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Abstract 

 

Coherent neural oscillations are distributed spatially and emerge even at rest, giving rise 

to the so-called brain networks. This fundamental characteristic of brain function is termed 

functional connectivity and has been widely investigated using neuroimaging modalities 

such as magnetoencephalography (MEG), electroencephalography (EEG) and functional 

magnetic resonance imaging (fMRI). This thesis capitalized on all the aforementioned 

neuroimaging modalities to investigate different facets of brain dynamics and estimates of 

functional connectivity.  

The first work of this thesis examines age-related differences in spontaneous and motor-

related brain dynamics. It particularly focuses on the effects of healthy aging on beta 

oscillations and its potential link to motor performance. Movement-related beta oscillations 

are a brain phenomenon that has been extensively studied and is known to be aberrant in 

multiple movement disorders. During movement there is a strong decrease in beta 

oscillatory activity known as movement related beta desynchronization (MRBD), which 

dissipates shortly after movement cessation. Conversely, during sustained muscle 

contractions, there is a relative increase in beta oscillatory activity with respect to MRBD 

levels. Using MEG recordings from young and older adults performing sustained and 

dynamic hand contractions, we demonstrate that older adults exhibit a more pronounced 

modulation of beta oscillations during movement execution compared to their younger 

counterparts.  

The second work of this thesis switches the focus on the neural and physiological 

contributions on estimates of functional connectivity measured with fMRI data. fMRI is a 

complex signal that infers changes in neuronal activity via changes in local cerebral blood 

flow. However, physiological processes and motion artifacts can also induce variations in 

the fMRI signal, which can in turn lead to artifactual estimates of functional connectivity. 

In this work, we develop an innovative framework to characterize the spatial signature of 

head motion and physiological processes (cardiac and breathing activity) on estimates of 

functional connectivity. Capitalizing on a large cohort from the Human Connectome Project, 



•   ii 

we show that a substantial variance of functional connectivity measures can be attributed 

to non-neural processes. We also assess the performance of several state-of-the-art 

preprocessing strategies in mitigating the effects of nuisance processes. Interestingly, we 

find that these non-neural functional connectivity patterns are to some extent subject 

specific; however, fMRI data corrected for these confounds improves subject 

discriminability, which suggests that neural-related functional connectivity patterns are 

characterized by an even stronger subject specificity. 

The third study of this thesis investigates the effect of global signal regression (GSR) on 

fMRI studies. GSR is a widely used preprocessing method that consists in regressing out 

the mean time-series across all fMRI voxels with the goal of removing global confounds. 

However, its usage is controversial since it is not clear whether GSR also removes neuronal-

related signal of interest. Capitalizing on a dataset with simultaneous EEG-fMRI and 

physiological recordings, we examine the processes underpinning the global fMRI signal 

and the implications of GSR for functional connectivity studies. We show that physiological 

fluctuations explain a much larger fraction of the global fMRI signal variations compared 

to electrophysiological fluctuations, both at rest and during a behavioural task. 

Furthermore, we demonstrate that GSR effectively reduces the artifactual connectivity 

arising from systemic fluctuations, while preserving the connectivity patterns associated 

with alpha and beta power activity.  
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Résumé 

Les oscillations neuronales cohérentes sont réparties spatialement dans le cerveau. Elles 

sont présentes au repos et sont à la base des soi-disant réseaux cérébraux. Cette 

caractéristique fondamentale de la fonction cérébrale est appelée connectivité 

fonctionnelle. Elle a été largement étudiée grâce aux données recueillies à l'aide des 

modalités de neuroimagerie telles que la magnétoencéphalographie (MEG), 

l'électroencéphalographie (EEG) et l'imagerie par résonance magnétique fonctionnelle 

(IRMf). Cette thèse capitalise sur les modalités de neuroimagerie susmentionnées qui 

permettent d’étudier les différentes facettes de la dynamique cérébrale et sur les modèles 

qui permettent d’estimer la connectivité fonctionnelle. 

La première partie de cette thèse examine les différences liées à l'âge quant à la dynamique 

spontanée du cerveau dans le cadre des fonctions motrices. Elle se concentre en particulier 

sur les effets du vieillissement sain sur les oscillations du rythme bêta et son lien potentiel 

avec les performances motrices. Les oscillations du rythme bêta liées au mouvement 

représentent un phénomène cérébral qui a été largement étudié et qui est reconnu pour 

être altéré en présence de pathologies qui affectent le mouvement. Pendant le mouvement, 

une forte diminution de l'activité oscillatoire bêta connue sous le nom de désynchronisation 

bêta liée au mouvement (MRBD) est observée. Cette activité se dissipe peu de temps après 

l'arrêt du mouvement. Inversement, lors de contractions musculaires prolongées, une 

augmentation relative de l'activité oscillatoire du rythme bêta est observée par rapport au 

niveau d’activité présent lors du MRBD. Les signaux de MEG enregistrés lors de 

contractions de la main soutenues et dynamiques chez de jeunes adultes et chez des sujets 

plus âgés, nous a permis de démontrer que les personnes âgées présentaient une 

modulation plus prononcée des oscillations du rythme bêta pendant l'exécution du 

mouvement par rapport à leurs homologues plus jeunes. 

La deuxième partie de cette thèse se concentre sur les contributions neuronales et 

physiologiques lors d’estimations de la connectivité fonctionnelle à partir de données 

obtenues à l’aide de l'IRMf. L'IRMf est un signal complexe qui infère des changements de 

l'activité neuronale via des fluctuations du flux sanguin cérébral local. Cependant, les 
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processus physiologiques et les artefacts associés au mouvement peuvent aussi induire des 

variations du signal IRMf, ce qui peut conduire à des estimations artéfactuelles de la 

connectivité fonctionnelle. Dans ce chapitre, nous avons développé un cadre innovant pour 

caractériser la signature spatiale associée au mouvement de la tête et aux processus 

physiologiques (activités cardiaque et respiratoire) lors d’estimations de la connectivité 

fonctionnelle. Capitalisant sur l’utilisation de données recueillies chez une large cohorte de 

sujets accessible dans le cadre du projet Human Connectome, nous démontrons qu'une 

variance substantielle des mesures de connectivité fonctionnelle peut être attribuée à des 

processus qui ne sont pas d’origine neuronale et évaluons la performance de plusieurs 

stratégies de prétraitement de données de pointe afin d’atténuer les effets de ces processus 

nuisibles. Fait intéressant, les modèles de connectivité fonctionnelle qui ne sont pas 

d’origine neuronale sont dans une certaine mesure spécifique à chaque sujet; cependant, 

les données d'IRMf corrigées en tenant compte de ces facteurs de confusion améliorent la 

discrimination des sujets, ce qui suggère que les modèles de connectivité fonctionnelle qui 

tiennent comptent de l’activité neuronale sont caractérisés par une spécificité du sujet 

encore plus marquée. 

La troisième partie de cette thèse étudie l'effet de la régression du signal global (GSR) dans 

le cadre d’études IRMf. Le GSR est une méthode de prétraitement largement utilisée qui 

consiste à régresser la série temporelle moyenne sur tous les voxels d’IRMf dans le but 

d’éliminer les facteurs de confusion globaux. Cependant, son utilisation est controversée 

car il n'est pas clair si la GSR supprime également le signal d'intérêt lié à l’activité 

neuronale. Capitalisant sur un ensemble de données obtenues à partir d’enregistrements 

simultanés d’EEG-IRMf et de signaux physiologiques, nous examinons les processus qui 

sous-tendent le signal IRMf global et les implications du GSR dans le contexte d’études de 

connectivité fonctionnelle. Nous montrons que les fluctuations physiologiques expliquent 

une partie beaucoup plus grande des variations globales du signal IRMf par rapport aux 

fluctuations électrophysiologiques, à la fois au repos et pendant une tâche 

comportementale. De plus, nous démontrons que le GSR réduit efficacement la connectivité 

artéfactuelle résultant des fluctuations systémiques, tout en préservant les patrons de 

connectivité associés à la puissance de l'activité des rythmes alpha et bêta. 
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Original contributions 

 

Study I (Chapter 3). Older adults exhibit a more pronounced modulation of beta 

oscillations when performing sustained and dynamic handgrips. 

• To the best of our knowledge, this study is the first to investigate the beta rhythm (~20 

Hz) modulations that occur during sustained contractions in the context of healthy aging. 

• We provide original results from a MEG experiment including young and aging adults 

designed to elicit modulations in sensorimotor beta oscillations by requiring participants 

to sequentially produce sustained and dynamic hand contractions. 

• Our study revealed that, during sustained contractions, there seems to be no significant 

differences in beta power between age groups beyond the ones observed at rest. 

Conversely, during dynamic contractions, we observed a stronger beta 

desynchronization in older adults, consistent with earlier studies. The finding that both 

age groups return to resting levels of beta activity during sustained contractions is 

particularly novel, as together with the established evidence that older adults exhibit 

increased beta suppression during dynamic contractions it demonstrates that aging 

adults produce a larger modulation of beta activity compared to their younger 

counterparts. 

• We also show that, during dynamic contractions, age-related differences in the 

magnitude of beta desynchronization are not restricted to primary motor cortices but 

rather extend and are stronger in frontal and premotor areas.  

• Our study included both unimanual and bimanual hand contractions, showing consistent 

findings between the two paradigms. 

 

Study II (Chapter 4). Physiological and head motion signatures in static and time-varying 

functional connectivity. 

• We describe a novel methodology for the characterization of physiological and head 

motion biases on estimates of functional connectivity at the individual level. 
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• Using multisession resting-state fMRI data from a large cohort, we demonstrate the 

biases in  whole-brain functional connectivity profiles induced by the main fMRI 

confounds, namely head motion, systemic low-frequency fluctuations, breathing motion 

and cardiac pulsatility. Both static and time-varying measures of functional connectivity 

were investigated. 

• The study further provides a comprehensive assessment of state-of-the-art fMRI 

denoising strategies in terms of reducing the effects caused by head motion and 

physiological noise and enhancing subject discriminability.  

• Finally, we evaluate the potential subject specificity of the connectivity profiles 

associated with physiological and motion confounds, along with their role as hypothetical 

contributors to connectome fingerprinting accuracy. 

 

Study III (Chapter 5). Does global signal regression alter fMRI connectivity related to EEG 

activity? An EEG-fMRI study in humans. 

• We provide original results from a simultaneous EEG-fMRI experiment with concurrent 

physiological recordings regarding the validity of global signal regression (GSR), which 

is a preprocessing method based on regressing out the mean average signal across all 

fMRI voxels.  

• We demonstrate quantitatively that physiological fluctuations related to changes in heart 

rate and breathing patterns account for a larger fraction of fMRI global fluctuations 

compared to fluctuations in electrophysiological (EEG) signal power, which is more 

directly related to the underlying neural activations, within specific bands. 

• We further capitalize on the methodology developed in Study II (Chapter 4) to quantify 

the effects of GSR on whole-brain functional connectivity patterns associated with neural 

activity and physiological fluctuations. We show that GSR effectively removes the effects 

induced by changes in heart rate and breathing patterns, consistent with our results in 

Study II (Chapter 4), while not significantly altering the fMRI-based connectivity profiles 

associated with EEG activity. 
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1 
Introduction 

1 Introduction 

1.1 MOTIVATION 

Many electrophysiological studies have reported age-related changes in resting and task-

related neural dynamics (Susi et al., 2019). However, there are still many aspects of the 

healthy aging process that need to be elucidated to differentiate it from pathological aging. 

Given the prevalence of motor control impairments in older adults, it is vital to characterize 

the motor-related neural correlates of healthy ageing in order to differentiate normal from 

aberrant neural oscillations that are present in several movement disorders (Crowell et al., 

2012; Heinrichs-Graham et al., 2014; Kondylis et al., 2016; Proudfoot et al., 2017). The first 

goal of this thesis was to investigate age-related differences in spontaneous and motor-

related brain dynamics. Specifically, we were interested in the effects of aging on the 

modulation of beta oscillations during sustained and dynamic hand contractions that has 

been observed in younger adults (Kilner et al., 2003; van Wijk et al., 2012). 

Functional magnetic resonance imaging (fMRI) has also been used to elucidate age-related 

patterns of altered brain function, for instance differences in functional connectivity (Grady, 

2012; Sala-Llonch et al., 2015). However, many confounds arise when using an indirect 

measure of brain activity such as fMRI, particularly when comparing populations that 

exhibit differences in vascular health, breathing and heart rhythms (e.g. young vs. aging 

adults). The validity of such studies critically depends on the extent to which fMRI accurately 

reflects neural activity, rather than physiological-related fluctuations or motion. The second 

objective of this thesis was to disentangle the neural and physiological influences on 
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functional connectivity profiles when using fMRI data. First, we sought to characterize the 

signatures of common sources of noise such as global systemic fluctuations, head motion, 

breathing motion and cardiac pulsatility on estimates of functional connectivity. Second, we 

aimed to demonstrate the performance of state-of-the-art denoising strategies with respect 

to removing these confounds. Popular denoising approaches to remove these artifacts rely 

on data-driven techniques such as independent component analysis (Pruim et al., 2015; 

Salimi-Khorshidi et al., 2014) and principal component analysis (Behzadi et al., 2007; 

Muschelli et al., 2014). However, it is not precisely clear which sources of noise these 

techniques account for. While there is evidence that data-driven techniques mitigate head 

motion artifacts (Ciric et al., 2017; Kassinopoulos and Mitsis, 2019a; Parkes et al., 2018), it 

still needs to be addressed whether physiological noise is also reduced. Our goal was to 

investigate to what extent data-driven denoising strategies reduce physiological noise and 

head motion artifacts. 

A common yet controversial denoising method in fMRI is global signal regression (GSR). GSR 

consists in regressing out the mean BOLD signal averaged across all voxels with the goal of 

removing global physiological confounds and head motion. However, it is an open question 

whether GSR also removes neuronal-related activity. Most studies investigating the putative 

neural contributions on fluctuations of the global fMRI signal have related these neural 

variations to vigilance levels and arousal (C. W. Wong et al., 2016; Wong et al., 2013). 

However, these studies did not account for the possibility that the observed global 

fluctuations could be due to changes in physiological processes (e.g. heart rate), that are 

strongly linked to arousal levels (Bonnet and Arand, 1997; Olbrich et al., 2011). The third 

objective of this thesis was to investigate the physiological and neural basis of global fMRI 

fluctuations. Furthermore, GSR has been criticized with respect to possibly introducing 

artifactual negative correlations between the fMRI signals of different brain regions and 

consequently distorting functional connectivity measures (Murphy et al., 2009; Parkes et al., 

2018; Power et al., 2014a). Nonetheless, these studies did not employ concurrent direct 

measurements of neural activity, and therefore were not able to address the question 

whether GSR is indeed distorting connectivity patterns of neural activity. Using simultaneous 
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EEG-fMRI data, we aimed to quantify the effects of GSR on connectivity profiles associated 

with EEG activity. 

 

1.2 OVERVIEW OF THE THESIS 

Ensuing chapters in this dissertation are organized as follows. Chapter 2 provides an 

overview of the principles behind the functional brain imaging techniques used in this 

thesis and offers background material in topics related to neural oscillations and functional 

connectivity. In Chapter 3, we use MEG recordings from 24 healthy young and older adults 

to investigate the impact of aging on resting and motor-related beta activity. Chapters 4 

and 5 describe efforts to characterize major confounds in fMRI, specifically head motion 

and physiological noise. In Chapter 4, we propose a framework to quantify the effects of 

nuisance processes on estimates of functional connectivity. We further provide a 

comprehensive assessment of the performance of fMRI denoising strategies in terms of 

mitigating the evaluated artifacts using a large-scale multisession dataset. In Chapter 5, we 

investigate the physiological and neural substrates of the global fMRI signal capitalizing on 

EEG-fMRI and physiological recordings. Finally, chapter 6 provides a high-level summary 

of the key findings presented in this dissertation and outlines potential future directions. 

  



 

2 
Background 

2 Background 

2.1 FUNCTIONAL BRAIN IMAGING MODALITIES 

The quest to understand the human brain has been a scientific driver for centuries. This 

driving force has pushed boundaries in many scientific disciplines to develop new 

instrumentation and signal analysis techniques to measure neural activity in vivo. 

Noninvasive functional imaging methods are markedly crucial to unfold the mysteries of the 

human mind and have tremendously advanced in the past 25 years. These powerful tools 

allow researchers to study large-scale brain dynamics to improve our understanding of 

cognitive processes and better characterize normal and pathological brain function. Albeit 

functional neuroimaging techniques share the same goal, that is to measure brain activity, 

each method relies on different neurophysiological aspects associated with neural activity 

to achieve it (Figure 2-1A), which bestows each method with key advantages as well as 

limitations compared to other recording techniques (Figure 2-1B). Among the existing 

neuroimaging modalities, magnetoencephalography (MEG) and electroencephalography 

(EEG) uniquely have temporal resolutions below 100 ms, at the expense of low spatial 

resolution. Conversely, whole-brain functional magnetic resonance imaging (fMRI) provides 

spatial resolutions as high as 1 mm, however the temporal resolution is limited by the 

sluggishness of hemodynamic responses. Functional near infrared imaging (fNIRS) is based 

on similar principles as fMRI and hence has limited temporal resolution, besides low spatial 

coverage, but is sometimes preferred as it is portable and more affordable. 
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The following sections will provide introductory materials for the three non-invasive 

techniques employed in this thesis, namely MEG, fMRI and EEG, along with the basics of 

simultaneous EEG-fMRI acquisition. 

  

2.1.1 Electromagnetic brain imaging 

Neuronal communication entails minute ionic currents that give rise to both electrical 

potentials on the scalp and magnetic induction outside the head, measurable by means of 

EEG and MEG, respectively. Thus, EEG and MEG are closely related noninvasive techniques 

whose signals are originated from the same neural cell assemblies. Their main differences 

arise as a result of the singular nature in which electric and magnetic fields spread. Both 

Figure 2-1. (A) Schematic figure illustrating how the most commonly used neuroimaging techniques measure 

brain activity. Black arrows denote current flow, which generate magnetic fields that can be recorded with 

MEG sensors and secondary currents that can be recorded as potential differences between EEG electrodes. 

fMRI and fNIRS are sensitive to changes in blood oxygenation triggered by neural activity. (B) Qualitative 

comparative ranking between MEG, EEG, fMRI and fNIRS. High bars indicate high performance. Reproduced 

from (Gross, 2019) with permission.  
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neurophysiological techniques are used to obtain novel insights into brain function, with 

particular emphasis on the temporal aspect of neuronal dynamics. 

Now let’s look more closely at the electrophysiological basis of EEG and MEG signals. We will 

focus on cortical pyramidal cells, which are neurons with a pyramidal shaped soma and two 

distinct dendritic trees: apical and basal dendrites, which receive input from other cells. 

Neuronal communication is achieved via action potentials. When an action potential from a 

neighbor or remotely located neuron arrives at a pyramidal neuron’s apical dendrites, 

postsynaptic potentials (PSPs) are generated. PSPs induce an imbalance in electrical 

potentials between the apical dendritic arborescence of a pyramidal cell and its soma, which 

generates a current commonly referred as “primary current” (yellow arrow in Figure 2-2a). 

The primary current induces a magnetic induction perpendicular to the primary current flow 

(purple circles), as well as secondary electric currents (not pictured), which are the signal 

origins of MEG and EEG, respectively. Because of the elongated shape of pyramidal neurons 

and their spatial alignment perpendicular to the surface, at a large-scale the summation of 

slow and somewhat synchronous PSPs from tens of thousands of pyramidal cells produce 

signals detectable with EEG and MEG (Figure 2-2b). Therefore, it is mainly the slow PSPs 

Figure 2-2. (a) Cellular origins of electromagnetic signals. (b) The summation of postsynaptic potentials 

(PSPs) from a large number of pyramidal neurons is needed to detect electromagnetic signals with EEG and 

MEG. Reproduced from (Baillet, 2017) with permission. 
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from populations of pyramidal cells in layers 3-6 which are considered the main neural 

generators of EEG and MEG, rather than action potentials (Baillet et al., 2001; Buzsáki et al., 

2012), and importantly, the amplitude of EEG and MEG signals is largely based on the degree 

of neuronal synchrony. This has important implications as the synaptic input is far more 

energetically demanding (and thus likely to generate a hemodynamic response) than the 

synchronous activity. As a result, it is possible that a brain area may receive considerable 

input, though not yield a detectable electromagnetic signal (Butler et al., 2017). 

The first human electroencephalogram was recorded by (Berger, 1929), even though at that 

time it was already known that the brain produced electrical fields that exhibit oscillations 

(Caton, 1875). Over the years, it has become an important brain imaging tool used both in 

neuroscience research and in the clinic. EEG measures brain electrical fields via electrodes 

attached to the scalp, and can thought of as a spatiotemporally smoothed version of local 

field potentials. Specifically, it measures voltage differences of the order of 50-100 µV 

between two electrodes at a time. Inhomogeneities in electrical conductivity (such as the 

skull and scalp) distort and smeared electrical currents, hampering identification of the 

underlying neural generators of EEG signals. 

The possibility to measure extracranial magnetic inductions was then very appealing to 

researchers, as magnetic permittivity is, unlike electrical conductivity, homogeneous and 

identical across tissue compartments, and thus magnetic signals are less smeared and 

distorted by the skull (Okada et al., 1999). However, the weak magnetic inductions from the 

human brain are about 108 times smaller compared to the steady magnetic field of the earth. 

To measure them, a multilayered magnetically-shielded room is necessary to eliminate or 

dampen the environmental magnetic disturbances, as well as a pick-up coil through which 

the magnetic flux flows and induces an electrical current readily measurable. The first 

demonstration that measuring extracranial magnetic inductions was possible came around 

40 years after Berger’s first human electroencephalogram (Cohen, 1968). These early 

measurements required elaborate signal averaging to reveal the alpha rhythm with eyes 

closed, as the detectors used were not sensitive enough. Luckily, around that time a team of 

physicists had just developed an extremely sensitive device called SQUID (Superconducting 

Quantum Interference Device) (Zimmerman et al., 1970), which greatly improved the 
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sensitivity of MEG (Cohen, 1972). State-of-the-art commercial MEG systems feature a helmet 

with 306 SQUID detectors surrounding the head. For cooling purposes, the sensing 

apparatus is contained in a large liquid helium dewar (i.e. vacuum-insulated tank) within the 

gantry, which slowly boils away and needs to be replenished with about 70-100 fresh liters 

every week. This results in substantial operating costs, above the initial capital investment 

that is estimated around $3 million, which makes MEG considerably more expensive relative 

to EEG.  

Both MEG and EEG sensor data record the evolution of brain activity at millisecond temporal 

resolution. Based on the measured EEG and MEG signals (“sensor space”), the generator 

currents may be inferred through source imaging (“source space”), usually in combination 

with structural MRI scans to account for individual variations in brain gyrification. Source 

imaging is an ill-posed problem as an infinite number of source models can fit the sensor 

data equivalently well (Hamalainen et al., 1993). Computing the most likely generator 

sources (i.e. the inverse solution) is therefore challenging, albeit relatively more 

straightforward for MEG, since additional assumptions about head-tissue layer 

conductivities are required in EEG. A variety of methods have been proposed to solve the 

inverse problem (Baillet, 2015). The approach later used in Chapter 3 is a beamforming 

method (Van Veen et al., 1997), which is a popular technique for source imaging that scans 

through a mesh of the brain surface to evaluate how a dipole at a specific location would fit 

the data while avoiding the crosstalk from other brain regions. 

2.1.1.1 Differences between EEG and MEG 

Consider a current dipole in the cortex with either of two orientations: radial or tangential 

to the surface of the head. Based on electromagnetic laws, the radial dipole produces no 

external magnetic field, whereas the tangential dipole does produce a magnetic field 

measurable outside the head. Conversely, both orientations do produce a surface potential. 

This results in an important difference between EEG and MEG signals: EEG is able to measure 

both tangential and radial dipoles, while MEG can only measure tangential dipoles. If we 

consider the gyrification of the brain and that pyramidal cells are oriented vertically to the 

cerebral cortex, dipoles located in the gyri are radial to the skull, and dipoles located in the 

sulci are tangential to the skull. Therefore, this means that MEG is more sensitive to neural 
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activity originating from sulcal walls, whereas EEG is sensitive to both (though slightly more 

sensitive to currents from gyral crowns because they are closer to the electrodes). This has 

implications regarding selective cancelation of EEG and MEG signals from extended sources 

(Ahlfors et al., 2010). Another consequence of MEG not being sensitive to radial sources is 

that activity from deep sources is also greatly suppressed, since they can be considered 

radial to the surface of the head. Coupled with the fact that the signal-to-noise ratio in MEG 

decreases faster with source depth, it is commonly believed that MEG cannot detect activity 

deep into the brain (but see recent advances in (Andersen et al., 2020; Pizzo et al., 2019)). 

Given this, are the costs of purchasing and maintaining a MEG system worthwhile? As 

mentioned earlier, EEG signals are smeared by the high-resistivity skull and estimates of the 

tissue conductivities are necessary to localize neural activity, whereas MEG signals are not 

smeared and the head can be modelled as a single layer. All things equal, this would indicate 

that MEG localizes neural activity better than EEG, which is mostly true for tangential 

dipoles. Thus, because of skull smearing, EEG localization accuracy is about ± 9mm, whereas 

MEG localization accuracy can reach the sub-millimeter scale (Bonaiuto et al., 2018; Nasiotis 

et al., 2017). Furthermore, contributions from physiological contaminants such as ocular, 

cardiac and muscular artifacts are more easily removed in MEG compared to EEG, as in the 

latter is more difficult to distinguish between artifact components and high-frequency brain 

signals. However, ferromagnetic elements used in dental works and implants can cause 

complex artifacts in MEG, which is quite problematic when scanning older populations. 

Another difference is that the magnetic induction measured by MEG is readily measurable in 

absolute physical quantities of the order of 100 fT, as it is proportional to the induced electric 

current on the pick-up coils. On the other hand, EEG signals are relative to a common 

reference electrode. 

Moreover, there are evident practical differences between the two modalities. Subject 

preparation times are much shorter in MEG than in EEG, as MEG sensors are not attached to 

the scalp and therefore gel-free, eliminating the time spend in EEG for electrode positioning 

and impedance verification. However, this advantage comes at a price, as head movements 

during MEG acquisition considerably hinder data quality and comparisons between scans. 
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Subjects inside the MEG are therefore asked to keep their heads still, and real-time 

measurements of head movement and registration of head positions between participants 

are important factors for reliable MEG measurements. Conversely, during EEG recording 

subjects are relatively free to move, which permits recordings in real-life settings. EEG is also 

more versatile in terms of hyperscanning (Babiloni and Astolfi, 2014) and can be more easily 

combined with fMRI or stimulation techniques; for example, simultaneous EEG-fMRI is a 

powerful clinical tool for epilepsy (Krakow et al., 1999), whereas combining MEG with fMRI 

is rather unfeasible unless perhaps in the ultra-low field regime (Espy et al., 2013). 

Overall, EEG and MEG are complementary modalities for noninvasive electrophysiology and 

imaging to explore the dynamics of the brain, and link those to cognition and disease (Baillet, 

2017; Gross, 2019; Hari and Puce, 2017; Lopes da Silva, 2013). 

2.1.2 Functional magnetic resonance imaging (fMRI) 

Functional magnetic resonance imaging (fMRI) is based on the blood-oxygenation-level-

dependent (BOLD) contrast mechanism (Ogawa et al., 1990). As the name suggests, fMRI 

detects changes in blood oxygenation induced by neural activity using a magnetic resonance 

scanner (Glover, 2011; Huettel et al., 2014; Nikos K Logothetis, 2008). Over the last few 

decades, fMRI has gained increased popularity as the standard technique to noninvasively 

study brain function, partly due to its high spatial resolution. 

The fMRI signal is based on the principles of nuclear magnetic resonance, picking up local 

inhomogeneities in the magnetic field. An MR signal is localized in the three-dimensional 

space by the use of three gradient coils, through the processes of slice-selection, frequency 

encoding and phase encoding. Initially, proton spins in the brain are aligned with the static 

magnetic field and precess at the same frequency (known as the Larmor frequency). Next, a 

gradient magnetic field is superimposed along the z-axis, which causes spins to vary their 

precess frequency depending on their location with respect to the z-axis. Then, to select (i.e. 

excite) a specific slice, a radiofrequency pulse is delivered in the range of frequencies that 

the spins within that slice are precessing. Subsequently, the gradient coils along the x- and 

y-axis are superimposed at different times and strengths in order to modulate the precession 

frequency of the spins on the two-dimensional (2D) plane of a slice. Note that the modulation 
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of the gradients along the x- and y-directions is also referred to as frequency and phase 

encoding, respectively. The MR signal that is detected while the x and y gradient coils are 

changing corresponds to the 2D Fourier representation of the slice (i.e. k-space). Therefore, 

in the final step, the inverse Fourier transform of the MR signal is estimated to reconstruct 

the image of the slice. 

The local inhomogeneities in the magnetic field are relevant to brain function as they reflect 

changes in metabolic activity through variations in the concentration of deoxyhemoglobin. 

Hemoglobin is a protein in the blood that transports oxygen from the lungs to the rest of the 

body to facilitate metabolism and carries carbon dioxide from the tissues to the lungs. 

Hemoglobin has different magnetic properties depending on whether it is bound to oxygen 

(oxyhemoglobin) or not (deoxyhemoglobin): oxyhemoglobin is weakly diamagnetic, 

whereas deoxyhemoglobin is paramagnetic (Pauling and Coryell, 1936). Inside the MR 

scanner, deoxyhemoglobin is weakly attracted to the magnetic fields, which induces local 

field distortions (Thulborn et al., 1982).  

The role of hemoglobin in studying brain activity was recognised in the 1990s (Bandettini 

et al., 1992; Ogawa et al., 1990). Cerebral tissue is metabolically expensive, as the brain is 

only about 2% of the body weight but consumes about 20% of total blood flow. Further, the 

brain reserve of energy is very small, relying on continuous perfusion of blood from the 

vascular system to extract oxygen and glucose. Under resting conditions, oxyhemoglobin is 

converted to deoxyhemoglobin at a constant rate within the capillary bed. When there is a 

local increase in neural activity, however, a cascade of events are triggered that increase the 

vascular supply of oxygen-rich blood delivered to the activated region through vasodilatory 

processes that locally increase cerebral blood flow (Iadecola, 2017). For reasons not well 

understood, an overabundance of oxyhemoglobin is delivered to the brain tissue, which 

transiently increases the concentration of oxyhemoglobin (Figure 2-3). The result is a 

decrease in the amount of deoxygenated hemoglobin and a corresponding decrease in the 
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signal loss due to field distortions, leading to an increase in the BOLD signal 1. Thus, fMRI can 

serve as a marker of neural activity via changes in local blood flow. 

