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1Department of Mechanical Engineering, McGill University, Montréal, QC H3A 0C3, Canada
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The formation of vortex rings emanating from orifices with different orifice-to-tube
diameter ratios D0/Dp is studied using time-resolved particle image velocimetry. The
invariants of the motion in their non-dimensional form are computed and presented
in the non-dimensional time space t∗ = U0t/D0, where the subscript 0 refers to the
exhaust quantities. The classic slug-flow model is revisited and extended to account
for the contraction of the flow when fluid is being pushed out through the orifice.
Accordingly, a new time scale in terms of the contracted quantities (subscript ?) is
defined as T ∗ = U?t/D?. Results show that the modified slug-flow model unifies the
formation number of orifices and straight nozzles with a value of approximately 4.
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1. Introduction

The study of starting jets is intrinsically associated with vortex ring formation, as
these coherent structures are formed when impulsively pushing fluid from rest through
an exhaust. The study of vortex rings gained new momentum after Gharib et al. (1998)
showed the existence of an energy optimum during vortex ring formation. More precisely,
a non-dimensional time scale, referred as the formation number, was defined as the instant
at which the vortex ring starts exhibiting a trailing jet, and was shown to correspond to
the stroke ratio required to produce a vortex ring with maximum circulation. An energy-
based interpretation of the phenomenon was given by invoking the Kelvin-Benjamin
variational principle, which proves the existence of an energy maximum for a given
impulse and circulation. Later studies, in a broad range of fields, corroborated this result,
hence giving credit to the existence of a universal time scale. For instance, Gharib et al.
(2006) showed that blood is expelled in the left ventricle of the human heart in the
form of a vortex ring at a stroke ratio of approximately 4. Others, such as Linden &
Turner (2004), Dabiri & Gharib (2005a,b) and Dabiri et al. (2006) applied the concept
of formation number to fluid transport and propulsion in order to explain and model the
locomotion of aquatic animals such as jellyfishes and squids (see review by Dabiri 2009).
In particular, it was found that maximum thrust per unit stroke ratio was obtained at this
specific formation number value (Krueger & Gharib 2003). The potential applications of
this concept are broad as the vortex ring is a fundamental coherent structure observable
in a wide range of industries. For example, vortex ring thrusters could be potential
actuators for unmanned underwater vehicles (Mohseni 2006; Krieg & Mohseni 2008,
2010), synthetic jets and pulse jets could be used for flow control and mass and heat
transfer (see review by Glezer & Amitay 2002) and vortex ring-like structures are observed
when injecting fuel in a combustion engine (Renard et al. 2000).
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A growing body of work has shown that the formation number can be affected by
specific initial conditions. In particular, the use of a parabolic velocity profile at the
exhaust or adding a substantial background co-flow can reduce the value of the formation
number to 1 (Rosenfeld et al. 1998; Krueger et al. 2006). On the other hand, adding a
bulk counterflow or closing the nozzle while pushing the flow out during formation can
increase the formation number up to a value of 8 (Dabiri & Gharib 2004, 2005a). Recently,
Limbourg & Nedić (2021) showed that the use of an orifice geometry results in a reduced
formation number of approximately 2, close to the value found by Gao et al. (2008) for a
gravity-driven gradually converging nozzle and consistent with the observations of Allen
& Naitoh (2005). Moreover, care was taken to measure the hydrodynamic impulse and the
kinetic energy separately, which led to the definition of additional time scales; a detached
vortex ring in a vorticity sense does not necessarily mean that the ring has reached its
optimal state, as circulation can be acquired in a discrete fashion by secondary rings
catching up with the leading ring. Furthermore, although the ring has detached from
the feeding shear layer, the ring can accumulate energy further downstream as the ring
has not detached in the velocity sense (Gao & Yu 2010; Limbourg & Nedić 2021). As a
consequence, a maximum circulation formation time and an optimal formation time was
proposed by Limbourg & Nedić (2021). Nevertheless, the non-dimensional numbers α,
β and γ were shown to be adequate quantities to predict the instant at which the ring
starts exhibiting a trailing jet, i.e. the formation number.

