n)] , 

[ :1( 0)] , n2 - LdlTJ :5 n:5 n2· 

Therefore, the vector r( n) takes the explicit form 

0, n<nI-ldITJ 

r(n) = [S(O)] + [ZI(O)] , 
nt - ldlTJ :5 n :5 n2 (A.24) 

o z2(n) 

0, n2 < n, 

where 

[~d.~[V2(n)l] , nI - L dIT J :5 n < nt 

[ZI(n) 1 = ! [ 01(0) Hd.~[V2(n)]] , 
nt :5 n < n2 - l dIT J (A.25) 

z2(n) 2 vI(n) - .cd~[v2(n)] , 

[ :1(nl n2 - ldlTJ :5 n:5 n2· 

Note that .cd,~[.] is defined as (for a Type 1 reference system) 

.c;;:~[y(n)] = w-1(n) ® y(nT + d) 

= L w-I(i)y(nT - iT + d) 
(A.26) 

= L w-I(nT - iT + d)y(z), 

where w-1(n) is the impulse response of the inverse filter corresponding to w(n), i.e. 

w(n) 0 w-1(n) = h(n). (A.27) 

At this point, the noncausd.llinear MMSE point estimate s(nld, w) from r(n) is wanted. 

A variant of Stuller's theorem [16] is invoked to perform this task. 
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Theorem. Assume a signai model of the form ofequation (A.1), with 

E[v(n)vH(m)] = ~OIc5(n - ml. 

Assume that the linear invertible trallsformation of equation (A.23) is applied on y( n) and 

gives r(n). Th en , the discrete-time nuncausallinear MMSE point estimator ofs(n) from 

r( n), nI -l diT J ::; n ::; n2, conditioned on the parameters d and w, ;s g;ven by the system of 

Figure A.2, where f(n, rn/d, w) is tlle impulse response orthe noncausallinear MMSE point 

estimator of ZI (n) (rom Z2( n) and g( n, m/d, w) is the impulse response of the noncausal 

linear MMSE poin t estimator of s( n) from s( n) + %} (n) - z} (n). • 

The proof of this theorem is identical, mutatis mutandis, to the proof given in [16]. 

and 

TI(n) 
,of;, g(n,mld, w) 

-

'l(n) [ .1 T2(n) 
f(n,m/d, w) Cd,w['] 

1 
1--

Fig. A.2 Structure of the discrete-time noncausallinear MMSE point 
estimator of sen) from r(n), nI - ldlTJ :5 n:5 n2, 
conditioned on the parameters d and w, as defined in the 
Theorem. 

The outputs of these two linear MMSE estimators are given by 

n2 

zl(n) = L !(n,mld, w)z2(m), 
m=nl-ld/TJ 

Sl(n) = sen) = g(n, rn/d, w)[s(m) + zl(m) - zl(m)], 
m=nt-Ld/TJ 

SI( 

S2( 
• 

n) 

n) 

(A.28) 

(A.29) 

From the orthogonality principle [45], the following conditions are met by the above esti

mat ors 

E[(Zl(n) - zl(n))z2(m)] = 0 (A.30) 

and 

E[(s(n) - s(n))(s·(m) + zi(m) - zi(m))] = 0, (A.31) 
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for nI - ld/TJ ~ n ~ n2 and nI - ld/TJ ~ m ~ n2. From equations (A.25), (A.26) and 

(A.27), the following expected values are obtained 

No 2 Pw - 1(n- m) 

E[zl(n)zi(m)] = ~O[6(n - m) + pw- 1(n - m)] 

No -6(n - m) 
2 

E(z,(n)zô(m)) = {:'(6(n - m) - pw-t(n - m)] 

E(z,(n)zô(m)) = {:'(6(n - m) + pw-t(n - m)] 

nI -ld/TJ ~ n,m < nI 

nt ~ n, m < n2 - ldjTj(A.32) 

nt < n, m < n2 - L dIT J 
- (A.33) 

otherwise 

nt ~ n,m < n2 -ldjTI 
1A.34), 

otherwise 

where Pw-l (k) is the deterministic autocorrelation of the inverse filter w- t ( n) and is defined 

as [45] 

(A.35) 

A.2.1 The Estimator !( n, mld, h) 

Combining equations (A.28), (A.30), (A.33) and (A.34), it is found that !(n, mld. w) 

must satisfy 

n2-Ld/TJ-l 
L !(n, kld, w)[6(k - m) + Pw-l(k - m)] = 6(n - m) - pw -l(n - ml, (A.36) 

k=nl 

for nI ~ n < n2 - ld/TJ and nI ~ m < n2 - ld/TJ. For a finite interval [nI - ld/TJ, n2], 

equation (A.36) can be put in matrix form by defining the deterministic autocorrelation 

matrix 

[ 

Pw-l(O) 
Pw-l( -1) 

pw-l(nI - n2 + rd/Tl) 

and the deterministic cross-correlation vector 

PW -l(n2 - nt - ld/T J - 1)] 
pw -l(n2 - nI - Ld/TJ - 2) 

Pw-l(O) 
(A.37) 

[ 

6(n-nll-pw-l(n-nt) ] 

P6p(n) = 6(n _ n, + ldlT] + li- pw-t(n - n, + ldlT] + 1) . 
(A.3S) 
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Define aIso the estimator vector 

[ 

I( n,ntld, w) 1 
F(n) : f(',', '_ l dlTJ Id, w) . 

(A.39) 

Equation (A.36) then becomes 

(1 + Rp)F(n) = P6p(n) ( A.40) 

and its solution is 

(A.41) 

Note that the inverse in (A.41) exists sinee w(n), and therefore pw-l(n), is assumed invert

ible. Note aIso that the estimator impulse response is independent of the delay d. Defining 

the ijth element of the matrix (1 + Rp)-l as 8,), I( n, mld, w) ean be expressed as 

n2-LdITj-1 

f(n,mld,w)~ ~ 8.m[6(n-i)-pw-1(n-i)] 

n2-LdITj-l 
(A.42) 

= 8nm - L 8.mPw- 1(n - il· 
.=n1 

A.2.2 The Estimator g( n, mld, w) 

From equations (A.29) and (A.31), the linear MMSE estimator g(n, mld, w) is the so

lution of 

4>,,(n - m) = E[s(n)(s*(m) + zj(m) - zi(m))] 
n2 

= L g(n,kld, w)E[(s(k) + zl(k) - zl(k))(s*(m) + zj(m) - zi{m)1J 
k=nl-Ld/Tj 

n2 

= L g( n, kld, w )4>.",( k - m) 
k=nl-Ld/TJ 

n2 

+ L g(n,kld, w)E[(z}(k) - zl(k))(zj(m) - zi(m))], 
k=nl-Ld/TJ 
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.. 
• for nI -ldfTJ ~ n ~ n2 and ni -ldfTJ ~ m ~ n2. Using equations (A.28), (A.29), (A.30), 

