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Abstract

Let K he a field of characteristic zero, K[x, y] be the polynomial ring in two variables.
Let ~f denote the K-derivation of K[x, y] given by ~f(9) = J(f,.g) = f:r:9y - f Y9:r:,
the Jacobian determinant of f,9 with respect to the coordinate system X, y. The
derivation ~f is a differential operator on f([x, y]. The main objective of this thesis
is to develop the spectral theory of the differential operator .6..f . lVlore precisely, we
not only determine the eigenvalues but also the structure of the eigenfunctions of
.6.f. In developing this spectral theory, we prove two weaker forms of the Jacobian
Conjecture and establish sorne relations between the J acobian Conjecture and our
spectral theory.
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Résum.é

Soient K un corps de caractéristique zéro et K[x, y] ranneau des polynômes

à deu."'\: variables. De plus, dénotons par Do.f la K-dérivé de J{[x, yL défini par

Llj(g) = J(/, g) = /x9y - fygx, le déterminant du Jacobian de /, 9 par rapport au

système de coordonnées x, y. Notons que la dérivée !J.f est un opérateur différentiel

sur K[x, y]. L'objectif principal de cette thèse est de développer la théorie spectrale de

l'opérateur différentiel Do.f' En plus de calculer les valeurs propres, nous déterminons

la strucure des fonctions propres de l'opérateur Ll/. En développant cette théorie,

nous démontrons deu."'\: formes plus faibles de la ConJ"ecture de la Jacobienne et nous

établissons quelques rélations entre la Conjecture de la Jacob'ienne et notre théorie

spectrale.
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Notations and conventions

In this paper the letter K is reserved for fields. K is the algebraic closure of K.

L is a field extension of K. trans.degKL denote the transcendence degree of Lover

K for any field extension L of K.

K X is the multiplicative group of the field le K+ is the additive group of the field

1(.

Q, n, C are the fields of rational, real and complex numbers, respectively.

K(n) is the pure transcendental field eÀ~ension of K with transcendence degree n.

A is a commutative [(-algebra, ..4.x is the multiplicative group of .li for any K-

algebra A, Qt(A.) denotes the quotient field of A for any integral domain A. and

A [nI the polynomial algebra in n variables over A. :NIoreover, trans.degreeKA 

trans.degreeK(Qt(A)).

Z is the ring of rational integers. N is the set of positive integers. Z+ = {ü} uN.

(N is a primitive lV-th root of unitYl WN is the set of lV-th roots of unity.

Ça is the additive group scheme, 9m is the multiplicative group scheme.

[{[x, y] is the polynomial algebra of two variables x, y over 1<. Except in chapter

4, section l, the letter R is reserved for [([2J or K[x, y].

Hm := [{[x, yl/m, y-l /m] is the K -algebra generated by x, yI/m, y-l/m with m ~ l.

Rm ~ K[X,17,1]-l]. Then R contains the subalgebra R = [{[xy, y] and R m contains

the subalgebra RCm) = [([xy, yl/m]. vVe put R(n) = [([xy]yn, RCm)(n) = K[xy]yn/m

for every n > l.

For f E K[x , yL we use lx, fy to denote the partial differential of f with respect

to x and Y, respectively. That is fx = ~, fy = *.
Given an element f E K[x, y], f = Li,j ai,jXiyj, ai,j E [-(, we will use the fol

lowing notation: Supp(f) = {Ci,}) : ai,j f: ü} is the support set of f· deg(f) =

max(i,j)ESuPP(J)(i +}) is called the (total) degree of f.

A pair of two rational numbers w = (Wl l W2) induces a Z-grading of K[x, yL and

degw(f) is the w-degree of f. In particular, deg(f) = degwo(f), '\vhere Wa = (I,l).

Except in section 3 of chapter 5, the letter 6 is reserved for an arbitrary f-{

derivation on a [<-algebra .4, and .6./ is used usually if a Jacobian type derivation

7
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is considered, that is .6/(g) = J(f, g) and J(f, g) is the Jacobian determinant. In

section 3 of chapter 5, where the field K has characteristic p > 0, we use the symbol D

to denote a K-derivation of a K-algebra while 0 denotes a certain standard differential

operator.

ECo), N(o), T(o), Ker(6) , and A(6) are defined in 1.1 and used throughout the rest

of this paper.

For any K-algebra A, AutKA is the group of K-automorpmsms of A~ and we use

~, \.II, 4J, 'if;, ... to denote the elements of AutK A.

F is a filtration of a K -algebra A.

r is a Z -grading of a K -algebra A.

GrFA is the associated graded algebra of the filtration F.

For any real number x, [x] denote the least integer which is less than or equal ta

x. vVe use the symbol n » 0 ta denote a sufficiently large integer- n .
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Chapter 1

Introduction and Surnrnary

vVhat today is called "Spectral Theory" has deep roots in the history of mathematics,

going back to J. Von Neumann, D. Hilbert, and even A.Fourier. As far as the author

knows, the term "spectrall7 was coined by D.Hilbert in his study of integral equations.

l Briefly speaking, two objects were given at first: a function space and an operator

on this function space. The purpose of the so-called ((spectral theory" is t,vo-fold as

\vell: one problem is to study the eigenvalues (speetrum) of a given linear operator

and arrother one is to classïfy the eigenfunctions (eigenfunction problem) and to see

whether the general element in the original function space has an expansion in terms

of those eigenfunctions (spectral expansion or Fourier expansion). In analysis, to

prove interesting results along this liue, the functïon spaces usually are assumed to

be complete and operators are assumed to be bounded.

vVe discuss a quite different situation on function spaces arising from algebraic ge

ometry. vVe consider a field K, an affine algebraic K-variety J'Y, the regular functions

A = r(..-Y,Ox) on X, and a J(-derivation 8 of A. 0 cau be treated as a dïfferential

operator on the space A. In this dissertation we are interested in the simplest example

where ..-Y is the affine plane and A. = K[2] , the polynomial algebra in t\VO variables

lIt cornes from two different directions: Fourier theory and matri~ theory. A number >'0 is called
an eigenvalue of the linear operator T on a finite dimensionai vector space if there exists a vector
Xo =fi 0 such that Txo = >'oxo. The terms "proper value", "characteristic value", "secular value"
and "latent roots" were used by various authors at different times. The tenu "spectrum" is due to
Hilbert and the term "spectral" came from the term "spectrum".

9



• over K. Since the affine space is non-compact: to develop the spectral theory in this

frarnework is a challenge as wiU be shown in this dissertation even in this sirnplest

case.

Here is a brief introduction and summary to the main results proved in this dis

sertation.

1.1. Let K be a field of characteristic zero. Let A. be a commutative j{-algebra:2

<5 : A. -T A. a K-derivation on A., that is a K-linear map satisfying the Lebiniz mle.

vVe first recaU sorne conventions on notations and terminology. Denote by

A(5) = {/\ E K: 3g E A.,o(g) = Àg} (1.1)

the set of aIl eigenvalues of the operator 0 on A.. The function 9 E A is called a

o-eigenfunction if 0(g) = Àg for sorne À E [(. Let

denote the K -linear vector space generated by the o-eigenfunctions. Let

Ker(o) = {g E A : 6(g) = O}

denote the ring of constants of cS. Define

IV(O) = {g E A : 3n > 0: on(g) = ü}.

(1.2)

(1.3)

(lA)

If N(cS) = A, <5 is called a locally nilpotent derivation of .4..

Regard A as a K[5]-module via the action (Li ai5i )f = Li aie (Si f), ai E [(, f E A.

Let

T(e)) = {g E A. : 30 =1 p[T] E J{[T], p(6)g = O}, (1.5)

•
that is, T(o) denote the torsion K[o]-submodule of A.. vVe caU cS a locally finite

2In this thesis, we always assume that the K-algebras are commutative. vVe should mention that
our framework is also suitable for non-commutative [("-algebras. See [13].

10



• derivation if T(6") = A .

At last, we call6" a fully spectral derivation of A if E(6") = A.

In particular, for R = K[x, y] ~ K[2] and fER, 6.~x,y, : R -7 R,6.}x'Y'(g) -

JCf, g) for 9 E R, is a K -derivation of R, where

fx I y
J(/,g) = det (1.6)

•

is the Jacobian determinant of f~ 9 with respect to x, y. vVe shaH write ~f = ~~X,y)

ta simplify the notation if x,y are already specified. Hence Ker(~f),E(~fLA(D..f)

and T(6.f ) are defined and will be used throughout this paper.

1.2. Let us first explain the main result about the structure of T(6") .

Suppose f E K[x, y]. vVe say that f satisfies the weak Jacobian condition if

If so, then trans.degreeKT(tl f ) = 2. V\Te say 1 satisfies the Jacobian condition if

.6.f (g) E l<x for sorne g E K[x, y]. The Jacobian Conjecture in two variables is:3

Suppose f satisfies the Jacob'ian condition. Then T (.6.f) = I{[x, y] .

Here, we are interested in whether T (~f) rv K[2] if 1 satisfies the weak Jacobian

condition. This question, in a sense, is analogous to the Jacobian Conjecture in t'wo

variables.

To explain our solution for this question, we need to explain first the relation

between T(.6.f ) , E(6.f ) and iV(.6.f ) as fo11ows.

If K is an algebraically closed field, we prove (Proposition 2.1.9) that either

T(t~~1) = E(6.f ) or T(.6.f ) = lV(.6.f ). Therefore, to discuss the question about the

structure of T(.6.f ) , it is enough to discuss the structure of E(!~f), and lV(D..f) inde

pendently.

vVe say that a K-derivation 6" of K[2] is an ordinaryderivation iftrans.deg[{(I{er(c5)) =

3This is just one of the many equivalent forms of this famous conjecture. \Ve shaH give its general
form in 2.1.4 below.
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• 1. For example, the derivation .6.f is an ordinary derivation if f is any non-constant

polynomial. Recall that a K-algebra A is geometrically factorial over I{ if A ®K K is

an unique factorization domain (UFD for simplicity). Among other things, we have

the following result, the first part of which was proved by L\tIiyanishi-Nakai([33L [36]

Theorem 1) in case K = K.

Theorem A.

(A.1). Let K be a field of characteristic zero and 8 an ordinary K-derivation of

K[x,y]. Assume thatlV(6) =/=Ker(8) andlV(6) is afinitely generatedK-algebTa and

geometrically factorial over K. Then IV(8) ~ K[2].

(A.2). TheTe exists an oTdinary J(-derivation 8 of J{[x-,y] with lV(8) =/= Ker(6)

and iV(8) ~ K[2J.

In view of the examples of 2.2.7, the problem to determine the algebraic structure

of lV(~f), in general, is not solved in this paper (See conjecture 2.2.11). vVhen

T(~f) = E(.6.f ), we can determine its algebraic structure explicitly in the spectral

theory (theorem B.l) below. Here we just give a reason \vhy the discussion about

J.V(~f) seems more difEicult from the partial differential equation point of view. Note

that E(.6.f ) # KeT(.6. f ) is equivalent to the solvability of the partial differential

equation

J(f,g) = Àg (1. ï)

for some 9 E K[x,y] and À E KX, and lV(~f) # Ker (.6. f ) is equivalent to the

solvability of the partial differential equation

(1.8)

•

for sorne 9 E K[x, y]. Although the equation (1.8) looks more complicated thall

the equation (1.7), we observe that, from the partial differential equation point of

view, the condition lV(~f) =1 I{er(~f) is more flexible than. the condition E(~f) -;

K er(Llf ) (see Prop. 5.4.3 and Prop. 5.4.4 below). Hence, it is harder, in general, to

examine the structure of J.V(~f) under the condition J.V(.6. f ) f= J{er(.6. f ).

Theorem A and several related results about locally nilpotent (finite) derivations

12
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will be proved in chapter 2.

1.3. vVe now summarize the spectral theory for the affine plane.

vVe first e:'\.-plain our solution to the eigenvalue problern.

One of the main results proved in this dissertation is Theorem 5.1.1 :A(~I) = ZPI

for sorne element PI E [(. Clearly, PI is uniquely determined up to sign. NIoreover~ we

determine exactly \vhat Pf is (the least eigenvalue) in Proposition 5.4.2~ and thereby

solve the eigenvalue problem for ~f.

Theorem 5.1.1 is used in an essential ,vay ta solve the eigenfunction problem. ~Iore

precisely, we have

Theorem. B.

(B.l). Let f be a non-constant polynomial in K[x, y]. Assume E(~f) =1 Ker(~/)·

Then E(~/) "-' K[X, ~ Z]/(..-yy - a(Z)), as a K-algebra, for sorne polynomial

a(T) E K[T].

(B. 2). E(~/) ~ K[2} if and only if there exists ~/-eigenfunetionsg, h E [([x, y]

and c E K such that f + c = gh with J(g: h) E [(x.

(B. 3). There exist a polynomial f such that E(~f) =1 K eï(~f) and E(.6. f ) ~ K[2].

The eigenfunction problem is solved by Theorem B completely.

As we said before 7 it is natural ta study the Fourier expansion problem in the

spectral theory, i.e., whether every polynomial fER can be expanded as a linear

combination of the eigenfunctions. Theorem B tells us this problem is, more or less,

equivalent to the Jacobian Conjecture in two nuiables. vVe do not airn to solve this

famous conjecture in this thesis. Instead we shall treat two weaker forms of this

conjecture in proving Theorem B.

1.4. vVe are going to explain the weaker forms of the J acobian Conjecture proved

in this thesis and why they are closely related to Theorem B.

In order to eÀ-plain this, we employ the following notation. Let ~ = [([xy, y] ç

K[x, y]. For m > 1, let K[x, yI/m, y-I/m] be the [{-algebra generated by x, yI/m, y-l/m.

Then every element of K[x, yl/m, y-I/m] has the form Eï~O,iEZ,jEZaiixiyi/m, aij E [{.

The analogue of ~ in K[x, yl/m, y-l/m] is defined by ~(TTl) := [{[xy, yL/m]

The essential ingredient in proving TheOl'enl 5.1.1 and Theorem B in our present

13
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study of Spectral Theory is:

Suppose f E K[x, yL and assume E (.6.f) =1 Ker (f:::,. f ) . Then either there exists an

automorphism'lr E AutKK[x, y] such that w(J) E ~, or there exists \li E AutKK[x, yL
a positive integer m > 1 and an automorphism Wm E AutK(K[x, yl/m, y-l/m]) of the

form :wm(y-l/m) = y-l/m, Wm(yl/m) = yI/m, Wm(X) = X + h(y-I/m) (h(T) E K[T])

such that wm(w(f)) E ~(m). 4

The connection of this result with the Jacobian Conjecture can now be explained

as follows.

Let (Je.J) denote the statement: 5

If .6.f (g) E K X for some 9 E K[x, yL then K[x, y] = K[J, g].

vVe prove (Theorem 4.3.14): Suppose J E~. Then (Je.J) holds. Therefore the

J acobian Conjecture in two variables, in a sense, is reduced to prave the follawing

statement:

Suppose f E K[x, yL and T(Ê1 f ) =1 I{er(~f). Then there exists an automorphism

\li E AutK(K[x, y]) such that wCf) E ~.

According to Theorem 4.3.14, the Reduction Theorem 4.3.1 can be considered as

a weaker form of the Jacobian Conjecture.

Another weaker Jorm of the Jacobian ConJ-ecture proved in this thesis is Theorem

5.3.14: If J(f, g) E K X
, then E(~fg) = I<[J, g]. Theorem 5.3.14 follows immediately

from the proof of Theorem B.2.

Theorem B and the above weaker forms of the Jacobian Conjecture will be proved

in chapter 5. The technical part needed will be developed in chapter 3 and chapter

4.

1.5. Besides the spectral theory and the weaker forms of the Jacobian Conjecture

the following subject is also considerably studied in this dissertation.

In order to explain these results, we give a close examination of E(.6. f ) from the

gm-action point of view.

Let A. be a J{-algebra with a 9m-action. As is \vell kno\\·n, A has a Z-grading,

4This is a weaker form of the Reduction Theorem 4.3.1, .
sThis is another equivalent form of the Jacobian Conjecture in two variables.

14
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that is, a decomposition A = EBnEZ An.6 Define by Supp(A.) = {n E Z : An 1= ü}.

Then Supp(A) is a sub-sernigroup of Z. If Supp(A) is a non-trivial subgroup of Z~

we calI this action a mixed Ym-action. Then Theorem 5.1.1 essentially asserts that

there is a mL"Ced Ym-action on E(tl[) if tl[ has non-zero eigenvalues. But, we will

see there is more algebraic structure on E(!~[) along this line. To see this, we define

Ym - tl[-domains and quasi gm - tl[-domains, as folIows.

Let A be a K-subalgebra of K[x, y] endowed with a mixed Ym-action with the asso

ciated Z-grading decomposition A = EBnEZ A.n • v"\/e say that f is a closed polynomial

in K[x, y] if f is not a polynomial of degree > 2 in another polynomial g - Let f be

a non-constant closed polynomial in K[x, y]. If Ao = K[f] and trans.degreeKA = 2,

we calI ..4. a quasi gm - ~[-domain. Given three K-algebras A.1 ç A2 ç -4.3 , we say

A 2 is factorially closed in A 3 relative to .04,1, if for any a3 E A 3, al E A.1, ala3 E .4.2

implies that a3 E A 2 - A quasi Qm - .6.[-domain is a Ym - tl[-iomain if A is fac

torially closed in R relative to K[f]. In particular, we can prove (Prop. 5.3.15) that

E (tl[) is a Ym - tl[-domain when .6.[ has non-zero eigenvalues. 1'Ioreover, \ve proye

(Theorem 6.1.2) that a Ym - tl[-domain is a finitely generated K-algebra.

In this thesis we will also consider the converse problem, i.e., to classify aH Ym 

tl[-domains. Recall that a polynomial f has a multiple factor if there exists an

irreducible polynomial P and n > 2 such that f = pnQ for sorne polynomial Q.

vvnen for any c E I{, f + chas no multiple factor. the converse problem is solved

completely by the following theorem.

Theorem C. Let J< = I{, R = K[x, y], and fER a non-constant closed polyno

mial.

(C.l). Let A = EBnEZ An be a Qm - ~[-domain. Then there exists.À E [{[x, y]

such that An = {g E K[x, y] : tlf(9) = n.Àg} for aU nEZ.

(C. 2). Let A be a Ym - ~[-domain. Assume that f + chas no multiple factor~ for

any c E K. Then A. r-.J I([-,Y, Y; Z]/(..:Yl~ -a(Z)L as a J{-algebra, for some polyno'mial

a(T) E [{[T].

Conversely, we have

6See section 3.1 for the definition.
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(C.3). Let). E K[x, y] - {O}, and assume that Ix, fy have no common factor. Put

B n = {g E K[x, y] : .6.[(g) = n).g},

and B = ffinEZ B n . Suppose B i= B o· Then B is a quasi Qm - .6. f -doma·in.

Atloreover:

(C.4). Assume that a(T) is a polynomial of K[T] which is not a power of another

polynomial. Then there exists a closed polynomial f E K[x, y] and a quasi Qm 

D..f-domain A such that A t"J K[..,Y, Y: ZJ/(..-YY - a(Z)), as a K-algebra.

Theorem C.I gives the structure of a Qm - ~f-domain in terms of one element

). E K[x, y]. It is relatively simple ta prove (Lemma 5.3.5) that any f + c has

no multiple factors if ~f has non-zero eigenvalues. Then Theorem C.2 is a slight

generalization of theorem B.I as stated above. C.3 and CA are, in -a sense, converses

of Theorem C.l and C.2, respectively.

Theorem C will be proved in chapter 5.

1.6. In the general case \vhen f + chas a multiple factor for sorne c E 1<, the

structure of a Qm -.6.f -domain is more complicated. vVe have not solved this problem

completely sa far. vVe prove that

Theorem D. Let K = I{, and fER = K[x, yJ be a non-constant closed polyno

mial. Then

(D.l). Any Qrn - ~f-domain is an affine rational surface.

(D.2). Suppose ((f) = l (defined in section 5.3). Then A t"J (I«(2])WN as a K

algebra; where W N is a cyclic group of order lV acting on K[21.

(D.3). Given a K-algebra o/thefoTm (K(21)WN: where WN acts on I{[2I, there exists

f E K[x, yJ and a Qm - .6. f -domain /1 such that A. rv (K(2])wN as a I(-algebra.

Theorem D is proved in chapter 6.
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Chapter 2

Locally Nilpotent Derivations and

Theorern A

Our main purpose in this chapter is to study locally nilpotent derivations and to

prove theorem A.

2.1 Ordinary Derivations

Since ordinary derivations are our main object in this paper, it is appropriate to

devote the first section to a collection of observations concerning them. The main

result of this section is Prop. 2.1.9, which establishes the relation between T(8), lV(8)

and E(c}) for an ordinary derivation 8. Prop. 2.1.i, which has independent interest.

is used heavily to prove Prop. 2.1.9.

2.1.1. Ordinary derivations. Let K be an arbitraiT field of characteristic zero

and IÔn ] = K[Xl" .. 1 X n ] (the polynomial ring in n variables over K). An ordinary

derivation of K[n] is a non-zero K-derivation of [([nI such that K erC0), the ring of

constants of 0, has transcendence degree n - lover [(. For an ordinary derivation

6, there exists polynomials fI,' .. , in-l E J{er(8) such that [(er(8) is algebraic over

K[fl,'" Jin-d, that is, fl, ... , in-b gare algebraically dependent over K for any

9 E [(eT (5) . lvloreoverJ if K eT (cS) is an affine I{-domain, we may choose f 1, ... , f n-1

such that K e1"(5) is a finitely generated K[J1, ... ,in-d-module by Noether's normal-

li



• ization theorem.

Suppose <5 is an ordinary K-derivation of K[Xl'.'" xnL and Ker(a) is algebraic

over K[/b ... , ln-Il for sorne lb"" In-l E K[Xl~ ... , Xn], as above. By [31j, Lemma

2, then there exists a rational function h E K(Xl,.·" Xn) such that a= h~ft ..--,fn-L 7

where D,.ft,...,fn-l (g) = J(/l,' .. , In-t~ g)~ the Jacobian determinant of Il, .. " In-L' g

with respect to Xl, .•. , Xn, for aH 9 E I([Xl, ... , Xn].

2.1.2. Ring property. Let abe a J(-derivation of K[X1T ... ,xn ]. By the formula

we see that N(<5) is a ring. vVrite, for ..\ E R,

E(a,..\) = {g E K[Xl' ... ,xn] : (8 - ..\)g = ü}. _

Then

E(8, Ar) 0 E(8, À2 ) ç E(o, À t + À 2 ),

K

In particular, E(<5) (see 1.1) is a subring of I([Xl' ... ,xn }. Define

T(<5, À) = {g E I([xl~"" x n} : 3m > 0, (8 - ..\)mg = D}.

(2.1)

(2.2)

(2.3)

(2.4)

•

T(5) is a subring of K[xt, ... , Xn] by its definition (in 1.1).

2.1.3. Ker(5). The structure of I(er(e5) is very complicated in general. For

example, there are examples with K er(e5) fiot even finitely generated as a J{-algebra.

In fact, To determine Ker(e5) is closely related to Hilbert's fourteenth problem as

many authors have shown to us (see [37L [42J). Precisely, let G C GLn(I{) be a

connected algebraic group. Then there exists a J{-derivation 8 of K[Xl' X2, ... , In]

such that K er(<5) = K[XL, X2~ ••. ,Xn]G (see [37J, Theorem 6.4). In particular, the

counterexamples, such as Nagata's, to the fourteenth problem of Hilbert provide us

examples of derivation 0 with Ker(J) not even finitely generated as a J{-algebra.

l'vIore recently, Freudenburg, Roberts, and 1Hyanishi have shown us such examples of
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locally nilpotent derivations 6. See [18}, [22} and [42}.

2.1.4. The Jacobian Conjecture and the vVeak Jacobian Question. Let

6 be a K-derivation of [([Xl, ... , Xn]. If 6(g) E KX for sorne 9 E K[Xl' ... , Xn], 9 is

called a slice of 6. If 8(g) # 0 and Q2g = 0, we call 9 a local sUce of 6. See [16}. If c5

has a slice g, then lV(c5) = Ker(c5)[g) rv Ker(c5)[ll ([51], Prop. 2.1).

Now consider 6 = .0../,f = (fl, ... ,fn-d. If .6../(g) = J(fb.' .,fn-bg) E KX for

sorne 9 E K[Xl, ... ,In], and if K[fb ... , fn-Il is factorially closed in K[XI, ... , In}, l

then by [ID}, Corollary2.4, Ker(.0..f) = K[fl"'" fn-d, and lV(.6.. f ) = K(fl"" ,/n-l,g).

Recall that the famolis Jacobian conjecture:

Je: Suppose lb"" fn E [([Xb"" Xn) sat'isfy J(fl, ... , fn-l, fn) E [{X. Then

K[XI"'" X n) = K[/I'.'" ln].