The difference in the formation process of orifice-generated vortex rings was attributed
to the boundary conditions the orifice geometry is imposing. In particular, the radial
component of velocity at the exhaust is no longer negligible and must be taken into
account in the formation process (Krieg & Mohseni 2013). Moreover, the absence of a
boundary layer at the exhaust of the orifice triggers instabilities similar to vortex shedding
(Limbourg & Nedić 2021). Finally, the sharp turning angle imposed to the flow by the
orifice plate forces the streamlines to bend toward the centreline at the exhaust, hence
resulting in a reduced section called vena contracta.

The objective of the present work is to present a correction to the classic slug-flow
model which accounts for the contraction of the flow and to investigate its implications
for the definition of the formation number. In particular, the model is used to unify
results by Limbourg & Nedić (2021), Krieg & Mohseni (2013) and Gao et al. (2008) with
the ones found for a nozzle geometry, for example by Gharib et al. (1998).

The structure of the paper is as follows. First, the extended slug-flow model is
introduced in §2. Then, after presenting the experimental setup in §3, the results are
shown in their non-dimensional form in §4; first as a function of the exhaust-based
non-dimensional time t∗ = U0t/D0 (§4.1), then as a function of the corrected non-
dimensional time T ∗ = U?t/D? (§4.2). Finally, a discussion on the formation number and
the applicability of the model is given. In particular, a comparison with measurements
taken from the literature is furnished.

2. The extended slug-flow model

For an unbounded axisymmetric flow with no swirl, the principal invariants of the
motion are the kinetic energy, the hydrodynamic impulse and the circulation:

Γ =

∫∫
ω dr dx I = πρ

∫∫
ωr2 dr dx E = πρ

∫∫
ωψ dr dx (2.1)

Given the three integrals of the motion, along with the geometric parameters of the
system, it is possible to define three non-dimensional numbers. Taking the circulation and
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Figure 1. Schematic of the slug-flow model made to scale for a unit impulse duration.

the hydrodynamic impulse to be the repeated variables, the non-dimensional quantities
are the stroke ratio L/D and the non-dimensional numbers α and β. Following Linden
& Turner (2001), another non-dimensional number γ was defined in order to show the
importance of the volume (Limbourg & Nedić 2021):

α ≡ E

ρ1/2Γ 3/2I1/2
β ≡ Γ

ρ−1/3I1/3U2/3
γ ≡ V–

ρ−3/2Γ−3/2I3/2
(2.2)

Naturally, when studying starting jet formation, one must consider the exhaust quan-
tities and thus use the exhaust speed U0 and discharged volume V– 0 rather than the ring
speed UR or the ring volume V– R.

When fluid is pushed out through an orifice, the flow experiences a contraction, and
the effective diameter of the column of fluid discharged is reduced (see figure 1). Using
the conservation of mass, the geometric quantities (subscript 0) are related to the tube
of fluid far downstream (subscript ?) by

Cc ≡ A?/A0 = D2
?/D

2
0 = L0/L? = U0/U? (2.3)

where Cc is the contraction coefficient defined as the ratio of the area of the vena contracta
A?, mathematically at infinity downstream, to the area of the orifice A0.

