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ABSTRACT

This manusript based thesis explores the consequences of string gas
cosmology for the moduli problem in string theory. We compile three
published papers which set up the formalism and technique of massless
string gas cosmology as developed by the author in collaboration with
Robert Brandenberger, and explores the consequences of such a framework
for late time cosmology. We find that when consistently coupled to the
massless background of string theory (given a fixed dilaton), a fluid of
massless strings can stabilize all radial and shape moduli of a toroidal
compactification of bosonic or heterotic string theory. This stabilization
mechanism is consistent with observational bounds coming from fifth
force experiments and reproduces all of the desirable features of late time
cosmology. We identify the open issues associated with the string gas
framework as it stands, and propose directions for future work. We also
investigate the possibility that string gas cosmology might offer a dynamical

solution to the moduli problem.
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ABREGE

Cette these basée par manusript explore les conséquences de la cos-
mologie de gaz des cordes pour le probleme de modules dans la théorie
des cordes. Nous compilons trois papiers publiés qui installent le formal-
isme et la technique de la cosmologie de gaz des cordes sans masse comme
développée par 'auteur en collaboration avec Robert Brandenberger, et
explorons les conséquences d’'un tel cadre pour la cosmologie de temps tar-
dives. Nous constatons qu'une fois uniformément couplé au fond sans masse
de la théorie de corde (donn’ee un dilaton fixe), un fluide des cordes sans
masse peut stabiliser tous les modules de radial et de forme d’'un compactifi-
cation toroidal de théorie bosonic ou hétérotique de corde. Ce mécanisme de
stabilisation est conformé aux limites d’observation venant des expériences
de force cinquiemes et reproduit tous les dispositifs souhaitables de cosmolo-
gie de temps tardives. Nous identifions les issues ouvertes liées au cadre de
gaz de corde sans modification, et proposons des directions pour les travaux
futurs. Nous étudions également la possibilité que la cosmologie de gaz de

corde pourrait offrir une solution dynamique au probleme de modules.
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CHAPTER 1
Introduction

1.1 Preliminaries

As a putative theory of quantum gravity, string theory implies radical
reformulations of our notions of space and time at the smallest imaginable
scales. In fact, our hitherto familiar conceptualizations of geometry no
longer seem to apply once we take seriously the premise that all matter
and force, and even spacetime itself, are generated by the dynamics of
extended objects. From the string spacetime uncertainty relation [1], to the
appearance of non-commutative geometries in non-trivial backgrounds [2], to
the notion that spacetime itself is an emergent entity dynamically generated
from some underlying quantum geometry or matrix model (see [3] for a
review), we see that string theory implies radical departures from classical
geometry in a wide variety of contexts.

Clearly, if cosmology is our domain of interest, then modifications
forced by string theory upon our model of spacetime as a classical four
dimensional Lorentzian manifold, poses at once many threats and many
opportunities. Among the opportunities include new possibilities for
resolving the initial singularity, new models in which to realize inflation,
and new mechanisms to explain what the missing matter and energy
components of the universe might be, and how they came to be arranged
as they are today, to name but a few. The threats arise when we realize
that the low energy consequences of string theory must not spoil the
successes of standard big bang cosmology. One example of such a potentially

troublesome feature is in the fact that string theory predicts a number of



extra dimensions, which upon compactification generate a plethora of scalar
fields without potentials (known as moduli fields). These moduli fields will
mediate gravitational strength fifth forces, which have not been observed

in any experiment to date. This problem, which we will elaborate upon
further is known as the moduli problem, and is the question confronting
string theory that the subject of this thesis (string gas cosmology) hopes to
address.

In addition to prediciting the existence of extra dimensions, perhaps one
of the more striking features of string theory, and one that is present even in
its low energy effective limits is the existence of new symmetries (dualities)
relating physics in distinct geometries (see [4] for a review). Having first
been noticed by Buscher in the context of the low energy effective action for
a massless string background [5], T-duality (as an example of such a duality)
will be a full symmetry of any non-perturbative formulation of string theory.
In a background with all anti-symmetric form fields set to zero, T-duality

acts on the background metric as
G — G, /a. (1.1)

In a toroidal background with all dimensions compactified on a cirlce of
radius R, T-duality implies that all string S-matrix elements map directly
onto those calculated on a background of radius 1/R, provided we account
for the appropriate rearrangement of the degrees of freedom. The canonical
example of such a rearrangement is that under the action of T-duality,
winding states and momentum states map onto each other. Evidence for
this is seen in the fact that the energy for a string wound w times around a

cycle of the torus (£ ~ wR/+v/ ') is equivalent to the energy of a mode with



n quanta of momentum (E ~ n/R) under T-duality (R — v/o//R), provided
we interchange w and n.

Inspired by the observation that T-duality effectively implies a mini-
mum length scale to the universe (and as a result a maximal temperature),
Brandenberger and Vafa (BV) [6] proposed a model of the early universe
which began at this minimal length (the self dual radius- R = v/o/)?
populated with a gas of strings excited close to the Hagedorn tempera-
ture [8]. Such a state initially loiters around the self dual radius due to
the competing effects of winding modes, which like to halt expansion, and
momentm modes, which like to source expansion. However, due to the tree
level interaction wherein oppositely wound modes annihilite into unwound
string states, a stable population of wound strings might not be possible
unless certain conditions are met. As argued by BV, as one dimensional
extended objects, wound strings are guaranteed to interact in all spatial
dimensions up to three (ignoring for now the effects of long range forces
between strings— see [9][10] for rather negative conclusions for the BV di-
mension counting argument once interactions are accounted for). Therefore
in at most three dimensions can wound strings annihilate and so that the
relevant dimensions become free to expand— that is, as a consequence of
contact string interactions in the early universe, the big bang happens in at
most three spatial dimensions.

Thus in the course of invoking T-duality in a model of the early

universe, Brandenberger and Vafa proposed a dynamical mechanism to

! An assumption justified in [7] where a background solution starting in
the Hagedorn phase, exiting to a radiation dominated phase was explicitly
constructed.



generate a universe with three large spatial dimensions, and in doing

so initited what became known as the string gas cosmology program.
Brandenberger and Vafa argued that instead of viewing the extra dimensions
inevitable to string theory as having to be compactified, it may be more
natural to view our macroscopic dimensions as having decompactified. In
this way, the BV mechanism explains away the presence of extra dimensions
as well as any supposed string compactification would. Recently however,
doubts have emerged regarding the validity of the BV mechanism [9][10]
when string exchange processes are accounted for in the interaction physics
of wound strings? . However, even if we ignore/ take for granted the details
of the initial compactification/ decompactification mechanism, a more
pressing problem looms imminent. All compactification/ decompactification
models still have to subsequently address how these extra dimensions are
kept at an unobservable scale at late times in a way that is consistent

with fifth force experiments and consistent with the successes of big bang
cosmology. Faliure to do so would be the first and foremost place the low
energy consequences of string theory would conflict with experiment. This is

the moduli problem in the context of string theory in a nutshell.

2 The key physics of these negative results appear to be the dynamics
of the dilaton. If we fix the dilaton by hand, then we can evade such con-
clusions [11], this however, is a highly non-trivial assumption in most con-
texts. This can be partially understood in intuitive terms in the context
of the long range forces mediated by massless fields, such as the dilaton.
Such forces are of infinte range and certainly do not respect the dimension
counting arguments of BV. For instance, we know in 3 dimensions that the
scattering cross section of a Coulombic potential is infinite.



1.2 The Moduli Problem
As an introduction to the moduli problem, we consider it first in the
simplest context possible. Consider the following action describing general

relativity in 4 4+ 1 dimensions with a compact 5"* dimension:

1
167TG5

S = /d%m( R[G] + £M>. (1.2)

If our metric tensor takes the form Gy = €%7, Gy, = 0, G, = gy, With
= {0,1,2,3}, and if there is no dependence of any metric quantity on z*,
then we can readily integrate over the fifth dimension in the above to yield

the following effective action:

1
167TG4

S = / d4x\/—_ge"( R[G] + VLM>, (1.3)

with the four dimensional Newton’s constant G4 related to G5 through

the relation G4 = G5/V, where V = [ dz® is the volume of compact
coordinate interval. This action now appears as a scalar tensor gravitational
action. In order to understand how matter interacts with gravity in this

compactification, it is neccesary to perform the conformal transformation

G = e_aguw (14)

under which the Ricci scalar transforms as:

R=¢"[R—3¥% — S@HJV“U]. (1.5)

Substituting the above into (1.7) and integrating by parts leaves us with the

resulting 4-d effective action

S = /d4$\/__§<1671G4 (R[g] - ;@“aﬁua) + Ve_U£M>. (1.6)



We see that this action describes the usual Einstein gravity with a scalar
sector which has gravitational strength coupling to the matter sector. To
begin to see the problem induced by the presence of this modulus field, note

that the Einstein equations now become:

fo = (Tg)g + 87TG46_0V(TM)5, (17)

where the subscripts on the energy-momentum tensors denote the consti-
tutent fields. Firstly, we note that the contribution of the matter sector is
Planck suppressed compared to the contributions of the kinetic terms of the
modulus field. Hence if the modulus field is rolling quickly at a large enough
radius, the energy-momentum sourcing expansion will be dominated by a
p = +p fluid, which will yield a cosmological evolution inconsistent with any
epoch of the known history of the universe.

If we now focus purely on the matter sector, we see that the prefactor
e~ % induces Yukawa interactions between material particles, as any fermionic

mass term is modified as

My — mye G, (18)
Such a Yukawa coupling will in general mediate a long range force of

gravitational strength between 1) particles:

1
Fww X ;, (19)

unless of course, a mass term for the modulus field is generated, in which

case the force law acquires a finite range:

e~ Mo

F¢¢ X s (110)
r




where m, is the mass of the modulus field. So unless a large enough mass
is generated for the modulus field, we stand to not only spoil the successful
predictions of big bang cosmology, but also to introduce interactions which
violate the equivalence principle. Although this has not been ruled out as a
matter of principle, all experiments to date have placed stringent bounds on
such violations [12]. Thus it seems that if moduli fields exist, as neccesarily
implied at low energies by string theory, we must work out some mechanism
which strabilizes them.

The standard approach in string theory (see [13] for a review) has
been to turn on fluxes for the various form fields present at any corner of
moduli space, which generate potentials for the various complex structure
moduli (which describe the dilaton and the shape moduli of the internal
manifold in question), and to consider non-perturbative effects such as
gluino condensation to generate potentials for the overall volume modulus.
Such a presecription has motivated various string cosmological scenrios
for the early universe such as stringy models of inflation [14], as well as its
logical corollary— the predicted existence of a vast landscape of vacua [15].
The focus of this thesis however, is on an unrelated approach to the moduli
problem in string theory coming from string gas cosmoslogy, which arises
from studying the effects of massless strings on the evolution of the universe.
Such an approach might allow for a natural (i.e. somewhat unconstructed)
solution of the moduli problem as we wish to motivate presently.

Consider the bosonic sector of the low energy effective action of string

theory:

1 1
S = Z—M/dD+1$\/—g€_2¢ (R+ 48Hq)8uq) - EHMVAHHVA)7 (111)



where @ is the dilaton, D is the number of spatial dimensions, H,,, is the
field strength associated with the two form field B, and &3 is the dimen-
sional normalization of the action. Such an action imposes as its equations
of motion, the conditions that arise when we demand that the first order
in o’ truncation of the one loop beta function of string theory vanishes?® .
In general, higher orders in o’ generate higher derivative corrections to the
low energy effective action, but we will not be needing these. The reason for
this is that the above describes a consistent background on which one can
study the propagation of massless string modes, and only massless string
modes, and as such is dubbed the ‘massless background’ of string theory.
This action remains valid so long as we stay within curvature regimes such

that

'R <1, (1.12)

where R is the Ricci scalar of our background at any spcetime point. Since

we know that massive string states have an energy which scales as

N (1.13)

where N is some integer, we see that provided that (1.12) is satisfied,
massive string states will not be created by the curvature of the background,
and whatever massless strings we have around, will not back-react on the
geometry such that (1.12) is violated. Hence it is consistent only to couple

(1.11) to a matter content constituted by massless strings in various states.

3 Thus ensuring us an anomaly free quantum theory. We assume that D
is the neccesary critical dimension.



This is the philosophy of string gas cosmology as espoused in [16][17][18]-

if it is consistent to couple massless strings to (1.11), why don’t we? As we
shall see in later chapters, it turns out that when we couple a massless string
gas to (1.11), we arrive at a minimally tuned and rather natural candidate
for a solution to the moduli problem in string theory, certain features of
which we advertise presently.

Firstly, we note that a gas of massless strings will only have one tunable
parameter— the average energy of its component strings. The requirements
of masslessness of its constituents, consistency with isotropy and overall
charge conservation, cancel out all other quantum numbers which might
be ascribed to the macrostate of the gas. Secondly, we note that the action
associated with our string gas (which will be derived from microphysical

considerations later on) appears as:

S =— /dDH:B\/%E[gij], (1.14)

where E is the energy of the string gas and g;; are the spatial components of

our energy-momentum tensor, and that this is to be contrasted with

S = —/dD+1x\/—_gV(¢), (1.15)

where V' is some potential generated for ¢, which is some modulus field.
We immediately infer from (1.14) that such an action will not quite be seen
by gravity the same way it sees (1.15). Indeed, the minimum of (1.15) will
be seen by gravity as a cosmological constant, and will thus require some
tuning to achieve consistency with observation, whereas no such tuning will
be required of (1.14). In addition, we note that the cosmological energy

density and the effective mass of the modulus field generated by (1.15) go as



mg ~V"(9), p~V(e). (1.16)

Thus we see that we will typically require some tuning to simultaneously
make mi large enough so as to avoid fifth force constraints, without making
V(¢) too large such that it would lead to unacceptable overclosure of
the universe. Conversely, as we will soon find out, a massless string gas
generates an effective mass for a given modulus field and has an associated
energy density which scale as

2 Ho - M

mNECLB’p &37

(1.17)

where F is the energy of the string gas and jo/a® is the number density of

strings. In this case, it is relatively easy to tune the moduli masses to be

large enough without introducing too much energy density into the universe.
A key aspect of the physics underlying moduli stabilization with string

gases is the fact that strings are extended objects, and hence have the

potential to feel out the metric tensor in a non-trivial manner, resulting

in non-standard ‘potentials’ such as (1.14). Another crucial aspect of

the relevant physics is that we are using only massless string states, as

massive string states (aside from being inconsistent to use on our dilaton

gravity background) do not appear to share similar properties as far as

moduli stabilization is concerned [19][20]. In fact, until the importance

of massless string states was emphasized in [16][17][18], such negative

results for moduli stabilization using string gases were taken to be a general

conclusion. The use of massless states for dynamical moduli stabilization

was also emphasized in [21], and it appears at present that massless states

which appear at specific enhanced symmetry points in various string

compactifications might one day offer a window towards a dynamical

10



solution to the moduli problem in string theory, an issue we elaborate upon
next.
1.3 Enhanced Symmetries and String Gas Cosmology

If we consider any particular uncompactified version of string theory,
we notice that the string spectrum contains a massless sector corresponding
to a rank two symmetric traceless tensor, a rank two anti-symmetric tensor
and a scalar— the graviton, the two form field and the dilaton respectively.
Setting the form fields to be vanishing, we first notice that compactification
changes the spectrum of our theory. For instance, if we compactified on a
d-dimensional torus, the possibility of non-trivial winding and momentum
quantum numbers will alter the masses of certain states as the radius of
compactification is changed. Although the string spectrum will always
contain states that remain massless independent of the details of the
compactification (corresponding to graviton excitations along the non-
compact dimensions), it turns out that at special points, certain states
that otherwise were massive become massless. This is seen in the context
of Bosonic string theory by the mass formula for a string propagating on a

manifold that has had d dimensions toroidally compactified [22]:

m? = (n,y 'n) + %(w,vw) + 5[2(71, w) + 4(N —1)], (1.18)

where v, 1 < a,b < d, is the metric on the torus, n* and w, are respec-
tively the momentum and winding quantum numbers along the a'* direction,
(,) is the real scalar product and N is the right moving oscillator level of the
string state. Implicit in the above is that we have solved for the left moving

oscillator level N through the level matching constraint:

11



N =N + (n,w). (1.19)

Clearly, for any form for the toroidal metric, we have massless states at
N =1, n* = w, = 0. This is the graviton sector of our theory (as well as
the form field sector had we not set it to zero from the outset). However, we

notice that at the self-dual* radius (74, = o/d,), our mass formula becomes

am®* = (n,n)+ (w,w)+ [2(n,w) +4(N — 1)] (1.20)

= (n+w,n+w)+4N —1),

which indicates a whole bunch of massless states that are otherwise massive
away from the self-dual radius. Such states satisfy N = 1, n* = —w,,
or (n +w,n + w) = 4, subject of course to (1.19). These states will
be systematically classified further on, but for now we simply note their
appearance at the self dual radius. We arrive at the same conclusions in the
case of Heterotic string theory, as the mass formula in this case is also given
by (1.18)° .

If we now consider the energy-momentum tensor of a gas of strings that
are massless at the self dual radius, we find that once coupled to gravity,
a stabilizing force for all the radial moduli results (and as subsequently
uncovered ([23][18], all shape moduli as well). These are the main results

of the first two papers included in this thesis [16][17], and is the basis

4 Self dual in the sense of T-duality

® Although the zero point contribution from the right movers vanishes in
the case of the Heterotic string, there is a compensating term in the Het-
erotic level matching constraint such that (1.18) still results.

12



behind the claim that a gas of strings naturally offers us a solution to the
moduli problem. Specifically, were we to begin near the self-dual radius, the
dynamics of massless string states which are likely to condense at this point
in moduli space will likely keep us there.

The results of [16] thus anticipated a part of the observations made in
[21] that ‘beauty is attractive’, namely that points of enhanced symmetry
might serve as dynamical attractors in moduli space. As shall become clear
in the following chapters, the specific properties of massless string states
(aside from being the a priori only consistent matter content for a string
gas) appear to be so crucial in obtaining a stabilizing force for the moduli
fields ¢ | that we might wonder if the results of string gas cosmology, like the
results of [21] have touched upon a dynamical selection principle in moduli
space, that enhanced symmetry points are the only places where our low
energy effective universe might end up. As we shall see in the next section,
the answer is only partly in the affirmative. By explicit construction, we can
demonstrate the existence of enhanced symmetry points which are actually
unstable points for the evolution of the moduli fields. Instead, it appears to
us that the true principle that might account for an eventual mechanism for
dynamical vacuum selection appears to be that of duality invariance.
1.4 Not Just Enhanced Symmetry Points

Even in the context of heterotic string theory, we know that there are
points other than the self dual radius where extra massless states appear.
There are in fact an infinite number of such points [22][24]. However, the

majority of these will be rather uninteresting to us, as most of these do

6 In that massive states would cause destabilizing terms to appear once
their energy-momentum tensor is derived properly.

13



not function as stable points for the dynamics of moduli fields from the
perspective of string gas cosmology. For instance, consider for simplicity
the case of one extra dimension compactified on the circle 7 . According to
the mass formula (1.18) applied to this case, there are an infinite number
of special points where new string states become massless. Consider for
instance, when the size of the circle is some multiple of the self-dual radius,

1 = b? = o’ A\?, so that the mass formula becomes

a'm? = (% )+ 4N — 1), (1.21)

where again, this is subject to the level matching constraint nw + N > 0. In
the next chapter[16], we will classify all the enhanced symmetry points[16]
and their associated massless states. We find that for any meZ, massless

states appear at the radii

2

b = —,w=d+mn=0N=0 (1.22)
m|

b = @;n:im,w:O,N:O.

When coupled to gravity, these states turn out to generate a driving term
for the scale factor b, which drives expansion of the scale factor away from
the enhanced symmetry point if b is greater than the self dual radius, and
drives contraction if b is below the self dual radius. Hence the self dual
radius appears to be a specially preferred enhanced symmetry point as

far as moduli stabilization with string gases is concerned. This is just as

" In this way we avoid the complicated combinatorics associated with
identifying and summing over all given massless modes.

14



well, for if any enhanced symmetry point were to be as good as any other
as far as moduli stabilization is concerned, then string theory would be
in big trouble, as to invoke such points as the preferred vacua of string
theory would imply that string theory has lost all predictability due to
the infinite number of these (compared to the astronomically large, but
finite number of flux vacua [15]). Instead, it turns out that in the simple
context we are considering, only the enhanced symmetry point which is also
a duality fixed point is stable. In [25] this was explored in the context of
toroidal heterotic compactifications, where other fixed points of the duality
transformations were considered and were shown to be stable points in
moduli space. Towards the conclusion of this thesis, we investigate the
possibility that string gas cosmology suggests its own landscape with its own
dynamical selection principle, namely that our low energy universe is likely
to dynamically end up only on duality fixed points in moduli space. This
is perhaps the most promising aspect of string gas cosmology, and one that
should motivate continued research into its formalism and consequences for
cosmology.
1.5 Progress and Problems— a Review

We presently offer a review of moduli stabilization in the context of
string gas cosmology® . This is in fact a rather recent and somewhat small
subset of the overall string gas cosmology program, whose focus until about
2003 was mainly on elaborating upon the BV mechanism [6] as the origin

of our three large spatial dimensions. We note parenthetically that utilizing

8 In particular, we do not focus at all on brane gas cosmology and its as-
sociated applications. For a general review of string/brane gas cosmology,
we refer the reader to [26].
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string gases for the purposes of moduli stabilization at late times does not
depend on the BV mechanism, although it does provide a very natural
motivation for them. In fact, it was from noticing that the initial loitering
phase of string cosmology in the Hagedorn phase arose from competing
pressures resulting from momentum and winding modes, that led Watson
and Brandenberger in 2003 [27] to wonder if they could be used in a late
time setting to stabilize extra dimensions. It was discovered that a gas of
winding modes, superimposed on a gas of momentum modes, both treated
classically, could stabilize extra dimensions in the string frame. In [16], the
energy-momentum tensor for a string gas was explicitly derived from micro-
physical considerations, and it was discovered that when treated quantum
mechanically, a gas of massless non-interacting strings creates a stabilizing
force for one extra dimension in a way that is consistent with observational
bounds. That is, it is easy to make an all-pervasive fluid of massless strings
wrapping all extra dimensions at any point in space consistent with big bang
cosmology.

