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Abstract

A precise, stable, and invertible model for surface reflectance is the key to the success of
calibrated photometric stereo. Though models addressing low frequency reflectance have
been proposed for a broad group of non-Lambertian surfaces, an effective solution directly
targeting highly specular reflectance remains elusive. This thesis introduces an analytical
isotropic microfacet-based reflectance model, based on which there is a physically inter-
pretable approximation that can be tailored for highly specular surfaces. With this approx-
imation, it shows that a surface recovery problem is essentially an ellipsoid of revolution
fitting problem, and a fast, non-iterative and globally optimal solver is derived to attack
the latter. Additionally, the introduced model also justifies the fact that, if specularity is
not captured by any directional light, a very smooth surface can also appear to be diffusive.
This fact leads to a design of an iterative solver for surface estimation with general isotropic
reflectance, where the formulation handling specularity is taken as a special instance. Em-
pirical results on images of both synthetic appearances and real objects can validate this
model and demonstrate that the proposed solution can stably deliver the state-of-the-art

performance.



Résumé

La clé du succes pour une stéréophotométrie calibrée réside dans un modele de réflectance
précis, stable et inversible. Bien que de nombreux modeles de réflectance a basse fréquence
furent proposés pour un large groupe de surfaces non-Lambertienne, une solution efficace

ciblant directement une réflectance hautement spéculaire reste hors de portée.

Ce mémoire présente un modele analytique de réflectance isotrope a micro-facette, a
partir duquel il existe une approximation physiquement interprétable permettant de cibler
des surfaces hautement spéculaires. Avec cette approximation, le probleme de restauration
de surface est réduit a un probleme d’ajustement sur un ellipsoide de révolution résolu a

I’aide d’un solveur non-itératif.

De plus, le modele introduit justifie le fait qu’une surface tres lisse puisse paraitre d-
iffuse si aucune specularité n’est capturée a partir des lumieres directionnelles. De cette
propriété découle la formulation d’un solveur itératif pour 1’estimation de surface avec un-
e réflectance isotopique générale. Dans cette formulation la gestion de la spécularité est

considérée comme un cas particulier.

Les résultats obtenus sur les images d’objet capturées et les apparences synthétisées
valident ce modele et montre que la solution proposée est en accord avec les performances

décrites dans 1’état de I’art.
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Introduction

1.1 Overview

This thesis centers round calibrated photometric, a technique estimates the surface normals
of a rigid object by observing its appearance under known but varying illuminations. In a
nutshell, it can be considered as a problem of system identification where the input to the
system is the lighting, the output is the appearance of the object captured in a set of images,

and the system sits in between encodes the shape and reflectance of the object surface.

The system model is essential for its identification, as it describes how lights interac-
t with the object surface and produce signals that can be captured by a fixated imaging
sensor. Like other system identification problems, determining the system model involves
locating the trade-off between complexity and accuracy: while too simple models fail to
capture physical significance of the system, excessively complicated models make their
analysis infeasible. For calibrated photometric stereo, it is about devising an effective sur-
face reflectance model to be able to correctly interpret appearance signals critical for shape

estimations.

Specularity happens to be this type of signal: it is omnipresent in object appearances,
carrying strong shape cues, but tricky to deal with. On one hand, its highly nonlinear vari-
ation with respect to lighting requires complicated model to describe; on the other hand, it
carries most of the reflectance power, hence ignoring its presence and fitting the appearance

into a simpler model is error-prone. In fact, in real-world reflectance there is no clear bound-



1.2 Problem definition

ary drawn between specular reflectance and its diffusive counterpart, hence dealing with
these two components separately is a non-trivial task. In short, specular reflectance poses a
major challenge for calibrated photometric stereo, so an effective photometric stereo with

general surface reflectance is what this thesis focuses on.

1.2 Problem definition

This thesis investigates a problem with a slightly restrictive setting. Under directional light
[, the appearance I of a surface point observed from direction ¥ is described as a product
of shading signal 7Tl and the reflectance signal specified by the isotropic Bidirectional
Reflectance Distribution Function (BRDF) p(-):

— —

I = p(@,1,7)d"l (1.1)

where 77 is the unknown to be obtained. Following the discussion in Section 1.1, a tradeoff
has to be located between the expressiveness and complexity of Equation 1.1. For exam-
ple, Lambertian model [Woo080] allows straightforward normal recovery, but does apply
to nonlinear reflectance well. In recent years, the photometric stereo has seen dramatic
development in shape recovery techniques for surfaces made of a great variety of materi-
als [CJ08, Geo03, GCHS10, IWMA 14, TMDB16, WGS"10]. Most know-how has been
provided in extracting shape cues from low-frequency reflectance. However, how to prop-
erly handle highly specular surfaces, like the ones illustrated in Figure 1.1, remains to be
a hard nut. This is because when specular reflectance become predominant, knowledge
about inferring shape solely from specularities for photometric stereo is very limited. Con-
sequently, many existing approaches choose to treat the specular signals as outliers, making

pre-processing an inalienable part of their design.

On the contrary, how to render visually realistic specular/general appearances has been
extensively studied by the computer graphics community. For example, the microfacet re-
flectance model [AS00, CT82, DWMGI15, MB03, WMLTO07] offer significant insight into
the formation of specularity. Nevertheless, it is unclear how to apply these models directly

to infer surface geometry, as analysis to warrant model invertibility and estimation accuracy
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(a) chrome steel (b) metallic paint (c) two layer gold

Figure 1.1: Examples of highly specular reflectance targeted in this paper are pervasive in
the real world, but effectively estimating the shape of the specular surfaces is a challenging
task.

is not in place.

Recent studies [DHI* 15, BSN16] have demonstrated that a typical isotropic BRDF can
be compactly spanned as a product of several low dimensional functions, where the behav-
ior of these functions is dictated by observations. Since low dimensionality implies stable
invertibility, and data-driven approximation preserves expressiveness, apparently a BRDF
which is able to extend this notion to surface normal parameterizations can be potential

cure for photometric stereo.

