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Abstract

Let K be a field of characteristic zero, K|z, y| be the polynomial ring in two variables.
Let Ay denote the K-derivation of K[z,y] given by Af(g) = J(f.9) = fe9y — fy9z:
the Jacobian determinant of f,g with respect to the coordinate system z,y. The
derivation Ay is a differential operator on K{z,y]. The main objective of this thesis
is to develop the spectral theory of the differential operator Af. More precisely. we
not only determine the eigenvalues but also the structure of the eigenfunctions of
Ayf. In developing this spectral theory, we prove two weaker forms of the Jacobian
Conjecture and establish some relations between the Jacobian Conjecture and our
spectral theory.



Résumé

Soient K un corps de caractéristique zéro et K[z,y] I'anneau des polynémes
a deux variables. De plus, dénotons par Ay la A-dérivé de Klz,y]. défini par
As(g) = J(f.9) = fz9y — fy9z, le déterminant du Jacobian de f, ¢ par rapport au
systéme de coordonnées z,y. Notons que la dérivée Af est un opérateur différentiel
sur K[z,y]. L’objectif principal de cette thése est de développer la théorie spectrale de
I'opérateur différentiel Af. En plus de calculer les valeurs propres, nous déterminons
la strucure des fonctions propres de l'opérateur Ays. En développant cette théorie,
nous démontrons deux formes plus faibles de la Conjecture de la Jacobienne et nous
établissons quelques rélations entre la Conjecture de la Jacobienne et notre théorie

spectrale.
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Notations and conventions

In this paper the letter K is reserved for fields. K is the algebraic closure of K.
L is a field extension of K. trans.degg L denote the transcendence degree of L over
K for any field extension L of K.

K™ is the multiplicative group of the field K, K* is the additive group of the field
K.

Q,R,C are the fields of rational, real and complex numbers, respectively.

K™ is the pure transcendental field extension of K with transcendence degree n.

A is a commutative K-algebra, A* is the multiplicative group of 4 for any A-
algebra A, Q#(A) denotes the quotient field of A for any integral domain 4 and
Al the polynomial algebra in n variables over A. Moreover, trans.degreexA =
trans.degreeg(Qt(A)). .

Z is the ring of rational integers. A is the set of positive integers. Z, = {0} UN.

Cn is a primitive N —th root of unity, wy is the set of V—th roots of unity.

G. is the additive group scheme, G, is the multiplicative group scheme.

K[z,y] is the polynomial algebra of two variables z,y over K. Except in chapter
4, section 1, the letter R is reserved for A or K[z, y].

R, = K[z,y"/™ y~/™] is the K-algebra generated by z,y*™ y~ /™ with m > 1.
R, = K[z,n,77']. Then R contains the subalgebra ® = K{zy,y| and R,, contains
the subalgebra R(™ = K[zy,y"™]. We put R(n) = K[zyly", R"™(n) = K[zyjy™™
for every n > 1.

For f € K{z,y], we use fz, f, to denote the partial differential of f with respect
to z and y, respectively. That is f, = %5, fy= %;5—.

Given an element f € K[z,y], f = ¥, a2y, a;; € K, we will use the fol-
lowing notation: Supp(f) = {(4.7) : a:;; # 0} is the support set of f. deg(f) =
MaZ( j)esupp(f) (¢ + J) is called the (total) degree of f.

A pair of two rational numbers w = (w;, wy) induces a Z-grading of K|z, y|, and
deg,(f) is the w-degree of f. In particular, deg(f) = degu,(f), where wy = (1, 1).

Except in section 3 of chapter 5, the letter § is reserved for an arbitrary A'-

derivation on a K-algebra A, and Ay is used usually if a Jacobian type derivation
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is considered, that is Af{g) = J(f,¢) and J(f,g) is the Jacobian determinant. In
section 3 of chapter 5, where the field K has characteristic p > 0, we use the symbol D
to denote a K-derivation of a K-algebra while ¢ denotes a certain standard differential
operator.

E(6),N(6),T(6), Ker(d), and A(S) are defined in 1.1 and used throughout the rest
of this paper.

" For any K-algebra A, AutgA is the group of K-automorphisms of A, and we use

D, U, p,1,... to denote the elements of AutxA.

F is a filtration of a K-algebra A.

I' is a Z—grading of a K-algebra A.

GrzA is the associated graded algebra of the filtration F.

For any real number z, [z] denote the least integer which is less than or equal to

z. We use the symbol n >> 0 to denote a sufficiently large integer n.



Chapter 1

Introduction and Summary

What today is called “Spectral Theory” has deep roots in the history of mathematics,
going back to J. Von Neumann, D. Hilbert, and even A.Fourier. As_ far as the author
knows, the term “spectral” was coined by D.Hilbert in his study of integral equations.
! Briefly speaking, two objects were given at first: a function space and an operator
on this function space. The purpose of the so-called “spectral theory” is two-fold as
well: one problem is to study the eigenvalues (spectrum) of a given linear operator
and another one is to classify the eigenfunctions (eigenfunction problem) and to see
whether the general element in the original function space has an e)_cpansion in terms
of those eigenfunctions (speciral ezpansion or Fourier ezpansion). In analysis, to
prove interesting results along this line, the function spaces usually are assumed to
be complete and operators are assumed to be bounded.

We discuss a quite different situation on function spaces arising from algebraic ge-
ometry. We consider a field K, an affine algebraic K-variety X, the regular functions
A =T(X,0x) on X, and a K-derivation § of A. J§ can be treated as a differential
operator on the space A. In this dissertation we are interested in the simplest example

where X is the affine plane and A = K, the polynomial algebra in two variables

LIt comes from two different directions: Fourier theory and matrix theory. A number \g is called
an eigenvalue of the linear operator T on a finite dimensional vector space if there exists a vector
zo # 0 such that Ty = Apzg. The terms “proper value”, “characteristic value”, “secular value”
and “latent roots” were used by various authors at different times. The term “spectrum” is due to
Hilbert and the term “spectral” came from the term “spectrum”.



over K. Since the affine space is non-compact, to develop the spectral theory in this
framework is a challenge as will be shown in this dissertation even in this simplest

case.

Here is a brief introduction and summary to the main results proved in this dis-

sertation.
1.1. Let K be a field of characteristic zero. Let 4 be a commutative A-algebra,’
6 : A — A a K-derivation on A, that is a K-linear map satisfying the Lebiniz rule.

We first recall some conventions on notations and terminology. Denote by
AO)={\Ne K :3dg € 4,6(9) = \g} (1.1)

the set of all eigenwvalues of the operator 6 on A. The function g € A is called a

d-eigenfunction if §(g) = Ag for some A € K. Let
E(S) = {Z_j a:gia; € K,9: € A,3\; € K,6(g9:) = Migi} (1.2)
denote the K-linear vector space generated by the J-eigenfunctions. Let
Ker(s) = {g € A:d(g) = 0} | (1.3)
denote the ring of constants of §. Define
N({@)={ge A:3n >20.,6"(g) =0}. (1.4)

If N(6) = A, 9§ is called a locally nilpotent derivation of A.
Regard A as a K[d]-module via the action (T; a;0")f = ¥;a:(6'f),a; € K, f € 4.
Let
T(8) = {g € A:30 # p[T] € K[T],p(d)g = 0}, (1.3)

that is, 7°(0) denote the torsion K[§]-submodule of A. We call § a locally finite

2In this thesis, we always assume that the K -algebras are commutative. We should mention that
our framework is also suitable for non-commutative K-algebras. See [13].
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dertvation if T(8) = A.

At last, we call § a fully spectral derivation of A if E(J) = A.

In particular, for R = KJz,y] ~ K® and f € R, A(fz,y) : R — R, A(fx'”)(g) =
J(f,g) for g € R, is a K-derivation of R, where

fz fy
9z Gy

J(f,g) = det (1.6)

is the Jacobian determinant of f, g with respect to z,y. We shall write Ay = A(fx’y)

to simplify the notation if z,y are already specified. Hence Ker(Af), E(Af), A(Af)
and T(Ay) are defined and will be used throughout this paper.
1.2. Let us first explain the main result about the structure of T°(§) .

Suppose f € K|[z,y]. We say that f satisfies the weak Jacobian condition if
T(Af) # Ker(Ag).

If so, then trans.degreexgT(Af) = 2. We say f satisfies the Jacobian condition if
As(g) € K™ for some g € K{z,y]. The Jacobian Conjecture in two variables is:*

Suppose [ satisfies the Jacobian condition. Then T(Af) = I\.’[a:,.y].

Here, we are interested in whether T(A[) = Kl if f satisfies the weak Jacobian
condition. This question, in a sense, is analogous to the Jacobian Conjecture in two
variables.

To explain our solution for this question, we need to explain first the relation
between T'(Ay), E(Ay) and N(Af) as follows.

If K is an algebraically closed field, we prove (Proposition 2.1.9) that either
T(Af) = E(Af) or T(Af) = N(Ay). Therefore, to discuss the question about the
structure of T(Ay), it is enough to discuss the structure of E(Af), and N(Ay) inde-
pendently.

We say that a K-derivation § of K% is an ordinary derivation if trans.degy (Ker(§)) =

3This is just one of the many equivalent forms of this famous conjecture. We shall give its general
form in 2.1.4 below.
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1. For example, the derivation Ay is an ordinary derivation if f is any non-constant
polynomial. Recall that a K-algebra A is geometrically factorial over K if AQg K is
an unique factorization domain (UFD for simplicity). Among other things, we have
the following result, the first part of which was proved by Miyanishi-Nakai([33], [36]
Theorem 1) in case K = K.

Theorem A.

. (A.1). Let K be a field of characteristic zero and 6 an ordinary K-derivation of
Klz,y]. Assume that N(6) # Ker(d) end N(9) is a finitely generated K -algebra and
geometrically factorial over K. Then N(6) = K.

(A.2). There ezists an ordinary K -derivation § of K[z ,y] with N(§) # Ker(d)
and N(8) 2 KB,

In view of the examples of 2.2.7, the problem to determine the algebraic structure
of N(Ay), in general, is not solved in this paper (See conjectur}e 2.2.11). When
T(Ay) = E(Ay), we can determine its algebraic structure explicitly in the spectral
theory (theorem B.l) below. Here we just give a reason why the discussion about
N(Ay) seems more difficult from the partial differential equation point of view. Note
that E(Af) # Ker(Ay) is equivalent to the solvability of the partial differential
equation _

J(f,9) =Ag (1.7)

for some g € Klz,y] and A € K*, and N(Af) # Ker(4y) is equivalent to the
solvability of the partial differential equation

J(f, J(f,9)) =0,J(f,9) #0 (1.8)

for some g € Klz,y]. Although the equation (1.8) looks more complicated than
the equation (1.7), we observe that, from the partial differential equation point of
view, the condition N(Ay) # Ker(Ay) is more flezible than the condition E{Af) #
Ker(Ay) (see Prop. 5.4.3 and Prop. 5.4.4 below). Hence, it is harder, in general, to
examine the structure of N(Ay) under the condition N(Af) # Ker(Ay).

Theorem A and several related results about locally nilpotent (finite) derivations

12



will be proved in chapter 2.

1.3. We now summarize the spectral theory for the affine plane.

We first explain our solution to the eigenvalue problem.

One of the main results proved in this dissertation is Theorem 5.1.1 :A(Af) = Zpf
for some element py € K. Clearly, py is uniquely determined up to sign. Moreover, we
determine exactly what pf is (the least eigenvalue) in Proposition 5.4.2, and thereby
so‘lve the eigenvalue problem for Ay.

Theorem 5.1.1 is used in an essential way to solve the eigenfunction problem. More
precisely, we have

Theorem B.

(B.1). Let f be a non-constant polynomial in K[z,y]. Assume E(Af) # Ker(Ay).
Then E(Af) = K[X,Y, Z]/(XY — a(Z)), as a K-algebra, for some polynomial
a(T) € K[T]. '

(B.2). E(A;) = KPP if and only if there ezists A j-eigenfunctions g, h € K|z.y]
and ¢c € K such that f + c = gh with J(g.h) € K*.

(B.3). There erist a polynomial f such that E(Af) # Ker(Ay) and E(Af) & B2,

The eigenfunction problem is solved by Theorem B completely.

As we said before, it is natural to study the Fourier erpansion problem in the
spectral theory, i.e., whether every polynomial f € R can be expanded as a linear
combination of the eigenfunctions. Theorem B tells us this problem is, more or less.
equivalent to the Jacobian Conjecture in two variables. We do not aim to solve this
famous conjecture in this thesis. Instead we shall treat two weaker forms of this
conjecture in proving Theorem B.

1.4. We are going to explain the weaker forms of the Jacobian Conjecture proved
in this thesis and why they are closely related to Theorem B.

In order to explain this, we employ the following notation. Let ® = K{zy,y] C
K[z,y]. Form > 1, let K[z, y/™, y~}/™] be the A™-algebra generated by z, y'/™, y~1/™.
Then every element of K[z, y'/™,y~"/™] has the form ¥;50 ez jez 22y ™, a;; € K.
The analogue of R in K[z, y"/™,y~/™] is defined by R(™ := K[zy, y/™]

The essential ingredient in proving Theorem 5.1.1 and Theorem B in our present
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study of Spectral Theory is:

Suppose f € K|z,y], and assume E(Af) # Ker(Ays). Then either there exists an
automorphism ¥ € Autg K|z, y] such that U(f) € R, or there ezists U € Autg K[z, y],
a positive integer m > 1 and an automorphism V., € Autg(K[z, y™, y~ /™)) of the
form Um(y=Hm) = y=Um, Lp(yH™) = yH™ Upn(z) = = + h(y~™) (A(T) € K[T])
such that U, (T(f)) € R4

' The connection of this result with the Jacobian Conjecture can now be explained
as follows.

Let (JC.f) denote the statement: °

If Af(g) € K* for some g € K[z,y], then K[z,y] = K[f, g]-

We prove (Theorem 4.3.14): Suppose f € R. Then (JC.f) holds. Therefore the
Jacobian Conjecture in two variables, in a sense, is reduced to prove the following
statement: '

Suppose f € K[z,y], and T(Af) # Ker(Ays). Then there ezists an automorphism
U € Autp(K[z,y]) such that ¥(f) € R.

According to Theorem 4.3.14, the Reduction Theorem 4.3.1 can be considered as
a weaker form of the Jacobian Conjecture.

Another weaker form of the Jacobian Conjecture proved in this thesis is Theorem
5.3.14: If J(f,g9) € K, then E(Af,) = K[f, g]. Theorem 5.3.14 follows immediately
from the proof of Theorem B.2.

Theorem B and the above weaker forms of the Jacobian Conjecture will be proved
in chapter 5. The technical part needed will be developed in chapter 3 and chapter
4.

1.5. Besides the spectral theory and the weaker forms of the Jacobian Conjecture
the following subject is also considerably studied in this dissertation.

In order to explain these results, we give a close examination of E(Ay) from the
Gm-action point of view.

Let A be a K-algebra with a G,-action. As is well known, A has a Z—grading,

4This is a weaker form of the Reduction Theorem 4.3.1,
5This is another equivalent form of the Jacobian Conjecture in two variables.
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that is, a decomposition A = @,z 4,.° Define by Supp(4) = {n € Z : 4, # 0}.
Then Supp(A) is a sub-semigroup of Z. If Supp(A) is a non-trivial subgroup of Z,
we call this action a mized G,,-action. Then Theorem 5.1.1 essentially asserts that
there is a mixed G,,-action on E(Af) if Ay has non-zero eigenvalues. But, we will
see there is more algebraic structure on E(Af) along this line. To see this, we define
Gm — Ay—domains and quasi G, — Ar—domains, as follows.

" LetAbeak -subalgebra of K[z, y] endowed with a mixed Gn-action with the asso-
ciated Z—grading decomposition A = P,z A,. We say that f is a closed polynomial
in K(z,y] if f is not a polynomial of degree > 2 in another polynomial g. Let f be
a non-constant closed polynomial in Kz,y]. If 49 = K[f] and trans.degreep A = 2,
we call A a quasi G, — Ay—domain. Given three K-algebras A; C A, C 43, we say
Ay is factorially closed in Aj relative to A,, if for any a3 € Aj,a; € A;,a1a3 € Ay
implies that a3 € A,. A quasi G, — Af—domain is a2 G, — A f—dbmain if A is fac-
torially closed in R relative to K[f]. In particular, we can prove (Prop. 5.3.13) that
E(Af) is a G — Ag—domain when A has non-zero eigenvalues. Moreover, we prove
(Theorem 6.1.2) that a G, — Af—domain is a finitely generated K-algebra.

In this thesis we will also consider the converse problem, i.e., to classify all G, —
As—domains. Recall that a polynomial f has a multiple factor if there exists an
irreducible polynomial P and n > 2 such that f = P"Q for some polynomial Q.
When for any ¢ € R, f + ¢ has no multiple factor. the converse problem is solved
completely by the following theorem.

Theorem C. Let K = K,R = K[z,y], and f € R a non-constant closed polyno-
mial.

(C.1). Let A = @pcz An be a Gy — Aj—domain. Then there exists A\ € K[z,y]
such that A, = {g € Kl[z,y] : Af(g) =nAg} foralln € Z.

(C.2). Let A be a G, — As—domain. Assume that f+c has no multiple factor, for
anyc€ K. Then A= K[X,Y,Z]/(XY —a(Z)), as ¢ K-algebra, for some polynomial
a(T) € K[T].

Conversely, we have

6See section 3.1 for the definition.



(C.8). Let A € K{z,y] — {0}, and assume that fz, f, have no common fuctor. Put
Ba = {g € K[z.4] : Ap(g) = nAg},

and B = @, cz Bn. Suppose B # By. Then B is a quast G — Ay—domain.
Moreover:
 (C.4). Assume that a(T) is a polynomial of K[T| which is not a power of another
polynomial. Then there ezists a closed polynomial f € Kz,y] and a quasi Gn —
Ag—domain A such that A= K[X,Y,Z]/(XY —a(Z)), as a K-algebra.

Theorem C.1 gives the structure of a G, — Af—domain in terms of one element
A € Klz,y]. It is relatively simple to prove (Lemma 5.3.5) that any f + ¢ has
no multiple factors if A; has non-zero eigenvalues. Then Theorem C.2 is a slight
generalization of theorem B.1 as stated above. C.3 and C.4 are, ina sense, converses
of Theorem C.1 and C.2, respectively.

Theorem C will be proved in chapter 5.

1.6. In the general case when f + ¢ has a multiple factor for some ¢ € K. the
structure of a G, —Ay—domain is more complicated. We have not solved this problem
completely so far. We prove that

Theorem D. Let K = K, and f € R = K|z, y] be a non-constant closed polyno-
mzial. Then

(D.1). Any G, — Ag—domain is an affine rational surface.

(D.2). Suppose ((f) = 1 (defined in section 5.8). Then A = (K@¥)*~ a5 a K-
algebra, where wy is a cyclic group of order N acting on KU

(D.3). Given a K -algebra of the form (K[zl)“’-"’, where wy acts on K3, there ezists
f € K[z,y] and a G, — Aj-domain A such that A = (KB~ g5 o K-algebra.

Theorem D is proved in chapter 6.
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Chapter 2

Locally Nilpotent Derivations and

Theorem A

Our main purpose in this chapter is to study locally nilpotent derivations and to

prove theorem A.

2.1 Ordinary Derivations

Since ordinary derivations are our main object in this paper, it -is appropriate to
devote the first section to a collection of observations concerning them. The main
result of this section is Prop. 2.1.9, which establishes the relation between 7°(4). N (d)
and E(¢) for an ordinary derivation . Prop. 2.1.7, which has independent interest.
is used heavily to prove Prop. 2.1.9.

2.1.1. Ordinary derivations. Let K be an arbitrary field of characteristic zero
and K™ = Kfz,,...,z,] (the polynomial ring in n variables over K). An ordinary
derivation of K is a non-zero K-derivation of K[ such that Ker(6), the ring of
constants of 4, has transcendence degree n — 1 over K. For an ordinary derivation
6, there exists polynomials f,..., fa—1 € Ker(d) such that Ker(d) is algebraic over
K[fi,..., fa-1], that is, fi,..., fa—1,g are algebraically dependent over K for any
g € Ker(§). Moreover, if Ker(d) is an affine K-domain, we may choose fi,..., foo1

such that Ker(d) is a finitely generated K[fi,..., fn—1]-module by Noether’s normal-
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ization theorem.

Suppose ¢ is an ordinary K-derivation of K[zy,...,z,], and Ker(d) is algebraic
over K(fi,..., fam1] forsome fi,..., fa1 € K{zy....,z,], as above. By [31], Lemma
2, then there exists a rational function h € K(z,...,T,) such that § = hAp ;..
where Ag r._,(9) = J(fi,---, fa=1.g). the Jacobian determinant of fi,...,  fa-1.9
with respect to zy,...,Z,, forall g € K|zy,...,z,]

" 2.1.2. Ring property. Let § be a K -derivation of Klzy,...,z,]- By the formula

M(a+b) = Z k'( 5% (a)6™ % (b), (2.1)

we see that N(6) is a ring. Write, for A € R,

E(3,)) = {g € Klz1.-...2] : (5 — N)g =0}, (2.2)
Then
E@, A1) @ E(, A2) € E(S A + Aa), (2.3)
K
In particular, F(d8) (see 1.1) is a subring of K[z;.....Z,]. Define
TG, A) ={g€ Klz1,...,2,] : 3m > 0,(6 — A)™g = 0}. (2.4)

T'(d) is a subring of K[zy,...,z,] by its definition (in 1.1).

2.1.3. Ker(d). The structure of Ker(d) is very complicated in general. For
example, there are examples with Ker(d) not even finitely generated as a K -algebra.
In fact, To determine Ker(d) is closely related to Hilbert’s fourteenth problem as
many authors have shown to us (see [37], [42]). Precisely, let G C GL,(K) be a
connected algebraic group. Then there exists a K-derivation § of K[z, Za..-.,Zn]
such that Ker(d) = Kz, zs,...,2,]¢ (see [37], Theorem 6.4). In particular, the
counterexamples, such as Nagata's, to the fourteenth problem of Hilbert provide us
examples of derivation § with Ker(d) not even finitely generated as a K'-algebra.

More recently, Freudenburg, Roberts, and Miyanishi have shown us such examples of
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locally nilpotent derivations 4. See [18], [22] and [42].

2.1.4. The Jacobian Conjecture and the Weak Jacobian Question. Let
6 be a K-derivation of K[zy,...,z,]. If §(g) € K* for some g € K|zy,...,Z,], g is
called a slice of 4. If 6(g) # 0 and §%2g = 0, we call g a local slice of §. See [16]. If §
has a slice g, then N(8) = Ker(6)[g] = Ker(s)M ([51], Prop. 2.1).

Now consider § = Ay, f = (f1,---: fa=1)- EAf(g) = J(f1.-.., fa—1,9) € K* for
some g € K[z1,...,Tn), and if K[fy,..., fa_1] is factorially closed in K[z, ..., Tn],}
then by [10], Corollary 2.4, Ker(As) = K|[fi,- .-, fa—1l,and N(Af) = K[fi1,. .-, fa—1.9]-
Recall that the famous Jacobian conjecture:

JC: Suppose fi,...,fn € K[z1,-...%a] satisfy J(fi...., fa-1.fn) € K*. Then
Klzy,....za) = K[f1,.--, fa]-

Therefore proving the Jacobian Conjecture is equivalent to showing that Af is a
locally nilpotent derivation. We put forward a related question in this paper. We
called it the Weak Jacobian Question, WJQ in short. 2

WJQ: If § is an ordinary K-derivation of K[z1, . .., z,], and T(8) # Ker(4), when
is T() = K7

For general n, this question seems not attackable because it relates to many open
questions, such as giving an algebraic-geometric characterization of affine space, the
classification of locally finite derivations, and in particular, the classification of locally
nilpotent derivations. Those questions are still mysterious at present. As a matter
of fact, only very recently some definite results about locally nilpotent derivations on
KBl were described in [9], [11], [16], [17], and {12]. The main purpose of this paper is
to give the solution of WJQ when n = 2.

