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Abstract-English 

Machine learning has great potential to overcome the complexity and heterogeneity of 

biological data. The development of high-throughput multiplexed sensors now allows for the 

acquisition of various biological data in ever-increasing quantities. As a result, more precise 

diagnostic and monitoring of disease can be achieved. However, the data needs to be processed 

and sifted in order to find the most relevant features within the data, which poses a huge 

challenge for humans, due to both the amount of data available, and its heterogeneous and 

complex nature. The development of data science and machine learning can help scientists and 

clinicians to interpret the data, and make medical diagnostic and monitoring easier, high-

throughput and user friendly, with potential to act as a first, low-cost point of triage to screen 

patients, in settings where high-end medical facilities and machines are in limited supply. 

Machine learning algorithms are incredibly versatile and can be used with multiple data types, 

generated by very different sensors. Here, a type of supervised machine learning algorithm 

called Support Vector Machines (SVM) is applied to analyze the data from two optical 

biosensors. The first one is a nanostructured Surface Enhanced Raman Spectroscopy (SERS) 

platform, which allows entrapment of sub-cellular sized biological material, such as 

Extracellular Vesicles (EVs) secreted by cells. SERS is an optical characterization method 

providing information on the molecular composition of analytes. The main challenge SERS 

faces as a readout is the often subtle changes in the spectra generated by heterogeneous 

biological samples, which makes traditional analysis difficult and time-consuming. In this work, 

EVs derived from Glioblastoma Multiforme (GBM) cell lines, liquid biopsies of GBM patients, 

and controls are studied. SERS is performed on the individual EVs, and the spectra thus 

collected generate a database of single-EV spectra. These spectra are then analyzed by the SVM, 

which is used to classify them into the correct mutated cell line. This is successfully done, with 

an accuracy of 70.04% on the individual mutations. Then, SVM is applied to determine whether 
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or not it is possible to differentiate GBM patients from healthy controls, based on the analysis 

of the EV-derived SERS spectra, yielding 95% accuracy in classification. The second sensor 

used in combination with Machine Learning is a colorimetric platform for rapid and point-of-

care viral detection. Clinical samples are collected and subjected to on-chip reverse 

transcriptase loop-mediated isothermal amplification (RT-LAMP), generating a color change 

in the presence of viral genetic material. In order to obtain a quick and reliable diagnostic, 

images of the colorimetric device are collected and analyzed via SVM, reaching a success rate 

in the classification of healthy vs sick patients of 94% after a 10-minute incubation time, 

enabling fast screening operations to take place. 

Keywords: Machine Learning, SVM, Plasmonics, Diagnostics, Sensors 

 

Abstract-Français 

L’apprentissage automatique a un grand potentiel pour surmonter la complexité et 

l'hétérogénéité des données biologiques. Le développement de capteurs multiplexés à haut débit 

permet aujourd'hui l'acquisition de données biologiques variées en quantité toujours croissante. 

En conséquence, un diagnostic et un suivi plus précis de la maladie peuvent être réalisés. 

Cependant, les données doivent être traitées et passées au crible afin de trouver les 

caractéristiques les plus pertinentes et de déterminer les relations au sein des données, ce qui 

représente un énorme défi pour les humains, en raison à la fois de la quantité de données 

disponibles et de leur nature hétérogène et complexe. Le développement de la science des 

données et de l'apprentissage automatique peut aider les scientifiques et les praticiens de santé 

à interpréter les données et à rendre le diagnostic et le suivi médical plus facile pour les 

utilisateurs, tout en ayant un débit important, avec le potentiel d'agir comme un point de triage 

à faible coût pour dépister les patients, dans des environnements où les installations médicales 
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et les machines haut de gamme sont rares. Les algorithmes d'apprentissage automatique sont 

incroyablement polyvalents et peuvent être utilisés avec plusieurs types de données, générés 

par des capteurs très différents. Ici, un type d'algorithme d'apprentissage automatique supervisé 

appelé Support Vector Machine (SVM) est appliqué pour analyser les données de deux 

biocapteurs optiques. La première est une plateforme nanostructurée de spectroscopie Raman 

améliorée de surface (SERS), qui permet le piégeage de matériel biologique de taille 

subcellulaire, comme les Vésicules Extracellulaires (VE) sécrétées par les cellules. La SERS 

est une méthode de caractérisation optique fournissant des informations sur la composition 

moléculaire des analytes. Le principal défi auquel SERS est confronté est les changements 

souvent subtils dans les spectres générés par des échantillons biologiques hétérogènes, ce qui 

rend l'analyse traditionnellement difficile et chronophage. La SERS est effectué sur les VE 

individuelles, et les spectres ainsi collectés génèrent une base de données sur le cancer du 

glioblastome multiforme (GBM), composée d'ensembles de données de spectres obtenues à 

partir d’uniques VEs dérivées de lignées cellulaires, de biopsies liquides de patients atteints de 

GBM et de témoins. Ces spectres sont ensuite analysés par le SVM, qui est utilisé pour les 

classer dans la bonne lignée cellulaire. Ceci est fait avec succès, avec une précision de 70,4% 

sur les mutations individuelles. Ensuite, le SVM est appliquée pour déterminer s'il est possible 

ou non de différencier les patients atteints de GBM des témoins sains, sur la base de l'analyse 

des spectres SERS, permettant d’obtenir une précision de 95 % dans la classification. Le 

deuxième capteur utilisé en combinaison avec l'apprentissage automatique est une plate-forme 

colorimétrique pour la détection rapide et au point de service de virus. Des échantillons de 

salive et nasopharyngés sont prélevés et soumis à une « reverse transcriptase loop-mediated 

isothermal amplification » (RT-LAMP), générant un changement de couleur en présence de 

matériel génétique viral. Afin d'obtenir un diagnostic rapide et fiable, les images du dispositif 

colorimétrique sont collectées et analysées via le SVM, atteignant un taux de réussite dans la 
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classification des patients sains vs malades de 94% après 10 minutes d’incubation, permettant 

des opérations de dépistage rapides. 

Mots-clés: Apprentissage automatique, SVM, Plasmonique, Diagnostic, Détecteurs 
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Note: As per formatting guidelines on manuscript-bases theses, the references for Chapters 3 

and 4 are situated at the end of the chapters. All the other references used in this thesis are 

listed in the “Master bibliography” at the end of the document. 

1 Introduction 

The advent of the latest generation of biosensors signifies that scientists have access to clinical 

information in increasing number, with improved limits of detection and over a wider range of 

parameters, be they physiological measurements, nucleic acid or proteins identification and 

concentration, pathogens presence, etc. As a result, more precise diagnosis and monitoring of 

disease can be achieved. Huge hopes are riding on these new sensors, with the expectation that 

they can bring about an improved healthcare system, which tackles the blind spots we are faced 

with today. However, with the growing amount of data available, comes an equally growing 

need for tools to help organize, process, understand and interpret this data. Machine learning 

tools are a promising solution to such challenges, and it is hoped that they can help clinicians 

and researchers improve current medical practices and diagnosis. This could be made possible 

by using machine learning in conjunction with more recent sensing techniques, that are slow to 

be adopted due to their complexity, or by improving already existing techniques by automating 

the analysis step and removing the need for personnel with training and experience. These two 

possibilities are studied in this thesis, with the use of machine learning both on a new, complex 

signal: surface-enhanced Raman spectroscopy (SERS) spectra, and on an already well-

established detection method: colorimetry. This thesis explores the feasibility of using a 

machine learning algorithm, support vector machine (SVM), on these two types of readouts in 

order to reach a medically relevant diagnosis. SVM was chosen as it is a well-established 

method, that does not require extensive computational power, making it a potential candidate 

for point-of-care applications, where computing resources are limited. SVM can also perform 

well even when presented with a limited training set, with observations comprised of a high 
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number of variables. It is therefore well-suited for clinical settings where collecting data in 

sufficient amounts is challenging. 

First, spectral data from a Glioblastoma Multiforme (GBM) dataset composed of single 

extracellular vesicles (EVs) spectra derived from cell lines is used. SVM is employed to classify 

the spectra into their respective classes, ie. the different cell lines. Then, the spectra derived 

from the EVs of patients suffering from GBM, as well as healthy controls are analyzed through 

another SVM algorithm to determine whether it is possible to separate patients from healthy 

donors. To do so, a relative similarity measure is calculated using Mahalanobis distance. Using 

this relative similarity measurement, we determine the patient’s risk of developing cancer: a 

high similarity value is associated with high risk of cancer, while a low similarity value means 

a low risk of cancer.  

The second application pertains to analyzing a colorimetric platform for rapid SARS-CoV2 

detection from patient samples. To do so, multiple timepoints are studied, with an aim of 

reaching a time of detection under 20 minutes in total. Images are taken at different timepoints 

and given to a SVM for analysis of whether the patient is Covid-19 positive or not. The images 

are analyzed in two color spaces: RGB, and L*a*b* and the results for each color space are 

compared, to find the one on which the SVM performs best. The accuracy of the SVM was 

obtained for the different timepoints and color spaces studied, in order to determine a 

compromise between accurate diagnosis and quick response time. The machine learning model 

could dramatically speed up the process of image analysis and offer a quick diagnostic solution 

without the need for any trained personnel for the interpretation of the results. 

  



3 

 

2 Review of the literature: Machine Learning for SERS and colorimetric 

detection 

2.1 Introduction  

Machine learning (ML) is a type of artificial intelligence whose particularity is that the rules 

used to complete a specific task, such as making a prediction, are not explicitly coded. Machine 

learning is “a field of study that gives computers the ability to learn without being explicitly 

programmed”1. Rather, the algorithm is fed data and learns by itself how to achieve the best 

prediction, by finding the relevant features in the data and adapting its parameters during what 

is called the “training process”2. ML algorithms can broadly be classified into two categories: 

supervised or unsupervised. The former means that the data is labeled during training, while it 

is not in the latter. In the first case, the algorithm will typically give categorical classification, 

and in the other, clustering of data in order to find patterns is generally achieved3,4.  

Common supervised ML algorithms include discriminant-based algorithms, Random Forests, 

SVM, and neural networks, which are being increasingly used for regression and classification 

tasks5,6. Some ML methods requires significant amounts of data to in order to be applicable on 

a large scale, as well as significant computational power. The recent increase in memory size 

and calculation capabilities of computers, permitting the storage of sufficient data, and the 

efficient running of powerful algorithms, have allowed them to perform well on a variety of 

complex tasks, in a great number of fields, from economy to manufacturing, and also in the 

biology and healthcare sector7. In the latter field, researchers and clinicians have taken 

advantage of ML’s ability to use complex and heterogeneous data in order to diagnose patients, 

using data as varied as images, categorical data, and spectra, among others8–12. Machine 

learning is increasingly seen as an opportunity to improve accuracy in medical surveillance and 

diagnosis, assisting or even outperforming traditional methods both in the accuracy of the 

diagnosis and in the high throughput they offer13,14. Additionally, the advent of the latest 
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generation of biosensors is synonymous with an ever-increasing quantity of information 

available15, but human limitations hinder the rapid interpretation of large amounts of data, 

which is often complex, high-dimensional or heterogeneous. Machine learning can help 

interpret, classify, and identify patterns in the data, and be beneficial both in first-rate clinical 

or research settings, to interpret complex data generated by last-generation biosensors, or in a 

low-resource setting, where advanced medical equipment and expert medical judgement are not 

easily available. 

 

2.2  Supervised methods 

Supervised methods, contrary to unsupervised methods, require a training phase in which each 

datapoint is associated with an output, a category, or a class of interest. It can be a number, or 

a class name, such as an analyte of interest. During training, multiple instances of each class 

are given to the algorithm, which then learns to recognize what features make one datapoint 

belong to its respective class. Training is halted when the algorithm has reached what is 

considered to be an acceptable performance22.The results obtained on the training data are then 

generalized onto the test data, which is given to the trained algorithm, and outputs an answer 

based on its prior training. Supervised algorithms are used for classification and prediction, but 

also for regression tasks. Some algorithms, such Random Forests can be used for both 

supervised and unsupervised tasks23. Multiple types of supervised ML algorithms have been 

developed over the years, and we summarize the main ones below. 

