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ABSTRACT 

 Lameness is a prevalent issue within the dairy industry that has serious financial 

and welfare implications. The implementation of alternative gait assessment methods outside of 

traditional visual locomotion scoring is of interest to producers and researchers, as identifying 

abnormalities in locomotion early on is key to preventing severe cases of lameness. Some 

automated approaches are conducted via kinematic, kinetic, and accelerometric technologies. 

Kinematic approaches focus on how the cow moves through time and space, kinetic approaches 

focus on force-related measures exerted by the cow, and accelerometric approaches focus on the 

acceleration of the body as the cow moves.   

 The thesis objectives are: 1) to conduct a systematic literature review to determine the 

types of measures that have been recorded to assess dairy cow locomotion through technological 

and human observer-based approaches, and 2) to experimentally validate a kinematic system 

used in conjunction with two types of artificial neural networks (ANN; Convolutional Neural 

Network and  Long Short-Term Memory model) to predict locomotor ability levels of cows 

according to a numeric rating system (NRS). The systematic review was conducted according to 

PRISMA guidelines and a final number of 34 articles were retained. Overall, similar types of 

measures were used to evaluate gait, but differences in types of technologies used, physical 

arrangements of equipment, terminology, and measure-recording approaches used make it 

difficult to compare these measures across studies. Use of these technologies with dairy cows is 

relatively novel, and more research utilizing them is needed to reach conclusions about how gait 

is affected by the environmental or cow-level factors being studied.  Our experimental study 

aimed to merge the ability of these alternative, more automated technologies to provide detailed 

data regarding how the cow moves with the simplicity and visual approach of a commonly used, 

5-point NRS. In particular, we aimed to develop a model that would be able to identify cows 

which exhibit gait abnormalities but which are not yet clinically lame. To validate the kinematic 

system, kinematic data was collected for 12 lactating Holstein dairy cows. Reflective markers 

were placed on cows at 20 anatomical landmarks, and video of cows walking a 7m passageway 

was recorded from 6 camera angles and digitized within a motion analysis software to acquire 

3D coordinates of each marker. A trained observer conducted visual locomotion scoring from 

recorded videos. Building off previous collaborative work with the UQÀM bioinformatics lab, 
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the kinematic data was entered into a convolutional neural network and a recurrent neural 

network with long short-term memory architecture. Although the tested models performed well 

during training, they performed poorly in the validation phase on metrics of accuracy, precision, 

recall, and F1-score. This was contradictory to the results of previous study testing a CNN to 

predict binary classification of lame vs. non-lame cows with similar kinematic data with all 

metrics performing above 90%. Overall locomotion score may not be ideal to provide to a model 

for the type of problem evaluated in the current study; next steps should involve the testing of 

applying scores of specific gait attributes as an alternative to overall locomotion score for 

machine learning, and investigate whether specific joints provide more useful kinematic data for 

inclusion in machine learning than others. An improved model framework predicting overall 

locomotor ability, or adapted to evaluate more specific aspects of gait, could eventually be used 

as both an on-farm and research tool as kinematic data recording systems becomes mobile with 

future technological advancements.  
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RÉSUMÉ 

La boiterie est un problème à prendre au sérieux dans l’industrie laitière, en raison de sa 

fréquence et de son impact, financier comme sur le bien-être animal. La mise en place 

d’alternatives à la méthode de notation visuelle de la boiterie est d’intérêt pour les producteurs 

comme pour les chercheurs, puisqu’identifier plus tôt les troubles locomoteurs permettrait de 

mieux prévenir les cas de boiterie sévère. Quelques méthodes automatiques pourraient servir à 

cette fin, notamment la cinématique (qui s’intéresse au mouvement de la vache dans l’espace et 

au fil du temps), la cinétique (qui s’intéresse aux forces appliquées par la vache en mouvement 

ou à l’arrêt) et les accéléromètres (qui examinent l’accélération du corps de la vache en 

mouvement). 

Les objectifs de ce mémoire sont : 1) déterminer quel type de mesures ont été utilisées pour 

évaluer la locomotion de la vache laitière, via une revue de littérature systématique examinant 

des approches basées sur les technologies ou sur des observations directes, dans les études se 

focalisant sur les facteurs affectant la locomotion de la vache; 2) valider, par le biais d’une 

expérience, la capacité d’un système combiné de cinématique et de deux types de réseaux 

neuronaux artificiels (ANN; réseau neuronal convolutif et réseau de longue mémoire à court-

terme) à prédire la capacité locomotrice de vaches laitières suivant le système de notation 

numérique de la démarche (NRS). La revue de littérature systématique a été menée suivant les 

lignes directrices de PRISMA, pour une sélection finale de 34 articles. En somme, les mesures 

utilisées dans les diverses études pour évaluer la démarche des vaches sont similaires, mais les 

différences relevées quant aux technologies, au positionnement des équipements, à la 

terminologie, et aux approches de relevé des mesures utilisées rendent difficile la comparaison 

de ces mesures entre les études. L’utilisation de ces technologies chez les vaches laitières est 

encore relativement récente et plus de recherche est nécessaire pour arriver à conclure quant à ce 

comment la démarche des vaches est affectée par les différents facteurs à l’étude. Notre 

expérience visait à combiner ces technologies automatisées alternatives afin d’obtenir, avec la 

simplicité et l’approche visuelle du système NRS, des données détaillées à propos de la 

démarche de la vache laitière, et ainsi établir un système permettant la détection précoce de 

changements dans la démarche précédent l’apparition de la boiterie clinique. Afin de valider 

notre système de cinématique, les données de 12 vaches Holstein en lactation ont été collectées. 
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Vingt marqueurs réfléchissants ont été apposés sur autant de sites anatomiques, pour chacune des 

vaches. Des vidéos de chacune des vaches marchant dans un passage de 7m de longueur ont été 

enregistrées depuis 6 angles de caméras différents, puis numérisées à l’aide d’un logiciel 

d’analyse du mouvement pour obtenir des coordonnées 3D de chacun des marqueurs. Un 

observateur formé a procédé à l’analyse visuelle de la démarche (NRS) à l’aide des vidéos. En 

continuité d’un travail collaboratif précédent conduit conjointement avec le laboratoire de bio-

informatique de l’UQÀM, les données de cinématiques ont été saisies dans un réseau neuronal 

doté d’une structure de longue mémoire à court-terme. Les modèles testés n’ont pas été en 

mesure de prédire la notation NRS avec une grande précision ce qui est en contradiction avec le 

modèle précédent qui prédisait une classification binaire boiteuse ou non-boiteuse avec une 

précision de 90%. Les limites actuelles de ce type de système de cinématique devraient être 

considérés au fur et à mesure que plus d’expériences seront conduites, et en fonction des 

prochaines avancées technologiques. Un modèle prédictif de l’aptitude locomotrice globale, ou 

adapté à l’évaluation d’aspects spécifiques de la démarche, pourrait éventuellement servir sur les 

fermes et comme outil de recherche, si la collecte de données de cinématique devient mobile 

dans l’avenir. 
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CHAPTER 1 – GENERAL INTRODUCTION 

Lameness can be defined as “a deviation in gait resulting from pain or discomfort from 

hoof or leg injuries and disease” (Flower & Weary, 2009). It is a major welfare concern within 

the dairy industry (Whay & Shearer, 2017) and is considered the third most costly health 

problem after reduced fertility and mastitis (Van Nuffel et al., 2015). While estimates of 

lameness prevalence are high, such as a 21% herd prevalence in freestalls (Solano et al., 2015) 

and a 25% herd prevalence in tie-stalls (Bouffard et al., 2017) estimated by researchers in 

Canada, the actual prevalence of lameness within dairy herds is also frequently under-estimated 

(Cutler et al., 2017). This is, in part, due to producers underestimating the true extent to which 

lameness impacts farm profitability (Dolecheck & Bewley, 2018), and therefore not prioritizing 

lameness identification and reporting. While lameness contributes to more obvious expenses 

such as drug treatment, veterinary costs, death and culling, it also contributes to more indirect 

expenses such as reduced life expectancy, milk yield, and reproductive performance (Van Nuffel 

et al., 2015). For example, cows in Quebec who experienced a lameness event in their first 

lactation were found to produce 800 – 1100 kg less per lactation than cows that did not have an 

occurrence of lameness (Puerto et al., 2021). Lameness under-estimation on-farm is also 

attributed to a lack of available time and labor that must be dedicated to evaluating gait within a 

herd (Leach et al., 2010). Finally, lameness prevalence may also be under-estimated because 

producers largely rely on the presence of an easily identifiable aspect of impaired gait, such as a 

limp or a cow’s reluctance to move, to detect lameness (Cutler et al., 2017). However, signs of 

more extreme locomotor impairment like limping are representative of more severe cases of 

lameness. To fully address the true prevalence of lameness within herds and to minimize the 

costs and welfare implications associated with it, detection of gait abnormalities or less obvious 

changes in locomotion before a severe case of lameness develops are imperative.   

 Traditionally, for both on-farm and research purposes, visual gait scoring systems have 

been a commonly used approach for detecting and assessing the severity of lameness, as they are 

inexpensive and relatively easy to carry out (Schlageter-Tello, Bokkers, Koerkamp, et al., 2014). 

However, gait assessment through visual locomotion scoring requires training (Alsaaod et al., 

2019) and generally a large time commitment and dedicated labor when carried out, so is 

unlikely to be conducted frequently for on-farm purposes (Van Nuffel et al., 2015). Reliability 
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between individual observers can also be problematically low due to differences between 

observers’ training level, background experience, and interpretations of locomotion scoring 

system descriptions (Channon et al., 2009). Along with the inconsistencies seen between 

individual observers, there are also inconsistencies between visual scoring systems used. At least 

25 different visual scoring systems exist (Van Nuffel et al., 2015), ranging from binary (lame vs. 

non-lame) to multiple point (commonly 5 or 9-point) scales to continuous analog scales (0 – 100 

scale). These different scoring systems also focus on a range of different aspects or attributes of 

gait and postures (Schlageter-Tello, Bokkers, Groot Koerkamp, et al., 2014).  

 To address the issue of lameness within the dairy industry and to circumvent the 

limitations of traditional visual locomotion scoring, researchers have begun to develop and 

implement more automated approaches of evaluating locomotion through the use of technology. 

The types of technology which have been primarily implemented for this purpose include 

kinematic, kinetic, and accelerometry technologies (Nejati, 2021). Kinematic technologies focus 

on how the cow’s body moves in terms of space and time. Kinetic technologies focus on force 

and force-related measures that are exerted as a cow moves or stands. Accelerometry 

technologies generally measure the acceleration of the cow’s body or of specific parts of the 

body as she moves. The measures recorded through these types of technology, while overlapping 

with many of the aspects of locomotion that are focused on by visual locomotion scoring 

systems, can go a step further to provide more detailed data regarding how the cow is moving 

and may be able to detect more subtle changes or abnormalities in her movement that would not 

be possible with the human eye alone. Kinematics technologies are the most obvious overlapping 

starting point in transitioning from simple visual observer scoring to an automated approach of 

acquiring more detailed data that would reflect aspects of locomotion looked at in terms of space 

and time (e.g., stride length and stride duration). Data recorded through these more technological 

approaches could provide better insight into how a cow’s locomotion has changed or become 

impaired, especially in earlier stages before severe lameness develops. These technologies have 

the potential to detect a specific aspect of locomotion that is irregular, a location on the cow’s 

body that is affected, or a certain pattern that could be eventually associated with different causes 

of lameness such as specific injuries or hoof disorders.  
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1.1. OBJECTIVES 

1.1.1. Overall objectives 

The main objectives of this thesis were to: 1) determine the measures that have been 

recorded in research utilizing kinematic, kinetic, accelerometry, and other approaches to look at 

factors which influence dairy cow locomotion, and 2) validate a kinematic system used in 

conjunction with machine learning approaches to predict locomotor ability via a numeric rating 

system (NRS). 

1.1.2. Specific objectives 

In contributing to the overall thesis objectives, the objectives of the systematic review within the 

thesis were to: 

1. List the specific outcome measures of locomotion that have been recorded through use of 

kinematic, kinetic accelerometry, and other approaches in studies evaluating 

environmental or cow-level factors which influence locomotion 

2. List the specific physiological and behavioral outcome measures of indirect approaches 

of identifying changes in locomotor ability that have been used in research  

3. Determine the relationships, overlaps, and differences between the measures recorded 

and the approaches or technologies used to record these measures 

4. Determine which environmental and cow-level factors were examined in research 

focusing on locomotion and understand which approaches of recording and examining 

the quality of locomotion have been used to study each.  

The specific objective of the validation study was to: 

1. Determine if 3D-scaled coordinates acquired from a kinematic system with corresponding 

visually observed NRS scores could be used with machine learning approaches to predict a 

locomotion score with high accuracy.  

2. Determine if the developed model(s) could accurately predict locomotion scores representing 

cows which exhibit gait abnormality or subtle locomotor impairment but which are not yet 

designated as clinically lame. 
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2.1. ABSTRACT 

Lameness within the dairy industry is of major concern due to its costliness and welfare 

implications. Visual locomotion scoring has been the most common approach used for assessing 

the quality of dairy cow locomotion, but is prone to low reliability and is relatively subjective 

compared to automated methods of assessing locomotion. Kinematic, kinetic, and accelerometry 

technologies are alternatives which can provide a greater number of more detailed outcome 

measures of locomotion than visual locomotion scores. The objectives of this review are to 1) list 

and determine the relationships between the measures recorded by kinematic, kinetic, and 

accelerometry technologies and other approaches for evaluating dairy cow locomotion and 2) 

evaluate how these types of measures are used in different research contexts to study factors that 

impact locomotor ability. A systematic literature review was conducted according to PRISMA 

guidelines. Two online databases were searched using for studies published from January 2000 – 

June 2020 using search strings developed to collect references corresponding to the review 

objectives. Gathered articles underwent a two-step screening process, consisting of a first step of 

title and abstract evaluation based on inclusion criteria and a second step of full-text assessment. 

A final 34 articles were retained. Technologies and human observer-based approaches used for 

evaluating locomotion, the specific measures recorded, and research contexts of these studies 

were the data items extracted. Locomotion measures recorded by the three technologies of 

primary interest often overlapped, but inconsistencies in types of technology used, physical 

arrangements of equipment, terminology, and measure-recording approaches or calculations 

made it difficult to compare locomotion measures across studies. Therefore, future use of these 
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technologies for dairy cow locomotion research may benefit from the development and 

implementation of standard guidelines to allow for more consistency across studies. Factors 

which may impact locomotion that were most frequently studied included flooring type, hoof-

trimming, lameness intervention, and the presence of lameness or hoof disorders in an animal. 

