INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

NOTE TO USERS

The original manuscript received by UMI contains pages with
indistinct and slanted print. Pages were microfilmed as
received.

This reproduction is the best copy available

PATTERN MATCHING TECHNIQUES FOR PROGRAM
UNDERSTANDING

Konstantinos A. Kontoyiannis

School of Computer Science

McGill University, Montréal

November 1996

A Thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

© KonsTANTINGS A. KONTOYIANNIS, 1996

(Ld |

National Library
of Canada

Acquisitions and
Bibiiographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your fie Votrs reférence

Our fSig Notre raférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-30312-8

To my parents, Thanos and loanna,

who always stood by me.

ii

ABSTRACT

When a successful software system is maintained and evolved for an extended period of time, original
design documents become obsolete and design rationales become lost, so reverse engineering activities
to reconstruct such information become critical for the software’s continued viability.

Pattern matching provides a solid framework for identifying higher level abstractions that may
be instances of predefined plans (commonly used algorithms and cliches), programming concepts, or
abstract data types and operations. This thesis discusses two types of pattern-matching techniques
developed for plan recognition in Program Understanding.

The first type is based on Software Metrics and Dynramic Programming techniques that allow
for statement-level comparison of feature vectors that characterize source code program statements.
This type of pattern matching is used to identify similar code fragments, and code cloning, facilitating
thus code modularization, code restructuring and efficient localization of the occurrence of similar
programming errors.

The second type addresses the problem of establishing correspondences, between a parse tree of
a custom abstract description language developed (ACL) and the parse tree of the code. Matching of
abstract representations and source code representations involves alignment that is again performed
using a Dynamic Programming algorithm that compares feature vectors of abstract descriptions,
and source code. The use of a statistical formalism allows a score (a probability) to be assigned
to every match that is attempted. Incomplete or imperfect matching is also possible leaving to the
software engineer the final decision on the similar candidates proposed by the matcher.

The system has been implemented to analyze software systems written in PL/AS and C.

RESUME

Lorsqu un systeme de logiciel évolue et est mis a jour sur une longue période de temps. les documents
originaux sur sa conception deviennent périmés et les raisons de sa conception peuvent étre perdues:
il devient alors critique de procéder a des activités de génie inverse (reverse engineering) pour assurer
la viabilité continue du logiciel.

Le filtrage (pattern matching) fournit un cadre solide pour l'identification d'abstractions de
haut niveau qui pourraient étre des instances de plans prédéfinis (algorithmes courramment uitlisés
et clichés). de concepts de programmation. ou de types de données abstraits et leurs opérations.
Cette these traite de deux types de techniques de filtrage dévelloppées pour la reconnaissance de
plans en Compréhension des Programmes.

Le premier tvpe est basé sur des techniques de Métriques de Logiciels (Software Metrics) et de
Programmation Dyvnamique qui permettent la comparaison au niveau des énoncés de vecteurs de
traits qui caractérisent les cnouces de code source des programmes. Ce type de filtrage est utilisé pour
ilentifier les fragments de code similaires. et le clonage de code. facilitant ainsi la modularisation du
code. la restructuration du code et ia localisation efficace d'instances d'erreurs de programimation
stmnilaires.

Le second tvpe traite du probleme de la mise en place de correspondences entre un arbre
danalvse svatactique d'un langage abstrait de description dévelopé (ACL) et I'arbre d'analyse syn-
tactique du code. Le filtrage de repreésentations abstraites et de représentations de code source
requiert leur allignement. ce qui est de nouvean fait avee un algorithme de Programmation Dy-
natique qui compare les vecteurs de traits des descriptions abstraites et du code source. Lemploi
dun formalisme statistique permert d'affecter un pointage (une probabilité) a chaque filtrage tenté.
Un filtrage incomplet on imparfait est aussi possible, laissant & 'ingénieur en logiciel la décision
tinade sur les candidats similaires proposés par le filtreur.

Le svsteme o été implémenté pour analyser des systémes de logiciel écrits en PL/AS et C.

ACKNOWLEDGEMENTS

During my studies at McGill I had the opportunity to meet different people from whom I learned
many lessons in science and in human relations. It was a wonderful journey for me. For this journey,
I would like to thank my supervisors Renato DeMori, and Ettore Merlo for giving me the opportunity
to explore the frontiers of science and be part of an exciting team. I thank them also for providing
always support and encouragement throughout my studies. I would like also to thank the Principal
Investigators of the team I worked with, namely John Mylopoulos, Hausi Miiller, Jacob Slonim, and
the members of IBM Canada, Centre for Advanced Studies, for providing a very fertile research
environment.

But it was not only the exciting research environment that made my studies a memorable
experience. Many friends, and fellow students helped me understand and appreciate the simple
things in life that happen every day and pass unnoticed to most of us. Among those I thank Yiannis
Rekleitis, Christos Magdalinos, and the members of the Speech Lab for being so supportive.

I thank my friends Nikos Krivossidis. Bassem Khalife, Mariza Komioti and Stergios Anas-
tasiadis. with whom I shared the first yvears as a student in Montreal. Finally, I would like to thank

Jasmina for giving me the energy and the support to finish this thesis.

TABLE OF CONTENTS

ABSTRACT o i e iti

RESUME o ot e e e e e e e e e e e iv

ACKNOWLEDGEMENTS ot et e e e e e e e e e e e s e e e e v

LIST OF FIGURES o it i e x

LISTOF TABLES o o i i et et e xiii

LIST OF PUBLICATIONS et e et e e e e e e e e e e e e e e e e e e xiv

List of Publications Relevant to this Thesis xiv

CHAPTER 1. ReverseEngineering, 1

1. Imtroduction i e e e e e e e e e e e e e 1

2. Design Recovery L e e e e e e e e e 2

3. ThesisObjectives e e e e e e 3

3.1. Motivation and Background, 3

3.2. Thesis Contributions 5
CHAPTER 2. State-of-the-Art and Practice on Design Recovery
1. Representation Methods e
1.1. Methods of Internal Representation of the Source Code

2. Recognition Methods Lo 12

2.1. Methods Used for Controlling Recognition 13

3. Informal Information Amalysis 14

4. Interactive Query Capabilities, 14

5. StateofthePractice L e 15

5.1. Toolsonthe Market o i i it e e, 15

TABLE OF CONTENTS

5.2. ToolsinResearchLabs 17
CHAPTER 3. Program Features For Design Recovery 21
1. Imtroduction e e e e e e e e e e 21
2. Program Feature Vectors for Clone Detection : 23
21. Global Variables e 24
2.2. Global Variables Updated e e e e e 26
2.3. Input /Output, e e e e e e e e e e 28
24. FilesOpened e e e 30
2.5. Formal Parameters 32
2.6. Parameters by Reference Updated 32
2.7. Identifiers Used e 34
2.8. IdemtifiersUpdated 36
29. Function Calls e e e e 37
2.10. S-Complexity o e e e e e e e e 38
2.11. D-Complexity e e e e e e e e e e e e e e e 38
2.12.7 McCabe COmPIEXitY . - - « -« o o v o e e e 38
2.13. Albrecht Metric. e e e 39
:2.14. KafuraMetric L 40
3. PatternMatching e 41
CHAPTER 4. Code To Code Matching 43
1. Metric-Value Similarity Analysis 43
1.1. Hierarchical Clustering Clone Detection 44
1.2. Partition Clustering Clone Detection 46

2. Dynamic Programming Based Similarity Analysis 47
2.1. Similarity Distance Calculation 49
2.2. System Partitioning L e 53
CHAPTER 5. Concept To Code Matching 57
1. Language for Abstract Representation 58
2. Abstract Language Semanticso o ... P 64
3. Concept-to-Code Distance Calculation 68
4. ACL Markov Model Generation 70
5. Feature Vector Comparison e e e e 76
G. Recognition Space L L e e e e e e e e e e 78

TABLE OF CONTENTS

CHAPTER 6. Experiments 91
1. Experimentation Framework 92

2. Metrics-based Matching Experiments 95
2.1. Precision Per Metric Usage at Max. Recall Level 95

2.2. Impact of per Metric Threshold Value Variation on Precision 96

2.3. Items Retrieved per Metric Usage 98

2.4. Recall PerDistance Range 100

25. Recall /Precision 101

3. Dynamic Programming Experiments 103
3.1. Recall Per Distance Range. 103

3.2. Precision Per Distance Range (Set-Uses Matching Criterion) 103

3.3. Precision Per Distance Range (Metrics Matching Criterion) 105

3.4. Precision Per Distance Range (Data Types Matching Criterion) 108

3.5. Recall / Precision Per Matching Feature Used 108

4. Markov-based Matching Experiments 111
4.1. Performance Statistics. 111

4.2. Recall / Precision Comparison L. 112

5. Overall Recall / Precision Comparison 114
CHAPTER 7. The System Architecture 117
1. Communication with other Tools 117
1.1. Datalntegration e e e 120

1.2. Control Integration e 123

1.3. Integration Statistics e e e e 125
CHAPTER 8. Conclusion ittt 128
1. Contributions L e e 129

2. Discussion and Future Work Lo Lo 131
CHAPTER 9. Bibliography 134
REFERENCES e e e e e 135
APPENDIX A, e e 146
APPENDIX B. . . e e e e e e e e 150
APPENDIN C. o e e e e e 158

TABLE OF CONTENTS

APPENDIX D. e e 169

LIST OF FIGURES

3.1

4.1

4.2

4.3

AST nodes are represented as objects in a local repository. Arcs of the AST are

represented as mappings between objects. 22

The AST for an [F statement with Fanout attributes. 24

Distances between function pairs of passible function clones for the Clips and Bash
programs using DP-based matching. The dashed line represents measurements
obtained using the set-uses criterion. The solid line represents measurements

obtained by the metrics criterion. The values in the X - axis represent the nth
function pair that has been identified as containing potential clones (i.e. the two

functions have zero distance) using the metric comparison similarity analysis. 51

The matching process between two code fragments. Insertions are represented as

horizontal lines. deletions as vertical lines and, matches as diagonal lines. . . . 54

Segmentation of the Clips System using Clustering on Data Bindings, Common

References. and Code Cloning 56
Overview of the Markov-Based Code Matching Process 58
A dvnamic model for the pattern 41; 42%; 43 73

Dynamic Programming driven comparisons between an ACL pattern A;; A3; 43,

and a code fragment 5;:5::53:S8yo 74

The static model for the expression-pattern. Different transition probability
values may be set by the user for different plans. For example the traversal
of hinked-list plan may have higher probability attached to the is-an-inequality

transition as the programmer expects a pattern of the form (field /= NULL) 75

Effect of A values to final probability calculation 76

LIST OF TABLES

4.1
4.2

5.1
5.2
5.3

6.1
6.2

6.3
6.4

6.5
6.6
6.7
6.8
6.9
6.10

71
7.2

Step Distance table for S-Complexity taken from the Tcsh system 46

False alarms for the Clips program using DP matching and the Set-Uses criterion. 53

Generation (Allowable Matching) of source code statements from ACL statements 60
Generation (Allowable Matching) of source code expressions from ACL expressions 61

Generation (Allowable Matching) of source code data types from ACL data types 62

The Software Systems Used for Experimentation 91

Metrics-based matching statistics. The size of all possible pairs for this experiment

is 248,160. The Recall level for this experiment using all five metrics is estimated

Recall / Distance Value Range (Metrics) 102

DP-based matching statistics. The size of all possible pairs for this experiment
is 248,160. The Recall level achieved for this experiment is estimated as 44.4%. 105

Recall / Distance Value Range (DP) 105
Recall / Precision Relation Per Distance Value Range (DP Set-Uses Criterion) 105
Recall / Precision Relation Per Distance Value Range (DP Metrics Criterion) 108
Recall / Precision Relation Per Distance Value Range (DP Data Types Criterion) 110

Recall / Precision Table (DP) 110
Performance Statistics for 100 queries in three software systems (Tcsh, Clips,

ROEr) . . o i it e e e e e e e e e e e 111
Storage Statistics (only File and Function object types stored) 126

Dow-load Performance (KB contains File, Function type objects) 127

5.6

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12

7.1

7.2

7.3

LIST OF FIGURES

The algorithm A its known implementations I; in the system, and patterns P;,

that match the implementations. 87

Precision values (in percentage points) for one Metric used (Recall level 95.8%.) 96
Precision values (in percentage points) for combinations of two Metrics (Recall
level 95.8%.) e e e e e 97
Precision values (in percentage points) for combinations of three Metrics (Recall
level 95.8%.) . . . - . . L e e e e e 98
Precision values (in percentage points) for combinations of four Metrics (Recall
level 95.8%.)o e e 99
Precision Change (%) (Drop) by varying threshold values for each metric
dimension. Shown is the change between the Ist and the 10th step threshold
value. . .o L L e e e e e e e e e e e 100
Precision/Recall Graph for different metric combinations. The metric combinations
were selected among the ones that give the highest precision in their category
class (i.e. the best combination of two metrics is S-Complexity and Kafura) . 104
Average Precision (in percentage points) Per Distance Range for the Set-Uses
COtETION. o it e e e e e e e e e e e e 106
Average Precision (in percentage points) Per Distance Range for the Metrics
Criterion. L e e e e e e e e e e 107

Average Precision (in percentage points) Per Distance Range for the Data-Types

CRIteriOn. i i e e e e e e e e e e e e e e e e e e 109
Recall/Precision for DP-based Matching. 112
Recall / Precision graph for the Markov Based matching. 113
Recall / Precision graphs for the pattern matching methods proposed. 116

The implemented system architecture for tool integration. Dashed lines distinguish
computing environments, usually running on different machines. 118
Part of the Schema hierarchy. Multiple inheritance is shown for the File and
Modulenodes. e 121

The Schema structure and inheritance for the File AST entity. The Refine-
Attributes and the Rigi-Attributes are encapsulated in the same object in the

central repository. - . . . - Ll 122

74
7.5

LIST OF FIGURES

ExtractionObject Schema hierarchy for the Ariadne System. 123

Upload Performance

LIST OF PUBLICATIONS

List of Publications Relevant to this Thesis

¢ Refereed Journals

(i)

(ii)

(iii)

“Pattern Matching for Clone and Concept Detection” K. Kontogiannis, R. DeMori, E.
Merlo, M. Galler, M.Bernstein, Journal of Automated Software Engineering, vol.3, pp.
77-108, 1996 This publication describes the core of this Ph.D thesis. My contribution
in this paper was the design and development of a scalable method for localizing
similar programming patterns and for measuring of sctructural similarity between code
fragments. It uses Dynamic Programming and Markov Models to establish a structural
similarity probability. I shared interesting discussions with the rest of the authors who
had experience in the field of applying Markov models in Speech Recognition.
“Reengineering User Interfaces”, Merlo, E., Gagnie, P.Y., Girard, J.F., Kontogian-
nis, K., Hendren, L., Panangaden, P., DeMori, R. IEEFE Software, January 1995 This
publication discusses the reengineering of CICS line-based user interfaces and the mi-
gration process towards modern designs (i.e X-Windows). This research has been
quoted as a standard in Michael Brodie’s book “Migrating Legacy Systems”, by Mor-
gan Kaufman Publishers, 1995, and in ACM Communications special issue on Reverse
Engineering, vol. 37, No. 5, 1994. pp. 84-93. My participation on the project fo-
cused on the design of an abstract user interface specification language using Process
Algebras.

“Investigating Reverse Engineering Technologies for the CAS program Understanding
Project”, Buss, E., DeMorti, R., Gentleman, M., Henshaw, J., Johnson, H., Konto-
giannis, K., Merlo, E., Muller, H., Mylopoulos, J., Paul, S., Prakash, A., Stanley, M.,
Tilley, S., Troster, J., Wong, K. IBM Systems Journal, Vol. 33, No. 3, 1994

This publication discusses the techniques and the results from our CRD project with

IBM Canada. My contribution on this project was the development of techniques to

LIST OF PUBLICATIONS RELEVANT TO THIS THESIS

identify error prone code and redundant code in large software systems using soft-
ware metrics. The target legacy system was SQL/DS which is written in a PL-type

language.

e Refereed Conferences

(M)

(i)

(iii)

(iv)

(v)

“A Generic Integration Architecture for Cooperative Information Systems”, John My-
lopoulos, Avi Gall, Kostas Kontogiannis, Martin Stanley, In Proceedings of COOPIS
'96, Brussels, Belgium

This paper discusses issues of software tool integration. It examines the Event-
Condition-Action principle of active data bases and investigates its use for the design
of a data and control integration environment. My contribution on this research was
the design of the requirements for a dynamic CASE integrated toolset. This reseacrh
capitalized on the expertise gained during our IBM/CRD project and the expertise of
Avi Gall and John Mylopoulos on active data bases.

“Pattern Matching for Design Concept Localization”, Kontogiannis, K., DeMori, R.,
Merlo, E., Bernstein, M., Galler, M. Working Conference on Reverse Engineering
WCRE’95, July 1995, Toronto, ON.

This publication was ranked among the best in WCRE’95 and was invited to be
expanded in a Journal publication in the journal of Automated Software Engineering.
It discusses the application of a stochastic pattern matcher using Markov Models for
code segmentation and plan localization. The significance of this approach is that it
is scalable and efficient on the time and space resources it requires.

“Localization of Design Concepts in Legacy Systems”, Kontogiannis, K., DeMori R.,
Bernstein, M. Proceedings of the International Conference on Software Maintenance
1994, Victoria, BC. This publication marked the first findings from the application
of Dynamic Programming in a pattern matching tool targeting clone recognition.
The paper provides insights for a scalable pattern matching approach that led to the
development of a prototype system for plan recognition.

“The Development of a Partial Design Recovery Environment for Legacy Systems”,
Kontogiannis, K., Bernstein, M., Merlo, E., DeMori, R. Proceedings of CASCON’93,
Toronto, ON.

“Program Representation and Behavioural Matching For Localizing Similar Code
Fragments”, Kontogiannis, K. Proceedings of CASCON’93, Toronto, ON.

LIST OF PUBLICATIONS RELEVANT TO THIS THESIS

(vi) “Reverse Engineering of User Interfaces”, Merlo, E., Girard, J.F., Kontogiannis, K.,

Panangaden, P., DeMori, R. Proceedings of Working Conference on Reverse Engineer-
ing, WCRE’93, Maryland, Baltimore

This paper discussed initial findings on the DMR project. Please refer to the relevant
IEEE Software paper above.

¢ Refereed Workshops

(i) “Partial Matching for Code Similarity”, International Conference on Artificial Intel-

(ii)

(iit)

ligence, Workshop on Software Engineering and A.I, August 1995, Montreal, QUE.
DeMori, R., Kontogiannis, K.

This paper discussed the use of A.I modeling and matching techniques in Program
Understanding. The motivation for this paper was the potential use of A.I techniques
to handle complexity issues related to code segmentation and plan recognition. The
paper investigates the use of pattern matching techniques and modeling techniques in
the area of Software Engineering.

“User-Assisted Design Recovery of Legacy Software Systems”, Kontogiannis, K., Tiiley,
S., DeMori, R., Muller, H. Workshop on the Intersection of Software Engineering and
Artificial Intelligence, ICSE’16, Sorrento, Italy, May 1994

Similar as above.

“A Process Algebra Based Program and System Representation for Reverse Engineer-
ing”, Merlo, E., DeMori, R., Kontogiannis, K. Proceedings of the Workshop of Program
Comprehension, Capri 1993, Italy

This paper discussed the usefulness of formal methods and in particular Process Al-
gebras to represent the semantics and the behaviour of programs. The paper inves-
tigated the use of bisimulation for assuming behavioural similarity between two code
fragments. A prototype system has been demonstrated that allowed for plan recog-
nition of small size systems (< 1KLOC). This paper describes my initial approach
to the problem of Program Understanding within the scope of my Ph.D research.
This approach has been demonstrated to be very accurate, allowing for matching un-
der syntactic or implementation variations. The drawback was that it did not scale
up properly and required significant effort to model source code as Process Algebra

equations.

xvi

CHAPTER 1

Reverse Engineering

1. Introduction

Despite the fact that faster and cheaper computer hardware continues to appear on the market
at an impressive rate, much of the software currently used is on average ten to fifteen years old
[Osborne90]. In most cases these programs have to be corrected, migrated to new platforms, or
enhanced in performance. Usually, people involved in these processes are not the original system
designers, and they have to devote a significant amount of resources in order to understand the
system to be maintained. An important point is that a maintainer not only has to understand the
code, but also the system as a whole, its functions, its environment, its subprogram structure, its
data base set up, and many other factors [Wedo85|.

The objective of reverse engineering is the development of a set of tools and techniques for
understanding unfamiliar code, so that system maintenance can be facilitated [Chiko90]. Having
obtained enough information on the system a maintainer can proceed with the restructuring phase
where the system is enhanced or adapted to a new environment. The amount of software maintenance
research in the last three years has increased [Hale90), and it is estimated that in the U.S. alone 2% of
the country’s gross national product was spent in 1985 for software maintenance [Karakostas90].
In the past few years several research groups have focused their efforts on the development of
tools for program understanding and program restructuring. The major research issues involve
the development of formalisms to represent program structure, control and data flow, as well as
visualizing program execution.

In [Chiko90] a taxonomy of reverse engineering terms is given. This taxonomy, divides Re-
verse Engineering in two major subareas :) Re-documentation and; b) Design recovery. Re-

documentation is a process in which alternative views of the program are presented in order to

1.2 DESIGN RECOVERY

reflect certain characteristics of the subject system. Design recovery is a subset of reverse engi-
neering in which abstractions of the subject system are created in order to impose a meaning on a
program segment. Restructuring and re-engineering are two other terms which are relatively close
in meaning. Restructuring is the transformation of a software system without affecting its function-
ality, while re-engineering is the transformation of a subject system while adding new functionalities
to the system.

Reverse engineering is the process of analyzing a subject system to:

o identify the system’s component’s and their interrelationships, and

e create representations of the system in another form or at a higher level of abstraction.
Reverse engineering does not involve changing the subject system; it is process of examination. Qur
work will focus on the area of program understanding and in particular the area of design recovery.

The term design recovery means understanding the program as a whole with respect to func-
tional specifications, input parameters, expected output, performance, as well as on the software and
hardware environment in which it runs. The available information is usually formal (source code)
and informal (comments). Source code is represented usually as an ASCII file. This file may contain
a number of hints about the run-time functionality of the program (how and in what order modules
are invoked), parameter passing, aliases, side effects etc. On the other hand, informal information is
a valuable source of information for the task of understanding complex features involving the under-
standing of the organization of program structure (how procedures or submodules are organized).
Hints may be in the form of comments, //O messages, meaningful variable names, documentation

etc.

2. Design Recovery

According to Biggerstaff [Biggerstaff89]:
Design recovery recreates design abstractions from a combination of code, existing
design documentation, personal experience, and general knowledge about problem
and application domains. Design Recovery must reproduce all of the information
required for a person to fully understand what a program does, how it does it, why
it does it, and so forth. Thus, it deals with a far wider range of information than
found in conventional software-engineering representations or code.
According to Harandi and Ning [Harandi90] to maintain a program, a programmer needs to
develop a mental model of its function first. To facilitate this, four different program views are

provided.

1.3 THESIS OBJECTIVES

(i) The implementation-level view is represented as an abstract syntax tree and a symbol table

of program tokens.

(ii) The structure-level view gives an explicit representation of the dependencies among program
components.

(iii) The function-level view relates parts of the program to their functions and shows the logical
relations among them.

(iv) The domain-level replaces items in the function-view by concepts specific to the application
domain.

Understanding the code includes code representation, structural representation of the system
(modules’ interaction), data flow, control flow graphs, conceptual abstraction of the code (specifi-
cations, abstract data types, normalization). However, understanding the code with an automated
system, usually requires access to the domain model, and the domain information [Prieto-Diaz90].
However, complete automated design recovery is not always feasible. In this case partial design
recovery is a more realistic objective. Partial solutions can be very useful, as the maintainer can fill

in the uninterpreted gaps using his own programming skills and experience.

3. Thesis Objectives

3.1. Motivation and Background. Large-scale production software systems are expensive
to build and, over their useful lifetimes, are even more expensive to maintain. Successful large-scale
systems are often called “legacy systems” because (a) they tend to have been in service for many
years, (b) the original developers, in the normal course of events move on to other projects, leaving
the system to be maintained by successive generations of maintenance programmers, and (c) the
systems themselves represent enormous, irreplaceable corporate assets.

Legacy systems are intrinsically difficult to maintain because of their sheer bulk and because of
the loss of historical information: design documentation is seldom maintained as the system evolves.
In many cases, the source code becomes the sole repository for evolving corporate business rules.

During system maintenance, it is often necessary to move from low, implementation-oriented
levels of abstraction back to the design and even the requirements levels. The process is generally
known as “reverse engineering”®.

In particular, it has been estimated that 50 to 90 percent of the maintenance programmer’s
effort is devoted to simply understanding relationships within the program. The average Fortune
100 company maintains 35 million lines of source code (MLOC) with a growth rate of 10 percent
l—In_ZEIM“reverse engineering” and related terms refer to legitimate maintenance activities based on source-

language programs. The terms do not refer to illegal or not ethical activities such as the reverse compilation of object
code to produce a competing product.

1.3 THESIS OBJECTIVES

per year just in enhancements, updates, and normal maintenance. Facilitating the design recovery
process can yield significant economic savings.

We believe that maintaining a large legacy software system is an inherently human activity that
requires knowledge, experience, taste, judgement and creativity. For the foreseeable future, nc single
tool or technique will replace the maintenance programmer nor even satisfy all of the programmer’s
needs. Evolving real-world systems requires pragmatism and flexibility.

It has been argued [Wills92] that programmers use patterns and expert knowledge to recognize
programs and programming structures. These patterns, idioms, and commonly used structures are
called plans[Huff89] [Wills93|. A plan is a commonly used idiom or algorithm in a software system
that implements a particular task, a generic or domain concept, or a business rule. A plan can be
represented in different levels of abstraction. At the lower level a plan instance is described in terms
of its source code implementation. At an intermediate level it is represented as pseudo-code with
links and references to actual source code and informal information. At a higher level of abstraction
the plan is codified in a Knowledge Representation (KR) formalisin that captures the knowledge the
experienced programmers use to recognize such plans.

When a group of developers are given the task to understand and maintain a large software

system the following activities have to be performed:

o Represent the source code at a higher level of abstraction
e Identify the basic physical structure of the system

e Decompose the system into modules based on data and control flow properties

Localize particular plans in the code and attach concepts to them

Identify parts of the system that interact, depend or alter a recognised concept

Recent studies in Reverse Engineering have proposed a number of research issues. Most of
them are related to program and knowledge representation methods, search techniques, compiler
technology as well as program specification and verification methods.

Design Recovery has been viewed mostly as a program representation and a plan localization
problem where representations of the source code are matched against programming plans stored
in a static library. In real applications though, the limited number of programming plans that can
be encoded, knotty program representation schemes and complex plan localization algorithms make
design recovery applications rigid and difficult to be extended to large systems. Thus, it is more
realistic to take an approach in which methods and tools for partial design recovery are conceived
based on a set of strategic but specific objectives which are dictated by the user and the type of

analysis he or she performs.

1.3 THESIS OBJECTIVES

That introduces the idea of Goal Directed Design Recovery in which the appropriate represen-
tation method, the level of abstraction, the appropriate analysis tool, and the control strategy are
dictated by the objectives and the specific program design attributes the maintainer sets or wants
to recover respectively.

In this thesis we focus on the development of pattern-matching techniques that allow for plan
localization and recognition. Qur work addresses the problem of plan localization in two levels.

The first level addresses code to code matching. At this level we devised techniques to compute
dissimilarity distances between two code fragments, allowing for the detection of potential code
cloning and, the localization of similar patterns in the code that may implement a particular plan.

The second level addresses the problem of localizing abstract code descriptions in a software
system.

In particular, this thesis discusses

(i) The development of techniques for source code to source code matching for detecting code

duplication and devise dissimilarity distances between two code fragments

(ii) The development of an abstract language to represent programming plans and the corre-
sponding techniques to localize these abstract descriptions in a large software system

(iii) The development of a software framework that allows for CASE tool integration in a dis-

tributed environment.

3.2. Thesis Contributions.

3.2.1. The Code Cloning Problem. Source code cloning occurs when a developer reuses ex-
isting code in a new context by making a copy that is altered to provide new functionality. The
practice is widespread among developers and occurs for several reasons: making a modified copy
may be simpler than trying to exploit commonality by writing a more general, parameterized func-
tion; scheduling pressures may not allow the time required to generalize the code; and efficiency
constraints may not admit the extra overhead (real or perceived) of a generalized routine.

In the long run, code cloning can be a costly practice. Firstly, it results in a program that is
larger than necessary, increasing the complexity that must be managed by the maintenance program-
mer and increasing the size of the executable program, requiring larger computers. Secondly, when a
modification is required (for example, due to bug fixes, enhancements, or changes in business rules),
the change must be propagated to all instances of the clone. Thirdly, often-cloned functionality is a
prime candidate for repackaging and generalization for a repository of reusable components which
can yield tremendous leverage during development of new applications.

The thesis introduces new techniques for detecting instances of source code cloning. Program

features based on software metrics are proposed. These features apply to basic program segments

1.3 THESIS OBJECTIVES

like individual statements, begin-end blocks and functions. Distances between program segments
can be computed based on feature differences. We propose two methods for addressing the code
cloning detection problem.

The first is based on direct comparison of metric values that classify a given code fragment. The
granularity for selecting and comparing code fragments is at the level of a source code statement.
This method returns clusters of statements that may be products of cut-and-paste operations.

The second is based on a new Dynamic Programming (DP) technique that is used to calculate
the best alignment between two code fragments in terms of deletions, insertions and, substitutions.
The granularity for selecting code fragments for comparison is again at the source code statement
level. Once two statements have been selected they are compared using their corresponding feature
vectors. This method returns clusters of statements that may be products of cut-and-paste opera-
tions. The DP approach provides in general, more accurate results (i.e. less false positives) when
comparing two blocks of source code statements, than the one based on direct comparison of their
metric values. The reason is that using DP comparison occurs at the statement level and informal
information is also taken into account (i.e. variable names, literal strings and numbers).

3.2.2. The Concept Recognition Problem. Programming concepts are described by a concept
language. A concept to be recognized is a phrase of the concept language. Concept descriptions
and source code are parsed. The concept recognition problem becomes the problem of establishing
correspondences, as in machine translation, between a parse tree of the concept description language
and the parse tree of the code.

A new formalism is proposed to see the problem as a stochastic syntax-directed translation.
Translation rules are pairs of rewriting rules and have associated a probability that can be set initially
to uniform values for all the possible alternatives.

Matching of concept representations and source code representations involves alignment that is
again performed using a dynamic programming algorithm that compares feature vectors of concept
descriptions, and source code.

The proposed concept description language, models insertions as wild characters (Abstract
Statement® and Abstract Statement™) and does not allow any deletions from the pattern. The
comparison and selection granularity is at the statement level. Comparison of a concept description
language statement with a source code statement is achieved by comparing feature vectors (i.e.
metrics, variables used, variables defined and keywords).

Given a concept description M = A;; As;..Ap,, a code fragment P = Sy; S2;..5k is selected for
comparison if: a) the first concept description statement A, matches with S, and b) the sequence

of statements S»;...Sk, belong to the inner most begin-end block containing Sj.

1.3 THESIS OBJECTIVES

The use of a statistical formalism allows a score (a probability) to be assigned to every match
that is attempted. Incomplete or imperfect matching is also possible leaving to the software engineer
the final decision on the similar candidates proposed by the matcher. A way of dynamically updating
matching probabilities as new data are observed is also suggested by the use of a cache.

3.2.3. Tool Integration. A suite of complementary tools from which the programmer can
select the most appropriate one for the specific task at hand. An integration framework enables
exploitation of synergy by allowing communication among the tools.

This work has been incorporated on a (Reverse Engineering Environment), based on an open
architecture for integrating heterogeneous tools. The tool-set is integrated through a common repos-
itory specifically designed to support design recovery (Mylo96] [Buss94]. Individual tools in the kit
include Ariadne [Konto94] [Konto96a], ART [Johnson94a] [Johnson94b], and Rigi [Tilley95]
[Muller93]. ART (Analysis of Redundancy in Text) is a prototype textual redundancy analysis
system. Ariadne is a set of pattern matching and design recovery programs implemented using a
commercial tool called The Software Refinery 2. Rigi is a programmable environment for program
visualization. The tools communicate through a flexible object server and single global schema

implemented using the Telos information modelling language and repository [Mylo96].

24The Software Refinery” and REFINE are trademarks of Reasoning Systems, Inc.

CHAPTER 2

State-of-the-Art and Practice on Design Recovery

1. Representation Methods

In order to recover the design of an unknown program, source code has to be represented in a

higher level of abstraction. Such source code representation must reflect more the design activity than

the source code itself. Most of the research approaches addressing the source code representation

problem, focus on the development of mathematical formalisms, and techniques which can facilitate:

(i)
(i)

(iii)
(iv)

(v)
(vi)

(vii)

representation of program functions in a more abstract way than source code [Letovsky88|,
the representation of the behavior of a program [Hoare85], [Milner89], [Stoy77], [Scott76],
{Hennessy91]

search techniques (borrowed from A.I, or graph theory), [Rich90], [Engberts91], [Ning94],
(Johnson85],

ways to reflect information on the problem and the application domain [Biggerstaff94],
user friendliness, in terms of how program design is presented to the programmer [Muller91],
adaptability and modeling, in terms of how easily one representation can be transformed
into another more abstract one (in case of reverse engineering) or less abstract (in case of
forward engineering), and

portability to 2 computer environment (be able to define data structures for encoding the

formalism).

1.1. Methods of Internal Representation of the Source Code . In the literature one

can find a variety of methods for representing source code for software maintenance purposes. It is

widely accepted [Sneed88] that models for viewing software consists of three levels:

(i) the specification level,

(ii) the design level, and

(iii} the coding level.

2.1 REPRESENTATION METHODS

The focus of Design Recovery is to provide means to achieve a representation of the program
at the Design Level.

In some applications [Sneed88]|, the program is "horizontally” partitioned into divisions. Each
division contains information for different parts of the program. For exampie, in the case of a COBOL
program, the Identification division may contain the program name and some general information,
the Environment division may contain information of how the system is connected to the physical
environment or the platform it runs and so on. Other divisions are more relevant for Design Recovery,
namely the Data division and the Procedure division. The Data Division contains the description of
the data structures (both external and internal), and the Procedure division contains the executable
statements grouped into Sections or Paragraphs. Data structures can be represented in a variety
of ways. One way is the tabularization [Sneed87| where a table is defined with an entry for each
data structure encountered, recording its name, position, type, length, dimension, usage etc. Using
such a tabular representation, some groups [Overstreet88] use transitive closure algorithms to
compute data-flow and variable dependencies. For the procedure level the same technique can be
used by defining Relationship Matrixes, for representing relationships among procedures, variable
referencing or, relationships between constants, variables, and procedures within the same module
(scope of variables).

Another approach for representing source code is using Decomposition Hierarchies [Ligner88],
[Hartman91b]. This technique is based on the Structure Theorem [Ligner88], which states that
any proper program (single entry, single-exit programs) can be represented as a structure consisting
only of primitive programs (sequence, if/then structures and loop structures), which some authors
[Bush85| call normal forms. This approach has the advantage that one can define an equivalence
mapping for transforming the original unstructured code into a structured one. The first step
in this approach is to create an Abstract Syntax Tree of the original source code. Subsequently,
tree to tree transformations can be applied in order to obtain a tree from which reduced control
flow expressions can be obtained such that the resulting tree can be transformed into a directed
graph containing only normal forms. Programming clichés [Rich90] can be used for recognizing
pieces of code. The transition from the internal representation of code into higher level conceptual
program abstractions can also be obtained by extracting conceptual representations by deduction,
applying a graph grammar or a pattern matching algorithm. Dependency analysis tools can be used
to enhance the internal representation of the code. Dependency analysis [Wilde89] is based on
graphs which represent definition dependencies (when a program entity is used to define another),

calling dependencies (when one module calls another), functional dependencies (when a data object

2.1 REPRESENTATION METHODS

is created or updated) and finally data flow dependencies [Gallagher91] (when the value of one
object is used to calculate the value of another).

