
I

.~... ·vs/no oo.o :r

DEVELOPMENT OF AN EXPERT SYSTEM

USING OBJECT ORIENTED PROGRAMMING

by

ANDRE PLANTE, 8612297

REPORT SUBMIT TO FULFILL THE REQUIREMENTS OF

COURSE 336 - 490 D PROJECT

DATE

MAR CH 20, 1989

PRESENTED IN WINTER SEMESTER 1989

MACDONALD COLLEGE OF MCGILL UNIVERSITY

DEPARTEMENT OF AGRICULTURAL ENGINEERING

11

TABLE OF CONTENTS

ACKNOWLEDGEIVIENT .. III

ABSTRACT .. .IV

INTRODUCTION .. S

REVIEW OF LITERATURE

COMPUTERS IN AGRICULTURE ... ?

EXPERT SYSTEMS II

OOP'S: A DIFFERENT APPROACH .. 15

OBJECTIVES OF THE PROJECT ... l9

SCOPE OF THE PROJECT .. 20

DESCRIPTION OF ACTOR P ACKAGE ... 21

DEVELOPMENT OF EXPERT SYSTEM ... 23

RESULTS AND DISCUSSION 27

SUMMARY AND CONCLUSIONS .. 29

SUGGESTION OF FURTHER WORK. .. 30

LITERATURE CITED 31

APPENDICES:

A · First system flow chart ... 35

B Second system flow chart. ... 37

C Demonstration program flow chart and objects 39

D Screen pictures of demonstration program 5l

E Glossary .. " 6l

- I f /11

ACKNOWLEDGMENTS

T
he author wishes to express his sincere thanks and appreciation to Profes ·

sor S.O. Prasher, the research supervisor, for his unfailing support, en·

couragement and guidance. His classical yet rigorous attitude has helped the author

through the course of this experience.

The author also wishes to express his gratitude and appreciation to "The

Whitewater Group" and especially to Zack Urlocker, Manager of Developers Rela·

tions for the Actor package, for their interest and suggestions with Actor ·related

difficulties.

Many thanks are also extended to the following students, B. De Serre, and J.

Hebert, for there friendship, help and encouragement which contributed to make

this project enjoyable and rewarding. A special acknowledgement to N. Zemanchick

for proofreading this report.

Thanks also go to my family and very close friend, Michele, for there con·

stant support and patience, understanding and judicious advices with subjects in

relation with this research.

.~.. ·vs/no ooo ~ IV

ABSTRACT

0 bject -oriented programming was used to design an expert system in water

management studies. The purpose of the system was to test if subirriga

tion and controlled irrigation would be desirable for a given farm. Years of per -

sonal expertise by the leading intellects in this field was put into gouverning

rules . The expert system was developed using .. Actor .. , an object-oriented lan

guage. Due to the limited time available, full scale testing was not done but a

prototype was built. Therefor, partial results are given in this report. Addition -

ally, the benefits and encapsulating methods of object oriented programming in

relation with artificial intelligence in agriculture are fully discussed.

I ro/'817 .6. ·vs/noooo~

INTRODUCTION

A griculture is still a way of life for many but it is becoming an increas ·

ingly sophiticated business. Computers in agriculture have been around for

a long time but they are just starting to take the strain off the owner/operators.

One way of relieving this pressure that was recently made available by new

technology is expert systems. The need for decision support systems in agricul·

ture is increasing with the impact of decisions on the financial growth of the

enterprise. Expert systems can provide help with these decisions by their knowledge

base. They also have the power to communicate, to act as technology transfert

medium. The use of artificial intelligence as a farming tool is starting to develop

in many areas and countries. Some new specialized languages are appearing on

the market, and with this has originated a need by certain faculty members to

see if their use was justified in agricultural systems. These new languages offer

a challenging approach to old dreams. Their logical development is closer to the

human thought process, which therefore makes them more adapted to the build·

ing of expert systems. Conventional programming followed a mathematical ap·

proach to problems. The internal workings of object oriented programming have

new revolutionary concepts, such as encapsulation and inheritance. Their relative

importance is discussed further . In conventional programming a new project was

always started from a blank page. A object·oriented programmers can start were

one as stop. Reusability of source codes is an important time saving factor. Also

discussed later. Through the creation of an expert system pertaining to su birriga ·

tion and con trolled irrigation, the appreciation of the object oriented approach will

be discussed. The possibilities of object·oriented programming for agricultural uses

will also be discussed. One of the new languages offered in this trend will be

used to build the prototype of the expert system and a description will be given.

The language utilized is commercially available on the market. It is produced by

"The Whitewater Group", and sold under the name cc Actor ((

nr I -f oF an I:TA.UI:Tft .6. 'U$/nO 000 ~ 8

REVIEW OF LITERATURE

· usfnoooo~

COMPUTERS IN AGRICULTURE

A !though agriculture is still a way of life, it is also an increasingly sop his ·

ticated business. Tomorrow's farmer will be a better businessman as well

as a better production technician. He/she will benefit from a rapidly growing

array of electronic technologies which will provide more information, on a time·

ly basis, with more analytical capabilities. How well farmers manage this infor·

mation will be an important factor in business success (Agriculture 2000, 1983).

As Beasley (1983) puts it .. a computer won't make a bad manager good, but

it will make a good manager better ...

The computer technology as an agriculture tool is not new. Some applica·

tions have been around for several years. One of the earliest and still in use

applications is the dairy herd improvement (DHI) services which have been wide·

ly available since the 1960's (Macdonald College, 1986~ The purpose of this or ·

ganization is to provide dairy farmers with performance results of each cow by

analyzing milk samples and monitoring each of the cow's milk production on an

individual basis. General management recommendations are then made to the

herdsman in order to achieve financial growth.

As Gautier (1987) pointed out, most computer applications in agriculture can

be classified in to the following categories: 1) financial record keeping and account·

ing, 2) physical record keeping, 3) planning and decision support, 4) communica·

tions, and 5) farm automation. Financial budgeting and accounting packages, in

general, attempt to adapt the type of software used by small and medium ·sized

businesses to the farm enterprises. These imitations range from simple applications

written in BASIC (Legasy et al., 1984), with some specific spreadsheet programs.

to more dedicated and comprehensive systems.

I

uslnoooo~ 8

Since the start of the electronic era, research in agriculture has been relying on

corn pu ters for laborious and time consuming tasks such as statistical analyses and

theoretical simulation of physical processes. This was done by using mathemati·

cal models. Researchers are now working on projects which use such models in

decision ·making applications at the farm level (Kjelgaard and W u, 1983) through

the use of personal computers and computerized data bank systems.

General purpose software for ledger, accounts receivable and payable, can also

be used for farm management. Record keeping is basically a mass of organized

information concerning different fields of action of the enterprise such as; fields,

animals, machines. From these data the farmer can retrieve the desired in for·

mation at the press of a key. An increase in both the quantity and quality of

information accessible to the farmer enables what Peart and Puckett (1982) label

a .. management by exception« approach where one manager can effectively hand ·

le alarge farm by concentrating on the critical or extraordinary cases identified

through the record keeping system. This is becoming a standard throughout the

industrial world.