(A.32) and (A.33) in equation (A,43), g(n, mld, w) is the solution of 

112 

</>~~(n-m)= L g(n,kld,w)</>u(k-m) 
k=lIl-ld/ T j 

nl-l 

+ ~o L g(n,kld,w)[pw-I(k- m)- If4f(k,mlw)] 
k=1I1-ld/Tj 

N n7-ld/ Tj-l 
+ -t L g( n, kld, w)[6(1: - m) + Pw-I(k - m) - f(k, mlw)] (A.44) 

k=lIl 

112-ld/ Tj-l 

L g(n,kld,w)f(k, 'lw)Pu,-I(i - m) 

N 
112 

+i L 
k=n2-ld/Tj 

g(n,kld,w)[6(k - m) - If4f(k, mlw)J, 

for nl-ldfTJ ~ n ~ n2 and nI ~ m::; 712 -ldfTJ -1. Note that all the terms in (A.44) 

involving f(k,mlw) are zero for m outside [nl,n2 - ldfTJ - 1]. Using eqllation (A.36) in 

equation (A.44) simplifies the result to 

</>u(n - m) = 

11}-1 [N ] L g(n,kld,w) <pu(k-m)+i{6(k-m)+3Pw-l(k-m)-2f (k-mlw)} 
k=1I1-ld/TJ 

n2-ld/TJ-l N 
+ L g( n, kld, w) [</>u(k - m) t -f{6(k - m) - f(k - mlw)}] 

k=n} 

n2 [~ ] + L g(n,kld,w) </>u(k-m)t18°{56(k-m)-pw-l(k-m)-2!(k-mlw)} . 

k=n2-ld/Tj 
(A,45) 

A.2.3 Explicit Entries of Q2(n, mld, w) 

From Figure A.1, the following relations, involving the entries q,} (n, mld, w), are round 

112 

81(n) = L qll(n, mld, w)Yl(m) + q12(n, mld, w)Y2(m) 

112 
(A,46) 

82(n) = L q21(n, mld, W)Yl(m) + q22(n, mld, w)Y2(m). 
m=n} 
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By solving equations (A.36) and (A.45), the lillear MMSE estimator f(n, mlw) and 

g( n, mld, Yi) are obtained. From Figure A.2, the following input-output relations are found 
nl-1 

Sl(n) = L g(n, mld, w)Cd,~[Y2(m)] 
m=nl-Ld/TJ 

n2-Ld/TJ-l [n2- Ld/TJ-l 1 
+1/2 fi g(n,mld,w) Yl(m)- f~1 f(m,ilw)Yl(C) 

R2-ldJTJ-l [ n2-ld/TJ-l 1 
+ 1/2 m~l g(n,mld,w) .cd,~[Y2(m)]+ l~1 f(m,Clw).cd,~[Y2(C)] 

+ g(n, mld, w)Yl(m) 

(A.47) 

and 

(A.48) 

Define the following functions 

n2-ld/TJ -1 

b(n,mld,w) = L g(n,ild,w)f(i,mlw) ( A.49) 
I=Rl 

ni +ld/TJ-I 
pl(n,mld,w) = L g(nT,iT- dld,w)w-1(i - m) (A.50) 

I=Rl 
n2 

p2(n, mld, w) = L genT, iT - dld, w)w-1(i - m) (A.51) 

n2-1 
a(n, mld, w) = L b(nT, iT - dld, w)w-I(i - ml. (A.52) 

l=nl+ldJTJ 
Using equations (A.26),(A.49) to (A.52) and performing a change of variable::., equa-

tion (A.4 7) becomes 

R2-ld/TJ-l 
sl(n) = 1/2 L [g(n,mld,w)- b(n,mld,w)]Yl(m) 

+ 

m=nl 

L 
m=R2-ld/TJ 
1l1+ld/TJ-l 

g(n, mld, w)YI(m) 

+ L pl(n,mld,w)Y2(m) 
m=nl 

R2- 1 

+ 1/2 L [P2(n, mld, w) + a(n, mld, w)]Y2(m). 
m=Rl+ld/TJ 
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Comparing equations (A.46) and (A.53) and using (A.18), the explicit forms for the 

q'J(n,mld,w)'s are 

{ 

1/2[g(n,mld,w)-b(n,mld,w)] 
qll(n, mld, w) :;: 

nI $ m $ n2 - ld/TJ - 1 
(A.54) 

g(n,mld,w) n2 - ld/TJ $ m $ n2 

{

PI(n,mld'W) 
QI2(n, mld, w):;: 

nI $ m $ nI + ld/TJ - 1 
(A.55) 

1/2(P2( 't, mld, w) + a( n, mld, w)] nl + l diT J $ m $ n2 - 1 

q21(n, mld, w) = .cd,w[Ql1(n, mld, w)] (A.56) 

qn( n, mld, w) = .cd,w[Q12( n, mld, w)] (A.57) 

A.3 The function iy(d, w) for a Long Observation Interval 

The function iy(d, w), when nl -+ -00 and n2 -+ 00, is computed in this section 

by using the results derived in Section A.2. Because the function Pw-I (n) is invertible 

(the reference impulse response w(n) is assumed invertible), the time-invariant functions 

f(nlw) and g(nlw) are solutions of equations (A.36) and (AA5) respectively. Then, using 

equatiOl,s (AA9) to (A.52) in equations (A.54) to (A.57), and neglecting the terms involving 

l djTJ, (because of the large observation assumption) the entries of the matrix impulse 

response Q2(nld, w) are also time-invariant and are given by 

qll(nlw) = 1/2[é(n) - f(nlw)] 0 g(nlw) 

Q12(nld, w) = 1/2[é(n) + f(nlw)] 0 g(nT + dlw) 0 w-1(n) 

q21 (nid, w) = 1/2[é( n) .- f( nlw )]0 g( nT - dlw) 0 w( n) 

q22( nlw) = 1/2[é( n) + f( nlw )]0 g( nlw). 