A central challenge in fMRI studies is distinguishing these neuronal-related signal 

fluctuations from the effects of motion, physiology and other sources of noise (Caballero-

Gaudes and Reynolds, 2017). Head motion inside the scanner causes the content of an fMRI 

voxel to change and leads to spin-history effects (Friston et al., 1996). Volume realignment 

is regularly applied to account for head displacements and ensure that an fMRI voxel time-

series corresponds to the brain activity of a specific region, however it does not account for 

spin-history effects and perturbations in the static magnetic field (B0) after shimming 

correction. The motion parameters obtained from rigid-body volume realignment are often 

regressed out from fMRI time-series to correct for the remaining motion artifacts, however 

it has been shown that a considerable amount of motion-related variance still remains 

(Power et al., 2014b). Recent approaches such as volume censoring (Lemieux et al., 2007; 

Power et al., 2015) and ICA-AROMA (Pruim et al., 2015) have been identified as efficient 

strategies for motion correction (Parkes et al., 2018).  

Non-neuronal physiological fluctuations are another source of noise that needs to be 

considered in fMRI studies. These fluctuations account for a fraction of the BOLD signal that 

is often comparable to that of neuronal-related activity. Cardiac pulsatility of blood flow in 

the brain generates brain tissue deformations, particularly in regions close to large arteries, 

and cerebrospinal fluid movement (Dagli et al., 1999). Breathing also corrupts the BOLD 

signal as it induces head motion and generates B0 inhomogeneities through lung expansion 

(Power et al., 2015; Raj et al., 2001). The noise introduced by both cardiac pulsation and 

breathing motion is instantaneous and time-locked to the cardiac (~1 Hz) and respiratory 

(~0.3 Hz) cycles, respectively. The effects of cardiac pulsatility and breathing motion in the 

BOLD signal are frequently corrected using RETROICOR (Glover et al., 2000), considering 

that long repetition times (TR) can cause aliasing of these effects and thus low-pass filtering 

of the BOLD data is not an option. Finally, low-frequency cardiac and breathing activity,  such 

 
1 Note that BOLD signal increases are readily observed in capillary vessels on the venous side of the cerebral 
vasculature rather than the arterial side, as venous blood contains both oxygenated and deoxygenated 
hemoglobin and therefore has a dynamic range, whereas arterial blood contains only oxygenated hemoglobin. 
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as variations in heart rate (Shmueli et al., 2007) and breathing patterns (Birn et al., 2006), 

also induces non-neuronal fluctuations in the BOLD signal, presumably through changes in 

blood flow (Tong et al., 2019). Heart rate and respiratory volume are usually extracted from 

concurrent physiological recordings and convolved with physiological response functions to 

account for low-frequency physiological noise (Birn et al., 2008b; Chang et al., 2009). Note 

that other blood-borne effects are also reflected on the BOLD signal, such as variations in 

levels of carbon dioxide (Wise et al., 2004) and changes in arterial blood pressure (Whittaker 

et al., 2019).  

 

 

Figure 2-3. (A) Neural and vascular contents of an fMRI voxel. The left panel shows the dense vascular mesh 

of a monkey’s visual cortex, color-coded by vessel diameter, as well as a Nissl slice from the same area showing 

neural density. The right figure illustrates a cross-sectional representation of a voxel, where white spots 

indicate small vessels. Note that the density of vessels is quite low (<3%), with an average distance between 

capillaries of about 50 µm. Neurons, synapses and glia occupy most of the intervascular space. Reproduced from 

(Logothetis 2008) with permission.  (B) Drawing of a capillary when neurons are at rest (top) and active 

(bottom). Red circles represent oxyhemoglobin (HbO2) and blue circles represent deoxyhemoglobin (Hb). At 

rest, the MRI signal is reduced in the venous side due to distortions of the magnetic field by paramagnetic Hb 

(darker background). When neurons become active blood flow increases, causing a transient increase in HbO2 

that sweeps out Hb and results in a BOLD signal increase (mostly on the venous side, note background change). 

Reproduced from (Glover 2011) with permission. 
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2.1.3 Simultaneous EEG-fMRI 

As mentioned in the previous sections, scalp EEG provides millisecond temporal resolution 

but relatively poor spatial resolution, whereas BOLD fMRI offers excellent spatial resolution 

but poor temporal resolution. Simultaneous acquisition of both modalities provides a great 

opportunity to integrate their complementary characteristics towards improving our 

understanding of brain function (Mulert and Lemieux, 2010). For example, concurrent EEG-

fMRI recordings have proved to be effective in studying epilepsy (Gotman et al., 2006; 

Krakow et al., 1999). However, their multimodal integration comes with many challenges as 

the MRI environment introduces several different types of artifacts in the EEG signals, among 

them the gradient and ballistocardiogram (BCG) artifacts (D. Mantini et al., 2007). The 

gradient artifact is induced by the switching of gradient magnetic fields used for spatial 

encoding of MRI signals, and is several orders of magnitude larger than the EEG signal 

(Figure 2-4a). Yet, its predictability and reproducibility in terms of shape and amplitude 

makes it relatively easy to remove postprocessing. The BCG artifact arises from slight 

electrode motion in the static magnetic field, as a result of the subject’s pulsatile scalp and 

blood movement, and is of comparable or slightly higher magnitude than that of EEG (Figure 

2-4b). Techniques such as average template subtraction are essential to remove these 

artifacts (Allen et al., 1998). Nonetheless, further preprocessing is usually required to 

remove traces of the gradient and BCG artifacts, as well as ocular artifacts (Figure 2-4b), 

commonly achieved using independent component analysis. 

Currently, noninvasive simultaneous scalp EEG–fMRI experiments provide the best 

opportunity to examine the relationship between neural and hemodynamic fluctuations in 

humans because simultaneous, invasive intracranial EEG–fMRI measurements are not 

easily feasible.  



15   •   Chapter 2. Background     

 

 

  

Figure 2-4. (a) Gradient artifacts. (b) BCG artifacts. Note that it is aligned to the cardiac cycle shown in (c) from 

an ECG recording. Reproduced from (Mantini et al. 2007) with permission. 
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2.2 OSCILLATORY ACTIVITY IN THE SENSORIMOTOR CORTEX 

Brain rhythmic activities are widely implicated in cognition and in neural computations. 

Neural oscillations are usually categorized into the following frequency bands: delta (1-4 

Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (14-30 Hz) and gamma (>30 Hz). The reactivity 

of different brain rhythms can be quantified by computing their amplitude envelopes and 

monitoring their changes. Two well-known brain rhythms that arise within the 

sensorimotor cortex are the alpha (sometimes referred as “mu”) and beta rhythms. Beta 

rhythms arising in the precentral gyrus of humans at rest were first described by (Berger, 

1929), (Jasper and Penfield, 1949) subsequently detailed the transient blocking of the beta 

sensorimotor rhythm during voluntary movements, and (Chatrian et al., 1959) 

demonstrated a concurrent blocking of the mu rhythm as well as a transient increase in beta 

activity following movement termination. 

Following these founding studies, the time-locked modulations of 10 Hz and 20 Hz 

oscillatory activity in response to movement has been extensively reproduced and are highly 

reliable (Cheyne, 2013; Espenhahn et al., 2017) (Figure 2-5A). Specifically, during 

preparation and execution of actions, there is a strong decrease in mu and beta activity 

relative to resting levels that begins about 1 s prior to movement onset 
2, known as 

movement-related beta desynchronization (MRBD). Mu power suppression associated with 

the initiation of movement is widespread and bilateral (Alegre et al., 2004), whereas beta 

power attenuation is more restricted over sensorimotor areas (Alegre et al., 2004) and 

strongest contralateral to movement (Jurkiewicz et al., 2006) (Figure 2-5B). The mu power 

attenuation is sustained throughout movement and dissipates shortly after its termination 

(Pfurtscheller and Lopes da Silva, 1999). The decrease in beta oscillations lasts as long as 

there are continuous changes in muscle contraction (Erbil and Ungan, 2007; Omlor et al., 

2011), whereas beta activity displays a relative increase in power during sustained 

contractions (Baker, 2007; Cassim et al., 2000; Kilner et al., 2003, 1999; Spinks et al., 2008; 

van Wijk et al., 2012). After movement, beta oscillations exhibit a period of increased 

amplitude relative to resting levels, known as post-movement beta rebound (PMBR) 

 
2 Note that if the interstimulus intervals are jittered across trials the desynchronization starts at movement 
onset (Alegre et al., 2003; Kilavik et al., 2013).  



17   •   Chapter 2. Background     

(Figure 2-5A). PMBR overshoots around 1-2 seconds after movement cessation and is 

strongest in the hemisphere contralateral to the limb performing the movement (Fry et al., 

2016; Jurkiewicz et al., 2006) (Figure 2-5B). Finally, recent evidence pointed at a direct 

relationship between spontaneous beta power and beta ERD (Heinrichs-Graham et al., 

2018; Heinrichs-Graham and Wilson, 2016); specifically, greater beta suppression during 

movement seems to be associated with more pronounced spontaneous beta oscillations. 

Developmental and aging studies have shown that motor-related beta oscillatory patterns 

change as a function of age. For example, during typical development from child to 

adolescent, the magnitude of MRBD and PMBR increases (Gaetz et al., 2010). Likewise, aging 

has been associated with stronger MRBD and spontaneous beta power (Bardouille et al., 

2019; Heinrichs-Graham and Wilson, 2016; Rossiter et al., 2014), and PMBR seems to 

decrease with age (Bardouille et al., 2019). A recent study across the lifespan provided 

further evidence of the linear increase in the magnitude of MRBD (Heinrichs-Graham et al., 

2018). Taken together, these studies provide substantial evidence that there are major 

neurophysiological changes related to sensorimotor oscillatory activity that occur 

throughout the lifespan. 

Figure 2-5. (A) Time-frequency response of the induced response to a button press at the contralateral 

primary motor cortex. Desynchronization of mu and beta rhythms are evident, as well as the beta rebound after 

movement cessation. (B) Localization of beta desynchronization (upper row) and beta rebound (lower row) of 

a right-hand button press. Adapted from (Bardouille et al. 2019) with permission. 
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2.3 FUNCTIONAL CONNECTIVITY 

Sensory information from the periphery reaches the cerebral cortex via thalamocortical 

connections (except olfaction). Despite acting as a relay station, the thalamus receives ~10 

times more afferents from the cortex than from the periphery, and input from thalamic nuclei 

forms only 1% of all input the cortex receives (Braitenberg, 1974). It therefore seems that 

much of the local cortical activity depends on inputs from other parts of the cortex.  

Growing interest in the integrated activity among cortical brain regions has prompted 

increasing attention towards brain connectivity (Sporns, 2013; Suárez et al., 2020). 

Functional connectivity measures the statistical interdependence between time-series from 

distinct brain regions and is commonly studied using fMRI. Even in the absence of overt 

behaviour, resting-state networks fluctuate together at frequencies between [0.01, 0.1 Hz] 

that strongly overlap with brain regions commonly modulated during behavioral tasks 

(Biswal et al. 1995; Fox & Raichle 2007) (Figure 2-6). Presence of anticorrelations between 

large-scale brain networks have been reported, the most predominant being the default 

mode network routinely exhibiting deactivation during a task and activation during rest, 

and task-related networks exhibiting activation during a task and deactivation during rest 

(Fox et al., 2005).  

To date, functional connectivity has largely been studied under the assumption that it is 

relatively static during a scanning session. However, several studies challenged this 

assumption (Chang and Glover, 2010; Sakoglu et al., 2010), and recently the community 

has developed an increasing interest in the time-varying characteristics of connectivity 

within a single scanning session (Hutchison et al., 2013; Lurie et al., 2019). Existing 

approaches to measure changes in functional connectivity use techniques such as sliding-

window correlations between brain regions or networks (Allen et al., 2014), hidden Markov 

models (Vidaurre et al., 2017), and time-frequency approaches (Chang and Glover, 2010). 

Regardless of how fluctuations in whole-brain functional connectivity are estimated, an 

interesting avenue is to capture the spatiotemporal organization of functional connectivity 

to describe how connectivity patterns change over time (Hansen et al., 2015). 
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Interestingly, whole-brain functional connectivity profiles exhibit high subject specificity 

(Finn et al., 2015; Gratton et al., 2018; Seitzman et al., 2019), have been associated to 

behavioral measures (Finn et al., 2015; Li et al., 2019b; Smith et al., 2015), and seem to be 

promising biomarkers for disease (Brennan et al., 2019; Gratton et al., 2019a, 2019b; Xia et 

al., 2018).  

Figure 2-6. Large-scale brain networks identified by independent component analysis using resting-state fMRI 

data. Reproduced from (Sala-Llonch et al. 2015) with permission. 
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3.1 PREFACE 

The manuscript in this chapter describes an investigation of age-related changes in beta 

oscillations in the context of motor control, and its relationship with motor behaviour. 

Specifically, we examined a cohort of younger and older adults performing sustained and 

dynamic hand contractions. We used magnetoencephalography (MEG) and a paradigm that 

consisted of resting-state periods and unimanual and bimanual handgrips to characterize 

the effects of aging on the modulations of beta oscillations. This chapter provides new 

empirical evidence that older adults exhibit a more pronounced modulation of beta 

oscillations during movement execution compared to their younger counterparts. These 

results shed new light to the age-related neural correlates of motor control, which could be 

possibly used to design new therapeutic interventions using non-invasive brain stimulation 

techniques.   
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3.2 ABSTRACT 

Muscle contractions are associated with a decrease in beta oscillatory activity, known as 

movement-related beta desynchronization (MRBD). Older adults exhibit a MRBD of greater 

amplitude compared to their younger counterparts, even though their beta power remains 

higher both at rest and during muscle contractions. Further, a modulation in MRBD has 

been observed during sustained and dynamic pinch contractions, whereby beta activity 

during periods of steady contraction following a dynamic contraction is elevated. However, 

how the modulation of MRBD is affected by aging has remained an open question. In the 

present work, we investigated the effect of aging on the modulation of beta oscillations and 

their putative link with motor performance. We collected MEG data from younger and older 

adults during a resting-state period and motor handgrip paradigms, which included 

sustained and dynamic contractions, to quantify spontaneous and motor-related beta 

oscillatory activity. Beta power at rest was found to be significantly increased in the motor 

cortex of older adults. During dynamic hand contractions, MRBD was more pronounced in 

older participants in frontal, premotor and motor brain regions. These brain areas also 

exhibited age-related decreases in cortical thickness; however, the magnitude of MRBD and 

cortical thickness were not found to be associated after controlling for age. During 

sustained hand contractions, MRBD exhibited a decrease in magnitude compared to 

dynamic contraction periods in both groups and did not show age-related differences. This 

suggests that the amplitude change in MRBD between dynamic and sustained contractions 

is larger in older compared to younger adults. We further probed for a relationship between 

beta oscillations and motor behaviour and found that greater MRBD in primary motor 

cortices was related to degraded motor performance beyond age, but our results suggested 

that age-related differences in beta oscillations were not predictive of motor performance. 

 

  



23   •   Chapter 3   

3.3 INTRODUCTION 

Aging is a multifaceted process, which involves alterations in brain structure and 

biochemistry. It is associated with reduced grey matter volume, cortical thinning, decreases 

of white matter myelination and neurotransmitter depletion (Minati et al., 2007). Motor 

functions tend to decline in old age in a broad array of motor tasks, manifesting in decline 

of fine motor control and coordination, slowing of movements, and impairments related to 

gait and balance, which in turn affect quality of life (Maes et al., 2017; Rosso et al., 2013; 

Seidler et al., 2010). Most common motor tasks require the combination of different types 

of muscle contraction, in which switches from static to dynamic force production occur 

frequently. However, age-related effects in brain dynamics during complex contraction 

sequences remain largely unknown. 

Understanding how aging affects motor-related neural oscillations is fundamental to better 

understand the mechanisms of motor control in humans. A robust brain response induced 

by motor tasks is the modulation of beta sensorimotor rhythms. Beta oscillations are 

stronger during rest and are abolished during preparation and execution of motor tasks. 

This strong decrease in beta power relative to resting levels is known as movement-related 

beta desynchronization (MRBD) (Cheyne, 2013), and lasts as long as there is a muscle 

contraction (Erbil and Ungan, 2007; van Wijk et al., 2012). Several studies have reported 

age-related changes in beta oscillations during movement, such as a greater MRBD in both 

motor and premotor areas during right-hand finger extensions (Sailer et al., 2000), 

sequences of finger movements (Heinrichs-Graham et al., 2018; Heinrichs-Graham and 

Wilson, 2016), cued button presses (Bardouille et al., 2019), bimanual button presses in a 

go/no-go task (Schmiedt-Fehr et al., 2016), unimanual hand grips (Rossiter et al., 2014), as 

well as during a right-hand precision grip force modulation task (Hübner et al., 2018a). 

Interestingly, despite displaying increased MRBD, older adults exhibit higher absolute beta 

power during muscle contractions compared to younger adults (Heinrichs-Graham and 

Wilson, 2016). This is mostly due to the fact that older adults exhibit higher resting-state 

beta activity compared to their younger counterparts (Gómez et al., 2013; Heinrichs-

Graham et al., 2018; Heinrichs-Graham and Wilson, 2016; Hübner et al., 2018a; Koyama et 

al., 1997; Veldhuizen et al., 1993). Pharmacological manipulations of GABA have shown that 
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increased levels of intracortical GABAergic inhibition lead to higher resting beta power and 

accentuated MRBD during dynamic contractions (Hall et al., 2011, 2010; Jensen et al., 2005; 

Muthukumaraswamy et al., 2013). These observations are closely related to the ones 

observed in aging, which seems to indicate that age-related changes are associated with 

changes in GABAergic inhibition. Following a motor task, beta oscillations exhibit increased 

amplitude relative to resting levels, known as post-movement beta rebound (PMBR). PMBR 

overshoots around 1-2 seconds after the cessation of a motor task and is stronger over the 

hemisphere contralateral to the moving limb (Fry et al., 2016; Jurkiewicz et al., 2006). 

Reduced PMBR has been observed in older adults (Bardouille et al., 2019; L. Liu et al., 

2017). This suggests that altered brain structures and biochemistry due to aging have 

consequences on the observed motor-related neural activation patterns. 

Steady muscle contractions are maintained by a continuous drive from the motor cortex to 

spinal motoneurons (Scott, 2012), during which there is a relative increase in beta power 

compared to dynamic contractions (Baker, 2007; Cassim et al., 2000; Espenhahn et al., 

2017; Kilner et al., 2003, 1999; Schoffelen et al., 2008; Spinks et al., 2008; van Wijk et al., 

2012). The functional role of this elevation in beta synchrony remains unclear; however, 

previous studies have suggested that it reflects the integration of afferent information to 

promote a stable motor output (Androulidakis et al., 2007, 2006; Gilbertson et al., 2005; 

Omlor et al., 2007). A study from Rossiter and colleagues (Rossiter et al., 2014) examined 

unimanual sustained handgrips in healthy aging, and found an increased beta suppression 

with age in the ipsilateral but not in the contralateral primary motor cortex (M1). This may 

suggest a heterogeneous effect of the aging process in different brain regions. However, the 

modulation of beta activity during sustained muscle contractions has not yet been formally 

examined in the context of healthy aging. 

The aim of the present study was to examine the modulation of beta oscillations during 

sustained and dynamic contractions in healthy aging. We used a motor paradigm that 

included periods of steady handgrips and force modulation, both uni- and bimanual. 

Exploiting the high spatiotemporal resolution of MEG (Baillet, 2017), we investigated 

whole-brain age-related changes in spectral dynamics beyond the M1s. We also probed the 

association between age-induced differences in beta oscillations and motor performance. 
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Based on previous results, we expected greater resting beta power in older adults in motor 

areas (Heinrichs-Graham and Wilson, 2016; Rossiter et al., 2014) and hypothesized that 

age-related increases in resting beta activity would be present beyond the motor cortex 

since aging is associated with structural alterations in multiple brain regions. We further 

anticipated that older adults would exhibit increased MRBD during dynamic contractions 

(Heinrichs-Graham and Wilson, 2016; Hübner et al., 2018a; Sailer et al., 2000; Schmiedt-

Fehr et al., 2016). In turn, this would indicate that greater beta desynchronization is 

required to produce muscle contractions, compensating for elevated resting-state beta 

power levels in the older population. Finally, we sought to investigate whether the increase 

in beta synchrony during sustained handgrips would exhibit age-specific differences. 
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3.4 MATERIALS AND METHODS 

3.4.1 Participants 

We studied 12 younger (age range 19-28 years) and 12 older (age range 60-74 years) 

healthy individuals recruited via advertisements. All participants were right-handed 

according to the Edinburgh Handedness Inventory (Oldfield, 1971). Subject characteristics 

are detailed in Table 3-1. Recruitment criteria included young subjects between 18-30 

years and older adults above 60 years, and excluded subjects with a personal history of 

neurological and psychiatric disorder, as well as MEG exclusion criteria related to presence 

of ferromagnetic material (e.g. dental braces, metal implants and/or crowns). The study 

was approved by the McGill University Ethical Advisory Committee. All participants signed 

a written informed consent and were compensated for their participation. Measurements 

were carried out using the MEG facility at the McConnell Brain Imaging Centre (BIC) of the 

Montreal Neurological Institute (MNI), McGill University. 

At the beginning of the session, participants completed the following behavioral assessment 

tests: Nine Hole Peg Test (9HPT) (Mathiowetz et al., 1985b), Box and Blocks Test (BBT) 

(Mathiowetz et al., 1985a), Purdue Pegboard Test (PPT) (Lindstrom-Hazel and VanderVlies 

Veenstra, 2015), and Hand Grip Strength (HGS) (Bohannon et al., 2006). All tests were 

performed using both hands to cover a range of upper limb motor abilities, from manual 

dexterity to strength. The 9HPT was measured in seconds, reflecting how quickly each 

participant placed and removed nine pegs into the holes of a board. The BBT was quantified 

as the number of blocks moved from one compartment of a box to another of equal size 

within 60 seconds. The HGS was measured in kilograms. The PPT was quantified as the 

number of pins placed into holes of a board within 30 seconds (dominant, non-dominant 

and both hands) or the number of assembled pins, collars and washers within 60 seconds 

(assembly test with both hands). Of note, PPT was not collected for two older subjects. All 

participants were screened for mental status by means of the mini mental state 

examination (MMSE) (Folstein et al., 1975). Wilcoxon rank-sum tests were used to 

determine whether behavioral assessments were significantly different between younger 

and older adults. 
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3.4.2 Experimental paradigm 

The protocol carried out inside the MEG scanner consisted of two motor tasks alternated 

by three 5-min resting-state periods (Figure 3-1a). During the resting-state periods, 

subjects were instructed to stare at a white cross displayed on a screen in front of them. 

They were also instructed not to think of anything in particular and not to manipulate the 

hand grippers. After the 1st rest period, the maximum voluntary contraction (MVC) was 

obtained for each participant, using the same hand grippers later employed for the motor 

tasks. The first motor task consisted of a unimanual isometric right handgrip, during which 

the subjects had to apply force to track a ramp target as accurately as possible. At the onset 

of the trial, an orange circle appeared on the screen and the subjects had 2 seconds to 

increase their force to reach a white target block at 15% of their MVC. This force was held 

for 3 seconds. Subsequently, participants tracked a linear increase of the force to reach 

30% of their MVC over a 3-second period, during which they had to maintain the circle 

inside the white target block, followed by a 3-second hold at this force (Figure 3-1b). A 

single trial lasted 11 seconds and was repeated 50 times for a total task duration of about 

13 minutes. The second motor task consisted of bimanual steady isometric handgrips. At 

  Younger 

(n=12) 

Older 

(n=12) 
p value 

Age  24.2 ± 2.8 67.7 ± 3.7  
Sex 4 F / 8 M 3 F / 9 M  
Education 16.7 ± 1.9 15.3 ± 2.8 > 0.1 

MMSE 29.2 ± 1.0 28.7 ± 1.3 > 0.1 

9HPT (sec) 
Right Hand 17.2 ± 1.8 20.5 ± 2.1 < 0.0005 

Left Hand 19.4 ± 2.4 22.7 ± 3.4 < 0.01 

BBT (blocks) 
Right Hand 68.3 ± 5.6 57.7 ± 3.9 < 0.001 

Left Hand 67.1 ± 6.1 57.4 ± 4.6 < 0.001 

HGS (kg) 
Right Hand 48.4 ± 14.6 39.4 ± 9.0 > 0.1 

Left Hand 39.2 ± 9.9 35.3 ± 7.7 > 0.1 

PPT (pins) 

Right Hand 16.9 ± 1.8 13.3 ± 1.6 < 0.001 

Left Hand 15.0 ± 1.5 12.7 ± 1.8 < 0.01 

Both Hands 12.8 ± 2.0 10.1 ± 1.1 < 0.005 

Assembly 42.8 ± 5.1 28.2 ± 5.7 < 0.0001 
 

F = female, M = male, MMSE = mini mental state examination, 9HPT = nine hole peg test, BBT = box and blocks test, 

HGS = hand grip strength, PPT = Purdue pegboard test. 

 

Table 3-1. Subject characteristics and behavioral scores: mean ± SD 
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the onset of the trial, two circles (blue and red) appeared on the screen and the subjects 

had 2 seconds to increase the force produced by both hands to 15% of their MVC. This 

force was sustained for 6 seconds (Figure 3-1c). A single trial lasted 8 seconds and was 

repeated 50 times for a total task duration of about 10 minutes. Visual feedback was 

provided throughout the experiment. For both tasks, the inter-trial interval was jittered 

between 3-5 seconds, during which subjects stared at a white cross. All subjects practised 

both motor tasks prior to the MEG acquisition to familiarise themselves with the 

experiment. Note that the order of the unimanual and bimanual conditions was not 

counter-balanced. 

Figure 3-1. (a) Illustration of the protocol. Participants carried out two motor tasks inside the MEG scanner, 

alternated by three periods of rest, during which subjects fixated on a crosshair for 5 min. After the first rest 

period, the maximum voluntary contraction (MVC) was obtained for each participant. (b) Unimanual task. 

Participants fixated on a crosshair for a few seconds, for a jittered period lasting between 3 to 5 s. This was 

followed by the appearance of an orange circle on the screen, where participants had 2 s to apply force to 

reach 15% of their MVC. A steady grip was then maintained for 3 s, which was followed by a guided ramp 

period where participants had to apply force to reach 30% of their MVC and sustain this grip strength for 

another 3 s. (c) Bimanual task. Participants fixated on a crosshair for a jittered period lasting between 3 to 

5 s. Subsequently, two circles (blue and red) appeared on the screen. Participants had 2 s to apply force to 

reach 15% of their MVC, which they sustained for 6 s. 
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3.4.3 Data acquisition and preprocessing 

3.4.3.1 Hand grippers: Grip Force Fiber Optic Response Pad 

A pair of non-magnetic, non-electronic hand grippers made from plastic to prevent noise 

in the MEG environment were used (Current Designs Inc, USA). The hand grippers 

consisted of a machined black enclosure with a protruding force bar that moved in when 

gripped to produce a linear force measurement output based on the pressure applied. We 

used a spring with a range of 500N. The dimensions of the force grip were 17.8 × 3.2 cm, 

with a force bar of 12.7 × 1.3 cm placed 2.5 cm outside the main enclosure. The maximum 

travel of this bar was 0.127 cm. The grippers were connected to a 932 interface through a 

3-m long fiber pigtailed connector, which received the optical signals from the hand 

grippers in the MEG suite, and converted them into electrical signals that were transferred 

to a computer. 

3.4.3.2 Neuroimaging data acquisition and preprocessing 

MEG recordings were acquired with a 275-channel CTF whole-head system. Participants 

changed into non-magnetic clothes and performed the experiment in a seated position 

while their arms rested on the armchairs. Bipolar electrocardiogram (ECG) and vertical 

bipolar electro-oculogram (EOG) were acquired to correct for cardiac artifacts and eye 

movements. All signals were amplified and digitized at a sampling rate of 2400 Hz, and 

MEG files were saved after performing third order gradient correction. An empty-room 

noise recording was collected prior to the acquisition of each session to capture 

environmental noise conditions and was used in subsequent offline data analyses. The 3-D 

digitization of the head shape was done with a Polhemus Fastrak device, using around 100 

head points distributed uniformly. Individual T1-weighted MRI images were acquired on a 

3T MRI scanner (Siemens Prisma; TR=2300 ms; TE=2.32 ms; field of view=240 mm; voxel 

size=0.9×0.9×0.9 mm). The position of the head localization coils (nasion, left and right pre-

auricular) and the head-surface points were used as anatomical references for 

coregistration between the MEG and MRI coordinate systems. 

Offline data were processed using the open-source toolbox Brainstorm (Tadel et al., 2011). 

Notch filters were applied to remove power line artifacts around 60 Hz and harmonics. 
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MEG data were band-passed from 1 to 150 Hz. Cardiac and eye movement artifacts were 

detected using the ECG and EOG signals and corrected using signal-space projection (SSP). 

Artifacts due to external magnetic fields were removed visually using independent 

component analysis (ICA). Segments that presented motion artifacts or where subjects 

moved more than 5mm between head position measurements were discarded from the 

analysis. MEG signals were down-sampled to a 120-Hz sampling rate. 

Resting-state periods. The 5-min recordings were segmented in epochs of 5 s. Epochs that 

had previously been found to be contaminated by motion artifacts were discarded. The 

average number of epochs after artifact rejection was 58.6±1.2/57.6±4.6 for younger/older 

adults (Resting-state 1), 58.3±2.4/56±5.4 for younger/older adults (Resting-state 2), and 

56.3±9.3/57.4±2.2 for younger/older adults (Resting-state 3). The difference in the number 

of epochs between groups was not significant across any of the resting-state periods, as 

assessed using the Wilcoxon rank-sum test (Resting-state 1: p=0.473; Resting-state 2: 

p=0.185; Resting-state 3: p=0.679). 

Motor tasks. Data from the unimanual task were epoched from -2.5 to +14 s, and data from 

the bimanual task were epoched from -2.5 to +11 s. Time 0 indicates onset of the visual 

cue for analysis. The average number of trials after artifact rejection was 

40.4±10.4/40.3±9.1 for younger/older adults (Unimanual task), and 44.3±8.4/41.1±8.8 for 

younger/older adults (Bimanual task). The difference in the number of trials between 

groups was not significant for any of the tasks, as assessed using the Wilcoxon rank-sum 

test (Unimanual task: p=0.954; Bimanual task: p=0.277). 
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3.4.4 Data analysis 

3.4.4.1 Behavioral analysis 

The force exerted by the subjects was recorded using the calibrated hand grippers. The x 

and y screen positions of the applied force were also recorded for offline analysis. Task 

accuracy was quantified as the root mean squared error between the position on the screen 

and the target profile (defined as the middle of the target ramp), averaged over time and 

trials. Trials that exceeded 3 standard deviations were considered outliers and therefore 

not used in the computation of task accuracy. This was the case for two trials of a younger 

subject, which were also manually rejected in the MEG data. 

