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Abstract

Most existing deep learning based methods for vessel segmentation neglect two impor-

tant aspects of retinal vessels: the orientation information of vessels and the contextual

information of the whole fundus region. In this paper, we propose a robust orientation

and context entangled network (OCE-Net), which can extract complex orientation and

context information from blood vessels. To achieve complex orientation-aware convo-

lution, we propose a dynamic complex orientation-aware convolution (DCOA Conv) to

extract complex vessels with multiple orientations for improving vessel continuity. To

simultaneously capture the global context information and emphasize the important lo-

cal information, we propose a global and local fusion module (GLFM) to simultaneously

model the long-range dependency of vessels and give sufficient attention to local thin

vessels. A novel orientation and context entangled nonlocal (OCE-NL) module is also

proposed to entangle the orientation and context information together. In addition, an

unbalanced attention refining module (UARM) is proposed to deal with the unbalanced

pixel numbers of the background and thick and thin vessels. Additionally, retinal vessel

segmentation is a challenging task due to the need to capture global context information

and ensure continuity of the vessels. To address these challenges, we also propose a novel

Graph Capsule Convolution Network (GCC-UNet). This approach integrates capsule

convolution with CNN to extract both local features and global context information, and

we develop a Graph Capsule Convolution (GC Conv) operator to more effectively cap-

ture global context features. Furthermore, we design a Selective Graph Attention Fusion

(SGAF) module to fuse local and global features. For improving the continuity of vessels,
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we propose a Bottleneck Graph Attention (BGA) module, consisting of a Channel-wise

Graph Attention (CGA) module and a Spatial Graph Attention (SGA) module. To fuse

multi-scale features, we propose a Multi-Scale Graph Fusion (MSGF) module. Extensive

experiments were performed on several commonly used datasets (DRIVE, STARE, and

CHASEDB1) and some more challenging datasets (AV-WIDE, UoA-DR, RFMiD, and UK

Biobank). The ablation study results show the proposed method’s good performance

in maintaining the continuity of thin vessels, and the comparative experimental results

show the good performance of our OCE-Net and GCC-UNet in retinal vessel segmenta-

tion. Thus, the proposed frameworks can effectively carry out retinal vessel segmenta-

tion.
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Abrégé

La plupart des méthodes existantes basées sur l’apprentissage en profondeur pour la

segmentation des vaisseaux négligent deux aspects importants des vaisseaux rétiniens

: l’orientation des vaisseaux et l’information contextuelle de l’ensemble de la région du

fond d’œil. Dans cet article, nous proposons un réseau robuste entrelacé d’orientation

et de contexte (OCE-Net), qui peut extraire des informations complexes sur l’orientation

et le contexte des vaisseaux sanguins. Pour réaliser une convolution complexe prenant

en compte l’orientation, nous proposons une convolution dynamique complexe prenant

en compte l’orientation (DCOA Conv) pour extraire des vaisseaux complexes avec de

multiples orientations afin d’améliorer la continuité des vaisseaux. Pour capturer simul-

tanément l’information contextuelle globale et mettre l’accent sur l’information locale im-

portante, nous proposons un module de fusion global et local (GLFM) pour modéliser

simultanément la dépendance à long terme des vaisseaux et accorder une attention suff-

isante aux vaisseaux fins locaux. Un nouveau module non local entrelacé d’orientation et

de contexte (OCE-NL) est également proposé pour entrelacer l’orientation et l’information

contextuelle. De plus, un module de raffinement d’attention non équilibré (UARM) est

proposé pour traiter les nombres de pixels déséquilibrés du fond et des vaisseaux épais

et fins.

De plus, la segmentation des vaisseaux rétiniens est une tâche difficile en raison de

la nécessité de capturer l’information contextuelle globale et d’assurer la continuité des

vaisseaux. Pour relever ces défis, nous proposons également un nouveau réseau de con-

volution de capsule de graphe (GCC-UNet). Cette approche intègre la convolution de
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capsule avec CNN pour extraire à la fois des caractéristiques locales et des informa-

tions contextuelles globales, et nous développons un opérateur de convolution de capsule

de graphe (GC Conv) pour capturer plus efficacement les caractéristiques contextuelles

globales. De plus, nous concevons un module de fusion d’attention sélective de graphe

(SGAF) pour fusionner les caractéristiques locales et globales. Pour améliorer la con-

tinuité des vaisseaux, nous proposons un module d’attention de graphe d’étranglement

(BGA), composé d’un module d’attention de graphe selon les canaux (CGA) et d’un mod-

ule d’attention de graphe spatial (SGA). Pour fusionner les caractéristiques multi-échelles,

nous proposons un module de fusion de graphe multi-échelle (MSGF).

Des expériences approfondies ont été menées sur plusieurs ensembles de données

couramment utilisés (DRIVE, STARE et CHASEDB1) ainsi que sur certains ensembles de

données plus difficiles (AV-WIDE, UoA-DR, RFMiD et UK Biobank). Les résultats de

l’étude d’ablation montrent la bonne performance de la méthode proposée pour main-

tenir la continuité des vaisseaux fins, et les résultats expérimentaux comparatifs mon-

trent la bonne performance de notre OCE-Net et GCC-UNet dans la segmentation des

vaisseaux rétiniens.
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Chapter 1

Introduction

Retinal vessel segmentation is helpful for ophthalmologists to diagnose eye-related dis-

eases such as glaucoma, hypertension, diabetic retinopathy (DR), and arteriosclerosis [50]

because changes in the vessel morphology and structure can be a symptom of a patholog-

ical condition. However, manual segmentation of retinal blood vessels is time-consuming

and laborious because the structure of vessels is complicated. In addition, manual label-

ing is also error-prone because there are numerous capillaries throughout whole fundus

images, which are narrow and have low local contrast against the fundus background.

In addition, these thin vessels are easily mislabeled or missed during manual annotation.

Therefore, automated fundus vessel segmentation [57] [53] [55] is meaningful and neces-

sary for ophthalmologists to achieve a more accurate and rapid diagnosis of ophthalmic

diseases.

However, vessel segmentation of fundus images is a challenging task. The blood ves-

sels have complex geometric structures, and arteries and veins usually have different

widths. In the whole vascular system, different vascular branches have different orienta-

tions, the capillaries are usually small, and it is difficult to seperate thin vessels from the

fundus background, which is easy to be ignored. In addition, fundus images also contain

various lesion areas, and the characteristics of some lesions are similar to those of blood

vessels, so these vessel-like lesions are easily wrongly segmented as blood vessels.
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To overcome these challenging problems, researchers have proposed many traditional

vessel segmentation methods [8] [63] [48] and achieved good results. These traditional

methods usually use some manually designed filters [8] [75] to extract vascular features,

and some machine learning-based methods use classifiers [64] to classify each pixel of the

fundus image.

In recent years, deep learning [74] [29] has been widely used in the area of medical

image processing [15] [3] and has achieved great success. In particular, many efficient

segmentation networks have been proposed [55] [51] [38], the most well-known one be-

ing UNet [71]. UNet is widely used in medical image segmentation, such as vascular

segmentation [38], lesion area segmentation [43], and organ and tissue segmentation [20].

To improve the accuracy of vascular segmentation, most previously developed deep-

learning-based fundus vessel segmentation methods attempt to increase the depth and

width of the networks, and expand the receptive field by stacking numerous local con-

volution kernels. However, most of these methods pay little attention to two important

information of fundus vessels: the orientation and context information, which are greatly

important for accurate vessel segmentation.

As for the orientation information, unlike the instance segmentation in natural im-

ages, the blood vessels in fundus images have extremely complex orientation information

owing to numerous furcations and branches. Capturing this complex orientation infor-

mation is helpful to improve the accuracy of vessel segmentation and the continuity of

thin vessels. In terms of the context information, in the whole vasculature, the overall

skeleton of blood vessels presents certain distribution patterns, for example, the symme-

try and relative position, orientation, and shape of each blood vessel branch relative to the

whole vascular skeleton. In addition, some vessels are occluded by lesions, which makes

them difficult to detect. Capturing global context information can allow the network to

learn the distribution of blood vessels from a holistic perspective, which can alleviate the

problem of occlusion. This is the motivation of the work of OCE-Net.

The main contributions of our OCE-Net are as follows.
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• An orientation and context entangled network (OCE-Net) is proposed for retinal

vessel segmentation by simultaneously capturing the orientation and context infor-

mation of blood vessels;

• A dynamic complex orientation-aware convolution (DCOA Conv) is proposed to

capture complex vessels with multiple orientations;

• A novel global and local fusion module (GLFM) is proposed to simultaneously

model the global long-range dependencies and focus attention on local thin vessels.

• An orientation and context entangled nonlocal (OCE-DNL) block is proposed to

entangle the orientation and context information by introducing correlation into a

vanilla nonlocal operation.

• An unbalanced attention refining module (UARM) is designed to refine the output

features and cope with the unbalanced problem among the background, thick, and

thin vessels.

• The results of extensival experiments on multiple widely used datasets show our

method’s superior performance to other recent methods.

In addition, due to the intricate and intricate nature of the vascular system, pixel-level

segmentation of vessels is prone to errors, especially in the presence of numerous thin

vessels and capillaries. To overcome these challenges, there is a pressing need to develop

automated computational methods that are both efficient and accurate in retinal vessel

segmentation. Such methods would greatly improve the efficiency and effectiveness of

retinal image analysis, which is critical for the diagnosis and management of various

retinal diseases.

Developing accurate retinal vessel segmentation methods is a challenging task due to

the high similarity between blood vessels and the background in retinal fundus scans [1].

Even experienced ophthalmological experts struggle to accurately annotate blood vessels

from the background, and some lesions can be easily confused with vessels. However,
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computer-aided methods [89] have made significant progress in this field, with practical

algorithms and models that can assist doctors in making accurate diagnoses, develop-

ing effective treatments, and providing better medical care. Numerous computational

methods have been proposed for retinal vessel segmentation [21] [99] [90], with promis-

ing performance. Traditional methods [31] [8] [107] [2] leverage pre-designed features

and filters [75] to segment vessels from the complex fundus background, while machine

learning-based models treat vessel segmentation as a pixel-level classification task [63],

applying classifiers such as SVM [70], KNN, and Random Forest to each pixel. Recently,

deep learning-based vessel segmentation methods [90] [18] have achieved state-of-the-art

performance. However, deep learning still faces two major challenges: effectively captur-

ing global context information and enhancing the continuity of blood vessels, especially

capillaries. Many previous methods [85] [90] [94] have tried to capture global context

information for medical image segmentation, as global information helps model long-

range dependencies in holistic medical images. To improve vessel connectivity, previous

methods propose effective loss functions [99] to constrain vessel connectivity and visual

attention mechanisms [49] [90] to allocate more attention to thin vessels rather than the

background and thick vessels.

To address these challenges, we propose a well-designed Graph Capsule Convolu-

tion Network (GCC-UNet) for retinal vessel segmentation. To our best knowledge, this

is the first work to unify graph networks, capsule networks, and vanilla convolutional

networks in a framework for medical image segmentation applications.

We highlight the contributions of the work GCC-UNet as follow:

• An novel Graph Capsule Convolution UNet (GCC-UNet) is proposed for retinal

vessel segmentation by simultaneously capturing local features and global context

features.

• A novel Graph Capsule Convolution (GC-Conv) is proposed to improve the existing

capsule convolution by introducing graph reasoning into capsule.
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• A novel Selective Graph Attention Fusion (SGAF) module is developed to fuse local

and global context features.

• A Bottleneck Graph Attention (SGA) module, which consists of a Channel-wise

Graph Attention (CGA) and a Spatial Graph Attention (SGA), is proposed to en-

hance the continuity of vessels.

• A Multi-Scale Graph Fusion (MSGF) module is designed to fuse multi-scale fea-

tures.

• Extensive experiments on multiple widely used datasets show that our method out-

performs many other recent methods and achieves state-of-the-art performance.
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Chapter 2

Related Works

2.1 Deep Learning and Convolution Neural Networks

Deep learning is a subfield of machine learning that utilizes artificial neural networks

with multiple layers to extract features and make predictions from data [46]. The key

advantage of deep learning over traditional machine learning algorithms is its ability to

automatically learn high-level features from raw data, without requiring manual feature

engineering. This makes it particularly useful for tasks such as image and speech recog-

nition, natural language processing, and computer vision.

Convolutional neural networks (CNNs) are a type of deep neural network specifi-

cally designed for image recognition tasks [36]. They have revolutionized the field of

artificial intelligence (AI) and machine learning (ML) by automatically learning and ex-

tracting meaningful patterns and features from large amounts of data [29]. This has led to

remarkable breakthroughs in various domains, including computer vision, natural lan-

guage processing, and medical imaging [90].

One of the key advantages of CNNs is their ability to perform feature extraction au-

tomatically, without the need for manual feature engineering. They achieve this through

the use of convolutional layers, which apply learnable filters to input images, capturing
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specific visual patterns such as edges, corners, and textures. The resulting feature maps

represent the presence of these patterns in the input image.

CNNs also incorporate non-linear activation functions, such as the Rectified Linear

Unit (ReLU), which introduce non-linearity and enable the network to learn more com-

plex representations of the input. Additionally, pooling layers are used to reduce the

dimensionality of the feature maps, aiding in reducing sensitivity to small shifts and dis-

tortions in the input while also reducing computational complexity.

After several rounds of convolution, activation, and pooling layers, the output of the

last layer is flattened into a vector and fed into a fully connected layer, which performs a

classification or regression task. The fully connected layer consists of neurons that com-

pute a weighted sum of inputs and pass the result through a non-linear activation func-

tion, such as the softmax function for classification tasks.

The history of CNNs dates back to the 1980s, with Fukushima’s neocognitron intro-

ducing the concept of convolutional layers [23]. In the 1990s, LeNet architecture, de-

veloped by LeCun and colleagues, achieved success in character recognition tasks and

introduced innovations such as backpropagation, max-pooling, and local contrast nor-

malization [47].

In the 2000s, the field experienced a resurgence with the Deep Convolutional Neural

Network (DCNN) developed by Hinton and colleagues, which introduced rectified linear

units (ReLU), dropout regularization, and stacked convolutional layers [59]. The mid-

2010s witnessed the popularity of CNNs due to their success in competitions like the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Influential works during

this period include GoogLeNet, which introduced inception modules [80], and ResNet,

which introduced residual connections [29].

Recent advancements include the MobileNet architecture, which reduces computa-

tional cost with depthwise separable convolutions [13], and the EfficientNet architecture,

which achieves state-of-the-art performance with efficient scaling [?]. These develop-

ments have significantly improved the performance and efficiency of CNNs.
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CNNs have achieved remarkable success in image recognition tasks such as object

detection, segmentation, and classification [89, 90, 93]. They have surpassed human-level

performance in some benchmarks due to their ability to automatically learn high-level

features and capture increasingly complex representations of the input

2.2 Traditional Vessel Segmentation Methods

Many traditional methods have been proposed for vessel segmentation. Some researchers

have attempted to leverage orientation-aware filters to capture the orientation features

of vessels. For example, Zhang et al. [107] detected retinal blood vessels by a matched

filter with the first-order derivative of Gaussian (FDOG), which leverages the orientation

selectivity of a matched filter. Soares et al. [75] adopted a multi-scale two-dimensional

(2D) Gabor wavelet transform to extract features and used a Bayesian classifier to classify

each pixel as a vessel or non-vessel; this was the first work to introduce a Gabor filter

into vessel detection. Azzopardi et al. [2] proposed trainable COSFIRE filters to achieve

orientation selectivity. All these works’ proposed approaches take the orientation into

consideration; however, none of them can handle more than one orientation at a time.