Additional research is required to develop a more comprehensive understanding of how these 

specific environmental and cow-level factors specifically affect aspects of locomotion as 

recorded through the detailed, objective outcome measures provided by kinematic, kinetic, and 

accelerometry technologies. 

2.2. INTRODUCTION 

Reliable gait assessment of dairy cows is of major interest for both producers and 

researchers. Abnormalities in gait can contribute to impaired locomotion or lameness, which is 

defined as “a deviation in gait resulting from pain or discomfort from hoof or leg injuries and 

disease” (Flower & Weary, 2009). Lameness is a major welfare concern and is considered one of 

the costliest health problems within the dairy industry after mastitis and reduced fertility 

(Dolecheck & Bewley, 2018; Van Nuffel, Zwertvaegher, Pluym, et al., 2015). Early detection of 

lameness or gait abnormalities which may lead to lameness can help minimize the costs and 

welfare concerns associated with impaired locomotion (Van Nuffel, Zwertvaegher, Van 

Weyenberg, et al., 2015). Producers and researchers have often relied on visual locomotion 

scoring systems as the primary method of gait assessment, as they are non-invasive, inexpensive, 

and relatively easy to carry out (Schlageter-Tello et al., 2014; Van Nuffel, Zwertvaegher, Pluym, 

et al., 2015). Visual locomotion scoring systems typically consist of an overall value given to 

represent quality of gait on an analog scale (generally with a value from 0 – 100) or a scale with 

multiple classes (generally consisting of 3, 5, or 9 points), with prescribed aspects and quality 

levels of gait defined for each score. Some visual scoring systems may also focus on specific 

attributes of gait, such as reluctance to bear weight on a limb or asymmetry of gait, which are 

also generally explained for observers via detailed charts. However, aspects of these visual 

scoring charts may be interpreted differently between individual observers, and inconsistencies 

between observers can lead to low inter- or intra-observer reliabilities (Channon et al., 2009). 

The required training and time necessary to conduct locomotion scoring also make it less likely 

to be conducted frequently for on-farm purposes (Alsaaod, Fadul, & Steiner, 2019; Dolecheck & 
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Bewley, 2018). Therefore, lameness prevalence is often underestimated by producers (Cutler et 

al., 2017; Van Nuffel, Zwertvaegher, Pluym, et al., 2015). Visual scoring may be conducted by 

an observer with recorded video to circumvent the necessity of a live observer being physically 

present for long periods of time. One lameness scoring method was found to be generally 

comparable in levels of agreement between video and live scoring, with video scoring resulting 

in fewer false negatives of lameness (Palacio et al., 2017). However, recording video for the 

purpose of conducting gait or lameness scoring is not practical for on-farm purposes and would 

be a less efficient approach for producers looking to assess gait within a herd.  

To move beyond the limitations of visual locomotion scoring systems, several types of 

technologies have been adopted to record measures of locomotion at a more detailed level and 

through a more automated approach (Alsaaod, Fadul, & Steiner, 2019; Schlageter-Tello et al., 

2014). However, these technologies are often compared and validated against visual locomotion 

scoring methods, which are not an ideal reference point, as gait scoring is often prone to 

relatively more subjective interpretations of gait quality and low reliability within and between 

observers (Schlageter-Tello et al., 2014). These technologies have been developed and applied 

within the context of research focusing on how environmental factors, such as flooring surface 

(Alsaaod, Huber, et al., 2017; Flower et al., 2007; Telezhenko et al., 2017), or cow-level factors, 

such as the presence of hoof disorders (Blackie et al., 2013; Flower et al., 2005), may influence 

dairy cow locomotion.  

Technologies and methods taking a more indirect approach to assessing gait quality or 

identifying changes in gait through the recording of physiological and behavioral measures 

which are associated with gait have also been used alongside visual gait scoring or other 

technological approaches of recording gait measures. For example, infrared thermography has 

been used to record hoof temperature, which is a physiological measure that may be associated 

with different levels of mobility due to the presence of hoof disorders affecting the temperature 

of the hoof (Rodriguez et al., 2016). Wearable sensors that are typically mounted on a cow’s leg 

have been used to record behavioral measures such as activity and lying time, which may be 

affected by impaired locomotion (Blackie et al., 2011). These technologies and methods, which 

directly or indirectly evaluate gait, could provide alternative approaches to assessing locomotion 

from visual locomotion scoring. Currently, however, there are gaps in knowledge about what the 
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differences within these technologies and methods are, what specific measures have been 

recorded across approaches used, and what potential gait-influencing factors these approaches 

have been applied to evaluate.  

 There are four literature reviews that have been conducted which focus on technologies 

used for gait analysis, although most of these primarily take a “lameness detection” approach. 

Two of these (O'Leary et al., 2020; Van Nuffel, Zwertvaegher, Van Weyenberg, et al., 2015) 

focused only on wearable sensor technologies. One review of manual and automatic locomotion 

scoring systems for dairy cows was conducted with the aim of comparing and evaluating 

agreement, reliability, and validity of manual and automatic locomotion scoring systems used in 

research (Schlageter-Tello et al., 2014). The Schlageter-Tello et al. (2014) review was also the 

first to highlight the issue of using visual locomotion scoring systems, which are more subjective 

compared to automatic systems and may have low reliability, as a reference for validating 

automated lameness detection systems. Another review (Alsaaod, Fadul, & Steiner, 2019) was 

conducted to describe the current automated systems - including kinematic, kinetic, and indirect 

methods - that are used for cattle lameness detection. The review conducted by Alsaaod, Fadul 

and Steiner (2019) focused on performance of the methods compared with a reference standard 

(locomotion score or lesion score) and described technical aspects of these technologies such as 

levels of sensor technique, validation of algorithm, performance for lameness detection, and/or 

decision support with an early warning system. While previous reviews focused on technical 

aspects of technologies used in gait analysis, the current systematic literature review aims to 

focus on the specific measures recorded by these different technologies and methods of assessing 

gait. The current review also aims to describe and draw out the relationships between specific 

types of measures, both those directly and indirectly assessing cow locomotor ability. The 

current review will also lay out how individual studies define and go about recording specific 

types of measures, as terms such as “step length” can often be measured with different 

approaches or have varying definitions between studies. Additionally, our review will be 

conducted from a perspective of analyzing gait at all stages of locomotor ability, rather than from 

a lameness detection perspective. Finally, there are no previous reviews describing, in detail, the 

contexts of research in which these technologies and other indirect methods of gait assessment 

are applied. Our review will describe the cow-level and environmental risk factors these 

measures are used to evaluate. A sister scoping review by (Nejati, 2021) has also been conducted 
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with the aims of mapping research trends of quantitative bovine gait analysis, exploring the 

technologies that have been used to measure biomechanics parameters of gait variables in bovine 

species, and highlighting the current gaps in the field of cow gait analysis. The sister review 

additionally covers trends in the frequency of use in research that the three technologies of 

primary interest (kinetematics, kinetics, and accelerometry) within the current study have had 

since the year 2000. These aspects will therefore not be covered here. 

This systematic literature review consisted of two main objectives. Objective 1 consisted 

of two research questions: 1) What specific measures are used by kinetic, kinematic, and 

accelerometry technologies to directly measure dairy cow locomotor ability? 2) What other 

approaches outside of these 3 technologies are used to record locomotion measures and what 

physiological and behavioral measures are used in other approaches to indirectly evaluate dairy 

cow locomotor ability? Objective 1 also aimed to describe the relationships between these 

different types of direct and indirect, gait-related measures. Objective 2 aimed to answer how 

these types of measures are used in different research contexts to study factors that impact 

locomotor ability. 

2.3. MATERIALS AND METHODS 

2.3.1. Protocol 

This review was conducted using guidelines adapted from Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA, 2009). 

2.3.2. Eligibility Criteria 

Eligibility criteria required that studies included 2 of the 3 following levels to be 

considered appropriate for addressing the objectives of this review. These characteristics along 

with their definitions are as follows: 

A. Level A: the use of one or more of the three autonomous technologies of 

primary interest (kinematics, kinetic, and accelerometry) used for directly 

evaluating gait through the recording of locomotion measures 

B. Level B: the use of approaches which evaluate gait through the recording of: 

I. Locomotion measures recorded through other methods (human 

observer-based) or technologies (less autonomous technologies outside 

of kinetics, kinematics, and accelerometry) 
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II. Gait-associated physiological (e.g. hoof temperature, mechanical 

nociception threshold, muscle fatigue) or behavioral measures (e.g. 

activity, lying time) 

C. Level C: Presence of a relevant study context: environmental or cow-level risk 

factor(s) that measures recorded through the Level A and B approaches are 

used to evaluate in research  

Note for studies appearing to meet combination B + C: For purposes 

of study selection for this review, visual locomotion scoring conducted 

by humans is considered a Level B approach to assessing gait; 

however, studies which use only visual locomotion scoring to assess 

gait quality/locomotor ability when evaluating factors which may 

affect locomotion will not be included.   

 

Primary research in the English language was included, and review papers and 

conference proceedings were excluded so that only studies with original peer-reviewed research 

relevant for addressing the objectives of this review would be used. Validation and technology or 

model development studies were excluded, as studies focusing only on technical aspects 

(validity, sensitivity, specificity) of technologies discussed were not relevant to the objectives of 

the review. Studies using certain measures, evaluation methods, or technologies that in some 

cases could be deemed as locomotion-related but which focused on topics other than locomotion 

(GPS/animal tracking, estrus detection, calving detection, behavior monitoring independent of 

locomotion, etc.) were also excluded due to lack of relevance. Only papers from the year 2000 

and after were included because technology and methods used before that time would be 

outdated and no longer of use or relevance in current research. Studies were also required to use 

adult dairy cows as subjects, as this review focuses only on locomotion in adult dairy cows and 

species, animal production type, stage of life, and sex can influence locomotion of an animal.  

2.3.3. Information Sources 

Literature searches were conducted in two electronic databases (Scopus and Web of 

Science Core Collection) to obtain references. 
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2.3.4. Search 

The final search was conducted on May 31, 2020. Search terms were designed to include 

all relevant keywords as to ensure results with the greatest number of possible references. To 

encompass both objectives of the review within one comprehensive search, four levels of search 

terms were developed. In the final search, only the first three levels of keywords were 

incorporated into search queries and the fourth level was excluded to ensure that the maximum 

number of relevant references resulted from the search terms. Query strings that were used in 

each database and the number of records that resulted from each are shown in Table 2.3.1.  The 

“Combination 1, 2, and 3” rows contain the queries and search results that were ultimately used 

for the reference screening process. The final search was conducted on May 31, 2020. No search 

limitations were set regarding language, date, study subject, or study design to minimize bias and 

ensure that all relevant references could be obtained. 

Table 2.3.1. The strings included in the search strategy with the number of resulting records for 

each string in it the Scopus database on May 31, 2020. 

# String Records 

Found 

#1 TITLE-ABS ( cattle  OR  cow*  OR  bovine ) 480,753 

#2 TITLE-ABS ( locomot*  OR  movement  OR  gait OR walk* ) 1,223,442 

#3 TITLE-ABS ( kinemat*  OR  kinetic*  OR  thermography  OR  electromyography  

OR  *emg  OR  hematology  OR  sensor*  OR  ams  OR  "Automatic milking 

system"  OR  "milking robot"  OR  accelerometer* ) 

2,976,033 

#4 TITLE-ABS ( exercise  OR  "outdoor access"  OR  pasture  OR  flooring  OR  

"hoof health"  OR  "leg health"  OR  lameness OR environment* OR risk* OR 

hous* ) 

7,810,723 

#1, 2, 3  TITLE-ABS ( cattle  OR  cow*  OR  bovine ) AND ( locomot*  OR  movement  

OR  gait OR walk* ) AND  ( kinemat*  OR  kinetic*  OR  thermography  OR  

electromyography  OR  *emg  OR  hematology  OR  sensor*  OR  ams  OR  

"Automatic milking system"  OR  "milking robot"  OR  accelerometer* ) 

550 

#1, 2, 3, 4 TITLE-ABS ( cattle  OR  cow*  OR  bovine ) AND ( locomot*  OR  movement  

OR  gait OR walk* ) AND  ( kinemat*  OR  kinetic*  OR  thermography  OR  

electromyography  OR  *emg  OR  hematology  OR  sensor*  OR  ams  OR  

"Automatic milking system"  OR  "milking robot"  OR  accelerometer* ) AND ( 

exercise  OR  "outdoor access"  OR  pasture  OR  flooring  OR  "hoof health"  OR  

"leg health"  OR  lameness OR environment* OR risk* OR hous* ) 

224 
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Additional searches were later conducted to obtain any relevant references that had not 

been included by the initial database searches. Supplementary searches included forward- and 

back-searches of references obtained from initial database searches, as well as handsearching to 

gather individual references missed by database searches.  

2.3.5. Study Selection 

All resulting references from the “Combination 1, 2, and 3” strings were imported into 

Endnote X8 reference management software. Duplicates were then removed, and remaining 

references were screened using the web application Rayyan (Rayyan, Qatar Computing Research 

Institute). A two-step screening process was used. The first step consisted of a screening of 

reference titles and abstracts to determine relevance to the review objectives and research 

questions, as well as other general eligibility criteria, such as language and date requirements. 

References incorporating at least two of the three A, B, and C eligibility levels listed above were 

then included in the second step of screening. The second step consisted of a full-text review to 

confirm that references met eligibility criteria. The study selection process is shown in Figure 

2.4.1.  

2.3.6. Data Collection Process, Data Items, and Summary Measures 

Data extraction sheets were developed by the authors to chart literature. Screening and 

data extraction was conducted by an individual reviewer. Specific definitions -which are 

provided in the results section - for the technology categories of kinematics, kinetics, and 

accelerometers were determined by the reviewers before the data extraction process. 