1.3 Summary

This thesis expands the idea described in [CZS ™ 17]. It aims to give a comprehensive inves-
tigation over the state-of-the-art microfacet theory involving the ellipsoid microfacet nor-
mal distribution function (a.k.a. ellipsoid NDF), and derive an analytical model serviceable
for photometric stereo. Furthermore, a physical interpretable approximation that brings ap-
pealing algebraic properties to specular surface normal estimation is introduced. Essential-
ly, with this approximation, one can identify that the calibrated photometric stereo problem
boils down to an ellipsoid of revolution fitting problem, for which a fast, non-iterative and

globally optimal solver targeting a system of polynomials is devised. Additionally, an iter-
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ative solver targeting general reflectance is implemented, in which the approximated for-
mulation is taken as a special instance. More importantly, the proposed model shows that,
when specularity is not fully capture, even a very smooth surface tends to exhibit strong
diffusiveness. Empirical results on both synthetic and real images successfully justify the
proposed theory and its model, as they demonstrate that the proposed solution can always

deliver state-of-the-art performance directly from original measurements.

To sum up, the contributions of this thesis lie in

1. Deriving an analytical form based on microfacet theory and ellipsoid NDF for pho-

tometric stereo.

2. Developing a physically interpretable approximation for highly specular reflectance,
which equates the problem of normal estimation with an ellipsoid of revolution fitting

problem.

3. Designing a fast, non-iterative and globally optimal solver to stably obtain the normal

of specular surfaces.

4. Describing a generalized solution for photometric stereo with general isotropic re-

flectance.

This thesis is organized as follows: Chapter 2 surveys the relevant existing literature,
Chapter 3 presents the proposed analytical microfacet reflectance model, and its reduction
for highly specular reflectance is derived in Section 3.5. Chapter 4 introduces a novel sur-
face normal estimation algorithm applicable to general reflectance with specularity. Then
in Chapter 5 the experiment results obtained from images of both synthetic objects and
real objects are examined. Chapter 6 concludes this thesis and looks ahead to the possible

future work.



Literature Review

This chapter reviews existing work in two separate but converging domains: (1) BRDF
design for photo-realistic rendering; (2) Calibrated photometric stereo. The former studies
appearance modeling of an object whose geometry is known, so the discussion is centered
around modeling and acquisition; whereas since the latter infer the geometry of an object

from its appearance, the focus is put on the development of algorithmic implementations.

2.1 BRDF modeling

BRDF accounts for the interaction between incident light and matter by evaluating the
power distribution of reflected light in space. The finer the reflectance variation a BRDF is
able to capture, the more desirable this BRDF is. BRDF models can be categorized into two

types: (1) empirically derived reflectance model and (2) physical-based reflectance model.

2.1.1 Empirically derived reflectance model

Empirical models are devised directly from observations. Namely, they provide a simple
and intuitive formulation to conform observers’ perception of the reflection. This group of
models are in general parameterized by few variables that are not required to carry physical

interpretations.

Common empirical BRDF are expressed in terms of a set of geometrical angles: ¢ [, the

angle made between the light ['and the viewing angle v [Pho75]; iiTh, the angle involving
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angular bisector h between light and view as well as the surface normal 7 [Bli77]. Together
with o777 and [77, they serve as the fundamental building blocks for some more advanced
models. A typical way to express the sharp specular reflectance is to superimposing high-
er order polynomials containing these terms [LW94, LFTG97]. Since the formulation is
derived directly from perception, there is no physical constraint imposed to ensure energy

conservation. Hence the visual effects are largely dependent on ad-hoc parameter tuning.

2.1.2 Physically-based reflectance model

The microfacet-based BRDFs represent a group of reflectance models that conform to law
of physics. One common postulation made by these models is that the surface consists of
randomly disposed facets, and the way each facet reflects the incident light is dictated by
the law of electromagnetic, and depending on the size of the facet in contrast to the wave-
length of the incident light, the aggregated reflectance can also be simulated by geometric
optics [TS67, Smi67] or wave optics [Kaj85, DWMG15], and it can model smooth surfaces
as well as rough ones [ON94].

The microfacet-based BRDF is mainly characterized by its normal distribution function
(NDF), which specifies how microfacets are statistically distributed with respect to their
orientations. Typical examples of NDF include Gaussian [War92] or Beckmann distribu-
tion [BS87], followed by more complicated expressions proposed recently [AS00, AP07,
BS12]. Various types of NDFs have been applied to describe their targeted reflectance phe-

nomenon, hence for rendering tasks NDF is left to designers as a design choice.

2.1.3 Data acquisition for measurement-based BRDF

A relevant line of research proposes to tabulate BRDF directly. After all, rendering appli-
cations do not need to sacrifice appearance subtleties for improved memory usage. Hence
data acquisition advocates for dense sampling [GTHDO3] turns out to be a task worth
trying out [MBO03, NDMO5]. Moreover, later studies show that directly bookkeeping mea-
sured data is actually unnecessary, as real world BRDFs are naturally embedded in a low
dimensional manifold [DWT*10, BOK11], hence can be decomposed into several low

dimensional representations [LRR04, BSN16]. In the language of microfacet theory, in
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a way these representations can be associated with the NDF, masking-shadowing func-

tion [Heil4] and the Fresnel term [Sch94] respectively.

For a factorable microfacet-based BRDF, NDF is found to carry dominating effec-
t [APO7], and it can be well-parameterized. Through measurement fitting, parameters are
to be determined. Among the proposed models, this thesis chooses to focus on the ellipsoid
NDF [WDMG16]. In case of isotropic reflectance, it is analogous to the microfacet BRDF
with GGX/Trowbridge-Reitz distribution [WMLTO7, TR75]. It is worth noting that though
energy conservation is not warranted for rendering, dense light distribution is always desir-
able in order to capture finer appearance [NLW *16]. Also, the sample material is assumed
to have known and simple geometry [DWMG15] (e.g., a flat surface), so the appearance

sampling in such scenario exhibit some analogies to calibrated photometric stereo.

