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Montréal, QC H3A 2T8,

Canada

January 24, 2008

Submitted in partial fulfillment of the requirements for the degree of Doctor
or Philosophy at McGill University

This work, in the spirit of free and fair exchange of scientific information is
not copyrighted where the Author owns the rights. Appropriate copyright

permissions have been obtained for manuscripts included for which the
Author no longer owns the rights.



DEDICATION

This thesis is dedicated to those exceptional teachers I have had the

honour and privilege of having learned from. Curiosity is a gift that the

mundane all to easily beats out of us as we grow into this world, and for

me to still be consumed by the love of the question, I owe a great debt

that I can only hope to repay others one day. To my parents, Shubha and

Prakash Patil, who planted all of the early seeds and watered them with

unconditional love and support. To Jonathan Straker, who first piqued my

curiosity in mathematics in primary school. To Roger Costin and John

Allum who managed to inspire and captivate a wayward teenager with

science. To Jane Elliot for encouraging a healthy intellectual rebeliousness.

To Robert Richardson, under whom I first acquired the tools, knowledge

and self belief to be where I am today as a physicist. Not least, this thesis is

dedicated to Robert Brandenberger, whose continued inspiration, kindness,

guru-like presence, encyclopedic knowledge and keen scientific mind were

only matched by his enthusiasm and skilled guidance in my research. Any

successes that I might chance upon will be in no small part due to these

remarkable individuals.

ii



ACKNOWLEDGEMENTS

During the third year of my PhD, incredibly difficult external circum-

stances nearly prevented me from being able to return to the United States,

where this thesis work commenced at Brown University. I thank all of those

who helped me during this period, foremost Robert Brandenberger and Dave

Cutts at Brown University for their unconditional and untiring efforts on my

behalf, Bill Spence at Queen Mary University of London and Sandip Trivedi

and Rudra Pratap Jena at the Tata Institute in Mumbai for helping me to

continue my work. I especially thank Camilla Schofield and my parents for

being there for me in every way possible.

iii



ABSTRACT

This manusript based thesis explores the consequences of string gas

cosmology for the moduli problem in string theory. We compile three

published papers which set up the formalism and technique of massless

string gas cosmology as developed by the author in collaboration with

Robert Brandenberger, and explores the consequences of such a framework

for late time cosmology. We find that when consistently coupled to the

massless background of string theory (given a fixed dilaton), a fluid of

massless strings can stabilize all radial and shape moduli of a toroidal

compactification of bosonic or heterotic string theory. This stabilization

mechanism is consistent with observational bounds coming from fifth

force experiments and reproduces all of the desirable features of late time

cosmology. We identify the open issues associated with the string gas

framework as it stands, and propose directions for future work. We also

investigate the possibility that string gas cosmology might offer a dynamical

solution to the moduli problem.
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ABRÉGÉ

Cette thèse basée par manusript explore les conséquences de la cos-

mologie de gaz des cordes pour le problème de modules dans la théorie

des cordes. Nous compilons trois papiers publiés qui installent le formal-

isme et la technique de la cosmologie de gaz des cordes sans masse comme

développée par l’auteur en collaboration avec Robert Brandenberger, et

explorons les conséquences d’un tel cadre pour la cosmologie de temps tar-

dives. Nous constatons qu’une fois uniformément couplé au fond sans masse

de la théorie de corde (donn’ee un dilaton fixe), un fluide des cordes sans

masse peut stabiliser tous les modules de radial et de forme d’un compactifi-

cation toroidal de théorie bosonic ou hétérotique de corde. Ce mécanisme de

stabilisation est conformé aux limites d’observation venant des expériences

de force cinquièmes et reproduit tous les dispositifs souhaitables de cosmolo-

gie de temps tardives. Nous identifions les issues ouvertes liées au cadre de

gaz de corde sans modification, et proposons des directions pour les travaux

futurs. Nous étudions également la possibilité que la cosmologie de gaz de

corde pourrait offrir une solution dynamique au problème de modules.
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CHAPTER 1
Introduction

1.1 Preliminaries

As a putative theory of quantum gravity, string theory implies radical

reformulations of our notions of space and time at the smallest imaginable

scales. In fact, our hitherto familiar conceptualizations of geometry no

longer seem to apply once we take seriously the premise that all matter

and force, and even spacetime itself, are generated by the dynamics of

extended objects. From the string spacetime uncertainty relation [1], to the

appearance of non-commutative geometries in non-trivial backgrounds [2], to

the notion that spacetime itself is an emergent entity dynamically generated

from some underlying quantum geometry or matrix model (see [3] for a

review), we see that string theory implies radical departures from classical

geometry in a wide variety of contexts.

Clearly, if cosmology is our domain of interest, then modifications

forced by string theory upon our model of spacetime as a classical four

dimensional Lorentzian manifold, poses at once many threats and many

opportunities. Among the opportunities include new possibilities for

resolving the initial singularity, new models in which to realize inflation,

and new mechanisms to explain what the missing matter and energy

components of the universe might be, and how they came to be arranged

as they are today, to name but a few. The threats arise when we realize

that the low energy consequences of string theory must not spoil the

successes of standard big bang cosmology. One example of such a potentially

troublesome feature is in the fact that string theory predicts a number of
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extra dimensions, which upon compactification generate a plethora of scalar

fields without potentials (known as moduli fields). These moduli fields will

mediate gravitational strength fifth forces, which have not been observed

in any experiment to date. This problem, which we will elaborate upon

further is known as the moduli problem, and is the question confronting

string theory that the subject of this thesis (string gas cosmology) hopes to

address.

In addition to prediciting the existence of extra dimensions, perhaps one

of the more striking features of string theory, and one that is present even in

its low energy effective limits is the existence of new symmetries (dualities)

relating physics in distinct geometries (see [4] for a review). Having first

been noticed by Buscher in the context of the low energy effective action for

a massless string background [5], T-duality (as an example of such a duality)

will be a full symmetry of any non-perturbative formulation of string theory.

In a background with all anti-symmetric form fields set to zero, T-duality

acts on the background metric as

Gµν → G−1
µν /α′. (1.1)

In a toroidal background with all dimensions compactified on a cirlce of

radius R, T-duality implies that all string S-matrix elements map directly

onto those calculated on a background of radius 1/R, provided we account

for the appropriate rearrangement of the degrees of freedom. The canonical

example of such a rearrangement is that under the action of T-duality,

winding states and momentum states map onto each other. Evidence for

this is seen in the fact that the energy for a string wound w times around a

cycle of the torus (E ∼ wR/
√

α′) is equivalent to the energy of a mode with

2



n quanta of momentum (E ∼ n/R) under T-duality (R →
√

α′/R), provided

we interchange w and n.

Inspired by the observation that T-duality effectively implies a mini-

mum length scale to the universe (and as a result a maximal temperature),

Brandenberger and Vafa (BV) [6] proposed a model of the early universe

which began at this minimal length (the self dual radius– R =
√

α′)1

populated with a gas of strings excited close to the Hagedorn tempera-

ture [8]. Such a state initially loiters around the self dual radius due to

the competing effects of winding modes, which like to halt expansion, and

momentm modes, which like to source expansion. However, due to the tree

level interaction wherein oppositely wound modes annihilite into unwound

string states, a stable population of wound strings might not be possible

unless certain conditions are met. As argued by BV, as one dimensional

extended objects, wound strings are guaranteed to interact in all spatial

dimensions up to three (ignoring for now the effects of long range forces

between strings– see [9][10] for rather negative conclusions for the BV di-

mension counting argument once interactions are accounted for). Therefore

in at most three dimensions can wound strings annihilate and so that the

relevant dimensions become free to expand– that is, as a consequence of

contact string interactions in the early universe, the big bang happens in at

most three spatial dimensions.

Thus in the course of invoking T-duality in a model of the early

universe, Brandenberger and Vafa proposed a dynamical mechanism to

1 An assumption justified in [7] where a background solution starting in
the Hagedorn phase, exiting to a radiation dominated phase was explicitly
constructed.
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generate a universe with three large spatial dimensions, and in doing

so initited what became known as the string gas cosmology program.

Brandenberger and Vafa argued that instead of viewing the extra dimensions

inevitable to string theory as having to be compactified, it may be more

natural to view our macroscopic dimensions as having decompactified. In

this way, the BV mechanism explains away the presence of extra dimensions

as well as any supposed string compactification would. Recently however,

doubts have emerged regarding the validity of the BV mechanism [9][10]

when string exchange processes are accounted for in the interaction physics

of wound strings2 . However, even if we ignore/ take for granted the details

of the initial compactification/ decompactification mechanism, a more

pressing problem looms imminent. All compactification/ decompactification

models still have to subsequently address how these extra dimensions are

kept at an unobservable scale at late times in a way that is consistent

with fifth force experiments and consistent with the successes of big bang

cosmology. Faliure to do so would be the first and foremost place the low

energy consequences of string theory would conflict with experiment. This is

the moduli problem in the context of string theory in a nutshell.

2 The key physics of these negative results appear to be the dynamics
of the dilaton. If we fix the dilaton by hand, then we can evade such con-
clusions [11], this however, is a highly non-trivial assumption in most con-
texts. This can be partially understood in intuitive terms in the context
of the long range forces mediated by massless fields, such as the dilaton.
Such forces are of infinte range and certainly do not respect the dimension
counting arguments of BV. For instance, we know in 3 dimensions that the
scattering cross section of a Coulombic potential is infinite.
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1.2 The Moduli Problem

As an introduction to the moduli problem, we consider it first in the

simplest context possible. Consider the following action describing general

relativity in 4 + 1 dimensions with a compact 5th dimension:

S =

∫

d5x
√
−G

( 1

16πG5

R[G] + LM

)

. (1.2)

If our metric tensor takes the form G44 = e2σ, G4µ = 0, Gµν = gµν , with

µ = {0, 1, 2, 3}, and if there is no dependence of any metric quantity on x4,

then we can readily integrate over the fifth dimension in the above to yield

the following effective action:

S =

∫

d4x
√−geσ

( 1

16πG4

R[G] + VLM

)

, (1.3)

with the four dimensional Newton’s constant G4 related to G5 through

the relation G4 = G5/V , where V =
∫

dx5 is the volume of compact

coordinate interval. This action now appears as a scalar tensor gravitational

action. In order to understand how matter interacts with gravity in this

compactification, it is neccesary to perform the conformal transformation

gµν = e−σg̃µν , (1.4)

under which the Ricci scalar transforms as:

R = eσ[R̃ − 3∇̃2σ − 3

2
∇̃µσ∇µσ]. (1.5)

Substituting the above into (1.7) and integrating by parts leaves us with the

resulting 4-d effective action

S =

∫

d4x
√

−g̃
( 1

16πG4

(
R[g̃] − 3

2
∇̃µσ∇̃µσ

)
+ Ve−σLM

)

. (1.6)
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We see that this action describes the usual Einstein gravity with a scalar

sector which has gravitational strength coupling to the matter sector. To

begin to see the problem induced by the presence of this modulus field, note

that the Einstein equations now become:

Gµ
ν = (Tσ)µ

ν + 8πG4e
−σV(TM)µ

ν , (1.7)

where the subscripts on the energy-momentum tensors denote the consti-

tutent fields. Firstly, we note that the contribution of the matter sector is

Planck suppressed compared to the contributions of the kinetic terms of the

modulus field. Hence if the modulus field is rolling quickly at a large enough

radius, the energy-momentum sourcing expansion will be dominated by a

ρ = +p fluid, which will yield a cosmological evolution inconsistent with any

epoch of the known history of the universe.

If we now focus purely on the matter sector, we see that the prefactor

e−σ induces Yukawa interactions between material particles, as any fermionic

mass term is modified as

mψψ̄ψ → mψe−σψ̄ψ. (1.8)

Such a Yukawa coupling will in general mediate a long range force of

gravitational strength between ψ particles:

Fψψ ∝ 1

r
, (1.9)

unless of course, a mass term for the modulus field is generated, in which

case the force law acquires a finite range:

Fψψ ∝ e−mσr

r
, (1.10)
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where mσ is the mass of the modulus field. So unless a large enough mass

is generated for the modulus field, we stand to not only spoil the successful

predictions of big bang cosmology, but also to introduce interactions which

violate the equivalence principle. Although this has not been ruled out as a

matter of principle, all experiments to date have placed stringent bounds on

such violations [12]. Thus it seems that if moduli fields exist, as neccesarily

implied at low energies by string theory, we must work out some mechanism

which strabilizes them.

The standard approach in string theory (see [13] for a review) has

been to turn on fluxes for the various form fields present at any corner of

moduli space, which generate potentials for the various complex structure

moduli (which describe the dilaton and the shape moduli of the internal

manifold in question), and to consider non-perturbative effects such as

gluino condensation to generate potentials for the overall volume modulus.

Such a presecription has motivated various string cosmological scenrios

for the early universe such as stringy models of inflation [14], as well as its

logical corollary– the predicted existence of a vast landscape of vacua [15].

The focus of this thesis however, is on an unrelated approach to the moduli

problem in string theory coming from string gas cosmoslogy, which arises

from studying the effects of massless strings on the evolution of the universe.

Such an approach might allow for a natural (i.e. somewhat unconstructed)

solution of the moduli problem as we wish to motivate presently.

Consider the bosonic sector of the low energy effective action of string

theory:

S =
1

2κ0

∫

dD+1x
√−ge−2Φ

(
R + 4∂µΦ∂µΦ − 1

12
HµνλH

µνλ
)
, (1.11)
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where Φ is the dilaton, D is the number of spatial dimensions, Hµνλ is the

field strength associated with the two form field Bµν and κ2
0 is the dimen-

sional normalization of the action. Such an action imposes as its equations

of motion, the conditions that arise when we demand that the first order

in α′ truncation of the one loop beta function of string theory vanishes3 .

In general, higher orders in α′ generate higher derivative corrections to the

low energy effective action, but we will not be needing these. The reason for

this is that the above describes a consistent background on which one can

study the propagation of massless string modes, and only massless string

modes, and as such is dubbed the ‘massless background’ of string theory.

This action remains valid so long as we stay within curvature regimes such

that

α′R ¿ 1, (1.12)

where R is the Ricci scalar of our background at any spcetime point. Since

we know that massive string states have an energy which scales as

m ∼ N√
α′

, (1.13)

where N is some integer, we see that provided that (1.12) is satisfied,

massive string states will not be created by the curvature of the background,

and whatever massless strings we have around, will not back-react on the

geometry such that (1.12) is violated. Hence it is consistent only to couple

(1.11) to a matter content constituted by massless strings in various states.

3 Thus ensuring us an anomaly free quantum theory. We assume that D
is the neccesary critical dimension.
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This is the philosophy of string gas cosmology as espoused in [16][17][18]–

if it is consistent to couple massless strings to (1.11), why don’t we? As we

shall see in later chapters, it turns out that when we couple a massless string

gas to (1.11), we arrive at a minimally tuned and rather natural candidate

for a solution to the moduli problem in string theory, certain features of

which we advertise presently.

Firstly, we note that a gas of massless strings will only have one tunable

parameter– the average energy of its component strings. The requirements

of masslessness of its constituents, consistency with isotropy and overall

charge conservation, cancel out all other quantum numbers which might

be ascribed to the macrostate of the gas. Secondly, we note that the action

associated with our string gas (which will be derived from microphysical

considerations later on) appears as:

S = −
∫

dD+1x
√−g00E[gij], (1.14)

where E is the energy of the string gas and gij are the spatial components of

our energy-momentum tensor, and that this is to be contrasted with

S = −
∫

dD+1x
√−gV (φ), (1.15)

where V is some potential generated for φ, which is some modulus field.

We immediately infer from (1.14) that such an action will not quite be seen

by gravity the same way it sees (1.15). Indeed, the minimum of (1.15) will

be seen by gravity as a cosmological constant, and will thus require some

tuning to achieve consistency with observation, whereas no such tuning will

be required of (1.14). In addition, we note that the cosmological energy

density and the effective mass of the modulus field generated by (1.15) go as

9



m2
φ ∼ V ′′(φ) , ρ ∼ V (φ). (1.16)

Thus we see that we will typically require some tuning to simultaneously

make m2
φ large enough so as to avoid fifth force constraints, without making

V (φ) too large such that it would lead to unacceptable overclosure of

the universe. Conversely, as we will soon find out, a massless string gas

generates an effective mass for a given modulus field and has an associated

energy density which scale as

m2 ∼ µ0

Ea3
, ρ ∼ µ0E

a3
, (1.17)

where E is the energy of the string gas and µ0/a
3 is the number density of

strings. In this case, it is relatively easy to tune the moduli masses to be

large enough without introducing too much energy density into the universe.

A key aspect of the physics underlying moduli stabilization with string

gases is the fact that strings are extended objects, and hence have the

potential to feel out the metric tensor in a non-trivial manner, resulting

in non-standard ‘potentials’ such as (1.14). Another crucial aspect of

the relevant physics is that we are using only massless string states, as

massive string states (aside from being inconsistent to use on our dilaton

gravity background) do not appear to share similar properties as far as

moduli stabilization is concerned [19][20]. In fact, until the importance

of massless string states was emphasized in [16][17][18], such negative

results for moduli stabilization using string gases were taken to be a general

conclusion. The use of massless states for dynamical moduli stabilization

was also emphasized in [21], and it appears at present that massless states

which appear at specific enhanced symmetry points in various string

compactifications might one day offer a window towards a dynamical
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solution to the moduli problem in string theory, an issue we elaborate upon

next.

1.3 Enhanced Symmetries and String Gas Cosmology

If we consider any particular uncompactified version of string theory,

we notice that the string spectrum contains a massless sector corresponding

to a rank two symmetric traceless tensor, a rank two anti-symmetric tensor

and a scalar– the graviton, the two form field and the dilaton respectively.

Setting the form fields to be vanishing, we first notice that compactification

changes the spectrum of our theory. For instance, if we compactified on a

d-dimensional torus, the possibility of non-trivial winding and momentum

quantum numbers will alter the masses of certain states as the radius of

compactification is changed. Although the string spectrum will always

contain states that remain massless independent of the details of the

compactification (corresponding to graviton excitations along the non-

compact dimensions), it turns out that at special points, certain states

that otherwise were massive become massless. This is seen in the context

of Bosonic string theory by the mass formula for a string propagating on a

manifold that has had d dimensions toroidally compactified [22]:

m2 = (n, γ−1n) +
1

α′2 (w, γw) +
1

α′ [2(n,w) + 4(N − 1)], (1.18)

where γab, 1 ≤ a, b ≤ d, is the metric on the torus, na and wa are respec-

tively the momentum and winding quantum numbers along the ath direction,

(, ) is the real scalar product and N is the right moving oscillator level of the

string state. Implicit in the above is that we have solved for the left moving

oscillator level Ñ through the level matching constraint:
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Ñ = N + (n,w). (1.19)

Clearly, for any form for the toroidal metric, we have massless states at

N = 1, na = wa = 0. This is the graviton sector of our theory (as well as

the form field sector had we not set it to zero from the outset). However, we

notice that at the self-dual4 radius (γab = α′δab), our mass formula becomes

α′m2 = (n, n) + (w,w) + [2(n,w) + 4(N − 1)] (1.20)

= (n + w, n + w) + 4(N − 1),

which indicates a whole bunch of massless states that are otherwise massive

away from the self-dual radius. Such states satisfy N = 1, na = −wa,

or (n + w, n + w) = 4, subject of course to (1.19). These states will

be systematically classified further on, but for now we simply note their

appearance at the self dual radius. We arrive at the same conclusions in the

case of Heterotic string theory, as the mass formula in this case is also given

by (1.18)5 .

If we now consider the energy-momentum tensor of a gas of strings that

are massless at the self dual radius, we find that once coupled to gravity,

a stabilizing force for all the radial moduli results (and as subsequently

uncovered ([23][18], all shape moduli as well). These are the main results

of the first two papers included in this thesis [16][17], and is the basis

4 Self dual in the sense of T-duality

5 Although the zero point contribution from the right movers vanishes in
the case of the Heterotic string, there is a compensating term in the Het-
erotic level matching constraint such that (1.18) still results.
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behind the claim that a gas of strings naturally offers us a solution to the

moduli problem. Specifically, were we to begin near the self-dual radius, the

dynamics of massless string states which are likely to condense at this point

in moduli space will likely keep us there.

The results of [16] thus anticipated a part of the observations made in

[21] that ‘beauty is attractive’, namely that points of enhanced symmetry

might serve as dynamical attractors in moduli space. As shall become clear

in the following chapters, the specific properties of massless string states

(aside from being the a priori only consistent matter content for a string

gas) appear to be so crucial in obtaining a stabilizing force for the moduli

fields 6 , that we might wonder if the results of string gas cosmology, like the

results of [21] have touched upon a dynamical selection principle in moduli

space, that enhanced symmetry points are the only places where our low

energy effective universe might end up. As we shall see in the next section,

the answer is only partly in the affirmative. By explicit construction, we can

demonstrate the existence of enhanced symmetry points which are actually

unstable points for the evolution of the moduli fields. Instead, it appears to

us that the true principle that might account for an eventual mechanism for

dynamical vacuum selection appears to be that of duality invariance.

1.4 Not Just Enhanced Symmetry Points

Even in the context of heterotic string theory, we know that there are

points other than the self dual radius where extra massless states appear.

There are in fact an infinite number of such points [22][24]. However, the

majority of these will be rather uninteresting to us, as most of these do

6 In that massive states would cause destabilizing terms to appear once
their energy-momentum tensor is derived properly.
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not function as stable points for the dynamics of moduli fields from the

perspective of string gas cosmology. For instance, consider for simplicity

the case of one extra dimension compactified on the circle 7 . According to

the mass formula (1.18) applied to this case, there are an infinite number

of special points where new string states become massless. Consider for

instance, when the size of the circle is some multiple of the self-dual radius,

γ11 := b2 = α′λ2, so that the mass formula becomes

α′m2 = (
n

λ
+ λw)2 + 4(N − 1), (1.21)

where again, this is subject to the level matching constraint nw + N ≥ 0. In

the next chapter[16], we will classify all the enhanced symmetry points[16]

and their associated massless states. We find that for any mεZ, massless

states appear at the radii

b =
2

|m| ; w = ±m,n = 0, N = 0 (1.22)

b =
|m|
2

; n = ±m,w = 0, N = 0.

When coupled to gravity, these states turn out to generate a driving term

for the scale factor b, which drives expansion of the scale factor away from

the enhanced symmetry point if b is greater than the self dual radius, and

drives contraction if b is below the self dual radius. Hence the self dual

radius appears to be a specially preferred enhanced symmetry point as

far as moduli stabilization with string gases is concerned. This is just as

7 In this way we avoid the complicated combinatorics associated with
identifying and summing over all given massless modes.
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well, for if any enhanced symmetry point were to be as good as any other

as far as moduli stabilization is concerned, then string theory would be

in big trouble, as to invoke such points as the preferred vacua of string

theory would imply that string theory has lost all predictability due to

the infinite number of these (compared to the astronomically large, but

finite number of flux vacua [15]). Instead, it turns out that in the simple

context we are considering, only the enhanced symmetry point which is also

a duality fixed point is stable. In [25] this was explored in the context of

toroidal heterotic compactifications, where other fixed points of the duality

transformations were considered and were shown to be stable points in

moduli space. Towards the conclusion of this thesis, we investigate the

possibility that string gas cosmology suggests its own landscape with its own

dynamical selection principle, namely that our low energy universe is likely

to dynamically end up only on duality fixed points in moduli space. This

is perhaps the most promising aspect of string gas cosmology, and one that

should motivate continued research into its formalism and consequences for

cosmology.

1.5 Progress and Problems– a Review

We presently offer a review of moduli stabilization in the context of

string gas cosmology8 . This is in fact a rather recent and somewhat small

subset of the overall string gas cosmology program, whose focus until about

2003 was mainly on elaborating upon the BV mechanism [6] as the origin

of our three large spatial dimensions. We note parenthetically that utilizing

8 In particular, we do not focus at all on brane gas cosmology and its as-
sociated applications. For a general review of string/brane gas cosmology,
we refer the reader to [26].
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string gases for the purposes of moduli stabilization at late times does not

depend on the BV mechanism, although it does provide a very natural

motivation for them. In fact, it was from noticing that the initial loitering

phase of string cosmology in the Hagedorn phase arose from competing

pressures resulting from momentum and winding modes, that led Watson

and Brandenberger in 2003 [27] to wonder if they could be used in a late

time setting to stabilize extra dimensions. It was discovered that a gas of

winding modes, superimposed on a gas of momentum modes, both treated

classically, could stabilize extra dimensions in the string frame. In [16], the

energy-momentum tensor for a string gas was explicitly derived from micro-

physical considerations, and it was discovered that when treated quantum

mechanically, a gas of massless non-interacting strings creates a stabilizing

force for one extra dimension in a way that is consistent with observational

bounds. That is, it is easy to make an all-pervasive fluid of massless strings

wrapping all extra dimensions at any point in space consistent with big bang

cosmology.

In general, as discussed in [16][17], it is difficult to make moduli sta-

bilization in string gas cosmology consistent with inflation unless wound

strings are created by some form of stringy reheating. The crucial role of

massless states in moduli stabilizing would become clear as negative results

concerning moduli stabilization using only massive modes in extra dimen-

sions were uncovered in [19]. As was shown in [17], massless string gases can

stabilize any number of toroidal dimensions at the string scale. The nega-

tive results of [19] are an artifact of using the classical energy-momentum

tensor for a string gas (and hence restricting only to massive string states).