Uncertainties regarding the review process or protocol were discussed with the review team to 

minimize human error. The initial data extraction sheet consisted of the headings: reference, 

direct measure(s) of locomotor ability, technology category for direct measure(s) (kinetic, 

kinematic, accelerometer), indirect measure(s) associated with locomotor ability, factor 

investigated (cow-level or external factor), methodology, country where the study was 

conducted, non-locomotion related measurements, recording interval/duration, number of 

animals, number of farms, treatment/comparisons, difference(s) between 

treatments/comparisons, p-value, conclusions, and limitation(s)/critique(s). Additional charts 

corresponding to each objective and research question were later developed to organize data 

further.   
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A narrative synthesis and organization of tables based on research questions of the review 

were used to summarize and present data. Tables and/or narrative descriptions were developed 

for each objective and its subsequent research questions. Definitions and categorization terms 

were developed by the review team to ensure consistent and thorough description of measures 

used. Data relevant to objective 1 were organized based on types of technologies and methods 

used for gait analysis. A visual diagram was developed to display the connections and 

relationships between types of measures used by different technologies and methods of gait 

assessment. Data relevant to the objective 2 section were organized based on research contexts of 

studies. 

2.4. RESULTS 

2.4.1. Study Selection 

A total of 550 references in Scopus and 635 references in Web of Science resulted from 

the combination of search strings 1, 2, and 3. After deduplication was conducted, 835 references 

remained for title and abstract screening. An additional 5 references were found from hand 

searching. Based on a lack of relevance to bovine locomotion and obvious discordance with 

eligibility criteria, 782 papers were excluded. Fifty-eight references remained for full-text 

screening. Through full-text examination, 28 references were excluded leaving a final number of 

34 references. Figure 2.4.1 shows the PRSIMA flow diagram for the selection and screening 

process of the review. 
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Figure 2.4.1. PRISMA flow diagram for systematic review detailing the selection and screening 

of literature. 
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2.4.2. Approaches to recording and analyzing gait in dairy cows: categorizations and 

definitions 

In research that evaluates factors that may impact dairy cow locomotion, kinematics, 

kinetics, and accelerometry are the three main categories of technologies that have been used to 

record direct measures of locomotion (Nejati, 2021). These types of technologies are generally 

more autonomous and provide measures of locomotion in greater detail than other types of 

technology that have been used for similar purposes. Therefore, in this review, these three 

technologies are of primary interest, as are the locomotion measures that they record. Measures 

recorded by one type of technology but whose definitions may be associated with another type of 

technology will be organized and described under the section of technology by which they are 

recorded.  

Other methods outside of these three technology types have also been used to record 

measures of locomotor ability. In this review, gait or gait-associated measures recorded via 

technologies or other methods aside from kinetics, kinematics, and accelerometers are be 

categorized as “Level B”, with sub-categories detailing how they approach recording locomotion 

or gait-associated measures. For example, Level B encompasses methods such as “manual 

kinematics”, which involve the recording of kinematic-type measures through software that is 

not specifically designed for gait analysis have been used with the goal of recording locomotion 

measures. The use of image analysis software or custom-written code generally requires a greater 

amount of manual human work to obtain kinematic measures than the gait analysis-specific 

software encompassed within Level A that allow for easier, automated “tracking” of movement, 

and therefore can be viewed as their precursor. Additionally, even simpler approaches, or 

“human-recorded locomotion variables” for recording kinematic-type measures have been used. 

Human observations - live or via video recordings – have been conducted to record easily 

identifiable measures such as the number of steps taken within a passage or given amount of time 

to complete a gait passage. Stopwatches or timers have been used for recording the time taken 

for a cow to walk a known distance to allow for a simple approach to calculating walking speed. 

Finally, methods involving human observations for looking at overall locomotor ability or 

specific gait characteristics, such as scores from numeric rating scales or analog locomotion-

rating scales, have been commonly used. 
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2.4.3. Kinematics 

Kinematics is a subdivision of the study of biomechanics which involves observable 

aspects of motion, such as space and time (Basic Biomechanics, Susan Hall, 2011) and, thus, 

measures recorded by kinematic technology generally fall under the categories “spatial” and 

“temporal.” Spatial measures provide information as to how the body is moving within space, 

and temporal measures provide information as to how the body is moving in time. The type of 

technology that has mainly been used to record kinematic measures in research which evaluates 

factors affecting dairy cattle locomotion is the combination of video cameras used alongside 

commercially available motion analysis software. These video and software systems, which are 

designed specifically for motion analysis, are the sole technology to be considered as 

“kinematic” technology in this review. However, other types of technologies which are designed 

to record kinetic measures have also been used to record kinematic measures. In this review, 

these kinetics-focused technologies and all the measures which they record will be discussed 

under the “kinetics” technology section. Additionally, three studies included in this review have 

used accelerometers in conjunction with a specific pedogram designed to extract certain temporal 

measurements. While temporal measures would generally fall under the category of kinematics, 

these three studies will be discussed under the “accelerometry” technology section of the review.  

The Level A type of kinematic technology used for recording spatial and temporal 

measures in these studies involved the use of commercially available motion tracking or motion 

image analysis software specifically designed for analysis of kinematics. Details regarding the 

technology used in these studies are provided in Table 2.8.1. These studies used these 

technologies with only a single camera to record video, which means that only one side and one 

angle of the cow is visible as the cow’s gait is recorded on video. Three different software 

programs were used within these studies, and all required markers to be attached to the cow. This 

type of system allows for 2D kinematic analysis, where the marker movement is “tracked” to 

provide data which then can be extracted and interpreted as specific spatial and/or temporal 

measures or variables. The use of this technology allows for the recording of detailed, 

quantitative gait measures, such as stride time, which can then be compared between cows or 

between an individual cow’s gait cycles, gait change over time, or contralateral limb movements. 

While commonly used, visual locomotion scoring may identify when a cow experiences a 
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deviation from “normal” gait or may be able to pinpoint a deviation from what would be 

“normally” expected regarding a specific gait characteristic, these more detailed and quantitative 

measures can go a step further and provide data representing motion trajectories of specific 

points on the cow’s body through which patterns can be detected and a potential cause of gait 

impairment could be inferred. Additionally, recording multiple interconnected spatial and 

temporal measures for multiple body parts at once can provide a clearer picture of a cow’s 

locomotion overall as well as what is occurring at different phases within the gait cycle. 

2.4.3.1. Measures Recorded 

Spatial measures recorded by kinematic technologies used in dairy cow locomotion 

research generally look at the distance between two points – either between two points on the 

cow or between the floor and a point on the cow – or at the range of movement of a particular 

part of the body. Studies using the above video and motion analysis software systems to evaluate 

dairy cow locomotion have used spatial measures of stride length, tracking distance, the length of 

particular regions of the spine, range of movements for different joints, head position, and 

measures which describe the maximum height a particular point on the cow reaches during 

locomotion (specific definitions for each variable detailed in Table 2.4.1). All five studies 

measured stride length, 3 measured hoof height, and 3 measured tracking. For these measures, 

definitions and approaches used to record them were similar. Only one study recorded the spatial 

posture measures of head position, spine markers height, spine length, thoracic region length, 

and lumbar region length, with each being recorded during a frame of video when the cow was 

seen to be bearing weight on the right foot. These measures were recorded to provide 

information regarding the posture of the cow. Blackie et al. (2011) and (Blackie et al., 2013) both 

recorded hock ROM and fetlock ROM. Blackie et al. (2011) was the only study which recorded 

rotation of movement (ROM) of the knee. 

Temporal measures which have been recorded by these studies include durations of 

specific parts of the gait cycle. Three studies measured stride duration, stance duration, and 

swing duration. Definitions and approaches used for these measures were relatively similar 

(Table 2.4.1). Only one study recorded triple support. The walking speed of the cow can also be 

calculated based on recorded kinematic variables. Three studies using automatic motion tracking 

software – as opposed to the Level B kinematic approaches of “manual kinematics” or “human-
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recorded kinematics” – recorded walking speed, although two of these did so by calculating the 

walking speed based of the stride duration divided by the stride time, and the third did not 

provide a definition as to how walking speed was calculated (Table 2.4.1).  

 

Table 2.4.1. Locomotion measures recorded and analyzed using a camera and a kinematic 

motion analysis software.   

Measure 

Category 

General 

Measure 

Measure Definition/Approach Reference 

Spatial: Limb 

Movement  

Stride length Horizontal displacement between 2 consecutive hoof 

strikes of the same hoof 

Flower et al., 

2005; Flower et 

al., 2007 

Distance between 2 consecutive hoof strikes for the 

same hoof (right side of cow only) 

Franco-Gendron 

et al., 2016 

Distance between cannon appearing straight and next 

occurrence of cannon being straight for the fore and hind 

limbs 

Blackie et al., 

2011; Blackie et 

al., 2013 

Hoof height Maximum vertical displacement between 2 consecutive 

hoof strikes of the same hoof 

Flower et al., 

2005; Flower et 

al., 2007 

Maximum vertical distance at which the hoof is lifted 

while the cow is walking  

Franco-Gendron 

et al., 2016 

Maximum 

fetlock height 

Highest distance from the floor to the fetlock marker that 

weas seen during the stride 

Blackie et al., 

2013 

Maximum 

hock height 

Highest distance from the floor to the hock marker that 

was seen during the stride 

Blackie et al., 

2013 

Tracking Horizontal distance between front hoof strike and 

subsequent ipsilateral rear hoof strike 

Flower et al., 

2007 

Distance between the fore foot being placed on the 

ground and the ipsilateral hind foot being placed on the 

ground 

Blackie et al., 

2011; Blackie et 

al., 2013 

Hock range of 

motion (ROM) 

Difference between minimum and maximum hock 

angles calculated from tracking of the hind fetlock, 

hock, and stifle markers 

Blackie et al., 

2011; Blackie et 

al., 2013 

Fetlock ROM Difference between minimum and maximum fetlock 

angles calculated from tracking the fetlock marker, knee 

marker, and elbow marker 

Blackie et al., 

2011; Blackie et 

al., 2013 

Knee ROM Difference between minimum and maximum knee 

angles calculated from tracking the fore fetlock marker, 

knee marker and elbow marker 

Blackie et al., 

2011 



 

20 

 

Spatial : 

Posture 

Head position Distance from bottom of cow’s nose to floor (measured 

when front right foot first observed to bear weight) 

Blackie et al., 

2013 

Spine markers 

height 

Distance from the spine markers to the floor (assessed 

when cow was seen to be bearing weight on front right 

foot) 

Blackie et al., 

2013 

Spine length Distance between markers at T3 and TA (assessed when 

cow was seen to be bearing weight on front right foot) 

Blackie et al., 

2013 

Thoracic 

region length 

Distance between markers at T3 and L1 (assessed when 

cow was seen to be bearing weight on front right foot) 

Blackie et al., 

2013 

Lumbar region 

length 

Distance between markers at L1 and SA (assessed when 

cow was seen to be bearing weight on front right foot) 

Blackie et al., 

2013 

Temporal: 

Individual 

Limb 

Stride duration Time interval between 2 consecutive hoof strikes of the 

same hoof 

Flower et al., 

2005; Flower et 

al., 2007 

Not described Blackie et al., 

2013 

Stance 

duration 

Time the hoof is in contact with the ground (interval 

between hoof strike and following hoof-off) (right side 

of cow only) 

Flower et al., 

2005; Flower et 

al., 2007 

Period of time when a cow’s hoof is on the ground 

during a stride 

Franco-Gendron 

et al., 2016 

Swing 

duration 

Time the hoof is not in contact with the ground (interval 

between toe-off and following hoof strike) 

Flower et al., 

20117 

Period of time when a cow’s hoof is on the ground 

during a stride (right side of cow only) 

Franco-Gendron 

et al., 2016 

Temporal: 

Overall 

Walking speed Stride length ÷ stride duration  Flower et al., 

2005; Flower et 

al., 2007 

Not described Blackie et al., 

2011 

Triple support  Time spent with 3 hooves in contact with the ground; 

calculated as (sum of intervals between toe-off and 

subsequent contralateral hoof strike ÷ stride duration) x 

100 

Flower et al., 

2007 

 

2.4.4. Kinetics 

Kinetics is a subdivision in the study of biomechanics that focuses on the forces associated 

with motion (Basic Biomechanics, Susan Hall, 2011). In research evaluating dairy cattle 

locomotion, technologies using kinetic measures can be divided into three general categories: 

force platforms (FP), pressure mapping systems (PMS), and weight distribution platforms 
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(WDP) (Nejati, 2021). Force platforms and pressure mapping systems may be used 

independently or in a system where the two are combined to record simultaneously. All three 

types of these kinetics-focused technologies may record “static” measures, or measures taken as 

the cow is standing in place over the platform. However, force platforms and pressure mapping 

systems are generally used to record “dynamic” measures, or measures taken as the cow walks 

over the platform. While kinetic technologies primarily focus on measuring kinetic (force-

related) measures, FP and PMS may also record kinematic-type spatial or temporal measures. 

Kinematic-type measures which have been recorded using kinetic technologies in studies 

evaluating dairy cow locomotion will be discussed in this section. Details of the measures 

recorded by these 3 technologies are provided in Table 2.4.2. Details of each of the types of 

kinetic technologies used are provided in Table 2.8.2.  

Table 2.4.2. Locomotion measures recorded and analyzed using force platforms, pressure 

mapping systems, and weight distribution platforms. 