3.4.4.2 MRI structural analysis 

Cortical reconstruction and volumetric segmentation were performed with the FreeSurfer 

image analysis suite version 5.3.0 (http://surfer.nmr.mgh.harvard.edu/). The technical 

details of these procedures are described in prior publications (Dale et al., 1999; Dale and 

Sereno, 1993; Fischl et al., 2004, 2002, 2001, 1999a, 1999b; Fischl and Dale, 2000; Han et 

al., 2006; Jovicich et al., 2006; Reuter et al., 2012, 2010; Ségonne et al., 2004). Procedures 

for the measurement of cortical thickness have been validated against histological analysis 

(Rosas et al., 2002) and manual measurements (Kuperberg et al., 2010; Salat et al., 2004). 

Thickness measurements were mapped on the inflated surface of each participant's 

reconstructed brain and projected to the ICBM152 template using Brainstorm (Tadel et al., 

2011). Maps were subsequently smoothed using a circularly symmetric Gaussian kernel 

across the surface with a full-width-half-maximum (FWHM) of 5 mm. Finally, cortical maps 

were compared between groups using non-parametric permutation tests combined with 

independent Student’s t-tests of unequal variance. The null distribution was estimated with 

10,000 permutations and results corrected for multiple comparisons using the false 

discovery rate (FDR) (number of signals 15,000). The structural analysis was done to 

identify the brain areas that presented differences in cortical thickness between groups. 

Particularly, we wanted to assess whether age-related differences in cortical thickness 

could have accounted for the differences observed in MRBD, reported in a previous study 

within the primary motor cortex (Provencher et al., 2016). 
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3.4.4.3 MEG source imaging 

Lead fields were obtained using an overlapping spheres head model, which computes 

locally-fitted spheres under each sensor (Huang et al., 1999). Source reconstruction was 

performed using an extension of the linearly constrained minimum variance (LCMV) 

beamformer (Van Veen et al., 1997). A set of 15,000 elementary current dipoles distributed 

over the cortical surface was used, whereby the dipoles were assumed to be perpendicular 

to the cortical envelope. The empty room recording of a 2-min duration was used to 

estimate the noise covariance matrix. The data covariance matrix was estimated directly 

from the MEG recordings. The LCVM regularization parameter applied to the data 

covariance matrix was set as its median eigenvalue. 

Resting-state periods. Normalized source power was computed using Morlet wavelets 

averaged across the 5 s segments (time resolution=3 s, central frequency=1 Hz) over the 

entire brain volume for the following frequency bands: alpha (8-12 Hz) and beta (16-28 

Hz). The resulting source maps were smoothed with a 5 mm FWHM circularly symmetric 

Gaussian kernel and projected onto a standard space (ICBM152 template). Grand-averaged 

surfaces were computed across subjects for each group and frequency band. 

Motor tasks. Single trial source waveforms were extracted per subject and decomposed to 

the time-frequency (TF) domain using Morlet wavelets (time resolution=3 s, central 

frequency=1 Hz). The evoked response was removed from each trial before computing the 

TF decomposition, a step that has been recommended for the evaluation of the TF 

decomposition of neurophysiological signals (Tadel et al., 2011). An average whole-brain 

TF map across trials was computed and subsequently averaged within the following 

frequency bands related to sensorimotor rhythms: alpha (8-12 Hz) and beta (16-28 Hz). 

We selected the 16-28 Hz frequency range to avoid including any power from the 

contiguous alpha and gamma bands. For both bands, relative power (𝑅𝑃%) was calculated 

as follows: 𝑹𝑷% =
𝐏(𝒕) − 𝐁

𝐁
× 𝟏𝟎𝟎% (Pfurtscheller and Lopes da Silva, 1999), where P(𝑡) is 

the absolute power at time t and B is the baseline power. B was defined as the mean power 

obtained from the 1st resting-state period (see section 3.4.4.7 for the effects of using 

different baselines). The 𝑅𝑃% related to the beta band is denoted as MRBD and PMBR 
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during and after a muscle contraction, respectively. Subsequently, the 𝑅𝑃% was averaged 

across several time windows for each subject. For the unimanual task, 𝑅𝑃% was averaged 

within three 3-sec time windows: sustained contraction at 15% MVC (2 to 5 s), guided 

dynamic contraction from 15% MVC to 30% MVC (5 to 8 s), and sustained contraction at 

30% MVC (8 to 11 s). For the bimanual task, the behavioral analysis showed that task 

accuracy did not reach the desired thresholds until around 4-5s after the onset of the trial, 

which suggests that subjects were not performing a sustained contraction in the first few 

seconds of the trial (Supp. Fig. 3-1b). Hence, 𝑅𝑃% for the bimanual task was averaged 

within two 3-sec time windows: unguided dynamic contraction (2 to 5 s), and sustained 

contraction at 15% MVC (5 to 8 s). Cortical surfaces were obtained per participant, 

smoothed with a 5 mm FWHM circularly symmetric Gaussian kernel, and projected onto a 

standard space (ICBM152 template). Grand-averaged surfaces of each task time window 

were computed across subjects for each group and frequency band.  

Statistics. For both rest and task, permutation testing was used to test for group differences 

across the whole brain. The test statistic used was the independent Student’s t-test of 

unequal variance. For each comparison, 10,000 permutations were computed to build the 

null distribution. Significance testing was performed with a threshold of 5% using FDR 

correction for multiple comparisons (number of signals 15,000). 

3.4.4.4 Modulation of beta oscillation 

We were interested in examining whether the MRBD modulation observed during 

sustained and dynamic contractions in young subjects was altered in older subjects. To this 

end, regions of interest (ROIs) were selected for subsequent analysis. The peak MRBD ROIs 

were identified as the vertices showing the strongest MRBD (top 5%) within the motor 

cortex. Since dynamic contractions elicit increased MRBD compared to sustained 

contractions, the windows containing dynamic contractions (Unimanual: 5 to 8 s; Bimanual: 

2 to 5 s) were grand-averaged across all subjects and used to define the ROIs related to 

MRBD. Supp. Fig. 3-2 displays the peak MRBD ROIs, located within left and right M1, and 

Supp. Table 3-1 provides the coordinates of the peak vertex of each MRBD ROI in MNI 

space. ROI power time-courses were then extracted and averaged across vertices. An ROI 

was also created from the whole-brain analysis that combined the brain regions identified 
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to exhibit stronger MRBD in older adults for both unimanual and bimanual tasks, 

henceforth called “ageMRBD”. The three ROIs are depicted in the first row of Fig. 5.  

The following Modulation metrics were used to quantify the depth of variations to which 

subjects modulated their beta power:  

𝑴𝒐𝒅𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝑼𝒏𝒊𝒎𝒂𝒏𝒖𝒂𝒍 = 𝑎𝑏𝑠(𝛽[2,5] − 𝛽[5,8]) + 𝑎𝑏𝑠(𝛽[5,8] − 𝛽[8,11]) 

𝑴𝒐𝒅𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝑩𝒊𝒎𝒂𝒏𝒖𝒂𝒍 = 𝑎𝑏𝑠(𝛽[2,5] − 𝛽[5,8]) 

where 𝛽[𝑡1,𝑡2] is the averaged beta activity between time-points 𝑡1 and 𝑡2. The beta activity 

used to compute 𝛽[𝑡1,𝑡2] was the absolute beta power instead of MRBD and was extracted 

for all three ROIs (left peak MRBD, right peak MRBD, ageMRBD). In this fashion, we can 

quantify a relative measure of how much beta oscillations were modulated without 

confounds related to the resting beta power. 

Statistics. The Modulation metrics were used to test for age-related differences. The data 

was transformed using the Box-Cox transformation (Box and Cox, 1964) to ensure that the 

assumption of normality was not violated. We conducted two separate mixed-model 

ANOVA’s for each task, in which “brain region” (left peak MRBD, right peak MRBD, 

ageMRBD) was the within-subjects factor, and “age” (younger, older) was the between-

subjects factor. The dependent variable was the modulation metric. A Greenhouse–Geisser 

correction was applied whenever Mauchly’s test indicated a lack of sphericity. Post hoc 

Bonferroni-adjusted t-tests were performed whenever a main effect was detected, with an 

α-level of 0.05. 

3.4.4.5 PMBR analysis 

We were interested in examining whether PMBR exhibited differences between tasks, 

hemispheres and/or groups. PMBR is a brain response measure strictly localized in the 

motor cortex after a motor task, thus we did not perform a whole-brain analysis but focused 

on ROIs in the motor cortex. Windows starting 1.5 second after each trial and lasting 1 

second (Unimanual: 12.5 to 13.5 s; Bimanual: 9.5 to 10.5 s), were grand-averaged across 

all subjects and used to define the peak ROIs related to PMBR (top 5%). PMBR was localized 

more anterior than MRBD in both hemispheres (Supp. Fig. 3-2), consistent with previous 
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studies (Fry et al., 2016; Jurkiewicz et al., 2006; Salmelin et al., 1995; Stancák and 

Pfurtscheller, 1995). Supp. Table 3-1 provides the coordinates of the peak vertex of each 

PMBR ROI in MNI space. ROI power time-courses were then extracted and averaged across 

vertices. 

Statistics. PMBR ROI time-courses were averaged within the previously defined 1-sec 

window for each task. These averaged PMBR values were used to test for power differences. 

The data was transformed using the Box-Cox transformation (Box and Cox, 1964) to ensure 

that the assumption of normality was not violated. Note that the data had to be translated 

prior to applying the transformation since the Box-Cox transformation cannot handle 

negative values. We conducted two separate mixed-model ANOVA’s for each task, in which 

hemisphere (left, right) was the within-subjects factor, and age (younger, older) was the 

between-subjects factor. The dependent variable was the averaged PMBR. Post hoc 

Bonferroni-adjusted t-tests were performed whenever a main effect was detected, with an 

α-level of 0.05.  

3.4.4.6 Association between beta oscillations and motor performance 

To examine the relationship between beta oscillations and motor performance, we carried 

out separate linear regression analyses, using task accuracy and behavioral scores as the 

dependent variable respectively. Linear regression was applied separately for each task 

(unimanual and bimanual); hence in total 4 regressions were performed. The explanatory 

variables included in all regressions were: 

1) Age 

2) ageMRBD ROI: Modulation metric, averaged MRBD (Unimanual: 5 to 8 s, Bimanual: 

2 to 5 s), averaged resting-state beta power. 

3) Peak MRBD ROIs (top 5%): Modulation metric, averaged MRBD (Unimanual: 5 to 

8 s, Bimanual: 2 to 5 s), averaged resting-state beta power. 

4) Peak PMBR ROIs (top 5%): Averaged PMBR (Unimanual: 12.5 to 13.5 s, Bimanual: 

9.5 to 10.5 s). 

Neural features were extracted from both hemispheres separately. Thus, in total 12 and 8 

features were used for the unimanual and bimanual tasks respectively. Principal 
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component analysis (PCA) was used to summarize the behavioral scores that involved 

unimanual (9HPT, BBT, PPT (Right hand)) and bimanual movements (PPT (Both hands and 

assembly)). The first PC was used as the dependent variable in the regression. To 

investigate whether any individual feature was significantly correlated to motor 

performance, we first divided the observations into two sets: training (90%) and testing 

(10%). We then permuted the labels, performed linear regression in the training set, used 

the linear model to predict the motor performance in the testing set, and calculated the 

root-mean-squared-error (RMSE) for the testing set. We carried this out 5,000 times to 

build the null distribution of the testing RMSE. During the second stage of analysis, we 

repeated the same procedure using the correct labels, and thus obtained the observed 

testing RMSE. This cross-validation analysis was done for each of the 4 regressions. 

3.4.4.7 Effect of baseline on relative power calculation 

An important step when examining motor-related oscillatory activity is to express it as a 

percentage of power change relative to baseline levels. This baseline period is usually 

defined between 0.5 to 3 s prior to task onset. However, the duration of the PMBR depends 

on the motor task characteristics and can last several seconds (Fry et al., 2016), which may 

result in contamination of the baseline if the inter-trial period is not long enough. Careful 

selection of the baseline is thus a crucial step. Further, it has been shown that older adults 

exhibit higher absolute beta power during muscle contractions compared to their younger 

counterparts, despite a larger decrease in beta power relative to baseline (Heinrichs-

Graham et al., 2018; Heinrichs-Graham and Wilson, 2016). Therefore, it has been suggested 

that, to obtain a more holistic understanding of the age-related power changes during a 

motor task, both absolute and baseline-corrected power should be examined (Hübner et 

al., 2018a). To this end, we examined three scenarios: 1) Absolute beta power, 2) 𝑅𝑃% with 

respect to an inter-trial baseline period (-1 to 0 s), 3) 𝑅𝑃% with respect to the 1st resting-

state period. The latter is the method used for all the subsequent analyses presented in this 

study. 
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3.5 RESULTS 

3.5.1 Behavioral analysis 

Behavioral scores are summarized in Table 1. Finger dexterity measured with 9HPT/PPT 

and unilateral gross manual dexterity measured with BBT were significantly worse in the 

older group for both hands. Bimanual finger dexterity coordination measured with PPT 

was also significantly inferior in older adults. 

Regarding the motor tasks carried out inside the MEG scanner, all participants successfully 

completed both tasks. Differences in task accuracy during the tasks were not significant 

between age groups (Unimanual task: t22 = -0.32, p = 0.752; Bimanual task: t22 = 1.54, p = 

0.138). 

3.5.2 MRI structural analysis 

No brain volume differences were found between groups (p = 0.16) (Supp. Fig. 3-3a). 

Cortical thickness was decreased in the older group mainly in frontal and temporal areas 

(FDR-corrected, p <0.01), as shown in Supp. Fig. 3-3b. 

 

 

Figure 3-2. Beta power during the 1st resting-state. Left and middle panels: grand-averaged images across 

younger and older participants, respectively. Right panel: differences in oscillatory power at rest between 

groups (FDR-corrected, p<0.005). Older adults exhibited greater spontaneous beta power compared to 

younger adults. 
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3.5.3 Resting-state oscillatory power 

Spontaneous beta power was higher in frontal and parietal areas, particularly in older 

adults (Figure 3-2, left and middle panels), and showed a significant age effect. Older adults 

exhibited higher beta power compared to their younger counterparts (Figure 3-2, right 

panel). This effect of age on beta power was more pronounced in motor areas, and extended 

to frontal, parietal and temporal brain areas. These age-related differences in spontaneous 

beta power were present in all three resting-state recordings. Spontaneous alpha power 

was greater in visual areas, in both younger and older adults (Supp. Fig. 3-4). However, no 

significant age effects were detected in the alpha band. 

 

3.5.4 Whole-brain MRBD analysis 

Unimanual task. Grand-averaged surfaces displaying MRBD are shown in Figure 3-3b 

(upper panel). We found significant differences in MRBD magnitude underlying dynamic 

force production between the two age groups (Figure 3-3b, bottom panel): older adults 

exhibited increased (i.e. more negative) MRBD during the guided dynamic contraction (5 

to 8 s). No significant differences between groups were found during sustained 

contractions.  

Bimanual task. Grand-averaged surfaces showing MRBD are shown in Figure 3-4b (upper 

panel). Similarly to the unimanual task, we found significant differences in MRBD 

magnitude between the two age groups only at the beginning of the trial (2 to 5s) (Figure 

3-4b, bottom panel), during which older adults exhibited greater (i.e. more negative) 

MRBD. This specific time interval corresponds to the period when subjects had not yet 

accomplished a sustained grip and were thus still performing a dynamic contraction (Supp. 

Fig. 3-1b). The peak location of MRBD (denoted in white in Figure 3-4b, top row) did not 

exhibit significant age-related differences. 

Results in the alpha frequency band for the unimanual and bimanual tasks are shown in 

Supp. Fig. 3-5 and Supp. Fig. 3-6, respectively. Alpha desynchronization did not exhibit 

significant differences between groups. 
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Figure 3-3. Unimanual task: (a) Illustration of the different stages of the task. Grey shaded areas indicate 

the period displayed in the images on the same column. (b) Upper panel: grand-averaged images of MRBD 

across each group. MRBD ROIs are delineated in white. Lower panel: differences in MRBD between groups 

(FDR-corrected, p<0.05). During the guided dynamic contraction period, older adults exhibited a significantly 

greater and more widespread MRBD compared to younger adults. During sustained contraction periods, no 

significant differences in MRBD were found between groups. 
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Figure 3-4. Bimanual task: (a) Illustration of the two 3-s subperiods of the task (grey shaded areas). (b) 

Upper panel: grand-averaged images of MRBD across each group. MRBD ROIs are delineated in white. Lower 

panel: differences in MRBD between groups (FDR-corrected, p<0.05). During the first 3-sec period, older 

adults exhibited a significantly stronger and more widespread MRBD compared to younger adults. During 

the second 3-sec period, during which subjects achieved the bimanual sustained contraction, no significant 

differences were found between groups. 
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3.5.5 Modulation of beta oscillations 

To investigate more precisely the modulation of beta oscillations between different brain 

regions in younger and older adults, we extracted a power modulation metric from all ROIs 

(depicted in the first row of Figure 3-5) for both task paradigms.  

Unimanual task. The unimanual task induced modulations in beta power in several brain 

regions (Figure 3-5). The modulations can be observed both in the relative (with respect 

to resting-state power) and absolute power subfigures. Results of the mixed ANOVA (Table 

3-2) revealed a significant main effect of “Age”, which suggests an overall difference in the 

amplitude of beta power modulation between groups. Post-hoc testing revealed a 

significantly larger modulation in older compared to younger adults (t70 = -3.43, p = 0.001). 

We also observed a significant main effect of “Brain Region”, which suggests that there was 

an overall difference in beta power modulation between brain regions. Post-hoc testing of 

the “Brain Region” effect showed a significantly greater modulation in the left and right 

ROIs (peak MRBD, located at the primary motor cortices) compared to the ageMRBD ROI 

(left peak MRBD vs. ageMRBD: t23 = -2.79, p = 0.010; left peak MRBD vs. ageMRBD: t23 = -

3.68, p = 0.001), but no significant difference between left and right ROIs (t23 = -0.02, p = 

0.983). Finally, there was no significant interaction between the factors. The statistical 

analysis quantified through ANOVA can be evaluated qualitatively in Figure 3-5.  

Bimanual task. The bimanual task induced weaker modulations in MRBD compared to 

unimanual muscle contractions (Figure 3-5). Nonetheless, the mixed ANOVA (Table 3-2) 

revealed the same significant main effects as in the unimanual task. A significant main effect 

of “Age” was observed, and post-hoc testing again showed significantly greater modulation 

in older adults (t70 = -3.56, p <0.001). We also detected a significant main effect of “Brain 

region”, and post-hoc testing revealed, as before, a significantly larger modulation in the 

left and right ROIs (peak MRBD, located at the primary motor cortices) compared to the 

ageMRBD ROI (left peak MRBD vs. ageMRBD: t23 = -2.65, p = 0.014; left peak MRBD vs. 

ageMRBD: t23 = -2.69, p = 0.013), but no significant difference between left and right ROIs 

(t23 = 1.52, p = 0.142). Finally, there was no significant interaction between the factors. The 

statistical analysis quantified through ANOVA is illustrated qualitatively in Figure 3-5. 
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3.5.6 PMBR analysis 

We examined possible differences in PMBR between younger and older adults for both 

tasks. The ROIs used are depicted in Supp. Fig. 3-2. 

Unimanual task. We found no significant main effect of hemisphere or age; however, there 

was a significant age-by-hemisphere interaction (Table 3-3). This interaction indicates that 

the effect of hemisphere on PMBR was different in younger compared to older adults. To 

investigate this interaction, 4 post-hoc tests were conducted using paired and independent 

t-tests as appropriate, and a Bonferroni correction was applied (significance at 

0.05/4=0.0125). Paired t-tests between hemispheres did not reveal any significant 

difference (Younger: t11 = 2.47, p = 0.031, Older: t11 = -1.35, p = 0.204). Independent t-tests 

yielded a marginally significant greater PMBR in the right hemisphere (ipsilateral) for the 

older group compared to the younger group (t22 = -2.66, p = 0.014), whereas no significant 

difference was found in the left hemisphere (contralateral) (t22 = -0.28, p = 0.780). 

Bimanual task. We did not find a main effect of hemisphere, age, or any age-by-hemisphere 

interaction (Table 3-3). 

 F-statistics 

 SS df MS F p value 
UNIMANUAL      
Age 8.80 1 8.80 6.94 0.015 

Residuals 27.9 22 1.27   
Brain region 3.82 2 1.91 31.51 <0.001 

Age:Brain region 0.05 2 0.02 0.38 0.685 

Residuals 2.67 44 0.06   
      
BIMANUAL      
Age 1.65 1 1.65 5.12 0.034 

Residuals 7.08 22 0.32   
Brain region 0.59 2 0.30 6.22 0.005 

Age:Brain region 0.03 2 0.02 0.31 0.714 

Residuals 2.10 44 0.05   
  

 

Table 3-2. Results of the mixed-model ANOVAs for the modulation of beta oscillations – unimanual and 

bimanual tasks. 
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3.5.7 Associations between beta oscillations and motor performance 

We carried out four linear regression analyses between beta oscillations and motor 

performance scores. The cross-validation analysis is shown in Supp. Fig. 3-7. The 

prediction of task accuracy during the unimanual task was not significantly different 

compared to using permuted labels, hence no further analysis was done. For the other three 

cases, the prediction of the dependent variables was significantly better when using the 

correct labels (p < 0.05), hence further analysis was done. For the model predicting task 

accuracy during the bimanual task, beta desynchronization at the peak locations of MRBD 

(i.e. left/right M1) was the only identified significant feature. A reduced regression model 

using only this feature was implemented. Figure 3-6 displays the correlation between 

MRBD and task accuracy, which suggests that subjects with stronger (i.e. more negative) 

MRBD exhibited worse task performance. For the models predicting behavioral scores, a 

reduced model revealed no significant features beyond age. 

  

 F-statistics 

 SS df MS F p value 
UNIMANUAL      
Age 31.5 1 31.5 1.87 0.185 

Residuals 370 22 16.8   
Brain region 4.77 1 4.77 2.12 0.159 

Age:Brain region 17.8 1 17.8 7.91 0.010 

Residuals 49.4 22 2.25   
      
BIMANUAL      
Age <0.01 1 <0.01 <0.01 0.993 

Residuals 2488 22 113   
Brain region 7.09 1 7.09 0.97 0.336 

Age:Brain region 6.50 1 6.50 0.89 0.356 

Residuals 161 22 7.32   
  

 

Table 3-3. Results of the mixed-model ANOVAs for PMBR – unimanual and bimanual tasks. 
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Figure 3-5. Unimanual and Bimanual tasks: Temporal evolution of the MRBD (upper row) and absolute 

beta power response (lower row) in (a) ageMRBD ROI, i.e. brain regions identified to exhibit stronger MRBD 

in older adults, (b) peak MRBD ROI (left M1) and (c) peak MRBD ROI (right M1). Older adults exhibited 

higher absolute beta power throughout the entire movement execution for both tasks. During the unimanual 

task, we observed a greater (more negative) MRBD during the guided dynamic contraction compared to 

sustained contraction periods (15%MVC and 30%MVC) for both groups. During the bimanual task, older 

adults exhibited greater (more negative) MRBD at the beginning of the trial compared to their younger 

counterparts. 
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3.5.8 Effect of baseline on relative power calculation 

We extracted averaged time-courses from the left and right MRBD ROIs corresponding to 

absolute beta power, beta 𝑅𝑃% calculated with respect to an inter-trial baseline, and beta 

𝑅𝑃% calculated with respect to the 1st resting-state. We found that absolute beta power 

levels were always greater for older participants before and during the motor tasks (Supp. 

Fig. 3-8a-b) compared to their younger counterparts. When inter-trial beta power levels 

were selected as baseline, we observed that older adults exhibited greater MRBD compared 

to younger adults across the entire trial (Supp. Fig. 3-8c-d). In contrast, when resting beta 

power levels were selected as baseline, older adults exhibited greater MRBD compared to 

younger adults only during dynamic contractions (Supp. Fig. 3-8e-f).  

  

Figure 3-6. Relationship between MRBD at the peak location (primary motor cortex) and task accuracy for 

the bimanual task. Subjects that exhibited greater (i.e. more negative) MRBD performed worse in the task. 
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3.6 DISCUSSION 

We examined the influence of healthy aging on motor-related beta oscillations using two 

motor paradigms: unimanual and bimanual handgrips. Extending previous studies that 

have focused on M1s, we investigated whether whole-brain age-related differences are 

present during both sustained and dynamic contractions. Consistent with prior literature, 

we found greater beta power at rest, as well as increased (i.e. more negative) MRBD in 

older adults compared to their younger counterparts. Interestingly, although older adults 

exhibited increased MRBD compared to younger adults during periods of dynamic 

contraction, the same was not observed during periods of sustained force production. As a 

result, we showed that older adults exhibit a more pronounced modulation of beta 

oscillations during dynamic muscle contractions. Furthermore, we found a significant 

correlation between MRBD during dynamic contractions and behavior. Below we discuss 

the implications of this work in the context of understanding the functionality of beta 

oscillations in motor control.  

3.6.1 Behavioral analysis 

We did not observe differences in terms of task accuracy between groups during the motor 

tasks performed inside the MEG scanner. This was expected, since the force applied by each 

subject was the same pre-defined percentage of their MVC, which implies that task-level 

difficulty was comparable among participants and that differences observed in this study 

in terms of brain activity patterns are attributable to age rather than other factors, such as 

increased effort (Aine et al., 2006). 

On the other hand, older adults exhibited deteriorated fine motor control in the 

corresponding behavioral assessments (Table 1), which is in line with the expected motor 

decline in older adults (Desrosiers et al., 1995; Grice et al., 2003; Lindstrom-Hazel and 

VanderVlies Veenstra, 2015; Mathiowetz et al., 1985a). Handgrip strength was not 

significantly different between groups due to high variability between individuals. 
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3.6.2 Structural analysis 

Older adults were characterized by a significant decrease in cortical thickness, particularly 

in frontal and temporal brain areas (Supp. Fig. 3-3). The affected regions are in notable 

agreement with previous studies that included larger sample sizes (Fjell et al., 2009; 

Hogstrom et al., 2013; Salat et al., 2004). These brain regions were overall in 

correspondence with areas that exhibited age-related increases in MRBD (Figure 3-3, 

Figure 3-4); however, the magnitude of MRBD and cortical thickness were not found to be 

significantly correlated (R=-0.14, p=0.35), which suggests that the observed age-related 

functional differences may not be directly associated with this specific neurodegenerative 

process. 

3.6.3 Age-related changes in power at rest 

We found that older adults exhibited increased resting beta power compared to younger 

adults (Figure 3-2). We did not find significant differences in resting alpha power between 

groups. Our results agree with several prior studies regarding age-related differences in 

power at rest, where it was reported that older adults exhibited similar levels of alpha 

power (Duffy et al., 1984; Heinrichs-Graham and Wilson, 2016; Koyama et al., 1997; 

Veldhuizen et al., 1993) and increased beta power (Gómez et al., 2013; Heinrichs-Graham 

et al., 2018; Heinrichs-Graham and Wilson, 2016; Hübner et al., 2018a; Koyama et al., 1997; 

Veldhuizen et al., 1993). However, previous studies only evaluated specific brain areas 

and/or performed the analysis in sensor space. Our whole-brain analysis demonstrated 

that the motor cortex was the area that showed the most significant differences in 

spontaneous beta power between younger and older subjects. This aligns with the evidence 

that beta-band activity is pathologically increased in movement disorders such as 

Parkinson’s disease (Brown et al., 2001; Silberstein et al., 2005), which suggests that 

increased beta oscillations at rest may be related with a deterioration of flexible behavioral 

and cognitive control (Engel and Fries, 2010). However, when we probed whether 

spontaneous beta power was a good predictor of motor performance, we did not find any 

relationship that linked increased spontaneous beta power with poorer motor 

performance.  
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3.6.4 Whole-brain age-related MRBD changes during muscle contractions 

The majority of past studies that examined aging effects on motor control have used motor 

paradigms whereby the subjects performed a dynamic contraction, and they consistently 

reported age-related increases in MRBD – i.e. more negative desynchronization (Bardouille 

et al., 2019; Heinrichs-Graham et al., 2018; Heinrichs-Graham and Wilson, 2016; Hübner et 

al., 2018a; Rossiter et al., 2014). In line with these studies, during periods of dynamic 

contraction we found a significant increase in MRBD in older adults compared to younger 

adults. Our whole-brain analysis further revealed a more widespread MRBD in older adults, 

in contrast with younger adults, for which the desynchronization was mainly located in the 

M1s (Figure 3-3b, Figure 3-4b, upper panel). Specifically, our results suggest a significant 

age-related increase in MRBD that covered frontal and premotor brain regions (Figure 

3-3b, Figure 3-4b, lower panel). Moreover, we observed that during periods of steady 

contractions, no differences were found between groups across the entire brain (Figure 

3-3b, Figure 3-4b, lower panel). Thus, our results align with the study from Rossiter and 

colleagues that reported no differences in MRBD in M1 contralateral to the moving hand 

during steady contractions (Rossiter et al., 2014), however our observations seem to 

indicate that the ipsilateral primary motor cortex does not show differences in MRBD 

either, in contrast with the study from Rossiter and colleagues (Rossiter et al., 2014). 

3.6.5 Age-related changes in beta power modulation during muscle 

contractions 

Both younger and older adults exhibited the expected modulation of beta oscillations that 

emerges when sequentially performing sustained and dynamic contractions (Baker, 2007; 

Cassim et al., 2000; Kilner et al., 2003, 1999; Schoffelen et al., 2008; Spinks et al., 2008; van 

Wijk et al., 2012). This implies that the motor performance decline observed in healthy 

aging is not due to an impairment in the capacity to modulate beta oscillations. In fact, we 

observed a larger modulation in older compared to younger adults (Table 2). The increase 

in synchronized beta oscillations that emerges when producing a steady muscle contraction 

has been suggested to provide an efficient processing platform for promoting the 

maintenance of a steady motor output whilst compromising initiation of new movements 
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(Androulidakis et al., 2007; Engel and Fries, 2010; Gilbertson et al., 2005; Omlor et al., 2007; 

Pogosyan et al., 2009). Further, it has been recently suggested that absolute beta power 

needs to reach a certain threshold level in order to initiate a muscle contraction, regardless 

of age (Heinrichs-Graham and Wilson, 2016). Beta oscillations at rest are greater in older 

adults; this suggests that an increased desynchronization is needed for the required 

threshold to initiate a muscle contraction to be reached. If we only consider the results we 

obtained during dynamic contractions, our findings align well with this theory, since older 

adults exhibited increased cortical beta suppression with respect to resting beta levels 

compared to younger adults. Yet, considering that we baseline-corrected the motor-related 

beta power using the spontaneous power observed at rest, our results also show that 

during sustained contractions there were no differences between groups beyond the ones 

observed at rest. Our findings may suggest that the threshold in terms of absolute beta 

power for the maintenance of a sustained contraction is shifted in aging, whereas the 

threshold for executing a dynamic contraction remains the same.  