Similar negative results for using string gases in conjunction with potentials

to stabilize the dilaton simultaneous with the radial moduli of the extra
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dimensions [20], were shown to disappear once we focus on massless string

states [18]. Shortly after [27] and [16], Watson proposed an abstraction from

the string gas program, wherein moduli stabilization at enhanced symmetry

points arose in the low energy effective field theory description through the

stringy Higgs mechanism [28]. In [23], and subsequently confirmed in [18]

shape moduli (and consequently the background Bµν field) were turned on

and it was discovered that these are also stabilized around vanishing values

by a massless string gas. In [18] the effects of adding a D-string gas was

considered and it was found that if one could trust the background at the

self S-dual and the self T-dual points, then string gases could stabilize all

moduli fields. However the conclusions of this paper are to be qualified by

the realization that in general, unless we are at weak coupling, the string

spectrum is not to be trusted. To be at the self S-dual point is to be in a

strong coupling regime. The issue of S-duality in conjunction with T-duality

was also studied in [29][30]. As confidence grew in the ability of a gas of

massless strings to stabilize extra dimensions in a toroidal context, wider

issues of concern to cosmology were addressed in [31], where the effects of

spatial inhomogeneities and metric perturbations on a cosmology sourced by

massless string modes were studied (as [32][33] did for the case of massive

string modes).

Since this flurry of work, moduli stabilization in string gas cosmology

has stumbled upon its lack of success in stabilizing the dilaton [34][18][35],

and this remains one of its outstanding challenges. In addition, string

gas cosmology does not appear to naturally connect with any inflationary

models. This last point however served to motivate the authors of [36]

(see also [37][38][39]) to propose a string gas cosmology alternative to
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structure formation9 . In addition, questions concerning the consistency of

the effective field theory treatment arise when we stabilize at the self-dual

radius (even if we remain consistent with the α′ expansion by not inducing

dangerous curvatures). We will return to all of these outstanding issues after

we have familiarized ourselves with string gas cosmology explicitly. We will

also assess the future prospects of string gas cosmology in the face of these

open issues and identify directions for further investigation.

1.6 Outline

We begin this manuscript based thesis with our first paper on string

gas cosmology [16]. In this paper, we first derived the correct energy-

momentum tensor for a string gas treated quantum mechanically. In this

way, we derive the form of the energy-momentum tensor for massless states

and discover their stabilizing properties at the self dual radius. We discuss

towards the end of the paper consistency with observational bounds if

this is to be the relevant moduli stabilization mechanism at work in the

universe at present. Initially motivated by the negative results of [19] when

considering massive string states (or string gases without fully accounting

for the quantum nature of the energy-momentum tensor), our next paper

[17] generalizes the mechanism to any number of extra dimensions, again

exploring issues of consistency with observational bounds. In the third paper

included in this thesis [31], we consider the implications of stabilizing extra

dimensions with a string gas for metric perturbations. In particular, we

show that the inhomogeneous fluctuations of extra dimensions stabilized

with a string gas are stable, and that any initially scale invariant spectrum

in five dimensions is undistorted by the transients of the stabilization

9 Although the flatness problem remains unanswered by such a model.
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mechanism and results in a scale invariant spectrum in four dimensions.

We also take a five dimensional universe with the fifth dimension stabilized

with a string gas as a model for a non-singular bounce in the context of

ekpyrotic/ cyclic universe scenarios, and show there that one does indeed

obtain a controlled transfer of metric fluctuations accross the bounce. In our

concluding chapter, we discuss open issues and promising future directions

for research in string gas cosmology.
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CHAPTER 2
Contributions of Authors

The first two papers included in this thesis were co-authered by the

author and Robert Brandenberger (RB). The work contained therein was

mostly done independently by the author under the guidance of RB. The

author undertook the majority of the labour, and the initial ideas, although

directly inspired by RB, were his. The third paper included in this thesis

was done in collaboration with RB and Thorsten Battefeld (TB). Some

of the work in this paper concerning the stability of extra dimensions to

inhomogenous perturbations were uncovered by the author during the time

in which [16] was in preparation, however the initial idea for this paper arose

in a collaborative discussion and the labour was evenly divided between

the author and TB under the guidance of RB. In addition to the work on

moduli stabilization presented in this thesis, the author also worked on

the string gas cosmology alternative to structure formation [37][38][39] in

collaboration with RB, Ali Nayeri and Cumrun Vafa. We also take note that

during his thesis the author has also worked on topics unrelated to string

gas cosmology, such as perturbations in bouncing brane models of structure

formation [40], D0 matrix mechanics as a model for topology changing

D-brane dynamics [41][42], and kinetic inflation [43].
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CHAPTER 3
Radion Stabilization by String Effects in General Relativity

3.1 Abstract

We consider the effects of a gas of closed strings (treated quantum

mechanically) on a background where one dimension is compactified on

a circle. After we address the effects of a time dependent background

on aspects of the string spectrum that concern us, we derive the energy-

momentum tensor for a string gas and investigate the resulting space-time

dynamics. We show that a variety of trajectories are possible for the radius

of the compactified dimension, depending on the nature of the string gas,

including a demonstration within the context of General Relativity (i.e.

without a dilaton) of a solution where the radius of the extra dimension

oscillates about the self-dual radius, without invoking matter that violates

the various energy conditions. In particular, we find that in the case where

the string gas is in thermal equilibrium, the radius of the compactified

dimension dynamically stabilizes at the self-dual radius, after which a

period of usual Friedmann-Robertson-Walker cosmology of the three

uncompactified dimensions can set in. We show that our radion stabilization

mechanism requires a stringy realization of inflation as scalar field driven

inflation invalidates our mechanism. We also show that our stabilization

mechanism is consistent with observational bounds1 .

1 Reprinted with permission from Subodh. P. Patil and Robert H.
Brandenberger, Phys. Rev. D Vol 71, 103522 (2005). Copyright (2005)
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3.2 Introduction

In the early days of string cosmology, it was realized that superstrings

had an effect on space-time dynamics that was qualitatively quite different

from that of particles or fields. In particular, it was realized that string

winding modes could provide a confining mechanism for certain compact

directions in such a way as to allow only three spatial dimensions to grow

large [6]. Key to this realization are the T-duality of the spectrum of

string states, and the fact that the background is described by Dilaton

Gravity, and not by General Relativity with a fixed dilaton (this is crucial

in order that the background equations obey the T-duality symmetry). The

arguments of [6] were put on a firmer basis by the analysis of [7] (see also

[44]).

Starting point of the considerations of [6] is the assumption that all

spatial dimensions begin at close to the self-dual radius (the string scale),

and that matter consists of a hot gas of string states. The considerations of

[6] were more recently applied to “brane gas cosmology” [45, 46], a scenario

in which the initial string gas is generalized to be a gas of all brane modes.

It was shown that given the hot dense initial conditions assumed in [6], the

string winding modes are the last modes to fall out of equilibrium and thus

dominate the late time dynamics. Hence [45], the inclusion of brane degrees

of freedom does not change the prediction that only three dimensions

grow large. The dynamical equations describing the growth of the three

dimensions which can become large were solved in [46] (see also [47]). In

[48], it was shown that isotropy in these large dimensions is a consequence

by the American Physical Society. This article can be accessed online at
http://link.aps.org/abstract/PRD/v71/e103522.
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of the dynamics. In [27], it was found that if both the momentum and

winding modes of the strings are included in the dynamical equations, the

radius of the compactified dimensions is stabilized at the self-dual radius.

More precisely, the expansion of the three large dimensions leads to damped

oscillations in the “radion” about the self-dual value. Thus, in the context of

a background described by Dilaton Gravity, radion stabilization is a natural

consequence of brane gas cosmology 2 .

At the present time, however, the dilaton is most likely fixed (see,

however, [56] for an alternate scenario). Thus, it is of interest to explore how

the inclusion of string (and brane) winding and momentum modes influences

the dynamical evolution of the radion in a background space-time described

by General Relativity (GR). There is another motivation for studying this

issue. Another corner of the M-theory moduli space is 11-d supergravity.

In [57] it was found that a brane gas in this background also admits a

region in the phase space of initial conditions in which only three spatial

dimensions can become large, although this corner may not be consistent

with holographic entropy bounds [58] (see also [59] where the considerations

in this corner of M-theory moduli space was extended to spaces with more

general topologies). Motivated by these considerations, we in this paper

study a simplified problem, namely the questions of how a gas of winding

and momentum modes of strings winding one compactified spatial dimension

(taken to be a circle) effects the evolution of the radius (the radion). We

start with initial conditions in which the three spatially non-compact

2 See e.g. [49][50][51][52][53][54][32] for other recent papers on brane gas
cosmology, and [55] for an early work on the cosmology of string winding
modes.
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dimensions are expanding. We find that the gas of string winding and

momentum modes gives a natural radion stabilization mechanism. Our

approach is to consider the effect of strings on 5D space-time dynamics

(with the extra spatial dimension compactified to a circle) by adding the

appropriate matter term to the standard Einstein-Hilbert action. We will

derive this term shortly (see also [60] for a similar derivation). The resulting

energy-momentum tensor leads to a novel behavior when inserted into

the Einstein equations. We will find that we can generate a non-singular

bouncing solution for the radius of the compactified dimension in the

context of GR (without a dilaton) while respecting the Dominant Energy

Condition for the matter content. Specifically, the radion performs damped

oscillations about the self-dual radius. Initially, we study a pure state of

matter with specific quantum numbers obeying the T-duality symmetry.

However, we will find that we can rather naturally extend the analysis

to a gas of these strings in thermal equilibrium (with a bath of gravitons

and photons), with the result that the radius of the compact dimension

is dynamically stabilized at the self dual radius R =
√

α′, where 2πα′ is

the inverse of the string tension (see also [61] for a study of string gases in

thermal equilibrium).

In addition, we find that our model evolves according to standard

Friedmann-Robertson-Walker (FRW) cosmology after the compact dimen-

sion has been stabilized, and that the resultant stabilization is incompatible

with any subsequent inflationary epoch driven by a bulk scalar field (for

string-specific ideas on how to generate inflation in brane gas cosmology

see [62]). However this conclusion can be avoided if some form of stringy

inflation is realised where strings are produced in re-heating.
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Before we can turn to any of this, we will have to address a question

of principle concerning the string spectrum in a cosmological context (this

issue is also being studied in [63]). The question of formulating String

Theory in a time-dependent background is a current and active area of

research. However, we are primarily interested in the behavior of strings

in a background that evolves on a cosmological time scale. As can be seen

from the FRW equations, the cosmological time scale H−1 (where H is the

Hubble expansion rate) is larger than the characteristic microscopic time

σ−1 (where σ4 is the matter energy density) by a factor of mpl/σ, where mpl

is the Planck mass. Thus, away from singular epochs in the history of the

Universe, the cosmological time scale is going to be many, many orders of

magnitude longer than the characteristic time scale of the string dynamics,

and hence we should be able to inherit many of the features of the string

spectrum in a static space-time (with some obvious modifications). We

justify this intuition more rigorously in the Appendix, but we feel that

it might suffice at this point to remind the reader of the approximate

irrelevance of a time dependent background for a much more familiar

theory: Quantum Field Theory (QFT). Although quantum fields in curved

spaces exhibit several qualitatively different features from quantum fields

in flat spaces3 , we still manage to do a lot of sensible (and spectacularly

successful) flat space-time QFT calculations despite the persistent Hubble

expansion of space-time. The reason for this is easy to see: the contributions

to masses, to scattering amplitudes, to the structure of the Hilbert space

of our theory, etc., that come from terms that depend on derivatives of the

3 Examples are particle creation, non-uniqueness of the vacuum, non-
trivial issues concerning existence of asymptotic states.
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metric are in the present epoch highly suppressed and irrelevant. This is

partly captured by the Adiabatic Theorem, which is the statement that

given two systems with Hamiltonians that can be continuously interpolated,

then in a precise sense, the eigenstates of the initial system will evolve into

the eigenstates of the final system if this interpolation takes place slowly

enough. Slow enough in simple quantum systems usually means that the

variation happens over much longer time scales than the characteristic

time of the system (by which we mean the time associated with the typical

energy of the system:τ ∼ 1
E

). Having said this, were we to study QFT in

places where the metric varies a lot more rapidly (at the edges of black

holes or in the very early Universe) we invariably have to account for the

curvature of space. Thus, we can hope that the effects of a time dependent

background on the closed string spectrum only require minor modifications

to the flat space spectrum, if this time dependence is slow compared to the

characteristic time of the string dynamics. We show in the Appendix that

this is indeed the case, and in what follows we will stay within this regime.

The Outline of this paper is as follows: we first derive the energy-

momentum tensor of a string gas (the derivation here is more general than

the one given in [60]). We then insert this tensor into the Einstein equations

and study the dynamics of the radius of the compact dimension, assuming

that the three large spatial dimensions are in the expanding phase. First, we

consider a pure state of matter. Next, we extend the discussion to a thermal

state. In Section IV, we discuss the late time dynamics and show that the

stabilization of the radion is not compatible with inflation in the three large

spatial dimensions, assuming the simplified description of matter which we

are using.
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A few words on our notation: Greek indices typically stand for 5-

dimensional space-time indices, Roman indices i, j, ... are associated with the

non-compact spatial dimensions, and Roman indices a, b, ... are string world-

sheet coordinates. The 5-dimensional Planck mass is denoted by Mpl5 (or

M5 in abbreviated form). We also work in natural units (c = h̄ = kB = 1)

where we pick energy to be measured in electron volts.

3.3 The Energy-Momentum Tensor

To study how a gas of strings affects space-time dynamics, we need to

derive the energy-momentum tensor of such a gas. We begin by studying

the energy-momentum tensor of a single closed string. Starting with the

Nambu-Goto action

SNG =
−1

2πα′

∫

d2σ
√
−h , (3.1)

where hab denotes the world sheet metric

hab = ∂aX
µ∂bX

νgµν(X) (3.2)

(and h is its determinant), we see that any variation in the space-time

metric gµν induces a variation in the induced world-sheet metric (where the

unmatched indices indicate that we perturb only the λβ component of the

metric):

gµν(X) → gµν(X) + δλ
µδβ

ν δD(Xτ − yτ )
︸ ︷︷ ︸

δgµν

hab(σ) → hab + ∂aX
λ∂bX

βδD(Xτ − yτ )
︸ ︷︷ ︸

δhab

Now, varying the Nambu-Goto action with respect to the space-time

metric (performing a perturbation δgαβ which acts on the metric as given

above) will give us the space-time energy-momentum tensor of a single
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string:

δSNG

δgλβ(y)
= − 1

4πα′

∫

d2σ
√
−hhabδhab

= − 1

4πα′

∫

d2σ
√
−hhab∂aX

λ∂bX
βδD(Xτ − yτ ) .

We must first discuss the meaning of the expression

∫

d2 σ δD(Xτ − yτ )

=

∫

d2σδ(X0 − y0)δ(X1 − y1)...δ(XD − yD) .

In order to change the variable of integration, we need to apply dσa =

dXλ

∂aXλ and sum over all the zeroes of Xλ[σ] − yλ when performing the

integration. However, since we considering modes winding one particular

spatial direction, there are precisely two coordinates that are monotonic

functions of the world-sheet parameters: X0 being a monotonic function of

σ0 and XD being a monotonic function of σ1 (the Dth direction is taken to

be compact). Thus,

d2 σδD(Xτ [σ] − yτ )

= dσ0dσ1δ(X0[σ] − y0)δ(X1[σ] − y1)...δ(XD[σ] − yD)

=
dX0

|
.

X0|
dXD

|X ′D|
√−g00gDD

×δ(X0 − y0)δ(XD − yD)δD−2(X i − yi) ,

where we include the metric factors in the last line so that we can take the

delta functions in X0 and XD to be properly normalized. With this result,
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we get:

δSNG

δgλβ

= − δD−2(X i − yi)

4πα′
√

−g00gDD

×
∫

dX0

|
.

X0 |
dXD

|X ′D|δ(X
0 − y0)δ(XD − yD)

√
−hhab∂aX

λ∂bX
β

= − 1

4πα′
√

−g00gdd

×δD−2(X i − yi)

|
.

X0 X ′D|
√
−hhab∂aX

λ∂bX
β
∣
∣
∣
X0=y0,XD=yD

,

where we use the inverse metric to write the metric contributions in the

denominator. Thus, the single string space-time energy-momentum tensor

becomes

T λβ =
−2√−g

δS

δgλβ

(3.3)

=
1

2πα′
δD−2(X i − yi)

|
.

X0 X ′D|√−g

√
−hhab∂aX

λ∂bX
β

√

−g00gDD
.

Inserting the explicit form of the inverse world-sheet metric

hab =
1

h






h22 −h12

−h21 h11




 =

1

h






X ′µX ′
µ −

.

Xµ X ′
µ

−
.

Xµ X ′
µ

.

Xµ
.

Xµ




 (3.4)

and using the constraints on the world-sheet fields 4

PµX
′µ = 0 (3.5)

PµP
µ + X ′

µX
′µ = 0 , (3.6)

we can write (3.3) as

T λβ =
−1

2πα′
δD−2(X i − yi)

|
.

X0 X ′D|
√

−detgij

[X ′λX ′β−
.

X
λ .

X
β
] (3.7)

4 Which come from working in conformal gauge hab = diag(−1, 1)
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Next, we solve for
.

X0 using the constraint (3.6) which becomes

0 = −
.

X0
.

X0 +
.

X i
.

Xi +
.

XD
.

XD

−X ′0X ′0 + X ′iX ′
i + X ′DX ′

D ,

where we have explicitly used the background metric

gµν = diag(−1, a2(t), a2(t), a2(t), b2(t)) . (3.8)

It is consistent with the equations of motion in a (slow enough) time varying

background to set X ′0 = 0 5 , so that

.

X0
2

= P iPi + X ′iX ′
i + PDPD + X ′DX ′

D . (3.9)

In addition (in a slowly time dependent background) the right hand side

can be expressed in terms of the familiar oscillator expansion. Accounting

for the zero mode operators explicitly, we get the center of mass momentum

from the spatial zero modes and the winding energy from the zero mode

terms in the compactified direction. The other modes give us the left and

right moving oscillator terms (see [22] for details):

.

X0=

√

gijpipj +
2

α′ (N+ N −2) + (
n

b
)2 + (

wb

α′ )
2 , (3.10)

where n and w are the quantum numbers for momentum and winding in

the compact direction, respectively, and N and N are the levels of the left-

and right-moving oscillator modes of the string, respectively. The expression

above is none other than the energy of the string. Using the level matching

5 See the Appendix for all statements made in this section concerning
results that are valid in a time dependent background
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constraints

N + nw− N= 0 , (3.11)

we finally end up with 6

.

X0=

√

gijpipj +
4

α′ (N − 1) + (
n

b
+

wb

α′ )
2 . (3.12)

Now, we are ready to evaluate (3.7) for a single wound string. We have

an explicit expression for
.

X0 and we know that |X ′5| = |w|b in units of

α′ for a wound string, the factor of |w| being canceled by the summation

over all (w in total) zeroes of the argument of the delta function. Thus,

component by component, we get:

T 0
0 = −ρ (3.13)

= − 1

2π

δ3(X i − yi)

a3b

√

pipi +
4

α′ (N − 1) + (
n

b
+

wb

α′ )
2

T i
i = p (3.14)

=
1

2π

δ3(X i − yi)

a3b

pipi
√

pipi + 4
α′ (N − 1) + (n

b
+ wb

α′ )2

T 5
5 = r (3.15)

=
1

2π

δ3(X i − yi)

a3b

n2

b2
− w2b2

α′2
√

pipi + 4
α′ (N − 1) + (n

b
+ wb

α′ )2

(note that we label the extra spatial coordinate by “5”) where we ignore

off-diagonal components since we are about to apply these expressions to an

isotropic gas of strings.

6 See the second footnote in the Appendix where we remind the reader
why the momenta must be contracted with the inverse metric.
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However, we wish to present at this point another derivation of this

result which is rather more direct. Consider the energy of a single wound

string:

E2 = pipi +
4

α′ (N − 1) + (
n

b
+

wb

α′ )
2 . (3.16)

A spatially uniform gas of such strings with the same quantum numbers

would have a 5-dimensional energy density

ε =
µ(t)

2πb

√

pipi +
4

α′ (N − 1) + (
n

b
+

wb

α′ )
2 , (3.17)

where µ(t) is the number density of strings. We divide by 2πb since this

energy will be uniformly distributed over the length of the string. The

momentum that appears in this expression is now the momentum squared

of a gas of strings whose momenta have identical magnitudes, but whose

directions are distributed isotropically. To fully account for the metric

factors in this expression, we write µ(t) as µ0(t)/a
3(t) since this is how

a number density explicitly depends on the metric. Now, realizing that

this is an energy density, we can introduce this gas of strings as matter

interacting with the gravitational field by just adding the following term to

the gravitational part of the action:

Sint = −
∫

d5x
√−gε (3.18)

(see e.g. Section 10.2 of [64]).

Realizing now that the metric factors in the denominator of the

expression for the energy density can be written as a3 =
√

det(gij) and
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b =
√

g55, we can write the above equation as:

Sint = −
∫

d5x
√−g

√
detgij

√
g55

µ0(t)

2π

×
√

pipi +
4

α′ (N − 1) + (
n

b
+

wb

α′ )
2

= −
∫

d5x
√−g00

µ0(t)

2π

×
√

pipi +
4

α′ (N − 1) + (
n

b
+

wb

α′ )
2

By our metric ansatz and the isotropy of the distribution of the momenta,

we have that pipi = a−2(p2

3
+ p2

3
+ p2

3
). Using this fact, it is straightforward to

show that the energy-momentum tensor derived from this interaction term

is:

T 0
0 = −ρ = − 1

2π

µ0

a3b

√

pipi +
4

α′ (N − 1) + (
n

b
+

wb

α′ )
2 (3.19)

T i
i = p =

1

2π

µ0

a3b

p2/3
√

pipi + 4
α′ (N − 1) + (n

b
+ wb

α′ )2

(3.20)

T 5
5 = r =

1

2π

µ0

a3b

n2

b2
− w2b2

α′2
√

pipi + 4
α′ (N − 1) + (n

b
+ wb

α′ )2

(3.21)

which is exactly what we would get from (3.13), (3.14) and (3.15) were

we to construct a hydrodynamical average with an isotropic momentum

distribution.

We now investigate some simple aspects of our result. The first thing

to note is that T 5
5 , which is the pressure along the compact direction, gets

a negative contribution from the winding of our strings and a positive

contribution from the momentum along this direction. The spatial pressure

is always positive, and for the simple case n = w = 0, N = 1, which

describes a gas of gravitons moving in the non compact directions, we obtain

r = 0, p = ρ/3.
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Since we are about to study the effects of this energy-momentum tensor

on space-time, we should make sure that the energy-momentum tensor is

covariantly conserved, or else it will not be consistent to equate it to the

covariantly conserved Einstein tensor. The covariant conservation of T µ
ν

0 = ∇µT
µ
ν ,

where ∇µ is the covariant derivative operator, implies

0 =
.
ρ +3

.
a

a
(ρ + p) +

.

b

b
(ρ + r)

0 = ∂ip

0 = ∂5r .

It is straightforward to check that our energy-momentum tensor satisfies

this as an identity. In the continuity equation, this is due to the metric

factors contained in the energy density, which upon differentiation produce

terms that exactly cancel the terms proportional to the Hubble factors. The

remaining equations are trivially satisfied by our setup, which assumed an

axis of symmetry along the compactified dimension (the Kaluza-Klein setup)

with homogeneous and isotropic spatial sections.

One final point to note is that we have derived an energy-momentum

tensor that exhibits positive pressures along the non-compact directions and

positive or negative pressures along the compactified direction. We need

to ensure that this negative pressure has a bounded equation of state as

otherwise our theory would be unstable. The Dominant Energy Condition

(DEC) of General Relativity [65] ensures the stability of the vacuum, and

requires that the equation of state parameter ω = p/ρ be greater than or

equal to -1 (see e.g. [66] for a recent discussion). Since the spatial pressures

are always positive, we only need to check our equation of state for the
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pressure along the compact direction:

r =
1

2π

µ0

a3b

n2

b2
− w2b2

α′2
√

pipi + 4
α′ (N − 1) + (n

b
+ wb

α′ )2

= ρ ×
n2

b2
− w2b2

α′2

pipi + 4
α′ (N − 1) + (n

b
+ wb

α′ )2
,

where the co-efficient of ρ in the above is our equation of state parameter.

Were we to consider states described by n = ±1, w = −n, N = 1 (which

as we will see further on, turn out to be the relevant states that give us

stabilization), this parameter remains bounded as b varies 7 :

−1 ≤ ω ≤ 1 (3.22)

Thus, we have verified that the spectrum of string states satisfies the

DEC, and in doing so ensured ourselves of sensible space-time dynamics

arising from the string gas, the topic we will turn our attention to next.