In general, as discussed in [16][17], it is difficult to make moduli sta-
bilization in string gas cosmology consistent with inflation unless wound
strings are created by some form of stringy reheating. The crucial role of
massless states in moduli stabilizing would become clear as negative results
concerning moduli stabilization using only massive modes in extra dimen-
sions were uncovered in [19]. As was shown in [17], massless string gases can
stabilize any number of toroidal dimensions at the string scale. The nega-
tive results of [19] are an artifact of using the classical energy-momentum
tensor for a string gas (and hence restricting only to massive string states).
Similar negative results for using string gases in conjunction with potentials

to stabilize the dilaton simultanecous with the radial moduli of the extra
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dimensions [20], were shown to disappear once we focus on massless string
states [18]. Shortly after [27] and [16], Watson proposed an abstraction from
the string gas program, wherein moduli stabilization at enhanced symmetry
points arose in the low energy effective field theory description through the
stringy Higgs mechanism [28]. In [23], and subsequently confirmed in [18]
shape moduli (and consequently the background B, field) were turned on
and it was discovered that these are also stabilized around vanishing values
by a massless string gas. In [18] the effects of adding a D-string gas was
considered and it was found that if one could trust the background at the
self S-dual and the self T-dual points, then string gases could stabilize all
moduli fields. However the conclusions of this paper are to be qualified by
the realization that in general, unless we are at weak coupling, the string
spectrum is not to be trusted. To be at the self S-dual point is to be in a
strong coupling regime. The issue of S-duality in conjunction with T-duality
was also studied in [29][30]. As confidence grew in the ability of a gas of
massless strings to stabilize extra dimensions in a toroidal context, wider
issues of concern to cosmology were addressed in [31], where the effects of
spatial inhomogeneities and metric perturbations on a cosmology sourced by
massless string modes were studied (as [32][33] did for the case of massive
string modes).

Since this flurry of work, moduli stabilization in string gas cosmology
has stumbled upon its lack of success in stabilizing the dilaton [34][18][35],
and this remains one of its outstanding challenges. In addition, string
gas cosmology does not appear to naturally connect with any inflationary
models. This last point however served to motivate the authors of [36]

(see also [37][38][39]) to propose a string gas cosmology alternative to
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structure formation? . In addition, questions concerning the consistency of
the effective field theory treatment arise when we stabilize at the self-dual
radius (even if we remain consistent with the o/ expansion by not inducing
dangerous curvatures). We will return to all of these outstanding issues after
we have familiarized ourselves with string gas cosmology explicitly. We will
also assess the future prospects of string gas cosmology in the face of these
open issues and identify directions for further investigation.
1.6 Outline

We begin this manuscript based thesis with our first paper on string
gas cosmology [16]. In this paper, we first derived the correct energy-
momentum tensor for a string gas treated quantum mechanically. In this
way, we derive the form of the energy-momentum tensor for massless states
and discover their stabilizing properties at the self dual radius. We discuss
towards the end of the paper consistency with observational bounds if
this is to be the relevant moduli stabilization mechanism at work in the
universe at present. Initially motivated by the negative results of [19] when
considering massive string states (or string gases without fully accounting
for the quantum nature of the energy-momentum tensor), our next paper
[17] generalizes the mechanism to any number of extra dimensions, again
exploring issues of consistency with observational bounds. In the third paper
included in this thesis [31], we consider the implications of stabilizing extra
dimensions with a string gas for metric perturbations. In particular, we
show that the inhomogeneous fluctuations of extra dimensions stabilized
with a string gas are stable, and that any initially scale invariant spectrum

in five dimensions is undistorted by the transients of the stabilization

9 Although the flatness problem remains unanswered by such a model.
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mechanism and results in a scale invariant spectrum in four dimensions.

We also take a five dimensional universe with the fifth dimension stabilized
with a string gas as a model for a non-singular bounce in the context of
ekpyrotic/ cyclic universe scenarios, and show there that one does indeed
obtain a controlled transfer of metric fluctuations accross the bounce. In our
concluding chapter, we discuss open issues and promising future directions

for research in string gas cosmology.
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CHAPTER 2
Contributions of Authors

The first two papers included in this thesis were co-authered by the
author and Robert Brandenberger (RB). The work contained therein was
mostly done independently by the author under the guidance of RB. The
author undertook the majority of the labour, and the initial ideas, although
directly inspired by RB, were his. The third paper included in this thesis
was done in collaboration with RB and Thorsten Battefeld (TB). Some
of the work in this paper concerning the stability of extra dimensions to
inhomogenous perturbations were uncovered by the author during the time
in which [16] was in preparation, however the initial idea for this paper arose
in a collaborative discussion and the labour was evenly divided between
the author and TB under the guidance of RB. In addition to the work on
moduli stabilization presented in this thesis, the author also worked on
the string gas cosmology alternative to structure formation [37][38][39] in
collaboration with RB, Ali Nayeri and Cumrun Vafa. We also take note that
during his thesis the author has also worked on topics unrelated to string
gas cosmology, such as perturbations in bouncing brane models of structure
formation [40], DO matrix mechanics as a model for topology changing

D-brane dynamics [41][42], and kinetic inflation [43].
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CHAPTER 3
Radion Stabilization by String Effects in General Relativity

3.1 Abstract

We consider the effects of a gas of closed strings (treated quantum
mechanically) on a background where one dimension is compactified on
a circle. After we address the effects of a time dependent background
on aspects of the string spectrum that concern us, we derive the energy-
momentum tensor for a string gas and investigate the resulting space-time
dynamics. We show that a variety of trajectories are possible for the radius
of the compactified dimension, depending on the nature of the string gas,
including a demonstration within the context of General Relativity (i.e.
without a dilaton) of a solution where the radius of the extra dimension
oscillates about the self-dual radius, without invoking matter that violates
the various energy conditions. In particular, we find that in the case where
the string gas is in thermal equilibrium, the radius of the compactified
dimension dynamically stabilizes at the self-dual radius, after which a
period of usual Friedmann-Robertson-Walker cosmology of the three
uncompactified dimensions can set in. We show that our radion stabilization
mechanism requires a stringy realization of inflation as scalar field driven
inflation invalidates our mechanism. We also show that our stabilization

mechanism is consistent with observational bounds® .

! Reprinted with permission from Subodh. P. Patil and Robert H.
Brandenberger, Phys. Rev. D Vol 71, 103522 (2005). Copyright (2005)
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3.2 Introduction

In the early days of string cosmology, it was realized that superstrings
had an effect on space-time dynamics that was qualitatively quite different
from that of particles or fields. In particular, it was realized that string
winding modes could provide a confining mechanism for certain compact
directions in such a way as to allow only three spatial dimensions to grow
large [6]. Key to this realization are the T-duality of the spectrum of
string states, and the fact that the background is described by Dilaton
Gravity, and not by General Relativity with a fixed dilaton (this is crucial
in order that the background equations obey the T-duality symmetry). The
arguments of [6] were put on a firmer basis by the analysis of [7] (see also
[44]).

Starting point of the considerations of [6] is the assumption that all
spatial dimensions begin at close to the self-dual radius (the string scale),
and that matter consists of a hot gas of string states. The considerations of
[6] were more recently applied to “brane gas cosmology” [45, 46], a scenario
in which the initial string gas is generalized to be a gas of all brane modes.
It was shown that given the hot dense initial conditions assumed in [6], the
string winding modes are the last modes to fall out of equilibrium and thus
dominate the late time dynamics. Hence [45], the inclusion of brane degrees
of freedom does not change the prediction that only three dimensions
grow large. The dynamical equations describing the growth of the three
dimensions which can become large were solved in [46] (see also [47]). In

[48], it was shown that isotropy in these large dimensions is a consequence

by the American Physical Society. This article can be accessed online at
http://link.aps.org/abstract/PRD/v71/e103522.
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of the dynamics. In [27], it was found that if both the momentum and
winding modes of the strings are included in the dynamical equations, the
radius of the compactified dimensions is stabilized at the self-dual radius.
More precisely, the expansion of the three large dimensions leads to damped
oscillations in the “radion” about the self-dual value. Thus, in the context of
a background described by Dilaton Gravity, radion stabilization is a natural
consequence of brane gas cosmology 2 .

At the present time, however, the dilaton is most likely fixed (see,
however, [56] for an alternate scenario). Thus, it is of interest to explore how
the inclusion of string (and brane) winding and momentum modes influences
the dynamical evolution of the radion in a background space-time described
by General Relativity (GR). There is another motivation for studying this
issue. Another corner of the M-theory moduli space is 11-d supergravity.

In [57] it was found that a brane gas in this background also admits a
region in the phase space of initial conditions in which only three spatial
dimensions can become large, although this corner may not be consistent
with holographic entropy bounds [58] (see also [59] where the considerations
in this corner of M-theory moduli space was extended to spaces with more
general topologies). Motivated by these considerations, we in this paper
study a simplified problem, namely the questions of how a gas of winding
and momentum modes of strings winding one compactified spatial dimension
(taken to be a circle) effects the evolution of the radius (the radion). We

start with initial conditions in which the three spatially non-compact

2 See e.g. [49][50][51][52][53][54][32] for other recent papers on brane gas
cosmology, and [55] for an early work on the cosmology of string winding
modes.
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dimensions are expanding. We find that the gas of string winding and
momentum modes gives a natural radion stabilization mechanism. Our
approach is to consider the effect of strings on 5D space-time dynamics
(with the extra spatial dimension compactified to a circle) by adding the
appropriate matter term to the standard Einstein-Hilbert action. We will
derive this term shortly (see also [60] for a similar derivation). The resulting
energy-momentum tensor leads to a novel behavior when inserted into

the Einstein equations. We will find that we can generate a non-singular
bouncing solution for the radius of the compactified dimension in the
context of GR (without a dilaton) while respecting the Dominant Energy
Condition for the matter content. Specifically, the radion performs damped
oscillations about the self-dual radius. Initially, we study a pure state of
matter with specific quantum numbers obeying the T-duality symmetry.
However, we will find that we can rather naturally extend the analysis

to a gas of these strings in thermal equilibrium (with a bath of gravitons
and photons), with the result that the radius of the compact dimension

is dynamically stabilized at the self dual radius R = v/, where 27wa/ is
the inverse of the string tension (see also [61] for a study of string gases in
thermal equilibrium).

In addition, we find that our model evolves according to standard
Friedmann-Robertson-Walker (FRW) cosmology after the compact dimen-
sion has been stabilized, and that the resultant stabilization is incompatible
with any subsequent inflationary epoch driven by a bulk scalar field (for
string-specific ideas on how to generate inflation in brane gas cosmology
see [62]). However this conclusion can be avoided if some form of stringy

inflation is realised where strings are produced in re-heating.

24



Before we can turn to any of this, we will have to address a question
of principle concerning the string spectrum in a cosmological context (this
issue is also being studied in [63]). The question of formulating String
Theory in a time-dependent background is a current and active area of
research. However, we are primarily interested in the behavior of strings
in a background that evolves on a cosmological time scale. As can be seen
from the FRW equations, the cosmological time scale H~! (where H is the
Hubble expansion rate) is larger than the characteristic microscopic time
o' (where o? is the matter energy density) by a factor of m,, /o, where m,,
is the Planck mass. Thus, away from singular epochs in the history of the
Universe, the cosmological time scale is going to be many, many orders of
magnitude longer than the characteristic time scale of the string dynamics,
and hence we should be able to inherit many of the features of the string
spectrum in a static space-time (with some obvious modifications). We
justify this intuition more rigorously in the Appendix, but we feel that
it might suffice at this point to remind the reader of the approximate
irrelevance of a time dependent background for a much more familiar
theory: Quantum Field Theory (QFT). Although quantum fields in curved
spaces exhibit several qualitatively different features from quantum fields
in flat spaces® , we still manage to do a lot of sensible (and spectacularly
successful) flat space-time QFT calculations despite the persistent Hubble
expansion of space-time. The reason for this is easy to see: the contributions
to masses, to scattering amplitudes, to the structure of the Hilbert space

of our theory, etc., that come from terms that depend on derivatives of the

3 Examples are particle creation, non-uniqueness of the vacuum, non-
trivial issues concerning existence of asymptotic states.
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metric are in the present epoch highly suppressed and irrelevant. This is
partly captured by the Adiabatic Theorem, which is the statement that
given two systems with Hamiltonians that can be continuously interpolated,
then in a precise sense, the eigenstates of the initial system will evolve into
the eigenstates of the final system if this interpolation takes place slowly
enough. Slow enough in simple quantum systems usually means that the
variation happens over much longer time scales than the characteristic
time of the system (by which we mean the time associated with the typical
energy of the system:7 ~ %) Having said this, were we to study QFT in
places where the metric varies a lot more rapidly (at the edges of black
holes or in the very early Universe) we invariably have to account for the
curvature of space. Thus, we can hope that the effects of a time dependent
background on the closed string spectrum only require minor modifications
to the flat space spectrum, if this time dependence is slow compared to the
characteristic time of the string dynamics. We show in the Appendix that
this is indeed the case, and in what follows we will stay within this regime.
The Outline of this paper is as follows: we first derive the energy-
momentum tensor of a string gas (the derivation here is more general than
the one given in [60]). We then insert this tensor into the Einstein equations
and study the dynamics of the radius of the compact dimension, assuming
that the three large spatial dimensions are in the expanding phase. First, we
consider a pure state of matter. Next, we extend the discussion to a thermal
state. In Section IV, we discuss the late time dynamics and show that the
stabilization of the radion is not compatible with inflation in the three large
spatial dimensions, assuming the simplified description of matter which we

are using.
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A few words on our notation: Greek indices typically stand for 5-
dimensional space-time indices, Roman indices i, j, ... are associated with the
non-compact spatial dimensions, and Roman indices a, b, ... are string world-
sheet coordinates. The 5-dimensional Planck mass is denoted by M, (or
M5 in abbreviated form). We also work in natural units (¢ = h = kg = 1)
where we pick energy to be measured in electron volts.

3.3 The Energy-Momentum Tensor

To study how a gas of strings affects space-time dynamics, we need to
derive the energy-momentum tensor of such a gas. We begin by studying
the energy-momentum tensor of a single closed string. Starting with the
Nambu-Goto action

-1
2mad

Sna =

/ d*ov/—h, (3.1)

where h,, denotes the world sheet metric
hab = aaX”abX”gW(X) (32)

(and h is its determinant), we see that any variation in the space-time
metric g, induces a variation in the induced world-sheet metric (where the
unmatched indices indicate that we perturb only the A\ component of the

metric):

gW(X) — gW(X) —|—§2(556D(XT . yT)J

0guv
hap(0) = hap + 0. X 0, XP6P (X — o)

5hab

Now, varying the Nambu-Goto action with respect to the space-time
metric (performing a perturbation dg,s which acts on the metric as given

above) will give us the space-time energy-momentum tensor of a single
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string:

1
5SNG _ //dQO'\/—_hhab(Shab
d9rs(y) dmo
1
- _ / d*o/—hh®0, X 0, X 6P (XT —y7).
drad

We must first discuss the meaning of the expression

/d2 o 5D(XT o yT)

_ / Pod(X0 — y)8(X" — y")..6(XD — yP).

In order to change the variable of integration, we need to apply do® =
adf—XAA and sum over all the zeroes of X*[o] — y* when performing the
integration. However, since we considering modes winding one particular
spatial direction, there are precisely two coordinates that are monotonic
functions of the world-sheet parameters: X° being a monotonic function of

0% and X being a monotonic function of o' (the D™ direction is taken to

be compact). Thus,

& o6 (X7[o] —y7)
= dodo’6(X o] — y*)0(X o] — yY)...8(XPo] — yP)
dX° dxP

= m m\/ —goodDD

xO(X = y")5(XP —yP)sP (X — ),

where we include the metric factors in the last line so that we can take the

delta functions in XY and XP? to be properly normalized. With this result,
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we get:

8Sng 6P XT —y)

Sgrs _4770/\/—90091313

dX°? dXxP
/WW ( 0 _ yo)d(XD — yD)\/ —hh“bﬁaXAﬁbXﬁ
1

Ao/ /_googdd

§D-2( X _ 4
O XY e, 2, X
| XO X/D| X

)
OZyO?XD :yD

where we use the inverse metric to write the metric contributions in the

denominator. Thus, the single string space-time energy-momentum tensor

becomes

-2 68
V=9069xs

1 622X — ') V=hh™9,X*0, X"
2ma | X0 X[\ /=g —gW0gDD '

Inserting the explicit form of the inverse world-sheet metric

hab _ l h22 —h12 _ l X/'LLXL — Xﬂ XL

—hy hn ) P\ xexn xeX,
and using the constraints on the world-sheet fields *
P,X"=0

P,P* 4+ X! X" =0,
we can write (3.3) as

T8 -1 "X -y

2mal | X0 X/D|\/%

XX K]

4 Which come from working in conformal gauge hy, = diag(—1,1)
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Next, we solve for X0 using the constraint (3.6) which becomes

0 = — X°X° 4+ X'X, + XPxP

_X/OX/O + X/iX( + X/DX/D
where we have explicitly used the background metric

G = diag(—1, a’(t),a*(t),a’(t),b*(t)). (3.8)

It is consistent with the equations of motion in a (slow enough) time varying
background to set X® =09 , so that

X0~ PP 4 XX 4 PP P+ X'PX), . (3.9)
In addition (in a slowly time dependent background) the right hand side
can be expressed in terms of the familiar oscillator expansion. Accounting
for the zero mode operators explicitly, we get the center of mass momentum
from the spatial zero modes and the winding energy from the zero mode
terms in the compactified direction. The other modes give us the left and

right moving oscillator terms (see [22] for details):

: g 2 - n
XO0= \/g”pz-pj + J(NJF N —2)+ (3)2 +(—=)?, (3.10)
where n and w are the quantum numbers for momentum and winding in
the compact direction, respectively, and N and N are the levels of the left-

and right-moving oscillator modes of the string, respectively. The expression

above is none other than the energy of the string. Using the level matching

° See the Appendix for all statements made in this section concerning
results that are valid in a time dependent background
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constraints

N +nw— N=0, (3.11)

we finally end up with ©

: g 4 n  wb
X'= \/g”pipj + J(N —-1)+ (5 + ?)2 . (3.12)

Now, we are ready to evaluate (3.7) for a single wound string. We have
an explicit expression for X and we know that |X’>| = |w|b in units of
o/ for a wound string, the factor of |w| being canceled by the summation
over all (w in total) zeroes of the argument of the delta function. Thus,

component by component, we get:

) = —p (3.13)
1 53(Xi—yi)\/ , 4 n  wb
=2 V) g+ (N = 1)+ (2 + D2
27 a3b pp+o/( )+(b+o/)
Ti=p (3.14)
1 &(X —y) p'pi

T2 =r (3.15)
1 &(X*—y") GRS
3 .
20 o+ SN = 1)+ (24 222

[

(note that we label the extra spatial coordinate by “5”) where we ignore
off-diagonal components since we are about to apply these expressions to an

isotropic gas of strings.

6 See the second footnote in the Appendix where we remind the reader
why the momenta must be contracted with the inverse metric.
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However, we wish to present at this point another derivation of this
result which is rather more direct. Consider the energy of a single wound
string:

n wb

. 4
EQIPzp@'—FJ(N—l)—F(E—F?y. (316)

A spatially uniform gas of such strings with the same quantum numbers

would have a 5-dimensional energy density

(t)

~ 2mb

n  wb

N Y (317)

€

where p(t) is the number density of strings. We divide by 27b since this
energy will be uniformly distributed over the length of the string. The
momentum that appears in this expression is now the momentum squared
of a gas of strings whose momenta have identical magnitudes, but whose
directions are distributed isotropically. To fully account for the metric
factors in this expression, we write u(t) as uo(t)/a(t) since this is how

a number density explicitly depends on the metric. Now, realizing that
this is an energy density, we can introduce this gas of strings as matter
interacting with the gravitational field by just adding the following term to

the gravitational part of the action:

Sint = —/d%\/—ge (3.18)

(see e.g. Section 10.2 of [64]).
Realizing now that the metric factors in the denominator of the

expression for the energy density can be written as a® = /det(g;;) and
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b = ,/gs5, we can write the above equation as:

dr/=g  po(t)
\detgii/gss 2T
n wb

. 4
X\/pzpi—l-a(N—l)—i-(g—i—?)Q
t
= —/d%\/ —goolugfr)

Sint =

: 4 wb
<A\[Ppit (N = 1)+ (3 + —
\/ p'pi+ —( ) (b )?
By our metric ansatz and the isotropy of the distribution of the momenta,
we have that p'p; = a_Q(%2 + %2 + %2) Using this fact, it is straightforward to
show that the energy-momentum tensor derived from this interaction term

18:

1 o , 4 n  wb
70 — = PO i 0 (N — 1 — 1
0 Y 27ra3b ppz+a/( )+(b+ ) (3 9)
: 1 2
T =p=o- ’”‘Ob p/3 (3.20)
Tl o HN 1)+ (3 + 2
) n2 _ w?
TP =r=_—12 R (3.21)

2m ' Jop+ 5N = 1) + (5 + 22

which is exactly what we would get from (3.13), (3.14) and (3.15) were
we to construct a hydrodynamical average with an isotropic momentum
distribution.

We now investigate some simple aspects of our result. The first thing
to note is that 79, which is the pressure along the compact direction, gets
a negative contribution from the winding of our strings and a positive
contribution from the momentum along this direction. The spatial pressure
is always positive, and for the simple case n = w = 0, N = 1, which
describes a gas of gravitons moving in the non compact directions, we obtain

r=0,p=p/3.
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Since we are about to study the effects of this energy-momentum tensor
on space-time, we should make sure that the energy-momentum tensor is
covariantly conserved, or else it will not be consistent to equate it to the

covariantly conserved Einstein tensor. The covariant conservation of T/
— [
0=V,1TV,
where V, is the covariant derivative operator, implies

. a '
0 = P+3a(p+p)+[l—;(p+r)
0 = 9

0 = 85T.

It is straightforward to check that our energy-momentum tensor satisfies
this as an identity. In the continuity equation, this is due to the metric
factors contained in the energy density, which upon differentiation produce
terms that exactly cancel the terms proportional to the Hubble factors. The
remaining equations are trivially satisfied by our setup, which assumed an
axis of symmetry along the compactified dimension (the Kaluza-Klein setup)
with homogeneous and isotropic spatial sections.

One final point to note is that we have derived an energy-momentum
tensor that exhibits positive pressures along the non-compact directions and
positive or negative pressures along the compactified direction. We need
to ensure that this negative pressure has a bounded equation of state as
otherwise our theory would be unstable. The Dominant Energy Condition
(DEC) of General Relativity [65] ensures the stability of the vacuum, and
requires that the equation of state parameter w = p/p be greater than or
equal to -1 (see e.g. [66] for a recent discussion). Since the spatial pressures

are always positive, we only need to check our equation of state for the
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pressure along the compact direction:

n? w2b?
po= LHo ¥ an
N 2 3 i n w
T\ O 1)+ G+ )
n2 w2b?

) o2

X = 4 n wb\2 ’
pPpit+ (N =1)+(§+ %)

«

where the co-efficient of p in the above is our equation of state parameter.
Were we to consider states described by n = £1, w = —n, N = 1 (which
as we will see further on, turn out to be the relevant states that give us

stabilization), this parameter remains bounded as b varies ” :

—1<w<1 (3.22)

Thus, we have verified that the spectrum of string states satisfies the
DEC, and in doing so ensured ourselves of sensible space-time dynamics
arising from the string gas, the topic we will turn our attention to next.
3.4 Space-Time Dynamics

We start with the Einstein tensor derived from the metric (3.8):

- il
@ = -t () ]
Gt -l ()]

" Where key to this is the observation that as we approach the value
b = d, these states become massless, and acquire a non-zero momentum
along the non-compact directions, which depends on the ambient temper-
ature. If this momentum is large enough, we can be assured that (3.22) is
satisfied.
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1
3
Mpl5

Equating this to T* will give us the Einstein equations. However, let
us focus on the equation that governs the evolution of the scale factor
b. Starting with G;- and eliminating a and o’ by adding the appropriate

combinations of Gf and G2, we get:

. . 2r p
b3H b+ (p—€—§>—0, (3.23)

M,
where H is the 3-dimensional Hubble factor. This is a second order,
nonlinear (because of the b dependence in the matter terms) differential
equation with a damping term and a driving term. We will demonstrate
further on that the Einstein equations admit expanding solutions for the
non-compact dimensions (H > 0), and take it as a given for what follows.
Thus, inspite of its non-linearity, we easily see that (3.23) describes an
expanding or a contracting scale factor depending on the sign of the driving
term.

