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Abstract 

Background: Ultrasound-guided regional anesthesia (UGRA) has offered multiple advancements 

in the field of anesthesiology compared to traditional nerve stimulation techniques. However, 

nerve block and general sonoanatomy interpretation pose important challenges to novice 

anesthesiologists. This thesis will cover two articles which investigate deep learning (DL) 

techniques to highlight nerve regions in real time. An additional article will cover the inter- and 

intra-labeler variability among anesthesiologists’ interpretations of target nerves in ultrasound 

(US) images. 

Methods: A preliminary study was conducted on identifying the Transversus Abdominis Plane 

(TAP) using DL. The popular U-Net architecture was used to train a model on a total of 50,000 

augmented positive images of the nerve and negative arbitrary US sonoanatomy. Ten 

anesthesiologists were recruited to label a test set (n=10) of TAP US images. Mean Dice scores 

were calculated for each of the ten anesthesiologists’ labels of the test set. A global Dice score was 

calculated and represented the model’s overall performance. 

The second study on inter- and intra-labeler variability of nerve block target zones focused on 

establishing quantifiable links between subjective nerve target zone segmentation of still 

ultrasound images by anesthesiologists and objective similarity metrics. Ten anesthesiologists 

were recruited to label 70 US images: 7 nerve regions, 10 images for each region. Eight similarity 

coefficients, including the Dice score, were calculated for pairs of anesthesiologists’ labels of US 

images. These scores were compared to the labeler’s Yes/No blinded answers to whether they 

would insert a needle in their own or their colleague’s labeled area. The same experiment was 

performed for two of the most experienced anesthesiologists in the cohort. Logistic regression 
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coefficients and area under the curves (AUC) of receiver operating characteristic (ROC) curves 

were calculated for the following groups: All physicians, All nerves (APAN); All physicians, no 

Axillary (APnA); Experts, All nerves (EAN); Experts, no Axillary (EnA). Lastly, statistical data 

regarding the cohort’s experience versus average agreement score was recorded. 

Results: The overall Dice score for the preliminary study on automatic segmentation of the TAP 

region was 73.31%. In the expert comparison study, the Dice score ROC thresholds for APAN, 

APnA, EAN, and EnA were 34.44 (AUC: 0.72, p<<0.05), 81.35 (AUC: 0.61, p<<0.05), 

64.67 (AUC: 0.65, p=0.0486), 59.63 (AUC: 0.90, p=0.1961), respectively.  

Conclusion: The expert comparison study provided preliminary insight into establishing clinically 

relevant thresholds for important pixel-wise similarity metrics. The study investigating the TAP 

block resulted in a global Dice score of 73.31%, a score considered to be satisfactory, indicating 

that the model’s segmentations of the region are in accordance with clinical standards.  
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Abrégé 

Contexte : L'anesthésie régionale échoguidée (ARU) a permis de nombreuses avancées dans le 

domaine de l'anesthésiologie par rapport aux techniques traditionnelles de stimulation nerveuse. 

Cependant, l'interprétation du bloc nerveux et de la sonoanatomie générale pose d'importants défis 

aux anesthésistes novices. Cette thèse couvrira deux articles qui étudient les techniques 

d'apprentissage profond (DL) pour mettre en évidence les régions nerveuses en temps réel. Un 

article supplémentaire couvrira la variabilité inter- et intra-étiquette parmi les interprétations des 

anesthésistes des nerfs cibles dans les images échographiques (US). 

Méthodes : Une étude préliminaire a été menée sur l'identification du plan transverse de l'abdomen 

(PTA) à l'aide de DL. L'architecture populaire U-Net a été utilisée pour former un modèle sur un 

total de 50,000 images positives augmentées du nerf et d'images échographiques arbitraires 

négatives. Dix anesthésistes ont été recrutés pour étiqueter un ensemble de dix images test US du 

PTA. Les scores de Dice moyens ont été calculés pour chacun des étiquetages de l'ensemble de 

test par les dix anesthésistes. Un score global de Dice a été calculé et représentait la performance 

globale du modèle. La deuxième étude sur la variabilité inter- et intra-étiquette des zones cibles du 

bloc nerveux visait à établir des liens quantifiables entre la segmentation subjective de la zone 

cible du bloc nerveux des images échographiques fixes par les anesthésistes et les mesures de 

similarité objectives. Dix anesthésistes ont été recrutés pour étiqueter 70 images US : 7 régions 

nerveuses, 10 images pour chaque région. Huit coefficients de similarité, dont le score de Dice, 

ont été calculés pour les paires d'étiquettes d'images US des anesthésistes. Ces scores ont été 

comparés aux réponses Oui/Non données en aveugle par les étiqueteurs pour savoir s'ils 

inséreraient une aiguille dans leur propre zone étiquetée ou dans celle de leur collègue. La même 

expérience a été réalisée pour deux des anesthésistes les plus expérimentés de la cohorte. Les 
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coefficients de régression logistique et l'aire sous les courbes (AUC) des courbes ROC (receiver 

operating characteristic - fonction d'efficacité du récepteur) ont été calculés pour les groupes 

suivants : Tous les médecins, tous les nerfs (APAN) ; Tous les médecins, pas d'Axillaire (APnA) ; 

Experts, tous les nerfs (EAN) ; Experts, pas d'Axillaire (EnA). Enfin, des données statistiques 

concernant l'expérience de la cohorte par rapport au score d'accord moyen ont été enregistrées. 

Résultats : Le score global de Dice pour l'étude préliminaire sur la segmentation automatique de 

la région TAP était de 73,31 %. Dans l'étude de comparaison d'experts, les seuils ROC du score de 

Dice pour APAN, APnA, EAN et EnA étaient respectivement de 34,44 (AUC : 0,72, p<0,05), 81,35 

(AUC : 0,61, p<0,05), 64,67 (AUC : 0,65, p=0,0486), 59,63 (AUC : 0,90, p=0,1961).  

Conclusion : L'étude de comparaison d'experts a fourni un aperçu préliminaire de l'établissement 

de seuils cliniquement pertinents pour d'importantes mesures de similarité au niveau du pixel. 

L'étude du bloc TAP a abouti à un score global de Dice de 73,31 %, un score considéré comme 

satisfaisant, indiquant que les segmentations de la région par le modèle sont conformes aux normes 

cliniques. 
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Introduction 

Peripheral regional anesthesia, or more commonly known as nerve blocks, have been a common 

procedure to induce analgesia in patients perioperatively (Henderson et al., 2016). In the last 

several decades, ultrasound has gained traction in the field of regional anesthesia, effectively 

switching the procedural standard from nerve stimulation and landmark-based nerve blocks to ones 

performed using ultrasound guidance (Marhofer et al., 2005). However, novice anesthesiologists 

face many challenges with this new technique such as sonoanatomy interpretation, needle 

guidance; all of which, if not careful, can lead to inadvertent organ damage or anesthetic toxicity 

(Scherrer et al., 2013). In order to address these issues, multiple machine and deep learning 

solutions have been developed in recent years with the goal of automatically highlighting or 

surrounding important anatomical landmarks such as nerves or vessels in ultrasound images in real 

time. With these technologies, researchers hope that they can be used not only as a real-time 

decision support tool but can also be used towards training novice anesthesiologists in better 

recognizing complex sonoanatomy. 

In this manuscript-based thesis, two submitted articles to high impact-factor journals are presented. 

The first article, submitted and accepted to the IEEE journal in May 2023, explored the efficacy 

of highlighting the transversus abdominis plane (TAP) nerve region in US images using deep 

convolutional neural networks (CNN) (Suissa et al., 2023, In Press). The network was trained on 

50,000 positive and negative (i.e. containing/missing the TAP nerve) US images and evaluated 

against 10 images that have been labeled by 10 anesthesiologists. The study is presented in full in 

the chapter titled Article 1. 
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The second article, submitted to the British Journal of Anesthesia (BJA) in May 2023 and is 

pending approval, highlights the inter- and intra-labeler variability amongst anesthesiologists’ 

labels of nerve regions in US images (Suissa et al., 2023, Pending Approval). Furthermore, the 

study establishes an optimal threshold that links an anesthesiologist’s subjective label to an 

objective pixel-wise comparison metric such as the Dice coefficient. The objective of this study 

was to help machine learning researchers who are performing US nerve segmentation relate their 

model’s scores to a clinically relevant and statistically-backed threshold. The entire study can be 

found in the chapter titled Article 2.  

Lastly, an in-depth literature review covering over 70 academic articles of the relevant literature 

in artificial intelligence and anesthesia is presented in the Literature Review section. 

The thesis ends in the Discussion and Conclusion chapter, which outlines the potential impact that 

these studies can bring to the fields of machine learning and anesthesia. Moreover, the limitations 

and future directions of this project are also discussed.  
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Article 1 

This article has been submitted and accepted to the IEEE EMBC 2023 conference as of April 2023. 

Original format of the submission has been preserved. 
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Abstract – Ultrasound guided nerve blocks are increasingly being used in perioperative care as a 

means of safely delivering analgesia. Unfortunately, identifying nerves in ultrasound images 

presents a challenging task for novice anesthesiologists. Drawing from online resources, here we 

attempted to address this issue by developing a deep learning algorithm capable of automatically 

identifying the transversus abdominis plane region in ultrasound images. Training of our dataset 

was done using the U-Net architecture and artificial augmentation was done to optimize our 

training dataset. The Dice score coefficient was used to evaluate our model, with further evaluation 

against a test set composed of manually drawn labels from a pool of (n=10) expert 

anesthesiologists.  

Across all labelers the model achieved a global Dice score of 73.31% over the entire test set. These 

preliminary results highlight the potential effectiveness of this model as a future ultrasound 

decision support system in the field of anesthesia.  
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I. INTRODUCTION  

Peripheral nerve blocks are important facets of any procedure involving regional and local 

anesthesia. The nerve block is a technique that involves the desensitization of a general area of the 

body, driven through a targeted injection of anesthetic into the surrounding tissue of a nerve that 

directly controls the area of interest (1). These blocks allow for the management of chronic pain 

following surgery, therapeutic control of acute pain, origin diagnoses of pain, and even have 

prognostic implications for potential surgical interventions (2). Effects can be brief or extended 

over a long period of time depending on procedural needs (1). As such, peripheral nerve blocks 

have quickly become a popular course of action in any anesthetist’s treatment plan (2).  

The rational for nerve block analgesia’s rising popularity is primarily twofold – the avoidance of 

complications related to general anesthesia and the minimization of opioid use, all while still 

delivering extended pain relief (2). Moreover, with the recent emergence of widely available 

ultrasound imaging techniques, the efficacy and safety profiles related to nerve block performance 

have risen drastically (3). Unfortunately, there still currently exists a lack of knowledge depth in 

sonoanatomy for new graduates in anesthesiology without fellowship specialty training (4). One 

of the most critical components of ultrasound (US) -guided peripheral nerve blocks is the accurate 

detection of a nerve region within an ultrasound image (3). Taking into consideration anatomical 

variability between patients, classifying various types of tissue in a noisy, greyscale ultrasound 

feed can be a daunting task to the uninitiated (4).  

The use of artificial intelligence-based image recognition software could prove useful in solving 

this problem as a tool in both teaching and procedural guidance. Similar solutions have proven 

useful in other medical specialties that rely on imaging as a crucial part of standard practice; for 
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example, deep learning and quantitative modelling in the fields of radiology and oncology are now 

seen as potentially effective tools for use in early detection, diagnosis, and prognosis of disease 

(5). In this paper we investigate whether a software solution could also possibly aid physicians in 

performing ultrasound-guided peripheral nerve block procedures in a more precise and effective 

manner. The transversus abdominis plane (TAP) block targets anterior rami of spinal nerves, 

typically from the seventh thoracic to first lumbar spinal nerves (1). Although the actual rami 

cannot be visualized using US-guidance, the plane between the respective abdominal wall muscles 

in which these nerve endings are located can be visualized (1). The plane block target area is 

located between the internal oblique muscle and the transversus abdominis muscle (Figure 1).  

 
Figure 1. Sonoanatomy of the TAP Block Target Region 

 

The goal of this project was the construction of a deep learning convolutional neural network 

(CNN) capable of assisting physicians in the detection of a specific nerve block region with a high 

degree of accuracy. Specifically, this tool was trained to guide anesthesiologists throughout the 

duration of a TAP block procedure, serving as a novel description of a future decision support 
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system. The model described in this study could further be expanded upon to focus on other nerve 

regions and stands as a proof of concept to increase the future efficacy and safety profiles of 

procedures within the field of anesthesiology.  
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II. METHODS  

A. Data Collection  

Still ultrasound images were sourced from various TAP block YouTube videos (Alphabet Inc.®, 

Mountain View, CA). The primary objective when taking still frames from each video was to 

ensure that all frames had subtle to large differences in appearance, allowing for the final dataset 

to be composed of unique images. A total of 554 images were sourced from 44 YouTube videos, 

with 544 of those comprising the training set and the remainder forming the test set. Furthermore, 

the images were resized to 128x128 pixels for faster training and more efficient computing.  

B. Labelling  

The labeling of the training and test sets was performed by anesthesiologist T.H. An additional 

nine anesthesiologists who were familiar with the TAP block and performed several monthly, 

ranging from 2-80 blocks/month, labeled the same images within the test set. The web-based 

labeling software LabelBox (Labelbox Inc.®, San Francisco, CA) was used to collect the manually 

drawn labels for the training and test sets.  