Therefore proving the Jacobian Conjecture is equivalent to showing that .6..f is a

locally nilpotent derivation. vVe put forward a related question in this paper. vVe

called it the vVeak Jacobian Question, vVJQ in short. 2

WJQ: lfc5 is an ordinary K-derivation ofK[Xl"'. ,Xn], andT(c5) # Ker(8); when

is T(c5) I"'J [{[nl?

For general n, this question seems not attackable because it relates to many open

questions, such as giving an algebraic-geometric characterization of affine space, the

classification of locally finite derivations, and in particular, the classification of locally

nilpotent derivations. Those questions are still mysteriolis at present. As a matter

of fact, only very recently sorne definite results about locally nilpotent derivations on

K[3] were described in [9], [Il}, [16L [lïJ, and [12]. The main purpose of this paper is

to give the solution of vVJQ 'when n = 2.

In the remains of this section we shaH prove several general results which will be

useful in the sequel.

2.1.5. Proposition. Suppose L is an algebraic extension of K and c5 a l{-

lA subring A of an integral domain B is called factorially closed if for aIl x, y E B we haye
xy E A - {O} implies that x,y E A.

2\Ve state it as a question, not as a conjecture since we don't have strong evidence to believe it is
true or not, even if we assume the Jacobian Conjecture. Here, "weali' means: both the conditions
and the daims of WJQ are weaker than those of Je.
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derivation of K[Xl" .. , xn]. Let aL be the L-derivation of L[Xl'" ., x n] extending a

and T(aL) the L[ad-torsion submodule of L[Xi,' .. ' Xn]. Then T(a) ®K L ::: T(aL).

Proof. vVe first prove that T(aL) is the torsion K[6Ll-submodule of L[Xl~.'. ,In].

In fact, for any polynomial peT) E L[T] , its coefficients generate a finite algebraic

eÀi:ension Ki of [(. Let q(T) denote the product of aIl the conjugates of peT) in the

Galois closure of Ki. Then q(T) E K[T]. 1'Ioreover, for 9 E L[Xl l '." Xn], p(6L)g = 0

ilÎ1plies that q(aL)g = O. Hence, T(aL) is the torsion K(c5L ]-submodule of L[Xi~.'" xn].

For any 9 E T(aL), we choose a polynomial pet) = t m + c1tm
-

1 + ... + Cm. E K[t]

such that p(aL)g = O. vVrite aL = L aL (Xi) a~i 1 9 = L 9iL,...,in xiL ... x~n \Vith aL (Xi) E

K[Xl l ••• , Xn] by assumption. Then, by rewriting the equation (ar + c1c5T-1 + ... +

em)g = 0, we have a linear system of equations V for the coefficients 9iL,...,in defined

over K. The L-zera space 3 of this linear system is a tensor product of L with

the K-zero space of this linear system, by linear algebra. Then die stated assertion

follows.

The follawing lemma is weIl known. '\Ve state it here for easy reference.

2.1.6. LemIna. Let A be a l{-algebra. r5 a l{-derivation of A, and ,.\ E 1"':.

Then the sum LnEZ T(a, nÀ) is direct, that is: for any m ~ 2: L~l ai = 0 with

Uï E T(r5, ni),) and ni < ... < n m , ni E Z implies that each ai = D, i = 1, ... ,m.

2.1.7. Proposition. Let A be a 1<-algebra and an integral domain: 5 a l{

derivation of A. Suppose there exists À E K X and h E A such that (5 - Àfh =
0, (5 - À)h i= O. Let 9 = (a - À)h. Then g, h are algebraically independent over

Ker(a).

Proof. For any positive integer m > 1, we first prove that

Ta show this, we note that (2.5) is true when k = 1 since (5 - mÀ)hm = r5(hm ) 

mÀhm = mhm-l(a(h) - Àh) = mghm- 1• Suppose the formula (2.5) holds for any

3 L-zero space is the solutions of this linear system in L, for any field L .
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• k <m. Then

(6 - mÀ)k+lhm - m(m - 1) (m - k + 1)[(8 - mÀ)gkh771
-

k]

- m(m - 1) (m - k + 1)[6(gk)hm - k + gk6(hm - k ) - mÀgkhm - k ]

_ m(m - 1) (m - k)gk+lhm - k- 1•

Therefore (2.5) is proved. In particular, for any positive integer m > 1, we have

(when k = m)

(2.6)

and then

vVe next prove that, for any integers i, j E Z,

E(5, iÀ) 0 T(6, jÀ) ç T(8, (i + j)À).
K

It suffices ta prove that

(2.7)

(2.8)

(2.9)

if (0 - Àda = 0 , and (8 - À2 )nb = 0, n > 1. vVe go by induction on n. vVhen n = 1.

(2.9) is true. Suppose (2.9) is true for n, and suppose that (6 - À2 )n+lb = O. Let

c = (8 - À2 )b. Then (6 - À l - /\2)n(ac) = 0 by induction hypothesis. On the other

hand, it is readily seen that (5 - À l - À2 )ab = ac. Henee (8 - Al - "'\2)n+l.(ac) = O.

VVe have thus proved (2.8).

Now we are in the position ta prove Prop. 2.1.7.

Given a relation

L ai,jgihi = 0, ai,j E Ker(a),
i,j

(2.10)

•
ta prove Prop. 2.1.7, it suffices ta show that each ai,j = O. Since ai,jgi E E(o, iÀ),

ai,jgihi E T(o, Ci + j)A) by (2.7) and (2.8). By Lemma 2.1.6, for each positive integer
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• m, we have

L ai,jgihj = O.
i+j=m

(2.11)

vVrite bk = ak,m-kgk, k = 0: ... 1 m. Then bohm + b1hrn- L+ ... + bm = o. For any

positive integer k 1 m with k ~ m, we shaH show that

(2.12)

vVhen l = l, (2.12) is evident since bm-k E E(61 (m - k),'\). Suppose the formula

(2.12) holds for i < k. Then

(5 - mÀ)i+Lbm_khk - (8 - mÀ)(k(k - 1) ... (k - i + l)bm_kgihk-i

_ k ... (k - i + 1)am_k.k[6(gm-k+ihk- i ) - :rtÀgm-k+ihk-i]

- k(k - 1) (k - i + l)(k - i)brn_kgihk-i-l(6(h) - Àh)

- k(k - 1) (k - i)bm_kgi+Lhk-i-l.

vVe have thus proven (2.12). In particular1 'we have (when l = k)

(2.13)

and then

(2.14)

•

Therefore, acting with (8 - mÀ)m on both sides of the equation bohm + ... + bm = O~

we obtain m!bohm = O. Hence bo = o. Acting with (6 - mÀ)k-l on the equation

b1hm
-

1 + ... + hm = 0, we have bl = O. By repeating this procedure, we see bk = 0 if

m > k. Renee ai,j = 0, for an i, j. Sa the proposition is proved.

2.1.8. Remark. Suppose 6 is a K-derivation of R = K[x, yL and Ker(J) = [(.

Assume T(61 À) =1= E(6, À) for sorne À E [(X. vVe daim that the derivation J is

determined by T(c5 1 À). In faet, ehoose h E T(8:..\) - E(8, À) with (8 - À)2h = O. Let

9 = (8 - À)h. Then g, h are algebraically independent over I~er(c5) = [< by Prop .
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• 2.1.7. Hence K(x, y) is an algebraic extension of K(g, h). Since charK = O~ any

K-derivation on K(g, h) can be extended uniquely ta a K-derivation on K(x, y). In

particular, the derivation 0 on K[x, y] is determined by o(g) = )..g and o(h).

"VVhen A = K(xl1 ... ,xn ], and 0 is an orclinary J{"-derivation on A, Prop. 2.1.7

can be used to determine the relation between T(o), E(o) and N(o).

2.1.9. Proposition. Let K be an algebraically closed field and 0 an ordinary

derivation of K[xr, ... ,xn ]. Then either T(o) = lV(O) or T(eS) = E(eS).

Proof. By [81: Theorem 3.2 (The spectral decomposition theorem) ,

and

"VVe first prove that

T(o) = ES T(eS, /\)
ÀEK

E(o) = ES E(eS, /\).
ÀEK

T(eS, À) = E(eS, À)

(2.15)

(2.16)

(2.17)

for aH À E K X
• Suppose that equality is not true. Then there exists a À E K X

,

h E K[X1"'" x n ] such that (0 - À)h -1= 0, (eS - Afh = O. Let 9 = (0 - À)h. Then by

Prop. 2.1.7, g, h are algebraically independent over Ker(cS), which is impossible since

Ker(o) contains n - 1 algebraically independent elements. Then T(eS, /\) = E(eS, /\)

for aH À E K X
•

By (2.15) and (2.17)~ T(c5) = lV(c5) +E(eS). If bath T(c5) i= IV(eS) and T(eS) -=1= EecS)

hold, then Ker(eS) is strictly contained in J.V(eS) and in E(o) because

E(<5)n_N"(c5) = K er(o). So there exists non-constant polynomials gr, g2 E K[Xl' ... , X'nL À E

K X such that (<5 - À)gl = 0, eS(g2) -=1= 0, and (f2(92) = O. Thus

(2.18)

The last formula contradicts the fact that T(eS, À) = ECeS, À) as we have just proved.

Therefore, Prop. 2.1.9 is proved.

• 2.1.10. Remark. Suppose A is a finitely generated K-domain with Krull-
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• dimension 1 and K = K. Let 8 be a non-zero K-derivation of A. Then for aIl

À E KX, T(8, À) = E(8, À)~ by Prop. 2.1.7. Renee T(8) = E(lS) + lV(8). Then either

T(lS) = lV(8), or T(8) = E(8).

Reeall that a subring A of B is integrally closed in B if b E .4., for any b E B

wmeh satisfies bn + albn
-

l + . _. + an = 0 for sorne ai E .4.~ i = l, ... , n, n 2: 1. If

an integral domain A is integrally closed in the quotient field of A, we say that il is

normal.

2.1.11. Proposition. Let 8 be a [(-derivation of K[Xl~ . _. ,xn ]. Then lV(5) is a

normal domain.

Proof. Let f, 9 E N(5), 9 -# O~ with

( !)n (!)n-l -L - 0 "-T(-)- + Cl - + ... , en - ,Ci E 1v à .
9 9

(2.19)

Since K[xl' ... , Xn] is normal, it follows that f E K[xr, ... , Xn]. Consider the ring ho

momorphism WJ : K[Xl' ... ~ Xn] ~ K[xl~ ... , xn][[T]] defined by Wt5(f) = L~=O t5n~(lTn

eorresponding ta O. Extend Wt5 to qt(K[Xl, . - . ,xn ]) by \liJ(~) = :~~~~. Then, by (2.19)

( \liJ(!) )n ,Tr ( ) (W5(f) )n-l ,Tr ( ) 0
\Ir t5 (g ) + 'J! t5 Cl WJ (g ) + ... + 'J! 5 en = ,- (2.20)

•

where w5(f), Wâ(g), Wâ(Ci) E K[XI'···' Xn][TL i = l, ... , n. Sinee K[Xl' ... , xn][T] is

normal, :~~~~ E [([Xl, ... ,xn][T]. Therefore f E iV(o) by the definition of lV(5).

2.2 Locally Nilpotent Derivations

vVe work in the polynomial ring in two variables starting from this section. Let 5 be a

non-zero K-derivation of R = K[x, y]. Our main objective in this section is to prove

Theorem A.

2.2.1. I{er(o). vVe begin by reviewing sorne facts about [.eer(8), as follows.

Let 0 be a non-zero K-derivation of R. Then [(er(8) = K[f] for a polynomial

f E I{[x, y]. Nforeover, Ker(8) is integrally closed in R ([40L Theorem 2.8). Therefore

5 is an ordinaIj' derivation if and only if [{er(o) strietly contains K. Conversely, let
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A be a subring of K[x, y] containing K such that A. is integrally closed in K[x~ y] and

Krull-dim(A.) < 1. Then A = Ker(<5) for an ordinary K-derivation <5 ([40L Th. 3.4).

The polynomial f is studied in detail in [38]. In particular, f is a closed polynomial.

Note that f is a closed polynomial if and only if Ker(~f) = K[f].

The classification of locally nilpotent derivations on R follows from Rentschler~s

theorern [41J. For an extensive study of the autornorphisrn of [<[2I~ see [35J.

2.2.2. Theorem. Let <5 be a locally nilpotent derivation of R. Then there exists

<I> E A.utKK[x, y],p(T) E K[T] such that <5 = p(q>(x))~([>(x)'

2.2.3. Rank of ordinary derivations. Suppose 0 is a locally nilpotent deriva

tion. Then by 2.2.2: 0 is ordinary, rank(<5) = 1, 4 and J<er(o) = J<[f] for sorne

variable f. vVe say that f is a variable in K[x~ yJ if there exists another polynomial

9 E K[x, y] such that J<[x, y] = K[f~ g].

Conversely, suppose <5 is a K-ordinary derivation of K[x, y], and rank(o) = l.

Then K[X] C Ker(<5) for sorne variable J'y E R. By 2.2.1, K[...Y] ç K[f] for sorne

fER, and J'Y = p(f) for sorne polynomial peT) E [<[T]. "Vrite J<[J'Y: Y] = K[x, y]

for sorne polynomial Y E R. Sînce J(P(f), Y) E K X
, deg(p(T)) = 1.5 So f E K[J'Y].

Hence K er(0) = [<[J'Y]. This proves that rank(0) = 1 if and only if f is a variable.

Hence rank(o) = 2 for most ordinary derivations o.

2.2.4. Let <5 be an ordinary J<-derivation on R. Then by 2.1.1, 0 = hD.f for sorne

h E K(x, y) and f E K[x, yJ with Ker(5) = K[/]. It is natural ta ask when h is in

K[x, y].

"Vrite h = a(x, y)/b(x, y), where a, b E J<[x, y] and a, b have no common factor.

Then b 1 fx and b 1 fy· Hence, for <5 = h~f' if fx~ fy have no cornmon factor, then

h E J{[x, y].

~\'Ioreover, Ker(5) = Ker(D.f) = K[J] byassumption. Then / is a closed polyno

mial by 2.2.1.

4if ais a [<-derivation of K[Xl' ... , x n ), rank(8) is defined in the sense of [12), that is rank(J) is
the least integer r ~ 0 for which there e.'"àsts X·l , ... , X n E [<[Xl,'.' ,Xn ) satisf)"ing K[Xl,." 1 Xn ) =
K[X1 •••• 1 X n ] and [([Xl' .. " X n - r ) ç Ker(tS).

5\vllen we write deg(p(T),p(T) E K[T), we mean the degree of the one-variable polynomial
peT) .
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2.2.5. Special derivations. A K-derivation 6 of R is called special if 6 = h~f

• for sorne h E K[x, y] with 6(h) = O. If 6 is special, then K[f] ç Ker(6) = K[g]

for sorne polynomial g. Then bath f and h are polynomials in g. Say, / = Q:(g)~

and h = {3(g) for polynornials a(T), {3(T) E K[T]. Then 6 = ~u where u = 7(gL

7CT) E K[T] with 'y(T)' = a(T)'{3(T). 'vVe have thus shown that 6 is special if and

only if 6 = nu for sorne non-constant polynomial U E K[x, yJ.
2.2.6. Proof of A.l.

By 2.2.1, K er(8) = K[f] for sorne f E K[x, yI by 2.2.1. vVrite il. = iV(6) and set

S = K[f] - {O}. Note that

(ii) K(f) nA. = K[/].

Ciü) A is geometrically factorial over 1< (by assumption).

In fact, choose a local slice 9 E A of 6. Then for every element a E _4., there exists

elements bo, ... , bk E I(er(6) with boa = bl + b2g + ... bkgk- 1• Thus (i) follows. (ii)

follows from [12] 1.1 (2), since 6 is a locally nilpotent derivation of A.

Then by [451: Th. 2.4.2, or [36), Th. 1, we have lV(8) = [<[f][1J 1"..; [([2J. Then, we

have completed the proof of theorern A.1.

2.2.7. Example. \Ve shaH prove (A.2) by giving an example.

Suppose 6 = ~xmyn, with GCD(m, n) = 1, and 1 ::; m < n. vVe assert that

To show this, for a K-derivation 6, we define a function deg,r on N(8) by

deg,r(f) = min{n : on(f) = O} - 1

(2.21)

(2.22)

if f E N(6) is non-zero, and we put dega(O) = -00. It is weIl known that deg§ is a

•
degree function, i.e.,

deg,r(a + b) ::; dega(a) + deg,r(b),
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• and

(2.24)

and

deg(O) = -00, deg(l) = 0, deg(f) E Z. (2.25 )

for any f =1= a (see [31], Lemma 2). Since GCD(m, n) = 1, then Ker(8) = K[xmyn].

D~fine a map 'l/J : Z; -r Z~ by 1f;(i,j) = Cm +i -1, n + j -1). Let A o = {(mk, nk) :

k E Z+} where Z+ = {D, 1,2, ... ,}. For any f E ]([x, y], by induction on dega~ \ve

have
k

degJ(f) = k~ Supp(f) ç U lIT-LeAn).
l=O

(2.26)

Therefore lV(8) is generated by monomials xm(k-r)+ryn(k-r)+r, where k, T E N, and

m(k-r)+r > O,n(k-r)+r 2: O. Ifk 2: T, thenxm(k-r)+ryn(k-r)+r = (xmyn)k-r(xyy:

if k < r, then

Hence lV(8) = K[xrnyn,xy,xn-rnJ. As a surface, lV(8) is the hypersurface uv = w n

with a singularity. Thus, lV(8) ~ K[2I. vVe have thus shown (A.2).

2.2.8. ga-Action. Let J'y be an affine I{-variety" and A. = K[X]. As is weIl

known, an algebraic Ça-action CT : Ça X ./Y -r Ll. induces an algebra homomorphism

4J : A -r A[t],if;(P) = p(o-(t,x» E A.[tJ. Then 8 = :tlt=o(p(o-(t,x») is a locally

nilpotent K-derivation on A. Conversely, a locally nilpotent K-derivation 8 on A.

defines an aigebra homomorphism q)a : A. -r A[t] by

( ') .)-)___ 1

•

and this yields an algebraic ga-action on Spec(A.). See [53].

By the definition of N(oL 0 is a locally nilpotent derivation on lV(eS). But lV(eS)

may nat be a ma.ximal subring of J{[x, y] \Vith a Ça-action such that the ring of

invariants is K er(eS), as is shawn by the following exampIe: Let eS = ~xy3. Then

N(eS) = ]([xy3,x2,xy] and Ker(8) = ]([xy3J by 2.2.7. Let a = ~Ê3.XlJ3. Note that
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• xy2 E N(8) and xy2 f/; N(o).6 Hence, lV(6) is not a ma..'CÎm.al subring of [<[x, y] with

a ga-action with the same ring of invariants as K eT(0).

vVe recall a beautiful theorem about the characterization of K[2j for completeness.

See [341, [43] and [49J.7

2.2.9. Aigebraic characterization of the affine plane. Let [{ = K, A a

regular, facto rial affine K -domain with trans.degKA. = 2. If A. ç I{[xl: ... , Xn] l''.J

J{(nJ for some n, then A. r-.J [{(21.

2.2.10. Aigorithm. to find lV(6). vVe give an algorithm to compute lV(rS) as

follows. Suppose lV(6) i= Ker(<5L and Ker(6) = [([I] as above. Choose and fi..x a

local slice 9 E lV(6). Let d = o(g). Put R(o) = K[I, g] and define, by induction on

m, that R(m) = {h E K[x, y] : dh E R(m-l)}' By induction on deg§, we see that

deg§b = n implies b E R(n-l}. Therefore

CXl

lV(c» = U R(m).
m=O

(2.28)

•

NIoreover, each R(m) is a finitely generated K-algebra. If lV(rS) is a finitely generated

K-algebra, then lV(O) = R(m} for sorne m. On the other hand, it is hard to see whether

or not J.V(6) is a finitely generated [{-algebra, even if <5 is a special derivation. By

the same argument as in [40L we obtain that [{(f, g) n [([x, y] is a finitely generated

K-algebra, where 9 E J.V(6) is an arbitraIT local slice of o. Br (2.28), we have

N(c» = K[x, y] nK(f)[g]. It is not clear at aU whether K[x, yJ nK(f)[g] is frnitely

generated or not.8

VVe conclude this section with a conjecture about the structure of lV(D..f). By

the examples in 2.2.7 and our following results about the structure of E(D..f) (see

Theorem B), it seems reasonable to make the following:

2.2.11. Conjecture. For any non-constant polynomial f E K[x, y] such that

6In fact, by a method as above in 2.2.7, N(8) =: K[x,xy, xy2, xy3].
7 wliyanishi proved, by a similar method in proving 2.2.9 in [34], that J{er(o) e= [([21 if 0 is a

non-zero locally nilpotent derivation of [([x, y, z]. There e.xists an e.~tensive recent study of 10
cally nilpotent derivatïons of [(C3) by Daigle and Freudenburg [11], [li] and [12]. It would be very
interesting to e.xtend the results of this section to the locally nilpotent derivations on [([31.

8Let t5 be the derivation of [«(x, y) that e."'Ctends o. The point here is that NeS) may not be a
field.
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• N(~f) # Ker(~fL J.V(~f) "J K[X, Y, Z]/(.lYY - a(Z)), as a K-algebra, for some

a(T) E K[T].

Surfaces of the forros J'YY = a(Z) and their automorphisrn groups have been

studied extensively. See [30].

2.3 Locally Finite Derivations

In this short section we derive a cnterion for T(~f) to equal Ker(.6.. f ). vVe shall

examine the condition T(~f) # J(er(.6..f) more closely in chapter 3 and chapter 4.

2.3.1. Classification of Locally finite derivations. A.Van den Essen ([15])

classifies the locally finite derivations 0 of R as follows:

There exists P, Q E I<[x, y] such that K[x~ y] = K[P, Q] and 0 is one of the

following:

(i) 0 = (aP + bQ)~p + (cP + dQ).6..Q , a, b, c, d E K;

(ü) 0= ~Q +aQ~p,aE K;

(iii) cS = aP.6..Q + (amQ + pm).6..p ,m EN;

(iv) 0 = f(P).6. p •

In the case of 1< = n, the real number field, and K = C, the- complex number

field, these results were proved in [6] and [8] before by a different method.

Let f = Li,j ai,jXiyj E R = K[x, y]. vVe define f+ = L(ï,j)ESupp(f),i+j=deg(f) ai,jXiyj.

vVe shaH study under what condition T(o) = J{er(o).

For this purpose, we need

2.3.2. LeIIlIIla. Let 0 be an ordinary derivation of I{[x, y]. Suppose, fO'r any

g, h E T(5), deg(g) = deg(h) implies that g+ = ah+ for some a E KX. Then T(eS) is

a finitely generated Ker(5)-module.

Proof. Let Ker(o) = I([f] and n = deg(f). \iVrite vVj = {deg(g) : 9 E T(8)}.

Then lï{lj is closed under addition. Let vVj = {m mod n : m E liVf }. Then vVf is an

subgroup of Z/nZ. So liVf is a cyclic group of sorne order s. vVrite

vVf = {O = ml,"" ms}, and choose mi as the least number in liVf whose mod n class

• is equal to ffiï. Choose Yi E T(5) with deg(gi) = mi- By induction on n = deg(g), we
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•

shaH show that 9 E K[f]gl + ... + K[f]gs for every 9 E T(a). In fact, let deg(g) =

k, k = mi mod n for sorne i. Since k > mi, k = 'mi + nl for sorne l ~ o. Both 9 and

flgi, with the same degree, belong to T(a), and have, by assumption, g+ = a(flgd+

for sorne a E KX. By induction hypothesis, 9 - aflgi E K[f]gl + ... + K[f]gs, whence

9 E K[f]gl + ... + K[f]gs. Therefore T(6) = K[f]gl + ... + K[f]gs.

2.3.3. Proposition. Suppose K = K. Let § be an ordinary derivation of I{[x~ y].

Then the following assertions are equivalent:

(i) T(6) = K er(o).

(ii) For every g, h E T(6L either (g+)n = a(h+)m, or (h+)n = a(g+)m for some

a E K X
, m > 1, n > 1.