(A.58) 

From equation (A.20), and from the above definitions of the matrix entries, when nt -+ -00 

and n2 -- 00, the likelihood ly(d, w) is given by 

ly(d, w) =1/2No L[( é( n) + f( nlw)) ® g( nT + dlw) ® w-1
( n) ® Y2( n)]yi(n) 

n 

+ 1/2No L[(é( n) - f( nlw)) ® g(nT - dlw) ® w( n) ® YI (n )]Y2( n) 
n 

+ 1/2No L[(é(n) - f(nlw)) ® g(nlw) ® Yt(n)]yi(n) 
(A.59) 

n 

+ 1/2No L[(é(n) + f(nlw)) ® g(nlw) 0 Y2(n)]y2(n). 
n 
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Note that the lirst two terms of equation (A.59) can be written as 

lYI(d, w) = 1/2No E[(6(n) + f(nlw» ® g(nlw) ® w-1(n) ® Y2(nT + d)]yi(n) 

+ 1/2No E[(6(n) - f( nlw» ® g(nlw) ® w(n) ® YI(nT - d)]y2(n). 
(A.60) 

n 

n 

Deline 

wI(nlw) = [6(n)- f(nlw)]®g(nlw)®w(n) (A.61) 

and 

tiJ(nlw) = [6(n) + f(nlw)]®g(nlw)®w-1(n). (A.62) 

Use definitions (A.61) and (A.62) and equation (A.60) in equation (A.59) in order to get 

ly(d, w) =1/2No I)tiJ(nlw) ® Y2(nT + d)]yi(n) 
n 

+ 1/2No E[wl(nlw) ® Yl(nT - d)]Y2( n) 
n 

(A.63) 
+ 1/2No E[wl(nlw) ® w-I(n) ® YI (n)]yi(n) 

n 

+ 1/2No E[w(nlw) ® w(n) ® Y2(n)]y2(n). 
n 

When ni - -00 and n2 - 00, equations (A.36) and (A.45) become respectively, in 

the frequency domain, 

(A.64) 

and 

(A.65) 

Note that Winv(e j",) is the Fourier transform of w-1(n) and is defined as 1/W(e1"'). 

From equation (A.64), the linear MMSE estimator f(nlw) has the following frequency 

response 

(A.66) 

From equations (A.65) and (A.66), the linear estimator g(nlw) has the following frequency 

response 

G( '''') _ t",,(e1"')(IW(e1"')1 2 + 1) 
e - ~",,(e1"')(lW(e1"')12 + 1) + No/2' 

The impulse responses w) (nlw) and tiJ( nlw) can then be expressed as 

w(nlw) = F- I [2G(ej"')w~(ej",)] 
IW(e1"')I~ + 1 

wl(nlw) = ÙJ(nlw) ® cw(n). 
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where F-l[.] is the inverse Fourier transform operator and cw(n) is defined as 

cw(n) = w(n) ® w(n). 

Note that 

~[w(nlw) ® Y2(nT + d)]yi(n) = ~ L w(klw)Y2(nT - kT + d)yi(n) 
ft ft k 

= ~ L w(nT - iT + dlw)Y2(i)yt(n) 
ft l 

= EL w(j - ilw)yi(jT - d)Y2(l) 
(A.69) 

l 1 

= E[w( -nlw) ® vienT - d)]Y2(n). 
ft 

From equations (A.68) and (A.69), equation (A.63) can then be written as 

iy(d, w) =1/2No L[ÜJ( -nlw) ® yj(nT - d)]Y2(n) 
ft 

+ 1/2No ~)w(nlw) ® cw(n) ® Vi(nT - d)]Y2(n) 
ft 

+ 1/2No ~)tv(nlw) ® w(n) ® Yl(n)]yj(n) 
(A.70) 

ft 

+ 1/2No ~)w(nlw) ® w(n) 0 Y2(n)]yi(n). 
ft 

,' ..... 
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Appendix B. The Ordinary DifferentiaI Equation (ODE) Method 

A heuristic discussion on the development of the ordinary differential equations associ

ated with equations (4.9) and (4.15) of section 4.2 is presented in this appendix and can he 

found in [53] or in [4]. 

Assume a recursive parameter vector estimation method of the form of equation (4.9), 

bu t with a scalar gain sequence "( n), Le. 

I(n + 1) = I(n) t "(n)R- l (n),p(n)l(n), (B.I) 

with 

R(n + 1) = R(n) t 'Y(n t 1)[tP(n t 1),pT(n t 1) - R(n)]. (B.2) 

Assume that the parameter vector I(n) approaches I(n - 1) asymptotically (suhject to 

regularity conditions such as stahility, stationarity, etc.). Express I(n t N) as 

n+N-l 

'(nt N) = '(n) + L -y(k)R-1(k)1jJ(k)f(k), (B.3) 
k=n 

where equation (B.1) is used. Suppose that R-l(k) in equation (B.3) is fixed to be R -I(n) 

for the interval N. U sing the law of large numbers, the summation of the terms t/J( k )l( k) 

can he approximated by E[~k)f(k)] and equation (B.3) can be approximately written as 

n+N-1 
I( nt N) ~ I(n) + R-1( n)E[t/J(k)f(k)] L ,;,( k), (B.4) 

k=n 

where the expected value E[1/1{k)l(k)] is defined as J(8(n». Define the compressed time 

seales: 
n 

r = L i(k) 
k=l 
n+N-1 

~r = L "(1.). 
k=n 

(B.5) 

Changing the time seale from n to rand mapping 'en) into 'D(r), equation (B.4) becomes 

(B.6) 

Asyrnptotieally, when ~r becomes small, (B.6) reduces to 

(B.7) 
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which is approximately the first equation associated with (B.I) and (B.2). The second 

equation, given by 
dR(r) dT" = G[BD(r)] - R(r) (B.8) 

with 

G[BD(r)] = E[tP(n)tl,T(n)], (B.9) 

is heuristically obtained in a similar way. Note that the case of a matrix gain sequence 7( n) 

is comprised in the above derivations when .,(n) = ;(n)I. 
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Appendix C. Cross-Correlation of Dift'erentiated Random Processes 

The relations derived in this appendix are obtained using the theory of linear systems 

with stochastic inputs. The results presented below are often used in the analyses and 

follow the exarnples given in reference [451, pp. 237-239. 

Consider two stationary complex random processes x(t) and y(t). Their cror.s

correlation cPxy( T) is defined as 

where T is defined as 

r = tl - t2. 

It is assumed that the two random processes are delayed by the same delay d, Le. 

x(tI) = x(t - d) 

y(t2) = y(t - r - dl. 

(C.1) 

(C.2) 

In the following sections, the derivative with respect to the delay d and with respect to 

Tare denoted as follows 

8~~.) = x(.) 

8
2
x(·) = i(.) 

8d2 

8x(·) = x'(.) 
8r 

ô2x~.) = X"(.). 
8r 

C.l Cross-eorrelation of x(t) and y(t) 

Because of the linearity of the differentiation operator, the following is true 

E[x(tt}y*(t2)] = E [ôx8~}) y.(tz)] 

= E [ôt18x(t}) ·(t )] 
ôd Ôtl y 2 

8tl ôE[x(tt}y·(t2)] 
= 8d ôtl . 