The first thing to notice from this equation is that matter for which
the quantity p — %” — £ vanishes will not contribute to the dynamics of the
compact dimension. Thus, recalling that a gas of gravitons (n = w = 0,

N = 1) has an equation of state p = £, 7 = 0, as does a gas of ordinary
4-dimensional photons, we see that such matter will not affect the dynamics
of the scale factor b. In fact, such a background 4-dimensional gas provides
an excellent candidate for a thermal bath which we will eventually couple
our gas of winding modes to.

First, however, we will study this driving term as it is, for a gas

consisting of strings with identical quantum numbers. Upon evaluating the
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driving term, we find that:

b ( 2r p o
—(» -5 = (3.24)
M, 3 3) T M a2
n?2 2nw w2bh? 4(N-1)
T2 3dl 302 3d

X
\/pipz- + (N —1)+ (% + 2)2 |

from which we infer that momentum modes and oscillator modes lead
to expansion of the scale factor, whereas the winding modes produce
contraction. Exactly what happens, of course, depends on the values of
the quantum numbers. It should be recalled that the quantum numbers
are subject to the constraint nw + N > 0 coming from the level matching
conditions (see Eq. 3.11).

Let us pick a particular set of quantum numbers. As we shall see later,
the most interesting case is when n = —w = +1, N = 1, in which case the

driving term becomes:

-2
b < 2r p) 20 _I;L?+§+b§ (3.25)
_3 p —_——_—— - prm - — 9 .
My, 33 Mya®myd \/ a'p'pi + (5— b)

where p is the scale factor in units of v/a/. Quite generically, we can explore
features of the “potential” energy that will yield this driving term. We

see that, since the denominator is strictly positive, and the driving term
changes sign at p= 1, this value will be a minimum of the potential energy,

and hence a point of equilibrium. Numerical integration of the driving term
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Figure 3-1: Potential term for n = —w = £1, N = 1. The horizontal axis is
b (in string units), the vertical axis gives the potential in units of U, where
U is the prefactor on the right hand side of (3.25).

yields the potential energy curve of Figure 1 8 where the potential is plotted
. . 2 . -
in units of —“—Mgl5a3§7r = as a function of p.

Because of the Hubble damping term in the equation of motion for p
(which is obtained by dividing (3.23) through by a factor of v/o/), the scale
factor will perform damped oscillations about the minimum of the potential

to which it will evolve with rapidity depending on the value of the “spring

constant” multiplying the driving term:

240

k= ——m——.
M3 _a32ma!
Pt

(3.26)

Thus, we have established that a gas of string modes with non zero winding

and momentum numbers in the compact direction will provide a dynamical

8 We model the momentum squared as a smooth function of y such that
it takes on some non zero value at p= 1 and falls off on either side. This is
because at h= 1 the state described by n = —w = 1, N = 1 becomes mass-
less and should have a finite non zero momentum, but as the scale factor
increases or decreases the state becomes more and more massive and hence
the momentum becomes negligible in comparison. The generic feature of
a minimum at p= 1 is robust, however, since as we mentioned earlier, the
force term will always change sign at )= 1. One finds that the minimum is
always fairly concave independent of the nature of the b dependence of the
momentum.
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stabilization mechanism for the radion, provided that the three non-
compact dimensions are expanding (such a behavior was already found in

an early study [55] of the dynamics of string winding modes - we thank
Scott Watson for drawing our attention to this paper). We will address the
phenomenology of this stabilization mechanism further on, simply stating for
now that we can obtain a robust stabilization mechanism which is consistent
with observational bounds.

At this point, we wish to mention that the “Quantum Gravity Effects”
required to stabilize the extra dimensions in earlier attempts [67, 68] at
Kaluza-Klein cosmology find a stringy realization here, in that all that was
required for radius stabilization was matter that depended on the size of the
extra spatial dimensions in a non-trivial way.

To round off the discussion, we wish to demonstrate that our assump-
tion of an expanding scale factor a(t) is consistent with an oscillating scale
factor b(t). Consider the two Einstein equations that do not contain second

derivatives of b:

3%\25’ = H*+H ll—j :
3_—]\;? — [ +2H>.
These equations imply that
H —2Hé = —L(Qp +7). (3.27)
b 3M3

The resulting equation for H has the integrating factor 1/b?, and hence the

solution:

H(t) = H&%?)? - g—]%/o dt/%. (3.28)

Now, from the discussion surrounding (3.22), we see that p > r > —p. Thus,

the contribution to the integral in the above is strictly positive, and the
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second term on the right hand side of (3.28) can at most take on the value:

”AZQ /0 dt’ b@((t;,)) . (3.29)

Thus, we see that if we pick the initial conditions for H appropriately, the
scale factor a can be taken to be expanding (H > 0) regardless of the
detailed motion of b. In fact, if we assume that H starts out positive, then

H(t) will remain so if

1 t 2047
Hy > — dt' ———— 3.30
> 5 ), Y EE 30

where the eventual stabilization of b and the 1/V ol dependence of p and r
will bound the integral, which implicitly depends on H itself. This implicit
dependence works in our favor in that the larger we make Hy, the smaller
the integral becomes and so we can imagine picking an initial Hy such that a
persistent expansion of the non-compact dimensions results. Note, however
that if in the spirit of brane gas cosmology, we assume that all spatial
dimensions are starting out with the same size and instantaneously static,
then it may not be possible to evolve to a situation in which three large
spatial dimensions are expanding. This is, in fact, the result that emerges
from the work of [58], at least in a certain region of phase space.
3.5 Thermal String Gases

In what we have done so far, we have just considered the behavior of
the size of the extra dimension in a rather artificial setting, namely imposing
a gas of strings with a fixed set of quantum numbers. One expects the
early Universe to be in a state of thermal agitation, and it is inevitable that
transitions between different energy levels will be induced in the string gas.
Thus, to have any hope of realistically applying our setup to cosmology,

we need to study the effects of placing the string gas in a thermal bath.
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Referring to our expression for the energy density of a string (3.19), we see
that a gas of strings with different quantum numbers will have the energy

density:

= M\/z iN—l n w_b2 3.31
P a3b2m ppz-i-a,( )+<b+o/) (3.31)
n,w,N,p?
with densities fi,, ., v 2 for each given set of quantum numbers. The ex-
pressions for the pressure terms p and r are similarly modified. If we are in

thermal equilibrium, the densities are given by the Boltzmann weight

g g2 = €7 € P g (3.32)

where the subscript “ref” refers to some arbitrary reference energy level.
What constitutes the thermal bath to which the string gas is coupled
to? We know from the discussion at the end of Section II that gravitons
described by unwound strings propagate in the non-compact directions with
an equation of state p = p/3. Introducing a gas of ordinary photons will
also add a 4-dimensional component to the energy-momentum tensor with
the same equation of state. Such particles offer us an ideal candidate for
a thermal bath, for two reasons. Firstly, thermal equilibrium demands a
coupling of some kind between the gas of winding modes and the gas of
gravitons and photons. Such a coupling is readily provided by the tree-level
reaction w+ w— hy, via which winding modes of equal and opposite
winding scatter to produce 4-d gravitons. This thermalization mechanism
will, at non-zero temperatures, create an equilibrium where there will be
an ever-present non-zero winding mode density due to gravitons scattering
into winding modes (and vice-versa). This thermal bath has the further
property that it does not affect the dynamics of the extra dimension other

than through the Hubble factor (which it influences), since the driving term
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is only sensitive to the combination p — p/3 — 2r/3 which vanishes for the
graviton and photon components of the energy-momentum tensor.

With the above in mind, the driving term for the scale factor b be-

comes:
b 2/," p /J“T'efe/BETe‘f
M3 ( 3 §> ~ M3 _a%2n (3.33)
pls pls

n2 2mu w?b? 4(N-1)

3 72 7
% E e~ 3o 3a ,

— Jppz LN = 1)+ (3 + 22

where the Boltzmann weight in the summation depends on the values of the
quantum numbers. We remind the reader that the sum is restricted by the
level matching condition N + nw > 0. For completeness we also remind the

reader of the resulting equation of motion for b:

ﬁEref
v . Href€
0 = 3H _— 3.34
b+3H b+ A, a2 (3.34)
e —or n? 2nw  wi?  4(N —1)
< 2 ( T30 (307 T 340 )

n,w,N,p?
The summation which has to be performed in order to obtain the

driving term is quite formidable, were it not for a rather special feature of

string thermodynamics. Consider the argument of the exponential in the

Boltzmann factor:

n  wb

4
B-En,w,N,p2 = B ppz o (N - 1) + (3 + _>2

OZ,

= ﬁ\/a’pipi +4(N —1)+ (%+ bw)?
We see that when the energy is expressed in terms of dimensionless vari-
ables, we pull out a factor of v/a/. Thus, the argument of the exponential in
the Boltzmann weight is 3/v// times a term of order unity. To be able to

neglect all but the first few terms in the summation, we need the Boltzmann
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factor to be considerably less than unity, i.e. that

_ .3
e Vol K 1.

Thus, if this condition is satisfied, then the terms which dominate the sum
will be those whose quantum numbers render them nearly massless, since
any state with even one of its quantum numbers being different from the
nearly massless combination will produce a term of order unity times 3/ V.

Let us take a closer look at the above condition. We know from string
thermodynamics that there exists a limiting temperature — the Hagedorn
temperature T [8]. Thus, for us to even be able to apply thermodynamics,
we need to be well below this temperature, which for all the string theories
is of the order of Ty ~ 1/\/&. Thus, By ~ Vo, and so if we are at a
temperature much lower than the Hagedorn temperature, i.e. T < Ty or
equivalently Sy < (3, then

Vol < 3, (3.35)

which is exactly what we need for the Boltzmann weights of higher mass
states to be negligible. So, even if the thermal bath has a temperature
of only one order of magnitude below the Hagedorn temperature, then

_B
e Vo' ~ 107° which clearly lets us ignore any term whose energy in

dimensionless units \/ o'pip; +4(N — 1) + (%—i— b w)? is anything other than
zero. This translates into us being able to mneglect all states other than those
that are massless. Thus, the summation now becomes very tractable, and we
can also have faith in our truncation of the string spectrum to the lightest
states all the way up to very high temperatures (7" ~ Ty /10). Before we
carry on we should remark that exactly massless states have a non-zero

momentum given by the thermal expectation value of E' = |p| = 3/(.
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Let us then proceed to evaluate (3.33), so that we can evolve b in time
using (3.34), recalling that now we only sum over the massless and near
massless states subject to the level matching constraint. Let us begin near
b= 1,i.e. b= 1+ T. Then for the case that I' # 1, we only have one truly
massless state: n = w = 0, N = 1. This term will not contribute to the

driving force for b since

b2 3a’ 3a/2 3a’

< n? 2nw w?b? 4(N*1))
=0

" (3.36)

Thus, the next lightest state which has quantum numbers N = 1,n =

—w = #£1 will dominate the evolution of b. The level matching constraints
N + nw > 0 ensure that there are no more nearly massless states (Note we
only consider states with positive mass squared - any tachyonic states are

posited to be absent from our spectrum). Such states will contribute:

-8 1_1V24 of/n2 -2
=—=b)*+a'p
v/ G G%+%+@

\/(%_ B)? + a'p?

(3.37)

Expanding b as 1 + I and ignoring terms higher than quadratic in I" results

in a contribution to (3.37) of:

e Bl 8T
Va3
Since there are two such terms which yield identical contributions,
the sum total of the contributions from the near massless states yields the
equation of motion
7 (8F

—) =0 3.38
M327mad|p|as3/? ) 7 (3:38)

T+3HT + 3
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where the exponential factor gets cancelled if we use this massless state as
our reference state, as in (3.32). The form of this equation clearly shows
that T" will tend to zero if it starts out on either side of this value.

However, to confirm that I' = 0 is a genuine point of equilibrium, we
need to confirm that the extra massless states that appear at this radius
(8 in all) contribute in such a way so that their sum vanishes. This can be
verified by a straightforward calculation ? .

However, we wish to point out that as long as we stay in thermal
equilibrium with the graviton gas, this equilibrium is actually metastable.
The reason for this is easy to see from the formula for the mass of a winding

mode:
ro 2 n -\ 2
o'm :<g+wb> LAN - 1). (3.39)
In addition to the massless state given by n = w = 0,N = 1 (the
graviton), and the 8 other massless states that appear at the self-dual
radius (which are given by N = 1,n = —w = £1; N = 0,w = n = =£1;
N =0,w=0,n=2+2and N = 0,w = +2,n = 0), there are additional

massless states at further special radii

b=— ; w=xmn=0,N=0 (3.40)
|m|
b:@ ;o n=dm,w=0,N=0 (3.41)
m € 4.

Thus, at half-integer multiples and and half integer fractions of the self-

dual radius, two massless modes appear and will thus yield the dominant

9 The only non-zero contribution to the driving term comes from the
statesn = 0,w = £2, N = 0 and n = £2,w = 0, N = 0 which make equal
and opposite contributions and hence cancel.
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contributions to the driving term. These contributions again exactly cancel
at twice the self dual radius, and at half the self dual radius. However in
general, we will get a driving term that yields expansion at half integer
points above twice the self dual radius and similarly, contraction at half
integer fractions below half the self-dual radius. However since we posit that
we begin at or near the self-dual radius, we are guaranteed to stay locked

near it if our initial conditions satisfy

b0) ~ Vo

; 240
0) < k=,/——
b(0) =< vk M3a32ma!’

where the last condition constrains the initial “velocity” of the scale factor
to be such that it cannot roll over the “hump” in the potential energy
surrounding the metastable equilibrium at b ~ Va!.

Thus, we have demonstrated in the context of GR how a string gas in
thermal equilibrium with a bath of gravitons and photons will dynamically
stabilize the scale factor of the compact direction if we begin close to that
radius. Thermal equilibrium with the graviton bath ensures a persistent
non-zero density of such winding modes. One can now imagine that, at
some point, the winding mode gas becomes decoupled from the graviton gas,
i.e. falls out of thermal equilibrium. In this situation, we are left with an
unchanging driving term of the form (3.24), which yields the potential in
Fig. 1, which will guarantee radion stabilization at the self dual radius for
the remainder of the Universe’s dynamics. We now turn our attention to the
possible connection between this mechanism and inflationary and standard

Big Bang cosmology.
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3.6 Late Time Evolution

Recall the Einstein tensor for our metric setup:

ot - o]
@ = -l () 2]
ct -l ()]

We know that the dynamics of the scale factor b in the situations we studied
above cause it to undergo damped oscillations around the self dual radius.
We demonstrated in a previous section how the “spring constant” of this
evolution will lock in to this equilibrium fairly rapidly.

We can then study the evolution of the Universe after radius stabiliza-
tion, which implies that b=p= 0 and p — 2r/3 — p/3 = 0. The resulting

Einstein equations are:

1 P
0_ 0 2 _
GO—METO HH—g
Gim =Tl = H=—(p+D)
= — . — —_
2 Mg,l 2p p
1 2r p
5 5
Gi=gpls = P55 =0

V,.I!=0 — p+3H(p+p)=0,

where the 55 equation is precisely the equilibrium condition. Thus, we
recognize in the above the basic equations of FRW cosmology. We now
consider how one achieves the two important epochs of late time FRW
cosmology, namely the radiation dominated era and the matter dominated
era.
3.6.1 Radiation Dominated Evolution

If we assume that the density of 4-d matter gas is far greater than the

density of the winding mode gas, then this will be the dominant component
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that drives the evolution of the macroscopic dimensions. If the 4-d matter
has an equation of state parameter w, then the solutions to the Einstein

equations become:

p(t) oc a=30+w) (3.42)

or

a(t) o ¢ (3.43)

Thus, for a 4-d graviton and photon background, we get that a(t) oc t'/2,
and so we reproduce a late time FRW evolution that is consistent with
standard Big-Bang cosmology immediately after the end of inflation, whilst
maintaining radius stabilization.

3.6.2 Matter Dominated Evolution

Reconsidering (3.23):

b+3H b+

2

M3 3 3

pls

We see that any matter with the equation of state of non-relativistic
dust (p = 0), can only drive the expansion of the radion if it is of a 3-
dimensional nature (i.e. » = 0). This is surely to be a cause for concern
when considering that at late times, one (naively) expects 3-dimensional
non-relativistic dust to be the major driving component of the expansion of
the universe, which would normally invalidate our stabilization mechanism
in the present epoch.

However we wish to remind the reader that present day observations de-
mand that a significant fraction of the energy density of the universe, which
also drives the present day matter dominated expansion, be in the form of

cold dark matter— whose nature is as of yet completely unknown. There

is a significant amount of interest is the prospect that extra-dimensional
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matter or extra dimensional effects might account for the ‘missing’ matter
in the universe. In what follows, we find that the only way to make our
stabilization mechanism consistent with a ‘matter dominated’ epoch is to
introduce extra dimensional cold dark matter. We propose a candidate for
this cold dark matter which is naturally contained in our framework, and
discuss other possibilities which might have a natural realisation within the
general brane gas framework (note that a similar proposal was made in [69]).
We see that in order for the driving term in (3.23) to correspond to a
stable minimum at the self dual radius for matter which obeys the equation

of state for non-relativistic dust (p = 0), we need to consider matter for

which:

r = —p/2‘b:\/a. (344)

That is, we require the dominant component of the energy density which is
driving the expansion of the universe be such that it preserves the stability
of the radion at the self dual radius. Matter which exhibits such an equation
of state will surely have to be massive (else there will be a non-zero pressure
along the non-compact directions for any non-zero energy density). In
addition, such matter will have to be something beyond presently supposed
dark matter candidates (WIMPS, supersymmetric relics etc.) as it will
neccesarily have to be ‘extra-dimensional’ in nature. We now show that

our model naturally contains such a candidate. Recalling the discussion
surrounding (3.22), we see that the equation of state parameter for a gas

of strings with a particular set of quantum numbers is obtained from the

following equation:

(3.45)
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where the momentum will be set to zero (or is vanishingly small) in order to
satisfy p = 0 (c.f. (3.20)). In particular, since we are looking for states which
can satisfy (3.44) at the self dual radius, we need to find the appropriate
quantum numbers which have an equation of state parameter w = —1/2 at

b = v/, which reduces to the following condition:
3n? —w? +4(N — 1) +2nw =0, (3.46)

and we have to be mindful of the level matching constraint: N + nw >
0. As expected, it turns out that the massless states that satisfy these
conditions have an energy density proportional to |p|, whereas the pressure
is proportional to |p|?/3, and hence one cannot have a non-zero pressure
without having a vanishing energy density.

The first massive states which satisfy (3.46) are represented by the

quantum numbers:
p|=0, N=2;n=0, w==+2. (3.47)

These states contribute to the energy-momentum tensor as follows (c.f.

(3.19) - (3.21)):

2/1/2
= pu— = — 2 '4
p 0 » P Irada’ » T p/ ) (3 8)

where the factor of @’ in the denominator comes from two factors of Vo'
one from the metric factor b which has stabilized at the self dual radius, and
the other as the pre-factor of the non zero rest mass of this string state. As
we will see in the next section, were we to look at fluctuations of the radion
around the self dual radius, these states also provide a stable equilibrium at
b = v/o/ in a phenomenologically acceptable manner. Thus, taking questions
of consistency with observation for granted for the moment, we see if these

particular string states are taken to dominate the present energy density
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of the universe, then by the Einstein equations derived at the start of this
section, we can admit an epoch of dust driven FRW expansion (p = 0,
a o< t?/3) at late times, consistent with radius stabilization.

However, there are many further issues that will have to be resolved if
we are to take this idea of stringy dark matter seriously, which we postpone
to a future report. At present, however, we wish to state that there are
indications that such stringy dark matter might have the right clustering
properties at the level of first order perturbation theory, in that local
overdensities of this stringy dark matter induces gravitational clustering in
the remaining 3-dimensions.

We also wish to point out that in certain situations, non-relativistic p-
branes might also be able to provide us with a matter content with satisfies
(3.44) [60]. In the context of brane gas cosmology, this is an appealing idea
as one might need higher dimensional branes to stabilize compact sub-
manifolds that do not admit topological one-cycles (and hence do not admit
winding modes). We will investigate this possibility further in a future
report. Finally, we wish to address the effects of an intermediary epoch of
scalar field driven inflation on our stabilization mechanism.

3.6.3 Intermediate (Non-Stringy) Inflation

We find that our mechanism for radius stabilization might not be
compatible with an intermediate epoch of bulk scalar field driven inflation.
To investigate this, we first consider the energy-momentum tensor of an

almost homogeneous inflaton field:

T} = diag(— [% +V(©O). [T V(@) [% — V(¢)]> (3.49)

Adding this energy-momentum tensor to our string gas yields a non-trivial

contribution to the driving term in the equation of motion for b. This
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driving term then takes the form

2b MrefeﬁErﬁf
v il 3.50
3M3 (9)+ M}, a®2m (3:50)
Z e PP ( n®>  2nw N w?h?  4(N — 1))
VE\ ¥ 3¢ 3a? 3a/

n,w,N,p?
from which it is easy to see that the inflaton contribution will drive expan-
sion in the extra dimension. In general, this term will compete with the
string gas contribution which, as we have seen, drives contraction, if we are
above the self-dual radius. However, this competition is short lived, as the
factor of a® in the denominator of the string gas driving term will quickly
render it irrelevant and the scale factor will then expand according to

- : 2b
Hb—
b+3H b EYVE

V($)=0. (3.51)

Recalling that during this (slow roll) inflation H, and by the time-time
Einstein equation, also V(¢) are almost constant, we can solve the above

equation, with the resulting two solutions:

_3H 8V (4)
2 <1+\/1+ 9H23M§ )t

b(t) o exp

(1 i )
b(t) x exp 2( 9H25Mg)

Substituting in the Einstein equation H* = V(¢)/3M3 gives us

b(t) o exp’%(” 1+%)t0<6—3.56Ht

w
wl%

b(t) o< exp” (1’ 1+%)t0(60.56Ht.

