
INFORMATION TO USERS

This manuscript bas been reproduced from the microfilm master. U1vfI

films the tex! directly from the original or copy submitted. Thus, sorne

thesis and dissertation copies are in typewriter face, while others may be

from any type ofcomputer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be ootect. AIso, if

uoauthorized copyright material had to be removed, a note will indicate

the deletioc.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is aIso photographed in one exposure and is included in reduced

fonn at the back ofthe book.

Photographs included in the original manuscript have been reprodueed

xerographieally in this copy. Higher quality 6" x 9" black and white

photographie prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell &. Howell Information Company

300 North Zeeb Raad, ADn Arbor MI 48106-1346 USA
313n61-4700 800/521-0600

NOTE TO USERS

The original manuscript received by UMI contains pages with
indistinct and slanted print. .Pages were microfilmed as

received.

This reproduction is the best copy available

UMI

<

(

PATTERN MATCHING TECHNIQUES FOR PROGRAM

UNDERSTANDING

Konstantinos A. Kontoyiannis

School of Computer Science

~IcGill University, Montréal

November 1996

A Thesis submitted ta the Faculty of Graduate Studies and Research

in partial fuIfilment of the requirements for the degree of

Doctor of Philosophy

© KONSTANTINOS A. KONTOYIANNlS, 1996

1+1 National Ubrary
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A ON4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1A ON4
canada

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author' s
penmSSlon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur fonnat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-30312-8

Canadrl

<

(

(

To my paTents~ Thanas and Ioanna 7

who always stood by me.

ii

(

(

(

ABSTRACT

When a successful software system is maintained and evolved for an extended period of time, original

design documents become obsolete and design rationales become lost, so reverse engineering activities

to reconstruct such information become critical for the sûftware's continued viability.

Pattern matching provides a solid framework for identifying higher level abstractions that may

be instances of predefined plans (commonly used algorithms and cliches), programming concepts, or

abstract data types and operations. This thesis discusses two types of pattern-matching techniques

developed for plan recognition in Program Understanding.

The first type is based on Software Metrics and Dynamic Programming techniques that allow

for statement-level comparison of feature vectors that characterize source code program statements.

This type of pattern matching is used to identify similar code fragments, and code cloning, facilitating

thus code modularization, code restructuring and efficient localization of the occurrence of similar

programming errors.

The second type addresses the problem of establishing correspondences, between a parse tree of

a custom abstract description language developed (ACL) and the parse tree of the code. :Matching of

abstract representations and source code representations involves alignment that is again performed

using aDynamie Programming algorithm that compares feature vectors of abstract descriptions,

and source code. The use of a statistical formalism allows a score (a probability) ta be assigned

to every match that is attempted. Incomplete or imperfect matching is aIso possible leaving to the

software engineer the final decision on the similar candidates proposed by the matcher.

The system has been implemented to analyze software systems written in PLIAS and C.

RÉSUMÉ

Lorsqu' un système de logiciel é\"olue et est mis à jour sur une longue période de temps. les documents

originaux sur sa conception deviennent périmés et les raisons de sa conception peuvent être perdues:

il devient alors critique de procéder à des activités de génie inverse (reverse engineeriu1'!; 1 pour assurer

la \"iabilité continue du logiciel.

Le filtrage (pattern matching) fournit un cadre solide pour l"identification d'abstractions de

haut ni\'eau qui pourraient être des instances de plans prédéfinis (algorithmes courramment uitlisés

Pt clichés). de concepts de programmation. ou de types de données abstraits et leurs opérations,

Ct~ttl' thèse traite de deux types de techniques de filtrage dévelloppées pour la reconnaissance de

plans en Compréhension des Programmes,

Le premier type est b'L'ié sur dt's wchniques de ~Iétriques de Logiciels (Software ~Ietrics) et de

Pro~rammation D~'n,lIllJ(llIl' qlli (lt'rlllpt t('ut la compara.ison au nivea.u des E'IlOIlCi's dt, \'('rtPlIrs dt'

trait~ qui caractérisent lt·~ t"'lluun;s dt, nul.' "Ol1ft'P dl's programmes. Ce type de tiltral!;l' pst urilisl' pOUf

i<it'lltifier ks fragments d(' <"oc1p Sirllil'lIfl·'. l't il, clouage de code. facilitant ainsi la 1ll0dlliarisation du

nuit'. la rl'strueturatio!l dll codl' l't la lo("ahsation efficace d'instances d'erreurs dt' pro~ranllnation

.... illlilain's_

LI' S('CO[H! tyP(' traitt, du prt>hli'[[lt' dl' la mise eu place de correspondences entre un arbre

d -illlah'st' s~'lltactiql1l' d'uu lallgage abstrait dt' dt'scription dévelopé (ACL) et l'arbre (LUlal~'s~ syn­

tacriqut· du codp, L(' filtrage dp rf'pn"sPnt<ltions abstraites et de représentations de code source

[t'quit'ft !t'ur alliglll'llI('llt" l't' qui ('st cil' IlOU\'Pëlll fait avec un al~orithml' dt' Pru~rammation D~'­

llilmiqut· qui compan' It·..., \'t'('[PllrS dt, trëlit~ cit·..., dt'scriptions abstraites et du code sauret', L'emploi

d'HU fOI'tI1ëllisUIt, statistlqu(' pt'rIIl('r tLLffl'!'tC'r un pointage (une probabilité) à chaque filtrage tenté.

l'Il tilrral!.(· illcompit'I 1I1l imparfait t':'it ëlussi possible. laissant à l'ingénieur en logiciel la décision

III1,dl' ... 111 1.,:,> (,LIlditiah similaires proposés pa.r le filtreur.

LI' ,\':-,tf'IIII' il ('"tl" implémenté pour analyser des systémes de logiciel écrits en PLI AS et C.

ACKNOWLEDGEMENTS

During my studies at McGill 1 had the opportunity to meet difIerent people from whom 1 learned

many lessons in science and in human relations. It was a wonderful joumey for me. For this journey,

1 would like to thank my supervisors Renato DeMori, and Ettore Merlo for giving me the opportunity

to explore the frontiers of science and he part of an e.'"Cciting team. 1 thank them also for providing

always support and encouragement throughout my studies. 1 would like also to thank the Principal

Investigators of the team 1 worked with. namely John MylopouIos, Hansi lVIülIer, Jacob Slonim. and

the members of mM Canada, Centre for Advanced Studies, for providing a very fertile research

environment.

But it was not only the exciting research environment that made my studies a memorable

experience. NIany friends. and fellow students helped me understand and appreciate the simple

things in life that happen every day and pass unnoticed to most of us. Among those 1 thank Yiannis

Rekleitis. Christos Magdalinos. and the members of the Speech Lab for being 50 supportive.

1 thank my friends Nikos Krivossidis. Bassem Khalife, 1VIariza Komioti and Stergios Anas­

tasiadis. with whom 1 shared the first years as a student in !vIontreal. Finally, 1 would like to thank

.Jasmina for giving me the energy and the support to finish this thesis.

TABLE OF CONTENTS

ABSTRACT

RÉsUMÉ

ACKNOWLEDGEMENTS

UST OF FIGURES .

LIST OF TABLES . .

LIST OF PUBLICATIONS.

List of Publications Relevant to this Thesis

CHAPTER 1. Reverse Engineering . .

1. Introduction

2. Design Recovery .

3. Thesis Objectives .

3.1. Motivation and Background

3.2. Thesis Contributions

CHAPTER 2. State-of-the-Art and Practice on Design Recovery .

1. Representation Methods .

1.1. Methods of InternaI Representation of the Source Code .

2. Recognition Methods .

2.1. Methods Used for Controlling Recognition .

3. InformaI Information AnaIysis

4. Interactive Query Capabilities

5. State of the Practice ...

5.1. Toois on the Market .

Hi

iv

v

x

xiii

xiv

xiv

1

1

2

3

3

5

8

8

8

12

13

14

14

15

15

5.2. Tools in Research Labs

CHAPTER 3. Program Features For Design Recovery

1. Introduction.....................

2. Program Feature Vectors (or Clone Detection

2.1. Global Variables .

2.2. Global Variables Updated.

2.3. Input / Output

2.4. Files Opened . .

2.5. Formal Paramete~

2.6. Parameters by Reference Updated .

2.7. Identifiers Used

2.8. Identifiers Updated

2.9. Function Calls

2.10. S-Complexity

2.11. D-Complexity.

2.12.- McCabe Complexity

2.13. Albrecht Metrie .

.:2.14. Kafura Metric

3. Pattern Matching . .

CHAPTER 4. Code To Code Matching

1. Metric-Value Similarity Analysis .

1.1. Hierarchical Clustering Clone Detection .

1.2. Partition Clustering Clone Detection ..

2. Dynamic Programming Based Similarity Analysis .

2.1. Similarity Distance Caleulation

2.2. System Partitioning .

CHAPTER 5. Concept To Code Matching . .

1. Language for Abstract Representation ..

2. Abstract Language Semantics .

3. Concept-t<rCode Distance Calculation . .

-1. ACL ~Iarko\' Model Generation.

5. fl'ature \'~tor Comparison

G. nf'co~nition Space

TABLE OF CONTENTS

17

21

21

23

24

26

28

30

32

32

34

36

37

38

38

38

39

40

41

43

43

44

46

47

49

53

57

58

64

68

70

76

78

vii

TABLE OF CONTENTS

CHAPTER 6. Experiments

1. Experimentation Framework. . .

2. Metrics-based Matching Experiments .

2.1. Precision Per Metric Usage at Max. Recall Level

2.2. Impact of per Metric Threshold Value Variation on Precision

2.3. Items Retrieved per Metric Usage

2.4. Recall Per Distance Range

2.5. Recall/ Precision

3. Dynamic Programming Experiments

3.1. Recall Per Distance Range ...

3.2. Precision Per Distance Range (Set-Uses Matching Critenon)

3.3. Precision Per Distance Range (Metrics Matching Critenon) .

3.4. Precision Per Distance Range (Data Types Matching Criterion) .

3.5. Recall / Precision Per Matching Feature Used

4. rvlarkov-based rvratching Experiments .

4.1. Performance Statistics

4.2. Recall / Precision Comparison

5. Overall Recall / Precision Comparison

CHAPTER 7. The System Architecture

1. Communication with other Toois

1.1. Data Integration ..

1.2. Control Integration

1.3. Integration Statistics

CHAPTER 8. Conclusion

1. Contributions....

2. Discussion and Future \Vork .

CHAPTER 9. Bibliography

REFERENCES.

APPE~DIXA.

APPE;-;DIX n.

APPE:"DIX C.

91

92

95

95

96

98

100

101

103

103

103

105

108

108

111

111

112

114

117

117

120

123

125

128

129

131

134

135

146

150

158

viii

APPENDIX D.

TABLE OF CONTENTS

. 169

ix

LIST OF FIGURES

3.1 AST nodes are represented as abjects in a local repository. Arcs of the AST are

represented as mappings between abjects. .,. 22

3.2 The AST for an IF statement with Fanout attributes.. 24

4.1

4.2

-1.3

Distances between function pairs of possible function clones for the Clips and Bash

programs using DP-based matching. The dashed line represents measurements

obtained using the set-uses criterion. The soUd tine represents measurements

obtained by the metrics criterion. The values in the X - axis represent the nth

function pair that has been identified as containing potential clones (i.e. the two

functions have zero distance) using the metric comparison similarity analysis. 51

The matching proeess between two code fragments. Insertions are represented as

horizontal lines. deletions as vertical lines and, matches as diagonal lines. . .. 54

Segmentation of the Clips System using Clustering on Data Bindings, Common

References. and Code Cloning . " 56

5.1

5.2

Overview of the Markov-Based Code Matching Process

A dynamic model for the pattern .41; .42-; .43-

58

73

5.3

5.-1

Dynamic Programming driven comparisons between an ACL pattern Al; 042;o4j,

and a code fragment 51: 52: 53: 5... .. 74

The statie model for the expression-pattern. Different transition probability

\'alu('s may be set by the user for different plans. For example the traversai

of lmkcd·list plan may have higher probability attached to the is-an-inequa/ity

transition as the programmer expects a pattern of the form (field != NULL) 75

·1.·1 Eff('("t of À values ta final probability calculation 76

LIST OF TABLES

4.1

4.2

5.1

5.2

5.3

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

Step Distance table for S-Complexity taken from the Tcsh system " 46

False alarms for the Clips program using DP matching and the Set-Uses criterion. 53

Generation (Allowable Matching) of source code statements from ACL statements 60

Generation (Allowable Matching) ofsource code expressions from ACL expressions 61

Generation (Allowable Matching) of source code data types from ACL data types 62

The Software Systems Used for Experimentation 91

Metrics-based matching statistics. The size ofail possible pairs for this experiment

is 248,160. The Recall level for this experiment using all five metrics is estimated

as 44.4%. 101

Recalll Distance Value Range (lVfetrics) 102

DP-based matching statistics. The size of aIl possible pairs for this experiment

is 248,160. The Recall level achieved for this experiment is estimated as 44.4%. 105

Recall 1Distance Value Range (DP) 105

RecalI 1Precision Relation Per Distance Value Range (DP Set-Uses eriterion) 105

Recalll Precision Relation Per Distance Value Range (DP Metrics Criterion) 108

Recalll Precision Relation Per Distance Value Range (OP Data Types eriterion) 110

Recall 1Precision Table (DP) .. 110

Performance Statistics for 100 queries in three software systems (Tcsh, Clips,

Roger) .. 111

7.1

7.2

Storage Statistics (only File and Function object types stored)

Dow-load Performance (KB cantains File, Functian type objects)

126

127

5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

LIST OF FIGURES

The algorithm A its known implementatioDS I j in the system, and patterns Pj"

that match the implementations. 81

Precision values (in percentage points) for one Metric used (RecalI IeveI 95.8%.) 96

Precision values (in percentage points) for combinations of two Metrics (RecaU

level 95.8%.) .. 97

Precision values (in percentage points) for combinations of three Metrics (Recall

level 95.8%.) .. 98

Precision values (in percentage points) for combinations of four Metrics (Recall

level 95.8%.) .. 99

Precision Change (%) (Drop) by varying threshold values for each metric

dimension. Shawn is the change between the lst and the 10th step threshold

value. .. 100

Precision/RecaIl Graph for different metric combinations. The metric combinations

were selected among the ones that give the highest precision in their category

class (Le. the best combination of two metrics is S-Complexity and Kafura) . 104

Average Precision (in percentage points) Per Distance Range for the Set-Uses

eritenon. .. 106

Average Precision (in percentage points) Per Distance Range for the Metrics

eriterion. .. 107

Average Precision (in percentage points) Per Distance Range for the Data-Types

6.10

6.11

6.12

criterion .

Recall/Precision for DP-based Matching.

Recall / Precision graph for the Markov Based matching. .

Recall / Precision graphs for the pattern matching methods proposed.

109

112

113

116

7.1

7.2

7.3

The implemented system architecture for tool integration. Dashed lines distinguish

computing environments, usually running on different machines. 118

Part of the Schema hierarchy. Multiple inheritance is shawn for the File and

Modu.le nodes. .. 121

The Schema structure and inheritance for the File AST entity. The Retine­

Attributes and the Rigi-Attributes are encapsulated in the same abject in the

central repasitory. .. 122

xi

7.4

7.5

ExtractionObject Schema hierarchy for the Ariadne System.

Upload Performance .

LIST OF FIGURES

123

126

xii

(

LIST OF PUBLICATIONS

List of Publications Relevant to this Thesis

• Refereed J ournals

(i) "Pattern l\tIatching for Clone and Concept Detection" K. Kontogiannis, R. De~,'lori, E.

l\tlerlo, NI. Galler, M.Bernstein, Journal of Automated Software Engineering, vo1.3, pp.

77-108, 1996 This publication describes the core of this Ph.D thesis. My contribution

in this paper was the design and development of a scalable method for localizing

similar programming patterns and for measuring of sctructural similarity between code

fragments. It uses Dynamic Programming and Nlarkov Nlodels to establish a structural

similarity probability. l shared interesting discussions with the rest of the authors who

had experience in the field of applying Nlarkov models in Speech Recognition.

(ii) "Reengineering User Interfaces", l\tlerlo, E., Gagnie, P.Y., Girard, J.F., Kontogian­

nis, K., Hendren, L., Panangaden, P., DeMori, R. IEEE Software, January 1995 This

publication discusses the reengineering of CICS line-based user interfaces and the mi­

gration process towards modern designs (i.e X-\Vindows). This research has been

quoted as a standard in l\tIichael Brodie's book "~IigratingLegacy Systems", by l\tlor­

gan Kaufman Publishers, 1995, and in AClVI Communications special issue on Reverse

Engineering, vol. 37, No. 5, 1994. pp. 84-93. My participation on the project fo­

cused on the design of an abstract user interface specification language using Process

Algebras.

(iii) "Investigating Reverse Engineering Technologies for the CAS program Understanding

Project", Buss, E., DeMori, R., Gentleman, lV1., Henshaw, J., Johnson, H., Konto­

giannis, K., Merlo, E., Muller, H., NIylopoulos, J., Paul, S., Prakash, A., Stanley, M.,

Tilley, S., Troster, J., Wong, K. IBM Systems Journal, Vol. 33, No. 3, 1994

This publication discusses the techniques and the results from our CRD project with

IBM Canada. My contribution on this project was the development of techniques to

(

(

LIST Of PUBLICATIONS RELEVANT TC THIS THESIS

identify error prone code and redundant code in large software systems using soft­

ware metrics. The target legacy system was SQL/DS which is written in a PL-type

language.

• Refereed Conferences

(i) "A Generic Integration Architecture for Cooperative Information Systems", John wly­

lopoulos, Avi Gall, Kostas Kontogiannis, ~'1artin Stanley, In Proceedings of COOPIS

'96, Brussels, Belgium

This paper discusses issues of software tool integration. It examines the Event­

Condition-Action principle of active data bases and investigates its use for the design

of a data and control integration environment. My contribution on this research was

the design of the requirements for a dynamic CASE integrated toolset. This reseacrh

capitalized on the expertise gained during our IBM/CRD project and the expertise of

Avi Gall and John lVIylopoulos on active data bases.

(H) "Pattern l'JIatching for Design Concept Localization", Kontogiannis, K., DelVlori, R.,

Merlo, E., Bernstein, N'L, Galler, M. Working Conference on Reverse Engineering

WCRE'95, July 1995, Toronto, ON.

This publication was ranked among the best in WCRE'95 and was invited to be

expanded in a Journal publication in the journal of Automated Software Engineering.

It discusses the application of a stochastic pattern matcher using lVlarkov rvlodels for

code segmentation and plan localization. The significance of this approach is that it

is scalable and efficient on the time and space resources it requires.

(iii) "Localization of Design Concepts in Legacy Systems", Kontogiannis, K., DelVlori R.,

Bernstein, NI. Proceedings of the International Conference on Software Maintenance

1994, Victoria, BC. This publication marked the first findings from the application

of Dynamic Programming in a pattern matching tool targeting clone recognition.

The paper provides insights for a scalable pattern matching approach that led to the

development of a prototype system for plan recognition.

(iv) "The Development of a Partial Design Recovery Environment for Legacy Systems",

Kontogiannis, K., Bernstein, NI., Merlo, E., DeMori, R. Proceedings of CASCON'93,

Toronto, ON.

(v) "Program Representation and Behavioural Matching For Localizing Similar Code

Fragments" , Kontogiannis, K. Proceedings of CASCON'93, Toronto, ON.

xv

(

(

LIST OF PUBLICATIONS RELEVANT TO THIS THESIS

(vi) "Reverse Engineering of User Interfaces", ~fer1o, E., Girard, J.F., Kontogiannis, K.,

Panangaden, P., De!vlori, R. Proceedings of Working Conference on Reverse Engineer­

ing, WCRE'93, Maryland, Baltimore

This paper discussed initial findings on the DMR project. Please refer to the relevant

IEEE Software paper above.

• Refereed Workshops

(i) ~Partia1 Matching for Code Similarity", International Conference on Artificial Intel­

ligence, Workshop on Software Engineering and A.I, August 1995, Montreal, QUE.

DeMori, R., Kontogiannis, K.

This paper discussed the use of A.I modeling and matching techniques in Program

Understanding. The motivation for this paper was the potential use of A.I techniques

to handle complexity issues related to code segmentation and plan recognition. The

paper investigates the use of pattern matching techniques and modeling techniques in

the area of Software Engineering.

(H) "User-Assisted Design Recovery of Legacy Software Systems", Kontogiannis, K., Tilley,

S., DeMori, R., Muller, H. Workshop on the Intersection of Software Engineering and

Artificial Intelligence, ICSE'16, Sorrento, ftaly, May 1994

Similar as above.

(Ui) "A Process Algebra Based Program and System Representation for Reverse Engineer­

ing", Merlo, E., DeMori, R., Kontogiannis, K. Proceedings of the Workshop of Program

Comprehension, Capri 1993, Italy

This paper discussed the usefulness of formai methods and in particular Process AI­

gebras to represent the semantics and the behaviour of programs. The paper inves­

tigated the use of bisimulation for assuming behavioural similarity between two code

fragments. A prototype system has been demonstrated that allawed for plan recog­

nition of small size systems (~ lKLOC). This paper describes my initial approach

to the problem of Program Understanding within the scope of my Ph.D research.

This approach has heen demonstrated ta he very accurate, allowing for matching un­

der syntactic or implementation variations. The drawback was that it did not seale

up properly and required signifieant effort ta model source code as Process Aigebra

equations.

xvi

(

CHAPTER 1

Reverse Engineering

1. Introduction

Despite the fact that faster and cheaper computer hardware continues to appear on the market

at an impressive rate, much of the software currently used is on average ten ta fifteen years oid

[Osborne90J. In most cases these programs have to be corrected, migrated to new platforms, or

enhanced in performance. Usually, people involved in these processes are not the original system

designers, and they have to devote a significant amount of resources in order to understand the

system to be maintained. An important point is that a maintainer not only has to understand the

code, but also the system as a whole, its functions, its environment, its subprogram structure, its

data base set up, and many other factors [Wedo85].

The objective of reverse engineering is the development of a set of tools and techniques for

understanding unfamiliar code, so that system maintenance can be facilitated [Chïko90J. Having

obtained enough information on the system a maintainer can proceed with the restructuring phase

where the system is enhanced or adapted to a new environment. The amount of software maintenance

research in the last three years has increased [Hale90), and it is estimated that in the U.S. alone 2% of

the country's gross national product was spent in 1985 for software maintenance (Karakostas90J.

In the past few years several research groups have focused their efforts on the development of

tools for program understanding and program restructuring. The major research issues involve

the development of formalisms to represent program structure, control and data fiow, as weIl as

visualizing program execution.

In [Chiko901 a taxonomy of reverse engineering terms is given. This ta.-x:onomy, divides Re­

verse Engineering in two major subareas: a) Re-documentation and; b) Design recovery. Re­

documentation is a process in which alternative views of the program are presented in order to

(

(

1.2 DESIGN RECOVERY

reHect certain characteristics of the subject system. Design recovery is a subset of reverse engi­

neering in which abstractions of the subject system are created in arder to impose a meaning on a

program segment. Restructuring and re-engineering are two other terms which are relatively close

in meaning. Restructuring is the transformation of a software system without affecting its function­

ality, while re-engineering is the transformation of a subject system while adding new functionalities

ta the system.

Reverse engineering is the process of analyzing a subject system ta:

• identify the system's component 's and their interrelationships, and

• create representations of the system in another form or at a higher level of abstraction.

Reverse engineering does not involve changing the subject system; it is process of examination. Our

work will focus on the area of program understanding and in particular the area of design recovery.

The term design recovery means understanding the program as a whole with respect ta func­

tionaI specifications, input parameters, expected output, performance, as weIl as on the software and

hardware environment in which it runs. The available information is usuaIly formai (source code)

and informai (comments). Source code is represented usuaIly as an ASCII file. This file may contain

a numher of hints about the run-time functionaIity of the program (how and in what order modules

are invoked), parameter passing, aliases, side effects etc. On the other hand, informai information is

a valuable source of information for the task of understanding complex features involving the under­

standing of the organization of program structure (how procedures or submodules are organized).

Hints may be in the form of comments, //0 messages, meaningful variable names, documentation

etc.

2. Design Recovery

According to Biggerstaff [Biggerstaff89]:

Design recovery recreates design abstractions from a combination of code, existing

design documentation, persona! experience, and general knowledge about problem

and application domains. Design Recovery must reprodllce ail of the information

required for a person to fully understand what a program does, how it does it, why

it does it, and 50 forth. Thus, it deals with a far wider range of information than

found in conventionaI software-engineering representations or code.

According to Harandi and Ning [Harandi90] to maintain a program, a programmer needs to

develop a mentaI model of its function first. Ta facilitate this, four different program views are

pravided.

2

(

1.3 THESIS OBJECTIVES

(i) The implementation-Ievel view is represented as an abstract synta.x tree and a symbol table

of program tokens.

(U) The structure-Ievel view gives an explicit representation of the dependencies among program

components.

(iii) The function-Ievel view relates parts of the program to their functions and shows the logical

relations among them.

(iv) The domain-level replaces items in the function-view by concepts specific to the application

domain.

Understanding the code includes code representation, structural representation of the system

(modules' interaction), data flow, control flow graphs, conceptual abstraction of the code (specifi­

cations, abstract data types, normalization). However, understanding the code with an automated

system, usually requires access to the domain model, and the domain information [Prieto-Diaz90).

However, complete automated design recovery is not always feasible. In this case partial design

recovery is a more realistic objective. Partial solutions can be very useful, as the maintainer can fi11

in the uninterpreted gaps using his own programming skills and experience.

3. Thesis Objectives

3.1. Motivation and Background. Large-scale production software systems are expensive

(

to build and, over their usefullifetimes, are even more expensive to maintain. Successfullarge-scale

systems are often called "'legacy systems" because (a) they tend to have been in service for many

years, (h) the original developers, in the normal course of events move on to other projects, leaving

the system ta be maintained by successive generations of maintenance programmers, and (c) the

systems themselves represent enormous, irreplaceable corporate assets.

Legacy systems are intrinsically difficult to maintain because of their sheer bulk and because of

the loss of historical information: design documentation is seldom maintained as the system evolves.

In many cases, the source code becomes the sole repository for evolving corporate business rules.

During system maintenance, it is orten necessary to move from low, implementation-oriented

levels of abstraction back to the design and even the requirements levels. The process is generally

known as "reverse engineering" 1 •

In particular, it has been estimated that 50 to 90 percent of the maintenance programmer's

effort is devoted ta simply understanding relationships within the program. The average Fortune

100 company maintains 35 million lines of source code (NILOC) with a growth rate of 10 percent

lIn this thesis, "reverse engineering" and related tenns refer to legitimate maintenance activities based on source­
language programs. The terms do not refer to illegal or not ethical activities such as the reverse compilation of object
code to produce a competing product.

3

(

(

(

1.3 THESIS OBJECTIVES

per year just in enhancements, updates, and normal maintenance. Facilitating the design recovery

process can yield significant economic savings.

We believe that maintaining a large legacy software system is an inherently human activity that

requires knowledge, experience, taste, judgement and creativity. For the foreseeable future, nG single

tool or technique will replace the maintenance programmer nor even satisfy ail of the programmer's

needs. Evolving real-world systems requires pragmatism and fiexibility.

It has been argued [Wills92) that programmers use patterns and expert knowledge to recognize

programs and programming structures. These patterns, idioms, and commonly used structures are

called plans[HufI89J [Wills93J. A plan is a commonly used idiom or algorithm in a software system

that implements a particular task, a generic or domain concept, or a business rule. A plan can be

represented in different levels of abstraction. At the lower level a plan instance is described in terms

of its source code implementation. At an intermediate level it is represented as pseudo-code with

links and references to actuaI source code and informai information. At a higher level of abstraction

the plan is codified in a Knowledge Representation (KR) formaIism that captures the knowledge the

experienced programmers use to recognize such plans.

\Vhen a group of developers are given the task to understand and maintain a large software

system the following activities have to be performed:

• Represent the source code at a higher level of abstraction

• Identify the basic physical structure of the system

• Decompose the system into modules based on data and control fiow properties

• Localize particular plans in the code and attach concepts to them

• Identify parts of the system that interact, depend or aIter a recognised concept

Recent studies in Reverse Engineering have proposed a number of research issues. Most of

them are related to program and knowledge representation methods, search techniques, compiler

technology as well as program specification and verification methods.

Design Recovery has been viewed mostly as a program representation and a plan localization

problem where representations of the source code are matched against programming plans stored

in a static library. In real applications though, the limited number of programming plans that can

be encoded, knotty program representation schemes and comple."C plan localization algorithms make

design recovery applications rigid and diffieult to be extended ta large systems. Thus, it is more

realistic to take an approach in which methods and tools for partiaI design reeovery are conceived

based on a set of strategie but specifie objectives which are dictated by the user and the type of

analysis he or she performs.

4

(

(

1.3 THESIS OBJECTIVES

That introduces the idea of Goal Directed Design Recovery in which the appropriate represen­

tation method, the level of abstraction, the appropriate analysis tool, and the control strategy are

dictated by the objectives and the specifie program design attributes the maintainer sets or wants

to recover respectively.

In this thesis we Cocus on the development of pattern-matching techniques that a!low for plan

localization and recognition. Our work addresses the problem of plan localization in two levels.

The first level addresses code ta code matching. At this level we devised techniques ta compute

dissimilarity distances between two code fragments, allowing for the detection of potential code

cloning and, the localization of similar patterns in the code that May implement a particular plan.

The second level addresses the problem of localizing abstract code descriptions in a software

system.

In particular, this thesis discusses

(i) The deve!opment of techniques for source code ta source code matching for detecting code

duplication and devise dissimilarity distances between two code fragments

(H) The development of an abstract language ta represent programming plans and the corre­

sponding techniques ta localize these abstract descriptions in a large software system

(Hi) The development of a software framework that allows for CASE tool integration in a dis­

tributed environment.

3.2. Thesis Contributions.

3.2.1. The Code Cloning Problem. Source code cloning occurs when a developer reuses ex-

isting code in a new context by making a copy that is altered to provide new functionality. The

practice is widespread among developers and occurs for severa! reasons: making a modified copy

May be simpler than trying to exploit commonality by writing a more general, parameterized func­

tian; scheduIing pressures May not aIlow the time required to generalize the code; and efficiency

constraints May not admit the extra overhead (reaI or perceived) of a generalized routine.

In the long run, code cloning can be a costly practice. Firstly, it results in a program that is

larger than necessary, increasing the complexity that must be managed by the maintenance program­

mer and increasing the size of the executable program, requiring larger computers. Secondly, when a

modification is required (for example, due to bug fixes, enhancements, or changes in business rules),

the change must be propagated ta all instances of the clone. Thirdly, often-cloned functionality is a

prime candidate for repackaging and generaIization for a repository of reusable components which

can yield tremendous leverage during development of new applications.

The thesis introduces new techniques for detecting instances of source code cloning. Program

features based on software metries are proposed. These features apply to basic program segments

5

(

(

(

1.3 THESIS OBJECTIVES

like individual statements, begin-end blacks and functions. Distances between program segments

can be computed based on feature differences. We propose two methods for addressing the code

cloning detection problem.

The first is based on direct comparison of metric values that dassify a given code fragment. The

granularity far selecting and comparing cade fragments is at the level of a source code statement.

This method returns clusters of statements that may he products of cut-and-paste operations.

The second is based on a new Dynamic Programming (DP) technique that is used ta calculate

the best alignment between two code fragments in terms of deletions, insertions and, substitutions.

The granularity for selecting code fragments for comparisan is again at the source code statement

leve!. Once two statements have been selected they are compared using their correspanding feature

vectors. This method returns clusters of statements that may be products of cut-and-paste opera­

tions. The DP approach provides in general, more accurate results (Le. less false positives) when

comparing two blocks of source code statements, than the one based on direct comparison of their

metric values. The reason is that using DP comparisan occurs at the statement level and informai

information is also taken into account (Le. variable names, literal strings and numbers).

3.2.2. The Concept Recognition Problem. Pragramming concepts are described by a concept

language. A concept to be recognized is a phrase of the concept language. Concept descriptions

and source code are parsed. The concept recognition problem becomes the problem of establishing

correspondences, as in machine translation, between a parse tree of the concept description language

and the parse tree of the code.

A new formalism is proposed to see the problem as a stochastic synta.x-directed translation.

Translation rules are pairs of rewriting rules and have associated a probability that can he set initially

to uniform values for all the possible alternatives.

Matching of concept representations and source code representations involves alignment that is

again performed using adynamie programming algorithm that compares feature vectors of concept

descriptions, and source code.

The proposed concept description language, models insertions as wild characters (Abstract

Statement· and Abstract Statement+) and does not allow any deletions from the pattern. The

comparison and selection granularity is at the statement leve!. Comparison of a concept description

language statement with a source code statement is achieved by comparing feature vectors (Le.

metrics, variables used, variables defined and keywords).

Given a concept description M = Al; A2 ; •• Am , a code fragment P = Sl; S2; ..S" is selected for

comparison if: a) the first concept description statement Al matches with Sl, and b) the sequence

of statements S2; ...Sk, belong to the inner most begin-end black containing Sl·

6

(

(

(

1.3 THESIS OBJECTIVES

The use of a statisticaI formalism allows a score (a probability) to be assigned to every match

that is attempted. Incomplete or irnperfect matching is aIso possible leaving to the software engineer

the finaI decision on the similar candidates proposed by the matcher. A way of dynamically updating

matching probabilities as new data are observed is aIso suggested by the use of a cache.

3.2.3. Tooi Integration. A suite of complementary tools from which the programmer can

select the most appropriate one for the specific task at hand. An integration framework enables

exploitation of synergy by aIlowing communication among the tools.

This work has been incorporated on a (Reverse Engineering Environment), based on an open

architecture for integrating heterogeneous tools. The tool-set is integrated through a cornmon repos­

itory specificaIly designed to support design recovery [Mylo961 [Buss94]. Individual toois in the kit

include Ariadne [Konto94] [Konto96a], ART [Johnson94a} [Johnson94b], and Rigi [Tilley95]

[Muller93]. ART (Analysis of Redundancy in Text) is a prototype textual redundancy analysis

system. Ariadne is a set of pattern matching and design recovery programs implemented using a

commercial tool called The Software Refinery 2. Rigi is a programmable environment for program

visualization. The tools communicate through a flexible object server and single global schema

implemented using the Telos information modelling language and repository [Mylo96].

2 "The Software Refinery" and REFINE are trademarks of Reasoning Systems, Inc.

7

(

(

(

CHAPTER 2

State-of-the-Art and Practice on Design Recovery

1. Representation Methods

In arder ta recover the design of an unknown program., source code has ta be represented in a

higher level of abstraction. Such source code representation must reflect more the design activity than

the source code itself. NIost of the research approaches addressing the source code representation

problem, focus on the development of mathematical formalisms, and techniques which can facilitate:

(i) representation of program. functions in a more abstract way than source code [Letovsky88],

(ii) the representation of the behavior of a program [Hoare85], (Milner89], [Stoy77], (Scott76],

[Hennessy91]

(iii) search techniques (borrowed from A.I, or graph theory), [Rich90], [Engberts91], (Ning94],

[Johnson85],

(iv) ways ta rpHect information on the problem and the application domain [Biggerstaff94],

(v) user friendliness, in terms ofhow program design is presented ta the programmer (Muller91],

(vi) adaptability and modeling, in terms of how easily one representation can be transformed

into another more abstract one (in case of reverse engineering) or less abstract (in case of

forward engineering) 1 and

(vii) portability ta a computer environment (be able ta define data structures for encoding the

formalism) .

1.1. Methods of Internai Representation of the Source Code. In the literature one

can find a variety of methods for representing source code for software maintenance purposes. It is

widely accepted (Sneed88] that models for viewing software consists of three levels:

(i) the specification level,

(ii) the design level, and

(iii) the coding level.

(

(

2.1 REPRESENTATION METHOOS

The focus of Design Recoyery is to provide means to achieve a representation of the program

at the Design Leve!.

In sorne applications [Sneed88], the program is "horizontally" partitioned into divisions. Each

division contains information for different parts of the program. For example, in the case of a COBOL

program, the Identification division may contain the program name and sorne general information,

the Environment division may contain information of how the system is connected to the physicaI

environment or the platform it runs and 50 on. Other divisions are more relevant for Design Recovery,

namely the Data division and the Procedure division. The Data Division contains the description of

the data structures (both external and internai), and the Procedure division contains the executable

statements grouped into Sections or Paragraphs. Data structures can be represented in a variety

of ways. One way is the tabularization [Sneed87] where a table is defined with an entry for each

data structure encountered, recording its name, position, type, length, dimension, usage etc. Using

such a tabular representation, some groups [Overstreet88] use transitive closure algorithms to

compute data-Bow and variable dependencies. For the procedure level the same technique can be

used by defining Relationship MatrL'"Ces, for representing relationships among procedures, variable

referencing or, relationships between constants, variables, and procedures within the same module

(scope of variables).