C. Positive and Negative Images  

The 554 ultrasound images collected containing the TAP plane were used to comprise the positive 

dataset. Naturally, for a model to be successful in predicting a specific region in an image, it must 

also avoid making a prediction when the region is not present in the image. To achieve this, a 

training dataset composed of positive and negative cases is required, with the latter significantly 

reducing false positive predictions (6). Using the same methodologies for collecting the positive 

cases, we searched through numerous YouTube videos containing any human ultrasound images, 

excluding that of fetal ultrasound. The reasoning behind taking any ultrasound images other than 
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the TAP region as a negative is to train the model to only make predictions on the region of interest 

and nowhere else, effectively minimizing chances of a false positive (6). A total of 908 negative 

images were collected, consisting of benign, malignant, and tumor free breast ultrasounds, thyroid 

ultrasounds, as well as femoral and popliteal ultrasounds.  

D. Augmentations  

Data augmentation is a technique used in machine and deep learning to artificially increase the 

size of the training dataset. Instead of having to manually search for new unique images, clever 

techniques are used to introduce subtle to large differences in the source images, producing visually 

distinct ones altogether. The image augmentations used in this study follow those presented in 

Smistad et al., namely: flipping, rotation, gamma intensification, elastic deformation, and gaussian 

shadow (7). Figure 1 demonstrates the augmentations applied to the original images and their 

masks.  
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Figure 2. Examples of Image and Subsequent Mask Prior to Specific Augmentation and 

Following Augmentation. 
(A) Flipping of Image. (B) Rotation of Image. (C) Image Gamma Intensification. (D) Image 

Elastic Deformation (E) Application of Gaussian Shadow to Image. 

 

Flipping consisted of flipping all the image-mask pairs horizontally (Figure 1A). Image rotation 

was achieved by rotating the image-mask pairs by a random angle, in degrees, within the range [-

10, 10] (Figure 1B). By adjusting the gamma intensity on our ultrasound images, it is possible to 

mimic the gain on real ultrasound machines (7). We achieved this by raising each pixel value by a 

randomly chosen gamma coefficient from a predefined range (Figure 1C). Elastic deformations 
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are another great way to augment image data when dealing with patient populations, as the 

resulting images can help account for variations in sonoanatomy across patients (8). We elastically 

deformed our images here by displacing pixels in the original image according to a randomly 

generated displacement field (Figure 1D). Finally, it was important to recognize that pockets of air 

in surface tissue often block ultrasonic waves from reaching the underlying tissue of interest, 

creating acoustic shadows (7). To simulate a shadow programmatically, we generated a 2-

dimensional gaussian shadow overlay by convolving it over the original image (Figure 1E). It is 

worth noting that because the shadows are never truly opaque, the shadows never completely hide 

portions of the label. Moreover, with the labels consisting of Boolean matrices, the resulting label 

would remain unchanged; any positive pixel value becomes “True”. This was deemed to be 

acceptable for two reasons: first, as mentioned above, the nerve is never completely hidden, and 

second, we still achieve the goal of augmenting the data by introducing slight changes in the 

original images.  

Our goal was to train the model on approximately 25,000 images from the base dataset of 544 

images. In order to achieve this, we first begin by passing each image to the augmentation script 

where they would have a 50% chance of undergoing an augmentation in the same order of 

augmentations presented above. To this end, a particular image had a chance of being transformed 

five times. Over the entire dataset, we observe that on average between two and three 

augmentations were applied to the images. In the case where an image was not chosen for the 

application of an augmentation, a default and random gaussian shadow was applied. Finally, to 

reach our desired dataset size, this process would be repeated on the original dataset’s images until 

we had 25,000 images. This same process was applied to the negative image dataset for a total of 

50,000 images.  
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E. Model architecture  

The U-Net is a precise image segmentation CNN architecture developed by Olaf Ronneberger et 

al. at the University of Freiburg in Germany (9). It was selected as an ideal candidate to train our 

model on, as the architecture is designed to tackle image segmentation tasks and performs well 

with limited datasets (9). The U-Net used in this project varies slightly from the original one 

proposed by researchers at the university of Freiburg (Figure 2). Excluding the difference in the 

input size, their model crops every contracting step’s output before concatenation with the 

expanding layers. Ultimately, this yields a smaller image size than the original input. To avoid this, 

we only concatenate and skip the cropping step. Furthermore, the model performs successive max 

pooling operations until we extracted 256 8x8 pixel feature sets. Overall, our model contained a 

total of 1,941,105 trainable parameters.  
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Figure 3. The U-Net Architecture Utilized in this Model (9) 

 

F. Training  

The model was trained for 10 epochs with a batch size 16 on an EVGA Geforce Nvidia RTX 3090. 

Due to memory limitation in regard to our dataset size of ~50,000 images (positive and negative 

cases), the datasets were saved to separate HDF5 files. Upon training a generator would 

progressively retrieve eight images from each set in a shuffled order for a total batch size of 8 

images. Furthermore, 10-fold cross validation is used to minimise bias and loss even further. 

Lastly, training and the implementation of our network was done using the Keras framework 

packaged with Tensorflow 2.5.0 (Alphabet Inc.®, Mountain View, CA).  
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G. Testing  

Ten anesthesiologists from four different centers labeled ten test images of TAP nerves to compare 

with our model. The trained model would then produce predictions of the TAP nerve for each 

image. The Dice score (Equation 1), a metric commonly used in deep learning segmentation tasks, 

compares two labels’ pixel-wise overlap accuracy and produces values ranging from 0 to 1. Zero 

indicates that the two regions do not overlap at all while a score of one represents a perfect match. 

The calculation requires four distinct values: true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN). With that said, the Dice score was recorded for each 

prediction-physician label pair. The average Dice score across all ten images (N) for that specific 

labeler (L) was then recorded, and the final metric representing the model’s overall performance 

was the global average of each physician’s mean scores (Equation 2).  

 

 (1) 

(2) 

 

Whereas each prediction produces a heat map with pixel values ranging from 0 to 1, the Dice score 

only works when comparing boolean values. In order to achieve this, a cutoff threshold for the 

prediction’s pixel values must be obtained. This will have set the pixel values that exceed the 

threshold to True and the remaining to False. This process provided counts for the four required 

values. In all, we face an optimization problem; finding the cutoff threshold which maximizes the 

overall Dice score. This was achieved by plotting the global Dice score for each 0.01 increment of 
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pixel value cutoff. The cutoff which then produced the highest global dice score was selected for 

future inferencing of the TAP region.  
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III. RESULTS  

Training times were relatively long to complete with each epoch taking an average of 87 seconds, 

for a total training time of four hours and fifty minutes. The model achieved a minimal validation 

loss of 0.018. The evaluated cutoff using our methods was calculated to be 0.51. Using this 

threshold, we obtained a maximum global dice score of 73.31% (Figure 3).  

 

 
Figure 4. Global Dice Score Rate of Change Curve 
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Labeler Mean Dice Score (SD) 

Labeler 1 69.11 (9.43) 

Labeler 2 81.76 (3.55) 

Labeler 3 81.11 (5.64) 

Labeler 4 78.82 (6.54) 

Labeler 5 62.23 (10.69) 

Labeler 6 78.85 (4.52) 

Labeler 7 72.27 (7.01) 

Labeler 8 67.29 (12.47) 

Labeler 9 83.92 (3.22) 

Labeler 10 56.71 (10.69) 

Global Dice 73.31 

Table 1 – Mean Dice Scores Across All Labelers 

 

Table 1 includes all the individual mean scores of each physician across the ten test images from 

which the overall average was calculated. After having evaluated the cutoff, the predictions could 

then be applied over the test images. An example of this final prediction is demonstrated in Figure 

4.  
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Figure 5. Transverse Abdominis Model Prediction on a Randomly Selected Image 
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IV. DISCUSSION  

Recent advances in artificial intelligence have the potential to impact several fields of medicine by 

improving the accuracy and efficacy of various esoteric tasks (5). While these programs have 

proved useful in many imaging heavy disciplines such as radiology, more nuanced approaches in 

other departments warrant further study (7). Here, we attempted to combine previous neural 

network imaging research to the department of anesthesiology, particularly that of ultrasound 

guided nerve blocks. To prove the efficacy of this work, our laboratory chose to investigate whether 

an artificial intelligence-based segmentation model could effectively predict the transversus 

abdominis plane region in a variety of ultrasound images.  

The trained CNN presented in this work was successful at making predictions on a set of 10 still 

ultrasound images, with a maximum global Dice score of 73.31%. This represents a satisfactory 

score when compared to other machine learning problems in the field, however, no absolute 

threshold value pertaining to clinical relevancy has yet been established.  

The main limitation of this study was the variations between labelers’ manual segmentations within 

the test set, known to affect the overall Dice score of models, however, the relationship and 

magnitude of this effect has yet to be thoroughly studied (5). Additional limitations include the 

size of the test set (n = 10) when compared to that of the training set (n = 50,000), restricted by 

expert availability and time required to complete the labelling tasks. Finally, our model was trained 

on the first iteration of the U-Net architecture which has previously proven useful in the detection 

of nerves, nevertheless, newer versions are now available and are known to perform better (9).  

Our program described here serves as a proof of concept for prospective clinical decision support 

systems. This novel program appears to function with a satisfactory degree of accuracy in detection 

of the transversus abdominis plane. In the future, we plan on expanding our algorithm to detect a 



 30 

wide range of nerves essential in the most utilized nerve block procedures. We also plan on 

exploring the role of hyperparameter optimization and model architecture selection in the 

optimization of our models segmentation accuracy. Finally, once enough data has been 

accumulated and labelled, we intend to shift our program from a still-image-based detection 

software to a real-time, live, nerve detection program. If successful, this will serve as a first step 

in the creation of a decision support system for clinicians to use in a wide variety of ultrasound 

imaging-based nerve block procedures. Such a tool could greatly improve the accuracy, 

effectiveness, and efficiency of medical care from an anesthetic perspective.  
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Abstract 

Background: Ultrasound-guided regional anesthesia (UGRA) offers unprecedented guidance for 

anesthesiologists performing nerve blocks. With continuous visualization of target sonoanatomy, 

anesthesiologists must skillfully interpret live feeds to avoid trauma from needle placement. This 

study attempts to quantify agreement between anesthesiologists' interpretation of target nerves in 

common UGRA blocks. 

Methods: Ten anesthesiologists of various ranks and expertise labelled a total of 70 ultrasound 

images coming from seven different nerve regions. One randomly selected image per region was 

used to produce a set of 70 labelled images. A set of eight comparison metrics were computed for 

every permutation of pairs of anesthesiologists’ labels. Every physician answered yes/no questions 

as to whether they would guide the needle to colleagues labelled areas while being blinded. This 

experiment was then repeated for two experts in the cohort. The data gathered was split into four 

groups: All Physicians All Nerves (APAN), All Physicians no Axillary (APnA), Experts All Nerves 

(EAN), and Experts no Axillary (EnA). Binary logistic regressions, ROC curves, ICC, and Cohen’s 

Kappa were performed on the date set. Lastly, a logistic regression was performed on the cohort’s 

experience data. 

Results: Dice score ROC thresholds for APAN, APnA, EAN, and EnA were 34.44 (AUC: 0.72, 

p<<0.05), 81.35 (AUC: 0.61, p<<0.05), 64.67 (AUC: 0.65, p=0.0486), 59.63 (AUC: 0.90, 

p=0.1961), respectively. Years of professional experience post-residency had an inversely 

proportional relationship to the average labeling score with a factor of -0.571 (p=0.045). 

Conclusion: Relatively low pixel-wise comparison metric scores correlate to a substantial 

agreement on nerve location between raters. This study hopes to establish a benchmark for future 
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machine and deep learning studies working on medical segmentation tasks and serve as a guide 

for evaluating future model performance and clinical relevance. 
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Introduction 

The advent of ultrasound-guided peripheral nerve blocks (UGPNB) has revolutionized the practice 

of regional anesthesia.1 Compared to traditional surface landmark techniques that anesthesiologists 

use to gauge the location of a nerve, UGPNB offers continuous visualization of the nerve and 

surrounding sonoanatomy.2 This live visualization allows for a more precise spread of the injectate, 

and as a consequence, faster sensory onset and an overall increase in blocking success rates.3 In a 

2016 study conducted by Henderson and colleagues, the authors point out that despite the many 

advantages of UGPNB, certain procedures can still pose unique challenges.4 According to the 

authors, acoustic artifacts that are produced by the ultrasound (US) probe’s emitted sound waves 

can produce brighter or darker regions in the US image.4 This in turn may confuse anesthesiologists 

in their interpretations and later cause complications.4 Machine learning (ML) and deep learning 

(DL) articles in 2017 have collectively accounted for over 50% of publications in the fields of 

computed tomography, magnetic resonance imaging, and US imaging.5 At present, US imaging 

constitutes 5% of published articles.5 The segmentation of anatomical regions in medical US 

images has consistently been a vital and significant process in the development of machine 

learning models, particularly for tasks related to diagnostics or procedures.5 Multiple studies and 

experiments to automatically highlight nerve regions using ML and DL techniques have been 

published in recent years to address these issues.6-10 However, these automated UGPNB solutions 

fail to provide insight into the clinical relevance of their chosen accuracy metric. In this study, we 

aimed to provide a statistically backed benchmark for UGPNB segmentation predictions by 

looking at the inter- and intra-labeler variability of multiple anesthetists’ manual segmentation of 

several ultrasound images. The statistics gained from this study will allow future predictive 

algorithms in UGPNB to better interpret their results in the frame of clinical relevance.  
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Methods 

Seven nerve regions among six widely performed nerve blocks were selected for this experiment. 