A third class of methods for representing code uses a unified object-based representation of
code segments [Das89], [Murray88]. In this approach, basic language constructs (e.g. while
loops) are represented as objects and their syntax is captured as a list of attributes (e.g. logical
condition, body, etc.). The actual source code is represented by instances of these generic objects,
and attribute values may refer to other instances (e.g. a body of a loop may be another loop). High
level programming knowledge can be encapsulated in rules. A set of such rules can be used to reason
about the program (e.g. finding syntactic or non-syntactic bugs). Thus, programs may be viewed as
object bases. In some systems [Ketabchi90], these objects can be created partially automatically,
from the Backus Normal Form (BNF) description of the language. Instances of generic objects can
be created by a scanner, a parser and a set of semantic action routines. These approaches treat a
software system as assemblies, which have multiple aspects such as structure and functionality. A
more abstracted view of the above technique is given in [Holland89] and [Landis88|. Here not
only basic language constructs are represented as objects but also more complex constructs, such as
functions or program submodules. This method enhanced with basic rules governing dependencies
(eg. if class! is a client of class2 then class! depends on class2) can be used to create dependency
graphs, or even allow for automatic recognizing parameterization of programs (write more general
programs). This can be achieved since data groupings or abstract data types (queues, stacks etc)
can be defined as object-like structures and be used in different applications by creating instances
of theirs.

Graphs, as mentioned earlier, provide a natural way to visualize program information. They
are adaptable and most important, they are formal mathematical structures. In some approaches
[Colbrook89] flow graphs are transformed into prime programs (normal form), and then abstracted
into more general structures. The process may be described as reducing the program to be under-
stood to small prime programs and then creating, in a step by step process, functions combining
them at higher and higher levels until a full specification is achieved. It is obvious that such an
approach requires an excessive library of abstract data types. Furthermore, graph complexity can
be used as a metric for the maintainability of the code [McCabe90]. Similarly, data flow diagrams
and structure charts [Gillis90] can be generally used to model the data transformation aspects of
a software system [Beneduci89)], since they emphasize the logical flow of data and control while
de-emphasizing implementational details and physical solutions of the problem.

In [Smythe90|, reverse engineering separates into the Encapsulation phase, the Transformation

phase, the Normalization phase, the Interpretation phase, the Abstraction phase, and finally the

10

2.1 REPRESENTATION METHODS

Causation phase. Basically in these phases the source code is parsed into an intermediate language
and the control flow is normalized. At this point, the process of deriving the meaning of a piece of
software begins. The code represented in this intermediate language is replaced by logical comments,
starting from the inner most blocks and working outward. In the abstraction phase, objects and
object hierarchies are identified. Data are mapped onto the procedures so that data operators
are separated and grouped with the data they operate upon. Application domains are mapped to
objects. In the last phase services which must be provided to the user and constraints which have
to be met are identified.

In another approach [Callics88]} programming knowledge is captured in the form of program-
ming plans [Rich90], [Das89], [Davies90] which are abstract representations of algorithmic struc-
tures. A plan lists the building components of an algorithm in terms of atomic program elements or
other plans. A plan also identifies the proper sequence of these building components which is defined
in [Harandi90] and {Harandi88| as event path expression. Plan definitions are translated by a Plan
parser into inference rules as system’s understanding knowledge. A pattern directed Inference en-
gine is used for recognizing plans in a program. Moreover, a Justification-based Truth Maintenance
System (JTMS) can be used for recording the understanding process. Using this scheme source
code has to be paraphrased into a plan and then be matched with the entities in the knowledge
base or the predefined plans. The drawback of this approach is that it is not a trivial task to define
a system’s knowledge as plans, capture all variations of an algorithm, and incorporate appropriate
heuristics. Furthermore, there is no guarantee of the completeness and correctness of the knowledge
base. Neural nets with learning capabilities could play a role in this approach.

However, it has been found that programmers use many clichés in their programming tasks.
This means that they call on their personal library of previously written modules and data struc-
tures, for reuse through adaptation for the problem at hand. Abstract and semantic knowledge
[Lebowitz83] can improve parsing since the syntactic parsing is enhanced with domain knowledge
or with programming plans.

Clichés can be recognized in existing programs to recover the programmer’s abstract concepts
and intentions. According to Hartman [Hartman9la), three entities must be present for the un-
covering of clichés to be successful:

(i) a program representation or model,

(ii) programming knowledge of standard plans, and

(iii) search and comparison to find a plan instance.

11

2.2 RECOGNITION METHODS

2. Recognition Methods

Once the representation of the basic components of a program by plans, clichés, or other
formalisms has been studied, representation and comparison methods for controlling plan detection
in complex applications have to be considered.

Comparison methods focus on techniques to perform, for example, simple plan instance recog-
nition, by proving equivalence or other relations, between components. If representation is based
on plans, the power of a comparison method is the number of plan instances it can recognize using
a given plan and its ability to abstract away from the comparison process implementation details
used in different plan instances. Comparison algorithms depend heavily on the program and on the
selected representation method and it does not always involve simple pattern matching. Compari-
son algorithms may apply transformation rules to establish program-plan equivalence. Equivalence
based on specific criteria, is the strongest relation one can prove between a code fragment and a
programming plan but in practice partial recognition is the best that can be achieved. Partial recog-
nition deals with the problem of recognizing plan instances even when these plans are interleaved
with other type of information in the code or they are scattered throughout the program. Multiple,
failed or incomplete plan recognition has to be taken into consideration as well. Multiple recognition
occurs when a single programming plan matches more than one program part. Ambiguities can be
resolved using needs, domain knowledge or information besides the program and plans. On the other
hand, failed recognition should produce failure information explaining the cause of failure. The most
common case, though, occurs when no success or failure can be proven. In this case, incomplete
bindings should be produced for explanation and control.

Basic components are part of a program behavior and are recognized following a certain control
strategy. Top level control methods focus on techniques to select program parts and programming
plans for comparison in order to achieve plan instance localization. Moreover, top level control
applies the comparison results to the application program. Program parts and programming plans,
represented at a higher level of abstraction than the source code are selected using a top-level control
strategy and used as input to a comparison module. The output of such a comparison are recog-
nized concepts and program parts satisfying the specifications of a programming plan. Control can
be guided by the needs of the particular application as well as by the results of previous comparisons.
Search algorithms are used to select from the program representation different programming parcs
for comparison. Bottom-up search strategies systematically select all program parts covering the
program representation, while top-down search strategies seek single parts that can be used to satisfy
a given expectation (subgoal). Programming plans and program parts are not always represented in

the same formalism. Moreover, during the recognition process comparison has to performed between

12

2.2 RECOGNITION METHODS

already recognized concepts and original program material. Hierarchical recognition control strate-
gies focus on such multi-multi-leveled representations and are used for compositional recognition
where complex concepts are recognized in terms of their subcomponents.

Furthermore, program decomposition can be used to guide the selection process. Performance
is best when decomposition produces program parts which correspond well with the plans in the
plan library. Program decomposition can be performed a priori before the selection process starts,
or in a dynamic way based on previous recognition results and the current needs of the application

as the selection process is performed.

2.1. Methods Used for Controlling Recognition . In the literature one can find a
number of different methods used to guide and perform the plan instance recognition process.

As far as the comparison methods are concerned, some systems (eg. PROUST) [Johnson85],
[Engberts91] match syntax trees with syntax tree templates. A plan matches a program statement
if its unified template matches the statement’s syntax tree, and its constraints and subgoals are
satisfied. TALUS, [Ourston89] compares student and reference functions by applying a heuristic
similarity measure. In CPU, [Letovsky88| programs are represented as lambda calculus expressions
and procedural plans. Comparison in CPU is performed by applying a unification and matching
algorithm on lambda calculus expressions. In UNPROG, [Hartman91b] program control flow
graphs and data flow relations are compared with the programming plan’s control flow graph and
data flow relations. The objective here is proving plan’s data flow a subset of a program’s part
data flow. Quilici, {Quilici92] matches frame schema representations of C code. If they structurally
match then data flow graphs are compared as well. GRASP, [Wills92] uses attributed data flow
sub-graphs to represent programs and programming plans. Comparison is performed by matching
sub-graphs and by checking constraints involving control dependencies and other program attributes.

As far as the top-level control methods are concerned PROUST, [Johnson85| uses a top-down
control strategy applied to a solution goal tree. This control strategy, is enhanced with heuristics
for ordering, comparison and evaluation. Transformations are applied in order to reduce differences
due to implementation variations and bugs. TALUS, [Ourston89] uses the A* best first search
algorithm in order to find a mapping between student functions and reference program functions
maximizing a heuristic measure. CPU, [Letovsky88| uses rewrite rules and a bottom-up control
strategy. Top-level control selects and transforms lambda calculus sub-expressions applying all
possible transformation rules until no more transformations are possible. Quilici’s system applies an
indexing scheme to select candidate plans and then performs semantic abstractions by substituting
the selected frame with the abstracted one. Hierarchical recognition proceeds upward until no

more abstractions can be performed. Finally, GRASP [Wills92] performs bottom-up graph parsing

13

2.4 INTERACTIVE QUERY CAPABILITIES

using a context-free graph grammar representing standard transformations between standard plans
and semantic abstractions for already recognized plan instances. Parsing checks all possible sub-
graphs thus all possible interpretations can be found and be represented in a lattice of possible

interpretations.

3. Informal Information Analysis

The methods presented so far are general purpose and none of them has been proven sufficient
to completely solve the design recovery problem for large systems. Other types of analysis can offer
interesting solutions, especially when partial design recovery of certain types of applications is the
objective. These types of analysis will be briefly reviewed in following paragraphs. They can inspire
the conception of useful tools.

One of the most useful sources of information is the documentation and the mnemonic identifier
names used throughout the program. Code can be analyzed more easily and parsed so that ASTs
can be built and furthermore be abstracted to more general representations so that, the user under-
stands the nature of a design in human terms. Informal information obtained by an analysis of the
comments, variable names, and documentation is particularly useful for this purpose. “By restoring
the comments from the original code we can elaborate several of our guesses and enhance our un-
derstanding of some of the functions and variables” [Biggerstaff89]. Informal information provides
the means for understanding the computational intent of the code in a way that is impossible when
plain source code is used. The research issues dealing with this subject are:

(i) how to represent the semantics provided by the informal information,
(ii) how can be related to formal information provided by the code, and
(iii) define a set of operations that integrate this information and implement a design recovery
process.

An interesting approach based on automatic learning is described in [Merlo93].

4. Interactive Query Capabilities

On designing an interface [Shneiderman86], [Hix89)], for a software maintenance tool there
are some points which are important to the end user. One such is the option of interactive query
capabilities. The user should be able to interrupt the maintenance system and ask for information,
manipulate graphs, choose windows and select different ways to represent data [Hill87|.

Some of the queries the system should support are:

e asking for information on the data flow graphs,

e asking for information on the control flow graphs,

14

2.5 STATE OF THE PRACTICE

e program fragment localizations,

¢ editing and extracting selected parts of code (the ones that are relevant to a selected process),

e redundant and duplicated code detection,

¢ visualizing aliases,

o dead code detection,

¢ performing user guided transformations of the graphs,

¢ selecting domain models (uploading knowledge bases relevant to the domain, etc.).

The previous points can be applied in a more generalized context where the user not only
asks for information on the processes the maintenance tool is performing but also is able to access
information of the system as a whole. That means he must be able to view data bases, operating
system parameters, and module relationships. Moreover, the user should be able to visualize the
expected side effects of a change he is going to implement. Call graphs [Rajlich88]|, [Lieberman84]|,
dynamic variable bindings, and aliases should be presented. Generally, the tool should support an

environment which provides to the user with multipurpose facilities.

5. State of the Practice

The current software maintenance crisis has lead to a large increase in research and development
in this area. Research centers are looking for new ways to ease the burden of re-engineering. At the
same time, many commercial developers are taking advantage of now highly respected buzzwords
reverse engineering and re-engineering. Most of them provide a sharp user interface based on
established principles, generally data and flow control analysis. The utility of these tools should not
be underestimated, as this kind of support can greatly increase maintenance efficiency.

Hopefully, the next generation of commercially available re-engineering tools will be based on
research that is currently underway, and will provide the magic that is often implied in the sales

brochures of today.

5.1. Tools on the Market. Naturally, many software developers have moved to meet
the needs of software maintainers. Some of research into reverse engineering has already been
translated into commercially available products. REFINE ! [Kotik89] is an interactive software
development system which is useful for software analysis and testing. It provides three tools: a high
level specification language, an object-oriented database, and a language processing system.

The database is used to store the software as annotated abstract syntax trees, using an object-
oriented representation. The specification language is used to query the database. The language

processing system must be provided with a description of a language in the form of a grammar

!REFINE is a trademark of Reasoning Corp.

15

2.5 STATE OF THE PRACTICE

together with a language domain model. REFINE also allows programming templates to be defined,
which can be used to test whether a program is an instance of a defined template, or to build one
which is.

Rules are written which use pattern matching to identify logical code fragments, and bind their
text to identifiers. These identifiers may then be used to write out code in a new form. The pattern
matching capabilities of REFINE can be used to restructure program statements. Programs are
converted between source code and the object-oriented database using the parsers created by the
language processing system. The REFINE object system supports a data model that is close to
the standard conceptual view of annotated abstract syntax trees. There is a specification language
which is used to query and update the database. Once the software has been stored in the database,
it may be automatically transformed by defining output rules.

Bachman Information Systems {Bmc] provides the following products: BACHMAN / Database
Administrator, the DBA Catalog Extract, a Data Analyst, and the DA Capture. These products are
capable of reading physical data definitions in 2 number of different formats and converting them
to graphical, logical representations. These representations can be used to modify the database
structure, and then the tools can be used to optimize the database design and regenerate it.

Cadre Technologies [CASES89] [Cadr] has developed a set of applications which can provide
statistical information concerning program execution. It also tracks call hierarchy, and can present
all its results graphically.

Viasoft [Viasoft| has a set of products known as VIA/Center which operate on COBOL pro-
grams. The analytical engine can create a database of information about a program's characteristics;
like how logic and data are related, and how control is passed between modules. Viasoft also promises
more advanced products for the future.

Hypersoft [HypSoft| has an application which runs on a VAX called Application Browser. It
facilitates navigation through COBOL programs by providing a graphical user interface to the source
code.

Ten X Technology [CASES89] has a similar product for C programs.

The Intersolv [Intersolv] company has produced an application called Design Recovery [Intersolv91]
which translates code into diagrams which clarify the underlying structure. It reads COBOL source
code and database definitions, then generates the corresponding physical models, which it stores in

an internal repository. The models may be examined and changed, and then used to produce new

code.

16

2.5 STATE OF THE PRACTICE

Design Recovery uses diagrams to show the hierarchical relationship between sections and para-
graphs. It automatically identifies dead code. For every section, it maintains a list of which variables
and which files are updated. It also calculates a metric measuring the complexity of every section.

In the description of all these products, the use of the term re-engineering is quite liberal
[Chiko90]. These products focus on presenting the code in an attractive form, and supporting
the user by giving him the power to easily navigate through the code. Some of them help in
organizing documentation, and/or testing and debugging. A good source of information in this area
is [Ovum90].

The bottom line is that there are a number of products which are capable of analyzing existing
code (and sometimes data), and presenting it to the user in a more attractive form than that provided

by a simple text editor. There is virtually no mention of automatic regeneration of programs.

5.2. Tools in Research Labs. A number of research centers have allocated resources
to the software maintenance crisis. It has been realized that the most time-consuming aspect of
maintenance is program understanding. Therefore, any system which can automate this process will
greatly increase productivity.

Ourston [Ourston89] looked at a number of research projects which addressed this problem.
Program recognition is a form of program analysis that identifies the purpose of a program. It is
necessary for software maintenance, where programmers must modify code which is unfamiliar to
them, and which has possibly not been developed using acceptable software engineering techniques.

The Program Recognizer [Wills92] uses a library of clichés to identify fragments and data
structures which appear in the code. It is possible that there will be gaps in the understanding of
the program, but this is acceptable as long as individual clichés can still be recognized. The order
or separation of statements in the input program will not affect recognition. Program Recognizer
requires that all pertinent clichés exist in the database before the recognition process begins.

Talus [Brotsky84] was developed to provide automatic program debugging in support of in-
telligent tutoring. It reads in and attempts to cerrect errors in LISP programs, by comparing them
with correct versions of the program.

Proust {Johnson835] is part of an intelligent tutoring system for novice programming students.
It tries to debug Pascal programs by identifying programmer intentions. Proust uses a top-down
template matching approach which minimizes the search space required for successful program iden-
tification. By operating with goals at each step, it can synthesize solutions which do not appear in
the database. Proust requires that the problem to solve be specified.

Rigi [Muller91} was initially developed as a tool for programming-in-the-large, but it has

been expanded and is now also a maintenance and re-engineering tool. The first step is to parse

17

2.5 STATE OF THE PRACTICE

the target program and store its artifacts in a repository. This is done by extracting of relevant
system components and dependencies out of the source code. The second step, which requires
interactive assistance from the programmer, is the generation of hierarchies of subsystems, based on
the resource-flow graphs of the source code. The third step is the construct of interfaces among the
subsystems. The final step is the evaluation of the subsystem structures using established software
engineering principles as a guide. Reverse engineering can be used to produce documentation which
is more consistent and accurate.

Design recovery [Biggerstaff94] is needed primarily for maintenance, enhancement and reuse.
A domain model is used to store expertise about the program in question. The goal is to develop
structures which will aid in understanding a program. Expectations drawn from previous experience
serve to guide the understanding process. The first step is to identify the most important modules
and data structures. A conceptual abstraction is associated with each module, and a mapping is
maintained to its corresponding code. Conceptual abstractions are used to hide the detail inherit in
a complex module, allowing one to focus on the code in terms of levels of abstraction. The software
engineer has knowledge of numerous conceptual abstractions and seeks instances of these in the code.
The informal clues provided by variable and function names is vital to program comprehension.
Programming languages do not contain the constructs necessary to express information about the
informal conceptual abstractions behind the code. A system called Desire has been implemented
and has been used to extract design knowledge to support translating C to C++. The importance
of domain knowledge, as well as the intuition of an experienced programmer, is stressed in this
approach.

Ward, Calliss and Munro [Ward89)] have developed “The Maintainer’s Assistant” which pro-
vides a structured framework wherein maintenance can be approached. The largest part of the
maintenance task is the understanding of the code; working out what the program is supposed to
do, and how sections of code affect one another. Understanding a program involves several aspects:

¢ understanding the specifications of its modules,

¢ understanding the data flow,

¢ understanding the control flow,

e determining the scope of the variables, and

determining the effects of a proposed modification.

A number of different kinds of transformations are used:
e local and global restructuring of code,
e expression in a higher-level notation, and

e restructuring of data structures.

18

2.5 STATE OF THE PRACTICE

The system which has been developed is an interactive one, as not enough information is present in
the code itself to make assumptions about the function of the program and its various parts. When
viewing the program through the browser, the user may specify that a section of code should be
reduced to its specification, and vice versa. The system consists of a program transformer which
uses a knowledge base to convert a section of code to equivalent but more structured code, and a
structure editor, which is a syntax-based editor through which all changes must be made.

Canfora, and Cimitile [Canfora94|, [Canfora92|, [Cimitile90] present efficient algorithms for
analyzing the control and data flow in order to identify binding conditions on program variable’s.
Parts of the system that are bound by a set of conditions are isolated. This approach combines
formal representation methods (e.g. Control Flow Graph, Program Dependency Graph) with first
order logic to provide horizontal and vertical slices of a Program. This approach is used to identify
components that may implement a particular function or lie on the same dynamic path.

Baker [Baker94|, [Baker95] represents source code a stream of strings. The approach uses
parameterized Pattern Matching techniques based on a variation of a variation of the Boyer-Moore
algorithm to identify duplication within a string. A prototype system called dup has been imple-
mented and is currently used in large legacy systems. The strength of this approach is the efficient
matching and the overall scalability of the algorithm used. The drawback is that it does not relate
to any program feature such as the control and data flow.

Paul [Paul94| proposes a system (SCRUPLE) in which regular-expressions are used to locate
programming patterns in a large software system. Pattern matching is performed by testing if a code
fragment is accepted by the automaton that is constructed by a regular-expression provided by the
user, as a query. The advantage of this approach is that it is string based, may be easily applied to
a variety of programming languages, and has been demonstrated to be fast. The limitations for this
approach are that it allows for exact matching only and does not provide any means for modeling
abstractions or allow for hierarchical recognition.

Johnson [Johnson94a], [Johnson94b] uses a similar text based approach where fingerprints
in source files are computed using a hashing mechanism. Fingerprints are compared to identify an
overall similarity between two texts. The advantage of this approach is that it is very fast, scalable
and efficient. Its drawback is that it allows only for exact matching, and it may produce noise in the
recognition process by matching text irrelevant to the source code (e.g headers, include files etc.)

Jankowitz [Jankowitz88)], and McCabe [McCabe90] use statistical measurements to com-
pute a fingerprint of a software component. This is close to our approach using the metrics-based
matching. The significant difference of our approach form these methods is that we compute all

measurements compositionally at the AST nodes and we provide a methodology of segmenting and

19

2.5 STATE OF THE PRACTICE

delineating the source code in order to achieve matching at a granularity lower than a a Function

or a Procedure.

20

CHAPTER 3

Program Features For Design Recovery

1. Introduction

In order to perform design recovery we have first to represent source code in a higher level
of abstraction. The program representation scheme must allow for the calculation of a number of
feature vectors and be able to to do so for every statement, block or function of the source code.

For our program representation we use an object-oriented annotated abstract syntax tree (AST).
We have chosen this program representation scheme because:

e it does not require any overhead to be computed as it is a direct product of the parsing

process and,

e it can be easily analyzed to compute several data and control flow program properties

Nodes of the AST are represented as objects in a LISP-based development environment!. A
sample AST for a C code fragment in Fig.3.1, where the AST, its root in its Object representation,
and the corresponding source code are illustrated.

Creating the annotated AST is a three-step process. First, a grammar and an object (domain)
model must be designed for the programming language of the subject system. The tool vendor has
parsers available for such common languages as C and COBOL. Parsers for other languages may
be easily constructed or obtained through the user community. The domain model defines object-
oriented hierarchies for the AST nodes in which, for example, an If-Statement and a While-Statement
are defined to be subclasses of the Statement class.

The second step is to use the parser on the subject system to construct the AST representation
of the source code. Some tree annotations, such as linkage information and the call graph are

created automatically by the parser. Other tree annotations are computed as part of the software

I We are using as our development environment a commercial tool called REFINE (a trademark of Reasoning Systems
Corp.).

3.1 INTRODUCTION

File Psckages History Options Windows

Direct Attributes:
Claielse-cart uroef (rea
cls:if-codition (clstireqmlity XD
cls:than-cart <clzblock 2O
Inherited Attributes:
re:allbirdings 1]
reclas QS: IF-STRTEENT
[CPo_] | | re:elesent-of clizif-statesent - & 3ot
cls::farout 1.0
T
E cls::fowal-pormeisrs a
cls:fuctions-calllng-this-constr 1]
ri:icon-for-tree-roe (r1iicon K30
E cls: it if art-usad (¢cls:idertif iar—ref FZS0,
[Rasnape] ccis:ioemif Lamref £XID,
<cls:idant {flar—ref 2D, .|
-m re:ling-tresks 2
Dty scai] | | re:line-no-in-nrface-suntax %54
cls::locals 1}
= cls: accate 2.0
mm cls: rusber—of -resd-inouts 0.0
owwt-so <cledlook KD
BB re:parent-link ‘clsblock-gtatasents - 8 reio)
EB Cls: 2pointar-perweters-Lodsted- inconstr {}
.D re:nurface-nnta 1C1F (@an NQRITY |
RS
re:arface-antacstart iIng—co luseno 12
Eg cisiiver Lbles—vet - icons - 0
ull [
9{I"|

/.-'-""- =
—"“_ﬂ.n.m,.mmwm, =
1f (chack_test (and_f lslc)earession, pattern, pettarn, -t ——
elment ¢+ 1,0) ' ((vaid #}0)) ! ~
(retum(9): } l i

FIGURE 3.1. AST nodes are represented as objects in a local repository. Arcs of the AST
are represented as mappings between objects.

analysis process (i.e. metrics). Once the AST is created, further steps operate in an essentially
language-independent fashion.

The final step is to add additional annotations into the tree for information on data types,
data flow (data flow graphs), the results of external analysis, and links to informal information. An
important aspect proposed in this thesis is that we calculate all these annotations compositionally
from the leaves to the root of the AST, that is from Ezpressions to Statements to Blocks, and finally
to Functions.

This chapter discusses the nature of annotations that we added to the AST in order to facilitate

pattern matching and perform plan localization.

22

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

2. Program Feature Vectors for Clone Detection

In this section we describe the features used for classifying code fragments, and discuss the
way that have been compositionally computed for all Ezpressions, Statements, Blocks, and finally
Functions in the system.

The program features were selected based on their contribution to the data and control flow of
the system. We aimed for the features to exhibit low correlation (based on the Spearman-Pierson
correlation test) so as to be sensitive to different control and data flow properties and each one to
contribute an independent program characteristic. The features selected for our analyses include:

(i) The number of functions called (Fanout);

(ii) Global and local variables 2 used and updated;
(iii) Parameters passed by reference used and updated;
(iv) Parameters passed by value used and updated;
(v) Input/Output operations;
(vi) External files used;
(vii) McCabe cyclomatic complexity;
(viii) Albrecht’s function point metric;
(ix) Henry-Kafura's information flow quality metric
For example, consider the following code fragment from a proprietary PL/1-like language.
MAIN: PROCEDURE(OPTION) ;
DCL OPTION FIXED(31);
IF (OPTION>0) THEN
CALL SHOW_MENU{OPTION);
ELSE
CALL SHOW_ERROR("Invalid option number");
END MAIN;

The corresponding AST representation for the IF statement is shown in Fig. 3.2. The tree is
annotated with the Fanout attribute which has been determined during an analysis phase following
the initial parse.

The annotation has been computed in a compositional way. The final Fanout value for the IF
statement has been calculated in terms of the Fanout of its THEN and ELSE parts, which in turn
obtained their values by composing the values from the nodes below them. Compositionality is a
very important aspect of this approach as it allows to classification of code entities irrespective of

their class. In such a way a WHILE statement can be compared with a Block statement and found

2Variables are also referred in the text as Identifiers

23

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

BTYATEMENT
I
ranout

condition elea-clauss

PREDICATE STATEMENT
aT cAaLL

argumentt argument caneeid wloﬂiﬁ

IOENTIFIE R LITERAL IDENTIFIRR IDENTIFIGR

RAEFERENCE INTROERA ANEFEAENCE ARFEAGNCE
=

| | RS

$- Nanve Ineger-velue denned-name defined. name

y
OPTION o SHOW__ OPTION SHOW_ “Invalict
MENU ERAOR option. . ."
~ Legend

- Link from parent
annbuts name 1o child via =
named artribute.

tanous - Fanout attribute
= containing Integer

S

FIGURE 3.2. The AST for an [F statement with Fanout attributes.

similar if their corresponding feature vectors match. A typical scenario is when a cut-and-paste
operation takes this While statement and inserts it in a Block in another part of the system. In the

following sections, the features used for the proposed pattern matching techniques are presented in
detail.
2.1. Global Variables.

e Description : GLOBALS(a_constr) is the set of global variables used or updated within the

construct a_consir.

A global variable for a Statement or Expression or Function is a variable which is not
declared?® in the Statement, the Expression or the Function.

o Cases:
(i) If a_constr is a FUNCTION then

GLOBALS(a_constr) = { GLOBALS(Body)

where Body is the body of the function a.constr

3A variable declaration is a point where the variable is formally declared. A variable definition is a point where a
variable is stored fupdated.

24

(ii)

(iii)

(iv)

(vi)

(vii)

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

If a_constr is a sequence of statements S; ... S, then

GLOBALS (aconstr) = { n,GLOBALS(S;)
If a_constr is an IF statement then

GLOBALS(Cond)n
GLOBALS(aconstr) = ¢ GLOBALS(ThenPart)N
GLOBALS(ElsePart)

where Cond, ThenPart, ElsePart are the condition the Then part and the Else part
of the I[F statement a-constr respectively

If a_constr is a WHILE statement then

GLOBALS(Cond)n

GLOBALS(a_constr) =
GLOBALS(Body)

where Cond, Body are the condition and the Body of the WHILE statement a_constr
respectively

If a_constr is a DO statement then

GLOBALS(Cond)n

GLOBALS(a_constr) =
GLOBALS(Body)

where Cond, Body are the condition and the Body of the DO statement a_consir
respectively

If a_constr is a FOR statement then

[GLOBALS(Init)n
GLOBALS(Incr)n
GLOBALS(Test)n
GLOBALS(Body)

GLOBALS(a.constr) =

where Init, Incr, Test, Body are the Initialize expression the Increment expression,
the Test expression and the Body of the FOR statement a_constr respectively

If a_constr is a GOTO statement then
GLOBALS(a_constr) = { GLOBALS(Label)

where Label is the Label expression of the GOTO statement a_constr

25

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(viii} If a_constr is a SWITCH statement then

GLOBALS(Cond)n

GLOBALS(a.constr) =
GLOBALS(Body)

where Cond, Body are the Switch Test expression and Body of the SWITCH statement

a_constr respectively

(ix) If a_constr is a RETURN statement then
GLOBALS(a_—constr) = { GLOBALS(return_ezpr)

where return_ezpr is the return expression of the RETURN statement a_constr

(x) If a_constr is a LABELED statement then
GLOBALS(a_constr) = { GLOBALS(Body)
where Body is the Body of the LABELED statement a_constr

(xi) If a_constr is an EXPRESSION Statement (e.g. an assignment) then

GLOBALS(a_constr) = { the number of individual variables used or updated

within a_constr and not declared within a_constr

(xii) If a_constr is an EXPRESSION then

GLOBALS(a_constr) = { the number of individual variables used or updated

within a_constr and not declared within a_constr

2.2. Global Variables Updated.
e Description : GLOBALS.UPDATED(a.constr) is equal to the set of global variables up-
dated within the construct a_constr.

e Cases :

(i) If a.constr is a FUNCTION then
GLOBALS UPDATED(aconstr) = { GLOBALS.UPDATED(Body)
where Body is the body of the function a_constr

26

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(ii) If a_constr is a sequence of statements S; ... S, then

GLOBALS UPDATED(a.constr) = { NL,GLOBALS UPDATED(S;)
(iii) If a_constr is an IF statement then

GLOBALS UPDATED(Cond)n
GLOBALS UPDATED(aconstr) = ¢ GLOBALS.UPDATED(ThenPart)N
GLOBALS.UPDATED(ElsePart)

where Cond, ThenPart, ElsePart are the condition the Then part and the Else part
of the IF statement a-constr respectively

(iv) If a_constr is a WHILE statement then

GLOBALS.UPDATED(Cond)N

GLOBALS UPDATED(a_constr) =
GLOBALS.UPD AT ED(Body)

where Cond, Body are the condition and the Body of the WHILE statement a_constr

respectively

(v) If a_constr is a DO statement then

GLOBALS UPDATED(a—constr) =

GLOBALS.UPDATED(Cond)n
GLOBALS.UPDATED{Body)

where Cond, Body are the condition and the Body of the DQ statement a_constr
respectively

(vi) If a_constr is a FOR statement then

GLOBALS.UPDATED(Init)n
GLOBALS.UPDATED(Incr)N
GLOBALS.UPDATED(Test)N
GLOBALS.UPDATED(Body)

GLOBALS UPDATED(a_constr) =

where Init, Incr, Test, Body are the Initialize expression the Increment expression,
the Test expression and the Body of the FOR statement a.constr respectively

(vii) If a_constr is a GOTO statement then
GLOBALS.UPDATED(aconstr) = { GLOBALS.UPDATED(Label)

where Label is the Label expression of the GOTO statement a_constr

27

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(viii) If a_constr is a SWITCH statement then

GLOBALS.UPDATED(Cond)N

GLOBALS UPDATED(aconstr) =
GLOBALS UPDATED(Body)

where Cond, Body are the Switch Test expression and Body of the SWITCH statement
a_constr respectively

(ix) If a_constr is a RETURN statement then

GLOBALS UPDATED(aconstr) = { GLOBALS.UPDATED(return_expr)

where return_ezpr is the return expression of the RETURN statement a_constr

(x) If a_constr is a LABELED statement then

GLOBALS.UPDATED (a_constr) = { GLOBALS.UPDATED(Body)

where Body is the Body of the LABELED statement a_constr
(xi) If a_constr is an EXPRESSION STATEMENT (e.g. an assignment) then

GLOBALS.UPDATED(a.constr) = { the set of individual variables updated
within a_constr and
not declared within a_constr

(xii) If a_constr is an EXPRESSION then

GLOBALS UPDATED(aconstr) = { the set of individual variables updated
within a_-constr and

not declared within a_constr?