Another approach for representing source code is using Decomposition Hierarchies [Ligner88],

[Hartman91b]. This technique is based on the Structure Theorem [Ligner88], which states that

any proper program (single entry, single-exit programs) can be represented as a structure consisting

only of primitive programs (sequence, i//then structures and loop structures), which sorne authors

[Bush85] caIl normaI forms. This approach has the advantage that one can define an equivalence

mapping for transforming the original unstructured code into a structured one. The first step

in this approach is to create an Abstract Syntax Tree of the original source code. Subsequently,

tree to tree transformations can be applied in order to obtain a tree from which reduced control

fiow expressions can be obtained such that the resulting tree can be transformed into a directed

graph containing only normal forms. Programming clichés [Rich90] can be used for recognizing

pieces of code. The transition from the internai representation of code into higher level conceptual

program abstractions can also be obtained by extracting conceptuaI representations by deduction,

applying a graph grammar or a pattern matching algorithm. Dependency analysis tools can be used

to enhance the internai representation of the code. Dependency analysis [Wilde89] is based on

graphs which represent definition dependencies (when a program entity is used to define another),

calling dependencies (when one module calls another), functionaI dependencies (when a data object

9

(

(

(

2.1 REPRESENTATION METHOOS

is created or updated) and finally data flow dependencies [Gallagher91] (when the value of one

object is used to calcuIate the value of another).

A third class of methods for representing code uses a unified object-based representation of

code segments [Das89], [Murray88]. In this approach, basic language constructs (e.g. while

loops) are represented as objects and their syntax is captured as a list of attributes (e.g. logical

condition, body, etc.). The actual source code is represented by instances of these generic abjects,

and attribute values may refer to other instances (e.g. a body of a loop may be another loop). High

leveI programming knowledge can be encapsulated in rules. A set of such ruIes can be used to reason

about the program (e.g. finding syntactic or non-syntactic bugs). Thus, programs may be viewed as

abject bases. In some systems [Ketabchi90], these abjects can be created partially automatically,

from the Backus Normal Form (BNF) description of the language. Instances of generic abjects can

be created by a scanner, a parser and a set of semantic action routines. These approaches treat a

software system as assemblies, which have multiple aspects such as structure and functionality. A

more abstracted view of the above technique is given in [Holland89] and [Landis88]. Here not

only basic language constructs are represented as objects but also more complex constructs, such as

functions or program submodules. This method enhanced with basic rules governing dependencies

(eg. if classl is a client of class2 then classl depends on class2) can be used to create dependency

graphs, or even allow for automatic recognizing parameterization of programs (write more general

programs). This can be achieved since data groupings or abstract data types (queues, stacks etc)

can be defined as object-like structures and be used in different applications by creating instances

of theirs.

Graphs, as mentioned earlier, provide a natural way to visualize program information. They

are adaptable and most important, they are formai mathematical structures. In sorne approaches

[Colbrook89] flow graphs are transformed into prime programs (normal formL and then abstracted

into more general structures. The process may be described as reducing the program to be under­

stood to small prime programs and then creating, in a step by step process, functions combining

them at higher and higher levels until a full specification is achieved. It is obvious that such an

approach requires an excessive library of abstract data types. Furthermore, graph compIexity can

be used as a metric for the maintainability of the code [McCabe90]. Similarly, data flow diagrams

and structure charts (Gillis90] can be generally used to model the data transformation aspects of

a software system [Beneduci89], since they emphasize the logical flow of data and control while

de-emphasizing impIementational details and physical solutions of the problem.

In (Smythe90], reverse engineering separates into the Encapsulation phase, the Transformation

phase, the Normalization phase, the Interpretation phase, the Abstraction phase, and finally the

10

(

(

2.1 REPRESENTATION METHOOS

Causation phase. Basically in these phases the source code is parsed into an intermediate language

and the control flow is normalized. At this point, the process of deriving the meaning of a piece of

software begins. The code represented in this intermediate language is replaced by logical comments,

starting from the inner most blacks and working outward. In the abstraction phase, objects and

object hierarchies are identified. Data are mapped onto the procedures so that data operators

are separated and grouped with the data they operate upon. Application domains are mapped ta

objects. In the last phase services which must he provided to the user and constraints which have

to be met are identified.

In another approach [Callics88] programming knowledge is captured in the form of program­

ming plans [Rich90J, [Das89), [Davies90] which are abstract representations of algorithmic struc­

tures. A plan lists the building components of an algorithm in terms of atomic program elements or

other plans. A plan also identifies the proper sequence of these building components which is defined

in [Harandi90] and [Harandi88] as event path expression. Plan definitions are translated by a Plan

parser into inference rules as system's understanding knowledge. A pattern directed Inference en­

gine is used for recognizing plans in a program. Moreover, a Justification-based Truth lMaintenance

System (JTMS) can be used for recording the understanding process. Using this scheme source

code has to be paraphrased into a plan and then be matched with the entities in the knowledge

base or the predefined plans. The drawback of this approach is that it is not a trivial task to define

a system's knowledge as plans, capture all variations of an algorithm, and incorporate appropriate

heuristics. Furthermore, there is no guarantee of the completeness and correctness of the knowledge

base. Neural nets with learning capabilities could play a raIe in this approach.

However, it has been found that programmers use many clichés in their programming tasks.

This means that they caU on their personallibrary of previously written modules and data struc­

tures, for rense through adaptation for the problem at hand. Abstract and semantic knowledge

[Lebowitz83] can improve parsing since the syntactic parsing is enhanced with domain knowledge

or with programming plans.

Clichés can be recognized in existing programs to recover the programmer's abstract concepts

and intentions. According to Hartman [Hartman91a), three entities must he present for the un­

covering of clichés to be successful:

(i) a program representation or model,

(ii) programming knowledge of standard plans, and

(iii) search and comparison to find a plan instance.

11

(

(

(

2.2 RECOGNITION METHOOS

2. Recognition Methods

Once the representation of the basic components of a program by plans, clichés, or other

formalisms has been studied, representation and comparison methods for controlling plan detection

in complex applications have to be considered.

Comparison methods focus on techniques to perform, for example, simple plan instance recog­

nition, by proving equivalence or other relations, between components. If representation is based

on plans, the power of a comparison method is the number of plan instances it can recognize using

a given plan and its ability to abstract away from the comparison process implementation detaiIs

used in different plan instances. Comparison aIgorithms depend heavily on the program and on the

selected representation method and it does not always involve simple pattern matching. Compari­

son algorithms may apply transformation rules to establish program-plan equivaIence. Equivalence

based on specific criteria, is the strongest relation one can prove between a code fragment and a

programming plan but in practice partial recognition is the best that can be achieved. Partial recog­

nition deals with the problem of recognizing plan instances even when these plans are interleaved

with other type of information in the code or they are scattered throughout the program. Multiple,

failed or incomplete plan recognition has ta be taken into consideration as weIl. Multiple recognition

occurs when a single programming plan matches more than one program part. Ambiguities can be

resolved using needs, domain knowledge or information besides the program and plans. On the other

hand, failed recognition should produce failure information explaining the cause of failure. The most

common case, though, occurs when no success or failure cao be proven. In this case, incomplete

bindings should be produced for explanation and control.

Basic components are part of a program behavior and are recognized following a certain control

strategy. Top level control methods focus on techniques to select program parts and programming

plans for comparison in order to achieve plan instance localization. Nloreover, top level control

applies the comparison results to the application program. Program parts and programming plans,

represented at a higher level of abstraction than the source code are selected using a top-Ievel control

strategy and used as input to a comparison module. The output of such a comparison are recog­

nized concepts and program parts satisfying the specifications of a programming plan. Control can

be guided by the needs of the particular application as weB as by the results of previous comparisons.

Search aIgorithms are used to select from the program representation different programming parts

for comparison. Bottom-up search strategies systematically select all program parts covering the

program representation, while top-down search strategies seek single parts that cao be used ta satisfy

a given expectation (subgoal). Programming plans and program parts are not always represented in

the same formalism. Moreover, during the recognition process comparison has ta perfarmed between

12

(

(

2.2 RECOGNITION METHOOS

already recognized concepts and original program material. Hierarchical recognition control strate­

gies focus on such multi-rnulti-Ieveled representations and are used for compositional recognition

where complex concepts are recognized in terms of their subcomponents.

Furthermore, program decomposition can be used ta guide the selection process. Performance

is best when decomposition produces program parts which correspond weIl with the plans in the

plan library. Program decomposition can be performed a priori before the selection process starts,

or in adynamie way based on previous recognition results and the current needs of the application

as the selection process is performed.

2.1. Methods Used for Controlling Recognition. In the literature one can find a

number of different methods used to guide and perform the plan instance recognition process.

As far as the comparison methods are concerned, sorne systems (eg. PROUST) [Johnson85],

[Engberts911 match synta.x trees with syntax tree templates. A plan matches a program statement

if its unified template matches the statement's syntax tree, and its constraints and subgoals are

satisfied. TALUS, [Ourston89) compares student and reference functions by applying a heuristic

similarity measure. In CPU, [Letovsky88J programs are represented as lambda calculus expressions

and procedural plans. Comparison in CPU is performed by applying a unification and matching

algorithm on lambda calculus expressions. In UNPROG, [Hartman91b] program control flow

graphs and data flow relations are compared with the programming plan's control flow graph and

data flow relations. The objective here is proving plan 's data flow a subset of a program 's part

data flow. Quilici, (Quilici92) matches frame schema representations of C code. If they structurally

match then data flow graphs are compared as weil. GRASP, [Wills92) uses attributed data flow

sub-graphs to represent programs and programming plans. Comparison is performed by matching

sub-graphs and by checking constraints involving control dependencies and other program attributes.

As far as the top-Ievel control methods are concerned PROUST, (Johnson85] uses a top-down

control strategy applied to a solution goal tree. This control strategy, is enhanced with heuristics

for ordering, comparison and evaluation. Transformations are applied in order to reduce differences

due to implementation variations and bugs. TALUS, [Ourston89) uses the .4* best first search

algorithm in arder to find a mapping between student functions and reference program functions

maximizing a heuristic measure. CPU, (Letovsky88] uses rewrite rules and a bottom-up control

strategy. Top-Ievel control selects and transforms lambda calculus sub-expressions applying all

possible transformation rules until no more transformations are possible. Quilici's system applies an

indexing scheme to select candidate plans and then performs semantic abstractions by substituting

the selected frame with the abstracted one. Hierarchical recognition proceeds upward until no

more abstractions can be performed. Fina1ly, GRASP [Wills92) performs bottom-up graph parsing

13

(

(

(

2.4 INTERACTIVE QUERY CAPABILITIES

using a context-free graph grammar representing standard transformations between standard plans

and semantic abstractions for already recognized plan instances. Parsing checks ail possible sub­

graphs thus all possible interpretations can be found and be represented in a lattice of possible

interpretations.

3. InformaI Information Analysis

The methods presented 50 far are general purpose and none of them has been proven sufficient

to completely solve the design recovery problem for large systems. Other types of analysis cao offer

interesting solutions, especially when partial design recovery of certain types of applications is the

objective. These types of analysis will be briefly reviewed in following paragraphs. They can inspire

the conception of useful tools.

One of the most useful sources of information is the documentation and the mnemonic identifier

names used throughout the program. Code can be analyzed more easily and parsed so that ASTs

can be built and furthermore be abstracted to more general representations 50 that, the user under­

stanùs the nature of a design in human terms. Informai information obtained by an analysis of the

comments, variable names, and documentation is particularly useful for this purpose. "By restoring

the comments from the original code we can elaborate several of our guesses and enhance our un­

derstanding of sorne of the functions and variables" [Biggerstaff89]. Informal information provides

the means for understanding the computational intent of the code in a way that is impossible when

plain source code is used. The research issues dealing with this subject are:

(i) how ta represent the semantics provided by the informal information,

(ii) how can be related ta formai information provided by the code, and

(iii) define a set of operations that integrate this information and implement a design recovery

process.

An interesting approach based on automatic learning is described in [Merlo93j.

4. Interactive Query Capabilities

On designing an interface [Shneiderman86], [Hix89], for a software maintenance tool there

are sorne points which are important to the end user. One such is the option of interactive query

capabilities. The user should be able ta interrupt the maintenance system and ask for information,

manipulate graphs, choose windows and select different ways to represent data [Hi1l87j.

Some of the queries the system should support are:

• asking for information on the data flow graphs,

• asking for information on the control flow graphs,

14

(

(

(

2.5 STATE OF THE PRACTICE

• program fragment localizations,

• editing and extracting selected parts of code (the ones that are relevant to a selected process),

• redundant and duplicated code detection,

• visualizing aliases,

• dead code detection,

• performing user guided transformations of the graphs,

• selecting domain models (uploading knowledge bases relevant to the domain, etc.).

The previous points can be applied io a more generalized context where the user not ooly

asks for information on the processes the maintenance tool is performing but also is able to access

information of the system as a whole. That means he must be able to view data bases, operating

system parameters, and module relationships. Moreover, the user should be able to visualize the

expected side effects of a change he is going to irnplement. Call graphs [Rajlich88], [Lieberman84],

dynamic variable bindings, and aliases should be presented. Generally, the tool should support an

environment which provides to the user with multipurpose facilities.

5. State of the Practice

The cnrrent software maintenance crisis has lead to a large increase in research and development

in this area. Research centers are looking for new ways to ease the burden of re-engineering. At the

same time, many commercial developers are taking advantage of now highly respected buzzwords

reverse engineering and re-engineering. Most of them provide a sharp user interface based on

established principles, generally data and How control analysis. The utility of these tools should not

be underestimated, as this kind of support can greatly increase maintenance efficiency.

Hopefully, the next generation of commercially available re-engineering tools will be based on

research that is currentl)" underway, and will provide the magic that is often implied in the sales

brochures of today.

5.1. Tools on the Market. Naturally, many software developers have moved to meet

the needs of software maintainers. Sorne of research inta reverse engineering has already been

translated ioto commercially available products. REFINE 1 [Kotik89] is an interactive software

development system which is useful for software analysis and testing. 1t provides three tools: a high

level specification language, an object-oriented database, and a language processing system.

The database is used ta store the software as annotated abstract syntax: trees, using an object­

oriented representation. The specification language is used to query the database. The language

processing system must be provided with a description of a language in the form of a grammar

l REFINE is a trademark of Reasoning Corp.

15

(

(

(

2.5 STATE OF THE PRACTICE

together with a language domain mode!. REFINE also allows programming templates to be defined,

which can be used to test whether a program is an instance of a defined template, or to build one

which is.

Rules are written which use pattern matching to identify logical code fragments, and bind their

text to identifiers. These identifiers may then be used to write out code in a new forme The pattern

matching capabilities of REFINE can be used to restructure program statements. Programs are

converted between source code and the object-oriented database using the parsers created by the

language processing system. The REFINE object system supports a data model that is close to

the standard conceptual view of annotated abstract syntax trees. There is a specification language

which is used to query and update the database. Once the software has been stored in the database,

it may be automatically transformed by defining output rules.

Bachman Information Systems (Bmc] provides the following products: BACHNIAN / Database

Administrator, the DBA Catalog Extract, a Data Analyst, and the DA Capture. These products are

capable of reading physical data definitions in a number of different formats and converting them

to graphical, logical representations. These representations can be used to modify the database

structure, and then the tools can be used to optimize the database design and regenerate it.

Cadre Technologies (CASE89} (Cadr] has developed a set of applications which can provide

statistical information concerning program execution. It also traclŒ calI hierarchy, and can present

all its results graphically.

Viasoft [Viasoft] has a set of products known as VIA/Center which operate on COBOL pro­

grams. The analytical engine can create a database of information about a program's characteristics;

like how logic and data are related, and how control is passed between modules. Viasoft also promises

more advanced products for the future.

Hypersoft [HypSoft] has an application which runs on a VAX called Application Browser. It

facilitates navigation through COBOL programs by providing a graphical user interface to the source

code.

Ten X Technology (CASE89] has a similar product for C programs.

The Intersolv [Intersolv] company has produced an application called Design Recovery [Intersolv911

which translates code into diagrams which clarify the underlying structure. It reads COBOL source

code and database definitions, then generates the corresponding physical models, which it stores in

an internai repository. The models may be examined and changed, and then used to produce new

code.

16

(

(

(

2.5 STATE OF THE PRACTICE

Design Recovery uses diagrams ta show the hierarchical relationship between sections and para­

graphs. It automatically identifies dead code. For every section, it maintains a list of which variables

and which files are updated. It aIso calculates a metric measuring the complexity of every section.

In the description of all these products, the use of the term re-engineering is quite liberaI

(Chïko90]. These products focus on presenting the code in an attractive form, and supporting

the user by giving him the power to easily navigate through the code. Some of them help in

organizing documentation, and/or testing and debugging. A good source of information in this area

is [Ovum90).

The bottom Hne is that there are a number of products which are capable of analyzing existing

code (and sometimes data), and presenting it ta the user in a more attractive form than that provided

by a simple text editor. There is virtually no mention of automatic regeneration of programs.

5.2. Tools in Research Labs. A number of research centers have aIlocated resources

to the software maintenance crisis. It has been realized that the most time-consuming aspect of

maintenance is program understanding. Therefore, any system which can automate this process will

greatly increase productivity.

Ourston [Ourston89] looked at a number of research projects which addressed this problem.

Program recognition is a form of program analysis that identifies the purpose of a program. It is

necessary for software maintenance, where programmers must modify code which is unfamiliar to

them, and which has possibly not been developed using acceptable software engineering techniques.

The Program Recognizer [Wills92] uses a library of clichés ta identify fragments and data

structures which appear in the code. It is possible that there will be gaps in the understanding of

the program, but this is acceptable as long as individual clichés can still be recognized. The arder

or separation of statements in the input program will not affect recognition. Program Recognizer

requires that all pertinent clichés exist in the database hefore the recognition process begins.

Talus [Brotsky84) was developed ta provide automatic program debugging in support of in­

telligent tutoring. It reads in and attempts ta C0rrect errors in LISP programs, by comparing them

with correct versions of the program.

Proust {Johnson85] is part of an intelligent tutoring system for novice programming students.

It tries ta debug Pascal programs by identifying programmer intentions. Proust uses a top-down

template matching approach which minimizes the search space required for successful program iden­

tification. By operating with goals at each step, it can synthesize solutions which do not appear in

the datahase. Proust requires that the problem ta solve he specified.

Rigi [Muller91] was initially developed as a tool for programming-in-the-Iarge, but it has

been expanded and is now aIso a maintenance and re-engineering tool. The first step is ta parse

17

(

(

(

2.5 STATE OF THE PRACTICE

the target program and store its artifacts in a repository. This is done by extracting of relevant

system components and dependencies out of the source code. The second step, which requires

interactive assistance from the programmer, is the generation of hierarchies of subsystems, based on

the resource-flow graphs of the source code. The third step is the construct of interfaces among the

subsystems. The final step is the evaluation of the subsystem structures using established software

engineering principles as a guide. Reverse engineering can be used to produce documentation which

is more consistent and accurate.

Design recovery [Biggerstaff94] is needed primarily for maintenance, enhancement and reuse.

A domain model is used to store expertise about the program in question. The goal is ta develop

structures which will aid in understanding a program. Expectations drawn from previous experience

serve to guide the understanding process. The first step is to identify the most important modules

and data structures. A conceptual abstraction is associated with each module, and a mapping is

rnaintained to its corresponding code. Conceptual abstractions are used to hide the detail inherit in

a complex module, allowing one to focus on the code in terms of levels of abstraction. The software

engineer has knowledge of numerous conceptual abstractions and seeks instances of these in the code.

The informal cIues provided by variable and function names is vital to program comprehension.

Programming languages do not contain the constructs necessary to express information about the

informa! conceptual abstractions behind the code. A system called Desire has been implemented

and has been used to extract design knowledge to support translating C to C++. The importance

of domain knowledge, as weIl as the intuition of an experienced programmer, is stressed in this

approach.

Ward, Calliss and Munro [Ward89] have developed "The Maintainer's Assistant" which pro­

vides a structured framework wherein maintenance can be approached. The largest part of the

maintenance task is the understanding of the code; working out what the program is supposed to

do, and how sections of code affect one another. Understanding a program involves severa! aspects:

• understanding the specifications of its modules,

• understanding the data flow,

• understanding the control flow,

• determining the scope of the variables, and

• determining the effects of a proposed modification.

A number of different kinds of transformations are used:

• local and global restructuring of code,

• expression in a higher-Ievel notation, and

• restructuring of data structures.

18

(

(

2.5 STATE OF THE PRACTICE

The system which has been developed is an interactive one, as not enough information is present in

the code itself to make assumptions about the function of the program and its various parts. When

viewing the program through the browser, the user may specify that a section of code should be

reduced to its specification, and vice versa. The system consists of a program transformer which

uses a knowledge base to convert a section of code to equivalent but more structured code, and a

structure editor, which is a synta.'C-based editor through which all changes must be made.

Canfora, and Cimitile (Canfora94), (Canfora92), (CiInitïle90) present efficient algorithms for

analyzing the control and data flow in order to identify binding conditions on program variable's.

Parts of the system that are bound by a set of conditions are isolated. This approach combines

formal representation methods (e.g. Control Flow Graph, Program Dependency Graph) with first

order logic to provide horizontal and vertical sUces of a Program. This approach is used to identify

components that may implement a particular function or lie on the same dynamic path.

Baker (Baker94], (Baker95] represents source code a stream of strings. The approach uses

parameterized Pattern ~latching techniques based on a variation of a variation of the Boyer-~Ioore

algorithm to identify duplication within a string. A prototype system called dup has been impIe­

mented and is currently used in large legacy systems. The strength of this approach is the efficient

matching and the overall scalability of the algorithm used. The drawback is that it does not relate

to any program feature sucb as the control and data flow.

Paul [Pau194) proposes a system (SCRUPLE) in which regular-expressions are used to locate

programming patterns in a large software system. Pattern matching is performed by testing if a code

fragment is accepted by the automaton that is constructed by a regular-expression provided by the

user, as a query. The advantage of this approach is that it is string based, may be easily applied to

a variety of programming languages, and has been demonstrated to be fast. The limitations for this

approach are that it aliows for exact matching only and does not provide any means for modeling

abstractions or allow for hierarchical recognition.

Johnson [Johnson94a], [Johnson94b) uses a similar text based approach where fingerprints

in source files are computed using a hashing mechanism. Fingerprints are compared to identify an

overall similarity between two texts. The advantage of this approach is that it is very fast, scalable

and efficient. Its drawback is that it allows only for exact matching, and it may produce noise in the

recognition process by matching text irrelevant to the source code (e.g headers, include files etc.)

Jankowitz [Jankowitz88], and McCabe [McCabe90) use statistical measurements to com­

pute a fingerprint of a software component. This is close to our approach using the metrics-based

matching. The significant difference of our approach form these methods is that we compute all

measurements compositionally at the AST nodes and we provide a methodology of segmenting and

19

(

(

2.5 STATE OF THE PRACTICE

delineating the source code in order to achieve matching at a granularity lower than a a Function

or a Procedure.

20

(

(

(

CHAPTER 3

Program Features For Design Recovery

1. Introduction

In arder ta perform design recovery we have first to represent source code in a higher level

of abstraction. The program representation scheme must allow for the calculation of a number of

feature vectors and be able to to do sa for every statement, block or function of the source code.

For our program representation we use an object-oriented annotated abstract synta.x tree (AST).

We have chosen this program representation scheme because:

• it does not require any overhead ta be computed as it is a direct product of the parsing

pracess and,

• it can be easily analyzed ta compute severa! data and control flow program properties

Nades of the AST are represented as abjects in a LISP-based development environment 1. A

sample AST for a C code fragment in Fig.3.1, where the AST, its raot in its Object representation,

and the corresponding source code are illustrated.

Creating the annotated AST is a three-step process. First, a grammar and an abject (domain)

model must be designed for the programming language of the subject system. The tool vendor has

parsers available for such common languages as C and COBOL. Parsers for other languages may

be easily constructed or obtained through the user community. The domain modei defines object­

oriented hierarchies for the AST nodes in which, for example, an If-Statement and a While-Statement

are defined ta be subclasses of the Statement class.

The second step is ta use the parser on the subject system ta construct the AST representation

of the source code. Some tree annotations, such as linkage information and the calI graph are

created automaticaIly by the parser. Other tree annotations are computed as part of the software

l We are using as our development environment a commercial tool called REFINE (a trademark of Reasoning Systems
Corp.).

3.1 INTRODUCTION

(Inspector

File PlIdtIges Hmary Options WlI1dows
l 'r.l r '. '.Jo 't 1 - -

If (c:tcl<.tect(lrctf18l6-~laI.lIàtrn.llàtrn.
.~ • 1.0) 1. (-out ')0))

<6'dtfU-S
(e1s:~Utw l3l2>
<c1s:lllDd< me>

c1s;.~

e1s;lf-unlltun
c1s;~

...:.Ublnllrcs

...:eras
"':'~-vf
cls::fll'l-Qlt
eu::f1la-agre
e1s;:f~l~

els::'II'CtllriS-CaUII'c·Ul~

"l:lan-fa-~

els::1dIntlf~

(retlrn(O): l

1

1

~;IF'-sTlITOOlf ~(cuaf~ -.~

1.0
0.0
a
o
(,.t:1an l33C>
(cls:Ullntlf~ rz!j6).

(cls:Ullntlf~1335>.
(els;Ullntlf~ «Œ>••

.,,:1~ 2
...:1~~~ oI6ol
e1s::UleeIs a
e ls: :loc:clà 2.0
e1s::ruGr-of..-.1rcaIU 0.0
~_ <cu:lllDd< «DB>
.,,:--.m-lltit (cls:lllad<~ -:
els:~~~I/tUiIlI1I"O

...:IU"f~ '~lf ~ tm<.. DQA.IlY>....)

...:IU"f~tre-eo~ 12
cls;;.,rUtl1a-wt-ln-anItr a

An ImIUleIr ofClS:lF-STATEUENT("'17)

(

FIGURE 3.1. AST nndes are represented as objects in a local repository. Arcs of the AST
are represented as mappings between objects.

(

analysis process (Le. metrics). Once the AST is created, further steps operate in an essentially

language-independent fashion.

The final step is to add additional annotations into the tree for information on data types,

data flow (data flow graphs), the results of external analysis, and links to informai information. An

important aspect proposed in this thesis is that we calculate all these annotations compositionally

from the leaves ta the root of the AST, that is from Expressions to Statements to Blocks, and finally

to Functions.

This chapter discusses the nature of annotations that we added to the AST in order ta facilitate

pattern matching and perform plan localization.

22

(

(

(

3.2 PROGRAM FEATURE YECTORS FOR CLONE DETECTION

2. Program Feature Vectors for Clone Detection

In this section we describe the features used for classifying code fragments, and discuss the

way that have been compositionally computed for ail Expressions, Statements, Blacks, and finally

Functions in the system.

The program features were selected based on their contribution to the data and control flow of

the system. "vVe aimed for the features to exhibit low correlation (based on the Spearman-Pierson

correlation test) 50 as to be sensitive ta different control and data 80w properties and each one to

contribute an independent program characteristic. The features selected for our analyses include:

(i) The number of functions called (Fanout);

(ii) Global and local variables 2 used and updated;

(iii) Parameters passed by reference used and updated;

(iv) Parameters passed by value used and updated;

(v) Input/Output operations;

(vi) External files used;

(vii) lVlcCabe cyclomatic complexity;

(viii) Albrecht's function point metric;

(ix) Henry-Kafura's information Bow quality metric

For example, consider the following code fragment from a proprietary PL/l-like language.

MAIN: PROCEDURE(OPTION) j

DCL OPTION FIXED(31);

IF (OPTION>O) THEN

CALL SHOW_MENU(OPTION);

ELSE

CALL SHOW_ERRDR(IIInvalid option number lf
);

END MAIN;

The corresponding AST representation for the IF statement is shown in Fig. 3.2. The tree is

annotated with the Fanout attribute which has been determined during an analysis phase following

the initial parse.

The annotation has been computed in a compositional way. The final Fanout value for the IF

statement has been calculated in terms of the Fanout of its THEN and ELSE parts, which in turn

obtained their values by composing the values from the nodes below them. Compositionality is a

very important aspect of this approach as it allows to classification of code entities irrespective of

their class. In such a way a WHILE statement can be compared with a Black statement and found

2Yariables are also referred in the text as Identifiers

23

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

.--...---.........~ ..---.....-
~.~

MENU ~

L.g.nd -----------.........

NoDIli 1............ - A8T node

.~

- L,"k Iron" parenl
10 c"'Ud vi••
"_n'led .nrtbul.4

_ F.nout attribut_
cont.'"'ng Int.g...
".Iue V.

(
FIGURE 3.2. The AST for an IF statement with Fanout attributes.

similar if their corresponding feature vectors match. A typical scenario is when a cut-and-paste

operation takes this While statement and inserts it in a Black in another part of the system. In the

following sections, the features used for the proposed pattern matching techniques are presented in

detail.

2.1. Global Variables.

• Description: GLOBALS(a..constr) is the set of global variables used or updated within the

construct a_constr.

A global variable for a Statement or Expression or Function is a variable which is not

declared3 in the Statement, the Expression or the Function.

• Cases:

(i) If a_constr is a FUNCTION then

GLDBALS(a_constr) = { GLOBALS(Body)

where Body is the body of the function lLconstr

3 A variable declaration is a point where the variable is formally declared. A variable definition is a point where a
variable is storedjupdated.

24

(

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(ii) If a_constr is a sequence of statements SI .•. Sn then

GLOB.4.LS(a..constr) = { n?::lGLOBALS(Sd

(iii) If a_constr is an IF statement then

!GLOBALS(Cand)n

GLOBALS(a-.e011str) = GLOBA.LS(ThenPart)n

GLOBALS(ElsePart)

where Gond, ThenPart, ElsePart are the condition the Then part and the Else part

of the IF statement a-constr respectively

(iv) If a_constr is a WHILE statement then

{

GLOB.4LS(Cand)n
GLOBALS(a_canstr) =

GLOB.4LS(Body)

where Gond, Body are the condition and the Body of the \VHILE statement a_constr

respectively

(v) If a_constr is a DO statement then

{

GLOBALS(Cand)n
GLOBALS(a_canstr} =

GLOBALS(Body)

where Gond, Body are the condition and the Body of the DO statement a_constr

respectively

(vi) If a_constr is a FOR statement then

r GLOBALS(Init)n

1
GLOBA.LS(Incr)n

GLOBALS(a..canstr) =
GLOBALS(Test)n

GLOBALS(Body)

where [nit, [ncr, Test, Body are the Initialize expression the Increment expression,

the Test expression and the Body of the FOR statement a_constr respectively

(vii) If a_constr is a GOTO statement then

GLOB.4LS(a_canstr) = { GLOBALS(Label)

where Label is the Label expression of the GOTO statement lLconstr

25

(

(

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(viii) If a_constr is a SWITCH statement then

{

GLOBALS(Cand)n
GLOB.4.LS(a..canstr} =

GLOBALS(Body)

where Gond, Body are the Switch Test e..xpression and Body of the S\VITCH statement

tLconstr respectively

(i..x) If a_constr is a RETURN statement then

GLOBALS(a..canstr) = { GLOBA.LS(return_expr)

where retUrTLexpr is the return expression of the RETURJ.~ statement tLconstr

(x) If a_constr is a LABELED statement then

GLOBA.LS(a_canstr) = { GLOB.4LS(Body)

where Body is the Body of the LABELED statement a_constr

(xi) If a_constr is an EXPRESSION Statement Ce.g. an assignment) then

GLOBALS(a_canstr) == { the number of individual variables used or updated

within a_constr and not declared within a_constr

(xii) If a_constr is an EXPRESSION then

GLOBALS(a_canstr) == { the number of individual variables used or updated

within a_constr and not declared within a_constr

2.2. Global Variables Updated.

• Description: GLüBALS_UPDATED(a_constr) is equal to the set of global variables up­

dated within the construct lLconstr.

• Cases:

(i) If a_constr is a FUNCTION then

GLOBALS_UPDATED(a..canstr) == { GLOBALS_UPDATED(Body)

where Body is the body of the function lLconstr

26

(

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(H) If a_constr is a sequence of statements SI ... Sn then

GLOBALS_UPDATED(a..canstr) ={ ni=IGLOBALS_UPDATED(St}

(iii) If a_constr is an IF statement then

{

GLOBALS_UPDATED(Cand)n

GLOBALS_UP DATED(a..canstr) = GLOBALS_UP DA.TED(ThenPart)n

GLOBALS_UPDATED(ElsePart)

where Gond, ThenPart, ElsePart are the condition the Then part and the Eise part

of the IF statement a-eonstr respectively

(iv) If a_constr is a WHILE statement then

{
GLOBALS_UPDATED(Cond)n

GLOBALS_UPDATED(a..canstr) =
GLOBALS_UPDATED(Body)

where Cond, Body are the condition and the Body of the \VHILE statement a_constr

respectively

(v) If a_constr is a DO statement then

{
GLOBALS_UPDATED(Cond)n

GLOBALS_UP DATED(a..canstr) =
GLOBALS_UPDATED(Body)

where Gond, Body are the condition and the Body of the no statement a_constr

respectively

(vi) If a_constr is a FOR statement then

GLOBALS_UPDA.TED(a..canstr) =

GLOBALS_UP DATED(Init)n

GLOBA.LS_UP DATED(Incr)n

GLOBALS_UP DATED(Test)n

GLOBALS_UP DATED(Body)

(

where Init, [ner, Test, Body are the Initialize expression the Increment expression,

the Test expression and the Body of the FOR statement a_constr respectively

(vii) If a_constr is a GOTO statement then

GLOBALS_UP DATED(a..canstr) ={ GLOBALS_UP DATED(Label)

where Label is the Label expression of the GOTO statement lLconstr

27

(

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(viii) If a_constr is a SWITCH statement then

{

GLOBALS_UPDATED(Cand)n
GLOBALS_UPDATED(a..canstr) =

GLOBA.LS_UPDATED(Body)

where Gond, Body are the Switch Test expression and Body of the SWITCH statement

a_canstr respectively

(Lx) If a_constr is a RETURN statement then

GLDB.4.LS_UP DATED(a...canstr) = { GLOBALS_UP DATED(return_expr)

where retunLexpr is the return expression of the RETURN statement lLconstr

(x) If a_constr is a LABELED statement then

GLOBALS_UPDATED(a...canstr) = { GLOBALS_UPD.4TED(Body)

where Body is the Body of the LABELED statement lLconstr

(xi) If a_constr is an EXPRESSION STATEMENT (e.g. an assignment) then

GLOBALS_UPDATED(a..constr) = {the set ofindividuaI variables updated

within a.-eonstr and

Dot declared within a_constr

(xii) If a_constr is an EXPRESSION then

GLOBALS_UPDATED(a...canstr) ={the set of individuaI variables updated

within a_constr and

Dot declared within a_constr4

2.3. Input / Output.

• Description: READ-5TATS(a_constr) is equal to the set of input statements in the con­

struct lLconstr. In the case of C these are: sscanf, scanf, fscanf, getc, getchar, gets, fgetc,

and fgets.

• Cases:

4The updates are based on Assignments, Post/Pre Incrementation, and Post/Pre Decrementation Statements

28

(

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(i) If a_constr is a FUNCTION then

READSTA.TS(a...constr) ={ READ...BTATS(Body)

where Body is the body of the function CLconstr

(ii) If a_constr is a sequence of statements Sl ... Sn then

READSTATS(a...constr) = {ui:lREAD...BTA.TS(Sd

(iii) If a_constr is a WHILE statement then

{

READ...BTATS(Cond)U
RE.4D...BTATS(a...canstr) =

READ..sTATS(Body)

where Cond, Body are the condition and the Body of the ""'"HILE statement a_constr

respectively

(iv) If a_constr is a no statement then

{

READ..sTATS(Cand)U
READ..sTATS(a...canstr) =

READ..sT.4TS(Body)

where Cond, Body are the condition and the Body of the DO statement a_constr

respectively

(v) If a_constr is a FOR statement then

READsrATS (a...canstr) =

READ...BTA.TS(Init)U

READ...BTATS(Incr)U

READ...BTATS(Test)U

READ..sT.4TS(Body)

(

where fnit, [ncr, Test, Body are the Initialize expression the Increment expression,

the Test expression and the Body of the FOR statement a_constr respectively

(vi) If a_constr is a GOTO statement then

READ..sTA.TS(a...canstr) = { READ..sTATS(Label)

where

Label is the Label expression of the GOTO statement a_constr

29

(

(

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(vii) If a_constr is a SWITCH statement then

REA.D-5TATS(a...canstr) = { REA.D-STA.TS(Cand)U
REA.D-STA.TS(Body)

where Gond, Body are the Switch Test expression and Body of the SWITCH statement

a_constr respectively

(viii) If a_constr is a RETURN statement then

READ-5TA.TS(a-eanstr) = { READ-STATS(return...e.xpr)

where returrLexpr is the return expression of the RETURN statement a_constr

(ix) If a_constr is a LABELED statement then

READ-5TATS(a-canstr) = { READ-5TATS(Body)

where Body is the Body of the LABELED statement a_constr

(x) If a_constr is an EXPRESSION STATEMENT (e.g. an assignment) then

READ-STATS(a_constr) = the set of Input related function caUs in the construct

(xi) If a_constr is an EXPRESSION then

READ-STATS(a_constr) = the set of Input related function caUs in the construct

2.4. Files Opened.

• Description: FILES_OPENED(a_constr) is equal to the number of files opened in the con­

struct a_constr. In the of programs written in C the number of files opened is equal ta the

number of fopen function calls

• Cases:

(i) if a_constr is a FUNCTION then

FILES_OPENED(a-eanstr) = { FILES_OPENED(Body)

where Body is the body of the function a_constr

3D

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(H) If a_constr is a sequence of statements St ..• Sn then

n

FILES_OPENED(a_canstr) = {L FILES_OPENED(Sj)
i=l

(iii) If a_constr is a WHILE statement then

{

FILES_OPE1VED(Gond)+
FILES_OPENED(a..canstr) =

FILES_OPENED(Body)

where Gond, Body are the condition and the Body of the WHTI...E statement a_constr

respectivel}'

(iv) If a_constr is a no statement then

{

FILES_OPENED(Cand)+
FILES_OPEJ,VED(a_canstr) =

FILES _OPENED(Body)

where Gond, Body are the condition and the Body of the DO statement a_constr

respectively

(v) If a_constr is a FOR statement then

(FILES_OPENED(a_canstr) =

FILES_OPENED(lnit)+
FILES_OPENED(Incr)+

FILES_OPENED(Test)+

FILES_OPENED(Body)

(

where Init, [ncr, Test, Body are the Initialize expression, the Increment expression,

the Test expression and the Body of the FOR statement a_constr respectively

(vi) If a_constr is a GOTO statement then

FILES_OPENED(a_canstr) ={ FILES_OPENED(LabeL)

where Label is the Label expression of the GOTO statement a_constr

(vii) If a_constr is a SWITCH statement then

{

FILES_OPENED(Cond)+
FILES_OPENED(a_constr) =

FILES_OPENED(Body)

where Gond, Body are the Switch Test expression and Body of the SWlTCH statement

CLconstr respectively

31

(

(

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(viii) If a_constr is a RETURN statement then

FILES_OPENED(a_canstr) ={ FILES_OPENED(return_expr)

where returrLexpr is the return expression of the RET1JRN statement CLconstr

(i.x) If a_constr is a LABELED statement then

FILES_OPENED(a_canstr) = { FILES_OPENED(Body)

where Body is the Body of the LABELED statement a_constr

(x) If a_constr is an EXPRESSION STATEMENT (e.g. an assignment) then

FILES_OPENED(a..constr) = the number of fopen function caBs in the construct

(xi) If a_constr is an EXPRESSION then

FILES_OPENED(a..constr) = the number of fopen function caUs in the construct

2.5. Formai Parameters.

• Description: FORl\1AL-PAR.ivIS(a_constr) is equal ta the set of forma! parameters of a_constr

(applies when a_constr is a Function).