Noting that 

equation (C.4) becomes 

Therefore 

·205· 

(C.3) 

(C.4) 

(C.5) 

(C.6) 



.... 

,..,. 

C.2 Cross-correlation of z(t) and y(t) 

Using the same type of development as above, we have 

E[x(tt}y*(t2)] = E [x(tdâY;~2)] 
= E r 8t2 z(tt} ây*(t2)] 

l8d 8t2 
ât2 8r ât/>xy( r) 

= âd 8t2 âr . 

Then 

C.3 Cross-correlation of x(t) and y(t) 

Using the results of the last two sections 

E[i(tl )y*(t2)] = âE[i(t~~y*(t2)1 
_ âcPxy(r) 
- 8r 

= 
824>xy(r) 

8r2 

the desired cross-correlation is 

C.4 Cross-correlation of ï(t) and y(t) 

From the double application of results (C.6), we have 

E[ï(tt)y*(t2)] = -4>iy( r) 

8( -4>~y(r)) - - ---::-.::---
âd 

= 4>~y(r). 

C.s Cross-correlation of x(t) and y(t) 

From the double application of results (C.7), we have 

E[x(tt}y*(t2)]::: 4>~y(r) 

= 4>~y(r). 
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Appendix D. Sorne Expected Values For a Type 1 Adaptive System 

The expected values necessary in the computations of Section 4.3.1 are derived in this 

appendix. The results of equations (4.34) to (4.38) and those of appendix C are used in the 

following derivations. 

D.l Expeded Value of Gn 

The quantity Gn is defined in (4.45) and its expected value is 

E[Gn] = E[y2( n, D) - e( n, D)y( n, D)] 

= E[y2( n, D)] - E[e( n, D)jj( n, D)]. 

From (4.34) to (4.38) and appendix C, we have 

E[y2(n, D)] = E[(8r(n)/8dn + x(n, D»2] 

= E[(8r(n)/8dn )2] + E[x2(n,D)] 

= -</>~;(O) + E[X2( n, D)]. 

The quantity E[,2( n, D)] is expressed as 

E[x2(n,D)] = E['1rü(nT - D)'1~û(nT - D)] 

= E[LLl1,(n)u,(nT- D)1JJ(n)üJ(nT- D)] 

• J 

= LLE[l1.(n)u.(nT- D)1JJ(n)üJ(nT- D)]. 
• J 

(D.l) 

(D.2) 

(D.3) 

Since the input vector and noise vector components are assumed to be formed of Gaussian 

random variables, we have [66] 

E[l1i(n)Û.(nT - D)1Jj(n)ûJ(nT - D)] = E[1J.(n)ü.(nT - D)]E[1JJ(n)üJ(nT - D)] 

+ E[u.(nT - D)17)(n)]E[1J.(n)uJ(nT - D)] (D.4) 

+ E[û.(nT - D)uJ(nT - D)]E[l1l(n)1Jin)]. 

Every correlation of a noise vector component with an input sample is zero and, from 

assumption 5 of Section 4.3, 

Therefore, equation (D.3) simplifies to 

E[x2(n,V)] = LE[û;(nT- D)]E[l1;(n)] 

• (D.5) 
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The sum of the variances of the noise vector components is equal the trace of the correlation 

matrix of 'In, defined as 

and (D.5) can be written as 

Then, equation (D.2) is 

The second component of E[Gn] is 

E[e(n, D)Y(n, D)] = E[(r(n) - y(n,D»y(n,D)] 

:: E[r(n)(â2r(n)/ôd; + X(n, D»]- E[y(n, D)y(n, D)] 

= 4>~r(O) - 4>~r(O) - 4>~u(O)tr[K'Il 

~ 4>~r(O) - CP~r(O) - 4>~u(O)tr[K'Il 

::::: -4>~u(O)tr[K'I]' 

(D.6) 

(D.7) 

(D.8) 

(D.9) 

where the last two approximations come from the high signal-to-noise ratios assumption. 

From (D.I), E[Gnl is then 

for high signal-to-noise ratios. 

E[Gnl = -4>~r(O) 

::::: -4>~r(O), 

0.2 Expected Value of (1- 2o:Gn )Nn 

From equations (4.44) and (4.45), the expected value is written as 

E[(l - 2aGn )Nn] = E[Nn]- 2o:E[GnNn ] 

= 4aE[(y2(n, D) - e(n, D)jj(n, D»(e(n, D)y(n, D»] 

= 4a(E[y3( n, D)e(n, D)]- E[y( n, D)jj( n, D)e2
( n, D)]). 

(D.10) 

(D.11) 

AH the random variables involved in (D.11) are assumed zero-mean Gaussian and from the 

fact that E[Nn] = -2E[e(n, D)y(n, D)] = 0, we have 

E[y3( n, D)e( n, D)] = 3E[iP( n, D)]E[y( n, D)e( n, D)] 

= (-3/2)E[y2(n, D)]E[Nn] (D.12) 

=0 
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( 

and 
E[y( n, D)y( n, D)e2(n, D)] = E[y(n, D)ii( n, D)]E[e2(n, D)] 

+ 2E[jj( n, D)e( n, D)]E[iJ( n, D)e(n, D)] 

= -(t/J(~)(O) + tP(3)(O)E[e2(n D)] rr xx , 

= O. 

This last result follows from the autocorrelation property that states [74] 

tPuu( -T) = tPuu(T) ~ <Puu(O), 

(0.13) 

(0.14) 

which forces the first and third derivatives of the autocorrelation to be zero at T = O. 

The final result is then 

E[(l - 2aGn )Nn ] = O. 

D.3 Expected Value of G~ 

From equation (4.45), this expected value is written as 

E[G;] = E[(:y2( n, D) - e( n, D)ii( n, D»2] 

= E[y4( n, D)] - 2E[y2( n, D)e( n, D)ii( n, D)] + E[e2( n, D)y2( n, D)]. 

From equation (4.34), the first term of (D.16) is expressed as 

E[y4(n, D)] = E[(ôi'jfJdn + X(n, D))4] 

(0.15) 

(0.16) 

= E[( ôTjfJdn )4] + 4E[(8rjfJdn)3X( n, D)] + 6E[(fJTj8dn )2X2( n, D)] (0.17) 

+ 4E[( fJrjfJdn)i( n, D)] + E[X4( n, D)]. 

Since fJi' j ôdn and XC n, D) are assumed to be zero-mean independent Gaussian random 

variables, the second and fourth terms on the right of (0.17) are zero. The first term is [45] 

The third term is 

E[(fJi'jôdn )4] = 3(E[(fJrjôdn )2])2 

= 3( <P~r(O))2. 