In the remains of this section we shall prove several general results which will be
useful in the sequel.

2.1.5. Proposition. Suppose L is an algebraic extension of K and § a I\-

1A subring A of an integral domain B is called factorially closed if for all =,y € B we have
zy € A — {0} implies that z,y € A.

2We state it as a question, not as a conjecture since we don’t have strong evidence to believe it is
true or not, even if we assume the Jacobian Conjecture. Here, “weak” means: both the conditions
and the claims of WJQ are weaker than those of JC.
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derivation of Klzy,...,z,]. Let &p be the L-derivation of L[zy,...,z,] ertending §
and T(6r) the L[dL]—torsion submodule of L[z, ...,z,). Then T(8) @ L = T(6.).
Proof. We first prove that T'(d.) is the torsion K [6.]-submodule of L[z, ..., z,].
In fact, for any polynomial p(T) € L[T], its coefficients generate a finite algebraic
extension K of K. Let ¢(T) denote the product of all the conjugates of p(T) in the
Galois closure of K. Then ¢(T") € K[T]. Moreover, for g € L[zy,...,z,], p(d.)g =0
implies that ¢(d.)g = 0. Hence, T(6.) is the torsion K [6;]-submodule of L[z, ..., Z].
For any g € T(6.), we choose a polynomial p(t) = t™ +¢1t™ ™! +... + ¢, € K[t]
such that p(dL)g = 0. Write 6, = Z5L($i)5‘3;,g =3 gi,. Tt ...z with §z(z;) €
Kz, ...,z,] by assumption. Then, by rewriting the equation (67 + ;67 +... +

¢m)g = 0, we have a linear system of equations V for the coefficients g;, ;. defined

.....

3 of this linear system is a tensor product of L with

over K. The L-zero space
the K-zero space of this linear system, by linear algebra. Then the stated assertion
follows.

The following lemma is well known. We state it here for easy reference.

2.1.6. Lemma. Let A be a K-algebra. 6 a R -derivation of A, and A € Ki.
Then the sum Y_,cz T(d,n)) is direct, that is, for any m > 2, ™, a; = 0 with
a; € T(6,n;:A) and ny < ... < ngy,n; € Z implies that each a; =0,7=1,....m.

2.1.7. Proposition. Let A be a K-algebra and an integral domain, § a K-
derivation of A. Suppose there ezists A € K* and h € A such that (§ — A)*h =
0,(6 — A)h # 0. Let g = (0§ — A)h. Then g,h are algebraically independent over
Ker(9).

Proof. For any positive integer m > 1, we first prove that
(6 —mANA=m(m—1)...(m—k+1)g*r™* 1 <k <m. (2.3)

To show this, we note that (2.5) is true when & = 1 since (§ — mA)R™ = §(A™) —
mAR™ = mh™ Y(6(h) — Ah) = mgh™ . Suppose the formula (2.5) holds for anyv

3 L-zero space is the solutions of this linear system in L, for any field L.
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k <m. Then

(6 —mA)A™ = m(m—1)...(m —k+1)[(§ —mA)gch™ ¥
= m(m—1)...(m —k +1)[6(gF)A™F + g*6 (h™*) — mAgFR™*]

= m(m—1)...(m - k)g*tpm k1,

Therefore (2.5) is proved. In particular, for any positive integer m > 1, we have
(when &£ = m)
(6 —mA)"A™ =mlg™ #0 (2.6)

and then
(6 — mA)™Th™ = m!(§ — mA\)g™ = 0. (2.7)

We next prove that, for any integers ¢,7 € Z,
E(6,i\) QT (8,52) CT(6, (i + 5)A). (2.8)
K

It suffices to prove that
(6 — Ay — A2)™(ab) =0 _ (2.9)

if (6 —XA)a=0,and (6 — X2)"6b=0,n>1. We go by induction on n. When n = 1.
(2.9) is true. Suppose (2.9) is true for n, and suppose that (§ — A2)"*'b = 0. Let
c = (6 — A2)b. Then (6 — A\; — A2)™(ac) = 0 by induction hypothesis. On the other
hand, it is readily seen that (6§ — A\ — As)ab = ac. Hence (§ — Ay — A\2)""!(ac) = 0.
We have thus proved (2.8).

Now we are in the position to prove Prop. 2.1.7.

Given a relation
Z aijgihj =0,a;; € Ker(d), (2.10)
ij
to prove Prop. 2.1.7, it suffices to show that each a;; = 0. Since a;;¢° € E(J,1)),
a; ;9°h? € T(S, (i +7)A) by (2.7) and (2.8). By Lemma 2.1.6, for each positive integer
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m, we have

S2 aig'h =0. (2.11)

i+j=m
Write b = agm-rg5, &k = 0,...,m. Then bgh™ + btA™ ' + ... + b, = 0. For any

positive integer &, m with & < m, we shall show that
(6 —mA) (bneich®) = k(k —1) ... (k =+ L)bypg'h* 1 =1,... k. (2.12)

When [ = 1, (2.12) is evident since bn,_x € E(J, (m — k)\). Suppose the formula
(2.12) holds for < < k. Then

(6 — mA)F b, h* (6 —mA)(k(k —1)...(k —i+1))bp_rg*hF!

= k... (k -4 l)am—k,k[5(gm_k+ihk_i) _ m)\gm—k+ihk—i]
= k(k—1)...(k—i+1)(k = 0)bn_tg'R* "5 (h) — AR)
= k(k—1)...(k = )bm_ggTthF~1

We have thus proven (2.12). In particular, we have (when [ = k)
(6 — mA)* (bn_rh*) = klbrm_rg* (2.13)

and then
(6 — mAN)* T (b hF) = 0. (2.14)

Therefore, acting with (6§ — mA)™ on both sides of the equation bgh™ + ... +b,, =0,
we obtain m!bgh™ = 0. Hence by = 0. Acting with (§ — mA)*~! on the equation
bih™ 1t + ...+ by = 0, we have b; = 0. By repeating this procedure, we see b = 0 if
m > k. Hence a;; = 0, for all 7, j. So the proposition is proved.

2.1.8. Remark. Suppose ¢ is a K-derivation of R = K/[z,y], and Ker(d) = K.
Assume T'(4,A) # E(6,)) for some A € R*. We claim that the derivation ¢ is
determined by T'(4, ). In fact, choose h € T(d.)) — E(d,A) with (§ — A)2h = 0. Let
g = (6§ — A)h. Then g, h are algebraically independent over Rer(d) = K by Prop.

[
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2.1.7. Hence K(z,y) is an algebraic extension of K(g,h). Since charK = 0, any
K-derivation on K(g,h) can be extended uniquely to a X -derivation on K(z,y). In
particular, the derivation § on K[z, y] is determined by §(g) = Ag and &(h).

When A = Klz,,...,z,), and 0 is an ordinary K-derivation on A, Prop. 2.1.7
can be used to determine the relation between T°(6), E(d) and N (4).

2.1.9. Proposition. Let K be an algebraically closed field and § an ordinary
derivation of K[z1, ..., za]. Then either T(8) = N(6) or T'(8) = E(6).

Proof. By [8], Theorem 3.2 (The spectral decomposition theorem),

T0) = @ T, \) (2.15)
AEK
and
E($) = @ E(d, A). - (2.16)
AEK
We first prove that
T(6,A) = E(5,)) (2.17)

for all A € K*. Suppose that equality is not true. Then there exists a A € K*,
h € K[zi,...,z,] such that (§ — \)h #0,(0 —\)®2A = 0. Let g = (6 — A)h. Then by
Prop. 2.1.7, g, h are algebraically independent over Ker{d), which is impossible since
Ker(d) contains n — 1 algebraically independent elements. Then 7(6,\) = E(d, \)
for all A € K*.

By (2.15) and (2.17), T(8) = N(8) + E(4). If both T(§) # N () and T(6) # E(J)
hold, then Ker(9) is strictly contained in /V(d) and in F(d) because
E(8)NN(6) = Ker(d). So there exists non-constant polynomials g1, g» € K[zy,....zn], A €
K> such that (6 — \)g; = 0,68(g2) # 0, and §%(g») = 0. Thus

(6 = A)(9192) = 91(6g2) # 0, (8 — X)*(g192) = 0. (2.18)

The last formula contradicts the fact that T(6, \) = E(4, ) as we have just proved.

Therefore, Prop. 2.1.9 is proved.
2.1.10. Remark. Suppose A is a finitely generated A-domain with Krull-

23



dimension 1 and K = K. Let & be a non-zero K-derivation of A. Then for all
A€ K*,T(48,A) = E(6,A), by Prop. 2.1.7. Hence T(6) = E(8) + N(d). Then either
T(9) = N(d), or T(8) = E(8)-

Recall that a subring A of B is integrally closed in B if b € A, for any b € B
which satisfies 0* +aq 0" '+ ... +a, =0 forsomea; € A,2 =1,...,n,n > 1. If
an integral domain A is integrally closed in the quotient field of A, we say that A is
normal.

2.1.11. Proposition. Let § be a K-derivation of K(xy,...,Z,]. Then N({J) is a
normal domain.

Proof. Let f,g € N(J),g # 0, with

(5)" + cl(g)”“l 4ot =0,¢ € N(3). (2.19)
Since Kz, ...,z,] is normal, it follows that -5 € K[z;,...,zn]- Consider the ring ho-
momorphism U5 : K{z1,...,z,] = K[z1,...,z,)[[T]] defined by Ts(f) = 2, "'%DT"
corresponding to . Extend Uy to gt(K{z;,...,za]) by \II,;(-g) = %‘;% Then, by (2.19)

Ts(f) Us(f) \not
" Usle))(=——=)"""+...+ V¥ =0, 2.20

where Us(f), ¥s(9), ¥s(c;) € K[z1:-.-,za][T];1=1,...,n. Since Kzy,...,z,][T] is
normal, ‘;—ﬁf)l € K[z, ...,z,][T]. Therefore é € N(6) by the definition of NV (d).

2.2 Locally Nilpotent Derivations

We work in the polynomial ring in two variables starting from this section. Let § be a
non-zero K-derivation of R = K|z, y]. Our main objective in this section is to prove
Theorem A.

2.2.1. Ker(d). We begin by reviewing some facts about Ker(d), as follows.

Let ¢ be a non-zero R-derivation of R. Then Ker(é) = K[f] for a polynomial
f € K|z,y]. Moreover, Ker(d) is integrally closed in R ([40], Theorem 2.8). Therefore

6 is an ordinary derivation if and only if Rer(d) strictly contains K. Conversely, let
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A be a subring of K[z, y] containing K such that A is integrally closed in K[z,y] and
Krull-dim(A) < 1. Then A = Ker(6) for an ordinary K-derivation § ([40], Th. 3.4).
The polynomial f is studied in detail in [38]. In particular, f is a closed polynomial.
Note that f is a closed polynomial if and only if Ker(Af) = K[f].

The classification of locally nilpotent derivations on R follows from Rentschler’s
theorem [41]. For an extensive study of the automorphism of K, see [35].

" 2.2.2. Theorem. Let & be a locally nilpotent derivation of R. Then there exists
® € Autg K|z, y],p(T) € K[T] such that § = p(2(z))Ag(z)-

2.2.3. Rank of ordinary derivations. Suppose ¢ is a locally nilpotent deriva-
tion. Then by 2.2.2, § is ordinary, rank(d) = 1, * and Ker(d) = K|[f] for some
vartable f. We say that f is a variable in Az, y] if there exists another polynomial
g € K|z, y| such that K[z,y] = K[f.g]-

Conversely, suppose ¢ is a K-ordinary derivation of K[z,y], and rank(d) = 1.
Then K[X] C Ker(é) for some variable X € R. By 2.2.1, K[X] € K[f] for some
f € R, and X = p(f) for some polynomial p(T) € K[T]. Write K[X,Y]| = Kz, y]
for some polynomial Y € R. Since J(p(f),Y) € K*, deg(p(T)) = 1° So f € K[X].
Hence Ker(d) = K[X]. This proves that rank(§) = 1 if and only if f is a variable.
Hence rank(d) = 2 for most ordinary derivations 4. ’

2.2.4. Let ¢ be an ordinary K-derivation on R. Then by 2.1.1, § = hA[ for some
h € K(z,y) and f € K(z,y] with Ker(6) = K[f]. It is natural to ask when & is in
Kz, y]-

Write A = a(z,y)/b(z,y), where a,b € K|[z,y] and a,b have no common factor.
Then b | fr and b | f,. Hence, for 6 = hAy, if fz, f, have no common factor, then
h € Klz,y)-

Moreover, Ker(d) = Ker(Af) = K|[f] by assumption. Then f is a closed polyno-
mial by 2.2.1.

4if 6 is a K-derivation of K[zy,-..,Za], rank(d) is defined in the sense of [12], that is rank(J) is
the least integer r > 0 for which there exists X1,...,Xn € K[z, ..., z,] satisfying K[z|,...,z,] =
K[X1,...,X,] and K[X,,...,Xn-r] C Ker(4).

5When we write deg(p(T)),p(T) € K[T], we mean the degree of the one-variable polynomial
o(T)-



2.2.5. Special derivations. A K-derivation ¢ of R is called special if § = hAf
for some h € Klz,y] with 6(h) = 0. If § is special, then K{f] C Ker(d) = K|g]
for some polynomial g. Then both f and A are polynomials in g. Say, f = «(g).
and A = f(g) for polynomials «(T"), B(T) € K[T]. Then § = A, where u = v(g).
+(T) € K[T] with v(T) = «(T)'B(T). We have thus shown that § is special if and
ounly if § = A, for some non-constant polynomial u € K|z, y].

' 2.2.6. Proof of A.1.

By 2.2.1, Ker(é) = K[f] for some f € K[z,y| by 2.2.1. Write A = N(d) and set

S = K[f] — {0}. Note that

(i) S7'A = K(f)iH.
(i) K(f)nA=K[f].
(iii) A is geometrically factorial over K (by assumption).

In fact, choose a local slice g € A of §. Then for every element a € A, there exists
elements by, ...,br € Ker(d) with bpa = b; + bag + ... brg*™'. Thus (i) follows. (ii)
follows from [12] 1.1 (2), since ¢ is a locally nilpotent derivation of A.

Then by [45], Th. 2.4.2, or {36], Th. 1, we have N(§) = K[f]i1 = K?. Then, we
have completed the proof of theorem A.1.

2.2.7. Example. We shall prove (A.2) by giving an example.

Suppose § = Agmyn, with GCD(m,n) =1, and 1 < m < n. We assert that

N($) = K[z™y", zy. 2" ™. (2.21)

To show this, for a K-derivation 4, we define a function degs; on N (&) by

degs(f) = min{n :6"(f) =0} -1 (2.22)

if f € N(d) is non-zero, and we put degs(0) = —oo. It is well known that degs is a
degree function, i.e.,

degs(a + b) < degs(a) + degz(b), (2.23)
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and

degs(ab) = degs(a)degs(d), (2.24)

and
deg(0) = —oo,deg(l) =0,deg(f) € Z. (2.23)

for any f # 0 (see [31], Lemma 2). Since GCD(m,n) = 1, then Ker(d) = K[z™y"].
Define a map ¥ : 22 5 Z2 by ¢(i,7) =(m+i—1,n+j—1). Let Ay = {(mk,nk) :
ke Z.} where Z, = {0,1,2,...,}. For any f € K][z,y], by induction on degs;. we
have

k
degs(f) = k <= Supp(f) € J T (4o)- (2.26)

1=0
Therefore N(6) is generated by monomials g™k-")+rynkE—r)+7 where k,r € A/, and
m(k—r)+r > 0,n(k—r)+r > 0. Ifk > r, then g™Ek-rrrynk—ritr — (gmyn)k=r(p)r.

if k < r, then

xm(k—r)+ryn(k-—r)+r — (xn—m )r~k (Iy)n(k—r) —é—r.

Hence N(§) = K[z™y™, zy, 2"~ ™]. As a surface, N(§) is the hypersurface uv = w"
with a singularity. Thus, N(§) ¢ K. We have thus shown (A.2).

2.2.8. G,-Action. Let X be an affine K-variety and A = K[X]. As is well
known, an algebraic G,-action o : G, X X — X induces an algebra homomorphism
¢ : A — Alt],é(p) = p(o(t,z)) € Alt]. Then § = Ll=o(p(c(t, z}))) is a locally
nilpotent K-derivation on 4. Conversely, a locally nilpotent K-derivation § on 4

defines an algebra homomorphism ¢;s : A — A[t] by

oc tn5n _
#5(a) = ezp(téa) = 3 —— (2.27)
n=0 M

and this yields an algebraic G,-action on Spec(4). See [53].

By the definition of N(d), ¢ is a locally nilpotent derivation on N(§). But N(J)
may not be a maximal subring of K[z,y] with a G,-action such that the ring of
invariants is Ker(d), as is shown by the following example: Let § = A . Then

N(§) = K[zy? z*, zy] and Ker(d) = K[zy®] by 2.2.7. Let 8 = %L\.Wa. Note that
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zy? € N(9) and zy® ¢ N(J).° Hence, N(d) is not a maximal subring of K|[z,y] with
a Gq-action with the same ring of invariants as Ker(6).

We recall a beautiful theorem about the characterization of K for completeness.
See [34], [43] and [49].7

2.2.9. Algebraic characterization of the affine plane. Let K = K, A a
regular, factorial affine K -domain with trans.deggA = 2. If A C K[zy,...,z,] =
K™ for some n, then A = K.

2.2.10. Algorithm to find N(§). We give an algorithm to compute N(J) as
follows. Suppose N(§) # Ker(d), and Ker(d) = K[f] as above. Choose and fix a
local slice g € N(6). Let d = &8(g). Put Ry = K|[f, g] and define, by induction on
m, that Ry, = {h € K[z,y] : dh € Rpp_y}. By induction on degs, we see that
degsb = n implies b € R(,_1). Therefore

N() = fjo Rm). (2.28)
Moreover, each Ry is a finitely generated A-algebra. If N(4) is a finitely generated
K-algebra, then N(6) = R(m) for some m. On the other hand, it is hard to see whether
or not N(§) is a finitely generated K-algebra, even if ¢ is a special derivation. By
the same argument as in [40], we obtain that K'(f, g) N K[z, y] is a finitely generated
K-algebra, where ¢ € N(d) is an arbitrary local slice of 4. By (2.28). we have
N(@$) = Klz,y] N K(f)[g]- It is not clear at all whether K'[z.y|N K (f)[g] is finitely
generated or not.®
We conclude this section with a conjecture about the structure of N(Af). By
the examples in 2.2.7 and our following results about the structure of E(Ay) (see
Theorem B), it seems reasonable to make the following:

2.2.11. Conjecture. For any non-constant polynomial f € Klz,y| such that

5In fact, by a method as above in 2.2.7, N(8) = K[z, zy, zy?, zy*]-

TMiyanishi proved, by a similar method in proving 2.2.9 in [34], that Ker(§) = KRl if § is a
non-zero locally nilpotent derivation of K[z,y,z]. There exists an extensive recent study of lo-
cally nilpotent derivations of KBl by Daigle and Freudenburg [11], [17] and [12]. It would be very
interesting to extend the results of this section to the locally nilpotent derivations on X 3

8Let & be the derivation of K(z,y) that extends §. The point here is that N(§) may not be a
field.
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N(Af) # Ker(Af), N(Af) = K[X,Y,Z]/(XY — a(Z)), as a K-algebra, for some
a(T) € K[T].

Surfaces of the forms XY = a(Z) and their automorphism groups have been
studied extensively. See [30].

2.3 Locally Finite Derivations

In this short section we derive a criterion for T'(Af) to equal Ker(Ay). We shall
examine the condition T(Af) # Ker(Ay) more closely in chapter 3 and chapter 4.

2.3.1. Classification of Locally finite derivations. A.Van den Essen ([13])
classifies the locally finite derivations § of R as follows:

There exists P,Q € Klz,y] such that K[z.y] = K[P,Q] and ¢ is one of the
following: )

(i) 6 = (aP +bQ)Ap + (cP +dQ)Ag,a,b.c,d € K;

(i) d = Ag +aQAp,a € K;

(i) § = aPAg + (am@Q + P™)Ap,m € N;

(iv) 6 = F(P)Ap.

In the case of KX = R, the real number field, and K = C, the complex number
field, these results were proved in [6] and [8] before by a different method.

Let f = ¥;;0:;7'y" € R = K[z,y]. Wedefine f™ = ¥(; jyesupp(f),itjmdeg(s) il V-

We shall study under what condition 7'(§) = Ker(é).

For this purpose, we need

2.3.2. Lemma. Let § be en ordinary derivation of K|z,y]. Suppose, for any
g.h € T(5),deg(g) = deg(h) implies that g* = ah* for some a € K*. Then T(J) is
a finitely generated Ker(d)-module.

Proof. Let Ker(6) = K[f] and n = deg(f). Write W; = {deg(g) : g € T(9)}-
Then W; is closed under addition. Let Wy = {m mod n : m € W;}. Then Wy is an
subgroup of Z/nZ. So Wy is a cyclic group of some order s. Write
W; ={0=m,...,7M,}, and choose m; as the least number in W whose mod n class

is equal to ;. Choose g; € T'(8) with deg(g;) = m;. By induction on n = deg(g), we
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shall show that g € K[f]g, + ... + K{[f]gs for every g € T(d). In fact, let deg(g) =
k,k = m; mod n for some ¢. Since & > m;, k = m; + nl for some [ > 0. Both g and
f'g:, with the same degree, belong to T(d), and have, by assumption, g* = a(f'g;)*
for some a € K*. By induction hypothesis, g —af'g; € K[f]g1+- ..+ K[f]gs, whence
g € K[f]g1 + --. + K[flgs- Therefore T(§) = K[f]g1 + - - . + K[f]gs-

2.3.3. Proposition. Suppose K = K. Let § be an ordinary derivation of K[z.y].

Then the following assertions are equivalent:
(z) T(0) = Ker(d).

(it) For every g,h € T(6), either (¢g*)* = a(h™)™, or (h™)* = a(g*)™ for some
ae K*,m>1n2>1.

(iii) For every g,h € T(8), if deg(g) = deg(h), then g* = ah* for some a € K*.

Proof. Let Ker(d) = K[f] as given in 2.2.1. Clearly (¢) = (%) = (i¢z). We shall
prove the part (#7¢) = (¢). Suppose (iii) holds. Then 7(d) is a finitely generated K[f]-
module, with generators g1, ...,9s by Lemma 2.3.2. If T(§) = N(§), choose m such
that 6™(g;) = 0,7 =1,...,s. Then 6™N(5) = 0. If N(J) # Ker(d). choose a local
slice g of §). Then d™g™ # O for any n. Therefore, N(§) = Ker(d). If T(5) = E(6).
and E(6,A) # 0 for some A € A*. Then E(6,n\) # 0 for any n € Z, and E(J) is
an infinite direct sum of non-zero Ker(d)-modules. In particular, £(J) is not finitely
generated as a Ker(d)-module. Thus F(§) = Ker(d). By Prop. 2.1.9, (i) is proved.