Technology 

Type 

Measure 

Category  

General 

Measure 

Measure Description/Approach Reference  

-Force 

Platform 

Force-

related 

ground reaction 

force (GRF) 

Average ground reaction force normalized 

by the animal’s dynamic weight of a 

tested limb 

Liu et al., 2011 

vertical GRF exerted to the lateral and 

medial claw (parameters analyzed for five 

moments (heel strike, maximum braking, 

midstance, maximum propulsion, and 

push off) of stance phase for the left and 

right limbs) 

Van der Tol et 

al., 2003 

vertical (Fv), longitudinal (Fl), and 

mediolateral (Fm) ground reaction forces 

Thorup et al., 

2014 

Maximum/peak 

force 

maximum force per lateral and medial 

claw (used for analysis deceleration, 

midstance, and acceleration positions) 

Carvahlo et al., 

2005 

maximum force per foot (used for analysis 

deceleration, midstance, and acceleration 

positions) 

Carvahlo et al., 

2005 

peak GRF normalized by the animal’s 

dynamic weight of a tested limb 

Liu et al., 2011 

symmetry index for peak GRF (a pelvic 

limb symmetry variable) 

Liu et al., 2011 

positive cranio-caudal peak force Walker et al., 

2010 

negative cranio-caudal peak force Walker et al., 

2010 

vertical peak 1 (fore and hind limbs) Walker et al., 

2010 
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vertical peak 2 (hind limb parameter only) Walker et al., 

2010 

vertical peak 3 (hind limb parameter only) Walker et al., 

2010 

Force asymmetry  symmetry index for average GRF (a 

pelvic limb symmetry variable) 

Liu et al., 2011 

 Symmetry parameters calculated for 

vertical (Fv), longitudinal (Fl), and 

mediolateral (Fm) ground reaction forces 

to compare entire stance phase curves of 

the left and right legs; 0 to 100 scale 

signifying stance phase curve symmetry 

(lower values signifying better 

symmetry/more parallel left and right leg 

curves) 

Thorup et al., 

2014 

GRFω area under the Fourier transformed curve 

of a GRF signature normalized by the 

animal’s dynamic weight 

Liu et al., 2011 

symmetry index GRFω (pelvic limb 

symmetry variable) 

Liu et al., 2011 

Impulse the integral of the GRF normalized by the 

animal’s dynamic weight with respect to 

time 

Liu et al., 2011 

symmetry index for vertical impulse (a 

pelvic limb symmetry variable) 

Liu et al., 2011 

positive cranio-caudal impulse Walker et al., 

2010 

decelerative impulse Walker et al., 

2010 

accelerative impulse Walker et al., 

2010 

moment of force 

(torque) 

moment of vertical (Fv), longitudinal (Fl), 

and mediolateral (Fm) ground reaction 

forces 

Thorup et al., 

2014 

Kinematic: 

Temporal 

stance time time a limb is in contact with the floor Liu et al., 2011 

stance time 

asymmetry 

symmetry index for stance time (a pelvic 

limb symmetry variable) 

Liu et al., 2011 

Zero Crossing % stance Walker et al., 

2010 

Stride frequency Not provided Walker et al., 

2010 

Swing time Not provided Walker et al., 

2010 

Walking speed calculated from the GRF data using timing 

information (frame number) and COP co-

ordinates corresponding to forelimb mid-

stance on two different force plates; 

calculate speed (in m/s) divided by 

distance between COP location in stride 

one and stride two by the difference in 

time, calculated from the difference in 

frame numbers divided by the sample rate 

(200 Hz) 

Walker et al., 

2010 

Duty factor  Not provided Walker et al., 

2010 
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Pressure 

Mapping 

System  

Force-

related 

Force  Force for left/lame foot and right/non-

lame foot (to compare) 

Kleinhenz et 

al., 2019 

force for each foot (4) (basic gait, within-

imprint variable) 

Van Nuffel et 

al., 2013 

static vGRF (while cow is standing) Oehme et al., 

2018 

dynamic vGRF (while cow is walking) Oehme et al., 

2019 

Oehme et al., 

2019    

total vertical force during locomotion 

(relative value as a percentage of hoof 

strike average) 

Ouweltjes et 

al., 2009 

corrected mean vertical force claw-floor 

interactions during locomotion (per 

footprint double-support phase time 

average) 

Ouweltjes et 

al., 2009 

shapes of force-time curves assessed for 

local maxima and where they were in the 

stance phase 

Oehme et al., 

2019    

force asymmetry symmetry in force between left and right 

limbs 

Van Nuffel et 

al., 2009 

Van Nuffel et 

al., 2013 

maximum force maximum vertical force per sensor  Ouweltjes et 

al., 2009 

Impulse impulse for both the lame/left and non-

lame/right feet (to compare) 

Kleinhenz et 

al., 2019 

Weight 

Distribution 

calculated using at least eight pairs of 

vertical impulses from steady state 

locomotion recordings of each cow; hind 

limb vertical impulse was then expressed 

as a percentage of forelimb impulse for 

each plate; mean of all the ratios was 

calculated to determine mean weight 

distribution across all cows 

Walker et al., 

2010 

Contact Area dynamic overall loaded area (while cow is 

walking) 

Oehme et al., 

2019 

claw-floor contact area during locomotion 

(relative value as a percent of hoof strike 

average) 

Ouweltjes et 

al., 2009 

mean claw-floor contact area during 

locomotion (per footprint double-support 

phase time average) 

Ouweltjes et 

al., 2009 

Azone: the loaded area per zone relative to 

the total zone area 

Oehme et al., 

2018 

  static total loaded area/overall contact 

area (while cow is standing) 

Oehme et al., 

2018 

Oehme et al., 

2019 

Pressure static mean pressure (while cow is 

standing) 

Oehme et al., 

2018 

Oehme et al., 

2019 
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dynamic mean pressure (while cow is 

walking) 

Oehme et al., 

2019 

Pav: average pressure per foot at five 

moments of stance phase (heel strike, 

maximum braking, midstance, maximum 

propulsion, and push off) 

Van der Tol et 

al., 2003 

contact pressure for both the left/lame and 

right/non-lame feet (to compare) 

Kleinhenz et 

al., 2019 

COPx: center of pressure in a lateromedial 

direction 

Ouweltjes et 

al., 2009 

COPy: center of pressure in a 

craniocaudal direction 

Ouweltjes et 

al., 2009 

vGRF per loaded area per zone (Pzone) 

(describes the pressure in each zone) 

Oehme et al., 

2018 

Maximum 

pressure 

static maximum pressure (while cow is 

standing)  

Oehme et al., 

2018 

Oehme et al., 

2019 

dynamic maximum pressure (while cow is 

walking) 

Oehme et al., 

2019 

Pmax: maximum pressure per foot at five 

moments of stance phase (heel strike, 

maximum braking, midstance, maximum 

propulsion, and push off) 

Van der Tol et 

al., 2003 

Kinematic: 

Spatial  

stride length not described Kleinhenz et 

al., 2019 

not described Van Nuffel et 

al., 2009 

distance between two consecutive 

imprints of the same hoof 

Van Nuffel et 

al., 2013 

step length 

asymmetry 

step length symmetry between left and 

right limbs 

Van Nuffel et 

al., 2013 

Tracking step overlap or tracking up Van Nuffel et 

al., 2009 

the lengthwise distance between the front 

hoof imprint and a subsequent imprint of 

the hind hoof on the same side 

Van Nuffel et 

al., 2013 

Abduction the sideways distance between the front 

hoof imprint and a subsequent imprint of 

the hind hoof on the same side 

Van Nuffel et 

al., 2013 

step width 

asymmetry 

step width symmetry between left and 

right limbs 

Van Nuffel et 

al., 2009 

mean difference in step width between left 

and right hoof imprints 

Van Nuffel et 

al., 2013 

distance between 

hoof imprints 

Ax: relates to the distance between hoof 

imprints along the X dimension 

Van Nuffel et 

al., 2009    

AY : relates to the distance between hoof 

imprints along the Y dimension  

AT: relates to the distance between hoof 

imprints along the t dimension 

distance within 

hoofprints 

BX : relates to the distance within hoof 

imprints along the X dimension  Van Nuffel et 

al., 2009    BY: relates to the distance within hoof 

imprints along the Y dimension 
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BT: relates to the distance within hoof 

imprints along the t dimension 

Kinematic: 

Spatio-

Temporal  

transversal 

deviations for 

each foot 

relative location and timing of imprints in 

X direction (between-imprint variable) 

Van Nuffel et 

al., 2013 

coefficients of 

variation of 

transversal 

deviations for 

each foot 

represent stride to stride fluctuation of 

transversal deviations for each food (an 

inconsistent gait variable) 

Van Nuffel et 

al., 2013 

longitudinal 

deviations for 

each foot 

relative location and timing of imprints in 

Y direction (between-imprint variable) 

Van Nuffel et 

al., 2013 

coefficients of 

variation of 

longitudinal 

deviations for 

each foot 

represent stride to stride fluctuation of 

longitudinal deviations for each foot (an 

inconsistent gait variable) 

Van Nuffel et 

al., 2013 

step time (T) 
relative location and timing of imprints in 

the T direction/dimension 

Van Nuffel et 

al., 2013 

CV for step time  
Van Nuffel et 

al., 2013 

Kinematic: 

Temporal  stance time  

  

time during one stride that the hoof is on 

the floor 

Van Nuffel et 

al., 2009 

stance time symmetry between left and 

right limbs 

Van Nuffel et 

al., 2013; 

stance time 

asymmetry 

  

stance time symmetry between left and 

right limbs 

Van Nuffel et 

al., 2009 

Not described 

Van Nuffel et 

al., 2013 

stride time 

  Not described 

 

Van Nuffel et 

al., 2009 

Van Nuffel et 

al., 2013 

step time 

  

Not described 

Van Nuffel et 

al., 2009 

step time symmetry between left and right 

limbs 

Van Nuffel et 

al., 2013 

step time 

asymmetry Not described 

Van Nuffel et 

al., 2009 

Weight 

Distribution 

Platforms  

Weight 

distribution 

limb weight ratio 

  

  

ratio of weight placed on legs (maximum 

weight asymmetry) 

Pastell et al., 

2010 

ratio of weight on hind legs 

 

Netchanisky et 

al., 2016 

Chapinal et al., 

2010 

mean limb 

difference  

Δweight(%): mean weight difference 

across the healthy and the lame limb 

within the affected limb pair 

Netchatsky et 

al., 2016; 

Buisman et al., 

2018; Alsaaod 

et al., 2019 

Limb weight 

  mean weight applied on each limb 

Netchansky et 

al., 2016; 

Buisman et al., 
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2018; Alsaaod 

et al., 2019 

mean percentage of weight applied on 

each limb 

Neveux et al., 

2006 

mean percentage of weight distributed on 

front pair and back pairs of legs 

Neveux et al., 

2006 

mean variation  

mean variation of weight distributed on 

each limb  

Neveux et al., 

2006 

standard deviation 

of weight applied 

on limb 

a measure to determine weight shifting 

between hind limbs 

Netchansky et 

al., 2016; 

Buisman et al., 

2018; Alsaaod 

et al., 2019 

mean standard 

deviation of 

weight applied 

  

mean SD of weight applied to all 4 legs 
Pastell et al., 

2010 

mean SD of weight applied to rear legs 

and mean SD of weight applied to front 

legs 

Chapinal et al., 

2010 

 

2.4.4.1. Force Platforms 

Five studies included in this review have used FP technology for dairy cow locomotion 

analysis. Recording of force-related measures may provide insight into the cow’s gait by 

primarily focusing on differences in force applied between legs as the cow steps. The presence of 

hoof disorders or injuries on a particular leg make it likely that the cow will load less weight on 

that hoof, and therefore step down on the hoof with less force as compared to the hoof of her 

contralateral limb. Differences between forcefulness of steps on contralateral limbs is also a 

method for evaluating gait symmetry. Three of the studies used force plates independently to 

record force-related measures. Force plates used alone were supported by load cells, placed in 

pits to be level with the ground of the surrounding walkway, and were covered with rubber mats 

to provide additional friction to the walking surface. Liu et al. (2011) and Thorup et al. (2014) 

had FP systems arranged so that two force plates were parallel and could record both sides of the 

cow’s body, with dimensions allowing for 2 to 4 stances to be recorded on each plate. Walker et 

al. (2010) alternatively created a 3m-long, 0.9m-wide walkway using 5 smaller force plates 

arranged in a row with the goal of collecting data from a pair of limbs on one side of the body.  

Two studies used FP technology in conjunction with pressure mapping systems. Carvalho 

et al. (2005) mounted a PMS on top of a force platform consisting of a metal base plate with load 

cells at the corners supporting a top metal plate. The PMS and force platform both had the same 
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dimensions so that the FP could measure the correct force under any individual limb and then 

that force could be used to calibrate the PMS. Van Der Tol et al. (2003) used a Kistler force plate 

placed underneath a PMS. They sampled simultaneously so that the force plate could output a 

vertical ground reaction force which could be used for calibration of the PMS. The total force 

measured by the FP was also used to adjust the sum of vertical forces that were applied to the 

individual sensors of the PMS.  

2.4.4.1.1. Measures Recorded 

Studies using FP technology primarily recorded the measure of GRF, which are the 

vertical or 3-dimensional ground reaction forces applied of the surface of the platform, and 

measures related to GRF, such as pressure and moment of force. Details regarding the definitions 

of each of these measures and the approach used to record them are shown in Table 2.4.4. 

However, these measures are often organized as some type of more specific variable, usually 

consisting of a calculation involving multiple sub-measures, to investigate the aspect of 

locomotion that is of interest. Studies using FP technologies independently (without a PMS) 

were only used to record dynamic measures, which were primarily organized into variables or 

scales focusing on gait symmetry. Liu et al. (2011) presented measures recorded by the 

StepMetrix system as “limb movement variables,” and reported the force-related measures of 

peak ground reaction force, average ground reaction force, vertical impulse, and GRFω. Thorup 

et al. (2014) measured vertical, longitudinal, and mediolateral ground reaction forces as well as 

their associated moments (torque). Both studies used force measures to evaluate gait symmetry. 

Liu et al. (2011) developed a symmetry index for average GRF to evaluate pelvic limb 

symmetry, while Thorup et al. (2014) developed symmetry parameters calculated for GRFs in 

each dimension to compare entire stance phase curves between the left and right legs. Thorup et 

al. (2014) used a scale from 0 – 100 to represent stance phase curve symmetry, with lower values 

signifying more parallel left and right leg curves and thus better symmetry. Walker et al. (2010) 

recorded several types of peaks of GRF curves, as well as three types of impulse measures. 

Weight distribution was also calculated from a minimum of eight pairs of vertical impulses from 

steady state locomotion recordings of each cow. The two studies using FP in conjunction with 

PMS (Carvalho et al., 2005; Van Der Tol et al., 2003) primarily relied on PMS to record kinetic 

measures, with the FP used as an accessory technology. The kinetic measures recorded in these 
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studies will be described in the following PMS section. Two studies used force plates to record 

kinematic-type measures looking at temporal aspects of gait. Liu et al. (2011) measured stance 

time and developed a symmetry index for stance time to evaluate pelvic limb symmetry. Walker 

et al. (2010) measured stride time, stride frequency, swing time, walking speed, and zero 

crossing.  

2.4.4.2. Pressure Mapping Systems  

Eight studies included in the review used pressure mapping systems (PMS). Pressure 

mapping systems are unique as a kinetic technology, as they are the only technology which have 

a network of sensors allowing identification of multiple hoof-prints of different limbs during one 

passage, as opposed to FP, which can only record the sum of force occurring on one 

platform/sensor. This allows PMS to record a broader range of both kinematic and kinetic 

measures.  Carvalho et al. (2005) and Kleinhenz et al. (2019) used the Matscan pressure 

measuring system (Tekscan Inc., South Boston, MA, USA. Oehme et al. (2018) and Oehme et al. 