 

2.2.1 Regression-based models 

Regression models aim to model an output Y, based on the given data X, in contrast to 

classification, where the aim is to assign a class to each datapoint without necessarily creating 



5 

 

a model. Some examples of regression-based models include Multiple Linear Regression 

(MLR), Partial Least Square Regression (PLS-R) and logistic regression. PLS-R is a regression 

technique that finds a linear expression allowing to map the data space to the output space , by 

finding the directions in the data space (X space) that explain best the variance in the output 

space (Y space)24. PLS-R enables to use many variables in each observation, including collinear 

variables, or variables dependent on each other, when a traditional MLR will experience 

difficulties when doing so25. 

Logistic regression is another type of regression where the output of the model is not the direct 

outcome, but rather the probability one event has of happening26. This is particularly suited for 

evaluating risks in a situation with only two outcomes8. However, unlike PLS, logistic 

regression needs independence between the variables of an observation and is sensitive to 

outliers26. The data used to build the model must therefore be carefully selected to remove 

outliers, and the variables given must be chosen so as not to be redundant or dependent on each 

other. 

 

2.2.2 Discriminant-based methods 

Discriminant-based methods such as Linear Discriminant Methods (LDA) or Quadratic 

Discriminant Methods (QDA) are methods that rely on decision boundaries for classification. 

The decision boundary is the hyperplane that best separates the classes based on the variance 

in the training set. This means that the optimal hyperplane is the one that maximizes the distance 

between the mean of the classes while minimizing the variance within each class27. In the case 

of LDA, it is assumed that all classes have equal covariance, resulting in a linear decision 

boundary while QDA does not, resulting in a quadratic decision boundary28. While LDA 

performs well on problems with low dimensional data, it encounters difficulties when faced 

with high-dimensional data, especially when the number of features, ie. the dimension of the 
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data is lower than the number of observations, or if the dataset only has one instance of a class 

in the training set27. 

 

2.2.3 Random Forest (RF) 

Random Forests consists of an ensemble of multiple decision trees. Each decision tree is a 

collection of nodes and leaves. Each node represents a split between two subcategories, and the 

decision that the algorithm makes depends on the value of the parameters of the datapoint it is 

testing. The leaf is the final output of the decision tree and corresponds to the desired output, a 

classification for example, but random trees can also be used for regression29. In the case of 

random forests, multiple decision trees are created, which take into account different parameters 

of the data, then a majority vote is taken on the outputs of these trees, thus a single output for 

the random forest is obtained30. To create a decision tree to be used in a random forest, a 

common method is to use bagging, where each tree is trained on a subset of the initial training 

set. Each subset has the same sample number and each sample is randomly chosen with 

replacement, making each decision tree unique as it is trained on a unique subset of the training 

set30. 

 

2.2.4 Artificial Neural Networks (ANN) 

An artificial neural network in its simplest form is composed of one unique artificial neuron. It 

functions in a similar fashion to a real neuron, in the sense that it receives several weighted 

inputs, adds them, and applies a non-linear function to the sum. If the result reaches a high 

enough value, it will activate and give an output, otherwise, it will not31. Although the base 

artificial neuron is simple enough, when multiple neurons are used together, the resulting ANN 

can be very powerful. During the training phase, the multiple weights are optimized in order to 



7 

 

obtain the most satisfactory outcome possible. ANNs can have several “layers” of neurons, and 

an ANN with more than three layers is called a “deep” neural network. Various architectures 

of ANN exist, such as feedforward neural networks, where the data flows unidirectionally3, 

convolutional neural networks (CNN), where the architecture consists in one or multiple 

convolutional layers32 and Residual neural networks (ResNet)33, among others. The increase in 

computational power, memory size, and in the size of the training sets have enabled to build 

very deep networks, that perform very well on complex datasets such as the ImageNet set32. 

However, other Machine learning models are less demanding in terms of computational power 

and number of training samples.31,34,35 

 

2.2.5 Support Vector Machines (SVM) 

Support Vector Machines (SVM) were first introduced by Vapnik in 199536. SVM functions by 

mapping the data into a high-dimensional space, and then finding the hyperplane that best 

separates the different classes of data. This is done by using the datapoints closest to the other 

class and using these as support vectors to determine the hyperplane that maximizes the distance 

between those support vectors (Figure 1). This is the main difference with Discriminant analysis, 

where the means and covariance of the different classes in the training data are used to 

determine the hyperplane.   

Consider a binary classification problem. The classes are given by 𝑦 = +1  or 𝑦 = −1 

The decision function for this problem is a hyperplane whose equation is given by (1), where 

w and b are determined from the training set. 

𝒘𝑻𝒙 + 𝑏 = 0  (1) 
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This hyperplane separates the data space in two regions of opposite sign. The hyperplane that 

optimally separates the data is the one the maximizes the margin M =2/||w|| (which is equivalent 

to minimizing the quantity 
1

2
 ||w||2 ). 

The support vectors 𝑥𝑖 will therefore satisfy the condition37:  

min
𝑖

‖𝒘𝑻𝑥𝑖 + b‖ = 1  (2) 

However, in order for this condition to be met, classes must be linearly separable in the space 

they are plotted in. If this is not the case, it is possible to plot the datapoints in higher 

dimensional spaces where the classes are linearly separable using a kernel function37. Common 

kernels are the linear, the polynomial and the Radial Basis Function (RBF) kernels, defined by 

the following equations38: 

Linear:  𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖 . 𝑥𝑗 + 1  (3) 

Polynomial: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖. 𝑥𝑗 + 1)𝑝 (4) 

RBF: 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2    (5) 

Binary class SVM can be generalized to multiple classes following the same prinicple39.  

One advantage of SVM over more recent ML techniques, especially neural networks and deep 

learning algorithms is its ability to work with a reduced number of datapoints, and datasets 

made of datapoints with a high number of observations, when the more recent techniques need 

extensive training datasets in order to function at full capacity and with high accuracy35. It is 

also less computationally expensive than most deep learning models40.  
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Figure 2.1: SVM hyperplanes 

Figure 2.1: SVM hyperplanes (a) Possible separating hyperplanes and (b) optimal separating hyperplane (right) 

maximising the margin between two classes, the closest samples being indicated as support vectors (square 

marks). Reproduced with permission from 37. Original figure available at www.tandfonline.com 

 

2.3 Unsupervised methods 

Unsupervised methods in Machine learning are methods where data is analyzed, but is not 

associated with a label of any kind4. This type of algorithm is used to uncover similar 

occurrences in the given data, to cluster them based on similarity, or to determine relationships 

and associations within the data. This can be illustrated for example when trying to find the 

different contexts in which the same word can be used, to group words with similar meanings 

together16. Unsupervised algorithms can also be used for density estimation, or dimension 

reduction, in the context of data with a high number of dimensions17.  

 

2.3.1 Dimensionality reduction 

Dimensionality reduction can be used for visualisation purposes, outlier detection, and also as 

a way to simplify the data before using it with a supervised Machine learning algorithm, to 

decrease computational cost18. One of the most common dimensionality reduction algorithms 
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is the Principal Component Analysis (PCA) algorithm, which projects the data on a space 

where the first axis corresponds to the direction of highest variance19. Other unsupervised 

algorithms include K-means algorithms, hierarchical clustering, and Gaussian mixture 

models17. 

  

2.3.2 k-Nearest Neighbour (kNN) 

The k-nearest neighbour algorithm is a fairly intuitive one when it comes to classification. 

Indeed, when given a test datapoint, the algorithm classifies it depending on its “nearest 

neighbours” which are the datapoints from the training set closest to the test datapoint. Multiple 

distances can be used for this algorithm, the most common one being the Euclidean distance. 

However, other distances such as Hamming, Manhattan or Mahalanobis distances can be used20. 

The class is then attributed to the unknown sample by performing either a majority vote, or a 

distance-weighted vote21. K-Nearest Neighbours is fairly easy to implement, however memory 

usage increases significantly when dealing with high-dimensional data3. 

 

2.4 ML in optical readouts 

Machine learning has over the years been applied to a wide variety of fields41,4243 and has also 

been used in the medical field for cancer and disease diagnosis44–48. ML’s versatility makes it 

applicable to most types of readouts, in particular optical sensing through image analysis12,46,49, 

and shows promise when used in conjunction with novel optical biosensors that use Raman 

spectroscopy or colorimetry50–52. ML-assisted analysis using Surface Enhanced Raman 

Spectroscopy spectra and colorimetric readouts have high potential as user-friendly and point-

of-care approaches for disease detection, which are reviewed below. 
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2.4.1 Experimental techniques: SERS and colorimetry 

2.4.1.1 SERS 

Among multiple optical techniques, Surface Enhanced Raman Spectroscopy (SERS) shows 

particular promise for small-sized analyte detection and analysis. Raman spectroscopy 

measures the exchange of energy resulting of the inelastic scattering of photons as it interacts 

with the analyte. This interaction generates a change in the wavelength of the scattered light, 

depending on the molecular composition of the sample53. This scattered light acts as a 

fingerprint of the compound of origin. However, Raman scattering is very weak, occurring 

usually for one in every 106-108 photons54. The high fluorescence of biological samples will 

also be visible in the spectra, which makes the Raman signals very difficult to distinguish and 

analyze54.  

SERS is a technique that uses nanostructured metallic surfaces, typically gold or silver, in order 

to enhance the Raman scattering of a molecule adsorbed on the surface55. The signal can be 

enhanced up to a factor of 105-106 compared to the theoretical Raman spectrum intensity55. The 

SERS signal thus obtained gives precise information on the chemical structure and composition 

of the element of interest, while improving the signal-to-noise ratio. It has been used to detect 

and study a wide range of analytes, including biological materials, using label-free methods, 

and even achieved single molecule detection56–60. Such sensitivity is critical in the detection of 

early signs of diseases, which are often associated with the modification of the concentration 

of biomarkers61.  

While SERS provides a wealth of information on the analyte under analysis, it is not without 

limitations. In single molecule detection, the intensity of Raman spectra can vary depending on 

the orientation of the molecule on the substrate, and the high number of peaks in the spectra 

make human analysis difficult3. Machine learning however is very well suited to these tasks, as 

it can capture complex relationships between the data and can extract the features of a spectrum 



12 

 

in order to label it as the spectrum of a specific analyte3. Since Machine learning analysis of 

SERS spectra does not rely on the labeling of specific markers, it can be used for more 

comprehensive identification and detection of molecules, without being limited to a reduced 

array of previously identified molecules of interest62.  

2.4.1.2 Colorimetry 

Colorimetric assays produce color or a change of color upon interaction of the substrate with 

the analyte of interest63. This can be done either through chemical agents that act as 

chromogenic indicators, or through surface plasmon resonance that produces a change of color 

of the substrate64. Common chromogenic indicators include redox indicators such as 3,3′,5,5′-

tetramethylbenzidine (TMB) and pH indicators such as Cresol red or Thymol Blue65. For 

plasmonic assisted color change, gold or silver nanoparticles are often used, as the color change 

is driven by their level of aggregation or dispersion, and by the media surrounding them66. 

Colorimetric assays offer the advantage of low cost, easy fabrication, and fast results that are 

detectable by naked eye or through bright field microscopy67. They are therefore particularly 

suited to low resource settings, and to diagnosis at the point-of-care. They have been widely 

used in very different settings, from monitoring environment pollution68 to forensics and 

chemistry69, and more specifically in the medical and biomedical fields to detect molecules, 

pathogens, DNA and RNA and exosomes64,70–72. 

 

2.4.2 Machine learning applications 

2.4.2.1 Machine learning applications using SERS 

Multiple Machine learning techniques have been used in conjunction with both Raman and 

SERS spectra in the medical and biomedical field. They have been successfully used to identify 

molecules in biological samples such as saliva or urine34,38, to detect infectious pathogens47,73,74, 
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and for cancer detection51,75–77. For example, deep learning methods have been developed to 

identify neurotransmitters in urine24, to classify multiple cancerous bio-samples according to 

their type, and identifying lung cancer patients, using exosomes collected from the patient’s 

blood51,52 (Figure 2.2). K-NN and RF algorithms have been used to distinguish pancreatic 

cancer, ovarian cancer and pancreatitis patients75, and RF, SVM and LDA have been used for 

the detection of Covid-19 in saliva samples10. SVM in particular has been widely used to 

analyze SERS spectra in the medical field. Indeed, SVM has been applied for testing and 

recognition of drugs in different media (saliva and urine) that were analyzed through SERS 34,78, 

yielding an accuracy of over 85% and 98% respectively. Bacterial and pathogen analysis and 

identification has also been carried out through SVM, enabling to detect E. coli, waterborne, 

and urinary tract pathogens 79–81. Wang et al. used a linear kernel SVM to detect waterborne 

pathogens with an accuracy over 95%80. Yogesha et al. used a SVM model to detect urinary 

tract pathogens, but also performed a PCA, as a comparison. PCA was unable to distinguish 

between all the different bacterial strains that were present in the sample, while SVM could do 

so, with an overall accuracy of 98,6% on the test set79. Finally, multiple diseases, such as liver 

cirrhosis, cancers such as lung cancer and hepatocellular carcinoma but also gastric diseases or 

infectious diseases such as dengue fever can be diagnosed using SERS spectra followed by 

SVM analysis47,51,77,82–86. Khan et al. compared three different SVM kernels to analyze human 

blood serum for dengue fever. The best performing kernel was found to be the order 1 

polynomial kernel, achieving 85% accuracy on the test set47. Covid-19 patients were identified 

with 90% accuracy through the analysis of serum samples of sick and healthy patients73. Li et 

al. performed a non invasive diagnosis of Crohn’s disease using urine samples of patients and 

healthy controls with 82.5% accuracy after leave-one-out cross-validation86.  Liver cirrhosis 

was studied by Dawuti et al. using a SVM with a RBF  kernel, yielding 85.9% accuracy in the 
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separation between healthy and patients suffering from liver cirrhosis, based on the results from 

a leave-one-out cross-validation82. 