As originally shown by Krieg & Mohseni (2013), the production of the invariants of the
motion is drastically influenced by the radial velocity component at the exhaust of the
orifice. Krieg & Mohseni (2013) proposed a semi-empirical model which accounts for the
two dimensional effects by fitting the radial velocity and its axial gradient, v and ∂v/∂x,
by linear functions. This model was proven to accurately capture the repercussions of
the radial velocity on the overall production of circulation, hydrodynamic impulse and
kinetic energy. The present model does not aim at modelling precisely the transverse
velocity across the exhaust plane, as was done by Krieg & Mohseni (2013), but rather
incorporating its influence on the production of the integrals of the motion. The free
streamline theory suggests the contribution of the radial velocity on the velocity profile
to be maximum at the edge of the orifice and zero at the centreline. Inversely, the
axial velocity is modelled to be zero at the edge of the orifice and maximum at the
centreline. The latter is not verified experimentally as shown by Krieg & Mohseni (2013)
and Limbourg & Nedić (2021). The precise velocity profile at the exhaust assumed by
the free streamline theory of Von Mises (1917) is unknown. However, accounting for the
contraction of the flow allows one to incorporate the effect of the non-zero radial velocity
on the flow field by ultimately modelling the discharged column of fluid with a reduced
cross section and a greater velocity.

Generally, the rate of production of circulation, hydrodynamic impulse and kinetic
energy generated by a parallel starting jet are estimated by the slug-flow model. In-



4 R. Limbourg and J. Nedić

troducing the contraction coefficient to account for the reduced section of the flow, the
model becomes

dΓ? =
1

2
U2
0 dt× 1/C2

c , dI? =
1

4
πρU2

0D
2
0dt× 1/Cc, dE? =

1

8
πρU3

0D
2
0dt× 1/C2

c (2.4)

and the predicted non-dimensional numbers α, β and γ are†:

α =

√
π

2

(
L0(t)

D0

)−1

× C3/2
c , β =

1

(2π)1/3

(
L0(t)

D0

)2/3

× C−5/3
c ,

γ =
1√
2π

(
L0(t)

D0

)
× C−3/2

c (2.5)

Note that the target exhaust speed U0 was chosen in the above calculations of the β
quantity.

Finding the contraction coefficient of a flow is a classical hydrodynamics problem which
was first solved by Kirchhoff (1869), who found the free streamline of a flow exiting
an infinitely large vessel through a (rectilinear) two-dimensional slit. The contraction
coefficient was found to be Cc = π/(π + 2) ≈ 0.611. Later, Von Mises (1917) provided a
thorough study of the two-dimensional problem in a wide variety of boundary conditions,
and the contraction coefficient of the sheet of fluid emanating from an infinitely long
channel of prescribed width with a two-dimensional conical slot was found. In particular,
the case of a 90◦ plate covering the exhaust of the channel was found. The equivalent
axisymmetric problem of a circular hole in an infinite plane was first solved by Trefftz
(1916). Later, Rouse & Abul-Fetouh (1950) found negligible differences with the two-
dimensional results by Von Mises (1917) and concluded that the two-dimensional results
were applicable to the axisymmetric problem. Consequently, in the present work, the
contraction coefficient for different orifice-to-tube ratios is computed using the results of
Von Mises (1917) and are presented in table 1. For a 90◦ angle plate, the contraction
coefficient is given by

Cc =

√
h

D0/Dp
with

D0

Dp
=
√
h

[
2

π

(
1√
h
−
√
h

)
arctan

√
h+ 1

]
(2.6)

where h is a parameter fixing the upstream flow speed.
The time scale used for studying starting jets and the formation of vortex rings is

defined as t∗ = U0t/D0 which is equivalent to the instantaneous stroke ratio L0(t)/D0.
When accounting for the contraction of the flow, the effective size of the slug of fluid

changes and the non-dimensional time becomes T ∗ = U?t/D? = U0t/D0 × 1/C
3/2
c =

t∗ × 1/C
3/2
c . Note that for the case of a nozzle, the contraction coefficient is Cc = 1.000,

and the previously used definition of the time scale is resumed. The latter will be referred
as the corrected non-dimensional time.