(2019) used the Hoof™System (M3200E, Tekscan Inc., Boston, MA, USA), a foil-based 

piezoresistive pressure measurement system. It is important to note the difference between the 

two studies in which Hoof™System was used, as Oehme et al. (2018) used amputated hooves 

attached to a load applicator to press down on the film, while Oehme et al. (2019) cut the 

pressure film to be in the shape of claw and fitted the insoles into leather claw shoes. Van Nuffel 

et al. (2013) was the only study included in the review which used the GAITWISE system, 

which was developed by Maertens et al. (2011) and has a greater length (6m) that allows for data 

to be recorded for up to three consecutive gait cycles. Van Nuffel et al. (2009) used a 

permanently installed pressure distribution plate which was a precursor to the later-developed 

GAITWISE system. Van Der Tol et al. (2003) and Ouweltjes et al. (2009) both used Footscan 

pressure distribution plates (RsScan International, Olen, Belgium); however, Van Der Tol et al. 

(2003) used the pressure distribution plate overtop Kistler force plate (Kistler Corp, Winterthur, 

Switzerland) while Ouweltjes et al. (2009) used the Footscan 2D-box system (RsScan 

International, Olen, Belgium), which is used independently of a force plate. Carvalho et al. 

(2005) also used a force plate underneath the Matscan system.  
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2.4.4.2.1. Measures Recorded 

Pressure mapping systems used in conjunction with force plates may record force through 

their associated force plates, while PMS used independently can extrapolate force based on the 

pressure and contact area measured. Five of the seven studies using PMS included in the review 

recorded measures of force, although different approaches were used across studies. Oehme et al. 

(2019) recorded both “static” and “dynamic” force, while Oehme et al. (2018) recorded only a 

static measurement of force as it was an ex-vivo study using an amputated hoof attached to a 

load-applicator. Van Nuffel et al. (2009) and Van Nuffel et al. (2013) both recorded variables 

looking at asymmetry of force. Five studies using PMS recorded some type of measure of 

pressure and four recorded contact area. Kleinhenz et al. (2019) was the only study using PMS to 

record impulse.   

 In addition to recording force-related measures, PMS are also used to record spatial and 

temporal measures of gait. Although PMS is a kinetic-type technology, timing, and distance of 

hoofprints upon the platform can be used to calculate kinematic measures. Spatial measures 

which have been measured by PMS include stride length, tracking up, abduction, and asymmetry 

variables relating to spatial measures. Van Nuffel et al. (2009) also recorded measures looking at 

distance within hoofprints and distance between hoofprints in different spatial dimensions. 

Temporal measures which have been recorded by PMS include stride time, stance time, and step 

time. Van Nuffel et al. (2009) and Van Nuffel et al. (2013) also recorded stance time symmetry 

between left and right limbs. Further details on measures recorded through PMS are shown in 

Table 2.4.2. 

2.4.4.3. Weight Distribution Platforms  

Weight distribution platforms are technologies which measure weight distribution to evaluate 

aspects of locomotion, especially with regards to lameness detection. WDP technologies are 

more frequently being utilized within milking robots as automated milking systems (AMS) grow 

in popularity, although none of the studies included in this review involve a WDP within an 

AMS. Compared to other kinetic technologies, WDPs are more limited in the types of measures 

they can provide, as they only record “static” measures – measures while the cow stands – of 

weight distribution across limbs. They may measure weight distribution within one instant, or 

across a short period of time to evaluate shifting of weight between limbs. Thus, they provide an 
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objective alternative to the subjective, visual observation of a cow’s reluctance to bear weight on 

a particular limb, which is commonly used when an overall gait score or the specific gait 

characteristic of limping is considered.   

Two types of WDPs technologies have been used in research evaluating factors that may 

influence dairy cattle locomotion. The first is an Itin+Hotch weighing platform 

(Futterungstechnik, Liestal, Switzerland) consisting of 4 independent recording units with one 

hermitically sealed load cell (HBM, Volketswil, Switzerland) each, which has been used in four 

studies (Alsaaod, Fadul, Deiss, et al., 2019; Buisman et al., 2018; Nechanitzky et al., 2016; 

Neveux et al., 2006). The second is a Pacific Industrial Scale weighing platform (Richmond, 

British Columbia, Canada) consisting of 4 independent recording units each containing 4 

hermetically sealed load cells (Anyload LLC, Santa Rosa, CA, USA, which has been used in two 

studies (Chapinal et al., 2010; Pastell et al., 2010).  

2.4.4.3.1. Measures Recorded 

Studies using weighing platforms to evaluate aspects of dairy cattle locomotion have 

recorded several different types of specific measurements relating to weight distribution among 

the cow’s legs. Limb weight ratio among either all four legs or between only the hind legs has 

been used as a measure of maximum weight asymmetry in several studies. The mean limb 

difference, which describes the weight difference across a healthy and a lame limb within a pair 

of limbs, has also been recorded. Other measures used include the mean weight applied on each 

limb and the standard deviation of weight applied on individual limbs, which allows for the 

determination of weight shifting between hind limbs. Finally, the mean standard deviation of 

weight applied to multiple limbs - either to all four, to the rear legs, or to the front legs – has also 

been recorded. Details of the measures recorded are shown in Table 2.4.2. 

2.4.5. Accelerometry 

Accelerometers are used in biomechanics for the purpose of recording acceleration. While 

accelerometry is a kinematic-related technology, the purpose of accelerometers is to primarily 

measure acceleration. Acceleration as a measure can be compared between limbs to identify an 

impaired limb or an abnormality in gait. Other kinematic-type variables can also be extrapolated 

from the recorded acceleration. For the purposes of this review, accelerometers are considered 
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their own category of gait-assessing technology, as they are used differently and generally with 

greater ease and fewer limitations than kinematic technologies or PMS used to record kinematic-

type measures. Accelerometers that have been used to evaluate aspects of animal behavior, rather 

than to evaluate locomotion specifically, will be discussed in the gait-associated measures 

section.  

One type of accelerometer that has been used to record acceleration for the purpose of cow 

locomotion analysis is the Hobo Pendant G Acceleration Data Logger (Onset Computer Corp., 

Bourne, MA, USA). Chapinal et al. (2011) used five of these accelerometers, with 4 attached to 

the lateral side of each leg above the fetlock and one attached to the right of the dorsal midline. 

Franco-Gendron et al. (2016) used 2 of these accelerometers, which were each attached to a rear 

leg above the fetlock. One study, which aimed to measure acceleration of the whole cow rather 

than of individual legs, used the acceleration sensing system Vibration Measurement Pack MVP-

A3 (MicroStone, Nagano, Japan). The sensor was placed at the posterior end of the thoracic 

vertebrae of the cow to measure vertical, forward, and lateral acceleration. A specific software 

(Vibration Measurement Pack1.7.5, MicroStone) was used to manage the system, and the storage 

device for the sensor was attached to the collar of the cow. Finally, several studies have used a 

USB Accelerometer X16-4 (GulfCoast Data Concept, Waveland, USA) along with the Cow-

Gait-Analyzer, a pedogram developed by Alsaaod, Kredel, et al. (2017). For these studies, 

instead of focusing on acceleration as the outcome measure, the Cow-Gait-Analyzer is designed 

to extract kinetic and kinematic gait cycle variables from the acceleration data. Details of all 

accelerometer technologies used to record locomotion measures are shown in Table 2.8.3.  

2.4.5.1. Measures Recorded 

In studies using accelerometers to measure acceleration directly, the measurements used 

were mean acceleration and the asymmetry of variance of acceleration, which is meant to 

represent how irregular stepping patterns for the rear limbs were (Chapinal et al., 2011; Franco-

Gendron et al., 2016). Tanida et al. (2011) measured the mean acceleration and variance of 

acceleration separately for the vertical, lateral, and forward directions. For studies using 

accelerometers in conjunction with the Cow-Gait-Analyzer pedogram, the kinematic outcomes 

were gait cycle duration, relative stance phase duration, and relative swing phase duration. The 

kinetic outcomes were foot load and toe-off, which are the maximum acceleration of the initial 
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ground contact of the claw and of the termination of the ground contact of the tip of the claw, 

respectively (Alsaaod, Huber, et al., 2017). In two studies, these measures extracted from the 

Gait-Analyzer pedogram were used alongside measures of weight distribution recorded via WDP 

to evaluate how gait changed after lameness intervention surgery (Buisman et al., 2018) and after 

an analgesic to alleviate pain from lameness (Alsaaod, Fadul, Deiss, et al., 2019). The 

combination of these technologies allowed for both static and dynamic kinetic measures of 

locomotion along with the kinematic outcome measures of the pedogram, providing multiple 

approaches for recognizing how lameness was specifically impacted in these intervention 

studies. Details regarding locomotion measures recorded via accelerometers are shown in Table 

2.4.3.  

Table 2.4.3. Locomotion measures recorded and analyzed using accelerometers independently 

and accelerometers in conjunction with a validated pedogram. 

Technology 

Type 

Measure 

Category 

General 

Measure 

Measure Description/Approach Reference  

Accelerometer Acceleration Acceleration Mean acceleration Chapinal et al., 

2011; Franco-

Gendron et al., 2016 

 

Forward lateral and vertical 

acceleration (to describe pattern of 

acceleration of whole body of cow) 

Tanida et al., 2011 

(Trial 2) 

 

Acceleration 

variance 

Mean variance in acceleration of 

cows’ backs before and after hoof 

trimming 

Tanida et al., 2011 

(Trial 2) 

 

Acceleration 

asymmetry 

Asymmetry of acceleration 

variance (%) 

Chapinal et al., 

2011; Franco-

Gendron et al., 2016 

 

Accelerometer + 

Pedogram  

Kinematic Gait cycle 

duration 

interval between 2 consecutive foot 

load peaks 

Alsaaod, Huber, et 

al., 2017 

 

Stance phase 

duration 

percentage of time claw is in 

contact with the ground relative to 

the total gait cycle 

Alsaaod, Huber, et 

al., 2017; Buisman 

et al., 2018; Alsaaod 

et al., 2019 

 

Swing phase 

duration 

percentage of time in swing phase 

relative to total gait cycle 

Alsaaod, Huber, et 

al., 2017;  Alsaaod 

et al., 2019 

 

Kinetic Foot load maximum acceleration of the initial 

ground contact of the claw 

Alsaaod, Huber, et 

al., 2017; Buisman 
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Toe-off maximum acceleration of the 

termination of the ground contact of 

the tip of the claw 

et al., 2018; Alsaaod 

et al., 2019 

 

 

 

2.4.6. Other Approaches to Recording Locomotion Measures 

“Manual kinematic” approaches often involve the use of software outside of those that 

are focused on gait analysis, such as software that allow for processing of images from a 

recorded video of a cow walking. For example, Tanida et al. (2011) calculated the range of 

vertical and forward movement of each limb by looking at the difference in the maximum and 

the minimum value of pixels in the x- and y-axes. Manual kinematic analysis may also involve 

the use of various types of software to calculate walking speed of a cow within a video by 

recording the time taken for the cow to walk between two points of a known distance (Chapinal 

et al., 2010; Walker et al., 2010). Additionally, variables like walking speed, step speed, and 

number of strides per passage have also been recorded by humans via live observations with 

stopwatches or observations as cows pass between two physical markers in video recordings. 

Several studies have used these “manual kinematic” or objective “human observed locomotion 

variable” approaches along with measures of locomotion recorded by the Level A kinematic, 

kinetic, or accelerometer technologies (Franco-Gendron et al., 2016; Tanida et al., 2011; Walker 

et al., 2010). In some cases, these measures were used as a way to validate measures being 

recorded via Level A technologies, while in other cases they were used as an additional method 

for recording a locomotion measure which was not recorded via other technologies being used.  

Visual locomotion scoring was a frequently used method of providing an overall score 

for gait or for providing scores of individual characteristics or attributes of gait, such as joint 

flexion. Twenty-four studies in this review used locomotion scoring (also termed gait, mobility, 

or lameness scoring) to assess the locomotor ability of cows, with several more studies use 

locomotion score in the process of selecting animals to be included in studies. Multiple types of 

numeric rating systems, most commonly 3- or 5-point scales, and analog scales, typically marked 

on a line representing values from 0 – 100, were used. Additionally, defining gait characteristics 

which were scored or used to determine an overall gait score varied between scoring approaches 

used.   
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2.4.7. Approaches for Recording Physiological and Behavioral Gait-Associated Measures 

Multiple approaches have been used to record measures which do not directly focus on 

gait characteristics but rather may be associated with changes in locomotor ability or factors 

which may contribute to impaired locomotor ability. Sensors, accelerometers, and live 

observations have been used for recording behavioral measures, as measures which provide 

information as to how the cow is distributing her time (e.g. lying time vs. time spent active) may 

provide insight into a cow’s locomotor ability (Blackie et al., 2011). Although these behavioral 

measures are often recorded via accelerometer technology, they are considered “gait-associated” 

measures, as they are not direct measures of locomotion. Approaches using surface 

electromyography (SEMG), infrared thermography (IRT), pain measurement devices, 

ultrasonography, and hematology have been used for recording physiological measures. 

Additionally, hoof disorder identification and scoring methods have been commonly used to 

subjectively record the presence and severity of various hoof pathologies. These “gait-

associated” measures have been used in addition to locomotion measures recorded through Level 

A technologies or independently of locomotion measures for purposes of comparing or exploring 

relationships between multiple types of potentially gait-associated measures. The categorizations 

and relationships of gait-focused and gait-associated measures and the technologies and methods 

used to record them are shown in Figure 2.4.2. Finally, the hoof and leg injuries or disorder 

which often cause locomotor impairment may be associated with other types of measures 

relating to the general health of the cow. Studies in this review which recorded general health 

measures generally focused on those relating to stress or immunology.   
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Figure 2.4.7. Relationship diagram of types of measures recorded by studies in this literature 

review and the methods used to record them. (Note: not all measures are listed for each measure 

category. Examples of common measures are displayed. Additionally, types of behavioral, gait-

associated measures and the approaches for recording them are not included, but are explained in 

the text of section 2.4.7) 

Factors that have been evaluated through the use of Level A kinematic, kinetic, and 

accelerometer technologies to record measures of gait fall into the two broad categories of 

environmental factors and cow-level factors. For the purposes of this review, all factors that 

involve the housing and management of cows, including health and maintenance procedures that 

are performed on them, were considered “environmental” factors. Factors intrinsically related to 

the cow’s body, such as the presence of hoof disorders or lameness itself, were considered “cow-

level” factors.  