 

Figure 2.2: Schematic representing the experimental and analytical steps. At first, SERS data is collected from a 

series of calibration samples with different known concentrations of the analytes. This data is then used to 

‘train’ the data mining methods to build a predictive model. In the next step, SERS spectra of an unknown 

sample is then collected and analyzed using the predictive model to obtain a result. Reproduced with 

permission from 24. 

 

2.4.2.2 Machine learning applications to colorimetry 

Despite their undeniable ease of use and popularity, colorimetric methods are subject to 

multiple contingencies, and in particular to human subjectivity. Indeed, color-blindness or 

different sensitivity to contrast might make colorimetric methods more error-prone, due to 

Figure 2.2: Schematic representing the experimental and analytical steps. 
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uncertainty in result interpretation87. Machine learning algorithms offer the possibility of a more 

uniform output, as well as an opportunity for entirely automated, high-throughput pipeline, 

without needing any trained personnel to interpret the results. ML algorithms have been 

successfully applied with colorimetric readouts for various tasks88–90. Solmaz et al. performed 

quantification of peroxide content comparing both a LS-SVM (a variant of SVM) and a RF 

algorithm88. A grey-world algorithm was also tested to try and mitigate the impact of varied 

lighting conditions. LS-SVM was determined to work best with the grey-world algorithm, with 

87.5% accuracy when classifying the images into 6 classes corresponding to 6 different 

peroxide concentration ranges. A RF algorithm was used to monitor the levels of bilirubin in 

urine samples, with an average accuracy of 74.05% , based on 100 repetitions of 5-fold cross-

validation.90. Regression methods have been used to detect mercury and lead ion 

concentration91,92, deep-learning algorithms have been applied to the analysis of organic 

carbon93, and pH classification94. SVM has also been regularly applied in conjunction with 

colorimetric assays, for wheat mildew detection, achieving perfect classification rates using a 

rbf kernel95, quantification of alcohol in saliva96 and pH detection97,98. In their work, Tania et 

al. report that LS-SVM had 100% accuracy, outperforming the other approaches, including 

deep learning approaches97. ML algorithms can therefore be used to analyze a wide variety of 

analytes with high success rates, making it a promising approach to improve colorimetric 

detection. 

 

2.5  ML for diagnostic purposes 

2.5.1 Cancer diagnosis using liquid biopsy through SERS 

Cancers and their associated biomarkers are usually analyzed through a traditional tumor biopsy, 

consisting in sampling part of the tumor and subsequent analysis. However, this technique fails 

to capture the intratumoral heterogeneity that may arise99. Furthermore, due to the invasiveness 
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of the procedure, a biopsy cannot be performed regularly, and is therefore unable to show tumor 

evolution.  Liquid biopsy is an emerging technique that has been fast-growing in the past decade 

due to great potential to address these challenges. It consists in the analysis of the biomarkers 

present in a blood sample to obtain information on a tumor100. These biomarkers can be 

circulating tumor cells, circulating nucleic acids, proteins, metabolites, and also extracellular 

vesicles (EVs)101. The latter are vesicles secreted by all cells, including cancer cells, and are 

present in most bio-fluids, including blood. They are particularly interesting because they 

contain cargo (proteins and nucleic acids) that can provide information about their cell of 

origin102. In particular, EVs derived from cancer cells will carry cancer biomarkers103. 

The analysis of EVs through Raman spectroscopy or SERS has captured the interest of the 

scientific community as it can provide information on their parental cell based on their cargo. 

Indeed, in the case of cancer, SERS allows the collection of precise information on the 

composition of the tumor, by analyzing circulating extracellular vesicles and their molecular 

components, which reflect the cellular environment, therefore permitting to identify patients 

suffering from cancer, the mutations present in the tumor, thus improving treatment 

efficiency104. Machine learning can help analyze EVs obtained through liquid biopsies in the 

context of cancer (Table 1). EVs derived from liquid biopsies were used for lung cancer 

detection, using a CNN, reaching 84% accuracy51. Multiple ML algorithms were also used to 

distinguish between 3 subtypes of breast cancers, using SERS spectra acquired from EVs of 

three different cell lines105. ML has also been used in prostate cancer diagnosis106, melanoma56, 

ovarian cancer107 and pancreatic cancer108,109. It is also possible to separate healthy controls 

from patients suffering from different cancers, instead of specifically targeting one cancer, or 

trying to identify the different cancers. A study by Uthamacumaran et al. showed a 90% 

accuracy in the classification of the spectra derived from EVs of 5 healthy controls and 4 

patients suffering from different cancers using SVM110. 
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Machine learning for cancer has displayed promising potential, but still needs to overcome 

some hurdles before it can be a fully translational diagnostic technique. Indeed, it has for now 

been tested mostly in vitro, using EVs derived from specific cell lines, rather than on EVs 

extracted from patient samples. Furthermore, the cohorts used are still reduced in size, due to 

the difficulty of obtaining enough samples, limiting the generalization of ML techniques. 

Finally, the accuracies obtained with these methods are still somewhat lower than what is 

obtained using standard biopsy techniques. As a point of comparison, core-needle biopsies for 

breast cancer detection display 97.7% sensitivity and 100% specificity, and surgical biopsy was 

found to have a 97.5% sensitivity111,112. Thus, in order to be considered as a potential candidate 

to replace the traditional biopsy, ML-based methods relying on SERS analysis will have to 

improve their accuracy, sensitivity and specificity. However, as SERS becomes a more 

widespread technique, the creation of large and varied databases will become easier, enabling 

ML models to truly show their potential in cancer diagnosis using EVs. 

 

Table 2.1: Table of studies using SERS spectra derived from EVs and ML for cancer diagnosis 

Cancer type ML type Analyte Efficiency Ref 

Melanoma PLS-DA B16F10 melanoma-derived 
vesicles and RBC derived 
vesicles 

Acc=93.9% 
Sens=92% 
Spe=95.1% 

201656 

Pancreatic 
cancer 

DFA EVs of pancreatic cancer cell 
lines and serum derived EVs 

Cell lines 
Acc=90% 
Sens=90.6% 
Spe=97.1% 
Serum samples 
Acc=56% 
Sens=57% 
Spe=57% 

2019108 

Lung cancer CNN EVs of lung cancer cell lines, 
and plasma derived Evs 

Cell lines 
Acc=94.8% 
Plasma samples 
Acc=84% 
Sens=84% 
Spe=85% 

202051 
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Prostate cancer CNN EVs from healthy blood and 
from 2 cancerous cell lines 

(Results for the full 
spectra) 
Processed data: 
Acc=90.89% 
Raw data: 
Acc=95.22% 

2020106 

Breast cancer SVM (rbf 
kernel), k-NN, 
LDA, RF, GBC, 
DT 

EVs from MCF-7, BT-474 and 
BT-20 cell lines 

All algorithms: 
Acc=100% 

2021105 

Ovarian cancer Logistic 
regression 

EVs from ovarian cancer cell 
lines OV-90, OVCAR3, EOC6, 
EOC18, and ovarian surface 
epithelial cell line 

Healthy vs. OV-90, 
OVCAR-3: Acc=99.2% 
Sens=99.0% Spe=99.5% 
Healthy vs. EOC6: Acc= 
99.2% Sens=98.7% 
Spe=99.5% 
Healthy vs. EOC18: 
Acc=99.4% Sens=100% 
Spe=99.0% 

2021107 

Pancreatic 
cancer 

DT EVs derived from the serum of 
patients and healthy control 

Sens= 95% 
Spe = 96% 

2021109 

Multiple 
cancers 

RF, DT, SVM EVs extracted from serum of 
patients and healthy controls 

RF:Acc=83.33% 
DT: Acc=100% 
SVM: Acc=100% 

2022110 

Acc: Accuracy, Spe: Specificity, Sens: Sensitivity, DFA: Discriminant Function analysis, GBC: Gaussian Process 

Classifier, DT: Decision Tree 

 

2.5.2 Infectious diseases diagnosis through colorimetry 

Infectious diseases are to this day a great threat to populations, especially people living in 

poverty or extreme poverty. Despite the growing arsenal of medical responses, it is not always 

possible to reach the communities in need of treatment in time to prevent the spread of diseases. 

Widespread infections can still occur, as has been evidenced in the last years, with SARS, 

MERS, Ebola, and Covid-19 outbreaks113. A solution to limit contagion is to implement testing 

on a large scale114. However, for this to be effective, the testing must be rapid, inexpensive and 

user friendly. Colorimetry offers good potential to answer all these challenges. Further aided 

by Machine learning, colorimetric approaches have been deployed recently to diagnose 

infectious diseases using portable, affordable, and rapid tests. A Random Forest classifier has 
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been used to detect Tuberculosis-antigen-specific antibodies from the sputum of patients and 

healthy controls tested with an ELISA platform, reaching 98.4% accuracy, 100% sensitivity 

and 96.19% specificity in classification115. A serology diagnosis for early stage Lyme disease 

using a multiplexed vertical flow assay and an ANN was also reported (Figure 3)116. Finally, a 

colorimetric test for malaria has recently been developed, using on device LAMP, a paper-

based assay and a CNN for the final analysis and detection, with an accuracy over 97%, 

sensitivity of 90.5% and specificity of 87%50. The devices reported here offer good results when 

compared with existing guidelines for infectious diseases testing devices. For example, the 

minimal requirements set by the U.S. Food and Drug Administration for devices testing for 

influenza A and B imposes a 80% sensitivity and 95% specificity when compared to RT-PCR117. 

Machine learning has a high potential for the diagnosis of infectious diseases with high accuracy 

while ensuring high-throughput and ease of use, and will continue to grow in the following 

years, as its integration to portable devices such as smartphones becomes more widespread.  
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Figure 2.3: Machine learning for Lyme disease diagnostic. A) Overview of POC Lyme disease diagnostic 

testing using xVFA and machine learning. B) ROC curve for the blind testing data (NTest = 96) as output from 

the neural network from the training set (NTrain = 100). The inset shows the confusion matrix and area 

under the ROC curve (AUC). C) The table to the right summarizes the performance over the blindly tested LD 

human serum samples with respect to the two-tier testing method. Adapted with permission from116. 

Copyright 2020 American Chemical Society. 

 

2.6  Conclusion 

The development of Machine learning offers great opportunities to researchers and clinicians 

to further enhance the performance of new generation sensors. The creation of open access 

libraries that enable new users to code ML algorithms resulted in its increased use, even in 

fields of research that did not necessarily heavily rely on computer science before. The 

B C 

Figure 2.3: Machine Learning for Lyme disease diagnostic 
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integration of ML to analysis and diagnosis pipelines is set to become more popular as time 

goes on. Deeper and more complex architectures will grow in popularity as the size of datasets 

and computing power increases, improving their runtime and performance. Lighter 

architectures, both in the short and long term are also sure to stay popular, due to their ease of 

implementation and their smaller requirements in data and computing power, making them 

suitable for point-of-care settings. SVM in particular remains a popular choice, able to give 

accurate predictions using small but highly complex training datasets. There is great potential 

for the application of Machine learning algorithms in cancer detection using EVs obtained from 

liquid biopsies, and in the diagnosis of infectious diseases through colorimetric methods.  