2.3. Input / Output.
e Description : READ._STATS(a_constr) is equal to the set of input statements in the con-
struct a_constr. In the case of C these are: sscanf, scanf, fscanf, getc, getchar, gets, fgetc,

and fgets.

e Cases :

4The updates are based on Assignments, Post/Pre Incrementation, and Post/Pre Decrementation Statements

28

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(i) If a_constr is a FUNCTION then
READ_ST AT S(aconstr) = { READ_ST ATS(Body)

where Body is the body of the function a_constr

(ii) If a_constr is a sequence of statements S| ... S, then
READ_STATS(aconstr) = {UL,READ _STATS(S;)

(iii) If a_constr is a WHILE statement then

READ_STATS(Cond)u

READ_STATS(a—constr) =
READ _ST AT S(Body)

where Cond, Body are the condition and the Body of the WHILE statement a_consir
respectively

(iv) If a_constr is a DO statement then

READ_STATS(Cond)u

READ _STATS(aconstr) =
READ ST AT S(Body)

where Cond, Body are the condition and the Body of the DO statement a_constr
respectively

(v) If a_constr is a FOR statement then

READ_ST AT S(Init)u
READ_STATS(Incr)u
READ_STATS(Test)U
READ_ST AT S(Body)

READ_ST AT S{a_constr) =

where Init, Incr, Test, Body are the Initialize expression the Increment expression,
the Test expression and the Body of the FOR statement a.constr respectively

(vi) If a_constr is a GOTO statement then
READ _STATS(a_constr) = { READ_STATS(Label)

where

Label is the Label expression of the GOTO statement a_constr

29

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(vii) If a_constr is a SWITCH statement then

READ_STATS(Cond)U

READ_STATS(aconstr) =
READ_ST AT S(Body)

where Cond, Body are the Switch Test expression and Body of the SWITCH statement
a_constr respectively

(viii) If a_constr is a RETURN statement then
READ_STATS(a-constr) = { READ_STATS(return_cxpr)

where return_ezpr is the return expression of the RETURN statement a_constr

(ix) If a_constr is a LABELED statement then
READ _ST AT S(aconstr) = { READ _ST AT'S(Body)
where Body is the Body of the LABELED statement a_constr

(x) If a_constr is an EXPRESSION STATEMENT (e.g. an assignment) then

READ _STATS(a_-constr) = the set of Input related function calls in the construct
(xi) If a_constr is an EXPRESSION then

READ_STATS(a-constr) = the set of Input related function calls in the construct

2.4. Files Opened.
e Description : FILES.OPENED(a.constr) is equal to the number of files opened in the con-
struct a_constr. In the of programs written in C the number of files opened is equal to the

number of fopen function calls

e Cases :

(i) If a_constr is a FUNCTION then
FILES OPEN ED(a_constr) = { FILES OPEN ED(Body)
where Body is the body of the function a_constr

30

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(ii) If a_constr is a sequence of statements S| ... S, then

FILES OPENED(a_constr) = {Z FILES OPENED(S;)

=1

(iii) If a_constr is a WHILE statement then

(iv)

v)

(vi)

(vii)

FILES_.OPENED(Cond)+

FILES OPENED(a_constr) =
FILES OPEN ED(Body)

where Cond, Body are the condition and the Body of the WHILE statement a_constr
respectively

If a_constr is a DO statement then

FILES OPENED(Cond)+

FILES OPENED(a.constr) =
FILES OPEN FED(Body)

where Cond, Body are the condition and the Body of the DO statement a_constr
respectively

If a_constr is a FOR statement then

FILES OPENED(Init)+
FILES OPENED(Incr)+
FILES OPENED(Test)+
FILES OPENED(Body)

FILES.OPENED(a.constr) =

where Init, Incr, Test, Body are the Initialize expression, the Increment expression,
the Test expression and the Body of the FOR statement a-constr respectively

If a_constr is a GOTO statement then
FILES OPENED(a_constr) = { FILES.OPENED(Label)

where Label is the Label expression of the GOTO statement a_constr

If a_constr is a SWITCH statement then

FILES OPENED(Cond)+

FILES OPENED(a.constr) =
FILES_ OPEN ED(Body)

where Cond, Body are the Switch Test expression and Body of the SWITCH statement

a_constr respectively

31

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(viii) If a_constr is a RETURN statement then

FILES OPENED(a-constr) = { FILES.OPENED(return_ezpr)

where return.ezpr is the return expression of the RETURN statement a_constr

(ix) If a_constr is a LABELED statement then

FILES OPENED(a_constr) = { FILES OPEN ED(Body)

where Body is the Body of the LABELED statement a_constr
(x) If a_constr is an EXPRESSION STATEMENT (e.g. an assignment) then

FILES_.OPENED(a.constr) = the number of fopen function calls in the construct
(xi) If a_constr is an EXPRESSION then

FILES_OPENED(a.constr) = the number of fopen function calls in the construct

2.5. Formal Parameters.
e Description : FORMAL_PARMS(a_constr) is equal to the set of formal parameters of a_constr
(applies when a_constr is a Function).
e Cases :
(i) If a_constr is a Function then
FORM AL _PARM S(a_constr) = the formal parameter list of a_constr.
(ii) If a_constr is any other construct then FORMAL_PARMS(aconstr} = 0

2.6. Parameters by Reference Updated.

o Description : PARMS_BY _REF_UPDATED(a_constr) is equal to the set of pointer variables
declared in the formal parameter list of the containing function and are updated within the
construct a_constr

e Cases :

(i) If a_constr is a FUNCTION then

PARMS_BY _REF UPDATED(aconstr) = { PARMS _BY _REF .UPDATED(Body)

where Bady is the body of the function a_constr

32

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(ii) If a_constr is a sequence of statements S, ... S, then
PARMS BY REF UPDATED(aconstr) = {U%,PARMS _BY REF UPDATED(S;)

(iii) If a_constr is a WHILE statement then

PARMS_BY REF_.UPDATED(Cond)U

PARMS_BY _REF UPDATED(aconstr) =
PARMS_BY REF _UPDATED(Body)

where Cond, Body are the condition and the Body of the WHILE statement a_constr
respectively

(iv) If a_constr is a DO statement then

PARMS_BY REF UPDATED(Cond)U

PARMS BY _REF_ UPDATED(aconstr) =
PARMS_BY REF UPDATED(Body)

where Cond, Body are the condition and the Body of the DO statement a_constr
respectively

(v} If a.constr is a FOR statement then

PARMS_BY REF _UPDATED(Init)u
PARMS_BY _REF_UPDATED(Incr)u
PARMS_BY _REF UPDATED(Test)U
PARMS_BY _REF _.UPD AT ED(Body)

PARMS_BY REF UPDATED(a_constr) =

where Init, Incr, Test, Body are the Initialize expression the Increment expression,
the Test expression and the Body of the FOR statement a_constr respectively

(vi) If a_constr is a GOTO statement then
PARMS BY REF UPDATED(a.constr) = { PARMS _BY _REF UPDATED(Label)

where Label is the Label expression of the GOTO statement a_constr

(vii) If a_constr is a SWITCH statement then

PARMS BY REF.UPDATED(Cond)U

PARMS BY REF UPDATED(a—constr) =
PARMS_BY REF . UPDATED(Body)

where Cond, Body are the Switch Test expression and Body of the SWITCH statement

a_constr respectively

33

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(viii) If a_constr is a RETURN statement then

PARMS BY REF.UPDATED(aconstr) = { PARMS BY _REF.UPDATED(return_ecpr)

where return_ezpr is the return expression of the RETURN statement a_constr

(ix) If a_constr is a LABELED statement then

PARMS BY REF UPDATED(a-constr) = { PARMS BY _REF .UPDATED(Body)

where Body is the Body of the LABELED statement a_constr
(x) If a_constr is an EXPRESSION STATEMENT (e.g. an assignment) then

PARMS BY REF UPDATED(a.constr) = set of pointer variables declared in
the formal parameter list of the
containing function and are updated

within a_constr

(xi) If a_constr is an EXPRESSION then

PARMS BY REF UPDATED(a_—constr) = set of pointer variables declared in
the formal parameter list of the
containing function and are updated

within a_constr

2.7. Identifiers Used.

o Description : IDS_USED(a_constr) is the set of variables used in the construct a_constr

o Cases :

(i) If a_constr is a FUNCTION then
IDS USED(aconstr) = { IDS.USED(Body)

where Body is the body of the function a_constr

(ii) If a_constr is a sequence of statements S; ... S, then

IDS USED(a-constr) = (U, IDS.USED(S;)

34

(ii1)

(iv)

(vi)

(vii)

(viii)

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

If a_constr is a WHILE statement then

IDS USED(Cond)U

IDS USED(a_constr) =
IDS USED(Body)

where Cond, Body are the condition and the Body of the WHILE statement a_constr
respectively

If a_constr is a DO statement then

IDS USED(Cond)u

IDS.USED(aconstr) =
IDS_USED(Body)

where Cond, Body are the condition and the Body of the DO statement a_constr
respectively

If a_constr is a FOR statement then

IDS USED(Init)u
IDS USED(Incr)u
IDS . USED(Test)u
IDS_ USED(Body)

IDS USED(aconstr) =

where Init, Incr, Test, Body are the Initialize expression the Increment expression,
the Test expression and the Body of the FOR statement a_constr respectively

If a_constr is a GOTO statement then
IDS USED(a_constr) = { IDS_USED(Label)

where Label is the Label expression of the GOTO statement a_constr

If a_constr is a SWITCH statement then

IDS.USED(Cond)u

IDS_ USED(a_constr) =
IDS USED(Body)

where Cond, Body are the Switch Test expression and Body of the SWITCH statement

a_constr respectively

If a_constr is a RETURN statement then

IDS USED(a-constr) = { IDS USED(return_expr)

where return_ezpris the return expression of the RETURN statement a_constr

35

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION
(ix) If a_constr is a LABELED statement then

IDS_.USED(aconstr) = { IDS_USED(Body)

where Body is the Body of the LABELED statement a_constr
(x) If a_constr is an EXPRESSION STATEMENT (e.g. an assignment) then

IDS USED(a.constr) = the set of variables used in the construct a_constr
(xi}) If a_constr is an EXPRESSION then

IDS.USED(a—constr) = the set of variables used in the construct a_constr

2.8. Identifiers Updated.
e Description : IDS_-UPDATED(a-constr) is the set of variables updated in the construct
a-constr

e Cases :

(i) If a_constr is a FUNCTION then

IDS_.UPDATED(a_constr) = { IDS.UPDATED(Body)

where Body is the body of the function a_constr

(ii) If a_constr is a sequence of statements S, ... S, then
IDS UPDATED(aconstr) = (UL, IDS UPDATED(S;)

(iii) If a_constr is a WHILE statement then

IDS.UPDATED(Cond)uU

IDS_.UPDATED(aconstr) =
IDS UPDATED(Body)

where Cond, Body are the condition and the Body of the WHILE statement a_constr
respectively

(iv) If a_constr is a DO statement then

IDS.UPDATED(Cond)u

IDS_UPDATED(a_constr) =
IDS_.UPDATED(Body)

where Cond, Body are the condition and the Body of the DO statement a_constr

respectively

36

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(v) If a_constr is a FOR statement then

IDS_UPDATED(Init)u
IDS_UPDATED(Incr)u
IDS_UPDATED(Test)U
IDS.UPDATED(Body)

IDS UPDATED(a_constr) =

where Init, Incr, Test, Body are the Initialize expression the Increment expression,
the Test expression and the Body of the FOR statement a.constr respectively

(vi) If a_constr is a GOTO statement then
IDS UPDATED(a.constr) = { IDS UPDATED(Label)

where Label is the Label expression of the GOTO statement a_constr

(vii) If a_constr is a SWITCH statement then

IDS_UPDATED(Cond)U

IDSUPDATED(a_constr) =
IDS.UPDATED(Body)

where Cond, Body are the Switch Test expression and Body of the SWITCH statement

a_constr respectively

(viii) If a_constr is a RETURN statement then

IDS.UPDATED(aconstr) = { [DS.UPDATED(return_expr)

where return_ezpr is the return expression of the RETURN statement a_constr

(ix) If a_constr is a LABELED statement then
IDSUPDATED(a.constr) = { IDS UPDATED(Body)

where Body is the Body of the LABELED statement a.constr
(x) If a_constr is an EXPRESSION STATEMENT (e.g. an assignment) then

IDS UPDATED(aconstr) = the set of variables updated in the construct
(xi) If a_constr is an EXPRESSION then

IDS UPDATED(a-constr) = the set of variables updated in the construct

2.9. Function Calls.

37

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

e Description : FUNCTION_CALLS_TO(a_constr) is equal to the set of individual of Function
Calls to a_constr (applies only when a_constr is a Function)
e Cases :

(i) If a_constr is a Function then

FUNCTION_.CALLS TO(a-constr) = set of individual function calls to a_constr

(ii) If a_constr is any other construct then

FUNCTION_.CALLS TO(aconstry= @

2.10. S-Complexity.
e Description : S_COMPLEXITY (a_constr) is equal to |FAN _OUT(a.constr)|®> where

|FAN_OUT(a_constr)| is the number of individual function calls in the construct (a_constr)

2.11. D-Complexity.

e Description :

D COMPLEXITY (a.constr) = |GLOBALS(aconstr)|/(|[F AN _OUT (a—constr)| + 1)

where |GLOBALS(a_constr)| is the number of individual declarations of global variables
used or updated within the construct a_constr. A global variable for a Statement or Expres-
sion or Function is a variable which is not declared in the Statement, the Expression or the

Function.

2.12. McCabe Complexity. ¥MCCABE

e Description : MCCABE(a_constr) is equal to e —n + 2
where ¢ is the number of edges in the control flow graph of the construct a-constr and n is
the number of nodes in the same graph.
Alternatively McCabe metric can be calculated as :

MCCABE(a-constr) = 1 + d where d is the number of control decision predicates in the
construct a_constr

[} ases :

38

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

(i) If a_constr is a simple statement then
MCCABE(aconstr) = { 1+d

where d is the number of control decision predicates in the construct a_constr

(ii) If a_constr is a sequence of statements S;,..S; then
MCCABE(a-constr) = { % MCCABE(S,) -k +1
(iii) If a_constr is a composite statement of k statements then

MCCABE(S)+

MCCABE(a.constr) = .
Y i MCCABE(S;) -k

where S is the statement a_constr viewed as a simple statement

(iv) If a_constr is an Expression then

MCCABE(a.constr) =1

2.13. Albrecht Metric.

e Description :

(p1 * [GLOBALS(a_constr)|+

p2 * (|(GLOBALS.UPDAT ED(a_constr)|+
ALBRECHT (aconstr) = 4 |PARMS_BY _REF .UPD AT ED(aconstr)|)+
p3 * {READ _ST AT S(a-constr)|+

| Psx FILES OPENED(a_constr)

where

— |GLOBALS(a_constr)| is the is the number of individual declarations of global vari-

ables used or updated within the construct a_constr.

— |GLOBALS_UPDATED(aconstr)| is the number of individual declarations of global

variables updated within the construct a_constr.

— |PARMS.BY REF UPDATED(aconstr)| is the number of pointer type variables

in the formal parameter list of the Function in which a_constr is contained and which

39

3.2 PROGRAM FEATURE VECTORS FOR CLONE DETECTION

variables are updated within the construct a_constr 5.

— |READ _ST AT S(a-constr)| is the number of input statements in the construct a_constr.
These statements include the C statements : sscanf, scanf, fscanf, getc, getchar, gets,

fgetc, and fgets.

~ FILES_.OPENED(a_coastr) is the number of fopen statements in the construct a.constr.

— The parameters p; have integer values. The current implementation uses the following

values[Adamov87] :

Il
{38

141

S ¥
I
~N = w

2
il

2.14. Kafura Metric.

e Description :
K AFURA(aconstr) = { (KAFURA_IN(a.constr) » K AFURA.OUT (a_constr))?

where
(i) KAFURA IN(a_constr) is the sum of
(a) the number of formal parameters (|FORM AL_PARM S{a_constr)|)
(b) the number of variables (|IDS_USED(a_constr)|) used in the construct a_constr,
(c) the number of Function Calls to a_constr (|(FUNCTION .CALLS TO(a_-constr)|)
(ii) KAFURA_OUT(a_constr) is the sum of
(a) number of Functions called by a_constr (that is the same as | F AN _OUT (a_constr)|),
(b) the number of individual declarations of global variables updated within the
construct a_constr (that is |GLOBALS .UPDATED(aconstr)|),
(c) the number of pointer type variables in the formal parameter list of the func-
tion in which a_constr is contained and which variables are updated within the

construct a_constr, that is |PARMS BY _REF_.UPDATED(aconstr)|.

5Updates are calculated based on Assignment, Pre/Post Incrementation, and Pre/Post Decrementation statements

40

3.3 PATTERN MATCHING

3. Pattern Matching

In the following two chapters we discuss the proposed pattern-matching algorithms applied to
the problem of clone detection, and plan recognition. Determining whether two arbitrary program
functions have identical behavior is known to be undecidable in the general case. Our approach to
clone detection exploits the observation that clone instances, by their nature, should have a high
degree of structural similarity and data flow similarity. We look for identifiable characteristics or
features that can be used as a signature to categorize arbitrary pieces of code.

The work presented here uses feature vectors to establish similarity measures. Features exam-
ined include metric values and specific data- and control-flow properties. In this thesis, we present
the following three types of pattern matching techniques for code cloning detection and plan local-

ization:

(i) metric-value similarity analysis,
(ii) dynamic programming techniques for comparing two code fragments at a statement-by-
statement basis and,
(iii) stochastic matching based on Dynamic Programming and Markov Models that represent

formulations of abstract descriptions of programming plans

Metric-value similarity analysis is based on the assumption that two code fragments C; and
C> have metric values M (C;) and M{C>) for some source code metric M. If the two fragments are
similar under the set of features measured by M, then the values of M (C,) and M(C:) should be

proximate.

Dynamic Programming based similarity analysis performs comparisons of program features at
a statement-by-statement basis. A Dynamic Programming function allows for calculating the best
fit between two sequences of program statements. The best fit is calculated by comparing program
features instead of just text. Within the Dynamic Programming framework we have experimented
with the following program features at per statement level:
(i) Sets and Uses of Variables
(ii) Sets and Uses of Data Types
(iii) Metrics (as discussed in Section.2)
Finally, stochastic matching is based on a pattern language that describes in a high level of
abstraction the structure and the several data flow properties of a code fragment that may represent
a particular algorithmic plan. A matching algorithm is used to localize and match code fragments

that may be generated (matched) by this abstract description.

41

3.3 PATTERN MATCHING

These experiments were conducted within the framework of the Program Understanding project

with [BM Canada, Center for Advanced Studies.

42

CHAPTER 4

Code To Code Matching

1. Metric-Value Similarity Analysis

Metric-value similarity analysis is based on the assumption that if two code fragments have
similar metrics then may have similar structure, data flow and control low characteristics. These
metrics have been chosen so that they represent and classify a number of low correlated program
features that are sensitive to program structure, I/O patterns, as well as data flow and control low
properties.

Within this framework, the calculation of similarity between two code fragments becomes a
matter of comparing features as these are represented by five software metrics.

The Five modified metrics [Adamov87|, [Fenton91], [Buss94| discussed above for which their
components exhibit low correlation (based on the Spearman-Pierson correlation test)[Buss94] were

selected for our analyses. These selected metrics are:

(i) The number of functions called (fanout);

(ii) The ratio of input/output variables to the fanout;
(iii) McCabe cyclomatic complexity;
(iv) Albrecht’s function point metric;

(v) Henry-Kafura's information flow quality metric.

Once the five metrics M, to Ms are computed for every statement, block and function node, the
pattern matching process is very fast and efficient because it is based on the comparison of numeric

values.

We have experimented with two techniques for calculating the similarity of code fragments in

a software system.

4.1 METRIC-VALUE SIMILARITY ANALYSIS

The first one is based on pairwise Euclidean distance comparison of all statements that are
of length more than n lines long, where n is 2 parameter given by the user. We refer to it as
Partitioning Clustering Similarity Analysis because it is based onr a partition clustering algorithm
using Euclidean distances to compute similarity between two entities.

The second technique is more efficient and uses an hierarchical clustering algorithm applied
in sequence to all five metric dimensions, and we refer to it as Hierarchical Clustering Similarity
Analysis.

The issues related to Metric-Value Similarity analysis are:

(i) code delineation criteria and selection of level of granularity for the matching process.
(ii) selection of a comparison function to calculate distances between two metric vectors.
(iit) selection of appropriate threshold values per metric dimension by which two code fragments
can be considered similar. The selection of an appropriate threshold value for a metric
dimension is based on the nature of the metric and the tolerance the user is willing to

accommodate towards partial matching.

These points are discussed in more detail in the following sections.

1.1. Hierarchical Clustering Clone Detection. A hierarchical clustering method is
a procedure for transforming a proximity matrix into a sequence of nested partitions [Jain88].
A proximity matrix is a matrix for which each element in d; ; denotes the distance between two
elements or patterns X;, X;. Hierarchical clustering as well as Partitioning clustering (discussed in
the following section) is applied to ezclusive and intristic classifications. An ezclusive classification
is a partition of a set of objects in which each object belongs exactly to one cluster. An intristic or
unsupervised learning classification is a partition that uses only the proximity matrix to compute it.

In literature [Clifford75], [Shepard 79}, [Sneath73], [Jain88| the primary algorithmic options
for performing clustering are presented. In brief, these are classified as, agglomerative versus divisive,
sertal versus simultaneieous, monothetic versus polythetic.

An agglomerative, hierarchical clustering algorithm starts by placing each object in its own
cluster and continues by merging into larger and larger clusters. A serial algorithm handles the
patterns one by one, while a monothetic algorithm uses the classification features one by one.

We propose an exclusive, intristic, agglomerative, serial, and monothetic algorithm for com-
puting a partition that contains clusters of code fragments that are considered similar within their
cluster.

The technique starts by creating clusters of potential clones for every metric axis M; (i=1 ..

5). Once the clusters for each axis are created, then intersections of clusters in different axes are

44

4.1 METRIC-VALUE SIMILARITY ANALYSIS

calculated forming intermediate results. For example, every cluster in the axis M; contains potential
clones under the criteria implied by this metric. Consequently, every cluster that has been calculated
by intersecting clusters in M; and M contains potential ctones under the criteria implied by both
metrics. The process ends when all metric axes have been considered. The user may specify at the
beginning the order of comparison, and the clustering thresholds for every metric axis. The clone

detection algorithm that is using clustering can be summarized as:

s Step 1. Select all source code statements S from the AST that are more than n lines long.
The parameter n can be changed by the user.

e Step 2. For each metric axis M; (i = 1 .. 5) create clusters C, ; that contain statements
with distance less than a given threshold d; that is selected by the user. Each cluster then
contains potential code clone fragments under the metric criterion M;. Set the current axis
Meurr = M;, where i = 1. Mark M; as used

e Step 3. For each cluster Ceyrr.m in the current metric axis M y,r, intersect with all clusters
C;x in one of the non used metric axis M;, j € {1 .. 5}. The clusters in the resulting
set contain potential code clone fragments under the criterion Mg, and M;, and form
a composite metric axis Meyrro;. Mark M; as used and set the current axis Meyrr =
Meurroj-

o Step 4. If all metric axes have been considered then stop; else go to Step 3.

The comparison granularity is at the statement level and for statements that are of length of
more than = lines long, where n is a parameters provided by the user.

An interesting point of discussion is the threshold selection for each metric axis. The reason this
issue is important is that each software system has unique metric characteristics and the distribution
of values varies from system to system. Within this framework we have experimented with the
following threshold selection options:

(i) fixed threshold values for every metric dimension

(ii) normalized threshold values. Normalized threshold distances are based on the premise that
each metric dimension has its own characteristics and value ranges so that an acceptable
threshold that may be used to differentiate one entity from another in a particular dimension

is given by:

MazValue—MinValue
weight-AverageValue (4'1’1)

where Min-value and Maz-value are the highest value and the lowest value seen in this metric

dimension for the system under analysis respectively and weight is a adjusting parameter.

45

4.1 METRIC-VALUE SIMILARITY ANALYSIS

Metric Value | Frequency | Difference from Previous Value
0.0 108 0.0
1.0 94 1.0
2.0 104 1.0
3.0 68 1.0
33 1 1.0
35 1 2.0
58 1 5.0
67 1 9.0

TABLE 4.1. Step Distance table for S-Complexity taken from the Tcsh system

(iii) step distances. Step distance thresholding is based on the assumption that each metric
dimension has different distribution of values for a subject system. For example the 5-
Complezity metric dimension has a minimum value-step of ! while Information Flow and
Function Point may exhibit a more complex pattern. Under this category we have exper-
imented by using as an increase in threshold the next minimal difference between any two
distances for all the code fragments compared. In Table.4.1 an example of data used for
this type of threshold selection applied to the s-complezity metric dimension and for values
obtained from the tcsh program is shown. In this example, the first minimal difference is

1.0, the next is 2.0, the third is 5.0 and so on.

1.2. Partition Clustering Clone Detection. The pattern matching engine uses the com-
puted Euclidean distance and a clustering threshold value that is used as the clustering criterion.
Euclidean distance is the most common distance discussed in the literature[Hartigan75|. Other
distances include Disguised Euclidean Distances, the Pearson distance [Pearson26), the Catell
distance[Catell49], the Manhattan distance and the Mahalanobis distance [Mahala36]. Each of
these distances aims on addressing the complications that may arise because the variables lie on
different scales or are of different types (i.e. election rates and personal income). In the frame-
work of the software metrics we used, the variables after normalization, are in similar scales and of
compatible types, and thus the application of the Euclidean distance yields the fastest and simplest
solution.

In the literature [Spath80], [Hartigan75|, [Everitt74], a number of clustering algorithms
have been proposed (e.g. the Leader algorithm, the Sorting algorithm, the K-Means algorithm, as
well a number of heuristic algorithms) [Anderberg73}.

46

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

We have chosen a variation of the Leader algorithm suggested by [Lu78| based on the nearest-
neighbor rule. The reason we used this algorithm is it is very fast, requiring only one pass through
the data. The negative aspect of the algorithm is that the partition is not invariant under the
reordering of the cases. This negative aspect can be eliminated if the clustering threshold distance
is set to zero. Then, the partition will be be invariant under the reordering of cases as all elements
of distance zero will eventually be contained in the same cluster.

Here we discuss a variation of this algorithm as is described in [Jain88]. Qur variation marks
the entries of the Similarity Matriz that have already been assigned to clusters. In this way search
for the best distance between a pattern and a cluster is faster as the elements of the Similarity

Matriz that have to be searched are fewer.

Let P = {X,, X3,....X,} be a set of patterns to be partitioned into K clusters.

e Step 1. Set i + 1 and k « 1. Assign pattern X, to cluster C,

e Step 2. Set i «+ i+1. Find nearest neighbour of .X; aiming the patterns already assigned
to clusters. Let d,,, denote the distance from X; to its nearest neighbour. Suppose that the
nearest neighbour is in cluster m.

e Step 3. If d, X t, then assign X; to C,,,. Otherwise set k + k+1 and assign X; to a new
cluster C}.

e Step 4. Delete all distance pairs between X; and all patterns already assigned to clusters.

e Step 5. If every pattern has been assigned to a cluster, stop. Else, go to Step 2.

This partition clustering similarity analysis has been applied to a several medium-sized produc-

tion C programs. Experimental results obtained by applying this technique are shown in Chapter.6.

2. Dynamic Programming Based Similarity Analysis

In addition to the direct metric comparison techniques, we propose dynamic programming
techniques to calculate the best alignment between two code fragments based on insertion, deletion
and substitution operations. Rather than working directly with textual representations, source code
statements, are abstracted into feature sets that classify the given statement. Dynamic Programming
and Tree matching has been proposed in {Aho89] for code generation. In [Aho89] rewrite rules
are used to map tree-structures to assembly instructions. Dynamic Programming plays an importnt
role on matching efficiently the “heads” of the rewrite rules to the tree-structures and thus apply
the required transformation. However, this is different from our matching objectives. In the context
of code cloning detection two ASTs that correspond to cloned code fragments may be quite different

in structure, making thus the use of tree matching techniques very difficult and inefficient.

47

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

Within this framework, we use features to classify a statement and we use these features in the
matching process. The statement features used in this Dynamic Programming approach are:

o Uses of variables, definitions of variables, numerical literals, and strings

¢ Uses and definitions of data types

o The five metrics as discussed previously

Once program features have been computed {at parse time), similarity between two statements
takes the form of computed coefficients between the profiles of these statements. In [Maarek91]
a number of such coefficients is discussed. These include Dice’s coefficient, Jaccard’s coefficient,
and Salton’s coefficient. These constitute standard coefficients in the literature, and within this
framework we have experimented with Dice’s coefficient, and Jaccard’s coefficient. Both gave similar
results.

Within this framework, Dynamic programming (DP) techniques detect the best alignment
between two code fragments based on insertion, deletion and substitution operations. Two statements
match if they update and use the same variables, strings, and numerical literals. Variations in these
features at the simple statement ! level provide a dissimilarity value used to calculate a global
dissimilarity measure of more complex and composite constructs such as composite statements,
begin-end blocks and, functions. The comparison function used to calculate dissimilarity measures
is discussed in detail in the following Section. Heuristics have been incorporated in the matching
process to facilitate variations that may have occurred in cut and paste operations. In particular,
the following heuristics are currently used:

¢ Adjustments between variable names by considering lexicographical distances (i.e. maximum
common subsequences in identifier names)

o Filtering out short and trivial variable names such as i and j which are typically used for
temporary storage of intermediate values, and as loop index values. The user may provide
the minimum length of a variable to be considered in the matching process as a parameter.
Our experiments have been conducted by setting this minimum threshold to three characters
long.

Dynamic programming is a more accurate method than the direct metric comparison based anal-
ysis because the comparison of the feature vector is performed at the statement level [Konto94],
[Konto95]. Code fragments are selected for Dynamic Programming comparison by preselecting po-
tential clone candidates using the direct metric comparison analysis. Within this framework only the

source code statements that have a dissimilarity measure less than a given threshold are considered

L A simple statement is a source code statement that is not composed of other statements

48

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

for DP comparison. This preselection reduces the comparison space and increases efficiency as DP

matching is more computationally expensive that the Metrics-based approach.

2.1. Similarity Distance Calculation. The distance between the two code fragments is
given as a summation of comparison values as well as of insertion and deletion costs corresponding
to insertions and deletions that have to be applied in order to achieve the best alignment between
these two code fragments.

A program feature vector is used for the comparison of two statements. The features are stored
as attribute values in a frame-based structure representing expressions and statements in the AST.

We propose the following Dynamic Programming function with signature:

D : Feature_Vector x Feature_Vector — Real

for computing the cumulative similarity measure D between two code fragments P, M.

Specifically,

A(pnj‘].,P,JM)"}"
D(E1,p,P),E(Q,j -1, M))

- 1.1 2.1.
D(£(1,p,P),E(1, 5, M)) = Min { ;(?g(ll,J,pl,J:));(l) (2.1.1)
P— 1,) vJed

Cp-1,j-1,P, M)+
D(E(Lp- I,P),g(l,] - lsJM))

where,
e M is the model code fragment

e P is the input code fragment to be compared with the model M

£(i, 7, Q) is a program feature vector from position i to position j in code fragment Q

D(V; , V) is the the distance between two feature vectors Vz, V,,

A(i, 7, P, M) is the cost of deleting the jth statement of M, at position i of the fragment P

I(i,7,P, M) the cost of inserting the ith statement of P at position j of the model M and

C(i,j, P, M) is the cost of comparing the ith statement of the code fragment P with the jth
fragment of the model M. The comparison cost is calculated by comparing the corresponding
feature vectors. Currently, we compare ratios of variables updated, used per statement, data

types used or set, and comparisons based on metric values

49

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

Note that insertion, and deletion costs are used by the Dynamic Programming algorithm to
calculate the best fit between two code fragments. An intuitive interpretation of the best fit using
insertions and deletions is “if we insert statement i of the input at position j of the model then the
model and the input have the smallest feature vector difference”

The quality and the accuracy of the comparison cost is based on the program features selected
and the formula used to compare these features. For simplicity in the implementation we have
attached constant real values as insertion and deletion costs, to reflect the tolerance of the user
towards partial matching. The meaning of the insertion and the deletion costs is discussed in the
following paragraphs.

The comparison cost function C(i,j, M, P} is the key factor in producing the final distance
result when DP-based matching is used. There are many program features that can be considered
to characterize a code fragment (indentation, keywords, metrics, uses and definitions of variables).
Within the experimentation of this approach we used the following three different categories of

features

(i) updates and uses of variables as well as literal values within a statement (i.e. a message in
a printf statement):
(a) Feature,, : Statement — {String} denotes the set of variable names used within a
statement,
(b) Feature,, : Statement — {String} denotes the set of variable names updated? within
a statement
(c) Feature,, : Statement — {String} denotes the set of literal values (e.g. numbers,
strings) within a statement (e.g. a printf statement).
(ii) definitions and uses of data types :
(a) Features, : Statement — String denotes the set of data type names used within a
statement,
(b) Feature,, : Statement — String denotes the set of data type names updated within
a statement
The comparison cost of the ith statement in the input P and the jth statement of the model

M for the first two categories is calculated as :

card(InputFeature,m(P;) N Model Feature,,(M;))

1
C(Pi, My) = v ﬂf_‘:l card(InputFeature,(P;) U Model Feature, M;)) (2.12)

2Also referred to in the literature as: defined, or set or, stored

50

(iii)

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

Distances between Function pairs (Clips} Distances betwean Funcion Pawrs (Bash)
2 T T - T —— 10 T r s
—— Distances an defingions and uses of varables
bt 9t - Distances on defirsions and yses of vaables '
___ Distances an data and contral flow messuraments. :
16 ak ___ Distances andeta and cantrol Sow messurements "4
)
" : 7{
i
. |
2 ' 1 st '
H ' H
st " s
- 3
-] a

o
-

@
P
.

-
—r

o

0 1] 20 1]
Function Pars Funcoon Parrs

FIGURE 4.1. Distances between function pairs of possible function clones for the Clips
and Bash programs using DP-based matching. The dashed line represents measurements
obtained using the set-uses criterion. The solid line represents measurements obtained by
the metrics criterion. The values in the X - axis represent the nth function pair that has
been identified as containing potential clones (i.e. the two functions have zero distance)
using the metric comparison similarity analysis.

where v is the size of the feature vector, or in other words how many features are used,
five metric values which are calculated compositionally from the statement level to function

level as discussed in Section.2 :

The comparison cost of the ith statement in the input P and the jth statement of the model

M when the five metrics are used is calculated as :

5
C(Pi, M) = | D (Mi(P:) = Mi(M;))? (2.1.3)

k=1

Within this framework new metrics and features can be used to make the comparison process

more sensitive and accurate.

Moreover, the following points on insertion and deletion costs need to be discussed.

¢ The insertion and deletion costs reflect the tolerance of the user towards partial matching

(i.e. how much noise in terms of insertions and deletions is allowed before the matcher fails).
Higher insertion and deletion costs indicate smaller tolerance, especially if cut-off thresholds

are used (i.e. terminate matching if a certain threshold is exceeded), while smaller values

indicate higher tolerance.

51

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

o The values for insertion and deletion should be higher than the threshold value by which
two statements can be considered "similar”, otherwise an insertion or a deletion could be
chosen instead of a match.

¢ A lower insertion cost than the corresponding deletion cost indicates the preference of the
user to accept a code fragment P that is written by inserting new statements to the model
M. The opposite holds when the deletion cost is lower than the corresponding insertion
cost. A lower deletion cost indicates the preference of the user to accept a code fragment P
that is written by deleting statements from the model M. Insertion and deletion costs are

constant values throughout the comparison process and can be set empirically.

When different comparison criteria are used different distances are obtained. In Fig.4.1 distances
calculated using Dynamic Programming are shown. For example in Fig.4.1, the distances obtained
using the Metrics and the Set-Uses criterion for the Clips program are illustrated.

The dashed line shows distance results when updates and uses of variables are used as features
in the dynamic programming approach, while the solid line shows the distance results obtained when
the five metrics are used as features.

Table 4.2 summarizes statistical data regarding false alarms when Dynamic Programming com-
parison between functions in Clips was applied. The column labeled Distance Range gives the
value range of distances between functions using the Dynamic Programming approach. The column
labeled False Alarms contains the percentage of functions that are not clones but they have been
identified as such. The column labeled Partial Clones contains the percentage of functions which
correspond only to partial cut and paste operations. Finally, the column labeled as Positive Clones
contains the percentage of function clearly identified as cut and paste operations.

As an example consider the following statements M and P:

o M:
Ptr = head;
while(ptr != NULL &% !found)
{ if(ptr->item == searchItem)
found = 1
else

ptr = ptr->next;

o P

while(ptr != NULL &% !found)

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

Distance Range | False Alarms | Partial Clones | Positive Clones

0.0 0.0 % 10.0% 90.0%
0.01 - 0.99 6.0 % 16.0 % 78.0%
1.0-1.49 8.0% 3.0% 89.0%
1.5-1.99 30.0% 37.0 % 33.0%
2.0-299 36.0% 32.0 % 32.0%
3.0-3.99 56.0% 130 % 31.0%
4.0 - 5.99 82.0% 10.0 % 8.0%
6.0-15.0 100.0% 00 % 0.0%

TABLE 4.2. False alarms for the Clips program using DP matching and the Set-Uses criterion.

{ if(ptr->item == searchItem)
{ printf ("ELEMENT FOUND : %s\n", searchItem);
found = 1;
}
else
ptr = ptr->next;

}

The Dynamic Programming matching based on definitions and uses of variables is illustrated
in Fig. 4.2.

In the first grid the two code fragments are initially considered. At position (0, 0) of the first
grid a deletion is considered as it gives the best cumulative distance to this point (assuming there
will be a match at position (0, 1). The comparison of the two composite while statements in the first
grid at position (0, 1), initiates a nested match (second grid). In the second grid the comparison of
the composite if-then~else statements at position (1, 1) initiates a new nested match. In the third
grid, the comparison of the composite then-part of the if-then-else statements initiates the final
fourth nested match. Finally, in the fourth grid at position (0, 0), an insertion has been detected, as
it gives the best cumulative distance to this point (assuming a potential match at position (1, 0)).

When a nested match process finishes it passes its result back to the position from which it was
originally invoked and the matching continues from this poirt on.

The DP technique has been successfully applied to detect code cloning and facilitate partial
matching. The Section below, summarizes another use of code cloning detection when combined

with generic data flow analysis, and namely, system partitioning.

2.2. System Partitioning. A large software system is very difficult to analyse as a whole.

One solution is to decompose the system according to a number of criteria. System Partitioning is,

53

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

M M
| I i I
while()...
ptr = head
P
//ptr I=., if()..
/
/7
/
) /,
M il M A
/7
7/
7
//
_ _______’ _,__‘/"77 ———-—T————I_—
l I
elgse-part
_________________ -
then- / | — -
part 7 r_ 5\\ L
Ve ‘|’ S T
ptr->item == | foundhy 1
} — p
ptr->item == .. thep-part else part P printf().. found =1

FIGURE 4.2. The matching process between two code fragments. Insertions are represented
as horizontal lines, deletions as vertical lines and, matches as diagonal lines.

on its own, a large area of research and it is not the focus of this thesis but, nevertheless, we would

like to devote a small section to ideas that we found to be practical when analysing a large system

[Buss94].

System Partitioning is a necessary step when analysing a large software system, that due to

space or time limitations, can not be treated as a whole. To perform System Partitioning key points

that have to be addressed include:

(i) The Partitioning criteria (i.e. what is a successful partitioning)

54

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

(ii) The Partitioning features (i.e. what are the available program features to perform Partition-
ing on)
(iii} The initial state from which the Partitioning process will start

Partitioning and grouping criteria may include:

o Maximise cluster size and minimise inter-cluster data and control flow (this is an optimisation
problem)
o All instances of a particular data type (i.e. a date field) are included in a partition

o Functionality (e.g. a part of a large application that implements a particular task)

e Customer imposed criteria

Partitioning and grouping features may include:

e Structural Similarity

e Code affected using impact analysis and starting from a set of initial requirements (i.e. a set

of variables)

e Data types fetched or stored

e Access to external sources (i.e. Data Files)

¢ Customer imposed features

The features we experimented with are :

e Data Bindings Analysis 3

e Common Resources Analysis

Data Bindings analysis focuses on the identification of triplets < Cy,C2,V > where C, C> are
sets of functions and V a set of variables such that all functions in C define all variables in V and all
functions in C, use all variables in V. This type of analysis allows for the identification of modules
or subsystems whose components have high coupling. When definitions and uses of variables are
computed, basic aliasing (i.e. parameters passed by reference), is considered as well.