(iii) For every g, h E T(aL if deg(g) = deg(h) , then g+ = ah+ for. sorne a E K X
•

Proof. Let Ker(cS) = K[f] as given in 2.2.1. Clearly (i) =?- (ii) => (iii). vVe shaH

prove the part (iii) => (i). Suppose (iü) holds. Then T(o) is a finitely generated K[f]

module, with generators 91, ... ,gs by Lemma 2.3.2. If T(6) = lV(6), choose m such

that 6m (gi) = 0, i = 1, ... , s. Then 6m lV(O) = O. If N(eS) #= 1<er(o), choose a local

slice 9 of 6). Then angn #= 0 for any n. Therefore, lV(6) = Ker(6). If T(o) = E(o),

and E(o, À) #= 0 for sorne À E KX. Then E(o, nA) =1= 0 for any nEZ, and E(cS) is

an infinite direct sum of non-zero J{er(o)-modules. In particular, E(J) is fiOt finitely

generated as a K er(6)-module. Thus E(0) = K er(6). By Prop. 2.1.9, (i) is proved.

vVe calI T(o) =1= Ker(6) the weak Jacobian condition. \Ve shall investigate the

weak Jacobian condition from now on.
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•

Chapter 3

The Weak Jacobian Condition (1)

This chapter, together with the next chapter, is devoted to developing the prelirninary

results for proving Theorem B. For this purpose~ we shaH investij?;ate in detail the

weak Jacobian condition. vVe shall assume that K = K throughout this chapter

and the ne:-..-t chapter. The purpose of this chapter is to study the leading forms of

polynomials under the weak J acobian condition. vVe shaH first discuss the leading

forms of polynomials under sorne special conditions in section 3.1. Then \ve prove

theorem 3.2.2 in section 3.2: which gives us the relation between these conditions

and the weak Jacobian condition. Prop. 3.1.10: Lemma 3.1.11: Theorem 3.2.2 , and

Lemma 3.3.3 will be used in proving CoroHary 3.2.4, 3.2.5~ Prop. 3.3.5 and Prop.

3.3.8, which in turn will be used in proving Theorem 4.3.1.

3.1 Z-Grading of K[x, y]

The purpose of this section is to study standard Z-gradings on K[2]. "'Fe divide

the Z -gradings into three cases: Elliptic: Parabolic: and Hyperbolic Z -gradings.

Proposition 3.1.8, 3.1.12 and 3.1.13 are somewhat technical results of this section.

which provide us with the precise forms of the w-homogeneous polynomials f in

[<[x, y] (see 3.1.5 for its definition) under the condition that !:lI has a w-homogeneous

local slice in [([x, y]. Proposition 3.1.10 and Lemma 3.1.11 are useful to prove these

results and other results in subsequent discussions. The praof of Prop. 3.1.10 and

31



• Lemma 3.1.11 rests on a careful study of polynomial solutions of certain ordinary

clifferential equations.

3.1.1. Filtrations. Let us first briefiy recall the basic properties of a filtration

of a K-algebra A.

Let A be a K-algebra. By a Filtration of .4 we rnean a sequence of K-linear

s~bspaces of A, :F = {FiA : i E Z}, satisfying:

(f.1). FiA. ç Fi+lA (ascending).

(f.2). A = UiEZ piA (exhaustive), and niEZ piA. = {O}, 1 E F°A. - F-lA..

(f.3). For ail i, j E Z, (FiA. - Fi-lA)(FiA - Fi-lA) ç (Fi+i il. - Fi+i- l A).

Define deg : .4 -+ Z U {-oo} by deg(a) = i if and only if a E FiA - F i -I.4, and

deg(O) = -00. Then deg is a degree function in the sense of 2.2.8. Conversely, given

a degree function deg : A. -+ Z U { -00}, let

piA. = {a E A : deg(a) < i}. (3.1)

•

Then :F = {PiA : i E Z} is a filtration of A.

Given a filtration :F = {PiA : i E Z} of A: the associated graded algebra is

GrF.4 = EBiEz Gr~A, where Gr~A. = piA./F i - 1.4.. GrF.4. can be identified with the

algebra of Laurent polynomials {L~+l Jiui}: where h. is either zero or is equal to

grif := fi + pi-l.4. E Gr~.4. for sorne fi E Fi A. (See [53], section 7.2). Let

gr : A --+ .4. be the homomorphism of multiplicative semigroups defined by grf = j.

Suppose A is a finitely generated K-algebra and 5 a K-derivation on ./1.. Then

for any filtration :F = {FiA: i E Z} of A, there exists an integer kEN such that

8(FiA) C F i+k A for an i E Z. l Denote by deg8 = ka the minimal such k. Define

8F = gr8 : GrFA. -+ GrFA. by: 8F(!) = 5([) + pi+ko-l A for an [ E FiA - F i - l A,

and then naturally extend JF to the whole algebra Gr:FA. 8:F is a K-derivation of

GrFA (See [31]). vVe may omit the symbol :F if the filtration :F is already specified.

3.1.2. Z-Gradings. vVe shaH study a subclass of filtrations, that is Z-gradings.

Let A be a finitely generated [(-algebra, let E be an additive semigroup. By a

lOne may prove this fact by induction on the number of generators. See [53], Exercise ï.lO.
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• I;-grading of A we mean a decomposition:

(3.2)

•

with ..4.yAo c Ar+5 and each A-, a K-subspace of A. The :E-grading is called non

trivial if A =1= A o• If ~ is isomorphic ta a sub-semigroup of Z: a ~-grading is called

a ·z-grading. In this section we shall discuss non-trivial Z -gradings.

A Z-grading of A induces naturally a filtration of .4: as follows. Let r be a

Z-grading of A. vVrite Ar,i = L5$i A5' Then {A.r,i: i E Z} is a filtration of A..

The associated graded algebra corresponding with this filtration: that is Grr(A) =

LiEZ(Ar,dArti-d is called the associated graded algebra with the Z-grading r. The

induced K-derivation gr on Grr(A) is denoted by Jr . Below, GrrA always means

the associated graded algebra of A with respect to a Z-grading r,· GrrA. means the

associated graded algebra of A with respect ta a filtration F. J\t[oreover, gr(f) denote

the corresponding element of Grr(A.) and ft the corresponding element of Grr .4, for

every f E A. Note that Grr(.A.) is naturally isomorphic to A as a graded ring, but br

may differ from 8.

The next lemma tells us the relation between 8 and its induced -derivations br, Jr

on the associated graded algebras.

3.1.3. Lemma. (1). Suppose 0 is a locally nilpotent derivation of A. Then Jr is

a locally nilpotent derivation of Grr C-4.).

(2). Suppose 0 is a locally finite derivation of A of degree i= O. Then Jr is a locally

nilpotent derivation of A.

Proof. (1) was proved in [31), Lemma 4. (2) was proved in [15]. See [15] for the

definition of the degree of derivations.

3.1.4. Standard Z-gradings. For the purpose of this paper, and by the result

ta be explained Later (theorem of Bialynicki-Birula), we will study the standard Z

gradings.

Let A rv I([n] be a polynomial algebra with n va.riables on K. A standard

Z -grading of A is a Z -grading snch that there exists variables Xi, 1 < i < n with
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•

A = K[Xl"." x n ) and given by making each variables Xi a homageneous element

of certain weight Wi E Z. See [19], [44}. '\tVhen the choice of Xl, •.. ,Xn is clear, we

denote these standard Z-gradings by r = (Wl"'" wn ). A standard Z-grading of

K(n} is the same as the weight degree function in the sense of Zaidenberg [53).2

For n = 2, Bialynicki-Birula ([3D proved that any Z-grading on I{[2j is a standard

one. It is highly remarkable that ([23}, [24J) this is true also for the case n = 3, which

is equivalent to a wen known conjecture that every Qm-action on C3 is linearizable.

3.1.5. Z-gradings on K[21. Now. we more closely examine the Z-gradings of

K[2j.

Suppose n = 2 and R = [([21. Any Z-grading r of R comes from a weight

W = (Wl, W2) E z2 and a choice of coordinate system {x, y}, that is R = K[x, y).

'\tVrite deg['(x) = degw(x) = Wl, and degr(Y) = degw(y) = W2. vVe define the w-weight

of any monomial xiyi ta be dw(xmyn) = mWl + nW2 and dw(f) = max{dw(xmyn) :

(m, n) E Supp(f)}. '\tVrite f;; = ft = 'Ewlm+w2n=d
w

(f) am,nxmyn to denote the leading

terms of f under the Z-grading r. f;; is also called the w-Ieading form of f. vVhen

W = (1,1) we shall write f+, deg(f) to denote f;;, dw(f) respectively.

Recall that f is w-homogeneous if f = f;; ([1]). The polynomials f and gare

called W -dependent if J (f;; ,g~) = O. See [1]. In our whole discussion belmy we shan

assume that GCD([WIL IW2!) = 1 since the corresponding leading terms are the same

for the weights W = (Wl, W2) and nw = (nwl, nW2), n ~ 1.

Define deg(w) = Wl + W2' vVe shan restrict ourselves to the case that deg(w) ~ 0

and divide it into the three following cases.

Elliptic : WlW2 > 0

Parabolic : WlW2 = 0

Hyperbolic : WlW2 < 0

The following easy while very usefullemma belongs ta S.S.Abhyankar [1]. 3

3.1.6. Lemma. (1). Suppose W = (Wb W2) E Z2 and assume that f and gare

2A weight degree function on [([nI is a degree function d such that d(P) = max{d(m)}, where
p E [([nI is a non-zero polynomial, and m runs over the set of all monomials appearing in p.

3'Vhen we write J(/,g) we mean the coordinate system of K[2I has been given and the Jacobian
determinant is computed with respect to the given coordinate system.
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•

two w-homogeneous polynomials. Then J(f, g) = 0 if and only if fd ll1 (g) = agdw(f) fOT

sorne a E KX. In particulaT, if dw(f) = dw(g) =1 0, then f = ag for sorne a E I<x.

(2). Given W = (WI, W2) E Z2 and f,g E R, suppose J(f;;,g;) =1 o. Then

J(f,g)-;; = J(f~,g:;)·

3.1.7. Definition. A. polynomial fER = K[x, y] is a stable polynomial if for

every elliptic Z-grading r on R, ft is a monomial. vVe note that f E K[x, y] is a

monomial if and only if ft is a monomial for every standard Z -grading r on R.

vVe shaH study Z -gradings on R in this section and the neÀ'"t section. vVe shall

also study, for technical reasons, the hyperbolic Z-gradings on K[x, yl/m, y-l/m] in

the last section of this chapter.

The elliptic Z-gradings were studied in detail by Abhyankar [1] in the following

proposition.

3.1.8. Proposition. (Elliptic). Suppose both WI and W2 ar; positive integers,

W = (Wl, W2). Suppose f and J(f, g) are w-dependent and J(f, g) =1 o. Then J:; =

au~tu~:!, il, i 2 > 0, il + i 2 > 0, a E K X
, where

(ii) if Wl > W2, then Ul = x + ayWtlw2, U2 = y, a E 1<; moreoveT: if a =1 D, W2 1 WI;

(iii) if W2 > Wl: then UI = x, U2 = Y + axWt /W2 , a E K; moreover, if a::f; 0, Wl 1 W2·

Proof. This is a weIl known result of S.S.Abhyankar. Although it was stated

under the Jacobian condition that J(f, g) E KX for sorne 9 E R, its proof works

under the weak condition that f and J(!, g) are w-dependent. See [1], Th. 18.13. In

particular, if Wb w2 > 1, and if they are coprime, then f;% is a monomial.

3.1.9. A question.

In order to study the Parabolic and Hyperbolic cases, we need to solve the follow

ing question.

Given two r -homogeneous polynomials f, 9 E R: if 9 is a local slice of Do!, what

is f?

The follmving proposition is the first, but most important step to solve this ques

tion.
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• 3.1.10. Proposition. Let f, 9 be two r -homogeneous polynomials in K[x, yL
where r = (m, n) E Z2 with m + n > O. Suppose 9 is a local slice of ~f' and assume

that s = dr(f) > O. Let h = fg/~f(9). Then J(f, h) = f and h E I("[x, y].

Proof. Since J(f,J(f,9)) =0, J(f'~fl(g») =0. Then

J(f,h)

}vloreov,;, h is a r-hornogeneous function of r-degree m + n. The crucial point of

this proposition is to show that h E K[x,y]. To show this, by the Euler equations for

r -hornogeneous functions f, h, we have

af af
sf = mX-a + nY -a '

x y

ah ah
(m + n) h = mxax + ny ay .

Then we obtain (by using the assumption that m + n > 0 and s >0)

and

(3.3)

(3.4)

(3.5)

(3.6)

vVe only prove the first formula (3.5). The second one is done similarly. The left hand

of (3.5) is

•

a f m +n f m+n - 1 af ah
ax (-,;:;-) = hs+1 [Cm + n) ax h - sfax]·

Calculating (3.4) x M- (3.3) x ~~ l we find

af ah
Cm + n) ax h - sfax = nyJ(f, h) = nyf·
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• Renee (3.5) is proved.

Consider h-l as a rational function of y over K(x). Suppose h ~ [((x) [y]. Let

a(x) E K(x) be a root of h-l of order v > 0 and a root of f of order 'Ur > o.
Then by fonnula (3.6): (m + n)v' + sv - 1 = (m + n)v' + (s + l)v if a(x) =;f O~

and (m + n)v' + sv - 1 = (m + n)v' + (s + 1)v + 1 if a(x) = O. Hence v = -1 or

v = -2. This contradiction shows that h E K(x)[y]. Similarly: h E K(y)[xL Hence

h E K(x)[y] n K(y)[x] = K(x, y]. The proposition is proved.

The next Lemma will be useful in the subsequent discussion.

3.1.11. Lem.rna. Suppose G(t) E J((tL H(t) E K[t] satisfy

dG(t) _ cGCt) K X

dt - H(t) , cE

Then we have

(i) If GCt) E K[t], then H = a(t - aL G = b(t - a)m for some a1 b E I{X: QI. E

J{:m > 1.

(ii) Bach root of G is a root of H.

(iii) Each root of H is a simple root. 4

dG = t Ui G = cG.
dt i=l t - ai H

50

(3.9)

(3.10)

•

H( ) = (t - ad ... (t - Œk)
t c pet) ,

where pet) = ulCt - 0'.2) ... Ct - ak) + ... + Uk(t - al) ... (t - ak-d. 'vVe shaH show

that pet) is a non-zero constant in K. In fact, Suppose pet) kas degree ~ 1. Then pet)

divides (t - ad ... (t - ak) since H(t) E I{[tJ. But p(ad =/= 0 for each i = L .... k.

This is a contradiction. Therefore pet) E K X and H(t) = d(t - ad ... Ct - ak) for

4For a rational function CeT) E [{(T), by the mots of C we mean the union of its zeros and
poles.
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• sorne d E K X
• Sa both (ü) and (iii) are proved. For (i), suppose G(t) E K[t] , and

assume that G has k > 2 roots. Then G(t) = rr~=l(t - ai)Ui,Ui > 1, and k ~ 2.

Therefore, the leading term of pet) is CUI + ... + u/c)tk - 1 =1= O. This contradiets the

faet that pet) E KX. Henee G(t) has only one zero a E K. Sa H(t) = a(t - a), for

sorne a E K X
, a E K. The proof of Ci) is eompleted.

The next two propositions solve the problem in 3.1.9 for parabolie Z-gradings

and hyperbolie Z -gradings.

3.1.12. Proposition. (Parabolic). Suppose w = (WbW2) = (1,0). Let f,g

be two w-homogeneous polynomials such that 6.f (g) =1= 0 and .6.7(g) = O. Assume

that r = dw(f) > 1. Then either f = axr(y - o:)i, a E K X
, Ci E K, i < r, or

f = xr(y - a)iF(y), a E I~, i > T, F(y) E f{[y] with F(a) =1= O.

The crucial point in this proposition is that i =1= T in both cases. Hence under an

automorphisrn <I> of R, the degree of iJ?(f) respect to x is strictly less than the degree

of <I>(f) with respect to y.

Proof. vVrite f = xrP1(y) and h = fgj~f9 = xH(y). Then by Prop. 3.1.10,

F1,H E K[y]. Put G = HrjFI E K(y). Then by (3.6), we have

dGldy = GIH. (3.11)

•

vVe consider the following t'wo cases.

Case 1. Suppose G(y) E K[y]. Then H = a(y - a), a E K X by Lemma 3.1.1l.

Therefore FI = bey - a)i, b =1= 0, and i < T because G = EJ.; E K[y].

Case 2. Suppose G(y) rt f([y]. Then there exists a root a of arder m of FI and

of arder n of H such that m > Tn . Since each root of H is a simple foot, by Lemrna

3.1.11, we have n = 1. Sa m > T. Th.us FI = (y - O:)ZF(y) with i > T, F(o:) =f:. O. The

proof is finished.

3.1.13. Proposition. (HypeTbolic). Suppose W2 < 0, WI + W2 > O. Let f, 9

be two w-homogeneous polynomials in K[x, y] such that .6./(g) f; ° and ~}(g) =
O. Assume that T = dw(f) > O. Then eitheT f is a monomial, or f = (x 

O'.yW1/w?)iy(r-w1i)/w?F(z), where 0'. E K,z = xy-W1/W2,i EN, 1 < i < (r - w I i)jw'2
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• and F(z) E K[z], F(a) =1= O. Note that it is possible that WIl ï - wli ~ ZW2 .

This proposition asserts that either f is a monomial, or in the enlarged algebra

R_W2 = K[x, yl/w!, y-l/w2 ], and after a "restricted" automorphism if? of R_W2 (to be

defined later in 3.3L the degree of ~(f) with respect ta x is strictly less than the

degree of <p(f) with respect ta y.

Proof. vVrite z = xy-W l/W2 , f = yr/w2F(z), and let h = yl+(wl/w!)H(z). Then

F, H E I([z] by Prop. 3.1.10. Put G = Hr / F W 1+w2 E I«(z). Then (3.6) implies that

dG/dz = -w2G/H. (3.12)

•

By Lemma 3.1.11, each root of H is a simple root and each root of G is a root of

H. Since WI + W2 > 0, each root of F is a root of H.

The proof consists of the following three cases.

Case 1. Suppose G E [([z]. Then by Lemma 3.1.11, G = a(z - a)S, and H =
b(z - a) for some a E K, a, b E [(X, s 2:: 1. Since h = bxy - bay l+(W 1/W2) E [([x. y]

by prop 3.1.10, we obtain a = 0, h = bxy. By using ~f(h) = f, we see that f is a

monomial.

Case 2. Suppose F(z) = a(z -a)m for sorne m 2:: 1. Then f = ayT/W2(xy-Wl/WO!_

a)m E K[x, y]. Since a rnyr/w2 and a m - l (xy-Wl/w2)yr/w2 belong to K[x, y], we obtain

a = 0 . Thus f is a monomial.

Case 3. At last, suppose none of above holds. Then F possesses at least two

distinct roots al, Œ2 of multiplicity ml, m2 > 0 and (since G ~ [([zJ) there exists

one, al, say, that satisfies ml(wl + W2) > r since each root of H is a simple root.

vVrite F(z) = {3 ITi=l (z - a-i)mi
, s > 2, mi 2:: 1, ai =1= aj and {3 -f O. So f = (x 

ayWl/W2)iy(r-Wli)/w2F(z),a = al, with 1 ::; i < (r - w li)/W2 , F(z) E [([z], and

F(a) =1= O. Thus the proposition is proved.
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• 3.2 The "W"eak Jacobian Condition on K[x, y]

•

The purpose of this section is to study the relation between the weak J acobian con

dition on f and the condition that .6. ft has a homogeneous local slice for the grading

given by w = (W1 7 W2) studied in detail in the last section. The main result of this

section is Theorem 3.2.2 7 which asserts roughly that if f satisfies the weak Jacobian

condition, then .6. f;X has a homogeneous local slice. Together with the results in the

last section, Theorem 3.2.2 Yields Corollary 3.2.4 and Corollary 3.2.5. vVe note that

Corollary 3.2.5 is essentially used in the proof of theorem 4.3.l.

Consider a subalgebra B C [(en) = K(Xl~'" ,xn): and a I<-derivation aof [{(nj

with a(E) C B. Then 5 induces a K-derivation of B. By 3.1.2, a Z-grading r on

K(n) induces a filtration of l«n) 7 and then a filtration :FB = {FiK(n) n B} of B. The

associated graded algebra is denoted by GrF,r(B), and 5 induces -a K-derivation of

GrF,r(E) by 3.1.1. The corresponding statement is faIse, in the case of Z-gradings~

Le. a Z-grading on K(n) doesn't always induce a Z-grading on B.

Before proving theorem 3.2.2: we first recall a highly interesting resuIt of ~vIakar

Limanov [31] Lemma 6 7 [21] Lemma 7.2.

3.2.1. Proposition. Let [(en) = [{(Xl: ... l xn)~ [{ a field of characteristic zero.

Assume we have a standard Z-grading r = (Wl: .. ' l wn) of [(en) 1 given by degr(xd =

Wi E Z. Suppose B is a subalgebra of K(n) which contains m algebraically independent

elements. Then GrF,r(B) contains m algebraically independent elements.

Let n = 2, B = N(.6.f ). If lV(~f) =1= I<er(~f), then B contains 2 algebraically

independent elements. By Prop. 3.2.1, for any (standard) Z-grading r = (Wl, lLl2).

GrF,r(B) contains 2 algebraically independent elements. On the other hand. if

~f(B) ç B, then .6.f induces a K-derivation Iif on GrF,r(B) by 3.L1. Suppose

Af is non-zero. Then Af has a local sUce in GrF,r(B).

Theorem 3.2.2 give us more information about .6.ft under the weak J acobian

condition.

3.2.2. Theorem.. Given a Z-grading r on [([x, y] induced by w = (Wl1 W2) E

Z2, let f be a non-constant polynomial of [{[x, y] with dw(f) > 0, and assume one of
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• the following two conditions holds:

Then ~f;t has a w-homogeneous local slice in K[x 7 y] .

. Proof. VVe first consider the case (i). Choose and fi..x a local slice 9 of :0..f. Define,

for any positive integer n 7 lvI(n) = the linear-span of {fkgl : k 7 l = 0, 1~ ... 7n}. Since

~Ï+l(/kl) = a for aIl k,l = 071, ..., we have lv/(n) C lV(D..f).

vVe may prove that the elements fkl are K-linear independent (as in Prop.

2.1.10). Hence

dimKlvI(n) > n(n + 1)/2. (3.13)

"Ve shall show that there exists an element h E lvI(n) with .6.f ;t(ht,) i= 0 when n » o.
Ta show this, by considering all possible monomials in 1\;1(n), we note that

(3.14)

•

for every ;'of E J.vI(n), where L1(nL L 2 (n) are two linear forros in n depending only on

f and g. For every i E [L2 (n)7 L1(n)L choose and fix one 'Yi E AI(n) with dw("Yi) = i,

if such a element exists. Then for any 7 E J.lI(n), dW(I) = dw (7i) for sorne i.

Suppose .6.f;t(h~) = 0 fOT every h E AI(n). Then, D...r;t(7;t) = D..f;t«'i);t) = o.
By Lemma 3.1.6.(i)7 (f;t)dw C'Y;1;) = a{y;t)dtIJu;t) for sorne a E KX. Since dw (/;;) > 0

by assumption, we find that dw(,;t) > O. Similarly, dw«"'fï);t) > O. On the other

hand7 J(/;t"7 (/i)t,) = O. Sa l;t = a('Yî);t for sorne a E K X by Lemma 3.1.6.(i).

Then dw (7 - a7i) < dw('Y). Repeating this procedure, we may eÀrpress , as a K

linear combinations of elements 'i. Thus dimglvI(n) < Li(n) - L2 (n) + 1, \vhich is

impossible for n » 0 since dimglvI(n) > n(n + 1)/2 by (3.13).

50 we may choose h E .111(n) with D.r;t(htJ i= O. Note that D..j(h) = 0 for sorne

positive integer T since Ail(n) C N(~f)' Let T be the least integer with D../(h) = O.

Then T > 2 and by Lemma 3.1.6.(iiL J(f~! (D..f-1h);t) = O. If J(f~, (~[-2h);;;) i=
07 then by Lemma 3.L6.(ii), (D..f-1(h));t = J(/;;, (.6.[-2h);t) 7 and we put 9i =
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•

•

(-Ü'-2h);t. If J(f;t, (-Üf-2h);t) = 0, since D..f(h) = 0, there exists sorne k such

that J(f;t, (D..i-kh);t) =1= 0, and J(f;%, (~/-k+ih);t) = 0 for any i > 0, and we set

91 = (6./-kh);t. It follows readily that 91 is a local slice of -Üft. This settles the

theorem in the first case that N(-Üf) t= Ker(-Üf).

Next, consider the case (ii). Let À E [(X such that .6.f g = Àg for sorne 9 E R.

Define, for any positive integer n, N(n) = [(-linear span of {fkgl : k, l = 0, 1, ... , n}.

Again, dimK1V(n) > n(n+l)/2. Then as in the first case, there exists sorne h E lV(n)

such that .6.~(h~) t= O. vVe shaH show that .6.j;-(h;t) = 0 for sorne positive integer

r. Suppose -Üi;t(h;t) t= 0, for every r 2:: 2. Then dw(iljh) = r(dw(f) - deg(w» +

dw(h) -T 00 when r -T 00, since dw(f) > deg(w) by assumption. On the other

hand, .6.fh E lV(n) and dw(iljh) ::; Ll(n), where LI(n) is a linear form in n. This

contradiction proves that .6.~ (ht) = 0 for sorne r 2:: 1 and .6. t+ (ht) t= O. The
JtiJ Jw

rernaining proof is similar to the first case. The proof of this theorem is finished.

vVe remark that the result holds when dw(f) > deg(w) is replaced by dw(f) =1=

deg(w) in case (ii).