In the following chapters, we explore the application of SVM on SERS spectra for Glioblastoma 

(GBM) diagnosis, and for colorimetric Covid-19 diagnosis, as a proof that it can be successfully 

used on both of these datasets, which, to the best of our knowledge, have not been studied 

through SVM before. The contents of Chapter 3 have been submitted to Nano Letters as shown 

in this thesis, except for the formatting.  
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3.1 Abstract 

Machine learning can potentially overcome the complexity of biological data and classify large 

datasets like spectra of heterogeneous biological samples generated by surface-enhanced 

Raman spectroscopy (SERS). Here, we use a support vector machine (SVM) to analyze the 

SERS spectra from single extracellular vesicles (EVs), a new biomarker continuously released 

from cancer cells into biofluids. The heterogeneity and intrinsic complexity of cancerous EVs 

are challenges in liquid biopsy. We developed a SERS-assisted nanocavity microchip that 

allows the isolation of single EVs and outputs information on the biomarker status. Using the 

microchip, we generated a database of single-EV spectra derived from glioblastoma multiforme 

(GBM) cell lines, GBM patient samples, and controls. We demonstrate that SVM can analyze 

spectral data at the single-EV resolution and achieve 70,4% accuracy in the detection of specific 

GBM mutations from different cell lines and 95% accuracy in binary classification of real 

samples into GBM-positive and GBM-negative.  

Keywords: Machine Learning, SVM, SERS, Plasmonics, Diagnostics, sensors 

 

3.2  Introduction 

Machine learning algorithms have proven particularly helpful for the organization and analysis 

of growing amounts of data in all fields. Medical data is no exception, as the latest generation 

of sensors produces a vast amount of data for continuous monitoring of health parameters1. 

Machine learning’s main advantages are its versatility, as it is compatible with numerous input 

formats like images, spectra, and categorical data2–4; its competence to swiftly process large 

amounts of data, and its capability to identify and use complex relationships within the given 

data5,6. In the context of health and medical care, using machine learning analysis can provide 



24 

 

solutions to challenges such as personalised medical care, early and accurate monitoring of 

disease onset and progression, as well as treatment quality improvement7. An emerging trend 

is the coupling of machine learning with new highly sensitive sensors for improved detection 

and diagnosis. Sensors using an optical readout are an attractive option for the detection of 

biological analytes due to their high sensitivity and good signal-to-noise ratio8,9.  

The race for developing improved point-of-care sensors which are easy to operate, robust, with 

a long shelf life, and are adapted for low-resource settings results in an increasing number of 

sensors trying to bypass the need for a labeling agent, such as 3,3′,5,5′-tetramethylbenzidine 

(TMB) or fluorophores8,10. This can be achieved, among other techniques, by using surface 

plasmons, which occurs when the incident light causes the free electrons present in specific 

metals to oscillate11. An optical technique harnessing this principle is surface-enhanced Raman 

spectroscopy (SERS). SERS is possible because of the presence of nanostructures on a 

plasmonic metallic surface, which dramatically enhances the intensity of the Raman scattering 

of a molecule adsorbed on this nanostructured surface 12. By exploiting SERS capabilities, 

plasmonic sensors can achieve single-molecule detection13. The spectrum generated by SERS 

is then a “fingerprint” of the biological analyte, which enables the obtention of precise structural 

information on its components14. Additionally, it can be used in a relatively low resource and 

point-of-care context, with the advent of handheld Raman probes15,16. However, while SERS 

spectra give a wealth of information on the component under study, they are complex and 

difficult to interpret. This is further complicated by the heterogeneity of the spectra caused by 

the various orientations of the molecule on the SERS surface17, hampering the application of 

SERS readout for clinical purposes. A solution to these drawbacks is using machine learning 

approaches for analysis and diagnosis. Indeed, machine learning can be used to interpret this 

rich signal information, therefore enhancing clinicians’ abilities to diagnose diseases and 

monitor the health status of individuals in a highly personalized manner. Multiple machine 
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learning algorithms have been used to analyze SERS spectra, like Discriminant Analysis18–20, 

k-nearest neighbors21, neural networks22,23, and support vector machine (SVM)24,25. The latter, 

SVM, is a supervised machine learning algorithm that classifies the data based on their position 

with respect to a separating hyperplane, determined during the training phase18. SVM has the 

ability to achieve high accuracy despite having a reduced number of training points and small 

datasets comprised of observations that are integrated by a high number of variables27. SVM 

algorithms have been applied over the years to a multitude of data in the medical and biomedical 

fields, including Raman and SERS spectra with high success. Existing technology applying 

SVM to Raman and SERS spectra is summarised in Table 1. Among the varied biological 

material available for analysis, extracellular vesicles (EVs) contain comprehensive information 

that can be used as cancer biomarkers28. EVs are nanosized vesicles secreted by cells that carry 

molecular cargo such as proteins and nucleic acids, representative of their cell of origin29. 

Consequentially, EVs originating from cancer cells will have different cargo than EVs from 

healthy cells and, thus, different spectral fingerprints. The study of EVs at the single-level is 

hypothesized to hold great potential, as EVs’ heterogeneity caused by inter and intracellular 

variability, presents a challenge for their batch-analysis 30,31. 

In this work, the SERS spectra database is comprised of single EVs of glioblastoma (GBM) 

cells with a single EV resolution. Machine learning analysis is used to classify spectra obtained 

from different mutated cell lines, and to diagnose patients with GBM. We have applied an SVM 

to assist in the interpretation of cancerous SERS spectra and perform the analysis (Figure 1). 

Machine learning algorithms have the potential to be used where machines and personnel are 

lacking, making it a suitable candidate for low-resource, point-of-care medicine. The proposed 

work paves the way for a robust method to classify and analyze SERS spectra for applications 

in cancer diagnosis. 
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Figure 3.4: Schematic of the data collection and Machine Learning processing 

Figure 3.1: Schematic of the data collection and Machine learning processing. Cancerous single EV SERS spectra 

are collected for diagnosis from a blood liquid biopsy, processed, and loaded into our microchip. The spectra are 

collected from a Raman microscope and pre-processed for analysis. SVM is used to analyze the data collected, 

during training, SVM finds the hyperplane that best separates the training data, and then uses this hyperplane 

to classify test data. Resulting in predictions for the differentiation of cell lines, and of the health status of the 

patient.   

 

3.3  Results and discussion 

Major improvements in cancer treatment could stem from earlier and less invasive diagnosis 

methods. In recent years liquid biopsy has been positioned as an attractive alternative candidate 

due to its less invasive and simpler way of performing diagnosis32. Liquid biopsy is a type of 

biopsy where analysis is performed to study biomarkers present in patients’ blood. EVs are a 

biomarker existent in most body fluids33 and can be obtained through a simple liquid biopsy34. 

EVs are secreted by all cells, including tumour cells, and carry molecular cargo (protein and 

nucleic acid) and surface proteins that allow identification of their cell of origin. The analysis 

of EVs, and of their cargo through SERS makes it possible to identify the cell line and mutation 
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of the cell it originated from30,31. However, in order to fully harness the potential of EVs for 

diagnosis, it is necessary to analyze individual EVs, rather than signals obtained by averaging 

over multiple EVs. Previous work from this group has enabled the detection of individual EVs, 

as well as distinguish EVs from multiple GBM cell lines35,36. GBM was chosen as the most 

common and deadly form of brain cancers, with an average time of survival no longer than 18 

months after the initial diagnosis37. The gold standard diagnosis method used today is the 

analysis of a tumour biopsy, an invasive procedure which remains prone to undesirable side-

effects. SERS spectra collected from single EVs via liquid biopsy have the potential to be used 

as a promising diagnostic tool to help determine a patient’s cancer status. 

 

Table 3.1: Table of studies using SVM in the biomedical field, and their efficiency metrics 

Category Aim Analyte Readout Efficiency Ref. 

Cancer 
detection 

Lung cancer 
detection 

EVs of lung cancer 
cell lines, and plasma 
derived exosomes 

SERS EVs of lung cancer cell lines: 
Acc>94.8% 

36 

Plasma derived exosomes: 
AUC= 0.76 

Non small cell lung 
cancer 
identification 

NSCLC cell lines 
H1229, H460 and 
A549, and healthy 
leukocytes 

SERS 4 cell types 37 

Acc=88.75% 

Leukocytes vs. cancer cells 

Acc=100% 

Glioma detection Supernatant from 
brain tissue 

SERS Acc=97.9% 38 

Sens=96% 

Spe=100% 

Disease 
detection 

Covid-19 detection Serum Raman Acc=90% 23 

Sens=89% 

Spe=93% 

Covid-19 detection 
using NS1 un saliva 

Saliva of subjects 
Covid-19 positive, 
negative and having 
had a past Covid-19 
infection 

Raman Acc=78% 19 

Sens=78% 

Spe=89% 

Dengue infection 
detection 

Blood samples of 
infected and healthy 
subjects 

Raman L-SVM: 39 

Acc=82% 

Sens=71% 

Spe=91% 

Poly-SVM of order 1: 
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Acc=85% 

Sens=73% 

Spe=93% 

Rbf-SVM (2) : 

Acc=82% 

Sens=72% 

Spe=78% 

Crohn’s disease Urine samples SERS Acc=82.5%   40 

Sens=82.1%   

Spe=83.3%   

F-1 score=86.2% 

Bacterial 
detection 

Staphylococci strain 
detection 

Bacteria from 16 
staphylococci strains 

Raman IPF background removal: 18 

Acc=98.8 

RCF background removal: 

Acc=98.9 

Identification of 
pathogenic bacteria 

30 bacterial and 
yeast strains 

Raman 30 strains 41 

Acc=74.9% 

Bacterial 
identification 

9 E.coli strains SERS Fingerprint region 42 

L-SVM: Acc=90.1% 

Rbf-SVM: Acc=91.0% 

Fingerprint+CH-stretching 
region: 

L-SVM: Acc=91.5% 

Rbf-SVM: Acc=92.6% 

Drug testing Drug recognition Urine spiked with 
MDMA and MAMP at 
different 
concentrations 

SERS Acc=97.76% 43 

Direct testing of 
drugs in urine 

Urine spiked with 
MAMP, and real 
urine samples 

SERS Spiked urine C-SERS:  24 

Acc=85% 

Sens=84.5% 

Spe=85.5% 

Spiked urine D-SERS:  

Acc=96.1% 

Sens=96.1% 

Spe=96.1% 

Real urine samples (D-SERS): 

Acc>90% 

Testing of illicit 
drugs 

Illicit drugs 
(oxycodone, cocaine, 
heroin, THC) 
dissolved in water. 
Saliva spiked with 
cocaine 

SERS Drug identification: 44 

Acc=100% 

Drug quantification 

Acc=98.3% 
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3.3.1 Cell classification and mutation identification via SVM 

The main strength of ML and SVM is their ability to identify unique features in the data that is 

given while leveraging this knowledge to classify unknown test data. Thus, slight differences 

in the spectra, deriving from molecular modifications of the analyte, can be identified and used 

by the SVM to accurately classify the spectra into a specific class. Identifying specific 

mutations in GBM is central for effective diagnosis. We analyze EVs derived from normal glial 

cells, glioma cell lines, and glioma stem cell lines (Table 2). One molecular alteration is 

EGFRvIII which leads to the expression of the mutated EGFRvIII protein, a known marker of 

cancer. Indeed, this mutated gene in glioma cells leads to increased survival, invasion, and 

proliferation rates, which are all factors for tumorigenesis47.  The mutated EGFRvIII protein is 

found in EVs secreted by the molecularly altered cells, allowing for the mutation monitoring 

through the analysis of the EVs48. We also studied cells displaying upregulated O6-

methylguanine DNA methyltransferase (MGMT), a marker that indicates resistance to 

temozolomide (TMZ), used in GBM chemotherapy treatment for GBM49. While EGFRvIII is 

useful in determining cancer onset and progression, MGMT expression can give an interesting 

insight into the susceptibility of the tumour to therapy, and risks of relapse49. To this end, we 

include both the mutated and wild-type glioma cell lines, to determine if it is possible to separate 

these mutations in cell lines with high accuracy. Namely, U87 and U373 cell lines had been 

engineered to express the EGFRvIII oncogene. Patient derived glioma stem cell lines GSC83 

and GSC1005 naturally express the EGFRvIII mutation and were compared against GSC83 and 

GSC1005 in which the EGFRvIII had been knocked-out through CRISPR-Cas9. Finally, 

MGMT expression was studied through a series of GSC1123 cell lines, some naturally 
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expressing MGMT, while the others did not. Normal Human Astrocytes (NHA) were used as a 

healthy control. 