Except for very special initial conditions, the growing mode will rapidly
come to dominate. Thus, we conclude that b expands exponentially (though
not as fast as a). After inflation has finished (and after reheating to a

temperature smaller than the one required for the pair production of string
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winding modes), a expands as t'/2. The energy density in the string gas will
have been exponentially suppressed by the inflationary evolution, and thus

to good approximation the equation of motion for b will take the form

b+3H b=0
leading to
b= Ca > (3.52)
which implies
b(t) = b(1) + 25 (1) (1 - i) , (3.53)
NG

where (1 < ¢). Thus, b asymptotically expands to some limiting, and very
large (due to the initial conditions that result at the end of inflation) value.
In conclusion, we have seen how our radion stabilization mechanism
is consistent with the FRW evolution of the non-compact dimensions, but
not with an intermediate inflationary period, with inflation driven by a bulk
scalar matter field. Thus, in order for brane gas cosmology to make contact
with the present cosmological observations, one either needs a different
(maybe stringy) realization of inflation (see [62] for some ideas) where
strings are produced in re-heating, or a non-inflationary mechanism to solve
the cosmological problems of standard Big Bang cosmology and to produce
a spectrum of almost scale-invariant cosmological perturbations. Finally, we
turn to various phenomenological issues pertaining to this model.
3.7 Phenomenology
There are two potential phases of applicability of our considerations.
The first is to the early phase of string gas cosmology before a period of
inflation. In this case, there are no phenomenological constraints on the
model since the number density of the particles (from the four dimensional

perspective) which correspond to the string states wrapping the extra
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dimension are diluted exponentially during inflation. However, in this case
our considerations would no longer be relevant for the late-time stabilization
of the extra dimension.

The second phase of potential applicability of our considerations is to
the universe after inflation of our three spatial dimensions. We then need to
assume that winding and momentum modes about the extra dimension can
be regenerated in sufficient number, as discussed in [69]. In this case, there
are important constraints on our model. We must ensure that the particles
corresponding to our string states do not overclose the universe. In addition,
there is a radion mass constraint. Since the radion corresponds to a scalar
particle from our four-dimensional perspective, we must make sure that its
mass is consistent with the experimental constraints (we thank the Referee
for stressing this point to us).

An additional constraint comes from the string theoretical aspect of
our model: we must ensure that the derivatives of the metric remain several
orders of magnitude smaller than the worldsheet derivatives (see Appendix).
This is to ensure that we can inherit aspects of the string spectrum and
constraint algebra that we have used so far. From (3.38), which has the

form:

I'+3HT + kI =0 (3.54)

we see that the ‘spring constant’ which sets the scale for the how fast the

metric factor b varies, is given by

8ho

e 3.95
3M3a/3/2|p|a? (3:55)

where the subscript on g is to remind the reader that any explicit metric
dependence has already been factored out (see section II). We have taken

the stabilization to be provided by the massless states discussed earlier with
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|p| denoting the momentum in the non compact directions, N = 1, and
n = —w = *1. In order that our metric factors evolve much slower than
the string scale, we require that d,g < 1/v/2ma/. Since (3.38) is a second
order ODE;, this implies that k < 1/27a/. As discussed in the Appendix, we
choose to be quite conservative and demand that k& < 107%/27c/.

A second constraint comes from requiring that the stabilization
mechanism be effective at all times. This leads to a lower bound on k. We

take this bound to be given by the ‘critically damped’ value for k:
kerit = 9H? . (3.56)

The two above constraints yield the following bounds:

—6
9H? < B0 <10

. 3.57
— 3M3a32|pla® T 27 (8:57)

Since the winding states that stabilize the extra dimensions are
massless at the self-dual radius, they will behave as hot dark matter — dark
matter because they only interact gravitationally (through the tree level
interactions w+ w— hy, ) with other fields, hot because they are massless
and have a radiative equation of state. We have to ensure that we do not
introduce too many of these objects so that we can ensure consistency with
observational bounds.

Next, we have to ensure that the massive string states that we propose
as a candidate for the cold dark matter that is presently driving the ‘dust
dominated’ expansion of the universe do not violate any observational
bounds while preserving our stabilization mechanism.

Let us begin by considering the massless states which are presently

stabilizing the radion. From (3.17) we see that post stabilization, for stringy
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matter with N =1, n = —w = £+1, we must have:

p= “O’f‘ < 10" peri (3.58)
a

in order to ensure consistency with the nucleosynthesis bounds. The critical
density of the universe is p.is = 1072g/cm3. We then find that (3.58)
becomes

po < 107*107%"GeV*[p| " . (3.59)
Let us now parametrize the present value of |p| as
Ip| = 1077eV (3.60)

where 7 is some constant determined by the initial conditions and the
history of the universe, and this parametrization being motivated by the
fact that |p| is likely to be of the order of a few eV in the present epoch if
it corresponds to an initial |p| of the order of the Planck energy. Then, the

above bound takes the form
po < 1071 GeV?3107. (3.61)
On the other hand, the first inequality in (3.57) becomes:
to > H*(to)|p| ~ 1072107 GeV? (3.62)
which is consistent with (3.61). In the above, we have made use of
M3 = 81G5 = 8nGyVa! . (3.63)

Using (3.63), it can easily be checked that the upper bound on py which
follows from the second inequality in (3.57) is much weaker than the bound

(3.61). We conclude that one can easily arrange the number of string modes
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such that stabilization of the extra dimension is ensured and at the same
time the massless modes do not conflict with the nucleosynthesis bound.
Let us next turn to the radion mass constraint: Since the radion

appears in four dimensions as a scalar field, its mass must be larger than
Meriy = 10712GeV (3.64)

in order to avoid fifth force type constraints. Since the square of the radion

mass is given by k, this constraint becomes

o > M3 pim2,, ~ 1073 7GeV? (3.65)

crit

which is consistent with the upper bound (3.61) on g if v > 3. Such a value
of v is not at all unreasonable and could easily arise from an additional
suppression of the momentum during a short period of inflation.

It turns out to be crucial that we use massless modes to stabilize the
extra dimensions, as more massive string states would bring down the upper
bound, and as we are about to see, do not provide as effective a spring
constant and hence bring up the lower bound, to the net effect that it is
phenomenologically inconsistent to have these as the only strings that are
stabilizing the radion. We arrive at this observation by considering the
second aspect of our phenomenology— namely, that we would like the cold
dark matter content of our present universe to consist of massive string
modes (which satisfy (3.44), which as we have seen is require in order to
maintain stabilization at the self dual radius).

Considering the contribution to the energy density by a string gas with

quantum numbers |[p| =0, N =2, n = 0, w = £2 (3.48), and equating this
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to the critical density of the universe, we see that:

2\/§,udm —~

omadaiz . Perit (3.66)

Where now the subscript on p serves to indicate that this is our dark matter

candidate. This requires
fam ~ 1077GeV?. (3.67)

Upon perturbing around a stabilized radius, we find that these string modes

contribute to the stability of the radion with the spring constant:

87TG5,LLdm \/g
ki = ———— — . 3.68
¢ 2ra’a® 3 ( )

Demanding that this value of k is consistent with the radion mass bound

yield a lower bound on fig,

fam > M2, My ~ 107°GeV (3.69)

crit

which is clearly inconsistent with (3.66) for values of v which are extremely
large.

Thus we see that if we introduce the correct amount of our dark matter
candidate, it contributes too feebly to the dynamics of the radion (even
though it does provide its own contribution to stabilization). However, this
is of no concern to us, as we have already shown that the massless string
states provide a robust stabilization mechanism that is consistent with
observational bounds. Thus, if our string gas has a massive component
that serves as cold dark matter, and a massless component that stabilizes
the radion (and behaves like hot dark matter) in the right proportions,

which as we have shown is quite easy to achieve, we can be assured of the
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phenomenological consistency of our stabilization mechanism with late time
FRW cosmology.
3.8 Conclusions

The analysis in this paper is motivated by brane gas cosmology [6, 45].
As a simplified problem, we have studied the effects of a gas of strings
with non-vanishing momentum and winding modes about a single compact
extra dimension taken to be a circle (the three large dimensions are taken
to be spatially flat and isotropic) on the evolution of the radius of that
dimension, assuming that the background space-time satisfies the equations
of motion of General Relativity. We discovered that such a string gas leads
to a dynamical stabilization mechanism for the radius of this dimension, the
radion. Assuming initial conditions in which the three large dimensions are
expanding, we found that the radion performs damped oscillations about the
self-dual radius.

In a first step, we studied the effects of a gas of non-interacting strings,
each string having the identical momentum and winding numbers. Key to
the stabilization mechanism is the fact that winding modes and momentum
modes contribute with opposite sign to the pressure of the string gas
in the direction of the compact dimension, and that the winding modes
generate a potential for the radion which favors contraction, whereas the
momentum modes generate a potential favoring expansion. We then showed
that the stabilization mechanism also holds for a gas of strings in thermal
equilibrium.

We also showed that, after radion stabilization, the scale factor for
the three large spatial dimensions obeys the usual FRW equations of
standard Big Bang cosmology. Thus, our scenario leads in a natural way

to a late time FRW Universe. However, we have also shown that the
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radion stabilization mechanism is not compatible with a period of scalar
field driven bulk inflation. Thus, in order for brane gas cosmology to
make successful contact with present cosmological observations, one either
needs to find a stringy mechanism for driving inflation where strings are
produced in the re-heating epoch, or else one must provide an alternative
to inflationary cosmology, both for solving the mysteries of standard Big
Bang cosmology, and for explaining the origin of the observed large-scale
fluctuations.

Note that we start with the assumption that three spatial dimensions
are already much larger than the other ones (one other dimension in our
case). Whether or not the dynamics of strings in the initial stages will
indeed lead to this situation may depend on the corner of M-theory one
is working in, i.e. on the specific form of the background equations of
motion and initial conditions (see [6, 45, 46, 57, 58] for different angles
on this issue). However, it should not be hard to generalize our analysis
to a situation with more compact dimensions or different topologies and
geometries of the extra dimensions, which will be the focus of our future
work.

In future work we also plan to study the annihilation rate of the
string modes which are central to this work, namely modes which have
both winding and momentum in the compact direction. Since these modes
interact only gravitationally just like gravitons, they will be out of thermal
equilibrium at late times and hence will not decay.

3.9 Appendix: The String Spectrum in a Time Dependent
Background

Let us then begin with the Polyakov action for a closed string:

-1
Ao

S

/ o/ =170, X 0, X" g, (X)) . (3.70)
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Varying this action with respect to the world sheet metric gives us the

equation of motion
Yab = /\hab == /\GQX“c?bX”gW(X) > (371)

where we can exploit the world-sheet diffeomorphism and Weyl invariance to

make the world-sheet metric flat (conformal gauge):

b -1 0
Yab =7 = . (372)
0 1

Varying the action with respect to the world-sheet fields, and imposing the

gauge choice yields the equations
1
0.(0" X gru (X)) = 5a@)@aa)cygw(x), (3.73)

where the meaning of the derivatives of the metric should be clear. This

equation translates into
0,0 X" 4+ T7,0,X"0°X* = 0. (3.74)

Now, we consider the case when our metric depends only on time, that
is g, (X) = g, (X?), is diagonal and has -1 as its 00 entry (This last point
is not essential to the argument, it only serves to simplify the equations).

Unpacking the above equation yields the equations
1
—2X"+92X° = —§gAy,0(—aTX”aTXA + 0,X70,X7), (3.75)

and

—PX + X = —¢"gii0(—-0. X0, X" + 0,X'0,X7). (3.76)

On the right hand sides of the equations there is an overall factor containing

the time derivative of the metric. To estimate the magnitude of either side
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of the equations, we realize that world-sheet time derivatives will be of the
order of the energy of the string, which is of the order of the square root of
the string tension: 0, ~ \/%7 Similarly, the world-sheet spatial derivative
will be of the order of the inverse of the string length 5, 0, ~ i, which

is of the order of the square root of the string tension. On the right hand
sides, the terms are of the same order as the terms on the left, except for
the factors containing derivatives of the metric. As long as these metric
derivatives are several orders of magnitude smaller than the string tension
scale, we can safely ignore them 1° . Assuming such a background, (3.75)
and (3.76) reduce to the usual flat space wave equations, and we can
proceed to expand the solutions in terms of plane waves. We then impose
the canonical commutation relations on the expansion coefficients ! .

To complete the analysis, we impose the constraints coming from our

gauge choice:

By = (3.77)

10 For instance, we are tempted to be conservative and to ask for them
to be roughly 6-8 orders of magnitude smaller, in order to be certain of a
consistent treatment.

' Recall that 9, X* := P, is the canonical momentum, where we must
view P, as having its index lowered which is to be raised with the inverse
metric. Not realizing this will produce nonsensical results elsewhere (such as
in the computation of the energy-momentum tensor of the string) in addi-
tion to making quantization very awkward. This fact is easier to understand
if we recall that P, and X" are canonically conjugate world sheet fields and
not 4-vectors. With this in mind, canonical quantization means imposing
[Pu(r,0), X" (1,0")] = —id,6(c — ') which, as is, does not involve the metric.
Hence we do not have to do anything different at this stage of the analysis.

62



0. X" 0. X" 4(X) + 0, X 0, X" g (X) = 0, (3.78)

0. XF0, X" g (X) = 0. (3.79)

By implementing our plane wave expansion for X* in terms of the creation
and annihilation operators, we obtain the spectrum by requiring that
physical states are annihilated by the constraint operators. However, when
we write the constraints in terms of the canonical variables, their metric

dependence becomes manifest:
P,X" =0 (3.80)

P,P'+ X, X" =0. (3.81)

We see that (3.80) is independent of the metric. Since this constraint is
the origin of the Virasoro algebra, we see that it remains valid in suitably
time-dependent backgrounds. However (3.81) does depend on the metric
since P* requires the inverse metric to raise its index and X, requires the
metric to lower its index. Now we choose to work in a 5-d background with

metric:

G = diag(—1, a®(t),a*(t),a®(t),b*(t)), (3.82)
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where the 5’th dimension is taken to be compact with radius 27b 2 . With
this as our background metric, (3.81) becomes (for a string wound along the

5'th dimension):

2 (N+ N —2) (3.83)

—E*+¢g"pip; + o

+ ¢PPsPs 4 gss XX =0,

where all we have done is expanded out (3.81), and realized that the

terms coming from the non-compact X* and P, give us the center of mass
momenta and the left and right oscillator pieces, and the terms coming from
X?® have been accounted for explicitly. We know that this part of the energy

contributes [22]:

2 272
5 s n° o wb
so that combined with the level matching conditions
nw—+ N— N=0 (3.85)
we get
i 4 n  wb,
E=\/yg pipj‘Fa(N—l)Jr(gﬂL?) : (3.86)

12 The results in our paper easily generalize to backgrounds of any number
of non-compact dimensions so long as precisely one dimension is compact-
ified on a circle. For consistency, we could state that our background is a
compactified 10 dimensional space with six dimensions compactified on a
Calabi-Yau (CY)space and one dimension compactified on a circle. Since in
the prototypical compactification scenarios such as the Horava-Witten model
[70][71] the radius of the CY is smaller than the radius of the circle, since
we will be interested in string winding modes but Calabi-Yau spaces do not
admit one-cycles, we can ignore the presence of the Calabi-Yau space if we
work in an effective Lagrangian description valid at energies smaller than
the energy scale of CY compactification. We could always go back and work
ina9 +1x Stor24 +1 x S?* space-time where we would derive the same
conclusions as we do here.
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where the only remnant of the level matching condition is the requirement
that

N +nw>0. (3.87)

Thus, we wee that the only effect of working in a slowly varying
background is to introduce time-dependent metric factors in the obvious
places in (3.86) which is otherwise identical to the result we would obtain in

a static background.

65



CHAPTER 4
Interlude I

Having seen that a gas of massless strings which condenses around the
self dual point can stabilize the radion field in a way that is consistent with
fifth force constraints and the predictions of big bang cosmology, the next
logical thing to do is to see if this mechanism generalizes to any number of
extra dimensions. This is motivated all the more since in [19], using only
massive string states, Watson and Battefeld argued that it would be difficult
to stabilize more than one extra dimension. We will see in the next chapter
that this won’t be the case if we focus only on massless string states, which
results in a cosmology of massless string modes which is also consistent with

the predictions of big bang cosmology, whilst evading fifth force constraints.
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CHAPTER 5
The Cosmology of Massless String Modes

5.1 Abstract

We consider the spacetime dynamics of a gas of closed strings in the
context of General Relativity in a background of arbitrary spatial dimen-
sions. Our motivation is primarily late time String Gas Cosmology, where
such a spacetime picture has to emerge after the dilaton has stabilized.
We find that after accounting for the thermodynamics of a gas of strings,
only string modes which are massless at the self-dual radius are relevant,
and that they lead to a dynamics which is qualitatively different from that
induced by the modes usually considered in the literature. In the context
of an ansatz with three large spatial dimensions and an arbitrary number
of small extra dimensions, we obtain isotropic stabilization of these extra
dimensions at the self-dual radius. This stabilization occurs for fixed dilaton,
and is induced by the special string states we focus on. The three large
dimensions undergo a regular Friedmann-Robertson-Walker expansion. We
also show that this framework for late-time cosmology is consistent with

observational bounds!' .

! Reprinted with permission from Subodh. P. Patil and Robert H. Bran-
denberger, JCAP 0601:005, 2006, copyright (2006) by the IOP. The Jour-
nal of Cosmology and Aastroparticle Physics can be accessed online at
http://www.iop.org/journals/jcap . This article can be accessed online at

http://www.iop.org/EJ/abstract/1475-7516,/2006,/01/005.
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5.2 Introduction

The String Gas Cosmology (SGC) program, initiated in [6, 7] (see
also [55]) is a string-motivated cosmological model within which it appears
possible to obtain a nonsingular cosmology in which a universe with three
large spatial dimensions is dynamically generated from initial conditions in
which all spatial dimensions have a similar microphysical scale. The scenario
is based on coupling a gas of string and brane matter degrees of freedom to
a dilaton-gravity background geometry. As initial conditions, space is chosen
to be compact and of string length in all directions, and matter is taken
to be a hot gas with all string and brane degrees of freedom excited. The
specific stringy degrees of freedom which have both winding and momentum
quantum numbers play an important role in the dynamics of the early
universe. There has been a steady stream of research on this scenario over
recent years (see e.g. [9, 10, 11, 16, 19, 20, 23, 27, 28, 32, 33, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 61, 72, 73, 74, 75, 76, 77, 78]).

in spite of its above mentioned main successes, SGC has encountered
important obstacles (some of them yet to be resolved) which stand in the
way of SGC being a complete and testable model of the early universe.
These obstacles arise in attempting to implement the ideas introduced in
[6] and [45] in realistic string/M-theory settings. Chief among them, was
the observation that a dynamical dilaton proved crucial in stabilizing the
extra dimensions (radion stabilization was first considered in [27]), and
as such posed a problem for stabilization in the present epoch (see e.g.
[19, 20]). However, this was not so much a general conclusion rather than
an observation about the particular role the dilaton played in the specific
realizations studied. Several other outstanding issues concern the question

of stability of the extra dimensions to fluctuatons (addressed in [32, 33] at
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the level of linear cosmological perturbation theory), the phenomenology

of having a space-filling fluid of strings to maintain stabilization (we do

not want to overclose the universe, whilst still maintaining an effective
stabilization mechanism), and the consistency in using a low-energy effective
theory at compactification radii comparable to the string scale. Also, a
concern has recently been raised [9, 10] concerning the ability of string
winding interactions to only annihilate in three large spatial dimensions.

It is the goal of this paper to report on recent work which not only
hopes to resolve some of the outstanding difficulties faced by SGC, but also
points to a resulting model of the universe which is surprisingly complete,
and potentially testable by observation. As such, this report constitutes the
first in a series of papers [79, 31], where this particular paper will primarily
elaborate on a model of the universe where extra dimensions (not just one
extra dimension as in [16]) are stabilized at late times (i.e. assuming the
dilaton is fixed) by a confining potential induced by a string gas which
contains modes which are massless at the self-dual radius. A subsequent
report will further investigate the resulting phenomenology and point to
potentially testable predictions arising from the model introduced here [79].
There are already preliminary indications that the model we are studying
contains a stringy mechanism for the generation of metric fluctuations
[79] and may even offer applications to the construction of a nonsingular
realization [31] of the Ekpyrotic/cyclic universe scenario [80, 81, 82].

Key to the results of this paper (and the phenomenology which follows)
is the special role played by massless string states, whose utility has been
generally neglected - see, however, the discussions in [16, 28|. In the
following introductory section we begin by clarifying the philosophy of SGC,

and then give a preview of some of the special properties of the massless

69



string states which explains their vital role in SGC. After discussing
the outstanding problems of SGC, we offer our ideas for resolving these
problems within our framework. In Section III, we set up our model, study
the effects of a gas of strings in a background described by Einstein gravity
(fixed dilaton), and derive the resulting spacetime dynamics. We show that
it is possible to stabilize any number of extra dimensions, making crucial use
of the massless string states. In Sections IV and V, we demonstrate that this
stabilization mechanism leads to a phenomenologically acceptable late-time
cosmology (modulo the outstanding issue of the horizon problem of the
three large dimensions). In particular, we show that Friedmann-Robertson-
Walker (FRW) expansion of the universe results after the extra dimensions
have stabilized.
5.3 SGC: Philosophy, Progress and Problems

String Gas Cosmology is a paradigm constructed along similar prin-
ciples as the Standard Big Bang Cosmology (BBC). Beginning with the
observation of spatial homogeneity and isotropy of the universe on large
scales, BBC is the cosmology that results when one couples a theory of
space-time (Einstein gravity) to matter described as a set of ideal gas fluids
(or a homogeneous distribution of fields as in the Inflationary Universe
scenario [83], an extension of BBC which solves some but not all of its
problems), and assumes “hot” initial conditions, i.e. that all matter degrees
of freedom are highly excited.