3.2.3. Remark. If 6.f ;t has a w-homogeneous local slice in K[x, y], then

lV(.6.~) =1= Ker(ü~).5 Then in 3.2.2.(i), lV(Üf) i= [<er(.6.f ) implies that lV(6.f ;t) t=
Ker(.6.ft ). On the other hand, by Prop. 2.1.9, J.V(.6.ft ) i= [(er(-Üf;t) implies that

E(D..~) = Ker(.6.f;J;)' Then in 3.2.2.(ii), E(!~f) i= Ker(.6.f ) \Vith dw(f) > deg(w)

implies that E(D..~) = Ker(.6.f ;t). In particular, if E(.6.f ) t= Ker(!:lf) with dw(f) >

deg(w), then fi=f;t.

3.2.4. Corollary. (Elliptic). Let f be a non-constant polynomial: and let w =

(Wl,W2) E JV2 with dw(f) > O. Assume that l'l(.6. f ) t= J{er(.6.f ) 7 or E(~f) -#

K er(.6.f) with dw(f) > deg(w). Then f;; = a-U~LU~2, iL, i2 > 0, il + i z > 0, a E R.-x,

where

(i) if Wl = Wz, then Ul = anX + aIZY, U2 = a2lx + a22Y with aij E K and

alla22 - a12a21 E K X
,o

5If 9 E I([x,y] is a local slice of Âf:t with J(f;i;,gtJ i= 0, then by Lemma 3.1.6. (H), g;t is a
w-homogeneous local slice of Li. f:t .
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•
Proof. Prop. 3.1.8, Theorem 3.2.2.

3.2.5. Corollary.

•

dw(f) > O. Assume that lV(tl f ) "# KeT(~f)' or E(6. f ) "# KeT(~f) with T = dw(f) >

d~g(w). Then

(1) (Parabolie) Suppose W2 = 0, we may assume that w = (1,0). Then either f~ =

axT(y-a)i,a E KX,i < T, or f;% =xT(y-a)iP(y),a E K,i > r,F(y) E K[y]

with F(a) "# O.

(2) (Hyperbolie) Suppose W2 < O. Then either f;% is a monomial, OT f;% = (x 

Ct.ywl/w2 )iy(T-w 1i)/w?F(z), where oc E I-(,z = xy-wl/w?,i E N,l < i < (r-

w 1i)/W2 and F(z) E K[z], F(n) "# o.

Proof. Prop. 3.1.12, Prop. 3.1.13 and Theorem 3.2.2.

3.3 The "W"eak Jacobian Condition on K[x, yI/m, y-l/m]

vVe shaH generalize the results of the previous sections to the Iarger [-(-aigebra

K[x, yI/m, y-l/m]. The idea to extend [-([x, y] to [{[x, yI/m, y-l/m] and to discuss the

weak Jacobian condition on K[x, yI/m, y-l/m] is crucial to prove Theorem 4.3.1. Prop.

3.3.5 and Prop. 3.3.8 are the main results of this section.

3.3.1. RecaH that (see LI) !lm := K[x: yi/m, y-l/m], the K-aigebra generated by

x, yl/m and y-l/m with m > 1. Note that every element f of Rm can be uniquely

written in the form f = Li2:0,iEZ ~jXiyj/m. NIoreover, ~,~ E !lm for aU f E Hm.

Then, for any two elements f,g E Rm, J(f:g) = M~-~~ E Rm, and we can define

a J{-derivation D..f of Rm by.6. f (g) = J(f, g). Therefore, KeT(.6. f ), iV(.6. f ), EV~f) are

defined (as in 1.1). Given W = (WI, W2) E Z2, there is a standard ~Z-gradingon Rrn

given by (Rm)n = L W1 i+w2j/m=n/m ai,ixiyfn, where nE ~Z. Since ~Z ~ Z, we have

a Z-grading on Rm. vVe may aIsa define dw(f), f;t, for aIl f E Hm. An element of
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• the form axiyi/nl, a E K X
, is called a monomial of Rm.. vVrite 3tCrn)(n) = K[xy]yn/rn,

and ~(n) = K[xy]yn. Then at(rn) = E9~=o RCrn)(n) , and ~ = E9~=o R(n). Clearly,

Rm. = œ~=-oo ~(rn) (n).

As a ring, Rm. ::: K[t, t-1][x], with trn = y. The automorphism group of Rm is

easily determined. vVe are interested in the following subgroup of the automorphism

group:

G(rn) _ {'ljJ E Aut(Rm) : 'if;(yl/rn) = yl/rn, 'Ij;(y-l/rn) = y-l/rn,

1/1(x) = x + 1/1(y-l/rn) , 1/1(T) E K[T]}.

vVe say that an automorphism in c(rn) is a '~restricted" automorphism of Rm.. For

R = K[x, y], define

G = {if> E Aut(R) : J(qy(x),qy(y)) = 1}.

Put

G(rn)G = {1/1 0 if> : 1/1 E c(rn) , ifJ E C}.

By using the "chain rule", we abtain

<p(l(f, g)) = J(~(f)' ~(g)), f, 9 E Rm

(3.15)

(3.16)

•

for any ~ E G(rn)G. Let m and n be positive integers with min. Consider the chain

of K-algebras R C Rm. ç Rn. Then any autamorphism in c(rn) can be extended ta

an autamorphism in c(n).

3.3.2. A question.

Far the purpose of the next chapter, to praye Theorem 4.3.1, we only cansider the

case that w = (Wl' W2) E Z2, W2 < 0, deg(w) > 0, and GCD(lwd, IW21) = 1 in this

section.6

Similar to the discussions in section 3.1 and section 3.2, we shall study the following

60ne may discuss other cases by similar methods.
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• question first .

Given W = (Wb W2) E Z2, W2 < 0, and deg(w) = Wl + W2 > o. Let f E Rm with

dw(f) > o. Suppose f satisfies

What is f;%?

The next Lemma is an analogue of Prop. 3.1.10.

3.3.3. Lemma. Suppose f, 9 E Rm are two w-homogeneous elements with

.6. f (g) :F 0, and .6.}(g) = O. Let h = &. Assume r = dw(f) > o. Then D.f(h) = f

and hE Rrn.

Proof. The first part that D..f(h) = f is exactly the same as iç. Prop. 3.1.10. It

is enough to prove that h E Rm.

To show this, we note that the only difference between this lemma and Prop.

3.1.10 is that dw(f) E ~ Z in the present situation. vVe find that, if h rt Rm, then

(3.17)

where K(x) is an algebraic closure of K(x), and for at least one i, Si > O. Pick one

Si > 0 and write s = Si~ a(x) = ni(x) =;f o. By the same argument as in Prop. 3.1.10.

since deg(w) > 0, and dw (f) > 0 by assumption, \ye have

(3.18)

•

Let v denote the valuation of the algebraic function field [((x)(yl/m) with constant

field K(x) which corresponds ta the irreducible polynomial yl/m. - n(x). Since t =

v(f) ~ 0, we compute the v-valuations of both sicles of the above iormula (3.18) and

obtain

(3.19)

This is clearly impossible. Hence h E Hm as desired.
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• We shalliater make use of the ne:x.1; proposition in the inductive step of the proof

of Theorem 4.3.1.

3.3.4. Proposition. Let f, 9 E Rm be two w-homogeneous elements with nf(g) =1=

o and ~}(g) = O. Let l' = dw(f) > O. Then either there exists 7/; E c(rn) (as in 3.3.1)

such that 7/;(f) is a monomial in Hm, or there exists a positive integer n with min and

7/; E G(n) such that 'l/J(f) = xvy(r-iwd/w2F(xy-wl/w2L F(T) E K[T] , deg(F(T)) 2:: 1.

and 1 < v < (1' - iwd/W2. Here v is a positive integer, but (1' - iwd/W2 may be not

an integer.

This proposition asserts that either f becomes a monomial under an automor

phism, or by extending the algebra Rm to a larger algebra Rn and under a restricted

automorphism cI> in the larger algebra Rn, the degree of iJl(f) with respect to x is

strictly less than the degree of <1>(f) with respect to y in sorne suitable gradings. Br

using Prop. 3.1.13 and Prop. 3.3.4 repeatedly: we shaH reduce f- to sorne standard

form as explained in next chapter.

Proof. Let h =~. By assurnption and Lemma 3.3.3, we rnay write f 

yr1w 2 F(z): h = yl+~H(z), where z = xy-W1/W2 and F(z), H(z) E f{[z]. Define

Note that G(z) E K(z) since mr E Z. By the same proof as in Prop. 3.1.10, we have

(3.20)

•

Then by Lemma 3.1.11, each root of H is a simple root and every root of G is a root

of H.

The proof consists of the following three cases. (as in the proof of Prop. 3.1.13)

Case 1. Suppose C E K[z]. By Lemma 3.1.11, H(z) = f3z + l, f3 =1 O. Rence

h = xyz-l(f3z +,) = {3xy + "(yl+Wt/W2.

1.1. Suppose"( = O. Then h = (3xy. Br using D..f(h) = f, we see that f is a

monomial.

1.2. Suppose 'Y f= o. Note that yl+w t /W2 E Rm since h E Rm. Then yW1/W2 E R m
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• and h = f3y(x + 7JyWl/W2). In this case ~ E ~Z.

Define'if; E Q(rn) by 'if;(x) = x - ~yWl/W2. Then 7j;(h) = (3xy. From ~T/J(f)('lj;(h)) =

'l/J(f) we deduce that 7/;(/) is a monomial in Rm.

Case 2. Suppose F(z) = a(z + 'y)u: V > 0, a =1= O~ i.e., F has only one root. Then

f = o!'yr1wZ(xy-wtlwz + "'r)u,

2.1. Suppose '"'( = O. Then f is a monomial in Rm as desired.

2.2. Suppose "1 =1= O. Since f E Rm, we have yr/wz, yr/wz(xy-Wl/WZ ) E Rm. There
~

fore Y W 2 E Rm and ~ E C~)Z. Define 1/J E c(rn) by 7/;(x) = x - 7yw1/wZ, Then 'liJ(f)

is a monomial of Rm..

Case 3. Suppose G fj. K[z] and F has at least two distinct roots. Since each

root of H is a simple root, there exists a root a of F ,vith order v > 0 such that

v(Wl + W2) > r. vVrite

F(z) = (z - a)UP(z)

with P(z) E K[z], deg(P) > 1 and P(a) i= O. Then

(3.21)

(3.22)

•

Sînce V(Wl + W2) > rand "W2 < 0, we have 1 ~ v < r~~!u. Let n = -U:2m and define

'lj; E c(n) given by 'lf;(x) = x + aywl/w2. Then 'l/;(f) = x Vy(r-W11J)/W2Q(xy-Wl/W2) E Rn.

where Q(T) E K[T] and deg(Q) = deg(P) 2: 1, Q(O) =1= O. The proof is completed.

Actually, the above argument provides us with more information.

3.3.5. Proposition. Let f, 9 E Rrn be two w-homogeneous elements with

'üf(g) = Àg, where À E K X
, Assume that both dw(f) and dw(g) are positive real

numbers. Then one of the three following possibilities holds:

(i) / = axy, a E K X
,

(ii) W2 1 m,

(iii) / = axy(z + ad ... (z + as), s 2: l, a E K X, ai i= aj, for i i= j, and Œi =1= 0 for

each i = 1, ... , s, where z = xy-Wl/WZ.
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• Proof. Keep the notations as in the proof of Prop. 3.3.4 with f and 9 inter

changed. Note that h = ~ = ff. lt suffices to figure out the form of h.
l+.!!l..

Ta do this 7 write h = ay W2 (z + Qr) ... (z + an), where n > 17 Qi =F Qj.

Suppose n = 1 and QI = o. Then h = axy.

Suppose n = 1 and QI # O. Then yl+wr/W2 E Rm. Then mw! E Z. Since
W2

GCD(Wr,W2) = 17 w21 m.

Suppose n > 2 and each Qi # O. Then a IIi=1 Qiy
l +wl/w2 E Rm. 80 r:~! E Z~ and

then w21 m.

At last, suppose n > 2 and so-me Q;i = O. By Lemma 3.1.11 7 only one Qi = O. Say

an = O. Then f = axy(z + Qd ... (z + Q;n-r) , Q;i =F 0 for i = 17 ••• : S = n - 1 > O.

This reduces ta (iii). This completes the proof of Prop. 3.3.5.

3.3.6. After e:x.~endingthe results in section 3.1 to the case Rm = K[x 7 yl/m: y-I/mL

we shaH generalize Theorem 3.2.2 ta Hm.

Actually, the proofs are completely parallel ta those in Theorem 3.2.2. For exam

pIe, for ail f, 9 E Rm7 W = (Wb W2), we have that

(3.23)

•

where LI (n) 7 L2 (n) are two Iinear forms in n that depend only on f7 g. Therefore, one

shows the following

3.3.7. Proposition. Suppose m ~ 1 and f E Rm. Let w = (Wb W2) E Z2 where

W2 < O, deg(w) = WI + W2 > 0, and GeD(lwd, IW21) = 1. Let T = dw(f) > O. If

lV(~f) f= Ker(~f), or E(~f) =F Ker(llf) with dw(f) > deg(w), then 6. f;t has a

w-homogeneous local slice in Rm.

By Prop. 3.3.4 and Prop. 3.3.77 the following proposition follows immediateIy.

3.3.8. Proposition. Suppose m > 1 and f E Rm. Let w = (W1 7 W2) E Z2 where

W2 < 0, deg(w) = Wl +W2 > 0, and GCD(lwII, IW2l) = 1. Let r = dw(f) > O. Assume

that N(~f) -1= Ker(6.f), or E(~f) f= Ker(~f) with dw(f) > deg(w). Then one of

the following three possibilities holds.

(i) f is a monomial in Rm,
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•

•

(ii) f;t = ayr/W2(xy-Wl/W2 - {3)V, v > 0, a#-O and /3 "1= o. l\.tloTeoveT, theTe exists

7/J E G(m) such that 7/J(f;t) is a monomial in Rm,

"-WIU

(iii) f~ = (x - D'.ywtlw2)Vy lU2 Fl(z): Z = xy-Wl/WZ, FiCZ) E K[z] , deg(F) > 1

and Fl(D'.) #- O. Here 1 ~ v < r~~jv and v is a positive integer. ivlore

oveT, there exists a positive integer n with min and 'Ij; E c(n) such that
r-Wjtl •

'Ij;(f~) = xlly lU:! F2 (xy-w tlw2), F2 (T) E K [T], deg(F2 ) = deg(Fd: and 1 ~

v < (r - W1V)/W2- Note that v is a positive integer, but (r - W1V)/W2 may be

not a rational integer.

3.3.9. Observation. In Prop. 3.3.8.(ii), from yr/w2, (yr/W2) (xy-Wl/W2 ) E Hm: we

have that yW1/W2 E Rm. Therefore, Wl/W2 E ~ z. Since Wl, W2 are co prime~ ( -W2) is

a divisor of m. In particuIar, -W2 < m. This observation will be very usefai in the

proof of Theorem 4.3.1 below.
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(4.1)

•

•

Chapter 4

The Weak Jacobian Condition (II)

The most important result of this chapter is the reduction theorem 4.3. L In section

4.2 we shaH show sorne results related to the J acobian condition which 'will be used

to establish a relation between theorem 4.3.1 and the Jacobian Conjecture in two

variables.

4.1 Divisor Theorem

In this section: we shaH study further the weak Jacobian condition. Although the

main result, the divisor theorem: is not used in proving Theorem B, we will make

substantial use of its method of proof later. NIoreover, the divisor theorem can be

regarded as an analogue of the epimorphism theorem (see [2]) under the weak Jacobian

condition. Hence it is worthwhile to state it here.

Note that, by an automorphism in [{[x, y], we rnay assume and fi.x the foHowing

form of f
. ~ k lf = yJ + ~ aklx •Y :

(k,l)ES(J)

where k + l < j for aIl (k: l) E S(f), and S(f) is a non-empty subset of Supp(f)·

Define r(f) = sup{kl(k,l) E S(f) for sorne l}, sCf) = sup{ll(r(f), l) E SCf)}. Assume

that j = deg(f) > 3.1

lSuppose deg(f) = 1. Then f = y + c, c E IC Suppose deg(f) = 2. Then f = y2 + bx + cy + d,
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•

•

4.1.1. Divisor Theorem. Keep the notations as above. Suppose T(.6.. f ) =1

Ker(~f). Then there exists a positive integer l'VI > 2 such that j = s(f) + lv/r(f).

This theorem provides very strong necessary conditions on the polynomial J for

T(!~f) =1 Ker(b..f ), and it is often relatively easy ta see this is not the case by using

this theorem.

Proof. Define A = min{r/U -sL (r-k)/(l-s)[(k 1 l) E S(f), k < 'r, l > sL where

r = rCf), S = s(f). Then in view of (4.1),we have A < 1, and J(ta') = arsxrys for every

cr E (0, .4.). Choose and fi"'\: a rational number n/m E (0, .4.). Then fC-+:n,n) = arsxrys.

Further. choose a r > !!!.-:-!=- > m.-'t > 1. Then we have n,J' > m'r + nST. Hence
. n ]-s - n

fC~,nr) i= J(~,n)' Define f = inf{, > Ilf(~,nT) =1= f(~,n)}'

Since we 'will refer ta the following assertion and its method of proof several times,

we state it as a lemma.

4.1.2. LemIIla. Keep the notations in 4·1.1. Then fc~.n,.,) #= f(;n,n) , f(~,n,.,) is not

a monomial and 1 = pjq E Q,p > q, (p, q) = L

Proof of LeIIllIla 4.1.2.

Let B = r;: inf{/~'S1 :=71(k,l) E S(f) \ (T,S)}. Then f{~,nr) = f(~,n) if and only

if 1 < B. vVe first prove that fc~,n'Y) =1 J{~,n)' Suppose not. Then "( < B. Choose

a sequence ln with limit "1 such that f(~,n"'n) i= f(~,n) and "In < É. Clearly, this is

impossible by the definition of B. Hence f(~.nÎ) =1 f(~,n). If f(~,n-y) is a monomial.

there exists (k l , Zd E S(f) such that mk l + lIn""" > nj"l, and mk l + lln7 > mk + nh'.

for aIl (k, l) E S(f) - (k l , lr). Equivalently, "'( E (C 1 D) for sorne two constants

C, D > 0 . Choose a 70 < " with '0 E (C, D). Then f(~,n'YO) = Itm,n-y) =1 f(~.n)'

which contradicts the definition of ,. Therefore, fC~,n'Y) is not a monomial. Finally.

, E Q (since J(~1,W2) is a monomial if Wl/W2 (j: Q for any two integers W1 1W2)' \Vrite

l = pjq E Q with (p, q) = 1,p > q. The proof is completed.

Let us come back ta the proof of theorem 4.1.1.

Note that mq, np > l, and T(~f) i= K er(nf)· Suppose E(.6.. f ) i= K er(.6.f) and

cf.w(f) ::; deg(w) with WI = mq1 W2 = np. Then we have jW2 ::; Wl + W2, kWl + lW2 :::;

WI +W2 for an (k, l) E S(/)· Then J is of the forro 1 = axy + bey) + cCx), a E J{, and

and f becomes y or y2 under an automorphism.
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• b(T), c(T) E K[T]. vVe show that 4.1.1 follows for this kind of poLynomial. Suppose

rCf) = 1. Then 4.1.1 is evident since j > 3 byassumption. Suppose r(f) 2: 2. Then

sCf) = 0 by (4.1). Considering the w = (j, r(f))-homogeneous decomposition of f,

we note that jr(f) > r(f) + s(f) since r(f), j > 3. By Corollary 3.2.4, one may

assume that f;% = a(x + byilr(J»i' yi' for sorne a E KX, b E K, i',j' 2: O. Since f;t is

not a monomial (it contains yi and cxr(f) for sorne c E [(X), we have b i= 0 , i' > 1 and

r(f) divides j. Hence 4.1.1 follows. Therefore, we may assume that for w = (mq, np),

either lV(D.f) "1= Ker(6.f ), or E(D.f) #= Ker(tlf ) with dw(f) > deg(w). Then by

Corollary 3.2.4, we obtain that either mq 1 np, or np 1 mq. Consider the following

two cases.

Case 1. Suppose np = mqlvI for sorne J.1;[ > 1. Since ftn"n7) = f(tlYl) is not

a monomial, we know by Corollary 3.2.4 that f(~,n'Y) - bxi' (y + CX1vl)i' for sorne

b, C E K X
l and j' > 1, i' ~ O. Then

f = bxi
' (y + cxM)i' + L Ck,lXk(y + CXM)l

k+iYfl<i'+;I"fi'
(4.2)

is the (l, NI)-hornogeneous decomposition of f. This is impossible, because f+ = yJ

by (4.1).

Case 2. Suppose mq = np/vI for sorne 1\1 > 2. By Corollary 3.2.4, we have

1'+ =1'+ = b(x + cyi\-f)i'yi' for sorne b c E [(X i' > 1 and J" > 0 vVe expressJ (m,n'Y) J (M,I) , ,- - .

the (/vI, l)-homogeneous decomposition of f as follows:

f = b(x + cyAf)i' yi' + L bk'l'(X + cyM)k' yl',
(k' ,l')ESl(f)

(4.3)

where l\1Ik' + l' < PvIi' + j' for (k',l') E Sl(f), and Sl(f) is a finite set. vVe shall

determine f(~,n)' Let w = (m, n). Then dw(XSyM(i'-s») = m(l - ~)s + i';q for every

o ~ s < i'. Thus, we obtain

•
(4.4)
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• Case 2.1. Suppose k' < i' for (k', l') E Sl(f). Since lvIk' + l' < lvIi' + j, and

lvI = !!!!l. < !!!. we have m(i' - k') > n(l' - J.') i e mi' + J.' > mk' + l' Hencenp n' , .., .

f(~,n) = bxi' yi'. Therefore, i' = r(f), j' = s(f) from the choice of m and n. Further,

by expanding f in the above (!vI, l)-decomposition (4.3), we have f+ = dyMi'+j' for

sorne d E K X
• Therefore j = lvIr + s.

Case 2.2. Suppose there exists sorne (k~, l~) E SI Cf) such that k~ > i'. vVe shaH

show that this is impossible by getting a contradiction.

Put cp: (x, y) -+ (x - cyAtf,y), t/J = c.p-l,g = 7j;(f). Then

.,., ~ k' l'
9 = bx1 y1 + L b~ l' X Y

(k' ,l')ES1(f)

C4.5)

is the (NI,l)-decomposition of 9 and deg(g) < deg(f) (since Ai ~ 2), T(.6.. g ) i=

Ker(Llg ). :NIoreover, there exists f} E (0,1) ",ith l\1Ikb+f}l~ > lvIi' +fJj'. For example,

take any f} < M;~~~i') < 1. Therefore gt'v[,O) -# gt,.[,l). Put 5 = Sup{B E (0, l)lgt,,[,o) i=

g('N[,l)}' By the same argument as in Lemma 4.1.2, we know that gtry[,a) i= g("A-r,l) ,

5 E (0,1) n 0, and gtH,5) is not a monomial. vVrite c5 = u/v E 0 n (0,1), (u, v) = 1.

Suppose E(.6.g ) i= Ker (.6.g ) with dw(g) < deg(w), where w = (lVlv, u), we have

lvIvi' + uj', lvIvk' + ul' < lvIv + u for al! (k', l') E SI(f). Then f -= a(x + cyM)y +

b(x + cyA[) + c(y), a E K and b(T), c(T) E K[TJ. As before, one can prove 4.1.1

directly for f. Rence we assume that for w = (lvlv, u), either lV(.6.g ) i= I<er(D..g ). or

E(.6..g ) =1= Ker(.6..g ) with dw(g) > deg(w). By Corollary 3.2.4, we obtain that u must

divides ilIv. Hence lvIv = lVu for sorne natural numbers lV, Ai and J.V > Ai since

u < v. Let gt'vI,5) = gtv,l) = b'(x + c'yN)i
ll

yi" for sorne b', c' E I{X, and i" > 1, j" ~ O.

vVe express the (lV, l)-decomposition of 9 as follows:

9 = b'(x + c'yN)i" yi" + 2: b~'l/{(X + c'yN)kil yl" ':l

(kil ,l")ES(g)

(4.6)

•
where Ni" + j" > J.VkTl + [TI for aU (k", lTl) E 5(g) and 8(g) is a finite set depending
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• on g. Sînce f = 'lj;(g) , 7/J : (x, y) -+ (x + ClJM, yL we have

f = b'(x + cyM + c'yN)i"yi" + 2: bkl'lll(X + c'yM + c"yN)k"yl". (4.7)
(kil ,l" )ES(g)

Since iV > IvI, we obtain

and

(( ~\-[, N)k" l")+ _ 'k" Nkll+l"x + cy + c y y (M,l) - C y

(4.8)

(4.9)

•

for (k", l") E 5(g). Hence ft~[,l) = dyNi"+i" for some d E KX by (4.7). But this

contradicts the fact that ftiI,l) = b(x+cyM)i'yi' is not a monomial, as we have shown

in (4.3). This contradiction~ therefore, completes the proof of the divisor theorem.