 

Table 3.2: Cell lines used, with the mutation resulting in modified protein expression. 

Cell type Cell line 
Mutated cell 

lines 
Mutation type 

Glial cell NHA NHA Control glial cell 

Glioma cell 

U87 
U87 Parental No EGFRvIII expression 

U87 EGFRvIII EGFRvIII expression 

U373 
U373 Parental No EGFRvIII expression 

U373 EGFRvIII EGFRvIII expression 

Glioma stem 
cell 

GSC83 
GSC83 wt Natural EGFRvIII expression 

GSC83 ko No EGFRvIII expression 

GSC1005 
GSC1005 wt Natural EGFRvIII expression 

GSC1005 ko No EGFRvIII expression 

GSC1123 
GSC1123 No MGMT expression 

GSC1123 MGMT MGMT expression 

 

The spectra obtained and analyzed by the SVM are shown in Figure 3.2b. For illustration 

purposes, we show the average spectra with 1 standard deviation, for each mutated cell line. 

The spectra display common peaks around 520cm-1,1000cm-1, 1240-1330cm-1, 1600cm-1 

corresponding to SS disulfide bridge, phenylananin, amide, C-H bond from proteins and 

tyrosine respectively50–52. As can be expected, there is some heterogeneity between the spectra, 

making their analysis and classification difficult. This is the reason for turning to SVM, as a 

means to better analyze and classify them.  

The SERS spectra acquired were separated according to each mutation of each cell line, for a 

total of 11 classes, and then analyzed by SVM. The single-EV resolution data was separated 

into training and testing sets, with 70% of the data used for training and 30% for testing, the 

results of the testing set are shown in Figure 3.2c-d. The overall accuracy, considering all the 

classes of the model is 70.04%, with most of the errors being between the same cell line but 
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different mutations, especially for GSC1005 and GSC1123, as shown in the confusion matrix 

(Figure 3.2c). The receiver operating characteristic (ROCs) and area under the curve (AUC) 

values also support that the SVM has the ability to differentiate mutations using the SERS 

spectra, as AUC values are systematically over 0.75, with an average of 0.94 (Figure 3.2d). 

 

 

Figure 3.5: Cell line and mutation analysis using SVM 

Figure 3.2: Cell line and mutation analysis using SVM. A) Flowchart representing the different steps in this work, 

from the data collection to the final diagnosis. Training is first performed on the training set, then the trained 

SVM algorithm is tested on the unseen test data. B) Spectra collected from each cell line and mutation. The 

colored line is the average spectra, with 1 standard deviation shown. C) Confusion matrix showing the accuracy 

of the prediction for each class (showing each cell line, and mutation that was introduced to the cell line), 

normalized along the rows. D) ROC of the 11 classes, calculated in a one-vs-all approach. 
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When grouping the results by cell line, the SVM can classify any given spectra within its correct 

cell line with at least 72% true positive rate (TPR), with the TPR being over 90% for U87, U373 

and GSC1123 (Table 3.3). The true positive rate is calculated for each cell line in the following 

manner: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (1) 

TP is the number of true positives, the number of spectra that were correctly predicted as 

belonging to their rightful class, and FN, is the number of false negatives, which are the number 

of spectra from a cell line that were incorrectly predicted as belonging to another cell line. The 

AUC for each cell lines is also calculated, which emphasizes that the cell line classification is 

extremely successful, with AUC systematically higher than 0.94. This further demonstrates that 

most of the errors done by the SVM result from misclassification within one cell line. 

 

Table 3.3: True positive rate and AUC for each cell line 

  TPR AUC 

NHA 85 0.99697 

U87 97.561 0.99368 

U373 96.2963 0.99323 

GSC83 81.8182 0.94436 

GSC1005 72.7273 0.95845 

GSC1123 90.099 0.97438 

 

3.3.2 Implementation of SVM in clinical study 

SVM has previously demonstrated ability at binary classification for the diagnosis of 

patients40,42. Here, we implemented SVM to diagnose patients suffering from GBM using EVs 

obtained through liquid biopsy. Using spectra taken from individual EVs from both patient 
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samples and healthy controls, we classify them into a healthy class (GBM-negative), or a patient 

class (GBM-positive). The training set used contains both spectra taken from the EVs of 

cultured cells and patient and healthy samples. This is in order to obtain a more representative 

and comprehensive training set that includes EVs excreted by cells from the entire human body, 

which will be found in both patients and healthy samples. A held-out test set composed of the 

spectra from 12 patients and 8 healthy controls are used to evaluate the potential of the SVM 

algorithm as a diagnostic tool. EVs were collected pre-operatively from confirmed GBM 

patients. 

Each spectrum is predicted individually by the algorithm before additional analysis is done to 

obtain a diagnosis of the general health state of a patient. The global accuracy of the test set is 

77,98%. An explanation for this outcome could be attributed to GBM patients being able to 

have cells that secrete healthy EVs, creating false negatives, as they will be labeled as GBM-

positive, even if the actual phenotype is GBM-negative. Also, false positives can be 

encountered due to random mutations in healthy controls which can make cells secrete EVs 

having the same phenotype as patient EVs. Figure 3a shows the score assigned to each spectrum, 

represented as a data point, of the entire test set, divided into healthy and patient spectra. A 

positive score indicates a SERS spectrum is classified as GBM-positive (ie a “patient” spectra), 

while a negative score indicates a SERS spectrum classified as GBM-negative (ie a “healthy” 

spectra).  The average score of the spectra obtained from healthy controls is negative (-0.735), 

while the average score of the patient-derived spectra is positive (0.748), showing a statistically 

significant difference in the average scores, with p<0.001, demonstrating a successful 

individual spectra classification by the SVM. However, it is important to determine whether or 

not this ML algorithm can help to distinguish between healthy and patient samples by 

examining each clinical sample individually, instead of each spectrum. Tables 3.4 and 3.5 show 

the average score for each patient and healthy control. All the patients have a positive average 
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score (Table 3.4) and all the healthy controls except one have a negative average score (Table 

3.5), exhibiting an almost perfect accuracy when determining the health status of a clinical 

sample. To simplify the reading during the discrimination process and to take into account that 

multiple ML algorithms could be used in the future to reach this diagnosis, thus leading to 

different outputs, we have calculated the average relative similarity of each clinical sample 

(Figure 3.3b). The ROC curve of the SVM used also shows an AUC of 0.84 (Figure 3.3c), 

further confirming the efficient performance of the algorithm. 

 

Table 3.4: SVM score obtained for each patient sample. Each score is obtained by averaging the score of the 

spectra belonging to the sample. 

 Patient 

Number 1 2 3 4 5 6 7 8 9 10 11 12 

SVM score 1.32 0.23 1.61 1.36 0.73 0.28 0.45 0.88 0.13 0.65 0.86 0.97 

 

Table 3.5: SVM score for each healthy sample. 

 Healthy 

Number 1 2 3 4 5 6 7 8 

SVM score -1.8 -2 -0.1 -0.1 0.21 -1.1 -0.9 -0.8 
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Figure 3.6: Diagnosis of GBM in patients using SVM 

Figure 3.3: Diagnosis of GBM in patients using SVM. A) Score and whisker plot of each of the tested spectra after 

classification by SVM, separated into healthy and patient-derived spectra. A negative score indicates a spectrum 

classified as healthy, and positive, as a patient suffering from GBM. The box shows the mean, SD, and the 

whiskers the minimum and maximum values. One-way ANOVA confirmed that the means value difference was 

statistically significant (p<0.001). B) Average relative similarity, calculated for each patient and healthy sample. 

A high average relative similarity means a high risk of cancer, and a low one means a low risk of having cancer. 

The threshold of 1.9 is the cut-off value that allows for classifying patients and healthy controls with the best 

specificity and sensitivity. C) ROC curve for the SVM classification, with an AUC of 0.84. D) ROC curve obtained 

from the average similarity of the samples. It is used to determine the optimal threshold that offers the best 

compromise between sensitivity and specificity when classifying patient samples. 
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A low average relative similarity means a low risk of cancer (GBM-negative sample) and a 

high average relative similarity means a high risk of cancer (GBM-positive sample). For each 

sample, Mahalanobis distance was calculated between every spectrum and the patient and 

healthy spectra of the training set53,54. The Mahalanobis distance enables the calculation of the 

similarity while taking into account different standard deviations along different axes. The ratio 

of each distance is then calculated to obtain the relative similarity of each spectrum. At last, all 

the relative similarities are averaged to obtain the average relative similarity for the sample. 

The cut-off point to distinguish between GBM-negative and GBM-positive samples is 

established by calculating the point which minimizes the distance to the point (0;1) on the ROC 

obtained with the average relative similarity of the samples (Figure 3.3d), allowing for 

discrimination between the two with maximum sensitivity and specificity. The threshold is 

determined to be at 1.9, with close to perfect classification (95% accuracy, 100% sensitivity, 

and 88% specificity). SVM is a powerful tool to aid in the identification of SERS spectral 

features critical to distinguish cell lines and mutations from healthy controls, with applications 

for cancer diagnosis based on liquid biopsy. 

 

3.4  Conclusion 

Our study using SVM on SERS spectra has proven successful in the identification of mutations 

in GBM-associated cell lines, and the diagnosis of GBM in patients. We performed the analysis 

of single EV spectra collected via a nanocavity array microchip and SERS. An accuracy of 70,4% 

was reached for mutation and cell line classification, and 95% accuracy was attained in patient 

diagnosis. For the latter, this analysis was done with clinical samples collected by the minimal 

invasive liquid biopsy, which is easier to acquire and process than the traditional invasive 

method, tumor biopsy. Furthermore, blood samples can be repeatedly taken over a long period, 

making it possible to monitor the evolution of the patient in a minimally invasive and dynamic 
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manner. This additionally, enables overseeing the molecular evolution or response to treatment 

through this analysis pipeline. SVM has proven successful in analyzing complex SERS spectra 

to give a clinically relevant medical diagnosis, harnessing the high quantity of information 

present in such spectra in a label-free manner. This could further encourage the use of SERS 

for sensing uses without resorting to time-consuming analysis of the spectra. SVM is a simpler 

and less demanding type of algorithm when compared to deep learning methods, both in terms 

of computing power and training data. Although deep learning approaches tend to replace 

classical ML approaches such as SVM due to their higher accuracy, and the growing availability 

of both training data and computing power (or cloud platforms), allowing deep learning 

implementation, SVM is still able to predict the presence of GBM in a clinically relevant 

manner with 95% accuracy. This is of particular importance when studying diseases where it is 

difficult to acquire a high amount of data, due to the rarity of the disease, or the difficulty of 

collecting relevant biological material. It must also be noted that SVM requires much less 

computational power than deep learning algorithms to be operated, making it easier to deploy 

in settings where computing infrastructure or energy availability is scarce. Overall, coupling 

SVM with an integrated nanocavity array and SERS could prove to have great diagnostic 

potential in point-of-care settings. 
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3.7 Supporting information: Support Vector Machine for classification of Surface 

Enhanced Raman Spectroscopy spectra of Cancerous Single Extracellular Vesicles 

Olivia Jeanne1, Carolina del Real Mata1, Mahsa Jalali1, Laura Montermini2, Yao Lu1,  

Kevin Petrecca3, Janusz Rak2, Sara Mahshid* 

1 Department of Bioengineering, McGill University Montreal, QC, Canada 

2 Research Institute of the McGill University Health Centre (RIMUHC), Montreal, Quebec, Canada 

3Department of Neuropathology, Montreal Neurological Institute-Hospital, McGill University, 

Montreal, Quebec, Canada 

*sara.mahshid@mcgill.ca 

3.7.1  Experimental Methods  

Data collection 

The datasets used here are integrated by single-EV spectra collected in the Mahshid lab, the 

spectra were obtained and processed as previously described in Jalali et al1. Briefly, EVs were 

isolated from a non-cancerous Normal Human Astrocytic cell line (NHA), two glioma cell lines 

(U87, U373), and three glioma stem cell lines (GSC83, GSC1005 and GSC1123). Additionally, 

real human samples EVs were also isolated from the blood of healthy donors and confirmed 

glioblastoma patients’ plasma, prior to undergoing surgery. The EVs were loaded on a 

nanostructured microchip previously developed in Mahshid lab, containing a SERS-active 

patterned nanocavity array which employs the synergy of materials and structures to ensure a 

single EV spectrum acquisition. The SERS spectra were then preprocessed by means of baseline 

subtraction, smoothing, and normalization, to obtain the datasets used by the ML algorithms, 

made of one-dimensional vectors of 1245 observations corresponding to the intensity value as 

a function of the wavelength (Figure 2a).  

mailto:*sara.mahshid@mcgill.ca
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Cell line classification 

To explore the potential of the SVM algorithm on our datasets, two studies were performed 

using SERS spectra, the first studied different cell lines using a multiclass SVM, and the second 

used a binary SVM to classify patient samples. For the SVM multiclass classification, the 

library comprised 6 different cell lines (Glioma U87, Glioma U373, GSC1005, GSC83, Glioma 

1123, and NHA) and various mutations on these cell lines. The dataset of each cell line type is 

then formed from a total of 946 single EVs collected spectra. The 11 cell lines (considering the 

mutations cell lines) correspond respectively to the 11 classes that integrate the dataset used for 

this study. The SVM is then trained, using 70% of the previously mentioned datasets as its 

training set.  