Common References analysis focuses on the identification of pairs < C,,V > where C) is a set
of functions and V a set of variables such that all functions in C, define or use all variables in V. This
type of analysis considers only the variable name and type, and no aliasing or scoping information
is taken into account. The assumption is that if two functions have variables in common with the
same name and type, most probably they refer to the same concept. This type of analysis reveals
modules or subsystems that are related by some concept and data type. This type of analysis has
been used by Rigi to visualise segmentations of various systems [Buss84|. This type of segmentation

reveals modules at the architectural level. In Fig.4.3 a segmentation of the CLIPS system based on

3pata Bindings analysis has originally proposed by R. Selby and V. Basili [Selby80] as a method for identifying error
prone structures (i.e. structures that have a very high data flow dependencies

55

4.2 DYNAMIC PROGRAMMING BASED SIMILARITY ANALYSIS

General:2 (4%.5%) - CLIPS

T ———————— m— e ——— T —

add_actf g3
remove_all #

clear_rule_from_agenda

FIGURE 4.3. Segmentation of the Clips System using Clustering on Data Bindings, Com-

mon References, and Code Cloning
data bindings and common references analysis is illustrated. In the example ilustrated, anumber of
different modules have been identified. These include the fact management module which contains
functions remove_deffacts, parse_deffacts, remove_all_deffacts, the rule managernent module which
contains functions clear_rule_from_agenda, remove_all_activations, purge_agenda, add_activation, and
the variable bindings module which contains functions print_var.info, fact_address, position, and vari-

able.analysis. This segmentation was displayed in the Rigi environment [Muller91] (see Section.1

).

56

CHAPTER 5

Concept To Code Matching

The concept assignment [Biggerstaff94], [Biggerstaff89)] problem consists of assigning concepts
described in a concept language to program fragments. Concept assignment can also be seen as
a matching problem. In our approach, concepts are represented as abstract-descriptions using a
concept language called Abstract Concept Language (ACL). It is assumed that a concept description
may match a number of different implementations represented by program segments in source code
called code fragments. The similarity between a description and a code fragment is measured by
their matching probability. In this framework, an abstract-description is parsed and a corresponding
AST T, is created. Similarly, source code is represented by an annotated AST T.. Both T, and T,
are transformed into a sequence of abstract and source code statements, respectively, using transfor-
mation rules. These rules transform a part of the AST that represents a source code statement to
a sequence of entities that the statement is composed of. For example, an IF-THEN-ELSE statement
is transformed to a sequence [Condition, Then-Part, Else-Part]. The objective is to reduce the
complexity of the matching algorithm as T, and T, may have very complex structures. In this way
structural details of the ASTs have been abstracted and represented as sequences of entities.

An overview of the matching process is illustrated in Fig.5.1. The abstract pattern written in
ACL is parsed and transformed into a Markov Model. Similarly, source code is represented as a
sequence of statements. The Viterbi algorithm is used to find the best fit between the model and
the sequence of input statements using feature vectors that represent data flow, control flow, and
informal information properties of the code.

Problems of matching concepts to code that have been considered are:

e The choice of the conceptual language,
e The measure of similarity,

e The selection of a fragment in the code to be compared with the conceptual representation.

5.1 LANGUAGE FOR ABSTRACT REPRESENTATION

ACL AST Run Time Model (APM)
- @,
L L
———ee————
-«
L L
Match
L
———————— S1 ; Sz 3 eeee sk
L L _J
L] L L L
Source Code AST Sequence of Source Code Statements

FIGURE 5.1. Overview of the Markov-Based Code Matching Process

These problems are addressed in the following sections.

1. Language for Abstract Representation

A number of research teams have investigated the problem of code and plan localization. Cur-
rent successful approaches include the use of graph grammars [Wills92|, [Rich90}, query pattern
languages [Paul94], [Muller93], [Biggerstaff94], sets of constraints between components to be
retrieved [Ning94|, and summary relations between modules and data [Canfora92].

The proposed approach focuses on facilitating partial matching, a situation that is frequent in
practice and has yet been addressed in a framework of uncertainty reasoning. We propose in this
context a novel approach: a stochastic pattern matcher that allows for partial and approximate
matching within the context of Plan Recognition. A concept language ! represents, in an abstract
way, sequences of design concepts corresponding to a “design pattern”.

We view ACL patterns as a program representation tool which:

(i) decomposes the program representation into relationships (stores, fetches, used-by, calls,

called-by, keywords, metrics),
(ii) allows for structural and data type abstraction,

(iii) deals with syntactic and implementation variations and,

!Please refer to Appendix A, Appendix B, for a complete description of the ACL grammar and domain model

58

5.1 LANGUAGE FOR ABSTRACT REPRESENTATION

(iv) allows for representing noncontiguous plans.

The concept language contains:

o Abstract statements S that may match (generate) one or more statement types in the source

code language. The correspondence between an abstract statement and the source code
statements it may generate is given at Table 5.1.
ACL contains the following abstract statements:
(i) Abstract Iterative Statements
(a) Abstract While Statement
(b) Abstract For Statement
(c) Abstract Do Statement
(ii) Abstract Conditional Statements
(a) Abstract If Statement
(b) Abstract Switch Statement
(iit) Abstract Expression Statements
(a) Abstract Function Calls
(b) Abstract Assignments
(1) Abstract Actual Assignment
(ii) Abstract Post/Prelncrementation
(iii) Abstract Post/Decrementation
(iv) Abstract Return Statement
(v) Abstract GoTo Statement
(vi) Abstract Continue Statement
(vii) Abstract Break Statement
(viii) Abstract Labeled Statement
(ix) Abstract Staternent”
(x) Abstract Statementt
(xi) Abstract Any-Statement.
(xii) Inline-Plan-Statement.

o Abstract Ezpressions £ that correspond to source code expression. The correspondence be-

tween an abstract ezpression and the source code expression that it may generate is given in

Table 5.2. ACL contains the following abstract expressions:

(i) Abstract Equality
(ii) Abstract Inequality

59

3.1

LANGUAGE FOR ABSTRACT REPRESENTATION

ACL Statement

Generated Code Statement

Abstract Iterative Statement

While Statement
For Statement
Do Statement

Abstract While Statement

While Statement

Abstract For Statement

For Statement

Abstract Do Statement

Do Statement

Abstract Conditional Statement

If Statement
Switch Statement

Abstract If Statement

If Statement

Abstract Switch Statement

Switch Statement

Abstract Return Statement

Return Statement

Abstract GoTo Statement

GoTo Statement

Abstract Continue Statement

Continue Statement

Abstract Break Statement

Break Statement

Abstract Labeled Statement

Labeled Statement

AbstractStatement® Zero or more sequential source code
statements
AbstractStatement™ One or more sequential source code

statements

Abstract Any-Statement

I

One occurrence of a source code
statement

TABLE 5.1. Generation {Allowable Matching) of source code statements from ACL statements

(iii) Abstract Logical-And
(iv) Abstract Logical-Or
(v) Abstract Logical-Not
(vi) Abstract Function-Call
(vii) Abstract Identifier
— Abstract-Named-Identifier

60

5.1 LANGUAGE FOR ABSTRACT REPRESENTATION

ACL Expression Generated Code Expression
Abstract Function Call Function Call

Abstract Equality FEquality (==)

Abstract Inequality Inequality (' =)

Abstract Logical And Logical And (&&)

Abstract Logical Or Logical Or {]|)

Abstract Logical Not Logical Not (!)

Abstract Any-Ezpression Any Source Code Ezpression

TABLE 5.2. Generation (Allowable Matching) of source code expressions from ACL expressions

— Abstract-Variable-Identifier

o Abstract Feature Descriptors F that contain the feature vector data used for matching pur-

poses. Currently the features that characterize an abstract statement and an abstract expres-

ston are:

(1) Uses of variables : variables that are used in a statement or expression,
(ii) Definitions of variables: variables that are defined in a statement or expression,
(iif) Keywords : strings, numbers, characters that may used in the text of a code statement,

(iv) Metrics : a vector of five different complexity, data and control flow metrics.

o Abstract Identifiers X

— Abstract Variable [dentifiers are used as place-holders for feature vector values, when
no actual values for the feature vector are provided. An example is when we are
looking for a Traversal of a linked list plan but we do not know the names of the
pointer variables that exist in the code.

— Abstract Named Identifiers are more restrictive in the sense that the matching iden-
tifier in the source code has to have a similar name. By similar name we mean the
lexicographical distance between the two names is below a certain threshold that can
be adjusted by the user. Zero lexicographical distance means that the two identifiers

have the same name.

61

5.1 LANGUAGE FOR ABSTRACT REPRESENTATION

Default ACL Type Generated Code Type
Struct struct

Array array ([])

Numeral float or int

Character char

Any-type any C type

named the particular named type

TABLE 5.3. Generation (Allowable Matching) of source code data types from ACL data types

e Abstract Data Types T An Abstract Data Type t, associated with an Abstract Identifier

can generate (match) any actual type in the source code provided that they belong to the
same data type category. For example a Struct type abstract variable can be matched with
a struct source code variable in C or a Record in Pascal. The power of the approach lies in
the fact that Abstract Data Types are essentially object classes and the user can specify his
or her own hierarchies. For example a new ADT List may be defined as a superclass of the
Array and Struct ADT and thus allow for matching with an e:rrey or struct actual source
code data type.
The system supports by default the following abstract types:
(i) Structure : Representing struct types,

(1) Array : Representing array types,

(iii) Numeral : Representing int, and float types,

(iv) Character : Representing char types,

(v) Any-type : Representing any source code type types,

(vi) Named : matching the actual data type name in the source code,
and the following access methods:

(i) Pointer : Representing a pointer identifier,

(ii) Reference : Representing a simple identifier reference.
The correspondence between an abstract date type and the source code type that it may
generate is given in Table 5.3.
o Operators O

Operators are used to compose abstract statements from simpler ones:

62

5.1 LANGUAGE FOR ABSTRACT REPRESENTATION

(i) Sequencing (;) : To indicate that one statement follows another

(ii) Choice (&) : To indicate choice (one or the other abstract statement will be used in

the matching process)

(iii) Inter Leaving (]|) : to indicate that two statements can be interleaved during the

matching process

e Macros M

Macros are proposed to facilitate hierarchical plan recognition [Hartman92|, [Chiko90].

Macros are entities that refer to plans that are in-lined in the pattern when the AST for

the pattern is created. For example if a plan has been recognized is stored in the plan base,

then special preprocessor statements are used to include this plan to compose more complex

patterns. Included plans are incorporated in a pattern’s AST at parse time in a way similar

to C++ in-line functions.

Special macro definition statements in the Abstract Language are used to include the nec-

essary macros.

We consider two types of Macro related statements in ACL:

(i)

(ii)

Macro declarations: These are special statements in ACL that specify the name of the
plan to be included and the file where it is defined.
As an example consider the ACL statement

include planl.acl traversal-linked-list
that imports the plan traversal-linked-list which is defined in file plani.acl.
Macro uses : These are statements that direct the parser to in-line the particular
plan and include its AST in the original pattern’s AST. As an example, consider the
following Abstract Macro use:

plan: traversal-linked-list

that is used to include an instance of the traversal-linked-list plan at a particular point

of the pattern. In a pattern more than one occurrence of an included plan may appear.

A typical example of a design concept in our concept language is given below. This pattern

expresses an iterative statement (e.g. while , for, do loop that has in its condition an inequality ex-
pression that uses the identifier 7x that is a pointer to an abstract type struct and the conditional
expression contains the keyword “NULL”. The body of the Iterative-Statement contains a se-
quence of one or more statements (+-Statement) and an Assignment-Statement that uses at least
identifier 7x, defines identifier ?x. However, this example pattern limits the scope of an Iterative-

Statement to be matched only with a While-Statement or a For-Statement. Moreover, this patterns

63

5.2 ABSTRACT LANGUAGE SEMANTICS

requires that the probability of a While-Statement appearing is 0.75, and that the probability of a
For-Statement appearing in the source code is 0.25%. If no probability preferences are given by the
user the system assumes a uniform distribution where the a while , for, do loop have egual occurrence
probabilities (i.e. 0.33).

The bindings that may occur for a successful match between this ACL pattern and the code
fragment given below is {?x/field}. Note that the binding {?x/pos} that is activated at the condition
of the while statement when matched with the condition of the ACL Iterative-Statement is eliminated
when the fleld = field— next Value statement is matched with the ACL Assignment-Statement in the
example pattern.

probability : ["While-Statement, 0.75, "For-Statement", 0.25]

Iterative-Statement (Inequality-Expression
uses : [?x : *struct],

keywords : ["NULL"])

+-Statement;
Assignment-Statement
uses : [?x],
defines : [?x],
keywords : ["next"]
}
A code fragment that matches the pattern is:
while (field != NULL && pos == 1)
{
if (!stremp(obj,origObj) ||
(!strcmp(field->AvalueType, "member") &&
notInOrig))
if (stremp(field->Avalue,"method") !'= 0)
INSERT_THE_FACT (o->ATTLIST [num] . Aname,orig0bj,
field->Avalue);
field = field->nextValue;
}

2. Abstract Language Semantics

In this section we discuss in more detail the constructs and the semantics of the abstract pattern

language (ACL). As discussed above, the Abstract Concept Language consists of :

2Please refer to Section.5.4 for a complete description of static probability usage.

64

5.2 ABSTRACT LANGUAGE SEMANTICS

(i) Abstract Statements S
(ii) Abstract Expressions £
(iii) Feature Descriptions F
(iv) Abstract Identifiers X
(v) Operators O

(vi) Macros M

We define the semantics of ACL entities in terms of a semantic function Sy defined as follows:

S4: A= A
where 4 = SUE is the domain of ACL abstract statements S and ACL abstract expressions
£. Similarly, A = SU Eis the domain of source code statements S and source code expressions F.
Let AbsStaty,(AbsEzp,) be the abstract statement AbsStat that is represented by the fea-
ture vector V;, and contains the abstract expression AbsEzp. Similarly let AbsEzp, be the the
abstract expression AbsEzp that is represented by the feature vector V,. The same notation holds

for SourceStaty, and SourceEzpvy for the source code statements and expressions respectively.

o Abstract Statements The semantics of an abstract statement AbsStaty, that contains the

abstract expression AbsE'a:p_,v, are given as:

Sa(AbsStaty, (AbsEzpy,) = SourceStats,(v,)(Sa(AbsEzpy,))
such that:
SourceStat € Gen(AbsStat) and Gen(AbsStat) is a mapping that denotes the possible source

code statements that can be generated by AbsStat. This mapping is illustrated in Table.5.1.

o Abstract Expressions

S4(AbsEzpy,) = SourceEzps,(v,)

such that:
SourceEzp € Gen(AbsEzp),

AbsEzp,, denotes an abstract expression with features given by the feature vector V, and

SourceEzrps,v,) denotes an actual source code expression that can be generated (matched)

by AbsEzpy, .

65

5.2 ABSTRACT LANGUAGE SEMANTICS

As above, Gen(AbsEzp) gives the possible source code expressions that can be generated by
AbsEzp. Table 5.2 illustrates the possible ways an abstract expression may generate a source
code expression.

e Feature Descriptors

The language supports the following features for every Abstract Statement AbsStat and
Abstract Expression AbsEzp :

— Uses of variables (fetches)

— Definitions of variables (stores ?)

— Keywords (comments, approximate variable names)

— Metrics (S-Complexity, D-Complexity, McCabe, Albrecht, Kafura)

The semantics of each feature for an Abstract Statement or Expression P are given as :
— Sq(Uses(z),132,..-zk)) = Su(z1) and Sq4(z2) ... and Sq(zi)
where z|,..z; are abstract ACL Identifiers and Su(z;) € IDS_.USED(S4(P)) (see
Chapter.2).
— Sa(Defines(zy,za,...zk)) = Sq(z,) and Sq(z2) ... and Sy(zy)
where z,,..x; are abstract ACL Identifiers and Sy(z;) € IDS_UPDATED(S,(P))
(please see Section.3.2).

— S4(Keywords(siry, stry,...stre)) = Sq(str1) and Sq(stra) ... and Sy(stry)

where str, ..str;, are ACL string literals and
S4(z;) € IDS_.UPDATED(S4(P)) U IDS_USED(S4(P)) U LITERALS(S4(P))* (please

see Section.3.2).
— Su(Metries(my,m,,..mg)) = [S-COMPLEXITY(Sq(P)), D-COMPLEXITY(S4(P)),

McCABE(S4(P)), ALBRECHT(S4(P)), KAFURA(S4(P)}].

o Abstract Identifiers

— Named Identifiers

Si(q) =i, where ¢ is an ACL Named Identifier and i is an identifier in the source

code with the same name as q

— Variable Identifiers

3 Also referred to as updates
{LITERALS refers to the set of string values, character constants, and numerical constants that may occur in a source

code statement. ‘T'his set is computed in a compositional way on the AST nodes at the same way as the rest of the
features are.

66

5.2 ABSTRACT LANGUAGE SEMANTICS

S4(?q) = i and the binding {?q/i} is added to the existing bindings of ?q. Here, ?q

is an ACL Variable Identifier and i is an identifier in the source code.

o Abstract Data Types

Abstract Data Types are always associated with an Abstract Identifier. The semantics of a

Typed Abstract Identifier z of Abstract Data Type ¢ are given from a mapping
Sa(z : t) = Sa(z) : Sa(t)

where S4(z) is an actual source code variable of type Sq(t) that is compatible with data type
¢t. Data type compatibility is described in Table 5.3. The user may enhance this default
compatibility by adding new entries and ADT hierarchies as discussed previously.

¢ Operators

The semantics for these operators are given as follows :

— Sequencing
Sa(AbsStatly,;AbsStat2y ,) =
Sa(AbsStaty_); Sa(AbsStat2y_, _,)
where :

z o ' means that any bindings that may have been generated for variables in V, are
applied to same occurrences of variables in V.. For example if an Abstract-Identifier
?i in V. has been bound to source code variable 7, then all occurrences of % in V,-

will be bound to #, before the matching process for AbsStat2 starts.

— Choice®
Sq(AbsStatly, ® AbsStat2y,,) =
S4(AbsStatly,)xorSy(AbsStat2y ,)°
— Interleaving”

S4(AbsStatly_)| AbsStat2 V.,)=

5The Choice operator is defined as left associative

Sxor denotes the standard “exclusive or” operation
7When more than two operands occur in an Interleaving expression all the permutations these operands can generate

are considered.

67

5.3 CONCEPT-TO-CODE DISTANCE CALCULATION

Sa(AbsStatly,); Sq(AbsStat2y,__,)&
Sa(AbsStat2y_,); Sa(AbsStatly)

o [Inline Macros
Let an in-lined Macro M (param,, param,, param;) = (Ary, -0pAn,) where 4, 45,..4,
are ACL statements and param,,parama,,..param; are ACL identifiers that exist in the
feature vectors Vi, Va, ..V, of 4., Aa,..4, respectively. Similarly, op is any of the language
operators (; || and, &®).

Its semantics are given by

Sa(M(paramy, param,, params)) = Su(A1y, .-0pAn,,)

3. Concept-to-Code Distance Calculation

In this section we discuss the matching of an abstract pattern in ACL with source code.

In general the matching process contains the following steps :

(1) Source code (S,;...Sx) is parsed and an AST T. is created,

(ii) The ACL pattern (Ar;.--An) is parsed and an AST T, is created,

(iii) A transformation program generates from T, a Markov Model called Abstract Pattern Model
(APM),

(iv) A Static Model called SCM provides the legal entities of the source language. This Markov
Model underlying finite-state automaton for the mapping between an APM state and an
SCM model basically implements the Tables 5.1, 5.2 and, 5.3,

(v) Candidate source code sequences are selected according to a set of code delineation criteria
discussed below,

(vi) The Viterbi [Vite67] algorithm is used to find the best fit between the Dynamic Model,
resulting from the combination of APM and SCM, and a code sequence selected from the

candidate list.

A Markov model is a source of symbols of an alphabet V characterized by states and transitions.
A model can be in a state with a certain probability. From a state, a transition to another state can
be taken with a given probability. A state is associated with the generation (recognition) of a symbol
with a specific probability. The intuitive idea of using Markov models to drive the matching process
is that an abstract pattern given in ACL may have many possible alternative ways to generate
(match) a code fragment. A Markov model represents all these alternative options and assign to

each of them a probability. Moreover, the Viterbi algorithm provides an efficient way to find the

68

5.3 CONCEPT-TO-CODE DISTANCE CALCULATION

path that maximizes the overall generation (matching) probability of a given string in V'* among all
the possible alternatives.

Thus, a Markov Model has to be generated for a given ACL pattern. This APM model is then
“augmerted” by replacing each APM state with a corresponding SCM, as shown in Fig.5.2 where
4; and M;; are states and F;; are transition probabilities.

Once an ACL pattern is parsed and the corresponding APM and SCM model created, the
problem is to select candidate starting points for matching in a large software system. This is
a delineation problem. The simple but most expensive solution is to consider every source code
statement as a potential matching starting point and have a moving “window” of n many statements
maintained at any given point. This is a very time and space consuming approach because of all
the possible combinations it generates. Another approach is proposed in [Fickas79] and is based
on “beacons” to hypothesize the existence of potential links between a plan (cliche) and its location
in the source code, and statistical formalisms to guide island-driven-parsing [Corazza90]. The
drawback of using “beacons” is that a plan decomposition must be assumed in advance using a
“backward-chaining” strategy to hypothesize the next potential plan and the potential points in
the code that this plan may be implemented. Similarly, the use of island-driven-parsing requires
the existence of an accurate feature vector, a situation which is not always valid when forming an
arbitrary ACL pattern. We propose that a simple but effective in the context of code delineation.$,

selection of a code fragment S,; S2;...Sk to be matched with an abstract description based on both

of the following three criteria :

(i) the first source code statement S; matches with the first pattern statement A; and,
(ii) S2;Ss3;..; Sk belong to the inner most block B, containing S

(iii) Sk is the last statement in B.

The process starts by selecting for every begin-end block in a software system all potential
starting points (i.e. source code statements), that match the first criterion above.

Matching according to the first criterion means that the types and the feature vectors of S} and
A, give a high similarity probability ° Once a candidate starting point or points have been selected
for each begin-end block then, the sequences of statements starting from the selected points to the
end of each block are returned (criterion 2, and 3). Note that this is a delineation process. The final
code segmentation (i.e. the matched code) is produced by the matching process, and will contain

the statement sequence S;; Sa; ...; Si, where 1 < k.

8Please see localization time statistics in Section.6.4.1
9This probability in the current implementation has been set to 1.0. Please see Section.5.5 for a detailed description

on feature vector comparison

69

54 ACL MARKOV MODEL GENERATION

Once a candidate list of source code fragments (i.e. statement sequences) has been chosen the
actual pattern matching takes place between the chosen starting statement and the outgoing transi-
tions from the current active APM's state. If the type of the abstract statement that the transition
points to and the source code statement are compatible (compatibility is computed by examining
the Static Model) then feature comparison takes place. This feature comparison is based on the
same principles as described in Section.3.2. A similarity measure is established by this comparison
between the features of the abstract statement and the features of the source code statement. If
composite statements are to be compared, an expansion function “flattens™ the structure by decom-
posing the statement into a sequence of its components. In case of composite statements a nested
matching process is initiated.

For example, an if statement will be decomposed to a sequence of an expression (for its
condition), a then part and an else part. Composite statements generate nested matching sessions
similar to the one discussed in the DP-based code-to-code matching.

The process terminates when all possible mathces to reach a final state have been tried. The
maximum length sequence of matched statements Sy; Sz;..; S; (¢ < k) that has the maximum match-
ing probability among the sequences of statements of the same length taken from the candidate
sequences in a begin-end block B, is chosen as the result of the matching process. The Viterbi
algorithm guarantees that all possible paths to a final state have been examined, and that the best

path (maximizing the overall matching probability) can be chosen.

4. ACL Markov Model Generation

Let T. be the AST of the code fragment S; Ss; ..; Sk and T, be the AST of the abstract pattern
A = Aj0opAs0pA,.

A measure of similarity between T. and T, is the following probability:

Pr(TclTa) = P"("‘C[:] '-'rC.’v "'TC[|T¢1| 1 ~--ra| 3 ---ra.L) (4'1)

where,

(rcl 1e-Tein "'rct) (42)

is the sequence of the grammar rules used for generating 7, and

(Tays--Tagy-Tag) (4.3)

70

54 ACL MARKOV MODEL GENERATION

is the sequence of rules used for generating T,. The probability in (4.1) cannot be estimated in
practice, because the number of combinations grows exponentially with the number of rules in the
sequence [Corazza90]. An approximation of (4.1) is thus introduced.

Let Sy;..; Sk be a sequence of program statements. Let 4, be an ACL pattern. During the
parsing of an ACL pattern A that generates T,, an automaton called Abstract Pattern Model
(APM)is built containing as states the abstract descriptions Ay, A3, ...4j, 4j41,..., An. The APM is
constructed by following the standard rules of transforming a regular expression to a Finite State
Automaton [Hopcroft79].

Nodes in the APM correspond to Abstract ACL Statements and arcs represent transitions im-
plementing thus the control flow imposed by ACLs operators contained in pattern A (i.e. sequencing,
concatenation, choice). Each APM node A; is considered as a Markov source and is replaced by a
static, permanently available Markov model whose states are labeled by symbols M;, called a Source
Code Model (SCM) (Fig.5.2). Each node in SCM is used to generate (match) source code.

The Source Code Model is an alternative way to represent the syntax of a language entity and
the correspondence of Abstract Statements in ACL with source code statements.

For example, a transition in APM labeled as (pointing to) an Abstract Iterative Statement
is linked with the While, For and Do-While static model.

Let T} be the AST of a sequence of source code statements Sy; Sa2;..;Si (¢ = k) taken from a
candidate sequence of statements S;; Ss;..; Sk

The best alignment between a sequence of statements S = S;;Sa2;..;Si and a pattern A4 =
Ap; Ag; .4 is computed by the Viterbi [Vite67] dynamic programming algorithm using a feature

vector comparison function for evaluating the following approximation of (4.1) [Brown92]:
Po(TU|Ta) = Po(S1; . Sil410p..opAn) = Po(Sy; i Sil APM (4,0p..0pAn)) (4.4)

The desired probability p = P.(T!|T.) is approximated by the result of the application of the
Viterbi algorithm to the Markov model:

p= P.(Sy;..;Si|A10op..opAn) = P.(S1; . Si| APM (A 0p..opA,)) =
maIP"(Sl; 52"Si—1 |history, Areach(i—l)) ° P,.(S,-|hist0ry, Areach(i))) (4'5)

where,

e history gives the sequence of already successfully achieved matches from previous steps,

71

54 ACL MARKOV MODEL GENERATION

e reach(m) is a function that determines the APM states that can are valid to be considered
during the m¢h step. Such function is computed by examining the APM and its corresponding
transitions and,

e reach(i) represents a final state in the APM generated by the pattern 4,0p..opA,.

The process returns the longest source code statement subsequence 5,;5,: ..; S;, obtained from
the candidate sequence S1; S2; ..; Sk and has the maximum matching probability among the alterna-
tive matches of the same length.

The dynamic model (APM) that has been generated by parsing the given pattern guarantees
that only the allowable sequences of comparisons are considered at every step.

The final similarity between a sequence of source code statements and a pattern is given as the
magnitude of logarithm of the probability p.

As it is illustrated in (4.5) the final value of p is computed in terms of calculating matching
similarity measures in terms of matching probabilities between individual abstract statements and
code fragments. This matching similarity measures take the form of the probability value given by
P,(S;|history, Areacn(s))- These matching probabilities between individual abstract statements and

code fragments are computed as follows:
Pr(Sglhistory, flrench(:)) = Pscm(Si|A4reach(i)) . Pc,,mp(S,-]histort N -"L‘cach(i)) (46)

where,

® Pyem(Si|Areach(iy) is the probability that the Static Markov Model generates statement S;
given the description A,.qch(i)
® Peomp(Silhistory, Areacn(i)) is the probability computed by comparing the feature vectors

between S; and A,.qcn(i), given the matching history (i.e. existing bindings).

The feature vector comparison function is discussed in the following subsection.

As an example consider the APM in Fig.5.2 generated by the pattern A,;AJ; A3, where 4;
is one of the legal statements in ACL. The Viterbi algorithm applied to this model for a selected
candidate code fragment S;; Sy; S3; S4 provides the best path (maximizes the matching probability)
for matching this code fragment with the given model. The comparisons that take place for the
given example APM and the code fragment are illustrated in Fig.5.3. This example illustrates the
application of the Viterbi algorithm and the matching process between the source code statements

S1; 82; 53; S4 and the ACL pattern Al; 42*; A3*.

72

5.4 ACL MARKOV MODEL GENERATION

FIGURE 5.2. A dynamic model for the pattern 41; 42°; A3"

The Viterbi algorithm proceeds by selecting always the path that maximizes the overall proba-
bility. In the case of position (S3, A43) in Fig.5.3, two incoming selections are possible; one (horizontal
transition) from position (S, 43) that corresponds to the probability P.(S|; S2|4:,A3) and another
(diagonal transition) from position (S2, A3) that corresponds to the probability P.(S;;Sa|A, A3).
Based on these values and the computed values of P,cm and P.omp the Viterbi algorithm chooses
the best incoming path and updates history accordingly.

Note that at every step, the probabilities of the previous steps are stored and there is no need
to be reevaluated.

For example P,(S),S2|history, A}) is computed in terms of P.(S,|A;) which is available from
the previous step.

With each transition in the Static Model a list of probabilities based on the type of expression
likely to be found in the code for the plan that we consider is attached.

An example of a static model for the abstract pattern-expression is given in Fig. 5.4.
Here we assume for simplicity that only four C expressions can be generated by a abstract

pattern-expression.

73

5.4 ACL MARKOV MODEL GENERATION

ACL Pattern

S { S 5 S 3 S p Input Source Code

FIGURE 5.3. Dynamic Programming driven comparisons between an ACL pattern
Ar; A3; A3, and a code fragment Si; S2; S3; S4
For example, in the Traversal of a linked list plan the while loop condition, which is
an expression, most probably generates an inequality of the form (list-node-ptr /= NULL) which
contains an identifier reference and the keyword NULL.
A crucial problem with this approach is the estimation of these probabilities for the HMMs.
Initially, probabilities can be established subjectively and modified as far as new data are fed.
The initial probabilities in the static model are provided either:

e by the system giving default values based on a uniform distribution in all outgoing transitions
for a given state as in Fig.5.4 or,

e by the user who may provide some subjectively estimated values while he or she is formulating
the query using the ACL primitives. These values may come from the knowledge that a given
plan is implemented in a specific way. In the above mentioned example of the Traversal of
a linked list plan the Iterative-Statement pattern usually is implemented with a while
loop. In such a scenario the Iterative abstract statement can be considered to generate a
while statement with higher probability than a for statement. Similarly, the expression
in the while loop is more likely to be an inequality (Fig. 5.4). Once the system is used and

results are evaluated these probabilities can be adjusted to improve the performance.

74

5.4 ACL MARKOV MODEL GENERATION

expression

FIGURE 5.4. The static model for the expression-pattern. Different transition probability
values may be set by the user for different plans. For example the traversal of linked-
list plan may have higher probability attached to the is-an-inequality transition as the
programmer expects a pattern of the form (field /= NULL)

Probabilities can be dynamically adapted to a specific software system using a cache memory
method originally proposed (for a different application) in [Kuhn90]. A cache is used to maintain
the counts for most frequently recurring statement patterns in the code being examined. Static

probabilities can be weighted with dynamically estimated ones as follows :

Pscm(silAj) =X Pmch.e(Si|Aj) + (1 - ’\) ° Pstatic(silAj) (4-7)

In this formula P.acn.(Si| A;) represents the frequency that A; generates S; in the code examined
at run time while Pgaric(Si|A;) represents the a-priori probability of A; generating S; given by the
static model SCM. A is a weighting factor. The choice of the weighting factor A indicates the user’s
preference on what weight he or she wants to give to the feature vector comparison. Higher A values
indicate a stronger preference to depend on what has been matched so far (i.e. the programming
style for a plan). This preference gives a “local” view to the matching process. Lower A values

indicate preference to match independently of what has been matched so far. This preference gives

75

5.5 FEATURE VECTOR COMPARISON

Average Distance Per Lambda Value
022 T — T r v - T

n
0211

Average Distance Oblained
o o =) [
S o e = o
@ N ® © [
- T T T T
’
1
i
]
1
'
\
1
1
P
,

Ll
n
T

0.14 . R i N —— : . L
0 0.1 0.2 03 04 0.5 0.6 0.7 08 0.9 1
Lambda Values

FIGURE 5.5. Effect of A values to final probability calculation

a “global” view to the matching process as any source code statement can be generated using a
more uniform probability distribution, given a-priori by the system. The values of the final reported
average distance (—{og(Pscm(Si|Aj)) between a query and all the successful code matches as a
function of different values of the co-efficient A are shown in Fig.5.5. Fig.5.5 suggests that:

e There is a set of values (in this example 0.3-0.6) for which the distance remains at similar
levels (i.e. A balances the effects of P.gcne and Pgpatic)-

e For the rest of the values of the co-efficient A, we observe that the higher its value is the
lower the computed distance (i.e. the higher the matching probability is). This is an accom-
modating result as it suggests that P.,.xe can be used for tailoring the matching process to
a particular “programming style” evident in the software system that is being analyzed.

The value of A can be computed by deleted-interpolation as suggested in [Kuhn90]. As pro-

posed in [Kuhn90], different cache memories can be introduced, one for each A4;. We use different
cache memories for each 4;, and we compute the value of A to be proportional to the amount of

data stored in each cache.

5. Feature Vector Comparison

In this section we discuss the mechanism used for calculating the similarity between two feature
vectors. Note that S;'s and A;’s feature vectors are represented as annotations in the corresponding
ASTs.

The feature vector comparison of S; and A; returns a value p = P,(5;|4;).

The features used for comparing two entities (source and abstract) are:

76

5.5 FEATURE VECTOR COMPARISON

(i) Variables defined D : Source-Entity — {Identifier} '°
(ii) Variables used U : Source-Entity — {Identifier}
(iii) Keywords K : Source-Entity — {String}
(iv) Metrics
e Fan out M, : Source-Entity = Real
¢ D-Complexity M2 : Source-Entity — Real
e McCabe M3 : Source-Entity — Real
e Albrecht My : Source-Entity — Real

e Kafura M5 : Source-Entity — Real

These features are AST annotations and are implemented as mappings from an AST node to a
set of AST nodes, set of Strings or set of Numbers.

Let S; be a source code statement or erpression in program C and A; an abstract statement
or ezpression in pattern A. Let the feature vector associated with S; be V; and the feature vector
associated with A; be V;. Within this framework we used the Jaccard’s coefficient considered in the

computation as a probability:

v

Pu(Si|A;) = 1 z card(Abstract Feature; , N CodeFeature;)
ATy card(AbstractFeature; , U CodeFeature;)

(5.1)
n=1

where v is the size of the feature vector, or in other words how many features are used,
CodeFeature; , is the nth feature of source statement S; and, AbstractFeature; , is the nth feature
of the ACL statement 4;.

As in the code to code dynamic programming matching, lexicographical distances between
Identifier names and numerical distances between metrics are used. Within this context two strings
are considered similar if their lexicographical distance is less than a selected threshold, and the
comparison of an abstract entity with a code entity is valid if their corresponding metric values are
less than a given threshold.

Thus, ACL is viewed more as a query language where new features and new requirements can
be added and be considered for the matching process. For example a new feature may be a link or
invocation to another pattern matcher (i.e. SCRUPLE) [Paul94] so that the abstract pattern in
ACL succeeds in matching a source code entity if the additional pattern matcher succeeds and the
rest of the feature vectors match.
10Following the REFINE practice, we distinguish between an identifier’s introduction (Identifier or Variable) and its
occurrence in the source (Identifier-Reference or Variable-Reference). An identifier object is used to introduce a name,
which can be a variable, function, etc.. It has a declaration, and its scope is determined by the procedure that it was

declared in. An identifier also has a set of occurrences (Identifier-References) associated with it, and may be thought
of as a symbol table entry having information about the name.

7

5.6 RECOGNITION SPACE

This is an important point as we do not propose ACL as a specification language. Within the
context of this thesis, ACL is a formalism to facilitate pattern matching representing a number of
control and data flow properties of a code fragment. ACL can not capture semantics or hidden data

and control flow dependencies (i.e. aliasing).

6. Recognition Space

In the sections above, we have defined ACL and the matching process based on Markov-models.
ACL patterns can be seen as structural abstractions of source code fragments. In this section we
discuss constraints in the space of possible solutions generated by an ACL pattern and investigate
relationships between ACL patterns by defining a partial ordering between them. Moreover, we
show that for a given a set of implementations of a given algorithm, we can compose a pattern out
of the known patterns that generate these possible implementations and is minimal in terms of the

source code entities it generates (i.e. generates all implementations and minimal noise).

Definition : An atomic pattern is a pattern that does not contain any other patterns.

Example :

.Pl
assignment-statement
uses : [?7x : * structl]

defines : [?y : * struct]

o P
function-call 7?fcnName : * struct

uses : [?param : * char]

Definition : A composite pattern is a pattern that is made by other patterns using grouping

({}), the operators (&, ||,;), and macro inclusion.