• Cases:

(i) If a_constr is a Function then

FORlvIAL-P.4Rl\·JS(a-eOTlstr) = the forma! parameter list of CLconstr.

(ii) If a_constr is any other construct then FORAJAL-PA.RJI.,IS(a-eonstr) = 0

2.6. Parameters by Reference Updated.

• Description: PARMS-BY-BEF_UPDATED(a_constr) is equal to the set of pointer variables

declared in the formai parameter list of the containing function and are updated within the

construct CLconstr

• Cases:

(i) If a_constr is a FUNCTION then

PARNIS-BY-REF_UPDATED(a-CUnstr) ={ PARMSJ3Y-REF_UPDATED(Body)

where Body is the body of the function tLconstr

32

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(ii) If a_constr is a sequence of statements SI ... Sn then

PA.R1vISJJY-REF_UPDATED(a..constr) = {U?=lPAR1vISJJY-REF_UPDA.TED(Sd

(iii) If a_constr is a WHILE statement then

{

PARAtISJJY-REF_UPDATED(Cond)U
P.4.RkISJJY-REF_UPD.4.TED(a..constr) =

PAR1vISJJY-REF_UPDATED(Body)

where Gond, Body are the condition and the Body of the WHILE statement a_canstr

respectively

(iv) If a_constr is a DO statement then

{

P.4RkISJJY-REF_UPDATED(Cond)U
P.4.RkISJ3Y-REF_UPDA.TED(a..constr) =

PARMS-BY-REF_UPDATED(Body)

where Gond, Body are the condition and the Body of the DO statement a_canstr

respectively

(v) If a_constr is a FOR statement t hen

(PA.R1v1S JJY-REF_UPD ATED (a..constr) =

P.4RAtISJJY-REF_UPDATED(Init)U

PARJ\;IS-BY-REF_UPDATED(lncr)U

PARMS-BY-REF_UPDATED(Test)U

P.4RJ\;IS-BY-REF_UPDATED(Body)

(

where [nit, lncr, Test, Body are the Initialize expression the Increment expression,

the Test expression and the Body of the FOR statement a_constr respectively

(vi) If a_constr is a GOTO statement then

P.4.RJ\;ISJJY-REF_UPDATED(a..constr) = { PARMSJ3Y-REF_UPDATED(Label)

where Label is the Label expression of the COTO statement a_constr

(vii) If a_constr is a SWITCH statement then

{

PA.RMSJJY-REF_UPDATED(Cand)U
PARJ\;lS..BY-REF_UPDATED(a..cunstr) =

PAR1vISJ3Y-REF_UPD.4.TED(Body)

where Cond, Body are the Switch Test expression and Body of the SWITCH statement

a_constr respectively

33

(

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(viii) If a_constr is a RETURN statement then

PARlvIS-BY-REF_UPDATED(a-constr) = { PARlvIS...BY..REF_UPDATED(return..expr)

where retum._expr is the return expression of the RETURN statement a_constr

(ix) If a_constr is a LABELED statement then

PARlvISJ3Y-BEF_UPDATED(a-COTlstr) = { PARA-ISJJY-REF_UPDATED(Body)

where Body is the Body of the LABELED statement a_constr

(x) If a_constr is an EXPRESSION STATEMENT (e.g. an assignment) then

P ARAlS -BY-REF _UP D ATE D(a-.eonstr) = set of pointer variables declared in

the formai parameter list of the

containing function and are updated

within a_canstr

(xi) If a_constr is an EXPRESSION then

PARlvfS-BY-BEF_UPDATED(a-.eonstr) =set of pointer variables declared in

the formai parameter list of the

containing function and are updated

within a_constr

2.7. Identifiers Used.

• Description: IDS_USED(a_constr) is the set of variables used in the construct a_constr

• Cases:

(i) If a_constr is a FUNCTION then

IDS_USED(a_cunstr) = { IDS_USED(Body)

where Body is the body of the function a_constr

(H) If a_constr is a sequence of statements SI ••' Sn then

34

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(iii) If a_constr is a WHILE statement then

{

IDS_USED(Cond)U
IDS_USED(a-eonstr) =

IDS_USED(Body)

where Cond, Body are the condition and the Body of the WHILE statement a_constr

respectively

(iv) If a_constr is a DO statement then

{

IDS_USED(Cand)U
IDS_USED(a..constr) =

1DS_US ED(Body)

where Cond, Body are the condition and the Body of the DO statement a_constr

respectively

(v) If a_constr is a FOR statement then

IDS_USED(a-eonstr) =

1DS_USED(Init)U

IDS_USED(Incr)U

l DS_USED(Test)u

1DS _US ED(Body)

(

(

where lnit, IncT, Test, Body are the Initialize expression the Increment expression,

the Test expression and the Body of the FOR statement a_constr respectively

(vi) If a_constr is a GOTO statement then

IDS_USED(a_constr) = { IDS_USED(LabeL)

where Label is the Label expression of the GOTO statement a_constr

(vii) If a_constr is a SWITCH statement then

{

IDS_USED(Cand)U
l DS_USED(a-eonstr) =

1DS_USED(Body)

where Gond, Body are the Switch Test expression and Body of the SWITCH statement

a_constr respectively

(viii) If a_constr is a RETURN statement then

IDS_USED(a_canstr) = { IDS_USED(return_expr)

where retum_expr is the return expression of the RETUR.1\T statement a_constr

35

(

(

(

3.2 PROGRAM FEATURE YECTORS FOR CLONE DETECTION

(ix) If a_constr is a LABELED statement then

IDS_USED(a-eanstr) ={ IDS_USED(Body)

where Body is the Body of the LABELED statement a_constr

(x) If a_constr is an EXPRESSION STATEMENT (e.g. an assignment) then

1DS_USED(a_canstr) = the set of variables used in the construct lLconstr

(xi) If a_constr is an EXPRESSION then

1DS_USED(a-eanstr) = the set of variables used in the construct a_constr

2.8. Identifiers Updated.

• Description: IDS_UPDATED(a_constr) is the set of variables updated in the construct

lLconstr

• Cases:

(i) If a_constr is a FUNCTION then

IDS_UPDATED(a-eanstr) ={ IDS_UPDATED(Body)

where Body is the body of the function a_constr

(ii) If a_constr is a sequence of statements SI ••. Sn then

IDS_UPD.4TED(a-eanstr) = {U?=lIDS_UPDATED(Sd

(Hi) If a_constr is a WHILE statement then

{

IDS_UPDATED(Cond)U
IDS_UPDATED(a..canstr) =

IDS_UPDATED(Body)

where Cond, Body are the condition and the Body of the WHILE statement a_constr

respectively

(iv) If a_constr is a DO statement then

{

IDS_UPDATED(Cand)U
IDS_UPDATED(a..canstr) =

1DS_UP DATED(Body)

where Cond, Body are the condition and the Body of the DO statement a_constr

respectively

36

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(v) If a_constr is a FOR statement then

IDS_UPDA.TED(a~onstr)=

l DS_UP DATED(Init)U

l DS_UPDATED(Incr)U

l DS_UPDATED(Test)U

IDS_UP DATED(Body)

(

(

where Init, Iner, Test, Body are the Initialize expression the Increment expression,

the Test expression and the Body of the FOR statement rLconstr respectively

(vi) If a_constr is a GOTO statement then

IDS_UPD.4.TED(a~anstr)= { IDS_UPDATED(LabeL)

where Label is the Label expression of the GOTO statement a_constr

(vii) If a_constr is a SWITCH statement then

{

IDS_UPD.4.TED(Cand)U
I DS_UPDATED(a~onstr)=

IDS_U P D.4.TED(Body)

where Cond, Body are the Switch Test expression and Body of the SWITCH statement

a_constr respectively

(viii) If a_constr is a RETURN statement then

IDS_UP D A.TE D (a~onstr) = { IDS_UP DATE D (return_expr)

where retum_expr is the return expression of the RETUR..l\I statement a_constr

(ix) If a_constr is a LABELED statement then

IDS_UPDATED(a~anstr)= { IDS_UPDATED(Body)

where Body is the Body of the LABELED statement a_constr

(x) If a_constr is an EXPRESSION STATEMENT (e.g. an assignment) then

1DS_UP DATED(a~anstr)= the set of variables updated in the construct

(xi) If a_constr is an EXPRESSION then

IDS_UPDATED(a-constr) = the set of variables updated in the construct

2.9. Function Calls.

37

(

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

• Description: FUNCTION_CALLS_TO(a..constr) is equal to the set of individual of Function

CaUs to a_constr (applies only when Cl-constr is a Function)

• Cases:

(i) If a_constr is a Function then

FUNCTION_CALLS.:rO(a-eanstr) = set of individual function calls to a_constr

(ii) If a_constr is any other construct then

FUNCTION_CALLS.:rO(a_canstr) = 0

2.10. S-Complexity.

• Description: S_CONIPLEXITY(a_constr) is equal to IF.4.N_OUT(a_canstr)/2 where

IFAN_OUT(a-e011str)1 is the number of individual function calls in the construct (a_constr)

2.11. D-Complexity.

• Description:

D_CO/vIPLEXITY(a_canstr) = jGLOBALS(a_constr}I/(IFA.N_OUT(a-eonstr) 1 + l}

where [GLOBALS(a_canstr}j is the number of individual declarations of global variables

used or updated within the construct a_constr. A global variable for a Statement or Expres­

sion or Function is a variable which is not declared in the Statement, the Expression or the

Function.

2.12. McCabe Complexity. MCCABE

(

• Description: MCCABE(a_constr) is equal to € - n + 2

where f is the number of edges in the control flow graph of the construct a_constr and n is

the number of nodes in the same graphe

Alternatively McCabe metric can be calculated as :

MCCABE(a_constr) = 1 + d where cl is the number of control decision predicates in the

construct lLconstr

• Cases:

38

(

(

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

Ci) If a_constr is a simple statement then

!vICC.4BE(a..canstr) = { 1 + d

where d is the number of control decision predicates in the construct a_constr

(ii) If a_constr is a sequence of statements SI, ..51: then

MCCABE(a_constr) = { L~=l AlCCA.BE(Sd - k + 1

(iii) If a_constr is a composite statement of k statements then

{

MCC.4BE(S)+
lvICCA.BE(a_constr) == 1:

Li=1 MCCABE(Sd - k

where S is the statement CLconstr viewed as a simple statement

(iv) If a_constr is an Expression then

l"fCCABE(a_canstr) = 1

2.13. Albrecht Metric.

• Description:

Pl * IGLOBALS(a..constr)l+

P2 * (IGLOBALS_UPDATED(a.-eaTl.str) 1+
ALBRECHT(a..constr) = IPARlYISJ3Y-REF_UPDATED(a-eonstr)1)+

P3 * IREADSTATS(a..constr)l+

P4 * FILES_OPENED(a_canstr)

where

- jGLOBALS(a_constr)/ is the is the number of individual declarations of global vari­

ables used or updated within the construct fLconstr.

- IGLOBALS_UP DATED(a..canstr) 1 is the number of individual declarations of global

variables updated within the construct a_constr.

- IPARMS..BY-REF_UPDATED(a...ro11.str)l is the number of pointer type variables

in the formai parameter list of the Function in which a_constr is contained and which

39

(

(

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

variables are updated within the construct lLconstr 5.

- IRE.4.D..5TATS(a-e011str)l is the number ofinput statements in the construct a_constr.

These statements include the C statements : sscanf, scanf, fscanf, getc, getchar, gets,

fgetc, and fgets.

- FILES _0 PENED(a_constr) is the number of fopen statements in the construct a_constr.

- The parameters Pi have integer values. The eurrent implementation uses the following

values[AdaIIlov87] :

Pl = 4

P2 = 5

.P3 = 4

Pol = 7

2.14. Kafura Metric.

• Description:

KAFURA(a-eanstr) = { (KAFURAJN(a_canstr) * KAFURA._OUT(a_canstr))"l

where

(i) KAFURAJN(a_constr) is the sum of

(a) the number of formal parameters (lFORAIALY.4RAlS(a-eanstr)1)

(b) the number of variables (IIDS_U8ED(a-eanstr) 1) used in the construct a_constr,

(c) the number of Function Calls to a_constr (IFU NeTION_CALLSJ'O(a_canstr) 1)

(ii) KAFURA_OUT(a_constr) is the sum of

(a) number of Functions called by lLconstr(that is the same as IFAN_OUT(a-eanstr) 1) ,

(b) the number of individual declarations of global variables updated within the

construct lLconstr (that is IGLOBALS_UPDATED(a-canstr) 1),

(c) the number of pointer type variables in the formai parameter list of the func­

tion in which a_constr is contained and which variables are updated within the

construct lLconstr, that is IPARMS..BYJlEF_UPDATED(a-eonstr) 1·

5Updates are calculated based on Assignment, Pre/Post Incrementation, and Pre/Post Decrementation statements

40

(

(

(

3.3 PATTERN MATCHING

3. Pattern Matching

In the following two chapters we discuss the proposed pattern-matching algorithms applied to

the problern of clone detection, and plan recognition. Determining whether two arbitrary program

functions have identical behavior is known to be undecidable in the general case. Our approach to

clone detection exploits the observation that clone instances, by their nature, should have a high

degree of structural similarity and data flow similarity. We look for identifiable characteristics or

features that can be used as a signature to categorize arbitrary pieces of code.

The work presented here uses feature vectors to establish similarity measures. Features exam­

ined include metric values and specifie data- and control-flow properties. In this thesis, we present

the following three types of pattern matching techniques for code cloning detection and plan local­

ization:

(i) metric-value similarity analysis,

(ii) dynamie programming techniques for comparing two code fragments at a statement-by­

statement basis and,

(iii) stochastic matching based on Dynamic Programming and NIarkov Models that represent

formulations of abstract descriptions of programming plans

NIetric-value similarity analysis is based on the assumption that two code fragments Cl and

C2 have metric values A-!(Cd and /l;!(C2) for sorne source code metric J.H. If the two fragments are

similar under the set of features measured by /l;!, then the values of /lI!(Cd and lvJ(C2) should be

proximate.

Dynamic Programming based similarity analysis performs eomparisons of program features at

a statement-by-statement basis. A Dynamic Programming function allows for calculating the best

fit between two sequences of program statements. The best fit is calculated by comparing program

features instead of just text. Within the Dynamic Programming framework we have experimented

with the following program features at per staternent leveI:

(i) Sets and Uses of Variables

(ii) Sets and Uses of Data Types

(iii) NIetrics (as discussed in Section.2)

Finally, stochastic matching is based on a pattern language that describes in a high level of

abstraction the structure and the severa! data How properties of a code fragment that may represent

a particular algorithmic plan. A matching algorithm is used to localize and match code fragments

that may be generated (matched) by this abstract description.

41

(

(

(

3.3 PATTERN MATCHING

These experiments were conducted within the framework of the Program Understanding project

with mM Canada, Center for Advanced Studies.

42

(

(

(

CHAPTER 4

Code Ta Code Matching

1. Metric-Value Similarity Analysis

J\:Ietric-value similarity analysis is based on the assumption that if two code fragments have

similar metrics then May have similar structure, data flow and control flow characteristics. These

metrics have been chosen sa that they represent and classify a number of low correlated program

features that are sensitive to program structure, 1/0 patterns, as weIl as data flow and control flow

properties.

Within this framework, the calculation of similarity between two code fragments becomes a

matter of comparing features as these are represented by five software metrics.

The Five modified metrics [AdaIIlov87], [Fenton91], [Buss94] discussed above for whieh their

components exhibit low correlation (based on the Spearman-Pierson correlation test)[Buss94] were

selected for our analyses. These selected metrics are:

(i) The number of functions called (fanant);

(ii) The ratio of input/output variables to the fanaut;

(iii) McCabe cydomatic camplexity;

(iv) Albrecht 's function point metric;

(v) Henry-Kafura's information flow Quality metric.

Once the five metries l'vh ta Ms are computed for every statement, block and function node, the

pattern matching process is very fast and efficient because it is based on the comparison of numeric

values.

We have experimented with two techniques for calculating the similarity of code fragments in

a software system.

(

(

4.1 METRIC-VALUE SIMILARITY ANALYSIS

The first one is based on pairwise Euclidean distance comparison of all statements that are

of length more than n tines long, where n is a parameter given by the user. We refer to it as

Partitioning Clustering Similarity Analysis because it is based on a partition clustering algorithm

using Euclidean distances to compute similarity between two entities.

The second technique is more efficient and uses an hierarchical clustering algorithm applied

in sequence to all five metrie dimensions, and we refer to it as Hierarchical Clustering Similarity

Analysis.

The issues related to ~fetrie-Value Similarity analysis are:

(i) code delineation criteria and selection of level of granularity for the matching process.

(ii) selection of a comparison function to caIculate distances between two metric vectors.

(iii) selection of appropriate threshold values per metric dimension by which two code fragments

can be considered similar. The selection of an appropriate threshold value for a metric

dimension is based on the nature of the metric and the tolerance the user is willing to

accommodate towards partial matching.

These points are discussed in more detail in the following sections.

1.1. Hierarchicai Clustering Clone Detection. A hierarchical clustering method is

a procedure for transforming a proximity matri.'C into a sequence of nested partitions [Jain88].

A proximity matrL'C is a matrix for which each element in di.) denotes the distance between two

elements or patterns Xi, Xj. Hierarchical clustering as weIl as Partitioning cIustering (discussed in

the foUowing section) is applied ta exclusive and intristic classifications. An exclusive classification

is a partition of a set of abjects in which each object belongs exactly to one cluster. An intristic or

unsupervised leaming classification is a partition that uses only the proximity matrix to compute it.

In literature [Clïfford75), [Shepard79], [Sneath73], [Jaïn88] the primary algorithmic options

for performing clustering are presented. In brief, these are classified as, agglomerative versus divisive,

seriai versus simultaneieous, monothetic versus polythetic.

An agglomerative, hierarchical clustering aIgorithm starts by placing each object in its own

cluster and continues by merging into larger and larger clusters. A seriai algorithm handles the

patterns one by one, while a monothetic algorithm uses the classification features one by one.

We propose an exclusive, intristic, agglomerative, seriai, and monothetic algorithm for com­

puting a partition that contains cIusters of code fragments that are considered similar within their

cluster.

The technique starts by creating cIusters of potential clones for every metric axis .I\1ti (i = 1 ..

5). Once the clusters for each axis are created, then intersections of clusters in different axes are

44

(

(

4.1 METRIC-VALUE SIMILARITY ANALYSIS

calculated forming intennediate results. For example, every cluster in the axis Mi cantains potential

clones under the criteria implied by this metric. Consequently, every cluster that has been calculated

by intersecting clusters in JVf i and M j cantains potentialciones under the criteria implied by bath

metrics. The process ends when all metrie axes have been considered. The user may specify at the

beginning the order of comparison, and the clustering thresholds for every metric axis. The clone

detection algorithm that is using clustering can be summarized as:

• Step 1. Select all source code statements S from the AST that are more than n lines long.

The parameter n can be changed by the user.

• Step 2. For each metric a."ci.s J\lfi (i = 1 ., 5) create clusters C',i that contain statements

with distance less than a given threshold di that is selected by the user. Each cluster then

contains potential code clone fragments under the metric eriterion Mi. Set the current axis

J\4 curr = ;\;fi, where i = 1. Mark Mi as used

• Step 3. For each cluster Ccurr.m in the eurrent metrie axis lvlcurr , interseet with all clusters

Cj.k in one of the non used metrie axis ;\;fjl j E {1 .. 5}. The clusters in the resulting

set contain potential code clone fragments under the criterion M curr and ;\.1j, and form

a composite metric a.xis)V1curr0)' ~lark J\.1 j as used and set the eurrent axis J\.1 curr =
,/\4curr0i .

• Step 4. If all metric axes have been considered then stop; else go to Step 3.

The comparison granularity is at the statement level and for statements that are of length of

more than n Hnes long, where n is a parameters provided by the user.

An interesting point of discussion is the threshold selection for each metric axis. The reason this

issue is important is that each software system has unique metric characteristics and the distribution

of values varies from system to system. \Vithin this framework we have experimented with the

following threshold selection options:

(i) fixed threshold values for every metric dimension

(ii) normalized threshold values. Normalized threshold distances are based on the premise that

each metric dimension has its own characteristics and value ranges so that an acceptable

threshold that may be used to differentiate one entity from another in a particular dimension

is given by:

MazValue-MinValue
weight· AverageVal Ut:

(4.1.1)

(

where Min-value and Max-value are the highest value and the lowest value seen in this metric

dimension for the system under analysis respectively and weight is a adjusting parameter.

45

(

(

(

4.1 METRIC-VALUE SIMILARITY ANALYSIS

Metric Value Frequency Difference from Previous Value
0.0 108 0.0
1.0 94 1.0
2.0 104 1.0
3.0 68 1.0
....
33 1 1.0
35 1 2.0
....
58 1 5.0
67 1 9.0

TABLE 4.1. Step DlStance table for S-CompleXlty taken from the Tcsh system

(iii) step distances. Step distance thresholding is based on the assumption that each metric

dimension has different distribution of values for a subject system. For example the S­

Complexity metric dimension has a minimum value-step of 1 while Information Flow and

Function Point may exhibit a more complex pattern. Dnder this category we have exper­

imented by using as an increase in threshold the next minimal difference between any two

distances for all the code fragments compared. In TableA.l an example of data used for

this type of threshold selection applied to the s-complexity metric dimension and for values

ohtained from the tcsh program is shawn. In this exampie, the tirst minimal difference is

1.0, the next is 2.0, the third is 5.0 and 50 on.

1.2. Partition Clustering Clone Detection. The pattern matching engine uses the com­

puted Euclidean distance and a clustering threshold value that is used as the clustering criterion.

Euclidean distance is the most common distance discussed in the literature[Hartigan75]. Other

distances include Disguised Euclidean Distances, the Pearson distance [Pearson26], the Catell

distance[Cate1l49] , the Manhattan distance and the Mahalanobis distance [Mahala36]. Each of

these distances aims on addressing the complications that may arise because the variables lie on

different scales or are of different types (Le. election rates and personal incarne). In the frame­

work of the software metrics we used, the variables after normalization, are in similar scales and of

compatible types, and thus the application of the Euclidean distance yields the fastest and simplest

solution.

In the literature (Spath80], [Hartigan75], (Everitt74], a number of clustering aIgorithms

have been proposed (e.g. the Leader algorithm, the Sorting algorithm, the K-Means algorithm, as

weil a number of heuristic algorithms) (Anderberg73).

46

(

(

(

4.2 DYNAMIC PROGRAMMING BA5ED SIMILARITY ANALYSIS

\Ve have chosen a variation of the Leader algorithm suggested by [Lu78] based on the nearest­

neighbor rule. The reason we used this algorithm is it is very fast, requiring only one pass through

the data. The negative aspect of the algorithm is that the partition is not invariant under the

reordering of the cases. This negative aspect can be eliminated if the clustering threshold distance

is set to zero. Then, the partition will be he invariant under the reordering of cases as all elements

of distance zero will eventually he contained in the same cluster.

Here we discuss a variation of this algorithm as is descrihed in [Jain88]. Our variation marks

the entries of the Similarity Matrix that have already been assigned to clusters. In this way search

for the best distance between a pattern and a cluster is raster as the elements of the Similarity

Matrix that have ta be searched are fewer.

Let P = {.Y"L, X 2, .••••y n} he a set of patterns ta be partitioned into K clusters.

• Step 1. Set i f- 1 and k f- 1. Assign pattern Xl to cluster Cl

• Step 2. Set i f- i+ 1. Find nearest neighbour of Xi aiming the patterns already assigned

ta clusters. Let dm denote the distance from Xi to its nearest neighbour. Suppose that the

nearest neighbour is in cluster m.

• Step 3. If dm ~ t, then assign Xi ta Cm. Otherwise set k f- k+l and assign Xi to a new

cluster Ct.

• Step 4. Delete all distance pairs between Xi and all patterns already assigned ta C!usters.

• Step 5. If every pattern has heen assigned to a cluster, stop. Else, go ta Step 2.

This partition clustering similarity analysis has been applied ta a severa! medium-sized produc­

tion C programs. Experimental results obtained by applying this technique are shown in Chapter.6.

2. Dynamic Programming Based Similarity Analysis

In addition ta the direct metric comparison techniques, we propose dynamic programming

techniques ta calculate the hest alignment hetween two code fragments based on insertion, deletion

and substitution operations. Rather than working directIy with te.xtual representations, source code

statements, are abstracted into feature sets that classify the given statement. Dynamic Programming

and Tree matching has been proposed in [Aho89] for code generation. In [Aho89] rewrite rules

are used ta map tree-structures ta assembly instructions. Dynamic Programming plays an importnt

raIe on matching efficiently the "heads" of the rewrite rules ta the tree-structures and thus apply

the required transformation. However, this is different from our matching objectives. In the context

of code cloning detection two ASTs that correspond ta cloned code fragments may be quite different

in structure, making thus the use of tree matching techniques very difficult and inefficient.

47

(

(

(

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSlS

Within this framework, we use features to classify a statement and we use these features in the

matching process. The statement features used in this Dynamic Programming approach are:

• Uses of variables, definitions of variables, numericalliterals, and strings

• Uses and definitions of data types

• The five metrics as discussed previously

Once program features have been computed (at parse time), similarity between twa statements

takes the Corm of computed coefficients between the profiles of these statements. In [Maarek91]

a number of such coefficients is discussed. These include Dice 's coefficient, Jaccard's coefficient,

and Salton's coefficient. These constitute standard coefficients in the literature, and within this

framework we have experimented with Dice '5 coefficient, and Jaccard's coefficient. Bath gave similar

results.

\Vithin this framework, Dynamic programming (DP) techniques detect the best alignment

between two code fragments based on insertion, deletion and substitution operations. Two statements

match if they update and use the same variables, strings, and numericalliterals. Variations in these

features at the simple statement l level provide a dissimilarity value used to calculate a global

dissimilarity measure of more complex and composite constructs such as composite statements,

begin-end blocks and, functions. The comparison function used to calculate dissimilarity measures

is discussed in detail in the following Section. Heuristics have been incorporated in the matching

process to facilitate variations that may have occurred in eut and paste operations. In particular,

the following heuristics are currently used:

• Adjustments between variable names by considering lexicographical distances (Le. maximum

common subsequences in identifier names)

• Filtering out short and trivial variable names such as i and j which are typically used for

temporary storage of intermediate values, and as loop index values. The user may provide

the minimum length of a variable to be considered in the matching process as a parameter.

Our experiments have been conducted by setting this minimum threshold to three characters

long.

Dynamic programming is a more accurate method than the direct metric comparison based anal­

ysis because the comparison of the feature vector is performed at the statement level [Konto94],

[Kont095]. Code fragments are selected for Dynamic Programming comparison by preselecting po­

tential clone candidates using the direct metric comparison analysis. Within this framework only the

source code statements that have a dissimilarity measure less than a given threshold are considered

1A simple statement is a source code statement that is not composed of other statements

48

(

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

for DP comparison. This preselection reduces the comparison space and increases efficiency as DP

matching is more computationally e.."'<pensive that the ~Ietrics-basedapproach.

2.1. Similarity Distance CalculatioD. The distance between the two code fragments is

given as a summation of comparison values as weIl as of insertion and deletion costs corresponding

to insertions and deletions that have to he applied in order to achieve the best alignment between

these two code fragments.

A program feature vector is used for the comparison of two statements. The features are stored

as attribute values in a frame-based structure representing expressions and statements in the AST.

We propose the following Dynamic Programming function with signature:

D : Feature_ Vector x Feature_ Vector --+ Real

for computing the cumulative similarity measure V between two code fragments P, ,;\.1.

Specifically,

(
D(&(l,p, Pl, &(l,j, M) = lv/in

~(p"j - 1, P,.I\I1)+

D(&(l, p, Pl, &(1, j - 1, }A»

l(p - l,j, P, A1) +
D(&(l,p - 1, P),&(I,j,M)

ccp - l,j - 1, P, .1\11)+

D(f(l, p - 1, Pl, f(l, j - 1, .l'vi))

(2.1.1)

(

where,

• M is the model code fragment

• P is the input code fragment to be compared with the model ...\.1

• &(i, j, Q) is a program feature vector from position i to position j in code fragment Q

• D(Vc , Vy) is the the distance hetween two feature vectors Vx , V y ,

• Ll(i,j, P, M) is the cost of deleting the jth statement of M, at position i of the fragment P

• l('i,j, P, ,,'A) the cost of inserting the ith statement of P at position j of the model M and

• C(i,j, P, M) is the cost of comparing the ith statement of the code fragment P with the jth

fragment of the model M. The comparison cost is calculated by comparing the corresponding

feature vectors. Currently, we compare ratios of variables updated, used per statement, data

types used or set, and comparisons based on metric values

49

(

(

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

Note that insertion, and deletion costs are used by the Dynamic Programming algorithm to

calculate the best fit between two code fragments. An intuitive interpretation of the best fit using

insertions and deletions is "if we insert statement i of the input at position j of the model then the

model and the input have the smallest feature vector difference"

The quality and the accuracy of the comparison cost is based on the program features selected

and the formula used to compare these features. For simplicity in the implementation we have

attached constant real values as insertion and deletion costs, to reflect the tolerance of the user

towards partial matching. The meaning of the insertion and the deletion costs is discussed in the

following paragraphs.

The comparison cost function C(i, j, J\It, P) is the key factor in producing the final distance

result when DP-based matching is used. There are many program features that can be considered

to characterize a code fragment (indentation, keywords, metrics, uses and definitions of variables).

Within the experimentation of this approach we used the following three different categories of

features

(i) updates and uses of variables as weIl as literal vaIues within a statement (Le. a message in

a print! statement):

(a) Featurell : Statement ~ {String} denotes the set of variable names used within a

statement,

(b) Feature12 : Statement ~ {String} denotes the set of variable names updated2 within

a statement

(c) Feature13 : Statement ~ {String} denotes the set of literai values (e.g. numbers,

strings) within a statement Ce.g. a print! statement).

(H) definitions and uses of data types:

(a) Feature21 : Statement 4- String denotes the set of data type names used within a

statement,

(b) Feature22 : Statement ~ String denotes the set of data type names updated within

a statement

The comparison cost of the ith statement in the input P and the jth statement of the model

j\lt for the first two categories is calculated as :

(

C(Pi,M') = .!.. ~ card(InputFeaturem(Pd n ModelFeaturem(M j »
J v ~l card(InputFeatureTJl(Pd U ModeIFeaturemM j »

2 AJso referred to in the Jiterature as: defined, or set or, stored

(2.1.2)

50

4.2 DYNAMIC PROGRAMMING BASED SIMILARlTY ANALYSIS

250200100 'SO
F1IlClIlIIPIIs

SIl

IOr---.-----,r-----,r-------r--~

;j
: ~
'I

1 1

i 1

" 1

. .--: " 1

.,.r' ~ j
or ----' 1------ --' -r ----1 1

0(1

~c
! 5
a

lB

16

(

FIGURE 4.1. Distances between function pairs of possible funetion clones for the Clips
and Bash programs using DP-based matching. The dashed line represents measurements
ohtained using the set-uses criterion. The solid fine represents measurements ohtained by
the metrics criterion. The values in the X - axis represent the nth funetion pair that has
been identified as containing potential clones (i.e. the two funetions have zero distance)
using the metrie eomparison similarity analysis.

(
where v is the size of the feature vector, or in other words how many features are used,

(iii) five metric values which are calculated compositionally from the statement level to function

level as discussed in Section.2 :

The comparison cost of the ith statement in the input P and the j th statement of the model

M when the five metrics are used is calculated as :

(2.1.3)
5

C(Pi,}vf j) = I)1\th(Pd -1\t[k(J'.ttj))2
k=l

\Vithin this framework new metrics and features can be used to make the comparison proeess

more sensitive and accurate.

Moreover, the following points on insertion and deletion eosts need to be diseussed.

(

• The insertion and deletion costs reflect the tolerance of the user towards partial matching

(Le. how much noise in terms of insertions and deletions is allowed before the matcher fails).

Higher insertion and deletion eosts indicate smaller tolerance, especially if eut-off thresholds

are used (Le. terminate matching if a certain threshold is exceeded), while smaller values

indicate higher tolerance.

51

(

(

4.2 DYNAMIC PRQGRAMMING BASED S[MILARITY ANALYSIS

• The values for insertion and deletion should be higher than the threshold value by wbich

two statements can be considered "similar", otherwise an insertion or a deletion could be

cbosen instead of a match.

• A lower insertion cost than the corresponding deletion cost indicates the preference of the

user to accept a code fragment P that is written by inserting new statements to the model

J\If. The opposite holds when the deletion cost is lower than the corresponding insertion

cost. A lower deletion cost indicates the preference of the user to accept a code fragment P

that is written by deleting statements from the model J\It. Insertion and deletion costs are

constant values throughout the comparison process and can be set empirically.

When different comparison criteria are used different distances are obtained. In FigA.l distances

calculated using Dynamic Programming are shown. For example in FigA.l, the distances obtained

using the wIetrics and the Set-Uses criterion for the Clips program are illustrated.

The dashed line shows distance results when updates and uses of variables are used as features

in the dynamic programming approach, while the solid line shows the distance results obtained when

the five metrics are used as features.

Table 4.2 summarizes statistical data regarding false alarms when Dynamic Programming com­

parison between functions in Clips was applied. The eolumn labeled Distance Range gives the

value range of distances between functions using the Dynamic Programming approaeh. The column

labeled False Alarms contains the percentage of functions that are not clones but they have been

identified as such. The column labeled Partial Clones contains the percentage of functions which

correspond only to partial eut and paste operations. Finally, the column labeled as Positive Clones

contains the percentage of function clearly identified as eut and paste operations.

As an example consider the following statements M and P:

• M:

ptr = head;

while(ptr != NULL && !found)

{ if(ptr->item == searchltem)

found = 1

else

ptr = ptr->next;

}

• P

while(ptr != NULL && !found)

52

(

(

(

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

Distance Range False Alarms Partial Clones Positive Clones
0.0 0.0 % 10.0% 90.0%

0.01 - 0.99 6.0 % 16.0 % 78.0%
1.0 - 1.49 8.0% 3.0 % 89.0%
1.5 - 1.99 30.0% 37.0 % 33.0%
2.0 - 2.99 36.0% 32.0 % 32.0%
3.0 - 3.99 56.0% 13.0 % 31.0%
4.0 - 5.99 82.0% 10.0 % 8.0%
6.0 - 15.0 100.0% 0.0 % 0.0%

TABLE 4.2. False alarms for the Chps program usmg DP matchmg and the Set-Uses cnterion.

{ if{ptr->item == searchltem)

{ printf("ELEMENT FOUND %s\n ll
, searchltem);

found = 1;

}

else

ptr = ptr->next;

}

The Dynamic Programming matching based on definitions and uses of variables is illustrated

in Fig. 4.2.

In the first grid the two code fragments are initially considered. At position (0, 0) of the first

grid a deletion is considered as it gives the best cumulative distance to this point (assuming there

will be a match at position CO, 1). The comparison of the two composite while statements in the first

grid at position (0, 1), initiates a nested match (second grid). In the second grid the comparison of

the composite if-then-else statements at position (l, 1) initiates a new nested match. In the third

grid, the comparison of the composite then-part of the if-then-else statements initiates the final

fourth nested match. Finally, in the fourth grid at position (0, 0), an insertion has been detected, as

it gives the best cumulative distance to this point (assuming a potential match at position (l, 0)).

When a nested match process finishes it passes its result back to the position from which it was

originally invoked and the matching continues from this point on.

The DP technique has been successfully applied to detect code cloning and facilitate partial

matching. The Section below, summarizes another use of code clOning detection when combined

with generic data flow analysis, and namely, system partitioning.

2.2. System Partitioning. A large software system is very difficult to analyse as a whole.

One solution is to decompose the system according to a number of criteria. System Partitioning is,

53

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

(M
1 M

II

p
HO •.

1

1----1--·
,

!= ••

----r----'--
1 1

---~---
1

1

while() ...