  

Patient classification 

For the patient classification another SVM algorithm, this time performing binary classification, 

is trained and tested on a clinically relevant dataset, integrated by 1267 spectra from plasma 

samples of glioma patients and healthy donors. This dataset is generated by EVs samples 

derived from plasma of eight healthy donors and ten diagnosed patients’ plasma. The training 

set consists of 80% of the spectra acquired from patient samples 3, 5, and 8, from healthy donors 

1,2,3, and 4, and the U373 viii, U87 viii, and MGMT 1123-9 cell lines. The remaining patient 

and healthy spectra are used for testing. One-way ANOVA is used in the binary classification 

to verify that the difference between the mean scores of healthy and patient spectra is 

statistically significant at the level of 0.001 (F(1,711)=398, p=10-70). 
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Machine learning 

In order to achieve the best results possible, hyperparameter searches were performed using 

Bayesian search2. A 5-fold cross validation (CV) was performed on the training set to avoid 

overfitting, meaning that the training set was divided into 5 subsets and 4 were used for training 

while the fifth was used as a validation set. This process is repeated with each subset 

successively held out and used as a validation set. For the 11-class classification, the search 

space was: C and gamma between 10-6 and 100, with a log-uniform distribution, and a choice 

of kernel of either rbf or linear. The hyperparameters thus obtained are a linear kernel and C: 

1.81. For the binary classification, the search space was C and gamma between 10-6 and 100, 

with a radial basis function kernel. The hyperparameters obtained are a radial basis function 

(rbf) kernel and C:100, gamma: 0.13. All the spectra preprocessing is done using Origin Pro 

2019b software, WiRE 5.1 and Python. The SVM is coded using the scikit-learn module of 

Python3. 

 

3.7.2 Additional references: 

1. Jalali, M. et al. Plasmonic nanobowtiefluidic device for sensitive detection of glioma 

extracellular vesicles by Raman spectrometry. Lab Chip 21, 855–866 (2021). 

2. Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & de Freitas, N. Taking the Human 

Out of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE 104, 148–

175 (2016). 

3. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine 

Learning Research 12, 6 (2011). 

 

   



44 

 

Intermediate conclusion and transition 

 

SVM has shown its potential in analyzing and leveraging high dimensional and complex SERS 

spectra to obtain a clinical diagnosis of GBM patients. It is also able to distinguish between 

multiple mutations occurring in a variety of cells. This work opens the way for the analysis of 

complex tumors, with multiple mutations, using EVs extracted from the blood of suspected 

patients. It also has potential for diagnosis of GBM, as a complement to be used in conjunction 

with the traditional clinical techniques. Using SVM, analyses could also be performed 

repeatedly over an extended period of time, enabling to follow tumoral evolution. This study 

holds promise for future automated analysis and interpretation of SERS spectra in a clinical 

setting.  

Machine learning is known notably for its extreme versatility, allowing it to analyze very 

different data sets. It is therefore fair to ask if SVM can be used in another setting, on another 

type of optical readout with similar success, or if the success we have observed will be limited 

to highly complex SERS data. This is what we explore in the next chapter, where we use SVM 

for colorimetric detection and analysis. We want to determine whether SVM can be helpful in 

the context of rapid tests, by analyzing images of a colorimetric platform for infectious disease 

detection. In our case, the disease we are analyzing is Covid-19. Colorimetric RT-LAMP is 

performed on a plasmonic color sensitive platform, driving the color change that is being 

analyzed. In this colorimetric study, both the type of disease investigated and the data used for 

the analysis are very different than what has been studied in the previous chapter, as we observe 

an infectious viral disease, using images instead of spectra. We analyze clinical samples from 

34 patients, divided in 15 naso-pharyngeal swabs and 18 saliva samples, and 15 negative 

controls. We determine the parameters necessary to obtain optimal results using this testing 

platform by experimenting on two different color spaces and multiple timepoints.   
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4.1 Abstract 

Data science and machine learning’s rapid development over the past years have allowed 

scientists to analyze medical and clinical data in a user-friendly, higher-throughput, and less 

personnel-extensive way, assisting clinicians in diagnosing and monitoring health issues. 

Machine learning has the potential for accurate, low-cost sensing and diagnosis with the 

possibility of being deployed in environments where high-end medical facilities are unavailable, 

making it an ideal candidate for point-of-care testing. Among readout techniques, colorimetry 

is a promising low-cost and simple sensing method that can be coupled with machine learning 

for diagnostic applications. Here, a support vector machine (SVM) is used to analyze the data 

from a plasmonic color sensitive chip for rapid and point-of-care detection of viral RNA. We 

illustrate its diagnostic capability using a paradigm of viral respiratory infection such as Covid-

19. The device uses a highly sensitive RT-LAMP assay for the detection of viral RNA 

monitored through color change. In order to obtain a rapid and accurate diagnosis, images of 

the plasmonic color sensitive device are collected with a basic imaging system and analyzed 

via SVM, achieving a 94% success rate in the classification of healthy vs sick patients after 10 

minutes. This point-of-care system would help to prevent the fast spread of infectious diseases 

through rapid screening operations. 

Keywords: Machine learning, SVM, Colorimetry, RT-LAMP, Diagnostics, Sensors 

 

4.2 Introduction 

Machine learning analysis offers a solution to some challenges faced today by modern 

medicine1. Enabling automated detection of diseases and health parameter surveillance can 

improve treatment quality and pave the way towards personalized medical care1. Machine 

learning algorithms have demonstrated their value in classifying and interpreting clinically 
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relevant data, especially considering the increasing amount of information being generated as 

sensing technologies progresses2.  It also offers high throughput processing capabilities, high 

versatility, and has a strong ability to uncover, and use complex non-linear relationships within 

the given data3,4. Also, these algorithms allow to obtain a satisfactory analysis of low-resolution 

or noisy data, which would have been discarded otherwise5. A common practice is to couple 

machine learning models with state-of-the-art and high-sensitivity sensors. Among the possible 

readouts, optical techniques offer high sensitivity and specificity, and a good signal-to-noise 

ratio making them an attractive option6,7. 

Support vector machine (SVM), a type of supervised machine learning, has the valuable ability 

to achieve high accuracy during classification despite being trained on a reduced number of 

data points. This holds true even when the dataset is made of instances that are composed of a 

high number of variables compared to its size8. SVM algorithms have been applied over the 

years to a multitude of data, including colorimetric images in the medical field (Table 1). For 

its various advantages, including its simplicity, SVM is an ideal candidate to be incorporated 

into the analysis of sensing applications. 

The translation of optical readouts into highly sensitive and low-cost point-of-care applications 

is challenged by their frequent need for bulky and expensive equipment. However, colorimetry 

has multiple advantages such as rapidity, cost-effectiveness, and easy integration into portable 

point-of-care settings. In this context, the color change in colorimetric assays is a suitable 

readout as it can be detected by the naked eye or using a basic bright-field microscope 9,10. 

While a colorimetric readout is simple to interpret, the accurate identification of the color 

change is susceptible to factors such as the time of observation and personnel skills, which 

hinders the reliability of the diagnosis. This is where the potential of machine learning can best 

be leveraged, for improving the detection methods of infectious diseases, an asset crucial in the 
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context of global pandemics. We demonstrate its applicability using a paradigm of Covid-19 

respiratory infection. The ongoing Covid-19 pandemic has exposed the vulnerabilities in 

healthcare systems. SARS-CoV-2 high infection rate is attributed to asymptomatic and 

presymptomatic spread and airborne transmission through both saliva droplets and aerosols11,12. 

Reverse transcription polymerase chain reaction (RT-PCR) is the gold standard method for 

SARS-CoV-2 detection. However, RT-PCR can only be performed in centralized facilities 

which results in delays for the processing and analysis of the samples 13. A rapid and early 

diagnosis is as crucial to controlling the spread of SARS-CoV-2 as it is challenging14. In 

consequence, there is a pressing need for portable, affordable, high throughput point-of-care 

devices to perform reliable Covid-19 diagnosis.  

Here, we employ a SVM algorithm with a radial-basis function (rbf) kernel to assist in the 

interpretation of images of a colorimetric assay (Figure 4.1). The images were collected using 

a plasmonic color sensitive device developed in Mahshid Lab (AbdElFatah et al, manuscript 

under preparation) which addresses the challenges of detection methods of infectious diseases, 

previously described. The device uses an isothermal reverse transcriptase loop-mediated 

isothermal amplification (RT-LAMP) for the detection of viral RNA via a colorimetric readout. 

The plasmonic nano-surface of the device allows plasmonic-induced enhancement of the RT-

LAMP reaction through surface free electron injection from the surface to the media, 

dramatically reducing detection time. The nucleic acid amplification from the RT-LAMP 

releases H+ ions, which are then detected using a pH-sensitive dye, phenol red15. This approach 

is coupled with a machine learning analysis to generate a, in 10 minutes. The database used for 

the SVM analysis is integrated by images taken from clinical samples of 34 patients admitted 

with Covid-19 symptoms, and healthy controls. The proposed practical colorimetric SVM 

supports the capabilities of the analysis approach to be of assistance in the diagnosis of 
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infectious diseases, paving the way for machine learning-assisted diagnostics in low resource 

and point-of-care settings, where speed and high throughput are a priority. 

 

Figure 4.7: Workflow of the testing process 

Figure 4.1: Workflow of the viral RNA detection. The sample is loaded onto the plasmonic color sensitive device 

where isothermal reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) of the viral RNA is 

performed.  The amplification is enhanced by the injection of free electrons originating at the plasmonic nano-

surface of the device. RT-LAMP releases H+ which allows for its monitoring through the color change of a pH-

sensitive dye, Phenol Red. The colorimetric assay is surveilled by image acquisition using a bright field microscope. 

An SVM algorithm, previously trained is used to analyze the data collected and generate a prediction of the health 

status of the patient: positive or negative to Covid-19. 

 

4.3 Methods 

4.3.1 Data collection 

The data is obtained from analyzing 34 patients samples and 15 healthy controls. The samples 

are loaded onto the plasmonic color sensitive device which is then maintained at 65°C to enable 

the plasmonically enhanced RT-LAMP reaction, during which the colorimetric change is 

monitored. Images of the platform are acquired regularly over 15 minutes, at 1, 3, 7, 10, 15 min, 

to monitor the color change as a function of time. The preprocessing starts with the images 



50 

 

being cropped to 80% of the initial size, to remove areas potentially impacted by the “coffee 

ring effect”. Pixels with a hue value between 85 and 140 (blue range) are removed and replaced 

by the mean value of the rest of the image. The image is then thresholded by removing the 25% 

least saturated parts of the image and substituting them with the mean value of the rest of the 

image. Finally, the image is divided into 20 smaller images from which we extract 6 features: 

mean color value, standard deviation, mode, skew, energy, and entropy in each color channel r, 

g, and b, for a grand total of 18 values. When studying the L*a*b* color space, the same 

procedure is performed using the L*, a*, and b* channels. The formulas used for each feature 

are adapted from Sergyan16. The grey-scale intensity was replaced with the corresponding 

intensity for the red, green, and blue (and L*, a*, and b*) channels successively. 

The dataset used is integrated by the 34 patient samples and 15 healthy controls divided into a 

training and a testing set. For every sample, 9 images are acquired per timepoint. The training 

set consists of 2 thirds of the vectors from patients 1, 7, 9, 11, 15, 19, 21, 23, 25, 29, 31 and 

negatives 2, 3, 4, 5, 6, 7, 8, 9, 11, 13 and 15; the test set integrates the remaining vectors. The 

data is divided into 2 classes: healthy (negative) and sick (positive). 