3. Measurements

Experiments were conducted in a water tank onto which a 4 in = 101.6 mm inner
diameter tube was mounted. Several 2.38 mm-thick aluminium plates with different orifice

† In the original publication, it is written erroneously that the contraction coefficient cancels
out in the expressions of α, β and γ. The present figure 2 is therefore modified accordingly.
In particular, in the original publication, the slug-flow model curve corresponds to the classic
version of the model for which Cc = 1.000.
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Orifice diameter D0/Dp U0 [mm.s−1] ReD0 Cc

4.0 in = 101.6 mm 1.000 100 10160 1.000
3.5 in = 88.9 mm 0.875 100 8890 0.762
3.0 in = 76.2 mm 0.750 100 7620 0.703
2.5 in = 63.5 mm 0.625 100 6350 0.667
2.0 in = 50.8 mm 0.500 100 5080 0.644
1.5 in = 38.1 mm 0.375 100 3810 0.629

Table 1. Summary of experimental conditions and contraction coefficients used in the
extended slug-flow model (Equation 2.6).

diameters were tested, with orifice-to-tube diameter ratios D0/Dp ranging from 0.375 to
1.000, with 0.125 increments, the last case being the straight tube without any plate
(see table 1). Water was pushed out by a piston actuator sealed with rubber o-rings.
The piston was tuned beforehand in order to avoid spurious overshoots at the end of the
acceleration period. The exhaust speed was chosen to be constant for all orifices, hence
having a changing diameter-based Reynolds number ReD0

= U0D0/ν (see table 1). In
this setting, for a given duration T0, the stroke-based Reynolds number ReL0

= U0L0/ν
was kept constant. Another set of measurements was taken for a fixed diameter-based
Reynolds number of ReD0 = 5080, hence having the targeted speed at the exhaust chosen
to be inversely proportional to the orifice diameter. No change in the results was visible;
therefore, the presented findings hold for the range of Reynolds number considered here.

Time-resolved planar particle image velocimetry was used to measure the velocity
field at the exhaust of the orifice. The field of view extended equally about the axis of
symmetry and measurements can be averaged out between the two half-planes. The field
of view was adjusted in order to visualise at least two diameters downstream. A total of
15 measurements were taken for every case and the averaged curves are presented in the
subsequent figures. Further details on the experimental setup can be found in Limbourg
& Nedić (2021).

4. Results

4.1. Invariants of the motion vs. exhaust-based non-dimensional time t∗ = U0t/D0

Figure 2 presents the three non-dimensional numbers α, β and γ, as defined in Equation
2.2 and measured using particle image velocimetry for the experimental conditions
detailed in table 1. Figure 2(a) presents the non-dimensional number α, which gathers the
three invariants of the motion and which was first introduced by Gharib et al. (1998) as
an indicator for predicting the formation number. The limiting time was then estimated
to be the instant at which the α quantity of the steady isolated ring equates the total
quantity generated by the apparatus. Several studies have highlighted the importance
of this quantity, including Mohseni & Gharib (1998), Shusser et al. (1999), Linden &
Turner (2001), Yu et al. (2007), Gao et al. (2008), Gao & Yu (2010) and more recently
Gao et al. (2020) and Steinfurth & Weiss (2020). Limbourg & Nedić (2021) measured
the total α quantity generated by an orifice geometry having an orifice-to-tube diameter
ratio of 0.5, and a clear discrepancy between the measured curve and the slug-flow model
prediction was found. As shown in figure 2(a), the same is true for other orifice-to-tube
diameter ratios, the curves tending towards the slug-flow model as D0/Dp approaches 1.
Moreover, for D0/Dp < 0.750, all experimental curves appear to collapse on each other,
and an evident discrepancy is visible between the nozzle case D0/Dp = 1.000 and the
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Figure 2. Non-dimensional numbers; (a) α quantity, (b) β quantity and (c) γ quantity, as a
function of the non-dimensional time t∗.

slug-flow model. As suggested by many studies, including Gharib et al. (1998) and Gao
& Yu (2010), the α quantity is the critical quantity for studying vortex ring formation,
and, hypothesizing the α quantity of the isolated ring to be 0.33, as found by Gharib
et al. (1998) for a nozzle geometry or by Limbourg & Nedić (2021) and Allen & Naitoh
(2005) for an orifice geometry, the formation number is found in the range 1.6 to 2.8,
depending on the orifice-to-tube ratio, whilst the intersection with the slug-flow model
curve gives a value of 3.8.