2.2 Photometric stereo under calibrated illumination

Photometric stereo can be considered as an inverse problem for rendering. It is a tech-
nique that exploit the appearance variations caused by illumination changes to recover
surface orientation. Calibrated photometric stereo assumes that the illumination condition
is known, and unlike shape from shading problem where a single image is put under inves-
tigation [Hor70], the variation of lighting conditions is sufficient in that the surface normal
can be unambiguously determined [Woo080]. The number of required images, however, de-
pends on the reflectance property as well as the shape of the surface. For example, for
convex Lambertian surfaces, it is proved that the shape can be recovered using as few as
three images [BK98] under directional lights. If attached shadow is considered, it is proved

that appearances most lie in a 9-dimensional subspace [BJ03, Ram02].

If shiny objects are observed, low dimensional linear representations no longer apply.
But if specular signals appear to be sparse, they could be discarded through outlier rejec-
tion [WGS™10, IWMA12, IWMA14]. The general reflectance could also be modeled by
parametric BRDF models [TMDB16, Geo03, CJ08], or a composition of several simply
parameterized components [NIK91a, GCHS10].

Recent approaches adopt non-parametric or semi-parametric formulation to handle a

broader range of materials. Without explicit modeling of the BRDF, some general re-



2.2 Photometric stereo under calibrated illumination

flectance properties, such as similarity [HS05], isotropy [AKO7], monotonicity [STMI12],
and their combination with visibility [HMI10], are exploited to constrain surface orien-
tation. The BRDFs can also be explicitly represented as a bivariate function [AZKO0S,
WT13], a constrained bivariate regression [[A14] or a sparse dictionary-based representa-
tion [HS15]. Again, BRDF designed for photometric stereo is a delicate trade off between

generality and complexity.

In combination with dichromatic model [Sha85], applications of photometric stereo can
also process signals from multiple channels [S194, MZKBO05]. This is because by definition
specularity directly encodes spectral information from incident light, whereas diffusive

reflectance carries the information about the surface itself.

Benchmark evaluation [SWM™ 16] demonstrates that the state-of-the-art performance
can be achieved with data containing less-specular observations [[A14, STMI14]. These
approaches work well for a great diversity of real-world materials, but are challenged by
specularity-dominant appearances. In contrast, the model described in this thesis aims to

attack this challenge with theoretical support.



A Microfacet BRDF with Ellipsoid

Normal Distribution Function

This chapter describes the basic notions of microfacet-based reflectance model, with a fo-
cus on a type of Normal Distribution Function (NDF) named Ellipsoid NDF. Microfacet
reflectance model postulates that the surface is made up by a large collection of tiny facets,
and the surface radiance is essentially a composition of microfacet reflections, where the
radiance intensity can be evaluated [CT82, TS67, APS00] as

(@) = | max(m-1,0)DOH)G(L, 0) pa (m, 1, T) dii (3.1)
Q4

As illustrated in Figure 3.1, Q) denotes the the visible upper half sphere, p,, (17, [, 7) de-
scribes the reflectance of a specific microfacet with normal 17 under directional light ['while
being perceived along ¥, D(i) is the NDF tabulating the population of the microfacets of
orientation m, and G (lj ) is the masking-shadowing term ensuring power conservation.
To model general reflectance, each microfacet can be effectively assumed to exhibit mirror

reflection [WMLTO7], namely, p,, (i, 1, 7) = F(64)8,+(h) dictates that a microfacet con-
I+7
|1+
aligned, and according to the Fresnel equations the amount of power it reflects is deter-

tributes to the actual reflection only if its normal 7 and bisector h = are perfectly

mined by the angle 6, made by the normal and the incident light. Hence, Equation 3.1 can

be rewritten as:



A Microfacet BRDF with Ellipsoid Normal Distribution Function

Figure 3.1: The coordinates in which BRDF is defined. By convention 77 = (0,0, 1), and ¢/
and [ are unit vectors that allow to orient arbitrarily above the positive half-sphere. This is
in contrast to the typical setup for photometric stereo, where v = (0,0, 1)

—

[(#.1) = G, 7)D(h)F(0) (3.2)

Essentially, the microfacet model is to built upon the construction of a Gauss map that
parameterizes the microfacet in Euclidean Space R® with the its normal h, where the NDF
evaluates its rate of the change over a unit sphere S2. In this regard, NDF is inherently
the gaussian curvature of the surface that the Gauss Map applies to. For example, a planar
surface with zero gaussian curvature leads to a Dirac delta NDF that only spikes along the
normal of the plane. So, with identical setting given above, the NDF can also be implicitly
defined as the inverse of the Gaussian curvature of the illusory surface covered by the mi-
crofacets. Moreover, recent study [WDMG16] demonstrates that the ellipsoidal microfacet
arrangement and the general GGX NDF are equivalent. Whereas the success of the latter
has been widely acknowledged in rendering, the following presents the appealing algebraic

properties the former manifests for shape analysis.

10



3.1 Ellipsoid NDF for isotropic reflectance

3.1 Ellipsoid NDF for isotropic reflectance

Implicitly defining the NDF over an ellipsoid offers several algebraically appealing prop-
erties. As illustrated in Figure 3.2, if {2, denotes an arbitrarily defined unit area of the
physical surface under examination, and the microfacets can be geometrically translated to
cover the upper half of a ellipsoid, then there exists a unique parametrization of surface

point p by the surface normal % = h, then the following is always satisfied:

TSP =1 (3.3)

where S is a 3-by-3 matrix can always be re-scaled to normalize the RHS of the equation

to 1, and it has following properties to characterize the shape of the ellipsoid:

1. S is symmetric and positively definite.

2. In the case of isotropic reflectance, S denotes an ellipsoid of revolution, so its eigen-
values satisfy that A3 > Ay = A\ > 0.
i ; i L L re-
3. Correspondingly, the lengths of the major and the minor axes are vorl and 7 re
spectively.
4. The arrangement of the microfacetets has to be physically consistent with the surface

geometry, so the minor axis is aligned with the surface normal. Namely, S77 = A37

Spectral theorem states that S = \juu’ + \v0T + Agnin', where u, ¢, and 7 are it-

s eigenvectors. Correspondingly, S—! = Ailﬁm + %Uﬁr + A—l?)ﬁﬁT. Also, let |S| denote
the determinant of S, and K, = |S |(FLTS*15)2 denote the Gaussian curvature of the

—

microfacet-parameterized ellipsoidal surface [Gol05], the ellipsoid NDF D(h) for Isotropic

Reflectance (\; = \o) thus can be expressed as:

- 1 1
D(h) = 77 = (AT +(hT5)2 | (A1) \g
1
- P12 0 AL (BRTAN2)\2 (34)
As(1 = (hTR)? + 3L (hT77)?)
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3.2 The masking-shadowing function

(a) specular surface (b) diffusive surface

Figure 3.2: The ellipsoid NDF describes that the microfacets can be re-arranged through
translation to cover the upper surface of an ellipsoid. A “flatter” ellipsoid indicates that
more microfacets are aligned with the surface, representing a smoother material.