When studying the performance of the algorithm to monitor the color change as a function of 

time, each timepoint is evaluated independently using the data only from that corresponding 

timepoint for both training and testing. 

 

4.3.2 Machine learning 

An SVM with a rbf kernel is used to obtain a prediction for each vector of the test set, either as 

healthy or as sick. The hyperparameters C and gamma are determined through a Bayesian 

search17, the search space being C and gamma both ranging from 10-4 to 100 in a log-uniform 
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distribution. The absence of overfitting is validated using 5-fold cross-validation. The entire 

analysis pipeline is summarized in Figure 4.2a. 

To analyze patients’ samples, all the vectors derived from all images of one microscopy time 

point are tested in one pool. The probability of being determined as Covid-19 positive is 

obtained for all the vectors, and the average probability for each patient is then calculated. The 

probabilities are derived from the SVM scores using Platt scaling18. 

Another method was tested, where instead of considering each vector as an independent 

observation, a result for each entire image is calculated. The vectors from a single of the 9 

images in a timepoint are tested, then a prediction for the entire image is obtained. The same 

procedure is followed with the other 8 images of the timepoint and finally an average is 

calculated over all the images for one patient. However, this method was abandoned for being 

more computationally expensive to implement and not yielding significantly better results. 

All image processing is done in Python using the cv2 and scikit-image modules. The SVM is 

coded using the scikit-learn module of Python19.  

 

4.4 Results and discussion 

Colorimetric methods present a number of advantages such as rapidity and user-friendliness, 

making them an ideal candidate for point-of-care settings. They can be implemented using 

various methods, such as paper-based colorimetric tests, or in solutions, such as for Enzyme-

Linked Immunosorbent Assays, but also using nanoparticles and their plasmonic properties that 

lead to color generation9,20,21. We have chosen a colorimetry assay and a plasmonic nano-

surface and combined them to form plasmonic color sensitive device, offering the additional 

advantages of being rapid, portable and cost-effective.  
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Images of the platform were taken at multiple timepoints, preprocessed, and analyzed via an 

SVM algorithm. Examples of the images taken for monitoring the color change are shown in 

Figure 2b. The sensing chamber hosts a platform which has an initial intense pink color for both 

the negative and the positive samples due to the presence of the pH-sensitive dye phenol red. 

Then, for the positive sample, as the incubation time increases, nucleic acids are amplified 

through the RT-LAMP reaction and further enhanced by the plasmonic nano-surface. This 

results in the release of H+ ions which change the pH of the solution, to which phenol red reacts 

producing a color change in the solution15. Thus the color gradually changes to orange, while 

the sensing chamber of the negative sample stays pink. However, it is difficult to distinguish 

by naked eye at what point the platform starts changing color in comparison to the negative 

sample. Consequently, we have used an SVM with a rbf kernel as a way to solve this challenge. 

 

Table 4.1: Machine Learning models used in medical analysis with colorimetric readout 

Study  Analyte Color Assay ML Type Efficiency Ref 

Determination of 
glucose in saliva 
using TMB, 
KI+Chitosan, KI 

Glucose Paper based 
microfluidic 
device 

LDA, 

GBC, 

RF 

For TMB, KI+Chi, KI: 
LDA: Acc= 
98.24%; 75.45%; 74.13%  
GBC: Acc= 
93.30%; 83.04%;75.98%  
RF: Acc= 
96.46%; 78.63%; 76.83% 

22 

Determination of 
bilirubin in urine 

Bilirubin Chloroauric 
acid 
immobilized 
on a paper 
strip 

RF Acc=74.05% 23 

Classification of a TB 
antigen test 

TB antigen ELISA k-means, 
QDA, 
k-NN, 
RF, 
ANN 

k-means: Acc=68.1% 
QDA: Acc=93.7%  
RF: Acc=96.1%  
k-NN: Acc=97.6%  
ANN: Acc=99.2% 

24 

Determine alcohol 
concentration in 
saliva 

Alcohol Paper test 
strip 

LDA, SVM, 
ANN 

LDA: PPV=95% 
SVM: PPV=99% 
ANN: PPV=98% 

25 
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TMB: 3,3′ ,5,5′ tetramethylbenzidine, KI: potassium iodide, LDA: Linear Discriminant Analysis, GBC: Gradient 

Boosting Classifier, RF: Random Forest, ELISA: Enzyme Linked Immunosorbent Assay, QDA: Quadratic 

Discriminant Analysis, k-NN: k-Nearest Neighbours, ANN: Artificial Neural Network, PPV: Positive Predictive Value, 

MAE: Mean Absolute Error, CNN: Convolutional Neural Network 

(Standard concentrations in 
L*a*b* color space) 

Monitoring skin pH Skin moisture pH-
responsive 
hydrogels 

Linear 
regression 

r = 0.93; P< 0.01 
MAE = 0.27 

26 

Serodiagnosis of 
early-stage Lyme 
disease 

Anti-Lyme 
human IgG 
and IgM 

Paper based 
vertical flow 
assay 

Neural 
Network 

AUC= 0.963 
Acc= 91.7% 
Sens=85.7% 
Spe=96.3% 

27 

Malaria detection DNA Paper-based 
microfluidic 
lateral flow 
DNA 
molecular 
assay 

CNN Acc= 97.83% 28 

Classification of 
SARS-CoV-2 saliva 
samples 

SARS-CoV-2 RT-LAMP SVM Acc=94%  
(Patient samples) 

This 
work 
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Figure 4.8:Flowchart and color matrix of the samples 

Figure 4.2: Flowchart and color matrix of the samples. A) Flowchart describing the analysis process, from 

image collection to final diagnosis. B) Color comparison between the colorimetric platforms of a negative 

control and a positive saliva sample. The time shown is the incubation time after virus lysis. The initial color 

for both platforms is pink, and only the positive sample presents a color change towards orange. 
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SVM is a supervised machine learning technique that classifies data based on its position with 

regards to a separating hyperplane28,29. The optimal hyperplane is determined during the 

training phase so that it best separates the data29. To start the analysis through SVM, the 

collected dataset of patients samples was split between training and testing sets (see Methods 

section). This is done to be able to test the SVM on images it has not seen before, therefore 

giving a representative indication of its performance under realistic conditions. The status of 

the patient samples as Covid-19-positive was verified by performing PCR on the samples. In 

order to determine what incubation time yields the best results of analysis, we compared three 

parameters, accuracy, sensitivity, and specificity of the different timepoints collected. These 

three parameters are defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑛
     (𝑒𝑞. 1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
     (𝑒𝑞. 2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
     (𝑒𝑞. 3) 

Where true positive (TP) and true negatives (TN) are the patients and healthy controls correctly 

classified as positive or negative to SARS-CoV-2, respectively. False positive (FP) and False 

negative (FN) were incorrectly classified, and n is the total number of samples used. 

In addition to this, we have compared two color spaces, to determine which gives the best results. 

We have used the RGB color space, with additional features, and the CIE L*a*b* color space, 

with the same additional features, computed using the L*, a*, b* channels. In Table 2 we show 

the results of both color spaces for the different time points. L*a*b* and RGB perform similarly 

for the different timepoints, with L*a*b* yielding better results on the 10 and 15-minute 

timepoints. 
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Table 4.2: Accuracy, sensitivity, and specificity both in RGB and L*a*b* color space. L*a*b* performs better 

than the RGB color space in the 10 and 15 min timepoints. 

   Timepoints 

    1 min 3 min 7 min 10 min 15 min 

Accuracy 
RGB 58,64 68,73 75,16 85,07 80,34 

L*a*b* 64,73 61,88 69,75 86,06 88,66 

Sensitivity 
RGB 57,33 67,60 74,87 85,66 75,78 

L*a*b* 67,19 58,51 66,86 86,64 86,14 

Specificity 
RGB 63,69 72,76 76,23 82,97 97,46 

L*a*b* 55,48 73,94 80,33 84,08 97,21 

 

Accuracy, specificity and sensitivity on the test set each steadily increase as time passes, with 

the best accuracy and specificity reached at 10 min for the RGB color space (Figure 4.3a) and 

15 min for the L*a*b* color space (Figure 4.3b). 

As time is a crucial factor in point-of-care diagnosis applications, where high throughput is also 

essential, we chose to use the 10-minute timepoint as being the best compromise for a rapid test, 

while still obtaining robust effective predictions. Indeed, accuracy and sensitivity barely 

increase between 10 and 15 minutes in the L*a*b* space and decrease in RGB space. The ROC 

(Receiver Operating Characteristic) curves and corresponding AUCs (Area Under the Curve) 

also support this decision, with the 10 and 15-minute timepoints having the highest AUC. 

(Figure 4.3c, d). As a result, the 10-minute timepoint is used for patient experiments. 
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Figure 4.3: Diagnosis of Covid-19 in patients using the colorimetric point-of-care platform using SVM. A) Accuracy, 

Sensitivity, and Specificity of the SVM as the time increases until 10 minutes in RGB and B) in L*a*b* color spaces. 

C) ROCs for the different time points, with the AUCs specified in RGB and D) in L*a*b* color spaces. E) For each 

clinical sample obtained, the average probability of being predicted as Covid-19 positive and the threshold 

Figure 4.9: Diagnosis of Covid-19 in patients using the colorimetric point of care platform and SVM, in L*a*b* space 
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established for the best specificity and sensitivity using the RGB color space. Inset: the ROC obtained from the 

probabilities and used to calculate the optimal threshold (AUC: 0,998). F) the average probability of being 

predicted as Covid-19 positive using the L*a*b* color space. Inset: the ROC obtained from the probabilities and 

used to calculate the optimal threshold (AUC: 0,998). The boxes represents 1 SD, the whiskers show the outliers. 

 

The test samples were analyzed after an incubation time of 10 minutes, as this timepoint was 

selected for offering the best compromise between speed and successful prediction. Each image 

taken is, as previously described, subdivided into 20 sub-images and each sub-image is 

classified by the SVM. The probability of being a Covid-19 positive sample is obtained, and 

the average for all the sub-images for each sample is reported (Figure 4.3e, f). The results for 

the 7 and 15-minute timepoints are also determined for comparison (Figure S1), with again 10 

minutes being the best compromise. For the final Covid-19 diagnosis for each sample, a cut-off 

value needs to be determined. A natural candidate would be 50%: if, on average, more than 50% 

of the image is predicted as positive, then the sample is classified as positive. However, it is 

possible to determine an optimal threshold, that performs better by using the ROC for each 

patient (Figure 4.3e and f insets) and finding the threshold that minimizes the distance to the 

point (0;1). The threshold is therefore determined to be 0.30, allowing to reach 92% accuracy, 

100% sensitivity, and 73% specificity in the RGB color space, and 94% accuracy, 100% 

sensitivity and 80% specificity in the L*a*b* color space (Table 4.3). Interestingly, the 

threshold is the same for both color spaces, demonstrating good reproducibility regardless of 

the one chosen. L*a*b* has a slightly higher accuracy than RGB when classifying patients at 

10 minutes, however, converting an image from RGB to L*a*b* color space adds an extra step 

to the image analysis. Therefore, it is possible to tailor the image analysis to the context, or to 

the resources available. Indeed, for point-of-care testing, especially if using computer or mobile 

devices with limited computational power, RGB might be preferred. If more advanced devices 
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are available, then the extra step of converting from RGB to L*a*b* can be done easily, and 

the user can benefit from improved accuracy. 

 

Table 4.3: Results of the SVM for the patient diagnosis, using the 0.3 decision threshold. 

 Sensitivity Specificity Accuracy TP TN FP FN 

RGB 100% 73.33% 91.84% 34 0 4 11 

L*a*b* 100% 80% 93.87% 34 0 3 12 

 

4.5 Conclusion 

Our studies using SVM have proven successful in plasmonic-assisted rapid detection of SARS-

CoV2 viral RNA using phenol red-based colorimetric assays. Multiple timepoints were studied 

to find the point where the SVM model performs at its best while keeping detection time low, 

thus, enabling high throughput. RGB and L*a*b* color spaces were investigated, with L*a*b* 

yielding slightly better results than RGB. The 10-minute timepoint was chosen as the best 

compromise between speed and accuracy. Individual real patient samples were tested at this 

timepoint, yielding up to 94% accuracy, 100% sensitivity, and 80% specificity. The SVM 

demonstrated its capability to detect infection in clinical samples, making it a highly versatile 

testing method. Rapid and high throughput tests are critical for the monitoring of the spread of 

a disease, especially in the context of a pandemic, and this platform, coupled to ML analysis, 

could be a robust candidate to mitigate the impact of present and future pandemics.  