Data acquisition is done via automation and is used mainly in automated feed·

back control devices. I believe that the dairy farm is one of the main concerns

of both research and industry in Quebec, probably due to the economic impor·

tance of this industry. Computerized record keeping allows rapid and accurate

identification of individuals in the herd, this system is usually linked to an on·

farm corn pu ter (Agriculture 2000, 1983} As Speicher (1981) views it: .. The corn·

puterized dairy herd management system is one utilizing electronic animal

identification, automatic milk weighing and recording and data entry at the par·

lour, the lot, the barn or the computer itselfc. Commercial and experimental sys·

terns which attempt to achieve this level of functionality already exist (Spahr et

aL, 1985). Many of the commercial systems make an attempt to integrate many

hard ware and software functions in one turn key system. Other programs in this

category are for machinery selection or replacement, sire selection for herd im ·

provement, forecasting production and herd population modelling. These packages

are designed to help solve very specific problems. Therefore, they constitute a

legitimate decision support systems, as reported by Gautier (1987).

Microprocessors are being incorporated more and more in the design of agricul·

tural machinery. Computer-based systems to monitor machinery operating parameters

such as wheel slippage, fuel consumption, seeding or spraying rates, engine load

etc. are already commercially available. Manufacturers are incorporating subsystems

such as sensors, on board computers and intelligent control programs in their

equipment, and this trend will most likely continue. Research has also been car·

ried out on automatic tractor and combine guidance systems (Harries and Ambler,

1981), as well as computer controlled irrigation (McLendon et al, 1983). The

above authors have discussed some of the design considerations which must be

observed when creating control programs, to automate the operation of irrigation

control structures. Kok and Desmarais (1985) have discussed the use of an in ·

tegrated hierarchical control system for greenhouse management where four levels

of control and/or data acquisition (physical, instinctual, Pavlovian and intelligent)

are used to copy the human decision process.

The market now carries affordable communication hardware/software which al·

lows computer systems to exchange information. Thus, the farmer is less isolated

with his problems and can contact with the outside world for information or

ad vis e. This is done through electronic mail, modems or conference services. Most

services also support some kind of interactive computing in the form of electronic

mailing, continuing education, banking, shopping etc. Electronic devices and com·

puters used in agriculture and more specifically in farm management are attract·

ing the interest and imagination of theagricultural community to higher and higher

levels. Many institutions are publishing newsletters or reports on the prelimi·

nary concerns with this field . Most agricultural or rural publications regularly in ·

elude an article on the use, or potential of electronics and computers for farming .

The use of computers as ,information management tools, is considered by many

n.r , .. oF an ~u,: svstem us/no ooo :r Ill

authors to be the key to any further increase in farm productivity (Cardiff,

1985; Riddle, 1985).

..11
.6 . vs/noooo~ ff

EXPERT SYSTEMS

T he organisation or classification of know ledge is one of fundamental features

of the h urn an thought process (W alton 1988). To create artificial intelligence

is to take a computer and have it mimic the human reasoning. The artificial in

telligence field is subdivided in many sectors of activity, the most common ones

being; vision, hearing and speaking, robotics, learning abilities, and expert systems

(Rheault 1988). I will be discussing expert systems in this section.

Not so long ago, computers were mainly used to handle numbers, like cal·

culators. One would put in numbers and would get numbers back. With expert

systems we attempt to simulate knowledge and reasoning, and actually get the

corn pu ter to "think" in one's field of expertise. This is usually done by apply·

ing IF-THEN condition -conclusion pairs in order to form a decision tree (J ones,

1985). So the goal is to make the know-how of leading intellectuals accessible to

the rest of the population. Expert systems, according to McKinnon and Lemmon

(1985), distinguish them selves from conventional programming by three major

aspects:

(1) We apply reasoning to know ledge instead of applying mathematical func-

tions to numbers. Judgement as well as reasoning is used to achieve this.

(2) This can be a learning tool because it explains the meaning and reasons of

each question. This is also referred to as transparency.

(3) The updating of the knowledge bank is easier due to physical separation

between the knowledge and the program, and by this practice the application

achieves flexibility.

I 12_

From the preceding discussion, we can see that expert systems are composed

of the knowledge base, the inference engine and the user interface. Let's dis ·

cuss these sections individually.

First the knowledge base or heuristics, these are the private parts of the sys ·

tern and are usually held by individuals. This includes the rules of thumb,

judgement, and sometimes experience based guesses that typically characterize the

human expert-level decision making. Secondly the inference engine or procedure

include the approach to the define problem, it decides which heuristic to apply

to the problem, accesses the rules in the knowledge base, executes and deter ·

mines when acceptable solutions have been found. The inference engine can be

in the form of a shell such as "Exsys 3" written in the C language (Exsys, 3

1985) which are available on the market or in the form of a personal program

developed using conventional languages. The remaining part permits the bi ·direc·

tional corn m unication and should use an approach adapted to the aimed users.

Self explanation of the conditions or reasoning for an answer is very important

for knowledge transfer to the users.

A computer is capable of handling more than payroll, inventory, tax returns,

orbits and trajectories, and Database management. But let's not overestimate its

capabilities. Tasks such as designing new tools, stock market predictions, and for

that matter , every day language, are not in reach. Presently the computers can

handle diagnosing and troubleshooting, production scheduling, and equipment layout

for example (VanHorne, 1986). There are three important sectors of application

for these systems, as reported by Reault (1988):

(1) as a diagnostic tool This is used mostly in preventative maintenance of

machinery, medical diagnostic, and in management of big projects.

(2) to interpret situations, to examine alternatives, to make recommendations ac·

cordingly to pre -establish criteria. This is used in the insurance field .

·usfnoooo~ 1.1

(3) and in intelligent documentation which is used to replace manuals, proce

dures, data cards. A very good example of this is the MUSE system used by

McGill university for its library card services.

There are other systems that are used for selection in complex decisions, process

control, or as a support for conception and development. It is the author's opinion

that the future and most promising use for agriculture is in decision support.

Other fields will also have their share of the stage (H uggins 1986). Here are

some of the existing expert systems cited in the literature and reported by Dlus ·

chizt and Schmisseur (1988);

NAME

PLANT/ds

PLANT/cd

COMA X

POMME

PLANT/tm

GMA

FIELD OF APPLICATION

Diagnostic of soybean diseases.

Prediction of corn damage from

the black cutworm.

Integrated crop management in cotton.

Pest and orchard management of apples.

Diagnostic of weeds in turf.

Determination of grain marketing

alternatives.

Why is it so important to store the knowledge of experts on computers? First

of all for economic reasons. A good example of this is the expert system called

REPFARM which is used for farm machinery selection. Big savings can be made

due to the importance of the needed investments in this sector (Kline et al.,

1988). But there is more to it, permanent access to knowledge and consistency

in judgement. Experts are expensive, rare and they are not always available. This

shortage of experts is responsible for holding back the development of science as

well as the development of human kind. An increase in productivity of experts

can be achieved by freeing them from the routine jobs so they have more time

for research. The formation of junior personnel can be executed through this

I L
us/noooo~

transfer of technology. As we can see consistency and reliability, not creativity,

are paramounts (VanHorne 1986).