----T----I--
1 1

--- ----r-
I 1 if()

+- ... ------..
-- 1

~--r----I--· "
1 1 ptr !=~~

p

while() •..

ptr =head

ptr->item =::1 •• then-part else part

(

M

else-part

tllen-part

ptr->item =

m

p

M IV

----r----'--
1 1

---~----r_-
1 1
l ,__.

pratf () . • found = 1

p

FIGURE 4.2. The matching process between two code fragments. Insertions are represented
as horizontal lines, deletions as vertical lines and, matches as diagonal lines.

on its own, a large area of research and it is not the focus of this thesis but, nevertheless, we would

like to devote a small section to ideas that we round to be practical when analysing a large system

[Buss94].

(

System Partitioning is a necessary step when analysing a large software system, that due to

space or time limitations, can not be treated as a whole. To perform System Partitioning key points

that have to he addressed include:

(i) The Partitioning criteria (Le. what is a successful partitioning)

54

(

4.2 OYNAMIC PROGRAMMING BASEO SIMILARITY ANALYSIS

(ii) The Partitioning features (Le. what are the available program features to perform Partition­

ing on)

(iii) The initial state from which the Partitioning process will start

Partitioning and grouping criteria may include:

• Maximise cIuster size and minimise inter-cluster data and control flow (this is an optimisation

problem)

• AlI instances of a particular data type (i.e. a date field) are included in a partition

• Functionality (e.g. a part of a large application that implements a particular task)

• Customer imposed criteria

Partitioning and grouping features may include:

• Structural Similarity

• Code affected using impact analysis and starting from a set of initial requirements (i.e. a set

of variables)

• Data types fetched or stored

• Access to external sources (Le. Data Files)

• Customer imposed features

The features we experimented with are:

• Data Bindings Analysis 3

• Common Resources Analysis

Data Bindings analysis focuses on the identification of triplets < Cl, Cl, V > where Cl, C2 are

sets of functions and Va set of variables sucb tbat all functions in Cl define all variables in Vand all

functions in C2 use all variables in V. This type of analysis allows for tbe identification of modules

or subsystems whose components have high coupling. When definitions and uses of variables are

computed, basic aliasing (Le. parameters passed by reference), is considered as weil.

Common References analysis focuses on the identification of pairs < Cl, V > where Cl is a set

of functions and Va set of variables sucb that all functions in Cl define or use all variables in V. This

type of analysis considers only the variable name and type, and no aliasing or scoping information

is taken into account. The assumption is that if two functions have variables in common with the

same name and type, most probably they refer to the same concept. This type of analysis reveals

modules or subsystems that are related by sorne concept and data type. This type of analysis has

been used by Rigi ta visualise segmentations of various systems [Buss94]. This type of segmentation

reveals modules at the architecturallevel. In FigA.3 a segmentation of the CLIPS system based on

30ata Bindings analysis has originally proposed by R. Selby and V. Basili [Selby90] as a method for identifying error
prone structures (i.e. structures that have a very high data tlow dependencies

55

(

(

(

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

General:2 (4".5%) - CLIPS

FIGURE 4.3. Segmentation of the Clips System using Clustering on Data Bindings, Com­
mon References, and Code Cloning

data bindings and common references analysis is illustrated. In the example ilustrated, anumber of

different modules have been identified. These include the laet management module which contains

functions remove_deffacts, parse_deffacts, remove_aILdeffacts, the mIe management module which

contains functions clear_rule_from_agenda, remove_aILactivations, purge_agenda, adtLactivation, and

the variable bindings module which contains functions print-var_info, facLaddress, position, and vari­

able_analysis. This segmentation was displayed in the Rigi environment [Muller91] (see Section.!

).

56

(

(

(

CHAPTER 5

Concept To Code Matching

The concept assignment [Biggerstaff94], [Biggerstaff89] problem consists of assigning concepts

described in a concept language ta program fragments. Concept assignment can aIso be seen as

a matching problem. In our approach, concepts are represented as abstract-descriptions using a

concept language called Abstract Concept Language (ACL). It is assumed that a concept description

may match a number of different implementations represented by program segments in source code

called code fragments. The similarity between a description and a code fragment is measured by

their matching probability. In this framework, an abstract-description is parsed and a corresponding

AST Ta is created. Similarly, source code is represented by an annotated AST Tc- Bath Ta and Tc

are transformed into a sequence of abstract and source code statements, respectively, using transfor­

mation rules. These rules transform a part of the AST that represents a source code statement ta

a sequence of entities that the statement is composed of. For example, an IF-THEN-ELSE statement

is transformed ta a sequence [Condition, Then-PaTt, Eise-Part]. The objective is ta reduce the

complexity of the matching algorithm as Ta and Tc may have very complex structures. In this way

structural details of the ASTs have been abstracted and represented as sequences of entities.

An overview of the matching process is illustrated in Fig.5.1. The abstract pattern written in

ACL is parsed and transformed into a Markov Madel. Similarly, source code is represented as a

sequence of statements. The Viterbi algorithm is used ta find the best fit between the model and

the sequence of input statements using feature vectors that represent data flow, control flow, and

informai information properties of the code.

Problems of matching concepts ta code that have been considered are:

• The choice of the conceptuaIlanguage,

• The measure of similarity,

• The selection of a fragment in the code ta he compared with the conceptual representation.

5.1 LANGUAGE FOR ABSTRACT REPRESENTATION

ACL AST-
-

Sk .=J

1Match

Run Tlrne Mode. (APM)

C 51 52;•

•--
--

-

- -
- -

(

Source Code AST Sequence of Source Code Slaternents

FIGURE 5.1. Overview of the Markov-Based Code Matching Process

(
These problems are addressed in the following sections.

1. Language for Abstract Representation

A number of research teams have investigated the problem of code and plan localization. Cur­

rent sllccessfui approaches include the use of graph grammars [Wills92], [Rich90], query pattern

languages [Pau194}, [Muller93}, [Biggerstaff94}, sets of constraints between components to be

retrieved [Ning94} 1 and summary relations between modules and data [Canfora92).

The proposed approach focuses on facilitating partial matching, a situation that is frequent in

practice and has yet been addressed in a framework of uncertainty reasoning. We propose in this

context a novel approach; a stochastic pattern matcher that allows for partial and approximate

matching within the context of Plan Recognition. A concept language 1 represents, in an abstract

way, sequences of design concepts corresponding to a "design pattern".

We view ACL patterns as a program representation tool which;

(i) decomposes the program representation into relationships (stores, fetches, used-by, calIs,

called-by, keywords, metrics),

(ii) allows for structural and data type abstraction,

(iii) deals with syntactic and implementation variations and,

l Please refer to Appendix A, Appendix B, for a complete description of the ACL grarnmar and domain model

58

(

S.l LANGUAGE FOR AB5TRACT REPRESENTATION

(iv) alIows for representing noncontiguous plans.

The concept language contains:

• Abstract statements S that may match (generate) one or more statement types in the source

code language. The correspondence between an abstract statement and the source code

statements it may generate is given at Table 5.1.

ACL contains the foUowing abstract statements:

(i) Abstract Iterative Statements

(a) Abstract While Statement

(b) Abstract For Statement

(c) Abstract Do Statement

(ii) Abstract Conditional Statements

(a) Abstract If Statement

(b) Abstract Switch Statement

(iii) Abstract Expression Statements

(a) Abstract Function CaUs

(b) Abstract Assignments

(i) Abstract Actual Assignment

(ii) Abstract Post/Prelncrementation

(iii) Abstract Post/Decrementation

(iv) Abstract Return Statement

(v) Abstract GoTo Statement

(vi) Abstract Continue Statement

(vii) Abstract Break Statement

(viii) Abstract Labeled Statement

(i..'\:) Abstract Statement"

(x) Abstract Statement+

(xi) Abstract Any-Statement.

(xii) Inline-Plan-Statement.

• Abstract Expressions ê that correspond to source code expression. The correspondence be­

tween an abstract expression and the source code expression that it may generate is given in

Table 5.2. ACL contains the following abstract expressions:

(i) Abstract Equality

(ii) Abstract Inequality

59

(

(

5.1 LANGUAGE FOR ABSTRACT REPRESENTATION

ACL Statement Generated Code Statement

While Statement
Abstract Iterative Statement For Statement

Do Statement

Abstract While Statement While Statement

Abstract For Statement For Statement

Abstract Do Statement Do Statement
Abstract Conditional Statement If Statement

Switch Statement

Abstract If Statement If Statement

Abstract Switch Statement Switch Statement

Abstract Return Statement Retum Statement

Abstract Go To Statement Go Ta Statement

Abstract Continue Statement Continue Statement

Abstract Break Statement Break Statement

Abstract Labeled Statement Labeled Statement

AbstractStatement• Zero or more sequential source code
statements

AbstractStatement+ One or more sequential source code
statements

Abstract Any-Statement One occurrence of a source code
statement

TABLE 5.1. Generation (Allowable Matchmg) of source code statements from ACL statements

(iii) Abstract Logical-And

(iv) Abstract Logical-Or

(v) Abstract Logical-Not

(vi) Abstract Function-Call

(vü) Abstract Identifier

- Abstract-Named-Identifier

60

(

(

(

5.1 LANGUAGE FOR ABSTRACT REPRESENTATION

ACL Expression Generated Code Expression

Abstract Function Gall Function Gall

Abstract Equality Equality (==)

Abstract Inequality Inequality (! =)

Abstract Logical And Logical And (&&)

Abstract Logical Or Logical Or nIJ

Abstract Logical Not Logical Not (1)

Abstract Any-Expression Any Source Gode Expression
TABLE 5.2. GeneratIon (Allowable Matchmg) of source code expressIons from ACL expressIOns

- Abstract-Variable-Identifier

• Abstract Feature Descriptors :F that contain the feature vector data used for matching pur­

poses. Currently the features that characterize an abstract statement and an abstract expres-

sion are:

(i) Uses of variables: variables that are used in a statement or expression,

(iï) Definitions of variables: variables that are defined in a statement or expression,

(iii) Keywords: strings, numbers, characters that may used in the text of a code statement,

(iv) Metrics: a vector of five different complexity, data and control flow metrics.

• Abstract Identifiers X

Abstract Variable Identifiers are used as place-holders for feature veetor values, when

no actual values for the feature vector are provided. An example is when we are

looking for a Traversai of a linked list plan but we do not know the names of the

pointer variables that exist in the code.

Abstract Named Identifiers are more restrictive in the sense that the matching iden­

tifier in the source code has ta have a similar name. By similar name we mean the

lexicographical distance between the two names is below a certain threshold that can

be adjusted by the user. Zero lexicographical distance means that the two identifiers

have the same name.

61

(

(

5.1 LANGUAGE FOR ABSTRACT REPRESENTATION

Default ACL Type Generated Code Type

Struct struct

Array array (fJ)

Numeral fioat or int

Character char

Any-type any C type

named the particular named type
TABLE 5.3. GeneratIOn (Allowable Matchmg) of source code data types from ACL data types

• Abstract Data Types T An Abstract Data Type t, associated with an Abstract Identifier

can generate (match) any actual type in the source code provided that they belong ta the

same data type category. For example a Struct type abstract variable can be matched with

a struct source code variable in C or a Record in Pascal. The power of the approach lies in

the fact that Abstract Data Types are essentially abject classes and the user can specify his

or her own hierarchies. For example a new ADT List may be defined as a superclass of the

Array and Strud ADT and thus allow for matching with an a:Tay or struct actual source

code data type.

The system supports by default the following abstract types:

(i) Structure: Representing struct types,

(H) Array: Representing array types,

(iii) Numeral: Representing int, and float types,

(iv) Character: Representing char types,

(v) Any-type: Representing any source code type types,

(vi) Named : matching the actual data type name in the source code,

and the fol1owing access methods:

(i) Pointer: Representing a pointer identifier,

(ii) Reference: Representing a simple identifier reference.

The correspondence between an abstract data type and the source code type that it may

generate is given in Table 5.3.

• Operators 0

Operators are used to compose abstract statements from simpler ones:

62

(

(

(

S.l LANGUAGE FOR ABSTRACT REPRESENTATION

(i) Sequencing (;) : To indicate that one statement follows another

(ii) Choice (EB) : To indicate choice (one or the other abstract statement will be used in

the matching process)

(iii) Inter Leaving (II) : to indicate that two statements can be interleaved during the

matching process

• Macros j\l{

Macros are proposed to facilitate hierarchical plan recognition [Hartman92], [Chiko90I.

~'1acros are entities that refer to plans that are in-lined in the pattern when the AST for

the pattern is created. For example if a plan has heen recognized is stored in the plan béU5e,

then special preprocessor statements are used ta indude this plan to compose more complex

patterns. Induded plans are incorporated in a pattern 's AST at parse time in a way similar

ta C++ in-line functions.

Special macro definition statements in the Abstract Language are used to include the nec­

essary macros.

We consider two types of Macro related statements in ACL:

(i) l'IIacro declarations: These are special statements in ACL that specify the name of the

plan to be induded and the file where it is defined.

As an example consider the ACL statement

include plan1.acl traversal-linked-list

that imports the plan traversal-linked-list which is defined in file planl.ad.

(ii) l'IIacro uses : These are statements that direct the parser to in-line the particular

plan and include its AST in the original pattern's AST. As an example, consider the

following Abstract Macro use:

plan: traversal-linked-list

that is used ta include an instance of the traversal-Iinked-list plan at a particular point

of the pattern. In a pattern more than one occurrence of an included plan may appear.

A typical example of a design concept in our concept language is given below. This pattern

expresses an iterative statement (e.g. while, for, do loop that has in its condition an inequality ex­

pression that uses the identifier ?x that is a pointer ta an abstract type struct and the conditional

expression contains the keyword "NULV' . The body of the Iterative-Statement cantains a se­

quence of one or more statements (+-Statement) and an Assignment-Statement that uses at least

identifier ?x, defines identifier ?x. However, this example pattern limits the scope of an Iterative­

Statement to he matched only with a While-Statement or a For-Statement. Moreover, this patterns

63

(

(

(

5.2 ABSTRACT LANGUAGE SEMANTICS

requires that the probability of a While-Statement appearing is 0.75, and that the probability of a

For-Statement appearing in the source code is 0.252
• If no probability preferences are given by the

user the system assumes a uniform distribution where the a while , for, do loop have equal occurrence

probabilities (Le. 0.33).

The bindings that may occur for a successful match between this ACL pattern and the code

fragment given below is {?x/field}. Note that the binding {?x/pos} that is activated at the condition

of the while statement when matched with the condition of the ACL Iterative-Statement is eliminated

when the field = field-tnext Value statement is matched with the ACL Assignment-Statement in the

example pattern.

probability : ["While-Statement. 0.75. "For-Statement". 0.25]

Iterative-Statement(Inequality-Expression

uses: [?x : .struct].

keyvords : ["HULL Il])

{

+-Statement;

Assignment-Statement

uses : [?x].

def ines : [?x].

keyvords : ["next Il]

}

A. code fragment that matches the pattern is:

~hile (field != HULL tk pos == 1)

{

if (! strcmp(obj .origObj) Il

(! strcmp(field->AvalueType. "member") tk

notlnOrig))

if (strcmp(field->Avalue,"method") != 0)

INSERT_THE_FACT(o->ATTLIST[num].Aname.origObj.

field->Avalue);

field = field->nextValue;

}

2. Abstract Language Semantics

In this section we discuss in more detail the constructs and the semantics of the abstract pattern

language (ACL). As discussed above, the Abstract Concept Language consists of:

2 Please refer to Section.SA for a complete description of static probability usage.

64

5.2 ABSTRACT LANGUAGE SEMANTICS

((i) Abstract Statements S

(ii) Abstract Expressions é

(iii) Feature Descriptions :F

(iv) Abstract Identifiers X

(v) Operators 0

(vi) l'tIacros .,/\4

We define the semantics of ACL entities in terms of a semantic function Sd defined as follows:

Sd : A 4' A

where A =S u [is the domain of ACL abstract statements Sand ACL abstract expressions

é. Similarly, A = SuE is the domain of source code statements S and source code expressions E.

Let AbsStatv. (AbsEXPv) be the abstract statement AbsStat that is represented by the fea­

ture vector VZ1 and contains the abstract expression AbsExp. Similarly let AbsEXPv
lI

be the the

abstract expression AbsExp that is represented by the feature vector Vy. The same notation holds

for SourceStatv, and SourceExpv
g

for the source code statements and expressions respectively.

• Abstract Statements The semantics of an abstract statement AbsStatv. that contains the

abstract expression AbsExpv 1 are given as:
1/

(

(

such that:

SourceStat E Gen(AbsStat) and Gen(AbsStat) is a mapping that denotes the possible source

code statements that can be generated by AbsStat. This mapping is illustrated in Table.5.l.

• Abstract Expressions

such that:

SourceExp E Gen(AbsExp) ,

AbsExpv denotes an abstract expression with features given by the feature vector Vy and
1/

SaurceExpsd(v
g

) denotes an actual source code expression that can be generated (matched)

by AbsExpv .
1/

65

(

5.2 ABSTRACT LANGUAGE SEMANTICS

As above, Gen(.4bsExp) gives the possible source code expressions that can be generated by

AbsExp. Table 5.2 illustrates the possible ways an abstract expression may generate a source

code expression.

• Feature Descriptors

The language supports the foliowing features for every Abstract Statement AbsStat and

Abstract Expression AbsExp :

- Uses of variables (fetches)

- Definitions of variables (stores 3)

- Keywords (comments, approximate variable names)

l\-Ietrics (S-Complexity, D-Complexity, ~IcCabe, Albrecht, Kafura)

The semantics of each feature for an Ahstract Statement or Expression Pare given as :

where Xl, .•Xk are ahstract ACL Identifiers and Sd(xd E IDS_USED(Sd(P)) (see

Chapter.2).

where Xl, ••Xk are abstract ACL Identifiers and Sd(xd E IDS_UPDATED(Sd(P))

(please see Section.3.2).

where strl, ..strk are ACL string literais and

Sd(xd E IDS_UPDATED(Sd(P)) u mS_USED(Sd(P)) U LITERALS(Sd(P))4 (please

see Section.3.2).

- Sd(Nfetrics(ml,m2, ..ms)) = (S-COMPLEXITY(Sd(P)), D-COMPLEXITY(Sd(P)),

!v!CCABE(Sd(P)), ALBRECHT(Sd(P)), KAFURA(Sd(P)}],

• Abstraet Identifiers

- Named Identifiers

Sd(q) = i, where q is an ACL Named Identifier and i is an identifier in the source

code with the same name as q

- Variable Identifiers

3 AIso referred to as update.s
"LITERALS refers to the set of string values, character constants, and numerical constants that may occur in a source
code statement. 'l'his set is computed in a compositional way on the AST nodes at the same way as the rest of the
features are.

66

(

(

(

5.2 AB5TRACT LANGUAGE SEMANTICS

Sd(?q) = i and the binding {?q/i} is added to the existing bindings of ?q. Here, ?q

is an ACL Variable Identifier and i is an identifier in the source code.

• Abstrnct Data Types

Abstract Data Types are aIways associated with an Abstract Identifier. The semantics of a

Typed Abstract Identifier x of Abstract Data Type tare given from a mapping

where Sd(X) is an actual source code variable of type Sd(t) that is compatible with data type

t. Data type compatibility is described in Table 5.3. The user may enhance this default

compatibility by adding new entries and ADT hierarchies as discussed previously.

• Operators

The semantics for these operators are given as follows :

- Sequencing

Sd(AbsStatl v.. ;AbsStat2V.") =

Sd(AbsStatv..); Sd(AbsStat2v.,o..')

where:

x a x' means that any bindings that may have been generated for variables in Vx are

applied to same occurrences of variables in Vx'. For example if an Abstract-Identifier

'Ii in Vx has been bound to source code variable il then all occurrences of ?i in Vx '

will be bound to il before the matching process for AbsStat2 starts.

- Choice5

Sd(AbsStatl v.. EB AbsStat2v.,) =

- Interleaving7

Sd(AbsStatl v.)1 AbsStat2V.I) =

5The Choice operator is defined as (eft associative
6xor denotes the standard "exclusive or" operation
7When more than two operands occur in an lnterleaving expression ail the permutations these operands can generate
are considered.

67

(

(

5.3 CONCEPT-Ta-CODE DISTANCE CALCULATION

Sd(AbsStatl V.); Sd(AbsStat2vzu l)6

Sd(AbsStat2 vz/); Sd(AbsStatl VZ/
U

)

• Inline MaCTas

Let an in-lined Macro Atf(paraml,param'l,paramI.J = (AlvI .•opAnv..) where A_l, ..-h, ...-1n

are ACL statements and paraml,param2, ..paramk are ACL identifiers that exist in the

feature vectors VI, V2 , ••Vn of Ah .42 , ..A n respectively. Similarly, op is any of the language

operators (; Il and, EB).

Its semantics are given by

3. Concept-to-Code Distance Calculation

In this section we discuss the matching of an abstract pattern in ACL with source code.

In general the matching process contains the following steps :

(i) Source code (SI; ...Sk) is parsed and an AST Tc is created,

(ii) The ACL pattern (AI; ...An) is parsed and an AST Ta is created,

(iii) A transformation program generates from Ta a Markov 1vIodel called Abstract Pattern J\Iodel

(AP1vI),

(iv) A Static 1vlodel called SCN! provides the legal entities of the source language. This NIarkov

:Model underlying finite-state automaton for the mapping between an APM state and an

SCM model basically implements the Tables 5.1, 5.2 and, 5.3,

(v) Candidate source code sequences are selected according ta a set of code delineation criteria

discussed below,

(vi) The Viterbi [Vite67] algorithm is used to find the best fit between the Dynamic wlodel,

resulting from the combination of APM and SClvI, and a code sequence selected from the

candidate list.

A Markov model is a source of symbols of an alphabet V characterized by states and transitions.

Amadei can be in astate with a certain probability. From a state, a transition to another state can

be taken with a given probability. Astate is associated with the generation (recognition) of a symbol

with a specifie probability. The intuitive idea of using Markov models ta drive the matching process

is that an abstract pattern given in ACL May have Many possible alternative ways to generate

(match) a code fragment. A Markov model represents all these alternative options and assign to

each of them a probability. Moreover, the Viterbi algorithm provides an efficient way to find the

68

(

(

5.3 CONCEPT-TO-CODE DISTANCE CALCULATION

path that maximizes the overall generation (matching) probability of a given string in ~r. among all

the possible alternatives.

Thus, a j\tlarkov Madel has to be generated for a given ACL pattern. This AP~I model is then

"augmeLted" by replacing each APM state with a corresponding SCM, as shown in Fig.5.2 where

Ai and A;[ij are states and Pij are transition probabilities.

Once an ACL pattern is parsed and the corresponding APrvI and SeM model created, the

problem is ta select candidate starting points for matching in a large software system. This is

a delineation problem. The simple but most expensive solution is to consider every source code

statement as a potential matching starting point and have a moving "window l
' of n many statements

maintained at any given point. This is a very time and space consuming approach because of all

the possible combinations it generates. Another approach is proposed in [Fickas79) and is based

on "beacons" ta hypothesize the existence of potentiallinks between a plan (cliche) and its location

in the source code, and statistical formalisms ta guide island-driven-parsing [Corazza90]. The

drawback of using "beacons" is that a plan decomposition must be assumed in advance using a

"backward-chaining" strategy ta hypothesize the next potential plan and the potential points in

the code that this plan may be implemented. Similarly, the use of island-driven-parsing requires

the existence of an accurate feature vector, a situation which is not always valid when forming an

arbitrary ACL pattern. We propose that a simple but effective in the context of code delineation,8 1

selection of a code fragment SI; S2; .. ,Sk ta be matched with an abstract description based on both

of the following three criteria:

(i) the first source code statement SI matches with the first pattern statement Al and,

(ii) S2; 53; .. ; 5k belong ta the inner most black B, containing 51

(iii) 5k is the last statement in B.

The process starts by selecting for every begin-end black in a software system all potential

starting points (i.e. source code statements), that match the first criterion above.

Matching according ta the first criterion means that the types and the feature vectors of SI and

Al give a high similarity probability 9 Once a candidate starting point or points have been selected

for each begin-end black then, the sequences of statements starting from the selected points ta the

end of each black are returned (criterion 2, and 3). Note that this is a delineation process. The final

code segmentation (Le. the matched code) is produced by the matching process, and will contain

the statement sequence 51; S2; ... ; Si, where i ~ k.

8Please see localization time statistics in Section.6.4.1
9This probability in the current implementation bas been set to 1.0. Please Bee Section.S.S for a detailed description
on feature vector comparison

69

(

(

5.4 ACL MARKOV MO DEL GENERATION

Once a candidate list of source code fragments (Le. statement sequences) has been chosen the

actual pattern matching takes place between the chosen starting statement and the outgoing transi­

tions from the current active APM's state. If the type of the abstract statement that the transition

points to and the source code statement are compatible (compatibility is computed by examining

the Static i\'Iodel) then feature comparison takes place. This feature comparison is based on the

same principles as described in Section.3.2. A similarity measure is established by this comparison

between the features of the abstract statement and the features of the source code statement. If

composite statements are to be compared, an expansion function ''ilattens~' the structure by decom­

posing the statement into a sequence of its components. In case of composite statements a nested

matching process is initiated.

For example, an if statement will be decomposed to a sequence of an expression (for its

condition), a then part and an else part. Composite statements generate nested matching sessions

similar to the one discussed in the DP-based code-to-codc matching.

The process terminates when all possible mathces to reach a final state have been tried. The

maximum length sequence of matched statements SI; S2; .. ; Si (i ~ k) that has the maximum match­

ing probability among the sequences of statements of the same length taken from the candidate

sequences in a begin-end block B, is chosen as the result of the matching process. The Viterbi

algorithm guarantees that all possible paths to a final state have been examined, and that the best

path (ma.~mizing the overall matching probability) can be chosen.

4. ACL Markov Model Generation

Let Tc be the AST of the code fragment 51; S2; .. ; Sk and Ta be the AST of the abstract pattern

A = A I opA2opiln .

A measure of similarity between Tc and Ta is the following probability:

(4.1)

where,

(4.2)

is the sequence of the grammar rules used for generating Tc and

(4.3)

70

(

(

(

5.4 ACL MARKOV MODEL GENERATION

is the sequence of rules used for generating Ta. The probability in (4.1) cannot be estimated in

practice, because the number of combinations grows exponentially with the number of rules in the

sequence [Corazza90). An approximation of (4.1) is thus introduced.

Let SI; ..; Sk be a sequence of program statements. Let A, be an ACL pattern. During the

parsing of an ACL pattern A that generates Ta, an automaton called Abstract Pattern NIodel

(APrYI)is built containing as states the abstract descriptions .41 , A2 , •••A.i , Aj +1 , ••• , An' The APM is

constructed by following the standard rules of transforming a regular expression ta a Finite State

Automaton [Hopcroft79).

Nodes in the APlVI correspond to Abstract ACL Statements and arcs represent transitions im­

plementing thus the control fiow imposed by ACLs operators contained in pattern A (Le. sequencing!

concatenation, choice). Each APM node A j is considered as a lVlarkov source and is replaced by a

static, permanently available Markov model whose states are labeled by symbols lv/i , called a Source

Code Model (SCM) (Fig.5.2). Each node in SC:M is used ta generate (match) source code.

The Source Code Madel is an alternative way ta represent the syntax of a language entity and

the correspondence of Abstract Statements in ACL with source code statements.

For example, a transition in APM labeled as (pointing to) an Abstract Iterative Statement

is linked with the Whi1e, For and Do-While static mode!.

Let T: be the AST of a sequence of source code statements SI; S2; .. ; Si (i ~ k) taken from a

candidate sequence of statements SI; S2; .. ; Sk

The best alignment between a sequence of statements S = SI; S2; .. ; Si and a pattern A =
Al; A2 ; ••••..lj is computed by the Viterbi [Vite67] dynamic programming algorithm using a feature

vector comparison function for evaluating the following approximation of (4.1) [Brown92):

The desired probability p = Pr(T:ITa) is approximated by the result of the application of the

Viterbi algorithm to the lVIarkov model:

p ~ PreSt; ..; SdAtDP··opAn) = Pr(Sl; ..; SiIAPM(AIDP··opAn» =
maxPr (Sl; S2 ..Si-1Ihistory, Areach(i-l)} . Pr(Silhistory, Areach{i») (4.5)

where,

• history gives the sequence of already su~cessfully achieved matches from previous steps,

71

(

5.4 ACL MARKOV MO DEL GENERATION

• reach(m) is a function that determines the APM states that can are valid ta be considered

during the mth step. Such function is computed by examining the APM and its corresponding

transitions and,

• reach(i) represents a final state in the APM generated by the pattern A l op..opAn •

The process returns the longest source code statement subsequence 51; 82 ; •• ; 8it obtained from

the candidate sequence 8 1; 52; .. ; 8k and has the maximum matching probability among the alterna­

tive matches of the same length.

The dynamic model (APrvI) that has been generated by parsing the given pattern guarantees

that only the allowable sequences of comparisons are considered at every step.

The final similarity between a sequence of source code statements and a pattern is given as the

magnitude of logarithm of the probability p.

As it is illustrated in (4.5) the final value of p is computed in terms of calculating matching

similarity measures in terms of matching probabilities between individual abstract statements and

code fragments. This matching similarity measures take the farm of the probability value given by

Pr (8dhistarYt Areach(i»' These matching probabilities between individual abstract statements and

code fragments are computed as follows:

(
(4.6)

where,

• Pscm(5iIAreach(i)) is the probability that the Static ~Iarkov Model generates statement Si

given the description Areach(i)

• Pcomp(SilhistarYt Areach(i») is the probability computed by comparing the feature vectors

between Si and Areach(i) t given the matching history (Le. existing bindings).

The feature vector comparison function is discussed in the following subsection.

As an example consider the APM in Fig.5.2 generated by the pattern Al; A;; Aj, where A j

is one of the legal statements in ACL. The Viterbi algorithm applied to this model for a selected

candidate code fragment SI; S2; 83; 8 4 provides the best path (maximizes the matching probability)

for matching this code fragment with the given model. The comparisons that take place for the

given example APM and the code fragment are illustrated in Fig.S.3. This example illustrates the

application of the Viterbi algorithm and the matching process between the source code statements

8 1; 82 ; 8 3 ; 84 and the ACL pattern Al; A2"'; A3....

72

5.4 ACL MARKOV MODEL GENERATION

......
'.'.

".......
.....

'.
".....

".
'"

'."......
'......

'.
"

'" '.".....
'.

..'
.............
.'..'

././/
.'..'.'..'

.............

..•....
..'.....

(

p~ p~

(
FIGURE 5.2. Adynamie model for the pattern .41; .42·; ..1.3·

The Viterbi algorithm proceeds by selecting always the path that ma."'<imizes the overall proba­

bility. In the case of position (53, .4.;) in Fig.5.3, two incoming selections are possible; one (horizontal

transition) from position (52, .4i) that corresponds to the probability Pr (51; S21.41 , Aj) and another

(diagonal transition) from position (52 ,A,2) that corresponds to the probability Pr (51 ;S21A.1 ,A,;).

Based on these values and the computed values of P~cm and P comp the Viterbi algorithm chooses

the best incoming path and updates history accordingly.

Note that at every step, the probabilities of the previous steps are stored and there is no need

to he reevaluated.

For example Pr (SI,S2lhistory, A;) is computed in terms of Pr(StiAd which is available from

the previous step.

With each transition in the Static Model a list of probabilities based on the type of expression

likely ta be found in the code for the plan that we consider is attached.

An example of a static model for the abstract pattern-expression is given In Fig. 5.4.

Here we assume for simplicity that only four C expressions can be generated hy a abstract

pattern-expression.

73

(

(

(

5.4 ACL MARKOV MODEL GENERATION

ACL Pattern

Input Source Code

FrGURE 5.3. Dynamic Programming driven comparisons between an ACt pattern
Al;Ai;.4j, and a code fragment 51;52 ;53;54

For example, in the TraversaI of a linked list plan the while loop condition, which is

an expression, most probably generates an inequality of the form (list-node-ptr != NULL) which

cantains an identifier reference and the keyword NULL.

A crucial problem with this approach is the estimation of these prababilities for the Hl'llvIs.

Initially, probabilities can be established subjectively and modified as far as new data are Ced.

The initial probabilities in the static model are provided either:

• by the system giving default values based on a uniform distribution in all outgoing transitions

for a given state as in Fig.5A or,

• by the user who may provide some subjectively estimated values while he or she is formulating

the query using the ACL primitives. These values may come from the knowledge that a given

plan is implemented in a specifie way. In the ahove mentioned example of the TraversaI of

a Iinked Iist plan the Iterative-Statement pattern usually is implemented with a while

loop. In such a scenario the Iterative ahstract statement can he considered to generate a

while statement with higher prohahility than a for statement. Similarly, the expression

in the while loop is more likely to he an inequality (Fig. 5.4). Once the system is used and

results are evaluated these probabilities can he adjusted to improve the performance.

74

(

(

5.4 ACL MARKOV MODEL GENERATION

FIGURE 5.4. The static model for the expression-pattern. Different transition probability
values may he set by the user for different plans. For example the traversai of linked­
list plan may have higher probability attached to the is-an-inequality transition as the
programmer expects a pattern of the form (field != NULL)

Probabilities can be dynamically adapted to a specifie software system using a cache memory

method originally proposed (for a different application) in [Kuhn90]. A cache is used to maintain

the counts for most frequently recurring statement patterns in the code being examined. Static

probabilities can be weighted with dynamically estimated ones as follows :

In this formula Pcache(SiIAj) represents the frequency that Aj generates Si in the code examined

at run time while Pstatic(SilAj) represents the a-priori probability of A j generating Si given by the

static model SeM.). is a weighting factor. The choice of the weighting factor). indicates the user's

preference on what weight he or she wants ta give to the feature vector comparison. Higher). values

indicate a stronger preference ta depend on what has been matched 50 far (i.e. the programming

style for a plan). This preference gives a "local" view to the matching process. Lower). values

indicate preference ta match independently of what bas been matched sa far. This preference gives

75

(

5.5 FEATURE VECTOR COMPARISON

o.22r----,----r---r--.,...---.--......,.....---r---r---r--~

0.21 \

0.2

!
~0.19
o
g
a10.18

~
al

~0.17
al

~

0.16

0.15

, ,

\

\

(

(

0.140 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Lambda Values

FIGURE 5.5. Effect of Àalues to final probability calculation

a "global" view to the matching process as any source code statement can be generated using a

more uniform probability distribution, given a-priori by the system. The values of the final reported

average distance (-log(Pscm(Si/A j)) between a query and all the successful code matches as a

function of different values of the co-efficient À are shown in Fig.5.5. Fig.5.5 suggests that:

• There is a set of values (in this example 0.3-0.6) for which the distance remains at similar

leveIs (Le. À balances the effects of Pcache and Pstatic).

• For the rest of the values of the co-efficient À, we observe that the higher its value is the

lower the computed distance (Le. the higher the matching prabability is). This is an accom­

madating result as it suggests that Pcache can be used for tailoring the matching process ta

a particular "programming style" evident in the software system that is being analyzed.

The value of À can he computed by deleted-interpolatian as suggested in [Kuhn90]. As pro­

posed in [Kuhn90j, different cache memaries can be introduced, one for each A.j • We use different

cache memaries for each A j , and we compute the value of À to be proportional ta the amount of

data stored in each cache.

5. Feature Vector Comparison

In this section we discuss the mechanism used for calculating the similarity between two feature

vectors. Note that Sï's and A/s feature vectars are represented as annotations in the corresponding

ASTs.

The feature vectar camparison of Si and Ai returns a value p =Pr(SiIAj).

The features used for camparing two entities (source and abstract) are:

76

(

(

(

5.5 FEATURE VECTOR COMPARISON

(i) Variables defined V : Source-Entity -t {Identifier} 10

(ii) Variables used U : Source-Entity -t {Identifier}

(iii) Keywords K:. : Source-Entity ~ {String}

(iv) Metrics

• Fan out ...\.1 1 : Source-Entity -t Real

• D-Complexity J\.1 2 : Source-Entity -t Real

• McCabe M 3 : Source-Entity ~ Real

• Albrecht Mol : Source-Entity ~ Real

• Kafura ..\.1s : Source-Entity ~ Real

These features are AST annotations and are implemented as mappings from an AST node ta a

set of AST nodes, set of Strings or set of Numbers.

Let Si be a source code statement or expression in program C and A j an abstract statement

or expression in pattern A. Let the feature vector associated with Si be Vi and the feature vector

associated with Ai be Vj. Within this framework we used the Jaccard's coefficient considered in the

computation as a probability:

Pr(SiI A .) = ! .t card(AbstractFeaturej,n n CodeFeaturei,n) (5.1)
] U n=l card(AbstractFeaturej,n U CodeFeaturei,n)

where v is the size of the feature vector, or in other words how many features are used,

CodeFeaturei,n is the nth feature of source statement Si and, AbstractFeaturei,n is the nth feature

of the ACL statement Aj •

As in the code to code dynamic programming matching, lexicographical distances between

Identifier names and numerical distances between metrics are used. Within this context two strings

are considered similar if their lexicographical distance is less than a selected threshold, and the

comparison of an abstract cntity with a code entity is valid if their corresponding metric values are

less than a given threshold.

Thus, ACL is viewed more as a query language where new features and new requirements can

he added and he considered for the matching process. For example a new feature may be a link or

invocation to another pattern matcher (i.e. SCRUPLE) [Pau194] 50 that the abstract pattern in

ACL succeeds in matching a source code entity if the additional pattern matcher succeeds and the

rest of the feature vectors match.

lOFallowing the REFINE practice, we distinguish between an identifier's introduction (Identifier or Variable) and its
occurrence in the source (Identifier-Reference or Variable-Reference). An identifier abject is used to introduce a name,
which can be a variable, function, etc.. It has a declaration, and its scope is determined by the procedure that it was
declared in. An identifier aIso has a. set of occurrences (Identifier-References) associated with it, and may be thought
of as a symbol table entry having information about the name.