3.2 The masking-shadowing function

The masking-shadowing function GG (ﬁ ¥) is introduced to impose a physical constraint that
the visible and the illuminated area must not exceed the projected area along respectively
the perceived direction ¢ or the illumination direction [ (Figure 3.3). In the case where ¥/ is
fixed, G(I,7) = G(0;) has to satisfy the following for isotropic reflectance [Heil4]:

il = | max(h-1,0)D(h)G(6;) dh (3.5)

Qp

where max(ﬁ : le) is to ensure the the microfacet lies in the shadow vanishes. Because
in a typical photometric stereo setup a large population of the microfacets are illuminated
by a moving directional light over the upper hemisphere, this highly nonlinear term is only
significant when a light significantly deviates away from the normal. So, with the premise
that lights are distributed sufficiently, it is possible to relax this expression by removing this

operator. Therefore, by plugging the widely adopted Smith Microsurface Profile [Smi67]
and the ellipsoid NDF with S(ﬁ )D(h) dh = 7/ ﬁSﬂS!‘l [Vic96] into Equation 3.5, one

12



3.3 The Fresnel term

Figure 3.3: The shadowing function guarantees that the total area receiving illumination
over a surface of unit area does not exceed [T7. In the proposed model, the restriction that
the region has to be in the upper shpere {2, is removed, so the entire intersected area is
considered.

arrives at the following derivation for the shadowing function:

IR A AL Ay
TVEST T (1= ()2 + AT

(3.6)

3.3 The Fresnel term

In theory, the Fresnel term F'(;) only starts to vary dramatically as 6; — 7, as a result,
in most cases it does not encode sufficient information for shape analysis unless both view
and light are at the grazing angles, which only occasionally occurs when lights are located
at numerous locations for photometric stereo. Figure 3.4 illustrates the result reported in
[BSN16], in which the Fresnel term is evaluated for 100 materials available in [MBO03]. It
can be observed that, for a wide range of values chosen for ; (which is equivalent to 6, in

the microfacet setting), this term can be safely taken as a unknown constant.

3.4 A general reflectance model

Putting Equation 3.1, 3.4 and 3.6 together and letting \ = i—; leads to:

. A i
() =C — (3.7)
® (1- (1—A)(hTﬁ)Q)2\/A+ (1 — \)(IT77)?
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3.4 A general reflectance model

Figure 3.4: A plot of fresnel term obtained in [BSN16]. It shows that except for the extreme
values taken by the incident angle 6;, the fresnel term can be take as a material-specific
constant.

where C' is a unknown product subsuming the camera gain, the Fresnel term and %; more
importantly, one should notice that ) is a factor independent of the geometry and illumina-
tion and a sole term characterizing the material’s reflectance property. Being the square of
the ratio of the minor axis length ﬁ to the major axis length \/LTI’ A successfully decou-
ples the pixel-wise material evaluation from the actual imaging process: since \/LAT is the
radius of a circular patch orthographically imaged to a specific pixel, A is essentially the
“normalized” shape descriptor of the ellipsoid, regardless how large the “volume” that the

ellipsoid occupies, which is also depends on camera pose and light intensity.

Algebraically, A also plays a central role in identifying the type of surface reflectance.
Since microfacet arrangement has to be consistent with the surface geometry, it is expected
to have /\1—3 < /\il, hence A € (0,1]. When A — 1 results in a sphere, I(I) — Cv/AIT7,
which corresponds to the ideal diffusive case, because microfacets are arranged along an
arbitrary direction with equal probability (Figure 3.2b). On contrary, when A — 0, G (f) —
1, the material reflectance becomes more conspicuous till only specularities are present.
While the former has been extensively studied in the existing literature, here the latter is

elaborated.
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3.5 Physics driven approximation for specular reflectance

3.5 Physics driven approximation for specular reflectance

—

A — 0 leads to a description for perfect mirror reflection, where correspondingly G (1) — 1.

In this case the surface radiance has to be evaluated under two scenarios:

1. h™fi = 1. By Equation 3.1, I(I) — So. D(h) dh — Clq, 57(h) dh = C, where 0(h)
is the dirac delta function describing the infinite impulse due to %

2. bt # 1. I(1) = —S~

o 0, which is a direct simplification from Equation 3.7.

In the first case the light is directly observed through the ideal mirror reflection whereas no

diffused radiance can be captured when h falls off from 7 in the second case.

Therefore, by letting ) take a sufficiently small value, one obtains a reflectance function

for highly specular materials:

I() ~ _ (3.8)

which can be rearranged into
—2 (1= (hT@)? + AAT)?) ~ 1 (3.9)

and by defining S = @aT + 00T + AiAT, Equation 3.9 can be further simplified as

)ih) ~ 1 (3.10)

which is essentially the standard equation for an ellipsoid of revolution S centered at the
origin, where the original ellipsoid S and S are co-axial. Fitting an ellipsoid requires at
least 4 points on its surface, which can be easily satisfied for photometric stereo. After all,
as the directional light relocates, distinct appearances can be obtained except for nearly
perfect mirror reflection, for which only the appearance of the illuminant can be directly

seen from one specific location. This analysis rules out this extreme case.

15



3.5 Physics driven approximation for specular reflectance

Moreover, it is reasonable to expect this approximation to become less accurate when
applied to diffusive materials. As discussed in Section 3.4, in diffusive cases A — 1, the
ellipsoid degenerates to a sphere without elongation (see Figure 3.2b). Algebraically, this
means that Equation 3.10 can be satisfied by a set of non-unique S. Fortunately, the value
of \ itself serves as a good measure for estimation confidence, so one can always safely
“roll back”™ to the exiting solvers implemented for low-frequency reflectance if large values

for )\ are detected.
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Algorithm

This chapter develops an algorithmic toolset for microfacet-based photometric stereo based
on the model introduced in chapter 3. The toolset consists of three components: (1) A-
estimator for material extraction; (2) a polynomial-based 7i-estimator for specular reflectance;
and (3) an iterative joint n-\ estimator for photometric stereo with general reflectance,

which subsumes the first two components.