The evolution of the non-dimensional number β as a function of the non-dimensional
time t∗ is presented in figure 2(b), along with the slug-flow model prediction. The speed
U in Equation 2.2 is chosen to be the expected exhaust speed U0. Again, the slug-flow
model is observed to be a mediocre prediction of the non-dimensional number, and all
the measurement curves collapse on each other for D0/Dp < 0.750. For an isolated ring,
the β quantity was measured to be approximately 1.8 for an orifice generated vortex ring
(Limbourg & Nedić 2021; Allen & Naitoh 2005), close to the value of 1.75 for a nozzle
geometry (Gharib et al. 1998; Mohseni & Gharib 1998) or for a converging nozzle (Yu
et al. 2007). Given this value, the formation number is found to range from 1.8 to 4.7 for
the orifice geometry, whereas following the slug-flow model curve, the formation number
would be estimated to be 6.0. Similar comments can be made for γ quantity (figure 2c).
The γ quantity for an isolated vortex ring was estimated to be 1.9 by Limbourg & Nedić
(2021), which would give a formation number ranging from 1.9 to 3.5, the latter being
for a nozzle geometry (figure 2c). Again, the formation number would be overestimated
by the slug-flow model with a value of 4.8.
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Figure 3. Non-dimensional numbers; (a) α quantity, (b) β quantity and (c) γ quantity, as a
function of the corrected non-dimensional time T ∗.

4.2. Invariants of the motion vs. corrected non-dimensional time T ∗ = U?t/D?

The extended slug-flow model, as presented in §2, is used to predict the non-
dimensional quantities and most importantly to redefined the time scale as T ∗ = U?t/D?.
While the predicted curves of the non-dimensional numbers collapse onto the same curve
and remain unchanged, the measured curves are shifted right due to the redefinition of
the time scale. The evolution of the non-dimensional numbers α, β and γ is presented as
a function of the modified non-dimensional time T ∗ in figure 3. The use of the corrected
non-dimensional time collapses all α curves, which ultimately follow the slug-flow model.
Given the value for an isolated vortex ring of α = 0.33, the formation number is found
to range between 2.8 and 3.6 for all orifice-to-tube ratios, and the estimated value using
the slug-flow model is 3.8. Similar trends can be observed with the evolution of the β
quantity in figure 3(b). Note that the speed used in the definition of β is U? = Cc × U0.
Again, all measurement curves collapse on the same curve, close to the extended slug-flow
model. The value for an isolated vortex ring was found to be approximately 1.8, which
is obtained at a corrected non-dimensional time of T ∗ = 4.6 to 6.6, 4.6 being for a
nozzle geometry. Finally, the γ quantity is presented in figure 3(c). Note that the volume
discharged at the exhaust of the orifice is independent of the contraction coefficient, and
V– ? = V– 0. Given the γ quantity of the isolated ring to be approximately 1.9, a formation
number of 3.4 and 4.4 is found for all orifices, and a formation number of 4.8 is found
with the slug-flow model.

In short, redefining the non-dimensional time in terms of the contracted quantities
unifies the measurements obtained for different tube-to-orifice diameter ratios and tends
towards the slug-flow model curve, which is a decent approximation for parallel starting
jets.
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Figure 4. Non-dimensional numbers; (a) α quantity, (b) β quantity and (c) γ quantity, as a
function of the corrected non-dimensional time T ∗. Curves corrected for the initial offset.