Using the popular labeling software tool Labelbox (Labelbox Inc.®, San Francisco, CA), ten 

volunteer anesthesiologists of various expertise from four hospitals were asked to segment the 

same ten images for each selected nerve block. Images were sourced from 246 YouTube videos, 

with authors only selecting frames for inclusion that did not contain US software-related artifacts 

such as depth of scan and virtual measurements. Each image in a set was chosen to feature 

differences in anatomical dispositions so as not to include similar-looking images. The regions in 

question were as follows: the transversus abdominis plane (TAP block); Pecs I (PECS I block); 

Posterior Rectus Sheath (Rectus Sheath block); Sciatic Nerve (SN, Popliteal Fossa block); Femoral 

Nerve (FN, Femoral nerve block); Radial Nerve (RN) as well as the Median and Ulnar nerves 

(MN_UN). The RN, MN, and UN were all contained in the Axillary Brachial Plexus (BP) block. 

The Femoral Nerve (FN) dataset was uniquely sourced from the 

femoral_nerve_block_computer_vision GitHub repository.11 

 

Pixel-wise inter-labeler analysis 

Once all images were labeled, they were then exported from Labelbox for statistical analysis. 

When it comes to image segmentation, particularly for machine and deep learning applications, 

several metrics exist that can measure the pixel-wise overlaps of two areas in an image.12,13 In an 

article published by Hicks and colleagues, the importance of including evaluation metrics for 

medical artificial intelligence applications is discussed.14 The study presents 8 metrics, stemming 

from four distinct diagnostic accuracy parameters: true positive rate (TP), true negative rate (TN), 

false positive rate (FP), and false negative rate (FN).14 However, while the paper presents ways to 
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calculate agreement between an AI’s prediction and a manual label, they are equally capable of 

being used to determine the similarities between two manually drawn segmentations of a region 

in an image. With that said, the order of the pair being compared is important as the definition of 

FP and FN can change. Therefore, when comparing two experts’ labels, we defined which among 

the two was considered the “prediction” and “the ground truth”. In this regard, pairs of experts 

were labeled expert1-expert2 throughout our experiment to represent the ground truth and 

prediction, respectively. 

Eight metrics were used to compare the pair of experts’ labels’ similarities, and each provided 

unique insights into the inter-labeler agreement.  

Accuracy (eq. 1) refers to the ratio between correctly classified samples (pixels) and the total 

number of pixels in the images. This metric ranges from 0 to 1, implying no or complete overlap 

between the two areas. 

                                    Eq. 1 

Sensitivity, Recall, or True Positive Rate (eq. 2) represents the rate of correctly classified positive 

pixels and takes the ratio between correctly predicted positive pixels and all those belonging to the 

ground truth. A sensitivity value of 0 means that the prediction completely missed the ground truth 

whereas a value of 1 indicates a perfect overlap. 

                                                     Eq. 2 

Specificity (eq. 3) represents the rate of negative pixels correctly classified and comprises the ratio 

between correctly predicted negative pixels and all pixels not belonging to the ground truth. A 
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value of 1 indicates a perfect prediction of the negative class while a value of 0 represents a 

complete miss. 

                                                      Eq. 3 

The Positive Predictive Value (PPV) or precision (eq. 4) represents the proportion of retrieved 

pixels that are relevant. It is calculated by taking the ratio between the correctly predicted positive 

pixels and all positively predicted pixels. A score of 1 represents a perfect prediction of the positive 

class. 

                                                     Eq. 4 

Similarly, the Negative Predictive Value (NPV) (eq. 5) represents the proportion of retrieved pixels 

that belong to the negative class. A score of 1 indicates a perfect prediction of the negative class. 

                                                      Eq. 5 

The F1 Score or Dice Coefficient (eq. 6) is the harmonic mean of precision and recall and is not 

class symmetric meaning that the definition of which class of pixels are positive and negative 

yields two different scores. A Dice score of 1 represents a perfect overlap between the ground truth 

and the prediction while a score of 0 indicates a complete miss between the two. 

                                          Eq. 6 



 41 

Matthews Correlation Coefficient (MCC) (eq. 7) is an excellent metric for datasets with 

imbalanced classes. The score ranges from -1 to 1 with 1 representing a perfect prediction, 0 

indicating a prediction no better than a random one, and -1 being a total miss of the ground truth. 

      Eq. 7 

Finally, the Threat Score (TS) (eq.8) is a metric that is particularly sensitive to correct predictions 

of rare positive events and is calculated by taking the ratio between correct positive pixels and all 

incorrect predictions as well as the correct positive ones. The score ranges from 0 to 1; 1 indicating 

a perfect match. 

                                               Eq. 8 

 

Once these metrics were established, the scores for each pair of labelers’ segmentations over the 

entire set of images was calculated. Moreover, since certain scores are not labeler-symmetric and 

the definition of FP and FN could change based on the comparison order of labelers, the scores for 

every permutation of labeler pairs were also recorded. With ten labelers, each image produced a 

score table consisting of 90 rows (n=10P2) and eight columns per row for a total of 720 data points. 

In addition, 10 images per region and seven regions produce 50,400 data points. To condense this 

data, one large table containing the metric scores of a randomly selected image from each block 

was formed, which represented the values used in the following experiments. Receiver operating 

characteristic (ROC) curves were then produced from the binary logistic regressions between the 
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dice scores and the yes/no results from the following experiment to obtain the optimal dice score 

thresholds. 

 

Survey-based inter- and intra-labeler analysis 

For this experiment, all manually drawn labels were overlayed onto their respective images 

producing a green translucent area over the block region (Figure 1, Supplemental Data) and passed 

to a modified version of an open-source labeling software called Swipe-Labeler published by 

Jenessa and colleagues15. This software is a simple web app that allows users to categorize images 

one by one quickly and efficiently. Before the start of the experiment, the rater was told that the 

app will present a series of labels from other experts and was not explicitly told that each region 

contains their own labels as well.  

First, the user was asked to input their name to allow us to group their answers into their own 

folder. Next, the experiment begins by displaying a single image at a time of an expert's label with 

the question above reading: Regarding the <nerve region>, would you guide the needle to the 

highlighted area to block this region? where <nerve region> was replaced by the block type the 

displayed ultrasound image depicts. The user was then required to click on a yes or no button 

below the image which then sends the image file into its respective yes or no folder within that 

user’s custom folder. Each image file was named in the following way: <image number> 

<image_unique_ id>_<region>_<labeler>.png for easy tracking later. Once all 70 images had 

been categorized by a rater, the results were transcribed into discernable data (Supplemental Data 

- Table 1). Furthermore, as seen in Supplemental Data Table 1, the highlighted cell in the Labelers 

column indicates that the scores in the table were retrieved from that rater and, to that end, the 

respective row represents the intra-labeler scores. Once every rater’s scores were recorded, a 
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summary table containing the sum of each respective cell and the average score per labeler was 

produced (Supplemental Data - Table 2). This effectively transformed the data from nominal to 

continuous, allowing for a more robust analysis and implementation of descriptive statistics.  

Moreover, an Intraclass Correlation Coefficient (ICC) test was performed to quantify the intra- and 

inter-labeler variability using this table. Additionally, these scores were then matched to their 

respective expert1-expert2 row in the pairwise metric table, enabling the calculation of binary 

logistic regressions. The yes/no data were added as follows: expert1-expert2's row received 

expert2’s yes/no answer from expert1’s label. Given that this experiment only displayed a 

randomly chosen image of ten for each block, these scores were only be appended to one pairwise 

metric table corresponding to the scores for that image of that specific block. 

Another experiment consisted of having the two most experienced physicians in the group, defined 

by years of experience, perform the survey together in a collaborative fashion. This process was 

conducted virtually by two moderators, [N.S] and [S.J]. Once an image was presented, the 

physicians sent a private message to one of the moderators with the answer to the displayed 

question (i.e., Yes or No). A follow-up question was then asked by one of the moderators to rate 

how much the anesthesiologists agreed that the highlighted area covers the nerve region on a scale 

from 0-10. Moderators then presented results to the raters and proceeded to the next image if and 

only if they both determined that no major disagreements existed between both parties. In the case 

of a major disagreement, both moderators initiated a discussion period after having presented the 

different results. A chance was then presented to the raters to revise their previous answers to the 

questions. Descriptive statistics were generated from these results. The methods used were 

Cohen’s kappa, binary logistic regressions, and ROC curves. 
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Medical experience survey 

Upon meeting with each individual labeler, a brief survey of ten questions was presented gauging 

their experience in the field of anesthesia. The survey questions can be found in Appendix I. As 

with the previous experiments, a regression analysis was run on this data paired with each labeler’s 

average Yes/No score. 
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Results 

 

Figure 1. Consensus heat maps depicting the range of areas commonly agreed upon among the 

10 anesthesiologists. The selected images shown to each physician are as follows: (A) Femoral 

nerve, (B) Pecs I, (C) Sciatic nerve at the popliteal fossa, (D) Radial nerve, (E) Median and ulnar. 

 

As seen in Figure 1, which illustrates the levels of agreement among the labelers, the Axillary 

block presented higher than normal variability. All descriptive statistics in each experiment were 

performed with and without Axillary-related results, effectively forming four groups: All 
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physicians, all nerves (APAN); all physicians, no Axillary (APnA); experts only, all nerves (EAN); 

experts only, no Axillary (EnA). For each of these groups, ten tables such as Supplemental Data 

Table 1 were recorded for each physician with the 1/0 encodings representing their Yes/No answers 

to the corresponding labels. These answers were then appended to the condensed pairwise metric 

sheet and a binary logistic regression was computed for each group. 

An ICC was computed for APAN and APnA, receiving a score of 0.65 and 0.08, respectively. 

Where the former indicates an overall moderate agreement according to Koo and Li’s ICC scale, 

APnA’s ICC analysis breaks down due to the failure to incorporate chance where there is high 

agreement.16 The average agreement for APnA without including chance is 85.87%. EAN received 

a kappa score of 0.76 which represents substantial agreement according to Landis and Koch’s 

kappa scale.17 However, EnA breaks down when using descriptive statistics that incorporate 

chance as both experts agreed on all images (Yes) except in one instance (Yes and No). Out of a 

total of 100 answers (50 images, 2 experts), 98 were the same; therefore, we observed a 98% 

agreement for EnA.  

The full regression analysis performed on the binary yes/no survey data vs. each pair-wise 

computed metric can be found in Table 1. Additional analysis on more machine-learning-specific 

metrics such as the MCC and Threat score can be found in the Supplemental Data Table 3. The 

ROC curves for each metric and group can be seen below in Figure 2. Furthermore, a summarized 

and complete table of the ROC analysis can be found in Table 2. MCC and Threat score ROC 

results can be found in Supplemental Data Table 4. 
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Yes/No – Score Binary Logistic Regression Analysis 

Metric Group Regression 
coefficient OR 95% Confidence 

Interval p-value 

Accuracy 

APAN -0.0769 0.9259 (0.84,1.02) 0.1252 
APnA 0.1826 1.2004 (1.07,1.34) 0.0012 
EAN -0.6006 0.5485 (0.37,0.82) 0.0033 
EnA 0.1217 1.1294 (0.55,2.30) 0.7377 

Sensitivity 

APAN 0.0209 1.0211 (1.02,1.03) <<<0.05 
APnA 0.0041 1.0041 (0.99,1.02) 0.5571 
EAN 0.0089 1.0089 (0.99,1.02) 0.1866 
EnA 0.0804 1.0837 (0.94,1.25) 0.2683 

Specificity 

APAN 0.0522 1.0536 (0.96,1.16) 0.2759 
APnA 0.2372 1.2677 (1.14,1.42) <<<0.05 
EAN -0.3272 0.7209 (0.46,1.14) 0.1621 
EnA -0.0694 0.9329 (0.21,4.23) 0.9283 

PPV 

APAN 0.0268 1.0272 (1.02,1.03) <<<0.05 
APnA 0.0280 1.0284 (1.02,1.04) <<<0.05 
EAN 0.0167 1.0168 (1.00,1.03) 0.0192 
EnA 0.0519 1.0533 (0.97,1.14) 0.1901 

NPV 

APAN -0.2579 0.7726 (0.66,0.91) 0.0016 
APnA -0.0878 0.9159 (0.75,1.12) 0.3822 
EAN -0.5509 0.5764 (0.36,0.93) 0.0242 
EnA 0.1014 1.1067 (0.60,2.04) 0.7460 

Dice score 

APAN 0.0285 1.0289 (1.02,1.04) <<<0.05 
APnA 0.0249 1.0252 (1.01,1.04) 0.0007 
EAN 0.0149 1.015 (1.00,1.03) 0.0486 
EnA 0.0663 1.0685 (0.97,1.18) 0.1961 

Table 1. Binary logistic regression results for each metric and the physicians’ yes/no responses 

within each group. 
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Yes/No – Score ROC Analysis 

Metric Group threshold AUC sensitivity 1-specificity 

Accuracy 

APAN 95.92 0.45 0.54 0.51 
APnA 96.14 0.64 0.76 0.53 
EAN 98.54 0.27 0.00 0.00 
EnA 95.79 0.72 0.72 0.00 

Sensitivity 

APAN 73.48 0.67 0.83 0.48 
APnA 82.84 0.47 0.90 0.76 
EAN 51.81 0.60 0.65 0.45 
EnA 77.25 0.92 0.92 0.00 

Specificity 

APAN 98.89 0.56 0.53 0.36 
APnA 95.60 0.71 0.61 0.18 
EAN 96.35 0.40 0.12 0.05 
EnA 99.92 0.56 0.56 0.00 

PPV 

APAN 53.23 0.73 0.84 0.44 
APnA 72.83 0.68 0.52 0.21 
EAN 59.90 0.67 0.62 0.32 
EnA 79.16 0.90 0.90 0.00 

NPV 

APAN 99.17 0.43 0.00 0.00 
APnA 98.94 0.45 0.85 0.79 
EAN 98.64 0.34 0.04 0.00 
EnA 98.92 0.56 0.56 0.00 

Dice score 

APAN 34.44 0.72 0.73 0.33 
APnA 81.35 0.61 0.74 0.47 
EAN 64.67 0.65 0.62 0.32 
EnA 59.63 0.90 0.90 0.00 

Table 2. Summary table of ROC analysis for each metric vs. Yes/no results. 
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Figure 2. ROC curves for each metric and yes/no results within each group. 