4.1 Estimating \

When ) is estimated along, letting = = \/ A + (1 — A)(I77)? transforms Equation 3.7 to a
system of single-variable polynomials:

p(a) = CA@)(IT7i) = I1)(1 = (1 = A(x)) (hT7)*)*z = 0 4.1)

where \(z) = ﬁZ:(%T:))QZ. Because (77 and hT7 are parameters, A(z) is rational, so is p(z).
Since this has to hold for all % distinct lightings, with ¢ denoting the observation index,
solving this system of polynomials can be treated as a single-variable optimization prob-

lem, where the candidate solution has to satisfy the following:

0 0

1<i<gk 1<i<k
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4.2 Estimating surface normal with highly specular reflectance

which can solved using the corresponding companion matrix [HJ90].

4.2 Estimating surface normal with highly specular re-

flectance

Given the illumination direction [’ (equivalently the half vector ﬁ) and the image radiance

I(1), photometric stereo seeks to recover the surface normal 7. In this scenario, this boils

down to fitting a unknown surface of an ellipsoid of revolution in R® using points hona

L1
spherical surface S* whose lengths are re-scaled by (%) " After the ellipsoid is deter-

mined, by detecting its elongation the surface normal can also be obtained.

Fitting an ellipsoid can be formulated into an energy minimization problem, and one

is able to retrieve the global minimum from the solutions to a system of polynomials. For

simplification let P = 4/ [ (f) and w = % To get around the unit norm constraint on 7,
one can also let 7, = (1 — M)wri, hence for each of the k observations, Equation 3.9 can

be rewritten as

—

-Pi (W - ﬁT}ZLH;T;i) = ]-7Z = 1727 e 7k7 (43)

where again 7 is the observation index.

By averaging all k equations, one obtains P = % Zle P,H= % Zle HH;H;T, and
1+ n"Hn
w=Tnan (4.4)
P
Moreover, combining Equation 4.4 into Equation 4.3 leads to
=T - T H = H
Phibi’ = P> )i = = —1, 45

i (. 7)i- 7 @5)
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4.3 An iterative normal estimator for surfaces with general reflectance

a quadratic polynomial with respect to 7. = [1iy, 1ip, 713]7. Therefore, all k equations in

Equation 4.5 can be organized into the matrix form
22 o s a2 s a 21T
Mzx = M[ny, iufg, iy, iy, fafig, ig]" = b, (4.6)

so M € R¥*Sandb € R* are established.

However, due to measurement noise and model precision, one should not enforce the
equality in Equation 4.6 to hold strictly, instead it is more desirable to find the optimal

7 = [131, 182, 113]7 that minimizes the following energy function

f(a) = ||Mz —b|5 = 2" M" Mz — 26" Mz + b"b. 4.7)

Since the cost function in Equation 4.7 is nonconvex, one has to find its global minimiz-
er by retrieving all its stationary points. Specifically, it is feasible to solve the three-variable

cubic equations defined by the partial derivatives as

8 ) 5
0.9 g Yy, (4.8)
ny Mo ns

which is a three-variable cubic polynomial system that has 27 solutions. Since the system
is homogeneous, the solutions are positive-negative symmetric. Therefore, one only needs
to examine 13 independent solutions. These facts motivate a solver based on the symmetric
Grobner basis [LA16]. Finally, A and C' can be determined consecutively using the length

of n.

4.3 An iterative normal estimator for surfaces with gener-

al reflectance

As discussed in 3.4, a value between 0 and 1 assigned to A fully characterizes the reflectance
of a material. However, highly specular reflection may not be observed from smooth sur-
faces under sparse light distributions. The existing approaches [WGS™ 10, SWM™ 16] take
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4.3 An iterative normal estimator for surfaces with general reflectance

advantage of this spatially varying notion of surface reflectance, and choose to reject specu-
lar signals through thresholding over the pixel intensity. On contrary, this section describes
a solver that directly attacks the general reflectance model described in Equation 3.7. By
investigating a different type of approximation in response to spatially varying illumina-

tions, it successfully gets around with the need to pre-process the inputs.

As opposed to the approximation discussed in Section 3.5 which is physically-driven
by material smoothness, an perception-based approximation with respect to the varying
lighting direction exists to reveal the essence of treating the specular signals as outliers.
According to the shape of the specular lobe, the lighting directions with respect to a surface
point can be partitioned into two groups: (1) hTit — 0 and (2) AT — 1. Because 7771 = 0,
ATt — 0 also implies that [Ti7 — 0. Then one can obtain the first-order approximation for

the Taylor expansion of Equation 3.7 as follows:

IHh=cC

A I

— —»

A((
— OA(1+ O((hTi) ))lTﬁ( (( %))
~ O\ (4.9)

[vii)? 1)

which is consistent with the assumption made in [WGS™ 10] that many readings of non-
specular reflectance, regardless the surface material they are measured from, obey the Lam-
bert’s Law.

Therefore, combining with A, there exists three scenarios:

e A\ > 1land AT — 1: the specularity is guaranteed to be observed. [ (f) can be

approximated by Equation 3.8.

e A\ > 1and AT — 0: the specularity is unlikely to be detected even though the

surface can be very smooth. / (l_§ can be approximated by Equation 4.9.

e )\ — (0:no specular reflectance is to be captured in all cases. [ (f) can be approximated
by CV/ T,
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4.3 An iterative normal estimator for surfaces with general reflectance

It is worth noting that, though carry distinct physical significance, the second and the third
case only differ in scale. More importantly, this approximation indicates that when incom-
plete observations are made from a smooth surface which is supposed to produce specular-
ity, by directly applying the proposed model one may obtain an estimated A larger than its
actual value, but the surface normal 77 stays invariant. Hence an ideal solver should always

correctly estimate surface geometry regardless the light distribution.