3.6.6 Relationship between MRBD and motor performance 

Two main theories have aimed to explain over-recruitment in aging: compensation and 

dedifferentiation (Reuter-Lorenz and Park, 2010). The basic idea of compensation is that 

brain reorganization in older adults is a compensatory mechanism to counterbalance 

impaired function. Alternatively, the dedifferentiation hypothesis argues that older adults 

inefficiently recruit additional brain areas because of less precise brain structure-function 

interactions. Hence, this over-activation is not seen as a compensation mechanism to 

achieve better performance, rather as a less selective activation pattern. Several studies 

have provided evidence of a positive correlation between over-recruitment and 

performance during a motor task (Mattay et al. 2002; Heuninckx et al. 2008). Other studies 

have reported that greater brain activity during a cognitive task was correlated to poorer 

performance (Logan et al. 2002; Stebbins et al. 2002). In another study it was reported that 

there was no correlation between brain activity and increased difficulty during a motor 

task (Riecker et al., 2006). These discrepancies suggest that the association between 

increased activity in a specific brain region and performance in older adults may be task-
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specific or dependent on the task demands and the behavioral measure used. Therefore, in 

an attempt to unravel whether the age-related overactivation of frontal/premotor/motor 

areas during dynamic contractions and the increased modulation of beta oscillatory power 

between sustained and dynamic contractions in aging represent a compensation or 

dedifferentiation mechanism, we examined its association with motor performance.  

Features related to the brain regions that showed significantly increased MRBD in aging 

(ageMRBD) did not reveal any association with behavioral measures. This suggests that 

they were recruited in a non-selective fashion. Taken together with the fact that these brain 

regions exhibited decreased cortical thickness in the older participants, the overactivation 

of these regions in older adults might be indicative of a loss of functional specificity, and 

therefore supporting the dedifferentiation hypothesis. Recent observations that increased 

prefrontal cortex activity in healthy aging does not contribute to maintain cognitive 

function (Morcom et al., 2018) would align with these results. Further, the modulation 

metric that quantified the depth of variations of beta oscillatory power did not show a 

relation with behaviour in any of the considered regions.  

We identified one electrophysiological measure (beta desynchronization at the peak MRBD 

ROIs) that associated beta oscillations and motor performance, but only during bimanual 

muscle contractions inside the MEG scanner. An explanation could be that the implemented 

unimanual task was not sensitive enough for the explanatory values to significantly predict 

performance. Participants with stronger (i.e. more negative) MRBD at the peak location 

(M1) exhibited worse task performance. However, these regions did not show significant 

age-related increases in MRBD (Figure 3-4b), thus we cannot interpret this association as 

a compensation or dedifferentiation mechanism. This finding is supported by observations 

that after acute exercise, better performance is coupled with decreased (i.e. less negative) 

MRBD (Dal Maso et al., 2018; Hübner et al., 2018b). We speculate that, since increased 

MRBD at the peak location is correlated with greater resting-state beta power (Heinrichs-

Graham and Wilson, 2016), the need to attenuate resting beta power to reach the beta 

threshold for proper motor execution may cause inferior task performance. However, 

further research is needed to understand the underlying mechanisms that link beta 

oscillatory activity and behaviour. 



51   •   Chapter 3   

3.6.7 Age-related changes in PMBR 

Recent studies reported that older adults exhibited reduced PMBR in the contralateral 

hemisphere to the moving hand during a finger tapping task compared to younger adults 

(Bardouille et al., 2019; L. Liu et al., 2017). On the other hand, our results suggest that older 

adults did not exhibit significant differences in PMBR in the contralateral (left) hemisphere 

to the moving hand during the unimanual task, but rather an increased PMBR in the 

ipsilateral (right) hemisphere (Figure 3-5, Table 3-3). Furthermore, during the bimanual 

task, no significant differences in PMBR were found between groups. It has been proposed 

that PMBR reflects active inhibition of the motor network (Solis-Escalante et al., 2012) and 

it has been specifically linked to the inhibitory neurotransmitter γ-aminobutyric acid 

(GABA) (Gaetz et al., 2011; Jensen et al., 2005). This suggests that PMBR plays a role in 

preventing the generation of unwanted movements. While speculative, our results may 

reflect a case of dedifferentiation, whereby inhibition of both cortices after a motor task 

occurs in older adults, in contrast with younger adults for which PMBR occurs only in the 

contralateral hemisphere to the executing hand. However, the precise mechanism 

underlying how PMBR is affected by aging remains to be fully elucidated.  

3.6.8 Effects of baseline on relative power calculation 

In agreement with previous studies, absolute beta power levels were consistently higher in 

older participants before and during the motor tasks (Supp. Fig. 3-8a-b) (Heinrichs-

Graham et al., 2018; Heinrichs-Graham and Wilson, 2016; Hübner et al., 2018a). When 

inter-trial beta power levels were used as baseline, older adults exhibited greater MRBD 

compared to younger adults across the entire trial (Supp. Fig. 3-8c-d). In contrast, when 

resting beta power levels were used as baseline, older adults exhibited greater MRBD 

compared to younger adults only during dynamic contraction. The reason for this 

discrepancy is that beta power levels during the inter-trial period were significantly higher 

in both groups compared to resting levels (Supp. Fig. 3-8e-f), an indication that inter-trial 

power levels were contaminated by PMBR. This is due to the fact that the rebound effect 

can last several seconds after the end of a motor task, and has been associated with force 

output, such that higher force output results in greater PMBR (Fry et al., 2016). 
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Nevertheless, the inter-trial interval has been traditionally selected as baseline in motor 

studies focused on MRBD and PMBR. Our results highlight the importance of investigating 

whether the inter-trial power levels are artificially high due to PMBR contamination by 

comparing with resting power levels, as also suggested in recent studies (Heinrichs-Graham 

et al., 2018; Heinrichs-Graham and Wilson, 2016). In cases where the inter-trial is short, 

resulting in PMBR contamination, the usage of a resting-state recording for baseline 

normalization is strongly recommended.  

3.6.9 Limitations 

It has been suggested that resting beta levels and MRBD are modulated by the circadian 

rhythm (Toth et al., 2007; Wilson et al., 2014). In the present experiment, participants were 

scanned between 10 a.m. and 6 p.m. (Morning session: 8 younger/6 older; Afternoon 

session: 4 younger/6 older). Albeit somewhat balanced between groups, we cannot exclude 

circadian/ultradian effects on the results due to differences in the scanning time. 

The inter-trial duration is a crucial parameter to consider when designing protocols to 

study motor-related beta oscillations. As we exemplify in Supp. Fig. 3-8, PMBR levels may 

contaminate the inter-trial baseline, leading to possibly biased results. In this paper, we 

used the resting-state beta power levels as baseline to take into account this issue. Still, we 

cannot exclude the possibility that the MRBD was contaminated by the elevated PMBR, 

since the inter-trial duration was not long enough for the PMBR to fully return to its 

baseline levels. Nevertheless, the PMBR is mostly localized within the M1s, whereas we 

observed most of the age-related differences in premotor and pre-frontal areas. This 

suggests that the obtained results are not biased by excessive contamination by the 

elevated PMBR levels.  

The force applied during the experiment was based on each subject’s own MVC, from 0 to 

30% MVC (unimanual) and from 0 to 15% MVC (bimanual), to ensure that the required 

effort, and consequently the resulting fatigue level, was the same across participants. To 

investigate whether fatigue modulated the observed age-related differences in MRBD, we 

repeated our analysis using the initial and final 25 trials corresponding to each task. We 

subsequently tested for whole-brain differences in MRBD between younger and older 
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adults for trials in the first and second trial set. For the unimanual task, the analysis 

revealed age-related differences only during the ramp block and generally in the same brain 

regions as the results using all trials (Supp. Fig. 3-9). These findings suggest that, for the 

unimanual task, physical fatigue was either non-existent or its effect did not differ between 

age groups. Specifically, if fatigue did occur, these results suggest that for the resulting 

fatigue levels, the corresponding cortical adaptions did not differ between age groups. 

Nevertheless, age-related fatigue modulations were out of the scope of this paper, as we 

did not expect participants to experience fatigue to a large extent based on the low MVC 

levels used in our paradigms. However, in future studies the use of the Borg scale to 

monitor fatigue perception could be a good way to quantify fatigue levels (Borg, 1982). For 

the bimanual task, age-related differences were obtained during the initial 3s segment of 

the trial, but only when using the last 25 trials (Supp. Fig. 3-10). However, it is not likely 

that this observation is related to physical fatigue, since the bimanual task required 

considerably less force (15%MVC) compared to the unimanual task (30%MVC), and its 

duration was shorter (6 sec/trial) than the unimanual task (9 sec/trial). Therefore, the 

observation seen in Supp. Fig. 3-10 is more likely related to low statistical power resulting 

from splitting the trials in half. However, because the motor tasks were not 

counterbalanced, we cannot discard the possibility that physical and/or mental fatigue may 

have had an effect on the results obtained for the bimanual task. 

 

3.7 CONCLUSIONS 

Older adults exhibited significantly higher beta oscillations at rest, and our results showed 

that the motor cortex is the brain area that exhibits the highest increase in resting beta 

oscillatory activity. The present study confirms that older adults produce a larger MRBD 

during dynamic muscle contractions compared to younger adults. Our results also suggest 

that during sustained contractions, there are no differences in beta power between age 

groups beyond the ones observed at rest. We further probed the relationship between 

motor performance and age-related differences in beta oscillations during rest and task, 

but our results suggest that this altered beta activity in aging did not carry additional 

information. 
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3.9 SUPPLEMENTARY MATERIAL 

 

 

 

 

 

 

  X Y Z 

MRBD 
Right Hemisphere 37.5 -26.3 61.4 

Left Hemisphere -39.5 -29.1 61.3 

PMBR 
Right Hemisphere 31.9 -25.8 66.7 

Left Hemisphere -35.5 -29.8 61.2 

 

Supp. Table 3-1. Coordinates of the ROI peak in MNI space. 

 

Supp. Fig. 3-1. Temporal evolution of the movement error for the (a) unimanual and (b) bimanual tasks. The 

dotted red line indicates the threshold where the circle controlled by the force was inside the boundaries of 

the target position. During the unimanual task, the movement error was below the threshold for both groups. 

In contrast, during the bimanual task, the movement error exceeded the threshold, particularly at the 

beginning of the trial and for the left hand. Is was not until the middle of the trial (around 4s) that the 

movement error was below the threshold. 
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Supp. Fig. 3-2. ROIs for PMBR and MRBD in each hemisphere. The ROIs were defined as the vertices showing 

highest PMBR and MRBD (top 5%). 

Supp. Fig. 3-3. Structural differences between younger and older participants: (a) Brain volume – no 

significant differences between groups were detected (p=0.16). (b) Cortical thickness – older adults exhibited 

significantly decreased cortical thickness mainly in frontal and temporal areas (FDR-corrected, p<0.01).  

Blue = brain areas were older adults displayed decreased cortical thickness compared to younger adults. 
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Supp. Fig. 3-4. Alpha power during the 1st resting-state. Left and middle panels: grand-averaged images 

across younger and older participants, respectively. Right panel: differences in oscillatory power at rest 

between groups (FDR-corrected, p<0.05). Alpha power did not present any significant age-related 

differences. 

Supp. Fig. 3-5. Unimanual task: (a) Illustration of the different stages of the task. (b) Grand-averaged images 

of alpha relative power across each group. Alpha power did not present any significant age-related differences 

(FDR-corrected, p<0.05). 
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Supp. Fig. 3-7. Null distributions of the RMSE in the test set (blue) and the observed RMSE of the test set 

(red). Four models were computed: 12 features vs task accuracy during the unimanual task (Top left), 8 

features vs task accuracy during the bimanual task (Top right), 12 features vs. unimanual behavioral scores 

(Bottom left), 8 features vs. bimanual behavioral scores (Bottom right). 

Supp. Fig. 3-6. Bimanual task: (a) Illustration of the two 3-s subperiods of the task (grey shaded areas). (b) 

Grand-averaged images of alpha relative power across each group. Alpha power did not present any 

significant age-related differences (FDR-corrected, p<0.05). 
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Supp. Fig. 3-8. Temporal evolution of the beta activity during the unimanual task in left and right peak MRBD 

ROIs (primary motor cortices). (a)-(b) Absolute beta power. (c)-(d) MRBD relative to pre-movement baseline 

levels. Gray shaded area indicates the pre-movement period (-1 to 0 s). (e)-(f) MRBD relative to resting 

baseline levels.  

Older adults exhibited greater absolute beta power throughout the entire trial. If we baseline-corrected the 

beta power using the pre-movement period, the results showed a beta suppression present throughout the 

entire trial. In contrast, if we baseline-corrected the beta power using the resting-state beta values, the results 

revealed a beta suppression only present during periods of dynamic contractions. This analysis highlights the 

importance of using baseline periods in which we are certain that the power levels are comparable to resting-

state levels. 
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Supp. Fig. 3-9. Unimanual task: Whole-brain age-related differences in MRBD within (a) the first 25 trials 

and (b) the last 25 trials. 
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Supp. Fig. 3-10. Bimanual task: Whole-brain age-related differences in MRBD within (a) the first 25 trials 

and (b) the last 25 trials. 
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4.1 PREFACE 

It is well known that the blood-oxygenation-level-dependent (BOLD) signal measured in 

functional magnetic resonance imaging (fMRI) is indirectly related to the underlying neural 

activity; for instance, it is strongly contaminated by head motion and systemic physiological 

fluctuations. This is a fundamental challenge particularly for task-free paradigms, where 

the neural signal of interest cannot be readily identified through the temporal structure of 

the experiment. Furthermore, there is accumulating evidence that these artifacts can give 

rise to structured artifactual correlations in static functional connectivity (FC) (Jingyuan E. 

Chen et al., 2020). As a result, head motion and physiological fluctuations can lead to invalid 

inferences, particularly in resting-state FC studies comparing populations with different 

tendency for moving during the scan, or different cardiac and breathing rhythms. Moreover, 

an increasing number of studies have focused on the dynamics of FC within a scan (Lurie 

et al., 2019), commonly referred as time-varying FC, although it is still an open question 

whether the fluctuations of FC reflect the dynamics of underlying neural activity or 

systemic physiological fluctuations (Laumann et al., 2017; Nalci et al., 2019; Nikolaou et al., 

2016a). Therefore, the nature of time-varying FC and its disentanglement into its neural 

and physiological components is still an open question. 

To address the aforementioned fundamental questions, the manuscript in this chapter 

capitalizes on multisession resting-state fMRI data and physiological recordings to identify 

structured connectome profiles associated with head motion, cardiac pulsatility, breathing 

motion, and variations in heart rate and breathing patterns. It provides evidence that the 

examined nuisance processes, except cardiac pulsatility, result in unique structured FC 

patterns. It further demonstrates that a substantial variance of time-varying FC measures 

can be attributed to head motion and variations in heart rate and breathing patterns. 

A natural question that arises from these results is whether different fMRI preprocessing 

strategies are able to account for the aforementioned effects, as the validity of inferences 

in resting-state fMRI studies crucially depends on this ability. In this chapter, we examine 

several state-of-the-art preprocessing strategies and find that the choice of preprocessing 

method is crucial and that techniques based on blind source decomposition yield the best 
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performance. With regards to static FC, these techniques eliminate the effects of 

physiological processes and lead to a significant reduction of head motion confounds. In 

contrast, none of the evaluated pipelines are able to successfully remove the effects of head 

motion and variations in heart rate and breathing patterns on time-varying FC, which 

highlights the need for developing more effective denoising techniques for the latter. 

Finally, recent studies assessing test-retest reliability in resting-state FC have suggested 

that reproducible intra-individual FC patterns observed across sessions  may be partly 

driven by head motion and physiological confounds (Parkes et al., 2018). However, the 

extent to which the effects of  nuisance processes are subject-specific and whether they 

could influence connectome-based subject identification (Finn et al., 2015) has not yet been 

addressed. In this chapter, we show that the connectome profiles associated with the 

examined sources of noise exhibit above-chance levels of subject specificity. Despite this, 

our results also demonstrate that the most effective preprocessing strategies with regards 

to reducing head motion and physiological effects on FC improve connectome-based subject 

identification accuracy, suggesting that the inter-individual differences in FC patterns that 

facilitate identification are strongly neural in nature and do not largely stem from 

physiological processes or head motion. 

Overall, this study provides a comprehensive assessment of the effects of nuisance 

processes in the context of resting-state FC that also answers a basic question about the 

nature of fMRI-based connectivity, which is be valuable to a wide audience of researchers 

aiming to characterize the intrinsic organization of the brain. The framework proposed in 

the present study is of great importance for investigators comparing populations, as it will 

allow them to control for potential biases in connectivity driven by confounding variables. 

Furthermore, the methodology developed in this chapter is employed in chapter 5 to 

disentangle the effects of global signal regression on physiological and neural fluctuations in 

the context of functional connectivity. Finally, as this framework characterizes nuisance-

related FC patterns at the individual level, it will benefit the growing field of individualized 

(“precision”) fMRI (Gratton et al., 2019b). 
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4.2 ABSTRACT 

Human brain connectivity yields significant potential as a noninvasive biomarker. Several 

studies have used fMRI-based connectivity fingerprinting to characterize individual 

patterns of brain activity. However, it is not clear whether these patterns mainly reflect 

neural activity or the effect of physiological and motion processes. To answer this question, 

we capitalize on a large data sample from the Human Connectome Project and rigorously 

investigate the contribution of the aforementioned processes on functional connectivity 

(FC) and time-varying FC, as well as their contribution to subject identifiability. We find 

that head motion, as well as heart rate and breathing fluctuations, induce artifactual 

connectivity within distinct resting-state networks and that they correlate with recurrent 

patterns in time-varying FC. Even though the spatiotemporal signatures of these processes 

yield above-chance levels in subject identifiability, removing their effects at the 

preprocessing stage improves identifiability, suggesting a neural component underpinning 

the inter-individual differences in connectivity. 
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4.3 INTRODUCTION 

Functional magnetic resonance imaging (fMRI) is based on the blood-oxygenation-level-

dependent (BOLD) contrast mechanism (Ogawa et al., 1990), and is widely viewed as the 

gold standard for studying brain function because of its high spatial resolution and non-

invasive nature. The BOLD signal exhibits low frequency (~0.01-0.15 Hz) fluctuations that 

are synchronized across different regions of the brain, a phenomenon known as functional 

connectivity (FC). FC has been observed even in the absence of any explicit stimulus or 

task, giving rise to the so-called resting-state networks (RSNs) (Biswal et al., 1995; Fox and 

Raichle, 2007; Stephen M Smith et al., 2009). Initially, FC was viewed as a stationary 

phenomenon (static FC) and was commonly measured as the correlation between brain 

regions over an entire scan. However, several researchers challenged this assumption 

(Chang and Glover, 2010; Sakoglu et al., 2010), and recent studies have been focusing on 

FC dynamics, quantified over shorter time scales than the scan duration (time-varying FC) 

(Hutchison et al., 2013; Lurie et al., 2019). 

Although the neurophysiological basis of resting-state FC measured with fMRI is not yet 

fully understood, many studies have provided evidence to support its neuronal origin. For 

instance, in animal models, a strong association between spontaneous BOLD fluctuations 

and neural activity, in particular band-limited local field potentials and firing rates, has 

been reported (Logothetis et al., 2001; Schölvinck et al., 2010; Shmuel and Leopold, 2008; 

Thompson et al., 2013b). Furthermore, a recent study suggested a close correspondence 

between windowed FC calculated from simultaneously recorded hemodynamic signals and 

calcium transients (Matsui et al., 2018). In human studies, direct measurements of 

macroscale neural activity have revealed a spatial correlation structure similar to that of 

spontaneous BOLD fluctuations (Brookes et al., 2011; Hacker et al., 2017; He et al., 2008; 

Hipp et al., 2012; Kucyi et al., 2018), even during transient (50-200 ms) events (A. P. Baker 

et al., 2014; Hunyadi et al., 2019; Vidaurre et al., 2018). Therefore, it is widely assumed 

that resting-state FC measured using BOLD fMRI reflects spontaneous co-fluctuations of the 

underlying neuronal networks. 
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However, BOLD signals rely on changes in local cerebral blood flow (CBF) to infer 

underlying changes in neuronal activity, and according to a recent study, at least 50% of 

the spontaneous hemodynamic signal is unrelated to ongoing neural activity (Winder et al., 

2017). For instance, systemic physiological functions can induce variations in global and 

local CBF, which in turn result in BOLD signal fluctuations. In particular, low frequency 

variations in breathing activity (Birn et al., 2008b, 2006; Power et al., 2017b), arterial blood 

pressure (Whittaker et al., 2019), arterial CO2 concentration (Prokopiou et al., 2019; Wise 

et al., 2004), and heart rate (Chang et al., 2009; Shmueli et al., 2007) are known to account 

for a considerable fraction of variance of the BOLD signal, presumably through changes in 

CBF. In addition, the BOLD signal intensity is distorted by high-frequency physiological 

fluctuations, such as cardiovascular pulsation and breathing, through displacement of the 

brain tissues and perturbations of the B0 magnetic field (Dagli et al., 1999; Glover et al., 

2000). Further, head motion is well-known to have a substantial impact on fMRI through 

partial volume, magnetic inhomogeneity and spin-history effects (Friston et al., 1996; 

Power et al., 2012). These non-neuronal factors may introduce common variance 

components in signals recorded from different brain regions and subsequently induce 

spurious correlations between these areas (Jingyuan E Chen et al., 2020). Therefore, to 

account for motion-related and physiological confounds, nuisance regressors are typically 

obtained using model-based and data-driven techniques, and regressed out from the fMRI 

data before further analysis (Caballero-Gaudes and Reynolds, 2017). 

Static and time-varying resting-state FC have shown promise for providing concise 

descriptions of how the brain changes across the lifespan (Battaglia et al., 2017; Chan et al., 

2014; Ferreira et al., 2016; Geerligs et al., 2015; Sala-Llonch et al., 2015; Xia et al., 2019), 

and to assay neural differences that are associated with disease (J. T. Baker et al., 2014; 

Chen et al., 2017; Damaraju et al., 2014; Demirtaş et al., 2016; Drysdale et al., 2017; Du et 

al., 2016; Gratton et al., 2019a; Hahamy et al., 2015; Mash et al., 2019; Morgan et al., 2017; 

Xia et al., 2018). However, recent studies assessing the performance of a large range of 

preprocessing strategies found that there is always a trade-off between adequately 

removing confounds from fMRI data and preserving the signal of interest (Ciric et al., 2017; 

Kassinopoulos and Mitsis, 2019a; Parkes et al., 2018). Importantly, these studies found that 
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widely used techniques for the preprocessing of fMRI data may not efficiently remove 

physiological and motion artifacts. The latter raises a concern, as it is still not clear how 

nuisance fluctuations may impact the outcome of FC studies. 

Several studies have examined whether physiological fluctuations across the brain could 

give rise to structured spatial patterns that resemble common RSNs, based on the evidence 

that vascular responses following systemic changes are spatially heterogenous (Chang et 

al., 2009; Pinto et al., 2017), or account for the observed time-varying interactions between 

RSNs. For instance, (Bright and Murphy, 2015) applied independent component analysis 

(ICA) to the fraction of the fMRI data explained by nuisance regressors related to head 

motion and physiological variability and revealed a characteristic network structure similar 

to previously reported RSNs. Similarly, (Tong et al., 2013; Tong and Frederick, 2014) found 

significant contributions of systemic fluctuations on ICA time courses related to the visual, 

sensorimotor and auditory networks. Recently, (Jingyuan E Chen et al., 2020) generated 

BOLD data containing only slow respiratory-related dynamics and showed that respiratory 

variation can give rise to apparent neurally-related connectivity patterns. Further, recent 

investigations have shown that physiological confounds can modulate time-varying FC 

measures (Chang et al., 2013; Nalci et al., 2019; Nikolaou et al., 2016b). These results 

suggest that changes in brain physiology, breathing patterns, heart rhythms and head 

motion across sessions, within-subject or across populations, may introduce artifactual 

inter-individual and group-related differences in FC independent of any underlying 

differences in neural activity. For instance, cardiac autonomic dysregulation has been 

associated to a variety of psychiatric disorders (Alvares et al., 2016; Benjamin et al., 2020), 

which could in principle lead to group differences in connectivity patterns between patients 

and controls if the effects of heart rate are not accounted for. Therefore, the 

disentanglement of the neural and physiological correlates of resting-state FC is crucial for 

maximizing its clinical impact. 

While the previous findings provide evidence for the dual-nature of RSNs in both static and 

time-varying scenarios, only specific physiological processes and/or particular brain 

networks were evaluated in each of the aforementioned studies. A more holistic assessment 

of the impact of these non-neural processes on FC measures is needed to better understand 
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whether and how systemic fluctuations, as well as head or breathing motion affect inter-

individual and group differences. Importantly, the wide range of possible preprocessing 

strategies needs to be reassessed taking into consideration the effects of several non-neural 

processes on FC measures rather than accounting only for the effects of a specific process 

(e.g. head motion). 

The varying efficiency of different preprocessing pipelines with respect to removing the 

effect of physiological fluctuations and motion has also implications for studies 

investigating properties of FC at the individual level. Recent studies have shown that 

connectivity profiles vary substantially between individuals, acting as an identifying 

fingerprint (Finn et al., 2015; Mira-Dominguez et al., 2014) that is stable over long periods 

of time (Horien et al., 2019). However, the high subject discriminability of connectivity 

profiles may arise partly as a result of physiological processes (Batchvarov et al., 2002; 

Golestani et al., 2015; Malik et al., 2008; Pinna et al., 2007; Pitzalis et al., 1996; Power et 

al., 2020; Reland et al., 2005) and head motion (van Dijk et al., 2012; Zeng et al., 2014) 

being highly subject-specific. Evidence supporting this hypothesis comes from studies 

showing that the mean of intraclass correlation values of functional connections, associated 

to test-retest reliability across sessions, is reduced when a relatively aggressive pipeline is 

used (Birn et al., 2014; Kassinopoulos and Mitsis, 2019a; Parkes et al., 2018), suggesting 

that artifacts exhibit high subject specificity. However, the relation between subject 

discrimination and inter-individual differences in physiological processes and head motion 

has yet to be addressed. 

In the present work, we capitalize on 3T resting-state fMRI data from the Human 

Connectome Project (HCP) to uncover the whole-brain connectome profiles of systemic 

low-frequency oscillations (SLFOs) associated with heart rate and breathing patterns, 

cardiac pulsatility, breathing motion and head motion on estimates of static and time-

varying FC. To quantify the contributions of physiological processes and head motion on 

FC, we employ model-based techniques with externally recorded physiological 

measurements, and subsequently generate nuisance datasets that only contain non-neural 

fluctuations. Using these datasets, we provide a comprehensive examination of the regional 

variability of the impact of the considered nuisance processes on the BOLD signal, as well 
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as an investigation of the group consistency and inter-individual differences of their 

characteristic signatures on FC. We further evaluate several fMRI preprocessing strategies 

to assess the extent to which different techniques remove the physiological and motion FC 

signatures from the fMRI data. Finally, we investigate the potential effect of physiological 

processes and head motion on individual discriminability in the context of connectome 

fingerprinting.  

Using the  proposed approach, we show that SLFOs and head motion have a larger impact 

on FC measures compared to breathing motion and cardiac pulsatility, and we highlight the 

functional connections that are more prone to exhibiting biases. Furthermore, our findings 

suggest that the recurrent whole-brain connectivity patterns observed in time-varying FC 

can be partly attributed to SLFOs and head motion. Finally, we show that connectome 

fingerprinting accuracies are higher when non-neural confounds are reduced, suggesting a 

neural component underpinning the individual nature of FC patterns.  

The codes that were employed to carry out the analyses described in the present study are 

publicly available and can be found on github.com/axifra/Nuisance_signatures_FC. 

  

https://github.com/axifra/Nuisance_signatures_FC
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4.4 RESULTS 

4.4.1 Contributions of nuisance processes on the BOLD signal 

We examined regional differences in the influence of physiological processes and head 

motion on the BOLD signal. The physiological processes evaluated here were breathing 

motion, cardiac pulsatility, and SLFOs associated with changes in heart rate and breathing 

patterns. Scans with LR and RL phase encoding were examined separately as it has been 

suggested that breathing motion artifacts vary across scans with different phase encoding 

directions (Raj et al., 2001), and thus we aimed to examine whether other processes such 

as head motion demonstrate a similar dependence. The contributions of each nuisance 

process on BOLD signal fluctuations were quantified as the correlation between the 

nuisance fluctuations of the process in question, modelled using externally recorded 

physiological measurements, and the BOLD fluctuations “cleaned” of all other nuisance 

fluctuations (denoted as 𝑟𝑛𝑢𝑖𝑠 in the Materials and methods section – Isolation of nuisance 

fluctuations from fMRI data, see also Figure 4-7). We computed these contributions for 

each scan and then tested for the presence of consistent patterns across scans with the 

same phase encoding direction (significance testing using inter-subject surrogates, two-

sample t-test, p<0.05, Bonferroni corrected). 

The results showed distinct regional patterns for each of the nuisance processes. SLFOs 

mostly affected sensory regions, including the visual and somatosensory cortices 

(particularly of the face) (Figure 4-1A). Phase encoding was not found to modulate the 

magnitude of the SLFOs contributions on the BOLD signal (Figure 4-1A). Head motion 

exhibited the largest effect in the somatosensory and visual cortices (Figure 4-1B). 

Intriguingly, the effect in the visual cortex was highest in the right hemisphere for LR phase 

encoding, but highest in the left hemisphere for RL phase encoding (Figure 4-1B). 

Breathing motion effects were more pronounced in prefrontal, parietal and temporal brain 

regions (Figure 4-1C). Further, breathing motion had a much larger impact on the left 

hemisphere when the phase encoding was LR, whereas the reverse pattern was observed 

for RL phase encoding (Figure 4-1C). Cardiac pulsatility was highest in regions such as the 

visual and auditory cortices, as well as the insular cortex (Figure 4-1D). 
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Figure 4-1. Contributions of nuisance processes on the resting-state BOLD signal. T-score maps of the 

correlation between each nuisance process and BOLD fMRI fluctuations (raw data) for (A) SLFOs, (B) head 

motion, (C) breathing motion, and (D) cardiac pulsatility, computed within each parcel of the Gordon atlas 

(two-sample t-test against the surrogate data, p<0.05, Bonferroni corrected). The t-tests were calculated for 

each phase encoding separately. The physiological fluctuations were obtained from simultaneous external 

recordings. These results illustrate the cortical regions most affected by each nuisance process. 
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4.4.2 Physiological and head motion signatures in static FC 

To examine the effect of physiological fluctuations and head motion in static FC, we 

developed a framework that quantifies the extent to which functional connections are 

influenced by a nuisance process at the individual scan level. Briefly, synthetic datasets 

were generated for each scan based on the contributions of the examined nuisance 

processes within each ROI (see Materials and methods – Isolation of nuisance fluctuations 

from fMRI data). These datasets retained the variance explained by nuisance fluctuations 

and replaced the remaining variance (often considered as the “neural” variance) with 

uncorrelated random signals. This framework allowed us to compute FC matrices that 

illustrate the whole-brain connectome profiles arising from the nuisance processes of 

interest (see Materials and methods – Estimation of static and time-varying functional 

connectivity). 