 

The logistic regression between the yes/no answers (encoded 0 for no and 1 for yes) and the 0-10 

scores produced a dependent variable coefficient of 2.021 (p=0.0003). Moreover, the ROC curves 

seen in Figure 3 show areas under the curve (AUC) of 0.99 each and an optimal 0-10 score of 7/10 

for both experts. 
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Figure 3. ROC curves of both experts’ 0-10 evaluations vs their Yes/No responses. 

 

Lastly, the regression analysis performed on the physicians’ experience in the field versus their 

average Yes/No score can be seen in Table 3. 

Regression Analysis on Anesthesiologist Expertise 

Independent Variable (vs. Average 
Yes/No score) 

Regression 
coefficient p-value 

Completed a fellowship -3.68 0.576 
Years of experience -0.571 0.045 

No. blocks per month -0.0237 0.698 

Table 3. Regression analysis on all physicians’ experience vs. average Yes/No score. 
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Discussion 

Deep learning medical image segmentation tasks are best paired with Dice score evaluation 

schemes when determining model performance, as they provide an optimal indicator of 

segmentation quality when compared to similar metrics.18 For this reason, the medical imaging 

literature primarily utilizes the Dice metric as a standard for validation and performance 

interpretation.19  The issue with this current approach stems from a lack of transparency and 

inability to quantify or visualize what a high Dice score transfers to in practice. Research tends to 

emphasize high scores without critically translating model performance to real-world clinical 

significance. As a result, numerous clinical research teams have reported difficulties in utilizing 

models outside of research settings.20,21 Here, we attempted to explore US nerve target zone 

interpretation by equating model performance to that of experts in the field, with the intention 

being an objectively defined Dice score threshold that relates to clinical effectiveness. 

For every group except EnA, the group demonstrating near perfect agreement, there are 

statistically significant relationships between the Dice metric and the labelers’ Yes/No answers –

inter- and intra-labeler agreement. A positive regression coefficient of 0.0285 and odds ratio (OR) 

of 1.0289 (p < 0.05, 95% CI = [1.02,1.04]) observed in APAN indicated a positive and directly 

proportional relationship between the Dice score and the likelihood of obtaining a Yes answer from 

experts. Every incremental Dice coefficient increase of 1% was found to be associated with an 

approximately 3% increase in the likelihood that a physician will agree the highlighted region is 

safe for needle placement. Similarly, the ROC analysis on the Dice metric showed that the APAN 

group received the highest AUC of 72%, yielding an optimal Dice score of 34.44% (p < 0.05). 

These results objectively quantify that a minimum Dice score of 34% is required to minimise the 

false positive rate, defined as one minus specificity, while maximizing the true positive rate of the 
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Yes/No predictions. These observations lead to a surprising finding, which appears to show that a 

previously considered low Dice score can be otherwise linked to a high and statistically significant 

agreement amongst labelers. This in turn might be an indication into how researchers can treat 

future clinical relevance when it comes to automatic nerve segmentation in US images. The inter- 

and intra-expert analysis on the physician’s Yes/No and 0-10 ratings of the images produced an 

ROC curve with an AUC of 0.99, indicating a near-perfect classifier, with an optimal threshold of 

0.7. These results indicate a statistically significant relationship between the experts’ 0-10 rating 

of all the cohort’s highlighted regions and their Yes/No answers. A score of 7/10 was found to 

therefore be optimal for having the highest odds of obtaining a Yes answer. 

Regarding physician experience, it is of particular interest to see how an inversely proportional 

and statistically significant relationship exists between the years of experience in medicine and a 

labeler’s average Yes/No score. In our case, a physician’s average Yes/No score decreases by a 

factor of 0.571 for each increasing year of experience (p=0.045). Residents and newly attending 

anesthesiologists may be more likely to have been recently exposed to a wider range of 

sonoanatomy cases, as well as having recently undergone multiple examinations similar to the 

tasks given in this study. These factors could account for the apparent difference in scores by 

experienced and newly attending physicians.  

Figure 1 clearly demonstrates a high degree of agreement between labellers for the planar blocks 

(I.e., TAP, Pecs I, and Posterior Rectus Sheath) or ones featuring large regions of interest (I.e., FN 

and SN). A limitation that can be associated with the vast differences in labelled regions for the 

nerves in the Axillary BP might be that the orientation and placement of the US probe resulting in 

the shown scan was not provided, potentially confusing the labellers on where anatomical 

landmarks might be positioned. In a study that examined the shifting sonoanotomy of the Axillary 
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BP, 69 healthy volunteers agreed to be scanned by US medical professionals.22  The aim of this 

study was to investigate expert accuracy in locating the median, ulnar, and radial nerves in the US 

feeds at three distinct levels: between the Pectoralis Major and Bicep (A), between levels A and C 

(B), and at the largest bicep circumference (C).22 Results have shown that at level A, the chances 

of correctly locating the nerves range from 30%-59% with all nerves being visible in all of the 

images. In between 9%-13% of cases at level B, at least one nerve has disappeared from the image, 

increasing up to 30%-80% at level C.22 It is therefore evident that acquiring the complete 

sonoanatomy of the Axillary BP, particularly that of location and orientation, is necessary to 

perform a block; successful visualization being highly dependent on probe placement. This issue 

can be mitigated in future works by providing US probe orientation information along with each 

image, allowing experts to better distinguish block target zones. An additional limitation in this 

study was that only one randomly chosen image in each nerve dataset containing 10 images each 

was shown to the anesthesiologists. A more thorough statistical analysis would be achieved had 

we performed the Yes/No survey on all of the compiled images. This would not only increase the 

number of questions from 70 to 700 but would have also increased the time taken to complete the 

survey by a factor of 10. With the average time taken to complete the survey being 5 minutes, 

requesting upwards of 50 minutes was not a viable option for this preliminary study.  

Previous research on expert comparisons of ultrasound examinations lack objective metrics, which 

in turn results in the inability of future researchers to compare novel AI models’ segmentation 

performance against that of a human equivalent labelled test set. For instance, the current standard 

in the field of radiology involves determining differences between sonographers and expert 

radiologists, but these comparisons fail to report on important statistical findings beyond simple 

discrepancy rates between both groups .23-25 Dawkins and colleagues found a 15.5% discrepancy 
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between sonographers and radiologists’ interpretation of biliary findings in upper right quadrant 

US images but was not statistically significant.24 In another recent paper, the authors chose to 

define their own diagnostic scoring criteria based on categorical differences in agreement, 

reporting a minor discrepancy rate of 2.8% between radiologists and radiographers in sonographic 

findings.25 Although useful in determining differences between human labellers, this methodology 

provides no quantifiable insight on what it means to be an expert. In the future we recommend 

researchers attempt to determine objective and statistically relevant thresholds for clinical 

relevancy.  

In this study, our goal was to establish an objective and quantifiable link between inter- and intra-

labeler agreement on various nerve locations in ultrasound images. This was accomplished through 

a two-step process in which ten physicians' labels were compared to one another using common 

comparison metrics. Furthermore, each physician rated their own label as well as the labels of each 

of their colleagues by selecting yes or no to the question of whether the label is appropriate for 

performing a nerve block. By performing statistical analysis to obtain a statistically significant 

relationship between an objective metric and a subjective rating (Yes/No), this study serves as a 

benchmark for future studies involving nerve segmentation that wish to justify their models’ 

performance. 
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Appendix I 

Expert questionnaire: 

1. Please enter your name 

2. Have you completed a fellowship? 

3. If yes to the above, what was the focus of your fellowship? (e.g., regional anesthesia, 

cardiac anesthesia) 

4. How many years have you been practicing after your residency/fellowship? 

5. On average, how many TAP blocks do you perform on a monthly basis? 

6. On average, how many PECS (I and/or II) blocks do you perform on a monthly basis? 

7. On average, how many Rectus Sheath blocks do you perform on a monthly basis? 

8. On average, how many Femoral Nerve blocks do you perform on a monthly basis? 

9. On average, how many Popliteal Fossa Sciatic Nerve blocks do you perform on a 

monthly basis? 

10. On average, how many Axillary Brachial Plexus blocks do you perform on a monthly 

basis? 

 

 

  



 56 

Supplemental Data 

 

 

Figure 1. An anesthesiologist’s label of the Radial Nerve in an ultrasound image of the Axillary 

Brachial Plexus. 
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Sample Yes/No Labels from Dr. 1   

  Femoral Nerve 
Block  

TAP 
Block  

Popliteal 
Block  

Rectus Sheath 
Block  Axillary BP Block  

Labelers  
/region  FN  TAP  SN  Posterior 

sheath  MN_UN  RN  Pecs I  

Dr. 1  0  1  0  1  0  1  1  
Dr. 2  1  1  0  1  0  0  0  
Dr. 3  1  1  1  1  0  0  1  
Dr. 4  0  1  0  1  0  0  1  
Dr. 5  0  0  0  1  0  0  1  
Dr. 6  1  1  0  1  1  1  1  
Dr. 7  1  1  0  1  0  0  1  
Dr. 8  0  1  1  0  0  1  0  
Dr. 9  1  1  1  1  0  0  1  
Dr. 10  0  1  0  1  0  0  1  

Table 1. A table containing Dr. 1’s binary encoded yes/no answers for each of their colleagues’ 

respective labels as well as their own. 
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Overall Inter- and Intra- Rater Scores 

 
Femoral 
Nerve 
Block 

TAP 
Block 

Popliteal 
Block 

Rectus 
Sheath Block 

Axillary BP 
Block 

Pecs 
Block 

Score 
(/70) 

Labelers fn tap sn posterior 
sheath 

mn_un rn pecs1 Score 

Dr. 1 9 10 9 10 6 9 10 90.00 
Dr. 2 8 10 8 10 4 2 9 72.86 
Dr. 3 10 10 9 10 6 1 9 78.57 
Dr. 4 8 10 9 9 1 1 10 68.57 
Dr. 5 8 7 9 10 2 1 9 65.71 
Dr. 6 10 10 9 10 6 10 10 92.86 
Dr. 7 9 10 9 10 2 2 9 72.86 
Dr. 8 6 10 10 8 3 10 9 80.00 
Dr. 9 9 10 10 10 4 2 4 70.00 
Dr. 10 8 10 9 9 3 2 10 72.86 
% 
agreement/r
egion 

85 97 91 96 37 40 89 
 

 Table 2. The sum of every raters’ binary encoded yes/no answers for each of their colleagues’ 

respective labels as well as their own over the seven nerve regions.  
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Yes/No – Score Binary Logistic Regression Analysis  

Metric  Group  Regression 
coefficient  OR  95% Confidence 

Interval  p-value  

MCC  

APAN  2.7513  15.663  (8.42,29.13)  <<<0.05  
APnA  2.4671  11.7887  (2.9,47.83)  0.0006  
EAN  1.3730  3.9470  (0.94,16.54)  0.0604  
EnA  5.9339  377.628  (0.06,25082)  0.1826  

Threat score  

APAN  0.0335  1.0341  (1.03,1.04)  <<<0.05  
APnA  0.0238  1.0241  (1.01,1.04)  0.004  
EAN  0.0193  1.0195  (1.00,1.04)  0.0348  
EnA  0.0986  1.1036  (0.93,1.31)  0.2588  

Table 3. Binary logistic regression results performed on the MCC and Threat score metrics 

versus the respective labeler pair’s Yes/No rating. 