We call T(8) # Ker(d) the weak Jacobian condition. e shall investigate the

weak Jacobian condition from now on.
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Chapter 3

The Weak Jacobian Condition (I)

This chapter, together with the next chapter, is devoted to developing the preliminary
results for proving Theorem B. For this purpose, we shall investigate in detail the
weak Jacobian condition. We shall assume that K = K throughout this chapter
and the next chapter. The purpose of this chapter is to study the leading forms of
polynomials under the weak Jacobian condition. We shall first discuss the leading
forms of polynomials under some special conditions in section 3.1. Then we prove
theorem 3.2.2 in section 3.2, which gives us the relation between these conditions
and the weak Jacobian condition. Prop. 3.1.10, Lemma 3.1.11, Theorem 3.2.2 , and
Lemma 3.3.3 will be used in proving Corollary 3.2.4, 3.2.5, Prop. 3.3.5 and Prop.
3.3.8, which in turn will be used in proving Theorem 4.3.1.

3.1 Z-Grading of Klz,]

The purpose of this section is to study standard Z-—gradings on KB, We divide
the Z—gradings into three cases: Elliptic, Parabolic, and Hyperbolic Z—gradings.
Proposition 3.1.8, 3.1.12 and 3.1.13 are somewhat technical results of this section.
which provide us with the precise forms of the w-homogeneous polynomials f in
K[z, y] (see 3.1.5 for its definition) under the condition that As has ¢ w-homogeneous
local slice in K[z,y]. Proposition 3.1.10 and Lemma 3.1.11 are useful to prove these

results and other results in subsequent discussions. The proof of Prop. 3.1.10 and
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Lemma 3.1.11 rests on a careful study of polynomial solutions of certain ordinary
differential equations.

3.1.1. Filtrations. Let us first briefly recall the basic properties of a filtration
of a K-algebra A.

Let A be a K-algebra. By a Filtration of A we mean a sequence of K-linear
subspaces of A, F = {F'A : i € Z}, satisfying:

(£.1). F*A C F**' A (ascending).

(£2). A = Ujez F*A (exhaustive), and ez F°A = {0}, 1€ F°4 — F~ 1A,

(£3). Foralli,j € Z, (F'A— FImlA)(FIA — FI7lA) C (F7A — FHHi-14).

Define deg : A — Z U {—c0} by deg(a) =i if and only if a € F'A — F*~! A4, and
deg(0) = —co. Then deg is a degree function in the sense of 2.2.8. Conversely, given

a degree function deg : A — Z U {—o0}, let
F'A={a € A:deg(a) <i}. (3.1)

Then F = {F*A :i€ Z} is a filtration of A.

Given a filtration F = {F*A :7 € Z} of A, the associated graded algebra is
GrrA = @;cz Gri-A, where GriA = FPA/F*"'A. GrgA can be identified with the
algebra of Laurent polynomials {Z’,:f“ fiui}, where f, is either zero or is equal to
grif == fi+ F7'A € GriA for some f; € F*A (See [53], section 7.2). Let
gr : A — A be the homomorphism of multiplicative semigroups defined by grf = f.

Suppose A is a finitely generated K-algebra and § a K-derivation on 4. Then
for any filtration F = {F*A : 1 € Z} of A, there exists an integer £ € N such that
0(F*A) C F***A for all i € Z. ' Denote by degd = kg the minimal such k. Define
br = gré : GrrA — GrzA by: §x(f) = 6(F) + Fi**o~lA for all f € FTA — Fi"lA,
and then naturally extend §x to the whole algebra GrrA. 6 is a K-derivation of
GrrA (See [31]). We may omit the symbol F if the filtration F is already specified.

3.1.2. Z—Gradings. We shall study a subclass of filtrations, that is Z—gradings.

Let A be a finitely generated K-algebra, let £ be an additive semigroup. By a

1One may prove this fact by induction on the number of generators. See [53], Exercise 7.10.
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3 —grading of A we mean a decomposition:

A= 4, (3.2)
V€S
with A, A; C A5 and each A, a K-subspace of A. The ¥—grading is called non-
trivial if A # Ag. If ¥ is isomorphic to a sub-semigroup of Z, a ¥—grading is called
a Z—grading. In this section we shall discuss non-trivial Z—gradings.

A Z-—grading of A induces naturally a filtration of A4, as follows. Let ' be a
Z—grading of A. Write Ar; = Y4<; As- Then {Ar;i € £} is a filtration of A.
The associated graded algebra corresponding with this filtration, that is Grp(4) =
Yiez(Ar,i/Ari-1) is called the associated graded algebra with the Z—grading I'. The
induced K-derivation 5}— on Grr(A) is denoted by Sr. Below, GrrA always means
the associated graded algebra of A with respect to a Z—grading ', GrxA means the
associated graded algebra of A with respect to a filtration 7. Moreover, gr(f) denote
the corresponding element of Grz(4) and f{ the corresponding element of Grr A, for
every f € A. Note that Grp(4) is naturally isomorphic to A as a graded ring, but or
may differ from 4.

The next lemma tells us the relation between § and its induced derivations 5';, or
on the associated graded algebras.

3.1.3. Lemma. (1). Suppose § is a locally nilpotent derivation of A. Then b is
a locally nilpotent derivation of Grz(A).

(2). Suppose d is a locally finite derivation of A of degree # 0. Then Sr is a locally
nilpotent derivation of A.

Proof. (1) was proved in [31], Lemma 4. (2) was proved in [15]. See [13] for the
definition of the degree of derivations.

3.1.4. Standard Z—gradings. For the purpose of this paper, and by the result
to be explained later (theorem of Bialynicki-Birula), we will study the standard Z-
gradings.

Let A = KM be a polynomial algebra with n variables on K. A standard

Z—grading of A is a Z—grading such that there exists variables z;,1 < 7 < n with
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A = Kl[z,...,z,] and given by making each variables z; 2 homogeneous element
of certain weight w; € Z. See [19], [44]. When the choice of zy,...,z, is clear, we
denote these standard Z—gradings by ' = (wy,...,w,). A standard Z—grading of
K7l is the same as the weight degree function in the sense of Zaidenberg [53].2

For n = 2, Bialynicki-Birula ([3]) proved that any Z—grading on K is a standard
one. It is highly remarkable that ([23], [24]) this is true also for the case n = 3, which
is.equiva.lent to a well known conjecture that every Gm-action on C? is linearizable.

3.1.5. Z—gradings on K®. Now, we more closely examine the Z—gradings of
K&l

Suppose n = 2 and R = KP. Any Z-grading T' of R comes from a weight
w = (wy,ws) € Z2 and a choice of coordinate system {z,y}, that is R = Kz, y].
Write degr(z) = degy{z) = w, and degr(y) = degy(y) = wo. We define the w-weight
of any monomial zy7 to be dy,(z™y") = mw, + nws and dw(f) - maz{d,(z™y") :
(m,n) € Supp(f)}. Write fi = ff = Cuimiwsn=du(f) dmaZ™y" to denote the leading
terms of f under the Z—grading I'. fJ is also called the w-leading form of f. When
w = (1,1) we shall write f¥,deg(f) to denote fJ,d(f) respectively.

Recall that f is w-homogeneous if f = f} ([1]). The polynomials f and g are
called w-dependent if J(fZ,g%) = 0. See [1]. In our whole discussion below we shall
assume that GCD(|w,|, |ws|) = 1 since the corresponding leading terms are the same
for the weights w = (wy, w») and nw = (nw,, nw»),n > 1.

Define deg(w) = w; + we. We shall restrict ourselves to the case that deg(w) # 0
and divide it into the three following cases.

Elliptic : wyws >0

Parabolic : wyw, =0

Hyperbolic : wyws <0

The following easy while very useful lemma belongs to S.S.Abhyankar [1]. 3

3.1.6. Lemma. (1). Suppose w = (wy,ws) € Z° and assume that f and g are

2A weight degree function on K is a degree function d such that d(p) = maz{d(m)}, where
peK ("] is a non-zero polynomial, and m runs over the set of all monomials appearing in p.

3When we write J(f, g) we mean the coordinate system of K {2 has been given and the Jacobian
determinant is computed with respect to the given coordinate system.
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two w-homogeneous polynomials. Then J(f,g) =0 if and only if f&(® = gg%(f) for
some a € K*. In particular, if d,(f) = dy(g) # 0, then f = ag for somea &€ K*.

(2). Given w = (wi,ws) € Z% and f,g € R, suppose J(ft,g}) # 0. Then
J(f,9)%5 =I(f5:95)-

3.1.7. Definition. A polynomial f € R = K|z, y] is a stable polynomial if for
every elliptic Z—grading I" on R, f{ is a monomial. We note that f € KJz,y] is a
monomial if and only if f& is a monomial for every standard Z—grading I" on R.

We shall study Z—gradings on R in this section and the next section. We shall
also study, for technical reasons, the hyperbolic Z—gradings on K[z,y™,y~™] in
the last section of this chapter.

The elliptic Z—gradings were studied in detail by Abhyankar [1] in the following
proposition.

3.1.8. Proposition. (Elliptic). Suppose both w; and ws are positive integers,
w = (wy,ws). Suppose f and J(f,g) are w-dependent and J(f,g) # 0. Then fI =

aui‘u.‘f,il,ig >0, +1i2 > 0,a € K*, where
(i) if wy = we, thenu; = a1 T+a12y, Uz = a2 T+axny, a; € K, anan—apas € K*;
(it) if wy > wo, then u; =z + ay® /2 u, =y, a € K; moreover, ifa # 0, w, | wi;
(iii) if wy > wn, then u; = z,us = y + az®/*2 a € K; moreover, if a # 0,w; | wa.

Proof. This is a well known result of S.S.Abhyankar. Although it was stated
under the Jacobian condition that J(f,g) € K* for some g € R, its proof works
under the weak condition that f and J(f, g) are w-dependent. See [1], Th. 18.13. In
particular, if wy, we > 1, and if they are coprime, then f; is a monomial.

3.1.9. A question.

In order to study the Parabolic and Hyperbolic cases, we need to solve the follow-
ing question.

Given two I'-homogeneous polynomials f,g € R, if g is a local slice of Ay, what
is f2

The following proposition is the first, but most important step to solve this ques-

tion.
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3.1.10. Proposition. Let f,g be two '-homogeneous polynomials in K[z,y],
where T' = (m,n) € Z2 with m +n > 0. Suppose g is a local slice of A, and assume
that s = dr(f) > 0. Let h = fg/Af(g9). Then J(f,h) = f and h € K[z, y].

Proof. Since J(f, J(f,9)) =0, J(f, E}@) = 0. Then

J(fih) = fIF =)

29
J(f.9)
= f.

—\()

+gJ(f, )

Ar(g)

Moreovrr, h is a I'-homogeneous function of ['-degree m + n. The crucial point of
this proposition is to show that A € K|z, y]. To show this, by the Euler equations for

[-homogeneous functions f, A, we have

__of of
sf—mzax +nyay, (3.3)
(m+n)h = m:z:gh' + ny—— gh (3.4)

Then we obtain (by using the assumption that m +n > 0 and s > 0)

a m-+n m-+n _
20 =y (), (3)
and
fm-i—n. _ fm+n
% hs ) - —mx( hs+1 )‘ (3’6)

We only prove the first formula (3.5). The second one is done similarly. The left hand
of (3.5) is

m-+n m-+n—1 a
A B o S| (37)
Calculating (3.4) x —(3.3) x £, we find
(m+n)g—£h—sfg—l;=ny.](f,h)=nyf. (3.8)
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Hence (3.5) is proved.

Consider h™! as a rational function of y over K(z). Suppose A ¢ K(z)[y]. Let
a(z) € K(z) be a root of A~! of order v > 0 and a root of f of order v/ >
Then by formula (3.6), (m +n)v' +sv — 1 = (m +n)v' + (s + L)v if a(z) # 0,
and (m+n)v' +sv—1=(m+n)v' +(s+1)v+1if a(z) = 0. Hence v = —1 or
v = —2. This contradiction shows that h € K(z)[y]. Similarly, » € K (y)[z]. Hence
h € K(z){y] " K(y)[z] = K{z,y].- The proposition is proved.

The next Lemma will be useful in the subsequent discussion.

3.1.11. Lemma. Suppose G(t) € K (t), H(t) € K[t] satisfy

dG(t) _ cG(2)

= K*
a - H(p) °€

Then we have

(i) If G(t) € K[t], then H = a(t — a),G = b(t — &)™ for some a,b € K'*,a €
K.m>1.

(it) Each root of G is a root of H.

(iit) Each root of H is a simple root.*

Proof. Write G(t) = BT, (t — o)™, u; € Z,u; # 0,04 # ; and B 7% 0. Then

dG koouy; _cG
ELeteeF @

=1

So
(t—oy)...(t— o)

p(t) ’

where p(t) = u1(t — ) ... (¢t —ag) + ... + ur(t — 1) ... {(t — o—1). We shall show

H(t)=c (3.10)

that p(¢) is a non-zero constant in K. In fact, Suppose p(t) has degree > 1. Then p(t)
divides (¢t — @) ... (t — ax) since H(t) € K[t]. But p(a;) # 0 foreach i =1...., k.
This is a contradiction. Therefore p{¢) € K* and H(t) =d(t — o) ...(t — o) for

iFor a rational function G(T') € K(T), by the roots of G we mean the union of its zeros and
poles.
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some d € K*. So both (ii) and (iii) are proved. For (i), suppose G(t) € K[t], and
assume that G has k£ > 2 roots. Then G(¢) = [T, (t — )*,u; > 1, and k > 2.
Therefore, the leading term of p(t) is (u1 + ... + ug)t*~! # 0. This contradicts the
fact that p(¢) € K*. Hence G(t) has only one zero o € K. So H(t) = a(t — ), for
some a € K*,a € K. The proof of (i) is completed.

The next two propositions solve the problem in 3.1.9 for parabolic Z—gradings
a.r.ld hyperbolic Z—gradings.

3.1.12. Proposition. (Parabolic). Suppose w = (w,,w2) = (1,0). Let f.g
be two w-homogeneous polynomials such that Af(g) 7% 0 and A'ﬁ(g) = 0. Assume
that 1 = du(f) > 1. Then either f = az”™(y ~a)l,a € K*,aa € K,2 < r, or
f=z"(y—)iF(y),a€ K,i >, F(y) € Kly] with F(a) # 0.

The crucial point in this proposition is that ¢ # r in both cases. Hence under an
automorphism ® of R, the degree of ®(f) respect to z is strictly less than the degree
of ®(f) with respect to y.

Proof. Write f = z"Fy(y) and h = fg/Apg = zH(y). Then by Prop. 3.1.10,
F.H € K[y]. Put G = H"/F} € K(y). Then by (3.6), we have

dG/dy = G/H. ' (3.11)

We consider the following two cases.

Case 1. Suppose G(y) € K[y|. Then H = a(y - «),a € K* by Lemma 3.1.11.
Therefore F} = b(y — a)?,b # 0, and Z < r because G = ‘;{—: € Kly]-

Case 2. Suppose G(y) ¢ K[y]. Then there exists a root c of order m of F, and
of order n of H such that m > rn . Since each root of H is a simple root, by Lemma
3.1.11, we have n = 1. So m > r. Thus F} = (y — a)*F(y) with ¢ > r, F(a) # 0. The
proof is finished.

3.1.13. Proposition. (Hyperbolic). Suppose wo < 0,w; + ws > 0. Let f,g
be two w-homogeneous polynomials in K(x,y] such that Af(g) # 0 and A3(g) =
0. Assume that r = dy(f) > 0. Then either f is a monomial, or f = (z —
ay@r /w2 )iylr-wmid/w B(7) where @ € K,z = zy~*/¥2 1 € N,1 < i < (r — wii)/wy
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and F(z) € K[z], F(a) # 0. Note that it is possible that wy,T — w1l & Zw,.

This proposition asserts that either f is a monomial, or in the enlarged algebra
R_,, = K[z,y"¥2,y~'/*2], and after a “restricted” automorphism & of R_,, (to be
defined later in 3.3), the degree of ®(f) with respect to z is strictly less than the
degree of ®(f) with respect to y.

Proof. Write z = zy~¥/¥2, f = y"/*2F(z), and let h = y!™“1/“2){(2). Then
F, H € K[z] by Prop. 3.1.10. Put G = H"/F“i*¥: € K(z). Then (3.6) implies that

dG/dz = —w,G/H. (3.12)

By Lemma 3.1.11, each root of H is a simple root and each root of G is a root of
H. Since wy, + ws > 0, each root of F is a root of H.

The proof consists of the following three cases.

Case 1. Suppose G € K|z|. Then by Lemma 3.1.11, G = a(z — «)°, and H =
b(z — @) for some o € K,a,b € K*,5 > 1. Since h = bry — bay'*¥/*2) ¢ K[z.y]
by prop 3.1.10, we obtain a = 0,h = bzy. By using A;(h) = f, we see that f is a
monomial.

Case 2. Suppose F(z) = a(z —a)™ for some m > 1. Then f = ay™/¥2(zy~w1/*2 —
@)™ € K[z,y]. Since a™y™*2 and o™~ (zy~*¥1/¥2)y"/¥2 belong to K|[z,y|, we obtain
a =0 . Thus f is a monomial.

Case 3. At last, suppose none of above holds. Then F possesses at least two
distinct roots ¢, cp of multiplicity m;,ms > 0 and (since G ¢ K[z]) there exists
one, ¢y, say, that satisfies m;(w; + ws) > r since each root of H is a simple root.
Write F(z) = BT, (r —a)™,s 2 2,m; > 1,4 # oj and § # 0. So f = (z —
ayvi/ee)iylr—wi/mp(z) o = @, with 1 < i < (r — wyi)/ws , F(2) € K[z], and

F(a) # 0. Thus the proposition is proved.
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3.2 The Weak Jacobian Condition on Kz, y]

The purpose of this section is to study the relation between the weak Jacobian con-
dition on f and the condition that A+ has a homogeneous local slice for the grading
given by w = (wp, ws) studied in detail in the last section. The main result of this
section is Theorem 3.2.2, which asserts roughly that if f satisfies the weak Jacobian
condition, then A+ has a homogeneous local slice. Together with the results in the
last section, Theorem 3.2.2 yields Corollary 3.2.4 and Corollary 3.2.5. We note that
Corollary 3.2.5 is essentially used in the proof of theorem 4.3.1.

Consider a subalgebra B C K™ = K(z,,...,z,). and a K-derivation § of K™
with §(B) C B. Then ¢ induces a K-derivation of B. By 3.1.2, a Z—grading [’ on
K™ induces a filtration of K™, and then a filtration Fg = {F*K™ N B} of B. The
associated graded algebra is denoted by Grzr(B), and ¢ induces-a K-derivation of
Grrr(B) by 3.1.1. The corresponding statement is false, in the case of Z—gradings,
i.e. a Z—grading on K™ doesn’t always induce a Z—grading on B.

Before proving theorem 3.2.2, we first recall a highly interesting result of Makar-
Limanov [31] Lemma 6, [21] Lemma 7.2.

3.2.1. Proposition. Let K™ = K(z,,...,z,), K a field of characteristic zero.
Assume we have a standard Z—grading T = (wy. ..., w,) of K, given by degr(x;) =
w; € Z. Suppose B is a subalgebra of K™ which contains m algebraically independent
elements. Then Grzr(B) contains m algebraically independent elements.

Let n = 2, B = N(Af). If N(Ay) # Ker(Ay), then B contains 2 algebraically
independent elements. By Prop. 3.2.1, for any (standard) Z—grading [ = (w;. w»).
Grrr(B) contains 2 algebraically independent elements. On the other hand. if
Af(B) C B, then Ay induces a K-derivation ﬁf on Grer(B) by 3.1.1. Suppose
A is non-zero. Then Ay has a local slice in Grzp(B).

Theorem 3.2.2 give us more information about A+ under the weak Jacobian
condition.

3.2.2. Theorem. Given a Z—grading I’ on K[z,y] induced by w = (w;, ws) €

Z2, let f be a non-constant polynomial of K|z, y| with d,(f) > 0, and assume one of
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the following two conditions holds:
(i) N(Ap) # Ker(A).

(i) E(Ag) # Ker(Ag) with dy(f) > deg(w).

Then A it has a w-homogeneous local slice in K|z,y]|.

. Proof. We first consider the case (i). Choose and fix a local slice g of Af. Define,
for any positive integer n, M (n) = the linear-span of {f*¢' : k£,{ =0,1,...,n}. Since
AR frghy =0forall k,{=0,1,..., we have M(n) C N(Aj).

We may prove that the elements f*g' are K-linear independent (as in Prop.
2.1.10). Hence
dimgM(n) > n(n+1)/2. (3.13)

We shall show that there exists an element 4 € M (n) with A +(h}) 7 0 whenn >> 0.

To show this, by considering all possible monomials in M (n), we note that

for every v € M(n), where Li(n), Lo(n) are two linear forms in n depending only on
f and g. For every i € [Ly(n), L (n)], choose and fix one v; € M(n) with dy(v:) = 1.
if such a element exists. Then for any v € M(n), dy(7Y) = dw(v:) for some 1.

Suppose A+ (hi) = 0 for every h € M(n). Then, A (7)) = Ap+((%)s) = 0.
By Lemma 3.1.6.(1), (fF)%0&) = a(yF)4() for some o € K*. Since dy(fF) > 0
by assumption, we find that d,(v;}) > 0. Similarly, d,((v:)3) > 0. On the other
hand, J(v},(w)d) = 0. So v} = a(y) for some a € K* by Lemma 3.1.6.(i).
Then d,(v — a7:) < du(7v). Repeating this procedure, we may express v as a K-
linear combinations of elements «;. Thus dimxgM(n) < Li(n) — Ly(n) + 1, which is
impossible for n >> 0 since dimgM(n) > n(n + 1)/2 by (3.13).

So we may choose h € M(n) with A +(hf) # 0. Note that A}(h) = 0 for some
positive integer 7 since M(n) € N(2Af). Let r be the least integer with A%(h) = 0.
Then 7 > 2 and by Lemma 3.1.6.(ii), J(f, (AT R)E) = 0. If J(fF, (AT 2h)E) #
0, then by Lemma 3.1.6.(ii), (A}‘l(h))jv' = J(f, (A}"Zh)jﬂ'), and we put g1 =
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(AT 2R)E. IE J(fF, (AF%h)E) = 0, since A}(k) = 0, there exists some k& such
that J(fJ, (A""h)*‘) 0, and J{f}, (A’""“"‘h)"‘) = 0 for any 7 > 0, and we set

= (AT *h)}. It follows readily that g; is a local slice of A +. This settles the
theorem in the first case that N(Ayf) # Ker(Ay).

Next, consider the case (ii). Let A € K™ such that A¢g = Ag for some g € R.
Define, for any positive integer n, N(n) = K-linear span of {f*¢': k,1 =0,1,...,n}.
A.gain, dimgN(n) > n(n+1)/2. Then as in the first case, there exists some h € N(n)
such that A+ (A7) # 0. We shall show that /—\‘;‘j (h}) = 0 for some positive integer
r. Suppose A”, +(h.+) 0, for every r > 2. Then dy(A%h) = r(dw(f) — deg(w)) +
dw(h) — oo when r — oo, since d,(f) > deg(w) by assumption. On the other
hand, A%h € N(n) and d,(A%h) < Li(n), where Li(n) is a linear form in n. This
contradiction proves that A’}:(hg) 0 for some 7 > 1 and A+(hf) # 0. The
remaining proof is similar to the first case. The proof of this theorem is finished.