,_ .I ., usfnoooo:t

OBJECT ORIENTED PROGRAMMING; A
DIFFERENT APPROACH

The words Object -Oriented Programming have been gaining a lot of corn·

mercial attention from those who must built advanced computer systems.

Several claims have been made that computer program writing time could be

cut by half, that conventional programming was obsolete, etc... But is this silent

revolution part of our future? Here is an analogy given by Cox (1987) that il·

lustrate the situation:

Before the industrial revolution, the firearms industry was hardly an industry

at all but a loose coalition of individual craftsmen. Each firearm was crafted by

an individual gunsmith who built each part from raw materials. Firearms produced

in this way were expensive and each was the distinctive product of a gunsmith's

personal inspiration. After a big contract to an individual gunsmith by the govern·

ment he innovated by dividing the work so that each part was produced by

a specialist to meet a specified standard. Each gunsmith focused on a single part,

using sophisticated tools to optimize that task. This produced economies of scale

that drove down manufacturing costs and permitted easy repairs.

As Cox (1987) points out, the importance of object-oriented programming is corn-

parable to that of the interchangeable part innovation, and for many of the same

reasons. Both redefine the unit of modularity so that workers produce subcom ·

ponents instead of complete solutions. The subcomponents are controlled by stand·

ards and can be interchanged across different products. Programmers no longer

build entire programs from raw materials, the bare statements and expressions of

a programming language. Instead they produce reusable software components by

assembling components of other programmers. These components are called Software·

ICs to emphasize their similarity with the integrated silicon chip, a similar in-

I ·us/no ooo ~ IG

novation that has revolutionised the computer hardware industry over the past

twenty years or so. This new approach has the following advantages:

1. Systems can be made malleable by retaining some elasticity into run -time.

This involves relaxing the usual demand that everything be accomplished at corn

pile-time, also known as linking. Dynamic binding is a move in this direction

(Philips, 1986) but in object oriented programming this concept is pushed to a

maximum. Once an object receives a message, it takes over the systems until it

passes the priority to another object. In contrast, the traditional well structured

sub-routines even tu ally pass the control back to the main program (Verity, 1987).

2. Systems can be made more changeable by making them smaller and lighter

in weight, thus transforming system like functionality into program like size. The

encapsulation and inheritance techniques, described later, do this by integrating

reusability into the mainstream of the software development process.

3. Systems can be more tightly encapsulated as objects that behave as armor

plated black boxes to limit the ripple effect when a penetration of the static

defense does happen. A change to one part of the system need not affect the

rest of the system, but can be dealt with inside the part directly affected. This

is very desirable when dealing with big applications (100 000 lines +) because

as the understanding of the entire system goes down, the ability to deal with

deficiencies goes down as well. This is best illustrated by comparing it to .. Occam's

Razor.. rule (Actor, 1987).

These primary new features are summarized in two key words, encapsulation

and inheritance. These new tools and concepts can help to produce software

that are far more to le rant to changes. Encapsulation is the foundation of the

whole approach. Its contribution is restricting the effects of change by placing

a wall of code around each piece of data All access to the data is handled by

methods (procedures) that are put there to mediate access to the private part

(Madsen, 1986). These encapsulated operands are called objects. This encapsula

tion makes systems more malleable by restricting the amount of damage a change

17

can cause. This benefit is called encapsulation. It is the first and foremost con·

tribution of the dynamically-bound style of object-oriented programming.

A second benefit, called inheritance, becomes possible once encapsulation is avail·

able. Inheritance is a technique for defining new data types by describing how

each new type differs from some pre-existing type. The methods that charac·

terize a class are also inherited by the descendants (Smalltalk/V, 1986). Inheritance

is the more innovative part of this approach because it is not provided by con·

ven tional languages. It is a tool for automatically broadcasting codes to classes

developed by different members of a team. Programmers no longer start each

module with a blank page, but instead write a single statement that references

directly some class that is already in the library. The ancestor class can be

shared by an infinite n urn ber of descendent class (Agha, 1986). Each subsequent

statement describes how the new class differs from the one in the library. In·

heritance is a way of defining some useful construct in a central place and then

automatically broadcasting that construct to all the places where it could help

(Cox, 1987). Encapsulation means that the user no longer applies operators to

operands while taking care that the two are type-compatible. Instead the user

tells the object what needs to be done, and the object chooses the correct operator

from a table of things that the object knows how to do. Actually the user does

not need to know how the object works to use it in his own programs (Robison,

1988). The result is that the effect of adding a new kind of object does not

spread beyond the place where the new type is defined.

Unlike more traditional programming methods that are based on concepts such

as data flow or mathematical logic, object oriented programming is based on

directly modelling the application(Thomas, 1989). Mostly all of the languages that

are object oriented use an environment which is based on the concept of win·

dows (Petzold, 1988). Therefore creating the window is the starting point of

building an application. This window is composed of the objects that support the

program (Smalltalk V /286, 1988). The following example is a step by step develop·

ment of an application, simple but clear as is the path to follow in this type

/);- I . .6.

us/nnooo~ 13

of programming. I found this example in the Smalltalk V /286 (1988) package tutorial

book;

Step 1. Problem statement: a phone book with the list of persons stored in al·

phabetical order. Selecting a name will retrieve the associated phone number.

Names and phone numbers can be added or deleted.

Step 2. Draw the window, concentrate on the appearance and don't think at

this stage of the internal war kings.

Step 3. In order to build this window, you must identify the classes and select

the ancestor classes. In this example we need to create the PhoneBook class

whose instances are the phone book window application. We also need the fol·

lowing classes; Menu, ListPane, TextPane, and TopPane. After consideration the

Dictionary class is the most appropriate for associating names with phone num ·

bers. Names and phone numbers will be represented by String.

Step 4. List the user interfaces, in this case we have; add, list, remove, and

text.

Step 5. Implement these methods in the application, which include the starting

point for a window; opening it. The dictionary which will contain the informa·

tion is also opened at this paint.

Probably the biggest draw back with this new technique is the adaptation

period; inheritance and encapsulation is a really totally different field. One can

estimate that a few months working full time will be needed before really know·

ing what is going on. Large collections of predefined objects and classes can be

purchased and put away until needed. They will usually include the correspond·

ing methods and algorithm (Verity, 1987} To use these a good understanding is

again required. Object-oriented programming is not so much a coding technique

as it is a code packaging technique, a way for code suppliers to encapsulate

functionality for future consumers (Cox, 1987). Functionality is no longer developed

by coding each line from scratch, but by inheriting some useful class and describ·

ing only how the new one differs. The effect is to put reusability squarely in

the mainstream of the software development process.

nr I ·us/noooo~ 1~

OBJECTIVES OF THE PROJECT

In this dissertation the following objectives and guidelines were used:

1. Explore the possibilities of object oriented programming for agricultural uses;

2. Design an expert system using object oriented programming;

3. Demonstrate that the system can be operational

r 4 0/an ./ svstem us/no ooo ~ 2/J

SCOPE OF THE PROJECT

T o achieve the preceding objectives, commercial hardware and software were

used and a prototype was created. The effort focused on the understanding

of object oriented programming and expert systems. The expert system was

designed to give an appreciation of the conditions under which subirrigation and

controlled irrigation could take place in humid regions. Full scale testing was not

done but a demonstration program was built. Years of personal expertise by the

leading intellects in this field was put into governing rules. The knowledge gained

from this experience was assessed and the findings and conclusions are discussed

in detail. Also guidelines are given for the development of future systems.