77

(

5.6 RECOGNITION SPACE

This is an important point as we do not propose ACL as a specification language. Within the

context of this thesis, ACL is a formalism to facilitate pattern matching representing a number of

control and data flow properties of a code fragment. ACL can not capture semaotics or hidden data

and control flow dependencies (i.e. aliasing).

6. Recognition Space

In the sections above, we havp defined ACL and the matching process based on Nlarkov-modeis.

ACL patterns can he seen as structural abstractions of source code fragments. In this section we

discuss constraints in the space of possible solutions generated by an ACL pattern and investigate

relationships between ACL patterns by defining a partial ordering between them. Nloreover, we

show that for a given a set of implementations of a given algorithm, we cao compose a pattern out

of the known patterns that generate these possible implementations and is minimal in terms of the

source code entities it generates (Le. generates all implementations and minimal noise).

Definition: An atomic pattern is a pattern that does not contain any other patterns.

Exam.ple:

• Pl
assignment-statement

uses [?x * struct]

defines [?y * struct]

function-ca11 ?fcnName * struct

uses : [?param : * char]

Definition: A composite pattern is a pattern that is made by other patterns using grouping

({}), the operators (€B, Il, ;), and macro inclusion.

Example:

• Pt:

if-statement(any-cond) then

{

assignment-statement

uses [?x. struct]

defines [?y • struct]

}

78

(

5.6 RECOGNITION SPACE

• P2:

(assignment-statement

defines : [i]) +

(assignment-statement

defines : [j].

uses : [k])

Definition: A weil identified pattern is a pattern that matches a recognizable implementation

of a particular algorithm in a software system.

Exarnple : Suppose the algorithm (plan) is ta update a counter when an element is found.

We can classify this plan as an update-counter-on-condition plan. A pattern that matches an impIe­

mentation of this plan is:

update-counter-plan(?target. ?elem. ?count)

if-statement(equality

uses : [?target. ?eleDÙ) then

{

(

}

·-statement;

assignment-statement

uses : [?count

defines : [?count

·-statement

numeralJ.

numeral] ;

The pattern above matches the code:

if (temp_var->name == Dame)

{

cl_print("verror" ."\nFact address ?");

cl_print(lIverrorll.symbol_string(name»;

cl_print ("werror" ." also used as variable name\n") ;

count_flag ++ i

}

Definition: An hierarchical pattern is a composite pattern that is built by using well identified

patterns.

79

5.6 RECOGNITION SPACE

(Example : Suppose the algorithm is ta caunt the occurrences of a particular element in a

linked list. A pattern that matches an implementation of this algorithm is:

* struct])

empty

abstract-expression-description

*-statement;

*-statement

assignment-statement

uses: [?count : numeral].

defines : [?count : numeral];

};

{

then

if-statement(equality

uses : [?target. ?ptr

.-statement;

.-statement

}

count-occurrences-of-an-elem-in-linked-list(?head. ?ptr. ?target. ?count)

1 actual-assignment-statement

2 uses [?head: * struct].

3 defines [?ptr: * struct];

4 *-statement;

5 vhile-statement(inequality

6 uses: [?ptr : * struct])

1 {

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

(

* structJ)

The pattern above contains from lines 9-18 the well-identified plan update-counter-on-condition(?target,

?ptr, ?cDunt). Consequently the pattern can he rewritten as :

cOUDt-occurrences-of-an-elem-in-linked-list(?bead. ?ptr. ?target. ?count)

actual-assignment-statement

uses [?bead: * struct J,

defines [?ptr: * struct];

*-statement;

vhile-statement(inequality

uses : [?ptr

{

*-statement;

80

(

(

5.6 RECOGNITION SPACE

upda~e-coun~er-on-condition(?p~r,?target, ?count);

--statement

}

Definition: A template pattern is a potential hierarchical pattern that is parameterized on

the plans it May include.

Example : In several cases, generie patterns can be enhanced by the inclusion of other patterns

ta form more specifie ones. For example, the plan traverse-a-linked-list-and-do can be specialized by

including more specifie actions in the body of the while-statement in the ACL pattern below

traverse-a-linked-list-and-do(?head. ?currPtr)<T>

actual-assignment-statement

uses [?head: - struct J,

defines [?ptr: * structJ;

.-statement;

vhile-statement(inequality

uses: [?ptr : * structJ)

{

.-statemen1:;

<T>;

·-statement

}

Here T denotes a weIl identified pattern that can he included in the generie pattern to form a

more specifie pattern (Le. a specialization).

For example, when the template T is instantiated with the plan update-counter-on-condition(?ptr,

?target, ?count) then the plan count-occurrences-of-an-elem-in-linked-list is formed which can be

written as:

count-occurrences-of-an-elem-in-linked-list(?head, ?ptr, ?target, ?count)

traverse-a-linked-list-an-do(?head, ?ptr)

<update-counter-on-condition(?ptr. ?target, ?count»

Inclusion works weIl when a eomplex plan can he decomposed in a number of distinct simpler

plans. When overlapping or scattered plans are involved then simple inclusion May not adequate. In

snch cases we have to ahstract and normalize the representation of the program by using program

representation techniques similar to the ones suggested in (Wills93), [Hartman91a), [Quilici94],

[Choi90], [Hausler90]. The framework of this thesis is to provide insights for the pattern matching

81

(

5.6 RECOGNITION SPACE

part that is computationally expensive in these approaches. One of the future enhancements of the

work presented here is to provide formalisms in ACL to represent more abstract concepts such as

data fiow dependencies, pre and postconditions for each statement and value ranges for the Abstract

Identifiers.

Definition: Let P be a pattern represented in ACL. We define Covernge of P Cov(P) be the

set of code fragments that is generated by P. NIore formally,

Cov(P) = {S s.t. S = (SI; 52 i ..Skl and p(SdP) ~ similarity threshold}

Example:

For the linked-list-count-elements related pattern when is applied to the CLIPS program a part

of its Coverage is:

FILE fRDK-LlNE TD-LlNE

--------- -------
"deffacts" 515 518

"intrfile" 721 722

Il intrfile Il 732 736

"memory" 87 88

("memory" 95 96

"method" 680 689

"method" 1687 1713

Definition: Two patterns Pl, P2 are equal within the context of a software system S

iff

Definition: Given a set S, a partition II of 5, is a collection of subsets Sk of 5 with the

properties

• Si n Sj = 0 if i :/: j (the Sk are disjoint)

• uS" = S (they exhaust S).

That is, each element x E S is in one and only one Sk, and thus II decomposes Sin various

subparts.

Lemma : Let 'R be the set of all source code statement sequences that can be taken from the

software system S. Any pattern P partitions 1?..

This is straightforward to prove if we observe that P either:

82

(

(

(

5.6 RECOGNITION SPACE

(i) generates (matches) a set of source code statement sequences and Cav(P) '# 0.

(ii) does not generate any source code statement in 5, that is, Cov{P) = 0.

In the first case P partitions n in two sets RI and R2 • The first set is the set of statement

sequences that can be generated by P that is, Cav(P), The second set consists of code sequences

that are not matched by P. Apparently, the two sets are disjoint and exhaust n.
In the second case the partition is trivial and is composed of the set (R) itself.

Definition: Given a source code fragment C we define abstraction of C be a set of patterns

P = {Pl, ...Pk} such that for every Pi E P, CE Cav(Pi)

Example : Given the code fragment Cl:

vhile(p != NULL)

{

if (!strcmp(p->type,"child"»

{

count = 1 j

printf("[%s]\n",p->link->name);

}

p = p->next;

}

an abstraction of it are the patterns Pl, P2 because both match Cl

• Pl:

vhile-statement(any-cond

uses: [?ptr • struct])

{

+-statement

}

and

vhile-statement(any-cond

uses: [?ptr • struct])

{

83

(

5.6 RECOGNITION SPACE

.-statement;

if-statement(any-cond

uses : [?target. ?ptr * struct]) then

{

*-statement;

function-call printf

uses : [?ptr : * struct]

};

.-statement

}

Definition: Given a source code fragment C and an abstraction of it P = {Pl, ...Pk } we define

the clasest pattern ta C in P he, any pattern Pj E P far which

that is any pattern that produces the least distance when matched with C. Here. p(CfPj)

denates the probahility that code fragment C is matched by the pattern Pj •

Definition: Given twa patterns Pi, Pj , we define Pi is no more general than Pj (Pi ~ gPj) iff

Cov(Pd ç Cav(Pj)

EXaIIlple : In the example patterns given above, P2 ~ 9Pl because the Coverage of Pl is :

FILE FROM-LINE TO-LINE

--------- -------

"object" 1131 1139

"abject" 1283 1291

"abject" 2236 2244

"object" 2095 2103

"abject" 2261 2272

"abject" 2200 2215

"abject" 2166 2194

"abject" 2121 2132

"abject" 2058 2072

"abject" 2025 2052

84

(

(

5.6 RECOGNITION SPACE

while the Gouerage of P2 is :

FILE FROK-LlNE TO-LlNE

--------- -------

"abject" 1131 1139

"abject" 1283 1291

"abject" 2236 2244

"abject" 2095 2103

and thus COV{P2) ç Cov{Pt).

Theorem: The relation no more general than is a partial arder relation.

Praof:

• The relation no more general than is refle.'CÏve (P ~ 9 P). This holds because Cav{P) ç

Cau{P).

• The relation no more general than is antisymmetric (Pi ~ gPj and Pj ~ gPi imply Pi = PJ).

This holds because ifCau(Pd ç Cav(Pj) and Cav{Pj) ç Cave(Pd then Cau(Pj) = Cav(Pi },

that is Pi =5 Pj .

• The relation no more general than is transitive. This holds because if Pi ~ gPj and Pj ~ gPk

then Cav(Pi) ç Cau(Pj) and Cov(Pj) ç Cau(PIr;). This implies Cav(Pd ç Cav(Pk) that is

Pi ~ gPk.

Definition: A chain is a set of ACL patterns in which all of its elements are related with the

no more general than relation.

Definition: Two distinct patterns are comparable if Pl -< gP2 or P2 -< gPI otherwise are

incomparable.

Definition: Given a chain P = {Pll P2, ...Pk}, a lower bound of a subset X of Pis a pattern

Pi E P such that Pi ~ 9 Pj V Pj EX.

Similarly, an upper bound of a subset X of P is a pattern Pi E P such that Pj ~ gPi V Pj EX.

Definition: Given a chain P = {Pl, P2 , •••Pk } then the least upper bound of a subset X of

P is a pattern Pi E P sucb that Pi is an upper bound for X and, for all upper bounds p,. of X

Pi ~ gPn • An upper bound of X is a pattern Pi whose Cav(Pd has the maximum cardinality among

85

(

(

(

5.6 RECOGNITION SPACE

the Coverages of all patterns Pn E X. The least upper bound coincides with the upper bound, given

the definition of the equality between two patterns.

Similarly, the greatest lower bound of a subset X of P is a pattern Pi E P such that Pt is a

lower bound for X and, for alilower bounds Pn of X Pn ~ gPi . A lower bound for X is a pattern

Pi whose Cov(Pd has the minimum cardinality among the Coverages of all patterns Pn E X. The

greatest lower bound coincides with the lower bound, given the definition of the equality between

two patterns.

Lemma: A chain is a complete lattice. That is, each subset X of P bas a least upper bound

and a greatest lower bound.

Proof:

Let P = {PL, P"l, ...Pk } be a chain.

Let X = {Pi, PH l, ...Pm} be a subset of P. Since X is a subset of P then X is a chain. If we

select the pattern Pu E X such that Cav(Pu) bas the ma.ximum cardinality among all elements of

X, then Pu is the least upper bound of X. This holds as all elements of X are associated by the no

more general than relation and the the fact that Cau(Pu) has the maximum cardinality among all

patterns in X, means that Cau(Pi) ç Cau(Pd which implies that Pi ~ gPu V Pi E X.

Similarly, if we select the pattern P, E X such that Cav(l1) has the minimum cardinality

among all elements of X, then P, is the greatest lower bound of X. This holds as all elements of X

are associated by the no more general than relation and the the fact that Cav(l1) has the minimum

cardinality hence Pc ~ gPi V Pi E X.

Theorem

Let A be an algorithm and l = {ft, 12 , .••f n} be a set of implementations of the algorithm A

in the software system S.

Given the framework above, for every identified algorithm (plan) in a software system S we can

construct a pattern that is the closest pattern with respect to the known implementations of A.

Proof:

For every implementation I j of A, let R j = {Pjl , Pj2 , ..•Pjm} be an abstraction of I j containing

patterns Pji that generate (match) Ij. In this way, R j is an abstraction of Ii' and thus it cantains a

pattern Li that is the closest pattern to Ii in Rj (Le. it produces the least distance when compared

with I j).

86

5.6 RECOGNITION SPACE

(Algorfthm

Implementation

l ,t
P1 P1_P1 P2_ P2

1 2 1 k

t
P3 _ P3 P4 _ P4

1 n 1 m
Patterns

(

(

FIGURE 5.6. The algorithm A its known implementations I J in the system, and patterns
Pj " that match the implementations.

Let PA be PA = Li e L p composed by all the Li 's that do not belong in the same abstraction

group Rj . PAis the closest pattern with respect to the known implementations of the algorithm

A. This is easily proven if we observe that for any known implementation Ij of A the plan PA can

match it with minimal distance using the pattern Li'

Theorem

Let A be an algorithm and I = {It, /2, .../k} be its known implementations in a given software

system. Let P l = {Pil, P12 , ••P lm }, p 2 = {P21, P22 .•P2n } ... Pk = {Pk1 , P k2 , .•.Pk ,} he a collection

of ACL patterns that match /1, /2, "'/A: respectively (Fig 5.6). Then, we can construct a pattern

P~~ that is composed of known patterns in Pi (i = 1,2, ...k) and is no more general than any other

pattern Pcomp that matches all k possible implementations of A and is also composed of the known

patterns. That is

ProoC:

Let C he the power-set of {/l, [2,., ,lA:} and let this set he sorted in ascending arder on

the cardinality on its elements. The construction of the pattern P~~ is a process that involves two

phases. During the first phase all patterns that can generate at least j-many distinct implementations

87

(

«

5.6 RECOGNITION SPACE

are selected. This selection originates either from patterns in Pj, j = 1, 2, .. ,k that may directiy

generate at least j-many distinct implementations or on a e composition of patterns that each

generates m ~ j many distinct implementations.

The second phase consists of selecting the pattern or the collection of patterns that generate

j-many implementations with the minimal Coverage.

The construction algorithm terminates after k-steps when the pattern that generates k-many

distinct implementations is computed.

NIore formally, the construction algorithm operates as follows:

• Step o. Let j t- 1

• Step l.

If j = k, then GoTo Step 3, else,

Select all patterns that generate at least j-many distinct elements of all the known impIe­

mentations of the algorithm A. The j-many distinct implementations can be taken from the

power-set C. Let IJn) denote the nth set of j-many distinct implementations, taken from C.

The selection process is performed by scanning the power set C, and for each element I~m)

in C, that has cardinality q less than or equal to j (Le. contains at most j implementations)

select those patterns P E {P i s.t. i = 1, 2, .. k} that either

(i) generate exactly the elements in [Jn) or

(ii) when combined with the EB operator generate at least all items in I;n)

(l) (2) <Ü» (1) ('l)
This step produces a number of patterns p(lz), p(l)), ... , p(l)) that generate the I j ,Ij - , ..

I;Ü) combinations of j-many distinct implementations.

Let the cost of generating a combination of j-many implementations be the minimum cardi­

nality of the Coverage among the patterns that generate j-many implementations. Let this
(l(n)

pattern be denoted as Pmin . The following step is used to calculate this pattern.

• Step 2.

Select the combination of j-many distinct implementations that can be generated with the
(I(n)

least cost from a combination of patterns, and construct the corresponding PmIn pattern.

This can be done by using dynamic programming.

Specifically for each n = 1,2,3, ... , (~) the Dynamic Programming function that finds the

best combination of patterns is :

D : Set - of - impLementations -+ Real

88

(

5.6 RECOGNITION SPACE

D(Ij~l) + D(I~k») and

s.t q -< j and

I~nl C I(ml U [(rI
) }-1 q

(6.1)

(

Cost(p(/J"II) and

Put') put')
min ~

Where

- IJn> denotes the nth set of j-many distinct implementations, IJn> E C,

IJ~l denotes the mth set of j-l -many distinct implementations, IJ~l E C,

I~r) denotes the rth set of q-many distinct implementations, q ~ j, I~k) E C

D(I)n» denotes the minimal cast for generating the nth set of j-many implementations
(/("') 1("')Cost(P i) is the cardinality of p< i 's Coverage.

Let j ~ j + 1 and repeat Step l.

• Step 3.
(k) U~I)

Return the pattern Pm:n ~ Pmin ,and its associated cast which is the cardinality of its

Coverage.

(/(1)

Theorem : The pattern Pmï"n is the least general pattern that matches all implementations

{It, h, ..h} and is composed of patterns from the elements of the set P = {P l, P 2, ... Pk}'

Praof:

We will show that pattern P;':i~') is the least general pattern that matches all implementations

{II ,I2, ..h} only composed of patterns in the elements of the set P = {Pl, P2, ... Pk}' We show

that by induction on the number of the implementations that we consider in the system.

• Base Case: The theorem holds for k = 1.
(/(1»

When we deal with one implementation l only, we can select Pmln as the pattern that

generates the implementation and has the least Coverage from ail the other known patterns

that match I. This pattern is the glb of rs Abstraction.

89

(

(

5.6 RECOGNITION SPACE

(lI"'))
• Induction Assumption: Suppose that we can construct Pmtn as the least abstract

pattern that matches the mth set of k - many different known implementations and its solely

composed from patterns in elements of P.

• Induction Step: 'Ve show that the same principle holds for k+1 - many known implemen­

tations.

Let Ik;l be the nth combination of k+l many implementations taken from the power-set C.

The construction algorithm daims that in arder to find the pattern that generates Ir~l with

the least cost (Le. the least generaI pattern), we have to consider two cases. The first one is

based on finding the least cost of generating r-many and q-many implementations where, q

-< k+ 1 and r ~ k+ 1. Because of the induction assumption, these quantities can be evaluated

and the corresponding patterns be created. In the second case it suffices ta pick the pattern

that directiy generates at least the nth combination of the k+ 1 many implementations from

the known patterns in Pl, ..Pk. This quantity can be evaluated by examining the Coverage

of eaeh such pattern. Therefore, we can estimate the cost of matching I~~,>, and construct
(1('")

by the algorithm the pattern Pmi";'

This result is very accommodating because it ensures the scalability of the pattern-based ap­

proach as it allows always to construct abstractions and in particular the least general abstraction

from a set of more specifie ones.

The ability to build a pattern for more abstract and general algorithms and plans using simpler

and more specifie ones is fundamental for organizing plan hierarchies, and allowing for hierarehical

plan recognition. Il

llTypical examples of hierarchical plan recognition are given in [Rich90], [Ning94]

90

(

(

(

CHAPTER 6

Experiments

In this chapter experiments on the proposed methods are presented together with conclusions that

can be drawn from them.

The software systems used for evaluating the proposed approaches are illustrated in Table.6.!.

Clips is an expert system shell, developed at NASA's Software Technology Center, tcsh, and bash

are popular Unix shells and Roger is a real-time speech recognition system developed at McGill

University.

The experiments discussed in the chapter faU in the following categories:

(i) Experiments to measure Recall / Precision graphs for the metrics-based method for all

possible metric combinations

(ii) Experiments to measure Recall / Precision graphs for the DP-based method and for each

program feature used

(Hi) Experiments ta measure Recall / Precision graphs for the l'tIarkov-based method

(iv) Time and Space statistics for measuring the time performance of each matching process and

the number of potential clone candidates retrieved.

Precision / Recall graphs, indicating the overall performance of a particular matching process,

are based on sampie queries involving selected code fragments of different lengths and complexities

that expert programmers could identify as components that have been replicated in the system.

Software System Size (LOC) # of Files # of Functions
TCSH 44,754 46 658
CLIPS 32,807 40 705
BASH 27393 63 632

ROGER 13,615 39 235
TABLE 6.1. The Software Systems Used for Experimentation

(

6.1 EXPERIMENTATION FRAMEWORK

This selection was necessary in order to be able to calculate RecaII values. This type of experiment

has been conducted using standard Information Retrieval performance indicator defined below.

Let C be the whole collection of the software components. For each query, the set C can be

partitioned into two disjoint sets:

• Q containing R relevant documents and

• Q' containing material irrelevant material.

Similarly, for each such query the set of c-many retrieved elements cao be partitioned into two

disjoint sets

• q having r relevant documents to the query and

• q' having r' irrelevant documents.

Following the classical Information Retrieval (IR) terminology Recall and Precision are defined

as:

(
and

r
Recall = R

P
.. r

reas'Zon = ­
c

(1)

(2)

Important questions such as:

• Size of Corpus,

• How many queries considered and how these were selected,

• How queries were formulated,

• How relevant answers were recognized,

• How non-detected relevant items were computed,

are discussed in the following section.

1. Experimentation Framework

An important point for computing Recall and Precision is the definition of a measure of relevance

between a pattern and a retrieved code fragment. To our knowledge, there is no formal definition of

relevance between two code fragments and there are no standard criteria to recognize one code frag­

ment as being a clone of another. In relevant research studies [Baker95], [Johnson94a], [Halst77),

92

(

(

6.1 EXPERIMENTATION FRAMEWORK

[McCabe90], [Jankowitz88], code c10ning has heen seen as a problem of examining statistical.

or textual properties of the code. However, experts make fine distinctions on the operations and

the criteria for code c1oning. Programmers may argue that textual similarity is the most important

cnterion. Others May argue that the semantics of the system and the Input/Output relations are

more important. Within this framework a safe assumption is to:

• use the definitions of code c10ning appearing in the literature [Baker95] and,

• obtain feed-back from programmers on establishing the relevant data set for each query.

Results obtained for each query are tested against this set to establish Recall, and Precision

measurements.

Within this experimentation framework, programmers have identified the following c10ning

scenaria for two code fragments:

Ci) two code fragments they are identical Ce.g. are found identical using the UnLx utility diff),

or

(H) they have the same structure but modified variable names or data types, or

(iii) two code fragments contain common sequences of statements or expressions or,

(iv) one has been ohtained by parameterizing the another, or~

(v) one differs from the other on inserted, deleted or substituted statements and expressions.

These scenaria, cover most of the text-based and measurement-hased approaches in the current

in the literature [Baker95], [Johnson94a], [Paul94]. As far as the semantic-based approaches

are concerned, we believe that these can he covered mostly in the framework of language semantics

and formai techniques that May indicate functional or behavioral similarity between code fragments.

Note that in general, functional and behavioral equivalence is an undecidable problem, and even for

the relaxed conditions where we May prove hehavioral similarity most of these techniques are not

tractable. The ultimate goal of IR is ta retrieve components to he presented to a user who makes the

final decision on their appropriateness. Furthermore, we feel that the semantics approach exceeds

the scope of the pattern-matching hased framework proposed in this thesis, and can be left as future

work.

Following standard Information Retrieval Cm.) practice, consultation with programmers of the

subject systems was performed in advance to select code fragments that were replicated in the

system. Each replicated component has been tagged by its location (file, length in lines of code) and

content (number and type of statements it contains). These Htagged" components form the basis

for evaluating query results and thus calculating RecalI and Precision.

93

(

(

6.1 EXPERIMENTATION FRAMEWORK

We have considered a space of 940 functions and we formulated 20 queries in total for each

method considered. This ratio corresponds weIl with the same number of queries per number of

documents that has been used in standard Information Retrieval test sets {Maarek91], with reported

ratios in the range of 2.3% to 2.6% have been reported.

Queries faIl in two categories:

(i) Queries for code-to-code matching tested on the metrics-based and the DP-based approach

(ii) Queries for the Markov-based approach

The first query type was selected by programmers that have experience with the structure and

the contents of the subject systems. Essentially, these queries are code fragments for which the

programmers knew to be or ta have cloned instances in the subject system. Code fragments were

selected based on:

• The knowledge that these were replicated components,

• Coverage of the cloning scenaria discussed above.

The second query type was selected by considering pseudo-code descriptions given by the pro­

grammers and correspond to the code fragments considered in the code-to-code matching queries.

These pseudo code queries aimed at testing both the indexing capabilities of the features pro­

posed and the query capabilities of the ACL language itself.

Obtained results were checked against the set of the relevant components that have been iden­

tified by the programmers.

The relationship between Recall and Precision has been computed using the standard m ap­

proach which consists of :

• Evaluating Recall and Precision for each query at every given eut-off point,

• Performing macro-averaging 50 as ta obtain a single Recall and Precision value for every

given eut-off point,

• Using linear interpolation to obtain Precision values for Recall values that were not effectively

achieved.

Linear interpolation was used to compute Precision values p. for standard Recall values r- by

applying the following formula :

(1.1)

(

where rl, and r2 are the recall values immediately to the left and to the right of r- and Pl, 112

are the corresponding precision values.

94

(

(

6.2 METRICS-BASED MATCHING EXPERIMENTS

2. Metrics-based Matching Experiments

2.1. Precision Per Metric Usage at Max. Recall Leve!. This experiment illustrates

the Precision l variation per metric combination used, at RecaII level 95.8% (which was the highest

effectively achieved RecaIl level in these experiments), and similarity threshold distance 0.0.

• Using One NIetric: among the single metric usage scenario the Precision is higher when using

the Kafura metric (Fig.6.!). An explanation for this behavior is the complexity of the metric

in terms of the variety of the features used to compute it. Note that in absolute percent

Precision values illustrated in Fig.6.!, the Kafura metric achieves a 1.7% Precision.

• Using Two NIetrics: the Precision increases when using the combination of the Kafura met­

rie with S-Complexity (Fig.6.2). An explanation is the reduction in noise introduced by

intersecting the Fanout feature in both metrics. An interesting point here is the influence

of the McCabe metric when combined with the Kafura metric. The reason for this is that

McCabe introduces a new low correlated feature, and namely, the structure of the Control

Flow Graph.

• Using Three :Nletrics: the Precision increases when using a combination of the K afura metric,

the McCabe metric and, S-Complexity (Fig.6.3). This resuIt is expected as it includes the

metrics from the first best two metrics combinations. The interesting point though is the

high Precision we obtain at high RecaIl levels by the use of the D-Complexity instead of

the McCabe metric. This result can be explained by the nature of the D-Complexity metric,

which essentiaIly imposes the common constraint feature, global variables to the Kafura

metric.

• Using Four wletrics: the Precision increases when using a combination of the Kafura metric,

the McCabe metric, the S-Complexity metric, and the D-Complexity metric (Fig.6.4). This

is, again, an expected result as it contains the best combinations from the above mentioned

levels. The interesting point here is the possibility of replacing the D- Complexity with the

Albrecht metric. This replacement can be explained by the 1/0 features (read operations,

files opened) of the Albrecht metrie. Note that globals and janout in D-Complexity have

already been covered by the S-Complexity and Kafura metrie. At this point the Albrecht

metric adds new matching features and this is the reason it makes such a high contribution.

• Using Five Metrics: we can achieve an effective Recallievei of 95.8% and maintain a Precision

level of 10.2% (Fig.6.6). This is not a discouraging result if one considers that in all of our

experiments (involving the samples queries, and brute-force comparison between ail function

l Please note that the Precision values i1Iustrated in the figures in this chapter are given in percentage points

95

(

(

6.2 METRICS-BASED MATCHING EXPERIMENTS

FIGURE 6.1. Precision values (in percentage points) for one Metric used (Recall level 95.8%.)

pairs) we did not retrieve more that 11.3% of the total system size. That means using this

approach we can retrieve 11.3% of the system for which we know there are 95.8% of the

existing clones.

2.2. Im.pact ofper Metric Threshold Value Variation on Precision. This experiment

illustrates the impact of the threshold value changes along every metric axis on precision for a fixed

recall value. The motivation for this experiment is to observe the behavior and the impact each

metric has on the precision of our results. For this experiment we kept four metrics with a constant

zero threshold and varied the fifth metric using the step distance criterion. The impact of threshold

96

(

(

6.2 METRICS-BA5ED MATCHING EXPERIMENTS

FIGURE 6.2. Precision values (in percentage points) for combinations of two Metrics (Re­
caU level 95.8%.)

changes on the precision of the results is measured as the average percent change of the precision

between zero and the lOth step value on each metric axis varied.

The results are illustrated in Fig.6.5 and indicate that the precision is affected the most (drops)

for threshold changes in the Albrecht and the Kafura metric. A possible explanation is the complexity

and the variety of features used to compute these metrics. By varying a threshold in these metrics,

we assume changes in a variety of Low correlated features that are not likely to be all changed in a

replicated component. Therefore, by increasing the threshold value we allow for more noise ta he

added which affects Precision. Precisions were measured for 44.4% Recall level.

97

(

(

6.2 METRICS-BASED MATCHING EXPERIMENTS

FIGURE 6.3. Precision values (in percentage points) for combinations of three Metrics
(Recall level 95.8%.)

2.3. Items Retrieved per Metric Usage. This e..xperiment illustrates the impact of

metric usage on the amount of abjects retrieved. For this experiment we have used brute force

matching between all possible function pairs for each system examined. Values have been averaged

for the four systems and for the metric combinations in each category. As expected these results,

illustrated in Table.6.2 follow closely the observations on Precision Per Metric Used for Max. Recall

experiment. However, there is a slight variation in the use of S-Complexity and D-Complexity.

This experiment illustrates that D-Complexity can reduce the size of the retrieved components,

when eombined with the Kafura metrie. We believe that a possible explanation for this behavior is

98

(

(

(

6.2 METRICS-BASED MATCHING EXPERIMENTS

FIGURE 6.4. Precision values (in percentage points) for combinatioDS of four Metrics (Re­
caU level 95.8%.)

the granularity of the components involved in this experiment. This experiment is applied at the

function-Ievel, where the impact of data flow may be more evident.

As far as the retrieval times are concerned, note that they are is more sensitive ta the number

of objects considered during the matching process than to the number of objects finally reported.

This explains why similar times are reported for different numbers of pairs reported. Overall, this

experiment gives a gross view of the metries matching behavior.

99

(

(

6.2 METRICS-BA5ED MATCHING EXPERIMENTS

FIGURE 6.5. Precision Change (%) (Drop) by varying threshold values for each metric
dimension. Shown is the change between the lst and the lOth step threshold value.

2.4. Recall Per Distance Range. This experiment illustrates the significance of the

distance values to the recognition process. Using all five metrics with threshald set to 2.5 units and

eut-off values illustrated in Table.6.3 we measured the recall using our sample queries. The result

drawn from this experiment is that using the metrics-based pattern matching technique we obtain

most of the clones (57.7%), at distance values ~ 0.6. This result indicates that this technique can

be used as a fast first approximation ta the clone detection problem. Note that on thresholds set

close ta zero and using all five metrics this technique is the simplest and fastest ta apply. Moreover,

the only additional computation involved in this technique is the comparison of the metric values

100

(

(

(

6.2 METRICS-BA5ED MATCHING EXPERIMENTS

Metric Combination Potential Clone Pairs Retrieved Retrieval Time (Hr:klin:Sec)
K 1,777 0:14:05
A 14,953 0:42:20
D 15,023 0:42:33
S 17,100 0:54:45
i\1 26,526 1:40:53

O-K 529 0:09:07
A-K 534 0:11:08
M-K 608 0:12:33
S-K 863 0:11:10
S-O 1,841 0:10:23
S-O 2,365 0:12:57
S-1\I1 3,935 0:12:40
O-M 4.032 0:11:55
M-A 4,100 0:13:30
O-A 12,381 0:17:44

O-M-K 283 0:08:24
i\'1-A-K 288 0:10:47
S-A-K 319 0:08:56
S-O-K 321 0:09:27
S-M-K 339 0:10:00
D-A-K 523 0:10:14
S-M-A 942 0:11:14
S-D-M 1,034 0:10:29
S-O-A 1,837 0:12:01
D-i\'I-A 3,677 0:11:45

S-M-A-K 231 0:09:31
S-D-i\'I-K 231 0:09:31
D-M-A-K 282 0:09:29
S-D-A-K 319 0:10:12
S-D-NI-A 942 0:10:15

as the metrics are calculated right after parsing, at link time. Note that the RecallfPrecision graph

illustrated in the following section suggests for such Reealilevei a Precision of 46.5% which is a good

indication for the usefulness of this technique.

2.5. Recall / Precision. Precision values for specifie RecaIl values were computed by

performing an Information Retrieval Experiment. Average Recall values and average Precision

values have been used to produce, with linear interpolation, Precision values for standard Reeall

values (0.0, 0.1, 0.2,.. 1.0). Beeause of the erratic nature of Iow recall values for small samples

101

(

(

(

6.2 METRlC5-BA5ED MATCHING EXPERIMENTS

Distance Range Recall
0.0 44.3%
~ 0.2 55.4%
~ 0.4 57.7%
~ 0.6 57.7%
~ 0.8 68.2%
~ 1.0 68.2%
~ 1.2 82.1%
~1.4 82.1%
~ 1.6 82.1%
~ 1.8 82.1%
~ 2.5 96.0%

TABLE 6.3. Recall / Distance Value Range (Metrics)

[Jones81] we assigned a Precision value of 1.0 ta RecaIl value of 0.0. The collection considered for

testing consisted of Clips, and the Roger system. We formulated 20 queries for which programmers,

have identified replicated components in the source code.

In this experiment we report the relation of linear RecaIl to average Precision, using the best

combinations obtained by the experiment discussed in Section 2.1.

The obtained results indicate that:

• Using one NIetric (Kafura): we have an aImost linear drop in Precision and we obtain a low

Precision for high RecaIl values. This type of anaIysis does not provide any benefit as all

metrics have already been computed and we do not gain in Precision. The matching time

using this method is acceptable but is 64% higher than the best time performance we can

obtain. The drawback of using only one metric is the drop in Precision which is almost 7

times lower than the best we can achieve for the highest RecaIl value.

• Using two Metrics (Kafura, S-Complexity): we have a significant gain in Precision for low

to medium RecaIl levels. This can be explained by the common constraint imposed by the

fanout feature in both metrics. At higher Recall levels we achieved lower values than the

ones achieved using the Kafura metric alone. We suspect, though, this is because of the

interpolation noise in previous curve above (one metric).

• Using three Metrics (Kafura, S-Complexity, McCabe): we have a new gain in Precision for

corresponding RecaIl values. At this point the McCabe metric is the factor for the Precision

increase as it adds the Control Flow component ta the aIready considered features.

• Using Four Metrics(Kafura, D-Complexity, McCabe, S-Complexity): we have a new gain

in Precision that can be explained by the common constraints introduced by the common

102

(

(

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

features used for D-Complexity, S-Complexity, and the Kafura metric, combined with a new

feature introduced by the McCabe metric.

• Using Five Nletrics: we obtain the best curve. This is the best combination to use among

the metrics we considered. However, it is very close to the one using four metrics. This

may suggest dropping the Albrecht metric altogether or replace it with S-Complexity. This

would be a reasonahle idea, but note that the metries are computed at link time at linear

complexity on the AST nodes, and therefore do not constitute a significant computation

bottleneck. In any case, each metric has its advantages and it is not a straightforward choice

on which metric to ignore. D-Complexity is easier and little bit faster to compute, but

Albrecht is sensitive to more features and may be better to use in the long run. Experiments

with higher levels of granularity (function level, also shown in Table. 6.2) indicate that when

we compare D-Complexity and Albrecht alone, then Albrecht generates fewer candidates.

3. Dynamic Programming Experiments

3.1. Recall Per Distance Range. This experiment, illustrates the significance of the

distance values to the retrieval process. Using each of the three features we consider in the DP

approach (Set-Uses, Types, NIetrics) and eut-off values illustrated in Table.6.4 we measured the

recaIl using our sample queries. The overall result that appears from this experiment is that, by

using the DP-based pattern matching technique, the reeall is almost uniformly distributed over

the distance values. This indicates that this technique is more accurate on measuring differences

occurring between two code fragments. l\tloreover, effective Recall values of 90% obtained with DP

were found to correspond to Precision values of 21.1% when using the Set-Uses criterion, 25.5%

when using the Types criterion, and 16.8% when using the Metrics criterion (see Table.6.9). Note

that for similar RecaIl value of 90.0%, the metrics-based matching gave Precision level of 9.0%. This

is a very strong indication of the usefulness of this approach when the user is willing to invest more

time for the matching process in order to gain in precision. The DP-approach is particularly useful

for identifying components that have changed between versions of a large system.

Retrieval time performance are illustrated in Table.6.5.

3.2. Precision Per Distance Range (Set-Uses Matching Criterion). This experiment

was performed to evaluate the overall Precision behavior of the OP matching using the Set- Uses

criterion (Fig.6.7). This experiment was performed by applying brute-force matching between all

functions in each one of the software systems we used for our experimentation, with similarity

threshold set to 0.0. The results were inspected manually to caIculate the Precision level.

103

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

: 5 Metrics Used

- : 2 Metrics Used

-.-. : 4 Metrics Used

.... : 1 Metric Used

..x.. : 3 Metrics Used'-----"

""

.'
" " ,

0.8

0.7

0.9

0.3

0.2

0.6

1~--,........--~---r------r------r-----""------r---.......----.

RecalVPrecision Per Number of Metrics Used

c:
o

'ëj)
'00.5
~
(l.

0.4

(

0.1

..... -;..~.