6E[(8rjôdn )2;e(n,D)] = 6E[(ôrjôdn )2]E[x2(n,D)] 

= 6<p~r(O)tP~u(O)tr[K'1] 
where the result of (D.7) was used. 

(0.18) 

(0.19) 

From a development analog to equations (D.3) to (0.7) and assuming that x(n, D) is 

Gaussian, the fifth term of (0.17) is round to be 

E[x4(n,D)] = 3(E[x2(n,D)])2 

= 3(t/Jüü(O) L E[77~(n)])2 (0.20) 

- 209 -



Collecting the results of (0.18), (0.19) and (0.20), we have 

The expected value E[y2( n, D)e( h, D)y( n, D)] in the second term of (0.16) is computed as 

follows 

E[jP( n, D)e( n, DHi( n, D)] = E[y2( n, D)]E[e( n, D)y( n, D)] 

+ 2E[y( n, D)e( n, D)]E[Y( n, D)y( n, D)] 

= -( 4>~r(O) + 4>~u(O)tr[K'1])( 4>~f(O) - 4>~r(O) - 4>~u(O)tr[K,,]), 
(0.22) 

where equations (0.8) and (D.9) were used. The third term of equation (D.16) is computed 

as follows 

E[e2( n, D)y2( n, D)] = E[e2( n, D)]E[y2( n, D)] + 2E2[e( n, D)y( n, D)] 

= E[( r( n) - y( n, D»2]E[( a2,. / ad~ + x( n, D) )2] 

+ 2(4)~;(0) - 4>~;(0) - 4>~u(0)tr[K'1])2 (D.23) 

= (4)rr(O) - 4>;;(0) + 4>uu(O)tr[K'I])( 4>~~)(0) + 4>~~(O)tr[K'I]) 
+ 2( 4>~;(0) - 4>~;(0) - 4>~u (0)tr[K,,])2. 

Collecting equations (D.21), (D.22) and (D.23), the final result is 

E[G~] =3(4)i;(0))2 + 64>i;(0)4>~u(0)tr[K'1] + 3(4)~u(0)tr[K'I])2 
+ (4)rr(O) - 4>;;(0) + 4>uu(O)tr[K,,])( 4>W(O) + 4>~~(O)tr[K,,]) (0.24) 

+ 24>~;(0)(4>~;(0) - 4>~;(0) - 4>~u(O)tr[K'1])' 

D.4 Expeded Value of N~ 

Using equation (4.44) and the results (0.23), (D.S), this expccted value is 

E[N~] = 4E[e2( n, D)iJ2( n, D)] 

= 4E[e2(n, D)JE[iJ2(n, D)] + SE2[Nn l (D.25) 

= -4(4)rr(0) -- 4>;;(0) + 4>uu(O)tr[K'1])(4>~;(O) + 4>~u(O)tr[K'1])' 
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Appendix E. Shift Invariance Properties and Common Recurs,ons in 
the LS algorithm: Type II-ORB 

E.l Shift Invariance Properties in the LS algorithm:Type II·DRB 

Based on the definitions of Suhsection 5.2.1, the following shift invaiiance properties 

can he estabHshed 

[
UM-l(i) 1 [U(i) 1 UM(i) = = . 
u(i - Al + 1) UM-l(i - 1) 

(E.1) 

Using (E.l) in (5.19) 

n 

~,Bn-iuM_l(i)r*(i + i) 
'~(n)= 1=1 

n 
~,Bn-Iu(i - M + 1)r*(i + i) (E.2) 
i=1 

= [B~-l(n)l ' 
81t(n) 

where 
n 

91t(n) = ~ ,Bn-1u(i - M + l)r*(i + i). (E.3) 
1=1 

AIso, 
n 

L ,Bn-Iu( i)r*( i + i) 
1=1 

n 

L,on-iuM_1(i -1)r*(i+ i) (E.4) 
1=1 

where 
n 

8it(n) = L,on-Iu(i)r*(i +t) (E.5) 
1=1 

and 
n 

L,on-l uM- 1(i -1)r*(i +l) 
1=1 
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l n-l 
= L ,an-I- I UM_l(i)r*(i + 1 + 1) 

1=0 
n-l 

= L ,an-l-iUM _1(i)r*(i + 1 + 1) + ,an-l UM_1(O)r*(1 + 1) 
1=1 

= ri}:l(n - 1), 

(E.6) 

sinee UM-l(O) = 0 in the prewindowed method. The followingshift invariances can also be 

established [7] 

(E.7) 

or 

(E.S) 

where 
n 

r~_l(n) = L,an-IUM _1(i)u*(i - M + 1) (E.9) 

1=1 

n 

rit_l(n) = LtJn- IUM-l(i - 1)u*(i) (E.lO) 

1=1 

n 
r~_I(n) = LtJn-l\u(i - M + 1)\2 (E.ll) 

1=1 

ft 

r~_l(n) = LtJn
-

l \u(i)\2. (E.12) 

1=1 

E.2 Common Recursions 

The two following recursions are easily derived 

(E.13) 

(E 14) 

U sing the mêtrix inversion lernma, the following recursion is obtained [7] 

Define 
(E.16) 
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( 

and 

(E.17) 

Then (E.15) becomes 

+-l(n) = ,a-l+-l(n _ 1) _ ,a-2 gM (n)gf,(n). 
M M iM(n) (E.18) 

The following recursion can be derived using the above shift invariance properties [7] 

+"i,l(n) = [0 lOT ]+ 1 [1 ][1 -a~_I(n)J, (E.19) 
o +M_l(n - 1) FM-l(n) - IM-l(n) 

where IM_l(n) is the optimum weight vector for the one-step forward linear predictor of 

order M - 1 and can be obtained as 

(E.20) 

and FM -1 (n) is the corresponding minimum value of the sum of weighted forward a poste

riori prediction-error squares defined as 
n 

FM-l(n) = L:,an-1IfM_l(i)12, (E.21) 
1=1 

with 

fM-lei) = u(i) - a~_l(n)UM-l(i -1). (E.22) 

Another recursion analog to (E.19) is 

+-I(n) = [+~l-l(n) 0] 1 [ - bM- 1(n)] [_b H (n) 
M OT 0 + BM-l(n) 1 M-I 1J, (E.23) 

where bM_t(n) is the optimum weight vector for H.e one-step backward linear predictor of 

order M - 1 and can be obtained as 

(E.24) 

and BM-l(n) is the corresponding minimum value of the sum of weighted backward a 

posteriori prediction-error squares defined as 
n 

BM-t(n) = L:,an- i lbM_l(i)1 2, (E.25) 
1=1 

with 

bM-I(i) = u(i - Mt 1) - bft_l(n)UM-l(i). (E.26) 

Using (E.10), (E.12) and (E.22) in (E.21), the following expression is obtained 

FM-l(n) = r~_l(n) - r~_l(n)aM-l(n), (E.27) 

and using (E.9), (E.11) and (E.26) in (E.25), 

BM-l(n):: r~_l(n) - r~_l(n)bM_l(n). (E.28) 
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l Appendix F. Basic Fast Transversal Filter Algorithm 

The basic form of the fast algorithm considered in the thesis is given in this appendix. 