Example :
e Pr:
if-statement (any-cond) then
{
assignment-statement
uses : [?x : * struct]
defines : [?y : * struct]
}

78

5.6 RECOGNITION SPACE

L4 Pg:
(assignment-statement
defines : [i]) +
(assignment-statement

defines : [j],
uses : [k])

Definition : A well identified pattern is a pattern that matches a recognizable implementation

of a particular algorithm in a software system.

Example : Suppose the algorithm (plan) is to update a counter when an element is found.
We can classify this plan as an update-counter-on-condition plan. A pattern that matches an imple-
mentation of this plan is:
update-counter-plan(?target, 7elem, ?count) =
if-statement (equality

uses : [7target, ?elem]) then

s-statement;
assignment-statement
uses : [?count : numerall,
defines : [?count : numeral];

*-gstatement

The pattern above matches the code:
if (temp_var->name == name)
{
cl_print("verror","\nFact address ?");
cl_print ("verror",symbol_string(name)});
cl_print("werror"," also used as variable name\n");

count_flag ++;

Definition : An hierarchical pattern is a composite pattern that is built by using well identified

patterns.

79

5.6 RECOGNITION SPACE

: Suppose the algorithm is to count the occurrences of a particular element in a

linked list. A pattern that matches an implementation of this algorithm is:

count-occurrences-of-an-elem-in-linked-list(?head, ?ptr, ?target, ?count) =

1

O 0O ~N O O A W N

(8 N N - [P [[- - - - o
N = O ©W 0 ~N O 0 & W N = O

actual-assignment-statement
uses : [?head : * struct],
defines : [?ptr : = struct];
s-statement;
vhile-statement(inequality

uses : [?ptr : * struct])

*—-statement;
if-statement(equality
uses : [?target, 7ptr : * struct])

then

s-statement;

assignment-statement
uses : [?count : numeral],
defines : [?count : numerall;

¢-statement

};
*-statement
abstract-expression-description

empty

The pattern above contains from lines 9-18 the well-identified plan update-counter-on-condition(?target,

?ptr, ?count). Consequently the pattern can be rewritten as :

count-occurrences-of-an-elem-in-linked-list(?head, 7ptr, 7target, ?count) =

actual-assignment-statement
uses : [?head : * struct],
defines : [?ptr : * struct];
*-statement;
while-statement (inequality

uses : [?ptr : = structl)

s-statement;

80

5.6 RECOGNITION SPACE

update-counter-on-condition(?ptr, ?target, ?count);

s-statement

Definition : A template pattern is a potential hierarchical pattern that is parameterized on

the plans it may include.

Example : In several cases, generic patterns can be enhanced by the inclusion of other patterns
to form more specific ones. For example, the plan treverse-a-linked-list-and-do can be specialized by
including more specific actions in the body of the whiie-statement in the ACL pattern below

traverse-a-linked-list-and-do(?head, 7currPtr)<T> =
actual-assignment-statement
uses : [?head : * struct],
defines : [?ptr : = struct];
s-gtatement;
wvhile-statement (inequality

uses : [?ptr : * struct])

{
s-statement;
<T>;
s~-statement
}

Here T denotes a well identified pattern that can be included in the generic pattern to form a
more specific pattern (i.e. a specialization).

For example, when the template T is instantiated with the plan update-counter-on-condition(?ptr,
?target, ?count) then the plan count-occurrences-of-an-elem-in-linked-list is formed which can be

written as:

count-occurrences-of-an-elem-in-linked-list{(?head, ?ptr, Ttarget, ?count) =
traverse-a-linked-list-an-do(?head, ?ptr)

<update-counter-on-condition(?ptr, 7target, ?7count}>

Inclusion works well when a complex plan can be decomposed in a number of distinct simpler
plans. When overlapping or scattered plans are involved then simple inclusion may not adequate. In
such cases we have to abstract and normalize the representation of the program by using program
representation techniques similar to the ones suggested in [Wills93], [Hartman91a], [Quilici94],

[Choi80], [Hausler90]. The framework of this thesis is to provide insights for the pattern matching

81

5.6 RECOGNITION SPACE

part that is computationally expensive in these approaches. One of the future enhancements of the
work presented here is to provide formalisms in ACL to represent more abstract concepts such as
data flow dependencies, pre and postconditions for each statement and value ranges for the Abstract

Identifiers.

Definition : Let P be a pattern represented in ACL. We define Coverage of P Couv(P) be the

set of code fragments that is generated by P. More formally,
Cou(P) = {S s.t. S = [S1;S2;..Sk] and p(Si|P) > similarity threshold}

Example :
For the linked-list-count-elements related pattern when is applied to the CLIPS program a part

of its Coverage is:

FILE FROM-LINE TO-LINE
"deffacts" 515 518
"intrfile" 721 722
"intrfile" 732 736
"memory" 87 88
"memory" 95 96
"method"” 680 689
"method" 1687 1713

Definition : Two patterns P, P, are equal within the context of a software system S

(P =s P) if Cou(P) = Cou(P).

Definition: Given a set S, a partition II of S, is a collection of subsets Si of S with the
properties

e 5;NS; =0ifi# j (the Si are disjoint)

e US; = S (they exhaust S).

That is, each element £ € S is in one and only one Sk, and thus II decomposes S in various

subparts.

Lemma : Let R be the set of all source code statement sequences that can be taken from the

software system S. Any pattern P partitions R.

This is straightforward to prove if we observe that P either:

82

5.6 RECOGNITION SPACE
(i) generates {matches) a set of source code statement sequences and Couv(P) # 0.
(ii) does not generate any source code statement in S, that is, Cov(P) = 0.

In the first case P partitions R in two sets R; and R,. The first set is the set of statement
sequences that can be generated by P that is, Cou(P), The second set consists of code sequences
that are not matched by P. Apparently, the two sets are disjoint and exhaust R.

In the second case the partition is trivial and is composed of the set (R) itself.

Definition : Given a source code fragment C we define abstraction of C be a set of patterns

P = {P,,...P} such that for every P, € P, C € Cov(F;)

Example : Given the code fragment Cy:

while(p '= NULL)

{
if (!stremp(p->type,”child"))

{
count = 1;
printf (" [%s]\n",p->link->name) ;
}

P = p->next;

}

an abstraction of it are the patterns P, P> because both match C,

L P[:
while-statement (any-cond
uses : [?ptr : & struct])
{
+-statement

}
and
e P

vhile-statement (any-cond

uses : [?ptr : & struct])

83

5.6 RECOGNITION SPACE

s-statement;
if-statement (any-cond

uses : [7target, 7ptr : * struct]) then

*-statement;
function-call printf
uses : [7ptr : * struct]
};

+-statement

Definition : Given a source code fragment C and an abstraction of it P = {P,,...P;} we define

the closest pattern to Cin P be, any pattern P; € P for which

p(C|P;) 2 p(C|P)VPi € P

that is any pattern that produces the least distance when matched with C. Here, p(C|P;)

denotes the probability that code fragment C is matched by the pattern P;.

Definition : Given two patterns P;, P, we define P; is no more general than P; (P; X ,P;) iff

Cou(F;) € Cou(Fj)

Example : In the example patterns given above, P» < ,P; because the Coverage of P, is :
FILE FROM-LINE TO-LINE

"object" 1131 1139
“object” 1283 1291
"object" 2236 2244
"object" 2095 2103
"object" 2261 2272
"object" 2200 2215
"object" 2166 2194
"object" 2121 2132
"object" 2058 2072
"object" 2025 2052

84

5.6 RECOGNITION SPACE

while the Coverage of P, is :

FILE FROM-LINE TO-LINE
"object” 1131 1139
"object" 1283 1291
"object" 2236 2244
"object" 2095 2103

and thus Cov(P2) C Cou(Py).
Theorem: The relation no more general than is a partial order relation.

Proof:

e The relation no more general than is reflexive (P < , P). This holds because Cou(P) C
Couv(P).

e The relation no more general than is antisymmetric (P; X ,P; and P; <, P; imply P; = Py).
This holds because if Cov(P;) C Cov(P;) and Cov(P;) C Cove(P;) then Cov(P;) = Cov(F;),
that is P, =5 P;.

e The relation no more general than is transitive. This holds because if P; < ;P; and P; <X P
then Cou(P;) C Cou(P;) and Couv(P;) C Cou(Fy). This implies Cov(P;) C Cov(Py) that is
P X 4P

Definition : A chain is a set of ACL patterns in which all of its elements are related with the

no more general than relation.

Definition: Two distinct patterns are comparable if P, < ,P, or P, < ,P, otherwise are
incomparable.

Definition: Given a chain P = {P,, P»,...P;}, a lower bound of a subset X of P is a pattern
P; € P such that P, X ,P; V P; € X.

Similarly, an upper bound of a subset X of P is a pattern P; € P such that P; < ;P; V P; € X.

Definition: Given a chain P = {P,, P,,...P,} then the least upper bound of a subset X of
P is a pattern P; € P such that P; is an upper bound for X and, for all upper bounds P, of X

P; % ¢P,. An upper bound of X is a pattern P; whose Cou(P;) has the maximum cardinality among

85

5.6 RECOGNITION SPACE

the Coverages of all patterns P, € X. The least upper bound coincides with the upper bound, given
the definition of the equality between two patterns.

Similarly, the greatest lower bound of a subset X of P is a pattern P; € P such that P, is a
lower bound for X and, for all lower bounds P, of X P, < ,P;. A lower bound for X is a pattern
P; whose Cov(P;)} has the minimum cardinality among the Coverages of all patterns P, € X. The
greatest lower bound coincides with the lower bound, given the definition of the equality between

two patterns.

Lemma : A chain is a complete lattice. That is, each subset X of P has a least upper bound

and a greatest lower bound.

Proof:

Let P = {P, P,,...P} be a chain.

Let X = {P;, Pix1,...Pn} be a subset of P. Since X is a subset of P then X is a chain. If we
select the pattern P, € X such that Cov(P,) has the maximum cardinality among all elements of
X, then P, is the least upper bound of X. This holds as all elements of X are associated by the no
more general than relation and the the fact that Cov(P,) has the maximum cardinality among all
patterns in X, means that Cov(P;) C Cou(P;) which implies that P; < ,P, V P; € X.

Similarly, if we select the pattern P, € X such that Cov(P,) has the minimum cardinality
among all elements of X, then P, is the greatest lower bound of X. This holds as all elements of X
are associated by the no more general than relation and the the fact that Cov(F;) has the minimum

cardinality hence P, X ,P; V P; € X.

Theorem

Let A be an algorithm and Z = {I}, [, ...I,} be a set of implementations of the algorithm A
in the software system S.

Given the framework above, for every identified algorithm (plan) in a software system S we can

construct a pattern that is the closest pattern with respect to the known implementations of A.

Proof:

For every implementation [; of A, let R; = {Pj1, Pj2,...Pjm} be an abstraction of I; containing
patterns Pj; that generate (match) I;. In this way, R; is an abstraction of I;, and thus it contains a
pattern L; that is the closest pattern to [; in R, (i.e. it produces the least distance when compared

with I;).

86

5.6 RECOGNITION SPACE

A Algorithm

60 60 —

N ' i r ! !
M PP P2 P2 P3 .. P3 P4.. P4 Patterns
1 2 j ot k 1 n 1 m

Fi1GURE 5.6. The algorithm A its known implementations I, in the system, and patterns
P;, that match the implementations.

Let P4 be P4 = L;....& L, composed by all the L;'s that do not belong in the same abstraction
group R;. P4 is the closest pattern with respect to the known implementations of the algorithm
A. This is easily proven if we observe that for any known implementation /; of .A the plan P4 can

match it with minimal distance using the pattern L;.

Theorem

Let A be an algorithm and T = {I,, I», ...I} be its known implementations in a given software
system. Let P = {P11, Pi2,..Pim}, P 2 ={Po1, P22..Pan} ... P = {Pi1, Pe2,...Pr1} be a collection
of ACL patterns that match I, s, ...I; respectively (Fig 5.6). Then, we can construct a pattern
P,(,ﬁ)n that is composed of known patterns in P; (i = 1,2,...k) and is no more general than any other
pattern P.,mp that matches all k possible implementations of A and is also composed of the known

patterns. That is

P¥) < o Piomp = (P, ®..® P,)

Proof:

Let C be the power-set of {I;, I,.. ,Ix} and let this set be sorted in ascending order on
the cardinality on its elements. The construction of the pattern P,(,ﬁ)n is a process that involves two

phases. During the first phase all patterns that can generate at least j-many distinct implementations

87

5.6 RECOGNITION SPACE

are selected. This selection originates either from patterns in P;,i=1,2,.. k that may directly
generate at least j-many distinct implementations or on a 9 composition of patterns that each
generates m < j many distinct implementations.

The second phase consists of selecting the pattern or the collection of patterns that generate
j-many implementations with the minimal Coverage.

The construction algorithm terminates after k-steps when the pattern that generates k-many
distinct implementations is computed.

More formally, the construction algorithm operates as follows:

e Step 0. Let j « 1
e Step 1.
If j = k, then GoTo Step 3, else,

Select all patterns that generate at least j-many distinct elements of all the known imple-
mentations of the algorithm A. The j-many distinct implementations can be taken from the
power-set C. Let IJ(-") denote the nth set of j-many distinct implementations, taken from C.
The selection process is performed by scanning the power set , and for each element 1,§""
in C, that has cardinality q less than or equal to j (i.e. contains at most j implementations)

select those patterns P € {P ; s.t. i = 1, 2, .. k} that either

(i) generate exactly the elements in IJ(-") or

(ii) when combined with the & operator generate at least all items in 7 J‘-"’

This step produces a number of patterns P”ﬁl)), P”:m), eny P”: ; ’ that generate the IJ(.”, [}2), .
I ;(:)) combinations of j-many distinct implementations.

Let the cost of generating a combination of j-many implementations be the minimum cardi-
nality of the Coverage among the patterns that generate j-many implementations. Let this

I
pattern be denoted as P

min). The following step is used to calculate this pattern.

e Step 2.
Select the combination of j-many distinct implementations that can be generated with the
least cost from a combination of patterns, and construct the corresponding P,(mj::) pattern.
This can be done by using dynamic programming.
Specifically for each n = 1,2,3, ..., (f) the Dynamic Programming function that finds the

best combination of patterns is :

D : Set — of — implementations — Real

88

5.6 RECOGNITION SPACE

D™ + D) and

- P(l,‘:‘,’)

min

(1("’) .
eP,; st q<j and

(n) ~ p(m) | p(r)
Y crtul”

("
Prin

D™y = Min

Cost(P”:(n))) and

BL™ o pi™)

\ min
Where
- IJ(-") denotes the nth set of j-many distinct implementations, IJ(-") eC,
- I}(Tl) denotes the mth set of j-1 -meny distinct implementations, IJ('_"l) €C,

- 1,5" denotes the rth set of g-many distinct implementations, ¢ < j, I,sk) eEC

D(I](-")) denotes the minimal cost for generating the nth set of j-many implementations
Cost(P“:",)) is the cardinality of P Coverage.

Let j « j + 1 and repeat Step 1.
e Step 3.

[

) (1)
Return the pattern P& pUs) and its associated cost which is the cardinality of its

min min
Coverage.

(1

Theorem : The pattern P,(nt:n) is the least general pattern that matches all implementations

{I,I5,..I+} and is composed of patterns from the elements of the set P = {P |, P 2, ... P «}.

Proof :
(1)
We will show that pattern P,(n[}‘n) is the least general pattern that matches all implementations

{I,I,..1;} only composed of patterns in the elements of the set P = {Py, Pa, ... Pr}. We show

that by induction on the number of the implementations that we consider in the system.

e Base Case: The theorem holds for k = 1.

(1)
When we deal with one implementation I only, we can select P,(n’,-‘n) as the pattern that
generates the implementation and has the least Coverage from all the other known patterns

that match I This pattern is the glb of I's Abstraction.

89

5.6 RECOGNITION SPACE
e Induction Assumption: Suppose that we can construct P,(,f}“:) as the least abstract
pattern that matches the mth set of k - many different known implementations and its solely
composed from patterns in elements of P.
¢ Induction Step: We show that the same principle holds for £+ - many known implemen-
tations.

Let I(™

¢+1 De the nth combination of k+1 many implementations taken from the power-set C.

The construction algorithm claims that in order to find the pattern that generates 1/‘::-'1 with
the least cost (i.e. the least general pattern), we have to consider two cases. The first one is
based on finding the least cost of generating r-many and ¢g-many implementations where, ¢
< k+1and r < k+1. Because of the induction assumption, these quantities can be evaluated
and the corresponding patterns be created. In the second case it suffices to pick the pattern
that directly generates at least the nth combination of the k+1 many implementations from
the known patterns in Py, ..Pr. This quantity can be evaluated by examining the Coverage

of each such pattern. Therefore, we can estimate the cost of matching I,(c:)l and construct

[(")
by the algorithm the pattern pllest)

min

This result is very accommodating because it ensures the scalability of the pattern-based ap-
proach as it allows always to construct abstractions and in particular the least general abstraction
from a set of more specific ones.

The ability to build a pattern for more abstract and general algorithms and plans using simpler
and more specific ones is fundamental for organizing plan hierarchies, and allowing for hierarchical

plan recognition. !!.

11 Typical examples of hierarchical plan recognition are given in [Rich90], [Ning94]

90

CHAPTER 6

Experiments

In this chapter experiments on the proposed methods are presented together with conclusions that
can be drawn from them.

The software systems used for evaluating the proposed approaches are illustrated in Table.6.1.
Clips is an expert system shell, developed at NASA’s Software Technology Center, tcsh, and bash
are popular Unix shells and Roger is a real-time speech recognition system developed at McGill
University.

The experiments discussed in the chapter fall in the following categories:

(i} Experiments to measure Recall / Precision graphs for the metrics-based method for all
possible metric combinations
(ii) Experiments to measure Recall / Precision graphs for the DP-based method and for each
program feature used
(iii) Experiments to measure Recall / Precision graphs for the Markov-based method
(iv) Time and Space statistics for measuring the time performance of each matching process and

the number of potential clone candidates retrieved.

Precision / Recall graphs, indicating the overall performance of a particular matching process,
are based on sample queries involving selected code fragments of different lengths and complexities

that expert programmers could identify as components that have been replicated in the system.

Software System | Size (LOC) | # of Files | # of Functions
TCSH 44 754 46 658
CLIPS 32,807 40 705
BASH 27393 63 632

ROGER 13,615 39 235

TABLE 6.1. The Software Systems Used for Experimentation

6.1 EXPERIMENTATION FRAMEWORK

This selection was necessary in order to be able to calculate Recall values. This type of experiment
has been conducted using standard Information Retrieval performance indicator defined below.

Let C be the whole collection of the software components. For each query, the set C can be
partitioned into two disjoint sets:

» () containing R relevant documents and

e ()’ containing material irrelevant material.

Similarly, for each such query the set of c-many retrieved elements can be partitioned into two

disjoint sets

e q having r relevant documents to the query and

e q’ having r’irrelevant documents.

Following the classical Information Retrieval (IR) terminology Recall and Precision are defined

r

Recall = 5 (1)

and

(2)

Precision =

(e e |

Important questions such as:

e Size of Corpus,

o How many queries considered and how these were selected,
e How queries were formulated,

e How relevant answers were recognized,

e How non-detected relevant items were computed,

are discussed in the following section.

1. Experimentation Framework

An important point for computing Recall and Precision is the definition of a. measure of relevance
between a pattern and a retrieved code fragment. To our knowledge, there is no formal definition of
relevance between two code fragments and there are no standard criteria to recognize one code frag-

ment as being a clone of another. In relevant research studies [Baker95], [Johnson94a), [Halst77],

92

6.1 EXPERIMENTATION FRAMEWORK

[McCabe90], [Jankowitz88], code cloning has been seen as a problem of examining statistical,
or textual properties of the code. However, experts make fine distinctions on the operations and
the criteria for code cloning. Programmers may argue that textual similarity is the most important
criterion. Others may argue that the semantics of the system and the Input/Qutput relations are
more important. Within this framework a safe assumption is to:

e use the definitions of code cloning appearing in the literature [Baker95] and,

e obtain feed-back from programmers on establishing the relevant data set for each query.
Results obtained for each query are tested against this set to establish Recall, and Precision
measurements.

Within this experimentation framework, programmers have identified the following cloning

scenaria for two code fragments:

(i) two code fragments they are identical (e.g. are found identical using the Unix utility diff),
or
(ii) they have the same structure but modified variable names or data types, or
(iii) two code fragments contain common sequences of statements or expressions or,
(iv) one has been obtained by parameterizing the another, or,

(v) one differs from the other on inserted, deleted or substituted statements and expressions.

These scenaria, cover most of the text-based and measurement-based approaches in the current
in the literature [Baker95)], [Johnson94aj, [Paul94]. As far as the semantic-based approaches
are concerned, we believe that these can be covered mostly in the framework of language semantics
and formal techniques that may indicate functional or behavioral similarity between code fragments.
Note that in general, functional and behavioral equivalence is an undecidable problem, and even for
the relaxed conditions where we may prove behavioral similarity most of these techniques are not
tractable. The ultimate goal of IR is to retrieve components to be presented to a user who makes the
final decision on their appropriateness. Furthermore, we feel that the semantics approach exceeds
the scope of the pattern-matching based framework proposed in this thesis, and can be left as future
work.

Following standard Information Retrieval (IR) practice, consultation with programmers of the
subject systems was performed in advance to select code fragments that were replicated in the
system. Each replicated component has been tagged by its location (file, length in lines of code) and
content (number and type of statements it contains). These “tagged” components form the basis

for evaluating query results and thus calculating Recall and Precision.

93

6.1 EXPERIMENTATION FRAMEWORK

We have considered a space of 940 functions and we formulated 20 queries in total for each
method considered. This ratio corresponds well with the same number of queries per number of
documents that has been used in standard Information Retrieval test sets [Maarek91], with reported
ratios in the range of 2.3% to 2.6% have been reported.

Queries fall in two categories:

(i) Queries for code-to-code matching tested on the metrics-based and the DP-based approach

(ii) Queries for the Markov-based approach

The first query type was selected by programmers that have experience with the structure and
the contents of the subject systems. Essentially, these queries are code fragments for which the
programmers knew to be or to have clored instances in the subject system. Code fragments were
selected based on:

e The knowledge that these were replicated components,

e Coverage of the cloning scenaria discussed above.

The second query type was selected by considering pseudo-code descriptions given by the pro-
grammers and correspond to the code fragments considered in the code-to-code matching queries.

These pseudo code queries aimed at testing both the indexing capabilities of the features pro-
posed and the query capabilities of the ACL language itself.

Obtained results were checked against the set of the relevant components that have been iden-
tified by the programmers.

The relationship between Recall and Precision has been computed using the standard IR ap-

proach which consists of :

¢ Evaluating Recall and Precision for each query at every given cut-off point,

¢ Performing macro-averaging so as to obtain a single Recall and Precision value for every
given cut-off point,

e Using linear interpolation to obtain Precision values for Recall values that were not effectively

achieved.

Linear interpolation was used to compute Precision values p* for standard Recall values r* by

applying the following formula :

. Tt —r
PP=pm+ r: (p2 ~ 1) (1.1)

Ty —
where 7, and r» are the recall values immediately to the left and to the right of * and p, p2

are the corresponding precision values.

94

6.2 METRICS-BASED MATCHING EXPERIMENTS

2. Metrics-based Matching Experiments

2.1. Precision Per Metric Usage at Max. Recall Level. This experiment illustrates
the Precision ! variation per metric combination used, at Recall level 95.8% (which was the highest

effectively achieved Recall level in these experiments), and similarity threshold distance 0.0.

¢ Using One Metric: among the single metric usage scenario the Precision is higher when using

the Kafura metric (Fig.6.1). An explanation for this behavior is the complexity of the metric
in terms of the variety of the features used to compute it. Note that in absolute percent
Precision values illustrated in Fig.6.1, the Kafura metric achieves a 1.7% Precision.

¢ Using Two Metrics: the Precision increases when using the combination of the Kafura met-

ric with S-Complezity (Fig.6.2). An explanation is the reduction in noise introduced by
intersecting the Fanout feature in both metrics. An interesting point here is the influence
of the McCabe metric when combined with the Kafura metric. The reason for this is that
McCabe introduces a new low correlated feature, and namely, the structure of the Control
Flow Graph.

¢ Using Three Metrics: the Precision increases when using 2 combination of the Kefurae metric,

the McCabe metric and, S-Complezity (Fig.6.3). This result is expected as it includes the
metrics from the first best two metrics combinations. The interesting point though is the
high Precision we obtain at high Recall levels by the use of the D-Complezity instead of
the McCabe metric. This result can be explained by the nature of the D-Complezity metric,
which essentially imposes the common constraint feature, global variables to the Kafura
metric.

e Using Four Metrics: the Precision increases when using a combination of the Kafura metric,

the McCabe metric, the S-Complerity metric, and the D-Complezity metric (Fig.6.4). This
is, again, an expected result as it contains the best combinations from the above mentioned
levels. The interesting point here is the possibility of replacing the D-Complexity with the
Albrecht metric. This replacement can be explained by the I/O features (read operations,
files opened) of the Albrecht metric. Note that globals and fanout in D-Complezity have
already been covered by the S-Complerity and Kafura metric. At this point the Albrecht
metric adds new matching features and this is the reason it makes such a high contribution.

e Using Five Metrics: we can achieve an effective Recall level of 95.8% and maintain a Precision

level of 10.2% (Fig.6.6). This is not a discouraging result if one considers that in all of our

experiments (involving the samples queries, and brute-force comparison between all function

Please note that the Precision values illustrated in the figures in this chapter are given in percentage points

95

6.2 METRICS-BASED MATCHING EXPERIMENTS

FIGURE 6.1. Precision values (in percentage points) for ane Metric used (Recall level 95.8%.)

pairs) we did not retrieve more that 11.3% of the total system size. That means using this
approach we can retrieve 11.3% of the system for which we know there are 95.8% of the

existing clones.

2.2. Impact of per Metric Threshold Value Variation on Precision. This experiment
illustrates the impact of the threshold value changes along every metric axis on precision for a fixed
recall value. The motivation for this experiment is to observe the behavior and the impact each
metric has on the precision of our results. For this experiment we kept four metrics with a constant

zero threshold and varied the fifth metric using the step distance criterion. The impact of threshold

96

6.2 METRICS-BASED MATCHING EXPERIMENTS

FIGURE 6.2. Precision values (in percentage points) for combinations of two Metrics (Re-
call level 95.8%.)

changes on the precision of the results is measured as the average percent change of the precision
between zero and the 10th step value on each metric axis varied.

The results are illustrated in Fig.6.5 and indicate that the precision is affected the most (drops)
for threshold changes in the Albrecht and the Kafura metric. A possible explanation is the complexity
and the variety of features used to compute these metrics. By varying a threshold in these metrics,
we assume changes in a variety of low correlated features that are not likely to be all changed in a
replicated component. Therefore, by increasing the threshold value we allow for more noise to be

added which affects Precision. Precisions were measured for 44.4% Recall level.

97

6.2 METRICS-BASED MATCHING EXPERIMENTS

FIGURE 6.3. Precision values (in percentage points) for combinations of three Metrics
(Recall level 95.8%.)

2.3. Items Retrieved per Metric Usage. This experiment illustrates the impact of
metric usage on the amount of objects retrieved. For this experiment we have used brute force
matching between all possible function pairs for each system examined. Values have been averaged
for the four systems and for the metric combinations in each category. As expected these results,
illustrated in Table.6.2 follow closely the observations on Precision Per Metric Used for Maz. Recall
experiment. However, there is a slight variation in the use of S-Complezity and D-Complezity.
This experiment illustrates that D-Complezity can reduce the size of the retrieved components,

when combined with the Kafura metric. We believe that a possible explanation for this behavior is

98

6.2 METRICS-BASED MATCHING EXPERIMENTS

FIGURE 6.4. Precision values (in percentage points) for combinations of four Metrics (Re-
call level 95.8%.)

the granularity of the components involved in this experiment. This experiment is applied at the
function-level, where the impact of data flow may be more evident.

As far as the retrieval times are concerned, note that they are is more sensitive to the number
of objects considered during the matching process than to the number of objects finally reported.
This explains why similar times are reported for different numbers of pairs reported. Overall, this

experiment gives a gross view of the metrics matching behavior.

99

6.2 METRICS-BASED MATCHING EXPERIMENTS

FiGure 6.5. Precision Change (%) (Drop) by varying threshold values for each metric
dimension. Shown is the change between the 1st and the 10th step threshold value.

2.4. Recall Per Distance Range. This experiment illustrates the significance of the
distance values to the recognition process. Using all five metrics with threshold set to 2.5 units and
cut-off values illustrated in Table.6.3 we measured the recall using our sample queries. The result
drawn from this experiment is that using the metrics-based pattern matching technique we obtain
most of the clones (57.7%), at distance values < 0.6. This result indicates that this technique can
be used as a fast first approximation to the clone detection problem. Note that on thresholds set
close to zero and using all five metrics this technique is the simplest and fastest to apply. Moreover,

the only additional computation involved in this technique is the comparison of the metric values

100

6.2 METRICS-BASED MATCHING EXPERIMENTS

Metric Combination | Potential Clone Pairs Retrieved | Retrieval Time (Hr:Min:Sec)

K 1,777 0:14:05
A 14,953 0:42:20
D 15,023 0:42:33
S 17,100 0:54:45
M 26,526 1:40:53
D-K 529 0:09:07
A-K 534 0:11:08
M-K 608 0:12:33
S-K 863 0:11:10
S5-D 1,841 0:10:23
S-D 2,365 0:12:57
S-M 3,035 0:12:40
D-M 4.032 0:11:55
M-A 4,100 0:13:30
D-A 12,381 0:17:44
D-M-K 283 0.08:24
M-A-K 288 0:10:47
S-AK 319 0:08:56
SDK 321 0:09:27
S-M-K 339 0:10:00
D-A-K 523 0:10:14
S-M-A 942 0:11:14
S-D-M 1,034 0:10:29
S-D-A 1,837 0:12:01
D-M-A 3,677 0:11:45
S-M-A-K 231 0:09:31
S-D-M-K 231 0:09:31
D-M-A-K 282 0:09:29
S-D-A-K 319 0:10:12
S-D-M-A 942 0:10:15

[SD-M-A-K 231 1 0:05:27]

TABLE 6.2. Metrics-based matching statistics. The size of all possible pairs for this exper-
iment is 248,160. The Recall level for this experiment using all five metrics is estimated
as 44.4%.

as the metrics are calculated right after parsing, at link time. Note that the Recall/Precision graph
illustrated in the following section suggests for such Recall level a Precision of 46.5% which is a good

indication for the usefulness of this technique.

2.5. Recall / Precision. Precision values for specific Recall values were computed by
performing an Information Retrieval Experiment. Average Recall values and average Precision
values have been used to produce, with linear interpolation, Precision values for standard Recall

values (0.0, 0.1, 0.2, .. 1.0). Because of the erratic nature of low recall values for small samples

101

6.2 METRICS-BASED MATCHING EXPERIMENTS

Distance Range | Recall
0.0 44.3%
<0.2 55.4%
<04 57.7%
<056 57.7%
<08 68.2%
<1.0 68.2%
<12 82.1%
<14 82.1%
<16 82.1%
<18 82.1%
<25 96.0%

TABLE 6.3. Recall / Distance Value Range (Metrics)

[Jones81] we assigned a Precision value of 1.0 to Recall value of 0.0. The collection considered for

testing consisted of Clips, and the Roger system. We formulated 20 queries for which programmers,

have identified replicated components in the source code.

In this experiment we report the relation of linear Recall to average Precision, using the best

combinations obtained by the experiment discussed in Section 2.1.

The obtained results indicate that:

Using one Metric (Kafura): we have an almost linear drop in Precision and we obtain a low

Precision for high Recall values. This type of analysis does not provide any benefit as all
metrics have already been computed and we do not gain in Precision. The matching time
using this method is acceptable but is 64% higher than the best time performance we can
obtain. The drawback of using only one metric is the drop in Precision which is almost 7
times lower than the best we can achieve for the highest Recall value.

Using two Metrics (Kafura, S-Complexity): we have a significant gain in Precision for low

to medium Recall levels. This can be explained by the common constraint imposed by the
fanout feature in both metrics. At higher Recall levels we achieved lower values than the
ones achieved using the Kafura metric alone. We suspect, though, this is because of the
interpolation noise in previous curve above (one metric).

Using three Metrics (Kafura, S-Complexity, McCabe): we have a new gain in Precision for

corresponding Recall values. At this point the McCabe metric is the factor for the Precision
increase as it adds the Control Flow component to the already considered features.

Using Four Metrics(Kafura, D-Complexity, McCabe, S-Complexity): we have a new gain

in Precision that can be explained by the common constraints introduced by the common

102

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

features used for D-Complezity, S-Complezity, and the Kafura metric, combined with a new
feature introduced by the McCabe metric.

e Using Five Metrics: we obtain the best curve. This is the best combination to use among

the metrics we considered. However, it is very close to the one using four metrics. This
may suggest dropping the Albrecht metric altogether or replace it with S-Complezity. This
would be a reasonable idea, but note that the metrics are computed at link time at linear
complexity on the AST nodes, and therefore do not constitute a significant computation
bottleneck. In any case, each metric has its advantages and it is not a straightforward choice
on which metric to ignore. D-Complexity is easier and little bit faster to compute, but
Albrecht is sensitive to more features and may be better to use in the long run. Experiments
with higher levels of granularity (function level, also shown in Table. 6.2) indicate that when

we compare D-Complexity and Albrecht alone, then Albrecht generates fewer candidates.

3. Dynamic Programming Experiments

3.1. Recall Per Distance Range. This experiment, illustrates the significance of the
distance values to the retrieval process. Using each of the three features we consider in the DP
approach (Set-Uses, Types, Metrics) and cut-off values illustrated in Table.6.4 we measured the
recall using our sample queries. The overall result that appears from this experiment is that, by
using the DP-based pattern matching technique, the recall is almost uniformly distributed over
the distance values. This indicates that this technique is more accurate on measuring differences
occurring between two code fragments. Moreover, effective Recall values of 90% obtained with DP
were found to correspond to Precision values of 21.1% when using the Set-Uses criterion, 25.5%
when using the Types criterion, and 16.8% when using the Metrics criterion (see Table.6.9). Note
that for similar Recall value of 90.0%, the metrics-based matching gave Precision level of 9.0%. This
is a very strong indication of the usefulness of this approach when the user is willing to invest more
time for the matching process in order to gain in precision. The DP-approach is particularly useful
for identifying components that have changed between versions of a large system.

Retrieval time performance are illustrated in Table.6.5.

3.2. Precision Per Distance Range (Set-Uses Matching Criterion). This experiment
was performed to evaluate the overall Precision behavior of the DP matching using the Set-Uses
criterion (Fig.6.7). This experiment was performed by applying brute-force matching between all
functions in each one of the software systems we used for our experimentation, with similarity

threshold set to 0.0. The results were inspected manually to calculate the Precision level.

103

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

Recall/Precision Per Number of Metrics Used

1 N LI T 1]] 1 1 1 {
0.9F _ \\”'—,‘;;\ ____ 5 Metrics Used 1
081 RN +\‘\ -.—. . 4 Metrics Used .
. . TR
~ . \
0.7r N _\ .X.. . 3 Metrics Used N
\
v
0.6 \ \ —-: 2 Metrics Used .
c Voo
o AN
] v i]
o 0.5¢ v -\ ...:1Metric Used 1
— \ \
a \ .
0.4r A 1
.
\
0.3t M -
\-
e
N \ - -
0.2 i
VTN
ORI
0.1 I~ AN 4__ .
\ NN
- e
O | i 1 | L L 1]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

FIGURE 6.6. Precision/Recall Graph for different metric combinations. The metric com-
binations were selected among the ones that give the highest precision in their category
class (i.e. the best combination of two metrics is S-Complexity and Kafura)

The first observation is that DP is a very good method for localizing exact clones. This is
indicated by the 100% precision on the obtained results when the threshold has been set to zero.
This is of no surprise as by setting the threshold to zero we force the matcher to consider no insertions,
nor deletions nor substitutions and require that variable names between the two components have
not been altered. These requirements do not leave any margin for considering cases where one code
fragment is a modification of the other. The corresponding Recall level was 14.0%. The second

observation is that the Precision drops by 17.3% and stays at acceptable levels (82.7%) for values in

104

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

Distance Range | Recall Level (Set-Uses) | Recall Level (Metrics) | Recall Level (Types)
0.0 14.0% 39.4% 17.9%
<05 14.0% 39.4% 17.9%
< 0.99 20.4% 44.4% 17.9%
<15 24.4% 44.4% 17.9%
< 1.99 24.4% 56.9% 30.0%
<299 34.4% 58.9% 35.0%
< 3.99 41.4% 58.9% 42.0%
< 4.99 46.4% 58.9% 44.5%
<7.99 58.9% 74.9% 51.4%

< 11.99 72.1% 92.1% 84.9%
< 15.0 92.1% 92.1% 89.9%

TABLE 6.4. DP-based matching statistics. The size of all possible pairs for this experiment
is 248,160. The Recall level achieved for this experiment is estimated as 44.4%.