4.2 Elementary Polynomials

In this section: we derive sorne results concerning the Jacobian condition, instead of

the weak Jacobian condition. By combining the results of this section with theorem

4.3.1, we will prove theorem 4.3.14 and see that theorem 4.3.1 can be seen as a weak

form of the Jacobian Conjecture. The results of this section. are true for arbitrary

integral domain of characteristic zero. In this section we shail use R to denote an

integral domain of characteristic zero.

4.2.1. Let B = R[x, y] denote the polynomial ring of 2 variables over R. For a

polynomial f E B, define !if by .6.f (g) = J(f, g) for 9 E B. 6. f is a R-derivation

of B. Some results in chapter 1 may be extended ta this more general case. For

example, if R is a UFD containing Q, then any locally nilpotent derivation of B has

the form a6.p for sorne variable P in B, and a E R[P] (as in 2.2.2) [12] . !\iIoreover. a

locally nilpotent derivation a has a slice if and only if a(B) = B.

4.2.2. Definition. (..Y, Y) is a coordinate system of B = R[x, y] if B = R[X, Y] .

..-Y is a variable of B if (X, y~) is a coordinate system of B for sorne Y E B.
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• Prop. 4.2.11 is our main result in this section. To show it, we shaH prove two

propositions first.

4.2.3. Proposition. Let J'Y, Y be a coordinate system of B. Suppose f = a..:~ +
y 2b(X, Y) E E, a E RX, and b(J'Y, Y) E R[J'Y, Y]. Then f = aJ'Y + u(y·) for some

polynomial u(Y) E R[Y] if and only if .6.[ has a slice.

4.2.4. Proposition. Let (J'Y, Y) be a coordinate system of B. Suppose f =

aX + X 2 b(X, Y) E ET a E R X
, b(J'Y, }r) E R[.tY~ Y] and .6.[ kas a slice 9 E E. Then

f=aX.

4.2.5. Remark. The above t'Wo propositions 4.2.3 and 4.2.4 are not ne\v and

can be proved by using the similarity of the Newton diagram of a Jacobian pair.2 See

[47], section 3, proof of theorem 1.3. Here we give another proof of Prop. 4.2.3, and

Prop. 4.2.4 without using the properties of Newton diagrams. lt would be interesting

ta study the Newton diagram of Jacobian pairs in Rm or ta e:\.~end our argument here

ta Hm.

4.2.6. Proof of Prop. 4.2.4. \Ve follow the argument of Czerniakiewicz [7].

4.2.7. Step 1.

In the following proof, 'we always use a â'Xed coordinate system (..:'Y, y). Suppose

.6.[(g) E RX with 9 E K[J'Y, Y]. \Ve assume that g(O,O) = 0, and change 9 by a

multiple of f, one may write: f = a..:'Y + f2 + ... + fdeg(f),g = bY + g2 + ... + gdeg(g)·

where a, b E R X
, and Ji, gj are the homogeneous components of f of degree i~ and of

9 of degree j, respectively. For simplicity, \ve assume that a = b = land J(/, g) = l.

"Vrite fr = Er=o ai,rJ'yiyr-i and define f: = ai,r_yiyr-i for i < r < deg(f). Similarly.

we define g~ for any j < s < deg(g).

By comparing the coefficients of the monomial xS-lyt-s-l on bath sicles of the

formula J(f, g) = 1 with t > 3,1 < s < t -1, we obtain:

2Given two polynomials j,g E I<[x,y], j,g is a Jacobian pair if J(j,g) E [(x.

At first, we consider Y;, for aH r. By assumption on f, f~ = !; = 0, and we have

•
t-2 min(k,s)

T:: J(ff-l' y) + L L [J(ft~h,g~) + J(x,g:~[)] = O.
k=O h=O

(4.10)

55



• J(X,g~_l) = O. Hence g~ = 0 for s = 2, ... ,deg(g). Let lvI = max(deg(f),deg(g)) .

vVe may suppose that j\;I > 1 3. vVe shaH prove that:

(4.11)

In fact, T1f+l implies that J(f'if' y) + J(x, gll) = O. On the other hand, T~A'f

implies that J(fl~flgAl) = O. Therefore (4.11) follows from Lemma 3.1.6.

4.2.8. Step 2.

vVe shall prove that for any lvI > m > n > 2,

(Pm,n) : f~ = g~-l = O. (4.12)

If (Pm,n) is proved, for every lvI 2:: m > n 2:: 2, the proof of PFoP. 4.2.4 follows

immediately.

Ta show (Pm,n), for every IvI > m 2:: n ~ 2, we employ an inductive argument

with respect to a weIl ordering. Let V = {(m, n) : l'vI > m > n 2:: 2}. \Ve define

(ml, nd ::- (m2, n2) in V if ~]l=i > ~~=i. Clearly, the first element of V is (AI, 2), and

(PM,2) has been proved by fonnula (4.11). Note that V is not a \Vell ordering under

>-. Define an equivalence relation on V by making aIl elements (m, n) with the same

quotient ~=i belong ta the same equivalent class. Then >- induces a weIl ordering on

the set of equivalence classes. vVe shaH make use of an induction argument on the set

of equivalent classes.

Given (a, b) E V with GCD(a -1, b-1) = 1, suppose that f~ = g~-l = afor any

(m, n) E V with ~--i < :=~. It is enough to prove:4

for r > 1.

(v) . fr(b-l)+l - r(b-l) - 0
r· r(a-l)+l - gr(a-l)+l - (4.13)

•
3vVhen l\II = 1, both f and 9 are linear functions of X and Y, and the results are clear.
4Since for any two integers c, d, ~:i = ::~ implies that C = 1 + (b - l)r, d = 1 + Ca - l)r for

sorne integer r 2: 1.
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• To prove (v)r for aIl r > 1, we need:

4.2.9. Lemm.a. Suppose a, b ~ 2 and h, k, r are positive integer satisfying k <

1 ( 1) 'TTh . h r(b-l)-h < b-l h b-l+ r a - . .J. 1 en e'lt er r(a-l)+l-k _ a-l' or k-l < a-l'

Proof of Lemma 4.2.9.

Suppose
r(b - 1) - h b - 1

-~---=----- > --a
r(a - 1) + 1 - k a - 1

Then

(a - l)(r(b - 1) - h) > (b - l)(r(a - 1) + 1 - k).

since a - 1 > 0 and r (a - 1) + 1 - k > O. Hence

h(a - 1) < (b - l)(k - 1).

Since both h and a - 1 are positive numbers, and k > 2, we have k~l < :=i.
4.2.10. Step 3.

vVe come back to the proof of (\7)r.

Consider the formula y~~:=~~:~. By Lemma 4.2.9 , it reduces to:

r-l
y . J(fr(b-l) ) J( r(b-l ) "J(!(r-n)(b-l)+l n(b-l) ) - 0

r . r(a-1)+l' y + x, gr(a-l)+l + L (r-n)(a-l)+l ' gn(a-l)+l - .
n=l

(4.14)

(4.15)

(4.16)

(4.1 ï)

In proving (v)r for every r 1 we use another induction argument as follows. As

(V)r i5 obviously tnle for sufficiently large r (since both J and gare polynomials), \'-e

suppose that (V)k holds for aU k > N , and then prove that (V)N holds. After this

is proven, the proof of this proposition is completed. vVe now prove (v) LV. Consider

the formula Y 2N . By the assumption that (vh hoids for any k > J.V, Y 2N reduces to:

J( N(b-l)+l N(b-l) )f N(a-l)+ll9N(a-l)+1 = O. (4.18)

•
B L 3 6 (4 8) . Id . h !N(b-l)+l 0 N(b-l) 0Y emma .1. l '.1 yIe s elt er N(a-l)+l = or gN(a-l)+l = .
Suppose that gZ{:=g+l = 0 and !:(~=N~i =f. O. vVe shaH show the following
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• formula by induction on h:
(N-h)(b-l)

g(N-h){a-l)+l = 0 (4.19)

for 0 < h < IV - 1. In fact, formula (4.19) holds for h = 0 by the assumption that

gZi:=g+l = O. Suppose it holds for any h < ho ~ J.V - 1. Consider the fonnula

Y 2N- ho ' By the induction hypothesis that (\7)k for k > J.V, and the assumption that

(N-h}(b-l) Q r h h Y . Id
gew-h)(a-l)+l = lor < 0, 2N-ho Yle s

J(fN(b-l)+l (N-ho)(b-l) ) 0
N(a-l)+l' g(N-ho)(a-l)+l = .

By Lemma 3.1.6 again and the assumption that fi~(~=~;t~ =1= 0, we obtain

(N-ho)(b-l) - 0
g(N-ho)(a-l)+l - .

(4.20)

(4.21)

•

Then the formula (4.19) is proved. Let us consider Y N finally. By the formula

(4 19) Y . l' h J(fN(b-l)+l ~,~) 0 B L 3 6 fN(b-l)+l 0 H
. , N Imp les t at N(a-l)+l' L = . y emma .1., N(a-l)+l = . ence

f
N(b-1)+1 _ N(b-1) - 0
N(a-1)+1 - gN(a-I}+l - .

The argument is similar if li~(~=~;:~ = O. This completes the proof of proposition

4.2.4.

4.2.10. Proof of Proposition 4~2.3. Suppose that f = a~Y + :V2 b(X! 1~~). Then

f; = 1;-1 = Q. By the formula Y~+l above, we have J()C, g;-l) = O. Rence g;-l = O.

Then the formula r; reduces to J(x, g;:i) = O. Hence g;=t = O. Therefore, 9 E

a-1y + y2R[x, y]. Since D.g has a slice f, then by proposition 4.2.4~ with interchange

of f and g in notations, we have f~-l = 0 for every lvI 2:: m > n > 2. Then, we have

1 = aX + u(Y) for some u(T) E R[T].

vVe shaH next prove Prop. 4.2.11, which will be used in proving Theorem 4.3.14

in the next section.

4.2.11. Proposition. Let J{ be a field of characteristic zero and f a polynomial

oftheform f = ax+bxy+x2 c(x,y), where a,b E J{,c(x,y) E K[x,y] and deg(c) > l.

Assume that ~f has a slice in [<[x, y]. Then f = ax, a E K X
•

Proof. Let 9 be a slice of f. Then a E [{X by direct calculation, and after
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• changing 9 by a multiple of f, one may write that 9 = Y + g2 + ... + 9nl where each

gi is a homogeneous polynomial of weight i. By Prop. 4.2.4, it suffices ta show that

b = O. Ta show this, we use the same notations as that in the proof of Prop. 4.2.4.

In this case, we have that f~ = 0 for r > 2, fi = bxy, fi = 0, and fI = 0, for s > 3.

1'Ioreover, gl = g~ = y. The formula Ti gives us

t-2

J(fl'-l: y) + L:[J(fL-kl 92) + J(f~_k' g~)] + J(x, 9~-1) = O.
k=O

(4.22)

Suppose that b 1= o. vVrite g~ = dnyn for n > 2. For any t > 4: the above formula

(4.22) reduces ta :

Then we obtain

Jefi, gf-z) + J(x, g~-l) = O.

bdn-2(n - 2) + dn - 1(n - 1) = 0

(4.23)

(4.24)

for any n > 4. Since 9 is a polynomial, dn = 0 for n >> 0: sa by the assumption

b 1= 0, we obtain dn = 0 for n > 2. In particular, gg = O. vVe shaH prove this is

impossible. In fact, consider the formula Y5:

J(fi, y) + J(fi, g~) + J(x, gg) = o. (4.25)

•

The formula (4.25) implies that 2by = 0, so b = O. Therefore, we have shown that

b = 0, and f = ax + x 2c(x, y). Then this proposition follows from Prap. 4.2.4.

vVe may rewrite Prop. 4.2.4 and Prop. 4.2.11 in the following geometrical forme

4.2.12. Definition. Let K be a field of characteristic zero. A polynomial

f E K[x, y] is a line if fis irreducible and K[x, y]/(j) rv K[l} (polynomial ring in one

variable). A polynomial f contains a line L as a factor if f = Lg for sorne 9 E K[x , y]

and L is a line.

4.2.13. Proposition. Let f E K[x, y] be a non-constant polynomial and suppose

f has a line L as a factor. Assume f satisfies the J acobian condition, i. e., J(f, g) E

KX for sorne 9 E K[x, y]. Then f is a line.
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• Proof. vVe rnay write the line L as a variable X for sorne coordinate system .)(, Y

by the theorem of Abhyankar-:NIoh and Suzuki [2} and [50]. Then 1 = Xh(X, Y) for

sorne h(J'Y, Y) E [<[..-Y, Y] = K[x, yI. The result then follows from Prop 4.2.4. lndeed~

if 1 satisfies the Jacobian condition, then the curve {f = a} is smooth. It follows

that the line {..-Y = O} and the curve {h(X, Y) = O} do not meet. In particular,

h(X, Y) = a + J'Yhl(X:, Y-) for sorne a E K: hl (..,.Y, Y) E K[..-Y, YI. Thea Prop. 4.2.13

follows from Prop. 4.2.4 directly.

4.2.14. Remark. S.Kaliman [20J has shown that to prove the J acobian Con

jecture, it is enough to do it ~ith the assurnption that for every c E K the fiber

{(x, y) : ICx, y) = c} is irreducible.

4.3 Reduction Theorem

vVe preserve the notations ofsectioll 3.3.1. Recall that RCm)(n) = K[xy]yn1m, ~(n) =
K[xyJyn, ~Cm) = œ~=o RCm) (n) , and ~ = EB~=o R(n). Note that

(4.26)

•

for i,j E Z.

The following Reduction Theorem plays a central role in proving Theorem 5.1.1

and Theorem B.

4.3.1. Reduction Theorem. Let 1 be a non-constant polynomial in [([x, yI.

Suppose T(~f) =1= Ker(~f)· Then either there exists \li E G such that 'If(/) E ~, or

there exists m > 1, \li E G, Wm E GCm) such that wm(\li(f)) E RCm).

Proof.

vVe assume that deg(f) > 3.5

The proof of this reduction theorem is quite involved while elementary. lt consists

of several steps.

SThe reduction theorem is obvious when deg(f) ~ 2, because f has the form x, x 2 or xy under
an automorphism when deg(f) ~ 2.
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• 4.3.2. Step l.

We first prove by induction on deg(f) that there exists a 1/J E G such that '!/J(f)

is a stable polynomial (in the sense of 3.1.7). This is a weIl known fact, and we just

explain its main point.

Suppose this is true for polynomial of degree less than k - 1 and let deg(f) = k.

Since T(!~'I) =ft Ker(.6.f ), then by Corollary 3.2.4, with w = (1,1) (since deg(f) >

deg(w) = 2), there exists a1/;1 E G, such that 1/;1 (f)+ is a monomial: and deg(1/;l (f» <

deg(f). vVe express the standard homogeneous decomposition of 'l/Jl Cf) + as follows:

'!/Jl(f)+ = ax1.y1 + L aklxkyl,
(k,l) ESo(f)

(4.27)

where k + l < i + j for an (k, l) E So(f)· Let 9 = 'l/Jl(f).

Suppose k ::; i, l < j for aU (k, l) E So(f). Then 9 is stable, and we may choose

'l/J = 1/Jl'
Suppose 9 is not stable. Then there exists sorne (ka: la) E Sa (f) with either ka > i

or lo > j. Say ka > i holds.

Choose au> 0 with uko + la > O"i + j. Then g~,u-) t= g+. Put T = inf{u >

l[g~'/T) =ft g+}. Then exactly as in the proof of Lemma 4.1.2, we obtain r = pjq >

l, (P, q) = 1 and gt,T) = g~,p) is not a monomial. vVe show that it is impossible that

degw(g) < deg(w) = q+p '\Vith w = (q,p). Suppose the contrary. Then qi+pj ::; q+p.

Suppose both i and j greater than 1. Then i = j = 1. So deg(f) = 2 < 3. Suppose

i = O. Then pj < q + p. But j = deg(f) ~ 3 implies that p < q which contradicts

p > q. Suppose j = O. Then i = deg(f). So there exists no ka > i. Therefore,

by Corollary 3.2.4 with w = (q,p), q must be 1 and g~,T) = ayi(y + bxP)i for sorne

a, b E K X ,j > 1. Then there exists a 1/J2 E G, deg('l/J2(g») < deg(g) ::; k. By induction

hypothesis, we may find a 1/; E G as desired.

4.3.2. Step 2.

•
From now on, we will assume that f is stable and write

f = axiyi + L aklxkyl,
(k,l)ES(f)
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• where k + l < i + j, k < i, l < j for (k, l) E S(f), and S(f) is a subset of Supp(f) .

Our next task is ta reduce f ta the special fOTm (4.29) below.

From the assumption deg(f) = i + j > 3, we know that either i ~ 2, or j > 2.

'\Vithout 10ss of generality, we may assume that i > 2. By Corollary 3.2.5, (1) with

w = (l, 0), and using dw(f) = ·i > deg(w) = l, one knOWS that i =1 j. 'vVe may

assume that j > i 6. Then by Corollary 3.2.5 (1) again, fcto) = xi(y - a)i'F(y),

where F(y) E J{"[y], deg(F) = j - jf, i < jf < j, and F(n) f; O. Thus

f = xi(y - a)i'F(y) + 2: aklxkyl,
(k,l)eSl(f)

(4.29)

where Sl(f) is a subset of S(f) and k < i for (k, l) E Sl(f).

Therefore, one may assume that f is in the above forro (4.29) and jf > i > 2 .

4.3.3. Step 3.

Define Wl E G: (x,y) -+ (x,y+a), and let fI = 'l/Jl(f). Then by (4.29) we obtain

fI = xiyi'Fl(y) + L aklxk(y+a)l,
Ck,l)ESIU)

(4.30)

•

where k < i for aIl (k, l) E Sl(fL FL(y) = F(y + a) E I{"[y], and FdO) =1 O. 'vVe begin

to study fI in this step.

Note that there is a positive real number A. > 1 such that for each p > A, (fd~,-l) =
bxiyi', where b = FICO). For every p > 0, write dp(fd = d(p,-l) (fI)'

To study the form of (fdt;,,-l)' we need the following Lemma.

4.3.4. Lemm.a. In either of the following two cases we have fI E R:

(i) there exists p > 1 such that dp(fr) < P - 1;

(ii) there exists P > A with dp(fr) > P - 1, but (fdtl,-l) = Cfdt;,,-l) for eveT7.J

Pl E (1, p).

Proof of 4.3.4. Choose and fi..-x: a Po > A.. vVrite the (Po, -1)-honl0geneous

60therwise, use the linear tl"ansformation x --)- y, y --)- -x.
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• decampositian of fI as fallaws:

(4.31)

where Pok -l < poi - j' = dpo(fl) for (k, l) E 52(/) and 52(f) ç 5UPP(/1).

In case (i), pk - l < p - 1 for (k, l) E 52(/), and p(k - 1) < l - 1. If k = 0, we

hâve l ~ a since fI E l([x~ y]; If k ~ 1, then k - 1 S; p(k - 1) < l - 1. Sa k < l for

ail (k, l) E 52 (f). Hence fI E ~.

In case (il), (4.31) is the (p, -l)-homogeneous decomposition of fI. For (k, l) E

52(f), we have P1k -l < Pli - j' for Pl E (1, p). Let PL -+ 1. vVe get k -l < i - j' < O.

Hence Ir E ~ also. Then Lemma 4.3.4 is proved.

Let us come back ta the proof of Theorem 4.3.1-Step 3.

By 4.3.4, we can assume the existence of Po > A. with the follO\ving properties:

•

(/ )+ b i j" .,
l (po,-l) = X Y ,1. < J ,

and

for sorne P E (1, Po). Put

Pl = S'up{p E (l,Po)ICfd(;,_l) :1 (fd~o.-l)}·

By the same argument as in Lernma 4.1.2, we obtain

PIEQn(l,po),

and C/l)tl,-l) is not a monomial.

4.3.5. Step 4.
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• vVe shall study the relationship between certain invariants of f and of fI, The

following Lemma is helpful for this purpose.

4.3.6. Lem.m.a. Keep the notations as above. Then (fd(;L,-l) contains the

monomial bxiyi' .

Proof of Lemm.a 4.3.6. By the definition of Pl~ we know Chat

(/d~,-l) = (fd(;,o,-l) (4.37)

for aU P E (Pl, Po]. If (fdtL ,-1) doesn't contains the monomial bxiyi', then we may

choose P E (Pl, PO) close to Pl such that (fr)~,-l) doesn't contain bxiyjf. This is

impossible by (4.37)_

vVe now continue the proof of Theorem 4.3.1-Step 4.

By Lemma 4.3.4, we may assume that dpI (fr) > Pl - 1. Then by CoroUary 3.2.5~

we obtain

(4.38)

wherea E [(X,z = xyTLlsL,Pl = Tl/Sl,Vl EJV, 1 <Vl < WI~ andF2 (z) E K(zLF2(a) i

0, with deg(F2 ) > O. Let F2 (z) = ITj=l (z + aj )tLj ~ n ~ 1~ and each 'Uj ~ 1. Then by

Lemma 4.3.6 1 VI + L Uj = i. So

where l E 5\ Z, P1k - l < Pl VI - Wl for aH (k, l) E 53 (f) and 53 (/) is a !inite set.

Now choose 'l/J2 E G(sd with 'l/J2(X) = x + ay-r1/SL. Let f2 = 'l/J2(fd E R SL - Then

by the above formula (4.40),

•

VI < i.

Note that Wl may fail to be an integer.

vVe then rewrite fI in term of its (Pl, -1)-decomposition as follows:

fI = (x - ay-rL/sL)VlyWL F2 ( xyPL) + 2: bkl(X - œy-PL )kyl,

(k,l)eS 3 (J)

f2 = XVI yWl F3(xyPl) + L bklxkyl

(k,l)ES3{f)
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• is the (Pb -1)-decomposition of f2, where F3(T) = F2(T+ a) E K[T), and F3(0) i= O.

Before continuing the proof, we say a few words about the method of proof of this

reduction theorem. The general idea is to decrease, recursively, the (l,O)-degree of

the (p, -l)-leacling term of f for sorne P > 1, under sorne automorphisms in Q(m).

vVe first reduce 1 ta fI in the form (4.30) with i < j' < j in Step 2, then reduce IL

to f2 as in (4.40) with 1 < VL < i J and VI < Wl' Note that we had to e:\..lJand K[x, y]

to Rm of section 3.3 in the reduction procedure from fL to f2-

vVe will reduce f2 in the following three steps.

4.3.7. Step 5.

Choose 1 < Tl < Pl, but close enough to Pl such that Ilk - l < Il VI - WI for

(k, l) E 53(/) and d'ri (f2) > TL - L vVe can do this since dpi (f2) = dp1 CId> Pl - 1.

Then

(4.42)

:Nloreover, by the same argument as in Lemma 4.3.4 and since VI < Wl, one may

assume the existence of sorne p E (1, Tr) with 7

(4.43)

Define

By the same argument as in Lemma 4.1.2, we obtain

(4.44)

(4.45)

•
and (f2)t2.-1) is not a monomial. iVIoreover, (/2)t"l.-I) contains the term CXViyWl by

the sarne proof as in 4.3.6.

VVe shaH use Prop_ 3.3.8 in the present situation to determine the form of
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• (f2)~2,-I)' Remember that in the case E(.6. f ) f:. Ker(~f) we have to check the

condition dp'}. (f2) > P2 - 1.

4.3.8. Step 6.

Suppose for the moment that iV(!)..f) f:. I~e'(~fL or E(Ll f ) =1= Ker(~f) with

dP2 Cf) > P2 - 1. 8 By Prop. 3.3.8~ there are only two possibilities for (f2)~2.-i) since

(!2)~2.-1) is not a monomial.

Case 1. (f2)"&2,-I) = dyt/s2(x - (3y-r2l
s'}. )VI for sorne r(3 E KX. In this case: S2 1 S1

by 3.3.9. Therefore

(4.46)

where L(pr) = {(r7s) : GCD(r7s) = 1,17S > 1~; < P17 s 1 SI} is a finite set with at

most [PIsî] elements. Renee we can define 'l/J E G(st} with 1/J(x) = x + (3y-r2/s2 such

that

(4.47)

where V2 = vI~l < V2 < W2· Here W2 = t/S2 = WI· Put 13 = 1/JC/2)' Note that

f3 E KSI [x, y].