Numerically, it is reasonable to expect the actual solution to satisfy one of the approx-
imations discussed above, in addition to complying with the original model described in
Equation 3.7. Moreover, as discussed in Section 3.5, when the non-iterative solver pro-
duces inaccurate estimation for diffusive observations, its estimation on )\ can be somehow

reliable. As a result, one can devise a two-stage iterative solver as follows:

Step 1 Apply the approximation for specular reflectance (Section 4.2) and the Lamber-
tian model independently to the observations. Let Z,, A; and 4, \; be the solution

obtained for each case respectively.

Step 2 Plug in Z,, A\ = 0 and @3, A = )\, as the initial estimate, solve the Equation 3.7
directly using nonlinear least square solver. Let 2% and Z7; be the corresponding so-

lutions.
Step 3 The final solution Z* € {Z*, 7%} is the one results in less fitting error.
It is worth noting that Step 1 finishes in polynomial time for both models and is non-
iterative. Step 2 applies nonlinear least square twice hence it completes iteratively. All

subproblems are formulated on a system of equations involving all observations, and oper-

ations on pre-processing are avoided.
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Experiment

This chapter describes the experiments designed to validate the proposed model and illus-
trates the effectiveness of the corresponding algorithms. Since inter-reflections and shad-
owing are not considered, sphere serves as a desirable sample object for evaluating it-
s normal map. For quantitative examination, PBRT [PJH16] is used with MERL BRD-
F [MBO03] to synthesize a sphere under numerous directional lights. Spiral points [RSZ94]
are used to approximate uniform distribution. Aside from synthetic images, appearances
real-world objects are also experimented. Typical samples include USC “Light Stage Data
Gallery” [ECJ*06], UCSD photometric stereo data set [AZKO08] and recently published
“DiLiGent” benchmark data set [SWM™ 16]. These image sets contain objects with vari-
ous reflectance properties, and “DiLiGent” image set also provides the ground truth of the

normal maps.

In the experiments, the results produced by the proposed method are compared against
the results produced by Nonlinear Least Square (NLS),Cook-Torrance Model [CT82] ,Ward
Model [War92], Lafortune model [LFTG97], Biquadratic [STMI14] (Biquad), Constrained
Bivariate Regression (CBR) [[A14], where the latter two are known to provide the state of
the art performance to date. Also, these two approaches represent two distinctive groups
of methodologies: while Biquad applies a relatively constrained but fine-tuned parametric

model, CBR adopts a non-parametric form to describe general reflectance.

On synthetic images, three sets of experiments are performed under six lighting condi-
tions (i.e., 60, 96, 100, 150, 250, 500 lights, Figure 5.1): (1) estimating only A assuming the
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5.1 Model validation

geometry of the sphere is given; (2) feasibility study for the non-iterative solver designed
for specular reflectance; (3) estimating the surface normal of the sphere using the iterative
approach for general reflectance. The distribution of the 96 lights is non-uniform and sim-
ulates the lighting adopted for “DiLiGent” benchmark data set. The distribution of the 100
lights is randomly generated to create an adversary illumination condition. For CBR, N;
is set to 2 and N, is set to 4, with “retroreflective” on. In other parametric models, surface

normal 77 is directly estimated using NLS.

(a) 60 lights (b) 150 lights (c) 250 lights
TR SEE SRR :

R B, L3t

(d) 500 lights (e) 96 lights (f) 100 lights

Figure 5.1: Distribution of lights with various densities and patterns. The positive Z-axis
is pointing upward. Hence the lights located in the bottom are likely to contribute less to
appearance formation.
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5.1 Model validation

5.1 Model validation

Figure 5.2 compares the performance of the proposed model on fitting the appearance
of a sphere against the performance of some well-known BRDFs for rendering as well
as for photometric stereo. The metric measures the mean fitting discrepancy between the
estimated appearance and the actual observation. As one may expect, since the geometry
of the object is already specified, the BRDFs for rendering takes an advantage in that they

adopt complicated models to capture the fine-grained appearance details.

Under uniformly distributed lights (Figure 5.2b and Figure 5.2c), the denser the the
light, the more accurate appearance is generated. Also, the performance gain is more sig-
nificant for specular appearances. This is mainly because specularity carries more energy
conveyed by the appearance. Once it is captured by light, its approximation by the model
determines the overall evaluation for model effectiveness. Consequently, since partially dis-
tributed lights (Figure 5.1e) is less likely to capture specularity completely, in such setting
low-frequency reflectance model ( [STMI14]) delivers improved results (Figure5.2a).

Overall speaking, the proposed ellipsoid-based model outputs a stable and accurate

appearance estimation for all 100 materials.

5.2 Non-iterative solver for specular reflectance

5.2.1 Evaluation on synthetic images

Figure 5.3a and 5.3c present the angular estimation errors in degrees over the 100 mate-
rials in MERL. It can be seen that the proposed solution targeting on specular reflectance
produces a trace complementary to those produced by the other three approaches targeting

on low-frequency reflectance. Two conclusions can be drawn from these plots:

1. All methods perform inferiorly over a specific set of materials, and this division

performance over the materials is almost independent of light density;

2. The existing approaches outperform on surface with diffusive reflectance, and the

proposed method delivers better performance for specular surfaces with a few ex-
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5.2 Non-iterative solver for specular reflectance

ceptions (Section 5.2.4), which is consistent with the prediction made in Section 3.4.

5.2.2 Evaluation on images of real objects

The proposed solver is also applied to two images sets of real scenes, “helmet side right”
from “Light Stage Data Gallery” and “DiLigent”. The “helmet” image set contains specular
appearances captured under 253 directional lights, and the “DiLigent” data set that mainly

represents diffusive materials.

Figure 5.4 visualizes the estimated normals with their respective +z,+y and +z com-
ponents, with (1) lights with positive z-values only and (2) all 253 lights. No qualitative
comparison is made because ground truth is unavailable, but qualitatively the proposed
method appears to present reasonable and consistent results, indicating its stability. Be-
sides, the convex shape of the model is clearly illustrated by +x,+y and +z components
together. It is also worth noting that CBR delivers much more reasonable result when on-
ly lights with +z are selected (Figure 5.5). In general, light distribution makes a major
impact on estimation accuracy. It is reported that existing approaches shall perform bet-
ter with properly adjusted “position thresholds” [SWM™ 16], which is to be examined in
Section 5.3.3.