Critertion Used | Potential Clone Pairs Retrieved | Retrieval Time (Hrs:Min:Sec

Set-Uses 231 0:12:17
Metrics 231 0:11:02
Types 231 0:08:10

TABLE 6.5. Recall / Distance Value Range (DP)

Distance Range | Precision Drop (%) | Recall Increase (%) | Total Recall Achieved (%)

0.01 - 0.99 -17.3% +6.4% 20.4%
1.0 - 1.99 -35.1% +4.0% 24.4%
2.0 - 2.99 -8.8% +10.0% 30.4%

TABLE 6.6. Recall / Precision Relation Per Distance Value Range (DP Set-Uses Criterion)

the range of 0.01-0.99. This is because such a distance range indicates a small number of changes
were needed for two code fragments to be considered clones. The corresponding increase at the
Recall level was 6.4%. The next higher drop (by 35.1%) in Precision is introduced for value range
from 1.0-1.99 where a Precision of 47.6% is observed. The corresponding gain in Recall is 4.0%.
Finally for the distance range of 2.0-2.99, for which we have observed a drop of 8.8% in Precision we
have a gain of 10.0% in Recall. These variations are illustrated in Table.6.6. These results indicate
that the Set-Uses DP-based matching is a useful approach when exact clones are sought, or minor

modifications between code fragments are allowed, and the recognition speed is not crucial.

3.3. Precision Per Distance Range (Metrics Matching Criterion). This experiment
was performed to evaluate the overall Precision behavior of the DP matching using the Metrics

criterion (Fig.6.8). The major observation from this experiment is that we can achieve a high

105

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

FIGURE 6.7. Average Precision (in percentage points) Per Distance Range for the Set-Uses criterion.

Precision for distances close to zero, but the Precision drops drastically for value ranges where the
Set-Uses criterion maintained higher Precision values. The reason for this behavior is that the
closer the distance is to zero, the fewer modifications between the two code fragments there are and,
therefore, the higher the Precision of the achieved results. Once we deviate from distance zero we
allow noise, in terms of insertions, deletions and substitutions. Compared to the results obtained
using the Set-Uses criterion, two code fragments have a lower distance using the Metrics criterion
because metrics when considered at the statement level loose their significance, and, therefore two

statements may give a low comparison cost even if they may be different. This has a direct effect

106

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

FIGURE 6.8. Average Precision (in percentage points) Per Distance Range for the Metrics criterion.

on the Precision of this method. The relation between Recall and Precision per distance range is
illustrated in Table.6.7. These results indicate that with the Metric criterion in DP-based matching
we have significant loss in Precision and little gain in Recall when we deviate from zero distance
threshold 2. Therefore, this method is not the best to apply, but it is a compromise between the
efficiency and speed of computing and comparing metrics, as well as the increased accuracy provided
by the DP-based matching. This method is to be applied when exact clones are sought, and the

recognition speed is a significant factor.

2Zero distance threshold means that we retrieved components with distance equal to zero

107

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

Distance Range | Precision Drop (%) | Recall Increase (%) | Total Recall Achieved (%)
0.01 - 0.99 -16.0% +3.0% 44.4%
1.0-1.49 -54.0% 0.0% 44.4%
TABLE 6.7. Recall / Precision Relation Per Distance Value Range (DP Metrics Criterion)

3.4. Precision Per Distance Range (Data Types Matching Criterion). This ex-
periment was performed to evaluate the overall Precision behavior of the DP matching using the
Data-Types criterion (Fig.6.9). This criterion performed very well for distances close to zero but
results in a drastic drop of Precision for distances higher than zero. The reason for this behavior
is that data types of variables updated or used impose only limited constraints on the structure
and the quantitative values of the features that may be used to characterize and classify a software
component. The fact that two statements use a variable of the same data type does not impose
any other requirement on the class of the two statements compared (e.g. a While-Statement, an
If-Statement) or on their detailed features (e.g. what globals are set or used in the statement, how
many I/O operations are performed, how many functions are called from a statement). The Recall /
Precision relation per distance range values is illustrated in Table.6.8. These results suggest that for
distances close to 0.0 the Precision of this method is dropping very fast and we have not observed
any difference in Recall. This can be explained by the fact that the data types criterion is not a very
good one on localizing exact clones, and allows for noise to be added easily. However, this approach
performed well on the Recall/Precision experiments, especially at high Recall values where Precision
level stabilized at acceptable levels compared to the other criteria (please refer to Fig.6.10). The
reason is that when we compare code fragments using the Data Types criterion we can obtain most
of the clones just by considering the fact that the two statements use some complex Data Type.
We believe that a possible explanation for the relatively high Precision obtained in this experiment
is not because the approach is better than the others but because code fragments that may use a
particular specialized (i.e. complex) data type are few in a software system compared to ail other
data types in the same system. Therefore, even at high Recall values we were able to achieve a good
Precision rate. This approach is recommended when we are looking for clones where we know that
their main characteristic is that they contain a very specialized data type that exists only in a few

parts of a large system.

3.5. Recall / Precision Per Matching Feature Used. Precision values for specific
Recall values were again computed by applying the same set of queries we have used for the Metrics-
based matching approach. Average Recall values and average precision values have been used to

produce with linear interpolation precision values for standard recall values (0.0, 0.1, 0.2, .. 1.0).

108

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

FIGURE 6.9. Average Precision (in percentage points) Per Distance Range for the Data-
Types criterion.

Because of the erratic nature of low recall values for small samples [Jones81] we assigned a Precision
value of 1.0 to Recall value of 0.0.

The obtained results indicate that:

o Using the Set-Uses Criterion: we have obtained the best performance on average compared

to the other two approaches. Precision levels for low Recall values were in between the
Precision levels achieved using the Metrics criterion, and the Data Types criterion. This

behavior is due to the noise introduced in the Metrics criterion by linear interpolation as

109

6.3 DYNAMIC PROGRAMMING EXPERIMENTS

Distance Range | Precision Drop (%) | Recall Increase (%) | Total Recall Achieved (%)

0.01 - 0.99 -48.0% 0.0% 17.9%
1.0-2.0 -8.0% +12.1% 30.0%
2.01 - 5.99 -8.0% +17.3% 47.3%

TABLE 6.8. Recall / Precision Relation Per Distance Value Range (DP Data Types Criterion)

Standard Recall | Precision (Set-Uses) | Precision (Metrics) | Precision (Types)
0.0 100.0% 100.0% 100.0%
10% 83.3% 89.2% 77.5%

20.0% 71.9% 78.4% 62.5%
30.0% 74.0% 67.6% 74.9%
40.0% 75.5% 57.6% 72.9%
50.0% 66.0% 59.7% 65.9%
60.0% 52.9% 61.6% 58.1%
70.0% 44.7% 45.8% 50.3%
80.0% 36.0% 30.9% 42.6%
90.0% 26.1% 16.8% 25.5%

TABLE 6.9. Recall / Precision Table (DP)

we were not able to achieve Recall values less than 34.4%. Therefore for low Recall values
it seems that the Set-Uses criterion does not perform better than the Metrics criterion, but
we believe this is mainly due to the noise introduced at the metrics Recall/Precision curve.
However, the two curves are quite close for low Recall levels. At higher Recall values, the
approach performed marginally worse than the Data Types criterion. The reason for this is
that some of the queries contained data types that could be found only in parts of the system
while the use of Global Identifiers (that introduced noise under the Set-Uses criterion) were
evident in large parts of the system, and therefore allowed more candidate components to
be considered. However, the Set-Uses approach is safer to use in general queries as it does
not impose as strict constraints on the parts of the system that can be retrieved.

e Using the Metrics Criterion: we have obtained better performance than using the metrics-

based matching (simple metrics comparison), but not as good as the overall performance
obtained by the Set-Uses and Data-Types criterion. The reason for this result is that the
Metrics criterion looses its relevance at such a low level comparison granularity (i.e. state-
ment level). The increased performance at low Recall values is reported due to the linear
interpolation used for Recall values less than 34.4%. This approach is a good compromise

between the speech of the metrics-based matching and the added accuracy of the DP-based

110

6.4 MARKOV-BASED MATCHING EXPERIMENTS

Average Code Size 30,392 LOC
Min Segmentation Time 3 secs.
Mazx Segmentation Time 184 secs.
Average Segmentation Time / Query | 38.06 secs.
Min Matching Time 32 secs.
Maz Matching Time 3619 secs.
Average Matching Time / Query 638.74 secs.

TABLE 6.10. Performance Statistics for 100 queries in three software systems (Tcsh, Clips, Roger)

matching. This approach is to be used when large software packages are analyzed and the
programmer would like to balance the speed and accuracy of the obtained results.

e Using the Data Type Criterion: we have obtained marginally the highest performance among

all the other approaches. The reason for this result is that our queries contained Data Types
that are found only in a few parts of the system and therefore the retrieved items were fewer
than the number of items retrieved by the other approaches. This phenomenon forced the
Precision level to be slightly higher than the others. Therefore, this criterion is promising
and can be used when the pattern sought contains specialized Data Types that are used only
in parts of a system. However, it is not safe to assume that all queries a user asks may fall
in this category, and the slight gain in Precision compared to the Set-Uses criterion is not a
significant factor for choosing the Data Types criterion which imposes constraints (i.e. good

performance when complex data types are present).

4. Markov-based Matching Experiments

4.1. Performance Statistics. In Table.6.10 performance statistics for the Markov-based
approach are illustrated. This experiment was conducted by formulating 100 ACL queries and per-
forming pattern localization in Clips, Tcsh and Roger. One observation is that the code delineation
criterion is quite efficient in localizing candidate code fragments to be considered by the pattern
matcher. The average delineation time is 38.06 seconds which is an acceptable performance given
the average code size. Another observation is the rather high average matching time reported in these
queries. One reason for this is that most of the queries contained several wild character statements,
and utilized the interleaving and the choice operator. Furthermore, performance was degraded due
to the frequent garbage collection operations utilized by the LISP environment in which we im-
plemented the matcher. Undoubtedly an implementation of the matcher in a faster programming

language (i.e. C) may provide a match better performance. However, the LISP implementation in

111

6.4 MARKOV-BASED MATCHING EXPERIMENTS

Recall/Precision For DP-Based Matching

1 I I T] T 1 1]]
DN
AN
L\ . teri]
0.9 N ____: Set-Uses Criterion
N N
AN

0.8 AN . ——————: Metrics Criterion 1

0.7p \\ .) TN e : Data Types Criterion
506 -
o N\
Q KV
(0] -
@ 0.5F N :

\
N\
\
04r \ .
\
\ .
\ "
0.3 - \ . T
\

\
0.2+ NS
0'1 i] 1 |] i 1 I

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

Recall
FIGURE 6.10. Recall/Precision for DP-based Matching.

all of the discussed experiments performs better than other existing implementations [Magdal96],

[MacLaugh95].

4.2. Recall / Precision Comparison. Precision values for specific Recall values were
again computed by applying the same set of queries we have used for the metrics-based matching
approach. Average Recall values and average precision values have been used to produce with linear
interpolation precision values for standard recall values (0.0, 0.1, 0.2, .. 1.0). Because of the erratic
nature of low recall values for small samples we assigned a Precision value of 1.0 to Recall value of

0.0.

112

6.4 MARKOV-BASED MATCHING EXPERIMENTS

Recall/Precision For Markov-Based Matching
1 ¥ 1 | ' ! 1 1

T

0.9

¥

0.8

o
-\'
T

Precision
o
(o))
1

0.5r

T

0.4

0.3

0‘2 J I 1 l 1 1 ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

FIGURE 6.11. Recall / Precision graph for the Markov Based matching.

The results obtained using this technique were clearly the best among the approaches we have

experimented with. The major observations on the Recall/Precision curve obtained are:

o the Precision levels are maintained at high values for higher Recall levels when compared
with the best curves obtained for the metrics-based approach and the DP-based approach.
e the performance of this approach is the best for Recall levels approximately in the range
of 40.0% - 70.0%, but is comparable with the performance of the DP approach for Recall
levels lower than 50%. The reason for this behavior is that components that are structurally

similar with no major modifications can be captured by both the DP-based method and

113

6.5 OVERALL RECALL / PRECISION COMPARISON

the Markov-based method. However, when modifications are introduced (i.e. changes in
variable names, changes of statement types), the DP-based method may reject candidates
based on threshold cut-off values, while the Markov approach will allow more matching
flexibility in this cases (i.e. will succeed in matching a Abstract-Conditional-Statement with
an If-Statement or a Switch Statement while the DP will fail and will effectively consider
such a comparison as an insertion or deletion).

e The drawback of the approach is that we could not effectively achieve, on average, Recall
values higher than 78.4%, so that any Precision value obtained for Recall level higher than
78.4% was computed using linear interpolation on the assumption of a Precision value 0.0
for Recall value 1.0. This is the most pessimistic assumption but ensures that the resulting
curve is the lowest that can be achieved. In our experiments, we had queries that achieved
a Recall level higher that 78.4%. These queries gave an overall average Precision of 30.0%

which is a more realistic estimate, for the performance of this approach.

5. Overall Recall / Precision Comparison

In this section we present a comparison the Recall/Precision curves for the best combinations
observed in each of the pattern matching techniques proposed. In Fig.6.12 these Recall/Precision

curves are illustrated.

o Clearly, the Markov-based approach performs better that the other two. The basic advan-
tage of this approach is that it maintains a high Precision level for high Recall levels. With
our experiments we effectively achieved an average Recall value of 74.8% for which we we
obtained, using the Markov-based approach a Precision of approximately 40.3%. The lin-
ear drop in Precision we observe for Recall values higher than 74.8% is a product of linear
interpolation taking the most pessimistic assumption that at Recall level 100.0% we have
Precision 0.0%. In practice this assumption does not hold. In fact those of our experiments
that achieved effective Recall values higher than 74.8% suggested a Precision value of 30.0%.
The drawback of this method is that it is slower than the other two, especially when the
formulated queries involve the choice and the interleaving operator. We think that signifi-
cant performance enhancements can be achieved by implementing the algorithms in a more
efficient programming environment. This approach is suitable for cases where high Precision
and high Recall values are sought.

e The DP-based method is the second best approach of the ones we have tried. For Recall
levels lower than 45.0% the algorithm seems not to perform as well as the metric-based one.

This behavior can be explained by the interpolation error introduced at low Recall values

114

6.5 OVERALL RECALL / PRECISION COMPARISON

of the metrics-based approach. Note that in the metrics-based method, the lower effectively
achieved Recall value was 44.3% at distance 0.0. Recall values from 0.0% to 44.3% were
interpolated. This explains the linear drop in Precision for Recall values less that 44.3%.
The overall acceptable Recall/Precision performance of this approach combined with its
good time performance make it a very attractive candidate for cases where the user wants to
balance between accuracy and speed. Clearly this approach is very suitable for large systems
in which exact clones are sought.

The metrics-based method performed very well for Recall values less that 44.3%. For higher
Recall values we observed a linear drop in Precision up to Recall values of 82.5%. For Recall
values higher than 82.5% the method seems to stabilize at a Precision level of 10.2%, which
is lower than the Precision levels achieved using the other two methods at this Recall level.
We can safely conclude that this method trades speed for accuracy in the obtained results.
The metrics-based method is very suitable for large systems in cases for which only part of
the clones are sought. Moreover, this method can be applied as a preprocessing step to limit
the search space of a more accurate but slower matching technique such as the DP-based or

the Markov-based ones.

115

0.9

0.8

0.7

0.6

Precision
o
(3,1

0.4

0.3

0.2

0.1

6.5 OVERALL RECALL / PRECISION COMPARISON

Recall/Precision For the Approaches Proposed

I 1 L 3 T L T

___:Markov-Based

——— : DP-Based

... - Metrics~-Based

1 I 1 | 1 L 1 !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall

FIGURE 6.12. Recall / Precision graphs for the pattern matching methods proposed.

0.9

116

CHAPTER 7

The System Architecture

1. Communication with other Tools

Design recovery is a process that produces high-level descriptions of a software system from an
analysis of its implementation. Usually this means extracting requirement or specification concepts
from a program’s source code. Once design decisions are recognized, they are then represented
in a form that is suitable for subsequent use. This process requires the integration of different
technologies, perhaps in more than one software environment, and with a variety of analysis tools.
In developing an integrated design recovery environment, the following important problems have to

be considered:

(i) Program representation,

(ii) Adaptation of data, control, and presentation to the components of the environment,

(iii) Extension of the data models and interfaces to support the registration of new tools and
user-defined objects, dependencies, and functions,

(iv) Development of domain-specific, syntactic and semantic pattern matching for plan localiza-
tion and recognition,

(v) Representation and support of processes and methodologies for reverse engineering,

(vi) Construction of robust user interfaces, and algorithms, capable of handling large collections

of software artifacts.

Data integration is essential to ensure data exchange between tools. This is accomplished
through a common schema.

Control integration enhances inter-operability and data integrity among different tools. This
has been accomplished by the development of a server that handles requests and responses between

tools in the environment [Wasser90].

7.1 COMMUNICATION WITH OTHER TOOLS

Rigl Refi Pattern -
Local Local Local

Workaspace Workspace Warkspace

/ T —
Caontrot Intagration Server

'

Schema
Data Intagration Object Baae M |4
Toal

FIGURE 7.1. The implemented system architecture for tool integration. Dashed lines
distinguish computing environments, usually running on different machines.

A solution to the above mentioned problems is based on a system architecture in which all tools
communicate through a central software repository that stores, normalizes and makes available the
results of analysis, the design concepts, the links to graph structures, and other control and message
passing mechanisms needed for the communication and cooperative execution of different tools. Such
integration is achieved by allowing a local workspace for each individual tool in which specific results
and artifacts are stored, and a translation program for transforming tool-specific software entities
into a common and compatible form for all environments entities.

The translation program generates appropriate images in the central repository of objects shared
with local workspaces.

A system architecture for such an integrated reverse engineering environment is illustrated in
Figure 7.1.

Communication in this distributed environment is achieved by scripts understood by each tool
using a shared schema data model for representing data from the individual local workspaces of each
tool and, a message passing mechanism for each tool to request and respond to services.

A customizable and extensible message server named Telos Message Bus (TMB) [Mylo96]

handles data communication. This message server allows all tools to communicate both with the

118

7.1 COMMUNICATION WITH OTHER TOOLS

repository and with each other, using the common schema. These messages form the basis for all
communication in the system.

The central repository is responsible for normalizing these representations, making them avail-
able to other tools, and linking them with the relevant software artifacts already stored in the
repository (e.g., the corresponding nodes in the abstract syntax tree).

Communication scripts are in the form of s-expressions. Each s-expression is wrapped in packets
called network objects and sent via TMB to the appropriate target machine. TMB uses Unix sockets
for the communication and utilizes the network infrastructure.

An example s-expression for a function called hostnames.matching is given below. The same
function is illustrated as an object in Fig.7.2 where the repository browser provides a graphical view
of the repository contents.

(Function_176 Token
(Function)
O
({((refineName)
(("#176")))

((fanout)

((10.0)))

((cyclomaticComplexity)

((5.0)))
((functionPoint)
((115.0)))
((calls)
((Function_175)
(Function_174)))
((definesLocals)
(("word")
("number")
("need_here_doc")
("yylval™)))
((definesGlobals)
(("shell_input_line")
("pushed_string_list")

("shell_input_line_index")))

119

7.1 COMMUNICATION WITH OTHER TOOLS

((functionName)

(("hostnames_matching”)))))

The shared schema facilitates data integration and encodes program artifacts (i.e. the AST),
as well as analysis results (e.g. the call graph, the metrics analysis).

A system integrating Refine, Rigi and Telos running simultaneously at three separate sites
(Toronto, Victoria and Montreal) has been implemented and is currently in use.

This architecture has been further expanded to accommodate control and data integration

between different tools and processes in a Cooperative Information System Environment [Mylo96].

1.1. Data Integration. Data Integration has two major objectives, namely:

e to represent the source code in the centralized repository and make representations available
to other tools even if they use a different program representation scheme in their local
repositories,

e to model the analysis results in order to make them available to other tools for subsequent

analysis.

The Data Integration schema consists of two parts. The first part captures information about
the program syntactic structure currently used by Refine and Rigi. Multiple inheritance allows
encoding of information that may not be stored in all local workspaces.

The schema is modeled in Telos [Mylo90] and realized in ObjectStore, a commercial Object
Oriented Repository. A part of which is illustrated in Fig.7.2.

The second part classifies the patterns used, and combines the analysis resuits generated by
different tools.

1.1.1. Schema for Program Representation. = We have selected the AST as the basis for pro-
gram representation in the centralized repository. The choice is motivated by the fact that the AST
is a direct product of the parsing process, can be created by any parser for the target language in
various degrees of detail and granularity (i.e. detailed parsing versus light-weight parsing), and many
other program representation schemes (e.g. program dependency graphs, combined data/control flow
graphs) can be considered as analysis (result) and annotations of the basic AST. Results obtained
with different tools can be linked via annotations to the AST nodes.

The schema has been implemented in Telos [Mylo90] and allows for multiple inheritance and
specialization of the attribute categories for each object. In this way, an AST entity (i.e. File) may

have attributes that are classified as Refine-Attributes or Rigi-Attributes and be encapsulated in the

120

7.1 COMMUNICATION WITH OTHER TOOLS

i AR

& S

FIGURE 7.2. Part of the Schema hierarchy. Multiple inheritance is shown for the File and
Module nodes.

same schema object. The Schema is populated by tools that may add, or retrieve values for the
attributes in the objects to which it has access to.

At run-time, the user or the communication scripts may request and select only the attributes,
and their corresponding values, that are relevant to a particular tool. The server has been extended
to handle more complex messages and respond automatically to events using a rule base and the
Event, Condition, Action paradigm {Mylo96].

An example of the schema structure for the File AST node as it is represented in the central
repository is illustrated in Fig.7.3

1.1.2. Schema for Analysis Results. The basic purpose for tool integration is the development
of an environment in which each tool exchanges analysis results with other tools so that the overall
functionality of the system will be enhanced and be bound to the functionality of each individual
tool as if it were stand alone.

Data integration for analysis results was achieved by designing Schema classes for every type of
analysis a tool is able to perform. Each such class is linked via attributes to the actual AST entities
and this is visible to all the other tools that may request it.

For example, in Ariadne, a Cluster is a collection of functions and can be generated by a specific

type of analysis (e.g., data bindings related clustering, similarity based clustering) while in Rigi this

121

7.1 COMMUNICATION WITH OTHER TOOLS

FIGURE 7.3. The Schema structure and inheritance for the File AST entity. The Refine-
Attributes and the Rigi-Attributes are encapsulated in the same object in the central

repository.

is considered a Subsystem. In the central repository, both are encoded using the Module Schema class
which is used thereafter for communicating analysis results involving grouping of software artifacts
and system partitioning. A reference table is used in the central repository to map and normalize
class names from each individual tool. This table has been built a-priori as the user registers the
services that each tool offers manually when designing the system. New services can be added by
updating the reference table, and adding the appropriate new Schema classes.

The Ariadne Schema related to the services Ariadne offers is illustrated in Fig.7.4. Focus has
been placed on the RegularExpressionLocalization service which localizes code given a regular-like
description of its structure. Note that the result can be made available to the other tools by the
attribute regEzpressionLocalizationRes which can take as values instances of the Module schema
class. When such an analysis is performed, a new Token of type RegularEzpressionLocalization is
created and the attribute regEzpressionLocalizationRes contains a collection of software artifacts
that match the given regular expression which is stored in the regEzpression attribute. When Rigi
or another tool requests the results of this type of analysis, it gets as a response the value of the
regEzpressionLocalizationRes attribute which is a set of software artifacts or, more precisely, a set of

pointers to the corresponding object nodes that represent these software artifacts in the AST. Once

122

7.1 COMMUNICATION WITH OTHER TOOLS

SAUVVNTYI W U ALEGE B T RO 0 LRRMIML ' 10 OO |

FIGURE 7.4. ExtractionObject Schema hierarchy for the Ariadne System.

pointers to the AST have been passed, all other types of analysis available in Rigi can be performed

locally and applied to this specific Module.

1.2. Control Integration. Control Integration is based on designing and developing a

mechanism for :

Uniquely registering tool sessions and corresponding services,
e Representing requests and responses,

e Transferring object entities to and from the repasitory,

Performing error recovery.

At the Application layer [Stallings91] Mbus is used to facilitate inter-networking. Mbus offers
an environment to manage the transfer of data via TCP /IP using a higher-level language to represent
source and destination points, processes, and data. Mbus offers an environment to access lower level
UNIX communication primitives (i.e. sockets), in order to manage the transfer of data via TCP/IP
using a higher-level language to represent source and destination points, processes, and data.

Each tool generates a stream of network objects encoded as a stream of s-expressions. A parser
analyzes the contents of each network object and performs the appropriate actions (e.g. respond to a

request, acknowledge the successful reception of a network object). Moreover, a mediator program is

123

7.1 COMMUNICATION WITH OTHER TOOLS

used to check if a request or an acknowledgment has arrived, and initiates the appropriate actions.
In particular, UNIX named pipes are used to signal an incoming event and handle inccming and
outgoing data. The mediator program constantly checks for the existence and the status of these
pipes and initiates the appropriate processes for reading or writing.

The system handles the following messages:

e Ask for instances of a particular object class from a local workspace or the central repository
(ASK type messages),

o Add new instances of an object class to a local workspace or to the central repository (ASK
type messages),

e Add new values to attributes of a particular object (TELL type messages),

Ask for the status of a tool (i.e. running, registered) (ASK type messages),

Acknowledge the successful termination of a request (ACK type messages).

Messages can be send from each tool to any other tool

e Via the centralized repository or

e In a direct fashion.

The normal mode is for the tools to communicate via the central repository; in this mode each
tool contributes a specific analysis that another tool can use and enhance. The whole process is
driven by the user who is aware of the types of analysis he or she has performed or are already
performed by other users and stored from previous sessions.

The direct communication mode has been implemented to facilitate development and is not
intended to be used as the standard communication mode.

Messages are classified in two categories:

s Point-to-Point messages

o Broadcast messages

Point-to-Point messages have unique origin and destination points. A message is uniquely

represented by:

e The source (i.e. the tool that initiated the message),

The destination tool,
The time that the message was issued,
The type of the message (ASK, TELL, ACK).

An origin or a destination point (i.e. a specific session of a Rigi tool) is represented by:

124

7.1 COMMUNICATION WITH OTHER TOOLS

(1) Its process Id,

(ii) The user who owns the process,
(iii) The host name,
(iv) The time the process started,

(v) The name of the tool.

A typical example of Point-To-Point communication is the request from a particular Ariadne
session for analysis performed by a specific Rigi session (i.e. a Rigi process).

Broadcast messages have a unique source and multiple destinations. A typical example of a
Broadcast message is the request from a particular Ariadne session for analysis performed by all
Rigi sessions that are registered or have been registered in the past in the environment.

Each tool session is represented in the central repository as an instance (Token) of a particular
object class (i.e. AriadneSession, RigiSession). Checking for the status of a tool session is achieved
by querying the central repository.

Acknowledgment of the successful termination of a request is performed by issuing a point-to-

point message that contains:

(i) The identification of the original message,

(ii) The identification of the tool that received the message and successfully completed it

Currently, the repository operates in a monotonic mode, where changes of the attribute values
are not allowed as this would have required the development of a Truth Maintenance System to
maintain logical consistency in the central repository, as well as in the local workspaces.

In future versions of the server new functionality can be added in order to handle more complex

types of messages (i.e. RETELL) and allow for changing and maintaining attribute values.

1.3. Integration Statistics. In this section the integration statistics are discussed and in
particular the relationship between source code size, total number of repository generated objects,
data retrieval performance as well as upload and down-load times.

The experiments involved four software systems, Twentyone, bash, tcsh and, Clips. For each

system we have measured:

¢ the total number of objects that represent parts of the AST in the central repository,
¢ down-load performance by measuring

— the total number of objects in KB,

— the total number of objects retrieved by selection queries and,

— the Dow-load time per query,

125

7.1 COMMUNICATION WITH OTHER TOOLS

System LOC | # of Functions | # of Files | # of AST Repository Objects
TCSH 44,754 658 46 3,340
CLIPS 32.807 705 40 1,694
BASH 27,393 632 63 1,606
ROGER 13,615 235 39 1,089
TWENTYONE | 943 38 3 920
TABLE 7.1. Storage Statistics (only File and Function object types stored)

Upload Performance
120 — - T -
100
s
Bl
s
e
20+
HO 2000 4000 6000 8000 10000 12000 14000
Number of Cbjects

FIGURE 7.5. Upload Performance

e upload performance by measuring
— the total number of objects to be loaded to the repository,

— the upload time.

The total number of objects generated for the reduced AST for the four subject systems is
illustrated in Table.7.1. These measurements indicate that the approach of storing only the necessary
parts of the AST results in a large potential for scalability, as major increases in the size of the source
code do not affect dramatically the total number of objects generated.

The upload times are illustrated in Fig.7.5. These statistics indicate a relatively linear relation
between the upload time and the total number of objects to be loaded in the repository. The total
number of objects in this experiment was obtained by allowing objects that represent statements to
be generated as well.

Similarly, the down-load statistics are shown in Table.7.2. These statistics indicate that down-
load time depends on the size of the objects retrieved and not on the size of the repository. This is

an important observation as it is directly connected with the scalability of the system.

126

7.1 COMMUNICATION WITH OTHER TOOLS

System Total Objects in KB | Objects Retrieved by Query | Down Load Time (sec)

TCSH 3340 658 10

TCSH 3340 47 1

CLIPS 1694 705 15

CLIPS 1694 41 1

BASH 1606 632 10

BASH 1606 63 2
TWENTYONE 117 38 1
TWENTYONE 117 3 1

TABLE 7.2. Dow-load Performance (KB contains File, Function type objects)

127

CHAPTER 8

Conclusion

Many of the problems related to Software Maintenance originate from the overall poor condition of
large systems in terms of complex source code and obsolete documentation. The essence of Software
Maintenance problem, though, may be ultimately traced back to the lack of sufficient understanding
of the structure, functionality, characteristics and component dependencies in large software systems.

This thesis has reviewed the state-of-the-art for Program Understanding techniques and dis-
cussed how these approaches address problems related to software maintenance. It is evident that
the research community in Program Understanding proposed a lot of interesting ideas that originate
from different areas. Two of the key themes in Program Understanding research, as it has evolved
the last four years, are plan recognition and date flow analysis.

Within this framework, some teams have chosen to apply compiler techniques to compute and
analyze Program Dependency Graphs, perform slicing, value range analysis, constant propagation
analysis, and symbolic evaluation. These techniques have been used to identify parts of code that
may be relevant to a particular maintenance task.

Other teams have used customized graph-based program representation formalisms to represent
code abstractions and proposed techniques to match these abstractions against the contents of a
static repository that contains representations of programming plans. These techniques have been
used to identify commonly used algorithms as well as application domain specific programming plans
in a software system.

Approaches to plan recognition must address two key questions:

(i) Whether a plan based approach can be effective as it implies a plan library that must contain

all possible plans in advance,

8.1 CONTRIBUTIONS

(ii) How program understanding algorithms can scale-up and be applied to large software systems
as most existing program understanding algorithms that rely of low-graph matching are NP-

complete in the worst case.

We have chosen to work on problems related to Plan Recognition and in particular, the clone
detection, and the concept assignment problems.

Code cloning which is a widespread practice among developers;

a) increases the complexity of a software system, and the size of the corresponding executable
program.

b) increases maintenance costs as changes in one component have to be propagated to all of its
cloned instances

c) code cloned components are prime candidates for repackaging and generalization to a software
repository of reusable components

The concept assignment problem consists of attaching a “meaning” to a code fragment, by
understanding its overall functionality, data and control flow properties, as well as its possible
abstractions.

Within this framework our hope was to design scalable pattern matching techniques that can
be used to locate and retrieve instances of code cloned components in a large software system and
provide a formalism to represent (in a higher level of abstraction), implementations of generic, as
well as, domain specific, algorithms.

The thesis proposes three matching techniques that are scalable, do not depend on a plan

library, and are flexible and modifiable by the end user.

1. Contributions

This section summarizes the major original contribution of this thesis.

Firstly, we have proposed and experimented with a number of program features that are used to
compute five standard software engineering metrics that classify and represent a code fragment. We
have shown that these metrics can be computed compositionally by using the Abstract Syntax Tree at
link time. This matching technique is based on the assumption that if two code fragments are clones,
then they share a number of structural and data flow characteristics that can be effectively classified
by these metrics. We have shown that the metrics-based approach provides a fast approximation of
the code cloning recognition problem. Experimental results have indicated that we can effectively
retrieve 60% of the code cloning instances sought, and maintain a Precision of approximately 41.0%
at the final results. The strength of this approach is that it can be easily used, does not depend on

any complex formalism to represent source code entities, and it is time and space efficient, as it is

129

8.1 CONTRIBUTIONS

mostly based on comparison of numeric tuples. The price to pay for the speed and ease of use in this
method is that at higher Recall levels noise can be introduced and low Precision values be obtained.
At a Recall level of 70.0% the Precision can drop to 19.2%. However, this is not problematic as
only a small fraction of the system is retrieved (in our experiments < 11.3% of the total size of the
system) and therefore can be used at a pre-processing stage to limit the search space when using
more accurate but more computationally expensive methods.

Secondly, we have designed and implemented a Dynamic-Programming algorithm that uses data
and control flow information to compare two code fragments and evaluate an overall dissimilarity
measure based on insertions, deletions and substitutions of basic statements and expressions that
occur in the two code fragments compared. Dynamic Programming algorithms are very fast and
efficient and have been extensively used in real-time applications (e.g. speech recognition systems).
The Dynamic-Programming approach is shown to be more accurate than the pure metrics-based
method but it is computationally more expensive. In particular, its complexity is on the order 0(n
* m) where n is the number of statements of the first fragment considered to be the model and, m
be the number of statements of the code fragment matched against the model. However, this type
of complexity is still fully acceptable when considering large systems. Experimental results have
shown that we can effectively retrieve 70% of the clone instances of a model code fragment and still
maintain a Precision of approximately 45.0%. Moreover, this method performed very well on even
higher Recall values where, for Recall levels of 90%, we maintained a Precision level of 26.1%.

Thirdly, we have proposed and implemented a concept description language ACL that is used
to represent programming patterns. ACL is used to represent data flow, control flow, and data type
properties of programming patterns. A matching mechanism that is based on Markov Models is used
to establish correspondences between a parse tree of the concept description language and the source
code. The Viterbi algorithm is used to identify the best alignment between a pattern represented
in ACL and a code fragment. Experimental results obtained by examining medium sized software
systems, have illustrated that this approach is powerful enough to localize programming patterns
more effectively than the pure Dynamic-Programming or the Metrics-based methods. Moreover,
the complexity of this method is again on the order 0(n * m) where n is the number of Abstract
Statements in an ACL pattern that is used as model, and m is the number of statements in a code
fragment matched against the model. Our experiments have effectively achieved an overall average
Recall level of 70.0%, maintaining an overall Precision of 63.6%. Interpolated values for 90.0% Recall
levels have suggested pessimistic Precision levels of 22.0%. However, those of our experiments that
have achieved effective Recall levels of close to 90% have suggested Precision close to 30.0%, which

is a more realistic estimate.

130

8.2 DISCUSSION AND FUTURE WORK

This method is not restricted by the particular program features used for matching and, in a
way, ACL can be considered as a vehicle that allows for new program features to be added and
considered during the comparison process. Moreover, we have shown that this technique is scalable
and hierarchical abstractions of programming patterns can be effectively built from descriptions of
a number of simpler base patterns.

The proposed technique can be applied to localize patterns in a variety of Procedural languages
such as PLI, PL/X, PL/AS, Pascal and C.

These techniques have been implemented to provide a Program Understanding tool-set that
has been integrated with a visualization tool and a software Repository. The system runs in a
distributed environment utilizing Unix sockets and the TCP/IP protocol, allowing for multiple

software development and maintenance teams to access and analyze a large software system.

2. Discussion and Future Work

In many ways the results reported are very encouraging. Most of our experiments have il-
lustrated the scalability and the effectiveness of the methods proposed. Yet, in order to assess and
evaluate the significance of our results it is important to discuss generic issues related to code cloning,
plan recognition and the concept assignment problem.

Program Understanding has for a long time, been seen as a pattern matching problem, where
programming plans represented in some formalism are stored in a static plan-base and are matched
against compatible representations of the source code stored in a code-base. The way source code
is represented and used by the localization and matching component of such a Plan Recognition
system is fundamental for the performance and the accuracy of the results obtained.