4.3. Correction for transient effects

Originally, the formation number was defined as the instant at which the vortex ring
formed during jet initiation starts exhibiting a trailing jet. The existence of such a limiting
time scale was explained by the existence of a maximum energy state, which itself is
proven by the Kelvin-Benjamin variational principle. Following Gharib et al. (1998),
analytical models which involve the three invariants of the motion were proposed to
explain and predict the value of the formation number. Making use of the classic slug-
flow model for parallel starting jets, on the one hand, and approximating the isolated
vortex as a member of the Fraenkel-Norbury family of vortex rings, on the other hand,
the formation number was estimated to be 3.0 by Mohseni & Gharib (1998) and Shusser
et al. (1999) and 3.5 by Linden & Turner (2001). These analytical models proceed to an
asymptotic matching of the quantities and discard any transient behaviour. In particular,
the slug-flow model assumes a linear increase (in the mathematical sense, i.e. starting
from the origin) of the invariants of the motion throughout the formation process, e.g.
Γs = mΓs

t, where mΓs
= 1/2U2

0 . This is not observed experimentally as measurements
show a positive offset at t = 0 when applying a linear fit to the curves at a later time
(t∗ > 1) e.g. Γ = mΓ t+ pΓ . This is attributed to an overpressure effect at the very first
instants, as highlighted by Krueger (2005).

When discarding the transient behaviour by forcing the affine functions to go through
the origin, hence only accounting for the rate of production of circulation, impulse and
energy, as in the original slug-flow model, the non-dimensional number curves shown in
figure 3 become as shown in figure 4. For example, α(t) = E(t)ρ−1/2I(t)−1/2Γ (t)−3/2 =

mEρ
−1/2m

−1/2
I m

−3/2
Γ t−1, where mΓ ,mI and mE are the gradients from the measured

circulation, impulse and energy curves against time. The use of the corrected non-
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Figure 5. Non-dimensional numbers; (a) α quantity, (b) β quantity and (c) γ quantity, as a
function of the corrected non-dimensional time T ∗. Curves corrected for the initial offset.

dimensional time T ∗ clearly enables all α curves to be collapsed very close to the slug-flow
model curve. In essence, this proves the applicability of the extended slug-flow model for
analytical prediction of the formation number for orifice-generated vortex rings. Given
an α quantity of 0.33 for the isolated ring, a formation number of 3.6-3.8 is found in
the modified non-dimensional space (figure 4a). The nozzle curve differs slightly from
the slug-flow model with a formation number of about 3.2, which is attributed to the
fact that, although a straight nozzle should not experience a contraction of the flow,
the presence of a leading vortex and subsequent trailing shear layer forces the flow to
contract and modifies the effective shape of the slug of fluid. Moreover, the laminar
boundary layer growth inside the tube leads to a reduced diameter of the effective
column of fluid at the exhaust which can be accounted for by the present extended
slug-flow model; a contraction coefficient of 0.90 would match the nozzle α curve with
the slug-flow prediction.

Figure 4(b) and figure 4(c) show the evolution of the β quantity and γ quantity,
respectively, after correcting for the initial offset. Similar comments can be made. The
use of the corrected non-dimensional time brings all the curves together around the slug-
flow model curve. Again, the nozzle case is slightly off and correcting for a contraction
of coefficient 0.90 would bring the nozzle curve close to the slug-flow prediction. As
highlighted by Limbourg & Nedić (2021), the use of the non-dimensional numbers β and
γ with the slug-flow model may lead to an erroneous prediction of the formation number.
The β quantity for the isolated vortex ring of 1.8 would give a formation number of 6.0
to 7.2, whereas a γ quantity of 1.9 for the isolated ring would give a formation number
of approximately 5.0 for all orifices.
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4.4. Non-dimensionalisation in terms of the ring quantities