5.2.3 Detection of diffusive reflectance

29 ¢

Among the ten models in “DiLiGenT”, “ball”, “reading”,“cow” and ‘“harvest” represent
relatively more specular materials. Figure 5.6 compares the estimation error produced by
CBR, Biquad and the proposed approach, together with the median value of A obtained
for each model. Here it is assumed that each material is made of homogenous material so
a rough cross-pixel analysis is permitted. It is interesting to observe that except for “ball”
and “reading”, the lower the \ value detected, the better the performance the proposed
method delivers. The inferior performance on “ball” is due to limited light distribution as
to be discussed in Section 5.2.4, and “reading” is inaccurately estimated because surface

non-convexity has caused a significant amount of specular inter-reflections.

However, it should be noted that though A can correctly indicate the smoothness of the

surface, a fail-safe “switch” that allows one to roll back to the existing solutions for low-
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5.3 Iterative solver for general surface reflectance

frequency reflectance remains absent. Specifically, whether an arbitrary A between 0 and 1
represent a physical specular surface or diffusive surface is unclear. So, as pointed out in
Section 4.3, an effective solver addressing general reflectance should not only rely on A,

but also consider the spatial variation between light and the surface geometry.

5.2.4 Impact of light density

The distribution density of lights affects the accuracy of the proposed solver. Figure 5.7
compares the accuracy obtained under various illumination densities: 500, 250, 150, 60
lights, respectively. The main observation made is that the proposed solution produces
stable output for various lighting densities, but the denser the distribution, the higher the
accuracy is achieved. More importantly, the gain due to a denser light distribution is more
significant for specular surfaces, whose labels are highlighted in red. For example, “specu-
lar green phenolic”, as indicated in Figure 5.8, exhibit extremely localized specularity with
large estimation error. This is because when light distribution is insufficient, many pixels
(e.g., point B) do not exhibit specular property at all, as compared with the pixels (e.g.,
point A) covered by specularities, they are less accurately estimated as a consequence of
mis-fitting the model. Though uncommon in a photometric stereo setup, it is expected to
see that with a denser light distribution, estimation on the specular materials highlighted in

red in Figure 5.3 shall continue to improve.

On the other hand, the light that directly generates the specularity is disfavored by
the methods introduced in [WGS™* 10, SWM™ 16]. Specifically, by intentionally ignoring
the specular appearances, the remaining set of reflectance is thought of as if its observed
from a diffusive surface. Theoretically, lights of an arbitrarily dense distribution in their
limit shall make specular appearance unavoidable, and in such case a model that handles

specularity should excel in robustness and stability.

5.3 [Iterative solver for general surface reflectance

As described in Section 4.3, the iterative solver for general reflectance is a wrapper around
the non-iterative solver for specular reflectance, with restriction of A — 0 removed. In the

experiment, the camera response is assumed to be linear, and the input is taken as-is except
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5.3 Iterative solver for general surface reflectance

that pixels with zero-readings are ignored. Also, no pre-processing is applied. The iteration
is dictated by the standard NLS algorithm, with constraint that A € [0, 1].

5.3.1 Evaluation on synthetic images

Figure 5.9 compares the performance of the proposed general model with the estimations
of a sphere respectively provided by Ward, Torrance, BVR,and Biquad reflectance model,
under all 6 lighting conditions (Figure 5.1). It can be observed that the proposed method
outperforms its peers in all situations, including irregularly distributed lights (Figure 5.9¢).
The proposed method successfully recovers the shape of the sphere of all 100 materials in
MERL database.

5.3.2 Impact of light distribution

Figure 5.10 contrasts the performance of the proposed method under various conditions. It
is not surprising to see that the worst case arises for the arbitrarily distributed 100 lights,
the second most inferior performance is obtained when lights are non-uniformly distributed
(e.g. 96 lights, Figure 5.1e). This is caused by insufficient observations made available
for model fitting: the parameters are better learned if dense and sufficiently distributed
observations are made. For uniformly distributed lights, as expected, the denser the light

distribution, the more accurate the estimation.

5.3.3 Evaluation on real images

Figure 5.11 presents the recovered normal map and their decomposition along +x,+y,and
+2z axes respectively. Since each object is convex and symmetric, the symmetry of the
decomposed illustration indicates that reasonable results are obtained for these three objects

even though their reflectance properties vary.

Figure 5.12 demonstrates the normal map estimated by Biquad, BVR and the proposed
general methods for “DiLiGent” image set. Here Biquad and BVR are taking preprocessed
inputs (“position threshold” (PT) [SWM™16]) in order to achieve the state-of-the-art per-
formance for calibrated photometric stereo. A quantitative comparison is also presented in

Figure 5.13. The performances delivered by these methods can be summarized as follows:
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5.4 Summary

e The proposed method for general reflectance is comparable with the state-of-the-art

approaches in any situation.

e The proposed method delivers much more accurate estimation on “cow” and “har-

vest”, which are mainly covered by specular surfaces.

e Inferior estimations are made for highly non-convex shapes. For example, Part of
the estimated result for “reading” is inaccurate because many specular reflections
caused by inter-reflections; the estimation error for “buddha” is mainly due to the

cast shadow in the back of the scene.

Figure 5.13 also totals the estimation error when the proposed method is applied in tan-
dem with thresholding. As discussed in Section 5.2.4, thresholding is essentially equivalent
to selecting a subset of lights for analysis. Hence as expected, doing so makes no impact

on the performance of the proposed approach.