SVM is a type of algorithm that does not require high numbers of training data, nor high 

performance computers for its use8. While it is true that deep learning approaches can achieve 

higher accuracies, they remain dependent on training data in sufficient amounts and high-

performance computers, or cloud platforms to operate. The diffusion of such computers and the 
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creation of massive open clinical databases allow clinicians and researchers to use the newest 

deep learning approaches. However, a lighter machine learning algorithm such as SVM is more 

suited to low-resource and point-of-care settings, while still being able to predict diseases in a 

clinically relevant manner, with 94% accuracy in the case of Covid-19. Indeed, the data for this 

work was acquired using a brightfield microscope with a color camera. Coupling SVM with 

truly portable optical approaches is the next ideal step in this project. Translation to the point-

of-care is challenging, however, apparatus such as mobile imaging boxes with fully portable 

imaging systems, like the one developed in Mahshid Lab (AbdElFatah et al, manuscript under 

preparation) have the potential to solve this issue. Overall, coupling SVM with plasmonic color 

sensitive devices would prove to have great diagnostic potential in point-of-care and low 

resource settings, with high accuracy and throughput, critical to preventing contagion in 

populations. 
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4.8 Supporting information: Nano-plasmonically Boosted Nucleic Acid Amplification 

Coupled with Support Vector Machine for Minute Colorimetric Classification of 

Viral RNA  

Olivia Jeanne1, Carolina del Real Mata1, Tamer AbdElFatah1, Mahsa Jalali1, Haleema Khan1, 

Sara Mahshid1*  

1 Department of Bioengineering, McGill University Montreal, QC, Canada   
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Figure 4.S1: Average probabilities for the 7 and 15 min timepoints. A) For each clinical sample obtained, the 

average probability of being predicted as Covid-19 positive at 7 min in RGB color space and B) average probability 

of being predicted as Covid-19 positive at 7 min in L*a*b* color space. C) For each clinical sample obtained, the 

Figure 4.10: Average probability for the 7 and 15 min timepoints. 
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average probability of being predicted as Covid-19 positive in RGB color space and D) in the L*a*b* color space. 

The boxes represent 1 SD, the whiskers show the outliers. 
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5 Comprehensive discussion of findings 

5.1  Comparison with literature 

In this work, two analyses are presented, using SVM for the classification of optical data: SERS 

spectra and colorimetric images. The results on the binary classifications are excellent, with 

over 94% accuracy both when using SERS spectra, for the GBM task, and colorimetric images, 

for the Covid-19 task. This is in line with previous studies using SERS spectra and colorimetric 

images. Indeed, glioma detection using SERS and SVM achieved 97.9% accuracy 85, Covid-19 

detection through Raman spectroscopy achieved 90% accuracy 73, and previous colorimetry 

analyses are also in this range 20,96,118. Some rapid Covid-19 testing devices approved by the 

U.S. Food and Drug Administration using RT-LAMP, such as the Sherlock CRISPR SARS-

CoV-2 kit reach 100% sensitivity and specificity, for a detection time of 60 min119. This, 

compared to our colorimetric device couple with ML analysis, which can achieve 100% 

sensitivity and 80% specificity in 10 min, demonstrate that our platform is very promising, both 

in terms of time-to-result, and sensitivity and specificity, although some optimization still needs 

to be performed. 

SVM performs a bit less successfully on the classification task involving multiple mutated cell 

lines with a high number of classes, with an accuracy of 70.04%, and it is possible that both the 

high number of classes and the limited data available, although efforts were made to have the 

most extended dataset possible, reduced its performances. However, this result is fairly similar 

to the 74.9% accuracy obtained by Ho et al. on a 30-class classification74. In the future, 

additional data that is acquired could prove to increase the performance of the SVM on this 

specific task. 
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5.2  Machine Learning model 

The work presented here classifies different datasets into discrete classes: cell line mutations, 

positive or negative to GBM and Covid-19. Automated analysis of data can take many forms 

and one of those is machine learning. However, multiple machine learning techniques exist. As 

a result, it is necessary to be familiar with the different existing machine learning techniques, 

and their different uses to select the one best suited for the task that needs to be performed. We 

discuss this choice here. Since classification is what is studied in this work, machine learning 

approaches that perform regression are not suitable, be they approaches developed for 

regression, or models designed initially for classifications which are then modified to perform 

regression. Similarly, unsupervised approaches are not suitable for the studies we are 

performing, as we already know the classes we want to classify the data into. Therefore, we 

need to choose a supervised approach that enables classification. There are still many candidates 

that can be chosen, and one must be selected. SVM, despite the advent of deep learning 

techniques that have become more popular in the past decade, still holds much potential in the 

field of medicine, for diagnostic purposes. It can be implemented using readily available 

languages and toolkits, such as sci-kit learn. Optimization and validation of the model can also 

be done through these modules, which allow for efficient integration in a data processing and 

analysis pipeline. Hyperparameter optimization can be performed using a Bayesian search. This 

search is less time consuming than a grid search, as it does not systematically evaluate all the 

combination of possible hyperparameters, while yielding good results120. It is therefore a good 

compromise between exhaustivity and prohibitive computational time and power. Care must 

also be taken when training ML models, as they can be prone to overfitting, and SVM is no 

exception. We have used the cross-validation technique to ensure that this does not occur, and 

that the models will perform properly. This is evidenced by the results we obtain, which show 
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that the SVM models that we have used generalize well, and can be applied on new data that 

was never seen before by the algorithms while maintaining good performance. 

 

5.3  Biological samples 

Real human samples are highly complex biological material, thus testing a sensor using clinical 

samples is a crucial step when determining its efficacy. Very different samples were collected 

and successfully analyzed: EVs collected from the plasma of patients, genetic material present 

inside clinical samples, namely naso-pharyngeal swabs and saliva samples. They were further 

analyzed using two very different optical readouts: SERS, and colorimetry respectively. This 

further demonstrates the versatility of machine learning in general, and SVM in particular, and 

its ability to find and use information present in any type of sample, even when they are 

analyzed through very different readout methods. It can be used on SERS spectra, which 

contains a lot of information on the chemical structures and components present, but also on 

colorimetric platforms, where the quantity of information is less, but needs to be detected 

consistently, with high sensitivity. 

The biological samples used for these studies also hold promise for developing less invasive 

diagnostic techniques. Indeed, a liquid biopsy was sufficient to diagnose a patient as healthy or 

suffering from GBM, making it a less invasive procedure than a traditional biopsy of the brain 

tissue. This is significant especially in the context of cancer, as it suffers from late and invasive 

diagnosis procedures, which usually consist of solid biopsies103. These have additional 

limitations as they cannot always allow the clinicians to appreciate the full heterogeneity of the 

tumor, nor monitor its evolution. GBM also presents an additional challenge because a solid 

biopsy in the brain, a high-risk area is required for definitive diagnosis. In comparison, the 

analysis of EVs through liquid biopsies offer the possibility to have a comprehensive 

description of tumor heterogeneity, and to follow the evolution of the tumor through time, as 
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liquid biopsies can be repeated much more easily than solid biopsies103. Machine learning 

combined with liquid biopsy can therefore be a useful tool to diagnose, but also to personalize 

the care and treatment for each patient, as it has successfully demonstrated its ability to analyze 

the data obtained from such procedures.  

Similarly, in the Covid-19 study, we have proven that saliva or naso-pharyngeal swabs could 

be used and successfully classified by the SVM.  Saliva samples are less painful to acquire than 

naso-pharyngeal swabs and could be favored as a sample in the future, especially if repeated 

testing over multiple days is necessary.  

 

5.4  Future directions 

Some future directions involve the use of other ML algorithms. Indeed, it might be of interest 

in the future to compare SVM with other ML techniques, such as deep learning techniques, to 

determine whether or not SVM is the optimal solution, or if better results can be obtained, 

simply by changing the type of ML. This has started to be explored in Jalali et al. (manuscript 

under review), by using a residual CNN on the same spectral data used in this thesis. When 

dealing with the SERS data, it performs better than the SVM, both on the mutated cell line 

classification and the patient classification. It has also been successful for additional patient 

investigation. Indeed, it can be used to directly analyze patient samples to look for specific 

markers of mutations. The results obtained from the CNN are consistent with the patients’ 

clinical annotations and could be used as a first diagnosis for tumor composition, or as a 

complement of traditional clinical annotation methods. This CNN could also be tested on the 

colorimetric dataset, to determine if it yields higher accuracy or a faster detection time than the 

SVM that has been presented here. It would also be of interest to determine whether deeper and 

more complex architectures, such as AlexNet or Inception32,121, or models using similar 

architecture, could outperform both the SVM used in this work, and the CNN. 
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Conversely, it is also possible that due to constraints in computing power or speed, SVM might 

be preferred, especially in contexts where rapid results are of high importance, such as for the 

Covid-19 diagnostic test. In addition to this, a lighter architecture such as SVM can be easily 

implemented in a local device, without risking running out of memory space, thus eliminating 

the need for a good internet connection for remote cloud access, or the use of high-performance 

computers. Indeed, it has been shown that lighter models, that do not use deep learning can 

perform at least as well as deep learning models without needing as much computational 

power97. Therefore, a systematic comparison of the accuracy compared to the computational 

expenditure and the time necessary for training and testing the data could be a good way to find 

the best compromise between accuracy and efficient resource management. It would also allow 

to tailor the ML model to the application: a lighter, faster algorithm could be most beneficial 

when operating in environments with heavy constraints on resources, while slower but more 

accurate algorithms could be preferred in less constrained settings. One could envision that in 

applications such as the one described for Covid-19 detection, a light, fast and high-throughput 

approach could be preferred, while in an application such as mutation detection, a slower but 

more powerful model could be favored. 

Furthermore, given the very promising results obtained on one cancer, GBM, and one infectious 

disease, Covid-19, these analysis pipelines could be generalized to other cancers and infectious 

diseases. Paediatric cancers, such as astrocytoma or paediatric GBM could also be a good 

candidate, given their similarly late diagnosis, heterogeneity and difficulty to operate. In 

addition to this, paediatric GBM has, unsurprisingly, some similarities to GBM122, and would 

be a good place to start further studies, as we have shown we can successfully detect GBM and 

GBM-related mutations within cell lines. Other cancers that are challenging to treat, such as 

triple negative breast cancer, which suffers from poor prognosis, high risk of relapse after 
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surgery and resistance to molecular therapy, could also be diagnosed and investigated in 

patients using this platform coupled with ML, and EVs extracted from liquid biopsies123. 

Generalizing the diagnostic method presented here to other infectious diseases could also have 

very promising applications in global health monitoring and be used on already existing 

infections such as MERS, or different flu strains. This would enable to monitor multiple 

diseases with high rates of infection, and help isolate those tested positive, helping to curb the 

spread of the infection. Fully automating the entire process, from saliva collection to the final 

diagnosis given by the ML model is also a future step envisioned for this work, that would 

allow maximal ease of use for patients and healthcare professionals administering the test. 

Finally, having a multiplexed platform, adapted to detect multiple diseases or strains of the 

same disease, coupled with SVM for detection, could be very efficient for surveillance purposes 

and could be further investigated in the future. 
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6 Summary and Conclusion 

SVM has demonstrated here its versatility, with high success rates in tasks employing two very 

different types of data: one dimensional spectra, with a high number of features associated with 

molecular change, and two dimensional images, with color change associated with a positive 

diagnosis. It has proven able to recognize the subtle changes in SERS spectra, enabling to 

classify cellular mutations, and also to diagnose patients suffering from GBM with 95% 

accuracy. In the context of a colorimetric test, SVM has successfully detected patients suffering 

from Covid-19 using an on-chip RT-LAMP assay after a 10-minute incubation period. SVM is 

effective both when performing in-depth analysis of data, and also when trying to be as fast as 

possible when dealing with time-constrained detection. As a ML technique that’s does not 

demand high computing resources nor extensive training data, it has high potential in 

diagnostics, especially in point-of-care settings, where it can be implemented as a user-friendly, 

highly accurate, and quick analysis method. In addition to this, both studies were label-free and 

offered less invasive collection of samples than the traditional gold standard methods. Machine 

learning could in the future be implemented to analyze data generated by new applications of 

such devices, helping to construct an integrated analysis pipeline and bringing them from the 

lab to the real world.  
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