  

Yes/No – Score ROC Analysis 

Metric  Group  threshold  AUC  sensitivity  1-specificity  

MCC  

APAN  75.23  0.72  0.73  0.33  
APnA  86.76  0.61  0.82  0.55  
EAN  95.19  0.65  0.65  0.36  
EnA  94.68  0.90  0.90  0.00  

Threat score  

APAN  20.80  0.72  0.74  0.34  
APnA  68.56  0.61  0.74  0.47  
EAN  47.78  0.65  0.62  0.32  
EnA  42.48  0.90  0.90  0.00  

Table 4. ROC results for the MCC and Threat score metrics when compared to the labelers’ 

Yes/No ratings.  
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Literature Review 

This section presents a detailed review of the relevant literature in the fields of ultrasound-guided 

regional nerve blocks, their associated risks and benefits, and AI techniques applied to enhance the 

outcomes of these procedures. From a total of 166 articles, 72 accepted articles have been analyzed 

and summarized in this section. Note that, on few occasions, editorials and other minor 

publications have been accepted due to their important citations. Furthermore, the table below 

gives a brief overview of how this review is broken down. 

Category Description Number of articles 

AI in medicine 

Medical applications, trends, 
and recommendations 

regarding artificial 
intelligence in medicine 

9 

AI in anesthesiology Trends and limitations of AI 
in anesthesiology 8 

Education in anesthesia 

Trends in anesthesia 
education as well as new 

approaches for better 
technique in regional 

anesthesia 

7 

Medical Image segmentation 

Novel machine and deep 
learning models and trends 

that accurately highlight 
target regions in medical 

images 

23 

Overview of various blocks 

Reviews and overviews of 
relevant nerve block 

procedures in different 
scenarios 

9 

Risks and benefits of UGPNB 

Adverse and positive 
outcomes of specific nerve 

block procedures without the 
use of artificial intelligence 

16 

 

 



 66 

AI in medicine 

Predicting adverse outcomes of cardiac surgery with the application of artificial neural 

networks (Peng et al., 2008) 

In this article, the authors use and artificial neural network (ANN) to predict the mortality and 

morbidity of patients post-cardiac surgery. Furthermore, they compare the model’s results to a 

logistic regression model and a Parsonnet score. The ANN outperformed the other models and 

metrics in its accuracy for predicting major morbidity, and its area under the curve (AUC) of the 

receiver operating characteristic for both in-hospital mortality and major morbidity. 

 

Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the 

forefront of innovation in medicine (Pesapane et al., 2018) 

This article discusses the emerging technological applications for artificial intelligence in the 

medical field, specifically medical imaging. The authors define key terms such as machine and 

deep learning and show how the number of published articles on the topic has increased by 600% 

from 2007 to 2017. However, despite these technologies performing better at detecting important 

pathologies that might be invisible to the naked than experienced physicians, a total replacement 

from doctors to AI models will not likely happen. Instead, they will work hand in hand, with AI 

providing radiologists with a helping hand and alleviating their workload so that they may be more 

visible to a larger volume of patients. 
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Machine learning in medicine: a practical introduction (Sidey-Gibbons et al., 2019) 

Sidey-Gibbons and colleagues demonstrate the use of popular machine learning techniques to 

accurately provide cancer diagnoses from cell nuclei in breast mass samples. While the article 

focuses solely on machine learning algorithms as opposed to the purely deep learning ones used 

in this thesis, the authors present important information as a guide on how to develop these 

algorithms which is universally similar in all subfields of AI. Furthermore, the paper presents 

crucial statistical tools that can be used to evaluate model performance. 

 

Artificial intelligence with multi-functional machine learning platform development for 

better healthcare and precision medicine (Ahmed et al., 2020) 

The authors discuss how precision medicine is a promising advancement in medical care that can 

improve the traditional symptom-based approach by allowing earlier interventions and 

personalized treatments through advanced diagnostics. To achieve this, they argue that it is 

necessary to analyze comprehensive patient information, which can help identify biological 

indicators that signal shifts in health. Technological advancements have made it easier to utilize 

healthcare information in clinical decision-making, but integrating disparate data sources and 

addressing ethical and social issues related to privacy and protection of healthcare data is crucial. 

Furthermore, machine learning platforms can support clinicians by efficiently analyzing and 

managing clinical data to optimize decision-making. The authors close off by stating that the use 

of artificial intelligence has the potential to lead to significant improvements in personalized and 

population medicine at lower costs, but academic solutions are necessary to pave the way for this 

new era of discovery in healthcare. 
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A short guide for medical professionals in the era of artificial intelligence (Meskó et al., 2020) 

In this article, the authors present an objective view of the current state of artificial intelligence 

(AI) in medicine. Their primary purpose is to educate physicians on the basic definitions of AI, 

Machine/Deep Learning, their applications in various sub-specialties in medicine, how to evaluate 

news and studies about AI, as well as the future of AI in medicine and the potential obstacles that 

might lie ahead. 

 

Recommendations for Reporting Machine Learning Analyses in Clinical Research (Stevens 

et al., 2020) 

In this article, the authors discusses the challenges that come with interpreting ML models and 

their results in a clinical setting. On one hand, medical experts and peer reviewers might over or 

underestimate ML models’ performances, and on the other, ML experts who do not have medical 

experience may present their results in a fashion that is too hard to assess by physicians (Stevens 

et al., 2020). To address this issue, the authors propose a methodology for presenting ML 

techniques and results that are easily and readily interpretable by medical professionals. 

 

Machine learning in medicine: It has arrived, let's embrace it (Pappada, 2021) 

In this article, the author discusses the growth of artificial intelligence and machine learning in 

multiple patient care settings and demonstrates how these technologies have direct positive 

impacts on patient care outcome predictions, clinical decision support, and therapeutic setpoint 

prediction. Furthermore, the article focuses on the use of machine learning to predict one-year 
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patient survival post-orthotopic heart transplantation procedures. The use cases for such a complex 

operation include the improvement of clinical decision-making, patient counselling, and organ 

allocation. The author concludes that AI and machine learning are here to make considerable 

impacts in patient care in the near future. 

 

Deep Learning for Medical Anomaly Detection A Survey (Fernando et al., 2021) 

In this article, the authors explore the advantages and limitations of deep learning methods in 

medical anomaly detection found in a lack of structure across the numerous published studies on 

the matter. The authors focus on providing a comprehensive analysis of popular deep-learning 

techniques for medical anomaly detection by presenting a coherent and systematic review of the 

current methods and by comparing and contrasting their architectural difference and training 

algorithms. Lastly, the article outlines important limitations of current deep-learning medical 

anomaly detection algorithms and suggests further research to address them. 

 

On evaluation metrics for medical applications of artificial intelligence (Hicks et al., 2022) 

The authors present a way to standardize the reporting of an ML model’s performance with the use 

of eight metrics. These metrics, namely, accuracy, recall, specificity, precision (positive and 

negative predictive value), F1 or Dice score, Matthews correlation coefficient, and the threat score, 

provide some sort of insight into how well a model’s prediction matches a ground truth label. 

Furthermore, these metrics are all calculated by four values: true positives, false positives, true 

negatives, and false negatives. With simple operations performed on a combination of these values, 

the eight metrics arise. Lastly, the authors argue that including all of these eight metrics in an ML 
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study can not only increase the comprehensibility of the article but also be used to compare to 

other ones that lack some of the metrics. 

 

AI in anesthesiology 

Assessment of a simple artificial neural network for predicting residual neuromuscular block 

(Laffey et al., 2003) 

This article presents the use of an artificial neural network to accurately predict whether a patient 

is experiencing Postoperative residual curarization (PORC). Of 40 recruited patients, the neural 

network achieved a negative predictive value of 0.93 vs 0.35 provided by the anesthetic care 

providers.  The authors conclude by stating that the use of a neural network was very practical for 

estimating the likelihood of PORC at the time of tracheal extubation. Furthermore, they state that 

the application of neural networks to other predictive problems in anesthesia may be beneficial. 

 

Neural nets and prediction of the recovery rate from neuromuscular block (Santanen et al., 

2003) 

Similar to the article presented by Laffey et al. (2003), this article presents how multiple neural 

networks can be used to predict a rough estimate of the remaining recovery time following a 

neuromuscular block during general anesthesia. The models would look at four variables that are 

known to affect the block such as multiple minimum alveolar concentration, end-tidal CO2 

concentration, and peripheral and central temperature (Santanen et al., 2003). The authors conclude 

that the trained neural networks better predict the recovery time than the average-based method 

used in the study. 
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Use of Machine Learning Theory to Predict the Need for Femoral Nerve Block Following 

ACL Repair (Tighe et al., 2011) 

The authors present machine learning strategies to predict the requirement of postoperative 

femoral nerve blocks (FNB) following anterior cruciate ligament (ACL) reconstruction. While it 

is common to perform a FNB preoperatively in order to reduce postoperative pain following the 

surgical reconstruction, factors causing the need to perform a postoperative FNB are currently 

unclear. Therefore, multiple ML models using different statistical strategies were employed to train 

on data gathered by 349 patients who have undergone ACL reconstruction. Overall, the authors 

report that all ML models outperformed traditional statistical methodologies in this particular task 

and can provide improved predictive capabilities (Tighe et al., 2011). 

 

Anesthesiology, automation, and artificial intelligence (Alexander et al., 2018) 

In this editorial, the authors argue that algorithm-based automation in anesthesiology has remained 

a difficult task. While their use has led to improved patient outcome and the requirement of less 

anesthetic than usual, full autonomy is virtually impossible. This is due in part to the nature of 

algorithms being built from a set of specific rules. When applied to a procedure that has so many 

potential outcomes, one may not be caught and handled leading to potential risks for the patient. 

However, with the advent of AI and machine learning, intelligent algorithms capable of learning 

from past experience can be utilized to overcome this challenge especially in the realm of clinical 

decision making. 
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Artificial Intelligence and Machine Learning in Anesthesiology (Connor, 2019) 

In this review article, Connor argues how commercial applications that integrate artificial 

intelligence are sometimes prone to produce to tolerable errors. However, in anesthesia, there is 

no room for errors, and constant attention and response to feedback is crucial to patient outcomes. 

Furthermore, in this review, Connor presents concepts on how to link artificial intelligence to 

anesthesiology with relevant clinical questions. 

 

Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and 

Limitations (Hashimoto et al., 2020) 

In this review, the authors present the potential for artificial intelligence and its use in 

anesthesiology. Furthermore, the authors summarize six themes where AI can play a role in this 

medical field, namely, depth of anesthesia monitoring, control of anesthesia, event and risk 

prediction, ultrasound (US) guidance, pain management, and operating room logistics (Hashimoto 

et al., 2020). They go on to explain how this can be achieved with machine learning, deep learning, 

and traditional AI techniques. Lastly, after having presented some of AI’s important limitations in 

regards to these application, the authors conclude that machine learning techniques applied to 

anesthesia can potentially improve patient and physician care perioperatively. 

 

Artificial intelligence for image interpretation in ultrasound-guided regional anaesthesia 

(Bowness et al., 2020) 

In this editorial, the authors discuss the challenges that anesthesiologists face when interpreting 

sonoanatomy in patients undergoing ultrasound-guided regional nerve block procedures and how 
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machine and deep learning can provide a solution to this issue. Moreover, the authors present 

important studies on how machine learning applications can be applied to the field of anesthesia 

perioperatively. Lastly, one such tool for automatically highlighting important anatomical 

structures viewed in an ultrasound for the adductor canal block is presented and shown to help 

minimize unwanted trauma from the needle. The authors conclude by stating that anesthesiologists 

should embrace deep learning solutions as they can positively impact patient care and outcomes. 

 

Exploring the utility of assistive artificial intelligence for ultrasound scanning in regional 

anesthesia (Bowness et al., 2022) 

In this brief technical report, the authors explore the utility of a deep learning tool, ScanNav, 

capable of highlighting nerve regions in ultrasound feeds in real time to assist anesthesiologists in 

performing nerve block procedures. Thirty anesthesiologists, 15 expert and 15 non-expert, 

performed 240 ultrasound scans across nine peripheral nerve block regions (Bowness et al., 2022). 

Furthermore, each participant was asked to complete a questionnaire on the relevant impact this 

tool can bring to the procedure. Non-experts show more positive feedback than experts (p=0.0001) 

(Bowness et al., 2022). Additionally, both groups show that this software has a potential for being 

used as a training tool. Lastly, less than five percent of experts reported a potential risk increase 

for approximately 10 scans in the set (Bowness et al., 2022). The authors conclude that ScanNav 

can aid in generalizing standard care in ultrasound-guided regional anesthesia.  
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Education in anesthesia 

The American Society of Regional Anesthesia and Pain Medicine and the European Society 

Of Regional Anaesthesia and Pain Therapy Joint Committee recommendations for education 

and training in ultrasound-guided regional anesthesia (Sites et al., 2009) 

This special article contains work from a joint committee from ASRA and the European Society 

of Regional Anesthesia and Pain Therapy whereby recommendations on how to establish 

guidelines for the main disciplines in regional anesthesia such as teaching and the scope of practice 

(Sites et al., 2009). More specifically, the document outlines four topics: a list of ten commonly 

performed tasks when conducting Ultrasound-Guided Regional Anesthesia (UGRA), crucial set of 

skills needed to perform these procedures, and training pathways for both postgraduate 

anesthesiologists and residents. The document concludes by stating that it is the joint committee’s 

recommendation that the requirements for granting UGRA rights to anesthesiologists is up to the 

individual institution’s discretion. 