A discussion regarding the discrepancy observed here is in order. Unlike the quantity
α, which gathers the three integrals of the motion, β and γ incorporate the kinematics of
the flow via its speed and its volume, respectively. On the one hand, the non-dimensional
quantities discharged by the apparatus are computed using the targeted exhaust speed
U0, or its equivalent U?, and volume V– 0, or equivalent V– ?, and estimated using the
slug-flow model. On the other hand, the non-dimensional numbers of the isolated rings
are computed using the measured ring speed UR and the measured volume of the ring
atmosphere V– R, independently, regardless of the generating conditions. For this reason,
there is no perfect correspondence in the results obtained with the quantity α and the
quantities β and γ when finding the formation number, the latter dimensionless numbers
being estimated by the targeted exhaust quantities instead of the ring quantities.

An illustrative example is Hill’s spherical vortex, which is the thickest member of
the Fraenkel-Norbury family of isolated vortex rings. The non-dimensional numbers are
αH =

√
10π/35 ≈ 0.16, βH = 5/(2π)1/3 ≈ 2.71 and γH = 10/3

√
5/2π ≈ 2.97, values

which would be obtained, if one follows the slug-flow model, at t∗ = 7.83, 11.18 and 7.45,
respectively. A perfect correspondence in all three numbers is obtained if the exhaust
speed U0 in the definition of β is replaced by 7/10 × U0 and the exhaust volume is
replaced by 20/21 × V– 0 in the definition of γ. In essence, the total exhaust quantities
are now computed in terms of the ring speed and ring diameter, which are not known a
priori.

Given the present set of measurements and taking the non-dimensional numbers for
the isolated vortex ring to be αR = 0.33, βR = 1.8 and γR = 1.9 (Limbourg & Nedić
2021), it is possible to compute the equivalent ring quantities which would ultimately
give the same prediction for the formation number as the slug-flow model. Replacing the

contracted exhaust speed by U?R = (2αRβ
3/2
R )−1U? ≈ 0.63U? and the contracted exhaust

volume by V– ?R = (2αRγR)V– ? ≈ 1.3V– ? in figure 4 results in figure 5, and the formation
number is found to be 3.80 for all three non-dimensional numbers. Conversely, this also
suggests that, given a universal formation time for vortex rings of approximately 4, it is
possible to estimate a priori the asymptotic ring speed, volume and diameter, provided
the non-dimensional numbers β and γ to be universal constants. Note that in figure 5,
the measurements taken with the straight nozzle were corrected for the contraction of
the flow, and the aforementioned value of 0.90 was used as the contraction coefficient,
hence giving a measurement curve close to the theoretical slug-flow curve for all non-
dimensional numbers.

4.5. Comparison with other measurements

The present model suggests that it is possible to unify the formation number of
orifice-generated vortex rings, and this for all orifice-to-tube diameter ratios, with the
one obtained for a straight nozzle. The present measurements are compared to data
found in the literature in figure 6. In particular, the experimental data of Krieg &
Mohseni (2013) for both the nozzle and the orifice configurations are presented. Note
that Krieg & Mohseni (2013) used a plunger as an actuator and the orifice-to-tube ratio
was less than 0.1. Additionally, the data of Gao et al. (2008) for a gradually smoothly
converging gravity-driven nozzle are shown. Finally, the numerical results of Rosenfeld
et al. (2009) for a purely laminar starting jet emanating from a long straight tube at a
Reynolds number of 500 are presented. Surprisingly, their α curve is far from the nozzle
measurements - even further from the slug-flow model - and follows the measurements
obtained with an orifice geometry (figure 6). This difference is attributed to the very
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Figure 6. α quantity as a function of (a) the non-dimensional time t∗ and (b) the corrected
non-dimensional time T ∗.

low Reynolds number, which is forming a laminar boundary layer thickness in the nozzle
twice as large as in the present nozzle case, hence leading to a reduced slug size at the
exhaust. A contraction coefficient of Cc = 0.75 would bring the curve close to the present
measurements in the corrected time frame and suggests that the growth of the internal
boundary layer plays a key role in the vortex formation mechanism.