2f

DESCRIPTION OF ACTOR PACKAGE

A ctor is an object oriented programming language with incremental compil

ing. This means that instead of separating the active programming instruc

tions from the passive data, Actor integrates the two in what is called an object.

It is said to be a pure language because all the supporting classes are in the

form of objects. They are written in Actor, like the application we will be

producing. This new language was designed with artificial intelligence as it's

primary use.

Actor is a Microsoft windows application. As such it is supported by any corn-

puter that will run MS -Windows. To run Actor the following hardware is re -

quired: hard disk, 640 K RAM, Graphics display and adapter, mouse or other

pointing device. All these peripherals are supported via MS-Window.

Actor is a complete programming environment. It uses all the power of Microsoft

windows to help you organize and analyze your work. For the less initiated

readers, MS-Window is a multitasking graphical-based object environment. This

permits you to see all your work at the same time and trace the influence of

one part on another as you make changes. Windows are acted upon as any

other object blended in the Actor philosophy.

Among other programming tools supplied with the Actor package, we find the

.. Browser<<, which is a highly specialized editor customized to work with Actor

source code. The "Inspector", which can be imagined as a window to peak in -

side Actor objects. The "Debugger", which is used in handling source code er

rors by interacting with the compiler and giving you the operations that preceded

the system halt. And the "File Editor" which its main purpose is to deal with

MS -Window option editing.

I 22

Actor also offers dynamic linking with other languages such as; C, Pascal, As·

sembler, or Fortran. The librairies written in the preceding languages can also

be accessed by Actor. This package has the ability to pass data in C structure

as well Artifictel intelligence support includes; frames, symbols, dictionaries, lists,

symbolic programming, and functional arguments. It also as parsing possibilities

and lexical analysis Y ACC compatibility.

When you purchase Actor, the package can be seen as a collection of objects

just waiting to produce descendant classes. The actual possibilities of Actor are

as large as your imagination. Actor is produced by "The Whitewater Group",

the version I used was purchased in 1986 but more recent versions are avail·

able now. These newer versions can support OS/2 system environment.

I

.6. ·us/noooo~ 2:1

DEVELOPMENT OF AN EXPERT SYSTEM
USING OBJECT ORIENTED PROGRAMMING

The expert system data knowledge was constructed from the work of Main

Darbary and Prasher (1987). This work was composed of some 70 rules

reunited in an expert system shell, Exsys 3. From these 70 rules I found that

the desired information could be gathered from 12 questions. Here are the ques·

tion with there possible answer;

Question 1: Is your region a humid region? Possible answers: yes, no.

Question 2: Is there a water supply? Possible answers: yes, no.

Question 3: What type of power supply do you have? Possible answers: diesel,

electric, none.

Question 4: What is your type of soil? Possible answers: sandy clay, clay, silt,

silty clay, silty day loam, silt loam, clay loam, sandy clay loam, loamy sand,

sandy loam, loam, sand.

Question 5: Is there an impermeable layer? Possible answers: less than 2.5 M,

more than 2.5 M, none.

Question 6: Was some backfill used at installation time? Possible answers: yes,

no.

Question 7: What is the salt concentration in your irrigation water? Possible

answers: less than 1500 ppm, between 1500 and 10000 ppm, more than 10000

pp m.

Question 8: Is your average water table deeper than 1 M during the growing

season? Possible answers: yes,no

Question 9: What is the effective rooting depth of the future crop? Possible

answers: less than 30 cm, between 30 and 60 cm, more than 60 cm.

I "oF an us/noooo~~

Question 10: What is the slope of your field? Possible answers: less than .1 %,

between .1 and .2%, between .2 and .3 %, between .3 and.4 %, between .4 and

.5%, more than .5%.

Question 11: What is your drain spacing? Possible answers: less than 15 M,

between 15 M and 20 M, between 20 M and 25 M, between 25 M and 30

M, between 30 M and 35 M, more than 35 M.

Question 12: Where will the harvested fruit grow? Possible answers: below

ground, above ground.

Note that with each question stated precedingly a .. help.. choice is given.

When selected the user will get the necessary explainations concerning the pur ·

pose or importance of the question he is answering. After reading this informa·

tion the user can return to the question an answer.

All of the proposed answers have attached to them a probability of the event

being successful The event referred to are the questions which dictate the con ·

ditions for subirrigation and controlled irrigation. These probability are in fraction

form, e.g. 3/10 or 10110. Two separate numbers are given for the two types of

irrigation. Some questions depend on the answers given to previous questions, in

this category we have questions; 6, 7, 12 which depend on question 4. We also

have questions 10 and 13 which depend on question 9. All the other questions

are considered to be independent from one another. Some questions are key

questions, by which I mean that under certain conditions subirrigation is not

desirable and when these conditions are encountered the system will come to a

stop and explain why su birrigation is not desirable. It will then terminate all

operations.

In the system developed by Main Darbary and Prasher (1987) the inference

engine was formulated by the shell and could not be modified. Due to the ob ·

ject oriented language possibilities, the inference engine in the proposed applica ·

tion was to be developed from the following statistical rules;

uslnooo.o~

CF(A 1,A2)=CF(A 1) + CF(A2) *(l·CF(A 1))

where, CF stands for certainty factor of independent variables

A 1 is the first rule or question

A2 is the second rule or question

The primary task is to calculate the probability of an event according to the

answers to the preceding questions. By putting the inference engine in separate

objects, future upgrading of the statistical part is possible and easy. In contrast

with conventional programming the inference engine will not have the control of

the application. The use of a main program and subroutines are a thing of the

past. The structure of object oriented programming favours a shift of power to

one object at a time as explained in the literature review.

Now that all the system requirements have been stated, I will explain the sub·

divisions and creation of the necessary objects. In order to report the actual

process that was followed to develop the final logic, I will explain the first sys ·

tern which was developed but later proved to be illogical according to the ob·

ject oriented philosophy.

Arst system

In this scenario the objects were divided by rules, therefor the system was

corn posed of 12 objects equivalent to the 12 questions outline earlier, plus the in·

ference engine for a total of 13 objects. A flow chart is given in appendix A.

Each object was a small self-contained program that was meant to run one after

the other. The execution order was directed by one master class. Each object

was design to have it's own screen and facilities, such as pushbuttons, it's own

windows, messages, and direct access to the inference engine. They all descend·

ed from the Window class. The first class to be written was the Power class.

Although the syntax was mastered after a few tries, I could never get the logic

of the Power class to run correctly.

.(o/ 8/ltJK.oert swtem usino ooo :r

Second system

In this revised approach the method explained in the literature review section

was followed. The \rVindows were designed as the starting basis. The supporting

objects that were needed were then introduced one by one but in no specific

order. The system will still have 12 windows but each will have about 3 to 4

supporting classes. Every possible answer will also be an object with it's own

supporting classes. The number of classes needed for this application will be in

the order of 75. A flow chart of the entire application is given in appendix B.