2.4.7.1. Approaches used to record locomotion measures when evaluating environmental 

factors 

The most commonly studied environmental factor was flooring type or walking surface. 

In the ten studies that evaluated flooring, all three “direct” technology approaches to recording 

gait measures as well as methods for recording gait-associated measures were used. Two studies 

used kinematic technology (Flower et al., 2007; Franco-Gendron et al., 2016) to record 
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kinematic gait measures, and one (Telezhenko et al., 2017) used a manual kinematic approach. 

Three studies used kinetic technology to record kinetic measures of gait. Ouweltjes et al. (2009) 

used kinetic technology to record kinematic-type measures, as well. Kinetic technologies used to 

evaluate flooring in some cases focused only on the interaction of the type of surface itself with a 

hoof via static measures, while others focused on the interactions of the surface with the hooves 

as the cow walked over it via dynamic measures. Oehme et al. (2018) used a load applicator with 

amputated limbs to look at pressure distribution on different types of rubber mats, so only static 

kinetic measures were recorded. Oehme et al. (2019) recorded both static and dynamic kinetic 

measures, and Ouweltjes et al. (2009) recorded only dynamic kinetic measures. Three studies 

used accelerometer technology: two studies (Chapinal et al., 2011; Franco-Gendron et al., 2016) 

used accelerometers to record acceleration, while one study (Alsaaod, Huber, et al., 2017) used 

accelerometers in conjunction with a pedogram to extract kinematic- and kinetic-type outcome 

measures. Two studies (Rajapaksha & Tucker, 2015; Schutz et al., 2018) used only gait-

associated measures, and primarily focused on measuring muscle activity and fatigue via surface 

electromyography along with number of steps taken via a live human observer as cows were 

standing over different flooring surfaces simultaneously placed under different hooves.  

The second most studied environmental factor was hoof trimming. In the five studies 

evaluating how hoof trimming affected gait, gait measures would either be recorded and 

compared from before and after hoof trimming, or gait measures would be recorded and 

compared between cows who underwent different types of hoof trimming methods. Three studies 

(Carvalho et al., 2005; Ouweltjes et al., 2009; Thorup et al., 2014) used kinetic technologies to 

record kinetic gait measures, and Ouweltjes et al. (2009) additionally used kinetic technology to 

record kinematic-type measures. Two studies looking at effects of hoof trimming on gait used 

accelerometers. Alsaaod, Huber, et al. (2017) used accelerometers in conjunction with a 

pedogram to extract kinematic- and kinetic-type measures. Tanida et al. (2011) looked at the 

overall acceleration as the cow walked with an accelerometer attached over her thoracic 

vertebrae, and used the manual kinematic approach of image analysis to look at kinematic 

measures involving range of motion of limbs.  

Three studies evaluated how some type of lameness intervention affected gait. Alsaaod et 

al. (2019) used accelerometers along with a pedogram to obtain kinematic- and kinetic-type 
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outcome measures as well as a WDP to measure weight distribution when evaluating the effects 

of an analgesic on cows who had limb pathologies. Buisman et al. (2018) used the same 

approach with an accelerometer used with a pedogram and a WDP to evaluate gait after foot 

surgery to address foot pathologies. Kleinhenz et al. (2019) used kinetic technology to evaluate 

effects of an analgesic on gait of cows with clinically induced lameness. Finally, one study 

(Yamamoto et al., 2014) investigated how diet supplementation with trace minerals affected 

kinematic gait parameters as measured through a manual kinematic approach.  

2.4.7.2. Approaches used to record locomotion measures when evaluating cow-level factors 

Twelve studies recorded measures which evaluated how lameness or how known sources 

of lameness, such as hoof pathologies, affected gait. These studies primarily used kinematic or 

kinetic technologies to record measures of gait. However, several studies only used physiological 

gait-associated measures such as hoof temperature measured via thermal imaging (IRT) of pain 

as measured by hoof-testers or algometers as approaches evaluate locomotor ability beyond 

visual locomotion scoring. One study (Oikonomou et al., 2014) had an objective of determining 

if digital cushion thickness influenced sole temperature as measured by IRT. One study (Dyer et 

al., 2007) focused on pain as recorded via algometer and hoof testers as a measure of how hoof 

disorders can influence gait, and two studies (O'Driscoll et al., 2015; O’Driscoll et al., 2009) also 

focused on how other health-related measures, such as leukocyte profile, gene expression, and 

metabolite status were associated with the presence of hoof disorders. The majority of these 

studies recorded a visual locomotion score, an identification and subjective severity scoring of 

hoof pathologies, or both. Studies which focused more on gait-associated measures and did not 

use a direct technology approach for recording gait measures relied on subjective gait scoring to 

record measures which provided information about cows’ gait. One study (Van Nuffel et al., 

2009) focused on if human observers were able to detect differences in gait due to hoof disorders 

or lameness via locomotion scoring as compared to kinematic measures recorded by a PMS. 

Another study (Van Nuffel et al., 2013) focused on variation of measures of specific gait 

variables when looking at early signs of lameness measured via a PMS.  
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2.5. DISCUSSION 

Technologies used in dairy cattle gait analysis to record measures of locomotion have been 

adapted from technologies and research methods which were initially developed for use in horses 

and humans. The intended use and application of these technologies with these species may 

differ from how they are used in research with cows, where locomotion is typically assessed for 

the purpose of identifying lameness or impairment since lameness is of major concern within the 

dairy industry (Nejati, 2021). This may explain the differences in specific types of technology 

used and how technology set-ups are different in areas designated for recording gait. The results 

of objective 1 of this review indicate that a wide variety of approaches have been used to record 

similar types of gait measures across multiple technologies and other approaches. If one were to 

go a step further to conduct meta-analyses with data from these types of studies, a number of 

factors regarding (i) differences in the technologies used, (ii) approaches taken, (iii) equipment 

arrangements, (iv) technical aspects of equipment used, and (v) terminology of outcome 

measures would need to be taken into consideration. Additionally, the research contexts outlined 

in the objective 2 results of this review would need to be considered, as the environmental or 

cow-level factors influences which approaches of recording and analyzing gait measures are 

used.  

The studies in this review using video recordings and motion analysis-specific software had 

cameras arranged usually only to view one side of the body, which, in some cases, allowed for 

kinematic measures to be recorded for only two ipsilateral limbs. Cameras were often placed at 

different distances from the “walkways,” which also had varying dimensions between studies. As 

all these studies within this review used only one camera, only 2D kinematic analysis could be 

performed, therefore making it difficult to minimize the effects of the differences between 

camera and walkway setup and camera differences, such as lens thickness and recording rate 

(frames/s recorded at). Types of markers used as well as their attachment locations on the cow 

were different between studies. However, within the studies using direct kinematic technology 

approaches for recording kinematic measures, definitions between studies remained fairly 

consistent. For studies using only manual kinematic approaches to record kinematic measures, 

differences between how different types of software used work and how images or videos are 
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processed between studies could result in greater inconsistencies in what could otherwise appear 

to be similar types of measures.  

Studies in this review which used kinetic technologies had greater overall variation in 

terminology and approaches taken to recording specific measures, as well as differences between 

technology types and physical arrangements of platforms used. In studies using FP technology, 

two were used in conjunction with PMS, for primarily calibration and PMS measure adjustment 

purposes, while the other three studies used them independently. For studies using FP or PMS 

technologies, platforms could be arranged in parallel or with several in a row. However, 

dimensions of platforms in studies using a parallel arrangement were generally consistent, being 

around 2m in length. In one study, pressure film was placed inside a shoe worn on the hoof of 

the cow. These differences in arrangements meant that some studies only recorded data from one 

pair of limbs during a gait cycle while others recorded data for all four limbs.  

Both FP and PMS studies recorded force-related measures; however, FP technologies could 

only record the sum of force on a platform, while PMS could calculate force based on the 

pressure applied over a number of sensors within the platform. PMS studies which recorded 

kinematic-type measures often used the same terminology as studies using kinematic visual 

motion-tracking approaches to recording kinematic measures, although clear definitions and 

calculations used to obtain these measures were not always provided. One study (Van Nuffel et 

al., 2009) also used unique terminology with a set of spatio-temporal measures acquired via 

PMS, which would be difficult to directly compare to the more straightforward spatial and 

temporal types of measures reported by other studies. For all studies using kinetic technologies, 

differences such as thickness in rubber mats placed over platforms, recording frequency, and 

filters or adjustments made to raw recordings should be taken into account. Studies using WDP 

used two brands of commercially available WDP across 6 studies. While recording frequency 

sometimes varied, all these studies had the goal of measuring weight distribution amongst limbs, 

and therefore calculated ratios which could be more easily compared across studies than those 

measures recorded studies using FP or PMS technologies.  

In studies using accelerometers to record acceleration or to extrapolate other gait measures 

through use of a pedogram, different types of accelerometers with different recording 

frequencies were used. However, two studies used the same brand of accelerometer, same 
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recording frequency, and same or similar placement of the sensor on the cow to measure 

acceleration. One study used an independently developed sensor and, after validation with use on 

the limbs, placed it at the cow’s thoracic vertebra with the goal of measuring the acceleration of 

the cow’s body overall. In the three studies using the accelerometer in conjunction with the 

validated pedogram from Alsaaod, Kredel, et al. (2017), the technology and approach used were 

all the same. While these extrapolated kinematic and kinetic outcome measure would be 

comparable between studies using this approach, they could not be directly compared to 

measures from studies which recorded kinematic- and kinetic-type measures through kinematic-

focused or kinetic-focused technologies.  

In studies using kinematic or kinetic technologies, factors such as the size, body shape/breed, 

and weight of the cow may influence measures, and therefore have been reported in some cases. 

In some studies in which kinematic technology was used, measurements of specific body parts of 

the cow were manually recorded and used as a calibration measurement within a motion analysis 

software. However, some studies have provided additional details regarding morphometric 

features of cows which may influence outcome measures such as claw dimensions, for which 

interactions were checked when looking at the effects of hoof trimming and different flooring 

types as measured by PMS (Ouweltjes et al., 2009).  

Finally, many of these studies compare gait measures recorded through these direct 

technology approaches to aspects of gait that are recorded through subjective locomotion scoring 

systems. Locomotion scores or specific gait attribute scores within locomotion scoring methods 

are also often used supplementary to these measures acquired through direct approaches. In 

studies which focused more on physiological or behavioral measures which were associated with 

gait as a method of measuring factors affecting locomotion, locomotion scoring was used as the 

primary approach to recording gait-measures. While locomotion scoring is a more convenient 

approach to evaluating gait that does not require extra materials or technology, it is difficult to 

compare as an actual measure across studies. Visual locomotion scoring is still comparatively 

subjective, with often low intra- and inter-observer reliability, and multiple methods which may 

focus on different aspects of gait exist (Schlageter-Tello et al., 2014). Additionally, locomotion 

scores as a comparison provide a very general idea of a cow’s gait and lack the ability to provide 

an actual objective value for a more specific type of measure. For example, many numeric rating 
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scales used for locomotion may focus on “asymmetry” as an aspect of gait that is evaluated by an 

observer. However, when we look at studies using direct technologies, many of them look at 

differences between more specific types of measures like stride duration, stride length, or 

acceleration between contralateral limbs as an approach for measuring asymmetry. When a 

locomotion scoring method simply instructs an observer to look at “asymmetry” without 

additional details, it is understandable to see how many different interpretations as to what part 

of the cow or what exact aspect of movement (differences in spacing or in timing) should be 

focused on could arise. Despite differences in technical aspects, physical arrangements, and 

approaches involved when using kinematic, kinetic, and accelerometer technologies, the amount 

of data they record allows for much more specific outcome measures to be obtained. These 

measures and their results can then be more easily compared across studies, especially when 

detailed terminology and methodology is provided.  

2.6. CONCLUSION 

The use of automated locomotion or lameness assessment technologies is of great interest 

to both producers and researchers. Accurate and early detection of signs of locomotor 

impairment that would not require the training, time commitment, and sometimes low reliability 

of visual locomotion scoring would be beneficial for on-farm practical purposes as well as to use 

in research focusing on a range of factors which may influence dairy cattle locomotion. 

Kinematic, kinetic, and accelerometry technologies are alternative approaches that can evaluate 

specific aspects of locomotion with a greater level of detail and provide a greater number of 

outcome measures than visual locomotion scoring. However, the inconsistencies in how these 

technologies are set up to record locomotion measures and how such measures are defined in 

research settings demonstrates that kinematic, kinetic, and accelerometry technologies are still in 

relatively early stages of use in dairy cow locomotion research. Reaching conclusions about 

specific factors which influence locomotion through the outcome measures of these three 

technologies across all studies which have used them is not yet feasible, as there is not currently 

enough overlap between the types of technologies and measure-recording approaches used. The 

inconsistencies in technology use and lack of overlap between studies also highlights the need 

for a set of standard guidelines to be developed future use with these technologies in research. 

The multiple other methods for evaluating locomotion which have been used to circumvent the 
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limitations of these technologies, such as the recording of physiological or behavioral measures 

associated with gait or more manual methods of recording locomotion measures, also encompass 

a wide range of measure types and approaches which are difficult to compare across studies. 