We feel that there is an important trade-off between tractability and accuracy. Formal methods
have not been very successful in recognizing Programming Plans in programs larger that 1000 lines
(Quilici96]. However, they provide a solid foundation for Software Engineering research as they
allow for semantic abstraction and effective partial recognition that may handle structural variations,
implementation variations and idiosyncratic code.

On the other hand, methods that are based on measurements and analysis obtained by exam-
ining solely the Data and Control Flow properties of a subject system, fail to provide insights into
the semantics of the source code examined. However, these approaches scale up and have been suc-
cessfully applied to recognize Programming Plans and code duplication in large industrial systems

where formal methods have failed to produce acceptable results.

131

8.2 DISCUSSION AND FUTURE WORK

In this thesis we have tried to provide generic mechanisms to bridge this gap between the
pure semantic and the pure structural text-based approach to representing and localizing program
patterns.

With the metrics-based approach we have tried to abstract a number of Data and Control Flow
properties of the source code and effectively represent them in a 5-d numerical space. The five
metrics we used were selected on the merit of their coverage of a variety of code properties to which
they are sensitive. However, this method can not effectively provide any qualitative measure about
how a model and an input components differ. A possible further avenue of research for this method
is to examine the use of software metrics with respect to particular contexts, and maintenance
objectives. This may result in guidelines for associating specific deviations of metric values with
specific modifications in the structure and the logic of a subject system, thus inferring, some semantic
content of the modifications involved. This type of research is essential for establishing a qualitative
characteristic on software metrics that have not been thoroughly interpreted yet.

The Dynamic-Based approach is an attempt to provide a method for measuring some qual-
itative characteristics of the modifications that may appear between code fragments. Still, this
method depends on the structural characteristics of the code examined and gives little insight into
the semantic properties of the source code. However, the DP function proposed provides abstraction
mechanisms that the pure text-based and metrics-based approaches do not. Moreover, the DP-Based
matching subsumes these approaches, as any successful substring comparison or metrics comparison
is effectively captured by the Dynamic Programming approach as well. Moreover, fixed text substi-
tution mappings applied for parameterized text-based matching [Baker94|, [Baker95]|, are more
restrictive than the use of abstract identifier bindings and lexicographical distances proposed within
the context of this thesis.

Overall, code-to-code matching and code cloning detection have started gaining attention as
potential tool for software evolution and especially for software migration from Procedural to Object
Oriented languages. Specifically, similar code fragments that can be parameterized on different
data types may suggest the way these data types can be abstracted to classes and how associated
operations can become methods to these classes. Initial work in this field has already been reported
in [Konto96b).

Finally, the Markov-model approach is the most flexible and extensible of all three methods
discussed in this thesis. The strength of this method is that it provides a framework in which
alternative Programming Patterns can be represented in higher levels of abstraction and matched
against specific instances of the source code. Similarity distances can be computed based on the

likelihood a programming structure is generated by a Programming Pattern. The method has

132

8.2 DISCUSSION AND FUTURE WORK

been proposed in conjunction with ACL, but we consider that other specification and program
representation languages can be used instead. Within this framework two possible avenues of research
can be explored. The first is to enhance ACL in order to handle more semantic content. This includes
the ability to specify data flow related constraints for each Abstract Statement represented in ACL,
to represent data dependencies, and access to diverse sources of information related to a specific
code fragment (i.e. documentation, comments, descriptions of algorithms) via a software repository
similar to the one proposed for tool integration. Essentially, such a software repository can be part
of the compiler. The front-end can be used to populate the repository and the debugger provide
dynamic information on specific execution traces.

The second possible avenue of research is to use Markov models to represent the structure and
the dependencies between high level software architectural patterns. In such a way multiple high
level architectural decomposition views of a large software system can be revealed, based on a set of
high level architectural descriptions encoded in an abstract architecture description language much
like ACL. The software architect may provide a number of queries that extract architectural views
between high level components based on their top level interaction, dependencies, and organizational
patterns.

QOur experience with the proposed tools is that they can easily provide information on differences
between software versions, modifications between releases, and can be used for system partitioning.
As a result, all three discussed techniques have been integrated into our Re-engineering Environment

and are part of our standard software analysis tool-set.

133

CHAPTER 9

Bibliography

REFERENCES

[Adamov87] Adamov, R. “Literature review on software metrics”, Zurich: Institut fur Informatik
der Universitat Zurich, 1987.

[Abo89] Aho, A., Ganapathi, M., Tjiang, S., “Code Generation Using Tree Matching and Dy-
namic Programming” ACM Transactions on Programming Languages and Systems, vol.
11, No. 4, October 1989, Pages 491-516.

[Aho85] Aho, A.V., Sethi, R. and Ullman, J.D., Compilers: Principles, Techniques and Tools,
Addison-Wesley, 1985.

[Albrecht79] Albrecht, A., J., “Measuring Application Development Productivity”, Proceedings of
IBM Applications Development Symposium, Monterey, CA., Oct. 1979, pp.83-92.

[Anderberg73] Anderberg M., “Cluster Analysis for Applications” Academic Press.

[Baker95] Baker S. B, “On Finding Duplication and Near-Duplication in Large Software Systems”
In Proceedings of the Working Conference on Reverse Engineering 1995, Toronto ON.
July 1995i, pp. 86-95.

[Baker94] Baker S. B, “Parameterized Pattern Matching: Algorithms and Applications”, Journal
Computer and System Sciences, 1994.

[Beneduci89] Beneducci, A., “A Reverse Engineering Methodology to Reconstruct Hierarchical Data
Flow Diagrams for Software Maintenance,” [EEE Conf. on Software Maintenance, 1989,
pp. 180.

{Bental92] Bental D. “Using Clausal Join and Clausal Split to Recognize Language Specific Pro-
gramming Design Decisions”, Workshop Notes, AI and Automated Program Understand-
ing, Conference of the American Association of Artificial Intelligence 1992, pp. 37 - 40.

[Biggerstaff89] Biggerstaff, T. J., “Design Recovery for Maintenance and Reuse,” I[EEE Computer,
July 1989, pp. 36-48.

[Biggerstaff94] Biggerstaff, T., Mitbander, B., Webster, D., “Program Understanding and the Con-
cept Assignment Problem”, Communications of the ACM, May 1994, Vol. 37, No.5,

REFERENCES

[Bmcj http://www.beirut.bmc.com pp. 73-83.

[Brown92] P. Brown et. al. “Class-Based n-gram Models of natural Language”, Journal of Compu-
tational Linguistics, Vol. 18, No.4, December 1992, pp.467-479.

(Brotsky84] Brotsky, D.C., “An Algorithm for Parsing Flow Graphs,” Master's thesis, MIT, 1984.

(Bush85] Bush, “The Automatic Restructuring of COBOL,” IEEE Conf. on Software Mainte-
nance, 1985, pp. 35-42.

[Buss94] E. Buss, R. De Mori, W. M. Gentleman, J. Henshaw, H. Johnson, K. Kontogiannis,
E. Merlo, H. A. Miiller, J. Mylopoulos, S. Paul, A. Prakash, M. Stanley, S. R. Tilley,
J. Troster and K. Wong, "Investigating Reverse Engineering Technologies for the CAS
Program Understanding Project”, IBM Systems Journal, vol. 33 no. 3, 1994, pp. 477-500.

[Cadr] http://www.bicsystems.com/developer/cadre.html

[Cateli49] Catell R., “Rp and other coefficients of pattern similarity”, Psychometrika 14, pp. 279-
288.

[Clifford75] Clifford H., Stephenson, W., “An Introduction to Numerical Classification” Academic
Press, Inc., New York.

[Clips] C-Language Integrated Production System User’s Menual NASA Software Technology
Division, Johnson Space Center, Houston, TX.

[Callics88] Callics, “A Knowledge Based System for Software Maintenance,” IEEE Conf. on Soft-
ware Maintenance, 1988, pp. 319-326.

[Canfora94] Canfora, G., Cimitile, A., DeLucca, A., “Software Salvaging Based on Conditions”
IEEE Conf. on Software Maintenance, 1994, pp. 424-433.

[Canfora92] Canfora, G., Cimitile, A., Carlini, U., “A Logic-Based Approach to Reverse Engineering
Tools Production” Transactions of Software Engineering, Vol.18, No. 12, December 1992,
pp. 1053-1063.

[CASE89] "Re-engineering and Maintenance,” CASE Outlook 89, No 3, 1989.

[Chakrabarti86] Chakrabarti, P., Ghose, S. and DeSarkoz, S., “Heuristic Search Through Islands,”
Al Magazine, Vol. 29, 1986, pp. 339 - 347.

[Chien91] Chien, J-H., Fu, S-T., Horowitz, E. and Rouff, C., "RPP: A System for Prototyping User
Interfaces,” 1991, pp. 419 - 420.

[Chiko90] Chikofsky, E.J. and Cross, J.H. II, “Reverse Engineering and Design Recovery: A Tax-
onomy,” [EEE Software, Jan. 1990, pp. 13 - 17.

[Choi90] Choi, S.C. and Scacchi, W., “Extracting and Restructuring the Design of Large Systems,”
IEEE Software, Jan 1990, pp. 66 - 71.

136

REFERENCES

[Cimitile90] Cimitile, A., Lucca, G. and Maresca, P., “Maintenance and Intermodular Dependencies
in Pascal Environments,” 1990 IEEE Conference on Software Maintenance, 1990, p. 72.

[Colbrook89] Colbrook, "The Retrospective Introduction of Abstraction into Software,” IEEE Conf.
on Software Maintenance, 1989, pp. 166-173.

[Corazza90] Corazza, A., De Mori, R., Gretter, R. and Satta G., “Computation of Probabilities for
an Island-Driven Parser,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Sept. 1991.

(Dart87] Dart, S.A., Ellison, R.J., Feiler, P.H. and Habermann, A.N., “Software Development
Environments,” IEEE Computer, Nov. 1987, pp. 18 - 27.

[Das89] Das, “A Knowledge Based Approach to the Analysis of Code and Program Design Lan-
guage,” 1989 IEEE Conference on Software Magintenance, pp. 290-296.

[Davies90] Davies, S., “The Nature and Development of Programming Plans,” International Journal
of Man Machine Studies, Vol. 32, 1990, pp. 461 - 481.

[DeMori89] De Mori, R. and Prager, R., “Perturbation Analysis with Qualitative Models,” Proceed-
ings of IJCAI 1989.

[Dettienne90} Dettienne, F. and Soloway, E., “An Empirically Derived Control Structure for the
Process of Program Understanding,” International Journal of Man Machine Studies,
Vol. 33, 1990, pp. 323 - 342.

[Edmonds82] Edmonds, E.D., “The Man-Computer Interface: A note on Concepts and Design,”
International Journal of Man-Machine studies, no. 16, 1982, pp. 231 - 236.

[Engberts91] Engberts, A., Kozaczynski, W., Ning, J. “Automating software maintenance by con-
cept recognition-based program transformation,” IEEE Conference on Software Mainte-
nance - 1991, IEEE, IEEE Press, October 14-17 1991.

[Everitt74] Everitt B., “Cluster Analysis” John Wiley & Sons, Inc, New York.

[Fickas79] Fickas, S., Brooks, R., “Recognition in a program understanding system”. In Proc. 6th
Int. Joint Conf. Artificial Intelligence, Tokyo, Japan, 1979, pp. 266-268.

[Fenton91] Fenton, E. “Software metrics: a rigorous approach”, Chapman and Hall, 1991.

[Gallagher91] Gallagher, K.B. and Lyle, J.R., “Using Program Slicing in Software Maintenance,”
IEEE Transactions on Software Engineering, Vol. 17, No. 8, August 1991, pp. 751-761.

[Gillis90] Gillis, K. and Wright, D., “Improving Software Maintenance Using System Level Reverse
Engineering,” 1990 IEEE Conference on Software Maintenance, 1990, pp. 84-91.

(Green88] Green, “Self Identifying Software,” 1988 IEEE Conference on Software Maintenance,
1988, pp. 126-133.

137

REFERENCES

[Guedj80] Guedj, R.A. et al., Methodology of Interaction: Seillac II (Seillac, France), Amsterdam,
1980.

[Hale90] Hale, D., Haworth, D. and Sharpe, S., “Empirical Software Maintenance Studies during
the 1980’s,” 1990 IEEE Conference on Software Maintenance, 1990, pp. 118-125.

[Halst77] Halstead, M., H., “Elements of Software Science”, New York: Elsevier North-Holland,
1977.

[Hanau80] Hanau, R. and Lenorovitch, R., “Prototyping and Simulation Tools for User/Computer
Dialogue Design,” Proceedings of the ACM SIGRAPH 80 7th Annual Conference on
Computer Graphics and Interactive Techniques, Seattle Wash., 1980.

[Harandi88] Harandi, “PAT: A Knowledge Based Program Analysis,” IEEE Conf. on Software
Maintenance, 1988, pp. 312-319.

[Harandi90] Harandi, M.T. and Ning, J.Q., “Knowledge-Based Program Analysis,” [EEE Software,
Jan 1990, pp. 74 - 81.

(Hartman92] Hartman, J., “Technical Introduction to the First Workshop on Al and Automated
Program Understanding”, San Jose 1992. AAAI'92 Workshop on Automated Program
Understanding and Artificial Intelligence

[Hartman9la] Hartman, J., “Automatic Control Understanding for Natural Programs,” University
of Texas at Austin, PhD., May 1991.

[Hartman91b] Hartman, J., “Understanding Natural Programs Using Proper Decomposition,” Pro-
ceedings of the 13th International Conference of Software Engineering, May 1991.

[Hartigan75] Hartigan J., “Clustering Algorithms” John Wiley & Sons, 1975

[Hartson89] Hartson, H. and Hix, D., “Toward Empirically Derived Methodologies and Tools for Hu-
man Computer Interface Development,” International Journal of Man Machine Studies,
Vol. 31, 1989, pp. 477 - 494.

[Hausler90] Hausler, P., et.al “Using Function Abstraction to Understand Program Behavior” IEEE
Software, January 1990, pp. 55-63.

[Henderson87] Henderson, P.B. and Notkin, D., “Integrated Design and Programming Environ-
ments,” [EEE Computer, Nov 1987, pp. 12 - 16.

(Hennessy91] Hennessy M., “The Semantics of Programming Languages : An Elementary Introduc-
tion using Structural Operational Semantics”, Wiley 1991.

[Henry81] Henry, S., Kafura, D., Harris, K., “On the Relationships among the Three Software Met-
rics”, Proceedings of 1981 ACM Workshop/Symposium on Measurement and Evaluation
of Software Quality, March 1981.

138

REFERENCES

[Hill87] Hill, “Event-response Systems: A Technique for Specifying Multithreaded Dialogues,”
Proceedings of the ACM CHI + GI Conference, 1987, pp. 241 - 248.

[Hix89] Hix, D. and Hartson, R., “Human-Computer Interface Development: Concepts and Sys-
tems for its Management,” ACM Computing Surveys, Vol. 21, March 89, pp. 5 - 92.

[Hoare85] Hoare, C.A.R., “Communicating Sequential Processes,” Series in Computer Science,
Prentice-Hall International, London, 1985.

[Holland89] Holland, “Tools for Preventing Software Maintenance,” 1989 [EEE Conference on Soft-
ware Maintenance, 1989, pp. 2-9.

(Hopcroft79] Hopcroft, J., Ullman, J., “Introduction to Automata Theory, Languages, and Compu-
tation” Addison Wesley, 1979.

(Huff89] Huff, K. and Lesser, V., “A Plan Based Intelligent Assistant that Supports the Soft-
ware Development Process,” ACM SIGSOFT/SIGPLAN Third Symposium on Software
Engineering Environments, Boston, MA, Nov. 1988, pp. 97 - 106.

[HypSoft] http://www.hypersoft.co.uk

(Intersolv9l] Design Recovery for Excelerator, Intersolv Sales Brochure, 1991.

(Intersolv] http://www.intersolv.com

[Jain88] Jain. A, Dubes. R., “Algorithms for Clustering Data” Prentice-Hall, Englewood Cliffs,
New Jersey, 1988.

{Jankowitz88] Jankowitz, H., T., “Detecting Plagiarism in student PASCAL programs”. Computer
Journal, 31(1):1-8, 1988.

[Johnson85] Johnson, W.L. and Soloway, E., “PROUST: Knowledge-Based Program Understand-
ing,” IEEE Transactions on Software Engineering, March 1985, pp. 267 - 275.

[Johnson94a} Johnson, H., “Substring Matching for Clone Detection and Change Tracking”, In-
ternational Conference on Software Maintenance 1994, Victoria BC, 21-23 September,
1994, pp.120-126.

[Johnson94b] Johnson, H., “Visualizing Textual Redundancy in Legacy Source”, In Proceedings of
the 1994 IBM NRC CAS Conference (CASCON ’94), Toronto, Ontario, October 31 -
November 3, 1994, pp.9-18.

[Jones81] Jones, K., “Information Retrieval Experiment” Butterworths Publishing Co., Toronto,
1981.

[Kaplan73] Kaplan, R., “A General Syntactic Processor,” in Natural Language Processing, ed:
Rustin E.,, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

[Karakostas90] Karakostas, V., “The Use of Application Domain Knowledge for Effective Software
Maintenance,” 1990 IEEE Conference on Software Maintenance, 1990, pp. 170-178.

139

REFERENCES

[Kay80] Kay, M., Algorithm Schemata and Data Structures in Syntactic Processing, Xerox, Palo
Alto research Center, 1980.

[Kenning90| Kenning, R. and Munro, M., “Understanding the Configurations of Operational Sys-
tems,” 1990 IEEE Conference on Software Maintenance, 1990, pp. 20-28.

[Ketabchi90] Ketabchi, M., “An Object Oriented Integrated Software Analysis and Maintenance,”
1990 IEEFE Conference on Software Maintenance, 1990, pp. 60.

[Konto96a] Kontogiannis K., DeMori, R., Merlo, E., Galler, M., Bernstein, M., " Pattern Matching
for Clone and Concept Detection”, Journal of Automated Software Engineering, vol.3,
1996, pp.77-108.

[Konto96b] Kontogiannis K., Mylopoulos J., Stanley, M., “Experiences on Migrating Procedural
Systems to Object Oriented Architectures” QOOPSLA’'96 Workshop on Transforming
Legacy Systems to Object Oriented Systems, San Jose Ca., 1996.

[Konto95] Kontogiannis K., DeMori, R., M., Bernstein, Merlo, E., Galler, M. "Pattern Matching
for Design Concept Localization” In Proceedings of WCRE’95 pp. 96-103, July, 14-16,
Toronto, Canada.

[Konto94] Kostas Kontogiannis, Renato DeMori, Morris Bernstein and Ettore Merlo, “Localization
of Design Concepts in Legacy Systems”. In the Proceedings of the ICSM’94, Victoria,
Canada, pp.414-423.

[Kotik89] Kotik, G.B. and Markosian, L.Z., Automating Software Analysis and Testing Using a
Program Transformation System, Reasoning Systems Inc., 1989.

[Kuhn90] Kuhn, R., DeMori, R., “A Cache-Based Natural Language Model for Speech Recogni-
tion”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, No.6,
June 1990, pp.570-583.

[Landis88] Landis, “Documentation in a Software Maintenance Environment,” 1989 IEEE Confer-
ence on Software Maintenance, 1989, pp. 2-9.

[Lebowitz83] Lebowitz, M., “Memory-Based Parsing,” Al Magazine, Vol. 21, 1983, pp. 363 - 403.

[Letovsky88] Letovsky, S. “Plan Analysis of Programs,” Ph.D thesis, Yale University, Dept. of
Computer Science, YALEU/CSD/RR662, December 1988.

[Lieberman84] Lieberman, H., “Seeing what your programs are doing,” International Journal of
Man Machine Studies, Vol. 21, pp. 311 - 331.

[Ligner88] Ligner, J., “Software Maintenance as Engineering Discipline,” 1988 IEEE Conference on
Software Maintenance, 1988, pp. 292-300.

140

REFERENCES

[Lowry92] Lowry, M. R., Kedar, S. D., “Toward a Learning Apprentice for Software Re-
engineering”, Workshop Notes, AI and Automated Program Understanding, AAAI’92
1992, pp. 76 - 84.

[Lu78] Lu S., Fu, K., “A sentence-to-sentence clustering procedure for pattern analysis” IEEE
Transactions on Systems, man and Cybernetics, SMC 8, pp. 381-389.

(Lutz89] Lutz, R., “Chart Parsing of Flowgraphs,” in Proceedings of International Joint Confer-
ence on Artificial Intelligence 89, 1989, pp. 116 - 121.

[Mason81] Mason, R. and Carfy, T., “Productivity Experiences with a Scenerio Tool,” Proceedings
of IEEE COMPCON, 1981, pp. 106 - 111.

[Maarek91] Maarek Y., Berry, D., Kaiser, G., “An Information Retrieval Approach For Automat-
ically Constructing Software Libraries”, IEEE Transactions in Software Engineering,
vol.17, No. 8, August 1991, pp.800-813.

[McCabe90] McCabe T., J., “Reverse Engineering, reusability, redundency: the connection” Amer-
ican Programmer, 3(10):8-13, Oct. 1990.

[McCabe76] McCabe T., J., “A Complexity Measure”, IEEE Transactions on Software Engineering,
vol.7, No. 4, Sept. 1976, pp.308-320.

[MacLaugh95] McLaughlan, M., : M.Sc. Project Thesis “REVERSE Engineering PL/AS Software
Using Metrics”, McGill University, Department of Computer Science.

[Magdal96] Magdalinos, C., : M.Sc. Research Thesis “A Generic Stochastic Pattern Matcher for
Plan Recognition in Software Systems”, McGill University, Department of Computer
Science.

(Mahala36] Mahalanobis, P. “On the generalized distance in statistics” Proc. Indian Nat. Inst. Sci,
vol.2, pp.49-55 1936.

[Meekel88] Meekel, “LOGISCOPE: A Tool for Maintenance,” IEEE Conf. on Software Maintenance,
1988, pp. 328-337.

[Merlo89] Merlo, E., “ An Artificial Intelligence Language to Describe Extended Procedural Net-
works”, Ph. D. Thesis, McGill University, Montreal, May 1989.

[Merlo93] Merlo, E., McAdam. I, De Mori. R., “Source Code Informal Information Analysis Using
Connectionist Models”, International Joint Conference on Artificial Intelligence, August
29 - September 3, 1993, Chambery, France, pp.1339-1344.

[Milner89] Milner, R., Communication and Concurrency, Prentice-Hall, 1989.

[Muller91] Miiller, H.A., “Rigi as a Reverse Engineering Tool”, Technical Report, Dept. of Computer
Science, University of Victoria, March 1991.

141

REFERENCES

[Muller93] Miiller, H.A., "Understanding Software Systems Using Reverse Engineering Technology
Perspectives from the Rigi Project” In Proceedings of CASCON’93, Toronto, ON. 24-28
Oct. pp. 217-226.

[Mulligan91} Mulligan, “User Interface Design in the Trenches: Some Tips on Shooting from the
Hip,” Human Factors in Computing Systems, 1991, pp. 232-241.

[Murray88] Murray, W., “Automatic Program Debugging for Intelligent Tutoring Systems”, Morgan
Kaufman, San Matteo, CA, 1988.

[Myers86] Myers, B.A. and Buxton, W., “Creating Highly Interactive and Graphical User Interfaces
by Demonstration,” SIGGRAPH ’86, pp. 249 - 258.

[Myers89] Myers, B.A., “User-Interface Tools: Introduction and Survey,” IEEE Software, Jan 1989,
pp. 15 - 23.

[Mylo96] Mylopoulos, J., Gal, A., Kontogiannis, K., Stanley, M., ” A Generic Integration Architec-
ture for Cooperative Information Systems” in Proceedings of Co-operative Information
Systems '96, Brussels, Belgium, pp.208-217.

[Mylo90] Mylopoulos, J., “Telos : A Language for Representing Knowledge About Information
Systems,” University of Toronto, Dept. of Computer Science Technical Report KRR-
TR-89-1, August 1990, Toronto.
[Ning94] Ning, J., Engberts, A., Kozaczynski, W., “Automated Support for Legacy Code Under-
standing”, Communications of the ACM, May 1994, Vol.37, No.5, pp.50-57.
[Norman84] Norman, D.A., “Four stages of User Activities,” Proceedings of INTERACT 84, First
IFIP Conference on Human-Computer Interaction, 1984.

[Olsen87] Olsen, D.R.Jr., “Whither UIMS?,” Proceedings from the conf. on Human Factors in
Computing Systems and Graphics Interface, 1987, pp. 311 - 314.

[Osborne90] Osborne, D., “Fitting Pieces to the Maintenance Puzzle,” JEEE Software, Jan. 1990,
pp. 11-21.

[Overstreet88] Overstreet, “Program Maintenance by Safe Transformations,” 1988 IEEE Conference
on Software Maintenance, 1988, pp. 118-125.

[Ourston89] Ourston, D., “Program Recognition,” IEEE Ezpert, Winter 1989, pp. 36.

[Ovum90] Rock-Evans, R. and Hales, K., Reverse Engineering: Markets, Methods and Tools, Ovum
Ltd., 1990.

[Paul94] Paul, S., Prakash, A., “A Framework for Source Code Search Using Program Patterns”,
IEEE Transactions on Software Engineering, June 1994, Vol. 20, No.6, pp. 463-475.

[Pearson26] Pearson, K., “On the coefficient of racial likeness” Biometrika, vol.18, p. 105.

142

REFERENCES

[Plotkin81] Plotkin G. D, “Structural Operational Semantics”, Lecture notes, DAIMI FN-19, Aarhus
University, Denmark, 1981.

[Prieto-Diaz90] Prieto-Diaz, R., “Domain Analysis: An Introduction,” Software Engineering Notes,
Vol. 15, No. 2, April 1990, pp. 47 - 54.

[Quilici96] Quilici “Reengineering of Legacy Systems: Is it Doomed to Failure?”, International
Conference on Software Engineering, Berlin 1996

[Quilici92] Quilici, A., Khan, J. “Extracting Objects and Operations from C Programs,” Workshop
Notes, Al and Automated Program Understanding, AAAI’92 1992, pp. 93 - 97.

[Quilici94] Quilici, A., “A Memory Based Approach to Recognizing Programming Plans” Commu-
nications of the ACM, May 1994, vol.37, No.5, pp. 84-93.

[Rajlich88] Rajlich, V., “Visual Support for Programming in the Large,” 1988 IEEE Conference on
Software Maintenance, 1988, pp. 92-100.

[Reiss84] Reiss, S.P., “Pecan: Program Development systems that support Multiple Views,” ICSE-
7, 1984, pp. 324 - 333.

[Ryder89] Ryder, “ISMM: The Incremental Software Maintenance Manager,” 1989 IEEE Confer-
ence on Software Maintenance, 1989, pp. 142-150.

[Rich89] Rich, C. and Waters, R.C., Intelligent Assistance for Program Recognition, Design, Op-
timization, and Debugging, Memo, MIT AI Lab, Jan 1989.

[Rich90] Rich, C. and Wills, L.M., “Recognizing a Program’s Design: A Graph-Parsing Ap-
proach,” IEEE Software, Jan 1990, pp. 82 - 89.

[Rugaber90] Rugaber, S., Ornburn, S.B. and LeBlanc, R.J. Jr., “Recognizing Design Decisions in
Programs,” IEEE Software, Jan 1990, pp. 46 - 54.

[Scott76] Scott, D., “Data Types as Lattices,” SIAM Journal of Computing, Vol. 5, No 3, 1976,
pp. 522 - 587.

[Selby90] Selby, R., Basili, V., “Analyzing Error Prone System Structure” IEEE Transactions on
Software Engineering, vol 17, No. 2, February, 1991, pp. 141 - 152.

[Shepard79] Shepard, R., Carrol, J., “Additive Clustering:representation of similarities as combina-
tions of discrete overlapping properties” Psychological Review, 86 pp.87-123.
[Shneiderman86] Shneiderman, B., Designing the User Interface, Addison-Wesley Publishing co.,

1986.
[Smythe90] Smythe, C., Colbrook, A. and, Darlison A., “Data Abstraction in a Software Re-
engineering Reference Model,” 1990 IEEE Conference on Software Maintenance, 1990,

pp- 2-9.

143

REFERENCES

[Sneath73] Sneath, P., Sokal, R., “Numerical Taxonomy”, W.H. Freeman and Co., Publishers, san
Fransisco

[Sneed87] Sneed, H.M., “Software Recycling,” 1987 IEEE Conference on Software Maintenance,
1987, pp. 82.

[Sneed88] Sneed. H.M. and Jandrasics, G. “Inverse Transformation of Software from Code to Spec-
ification,” 1988 IEEE Conference on Software Maintenance, 1988, pp. 102-109.

[Spath80] Spath H., “Cluster Analysis Algorithms for Data Reduction and Classification of Ob-
jects”, Ellis Horwood Publishers, West Sussex, England

(Stallings91] Stallings, W., “Data and Computer Communications” MacMillan Inc. Toronto, 1991

[Stoy77] Stoy, J.E., Denotational Semantics, MIT Press, 1977.

[Tilley95] Tilley, S.R.; K. Wong; M.-A.D. Storey; and H.A. Miiller. "Programmable Reverse En-
gineering,” International Journal of Software Engineering and Knowledge Enginering,
Vol. 4, No. 4, pp. 501-520, December 1994.

[Vite67] Viterbi, A.J, “Error Bounds for Convolutional Codes and an Asymptotic Optimum De-
coding Algorithm”, IEEFE Trans. on Information Theory, 13(2) 1967.

[Ward89] Ward, M., Calliss, F.W. and Munro, M., “The Maintainer’s Assistant,” IEEE Conf. on
Software Maintenance, 1989, pp. 307 - 313.

[Wasser90] Wasserman, A., “Tool Integration in Software Engineering Environments” Lecture Notes
in Computer Science 467, Sprienger-Verlag, Berlin, pp. 138-150

[Wedo85] Wedo, “Structured Program Analysis Applied to Software Maintenance,” IEEE Conf.
on Software Maintenance, 1985, pp. 28-36.

[Whitfield91] Whitfield D., Soffa M. L., “Automatic Generation of Global Optimizers”, 1991 ACM
SIGPLAN, Conference on Programming Language Design and Implementation, Toronto,
Ontario, Canada, June 26-28, 1991.

[Wild88] Wild, C. and Maly, K., “Towards a Software Maintenance Support Environment,” 1988
IEEE Conference on Software Maintenance, 1988, pp. 80 - 85.

(Wild89] Wild, C., Maly, K., Liu, L., Chen, J. and Xu, T., "Decision-Based Software Development:
Design and Maintenance,” I[EEE Conf. on Software Maintenance, 1989, pp. 297 - 306.

[Wilde89] Wilde, “Dependency Analysis Tools: Reusable Components for Software Maintenance,”
1989 IEEE Conference on Software Maintenance, 1989, pp. 126-133.

[Wills93] Wills, L.M., “Automated Program Recognition by Graph Parsing” MIT Technical Report
1358, MIT, Al Laboratory, 1993

144

REFERENCES

[Wills92] Wills, L.M., “Automated Program Recognition: Breaking out of the Toy Program Rut,
" Workshop Notes, AI and Automated Program Understanding, AAAI'92 1992, pp. 129
- 133.

[Wills87] Wills, L.M., “Automated Program Recognition,” Master’s thesis, MIT, 1987.

[Wills90] Wills, L.M., “Automated Program Recognition: A Feasibility Demonstration,” Artificial
Intelligence, Vol. 45, No. 1-2, Sept. 1990, pp.113-172.

[Viasoft] http://www.viasoft.com

[Xcessory] Report on Xcessory, Integrated Computer Solutions, Cambridge MA.

[Zupan82] Zupan J., “Clustering of Large Data Sets” Research Studies Press, England

145

APPENDIX A

This Appendix describes the Abstract Syntax Grammar for ACL. Left hand sides of the rules
represent object classes for which instances are created each time a rule succeeds. This is the way
the AST nodes are created. In the left hand side of each rule, attributes that are annotations to the
object class at the head of the rule are used to connect AST nodes. This is the way the ACL AST

is formed. Attributes and object classes are described in more detail in Appendix B.

#LECLOTERCTTRNTIRREr et e et e e v e i e rerrer e
% ACL GRAMMAR 3
RN A A R RN RN RN R N RN RN AR AN AR RN AR AL

grammar PATTERN-ACL

PRODUCTIONS
RERBABRBLBULBABRBUERGBABARLIARBERBRRES
TOP LEVEL O0BJECTS
HERBRBBRRBRBERBBERBABUBARARRBRRBRISARRE
Pattern-Object ::= ["#" {["id-plan" ":" the-plan-name]} statement-in-pattern * ";" "&#"]

Include-Object ["include" included-pattern-file included-plan-name]

User-Plan-Object ::= ["plan:" user-plan-name]

SRABBRREBBBIBRBERVBLRBBABARARRRBBRRIZER
FUNCTION-DEF OBJECT 3
SARRBARBBUBIBBRBBBARARBRBRBIRBBRRB2888

Function-Def-Pattern ::= ["function" function-name-in-pattern function-def-body-pattern]

BARARARBARAARARBARBLARARIRABRBRARB20S
GENERIC STATEMENTS
BRARBBABBBABBABUBBBRLABARBERRA8R B8 28

Generic-Statement-Pattern [{overall-abstr~descr} statement-item]

Composite~-XOR-Statement-Pattern ::= ["(" composite-XOR-statement-item + "+" ")"]

APPENDIX A

Composite-Interleaved-Statement-Pattern ::= ["(" composite-Interleaved-statement-item + “-" ")"]

Any-Statement-Pattern ::= ["any-statement" [([any-statement-body-pattern !! is-complete?] |
any-statement-description)]]

Pattern-s-Statement ::= ["+-statement" s*-statement-pattern-description-item]

("+-statement" one-statement-pattern-description-item]

Pattern-1-Statement

BRAVBRABABBIBRBARAABLBBBIRBRABRBBARRZAU
% ITERATIVE STATEMENTS #
BRRARBARBINNBIRBAARBABARBARASBARRBURUS
Iterative-Statement-Pattern ::= ["iterative-statement" "(" iterative-condition-pattern ")"

iterative-body-pattern]

While-Statement-Pattern ::= ["while-statement"

"(" while-condition-pattern ")" while-body-pattern]

Do-Statement-Pattern ::= ["do-statement" "(" do-condition-pattern ")"

do-body-pattern]

For-Statement-Pattern ("for-statement"” "(" for-initialize-pattern ";"
for-test-pattern ";"
for-increment-pattern ")"

for-body-pattern)

SRBRBABBABERAZBLILBURBARBERRABBUBBRR2E
3 CONDITIONAL STATEMENTS 8
BRBLEBARBABRBBRRBUBEBBBBARABBUARBBARSS
Conditional-Statement-Pattern ::= {"conditional-statement" "(" conditional-cond-pattern "}"

conditional-body-pattern]

If-Statement-Pattern ["if-statement" "(" if-condition-pattern ")" "then"
then-pattern {["else" else-pattern]}]

Switch-Statement-Pattern ::= ["switch-statement" "(" switch-pattern ")"

switch-body-pattern]

E332 2323222223232 2222222222 222223 222
BASIC STATEMENTS s
8322222222222 222222 22222222222 22222222

Block-Statement-Pattern ["{" block-statements-in-pattern * ";" "}"]

Labelled-Statement-Pattern ("labelled-statement"” labelled-pattern]

Return-Statement-Pattern ::= ["return-statement" "(" return-pattern ")"]

147

APPENDIX A

.
!}

GoTo-Statement-Pattern ["goto-statement" "(" goto-pattern ")"]

Continue-Statement-Pattern ::= [“continue"]
Break-Statement-Pattern = {"break"]
Expression-Statement-Pattern ::= [expression-statement-pattern-body]

BERRIARBABBARBRABRBARERBBRDABRAREBRLLY

4 OVERALL DESCRIPTORS #

RRBVREBVRBUBABLRBLBAPRABIBBRR24B830888
Overall-Pattern-Description ::= ["overall-description”

overall-pattern-description-feature-item + ","]

L2222 2222222222222 2222222222 222222222
& STATEMENT DESCRIPTORS #
ARVBBRBVAABARAVALBBBAARBBBRRLBHBBRRBLS
Detailed-Pattern-Description ::= ["abstract-expression-description”
([expression-pattern-description-feature-item + ","] |

expression-empty-item)]

RARRARRBABBABBABBVEBEBESRBRBRIZRBAVIN
FEATURE VECTORS DESCRIPTORS
RERHBLRBBARARBABARBBRBARBAARBLURRABURE

Feature-Item ::= [description-vector + ","]

BRARBUARABBBRARBBBBURBBBBARBBRIGRBR2
FEATURES
HARRAABSARBABAABARLRARLARBRUBRRBBRARBAR

Empty-Description = ["empty"]

Keywords-Description ::= ["keywords :" "[" keywords-in-pattern + "," "]"]
Defines-Description = ["defines :" "[" definitions-in-pattern + "," "1"]
Uses-Description = ["uses :" "[" uses-in-pattern + "," "]"]
Probability-Description ::= ["probability :" "[" probabilty-tuple + "," "]"]

Probability-Tuple-Item ::= [stat-name stat-probability-valuel

Metrics-Description ["metrics :" "[" metrics-in-pattern + "," "]%]

P22 22 oz 2222222222322 222222222222 22
ABSTRACT IDENTIFIERS
RABRARARARABERVRBALABRARRRBABRRBRRRRNS

148

APPENDIX A

Bind-Variable-Object ::= [(["?" var-name] | [actual-var-name !! is-actual-var?])