They will mostly descend from Dialog class, OrderedCollection class, ListBox class,

~Nindow class, and Object class. Instead of using pushbutton as in the first sys

tem, I have used list boxes.

The time required to write the entire system with all it's supporting classes is

out of the scope of this project. In order to check that the present system is

functional for agricultural purposes I have made a demo program. The demo

program was nested with the rest of the Actor Demos. It was done by adding

a statement in the OrderedCollection class that maintains the list of demos in

the DemosList class. The same type of windows, as in the Actor Demos, were

used for consistency reasons as well as for source code reusability testing. The

demo contains 2 questions and each have 2 possible answers. After completing

the cycle the control is returned to the Actor Demos. The reader will find a

flow chart and a print of each class in apendi.x C. A print of "Demoslisf(was

included so you could see the lines that were added to nest the demonstration

program in the Actor Demos. Pictures of screens during actual runs were taken

an put in appendix D. The reader can therefor visualize the impact of the

graphical object interface.

I
.1.

us/no oo.o ~ 27

RESULTS AND DISCUSSION

A s computers gain more and more importance in agriculture, learning to use

this new type of language will become essential in order to follow the

technological trends. During the development of this project it became evident

that an adaptation period is necessary. In the first system I developed, I was

able to master the syntax after a few rewrites. However, understanding the in -

teraction between the objects you are creating and the rest of the system is

the hardest part. . The failure of the first system can be attributed to this type

of error. This system was essentially conventional programming; it relied on

dynamic binding to reunite the classes at run time, therefore no shift of power

from an ob ject to another was occurring. The actual size of each object was also

found to be inadequate. The objects where too big for practical purposes, sig-

nifying that the full power of this new approach was not being utilized.

The second system is a sample of what you can achieve with object oriented

programming when you use the right approach. Objects are reusable and should

be reused. In order to demonstrate the usefulness of this feature I used the

same windows throughout this demonstration program, reusing the object which

had the windows for the Actor Demos, found under the name "Demos Window".

The encapsulation was also demonstrated in this application because when I

modified the "DemosListcc class file the rest of the objects that form the Actor

Demos were not affected by the change. By having smaller objects updating is

made a lot easier, for example if the list of possible choices for a question have

to be changed this can be done by replacing the object which contain the list

only. The rest of the system will not be affected. In the demo system I wrote

two classes, responsible for storing and handling the appropriate lists of choices

or objects, that is "SoilList" and "Power List". The SoilList class could be given

it's full potential easily by replacing it with an updated version which includes

Dew A .6. · vslna ooo :r 28

all soil types. To display the needed text in my application I used the .. error ·

Box" function but I would strongly suggest that a special message box be created

and used throughout the system for a better understanding on the user 's part.

This message box should be a descendant of the message window, therefore in·

heriting the full power of its ancestor.

The purpose of the second system was to prove that a full size system could

be built using this approach. In order for the system to be completed the remain ·

ing questions should be added to the existing structure, either at the beginning

or at the end, depending on the desired results. The inference engine was dis ·

cussed, but it never reached the final stage of completion. The internal work ·

ings would need adjustments but when ready it can be integrated to the system

hle any other object. When the system is complete the main support window

coulod be added to it and the application can be sealed off. The Actor book

contains a recipe to seal off applications. It gets rid of all the unwanted objects

and classes, and keeps only what is necessary for the support system of the

new application. Some classes are essential for developing the application, such as

the text editor, but are useless afterwards therefore getting rid of them makes

the system smaller and time efficient.

In the agricultural field no two enterprises are the same, therefore this new

modularity approach could give birth to a generation of software which will be

adapted to the individual needs of each enterprise. With this reusability and seal·

ing off technique it seems that such applications are not far away.

SUMMARY AND CONCLUSIONS

A n expert ~ystem was designed using a new approach called object-oriented

programmmg. A partial system was built using a commercially available

package. A description of this new language, ACTOR, is given. The practical

possibilities of this new approach for agriculture were explored.

Object oriented environment makes it essential to start by designing the win·

dow and from this window it is then possible to conceptualise the support ob -

jects. The difficulty with this new approach is the absence of the main program

in order to favour a distribution of the tasks. Each object should serve only one

purpose in order to use the full potential of this approach. Due to this sub

division of task, called encapsulation, the debugging process is simplified. Addi·

tionally the chain effect of a bug is also stopped by this method. Updating is

simplified by this modularity, and objects can be replaced when or if they be-

come obsolete. Reusability is a time saving factor with great potential, it should

be used to its maxim urn. The second system I designed can be developed to

its full size by using the modularity and the inheritance mention before. Objects

can be added when developed, therefor the expert system can be written by

a team of programmers or by succeeding senior year project students. From the

demonstration program I made to test the second system, I can conclude that

the en tire system can be operational With the available technologies computers

are capable of producing more than mathematical function and to use them only

at that level is under utilizing them. Expert systems will continue to develop as

the demand for artificial intelligence in agriculture grows. Agriculture will benefit

from this new approach by gaining a new way of coping with the diversity

of the demand due to the variance between enterprises. Object oriented program·

ming will be a tool of great importance for agriculture in years to come.

nr- I.
.6. ·vsinoooo~ 3/J

SUGGESTIONS FOR FURTHER WORK

T he type of system described in this dissertation was not specifically designed

to support growth. Actually no thought at all was given to it. Object

oriented programming by it's nature has the ability to be upgraded intensively.

Consequently, the number of objects and their methods can be improved and

expanded without limits. The package can therefore be made to fit the need of

the potential users.

The following are suggestions for system enhancements or additions which were

identified by the author:

• - the entire system should be built according to the second system

described above;

• - the finished system should be tested by users for it's accuracy and

transparency;

• - a study of inference engines should be conducted in order to design

an upgraded version;

• - series of objects capable of interrelating between users and rules to

permit easy upgrading of rule base should be added;

• - the possibility to make the system learn from it's mistake so we can

have an intelligent software;

• - the possibility of adding a voice digitizer to facilitate access for

people with no computing background.

LITERATURE CITED

Actor, 1987. Actor language manuel The Whitewater Group. IL. 643 pages.

Agha,G. 1987. Actors; a model of concurrent computation in distributed sys-

terns. The MIT press, MA. 274 pages.

Agriculture 2000. 1983. Batelle Press. Columbus, OH. 250 pages.

Beasley J.O. 1983. Microcomputers on the farm. Howard W. Sams publishing

compagny, IN. 204 pages.

Cardiff, J. 1985. Farming and the computer. A changing horizon publication,

Seattle, W A. 226 pages.

Cox, B.J. 1987. Object oriented programming; an evolutionary approach. Ad-

dison-Wesley publishing compagny. 274 pages.

Dluschitz R. and W .E. Schmisseur 1988. Expert systems; Application to agricul

ture and farm managtement. Corn put. Electron. Agric., 2: p. 173-182.

Exsys 3 1985. Expert system development hand book. pu bl by Excess in c. 100

pages.