These other approaches also do not provide the straightforward, detailed locomotion measures 

which are possible through kinematics, kinetics, and accelerometry. Additional research using 

these three technologies, as well as technical advancements and the development of strategies to 

overcome their current limitations, are needed to fully evaluate how environmental and cow-

level factors of interest may specifically change dairy cow movement. 
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2.7. SUPPLEMENTARY MATERIAL 

Supplementary Table 2.7.1. Details of the kinematic gait-analysis software and cameras used from section 2.4.3. (fps = frames/s) 

Software Camera Details Distance/#Strides 

Recorded per 

passage 

Markers Reference 

PEAKMotus version 3.2 (Peak 

Performance Technologies, Inc., 

Englewood, CO, USA) 

One camera (Panasonic AG_195MP, 

Matsushita Electric, Mississauga, 

ON, Canada); 60 fps; 6.75m 

placement distance; left-side view 

7.05m long; at least 2 

consecutive strides 

One reflective marker made of tape 

(0.04 x 0.22m) backed with back cloth 

(0.15 x 0.22m) wrapped around 

circumference of each leg directly above 

metacarpo- and metatarsophalangeal 

joints 

Flower et 

al., 2005 

PEAKMotus version 7.1.1 (Peak 

Performance Technologies, Inc., 

Englewood, CO, USA) 

One camera (Panasonic AG_195MP, 

Matsushita Electric, Mississauga, 

ON, Canada); 9.6m placement 

distance; right-side view 

7.4m long; at least 2 

consecutive strides 

Flower et 

al., 2007 

Simi Motion Analysis software 

(Simi Reality Motion Systems 

GmbH, Unterschleißheim, 

Germany) 

One Camera (Canon PAL MV690; 

Canon UK Ltd., Borehamwood, 

UK); 15m placement distance, 4.5m 

field of view 

1.6m  Yellow, cardboard markers (3cm 

diameter) glued with contact adhesive 

(Evo-stick 528) onto left side of cow at 

fore coffin, fore fetlock, knee, elbow, 

hind coffin, hind fetlock 

Blackie et 

al., 2011 

One Camera (Canon PAL MV690; 

Canon UK Ltd., Borehamwood, 

UK); 7m placement distance 

1.6m wide; 1 stride 

analyzed per passage 

Above details (right side only) + 

speherical orange table tennis balls (4cm 

diameter) attached to skin over thoracic 

vertebrae 3 and 7 (T3 and T7), Lumbar 

vertebrae 1 and 4 (L1 and L4), the 

cranial end of the sacral vertebrae (SA) 

and on the TA  

Blackie et 

al., 2013 

MoviAs Pro tracking program 

(version 1.63g: 3D, NAC Image 

Technology, SimiValley, CA, 

USA) 

One camera (uEye UI-1225LE-C, 

Imaging Development Systems 

GmbH, Obersulm, Germany) with 

4.8mm lens (Pentax CCTV C418DX, 

1:1.8, Pentax Ricoh Imaging 

Amercas Corporation, Denver, CO, 

USA); right-side view; 9.7m and 

11.8m placement distances from 

corridor 1 and 23, respectively 

Digitalized 3 or 4 

strides at 30 fps 

2 reflective plastic ball markers (3.18 

cm; B & L Engingeering, Santa Ana, 

CA, USA) sewn onto 12cm-wide 

adjustable black elastic band placed on 

the metatarsal and metacarpal regions of 

right limbs; 2 reflective plastic balls 

placed on floor (8.57m apart) for 

reference 

Franco-

Gendron 

et al., 

2016 
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Supplementary Table 2.7.2. Locomotion measures recorded and analyzed using force platforms, pressure mapping systems, and 

weight distribution platforms. 

Technology Category Technology Type Dimensions and Technical Aspects Additional Technology Used Reference 

Force platforms Step Metrix (Bou-Matic, 

LLC, Madison WI, USA) 

 2 metal, parallel biomechanical force plates 

supported by 4 load cells; 200 Hz 

frequency; 5mm rubber mat 

 Liu et al., 

2011 

custom-designed 3D 

strain gauge force plates 

(Bertec Corp., Columbus, 

OH) 

2 parallel plates; 2 kHz frequency; force 

signals low-pass-filtered at cut-off 5 Hz 

frequency; 13mm rubber mat 

custom-made data acquisition system 

(Mr. Kick, Knud Larsen, Aalborg 

University, Denmark, based on National 

Instruments technology, Austin, TX); 

fourth-order, zero-lag Butterworth filter 

(Matlab 2006, The MathWorks Inc., 

Natick, MA) 

Thorup et 

al., 2014 

Kistler force plate (Kistler 

Corp, Winterthur, 

Switzerland)  

600 mm × 900 mm; 250 Hz frequency; 5-

6mm rubber mat 

 Van der Tol 

et al., 2003 

custom-made AMTI 

(Advanced Mechanical 

Technology 

Inc.) Hall effect force 

plates 

5 plates (0.6 x 0.9m); three-axis, twelve 

channel plates; 200 Hz frequency 

Custom made software written in 

MATLAB (R14, The Mathsworks INC., 

Natick, MA, US) used to record GRF 

data in raw binary format 

Walker et 

al., 2010 

force platform (metal base 

plate; details not 

provided) 

1112 N load cells at corners supporting top 

plate 

 Carvahlo et 

al., 2005 

Pressure Mapping 

System  

MatScan system 

(MatScan, Tekscan, Inc., 

South Boston, MA.) 

2288 sensels; spatial resolution of 1.4 

sensel/cm2; customized to a pressure range 

of 1 - 10,350 kPa; 40 Hz frequency 

 Carvahlo et 

al., 2005 

244 x 45 cm2 software (HUGEMAT Research 5.83, 

Tekscan, Inc.), 

Kleinhenz et 

al., 2019 

Hoof™System (M3200E, 

Tekscan Inc., Boston, 

0.15 mm thick sensors; cut in shape of claw 

and fitted into leather claw shoes 

HoofSCAN Research software (version 

6.85, Tekscan Inc., Boston, MA, USA) 

Oehme et al. 

2018 
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MA, USA) foil-based 

piezoresistive pressure 

measurement system 

0.23 mm thick sensor foils; 167.6 x 167.6 

mm sensor matrix; 3.9 sensels/cm2 

resolution 

HoofSCAN Research software (version 

6.85, Tekscan Inc., Boston, MA, USA) 

Oehme et 

al., 2019 

Footscan (RsScan 

International, Olen, 

Belgium)  

976 x 325 mm2 surface; contains 8.192 

conductive polymer sensors, 5 x 7.6 mm2 

each 

Footscan 2D box; Ouweltjes et 

al., 2009 

 Van der Tol 

et al., 2003 

GAITWISE system 

(developed by Maertens 

et al., 2011) 

consists of Gaitrite sensor (CIR Systems 

Inc., Havertown, PA, USA); 

 Van Nuffel 

et al., 2013 

pressure-sensitive mat 

(Maertens et al 2008) 

0.61 m wide x 4.88 m long surface; 48 x  

384 sensor elements array, each 1266 cm2; 

2D; 60 Hz frequency 

 Van Nuffel 

et al., 2009 

Weight Distribution 

Platform 

Itin+Hotch weighing 

platform 

(Futterungstechnik, 

Liestal, Switzerland)  

4 independent recording units (0.78 × 0.55 

meach ) with one hermitically sealed load 

cell (HBM, Volketswil, Switzerland); 1.94 

× 1.06 m; covered with 1 cm-thick 

individual rubber mats; 10 Hz frequency 

 Alsaood et 

al., 2019 

Buisman et 

al., 2018 

Netchanitsky 

et al., 2016 

4 independent recording units (each 56 × 91 

cm) fitted in a 1.9 × 1.3m enclosure; 2 

singlepoint load cells (Vishay Tedea-

Huntleigh model 1250; Vishay, Selb, 

Germany) in each recording unit; load cells 

mounted off-center at either end of each 

unit; 3.8 cm rubber mats (under some 

hooves for some treatments) 

FieldPoint acquisition hardware 

(National Instruments, Austin, TX) 

Neveux et 

al., 2006 

Pacific Industrial Scale 

weighing platform 

(Richmond, British 

Columbia, Canada); 

 

4 independent recording units (12 cm high × 

59 cm wide × 99 cm long) each containing 

4 hermetically sealed load cells (Anyload 

LLC, Santa Rosa, CA, USA); data 

transmitted to computer at a rate of 14 

readings/s; covered with 1.5-cmthick 

revulcanized rubber mats 

software (CowWeigh.exe version 2.2, 

Pacific Industrial Scale Co. Ltd.) to 

provide real-time display of the weight 

applied  

Chapinal et 

al., 2010 
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4 independent recording units (each 56 × 91 

cm) fitted in 1.9 × 1.3m enclosure; 6 Hz 

frequency 

 Pastell et al., 

2010 
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Supplementary Table 2.7.3. Locomotion measures recorded and analyzed using accelerometers, either independently or in 

conjunction with a pedogram. 

3D Accelerometer Type Recording Frequency Number and Location Reference 

Hobo Pendant G Acceleration Data 

Logger (Onset Computer Corp., 

Bourne, MA, USA) 

33.3 Hz  5 total ; 4 attached to lateral side of 

each leg above fetlock; 1 attached to 

right of dorsal midline 

Chapinal et al., 2011 

33 readings/s  2 total (each attached to a rear leg 

above fetlock) 

Franco-Gendron et al., 

2016 

Vibration Measurement Pack 

MVP-A3 (MicroStone, Nagano, 

Japan) + software (Vibration 

Measurement Pack1.7.5, 

MicroStone) 

Not provided Sensor placed at posterior end of 

thoracic vertebrae 

Tanida et al., 2011(trial 2) 

USB Accelerometer X16-4 

(GulfCoast Data Concept, 

Waveland, USA) + pedogram 

(Cow-Gait-Analyzer; developed by 

Alsaaod, Huber et al., 2017) 

400 Hz  2 total; fitted at the level of mid 

metatarsus/metacarpus to both hind 

or fore limbs of affected limb pair 

Buisman et al., 2018 

2 total; fitted at level of either both 

metatarsi or both metacarpi, 

depending on location of pathology  

Alsaaod et al., 2019 

2 total; fitted level of the metatarsus 

to both hind limbs 

Alsaaod, Huber, et al., 

2017 
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CONNECTING TEXT 

Chapter 2 provided a review of the studies evaluating factors that influence gait quality 

through kinematic, kinetic, or accelerometry technologies or through alternative approaches. The 

specific measures that had been recorded by these technologies were listed in detail and 

relationships between the types of measures recorded and technologies or methods used to record 

them were drawn out. Studies were also grouped by the environmental and cow-level factors 

they evaluated. Similarities and differences in terms of measures recorded and technologies or 

methods used between studies evaluating the same factors were discussed.  It was determined 

that, overall, factors regarding (i) differences in the technologies used, (ii) approaches taken, (iii) 

equipment arrangements, (iv) technical aspects of equipment used, and (v) terminology of 

outcome measures make comparison of locomotion measures between these studies difficult. 

These inconsistencies also demonstrate that use of these technologies for the evaluation of dairy 

cow gait is still in relatively early stages; technological advancements, methods to overcome the 

current limitations of these studies, and a greater amount of research using these technologies 

would be needed to provide more overlap of these detailed types of locomotion outcome 

measures across studies. Studies using kinematic technology to assess locomotion had more 

consistency in the approaches and definitions used across measures than studies using kinetic or 

accelerometry technologies. In comparing measures recorded used by the technologies of 

primary interest to traditional gait scoring systems, we could demonstrate that while similar 

aspects of gait are evaluated through both methods, the kinematic technologies provide more 

detailed information at a greater level that allows further insight to the reason behind the changes 

or abnormalities in a cow’s gait.  

Chapter 3 consists of an experimental study with the goal of validating a kinematic 

system used in conjunction with machine learning approaches to predict a commonly used 

numeric rating system (NRS) locomotion score. The kinematic system, consisting of 6 cameras 

and a motion tracking software, was used to acquire 3D-scaled coordinates of trajectories of 

specific joints on the cow as she walked. Locomotion scores were determined for each individual 

passage recorded by the kinematic system. Kinematic data and the corresponding locomotion 

score for each passage were then used to train a convolutional neural network (CNN) and a 

recurrent neural network with long short-term memory (LSTM) architecture. Both model types 
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were tested with data from a separate set of passages (individual recordings of a cow walking the 

duration of the designated path). A high accuracy in the predictions of the model(s) would show 

that the level of locomotor ability that is visually observable is reflected - in greater detail - in the 

kinematic data.  
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3.1. ABSTRACT 

Lameness, or impaired gait, is a prevalent issue within the dairy industry that has serious 

financial and welfare implications. Traditional visual locomotion scoring systems provide a 

simple way to assess dairy cow gait but are prone to low reliability and are relatively subjective 

compared to more automated approaches. In this validation study, a kinematic system and 

motion tracking software able to acquire 3D-scaled coordinates of 20 specific joints on a cow as 

she walks were used in conjunction with machine learning approaches to evaluate if a 

locomotion score could be predicted from kinematic data with high accuracy. Building off 

previous work using similar data with a Convolutional Neural Network (CNN), the objective of 

the study was to develop a model with Long Short-Term Memory (LSTM) architecture that 

could predict dairy cow locomotion score based off of kinematic data. Kinematic data was 

acquired through processing of videos of cows walking within a motion tracking software. The 

hypothesis was that kinematic data would reflect what was visually observable by a trained 

individual conducting locomotion scoring. Seventy-four cow-passages with 4 consecutive classes 

of gait in the middle of the range of the 9-classes NRS scores (5 point scale with 0.5 intervals) 

were kept for analysis. The hypothesis was rejected, and the best performing model (LSTM) 

achieved an average accuracy of only 38%. Previous work using a CNN to classify lame and 

non-lame cows, upon which the current CNN was based, yielded an average accuracy of over 

90%. Three-dimensional kinematic data had better predictive potential for binary classification 
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compared to the scale encompassing 4 locomotion scores used in the current study. Future work 

will incorporate additional visually observed scores for specific gait attributes (tracking up of 

hind limbs, joint flexion, etc.) to help improve model performance. As technology for recording 

3D kinematics advances, camera system mobilization will allow for widespread, on-farm 

application. This technology, in conjunction with appropriate neural network approaches, could 

eventually eliminate the need for gait scoring altogether. Such technology would help identify 

changes in gait early on in cows with more subtle forms of locomotor impairment to help reduce 

cases of severe lameness, contributing to improved management and better cow welfare.  

3.2. INTRODUCTION 

Lameness in cattle, which results from pain or discomfort due to hoof or leg injuries and 

disease (Flower & Weary, 2009), is a prevalent issue within the dairy industry. It is a serious 

welfare concern and is considered the third most costly health issue for dairy cows after mastitis 

and reduced fertility (Dolecheck & Bewley, 2018). Early detection of lameness or gait 

abnormalities which may lead to lameness is crucial for minimizing the costs and welfare 

concerns associated with impaired locomotion (Van Nuffel, Zwertvaegher, Van Weyenberg, et 

al., 2015).  