The philosophy of String Gas Cosmology is similar. Instead of a
homogeneous set of ideal gases or fields, one takes matter to be a gas of
all string and brane degrees of freedom which string theory admits, and
the background space-time is described not necessarily in terms of Einstein

gravity, but in terms of the particular gravity theory (e.g. dilaton gravity)
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which depends on which corner of the string theory moduli space one picks
to be in. Novel features of SGC compared to BBC include the existence of
extra dimensions and extra fields (form fields and scalars) and the existence
of new symmetries (dualities) relating the various corners of moduli space.
The existence of extended objects in the matter sector allows for a radically
different coupling between matter and geometry as these objects feel the
metric tensor in a manner different from what the naive application of
intuition from BBC would imply. The new matter degrees of freedom also
generate their own new symmetries (e.g. target space (T) duality) and cause
the dynamics of spacetime to be very different than in BBC. The peculiar
features of string thermodynamics, such as the existence of a limiting
Hagedorn temperature [8] also serve to ensure that any stringy cosmology
implemented in the spirit of BBC will have qualitatively different features.
What then are the consequences of attempting to do cosmology in the
framework outlined above? In addition to the fact that T duality raises
the hope to be able to construct a nonsingular cosmology [6], the main
result (and in fact the main motivation for the SGC program) is that it
is possible to generate a 3+1 dimensional universe through the dynamical
“decompactification” of an early universe where all directions are initially
taken to be compact and of similar size [6, 45, 27]. The way this works can
briefly be summarized as follows: suppose we begin with a 10-dimensional
toroidal universe, where all dimensions start at or around the self dual
radius (R = v//). Populate this universe with a gas of strings in thermal
equilibrium. Due to the presence of closed strings wound around the various
cycles of the 10-torus, there is an energy expenditure associated with any

expansion of a particular cycle, given by the relation:

E? ~ w’R?, (5.1)
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where R is the radius of the one-cycle and w is the winding number of a
string wound along that cycle. Hence, the expansion of all of the cycles

of the 10-torus should be held in check by the presence of these wound
strings, so long as there are enough of them around. However, we know that
oppositely wound closed strings like to scatter into unwound strings through
the tree level interaction w 4+ w — ... (where the ellipses denote unwound
strings). If we begin near a state of thermal equilibrium, with the tree level
string interactions maintaining a non-zero population of wound strings, we
can then ask the question under what conditions is it possible to maintain
this state of thermal equilibrium? A naive dimension counting argument

[6] tells us that the scattering cross-sections that describe winding mode
annihilation depend on the dimensionality of spacetime. For instance, on

a two dimensional torus, wound strings are very likely to intersect at some
point. The same is true in three dimensions. However, in more than three
spatial dimensions, the subset in phase space of initial conditions for which
two wound strings intersect is of measure zero: strings will generically miss
each other (for some recent concerns with this argument see [9, 10]). Hence,
in a background of any number of spatial dimensions, one finds that in at
most 3 spatial dimensions these strings can meet each other, and hence
unwind. It is in these dimensions that the universe is then free to expand

if there is an initial expansion in place, the interactions having frozen out
in the other dimensions. This stringy explanation for the dimensionality

of spacetime [6] has been generalised [45] to a setting where in addition to
strings, one has branes of various dimensions present in the initial state of

the universe.
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Implementing the above argument in realistic settings has been the
focus of much of the literature on SGC to date. In addition to the suc-
cesses of this program, there are many open issues which remain. Among
the successes is the result that isotropy of the 3-dimensions which subse-
quently describe our universe is a consequence of the dynamics of SGC [48].
Progress has also been made in implementing SGC for more realistic com-
pactifications of string theory (which do not neccesarily admit topological
1-cycles— a pre-requisite for the existence of winding modes) [50]. However,
a major obstacle to the success of this program is the fact that in the re-
alizations of the SGC scenario to date, a dynamical dilaton proves to be
crucial in obtaining stabilization of the extra dimensions [27]. An argument
[7] for the neccessity of a dynamical dilaton for the stabilization of the extra
dimensions is that in general relativity, matter tends to cause monotonic

expansion or contraction of the universe:
H? x p, (5.2)

and hence obtaining stabilization (H = 0) would be problematic. However,
this intuition is flawed since it is based on assuming that one has isotropy
of all dimensions. If instead we assume isotropy in the non-compact and
separate isotropy in the compact dimensions then the time-time Einstein

equation becomes:

1
167Gy

p [d(d — 1)H? + p(p — 1)YH* + 2pdHH] (5.3)

where Gp is Newton’s gravitational constant in the full space-time, d is
the number of spatial non-compact dimensions, p the number of compact
dimensions, H the Hubble rate in the non-compact dimensions, and H

the Hubble rate in the compact dimensions. Hence one could easily have
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an oscillating ‘H provided H is large enough. In the case of one extra
dimension, this was shown explicitly in [16].

Another reason why a dynamical dilaton was included in most of the
previous work on SGC is that in the Type II string theory corners of the M-
theory moduli space the dilaton appears at the same footing as the graviton.
Hence, in the absence of a mechanism which stabilizes the dilaton, this field
should be taken to be dynamical. A dynamical dilaton also is crucial in
order for T-duality to be manifest.

However, in the current universe there is no evidence for a dynamical
dilaton, and hence, if SGC is to make successful connection with current
observations, it must be assumed that the dilaton is stabilized (ideally, this
should be a result of string cosmology itself). A crucial question for SGC is,
therefore, whether the extra dimensions remain stable after the dilaton has
been fixed.

The main goal of this paper is to show that any number of extra
dimensions can be stabilized in the context of General Relativity (GR) (i.e.
without a dynamical dilaton), and hence to extend the results of SGC to
be applicable to late time cosmology. We find preliminary indications that
the resulting cosmology has rich phenomenological implications (this will
be discussed in more depth in a followup report [79]). In addition to being
stable to radion fluctuations there is a potential non-inflationary mechanism
for generating metric fluctuations [31].

The workhorse of this cosmology are string modes which are massless at
the self-dual radius, and whose role was discussed in a previous paper where
the stabilization of a single extra dimension was studied [16]. These modes
are related to enhanced symmetries at the self-dual radius (see e.g. [28, 21]

for more general discussions). We argue that these states must play a crucial
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role in SGC, and neglecting them will lead to incorrect conclusions about
the cosmological evolution.

The role of these special states is also important in addressing a
common objection to SGC (and all other approaches to string cosmology),
namely questioning the use a low energy effective theory description (dilaton
gravity or GR) in a situation when characteristic lengths are around the
string scale. The loop expansion breaks down once one reaches curvature
regimes comparable to the string scale, and hence calls into question the
consistency of the effective theory we are interested in. However, we will be
studying the physics of certain massless modes which appear at enhanced
symmetry points (i.e. the self dual radius), and as such describe new degrees
of freedom that appear at these special points. Since the existence of these
new degrees of freedom will transcend higher order corrections, we feel
justified in using their perturbative properties. Perhaps an equivalent QFT
intuition would be that just as the photon mass remains zero due to gauge
invariance after higher order loop corrections are taken into account, we
expect the properties of these states to similarly transcend higher order loop
corrections due to the enhanced symmetries associated with them.

An open issue for SGC[84] is the concern that the states which keep
the radii of the extra dimensions confined might overclose the universe.

This concern would indeed be valid if these states were Planck mass objects
(like string states with only winding number). However, if stabilization is
achieved by a fluid of strings which are massless at the self-dual radius, and
which from the point of view of the large spatial dimensions behave as a gas
of massless states, the overclosure concern disappears, and one can achieve

an acceptable cosmology. This has already been shown in a model with one
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extra dimension [16], and we will demonstrate that the situation is the same
in our model (though a detailed study shall form a separate report [79]).
However, it is important to stress that these massless modes which
are so important for SGC to be viable appear naturally in our framework
rather than as an ad hoc input. We now turn to the discussion of the model.
We have left the total number of spactime dimensions D and the number
of compact dimensions p arbitrary, with different choices corresponding to
various corners of the string theory moduli space. Later we will of course
be studying the case where D — p = d = 3 (three non-compact spatial
dimensions).
5.4 The Model
We will be doing Einstein gravity in the presence of string sources.
This is the late time scenario that has to result in SGC after the dilaton
has been fixed. We wish to determine whether it is still possible to stabilize
compact extra dimension in SGC after dilaton stabilization. We refer
to this as a ‘late time’ scenario. We assume that the dilaton is robustly
stabilized, and can hence be taken as a constant in what follows. We start
then by assuming that the universe has the topology of R? x TP, where d
is the number of non-compact dimensions and p is the number of toroidal
dimensions, both of which we leave general for the moment. We make the

metric ansatz:

D
ds® = —dt* + ) al(t)da? (5.4)
=1

where D is the total number of spatial dimensions. The resulting Einstein

equations (G* = 8rGpT}) can be recast in the form:

. D
.. ) a; 1 1
it a3 2) =SnGoailp - 5 Yomt e (69)
j=1

j#i Y
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One then has to determine what the energy-momentum tensor for a
gas of strings (with a fixed set of quantum numbers) is, in order to proceed.
One can obtain this directly from the Nambu-Goto action for a single string
(after hydrodynamically averaging)[16]. We offer a derivation of this result
in the appendix. However, it turns out that one obtains the same answer if

one was to introduce the following ‘matter’ Lagrangian density:

strmg / v Nn 0,0, N( ) €5.5,5,N,N > (56)

where G is the determinant of the full space-time metric, the subscripts
indicate that the number density (u) and the energy of a given string

state (¢) depend on its particular quantum numbers. The notation is as
follows: 7 describes the momentum quantum numbers along the compact
directions, which have been organised into a p-dimensional vector. Similarly,
w describes the winding quantum numbers, N and N are the oscillator
levels of the string state and p'is the center of mass momentum along the
non-compact directions, organised into a d = D — p dimensional vector. We
see that this naively corresponds to introducing the appropriate ‘interaction
energy’ term to our action. If one (we shall drop the subsripts momentarily)

factors out the metric dependence of the number density

_ Ho
- (5.7)

where ¢ is the determinant of the spatial part of the metric tensor, one is

left with:
strzng / _GOONO (58)

which, once we consider the thermodynamics of the system, corresponds to

the treatment given in [7].
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The mass of a closed string in a background where p dimensions are
compactified on a torus, described by the metric v, 1 < a,b < p, is given
by [22] (14, we Z):

2 -

1, “ 2
MG AN = 72 "nany + 2 w’ + (N +N-2), (5.9)

where this formula is subject to the level matching constraint:

N =n,w*+ N (5.10)

and R describes the coordinate interval for each cycle of the torus: x* =
0*R, 0 < 6 < 2w, which can be set to unity (the physical lengths of cycles

being described by the metric 7). We can re-write the above as:

_ 1 p i
M apn = (N7 ) + mlwyw) + =(N+ N —2), (5.11)

!/

where (n,w) = n,w* is the standard p-dimensional real scalar product.
We now use (5.10) to solve for N in (5.11), which gives us the following

expression for the energy of a closed string in such a background:

1
€it, 5N = NG

where 74, = Y/, and p? , is the center of mass momentum along the

Vapt .+ (n,77n) + (w,3w) +2(n,w) +4(N = 1), (5.12)

non-compact directions.

Notice that we are not ignoring the oscillator modes, as is customary in
the SGC literature. This allows us to utilise the level matching constraint in
such a way that the above expression for the mass of a string mode contains
a perfect square when all compact dimensions are at the self dual radius
(Yab = dab):

m2:$[(n+w,n+w)+4(]\/’—1)] . (5.13)
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This should be contrasted to the expression obtained when oscillator modes

are neglected at the outset:
m? = —,[(n,m + (w,w) (5.14)

which only vanishes for completely unwound strings, and hence fails to
capture the wound states that become massless at enhanced symmetry
points. These states prove to have very special properties and should not be
ignored in any study of string gas cosmology.

Returning to the question of deriving the energy-momentum of a string

gas, one can insert the expression (5.12) into (5.6) to arrive at:

P —Efioj’f—GG%@ (5.15)
i 7ﬂO,ﬁ,u‘i
Prag — —64 3 _Gpi.c./d (5-16)
7 2
a _ Ho,i, @ U2 272
pﬁ,u_f - Eﬁwma/ <B_2 - waba) (517)

where b, = b,/va! (where b2 is the a' diagonal component of the metric
of the torus). Henceforth 7, shall serve as an abbreviation for the full set
of quantum numbers, which include N and p? as well. Note that the above
can be obtained directly from the Nambu-Goto action [16], as shown in the
appendix. We can immediately infer several qualitative conclusions from
the above form of the energy-momentum tensor. We see that according to
(5.17), winding quantum numbers contribute a negative pressure along the
compact directions whereas momentum quantum numbers do the opposite.
Along the non-compact directions, the fluid of strings exerts a positive

pressure as is typical for a gas of point particles.
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The equations of motion (5.5) for both the compact and the non-

compact dimensions which result from the above are given by:

2 a; i)c 87 G p o i n? 979 2 B -
batba(D ) ) = =2 — wiby + =< [(w,Jw) + (n,w) + 2(N (513
—~ a b;ézabc a2/ Gt q[b (D—-1) _'

.. 817G plio.gi @ [ P2 2 B |
i+ a = M0 | Dnec. , , 2N — 1)]](5.19
a; + a; ;a]—l—z G [ g —|—O/(D_1>[(w Fw) + (n, w) + 2( )]](, |

where Gu is the determinant of the metric without the p’th diagonal
element. In the above, the indices © = 1, ..., d run over the non-compact
dimensions and @ = 1, ..., p run over the compact ones. One thing to note
from (5.18) is that unwound strings with n, = w, = 0 at the oscillator level
N =1 do not contribute to the driving term (the right hand side) of the
equation of motion for the compact dimensions. These states correspond

to gravitons, but in general from the form of (5.5), we see that any matter
which is pressureless along the compact dimensions (such as ordinary
matter) and satisfies the equation of state (p = p/d) also does not contribute
to the driving term for the compact dimensions.

The above equations are somewhat artificial in that they apply to a
universe filled with a string gas with a fixed set of quantum numbers. In
general, one will have a string gas that consists of a superposition of strings
with many different quantum numbers. In that case, the driving terms in
the above equations of motion will become:

= K a; i)c 87TGD,UO7‘1‘1TJ n2 R 9 i
b2, R NN w/_”[?a_ Dot 5 2N £
' (; a; +; bc) ; a/3/2 Ga%w 2 Way + (D — 1)[(107710) + (n,w) + 2(N £

OIS Z =2 gttt [y sl 70) + (n,w) +2(V = 1)]]

J#i \/_en

The number densities i 7.5 are determined by physical considerations.

In the spirit of SGC and following the treatment given in [16], we assume
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thermal equilibrium at the initial time (when the number densities are

determined). In this case, we have
[0 .5 = Hogepe dePres (5.22)

where the subscript ‘ref’” refers to some reference state which we are free to
pick at our convenience. One has to wonder what constitutes the thermal
bath that is a pre-requisite for any thermodynamical treatment. We have
already seen that gravitons and photons (matter which only exists in the
non-compact dimensions) do not contribute to the driving term for the
equations of motion for the b,’s, and are an ideal candidate for such a
thermal bath. The tree level processes h,, — w + @ provide the appropriate
interactions that thermally couple our stringy matter to this bath. With
this in mind, (5.22) implies that the driving term for the non compact

dimensions becomes:

2/\/& 9

(CENR

87TGD/'I’T6f€B ref Z fiu7

aV 71,0, N,p? 7w, N.

[%—wi%%— w, yw)~+(n, w)+2(N—1)]
(5.23)
Where € is a dimensionless quantity (energy expressed in string units:
€ = &/v/a/), which according to (5.12) is a number of order unity for the
lowest lying string states.
With this realization of thermal equilibrium, were we to define the
partition function as

Z2(B,ai,b0) 1= D e Pz, (5.24)

- 2
n7w7N7p
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then one could derive the components of the energy-momentum tensor as

follows (c.f. [7]):

1 07 107
b = car— = = D oa; = e 2
ﬁa e, BN, a; =e (5.25)
1. 07 107
Pa — _ba_ = — ; ba = Aa 5.26
3o, ~ Boa, T C (5:20)
—-107
- 22 5.7
where P, (and in a similar way, E) is defined through the equation:
re eﬂeref
Brel P, = (5.28)

VG

We can use this to rewrite the condition that the driving term for
equations of motion vanishes for any particular direction, as the action of a

linear differential operator on Z:

au%—%<¥%%+%ﬂZ:0. (5.29)

One can then rephrase the question of whether or not stringy matter can
stabilize extra dimensions in terms of the existence of solutions to this
equation. Were we to find simultaneous solutions to this system of first
order PDE’s for all compact directions (41 = a, for a given 3), we will

have determined the nature and existence of stabilized extra dimensions.
Although we will show further on that, in the particular regime we are
interested in, we will have a much simpler means of proceeding, this method
is certainly more general (though less tractable). It might be neccesary to
resort to this method in high temperature regimes and in situations where
the compactifications we study are not so straightforward. In fact, if all we
are interested in is proving the existence of stabilized extra dimensions, then
one could imagine reformulating this question in terms of the existence of

solutions to this PDE, for which a great deal is already known.
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However, since we are interested in late times (i.e. post dilaton stabi-
lization), we find after inspection of (5.23) that the summation is actually
quite tractable. Taking a closer look at the Boltzmann factor that weights
all terms in the summation:

__B

e vt (5.30)

we see that the argument of the exponential is the factor 3/v/a/ multiplied
by a term that is of order unity. Now for all string theories there exists
a limiting temperature, known as the Hagedorn temperature [8], which,

independent of the particular theory, is always of the order Vo [85]:
B~V (5.31)

If we set the string scale to be equal to the Planck scale, then we see that if
the temperature is even slightly (let us say a factor of 10) below this scale,
that is if:

CHES 10, (5.32)

Oé/

then any term in the summation (5.23) which corresponds to an € which is
anything other than zero will contribute vanishingly. Hence, the Boltzmann
weight approaches a window function which projects out all but the massless

modes in the summation. That is:

2

7,0, N,p?

€_ﬁ€ﬁ,ﬁ7N,p2/' o

] = A ] (5.33)

€71, p? =
and hence the sum becomes very easy to calculate. Note that the condition
(5.32) gives us an operational definition of ‘late times’.

Turning to the question of evaluating the summation (5.23) in light

of (5.33), we first need to know which quantum numbers correspond to

massless states for a given form of the metric 4 of the torus. To do this,
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suppose we start out with all toroidal dimensions compactified at the self-
dual radius (¥ = I). Then the formula for the mass of a closed string in this

background is given by (5.13):
2] N
m —J[(n+w,n+w)+4( —1)],

from which we read off that the massless states are those which simultane-

ously satisfy the following set of equations:

(n+w,n+w) = 4(1—N) (5.34)

N+ (n,w) > 0 (5.35)

where the last equation is the level matching constraint. We immediately
see that the only possibilities for massless states at this radius (and as it
turns out all others) are those with oscillator levels 0 or 1. We catalogue the

quantum numbers of all of these massless states below:

N | (n,n) (w,w) (n,w)
1 0 0 0
1 1 1 -1
0 1 1 1
2 2 0
0 1 3 0
0 3 1 0
0 4 0 0
0 0 4 0

It should be noted that the exact realisation of these massless modes
depends on the number of extra dimensions available (e.g. for 1 or 2 extra
dimensions, it is not possible to satisfy (w,w) = 3 etc.). Of most interest

to us (for reasons to be made clear shortly) are the first four possibilities
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mentioned in the above table. The first possibility (N = 1,n = w = 0)
corresponds to unwound gravitons. These states do not contribute to the
driving term for the compact directions (5.23) at all. The second possibility
(N =1,n = 4w, (w,w) = 1) corresponds to singly wound strings with

an equal and opposite quantum of momentum along the same dimension,

at oscillator level 1. The third possibility (N = 0, n = w, (w,w) = 1)
corresponds to a singly wound state at oscillator level zero, with one
quantum of momentum of the same sign along the same dimension. The
second class of states are all at oscillator level zero, and correspond to
various multiply wound/unwound strings with/without motion along various
cycles of our torus. It turns out that if we consider the masses of states with
the quantum numbers tabulated above as the metric fluctuates around the
self dual radius, we find that only the first class of states (the first four in
the above table) remain massless to first order. We see this by perturbing

the metric as follows:

5 o=T—-A

F7Uo=T+A+) A INIES!
k=2

where A is not neccesarily small, but has a matrix norm of less than 1 (so
that 57! can be written thus). Expanding the formula for the mass of a

closed string, we get

odm? = (n,7 'n)+ (w,w) + 2(n,w) + 4(N — 1) (5.36)

= (n+wn+w)+4N 1) = (w, Aw) + (n,An) + > (n, AtERT)

and hence, for the mass difference compared to the value for A = 0,

o/om? = (n, An) — (w, Aw) + Z(n, AFn) . (5.38)
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We see that only the first class of states remain massless to first order. For
the first three sets of states, where the quantum number vectors n,w are
equal to each other up to a sign, this is easy to see. For the states with
quantum numbers given by N = 0, (n,n) = (w,w) = 2, (n,w) = 0, only
the states with entries in the same rows have vanishing fluctautions. This is
because the condition (n,w) = 0, in conjunction with (n,n) = (w,w) = 2
implies that these states either have no, or both entries in common. The
contribution from the metric fluctations would be non-vanishing in the
former case, but for the latter, states of the form below remain massless to

first order:

w = (1,1) n==+(1,-1),
w = (1,—1) n=%(1,1),
w = (=1,1) n=%(1,1),

w = (=1,-1) n==+(1,-1),

where we have only indicated the non-vanishing entries in the above. At late
times, when 3/ Va/ > 1, all states which do not remain exactly massless
close to the self-dual radius are projected out of the summation (5.23). To
emphasize this point, let us consider an epoch when the temperature is two
orders of magnitude below the Planck energy. Then the Boltzmann factor
goes as e 10 for all states that are not exactly massless close to the self
dual radius. We will show later that at exactly the self dual radius, the
summation over all the remaining states tabulated above sums to zero, and
hence their effects on the dynamics of the extra dimensions is vanishing.
Now that we have determined the properties of the string states which

will enter the summation (5.23), we now have to compute their contribution
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to the driving term and sum over all the possiblities. Recalling that the
unwound graviton states (N = 1,n = w = 0) do not contribute to the driving
term, we find that the contribution of the states with quantum numbers

N =1,n= 4w, (w,w) =1 to (5.23) for the a'® compact direction is:

87TGD/LOref 2 [ 1 9 2 P =9
r S S A } 5.39
e AV S0 (5.39)

where if we take the reference energy to be precisely one of the massless
states, the exponential prefactor in (5.23) cancels. The factor 2/|p.. |
comes from the overall degeneracy of the states which can appear either

as, for example w = (0,0,0...1,0...), n = (0,0,0... — 1,0...) or with the
opposite signs, with the factor |p,..| coming from the factor of energy in the
denominator in the summand in (5.23). The states with quantum numbers
N =0,n = w, (w,w) = 1 sum to yield an identical contribution to the
driving term. It is straightforward to show that the states within the class
N =0, (n,n) = (w,w) = 2, (n,w) = 0, that remain massless to first
order also yield a similar driving term, but now with the prefactor 8(p — 1),
instead of 2. The factor p — 1 has the combinatorial origin of being the
number of ways one can pick two entries to be identical out of p choices,
and 8 corresponds to the overall degeneracy of these states (as indicated
above). One might be worried that introducing such states with (w,w) = 2
might force us to consider off-diagonal elements for our toroidal metric ~,s,
as we now have strings that diagonally wrap the torus. It is in fact true
that for a single diagonally wound string, the stress energy tensor will have
off-diagonal components and that these should be matched by off diagonal
elements in our toroidal metric. However, recall that we are considering

a string gas, which at the point in moduli space we begin in (v, = ),

will consist of massless quantum numbers which will democratically wrap
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along all cycles of the torus with equal probablity. That is, singly wound
strings will wind along all cycles of the torus with equal probability. In
addition, strings wound around more than one cycle (such as the states with
(w,w) = 2) will also wrap any given pair of cycles with equal probability.
When we sum over all the quantum numbers, we will invariably encounter
summing over states with winding number vectors that are opposite in sign,
which results in the cancellation of off-diagonal entries in the net stress
energy tensor (see appendix). 2 .