We remark that the result holds when d,(f) > deg(w) is replaced by d,(f) #
deg(w) in case (ii).

3.2.3. Remark. If Ag has a w-homogeneous local slice in K [z,y], then
N(Ap+) # Ker(Ap).> Then in 3.2.2.(i), N(Ay) # Ker(Af) implies that N(A () #
Ker(As+). On the other hand, by Prop. 2.1.9, N(Af+) # Ker(A;s) implies that
E(As+) = Ker(Ap+). Then in 3.2.2.(ii), E(Af) # Ker(Ay) with dy(f) > deg(w)
implies that E(Af+) = Ker(Af+). In particular, if E(Af) # Ker(Ay) with dy(f) >
deg(w), then f # fi.

3.2.4. Corollary. (FElliptic). Let f be a non-constent polynomial, and let w =
(wy,we) € N? with dy(f) > 0. Assume that N(Af) # Ner(Af), or E(Af)
Ker(Ay) with dy(f) > deg(w). Then fF = auiui,i1.i2 > 0,1y +1i» > 0,a € K™

th

where

(i) if w1 = wa, then u; = anT + a1y, Y2 = A T + axny with a;; € K and

x.
Q11822 — Q12891 € K*;

°If g € K[z,y] is a local slice of A+ with J(f},g%) # 0, then by Lemma 3.1.6. (ii), g i
w-homogeneous local slice of A .



(i1) if wy > we, then u; = T + ay®"*?,uy = y,a € K. Moreover, if a # 0,w, | wy;
(iit) If wo > wy, then u; = ,us = y + az?/*2,a € K. Moreover, if a # 0, w | w,

Proof. Prop. 3.1.8, Theorem 3.2.2.

3.2.5. Corollary. Let w = (wi.ws) € Z%,ws < 0, and wy + wy, > 0 with
dw(f) > 0. Assume that N(Af) # Ker(Ay), or E(Af) # Ker(Ay) with r = dy(f) >
deg(w). Then

(1) (Parabolic) Suppose ws = 0, we may assume that w = (1,0). Then either f} =
ar’(y—a),a€ K*,i<rt, or ff =z (y— )'F(y),a € K,i > 1, F(y) € K[y}
with F(a) # 0.

(2) (Hyperbolic) Suppose woy < 0. Then either f} is a monomial, or f} = (z —
ayui/w)iy(r-wid/up(z)  where o € K,z = zy™/*2 i € N1 < i < (r—
wii)/we and F(z) € K[z], F(a) # 0.

3.3 The Weak Jacobian Condition on K|z, yl/m y'l/’”]

We shall generalize the results of the previous sections to the larger K -algebra
Kz, y"™, y~/™]. The idea to extend K([z,y] to K[z,y*™,y~/™] and to discuss the
weak Jacobian condition on K[z, y*/™, y~'/™] is crucial to prove Theorem 4.3.1. Prop.
3.3.5 and Prop. 3.3.8 are the main results of this section.

3.3.1. Recall that (see 1.1) R,, := K[z.y"™,y~%/™], the K-algebra generated by
z,yY™ and y~/™ with m > 1. Note that every element f of R,, can be uniquely
written in the form f = ¥;5¢ jez ai;z'y?/™. Moreover, 9 %L ¢ R, for all f € Rm.

=1 dy

Then, for any two elements f,g € Rn, J(f.g9) = gﬁ%— %5%% € R, and we can define
a K-derivation As of R, by As(g) = J(f, g)- Therefore, Ker(As), N(Ag), E(Ay) are
defined (as in 1.1). Given w = (w1, w2) € £2, there is a standard - Z-grading on R,
given by (Rm)n = Tuyitwsi/men/m i jTiy®, where n € L1 Z. Since L Z = Z, we have

a Z—~grading on R,,. We may also define d,.(f), f}, for all f € R,,. An element of
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the form az?y?/™,a € K*, is called a monomial of R,,. Write R(™ (n) = K[zyly™™,
and R(n) = K[zyly®. Then R™ = @ R™(n) , and R = @, R(n). Clearly,
Ry = @3 _o RM™(n).

As a ring, Ry, = K[t,t7!|[z], with t™ = y. The automorphism group of R,, is
easily determined. We are interested in the following subgroup of the automorphism

group:

G(m) _ {’L/) c Aut(Rm) 3’(-/)('.9’1/m) — yI/m’w(y—I/m) — y—l/m’

Y(z) =z + vy ™), v(T) € K[T]}.

We say that an automorphism in G(™) is a “restricted” automorphism of R,. For

R = K|z, y], define

G = {¢ € Aut(R) : J(é(z), ¢(y)) =1} (3.13)

Put
GG ={gog:1eG™, ¢cG}.

By using the “chain rule”, we obtain

®(J(f,9)) = J(2(f), 2(9)). f,9 € Rm (3.16)

for any ® € G G. Let m and n be positive integers with m | n. Consider the chain
of K-algebras R C R,, C R,. Then any automorphism in G™ can be extended to
an automorphism in G,

3.3.2. A question.

For the purpose of the next chapter, to prove Theorem 4.3.1, we only consider the
case that w = (wy,ws) € Z%,ws < 0,deg(w) > 0, and GCD(|wy|, |we|) = 1 in this
section.®

Similar to the discussions in section 3.1 and section 3.2, we shall study the following

50One may discuss other cases by similar methods.
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question first.
Given w = (wy,we) € Z%,we < 0, and deg(w) = w; +ws > 0. Let f € R, with
dw(f) > 0. Suppose f satisfies

(i) N(Af) # Ker(Ay), or
(i) E(Af) # Ker(Ay) with dy(f) > deg(w).

What is f1?

The next Lemma is an analogue of Prop. 3.1.10.

3.3.3. Lemma. Suppose f,g € R,, are two w-homogeneous elements with
Af(g) #0, and A3(g) =0. Let h = Kzfi'(fg—) Assume r = dy(f) > 0. Then Ap(h) = f
and he R,,.

Proof. The first part that Af(h) = f is exactly the same as in Prop. 3.1.10. It
is enough to prove that A € R,.

To show this, we note that the only difference between this lemma and Prop.

3.1.10 is that d,(f) € LZ in the present situation. We find that, if 2~ & R,,, then
Rt = ys/m]:[(yl/m - ai(z))$i75i € Z, Czi(:l") € K(I)r (3.17)

where K'(z) is an algebraic closure of A’ (z), and for at least one i, s; > 0. Pick one
s; > 0 and write s = s;, a(z) = o;(z) # 0. By the same argument as in Prop. 3.1.10.
since deg(w) > 0, and d(f) > 0 by assumption, we have

a fuI1 +wa wy W2

dy* kT ) = —wna(

=) (3.18)

Let v denote the valuation of the algebraic function field K (z)(y/™) with constant
field K (z) which corresponds to the irreducible polynomial y*/™ — a(z). Since t =
v(f) > 0, we compute the v-valuations of both sides of the above tormula (3.18) and
obtain

t(w, +we) + s7 — 1 =t(wy +ws) + (r+ 1)s. (3.19)
This is clearly impossible. Hence h € R,, as desired.
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We shall later make use of the next proposition in the inductive step of the proof
of Theorem 4.3.1.

3.3.4. Proposition. Let f,g € Ry, be two w-homogeneous elements with A¢(g) #
0 and A%(g) = 0. Let r = dy(f) > 0. Then either there ezists ¥ € G™ (as in 3.3.1)
such that ¢(f) is a monomial in R, or there ezists a positive integer n withm | n and
% € GM™ such that ¥(f) = vy~ /w2 P(gy=w/e2) F(T) € K[T),deg(F(T)) > 1.
and 1 < v < (r —1w;)/ws. Here v is a positive integer, but (r — twy)/wa may be not
an nteger.

This proposition asserts that either f becomes a monomial under an automor-
phism, or by extending the algebra R,, to a larger algebra R, and under a restricted
automorphism @ in the larger algebra R,, the degree of ®(f) with respect to z is
strictly less than the degree of ®(f) with respect to y in some suitable gradings. By
using Prop. 3.1.13 and Prop. 3.3.4 repeatedly, we shall reduce f to some standard
form as explained in next chapter.

Proof. Let h = 3%.
y /e F(2),h = yl"'%é'H(z), where z = zy~¥/*2 and F(z), H(z) € K[z]. Define

By assumption and Lemma 3.3.3, we may write f =

H
Fw1+wz) .

G =

Note that G(z) € K (z) since mr € Z. By the same proof as in Prop. 3.1.10, we have

dG G
— = —wym—. 3.2
dz 'LL_mH (3 O)

Then by Lemma 3.1.11, each root of H is a simple root and every root of G is a root
of H.

The proof consists of the following three cases. (as in the proof of Prop. 3.1.13)

Case 1. Suppose G € K|[z]. By Lemma 3.1.11, H(z) = Bz + 7,8 # 0. Hence
h = zyz~'(Bz + v) = Bzy + vy /v,

1.1. Suppose v = 0. Then h = Bzy. By using Af(h) = f, we see that f is a
monomial.

1.2. Suppose v # 0. Note that y'*¥1/*2 ¢ R since h € R,,. Then y¥/*2 € R,
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and h = By(z + %y’”‘/"’z). In this case ¥t € Lz

Define ¢ € G™ by ¢(z) = z — Zy“/*2. Then ¢ (h) = Bzry. From Ay (w(h)) =
¥ (f) we deduce that ¥(f) is a monomial in R,,.

Case 2. Suppose F(z) = a(z+7)",v > 0, # 0, i.e., F has only one root. Then
f=ayl=(zy=w/vz +q)7.

2.1. Suppose v = 0. Then f is a monomial in R,, as desired.

. 2.2. Suppose v # 0. Since f € R,,, we have y™/w2 y™/w:(zy~¥1/*2) ¢ R,  There-
fore y*2 € Ry, and % € (4)Z. Define % € G™ by ¥(z) = z — vy*/**. Then %(/)
is a monomial of R,,.

Case 3. Suppose G ¢ K|[z] and F has at least two distinct roots. Since each
root of H is a simple root, there exists a root a of F with order v > 0 such that
v(wy + wq) > r. Write

F(z) =(z —a)"P(z2) - (3.21)

with P(z) € K[z],deg(P) > 1 and P(a) # 0. Then

Towiv

f=(z—ay™/m)y e P(zyTv/ue). (3.22)
Since v(w1 + w2) > r and wy < 0. we have 1 < v < 2%, Let n = —wym and define

¥ € G™ given by ¥(z) = T + ay®/¥2. Then ¢(f) = ztyr—w1/w2Q(gy~w1/¥2) € R,.
where Q(T) € K[T] and deg(Q) = deg(P) > 1,Q(0) # 0. The proof is completed.
Actually, the above argument provides us with more information.
3.3.5. Proposition. Let f, g € R,, be two w-homogeneous elements with
Af(g) = Ag, where A € K*. Assume that both dy(f) and dy(g) are positive real

numbers. Then one of the three following possibilities holds:
(i) f =azy,a € K*,
(ii) we | m,

(iii) f =azxy(z+o1)---(z+as),s > 1,a € K*, o4 # 5, for i # j, and o; # 0 for

eachi=1,...,s, where z = zy~¥/v2,
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Proof. Keep the notations as in the proof of Prop. 3.3.4 with f and g inter-
changed. Note that h = 7(% = +f. It suffices to figure out the form of A.

To do this, write h = ayH'%Jf(z +a1)...(z +0n), where n > 1, 0y # .

Supposen =1 and oy = 0. Then h = azy.

Suppose n = 1 and oy # 0. Then y'*¥v/%2 € R,.. Then Tt € Z. Since
GCD(w,ws) =1, we | m.

. Suppose n > 2 and each o; # 0. Then a ], asy'¥¥1/*2 € R,,,. So ™ML e Z, and
then wy | m.

At last, suppose n > 2 and some a; = 0. By Lemma 3.1.11, only one a; = 0. Say
an =0. Then f = azy(z + ;) ... (z+ap_1).; #F0fori=1,...,s =n—-1>0.
This reduces to (iii). This completes the proof of Prop. 3.3.5.

3.3.6. After extending the results in section 3.1 to the case R,, = K[z, y*/™,y~/™],

we shall generalize Theorem 3.2.2 to R,,.

ple, for all f,g € R, w = (w1, ws), we have that
Ly(n)/m < dy(f*¢') < Li(n)/m,k, 1 =0,1,...,n, (3.23)

where L;(n), Ls(n) are two linear forms in n that depend only on f, g. Therefore, one
shows the following

3.3.7. Proposition. Suppose m > 1 and f € Ry,. Let w = (wy, wy) € Z2 where
we < 0,deg(w) = w, + wy > 0, and GCD(Jw|, |ws|) = 1. Let v = d,(f) > 0. If
N(Ay) # Ker(Ag), or E(Af) # Ker(Ay) with dy(f) > deg(w), then Ap+ has a
w-homogeneous local slice in R,,.

By Prop. 3.3.4 and Prop. 3.3.7, the following proposition follows immediately.

3.3.8. Proposition. Suppose m > 1 and f € Ry. Let w = (wy, wy) € Z2 where
we < 0,deg(w) = wy; +wy >0, and GCD(Jw |, {ws|) =1. Letr = d,(f) > 0. Assume
that N(Ay) # Ker(Ay), or E(Af) # Ker(Af) with dy,(f) > deg(w). Then one of
the following three possibilities holds.

(i) f is a monomial in R,
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(ii) fFf = ay™/®2(zy~1/»2 — B)’,v > 0, # 0 and B # 0. Moreover, there exists
¥ € G such that ¥(f}) is a monomial in Ry,

(i) fi = (z — ay® /™)y > Fi(2),z = zy™/*, Fi(2) € Klz],deg(F) > 1
and Fi(a) # 0. Here 1 < v < =% and v is a positive integer. More-

w2

over, there ezists a positive integer n with m | n and v € G™ such that
W(fF) = vy = Fy(zy~1/%2), F(T) € K[T].deg(F:) = deg(F,), and 1 <
v < (r — wyv)/wa. Note that v is a positive integer, but (r — w\v)/w> may be

not a rational integer.

3.3.9. Observation. In Prop. 3.3.8.(ii), from y™/*2, (y"/*2)(zy~*/*?) € R,,. we
have that y*1/*2 € Rp,. Therefore, w;/ws € & Z. Since wy, w, are co prime. (—w») is
a divisor of m. In particular, —w, < m. This observation will be very useful in the

proof of Theorem 4.3.1 below.
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Chapter 4

The Weak Jacobian Condition (II)

The most important result of this chapter is the reduction theorem 4.3.1. In section
4.2 we shall show some results related to the Jacobian condition which will be used
to establish a relation between theorem 4.3.1 and the Jacobian Conjecture in two

variables.

4.1 Divisor Theorem

In this section, we shall study further the weak Jacobian conditi(;n. Although the
main result, the divisor theorem, is not used in proving Theorem B, we will make
substantial use of its method of proof later. Moreover, the divisor theorem can be
regarded as an analogue of the epimorphism theorem (see [2]) under the weak Jacobian
condition. Hence it is worthwhile to state it here.

Note that, by an automorphism in K|z, y], we may assume and fix the following
form of f

f =yj+ Z aklsz[: (4.1)
(keSS

where k + ! < j for all (k,l) € S(f), and S(f) is a non-empty subset of Supp(f).
Define r(f) = sup{k|(k,!) € S(f) for some [}, s(f) = sup{l|(r(f),!) € S(f)}- Assume
that j = deg(f) > 3.t

!Suppose deg(f) = 1. Then f =y + ¢,c € K. Suppose deg(f) = 2. Then f =y* + bz + cy + d,
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4.1.1. Divisor Theorem. Keep the notations as above. Suppose T(Af) #
Ker(Ay). Then there exists a positive integer M > 2 such that j = s(f) + Mr(f).

This theorem provides very strong necessary conditions on the polynomial f for
T(Af) # Ker(Ay), and it is often relatively easy to see this is not the case by using
this theorem.

Proof. Define A = min{r/(j—s).(r—k)/(I-3)|[(k,l) € S(f),k <r.,l > s}, where
T = r{(f), s = s(f). Then in view of (4.1),we have A < 1, and f(“;_a) = a.,z"y° for every
o € (0, A). Choose and fix a rational number n/m € (0, A). Then f(‘;'n) = arsz"Y°.

m T

Further, choose a 7 > 2-Io > =4 > 1. Then we have ntj > mr + ns7. Hence
fnr) # Fipny- Define v =inf{r > 115 ) # frm}-

Since we will refer to the following assertion and its method of proof several times,
we state it as a lemma.

4.1.2. Lemma. Keep the notations in 4.1.1. Then f, . # f&fn’n), f(.:n,n'y) is not
a monomial end v =p/qg € Q,p > ¢q,(p,q) = 1.

Proof of Lemma 4.1.2.

Let B = Zinf{;Z;, 2=¢|(k,0) € S(f)\ (r.5)}. Then f, ..y = fihny if and only
if 7 < B. We first prove that f ., # fi.n.)- Suppose not. Then v < B. Choose
a sequence 7, with limit v such that f3, .\ # fi,n) and 7, < B. Clearly. this is
impossible by the definition of B. Hence fi, ..y # finn)- I fimny IS @ monomial.
there exists (k1,{;) € S(f) such that mk, + liny > njv, and mk, +{iny > mk +nl~.
for all (k,l) € S(f) — (k1,l1). Equivalently, v € (C,D) for some two constants
C,D > 0. Choose a vy < 7, with 79 € (C,D). Then f(",'n‘n,m) = f(";n’m) # fimn):
which contradicts the definition of . Therefore, f(",",m.,) is not a monomial. Finally.
v € Q (since f(fm,wg) is a monomial if w;/w, ¢ Q for any two integers wy, wa). Write
v=p/q € Q with (p,q) = 1,p > q. The proof is completed.

Let us come back to the proof of theorem 4.1.1.

Note that mg,np > 1, and T(Af) # Ker(Af). Suppose E(Af) # Ker(Ay) and
dy(f) < deg(w) with wy = mq, w, = np. Then we have jwy < w; + ws, kwy +lws <
w; +ws for all (k,1) € S(f). Then f is of the form f = azy +b(y) +c(z),a € K, and

and f becomes y or y> under an automorphism.
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b(T),c(T) € K[T]. We show that 4.1.1 follows for this kind of polynomial. Suppose
r(f) = 1. Then 4.1.1 is evident since j > 3 by assumption. Suppose r(f) > 2. Then
s(f) = 0 by (4.1). Considering the w = (4, r(f))-homogeneous decomposition of f,
we note that jr(f) > r(f) + s(f) since r(f),7 > 3. By Corollary 3.2.4, one may
assume that f} = a(z + by?/")¥ 43" for some a € K*,b € K, 4,5’ > 0. Since fI is
not a monomial (it contains 37 and ¢z") for some ¢ € K*), we have b # 0,4 > 1 and
r( f) divides j. Hence 4.1.1 follows. Therefore, we may assume that for w = (mg, np),
either N(Ayf) # Ker(Ay), or E(Af) # Ker(Af) with dy,(f) > deg(w). Then by
Corollary 3.2.4, we obtain that either mq | np, or np | mq. Consider the following
two cases.

Case 1. Suppose np = mgM for some M > 1. Since fg, ..y = fiu is not

=r
M7 for some

a monomial, we know by Corollary 3.2.4 that f(-:n,n'y) = bz’ (y + cz
b,ce K*, and j° > 1,7 > 0. Then )

f=bz"(y +czM) + > craz® (y + cx™) (4.2)
k+MI<i + M3

is the (1, M)-homogeneous decomposition of f. This is impossible, because f* =y’
by (4.1).

Case 2. Suppose mq = npM for some M > 2. By Corollary 3.2.4, we have
Fmny = frn) = bz + cy™)'y? for some b,c € K*,%' > 1 and j' > 0. We express

the (M, 1)-homogeneous decomposition of f as follows:

fF=bz+a™)y + X berlz+ MY, (4.3)
(&', ")esi(f)

where MK’ + 1" < My + 7' for (',l') € Si(f), and S,(f) is a finite set. We shall
determine f(,, .- Let w = (m,n). Then dy(z°y™ =) = m(1 — 2)s + 5'%‘-‘1 for every

0 < s < ¢. Thus, we obtain
(@ + ™)'y ); =2y, (= + ™) y")E =2 (44)

for (k') € Si(f).



Case 2.1. Suppose k' < 7 for (K',l') € Si1(f). Since MK +1I' < Mi + j, and
M =71 < 7, we have m(i — k') > n(l' — j'),ie.,mi’ +j > mk’ +I'. Hence
ftemy = bz*y?’. Therefore, #* = r(f),j" = s(f) from the choice of m and n. Further,
by expanding f in the above (M, 1)-decomposition (4.3), we have f+ = dyM¥+7 for
some d € K*. Therefore j = M7 + s.

Case 2.2. Suppose there exists some (kj.ly) € Si(f) such that K > . We shall

show that this is impossible by getting a contradiction.

Put ¢ : (z,9) — (£ — cy™,y). v = ¢~', g = ¥(f). Then

g=bz"y" + 3 berzFy" (4.3)
(" )esi(f)

is the (M, 1)-decomposition of g and deg(g) < deg(f) (since M > 2), T(4,) #
Ker(A,). Moreover, there exists 8 € (0, 1) with Mk +0l) > Mi' +@j5'. For example,
take any 6 < ﬂ](—f:-'}aﬂ < 1. Therefore gy gy 7 9{ar,1)- Put 6 = Sup{@ € (0,1)|g(s0) #
9(m,1)}- By the same argument as in Lemma 4.1.2, we know that Iws) 7 9in):
d € (0,1)N Q, and 9(+M,5) is not a monomial. Write § = u/v € QN (0,1), (u,v) = 1.
Suppose E(4A,) # Ker(4,) with dy(g) < deg(w). where w = (Mwv,u), we have
Muvi' + uj’', Muk' +ul' < Mv +u for all (K',') € Si(f). Then f = a(z + cy™)y +
b(z + cy™) + c(y).,a € K and b(T),c(T) € K[T]. As before, one can prove 4.1.1
directly for f. Hence we assume that for w = (Mwv, u), either N(A,) # Ker(A). or
E(A,) # Ker(4,) with d,(g) > deg(w). By Corollary 3.2.4, we obtain that u must
divides Mwv. Hence Mv = Nu for some natural numbers N, M and N > A since
u < v. Let g 5 = 9wy =V (z+ cyN)y'y7" for some b, ¢’ € K%, and " > 1,5 > 0.

We express the (V, 1)-decomposition of g as follows:

g= b,(m -+ C,yN)i”yj” + z bkllln (l‘ -+ C,ylv)k"yl" 5 (4-6)
(k",1'")eS(g)

where Ni" + 7" > Nk" + 1" for all (k”,1") € S(g) and S(g) is a finite set depending



on g. Since f =(g), v : (z,y) = (z +cy™, y), we have

F=bt@+a™+dyM) Yy + 3 bew(z+ Yyt + Y)Y (4T)
(&".l")eS(g)

Since N > M, we obtain
((z+ ey™ + <y Y Vary = ¢y, (4.8)

and

N)kll ’k" ylvku'i'l" (4‘9)

((z+ecy™+cy yl")a[,n =c

for (k”,1") € S(g). Hence f, ;) = dy"* " for some d € K* by (4.7). But this
contradicts the fact that f(j;[’u = b(z+cy™)¥y” is not a monomial, as we have shown

in (4.3). This contradiction, therefore, completes the proof of the divisor theorem.