3.4 Space-Time Dynamics

We start with the Einstein tensor derived from the metric (3.8):

G0
0 = −3

.
a

a

[ .
a

a
+

.

b

b

]

Gi
j = −δi

j

[

2

..
a

a
+

..

b

b
+

( .
a

a

)2

+ 2

.

b

b

.
a

a

]

G5
5 = −3

[ ..
a

a
+

( .
a

a

)2]

.

7 Where key to this is the observation that as we approach the value
b =

√
α′, these states become massless, and acquire a non-zero momentum

along the non-compact directions, which depends on the ambient temper-
ature. If this momentum is large enough, we can be assured that (3.22) is
satisfied.
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Equating this to 1
M3

pl5

T µ
ν will give us the Einstein equations. However, let

us focus on the equation that governs the evolution of the scale factor

b. Starting with Gi
j and eliminating

..
a and

.
a

2
by adding the appropriate

combinations of G0
0 and G5

5, we get:

..

b +3H
.

b +
b

M3
pl5

(

p − 2r

3
− ρ

3

)

= 0 , (3.23)

where H is the 3-dimensional Hubble factor. This is a second order,

nonlinear (because of the b dependence in the matter terms) differential

equation with a damping term and a driving term. We will demonstrate

further on that the Einstein equations admit expanding solutions for the

non-compact dimensions (H > 0), and take it as a given for what follows.

Thus, inspite of its non-linearity, we easily see that (3.23) describes an

expanding or a contracting scale factor depending on the sign of the driving

term.

The first thing to notice from this equation is that matter for which

the quantity p − 2r
3
− ρ

3
vanishes will not contribute to the dynamics of the

compact dimension. Thus, recalling that a gas of gravitons (n = w = 0,

N = 1) has an equation of state p = ρ
3
, r = 0, as does a gas of ordinary

4-dimensional photons, we see that such matter will not affect the dynamics

of the scale factor b. In fact, such a background 4-dimensional gas provides

an excellent candidate for a thermal bath which we will eventually couple

our gas of winding modes to.

First, however, we will study this driving term as it is, for a gas

consisting of strings with identical quantum numbers. Upon evaluating the
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driving term, we find that:

b

M3
pl5

(

p −2r

3
− ρ

3

)

=
µ0

M3
pl5

a32π
(3.24)

× −n2

b2
− 2nw

3α′ + w2b2

3α′2 − 4(N−1)
3α′

√

pipi + 4
α′ (N − 1) + (n

b
+ wb

α′ )2

,

from which we infer that momentum modes and oscillator modes lead

to expansion of the scale factor, whereas the winding modes produce

contraction. Exactly what happens, of course, depends on the values of

the quantum numbers. It should be recalled that the quantum numbers

are subject to the constraint nw + N ≥ 0 coming from the level matching

conditions (see Eq. 3.11).

Let us pick a particular set of quantum numbers. As we shall see later,

the most interesting case is when n = −w = ±1, N = 1, in which case the

driving term becomes:

b

M3
pl5

(

p − 2r

3
− ρ

3

)

=
2µ0

M3
pl5

a32π
√

α′

− 1

b
2 + 2

3
+ b

2

3
√

α′pipi + (1

b
− b)2

, (3.25)

where b is the scale factor in units of
√

α′. Quite generically, we can explore

features of the “potential” energy that will yield this driving term. We

see that, since the denominator is strictly positive, and the driving term

changes sign at b= 1, this value will be a minimum of the potential energy,

and hence a point of equilibrium. Numerical integration of the driving term
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Figure 3–1: Potential term for n = −w = ±1, N = 1. The horizontal axis is
b (in string units), the vertical axis gives the potential in units of U , where
U is the prefactor on the right hand side of (3.25).

yields the potential energy curve of Figure 1 8 where the potential is plotted

in units of 2µ0

M3
pl5

a32π
√

α′ as a function of b.

Because of the Hubble damping term in the equation of motion for b

(which is obtained by dividing (3.23) through by a factor of
√

α′), the scale

factor will perform damped oscillations about the minimum of the potential

to which it will evolve with rapidity depending on the value of the “spring

constant” multiplying the driving term:

k =
2µ0

M3
pl5

a32πα′ . (3.26)

Thus, we have established that a gas of string modes with non zero winding

and momentum numbers in the compact direction will provide a dynamical

8 We model the momentum squared as a smooth function of b such that
it takes on some non zero value at b= 1 and falls off on either side. This is
because at b= 1 the state described by n = −w = 1, N = 1 becomes mass-
less and should have a finite non zero momentum, but as the scale factor
increases or decreases the state becomes more and more massive and hence
the momentum becomes negligible in comparison. The generic feature of
a minimum at b= 1 is robust, however, since as we mentioned earlier, the
force term will always change sign at b= 1. One finds that the minimum is
always fairly concave independent of the nature of the b dependence of the
momentum.
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stabilization mechanism for the radion, provided that the three non-

compact dimensions are expanding (such a behavior was already found in

an early study [55] of the dynamics of string winding modes - we thank

Scott Watson for drawing our attention to this paper). We will address the

phenomenology of this stabilization mechanism further on, simply stating for

now that we can obtain a robust stabilization mechanism which is consistent

with observational bounds.

At this point, we wish to mention that the “Quantum Gravity Effects”

required to stabilize the extra dimensions in earlier attempts [67, 68] at

Kaluza-Klein cosmology find a stringy realization here, in that all that was

required for radius stabilization was matter that depended on the size of the

extra spatial dimensions in a non-trivial way.

To round off the discussion, we wish to demonstrate that our assump-

tion of an expanding scale factor a(t) is consistent with an oscillating scale

factor b(t). Consider the two Einstein equations that do not contain second

derivatives of b:

ρ

3M3
5

= H2 + H

.

b

b
,

−r

3M3
5

=
.

H +2H2 .

These equations imply that

.

H −2H

.

b

b
= − 1

3M3
5

(2ρ + r) . (3.27)

The resulting equation for H has the integrating factor 1/b2, and hence the

solution:

H(t) = H0

(b(t)

b0

)2

− b2(t)

3M3
5

∫ t

0

dt′
(2ρ + r)

b2(t′)
. (3.28)

Now, from the discussion surrounding (3.22), we see that ρ ≥ r ≥ −ρ. Thus,

the contribution to the integral in the above is strictly positive, and the
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second term on the right hand side of (3.28) can at most take on the value:

b2(t)

M3
5

∫ t

0

dt′
ρ(t′)

b2(t′)
. (3.29)

Thus, we see that if we pick the initial conditions for H appropriately, the

scale factor a can be taken to be expanding (H > 0) regardless of the

detailed motion of b. In fact, if we assume that H0 starts out positive, then

H(t) will remain so if

H0 ≥
1

3M3
5

∫ t

0

dt′
2ρ + r

b2(t′)/b2
0

, (3.30)

where the eventual stabilization of b and the 1/V ol dependence of ρ and r

will bound the integral, which implicitly depends on H itself. This implicit

dependence works in our favor in that the larger we make H0, the smaller

the integral becomes and so we can imagine picking an initial H0 such that a

persistent expansion of the non-compact dimensions results. Note, however

that if in the spirit of brane gas cosmology, we assume that all spatial

dimensions are starting out with the same size and instantaneously static,

then it may not be possible to evolve to a situation in which three large

spatial dimensions are expanding. This is, in fact, the result that emerges

from the work of [58], at least in a certain region of phase space.

3.5 Thermal String Gases

In what we have done so far, we have just considered the behavior of

the size of the extra dimension in a rather artificial setting, namely imposing

a gas of strings with a fixed set of quantum numbers. One expects the

early Universe to be in a state of thermal agitation, and it is inevitable that

transitions between different energy levels will be induced in the string gas.

Thus, to have any hope of realistically applying our setup to cosmology,

we need to study the effects of placing the string gas in a thermal bath.
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Referring to our expression for the energy density of a string (3.19), we see

that a gas of strings with different quantum numbers will have the energy

density:

ρ =
∑

n,w,N,p2

µn,w,N,p2

a3b2π

√

pipi +
4

α′ (N − 1) + (
n

b
+

wb

α′ )
2 (3.31)

with densities µn,w,N,p2 for each given set of quantum numbers. The ex-

pressions for the pressure terms p and r are similarly modified. If we are in

thermal equilibrium, the densities are given by the Boltzmann weight

µn,w,N,p2 = eβEref e−βE
n,w,N,p2µref , (3.32)

where the subscript “ref” refers to some arbitrary reference energy level.

What constitutes the thermal bath to which the string gas is coupled

to? We know from the discussion at the end of Section II that gravitons

described by unwound strings propagate in the non-compact directions with

an equation of state p = ρ/3. Introducing a gas of ordinary photons will

also add a 4-dimensional component to the energy-momentum tensor with

the same equation of state. Such particles offer us an ideal candidate for

a thermal bath, for two reasons. Firstly, thermal equilibrium demands a

coupling of some kind between the gas of winding modes and the gas of

gravitons and photons. Such a coupling is readily provided by the tree-level

reaction w+ w→ hµν via which winding modes of equal and opposite

winding scatter to produce 4-d gravitons. This thermalization mechanism

will, at non-zero temperatures, create an equilibrium where there will be

an ever-present non-zero winding mode density due to gravitons scattering

into winding modes (and vice-versa). This thermal bath has the further

property that it does not affect the dynamics of the extra dimension other

than through the Hubble factor (which it influences), since the driving term
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is only sensitive to the combination p − ρ/3 − 2r/3 which vanishes for the

graviton and photon components of the energy-momentum tensor.

With the above in mind, the driving term for the scale factor b be-

comes:

b

M3
pl5

(

p − 2r

3
− ρ

3

)

=
µrefe

βEref

M3
pl5

a32π
(3.33)

×
∑

n,w,N,p2

e−βE −n2

b2
− 2nw

3α′ + w2b2

3α′2 − 4(N−1)
3α′

√

pipi + 4
α′ (N − 1) + (n

b
+ wb

α′ )2

,

where the Boltzmann weight in the summation depends on the values of the

quantum numbers. We remind the reader that the sum is restricted by the

level matching condition N + nw ≥ 0. For completeness we also remind the

reader of the resulting equation of motion for b:

0 =
..

b +3H
.

b +
µrefe

βEref

M3
pl5

a32π
(3.34)

×
∑

n,w,N,p2

e−βE

√
E

(

−n2

b2
− 2nw

3α′ +
w2b2

3α′2 − 4(N − 1)

3α′

)

The summation which has to be performed in order to obtain the

driving term is quite formidable, were it not for a rather special feature of

string thermodynamics. Consider the argument of the exponential in the

Boltzmann factor:

βEn,w,N,p2 = β

√

pipi +
4

α′ (N − 1) + (
n

b
+

wb

α′ )
2

=
β√
α′

√

α′pipi + 4(N − 1) + (
n

b
+ b w)2

We see that when the energy is expressed in terms of dimensionless vari-

ables, we pull out a factor of
√

α′. Thus, the argument of the exponential in

the Boltzmann weight is β/
√

α′ times a term of order unity. To be able to

neglect all but the first few terms in the summation, we need the Boltzmann
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factor to be considerably less than unity, i.e. that

e
− β√

α′ ¿ 1 .

Thus, if this condition is satisfied, then the terms which dominate the sum

will be those whose quantum numbers render them nearly massless, since

any state with even one of its quantum numbers being different from the

nearly massless combination will produce a term of order unity times β/
√

α′.

Let us take a closer look at the above condition. We know from string

thermodynamics that there exists a limiting temperature – the Hagedorn

temperature TH [8]. Thus, for us to even be able to apply thermodynamics,

we need to be well below this temperature, which for all the string theories

is of the order of TH ∼ 1/
√

α′. Thus, βH ∼
√

α′, and so if we are at a

temperature much lower than the Hagedorn temperature, i.e. T ¿ TH or

equivalently βH ¿ β, then
√

α′ ¿ β , (3.35)

which is exactly what we need for the Boltzmann weights of higher mass

states to be negligible. So, even if the thermal bath has a temperature

of only one order of magnitude below the Hagedorn temperature, then

e
− β√

α′ ∼ 10−5 which clearly lets us ignore any term whose energy in

dimensionless units
√

α′pipi + 4(N − 1) + (n

b
+ b w)2 is anything other than

zero. This translates into us being able to neglect all states other than those

that are massless. Thus, the summation now becomes very tractable, and we

can also have faith in our truncation of the string spectrum to the lightest

states all the way up to very high temperatures (T ∼ TH/10). Before we

carry on we should remark that exactly massless states have a non-zero

momentum given by the thermal expectation value of E = |p| = 3/β.
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Let us then proceed to evaluate (3.33), so that we can evolve b in time

using (3.34), recalling that now we only sum over the massless and near

massless states subject to the level matching constraint. Let us begin near

b= 1, i.e. b= 1 + Γ. Then for the case that Γ 6= 1, we only have one truly

massless state: n = w = 0, N = 1. This term will not contribute to the

driving force for b since

(

−n2

b2
− 2nw

3α′ + w2b2

3α′2 − 4(N−1)
3α′

)

|p| = 0 . (3.36)

Thus, the next lightest state which has quantum numbers N = 1, n =

−w = ±1 will dominate the evolution of b. The level matching constraints

N + nw ≥ 0 ensure that there are no more nearly massless states (Note we

only consider states with positive mass squared - any tachyonic states are

posited to be absent from our spectrum). Such states will contribute:

e
−β√

α′

√

( 1

b
−b)2+α′p2

(

− 1

b
2 + b

2

3
+ 2

3

)

√

(1

b
− b)2 + α′p2

. (3.37)

Expanding b as 1 + Γ and ignoring terms higher than quadratic in Γ results

in a contribution to (3.37) of:

e−β|p|
√

α′|p|
(8Γ

3

)
,

Since there are two such terms which yield identical contributions,

the sum total of the contributions from the near massless states yields the

equation of motion

..

Γ +3H
.

Γ +
µ

M3
5 2πa3|p|α′3/2

(8Γ

3

)
= 0 , (3.38)
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where the exponential factor gets cancelled if we use this massless state as

our reference state, as in (3.32). The form of this equation clearly shows

that Γ will tend to zero if it starts out on either side of this value.

However, to confirm that Γ = 0 is a genuine point of equilibrium, we

need to confirm that the extra massless states that appear at this radius

(8 in all) contribute in such a way so that their sum vanishes. This can be

verified by a straightforward calculation 9 .

However, we wish to point out that as long as we stay in thermal

equilibrium with the graviton gas, this equilibrium is actually metastable.

The reason for this is easy to see from the formula for the mass of a winding

mode:

α′m2 =
(n

b
+ w b

)2

+ 4(N − 1) . (3.39)

In addition to the massless state given by n = w = 0,N = 1 (the

graviton), and the 8 other massless states that appear at the self-dual

radius (which are given by N = 1, n = −w = ±1; N = 0, w = n = ±1;

N = 0, w = 0, n = ±2 and N = 0, w = ±2, n = 0), there are additional

massless states at further special radii

b=
2

|m| ; w = ±m,n = 0, N = 0 (3.40)

b=
|m|
2

; n = ±m,w = 0, N = 0 (3.41)

m ε Z .

Thus, at half-integer multiples and and half integer fractions of the self-

dual radius, two massless modes appear and will thus yield the dominant

9 The only non-zero contribution to the driving term comes from the
states n = 0, w = ±2, N = 0 and n = ±2, w = 0, N = 0 which make equal
and opposite contributions and hence cancel.
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contributions to the driving term. These contributions again exactly cancel

at twice the self dual radius, and at half the self dual radius. However in

general, we will get a driving term that yields expansion at half integer

points above twice the self dual radius and similarly, contraction at half

integer fractions below half the self-dual radius. However since we posit that

we begin at or near the self-dual radius, we are guaranteed to stay locked

near it if our initial conditions satisfy

b(0) ∼
√

α′

.

b (0) ≤
√

k =

√

2µ0

M3
5 a32πα′ ,

where the last condition constrains the initial “velocity” of the scale factor

to be such that it cannot roll over the “hump” in the potential energy

surrounding the metastable equilibrium at b ∼
√

α′.

Thus, we have demonstrated in the context of GR how a string gas in

thermal equilibrium with a bath of gravitons and photons will dynamically

stabilize the scale factor of the compact direction if we begin close to that

radius. Thermal equilibrium with the graviton bath ensures a persistent

non-zero density of such winding modes. One can now imagine that, at

some point, the winding mode gas becomes decoupled from the graviton gas,

i.e. falls out of thermal equilibrium. In this situation, we are left with an

unchanging driving term of the form (3.24), which yields the potential in

Fig. 1, which will guarantee radion stabilization at the self dual radius for

the remainder of the Universe’s dynamics. We now turn our attention to the

possible connection between this mechanism and inflationary and standard

Big Bang cosmology.
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3.6 Late Time Evolution

Recall the Einstein tensor for our metric setup:

G0
0 = −3

.
a

a

[ .
a

a
+

.

b

b

]

Gi
j = −δi

j

[

2

..
a

a
+

..

b

b
+

( .
a

a

)2

+ 2

.

b

b

.
a

a

]

G5
5 = −3

[ ..
a

a
+

( .
a

a

)2]

.

We know that the dynamics of the scale factor b in the situations we studied

above cause it to undergo damped oscillations around the self dual radius.

We demonstrated in a previous section how the “spring constant” of this

evolution will lock in to this equilibrium fairly rapidly.

We can then study the evolution of the Universe after radius stabiliza-

tion, which implies that
.

b=
..

b= 0 and p − 2r/3 − ρ/3 = 0. The resulting

Einstein equations are:

G0
0 =

1

M3
5

T 0
0 → H2 =

ρ

3

Gi
i =

1

M3
5

T i
i →

.

H= −1

2
(ρ + p)

G5
5 =

1

M3
5

T 5
5 → p − 2r

3
− ρ

2
= 0

∇µT
µ
ν = 0 →

.
ρ +3H(ρ + p) = 0 ,

where the 55 equation is precisely the equilibrium condition. Thus, we

recognize in the above the basic equations of FRW cosmology. We now

consider how one achieves the two important epochs of late time FRW

cosmology, namely the radiation dominated era and the matter dominated

era.

3.6.1 Radiation Dominated Evolution

If we assume that the density of 4-d matter gas is far greater than the

density of the winding mode gas, then this will be the dominant component
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that drives the evolution of the macroscopic dimensions. If the 4-d matter

has an equation of state parameter w, then the solutions to the Einstein

equations become:

ρ(t) ∝ a−3(1+w) (3.42)

or

a(t) ∝ t
2

3(1+w) . (3.43)

Thus, for a 4-d graviton and photon background, we get that a(t) ∝ t1/2,

and so we reproduce a late time FRW evolution that is consistent with

standard Big-Bang cosmology immediately after the end of inflation, whilst

maintaining radius stabilization.

3.6.2 Matter Dominated Evolution

Reconsidering (3.23):

..

b +3H
.

b +
b

M3
pl5

(

p − 2r

3
− ρ

3

)

= 0 ,

We see that any matter with the equation of state of non-relativistic

dust (p = 0), can only drive the expansion of the radion if it is of a 3-

dimensional nature (i.e. r ≡ 0). This is surely to be a cause for concern

when considering that at late times, one (naively) expects 3-dimensional

non-relativistic dust to be the major driving component of the expansion of

the universe, which would normally invalidate our stabilization mechanism

in the present epoch.

However we wish to remind the reader that present day observations de-

mand that a significant fraction of the energy density of the universe, which

also drives the present day matter dominated expansion, be in the form of

cold dark matter– whose nature is as of yet completely unknown. There

is a significant amount of interest is the prospect that extra-dimensional
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matter or extra dimensional effects might account for the ‘missing’ matter

in the universe. In what follows, we find that the only way to make our

stabilization mechanism consistent with a ‘matter dominated’ epoch is to

introduce extra dimensional cold dark matter. We propose a candidate for

this cold dark matter which is naturally contained in our framework, and

discuss other possibilities which might have a natural realisation within the

general brane gas framework (note that a similar proposal was made in [69]).

We see that in order for the driving term in (3.23) to correspond to a

stable minimum at the self dual radius for matter which obeys the equation

of state for non-relativistic dust (p = 0), we need to consider matter for

which:

r = −ρ/2|b=√
α′ . (3.44)

That is, we require the dominant component of the energy density which is

driving the expansion of the universe be such that it preserves the stability

of the radion at the self dual radius. Matter which exhibits such an equation

of state will surely have to be massive (else there will be a non-zero pressure

along the non-compact directions for any non-zero energy density). In

addition, such matter will have to be something beyond presently supposed

dark matter candidates (WIMPS, supersymmetric relics etc.) as it will

neccesarily have to be ‘extra-dimensional’ in nature. We now show that

our model naturally contains such a candidate. Recalling the discussion

surrounding (3.22), we see that the equation of state parameter for a gas

of strings with a particular set of quantum numbers is obtained from the

following equation:

r = ρ ×
n2

b2
− w2b2

α′2

pipi + 4
α′ (N − 1) + (n

b
+ wb

α′ )2
, (3.45)
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where the momentum will be set to zero (or is vanishingly small) in order to

satisfy p = 0 (c.f. (3.20)). In particular, since we are looking for states which

can satisfy (3.44) at the self dual radius, we need to find the appropriate

quantum numbers which have an equation of state parameter w = −1/2 at

b =
√

α′, which reduces to the following condition:

3n2 − w2 + 4(N − 1) + 2nw = 0 , (3.46)

and we have to be mindful of the level matching constraint: N + nw ≥

0. As expected, it turns out that the massless states that satisfy these

conditions have an energy density proportional to |p|, whereas the pressure

is proportional to |p|2/3, and hence one cannot have a non-zero pressure

without having a vanishing energy density.

The first massive states which satisfy (3.46) are represented by the

quantum numbers:

|p| = 0 , N = 2 ; n = 0 , w = ±2 . (3.47)

These states contribute to the energy-momentum tensor as follows (c.f.

(3.19) - (3.21)):

p = 0 , ρ =
2µ

√
2

2πa3α′ , r = −ρ/2 , (3.48)

where the factor of α′ in the denominator comes from two factors of
√

α′–

one from the metric factor b which has stabilized at the self dual radius, and

the other as the pre-factor of the non zero rest mass of this string state. As

we will see in the next section, were we to look at fluctuations of the radion

around the self dual radius, these states also provide a stable equilibrium at

b =
√

α′ in a phenomenologically acceptable manner. Thus, taking questions

of consistency with observation for granted for the moment, we see if these

particular string states are taken to dominate the present energy density
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of the universe, then by the Einstein equations derived at the start of this

section, we can admit an epoch of dust driven FRW expansion (p = 0,

a ∝ t2/3) at late times, consistent with radius stabilization.

However, there are many further issues that will have to be resolved if

we are to take this idea of stringy dark matter seriously, which we postpone

to a future report. At present, however, we wish to state that there are

indications that such stringy dark matter might have the right clustering

properties at the level of first order perturbation theory, in that local

overdensities of this stringy dark matter induces gravitational clustering in

the remaining 3-dimensions.

We also wish to point out that in certain situations, non-relativistic p-

branes might also be able to provide us with a matter content with satisfies

(3.44) [60]. In the context of brane gas cosmology, this is an appealing idea

as one might need higher dimensional branes to stabilize compact sub-

manifolds that do not admit topological one-cycles (and hence do not admit

winding modes). We will investigate this possibility further in a future

report. Finally, we wish to address the effects of an intermediary epoch of

scalar field driven inflation on our stabilization mechanism.

3.6.3 Intermediate (Non-Stringy) Inflation

We find that our mechanism for radius stabilization might not be

compatible with an intermediate epoch of bulk scalar field driven inflation.

To investigate this, we first consider the energy-momentum tensor of an

almost homogeneous inflaton field:

T µ
ν = diag

(

−
[

.

φ
2

2
+ V (φ)

]
,
[

.

φ2

2
− V (φ)

]
, ...,

[

.

φ2

2
− V (φ)

])

(3.49)

Adding this energy-momentum tensor to our string gas yields a non-trivial

contribution to the driving term in the equation of motion for b. This
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driving term then takes the form

− 2b

3M3
5

V (φ) +
µrefe

βEref

M3
pl5

a32π
(3.50)

∑

n,w,N,p2

e−βE

√
E

(

−n2

b2
− 2nw

3α′ +
w2b2

3α′2 − 4(N − 1)

3α′

)

from which it is easy to see that the inflaton contribution will drive expan-

sion in the extra dimension. In general, this term will compete with the

string gas contribution which, as we have seen, drives contraction, if we are

above the self-dual radius. However, this competition is short lived, as the

factor of a3 in the denominator of the string gas driving term will quickly

render it irrelevant and the scale factor will then expand according to

..

b +3H
.

b −
2b

3M3
5

V (φ) = 0 . (3.51)

Recalling that during this (slow roll) inflation H, and by the time-time

Einstein equation, also V (φ) are almost constant, we can solve the above

equation, with the resulting two solutions:

b(t) ∝ exp
− 3H

2

(
1+

√

1+
8V (φ)

9H23M3
5

)
t

b(t) ∝ exp
− 3H

2

(
1−

√

1+
8V (φ)

9H23M3
5

)
t
.

Substituting in the Einstein equation H2 = V (φ)/3M3
5 gives us

b(t) ∝ exp−
3H
2

(
1+
√

1+ 8
9

)
t ∝ e−3.56Ht

b(t) ∝ exp−
3H
2

(
1−
√

1+ 8
9

)
t ∝ e0.56Ht .