Its derivation is not performed here, sinee it can he found in many texthooks ([7] or [2] for 

example). The algorithm presented has been chosen because it exhibits the same basic inter

mediate variables as those appearing in th.::! matrix-based derivation given in Appendix G. 

In fact, the most part of the relations and reeurbions appearing in the fast algorithms are 

derived in Section G.3. The FTF algorithm that is favored is the fast a posteriorI crror 

sequential technique (FAEST) of Carayannis et al. [62]. As with the FTF of Cioffi and 

Kailath [61], the algorithm can he interpreted as a parallel bank of four transversal filter; 

two for the forward and backward linear prcdictors 8M(n - 1) and bM(n -1), one for the 

Kalman gain vector gM+l(n) and one for the actual adaptive weight vector w~l(n - 1). 

This is illustrated in Figure F.l. Note that it is assumed that a Type II-DRB adaptive 

system is used. The modifications of the FTF algorithm in order to accommodate a Type 1 

system are straightforward. 

aMen - 1) 

bM(n -1) 

UMe,,) 

8M+l(n) 

w~(n -1) 

7JM(n) 
fM(n) 
FM(n) 

1/JM(n) 
bM(n) 
BM(n) 

OM(n,i) 

eM(n,i) 

~Mo(n, i) 

Fig. F.1 Fast Transversal Filter Interpretation 

The algorithm is usually separated into two distinct phases; the Kalman gain vector 

time updating, which is aceomplished through the first three transversal filters, and involves 

the orthogonalization of the input signal with the forward and haekward predictors of order 

M, and the least squares FIR filter time updating, which is performed recursively using the 

updated Kalman gain vector. 
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Time updating orthe gain vector t 

71M(n) = u(n) - az.(n - l)uM(n - 1) 

f (n) - 71M(n) 
M -'"YM(n-l) 

aMen) = aMen - 1) + ,a-IgM(n - 1)/M(n) 

FM(n) = fJFM(n - 1) + 71M(n)/M(n) 

gM+l(n) = [0 1 + '1M(n) [1 1 
gM(n - 1) FM(n - 1) - aMen - 1) 

gM(n) = rgM+I(n)lM + 9M+l,M+l(n)bM(n -1) (F.!) 

I71M( n )1 2 

'"YM+l(n) = '"YM(n - 1) + fJFM(n _ 1) 

tPM(n) = 9M+l,M+l(n)BM(n - 1) 

'"YM(n) = '"YM+l(n) - fJ- 19M+l,M+l(n)tPlt(n) 

b (n) = tPM(n) 
M '"YM(n) 

bM(n) = bM(n - 1) + fJ-IgM(n)bM(n) 

BM(n) = fJBM(n -1) + tPM(n)bM(n) 

Time updating of the LS FIR jUter 

(F.2) 

t The notation rvl m stands for the vector made of the m fir6t components of the vector v and lvJm for 
the vector made of the m la6t components of the vector v. 
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Appendix G. Matrix-based Derivation of the Error and Weight 
Vector Recursions: Type II-ORB 

It is assumed that the least squares weight vector wit ( n) and the corresponding least 

error squares êMo( n, l) are availahle at iteration n. It is desired to compute, from these 

values, the least error squares for l - 1 and l + 1, and the least squares weight vector 

corresponding to the lowest error. Recursions for the error are first developed, followed 

hy similar recursions for wifl(n) and wi/l(n). The derivations follow closely the ones 

presented in [63] for a fi:red-length block of data. 

G.t Recursions for the Error 

The least squares enor, for lag l in the reference path, can he expressed as [7] 

(G.l) 

where n 

~ l( n, l) = L fJn-Clr( i + l)12 
.=1 (G.2) 

= fJld(n -l,l) + Ir(n + i)12
• 

Use of (E.4) and (E.19) in (5.20) gives 

w~(n) = 

l 8~(n) - a~_I(n)~it~l(n.- 1) 
wIM(n) = F () M-l n 

(G.4) 

is the first component ofw~(n), (G.3) cll.n he written as 

w~(n) = [0 l 1 J + [wfM(n) J. 
wiÈ_l(n - 1) - IM-J(n)wfM(n) 

(G.5) 

Use of (E.4) and (G.5) in (G.l) gives 
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{ 

= td(n, l) - ÛJfM(n)[9ii(n) _'~~VH (n -1)aM_I(n)]-'~~VH (n -l)w~~I(n-l). (G.6) 

Write ~d( n, l) as 

n-l 
{d(n,l) = L ,an-I-Ilr(i + l + 1)12 

i=O 
n-l 

= L ,an-I-Ilr(i + l + 1)12 + pn-Ilr(l + 1)12 
(G.7) 

1=1 

= td(n - l,l + 1) + ,an-Ilr(l + 1)12• 

Use of (G.4) and (G.7) in (G.6) gives 

tMo(n,l) = ~d(n -l,l+ 1) 

- ,<:t~I{H (n - l)w~~1 (n - 1) - FM-l (n)Iû.{u(n)12 + ,an-Ilr(l + 1)12 

= ~(M-l)o(n - l,l + 1) - FM_I(n)lwLu(n)1 2 t ,an-1Ir(l + 1)1 2 . 

(C.8) 

Therefore, from (G.8), a first recursion on the least error squares is 

In order to obtain a relation involving ê(M -l)o(n -1, l+ 1), extend (G.1) to l + 1 and M -1 

- (") - ( Il ) JII(l+l)H() -l+l ( ) {(M-I)o n,e. + 1 = {d n,e. + 1 - PM-I n wM_I n . (G.10) 

Using (E.14) and (E.18) to express wit~l(n) 

w~~l(n) = t!l_l(n)'it~l (n) 

= [,B-ltil_l(n - 1) - r2gM-l(n)grïl(n)][il;J~I(n -1) + uM_l(n)r'(n + t + I)J 
iM-l n 

= wl+l (n _ 1) _ gM-I(n)d~'_I(n)'~~l(n - 1) 
M-I PiM-I(n) 

tP-tt"'il_I(n -1)uM_I(n)r.(n + l + 1) _ ,a-2gM_I(n 'd~-1(n)u7)1(n)r.(n + l + 1) 
iM-I n 

(C.11) 