4.2 Elementary Polynomials

In this section, we derive some results concerning the Jacobian condition, instead of
the weak Jacobian condition. By combining the results of this section with theorem
4.3.1, we will prove theorem 4.3.14 and see that theorem 4.3.1 can be seen as a weak
form of the Jacobian Conjecture. The results of this section are true for arbitrary
integral domain of characteristic zero. In this section we shall use R to denote an
integral domain of characteristic zero.

4.2.1. Let B = R[z,y] denote the polynomial ring of 2 variables over R. For a
polynomial f € B, define Ay by Af(g9) = J(f,g) for g € B. Ay is a R-derivation
of B. Some results in chapter 1 may be extended to this more general case. For

example, if R is a UFD containing Q, then any locally nilpotent derivation of B has

locally nilpotent derivation 4 has a slice if and only if §(B) = B.
4.2.2. Definition. (X,Y) is a coordinate system of B = R[z,y] if B = R[X,Y].

X is a variable of B if (X,Y") is a coordinate system of B for some ¥ € B.
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Prop. 4.2.11 is our main result in this section. To show it, we shall prove two
propositions first.

4.2.3. Proposition. Let X,Y be a coordinate system of B. Suppose f = aX +
Y26(X,Y) € B,a € R*, and b(X,Y) € R[X,Y]. Then f = aX + u(Y) for some
polynomial u(Y') € R[Y] if and only if As has a slice.

4.2.4. Proposition. Let (X,Y) be a coordinate system of B. Suppose f =
aX + X2(X,Y) € B,a € R*,b(X,Y) € R[X.Y] and A, has a slice g € B. Then
f=aX.

4.2.5. Remark. The above two propositions 4.2.3 and 4.2.4 are not new and
can be proved by using the similarity of the Newton diagram of a Jacobian pair.? See
[47], section 3, proof of theorem 1.3. Here we give another proof of Prop. 4.2.3, and
Prop. 4.2.4 without using the properties of Newton diagrams. It would be interesting
to study the Newton diagram of Jacobian pairs in R,, or to extend our argument here
to R,

4.2.6. Proof of Prop. 4.2.4. We follow the argument of Czerniakiewicz [7].

4.2.7. Step 1.

In the following proof, we always use a fixed coordinate system (X,Y). Suppose
Af(g) € R* with ¢ € K[X,Y]. We assume that g(0,0) = 0, and change g by a
multiple of f, one may write: f =aX + fo+ ...+ fiegs); 9 =0Y + g2 + . .. = Gaeg(g)-
where a,b € R*, and f;, g; are the homogeneous components of f of degree ¢, and of
g of degree j, respectively. For simplicity, we assume that a = b =1 and J(f,g) = 1.
Write fr = Y0, a;, XY™ and define f = a;, XY for i < r < deg(f). Similarly.
we define g7 for any j < s < deg(g).

By comparing the coefficients of the monomial z°~!y*~*~! on both sides of the

formula J(f,9) =1 with ¢t > 3,1 < s <t —1, we obtain:

t—2 min(k,s)
T J(fny) + 20 X S g0) + J(z.gi)] = 0. (4.10)
k=0 h=0

At first, we consider Y1, for all 7. By assumption on f, f? = f! =0, and we have

2Given two polynomials f,g € K{z,y], f,g is a Jacobian pair if J(f,g) € K*.
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J(X,g°%.,) = 0. Hence g2 =0 for s = 2,...,deg(g). Let M = maz(deg(f).deg(g)).
We may suppose that M > 1 3. We shall prove that:

fa=gi,=0. (4.11)

In fact, Y3,., implies that J(f%.y) + J(z,g};) = 0. On the other hand, Y3,
implies that J(f%, gi;) = 0. Therefore (4.11) follows from Lemma 3.1.6.
4.2.8. Step 2.

We shall prove that for any M >m >n > 2,
(Pmn): fm= 911111_1 =0. (4.12)

If (Pna) is proved, for every M > m > n > 2, the proof of Prop. 4.2.4 follows
immediately.
To show (Ppn), for every M > m > n > 2, we employ an inductive argument

with respect to a well ordering. Let V = {(m,n) : M > m > n > 2}. We define

(m1,n1) = (M2, np) in V if 2=k > ;‘1":11 Clearly, the first element of V is (A{,2), and
(Par2) has been proved by formula (4.11). Note that V is not a well ordering under
>. Define an equivalence relation on V by making all elements (m, n) with the same
quotient ;;_11 belong to the same equivalent class. Then > induces a well ordering on
the set of equivalence classes. We shall make use of an induction argument on the set
of equivalent classes.

Given (a,b) € V with GCD(a—1,b—1) = 1, suppose that f* = g"~! =0 for any

1

(m,n) € V with 2=% < 2=L Tt is enough to prove:*

. oer(=1)+1 _ r(b—-1)  _
(V)r: fr(a—l))+1 - grga—l)q-l =0 (4.13)

for r > 1.

3When M =1, both f and g are linear functions of X and Y, and the results are clear.
4Since for any two integers c,d, =1 = £=L implies that ¢ = 1+ (b — 1)r,d = 1 + (a — 1) for
some integer r > 1.
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To prove (V). for all 7 > 1, we need:

4.2.9. Lemma. Suppose a,b > 2 and h,k,r are positive integer satisfying k <
1+r(a—1). Then either —(raa’—z)ll_}'—‘r < z_i, or '11 < gﬁ

Proof of Lemma 4.2.9.

Suppose
r(b—1)—h b—1 e
rla—1)+1—k a-1 (4.14)
Then
(a—=1)(rb-1)—h)>(b-1)(r(a—1)+1—k). (4.15)
sincea—1>0and r(a—1)+1—k>0. Hence
ha—1) < (b—1)(k—-1). (4.16)

Since both A and a — 1 are positive numbers, and & > 2, we have ;23 < —1-

-1
4.2.10. Step 3.
We come back to the proof of (V),.

Consider the formula 'I‘:EZ:IL))";; By Lemma 4.2.9, it reduces to:

) r(b—1) (b1 ( —n)(b—1)+1 _n(b—1) . Y-
. J(fr(a—l)-{»l’ y) + J(T’79:(a—1)+1 + Z J(f rr—:)(a 1)+1° gn(a—l)—l) = 0. (4.17)

In proving (V), for every r, we use another induction argument as follows. As
(V): is obviously true for sufficiently large r (since both f and g are polynomials), we
suppose that (V) holds for all £ > N, and then prove that (V)y holds. After this
is proven, the proof of this proposition is completed. We now prove (V)y. Consider
the formula Y,x. By the assumption that (V) holds for any £ > IV, Ty reduces to:

N(b L+1 _N(b-1 _
( N(a—1)+12 9 N((a_1;+1) = 0. (4.18)

By Lemma 3.1.6, (4.18) yields either fy o ¥} =0 or gyfa_i),; =0.

Suppose that gg((;':i; 41 = 0 and ff,f((::{)):i # 0. We shall show the following



formula by induction on A:

N-h)(b-1
gf,v_hffa_dﬂ =0 (4.19)

for 0 < h < N — 1. In fact, formula (4.19) holds for A = 0 by the assumption that
gx((i':g +1 = 0. Suppose it holds for any A < hy £ N — 1. Consider the formula
YTon—no- By the induction hypothesis that (V) for £ > N, and the assumption that

giv e o1 =0 for h < ko, Tax_n, yields

N(b—1)+1 (N—ho)(b—1
TNt SN —herer D) 21) = 0. (4.20)

By Lemma 3.1.6 again and the assumption that fg((:j;ﬂ # 0, we obtain

N—hg)(b—1
I —heraty+1 =0 (4.21)
Then the formula (4.19) is proved. Let us consider Ty finally. By the formula

(4.19), T implies that J(fﬁ\,’((f___;;i{, Y) = 0. By Lemma 3.1.6, fg(b_l)ﬂ = (0. Hence

! (a.—l)-i—l
N(b—1)+1 N(6—-1)  _
fN(a-1)+1 = g1V(a—-l)+l = 0.

The argument is similar if fs\,r((f:{))ﬁ = 0. This completes the proof of proposition
4.2.4.

4.2.10. Proof of Proposition 4.2.3. Suppose that f = aX +Y?2b(X,Y"). Then
ff = fr~! = 0. By the formula T, above, we have J(X, g5~!) = 0. Hence g5~ =0.
Then the formula Y reduces to J(z,gsZ;) = 0. Hence ¢g°=f = 0. Therefore, g €
a~'Y + Y2R[z,y]. Since A, has a slice f, then by proposition 4.2.4, with interchange
of f and g in notations, we have f2~! = 0 for every M > m > n > 2. Then, we have
f=aX +u(Y) for some u(T) € R[T].

We shall next prove Prop. 4.2.11, which will be used in proving Theorem 4.3.14
in the next section.

4.2.11. Proposition. Let K be a field of characteristic zero and f a polynomial
of the form f = az +bzy +zc(z,y), where a,b € K, c(z,y) € K|z, y] and deg(c) > 1.
Assume that As has a slice in K(z,y]. Then f =az,a € K*.

Proof. Let g be a slice of f. Then a € K* by direct calculation, and after
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changing g by a multiple of f, one may write that ¢ =y + g2 + ... + gn, where each
gi is a homogeneous polynomial of weight 7. By Prop. 4.2.4, it suffices to show that
b = 0. To show this, we use the same notations as that in the proof of Prop. 4.2.4.
In this case, we have that f? =0 for r > 2, f} =bzy, f2 =0, and f! =0, for s > 3.

Moreover, g; = ¢? = y. The formula T! gives us

t—2
J(fal-lr y) + Z[J(ftl_k’gg) + J(fto—kz gllé)] + J(=, 92—1) =0. (4.22)

k=0
Suppose that b # 0. Write g% = d,y" for n > 2. For any t > 4, the above formula

(4.22) reduces to :

J(-f217 g?—Q) + J(.’L’, g?—l) = 0' (423)

Then we obtain

bdn—o(n = 2) +dn_y(n— 1) =0 ' (4.24)

for any n > 4. Since g is a polynomial, d, = 0 for n >> 0, so by the assumption
b # 0, we obtain d, = 0 for n > 2. In particular, g} = 0. We shall prove this is

impossible. In fact, consider the formula Y3:
J(f2,y) + J(f3,90) + J(z, 63) = 0. (4.25)

The formula (4.25) implies that 2by = 0, so b = 0. Therefore, we have shown that
b=0, and f = az + z%c(z, y). Then this proposition follows from Prop. 4.2.4.

We may rewrite Prop. 4.2.4 and Prop. 4.2.11 in the following geometrical form.

4.2.12. Definition. Let A be a field of characteristic zero. A polynomial
f € K[z,y] is a line if f is irreducible and Kz, y]/(r) = K'Y (polynomial ring in one
variable). A polynomial f contains a line L as a factor if f = Lg for some g € K|z, y]
and L is a line.

4.2.13. Proposition. Let f € K|z,y] be a non-constant polynomial and suppose
f has a line L as a factor. Assume f satisfies the Jacobian condition, i.e., J(f,g) €

K* for some g € K[z,y]. Then f is a line.
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Proof. We may write the line L as a variable X for some coordinate system X,Y
by the theorem of Abhyankar-Moh and Suzuki [2] and [50]. Then f = Xh(X,Y) for
some h(X,Y) € K[X,Y] = K[z,y]. The result then follows from Prop 4.2.4. Indeed.
if f satisfies the Jacobian condition, then the curve {f = 0} is smooth. It follows
that the line {X = 0} and the curve {h(X,Y) = 0} do not meet. In particular,
h(X,Y) =a+ Xhi(X,Y) for some ¢ € K, h(X.Y) € K[X,Y]. Then Prop. 4.2.13
fo'llows from Prop. 4.2.4 directly.

4.2.14. Remark. S.Kaliman [20] has shown that to prove the Jacobian Con-
jecture, it is enough to do it with the assumption that for every ¢ &€ K the fiber

{(z,v) : f(z,y) = c} is irreducible.

4.3 Reduction Theorem

We preserve the notations of section 3.3.1. Recall that R(™ (n) = K{zy]y™™, R(n) =
Klzyly®, R(™ = @2 R(™(n) , and R = &3, R(n). Note that

n=0
J(R™(0), R™(4)) € R™ (i + j) (4.26)

forz,5 € Z.

The following Reduction Theorem plays a central role in proving Theorem 5.1.1
and Theorem B.

4.3.1. Reduction Theorem. Let f be a non-constant polynomzal in K|z,y|.
Suppose T (Ay) # Ker(Af). Then either there ezists ¥ € G such that ¥(f) € R, or
there ezists m > 1,V € G, ¥, € G™) such that ¥, (T(f)) € R(M.

Proof.

We assume that deg(f) > 3.7

The proof of this reduction theorem is quite involved while elementaxy. It consists

of several steps.

5The reduction theorem is obvious when deg(f) < 2, because f has the form z, z*> or zy under
an automorphism when deg(f) < 2.
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4.3.2. Step 1.

We first prove by induction on deg(f) that there ezists a ¥ € G such that ¥(f)
s a stable polynomial (in the sense of 3.1.7). This is a well known fact, and we just
explain its main point.

Suppose this is true for polynomial of degree less than k& — 1 and let deg(f) = k.
Since T(Ay) # Ker(Ay), then by Corollary 3.2.4, with w = (1,1) (since deg(f) >
de:g(w) = 2), there exists a ¥; € G, such that v, (f)* is a monomial, and deg(¢,(f)) <

deg(f). We express the standard homogeneous decomposition of ¥ (f)* as follows:

U(f)T=ar'y + > auzty, (4.27)
(k.d)ESo(f)
where k£ + ! < i+ j for all (k,I) € So(f)- Let g = 91 (f)-

Suppose k < i, < j for all (k,l) € So(f). Then g is stable, and we may choose
U =Y.

Suppose g is not stable. Then there exists some (kq,lg) € So(f) with either kg > ¢
or lg > j. Say kg > 7 holds.

Choose a o > 0 with okg + Iy > i + 7. Then gaxg) # g*¥. Put 7 = inf{c >
l{gaa) # g*}. Then exactly as in the proof of Lemma 4.1.2, we obtain 7 = p/q >
1,(p,q) =1 and g , = g, is not 2 monomial. We show that it is impossible that
degw(g) < deg(w) = g-+p with w = (g, p). Suppose the contrary. Then ¢qi+pj < g+p.
Suppose both ¢ and j greater than 1. Then i = j = 1. So deg(f) = 2 < 3. Suppose
i = 0. Then pj < ¢+ p. But j = deg(f) > 3 implies that p < g which contradicts
p > g. Suppose j = 0. Then 7 = deg(f). So there exists no kg > i. Therefore,
by Corollary 3.2.4 with w = (g,p), ¢ must be 1 and g(*;’f) = ay’ (y + bzP)* for some
a,b € K*,j > 1. Then there exists a ¥, € G,deg(¥2(g)) < deg(g) < k. By induction
hypothesis, we may find a ¢ € G as desired.

4.3.2. Step 2.

From now on, we will assume that f is stable and write

f=az'y’ + Z ak,zky', (4.28)
k)es(f)
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where k +1 < i+ j,k < 7,1 < j for (k,[) € S(f), and S(f) is a subset of Supp(f).
Our next task is to reduce f to the special form (4.29) below.

From the assumption deg(f) =7+ j > 3, we know that either 7 > 2, or 7 > 2.
Without loss of generality, we may assume that ¢ > 2. By Corollary 3.2.5, (1) with
w = (1,0), and using d(f) = i > deg(w) = 1, one knows that © # j. We may
assume that j > i 5. Then by Corollary 3.2.5 (1) again, fi, = z'(y — a)’ F(v),
where F(y) € K[y],deg(F)=j—j,i<j <7 and F(a) # 0. Thus

f=z(y — a)j'F(y) + Z auzty', (4.29)
(k.)es1(f)

where S;(f) is a subset of S(f) and k < ¢ for (£,1) € S51(f).
Therefore, one may assume that f is in the above form (4.29) and 7' >¢> 2.
4.3.3. Step 3.
Define ¢, € G : (z,y) — (z,¥ + @), and let f; = ¢¥1(f). Then by (4.29) we obtain

A=z R+ Y awrfy+a) (4.30)
(kDESI()

where k& < i for all (k,l) € S1(f). Fi(y) = F(y +«) € K[y], and F1(0) # 0. We begin
to study fi in this step.

Note that there is a positive real number A > 1 such that foreach p > A, ( fl)a;,—l) =
bziy?, where b = Fy(0). For every p > 0, write d,(f1) = d(,—-1)(f1)-

To study the form of (f1)(, 1), we need the following Lemma.

4.3.4. Lemma. In either of the following two cases we have f; € R:
(i) there exists p > 1 such that d,(f1) < p—1;

(it) there exists p > A with dp(f1) > p— 1, but (f1){, 1) = (fi){—1y for every
p1 € (1,p).

Proof of 4.3.4. Choose and fix a pg > A. Write the (py, —1)-homogeneous

8Qtherwise, use the linear transformation z — y,y — —z.



decomposition of f; as follows:

fisbry + S by, (4.31)
(k.L)ES2(f)
where pok ~ 1 < pot — ' = dpo(f1) for (k,1) € S2(f) and Sa(f) C Supp(fi).

In case (i), pk — ! < p—1 for (k,{) € So(f), and p(k — 1) <l —1. Ifk =0, we
have [ > O since f, € K[z, y); Ifk > 1,then k—1 < p(k~1) <!—1. So k <[ for
all (k,!) € S5(f). Hence f, € R.

In case (ii), (4.31) is the (p, —1)-homogeneous decomposition of f;. For (£,l) €
So(f), we have p1k—1 < pyi—j for p; € (1,p). Let py = 1. Wegetk—-I1<i—7 <0.
Hence f;, € R also. Then Lemma 4.3.4 is proved.

Let us come back to the proof of Theorem 4.3.1-Step 3.

By 4.3.4, we can assume the existence of pg > A with the following properties:

(f1) oy = b2y, 3 < (4.32)
dp, (f1) > po — 1, (4.33)

and
(fl)a;,,_l) # (fl)?;,o,_l) (4.34)

for some p € (1, py). Put

o = Sup{p € (l:PO)KfI)E;,-l) # (fl)?;ao.—l)}'

By the same argument as in Lemma 4.1.2, we obtain

p1 € @N (L, po), (4.35)
() -1y # (F)(oo—1) (4.36)

and (fi){, 1y is not a monomial.

4.3.5. Step 4.
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We shall study the relationship between certain invariants of f and of fi. The
following Lemma. is helpful for this purpose.

4.3.6. Lemma. Keep the notations as above. Then ( fl)z‘;h_l) contains the
monomial bziy?’.

Proof of Lemma 4.3.6. By the definition of p;, we know that

(fl)a;,-l) = (fl)&o,_l) (4.37)

for all p € (p1,p0]- If (f1)5, _1) doesn’t contains the monomial bz'y?, then we may
choose p € (p1, po) close to py such that (f1), _,) doesn’t contain bz*y?'. This is
impossible by (4.37).

We now continue the proof of Theorem 4.3.1-Step 4.

By Lemma 4.3.4, we may assume that d,, (fi) > p1 — 1. Then by Corollary 3.2.5,

we obtain
(F)fp,—1y = (= ™)y Fa(2), (4.38)

where o € K%,z =zy™/*!, p; =1, /s;,v;1 € N,1 < v < wy, and Fy(z) € K[z], Fa(a) #
0, with deg(Fz) > 0. Let Fy(2) = [[}-,(z + @;)*%,.n > 1, and each u; > 1. Then by
Lemma 4.3.6, v; + > u; =t. So .

v < 2. (4.39)

Note that w, may fail to be an integer.

We then rewrite f; in term of its {(p;, —1)-decomposition as follows:

fi=(z—ay )y R(zy) + Y, bu(z —ay™)Y, (4.40)
(k,1)es3(f)

where [ € gz, ok — 1 < prvy — wy for all (k,1) € S3(f) and S3(f) is a finite set.
Now choose ¥, € G with w,(z) = z + ay™™/t. Let fo = 1¥(f1) € Rs,- Then
by the above formula (4.40),

fo =2y F3(zy®t) + Z bty (4.41)
(k.)eSa(f)
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is the (p;, —1)-decomposition of fo, where F3(T') = Fo(T +a) € K[T], and F3(0) # 0.

Before continuing the proof, we say a few words about the method of proof of this
reduction theorem. The general idea is to decrease, recursively, the (1, 0)-degree of
the (p, —1)-leading term of f for some p > 1, under some automorphisms in G(™.
We first reduce f to f; in the form (4.30) with 7 < ' < j in Step 2, then reduce f,
to fo as in (4.40) with 1 < v; < ¢, and v, < w,. Note that we had to expand K[z, y]
tc; R, of section 3.3 in the reduction procedure from f; to fo.

We will reduce f> in the following three steps.

4.3.7. Step 5.

Choose 1 < 71 < p1, but close enough to p; such that mk — 1 < 7y, — w,; for
(k,1) € S3(f) and dr, (f2) > 71 — 1. We can do this since d,, (f2) = d,, (f1) > ;1 — 1.
Then

(fa)foy = 8™y, c= F3(0) £0. (4.42)

Moreover, by the same argument as in Lemma 4.3.4 and since v; < w;, one may

assume the existence of some p € (1, 7;) with *

(f2) -y # (F)oymn) _ (4.43)

Define
p2 = Sup{p € (17Tl)l(f2)?;),—l) # (f2)?;1,—1)}‘

By the same argument as in Lemma 4.1.2, we obtain
p2 € @N (1, 71), p2 = T2/ 82, (4.44)

(f?)a,._,__l) 7= (f2)(tl,—1)’ (4.45)

and ( f2)6:2.—1) is not a monomial. Moreover, (f2),, _;) contains the term cz*'y*! by
the same proof as in 4.3.6.

We shall use Prop. 3.3.8 in the present situation to determine the form of

"Otherwise f; € R(s1),



(f2)$,.—1)- Remember that in the case E(Af) # Ker(Ay) we have to check the
condition d,, (f2) > p2 — 1.

4.3.8. Step 6.

Suppose for the moment that N(Ay) # Ker(Ay), or E(Af) # Rer(Ay) with
dp,(f) > p2 — 1. ® By Prop. 3.3.8, there are only two possibilities for (f2)(ps.—1) Since
(fg)i:z'_l) is not a monomial.

. Case 1. (fg)i:z'_l) = dyt/s2(z — By~"2/*2)" for some .8 € K. In this case, 53 | 51
by 3.3.9. Therefore
(r2,82) € L(p1), (4.46)

where L(p;) = {(r,s) : GCD(r,s) = 1,7, > 1,£ < p1,s | 51} is a finite set with at
most [p;s?] elements. Hence we can define ¥ € GV with ¥(z) = £ + fy~"/** such
that

(WO(f2)) 1) = dz™2Y™?, (4.47)

where v9 = v;,1 < vs < woe. Here wy = t/s2 = wy. Put fz = ¥(f). Note that
f3 € B”ﬂ[l‘a y]'

Case 2. (fg)ag'_l) = dy¥2(z — By "/s2)"2 Fy(zy™/%?) for some d, 8 € R*,1 <
vz < wo, Fy[T] € K[T] with Fy(8) # 0, and deg(Fy(T)) > 1.