 

Ultrasound and its evolution in perioperative regional anesthesia and analgesia (Mariano et 

al., 2014) 

In this article, the authors provide a history of regional anesthesia and UGRA, their clinical 

applications, the evidence basis for their use, as well as future trends in the respective fields 

(Mariano et al., 2014). 
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Development and Validation of an Assessment of Regional Anesthesia Ultrasound 

Interpretation Skills (Woodworth et al., 2015) 

In this study to develop an assessment tool for evaluating ultrasound interpretation skills for 

regional anesthesia, a 50-question assessment was created based on the inputs from residents, 

academic faculty, community anesthesiologists, and expert video recordings. After pilot testing 

and final administration to 90 participants, a 47-question subset was found to be reliable and valid, 

with a significant correlation between expected and predicted item difficulty. Moreover, test scores 

linearly increased with higher levels of formal anesthesia training, regional anesthesia training, the 

number of ultrasound-guided blocks performed per year, and self-assessment of regional 

anesthesia skill. This test could serve as an effective tool for competency milestone assessment in 

anesthesiology training. 

 

Challenges, solutions, and advances in ultrasound-guided regional anaesthesia (Henderson 

et al., 2016) 

In this article, UGRA is described to offer significant advantages for delivering analgesia to 

patients compared to traditional landmark-based techniques previously used in the field 

(Henderson et al., 2016). However, despite these benefits, UGRA relies on visual continuous image 

interpretation which is crucial for successfully and safely implementing a block. Furthermore, 

ultrasound feeds are not always perfect and devoid of artificial artifacts, ultimately introducing 

many challenges that anesthesiologists might face when interpreting the sonoanatomy for correctly 

placing the needle. The article covers a wide variety of challenges that can be encountered in US 

feeds. For example, acoustic artifacts are produced by the US probe’s sound waves interacting in 

a particular way with the various types of tissue resulting in image artifacts that may hinder the 
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process of sonoanatomy interpretation. Moreover, the paper discusses other challenges such as 

anatomical pitfall errors, optical illusions, oedema, obesity, air present in the tissue, and many 

more to look out for when performing UGRA. Lastly, the authors conclude by presenting 

promising technologies and potential advancements that may aid in addressing these challenges 

altogether. 

 

A pragmatic approach to evaluating new techniques in regional anesthesia and acute pain 

medicine (Mudumbai et al., 2018) 

In this very short Perspective, the authors present a framework for deciding whether to improve 

upon existing techniques in regional anesthesia or create new ones. Each technique should be 

evaluated through these four factors: increase in access, enhancements in efficiency, decreases 

disparity, and improves outcomes. By assessing a current or proposed technique through these four 

categories, the authors argue that this framework will help clinicians better make decisions on 

whether they should adopt or improve new and/or existing techniques. 

 

Future directions in regional anaesthesia: not just for the cognoscenti (Turbitt et al., 2020) 

In this editorial, the authors present three key components for improving regional anesthesia and 

have its practices implemented to the greatest possible patient population (Turbitt et al., 2020). 

The first step, achieving widespread implementation of common nerve blocks, consists of 

standardizing the adoption of skills required to perform small, basic blocks that are usually easy 

to learn. These procedures include the Interscalene and Axillary Brachial Plexus (BP) blocks, 

Femoral nerve, Adductor canal, Popliteal Sciatic nerve, Erector spinea, and Rectus sheath blocks. 
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The next step is to ensure that competency in performing these blocks is maintained by adjusting 

the curriculum and improving practical skills in the field. The final step is to implement this 

acquired knowledge into clinical pathways. To achieve this, multiple cultural and systematic 

barriers must be overcome.  

 

Defining an Ultrasound-guided Regional Anesthesia Curriculum for Emergency Medicine 

(Tucker et al., 2021) 

In this study aimed at identifying components of an UGRA curriculum for emergency medicine 

(EM) physicians, an expert panel voted on potential curriculum elements using a modified Delphi 

process. Although UGRA offers numerous benefits, many EM trainees lack focused education in 

this area. The expert panel reached a high level of agreement for 65 background knowledge 

elements and ten UGRA techniques. The resulting curriculum can serve as a foundation for 

developing comprehensive UGRA education for both residents and independent providers in EM. 

 

Medical Image Segmentation 

Nerve Localization by Machine Learning Framework with New Feature Selection Algorithm 

(Hadjerci et al., 2015) 

In this study, the authors propose a nerve localization framework with a new feature selection 

algorithm for UGRA. The method, based on statistical approaches and learning models, aims to 

assist anesthetists by automating nerve detection in ultrasound images, a challenging task due to 

noise and artifacts. The results indicate that the proposed method accurately and efficiently 
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identifies nerve zones, outperforming existing techniques with an accuracy of 82% on one dataset 

and 61% on another untrained dataset. 

 

U-net: Convolutional networks for biomedical image segmentation (Ronneberger et al., 

2015) 

In this article, the authors present a novel architecture for deep learning-based segmentation of 

biomedical images. The authors introduce the U-Net, a convolutional neural network (CNN) 

designed specifically to address the challenges of segmenting biomedical images, such as limited 

training data and the need for precise boundary localization. The U-Net architecture consists of a 

contracting path for feature extraction and an expanding path for precise localization, connected 

by skip connections. The authors demonstrate the effectiveness of U-Net by applying it to various 

datasets, including electron microscopic images of neural structures and histological sections of 

the kidney. The results show that U-Net outperforms existing methods and achieves high accuracy, 

making it a valuable tool for biomedical image segmentation tasks. 

 

Computer-aided detection system for nerve identification using ultrasound images: A 

comparative study (Hadjerci et al., 2016) 

In their paper on UGRA, the authors address the challenge of nerve detection and segmentation in 

ultrasound images. They propose an efficient framework for nerve detection and segmentation, 

while also reviewing and evaluating the performance of existing methods in the literature. The 

proposed system comprises four main stages: (1) de-speckling filter, (2) feature extraction, (3) 

feature selection, and (4) classification and segmentation. The authors conducted a comparative 
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study on each stage to measure its impact on the overall system. Using sonographic videos from 

19 volunteer patients, they assessed the effect of training set size and evaluated consistency 

through a cross-validation technique. The proposed framework achieved high scores (80% on 

average of 1900 tested images), demonstrating its validity and potential usefulness in UGRA 

applications. 

 

Assistive system based on nerve detection and needle navigation in ultrasound images for 

regional anesthesia (Hadjerci et al., 2016) 

In this study, the authors present the first fully automatic system for detecting regions of interest 

and generating needle trajectories in UGRA. The system addresses two critical steps in UGRA: 

anatomical structure recognition and needle steering towards the target region. The proposed 

system consists of two stages. The first stage involves the automatic localization and segmentation 

of nerves and arteries in ultrasound images using a machine learning algorithm with a multi-model 

classification process and an active contour. The second stage involves the development of a path 

planning algorithm to obtain the optimal needle insertion trajectory based on the results of the first 

stage. The effectiveness of the proposed system was evaluated through experiments on individual 

modules of the detection framework and by comparing the overall framework to existing methods. 

Two datasets, acquired at different times, were used to assess the robustness of the proposed 

method. Experimental results demonstrate the robustness and feasibility of the proposed assistive 

system in UGRA practice, potentially improving its safety and generalizing it to medical facilities 

with limited practitioner expertise. 
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Automatic Nerve Segmentation Of Ultrasound Images (Baby et al., 2017) 

In this conference paper, the authors propose a method to segment US images of the BP nerve 

bundle. Their process starts by passing the training set (n=5640) through a de-speckling filter to 

reduce background speckle noise and then on to training using the popular U-Net architecture. 

Training was also performed on a traditional Support Vector Machine (SVM) for performance 

comparison. On 5508 test images, the mean Dice score for the U-Net and SVM were 0.71 and 

0.64, respectively. 

 

Automatic Segmentation and Probe Guidance for Real-Time Assistance of Ultrasound-

Guided Femoral Nerve Blocks (Smistad et al., 2017) 

The authors of this study propose a system to assist inexperienced physicians in performing 

ultrasound-guided femoral nerve blocks. The system guides the user in moving the ultrasound 

probe to investigate the region of interest and reach the target site for needle insertion. It also 

provides automatic real-time segmentation of the femoral artery, the femoral nerve, the fascia lata 

and fascia iliaca, aiding in the interpretation of the 2D ultrasound images and surrounding anatomy 

in 3D. The system was evaluated on 24 ultrasound acquisitions from six subjects and the results 

were compared to those of an expert anaesthesiologist. The average target distance was 8.5 mm 

with a standard deviation of 2.5 mm and the mean absolute differences of the femoral nerve and 

fascia segmentations were about 1-3 mm. 
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Improved U-Net Model for Nerve Segmentation (Zhao et al., 2017) 

In this study, the authors present a method for automatic segmentation of medical images using 

CNNs, capitalizing on the advancements in computer vision. The proposed network architecture, 

based on the U-Net model, employs inception modules and batch normalization instead of standard 

convolutional layers, effectively reducing the number of parameters and accelerating training 

without sacrificing accuracy. The authors also substitute the binary cross entropy loss function 

with the Dice coefficient. Their proposed model scored an average Dice score of 0.653 with a 

model size of 5M parameters whereas the U-Net scored 0.658 with 31M parameters. 

 

Segmentation of nerve on ultrasound images using deep adversarial network (Liu et al., 

2018) 

In this study, the authors develop a deep adversarial neural network to address the challenges 

associated with segmenting the BP nerve on US images. The authors established a segmentation 

network based on a variation of the VGG network. They then incorporated a discriminator network 

to ensure the anatomical dependencies which evaluates the quality of segmentation. Lastly, elastic 

deformations are introduced to the dataset to mimic anatomic variations across multiple patient 

profiles. A mean intersection over union (mIOU) score of 73.29% was achieved for the authors’ 

model including deep adversarial networks. 
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Highlighting nerves and blood vessels for ultrasound-guided axillary nerve block procedures 

using neural networks (Smistad et al., 2018) 

In this study, the authors utilize a deep convolutional neural network to identify key structures like 

nerves and blood vessels in ultrasound images collected during axillary nerve block procedures. 

They compile a dataset of 49 subjects to train and evaluate the neural network. Different image 

augmentations, including rotation, elastic deformation, shadows, and horizontal flipping, are 

assessed. The authors perform cross-validation to evaluate the neural network, and find that blood 

vessels were detected most easily with a precision and recall above 0.8. Among the nerves, the 

median and ulnar nerves are detected most effectively with F-scores of 0.73 and 0.62 respectively, 

while the radial nerve proves to be most challenging to detect with an F-score of 0.39. The authors 

note that image augmentations improved the F-score by as much as 0.13, with the combination of 

all augmentations providing the best results. However, they acknowledge that the precision and 

recall values are still not optimal and suggest that a larger dataset, combined with anatomical and 

temporal models, might be required to enhance accuracy. 

 

Deep convolutional neural network for segmentation of knee joint anatomy (Zhou et al., 

2018) 

In this study, the authors present a novel method for knee joint tissue segmentation, integrating a 

CNN, 3D fully connected conditional random field (CRF), and 3D simplex deformable modeling. 

This strategy delivers high-resolution pixel-wise tissue classification, ensuring the contextual 

voxel relationships are maintained and the joint structure shape is preserved. The evaluation using 

3D fast spin-echo MR image datasets yielded impressive results: high mean Dice coefficients 

above 0.9 for four tissue types and between 0.7 and 0.9 for eight others, demonstrating strong 
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accuracy and robustness of the method. This approach suggests promising potential for enhancing 

efficiency and accuracy in knee joint tissue segmentation in musculoskeletal imaging. 

 

Deep visual nerve tracking in ultrasound images (Alkhatib et al., 2019) 

In this study, the researchers provide a comparative analysis of thirteen recent deep-learning 

trackers on different types of nerves, assessing their accuracy, consistency, time complexity, and 

adaptability to diverse nerve situations, such as loss of shape information or tissue disappearance. 

Testing of these trackers are performed on a median and sciatic nerve US dataset consisting of 

10,337 still images captured from 42 adult patients. The findings indicate that these deep-learning 

trackers offer robust performance across different kinds of nerves, affirming their potential in 

facilitating UGRA procedures. 

 

Medical image segmentation algorithm based on feedback mechanism convolutional neural 

network (Feng-Ping and Zhi-Wen, 2019) 

In this study, the authors address the limitations of traditional image segmentation methods and 

standard CNNs in the field of medical image segmentation. They propose a new algorithm that is 

inspired by the feedback mechanism of the human visual cortex. Two new algorithms based on the 

greedy strategy are proposed to solve the feedback optimization problem. The authors then present 

a medical image segmentation algorithm that leverages this feedback mechanism within the CNN. 

This involves learning and extracting deep image features through unlabeled image block sample 

training to construct feedback mechanism convolutional neural network models. These models are 

then used to classify pixel block samples in the medical image to be segmented, with further 
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optimization through threshold segmentation and morphological methods. The proposed method 

demonstrates high segmentation accuracy and adaptability for various medical images. 

 

Applying deep learning in recognizing the femoral nerve block region on ultrasound images 

(Huang et al., 2019) 

In this study, the authors developed a method to identify the femoral nerve block region in 

ultrasound images, aimed primarily at less experienced operators. They collected and annotated a 

dataset of ultrasound images showing the femoral nerve block. They used the U-net framework to 

train the model, which segmented the region of interest in the images. Model performance was 

evaluated based on Intersection over Union (IoU) and accuracy metrics. The median IoU results 

for the training set, development set, and test set were 0.722, 0.653, and 0.644 respectively, while 

the segmentation accuracy of the test set was 83.9%. Moreover, 10-fold cross-validation resulted 

in a median IoU of 0.656 and accuracy between 82.1% and 90.7%. The authors conclude that the 

trained model using U-net demonstrated satisfactory performance in femoral-nerve region 

segmentation and may have potential for clinical application. 