0.90.80.70.60.4 0.5
Racall

0.30.20.1
O'-----'----~-----L----'-----'------'-----'----'------'

o

FIGURE 6.6. PrecisionjRecall Graph for different metric combinations. The metric com­
binations were selected among the ones that give the highest precision in their category
class (i.e. the best combination of two metrics is S-Complexity and Kafura)

The first observation is that OP is a very good method for localizing exact clones. This is

indicated by the 100% precision on the obtained results when the threshold has been set to zero.

This is of no surprise as by setting the threshold to zero we force the matcher to consider no insertions,

nor deletions nor substitutions and require that variable names between the two components have

not been altered. These requirements do not leave any margin for considering cases where one code

fragment is a modification of the other. The corresponding Recall level was 14.0%. The second

observation is that the Precision drops by 17.3% and stays at acceptable levels (82.7%) for values in

104

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

(Distance Range Recall Leve! (Set-Uses) Recall Level (Metrics) Recall Level (Types)
0.0 14.0% 39.4% 17.9%
~ 0.5 14.0% 39.4% 17.9%
~ 0.99 20.4% 44.4% 17.9%
~ 1.5 24.4% 44.4% 17.9%
~ 1.99 24.4% 56.9% 30.0%
~ 2.99 34.4% 58.9% 35.0%
~ 3.99 41.4% 58.9% 42.0%
~ 4.99 46.4% 58.9% 44.5%
~ 7.99 58.9% 74.9% 51.4%

-< 11.99 72.1% 92.1% 84.9%
~ 15.0 92.1% 92.1% 89.9%

TABLE 6.4. DP-based matchmg statIStlCS. The SlZe of all possIble paIrS for thlS expenment
is 248,160. The Recallievei achieved for this experiment is estimated as 44.4%.

Criterion Used Potential Clone Pairs Retrieved Retrieval Time {Hrs:Min:Sec
Set-Uses 231 0:12:17

Metrics 231 0:11:02
Types 231 0:08:10

TABLE 6.5. Recall / DIStance Value Range (DP)

TABLE 6.6. Recall / PrecISIon RelatIon Per DIStance Value Range (DP Set-Uses Cntenon)

Distance Range Precision Drop (%) Recall Increase (%) Total Recall Achieved (%)
0.01 - 0.99 -17.3% +6.4% 20.4%
1.0 - 1.99 -35.1% +4.0% 24.4%
2.0 - 2.99 -8.8% +10.0% 30.4%..

(

the range of 0.01-0.99. This is because such a distance range indicates a small number of changes

were needed for two code fragments to be considered clones. The corresponding increase at the

Recalilevei was 6.4%. The next higher drop (by 35.1%) in Precision is introduced for value range

from 1.0-1.99 where a Precision of 47.6% is observed. The corresponding gain in Recali is 4.0%.

Finally for the distance range of 2.0-2.99, for which we have observed a drop of 8.8% in Precision we

have a gain of 10.0% in Recall. These variations are illustrated in Table.6.6. These results indicate

that the Set-Uses DP-based matching is a usefui approach when exact clones are sought, or minor

modifications between code fragments are aliowed, and the recognition speed is not crucial.

(

3.3. Precision Per Distance Range (Metrics Matching Criterion). This experiment

was performed to evaluate the overall Precision behavior of the DP matching using the Metrics

criterion (Fig.6.8). The major observation from this experiment is that we can achieve a high

105

(

(

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

FIGURE 6.7. Average Precision (in percentage points) Per Distance Range for the Set-Uses criterion.

Precision for distances close ta zero, but the Precision drops drastically for value ranges where the

Set-Uses criterion maintained higher Precision values. The reason for this behavior is that the

closer the distance is to zero, the fewer modifications between the two code fragments there are and,

therefore, the higher the Precision of the achieved results. Once we deviate from distance zero we

allow noise, in terms of insertions, deletions and substitutions. Compared to the results obtained

using the Set-Uses criterion, two code fragments have a lower distance using the Metrics criterion

because metrics when considered at the statement levelloose their significance, and, therefore two

statements may give a low comparison cost even if they may be different. This has a direct effect

106

(

(

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

FIGURE 6.8. Average Precision (in percentage points) Per Distance Range for the Metrics criterion.

on the Precision of this method. The relation between RecaIl and Precision per distance range is

illustrated in Table.6.7. These results indicate that with the Metric criterion in DP-based matching

we have significant l058 in Precision and little gain in Recall when we deviate from zero distance

threshold 2. Therefore, this method is not the best to apply, but it is a compromise between the

efficiency and speed of computing and comparing metrics, as well as the increased accuracy provided

by the DP-based matching. This method is to be applied when exact clones are sought, and the

recognition speed is a significant factor.

2Zero distance threshold means that we retrieved components with distance equal to zero

107

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

TABLE 6.7. Recall/ PrecIsion RelatIon Per Distance Value Range (DP Metncs Cntenon)

Distance Range Precision Drop (%) Recall Increase (%) Total Recall Achieved (%)
0.01 - 0.99 -16.0% +3.0% 44.4%
1.0 • 1.49 -54.0% 0.0% 44.4%

..

(

3.4. Precision Per Distance Range (Data Types Matching Criterion). This ex-

periment was performed to evaluate the overall Precision behavior of the DP matching using the

Data- Types criterion (Fig.6.9). This criterion performed very weIl for distances close ta zero but

results in a drastic drop of Precision for distances higher than zero. The reason for this behavior

is that data types of variables updated or used impose only limited constraints on the structure

and the quantitative values of the features that may be used to characterize and classify a software

component. The fact that two statements use a variable of the same data type does not impose

any other requirement on the class of the two statements compared (e.g. a While-Statement, an

If-Statement) or on their detailed features (e.g. what globals are set or used in the statement, how

many 1/0 operations are performed, how many functions are called from a statement). The Recall /

Precision relation per distance range values is illustrated in Table.6.S. These results suggest that for

distances close to 0.0 the Precision of this method is dropping very fast and we have not observed

any difference in Recall. This can be explained by the fact that the data types criterion is not a very

good one on localizing exact clones, and allows for noise ta be added easily. However, this approach

performed weIl on the Recall/Precision experiments, especially at high Recall values where Precision

level stabilized at acceptable levels compared ta the other criteria (please refer ta Fig.6.1O). The

reason is that when we compare code fragments using the Data Types criterion we can obtain most

of the clones just by considering the fact that the two statements use sorne complex Data Type.

We believe that a possible explanation for the relatively high Precision obtained in this experiment

is not because the approach is better than the others but because code fragments that may use a

particular specialized (i.e. complex) data type are few in a software system compared to all other

data types in the same system. Therefore, even at high Recall vaIues we were able to achieve a good

Precision rate. This approach is recommended when we are looking for clones where we know that

their main characteristic is that they contain a very specialized data type that exists only in a few

parts of a large system.

(

3.5. Recall / Precision Per Matching Feature Used. Precision values for specifie

Recall values were again computed by applying the same set of queries we have used for the Metrics­

based matching approach. Average Recall vaIues and average precision values have been used ta

produce with linear interpolation precision vaIues for standard recall values (0.0, 0.1, 0.2,.. 1.0).

IDS

(

(

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

FIGURE 6.9. Average Precision (in percentage points) Per Distance Range for the Data­
Types criterion.

Because of the erratic nature of low recall values for small samples [Jones81] we assigned a Precision

value of 1.0 to Recall value of 0.0.

The obtained results indicate that:

• Using the Set-Uses Criterion: we have obtained the best performance on average compared

to the other two approaches. Precision levels for low Recall values were in between the

Precision levels achieved using the Metrics criterion, and the Data Types criterion. This

behavior is due to the noise introduced in the Metrics criterion by linear interpolation as

109

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

TABLE 6.8. Recall / PrecISion RelatIOn Per DIStance Value Range (DP Data Types Crttenon)

Distance Range Precision Drop (%) Recall Increase (%) Total Recall Achieved (%)
0.01 - 0.99 -48.0% 0.0% 17.9%

1.0 - 2.0 -8.0% +12.1% 30.0%
2.01 - 5.99 ~8.0% +17.3% 47.3%

..

(

TABLE 6.9. Recall / PrecIsIon Table (DP)

Standard Recall Precision (Set-Uses) Precision (Metrics) Precision (Types)
0.0 100.0% 100.0% 100.0%
10% 83.3% 89.2% 77.5%

20.0% 71.9% 78.4% 62.5%
30.0% 74.0% 67.6% 74.9%
40.0% 75.5% 57.6% 72.9%
50.0% 66.0% 59.7% 65.9%
60.0% 52.9% 61.6% 58.1%
70.0% 44.7% 45.8% 50.3%
80.0% 36.0% 30.9% 42.6%
90.0% 26.1% 16.8% 25.5%

..

(

(

we were not able to achieve Recall values less than 34.4%. Therefore for low Recall values

it seems that the Set-Uses criterion does not perform better than the Metrics criterion, but

we believe this is mainly due to the noise introduced at the metrics Recall/Precision curve.

However, the two curves are quite close for low Recall levels. At higher Recall values, the

approach performed marginally worse than the Data Types criterion. The rea.son for this is

that some of the queries contained data types that could be found only in parts of the system

while the use of Global Identifiers (that introduced noise under the Set-Uses criterion) were

evident in large parts of the system, and therefore allowed more candidate components to

he considered. However, the Set-Uses approach is safer ta use in general queries as it does

not impose as strict constraints on the parts of the system that can he retrieved.

• Using the Metrics Criterion: we have obtained better performance than using the metrics­

based matching (simple metrics comparison), but not as good as the overall performance

obtained by the Set-Uses and Data-Types eriterion. The reason for this result is that the

lVletrics eriterion looses its relevance at such a low level comparison granularity (Le. state­

ment level). The increased performance at low Recall values is reported due to the linear

interpolation used for Recall values less than 34.4%. This approach is a good compromise

between the speech of the metrics~basedmatching and the added accuracy of the DP-based

110

(

(

(

6.4 MARKOV-BASED MATCHING EXPERIMENTS

Average Code Size 30,392 LOC
Min Segmentation Time 3 secs.
Max Segmentation Time 184 secs.
Average Segmentation Time / Query 38.06 secs.
Min Matching Time 32 secs.
Max Matching Time 3619 secs.
Average Matching Time / Query 638.74 secs.

TABLE 6.10. Performance Stat15tlcs for 100 quenes ln three software systems (Tcsh, Clips, Roger)

matching. This approach is to be used when large software packages are analyzed and the

programmer would like to balance the speed and accuracy of the obtained results.

• Using the Data Type Criterion: we have obtained marginally the highest performance among

all the other approaches. The reason for this result is that our queries contained Data Types

that are found only in a few parts of the system and therefore the retrieved items were fewer

than the number of items retrieved by the other approaches. This phenomenon forced the

Precision level to be slightly higher than the others. Therefore, this criterion is promising

and can be used when the pattern sought contains specialized Data Types that are used only

in parts of a system. However, it is not safe to assume that all queries a user asks may fall

in this category, and the slight gain in Precision compared to the Set-Uses criterion is not a

significant factor for choosing the Data Types criterion which imposes constraints (Le. good

performance when complex data types are present).

4. Markov-based Matching Experiments

4.1. Performance Statistics. In Table.6.10 performance statistics for the ~Iarkov-based

approach are illustrated. This experiment was conducted by formulating 100 ACL queries and per­

forming pattern localization in Clips, Tcsh and Roger. One observation is that the code delineation

criterion is quite efficient in localizing candidate code fragments to be considered by the pattern

matcher. The average delineation time is 38.06 seconds which is an acceptable performance given

the average code size. Another observation is the rather high average matching time reported in these

queries. One reason for this is that most of the queries contained severa! wild character statements,

and utilized the interleaving and the choice operator. Furthermore, performance was degraded due

ta the frequent garbage collection operations utilized by the LISP environment in which we im­

plemented the matcher. Undoubtedly an implementation of the matcher in a faster programming

language (Le. C) may provide a match better performance. However, the LISP implementation in

111

6.4 MARKOV-BASED MATCHING EXPERIMENTS

: Set-Uses Criterion

':".- \
". \

.. \

\'.
\ ".

--- : Metrics Criterion

........ : Data Types Criterion
, , , ,

,--

0.7

0.9

0.8

1r----,----r-----r--~--___r--__r--~--__.__--___.

RecalVPrecision For DP-Based Matching

.§ 0.6
en
'0
~
c.. 0.5

(

0.4

0.3

0.2

\
\

\

\

\
\

\

\
\

\

\

\
\

0.90.80.70.60.4 0.5
Recall

0.30.20.1
0.1 '--_--l-__---L-__...J........__L.....-...._--l-__---L-__....I...-_---J__--J

o

FIGURE 6.10. RecallfPrecision for DP-based Matching.

all of the diseussed experiments performs better than other existing implementations [MagdaJ96],

[MacLaugh95] .

4.2. Recall / Precision Comparison. Precision values for specifie Reeall values were

again computed by applying the same set of queries we have used for the metrics-based matching

approach. Average Recall values and average precision values have been used ta produee with linear

interpolation precision values for standard reeall values (0.0, 0.1, 0.2, .. 1.0). Because of the erratic

nature of low reeall values for small samples we assigned a Precision value of 1.0 ta Recall value of

0.0.

112

6.4 MARKOV-BASED MATCHING EXPERIMENTS

(RecalllPrecision For Markov-Based Matching

0.90.80.70.60.4 0.5
Recall

0.30.20.1

0.7

0.5

0.8

0.9

0.4

0.3

0.2 '----....... -"- ,&""....__---'- -'--__---'L...-__--'- --'-__---'

o

c
o
'üi
·00.6
~a.

(

FIGURE fi.ll. Recall / Precision graph for the Markov Based matching.

The results obtained using this technique were clearly the best among the approaches we have

experimented with. The major observations on the Recall/Precision curve obtained are:

(

• the Precision levels are maintained at high values for higher Recall levels when compared

with the best curves obtained for the metrics-based approach and the DP-based approach.

• the performance of this approach is the best for Recall levels approximately in the range

of 40.0% - 70.0%, but is comparable with the performance of the DP approach for Recall

levels lower than 50%. The reason for this behavior is that components that are structurally

similar with no major modifications cao be captured by bath the DP-based method and

113

(

(

(

6.5 OVERALL RECALL / PRECISION COMPARISON

the Markov-based method. However, when modifications are introduced (Le. changes in

variable names, changes of statement types), the DP-based method May reject candidates

based on threshold eut-off values, while the Markov approach will allow more matching

flexibility in this cases (Le. will succeed in matching a Abstract-Conditional-Statement with

an lf-Statement or a Switch Statement while the DP will fail and will effectively consider

such a comparison as an insertion or deletion) .

• The drawback of the approach is that we could not effectively achieve, on average, Recall

values higher than 78.4%, so that any Precision value obtained for Recall level higher than

78.4% was computed using linear interpolation on the assumption of a Precision value 0.0

for Recall value 1.0. This is the most pessimistic assumption but ensures that the resulting

curve is the lowest that cao be achieved. In our experiments, we had queries that achieved

a Recall level higher that 78.4%. These queries gave an overall average Precision of 30.0%

which is a more realistic estimate, for the performance of this approach.

5. Overall Recall / Precision Comparison

In this section we present a comparison the Recall/Precision curves for the best combinations

ohserved in each of the pattern matching techniques proposed. In Fig.6.12 these Recall/Precision

curves are illustrated.

• Clearly, the Markov-based approach performs better that the other two. The basic advan­

tage of this approach is that it maintains a high Precision level for high Recall levels. With

our experiments we effectively achieved an average Recall value of 74.8% for which we we

obtained, using the Markov-based approach a Precision of approximately 40.3%. The lin­

ear drop in Precision we observe for Recall values higher than 74.8% is a praduct of linear

interpolation taking the most pessimistic assumption that at Recall level 100.0% we have

Precision 0.0%. In practice this assumption does not hold. In fact those of our experiments

that achieved effective Recall values higher than 74.8% suggested a Precision value of 30.0%.

The drawback of this method is that it is slower than the other two, especially when the

formulated queries involve the choice and the interleaving operator. We think that signifi­

cant performance enhancements can he achieved by implementing the algorithms in a more

efficient programming environment. This approach is suitable for cases where high Precision

and high Recall values are sought.

• The DP-based method is the second best approach of the ones we have tried. For Recall

levels lower than 45.0% the algorithm seems not to perform as weIl as the metric-based one.

This behavior can be explained by the interpolation error iI!troduced at low Recall values

114

(

(

6.5 OVERALL RECALL / PRECISION COMPARISON

of the metrics-based approach. Note that in the metrics-based method, the lower effectively

achieved Recall value was 44.3% at distance 0.0. Recall values from 0.0% to 44.3% were

interpolated. This explains the linear drop in Precision for Recall values less that 44.3%.

The overall acceptable RecalljPrecision performance of this approach combined with its

good time performance make it a very attractive candidate for cases where the user wants to

balance between accuracy and speed. Clearly this approach is very suitable for large systems

in which exact clones are sought .

• The metrics-based method performed very weU for RecaU values less that 44.3%. For higher

Recall values we observed a linear drop in Precision up ta Recall values of 82.5%. For Recall

values higher than 82.5% the method seems to stabilize at a Precision level of 10.2%, which

is lower than the Precision levels achieved using the other two methods at this Recall level.

We can safely conclude that this method trades speed for accuracy in the obtained results.

The metrics-based method is very suitable for large systems in cases for which only part of

the clones are sought. LVloreover, this method can be applied as a preprocessing step to limit

the search space of a more accurate but slower matching technique such as the DP-based or

the Markov-based ones.

115

6.5 OVERALL RECALL 1 PRECISION COMPARISON

: Markov-Based

-: DP-Based

... : Metrics-Based

\

\
\

\
\

\ , , , ,
'---

RecalVPrecision For the Approaches Proposed
1~=::::::::::lr-----'r-----'r----r-----r----"'----r-----r--...,

0.3

0.7

0.9

0.2

0.8

0.6
c
o

"Ci)
'00.5
Q)-.
(l,

0.4

(

(

0.1

Ol--__"--__..Io--__~__...L--__..I..___..I..___...L.___.....L.__ _____'

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

FIGURE 6.12. Recall/ Precision graphs for tf1e pattern matching methods proposed.

116

(

(

CHAPTER 7

The System Architecture

1. Communication with other Tools

Design recovery is a process that produces high-Ievei descriptions of a software system from an

analysis of its implementation. Usually this means extracting requirement or specification concepts

from a program's source code. Once design decisions are recognized, they are then represented

in a form that is suitable for subsequent use. This process requires the integration of different

technologies, perhaps in more than one software environment, and with a variety of analysis tools.

In developing an integrated design recovery environment, the following important problems have to

be considered:

(i) Program representation,

(ii) Adaptation of data, control, and presentation to the components of the environment,

(iii) Extension of the data models and interfaces to support the registration of new tools and

user-defined objects, dependencies, and functions,

(iv) Development of domain-specifie, syntactic and semantic pattern matching for plan Iocaliza­

tion and recognition,

(v) Representation and support of processes and methodologies for reverse engineering,

(vi) Construction of robust user interfaces, and algorithms, capable of handling large collections

of software artifacts.

Data integration is essential to ensure data exchange between tools. This is accomplished

through a common schema.

Control integration enhances inter-operability and data integrity among different tools. This

has been accomplished by the development of a server that handles requests and responses between

tools in the environment [Wasser90].

7.1 COMMUNICATION WITH OTHER TOOLS

Local

Warkapace

(

Control Integration

Data Integration

~

i
i

1
1
1
1

1
;
j
1
1........_...•_ -_ _ _ _.-}-_.

y
1 I

-------l Repoa.tory
Obleet Baa~ __T_oo_I__....

(

(

FIGURE 7.1. The implemented system architecture for tool integration. Dashed lines
distinguish computing environments, usually running on different machines.

A solution to the above mentioned problems is based on a system architecture in which all tools

communicate through a central software repository that stores, normalizes and makes available the

results of analysis, the design concepts, the links to graph structures, and other control and message

passing mechanisms neecled for the communication and cooperative execution of different tools. Such

integration is achieved by allowing a local workspace for each individual tool in which specifie results

and artifacts are stored, and a translation program for transforming tool-specifie software entities

into a common and compatible form for all environments entities.

The translation program generates appropriate images in the central repository of objects shared

with local workspaces.

A system architecture for snch an integrated reverse engineering environment is illnstrated in

Figure 7.1.

Communication in this distributed environment is achieved by scripts understood by eaeh tool

using a shared schema data model for representing data from the individuallocal workspaees of each

tool and, a message passing mechanism for each tool to request and respond to services.

A customizable and extensible message server named Telas Message Bus (TMB) [Mylo96]

handles data communication. This message server allows all tools to communicate both with the

118

(

7.1 COMMUNICATION WITH OTHER TOOLS

repository and with each other, using the common schema. These messages form the basis for all

communication in the system.

The central repository is responsible for normalizing these representations, making them avail­

able to other tools, and linking them with the relevant software artifacts aIready stored in the

repository Ce.g., the corresponding nodes in the abstract synta:< tree).

Communication scripts are in the form of s-expressions. Each s-expression is wrapped in packets

called network objects and sent via TMB to the appropriate target machine. TMB uses Unix sockets

for the communication and utilizes the network infrastructure.

An example s-expression for a function called hostnames_matching is given below. The same

function is illustrated as an object in Fig.7.2 where the repository browser provides a graphical view

of the repository contents.

(Function_176 Token

(Function)

0

«(refineName)

«"#176"»)

((fanout)

(«10.0»)

«cycIomaticComplexity)

«5.0)))

«functionPoint)

«115.0»)

«calls)

«Function_175)

(Function_174»)

«definesLocals)

«"word")

("number")

("need_here_doc")

(" yyI val"»)

«definesGlobals)

«IIshell_input_line")

C"pushed_string_Iist ll
)

C"shell_input_Iine_index"»)

(119

(

(

(

7.1 COMMUNICATION WITH OTHER TOOLS

((functionName)

«lIhostnames_matching")))))

The shared schema facilitates data integration and encodes program artifacts (Le. the AST),

as weIl as analysis results (e.g. the caU graph, the metrics analysis).

A system integrating Reflne, Rigi and Telos running simultaneously at three separate sites

(Toronto, Victoria and Nlontreal) has heen implemented and is currently in use.

This architecture has been further expanded to accommodate control and data integration

between different tools and processes in a Cooperative Information System Environment [Mylo96).

1.1. Data Integration. Data Integration has two major objectives, namely:

• to represent the source code in the centralized repository and make representations available

to other tools even if they use a different program representation scheme in their local

repositories,

• to model the analysis results in arder to make them available to other tools for subsequent

analysis.

The Data Integration schema consists of two parts. The first part captures information about

the program syntactic structure currently used by Reflne and Rigi. Nlultiple inheritance allows

encoding of information that may not he stored in all local workspaces.

The schema is modeled in Telos [Mylo90] and realized in ObjectStore, a commercial Object

Oriented Repository. A part of which is illustrated in Fig.7.2.

The second part classifies the patterns used, and combines the analysis results generated by

different tools.

1.1.1. Schema for Program Representation. We have selected the AST as the hasis for pro-

gram representation in the centralized repository. The choice is motivated by the fact that the AST

is a direct product of the parsing process, can be created by any parser for the target language in

various degrees of detail and granularity (Le. detailed parsing versus light-weight parsing), and many

other program representation schemes (e.g. program dependency graphs, combined dataicontrol flow

graphs) can be considered as analysis (result) and annotations of the basic AST. Results obtained

with different tools can he linked via annotations ta the AST nodes.

The schema has been implemented in Telos [Mylo90] and allows for multiple inheritance and

specialization of the attribute categories for each object. In this way, an AST entity (i.e. File) may

have attributes that are classifled as Refine-Attributes or Rigi-Attributes and be encapsulated in the

120

(

(

(

7.1 COMMUNICATION WITH OTHER TOOLS

FIGURE 7.2. Part of the Schema hierarchy. Multiple inheritance is shown for the File and
Module nodes.

same schema object. The Schema is populated by tools that may add, or retrieve values for the

attributes in the objects ta which it has access ta.

At run-time, the user or the communication scripts may request and select only the attributes,

and their carresponding vaiues, that are relevant ta a particular tool. The server has been extended

ta handle more camplex messages and respond autamatically ta events using a rule base and the

Event, Condition, Action paradigm [Mylo96].

An example of the schema structure far the File AST node as it is represented in the central

repository is illustrated in Fig.7.3

1.1.2. Schema for Analysis Results. The basic purpose for tool integration is the development

of an environment in which each tool exchanges analysis results with other tools 50 that the overall

functianality of the system will be enhanced and be bound to the functionality of each individual

tool as if it were stand aIone.

Data integration for analysis results was achieved by designing Schema classes for every type of

analysis a tool is able ta perform. Each sucb class is linked via attributes ta the actual AST entities

and this is visible ta all the other tools that may request it.

For example, in Ariadne, a Cluster is a collection of functions and cao be generated by a specifie

type of analysis (e.g., data bindings related clustering, similarity based clustering) while in Rigi this

121

(

(

(

7.1 COMMUNICATION \\,'TH OTHER TOOLS

FIGURE 7.3. The Schema structure and inheritance for the File AST cntity. The Refine­
Attributes and the Rigi-Attributes are encapsulated in the same abject in the central
repository.

is considered a Subsystem. In the central repository, both are encoded using the Module Schema class

which is used thereafter for communicating analysis results involving grouping of software artifacts

and system partitioning. A reference table is used in the central repository to map and normalize

class names from each individual too1. This table has been built a-priori as the user registers the

services that each tool offers manually when designing the system. New services can be added by

updating the reference table, and adding the appropriate new Schema classes.

The Ariadne Schema related to the services Ariadne offers is illustrated in Fig.7.4. Focus has

been placed on the RegularExpressionLocalization service which localizes code given a regular-like

description of its structure. Note that the result can be made available to the other tools by the

attribute regExpressionLocalizationRes which can take as values instances of the Module schema

class. When such an analysis is performed, a new Token of type RegularExpressionLocalization is

created and the attribute regExpressionLocalizationRes contains a collection of software artifacts

that match the given regular expression which is stored in the regExpression attribute. When Rigi

or another tool requests the results of this type of analysis, it gets as a response the value of the

regExpressionLocalizationRes attribute which is a set of software artifacts or, more precisely, a set of

pointers to the corresponding object nodes that represent these software artifacts in the AST. Once

122

(

(

7.1 COMMUNICATION WITH OTHER TOOLS

FIGURE 7.4. ExtractionObject Schema hierarchy for the Ariadne System.

pointers to the AST have been passed, all other types of analysis available in Rigi can be performed

locally and applied to this specifie Module.

1.2. Control Integration.

mechanism for :

Control Integration is based on designing and developing a

• Uniquely registering tool sessions and corresponding services,

• Representing requests and responses,

• Transferring object entities to and from the repository,

• Performing error recovery.

At the Application layer [Stallings91] Mbus is used to facilitate inter-networking. Mbus offers

an environment ta manage the transfer of data via TCP/IP using a higher-Ievellanguage ta represent

source and destination points, processes, and data. Mbus offers an environment to access lower level

UNIX communication primitives (Le. sockets), in arder ta manage the transfer of data via Tep/fP

using a higher-Ievel language to represent source and destination points, processes, and data.

Each tool generates a stream of network abjects encoded as a stream of s-expressions. A parser

analyzes the contents of each network abject and performs the appropriate actions (e.g. respond ta a

request, acknowledge the successful reception of a network object). Moreover, a mediator program is

123

(

(

7.1 COMMUNICATION WITH OTHER TOOLS

used to check if a request or an acknowledgment has arrived t and initiates the appropriate actions.

In particular 1 UNIX named pipes are used to signal an incoming event and handle incoming and

outgoing data. The mediator program. constantly checks for the existence and the status of these

pipes and initiates the appropriate processes for reading or writing.

The system handles the following messages:

• Ask for instances of a particular abject class from a local workspace or the central repository

(A5K type messages) t

• Add new instances of an abject class ta a local workspace or to the central repository (ASK

type messages),

• Add new values ta attributes of a particular object (TELL type messages)t

• Ask for the status of a tool (i.e. running, registered) (ASK type messages),

• Acknowledge the successful termination of a request (AeK type messages).

NIessages can be send from each tool to any other tool

• Via the centralized repository or

• In a direct fashion.

The normal mode is for the tools ta communicate via the central repository; in this mode each

tool contributes a specifie analysis that another tool can use and enhance. The whole process is

driven by the user who is aware of the types of analysis he or she has performed or are already

performed by other users and stored from previous sessions.

The direct communication mode has been implemented to facilitate development and is not

intended to be used as the standard communication mode.

Messages are classified in two categories:

• Point-to-Point messages

• Broadcast messages

Point-to-Point messages have unique origin and destination points. A message is uniquely

represented by:

• The source (Le. the tool that initiated the message),

• The destination tool,

• The time that the message was issued,

• The type of the message (ASK, TELL, ACK).

An origin or a destination point (i.e. a specifie session of a Rigi tool) is represented by:

124

(

(

7.1 COMMUNICATION WITH OTHER TOOts

(i) !ts process Id,

(ü) The user who owns the process,

(iii) The host name,

(iv) The time the process started,

(v) The name of the too1.

A typical example of Point- To-Point communication is the request from a particular Ariadne

session for analysis performed by a specific Rigi session (i.e. a Rigi process).

Broadcast messages have a unique source and multiple destinations. A typical example of a

Broadcast message is the request from a particular Ariadne session for analysis performed by ail

Rigi sessions that are registered or have been registered in the past in the environment.

Each tool session is represented in the central repository as an instance (Token) of a particular

object class (Le. AriadneSession, RigiSession). Checking for the status of a tool session is achieved

by querying the central repository.

Acknowledgment of the successful termination of a request is performed by issuing a point-ta­

point message that contains:

(i) The identification of the original message,

(ii) The identification of the tool that received the message and successfuIly completed it

Currently, the repository operates in a monotonie mode, where changes of the attribute values

are not allowed as this would have required the development of a Truth Maintenance System to

maintain logical consistency in the central repository, as weIl as in the local workspaces.

In future versions of the server new functionality can be added in order to handle more complex

types of messages (Le. RETELL) and allow for changing and maintaining attribute values.

1.3. Integration Statistics. In this section the integration statistics are discussed and in

particular the relationship between source code size, total number of repository generated abjects,

data retrieval performance as weIl as upload and down-load times.

The experiments involved four software systems, Twentyone, bash, tcsh and, Clips. For each

system we have measured:

• the total number of objects that represent parts of the AST in the central repository,

• down-load performance by measuring

the total number of objects in KB,

the total number of objects retrieved by selection queries and,

the Dow-load time per query,

125

7.1 COMMUNICATION WITH OTHER TOOLS

TABLE 7.1. Storage Stat15tlcs (only File and Functlon obJect types stored)

System LOC # of Functions # of Files # of ABT Repository abjects
TCSH 44,754 658 46 3,340
CLIPS 32.807 705 40 1,694
BASH 27,393 632 63 1,606

ROGER 13,615 235 39 1,089
TWENTYONE 943 38 3 920..

(

120

1

100

eo

î 1

jeo

1
40

20

oL--.........----"----'---..........-~o 2000 .000 l5000 l5000 10000 12000 14000
Number of CIltecIa

(
FIGURE 7.5. Upload Performance

• upload performance by measuring

- the total number of objects ta be loaded to the repository,

- the upload time.

The total number of abjects generated for the reduced AST for the four subject systems is

illustrated in Table.7.1. These measurements indicate that the approach of storing only the necessary

parts of the AST results in a large potential for scalability, as major increases in the size of the source

code do not affect dramatically the total number of abjects generated.

The upload times are illustrated in Fig.7.5. These statistics indicate a relatively linear relation

between the upload time and the total number of abjects to be loaded in the repository. The total

number of objects in this experiment was obtained by allowing objects that represent statements to

be generated as weIl.

Similarly, the down-Ioad statistics are shown in Table.7.2. These statistics indicate that down­

Joad time depends on the size of the objects retrieved and not on the size of the repository. This is

an important observation as it is directIy connected with the scalability of the system.

126

(

(

7.1 COMMUNICATION WITH OTHER TOOLS

System Total Objects in KB Objects Retrieved by Query Down Load Time (sec)
TCSH 3340 658 10
TCSH 3340 47 1
CLIPS 1694 705 15
CLIPS 1694 41 1
BASH 1606 632 10
BASH 1606 63 2

TWENTYONE 117 38 1
TWENTYONE 117 3 1

TABLE 7.2. Dow-load Performance (KB contaIns Flle, Functlon type obJects)

127

(

CHAPTER 8

Conclusion

Many of the problems related ta Software ;\tIaintenance originate from the overall poor condition of

large systems in terms of complex source code and obsolete documentation. The essence of Software

:Maintenance problem, though, may be ultimately traced back ta the lack of sufficient understanding

of the structure, functionality, characteristics and component dependencies in large software systems.

This thesis has reviewed the state-of-the-art for Program Understanding techniques and dis­

cussed how these approaches address problems related ta software maintenance. It is evident that

the research community in Program Understanding proposed a lot of interesting ideas that originate

from different areas. Two of the key themes in Program Understanding research, as it has evolved

the last four years, are plan recognition and data /lOID analysis.

\Vithin this framework, sorne teams have chosen ta apply compiler techniques ta compute and

analyze Program Dependency Graphs, perform slicing, value range analysis, constant propagation

analysis, and symbolic evaluation. These techniques have been used ta identify parts of code that

may be relevant to a particular maintenance task.

Other teams have used customized graph-based program representation formalisms to represent

code abstractions and proposed techniques to match these abstractions against the contents of a

static repository that contains representations of programming plans. These techniques have heen

used ta identify commonly used algorithms as weIl as application domain specifie programming plans

in a software system.

Approaches ta plan recognition must address two key questions:

(i) Whether a plan based approach can be effective as it implies a plan library that must contain

all possible plans in advance,

(

(

(

8.1 CONTRIBUTIONS

(ii) How program understanding algorithms can scale-up and be applied to large software systems

as most existing program understanding aIgorithms that rely of flow-graph matching are NP­

complete in the worst case.

\Ve have chosen to work on problems related to Plan Recognition and in particular, the clone

detection, and the concept assignment problems.

Code cloning which is a widespread practice among developers;

a) increases the complexity of a software system, and the size of the corresponding executable

program.

b) increases maintenance costs as changes in one component have to be propagated ta ail of its

cloned instances

c) code cloned components are prime candidates for repackaging and generaIization ta a software

repository of reusable components

The concept assignment problem consists of attaching a "meaning" to a code fragment, by

understanding its overall functionality, data and control flow properties, as well as its possible

abstractions.

Within this framework our hope was to design scalable pattern matching techniques that can

be used to locate and retrieve instances of code cloned components in a large software system and

provide a formalism to represent (in a higher level of abstraction), implementations of generic, as

well as, domain specifie, algorithms.

The thesis proposes three matching techniques that are scalable, do not depend on a plan

library, and are flexible and modifiable by the end user.

1. Contributions

This section summarizes the major original contribution of this thesis.

Firstly, we have proposed and experimented with a number of program features that are used to

compute five standard software engineering metrics that classify and represent a code fragment. \Ve

have shown that these metrics can he computed compositionally by using the Abstract Syntax Tree at

link time. This matching technique is based on the assumption that if two code fragments are clones,

then they share a number of structural and data flow characteristics that can be effectively classified

by these metrics. We have shown that the metrics-based approach provides a fast approximation of

the code doning recognition problem. Experimental results have indicated that we can effectively

retrieve 60% of the code cloning instances sought, and maintain a Precision of approximately 41.0%

at the final results. The strength of this approach is that it can be easily used, does not depend on

any complex formalism to represent source code entities, and it is time and space efficient, as it is

129

(

(

8.1 CONTRIBUTIONS

mostly based on comparison of numeric tuples. The price ta pay for the speed and ease of use in this

method is that at higher Recallieveis noise can be introduced and low Precision values be obtained.

At a Recall level of 70.0% the Precision can drop to 19.2%. However, this is not problematic as

only a small fraction of the system is retrieved (in our experiments ~ 11.3% of the total size of the

system) and therefore can be used at a pre-processing stage ta limit the search space when using

more accurate but more computationally expensive methods.

Secondly, we have designed and implemented a Dynamic-Programming aIgorithm that uses data

and control flow information to compare two code fragments and e\'a1uate an overall dissimilarity

measure based on insertions, deletions and substitutions of basic statements and expressions that

occur in the two code fragments compared. Dynamic Programming algorithms are very fast and

efficient and have been extensively used in real-time applications (e.g. speech recognition systems).

The Dynamic-Programming approach is shawn ta be more accurate than the pure metrics-based

method but it is computationally more e.."Cpensive. In particular, its complexity is on the arder D(n

* m) where n is the number of statements of the first fragment considered ta be the model and, m

be the number of statements of the code fragment matched against the model. However, this type

of complexity is still fully acceptable when considering large systems. Experimental results have

shawn that we can effectively retrieve 70% of the clone instances of a model code fragment and still

maintain a Precision of approximately 45.0%. Moreover, this method performed very well on even

higher RecaIl values where, for Recallieveis of 90%, we maintained a Precision level of 26.1%.