Gautier, L. 1987. Devellopment and use of a database and program package

for farm production management, PH.D. Thesis. Macdonanld College of IV1cGill

University. 534 pages.

us/no ooo :SO 32

Harries, G.O. and B. Ambler. 1981. Automated ploughing: a tractor guidance

system using opto ·electronic remote sensing techniques and a microprocessor based

controller. J. of Agricultural Engineering Research. Vol 26(1): 33·53.

Huggins, L.F. and J.R. Barrett and D.D. Jones 1986. Expert systems: Concepts

and oppurtunities. Agricultural engineering jan/feb 1986, pages 21 ·23.

Jones J.W . 1985. Using expert system in agricultural models. Agricultural en·

gineering vol(66) no.7, pages 21·23.

Kjelgaard W.L. and 2. Wu. 1983. Micro-computer program for field machinery

management. ASAE paper no. 83·1536. 20 pages.

Kline,D.E. and D.A. Bender, B.A. McCarl, and C.E. VanDonge 1988. Machinery

selection using expert systems and linear programming. Computers and Electronics

in agriculture, 3, pages 45 ·61.

Kok, R. and G. Desmarais. 1985. An intergrated hierachical control system for

an intelligent greenhouse. ASAE paper no. NAR85 ·403. 12 pages.

Legacy, J. and T. Stitt and F. Reneau. 1984. Microcomputing in agriculture,

Reston Publishing. 254 pages.

Macdonald College. 1986. Dairy herd analysis service. Dairy herd analysis ser·

vices Report 1980 ·1985. Macdonald College. St ·An ne de Bellevue. The service

Report. 78 pages.

Madsen, O.L. 1986. Block structure and object oriented languages. Sigplan

not.(USA) vol 21 no. 10 p 133· 142.

McKinnon, J.M. and H.E. Lemmon 1985. Expert systems for agriculture. Corn ·

pu ters and Electronics in agriculture. vol(1) pages 31· 40.

I.

..~ svslem us/no ooo :r

Mclendon, D. and S.J. Thomson and J.L. Chesness. 1983. Irrigation Schedul·

ing · A valid option with microprocessor -based controls. Agricultural Engineering.

Vol 64(9): 12-14.

Miller, D. 1983. Videotex: Science fiction or reality?. Bute magazine. Vol 8(7).

pages 42 ·56.

Main Darbary M. and S.O. Prasher 1987. Water management systems in humid

regions. Macdonald College of McGill University. unpubl MSc disseration.

Muse 1988. McGill University librairy automation news. vol 4 num 2, 17

pages.

Peart M.R. and H.R. Pudett. 1982. Feed processing and animal freeding: manage·

ment by exception. Agricultural Engineering. Vol 63(2): pages 18·19.

Petzold C. 1988. Programming Windows. Microsoft press, W a. 852 pages.

Philips 1986. Disk operating system version 3.10, user reference manual. Philips

carp., Montreal, Canada. 356 pages.

Rheault, M. 1988. Les systeme experts. Micro-gazette. October. pages 6·7.

Riddle, W .E. 1985. Agriculture 2000 · A time of technological change. Process ·

ing of the Agri·Mation 1 conference. ASAE. pages 21· 26.

Robinson, P. 1988. CIM's missing link: object oriented databases. Computer

graphics world. october 1988. p 53 ·58.

Smalltalk/V 1986. Programming handbook. Digitalk inc. 514 pages.

Smalltall',N 286 1988. Programming handbook. Digitalk inc. 561 pages.

Spahr, S.L. and H.B. Puckett and D.E. Dill. 1985. An integrated system for

automatic data collection and analysis on the dairy farms. Processing of the Agri·

mation 1 conference. ASAE. pages 339·345.

Speicher, J.A. 1981. Computerized data acquisition systems for dairy herd

management. J. of Animal Science. Vol 53(2): pages 53· 60.

Thomas, D. 1989. What's in an object?. Byte march 1989, pages 231·241.

VanHorne, M. 1986. Understanding expert systems. Bantam books, The W aite

Group. 233 pages.

Verity, J.W. 1987. The OOPs revolution. Datamation. vol 33 no. 9. p. 73·78.

Walton, P.D. 1988. Principales and practices of plant science. Prentice Hall inc.,

438 pages.

APPENDIX A

SYSTEM ONE

j;ELCOME
SCREEN

I HUMID I I VATER I I POVER I I SOIL I I 11'1PER. I I WATER I I SLOPE I REGJON SUPPLY SUPPLY TYPE:S LAYER TABLE FIELD

I BACK- I I RUUl
1 FILL DEPTH

£1 £1 I ~AL T I I HAR V. I CONC. FRUIT

I DRAIN il SPACING
INFER. I
ENGINE

This is a flow chart of the first system.

Each box corresponce to an object.

J?

APPENDIX B

------ - -

.,...---,-----"~

:l!i

APPENDIX C

FLOW CHART OF
DEMONSTRATION PROGRAM

This is the flow chart of the demo program.

All the code for the above classes

is in the following pages in this appendix.

I. wlo/an uslnoooo:r

I* Each Demo object contains information on an Actor

demonstration program. *I !!

inherit(Object, #Demo, #(desc /* Description for list box

classes I* Classes used for demo *I

files I* Files used for demo *I

memReq I* Memory req'd in bytes *I

*I

runBlock I* Code to run the demo program */), 2, nil)

now(DemoClass) 11

now (Demo)

I* Return true if demo is defined. */

Def defined(self)

{ "

if class(classes) == Symbol

then Actor[classes]

else Actor[classes[O]]

end if

} 11

I* Initialize the demo object. */

Def init(self, descrip, cls, fl, mem, blk)

{ desc := descrip;

classes := cls;

files := fl;

memReq mem;

runBlock blk;

} 11

41

11

~of an o..~r~o~t .4 'us/no ooo ~

I* A window class for the Actor demonstration programs. */!!

inherit(TurtleArea, **DemosWindow, **(dlg), 2, nil) 11

now(Demos W indowClass) 11

now(DemosWindow) u

f* Recreate method for demos window. *I

Def recreate(self)

{ create(self, parent, caption, locRect, WS_POPUPWIND);

init(self);

"nil

} 11

f* This method is needed to transfer eol messages

sent to self to the objects in OutPorts. This

happens during some Actor operations. *I

Def eol(self)

{ printLineC");

} 11

I* Initialize the ' Demos Window. *I

Def init(self I cStr)

{ init(self:TurtleArea);

createMenu(self);

changeMenu(self, 0, lP(cStr), CLEAR, MF _APPEND);

freeHandle(cStr);

if Actor[**Turtle]

then cStr := "Fractals!«;

changeMenu(self, 0, lP(cStr), FRACT AL, MF _APPEND);

n} I

~ 0/ aD t;;AVCT.Ft
L · us/na ooo ~

freeHand le(cStr);

add Turtle(self, init(new(Turtle), self));

end if;

drawMenu(self);

show(self, 1);

reSize(self, 0, 0);

dlg - new(DemosList);

runModeless(dlg, DEMOSLIST, self);

} 11

I* Respond to command messages. *I

Def command(self, wP, lP I aDlg)

{

select

case wP

end Case

CLEAR re pain t(self);

case wP == FRACT AL aDlg := new(FractalDialog);

runModal(aDlg, FRACT AL, self);

end Case

endSelect

} !!