Krieg & Mohseni (2013) presented the invariants of the motion in their dimensional
form as a function of the dimensional time. Given the information provided, it is possible
to present the evolution of the α and β quantities as a function of the exhaust-based non-
dimensional time t∗. Perfect concordance between the present experimental data and the
measurements of Krieg & Mohseni (2013) is found. In particular, the curve obtained for a
straight nozzle differs from the slug-flow model by the same amount. Using a contraction
coefficient of Cc = 0.611 for the orifice case of Krieg & Mohseni (2013), the resulting
curves in the corrected non-dimensional time frame T ∗ come closer to the ideal slug-
flow model curve. Moreover, using a contraction coefficient of Cc = 0.75 to correct the
measurements of Gao et al. (2008) obtained for a converging nozzle furnish the same
conclusions.

5. Conclusions

Starting jets emanating from orifices with different orifice-to-tube diameter ratios
were investigated using particle image velocimetry. The invariants of the motion were
measured at the exhaust and presented in their non-dimensional form as a function of
the exhaust-based non-dimensional time t∗ = U0t/D0. It was found that the classic slug-
flow model poorly estimates the production of the invariants of the motion, especially for
small orifice-to-tube diameter ratios. This is corroborated by previous studies by Krieg
& Mohseni (2013) and Limbourg & Nedić (2021). A correction to the slug-flow model
was proposed to account for the contraction of the flow at the exhaust and was shown to
collapse all experimental curves together. Moreover, discarding the transient effects and
only accounting for the rate of production of the invariants of the motion, as is the classic
slug-flow model, confirms that the corrected non-dimensional time T ∗ = U?t/D? collapses
all experimental curves together, close to the slug-flow model. Although, theoretically,
no correction should be applied to the straight nozzle case, it is found that a contraction
coefficient of 0.90 would unify all curves to the slug-flow model, including the nozzle
case, for the present experimental conditions. This proves that it is possible to extend
the analytical predictions of the formation number of Mohseni & Gharib (1998), Shusser
et al. (1999) and Linden & Turner (2001) to orifice-generated vortex rings.
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Using an α value of 0.33 for the isolated vortex ring, the formation number, defined
as the corrected non-dimensional time T ∗ at which the total curve reaches this value, is
found to range between 2.8 to 3.6, consistent with analytical predictions of Mohseni &
Gharib (1998), Linden & Turner (2001) or Shusser et al. (1999) and slightly lower than
the value found for a nozzle geometry by Gharib et al. (1998) using circulation alone.
Nevertheless, this must be seen in the context of the original formation number of 1.6-2.8
found for orifice-generated vortex rings using the exhaust-based non-dimensional time
t∗. Furthermore, correcting for the transient effects shows that the theoretical formation
number would be 3.8 for all cases. The β quantity was also used to estimate the formation
number and, given a β quantity of approximately 1.8 for the isolated ring, a formation
number of 1.8 to 4.7 was found using the experimental curves in the exhaust-based non-
dimensional time frame. Using the corrected non-dimensional time enables to unify the
results with a formation number found around 6.5. The difference with the value found
for the α quantity was reported by Limbourg & Nedić (2021). Similar conclusions can
be made regarding the γ quantity which gives a formation number in the range of 2.4 to
4.4. As discussed in §4.4, redefining β and γ in terms of the ring quantities enables to
unify all values with a formation number of approximately 3.8.

Finally, the extended slug-flow model and the redefinition of the non-dimensional time
were tested on the experimental data of Krieg & Mohseni (2013) and Gao et al. (2008).
The results show a perfect agreement with the present set of data. The use of the corrected
model therefore enables the unification of the formation number found for vortex rings
emanating from orifice geometries and converging nozzles with the common result of
Gharib et al. (1998) for straight nozzles.
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