Thirdly, we have proposed and implemented a concept description language ACL that is used

to represent programming patterns. ACL is used ta represent data flow, control flow, and data type

properties of programming patterns. A matching mechanism that is based on Markov wlodels is used

ta establish correspondences between a parse tree of the concept description language and the source

code. The Viterbi algorithm is used to identify the best alignment between a pattern represented

in ACL and a code fragment. Experimental results obtained by examining medium sized software

systems, have illustrated that this approach is powerful enough ta localize programming patterns

more effective!y than the pure Dynamic-Programming or the Metrics-based methods. wloreover,

the complexity of this method is again on the arder O(n * m) where n is the number of Abstract

Statements in an ACL pattern that is used as model, and m is the number of statements in a code

fragment matched against the model. Our experiments have effectively achieved an overall average

Recalilevei of 70.0%, maintaining an overall Precision of 63.6%. Interpolated values for 90.0% RecaIl

levels have suggested pessimistic Precision levels of 22.0%. However, those of our experiments that

have achieved effective Recalileveis of close ta 90% have suggested Precision close to 30.0%, which

is a more realistic estimate.

130

(

(

8.2 DISCUSSION AND FUTURE WORK

This method is not restricted by the particular program features used for matching and t in a

way, ACL can be considered as a vehicle that allows for new program features ta be added and

considered during the comparison process. lVloreover t we have shown that this technique is scalable

and hierarchical abstractions of programming patterns can be effectively built from descriptions of

a number of simpler base patterns.

The proposed technique can be applied ta localize patterns in a variety of Procedurallanguages

such as PLI, PL/X, PLI AS, Pascal and C.

These techniques have been implemented to provide a Program. Understanding tool-set that

has been integrated with a visualization tool and a software Repository. The system runs in a

distributed environment utilizing Unix sockets and the TepIIP protocol, allowing for multiple

software development and maintenance teams ta access and analyze a large software system.

2. Discussion and Future Work

In Many ways the results reported are very encouraging. ~Iost of our experiments have iI­

lustrated the scalability and the effectiveness of the methods proposed. Yet t in arder ta assess and

evaluate the significance of our results it is important ta discuss generic issues related ta code cloning t

plan recognition and the concept assignment problem.

Program Understanding has for a long time, been seen as a pattern matching problem, where

programming plans represented in some formalism are stored in a static plan-base and are matched

against compatible representations of the source code stored in a code-base. The way source code

is represented and used by the localization and matching component of such a Plan Recognition

system is fundamental for the performance and the accuracy of the results obtained.

We feeI that there is an important trade-off between tractability and accuracy. Formai methods

have not been very successful in recognizing Programming Plans in programs larger that 1000 Hnes

[Quilici96) . However t they provide a solid foundation for Software Engineering research as they

allow for semantic abstraction and effective partial recognition that May handIe structural variations t

implementation variations and idiosyncratic code.

On the other hand, methods that are based on measurements and analysis obtained by exam­

ining solely the Data and Control Flow properties of a subject system, fail to provide insights into

the semantics of the source code examined. However, these approaches scale up and have been suc­

cessfully applied to recognize Programming Plans and code duplication in large industrial systems

where formal methods have failed ta produce acceptable results.

131

(

(

8.2 DISCUSSION AND FUTURE WORK

In this thesis we have tried ta provide generic mechanisms ta bridge this gap between the

pure semantic and the pure structural text-based approach ta representing and localizing program

patterns.

With the metrics-based approach we have tried ta abstract a number of Data and Control Flow

properties of the source code and effectively represent them in a 5-d numerical space. The five

metries we used were selected on the merit of their coverage of a variety of code properties ta which

they are sensitive. However, this method can not effectively pravide any qualitative measure about

hawa model and an input components differ. A possible further avenue of research for this method

is ta examine the use of software metrics with respect ta particular conte..xts, and maintenance

objectives. This May result in guidelines for associating specific deviations of metric values with

specific modifications in the structure and the logic of a subject system, thus inferring, sorne semantic

content of the modifications involved. This type of research is essential for establishing a qualitative

characteristic on software metrics that have not been thoroughly interpreted yet.

The Dynamic-Based approach is an attempt to provide a method for measuring some qual­

itative characteristics of the modifications that May appear between code fragments. Still, this

method depends on the structural characteristics of the code examined and gives little insight into

the semantic properties of the source code. However, the OP function proposed provides abstraction

mechanisms that the pure text-based and metrics-based approaches do not. :Moreaver, the DP-Based

matching subsumes these approaches, as any successful substring comparison or metrics comparison

is effectively captured by the Dynamic Programming approach as weIl. ~[oreover, fixed text substi­

tution mappings applied far parameterized text-based matching [Baker94J, [Baker95], are more

restrictive than the use of abstract identifier bindings and lexicographical distances proposed within

the context of this thesis.

Overall, code-to-code matching and code cloning detection have started gaining attention as

potential tool for software evolution and especially for software migration from Procedural ta Object

Oriented languages. Specifically, similar code fragments that can be parameterized on different

data types May suggest the way these data types can be abstracted ta classes and how associated

operations can become methods to these classes. Initial work in this field has already been reported

in [Konto96b].

Finally, the ~Iarkov-model approach is the MOst flexible and extensible of all three methods

discussed in this thesis. The strength of this method is that it provides a framework in which

alternative Programming Patterns can be represented in higher levels of abstraction and matched

against specifie instances of the source code. Similarity distances can be computed based on the

likelihood a programming structure is generated by a Programming Pattern. The method has

132

•

•

8.2 DISCUSSION AND FUTURE WORK

been proposed in conjunction with ACL, but we consider that other specification and program

representation languages can be used instead. Within this framework two possible avenues of research

can be explored. The first is ta enhance ACL in order to handle more semantic content. This includes

the ability ta specify data Dow related constraints for each Abstract Statement represented in ACL,

ta represent data dependencies, and access ta diverse sources of information related to a specific

code fragment (Le. documentation, comments, descriptions of algorithms) via a software repository

similar ta the one proposed for tool integration. Essentially, such a software repository can he part

of the compiler. The front-end can be used to populate the repository and the debugger provide

dynamic information on specific execution traces.

The second possible avenue of research is to use Markov models to represent the structure and

the dependencies between high level software architectural patterns. In such a way multiple high

level architectural decomposition views of a large software system can be revealed, based on a set of

high level architectural descriptions encoded in an abstract architecture description language much

like ACL. The software architect may provide a number of queries that extract architectural views

between high level components based on their top level interaction, dependencies, and organizational

patterns.

Our experience with the proposed toois is that they can easily provide information on differences

between software versions, modifications between releases, and can he used for system partitioning.

As a result, all three discussed techniques have been integrated into our Re-engineering Environment

and are part of our standard software analysis tooi-set.

133

(

(

CHAPTER 9

Bibliography

(

(

REFERENCES

[Adamov8ï] Adamov, R. "Literature review on software metrics", Zurich: Institut fur Infonnatik

der Universitat Zurich, 1987.

[Aho89] Aho, A., Ganapathi, M., Tjiang, S., "Code Generation Using Tree Matching and Dy­

namic Programming" ACM Transactions on Programming Languages and Systems, vol.

lI, No. 4, October 1989, Pages 491-516.

[Aho85] Aho, A.V., Sethi, R. and Ul1man, J.D., Compilers: Principles, Techniques and Taols,

Addison-Wesley, 1985.

[Albrecht79] Albrecht, A., J., "Measuring Application Development Productivity", Proceedings of

IBM Applications Development Symposium, Monterey, CA., Oct. 1979, pp.83-92.

[Anderberg73] Anderberg wI., "Cluster Analysis for Applications" Academie Press.

[Baker95] Baker S. B, "On Finding Duplication and Near-Duplication in Large Software Systems"

In Proceedings of the Working Conference on Reverse Engineering 1995, Toronto ON.

July 1995i, pp. 86-95.

[Baker94] Baker S. B, "Parameterized Pattern 1'Iatching: Aigorithms and Applications", Journal

Computer and System Sciences, 1994.

[Beneduci89] Beneducci, A., "A Reverse Engineering Methodology to Reconstruct Hierarchical Data

Flow Diagrams for Software :Maintenance," IEEE Conf. on Software Maintenance, 1989,

pp. 180.

[Bental92] Bental D. "Using Clausal Join and Clausal Split to Recognize Language Specifie Pro­

gramming Design Decisions", Workshop Notes, AI and Automated Program Understand­

ing, Conference of the American Association of Artificial Intelligence 1992, pp. 37 - 40.

[Biggerstaff89) Biggerstaff, T. J., "Design Recovery for Maintenance and Reuse," IEEE Computer,

July 1989, pp. 36-48.

[Biggerstaff94] Biggerstaff, T., Mitbander, B., Webster, D., l'Program Understanding and the Con­

cept Assignment Problem", Communications of the A CM, ~Iay 1994, Vol. 37, No.5,

(

(

REFERENCES

[Brne) http://www.beirut.bme.com pp. 73-83.

[Brown92] P. Brown et. aL "Class-Based n-gram Models of natural Language", Journal of Compu­

tational Linguistics, VoL 18, NoA, December 1992, pp.467-479.

(Brotsky84] Brotsky, D.C., "An Aigorithm for Parsing Flow Graphs," !vlaster's thesis, NIIT, 1984.

(Bush85] Bush, "The Automatic Restructuring of COBOL," IEEE Conf. on Software Mainte­

nance, 1985, pp. 35-42.

[Buss94] E. Buss, R. De ~Iori, w. M. Gentleman, J. Henshaw, H. Johnson, K. Kontogiannis,

E. NlerIo, H. A. !vIülIer, J. ~Iylopoulos, S. Paul, A. Prakash, lvI. Stanley, S. R. Tilley,

J. Troster and K. Wong, "Investigating Reverse Engineering Technologies for the CAS

Program Understanding Projeet" , mM Systems Journal, voL 33 no. 3, 1994, pp. 477-500.

[Cadr] http://www.bicsystems.com/developer/cadre.htrnl

[Cate1I49] Catell R., "RD and other coefficients of pattern similarity", Psychometrika 14, pp. 279­

288.

[Clifford75] Clifford H., Stephenson, W., "An Introduction to Numerical Classification" Academic

Press, Inc., New York.

[Clips) C-Language Integrated Production System User's Manual NASA Software Technology

Division, Johnson Space Center, Houston, TX.

[CalIics88] Callics, "A Knowledge Based System for Software Maintenance," IEEE Conf. on Soft­

ware Maintenance, 1988, pp. 319-326.

(Canfora94] Canfora, G., Cimitile, A., DeLucca, A., "Software Salvaging Based on Conditions"

IEEE Conf. on Software Maintenance, 1994, pp. 424-433.

[Canfora92] Canfora, G., Cimitile, A., Carlini, U., "A Logic-Based Approach to Reverse Engineering

Tools Production" Transactions of Software Engineering, Vol.18, No. 12, December 1992,

pp. 1053-1063.

[CASE89] "Re-engineering and Maintenance," CASE Outlook 89, No 3, 1989.

[Chakrabarti86] Chakrabarti, P., Ghose, S. and DeSarkoz, S., "Heuristic Search Through Islands,"

AI Magazine, Vol. 29, 1986, pp. 339 - 347.

(Chien91] Chien, J-H., Fu, S-T., Horowitz, E. and Rouff, C., "RPP: A System for Prototyping User

Interfaces," 1991, pp. 419 - 420.

[Chiko901 Chikofsky, E.J. and Cross, J.H. II, l'Reverse Engineering and Design Recovery: A Ta.'C­

onomy," IEEE Software, Jan. 1990, pp. 13 - 17.

[Choi90] Choi, S.C. and Scacchi, W., l'Extracting and Restructuring the Design of Large Systems,"

IEEE Software, Jan 1990, pp. 66 - 71.

136

(

(

(

REFERENCES

[Cimitile90) Cimitile, A., Lucca, G. and Maresca, P., "Maintenance and Intermodular Dependencies

in Pascal Environments," 1990 IEEE Conference on Software Maintenance, 1990, p. 72.

[Colbrook89) Colbrook, "The Retrospective Introduction of Abstraction ioto Software," IEEE Conf.

on Software Maintenance, 1989, pp. 166-173.

[Corazza90] Corazza, A., De Mori, R., Gretter, R. and Satta G., "Computation of Probabilities for

an Island-Driven Parser," IEEE Transactions on Pattern Analysis and Machine Intelli­

gence, Sept. 1991.

[Dart87] Dart, S.A., Ellison, R.J., Feiler, P.H. and Habermann, A.N., "Software Development

Environments," IEEE Computer, Nov. 1987, pp. 18 - 27.

[Das89] Das, "A Knowledge Based Approach to the Aoalysis of Code and Program Design Lan­

guage," 1989 IEEE Conference on Software Maintenance, pp. 290-296.

[Davies90] Davies, S., "The Nature and Development ofProgramming Plans," International Journal

of Man Machine Studies, Vol. 32, 1990, pp. 461 - 481.

[DeJ\tlori89) De wlori, R. and Prager, R., "Perturbation Analysis with Qualitative NIodels," Proceed­

ings of IJCAI 1989.

[Dettienne90] Dettienne, F. and Soloway, E., "An Empirically Derived Control Structure for the

Process of Program Understanding," International Journal of Man Machine Studies,

Vol. 33, 1990, pp. 323 - 342.

[Edmonds821 Edmonds, E.D., "The Man-Computer Interface: A note on Concepts and Design,"

International Journal of Man-Machine studies, no. 16, 1982, pp. 231 - 236.

[Engberts91] Engberts, A., Kozaczynski, W., Ning, J. "Automating software maintenance by con­

cept recognition-based program transformation," IEEE Conference on Software Mainte­

nance - 1991, IEEE, IEEE Press, October 14-17 1991.

[Everitt74] Everitt B., "Cluster Analysis" John Wiley & Sons, Inc, New York.

[Fickas79) Fickas, S., Brooks, R., "Recognition in a program understanding system". In Proc. 6th

Int. Joint Conf. Artificial Intelligence, Tokyo, Japan, 1979, pp. 266-268.

[Fenton91] Fenton, E. "Software metrics: a rigorous approach", Chapman and Hall, 1991.

[Gallagher91] Gallagher, K.B. and Lyle, J.R., "Using Program Slïcing in Software Maintenance,"

IEEE Transactions on Software Engineering, Vol. 17, No. 8, August 1991, pp. 751-761.

[Gillis90] Gillis, K. and Wright, D., "Improving Software Maintenance Using System Level Reverse

Engineering," 1990 IEEE Conference on Software Maintenance, 1990, pp. 84-91.

[Green88] Green, "Self Identifying Software," 1988 IEEE Conference on Software Maintenance,

1988, pp. 126-133.

137

(

(

REFERENCES

[Guedj80] Guedj, R.A. et al., Afethodology of Interaction: Seillac Il (Seillac, France), Amsterdam,

1980.

[Hale90] Hale, D., Haworth, D. and Sharpe, S., "Empirical Software lVlaintenance Studies during

the 1980's," 1990 IEEE Conference on Software Maintenance, 1990, pp. 118-125.

[Halst77] Halstead, wI., H., "Elements of Software Science", New York: Elsevier North-Holland,

1977.

[Hanau80] Hanau, R. and Lenorovitch, R., "Prototyping and Simulation Toois for User/Computer

Dialogue Design," Proceedings of the ACM SIGRAPH 80 7th Annual Conference on

Computer Graphies and Interactive Techniques, Seattle Wash., 1980.

[Harandi88} Harandi, "PAT; A Knowledge Based Program Analysis," IEEE Conf. on Software

Maintenance, 1988, pp. 312-319.

[Harandi90] Harandi, lVLT. and Ning, J.Q., "Knowiedge-Based Pragram Analysis," IEEE Software,

Jan 1990, pp. 74 - 8l.

(Hartman92] Hartman, J., "Technical Introduction to the First Workshop on AI and Automated

Program Understanding", San Jase 1992. AAAI'92 Workshop on Automated Progmm

Understanding and Artificial Intelligence

[Hartman91a] Hartman, J., "Automatic Control Understanding far Natural Pragrams," University

of Texas at Austin, PhD., May 1991.

[Hartman91b] Hartman, J., "Understanding Natural Pragrams Using Proper Decomposition," Pro­

ceedings of the 13th International Conference of Software Engineering, lVIay 1991.

[Hartigan75] Hartigan J., "Clustering Algorithms" John Wiley & Sons, 1975

[Hartson89] Hartsan, H. and Hix, D., "Toward Empirically Derived Methodologies and Tools for Ru­

man Computer Interface Development," International Jou.rnal of Man Machine Studies,

Vol. 31, 1989, pp. 477 - 494.

[Hausler90} Hausler, P., et.al "Using Function Abstraction to Understand Program Behavior" IEEE

Software, January 1990, pp. 55-63.

[Henderson87] Henderson, P.B. and Notkin, D., "Integrated Design and Programming Environ­

ments," IEEE Computer, Nov 1987, pp. 12 - 16.

[Hennessy91] Hennessy M., "The Semantics of Programming Languages; An Elementary Introduc­

tion using Structural Operational Semantics" 1 WiJey 1991.

[Henry81] Henry, S., Kafura, D" Harris, K., "On the Relationships among the Three Software Met­

ries", Proceedings of 1981 ACM Workshop/Symposium on Measurement and Evaluation

of Software Quality, March 1981.

138

(

(

REFERENCES

[Hill87J Hill, ;4Event-response Systems: A Technique for Specifying ~Iultithreaded Dialogues,"

Proceedings of the ACM CHI + GI Conference, 1987, pp. 241 - 248.

[Hi.x89J HL"<, D. and Hartson, R., "Human-Computer Interface Development: Concepts and Sys-

tems for its ~Ianagement," ACM Computing SUT'Veys, Vol. 21, March 89, pp. 5 - 92.

[Hoare85] Hoare, C.A.R., uCommunicating Sequential Processes," Series in Computer Science,

Prentice-Hall International, London, 1985.

[Holland89] Rolland, "Tools for Preventing Software 1'Iaïntenance," 1989 IEEE Conference on Soft­

ware Maintenance, 1989, pp. 2-9.

[Hopcroft79] Hopcroft, J., UlIman, J., "Introduction to Automata Theory, Languages, and Compu­

tation" Addison Wesley, 1979.

[Huff89] Huff, K. and Lesser, V., "A Plan Based Intelligent Assistant that Supports the Soft­

ware DeveIopment Process," ACM SIGSOFT/SIGPLAN Third Symposium on Software

Engineering Environments, Boston, ~IA, Nov. 1988, pp. 97 - 106.

[HypSoft] http:ffwww.hypersoft.co.uk

[Intersolv91] Design Recovery for Excelerator, Intersolv Sales Brochure, 1991.

[Intersolv] http://www.intersolv.com

[Jain88] Jaïn. A, Dubes. R., "Algorithms for Clustering Data" Prentice-HalI, Englewood Cliffs,

New Jersey, 1988.

[Jankowitz88] Jankowitz, H., T., "Detecting Plagiarism in student PASCAL programs". Computer

Journal, 31(1):1-8, 1988.

[Johnson85] Johnson, W.L. and Soloway, E., "PROUST: Knowledge-Based Program Understand­

ing," IEEE Transactions on Software Engineering, Nlarch 1985, pp. 267 - 275.

[Johnson94a] Johnson, H., "Substring NIatching for Clone Detection and Change Tracking", In­

ternational Conference on Software Maintenance 1994, Victoria BC, 21-23 September,

1994, pp.120-126.

[Johnson94b] Johnson, H., "Visualizing Textual Redundancy in Legacy Source", In Proceedings of

the 1994 IBM NRC CAS Conference (CASCON '94), Toronto, Ontario, October 31 ­

November 3, 1994, pp.9-18.

[Jones81] Jones, K., "Information Retrieval Experiment" Butterworths Publishing Co., Toronto,

1981.

[Kaplan73] Kaplan, R., '"A General Syntactic Processor," in Natural Language Processing, ed:

Rustin E." Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

[Karakostas90] Karakostas, V., "The Use of Application Domain Knowledge for Effective Software

Maintenance," 1990 IEEE Conference on Software Maintenance, 1990, pp. 170-178.

139

(

(

(

REFERENCES

[Kay80] Kay, M., Aigorithm Schemata and Data Structures in Syntactic Processing, Xerox, Palo

Alto research Center, 1980.

[Kenning90] Kenning, R. and Munro, lVI., "Understanding the Configurations of Operational Sys­

tems," 1990 IEEE Conference on Software Maintenance, 1990, pp. 20-28.

[Ketabchi90] Ketabchi, M., ~An Object Oriented Integrated Software Analysis and Maintenance,"

1990 IEEE Conference on Software Maintenance, 1990, pp. 60.

[Kont096a] Kontogiannis K., DeMori, R., lVlerlo, E., Galler, M., Bernstein, lVL, "Pattern ~Iatching

for Clone and Concept Detection", Journal of Automated Software Engineering, vo1.3,

1996, pp.77-108.

[Konto96b] Kontogiannis K., ~Iylopoulos J., Stanley, NI., "Experiences on Migrating Procedural

Systems to Object Oriented Architectures" OOPSLA '96 Workshop on Transforming

Legacy Systems to Object Oriented Systems, San Jose Ca., 1996.

[Kont095] Kontogiannis K., DeMori, R., M., Bernstein, Merio, E., Galler, M. "Pattern Nlatching

for Design Concept Localization" In Proceedings of WCRE'95 pp. 96-103, July, 14-16,

Toronto, Canada.

[Kont0941 Kostas Kontogiannis, Renato DeMori, Morris Bernstein and Ettore lVlerlo, "Localization

of Design Concepts in Legacy Systems". In the Proceedings of the ICSM'94, Victoria,

Canada, pp.414-423.

[Kotik89J Kotik, G.B. and Markosian, L.Z., Automating Software Analysis and Testing Using a

Program Transformation System, Reasoning Systems Inc., 1989.

[Kuhn90] Kuhn, R., De~fori, R., "A Cache-Based Natural Language lVlodel for Speech Recogni­

tion", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, No.6,

June 1990, pp.570-583.

[Landis88] Landis, "Documentation in a Software lVlaintenance Environment," 1989 IEEE Confer­

ence on Software Maintenance, 1989, pp. 2-9.

[Lebowitz83] Lebowitz, M., "Memory-Based Parsing," AI Magazine, Vol. 21, 1983, pp. 363 - 403.

[Letovsky88] Letovsky, S. "Plan Analysis of Programs," Ph.D thesis, Yale University, Dept. of

Computer Science, YALEU/CSD/RR662, December 1988.

[Lieberman84] Lieberman, H., "Seeing what your programs are doing," International Journal of

Man Machine Studies, Vol. 21, pp. 311 - 331.

[Ligner88] Ligner, J., "Software Maintenance as Engineering Discipline," 1988 IEEE Conference on

Software Maintenance, 1988, pp. 292-300.

140

(

(

REFERENCES

[Lowry92] Lowry, ~I. R., Kedar, S. D., "Toward a Learning Apprentice for Software Re­

engineering", Workshop Notes, AI and Automated Program Understanding, AAAI'92

1992, pp. 76 - 84.

[Lu78] Lu S., Fu, K., "A sentence-to-sentence dustering procedure for pattern analysis" IEEE

Transactions on Systems, man and Cybernetics, s~rc 8, pp. 381-389.

[Lutz89] Lutz, R., "Chart Parsing of Flowgraphs," in Proceedings of International Joint Confer­

ence on Artificial Intelligence 89, 1989, pp. 116 - 121.

~rason81] ~Iason, R. and Carly, T., "Productivity Experiences with a Scenerio TooI," Proceedings

of IEEE COMPCON, 1981, pp. 106 - 111.

[Maarek91] Maarek Y., Berry, D., Kaiser, G., "An Information Retrieval Approach For Automat­

ically Constructing Software Libraries", IEEE Transactions in Software Engineering,

vol.l7, No. 8, August 1991, pp.800-813.

[~lcCabe90] ~lcCabe T., J., "Reverse Engineering, reusability, redundency: the connection" Amer­

ican Programmer, 3(10):8-13, Oct. 1990.

(lVlcCabe76] McCabe T., J., "A Complexity Measure", IEEE Transactions on Software Engineering,

voI.7, No. 4, Sept. 1976, pp.308-320.

[lVlacLaugh95J ~IcLaughlan, M., : J\tLSc. Project Thesis "REVERSE Engineering PLIAS Software

Using Metrics" , ~IcGill University, Department of Computer Science.

[Magdal96] lVlagdaIinos, C., : wLSc. Research Thesis L'A Generic Stochastic Pattern lVlatcher for

Plan Recognition in Software Systems", McGill University, Department of Computer

Science.

[lVlahala36] Mahalanobis, P. L'On the generalized distance in statistics" Proc. Indian Nat. Inst. Sei,

vo1.2, pp,49-55 1936.

[MeekeI88] Meekel, L'LOGISCOPE: A TooI for Maintenance," IEEE Conf. on Software Maintenance,

1988, pp. 328-337.

[Merlo89] Merlo, E., " An Artificial Intelligence Language to Describe Extended Procedural Net­

works", Ph. D. Thesis, McGili University, wIontreal, lVIay 1989.

[Merlo93] Merlo, E., J\tlcAdam. l, De lVIori. R., "Source Code InformaI Information AnaIysis Using

Connectionist ~Iodels", International Joint Conference on Artificial Intelligence, August

29 - September 3, 1993, Chambery, France, pp.1339-1344.

{Milner89] Milner, R., Communication and Concurrency, Prentice-Hall, 1989.

(Muller91] Müller, H.A., "Rigi as a Reverse Engineering Tool", Technical Report, Dept. of Computer

Science, University of Victoria, March 1991.

141

(

(

REFERENCES

~Iuller93J Müller, H.A., "Understanding Software Systems Using Reverse Engineering Technology

Perspectives from the Rigi Project" In Proceedings of CASCON'93, Toronto, ON. 24-28

Oct. pp. 21 ï-226.

[Mulligan91) j\!Iulligan, "User Interface Design in the Trenches: Some Tips on Shooting from the

Hip," Human Factors in Computing Systems, 1991, pp. 232-24l.

(1\'!urray88) NIurray, W.. "Automatic Program Debugging for Intelligent Tutoring Systems", Morgan

Kaufman, San lVlatteo, CA, 1988.

[Myers86) l'tIyers, B.A. and Buxton, W., "Creating Highly Interactive and GraphicaI User Interfaces

by Demonstration," SIGGRAPH '86, pp. 249 - 258.

(l'tIyers89] lVlyers, B.A., "User-Interface Tools: Introduction and Survey," IEEE Software, Jan 1989,

pp. 15 - 23.

[Myl096) lVIylopoulos, J., Gal, A., Kontogiannis, K., Stanley, M., "A Generic Integration Architec­

ture for Cooperative Information Systems" in Proceedings of Co-operative Information

Systems '96, Brussels, Belgium, pp.208-217.

[wIylo90] lVlylopoulos, J., "Telos : A Language for Representing Knowledge About Information

Systems," University of Toronto, Dept. of Computer Science Technical Report KRR­

TR-89-1, August 1990, Toronto.

(Ning94] Ning, J., Engberts, A., Kozaczynski, W., "Automated Support for Legacy Code Under­

standing", Communications of the ACM, May 1994, Vol.37, No.5, pp.5O-57.

(Norman84] Norman, D.A., "Four stages of User Activities," Proceedings of INTERACT '84, First

IFIP Conference on Human-Computer Interaction, 1984.

[Olsen87) Olsen, D.R.Jr., "Whither UIMS?," Proceedings /rom the conf. on Human Factors in

Computing Systems and Graphies Interface, 1987, pp. 311 - 314.

(Osborne90} Osborne, D., "Fitting Pieces to the wIaintenance Puzzle," IEEE Software, .Jan. 1990,

pp. 11-21.

(Overstreet88) Overstreet, "Program lVlaintenance by Safe Transformations," 1988 IEEE Conference

on Software A--Jaintenance, 1988, pp. 118-125.

(Ourston89) Ourston, D., "Program Recognition," IEEE Expert, Winter 1989, pp. 36.

(Ovum90) Rock-Evans, R. and Hales, K., Reverse Engineering: Markets, Methods and Tools, Ovum

Ltd., 1990.

(Pau194J Paul, S., Prakash, A., "A Framework for Source Code Search Using Program Patterns" ,

IEEE Transactions on Software Engineering, June 1994, Vol. 20, No.6, pp. 463-475.

(pearson26) Pearson, K., "On the coefficient of raciallikeness" Biometrika, voL 18, p. 105.

142

[Quilici92]

[Quilici94]

[Rajlich88]

[Reiss841

[Ryder89]

[Rich89]

(
[Rich901

(

REFERENCES

[plotkin81] Plotkin G. D, "Structural Operational Semantics", Lecture notes, DAIMI FN-19, Aarhus

UniversitY7 Denmark, 198!.

[prieto-Diaz90] Prieto-Diaz, R., "Domain Analysis: An Introduction," Software Engineering Notes,

Vol. 15, No. 2, April 1990, pp. 47 - 54.

[Quilici96] Quilici "Reengineering of Legacy Systems: Is it Doomed ta Failure?", International

Conference on Software Engineering, Berlin 1996

Quilici, A., Khan, J. "Extracting Objects and Operations from C Programs,~' Workshop

Notes, AI and Automated Program Understanding, AAAI'92 1992, pp. 93 - 97.

Quilici, A., "A NIemory Based Approach ta Recognizing Programming Plans" Commu­

nications of the ACM, May 1994, vol.37, No.5, pp. 84-93.

Rajlich, V., "Visnal Support for Programming in the Large," 1988 IEEE Conference on

Software Maintenance, 1988, pp. 92-100.

Reiss, S.P., "Pecan: Program Development systems that support Multiple Views," ICSE­

7, 1984, pp. 324 - 333.

Ryder, "ISMM: The Incrementai Software Maintenance Nlanager," 1989 IEEE Confer­

ence on Software Maintenance, 1989, pp. 142-150.

Rich, C. and Waters, R.C., Intelligent Assistance for Program Recognition, Design, Op­

timization, and Debugging, Memo, MIT AI Lab, Jan 1989.

Rich, C. and WiIls, L.N!., "Recognizing a Program's Design: A Graph-Parsing Ap­

proach," IEEE Software, Jan 1990, pp. 82 - 89.

[Rugaber90] Rugaber, S., Ornburn, S.B. and LeBlanc, R.J. Jr., "Recognizing Design Decisions in

Programs," IEEE Software, Jan 1990, pp. 46 - 54.

[Scott76] Scott, D., "Data Types as Lattices," SIAM Journal of Computing, Vol. 5, No 3, 1976,

pp. 522 - 587.

[Selby90] Selby, R., Basili, V., "Analyzing Error Prone System Structure" IEEE TI-ansactions on

Software Engineering, vol 17, No. 2, February, 1991, pp. 141 - 152.

[Shepard79] Shepard, R., CarroI, J., "Additive Clustering:representation of similarities as combina­

tions of discrete overlapping properties" Psychological Review, 86 pp.87-123.

[Shneiderman86] Shneiderman, B., Designing the User Interface, Addison-Wesley Publishing co.,

1986.

[Smythe90] Smythe, C., Colbrook, A. and, Darlison A., "Data Abstraction in a Software Re­

engineering Reference Model," 1990 IEEE Conference on Software Maintenance, 1990,

pp. 2-9.

143

(

(

REFERENCES

[Sneathï3] Sneath, P., SokaI, R., "Numerical Taxonomy", W.H. Freeman and Co., Publishers, san

Fransisco

[Sneed87] Sneed, H.:M., "Software Recycling," 1987 IEEE Conference on Software Maintenance,

1987, pp. 82.

[Sneed881 Sneed. H.NI. and Jandrasics, G. "Inverse Transformation of Software from Code to Spec­

ification," 1988 IEEE Conference on Software Maintenance, 1988, pp. 102-109.

[Spath80] Spath H., "Cluster Analysis Aigorithms for Data Reduction and Classification of Ob-

jects", Ellis Horwood Publishers, West Sussex, England

[Stallings91] Stallings, W., "Data and Computer Communications" MacMillan [ne. Toronto, 1991

(Stoy77] Stoy, J .E., Denotational Semantics, NIIT Press, 1977.

[Tilley95] Tilley, S.R.; K. Wong; NI.-A.D. StoreYi and H.A. NIüller. "Programmable Reverse En­

gineering," International Journal of Software Engineering and Knowledge Enginering,

Vol. 4, No. 4, pp. 501-520, December 1994.

(Vite67] Viterbi, A.J, "Error Bounds for Convolutional Codes and an Asymptotic Optimum De­

coding Aigorithm", IEEE Trans. on Information The07'Y, 13(2) 1967.

[VVard89] "Vard, NI., Calliss, F.W. and NIunro, M., "The NIaintainer's Assistant," IEEE Conf. on

Software Maintenance, 1989, pp. 307 • 313.

[Wasser90] "Vasserman, A., "Tooi Integration in Software Engineering Environments" Lecture Notes

in Computer Science 467, Sprienger-Verlag, Berlin, pp. 138-150

[Wedo85] Wedo, "Structured Program Analysis Applied to Software Maintenance," IEEE Conf.

on Software Maintenance, 1985, pp. 28-36.

[WhitfieId91] Whitfield D., Soffa 1\-1. L., "Automatic Generation of Global Optimizers", 1991 ACM

SIGPLAN, Conference on Programming Language Design and Implementation, Toronto,

Ontario, Canada, June 26-28, 1991.

[Wild88] Wild, C. and Maly, K., "Towards a Software rvIaintenance Support Environment," 1988

IEEE Conference on Software Maintenance, 1988, pp. 80 - 85.

[Wild89] Wild, C., Maly, K., Liu, L., Chen, J. and Xu, T., "Decision-Based Software Development:

Design and Maintenance," IEEE Conf. on Software Maintenance, 1989, pp. 297 - 306.

[Wilde89] Wilde, "Dependency Analysis Tools: Reusable Components for Software Maintenance,"

1989 IEEE Conference on Software Maintenance, 1989, pp. 126-133.

[Wills93] Wills, L.M., "Automated Program Recognition by Graph Parsing" MIT Technical Report

1358, MIT, AI Laboratory, 1993

144

(

REFERENCES

[Wills92] Wills, L.N!., "Automated Program Recognition: Breaking out of the Toy Program Rut,

" Workshop Notes, AI and Automated Program Understanding, AAAI'92 1992, pp. 129

- 133.

(

[WilIs87]

[\VilIs90]

[Viasoft]

[Xcessory]

[Zupan82)

WilIs, L.M., "Automated Program Recognition," Master's thesis, MIT, 1987.

Wills, L.lY!., "Automated Program Recognition: A Feasibility Demonstration/' Artificial

Intelligence, Vol. 45, No. 1-2, Sept. 1990, pp.113-172.

http:j jwww.viasoft.com

Report on XcessoTy, Integrated Computer Solutions, Cambridge MA.

Zupan J., "Clustering of Large Data Sets" Research Studies Press, England

145

(

APPENDIX A

This Appendix describes the Abstract Syntax Grammar for ACL. Left hand sides of the rules

represent abject classes for which instances are created each time a rule succeeds. This is the way

the AST nodes are created. In the left hand side of each rule, attributes that are annotations to the

object class at the head of the rule are used to connect AST nodes. This is the way the ACL AST

is formed. Attributes and object classes are described in more detail in Appendix B.

'" Il 111111 1Il 111111 III 1Il 111111111 Il III Il 111111 111111111111#

ACt GlW!KAR

(

'1" ri" 111111111111111111111111111111111111 11111 J 1111111111#

grammar PATTERN-ACt

PRODUCTIONS

#••#••••#•••••••••••••••••••##••••••#.

TOP LEVEL OBJECTS

.#.#•••••••••# ••••••••••#•••#•••#.####

Pattern-Object : := ["#" {["id-plan" ":" the-plan-name]} statement-in-pattern • Il .. 11. "#"]

Inc1ude-Object : : = [II include Il included-pattern-f ile included-plan-name]

User-Plan-Object :: = ["plan: Il user-plan-name]

••••••••••••••••••••••••••••••••••••#.

FUNCTION-DEF OBJECT

##••••••#•••••#••###.#.#•••••••##.#•••

Function-Def-Pattern ::= ["function" function-name-in-pattern function-def-body-pattern]

•••#••••••••••#•••••••••••#.#•••••••#.

• GENERIC STATEMENTS •
•••#••••••••••••••••••••••••••••••••••

Generic-Statement-Pattern : : = [{overall-abstr-descr} statement-itemJ

Composite-XOR-Statement-Pattern ::= [" (" composite-XOR-statement-item + "+" ") Il]

(

APPENDIX A

Composite-Interleaved-Statement-Pattern ::= [" (fI composite-Interleaved-statement-item + "_" ") "]

Any-Statement-Pattern :: = ["any-statement Il [([any-statement-body-pattern !, is-complete?] [

any-statement-description)]]

Pattern-·-Statement

Pattern-l-Statement

::= ["*-statement" *-statement-pattern-description-item]

::= ["+-statement" one-statement-pattern-description-itemJ

#####.##.####•••###••# ••••••••••••••••

ITERATIVE STATEMENTS

#.####••# •••#.###•••••••••••••••••••••

Iterative-Statement-Pattern ::= ["iterative-statement" "(" iterative-condition-pattern ")"

iterative-body-pattern]

While-Statement-Pattern

Do-Statement-Pattern

: : = ["vhile-statement"

"(" qhile-condition-pattern ")" qhile-body-pattern

::= ["do-statement" Il (" do-condition-pattern ") Il

do-body-pattern]

For-Statement-Pattern : := ["for-statement" "(" for-initialize-pattern

for-test-pattern ";"

for-increment-pattern ")"

Il.11.