Using (E.16) and (E.17) and aCter sorne manipulations, (G.11) simplifies to 

wHI (n) = wl+ l (n - 1) - 8M-I(n) [uH (n)wl+l (n - 1) - r·(n + l + 1)]. (G.12) 
M-I M-I ,aiM-I(n) M-I M-I 
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Using (E.14) and (G.12) in (G.IO) and noting that 

(G.13) 

gives, after sorne manipulatiom" 

ê(M-l)O(n,i t 1) = ,8~(M-)ol(n -l,l + 1) 
(l+l)H v 

t 'M-l gM-l(n) () 
"YM-l n (G.14) 

t r(n + i t 1) v ( tfM-1(n) - "YM-l(n) - 1], 
lM-l n 

where v is defined as 

(G.15) 

Note that t M( n) is Hermitian symmetric, i.e. 

t M(n) = t~(n), (G.16) 

which implies that t"i.l(n) is also Hermitian symmetric [7]. This, in turn, implies that 

tJi (n) is positive semi-definite with real eigenvalues. Then 

(G.17) 

is real if,8 is real. Therefore, (G.14) simplifies to 

A A (1+1)11 v 
~(M_l)o(n,itl) = ,8~(M_l)o(n-l,ft1)+[8M_l gM_l(n)-r(ntltl)] ()' (G.18) 

"YM-l n 

Using (E.18) and (5.20) in (G.18) gives 

A A • v 
~(M-l)o(n, f + 1) = ,8~(M-l)o(n - 1, l + 1) + v ( )' (G.19) 

"fM-l n 

i.e. 

A A IU~_1(n)wtr:l(n-1)-r·(n+lt1)12 
~(M_l)o(n,l+l)=,8~(M_l)o(n-l,ltl)+ ( ) , 

"YM-l n 
(G.20) 

which is the second recursion required. It allows th~ computation of ~(M -1 )o( n, l + 1) from 

~(M-l)(J(n - 1,i + 1), while (G.IO) allows the computation of ~(M-l)O(n - 1,l + 1) from 

{Mo( n, i). AlI is required is a relation linking {(M -l)o( n, f + 1) to {Mo( n, l t 1). 

This relation can he ohtained hy first computing a relation similar to (G.5) with the 

help of (E.2) and (E.23) in 

(G.21) 
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( 

This gives 

w1M+l(n) = {[t-;,lO-Tl (n) 0] 1 [ - bM - l (n)] [bH () o + BM_I(n) 1 - M-l n 

[ wtr~l(n)] 1 [- bM - l (n)] H ..1+1 J+l 
= 0 + BM_}(n) 1 [-bM_ l (n)"M_l(n) +"M (n)]. 

Noting that (using (E.24» 

-b~-I(n);J~I(n) = -r~f_l(n)t"i.l_l(n -1)tlJ~I(n) 

= -r~-1(n)w1t~l(n), 

equation (G.22) can be written as 

(G.22) 

(G.23) 

",Hl(n) = [w1t~l(n)] + 1 [ - bM - l (n)] [_rbH (n)wHl (n) + (l+l(n)] 
M 0 BM-l(n) 1 M-l M-I M . 

(G.24) 

Now, use (E.2) and (G.24) in (G.1) for l + 1 

êMo(n,i + 1) = êd(n,i+ 1) - [8~~?H(n) ,~~+I)·(n)] 

{ [:it:,(nl] + BM~,(nl [1- bM_,(nl] [-rW_,(nlwi!:,(nl Hit'(nl)} 

= êd(n l + 1) - ,(Hl)H (n)y,l+1 (n) _ 1 l(Jl+l(n) _ rbH (n)w1+1 (n)12. (G.2.5) 
, M-I M-I BM_I(n) M M-l M-I 

Using (G.!) in (G.25) gives 

A ( ) A ) 1 1 l+1 bH A l+1 )1 2 eMo n,i+ 1 = e(M-I)o(n,i+ 1 - B () (JM (n) -rM_I(n)wM_l(n . 
M-l n 

(G.26) 

This expression can be written in a different form by noting that 

,HI(n) - rbH (n)wl+ l (n) = [_b H (n) M M-I M-l M-l 
n 

1] L /3n-· UM ( i)r*( i + i + 1) 
1=1 

n 

= L/3n-l [u(i - M + 1) - b~_I(n)uM_l(i)]r·(i + i + 1) 
Î=l 
n 

= L:pn-1bM_l(i)r·(i + i + 1). 
1=1 
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• .. 

.... 

Define 
fa 

V~}l~ll)(n) = L,Bn-ibM_l(i)r*(i + i + 1). (G.28) 
1=1 

Then (G.26) is written in the form 

1 
b(l+I)( )1 2 • • VM-l n 

~Mo(n,i+l)=~(M_l)o(n,i+l)- B ()' 
M-l n 

(G.29) 

This last expression is the third necessary error recursion. Collecting (G.9), (G.20) and 

(G.29), the recursions for computing êMo( n, i + 1) from êMo( n, i) are 

(G.30) 

U sing the above expressions in reverse order gives the backward computation of the errori 

_ _ IV~~_I(n)12 
~(M_l)o(n,i)=~Mo(n,i)+ B () 

M-l r, 

luH (n)vl (n - 1) - r*(n + l)1 2 
ê (- 1 i) - ,B-l { (i) _ ,B-l-.!:!.M_-l=---=M_--=-1 ------(AI-l)o n ,- (M-l)o n, "YM-l(n) 

- - -(-1 ? 
~Alo(n, i- 1) = ~(M-l)o(n - 1, i) - FM-l (n)lwUf (nW· 

(G.31) 

G.2 Recursions for the LS Weight Vector 

The recursions for the upward weight vector computation were aU derived in the pre

vious section on error recursions. The recursions for downward computations are obtained 

by applying the upward recursions in reverse order. 