{bind-variable-type}]

Bind-Variable-Type-Object [*:" {(["s" 1 is-pointer?] |

("&" !! is-reference?])} bind-type]

BRRABRVARBAZARBBBAPVBVRRRRARRBARRG288
ABSTRACT DATA TYPES
b2 2222222222222 2222222202322 222 %% 2]

Abstract-Type-Object ::= ["°" (["numeral” !! is-numeral?] |
["chaxr" !! is-char?] |
{ "struct” !! is-struct-type?] |
["void~type" !! is-void?] |
["enum-type" !! is-—enum?] |
{"array-type" !! is-array?] |
["any-type" !! is-any-type?] |
[the-type-name !! is-actual-name?])]

BABRRBARBUBRRARRRNAABAIBARRLRAABRL822S
ABSTRACT EXPRESSIONS 8
BABRBVLSRRARBARARBARBRRABRIBRBABIABRER
Assignment-Pattern ::= ["assignment-statement" assignment-pattern-description-item]
Actual-Assignment-Patterni ::= ["actual-assignment-statement”
actual-assignment-pattern-description-item]
PostIncrementation-Pattern ::= ["postincrementation-statement" postinc-pattern-description-item]

PostDecrementation-Pattern ::= ["postdecrementation-statement" postdec-pattern-description-item]

PreDecrementation-Pattern ::= [“predecrementation-statement" predec-pattern-description-item]
Prelncrementation-Pattern ::= ["preincrementation-statement" preinc-pattern-description-item]
Function-Call-Pattern ::= ["function-call" function-call-name

function-call-pattern-description-item]
Condition-Pattern ::= [(["equality" !! is-equality-cond?] |
["inequality" !! is-inequality-cond?] |
["fcn-call-test" !1 is-fen-call-test-cond?] |
["boolean-test" !! is-boolean-test-cond?] |

["any-cond" !! is-any-cond?]) the-condition-description]

149

APPENDIX B

In this appendix the Domain model of the ACL language is provided for further reference. Object
Classes are denoted with capital letters, and correspond to the object classes at the heads ofthe
Grammar Rules described in Appenrdix A. Also note that map constructs denote an AST attribute
that is used to link AST object nodes represented by instances of the particular object classes. An

object instance is created every time a ACL grammar rule succeds.

BOLTOCTEEETTErr e e it e i v e n e e e r e e b e e erriunne
% ACL DOMAIN MODEL 8
LR RN R RN N NN NN R NN RN AN AR RN RRNNRRRRNAE

HRBRBELURBBRBRBABBRLRURBARBARRRGRBRRRE
TOP LEVEL OBJECTS
BARBRBARBBBBRBBBLLBBRBARBRBRBRABRERB2S
var PATTERN-OBJECT : object-class subtype-of Reverse-Engineering-Object
var the-plan-name : map(Pattern-Object, symbol)
var pattern-description-item : map(Pattern-Object, Detailed-Pattern-Description)
var function-name-in-pattern : map(Pattern-Object, string)
var statement-in-pattern : map(Pattern-Object, seq(Generic-Statement-Pattern))
sUELRERELEEr et ey e e e e e b e e
var INCLUDE-OBJECT : object-class subtype-of Statement-Pattern

var included-pattern-file : map(Include-Object, symbol)

var included-plan-name : map(Include-Object, symbol)

SULLLLET T R TR b B e e e is

var USER-PLAN-OBJECT : object-class subtype-of Statement-Pattern
var user-plan-name : map(User-Plan-Object, symbol)

var user-plan-ast-root : map(User-Plan-Object, Pattern-Object)

var plan-included-object : map(User-Plan-Object, Include-Object)
sLLELLRIEre et e e e e n b e r e e it e e
HALRBBARBIRBBLBEBARBRBARRBRARRBB223008

APPENDIX B

& FURCTION-DEF OBJECT #
L2222 222 222222222222 0222222222822 220
var FUNCTION-DEF-PATTERN : object-class subtype-of Statement-Pattern

var function-def-body-pattern : map(Function-Def-Pattern, Block-Statement-Pattern)

SOLRPELTTEE eI TR PR E e e e b et e e e e e gn e
BABRRBBBARBBELBRBLARBEBABBABABARBRRLES
GENERIC STATEMENTS 3
p2 2222222222222 2222022 22222222 2222227
var GENERIC-STATEMENT-PATTERN : object-class subtype-of Statement-Pattern
var overall-abstr-descr : map{(Generic-Statement-Pattern,
Overall-Pattern-Description)

var statement-item : map(Generic-Statement-Pattern, Statement-Pattern)

SULLLTERER RN e e n e e e e e e e e e e e e nene
var COMPOSITE-XOR-STATEMENT-PATTERN : object-class subtype-of Basic-Statement-Pattern
var composite-XOR-statement-item : map(Composite-XOR-Statement-Pattern,

seq(Statement-Pattern))

#UELLELLEEI e r et e e e e e e e e e e e r i nnes
var COMPOSITE-INTERLEAVED-STATEMENT-PATTERN : object-class subtype-of Basic-Statement-Pattern
var composite-Interleaved-statement-item : map{Composite-XOR-Statement-Pattern,

seq(Statement-Pattern})

RN R R NN N A NN RN R RN NN NN NN RRNRARE

var ANY-STATEMENT-PATTERN : object-class subtype-of Basic-Statement-Pattern
var any-statement-body-pattern : map(Any-Statement-Pattern, Block-Statement-Pattern)
var any-statement-description : map(Any-Statement-Pattern,

Detailed-Pattern-Description)

var is-complete? : map(Any-Statement-Pattern, Boolean)

SEECCLETEREErE e b b e e e e r e e e e e e e e

var PATTERN-*-STATEMENT : object-class subtype-of Statement-Pattern
var *-statement-pattern-description-item : map(Pattern-+-Statement,

Detailed-Pattern-Description)

var used? : map(Pattern-+-Statement, Boolean)

151

APPENDIX B

BULLUVLVRRLRREEE T e rer e v e i e rninertnnie

var PATTERN-1-STATEMENT : object-class subtype-of Statement-Pattern

var one-statement-pattern-description-item : map(Pattern-1-Statement,

Detailed-Pattern-Description)

NN NN RN NN NN RN R RN R RN NN R R NN R RN AR RRRRNARE:
RABRBAIRBABABLBLBILJVBBBREBBBRARBE RN
ITERATIVE STATEMENTS 3
BERBBARBLBABIARUBRBBVAVBAVBRBLBARBBRBRES

var ITERATIVE-STATEMENT-PATTERN : object-class subtype~of Basic-Statement-Pattern
var iterative-condition-pattern : map{Iterative-Statement-Pattern, Condition-Pattern)
var iterative-body-pattern : map(Iterative-Statement-Pattern, Statement-Pattern)

var iterative-pattern-description-item : map(Iterative-Statement-Pattern,

Detailed-Pattern-Description)

SULLLPEEN TR e e e ey v e e e e e e e e e

var WHILE-STATEMENT-PATTERN : object-class subtype-of Iterative-Statement-Pattern
var while-condition-pattern : map(While-Statement-Pattern, Condition-Pattern)

var while-body-pattern : map(While-Statement-Pattern, Statement-Pattern)

var while-pattern-description-item : map(While-Statement-Pattern,

Detailed-Pattern-Description)

SULLLDLEEEAN e b r e en e e e e e e e rerreneenes
var DO-STATEMENT-PATTERN : object-class subtype-of Iterative-Statement-Pattern
var do-condition-pattern : map(Do-Statement-Pattern,

Condition-Pattern)
var do-body-pattern : map(Do-Statement-Pattern,

Statement-Pattern)
var do-pattern-description-item : map(Do-Statement-Pattern,

Detailed-Pattern-Description)

LR N R AR NN NN R A NN R R RN RN AN NR A RERNRRRRRNE]

var FOR-STATEMENT-PATTERN : object-class subtype-of Iterative-Statement-Pattern
var for-initialize-pattern : map(For-Statement-Pattern, Statement-Pattern)

var for-test-pattern : map(For-Statement-Pattern,

Condition-Pattern)
var for-increment-pattern : map(For-Statement-Pattern,

Statement-Pattern)

152

APPENDIX B

var for-body-pattern : map(For-Statement-Pattern, Statement-Pattern)
var for-pattern-description-item : map(For-Statement-Patternm,

Detailed-Pattern-Description)

R R R R RN R R N R RN RN RN AR RN RN AN A R RN RN ARE
BRABABBBRLBBABAIBRERBAISVBVARBLISAIGARIRE
8 CONDITIONAL STATEMENTS 3
L2 2222222222222 22222222222 22222222222

var CONDITIONAL-STATEMENT-PATTERN : object-class subtype-of Basic-Statement-Pattern

var conditional-cond-pattern : map(Conditional-Statement-Pattern, Condition-Pattern)
var conditional-body-pattern : map(Conditional-Statement-Pattern, Statement-Pattern)
AULLLTEETRE e e e e e e e e e e e le

var IF-STATEMENT-PATTERN : object-class subtype-of Conditional-Statement-Pattern
var if-condition-pattern : map(If-Statement-Pattern, Condition-Pattern)

var then-pattern : map(If-Statement-Pattern, Statement-Pattern)

var else-pattern : map(If-Statement-Pattern, Statement-Pattern)

var then-pattern-description-item : map(If-Statement-Pattern, Detailed-Pattern-Description)

var else-pattern-description-item : map(If-Statement-Pattern, Detailed-Pattern-Description)

AR RN R RN NN NN R NN RN RN R NN R RN RE RN AR RN RRNE
var SWITCH-STATEMENT-PATTERN : object-class subtype-of Conditional-Statement-Pattern

var switch-pattern : map(Switch-Statement-Pattern, Condition-~Pattern)
var switch-body-pattern : map(Switch-Statement-Pattern, Statement-Pattern)
#LOLTVETD TR E R e e et e e e e e e nirrine

BREBBBALBEBBBABRBUBABRBRABBRERBRARAR2E
] BASIC STATEMENTS #
p22 2222222222 2222222222222 022222202
var BLOCK-STATEMENT-PATTERN : object-class subtype-of Basic-Statement-Pattern
var block-statements-in-pattern : map(Block-Statement-Pattern, seq(Generic-Statement-Pattern))
#LELLETERTEREREE e e e e i e i e ne
var LABELLED-STATEMENT-PATTERN : object-class subtype-of Statement-Pattern
var labelled-pattern : map(Labelled-Statement-Pattern, Detailed-Pattern-Description)
#UPTLLERTEEErT TRttt e et h e e e e e
var RETURN-STATEMENT-PATTERN : object-class subtype-of Basic-Statement-Pattern

var return-pattern : map(Return-Statement-Pattern, Detailed-Pattern-Description)

153

APPENDIX B

#ULEELLIRCETRER R e e e b v e e et rs
var GOTO-STATEMENT-PATTERN : object-class subtype-of Basic-Statement-Pattern
var goto-pattern : map(GoTo-Statement-Pattern,
Detailed-Pattern-Description)
LN NN RN A RN R NN RN RN RN RN RN RN RN RN R RARE:
var CONTINUE-STATEMENT-PATTERN : object-class subtype-of Basic-Statement-Pattern

NN RN AR RN RN AR RN A RN RN AN R RN AR RARARRE:
var BREAK-STATEMENT-PATTERN : object-class subtype-of Basic-Statement-Pattern
#ULLTEERETENET R e e et b b e e e e e b et i

var EXPRESSION-STATEMENT-PATTERN : object-class subtype-of Basic-Statement-Pattern
var expression-statement-pattern-body : map(Expression-Statement-Pattern, Expression-Pattern)
#UTLITILIO e e e e r v b e e e b e rer e re
BARBRARB/BARBABRABBAARRBARARAIBRAR 288
8 OVERALL DESCRIPTORS 3
AVBAVBABABRABRBABABABARBRBEBARRRAR2BS
var OVERALL-PATTERN-DESCRIPTION : object-class subtype-of Pattern-Description
var overall-pattern-description-feature-item : map(Overall-Pattern-Description, seq(Feature-Item))
var overall-empty-item : map(Overall-Pattern-Description,

Empty-Description)

#UOLELLEINEEERE e b e e e e L e e e e enegrenrie
#LLTETEEEETRE et e ree v e e e e riner e e

f2 2222222222222 2222222222 eeadsst

& STATEMENT DESCRIPTORS 8

BRBBRBRIBVABBLABRAGRBARGBRARVAVBBBBR298%
var DETAILED-PATTERN-DESCRIPTION : object-class subtype-of Expression-Pattern
var expression-pattern-description-feature-item : map(Detailed-Pattern-Description, seq(Feature-Item))
var expression-empty-item : map(Detailed-Pattern-Description,

Empty-Description)

var expanded-from : map(Detailed-Pattern-Description,

Statement-Pattern)

NN RN RN NN RN AN RN N R R RN AN RN RN AR RN RRE
(222 2222222222222 2222222 222222202 2222207
2 FEATURE VECTORS DESCRIPTORS]
HEARRALARRRFARABLRARRARARAIBBIRBARBBEL

var FEATURE-ITEM : object-class subtype-of Pattern-Object

154

APPENDIX B

var description-vector : map(Feature-Item, seq(A-Description-Object))

LR AR N R N R NN RN NN A RN RN AN RN A RN NE:
BARBABAVBBARABBARBARARBARBBALBBB888888
8 FEATURES 3
RABBAVBRARARBBURRBUBRBBRRBRARBURRB 2SS
var EMPTY-DESCRIPTION : object-class subtype-of A-Description-Object
SULLERTLETTRIrrna e e v ety i r e e b e rreesernnnaningre
var KEYWORDS-DESCRIPTION : object-class subtype-of A-Description—QObject
var keywords-in-pattern : map(Keywords-Description, set(string))
LR AR NN RN RN AR RN AN NN R RN AR RN RRR AR NN RE
var DEFINES-DESCRIPTION : object-class subtype-of A-Description-Object

var definitions-in-pattern : map(Defines-Description, set(Bind-Variable-Object))

LR RN RN R S R R R R NN A R RN RN RN N AR RRNNNRNE

var USES-DESCRIPTION : object-class subtype-of A-Description-Object

var uses-in-pattern : map(Uses-Description, set(Bind-Variable-Object))
SULLLLEEREEEREEr e e e e b e e e e e e et enietinnns

var PROBABILITY-DESCRIPTION : object-class subtype-of A-Description-Object

var probabilty-tuple : map(Probability-Description, seq(Probability-Tuple-Item))
$UCEELOLCEERETER e e v e e e e e e nenie

var PROBABILITY-TUPLE-ITEM : object-class subtype-of Pattern-Object

var stat-name : map(Probability-Tuple-Item, string)

var stat-probability-value : map(Probability-Tuple-Item, real)

NN AN N RN RN N R R AN R RN NN A R RRNNRRRRRR AR NARE:

var METRICS-DESCRIPTION : object-class subtype-of A-Description-QObject
var metrics-in-pattern : map(Metrics-Description, seq(real))

RN RN AR RN RN R RN RN R RN RN RN R AR AR RE:

SRERBABBRABBARBRRBBRAZBABBBBEBUBRIBBERS
ABSTRACT IDENTIFIERS 8
SRBRBARBABBVBVAABRABABARRBBRBBBER88828

var BIND-VARIABLE-0BJECT : object-class subtype-of Reverse-Engineering-Object

var var-name : map(Bind-Variable-Object, symbol)

var is-actual-var? : map(Bind-Variable-Object, Boolean)

var actual-var-name : map(Bind-Variable-Object, symbol)

var bind-variable-type : map(Bind-Variable-Object, Bind-Variable-Type-Object)
var var-bind : map(Bind-Variable-Object, seq(C-Object))

155

APPENDIX B

SELLELTEEIEEER e e e e b e e ereeeennete
var BIND-VARIABLE-TYPE-OBJECT : object-class subtype-of Reverse-Engineering-Object

var bind-type : map(Bind-Variable-Type-Object, Abstract-Type-Object)
var is-pointer? : map(Bind-Variable-Type-Object, Boolean)

var is-reference? : map(Bind-Variable-Type-Object, Boolean)

#LOLERTTT TR e e e e e r e e b rennte

E2 22222222222 2222222222222 22222222222
& ABSTRACT DATA TYPES L]
HEABBLABRLBBARABRLABBRARBABAABRZARL8E

var ABSTRACT-TYPE-OBJECT : object-class subtype-of Reverse-Engineering-Object

var is-numeral? : map(Abstract-Type-Object, Boolean)
var is-void? : map{Abstract-Type-0Object, Boolean)
var is-enum? : map(Abstract-Type-Object, Boolean)
var is-array? : map(Abstract-Type-Object, Boolean)
var is-char? : map(Abstract-Type-Object, Boolean)
var is-struct-type? : map(Abstract-Type-Object, Boolean)
var is-any-type? : map(Abstract-Type-Object, Boolean)
var is-actual-name? : map(Abstract-Type-Object, Boolean)
var the-type-name : map(Abstract-Type-Object, symbol)}

NN R AN RN R NN RN R N RN R A R RN RNARERRR NN AL

b2z 222232 222222222 222222222222 22222222

ABSTRACT EXPRESSIONS

P22 222222220222 2822 22222222222 2202222 20
var ASSIGNMENT-PATTERN : object-class subtype-of Expression-Pattern
SLLLLUICEERIRE T A Bt e e e e e e rereenie
var ACTUAL-ASSIGNMENT-PATTERN : object-class subtype-of Assignment-Pattern
#ELLLLETTEV T e E TR e e e e e e rerrerrent e
var POSTINCREMENTATION-PATTERN : object-class subtype-of Assignment-Patterm
#ULETTEOEEUIER T e b Ee e e e b e R e e e e e i
var PREINCREMENTATION-PATTERN : object-class subtype-of Assignment-Pattern
#LLLOLEEEET R e e e b e e e e e b ee e e e eernre e
var POSTDECREMENTATION-PATTERN : object-class subtype-of Assignment-Pattern
#ULLLERETEEER Rt e e e e e e e e e e veer e e
var PREDECREMENTATION-PATTERN : object-class subtype-of Assignment-Pattern
#UUCTECITTEERT R R e e e e e e e e en e e

156

var

var

FUNCTION-CALL-PATTERN

function-call-name

APPENDIX B

: object-class subtype-of Expression-Pattern

: map(Function-Call-Pattern,

Bind-Variable-Object)

var function-call-pattern-description-item

: map(Function-Call-Pattern,

Detailed-Pattern-Description)

#ELLTLLEREEererrnererrenrererpe e b ie

var CONDITION-PATTERN : object-class subtype-of Expression-Pattern

var the-condition-description : map(Condition-Pattern, Detailed-Pattern-Description)
var is-equality-cond? : map(Condition-Pattern, Boolean)

var is-inequality~cond? map(Condition-Pattern, Boolean)

var is-fcn-call-test-cond? : map(Condition-Pattern, Boolean)

var is-boolean-test-cond? : map(Condition-Pattern, Boolean)

var is-any-cond? : map(Condition-Pattern, Boolean)

RN NN NN RN RN AR NN R RN NN RN RN RN R RN R R RN RARRE

157

APPENDIX C

e Example 1: The following Plan is denoting instances of code fragments that implement the
traversal of a linked list and the invocation of a printf function call when a condition related
to the current node being traversed is met. Below the given Plan, we include the matched

source code instances obtained from the Clips system.

actual-assignment-statement
abstract-expression-description

uses : [?currPtr : & " struct],
defines : [?ptr : * ~ struet];
s-statement
abstract-expression-description empty;
vhile-statement (any-cond

abstract-expression-description

uses : [?ptr : * ~ struct])

s-statement
abstract-expression-description empty;
if-statement{any-cond
abstract-expression-description

uses : [?ptr : * ° struct])} then
*-statement
abstract-expression-description empty ;
function-call printf
abstract-expression-description

uses : [?ptr : * ~ struct];
*-statement

abstract-expression-description empty

APPENDIX C

}
else
{
¢-statement
abstract-expression-description empty
}

s-statement

abstract-expression-description empty

FRERVABABBABARBBBHRILARRIRBNRUANS
MATCHED SOURCE CODE INSTANCES
RARRAARBERARBABRABBARIRZARARRSLBR8S

field = o~>ATTLIST[num].attFields;
while (field '= ((void *)0))}
{
if (!__strcmp(obj,origlbj) II
(!'__strcmp(field->AvalueType, "member") &&
notInOrig))
printf("[4s]\n",
field->Avalue) ;
field = field->nextValue;
1
FILE "object"
FROM-LINE : 2095
TO-LINE : 2104
DIST : 0.029003784
field = o->ATTLIST [num] .attFields;
while (field != ((void #)0))
{
if (!'__strcmp(obj,origbj) |1
(! __strcmp(field->AvalueType, "member") &&
notInOrig))
printf("[%s]\a",

159

field->Avalue);
field = field->nextValue;
}
FILE "object"
FROM-LINE : 2236
TO-LINE t 2245
DIST : 0.029003784
p = SEARCH_MEMBER(obj)->startlList;
while(p != ((void *)0))
{
if (1__strcmp(p->type,"child"))
{
count = 1;
printf("([%s]l\n",p~>link->name) ;
}
P = p—>next;
}
FILE "object"
FROM-LINE : 1283
TO-LINE : 1292
DIST : 0.010258662

p = SEARCH_SUB(obj)->startList;
while(p != ((void #)0))
{
if (!__strcmp(p->type,"”child"))
{
count = 1;
printf (" [%s]\n",p->link->name) ;
}
P = p~>next;
}
FILE "object"
FROM-LINE : 1131
TO-LINE : 1140

APPENDIX C

160

DIST : 0.010258662

SREEEEEBERBELEEREEX LR LEES SR SR EE LSRR ERRLES R

PLAN : 1ll-search-and-print-1.pl
TIME-START : 10/04/96 08:00:58
TIME-END : 10/04/96 09:03:11

TOTAL HITS : 3724

LEVEL OF ABSTR : 11557.0
MAX-DIST : 0.029003784

MIN-DIST : 0.010258662

AVG-DIST : 0.019631222

WEIGHT : 0.5

RES-SIZE : 4

TIME-LOC-START : 10/04/96 08:00:59
TIME-LOC-END : 10/04/96 08:02:31
COVERAGE

"object" 1131 1140 0.010258662
"object" 1283 1292 0.010258662
"object" 2236 2245 0.029003784
"object" 2095 2104 0.029003784

SEEFEBEERBXFERERE X AR B SRS EEEE B RS RS R RER S

APPENDIX C

161

APPENDIX C

¢ Example 2: The following Plan is denoting instances of code fragments that implement the
addition of a new element to a linked list. Below the given Plan, we include the matched

source code instances obtained from the Tcsh system.

actual-assignment-statement
abstract-expression-description
uses : [?head : * ~ struct],
defines : [7elem : * ~ struct],
keywords : ["next"] ;
s-statement
abstract-expression-description
empty;
actual-assignment-statement
abstract-expression-description
uses : [7elem : * ~ struct],

defines : [?head : * ~ struct]

BARBUABRABRBARBARBARBRBABJUIBBRES
MATCHED SOURCE CODE INSTANCES
£33 2222222222222 2222222222 22202

new->next = where->next;
where->next = new;

new->next->prev = new;

FILE "tc"

FROM-LINE : 1166
TO-LINE : 1167

DIST : 0.59725314

now->next->prev = now->prev;
free((ptr_t) now->word);
del = now;

now = now->next;

162

FILE "te"

FROM-LINE : 1150
TO-LINE : 1153

DIST : 0.5256015

now->prev->next = now->next;
now->next->prev = now->prev;
free({ptr_t) now->wvord);

del = now;

now = now->next;

FILE "tc"

FROM-LINE : 1149
TO-LINE : 1183

DIST : 0.43800125

- e, . e e e e e W wm ® e m e e o= = = = = o=

tmp->prev->next = tmp->next;

tmp->next->prev = tmp->prev;

FILE “tc"

FROM-LINE : 967
TO-LINE : 968

DIST : 0.37880763

tmp->next->prev = tmp->prev;
free((ptr_t) tmp->word);
del = tmp;

tmp = tmp->next;

FILE "tc"

FROM-LINE : 960
TO-LINE : 963

DIST : 0.5256015

APPENDIX C

163

APPENDIX C

tmp->prev->next = tmp->next;
tmp->next->prev = tmp->prev;
free((ptr_t) tmp->word);

del = tmp;

tmp = tmp->next;

FILE "tc"

FROM-LINE : 959
TO-LINE : 963

DIST : 0.43800125

newl->next = w.prev = new2;

newl->prev = new2->next = &w;

FILE “tc"

FROM-LINE : 809
TO-LINE : 810

DIST : 0.98704046

¥.next = nevw2->prev = newl;

"

newl->next = w.prev = new2;

newl->prev = new2->next = &w;

FILE "tc"

FROM-LINE : 808
TO-LINE : 810

DIST : 0.7324082

P = p—>next;
if (any(RELPAR, p->word[0])) {
seterror(101);

continue;

164

1

if (((flags & 4) && (flags & 8) == 0) || t->R.T_drit)

seterror(102);
else
t->R.T_drit = s_strsave(p->word);
continue;
case '<’:
if (1 t'= 0)
goto savep;
if (p->word[1] == <)
t->t_dflg |= (1<<9);
if (p->next == p2) {
seterror(101);
continue;
}

P = p—>next;

FILE "sh"

FROM-LINE : 614

TO-LINE : 634

DIST : 0.099396266

retp->next = p2;

p2->prev = retp;

FILE "sh"

FROM-LINE : 203
TO-LINE : 204

DIST : 0.29182288

alout.next->prev = pl;

pl->next = alout.next;

FILE "sh"
FROM-LINE : 184

APPENDIX C

165

TO-LINE : 185
DIST : 0.34107885

alout.prev->prev->next = pl->next;
alout.next->prev = pl;

pl->next = alout.next;

FILE "sh"

FROM-LINE : 183
TO-LINE : 185

DIST : 0.53505206

pl->next->prev = alout.prev->prev;
alout.prev->prev->next = pl->next;

alout.next->prev = pl;

FILE "sh"

FROM-LINE : 182
TO-LINE : 184

DIST : 0.28240517

fp = vp->next;

vp->next = fp->next;

FILE "sh"

FROM-LINE : 235
TO-LINE : 236

DIST : 0.3080359

lp->next->prev = &np->Hlex;

np->Hlex.prev = lp->prev;

FILE "sh"

APPENDIX C

166

FROM-LINE : 106
TO-LINE : 107
DIST : 0.49954465

np~>Hlex.next = lp->next;
lp~->next->prev = &np->Hlex;
np->Hlex.prev = lp->prev;

lp->prev->next = &np->Hlex;

FILE "sh"

FROM-LINE : 105
TO-LINE : 108

DIST : 0.43944493

(21222221 23222 2222222 22222232222 2222222122t]

PLAN : 1ll-add~-elem~1.pl
TIME-START : 09/30/96 13:10:09
TIME-END : 09/30/96 13:13:53
TOTAL HITS : 90

LEVEL OF ABSTR : 5043.0
MAX-DIST : 0.98704046
MIN-DIST : 0.099396266
AVG-DIST : 0.4637185

WEIGHT : 0.5

RES-SIZE : 16

TIME-LOC-START : 09/30/96 13:10:16
TIME-LOC-END : 09/30/96 13:12:14
PLAN: 1l-add-elem-1.pl
COVERAGE

"sh" 105 108 0.43944493

“sh" 106 107 0.49954465

"sh" 235 236 0.3080359

"sh" 182 184 0.28240517

"sh" 183 185 0.53505206

“sh" 184 185 0.34107885

"sh" 203 204 0.29182288

APPENDIX C

167

“sh"
"
lltc"
et
nee"
"tc"
et
Yee"

" tC"

614 634 0.099396266
808 810 0.7324082
809 810 0.98704046
959 963 0.43800125
960 963 0.5256015
967 968 0.37880763
1149 1153 0.43800125
1150 1153 0.5256015
1165 1167 0.59725314

APPENDIX C

168

APPENDIX D

In this Appendix we present sample queries used for the experiments presented in Chapter.6 We

distinguish between two types of queries. The first type (Code-to-Code queries) represents queries

used to obtain results for the Metrics-based and the DP-based approach. The second type represents

ACL queries that were used to obtain results using the Markov-based approach.
s Code-To-Code queries:

for(i=0 ; i < or->numOfAtts ; i++)
if (stremp(o->ATTLIST [num].Aname,or->ATTLIST[i].Aname)==0)
{
notInOrig = 0;
i = or->numOfAtts + 100;
}

for(aum=0 ; num < p->num0fAtts ; num++)
{
field = p~>ATTLIST [num] .attFields;
vhile (field !'= NULL)
{
printf("NAME : %s\n VALUE : %s\n CARDINALITY : %s\n TYPE
p~>ATTLIST [num] . Aname,
field->Avalue,
p~>ATTLIST [num] .Multiple,
field->AvalueType);
printf ("CAST : ¥s\n", field->AvalueCast);
printf{("\n");

field = field->nextValue;

: %s\n",

if (!stremp(alist [num] .Multiple,"s"))

{

putValueFunctionSingle (objName,alist [num] . Aname,

field->Avalue, field->AvalueType);

else

putValueFunctionMulti(objName,alist[num] . Aname,

field->Avalue, field->AvalueType);

if
{

(ch !'= NULL)

1lspl = startSub->startlist;

startSub->startlList = getListNode();

startSub->startList->next = 1lspi;

startSub->startList->link = ch;

strcpy(startSub->startList->type, "child");

lep = ch->startList;
ch->startList = getListNode();
ch->startList->next = lcp;
ch->startList->link = startSub;

strepy(ch->startList->type, “"parent");

sp = SEARCH_SUB(objName) ;

spl = SEARCH_SUB(parent);

lspl = spi->startlist;

spl->startList = getListNode();
spl->startList->next = 1lspi;
spl->startList->link = sp;
strcpy(spl->startList->type, "child");

lsp = sp->startList;

APPENDIX D

170

APPENDIX D

sp->startList = getListNode();

sp->startList->next = lsp;

sp->startList->link = spl;

strcpy(sp~>startList->type, "parent");

void putValueMulti()
{

char #objName,sattName,*type,*value;

if (num_axgs() !'= 4)
{
printf ("Wrong number of arguments : (putValue ObjName AttName");

printf (" AttValue AttType)\n");

return;

}

objName = rstring(1);
attName = rstring(2);

value = rstring(3);
type = rstring(4);

putValueFunctionMulti(objName,attName,value,type);

e ACL queries

iterative-statement (any-cond
abstract-expression-description

uses : [num0fAtts : & ~ numeral, ?num : & - numerall)
s*-statement

abstract-expression-description empty;

actual-assignment-statement

171

APPENDIX D

abstract-expression-description
uses : [ATTLIST, attFields],
defines : [?field : = ~ FIELDS_T];
*~statement
abstract-expression-description empty;
iterative-statement (any-cond
abstract-expression-description

uses : [?field : = ~ FILEDS_T])

*-statement
abstract-expression-description empty;
function-call ?printf
abstract-expression-description
uses : (ATTLIST, Avalue, Aname, AvalueTypel;
s-statement
abstract-expression-description empty
};
*-statement

abstract-expression-description empty

if-statement (any-cond
abstract-expression-description
defines : [?obj : * ~ OBJECT],
uses : [?SEARCH_CLASS]) then

if-statement (any-cond
abstract-expression-description
defines : [?obj : * - 0OBJECT],
uses : [?SEARCH_SUB]) then

if-statement (any-cond
abstract-expression-description
defines : [?obj : * -~ OBJECT],
uses : [?SEARCH_MEMBER]) then
{

172

APPENDIX D

+-statement

abstract-expression-description

empty

for-statement (actnal-assignment-statement
abstract-expression-description
defines : [?i : & ~ numerall;
any-cond
abstract-expression-description
uses : [numOfAtts, Zobj : * ~ OBJECT];
postincrementation-statement
abstract-expression-description
uses : [?i : & ~ numerall,

defines : [?i : & ~ numerall)

if-statement (any-cond
abstract-expression-description
uses : [Aname, ATTLIST, 7obj : = - OBJECT,

7attName]) then

if-statement (any-cond
abstract-expression-description

uses : [Multiple, ATTLIST, Zobj : * ~ OBJECT]) then

+-statement
abstract~expression-description empty
3
actual-assignment-statement
abstract-expression-description
defines : [?field : * ~ FIELDS_TI],
uses : [?obj : * - OBJECT,
ATTLIST, attFields];

173

APPENDIX D

*-statement
abstract-expression-description empty;
any-statement
abstract-expression-description
uses : [AvalueCast];
*-statement

abstract-expression-description empty

if-statement (any-cond
abstract-expression-description

uses : [Multiple, 7alist : & "~ ALIST]) then

{
*-statement
abstract-expression-description empty:
function-call ?putValue
abstract-expression-description
uses : [Avalue, Aname, ?7alist : & ~ ALIST, 7objl;
*—statement
abstract-expression-description empty
}
else
{
*-statement
abstract-expression-description
empty,;
function-call 7putValue
abstract-expression-description
uses : [Avalue, Aname, 7alist : & ~ ALIST, 7objl;
*-statement
abstract-expression-description
empty
}

174

APPENDIX D

iterative-statement (any-cond
abstract-expression-description

uses : [?i : & - numeral, numOfAtts, ?or : * ~ OBJECT])

{
*-statement
abstract-expression-description
empty;
conditional-statement (any-cond
abstract-expression-description
uses : [?0 : * = OBJECT, Aname, ATTLIST])
{
*-statement
abstract-expression-description
empty ;
(any-statement
abstract-expression-description
defines : [notIn0rig : & ~ numeral] +
any-statement
abstract-expression-description
uses : [ATTLIST]);
*-statement
abstract-expression-description
empty
};
s-statement
abstract-expression-description
empty
}

vhile-statement (any-cond
abstract-expression-~description

uses : [7inchar : & ~ numeral])
if-statement (any-cond

abstract-expression-description

uses : [?inchar : & - numeral]) then

175

{
any-statement
abstract-expression-description
uses : [7pos : & " numeral]
}:

(*=-statement
abstract-expression-description

empty -

assignment-statement
abstract-expression-description
uses : [?pos : & ~ numeral],

defines : ([?pos : & ~ numeral] -

*-statement
abstract-expression-description

empty -

actual-assignment-statement
abstract-expression-description
uses : [?pos : & ~ numerall,

defines : [?inchar : & °~ char] -

s-statement
abstract-expression-description

empty)

*-statement

abstract-expression~description

empty

any-statement

abstract-expression-description

APPENDIX D

176

APPENDIX D

uses : [nextUnique, Aname, ATTLIST, ?obj : * ~ OBJECT, Aname,
Multiple, attFields, Avalue, AvalueCast, AvalueTypel],
keywords : [“getFieldsNode"]}

while-statement (any-cond
abstract-expression-description

empty)

function-call fgets

abstract-expression-description

uses : [fgets, ?BC_file : & ~ FILE, ?line : & ~ array-typel;
*-statement

abstract-expression-description

empty;
if-statement (any-cond

abstract-expression-description

uses : [?BC_file : & ~ FILE, line : & " array-typel) then

+-statement
abstract-expression-description

empty

else

+-statement
abstract-expression-description
empty
};
*-statement

abstract-expression-description

empty

177

Document Log:

Manuscript Version 1 —March 12, 1994
Typeset by Ap4S-INTEX — 12 January 1997

KONSTANTINOS A. KONTOYIANNIS

ScHoOL oF COMPUTER SCIENCE, MCGILL UNIVERSITY, 3480 UNIVERSITY ST., MONTREAL (QUEBEC) H3A 2AT7,
CANADA, Tel. : (514) 398-7071

E-mail address: kostasQcs.mcgill.ca

Typeset by ApS-IATEX

V4
z"
= <
T
<C
L
<L
Lt —
<
=
A

NI
= =
S R EE

Rl mm—w_.._w_uu._‘m

I}

I

14

150mm

.25

ster, NY 14609 USA
ne: 716/482-0300

East Main Street
N
716/288-5989

g5

WRPF
i

IMAGE . Inc

APPLIED

© 1993, Applied Image. Inc., All Rights Resarved