Except for very special initial conditions, the growing mode will rapidly

come to dominate. Thus, we conclude that b expands exponentially (though

not as fast as a). After inflation has finished (and after reheating to a

temperature smaller than the one required for the pair production of string
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winding modes), a expands as t1/2. The energy density in the string gas will

have been exponentially suppressed by the inflationary evolution, and thus

to good approximation the equation of motion for b will take the form

..

b +3H
.

b= 0

leading to
.

b= Ca−3 (3.52)

which implies

b(t) = b(1) + 2
.

b (1)
(

1 − 1√
t

)

, (3.53)

where (1 ≤ t). Thus, b asymptotically expands to some limiting, and very

large (due to the initial conditions that result at the end of inflation) value.

In conclusion, we have seen how our radion stabilization mechanism

is consistent with the FRW evolution of the non-compact dimensions, but

not with an intermediate inflationary period, with inflation driven by a bulk

scalar matter field. Thus, in order for brane gas cosmology to make contact

with the present cosmological observations, one either needs a different

(maybe stringy) realization of inflation (see [62] for some ideas) where

strings are produced in re-heating, or a non-inflationary mechanism to solve

the cosmological problems of standard Big Bang cosmology and to produce

a spectrum of almost scale-invariant cosmological perturbations. Finally, we

turn to various phenomenological issues pertaining to this model.

3.7 Phenomenology

There are two potential phases of applicability of our considerations.

The first is to the early phase of string gas cosmology before a period of

inflation. In this case, there are no phenomenological constraints on the

model since the number density of the particles (from the four dimensional

perspective) which correspond to the string states wrapping the extra

53



dimension are diluted exponentially during inflation. However, in this case

our considerations would no longer be relevant for the late-time stabilization

of the extra dimension.

The second phase of potential applicability of our considerations is to

the universe after inflation of our three spatial dimensions. We then need to

assume that winding and momentum modes about the extra dimension can

be regenerated in sufficient number, as discussed in [69]. In this case, there

are important constraints on our model. We must ensure that the particles

corresponding to our string states do not overclose the universe. In addition,

there is a radion mass constraint. Since the radion corresponds to a scalar

particle from our four-dimensional perspective, we must make sure that its

mass is consistent with the experimental constraints (we thank the Referee

for stressing this point to us).

An additional constraint comes from the string theoretical aspect of

our model: we must ensure that the derivatives of the metric remain several

orders of magnitude smaller than the worldsheet derivatives (see Appendix).

This is to ensure that we can inherit aspects of the string spectrum and

constraint algebra that we have used so far. From (3.38), which has the

form:

Γ̈ + 3HΓ̇ + kΓ = 0 (3.54)

we see that the ‘spring constant’ which sets the scale for the how fast the

metric factor b varies, is given by

k =
8µ0

3M3
5 α′3/2|p|a3

(3.55)

where the subscript on µ is to remind the reader that any explicit metric

dependence has already been factored out (see section II). We have taken

the stabilization to be provided by the massless states discussed earlier with
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|p| denoting the momentum in the non compact directions, N = 1, and

n = −w = ±1. In order that our metric factors evolve much slower than

the string scale, we require that ∂µg ¿ 1/
√

2πα′. Since (3.38) is a second

order ODE, this implies that k ¿ 1/2πα′. As discussed in the Appendix, we

choose to be quite conservative and demand that k ≤ 10−6/2πα′.

A second constraint comes from requiring that the stabilization

mechanism be effective at all times. This leads to a lower bound on k. We

take this bound to be given by the ‘critically damped’ value for k:

kcrit = 9H2 . (3.56)

The two above constraints yield the following bounds:

9H2 ≤ 8µ0

3M3
5 α′3/2|p|a3

≤ 10−6

2πα′ . (3.57)

Since the winding states that stabilize the extra dimensions are

massless at the self-dual radius, they will behave as hot dark matter – dark

matter because they only interact gravitationally (through the tree level

interactions w+ w→ hµν) with other fields, hot because they are massless

and have a radiative equation of state. We have to ensure that we do not

introduce too many of these objects so that we can ensure consistency with

observational bounds.

Next, we have to ensure that the massive string states that we propose

as a candidate for the cold dark matter that is presently driving the ‘dust

dominated’ expansion of the universe do not violate any observational

bounds while preserving our stabilization mechanism.

Let us begin by considering the massless states which are presently

stabilizing the radion. From (3.17) we see that post stabilization, for stringy
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matter with N = 1, n = −w = ±1, we must have:

ρ =
µ0|p|
a3

≤ 10−4ρcrit (3.58)

in order to ensure consistency with the nucleosynthesis bounds. The critical

density of the universe is ρcrit = 10−29g/cm3. We then find that (3.58)

becomes

µ0 ≤ 10−410−37GeV4|p|−1 . (3.59)

Let us now parametrize the present value of |p| as

|p| = 10−γeV (3.60)

where γ is some constant determined by the initial conditions and the

history of the universe, and this parametrization being motivated by the

fact that |p| is likely to be of the order of a few eV in the present epoch if

it corresponds to an initial |p| of the order of the Planck energy. Then, the

above bound takes the form

µ0 ≤ 10−41GeV310γ. (3.61)

On the other hand, the first inequality in (3.57) becomes:

µ0 ≥ H2(t0)|p| ∼ 10−9310−γGeV3 (3.62)

which is consistent with (3.61). In the above, we have made use of

M−3
5 = 8πG5 = 8πG4

√
α′ . (3.63)

Using (3.63), it can easily be checked that the upper bound on µ0 which

follows from the second inequality in (3.57) is much weaker than the bound

(3.61). We conclude that one can easily arrange the number of string modes
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such that stabilization of the extra dimension is ensured and at the same

time the massless modes do not conflict with the nucleosynthesis bound.

Let us next turn to the radion mass constraint: Since the radion

appears in four dimensions as a scalar field, its mass must be larger than

mcrit = 10−12GeV (3.64)

in order to avoid fifth force type constraints. Since the square of the radion

mass is given by k, this constraint becomes

µ0 ≥ M3
5 α′3/2|p|m2

crit ∼ 10−35−γGeV 3 (3.65)

which is consistent with the upper bound (3.61) on µ0 if γ ≥ 3. Such a value

of γ is not at all unreasonable and could easily arise from an additional

suppression of the momentum during a short period of inflation.

It turns out to be crucial that we use massless modes to stabilize the

extra dimensions, as more massive string states would bring down the upper

bound, and as we are about to see, do not provide as effective a spring

constant and hence bring up the lower bound, to the net effect that it is

phenomenologically inconsistent to have these as the only strings that are

stabilizing the radion. We arrive at this observation by considering the

second aspect of our phenomenology– namely, that we would like the cold

dark matter content of our present universe to consist of massive string

modes (which satisfy (3.44), which as we have seen is require in order to

maintain stabilization at the self dual radius).

Considering the contribution to the energy density by a string gas with

quantum numbers |p| = 0, N = 2, n = 0, w = ±2 (3.48), and equating this
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to the critical density of the universe, we see that:

2
√

2µdm

2πa3α′1/2
≈ ρcrit (3.66)

Where now the subscript on µ serves to indicate that this is our dark matter

candidate. This requires

µdm ∼ 10−67GeV3 . (3.67)

Upon perturbing around a stabilized radius, we find that these string modes

contribute to the stability of the radion with the spring constant:

kdm =
8πG5µdm

2πα′a3

√
8

3
. (3.68)

Demanding that this value of k is consistent with the radion mass bound

yield a lower bound on µdm

µdm ≥ m2
critM4 ∼ 10−6GeV (3.69)

which is clearly inconsistent with (3.66) for values of γ which are extremely

large.

Thus we see that if we introduce the correct amount of our dark matter

candidate, it contributes too feebly to the dynamics of the radion (even

though it does provide its own contribution to stabilization). However, this

is of no concern to us, as we have already shown that the massless string

states provide a robust stabilization mechanism that is consistent with

observational bounds. Thus, if our string gas has a massive component

that serves as cold dark matter, and a massless component that stabilizes

the radion (and behaves like hot dark matter) in the right proportions,

which as we have shown is quite easy to achieve, we can be assured of the
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phenomenological consistency of our stabilization mechanism with late time

FRW cosmology.

3.8 Conclusions

The analysis in this paper is motivated by brane gas cosmology [6, 45].

As a simplified problem, we have studied the effects of a gas of strings

with non-vanishing momentum and winding modes about a single compact

extra dimension taken to be a circle (the three large dimensions are taken

to be spatially flat and isotropic) on the evolution of the radius of that

dimension, assuming that the background space-time satisfies the equations

of motion of General Relativity. We discovered that such a string gas leads

to a dynamical stabilization mechanism for the radius of this dimension, the

radion. Assuming initial conditions in which the three large dimensions are

expanding, we found that the radion performs damped oscillations about the

self-dual radius.

In a first step, we studied the effects of a gas of non-interacting strings,

each string having the identical momentum and winding numbers. Key to

the stabilization mechanism is the fact that winding modes and momentum

modes contribute with opposite sign to the pressure of the string gas

in the direction of the compact dimension, and that the winding modes

generate a potential for the radion which favors contraction, whereas the

momentum modes generate a potential favoring expansion. We then showed

that the stabilization mechanism also holds for a gas of strings in thermal

equilibrium.

We also showed that, after radion stabilization, the scale factor for

the three large spatial dimensions obeys the usual FRW equations of

standard Big Bang cosmology. Thus, our scenario leads in a natural way

to a late time FRW Universe. However, we have also shown that the
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radion stabilization mechanism is not compatible with a period of scalar

field driven bulk inflation. Thus, in order for brane gas cosmology to

make successful contact with present cosmological observations, one either

needs to find a stringy mechanism for driving inflation where strings are

produced in the re-heating epoch, or else one must provide an alternative

to inflationary cosmology, both for solving the mysteries of standard Big

Bang cosmology, and for explaining the origin of the observed large-scale

fluctuations.

Note that we start with the assumption that three spatial dimensions

are already much larger than the other ones (one other dimension in our

case). Whether or not the dynamics of strings in the initial stages will

indeed lead to this situation may depend on the corner of M-theory one

is working in, i.e. on the specific form of the background equations of

motion and initial conditions (see [6, 45, 46, 57, 58] for different angles

on this issue). However, it should not be hard to generalize our analysis

to a situation with more compact dimensions or different topologies and

geometries of the extra dimensions, which will be the focus of our future

work.

In future work we also plan to study the annihilation rate of the

string modes which are central to this work, namely modes which have

both winding and momentum in the compact direction. Since these modes

interact only gravitationally just like gravitons, they will be out of thermal

equilibrium at late times and hence will not decay.

3.9 Appendix: The String Spectrum in a Time Dependent
Background

Let us then begin with the Polyakov action for a closed string:

S =
−1

4πα′

∫

d2σ
√−γγab∂aX

µ∂bX
νgµν(X) . (3.70)
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Varying this action with respect to the world sheet metric gives us the

equation of motion

γab = λhab = λ∂aX
µ∂bX

νgµν(X) , (3.71)

where we can exploit the world-sheet diffeomorphism and Weyl invariance to

make the world-sheet metric flat (conformal gauge):

γab = γab =






−1 0

0 1




 . (3.72)

Varying the action with respect to the world-sheet fields, and imposing the

gauge choice yields the equations

∂a(∂
aXλgλµ(X)) =

1

2
∂aXλ∂aX

νgλν,µ(X) , (3.73)

where the meaning of the derivatives of the metric should be clear. This

equation translates into

∂a∂
aXτ + Γτ

λν∂aX
ν∂aXλ = 0 . (3.74)

Now, we consider the case when our metric depends only on time, that

is gµν(X) = gµν(X
0), is diagonal and has -1 as its 00 entry (This last point

is not essential to the argument, it only serves to simplify the equations).

Unpacking the above equation yields the equations

−∂2
τX

0 + ∂2
σX

0 = −1

2
gλν,0(−∂τX

ν∂τX
λ + ∂σX

ν∂σX
λ) , (3.75)

and

−∂2
τX

i + ∂2
σX

i = −giigii,0(−∂τX
i∂τX

0 + ∂σX
i∂σX

0) . (3.76)

On the right hand sides of the equations there is an overall factor containing

the time derivative of the metric. To estimate the magnitude of either side
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of the equations, we realize that world-sheet time derivatives will be of the

order of the energy of the string, which is of the order of the square root of

the string tension: ∂τ ∼ 1√
α′ . Similarly, the world-sheet spatial derivative

will be of the order of the inverse of the string length ls, ∂σ ∼ 1
ls
, which

is of the order of the square root of the string tension. On the right hand

sides, the terms are of the same order as the terms on the left, except for

the factors containing derivatives of the metric. As long as these metric

derivatives are several orders of magnitude smaller than the string tension

scale, we can safely ignore them 10 . Assuming such a background, (3.75)

and (3.76) reduce to the usual flat space wave equations, and we can

proceed to expand the solutions in terms of plane waves. We then impose

the canonical commutation relations on the expansion coefficients 11 .

To complete the analysis, we impose the constraints coming from our

gauge choice:

hab =






−1 0

0 1




 (3.77)

10 For instance, we are tempted to be conservative and to ask for them
to be roughly 6-8 orders of magnitude smaller, in order to be certain of a
consistent treatment.

11 Recall that ∂τX
µ := Pµ is the canonical momentum, where we must

view Pµ as having its index lowered which is to be raised with the inverse
metric. Not realizing this will produce nonsensical results elsewhere (such as
in the computation of the energy-momentum tensor of the string) in addi-
tion to making quantization very awkward. This fact is easier to understand
if we recall that Pµ and Xµ are canonically conjugate world sheet fields and
not 4-vectors. With this in mind, canonical quantization means imposing
[Pµ(τ, σ), Xν(τ, σ′)] = −iδν

µδ(σ − σ′) which, as is, does not involve the metric.
Hence we do not have to do anything different at this stage of the analysis.
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∂τX
µ∂τX

νgµν(X) + ∂σX
µ∂σX

νgµν(X) = 0 , (3.78)

∂τX
µ∂σX

νgµν(X) = 0 . (3.79)

By implementing our plane wave expansion for Xµ in terms of the creation

and annihilation operators, we obtain the spectrum by requiring that

physical states are annihilated by the constraint operators. However, when

we write the constraints in terms of the canonical variables, their metric

dependence becomes manifest:

PµX
′µ = 0 (3.80)

PµP
µ + X ′

µX
′µ = 0 . (3.81)

We see that (3.80) is independent of the metric. Since this constraint is

the origin of the Virasoro algebra, we see that it remains valid in suitably

time-dependent backgrounds. However (3.81) does depend on the metric

since P µ requires the inverse metric to raise its index and X ′
µ requires the

metric to lower its index. Now we choose to work in a 5-d background with

metric:

gµν = diag(−1, a2(t), a2(t), a2(t), b2(t)) , (3.82)

63



where the 5’th dimension is taken to be compact with radius 2πb 12 . With

this as our background metric, (3.81) becomes (for a string wound along the

5’th dimension):

−E2 + gijpipj +
2

α′ (N+ N −2) (3.83)

+ g55P5P5 + g55X
′5X ′5 = 0 ,

where all we have done is expanded out (3.81), and realized that the

terms coming from the non-compact Xµ and Pµ give us the center of mass

momenta and the left and right oscillator pieces, and the terms coming from

X5 have been accounted for explicitly. We know that this part of the energy

contributes [22]:

P5P
5 + X ′

5X
′5 =

n2

b2
+

w2b2

α′2 , (3.84)

so that combined with the level matching conditions

nw + N− N= 0 (3.85)

we get

E =

√

gijpipj +
4

α′ (N − 1) + (
n

b
+

wb

α′ )
2 , (3.86)

12 The results in our paper easily generalize to backgrounds of any number
of non-compact dimensions so long as precisely one dimension is compact-
ified on a circle. For consistency, we could state that our background is a
compactified 10 dimensional space with six dimensions compactified on a
Calabi-Yau (CY)space and one dimension compactified on a circle. Since in
the prototypical compactification scenarios such as the Horava-Witten model
[70][71] the radius of the CY is smaller than the radius of the circle, since
we will be interested in string winding modes but Calabi-Yau spaces do not
admit one-cycles, we can ignore the presence of the Calabi-Yau space if we
work in an effective Lagrangian description valid at energies smaller than
the energy scale of CY compactification. We could always go back and work
in a 9 + 1 × S1 or 24 + 1 × S1 space-time where we would derive the same
conclusions as we do here.
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where the only remnant of the level matching condition is the requirement

that

N + nw ≥ 0 . (3.87)

Thus, we wee that the only effect of working in a slowly varying

background is to introduce time-dependent metric factors in the obvious

places in (3.86) which is otherwise identical to the result we would obtain in

a static background.
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CHAPTER 4
Interlude I

Having seen that a gas of massless strings which condenses around the

self dual point can stabilize the radion field in a way that is consistent with

fifth force constraints and the predictions of big bang cosmology, the next

logical thing to do is to see if this mechanism generalizes to any number of

extra dimensions. This is motivated all the more since in [19], using only

massive string states, Watson and Battefeld argued that it would be difficult

to stabilize more than one extra dimension. We will see in the next chapter

that this won’t be the case if we focus only on massless string states, which

results in a cosmology of massless string modes which is also consistent with

the predictions of big bang cosmology, whilst evading fifth force constraints.
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CHAPTER 5
The Cosmology of Massless String Modes

5.1 Abstract

We consider the spacetime dynamics of a gas of closed strings in the

context of General Relativity in a background of arbitrary spatial dimen-

sions. Our motivation is primarily late time String Gas Cosmology, where

such a spacetime picture has to emerge after the dilaton has stabilized.

We find that after accounting for the thermodynamics of a gas of strings,

only string modes which are massless at the self-dual radius are relevant,

and that they lead to a dynamics which is qualitatively different from that

induced by the modes usually considered in the literature. In the context

of an ansatz with three large spatial dimensions and an arbitrary number

of small extra dimensions, we obtain isotropic stabilization of these extra

dimensions at the self-dual radius. This stabilization occurs for fixed dilaton,

and is induced by the special string states we focus on. The three large

dimensions undergo a regular Friedmann-Robertson-Walker expansion. We

also show that this framework for late-time cosmology is consistent with

observational bounds1 .

1 Reprinted with permission from Subodh. P. Patil and Robert H. Bran-
denberger, JCAP 0601:005, 2006, copyright (2006) by the IOP. The Jour-
nal of Cosmology and Aastroparticle Physics can be accessed online at
http://www.iop.org/journals/jcap . This article can be accessed online at
http://www.iop.org/EJ/abstract/1475-7516/2006/01/005.
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5.2 Introduction

The String Gas Cosmology (SGC) program, initiated in [6, 7] (see

also [55]) is a string-motivated cosmological model within which it appears

possible to obtain a nonsingular cosmology in which a universe with three

large spatial dimensions is dynamically generated from initial conditions in

which all spatial dimensions have a similar microphysical scale. The scenario

is based on coupling a gas of string and brane matter degrees of freedom to

a dilaton-gravity background geometry. As initial conditions, space is chosen

to be compact and of string length in all directions, and matter is taken

to be a hot gas with all string and brane degrees of freedom excited. The

specific stringy degrees of freedom which have both winding and momentum

quantum numbers play an important role in the dynamics of the early

universe. There has been a steady stream of research on this scenario over

recent years (see e.g. [9, 10, 11, 16, 19, 20, 23, 27, 28, 32, 33, 45, 46, 47, 48,

49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 61, 72, 73, 74, 75, 76, 77, 78]).

in spite of its above mentioned main successes, SGC has encountered

important obstacles (some of them yet to be resolved) which stand in the

way of SGC being a complete and testable model of the early universe.

These obstacles arise in attempting to implement the ideas introduced in

[6] and [45] in realistic string/M-theory settings. Chief among them, was

the observation that a dynamical dilaton proved crucial in stabilizing the

extra dimensions (radion stabilization was first considered in [27]), and

as such posed a problem for stabilization in the present epoch (see e.g.

[19, 20]). However, this was not so much a general conclusion rather than

an observation about the particular role the dilaton played in the specific

realizations studied. Several other outstanding issues concern the question

of stability of the extra dimensions to fluctuatons (addressed in [32, 33] at
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the level of linear cosmological perturbation theory), the phenomenology

of having a space-filling fluid of strings to maintain stabilization (we do

not want to overclose the universe, whilst still maintaining an effective

stabilization mechanism), and the consistency in using a low-energy effective

theory at compactification radii comparable to the string scale. Also, a

concern has recently been raised [9, 10] concerning the ability of string

winding interactions to only annihilate in three large spatial dimensions.

It is the goal of this paper to report on recent work which not only

hopes to resolve some of the outstanding difficulties faced by SGC, but also

points to a resulting model of the universe which is surprisingly complete,

and potentially testable by observation. As such, this report constitutes the

first in a series of papers [79, 31], where this particular paper will primarily

elaborate on a model of the universe where extra dimensions (not just one

extra dimension as in [16]) are stabilized at late times (i.e. assuming the

dilaton is fixed) by a confining potential induced by a string gas which

contains modes which are massless at the self-dual radius. A subsequent

report will further investigate the resulting phenomenology and point to

potentially testable predictions arising from the model introduced here [79].

There are already preliminary indications that the model we are studying

contains a stringy mechanism for the generation of metric fluctuations

[79] and may even offer applications to the construction of a nonsingular

realization [31] of the Ekpyrotic/cyclic universe scenario [80, 81, 82].

Key to the results of this paper (and the phenomenology which follows)

is the special role played by massless string states, whose utility has been

generally neglected - see, however, the discussions in [16, 28]. In the

following introductory section we begin by clarifying the philosophy of SGC,

and then give a preview of some of the special properties of the massless
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string states which explains their vital role in SGC. After discussing

the outstanding problems of SGC, we offer our ideas for resolving these

problems within our framework. In Section III, we set up our model, study

the effects of a gas of strings in a background described by Einstein gravity

(fixed dilaton), and derive the resulting spacetime dynamics. We show that

it is possible to stabilize any number of extra dimensions, making crucial use

of the massless string states. In Sections IV and V, we demonstrate that this

stabilization mechanism leads to a phenomenologically acceptable late-time

cosmology (modulo the outstanding issue of the horizon problem of the

three large dimensions). In particular, we show that Friedmann-Robertson-

Walker (FRW) expansion of the universe results after the extra dimensions

have stabilized.

5.3 SGC: Philosophy, Progress and Problems

String Gas Cosmology is a paradigm constructed along similar prin-

ciples as the Standard Big Bang Cosmology (BBC). Beginning with the

observation of spatial homogeneity and isotropy of the universe on large

scales, BBC is the cosmology that results when one couples a theory of

space-time (Einstein gravity) to matter described as a set of ideal gas fluids

(or a homogeneous distribution of fields as in the Inflationary Universe

scenario [83], an extension of BBC which solves some but not all of its

problems), and assumes “hot” initial conditions, i.e. that all matter degrees

of freedom are highly excited.

The philosophy of String Gas Cosmology is similar. Instead of a

homogeneous set of ideal gases or fields, one takes matter to be a gas of

all string and brane degrees of freedom which string theory admits, and

the background space-time is described not necessarily in terms of Einstein

gravity, but in terms of the particular gravity theory (e.g. dilaton gravity)
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which depends on which corner of the string theory moduli space one picks

to be in. Novel features of SGC compared to BBC include the existence of

extra dimensions and extra fields (form fields and scalars) and the existence

of new symmetries (dualities) relating the various corners of moduli space.

The existence of extended objects in the matter sector allows for a radically

different coupling between matter and geometry as these objects feel the

metric tensor in a manner different from what the naive application of

intuition from BBC would imply. The new matter degrees of freedom also

generate their own new symmetries (e.g. target space (T) duality) and cause

the dynamics of spacetime to be very different than in BBC. The peculiar

features of string thermodynamics, such as the existence of a limiting

Hagedorn temperature [8] also serve to ensure that any stringy cosmology

implemented in the spirit of BBC will have qualitatively different features.

What then are the consequences of attempting to do cosmology in the

framework outlined above? In addition to the fact that T duality raises

the hope to be able to construct a nonsingular cosmology [6], the main

result (and in fact the main motivation for the SGC program) is that it

is possible to generate a 3+1 dimensional universe through the dynamical

“decompactification” of an early universe where all directions are initially

taken to be compact and of similar size [6, 45, 27]. The way this works can

briefly be summarized as follows: suppose we begin with a 10-dimensional

toroidal universe, where all dimensions start at or around the self dual

radius (R =
√

α′). Populate this universe with a gas of strings in thermal

equilibrium. Due to the presence of closed strings wound around the various

cycles of the 10-torus, there is an energy expenditure associated with any

expansion of a particular cycle, given by the relation:

E2 ∼ w2R2 , (5.1)
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where R is the radius of the one-cycle and w is the winding number of a

string wound along that cycle. Hence, the expansion of all of the cycles

of the 10-torus should be held in check by the presence of these wound

strings, so long as there are enough of them around. However, we know that

oppositely wound closed strings like to scatter into unwound strings through

the tree level interaction w + w̄ → ... (where the ellipses denote unwound

strings). If we begin near a state of thermal equilibrium, with the tree level

string interactions maintaining a non-zero population of wound strings, we

can then ask the question under what conditions is it possible to maintain

this state of thermal equilibrium? A naive dimension counting argument

[6] tells us that the scattering cross-sections that describe winding mode

annihilation depend on the dimensionality of spacetime. For instance, on

a two dimensional torus, wound strings are very likely to intersect at some

point. The same is true in three dimensions. However, in more than three

spatial dimensions, the subset in phase space of initial conditions for which

two wound strings intersect is of measure zero: strings will generically miss

each other (for some recent concerns with this argument see [9, 10]). Hence,

in a background of any number of spatial dimensions, one finds that in at

most 3 spatial dimensions these strings can meet each other, and hence

unwind. It is in these dimensions that the universe is then free to expand

if there is an initial expansion in place, the interactions having frozen out

in the other dimensions. This stringy explanation for the dimensionality

of spacetime [6] has been generalised [45] to a setting where in addition to

strings, one has branes of various dimensions present in the initial state of

the universe.
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Implementing the above argument in realistic settings has been the

focus of much of the literature on SGC to date. In addition to the suc-

cesses of this program, there are many open issues which remain. Among

the successes is the result that isotropy of the 3-dimensions which subse-

quently describe our universe is a consequence of the dynamics of SGC [48].