-r SVS/em US/DQ OOP :SO

I* Creates a modeless dialog with a list of demos. *I

inherit(Dialog, #DemosList, #(demos,dlg 1 I* An ordered collection

of strings */), 2, nil) !!

now(DemosListClass) 11

now(DemosList) 11

I* Adds a demo with the specified attributes to the

demos collection. *I

Def addDemo(self, de se, classes, files, me m, blk I aDemo)

{ aDemo := new(Demo);

init(aDemo, desc, classes, files, mem, blk);

add(demos, aDemo);

sendDlgltemMessage(self, DEMOS_LB, LB_INSER TSTRING, -1, lP(desc));

freeHandle(desc);

} 11

I* Initialize the Demos list box with the appropriate choices. *I

Def initDialog(self, wP, lP)

{ demos := new(OrderedCollection, 10);

addDemo(self, "soil", **SoilW indow, "classes\soillist.cls(', 1000,

{ usingO tern p) tern p := new(SoilW indow, ThePort, nil, "What is your soil

type?(',nil);

show(temp, 1);

add(OpenWindows, temp);

});

addDemo(self, "Turtle graphics", #Turtle, tuple('classes\turtle.cls",

"act\turtfrac.act", "act\stars.act"), 1000,

{

});

.L · usina ooo :r

if size(paren t. turtles) == 0

then addTurtle(parent, init(new(Turtle), parent))

endif;

addDemo(self, .. Track", **(Ellipse, ShapesWindow, TrackWindow~

tuple(''classes\ellipse.cls'', ''classes\shapeswin.cls'',

"classes\trackwin.cls<t~ 1000,

{using(! temp) temp := new(TrackWindow, ThePort, "Track",

.. Actor Track Application .. , nil);

show(temp, 1);

add(OpenWindows, temp);

});

addDemo(self, "HyperCube", **CubeWindow, .. classes\cubewind.cls'\ 1000,

{using(! temp) temp := new(CubeWindow, ThePort, nil,

});

.. Actor HyperCube'', nil);

show(temp, 1);

add(Open Windows, temp);

run(temp);

addDemo(self, .. Graph Window .. , **GraphDemo, tuple("act\graphcon.act",

"classes\graphdem.cls") , 1000,

{using(! temp) temp := new(GraphDemo, ThePort, nil, "A Graph Window«,

});

nil);

show(temp, 1);

add(Open Windows, -tern p);

addDemo(self, .. Mandelbrot 1 .. , **PlayMandelbrot, "classes\playmand.cls«,

1000,

{ draw(init(new(PlayMandelbrot), "m l.plt ..) , parent);

});

addDemo(self, .. Mandelbrot 2 .. , **Playl\1andelbrot, "classes\playmand.cls",

I. --:o/an .i . U,S/nd 000 ~

1000,

{ draw(init(new(PlayMandelbrot), "m2.plt") , parent);

});

addDemo(self, "Mandelbrot 3", **PlayMandelbrot, "classes\playmand.cls",

1000,

{ draw(init(new(PlayMandelbrot), "m3.plt") , parent);

});

addDemo(self, "Fractal", **Fractal, "act\frac.act", 1000,

{exam ple(Frac, 5);

});

addDemo(self, "N ·Queens", **(Queen, QueensBoard, Display Board),

"act\queen.act", 1000,

{ solve(new(QueensBoard), 8);

});

addDemo(self, "Class tree", **TreeNode, "act\clastree.act", 1000,

{tree(Object);

});

addDemo(self, "Actor logo", **Actor Logo, "classes\actorlog.cls'', 1000,

{ draw(new(ActorLogo))

});

sendDlgltem~Jlessage(self, DEMOS_LB, LB_SETCURSEL, 0, 0);

} 11

I* Responds to command messages. *I

Def command(self, wP, lP I temp str)

{

select

case (wP == DEMOS_LB) and (high(lP) 2)

temp true;

end Case

case (wP RUN_DEMO) temp true;

end Case

-r or an aA~cn: svslem us/no ooo ~

}

case wP == QUIT _DEMO destroy(parent)

end Case

endSelect;

if temp

then temp := sendDlgltemMessage(self, DEMOS_LB,

LB_GETCURSEL, 0, 0);

ThePort := parent;

temp := demos[temp];

if not(defined(temp))

then load(tem p.files);

if temp.desc = "Turtle graphics"

then str := "Fractals!";

changeMenu(parent, O,lP(str), FRACT AL, MF _APPEND);

freeHandle(str);

draw Men u(paren t);

endif;

endif;

eval(temp.runBlock);

end if;

11

I. .Jl. · vs/na ooo :SO

I* Each power object contains information on a soil

type. */ !!

inherit(Object, **Soil, '*(desc I* Description for list box *I

classes I* support Classes *I

files I* support Files *I

memReq I* Memory req'd in bytes *I

runBlock I* Code to run the necessary programs *1), 2,

now(SoilClass) 11

now(Soil) 11

I* Return true if soil is defined. *I

Def defined(self)

{ "

if class(classes) == Symbol

then Actor[classes]

else Actor[classes[O]]

end if

} 11

I* Initialize the soil object. *I

Def init(self, descrip, cls, fl, mem, blk)

{ desc := descrip;

classes := cls;

files := fl;

memReq mem;

runBlock blk;

} 11

411

nil)

Dew/a IQ/' an I

'I ·vs/no uuo ~

I* A window class for the SOIL demonstration programs. *~!

inherit(TurtleArea, #SoilW indow, #(dlg 1), 2, nil) 11

now(SoilWindowClass) 11

now(SoilWindow) 11

I* Recreate method for soil window. */

Def recreate(self)

{ create(self, parent, "soil list", locRect, WS_POPUPWIND~

in it(self);

... nil

}

I* Initialize the soilW indow. *I

Def init(self I cStr)

{ init(self:TurtleArea);

createMen u(self~

cStr := "Clear!";

changeNienu(self, 0, lP(cStr), CLEAR, MF _APPEND~

freeHand le(cStr);

drawMenu(self);

show(self, 1 ~

reSize(self, 0, 0~

dlgl := new(SoilList);

runModeless(dlg 1, DEMOSLIST,self~

} !!