Case 2. (f2)t;,'}.,-1) = dyW2(x_(3y-rds2)V2F4(xyr2/s2) forsome d:!3 E I{X,l <

V2 < W2~ F4 [T] E I~[T] with F4.(.B) f:. 0: and deg(Ft(T)) ~ l.

In this case 7 we can define 1/J E G(sls:d ,\ith 'l,b(x) = x - (3y- r2 / s2 such that

(4.48)

•

where 1 ~ V2 < W2, and V2 < VI since deg(Fs ) = deg(F4 ) > 1. Put f3 = 1/;(/2)' Note

that /3 E K SIS2 [X, y].

4.3.9. Step 7.

\rVe consider the case E(b..f ) -=1= Ker(Llf ) and dp2 (!2) < P2 - 1 in this step. In

order to handle this situation, we use the following facto

4.3.10. Lem.ma. Let /,g be two elements in Hm with J(f7g) = Àg7À"# O. Then

for any P > l, dp (/) > p - 1. Moreover, if dp(f) = p - l, then J(f(~._l)' g~.-l») =
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• Àg~,_l) ;/= o.
Proof of Lenuna 4.3.10. Since dp(J(f,g)) < dp(f) + dp(g) - (p - IL the first

part is clear. Suppose dp(f) = p - 1 and J(f(;,_l) , g~,-l») = O. Then

(4.49)

which is impossible because J(f, g) = )..g. Hence J(f(;,_l) , g(;,-l») = Àg(;,_l) ;/= O.

vVe are now ready to finish the reduction step for f2.

Suppose E(D..f) ;/= [(er(6. f ) and dp2 (f2) < P2 - 1. Then dp2 (!2) = P2 - 1, and

J«f2)tz,-1)' gt2,-1») = Àg~z,-l) for sorne 9 E RS1 by 4.3.10. Note that dp2 (f) > 0,

and we may find such a 9 with dP2 (g) > 0 because dP2 (fng) = ndpz (f) + dP2 (g) for

any .6.f -eigenfunction g. By Prop. 3.3.5, we know that there are three possibilities

for (12)~2,-1).

The first case in 3.3.5 for (f2)~2,-1) is impossible because (f2)~2,-1) is not a mono

mial by the choice of P2. The second case in 3.3.5 for (f2)~2,-I) implies that S2 1 SI.

Then (r2' 82) E L(Pl), and we are reduced ta the above Case 1.

In case 3.3.5. (iii), we have Cf2)t2,-1) = axy(z + ar) ... (z + ŒsL ai ;/= aj, for i ;/=

j, Qi ;/= 0 for ail i, and z = xyP2. vVe express the (P2, -1)-homogeneous decomposition

of 12 as foilows:

f2 = axy(z + ar) ... (z + as) + L Ck,lXkyl,

(k,l)ES4(f)

(4.50 )

where P2k - l < P2 - 1 for (k, l) E 34 (f), and 54 (f) is a finite set.

To figure out the leading forro of f2, we consider the following two situations.

Suppose k > 1 for aU (k,l) E 54 (f). vVe ha.ve

•
k - 1 S; P2 (k - 1) < l - 1

for (k,l) E 84 (f). Then 12 E ~(sd, and we are done.
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• Suppose there exists (k, l) E 84(/) with k = o. Choose a 1"2 close enough to Pz 9

such that (/2)&2,-L) = cry, C = a IIi Qi. Arguing as in Lemma 4.3.4, we may assume

that there exists p E (1,1"2) with (/2)~,-1) i= (/2)&2,-1). Define

Then by the same proof as in Lemma 4.1.2: we see that (/2)~3,-L) is nat a monomial.

wIoreover, dP3 (/2) > P3 - 1 by 4.3.10.

If dP3 (/2) > P3 - 1, we can apply the procedure as in the abave proof in step 6~

with Ps replacing P2·

Suppose dP3 (/2) = P3 - 1. Then by Prop. 3.3.5, we have two possibilities for

(/2)t3,-1) (note that 3.3.5 (i) is impossible because (/2)t3,-1) is nat a monomial).

In case 3.3.5 (ii) for (/2)~3,-1)' we have (1'3,83) E L(Pl), where-P3 = 1'3/83. Then

we can reduce the number of the elements in the finite set L(pr).

vVe shall prove that the case 3.3.5 (iii) for (f2)t3,-1) is impossible. To do it: we use

a contradiction argument. Suppose (/2)~3,-L) = bxy(i+13r).·· (i+13t): i = xyP3~.BJ 1
0, t > 1 and 13i i= 13j for i i= j. Consider the above (P2, -l)-decomposition of /2 in

(4.50). For every (k, l) E 34 (/), if k > 1, we see that P2k -l < P2 - 1. Renee

P3k -l < P3 - 1 (4.52)

because P3 < P2. It means that the monomials Ck,lXkyl, (k, l) E 5 4 (/), contained in

the leading forro of (/2)""t3,-1) satisfy k = 0, i.e., the x-degrees equal zero. On the

other hand, among the leading terrns of (/2)~2,-1) = axy(z + ad ... (z + as), we find

(4.53)

•
Hence (/2)~3,-1) = cxy+ sorne terms of forrn co,lyl, (0, l) E 34(/), But, each monomial

in bxy(i + 13d ... (i + Pt) hasx-degree at least 1. Therefore (/2)~3,-1) = cxy, and

then 3.3.5. (iii) for (/2)(;,3,-1) is impossible.

9For e.'Cample, choose 12 < P2 and such that 12k -l < 12 - 1 for (k, l) E S4(f).
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• vVe have thus shown that for f2' either (rz l S2) E L(pr) and there exists 'l/J E C(sL)

such that 1/J(f2)~2.-1) = dXV2 yW
2, 1 ::; V2 = Vb 'V2 < W2, or there exists 'I/J E C(SlS2)

with 'I/J(f2)""t2.-I) = dxV2yW2F5(xyP2),l ::; V2 < W2,V2 < VI· In the first case, f3 =

'l/J(f2) E R S1 • Hence we continue to reduce /3 as above \vith f2 replaced by f3. Since

L(pr) is a finite set, after finite many steps, we can reduce to the second case, that is,

1 < V2 < VI, V2 < W2. At that time, we finish the reduction step for f2. NIore precisely,

for f2 E R S1 , there exists 82 ~ SI and 'l/J2 E CeS2 ) such that either W2(/2) E ~(S2) or

there exists Pz > 1 with

(4.54)

and 1 < V2 < Vr, V2 < W2· Let f3 = 'l/J2(f2) E RS2 '

4.3.11. Step 8.

Repeating the same procedure, for any n ~ 2, we can find Sn ~ Sn-L and 1/Jn E

C eSn } such that either 'l/;n(/n) E ~(s,,.) or there exists Pn > 1 with

(4.55)

•

and 1 < Vn < Vn-l, Vn < W n ,

Note that each V n is positive integer, and only finitely many positive integer less

than i. Then the above reduction procedure must be stop after finitely many steps.

That is, there exists rn > 1, 'l/J E Q(m) such that 'l/;(f) E ~(m) as desired.

Then the theorem 4,3.1 is proved.

Since R ç R(m) for al! m, then \I!(f) E ~ implies that \I!m('lr(f)) E ~(m) for

\I!m = identity. In particular, we have shown that there exists <P E Q(m) G (defined

in 3.3.1) such that <p(f) E ~(m).

vVe are going to study the structure of 1\(.6./ ). It is not difficult to see (see [8])

that A(.6.[) is a semigroup with rank at most 2. Our following result asserts that

A(~f) is a semigroup with rank at most 1.

4.3.12. Proposition. For any non-constant polynomial f, there exists PI E f(

such that A(~[) ç Zfj.
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• Proof. If E(.6.f ) = Ker(.6.f ), let Pf = O. otherwise, E(~f) :1 Ker(~f). By

Theorem 4.3.1, there exists a m > 1, ~ E G(m) G such that ~ (f) E ~(m). Choose

9 E K(x, y] and À E K X such that .6.f (g) = >"g. Let k denote the smallest integer

such that ~(f) has a non-zero cornponent, say ~(fh, in RCm)(k). Let l denote the

smallest integer such that ~ (g) has a non-zero component, say ~ (gh, in R{m) (l).

Then k > O. By (4.26), we find

J (<J?(fh, cI> (g )d = À <l> (gh . (4.56)

Then k = a and ~(lh E [([x, y]. Nloreover, À =1= 0 implies that <J?(lh = cr.xy +,8 for

sorne cr. E K X
, fi E K. vVe define <p E Gel) by <p(x) = x + ~' and W= if> 0 iJl E GCm)G.

Then
s

w(f) = axy + ~Fi.(xy)yï/m,
i=r

(4.57)

for sorne a. E [(X, s > r > 1, and Fi(T) E K[T].

For every 9 E B(nf, >..), À E A(.6.f ) - {a}, let l be the smallest integer such that

cI>(g) has a component cI>(gh E ~(m)(l). Then by (4.26), J(a.xy, cI> (g)r) = /\<1>(g) 1.

Therefore, À = a.l/m. Put Pf = Ct./m. Then Prop. 4.3.12 is proved.

4.3.13. Proposition. Suppose f E [([x: yL and A(n/) =1= O. Then Ker(nf) =
K[l], i.e., fis a closed polynomial.

Proof. By Theorern 4.3.1, and the first part of the proof of Prop. 4.3.12, there

exists m ~ 1, \li E G(m)G

s

wCf) = axy +~ Fi(xy )yi/m,
i=r

(4.58)

for sorne Ct. E KX, s > r > l, and Fi(T) E K[T]. Let 9 E Ker(.6.f ). let l be the

smallest integer such that w(g) has a component w(gh E R(m)(l). By (4.26L we have

l = 0, w(gh = F(Ct.xy) for sorne F(T) E [([T]. Put h = 9 - F(l) E J{er(nf). If

h =1= 0, let l' be the srnallest integer such that w(h) has a component w(hh E ~(m)(l').

Then l' > a from the choice of F(T). But h E I{er(ilf ) implies that l' = 0, as in the

• argument for g. This contradiction proves that h = 0, 9 = F(!) E K[f].

70



•

•

In \t"Ïew of the foilowing Theorem 4.3.14, Theorem 4.3.1 is a weaker form of the

Jacobian Conjecture.

4.3.14. Theorem. If f E ~: and .6.[ kas a sUce 9 E K[x~ yI, tken f = ay + b, a E

K X
, b E K and K[x, yJ = K[f, g].

Proof. vVrite f = fa(xy) + fl(XY)Y + ... + fn(xy)yn. Suppose that .6.[(g) = l.

Considering the linear part of f. vVe know fleT) E a + TK[T], a E KX. I\Ioreover~

we may assume that faCT) E TK(T]. Say, fo(T) E bT + T2K[TJ. SO f has the form

that f = ay+bxy+y2c(x, y). By Prop. 4.2.11 , we know that f = ay. This completes

the proof.

4.3.15. Remark. By Theorem 4.3.14, to prove the Jacobian Conjecture it suffices

to prove that there exists 'if; E G such that 7/;(f) E R under the Jacobian condition.

Renee, Theorem 4.3.1 in this section can be seen as solving a very special case of the

J acobian Conjecture.
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Chapter 5

The Spectral Theory of Ordinary

Derivations

The aim of this chapter is to develop the spectral theory of ordinary derivations by

using results proved in chapter 3 and chapter 4. vVe shaH prove theorem Band

theorem C. vVe use freely the conventions and results of chapter 3 and chapter 4.

5.1 9m-Action on Eigenfunctions

The main purpose of this section is to prove

5.1.1. Theorelll. Let f be a non-constant polynomial in ]([x: y]. Then there

exists PI E K such that A(tlf ) = Zpf.

vVe recall the follo\\'Ï.ng theorem of Zariski for easy reference (See [54J or [40]).

5.1.2. Zariski's Theorem. Let K be a field of characteristic zero, and let L

be a subfield of K(Xl:··.' x n ) containing !(. If trans.degK(L) < 2, then the ring

Ln K[Xl' ... , x n ] is finitely generated over K.

vVe start by giving necessary materials for the proof of Theorem 5.1.1. The first

and the most crucial is the following Prop. 5.1.3.

5.1.3. Proposition. Let [( be field of characteristic zero, A a K -domain and

finitely generated K -algebra with K roll-dimension 1. Let ~ be a non-zero K -derivation

on A. Then [<er(c5") is a finite dimensional ](-vector space.



• Proof. Since A is a finitely generated K -algebra, its Krull dimension equals the

transcendence degree of its quotient field Qt(A.) over [(. Hence

(5.1)

•

where Qt(Ker8) is the quotient field of Ker(8). On the other hand, J{er(8) =
A:n Qt(Ker(8)). Then Ker(c5) is a finitely generated K-algebra by Theorem 5.1.2.

There are two possibilities of dimKQt(Ken5).

(i). Suppose dimKQt(Kerc5) = 1. Then Qt(A.) is an algebraic ex-tension of

Qt(Kerc5). Since c5 = Q on Qt(Kerc5), c5 = 0 on Qt(A.). This is impossible because c5

is non-zero by assumption.

(ii). Suppose dimKQt(KerJ) = O. Then Qt(KereS) is an algebraic extension of

J{. Since Ker(c5) is a finitely generated J{-algebra, we know that J<er(a) is a finitely

generated K-module. Then 5.1.3 is proved.

Note that K er(c5) is a subfield of K from the proof of Prop. 5.1.3.

5.1.4. Corollary. Let c5 be a non-zero [(-derivation of R = K[x, y] and (g) =

gK[x, y] a 8-invariant principal ideal of K[x, y]. Suppose that 9 is irreducible and

(c5(R)) g (g), where (c5(R)) is the ideal generated by the image of a. Then

dimK(Ker(a) + (g)/(g)) < CXJ.

Proof. Suppose Ker(eS) = K. Then the conclusion is obvious.

Suppose a is ordinary. Let liV = [([x, y]/(g). Then a induces a [(-derivation 8 on

liVand (Ker(c5) + (9)/(9))) ç J{er(8). liV is a J{-dornain since 9 is irreducible~ and a
is non-zero because (5(R)) ~ (g). Then 5.1.4 follows from Prop. 5.1.3 immediately

5.1.5. Proposition. Let a be a non-zero ordinary [(-derivation of R = J{[x. y]

that satisfies (c5(R)) ~ Ch) for aU non-constant polynomials h E R. Let (g) be a

a-invariant principal ideal. Then, Ker(c5) n (g) i= Q.

Proof. vVe may write c5(g) = ag, for sorne a E K[x, y] .
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• Suppose 9 is irreducible. By assumption, (a(R)) ~ (g). Hence by Corollary 5.1.4,

dimK(Ker(a)/(Ker(o) n (g))) < 00. (5.2)

But dimKKer(o) = 00 since a is ordinary. Hence Ker(o) n (g) 1= o.
In the general case, we may write 9 = gr;:l ... g~n 1 where the 9i are irreducible.

càprime, and mi > 1. Since o(g) = ag, we have O(gi) = aigi for sorne ai E K(x, y].l

Then by the proof in the first part, there exists sorne hi such that gihi E K er(6) for

each i. Let h = h7: l
••• hr;:n. Then gh E [(er(c5). Then Prop. 5.1.5 is proved.

Proposition 5.1.6. Suppose nf has a non-zero eigenvalue. Let R = K[x, y].

Then n f (R) ~ (h) for all non-constant polynomials h E R.

Proof. vVrite tlf(g) = Àg for sorne À E K X and g E R. Suppose nfCR) C (h)

for sorne polynomial h E K(x, y]. vVe shaH show that it is impossible by getting a

contradiction.

vVe may write /x = ah, /y = bh, for sorne a, bER. Since (fx)y = (fy)x, we obtain

Sïnce J(/, g) = Àg,

ahy - bhx = (bx - ay)h E (h). (5.3)

(5.4)

•

Hence 9 = clh where ÀCI = a9y - bgx . vVe shaH prove that 9 = c2h2 for sorne C2 E R.

Ta do it, we note that 9 = e1h implies that ÀCt = agy - bgx = (a(cd y - b(cr)x)h +

el(ahy - bhx) E (h). Then 9 = c2h2 for sorne C2 E R.

Suppose 9 = chm, for sorne e E R for sorne m > 2. Note that )..g = (agy - bgx)h.

Since (from 9 = ehm) agy - bgx = a(eyhm + mhm-1hy) - b(cxhm + mhm-1hx ) =

(aCy-bex)hm+mhm-l(ahy-bhx) E (hm), we have agy-bgx = Adhm, for sorne dER.

Then 9 = dhm +1 . vVe have thus proved that, for any n > 1, 9 = Cngn for sorne en E R.

This is impossible because 9 is a polYnomial. Prop. 5.1.6 is proved.

IBecause o(gh) = agh, a E R, g(o(h) - ah) = hc5(g). Since g, h are coprime, o(g) = bg, c5(h) = ch
for sorne h, C E R.
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• 5.1.7. Remark. If f = xy2, then D..f(R) C (y). Hence D..f has no non-zero

eigenvalues.

Now we are ready to prove Theorem 5.1.1.

5.1.8. Proof of theorem. 5.1.1.

If ~f has no non-zero eigenvalues, put Pf = O. From now on, we assume that ~f

has non-zero eigenvalues.

Suppose K = K. Let .À E A(~f) (see the notation in LI), with .À =1= Q. Assume

g E E(.6.f,.À). Then (g) is a .6.f -invarïant principal ideal. By Prop. 5.1.5 and

Prop. 5.1.6, K[f] n (g) =1= 0, i.e., there exists h E K[x, yJ with gh E K[f]. Then

~fh = -À.h, -À. E A(~f)' Therefore, A(~f) is a subgroup of K+. By Prop. 4.3.12,

A(~f) "J Z.

In general, A(D..f) ç A(.6.f , K), where A(~f'K) is the set of .6.f -eigenvalues on

K. By Prop. 5.1.5 and Prop. 5.1.6, A(.6.f ) is a subgroup of A(.6.f ,K). Since

A(.6.f ,I{) f"o.J Z by the first part, we have 1\(.6.f )""" Z. Henee 1\(.6.f ) = Zpf for sorne

Pf E K. Thus Theorem 5.1.1 is proved.

5.1.9. Definition. Pf in Theorem 5.1.1 is called the least eigenvalue of 6. f .

There are only two least eigenvalues, unique up ta signe vVe shaH deterrnine PJ in

Prop. 5.4.2.

vVe shaH turn to proving Theorem B and Theorem C. First, let us explain the

relation between 9m-aetions and Z-gradings, following closely the aceount given in

[44].

5.1.10. 9m-Action. Let X be an affine I{-variety endowed with a 9m-action T.

Then T induces a homomorphism

a = T* : A -+ ..4.[t, t-1
] (5.5)

•
with a(f) = l:nEZ fntn. Thus T introduees a Z-grading on A. = I<[X"] = ffinEZ An

of regular functions on J'Y, where An = {fnlf E A.} eonsists of the quasi-invariants of

weight n of T. Vice versa, given a grading A = ffinEZ An of A = K[J'Y], one can define

a 9m-action T on A by setting T>.(fn) =;,.n fn for fn E An, nEZ, and extending it ta
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•

the whole algebra A in a natural way.

Therefore, Theorem 5.1.1 asserts that there is a gm-action on E(Llf) given by

t.g = tng, if 9 E E(Llf,npf). lVIoreover, this action is mL"'{ed (see the notation in 1.5L

because An =1= 0 if and only if A_n =1= 0 for ail nEZ. Ta determine aU eigenfunctions,

we shaH consider this problem in a framework considered by lVIiyanishi [32].

5.1.11. vVe recall briefly the main points in l\tIiyanishi's results. The exposition

follows closely lVIiyanishi's original paper [32].

Let 0 be an ordinary I{-ùerivation on [([x, y]. Recall that an element 1l E R =
K[x, y] is a o-integral factor in the sense of lvIiyanishi [32] if there exists an element

9 E R such that o(g) = ug. Such agis called a o-integral element. vVrite .-/Yé for the

set of aIl o-integral factors. Similarly, 9 E Qt(R) = K(x, y) is a 6-integral element in

K(x, y) if O~) ER, and then X(g) = a~) is called a 6-integral factor W.r.t. K(x, y).

The set .-/Yo of aH O"-integral factors w.r.t. K(x, y) in K(x, y) is an abelian group under

addition. lt is not hard to see that .Xo = ~Ya - ./Yo 2, see [32], Lemma 1.3. Let Ad be

the subalgebra of [([x, y] generated by aIl o-integral elements. Then by [32], Lemma

1.3, A o is generated by invertible elements of Rand those 6-integral elements \vhich

are prime in R (called irreducible 6-integral elements). vThen 0" = D.f' we write _4.f , X f

to denote A~fl./Y~f' respectively.

Let <p : V = SpeeR ~ C be a rational mapping onto a smooth algebraic curve C.

Then'lj.; is defined outside a (possibly empty) finite set L ofF, that is, 'lf,'o := 'l,iJlv-L :

V - L: -+ C is a morphisme vVe say that 'lj; is a pencil if 'Ij;0 is surjective and general

fibres of'zf; are irreducible and reduced. Let 0 be a f-(-derivation of R = I-([x, y]. If

there exists a pencil 'l/J : V ~ C such that o(IF ) ç IF, where f F signifies the defining

ideal of sorne generic fiber F of 'l/J, we say ais a derivation of fibred type in the sense

of [32].

The structure of ~Yf follows from the next proposition.

5.1.12. Proposition. Let f be a closed polynomial. Assume ~f(R) g (h) for

aU non-constant polynomials h E R = K[x, y]. Then X, = )(f is a finitely generated

free abelian group and AI is a finitely generated K -algebra.

2 A - B = {a - b : a E A, b E B} for any two sets A. and B.
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Proof. Since f is closed, K er(6.f) = K[f], and K (f) is algebraically closed in

K(x, y) by 2.2.1. Therefore, J is a derivation of fibred type in the sense of [32]. By [32L

Prop. 2.8, JYf is finitely generated based on the observation that only finitely many

polynomials of the fOrIn f +c, c E Rare reducible if f is closed.3 Since .4d" is generated

by those finitely many irreducible J-integral elements up to the multiplication by

invertible elements of I{[x, y], Ad is finitely generated as a K-algebra. It remains ta

prove that JYf is a group and hence X f = Xf. Suppose 6.f (g) = tg for sorne t, 9 ER.

l = (g) is a ~f-invariant principal ideal. By Prop. 5.1.5, Ker(~f) nI #= o. Hence

there exists h E R such that tlf(gh) = O. Hence 6.f (h) = -th, -t E Xf' NIoreover~

oLYf is a subgroup of K+. Hence JYf is free.

5.1.13. Rem.ark. A(6.f ) is a subgroup of JYf ' and rank(A(b..f )) < 1 by Theorem

5.1.1. On the other hand, we will see that rank(Xf ) can be arbitrarily large by 5.5.8

below.

Regard E(6.f) as a I{er[~f]-module, via the action a.b = ab, for aU a E Ker[~f], b E

E(6.f ). Then the spectral decomposition in case f{ = K(see (2.16) in 2.1.10)

E(~f) = EB E(~f~ À)
ÀEK

is a Ker[~f]-rnodule decomposition of E(.6. f ). Before proceeding, let us examine

E(6.f ) as a Ker[~f]-module and ask whether the above spectral decomposition of

E(b..f , À) is an irreducible decomposition, and if so, to calculate the multiplicity of the

irreducible K er[~f]-modules. This question is solved by the following 1vIultiplicity

One Theorem.

5.1.14. Multiplicity One Theorem. Suppose f is a closed polynomial, and

K = K. Then for any À E A(.6..f),E(~f';'\) is afree K[f]-module ofrank 1-

Since we shaH need a slightly generalization of this theorem in proving Theorem

C 1ater, we prove a general result first.

5.1.15. Theorem.. Suppose Al, A_ l are two non-zero linear subspaces of f<[x, y]

with AlA_l ç Ao := K[f], where f is a non-constant polyno'mial of K[x, y]. Assume

3We shall give a precise fOrIn of this fact in Prop. 5.3.2 below.
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• that AoAl ç Al, AoA_l C A_l . Then there exists u E Al, V E A_l such that Al =

Aou and A_I = Aov.4

Proof of Theorem 5.1.15. Choose and fL"'C u E Al - {D} with the minimal total

degree as a polynomial in K[x, y] 5. Similarly, choose and fi.."\: v E A_ l - {a} \Vith

the least degree property in A_ I . vVe shall show that Al = Aou and A_ l = Aov. To

show this, let w E Al - {O}. Then wv E AIA_I = Ao = [<[f]. Sa wv = b(f) for sorne

polynomial b(T) E K[T] 1 b(T) t= o. NIoreover, there exists a polynomial a(T) E [<[TJ

such that uv = a(f) by the same reason. By the Euclidean algorithrn~ there are t\VO

polynomials c(T), r(T) E K[T] with

b(T) = c(T)a(T) + r(T): (5.6)

where deg(r(T)) < deg(a(T)) or r(T) = O. Suppose r(T) t= o. Let ·UI = W - c(f)u E

Al' Since VUI = VW - c(f)vu = b(f) - c(f)a(f) = r(f) t= a, Ul =1= O. But

and

deg(v)deg(ud = deg(r(f)) = deg(f)deg(r(T))

deg(v)deg(u) = deg(a(f)) = deg(f)deg(a(T))

(5.7)

(5.8)

•

imply that deg(ul) < deg(u), which eontradicts the choice of u. Henee r(T) = 0 and

b(T) = c(T)a(T). vVe have thus proved that w = c(f)u E [<[f]u. Then .lit ç [<[f]'u.