Inspired by these works, we propose a module that can capture multiple orientations of

vessels.

Other traditional methods have been established; for example, Xie proposed HED [96],

an effective edge detection algorithm that can be introduced to conduct vessel segmenta-

tion. Taking vessel segmentation as the line detection task, Ricci proposed LineDet [70], a

vessel segmentation method that uses line operators and support vector machine (SVM)

for classification. Nguyen proposed a method based on LineDet, MS-LineDet [60], which

applies line detectors at varying scales and changes the length of the basic line operators.

These line-detection-based methods have the advantage of improving vessel connectivity,

but they always misdetect other tissues as blood vessels.
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In general, these traditional methods leverage the intrinsic characteristics of vessels

and achieve good performance. However, the features extracted by these traditional

methods lack discriminability, so they always fail to distinguish capillaries from the fun-

dus background, which results in failure in the detection of thin vessels.

2.3 Deep Learning Vessel Segmentation Methods

Deep learning methods for retinal vessel segmentation have generally outperformed tra-

ditional methods when successfully trained on large-scale datasets with manual labels.

This has been demonstrated by many groundbreaking works. For example, Maninis pro-

posed DRIU [55], which uses a basic network and two specialized layers to perform blood

vessel and optic disc segmentation; this was a pioneering work introducing deep learning

into retinal vessel segmentation. Fu proposed DeepVessel [21], which views vessel seg-

mentation as a boundary detection task and uses the conditional random rield (CRF) to

capture long-range interactions between pixels, making it the first method to take context

information into consideration. Son proposed V-GAN [76], which introduces generative

adversarial networks (GANs) into vessel segmentation to extract clear and sharp vessels

with less false positives, making it the first method to introduce GAN into retinal ves-

sel segmentation. Shin proposed VGN [73], which incorporates a graph convolutional

network into a CNN to learn the graphical connectivity of vessels.

In addition, some researchers have aimed to improve the plain UNet by introducing

some novel modules. For example, Oktay proposed Attention UNet [61], which intro-

duces an attention gate into UNet for better feature learning and integration with channel

attention; in contrast, Guo proposed SA-UNet [26], which introduces spatial attention into

UNet. Jin designed DUNet [38], which introduces deformable convolution into UNet to

adaptively fit the shape of vessels; however, the deformable convolution is computation-

ally intensive. Inspired by DUNet, we propose a module (DCOA Conv) that can fit the

orientation of vessels in this work.
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Other works have been dedicated to segmenting thick and thin vessel separately. For

example, Yan proposed JL-UNet [99], which features a segment-level loss to focus more

on the thickness consistency of thin vessels. The three-stage model proposed by Yan et

al. [100] segments thick and thin vessels separately for addressing the imbalance problem

between them. Inspired by these methods, we propose a module (UARM) that can focus

attention separately on thick and thin vessels.

Moreover, some researchers have aimed to capture multi-scale features of vessels. For

example, to deal with the varying widths and directions of vessel structures, Oliveira

proposed SWT-FCN [62], which acts as a multi-scale fully convolutional neural network

by combining the multi-scale analysis and using the stationary wavelet transform. Guo

designed BTS-DSN [28], a multi-scale deeply supervised network with short connections

for vessel segmentation. Wang’s CTF-Net [86] is a coarse-to-fine SegNet for preserving

multi-scale feature information. CC-Net [18] is a cross-connected convolutional neural

network designed to better learn features. Inspired by these works, we propose OCE-

DNL, which can leverage the multi-scale features by fusing them together.

In addition, some scholars have tried to improve the connectivity of vessels. For exam-

ple, DeepDyn, proposed by Khanal [40], is a stochastic training scheme for deep neural

networks to balance precision and recall. To improve the continuity of thin vessels, Tan

proposed SkelCon [81], a lightweight network that introduces the skeletal prior and con-

trastive loss during training.

Although the above works’ proposed methods can greatly improve retinal vessel seg-

mentation performance, they all ignore the multiple orientations of vessels and the con-

text information of whole fundus images, which are important for maintaining the conti-

nuity and connectivity of vessels.
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2.4 Visual Attention Mechanism

Visual attention is a cognitive mechanism that enables human beings to focus on a subset

of relevant information in a given scene while ignoring irrelevant information. The study

of visual attention [35] has attracted a lot of attention in computer vision [27] and artificial

intelligence [82] [83] because it is an essential aspect of human visual perception that is

crucial for tasks such as object recognition [93], scene understanding [108], and medical

imaging [89]. Deep learning models have been used to model the visual attention mech-

anism and have shown promising results in various computer vision tasks [91] [27]. In

this article, we will review some of the recent works related to deep learning and visual

attention mechanisms.

The visual attention mechanism is a complex process that involves the selection of

relevant visual features from a given scene while filtering out irrelevant features [27].

In the context of deep learning, visual attention mechanisms refer to the ability of neu-

ral networks to selectively focus on relevant parts of the input image while suppressing

irrelevant parts. One of the most popular visual attention mechanisms is the spatial atten-

tion mechanism [93], which involves the use of convolutional neural networks (CNNs) to

learn spatially varying attention masks that highlight relevant parts of the input image.

Deep learning attention mechanisms have been widely studied and applied in various

fields, such as natural language processing [82], computer vision [27], and speech recog-

nition. The attention mechanism allows the model to focus on important information,

improving the performance of the model in tasks such as classification and generation.

One popular attention mechanism is the self-attention mechanism [82] proposed in the

Transformer model, which calculates the attention weights based on the relationships be-

tween all input tokens. This mechanism has been successfully applied in various natural

language processing tasks, such as machine translation and text summarization. An-

other attention mechanism is the visual attention mechanism, which is commonly used

in computer vision tasks. This mechanism allows the model to selectively focus on cer-
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tain parts of the image, improving the accuracy of object recognition and low-level image

tasks [92]. One example is the Spatial Transformer Network, which uses attention to

transform the input image before feeding it into a convolutional neural network. There

have also been works on incorporating attention mechanisms into generative models,

such as the attention-based Generative Adversarial Networks (GANs) [25]. This approach

allows the generator to focus on certain parts of the input, improving the quality of gen-

erated images.

In conclusion, deep learning models have shown promising results in modeling the

visual attention mechanism and have been successfully applied to various computer vi-

sion tasks. Recent works [33] have focused on developing new models and algorithms

that can improve the performance of these tasks further. The development of these mod-

els and algorithms is expected to have significant implications for the field of computer

vision and artificial intelligence.

2.5 Non-local and Self-Attention Mechanism

Non-local (NL) [87] and Self-Attention (SA) [82] mechanisms have become important

techniques in deep learning for modeling dependencies between input elements and se-

lectively attending to important information. The non-local operation was first proposed

by Wang et al. in their 2018 paper ”Non-local Neural Networks” [87] for modeling long-

range dependencies between features in computer vision tasks. The self-attention mecha-

nism was first introduced in the Transformer model by Vaswani et al. in their 2017 paper

”Attention is All You Need” [82] for modeling contextual dependencies between elements

in natural language processing tasks.

Several works have combined non-local and self-attention mechanisms to improve

the performance of deep learning models [69] [90]. For example, the Non-local Neural

Networks paper introduced a non-local block that can be inserted into any convolutional

neural network. The Dual Attention Network proposed by Fu et al. in their 2019 paper
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”Dual Attention Network for Scene Segmentation” [22] consists of two attention modules:

a spatial attention module that attends to different spatial locations in the input image,

and a channel attention module that attends to different feature channels.

These attention mechanisms have led to significant improvements in various fields

such as natural language processing, computer vision, and speech recognition. Future

research will likely explore new ways of combining these mechanisms to further improve

the accuracy of deep learning models.

Non-local (NL) [87] and Self-Attention (SA) [82] were proposed to model the long-

range dependencies without the distance constraints of pixels. Both of them calculate the

affinities between the key and query vectors obtained from the same features for cap-

turing the self-correlated attention map. The nonlocal neural network [87] computes the

response at a position by calculating the weighted sum of the features at all positions in

images, inspired by NL’s application in image denoising [5].

Some authors have attempted to improve the performance of NL. For example, Cao

proposed GCNet [6], which finds the relationship of a nonlocal and SE block [32] and

combines them to further improve NL. Yin’s disentangled nonlocal (DNL) [104] uses a

whitening operator to disentangle the vanilla NL into pairwise and unary branches to

better learn the within-region clues and salient boundaries. Both of the above works

provide insights into NL and proposed methods that improve NL. The SA mechanism

[82] proposed in Transformer [82] can capture the global context information of sequence

embeddings in natural language processing (NLP).

However, nonlocal is computationally expensive. To reduce the computational cost of

NL, Huang proposed CCnet [33] to reduce the computation complexity of self-attention.

In addition, to further extend the ability of SA, Bello et al.’s method [4] combines the

vanilla convolution and self-attention to obtain better performance. Furthermore, Ra-

machandran et al. [69] found that self-attention could serve as an effective standalone

layer, which was an interesting discovery. Fu proposed DAN [22], which introduces

self-attention into scene segmentation for adaptively integrating local features with their
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global dependencies, considering that local and global features are equally important.

Their motivation aligned with ours.

In this paper, we adopt nonlocal and self-attention for capturing context information

of fundus images and extend the capacity of nonlocal by introducing cross-correlation

mechanism into the vanilla nonlocal.

2.6 Variants of Convolution Operator

Convolution is a basic operator in a CNN for extracting deep representative features [80]

[74]. Based on vanilla convolutions, a number of efficient variants of the convolution op-

erator have been designed to extend the representation ability of the vanilla convolution.

For instance, some researchers have aimed to equip plain convolution operators with

the ability to learn the shape of objects. For example, Jeon proposed Active Convolution

[37], which adaptively learns the shape of convolution during training. Dai’s deformable

convolution [14] [111] learns the offsets of the kernel shapes to fit the object shapes in

ROI. Chen proposed dynamic region-aware convolution [9], which learns to apply each

convolution kernel on a single patch region to handle the complex and variable spatial

distribution.

Others have tried to endow the plain convolution operators with ability of learning the

orientation information of objects. For example, Luan proposed Gabor convolution [54],

which introduces Gabor filters with different orientations into vanilla convolution, but it

can only learn a single orientation per channel and cannot capture multiple orientations.

In addition, some researchers have tried to endow plain convolution operators with

the ability to integrating several kernels. For example, CondConv was first proposed to

integrate several convolution kernels, and it [101] learns specialized convolutional kernels

for each example by introducing conditional parameters. Dynamic Convolution was fur-

ther improved by introducing an attention mechanism to learn the weights and the biases

of each vanilla convolution and to integrate them into a single convolution kernel [10].
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All of the above works’ proposed convolution operators extend the capacities of vanilla

convolution; however, most of them do not take the orientation of objects into considera-

tion, and some of them [54] can only encode simple orientation information. In this paper,

we propose a novel convolution that can capture complex orientations to fully extract the

features of fundus vessels for improving the continuity of thin vessels.

2.7 Graph Neural Networks

Graph Neural Networks (GNNs) [110] are a class of deep learning models that operate on

graphs or networks. Unlike traditional deep learning models that operate on structured

data such as images and text, GNNs are designed to handle non-Euclidean data structures

such as graphs and networks, which are common in many real-world applications such

as social networks, molecular structures, and recommendation systems.

The basic idea behind GNNs is to learn representations of nodes and edges in a graph

that capture the structure and relationships between them. These representations are then

used to perform various tasks such as node classification, link prediction, and graph clas-

sification. The key challenge in designing GNNs is to develop models that can effectively

capture the complex dependencies and interactions between nodes and edges in a graph.

There are several types of GNN architectures, including spectral-based methods and

spatial-based methods. Spectral-based methods, such as Graph Convolutional Networks

(GCNs) [42], operate in the Fourier domain and apply convolutional operations to graph

signals. Spatial-based methods, such as Graph Attention Networks (GATs) [83], operate

in the spatial domain and use attention mechanisms to selectively attend to different parts

of the graph.

In GCNs, the graph convolution operation is defined as a linear combination of the

node features of each node and its neighbors in the graph. The weights of the linear com-

bination are learned during training, and the resulting feature vectors are passed through

non-linear activation functions to generate node embeddings. The process is repeated

15



for multiple layers, with each layer learning increasingly complex representations of the

nodes in the graph.

In GATs, attention mechanisms are used to weight the contributions of each neighbor

node to the representation of a target node. The attention weights are computed using

a learned function of the node features and are used to generate a weighted sum of the

neighbor node features. The resulting representation is then passed through non-linear

activation functions to generate node embeddings.

GNNs have been applied to a wide range of applications, including recommendation

systems, drug discovery, social network analysis, and computer vision. They have been

shown to outperform traditional methods in many tasks, especially when the data is rep-

resented as a graph or network.

Graph neural networks (GNNs) [110] [95], especially graph convolutional networks

(GCNs) [109] [42], have become popular in various research fields such as computer vi-

sion [108] [103]. Kipf [42] first proposed GCNs for achieving the classification of non-

Euclidean data, and since then, many applications have emerged in image recognition

[103], segmentation [108], medical image analysis [58], visual attention [103], and text

classification [102]. Although there have been numerous works [83] [105] [88] aimed at

improving and extending the capabilities of GNNs, few studies have applied graph net-

works to vessel segmentation [73]. To address this gap, we propose the development of

GCN modules and their introduction into retinal vessel segmentation to improve vessel

continuity.

In conclusion, Graph Neural Networks (GNNs) are a powerful class of deep learning

models that operate on graphs or networks. They are designed to handle non-Euclidean

data structures and can effectively capture the complex dependencies and interactions

between nodes and edges in a graph. GNNs have been applied to a wide range of appli-

cations and have shown to outperform traditional methods in many tasks. As the field of

graph neural networks continues to evolve, it is likely that new architectures and methods

will be developed to further improve the accuracy and efficiency of GNNs.
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Our work aims to extend the application of GNNs to retinal vessel segmentation by

explicitly developing GCN modules.

2.8 Capsule Neural Networks

The concept of capsules was first proposed by Hinton to address the intrinsic limitations

of CNNs in capturing global contextual information due to limited kernel sizes and re-

ceptive fields, as well as their lack of equivalence ability [72]. Sabour [72] subsequently

developed a capsule network that employs dynamic routing between capsule units to

model part-whole relationships and enhance equivalence ability. Since then, various stud-

ies [12] [30] have aimed to improve the performance of capsule networks, such as integrat-

ing graph networks with capsule networks [97] [84], improving computational efficiency

with DeformCaps [44], and enhancing the routing algorithm with EM-Routing [30], atten-

tive routing [12], and self-attention routing [56]. Capsule networks have been applied in

various fields, including object detection [44], biomedical image segmentation [45], and

image classification [16].