Progress has also been made in implementing SGC for more realistic com-

pactifications of string theory (which do not neccesarily admit topological

1-cycles– a pre-requisite for the existence of winding modes) [50]. However,

a major obstacle to the success of this program is the fact that in the re-

alizations of the SGC scenario to date, a dynamical dilaton proves to be

crucial in obtaining stabilization of the extra dimensions [27]. An argument

[7] for the neccessity of a dynamical dilaton for the stabilization of the extra

dimensions is that in general relativity, matter tends to cause monotonic

expansion or contraction of the universe:

H2 ∝ ρ , (5.2)

and hence obtaining stabilization (H = 0) would be problematic. However,

this intuition is flawed since it is based on assuming that one has isotropy

of all dimensions. If instead we assume isotropy in the non-compact and

separate isotropy in the compact dimensions then the time-time Einstein

equation becomes:

ρ =
1

16πGD

[
d(d − 1)H2 + p(p − 1)H2 + 2pdHH

]
, (5.3)

where GD is Newton’s gravitational constant in the full space-time, d is

the number of spatial non-compact dimensions, p the number of compact

dimensions, H the Hubble rate in the non-compact dimensions, and H

the Hubble rate in the compact dimensions. Hence one could easily have
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an oscillating H provided H is large enough. In the case of one extra

dimension, this was shown explicitly in [16].

Another reason why a dynamical dilaton was included in most of the

previous work on SGC is that in the Type II string theory corners of the M-

theory moduli space the dilaton appears at the same footing as the graviton.

Hence, in the absence of a mechanism which stabilizes the dilaton, this field

should be taken to be dynamical. A dynamical dilaton also is crucial in

order for T-duality to be manifest.

However, in the current universe there is no evidence for a dynamical

dilaton, and hence, if SGC is to make successful connection with current

observations, it must be assumed that the dilaton is stabilized (ideally, this

should be a result of string cosmology itself). A crucial question for SGC is,

therefore, whether the extra dimensions remain stable after the dilaton has

been fixed.

The main goal of this paper is to show that any number of extra

dimensions can be stabilized in the context of General Relativity (GR) (i.e.

without a dynamical dilaton), and hence to extend the results of SGC to

be applicable to late time cosmology. We find preliminary indications that

the resulting cosmology has rich phenomenological implications (this will

be discussed in more depth in a followup report [79]). In addition to being

stable to radion fluctuations there is a potential non-inflationary mechanism

for generating metric fluctuations [31].

The workhorse of this cosmology are string modes which are massless at

the self-dual radius, and whose role was discussed in a previous paper where

the stabilization of a single extra dimension was studied [16]. These modes

are related to enhanced symmetries at the self-dual radius (see e.g. [28, 21]

for more general discussions). We argue that these states must play a crucial
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role in SGC, and neglecting them will lead to incorrect conclusions about

the cosmological evolution.

The role of these special states is also important in addressing a

common objection to SGC (and all other approaches to string cosmology),

namely questioning the use a low energy effective theory description (dilaton

gravity or GR) in a situation when characteristic lengths are around the

string scale. The loop expansion breaks down once one reaches curvature

regimes comparable to the string scale, and hence calls into question the

consistency of the effective theory we are interested in. However, we will be

studying the physics of certain massless modes which appear at enhanced

symmetry points (i.e. the self dual radius), and as such describe new degrees

of freedom that appear at these special points. Since the existence of these

new degrees of freedom will transcend higher order corrections, we feel

justified in using their perturbative properties. Perhaps an equivalent QFT

intuition would be that just as the photon mass remains zero due to gauge

invariance after higher order loop corrections are taken into account, we

expect the properties of these states to similarly transcend higher order loop

corrections due to the enhanced symmetries associated with them.

An open issue for SGC[84] is the concern that the states which keep

the radii of the extra dimensions confined might overclose the universe.

This concern would indeed be valid if these states were Planck mass objects

(like string states with only winding number). However, if stabilization is

achieved by a fluid of strings which are massless at the self-dual radius, and

which from the point of view of the large spatial dimensions behave as a gas

of massless states, the overclosure concern disappears, and one can achieve

an acceptable cosmology. This has already been shown in a model with one

75



extra dimension [16], and we will demonstrate that the situation is the same

in our model (though a detailed study shall form a separate report [79]).

However, it is important to stress that these massless modes which

are so important for SGC to be viable appear naturally in our framework

rather than as an ad hoc input. We now turn to the discussion of the model.

We have left the total number of spactime dimensions D and the number

of compact dimensions p arbitrary, with different choices corresponding to

various corners of the string theory moduli space. Later we will of course

be studying the case where D − p = d = 3 (three non-compact spatial

dimensions).

5.4 The Model

We will be doing Einstein gravity in the presence of string sources.

This is the late time scenario that has to result in SGC after the dilaton

has been fixed. We wish to determine whether it is still possible to stabilize

compact extra dimension in SGC after dilaton stabilization. We refer

to this as a ‘late time’ scenario. We assume that the dilaton is robustly

stabilized, and can hence be taken as a constant in what follows. We start

then by assuming that the universe has the topology of Rd × T p, where d

is the number of non-compact dimensions and p is the number of toroidal

dimensions, both of which we leave general for the moment. We make the

metric ansatz:

ds2 = −dt2 +
D∑

i=1

a2
i (t)dx2

i , (5.4)

where D is the total number of spatial dimensions. The resulting Einstein

equations (Gµ
ν = 8πGDT µ

ν ) can be recast in the form:

äi + ȧi

(∑

j 6=i

ȧj

aj

)

= 8πGDai

[

pi −
1

D − 1

D∑

j=1

pj +
1

D − 1
ρ
]

. (5.5)
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One then has to determine what the energy-momentum tensor for a

gas of strings (with a fixed set of quantum numbers) is, in order to proceed.

One can obtain this directly from the Nambu-Goto action for a single string

(after hydrodynamically averaging)[16]. We offer a derivation of this result

in the appendix. However, it turns out that one obtains the same answer if

one was to introduce the following ‘matter’ Lagrangian density:

Sstring = −
∫ √

−Gµ~n,~w,~p,N,Ñ(t)ε~n,~w,~p,N,Ñ , (5.6)

where G is the determinant of the full space-time metric, the subscripts

indicate that the number density (µ) and the energy of a given string

state (ε) depend on its particular quantum numbers. The notation is as

follows: ~n describes the momentum quantum numbers along the compact

directions, which have been organised into a p-dimensional vector. Similarly,

~w describes the winding quantum numbers, N and Ñ are the oscillator

levels of the string state and ~p is the center of mass momentum along the

non-compact directions, organised into a d = D − p dimensional vector. We

see that this naively corresponds to introducing the appropriate ‘interaction

energy’ term to our action. If one (we shall drop the subsripts momentarily)

factors out the metric dependence of the number density

µ =
µ0√
g

, (5.7)

where g is the determinant of the spatial part of the metric tensor, one is

left with:

Sstring = −
∫

√

−G00µ0(t)ε , (5.8)

which, once we consider the thermodynamics of the system, corresponds to

the treatment given in [7].
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The mass of a closed string in a background where p dimensions are

compactified on a torus, described by the metric γab, 1 ≤ a, b ≤ p, is given

by [22] (na, waε Z):

m2
~n,~w,~p,N,Ñ

=
1

R2
γabnanb +

R2

α′2γabw
awb +

2

α′ (N + Ñ − 2) , (5.9)

where this formula is subject to the level matching constraint:

Ñ = naw
a + N (5.10)

and R describes the coordinate interval for each cycle of the torus: xa =

θaR, 0 ≤ θ ≤ 2π, which can be set to unity (the physical lengths of cycles

being described by the metric γ). We can re-write the above as:

m2
~n,~w,~p,N = (n, γ−1n) +

1

α′2 (w, γw) +
2

α′ (N + Ñ − 2) , (5.11)

where (n, w) = naw
a is the standard p-dimensional real scalar product.

We now use (5.10) to solve for Ñ in (5.11), which gives us the following

expression for the energy of a closed string in such a background:

ε~n,~w,~p,N =
1√
α′

√

α′p2
n.c. + (n, γ̄−1n) + (w, γ̄w) + 2(n,w) + 4(N − 1) , (5.12)

where γ̄ab = γab/α
′, and p2

n.c. is the center of mass momentum along the

non-compact directions.

Notice that we are not ignoring the oscillator modes, as is customary in

the SGC literature. This allows us to utilise the level matching constraint in

such a way that the above expression for the mass of a string mode contains

a perfect square when all compact dimensions are at the self dual radius

(γ̄ab = δab):

m2 =
1

α′

[

(n + w, n + w) + 4(N − 1)
]

. (5.13)
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This should be contrasted to the expression obtained when oscillator modes

are neglected at the outset:

m2 =
1

α′

[

(n, n) + (w,w)
]

(5.14)

which only vanishes for completely unwound strings, and hence fails to

capture the wound states that become massless at enhanced symmetry

points. These states prove to have very special properties and should not be

ignored in any study of string gas cosmology.

Returning to the question of deriving the energy-momentum of a string

gas, one can insert the expression (5.12) into (5.6) to arrive at:

ρ~n,~w =
µ0,~n,~w

ε~n,~w

√
−G

ε2
~n,~w (5.15)

pi
~n,~w =

µ0,~n,~w

ε~n,~w

√
−G

p2
n.c./d (5.16)

pa
~n,~w =

µ0,~n,~w

ε~n,~w

√
−Gα′

(n2
a

b̃2
a

− w2
ab̃

2
a

)

(5.17)

where b̃a = ba/
√

α′ (where b2
a is the ath diagonal component of the metric

of the torus). Henceforth ~n, ~w shall serve as an abbreviation for the full set

of quantum numbers, which include N and p2 as well. Note that the above

can be obtained directly from the Nambu-Goto action [16], as shown in the

appendix. We can immediately infer several qualitative conclusions from

the above form of the energy-momentum tensor. We see that according to

(5.17), winding quantum numbers contribute a negative pressure along the

compact directions whereas momentum quantum numbers do the opposite.

Along the non-compact directions, the fluid of strings exerts a positive

pressure as is typical for a gas of point particles.
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The equations of motion (5.5) for both the compact and the non-

compact dimensions which result from the above are given by:

¨̃ba + ˙̃ba(
∑

j

ȧj

aj

+
∑

b6=a

ḃc

bc

) =
8πGDµ0,~n,~w

α′3/2
√

Ĝaε~n,~w

[n2
a

b̃2
a

− w2
ab̃

2
a +

2

(D − 1)
[(w, γ̄w) + (n,w) + 2(N − 1)]

]

(5.18)

äi + ȧi(
∑

j 6=i

ȧj

aj

+
∑

b

ḃc

bc

) =
8πGDµ0,~n,~w
√

Ĝiε~n,~w

[p2
n.c.

d
+

2

α′(D − 1)
[(w, γ̄w) + (n,w) + 2(N − 1)]

]

,(5.19)

where Ĝµ is the determinant of the metric without the µ’th diagonal

element. In the above, the indices i = 1, ..., d run over the non-compact

dimensions and a = 1, ..., p run over the compact ones. One thing to note

from (5.18) is that unwound strings with na = wa = 0 at the oscillator level

N = 1 do not contribute to the driving term (the right hand side) of the

equation of motion for the compact dimensions. These states correspond

to gravitons, but in general from the form of (5.5), we see that any matter

which is pressureless along the compact dimensions (such as ordinary

matter) and satisfies the equation of state (p = ρ/d) also does not contribute

to the driving term for the compact dimensions.

The above equations are somewhat artificial in that they apply to a

universe filled with a string gas with a fixed set of quantum numbers. In

general, one will have a string gas that consists of a superposition of strings

with many different quantum numbers. In that case, the driving terms in

the above equations of motion will become:

¨̃ba + ˙̃ba(
∑

j

ȧj

aj

+
∑

b6=a

ḃc

bc

) =
∑

~n,~w

8πGDµ0,~n,~w

α′3/2
√

Ĝaε~n,~w

[n2
a

b̃2
a

− w2
ab̃

2
a +

2

(D − 1)
[(w, γ̄w) + (n,w) + 2(N −(5.20)

äi + ȧi(
∑

j 6=i

ȧj

aj

+
∑

b

ḃc

bc

) =
∑

~n,~w

8πGDµ0,~n,~w
√

Ĝiε~n,~w

[p2
n.c.

d
+

2

α′(D − 1)
[(w, γ̄w) + (n,w) + 2(N − 1)]

]

.(5.21)

The number densities µ0,~n,~w are determined by physical considerations.

In the spirit of SGC and following the treatment given in [16], we assume
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thermal equilibrium at the initial time (when the number densities are

determined). In this case, we have

µ0,~n,~w = µ0,refe
−βε~n,~weβεref , (5.22)

where the subscript ‘ref’ refers to some reference state which we are free to

pick at our convenience. One has to wonder what constitutes the thermal

bath that is a pre-requisite for any thermodynamical treatment. We have

already seen that gravitons and photons (matter which only exists in the

non-compact dimensions) do not contribute to the driving term for the

equations of motion for the ba’s, and are an ideal candidate for such a

thermal bath. The tree level processes hµν → w + w̄ provide the appropriate

interactions that thermally couple our stringy matter to this bath. With

this in mind, (5.22) implies that the driving term for the non compact

dimensions becomes:

8πGDµrefe
βεref

α′
√

Ĝa

∑

~n,~w,N,p2

e−βε̃
~n,~w,N,p2/

√
α′

ε̃~n,~w,N,p2

[n2
a

b̃2
a

−w2
ab̃

2
a+

2

(D − 1)
[(w, γ̄w)+(n,w)+2(N−1)]

]

(5.23)

Where ε̃ is a dimensionless quantity (energy expressed in string units:

ε = ε̃/
√

α′), which according to (5.12) is a number of order unity for the

lowest lying string states.

With this realization of thermal equilibrium, were we to define the

partition function as

Z(β, ai, ba) :=
∑

~n,~w,N,p2

e−βε(ai,ba)
~n,~w,N,p2 , (5.24)
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then one could derive the components of the energy-momentum tensor as

follows (c.f. [7]):

Pi =
1

β
ai

∂Z

∂ai

=
1

β

∂Z

∂λi

; ai = eλi (5.25)

Pa =
1

β
ba

∂Z

∂ba

=
1

β

∂Z

∂λa

; ba = eλa (5.26)

E =
−1

β

∂Z

∂β
, (5.27)

where Pµ (and in a similar way, E) is defined through the equation:

µrefe
βεref

√
G

Pµ = pµ (5.28)

We can use this to rewrite the condition that the driving term for

equations of motion vanishes for any particular direction, as the action of a

linear differential operator on Z:

[

aµ
∂

∂aµ

− 1

D − 1

(∑

ν

aν
∂

∂aν

+
∂

∂β

)]

Z = 0 . (5.29)

One can then rephrase the question of whether or not stringy matter can

stabilize extra dimensions in terms of the existence of solutions to this

equation. Were we to find simultaneous solutions to this system of first

order PDE’s for all compact directions (µ = a, for a given β), we will

have determined the nature and existence of stabilized extra dimensions.

Although we will show further on that, in the particular regime we are

interested in, we will have a much simpler means of proceeding, this method

is certainly more general (though less tractable). It might be neccesary to

resort to this method in high temperature regimes and in situations where

the compactifications we study are not so straightforward. In fact, if all we

are interested in is proving the existence of stabilized extra dimensions, then

one could imagine reformulating this question in terms of the existence of

solutions to this PDE, for which a great deal is already known.
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However, since we are interested in late times (i.e. post dilaton stabi-

lization), we find after inspection of (5.23) that the summation is actually

quite tractable. Taking a closer look at the Boltzmann factor that weights

all terms in the summation:

e
− β√

α′ ε̃ . (5.30)

we see that the argument of the exponential is the factor β/
√

α′ multiplied

by a term that is of order unity. Now for all string theories there exists

a limiting temperature, known as the Hagedorn temperature [8], which,

independent of the particular theory, is always of the order
√

α′ [85]:

βH ∼
√

α′ . (5.31)

If we set the string scale to be equal to the Planck scale, then we see that if

the temperature is even slightly (let us say a factor of 10) below this scale,

that is if:

β√
α′

≥ 10 , (5.32)

then any term in the summation (5.23) which corresponds to an ε̃ which is

anything other than zero will contribute vanishingly. Hence, the Boltzmann

weight approaches a window function which projects out all but the massless

modes in the summation. That is:

∑

~n,~w,N,p2

e−βε̃
~n,~w,N,p2/

√
α′

ε̃~n,~w,N,p2

[
...

]
→ λ

∑

m2=0

[
...

]
(5.33)

and hence the sum becomes very easy to calculate. Note that the condition

(5.32) gives us an operational definition of ‘late times’.

Turning to the question of evaluating the summation (5.23) in light

of (5.33), we first need to know which quantum numbers correspond to

massless states for a given form of the metric γ̃ of the torus. To do this,
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suppose we start out with all toroidal dimensions compactified at the self-

dual radius (γ̃ = I). Then the formula for the mass of a closed string in this

background is given by (5.13):

m2 =
1

α′

[

(n + w, n + w) + 4(N − 1)
]

,

from which we read off that the massless states are those which simultane-

ously satisfy the following set of equations:

(n + w, n + w) = 4(1 − N) (5.34)

N + (n,w) ≥ 0 (5.35)

where the last equation is the level matching constraint. We immediately

see that the only possibilities for massless states at this radius (and as it

turns out all others) are those with oscillator levels 0 or 1. We catalogue the

quantum numbers of all of these massless states below:

N (n, n) (w, w) (n,w)

1 0 0 0

1 1 1 -1

0 1 1 1

0 2 2 0

0 1 3 0

0 3 1 0

0 4 0 0

0 0 4 0

It should be noted that the exact realisation of these massless modes

depends on the number of extra dimensions available (e.g. for 1 or 2 extra

dimensions, it is not possible to satisfy (w,w) = 3 etc.). Of most interest

to us (for reasons to be made clear shortly) are the first four possibilities
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mentioned in the above table. The first possibility (N = 1, n = w = 0)

corresponds to unwound gravitons. These states do not contribute to the

driving term for the compact directions (5.23) at all. The second possibility

(N = 1, n = ±w, (w, w) = 1) corresponds to singly wound strings with

an equal and opposite quantum of momentum along the same dimension,

at oscillator level 1. The third possibility (N = 0, n = w, (w, w) = 1)

corresponds to a singly wound state at oscillator level zero, with one

quantum of momentum of the same sign along the same dimension. The

second class of states are all at oscillator level zero, and correspond to

various multiply wound/unwound strings with/without motion along various

cycles of our torus. It turns out that if we consider the masses of states with

the quantum numbers tabulated above as the metric fluctuates around the

self dual radius, we find that only the first class of states (the first four in

the above table) remain massless to first order. We see this by perturbing

the metric as follows:

γ̃ = I − ∆

γ̃−1 = I + ∆ +
∑

k=2

∆k ||∆|| < 1

where ∆ is not neccesarily small, but has a matrix norm of less than 1 (so

that γ̃−1 can be written thus). Expanding the formula for the mass of a

closed string, we get

α′m2 = (n, γ̃−1n) + (w, γ̃w) + 2(n,w) + 4(N − 1) (5.36)

= (n + w, n + w) + 4(N − 1) − (w, ∆w) + (n, ∆n) +
∑

k=2

(n, ∆kn) ,(5.37)

and hence, for the mass difference compared to the value for ∆ = 0,

α′δm2 = (n, ∆n) − (w, ∆w) +
∑

k=2

(n, ∆kn) . (5.38)
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We see that only the first class of states remain massless to first order. For

the first three sets of states, where the quantum number vectors n,w are

equal to each other up to a sign, this is easy to see. For the states with

quantum numbers given by N = 0, (n, n) = (w, w) = 2, (n,w) = 0, only

the states with entries in the same rows have vanishing fluctautions. This is

because the condition (n,w) = 0, in conjunction with (n, n) = (w,w) = 2

implies that these states either have no, or both entries in common. The

contribution from the metric fluctations would be non-vanishing in the

former case, but for the latter, states of the form below remain massless to

first order:

w = (1, 1) n = ±(1,−1),

w = (1,−1) n = ±(1, 1),

w = (−1, 1) n = ±(1, 1),

w = (−1,−1) n = ±(1,−1),

where we have only indicated the non-vanishing entries in the above. At late

times, when β/
√

α′ À 1, all states which do not remain exactly massless

close to the self-dual radius are projected out of the summation (5.23). To

emphasize this point, let us consider an epoch when the temperature is two

orders of magnitude below the Planck energy. Then the Boltzmann factor

goes as e−100 for all states that are not exactly massless close to the self

dual radius. We will show later that at exactly the self dual radius, the

summation over all the remaining states tabulated above sums to zero, and

hence their effects on the dynamics of the extra dimensions is vanishing.

Now that we have determined the properties of the string states which

will enter the summation (5.23), we now have to compute their contribution
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to the driving term and sum over all the possiblities. Recalling that the

unwound graviton states (N = 1,n = w = 0) do not contribute to the driving

term, we find that the contribution of the states with quantum numbers

N = 1, n = ±w, (w,w) = 1 to (5.23) for the ath compact direction is:

8πGDµ0ref

α′3/2
√

Ĝa

2

|pn.c.|
[ 1

b̃2
a

− b̃2
a +

2

D − 1
(

p
∑

c=1

b̃2
c − p)

]

, (5.39)

where if we take the reference energy to be precisely one of the massless

states, the exponential prefactor in (5.23) cancels. The factor 2/|pn.c.|

comes from the overall degeneracy of the states which can appear either

as, for example w = (0, 0, 0...1, 0...), n = (0, 0, 0... − 1, 0...) or with the

opposite signs, with the factor |pn.c.| coming from the factor of energy in the

denominator in the summand in (5.23). The states with quantum numbers

N = 0, n = w, (w, w) = 1 sum to yield an identical contribution to the

driving term. It is straightforward to show that the states within the class

N = 0, (n, n) = (w, w) = 2, (n,w) = 0, that remain massless to first

order also yield a similar driving term, but now with the prefactor 8(p − 1),

instead of 2. The factor p − 1 has the combinatorial origin of being the

number of ways one can pick two entries to be identical out of p choices,

and 8 corresponds to the overall degeneracy of these states (as indicated

above). One might be worried that introducing such states with (w, w) = 2

might force us to consider off-diagonal elements for our toroidal metric γab,

as we now have strings that diagonally wrap the torus. It is in fact true

that for a single diagonally wound string, the stress energy tensor will have

off-diagonal components and that these should be matched by off diagonal

elements in our toroidal metric. However, recall that we are considering

a string gas, which at the point in moduli space we begin in (γab = δab),

will consist of massless quantum numbers which will democratically wrap
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along all cycles of the torus with equal probablity. That is, singly wound

strings will wind along all cycles of the torus with equal probability. In

addition, strings wound around more than one cycle (such as the states with

(w, w) = 2) will also wrap any given pair of cycles with equal probability.

When we sum over all the quantum numbers, we will invariably encounter

summing over states with winding number vectors that are opposite in sign,

which results in the cancellation of off-diagonal entries in the net stress

energy tensor (see appendix). 2 .