 

High performance neural network inference, streaming, and visualization of medical images 

using FAST (Smistad et al., 2019) 

The authors of this paper highlight the use of inference engines (IEs) for executing deep 

convolutional neural networks for medical image analysis, noting that existing IEs like Intel's 

OpenVINO, NVIDIA's TensorRT, and Google's TensorFlow work with specific processors and 

have distinct APIs. They propose methods to extend the FAST framework, which is an open-
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source, high-performance tool for medical imaging, to work with any IE via a common 

programming interface. This would simplify deploying and testing neural networks on different 

processors. The proposed approach is evaluated on three tasks: real-time ultrasound image 

segmentation, CT volume segmentation, and patch-wise classification of whole slide microscopy 

images. They find significant performance variations depending on the IE and processor 

combination, with differences in processing times ranging from half a second to 24 seconds for 

ultrasound frames, 2 to 53 seconds for volume processing, and 81 seconds to nearly 16 minutes 

for processing whole slide microscopy images. 

 

NAS-Unet: Neural architecture search for medical image segmentation (Weng et al., 2019) 

In this paper, the authors extend neural architecture search (NAS) to medical image segmentation, 

inspired by the success of U-net and its variants in this field. They create three types of primitive 

operation sets for the search space and use these to find two cell architectures, DownSC and UpSC. 

These are used in NAS-Unet, a U-shaped network for semantic segmentation. The DownSC and 

UpSC architectures are updated concurrently using a differential architecture strategy. The authors 

test their method on Promise12, Chaos, and ultrasound nerve datasets collected via MRI, CT, and 

ultrasound respectively. Their NAS-Unet, trained on PASCAL VOC2012, showed superior 

performance and had significantly fewer parameters than U-net and one of its variants when tested 

on the mentioned medical image datasets. 
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Artificial intelligence in detection and segmentation of internal auditory canal and its nerves 

using deep learning techniques (Jeevakala et al., 2020) 

This study introduces an automated method for detecting and segmenting the internal auditory 

canal (IAC) and its associated nerves using a Mask R-CNN approach combined with U-net. The 

RESNET50 model, the backbone of Mask R-CNN, localizes the IAC, while U-net is used to learn 

the features and segment the IAC and its nerves. The method was tested on clinical datasets from 

50 patients, both adults and children. Evaluation metrics included IoU for IAC localization, and 

Dice similarity coefficient for segmentation. Results showed the method had an impressive 

performance with RESNET50 and RESNET101 achieving a mean IoU of 0.79 and 0.74 

respectively. In terms of segmentation, the method scored higher Dice similarity coefficient than 

region growing and Particle Swarm Optimization (PSO) methods, at 96%. The results suggest the 

proposed AI tool can aid radiologists by providing accurate localization and segmentation of the 

IAC and its nerves. 

 

Self-co-attention neural network for anatomy segmentation in whole breast ultrasound (Lei 

et al., 2020) 

This study presents an automatic breast anatomy segmentation method for automated whole breast 

ultrasound (AWBUS) images to support image interpretation and breast density estimation. The 

researchers tackle issues such as low image quality and ill-defined boundaries by developing a 

new deep learning encoder-decoder segmentation method based on a self-co-attention mechanism. 

This mechanism includes a spatial and channel attention module (SC) in the ResNeXt (Res-SC) 

block and a non-local context block (NCB) for learning high-level context. The decoder path 

employs a weighted up-sampling block (WUB) for better class-specific up-sampling, while a co-
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attention mechanism improves segmentation coherence between consecutive slices. Extensive 

experiments and comparisons with other leading deep learning segmentation methods validate the 

effectiveness of the proposed method for breast anatomy segmentation in AWBUS images. 

 

Identifying anatomical structures on ultrasound: assistive artificial intelligence in 

ultrasound-guided regional anesthesia (Bowness et al., 2021) 

This study examines the usefulness of an AI system in aiding the identification of anatomical 

structures during ultrasound-guided regional anesthesia. Due to common difficulties among 

anesthesiologists in recognizing these structures, an AI system was tested for its potential benefits. 

Three regional anesthesia experts reviewed 40 ultrasound scans, comparing unmodified and AI-

highlighted videos side-by-side. They rated the system's overall performance, assessed the utility 

of highlighting for identifying specific structures, and considered its aid in confirming correct 

ultrasound views for less experienced practitioners. The AI system demonstrated helpfulness in 

identifying specific anatomical structures in nearly all cases (99.7%) and in confirming the correct 

ultrasound view in 99.3% of scans. Despite a need for further evaluation, these findings illustrate 

the potential of such AI technology to enhance clinical practice and revitalize the field of clinical 

anatomy. 

 

A self-spatial adaptive weighting based u-net for image segmentation (Cho et al., 2021) 

The study proposes a novel spatially adaptive weighting scheme for medical image segmentation, 

aiming to enhance the performance of U-Net-based architectures. The scheme utilizes various 

convolutional frameworks like VGG, ResNet, and Bottleneck ResNet structures, and substitutes 
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the up-convolutional layer with a bilinear up-sampling method. Evaluation of this method on three 

different medical imaging datasets showed notable improvements in segmentation performance. 

Specifically, the network with the proposed self-spatial adaptive weighting block based on the 

ResNet framework yielded the highest IoU and Dice scores among tested methods. In particular, 

for the Nerve dataset, the combination of the proposed block and the ResNet framework led to an 

increase of 3.01% in IoU and 2.89% in Dice scores, thus demonstrating the significant potential 

of this new approach for image segmentation tasks. 

 

A real-time anatomy identification via tool based on artificial intelligence for ultrasound-

guided peripheral nerve block procedures: an accuracy study (Gungor et al., 2021) 

The study assessed the precision of a real-time AI-based anatomy identification tool created to 

support UGRA image interpretation. A variety of nerve blocks were carried out using the software 

on 40 healthy subjects (20 women and 20 men) by anesthesiology students. The ultrasound images 

were saved and afterwards examined by professional validators once the software confirmed 100% 

scan success of anatomical landmarks for each block. When trainees had 100% scan success, the 

validators' accuracy ratings were consistent. Except for transversus abdominis plane (TAP) blocks, 

which exhibited an inverse connection with age and BMI, the scores did not significantly change 

according on participant demographics. These findings imply that AI can assist anesthesiologists 

in performing UGPNB by accurately interpreting anatomical structures in real-time sonography. 
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Deep learning segmentation of transverse musculoskeletal ultrasound images for 

neuromuscular disease assessment (Marzola et al., 2021) 

In this study, the authors present a deep learning solution to segment cross sectional areas (CSA) 

in transversus musculoskeletal US images while also providing a quantitative grayscale analysis 

in the images. The dataset is composed of 3917 images from 1283 subjects and labeled by experts 

in the field. Bland-Altman plots, grayscale analysis, and correlation analysis were used to compare 

the automatic segmentation predictions to those of the experts in the test set. A precision of 0.88 ± 

0.12 and a recall of 0.92 ± 0.09 were achieved in the test set but were slightly lower for abnormal 

muscles. Additionally, intra-class and Pearson’s correlation coefficients demonstrated strong 

agreement in the analysis. The CSA segmentation model demonstrated satisfactory performance 

and provided grayscale z-score information to the likes of manual operators. 

 

Lesion segmentation in breast ultrasound images using the optimized marked watershed 

method (Shen et al., 2021) 

In order to enhance the segmentation of lesions in breast ultrasound (BUS)  images, the study 

proposes the Adaptive Morphological Snake Marked Watershed (AMSMW) technique. The 

approach outperformed both the RDAU-NET deep learning model and conventional segmentation 

techniques in the study's tests on two datasets. On dataset A (n=500 private BUS images), it 

achieved a 96.25% accuracy rate, 78.4% Dice similarity coefficient, and a 65.34% Jaccard index. 

Additionally, it attained a sensitivity of 88.79%, a Dice similarity coefficient of 86.25%, and an 

accuracy of 97.96% on dataset B (n=205 open source BUS images). These findings point to the 

method's potential to improve breast cancer screening, particularly in remote places without access 

to qualified radiologists. 
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Brachial Plexus Nerve Trunk Recognition From Ultrasound Images: A Comparative Study 

of Deep Learning Models (Tian et al., 2022) 

This study aims to compare the performance of twelve deep learning models for the segmentation 

of the brachial plexus. The dataset was composed of 340 BP images annotated by three 

anesthesiologists. Of the twelve models evaluated, the U-Net architecture achieved the highest 

mean IoU of 68.5%, however, is limited to process 15 frames per second due to the model’s large 

size. On the other hand, the LinkNet architecture came in second place with a mean IoU score of 

66.27% and was capable of processing 142 frames per second. 

 

Overview of various blocks 

Peripheral Nerve Blocks Improve Analgesia After Total Knee Replacement Surgery (Allen 

et al., 1998) 

This study examined the effectiveness of a femoral nerve block (FNB) for total knee replacement 

(TKR) surgeries which are commonly associated with severe postoperative pain. Furthermore, on 

top of studying the analgesic effects of FNBs, the authors wanted to see that of a combined 

femoral-sciatic nerve block. A control group receiving a “sham” block was assessed. For eight 

hours after transfer to the hospital ward, patients receiving nerve blocks reported less pain (p < 

0.05). Moreover, morphine use dropped by 50% up until the second day postop for the groups 

receiving nerve blocks (p < 0.02). No statistically significant difference in the analgesic effects 

between FNBs and femoral-sciatic blocks were observed. 
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Ultrasound imaging in anesthesia: an overview of vascular access and peripheral nerve 

blocks (Sandhu, 2007) 

In this article, the author describes the benefits and limitations of US imaging for nerve blocks and 

provides general descriptions of the different transducer types and approaches to enter different 

anatomical regions with a needle. Moreover, visual guides and methods of previous studies from 

the following blocks are given: interscalene, supraclavicular, infraclavicular, axillary, femoral, 

sciatic nerve, saphenous, obturator, Ilioinguinal and hypogastric, cervical, occipital, and neuraxial 

blocks. 

 

Ultrasound guidance for deep peripheral nerve blocks: a brief review (Wadhwa et al., 2011) 

This article reviews the efficacy of the use of ultrasound in peripheral nerve blocks compared to 

the traditional nerve stimulation technique. This study focuses on infraclavicular, lumbar plexus, 

and sciatic nerve blocks. Furthermore, the findings indicate that transitioning to US-guided blocks 

alone or in tandem with nerve stimulation can be beneficial in certain scenarios, however, can pose 

challenges for deeper blocks or novice practitioners who are unable to properly interpret 

sonoanatomy. 

 

Four quadrant transversus abdominis plane block and continuous transversus abdominis 

plane analgesia: a 3-year prospective audit in 124 patients (Niraj et al., 2015) 

This prospective study examined the effectiveness of a new technique to provide continuous 

analgesia in the TAP region for patients undergoing emergency or elective abdominal surgery 

(Niraj et al., 2015). The study’s cohort comprised of 124 adult patients scheduled to undergo 
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elective or emergency abdominal surgery. As for the results, 70% of patients received incisions 

within the dermatomal limit of the block. Furthermore, the analgesic failure rate was 10% with 

39% of patients reporting no failure within the first 48 hours; only 57% experienced less than five 

episodes. The authors conclude that the four quadrant TAP block is an effective technique for 

offering perioperative analgesia especially when the surgery is performed near the dermatomal 

limit. 

 

Update on ultrasound for truncal blocks: a review of the evidence (Abrahams et al., 2016) 

This article updates a previous systematic review conducted in 2010 by the authors on the evidence 

behind several truncal blocks performed using ultrasound. This updates brings about three new 

US-guided block studies and a new systematic review was conducted to provide new 

recommendations on the blocks. These blocks include the paravertebral, intercostal, transversus 

abdominis plane, rectus sheath, ilioinguinal/iliohypogastric, as well as the Pecs, quadratus 

lumborum, and transversalis fascia blocks. Thanks to these new studies, the authors conclude that 

our understanding of the anatomy pertinent to these blocks may improve as well as evaluating 

patient-related risks and outcomes. 

 

Abdominal wall blocks in adults (Børglum et al., 2016) 

In this review article, the authors investigate the efficacy of abdominal wall blocks using US 

guidance. They argue that recent findings show that UGRA in abdominal wall blocks is the gold 

standard in adults with the TAP block being the most commonly performed. Finally, the authors 
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conclude that abdominal wall blocks are assigned a grade A or B evidence based on the guidelines 

by the US Agency for Healthcare Policy and Research. 

 

Ultrasound-Guided Regional Anaesthesia: Visualising the Nerve and Needle (Bowness and 

Taylor, 2020) 

In this review article, the authors present an overview of UGRA along with its benefits and 

challenges. Moreover, the authors provide in-depth descriptions and visual guides of the 

sonoanatomy for the following blocks: Interscalene block, Supraclavicular block, Infraclavicular 

block, Axillary brachial plexus block, Forearm blocks, Femoral nerve block, Popliteal sciatic nerve 

block, and ankle block. Strategies on how to properly place the US probe for optimal nerve and 

needle visualization is also provided. 