Capsule Neural Network (CapsNet) is a novel neural network architecture inspired

by the human visual system. Unlike traditional Convolutional Neural Networks (CNNs),

CapsNet uses capsules as the basic building blocks of the network, which enhances the

network’s ability to capture object pose and spatial relationships between objects.

A capsule is a group of neurons that represents a particular entity, such as an object or

a part of an object. Each capsule outputs a vector, which represents the probability of the

entity’s existence and its various properties, such as its pose, size, and orientation. These

vectors are called activation vectors, and they are computed based on the input data and

the weight matrix of the capsule.

CapsNet consists of multiple layers of capsules, with each layer having a specific role

in the network’s function [72]. The first layer of capsules is called the primary capsules,

which extract basic features from the input data, such as edges and corners. The primary
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capsules then pass their activation vectors to the next layer of capsules, called the routing

capsules. The routing capsules use a dynamic routing algorithm to combine the activation

vectors of the primary capsules into higher-level capsules, which represent more complex

entities, such as objects or parts of objects. The dynamic routing algorithm ensures that

the higher-level capsules receive input only from primary capsules that agree on their

existence and pose, which helps to reduce the effects of occlusion and ambiguity in the

input data.

CapsNet has several advantages over traditional CNNs. First, it can capture spatial

relationships between objects more accurately than CNNs, which are limited by their

local receptive fields. Second, it can handle occlusion and deformation of objects more

robustly, because the activation vectors of the capsules are invariant to these changes.

Third, it can generate more interpretable results, because the activation vectors of the

capsules represent the properties of the entities they represent.

CapsNet has been applied to various tasks, such as image classification, object de-

tection, and image generation, and has achieved state-of-the-art performance on several

benchmarks. However, CapsNet also has some limitations. It requires more training data

and computational resources than traditional CNNs, because it has more parameters and

more complex computations. It is also less well-understood than CNNs, because it is a

relatively new architecture with fewer theoretical analyses and empirical studies.

We firstly introduce capsule network into retinal vessel segmentation by leveraging its

power of modelling global context,and improve the capability of capsule conv by intro-

ducing graph reasoning. LaLonde et al. [45] proposed a capsule UNet for object segmen-

tation and biomedical image segmentation, while Hoogi et al. integrated self-attention

mechanism with capsules for object classification. Nguyen developed ResCap for medi-

cal image segmentation by adopting residual connections among the capsules to preserve

pose information. In conclusion, Capsule Neural Network is a promising neural network

architecture that can enhance the network’s ability to capture object pose and spatial rela-

tionships between objects. It has several advantages over traditional CNNs, such as better
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spatial modeling, robustness to occlusion and deformation, and interpretability. How-

ever, it also has some limitations, such as higher data and computational requirements,

and less theoretical understanding. Capsule networks have emerged as a powerful alter-

native to traditional CNNs for tasks requiring capturing global context information and

preserving pose information. With the continued development of capsule networks and

their applications, we can expect more breakthroughs in this field.
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Chapter 3

Methdology

3.1 Methodology of the Proposed OCE-Net

3.1.1 Overall Architecture of OCE-Net

The network architecture of OCE-Net is shown in Fig. 3.7. The backbone of OCE-Net

is the vanilla UNet [71], which is widely used in medical image segmentation. In the

down-sampling stage, we use the proposed DCOA Conv to extract the multiple orienta-

tion features of vessels and employ the plain convolution to extract the plain features of

the fundus images, and then a Selective Attention Fusion Module (SAFM) is utilized to

fuse these two kinds of features (the reason is explained in Section. 4.2.5). A GLFM is

proposed to play the role of an attention gate of UNet for simultaneously capturing the

global and local features of vessels. In the up-sampling stage, the extracted orientation-

aware features are used as the prior guidance for improving the continuity. At the end

of the network, a multi-Scale fusion module (MSFM) is introduced with an OCE-DNL to

entangle the orientation and context information together. Finally, a UARM is proposed

to refine the output feature by focusing more attention on thin vessels.
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3.1.2 Dynamic Complex Orientation-Aware Convolution

Orientation of tissues is an important feature for medical image segmentation [75] [11].

To capture the complex orientation information of the blood vessels, we propose DCOA

Conv to extract the features of vessels with multiple orientations within the same recep-

tive field. As shown in Fig. 3.1, in the proposed DCOA Conv, the oriented Gabor filters

are generated from a pre-designed Gabor Filter Bank. The 2D Gabor function is defined

in literature [106].

G(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + λ2y

′2

2σ2
)exp(i(2π

x
′

λ
) + ψ) (3.1)

where x′
= xcos(θ) + ysin(θ) and y

′
= −xsin(θ) + ycos(θ). x and y are the horizontal

and vertical coordinates of pixels, respectively. λ indicates the wavelength of the Gabor

filter, and it is set to 1/
√
2. θ represents the orientation of a filter. ψ is the phase offset,

which is set to 0. σ denotes the standard deviation, and it is set to 1. γ is the spatial

aspect ratio and it is set to 1. As shown in Fig. 3.1, by setting different values for θ, we

can obtain filters with different orientations can be obtained. There are filters with eight

orientations, so the values of theta are set to 2*π / i, (i=1,2,...7,8). Then, these kernels are

multiplied with eight vanilla convolution kernels to assign the filter kernels with orien-

tation preference to the vanilla convolution whose kernel has no orientation selectivity.

A batch normalization layer [34] is used here for normalizing the weights of the Gabor

kernels. Following the work in [10], we use an attention module to learn the weight co-

efficients of each oriented kernel for selecting the useful convolution operators, and the

attention coefficients are computed following the design in [10]. Note that the selection

depends on the orientation of the vessels in the receptive field. If there is no vessel along

the orientation of the receptive field, the weight coefficient of this oriented convolution is

set to 0 by the attention module, and it is not integrated into the final convolution kernel

with multiple orientations.
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Figure 3.1: The proposed DCOA Conv.

Then, the selected convolution kernels are integrated together to form a single convo-

lution operator, which has a kernel with multiple selective orientations. The DCOA Conv

is written as

DCOA =
8∑

i=1

wi(Ki ⊗BN(G(θi))) (i = 1, 2, 3, ...8) (3.2)

whereG(θi) represents the composite Gabor kernels. BN denotes the batch normaliza-

tion layer. Ki is the plain convolution kernel without orientation. ⊗ is the multiplication

operator. wi denotes the weight coefficient learned by the attention module. Our experi-

ments showed that choosing eight (i = 8) orientations could encode the orientations of all

blood vessels well. This composite convolution kernel has the ability to capture the ves-

sels with complex multiple orientations in a single receptive field. It is dynamic because

the orientations of the final composite convolution kernel can be dynamically adjusted
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by learning to set different weight coefficients for different oriented convolution kernels

based on the orientations of specific vessels.

As shown in Fig. 3.7, a DCOA block now can be obtained by stacking DCOA Conv,

batch normalization (BN), and the ReLU function together for extracting orientation fea-

tures Fo:

Fo = ReLU(BN(DCOA(Fin))) (3.3)

where Fin means the input features. From Fig. 3.7, the basic block can be obtained by

directly replacing the DCOA Conv in DCOA block with the vanilla convolution to extract

the plain features without an orientation preference. The kernel sizes of both vanilla

convolution and DCOA Conv are set to 3x3 in their own blocks.

The DCOA Conv in DCOA block is used to capture multiple orientations of vessels;

however, DCOA Conv only focuses on the vessels along one or several orientations and

ignores other important features that are not located at these particular orientations, such

as the fundus background and other nonvascular tissues, which are not oriented but also

helpful for identifying blood vessels when serving as the important negative samples.

Therefore, the best solution is to capture both the plain features and the orientation fea-

tures extracted by the basic blocks and the DCOA blocks described above. In other words,

the extracted orientation features should be viewed as the auxiliary prior, which is used

to guide the segmentation of blood vessels.

As shown in Fig. 3.2, inspired by [52], we introduce an SAFM to fuse the plain and ori-

entation features, which are extracted by the basic block and the proposed DCOA block.

The channel attention mechanism is used to select useful channels of both kinds of fea-

tures before fusion because there are some redundant channels in both the plain and ori-

entation features of fundus images, which contain much noise and artifacts. The spatial

attention [68] is used to focus more attention on the useful features in both branches be-

cause tissues like exudates, hemorrhages, and maculas have similar features with blood

vessels, which may mislead the network to identify them as blood vessels.
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The spatial attention SPA is defined as

Fspa = SPA(Fin) = Fin ∗ δ(Conv(ReLU(Conv(Fin)))) (3.4)

where Fin and Fspa are the input and output features of spatial attention, respectively.

Conv means the convolution operator has a kernel of 3x3 size. ReLU means the ReLU

function. δ denotes the sigmoid function.

S

S

DOA Conv

Plain Conv

Spatial Attention

Spatial Attention

Plain Feature

Orientation Aware Feature

Softmax

Fused

Feature

Figure 3.2: The schematic of the Selective Attention Fusion Module (SAFM). The plain

features and orientation features are fused with the help of channel-wise selection and

spatial-wise attention. This SAFM is inspired by the the framework of selective kernel

network (SKNet) in [52].

3.1.3 Global and Local Fusion Module

Convolution with the kernel of 3x3 size has a local receptive field and has been proved

very important for many computer vision tasks. But such convolution can not capture

global contextual information of the whole input image, which is also very helpful for

image segmentation [87] [22]. Retinal vessels have abundant context information [85],

for example, the complex furcations and branches of blood vessels have their relative po-

sitions and sizes against the entire vascular system, which present a kind of symmetry
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Figure 3.3: The proposed Global and Local Fusion Module (GLFM).

from the view of the whole retinal fundus image. Furthermore, some local lesion areas

may occlude the blood vessels, and the global context information can help reconstruct

the occluded vessels and improve the continuity of vessels from a holistic view. In addi-

tion, thin vessels contain rich local detail information and has a more complex orientation

diversity. In a word, capturing global context and local detail information are equally im-

portant for vessel segmentation. A Global and Local Fusion Module (GLFM) is proposed

herein to achieve this goal.

As shown in Fig. 3.3, GLFM is composed of three pathways, i.e., low-level, high-level

and global pathways.

The squeeze-and-excitation operations SE(.) [32] are used here for channel-wise in-

tegration because there is noise and other interference in the retinal fundus image. In

both the low-level and high-level pathways, spatial attention SPA(.) [68] with a 3x3 local

convolution is used for focusing more attention on some local areas and vessel tissues.

In addition, in the global pathway, both the low-level FL and high-level FH features are

concatenated via Concat(.) and used to model the global long-range dependencies via
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self-attention SA(.) mechanism, then the global context features FG are obtained.

FLL = SPA(SE(FL))

FHH = SPA(SE(FH))

FG = SA(SE(Concat(FH , FL)))

(3.5)

where FLL, FHH and FG denote the low-level local features, high-level features and global

context features, respectively.

Finally, these three kinds of features are concatenated via Concat(.) and fused via a

1x1 convolution Conv(.) to contain the output features of Fglfm which simultaneously

captures the global context information and the local detail information.

Fglfm = Conv(Concat(FLL, FHL, FG)) (3.6)
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Figure 3.4: The schematic of nonlocal (NL) [87], Disentangled nonlocal (DNL) [104] and

the proposed Orientation and Context Entangled nonlocal (OCE-DNL). Due to space lim-

itation, OCE-NL is not presented here. ’Whiten’ here means whitening operator. Note

that the functions of whiten operator in DNL are to: 1. reduce the correlation between

features. 2. make features have the same variance. More details about the whitening

operator can be found in [104].
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3.1.4 Orientation and Context Entangled NL/DNL

In order to fully mine the association between plain and orientation features, inspired by

Disentangled nonlocal (DNL) [104], an Orientation and Context Entangled DNL (OCE-

DNL) is proposed to entangle the orientation and context information together, in which

orientation information is used to guide MSFM to better learn context information and

discriminate blood vessels from the plain features. The NL and DNL are defined as

XNL
out (x) = Xin(x) +WNL(xi, xj) · V (Xin(x))

XDNL
out (x) = Xin(x) +WDNL(xi, xj) · V (Xin(x))

(3.7)

where Xin(x) means the input features and x denotes the position of pixel in the features.

V means the value vector of NL. WNL and WDNL represent the self-correlation weights

(self-attention map) yielded by computing the affinities between the Query and Key vec-

tors, respectively, which are defined as

WNL(xi, xj) = QT
i ·Kj

WDNL(xi, xj) = (Qi − µQ)
T · (Kj − µK) + µQ · kj

(3.8)

where Qi and Kj denote respectively the query and key vectors in NL. (.)T means the

transposition operator. µQ and µK denote their mean values calculated by a whitening

operation in DNL. xi and xj represent two different pixels in the input features.

We propose a novel nonlocal operator to explore the potential association between

two related features by calculating their cross-correlation. To our best knowledge, this

is the first attempt to introduce cross-correlation (cross-attention) into the nonlocal that

was originally designed to capture only self-correlation or self-attention. The proposed
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cross-correlation based entanglement is defined as

WOCE−NL(xi, xj; yi, yj) = (QT
i ·Kj) · (Q̃i

T ·Kj) · (QT
i · K̃j) (3.9)

WOCE−DNL(xi, xj; yi, yj) = [(Qi − µQ)
T · (Kj − µK)]

· [(Q̃i − µ̃Q)
T · (Kj − µK)] · [(Qi − µQ)

T · (K̃j − µ̃K)]

+ (µQ · kj) · (µ̃Q · k̃j)

(3.10)

where Qi and Ki denote respectively the query and key vectors of the plain features.

Q̃i and K̃i denote respectively the query and key vectors of the orientation features. µQ

and µK denote respectively the mean values of plain features which are calculated by

a whitening operation [104]. µ̃Q and µ̃K denote the mean values of orientation features

calculated by a whitening operation. xi and xj represent two different pixels in the plain

features and yi and yj represent two different pixels in the orientation features. Note that

the blue parts of Eq. 3.9 and 3.10 represent cross-correlation calculations.

As shown in Fig. 3.4, the multi-scale plain features outputted by the network and

the multi-scale orientation features extracted in the down-sampling stage are decoupled

into query and key vectors by 1x1 convolutions. As for the original nonlocal [87], only

the self-correlation between the query and key of the plain feature is computed to obtain

a self-attention map by multiplying them, and this self-attention map can model long-

range dependencies and capture global context information. In order to calculate the

cross-correlation between two different features, the respective query and key vectors for

the two features are multiplied separately and the cross-attention maps can be obtained.

Then the self-attention map is used to capture the context information in the plain fea-

tures and the cross-attention map is used to model the global relationship between the

plain features and the prior orientation features. Through computing cross-attention and

applying cross-attention maps to the plain features, the context and orientation informa-
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tion can be entangled together into the final output features, which are ultimately used to

predict the vessels from the fundus background.
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Figure 3.5: The proposed Multi-Scale Fusion Module (MSFM).