The group-averaged static FC matrices across all 1,568 scans revealed consistent whole-

brain connectome patterns for SLFOs, head motion and breathing motion (Figure 4-2,A-

C). SLFO-based connectivity profiles exhibited strong positive correlations for all edges of 

the FC matrix, particularly for edges within the visual network, as well as between the 

visual network and the rest of the brain (Figure 4-2A). Head motion mainly influenced 

functional connections within the visual and sensorimotor networks, as well as edges 

within the DMN (Figure 4-2B). Note that even though areas in both the visual and 

sensorimotor networks were influenced by motion artifacts (Figure 4-1B), we did not 

observe strong correlations between the two aforementioned networks. This is not entirely 

surprising, as two brain areas may be associated with a different linear combination of 

head motion nuisance regressors and, thus, the correlation between the region-specific 

motion-induced fluctuations can in principle be around zero. Breathing motion exhibited 

an intriguing chess-like pattern, with both positive and negative correlations (Figure 4-2C, 

lower triangular matrix). Based on this observation, we subsequently reordered the ROIs 

with respect to their hemisphere, which revealed that positive correlations were mostly 

confined between ROIs of the same hemisphere, whereas correlations between 

hemispheres were close to zero or even negative (Figure 4-2C, upper triangular matrix). 

Even when scans with LR and RL phase encoding were averaged separately, both 
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hemispheres exhibited increased within-hemisphere connectivity (Supp. Fig. 4-1C). 

Nonetheless, the connectome profile of breathing motion exhibited clear differences 

between phase encoding directions, whereas all other nuisance processes did not exhibit 

perceivable differences (Supp. Fig. 4-1). Finally, cardiac pulsatility did not exhibit a 

characteristic spatial pattern and the group-averaged correlation values were low, 

suggesting that it does not affect static FC in a systematic manner across subjects (Figure 

4-2D).  

Figure 4-2. (next page) Whole-brain connectome patterns induced by nuisance processes and effect of 

preprocessing strategies. (A-D) Group averaged nuisance FC matrices across all 1,568 scans for (A) SLFOs, 

(B) head motion, (C) breathing motion, and (D) cardiac pulsatility. These results demonstrate that nuisance 

fluctuations induce heterogeneous whole-brain connectivity profiles which, if unaccounted for, can result in 

biased estimates functional connectivity. (E-H) Distribution of Pearson correlation coefficients across all 1,568 

scans between the “neural” FC matrix for different preprocessing strategies and nuisance FC matrices 

associated to (E) SLFOs, (F) head motion, (G) breathing motion, and (H) cardiac pulsatility. Correlation values 

were Fisher z transformed. SLFOs, head motion and breathing motion were found to confound the FC matrices 

more severely (E-G). GSR effectively removed the effects of SLFOs, while more aggressive preprocessing 

pipelines mitigated the effects of head motion, breathing motion and cardiac pulsatility. 
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4.4.3 Capability of preprocessing strategies to remove the nuisance signatures 

on static FC at the individual level 

To examine the capability of various preprocessing strategies to reduce the effects 

introduced by physiological processes and head motion on static FC, we computed for each 

scan the similarity of the connectome profile that arises from a nuisance process with the 

connectome profile calculated from preprocessed fMRI data (considered as the “neural” 

profile). This similarity reflects the extent to which the “neural” connectome profile 

extracted after a specific denoising strategy is confounded by physiological and head 

motion artifacts. A distribution of the similarity values across scans, in this case Pearson’s 

correlation coefficients, is shown in Figure 4-2 E-H for each preprocessing strategy and 

nuisance process. We found that SLFOs, head motion and breathing motion had the 

strongest influence on static FC, based on the similarity of their connectome profiles with 

the “neural” connectome profiles from the raw data (Figure 4-2,E-H). 

The signature induced by SLFOs remained after the MildA, MildB and FIX pipelines were 

applied, but was greatly reduced by the WM50 and WM200 strategies (Figure 4-2E). The 

observation that FIX, which is a rather aggressive preprocessing strategy, was unable to 

remove most of the SLFOs is consistent with recent studies showing that global artifactual 

fluctuations are still prominent after FIX denoising (Burgess et al., 2016a; Glasser et al., 

2018; Kassinopoulos and Mitsis, 2019b; Power et al., 2018, 2017b). Notably, GSR seemed 

to be an effective technique for removing the physiological signature from SLFOs on static 

FC, albeit for some scans it appeared to introduce a negative correlation between the SLFOs 

and “neural” FC matrices (Figure 4-2E). This effect was greater when the global signal was 

computed across the whole brain in volumetric space, compared to across vertices in 

surface space (Supp. Fig. 4-2A). The effect of the signature related to head motion was 

reduced with more aggressive preprocessing strategies, but none of the examined 

approaches completely eradicated the head motion effects in static FC (Figure 4-2F). GSR 

slightly reduced the similarity between the head motion and “neural” connectome profiles. 

The signature induced by breathing motion was greatly reduced by all preprocessing 

strategies, and particularly by FIX denoising, which yielded almost chance level (Figure 

4-2G). Still, none of the preprocessing strategies entirely eliminated the breathing motion 
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signature in static FC. The confounds introduced by cardiac pulsatility were overall small 

and effectively removed by the FIX, WM50 and WM200 strategies (Figure 4-2H). GSR did not 

have any effect on the removal of breathing motion and cardiac pulsatility connectome 

profiles. 

Finally, we evaluated the addition of model-based nuisance regressors to the preprocessing 

strategies. Specifically, we added the physiological regressors used to model SLFOs 

(Kassinopoulos and Mitsis, 2019b), cardiac pulsatility and breathing motion (Glover et al., 

2000). We found that including the regressor that models SLFOs reduces their effect on 

static FC for all preprocessing strategies apart from WM50 and WM200, but, in contrast to 

GSR, the similarity remains well above chance levels (Supp. Fig. 4-3A). Including the 

RETROICOR regressors related to breathing motion considerably reduced the breathing 

motion signature in the raw data; however, none of the preprocessing strategies benefited 

from including these regressors (Supp. Fig. 4-3C). On the contrary, including the 

RETROICOR regressors related to cardiac pulsatility completely removed the effect of the 

latter for the raw data and the MildA and MildB strategies (Supp. Fig. 4-3D), suggesting 

that conservative preprocessing strategies greatly benefit by adding the model-based 

regressors for cardiac pulsatility. 

4.4.4 Connectome-based identification of individual subjects 

We next investigated the extent to which FC matrices associated to physiological processes 

and head motion can identify an individual subject, and whether the accuracy of 

connectome-based fingerprinting is inflated by the examined nuisance processes (see 

Materials and methods – Connectome-based identification of individual subjects).  

We initially considered all the edges of the FC matrices for subject identification (Gordon 

atlas: 40,755 edges). Accuracy was above chance for all database-target combinations for 

the nuisance processes, with rates up to 40% (Figure 4-3A). Breathing motion exhibited 

an intriguing bimodal distribution: database-target pairs that had the same phase encoding 

yielded much higher identification rates than database-target pairs with different phase 

encodings, even if the latter were acquired on the same day. This effect was also observed, 

although to a lesser extent, for cardiac pulsatility and head motion.  
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Identification accuracy was much higher for the “neural” datasets compared to the nuisance 

datasets, with rates ranging from 52% to 99% (Figure 4-3B). The MildA, MildB and FIX 

techniques considerably improved the accuracy compared to the raw data, and the WM50 

and WM200 techniques significantly outperformed all other preprocessing strategies. GSR 

considerably improved identification accuracy for the MildA, MildB and FIX strategies. 

Furthermore, we observed that for the raw data, database-target pairs from different days 

with the same phase encoding showed identification rates as high as the ones from the 

same day but different phase encoding. In contrast, for all other preprocessing strategies 

the database-target pairs from the same day were always higher. 

We subsequently tested identification accuracy on the basis of within and between edges 

of specific functional networks to examine whether certain functional connections had a 

more pronounced contribution to individual subject discriminability. Results for the 

nuisance datasets are shown in Figure 4-4A, where it can be seen that nuisance processes 

yielded a markedly lower identification accuracy when using specific edges compared to 

using all edges (Figure 4-3A). Furthermore, functional connections between networks 

seemed to contribute more to the subject discriminability of SLFOs compared to 

connections within brain networks (p<0.001, Wilcoxon rank-sum).  

Regarding the “neural” datasets, we focused on the most aggressive strategies, namely FIX 

and WM200. Networks of “top-down” control (FPN, CO, DAN, VAN), as well as the DMN, 

yielded higher identification accuracy compared to sensorimotor processing networks 

(Visual, SMd, Aud) for all preprocessing strategies (Figure 4-4B). These results indicate 

that FC patterns in higher-order association cortices (“top-down” control networks) tend 

to be distinctive for each individual, whereas primary sensory and motor regions 

(processing networks) tend to exhibit similar patterns across individuals, consistent with 

previous studies (Finn et al., 2015; Gratton et al., 2018; Horien et al., 2019). We then tested 

for differences in identification accuracy between the raw data vs. FIX and WM200 data 

(Figure 4-4C, p<0.05, Bonferroni corrected, Wilcoxon rank-sum). FIX denoising 

significantly increased the subject discriminability of connections within and between 

several top-down control networks, but significantly decreased the subject discriminability 

of connections between the FPN and SMd, as well as the FPN and Aud networks. Conversely, 



79   •   Chapter 4 

WM200 denoising significantly increased the subject discriminability of connections within 

and between all top-down control networks, connections within the Visual and SMd 

networks, and connections of the DAN with the Visual and SMd network. 

  

Figure 4-3. (next page) Connectome fingerprinting results. (A) Fingerprinting accuracy obtained using 

the static FC matrices from the generated nuisance datasets whereby non-neural fluctuations were isolated 

from the BOLD data. Above-chance level accuracy values were obtained for all nuisance processes, suggesting 

some degree of subject specificity in whole-brain connectivity profiles arises from nuisance fluctuations. (B) 

Fingerprinting accuracy obtained using the static FC matrices generated from each of the preprocessing 

strategies evaluated. The pairs of resting-state scans are indicated with different symbols, depending on 

whether they belong to the same or different day session, as well as whether they have the same phase 

encoding. Higher fingerprinting accuracy values were observed for white matter denoising approaches 

(WM50, WM200) compared to milder pipelines and FIX denoising. Both mild and more aggressive pipelines 

yielded higher subject discriminability for pairs of scans acquired on the same day. GSR increased the 

fingerprinting accuracy of milder strategies and FIX denoising. 
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Figure 4-4. Connectome fingerprinting results using edges within and between networks.  

(A) Fingerprinting accuracy for SLFOs, head motion, breathing motion and cardiac pulsatility, averaged across 

all database-target pairs. (B) Fingerprinting accuracy for the raw data, FIX and WM200 pipelines, averaged 

across all database-target pairs. (C) Significant differences in fingerprinting accuracy obtained when using 

the FIX and WM200 pipelines as compared to the raw data (p<0.05, Bonferroni corrected, Wilcoxon rank-

sum). Connectivity profiles within and between top-down control networks (FPN, CO, VAN, DAN) and DMN 

yielded higher identification accuracy compared to connectivity profiles within and between sensorimotor 

processing networks (Visual, SMd, Aud). 
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4.4.5 Physiological and head motion signatures in time-varying FC and the 

effect of preprocessing strategies 

To examine the effect of physiological processes and head motion on time-varying FC 

estimates, we computed functional connectivity dynamics (FCD) matrices (Hansen et al., 

2015) using the generated nuisance and “neural” datasets from each scan, whereby each 

FCD matrix captures the temporal evolution of FC patterns within a scan. We subsequently 

computed the similarity of the nuisance and “neural” FCD matrices at the individual level 

to examine the capability of various preprocessing strategies to reduce the confounds 

introduced by physiological processes and head motion on time-varying FC. A distribution 

of the similarity values, in this case Pearson’s correlation coefficients, is shown in Figure 

4-5 for each preprocessing strategy and nuisance process. We observed that the temporal 

evolution of FC patterns from SLFOs and head motion were similar to the ones observed in 

the raw data. An illustration of this similarity is shown in Figure 4-6 for six subjects. On 

the other hand, breathing motion and cardiac pulsatility FCD matrices did not show 

similarities with the FCD matrices obtained from “neural” datasets (Figure 4-5). 

None of the preprocessing pipelines was able to vanish the effects of SLFOs and head 

motion. However, these effects were considerably reduced by the WM50 and WM200 

strategies (Figure 4-5,A-B; Figure 4-6). FIX denoising was the least successful strategy in 

terms of reducing the SLFOs’ signature (Figure 4-5A, Figure 4-6), similarly to static FC 

(Figure 4-2E), and only achieved the same levels of performance as other strategies after 

GSR. However, even after GSR none of the strategies reached chance levels (Figure 4-5A), 

in contrast with the static FC results (Figure 4-2E). GSR led also to a slight reduction in 

the similarity between the head motion and “neural” FCD matrices (Figure 4-5B), as in the 

case of static FC (Figure 4-2F). 
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  Figure 4-5. Effectiveness of preprocessing 

strategies in reducing functional connectivity 

dynamics (FCD) profiles induced by 

physiological and motion processes. 

Distribution of Pearson correlation coefficients 

across all 1,568 scans between the “neural” 

functional connectivity dynamics (FCD) matrix after 

each preprocessing pipeline and nuisance FCD 

matrices associated to (A) SLFOs, (B) head motion, 

(C) breathing motion, and (D) cardiac pulsatility. 

Correlation values were Fisher z transformed. 

Results shown in the top row of each subpanel (raw 

data) suggest that SLFOs and head motion most 

severely confound the FC matrices, whereas 

breathing motion and cardiac pulsatility do not 

induce artifactual dynamics. None of the examined 

strategies completely eliminated these effects. 
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Figure 4-6. Functional connectivity dynamics (FCD) profiles associated with SLFOs and head motion 

resemble patterns commonly attributed to neural processes. Illustrative examples of FCD matrices from 

specific HCP subjects as obtained from the fMRI data for several pre-processing pipelines (rows 1-6), as well 

as from SLFOs and head motion (rows 7 and 8, respectively). All the examples are from the HCP scan 

Rest1_LR. These examples show a clear resemblance between FCD matrices computed from the “neural” 

datasets and the nuisance processes (SLFOs and head motion). 
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4.5 DISCUSSION 

In this work, we characterized the effects of physiological processes and head motion on 

static and time-varying estimates of functional connectivity measured with BOLD fMRI. 

While the BOLD signal is considered a proxy of neural activity via changes in local blood 

oxygenation, physiological processes and motion artifacts can also induce variations in the 

BOLD signal, which can in turn lead to confounds in estimates of functional connectivity. 

Here, we developed an innovative framework to characterize the spatial signature of head 

motion and physiological processes (cardiac and breathing activity) on estimates of 

functional connectivity. Our results demonstrated that functional connectivity measures 

can be influenced by non-neural processes. Specifically, we identified stereotyped whole-

brain functional connectivity profiles for SLFOs, head motion and breathing motion (Figure 

4-2,A-C), suggesting that these processes introduce a systematic bias in estimates of 

functional connectivity if they are not properly accounted for. Furthermore, we provided 

evidence that recurring patterns in time-varying FC can be attributed, to some extent, to 

SLFOs and head motion (Figure 4-5, Figure 4-6). We also assessed the performance of 

several state-of-the-art preprocessing strategies in mitigating the effects of nuisance 

processes, and showed that more aggressive preprocessing strategies such as FIX (Salimi-

Khorshidi et al., 2014) and WM denoising (Kassinopoulos and Mitsis, 2019a) combined 

with GSR were the most effective with regards to removing the effects of non-neural 

processes for both static and time-varying FC analyses (Figure 4-2,E-H, Figure 4-5, Figure 

4-6). Finally, we evaluated the potential subject specificity of the connectivity profiles 

associated with physiological and motion confounds, along with their role as hypothetical 

contributors to connectome fingerprinting accuracy. Interestingly, we found that these non-

neural functional connectivity patterns are to some extent subject specific (Figure 4-3A); 

however, fMRI data corrected for these confounds increased identification accuracy in 

connectome fingerprinting (Figure 4-3B), suggesting that the inter-individual differences 

in FC that facilitate subject identification are strongly neural and do not largely stem from 

physiological processes or head motion. 
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4.5.1 Spatially heterogeneous contributions of nuisance processes to the BOLD 

signal 

It is well established that head and breathing motion affect areas at the edges of the brain 

(Jo et al., 2010; Patriat et al., 2015; Satterthwaite et al., 2013), whereas cardiac pulsatility 

affects areas near the large cerebral arteries just above the neck (Glover et al., 2000; 

Kassinopoulos and Mitsis, 2020). These observations are based on studies that typically 

examine the brain regions affected by the aforementioned sources of noise on a voxel-wise 

basis. However, at the voxel level we cannot easily assess whether the average fMRI signal 

from atlas-based ROIs includes significant contributions from these nuisance processes. In 

principle, it could be the case that the dynamics of artifacts associated with a specific 

nuisance process demonstrate significant variability across voxels, and as a result their 

effects cancel out when averaging voxels within an ROI. In the present study, we assessed 

the impact and regional variation of these nuisance processes in the Gordon parcellation 

(Gordon et al., 2016), a widely used atlas in the literature. 

SLFOs related to changes in heart rate and breathing patterns were found to affect mostly 

sensory regions including the visual and somatosensory cortices (particularly of the face) 

(Figure 4-1A), which correspond to regions with a high density of veins (Bernier et al., 

2018; Huck et al., 2019). The spatial pattern of SLFOs is very similar to statistical maps 

reported in prior works, which have highlighted brain regions highly correlated with the 

global signal (Billings and Keilholz, 2018; Glasser et al., 2016; Li et al., 2019a; Power et al., 

2017b; Tong et al., 2013; Zhang et al., 2019). This is not surprising, since the global signal 

is strongly driven by fluctuations in heart rate and breathing patterns (Birn et al., 2006; 

Chang and Glover, 2009a; Falahpour et al., 2013; Kassinopoulos and Mitsis, 2019b; Shmueli 

et al., 2007). Moreover, we show evidence that SLFOs and cardiac pulsatility do not affect 

the same brain regions, consistent with (Chen et al., 2019; Kassinopoulos and Mitsis, 2019b; 

Tong and Frederick, 2014). Specifically, cardiac pulsatility was more dominant in regions 

such as the insular and auditory cortices, which align with cortical branches of the middle 

cerebral artery (Figure 4-1D) and are the regions with highest arterial density (Bernier et 

al., 2018). 
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Regarding head motion, previous studies found that its effect was more pronounced in 

prefrontal, sensorimotor and visual brain regions (Satterthwaite et al., 2013; Yan et al., 

2013). However, these studies did not remove breathing artifacts from the realignment 

parameters, which are present even in single-band datasets (Gratton et al., 2020), and thus 

were unable to disentangle whether a specific type of motion affected particular brain 

regions. In the present work, we regressed out breathing motion from the realignment 

parameters, and observed that sensorimotor and visual areas were strongly affected by 

head motion (Figure 4-1B), whereas breathing motion artifacts were more pronounced in 

the prefrontal cortex and brain regions in the parietal and temporal cortices (Figure 4-1C). 

Furthermore, Yan et al. showed that framewise displacement was positively correlated with 

sensory regions and negatively correlated with prefrontal regions. Collectively, these 

findings suggest that most regions exhibit an increase in the BOLD signal due to head and 

breathing motion, whereas the prefrontal cortex may exhibit a decrease in the BOLD signal 

likely due to breathing-related chest movements. 

4.5.2 Physiological and head motion signatures in static FC 

Head motion is considered the biggest source of confound for FC fMRI studies and there is 

a significant effort from the neuroimaging community towards developing and evaluating 

preprocessing strategies that mitigate its effects (Ciric et al., 2017; Parkes et al., 2018; 

Power et al., 2015). On the other hand, while it has been shown that SLFOs affect the 

default-mode network (Birn et al., 2014, 2008a; Chang and Glover, 2009a), and high 

frequency cardiac and breathing artifacts influence the BOLD signal (Glover et al., 2000; 

Power et al., 2019), a systematic investigation of the effects of physiological processes in 

the context of whole-brain FC is lacking in the literature. In the present study, we evaluated 

collectively the impact of the aforementioned sources of noise on whole-brain fMRI resting-

state FC.  

Our results revealed that all four nuisance datasets exhibited mainly positive correlations 

between ROIs (Figure 4-2,A-D), suggesting that the presence of nuisance fluctuations in a 

conventional fMRI dataset typically leads to a shift of correlation values towards more 

positive numbers. In other words, in the case of an fMRI dataset that has not been corrected 



Chapter 4   •   88 

for nuisance fluctuations, two ROIs for which neural-related fluctuations are negatively 

correlated could be found to be positively correlated due to the presence of similar 

nuisance fluctuations in the ROIs. Furthermore, we observed that SLFOs and head motion 

confounded FC to a larger degree compared to breathing motion and cardiac pulsatility 

(Figure 4-2,E-H). 

Our results suggest that SLFOs due to spontaneous changes in heart rate or breathing 

patterns inflate connectivity (towards more positive values) across the whole brain but 

particularly for edges within the visual network, as well as edges between the visual and 

the rest of the networks (Figure 4-2A). It is well known that the visual cortex is 

characterized by the highest venous density (Bernier et al., 2018), possibly due to its 

functional importance (Collins et al., 2010). In addition, it has been shown that brain 

regions with higher vascular density exhibit larger amplitude of spontaneous BOLD 

fluctuations (Vigneau-Roy et al., 2014). Therefore, it is likely that the structure of the SLFOs’ 

connectome profile may largely reflect the underlying vascular architecture. The effect of 

SLFOs on static FC was considerably reduced after WM denoising, while additionally 

performing GSR almost removed this effect (Fig. 4E). Notably, FIX denoising without GSR 

was unable to remove the confounds introduced by SLFOs, which is consistent with recent 

studies showing that global artifactual fluctuations are still prominent after FIX denoising 

(Burgess et al., 2016a; Glasser et al., 2018; Kassinopoulos and Mitsis, 2019b; Power et al., 

2018, 2017b). 

Head motion was found to influence the connectivity within the visual and sensorimotor 

networks (Figure 4-2B), in line with previous studies (Power et al., 2012; Satterthwaite et 

al., 2012; van Dijk et al., 2012). Our results showed that only regressing out the realignment 

parameters and average WM/CSF signals (with or without expansion terms) is not 

sufficient to remove the effects of head motion (Figure 4-2F, MildA and MildB pipelines), 

which is consistent with findings in (Parkes et al., 2018). Among all preprocessing 

strategies, WM denoising yielded the largest reduction of motion effects (Figure 4-2F). The 

two pipelines WM50 and WM200 refer to the removal of 50 and 200 white matter regressors 

from the data (i.e. principal components obtained from the white matter compartment). In 

our previous study we showed that while both pipelines yielded high large-scale network 
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identifiability compared to other pipelines, the more aggressive WM200 resulted in a larger 

reduction of motion artifacts compared to WM50 (Kassinopoulos and Mitsis, 2019a). The 

results of the current study also show a stronger reduction of head motion effects for the 

former compared to the latter (Figure 4-2F), which may explain the higher accuracy in 

connectome fingerprinting observed for the pipeline WM200 compared to WM50 (Figure 

4-3B). 

A natural concern regarding the head motion connectome profile is that it may reflect 

motor-related activity (Yan et al., 2013). Even though motor-related neural activity would 

be expected to lag the instantaneous motion traces due to the sluggishness of the 

hemodynamic response, we cannot exclude the scenario that the head motion connectome 

profile reflects the neural correlates of the executed movements and eye adjustments to 

fixate on the cross. Nonetheless, even if preprocessing strategies remove neural activity 

associated with spontaneous head movements, this source of neural activity is typically of 

no interest in resting-state fMRI studies. 

Furthermore, we provide evidence that head and breathing motion do not affect functional 

connectivity in the same manner. Specifically, breathing motion was found to inflate within-

hemisphere connectivity (Figure 4-2C). This bias seems to arise as a result of factitious 

motion rather than real motion of the head, since it is related to the LR/RL phase encoding 

direction (see section 4.4 for more details). All preprocessing strategies yielded a 

substantial reduction of artifacts related to breathing motion, with FIX denoising being the 

most effective (Figure 4-2G). 

In our dataset, cardiac pulsatility did not seem to have a large effect on FC, neither in 

cortical nor subcortical regions (Figure 4-2D, Supp. Fig. 4-5D), and its effect was entirely 

removed with more aggressive pipelines such as FIX and WM denoising (Figure 4-2H), as 

well as with model-based techniques (Supp. Fig. 4-3D). However, it has been recently 

reported that the 3T HCP dataset has poor temporal signal-to-noise ratio in the subcortex 

(Ji et al., 2018; Seitzman et al., 2020). Therefore, it is possible that we may have 

underestimated the effect of cardiac pulsatility in functional connections involving 

subcortical regions. 
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It is important to note that our proposed methodology assumes that the stereotyped 

nuisance connectome profiles do not resemble the true neural connectome profiles. 

However, in principle, nuisance fluctuations could give rise to similar spatial patterns as 

neurally-driven fluctuations. A recent study by (Bright et al., 2018) provided evidence that 

physiological fluctuations (end-tidal CO2) give rise to networks that spatially resemble 

neurally-driven networks linked to working memory and visual stimuli. The authors 

suggested that this phenomenon may be due to the vasculature adapting to the neural 

network architecture, as vascular and neuronal growth processes evolve concurrently 

during development (Quaegebeur et al., 2011). These findings suggest a possible caveat of 

our methodology when assessing pre-processing strategies, as pipelines that yield the 

lowest similarity between nuisance and “neural” FC matrices might also remove some signal 

of interest. Nonetheless, the pre-processing strategies that were found in this study to 

reduce the nuisance effects the most (i.e. FIX and WM denoising combined with GSR) have 

been shown to demonstrate the highest improvement in large-scale network identifiability 

in an earlier study (Kassinopoulos and Mitsis, 2019a). In addition, these pipelines were 

found to exhibit the highest accuracy in connectome fingerprinting (Figure 4-3B). These 

results suggest that they are able to adequately remove the effects of nuisance processes 

while also preserving the signal of interest. 

4.5.3 Physiological and head motion signatures on time-varying FC 

The investigation of neural dynamics using resting-state fMRI is a promising avenue of 

research that has gained increasing attention lately (Hutchison et al., 2013; Lurie et al., 

2019). Yet, there is skepticism regarding its validity and underlying origins. For instance, 

variations in FC over shorter time-scales (i.e. minutes) could largely be explained by 

sampling error, acquisition artifacts and subject arousal (Hindriks et al., 2016; Laumann et 

al., 2017; Savva et al., 2019), as well as head motion and physiological processes (Nalci et 

al., 2019; Nikolaou et al., 2016b). 

In the present study, we sought to evaluate whether non-neural fluctuations could partly 

explain the recurrent connectivity patterns observed in fMRI studies. To this end, we 

computed time-resolved FC dynamics (Hansen et al., 2015) for all four nuisance datasets, 
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and assessed their similarity with time-resolved FC dynamics obtained from fMRI data 

preprocessed employing widely used denoising strategies (“neural” datasets). The FC 

dynamics of head motion and SLFOs datasets were markedly similar to the FC dynamics 

observed in preprocessed fMRI data (Figure 4-5,A-B), albeit the similarity was smaller 

compared to static FC (Figure 4-2,E-F). When observing the time-resolved FC matrices 

(Figure 4-6), it becomes apparent that a large component of variability in FC patterns is 

due to non-neural processes, and that these patterns remain after implementing popular 

preprocessing pipelines such as MildA, MildB and FIX. These results are aligned with the 

observation that even after regressing out nuisance processes from the BOLD signal, 

correlations between time-varying FC measures and nuisance fluctuations remain (Nalci et 

al., 2019). WM denoising was found to be the most efficient strategy in terms of mitigating 

the influence of nuisance processes on time-varying FC (Figure 4-5,A-B). 

After WM denoising, variability in FC patterns was greatly diminished (Figure 4-6), even 

when those patterns could not be directly associated with any nuisance process (Supp. Fig. 

4-4). These results can be interpreted in two ways that are not mutually exclusive: (1) A 

significant fraction of the variability in FC patterns is a result of non-neural confounds and 

WM denoising is able to remove most of these confounds. This is supported by the fact that 

many other nuisance processes, which we did not examine here (e.g. arterial blood 

pressure, CO2 concentration, scanner instabilities), can influence the BOLD signal and time-

varying FC patterns (Nikolaou et al., 2016b; Whittaker et al., 2019; Wise et al., 2004). (2) 

WM denoising removes a considerable fraction of variance of neural origin. Future work 

with concurrent direct measurements of neuronal activity (e.g. electroencephalography, 

calcium imaging) and additional physiological recordings would be instrumental for 

resolving to which extent time-varying FC is the result of underlying neural dynamics. 

While head motion and SLFOs were found to be strongly associated to recurrent 

connectivity patterns, breathing motion and cardiac pulsatility do not seem to be a main 

concern for time-varying FC studies (Figure 4-5,C-D). Likely, the effects of breathing 

motion and cardiac pulsatility do not influence time-varying FC, because their effect on the 

BOLD signal does not change from window to window, possibly due to their quasi-periodic 

nature. In contrast, the levels of head motion vary across time windows, which can 
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modulate time-varying FC patterns. Heart rate and breathing patterns can be relatively 

constant during some time periods, whereby SLFOs are not expected to influence the BOLD 

signal and, in turn, the FC measures across time windows. On the other hand, in other 

instances heart rate and breathing patterns may change considerably over time, whereby 

SLFOs are expected to influence the BOLD signal and thus modulate the FC measures across 

time windows. In other words, ROIs sensitive to head motion and SLFOs are likely to exhibit 

a time-varying signal-to-noise ratio depending on the presence of these sources of noise, 

which eventually leads to confounds in time-varying FC measures.  

Importantly, none of the evaluated pipelines were able to completely remove these 

confounds. It was only recently that researchers have started to examine the performance 

of pre-processing pipelines in the context of time-varying FC (Lydon-Staley et al., 2019), 

albeit with a focus on motion effects, thus more work is needed to identify effective data 

cleaning strategies for resting-state time-varying FC studies. 

4.5.4 Global signal regression 

The practice of removing the GS from fMRI data (i.e. GSR) has been adopted by many fMRI 

investigators as it has been linked to head motion artifacts and fluctuations in heart rate 

and breathing patterns (Birn et al., 2006; Byrge and Kennedy, 2018; Chang and Glover, 

2009a; Falahpour et al., 2013; Kassinopoulos and Mitsis, 2019b; Power et al., 2018, 2014a; 

Shmueli et al., 2007). Further, GSR has been shown to increase the neuronal-hemodynamic 

correspondence of FC measures extracted from BOLD signals and electrophysiological high 

gamma recordings (Keller et al., 2013), as well as strengthen the association between FC 

and behaviour (Li et al., 2019b). On the other hand, studies capitalizing on EEG-fMRI data 

have reported an association between  the GS amplitude and vigilance measures (C. K. 