In this case, we can define ¥ € G1%2) with v(z) = £ — By~"/*2 such that
(D (f2)) a1y = day ™ Fs(zy™/*), (4.48)

where 1 < vs < wg, and v2 < v, since deg(Fs) = deg(Fy) > 1. Put f3 = 9¢(f2). Note
that f3 € K5, [z, y]-

4.3.9. Step 7.

We consider the case E(Af) # Ker(Ay) and dp,(f2) < p2 — 1 in this step. In
order to handle this situation, we use the following fact.

4.3.10. Lemma. Let f,g be two elements in R, with J(f,g) = Ag, A\ % 0. Then
for any p > 1,d,(f) = p — 1. Moreover, if d,(f) = p — 1, then J(f(“;'_l),g(‘;_l)) =

8Note that T(Ay) # Ker(Ay) implies that T(Ay,) # Ker(Ay,).
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/\g(.l;v_l) # 0.
Proof of Lemma 4.3.10. Since d,(J(f,g)) < d,(f) +d,(g) — (p — 1), the first
part is clear. Suppose d,(f) = p—1 and J(f(';,_l), 9(-:;,-1)) = 0. Then

dp(J(f,9)) < dp(f) + dp(g) — (0 — 1) = d,(9). (4.49)

which is impossible because J(f,g) = Ag. Hence J(f(; _1y: 9(5—1)) = A9, 1) # O-

We are now ready to finish the reduction step for fs.

Suppose E(Ay) # Ker(Ay) and dp,{(f2) < p2 — 1. Then d,,(f>) = p2 — 1, and
J((f2)(onm1)2 Iipar—1)) = AG(py,—1) for some g € R,, by 4.3.10. Note that d,,(f) > 0.
and we may find such a g with d,,(g) > 0 because d,,(f*g) = nd,,(f) + d,,(g) for
any Ag—eigenfunction g. By Prop. 3.3.5, we know that there are three possibilities
for (f2)&2,_1)-

The first case in 3.3.5 for (f2){,, _,, is impossible because (f2){, _,, is not a mono-
mial by the choice of p;. The second case in 3.3.5 for ( fg)&Q,_l) implies that s | s1.
Then (rs, s2) € L(p;), and we are reduced to the above Case 1.

In case 3.3.5. (iii), we have (f?_)&zr_l) = ary(z +a1)...(z + a;), 0; # o, for i #
Jyo; # 0 for all 7, and z = zy®2. We express the (p2, —1)-homogeneous decomposition

of fo as follows:

fo=azy(z+a)...(z+ )+ D ey, (4.50)
(kDES3()

where pok — [ < po — 1 for (k,1) € S;(f), and Sy(f) is a finite set.
To figure out the leading form of f», we consider the following two situations.

Suppose k > 1 for all (k,1) € Sy;(f). We have
k—1<palk—1)<l~1 (4.51)

for (k,1) € S4(f). Then fo € RV, and we are done.
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Suppose there ezists (k,1) € Sy(f) with k = 0. Choose a 7, close enough to p, °
such that (fz)?;gv_l) = czy,c = a[]; o;. Arguing as in Lemma 4.3.4, we may assume

that there exists p € (1, 72) with (f2){; 1) # (f2){7,,~1)- Define

ps = Sup{p € (1-.7'2)l(f2)(:,-1) # (fz)?;_,,—L)}’

Then by the same proof as in Lemma 4.1.2, we see that (f>);;, _;, is not a monomial.
Moreover, d,;(f2) > ps — 1 by 4.3.10.

If d,,(f2) > p3 — 1, we can apply the procedure as in the above proof in step 6.
with p3 replacing p,.

Suppose d,,(f2) = p3 — 1. Then by Prop. 3.3.5, we have two possibilities for
(fg)?;s’_l) (note that 3.3.5 (i) is impossible because (fg)?;,a'_n is not a monomial).

In case 3.3.5 (ii) for (fg):;u'_l), we have (r3, s3) € L(p,), where-ps = r3/s3. Then
we can reduce the number of the elements in the finite set L(p1)-

We shall prove that the case 3.3.5 (iii) for (j2)(,, _;, is impossible. To do it, we use
a contradiction argument. Suppose (f2){,, _1y = bzy(Z+B1) ... (2+8.). 2 = zy™. 8, #
0,t > 1 and B; # B; for © # j. Consider the above (p;. —1)-decomposition of f> in

(4.50). For every (k,l) € S4(f), if £ > 1, we see that p.k — | < pp — 1. Hence

because p3 < po. It means that the monomials ¢ 2%y, (k,[) € Ss(f), contained in
the leading form of ( f2)&3,—1) satisfy & = 0, i.e., the z-degrees equal zero. On the

other hand, among the leading terms of (fa)(,, _;y = azy(z + 1) ... (z + @), we find

((f2)&2,_.1))?;,3,_1) = cTy. (4.53)

Hence (fz)as,—n = cxy+ some terms of form g3, (0,1) € S4(f). But, each monomial
in bzy(2 + B1) ... (2 + B:) has z-degree at least 1. Therefore (fg)(*;si_l) = czy, and
then 3.3.5. (iii) for (f2){;, 1) is impossible.

9For example, choose ™ < p» and such that mk —[ < 7 — 1 for (k,I) € S4(f).
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We have thus shown that for fo, either (5, 52) € L(p1) and there exists 1 € G5V
such that 1,b(f2)(*;,2'_1) = dzy**,1 < vy = v;,Us < ws, or there exists ¥ € G(s152)
with w(fg)?;z’_l) = dz¥2y*¥? F3(zy”),1 < vs < ws,vs < w;. In the first case, f3 =
¥(f2) € Rs,. Hence we continue to reduce f; as above with f, replaced by f;. Since
L(p,) is a finite set, after finite many steps, we can reduce to the second case, that is,
1 < vy <wp,vs < wo. At that time, we finish the reduction step for fo. More precisely,
for f2 € Ry, there exists s» > s; and v, € G¢?) such that either ¥»(f:) € R or

there exists po > 1 with
(W2(f2)) a1y = G2T™Y™?, a2 € K™, (4.54)

and 1 < vy < vy, vy < wy. Let f3 = v(fo) € Rs,.
4.3.11. Step 8.
Repeating the same procedure, for any n > 2, we can find s, > s,—, and ¥, €

GGn) such that either ¥, (f,) € R or there exists p, > 1 with
(Un(fa)) pn—1) = BTy, 0 € K™, (4.55)

and 1 < v, < Up—1.Un < Wnp.

Note that each v, is positive integer, and only finitely many positive integer less
than i. Then the above reduction procedure must be stop after finitely many steps.
That is, there exists m > 1,% € G™ such that ¥(f) € R™ as desired.

Then the theorem 4.3.1 is proved.

Since ® C R for all m, then ¥(f) € R implies that ¥, (¥(f)) € R™ for
V,, = identity. In particular, we have shown that there exists ® € G(™G (defined
in 3.3.1) such that ®&(f) € R™.

We are going to study the structure of A(Af). It is not difficult to see (see [8})
that A(Ayf) is a semigroup with rank at most 2. Our following result asserts that
A{Ay) is a semigroup with rank at most 1.

4.3.12. Proposition. For any non-constant polynomial f, there ezists py € IK

such that A(Af) C Zn;.
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Proof. If E(Af) = Ker(Ay), let pf = 0. Otherwise, E(Ay) # Ker(Af). By
Theorem 4.3.1, there exists a m > 1,® € G™G such that ®(f) € R™). Choose
g € K[z,y] and A € K™ such that A;(g) = Ag. Let k denote the smallest integer
such that ®(f) has a non-zero component, say ®(f):, in R™ (k). Let [ denote the
smallest integer such that ®(g) has a non-zero component, say ®(g);, in R™(I).

Then k£ > 0. By (4.26), we find

J(2(f)1; B(g)1) = A2(g)1- (4.56)

Then k£ =0 and ®(f); € K[z,y]. Moreover, A # 0 implies that ®(f), = azy + 8 for
some o € K*,8 € K. We define ¢ € G) by ¢(z) =z + %, and ¥ = ¢po® € GM}§G.
Then

T(f) = azy + i Fi(zy)y'™, - (4.57)

i=r
for some a € K*,s > r > 1, and Fi(T) € K[T].

For every g € E(Af, A), A € A(Af) — {0}, let | be the smallest integer such that
®(g) has a component ®(g); € R™({). Then by (4.26), J(azy, ®(g)) = A®(g).
Therefore, A = al/m. Put py = a/m. Then Prop. 4.3.12 is proved.

4.3.13. Proposition. Suppose f € K[z,y], and A(Af) # 0. .Then Ker(Ayf) =
KI[f], i.e., f is a closed polynomial.

Proof. By Theorem 4.3.1, and the first part of the proof of Prop. 4.3.12, there
exists m > 1,¥ € GM@G

U(f) = azy + Y Fleny™, (4.58)
for some « € K*,s > r > 1, and F;(T) € K[T]. Let g € Ker(Ay). let [ be the
smallest integer such that ¥(g) has a component ¥(g); € R(™(I). By (4.26), we have
I = 0,%(g), = F(azy) for some F(T) € K[T]. Put h = g — F(f) € Ker(4A;). If
h # 0, let I’ be the smallest integer such that ¥ (k) has a component ¥(h); € RM™(I").
Then ' > 0 from the choice of F'(T). But & € Ker(Af) implies that I’ =0, as in the
argument for g. This contradiction proves that h =0, g = F(f) € K[f].
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In view of the following Theorem 4.3.14, Theorem 4.3.1 is a weaker form of the
Jacobian Conjecture.

4.3.14. Theorem. If f € R, and Af has a slice g € K(z,y], then f =ay+b,a €
K*,be K and K|z,y] = K[f, g]-

Proof. Write f = fo(zy) + filzy)y + ... + fa(zy)y™. Suppose that As(g) = 1.
Considering the linear part of f. We know f,(T) € a + TK[T],a € K*. Moreover,
W;z may assume that fo(T) € TK[T]. Say, fo(T) € bT + T?K|[T]. So f has the form
that f = ay +bry +y2%c(z,y). By Prop. 4.2.11, we know that f = ay. This completes
the proof.

4.3.15. Remark. By Theorem 4.3.14, to prove the Jacobian Conjecture it suffices
to prove that there exists 1 € G such that ¥(f) € R under the Jacobian condition.
Hence, Theorem 4.3.1 in this section can be seen as solving a very special case of the

Jacobian Conjecture.



Chapter 5

The Spectral Theory of Ordinary

Derivations

The aim of this chapter is to develop the spectral theory of ordinary derivations by
using results proved in chapter 3 and chapter 4. We shall prove theorem B and

theorem C. We use freely the conventions and results of chapter 3 and chapter 4.

5.1 G,-Action on Eigenfunctions

The main purpose of this section is to prove

5.1.1. Theorem. Let f be a non-constant polynomial in K(z,y]. Then there
exists py € K such that A(Af) = Zp;.

We recall the following theorem of Zariski for easy reference (See [54] or [40]).

5.1.2. Zariski’s Theorem. Let K be a field of characteristic zero, and let L
be a subfield of K(z1....,2Z,) containing K. If trans.degix(L) < 2, then the ring
LNK]|zy,...,z,] is finitely generated over K.

We start by giving necessary materials for the proof of Theorem 5.1.1. The first
and the most crucial is the following Prop. 5.1.3.

5.1.3. Proposition. Let K be field of characteristic zero, A a K-domain and
finitely generated K -algebra with Krull-dimension 1. Let § be a non-zero K -dertvation

on A. Then Ker(8) is a finite dimensional K -vector space.
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Proof. Since A is a finitely generated K-algebra, its Krull dimension equals the

transcendence degree of its quotient field Q¢(A) over K. Hence
dimgQt(Kerd) < dimgQt(A) =1, (5.1)

where Qt(Kerd) is the quotient field of Ker(é). On the other hand, Ker(d) =
AN Qt(Ker(d)). Then Ker(d) is a finitely generated K-algebra by Theorem 5.1.2.
There are two possibilities of dim g Qt{Kerd).

(i). Suppose dimgQt(Kerd) = 1. Then Qt(A) is an algebraic extension of
Qt(Kerd). Since § = 0 on Qt(Kerd), § =0 on Qt(A). This is impossible because &
is non-zero by assumption.

(ii). Suppose dimpgQt(Kerd) = 0. Then Qt(Kerd) is an algebraic extension of
K. Since Ker(d) is a finitely generated K-algebra, we know that Ker(d) is a finitely
generated K-module. Then 5.1.3 is proved.

Note that Ker(8) is a subfield of K from the proof of Prop. 5.1.3.

5.1.4. Corollary. Let § be a non-zero K-derivation of R = K[z,y] and (g) =
g9K|z,y] a d-invariant principal ideal of K(z,y]. Suppose that g is irreducible and
(6(R)) Z (g), where (6(R)) is the ideal generated by the image of 6. Then

dimg(Ker(6) + (9)/(g)) < .

Proof. Suppose Ker(é) = K. Then the conclusion is obvious.

Suppose § is ordinary. Let W = K(z,y]/(g). Then ¢ induces a K-derivation @ on
W and (Ker(d)+(g)/(g))) € Ker(d). W is a K'-domain since g is irreducible, and 9
is non-zero because (§(R)) € (g). Then 5.1.4 follows from Prop. 5.1.3 immediately-

5.1.5. Proposition. Let d be a non-zero ordinary K -derivation of R = R[z.y]
that satisfies (6(R)) € (h) for all non-constant polynomials h € R. Let (g) be a
0-invariant principal ideal. Then, Ker(6) N (g) # 0.

Proof. We may write d(g) = ag, for some a € K|z, y].



Suppose g is irreducible. By assumption, (§(R)) € (g). Hence by Corollary 5.1.4,
dimg(Ker(d)/(Ker(d) N(g))) < oc. (5.2)

But dimgKer(d) = oo since § is ordinary. Hence Ker(d) N (g) # 0.

In the general case, we may write g = g7*'...gM™", where the g; are irreducible.
coprime, and m; > 1. Since §(g) = ag, we have §(g;) = a;g; for some a; € K[z.y].!
Then by the proof in the first part, there exists some h; such that g;h; € Ker(d) for
each 7. Let h = AT*' ... A**. Then gh € Ker(4). Then Prop. 5.1.5 is proved.

Proposition 5.1.6. Suppose Ay has a non-zero eigenvalue. Let R = Kz, y].
Then Af(R) Z (k) for all non-constant polynomials h € R.

Proof. Write Af(g) = Ag for some A € K* and g € R. Suppose Af(R) C (h)
for some polynomial h € K[z,y]. We shall show that it is impossible by getting a
contradiction.

We may write f; = ah, f, = bh, for some a,b € R. Since (fz)y = (fy)z, we obtain
ah, — bhy = (b —ay)h € (h). (5.3)

Since J(f, g) = Ag,
Ag = fzgy — fyg:z = (agy — bgz)h. (5.4)

Hence g = ¢,h where A¢c; = agy — bgz. We shall prove that g = ¢3h” for some ¢ € R.

To do it, we note that g = ¢,k implies that A¢; = agy, — bgz = (a(c1), — be1)z)h +
c1(ahy — bh;) € (h). Then g = coh? for some ¢; € R.

Suppose g = ch™, for some ¢ € R for some m > 2. Note that \g = (ag, — bg.)h.
Since (from g = ch™) agy — bg: = a(c,h™ + mh™ thy) — b(czh™ + mh™ 1h;) =
(acy —bcg) ™ +mh™ (ahy, —bh;) € (h™), we have ag, —bg, = Adh™, for some d € R.
Then g = dh™*'. We have thus proved that, for any n > 1,9 = ¢,g" for some ¢, € R.

This is impossible because g is a polynomial. Prop. 5.1.6 is proved.

'Because 6(gh) = agh,a € R, g(6(k) — ah) = hé(g). Since g, h are coprime, &(g) = bg,6(h) =ch
for some b,c € R.



5.1.7. Remark. If f = zy® then Af(R) C (y). Hence A; has no non-zero
eigenvalues.

Now we are ready to prove Theorem 5.1.1.

5.1.8. Proof of theorem 5.1.1.

If Ay has no non-zero eigenvalues, put py = 0. From now on, we assume that Ay
has non-zero eigenvalues.

' Suppose K = K. Let A € A(Af) (see the notation in 1.1), with A # 0. Assume
g € E(Af,A). Then (g) is a Ag-invariant principal ideal. By Prop. 5.1.5 and
Prop. 5.1.6, K[f] N (g) # 0, i.e., there exists h € Kf[r,y] with gh € K[f]. Then
Aph = —Ah,—X € A(Af). Therefore, A(Af) is a subgroup of K'*. By Prop. 4.3.12,
AAfy = Z.

In general, A(Af) C A(Af, K), where A(Af, ) is the set of Aj-eigenvalues on
K. By Prop. 5.1.5 and Prop. 5.1.6, A(Ay) is a subgroup of -A(Af,f). Since
A(Af, K) & Z by the first part, we have A(A) =2 Z. Hence A(Af) = Zp; for some
py € K. Thus Theorem 5.1.1 is proved.

5.1.9. Definition. p; in Theorem 5.1.1 is called the least eigenvalue of Af.
There are only two least eigenvalues, unique up to sign. We shall determine pf in
Prop. 5.4.2. )

We shall turn to proving Theorem B and Theorem C. First, let us explain the
relation between G,,-actions and Z-gradings, following closely the account given in
[44].

5.1.10. G,,-Action. Let X be an affine K-variety endowed with a G,,-action 7.

Then 7 induces a homomorphism
a=71":A— A, t7Y (5.5)

with a(f) = Tpez fat™. Thus 7 introduces a Z-grading on 4 = K[X] = ez 4n
of regular functions on X, where A, = {f,|f € A} consists of the quasi-invariants of
weight n of 7. Vice versa, given a grading A = @,cz An of A = K[X], one can define
a Gnm-action 7 on A by setting 7\(fn) = A" f, for f, € Ap,n € Z, and extending it to



the whole algebra A in a natural way.

Therefore, Theorem 5.1.1 asserts that there is a G,-action on E(Af) given by
t.g =1t"g, if g € E(As,npy). Moreover, this action is mixed (see the notation in 1.5),
because A, # 0 if and only if A_, # 0 for all n € Z. To determine all eigenfunctions,
we shall consider this problem in a framework considered by Miyanishi [32].

5.1.11. We recall briefly the main points in Miyanishi’s results. The exposition
fO.UOWS closely Miyanishi’s original paper [32].

Let ¢ be an ordinary K-derivation on K[z,y]. Recall that an element © € R =
K[z, y] is a d-integral factor in the sense of Miyanishi [32] if there exists an element
g € R such that 6{g) = ug. Such a g is called a §-integral element. Write X for the
set of all d-integral factors. Similarly, ¢ € Qt(R) = K(z,y) is a é-integral element in
K(z,y) if i(:—) € R, and then x(g) = é(gg—) is called a ¢-integral factor w.r.t. K(z,y).
The set X; of all §-integral factors w.r.t. K (z,v) in K(z,y) is an abelian group under
addition. It is not hard to see that X5 = X5 — X; 2, see [32], Lemma 1.3. Let A; be
the subalgebra of K[z, y| generated by all J-integral elements. Then by [32], Lemma
1.3, As is generated by invertible elements of R and those d-integral elements which
are prime in R (called irreducible §-integral elements). When § = A, we write A5, X
to denote A, Xa s+ Tespectively. -

Let ¢ : V = SpecR — C be a rational mapping onto a smooth algebraic curve C.
Then % is defined outside a (possibly empty) finite set 3 of I, that is, v? := Yoy -
V — 3 — C is a morphism. We say that 1 is a pencil if 4/° is surjective and general
fibres of ¥ are irreducible and reduced. Let § be a K-derivation of R = K[z,y]. If
there exists a pencil ¢ : V' — C such that §(Ir) C Ir, where I¢ signifies the defining
ideal of some generic fiber F' of ¥, we say ¢ is a derivation of fibred type in the sense
of [32].

The structure of X follows from the next proposition.

5.1.12. Proposition. Let f be a closed polynomial. Assume Af(R) € (h) for
all non-constant polynomials h € R = K|z,y]. Then X; = X[ is a finitely generated
free abelian group and Ay is a finitely generated K -algebra.

2A—-B={a—b:a € A,be B} for any two sets .4 and B.
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Proof. Since f is closed, Ker(Ay) = K[f], and K(f) is algebraically closed in
K(z,y) by 2.2.1. Therefore, ¢ is a derivation of fibred type in the sense of [32]. By [32].
Prop. 2.8, X[ is finitely generated based on the observation that only finitely many
polynomials of the form f+c¢,c € R are reducible if f is closed.® Since A; is generated
by those finitely many irreducible d-integral elements up to the multiplication by
invertible elements of K|z, y], As is finitely generated as a K-algebra. It remains to
pI:'OVG that X is a group and hence X; = X;. Suppose Af(g) = tg for some ¢, g € R.
I = (g) is a Ag-invariant principal ideal. By Prop. 5.1.5, Ker(Af) NI % 0. Hence
there exists A € R such that Af(gh) = 0. Hence Af(h) = —th, —t € X;. Moreover,
Xy is a subgroup of K. Hence X/ is free.

5.1.13. Remark. A(Ay) is a subgroup of Xy, and rank(A(Af)) < 1 by Theorem
5.1.1. On the other hand, we will see that rank(Xy) can be arbitrarily large by 5.5.8
below.

Regard F(Ay) as a Ker[Af]-module, via the action a.b = ab, foralla € Ker[Af],b €
E(Af). Then the spectral decomposition in case K = K (see (2.16) in 2.1.10)

E(Ar) = D E(ArA)

AEK

is a Ker[Af]-module decomposition of E(Ay). Before proceeding, let us examine
E(Af) as a Ker[Af]-module and ask whether the above spectral decomposition of
E(Ayf,A) is an irreducible decomposition, and if so, to calculate the multiplicity of the
irreducible Ker[Ay]-modules. This question is solved by the following Multiplicity
One Theorem.

5.1.14. Multiplicity One Theorem. Suppose f is a closed polynomial, and
K =K. Then for any XA € A(A;), E(Af, \) is a free K[f]-module of rank 1.

Since we shall need a slightly generalization of this theorem in proving Theorem
C later, we prove a general result first.

5.1.15. Theorem. Suppose A;, A_, are two non-zero linear subspaces of K[z, y]

with AjA_1 C Ap := K|[f], where f is a non-constant polynomial of K[z,y]. Assume

3We shall give a precise form of this fact in Prop. 5.3.2 below.
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that AgA, C Ay, AgA_1 C A_,. Then there exists u € A,,v € A_; such that A; =
Agu and A_; = Agv.*

Proof of Theorem 5.1.15. Choose and fix u € A; — {0} with the minimal total
degree as a polynomial in K[z,y] 5. Similarly, choose and fix v € A_; — {0} with
the least degree property in A_;. We shall show that A; = Agu and A_; = Ayv. To
show this, let w € A; — {0}. Then wv € A;A_; = Ay = K[f]. So wv = b(f) for some
p<.)1ynomia.l b(T) € K[T],b(T) # 0. Moreover, there exists a polynomial a(T") € K{T]
such that uv = a(f) by the same reason. By the Euclidean algorithm. there are two

polynomials ¢(T"), r(T) € K[T] with
b(T) = c(T)a(T) +r(T), (5.6)

where deg(r(T")) < deg(a(T)) or r(T) = 0. Suppose r(T) # 0. Letu; =w —c(f)u €
Aj. Since vu; = vw — c(f)vu =b(f) —c(f)a(f) =r(f) #0, u; # 0. But

(S]]
~1
~—

deg(v)deg(ui) = deg(r(f)) = deg(f)deg(r(T)) (5.

and _
deg(v)deg(u) = deg(a(f)) = deg(f)deg(a(T)) (5.8)

imply that deg(u;) < deg(u), which contradicts the choice of u. Hence (T} = 0 and
b(T) = ¢(T)a(T). We have thus proved that w = ¢(f)u € K[f]u. Then 4A; C K[f]u.
On the other hand, K|[f]u C 4¢4; C A; by assumption. Thus 4; = K[fju. Exactly
in the same way, one may prove that A_; = K[f]v. This completes the proof.
5.1.16. Proof of Theorem 5.1.14. This result is clear if A = 0 since f is
a closed polynomial. Suppose A € A(Af) and A % 0. Then by Theorem 5.1.1,
—A € A(Ay). Put A; = E(Af,A),A_; = E(Af,—A) and Ag = Ker[Aj]. By Prop.
4.3.13, Ay = K][f] since A is a non-zero eigenvalue of Ay. Hence Theorem 5.1.14

follows immediately from Theorem 5.1.15.

iFor any two sets A, B, let AB = {ab:a € A,b € B}.
5We say that « has the minimal (or least) degree property in A.
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5.2 Spectral Theory on K(z,y)

Before discussing the spectral theory of polynomial functions, we discuss the spectral
theory of rational function in this section, because the main results of this section
follows from the results in last section directly.