Denoting
∑p

c=1 b̃2
c as (b̃, b̃), we then find that the total contribution to

the driving term from states that remain exactly massless near the self dual

radius is:

8πGDµ0ref

α′3/2
√

Ĝa

(8p − 4)

|pn.c.|
[ 1

b̃2
a

− b̃2
a +

2

D − 1
[(b̃, b̃) − p]

]

. (5.40)

The condition for this driving term to vanish yields the solution

which corresponds to a stabilization of the extra dimensions. This can

also be interpreted as a global minimum of the potential for the radion

with vanishing amplitude (thus avoiding the “no-go theorem for radion

stabilization by Giddings [87] which studies local minima of the radion

potential with positive value). The condition that the driving term vanish is:

1

b̃2
a

− b̃2
a +

2

D − 1
[(b̃, b̃) − p] = 0 . (5.41)

2 However the general issue of off-diagonal elements of the toroidal metric
(which correspond to complex structure moduli), is an important one, as one
would also have to address how these are stabilized in this framework. It
turns out that this same string gas that we have introduced aslo stabilizes
the shape moduli of the torus. In [23] and [18], it was shown that the shape
moduli decouple from the radial moduli, and are stabilized by the effects of
the string gas in an analogous way to the radial moduli. A similar result was
uncovered in [86].
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We see that this can be recast as a quadratic equation for b̃2
a, where the

coefficients are formally the same for all a. Hence, if a solution exists, it

must be the same for all a. Thus we find that the extra dimensions are

isotropically stabilized if they are stabilized at all. We now insert the ansatz

appropriate to this observation (b̃a = λ, ∀a) into the above to obtain the

condition:

1

λ2
− λ2 +

2p

D − 1
[λ2 − 1] = 0 . (5.42)

Using the usual technique to solve a quadractic equation, we find a solution

to be:

λ2 =

2p
D−1

+
√

( 2p
D−1

)2 − 4[ 2p
D−1

− 1]

2[ 2p
D−1

− 1]
. (5.43)

Were we to define c = 2p/(D − 1), we find that the above simplifies into the

formula:

λ2 =
c + (c − 2)

2(c − 1)
= 1 . (5.44)

Thus, we have shown that the extra dimensions are stabilized isotropically

at the self-dual radius.

To complete the analysis we need to show that the fixed point deter-

mined by (5.44) is indeed a stable equilibrium point. A quick way to see

this is to observe that the potential which determines the radion dynamics is

minimized at this point. This can also be seen by inserting the driving term

(5.40) into (5.20), and expanding b̃a as b̃a = 1 + Γa. Our equations of motion

become:

Γ̈a+Γ̇a(dH+
∑

c 6=a

Γ̇c)+
8πGD4(8p − 4)µref

0

adα′ 3+(p−1)
2 |pn.c.|(D − 1)

[(D−2)Γa−
∑

c6=a

Γc] = 0 , (5.45)

where H is the Hubble factor in the d non-compact directions. Interpreting

the driving term as ∂aV where the derivatives are taken with respect to Γa,

we find that the Hessian matrix (Hab = ∂a∂bV ), up to a (positive) factor, is
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given by:














D − 2 −1 −1 . . . −1

−1 D − 2 −1 . . . −1

−1 −1 D − 2 . . . −1

...
...

...
. . .

...

−1 −1 −1 . . . D − 2















(5.46)

where we remind the reader that this is a p-dimensional matrix. The

eigenvalues of this matrix are D − 1 − p (= d − 1), and D − 1, the former

appearing once and the latter with a degeneracy of p − 1. These are all

clearly positive, and hence we conclude that the fluctuations around the

self-dual radius in all directions are indeed stable.

Let us summarize the method and discuss the result. We determined

the energy-momentum tensor of a gas of closed strings and observed that

only the massless string modes will be present in any significant number if

we start the evolution in a hot thermal state (an observation that will also

be crucial for the success of the late time phenomenology). We find that,

after accounting for all the relevant states, their quantum numbers and

their degeneracies, we end up with a driving term (5.40) for the radion fields

which stabilizes any number of extra dimensions at the self-dual radius.

This result is a non-trivial result since it was obtained in the setting of

general relativity, i.e. with fixed dilaton. Thus, we have shown that SGC

provides a mechanism for stabilizing extra dimensions in the present epoch.

It is a natural question to ask whether or not it was neccesary to

introduce stringy states in order to affect this stabilization, as one could

imagine any such states which become massless at special points of moduli

space could have the same effect. This question will certainly occupy us in

future work. However at present, we wish to point out that (as we will see
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further on), it is a property peculiar to extended objects that we can obtain

moduli stabilization in such a way as to be consistent with observational

bounds from late times.

We wish to end this section with a comment on the states which are

massless at the self-dual radius but whose energy is not minimized at this

point (the second class of quantum numbers in the previous table). Since

they are tachyonic either for small or for large radii, they should probably

be excluded from consideration from the outset. Even if they are included,

however, we note that their effects cancel in the driving term of the compact

dimensions at the self-dual radius. This can easily be seen by realising that

these states appear in T-dual combinations (~w ↔ ~n). Considering the

driving term at the self-dual radius:

8πGDµref

α′3/2
√

Ĝa|pn.c.|

[

n2
a − w2

a +
2

(D − 1)
[(w,w) + (n,w) + 2(N − 1)]

]

(5.47)

we see that T-duality will ensure that the first two terms cancel each other

in summing over all states. It is easy to check, after accounting for the

correct degeneracies of each set of quantum numbers, that the factors

grouped in the inner square brackets also sum to zero. This completes the

demonstration of stabilization at the self dual radius.

5.5 Spacetime Dynamics of the Non-Compact Dimensions

We would now like to consider the resulting cosmology for the non-

compact dimensions after the extra dimensions have been stabilized (in this

section, we will take d = 3 independent of the choice for D and p). Before

we do this we would like to discuss several outstanding issues that should

not be overlooked. Our first issue concerns an important consistency check

concerning general relativity: we should check that our energy momenutum
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tensor is consistent with the covariant conservation of the Einstein tensor:

∇µT
µ
ν = 0 . (5.48)

This condition yields the following series of equations (one for each value of

the index ν in the above):

ρ̇ +
d∑

i=1

ȧi

ai

(ρ + pi) +

p
∑

a=1

ḃa

ba

(ρ + pa) = 0 (5.49)

∂ip
i = 0 (5.50)

∂ap
a = 0 . (5.51)

The first condition is none other than the continuity equation, and is

trivially satisfied by (5.15)-(5.17). This arises from the time derivative of

ρ precisely cancelling the terms proportional to the Hubble factors. The

remaining equations are also trivially satisfied as a consequence of the

spatial homogeneity of our setup.

The second issue concerns the equation of state parameter for the

pressure along the non-compact directions. We know from (5.16) that

the pressure along the non-compact directions of this string gas is always

positive. However, we see from (5.17) that the pressure along the compact

directions can be either negative or positive. If we want to avoid violations

of the dominant energy condition (DEC) we must ensure that the equation

of state parameter ω = p/ρ remains bounded from below:

−1 ≤ ω . (5.52)

Consider now the relationship between (5.15) and (5.17) for the states

that we have found give us stabilization (those with quantum numbers
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~n = ±~w, (w, w) = 1, N = 1 or ~n = ~w, (w, w) = 1, N = 0). If pa = ωaρ, then

ωa =
b̃−2
a − b̃2

a

b̃−2
a + b̃2

a − 2 + α′p2
n.c.

. (5.53)

Since the string states we are considering are massless when the scale factor

b̃a is at its self-dual value, they will have non-zero momentum along the

non-compact directions, which will assume its thermal expectation value if

we are in thermal equilibrium. If we are in a sufficiently hot regime, we can

always ensure that ωa satisfies

−1 ≤ ω ≤ 1 , (5.54)

where, long after the stabilization has been achieved, and the ambient

temperature has cooled down considerably, one has a robust stabilization

mechanism that keeps the compact dimensions locked at the self dual radius,

where the equation of state parameter vanishes. Hence we can easily arrange

a situation where the DEC is not violated in our model even though the

compact dimensions are undergoing damped bounces. This is a novel result

in the context of GR and was uncovered first in our study of this model in

the case where we only had one extra dimension [16].

Turning now to the issue of the resulting spactime dynamics of the

non-compact directions, which we take to be homogenous and isotropic,

we remind the reader of the Einstein equations applied to our anisotropic

metric, Eq. (5.5). We consider a situation where the dominant matter

component of the universe as a whole is in the form of radiation; that is,

matter which has no pressure along the compact directions and which

satisfies the equation of state

p = ρ/3 . (5.55)
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Considering the effect of this matter on the dynamics of the compact

dimensions, we have

b̈a + ḃa

(

3H +

p
∑

c6=a

ḃc

bc

)

= 8πGDba

[

− 1

D − 1
dp +

1

D − 1
ρ
]

. (5.56)

Thus, we see that such matter does not contribute to the dynamics of the

compact dimensions. Hence, the stringy matter studied in the previous

section will be the only factor at play in the dynamics of these dimensions,

except of course for the Hubble damping factor due to the expansion of

the large dimensions. To put it in another way, it is consistent with the

stabilization mechanism we have studied to have radiation like matter

drive the expansion of the non-compact dimensions. We see through (5.3),

(5.5) and (5.49), that the standard FRW expansion of the non-compact

dimensions results:

ρ =
3

8πGD

H2 (5.57)

ä

a
+ 2H2 = 8πGDp (5.58)

ρ̇ + 3H(ρ + p) = 0 . (5.59)

Hence, it is easy to realise a post-stabilization radiation dominated FRW

expansion of the universe. We can also obtain dust dominated evolution in

our model, but this is not such a straightforward matter. In fact, obtaining

a dust driven expansion results in a definite prediction of SGC: if string

gases are indeed responsible for present day stabilization of extra dimensions

in our model, then the dark matter will neccesarily have to be extra

dimensional in nature. This issue was studied in [16] and we repeat the

argument here. Considering (5.5) for a compact dimension, any matter

which only exists in the non-compact dimensions (pa = 0) which satisfies

the equation of state pi = 0 (i.e. all pressures vanish) will neccesarily lead
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to expansion of the compact directions and will derail any stabilization

mechanism we might have had in place. Hence, if we take the dominant

matter content of the universe to have the equation of state of dust, then it

must neccesarily exert pressure along the compact directions which satisfies

the following equation of state when the compact dimensions are all at the

self-dual radius:

[

pa − 1

D − 1

p
∑

b=1

pb +
1

D − 1
ρ
]

ba=
√

α′
= 0 . (5.60)

This implies, since we have isotropically stablized at the self-dual radius,

that this matter satisfies the equation of state

r = −ρ/(d − 1) = −ρ/2 , (5.61)

where r is the pressure along any of the compact dimensions. There is a

candidate within our framework for 3 large spatial dimensions (see [16]),

namely the stringy states with the quantum numbers

|pn.c.| = 0, N = 2; na = 0, wa = ±2 . (5.62)

It can easily be checked that such matter satisfies the required equation of

state. These states contribute to the stability of the extra dimensions rather

feebly when phenomenological bounds are accounted for [16], but preserve

the stability of the extra dimensions nevertheless (the massless states being

dominant in their contribution to the stabilization mechanism). Hence we

can take these states as a candidate for the dark matter responsible for our

present FRW expansion 3

3 String winding states as candidates for dark matter were recently also
considered in [69, 88].
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The resulting FRW equations, once the extra dimensions have stabilized

are given by:

ρ =
3

8πGD

H2 (5.63)

ä

a
+ 2H2 = 8πGD

(p + 2)

2(D − 1)
ρ (5.64)

ρ̇ + 3H(ρ + p) = 0 (5.65)

where p on the right hand ride of the above refers to the number of compact

dimensions. Hence we have shown that any epoch of late time FRW

cosmology can result from our model post stabilization. We now turn to a

brief discussion of the phenomenology of this model.

5.6 Phenomenology

Most of what is to appear in this section appears in [16], where the phe-

nomenology of a string gas used to compactify one extra dimension at the

self dual radius is discussed. Since the string modes used in this work are an

immediate generalization of what was used in [16] for one extra dimension to

the case of many extra dimensions, the resulting phenomenological bounds

on the scenario from the point of view of late time cosmology are the same.

Since we plan to give a detailed study of the phenomenology of this model

in a future work [79], we here present only the briefest discussion.

There are three key aspects to our phenomenology that we need to

discuss: the first being that we would like not to overclose the universe with

the fluid of closed strings (which behaves like hot dark matter from the

4-d perspective). The second aspect, is that we do not want to have too

few of these strings such that the stabilization mechanism is ineffective. In

words, we would like to show that it is possible to introduce an effective

stabilization mechanism without overclosing the universe. The third aspect
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is that we do not want the dynamics of the extra dimensions from the 4-d

perspective to introduce any long range scalar interactions (no fifth forces).

As a starting point, consider (5.45), which in normal coordinates has

the form:

Γ̈ + 3HΓ̇ + kΓ = 0 . (5.66)

The value for k (the spring constant) will differ by a factor of order unity

depending on precisely which mode we are looking at, but for an order-

of-magnitude estimate this factor is irrelevant. An upper and a lower

bound on this spring constant result (in the case of the lower bound) from

requiring that the stabilization mechanism be effective, and (in the case of

the upper bound) from requiring that the metric varies on a time scale that

is many orders of magnitude (let us say 106) longer than the string scale

[16] (otherwise the effective field theory analysis would not be justified).

The lower bound is given by the value for k which yields critical damping ,

kc = 9H2/4 and the upper bound by the string tension. Thus, we require

9H2/4 ≤ k ≤ 10−6/(2πα′) . (5.67)

From (5.45) this implies

H2 ≤ 8πGµref
0

a3α′ 3+(p−1)
2 |pn.c.|

≤ 10−6

2πα′ , (5.68)

neglecting factors of order unity. Using the relationship

GD = G3 × V ol T p = G3(2π
√

α′)p/2 (5.69)

between the higher dimensional gravitational constant GD and Newton’s

constant G3 in our 3 + 1 dimensional space-time, and setting the string scale

to the Planck scale implies

2πα′ = G3 . (5.70)
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Thus, (5.68) becomes:

H2 ≤ µ0

a3|pn.c.|
≤ 10−6

2πα′ . (5.71)

Furthermore, from (5.15) we see that in order not to overclose the

universe with these strings we require that the 4-dimensional energy density

(ρ4 = ρD × V ol T p) be several orders of magnitude less than the critical

density:

ρ =
µ0|pn.c.|

a3
≤ 10−4ρcrit . (5.72)

Taking ρcrit = 10−29g/cm3, we find that this bound translates into

µ0 ≤ 10−410−10eV 4|pn.c.|−1 . (5.73)

If we parametrize the momentum along the non-compact directions as

|pn.c.| = 10−γeV = 10−γeV , (5.74)

then (5.73) becomes:

µ0 ≤ 10γ−41GeV 3 , (5.75)

which is stronger than the upper bound in (5.71), whereas the lower bound

implies:

µ0 ≥ H2|pn.c.| ∼ 10−93−γGeV 3 . (5.76)

Hence, we conclude that:

10−93−γGeV 3 ≤ µ0 ≤ 10−32+γGeV 3 , (5.77)

which is easily satisfied. The remaining constraint comes from requiring

that from the perspective of the effective 4-d theory, the masses of the

fluctuations are sufficiently high so as not to mediate long range ‘fifth

forces’. Observational bounds require the mass of these scalars to be greater

than 10−12GeV . Since the spring constant corresponds to the masses
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squared of these fluctuations, (5.71) implies that:

µ0 ≥ 10−33−γGeV 3 , (5.78)

which, in conjunction with (5.77), leads to the condition

10−33−γGeV 3 ≤ µ0 ≤ 10−41+γGeV 3 . (5.79)

This is easy to satisy for any γ ≥ 4.

Hence, we have demonstrated that the stabilization mechanism, because

of some very novel aspects of the string gas energy-momentum tensor, not

only offers a robust stabilization mechanism, but does so in a way that is

phenomenologically consistent. That is, we can obtain this stabilization

without overclosing the universe and violating any fifth force constraints.

This is in marked difference with previous attempts at obtaining stabilizing

effects for extra dimensions by introducing new fields– where the energy

density that appears in the energy-momentum tensor and the mass of the

resulting scalar field (or the spring constant for the radion fluctuations) in

the effective field theory are usually proportional to each other. We see that

for stringy matter, they are markedly different in that ρ ∝ |pn.c.|, whereas

k ∝ |pn.c.|−1. A more thorough study of the phenomenology of this scenario,

where more issues (including a demonstration of the stability of this model

to fluctuations) will be tackled, will the subject of a future report [79].

5.7 Conclusions

In this report, we have studied the effects of a gas of closed strings on

the dynamics of a homogeneous but anisotropic space-time described by

General Relativity (fixed dilaton) where several dimensions are toroidally

compactified. The modes that turn out to be relevant are the string modes

which are massless at the self-dual radius. In the context of a hot early
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universe we show, based on thermodynamical considerations, that these

are the dominant modes. We demonstrated that these modes lead to the

isotropic stabilization of the extra dimensions, thus generalizing the results

of [16] which were derived in the case of only one extra dimension. We

also showed that the dominance of these massless modes is crucial to the

late-time phenomenological viability of the scenario, and leads to a scenario

consistent with several observational bounds. We feel that this formalism

is the begining of a promising avenue of research, which we believe may

result in a complete and testable model of the universe. We already have

promising indications that this framework is capable of modelling a non-

singular bouncing cosmology [31], and potentially provides a stringy

mechanism for the generation of metric fluctuations. Our ultimate hope is to

extract testable predictions of this formulation of string gas cosmology, the

prospects for which seem very promising.

5.8 Appendix– The string gas energy-momentum tensor

In this appendix, we derive the energy-momentum tensor of a string

gas from micro-physical considerations. That is to say, we first arrive at

the space-time energy-momentum tensor of a single string, after which we

perform a hydrodynamical averaging to obtain the result for a string gas.

We wish to comment that there are several non-trivial issues to address

when considering string propagation on a time dependent background.

Intuitively however, one is tempted to conclude that provided the metric of

space-time is varying on time scales much longer than the string scale, we

should be able to proceed (as we do here) in the ‘adiabatic’ approximation.

We shall take this for granted in what follows, refering the reader to [16] for

a justification of this approximation.

To begin with, consider the Nambu-Goto action for a single string:
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S = − 1

2πα′

∫

d2σ
√
−h, (5.80)

with the worldsheet metric hab defined by:

hab = gµν(X)∂aX
µ∂bX

ν . (5.81)

The space-time metric, which in the above context is generically a function

of the worldsheet fields Xµ, is assumed to have the form:

g00 = g00(X
0), (5.82)

gij = δija
2(X0), (5.83)

gab = γab(X
0). (5.84)

Variation of (5.80) with respect to gµν gives us the spacetime energy-

momentum tensor through the expression:

T µν =
2√−g

δS

δgµν

. (5.85)

Arbitrary variations of the background metric induce variations of the

worldsheet metric in the following manner:

δλβgµν = δλ
µδβ

ν δD+1(Xτ − yτ ) → δλβhab = ∂aX
λ∂bX

βδD+1(Xτ − yτ ).

(5.86)

The unmatched indices λ and β mean that we perturb only these com-

ponents of the metric tensor, and δD+1(Xτ − yτ ) is a delta function in

D + 1 space-time dimensions. This variation results in an expression for the

energy-momentum tensor for a single string:
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T µν =
−1√−g2πα′

∫

d2σ
√
−hhab∂aX

µ∂bX
νδD+1(Xτ − yτ ). (5.87)

We now pick a gauge to work in. We choose to work in conformal gauge,

defined by:

hab = λ






−1 0

0 1




 , (5.88)

where we keep this up to an arbitrary positive factor. From (5.81), we see

that this gauge choice implies the conditions:

gµνẊ
µẊν + gµνX

′µX ′ν = 0 (5.89)

gµνẊ
µX ′ν = 0. (5.90)

Even though we are in a (weakly) time-dependent background (in particular

one that is not flat), it can be shown that one can still make this gauge

choice simultaneous with the condition:

X ′0 = 0, (5.91)

where the prime denotes differentiation with respect to the spacelike

worldsheet co-ordinate. We will use these conditions repeatedly in what

follows.

Upon examining (5.87), we see that in order to make use of the delta

functions in the integrand, one has to to use the following transformation:

d2σ =
dX0dXa

|Ẋ0||X ′a|
, (5.92)
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where Xa is the string co-ordinate field along any wound compact direction

(which one we pick will turn out to be insignificant). The terms in the

denominator arise in the evaluation of the Jacobian of this transformation,

subject to (5.91). Note that we picked the particular co-ordinates X0 and

Xa because they are monotonic functions of σ0 and σ1 respectively. Using

the constraints (5.89) and (5.90), we see that:

Ẋ0 =
2πα′
√−g00

√

gijPiPj +
1

(2πα′)2
gijX ′iX ′j , (5.93)

where we have used the fact that in conformal gauge, we have:

Pµ =
gµνẊ

ν

2πα′ . (5.94)

The expression in the sqaure root in (5.93) is given by the L0 constraint in

our constraint algebra [22] (see also (5.9) and (5.10)), and is equal to the

energy of the closed string:

ε =

√

|pd|2 + (n, γ−1n) +
1

α′2 (w, γw) +
1

α′ [2(n,w) + 4(N − 1)], (5.95)

where the worldsheet zero modes give us the contributions |pd| for momen-

tum along the non-compact directions, as well as the terms containing the

winding and momentum quantum numbers for the compact dimensions. All

the other Fourier modes give us the oscillator contributions. We can write

the above as:

Ẋ0 =
2πα′
√−g00

ε. (5.96)

As for the second factor (5.92) entering the Jacobian, we see that for any

string wound w times around the ath direction:

103



X ′a = wa. (5.97)

Recall that one has to sum over all zeroes of the argument of the delta

function along the ath direction when evaluating the integral (5.87), after

implementing the change of variables (5.92). Thus the contribution (5.96)

is cancelled by the string winding wa times around the ath direction, as the

argument of the delta function is zero precisely wa times. Note that this is

how the choice of which cycle we take in evaluating the change of variable

ends up being inconsequential. However, the choice is residually implicit in

which of the wound co-ordinates Xa remain in the D − 2 delta functions left

over after integrating over the worldsheet. This will prove to be irrelevant

after we hydrodynamically average to obtain the result for a gas of strings.

Hence we evaluate (5.87)– using the gauge fixing conditions and the results

just obtained (5.93) - (5.97)– as:

T 0
0 =

ε√
gs

δD−1(Xτ − yτ ), (5.98)

T i
i =

pipi

ε
√

gs

δD−1(Xτ − yτ ), (5.99)

T a
a =

1

ε
√

gs

(n2
a

b2
a

− w2
ab

2
a

α′2

)

δD−1(Xτ − yτ ), (5.100)

T a
c =

1

ε
√

gs

(nanc

babc

− wawcbabc

α′2

)

δD−1(Xτ − yτ ), (5.101)

where gs is the determinant of the spatial part of the metric, and ε is

defined by (5.12). We now hydrodynamically average as follows: keeping

the quantum numbers p2
d, ~w, ~n and N fixed, we sum the contributions over

a distribution of such strings, where the momentum along the non-compact

directions is distributed isotropically. We note that according to (5.12),

a wound string with quantum number vectors ~w, ~n will have the same
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energy as a string with both vectors with the opposite sign. Moreover, for

diagonally wound strings, this energy will be the same were we to keep

the winding number around any given cycle fixed, whilst winding around

any other cycle oppositely, provided that we also reverse the sign of the

momentum quantum number corresponding to that cycle (this is so that

the term (n,w) remain invariant). Hence, the off diagonal terms in the

above will cancel out when summing over a gas of strings. In this way, our

hydrodynamical averaging results in the term (5.101) dropping out, yielding

(5.15)-(5.17):

ρ =
µ0ε√

gs

, (5.102)

pi =
µ0√
gsε

|pd|2/d, (5.103)

pa =
µ0√
gsε

[
n2

a

b2
a

− w2
ab

2
a

α′2 ]. (5.104)

As is easily checked, we note that one would obtain this same result if one

were to introduce the following action for the string gas:

S = −
∫

dD+1x
√−g00µ0ε . (5.105)
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CHAPTER 6
Interlude II

Having seen that a gas of strings can stabilize any number of extra

dimensions around the self dual radius in a manner that is consistent with

various phenomenological bounds, we now investigate further the stability

of such a gas against perturbations. Such an investigation is important if

we are to find out the effects of stabilization on any primordial spectrum

of metric fluctuations. Were this spectrum modified by the stabilization

mechanism, then this would rule it out as a solution to the moduli problem.

As we will see, string gas cosmology passes this test with flying colours,

and even offers a mechanism to regularize a bouncing brane scenario whilst

smoothly transferring metric fluctuations accross the branes. In this way,

we shall see that string gas cosmology offers a rather complete framework

to solve the moduli problem in a way that is consistent with our usual

cosmology, and even extensions to our usual cosmology.
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CHAPTER 7
On The Transfer of Metric Fluctuations when Extra Dimensions

Bounce or Stabilize

7.1 Abstract

In this report, we study within the context of general relativity with

one extra dimension compactified either on a circle or an orbifold, how

radion fluctuations interact with metric fluctuations in the three non-

compact directions. The background is non-singular and can either describe

an extra dimension on its way to stabilization, or immediately before and

after a series of non-singular bounces. We find that the metric fluctuations

transfer undisturbed through the bounces or through the transients of

the pre-stabilization epoch. Our background is obtained by considering

the effects of a gas of massless string modes in the context of a consistent

’massless background’ (or low energy effective theory) limit of string theory.

We discuss applications to various approaches to early universe cosmology,

including the ekpyrotic/cyclic universe scenario and string gas cosmology1 .