Wong et al., 2016; Wong et al., 2013) and individual differences in the global signal 

topography have been related to behavior and cognition (Li et al., 2019a). Thus, as there is 

evidence that GSR may remove neuronal-related activity in addition to nuisance-related 

fluctuations, GSR still remains a controversial pre-processing step (T. T. Liu et al., 2017; 

Murphy et al., 2009; Murphy and Fox, 2017). 
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Our results provide evidence that, in the context of static FC, GSR removes physiological 

fluctuations related to SLFOs and to a lesser extent head motion artifacts (Figure 4-2,E-F). 

Note that GSR does not account for breathing motion artifacts (Figure 4-2G) but rather 

changes in breathing patterns and deep breaths, which are related to SLFOs and possibly 

the head motion component at ~0.12 Hz (Power et al., 2019). Furthermore, GSR improved 

connectome fingerprinting accuracy (Figure 4-3B), which suggests that by removing 

nuisance fluctuations due to SLFOs and head motion, GSR enhances the individual 

specificity of connectivity profiles. Overall, our results suggest that the strong reduction in 

the effects of SLFOs and head motion achieved by GSR outweighs the possible loss of 

neuronal-driven fluctuations when examining FC patterns. GSR is particularly important 

when using ICA-based noise correction techniques such as FIX and AROMA (Pruim et al., 

2015; Salimi-Khorshidi et al., 2014), since ICA components related to SLFOs frequently 

exhibit similar spatial patterns and frequency profile to neural components and thus are 

classified as non-artifactual and remain in the data after denoising. 

Regarding time-varying FC, GSR did not reduce the effect of nuisance processes equally 

well compared to static FC (Figure 4-2,E-F vs. Figure 4-5,A-B). Nonetheless, a recent study 

evaluating preprocessing strategies in the context of time-varying FC showed that 

incorporating GSR in the preprocessing improved the identification of modularity in 

functional networks (Lydon-Staley et al., 2019). This may indicate that GSR was able to 

remove nuisance processes that we did not evaluate in the current study. These processes 

may be related to scanner instabilities, CO2 concentration (Power et al., 2017b; Wise et al., 

2004) and finger skin vascular tone (Kassinopoulos and Mitsis, 2020; Özbay et al., 2019), 

which are known to be reflected on the GS. 

Despite the effectiveness of GSR in reducing nuisance confounds from the data, we cannot 

exclude the possibility of removing some neuronal-related fluctuations. Alternatives to GSR 

that have been proposed to remove global artifacts include time delay analysis using 

“rapidtide” (Tong et al., 2019), removal of the first principal component from the fMRI data 

(Carbonell et al., 2011), removal of fluctuations associated to large clusters of coherent 

voxels (Aquino et al., 2020), and the use of temporal ICA (Glasser et al., 2018), albeit the 

latter is only applicable to datasets with a large number of subjects such as the HCP. 



Chapter 4   •   94 

4.5.5 The effect of phase encoding direction in connectivity 

Earlier studies have demonstrated that chest wall movements due to breathing perturb the 

B0 field (Raj et al., 2001, 2000; Van de Moortele et al., 2002), which has consequences on 

EPI fMRI data. While this phenomenon is not fully understood, it seems to have two main 

effects that are observable along the phase encoding direction: (1) Breathing causes 

factitious motion of the fMRI volumes in the phase encoding direction (Raj et al., 2001, 

2000). This effect has sparkled attention recently, since it has been recognised that it may 

have critical implications for motion correction when performing censoring (i.e. removal of 

motion-contaminated fMRI volumes) in multi-band (Fair et al., 2019; Power et al., 2019) 

and single-band (Gratton et al., 2020) data. (2) Breathing induces artifacts on voxel 

timeseries that depend on the location of those voxels along the phase encoding direction 

(Raj et al., 2001, 2000). Our results provide further evidence in support of the latter effect. 

Specifically, we found that depending on the phase encoding direction (LR or RL), breathing 

motion artifacts were more pronounced in the left or right hemisphere respectively (Figure 

4-1C). Moreover, we observed that breathing motion increased within-hemisphere 

connectivity for both phase encoding scan types (Figure 4-2C, Supp. Fig. 4-1C), which 

implies that breathing induces artifactual fluctuations that are to a certain extent different 

between hemispheres. However, note that the connectome profile of breathing motion 

exhibited some differences between the two phase encoding directions (Supp. Fig. 4-1C), 

which explains the higher connectome fingerprinting accuracy in the breathing motion 

dataset when examining pairs of scans with the same phase encoding direction, compared 

to scans with different phase encoding direction (Figure 4-3A). 

Our results point to a systematic effect of breathing on static FC through variations in the 

B0 magnetic field. Importantly, this systematic bias is contingent on the phase encoding 

direction, which seems to indicate that factitious rather than real motion is the 

predominant source of respiration-related motion artifacts in fMRI, as has been previously 

suggested (Brosch et al., 2002; Raj et al., 2001). Even though common preprocessing 

pipelines greatly reduce these effects, they do not eliminate them Figure 4-2G). Thus, 

studies that consider datasets with different phase encodings, should be aware of the effect 
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of phase encoding on FC, especially if data from different groups have been acquired with 

different phase encodings. 

4.5.6 Individual discriminability 

Test-retest reliability is important for establishing the stability of inter-individual variation 

in fMRI FC across time. However, apart from neural processes, nuisance processes can also 

have an impact on test-retest reliability, given the subject-specific nature of physiological 

processes (Batchvarov et al., 2002; Golestani et al., 2015; Malik et al., 2008; Pinna et al., 

2007; Pitzalis et al., 1996; Power et al., 2020; Reland et al., 2005) and head motion (van 

Dijk et al., 2012; Zeng et al., 2014). This leads to the concerning notion that nuisance 

processes may be artifactually driving the reports of high reliability in FC measures. For 

instance, it has been reported that the median of intraclass correlation values across 

functional connections, which is a metric of test-retest reliability, is reduced when a 

relatively aggressive pipeline is used (Birn et al., 2014; Parkes et al., 2018). Furthermore, 

motion can classify subjects at above-chance levels (Horien et al., 2019), and breathing 

motion is more prominent in older individuals and those with a higher body mass index 

(Gratton et al., 2020). In the present study, we examined the potential effect of nuisance 

processes on subject discriminability using connectome fingerprinting. 

4.5.6.1 Whole-brain identification 

To assess the individual discriminability of nuisance processes, we performed connectome 

fingerprinting analysis using the generated nuisance datasets. All nuisance processes 

exhibited identification accuracy above chance level (Figure 4-3A). Pairs of scans with the 

same phase encoding yielded higher identification accuracy than pairs of scans with 

different phase encoding (Figure 4-3A). This effect is particularly evident for breathing 

motion, and to a lesser extent cardiac pulsatility and head motion. This observation 

suggests that not only these confounds exert a distinctive artifactual spatial pattern that is 

dependent on the phase encoding direction, which can be also observed upon careful 

examination of Figure 4-1B-D, but also that this artifactual pattern is to a certain degree 

subject-specific. On the other hand, the subject discriminability of SLFOs is not modulated 

by phase encoding (Figure 4-3A). Given the nature of SLFOs (i.e. they affect the BOLD 
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signal through changes in CBF), the high subject discriminability of SLFOs suggests a certain 

degree of idiosyncrasy that is possibly related to the vascular architecture of an individual. 

Overall, our results suggest that there is some degree of subject discriminability in nuisance 

processes. 

Identification accuracies of “neural” datasets were very high for all preprocessing strategies 

(Figure 4-3B), in line with previous studies (Finn et al., 2015; Horien et al., 2019). WM 

denoising, which was found to be the most effective strategy for reducing confounds due 

to head motion and physiological fluctuations (Figure 4-2,E-H), yielded also the highest 

accuracy in connectome fingerprinting (Figure 4-3B), suggesting that the high subject 

discriminability observed in the HCP data is not due to the presence of confounds. 

Interestingly, the increased accuracy observed in the nuisance datasets for scans with the 

same phase encoding (Figure 4-3A) was also observed in the case of the raw data (Figure 

4-3B). In contrast, for the rest of the pipelines the difference in accuracy between pairs of 

scans from different days with the same or different phase encoding direction vanishes 

(Figure 4-3B). This is likely because of the reduction of nuisance effects, mainly breathing 

motion artifacts. Note also that for both mild and aggressive pipelines, pairs of scans from 

the same day exhibited higher accuracies compared to pairs of scans from different days, 

which cannot be attributed to potential residuals of nuisance fluctuations (Figure 4-3A). 

Possible explanations for this finding are that the functional connectome of a subject 

reflects some aspects of their vigilance levels (Tagliazucchi and Laufs, 2014; Thompson et 

al., 2013a; Wang et al., 2016), mind-wandering (Gonzalez-Castillo et al., 2019; Gorgolewski 

et al., 2014; Kucyi, 2018; Kucyi and Davis, 2014), or the effect of time of day (Hodkinson et 

al., 2014; Jiang et al., 2016; Orban et al., 2020; Shannon et al., 2013), which can differ across 

sessions. Overall, the high connectome-based identification accuracies reported in the 

literature do not appear to be driven by nuisance confounds, suggesting a neural origin 

underpinning the inter-individual differences in connectivity. Nonetheless, it is worth 

pointing out that subject variability in the magnitude of functional connections has been 

shown to arise as a result of spatial topographical variability in the location of functional 

regions across individuals (Bijsterbosch et al., 2018), which could also explain the high 

subject discriminability observed in fMRI-based connectomes. 
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4.5.6.2 Network-based identification 

We observed that edges within association cortices (e.g. parts of the frontoparietal, default 

mode, and cinguloopercular systems) exhibited the highest subject specificity (Figure 

4-4B), consistent with previous studies (Finn et al., 2015; Gratton et al., 2018; Horien et 

al., 2019; Mueller et al., 2013; Seitzman et al., 2019; Vanderwal et al., 2017). The fact that 

association cortices are the most evolutionarily recent (Zilles et al., 1988) and are thought 

to be involved in higher-level functions (Cole et al., 2014, 2013; Dosenbach et al., 2007; 

Gratton et al., 2017; Raichle, 2015) has been posited as a possible reason for the high 

identification accuracy yielded by these networks. On the other hand, it has also been 

speculated that medial frontal and frontoparietal networks exhibit the highest 

identification accuracy as a result of being less prone to distortions from susceptibility 

artifacts (Horien et al., 2019; Noble et al., 2017). If the latter was the case, we would expect 

to see decreased accuracy for these networks when probing the nuisance datasets. 

However, we did not observe such a tendency for any of the nuisance processes evaluated 

(Figure 4-4A), and preprocessing strategies that successfully removed nuisance processes 

yielded enhanced subject discriminability of control networks and the DMN (Figure 4-4C). 

These results seem to indicate that the basis of the high identification rates for association 

cortices is of neural origin, and thus that resting-state fMRI-based connectome 

fingerprinting can capture idiosyncratic aspects of cognition reflected on the resting-state 

functional characteristics of the association cortex. 

4.6 CONCLUSIONS 

The current study introduces a novel framework for assessing the effects of the main fMRI 

confounds on static and time-varying FC. Our results suggest that head motion and systemic 

BOLD fluctuations associated to changes in heart rate and breathing patterns cause 

systematic biases in static FC and result in recurrent patterns in time-varying FC. Data-

driven techniques based on decomposing the data into principal or independent 

components (PCA, ICA), combined with GSR, lead to the strongest reduction of the 

aforementioned effects. Importantly, these preprocessing strategies also improve 

connectome-based subject identification, indicating that the high subject discriminability 

reported in the literature is not attributable to nuisance processes. 
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4.7 MATERIALS AND METHODS 

4.7.1 Human Connectome Project (HCP) dataset 

The resting-state fMRI data analysed in this study are from the S1200 release of the 3T 

HCP dataset (Smith et al., 2013; Van Essen et al., 2013), which consists of young, healthy 

twins and siblings (age range: 22-36 years). The HCP dataset includes, among others, 

resting-state data acquired on two different days, during which subjects were instructed to 

keep their eyes open and fixated on a cross-hair. Each day included two consecutive 15-

min resting-state runs, acquired with left-to-right (LR) and right-to-left (RL) phase 

encoding direction. During each fMRI run, 1200 frames were acquired using a gradient-

echo echo-planar imaging (EPI) sequence with a multiband factor of 8, spatial resolution of 

2 mm isotropic voxels, and a TR of 0.72 s. Further details of the data acquisition parameters 

can be found in previous publications (Smith et al., 2013; Van Essen et al., 2012). 

Concurrently with fMRI images, cardiac and respiratory signals were measured using a 

standard Siemens pulse oximeter placed on the fingertip and a breathing belt placed around 

the chest, with a 400 Hz sampling rate. 

We only considered subjects who had available data from all 4 runs, and excluded subjects 

based on the quality of the physiological recordings (see section 4.7.2.1 below for details). 

Pulse oximeter and respiratory belt signals from ~1000 subjects were first visually 

inspected to determine their quality, since their traces are often not of sufficient quality for 

reliable peak detection (Power, 2019). The selection process resulted in a final dataset with 

392 subjects (ID numbers provided in Supp. Material). 

4.7.2 Preprocessing 

4.7.2.1 Preprocessing of physiological recordings 

After selecting subjects with good quality traces, the pulse wave was processed to 

automatically detect beat-to-beat intervals (RR), and the heart rate signal was further 

computed as the inverse of the time differences between pairs of adjacent peaks and 

converted to units of beats-per-minute (bpm). Heart rate traces were visually checked to 
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ensure that outliers and abnormalities were not present. An outlier replacement filter was 

used to eliminate spurious changes in heart rate when these changes were found to be due 

to sporadic noisy cardiac measurements (for more details see Supp. Figs. 1 and 2 from 

(Kassinopoulos and Mitsis, 2019b)). We also excluded subjects with a heart rate of exactly 

48 bpm and lack of heartbeat interval variability, as they have been pointed out as outliers 

in recent studies (Orban et al., 2020; Valenza et al., 2019). The signal from the breathing 

belt was detrended linearly, visually inspected and corrected for outliers using a 

replacement filter. Subsequently, it was low-pass filtered at 5 Hz and Z-scored. The 

respiratory flow, proposed in (Kassinopoulos and Mitsis, 2019b) as a robust measure of 

the absolute flow of inhalation and exhalation of a subject at each time point, was 

subsequently extracted by applying further smoothing on the breathing signal (moving 

average filter of 1.5 sec window) and, subsequently, computing the square of the derivative 

of the smoothed breathing signal. Finally, heart rate and respiratory flow time-series were 

re-sampled at 10 Hz. 

An example code (Preprocess_Phys.m) showing the detailed specifications of the algorithms 

used during the preprocessing of the physiological signals is available on 

github.com/mkassinopoulos/PRF_estimation/. 

4.7.2.2 Preprocessing of fMRI data: assessing the impact of denoising strategies 

From the HCP database we downloaded the minimally preprocessed data described in 

(Glasser et al., 2013) and the FIX-denoised data, both in volume and surface space. Briefly, 

the minimal preprocessing pipeline included removal of spatial distortion, motion 

correction via volume re-alignment, registration to the structural image, bias-field 

correction, 4D image intensity normalization by a global mean, brain masking, and non-

linear registration to MNI space. Further steps to obtain surface data were volume to 

surface projection, multimodal inter-subject alignment of the cortical surface data 

(Robinson et al., 2014), and 2 mm (FWHM) surface-constrained smoothing. Additional 

steps following minimal preprocessing to obtain the FIX-denoised data were de-trending 

using a mild high-pass filter (2000 s), head motion correction via 24 parameter regression, 

and denoising via spatial ICA followed by an automated component classifier (FMRIB's ICA-

based X-noiseifier, FIX) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). Minimal spatial 

https://github.com/mkassinopoulos/PRF_estimation/
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smoothing (FWHM = 4 mm) was applied to the downloaded minimally preprocessed and 

FIX-denoised volumetric data. Both minimally preprocessed and FIX-denoised data were 

parcellated employing the Gordon atlas across 333 regions of interest (ROIs) (Gordon et 

al., 2016) and the Seitzman atlas across 300 ROIs (Seitzman et al., 2020), using the surface 

and volume space data, respectively. ROIs that did not belong to a brain network were 

disregarded, hence a total of 286 ROIs (Gordon atlas) and 285 ROIs (Seitzman atlas) were 

retained for further analyses. The main differences between these two brain parcellations, 

apart from being computed on the surface and volume space respectively, are that the ROIs 

in the Gordon atlas do not have the same size, whereas in the Seitzman atlas the ROIs are 

all spheres of 8 mm diameter, and that the Gordon atlas only includes cortical regions, 

whereas the Seitzman atlas includes cortical and subcortical regions. The results from the 

Gordon atlas are presented in the main manuscript whereas the results from the Seitzman 

atlas can be found in the Supplementary Material (Supp. Fig. 4-5, Supp. Fig. 4-6, Supp. 

Fig. 4-7). Further, the parcellated data were high-pass filtered at 0.01 Hz. 

In addition to the FIX-denoising strategy, several other data-driven preprocessing 

techniques were evaluated to assess the extent to which they were able to remove 

physiological and motion-driven confounds (Table 4-1). We chose pipelines that had been 

used in the landmark FC studies of (Finn et al., 2015) and (Laumann et al., 2017). These 

were denoted as “mild” pipelines, since they regress out considerably fewer components 

compared to FIX. Further, we also included two more aggressive pipelines that were found 

to outperform previously proposed techniques in terms of network identifiability 

(Kassinopoulos and Mitsis, 2019a). Nuisance regression was performed after the minimally 

preprocessed data had been parcellated to reduce computational time. All preprocessing 

strategies were evaluated with and without global signal regression (GSR), since the latter 

is still somewhat controversial (T. T. Liu et al., 2017; Murphy et al., 2009; Murphy and Fox, 

2017). To facilitate the comparison between preprocessing strategies, the minimally 

preprocessed data were also evaluated, yielding in total 12 preprocessing strategies. Given 

that the minimal preprocessing pipeline consists of only the initial steps for fMRI denoising, 

for simplicity in the results we refer to these data as raw data. The regressors included in 

each preprocessing strategy can be found in Table 4-1. Note that for the pipeline from 
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(Laumann et al., 2017) the derivative of the global signal was also regressed out. The global 

signal for the surface and volumetric data was computed as the average fMRI timeseries 

across vertices and the whole brain respectively. 

4.7.3 Nuisance processes evaluated 

The following four nuisance processes were considered (Table 4-2): 

a. Systemic low frequency oscillations (SLFOs): SLFOs refer to non-neuronal global 

BOLD fluctuations. Major sources of SLFOs are spontaneous fluctuations in the rate or 

depth of breathing (Birn et al., 2006) and fluctuations in heart rate (Chang et al., 2009; 

Shmueli et al., 2007). The former mainly exert their effects via changing the 

concentration of arterial CO2, which is a potent vasodilator, altering CBF and thus the 

BOLD fMRI signal (Birn et al., 2008a, 2008b; Chang and Glover, 2009b; Prokopiou et al., 

2019; Wise et al., 2004), Importantly, there is evidence that SLFOs are a more 

substantial source of physiological noise in BOLD fMRI compared to high frequency 

cardiac pulsatility and breathing motion artifacts (Tong et al., 2019; Tong and Frederick, 

2014). In this study, SLFOs were modelled following a framework proposed in our 

previous work (Kassinopoulos and Mitsis, 2019a; scripts available on 

github.com/mkassinopoulos/PRF_estimation/). Briefly, the extracted heart rate and 

Preprocessing strategy Acronym Regressors included 

Minimally preprocessed HCP 
data Minprep - 

FIX-denoised HCP data FIX - 
Pipeline used in Finn et al. 
(2015), Nature Neuroscience MildA Mean time-series of the white matter and CSF voxels (2); 

realignment parameters and their first derivatives (12) 

Pipeline used in Laumann et al. 
(2017), Cerebral Cortex MildB 

Mean time-series of the white matter and CSF voxels and their 
derivatives (4); realignment parameters and their first 
derivatives, quadratic terms, and squares of derivatives (24) 

Pipeline proposed by 
Kassinopoulos & Mitsis (2019b), 
bioRxiv 

WM50 50 PCA components from white matter voxels 
WM200 200 PCA components from white matter voxels 

 

Table 4-1. Preprocessing strategies examined. All strategies were evaluated with and without global signal 

regression (GSR). 

https://github.com/mkassinopoulos/PRF_estimation/
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respiratory flow signals were fed into an algorithm that estimated scan-specific 

physiological response functions (PRFs). This algorithm estimates PRF curves that 

maximize the correlation between their convolution with heart rate and respiratory 

flow and the global signal of the same scan, while ensuring that the shapes of the PRF 

curves are physiologically plausible. The heart rate and respiratory flow signals were 

subsequently convolved with their respective PRFs and added to each other, yielding 

time-series that reflect the total effect of SLFOs (Supp. Fig. 4-8). These time-series were 

used in the current study as the physiological regressor related to SLFOs. 

b. Cardiac pulsatility: Pulsatility of blood flow in the brain can cause pronounced 

modulations of the BOLD signal (Noll and Schneider, 1994), which tend to be localized 

along the vertebrobasilar arterial system and the sigmoid transverse and superior 

sagittal sinuses (Dagli et al., 1999; Kassinopoulos and Mitsis, 2019b). We modelled 

fluctuations induced by cardiac pulsatility using 6 regressors obtained with 3rd order 

RETROICOR (Glover et al., 2000), based on the pulse oximeter signal of each scan. 

c. Breathing Motion: Chest movements during the breathing cycle generate head motion 

in the form of head nodding by mechanical linkage through the neck, but also factitious 

motion (also known as pseudomotion) through small perturbations of the B0 magnetic 

field caused by changes in abdominal volume when air enters the lungs (Power et al., 

2019; Raj et al., 2001; Van de Moortele et al., 2002). We modelled breathing-induced 

fluctuations using 6 regressors obtained with 3rd order RETROICOR (Glover et al., 2000), 

based on the respiratory signal of each scan. 

d. Head motion: Subject motion produces substantial signal disruptions in fMRI studies 

(Friston et al., 1996; Power et al., 2012) and is a major confound when evaluating 

connectivity differences between groups with dissimilar tendencies for motion 

(Makowski et al., 2019; Satterthwaite et al., 2012; van Dijk et al., 2012). We quantified 

head motion using the six realignment parameters as well as their temporal first 

derivatives provided by the HCP. The six physiological regressors related to breathing 

motion were regressed out from the realignment parameters and their derivatives, 

since true and factitious motion due to breathing is reflected on the realignment 

parameters (Fair et al., 2019). 
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All nuisance regressors were high-pass filtered at 0.01 Hz to ensure similar spectral content 

with the fMRI data and thus avoid reintroduction of nuisance-related variation (Bright et 

al., 2017; Hallquist et al., 2013). The regressors were then normalized to zero mean and 

unit variance. Supp. Fig. 4-9 demonstrates the spectral content of each nuisance process, 

as well as the effect of regressing out breathing motion from the realignment parameters. 

4.7.4 Isolation of nuisance fluctuations from fMRI data 

We propose a framework to isolate nuisance fluctuations for each of the aforementioned 

processes, which reflects the physiologically-driven fluctuations and head motion artifacts 

observed in the fMRI data (Figure 4-7). A similar methodology was used in (Bright and 

Murphy, 2015) to investigate whether preprocessing strategies remove variance associated 

to resting-state networks. 

Initially, the contribution of each nuisance process on the ROI time-series was quantified 

using a generalised linear model, formulated as:   

 

𝑦(𝑡) = 𝛽0 + 𝛽𝑆𝐿𝐹𝑂𝑠𝑥𝑆𝐿𝐹𝑂𝑠(𝑡) + 𝛃𝐶𝑃𝐱𝐶𝑃(𝑡) + 𝛃𝐵𝑀𝐱𝐵𝑀(𝑡) + 𝛃𝐻𝑀𝐱𝐻𝑀(𝑡) + 𝜀(𝑡) (4.1) 

𝛃𝐶𝑃 = [𝛽𝐶𝑃
1 ⋯ 𝛽𝐶𝑃

6 ],  𝛃𝐵𝑀 = [𝛽𝐵𝑀
1 ⋯ 𝛽𝐵𝑀

6 ],  𝛃𝐻𝑀 = [𝛽𝐻𝑀
1 ⋯ 𝛽𝐻𝑀

12 ]  

𝐱𝐶𝑃(𝑡) = [
𝑥𝐶𝑃

1 (𝑡)
⋮

𝑥𝐶𝑃
6 (𝑡)

],  𝐱𝐵𝑀(𝑡) = [
𝑥𝐵𝑀

1 (𝑡)
⋮

𝑥𝐵𝑀
6 (𝑡)

],  𝐱𝐻𝑀(𝑡) = [
𝑥𝐻𝑀

1 (𝑡)
⋮

𝑥𝐻𝑀
12 (𝑡)

]  

 SLFOs Cardiac pulsatility Breathing motion Head motion 

Recordings 
Pulse oximeter, 
breathing belt, fMRI 
global signal 

Pulse oximeter Breathing belt fMRI 

Signals 
employed 

Heart rate, respiratory 
flow, global signal 

Cardiac cycle Breathing cycle 
Realignment 
parameters and 
derivatives 

Model 
Kassinopoulos & 
Mitsis (2019a), 
NeuroImage 

3rd order RETROICOR 
Glover et al. (2000), 
NeuroImage 

3rd order RETROICOR 
Glover et al. (2000), 
NeuroImage 

- 

Number of 
regressors 

1 6 6 12 

 

Table 4-2. Nuisance processes examined. 
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where 𝑦 are ROI time-series from the minimally preprocessed data, 𝑥𝑆𝐿𝐹𝑂𝑠 is the 

physiological regressor modeling SLFOs, 𝐱𝐶𝑃(𝑡) are the 6 physiological regressors modeling 

cardiac pulsatility, 𝐱𝐵𝑀(𝑡) are the 6 physiological regressors modeling breathing motion, 

𝐱𝐻𝑀(𝑡) are the 12 regressors modeling head motion, {𝛽0, 𝛽𝑆𝐿𝐹𝑂𝑠, 𝛃𝐶𝑃, 𝛃𝐵𝑀 , 𝛃𝐻𝑀} denote the 

parameters to be estimated, and 𝜀 is the error (or residual). As can be seen, all four nuisance 

processes (25 regressors in total) were included simultaneously in the regression to model 

the BOLD signal fluctuations in a specific ROI.  

For each nuisance process, the estimated values �̂� were multiplied by their corresponding 

regressors and added together to obtain the fluctuations of the nuisance process of interest 

(�̂�𝑁𝑃𝐼(𝑡)) within a specific ROI, and a “clean” time-series was calculated via removal of all 

other nuisance processes (�̂�𝑁𝑃𝐼+𝑁𝑒𝑢𝑟(𝑡)), as follows:  

SLFOs:                           �̂�𝑁𝑃𝐼(𝑡) = �̂�𝑆𝐿𝐹𝑂𝑠𝑥𝑆𝐿𝐹𝑂𝑠(𝑡) (4.2) 

�̂�𝑁𝑃𝐼+𝑁𝑒𝑢𝑟(𝑡) = 𝑦(𝑡) − �̂�0 − �̂�𝐶𝑃𝐱𝐶𝑃(𝑡) − �̂�𝐵𝑀𝐱𝐵𝑀(𝑡) − �̂�𝐻𝑀𝐱𝐻𝑀(𝑡)    (4.3) 

Cardiac pulsatility:    �̂�𝑁𝑃𝐼(𝑡) = �̂�𝐶𝑃𝐱𝐶𝑃(𝑡)      (4.4) 

�̂�𝑁𝑃𝐼+𝑁𝑒𝑢𝑟(𝑡) = 𝑦(𝑡) − �̂�0 − �̂�𝑆𝐿𝐹𝑂𝑠𝑥𝑆𝐿𝐹𝑂𝑠(𝑡) − �̂�𝐵𝑀𝐱𝐵𝑀(𝑡) − �̂�𝐻𝑀𝐱𝐻𝑀(𝑡) (4.5) 

Breathing motion:     �̂�𝑁𝑃𝐼(𝑡) = �̂�𝐵𝑀𝐱𝐵𝑀(𝑡)  (4.6) 

�̂�𝑁𝑃𝐼+𝑁𝑒𝑢𝑟(𝑡) = 𝑦(𝑡) − �̂�0 − �̂�𝑆𝐿𝐹𝑂𝑠𝑥𝑆𝐿𝐹𝑂𝑠(𝑡) − �̂�𝐶𝑃𝐱𝐶𝑃(𝑡) − �̂�𝐻𝑀𝐱𝐻𝑀(𝑡) (4.7) 

Head motion:             �̂�𝑁𝑃𝐼(𝑡) = �̂�𝐻𝑀𝐱𝐻𝑀(𝑡)    (4.8) 

�̂�𝑁𝑃𝐼+𝑁𝑒𝑢𝑟(𝑡) = 𝑦(𝑡) − �̂�0 − �̂�𝑆𝐿𝐹𝑂𝑠𝑥𝑆𝐿𝐹𝑂𝑠(𝑡) − �̂�𝐶𝑃𝐱𝐶𝑃(𝑡) − �̂�𝐵𝑀𝐱𝐵𝑀(𝑡) (4.9) 

In this manner, we generated “cleaned” ROI time-series (�̂�𝑁𝑃𝐼+𝑁𝑒𝑢𝑟(𝑡)) in which all 

considered noisy fluctuations were removed except the ones corresponding to the specific 

nuisance process being evaluated. The next step was to quantify the contribution of the 

latter to the remaining fluctuations within each ROI. To achieve this, the estimated nuisance 

signal was correlated to the “clean” ROI time-series: 

𝑟𝑛𝑢𝑖𝑠 = 𝑐𝑜𝑟𝑟(�̂�𝑁𝑃𝐼(𝑡), �̂�𝑁𝑃𝐼+𝑁𝑒𝑢𝑟(𝑡))    (4.10) 
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Subsequently, the estimated nuisance signal was subtracted from the “clean” ROI time-

series to obtain what is typically considered the “neural” time-series. These time-series 

were correlated to the “clean” time-series to quantify the contribution of the “neural” 

variations to the total ROI signal fluctuations: 

�̂�𝑁𝑒𝑢𝑟(𝑡) = �̂�𝑁𝑃𝐼+𝑁𝑒𝑢𝑟(𝑡) − �̂�𝑁𝑃𝐼(𝑡)    (4.11) 

𝑟𝑛𝑒𝑢𝑟 = 𝑐𝑜𝑟𝑟(�̂�𝑁𝑒𝑢𝑟(𝑡), �̂�𝑁𝑃𝐼+𝑁𝑒𝑢𝑟(𝑡))    (4.12) 

Afterwards, nuisance datasets for each process were created by scaling the estimated 

nuisance signal within each ROI with its corresponding correlation coefficient 𝑟𝑛𝑢𝑖𝑠 and 

adding Gaussian random signals (𝜉(𝑡)) scaled with 𝑟𝑛𝑒𝑢𝑟. This is expressed as: 

𝑦𝑁𝑢𝑖𝑠(𝑡) = 𝑟𝑛𝑢𝑖𝑠 𝑍[�̂�𝑁𝑃𝐼(𝑡)] + 𝑟𝑛𝑒𝑢𝑟 𝑍[𝜉(𝑡)]    (4.13) 

where 𝑍[∙] denotes normalization to zero mean and unit variance. 