Leveraging multi-scale features is helpful for better vessel segmentation. Inspired

by [94], we design a Multi-Scale Fusion Module (MSFM) to fuse multi-scale features in-

cluding multi-scale plain features Fi ∈ RC
r
×H×W , (i, r = 1, 2, 3) and multi-scale orientation

features F o
i ∈ RC

r
×H×W , (i, r = 1, 2, 3) , as shown in Fig. 3.5. The features at different

scales are unified through up-sampling Upi(.)(i = 1, 2, 3) and concatenated in the chan-

nel dimension. Then these features are fused and dimensionally reduced through an 1x1

convolution, yielding the plain input feature Fin and the orientation input features F o
in for

MSFM as follows

Fin = Conv(Concat(Up1(F1), Up2(F2), Up3(F3)))

F o
in = Conv(Concat(Up1(F

o
1 ), Up2(F

o
2 ), Up3(F

o
3 )))

(3.11)

The core fusion module of MSFM is the proposed OCE-DNL, which is used to entangle

the orientation and context information together by computing cross-correlation between

the plain and the prior orientation features. And the output feature Fmsfm after fusion
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can be obtained by entangling the context and orientation information as follows

Fmsfm = δ(OCEDNL(Fin, F
o
in)) + Fin (3.12)

where δ means the sigmoid function and OCEDNL denotes the proposed OCE-DNL

module.

3.1.5 Unbalanced Attention Refining Module

There are two kinds of unbalance in fundus images. One is the serious unbalance between

the pixel numbers of blood vessels and the fundus background. The fundus background

occupies the majority of pixels, while the blood vessels only take up a small proportion

of total pixels. The other is the unbalance between the numbers of thick and thin ves-

sels [100]. Thick vessels are generally large in width and hence occupy the majority of

the blood vessels, while the width of thin vessels is usually 3-5 pixels. These unbalances

make blood vessels difficult to be detected and identified from the background, and also

make thin vessels harder to be detected due to their less prominent features. In order to

deal with these unbalances, previous deep learning methods [40] usually design class-

balanced loss or introduce weighted coefficients into the pixel-wise loss functions for im-

posing more penalties on thin vessels [99]. Here we propose a novel approach to tackle

these unbalances from the perspective of visual attention mechanism.

As shown in Fig. 3.6, a novel Unbalanced Attention Refining Module (UARM) works

to focus more visual attention on the vessels, especially the thin vessels. The proposed

UARM is applied at the end of the network to refine the final output features of the net-

work. Instead of directly applying spatial attention to the final output feature (the input

feature Fin ∈ RC×H×W of UARM), we first use a 1x1 convolution to reduce the dimension

of the feature from 32 to 1 and use the softmax function to obtain a probability map p(Fin),
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which describes the probability that each pixel belongs to a vessel, ranging from 0 to 1.

p(Fin) = Softmax(Conv(Fin)) (3.13)

Then, a pre-defined Sign function Sign(.) is used to separate the probability values into

three intervals, corresponding to three different regions in the image. In other words, we

divide the image into three different regions of high confidence, medium confidence and

low confidence according to the probability of pixels belonging to vessels. The Sign(.)

function is defined as

Sign(x) =


1 0 ≤ x < 0.4

0 0.4 ≤ x < 0.7

1 0.7 ≤ x < 1.0

(3.14)

where x means the probability of each pixel in the probability map p(Fin).
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By setting two thresholds between 0 and 1 (these two thresholds are experimently set

to 0.4 and 0.7), we can separate the features F2 with medium confidence regions. And

high and low confidence regions are combined together and separated into features F1 as

well. F1 and F2 are fomulated as

F1 = Fin ⊗ Sign(pFin)), F2 = Fin ⊗ (1− Sign(p(Fin)) (3.15)

We found that the network usually pays more attention to the thick vessels and tends

to ignore the thin vessels, that is, less attention is allocated to the ambiguous areas with

medium confidence, where thin vessels are always located. Therefore, for such ambigu-

ous regions, a deeper attention module Attd(.) with stronger discrimination ability is

solely applied to gain more attention. For the regions with high and low confidence, a

shallow attention module Atts(.) is used because thick vessels (usually composed of pix-

els with high probability) and the fundus background (usually composed of pixels with

low probability) are highly discriminable. The process of UARM is defined as

Fuarm = UARM(Fin) = Atts(F1) + Attd(F2) (3.16)

where Fuarm denotes the output features of UARM.

This unbalanced, biased approach for applying attention allows the network to better

focus on uncertain areas that need more attention.

3.1.6 Loss Function of OCE-Net

A Cross-entropy loss LCE is adopted as the loss function of our OCE-Net for vessel seg-

mentation, which is defined as

LCE(p, q) = −
N∑
k=1

pk ∗ log(qk) (3.17)
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3.2 Methodology of the Proposed GCC-UNet

3.2.1 Overall Architecture of GCC-UNet

The GCC-UNet architecture, depicted in Figure 3.7, utilizes the U-Net [71] as its back-

bone. In the downsampling phase, a Local Feature Extractor (Local FE), a Global Feature

Extractor (Global FE), and a Selective Graph Attention Fusion (SGAF) module are in-

troduced to merge the local features extracted by a plain CNN with the global context

features extracted by a Capsule Neural Network. To serve as a global feature extrac-

tor, we propose a Graph Capsule Convolution (GC Conv) operator, which replaces the

vanilla capsule convolution operator. The Bottleneck Graph Attention (BGA) module is

inserted in the bottleneck to enhance vessel continuity by modeling the connectivity of

vessel nodes flowing on the graph. In the upsampling phase, the extracted global context

features are passed directly to the upsampling builder to reduce computational costs. The

SGAF is then used to fuse the global features with the upsampled local features. Finally,

we propose a Multi-Scale Graph Fusion (MSGF) module to leverage the features from

different stages of the U-Net.
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Figure 3.7: The network architecture of the proposed GCC-UNet.
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3.2.2 Graph Capsule Convolution

Position

Orientation

Shape

Color

Albedo

Saturation

GC

Conv

Position – Orientation - Shape:

Vessels always locate in the terminal of 

stems, thus many spindly branches 

with complex orientations reach out. 

Color – Albedo - Saturation:

Vessels are always orange, and thin vessels 

have lower albedo, resulting in lower 

saturation and thus appear lighter in color

Position – Orientation – Shape – Color - Saturation:

Vessels always locate in the terminal of stems with spindly shape, 

thus thin vessels always have complex orientations. Due to narrow 

width, they are always light orange in color with low saturation.

Capsule

Atoms Graph

Orientation – Shape – Color - Saturation:

Thin vessels have spindly shape with complex orientations. Due to 

narrow width, they are light orange in color with low saturation.

Figure 3.8: The schematic of relationships among atoms in capsules. We inreoduce graph

into capsules to model the relationships among atoms.

The capsule convolutional network is known for its inherent capability to learn spatial

correlations between objects, which makes it efficient in identifying multiple objects in an

image, even when they overlap significantly. In contrast to traditional CNNs that use

scalar elements, the capsule NN employs vectors as its basic components. Each capsule

contains a vector that can capture various intrinsic characteristics of an object, such as its

pose (position, size, orientation, shape), deformation, color, saturation, and so on, thereby

forming meaningful relationships between parts and wholes and providing global con-

text information. The length of each vector represents the estimated probability of the

object’s presence in the image. Compared to CNN, capsule NN has an advantage in cap-

turing local detailed features, but it has a poorer ability to model translation invariance

and part-to-whole relationships.

In Fig. 3.9, the input feature extracted by plain CNN convolution is transformed into

primary capsules, which represent low-level entities in this layer. Dynamic routing [72] is

then employed to route the low-level capsules to the high-level ones, capturing the part-

to-whole relationships. Dynamic routing can be seen as a transfer matrix with attention

weights that focuses on important capsules and vectors while ignoring unimportant ones.

However, the dynamic routing proposed in [72] fails to model the correlations among dif-

ferent capsules and atoms in the capsules. To address this, we introduce graph reasoning

into the dynamic routing process, as depicted in Fig. 3.9, to model these correlations. By

doing so, we are able to adequately model the relationships among the channels, capsules,

and atoms dimensions.
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Figure 3.9: The proposed Graph Capsule Convolution (GC Conv).

As shown in Fig. 3.9, the input CNN feature XCNN
i has a shape of [B,C,H,W ]. This

feature is transformed into primary capsules Y Cap
i , which have a shape of [B,H,W, k2, C, L, V ],

where C, L, and V represent the number of channels, capsules, and atoms in each cap-

sule. The channel dimension is split from the features to obtain independent features

Y Channel
i with a shape of [B,H,W, k2, C, 1, 1], which are independent of the capsules and

atoms dimensions. Similarly, the capsules and atoms dimensions are split to obtain in-

dependent features Y CapAtom
i with a shape of [B,H,W, k2, 1, L, V ]. By multiplying the

channels of capsules and atoms dimensions, we obtain a feature Y Cap∗Atom
i with a shape

of [B,H,W, k2, 1, L ∗ V ]. We then use average pooling to remove the H , W , and K2 di-

mensions and construct a graph GChannel
i along the channel dimension C for Y Channeli.

Similarly, we construct a graph GCap∗Atom
i along the L ∗ V dimension for Y Cap∗Atom

i . We

apply a graph convolution GCChannel(.) on GChannel
i to obtain the output graph feature

ĜChannel
i . We also apply a graph convolution GCCap∗Atom(.) on GCap∗Atom

i to obtain the

output graph feature ĜCap∗Atom
i . Finally, we integrate ĜChannel

i and ĜCap∗Atom
i using addi-

tion and expansion operators, and transfer them into capsule features Ŷ Cap
i to obtain the

output feature Zi.

3.2.3 Selective Graph Attention Fusion Module

It is crucial for models to be able to incorporate global context information, given the

variations in scale, orientation, and partial occlusions of fundus vessels. However, cap-

sule neural networks have limitations in learning critical local features. As a result, the

optimal approach would be to integrate capsule convolution with plain CNN models to
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enable the model to learn both local and global features. To attain the best fusion per-

formance, we present a novel Selective Graph Attention Fusion (SGAF) module. This

module exploits the graph structure to model the inner-channel relationships of both the

local and global features while simultaneously learning the inter-channel correlations be-

tween them.

In Fig. 3.10, we have two types of input features: local features XLocal
i obtained

through plain CNN convolution, and global context features XGlobal
i obtained through

capsule convolution. Then we add XLocal
i and XGlobal

i to obtain the fusion feature XFusion
i .

We then apply three independent Average Pooling operators to eliminate spatial dimen-

sions, preserving only the channel dimension. After pooling, we construct graphs along

the channel dimension of the three features, resulting in four independent graphs: GLocal
i ,

GGlobal
i , GFusion−Local

i and GFusion−Global
i . Note that we construct two graphs from XFusion

i ,

resulting in two individual graphs GFusion−Local
i and GFusion−Global

i . These two graphs pro-

vide shared fusion information for both the local feature XLocal
i and global feature XGlobal

i .

We assume that the two graphs should contain different topological structures of channels

from XLocal
i and XGlobal

i after learning and reweighting of graph convolution operators.

Avg

Pooling

Avg

Pooling

GCN

GCN

Avg

Pooling

𝑋𝑖
𝐿𝑜𝑐𝑎𝑙

𝑋𝑖
𝐺𝑙𝑜𝑏𝑎𝑙

𝑋𝑖
𝐹𝑢𝑠𝑖𝑜𝑛

𝐺𝑖
𝐿𝑜𝑐𝑎𝑙

𝐺𝑖
𝐺𝑙𝑜𝑏𝑎𝑙 𝐺𝑖

𝐹𝑢𝑠𝑖𝑜𝑛−𝐺𝑙𝑜𝑏𝑎𝑙

𝐺𝑖
𝐹𝑢𝑠𝑖𝑜𝑛−𝐿𝑜𝑐𝑎𝑙

෠𝐺𝑖
𝐹𝑢𝑠𝑖𝑜𝑛−𝐿𝑜𝑐𝑎𝑙

෠𝐺𝑖
𝐹𝑢𝑠𝑖𝑜𝑛−𝐺𝑙𝑜𝑏𝑎𝑙

෠𝐺𝑖
𝐿𝑜𝑐𝑎𝑙

෠𝐺𝑖
𝐺𝑙𝑜𝑏𝑎𝑙

𝐺𝐶𝐺𝑙𝑜𝑏𝑎𝑙(. )

𝐺𝐶𝐿𝑜𝑐𝑎𝑙(. )

෠𝑋𝑖
𝐿𝑜𝑐𝑎𝑙

෠𝑋𝑖
𝐺𝑙𝑜𝑏𝑎𝑙

𝑌𝑖
𝐹𝑢𝑠𝑒𝑑

𝑋𝑖
𝐿𝑜𝑐𝑎𝑙

𝑋𝑖
𝐺𝑙𝑜𝑏𝑎𝑙

Figure 3.10: The architecture of the proposed Selective Graph Attention Fusion (SGAF)

module.
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The graph represents each channel of the feature as a node. To learn the connectivity

and relationships among nodes (channels), we apply only two graph convolution opera-

tors on the four constructed graphs: GCLocal(.) for GLocal
i and GFusion−Local

i , and GCGlobal(.)

for GGlobal
i and GFusion−Global

i . By using shared graph convolution, the local or global

graphs can share nodes and connectivity information with the fusion graphs, resulting

in better connectivity weight adjustment, more informative representation flow on the

graph, and reduced computational cost and parameters. After applying graph convolu-
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Figure 3.11: The architecture of the proposed Bottleneck Graph Attention (BGA) module.

tion, we obtain four output graphs: ĜLocal
i , ĜFusion−Local

i , ĜGlobal
i , and ĜFusion−Global

i . We

then apply ĜLocal
i and ĜGlobal

i on the input features XLocal
i and XGlobal

i using multiplication

and addition operators, respectively, which can be viewed as a kind of self-attention be-

cause the graph attention weights generated from the input features are applied back on

the channels of original input features. At the same time, ĜFusion−Local
i and ĜFusion−Global

i

are applied on the input features XLocal
i and XGlobal

i using multiplication operators. The

resulting refined output features are denoted as X̂Local
i and X̂Global

i . Finally, we add X̂Local
i

and X̂Global
i together to obtain the fused feature Y Fused

i .

3.2.4 Bottleneck Graph Attention Module

To improve vessel continuity, particularly for thin vessels, we propose a novel Bottleneck

Graph Attention (BGA) module comprising of Channel-wise Graph Attention (CGA) and

Spatial Graph Attention (SGA). The input featuresXi are first fed into CGA, where an Av-
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erage Pooling operator is used to extract channel-only features, transforming the feature

shape from [B,C,H,W ] to [B,C, 1, 1]. A graph GChannel
i is constructed along the chan-

nel dimension, where each node represents a channel of features and edges connectivity

between nodes indicates their relationship. A graph convolution operator GCChannel(.)

is applied to GChannel
i , producing an output graph ĜChannel

i with re-weighted connectiv-

ity and re-modelled channel relationships. The refined graph ĜChannel
i is then expanded

along the spatial dimensions and recovered to [B,C,H,W ]. The refined feature and graph

representation ĜChannel
i are fused with the input feature Xi through multiplication and

addition, generating the output feature Yi. The CGA module enables the representation

of channel dependencies as a graph and captures the relationships among channels.