On the other hand, K[f]u ç A oA 1 ç Al by assurnption. Thus Al = [-([f]u. Exaetly

in the sarne way, one may prove that A_1 = I<[f]v. This completes the proof.

5.1.16. Proof of Theorem 5.1.14. This result is clear if À = 0 sinee f is

a closed polynomial. Suppose À E A(~f) and À =1= O. Then by Theorern 5.1.1,

-À E A(~f)' Put Al = E(.à.f , À), A_1 = E(.à.f , -À) and Ao = Ker[.à.f ]. By Prop.

4.3.13, A o = K[f] since À is a non-zero eigenvalue of ~f' Henee Theorern 5.1.14

follows immediately from Theorem 5.1.15.

4For any two sets _4, B, let AB = {ab: a E A, b E B} .
5We say that 'U has the minimal (or least) degree property in A.
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• 5.2 Spectral Theory on K(x, y)

•

Before discussing the spectral theory of polynomial functions, we discuss the spectral

theory of rational function in this section~ because the main results of chis section

follows from the results in last section directly.

Let fER = I{[x, y]. The derivation .6.f extends naturally to a K-derivation D..f

of Qt(R) = K(x, y). vVe define Ker(D..f ): A(D..f), and E(D..f) as in LI.

5.2.1. Proposition. Suppose fx, fy have no common factor. Then Ker(.6.f) =
Qt(Ker(.6.f ))·

Proof. Suppose u/v E I<er(D..f), and u, vER with no cornmon factor. Then

D..f(u)v = D..f(v)u. Then nf(u) = tu, D..f(v) = tv for sorne tER. By Propp 5.1.5,

there exists a w E R with D..f(w) = -tw. Now both uw and vw belong ta I(er(D.-f).

vVe have thus proved Propp 5.2.l.

5.2.2. Proposition. Suppose fx, fy have no common factor. Then A(.6.f ) 

A(D..f) = Zpf and E(.6.f ) = E(D..f) ®Ker(~f) Qt(Ker(D.-f))·

Proof. Let À E 1\.(.6.f ) such that D..f(u/v) = A(u/'L'L and u.v have no cornmon

factor. Then nf(u) = tu, .6.f (v) = (t - ,,\)v for sorne tER. By Propp 5.1.5, there

exists w E R with D..f(w) = (À - t)w. Then ~f(uw) = À(uw). So À E A(6.f L and

; = ::; E Qt(Ker(nf))E(D..f, À). Then the proposition follows from Theorem 5.1.1

directly.

5.2.3. Proposition. Suppose ~f has a non-zero eigenvalue and let Pf denote

the least eigenvalue ofnf as in theorem 5.1.1. Then E(~f) = K(f)[u, u-1
], for some

U E E(~f,Pf),u t= o.
Proof. By Theorem 5.1.14, E(~f'Pf) = K[f]u, E(nf~ -Pf) = I<[f]v for sorne

polynomials u,v E K[x, y] and uv E K[f]. For any w E E(nf,nPf),n E Z, either

wun E K[f], or wv n E 1([f]. Then E(nf) is a K(f)-algebra generated by U,v. Thus

E(~f) = K(f)[u, u-1] .
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• 5.3 Spectral Theory of K[2]-Proof of Theorem B

The main purpose of this section is to prove theorem B. Since A(~f) 1= {o} (see

1.1 for notation), f is a closed polynomial by Prop. 4.3.13 under the condition that

K=K.

5.3.1. Closed Polynornials. vVe first recall several useful facts about closed

pùlynomials.

Suppose K = K. Define (j(f) = {c E I( : f + c is reducible }. For each CE eT(f),

write
n(J,c)

f + c = II piti,

i

(5.9)

where ti > 1 and the Pi are irreducible polynomials in K[x, y]. nef, c) is called the

reducibility arder of f at c. Let

((f) = L (n(f, c) - 1).
cEu(f)

(5.10 )

•

((f) is called the total reducibility order of f. ((f) is closely related to the group ~Yf

defined in 5.1.11 by 5.3.6 below.

The first result asserts that if f is a closed poly"llomial, only fiÏlitely manr poly

nomials f + c, c E K are irreducible poly"llomials in K[x, y].

5.3.2. Proposition. Suppose f is a closed polynomial in ]([x, y]. Then ((f) <

00.

Proof. This was proved by Bertini in 1882 for K = C and by Krull in general.

See [46], Theorem 18.

This result is improved by the following theorem of Y.Stein (see [48]).

5.3.3. Proposition. Suppose f is a closed polynomial. Then ((f) < deg(f)·

In proving his theorem, Y.Stein essentially uses the following facto vVe shaH revie\y

the main point of the proof of this fact because we shall need it in proving Theorem

Band Theorem C later.

5.3.4. Lemma. Let f be a closed polynomial. For Ct E eTCf) , i = 1, ... ,m~

write f + Ct = rrj~l pit:.l, ti,i > 1, Pi,i irreducible in K[x, y], ~ = nef, Ci). Define
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• ai,j E K(x, y) by ~ f(Pi,j) = ai,jPi,j for Ci E (7(f). Then ai,j E K[x, y]. Jvforeover,

suppose L~L Ej~LG.ï,jCi,j = 0, where Ci,j E Z. Then there exists di E Z for aU

i = l, ... ,m such that Ci,j = diti,j.

Proof. vVe recall the main point of the proof. It is evident that ai,j E K[x, yJ.
rvroreover, Lj~L ai,jti,j = 0 for i = 1, ... , m.

vVe can write Ci,j = Si,itij +ri,j, for sorne Si,j and ri,j ""ith 0 < ri,j < ti,j' For each

i, 'one mayassume that si,ni is the least number in {Sirj, j = l, ... ,ni}' Then we have

Therefore,

Tn ni-L m ni
L L (Si,j - Si,ni)ti,jai,j + L 2: ri,jai,j = O.
i=l j=l i=L j=l

Tn ni-1 m ni
H := II II P:'ji(Si.i-Si.nJ II II P;j·i E K[f]·

i=l j=l i=l j=l

(5.11)

(5.12)

Clearly, H = I1~1 (f + Ci)t i for sorne ti > O. By calculating the Pi,j-valuation value

of H we find that rij =0 mod ti,j. 50 ri,j = 0 and Si,j = si,ni for aIl j = 1, .... ni.

This proves Lemma 5.3.4.

The next Lemma is needed as well in pro"ing Theorem B.

5.3.5. Lemma. Suppose 6.f has non-zero eigenvalues. Then f+c has no multiple

factors, for all c E K.

Proof. vVe may assume that c = 0 because 6.f +c = D.1 for any c E K. Fix

9 E K[x, y] such that 6.f (9) = Àg, À E KX and suppose that f has a multiple factor.

vVrite f = p2Q, where P is an irreducible polynomial in K[x, y]. Since

(5.13)

•

and ~f(9) = )..g, P divides g. Suppose that pn divides 9 in R, for some n ~ 1. vVrite

9 = png1 for sorne gl E K[x, y]. By using the formula

(5.14)

we see that pn+1 divides g. Clearly, this is impossible. Hence f + chas no multiple
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• factor.

Proof of Theorern B.

We fust assume that K = K.

The proof consists of several steps.

5.3.6. Step 1. vVe shaH prove that rank(X[) = (f) in this step.

By Lemma 5.3.5 1 we can \vrite the decomposition into irreducible factors as f+C-ï. =

Pi,lPi,2'" Pi ,ni l i = I l ••• , m. Define aij E K[x l y] by !:l[(Pi,j) = ai,iPi,i' By 5.1.12.

X[ is generated by ~j1j = 1, ... 1 nil i = l, ... , m. l\IIoreoverl

ni

L ai,j = 0
j=l

(5.15)

•

for i = l, ... , m. By Lemma 5.3.4, (5.15) for i = l, ... , m are the only relations

between ai,j, that is, if L~l Lj~l Cï,jai,j = 0, Ci,j E Z, then Cï,i· = Ci for aIl j =
l, ... , ni, where Ci E Z depends only on i, for aIl i. Hence rank(X[) = L~l (ni -1) =

(f)·

5.3.7. Step 2.

By Theorem 5.1.14, E(!~f' À) = I{[f]g if 9 E E(!:l[, À) is an elernent with the

least degree property. vVe shaH study the generator 9 of the [([f]-module E(.6.[l À)

in this step. The assumption K = K is essential in this step.

To do this, first note that there exists a pol}"llomial h E K[x, y] such that gh = a(f)

for sorne polynomial a(T) E K[T] by Theorern 5.1.1 and Prop. 4.3.13. Since I{ = !(.

we can write a(T) = fL(T + ai) \-vith finitely many ai E !{. Then aIl irreducible

factors of gare among in the irreducible factors of the polynornials f + Cl C E K.

If 9 has an irreducible factor f +c, c 5t (J(f) 1 i.e., 9 = (f+c)gl for sorne gl E I([x, y].

then gl E E(!:lfl À) and deg(gr) < deg(g) , which contradicts the choice of 9 'with the

least degree property. Hence any irreducible factors of gare among the irreducible

factors of the polynomials f + Ci, i = l, ... , m. So, we can write 9 = I1~1 I1j~l Pt:;,·]
for sorne mi,j > O. Then À = L~l Lj~l mi,jai,j·

Choose U E E(!:l.[,Pf),v E E(.6..[,-Pf) with the least degree property such that
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•
and

rn ni rn ni
PI = L L mi,jai,j: -PI = L L Si,jai,j

i=l j=l i=l j=l

(5.16)

(5.17)

for sorne mi,j > 0, Si,j > o.
5.3.8. Step 3. Keep the notation as in 5.3.7. vVe shall prove that E(~/) is

generated by u, v and f,as a K -algebra.

Ta show this, let n > 2 and W E E(.6./ ,npf) with the least degree property.

Then by theorern 5.1.14, E(.6.f , nPI) = K[f]w, and by 5.3.7, w is of the forrn w =

rr~l rrj~l Pi:f·j, for sorne ni,j > o. Then by (5.17), we obtain

m ni rn ni

L 2:= ni,jai,j = L L nmi,jai,j·
i=lj=l i=lj=l

By Lernrna 5.3.4, there exist integers di, i = 1, ... 1 m, sueh that

Therefore
rn

W = II(f + Ci)diun.
i=l

(5.18)

(5.19)

(5.20)

•

vVe shaH show that, for any i = l, ... , m, there exists sorne jl such that mi,jl = O.

Suppose the contrary. Then mi,j > 1, for aH j = 1, ... , ni. Then u has a factor f + Ci

and then u is not the element of E (D.J, Pf) with the least degree. Renee di = ti,jl > O.

On the other hand, ti,j2 = a for some j2 by the sarne reason because w has the least

property in E(.6.f ,nPI)' Renee di = -mi,j2n < O. vVe have thus proved that di = a

for every i. Then w = /-LUn for sorne /-L E [(X, i.e., E(t1l, np1) = [<[f]un ,n > 2.

Similarly, E(.6.f , -nPI) = K[f]vn,n ~ 2. Renee E(~/) is generated by u,v,f as a
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•

K -algebra.6

5.3.9. Step 4. In this step we shaH praye Thearem B.l under the condition

K=K.

Consider the K-morphism cI> : K[X, Y~ Z] -+ E(~f) by <I>(X) = u,4?(Y) =
v,cI>(Z) = f. Then cI> is surjective by 5.3.8. 1tIoreaver, Ker(cI» is a prime ideal~

containing the irreducible polynomial-,YY - a(Z), where a(f) = uv for sorne polyno

mial a(T) E K[T]. Renee 1 = (-,YY - a(Z)) by Krull's principal ideal theorem. Then,

E(!'~'f) ::::: K[X, Y: Z]/(-,YY - a(Z)) as a K-algebra. vVe have thus proved Theorem

B.l with the condition K = K.

5.3.10. Step 5. vVe shaH prove Theorem B.3 under the condition I( = K.

Let f = xy(xy2 + 1). Then f is a closed polynomial because the leading terrn of

fis X 2y3 and GCD(2,3) = 1. Sa I(er(~f) = K[fJ. For any c E I{X~ we see that

f + c is irreducible by direct calculation. Let Pl = X, P2 = y, P3 = xy2 + l, 'U =

PfPi,v = PIP:. Then .6.f (u) =u'~fCu) = -v. Note that P3 doesn't divide u. By

the proof in 5.3.8 above, u is the element of E(.6.f , 1) with the least degree property.

So E(D..f' 1) = K[f]u. Similarly, E(.6.f, -1) = K[f]v. Now we shall show that +1

is the least eigenvalue of .6.f. Suppose not, and let +1 = npf for sorne n > 2, and

choose Wl E E(.6.j, Pf), W2 E E(Llf, -Pt) \Vith the least degree. Then by the proof

of Step 3, either u = f.lw? or v = f.lWzfor sorne J.L E K X
• This is impossible by the

above irreducible decompositions of u and v. Thus 1 is the least eigenvalues of D..f

and then E(6.f ) '" K[-,Y, Y, Z]j(-,YY - Z3) by 5.3.9. In particular, E(L~f) ~ K[2j.

For a general field of characteristic zero we first have

5.3.11. Step 6.

Suppose A(.6.f , K) =1= {ü}. vVe shaH prove that A(6.f , K) = A(.6.f , K) = Zpf for

sorne Pf E 1< in this step, where for any extension field L of K, A(6.[, L) = {/\ EL:

.6.f (g) = A(g) for sorne 9 E L[x, y]}.

6The fact that f + chas no multiple factor is crucial in the proof of 5.3.8. As we will see later in
Theorem C.2, if f + c has no multiple factor, any Çm - ~j-domain has the same form as E(.6.j)
by the same proof. If f + c has multiple factor, we cau not show that the Çm - ~f-domain is
generated by three elements. Instead we cau prove that any Çm - Âf-domain is a finitely generated
[<-algebra in Theorem D.l.
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• In fact, A(.6./7 K) C A(.6.f , K) = ZPI for sorne PI E K by Theorem 5.1.1. Since

A(6./ ,K) is a group by Prop. 5.1.5 and Prop. 5.1.6, we have A(.6./ ,K) = nZPI

for sorne n > 1. Sa PI E K. vVe shaH prove that p[ E 1\(.6.[, K). Ta show this,

note that p[ E A(.6./ , K) which equivalent ta the existence of 9 E I<[x, yJ sueh that

J(f, g) = Plg. By writing the equation J(f, g) = p[g as a sequence of linear equations

V of the coefficients of g, we know· that v" has non-trivial solution in K. Sinee

f E K[x, yJ and Pf E K, V is defined over K. Then V has non-trivial solution in K.

In other words, there exists non-zero polynomial 9 E K[x, yJ such that J(!: g) = Pjg.

Henee p[ E A(.6.[, K). Then Zp[ C A(6./ ,K). Henee 1\(.6./ , [() = .1\.(6.[, K) = ZPj.

5.3.12. Step 7. vVe shall show Theorem B.1 and B.3 for an arbitrary field of

charaeteristie zero in this step.

For any nEZ, ehoose Un E E(6.f,np[) of the least degree. Then E(.6. / ,nPt) =
K[f]un by Theorem 5.1.15 sinee .I\.(6.t , K) 1= {D}. vVe shaH prove that Un E K[x, yJ is

also the least degree element in E(6.t1 nPI; K), which is the set of .6.[-eigenfunetions

on K[x, y] with eigenvalue np[. To prove this, ehoose a least degree element w E

E(.6.f , nPt; K). So E(6. j , npf; K) = I<[f]w by Theorem 5.1.14. Then Un = a(f)u'

for sorne polynomial a(T) E I{[T]. For any (J E Gal(I(jI(), we have that

a(f)
-a(f)U w

(5.21)

Sinee .6.f (w CT ) = (6. f (W»CT = np/wu and deg(w) = deg(wU), WU = /.Luw for sorne

/.Lu E K
X

• Note that (J -7 /.Lu = u:: is a l-eoeycle. By Hilbert's theorem 90, there
-x b (bW)CT -

exists b E K sueh that /.Lu = bU' Then """bW = l, for aIl cr EGal (I</ K). Henee

E (6, np/, K) = K[f](bw), and bw E E (.6.f' npf ). Then bw must be a least degree

element of E (6. j , np/). Henee bw = CUn for sorne c E KX. Sa Un is also the least

degree element of E(D..J, nPf' K) and E(6./, nPf, K) = J([f]un • Therefore, we may

choose u, v E [([x, y] and E(6./, npf) = K[J]un , or [([f]vn depending on n > 1 or

n < -1. Then Theorem B.1 is proved by a similar argument in 5.3.9. J\iIoreover.

5.3.10 also gives us an example ,vith E(6.[) rv K[..X,}~ Z]/(..YY - Z3) ~ K[2] for

• f = xy(xy2 + 1), for any field K of characteristic zero.
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•

•

Then (B.l) and (B.3) are proved. Our next theorem proves (B.2).

5.3.13. Theorem.. Suppose f + c = uv for some u, v E K[x, y], c E K with

~f(u) = Àu,À E K X
• Then E(.6.f ) = K[u,v] ~K[2],À is the least eigenvalue of ~tl

and J(u,v) = -À. Conversely, iIE(.6.. f ) "-' K[2} , then E(.6.. f ) = K[u,v] forsome

eigenfunctions u, v E K[x, y] with J(u, v) E KX.

Proof. By 5.3.9 (we use the same notations), E(.6.t ) r-J K[2} if and only if

deg(a(T)) = 1. If so, there exists u E E(.6.t , Pt), v E E(~f' -PI) with uv = f + c for

sorne constant c E K. Hence E(.6..f) = K[/, u, vI = K[u, v], where the first equality

follows from 5.3.8 and the second one follows from uv = 1 + c. wloreover, by direct

calculation, J(u, v) = -Pt E K X
•

On the other hand, if 1 + c = uv with ~tc-u) = À'u~ we shaH show that À is the

least eigenvalue of ~f' Suppose not. Then by 5.3.8 in the above proof, 'U = b(f)wn

for some b(T) E K[T],n > 2 and W E E(~f,Pt) has the minimal degree property.

By comparing the total degrees of both sides in the equation u = b(f)wn , b(/) has to

be a constant. vVe may assume that u = w n _ By Lemma 5.3.5, there is no multiple

factor in the decomposition of u because f + c has no multiple factor. Then n = 1.

This is a contradiction. Therefore À = Pf, and u, v have the least degree property

in E(.6.f ,Pf),E(.6.f , -Pf) respectively. Hence E(.6. f ) is a [{-algebra generated by

l, u, v (by 5.3.8) with f + c = uv. Thus Eenf) = J{[u, v] rv K[2]. By calculation~

J(u, v) = -À E K X
•

Therefore, the proof of Theorem B is completed.

As an immediate corollary of Theorem 5.3.13, we obtain 7

5.3.14. Theorem.. Suppose f, 9 E J{"[x, y] with J(f, g) - À E K X
• Then

E(.6.fg ) = J{[j, gl.
vVe prove that E(.6.. f ) is a Qm - nf-damain (see 1.5 for notation) ta canclude this

section.

5.3.15. Proposition. Suppose.6.f has a non-zero eigenvalue. Then E(.6..f ) is a

7To prove this fact was our initial motivation to develop the spectral theory in this paper. This
result essentially means that the J acobian Conjecture in two variables is equivalent ta the assertion
that every polynomial of K[x, y] can be e..'\.-pressed as the linear combinations of eigenfunctions
(Fourier expansion problem) under the Jacobian condition.
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• Qm - D../-domain.

Proof. By Propp 4.3.13, f is a closed polynomial. It suffices to check that E(,0.J)

is factorially closed in K[x, y] with respect to K[f]. Ta check this, let 9 E K[x, yL a E

K[f] with ag E E(~/). vVe want ta prove that 9 E E(~/).

By Theorem 5.1.1 and 5.3.11-5.3.12, we can write

ag = gl + _.. + gm ( - ')'))V. __

for sorne m > 2, gi E E(6l/, T4Pf) , i = 1, ... , m with nI < n2 < ... < nm - Then

~}(gi) = (niP/)k-lgi , ~}(ag) = a.6.}(g) for aIl k > 1, i = 1, __ ., m. Acting with ~}

on (5.22) with k = 1,2, _.. ,m, we obtain

(5.23)

By Vandermonde determinant, we can find sorne hi E K[x, y] such that 9i = ahi for

each i = 1, ... , m. Hence by (5.22), we obtain

9 = hl +. --+ hm- (5.24)

•

5.4 The Least Eigenvalue of ~f

In this section, we determine the least eigenvalue of .6./ by proposition 5.4.2. vVe aiso

discuss the structure of lV(.6./) in this section.

5.4.1. Let f be a non-constant polynomial of K[x, y]. After determining the

eigenfunctions of D../ completely in the last section, we now determine its Ieast eigen

value. In geometry, wheu a differential operator acts on sorne function spaces on a

compact manifold, its least eigenvalue, usuaIly, has important geometric meaning.

5.4.2. Proposition. p is the least eigenvalue of D../ if and only if there exists

elements hl E E(D..f' p), h2 E E(.6. f , -p) such that deg(J(h l , h2 )) is minimal among
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• {deg(J(gt, g2)) : g1 E E(~f' A), 92 E E(~f' -À), A E f(.6. f )}·

Proof. vVe may suppose that K = K. By the same proof as in 5.3.12, the result

then holds in the genera1 case.

First ofal1, for any g1 E E(6..f, >"),g2 E E(~f' -...\), we have J(g1,g2) E [(er(~f) =

[<[f] by Jacobi's identity

J(f, J(g, h)) + J(g, J(h, f)) + J(h, J(f, g)) = 0

for any f, g, h E K[x, y]. NIoreover, J(g1: 92) = -a'(f)>" if g1g2 = a(f), a(T) E K[T],

where a'(T) denote the derivative of the pol:ynomial a(T). Since the least degree

e1ement in E(.6.f , np) is the In]-power of either of the least degree element in E(D..f: Pf)

or the least degree element of E(~f' -Pf) by 5.3.8, the stated assertion follows.

Now we give two resu1ts a.bout the structure of lV(.0..f).

Theorem B asserts that if E(~f) i= Ker(~f)' we can give a precise structure

theorem about E(!~1). This means that the condition E(~f) =1= Ker(~f) is a very

strong restriction on the polynomial/ (for example, / has ta be a closed polynomial

by Prop. 4.3.13). On the other hand, there are many (non-closed polynomials)

/ E K[x, y] \Vith lV(.6.f ) =1= Ker(~f) by the following proposition. -

5.4.3. Proposition. Suppose f E ~(n) (we keep the notation of 3.3. and 4.3).

Then lV(~f) =1= Ker (~f) .

Proof. vVe ean write f(x, y) = F(xy)yn, for sorne F(T) E K[T]. Let 9 = -E1!J-.
Then

(5.26)

•

Renee N(6.f ) =1= Ker(6.f)· Then Prop 5.4.3 is proved.

Suppose E(f~f) =1= I(er(~f), thatis, ~f(g) = /\gforsorneg E [<[x, y] and..\ E [{x.

Then 6.g (f) = -Àg, .6.~(f) = O. Our next result tells us that lV(6.g ) strictly contains

K[j, g].

5.4.4. Proposition. Let /,g be polyno'mials of K[x, y] with ~f(9) = /\g and

À E KX. Then [<[/, g] is strictly contained in N(!:i.g ) •
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• Proof. If 9 E B(nf, À), h E E(nf' -Àr), r E Z, then

(5.27)

by Jaeobi's identity. Renee

(5.28)

Renee, by using (5.28) repeatedly, we have

Sinee K[f] ç J.V(6.g ) (note that f is a local slice of .6.g ), we have

L E(6.f , -Àn) ç lV(6.g ).

n~O

(5.29)

(5.30)

•

On the other hand, K[f, g] ç Ln~O E(~f' /\n). Therefore: [([f: g] = lV(~g) im

plies that Ln~O E(C:i. f , -Àn) ç Ln~O E(D..f, Àn). So -À tt A(6.f ), which contradiets

Theorem 5.1.1.