Thus, this framework generated four synthetic nuisance datasets that contained the 

isolated fluctuations from each of the nuisance processes evaluated. In a sense, the ROI 

time-series in each nuisance dataset are equivalent to the term �̂�𝑁𝑃𝐼+𝑁𝑒𝑢𝑟(𝑡), with the 

“neural” fluctuations replaced by random signals. These time-series were used to 

characterize the connectome profile of the nuisance processes without the presence of 

neurally-related signals, while maintaining the noise-to-signal ratio between 

physiological/motion-related noise and “neural” signal intact. Note that if the nuisance 

datasets consisted solely of artifactual fluctuations without the random signals added, this 

would result in an overestimation of the correlation fraction attributed to the nuisance 

processes that was present in the experimental fMRI data. This can be easily understood in 

the case of two ROI time-series that are weakly driven by SLFOs. As the contribution of this 

nuisance process to the aggregate ROI time-series would be small, the parameter �̂�𝑆𝐿𝐹𝑂𝑠 in 

Eq. 2 for both ROIs would be relatively small as well. However, without the addition of 

random signals, the correlation of the time-series �̂�𝑁𝑃𝐼 associated with these two ROIs 

would be 1.00 (or -1.00 depending on the signs of the corresponding beta parameters) as 

Pearson’s correlation is a metric that is blind to the variance of the signals, thereby 

overestimating the contribution of SLFOs to the FC between those ROIs. 
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Figure 4-7. Graphical summary of the proposed framework for isolating the fluctuations for each 

physiological process. For each scan, the ROI time-series are modeled using the regressors related to 

systemic low frequency oscillations (SLFOs),   cardiac pulsatility (CP), breathing motion (BM), and head 

motion (HM). Subsequently, the fraction of BOLD variance explained by each nuisance process is isolated and 

employed to generate synthetic datasets that only contain nuisance fluctuations. 
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4.7.5 Estimation of static and time-varying functional connectivity (FC) 

Using the pre-processed fMRI data from each of the 12 pipelines (see section 4.7.2.2), 

henceforth called “neural” datasets, and the 4 nuisance datasets, we performed Pearson 

correlation analyses between brain regions over the whole scan (static FC) and within 

sliding windows (time-varying FC). To quantify time-varying FC, the entire scan was split 

up into 62 sliding windows of 43.2 sec (60 samples) duration, with 70% overlap in time. 

Subsequently, for each scan, we computed the functional connectivity dynamics (FCD) 

matrix (Hansen et al., 2015), which is a symmetric matrix in which the entries (𝑖, 𝑗) 

correspond to the Pearson correlations between the upper triangular elements of the FC 

matrices in windows 𝑖 and 𝑗. The size of the FCD matrix was 𝑊 × 𝑊, where 𝑊 is the number 

of windows (62). Thus, while the static FC matrix characterizes the spatial structure of 

resting activity, the FCD matrix captures the temporal evolution of connectome 

correlations. 

The analyses resulted in 32 matrices for each subject (Figure 4-8): 4 static FC and 4 FCD 

nuisance matrices (one for each physiological process considered), as well as 12 static FC 

and 12 FCD “neural” matrices (one for each preprocessing strategy evaluated). To quantify 

the influence of the nuisance processes on static FC and FCD for each preprocessing 

strategy, similarities between pairs of nuisance and “neural” matrices were evaluated by 

correlating their upper triangular values. Note that for the FCD matrices, upper triangular 

elements corresponding to the correlation between overlapping windows were 

disregarded because of high correlation by design (see block diagonal in Figure 4-8). All 

correlation values were Fisher z transformed.  
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Figure 4-8. Illustration of the 32 connectivity matrices computed per scan. For both static and time-

varying FC analyses, 4 nuisance connectivity matrices were computed using the generated nuisance datasets, 

as well as 12 “neural” connectivity matrices corresponding to the 12 pre-processing strategies evaluated (note 

that each of the 6 strategies listed in Table 1 was assessed with and without GSR). Static FC matrices were 

computed as the correlation across brain regions using the whole scan. Time-varying FC analysis constructed 

time-resolved connectivity matrices as the correlation between static FC matrices within sliding windows, 

known as functional connectivity dynamics (FCD) matrices (Hansen et al. 2015). 
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4.7.6 Connectome-based identification of individual subjects 

We implemented a connectome-based identification of individual subjects using the static 

FC matrices to investigate the potential effect of “nuisance fingerprints” on the degree of 

subject specificity in individual FC metrics. The identification procedure, known as 

connectome fingerprinting, has been described in detail previously (Finn et al., 2015). 

Briefly, a database was first created consisting of all subjects’ FC matrices from a particular 

resting-state scan (Supp. Fig. 4-10B). An FC matrix from a specific subject and different 

resting-state scan was then selected and denoted as the target (𝑆𝑢𝑏𝑗𝑥). Pearson correlation 

coefficients (𝑟1, … , 𝑟𝑁) were computed between the upper triangular values of the target FC 

matrix and all the FC matrices in the database. If the highest correlation coefficient 

corresponded to a pair of FC matrices from the same subject, a successful identification 

was indicated (𝐼𝐷𝑆𝑢𝑏𝑗𝑥 = 1); otherwise, it was marked as an incorrect identification 

(𝐼𝐷𝑆𝑢𝑏𝑗𝑥 = 0). The identification test was repeated such that each subject serves as the 

target subject once, and then the ID values were averaged across subjects to obtain the 

identification accuracy of the database-target pair. This process was repeated until tests 

between all scanning sessions were performed. In total, 12 database-target combinations 

were computed (Supp. Fig. 4-10A). Identification was performed using the whole brain 

connectivity matrix, as well as based on edges from within and between networks. In the 

latter case, networks containing less than 10 ROIs were excluded from the analysis.  

The connectome fingerprinting analysis was performed independently for each 

physiological process, as well as for each preprocessing strategy, using the generated FC 

matrices (Figure 4-8). This analysis was only performed on static FC matrices and not 

time-varying FC matrices because recurrent patterns of connectivity observed in the FCD 

matrices are not expected to occur at similar time instances between scans. 

4.7.7 Statistics 

To assess the significance of the results, surrogate nuisance datasets were generated via 

inter-subject surrogates (Lancaster et al., 2018), using fMRI data recorded from one 

subject’s scan and physiological signals recorded from a different subject’s scan (in the case 

of the head motion dataset, volume realignment parameters were employed). This 
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procedure was performed for all 1,568 scans, creating a surrogate dataset for each of the 

four examined physiological processes with the same dimensions as the evaluated datasets. 

Note that when creating each surrogate dataset, only the nuisance process being examined 

is replaced by signals from a different subject, whereas all other nuisance regressors 

remain the same. The same analyses described before were repeated using these surrogate 

datasets, generating a chance distribution against which the results were compared. Thus, 

the significance of the contributions of each nuisance process to the BOLD signal 

fluctuations were tested against the contributions found using the surrogate data (two-

sample t-test, 𝑝 < 0.05, Bonferroni corrected), and the similarity between the nuisance and 

“neural” FC matrices was compared against the similarity obtained using surrogate 

nuisance FC matrices. Note that for visualization purposes, similarity values identified as 

outliers (> 3 SD) are not displayed in Figure 4-2 and Figure 4-5. 

To assess the significance of the fingerprinting analysis, we performed nonparametric 

permutation testing as in (Finn et al., 2015). Briefly, the described fingerprinting analysis 

was repeated for all scans and database-target combinations, but for the identification test, 

the subject identity in the database set was permuted. In this way, a “successful” 

identification was designated when the highest correlation coefficient was between the FC 

matrices of two different subjects. As expected, for all the nuisance and “neural” datasets, 

the identification accuracy estimated with nonparametric permutation testing was around 

0.3%, which corresponds to the probability of selecting a specific subject from a group of 

392 subjects when the subject is selected at random. 
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Supp. Fig. 4-1. Whole-brain connectome patterns induced by nuisance processes, separately for scans 

with LR and RL phase encoding. Group averaged nuisance FC matrices across 784 scans based on their LR 

and RL phase encoding direction for (A) SLFOs, (B) head motion, (C) breathing motion, and (D) cardiac 

pulsatility. 

4.9 SUPPLEMENTARY MATERIAL 

  



113   •   Chapter 4 

Supp. Fig. 4-2. Effectiveness of preprocessing strategies in reducing the whole-brain connectivity 

profiles effects of each nuisance process for two different global signal calculation methods. 

Distribution of Pearson correlation coefficients across all 1,568 scans between the “neural” FC matrix after 

each preprocessing pipeline and nuisance FC matrices associated to (A) SLFOs, (B) head motion, (C) 

breathing motion, and (D) cardiac pulsatility, both when the global signal was computed across vertices in 

surface space (left column), and when the global signal was computed across the whole brain in volumetric 

space (right column). Correlation values were Fisher z transformed. 

  



Chapter 4   •   114 

Supp. Fig. 4-3. Effectiveness of preprocessing strategies in reducing the whole-brain connectivity effect 

of each nuisance process, with and without including model-based regressors. Distribution of Pearson 

correlation coefficients across all 1,568 runs between the “neural” FC matrix after each preprocessing pipeline 

and nuisance FC matrices associated to (A) SLFOs, (B) head motion, (C) breathing motion, and (D) cardiac 

pulsatility, when physiological regressors obtained from model-based techniques were included (right 

column) or not (left column) as nuisance regressors in the preprocessing strategies. Correlation values were 

Fisher z transformed. 
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Supp. Fig. 4-4. Examples of functional connectivity dynamics (FCD) profiles. Illustrative examples of FCD 

matrices from specific HCP subjects for several pre-processing pipelines (rows 1-6), SLFOs and head motion 

(rows 7 and 8, respectively). All the examples are from the HCP scan Rest1_LR. These subjects did not exhibit 

a large resemblance between FCD matrices computed from the “neural” datasets and FCD matrices computed 

from the nuisance datasets of SLFOs and head motion. Note that the WM200 preprocessing strategy 

substantially diminished the recurrent FC patterns. 
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Supp. Fig. 4-5. Whole-brain connectome patterns induced by nuisance processes and effect of 

preprocessing strategies, using the Seitzman atlas. (A-D) Group averaged “physiological” FC across all 

1,568 scans for (A) SLFOs, (B) head motion, (C) breathing motion, and (D) cardiac pulsatility. (E-H) 

Distribution of Pearson correlation coefficients across all 1,568 scans between the “neural” FC matrix after 

each preprocessing pipeline and nuisance FC matrices associated to (E) SLFOs, (F) head motion, (G) breathing 

motion, and (H) cardiac pulsatility. Correlation values were Fisher z transformed. 
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Supp. Fig. 4-6. Connectome fingerprinting results for the Seitzman atlas. (A) Fingerprinting accuracy 

obtained using the static FC matrices from the generated nuisance datasets where non-neural fluctuations 

were isolated from the BOLD data. (B) Fingerprinting accuracy obtained using the static FC matrices 

generated from each of the preprocessing strategies evaluated. 
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Supp. Fig. 4-7. Effectiveness of preprocessing 

strategies in reducing functional connectivity 

dynamics (FCD) profiles induced by 

physiological and motion processes, using the 

Seitzman atlas.  

Distribution of Pearson correlation coefficients 

across all 1,568 scans between the “neural” FCD 

matrix after each preprocessing pipeline and 

nuisance FCD matrices associated to (A) SLFOs, 

(B) head motion, (C) breathing motion, and (D) 

cardiac pulsatility. Correlation values were Fisher 

z transformed. 

 



 

 

  

Supp. Fig. 4-8. Illustration of methodology for modeling systemic low frequency oscillations (SLFOs) 

using the traces of heart rate and breathing activity. The respiratory flow was defined as the square of 

the derivative of the breathing signal. The cardiac and respiration response functions were estimated 

separately for each scan, using the methodology proposed in (Kassinopoulos and Mitsis, 2019a). Heart rate 

and respiratory flow were convolved with the cardiac and respiration response functions, respectively, in 

order to obtain the fluctuations of SLFOs. As can be seen in the example, SLFOs exhibit high correlation with 

the global signal (GS; the average correlation is 0.65 across all scans considered in this study). 
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Supp. Fig. 4-9. (A) Power spectral densities of the nuisance processes evaluated in the present study 

(as well as the global signal for reference). SLFOs mostly exhibit low-frequency fluctuations (<0.15 Hz). 

Breathing motion exhibits a peak at ~0.3 Hz, consistent with the average breathing rate across subjects. Head 

motion exhibits the same 0.3 Hz peak, underscoring the observation that realignment parameters are 

contaminated by breathing. We also observe a peak in head motion at ~0.12 Hz, recently attributed to deep 

breaths (Power et al. 2019), and a very narrow peak at 0.55 Hz that is likely due to scanner artifacts. The 

fMRI data is not sampled fast enough to capture cardiac pulsatility (~1 Hz), hence the effect of cardiac activity 

is aliased within a range of lower frequencies. Thus, any variation in heart rate during a scan as well as across 

subjects is likely to spread cardiac pulsatility artifacts across different frequencies, broadening the main 

spectral peak. (B) Power spectral density of head motion before and after regressing out breathing 

motion. Note the substantial decrease in power around 0.3 Hz after removing the effect of breathing motion. 

Both figures show the mean and standard error across subjects for scan Rest1_LR (similar results were 

observed for all other scans). 
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Supp. Fig. 4-10. Connectome fingerprinting. (A) Diagram of the target-database combinations between 

resting-state scans. (B) Example on how to compute the identification accuracy for a target-database pair. 

Figure based on Finn et al. (2015). 
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5.1 PREFACE 

The previous chapter provided evidence that regressing out the mean time-series across all 

voxels in the brain from the fMRI data (i.e. GSR) seems to be the best preprocessing method 

to successfully remove the global fluctuations associated with heart rate and breathing 

patterns. However, the dataset used in the previous chapter did not include concurrent 

direct measurements of neural activity, thus we could not exclude the possibility that GSR is 

removing signal of interest as well as physiological noise. To answer this question, the 

manuscript in this chapter describes an investigation of the underpinnings of the global fMRI 

signal using simultaneous EEG-fMRI data as well as concurrent physiological recordings. 

Furthermore, in this chapter we use the methodology developed in chapter 4 to investigate 

the effects of GSR on fMRI functional connectivity patterns related to physiological and EEG 

activity. The results of this chapter provide further evidence that GSR successfully reduces 

physiological noise and suggest that the potential loss of signal of interest through GSR may 

be negligible for functional connectivity fMRI studies. 
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5.2 ABSTRACT 

Functional brain connectivity has generated wide interest as a potential noninvasive 

biomarker, with resting-state fMRI having been used in several connectivity fingerprinting 

studies. In this context, one of the most controversial preprocessing strategies is global 

signal regression (GSR). While it has been shown that a considerable fraction of global 

signal variations is associated to physiological and motion sources, GSR may also result in 

removing global neural activity. Here, we examine the fundamental sources of resting 

global signal fluctuations using simultaneous EEG-fMRI data combined with cardiac and 

breathing recordings. We find that systemic physiological fluctuations account for a 

significantly larger fraction of global signal variance compared to electrophysiological 

fluctuations. Furthermore, we show that GSR reduces the artifactual connectivity due to 

heart rate and breathing fluctuations but preserves connectivity patterns associated with 

electrophysiological activity within the alpha and beta frequency ranges. Overall, these 

results provide evidence in favor of performing GSR in resting-state connectivity studies. 
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5.3 INTRODUCTION 

The study of the brain at rest has become a powerful tool towards revealing intrinsic 

characteristics of the functional brain organization. Even in the absence of overt behaviour, 

brain activity fluctuates in an organized fashion in the form of large-scale brain networks 

that resemble those observed during behavioral tasks (Biswal et al., 1995; Fox and Raichle, 

2007; Gratton et al., 2018; S. M. Smith et al., 2009). Functional magnetic resonance imaging 

(fMRI) is widely used to study resting-state activity of temporally correlated and spatially 

distributed brain regions. However, only a fraction of the recorded fMRI signal is of neural 

origin, with the remainder of the variance being thermal noise and artifacts. Furthermore, 

even this neurally driven fraction is not a direct measurement of neural activity, but an 

indirect measurement of the latter determined by neurovascular coupling mechanisms 

(Iadecola, 2017; Logothetis et al., 2001; Nikos K. Logothetis, 2008). Specifically, fMRI relies 

on changes in local cerebral blood flow (CBF) to detect neural activity, which suggests an 

important caveat as there are other processes that can also induce fluctuations in CBF.  For 

instance, changes in heart rate and breathing patterns (Birn et al., 2006; Shmueli et al., 

2007), variations in CO2 (Prokopiou et al., 2019; Wise et al., 2004), and arterial blood 

pressure (Whittaker et al., 2019) can induce significant fluctuations in CBF as well. The 

complexity of the fMRI signal renders the removal of non-neural components a crucial and 

challenging task, which is particularly exacerbated in resting-state studies where there is 

no a priori assumption for the temporal pattern of the underlying neural activity. Although 

there have been many advances on resting-state fMRI denoising (Caballero-Gaudes and 

Reynolds, 2017; Ciric et al., 2018), there is still no gold standard for resting-state fMRI 

preprocessing. 

Global signal regression (GSR), which typically involves regressing out the average fMRI 

signal across the whole brain (i.e. global signal) from every voxel, has been proposed as a 

technique to remove the often present fMRI global fluctuations (Aguirre et al., 1998; Fox et 

al., 2009; Macey et al., 2004). Yet, as the processes underpinning the global signal are still 

poorly understood, GSR has turned out to be one of the most contentious preprocessing 

steps in fMRI denoising (T. T. Liu et al., 2017; Murphy and Fox, 2017; Power et al., 2017a). 

The rationale behind GSR is that the global signal mostly encompasses non-neuronal 
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processes arising from physiological sources, head motion and scanner artifacts (Power et 

al., 2017b), and is therefore a highly effective data-driven approach to remove these global 

fluctuations that can also lead to artifactual functional connectivity (Burgess et al., 2016b; 

Ciric et al., 2017; Parkes et al., 2018; Xifra-Porxas et al., 2020). Indeed, GSR has been shown 

to increase the similarity of functional connectivity estimates across modalities (Keller et 

al., 2013). In addition,  recent studies found that GSR improves the identifiability of well-

established resting-state networks (Kassinopoulos and Mitsis, 2019a), as well as the 

association between resting-state functional connectivity and behavioral measures (Li et 

al., 2019b), which suggests that GSR can lead to fMRI data quality improvement. 

However, there is converging evidence from simultaneous electrophysiological-fMRI 

studies that neural activity is also strongly linked to the global signal. Early investigations, 

albeit not directly examining the global signal, showed that fluctuations in local field 

potentials exhibited fairly widespread correlations with fMRI activity over the macaque 

brain (Scholvinck et al., 2010). More recently, fluctuations of the global signal have been 

linked to electrophysiological indices of arousal (C. W. Wong et al., 2016; Wong et al., 2013) 

and glucose metabolism (Thompson et al., 2016). Furthermore, global resting-state 

fluctuations were found to at least partially stem from the basal forebrain (Liu et al., 2018; 

Turchi et al., 2018). Recently, Gutierrez-Barragan and colleagues showed that brain states 

occur at specific phases of global signal fluctuations in the mouse brain (Gutierrez-Barragan 

et al., 2019). In addition, individual variation in global signal topography has been associated 

with behavioral measures (Li et al., 2019a). All these reports suggest that GSR may 

potentially remove neuronal-related fluctuations that may be of interest in functional 

connectivity studies. 

Until now, most studies investigating the processes underpinning the global signal either 

probed its physiological or neural origin. The neurally-related fraction of the global signal 

seems to be associated to fluctuations in arousal and vigilance, likely regulated by the 

autonomic nervous system (Oken et al., 2006; Olbrich et al., 2011). However, these apparent 

neural fluctuations could be also associated with systemic changes such as heart rate and 

breathing variations, which would in turn be reflected on the fMRI signal. Hence, there is 

potentially a closed loop path through which neural autonomic activity could indirectly be 
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contributing to the global signal through changes in physiological signals. Therefore, both 

physiological and neural processes must be simultaneously taken into consideration to 

understand whether they explain similar variations of the global signal or they are two 

separate processes contributing to the global signal. 

While GSR is a more prevalent technique in resting-state studies, it was originally developed 

for task-based studies (Zarahn et al., 1997), and it is still frequently applied to fMRI task-

based scans (e.g. (Finn et al., 2015; Marek et al., 2018)). Given that neuronal contributions in 

the global signal likely stem from fluctuations in arousal and vigilance (Chang et al., 2016; 

Falahpour et al., 2018; C. K. Wong et al., 2016; Wong et al., 2013), these contributions could 

be larger in the absence of an engaging task (i.e. resting-state conditions), as retaining a 

constant level of vigilance is more challenging. However, (Glasser et al., 2018) found that 

application of GSR to task fMRI data led to reduced statistical sensitivity for detecting 

activations, suggesting the possibility that the global signal, in task-based studies, may also 

contain relevant neural signal. As previous simultaneous electrophysiological-fMRI 

investigations of the global signal only examined resting-state conditions, the contributions 

of neurally-related fluctuations in the global signal during behavioral tasks have not yet been 

elucidated. 

In this study, we used simultaneously acquired EEG-fMRI data, as well as physiological 

recordings, to quantify the unique and shared contributions of physiological and neural 

processes on the global signal, both at rest and during a motor task. Furthermore, we 

generated synthetic fMRI datasets that consisted of either systemic or electrophysiological 

fluctuations, and evaluated the similarity between connectivity estimates extracted from the 

synthetic and experimental fMRI datasets. This allowed us to examine the effects of GSR on 

connectivity estimates, and address explicitly whether eliminating the bias introduced by 

physiological processes inadvertently also removes the connectivity patterns related to 

electrophysiological activity. 
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5.4 MATERIALS AND METHODS 

5.4.1 Participants 

A total of 12 healthy volunteers (25.1 ± 2.9 years; 4 female) participated in the study. All 

subjects were right-handed according to the Edinburgh Handedness Inventory (Oldfield, 

1971) and had no history of neurological or psychiatric disorders. The study was approved 

by the McGill University Ethical Advisory Committee. All participants signed a written 

informed consent and were compensated for their participation. 

5.4.2 Experimental paradigm 

The protocol carried out inside the MR scanner consisted of two 15-min resting-state runs, 

alternated by a motor task (Figure 5-1a). During the resting-state periods, subjects were 

instructed to stare at a white fixation cross displayed on a dark background and not to 

think of anything in particular.  After the first rest period, the maximum voluntary 

contraction (MVC) was obtained for each participant, using the same hand gripper later 

employed for the motor task. The motor task was a unimanual isometric right handgrip, 

during which the subjects had to apply force to track a ramp target as accurately as 

possible. At the onset of the trial, an orange circle appeared on the screen and the subjects 

had 2 s to increase their force to reach a white target block at 15% of their MVC. This force 

was held for 3 s. Subsequently, participants tracked a linear increase of the force to reach 

30% of their MVC over a 3-s period, during which they had to maintain the circle inside 

the white target block, followed by a 3-s hold at 30% of their MVC (Figure 5-1b). A single 

trial lasted 11 s and the inter-trial interval was jittered between 3 and 5 s, during which 

subjects stared at a white cross. The task consisted of 50 trials, resulting in a total duration 

of about 13 min. Visual feedback was provided throughout the task. 

5.4.3 Data acquisition: EEG-fMRI data and physiological recordings 

All experiments were conducted at the McConnell Brain Imaging Centre (BIC) of the 

Montreal Neurological Institute (MNI), McGill University, using a 3T Siemens MAGNETOM 

Prisma fit MRI scanner (Siemens AG, Germany). A 32-channel head coil was used to acquire 
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whole-brain T2*-weighted functional gradient echo planar (EPI) data (3×3×4 mm3 voxels, 

TR=2120 ms, TE=30 ms, flip angle=90°, FOV=192×192 mm2, anterior-posterior phase 

encoding direction). Volumes were recorded in 35 transverse slices in descending order. A 

high-resolution structural volume was also acquired using a T1-weighted magnetization-

prepared rapid acquisition gradient echo (MPRAGE) sequence (TR=2300 ms, TE=2.32 ms, 

flip angle=8°, FOV=240×240 mm2, 0.9 mm3 isotropic voxels). 

EEG data were simultaneously recorded with an MR-compatible 64-channel system with 

Ag/AgCl ring-type electrodes (BrainAmp MR, Brain Products GmbH, Germany), sampled at 

5000 Hz. Electrode impedances were maintained below 20 kΩ. An equidistant electrode 

layout was used with AFz and Cz as ground and online recording reference, respectively. 

The EEG acquisition clock was synchronised with the MR scanner clock through a device 

that sent triggers to the EEG recording system every time an fMRI volume was acquired 

(TriggerBox, Brain Products GmbH, Germany). The electrodes were precisely localized 

using a 3-D electromagnetic digitizer (Polhemus Isotrack, USA). 

Figure 5-1. (a) Experimental paradigm. Participants underwent two resting-state scans with eyes open, 

alternated by a motor task. The maximum voluntary contraction (MVC) of each participant was obtained 

before performing the motor task. (b) Motor task. Participants performed a unimanual right handgrip task. 

In each trial, they fixated on a crosshair for a few seconds. This was followed by the appearance of an orange 

circle on the screen, where participants had 2 s to apply force to reach 15% of their MVC. A steady grip was 

then maintained for 3 s, which was followed by a guided ramp period where participants had to apply force 

to reach 30% of their MVC and sustain this grip strength for another 3 s. 
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Subject's cardiac and breathing measurements were continuously recorded throughout the 

experiment using a pulse oximeter and respiratory belt (BIOPAC Systems, Inc., USA). An 

MR-compatible hand clench dynamometer (BIOPAC Systems, Inc., USA) was used to 

measure the subjects’ hand grip strength during the motor paradigm. The pulse oximeter, 

respiratory belt and dynamometer were connected to an MP150 data acquisition system 

(BIOPAC Systems, Inc., USA) from which the signals were transferred to a computer, 

sampled at 1000 Hz. 

5.4.4  Preprocessing 

5.4.4.1 fMRI data 

The fMRI data were preprocessed using FSL (Jenkinson et al., 2012). More specifically, we 

performed automated brain extraction using BET, motion correction via volume 

realignment using MCFLIRT, spatial smoothing (5mm FWHM Gaussian kernel) and high-

pass temporal filtering (100 s cutoff). Additional preprocessing included motion censoring 

based on the frame-wise displacement (FD) and root mean square intensity change of BOLD 

signal across the whole brain (DVARS) measures (Power et al., 2012). Motion censoring 

was applied by discarding volumes with FD>0.25 mm or when DVARS exceeded its median 

absolute deviation by a factor of 3, as well as their adjacent volumes. Volumes with 

subthreshold values of FD and DVARS were also discarded if they were preceded and 

followed by flagged volumes. All scans from one participant were excluded from the analysis 

since more than 40% of volumes were identified as being contaminated by motion. 

Therefore, results from a total of 11 subjects are presented below. The censored fMRI data 

were coregistered to each subject's structural image and normalized to MNI space (2 mm). 

Subsequently, preprocessed data were parcellated into 300 regions of interest (ROIs) based 

on the Seitzman atlas (Seitzman et al., 2020). ROIs that were unassigned to a specific brain 

network were disregarded, hence a total of 285 ROIs were used for further analyses. To 

account for other sources of noise, we applied white matter denoising using principal 

component analysis (PCA) to the parcellated data (Kassinopoulos and Mitsis, 2019a). 

Specifically, 10 white matter PCA components were removed from the data, as this number 

was found to maximize the functional connectivity contrast (FCC) (Kassinopoulos and 



131   •   Chapter 5   

Mitsis, 2019a), which quantifies the difference in correlation values among edges within- 

and between-networks (Figure 5-2). Finally, note that when assessing the effects of GSR, 

we regressed out the PCA components and the global signal simultaneously. 

Figure 5-2. Selection of the number of PCA white matter components for fMRI denoising. (a) Illustration 

on how the calculation of the FCC measure was performed. (b-d) Group-averaged FCC measure as a function 

of the number of white matter PCA components used for denoising for (b) resting-state 1, (c) motor task, 

and (d) resting-state 2. The black line denotes mean across subjects and the shaded area denotes standard 

error. Based on these traces 10 PCA components were considered as the optimal number for denoising. 
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5.4.4.2 EEG data 

EEG data were corrected offline for gradient and ballistocardiogram (BCG) artifacts using 

sliding average template subtraction in BrainVision Analyzer 2 (Brain Products GmbH, 

Germany). Data were subsequently downsampled to 200 Hz and further processed with 

independent component analysis to remove remaining non-neural components such as 

ocular and muscle artifacts, as well as gradient and BCG residuals. The preprocessed data 

were re-referenced using the average of all channels. 

Time-frequency spectrograms were calculated for each EEG channel using Morlet wavelets 

and a global spectrogram was obtained by taking the root mean square of all spectra across 

all channels. Then, we extracted the instantaneous power time-series through averaging of 

the global spectrogram within the following frequency bands: delta (1.5-4 Hz), theta (4-8 

Hz), alpha (8-15 Hz) and beta (15-26 Hz). These global EEG power time-series were 

subsequently convolved with a canonical double-gamma haemodynamic response function 

and downsampled to the frequency of image volume sampling (TR=2.12 s). The censored 

frames flagged during fMRI preprocessing were removed from the convolved EEG power 

time-series. 

5.4.4.3 Physiological recordings 

Beat-to-beat intervals were detected from the pulse oximeter signal, and the heart rate 

signal was computed as the inverse of the time differences between pairs of adjacent peaks 

and scaled to beats-per-minute (bpm). Heart rate traces were visually examined to identify 

outliers, and an outlier replacement filter was used to eliminate spurious changes in heart 

rate. The breathing signal from the respiratory belt was detrended linearly, visually 

inspected and corrected for outliers using a replacement filter, low-pass filtered at 5 Hz, 

and z-scored. The respiratory flow, proposed in (Kassinopoulos and Mitsis, 2019a) as a 

robust measure of the absolute flow of inhalation and exhalation of a subject at each time 

point, was extracted by further smoothing the breathing signal (moving average filter using 

a 1.5 sec window) and, subsequently, computing the square of the derivative of the 

smoothed breathing signal. Both heart rate and respiratory flow signals were resampled to 

10 Hz.  
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Following this, we modelled systemic low-frequency oscillations (SLFOs) associated with 

heart rate and breathing patterns using a recently developed method that computes scan-

specific physiological response functions (PRFs) (Kassinopoulos and Mitsis, 2019b, scripts 

available on https://github.com/mkassinopoulos/PRF_estimation/). Briefly, this algorithm 

estimates PRF curves so that the convolution between heart rate and respiratory flow with 

their corresponding PRFs optimizes the fit on the global signal of the same scan, while 

ensuring that the shapes of the PRF curves are physiologically plausible. The heart rate and 

respiratory flow were convolved with their respective PRFs and added to obtain a time-

series that reflects the effect of SLFOs. 