In the SGA module, the input feature is Yi, and a feature selector is proposed to ex-

tract vessels from the fundus background. The feature selector applies a conv1x1 Conv(.)

operator to reduce the dimension of Yi and Softmax function Softmax(.) to calculate a

probability map p(Yi), which contains information about the probability that each pixel

belongs to a vessel, ranging from 0 to 1.

p(Yi) = Softmax(Conv(Yi)) (3.18)

A pre-defined piecewise function called the Sign function Sign(.) is then applied to sepa-

rate the probability values into two intervals. Specifically, a threshold of 0.4 was set in our

experiments, indicating that pixels with probability values greater than 0.4 correspond to

blood vessel pixels, while those with values less than 0.4 correspond to background pix-

else. This allows for effective separation of vessel regions from the background. The

Sign(.) function is defined as

Sign(x) =


1 x > 0.4 (V essel)

0 x < 0.4 (Background)

(3.19)
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where x means the probability of each pixel in the probability map p(Yi). Using the Sign

function, we can obtain the vessel features Y V essel
i and background features Y Background

i

separately from the input features Yi based on their probability values. To improve the

continuity of vessels, we perform two individual operations. The first operation in-

volves constructing a graph GSpatial−V essel
i for the vessel-only features based on their spa-

tial distribution. Nodes and edges in the graph represent the vessels and their connec-

tivity, respectively. We then apply a graph convolution GCSpatial−V essel(.) on the graph

GSpatial−V essel
i to learn information about the nodes and edges connectivity, aiming to

improve the continuity of vessels without interference from the background, especially

noise and other issues in the background. This yields the output features of vessels

ZSpatial−V essel
i . In addition to improving vascular continuity in spatial distribution, we also

enhance semantic consistency. To achieve this, we use an average pooling operator to ex-

tract channel information of vessels, and construct a graph GChannel−V essel
i for these chan-

nels. We then apply a graph convolution operator GCChannel−V essel(.) to learn the graph

representation of channels, yielding the output features of vessels ZChannel−V essel
i after

viewing operation. Finally, we multiply ZSpatial−V essel
i and ZChannel−V essel

i , add Y Background
j ,

and obtain refined features Zi whose vascular continuity has been enhanced.

3.2.5 Multi-Scale Graph Fusion Module

To integrate the multi-scale features extracted from different stages of the UNet, we pro-

pose a Multi-Scale Graph Fusion module, which is depicted in Fig. 3.12. The input fea-

tures Xa
i , Xb

i and Xc
i are obtained from different upsampling stages of the UNet. Firstly,

we apply upsampling and conv1x1 operators on Xb
i and Xc

i to reshape their spatial and

channel dimensions to match those of Xa
i . Subsequently, we apply Average Pooling op-

erators on these features to reduce their dimensionality and preserve only channel-wise

information. Then, we construct three independent graphs, Ga
i , Gb

i and Gc
i , for these fea-

tures along the channel-wise dimension.
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Figure 3.12: The proposed Multi-Scale Graph Fusion (MSGF) module.

Instead of adopting three individual graph convolution on these three independent

graphs, we use only a single shared graph convolution GCShared(.) to conduct convolu-

tional process on Ga
i , Gb

i and Gc
i , because we assume that graphs constructed from dif-

ferent scales with the same input feature are supposed to have similar graph pattern and

nodes connectivity. Adopting shared graph convolution can simultaneously capture the

topological structure representations of Ga
i , Gb

i and Gc
i , and adjust the connectivity of

nodes on the graph by taking other graphs into the consideration, so that the information

can propogate and flow on the graphs constructed from multi-scale features. After apply-

ing graph convolution operators, we obtain three independent graph representations Ĝa
i ,

Ĝb
i and Ĝc

i . And then these ouput channel-wise graphs are expanded spatially and ap-

plied directly on each input feature Xa
i , Xb

i and Xc
i , respectively, obtaining three refined

features X̂a
i , X̂b

i and X̂c
i . Finally, we concatenate the three refined features and adopt a

conv1x1 operator to reduce the dimension and generate the output fused feature Y Fused
i .

3.2.6 Loss Function of GCC-UNet

The Cross Entropy (CE) loss LCE is adopted as the loss function of our GCC-UNet, which

is defined as

LCE(p, q) = −
N∑
k=1

pk ∗ log(qk) (3.20)
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Chapter 4

Discussion of All the Findings

4.1 Datasets and Materials

4.1.1 Retinal Fundus Datasets

Our model was trained on three widely used datasets: DRIVE [77], STARE [31], and

CHASEDB1 [19].

The DRIVE dataset contains 40 pairs of retinal fundus images with their correspond-

ing labels, which were manually delineated by two human observers, and the labels of

the first observer are usually used as the ground truth. The size of each fundus image in

DRIVE is 565 × 584 pixels, and the training and test sets are nonoverlapping with each

other; each contains 20 pairs of images.

The STARE dataset consists of 20 fundus images with their corresponding manual

labels annotated by two human experts. The resolution of each image is 700 × 605 pixels.

Generally, the first 10 images and their labels are used as training set, and the other 10

images are used as test set.

The CHASEDB1 dataset contains 28 fundus images and their labels, with a resolution

of 999× 960 pixels. The first 20 images are usually used as training set and the other eight

images are considered as the test set.
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To evaluate the generalization performance of our model, we also tested OCE-Net on

some challenging datasets, including AV-WIDE [17], UoA-DR [7], RFMiD [65], and UK

Biobank [78].

The AV-WIDE dataset contains 30 wide-FOV color images, and the arteries and veins

were annotated separately for artery-vein classification. The resolutions of images vary,

but most of them are around 1300 × 800 pixels. The vessels are usually thin in AV-WIDE.

The UoA-DR dataset consists of 200 images with a resolution of 2124× 2056 pixels, which

were collected by the University of Auckland. The RFMiD dataset contains 3200 fundus

images. Of these, 1920 images of them are allocated to the training set, 640 images are in

the validation set, and the remaining 640 images are in the test set. The fundus images

were captured by three different fundus cameras. The sizes of images vary, having the

resolutions of 4288 × 2848 (277 images), 2048 × 1536 (150 images), and 2144 × 1424 (1493

images), respectively. The UKBB dataset contains 100K fundus images with the size of

2048 × 1536 pixels.

Note that instead of retraining the model on these datasets, we just tested on these

challenging sets using the models already trained on DRIVE [77].

4.1.2 Evaluation Metrics

We evaluated our model with some frequently used metrics, including the F1 score (F1),

accuracy (Acc), sensitivity (SE), specificity (SP), and area under the ROC curve (AUC),

which are defined as

SE = Recall =
TP

TP + FN
SP =

TN

TN + FP

F1 = 2× Precision×Recall
Precision+Recall

Acc =
TP + TN

TP + TN + FP + FN

(4.1)

where TP , TN , FP , and FN represent the numbers of true positive, true negative, false

positive, and false negative pixels, respectively. In addition, we also adopted some im-
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proved metrics proposed by Gegundez et al. [24], including connectivity (C), overlapping

area (A), consistency of vessel length (L), and the overall metric (F). The overall metric (F)

is defined as

F = C × A× L (4.2)

Moreover, Yan et al. [98] proposed some other novel metrics, including rSE, rSP, and

rAcc, for improving the corresponding SE, SP, and Acc metrics, respectively. We also used

these newly designed metrics to evaluate our model and compare it with other meth-

ods. More details about these redefined metrics can be found in [98]. Additionally, the

Matthews correlation coefficient (Mcc) [39] was also used to evaluate our model.

4.2 Experiments of OCE-Net

4.2.1 Implementation details

We built our model using the PyTorch framework [66]. The model was trained on a TI-

TAN XP GPU with 12 G memory. The Adam optimizer [41] and the cosine annealing

learning rate (LR) were adopted during the training. Before training, the fundus images

were converted from RGB to and grayscale, then Gamma correction and CLAHE [67]

were applied to enhance the lightness and contrast of the grayscale fundus images. The

images were randomly cropped into patches with a size of 48 × 48 pixels owing to the

limitation of GPU memory, and the number of cropped patches was set to 15,000. The

batch size was set to 32, and the total epoch was set to 50. The early stopping strategy

was adopted, and the epoch was set to 8.

4.2.2 Overall comparison with other methods

To evaluate the performance of our method and demonstrate its superiority, we con-

ducted extensive quantitative and qualitative experiments.
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As shown in Table 4.15, 4.16, and 4.17, we compared our method with numerous state-

of-the-art methods on the DRIVE [77], STARE [31], and CHASEDB1 [19] datasets. In terms

of the commonly used indicators, our method outperforms most of previous state-of-the-

art methods, especially on DRIVE.

Among these compared methods, BTS-DSN [28] neither focuses more attention on

local thin vessels and nor captures global context information; therefore, it exhibits poor

performance on both SE and SP. CSU-Net [85] has a context path to capture the global con-

text of images, but neglects to emphasize local details of thin vessel; therefore, it shows

good performance on SP but relatively poor performance in SE. CTF-Net [86] has a spe-

cially designed Fine segNet to deal with local thin vessels, but neglects the global context

of the whole vascular system; therefore, it shows high indicators on SE but low indicators

on SP. Unlike these methods, our OCE-Net captures both global and local information

of vessel as well as focuses more attention on thin vessels, so OCE-Net shows promising

performance on both SE and SP.

As shown in Table 4.18, in terms of some newly redefined metrics, our method also

outperforms many other recent methods.

SkelCon [81] adopts the contrastive learning (CL) strategy to better fit the shape of ves-

sel for improving the connectivity of thin vessels; therefore, it shows better performance

on vessel connectivity. However, it does not capture global context information of vessels

or focus more attention on thin vessels, so it exhibits poor performance on rSE and rSP in-

dicators. In comparison, as it takes both local and global information into consideration,

our OCE-Net exhibits better performance than SkelCon on both rSE and rSP.

Note that in Table 4.17, on the CHASEDB1 dataset, CTF-Net [86] shows a better F1

score and SP than our OCE-Net, which is mainly because the fundus images in CHASEDB1

are different from those in the DRIVE and STARE datasets. As shown in Fig. 4.9, there

are almost no thin vessels in the images from CHASEDB1, but primarily thick vessels. In

addition, the orientations of the blood vessels in CHASEDB1 are also less complicated.

However, our newly designed modules for OCE-Net are mainly used to deal with thin
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Table 4.1: Experiments conducted on DRIVE for performance comparison of segmenting

thin vessels (Unit: %). We calculated the P-value of T-test between our method and other

methods.

Method Connectivity (C) Overlapping Aera (A) Consistency (L)

UNet 91.34 (<0.01) 85.72 (<0.01) 78.66 (<0.01)
Attention UNet 92.03 (<0.01) 87.89 (<0.01) 80.14 (<0.01)

Dense UNet 92.27 (<0.01) 88.02 (<0.05) 80.36 (<0.01)

OCE-Net 92.45 88.23 80.68

vessels with multiple orientations and contexts. Therefore, our OCE-Net shows poorer

performance on CHASEDB1 than on DRIVE and STARE. In addition, in terms of some

novel indicators in Table 4.18, SkelCon [81] exhibits better performance on Connectivity

(C) and Consistency (L) because SkelCon has specially designed modules to improve the

connectivity and consistency of vessels.

As shown in Fig. 4.8, on these three widely used datasets, our method exhibits better

visual segmentation results than the previous methods. Compared with other methods

in Fig. 4.9, our method can effectively segment the thin blood vessels. In contrast, many

other methods cannot segment thin vessels well.

In addition, we also conducted a quantitative comparison of detecting thin vessels on

DRIVE. We used morphological image processing to separate out thin vessels. We chose

three novel indicators, that is, Connectivity (C), Overlapping Area (A), and Consistency

(L), proposed in [98]. Because thin vessels are usually small, it is not suitable to evaluate

them with ACC and AUC. As shown in Table. 4.1, our OCE-Net exhibits better perfor-

mance in detecting thin vessels than other methods.

4.2.3 Comparison and ablation study of individual modules

Comparison between the proposed GLFM and other attention gates

The proposed GLFM can be viewed as an alternative of attention gates of U-shaped net-

works. We compared our GLFM with other attention blocks and self-attention blocks by
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Table 4.2: Quantitative comparison with other state-of-the-art methods on DRIVE. We

calculated the P-value of T-test between our method and other methods. Red: the best,

Blue: the second best.

Method Year F1 Se Sp Acc AUC

2nd observer [77] 2004 N.A 77.60(<0.01) 97.24(<0.01) 94.72(<0.01) N.A
HED [96] 2016 80.89(<0.01) 76.27(<0.01) 98.01(<0.01) 95.24(<0.01) 97.58(<0.01)

DeepVessel [21] 2016 N.A 76.12(<0.01) 97.68(<0.01) 95.23(<0.01) 97.52(<0.01)
Orlando et al. [64] 2017 N.A 78.97(<0.01) 96.84(<0.01) 94.54(<0.01) 95.06(<0.01)

JL-UNet [99] 2018 81.02(<0.02) 76.53(<0.01) 98.18(<0.01) 95.42(<0.03) 97.52(<0.01)
CC-Net [18] 2018 N.A 76.25(<0.01) 98.09(<0.01) 95.28(<0.01) 96.78(<0.01)

Att UNet [61] 2018 82.32(<0.01) 79.46(<0.01) 97.89(<0.01) 95.64(<0.01) 97.99(<0.01)
Dense UNet [51] 2018 82.79(<0.01) 79.85(<0.01) 98.05(<0.01) 95.73(<0.01) 98.10(<0.01)
Yan et al. [100] 2019 N.A 76.31(<0.01) 98.20(<0.01) 95.33(<0.01) 97.50(<0.01)
BTS-DSN [28] 2019 82.08(<0.02) 78.00(<0.01) 98.06(<0.01) 95.51(<0.01) 97.96(<0.01)

DUNet [38] 2019 82.49(<0.01) 79.84(<0.01) 98.03(<0.01) 95.75(<0.04) 98.11(<0.01)
CTF-Net [86] 2020 82.41(<0.01) 78.49(<0.01) 98.13(<0.01) 95.67(<0.01) 97.88(<0.01)
CSU-Net [85] 2021 82.51(<0.01) 80.71(<0.01) 97.82(<0.01) 95.65(<0.01) 98.01(<0.01)

OCE-Net (Ours) 2022 83.02 80.18 98.26 95.81 98.21

Table 4.3: Quantitative comparison with other state-of-the-art methods on STARE

dataset. We calculated the P-value of T-test between our method and other methods.