Denoting S>7_, b? as (b, b), we then find that the total contribution to

the driving term from states that remain exactly massless near the self dual

radius is:
87TGD/~’L0T8f (8]9—4) 1 =9 2 ~ o~
— —b —1(b,b) — ) 5.40
T ] [bg 25— (b.0) ~ ] (5.40)

The condition for this driving term to vanish yields the solution
which corresponds to a stabilization of the extra dimensions. This can
also be interpreted as a global minimum of the potential for the radion
with vanishing amplitude (thus avoiding the “no-go theorem for radion
stabilization by Giddings [87] which studies local minima of the radion

potential with positive value). The condition that the driving term vanish is:

= 0>+ ———[(b,b) —p] = 0. (5.41)

2 However the general issue of off-diagonal elements of the toroidal metric
(which correspond to complex structure moduli), is an important one, as one
would also have to address how these are stabilized in this framework. It
turns out that this same string gas that we have introduced aslo stabilizes
the shape moduli of the torus. In [23] and [18], it was shown that the shape
moduli decouple from the radial moduli, and are stabilized by the effects of
the string gas in an analogous way to the radial moduli. A similar result was
uncovered in [86].
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We see that this can be recast as a quadratic equation for Eg, where the
coefficients are formally the same for all a. Hence, if a solution exists, it
must be the same for all a. Thus we find that the extra dimensions are

isotropically stabilized if they are stabilized at all. We now insert the ansatz

appropriate to this observation (b, = A,Va) into the above to obtain the

condition:

1 2
— X4

v 51 A —1]=0. (5.42)

Using the usual technique to solve a quadractic equation, we find a solution

to be:

- (5.43)

Were we to define ¢ = 2p/(D — 1), we find that the above simplifies into the

formula:
c+ (c—2)

V= 2(c—1)

—-1. (5.44)

Thus, we have shown that the extra dimensions are stabilized isotropically
at the self-dual radius.

To complete the analysis we need to show that the fixed point deter-
mined by (5.44) is indeed a stable equilibrium point. A quick way to see
this is to observe that the potential which determines the radion dynamics is
minimized at this point. This can also be seen by inserting the driving term
(5.40) into (5.20), and expanding b, as b, = 1 + I',. Our equations of motion

become:

L : 8TGpA(8p — 4)ul®!
Pt Do (dH+S T+ 7;+£_1§p i
2

d
cta a“«

(D—2)T,—S T =0, (5.45)
|pnc‘<D - 1) ;

where H is the Hubble factor in the d non-compact directions. Interpreting
the driving term as 0,V where the derivatives are taken with respect to Iy,

we find that the Hessian matrix (Hy, = 0,0,V), up to a (positive) factor, is
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given by:

D—2 -1 —1 —1
-1 D-2 -1 —1
—1 -1 D-2 ... -1 (5.46)
-1 -1 -1 ... D=2

where we remind the reader that this is a p-dimensional matrix. The
eigenvalues of this matrix are D — 1 —p (= d — 1), and D — 1, the former
appearing once and the latter with a degeneracy of p — 1. These are all
clearly positive, and hence we conclude that the fluctuations around the
self-dual radius in all directions are indeed stable.

Let us summarize the method and discuss the result. We determined
the energy-momentum tensor of a gas of closed strings and observed that
only the massless string modes will be present in any significant number if
we start the evolution in a hot thermal state (an observation that will also
be crucial for the success of the late time phenomenology). We find that,
after accounting for all the relevant states, their quantum numbers and
their degeneracies, we end up with a driving term (5.40) for the radion fields
which stabilizes any number of extra dimensions at the self-dual radius.
This result is a non-trivial result since it was obtained in the setting of
general relativity, i.e. with fixed dilaton. Thus, we have shown that SGC
provides a mechanism for stabilizing extra dimensions in the present epoch.

It is a natural question to ask whether or not it was neccesary to
introduce stringy states in order to affect this stabilization, as one could
imagine any such states which become massless at special points of moduli
space could have the same effect. This question will certainly occupy us in

future work. However at present, we wish to point out that (as we will see
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further on), it is a property peculiar to extended objects that we can obtain
moduli stabilization in such a way as to be consistent with observational
bounds from late times.

We wish to end this section with a comment on the states which are
massless at the self-dual radius but whose energy is not minimized at this
point (the second class of quantum numbers in the previous table). Since
they are tachyonic either for small or for large radii, they should probably
be excluded from consideration from the outset. Even if they are included,
however, we note that their effects cancel in the driving term of the compact
dimensions at the self-dual radius. This can easily be seen by realising that
these states appear in T-dual combinations (@ < 7). Considering the

driving term at the self-dual radius:

87TGDM7"ef 2 2 2
- n, —w, + ——|(w,w) + (n,w) + 2(N — 1 5.47
TN [ Byl w) + w) £ 2N 1) (547)

we see that T-duality will ensure that the first two terms cancel each other
in summing over all states. It is easy to check, after accounting for the
correct degeneracies of each set of quantum numbers, that the factors
grouped in the inner square brackets also sum to zero. This completes the
demonstration of stabilization at the self dual radius.
5.5 Spacetime Dynamics of the Non-Compact Dimensions

We would now like to consider the resulting cosmology for the non-
compact dimensions after the extra dimensions have been stabilized (in this
section, we will take d = 3 independent of the choice for D and p). Before
we do this we would like to discuss several outstanding issues that should
not be overlooked. Our first issue concerns an important consistency check

concerning general relativity: we should check that our energy momenutum
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tensor is consistent with the covariant conservation of the Einstein tensor:

vV, TF=0. (5.48)

14

This condition yields the following series of equations (one for each value of

the index v in the above):

d . p
. a; 7 ba a
ptd o) + D o+ =0 (5.49)
i=1 " a=1 @
op' = 0 (5.50)
Oup* = 0. (5.51)

The first condition is none other than the continuity equation, and is
trivially satisfied by (5.15)-(5.17). This arises from the time derivative of
p precisely cancelling the terms proportional to the Hubble factors. The
remaining equations are also trivially satisfied as a consequence of the
spatial homogeneity of our setup.

The second issue concerns the equation of state parameter for the
pressure along the non-compact directions. We know from (5.16) that
the pressure along the non-compact directions of this string gas is always
positive. However, we see from (5.17) that the pressure along the compact
directions can be either negative or positive. If we want to avoid violations
of the dominant energy condition (DEC) we must ensure that the equation

of state parameter w = p/p remains bounded from below:
—1<w. (5.52)

Consider now the relationship between (5.15) and (5.17) for the states

that we have found give us stabilization (those with quantum numbers
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n =+, (w,w) =1, N =1or i =, (w,w)=1,N =0). If p* = wp, then

@ . (5.53)

Since the string states we are considering are massless when the scale factor
b, is at its self-dual value, they will have non-zero momentum along the
non-compact directions, which will assume its thermal expectation value if

we are in thermal equilibrium. If we are in a sufficiently hot regime, we can

always ensure that w® satisfies
—1<w<1, (5.54)

where, long after the stabilization has been achieved, and the ambient
temperature has cooled down considerably, one has a robust stabilization
mechanism that keeps the compact dimensions locked at the self dual radius,
where the equation of state parameter vanishes. Hence we can easily arrange
a situation where the DEC is not violated in our model even though the
compact dimensions are undergoing damped bounces. This is a novel result
in the context of GR and was uncovered first in our study of this model in
the case where we only had one extra dimension [16].

Turning now to the issue of the resulting spactime dynamics of the
non-compact directions, which we take to be homogenous and isotropic,
we remind the reader of the Einstein equations applied to our anisotropic
metric, Eq. (5.5). We consider a situation where the dominant matter
component of the universe as a whole is in the form of radiation; that is,
matter which has no pressure along the compact directions and which

satisfies the equation of state

p=p/3. (5.55)
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Considering the effect of this matter on the dynamics of the compact

dimensions, we have

1 1
d — 0. )
D_1p+D_1p (5.56)

b + b <3H n i Z—) — 871G pb, [ _
cta ¢

Thus, we see that such matter does not contribute to the dynamics of the
compact dimensions. Hence, the stringy matter studied in the previous
section will be the only factor at play in the dynamics of these dimensions,
except of course for the Hubble damping factor due to the expansion of
the large dimensions. To put it in another way, it is consistent with the
stabilization mechanism we have studied to have radiation like matter
drive the expansion of the non-compact dimensions. We see through (5.3),
(5.5) and (5.49), that the standard FRW expansion of the non-compact

dimensions results:

3 2

— H 5.57
p r—— (5.57)
- + 2H*=8nGpp (5.58)
p + 3H(p+p)=0. (5.59)

Hence, it is easy to realise a post-stabilization radiation dominated FRW
expansion of the universe. We can also obtain dust dominated evolution in
our model, but this is not such a straightforward matter. In fact, obtaining
a dust driven expansion results in a definite prediction of SGC: if string
gases are indeed responsible for present day stabilization of extra dimensions
in our model, then the dark matter will neccesarily have to be extra
dimensional in nature. This issue was studied in [16] and we repeat the
argument here. Considering (5.5) for a compact dimension, any matter
which only exists in the non-compact dimensions (p* = 0) which satisfies

the equation of state p' = 0 (i.e. all pressures vanish) will neccesarily lead
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to expansion of the compact directions and will derail any stabilization
mechanism we might have had in place. Hence, if we take the dominant
matter content of the universe to have the equation of state of dust, then it
must neccesarily exert pressure along the compact directions which satisfies
the following equation of state when the compact dimensions are all at the

self-dual radius:

1 &, 1
@ —_— =0. 5.60
v D—1;p+D—1pba:@ (5.60)

This implies, since we have isotropically stablized at the self-dual radius,

that this matter satisfies the equation of state

r=—p/ld=1)=—p/2, (5.61)

where r is the pressure along any of the compact dimensions. There is a
candidate within our framework for 3 large spatial dimensions (see [16]),

namely the stringy states with the quantum numbers
|Pnc| =0, N =2;n* = 0,w* = £2. (5.62)

It can easily be checked that such matter satisfies the required equation of
state. These states contribute to the stability of the extra dimensions rather
feebly when phenomenological bounds are accounted for [16], but preserve
the stability of the extra dimensions nevertheless (the massless states being
dominant in their contribution to the stabilization mechanism). Hence we
can take these states as a candidate for the dark matter responsible for our

present FRW expansion 3

3 String winding states as candidates for dark matter were recently also
considered in [69, 88|.
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The resulting FRW equations, once the extra dimensions have stabilized

are given by:

3
= H? 5.63
P = %ma (5.63)
a 2 _ (p+2)
" + 2H* = SWGD—Q(D — 1)p (5.64)
p o+ 3H(p+p) =0 (5.65)

where p on the right hand ride of the above refers to the number of compact
dimensions. Hence we have shown that any epoch of late time FRW
cosmology can result from our model post stabilization. We now turn to a
brief discussion of the phenomenology of this model.

5.6 Phenomenology

Most of what is to appear in this section appears in [16], where the phe-
nomenology of a string gas used to compactify one extra dimension at the
self dual radius is discussed. Since the string modes used in this work are an
immediate generalization of what was used in [16] for one extra dimension to
the case of many extra dimensions, the resulting phenomenological bounds
on the scenario from the point of view of late time cosmology are the same.
Since we plan to give a detailed study of the phenomenology of this model
in a future work [79], we here present only the briefest discussion.

There are three key aspects to our phenomenology that we need to
discuss: the first being that we would like not to overclose the universe with
the fluid of closed strings (which behaves like hot dark matter from the
4-d perspective). The second aspect, is that we do not want to have too
few of these strings such that the stabilization mechanism is ineffective. In
words, we would like to show that it is possible to introduce an effective

stabilization mechanism without overclosing the universe. The third aspect
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is that we do not want the dynamics of the extra dimensions from the 4-d
perspective to introduce any long range scalar interactions (no fifth forces).

As a starting point, consider (5.45), which in normal coordinates has
the form:

' +3HI +kl =0. (5.66)

The value for k (the spring constant) will differ by a factor of order unity
depending on precisely which mode we are looking at, but for an order-
of-magnitude estimate this factor is irrelevant. An upper and a lower
bound on this spring constant result (in the case of the lower bound) from
requiring that the stabilization mechanism be effective, and (in the case of
the upper bound) from requiring that the metric varies on a time scale that
is many orders of magnitude (let us say 10°) longer than the string scale
[16] (otherwise the effective field theory analysis would not be justified).
The lower bound is given by the value for k& which yields critical damping ,

k. = 9H?/4 and the upper bound by the string tension. Thus, we require
9H?/4 < k < 107%/(27d) . (5.67)

From (5.45) this implies

8tG gy’ _ 1o

H? < < , 5.68
ado Y Prc 2mad (5.68)

neglecting factors of order unity. Using the relationship
Gp = Gy x Vol TP = Gs(2mV o/ )P/? (5.69)

between the higher dimensional gravitational constant Gp and Newton'’s
constant G5 in our 3 4+ 1 dimensional space-time, and setting the string scale
to the Planck scale implies

21’ = Gs. (5.70)
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Thus, (5.68) becomes:

g2 < Mo 107
= Blpne| T 27

(5.71)

Furthermore, from (5.15) we see that in order not to overclose the
universe with these strings we require that the 4-dimensional energy density
(ps = pp X Vol TP) be several orders of magnitude less than the critical
density:

fo|Pn.c.|

— —4

Taking pe..: = 1072%g/cm?, we find that this bound translates into

o < 1074107 eV p,. |7t (5.73)
If we parametrize the momentum along the non-compact directions as

|Pne| =10"7eV =10""eV | (5.74)

then (5.73) becomes:
o < 1001 GeV? | (5.75)

which is stronger than the upper bound in (5.71), whereas the lower bound
implies:

to > H2|ppe| ~107877GeV? (5.76)

Hence, we conclude that:
10777GeV? < g < 1073277GeV? | (5.77)

which is easily satisfied. The remaining constraint comes from requiring
that from the perspective of the effective 4-d theory, the masses of the
fluctuations are sufficiently high so as not to mediate long range ‘fifth
forces’. Observational bounds require the mass of these scalars to be greater

than 107'2GeV. Since the spring constant corresponds to the masses
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squared of these fluctuations, (5.71) implies that:
o > 1073 7GeV? (5.78)
which, in conjunction with (5.77), leads to the condition
107377GeV? < g < 107 GeV3, (5.79)

This is easy to satisy for any v > 4.

Hence, we have demonstrated that the stabilization mechanism, because
of some very novel aspects of the string gas energy-momentum tensor, not
only offers a robust stabilization mechanism, but does so in a way that is
phenomenologically consistent. That is, we can obtain this stabilization
without overclosing the universe and violating any fifth force constraints.
This is in marked difference with previous attempts at obtaining stabilizing
effects for extra dimensions by introducing new fields— where the energy
density that appears in the energy-momentum tensor and the mass of the
resulting scalar field (or the spring constant for the radion fluctuations) in
the effective field theory are usually proportional to each other. We see that
for stringy matter, they are markedly different in that p o< |py,..|, whereas
k < [pne|™t. A more thorough study of the phenomenology of this scenario,
where more issues (including a demonstration of the stability of this model
to fluctuations) will be tackled, will the subject of a future report [79].

5.7 Conclusions

In this report, we have studied the effects of a gas of closed strings on
the dynamics of a homogeneous but anisotropic space-time described by
General Relativity (fixed dilaton) where several dimensions are toroidally
compactified. The modes that turn out to be relevant are the string modes

which are massless at the self-dual radius. In the context of a hot early
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universe we show, based on thermodynamical considerations, that these
are the dominant modes. We demonstrated that these modes lead to the
isotropic stabilization of the extra dimensions, thus generalizing the results
of [16] which were derived in the case of only one extra dimension. We
also showed that the dominance of these massless modes is crucial to the
late-time phenomenological viability of the scenario, and leads to a scenario
consistent with several observational bounds. We feel that this formalism
is the begining of a promising avenue of research, which we believe may
result in a complete and testable model of the universe. We already have
promising indications that this framework is capable of modelling a non-
singular bouncing cosmology [31], and potentially provides a stringy
mechanism for the generation of metric fluctuations. Our ultimate hope is to
extract testable predictions of this formulation of string gas cosmology, the
prospects for which seem very promising.
5.8 Appendix— The string gas energy-momentum tensor

In this appendix, we derive the energy-momentum tensor of a string
gas from micro-physical considerations. That is to say, we first arrive at
the space-time energy-momentum tensor of a single string, after which we
perform a hydrodynamical averaging to obtain the result for a string gas.
We wish to comment that there are several non-trivial issues to address
when considering string propagation on a time dependent background.
Intuitively however, one is tempted to conclude that provided the metric of
space-time is varying on time scales much longer than the string scale, we
should be able to proceed (as we do here) in the ‘adiabatic’ approximation.
We shall take this for granted in what follows, refering the reader to [16] for
a justification of this approximation.

To begin with, consider the Nambu-Goto action for a single string:
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2ma’

[p— /dQU\/—_h, (5.80)

with the worldsheet metric hy, defined by:

hab = Gy (X) 0 X 0, X" (5.81)

The space-time metric, which in the above context is generically a function

of the worldsheet fields X*, is assumed to have the form:

goo = goo(X°), (5.82)
9ij = 5ija2(XO)7 (5-83>
gab = ")/ab(XO). (584)

Variation of (5.80) with respect to g,, gives us the spacetime energy-

momentum tensor through the expression:

2 58
V_géguu‘

Arbitrary variations of the background metric induce variations of the

™ (5.85)

worldsheet metric in the following manner:

g, = 5,;\555[)“()(7 —y") = Mhy = 0, X0, XPPTHXT — o).
(5.86)
The unmatched indices A and # mean that we perturb only these com-
ponents of the metric tensor, and §°F1(X™ — y7) is a delta function in
D + 1 space-time dimensions. This variation results in an expression for the

energy-momentum tensor for a single string:
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—1
™= o / d*o/—hh0, X" 0, X" §P (X — 7). (5.87)

We now pick a gauge to work in. We choose to work in conformal gauge,

defined by:

hap = A , (5.88)

where we keep this up to an arbitrary positive factor. From (5.81), we see

that this gauge choice implies the conditions:

G XP XY + g X' X" =0 (5.89)
G X" X" = 0. (5.90)

Even though we are in a (weakly) time-dependent background (in particular
one that is not flat), it can be shown that one can still make this gauge

choice simultaneous with the condition:

X" =0, (5.91)

where the prime denotes differentiation with respect to the spacelike
worldsheet co-ordinate. We will use these conditions repeatedly in what
follows.
Upon examining (5.87), we see that in order to make use of the delta
functions in the integrand, one has to to use the following transformation:
,  dXdXe

0= ——__, (592)
| XO[[ X7
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where X is the string co-ordinate field along any wound compact direction
(which one we pick will turn out to be insignificant). The terms in the
denominator arise in the evaluation of the Jacobian of this transformation,
subject to (5.91). Note that we picked the particular co-ordinates X° and
X® because they are monotonic functions of ¢° and ¢! respectively. Using

the constraints (5.89) and (5.90), we see that:

2ma’

y 1 S
GIP.P) + =g, X X (5.93)

X0 =
—4goo (2ma’)?

where we have used the fact that in conformal gauge, we have:

_ X"
ool

P

“w

(5.94)

The expression in the sqaure root in (5.93) is given by the Ly constraint in
our constraint algebra [22] (see also (5.9) and (5.10)), and is equal to the

energy of the closed string:

= I+ )+ () + L) 1AV 1) 595)

where the worldsheet zero modes give us the contributions |p,| for momen-
tum along the non-compact directions, as well as the terms containing the
winding and momentum quantum numbers for the compact dimensions. All
the other Fourier modes give us the oscillator contributions. We can write

the above as:

2ma’

Vv — 4300

As for the second factor (5.92) entering the Jacobian, we see that for any

X0 =

c. (5.96)

string wound w times around the a'* direction:
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X' = (5.97)

Recall that one has to sum over all zeroes of the argument of the delta
function along the a'* direction when evaluating the integral (5.87), after
implementing the change of variables (5.92). Thus the contribution (5.96)
is cancelled by the string winding w® times around the a'* direction, as the
argument of the delta function is zero precisely w® times. Note that this is
how the choice of which cycle we take in evaluating the change of variable
ends up being inconsequential. However, the choice is residually implicit in
which of the wound co-ordinates X remain in the D — 2 delta functions left
over after integrating over the worldsheet. This will prove to be irrelevant
after we hydrodynamically average to obtain the result for a gas of strings.
Hence we evaluate (5.87)— using the gauge fixing conditions and the results

just obtained (5.93) - (5.97)- as:

0 = %513—1()(7 —y), (5.98)
T = %5D‘1(X7 -y, (5.99)
T = %(z—j - “ff;i)al?—l(f —yn), (5.100)
e

where g, is the determinant of the spatial part of the metric, and € is
defined by (5.12). We now hydrodynamically average as follows: keeping
the quantum numbers p3,w, 7 and N fixed, we sum the contributions over
a distribution of such strings, where the momentum along the non-compact
directions is distributed isotropically. We note that according to (5.12),

a wound string with quantum number vectors w, n will have the same
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energy as a string with both vectors with the opposite sign. Moreover, for
diagonally wound strings, this energy will be the same were we to keep

the winding number around any given cycle fixed, whilst winding around
any other cycle oppositely, provided that we also reverse the sign of the
momentum quantum number corresponding to that cycle (this is so that
the term (n,w) remain invariant). Hence, the off diagonal terms in the
above will cancel out when summing over a gas of strings. In this way, our
hydrodynamical averaging results in the term (5.101) dropping out, yielding
(5.15)-(5.17):

Ho€
p = , 5.102
o ( )
i Mo 2
P = |pal”/d, (5.103)

VYs€
I

i Yada) (5.104)

b2 a2
a
As is easily checked, we note that one would obtain this same result if one

were to introduce the following action for the string gas:

S = —/dD“a:\/—ggouoe . (5.105)
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CHAPTER 6
Interlude 11

Having seen that a gas of strings can stabilize any number of extra
dimensions around the self dual radius in a manner that is consistent with
various phenomenological bounds, we now investigate further the stability
of such a gas against perturbations. Such an investigation is important if
we are to find out the effects of stabilization on any primordial spectrum
of metric fluctuations. Were this spectrum modified by the stabilization
mechanism, then this would rule it out as a solution to the moduli problem.
As we will see, string gas cosmology passes this test with flying colours,
and even offers a mechanism to regularize a bouncing brane scenario whilst
smoothly transferring metric fluctuations accross the branes. In this way,
we shall see that string gas cosmology offers a rather complete framework
to solve the moduli problem in a way that is consistent with our usual

cosmology, and even extensions to our usual cosmology.
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CHAPTER 7
On The Transfer of Metric Fluctuations when Extra Dimensions
Bounce or Stabilize

7.1 Abstract

In this report, we study within the context of general relativity with
one extra dimension compactified either on a circle or an orbifold, how
radion fluctuations interact with metric fluctuations in the three non-
compact directions. The background is non-singular and can either describe
an extra dimension on its way to stabilization, or immediately before and
after a series of non-singular bounces. We find that the metric fluctuations
transfer undisturbed through the bounces or through the transients of
the pre-stabilization epoch. Our background is obtained by considering
the effects of a gas of massless string modes in the context of a consistent
'massless background’ (or low energy effective theory) limit of string theory.
We discuss applications to various approaches to early universe cosmology,
including the ekpyrotic/cyclic universe scenario and string gas cosmology! .
7.2 Introduction

The idea that the universe is comprised of any number of extra di-
mensions, in addition to the three non-compact spatial dimensions that
we observe, goes back all the way to the work of Kaluza and Klein in the

1920’s [89, 90], where extra dimensions were first proposed as a manner

! Reprinted with permission from Thorsten J. Battefeld, Robert H. Bran-
denberger and Subodh P. Patil, Phys. Rev. D Vol 73, 086002 (2006). Copy-
right (2006) by the American Physical Society. This article can be accessed
online at http://link.aps.org/abstract/PRD/v73/¢086002 .
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in which one could unify particle interactions with gravity. Since then,
theories with extra dimensions have evolved from being a mathematical
curiosity, albeit one with remarkable consequences for particle physics [91],
to a theoretical necessity with the advent of string theory. Since the famous
anomalies cancellation calculation of Green and Schwarz [92], the challenge
has remained for cosmologists and phenomenologists alike to account for
the presence of extra dimensions in physics. From a pessimist’s point of
view, one might view these extra dimensions as an unwanted surplus that
has to be swept under the rug at presently accessible energies. In its most
unimaginative form, one could view this as the gist of the moduli problem.
From an optimist’s point of view however, one could view the requirement
of extra dimensions for the consistency of string theory as a new window
of opportunity, through which one might be able to resolve some of the
outstanding problems of particle physics and cosmology.