5.4 Summary

To sum up, the proposed microfacet-based model captures the general isotropic appearance
well, and stands out in describing the specular reflectance. Accordingly, a non-iterative
solver targeting specular reflectance and an iterative solver for general reflectance that takes
the former as a special instance together address photometric stereo successfully, deliver-
ing results that are comparable with the state-of-the-art performance. Since the proposed
methods are insensitive to light distribution, these solvers can handle more materials and

offer accurate estimations with improved stability and robustness.
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5.4 Summary
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(b) Mean estimated angular error in degrees produced by various methods using 150 lights.
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(d) Mean estimation angular error in degrees produced by various methods using 500 lights.

o

VZT LNNTYAN WID3dS
ZUNIV] OTVAIN NFFHO
JHOHHD _
ZINIYd OMTVAIN 3NTE
ANV OITIVIIN_a109
AN DITIYIIN H3IATS
ZLNIVd ONIONYHD 0100
DN _
LINV DTV a109
ANNYG OITIYIIW 3nTE
LINIVd ONIENYHD H0100
INNVG OMTVIIN a3
£LNIVd_ONIONYHD 0100
ZINVE DTN HIATIS

o

oo

Performance comparison on shape recovery with specular reflectance under

various lightings.

Normal maps obtained by the proposed method for “helmet front left”. Row 1:

Figure 5.4

with 253 lights.

with +2z lights. Row 2
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Figure 5.5: Normal maps obtained by CBR and Ellipsoid. From left to right: CBR with +2z
lights and with 253 lights; Ellipsoid with + 2z lights and with 253 lights;

| I ENli [ CBR [ Biquad

Angular Error in Degrees

ball cat pot1 bear pot2 buddha goblet reading cow harvest

Figure 5.6: Average estimation error in degrees produced by the three methods.The black
dotted line indicates the corresponding A obtained for each model. The proposed model
predicts that the trace of A should be consistent with the trace of estimations error for
homogeneous materials.
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Figure 5.7: Mean estimated angular error in degrees produced by the proposed ellipsoid

specular method under various lighting conditions.

S0 its appearance is sensi-

Figure 5.8: Some materials exhibit highly localized specularity,

tive to light density. In terms of model fitting, the pixels that carry specular signals (e.g.,

point A) are more likely to be correctly estimated by the proposed solver than those do
not (e.g., point B). Left: Estimation error for specular green phenolic. Middle: A closer

view over the region showing both accurate and inaccurate estimations. Right: Appear-

ances produced by four distinct lights. Point B is “by-passed” by all lights so it does not

carry specular signals.
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(a) Mean estimated angular error in degrees produced by various methods using 60 lights.
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Figure 5.

Mean estimated angular error in degrees produced by the proposed ellipsoid-

based general method under various lighting conditions.

Appearance

Normal

Estimated normal maps obtained by the proposed method for general re-

Figure 5.11

flectance applied to “apple” (row 1), “gourd1” (row 2) and “gourd2” (row 3).
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Appearance Biquad BVR General Error

(a) ball

(d) bear

Figure 5.12: Estimated Normal Map obtained for “DiLiGent” image set using Biquad,
BVR, and the proposed method for general reflectance.
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Appearance i General

(g) goblet

(h) cow

Figure 5.12: Estimated Normal Map obtained for “DiLiGent” image set using Biquad,
BVR, and the proposed method for general reflectance.
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Appearance BVR General Error

(j) harvest

Figure 5.12: Estimated Normal Map obtained for “DiLiGent” image set using Biquad,
BVR, and the proposed method for general reflectance.

pot2(4) reading(7)

35

T
I General 11.1361
I General(PT) 11.1491
[ BVR 14.8346
I B VR (PT) 10.5967
30 —|[M Biquad 16.1291
[E Biquad (PT) 10.2966
I Ward 11.6618

20
Il
10
5
) )

ball(0) bear(3) buddha(5 cat(1) cow(8) goblet(6) harvest(9) pot1(2

mean estimation error (degree)

o

Figure 5.13: Mean estimation error in degrees produecd by the proposed method for general
reflectance, BVR, Biquad and Ward model. PT indiates position threshold is applied. It can
be observed that the proposed method does not rely on thresholding to obtain accurate
estimation.
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Conclusion

This thesis has described a microfacet-based isotropic reflectance model for photometric
stereo. By identifying the appealing algebraic properties of its ellipsoid NDF, one is able
to derive a precise representation for general isotropic reflectance. Since microfacet-based
theory is physically driven, accordingly a physically interpretable approximation that is
particularly serviceable for specular reflectance analysis is derived. In particular, this ap-
proximation establishes a connection between the estimation for specular surface normal
and fitting an ellipsoid of revolution, where the latter can be described by a system of

polynomials that can be solved by a fast, non-iterative and globally optimal solver.

Moreover, the model has also been used to reason about the necessity of treating spec-
ular pixels as outliers. Its spatially dependent approximation shows that, most non-specular
observations coincidentally comply with the Lambert’s model, justifying the need for thresh-
olding by some existing approaches. But for the proposed case, an iterative solver that ex-
tends the non-iterative implementation has been proposed to handle the generalized case.
Extensive experiments are performed on images of both synthetic and real objects to prove
its effectiveness. Since no pre-processing is required by the proposed approach, its stability

and robustness is ensured even under adversary light distribution.

On the other hand, a microfacet model that directly addresses specularity for photomet-
ric stereo invites new challenges. First, specularity may also occur due to inter-reflections
on concave shapes, in such case it is misleading for shape inference. Second, if cast shad-

ow is captured with ineligible dark noise, low intensity pixels may also produce inaccurate
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Conclusion

estimations. Third, BRDFs in their essence does not favor subsurface scattering. Howev-
er, it is worth noting that these sources of inaccuracies are mainly due to high frequency
light (directional light in particular), so under smart illumination these components can
be extracted and eliminated [NKGRO6]. Because BRDFs in general describe the appear-
ance formation under all types of lighting, their applications under illumination pattern
other than directional light may augment the toolset for photometric stereo on non-convex
shapes [NIK91b].

In a broad sense, this thesis has illustrated an idea of applying microfacet-based theory
to photometric stereo, which relies on the ellipsoid NDF that preserves both expressiveness
and numerical invertibility. One should reasonably envision that the ellipsoid NDF might
be one such model that has surfaced among the others that are still awaiting investigation.
More importantly, since NDF nowadays is directly measured from a sample object with
known regular geometry, acquiring the ability to recover surface orientation and to extract

BRDF simultaneously is an interesting part of the follow-up work.
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BRDF
CBR
NLS
NDF
PBR
PT

Bidirectional Reflectance Distribution Function
Constrained Bivariate Regression

Nonlinear Least Square

Normal Distribution Function

Physically Based Rendering

Position Threshold
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