Method Year F1 Se Sp Acc AUC

HED [96] 2016 82.68(<0.01) 80.76(<0.01) 98.22(<0.01) 96.41(<0.01) 98.24(<0.01)
Orlando et al. [64] 2017 N.A 76.80(<0.01) 97.38(<0.01) 95.19(<0.01) 95.70(<0.01)

JL-UNet [99] 2018 N.A 75.81(<0.01) 98.46(<0.01) 96.12(<0.01) 98.01(<0.01)
Att UNet [61] 2018 81.36(<0.01) 80.67(<0.01) 98.16(<0.01) 96.32(<0.01) 98.33(<0.01)
CC-Net [18] 2018 N.A 77.09(<0.01) 98.48(<0.01) 96.33(<0.01) 97.00(<0.01)

Dense UNet [51] 2018 82.32(<0.01) 78.59(<0.01) 98.42(<0.01) 96.44(<0.25) 98.47(<0.01)
Yan et al. [100] 2019 N.A 77.35(<0.01) 98.57(<0.01) 96.38(<0.01) 98.33(<0.01)
BTS-DSN [28] 2019 83.62(<0.01) 82.01(<0.01) 98.28(<0.01) 96.60(<0.01) 98.72(<0.01)

DUNet [38] 2019 82.30(<0.01) 78.92(<0.01) 98.16(<0.01) 96.34(<0.01) 98.43(<0.01)

OCE-Net (Ours) 2022 83.41 80.12 98.65 96.72 98.76

individually adding different attention gates to the baseline UNet. Among the methods

listed in Table. 4.6, the original attention gate in [61] and CBAM block [93] can be viewed

as the modules that only carry out ’local’ attention. The NL, DNL, self-attention blocks

can be seen as the methods that only apply ’global’ attention. In contrast, the proposed

GLFM not only exerts ’local’ attention, but also applies ’global’ attention.

From Table 4.6, it can be seen that the proposed GLFM outperforms all the ’local’-only

and ’global’-only attention modules. This demonstrates that it is important to capture

both of the global context information and the local details of vessels because global con-

46



Table 4.4: Quantitative comparison with other state-of-the-art methods on CHASEDB1

dataset. We calculated the P-value of T-test between our method and other methods.

Method Year F1 Se Sp Acc AUC

2nd observer [77] 2004 N.A 81.05(<0.01) 97.11(<0.01) 95.45(<0.01) N.A

HED [96] 2016 78.15(<0.01) 75.16(<0.01) 98.05(<0.01) 95.97(<0.01) 97.96(<0.01)

DeepVessel [21] 2016 N.A 74.12(<0.01) 97.01(<0.01) 96.09(<0.01) 97.90(<0.01)

Orlando et al. [64] 2017 N.A 75.65(<0.01) 96.55(<0.01) 94.67(<0.01) 94.78(<0.01)

JL-UNet [99] 2018 N.A 76.33(<0.01) 98.09(<0.01) 96.10(<0.01) 97.81(<0.01)

Att UNet [61] 2018 80.12(<0.01) 80.10(<0.01) 98.04(<0.01) 96.42(<0.01) 98.40(<0.01)

Dense UNet [51] 2018 79.01(<0.01) 78.93(<0.01) 97.92(<0.01) 96.11(<0.01) 98.35(<0.01)

Yan et al. [100] 2019 N.A 76.41(<0.01) 98.06(<0.01) 96.07(<0.01) 97.76(<0.01)

BTS-DSN [28] 2019 79.83(<0.01) 78.88(<0.01) 98.01(<0.01) 96.27(<0.01) 98.40(<0.01)

DUNet [38] 2019 79.32(<0.01) 77.35(<0.01) 98.01(<0.01) 96.18(<0.01) 98.39(<0.01)

CTF-Net [86] 2019 82.20(<0.01) 79.48(<0.01) 98.42(<0.01) 96.48(<0.01) 98.47(<0.01)

OCE-Net (Ours) 2022 81.96 81.38 98.24 96.78 98.72

Table 4.5: Quantitative comparison of several newly proposed metrics [98] between our

method and other methods on DRIVE dataset. Note that the model of SA-UNet [26] was

reproduced by us in order to eliminate the inconsistency of indicators in different papers

[38] [26]. We calculated the P-value of T-test between our method and other methods.

Method F C A L rSe rSp rAcc Mcc

2nd observer 83.75 100 93.98 89.06 85.84 99.19 95.74 76.00

HED [96] 80.09(<0.01) 99.75(<0.01) 90.06(<0.01) 89.11(<0.01) 71.57(<0.01) 95.11(<0.01) 89.08(<0.01) 66.00(<0.01)

DRIU [55] 80.43(<0.35) 99.56(<0.01) 91.52(<0.01) 88.23(<0.08) 82.36(<0.01) 96.85(<0.03) 93.13(<0.01) 71.61(<0.01)

DeepVessel [21] 61.74(<0.01) 99.60(<0.01) 84.23(<0.01) 73.38(<0.01) 54.93(<0.01) 99.78(<0.01) 88.32(<0.01) 73.34(<0.01)

V-GAN [76] 84.82(<0.01) 99.64(<0.01) 94.69(<0.01) 89.84(<0.01) 80.77(<0.01) 99.63(<0.19) 94.76(<0.01) 80.24(<0.07)

JL-UNet [99] 81.06(<0.01) 99.61(<0.01) 93.08(<0.01) 87.35(<0.01) 76.11(<0.01) 99.57(<0.25) 93.53(<0.01) 78.98(<0.01)

SWT-FCN [62] 83.92(<0.01) 99.73(<0.01) 94.36(<0.18) 89.11(<0.01) 79.63(<0.01) 99.64(<0.01) 94.48(<0.01) 80.53(<0.01)

DeepDyn [40] 84.53(<0.01) 90.70(<0.01) 94.58(<0.01) 89.61(<0.01) 81.52(<0.01) 99.44(<0.01) 94.82(<0.03) 80.02(<0.01)

DAP [79] 82.55(<0.01) 99.72(<0.01) 93.74(<0.01) 88.24(<0.01) 78.57(<0.01) 99.57(<0.15) 94.15(<0.01) 79.00(<0.01)

DRIS-GP [11] 84.94(<0.20) 99.68(<0.01) 94.91(<0.01) 89.74(<0.02) 80.22(<0.40) 99.64(<0.01) 94.66(<0.01) 81.84(<0.01)

SA-UNet [26] 83.19(<0.01) 99.61(<0.01) 93.96(<0.01) 88.89(<0.01) 80.01(<0.01) 99.32(<0.01) 94.53(<0.01) 79.67(<0.01)

SkelCon [81] 85.30(<0.01) 99.85(<0.01) 93.58(<0.01) 91.26(<0.01) 83.23(<0.01) 98.59(<0.01) 94.61(<0.01) 80.30(<0.01)

OCE-Net 85.83 99.80 95.07 90.43 83.83 99.29 95.30 80.40
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RGB OCE-Net DRIS-GP JL-UNetGround-Truth DRIU VGN V-GAN MS-LineDet

Figure 4.1: Visual comparison with other state-of-the-art methods on DRIVE,

CHASEDB1, and STARE datasets, from top to bottom rows. The orange arrows indicate

some details of segmentation. Please zoom in for a better view.

RGB Patch 1st observer 2nd observer OCE-Net DRIS-GP DRIU VGN V-GAN

Figure 4.2: Visual comparison with other state-of-the-art methods for segmenting thin

vessels.

text represents the overall structure information of blood vessels, while the local details

focus more on the thin vessels. Without local attention, thin vessels will be missed easily.

Table 4.6: Comparison between the proposed GLFM and other prevalent modules serv-

ing as attention gates on DRIVE. We calculated the P-value of T-test.

Method F1 Se Sp Acc AUC

Baseline (UNet) [71] 82.11(<0.01) 79.48(<0.01) 97.94(<0.01) 95.59(<0.01) 97.85(<0.01)
+ Attention Gate [61] 82.33(<0.02) 79.12(<0.01) 98.09(<0.01) 95.68(<0.01) 98.02(<0.01)

+ CBAM [93] 82.21(<0.01) 79.26(<0.01) 98.01(<0.01) 95.64(<0.01) 97.92(<0.01)
+ nonlocal [87] 82.57(<0.01) 79.88(<0.01) 98.04(<0.25) 95.73(<0.01) 98.10(<0.01)

+ DNL [104] 82.37(<0.01) 78.99(<0.14) 98.02(<0.01) 95.72(<0.01) 98.10(<0.01)
+ Self-Attention [82] 82.66(<0.01) 79.32(<0.01) 98.12(<0.01) 95.73(<0.05) 98.12(<0.01)

+ GLFM (Proposed) 83.00 80.90 97.92 95.76 98.16
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Comparison between the proposed OCE-NL/OCE-DNL and other modules serving as

core fusion module in MSFM

The proposed OCE-NL and OCE-DNL act as the core modules of the MSFM, which are

used to entangle the context and orientation information. To prove the superiority of

this entanglement mechanism, we conducted a comparison by directly replacing OCE-

NL (OCE-DNL) with other prevalent modules for fair comparison, including vanilla NL,

DNL, and self-attention modules. The results shown in Table 4.7 demonstrate that entan-

gling orientation features with the output features of the network can effectively improve

the reconstruction of vessels compared with vanilla NL and DNL. This is because orienta-

tion features provide more concentration on blood vessels via the oriented constraints of

DCOA Conv, which can act as a kind of auxiliary prior information and help the network

reconstruct vessels better.

In Table 4.7, ’Addition + DNL’ means that the plain and orientation features are added

together by an element-wise addition operation and then fed into DNL for fusion. ’Con-

cat + DNL’ means that the plain and orientation features are concatenated together, and

a Conv1x1 operator is then applied to the features for dimension reduction and then fed

into DNL for fusion. The addition, concatenation, and our proposed cross-correlated en-

tanglement can be regarded as three independent methods for feature fusion. Compared

with DNL without using orientation prior features, both ’Addition + DNL’ and ’Concat +

DNL’ (both the plain and orientation features involved) show a significant improvement

over the ’plain features only’ method, which indicates that orientation features can help

segment vessels better. Among the ’both plain and orientation features involved’ meth-

ods, our proposed entanglement is the best way to integrate the plain and orientation

features together.
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Table 4.7: Comparison between the proposed OCE-NL/OCE-DNL and other modules

serving as core fusion block in MSFM on STARE. We calculated the P-value of T-test.

Method F1 Se Sp Acc AUC

Baseline (UNet) [71] 80.87(<0.01) 74.82(<0.01) 98.78(<0.01) 96.24(<0.01) 98.17(<0.01)
+ Self-Attention [82] 82.22(<0.01) 77.77(<0.01) 98.64(<0.01) 96.43(<0.20) 98.40(<0.01)
+ nonlocal (NL) [87] 81.06(<0.01) 75.55(<0.01) 98.87(<0.01) 96.40(<0.01) 98.46(<0.01)

+ DNL [104] 80.89(<0.01) 75.36(<0.01) 98.96(<0.01) 96.36(<0.01) 98.49(<0.01)

Addition + DNL 82.06(<0.01) 76.21(<0.01) 98.86(<0.01) 96.46(<0.01) 98.51(<0.01)
Concat + DNL 82.32(<0.02) 75.29(<0.01) 98.89(<0.01) 96.54(<0.03) 98.53(<0.01)

+ OCE-NL (Proposed) 81.95 75.17 99.02 96.49 98.57
+ OCE-DNL (Proposed) 82.37 75.65 99.05 96.56 98.58

Comparison between the proposed DCOA Conv and other convolutions

We compared the proposed DCOA Conv with other prevalent variants of convolution.

Note that we directly replaced all the vanilla convolution in the UNet with different con-

volution variants during testing for fair comparison.

In Table 4.8, ’Gabor Conv (4)/(8)’ and ’DCOA Conv (4)/(8)’ mean that filters with 4 or

8 different orientations were adopted. ’Dynamic Conv (4)/(8)’ means that 4 or 8 kernels

were used.

As shown in Table 4.8, the proposed DCOA Conv outperforms other convolution op-

erators when the number of orientation is 8. Note that Gabor Conv has a side effect on

vessel segmentation when inserted into the UNet baseline because Gabor Conv can only

encode a single orientation per channel, which cannot capture the complex vessels with

various orientations. This restriction limits the network to learning the complex orienta-

tion characteristics of blood vessels, resulting in poor performance.

Dynamic Conv (4) and Dynamic Conv (8) have similar effects because Dynamic Conv

improves the performance by adding more kernels; however, these kernels do not have

orientation selectivity. When the number of kernels is 4 in Dynamic Conv, the feature

extraction capability of network is at its peak; therefore, increasing the number of kernels

to 8 cannot improve the feature extraction capability.

In comparison, the proposed DCOA Conv can capture complex multiple orientations,

which succeeds in overcoming the disadvantage of Gabor Conv. Our experiments demon-
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strate that eight orientations are enough for our model to work well on the DRIVE dataset,

and adding more orientations does not contribute much. In particular, the vascular ori-

entation in the CHASEDB1 dataset is much simpler than that in the DRIVE dataset, with

fewer thin vessels and less complexity in orientations; therefore, four orientations can

well encode the orientation information for the CHASEDB1 dataset.

Deformable Conv improves the performance by fitting the kernel’s shapes to vessels

(by learning the varying shapes of vessels). In comparison, our proposed DCOA Conv

learns different orientations of vessels by integrating multiple oriented kernels together.

These two methods improve the accuracy of vascular segmentation from two different

starting points.

Table 4.8: Comparison and abaltion study between the proposed DCOA Conv and other

prevalent convolution operators on DRIVE. We calculated the P-value of T-test.

Method F1 Se Sp Acc AUC

Baseline (UNet) [71] 82.11(<0.01) 79.48(<0.01) 97.94(<0.01) 95.59(<0.01) 97.85(<0.01)
+ Gabor Conv (4) [54] 81.43(<0.02) 78.85(<0.01) 97.89(<0.01) 95.48(<0.01) 97.73(<0.01)
+ Gabor Conv (8) [54] 81.78(<0.01) 77.99(<0.01) 98.12(<0.04) 95.52(<0.01) 97.82(<0.01)

+ DR Conv [9] 82.11(<0.01) 79.29(<0.01) 98.03(<0.01) 95.63(<0.01) 97.93(<0.01)
+ Cond Conv [101] 81.94(<0.01) 80.24(<0.01) 97.86(<0.01) 95.62(<0.01) 97.94(<0.01)

+ Dynamic Conv (4) [10] 82.22(<0.01) 80.15(<0.01) 98.00(<0.03) 95.69(<0.01) 98.08(<0.01)
+ Dynamic Conv (8) [10] 82.31(<0.02) 79.55(<0.01) 98.03(<0.01) 95.69(<0.01) 98.08(<0.01)

+ Deformable Conv V1 [14] 82.42(<0.01) 80.42(<0.01) 97.93(<0.01) 95.70(<0.01) 98.11(<0.01)
+ Deformable Conv V2 [111] 82.26(<0.01) 79.82(<0.01) 98.00(<0.01) 95.69(<0.01) 98.10(<0.01)

+ DCOA Conv (4) 82.28 79.67 98.01 95.64 98.03
+ DCOA Conv (8) 82.69 80.50 97.97 95.74 98.13

Why must we fuse the plain and the orientation features together via SAFM?