I* Respond to command messages. *I

Def command(self, wP, lP I aDlg)

{

4.9

usinaooo~

select

case wP

end Case

end Select

} 11

CLEAR repaint(self);

51}

'I of an ~ueil svslem us/no ooo :r

I* Creates a modeless dialog with a list of soil types. */

I* march 07, 1989 Andre Plante */

11

inherit(Dialog, **SoilList, **(soils I* An ordered collection

of soil types */), 2, nil) !!

now(SoilListClass) u

now(SoilList)

I* Adds a soil type with the specified attributes to the

soils collection. *I

Def addSoil(self, desc, classes, files, mem, blk I aSoil)

{ aSoil := new(Soil);

}

init(aSoil, desc, classes, files, mem, blk);

add(soils, aSoil);

sendDlgitemMessage(self, DEMOS_LB, LB_INSERTSTRING, -1, lP(desc));

freeHandle(desc);

I* Initialize the Soils list box with the appropriate choices. */

Def initDialog(self, wP, lP)

{ soils:= new(OrderedCollection, 10);

addSoil(self, "Clay", **Window, "classes\clay.cls", 1000,

{using(! temp) temp:=new(W indow,ThePort,nil,··clay•·,nn);

show(temp, 1);

add(Open Windows, temp);

});

addSoil(self, .. sand", **SandW indow, "classes\powerlist.cls•<, 1000,

51

52

{using(! temp) temp:=new(SandWindow,ThePort, nil, "do you have power?",nil);

show(temp, 1);

add(Open Windows, temp);

}~

sendDlgltemMessage(self, DEMOS_LB, LB_SETCURSEL, 0, 0);

} 11

I* Responds to command messages. */

Def command(self, wP, lP I temp str)

{

select

case (wP == DEMOS_LB) and (high(lP) 2)

temp true;

end Case

case (wP

end Case

case wP

end Case

endSelect;

if temp

RUN_DEMO) temp true;

QUIT _DEMO destroy(parent)

then temp := sendDlgltemMessage(self, DEMOS_LB,

LB_GETCURSEL, 0, 0~

ThePort := parent;

temp := soils[temp]~

if not(defined(temp))

then load(temp.files);

endif;

destroy(parent);

eval(tem p.runBlock ~

endif; } 11

'o/' an e.KD6rl .6 ·us/no ooo ~

I* A window class for the SOIL demonstration programs. *n!

inherit(TurtleArea, **SandWindow, **(dlg2), 2, nil) 11

now(SandWindowClass) 11

now(SandWindow) 11

I* Recreate method for soil window. *I

Def recreate(self)

{ create(self, parent, caption, locRect, WS_POPUPWIND);

in it(self);

'"'nil

} 11

I* Initialize the sandWindow. */

Def init(self I cStr)

{ init(self:TurtleArea);

create Men u(self);

cStr := .. Clear!";

}

changeMenu(self, 0, lP(cStr), CLEAR, MF _APPEND);

freeHandle(cStr);

drawMenu(self);

show(self, 1);

reSize(self, 0, 0);

errorBox('SAND", usand is a good soil for subirrigation");

dlg2:= new(PowerList);

runModeless(dlg2, DEMOSLIST,self);

11

I* Respond to command messages. */

Def command(self, wP, lP I aDlg)

Oeve/t. ·us/noooo~

{

select

case wP

end Case

endSelect

} !!

CLEAR re pain t(self);

n.~ --f svs.tem us/no ooo ~

I* Creates a modeless dialog with a list of power types. */

I* march 07, 1989 Andre Plante *I

11

inherit(Dialog, ttPowerList, #(powers I* An ordered collection

of power types */), 2, nil) !!

now(PowerListClass) 11

now(PowerList)

I* Adds a power type with the specified attributes to the

power collection. *I

Def addPower(self, desc, classes, files, mem, blk I aPowerl)

{ aPower := new(Power);

init(aPower, desc, classes, files, mem, blk);

add(powers, aPower);

sendDlgltemMessage(self, DEMOS_LB, LB_INSERTSTRING, ·1, IP(desc));

freeHandle(des c);

} !!

I* Initialize the power list boK with the appropriate choices. */

Def initDialog(self, wP, lP)

{ powers:= new(OrderedCollection, 10);

addPower(self, "yes", ttWindow, "classes\clay.cls", 1000,

{using(! temp) temp:=new(Window, ThePort,nil,"yes",nil);

show(temp, 1);

add(Open Windows, temp);

});

addPower(self, "no", #Window, "classes\powerlist.cls", 1000,

{using(! temp) temp:=new(Window,ThePort, nil, "no",nil);

Or· ' 1 of an exoelf. us/no OOP J,~

show(temp, 1);

add(OpenWindows, temp);

});

sendDlgitemMessage(self, DEMOS_LB, LB_SETCURSEL, 0, 0);

} !!

I* Responds to command messages. */

Def command(self, wP, lP I temp str)

{

}

select

case (wP == DEMOS_LB) and (high(lP) 2)

temp true;

end Case

case (wP

end Case

case wP

end Case

endSelect;

if temp

RUN_DEMO) temp := true;

QUIT _DEMO destroy(parent)

then temp := sendDlgltemMessage(self, DENIOS_LB,

LB_GETCURSEL, 0, 0);

ThePort := parent;

temp := powers[temp];

if not(defined(temp))

then load(temp.files);

endif;

destroy(paren t);

eval(tem p.runBlock);

endif;

APPENDIX D

L_

I
I
I

I

l
I

_ ___ j

I
I

I

I

I

L--------~-.....::..-___.&...j__ ~ __ j

t..____. --------------------'

I

I
I
i
L--~---------------

n.. " ·~ o/ an BKoert. ~ . .~.. ·us/no ooo ~ 81

APPENDIX E

·us/no ooo :r

GLOSSARY

ALGORITHM

Step by step representation of method solving process.

ANCESTORS

More general classes from which more specialized classes descend, while inherit

ing their instance variables and methods. Classes have only one immediate an

cestor.

CLASS

A category of objects that all have the same functionality and data format. All

instances of a class share the same methods and instance variables. By conven ·

tion, class names begin with a capital letter.

DECISION TREE

Structural form representation of tough process.

DESCENDANTS

Classes created as offshoots from or more specialized versions of another class,

or ancestor . The descendant inherits from its ancestor all of the methods and in·

stance variables, but can redefine them. A descendant has only one immediate

ancestor, but an ancestor cam have many descendants ..

DYNAMIC BINDING

Dynamic binding is a loosely coupled collections where the consumer's code can·

not predict the type of data to be operated on until the code is being run.

..(o/ an aA~a~ t svslem us/no ooo ~

ENCAPSULATION

From a consumer's point of view, is a seamless capsule that offers a number

of services, with no visibility as to how these services are implemented.

INFERENCE ENGINE

This is the part that governs the execution, the know ledge base access and the

certainty factor of an expert system.

INHERITANCE

A hierarchical scheme that relates the classes. The higher, or ancestral classes,

are more general and the lower, or descendant classes, are more specialized. A

class inherits methods and instance variables from its ancestors. The class can

then modify the methods or add new ones to become specialized. Actor utilizes

single inheritance, meaning that each class has only one immediate ancestor.

LIBRARY

Collection of unattached object. Exactly as books in a library shelf.

LINKING

Combining several object module at compile time in a tightly coupled collection.

All desired code must be present at this early stage.

MODULARITY

Relating to module which standardized units for flexibility and variety in use.

OBJECT

An object is some private data and a set of operations that can access that

data An object is requested to perform one of its operations by sending it a

message telling the object what to do.

/A'-· I. US/nd 000 ~

OBJECT ·ORIENTED LANGUAGES

Languages that treat data structures as objects belonging to classes. The classes

define methods and inherit methods from other classes according to a hierarchi ·

cal inheritance scheme.

OPERAND

Procedural code that composes the static defense of the object's private part.

RUN TIME

A given function's run time occurs when the function is being executed. One

function's run time can be another's compile time.

STATIC DEFENCE

Wall of code which govern the exchange between the world and the objects

Private Part.