(
for-body-pattern]

#.##.##.###.##.###••##.###.####.######

1 CONDITIONAL STATEKENTS 1

,.####•••••#.#.#••••# •••••••••#•••""

Conditional-Statement-Pattern ::= ["conditional-statement" "(" conditional-cond-pattern ")"

conditional-body-pattern]

If-Statement-Pattern ::= ["if-statement" Il (" if-condition-pattern ") Il "then"

then-pattern {["else " else-pattern]}]

Svitch-Statement-Pattern ::= [" svitch-statement" Il (" svitch-pattern ")"

svitch-body-pattern

" •••••#••••••••••••••••••••••••••••••

• BASIC STATEMENTS •
, ••••••••••••#.#••••#."""###"",,,

Block-Statement-Pattern

Labelled-Statement-Pattern

Return-Statement-Pattern

::= ["{" block-statements-in-pattern • "; Il "}"]

::= ["1abelled-statement" labelled-pattern]

::= ["return-statement ll
"(" return-pattern ") "]

147

APPENDIX A

(GoTo-Statement-Pattern

Continue-Statement-Pattern

: := ["go'to-statement Il Il (" goto-pattern ") "]

::= [" continue"]

Break-Statement-Pattern : := ["break"]

Expression-Statement-Pattern ::= [expression-statement-pattern-body]

#,." •••,••#••••••"•••••••••••••••••,
OVERALL DESCRIPTORS #

#•••••••••••••••••••••••••••••••••••••

Overall-Pattern-Description ::= [" overall-description"

overall-pattern-description-feature-item + ". "]

••••••••••••••••••••••••••••••••••••••
STATEMENT DESCRIPTORS •
••••••#•••••••••••••••••••••••••••••••

Detailed-Pattern-Description ::= [" abstract-expression-description"

([expression-pattern-description-feature-item + ". "] 1

expression-empty-item)]

••••••••••••••••••••••••••••••••••••••

..,.."""""""""""""""",
(• FEATURE VECTORS DESCRIPTORS 1

Feature-Item ::= [description-vector + ". "]

••••••••••••••••••••••••••••••••••••••
• FEATURES 1

••••••••••••••••••••••••••••••••••••••

Il (l' keywords-in-pattern + ". Il Il] Il]

[llprobability :" Il [" probabilty-tuple +

"[" definitions-in-pattern +

: := [llempty"]

: := [llkeyvords .11

.. - ["deiines .11 Il] Il.. ...
ft If.

+ ". Il "] "]Il [" uses-in-pattern["uses : Il

: :=

Empty-Oescription

Keyvords-Description

Defines-Description

Uses-Description

Probability-Description

Probability-Tuple-Item ::= [stat-name stat-probability-value]

Metrics-Description : := ["metrics :" "[" metrics-in-pattern + Il. Il "] "]

••••••••••••••••••••••••••••••••••••••
• ABSTRACT IDENTIFIERS •
••••••••••••••••••••••••••••••••••••••

148

(

APPENDIX A

Bind-Variable-Object ::= [(["?" var-name] 1 [actual-var-name !! is-actual-var?])

{bind-variable-type}]

Bind-Variable-Type-Object :: = [": fi {(["." !! is-pointer? J 1

["I:" !! is-reference?])} bind-type]

••••••••••••••••••••••••••••••••••••••
• ABSTRACT DATA TYPES •

•••••••••••••••••••••••••••••••••##.#.

Abstract-Type-Object ::= ["-II (["numeral" !! is-numeral?]

[tt char lt !! is-char?] 1

["struct" !! is-struct-type?]

[llvoid-type" !! is-void?]

[" enum-type lf !! is-enum?]

[lf array-type" !! is-array?]

["any-typelt !! is-any-type?] 1

[the-type-name !! is-actual-name?])

••••••••••••••••••••••••••••••••••••••
• ABSTRACT EXPRESSIONS •

, """"""""""""""(
Assignment-Pattern

Actual-Assignment-Patterni

Post Incrementation-Pattern

PostDecrementation-Pattern

PreDecrementation-Pattern

Prelncrementation-Pattern

Function-Call-Pattern

Condition-Pattern

::= [ltass ignment-statement" assignment-pattern-description-item]

::= [ltactual-assignment-statement"

actual-assignment-pattern-description-iteaù

::= ("postincrementation-statement" postinc-pa'ttern-description-iteml

: : = (ltpostdecrementation-statement" postdec-pattern-description-iteml

: : = ["predecrementation-statement" predec-pat'tern-description-item]

: : = ("preincrementation-statement" preinc-pattern-description-item]

: : = ["function-call" function-call-name

func'tion-call-pattern-description-i'tem]

::= [«(ltequalityJ' !! is-equality-cond?] 1

["inequality" !! iS-inequality-cond?]

[ltfcn-call-test" !! is-fcn-call-test-cond?

["boolean-test Il !! is-boolean-tes't-cond?] 1

["any-cond" !! is-any-cond?]) the-condition-description]

149

(

APPENDIX B

In this appendL,,< the Domain model of the ACL language is provided for further reference. Object

Classes are denoted with capital letters, and correspond to the abject classes at the heads ofthe

Grammar Rules described in Appendix A. A1so note that map constructs denote an AST attribute

that is used to link AST object nodes represented by instances of the particular object classes. An

abject instance is created every time a ACL grammar rule succeds.

#11111111111111 r 11#

ACL DOMAIN MODEL

#1111111111111111111111111111111/ 111111111111111111111111111'

#####,#############,#"",#"######,#,

TOP LEVEL OBJECTS ,

##################'##1#'#"#'#'#"'#"

var PATTERN-OBJECT object-class subtype-of Reverse-Engineering-Object

var the-plan-name map(Pattern-Object. symbol)

var pattern-description-item map(Pattern-Object, Detailed-Pattern-Description)

var function-name-in-pattern map(Pattern-Object, string)

var statement-in-pattern map(Pattern-Object. seq(Generic-Statement-Pattern»

#111#

var INCLUDE-OBJECT : object-class subtype-of Statement-Pattern

var included-pattern-file map(Include-Object, symbol)

var included-plan-name map(Include-Object, symbol)

#1111111111111111111111111111111111111 [11111111111 [111111111#

var USER-PLAN-OBJECT object-class subtype-of Statement-Pattern

var user-plan-name map(User-Plan-Object. symbol)

var user-plan-ast-root map(User-Plan-Object. Pattern-Object)

var plan-included-object map(User-Plan-Object. Include-Object)

1111" 11111 [[11111111/ 11111111111111111111111111111111111111#

#,#"#,#,#"#"##,##"##,#,##""","

(

(

APPENDIX B

• FUNCTION-DEF OBJECT •

.........., ,.., .
var FUNCTION-DEF-PATTERN object-class subtype-of Statement-Pattern

var function-def-body-pattern map(Function-Def-Pattern. Block-Statement-Pattern)

#111111111111111" 11'

#.,.#••,.".".".".,••,.,•••#.,••",
• GENERIC STATEMENTS ,

.#••,#•••, •••, •••••#••, ••••#,•••",•••

var GENERIC-STATEMENT-PATTERN object-class subtype-of Statement-Pattern

var overall-abstr-descr map(Generic-Statement-Pattern.

Overall-Pattern-Description}

var statement-item map(Generic-Statement-Pattern. Statement-Pattern}

'11 J Il'''' 111111 JIll'

var COMPOSlTE-XOR-STATEKENT-PATTERN object-class subtype-of Basic-Statement-Pattern

var composite-XOR-statement-item map(Composite-XOR-Statement-Pattern.

seq(Statement-Pattern})

#11111111" III" 1111 J 111111111111111111111111111111111111111'

var COMPOSlTE-INTERLEAVED-STATEMENT-PATTERH object-class subtype-of Basic-Statement-Pattern

var composite-Interleaved-statement-item map(Composite-XOR-Statement-Pattern.

seq(Statement-Pattern»

#111 J 1111111111111111 J 11111111111111111111111111111111111111'

var ANY-STATEMENT-PATTERN

var any-statement-body-pattern

var any-statement-description

var is-complete?

object-class subtype-of Basic-Statement-Pattern

map(Any-Statement-Pattern. Block-Statement-Pattern)

map(Any-Statement-Pattern,

Detailed-Pattern-Description)

map(Any-Statement-Pattern. Boolean)

'1111 J [[III [111111111111111111111111111 J 1111111111 J [1 J [11111'

var PATTERN-.-STATEKENT

var *-statement-pattern-description-item

var used?

object-class subtype-of Statement-Pattern

map(Pattern-*-Statement,

Detailed-Pattern-Description)

map(Pattern-*-Statement. Boolean)

151

(

APPENDIX B

#11111 JI J1JIl JI" Il " Il " 111111111" 11111111 " III" III" 1" 1#

var PATTERN-l-STATEHENT object-class subtype-of Statement-Pattern

var one-statement-pattern-description-item map(Pattern-t-Statement,

Detailed-Pattern-Description)

#1111111 J 1111 J 11#

###.#.###••#•••••#•••#•••#.#•••##•••••

ITERATIVE STATEMENTS •

###.#.##.###••##•••••#•••#•••••#.#••#.

var lTERATlVE-STATEHENT-PATTERN object-class subtype-of Basic-Statement-Pattern

var iterative-condition-pattern map(Iterative-Statement-Pattern, Condition-Pattern)

var iterative-body-pattern map(Iterative-Statement-Pattern. Statement-Pattern)

var iterative-pattern-description-item map(Iterative-Statement-Pattern.

Detailed-Pattern-Description)

#1 [111111111111111111111111111111 J 1111 [111111 [1 J [[1[11111111#

(

var WHILE-STATEMENT-PATTERN

var qhile-condition-pattern

var qhile-body-pattern

var qhile-pattern-description-item

object-class subtype-of Iterative-Statement-Pattern

map(While-Statement-Pattern. Condition-Pattern)

map(While-Statement-Pattern. Statement-Pattern)

map(While-Statement-Pattern,

Detailed-Pattern-Description)

#111111111111111111111111" 111111111111 11111111111 [111111111#

var DO-STATEKENT-PATTERN

var do-condition-pattern

var do-body-pattern

var do-pattern-description-item

object-class subtype-of Iterative-Statement-Pattern

map(Do-Statement-Pattern.

Condition-Pattern)

map(Do-Statement-Pattern.

Statement-Pattern)

map(Do-Statement-Pattern.

Detailed-Pattern-Description)

#1111111111111111111111111111111111" Il [1111 [1" 111111111111#

var FOR-STATEMENT-PATTERN

var for-initia1ize-pattern

var for-test-pattern

var for-increMent-pattern

object-class subtype-of Iterative-Statement-Pattern

map(For-Statement-Pattern, Statement-Pattern)

map(For-Statement-Pattern.

Condition-Pattern)

map(For-Statement-Pattern.

Statement-Pattern)

152

(var for-body-pattern

var for-pattern-description-item

map(For-Statement-Pattern, Statement-Pattern)

map(For-Statement-Pattern.

Detailed-Pattern-Oescription)

APPENDIX B

(

#111" Il " " Il [III" [l "11111" 1" 1" 11111111111 [11111111111#

#############.#.#•••#••••••#.###••••••

CONDITIONAL STATEMENTS

1#'##"""""""###"'#"""##""

var CONDITIONAL-STATEMENT-PATTERN object-class subtype-of Basic-Statement-Pattern

var conditional-cond-pattern map(Conditional-Statement-Pattern. Condition-Pattern)

var conditional-body-pattern map(Conditional-Statement-Pattern, Statement-Pattern)

#111111111" 111111 [II [1 JI" "1111""" "1111111111111111" 1#

var IF-STATEMENT-PATTERN object-class subtype-of Conditional-Statement-Pattern

var if-condition-pattern map(If-Statement-Pattern, Condition-Pattern)

var then-pattern map(If-Statement-Pattern, Statement-Pattern)

var else-pattern map(If-Statement-Pattern, Statement-Pattern)

var then-pattern-description-item map(If-Statement-Pattern. Detailed-Pattern-Description)

var else-pattern-description-item map(If-Statement-Pattern, Detailed-Pattern-Description)

#1" 11111 J J 1111111111111 "111111" 111111" 11111" 11111111111'

var SWITCH-STATEKENT-PATTERN

var svitch-pattern

var sVitch-body-pattern

object-class subtype-of Conditional-Statement-Pattern

map(Svitch-Statement-Pattern, Condition-Pattern)

map(Svitch-Statement-Pattern, Statement-Pattern)

'11111111111111 [111111111111 [111111111111111 [11111111111111 [.

"#,#####""#,#,,,##,##,#,,#,##,#####

1 BASIC STATEMENTS #

.##••######.#••####.#.################

var BLOCK-STATEMENT-PATTERN object-class subtype-of Basic-Statement-Pattern

var block-statements-in-pattern map(Block-Statement-Pattern, seq(Generic-Statement-Pattern»

#1111" 1111" 11111111111111111 J 111111111111111" J 11111111" l'

var LABELLED-STATEMENT-PATTERN : object-class subtype-of Statement-Pattern

var labelled-pattern : map(Labelled-Statement-Pattern, Detailed-Pattern-Description)

'111111" 1111" 11111111 J 111111111111111111111111111111111111#

var RETURN-STATEMENT-PATTERN : object-class subtype-of Basic-Statement-Pattern

var return-pattern : map(Return-Statement-Pattern. Detailed-Pattern-Oescription)

153

(

APPENDIX B

#1111111111111111 J 11#

var GOTO-STATEHENT-PATTERN : objec~-class subtype-of Basic-Statement-Pattern

var goto-pattern : map{GoTo-Sta~ement-Pattern.

Detailed-Pattern-Description)

#111111111111111 1111111111111 r 111111111111111111111111111111#

var CONTlNUE-STATEKENT-PATTERN : object-class subtype-of Basic-Statement-Pattern

#11 " 11111#

var BREAK-STATEHENT-PATTERN : object-class subtype-of Basic-Statement-Pa~tern

#11" 111111111#

var EXPRESSION-STATEMENT-PATTERN : object-class subtype-of Basic-Statement-Pattern

var erpression-s~a~ement-pattern-body: mapCExpression-Statement-Pattern. Expression-Pattern)

#1111111 J 1111111111 " 1111111111111111111111111111 ""1111 ri 1#

#•••••••••••••••••••••••••••••••••••••

• OVERALL DESCRIPTORS ,

, ,.
var OVERALL-PATTERN-DESCRIPTION object-class subtype-of Pattern-Description

var overall-pat~ern-description-feature-item map(Overall-Pattern-Description. seq(Feature-Item»

var overall-empty-item map(Overall-Pattern-Description.

Empty-Description)

'1111111111" 111111111111111111111111111111111 r J Il'' 11111" l'

#1" 1"" 111'

........................., .
• STATEKENT DESCRIPTORS #

....................................,.
var DETAlLED-PATTERN-DESCRIPTION object-class subtype-of Expression-Pattern

var expression-pattern-description-feature-item map(Detailed-Pattern-Descrip~ion.seq(Feature-Item»

var expression-empty-item map{Detailed-Pattern-Descrip~ion.

Empty-Description)

var expanded-from map(Detailed-Pattern-Descrip~ion.

Statemen~-Pattern)

'111111111111111111111111 r 11111111111111111111111 [1111111111 •

••••••••••••••••••••••••••••••••••••••
• FEATURE VECTORS DESCRIPTORS #

••••••••••••••••••••••••••••••••••••••
var FEATURE-lTEM : object-class subtype-of Pattern-Object

154

•
APPENDIX B

var description-vector mapCFeature-Item. seqCA-Description-Object»

#11 111111111#

###•••#•••••••••# •••••#.###••#.#######

FEATURES

.#•••,#,#••# ••#.#,#.,•••••#••••••#.##.

var EKPTY-DESCRIPTION : object-class subtype-of A-Description-Object

#111111111111111111111111111111111 J 1111111111111111111111111#

var KEYWORDS-DESCRIPTION object-class subtype-of A-Description-Object

var keyvords-in-pattern mapCKeyvords-Description. setCstring»

'111#

var DEFlNES-DESCRIPTION object-class subtype-of A-Description-Object

var definitions-in-pattern : map(Defines-Description. setCBind-Variable-Object»

'111#

var USES-DESCRIPTION

var uses-in-pattern

object-class subtype-of A-Description-Object

mapCUses-Description. setCBind-Variable-Object»

'111 #

var PROBABILITY-DESCRIPTION object-class subtype-of A-Description-Object

var probabilty-tuple mapCProbability-Description. seq(Probability-Tuple-Item»

'11111 [111111111111111111111111111111111 [1111111111111111111#

var PROBABILITY-TUPLE-lTEM

var stat-name

var stat-probability-value

object-class subtype-of Pattern-Object

mapCProbability-Tuple-Item. string)

mapCProbability-Tuple-Item, real)

'111111111111111111111 11111111111111111111111111111111111111'

var HETRICS-DESCRIPTION

var metrics-in-pattern

object-class subtype-of A-Description-Object

mapCMetrics-Description. seq(real»

#1111111111111111111111111111111111111 [1111111111 [1111111111'

#••#.#•••##••#.#.#.#•••••#••#•••#•••••

ABSTRACT IDENTIFIERS

••••# ••••••••••••••••••••#•••••##••#.#

var BIND-VARIABLE-OBJECT object-class subtype-of Reverse-Engineering-Object

var var-name map(Bind-Variable-Object. symbol)

var is-actual-var? map(Bind-Variable-Object, Boolean)

var actual-var-name mapCBind-Variable-Object. symbol)

var bind-variable-type mapCBind-Variable-Object. Bind-Variable-Type-Object)

var var-bind mapCBind-Variable-Object. seqCC-Object»

155

(

(

APPENDIX 8

." 111111111111 J 111111111111111111111111111111 J Il'' 111111111.

var BIND-VARIABLE-TYPE-OBJECT object-class subtype-of Reverse-Engineering-Object

var bind-type map(Bind-Variable-Type-Object. Abstract-Type-Object)

var is-pointer? map(Bind-Variable-Type-Object. Boolean)

var is-reference? map(Bind-Variable-Type-Object. Boolean)

'1111111111111111" 11111111111111" 111111111111" 1111" 11111#.." , , , , ,.
• ABSTRACT DATA TYPES •.....,.,.,." .

var ABSTRACT-TYPE-OBJECT object-class subtype-of Reverse-Engineering-Object

var is-numeral? map(Abstract-Type-Object. Boolean)

var is-void? map(Abstract-Type-Object. Boolean)

var is-enum? map(Abstract-Type-Object. Boolean)

var is-array? map(Abstract-Type-Object. Boolean)

var is-char? map(Abstract-Type-Object. Boolean)

var is-struct-type? map(Abstract-Type-Object. Boolean)

var is-any-type? map(Abstract-Type-Object. Boolean)

var is-actual-name? map(Abstract-Type-Object. Boolean)

var the-type-name map(Abstract-Type-Object. symbol)

'"1" 1" 1111111 JI" 11.

###•••••••#.",.,••••••,.,••••, •••••••

• ABSTRACT EXPRESSIONS ,

•••, •••••••#••••••••••••••••••••••••••

var ASSIGNKENT-PATTERN : object-class subtype-of Expression-Pattern

(

#111" 1111" 1111111111111111111111111 [1111111111111111111111.

var ACTUAL-ASSIGNHENT-PATTERH : abject-class subtype-of Assignment-Pattern

#111" 1" 11111111111111" 1111111111111111 "1111" 111111 "III.

var POSTINCREMENTATION-PATTERH : object-class subtype-af Assignment-Pattern

'11111111111"" 1[11111" 11111111111111111111111111111111111'

var PREINCREHENTATION-PATTERN : object-class subtype-of Assignment-Pattern

'111111111111111111111 [11111111111" 111111111111111111111111.

var POSTDECREKENTATION-PATTERN : object-class subtype-of Assignment-Pattern

#11 [" 111111111111.

var PREDECREKENTATION-PATTERN : object-class subtype-of Assignment-Pattern

'11111111111111111111" 11111111111111111111111111111 J 1111111'

156

var function-call-name

var FONCTION-CALi-PATTERN(object-class subtype-of Expression-Pattern

map(Function-Ca11-Pattern.

Bind-Variable-Object)

var function-call-pattern-description-item

map(Function-Call-Pattern.

Detailed-Pattern-Description)

#11111111111111 J 1111111111111111111111111111 J 111111111111111#

APPENDIX 8

(

var CONDITION-PATTERN object-class subtype-of Expression-Pattern

var the-condition-description map(Condition-Pattern. Detailed-Pattern-Description)

var is-equality-cond? map(Condition-Pattern. Boolean)

var is-inequality-cond? map(Condition-Pattern. Boolean)

var is-fcn-call-test-cond? map(Condition-Pattern. Boolean)

var is-boolean-test-cond? map(Condition-Pattern. Boolean)

var is-any-cond? map (Condition-Pattern , Boolean)

#111111111 J 1111111111111111111111111 J 11111111111111111111111#

157

(

(

APPENDIX C

• Example 1: The following Plan is denoting instances of code fragments that implement the

traversaI of a linked list and the invocation of a printf function caU when a condition related

to the current Dode being traversed is met. Below the given Plan, we include the matched

source code instances obtained from the Clips system.

ac~ual-assignment-statement

abstract-expression-description

uses: [?currPtr : * - struct J,

defines : [?ptr : * - structJ;

*-statement

abstract-expression-description empty;

~hile-statement(any-cond

abstract-expression-description

uses: [?ptr : * - structJ)

{

*-statement

abstract-expression-description empty;

if-statement(any-cond

abstract-expression-descrip~ion

uses : [?ptr : * - struct)) then

{

*-statement

abstrac~-expression-descriptionempty

func~ion-call printf

abstract-expression-description

uses: [?ptr : * - struct);

*-statement

abstract-expression-description empty

(

(

APPENDIX C

}

else

{

--statement

abstract-erpression-description empty

};

·-statement

abstract-erpression-description empty

}

#########••••••••####•••#•••#••#.

KATCHED SOURCE CODE INSTANCES

####.##.#•••••••••••••••••••••••#

field = o->ATTLIST[nUDÙ.attFields;

"bile (field != «void -)0»

{

if (! __strcmp(obj.origObj) Il

(! __strcmp (field->AvalueType. "member") tt

notlnOrig))

printf(II [Y.s] \n".

field->Avalue);

field

}

FILE "object"

field->nextValue;

FROM-llNE

TO-lINE

DIST

2095

2104

0.029003784

field o->ATTLIST[nUDÙ.attFields;

"bile (field != «void -)0»

{

if (! __strcmp(obj.origObj) Il

(! __strcmp(field->AvalueType."member") tl:

notlnOrig))

printf(lI[Y.s]\n".

159

(field->Avalue);

field = field->nextValue;

}

FILE "object lt

APPENOIX C

FROM-LIRE

TO-LlRE

DIS!

2236

2245

0.029003784

p SEARCH_MEMBER(obj)->startList;

~hile(p != «void .)0»

{

if (! __strcmp(p->type."childll »

{

count = 1;

prilltf("[Yos]\nll.p->link->name);

}

p = p->next;

}

FILE "object"

(FROM-LIRE

TO-LIRE

DIST

1283

1292

0.010258662

p SEARCH_SUB{obj)->startList;

~hile(p != «void .)0»

{

if (! __strcmp(p->type, lIchildlt »

{

count = 1;

printf(t1[Yos]\nlt,p->link->name);

}

p = p->next;

}

FILE "object lt

FROM-LIRE 1131

Ta-LIRE 1140

160

•••
(DIST : 0.010258662

APPEND(X C

(

PLAN 11-search-and-print-1.pl

TlME-START 10/04/96 08:00:58

rIME-END 10/04/96 09:03:11

TOTAL BITS 3724

LEVEL OF ABSTR : 11557.0

MAX-DIST 0.029003784

KIN-DIsr 0.010258662

AVG-OIST 0.019631222

WEIGHT 0.5

RES-SIZE 4

riME-LOC-STARr : 10/04/96 08:00:59

riME-LOC-END 10/04/96 08:02:31

COVERAGE

"abject" 1131 1140 0.010258662

"abject" 1283 1292 0.010258662

"abject" 2236 2245 0.029003784

"abject" 2095 2104 0.029003784

•••

161

(

(

APPENDIX C

• Example 2: The following Plan is denoting instances of code fragments that implement the

addition of a new element to a linked liste Below the given Plan, we include the matched

source code instances obtained from the Tcsh system.

actual-assignment-statement

abstract-erpression-description

uses: [?head : * ~ struet l.

defines : [?elem: • ~ structJ.

keywords : ["next"J ;

·-statement

abstract-erpression-deseription

empty;

actual-assignment-statement

abstract-erpression-description

uses: [?eIem : * ~ struet J.

defines : [?head : * - structJ

••##.#.#•••••••••# •••••••••••••••

• KATCHED SOURCE CODE INSTANCES •

••••••#•••••••••#•••••#•••#.#••••

nev->next = vhere->next;

vhere->next = nev;

nev->next->prev = nev;

FILE lite"

FROM-LlNE

rD-LIME

DIST

1165

1167

0.59725314

nov->next->prev = nov->prev;

freeCCptr_t) now->vord);

deI nov;

nov =nov->next;

162

(
FILE lite"

FROK-LINE

TO-LlNE

DIST

1150

1153

0.5256015

APPENDIX C

nov->prev->next = nov->next;

nov->next->prev = nov->prev;

free«ptr_t) nov->vord);

deI nov;

nov nov->next;

FILE "te"

FROK-LlNE

TO-LINE

DIST

1149

1153

0.43800125

(tmp->prev->next

tmp->next->prev

FILE lite"

tmp->next;

tmp->prev;

FROK-LlNE

TO-LINE

DIST

967

968

0.37880763

tmp->next->prev = tmp->prev;

free«ptr_t) tmp->vord);

deI tmp;

tmp tmp->next;

FILE lite"

FROK-LlRE

TO-LIRE

DIST

960

963

0.5256015

163

(
tmp->prev->next tmp->next:

tmp->next->prev tmp->prev:

free«ptr_t) tmp->vord):

de! tmp:

tmp tmp->next;

FILE "te"

APPENDIX C

(

FROK-LlNE

TO-LlNE

DIST

nevl->next

nevl->prev

FILE lite"

FROK-LlNE

TO-LlNE

DIST

959

963

0.43800125

v.prev = nev2;

nev2->next = kv:

809

810

0.98704046

v.next = nev2->prev nevl;

nevl->next =v.prev nev2;

nevl->prev nev2->next = tv;

FILE "te"

FROM-LlNE

TO-LlNE

DIST

808

810

0.7324082

p = p->next;

if (any(RELPAR. p->vord[O]» {

seterror(tOl) ;

continue:

164

(}

if «(flags t 4) tt (flags t 8) == 0) Il t->R.T_drit)

seterror(102);

else

APPENDIX C

s_strsave(p->vord);

continue;

case ' <':

if (1 != 0)

goto savep;

if (p->vord[l] == '<')

t->t_dflg 1= (1«9);

if (p->next == p2) {

seterror(tOl) ;

continue;

}

p = p->next;

FILE "5h ll

(
FRDK-LlNE

TD-LINE

OIST

614

634

0.099396266

retp->next = p2;

p2->prev = retp;

FILE II s hll

FRDK-LlNE

TD-LlNE

DIST

203

204

0.29182288

alout.next->prev = pl;

pl->next = alout.next;

FILE II s hll

FRDK-LlNE 184

165

(rD-LIRE

DIS!

185

0.34107885

APPENDIX C

alout.prev->prev->nex~ pl->next;

alout.next->prev = pl;

pl->nex~ = alout.next;

FILE "sh"

FROM-LINE

TD-LIRE

DIS!

183

185

0.53505206

pl->next->prev = alout.prev->prev;

alout.prev->prev->nex~= pl->next;

alout.nex~->prev = pl;

(
FILE "sh"

FROM-LIME

Ta-LIRE

DIS!

182

184

0.28240517

fp = vp->next;

vp->next = fp->nex~;

FILE "sh"

FROM-LIME

TO-LIME

DIS!

235

236

0.3080359

lp->nex~->prev =tnp->Hlex;

np->Hlex.prev = lp->prev;

FILE "sh"

166

(FROM-LINE

TO-LINE

DIST

106

107

0.49954465

APPENDIX C

np->Hlex.next = Ip->next;

Ip->next->prev = tnp->Hlex;

np->Blex.prev = Ip->prev;

Ip->prev->next = tnp->Blex;

FILE "sh"

FROH-LINE

TO-LINE

DIST

105

108

0.43944493

(

(

•••

PLAN ll-add-elem-l.pl

TIME-START 09/30/96 13:10:09

TIME-END 09/30/96 13:13:53

TOTAL BITS 90

LEVEt OF ABSTR : 5043.0

MAX-DIST 0.98704046

MIN-DIST 0.099396266

AVG-DIST 0.4637185

WEIGHT 0.5

RES-SIZE 16

TIME-LOC-STAR! : 09/30/96 13:10:16

TIME-LOC-END : 09/30/96 13:12:14

PLAN: ll-add-elem-1.pl

COVERAGE

"sh" 105 108 0.43944493

"sh" 106 107 0.49954465

"sh" 235 236 0.3080359

"sh" 182 184 0.28240517

"sh" 183 185 0.53505206

"sh" 184 185 0.34107885

"sh" 203 204 0.29182288

167

APPENDIX C

("sh" 614 634 0.099396266

"te" 808 810 0.7324082

lite" 809 810 0.98104046

"te" 959 963 0.43800125

"te" 960 963 0.5256015

"te" 961 968 0.37880763

lite" 1149 1153 0.43800125

"te" 1150 1153 0.5256015

lite" 1165 1167 0.59725314

(

168

(

(

APPENDIX D

In this Appendbc we present sampIe queries used for the experiments presented in Chapter.6 We

distinguish between two types of queries. The first type (Code-ta-Code queries) represents queries

used to obtain results for the Metrics-based and the DP-based approach. The second type represents

ACL queries that were used to obtain results using the Markov-based approach.

• Code-To-Code queries:

for(i=O ; i < or->numOfAtts ; i++)

if (strcmp(o->ATTLIST(nUŒÙ.Aname,or->ATTLIST(i] . Aname) ==0)

{

notlnOrig = 0;

i = or->numOfAtts + 100;

}

for(num=O ; num < p->numOfAtts ; num++)

{

field = p->ATTLIST[nunù .attFields;

qhile (field != HULL)

{

printf(IINAME Yos\n VALUE : 1.s\n CARDINALITY Yos\n TYPE

p->ATTLIST[num] .Aname,

field->Avalue,

p->ATTLIST[num].Multiple.

field->AvalueType);

printf (rtCAST : Y.s\n ll
, field->AvalueCast);

printf("\n ll
);

field = field->nextValue;

1.5\nll
,

(

(

}

if (! strcmp(alist [numJ .Multiple •"5"»

{

putValueFunetionSingle(objName.alist[nllmÙ .Aname.

field->Avalue. field->AvalueType);

}

else

{

putValueFunetionKulti(objName.alist[nllmÙ.Aname.

field->Avalue. field->AvalueType);

}

{

if (ch != NULL)

{

lspl = startSub->startList;

startSub->startList = getListNode();

startSub->startList->next lspl;

startSub->startList->link ch;

strepy(startSub->startList->type. "child");

lep = eh->startList;

eh->startList = getListNode();

eh->startList->next lep;

eh->startList->link startSub;

strcpy(eh->startList->type. "parent");

}

sp = SEA&CH_SUB(objName);

spi = SEARCH_SUB (parent) ;

lspl = spl->startList;

spl->startList = getListNode();

spl->startList->next lspl;

spl->startList->link sPi

strepy(spl->startList->type. "ehild");

lsp = sp->startList;

APPEND!X D

170

(

APPENDIX D

sp->startList = getListNode();

sp->startList->next lsp;

sp->startList->link splj

strcpy(sp->startList->type. "parent"};

}

void putValueKulti()

{

char *objName,*attName.*type.*value;

if (num_args 0 != 4)

{

printf(IIVrong number of arguments

printf(" AttValue AttType)\n");

returnj

(putValue ObjName AttName")j

(

}

objName rstring(l);

attName rstring(2);

value = rstring(3)j

type = rstring(4);

putValueFunctionMulti(objName.attName,value.type);

}

• ACL queries

iterative-statement(any-cond

abstract-expression-description

uses : [numOfAtts : t . numeral. 1num

{

·-statement

abstract-expression-description empty;

actual-assignment-statement

t - numeral])

171

(

(

abstract-erpress ion-description

uses: [ATTLIST. attFields],

defines : [?field : • ~ FIELDS_T];

·-statement

abstract-erpression-description empty;

iterative-statement(any-cond

abstract-expression-description

uses: [?field : • ~ FILEDS_T])

{

.-statement

abstract-expression-description empty;

function-call ?printf

abstract-expression-description

uses: [ATTLIST. Avalue, Aname, AvalueType];

·-statement

abstract-expression-description empty

};

.-statement

abstract-expression-description empty

}

if-statement(any-cond

abstract-expression-description

defines : [?obj : • - OBJECT],

uses: [?SEARCH_CLASS]) then

{

if-statement(any-cond

abstract-expression-description

defines : [?obj : * - OBJECT].

uses: [?SEARCH_SUB]) then

{

if-statement(any-cond

abstract-expression-description

defines : [?obj : * - OBJECT].

uses: [?SEARCB_MEMBER]) then

{

APPENOIX 0

172

(

(

APPENDIX 0

+-statement

abstract-expression-description

empty

}

}

}

for-statement(actual-assignment-statement

abstract-erpression-description

defines : [?i : t - numeralJ;

any-cond

abstract-erpression-description

uses: [numOfAtts. ?obj : * - aBJECT);

postincrementation-statement

abstract-erpression-description

uses: [?i : t - numerall,

defines : [?i : t - numeral])

{

if-statement(any-cond

abstract-erpression-description

uses: [Aname, ATTLIST, ?obj : * - aBJECT,

?attName) then

{

if-statement(any-cond

abstract-expression-description

uses: (Multiple, ATTLIST, ?obj

{

* - aBJECT) then

+-statement

abstract-erpression-description empty

};

actual-assignment-statement

abstract-expression-description

defines : [?field : * - FIELDS_TJ,

uses: [?obj : * - OBJECT,

ATTLIST, attFields];

173

(

(

.-statement

abstract-expression-description empty;

any-statement

abstract-expression-description

uses: [AvalueCast];

.-statement

abstract-erpression-description empty

}

}

if-statement(any-cond

abstract-erpress10n-description

uses: [Multiple, ?alist : t ~ ALIST]) then

{

.-statement

abstract-expression-description empty:

function-call ?putValue

abstract-expression-description

uses: [Avalue, Aname, ?alist : t - ALIST, ?obj];

·-statement

abstract-expression-description empty

}

else

{

*-statement

abstract-expression-description

empty;

function-call ?putValue

abstract-expression-description

uses: [Avalue, Aname, ?alist : t - ALIST, ?obj];

.-statement

abstract-erpression-description

empty

}

APPENDIX 0

174

(iterative-statement(any-cond

abstract-expression-description

uses : [?i : t - numeral. numOfAtts. ?or

{

*-statement

abstract-expression-description

emptYi

conditional-statement(any-cond

abstract-expression-description

uses: [?o : * - OBJECT. Aname. ATTLIST])

{

$-statement

abstract-expression-description

empty ;

(any-statement

abstract-expression-description

defines : [notInOrig : t - numeral] +

any-statement

abstract-expression-description

uses: [ATTLIST])i

$-statement

abstract-expression-description

empty

};

*-statement

abstract-expression-description

empty

}

while-statement(any-cond

abstract-expression-description

uses : [?inchar : t - numeral])

{

if-statement(any-cond

abstract-expression-description

uses : [?inchar : t - numeral]) then

APPENDIX 0

$ - OBJECT])

175

({

any-statement

abstract-erpression-description

uses : [?pos : t A numeralJ

};

*-statement

abstract-erpression-description

empty -

assignment-statement

abstract-erpression-description

uses: [?pos : t A numeralJ.

defines : [?pos : t - numeralJ -

*-statement

abstract-expression-description

empty

actual-assignment-statement

abstract-expression-description

uses: [?pos : t - numeral].

defines : [?inchar : t - char] -

*-statement

abstract-expression-description

empty}

}i

*-statement

abstract-expression-description

empty

any-statement

abstract-erpression-description

APPENDIX 0

176

(

APPENOIX 0

uses [nertUnique. Aname. ATTLIST. ?obj : * - OBJECT • Aname.

Multiple. at~Fields. Avalue. AvalueCast, AvalueTypeJ.

keyvords : ["getFieldsNode lt
]

~hile-statement(any-cond

abstract-expression-description

empty)

{

t ~ array-type]) then(

}

function-call fgets

abstract-erpression-description

uses: [fgets. ?BC_file : t ~ FILE. ?line

*-statement

abstract-erpression-description

empty;

if-statement(any-cond

abstract-erpression-description

uses : [?BC_file : t - FILE. line

{

+-statement

abstract-erpression-description

empty

}

eise

{

+-statement

abstract-expression-description

empty

};

*-statement

abstract-expression-description

empty

t - array-typeJ;

177

(

(

Document Log:

J\lIanuscript Version 1-Nlarch 12, 1994

Typeset by A.MS-li\1EX - 12 January 1997

KONSTANTINOS A. KONTOYIANNIS

SCHOOL OF COMPUTER SCIENCE, MCGILL UNIVERSITY, 3480 UNIVERSITY ST., MONTRÉAL (QUÉBEC) H3A 2A7,

CANADA, Tel. : (514) 398-7071

E-mail addre.u:kostasGcs.mcgill.ca

Typeset by AMS-L\1.EX

IMAGE EVALUATION
TEST TARGET (QA-3)

10 ~ 12.8 .2.5
• ~ - lIII!ijm

~ ~ 11"1
2.2

~ ~ II=-=:

1.1 ~ ~ ~ 11111

2
.
0

~

111111.8

111111.25 11111
1.4 1~11.6

1

L....

...J

L....-

150mm --J-1.....

- 6" ----aJ--......
1

APPLIED .:â IIVlAGE 1_ ,ne-=: 1653 East Main Street
..=-.= Rochester, NY 14609 USA-=-~ Phone: 716/482-0300

__ Fax: 7161288·5989

01993. AppIied lma 1ge. ne.• Ali RlghlS Reserved