As shown in Fig. 3.7, we fused the plain features extracted by basic blocks and the ori-

entation features extracted by DCOA blocks together in the network via SAFM. Why is

this fusion essential? To answer this important question, we conducted experiments to

demonstrate that the fusion is essential to involve the orientation information into the

network.

As shown in Table 4.9, when the DCOA block and SAFM are removed from the OCE-

Net, corresponding to the ’plain only’ mode, the orientation information of vessels is
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Table 4.9: Experiments conducted on CHASEDB1 for explaining for the necessity of

SAFM. The underlined results indicate significant declined performance. We calculated

the P-value of T-test.

Method F1 Se Sp Acc AUC

Plain only 81.42(<0.01) 83.19(<0.01) 97.97(<0.01) 96.56(<0.01) 98.62(<0.01)
Orientation only (DCOA) 81.01(<0.01) 82.74(<0.01) 97.84(<0.01) 96.47(<0.01) 98.48(<0.01)

Fusion by Conv1x1 71.76(<0.01) 60.76(<0.01) 98.96(<0.01) 94.97(<0.01) 98.61(<0.01)

Fusion by SAFM 81.59 82.25 98.11 96.66 98.67

not captured well. When we directly replace the plain conv with the proposed DCOA

Conv, corresponding to the ’orientation only’ mode, we only use the DCOA Conv to

extract orientation features. As we can see in Table 4.9, the results of ’orientation only’

mode are significantly lower than those of the ’plain only’ mode, which demonstrates that

segmenting vessels with only orientation features fails to achieve promising results and

even has side effects on the context-aware modules (GLFM, OCE-DNL). This is because

except for the orientation features, other features such as the fundus background and

other tissues can serve as negative samples against the blood vessels (positive samples)

and also play an important role in accurately detecting vessels. Therefore, orientation

features should be regarded as a kind of auxiliary prior guidance, used to help the plain

features in better reconstruction of vessels.

Considering that there are some redundant channels in both features and there is cor-

relation between the channels of the two features, direct fusion using 1x1 convolution can-

not achieve the best performance. Furthermore, when we replace SAFM with Conv1x1

(the most commonly used fusion module) as the fusion module, the segmentation per-

formance is seriously degraded, as indicated by the the underlined results in Table. 4.9.

In comparison, adopting SAFM as fusion module in the network instead of Conv1x1 pro-

duces a distinct performance improvement.
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Comparison between the proposed UARM and the vanilla spatial attention as the re-

fining module

At the end of the network, the proposed UARM is adopted to refine the final output

features by dealing with the unbalance problem among the fundus background and the

thick and thin vessels. The vanilla spatial attention was used here as the competitor to

prove the effectiveness of our UARM. As shown in Table 4.10, the vanilla spatial attention

shows an improvement, and the proposed UARM is better than the vanilla spatial atten-

tion. In the UNet baseline, the attention of the network focuses more on the thick vessels,

which have more salient features, and the thin vessels are usually neglected, resulting in

low segmentation accuracy. As shown in Fig. 4.3, UARM can allocate more attention to

distinguish thin vessels and obtain a significant promotion.

Table 4.10: Comparison between the proposed UARM and the vanilla spatial attention

serving as the final refining module on DRIVE.

Method F1 Se Sp Acc AUC

Baseline (UNet) [71] 82.11 79.48 97.94 95.59 97.85
+ Spatial Attention [68] 82.19 79.47 98.01 95.66 98.04

+ UARM (Proposed) 82.61 80.02 98.03 95.73 98.10

Input UNet UNet + UARM

Figure 4.3: Ablation study of UARM in terms of a visual attention map. More attention

is paid to the thin vessels.
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RGB 1st observer Baseline2nd observer Baseline + GLFM
Baseline + GLFM 

+ MSFM 

Baseline + GLFM +

MSFM + DCOA 
Baseline + GLFM +  

MSFM + DCOA + SAFM 

Figure 4.4: Visual ablation study of each proposed module. Notice that in the second-to-

last column, when we directly replace plain conv with DCOA Conv, the visual effect is

worse. However, as shown in the last column, when we use SAFM to fuse the plain and

orientation features, an improvement can be observed. The corresponding quantitative

results are listed in Table 4.11.

Table 4.11: Overall ablation study for each proposed module on CHASEDB1. The

underlined results indicate significant declined performance.

Method F1 Se Sp Acc AUC

Baseline (UNet) 79.22 79.10 97.81 96.30 98.22

+ DCOA Conv 80.71 79.38 98.11 96.45 98.47
+ GLFM 80.61 79.93 98.09 96.47 98.48
+ GLFM + OCE-DNL 81.33 82.03 97.98 96.54 98.58

+ GLFM + OCE-DNL + DCOA Conv 81.01 81.24 97.92 96.50 98.48
+ GLFM + OCE-DNL + DCOA Conv + SAFM 81.51 82.17 98.08 96.61 98.63

+ GLFM + OCE-DNL + Deformable Conv 80.31 79.41 98.32 96.51 98.49
+ GLFM + OCE-DNL + Deformable Conv + SAFM 81.29 81.86 98.12 96.60 98.62

+ GLFM + OCE-DNL + DCOA Conv + SAFM + UARM 81.59 82.25 98.11 96.66 98.67
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4.2.4 Overall ablation study for each proposed modules

As shown in Table 4.11, we conducted an overall ablation study for each of the proposed

modules on CHASEDB1. Note that directly replacing the plain convolution with DCOA

Conv makes the model worse and yields a dramatic performance reduction, as indicated

by the underlined results in Table 4.11. Only with SAFM can plain features and orienta-

tion features be well fused. Note that the model referred to here is the model equipped

with the context-aware modules, such as GLFM and OCE-DNL. Directly replacing the

plain conv with the DCOA Conv in the vanilla UNet can actually produce an improve-

ment, which indicates that there is an unexpected conflict between the vessel-aware conv

and context-aware modules. This conflict is be discussed in Section 4.2.5.

Note that directly replacing the plain convolution with Deformable Conv [14] [111]

unexpectedly makes the performance (of the model with context-aware modules) worse

as well. The reason is similar to that of DCOA Conv, mentioned before, because the De-

formable Conv reshapes the convolution kernels (DCOA Conv also changes the shape

of convolution kernels) to fit the vessels and inevitably neglects other important features

like the fundus background and other tissues. These features can serve as important neg-

ative samples to help better detect blood vessels. When SAFM is adopted to fuse the plain

features and the features extracted by deformable convolution together, a promotion on

segmentation can be observed that is similar to that when fusing the plain and orienta-

tion features together before. The result emphasizes that it is essential to integrate plain

features and the vessel-aware features (shape-aware or orientation-aware) together.

4.2.5 The conflict between the vessel-aware conv and the context-aware

modules

We reassert that directly inserting DCOA Conv or Deformable Conv into a vanilla UNet

without the context-aware modules (GLFM, OCE-DNL) can produce gain an improve-

ment, but the performance of context-aware modules is be degraded when they work
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together with vessel-aware convolution. In other words, there is a conflict between the

vessel-aware conv and the context-aware modules. The reasons are as follows. The

vessel-aware conv extracts the local features with special orientations (DCOA Conv) or

shapes (Deformable Conv); however, other features (background and nonvascular tis-

sues) cannot be extracted and encoded in these vessel-aware features. In contrast, context-

aware modules work to capture the global context information by computing all the fea-

tures in the fundus images, including the vascular and nonvascular features, which is

why the ’orientation-only’ mode in Table 4.9 shows a relatively worse performance. This

demonstrates again that both the plain and the orientation features are equally important.

The function of the proposed SAFM is to tackle the conflict and make the vessel-aware

conv compatible with those context-aware modules. Our OCE-DNL is also a novel ap-

proach to entangling the vessel-aware features into context information.

RGB DRIU DRIS-GP OCE-Net Ground-Truth

Figure 4.5: Visual comparison on the AV-WIDE (the first row) and UoA-DR (the second

row) datasets.

4.2.6 Comparison with other methods on other challenging test sets

To evaluate the generalization and robustness of OCE-Net, we tested our model on sev-

eral challenging test sets, including AV-WIDE [17], UoA-DR [7], RFMiD [65], and UK

Biobank [78]. Note that all the models involved in comparison were trained on DRIVE
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RGB DRIU DRIS-GP OCE-NetBaseline (UNet)

Figure 4.6: Visual comparison on the RFMiD (the first row) and UK Biobank (the second

row) datasets.

instead of retraining them from scratch on these challenging datasets. For fair compari-

son, all the models involved were trained and tested with grayscale fundus images rather

than RGB images.

As shown in Fig. 4.5 and 4.6, our method outperforms other methods, including

DRIU [55] and DRIS-GP [11], and shows a significant improvement over the baseline

UNet [71]. Note that in the test on the UK Biobank [78] in the second row of Fig. 4.6;

the orange arrows indicate the area where the thin vessels are severely obscured by the

opacity, which are difficult to detect, even with human eyes. In contrast, our method can

detect these blurred and occluded vessels well, which demonstrates the strong power of

the proposed OCE-Net.

Table 4.12: Cross validation across the DRIVE and STARE datasets.

Test set Method Se Sp Acc AUC

DRIVE
(trained on STARE)

CC-Net [18] 72.17 98.20 94.86 93.27
BTS-DSN [28] 72.92 98.15 95.02 97.09

OCE-Net 75.36 98.62 94.65 97.32

STARE
(trained on DRIVE)

CC-Net [18] 74.99 97.98 95.63 96.21
BTS-DSN [28] 71.88 98.16 95.48 94.86

OCE-Net 75.06 98.28 95.53 96.23
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4.2.7 Cross validation

To test the generalization ability, we conducted cross-validation experiments on DRIVE

and STARE and compared our method with other methods. As shown in Table 4.12,

compared with other methods, our method achieves promising performance in terms of

Se, Sp, and AUC, and comparable performance in terms of Acc. This demonstrates the

relatively better generalization ability of the proposed model.

0.974 0.976 0.978 0.980 0.982
AUC

0.810

0.815

0.820

0.825

0.830

F1
-S

co
re

CTF-Net

DRIU
UNet

BTS-DSN

Att-UNet

JL-UNet

Dense UNet

DUNet

OCE-Net

Figure 4.7: Comparison of model parameters. Note that the size of the circle indicates the

number of model parameters. F1 score and AUC were used to evaluate the performance

of models.

4.2.8 Comparison of Parameters, Flops and Speeds

As shown in Fig. 4.7 and Table 4.13, we compared our OCE-Net with other state-of-the-

art methods in terms of model parameters, F1 score, and AUC. Our OCE-Net uses plain
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Table 4.13: Comparison of Parameters (Unit: M) and Flops (Unit: G) between different

methods on DRIVE.

Method UNet Att UNet Dense UNet DUNet OCE-Net

Params (M) 3.4 7.1 11.0 7.4 6.3
Flops (G) 0.07 0.10 0.68 0.23 0.21

Table 4.14: Comparison of the training and inference time between different methods on

DRIVE. Note that we only calculate the time cost for one epoch (Unit: Sec/Epoch).

Method UNet Att UNet Dense UNet DUNet OCE-Net w/o GLFM

Training Time 43 91 138 196 186 97
Inference Time 7 17 29 125 83 36

UNet as the backbone. The parameters of the UNet model are about 3.4 MB. Our OCE-

Net has about 6.3 MB parameters after adding all the proposed modules (DCOA Conv,

GLFM, OCE-DNL and UARM) into the UNet backbone. In contrast, JL-UNet [99] is a

large model with about 33 MB parameters; however, it exhibits the worst performance.

CTF-Net [86], DRIU [55], Attention UNet [61], and BTS-DSN [28] have similar numbers of

parameters (around 7MB) and similar performance. In addition, Dense UNet has about

11 MB parameters, and Deformable UNet (DUNet) has 7.4 MB parameters, but both of

them show less worse performance than our OCE-Net. Our OCE-Net achieves the best

performance in terms of the F1 score and AUC, without introducing too much parame-

ters.

As shown in Table. 4.14, we compared the training and inference speeds between

different UNet-based methods. Note that all the models were trained and tested on the

DRIVE dataset with the same parameter settings, including the batch size and the number

of cropped samples. UNet is the most lightweight model, which achieves the fastest

speed. All the other models are much slower than the backbone UNet. In our model,

the most time-consuming module is GLFM because it contains self-attention processing,

which requires a lot of computation to calculate global dependencies. When we remove

the GLFM from the OCE-Net, there is a significant decline on the time cost.
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4.3 Experiments of GCC-UNet

4.3.1 Implementation details

The GCC-UNet model was implemented using the PyTorch framework [66] and trained

on a TITAN XP GPU. During the training process, we used the Adam optimizer. Prior to

training, the RGB fundus images were converted into grayscale. Then, the images were

subjected to random cropping to generate 48 × 48 patches, and a total of 15,000 patches

were generated. A batch size of 32 was used and the total number of training epochs was

set to 60.

4.3.2 Overall comparison with other methods

We conducted comprehensive comparison experiments to demonstrate the exceptional

performance of our proposed GCC-UNet model. The results, presented in Tables 4.15,

4.16, and 4.17, show that our method outperforms numerous state-of-the-art methods

on the DRIVE [77], STARE [31], and CHASEDB1 [19] datasets, based on both traditional

and advanced metrics in Table 4.18. These findings highlight the superiority of our ap-

proach compared to previous methods. Furthermore, as shown in Figures 4.8 and 4.9, our

method also exhibits superior visual performance compared to other methods, particu-

larly on thin vessels. These results provide further evidence of the effectiveness of our

approach and its ability to capture global context and improve the continuity of vessels.

4.3.3 Comparison and ablation study of individual module

Comparison and ablation analysis between the proposed GC Conv and plain Capsule

Conv

To enhance the vanilla capsule convolution [72], we propose the Graph Capsule Convo-

lution (GC Conv) to model the interdependencies among channels, capsules, and even

atoms. In our experiment, we replaced the vanilla convolution operators with both the
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Table 4.15: Quantitative comparison with other state-of-the-art methods on DRIVE. Red:

the best, Blue: the second best.

Method F1 Se Sp Acc AUC

2nd observer [77] N.A 77.60 97.24 94.72 N.A
HED [96] 80.89 76.27 98.01 95.24 97.58

DeepVessel [21] N.A 76.12 97.68 95.23 97.52
Orlando et al. [64] N.A 78.97 96.84 94.54 95.06

JL-UNet [99] N.A 76.53 98.18 95.42 97.52
CC-Net [18] N.A 76.25 98.09 95.28 96.78

Yan et al. [100] N.A 76.31 98.20 95.33 97.50
BTS-DSN [28] 82.08 78.00 98.06 95.51 97.96
CTF-Net [86] 82.41 78.49 98.13 95.67 97.88
CSU-Net [85] 82.51 80.71 97.82 95.65 98.01

GCC-UNet (Ours) 82.71 80.12 98.16 95.72 98.10

Table 4.16: Quantitative comparison with other methods on STARE.