G.2.1 Recursions for the upward weight vector computation 

The first recursion on the weight vector is obtained from (G.5) and can be written as 

(G.32) 

where lwit(n)JM-l is defined as the (M - l)-vector corresponding to the last M - 1 

components of wit(n). 
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( 
The second and third recursions are given by (G.12) and (G.24) respectively. The set 

of recursions is therefore 

wtr~l(n -1) = lwit(n)J M-l + aM-l(n)wfM(n) (G.33) 

wl+ l (n) = wl+ l (n - 1) - gM-I(n) [uH (n)wl +1 (n - 1) - r·(n + l + 1)] 
M-l M-I ,BïM-l(n) M-l M-I 

(G.34) 

(G.35) 

G.2.2 Recursions for the downward weight vector computation 

Use the upward recursions in reverse order. The corresponding set of recursions is 

(G.36) 

(G.37) 

where rw~(n)lM-l is defined as the (M -l)-vector corresponding to thefirst cornponents 

of wL-( n), w~ M( n) is the M'" cornponent ofthe same vector and v~~~I)( n) is defined as 

v~~~l)(n) = ij~ïl(n) - r{1_1 (n)w~_l(n - 1) 

= ij~ï 1 
( n) - a ~ -1 ( n )9~f -1 (n - 1) 

n 

= L/1n-'fM_l(i)r*(i + l- 1). 
i=1 

G.3 Auxiliary recursions 

(G.38) 

Sorne auxiliary recursions necessary in the error and vcctor recursions are developed in 

this section. 

o Reeursion for gM -1 ( n ) 

Use (E.19) and (E.l) in (E.16) 

{ [0 OT] 1 [1 1 gM(n) = -1 + [1 o +M_l(n - 2) FM-dn -1) _ aM-l(n _ 1) 
- '~_I(n -1)1} 

[ 
u(n) 1 
uM_l(n-l) 
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=[0 ]+F ~ )[1 ][U(n)-a~_1(n-l)UM_1(n-l)]. 
BM-1(n - 1) M-l n - 1 - aM-l(n - 1) 

(G.39) 

Now use (E.1) and (E.23) in (E.16) 

( ) _ {[t"il_l(n - 1) 
B,y n - OT 

0] 1 [ -bM-1(n - 1)] 
o + BM-l(n - 1) 1 [-b~_l(n - 1) 

[

UM-l(n) ] 

u(n - M + 1) 

[ 
BM -1 ( n )] 1 [ - b M -1 (n - 1)] 

= 0 + BM-l(n - 1) 1 (-b~_l(n-l)uM_l(n)+u(n- M + 1)], 

Le. 

Equations (G.39) and (G.41) are the recursions for BM-l(n). 

o Reeursions for FM-l(n) and BM-l(n) 

The recursions for FM -1 (n) and B M -1 (n) are (7] 

and 

(G.40) 

(G.41) 

(G.42) 

(G.43) 

where 7]M-l(n) and tPM-l(n) are respectively the forward a priori prediction error and the 

backward a priori prediction error defined as 

17M-1(n) = [1 

= u(n) - a~_l(n - l)uM_l(n - 1) 

tPM-1(n) = (-b~_l(n - 1) l]uM(n) 

= u(n - M + 1) - b~_I(n - l)uM_l(n). 

o Recursions for the Corward and baekward predidors 

For the forward case, use (E.1B) and (E.1O) in (E.20) 

( ) = [,0-1+-1 ( _ 2) _ ,o-2 BM- 1(n -l)B~_l(n - 1)] 
aM-l n M-l n "'fM-1(n _ 1) 

[,or~_1(n - 1) + uM_l(n - l)u·(n)] . 
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( 

( 

Using (E.16), (E.17) and (E.20) and after sorne manipulations, the recursion for the forward 

predictor is 

Le. 

( ) () gM -1 (n - 1). () 
aM-l n = aM-l n - 1 + a ( 1)17M-l n . 

fJ"YM-l n-
(G,47) 

The recursion for the backward error is ohtained in a similar way and is 

(G.48) 

o Recorsions for "YM(n) and "YM-l(n) 

In order to estahlish recursions for 'Y M( n) and "Y AI -1 (n), the following identities are 

necessary [7] 

IM-J(n) = 17M-l(n) 
"YM-l(n-l) 

bM-l(n) = tPM-l(n) 
"YM-l(n) 

tPM-l(n) 
gMM(n) = BM-l(n - 1)' 

Then, using (E.17) and (G.39) 

Also, 

'YM(n) = 1 + ,B-lg~_I(n)uM_l(n) 
I17M_l(n)12 

="YM-l(n-l)+,BF ( 1) M-l n-

I1PM_l(n)12 

'YM(n) = 'YM-l(n) + (JBM-l(n) 

= "YM-l(n) + ,B-lgMM(n)1PM_l(n). 

o ReeursioDs for v~l(n) and v~(n) 

From (G.38), v!.!(n) is defined as 

From (G.47) and (G.49), one obtains 

gm(n - 1) • 
amen) = amen - 1) + (J Im(n). 

Then, using (E.14) and (G.55) in (G.54), 

(G,49) 

(G.50) 

(G.51) 

(G.52) 

(G.53) 

(G.54) 

(G.55) 

v~l(n) = ,B[1 - a~(n - 1)]tlm+1(n - 1) + [1 - a~(n - 1)]Um+l(n)r·(n + l) 
- [0 g~(n - 1)]tlm+ 1(n),B-l/m(n). 
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Using (E.l) and (E.4), 

v~l(n) = fJv~l(n - 1) + [u(n) - a~(n - 1)um(n - 1)]r·(n + l) 
- fJ-lg!!a(n -1)gl"tl(n - l)fm(n) 

= (3v~l(n - 1) + 1Jm(n)r·(n + i) 
- fJ-Ig{!(n -1)gl"tl(n - 1)fm(n). 

Using the definition of gm( n), (see equation (E.16)), (G.56) can be written as 

v~l(n) = fJv~l(n _ 1) + 7Jm(n)[r.(n + i) _ um(n - l)t;;.l(n - 2)gl"tl(n - 1)]. 
fJ"'tm(n -1) 

(G.56) 

(G.57) 

But using (E.14), the second term in brackets is equal to r·( n + i) - e:n (n - 1, i + 1) and 

(G.57) becomes 

v~l(n) = fJvf,f(n - 1) + 7Jm(n)e:n(n - l, i + 1). (G.58) 

Similarly, the recursion for v~ ( n) is round to be 

v~(n) = [-b~(n) l]glm+t(n) 

= fJv~(n - 1) + tPm(n)e:n(n,i). 
(G.59) 

o Recursion for w1t ( n) 

A recursion on w1t(n) is obtained by starting from (5.20) and pro(~eding as in the 

derivation of (G.12). It is 

w1t(n) = w1t(n - 1) + ;~~~)[r·(n + i) - u~(n)w~f(n - 1)]. (G.60) 

Now, the a priori estimation error is 

OM(n,i) = r(n + i) - w,/! (n - l)uM(n), 

and the a posteriori estimation error is 

Then 

w1t(n) = w1t(n - 1) + /r1gM(n) eM(~' ~). 
"lM n 

It can be shown that [7] 

( i) 
CtM(n,i) 

eM n, = () , 
"lM n 

and therefore 

w1t(n) = w1t(n -1) + fJ-1gM(n)eM(n,l). 

o Recursion for ~Mo( n, 1) 

The recursion for the minimum error is [7] 
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(G.62) 

(G.63) 

(G.64) 

(G.65) 
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