Let f € R = K[z, y]- The derivation Ay extends naturally to a K-derivation Ay
of Qt(R) = K(z,y). We define Ker(Af), A(Af), and E(Af) as in 1.1.

5.2.1. Proposition. Suppose fr, f, have no common factor. Then Ker(Af) =
Qt(Ker(Ay)).

Proof. Suppose u/v € Ker(4Ay), and u,v € R with no common factor. Then
Af(u)v = Ag(v)u. Then Af(u) = tu, Af(v) = tv for some ¢ € R. By Prop. 5.1.5,
there exists a w € R with Af(w) = —tw. Now both uw and vw belong to Ker(Ay).
We have thus proved Prop. 5.2.1.

5.2.2. Proposition. Suppose f., f, have no common factor. Then A(Aj) =
A(Ar) = Zps and E(Af) = E(Af) ®ker(ay) Qt(Ker(Af)).

Proof. Let A € A(Af) such that Af(u/v) = A(u/r). and u.v have no common
factor. Then Af(u) = tu, Af(v) = (¢t — A\)v for some t € R. By Prop. 3.1.5, there
exists w € R with Af(w) = (A — t)w. Then Af(uw) = AMuw). So A € A(Ay), and
=2 ¢ Qt(Ker(Af))E(Af, A). Then the proposition follows from Theorem 5.1.1
directly.

5.2.3. Proposition. Suppose Ay has a non-zero eigenvalue and let py denote
the least eigenvalue of A as in theorem 5.1.1. Then E(A) = K(f)[u,u"Y], for some
u € E(Ag pf),us#0.

Proof. By Theorem 5.1.14, E(Ay, pf) = K(flu, E(Af, —pg) = K[f]v for some
polynomials u,v € K[z,y] and wv € K[f]. For any w € E(Af,nps),n € Z, either
wu™ € K[f], or wv™ € K[f]. Then E(Ay) is a K(f)-algebra generated by u,v. Thus
E(Af) = K(f)u,u™].

79



5.3 Spectral Theory of K2-Proof of Theorem B

The main purpose of this section is to prove theorem B. Since A(Af) # {0} (see
1.1 for notation), f is a closed polynomial by Prop. 4.3.13 under the condition that
K=K.

5.3.1. Closed Polynomials. We first recall several useful facts about closed
polynomials.

Suppose K = K. Define o(f) = {c € K : f + c is reducible }. For each ¢ € o(f).
write

n(f.c)
f+e= ][ P, (5.9)

2

where ¢; > 1 and the P; are irreducible polynomials in K[z,y]|. n(f,c) is called the

reducibility order of f at c. Let

¢(f)= > (n(fie)-1). (5.10)
c€a(f)
¢(f) is called the total reducibility order of f. ((f) is closely related to the group X
defined in 5.1.11 by 5.3.6 below.
The first result asserts that if f is a closed polynomial, only finitely many poly-
nomials f + ¢, ¢ € K are irreducible polynomials in K[z, y].

5.3.2. Proposition. Suppose f is a closed polynomial in K[z,y]. Then ((f) <

Proof. This was proved by Bertini in 1882 for X' = C and by Krull in general.
See [46], Theorem 18.

This result is improved by the following theorem of Y.Stein (see [48]).

5.3.3. Proposition. Suppose f is a closed polynomial. Then {(f) < deg(f)-

In proving his theorem, Y.Stein essentially uses the following fact. We shall review
the main point of the proof of this fact because we shall need it in proving Theorem
B and Theorem C later.

5.3.4. Lemma. Let f be a closed polynomial. For ¢; € o(f),i = 1,...,m,
write f + ¢ = [I;5, -Pif;"j,ti ; > 1, P, irreducible in K[z,y], n: = n(f,c). Define
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a;; € K(z,v) by Af(P;;) = aijPij for ci € o(f). Then a;; € K[z,y]. Moreover,
suppose 370, 3°7L) a;5¢;; = 0, where ¢;; € Z. Then there ezists d; € Z for all
t=1,...,m such that ¢; ; = dit;;.

Proof. We recall the main point of the proof. It is evident that a;; € ATz, y].
Moreover, Y75 a;5t;; =0fori=1,...,m.

We can write ¢; ; = s; jti; +Tij, for some s;; and r;; with 0 < r; ; < t;;. For each

i, one may assume that s; ,, is the least number in {s;;,7 =1,...,7n;}. Then we have
m n;—1 m n;
S5 (sig — Sime)tijGig + 2 Y Tijai; = 0. (5.11)
i=1 j=1 i=1 j=1
Therefore,
m n;—1 e i (5i—Sim:)
H=1]1I P‘J BITTRM ]:[HPT" € K[f (5.12)
=1 j=1 i=1j=1 _

Clearly, H = [172,(f + ¢;)% for some t; > 0. By calculating the P;;-valuation value
of H we find that r;; = 0 mod ¢;;. So7;; =0 and s;; = Sin, forall j =1,....n;
This proves Lemma 5.3.4.

The next Lemma is needed as well in proving Theorem B.

5.3.5. Lemma. Suppose Ay has non-zero eigenvalues. Then f-+c has no multiple
factors, for allc € K.

Proof. We may assume that ¢ = 0 because Agy. = Ay for any ¢ € K. Fix
g € K[z,y] such that Af(g) = Ag, A € K* and suppose that f has a multiple factor.
Write f = P2Q, where P is an irreducible polynomial in K[z,y]. Since

Ap(g) = —Ag(f) = —Ay(P?Q) = —(A4(Q)P +224,(P)Q)P (5.13)

and Af(g) = Ag, P divides g. Suppose that P* divides g in R, for some n > 1. Write
g = P"g, for some ¢; € K|z, y]. By using the formula

Ap(g) = J(P?Q, P"g1) = P™*(J(Q,91)P +nJ(Q, P)gi +2QJ (P, g1)),  (5.14)
we see that P**! divides g. Clearly, this is impossible. Hence f + ¢ has no multiple
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factor.
Proof of Theorem B.
We first assume that K = K.
The proof consists of several steps.
5.3.6. Step 1. We shall prove that rank(Xf) = ((f) in this step.
By Lemma 5.3.5, we can write the decomposition into irreducible factors as f+c¢; =

.

Pi']_Pz'lg .- -JDi,n,-yi = l, o.M Define aij c K[I, y] by Af(Pi,j) = ai,jPi,j. By 5.1.12.

Xy is generated by a;;,5 = 1,...,n;,1=1,...,m. Moreover,
n;
Z a,-J- =0 (515)
Jj=1

fori =1,...,m. By Lemma 5.34, (5.13) for ¢ = 1,...,m are the only relations

between a;;, that is, if 37, 3775, ¢ijai; = 0,¢; € 2, then ¢ ;7= ¢; for all j =
1,...,n;, where ¢; € Z depends only on 7, for all ¢. Hence rank(Xys) =Y %, (n;—1) =
¢(f)-

5.3.7. Step 2.

By Theorem 5.1.14, E(Af,A) = K[flg if ¢ € E(Af, A) is an element with the
least degree property. We shall study the generator g of the K|f]-module E(Af, A)
in this step. The assumption K = K is essential in this step.

To do this, first note that there exists a polynomial h € K|z, y] such that gh = a(f)
for some polynomial a(T") € K[T] by Theorem 5.1.1 and Prop. 4.3.13. Since K = K.,
we can write a(7) = [T;(T + «;) with finitely many o; € K. Then all irreducible
factors of g are among in the irreducible factors of the polynomials f +c,c€ K.

If g has an irreducible factor f+c, ¢ & o(f), i.e., g = (f+c)g1 for some g; € K[z, y].
then g, € E(Af, A) and deg(g:) < deg(g), which contradicts the choice of g with the
least degree property. Hence any irreducible factors of g are among the irreducible
factors of the polynomials f + ¢;,i =1,...,m. So, we can write g = [T, [Tj+, P}
for some m;; > 0. Then A = 32, 575, my ja: 5.

Choose u € E(Ay, pr),v € E(Af, —ps) with the least degree property such that



E(Af, pr) = K[flu, E(Af, —ps) = K[flv. Then

m ng m g

w=11 11 2w =TT 1T Py (5.16)

=1 j=1 i=lj=1

and
m n: m T
Pr= Z Z M j0ij. —Pf = }: Z Si,;0:,5 (5.17)
i=1j=l1 i=1j=1

for some m; ; > 0,s;; > 0.

5.3.8. Step 3. Keep the notation as in 5.3.7. We shall prove that E(Af) is
generated by u,v and f, as a K-algebra.

To show this, let n > 2 and w € E(Ayf,nps) with the least degree property.
Then by theorem 5.1.14, E (A, nps) = K|[flw, and by 5.3.7, w is of the form w =

=, I05i, P, for some n;; > 0. Then by (5.17), we obtain

i,7 1
m T m ng
Z Z Ni,j8i5 = Z Z nm;,;Q; ;- (5.18)
i=17=1 i=1j=1
By Lemma 5.3.4, there exist integers d;,2 = 1, ..., m, such that
ni—mgn=diigi=1..mj=1.n (5.19)
Therefore
m
w = [[(f + &) *u™. (5.20)
=1
We shall show that, for any 7 = 1,...,m, there exists some j; such that m;; = 0.

Suppose the contrary. Then m;; > 1, forall j =1,...,n;. Then u has a factor f +¢;
and then u is not the element of E(Af, ps) with the least degree. Hence d; = ¢;;, > 0.
On the other hand, ¢;; = 0 for some j, by the same reason because w has the least
property in E(Af,nps). Hence d; = —m; ;,n < 0. We have thus proved that d; =0
for every . Then w = pu™ for some p € K*, ie., E(Af,npf) = K[flu*,n > 2.
Similarly, E(Af, —nps) = K{[f]v®,n > 2. Hence E(Ay) is generated by u,v, f as a
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K-algebra.b

5.3.9. Step 4. In this step we shall prove Theorem B.1 under the condition
K =K.

Consider the K-morphism ® : K[X,Y,Z] — E(Af) by ®(X) = 4, () =
v,®(Z) = f. Then & is surjective by 5.3.8. Moreover, Ker(®) is a prime ideal,
cqntaining the irreducible polynomial XY — a(Z), where a(f) = uv for some polyno-
mial a(T) € K[T]. Hence I = (XY —a(Z)) by Krull’s principal ideal theorem. Then,
E(Af) = K[X,Y, Z]/(XY — a(2)) as a K-algebra. We have thus proved Theorem
B.1 with the condition K = K.

5.3.10. Step 5. We shall prove Theorem B.3 under the condition K = K.

Let f = zy(zy? + 1). Then f is a closed polynomial because the leading term of
fis 2%y and GCD(2,3) = 1. So Ker(A;) = K[f]. For any ¢ € K*, we see that
f + ¢ is irreducible by direct calculation. Let P, = z, P, = v, P;, =zy’ + 1L,u =
P2P3 v = P P}. Then Af(u) = u,As(v) = —v. Note that P; doesn’t divide u. By
the proof in 5.3.8 above, u is the element of F(Ay, 1) with the least degree property.
So E(Af,1) = K[f]u. Similarly, E(Af, —1) = K[f]v. Now we shall show that +1
is the least eigenvalue of Ay. Suppose not, and let +1 = npy for some n > 2, and
choose w; € E(Ay, pf),ws € E(Af, —py) with the least degree. Then by the proof
of Step 3, either u = pw} or v = pwf for some p € K*. This is impossible by the
above irreducible decompositions of v and v. Thus 1 is the least eigenvalues of Ay
and then E(Af) & K[X,Y, Z]/(XY — Z8) by 5.3.9. In particular, E(Af) & KBl

For a general field of characteristic zero we first have

5.3.11. Step 6.

Suppose A(Af, K) # {0}. We shall prove that A(Af, K) = A(Af, K) = Zpy for
some py € K in this step, where for any extension field L of K, A(A;, L)y ={\A € L:
Af(g) = A(g) for some g € L[z, yl}.

8The fact that f + ¢ has no multiple factor is crucial in the proof of 5.3.8. As we will see later in
Theorem C.2, if f + ¢ has no multiple factor, any G,, — Af—domain has the same form as E(Ay)
by the same proof. If f + ¢ has multiple factor, we can not show that the G,, — Af—domain is
generated by three elements. Instead we can prove that any G, — A y—domain is a finitely generated
K-algebra in Theorem D.1.
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In fact, A(Af, K) C A(Af,K) = Zpy for some p; € K by Theorem 5.1.1. Since
A(Af, K) is a group by Prop. 5.1.5 and Prop. 5.1.6, we have A(Af, K) = nZpy
for some n > 1. So py € K. We shall prove that p; € A(Af, K). To show this,
note that py € A(A;, K) which equivalent to the existence of g € K[z, y] such that
J(f,9) = prg. By writing the equation J(f, g) = prg as a sequence of linear equations
V of the coefficients of g, we know that V' has non-trivial solution in K. Since
f .E Klz,y] and p; € K, V is defined over K. Then V has non-trivial solution in K.
In other words, there exists non-zero polynomial g € Kz, y] such that J(f, g) = prg.
Hence py € A(Af, K). Then Zpy C A(Af, K). Hence A(Af, K) = A(A;, K) = Zpy.

5.3.12. Step 7. We shall show Theorem B.1 and B.3 for an arbitrary field of
characteristic zero in this step.

For any n € Z, choose u, € E(Af,npy) of the least degree. Then E(Af,nps) =
K|[f}u, by Theorem 5.1.15 since A(Ay, K) # {0}. We shall prove that Un € K[z,9] is
also the least degree element in E'(Af, npy; K), which is the set of A s-eigenfunctions
on K|[z,y] with eigenvalue npys. To prove this, choose a least degree element w €
E(Af,nps; K). So E(Af,nps; K) = K[flw by Theorem 5.1.14. Then u, = a(f)w
for some polynomial a(T) € K[T]. For any ¢ € Gal(K/K), we have that

a(f)r  w’

alf) _ v’ (5.21)

Since Af(w?) = (Af(w))? = nppw’ and deg(w) = deg(w?), w® = p,w for some
te € K°. Note that ¢ — g, = 2~ is a l-cocycle. By Hilbert’s theorem 90, there
exists b € K such that g, = . Then &% =1, for all ¢ € Gal(K/K). Hence
E(6,nps, K) = K[f](bw), and bw € E(Af,nps). Then bw must be a least degree
element of E(Af, nps). Hence bw = cu, for some ¢ € K*. So u, is also the least
degree element of E(Af,nps, K) and E(Af,nps, K) = K[flun. Therefore, we may
choose u,v € Kz,y] and E(Ay,npf) = K[fJu*, or K[f]v™ depending on n > 1 or
n < —1. Then Theorem B.1 is proved by a similar argument in 5.3.9. Moreover.
5.3.10 also gives us an example with E(Af) = K[X,Y, Z]/(XY -~ Z3) 2 R for
f = zy(zy® + 1), for any field K of characteristic zero.
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Then (B.1) and (B.3) are proved. Our next theorem proves (B.2).

5.3.13. Theorem. Suppose f + ¢ = wuv for some u,v € K[z,y],c € K with
Af(u) = A, A € K*. Then E(Af) = K[u,v] = KB, X is the least eigenvalue of Ay,
and J(u,v) = —\. Conversely, if E(A;) = KB, then E(Af) = K[u,v] for some
eigenfunctions u,v € K[z, y| with J(u,v) € K*.

Proof. By 5.3.9 (we use the same notations), E(A;) = K@ if and only if
dé:g(a(T)) = 1. If so, there exists u € E(Ay, pr),v € E(Af, —py) with uv = f +c for
some constant ¢ € K. Hence E(Af) = K[f, u,v] = K[u, v], where the first equality
follows from 5.3.8 and the second one follows from uv = f + ¢. Moreover, by direct
calculation, J(u,v) = —py € K*.

On the other hand, if f + ¢ = uv with Af(u) = Au, we shall show that A is the
least eigenvalue of As. Suppose not. Then by 5.3.8 in the above proof, u = b(f)w"
for some 8(T') € K[T),n > 2 and w € E(Ay, ps) has the minimal degree property.
By comparing the total degrees of both sides in the equation v = b(f)w™, b(f) has to
be a constant. We may assume that © = w". By Lemma 5.3.5, there is no multiple
factor in the decomposition of u because f + ¢ has no multiple factor. Then n = 1.
This is a contradiction. Therefore A = pyr, and u,v have the least degree property
in E(Af, pf), E(Af, —pg) respectively. Hence E(Af) is a K-algébra generated by
fiu,v (by 5.3.8) with f + ¢ = wv. Thus E(Af) = K[u,v] = KB By calculation,
J(u,v) ==X e K*.

Therefore, the proof of Theorem B is completed.

As an immediate corollary of Theorem 5.3.13, we obtain *

5.3.14. Theorem. Suppose f,g € Klz,y] with J(f,g) = A\ € K*. Then
E(Afg) = K[f, g]-

We prove that E(Ay) is a G, — Af—domain (see 1.5 for notation) to conclude this
section.

5.3.15. Proposition. Suppose Ay has a non-zero eigenvalue. Then E(Af) is a

"To prove this fact was our initial motivation to develop the spectral theory in this paper. This
result essentially means that the Jacobian Conjecture in two variables is equivalent to the assertion
that every polynomial of K[z,y] can be expressed as the linear combinations of eigenfunctions
(Fourier expansion problem) under the Jacobian condition.
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Gm — As—domain.

Proof. By Prop. 4.3.13, f is a closed polynomial. It suffices to check that E(Ay)
is factorially closed in K[z, y] with respect to K[f]. To check this, let g € K[z,y],a €
K([f] with ag € E(Af). We want to prove that g € E(Ajf).

By Theorem 5.1.1 and 5.3.11-5.3.12, we can write

ag=g1+..-+gm (5.22)

for some m > 2,¢; € E(Ag,nipf),t = 1,...,m with n; < ne < ... < ny,. Then
Ak(g:) = (nips)*'g:;, A (ag) = ad%(g) for all k > 1,i = 1,...,m. Acting with A%

on (5.22) with £ =1,2,...,m, we obtain
aA§(g) = (npg) g1 + ...+ (Mmpr)* ' gm. - (5.23)

By Vandermonde determinant, we can find some h; € K[z, y| such that g; = ah; for

each ¢ =1,...,m. Hence by (5.22), we obtain
g=hi+...4+ hn. (5.24)

Moreover, we see that Af(h;) = n;prh; by using g; = ah;. Then g € E(Ay) as desired.

5.4 The Least Eigenvalue of Ay

In this section, we determine the least eigenvalue of Ay by proposition 5.4.2. We also
discuss the structure of N(Ay) in this section.

5.4.1. Let f be a non-constant polynomial of K[z,y]. After determining the
eigenfunctions of Ay completely in the last section, we now determine its least eigen-
value. In geometry, when a differential operator acts on some function spaces on a
compact manifold, its least eigenvalue, usually, has important geometric meaning.

5.4.2. Proposition. p is the least eigenvalue of As if and only if there ezists
elements hy € E(Ayg, p), ha € E(Af, —p) such that deg(J(h,. h2)) is minimal among
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{deg(J(g1,92)) : g1 € E(Af,N), 92 € E(Af, —A), A€ T(Af)}.

Proof. We may suppose that K = K. By the same proof as in 5.3.12, the result
then holds in the general case.

First of all, for any g1 € E(Af, A), 92 € E(Af, —), we have J(g1, g2) € Ker(Af) =
K[f] by Jacobi’s identity

J(f,J(g:h)) + J(g: I (h, f)) + J(h, J(f,9)) =0 (5.25)

for any f,g,h € K|[z,y]. Moreover, J(g1,g2) = —a'(f)A if g19> = a(f),a(T) € K{T],
where o'(7T") denote the derivative of the polynomial a(T). Since the least degree
element in E(Ay, np) is the |n|-power of either of the least degree element in E(Ay, py)
or the least degree element of E(Af, —ps) by 5.3.8, the stated assertion follows.

Now we give two results about the structure of N(Ay).

Theorem B asserts that if E(Af) # Ker(Ay), we can give a precise structure
theorem about E(Af). This means that the condition E(Af) # Ker(Ay) is a very
strong restriction on the polynomial f (for example, f has to be a closed polynomial
by Prop. 4.3.13). On the other hand, there are many (non-closed polynomials)
f € K[z,y] with N(Af) # Ker(Ay) by the following proposition. -

5.4.3. Proposition. Suppose f € R(n) (we keep the notation of 8.8. and 4.3).
Then N(Af) # Ker(Ay).

Proof. We can write f(z,y) = F(zy)y", for some F(T) € K[T]. Let g = —ZL,
Then

As(g) #0,4%(g) = 0. (5.26)

Hence N(Ay) # Ker(Ay). Then Prop 5.4.3 is proved.

Suppose E(Af) # Ker(Ay), thatis, Ag(g) = \g forsome g € K{z.y]and A € K'*.
Then Ay (f) = —Ag, A2(f) = 0. Our next result tells us that N(A,) strictly contains
K[f,g]-

5.4.4. Proposition. Let f,g be polynomials of K[z,y] with As(g) = \g and
X € K*. Then K[f, g] is strictly contained in N(A,).
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. Proof. If g € E(Af,A),h € E(Af,—Ar), 7 € Z, then
Af(Ag(R)) = (1 = )AL (h) (5.27)
by Jacobi’s identity. Hence
AJE(Ag,=Ar)) C E(Ap, (1 —1)A). (5.28)
Hence, by using (5.28) repeatedly, we have
AG(E(Af, —An)) C E(Af,0) = K[f]. (5-29)
Since K[f] C N(4A,) (note that f is a local slice of A,), we have

> E(Ag, —An) C N(A). (5-30)
n>0
On the other hand, K[f,g] € Xn5o E(Af, An). Therefore, K[f,g] = N(4,) im-
plies that ¥ ,50 E(Af, —An) € Tnyo E(Af, An). So —A ¢ A(Aj). which contradicts
Theorem 5.1.1.

5.5 Mixed G,~-Action on Subalgebras of K|z, y]-Proof
of Theorem C

Let f be a closed polynomial of K[z,y]. Our purpose in this section is to classify
those K-subalgebras A of K[z, y] which can be endowed with a mixed G,,-action with
ring of invariant functions K'[f], and moreover are factorially closed in K[z, y] relative
to K[f]. As mentioned in 1.5, those K-subalgebras are called G, — Ay—domains.