Method F1 Se Sp Acc AUC

HED [96] 82.68 80.76 98.22 96.41 98.24
Orlando et al. [64] N.A 76.80 97.38 95.19 95.70

JL-UNet [99] N.A 75.81 98.46 96.12 98.01
Att UNet [61] 81.36 80.67 98.16 96.32 98.33
CC-Net [18] N.A 77.09 98.48 96.33 97.00

Yan et al. [100] N.A 77.35 98.57 96.38 98.33

GCC-UNet (Ours) 82.82 78.06 98.77 96.58 98.56

Table 4.17: Quantitative comparison with other methods on CHASEDB1.

Method F1 Se Sp Acc AUC

2nd observer [77] N.A 81.05 97.11 95.45 N.A
HED [96] 78.15 75.16 98.05 95.97 97.96

DeepVessel [21] N.A 74.12 97.01 96.09 97.90
Orlando et al. [64] N.A 75.65 96.55 94.67 94.78

JL-UNet [99] N.A 76.33 98.09 96.10 97.81
Yan et al. [100] N.A 76.41 98.06 96.07 97.76
BTS-DSN [28] 79.83 78.88 98.01 96.27 98.40

GCC-UNet (Ours) 80.86 81.23 98.15 96.59 98.50
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Table 4.18: Quantitative comparison with other methods in terms of metrics in [98] on

DRIVE dataset.

Method F C A L rSe rSp rAcc Mcc

2nd observer 83.75 100 93.98 89.06 85.84 99.19 95.74 76.00

HED [96] 80.09 99.75 90.06 89.11 71.57 95.11 89.08 66.00
DRIU [55] 80.43 99.56 91.52 88.23 82.36 96.85 93.13 71.61

DeepVessel [21] 61.74 99.60 84.23 73.38 54.93 99.78 88.32 73.34
V-GAN [76] 84.82 99.64 94.69 89.84 80.77 99.63 94.76 80.24
JL-UNet [99] 81.06 99.61 93.08 87.35 76.11 99.57 93.53 78.98

SWT-FCN [62] 83.92 99.73 94.36 89.11 79.63 99.64 94.48 80.53
DeepDyn [40] 84.53 90.70 94.58 89.61 81.52 99.44 94.82 80.02

DAP [79] 82.55 99.72 93.74 88.24 78.57 99.57 94.15 79.00
DRIS-GP [11] 84.94 99.68 94.91 89.74 80.22 99.64 94.66 81.84

GCC-UNet 85.83 99.75 95.10 90.46 82.60 99.17 95.06 80.27

RGB OCE-Net DRIS-GP JL-UNetGround-Truth DRIU VGN V-GAN MS-LineDet

Figure 4.8: Visual comparison with other state-of-the-art methods on DRIVE, CHASEDB1

and STARE datasets.

RGB Patch 1st observer 2nd observer OCE-Net DRIS-GP DRIU VGN V-GAN

Figure 4.9: Visual comparison with other methods in terms of thin vessels.
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Table 4.19: Comaprison between the vanilla Capsule Conv (Cap Conv) in [72] and our

Graph Capsule Conv (GC Conv) on DRIVE.

Method F1 Se Sp Acc AUC

Baseline (UNet) [71] 81.76 78.36 98.03 95.56 97.86
+ Capsule Conv [72] 81.19 78.07 98.12 95.53 97.81

+ GC Conv (Proposed) 82.01 78.12 98.18 95.63 97.93

capsule convolution (Cap Conv) [72] and our proposed GC Conv in the U-Net architec-

ture. As shown in Table. 4.19, the performance deteriorated after replacing the vanilla

conv with Cap Conv, while our GC Conv yielded significant improvement. This can be

attributed to the fact that capsule convolution only captures global features such as rela-

tive position, orientation, and color of vessels, without explicitly modeling the relation-

ships among these global characteristics. For instance, capillaries usually have a lighter

color and are located at the terminal branches (position), with a more complex orientation.

However, our GC Conv can model the relationship between characteristics and implicitly

learn the correlations on a graph.

Comparison and ablation analysis between the proposed SGAF and other fusion mod-

ules

We performed a comprehensive set of experiments to evaluate the effectiveness of our

proposed SGAF module compared to other fusion modules. Table 4.20 shows the per-

formance of fusing local features with different types of global features extracted by the

vanilla Capsule Convolution (Cap Conv) with dynamic routing [72] and our proposed

Graph Capsule Convolution (GC Conv) with graph dynamic routing. In addition to

SGAF, we also evaluated vanilla Conv1x1 [74] and Selective Kernel Attention (SK) [52]

as fusion modules.

As seen in Table 4.20, Conv1x1 was not effective in fusing local and global features,

as it could not differentiate useful channels in these two types of features. SK Attention,

on the other hand, was effective in fusing features extracted using different mechanisms,
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achieving promising performance. However, our SGAF outperformed SK with a signifi-

cant margin. Furthermore, our proposed GC Conv significantly outperformed Cap Conv

in terms of extracting global contextual features with the same fusion module.

We also evaluated different modes, including the series mode and parallel mode shown

in Fig. 4.10, for the combination of CNN Conv and Capsule Conv. Our experiments

showed that the series mode performed better than the parallel mode. As Cap Conv and

our GC Conv cannot directly extract global information from the raw image, the optimal

approach is to first extract features using vanilla CNN convolutions, then use capsule

convolutions to further extract global contextual information from the CNN features, and

finally fuse the local and global features through skip connections.

CNN Conv

Cap Conv

Fusion

CNN
Conv

Fusion

Cap
Conv

Series Mode Parallel Mode

Figure 4.10: Different modes for the combination of CNN Conv and Capsule Conv. The

experiment shows that the series model can achieve better performance.

Comparison and ablation analysis between our proposed BGA and other attention

modules in the bottleneck

We conduct experiments for comparing our proposed Bottleneck Graph Attention mod-

ule with other well-known attention modules. As shown in Table. 4.21, our BGA out-

performs many other attention module, such as SE [32], CBAM [93], Non-Local [87], and

Self-Attention [82]. The proposed Channel Graph Attention (CGA) and Spatial Attention

(SGA) can also achieve promising performance. Because our BGA can model the rela-

tionships among channels via CGA by constrcting and learning graph representation. In
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Table 4.20: Comaprison between our SGAF and other fusion modules (Conv1x1 [74], SK

Attention [52]) on DRIVE.

Method F1 Se Sp Acc AUC

Baseline (UNet) [71] 81.76 78.36 98.03 95.56 97.86
Baseline (Capsule UNet) [72] 81.19 78.07 98.12 95.53 97.81

CAPSULE / FUSION F1 Se Sp Acc AUC

Cap Conv [72] / Conv1x1 [74] 81.42 77.96 97.79 95.52 97.82
Cap Conv [72] / SK [52] 82.12 78.16 97.76 95.65 98.01
Cap Conv [72] / SGAF 82.30 78.98 98.18 95.67 98.04

GC Conv / Conv1x1 [74] 81.82 78.53 97.92 95.59 97.87
GC Conv / SK [52] 82.23 78.86 97.91 95.68 98.03

GC Conv / SGAF (Parallel) 81.75 79.36 98.05 95.64 97.99
GC Conv / SGAF (Series) 82.42 79.45 98.11 95.70 98.07

addition, our BGA can leverage SGA to split the vessel out of the background and con-

struct graph to improve the continuity of vessels by learning the connectivity among the

nodes of vessels.

Table 4.21: Comaprison and ablation study of the proposed BGA and other attention

modules on DRIVE.

Method F1 Se Sp Acc AUC

Baseline (UNet) [71] 81.76 78.36 98.03 95.56 97.86

+ SE [32] 81.81 79.03 97.77 95.60 97.90
+ CBAM [93] 81.06 78.85 97.87 96.61 97.89

+ Non-Local [87] 81.75 78.98 97.76 95.61 97.91
+ Self-Attention [82] 82.03 79.45 97.96 95.64 97.93

+ CGA (Proposed) 82.18 79.32 98.00 95.64 97.93
+ SGA (Proposed) 82.11 79.89 97.95 95.64 97.93

+ BGA (Proposed) 82.25 79.65 98.05 95.67 97.94

Comparison and ablation analysis between our proposed MSGF and other multi-scale

fusion modules

We performed experiments to evaluate the performance of our proposed Multi-Scale

Graph Fusion (MSGF) module in comparison to other multi-scale fusion modules, includ-
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ing vanilla Conv1x1 and the fusion module proposed in [94]. Additionally, we compared

the different modes of our MSGF module, namely Individual (applying three individual

graph convolutions to three different scales of input graphs), Concat (concatenating the

graphs of three input features and feeding it into a single graph convolution), and Shared

(feeding the graphs of input features into a shared graph convolution).

As shown in Table. 4.22, all three proposed modes of MSGF outperformed other fusion

modules. Among these three modes, the Shared mode achieved the best performance

with fewer parameters and computational costs. This is because feeding the constructed

graphs from three different scales into a single graph convolution allows the convolution

operator to learn all the information and features of the three graphs at once. Moreover,

since these different scales of features come from the same fundus image, we assume that

they share the same graph pattern. Applying a single graph convolution aligns the graph

representation among these features, and the graphs of these three scales can achieve the

effect of information complementation on one shared graph convolution.

Table 4.22: Ablation study of the proposed MSGF on DRIVE.

Method F1 Se Sp Acc AUC

Baseline (UNet) [71] 81.76 78.36 98.03 95.56 97.86

+ Fusion via Conv1x1 [74] 81.69 78.88 97.89 96.59 97.89
+ Fusion module in [94] 81.86 78.54 97.95 96.62 97.91

+ MSGF (Individual) 82.03 78.84 98.02 96.64 97.93
+ MSGF (Concat) 81.95 79.14 97.98 96.64 97.93

+ MSGF (Shared) 82.15 79.23 98.08 95.68 97.94

4.3.4 Comparison study on challenging test sets

To assess the generalization ability of our GCC-UNet model, we conducted experiments

on challenging datasets, including AV-WIDE [17], UoA-DR [7], and UK Biobank [78]. All

the models used for comparison were trained from scratch on the DRIVE dataset. Our ex-

perimental results, presented in Fig. 4.11 and 4.12, demonstrate that GCC-UNet outper-
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forms the state-of-the-art methods DRIU and DRIS-GP, and significantly improves upon

the baseline UNet. In the UK Biobank test, as shown in the second row of Fig. 4.12, orange

arrows indicate regions where thin vessels are obscured by opacities, making them chal-

lenging to detect even for human experts. However, our GCC-UNet model successfully

detected these blurry and occluded vessels, indicating its superior performance.

RGB DRIU DRIS-GP GCC-UNet Ground-Truth

Figure 4.11: Visual comparison on the AV-WIDE and UoA-DR datasets.

RGB DRIU DRIS-GP GCC-UNetBaseline (UNet)

Figure 4.12: Visual comparison on the UK Biobank dataset.

Table 4.23: Cross-training validation on DRIVE and STARE.

Test set Method Se Sp Acc AUC

DRIVE
(Trained on STARE)

CC-Net [18] 72.17 98.20 94.86 93.27
GCC-UNet 71.06 97.96 94.92 97.03

STARE
(Trained on DRIVE)

CC-Net [18] 74.99 97.98 95.63 96.21
GCC-UNet 75.42 98.23 95.53 96.98
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4.3.5 Cross validation

To evaluate the generalization ability of our method, we conducted cross-validation ex-

periments on two different datasets, DRIVE and STARE, and compared our results with

other state-of-the-art methods. Our method achieved competitive performance, as shown

in Table. 4.23. However, we also acknowledge that our method has a drawback, namely

a relatively lower accuracy compared to some other methods.
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Chapter 5

Conclusion and Summary

5.1 Discussion of OCE-Net

We quantitatively and qualitatively compared OCE-Net with many other state-of-the-art

methods. We reproduced the network models of many UNet-based methods and re-

trained them from scratch on our codes, such as Attention UNet and Dense UNet. Some

methods provide original codes and segmentation results, such as JL-UNet and SkelCons,

so we used their segmentation results for the comparison. However, some methods did

not provide codes and results, such as DeepVessel, CC-Net, BTS-DSN, and CSU-Net, so

we could only compare our methods with the data in their papers. In general, we believe

that the comparison results proved the advantage of our work. However, our method also

had certain limitations. For example, when fundus images contained various lesions, the

continuity and connectivity of the extracted vessels were poor. In addition, when the le-

sion area contained many tissues whose textures were similar to those of the thin vessels,

our method tended to detect these tissues as continuous intact vessels while attempting

to detect all the potential blood vessels of various orientations. As an important future

work, we plan to build a graph model to perceive the entire vascular skeleton to better

capture the context information and improve vascular connectivity while suppressing the

nonvascular tissues as much as possible.
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5.2 Discussion of GCC-UNet

Our proposed GCC-UNet has demonstrated promising performance on retinal vessel seg-

mentation by effectively capturing global context, local and global fusion, and improving

the continuity of vessels. Notably, our model has a relatively small number of parameters

(only 5.48M). However, there are still inherent weaknesses in our approach. As pointed

out in [72], the introduction of capsule convolution enables the capturing of global con-

text, but it significantly increases the computational cost of the model, resulting in slower

inference speed. This issue is intrinsic to the capsule convolution itself. Although our

GC Conv significantly improves the effect of capsule convolution, it does not reduce the

computational cost or increase the inference speed. In the future, researchers could focus

on developing methods to improve the inference speed of capsule convolution. Addition-

ally, transformers [82] could be a promising complement to our model, given their ability

to capture long-range global context.

5.3 Conclusion

In this paper, a novel model called OCE-Net was proposed to simultaneously capture the

orientation and context information of blood vessels as well as entangle them together.

To this end, a novel convolution operator was designed to fit the vessels with multiple

orientations, and the experimental results indicate that feature extraction along more spe-

cific orientations can improve vascular continuity and connectivity. In addition, a global

and local fusion module was constructed to leverage both of the context and detail in-

formation of vessels because context information could help the network perceive the

whole vascular skeleton and deal with occlusion well. Moreover, a novel entanglement

mechanism was developed to entangle the context and the orientation information by in-

troducing cross correlation into the vanilla nonlocal. Finally, to deal with the unbalance

among the fundus background and thick and thin vessels, a novel attention module was

proposed to refine the results by allocating more attention to the regions where the ves-
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sels had low discriminability. Thus, the proposed framework could effectively carry out

retinal vessel segmentation.

In addition, in this paper, we also propose a novel approach for retinal vessel segmen-

tation using a global and local fusion UNet, which integrates vanilla, graph, and capsule

convolutions. Our approach represents the first attempt to unify these different convolu-

tion types. Specifically, we use capsule convolution to capture global contextual informa-

tion, and graph convolution to model vessel connectivity and improve continuity. Our

GC Conv enhances vanilla capsule convolution, while our SGAF can fuse features from

various domains (CNN, Graph, and Capsule). Additionally, our BGA improves vessel

continuity using a divide-and-conquer strategy, and our MSGF can handle multi-scale

feature fusion. Importantly, these modules can be applied to various applications beyond

vessel segmentation, including MRI tumor segmentation, geometric modeling of medical

images, and even semantic or instance segmentation.
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