Taken as an essential part of the radically new picture of space-time
that string theory offers us, extra dimensions, with strings and branes of
various dimensions propagating through them, could offer us a potentially
non-anthropic explanation for the observed dimensionality of space-time
[6]. In addition to offering us potentially non-singular cosmologies [6, 7, 93],
they could very well be at the heart of the resolution of the dark matter
problem [19, 69, 88, 94]. Recently, several alternative stringy cosmologies
have emerged as possible successors to the standard big bang model of the
universe, such as the pre-big bang model [93], brane/string gas cosmology
6, 7, 26, 95, 96] , and the cyclic/ekpyrotic scenarios [31, 80, 81, 82, 97], all
of which have the ultimate aim of becoming complete and testable models of

the early universe.
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A central question that arises in determining whether or not these
models of the early universe reproduce observations is, how metric fluctu-
ations in the presence of extra dimensions evolve in the backgrounds that
these cosmologies propose. The importance of understanding this question
cannot be understated in the context of the abundance of available experi-
mental data, against which we must compare our eventual predictions. For
instance, in the ekpyrotic/cyclic scenario the effects of branes colliding in a
5-dimensional bulk are explored 2

Key to the success of this program is being able to follow the evolution
of metric fluctuations through the bounces of the extra dimension. The
eventual goal of this is to be able to explain the observed inhomogeneities
of the cosmic microwave background as being seeded by radion fluctuations
generated through the motion of the branes towards each other, rather than
through the quantum fluctuations of some putative inflaton field.

Similarly, in the context of the pre-big bang scenario, where an ex-
panding and a contracting phase of the universe’s evolution are naturally
related to each other by the scale factor duality symmetry inherent to low
energy effective string theory, a universe undergoing a big bang-big crunch
transition is naturally implemented. In this context, the evolution of metric
fluctuations through the bounce becomes a question of central importance in
understanding the way the big bang phase of our universe’s evolution hap-
pened the way it did. As it turns out, although at first seemingly unrelated,

an associated and as yet unexamined issue is how any tentative solution

2 Note that, as stressed in [98], none of these alternatives at the present
stage solve the homogeneity and flatness problems of standard big bang
cosmology without invoking a period of inflation (or something which effec-
tively acts as inflation).
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of the moduli problem will modify the spectrum of the metric fluctuations
which we observe. Given that the universe is likely to contain many extra
dimensions whose shape and volume moduli are dynamical in the early
universe, one might expect that the dynamics of these moduli fields will lead
to a highly nontrivial modification of any initial pre-stabilization spectrum.

It is the goal of this report to show that, in the context of a 5-d
universe where an extra dimension undergoes non-singular bounces, or
is en route to stabilization, the final spectrum for the Bardeen potential
corresponding to (long wavelength) fluctuations of the scale factor for
the non-compact dimensions, is identical to the initial spectrum of the
five-dimensional fluctuations (in a sense which will be specified later).
Specifically, if we had an initial scale invariant spectrum for the five-
dimensional fluctuations, we would end up with a scale invariant spectrum
for the Bardeen potential after the bounce, or after the transients of the
stabilization had settled down. Furthermore, we show that the variable
corresponding to metric fluctuations of the compact dimensions decays,
which corresponds to the stability of the radion degree of freedom to
fluctuations in our non-singular setup.

One application of our work concerns the evolution of fluctuations in
ekpyrotic/cyclic type models. In the context of a four space-time dimen-
sional effective field theory toy model of this scenario, the dynamics of
perturbations has been investigated in detail. The initial analyses [80, 99
yielded the result that a scale-invariant spectrum before the bounce transfers
to a scale-invariant spectrum after the bounce. These analyses, however,
were questioned in [100, 101, 102, 103, 104, 105]. A serious complicating
factor turned out to be the fact that the proposed background evolution

was singular, thus requiring the use of “matching conditions” (such as those
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derived in [106] in the context of an expanding cosmology undergoing a
sudden phase transition) to compute the post-bounce spectrum of fluctu-
ations. As discussed in [107], there is a very sensitive dependence of the
final result on the choice of the matching surface. Independently, there has
been recent work on the evolution of fluctuations through a nonsingular
bounce in four space-time dimensional cosmologies, in which the bounce
is constructed by adding extra terms to the standard Lagrangian. These
analyses [108, 109, 110, 111, 112, 113, 114, 115, 116] yield results showing
a sensitive dependence on the nature of the bounce. The bottom line of
this work is that a correct analysis of fluctuations in the ekpyrotic/cyclic
scenario needs to be done in a five space-time dimensional context, a context
in which the nature of the bounce is unambiguous. A first important step in
this direction was taken in [117], confirming the result that a scale-invariant
spectrum passes through the bounce (in the five-dimensional context, the
bounce means that the radius of the extra spatial dimension bounces, not
that the four space-time dimensional scale factor bounces) without change
in the spectral index. However, the analysis of [117] was done in the context
of a singular background and assuming specific matching conditions for
fluctuations applied at a point when the perturbations in fact blow up.
Thus, the results are open to doubt. In this work, we study the transfer of
fluctuations through a cosmology in which two boundary branes approach
each other and bounce without encountering a singularity (see also [31] for
previous work done in the context of a particular nonsingular ekpyrotic-type
bounce proposed in [118]).

We begin by introducing a non-singular bouncing model of a 5-
dimensional universe where one dimension is compactified on a circle or

an orbifold. As we shall see shortly in detail, our non-singular background is
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obtained by considering the effects of gas composed of massless string modes
on the dynamics of space-time, in the context of a consistent low energy
effective theory limit, or ‘massless background’, of string theory. We then
set up the framework for studying cosmological perturbations in this model
and study how these transfer through the various bounces that the extra
dimension undertakes. Although our setup is seemingly specific to string
gas cosmology, the essence of our framework is that we have a non-singular
bounce/stabilization mechanism that is affected by degrees of freedom that
become massless at a certain point. Hence, the hope is that the results
obtained here can be generalized to other settings, an issue we will discuss
in detail when we consider applications to different approaches to stringy
cosmology. We now commence our paper with a few preliminaries.
7.3 The background — R* x S!

Consider a five dimensional space-time with the topology of R* x S1,

described by the metric 3
gaB = diag(_la(f(t)?a?(t)aa2(t)7b2(t)) ) (71)

from which we derive the following components of the Einstein tensor:

o, = —33 (g + %) , (7.2)
G o= =3 [2% + % + (g)Z + zgg] , (7.3)
o - e () g

3 The metric can always be cast into this form, such that ¢ corresponds to
cosmic time.
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Here, the indices ¢ and j run over the three large spatial dimensions and
y denotes the extra dimension. The form of the energy-momentum tensor

which will couple to the Einstein tensor is given by

T = diag(—p,p,p,p, 7). (7.5)

We can recast the Einstein equations G = 87GT7%;, where G is the

five-dimensional Newton’s constant, in the form:

i 87G

g + HEH+H)+ = [ —p =0, (7.6)

b + 3Hb+87G b —%—g]:o, (7.7)
3

p = —HH+H), (7.8)

&G

where H = a/a and H = b/ b. The energy-momentum tensor for a string gas
in this toroidally compactified background was derived in [17] to which we

refer the reader if any of what follows is unfamiliar. It was found to be

,u(),n,'w 2
Prnw = T —€hu> 7.9
€n,wy —g 7 ( )
2
Honw  Phe.
hw = —— ) 7.10
Pn, eruv =3 3 (7.10)

Hon,w

2

e T e ) (1
where ¢ denotes the determinant of the metric, b := b/v/o/ (with 27a/
being the inverse string tension) and the subscripts n, w refer to the
momentum and winding quantum numbers of a closed string along the
5th dimension respectively, on which all of the subscripted quantities will
depend. The density ug is the number density of the string gas with the

metric dependence factored out (u(t) = po/+/—g), while €,,, is the energy of
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a single closed string in this background

n  wb\? 4
€naw = /P2 + (5 + ) + J(N - 1), (7.12)

o

where p,,... denotes the center of mass momentum along the three non-
compact directions, and N is the number of right-moving string vibrational
modes. For reasons made clear in [16] and [17], string states that are
massless at special symmetry points (i.e. the self-dual radius) should play

a very distinguished role in any string gas cosmology (see also [27, 21, 28]).
There are several reasons for this, among which are prominently the desire
to obtain a viable late time phenomenology and a robust stabilization
mechanism for the radion. However, the main motivation is that the low
energy effective theory limits of string theory (such as general relativity and
dilaton gravity) are also consistent backgrounds on which we can study the
propagation of massless (and only massless) strings. For these reasons we do
not further justify the focus on massless string modes, and refer the reader
to [16, 17, 18] for more details. For a general review of string gas cosmology,
we refer the interested reader to [95][96][26].

We wish to emphasize that the framework within which we chose to
work assumes nothing other than the fact that nature is described by a
string theory at high energies, and that the degrees of freedom that are
likeliest to be excited (namely massless string modes) will be excited. The
two particular geometries that we consider for the extra dimensions (i.e.

a toroidal geometry in this section and an orbifold geometry in the next
section), are necessitated by the fact that they are the unique compact
backgrounds on which one stays within the approximation of the low energy
effective limit of string theory, when considering extra dimensions that

are similar in size to the string scale. This is because in general, were the
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metric to depend on the extra dimension (as is the case for warped extra
dimensions), one will introduce curvatures that approach the string scale
when the extra dimensions themselves approach the string scale, and hence
the low energy approximation will break down. We discuss this point further
in the next section.

The particular states we are interested in are those for which n = —w =
41, N = 1. That these states are massless at the self-dual radius (b = Vo)

is easily checked from (7.12). These states imply that (7.7) becomes

< a: 8tGuy  —m 543
b+3-b+ 0 v 3 3

a ada’ oy L\ 2

We will see that this background stabilizes around the self-dual radius

~0. (7.13)

(5 = 1), whilst the non-compact directions persistently expand as they would
in a radiation dominated universe. Before we get to this, however, we wish
to discuss a generalization of this background to the situation where the
extra dimension is compactified on an orbifold.
7.3.1 Extension to R* x S'/Z,

The consistency of the framework that we propose, namely that we
remain within the low energy effective theory (or massless background) limit

of string theory, requires the background we consider to satisfy the condition
Rlg] < —. (7.14)

That is, the Ricci scalar should be considerably bounded from above by
the string tension. This requirement translates into the statement that
the metric should not change very much on the string scale, which ensures
that this background remains a consistent background for the propagation

of massless string modes. Conversely, were one to consider backgrounds

115



which do not satisfy (7.14), not only would the approximations made in
deriving the low energy limit of string theory break down, one would also
expect massive modes to be created [22]. For our purposes, the requirement
of (7.14) means that were we to consider compactifications of the extra
dimension on scales comparable to the self-dual radius, then there should
be absolutely no dependence of the metric along the compactified direction.
This is a remarkable feature of using a toroidal compactification: one can
in fact study string scale processes without invalidating the approximations
inherent in the low energy limit of string theory. It was shown in [17] and
[18] that the background we are about to derive, does in fact satisfy (7.14)
throughout its dynamics.

Returning to the problem at hand, we see that since we are not allowed
to consider metric dependencies along the extra dimension (by homogeneity
and isotropy of the non-compact dimensions, the metric can then only
depend on time), the components of the Einstein tensor (7.2)-(7.4) are
unchanged after orbifolding the extra dimension. The only place where
orbifolding might make a difference is in the energy momentum tensor of
the string gas. However, because the massless states that we have focused
on are in the so-called untwisted sector [22] (in general, twisted states are
localized at the orbifold fixed points), it turns out that there is no difference
in the energy-momentum tensor either (7.9)-(7.11). This is a consequence
of the ‘inheritance’ principle of orbifold theories [22], and permits us to
use the framework just presented in either situation, provided we only use
the modes that we have indicated and we do not consider any variations
in any metric quantities along the extra dimension. However, there is a
caveat to this in that two orbifold fixed planes are present, which might have

matter confined to live on them. The requirement not to induce any metric
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variations along the extra dimension translates into, via the Israel junction

conditions [119, 120], the condition (among others)

da

|:d_y:| X 8TG Pyranes (715)

where [da/dy] is the jump of the derivative of the scale factor a along the
extra dimension, evaluated around either of the orbifold fixed planes. Hence,
we see that if we require there to be no dependence of the metric along
the extra dimensions, then any matter localized on the branes must be
sufficiently dilute to render the branes to behave as test branes. Bearing
all of this in mind, we can now proceed to derive the background solution
within our framework.
7.4 Background solution in 5D
7.4.1 The three large dimensions

We first note from (7.7) that any form of matter which satisfies a
radiative equation of state (p = p/3, r = 0) for all times (as opposed to
our wound string states which become massless, hence radiative, only at the
self-dual radius) drops out of the driving term in the equation of motion for
b (7.7). Hence, we can safely consider a situation where we have a radiation
gas in addition to our gas of wound strings, which dominates the evolution
of the Hubble factor H for the non-compact dimensions through (7.8) after
the extra dimension has stabilized, or is close to stabilization. In fact,
massless unwound closed string states (gravitons: n = w = 0, N = 1) can
provide exactly such a bath. Henceforth, it is natural to include such a bath
in our setup. We do not consider this matter further, simply taking as a
given in what follows that the scale factor a for the non-compact dimensions

expands at the background level as it would in a radiation dominated
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Figure 7-1: The analytic approximation (7.23) (solid line) is compared with
the numeric solution of (7.20) (circles).

universe, that is

a(t) oc t1/2. (7.16)

7.4.2 The extra dimension

Let us go back to the equation of motion (7.13) for b, which reads

wn

1 b2
87TGIUO _5_2 + 3 -+

asa/ ) e 2’
/ 1_
o'pt .+ <5 b)

where p,, .. =: ¢/a with ¢ = const is the center of mass momentum along the

(7.17)

0=b+320+
a

three large dimensions. Introducing the characteristic time scale

_ 647G g
1.
ty =4/ 505202 (7.18)

and defining the dimensionless time variable

ni=24]— (7.19)
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such that a = agn, we can simplify (7.17) to

=0, (7.20)

where a prime denotes a derivative with respect to 1 and we also introduced

the free dimensionless parameter

Qo

[ =

— . (7.21)
a'q

This equation can easily be integrated numerically, but it will turn out to be
useful to have a simple analytic approximation.

If we are close to the self-dual radius, that is b = 1 4+ ¢ with ¢ < 1, we
can expand the driving term in (7.20) so that

2
"+ =e'+e=0 (7.22)
Ui

results. The general solution is given by

1

; (Asin(n) + Bcos(n)) , (7.23)

e(n)

with A and B constants. This solution may either describe the stabilization
of the extra dimension or a series of non-singular bounces * . See Fig.7-1 for
a comparison of the numeric solution of (7.20) with the analytic one. Since
they are barely discernable we will use the analytic approximation in the

following and switch freely between bounce/stabilization-language.

4 Note that this series of bounces differs from the one in e.g. the cyclic
scenario, since € is small.
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7.5 Scalar perturbations in 5D

We will first perturb the metric, focusing only on scalar metric pertur-
bations. The most general scalar perturbation in “generalized” longitudinal
gauge [31, 64, 122] can be characterized by four scalar functions, ®, W, W
and [' . These functions can be viewed as a basis of gauge invariant vari-

ables. In this gauge, the metric is given by

ds® = —(1—=2®(t,x))dt* + a(t)*(1 — 2¥(t,x))dx>

+b(1)2(1 4 21(t, x)) dy® — 2W (¢, x) dt dy , (7.24)

where the signs in front of the perturbations are a mere convention ° .
For reasons discussed in sections 7.3 and 7.3.1, we do not consider any y
dependence, that is we assume homogeneity in the extra dimension (see
also [26] for a discussion of this and other assumptions of SGC). The
corresponding Einstein tensor can be computed to be [31, 122] (in the

following A denotes the Laplacian of the three large spatial dimensions):

- 1 .
oG éj = ?8331695; [\Ij + & - F] y b 7é I (725)
3 (a ab 1
G, = |=|-—-— —— AW 7.26
¢ [b2 (a ab) + 2b2a? ] ’ (7.26)
1 (b a

(/- =1 =+= 2
0GY,. 8%[%2 <b+a+8t> W], (7.27)
® In our notation ® = —W would be called the Newtonian potential in a

four dimensional description.
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1 )
6G% = (03,05 — O] (-T + U + @) +2 (g + 3% + at) 0, (7.28)

a?

b ab a*  da b a a b
22—t = 2=+ =0+ -0, | D~ [ 2= +2- r
<b+ ab+a2+ a+2bat+aat> <&+ b+at>at 7
2 a 1 at  da a
0GY = |—=A4+3(0+4—|0|V+ |-=A—-6(—+—-+—0)|(®29
y a2 a a? a? a a
b a 2 ab a2 3a 1
t = - 2— —— AT — —+— |- —0 — —=A1
0, [3 (bat * aat> a? 0 <ab * a2> ( a o a? azm’)

) 1 (b & 1 (b a
LoV ——([-+2- |- = [-—= r|. 31
aQat a? <b+ a) a? (b a +at> ] (7.31)

One can check that the equations of motion involving W decouple from

5G% = 0,

the other ones for the matter content (7.5) we consider. Since W would
appear only squared in a four dimensional effective theory, we will not need
to compute it at all ¢ .

To write down the perturbed Einstein equations ”

, we also need the
perturbed energy-momentum tensor §77%. It will include the thermal bath
of radiation (denoted by the subscript r), and the stringy matter sources

denoted by a tilde. To be specific, we have

0p(r) —(pe) +pe)Vi 0
r)mA i
(6"Ty) = (Per) + )V 0P(r)0; 01
0 0 0

6 That the equations of motion for W decouple from the other ones is a
direct consequence of the homogeneity in the y-direction.

" Note that fluctuations in SGC (before dilaton stabilization) were consid-
ered in [32, 33].
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(where p(,) and p( are the radiation energy density and pressure, respec-

tively, and V' is the radiation three velocity potential) and

op —(pey +p))Vi O
A - L
(6Tg) = (P + Py Vi opo; 0 |-
0 0 or

where p and p are the string gas energy density and pressure, respectively,
and V is the string gas three velocity potential. Note that anisotropic stress
does not feature in our setup (see appendix), but we will keep V around

for the time being. We will also focus on adiabatic perturbations of the
radiation fluid only, that is 0p) = dp(y/3, even though two ideal fluids

are present so that iso-curvature perturbations could arise. The reason for
neglecting those is simplicity. The x; — z; (i # j) Einstein equations yield

immediately

I=v+9, (7.32)
and, after introducing
& = v—-9 (7.33)
4]
N = 2o (7.34)
Ho

we infer from (7.9)-(7.11), that the perturbed energy-momentum tensor is of

the form

6p = (N+T+2)p, (7.35)

op = (N+T+20)p, (7.36)
. . 1), a

of = (N+&F—2r (6—2 + b2> 3pq‘;a, : (7.37)
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where the background quantities are given by

1 e (1 \?
jo= M- qa+<:—b), (7.38)

o g3p\ a2 b
1 q2al
F = “_(j? 30 , (7.39)
a b 2./ -\ 2
(0
a b
1 5
Po= B P . (7.40)

o adb o -\ 2
ARG

In performing this calculation, we started with the source action for this
string gas [16], and obtained the perturbed energy-momentum tensor
through direct calculation. The string gas energy-momentum tensor only
depends on the metric, the number density of strings pg, and the center
of mass momentum of these strings. However, the latter quantity is not
perturbed, because for long wavelength perturbations (compared to the
string scale), which we are restricted to if we are to remain within the
limits of low energy effective theory, the center of mass motion of a string
propagating on a perturbed spacetime is unaffected to first order. Hence the
only quantities left to perturb are the metric dependencies, and the number
density of the string gas.

Next, we can write the perturbed zero component of the conservation
equation VAT 45 = 0 for the stringy matter as

0 = 6p+3H(6p+0p) + H(5p + oF) (7.41)
—gé(ﬁ +5) - %T(ﬁ = 3p+ 27) + %mﬁ) -

For simplicity we will set V' = 0 from now on, that is we neglect the scalar

velocity potential of the string gas, consistent with the arguments of the

123



appendix. Combining the diagonal Einstein equations yields

1 5 ~ ~ . A
NE (207 +0p—30p) =T+ T'(3H + H) — 2HE — @F
+(T —&)BHH+H*+H), (7.42)
1 . . ) A
3 (30D — 6p) = 2H +5H) — HI — — 4
EE (30p—3dp) =&+ ERH+DH) —H 2 (7.43)

+(&—T)(4H* + 3HH + H*> + H + 2H).

The last three equations (7.41)-(7.43) are the dynamical ones for the
perturbation variables I'; £ and N. The (¢ — t) equation gives the radiation
fluid perturbation dp(,) and the (z; — t) equation gives the scalar velocity
potential V' of the radiation fluid in terms of the other variables.