Proof of Theorem C.

We preserve the notations of 5.3 and suppose that K = K.

5.5.1. First observation. Suppose A is a quasi G, —Ag—domain. We can write

. A =@,z A, C K|[z,y], with Ay = K[f]. Moreover {n : A, # 0} is a subgroup of Z
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by assumption. So we may assume that each A, 5% 0. For any n # 0, choose u, € A,
with the least degree property. Since A_, # 0, we see that A, = K|[f|u, by Theorem
5.1.15.

5.5.2. Second Observation. Now we suppose that A is a G, — Ar—domain.
By an argument as in 5.3.7, each element u, in 5.5.1 is of the form [];; P, for
some integers m;;. Let B, = {L2, 7%, aiyma; € Xy :my; 2 0,102, [I7, Py €
A;; for some n € Z}. For any b = Y%, ¥7%, a;ymy; € B, define ®(b) = n if

=, 7%, P € An. We shall prove that & is well defined and B, = Z under &.

=1

Suppose b= 31 ik aiymey = X% Y05, aiym; ;. We obtain
My =m; + dit; ;, Y%, j (5.31)

for some integers d; by Lemma 5.3.4. Then

m T m ny m’ . m ) _
I B =TI I Bo IO + ™. (5-32)
i=1 j=1 =1 j=1 i=1

If [T, [T75, P € Aq, then

=1
m n;

I II B YT (F +co)™ € An (5.33)

i=1j=1 d;>0

m'

Since A is factorially closed in K[z,y] relative to K[f], T2, IT}%, P;; € A. By
using A9 = K[f] and the direct sum decomposition of [T%; [T;Z R J" in A, we know
that JTZ, J—‘:lP ¥ € A,. Conversely, if [TZ, J_lP i € A,, we can prove that
=1 75 P{";“" € A, by the same argument. Hence ¢ is well defined.
® is onto by the assumption in 5.5.1. Noreover, ® is injective.® We have thus
prove that ® is an isomorphism of groups. Then B, = Z.
5.5.3. Proof of C.1.

8Suppose []i~, ['I“' Pm‘ 7 € Ag = K[f]- We have i, 375, a;jmi; = 0.
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There exists A € K|z, y| with A = Z\ by 5.5.2. We shall show that

An = {g:Af(g) = nAg}.

Let A = 32;3°; a;;m;;(0). This means that [; [I; P,-"']‘-""' © ¢ A,, for some m. We
may assume that rn > 0. We shall show that m = 1. Suppose m > 2. Choose
T PZ;-"" € A, by the assumption that each A, # 0. Then [J, ; P:;m"’ € 4,,. Since
[L.; P77 € A, by the definition of ), we have (by Theorem 5.1.15)

o(f) [T P = b(f) [T P (5.34)
7 1,7

for two polynomials a(T),b(T) € K[T]. Hence ¥°;;a; jmmy; = 3; ; a:ymq;(0) = A
But 3°; ;a;ym;; € A= ZA. This is impossible. Hence we have shown that m = 1.
For any g € An,g € K[f]u, by 5.5.1, and u, = [I;; P;fj‘i"" by the same argument
as in 5.3.7 (note that K = K). Then Af(u,) = nX by the definition of A\. So
Af(g) = nlAg, ie., A, © E(Af,nA),Vn € Z. Conversely, if g € E(Af,n)), we want to
prove that g € A,. To prove this, choose w, as the least degree element of E(Af, nA).
Note that A_, C E(Ay,—nA). Then by Theorem 5.1.15, E(Af,n\) = K[f|wn.

Moreover, we may also write w, = [[;II; P;; for some integers m; ;. Therefore
ms; = nm;;(0) + ditij, d; € Z. (5.33)

Put a(f) = g <o(f + c)%. Then a(f) 'w, € K[f]An = A,. Since a(f)~! € Ao,
and by the assumption that A is factorially closed in K[z, y] relative to Ag, we have
w, € A. Hence w, € A, by considering the direct sum decomposition of w, in A. So
E(Af,nA\) € A,. Therefore A, = E(Af,n) for all n € Z. Hence Theorem C.1 is
proved.

5.5.4. Proof of C.2.
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For n € Z, choose u, € A, with the least degree property, and write

10 H B ™ my; > 0. (5-36)

=1 j=

Let u = u;,v = v;, and uv = a(f) for some polynomial a(7") € K[T]. For any n > 2,
it suffices to prove that u,/u™ € K™, u_,/v™ € K*, this is similar to the proof of
5.3.8. Then A = K[X,Y, Z]/(XY — a(Z)) for some a(T) € K[T], as a K-algebra.
Hence the proof of Theorem C.2 is completed.

5.5.5. Proof of C.3.

This is almost obvious. Let f be a closed polynomial, By = Ker(Ay) = K[f].
Since B # By, there exists n € Z, and a g € K[z, y] such that Af(g) = nAg. Then as
in the proof of Theorem 3.2.2 (ii), f, g are algebraically independent over K. Hence
trans.degg(B) = 2 because B C K][z,y]. It remains to show that there exists a
mixed Gn-action 7 on B with invariant functions equal K[f]. To show this, note that
fz and f, have no common factor. Then, if n € Z,n # 0 such that Af(g) = nAg. (g)
is a Ag-invariant principal ideal of R = K{z,y]. By Prop. 5.1.5, Ker(Af) N (g) # 0.
i.e., there exists h € K[z, y] such that gh € Ker(Ay) = K[f]. Hence Af(h) = —nAh.
We have thus proved the theorem C.3.

In order to complete the proof of Theorem C, we recall the following result of
Lorenzini [29], Corollary 2.

5.5.6. Proposition. Let f(z,y) = [T, L:(z,y)™, where the L;(z,y) are coprime
linear polynomials, n > 2,7; > 1. Assume at least two, say L, and L+, have a common
root and GCD(ry,ry,...,7,) = 1. Then f + c is irreducible for any c € K*

5.5.7. Proof of C.4.

Let A C K][z,y] such that A = K[X,Y, Z]/(XY — a(Z)) as a K-algebra, where
e(T) € K[T]. We want to find a closed polynomial f € K[z,y] such that A is
isomorphic to a quasi G, — Ag—domain.

After a linear transformation, we may write a(T) = T[], (T + &)™, ¢ €



K*,ci#cjfori#jand r; > 1,GCD(ry,7,...,7m) = 1. Define
flz.y)=zy[[(z+ ) +z.
=l

Then by Prop. 5.5.6, we obtain: f = zP, f + ¢; = (z + ¢;) P;, for some irreducible
polynomials P;,7 = 0,1,...,m. Then {(f) > m + 1. On the other hand. {(f) <
deg(f) ~ 1 =m+1 by Prop. 5.3.3. Hence ((f) =m + 1. Hence,

(1) For any ¢ # {0,c¢1,.--.¢m}, f + c is irreducible.
(2) f is a closed polynomial.
(3) fz, fy have no common factor.

Define, for i =0,1,...,m,

T +¢)", ifiiseven
w={ EFE (5.37)
P;* otherwise
and
T+ ¢)7, ifiisodd
U = ( 61) l (538)
P[* otherwise

where ¢y = c¢. Let u = [Ti=g u;, v = [[[2g ti- Then uv = a(f) by definition of u and v.
Since u, v have no common factor, Ag(u) = Au with A € K[z,y]. Then As(v) = —Ae.
For n € Z, define B, = {g € K{z,y]. Af(g) = n)\g} and put B = @ B,. Then u is
an element of B; with the minimal degree property by the choice of u. Similarly, v is
an element of B_; with the minimal degree property. Hence B is generated by u, v, f
as a K-algebra with proof as in 5.3.8. Then B = A. By Theorem C.3, B is a quasi
Gm — As—domain.

Therefore, we have completed the proof of Theorem C.

5.5.8. Remark. Let f =z(z+1)...(x+d—2)y +z,d > 2. Then by the same
argument as in 5.5.7, we have ((f) = rank(X;) = d — 1. Thus rank(X,) can be
arbitrarily large.
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5.5.9. Corollary. Suppose f + c is irreducible for every c € K. Then Af has no
non-zero etgenvalues.

Proof. Suppose f + c is irreducible for every ¢ € K. Then by the proof of
Theorem C, there exists no G, — Ay—domain. Then by theorem B, Af has no non-
zero eigenvalues.

5.5.10. Example. We have found out polynomials f € K[z, y] such that E(Ay)
is.isomorphic to the surface XY = P(Z), where P(Z) has simple roots (e.g, P(Z) =
Z(Z + 1)) with f = zy(z + 1) + z), and where P(Z) = Z%,n > 2 (see 5.3.10 for
n = 3.). But we don’t know whether there exists a polynomial f € K|z, y] such that
E(Ay) isomorphic to the surface XY = a(Z), where a(T’) is any given polynomial in
KI[T].

It is worthwhile to put forward the following problem for further study about
closed polynomials -

5.5.11. Existence Problem.

Giuven any m sequences of positive integers:
Q; = (a‘117' - '7a'1111)7 ce ey O = (aml7 .. 1amnm)

with GCD(a;y,---,ain;) =1 fori=1,...,m, to find a closed polynomial f € K|z, y]
and distinct elements ¢y, ...,cm € K with

f+ea= ﬁPi';»‘f,i-—-l,...,m
J=1
where each Py and any f +c¢,c ¢ {c1,...,cm}, are irreducible.
5.5.12. Remark. The structure theorem about the eigenfunctions can be used
to prove some derivations have no non-zero eigenfunctions. We explain our method
by discussing Zaidenberg’s polynomials to conclude this chapter.

Let 0 =zy + 1,p = zo + 1. Define, forn > 1,

fon = 4ann+1 + 1,9, = 4‘Inpn + 1, (5-39)
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where g, =yp" +o(1+p+ ...+ p*!). We claim that for n > 1,

E(Afn) = K[fnL E(Agn) = K[gn]' (5-40)

In fact, it is well known ([32], [4]) that for n > 1 and ¢ # —1, ¢y, fn + ¢, gn + C are

irreducible. Moreover,

Ar(gn) = (n+1)p"J(p, @n)gn. D5 (p) = —p" T (0, qn)p (5.41)

Suppose E(Ay,) # K[fn]- Then by Theorem B, there are two polynomials u, v such
that uv = a(f,) for some polynomial a(T) € K[T], where u,v have the least degree
properties. Then vv = (f, — 1)" for some integer r. Therefore each irreducible factor
of u is either ¢, or p. Suppose Ay, (u) = Au. By using (5.41), A contains the factor
p"J(p.g,). It is impossible that A € K*. Hence E(Ay) = K[f,]. By a similar
argument we have E (A, ) = Kgn].



Chapter 6

Theorem D, Positive Characteristic

and Questions

In this chapter we will prove Theorem D and give several results for fields of charac-

teristic p > 0.

6.1 Finite Generation Properties

The aim of this section is to prove (D.1).

We assume that K = K and preserve the conventions of the last chapter.

Let f be a closed polynomial of R = K]z, y], and let A be a G, — Ay—domain
such that A = Pz An, with A9 = K[f]. Then by 5.5.1, A, = K[f]un, where u, is
an element of A,, with the least degree property. We shall prove (Theorem 6.1.2) that
a Gm — Ay—domain is a finitely generated K-algebra. To prove it, we first examine
the relations among {u,,n € Z}.

We keep the notations as in 5.3.1. Write o(f) = {¢; : 1 <7 < m}, and

n(f.ci)
f+a= ]I By
j=t
as the irreducible decomposition of f + ¢; for each 1 < ¢ < m. Then (see 5.5.2)we

have u; = [[;; P;;’ for some s;; > 0. We shall determine u, for n > 2 in terms of u;.
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6.1.1. Proposition. Let d,,; = mzn{[%]d =1,...,n(f,c)} foreach 1 <i <
m. Then up, = u} [I2,(f + ;) "4 u_, is determined from u_, , sirnilarly.

Proof. Suppose we have integers r;;, 7 ; satisfying

[P =[P regers; > 0 (6.1)
1,7 i,j
and that for each 7 = 1,...,m, there exists some j with r;; < &;;. and 7}; < &;;.

Then we prove that r,; =1} ;.
Actually, by Lemma 5.3.4, there exists integerse;, 1 < ¢ < m, with 7;; = | ;+eit; ;.

By the assumptions on r;j, ; ;, we know that each e; = 0. Hence r;; = 7' for all z, 7.

i

Define !, = u? [T, (f + ¢;)~¢~i. Then v/, € K|z,y] by the deﬁm_mon of dn;- By
theorem C.1, there exists A € R such that for all n € Z, each 4, = E(Af,n)). Note
that each f+c¢; € Ag = E(Ayf,0). Since u; € E(Ay, A), we find that w!, € E(Af, nl).
By the first paragraph, u/, has the least degree property in A,.

Therefore, the elements of A,,n > 2 with the minimal degree property are deter-
mined by u;, unique up to a non-zero factor in K. Similarly, u_,,n > 2 is determined
by u_; in the same way. We have thus proved Prop 6.1.1.

6.1.2. Theorem. Let A be a G, — Ag—domain. Then 4 is a ﬁ'mtely generated
K-domain.

Proof. By Prop. 6.1.1, A, is gererated by {u, : n € Z} with uy = f. It is
enough to choose finitely many generators from {u,,n € Z}. For each ¢, fix one jg
such that s; j, /tijo < $ij/ti; for all 7 # jo and define T; = t; ;,. Then dn,; = [nsij,/7T.]
foreachn > 2. Let T =[[2,7;. Foranyn > 1, writen =kT + e, =0,..., T -1

for some integer k. Then

'n.z - [(kT + ) 'JD] - I",I; 031.,_70 + [QS;:J:OL (62)
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where T;g = . So !

Opoi'j (un) = mnNS;; — dn,iti,j

Si4,
= k(Tsi; — Tiosigotig) + (asig — [@—22]tes)-

By the choice of T;, we have T's;; — Tio8ijts; = 0, and as;; — [@72]t;; > 0.

Hence {un,n > 1} is in the algebra generated by the elements:

TS{' j -T'i.ﬂsi, ig i, Qsi,j—[a—‘;{“ ]
HPiJ o Jo J’Hpi,j : (6.3)
H 0
where o = 1,...,T — 1. Moreover, for each n > 1,

. -
asij—le—F2]

un = ([ Py 7o (T] P )EA (6.4)
i.j %]

for some c € K*. Foreach n € {1,2,...,T — 1}, we have £ =0, and a@ = n. Hence

asi,'—al‘—":o- _
IIe.;" T e 4 (6.5)

. i’j
i,j
On the other hand, for n =T, we have k =1, and a = 0. So
T's:,;—Ti,05: jgti,5
]___[Pz,J J 05i.4o .5 c A4 (6.6)
i.j

Then the plus part of A is contained in the subalgebra of A generated by the T
elements in (6.3). The proof is similar for the minus part. Therefore 4 is generated
by at most 27 + 1 generators as a K-algebra. Theorem 6.1.2 is then proved.

6.1.3. Proof of D.1. Let A be a G, — Ay—domain. By Theorem C.1, there
exists A € K[z, y] such that for alln € Z, 4, = EF(A,nA). As in the proof of Prop.
5.2.3, we have that A ®ger(a,) Qt(Rer(Af)) = K(f)[u,u™']. Then Qt(4) = K(f.u).

Since A is a finitely generated K-algebra by Theorem 6.1.2, we know that A is then

lordp is the P—valuation of K[z, y].
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an affine rational surface. Theorem D.1 is proved. 2

6.1.4. Remark. Suppose A = @,z A, is a finitely generated K-subalgebra of
Kiz,y], where Ay # K, Ag # A, Ag is normal and A is factorially closed in K|z, y]
relative to Ag. Moreover, we assume the associated G,,-action on A is mixed. We shall
show that A is a G, — Ayr—domain for some polynomial f. In fact, Qf(4y) N A = Ay.
Since A is finitely generated by assumption and dimgQt(Ag) < 2, Ap is a finitely
génerated K algebra by Theorem 5.1.2. Moreover, every element of A,,n 7% 0 is
algebraically independent over Ag, so dimgQt(4g) = 1, and dimxgQt(A) = 2. Then
by the same proof as in [40], Theorem 2.8, 4, = K|[f] for some closed polynomial f.

Hence A is a G, — Ay—domain by definition.

62 ((f)=1

It is hard to classify, all G, — Ay—domains. In this section we shall give an algebraic-
characterization of all A% //wy, that is affine planes A% divided by the action of a
cyclic group wy. in terms of G, — Ay—domains, where wy denotes the set of N —th
roots of unity. As we shall prove in this section, those domains correspond with the
situation when {(f) = 1. Recall that {(f) = 1 means that o(f) = {c}.c € A" and
f+c = P*Q® where o, > 1 and both P and @ are irreducible polynomials of
K[z,y]. Without loss of generality we assume that ¢ = 0.

6.2.1. Proof of Theorem D.2.

Let f = P*Q”?, where o, 8 > 1 and P,Q are irreducible polynomials. Since f is
closed, GCD(e, 8) = 1.

Let A be a G, — Af—domain. Then A is finitely generated by 6.1.2. Note that

J(f, P) = —BP*"'QP1I(P,Q)P, J(f.Q) = aP*T'Q ' J(P,Q)Q. (6.7)

Then by 5.5.2, there is A € R such that for all n € Z A, = E(Af,n)A). By easy
calculation, A = (ba — aB) P>~ 1QP~1J(P, Q) for some a,b € Z. We may assume that

2Since K = K, we could also see it by Casteluovo’s theorem.
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N :=ba — aff > 0 because A # Ay. Since for any integer t > 1,
b+ ft)a — (a+at)3 = N, (6.8)

we may assume that a,b > 0. Then u = P*Q° € A,. We may also assume that
0 < a < o — 1. This means that u = P?Q® has the minimal degree property in 4,.

- We shall determine the generators of A. By Prop. 6.1.1, we know that u, = u"/f%
is an element of A, with the minimal degree property for n > 2, where d, = [na/\]
. Write b =mfB+c¢,m >0,0<c<f—1. Then v = Pim+tle—eQb—c c A_, has the
minimal degree property. Then v, = v™/f® is an element in A_, with the minimal
degree property for all n > 2, where e, = [n(8 — ¢)/8]. Therefore 4 is generated by

the following elements:

PN, ON, PaQﬁ, Pak—a[ka/a]Qbk—ﬁ[ka/a]1P((m+l)a—a)[—a[[(ﬁ—c)/ﬁ]Q(ﬁ—c)l—ﬂ[l(ﬂ—c)/ﬁ].

where k=1,...,a—-1;i=1,...,f—1. Write B = K[P,Q] C K[z,y], and define an

wy-action on B as follows:

(n-P = (P Cn.Q = (3°

where ( is a primitive N-th root of unity. Then it is straightforward to see that
all the above generators of A belong to B¥Y¥. Hence A C B“~. Conversely, we shall
prove that B“¥ C A. As a matter of fact, for any g = 3_; ; a;;P'Q’ € B,a;; € K, if
g € BV, we have i — aj = 0 mod N. Therefore, g € ¥ ,cz E(Af,nA) = A. Hence
B“N C A and then A = B¥~. So (D.2) is proved.

6.2.2. Proof of D.3.

Let o be an action of wy over K[X,Y]. Then 3 there exists X, ¥} € K[X.Y] such

3This is a well known fact. For example, it is a consequence of the amalgamated product structure
of the automorphism group of 4%. See [25] section 2.

100



that K[X,Y] = K[X,,Y)1] and the action o is determined by

(v X1 =X, v .Y = s

for some v,d whose mod N classes are determined by o. If o has no isolated fixed
points, then either ¥ = 0 mod N or § = 0 mod N, and K[X,Y]*¥ = K. So we
may assume that 1 <y < N —-1,1 <46 < N — 1. By the above proof of (D.2), this
K-algebra K[X, Y]“~ is isomorphic to a Gm — A j—domain ¢ for f = X?YP € K[X,Y]
with « = 4,8 = N — ~. Hence the proof of Theorem D is completed.

6.2.3. Remark. It is not true that, in general, that any quasi G, — Ay—domain
has the form of K[X,Y]%, where G is a finite (abelian) group acting on A[X,Y] as
the following example shows. Let A = K[X,Y,Z]/(XY — Z(Z —1)). Then Aisa
quasi G, —A—domain by 5.5.8. Suppose that Spec(A) = A% //G- Since A is smooth
and any smooth surface of the form A% //G is the affine plane A%, Spec(A) = A%.
This is impossible since Pic(A) = Z.

6.3 Positive Characteristic Situation

We prove several related results in the positive characteristic case. Let K be a field
of characteristic p > 0 and let D be a non-zero derivation of K[z, y]. Then the ring of
constants Ker(D) is a free K[zP, y?]-module of rank 1 or p. (See [27], [28] or [40]). We
may also define T'(D), E(D) and N (D) in this framework. We are interested in the
case that Ker(D) strictly contains A'[z?, y?|. and we say D is an ordinary derivation
under this condition. If so, Ker(D) is a free A[z?, y?]-module of rank p. °

6.3.1. Proposition. Let D be an ordinary derivation of K[z.y] and let A be a
K -subalgebra of K|[z,y] which contains Ker(D). Assume that A is a normal domain.

Then either A = Ker(D) or A= K[z,y].

4Note that ag € K[X,Y]“~ and a € K[f] imply that g € K[X,Y]“~.
5In the positive characteristic case, the correct analogue of a locally nilpotent derivation should
be locally finite iterated higher derivation in the sense of [33].
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Proof. Let B = Ker(D). Since
K[z?,y?] C BC A C K|z, 9], (6.9)

we know that either Qt(A) = Qt(K[z,y]) or Qt(A) = Q¢(B). Then either A = B or
A = K|z, y] because both A and B are normal domains.
+ 6.3.2. Remark. For A = T(D),E(D) or N(D), it is enough to prove the

normality of A to show that A = K{z,y] in case D is ordinary.

In view of theorem 5.3.6, we make the following

6.3.3. Conjecture. Suppose char(K)=p >0 and f,g € K|z,y] with J(f,g) =
A € K*. Then E(Ayf,) = K[zP, 97, f,g]-

We recall a result of Nousiainen (see [5]).

6.3.4. Proposition. Suppose char(K) =p >0 and f,g € K[z:y] with J(f,g) =
A € K*. Then K[z?,y?, f,g] = K[z,y].

By 6.3.4, the conjecture 6.3.3 gives the following positive characteristic analogue
of the Jacobian Conjecture.

6.3.5. Conjecture. Suppose char(K)=p >0 and f,g € K|z.y] with J(f.g) =
A € K*. Then E(Ag,) = K[z, y].

We shall prove a positive characteristic analogue of theorem 3.1.1 to finish this
thesis.

Define the differential operator d by

52(p-1)

= SetT (6.10)

For any f € K[z,y] \ K[z?,v7], let ay = 3224 fi5(FP~*"1). See [26] for its properties.

6.3.6. Theorem. Suppose Ay has a non-zero eigenvalue. Then ay € K* and
A(Ay) (the set of all eigenvalues) is a finite cyclic group. Moreover A(Af) = Z/pZ
if K contains the (p — 1)-th roots of unity.

Proof. By using Ganong's formula [26], we have

AI} =G.fAf (611)
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® If Ay(g) = Ag for some A € K, then A%(g) = X°g. So ay = =1 € K*. Note that

A(Ay) is a semigroup. Then the theorem follows.
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