 

Ultrasound-guided transgluteal sciatic nerve analgesia for refractory back pain in the ED: A 

case series (Goldsmith et al., 2020) 

In this case series, the authors present an US-guided transgluteal sciatic nerve block (TGSNB) 

procedure performed on three patients experiencing sciatic radicular back pain in the emergency 

department (ED) setting. Since there is a limited pain management regiment in the ED, this study 

aids in providing a useful and cost-effective use case for UGRA procedures in this setting. All three 

patients experienced no adverse outcomes and reported very good pain relief (Goldsmith et al., 

2020). 
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New composite scale for evaluating peripheral nerve block quality in upper limb 

orthopaedics surgery (Almasi et al., 2021) 

In this article, the authors argue that a robust tool for evaluating the quality of US-guided nerve 

blocks does not exist. Therefore, the study presents a method for evaluating US-guided 

interscalene-supraclavicular blocks and axillary-supraclavicular blocks on 93 patients. Sensory, 

motor, coping, and postoperative pain (SMCP) metrics were recorded for each patient as well as 

the quality of the anesthesia graded by an anesthesiologist (QAGA). Results showed that no 

significant difference in QAGA was observed for both block groups. Furthermore, 97.8% of 

patients were in the Excellent and Good categories with SMCP whereas 86% were with QAGA 

(p<0.001) (Almasi et al., 2021).  

 

Risks and benefits of UGPNB 

Transversus Abdominis Plane Block: How Safe is it? (Jankovic et al., 2008) 

In this short letter to the editor, the authors note that TAP blocks are considered to be safe and 

effective with minimal complications. Several risks, however, do include organ needle puncture 

and accidental anesthetic intraperitoneal injections which can cause organ damage. Some 

suggestions are then offered to minimize the risks of this procedure such as decreasing the volume 

of anesthetic used and using a blunt-edged needle to avoid unnecessary tissue puncture. 
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Ultrasound-guided peripheral nerve blocks: What are the benefits? (Koscielniak-Nielsen, 

2008) 

In this review study, the author examined the growing use of ultrasound in anaesthesiology for 

regional blocks and found that ultrasound guidance offers significant benefits in clinical practice. 

Moreover, after scanning MEDLINE and EMBASE databases, it was established that when 

peripheral nerves are well imaged by ultrasound, there's no added advantage to using nerve 

stimulation, however, obtaining satisfactory images can sometimes be challenging. The use of 

ultrasound significantly reduced block performance time, the number of needle passes, and block 

onset time. The occurrence of paraesthesia during the procedure was also less frequent, although 

there were contradictory results regarding the incidence of accidental vascular punctures. Post-

operative neuropraxia incidence remained unchanged. In pediatric patients, the duration of the 

block was found to be longer, but this was not the case in adults. Furthermore, the study revealed 

that ultrasound guidance allowed for a reduction in the dose of local anaesthetic used in blocks. 

 

Limitations and Technical Considerations of Ultrasound-Guided Peripheral Nerve Blocks: 

Edema and Subcutaneous Air (Saranteas et al., 2008) 

This case report presents two trauma patients for whom the benefits of ultrasound-guided 

peripheral nerve blocks were limited due to edema and subcutaneous air. The first patient, affected 

by tissue edema and obesity with a body mass index of 35, and the second patient, dealing with 

subcutaneous emphysema, experienced difficulties with 2-dimensional ultrasound imaging despite 

the use of advanced equipment and techniques. Consequently, the use of neurostimulation 

technique alone or in combination with ultrasound imaging was necessary to successfully perform 

the nerve block. 
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Complications of peripheral nerve blocks (Jeng et al., 2010) 

This article draws upon the known complications resulting from peripheral nerve blocks. However 

rare these complications might be, the consequences on both the patient and anesthesiologist must 

be considered. Furthermore, the review focuses on complications that can arise from nerve blocks, 

continuous peripheral nerve catheter techniques, and local anesthetic toxicity (Jeng et al., 2010). 

 

Liver trauma secondary to ultrasound-guided transversus abdominis plane block (Lancaster 

& Chadwick, 2010) 

In this correspondence by the editor, a case is described where a 61 year old male patient was 

found to have liver damage after undergoing a TAP block to treat a strangulated inguinal hernia. 

 

Transversus abdominis plane block: a note of caution! (Walker, 2010) 

In this short correspondence, the editor references a cadaveric study on the TAP block which finds 

that the femoral nerve lies parallel to the deeper parts of the transversus abdominis plane. 

Therefore, as found by the study, uncareful placement of the needle and minimal injectate could 

lead to a femoral nerve palsy. 
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Probable Local Anesthetic Systemic Toxicity in a Postpartum Patient with Acute Fatty Liver 

of Pregnancy After a Transversus Abdominis Plane Block (Naidu & Richebe, 2013) 

This case report presents the complications associated with peripheral nerve blocks, specially TAP 

blocks, for a 25 year old patient with acute fatty liver of pregnancy. 

 

Cardiac Arrest from Local Anesthetic Toxicity After a Field Block and Transversus 

Abdominis Plane Block: A Consequence of Miscommunication Between the Anesthesiologist 

and Surgeon (Scherrer et al., 2013) 

Another case report is presented where a 25 year old female patient who has undergone 

laparoscopic gynecologic surgery under general anesthesia experienced a seizure followed by 

ventricular arrhythmia. This occurred after a bilateral TAP block was administered by an 

anesthesiologist due to the patient experiencing severe postoperative pain. 

 

Feasibility and analgesic efficacy of the transversus abdominis plane block after single-port 

laparoscopy in patients having bariatric surgery (Wassef et al., 2013) 

This study examines the analgesic efficacy of US-guided TAP blocks in morbidly obese patients 

undergoing single-port sleeve laparoscopic gastrectomy (SPSG). The authors found that patients 

who received TAP blocks experienced less severe pain 6 to 12 hours post-surgery compared to the 

intravenous control group. Nevertheless, the total opioid consumption 24 hours post-surgery was 

similar in both groups. The authors conclude that US-guided TAP blocks are effective in morbidly 

obese patient populations and provide immediate pain relief following SPSG. 
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Demonstrating the Benefits of Transversus Abdominis Plane Blocks on Patient Outcomes in 

Laparoscopic Colorectal Surgery: Review of 200 Consecutive Cases (Keller et al., 2014) 

In this study, the long-term effects of TAP blocks and enhanced recovery protocols on 200 patients 

who have undergone colorectal resections is evaluated. When performed together, the authors 

observed a median length of stay of 2 days, where a majority of 77% discharged by postop day 3. 

Moreover, the complication rate was 12% and readmission rate was 6.5%. The authors conclude 

that the combination of TAP blocks and a standardized enhanced recovery protocol improved 

colorectal resection results, reduced length of stay and maintained lower readmission rates. 

 

Convulsions in 2 Patients After Bilateral Ultrasound-Guided Transversus Abdominis Plane 

Blocks for Cesarean Analgesia (Weiss et al., 2014) 

This report presents seizure cases in two patients who received bilateral TAP blocks following a 

cesarian section operation; a procedure that has been associated with no major complications. Both 

incidents required resuscitation and bag-mask interventions, respectively, and lipid emulsions 

before fully recovering. The authors provide a note of caution for anesthesiologists who offer TAP 

block in post-cesarian delivery patients and warn of potential anesthetic toxicity. 

 

Use of Transversus Abdominis Plane (TAP) Blocks for Pain Management in Elderly Surgical 

Patients (Sammons & Ritchey, 2015) 

This article discusses the effectiveness of the TAP block for postoperative analgesia in elderly 

patients. Common comorbidities are often tied to this patient population and minimizing 
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postoperative complications is important. The study found that administering TAP blocks in this 

patient category can mitigate risks such as pneumonia, urinary retention, and falls. 

 

Clinical effectiveness of transversus abdominis plane (TAP) blocks for pain relief after 

caesarean section: a meta-analysis (Champaneria et al., 2016) 

This review of 20 randomized control trials studied the effectiveness of TAP blocks for managing 

postoperative pain in patients who have undergone cesarean sections. The findings suggest that 

TAP blocks significantly reduced patients both at rest and on movement compared to placebo and 

intrathecal morphine. However, the significant difference is lost when comparing TAP to 

intrathecal morphine or co-administration. 

 

Efficacy of transversus abdominis plane block with liposomal bupivacaine during open 

abdominal wall reconstruction (Fayezizadeh et al., 2016) 

This authors studied the analgesic effects of TAP blocks performed on patients undergoing 

abdominal wall reconstruction while having liposomal bupivacaine (LB) injections. The study 

found that patients who received both TAP and LB experienced less postoperative pain and a 

shorter length of stay at the hospital compared to the LB-only control group. The authors conclude 

that intraoperative TAP blocks paired with LB can significantly improve perioperative patient 

outcomes. 
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The use of ultrasound guided combined peripheral nerve blocks in a high-risk patient: A case 

report (Kavakli et al., 2021) 

This study explores the use of multiple peripheral nerve blocks, namely, a femoral, anterior sciatic, 

and lateral femoral cutaneous nerve block for above-knee amputations in high risk patients. 

 

Safety and effectiveness of ultrasound guided peripheral nerve blocks: Audit at tertiary care 

hospital (Salam et al., 2021) 

The aim of this retrospective study was to analyze the analgesic efficacy of peripheral nerve blocks 

administered to patients in the Aga Khan University Hospital in Karachi from 2015-2017. 

Numerous variables were monitored in the 299 patients such as pain scores, complications, and 

need for additional analgesia. Overall, the results showed that UGRA is safe and effective in 

providing postoperative analgesia. Furthermore, 70% of patients in the study reported fully 

effective analgesia on movement 12 hours after surgery.  



 101 

Discussion & Conclusion 

Two studies focusing on improving the field of ultrasound-guided regional anesthesia have been 

conducted. The first, a deep learning solution to automatically highlight the transversus abdominis 

plane region in ultrasound images resulted in a 73% global Dice score against a test set of ten 

images each labeled by ten anesthesiologists (Suissa et al., 2023, In Press). Secondly, another study 

attempted to establish a clinically-relevant comparison metric threshold so that ML researchers 

who attempt US nerve segmentation can base their results on (Suissa et al., 2023, Pending 

approval). The study found that a statistically significant Dice metric threshold of 34% would 

determine whether or not a pixel-wise comparison would be deemed clinically acceptable for the 

specific application of UGPNB. 

The first study was considered to be a proof of concept to test our methods for the specific task of 

highlighting a nerve in a set of ultrasound images. Its success proved that these methods should be 

applied to a wider range of nerve blocks, each of which feature unique and challenging 

sonoanatomy. Furthermore, by being equipped with a clinically relevant threshold for a set of seven 

nerve regions, future studies can begin to evaluate the segmentation efficacy of DL models on 

these nerves as well as new ones. 

The second study, currently pending approval from the British Journal of Anesthesia, provided key 

insight on how we should treat DL nerve segmentation results from published studies. Whereas 

the traditional way of evaluating a model’s performance is to compare it with past studies’ results 

for a specific task (e.g. nerve segmentation), there have never been, to our knowledge, studies that 

use a clinically-backed evaluation benchmark. By finding a statistically significant Dice score 

threshold of 34%, the first study’s 73% global Dice score is deemed to be clinically relevant. One 
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particular limitation that might not have been mentioned in the paper is that the evaluated 

thresholds are task-specific and can only be used for segmentation evaluation for the seven nerve 

regions presented in the study. Additional research using similar methods would have to be 

conducted to obtain new thresholds for a wider range of nerve regions/blocks. Additionally, these 

methods can also be applied to new modes of computer vision deep learning tasks such as 

pathology detection in MRI or CT scans. 

Finally, a comprehensive literature review covering 72 peer-reviewed research articles, case 

reports, and editorials on a myriad of subjects revolving around anesthesiology and deep learning 

were presented. The first two sections of the review provided a thorough overview of the state of 

artificial intelligence in the last decade in medicine as a whole and anesthesiology, respectively. 

The third section provided a glimpse at the education curriculum for anesthesiologists wanting to 

perform nerve blocks, from challenges to overcome in the field to new approaches in existing 

nerve block procedures. In the Medical Image Segmentation section of the review, over 20 

scholarly articles presenting novel techniques and deep learning architectures were summarized. 

These studies demonstrated advancements in nerve segmentation in ultrasound feeds as well as 

detecting other tissues and blood vessels hoping to assist anesthesiologists better perform nerve 

blocks. The final two sections in the review covered the proper methods to recognize sonoanatomy 

for performing effective blocks as well as highlight the risks and benefits that anesthesiologists 

should be aware of concerning these procedures. Overall, the articles summarized in this review 

provide a thorough overview for anesthesiologists and machine learning researchers of the state of 

artificial intelligence applied to the automatic detection of nerves in US images. 

The studies presented in this thesis demonstrated a method to gauge clinical relevance in US nerve 

segmentation methods as well as using it to validate our custom deep learning software capable of 
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highlighting the TAP region in various images. With future enhancements to the research, 

additional improvements can be made to strengthen the statistical power of the results with the 

first step being to increase the evaluated test cases in each experiment. Furthermore, new state-of-

the-art DL architectures should be explored to optimize the final models’ predictive scores and 

effectively bring researchers closer to achieving a clinically-accepted decision support system for 

anesthesiologists.    
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