7.2 Introduction

The idea that the universe is comprised of any number of extra di-

mensions, in addition to the three non-compact spatial dimensions that

we observe, goes back all the way to the work of Kaluza and Klein in the

1920’s [89, 90], where extra dimensions were first proposed as a manner

1 Reprinted with permission from Thorsten J. Battefeld, Robert H. Bran-
denberger and Subodh P. Patil, Phys. Rev. D Vol 73, 086002 (2006). Copy-
right (2006) by the American Physical Society. This article can be accessed
online at http://link.aps.org/abstract/PRD/v73/e086002 .
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in which one could unify particle interactions with gravity. Since then,

theories with extra dimensions have evolved from being a mathematical

curiosity, albeit one with remarkable consequences for particle physics [91],

to a theoretical necessity with the advent of string theory. Since the famous

anomalies cancellation calculation of Green and Schwarz [92], the challenge

has remained for cosmologists and phenomenologists alike to account for

the presence of extra dimensions in physics. From a pessimist’s point of

view, one might view these extra dimensions as an unwanted surplus that

has to be swept under the rug at presently accessible energies. In its most

unimaginative form, one could view this as the gist of the moduli problem.

From an optimist’s point of view however, one could view the requirement

of extra dimensions for the consistency of string theory as a new window

of opportunity, through which one might be able to resolve some of the

outstanding problems of particle physics and cosmology.

Taken as an essential part of the radically new picture of space-time

that string theory offers us, extra dimensions, with strings and branes of

various dimensions propagating through them, could offer us a potentially

non-anthropic explanation for the observed dimensionality of space-time

[6]. In addition to offering us potentially non-singular cosmologies [6, 7, 93],

they could very well be at the heart of the resolution of the dark matter

problem [19, 69, 88, 94]. Recently, several alternative stringy cosmologies

have emerged as possible successors to the standard big bang model of the

universe, such as the pre-big bang model [93], brane/string gas cosmology

[6, 7, 26, 95, 96] , and the cyclic/ekpyrotic scenarios [31, 80, 81, 82, 97], all

of which have the ultimate aim of becoming complete and testable models of

the early universe.
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A central question that arises in determining whether or not these

models of the early universe reproduce observations is, how metric fluctu-

ations in the presence of extra dimensions evolve in the backgrounds that

these cosmologies propose. The importance of understanding this question

cannot be understated in the context of the abundance of available experi-

mental data, against which we must compare our eventual predictions. For

instance, in the ekpyrotic/cyclic scenario the effects of branes colliding in a

5-dimensional bulk are explored 2

Key to the success of this program is being able to follow the evolution

of metric fluctuations through the bounces of the extra dimension. The

eventual goal of this is to be able to explain the observed inhomogeneities

of the cosmic microwave background as being seeded by radion fluctuations

generated through the motion of the branes towards each other, rather than

through the quantum fluctuations of some putative inflaton field.

Similarly, in the context of the pre-big bang scenario, where an ex-

panding and a contracting phase of the universe’s evolution are naturally

related to each other by the scale factor duality symmetry inherent to low

energy effective string theory, a universe undergoing a big bang-big crunch

transition is naturally implemented. In this context, the evolution of metric

fluctuations through the bounce becomes a question of central importance in

understanding the way the big bang phase of our universe’s evolution hap-

pened the way it did. As it turns out, although at first seemingly unrelated,

an associated and as yet unexamined issue is how any tentative solution

2 Note that, as stressed in [98], none of these alternatives at the present
stage solve the homogeneity and flatness problems of standard big bang
cosmology without invoking a period of inflation (or something which effec-
tively acts as inflation).
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of the moduli problem will modify the spectrum of the metric fluctuations

which we observe. Given that the universe is likely to contain many extra

dimensions whose shape and volume moduli are dynamical in the early

universe, one might expect that the dynamics of these moduli fields will lead

to a highly nontrivial modification of any initial pre-stabilization spectrum.

It is the goal of this report to show that, in the context of a 5-d

universe where an extra dimension undergoes non-singular bounces, or

is en route to stabilization, the final spectrum for the Bardeen potential

corresponding to (long wavelength) fluctuations of the scale factor for

the non-compact dimensions, is identical to the initial spectrum of the

five-dimensional fluctuations (in a sense which will be specified later).

Specifically, if we had an initial scale invariant spectrum for the five-

dimensional fluctuations, we would end up with a scale invariant spectrum

for the Bardeen potential after the bounce, or after the transients of the

stabilization had settled down. Furthermore, we show that the variable

corresponding to metric fluctuations of the compact dimensions decays,

which corresponds to the stability of the radion degree of freedom to

fluctuations in our non-singular setup.

One application of our work concerns the evolution of fluctuations in

ekpyrotic/cyclic type models. In the context of a four space-time dimen-

sional effective field theory toy model of this scenario, the dynamics of

perturbations has been investigated in detail. The initial analyses [80, 99]

yielded the result that a scale-invariant spectrum before the bounce transfers

to a scale-invariant spectrum after the bounce. These analyses, however,

were questioned in [100, 101, 102, 103, 104, 105]. A serious complicating

factor turned out to be the fact that the proposed background evolution

was singular, thus requiring the use of “matching conditions” (such as those
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derived in [106] in the context of an expanding cosmology undergoing a

sudden phase transition) to compute the post-bounce spectrum of fluctu-

ations. As discussed in [107], there is a very sensitive dependence of the

final result on the choice of the matching surface. Independently, there has

been recent work on the evolution of fluctuations through a nonsingular

bounce in four space-time dimensional cosmologies, in which the bounce

is constructed by adding extra terms to the standard Lagrangian. These

analyses [108, 109, 110, 111, 112, 113, 114, 115, 116] yield results showing

a sensitive dependence on the nature of the bounce. The bottom line of

this work is that a correct analysis of fluctuations in the ekpyrotic/cyclic

scenario needs to be done in a five space-time dimensional context, a context

in which the nature of the bounce is unambiguous. A first important step in

this direction was taken in [117], confirming the result that a scale-invariant

spectrum passes through the bounce (in the five-dimensional context, the

bounce means that the radius of the extra spatial dimension bounces, not

that the four space-time dimensional scale factor bounces) without change

in the spectral index. However, the analysis of [117] was done in the context

of a singular background and assuming specific matching conditions for

fluctuations applied at a point when the perturbations in fact blow up.

Thus, the results are open to doubt. In this work, we study the transfer of

fluctuations through a cosmology in which two boundary branes approach

each other and bounce without encountering a singularity (see also [31] for

previous work done in the context of a particular nonsingular ekpyrotic-type

bounce proposed in [118]).

We begin by introducing a non-singular bouncing model of a 5-

dimensional universe where one dimension is compactified on a circle or

an orbifold. As we shall see shortly in detail, our non-singular background is
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obtained by considering the effects of gas composed of massless string modes

on the dynamics of space-time, in the context of a consistent low energy

effective theory limit, or ‘massless background’, of string theory. We then

set up the framework for studying cosmological perturbations in this model

and study how these transfer through the various bounces that the extra

dimension undertakes. Although our setup is seemingly specific to string

gas cosmology, the essence of our framework is that we have a non-singular

bounce/stabilization mechanism that is affected by degrees of freedom that

become massless at a certain point. Hence, the hope is that the results

obtained here can be generalized to other settings, an issue we will discuss

in detail when we consider applications to different approaches to stringy

cosmology. We now commence our paper with a few preliminaries.

7.3 The background – R4 × S1

Consider a five dimensional space-time with the topology of R4 × S1,

described by the metric 3

gAB = diag(−1, a2(t), a2(t), a2(t), b2(t)) , (7.1)

from which we derive the following components of the Einstein tensor:

Gt
t = −3

.
a

a

( .
a

a
+

.

b

b

)

, (7.2)

Gxi
xj

= −δi
j

[

2

..
a

a
+

..

b

b
+

( .
a

a

)2

+ 2

.

b

b

.
a

a

]

, (7.3)

Gy
y = −3

[ ..
a

a
+

( .
a

a

)2]

. (7.4)

3 The metric can always be cast into this form, such that t corresponds to
cosmic time.
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Here, the indices i and j run over the three large spatial dimensions and

y denotes the extra dimension. The form of the energy-momentum tensor

which will couple to the Einstein tensor is given by

TA
B = diag(−ρ, p, p, p, r) . (7.5)

We can recast the Einstein equations GA
B = 8πGTA

B, where G is the

five-dimensional Newton’s constant, in the form:

..
a

a
+ H(2H + H) +

8πG

3
[r − ρ] = 0 , (7.6)

b̈ + 3Hḃ + 8πG b[p − 2r

3
− ρ

3
] = 0 , (7.7)

ρ =
3

8πG
H(H + H) , (7.8)

where H = ȧ/a and H = ḃ/b. The energy-momentum tensor for a string gas

in this toroidally compactified background was derived in [17] to which we

refer the reader if any of what follows is unfamiliar. It was found to be

ρn,w =
µ0,n,w

εn,w

√−g
ε2
n,w , (7.9)

pn,w =
µ0,n,w

εn,w

√−g

p2
n.c.

3
, (7.10)

rn,w =
µ0,n,w

εn,w

√−gα′

(n2

b̃2
− w2b̃2

)

, (7.11)

where g denotes the determinant of the metric, b̃ := b/
√

α′ (with 2πα′

being the inverse string tension) and the subscripts n,w refer to the

momentum and winding quantum numbers of a closed string along the

5th dimension respectively, on which all of the subscripted quantities will

depend. The density µ0 is the number density of the string gas with the

metric dependence factored out (µ(t) = µ0/
√−g), while εn,w is the energy of
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a single closed string in this background

εn,w =

√

p2
n.c. +

(
n

b
+

wb

α′

)2

+
4

α′ (N − 1) , (7.12)

where pn.c. denotes the center of mass momentum along the three non-

compact directions, and N is the number of right-moving string vibrational

modes. For reasons made clear in [16] and [17], string states that are

massless at special symmetry points (i.e. the self-dual radius) should play

a very distinguished role in any string gas cosmology (see also [27, 21, 28]).

There are several reasons for this, among which are prominently the desire

to obtain a viable late time phenomenology and a robust stabilization

mechanism for the radion. However, the main motivation is that the low

energy effective theory limits of string theory (such as general relativity and

dilaton gravity) are also consistent backgrounds on which we can study the

propagation of massless (and only massless) strings. For these reasons we do

not further justify the focus on massless string modes, and refer the reader

to [16, 17, 18] for more details. For a general review of string gas cosmology,

we refer the interested reader to [95][96][26].

We wish to emphasize that the framework within which we chose to

work assumes nothing other than the fact that nature is described by a

string theory at high energies, and that the degrees of freedom that are

likeliest to be excited (namely massless string modes) will be excited. The

two particular geometries that we consider for the extra dimensions (i.e.

a toroidal geometry in this section and an orbifold geometry in the next

section), are necessitated by the fact that they are the unique compact

backgrounds on which one stays within the approximation of the low energy

effective limit of string theory, when considering extra dimensions that

are similar in size to the string scale. This is because in general, were the
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metric to depend on the extra dimension (as is the case for warped extra

dimensions), one will introduce curvatures that approach the string scale

when the extra dimensions themselves approach the string scale, and hence

the low energy approximation will break down. We discuss this point further

in the next section.

The particular states we are interested in are those for which n = −w =

±1, N = 1. That these states are massless at the self-dual radius (b =
√

α′)

is easily checked from (7.12). These states imply that (7.7) becomes

¨̃b + 3
ȧ

a
˙̃b +

8πGµ0

a3α′
− 1

b̃2
+ b̃2

3
+ 2

3
√

α′p2
n.c. +

(
1
b̃
− b̃

)2
= 0 . (7.13)

We will see that this background stabilizes around the self-dual radius

(b̃ = 1), whilst the non-compact directions persistently expand as they would

in a radiation dominated universe. Before we get to this, however, we wish

to discuss a generalization of this background to the situation where the

extra dimension is compactified on an orbifold.

7.3.1 Extension to R4 × S1/Z2

The consistency of the framework that we propose, namely that we

remain within the low energy effective theory (or massless background) limit

of string theory, requires the background we consider to satisfy the condition

R[g] ¿ 1

α′ . (7.14)

That is, the Ricci scalar should be considerably bounded from above by

the string tension. This requirement translates into the statement that

the metric should not change very much on the string scale, which ensures

that this background remains a consistent background for the propagation

of massless string modes. Conversely, were one to consider backgrounds
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which do not satisfy (7.14), not only would the approximations made in

deriving the low energy limit of string theory break down, one would also

expect massive modes to be created [22]. For our purposes, the requirement

of (7.14) means that were we to consider compactifications of the extra

dimension on scales comparable to the self-dual radius, then there should

be absolutely no dependence of the metric along the compactified direction.

This is a remarkable feature of using a toroidal compactification: one can

in fact study string scale processes without invalidating the approximations

inherent in the low energy limit of string theory. It was shown in [17] and

[18] that the background we are about to derive, does in fact satisfy (7.14)

throughout its dynamics.

Returning to the problem at hand, we see that since we are not allowed

to consider metric dependencies along the extra dimension (by homogeneity

and isotropy of the non-compact dimensions, the metric can then only

depend on time), the components of the Einstein tensor (7.2)-(7.4) are

unchanged after orbifolding the extra dimension. The only place where

orbifolding might make a difference is in the energy momentum tensor of

the string gas. However, because the massless states that we have focused

on are in the so-called untwisted sector [22] (in general, twisted states are

localized at the orbifold fixed points), it turns out that there is no difference

in the energy-momentum tensor either (7.9)-(7.11). This is a consequence

of the ‘inheritance’ principle of orbifold theories [22], and permits us to

use the framework just presented in either situation, provided we only use

the modes that we have indicated and we do not consider any variations

in any metric quantities along the extra dimension. However, there is a

caveat to this in that two orbifold fixed planes are present, which might have

matter confined to live on them. The requirement not to induce any metric
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variations along the extra dimension translates into, via the Israel junction

conditions [119, 120], the condition (among others)

[
da

dy

]

∝ 8πGρbrane, (7.15)

where [da/dy] is the jump of the derivative of the scale factor a along the

extra dimension, evaluated around either of the orbifold fixed planes. Hence,

we see that if we require there to be no dependence of the metric along

the extra dimensions, then any matter localized on the branes must be

sufficiently dilute to render the branes to behave as test branes. Bearing

all of this in mind, we can now proceed to derive the background solution

within our framework.

7.4 Background solution in 5D

7.4.1 The three large dimensions

We first note from (7.7) that any form of matter which satisfies a

radiative equation of state (p = ρ/3, r = 0) for all times (as opposed to

our wound string states which become massless, hence radiative, only at the

self-dual radius) drops out of the driving term in the equation of motion for

b (7.7). Hence, we can safely consider a situation where we have a radiation

gas in addition to our gas of wound strings, which dominates the evolution

of the Hubble factor H for the non-compact dimensions through (7.8) after

the extra dimension has stabilized, or is close to stabilization. In fact,

massless unwound closed string states (gravitons: n = w = 0, N = 1) can

provide exactly such a bath. Henceforth, it is natural to include such a bath

in our setup. We do not consider this matter further, simply taking as a

given in what follows that the scale factor a for the non-compact dimensions

expands at the background level as it would in a radiation dominated
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Figure 7–1: The analytic approximation (7.23) (solid line) is compared with
the numeric solution of (7.20) (circles).

universe, that is

a(t) ∝ t1/2 . (7.16)

7.4.2 The extra dimension

Let us go back to the equation of motion (7.13) for b̃, which reads

0 = ¨̃b + 3
ȧ

a
˙̃b +

8πGµ0

a3α′
− 1

b̃2
+ b̃2

3
+ 2

3
√

α′p2
n.c. +

(
1
b̃
− b̃

)2
, (7.17)

where pn.c. =: q/a with q = const is the center of mass momentum along the

three large dimensions. Introducing the characteristic time scale

t−1
0 :=

√

64πGµ0

3α′3/2a2
0q

(7.18)

and defining the dimensionless time variable

η := 2

√
t

t0
, (7.19)
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such that a = a0η, we can simplify (7.17) to

b̃′′ +
2

η
b̃′ +

3

8

− 1
b̃2

+ b̃2

3
+ 2

3
√

1 + η2

4
l2

(
1
b̃
− b̃

)2
= 0 , (7.20)

where a prime denotes a derivative with respect to η and we also introduced

the free dimensionless parameter

l :=
a0√
α′q

. (7.21)

This equation can easily be integrated numerically, but it will turn out to be

useful to have a simple analytic approximation.

If we are close to the self-dual radius, that is b̃ = 1 + ε with ε ¿ 1, we

can expand the driving term in (7.20) so that

ε′′ +
2

η
ε′ + ε = 0 (7.22)

results. The general solution is given by

ε(η) =
1

η
(A sin(η) + B cos(η)) , (7.23)

with A and B constants. This solution may either describe the stabilization

of the extra dimension or a series of non-singular bounces 4 . See Fig.7–1 for

a comparison of the numeric solution of (7.20) with the analytic one. Since

they are barely discernable we will use the analytic approximation in the

following and switch freely between bounce/stabilization-language.

4 Note that this series of bounces differs from the one in e.g. the cyclic
scenario, since ε is small.
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7.5 Scalar perturbations in 5D

We will first perturb the metric, focusing only on scalar metric pertur-

bations. The most general scalar perturbation in “generalized” longitudinal

gauge [31, 64, 122] can be characterized by four scalar functions, Φ, Ψ,W

and Γ . These functions can be viewed as a basis of gauge invariant vari-

ables. In this gauge, the metric is given by

ds2 = −(1 − 2Φ(t,x)) dt2 + a(t)2(1 − 2Ψ(t,x))dx2

+b(t)2(1 + 2Γ(t,x)) dy2 − 2W (t,x) dt dy , (7.24)

where the signs in front of the perturbations are a mere convention 5 .

For reasons discussed in sections 7.3 and 7.3.1, we do not consider any y

dependence, that is we assume homogeneity in the extra dimension (see

also [26] for a discussion of this and other assumptions of SGC). The

corresponding Einstein tensor can be computed to be [31, 122] (in the

following ∆ denotes the Laplacian of the three large spatial dimensions):

δGxi
xj

=
1

a2
∂xi

∂xj
[Ψ + Φ − Γ] , i 6= j, (7.25)

δGy
t =

[

3

b2

(

ä

a
− ȧḃ

ab

)

+
1

2b2a2
4

]

W , (7.26)

δGy
xi

= ∂xi

[

1

2b2

(

ḃ

b
+

ȧ

a
+ ∂t

)

W

]

, (7.27)

5 In our notation Φ = −Ψ would be called the Newtonian potential in a
four dimensional description.
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δGxi
xi

=
1

a2
[∂xi

∂xi
−4] (−Γ + Ψ + Φ) + 2

(

ḃ

b
+ 3

ȧ

a
+ ∂t

)

∂tΨ (7.28)

−2

(

b̈

b
+ 2

ȧḃ

ab
+

ȧ2

a2
+ 2

ä

a
+

ḃ

2b
∂t +

ȧ

a
∂t

)

Φ −
(

2
ȧ

a
+ 2

ḃ

b
+ ∂t

)

∂tΓ ,

δGy
y =

[

− 2

a2
4 + 3

(

∂t + 4
ȧ

a

)

∂t

]

Ψ +

[

− 1

a2
4− 6

(
ȧ2

a2
+

ä

a
+

ȧ

2a
∂t

)]

Φ ,(7.29)

δGt
t =

[

3

(

ḃ

b
∂t + 2

ȧ

a
∂t

)

− 2

a2
4

]

Ψ − 6

(

ȧḃ

ab
+

ȧ2

a2

)

Φ −
(

3ȧ

a
∂t −

1

a2
4

)

Γ ,(7.30)

δGxi
t = ∂xi

[

2

a2
∂tΨ − 1

a2

(

ḃ

b
+ 2

ȧ

a

)

Φ − 1

a2

(

ḃ

b
− ȧ

a
+ ∂t

)

Γ

]

. (7.31)

One can check that the equations of motion involving W decouple from

the other ones for the matter content (7.5) we consider. Since W would

appear only squared in a four dimensional effective theory, we will not need

to compute it at all 6 .

To write down the perturbed Einstein equations 7 , we also need the

perturbed energy-momentum tensor δTA
B. It will include the thermal bath

of radiation (denoted by the subscript r), and the stringy matter sources

denoted by a tilde. To be specific, we have

(δ(r)TA
B) =









δρ(r) −(ρ(r) + p(r))V,i 0

(ρ(r) + p(r))V,i δp(r)δ
i
j 0

0 0 0









,

6 That the equations of motion for W decouple from the other ones is a
direct consequence of the homogeneity in the y-direction.

7 Note that fluctuations in SGC (before dilaton stabilization) were consid-
ered in [32, 33].
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(where ρ(r) and p(r) are the radiation energy density and pressure, respec-

tively, and V is the radiation three velocity potential) and

(δT̃A
B) =









δρ̃ −(ρ(r) + p(r))Ṽ,i 0

(ρ(r) + p(r))Ṽ,i δp̃δi
j 0

0 0 δr̃









,

where ρ̃ and p̃ are the string gas energy density and pressure, respectively,

and Ṽ is the string gas three velocity potential. Note that anisotropic stress

does not feature in our setup (see appendix), but we will keep Ṽ around

for the time being. We will also focus on adiabatic perturbations of the

radiation fluid only, that is δp(r) = δρ(r)/3, even though two ideal fluids

are present so that iso-curvature perturbations could arise. The reason for

neglecting those is simplicity. The xi − xj (i 6= j) Einstein equations yield

immediately

Γ = Ψ + Φ , (7.32)

and, after introducing

ξ := Ψ − Φ (7.33)

N :=
δµ0

µ0

, (7.34)

we infer from (7.9)-(7.11), that the perturbed energy-momentum tensor is of

the form

δρ̃ = (N + Γ + 2ξ)ρ̃ , (7.35)

δp̃ = (N + Γ + 2ξ)p̃ , (7.36)

δr̃ = (N + ξ)r̃ − 2Γ

(
1

b̃2
+ b̃2

)

3p̃
a2

q2α′ , (7.37)
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where the background quantities are given by

ρ̃ =
µ0

α′
1

a3b̃

√

q2α′

a2
+

(
1

b̃
− b̃

)2

, (7.38)

p̃ =
µ0

α′
1

a3b̃

q2α′

3a2
√

q2α′

a2 +
(

1
b̃
− b̃

)2
, (7.39)

r̃ =
µ0

α′
1

a3b̃

1
b̃2
− b̃2

√

q2α′

a2 +
(

1
b̃
− b̃

)2
. (7.40)

In performing this calculation, we started with the source action for this

string gas [16], and obtained the perturbed energy-momentum tensor

through direct calculation. The string gas energy-momentum tensor only

depends on the metric, the number density of strings µ0, and the center

of mass momentum of these strings. However, the latter quantity is not

perturbed, because for long wavelength perturbations (compared to the

string scale), which we are restricted to if we are to remain within the

limits of low energy effective theory, the center of mass motion of a string

propagating on a perturbed spacetime is unaffected to first order. Hence the

only quantities left to perturb are the metric dependencies, and the number

density of the string gas.

Next, we can write the perturbed zero component of the conservation

equation ∇AT̃AB = 0 for the stringy matter as

0 = δ ˙̃ρ + 3H(δρ̃ + δp̃) + H(δρ̃ + δr̃) (7.41)

−3

2
ξ̇(ρ̃ + p̃) − 1

2
Γ̇(ρ̃ − 3p̃ + 2r̃) +

4Ṽ

a2
(ρ̃ + p̃) .

For simplicity we will set Ṽ = 0 from now on, that is we neglect the scalar

velocity potential of the string gas, consistent with the arguments of the
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appendix. Combining the diagonal Einstein equations yields

1

3M3
5

(2δr̃ + δρ̃ − 3δp̃) = Γ̈ + Γ̇(3H + H) − 2Hξ̇ − 4
a2

Γ

+(Γ − ξ)(3HH + H2 + Ḣ) , (7.42)

1

3M3
5

(3δp̃ − δρ̃) = ξ̈ + ξ̇(2H + 5H) −HΓ̇ − 4
3a2

ξ (7.43)

+(ξ − Γ)(4H2 + 3HH + H2 + Ḣ + 2Ḣ) .

The last three equations (7.41)-(7.43) are the dynamical ones for the

perturbation variables Γ, ξ and N . The (t − t) equation gives the radiation

fluid perturbation δρ(r) and the (xi − t) equation gives the scalar velocity

potential V of the radiation fluid in terms of the other variables.