These equations simplify if we write them in terms of 1 defined in (7.19)
and make use of the background equation a = agn. Introducing h := v / b we

get

2 2
Iy +T% (h+5> — §2h 4+ (T — &) Hlnth%th’}
*2

4

&2 (h+%> —Tph+ (& — Tw) |:%+h2+hl]
*2

12

op” + %(5/)* +0p*) + h(dp" + 0r7) — ;5;@(,0* +p%)

_|_

[y, = n°C (201" + §p* — 36p™) , (7.44)

+o5& = nC (30p" — 6p7) (7.45)

1
—5Th(p" = 3p" +2r7) = 0. (7.46)

Here, we made the transition to Fourier space and we performed the
rescaling a* := a/ag, k* := ktg/ag. All other starred quantities are defined
via

Oé/

fr= fkaé% : (7.47)
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The two dimensionless constants left are

t2 1 o
C = L—— 7.48
M312a3 o'’ (7.48)
. Vo'
qg = 0 (7.49)
which are not independent but related via
250
—=1. (7.50)
q

7.5.1 Analytic late time solution

After h = h' = 0 got approached (that is after the extra dimension
got stabilized or, in the language of the ekpyrotic/cyclic scenario, the two
approaching branes came to a halt), we can simplify the equations of the

previous section to

2 k*2 ]%2
A LA L (7.51)
n 4
4 k*Q
" !
= Y — .52
k+n§k+12§k 0, (7.52)

where we introduced the constant

q*

k*

1. (7.53)

We note that the source term for & vanishes because of the background
equation of state for the gas of massless string modes. Also, the equations
for & and I'y decouple at late times, just as they should do. The solutions

are given by

Iy = % (C4 cos(wrn) + Cysin(wrn)) (7.54)
& = = (Cakeos(uen — 2vBsinfwen) (7.55)

+Cy (k™ nsin(wen) + 23 cos(wgn))) ,
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with C; constant and

E*2 152

wi = T+’ (7.56)
3k*2

wg = 6 (7.57)

We would like to evaluate the spectrum
Pp = KP®F oc k1 (7.58)

when a long wavelength mode enters the Hubble radius again at k*n, = 2. If
we Taylor expand (7.55) for small £* we see that there is an approximately
constant mode present for &. On the other hand, I';, from (7.54) is oscillat-
ing and decaying o 1/n. Therefore, whatever the spectrum for &, was at the
initial time, it should persist till re-entry and determine the spectrum for &,
because, by neglecting I'y, we have &y ~ —W, ~ —&;/2. This is the same
result one would conclude in a simple four dimensional universe, dominated
by radiation. To be specific, we can approximate
&) Tuln) cos(hn, /2 + )
2 20, /i cos(kn; /2 + B) |
€k (1)
2

|®r (1) = | (7.59)

where [ is some irrelevant phase. Of course this holds true only, if the

, (7.60)

transient stabilizing epoch leaves no strong imprints onto the spectrum,;
hence, we will examine this crucial issue in the next section.

Before we do that, let us have a quick look at the physics after a
mode entered the Hubble radius: & will start to oscillate with a decaying
amplitude o< 1/n%. If one waits long enough, I'; will catch up and become

larger than &. Now &), ~ U, ~ I';/2 and thus I'; will determine the
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spectrum, because for n > n,

N Tw(m:) cos(kn/2 + 3)
277/771‘ COS(/;}UZ‘/2 + ﬁ) .

|®k(n)| (7.61)

There is of course a transition region where neither approximation holds.
Nevertheless, this only occurs after Hubble radius crossing and shall not
concern us in the following.
7.5.2 Numerical solution and contact with late times

The analytic solution of the previous section is valid after b got stabi-
lized (or the branes came to a halt). However, the main question we would
like to address is the following: what effect on the perturbations, if any,
does the process of trapping the modulus b have? In order to address this
question we have to solve (7.44)-(7.46) numerically. As we shall see, the
late time solution is approached rapidly and long wavelength perturbations
are not affected in any significant way. Hence, the naive intuition that the
value of @, for modes outside the Hubble radius stay frozen is indeed valid,
with important consequences for cosmological model building, be it in the
framework of the ekpyrotic/cyclic scenario, or within string gas cosmology
(SGC) — we will focus on concrete models in the next section.

Firstly, let us specify constants and initial conditions: the only free
parameter in our setup is ¢* defined in (7.49), describing the initial momen-
tum of the string gas in the three large dimensions. Being a dimensionless

parameter, we choose the most natural value

¢ :=1. (7.62)
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Our results are not very sensitive to its exact value ® . We start close to the
self-dual radius with some arbitrary velocity (once again, its exact value

does not affect our results - see Fig.7-6), that is

b(n) = 1.1, (7.63)

V(n) = —0.1. (7.64)

Next, we have to specify initial conditions for &, 'y and N, at n;, = 1
9 . Since we did not compute how the universe came close to the self-dual
radius (e.g. within the ekpyrotic/cyclic setup or a SGC setup), we have
no way of deriving those. However, we can make an educated guess: if the
universe underwent some phase of inflation in the three dimension before
(we will make this point more concrete in the next section), one should

expect similar values for all metric perturbations; hence we will set

§(ni) = Ti(ni) =: e, (7.65)

with some small €. For simplicity, we will use ¢, = 0.01 for all k. Further-
more, since the long wavelength modes we are interested in should be frozen

once they cross the Hubble radius, we set

&e(mi) =T (n;) =0. (7.66)

8 Decreasing ¢ induces a phase shift in ®;, and an increase in N}, while
an increase in ¢ leads to a decrease in IV, and no phase shift; however, the
metric degrees of freedom decouple form Ny quickly and Ny itself is of no
interest to us.

9 We start at 5;, = 1, because this is the characteristic time scale of the
background oscillations. This means, no oscillation could occur before ;.
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The initial string density perturbation N (n;) will be set to zero, because
these massless modes just got produced. Naturally, N, will get sourced by
I'y and &. No conclusion in the following is sensitive to the chosen initial
conditions, hence we chose the most simple ones above (other ones were of
course also tested).

The only thing left to specify is the wave-number k*: We are interested
in long wavelength modes, that is modes outside the Hubble radius with
small £*. In addition, we shall require k* < k, so that we can compare
our results with (7.59). With all initial conditions specified, we can use the
analytic solution (7.23) to solve (7.44)-(7.46) numerically.

Let us first compare ®x(n) = (T'x(n) — &k(n))/2 for different values of k*,
Fig. 7-2 (a)-(c): There @4 is plotted both numerically (grey) and analytic
(black). We see that the analytic late time solution is approached pretty fast
— in fact, the small difference at the beginning is not visible in this plot, but
only if & is plotted alone as in Fig. 7-5 (a). The visible decaying oscillation
of @y is the decaying mode of I'y form (7.54) with frequency wr, which
is plotted in Fig. 7-5 (b) (compare with Fig. 7-2 (b)). In addition, there
are strongly damped oscillations on top of the constant mode of &, that
carry the same frequency as b(n), Fig. 7-4. As mentioned before, these are
not visible in Fig. 7-2 but in Fig. 7-5 (a) where & is plotted alone. These
oscillations are the impact of trapping the modulus b, an impact that can
safely be ignored in the long wavelength regime: if one decreases k*, all of
these effects become less pronounced.

An other feature visible in Fig. 7-2 is a bending of the lower curve in
comparison to the analytic solution (7.59). This bending is the beginning of
an oscillation of &, and hence an expected feature, since the constant mode

is actually the beginning of an oscillation with a very small frequency due to
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we. All features are not sensitive to the initial values we choose for I'y and
&

Last but not least, Ny is plotted in Fig. 7-5 (c): it gets sourced quickly
by 'y and & and oscillates with a nearly constant amplitude thereafter,
with all frequencies entering. However, there is no mentionable back-reaction
of Ni on the metric perturbations. Hence, one could give Ny a non zero
initial value without changing the evolution of I'y and & in any significant
way.

7.6 Consequences for ekpyrotic/cyclic models and SGC

In the end, we are interested in the spectrum of ®,. So far, there seems
to be little to no impact of the transient stabilizing era of b onto I'y, and
&k. This translates directly to the spectrum, where ®; should approach
a horizontal line for small £*. This is indeed the case, as can be seen in
Fig. 7-3 (c), where the spectrum is evaluated at horizon crossing: the
oscillations that are present for relatively large k* get damped once the long
wavelength regime is approached. This is expected, because long wavelength
modes enter the Hubble radius later and henceforth, the decaying modes
responsible for the oscillations in the spectrum get damped more. The
frequency in the spectrum of ®; is proportional to 1/k*, in accordance with
n. ~ 1/k* and equation (7.59).

Note that no shift of the spectral index is induced, leaving the overall
index unaltered. The oscillations in & in Fig. 7-3(a) are the main impact of
the transient era of a dynamical b. They are clearly negligible, because the
tiny amplitude gets even smaller with decreasing k*.

To summarize, the main conclusion of our numerical study is that
long wavelength metric perturbations quickly approach their asymptotic

solution, leaving no trace of the many bounces b experiences on its way to
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stabilization. More specifically, we have shown that the initial spectrum
of the non-decaying mode of &, is preserved, i.e. equals the spectrum of
&, at late times. At late times, the spectrum of &, equals the spectrum
of the Bardeen potential ®,, the potential which is relevant for late time
observations. Speaking more loosely, we have shown that the initial pre-
bounce spectrum of bulk perturbations is transferred to the late time
cosmological perturbations without a change in the spectral index.

We saw in the previous section that there is no significant effect of
trapping the modulus b on the spectrum of long wavelength perturbations
in the sense that the final spectrum of the Bardeen potential ® equals
the initial value of the non-decaying mode of the bulk perturbation &.

This comes about since the value of ¢ for small £* modes which have a
wavelength larger than the Hubble radius remains frozen during the phase
of the trapping of b, and since the final spectrum of ¢ coincides with the
spectrum of ®.

Even though our result agrees with a “naive” intuition coming from the
analysis of fluctuations in expanding four space-time dimensions, it could
be viewed as an unexpected result: The “naive” intuition turned out to be
wrong in the case of bouncing cosmologies in four space-time dimensions, for
example in pre-big-bang models where it was shown [121] that the growing
mode of ® in the contracting phase couples almost exclusively to the
decaying mode of ® in the expanding phase, leading to the result that there
is a large change in the spectral index of the dominant mode between the
contracting and the expanding phase. Other analyses performed within the
context of four-dimensional general relativity (see [113, 114, 115, 116] and
references therein) yielded a similar result. It is now also generally accepted

that the four space-time dimensional toy models which were proposed to
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describe the ekpyrotic/cyclic models have the same feature, namely that the
dominant mode of ® in the contracting phase matches predominantly to the
decaying mode of ® in the expanding phase (see e.g. [102]). Our analysis,
however, confirms the analysis of [117], which showed, in the context of a
singular bounce, that in the case of a bounce of boundary branes in five
space-time dimensions the spectrum of ® could be preserved.

Our result is an important step in constructing a viable alternative
to standard scalar field-driven inflationary models (next to the remarkable
but highly nontrivial KKLMMT construction, [14] and follow-up papers) in
the context of cosmologies with extra dimensions. We will now outline two
possible proposals which seem promising to us in that regard:

Firstly, one could envisage a modification of the ekpyrotic/cyclic
scenario. In the ekpyrotic proposal [80], a test brane moves slowly through
the bulk towards the boundary brane of an orbifold (the Horava-Witten
[70] setup). In the cyclic scenario [82], it is the two boundary branes
that approach each other. In either case, a scale-invariant spectrum of
perturbations can be generated during the contracting phase given a suitable
potential for the modulus field which describes the inter-brane distance [99].
During the collision of the branes (a singular event in the ekpyrotic/cyclic
scenarios) a hot universe is supposed to emerge on the boundary brane we
live on today. Our background construction can be viewed as a regularized
version of the ekpyrotic/cyclic scenarios (ekpyrotic in the context of a single
bounce, cyclic in the case we consider the evolution until b has stabilized).
Our work shows that in the context of such a regularized scenario, an initial
scale-invariant spectrum could pass through the bounces and thus survive

from the initial contracting phase to the final phase of expansion of our
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three spatial dimensions (this scenario will be developed further in a follow-
up paper). In our scenario, the branes do not actually hit each other, but
come to a halt as a consequence of the appearance of new massless modes
that get produced explosively at a certain brane-separation (that is at a
certain value of b). Our results show that such dynamics does not spoil a
scale invariant spectrum generated during the initial brane movement. In
this framework, one can still reheat the Universe, since the “kinetic energy”
of the branes will get transferred to the stabilizing massless modes and other
light modes which act like radiation on the brane (corresponding to the
radiation bath that we already included in our setup).

Secondly, an incorporation of inflation into brane/string gas cosmology
will rely on the stabilization mechanism described in this article: if any
mechanism of inflating three dimensions is found, the internal dimensions
will most likely have to deflate in some way. For example, one could
employ the idea of anisotropic inflation (studied in the context of vacuum
solutions of higher dimensional general relativity in [123][124][125] and
[126]). Once the internal dimensions get close to the self-dual radius, certain
string modes become massless and get produced explosively along with a
radiation bath, in close analogy to reheating after standard scalar field-
driven inflation. These modes will then stabilize the internal dimensions,
curing the graceful exit problem of anisotropic inflation, while the spectrum
of fluctuations produced during inflation in the metric degrees of freedom
remains unaltered. A concrete realization of this proposal is in preparation
by the authors of this article.

7.7 Conclusions
In this report, we studied how radion, matter and metric fluctuations

interact in a universe that exhibits a transient stabilizing epoch of its extra
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dimension, which could also be viewed as a series of bounces of the extra
dimension. We were primarily interested in the imprints of this epoch on the
spectrum of the Bardeen potentials, motivated by the hope of combining an
earlier phase, generating a scale invariant spectrum (e.g. in the framework
of a modified ekpyrotic scenario, or via an incorporation of inflation within
string gas cosmology), with a successful late time stabilizing mechanism,
provided by a gas of massless string states.

We found that the spectrum of long wavelength perturbations remains
unaltered by this epoch, which has important consequences for various
approaches to stringy models of the early universe. In particular, specific
realizations of the ekpyrotic/cyclic scenario or an incorporation of inflation
into string gas cosmology become possible — we provided two proposals in
this report, but many variations are viable.

7.8 Appendix— Anisotropic stress

In this appendix, we will provide arguments as to why no anisotropic
stress arises in the setup of [16], which we examined at the perturbative
level in this article. In the following a, b, ... denote string world-sheet
coordinates.

First note that our unperturbed background is undergoing FRW
expansion in the non-compact dimensions while the compact direction is
stabilized at the self dual radius by a string gas. As a preliminary, we wish
to show that long wavelength perturbations of the metric do not affect the
motion of strings to first order in the perturbation variables. We begin with

the Polyakov action for a closed string

1
4o

S —

/ d?00°X*0,XBgap(X), (7.67)
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where we work in conformal gauge from the outset. Consider now pertur-
bations around the background: gap = ¢%5 + hap. It was shown in the
appendix of [16] how one can inherit the string spectrum and the constraint
algebra provided the derivatives of the background metric ¢%5 (i.e. the Hub-
ble factors) are several orders of magnitude smaller than the string energy
scales. We want to make sure that we stay within this regime while studying
the dynamical compactification of the extra dimension. Thus, when we con-
sider the equations of motion for a closed string in this perturbed spacetime,
we must neglect all derivatives of the unperturbed metric compared to the
worldsheet derivatives of the string co-ordinates, as these will be of the order
of the string scale whereas the metric derivatives are constrained to be much
smaller [16].

Consider the equation of motion for a closed string
1
0u(0" X gea(X)) = 50.X9"XP00gan(X),
from which follows

1
§aaXAaaXBaChAB = 0,0°X¢ + n50,0° X4

—|—8aXA8aXB@AhBDgODC .

Now we expand X4 as X4 = X' + X4, where X! is the solution to the
unperturbed equation of motion 9,0°Xg' = 0, see appendix of [16]. Our

perturbed equation of motion then becomes

1
§8QX§‘8“X(?GC}LAB = 0,0%0X¢ (7.68)

+8aX648aX§8AhBDgODC .

Notice that there are two vastly different scales in the equation above:

the worldsheet derivatives and the spacetime derivatives. If we imagine
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expanding hsp in terms of fourier modes, the derivatives would bring down
a factor of the 4-d wave-vector. Realizing that we need to stay within

the domain of validity of our setup, namely that we cannot introduce
fluctuations in the metric that would invalidate the conclusion in the
appendix of [16] concerning the string spectrum, we need these fluctuations
to vanish on energy scales several orders of magnitude smaller than the
string scale. This still allows for metric fluctuations that are considerably
short distance in nature, but nevertheless above the string scale. With

this in mind, we can neglect all the terms in (7.68) that are multiplied

by derivatives of the metric perturbation, since these will be orders of

magnitude smaller than the other ones. Henceforth, we obtain the result
0,0%0X4 =0, (7.69)

that is, the string motion is unchanged by long wavelength perturbations.
Ordinarily this would signal the end of any hopes to study perturbative

physics; this is not the case for us, since we are primarily interested in

perturbing around a background which consists of a gas of such strings.

As a result, if we consider the perturbed energy-momentum tensor for

such a gas, it will contain no anisotropic stress. To see this, consider the

off-diagonal spatial components which can be written as
0T o< (p'dp;) + (6p'p;) (7.70)

where ¢ # j and (...) indicates an ensemble (gas) average. These components
vanish, since we just determined that for individual strings dp’ = 0, which

means that there is no anisotropic stress to deal with in our setup.
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Figure 7-2: log(|®%)| is plotted for different values of k*, with the initial
conditions given in section 7.5.2. Black: analytic solution of (7.59); Grey
(bending curve): numerical solution df3{7.44)-(7.46).
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Figure 7-3: The spectrum of (a) &, (b) I'y and (¢) &, = (['y — &)/21s

evaluated at Hubble radius crossing ., = 2/k*, with the initial conditions

given in section 7.5.2. If the long wadel8ngth regime £* < 1 is approached,
all oscillations are damped away such that only the constant mode of &
survives, as expected.
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CHAPTER 8
Conclusions and Future Prospects

As we hope to have demonstrated to the reader over the last few
chapters, string gas cosmology in the simple context of toroidal compact-
ifications, appears to allow us a solution to the moduli problem in string
theory in a way that is consistent with various aspects of late time cosmol-
ogy. However, there are certain key assumptions that underlie our results,
and it is worth going through them presently. Firstly, we assumed that
the dilaton has been stabilized at some earlier epoch and at a scale that is
inaccessible to the energy regimes in which we consider moduli stabilization
(see [18] for an explicit demonstration that it is possible to do so by some
external dilaton potential). Secondly, we assumed that even though we stay
within regimes such that R < 1/a’! | and hence respect the consistency
of the o/ truncation which makes the dilaton gravity action the consistent
one to use, that no essentially stringy effects will take appear to call our
treatment into question.

The third assumption we made is a subtle one, and one that the author
is currently actively working on relaxing. This assumption involves the

suitability of using the dilaton gravity action throughout our treatment

! This is demonstrated explicitly in [18], where it is noted that R is given
by a multiple of the trace of the energy-momentum tensor, which can be
computed explicitly for our gas of massles modes and is indeed shown to be
much less than the string scale even through the transients of stablization.
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on moduli stabilization. We know that as a consistent truncation of string

theory to the massless sector, the action

S = / dP Mz e (R + 40,¢0"¢p — % L M), (8.1)

describes the dynamics of all the massless fields present. As a low energy
effective theory, we can consider this action as having been obtained from
integrating out all massive modes. However we know from studying the
string spectrum on various backgrounds, that the spectrum of our theory
depends on which point in moduli space we are in. We exploited this very
fact in the preceding chapters to obtain our results on moduli stabilization
through the effects of new massless states condensing at the self dual point.
However we should be concerned that the use of the action (8.1) might not
be appropriate. The fact that we are interested in modes that only become
massless at special points means that at precisely such points, these modes
have to be integrated back in to the action. Hence we reason that the action
(8.1) should change at the enhanced symmetry points, which calls into
question the results that we have derived.

The effects of including in the effective action states which are massless
at these enhanced symmetry points has been studied extensively by Giveon
and Porrati [127]. We are currently in the process of investigating the
ramifications of this work to the string gas program, and it is possible to
conclude a priori that this avenue holds promise towards resolving some of
the open issues concerning string gas cosmology.

The main result of [127] is that the extra massless fields appear as a
non-linear sigma model over spacetime, with a potential for the various
Higgs fields, whose masses co-incide with the massless spectrum of the

heterotic string around enhanced symmetry points. Hence the string Higgs

143



effect is realized in this context, and in a similar vein to [28], would indicate
moduli stabilization around these points purely from the perspective of the
low energy effective field theory. Since the action proposed by Giveon and
Porrati is known over all points of moduli space, one could conceivable study
the effects of moduli stabilzation at enhanced symmetry points away from
the string scale, hence relaxing at once the first and third assumptions as
outlined above. In fact, by turning on expectation values for the background
form fields, one will also be able to stablize the dilaton in such a framework.
Such an investigation is presently underway, and the author hopes to

have results to report on in the near future. In this way, we hope to have
assuaged some of the readers suspicions of the assumptions underlying string
gas cosmology so that we can proceed to assess what we have learned in the
course of the last few chapters.

Starting with the assumption that it is consistent to study the effects of
the propagation of massless strings on a background modelled by the action
(8.1), we derived the energy-momentum tensor of a fluid of such strings.

We then coupled this fluid to gravity, and discovered that stabilization

of one extra dimension resulted [16], in a way that is consistent with

fifth force constraints and the results of big bang cosmology. In [17] we
considered the effects of general toroidal compactifications and found

that similar conclusions held there. In [18], we considered the effects of
inhomogeneities on the moduli stabilization mechanism, and found that any

2 persists even though we have dynamically

initial perturbation spectrum
stabilized extra dimensions. We also consider applications towards modelling

the transfer of metric fluctuations through non-singular bounces.

2 whose origin we take for granted— see however [36][37][38][39]
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We conclude this thesis with a discussion of the possibilty that string
gas cosmology suggests a dynamical selection principle in moduli space.
Although we have up till now only seen evidence for this point in a very
simple context, it is compelling enough to warrant a discussion of the
possibility. As argued in [21], enhanced symmetry points are likely to be
dynamical attractors in moduli space. However as discussed in [16], not
all enhanced symmetry points are dynamically stable from the perspective
of string gas cosmology. For instance, referring to (3.40) in the context
of one compactified dimension, we take as an example the massless state
n =4,w = 0,N = 0 at the radius b = 2v/a’. We sece from (3.23) and
(3.19)-(3.21), that the driving term for the scale factor at this point becomes

1

b+ 3Hb ~ = (8.2)

which clearly causes the scale factor to quickly move away from this
enhanced symmetry point. However we have seen that the self-dual radius
is a local attractor of the dynamics of the extra dimension, in that if we
start close enough to it, we will be driven to this point and held there by
the condensation of massless modes. This was also seen in a general toroidal
compactification in [17]. In [25], the analysis was extended to other fixed
points of the duality group where it was found that moduli stabilization
using string gases also resulted.

If we extend the string gas formalism to include the effects of all fields
which might become massless at any given point in moduli space in the low
energy effective action, then one is ideally placed to explore the notion that
string gases might offer a dynamical selection principle in moduli space. The
dynamics of the moduli fields that we have uncovered so far indicate that

string gases have an apetite for fixed points under T-duality (see [18][29][35]
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for investigations into S-duality), and to confirm this in a more thorough
analysis would be a very important development. This would imply that
string gas cosmology would have its own landscape, complete with a vacuum
selection principle such that the universe is likely to end up only at duality
fixed points.

Thus we see that in spite of orgins [6] as a mechanism in which we
dynamically generate a 3 + 1 dimensional universe, string gas cosmology
has subsequently uncovered a mechanism to stabilize moduli fields in string
theory. Although the string technology implimented in string gas studies
has been quite primitive so far, we hope to have motivated further study
into the subject. The prospect of a dynamical vacuum selection principle in
moduli space is a rather appealing one, and one on which the author hopes

to have more to report on in the near future.
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