5.4.5 Data analyses 

We initially quantified the variance explained by SLFOs and EEG power in the fMRI global 

signal using partial correlation. Specifically, the contribution of SLFOs to the global signal 

was computed controlling for the EEG power time-series, and the contribution of each EEG 

power was computed controlling for SLFOs. To assess the significance of these 

contributions to the global signal, surrogate data were generated via inter-subject 

surrogates (Lancaster et al., 2018), using physiological and EEG power time-series from 

different subjects. The observed contributions were tested against the contributions found 

using the surrogate data through the Wilcoxon rank-sum test. The significance level was 

set to 0.05, and the p-values for the EEG bands were adjusted for multiple comparisons 

using the false discovery rate (FDR) method. 

Subsequently, we quantified the contributions of SLFOs and EEG power time-series within 

each fMRI ROI using multiple linear regression, as follows: 

𝑦(𝑡) = 𝛽0 + 𝛽𝑆𝐿𝐹𝑂𝑠𝑥𝑆𝐿𝐹𝑂𝑠(𝑡) + 𝛃𝐸𝐸𝐺𝐱𝐸𝐸𝐺(𝑡) + 𝛃𝑃𝐶𝐴_𝑊𝑀𝐱𝑃𝐶𝐴_𝑊𝑀(𝑡) + 𝜀(𝑡) (5.1) 

𝛃𝐸𝐸𝐺 = [𝛽𝑑𝑒𝑙𝑡𝑎 𝛽𝑡ℎ𝑒𝑡𝑎 𝛽𝑎𝑙𝑝ℎ𝑎 𝛽𝑏𝑒𝑡𝑎],  𝛃𝑃𝐶𝐴_𝑊𝑀 = [𝛽𝑝𝑐𝑎1 ⋯ 𝛽𝑝𝑐𝑎10]  

𝐱𝐸𝐸𝐺(𝑡) =

[
 
 
 
𝑥𝑑𝑒𝑙𝑡𝑎(𝑡)

𝑥𝑡ℎ𝑒𝑡𝑎(𝑡)

𝑥𝑎𝑙𝑝ℎ𝑎(𝑡)

𝑥𝑏𝑒𝑡𝑎(𝑡) ]
 
 
 

,   𝐱𝑃𝐶𝐴_𝑊𝑀(𝑡) = [

𝑥𝑝𝑐𝑎1(𝑡)

⋮
𝑥𝑝𝑐𝑎10(𝑡)

] 

 

https://github.com/mkassinopoulos/PRF_estimation/
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where 𝑦 is an fMRI ROI time-series, 𝑥𝑆𝐿𝐹𝑂𝑠(𝑡) is the physiological regressor related to low 

frequency fluctuations in heart rate and breathing patterns, 𝐱𝐸𝐸𝐺(𝑡) are the four EEG power 

time-series, 𝐱𝑃𝐶𝐴_𝑊𝑀(𝑡) are the 10 PCA components from white matter, the values 

{𝛽0, 𝛽𝑆𝐿𝐹𝑂𝑠, 𝛃𝐸𝐸𝐺 , 𝛃𝑃𝐶𝐴_𝑊𝑀} represent the parameters to be estimated, and 𝜀 is the error.  

Synthetic fMRI datasets were generated for each subject based on the SLFOs and EEG 

contributions, following the same methodology as in (Xifra-Porxas et al., 2020). Briefly, 

each synthetic dataset was constructed so that the variance explained by SLFOs, as well as 

EEG alpha and beta power for each ROI was retained and the remaining variance was 

replaced with uncorrelated random signals. We only considered the alpha and beta power 

bands because these were the only EEG bands that significantly contributed to the global 

signal (Figure 5-3). We then computed the correlation between ROIs across the entire scan 

(i.e. static functional connectivity matrices) for the following datasets: raw experimental 

fMRI, preprocessed experimental fMRI without GSR, preprocessed experimental fMRI with 

GSR, SLFOs synthetic fMRI, alpha power synthetic fMRI, and beta power synthetic fMRI. To 

quantify the similarity between the SLFOs, alpha power and beta power connectivity 

matrices with respect to the fMRI connectivity matrices at different preprocessing stages, 

we calculated the correlations between their upper triangular values. The goal was to 

assess the effect of GSR on the similarity between SLFOs and fMRI connectivity, as well as 

EEG power and fMRI connectivity. 
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5.5 RESULTS 

5.5.1 Association of SLFOs and EEG power with the fMRI global signal 

In line with previous studies (Birn et al., 2006; Kassinopoulos and Mitsis, 2019b; Power et 

al., 2017a; Shmueli et al., 2007), SLFOs were significantly correlated with the global signal, 

both at rest and during the motor task (Figure 5-3). Regarding the EEG bands, alpha power 

was negatively correlated with the global signal both at rest and during the motor task 

(Figure 5-3), and beta power was negatively correlated with the global signal during the 

motor task (Figure 5-3b). It is worth noting that the correlation strength of alpha and beta 

fluctuations with the global signal, albeit significant, was much weaker compared to the 

correlation between SLFOs and the global signal. Furthermore, the mean correlation across 

subjects for the full model containing both SLFOs and significant EEG power bands was equal 

to 0.64 ± 0.12 (resting-state 1), 0.64 ± 0.09 (motor task), and 0.59 ± 0.09 (resting-state 2). 

Moreover, alpha power was found to be negatively correlated with SLFOs (𝑅 = −0.09, 𝑝 =

0.02) during resting-state 1. This correlation vanished when alpha and SLFOs were 

controlled for global signal fluctuations (R=0.02, p=0.84), which may suggest a common 

component between those two variables that is reflected on the global signal, possibly 

Figure 5-3. Partial correlation of SLFOs and EEG power time-series with the fMRI global signal across 

subjects for (a) resting-state 1, (b) motor task, and (c) resting-state 2. Significance testing against 

surrogate data (Wilcoxon rank-sum test, * p < 0.05, ** p < 0.001). The p-values for the four EEG bands were 

corrected for multiple comparisons using FDR. SLFOs were highly correlated with the global signal, whereas 

alpha and beta power fluctuations were weakly correlated with global signal variations. 
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reflecting a direct or indirect effect of autonomic activity. Yet, we were unable to replicate 

this result during the motor task or resting-state 2 (i.e. alpha power was not significantly 

correlated with SLFOs). Finally, delta and theta power did not yield a consistent 

contribution to the global signal across subjects for any of the scans. 

5.5.2 GSR effects on fMRI-based connectivity estimates related to EEG activity 

For each subject and scan, connectivity matrices were derived using the synthetic dataset 

generated from SLFOs, which highlighted the connectivity edges more prone to exhibit 

artifactual connectivity attributable to SLFOs. We found that fluctuations due to SLFOs 

artifactually increased the connectivity across most brain networks and particularly within 

the visual network, as well as between the visual network and other brain networks 

(Figure 5-4a), consistent with previous observations using a larger number of subjects 

(Xifra-Porxas et al., 2020). Furthermore, the effect of SLFOs on the visual network were 

found to be spatially homogenous at rest, whereas during the motor task specific edges 

were more affected than others (Figure 5-4a). Consistent with our earlier study (Xifra-

Porxas et al., 2020), GSR reduced the similarity between the SLFOs’ and the fMRI 

connectivity matrices both at rest and during the motor task (Figure 5-4b). This result 

supports the extensive evidence that, at least with respect to mitigating nuisance processes, 

GSR is effective. 

To determine whether applying GSR also removed substantial EEG power fluctuations, we 

derived connectivity matrices using the fMRI synthetic datasets generated based on the 

fraction of BOLD variance attributed to alpha and beta power, thus highlighting the edges 

underpinning connectivity of neural origin. At rest, alpha power variations mostly 

contributed to connectivity within the visual network and dorsal attention network as well 

as between these two networks (Figure 5-5a). On the other hand, during the motor task, 

alpha power variations mostly contributed to connectivity within the default mode network 

(Figure 5-5a), whereas beta power variations mainly contributed to connectivity within 

some edges of the visual network (Figure 5-5c). Subsequently, we evaluated whether 

performing GSR on the preprocessed fMRI data significantly removed the connectivity 

signature of these neural processes. As we can see in Figure 5-5b & Figure 5-5d, GSR did 
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not have any significant effect on the similarity between the EEG-related signatures and 

fMRI connectivity matrices, either for alpha or beta power variations. 

 

Figure 5-4. Effect of GSR on connectome patterns induced by SLFOs. (a) Group averaged FC matrices 

computed using the synthetic dataset based on the contributions of systemic low frequency fluctuations 

(SLFOs) to each fMRI parcel time-series, for each scan. (b) Similarity between the SLFOs’ FC matrices and 

the FC matrices extracted from the raw data, the preprocessed data (i.e. fMRI data after regressing out 10 PCA 

white matter components; WM10), and the preprocessed data after global signal regression (GSR). GSR 

significantly reduced the bias in connectivity introduced by SLFOs (Wilcoxon rank-sum test, * p < 0.05, ** p 

< 0.005). Error bars denote standard deviation. 
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Figure 5-5. Effect of GSR on connectome patterns associated with EEG power. (a) Group averaged FC 

matrices computed using the fMRI synthetic dataset associated with fluctuations in alpha power, for each 

scan. (b) Similarity between the alpha band EEG-based FC matrices and the FC matrices extracted from the 

raw data, the preprocessed data (i.e. fMRI data after regressing out 10 PCA white matter components; WM10), 

and the preprocessed data after global signal regression (GSR). (c) Group averaged FC matrices computed 

using the fMRI synthetic dataset associated with fluctuations beta power, for the motor task. (d) Similarity 

between the beta band EEG-based FC matrices and the FC matrices extracted from the raw data, the 

preprocessed data (WM10), and the preprocessed data after GSR. GSR did not significantly reduce the 

connectivity related to EEG activity (Wilcoxon rank-sum test). In all subplots, error bars denote standard 

deviation. n.s. = not significant. 
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5.6 DISCUSSION 

GSR is a widely used preprocessing step to remove global artifacts (mostly heart rate, 

respiratory effects; SLFOs) from fMRI data  (Ciric et al., 2017; Parkes et al., 2018; Power et 

al., 2018, 2017b), but remains highly controversial because it may also discard neural 

signals (T. T. Liu et al., 2017; Murphy and Fox, 2017). Up to date, the vast majority of studies 

investigating the origins of the global signal and evaluating the potential effects of GSR have 

examined fMRI data concurrently with either physiological or electrophysiological 

recordings, but not both. In the present study, we used simultaneous EEG-fMRI data, as well 

as cardiac and breathing recordings, to examine the processes underpinning the global signal 

and the impact of GSR on measures of brain activity and connectivity related to systemic and 

neural fluctuations. Our results show that the global signal is strongly associated with 

physiological processes (R ~ 0.6) and only weakly associated with EEG power fluctuations 

(R ~ -0.1). We further demonstrate that GSR effectively removes the structured connectome 

patterns induced by physiological processes, while preserving the connectome patterns 

associated with EEG power bands. These results provide evidence that, in the context of 

connectivity analyses, GSR improves the denoising of fMRI data and does not seem to alter 

the connectivity profiles associated with electrophysiological activity. 

5.6.1  Association of SLFOs and EEG power with the fMRI global signal 

We first evaluated the unique contributions of SLFOs and EEG activity to the global signal. 

SLFOs was found to explain a large fraction of global signal variance at rest (Figure 5-3a, 

Figure 5-3c), consistent with several earlier studies (Birn et al., 2006; Chang and Glover, 

2009a; Erdoğan et al., 2016; Kassinopoulos and Mitsis, 2019b; Power et al., 2017b),  as well 

as during the motor task (Figure 5-3b). Alpha power was found to be negatively correlated 

with the global signal for all scans (Figure 5-3,a-c), consistent with earlier work (T. T. Liu et 

al., 2017), and beta power was found to be negatively correlated with the global signal during 

the motor task (Figure 5-3b). Our results suggest that contributions of electrophysiological 

origin to the global signal, albeit significant, are substantially smaller than physiological 

contributions. 
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A possible explanation for this is that the correlation sign between fMRI fluctuations and EEG 

activity may vary across brain regions and, thus, when averaging fMRI signals across the 

whole brain, these electrophysiological fluctuations, to some extent, cancel out. Several 

studies have reported that, during resting conditions, alpha activity is negatively correlated 

with sensorimotor areas but positively correlated with default-mode regions (D Mantini et 

al., 2007; Mayhew and Bagshaw, 2017; Scheeringa et al., 2012). These trends were also 

observed in our data, resulting in the presence of both positively and negatively correlated 

activity in Figure 5-5a. Therefore, it is indeed likely that the weak relationship between 

global signal and EEG activity may be due to differences in polarity of associated fMRI activity 

across regions. 

5.6.2 Association between SLFOs and alpha power 

Furthermore, we observed that alpha power and SLFOs were negatively correlated during 

resting-state 1, albeit weakly. This finding was not replicated during the motor task and 

resting-state 2. The weak association between SLFOs and alpha activity may be due to that 

subjects had their eyes open, which is in agreement to previous work that has demonstrated 

an association between respiration and alpha power during an eyes closed condition but not 

during eyes open (Yuan et al., 2013). Independent of this, shared contributions from SLFOs 

and alpha activity to the global signal, which would potentially reflect a direct or indirect 

effect of autonomic activity, were not consistently observed in our data. Therefore, our 

results seem to indicate that the major contributor to the global signal is physiological in 

origin. 

5.6.3 Effect of GSR on connectome patterns associated with SLFOs and EEG 

power 

We initially assessed the systematic effect of SLFOs on estimates of functional connectivity. 

The grand-averaged functional connectivity matrices calculated from the SLFOs synthetic 

datasets exhibited a heterogeneous pattern, characterized by stronger correlations within 

and between sensory cortices, including the visual cortex, somatosensory cortex and 

auditory cortex, as well as subcortical regions such as the thalamus and cerebellum (Figure 
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5-4a). This heterogeneity among brain regions is not surprising as it has been reported that 

global signal fluctuations are non-uniformly distributed across the brain (Fox et al., 2009; 

Kassinopoulos and Mitsis, 2019b; Power et al., 2017b). Furthermore, the artifactual 

connectivity patterns due to SLFOs observed here were similar to these reported in our 

recent study where a large number of healthy subjects from the Human Connectome Project 

(HCP) dataset was used (Xifra-Porxas et al., 2020). Specifically, we were able to replicate 

our previous results in cortical regions, and further showed artifactual connectivity within 

and between subcortical regions such as the thalamus and cerebellum, which we were 

unable to observe in the HCP dataset, likely due to poor signal-to-noise ratio in the 

subcortex (Ji et al., 2018; Seitzman et al., 2020). Moreover, we observed a task-related effect 

on the SLFOs connectivity pattern (Figure 5-4a), whereby contributions of SLFOs on the 

fMRI data were weaker during the motor task and the second resting-state period. This 

observation may seem paradoxical as the contribution of SLFOs to the global signal did not 

significantly decrease across scans (Figure 5-3), but may be explained by the fact that 

global signal fluctuations were found to be reduced during the motor task and the second 

resting-state period compared to the first resting-state period (Supp. Fig. 5-1). This 

observation may also indicate that subjects were more alert during and after the motor task 

(Wong et al., 2013; Yeo et al., 2015), but it could reflect the effect of circadian/ultradian 

physiological fluctuation effects, given that scanning started at 6pm for all subjects and it has 

been reported that global signal fluctuation decreases as the day progresses (Orban et al., 

2020). 

The grand-averaged functional connectivity matrices calculated from the fraction of BOLD 

variance explained by alpha and beta power fluctuations revealed structured patterns 

(Figure 5-5a, Figure 5-5c). At rest, fluctuations in alpha power were associated with 

positively correlated fMRI connectivity mostly within and between visual and dorsal 

attention networks (Figure 5-5a). Fluctuations in alpha power were also associated with 

anticorrelations of visual and dorsal attention networks with the default mode network and 

several subcortical regions. These results are consistent with earlier work reporting a 

positive association of alpha power fluctuations with fMRI activity in the default mode 

network as well as several subcortical regions, and a negative association between alpha 
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power and fMRI activity in sensory regions (Bowman et al., 2017; Jann et al., 2009; D Mantini 

et al., 2007; Mayhew and Bagshaw, 2017; Mo et al., 2013; Moosmann et al., 2003; Scheeringa 

et al., 2012). During the motor task, we found that alpha power was associated with fMRI 

connectivity within the default mode network (Figure 5-5a), which has been suggested to 

arise as a result of alpha patterns of synchronization/desynchronization during a task being 

analogous to the default mode fluctuations of activation/deactivation (Mayhew et al., 2013; 

Mo et al., 2013). Furthermore, fluctuations in beta power were mostly associated with 

positively and negatively correlated activity within the visual and default mode networks 

(Figure 5-5c).  

Regarding the effect of GSR on the estimates of functional connectivity, our recent work 

(Xifra-Porxas et al., 2020) provided evidence that GSR seems to be most effective method 

for removing systematic biases on measures of functional connectivity that arise due to 

SLFOs. However, since we did not have electrophysiological recordings, we were unable to 

assess whether GSR also removed signal of interest. In the present study, we sought to 

answer this question. First, we showed that, as expected, GSR significantly reduced the 

connectivity patterns attributed to SLFOs, both at rest and during the motor task (Figure 

5-4b). It is worth noting that even though we used a relatively aggressive preprocessing 

pipeline (i.e. 10 PCA components from white matter) (Kassinopoulos and Mitsis, 2019a), 

performing GSR was still found to be beneficial. Considering that in a large number of fMRI 

studies only the average signals from white matter and cerebrospinal fluid compartments 

are regressed out, our results suggest that the effectiveness of GSR with respect to artifact 

removal would have been even more pronounced for such a mild preprocessing pipeline. 

Second, we found that GSR did not have any effect on the fMRI connectivity patterns 

attributed to alpha (Figure 5-5b) and beta (Figure 5-5d) electrophysiological power, 

neither at rest nor during the motor task. These results suggest that, even though we found 

significant correlations between EEG power bands and the global signal (Figure 5-3), the 

observed associations are not strong enough to significantly alter the connectivity patterns 

associated with EEG activity after GSR. This is to some extent supported by the findings 

reported in a recent study involving macaque monkeys, where it was shown that, while 

inactivation of the basal forebrain led to selective suppression of ipsilateral global 
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components, resting-state brain networks preserved their distinctive topography (Turchi 

et al., 2018). Overall, the current results align with the view that the benefits of GSR in terms 

of fMRI denoising outweigh the small loss of neural information (Li et al., 2019a, 2019b). 

5.6.4 Limitations 

Despite the large fraction of the global signal variance that was explained by SLFOs, and to a 

lesser extent EEG power (Figure 5-3), there was still variance unaccounted for. The EEG 

signal is not a perfect reflection of neural activity and is known to be considerably noisy in 

the MR environment, as well as blind to deep sources. Therefore, there may be additional 

neural activity in the global signal that we were unable to detect. Likewise, there are other 

physiological factors not considered here that are known to give rise to SLFOs and are 

reflected on the global signal, such as finger skin vascular tone (Özbay et al., 2019) and 

arterial CO2 changes (Prokopiou et al., 2019; Wise et al., 2004). Future studies using more 

direct surrogates of neuronal activity (e.g. intracranial EEG) are needed to confirm whether 

crucial neural information is being removed through GSR. 

Furthermore, in this study we examined resting conditions and a motor task, but results 

could be different during other conditions, such as sleep (Duyn et al., 2020) or when 

investigating diurnal variations in large-scale spontaneous brain activity (Orban et al., 2020).  
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5.7 CONCLUSIONS 

Our results demonstrate that the global signal has a stronger association with SLFOs rather 

than neural activity and provide further evidence that GSR effectively removes confounds 

in functional connectivity induced by SLFOs. While we also found a reproducible association 

between alpha and beta EEG activity and the global signal, our results suggested that GSR 

did not seem to disrupt the functional connectivity patterns attributed to alpha and beta 

activity. 
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5.9 SUPPLEMENTARY MATERIAL 

  

Supp. Fig. 5-1. Mean global signal fluctuation (standard deviation of the global signal) across participants for 

each scan. Error bars denote standard error of the mean. Significance testing using the sign-rank test (* p <0.05, 
+ p <0.1). 



 

 

6 
General discussion 

6 General discussion 

 

 

6.1 SUMMARY OF FINDINGS AND DISCUSSIONS 

The work presented in this thesis has contributed to the field of neuroimaging in two main 

aspects. First, it has enhanced our understanding of motor-related brain oscillations in the 

context of healthy aging. Second, it has shed novel insights into the neural and physiological 

sources of static and time-varying fMRI-based functional connectivity by developing a new 

methodology to assess preprocessing strategies and applying it to fMRI and simultaneous 

fMRI-EEG data.  

In Chapter 3, we investigated the effects of aging on the modulation of beta oscillations 

during handgrip contractions. Our results complemented previous research showing an 

increased beta desynchronization during dynamic contractions in older relative to younger 

adults (Heinrichs-Graham and Wilson, 2016; Hübner et al., 2018a; Schmiedt-Fehr et al., 

2016), and demonstrated that this larger beta desynchronization extended beyond the 

primary motor cortices to frontal and premotor brain regions. Conversely, during sustained 

contractions, we provided new evidence showing similar levels of beta desynchronization 

(with respect to resting beta levels) between age groups. Altogether, these results indicate 

that older adults exhibit a larger modulation of beta power compared to their younger 

counterparts during a sequence of sustained and dynamic contractions, both during uni- and 

bimanual handgrips.  
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In Chapter 4, we developed a framework for characterizing the whole-brain functional 

connectivity profiles of the main confounds of fMRI variability. These include global 

confounds that arise from fluctuations in heart rate and breathing patterns (i.e. SLFOs), head 

motion, breathing motion, and cardiac pulsatility. We quantified the functional connectivity 

signatures of these confounds at the individual level and then examined their consistency at 

the group level. Our results revealed that the connectivity profiles of SLFOs, head motion and 

breathing motion exhibit a structured pattern, suggesting that these processes introduce a 

systematic bias on estimates of functional connectivity, if they are not properly accounted 

for. Specifically, SLFOs induce increased positive correlations across the whole brain, 

particularly within and between the visual network. Head motion introduces artifactual 

connectivity within the sensorimotor and visual networks; and breathing motion increases 

within-hemisphere connectivity, which we demonstrated is attributable to the phase 

encoding direction. We then examined the potential subject specificity of these nuisance 

functional connectivity profiles and found that their individual variability was quite reliable 

across scans, particularly for SLFOs. Furthermore, we evaluated the capability of several 

state-of-the-art preprocessing strategies in mitigating the effects of the considered nuisance 

processes. We showed that data-driven techniques based on decomposing the data into 

principal or independent components (PCA, ICA), combined with global signal regression 

(GSR), were  more successful in reducing the effects introduced by physiological and head 

motion confounds. Finally, we examined whether the identification of subjects based on their 

functional connectivity profiles (connectome fingerprinting) is reduced when applying 

denoising strategies that successfully remove these confounds, given that the observed 

subject specificity of some of these nuisance processes could be contributing to subject 

identification. Encouragingly, our results showed that the best preprocessing strategies also 

yielded the highest subject identification accuracy, suggesting that the inter-individual 

differences in functional connectivity that facilitate identification are strongly neural in 

nature and do not largely stem from physiological processes or head motion.  

In Chapter 5, we sought to shed light on the controversy with regards to regression of the 

global fMRI signal (Murphy and Fox, 2017). Using a dataset comprising simultaneous EEG-

fMRI and physiological recordings, we first examined the physiological and neural basis of 
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the global fMRI signal. We found that physiological fluctuations explained a larger fraction of 

the global signal variance compared to EEG activity. Nonetheless, albeit small, we found 

consistent associations of EEG activity with global signal fluctuations, which were reliably 

detected at rest and during a motor task. We subsequently examined whether performing 

GSR had any impact on estimates of functional connectivity linked to neural activity. Using 

the framework developed in Chapter 4, we extracted the whole-brain functional connectivity 

profiles associated with alpha and beta activity, as well as physiological global fluctuations 

(i.e. SLFOs). We first showed that GSR significantly reduced the artifactual connectivity 

profiles induced by SLFOs, replicating our results in Chapter 4. Finally, we showed that GSR 

did not significantly alter the fMRI connectivity profiles related to alpha or beta activity. Our 

results suggest that the amount of neural-related explained variance in the global signal is 

not strong enough to alter the connectivity profiles emerging from the EEG activity. 

 

6.2 FUTURE RESEARCH 

6.2.1 Future directions with respect to chapter 3  

Chapter 3 contributed knowledge to the age-related neural correlates of motor control. 

Given the prevalence of motor control impairments in older adults, it is crucial to 

characterize the motor-related neural correlates of healthy aging if measures such as MRBD 

and PMBR are to become clinical markers of disease. For instance, it has been reported that 

MRBD is diminished in Parkinson’s disease (Heinrichs-Graham et al., 2014), whereas a 

delayed PMBR and larger MRBD was found in patients with amyotrophic lateral sclerosis 

(Proudfoot et al., 2017). However, these investigations mainly focused on dynamic 

contractions. Future research examining sustained contractions in clinical populations might 

provide new insights into the neuropathology of motor disorders. 

Furthermore, our results yield promise for identifying novel targets to design therapeutic 

interventions using non-invasive brain stimulation techniques (Cespón et al., 2018; Tatti et 

al., 2016). Even though the regions that exhibited increased MRBD in older adults did not 

exhibit an association with performance, we identified a link with behavior beyond age on 
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the primary motor cortices, whereby smaller (i.e. less negative) MRBD was associated with 

better task performance. These findings are in agreement with previous investigations 

reporting decreases in MRBD after motor learning (Espenhahn et al., 2019) or acute exercise 

(Dal Maso et al., 2018; Hübner et al., 2018b). Related to this, future research could aim 

entraining beta oscillations while subjects perform a motor task to improve their 

performance. However, it should be taken into consideration that exceeding the resting-state 

beta levels could induce the opposite effect, as application of transcranial alternating current 

stimulation within the beta frequency band has been shown to slow movements (Joundi et 

al., 2012; Pogosyan et al., 2009). Another possible avenue would be to entrain beta 

oscillations on the contralateral primary motor cortex during the intertrial periods of a task, 

as recent investigations have shown an association between contralateral PMBR and motor 

learning (Espenhahn et al., 2020, 2019).  

6.2.2 Future directions with respect to chapter 4 

The framework developed in Chapter 4 opens many avenues to extend the current study. For 

instance, it would be interesting to explore whether similar nuisance functional connectivity 

profiles arise when participants are engaged in a behavioral task, considering recently 

observed ordered physiological modulations of fMRI signals during an auditory paradigm 

(Chang et al., 2019). The HCP dataset contains a wide-ranging selection of 3T task-evoked 

fMRI scans engaging a broad range of neural systems (Van Essen et al., 2012); therefore, it is 

well suited to pursue this avenue of research. Furthermore, a subset of 200 subjects were 

also scanned using a 7T scanner, which could be used to investigate the influence of field 

strength on the connectivity profiles of nuisance processes, given that the influence of 

physiological sources increases at ultra-high field fMRI (Triantafyllou et al., 2011, 2005).  

Moreover, a recent study using the HCP dataset showed that global signal variation during 

the day did not follow the chronotype characteristic of arousal levels (higher at late morning 

and early evening than in mid-afternoon). Instead, it exhibited a steady decrease during the 

day (Orban et al., 2020), possibly related to cerebral blood flow increases from morning to 

evening (Braun et al., 1997; Elvsåshagen et al., 2019). Therefore, it would be interesting to 

examine whether nuisance functional connectivity patterns exhibit any change with respect 
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to time of day, particularly those associated with SLFOs, and potentially provide a time 

window that is less prone to nuisance biases in functional connectivity. 

Looking ahead, the developed framework could be applied to fMRI studies comparing 

populations, particularly those in which differences in heart rhythms, breathing, or motion 

are expected. For instance, a large-scale dataset that would be worth examining in this 

context is the HCP Aging (Bookheimer et al., 2019). Older adults demonstrate vascular 

differences compared to young adults (Tsvetanov et al., 2019, 2015), as well as lower HR 

variability (O’Brien et al., 1986). Further, differences in motion between young and older 

participants are known to bias functional connectivity analyses (van Dijk et al., 2012). A 

better characterization of the nuisance connectivity profiles in aging could help distinguish 

the age effects on physiological processes and head motion versus neural function.  

Moreover, an exciting new avenue is to leverage the physiologically-driven variations of the 

fMRI signal to characterize vascular physiology, instead of discarding them as confounds. In 

such instances, the “nuisance” connectivity profiles discussed in Chapter 4 may provide 

meaningful insights into impairments in cerebral blood flow regulation (e.g. stroke, 

Moyamoya disease). This emerging field of “physiological MRI” holds great potential in 

establishing clinical biomarkers of cerebrovascular diseases and neurodegenerative 

diseases associated with vascular dysfunction (Lu, 2019). 

Additionally, future work could examine the effects of other sources of noise that are known 

to influence fMRI signals, such as blood pressure fluctuations (Whittaker et al., 2019) and 

levels of CO2 (Prokopiou et al., 2019; Wise et al., 2004), through data collection of targeted 

fMRI recordings with concurrent measurements of blood pressure and/or end-tidal CO2 

concentration. This line of research could help validate the notion that data-driven 

approaches correct for these confounds.  

6.2.3 Future directions with respect to chapter 5 

Chapter 5 examined the contributions of systemic and neural signals on global fMRI 

fluctuations, as well as the effect of GSR on whole-brain functional connectivity profiles 

related to EEG activity. Specifically, we examined electrophysiological activity associated 
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with delta, theta, alpha and beta power fluctuations. Alpha activity was particularly relevant 

to the study as it is related to arousal (Cantero Lorente et al., 1999) and global signal 

variations have been attributed to changes in vigilance levels (C. W. Wong et al., 2016; Wong 

et al., 2013). Nonetheless, it would be worth exploring whether more direct measures of 

arousal (e.g. electrodermal activity, eye tracking) could provide a better insight into the 

contributions of arousal on global fMRI fluctuations, following landmark work in macaque 

monkeys (Chang et al., 2016). Furthermore, additional physiological measures that are 

known to explain a fraction of the global fMRI signal should be taken into consideration in 

future studies, such as finger skin vascular tone based on PPG amplitude (Özbay et al., 2019). 

Moreover, the proposed framework could be used to assess the effects of GSR in the context 

of other behavioral tasks (e.g. auditory), in order to inform future studies about the validity 

of applying GSR when studying a different neural substrate than the one evaluated in the 

present work (i.e. a motor paradigm).  

Finally, we used a canonical HRF to model neurovascular coupling. However, the dynamics 

of the HRF may be different during resting-state conditions, as recent investigations seem to 

point towards a faster HRF at rest (Chen and Glover, 2015). Future research could entail 

constructing scan- and/or task-specific HRFs to model the link between neural activity and 

the BOLD signal, and test whether this would lead to a larger contribution of neural activity 

on global fMRI fluctuations. 
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