These equations simplify if we write them in terms of η defined in (7.19)

and make use of the background equation a = a0η. Introducing h := b̃′/b̃ we

get

Γ′′
k + Γ′

k

(

h +
2

η

)

− ξ′k2h + (Γk − ξk)

[
2h

η
+ h2 + h′

]

+
k∗2

4
Γk = η2C (2δr∗ + δρ∗ − 3δp∗) , (7.44)

ξ′′k + ξ′k2

(

h +
2

η

)

− Γ′
kh + (ξk − Γk)

[
2h

η
+ h2 + h′

]

+
k∗2

12
ξk = η2C (3δp∗ − δρ∗) , (7.45)

δρ∗′ +
3

η
(δρ∗ + δp∗) + h(δρ∗ + δr∗) − 3

2
ξ′k(ρ

∗ + p∗)

−1

2
Γ′

k(ρ
∗ − 3p∗ + 2r∗) = 0 . (7.46)

Here, we made the transition to Fourier space and we performed the

rescaling a∗ := a/a0, k∗ := kt0/a0. All other starred quantities are defined

via

f ∗ := fka
3
0

α′

µ0

. (7.47)
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The two dimensionless constants left are

C :=
t20

M3
5

1

12a3
0

µ0

α′ , (7.48)

q∗ :=
q
√

α′

a0

, (7.49)

which are not independent but related via

25C

q∗
= 1 . (7.50)

7.5.1 Analytic late time solution

After h = h′ = 0 got approached (that is after the extra dimension

got stabilized or, in the language of the ekpyrotic/cyclic scenario, the two

approaching branes came to a halt), we can simplify the equations of the

previous section to

Γ′′
k +

2

η
Γ′

k +
k∗2 + k̃2

4
Γk = 0 , (7.51)

ξ′′k +
4

η
ξ′k +

k∗2

12
ξk = 0 , (7.52)

where we introduced the constant

k̃2 :=
25C

q∗
= 1 . (7.53)

We note that the source term for ξk vanishes because of the background

equation of state for the gas of massless string modes. Also, the equations

for ξk and Γk decouple at late times, just as they should do. The solutions

are given by

Γk =
1

η
(C1 cos(ωΓη) + C2 sin(ωΓη)) , (7.54)

ξk =
1

η3

(

C3(k
∗η cos(ωξη) − 2

√
3 sin(ωξη)) (7.55)

+C4(k
∗η sin(ωξη) + 2

√
3 cos(ωξη))

)

,
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with Ci constant and

ω2
Γ :=

k∗2 + k̃2

4
, (7.56)

ω2
ξ :=

3k∗2

36
. (7.57)

We would like to evaluate the spectrum

Pk := k3Φ2
k ∝ kns−1 (7.58)

when a long wavelength mode enters the Hubble radius again at k∗ηr = 2. If

we Taylor expand (7.55) for small k∗ we see that there is an approximately

constant mode present for ξk. On the other hand, Γk from (7.54) is oscillat-

ing and decaying ∝ 1/η. Therefore, whatever the spectrum for ξk was at the

initial time, it should persist till re-entry and determine the spectrum for Φk

because, by neglecting Γk, we have Φk ≈ −Ψk ≈ −ξk/2. This is the same

result one would conclude in a simple four dimensional universe, dominated

by radiation. To be specific, we can approximate

|Φk(ηr)| ≈
∣
∣
∣
∣
∣
−ξk(ηi)

2
+

Γk(ηi)

2ηr/ηi

cos(k̃ηr/2 + β)

cos(k̃ηi/2 + β)

∣
∣
∣
∣
∣

, (7.59)

≈
∣
∣
∣
∣
−ξk(ηi)

2

∣
∣
∣
∣

, (7.60)

where β is some irrelevant phase. Of course this holds true only, if the

transient stabilizing epoch leaves no strong imprints onto the spectrum;

hence, we will examine this crucial issue in the next section.

Before we do that, let us have a quick look at the physics after a

mode entered the Hubble radius: ξk will start to oscillate with a decaying

amplitude ∝ 1/η2. If one waits long enough, Γk will catch up and become

larger than ξk. Now Φk ≈ Ψk ≈ Γk/2 and thus Γk will determine the
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spectrum, because for η À ηr

|Φk(η)| ≈
∣
∣
∣
∣
∣

Γk(ηi)

2η/ηi

cos(k̃η/2 + β)

cos(k̃ηi/2 + β)

∣
∣
∣
∣
∣

. (7.61)

There is of course a transition region where neither approximation holds.

Nevertheless, this only occurs after Hubble radius crossing and shall not

concern us in the following.

7.5.2 Numerical solution and contact with late times

The analytic solution of the previous section is valid after b̃ got stabi-

lized (or the branes came to a halt). However, the main question we would

like to address is the following: what effect on the perturbations, if any,

does the process of trapping the modulus b̃ have? In order to address this

question we have to solve (7.44)-(7.46) numerically. As we shall see, the

late time solution is approached rapidly and long wavelength perturbations

are not affected in any significant way. Hence, the naive intuition that the

value of Φk for modes outside the Hubble radius stay frozen is indeed valid,

with important consequences for cosmological model building, be it in the

framework of the ekpyrotic/cyclic scenario, or within string gas cosmology

(SGC) – we will focus on concrete models in the next section.

Firstly, let us specify constants and initial conditions: the only free

parameter in our setup is q∗ defined in (7.49), describing the initial momen-

tum of the string gas in the three large dimensions. Being a dimensionless

parameter, we choose the most natural value

q∗ := 1 . (7.62)
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Our results are not very sensitive to its exact value 8 . We start close to the

self-dual radius with some arbitrary velocity (once again, its exact value

does not affect our results - see Fig.7–6), that is

b̃(ηi) = 1.1 , (7.63)

b̃′(ηi) = −0.1 . (7.64)

Next, we have to specify initial conditions for ξk, Γk and Nk at ηi = 1

9 . Since we did not compute how the universe came close to the self-dual

radius (e.g. within the ekpyrotic/cyclic setup or a SGC setup), we have

no way of deriving those. However, we can make an educated guess: if the

universe underwent some phase of inflation in the three dimension before

(we will make this point more concrete in the next section), one should

expect similar values for all metric perturbations; hence we will set

ξk(ηi) = Γk(ηi) =: εk , (7.65)

with some small εk. For simplicity, we will use εk = 0.01 for all k. Further-

more, since the long wavelength modes we are interested in should be frozen

once they cross the Hubble radius, we set

ξ′k(ηi) = Γ′
k(ηi) = 0 . (7.66)

8 Decreasing q induces a phase shift in Φk and an increase in Nk, while
an increase in q leads to a decrease in Nk and no phase shift; however, the
metric degrees of freedom decouple form Nk quickly and Nk itself is of no
interest to us.

9 We start at ηi = 1, because this is the characteristic time scale of the
background oscillations. This means, no oscillation could occur before ηi.
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The initial string density perturbation Nk(ηi) will be set to zero, because

these massless modes just got produced. Naturally, Nk will get sourced by

Γk and ξk. No conclusion in the following is sensitive to the chosen initial

conditions, hence we chose the most simple ones above (other ones were of

course also tested).

The only thing left to specify is the wave-number k∗: We are interested

in long wavelength modes, that is modes outside the Hubble radius with

small k∗. In addition, we shall require k∗ < k̃, so that we can compare

our results with (7.59). With all initial conditions specified, we can use the

analytic solution (7.23) to solve (7.44)-(7.46) numerically.

Let us first compare Φk(η) = (Γk(η) − ξk(η))/2 for different values of k∗,

Fig. 7–2 (a)-(c): There Φk is plotted both numerically (grey) and analytic

(black). We see that the analytic late time solution is approached pretty fast

– in fact, the small difference at the beginning is not visible in this plot, but

only if ξk is plotted alone as in Fig. 7–5 (a). The visible decaying oscillation

of Φk is the decaying mode of Γk form (7.54) with frequency ωΓ, which

is plotted in Fig. 7–5 (b) (compare with Fig. 7–2 (b)). In addition, there

are strongly damped oscillations on top of the constant mode of ξk, that

carry the same frequency as b̃(η), Fig. 7–4. As mentioned before, these are

not visible in Fig. 7–2 but in Fig. 7–5 (a) where ξk is plotted alone. These

oscillations are the impact of trapping the modulus b̃, an impact that can

safely be ignored in the long wavelength regime: if one decreases k∗, all of

these effects become less pronounced.

An other feature visible in Fig. 7–2 is a bending of the lower curve in

comparison to the analytic solution (7.59). This bending is the beginning of

an oscillation of ξk and hence an expected feature, since the constant mode

is actually the beginning of an oscillation with a very small frequency due to
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ωξ. All features are not sensitive to the initial values we choose for Γk and

ξk.

Last but not least, Nk is plotted in Fig. 7–5 (c): it gets sourced quickly

by Γk and ξk and oscillates with a nearly constant amplitude thereafter,

with all frequencies entering. However, there is no mentionable back-reaction

of Nk on the metric perturbations. Hence, one could give Nk a non zero

initial value without changing the evolution of Γk and ξk in any significant

way.

7.6 Consequences for ekpyrotic/cyclic models and SGC

In the end, we are interested in the spectrum of Φk. So far, there seems

to be little to no impact of the transient stabilizing era of b onto Γk and

ξk. This translates directly to the spectrum, where Φk should approach

a horizontal line for small k∗. This is indeed the case, as can be seen in

Fig. 7–3 (c), where the spectrum is evaluated at horizon crossing: the

oscillations that are present for relatively large k∗ get damped once the long

wavelength regime is approached. This is expected, because long wavelength

modes enter the Hubble radius later and henceforth, the decaying modes

responsible for the oscillations in the spectrum get damped more. The

frequency in the spectrum of Φk is proportional to 1/k∗, in accordance with

ηr ∼ 1/k∗ and equation (7.59).

Note that no shift of the spectral index is induced, leaving the overall

index unaltered. The oscillations in ξk in Fig. 7–3(a) are the main impact of

the transient era of a dynamical b. They are clearly negligible, because the

tiny amplitude gets even smaller with decreasing k∗.

To summarize, the main conclusion of our numerical study is that

long wavelength metric perturbations quickly approach their asymptotic

solution, leaving no trace of the many bounces b experiences on its way to
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stabilization. More specifically, we have shown that the initial spectrum

of the non-decaying mode of ξk is preserved, i.e. equals the spectrum of

ξk at late times. At late times, the spectrum of ξk equals the spectrum

of the Bardeen potential Φk, the potential which is relevant for late time

observations. Speaking more loosely, we have shown that the initial pre-

bounce spectrum of bulk perturbations is transferred to the late time

cosmological perturbations without a change in the spectral index.

We saw in the previous section that there is no significant effect of

trapping the modulus b̃ on the spectrum of long wavelength perturbations

in the sense that the final spectrum of the Bardeen potential Φ equals

the initial value of the non-decaying mode of the bulk perturbation ξ.

This comes about since the value of ξ for small k∗ modes which have a

wavelength larger than the Hubble radius remains frozen during the phase

of the trapping of b̃, and since the final spectrum of ξ coincides with the

spectrum of Φ.

Even though our result agrees with a “naive” intuition coming from the

analysis of fluctuations in expanding four space-time dimensions, it could

be viewed as an unexpected result: The “naive” intuition turned out to be

wrong in the case of bouncing cosmologies in four space-time dimensions, for

example in pre-big-bang models where it was shown [121] that the growing

mode of Φ in the contracting phase couples almost exclusively to the

decaying mode of Φ in the expanding phase, leading to the result that there

is a large change in the spectral index of the dominant mode between the

contracting and the expanding phase. Other analyses performed within the

context of four-dimensional general relativity (see [113, 114, 115, 116] and

references therein) yielded a similar result. It is now also generally accepted

that the four space-time dimensional toy models which were proposed to
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describe the ekpyrotic/cyclic models have the same feature, namely that the

dominant mode of Φ in the contracting phase matches predominantly to the

decaying mode of Φ in the expanding phase (see e.g. [102]). Our analysis,

however, confirms the analysis of [117], which showed, in the context of a

singular bounce, that in the case of a bounce of boundary branes in five

space-time dimensions the spectrum of Φ could be preserved.

Our result is an important step in constructing a viable alternative

to standard scalar field-driven inflationary models (next to the remarkable

but highly nontrivial KKLMMT construction, [14] and follow-up papers) in

the context of cosmologies with extra dimensions. We will now outline two

possible proposals which seem promising to us in that regard:

Firstly, one could envisage a modification of the ekpyrotic/cyclic

scenario. In the ekpyrotic proposal [80], a test brane moves slowly through

the bulk towards the boundary brane of an orbifold (the Horava-Witten

[70] setup). In the cyclic scenario [82], it is the two boundary branes

that approach each other. In either case, a scale-invariant spectrum of

perturbations can be generated during the contracting phase given a suitable

potential for the modulus field which describes the inter-brane distance [99].

During the collision of the branes (a singular event in the ekpyrotic/cyclic

scenarios) a hot universe is supposed to emerge on the boundary brane we

live on today. Our background construction can be viewed as a regularized

version of the ekpyrotic/cyclic scenarios (ekpyrotic in the context of a single

bounce, cyclic in the case we consider the evolution until b̃ has stabilized).

Our work shows that in the context of such a regularized scenario, an initial

scale-invariant spectrum could pass through the bounces and thus survive

from the initial contracting phase to the final phase of expansion of our
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three spatial dimensions (this scenario will be developed further in a follow-

up paper). In our scenario, the branes do not actually hit each other, but

come to a halt as a consequence of the appearance of new massless modes

that get produced explosively at a certain brane-separation (that is at a

certain value of b). Our results show that such dynamics does not spoil a

scale invariant spectrum generated during the initial brane movement. In

this framework, one can still reheat the Universe, since the “kinetic energy”

of the branes will get transferred to the stabilizing massless modes and other

light modes which act like radiation on the brane (corresponding to the

radiation bath that we already included in our setup).

Secondly, an incorporation of inflation into brane/string gas cosmology

will rely on the stabilization mechanism described in this article: if any

mechanism of inflating three dimensions is found, the internal dimensions

will most likely have to deflate in some way. For example, one could

employ the idea of anisotropic inflation (studied in the context of vacuum

solutions of higher dimensional general relativity in [123][124][125] and

[126]). Once the internal dimensions get close to the self-dual radius, certain

string modes become massless and get produced explosively along with a

radiation bath, in close analogy to reheating after standard scalar field-

driven inflation. These modes will then stabilize the internal dimensions,

curing the graceful exit problem of anisotropic inflation, while the spectrum

of fluctuations produced during inflation in the metric degrees of freedom

remains unaltered. A concrete realization of this proposal is in preparation

by the authors of this article.

7.7 Conclusions

In this report, we studied how radion, matter and metric fluctuations

interact in a universe that exhibits a transient stabilizing epoch of its extra
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dimension, which could also be viewed as a series of bounces of the extra

dimension. We were primarily interested in the imprints of this epoch on the

spectrum of the Bardeen potentials, motivated by the hope of combining an

earlier phase, generating a scale invariant spectrum (e.g. in the framework

of a modified ekpyrotic scenario, or via an incorporation of inflation within

string gas cosmology), with a successful late time stabilizing mechanism,

provided by a gas of massless string states.

We found that the spectrum of long wavelength perturbations remains

unaltered by this epoch, which has important consequences for various

approaches to stringy models of the early universe. In particular, specific

realizations of the ekpyrotic/cyclic scenario or an incorporation of inflation

into string gas cosmology become possible – we provided two proposals in

this report, but many variations are viable.

7.8 Appendix– Anisotropic stress

In this appendix, we will provide arguments as to why no anisotropic

stress arises in the setup of [16], which we examined at the perturbative

level in this article. In the following a, b, . . . denote string world-sheet

coordinates.

First note that our unperturbed background is undergoing FRW

expansion in the non-compact dimensions while the compact direction is

stabilized at the self dual radius by a string gas. As a preliminary, we wish

to show that long wavelength perturbations of the metric do not affect the

motion of strings to first order in the perturbation variables. We begin with

the Polyakov action for a closed string

S = − 1

4πα′

∫

d2σ∂aXA∂aX
BgAB(X) , (7.67)
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where we work in conformal gauge from the outset. Consider now pertur-

bations around the background: gAB = g0
AB + hAB. It was shown in the

appendix of [16] how one can inherit the string spectrum and the constraint

algebra provided the derivatives of the background metric g0
AB (i.e. the Hub-

ble factors) are several orders of magnitude smaller than the string energy

scales. We want to make sure that we stay within this regime while studying

the dynamical compactification of the extra dimension. Thus, when we con-

sider the equations of motion for a closed string in this perturbed spacetime,

we must neglect all derivatives of the unperturbed metric compared to the

worldsheet derivatives of the string co-ordinates, as these will be of the order

of the string scale whereas the metric derivatives are constrained to be much

smaller [16].

Consider the equation of motion for a closed string

∂a

(

∂aXAgCA(X)
)

=
1

2
∂aX

A∂aXB∂CgAB(X) ,

from which follows

1

2
∂aX

A∂aXB∂ChAB = ∂a∂
aXC + hC

A∂a∂
aXA

+∂aX
A∂aXB∂AhBDgDC

0 .

Now we expand XA as XA = XA
0 + δXA, where XA

0 is the solution to the

unperturbed equation of motion ∂a∂
aXA

0 = 0, see appendix of [16]. Our

perturbed equation of motion then becomes

1

2
∂aX

A
0 ∂aXB

0 ∂ChAB = ∂a∂
aδXC (7.68)

+∂aX
A
0 ∂aXB

0 ∂AhBDgDC
0 .

Notice that there are two vastly different scales in the equation above:

the worldsheet derivatives and the spacetime derivatives. If we imagine

135



expanding hAB in terms of fourier modes, the derivatives would bring down

a factor of the 4-d wave-vector. Realizing that we need to stay within

the domain of validity of our setup, namely that we cannot introduce

fluctuations in the metric that would invalidate the conclusion in the

appendix of [16] concerning the string spectrum, we need these fluctuations

to vanish on energy scales several orders of magnitude smaller than the

string scale. This still allows for metric fluctuations that are considerably

short distance in nature, but nevertheless above the string scale. With

this in mind, we can neglect all the terms in (7.68) that are multiplied

by derivatives of the metric perturbation, since these will be orders of

magnitude smaller than the other ones. Henceforth, we obtain the result

∂a∂
aδXA = 0 , (7.69)

that is, the string motion is unchanged by long wavelength perturbations.

Ordinarily this would signal the end of any hopes to study perturbative

physics; this is not the case for us, since we are primarily interested in

perturbing around a background which consists of a gas of such strings.

As a result, if we consider the perturbed energy-momentum tensor for

such a gas, it will contain no anisotropic stress. To see this, consider the

off-diagonal spatial components which can be written as

δT i
j ∝ 〈piδpj〉 + 〈δpipj〉 , (7.70)

where i 6= j and 〈...〉 indicates an ensemble (gas) average. These components

vanish, since we just determined that for individual strings δpi = 0, which

means that there is no anisotropic stress to deal with in our setup.
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Figure 7–2: log(|Φ2
k)| is plotted for different values of k∗, with the initial

conditions given in section 7.5.2. Black: analytic solution of (7.59); Grey
(bending curve): numerical solution of (7.44)-(7.46).137



Figure 7–3: The spectrum of (a) ξk, (b) Γk and (c) Φk = (Γk − ξk)/2 is
evaluated at Hubble radius crossing ηr = 2/k∗, with the initial conditions
given in section 7.5.2. If the long wavelength regime k∗ ¿ 1 is approached,
all oscillations are damped away such that only the constant mode of ξk

survives, as expected.
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Figure 7–4: (a) and (b): b̃ over k∗η is plotted for k∗ = 0.005, with the ini-
tial conditions given in section 7.5.2. (c): ξk is plotted over the same time
range as b; Note how the oscillations in the background scale factor source
transient oscillations in ξk.
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Figure 7–5: The perturbation variables ξk, Γk and Nk plotted for k∗ = 0.005,
with the initial conditions given in section 7.5.2.
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Figure 7–6: log(|Φ2
k)| is plotted for k∗ = 0.005. This is the same plot as

in Fig.7–2 (b), but with different initial conditions for b̃: b̃(ηi) = 1 and
b̃′(ηi) = 0.1 are used instead of (7.63) and (7.64). Note that there is no
discernable difference between this plot and Fig.7–2 (b).
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CHAPTER 8
Conclusions and Future Prospects

As we hope to have demonstrated to the reader over the last few

chapters, string gas cosmology in the simple context of toroidal compact-

ifications, appears to allow us a solution to the moduli problem in string

theory in a way that is consistent with various aspects of late time cosmol-

ogy. However, there are certain key assumptions that underlie our results,

and it is worth going through them presently. Firstly, we assumed that

the dilaton has been stabilized at some earlier epoch and at a scale that is

inaccessible to the energy regimes in which we consider moduli stabilization

(see [18] for an explicit demonstration that it is possible to do so by some

external dilaton potential). Secondly, we assumed that even though we stay

within regimes such that R ¿ 1/α′1 , and hence respect the consistency

of the α′ truncation which makes the dilaton gravity action the consistent

one to use, that no essentially stringy effects will take appear to call our

treatment into question.

The third assumption we made is a subtle one, and one that the author

is currently actively working on relaxing. This assumption involves the

suitability of using the dilaton gravity action throughout our treatment

1 This is demonstrated explicitly in [18], where it is noted that R is given
by a multiple of the trace of the energy-momentum tensor, which can be
computed explicitly for our gas of massles modes and is indeed shown to be
much less than the string scale even through the transients of stablization.
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on moduli stabilization. We know that as a consistent truncation of string

theory to the massless sector, the action

S =

∫

dD+1x e−2φ(R + 4∂µφ∂µφ − 1

12
HµνλH

µνλ), (8.1)

describes the dynamics of all the massless fields present. As a low energy

effective theory, we can consider this action as having been obtained from

integrating out all massive modes. However we know from studying the

string spectrum on various backgrounds, that the spectrum of our theory

depends on which point in moduli space we are in. We exploited this very

fact in the preceding chapters to obtain our results on moduli stabilization

through the effects of new massless states condensing at the self dual point.

However we should be concerned that the use of the action (8.1) might not

be appropriate. The fact that we are interested in modes that only become

massless at special points means that at precisely such points, these modes

have to be integrated back in to the action. Hence we reason that the action

(8.1) should change at the enhanced symmetry points, which calls into

question the results that we have derived.

The effects of including in the effective action states which are massless

at these enhanced symmetry points has been studied extensively by Giveon

and Porrati [127]. We are currently in the process of investigating the

ramifications of this work to the string gas program, and it is possible to

conclude a priori that this avenue holds promise towards resolving some of

the open issues concerning string gas cosmology.

The main result of [127] is that the extra massless fields appear as a

non-linear sigma model over spacetime, with a potential for the various

Higgs fields, whose masses co-incide with the massless spectrum of the

heterotic string around enhanced symmetry points. Hence the string Higgs
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effect is realized in this context, and in a similar vein to [28], would indicate

moduli stabilization around these points purely from the perspective of the

low energy effective field theory. Since the action proposed by Giveon and

Porrati is known over all points of moduli space, one could conceivable study

the effects of moduli stabilzation at enhanced symmetry points away from

the string scale, hence relaxing at once the first and third assumptions as

outlined above. In fact, by turning on expectation values for the background

form fields, one will also be able to stablize the dilaton in such a framework.

Such an investigation is presently underway, and the author hopes to

have results to report on in the near future. In this way, we hope to have

assuaged some of the readers suspicions of the assumptions underlying string

gas cosmology so that we can proceed to assess what we have learned in the

course of the last few chapters.

Starting with the assumption that it is consistent to study the effects of

the propagation of massless strings on a background modelled by the action

(8.1), we derived the energy-momentum tensor of a fluid of such strings.

We then coupled this fluid to gravity, and discovered that stabilization

of one extra dimension resulted [16], in a way that is consistent with

fifth force constraints and the results of big bang cosmology. In [17] we

considered the effects of general toroidal compactifications and found

that similar conclusions held there. In [18], we considered the effects of

inhomogeneities on the moduli stabilization mechanism, and found that any

initial perturbation spectrum 2 persists even though we have dynamically

stabilized extra dimensions. We also consider applications towards modelling

the transfer of metric fluctuations through non-singular bounces.

2 whose origin we take for granted– see however [36][37][38][39]
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We conclude this thesis with a discussion of the possibilty that string

gas cosmology suggests a dynamical selection principle in moduli space.

Although we have up till now only seen evidence for this point in a very

simple context, it is compelling enough to warrant a discussion of the

possibility. As argued in [21], enhanced symmetry points are likely to be

dynamical attractors in moduli space. However as discussed in [16], not

all enhanced symmetry points are dynamically stable from the perspective

of string gas cosmology. For instance, referring to (3.40) in the context

of one compactified dimension, we take as an example the massless state

n = 4, w = 0, N = 0 at the radius b = 2
√

α′. We see from (3.23) and

(3.19)-(3.21), that the driving term for the scale factor at this point becomes

b̈ + 3Hḃ ∼ 1

b2
, (8.2)

which clearly causes the scale factor to quickly move away from this

enhanced symmetry point. However we have seen that the self-dual radius

is a local attractor of the dynamics of the extra dimension, in that if we

start close enough to it, we will be driven to this point and held there by

the condensation of massless modes. This was also seen in a general toroidal

compactification in [17]. In [25], the analysis was extended to other fixed

points of the duality group where it was found that moduli stabilization

using string gases also resulted.

If we extend the string gas formalism to include the effects of all fields

which might become massless at any given point in moduli space in the low

energy effective action, then one is ideally placed to explore the notion that

string gases might offer a dynamical selection principle in moduli space. The

dynamics of the moduli fields that we have uncovered so far indicate that

string gases have an apetite for fixed points under T-duality (see [18][29][35]
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for investigations into S-duality), and to confirm this in a more thorough

analysis would be a very important development. This would imply that

string gas cosmology would have its own landscape, complete with a vacuum

selection principle such that the universe is likely to end up only at duality

fixed points.

Thus we see that in spite of orgins [6] as a mechanism in which we

dynamically generate a 3 + 1 dimensional universe, string gas cosmology

has subsequently uncovered a mechanism to stabilize moduli fields in string

theory. Although the string technology implimented in string gas studies

has been quite primitive so far, we hope to have motivated further study

into the subject. The prospect of a dynamical vacuum selection principle in

moduli space is a rather appealing one, and one on which the author hopes

to have more to report on in the near future.
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