5.5 Mixed Qm-Action on Subalgebras of K[x 7 y]-Proof

of Theorem C

Let f be a closed polynomial of K[x, y]. Our purpose in this section is to classify

those K-subalgebras A of [([x, y] whieh can he endowed with a mbœd Ym-action ",ith

ring of invariant functions K[f], and moreover are faetorially closed in K[x, y] relative

to K[f]. As mentioned in 1.5, those K-suhalgebras are called Ym - .6.f -domains.

Proof of Theorem C.

vVe preserve the notations of 5.3 and suppose that K = K.

5.5.1. First observation. Suppose A is a quasi Ym -.6.f -domain. vVe can write

A = ffinEz An ç K[x, y], with Ao = K[f]. NIoreover {n : An =1= a} is a subgroup of Z
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• by assumption. Sa we may assume that each iln =/= O. For any n =/= 0, choose Un E An

with the least degree property. Since A_n =/= 0, we see that An = K[fJun by Theorem

5.1.15.

5.5.2. Second Observation. Now we suppose that _4. is a Qm - .6.[-domain.

By an argument as in 5.3.7, each elernent Un in 5.5.1 is of the fOrIn IIi,j Pt:;·i for

sorne integers mi,j. Let B t = {L~l Lj~l ai,jmi,j E "-Yi : mi,j > 0, II~l I1j~l PZj·i E

An for some nEZ}. For any b = E~l Ej~l ai,imi,i E B t , define ~(b) = n if

I1~1 rrj~l ptii.j E An. vVe shall prove that ~ is well defined and B t '" Z under <P.

S b 'Ç""'m ,,",ni ",m ",ni 1 ·UT. b .uppose = LJi=l LJj=l ai,jmi,j = L..i=l L..j=l ai,imi,j' V'i e 0 taIn

for sorne integers dt by Lemma 5.3.4. Then

m ni m ni / m

II II Pt':/,i = II II pi:',i II(f + Cï)l1ï.
i=lj=l i=lj=l i=l

If rrm rrni pmi'J A thi=l j=l i,j E n: en

m ni ,

II II pi:i,i II (f + Ci)di E An'
i=l j=l l1ï>O

(5.31)

(5.32)

(5.33)

•

Binee A is faetorially closed in [([x, y] relative to K[f], I1~1 I1j~l Pi:~·i E A.. By

using Ao = K[f] and the direct sum decomposition of rr~l IIj~l PD~,i in A.: we know
~. ~.

that rr~l IIj~l pi,/'J E A.n· Conversely, if I1~1 l1j~l pi,/'J E An, we can prove that

I1~1 rrj~l Pir:ii'i E An by the same argument. Hence cI> is weIl defined.

4? is onto by the assumption in 5.5.1. j\tIoreover, cI> is injective.8 vVe have thus

prove that cI> is an isomorphism of groups. Then B t ~ Z.

5.5.3. Proof of C.I.

8S IIm [lni pmi,j E A K[f] tTT h ""'nt "ni 0uppose i=l j=l i,j 0 = . vve ave LJi=l LJj=l ai,jmi,j = .
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• There exists À E K[x, y] with A = ZÀ by 5.5.2. vVe shaH show that

An = {g : .6..f (g) = nÀg}.

Let À = Li Li ai,jmi,j(O). This means that IIi IT j Pi":/i(O) E Am for sorne m. vVe

may assume that m > O. vVe shaH show that m = 1. Suppose m > 2. Choose

IliJ Pi"Ji.i E Al by the assumption that each An =1= O. Then ITi,j PDm~.J E .4.m. Since

I1i,j Pi"Ji.i(O) E Am. by the definition of À, we have (by Theorem 5.1.15)

a(f) IIPDmi'i = b(f) II Pi~i.j(O)
ij IJ

(5.34)

for two polynomials a(T), b(T) E K[T]. Hence Eïj G.ï,immï,i = Li,i G.ï,imi,i(O) = À.

But Eï,j ai,imi,j E A = ZÀ. This is impossible. Hence we have shoyvn that m = 1.

For any 9 E An, 9 E K[fJun by 5.5.1, and Un = IIi,i Pi~}·j by the same argument

as in 5.3.7 (note that K = K). Then ~f(un) = nÀ by the definition of À. So

.6..f(9) = nÀg, i.e., ~4n C E(.6..f , nÀ), \In E Z. Conversely, if9 E E(.6..f , nÀ), we want ta

prove that 9 E A.n. To prove this, choose W n as the least degree element of E(.6..f: nÀ).

Note that A.-n ç E(6.f , -nÀ). Then by Theorem 5.1.15, E(6./., n ....\) = K[J]wn .

wloreover, vve may also write W n = ITi nj pr;i.i for sorne integers mi,j. Therefore

(5.35 )

•

Put a(f) = ITc4<o(f + Ci)di
• Then a(f)-LU:n E K[fJAn = An. Since a(f)-l E AD:

and by the assumption that A is factorially closed in K[x, y] relative to AD, we have

W n E A. Hence W n E An by considering the direct SUffi decomposition of W n in A. So

E(Llf , nÀ) C An. Therefore An = B(Llf , n ....\) for aIl nEZ. Hence Theorem C.1 is

proved.

5.5.4. Praof of C.2.
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• For nEZ, choose Un E An with the least degree property, and write

m ni

II II P mi,j en) > 0
Un = i,j' mi,j _ .

i=ij=i
(5.36)

•

Let u = Ui, V = vI, and uv = a(/) for sorne polynomial a(T) E K[T]. For any n ~ 2:

it suffices to prove that un/un E [(X, u_n/vn E KX, this is similar ta the proof of

5:3.8. Then A :: K[..Y, Y, Z]/(XY - a(Z)) for sorne a(T) E K[T], as a K-algebra.

Rence the proof of Theorem C.2 is completed.

5.5.5. Proof of C.3.

This is almost obvious. Let / be a closed polynomial, Bo = }(er(.0..f) = K[/J.

Since B =1= B o, there exists nEZ, and agE K[x, y] such that D../(g) = nÀg. Then as

in the proof of Theorem 3.2.2 (ii), f, gare algebraically independent over K. Rence

trans.degK(B) = 2 because B C [([x, y]. It remains to show that there exists a

mbœd Ym-action T on B with invariant fnnctions equal K[/]. To show this, note that

fx and /y have no common factor. Then, if nEZ, n =1= 0 such that D../(g) = nÀg: (g)

is a .6./-invariant principal ideal of R = [<[x: y]. By Prop. 5.1.5, Ker(.6. f ) n (g) =F D,

i.e., there exists h E }([x,y] such that gh E [(er(.0..f) = }([j]. Hence D../(h) = -nÀh.

vVe have thus proved the theorem C.3.

In order to complete the praof of Theorem C, we recall the following result of

Lorenzini [29], Corollary 2.

5.5.6. Proposition. Let tex, y) = I1f=l Li(x, yYi, where the Li(x, y) are copïime

linear polynomials, n > 2, ri > 1. Assume at least two, say Li and L 2 , have a common

root and GCD(rl, r21' .. ' rn ) = 1. Then f + c is i'rreducible for any C E [(X.

5.5.7. Proof of C.4.

Let A C K[x, y] such that A r-.J K[X, ~ Z]/(...-yy - a(Z)) as a f(-algebra, \vhere

a(T) E K[T]. vVe want to find a closed polynomial f E J{[x, y] such that A is

isomorphic to a quasi Qm - D..f-domain.

.A.fter a linear transformation, we may write a(T) - Tro I1~1 (T + CiY', Ci E
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• K X
, Ci ::j: Cj for i i= j and ri > 1, GeD(ro, rb .. " rm ) = L Define

m

f(x, y) = xy rr(x + Ci) + x.
i=l

Then by Prop. 5.5.6, we obtain: f = xPo, f + Ci = (x + ct)Pi , for sorne irreducible

polynomials Pi, i = 0,1, ... , m. Then ((f) 2: m + L On the other hand~ ((f) <

dèg(f) - l = m + l by Prop. 5.3.3. Hence ((f) = m + L Hence,

(1) For any c =1= {a, Cl,"" em.}, f + c is irreducible.

(2) f is a closed polynomial.

(3) fx, fy have no cornillon factor.

Define, for i = 0, 1, ... ,m,

(x + CiYi , if i is even

PFi otherwise
(5.3ï)

and

Vi = { (x + CiYi, if i is odd

PFi othenvise
(5.38)

•

where Co = c. Let u = rr:,o Ui, V = rr~o 'Vi. Then uv = a(f) by definition of u and 'L'.

Since u, v have no common factor, .6.f (u) = Au with À E K[x, yj. Then .6./(v) = -Xc.

For nEZ, define B n = {g E I{[x, yL 6./(g) = n...\g} and put B = œB n . Then u is

an element of BI with the minimal degree property br the choice of u. Similarly: v is

an element of B_1 with the minimal degree property. Hence B is generated by u, v, f

as a I{-algebra with praof as in 5.3.8. Then B rv A. By Theorem C.3, B is a quasi

Qm - 6.f -domain.

Therefore, we have completed the proof of Theorem C.

5.5.8. Remark. Let f = x(x + 1) ... (x + d - 2)y + x, d > 2. Then by the same

argument as in 5.5.7, we have ((f) = rank(jYf ) = d - 1. Thus rank(Xf ) can be

arbitrarily large.
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•

5.5.9. Corollary. Suppose f + C is irreducible for every C E J(. Then'üf has no

non-zero eigenvalues.

Proof. Suppose f + c is irreducible for every c E K. Then by the proof of

Theorem C, there exists no Qrn - 'üf-domain. Then by theorem B, ~f has no non

zero eigenvalues.

5.5.10. Example. vVe have found out polynomials f E K[x, y] such that E(~f)

is isomorphic to the surface XY = P(Z), where P(Z) has simple roots (e.g, P(Z) =

Z(Z + 1)) with f = xy(x + 1) + x), and where P(Z) = zn, n > 2 (see 5.3.10 for

n = 3.). But we don't know whether there exists a polynomial f E K[x: y] such that

E(6.f ) isomorphic to the surface .....YY = a(Z), where a(T) is any given polynomial in

K[T].

It is worthwhile to put forward the following problem for further study about

closed polynomials

5.5.11. Existence Problern.

Given any m sequences of positive integers:

with GCD(aill ... l ainJ = 1 for i = 1, ... , m, to find a closed polynomial f E J{[x, y]

and distinct elements Cl, ... ,Cm E I( with

ni

f II P aii· 1+ Ci = ij ,Z = , ... ,m
j=l

where each Pij and any f + c, C ~ {Cl,"" Cm}, are irreducible.

5.5.12. Remark. The structure theorem about the eigenfunctions can be used

ta prove sorne derivations have no non-zero eigenfunctions. vVe explain our rnethod

by discussing Zaidenberg's polynomials to conclude this chapter.

Let a = xy + 1, p = xa + 1. Define, for n ~ I,

(5.39)
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• where qn = ypn + eT(l + P + ... + pn-l). vVe claim that for n > 1,

(5.40)

In fact, it is weIl known ([52], [4]) that for n 2: 1 and c =1= -1, qn, In + c, gn + c are

irreducible. lvloreover,

(5.41)

•

Suppose E(D..fn) =1= K[ln]. Then by Theorem B, there are two polynomials u, v such

that uv = a(In) for sorne polynomial a(T) E K(TL where u, v have the least degree

properties. Then uv = (In - IY for sorne integer T. Therefore each irreducible factor

of u is either qn or p. Suppose L:!..fn(u) = Àu. By using (5.41), À c.9ntains the factor

pnJ(p, qn). It is impossible that À E K X
• Hence E(D..fJ = J([In]. By a similar

argument we have E (~gn) = J{[gn] .
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Chapter 6

Theorelll D, Positive Characteristic

and Questions

In this chapter we \ViII prove Theorem D and give severa! results for fields of charac

teristic p > o.

6.1 Finite Generation Properties

The aim of this section is to prove (D.1).

vVe assume that I{ = K and preserve the conventions of the last chapter.

Let f be a closed polynomial of R = J{[x, y], and let Jl be a Qm - .6.f -domain

such that A = EBnEZ An, with A o = K[f]. Then by 5.5.1, A.n = K[f]un, where Un is

an element of An with the least degree property. vVe shaH prove (Theorem 6.1.2) that

a gm - .6.f -domain is a finitely generated K-algebra. To prove it, we first examine

the relations among {un, nEZ}.

vVe keep the notations as in 5.3.1. vVrite (j(f) = {Ci : 1 < i :::; m}, and

as the irreducible decomposition of f + Ci for each 1 :::; 'l < m. Then (see 5.5.2)we

have Ur = IIi,j pt/ for sorne Si,j > O. We shaH determine Un for n > 2 in terms of Ul·
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6.1.1. Proposition. Let dn,i = min{[~~i:i]; j = 1, ... 1 nef, Ci)} for each 1 < i <

'.l

m. Then Un = U~ rr~l (f + Ci) -dn.i. U-n is deterrnined from U-l , similarly.

Proof. Suppose we have integers Ti,j, r~,j satisfying

(6.1)

and that for each i = 1, ... , m, there exists sorne j with ri,j < ti,j~ and T~,j < ti.j'

Then we prove that Ti,j = r~,j'

Actually, by Lemma 5.3.4, there exists integers ei, 1 :::; i ~ m, with Ti,j = TLj+eiti,j.

By the assumptions on ri,j, ri,j' we knmy that each ei = O. Hence ri,j = r~,j for aIl i,j.

Define u~ = u~rr~l(f + Cï)-dn ••• Then u~ E I([x, y] by the definition of dn,i- By

theorem C.I, there exists A E R such that for aIl nEZ, each An = E(.6.{, nA). r-;ote

that each f +Cï E A o = B(Ll!: 0). Since Ul E E(6.{, A), we find that u~ E E(.6.{, n.-\).

By the first paragraph, u~ has the least degree property in An.

Therefore, the elements of An, n ;::: 2 with the minimal degree property are deter

mined by Ub unique up ta a non-zero factor in K. Similarly, U-n , n > 2 is determined

by U-l in the same way. \;Y~e have thus proved Prop 6.1.1.

6.1.2. Theorem. Let A be a Qm - .6.{-domain. Then A is a finitely generated

f(-domain.

Proof. By Prop. 6.1.1, An is generated by {Un: nEZ} with ua = f. It is

enough to choose finitely many generators from {un, nEZ}. For each i, fi."\: one io

such that 8i,io/ti,io < Si,i/ti,i for aIl j =1= jo and define Ti. = ti.io· Then dn,i = [nsi,io/1il

for each n > 2. Let T = rr~l Ti. For any n > 1, write n = kT + a, œ = 0, ... , T - 1

for sorne integer k. Then

•

[( ) Si io l [ Si io ]
dn,i = kT + a T,.. = kTi,OSi,fo + a T,'. '

t t
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• where Tio = T.T. SO l, ,

ordpi,j (Un) - nSi,j - dn,iti,j

- k(Ts·· - T"OS" t· .) + (O:S- . - [0: Si,jO]t . .).1,J t, t,JO t,J t,] Ti IJ

By the choice of Ti, we have TSi,i - Ti,OSi,joti,j > 0, and O:Si,j - [o:s~Q ]ti,j > O.

Hence {un, n > 1} is in the algebra generated by the elements:

(6.3)

where 0: = 1, ... , T - 1. rvroreover, for each n > 1,

(6.4)

for sorne cE K X
• For each n E {l, 2, ... , T - 1}, we have k = 0, and 0: = n. Hence

On the other hand, for n = T, we have k = 1, and 0: = O. So

II Pi~Si.,j-Ti.'OSi,jo4.j E .4
i,j

(6.5)

(6.6)

•

Then the plus part of A is contained in the subalgebra of il generated by the T

elements in (6.3). The proof is similar for the minus part. Therefore A is generated

by at most 2T + 1 generators as a K-algebra. Theorem 6.1.2 is then proved.

6.1.3. Proof of D.I. Let A be a Qm - .6.f -domain. By Theorem C.1, there

exists .À E K[x, y] such that for aU nEZ, An = E(.6.fl n.À). As in the proof of Prop.

5.2.3, we have that A®Ker(~f)Qt(Ker(.6.f))'" [{(f)['u,u- 1
]. Then Qt(A.) ~ [{(f.u).

Since A is a finitely generated K -algebra by Theorem 6.1.2, '~;e know that .A. is then

lordp is the P-valuation of I<[x, y] .
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an affine rational surface. Theorem D.l is proved. 2

6.1.4. Rem.ark. Suppose A = E9nEZ An is a finitely generated K-subalgebra of

K[x, y], where A o =1= K, Ao =1= A, Ao is normal and A is factorially closed in K[x, y]

relative to A o• NIoreover, we assume the associated Ym-action on A is mLxed. vVe shall

show that A is a Ym - .6.f -domain for sorne pol}'"D.omial f. In fact~ Qt(Ao) n.4. = Ao.

Since A is finitely generated by assumption and dimKQt(Ao) :::; 2, Ao is a finitely

g~nerated K algebra by Theorem 5.1.2. NIoreover, every element of An, n -/- 0 is

algebraically independent over Ao, so dimKQt(Ao) = 1, and dim[(Qt(A) = 2. Then

by the same praof as in [40], Theorem 2.8, Ao = K[f] for sorne closed polynomial f.

Hence A. is a YTT1 - .6.f -damain by definition.

6.2 ((f) == 1

It is hard ta classify, ail Ym - .6.f-domains. In this section we shall give an algebraic

characterization of ail Ak//WN, that is affine planes Ay< divided by the action of a

cyclic group WN, in terms of Qm - .6.f -domains, where WN denotes the set of !.V-th

roots of unity. A.s we shaH prove in this section, those domains correspond with the

situation when ((f) = 1. Recall that ((f) = 1 means that eT(f) = {che E K and

f + c = paQ/3 where a, {3 > 1 and both P and Q are irreducible polynomials of

K[x, y]. vVithout 10ss of generality we assume that c = o.
6.2.1. Proof of Theorem D.2.

Let f = paQ/3, where a, (3 ~ 1 and P, Q are irreducible polynomials. Since f is

closed, GCD(a, ,8) = 1.

Let A. be a gm - .6.f -domain. Then A is finitely generated by 6.1.2. Note that

J(!, P) = _[3pa- 1Q!J-1J(P, Q)P, J(f, Q) = a.pa-1Qf3-1J(P, Q)Q. (6.7)

Then by 5.5.2, there is À E R such that for ail nEZ An = E(.6.f , nÀ). By easy

calculation, À = (bD! - a(3)pa-lQ!J-1J(P, Q) for sorne a, b E Z. vVe rnay assume that

2Since K = K, we could also see it by CasteluO\·o's theorem.
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• lV := ba - a{J > a because A # A o. Since for any integer t > l,

(b + {3t)a - (a + et.t),B = lV, (6.8)

•

we may assume that a, b > O. Then u = pUQb E A. l . \iVe may also assume that

o ::; a ::; (JI. - 1. This means that u = paQb has the minimal degree property in A. l .

. \iVe shaH determine the generators of A. By Prop. 6.1.1, \ve know that Un = un / Jdn

is an Element of ~4n with the minimal degree property for n > 2, where dn = [na/À]

. \iVrite b = m{3 + C, m > 0,0 < C < {3 - 1. Then v = p(m+l)a-aQI3-c E A_1 has the

minimal degree property. Then Vn = vn / Je,. is an Element in .4.-n with the minimal

degree property for ail n > 2, where en = [n({3 - c)f{3]. Therefore A is generated by

the following elements:

pN, QN, paQ/3, pak-Q[ka/Q]Qbk-fJ[ka/a1, p«m+l)a-a)l-a[l(fJ-c)IP1Q(.B-c)l-l1[l(fJ-c}/I'I,

where k = l, ... , (JI. - 1; l = l, ... : {3 - 1. vVrite B = [{[P, Q] ç [{[x, yJ, and define an

wN-action on B as follows:

where (N is a primitive lV-th root of unity. Then it is straightforward to see that

all the above generators of A belong to BWN. Hence A ç BWN. Conversely, we shaH

prove that BWN ç A. As a matter of fact, for any 9 = Li,j ai,jpiQi E B: ai,j E K, if

9 E BWN, we have (Ji - aj = 0 mod lV. Therefore, g E LnEZ E(D..[1 nÀ) = A. Hence

BWN ç A and then A = BWN. So (D.2) is proved.

6.2.2. Proof of D.3.

Let Œ be an action of WN over K[X, Y]. Then 3 there exists ---YI, li E K[..X, Y] such

3This is a weIl known facto For example, it is a consequence of the amalgamated product structure
of the automorphism group of .41·. See [25] section 2.
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that K[X, Y] = K[..tY"b Yi] and the action CT is detennined by

for sorne 7,6 whose mod J.V classes are determined by CT. If CT has no isolated fi..xed

points, then either 7 =0 mod N or 6 =0 rnod J.V, and K[_~,Y]WN ~ K[2]. So we

may assume that 1 < ''f < J.V - 1,1 < 6 < J.V - 1. By the above proof of (D.2), this

K-algebra K[..tY, Y]WN is isomorphic ta a 9m -.6.f -domain 4 for f = ..Yfyf E K[..tY, Y]

with a = 6, 13 = LV - 7. Hence the proof of Theorem D is completed.

6.2.3. Remark. It is not true that, in general, that any quasi 9m - .6.f -domain

has the form of K[..tY, l'jG, where G is a finite (abelian) group acting on K[..:Y, Y] as

the following example shows. Let A = K[..tY, }~ Zl/(..tYY - Z(Z - 1)). Then A. is a

quasi 9m -.6.f -domain by 5.5.8. Suppose that Spec(A.) r-.J AiljG. Since A. is smooth

and any smooth surface of the fOrIn A.i/IG is the affine plane Ai, Spec(A) t"V .A.J<
This is impossible since Pic(A) r-.J Z.

6.3 Positive Characteristic Situation

vVe prove several related results in the positive characteristic case. Let I( be a field

of characteristic p > 0 and let D be a non-zero derivation of I([x, y]. Then the ring of

constants Ker(D) is a free I<[xP, yP]-module ofrank 1 or p. (See [27J, [28] or [40]). \:Ve

may also define T(D), E(D) and LV(D) in this framework. \Ve are interested in the

case that K er(D) strictly contains K[xP: yPJ. and we say D is an ordinaïJj deTivation

under this condition. If so, K er(D) is a free I{[xP, yP]-module of rank p. 5

6.3.1. Proposition. Let D be an ordinary derivation of K[x, y] and let .4 be a

K-subalgebra of K[x, y] which contains I(er(D). Assume that .4. is a normal domain_

Then either A = Ker(D) or A = I<[x, y].

4Note that ag E K[X, Y]WN and a E [([J] imply that 9 E [([X, Y]WN .
sIn the positive characteristic case, the correct analogue of a locally nilpotent derivation should

be locally firrite iterated higher derivation in the sense of [33J .
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• Proof. Let B = Ker(D). Sïnce

(6.9)

we know that either Qt(A.) = Qt(I<[x: yJ) or Qt(A) = Qt(B). Then either .4. = B or

A = K[x: y] because both A and B are normal domains.

. 6.3.2. Remark. For A. = T(D), E(D) or lV(D), it is enough to prave the

normality of A to show that A = K[x: y] in case D is ordinary.

In view of theorem 5.3.6, we make the follo\Ving

6.3.3. Conjecture. Suppose char(K) = p > 0 and f: 9 E K[x: y] with J(f:g) =

À E K X
• Then E(.0..fg) = K[xP,yP,f,g].

vVe recall a result of Nousiainen (see [5]).

6.3.4. Proposition. Suppose char(K) = p > 0 and f, 9 E K[x-, y] with J(f, g) =

À E KX. Then K[xP, yP, f, g] = K[x, y].

By 6.3.4, the conjecture 6.3.3 gives the follmving positive characteristic analogue

of the Jacobian Conjecture.

6.3.5. Conjecture. Suppose char(I<) = p > 0 and f, 9 E I([x, y] with J(/, g) =

À E KX. Then E(~f9) = f([x, y].

vVe shaH prove a pOSItive characteristic analogue of theorem 5.1.1 to finish this

thesis.

Define the differential operator 8 by

82(P-l)

8=---ôxp- 18yp-l
(6.10)

•

For any f E K[x, y] \ K[xP, yP], let af = Lf::-~ f i8(fP-i-l). See [26] for its properties.

6.3.6. Theorem. Suppose.0..f has a non-zero eigen'Ualue. Then af E I(X and

.'\(.0..f) (the set of all eigenvalues) is a finite cycl-ic group. 1vloreover A(L1f ) ~ZjpZ

if K contains the (p - l)-th roots of unity.

Proof. By using Ganong 7S formula [26] l we have

(6.11)
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If 6.f (g) = Ag for sorne À E K X
, then ~j(g) = APg. So af = AP-l E K X

• Note that

A(6.f ) is a semigroup. Then the theorem follows.
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