Visual locomotion scoring systems have been commonly used among both researchers 

and producers because they are non-invasive, inexpensive, and relatively easy to carry out 

(Schlageter-Tello, Bokkers, Koerkamp, et al., 2014). They typically consist of an overall value 

given to represent gait quality on a scale with multiple classes (commonly 3, 5, or 9 classes) or 

on an analog scale (0-100), often with prescribed aspects and quality levels of gait defined for 

each score. Some visual scoring systems also incorporate additional scores for specific attributes 

of gait, such as reluctance to bear weight on a limb or asymmetry of gait, which are typically 

provided for observers through detailed charts. While the simplicity of visual scoring makes it a 

practical choice for researchers and producers, it is not ideal as a gold standard because it is 

prone to low reliability within and between observers (Channon et al., 2009). At least 25 

different visual scoring systems exist (Van Nuffel, Zwertvaegher, Pluym, et al., 2015), 

encompassing a wide range of numeric scales and different attributes of gait and postures 

focused on (Schlageter-Tello, Bokkers, Groot Koerkamp, et al., 2014). Aspects of these visual 

scoring charts can also be interpreted differently between individual observers, leading to 
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inconsistency between scores (Channon et al., 2009). These inconsistencies make it difficult for 

locomotion scores to be used as comparable outcome measures across studies. Additionally, the 

traditional method of identifying impaired gait on-farm through visual locomotion scoring is 

time consuming and requires training of observers, making producers less likely to dedicate time 

and labor towards conducting this type of gait assessment (Alsaaod et al., 2019; Dolecheck & 

Bewley, 2018). This contributes to lameness prevalence being often underestimated by producers 

(Cutler et al., 2017). Therefore, researchers have begun testing alternative, automated methods of 

gait assessment which could provide more detailed measures regarding locomotion (O'Leary et 

al., 2020; Van De Gucht et al., 2017) to allow for easier comparison across research and for 

earlier detection of changes in gait that may be identified and treated before more severe 

lameness develops.   

 One of those alternative approaches using automated technology is the use of kinematics. 

Kinematics is a sub-category of biomechanics which focuses on how a body moves through 

space and time. Kinematic technologies have been previously used to study gait in humans and 

horses but are relatively novel in research evaluating dairy cow gait (Nejati, 2021). Technologies 

to evaluate kinematics are most commonly vision-based, as spatial and temporal aspects of 

motion are visually observable. Kinematic systems used in research typically consist of cameras 

used for video recording, in arrangements that allow for either 2- or 3-dimensional motion 

analysis, and a method for image processing or video analysis. Studies using vision-based 

kinematics for gait analysis also commonly use some form of marker attached to the cow at 

anatomical landmarks. Image processing approaches to kinematics used with dairy cows have 

typically only focused on one anatomical region for identifying lameness (such as focusing of the 

spine to determine back position or focusing on hoof position to determine step length), which 

may be limiting because lameness can manifest in multiple parts of the body and affect multiple 

aspects of gait (Nejati, 2021). For example, Abdul Jabbar et al. (2017) recorded video with an 

overhead depth camera and used 3D-depth images to track the height of specific regions on the 

cow’s back such as the hooks and the spine. Nevertheless, image processing approaches to 

kinematics have the potential to be used as automated systems for on-farm lameness detection 

when combined with machine learning (ML). Wu et al. (2020) implemented the YOLOv3 deep 

learning algorithm with recorded video of cows walking to obtain the size of steps taken by the 
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front and rear legs, and was able to identify lame and non-lame cows with a 98% accuracy using 

a long short-term memory classification model.  

Studies using kinematic video analysis approaches for evaluating gait have the benefit of 

being able to evaluate the entire body of the cow as she walks, encompassing multiple 

anatomically relevant locations and multiple aspects of gait (Nejati, 2021). Multiple studies have 

used kinematic motion tracking to analyze gait when studying factors that influence dairy cow 

locomotion, such as hoof pathologies (Blackie et al., 2013; Flower et al., 2005) and flooring 

(Flower et al., 2007; Franco-Gendron et al., 2016). Motion tracking software allow for measures 

of locomotion focusing on specific spatial or temporal aspects of gait and on specific parts of the 

body to be obtained. These measures often resemble the aspects of gait that are focused on in 

visual locomotion scoring systems; measures like stride length, tracking up, and range of motion 

that can be obtained through motion tracking software reflect common visually observed gait 

attributes such as gait symmetry, tracking up, and joint flexion. However, when these measures 

are obtained through motion tracking software, they have more data to explain in detail what is 

occurring with each aspect of gait as the cow walks. Kinematic data are also not prone to the 

reliability issues that coincide with the subjective nature of visual locomotion scoring. Finally, 

motion tracking software is able to obtain kinematic locomotion measures that could not be 

observed with the human eye alone, such the maximum height of specific joints on the limbs or 

lengths of specific regions of the spine during movement as recorded by Blackie et al. (2011). 

These more detailed types of measures would be especially useful for detecting minute or less-

obvious changes in gait that would help identify the development of locomotor impairment 

earlier on. However, the previous studies using commercially available motion analysis software 

for dairy cow gait analysis have only used one camera, and therefore were limited to a 2D 

analysis of gait. Two-dimensional analysis has limitations such as parallax error, through which a 

measurement of length may appear inaccurate, when the body moves too far away from the camera’s 

optical axis (Nejati, 2021). In 2D analysis, movement across the third dimension is not accounted for 

accurately.  

Previous work conducted by Karoui et al. (2021) used similar kinematic data, obtained 

from a predecessor of our current kinematic system, to test the ability of a Convolutional Neural 

Network (CNN) to identify lame cows. Cows were designated as lame if they were assigned a 



 

59 

 

score of 3 or higher according to a visual locomotion scoring system (the 5 pt. numeric rating 

system (NRS) developed by Flower and Weary (2006)). The CNN performed well with lame 

cow classification, yielding results with the performance metrics of accuracy, precision, recall, 

and F1-score above 90%. While automated identification of clinical lameness is useful, 

oftentimes smaller changes in gait or gait abnormalities which are less obvious than limping may 

develop before more severe, obvious cases of lameness appear. Gait which exhibits these more 

subtle abnormalities but where the cow’s movement is not yet severely impaired would be 

represented by scores within the NRS that are between “perfect” and “severely lame”. 

Identifying cows at this locomotor ability level will help allow for intervention and prevention of 

more severe cases of lameness. The objective of the current study was to validate an updated 

kinematic system used in conjunction with two types of artificial neural networks (ANNs) to 

predict specific NRS scores. In particular, we aimed for a model to be able to predict scores that 

represented cows with more subtle gait abnormalities (scores 2 and 2.5 on the 5 pt. scale) but 

which were not yet presenting clinical lameness (scores of 3+) with a high accuracy. The 

hypothesis of our study was that the 3D coordinates collected through the kinematic system 

would reflect what was visually observed by the individual conducting locomotion scoring to the 

extent that the model(s) could achieve a high accuracy.  

3.3. MATERIALS AND METHODS 

3.3.1. Ethics Statement 

The use of animals in this study and the protocol followed were approved by the Animal 

Care Committee of McGill University (FACC protocol 2016-7794). All components of this 

study meet the standards set by the Canadian Council on Animal Care.  

3.3.2. Selection of Animals  

The study was conducted from Jan. 18 to Feb. 12, 2021 at the Macdonald Campus Dairy 

Unit of McGill University (Sainte-Anne-de-Bellevue, QC, Canada). Lactating Holstein cows 

housed in a tie-stall barn were screened for inclusion. Cows were required to have an absence of 

severe injuries and a generally cooperative demeanor while being led by halter to ensure handler 

safety and adequate acquisition of walked “passages” – a recording of the cow walking along the 

7m walkway - for data collection. The aim was to include cow with a range of locomotor ability, 
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encompassing cows with ideal or near perfect gait, cows with minor gait impairment or 

abnormalities, and cows with lameness (obvious limping). Ultimately, 12 cows were enrolled. 

Animal characteristics such as parity and lactation stage were not considered as inclusion 

criteria. While these cow characteristics may influence gait, they were not relevant, as the study 

considered passages individually to compare an NRS score predicted by the artificial neural 

networks (ANNs) to a score given by a human observer.  

3.3.3. Technology 

Data was collected in an area of barn designed specifically for recording kinematic video. 

Six high performance cameras (Basler Ace, Ahrensburg, Germany) were mounted on the walls 

of the room and positioned around the passageway on which cows walked to have their gait 

recorded (Figure 3.3.1). Cameras had a 4 mm lens, a 6.1 mm x 4.9 mm CMOs sensor, and were 

set to record at 60 frames per second. Cameras recorded synchronized video through the Vicon 

Motus Capture Engine within the motion analysis software, TEMPLO (CONTEMPLAS GmbH, 

Kempten, Germany). Videos recorded through TEMPLO were then transferred into Vicon Motus 

3D video-based motion analysis software (CONTEMPLAS GmbH, Kempten, Germany) for 

digitization and processing. Vicon Motus uses a direct linear transformation process to establish 

a direct linear relationship between the digitized 2D coordinates recorded from multiple cameras 

and 3D space coordinates by using intersections of vectors from each camera view to determine 

a point location in space. Cameras were positioned to always overlap with at least one other 

camera throughout the passageway to allow for 3D analysis of the gait in the passage recording. 

Origin points for scaling during 3D analysis were achieved through use of a calibration device 

consisting of 24 markers with known coordinates in 3 dimensions (Figure 3.3.2.). After scaling, 

digitization, and processing in Vicon Motus, the 3D coordinates of each marker as the cow 

walked the passageway were acquired. The full process conducted between TEMPLO and Vicon 

Motus to overlay video recordings on “templates” for 3D gait analysis is described in Figure 

3.3.3. The steps taken between the two software to export and process video recordings were 

conducted after all data collection (video recording) was completed. 
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Figure 3.3.1. Diagram of Kinematic Room setup. The solid arrow represents the length of the 

passageway during which the cow's gait is recorded. The dotted areas represent the path where 

the cows are circled back to the "starting point" of the passageway. Numbered circles represent 

the individual camera placements (cameras attached to ceiling), and the black boxes represent the 

partial walls present in the room.  

 

 

Figure 3.3.2. The calibration device used for the kinematic system. Each letter represents a 

“marker” on the calibration device that has known coordinates relative to the “origin” 

coordinates represented by marker A, allowing for calibration of a coordinate system in 3 

dimensions.  
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Figure 3.3.3. Steps to export and process video recordings between TEMPLO and Vicon Motus 

software to acquire 3D scaled coordinates of markers on cow.  

3.3.4. Data Collection 

Cows were brought to the kinematic recording room for marker placement and video 

recording. The kinematic room consisted of the six cameras centered around a 7m passageway, 

with 3 cameras each positioned to record the left and right side. Extra space to the side of the 

passageway allowed for cows to be circled back to the passageway “starting point” after 

completion of a passage (Figure 3.3.3). First, the cow would be led by halter to the room and tied 

in a pen for the duration of marker placement and attachment. Twenty-five mm, spherical 

reflective markers (B & L Engineering, Santa Ana, Ca) placed at specific anatomical locations 

adapted from Blackie et al. (2013). Markers were placed at 20 locations (Figure 3.3.4) on the 

cow: 4 on each leg and 4 on the back. Markers were placed at the coffin and fetlock joint of each 

leg, at the carpal and elbow joint of the front limbs, and at the hock and stifle joint of the hind 

limbs. The makers on the back were placed at the highest point of the spinous processes of the 

first few thoracic vertebrae (withers), the dorsal spinous process of the T13 vertebra (thoracic), 

the sacrolumbar joint (sacral vertebrae area between 2 tuber coxae), and the sacrococcygeal joint 

(tail head). To ensure marker placement consistency on individual cows across different days of 

data collection, a stencil (10 cm x 10 cm) was designed out of laminated paper. A trained 

individual would identify the anatomical location and draw an outline of the stencil, either with 
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an ink marker or by shaving the hair of the cow. At the time of marker attachment during data 

collection, the stencil would then be lined up to the previously outlined area and the marker 

could be attached at its precise location.  

The first step of the video recording process for data collection involved taking an 

approximately 1 second recording of the calibration device – a “calibration recording” - through 

the Vicon Capture engine within TEMPLO. One calibration recording was taken per day of data 

collection. The calibration device was then removed from the kinematic room and “movement 

recordings,” or video recordings of the cow walking used for gait analysis, could then be 

recorded. 

To conduct kinematic video recordings, cows were led by halter down the passageway in 

the middle of the kinematic recording room. After completing a passage, the handler would 

circle the cow back to the starting point of the passageway using the additional space to the side 

of the room. Cameras continuously recorded, and an individual monitoring the recording system 

would note down the time of a recording when “good” passages occurred. A “good” passage was 

defined as a usable passage for kinematic analysis in which the cow did not stop, run, jump, 

frolic, or drastically change speed while walking along the passageway. It also required that the 

cow walked in a generally straight line along the passageway and that the handler was not having 

to pull at the area of the halter attached to the cow’s head to cause her to move. All markers had 

to be present for the duration of the passage without falling off, and at least two cameras always 

needed to view a marker at a given moment without obstruction to permit Vicon Motus to 

perform direct linear transformation and calculate the 3D coordinates of that marker. After data 

collection was completed for a day, videos were reviewed, and passages deemed usable were 

clipped and extracted out of the longer video recordings for kinematic analysis. If a usable 

passage was not obtained by after approximately 30 minutes of having the cow walk, the cow 

was returned to her stall and left to rest for the remainder of the day. 

Data collection continued until all cows enrolled had at least 3 “good” passages, with the 

exception of one cow who only had 2. Generally, 3 days of recording were allotted for individual 

cows to reach the goal of 3 passages per cow, with additional days being added for specific cows 

as needed. In cases where cows could provide multiple “good” passages within a 30-minute 

period of recording, all passages that were deemed usable were kept for kinematic analysis. 
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There was no limit to the number of passages used per cow, as the goal was to obtain as many 

individual passages for analysis as possible overall regardless of animal. This resulted in some 

cows providing more usable kinematic passages than others.  

 

Figure 3.3.4. Anatomical locations of the 20 markers tracked for kinematic 3D gait analysis. 

3.3.5. Gait Scoring 

A trained observer conducted the gait scoring using the videos recorded by the kinematic 

video system from a side camera view. A 5-point NRS (numeric rating system) scale with 0.5 

intervals was used based on Flower and Weary (2006), with 1 indicating the soundest score and 

5 indicating severe lameness. Videos were randomized before scoring and the scorer was blinded 

to the name identity of the cow and date of the video. The observer underwent training with 

videos separate from the data collection for this study until an intra-observer reliability of a 90.9 

extended percentage agreement for overall NRS scores was achieved. The extended percentage 

agreement (Gamer et al., 2019) was used for calculating agreement and reliability after observer 

training as it allowed for a tolerance level of 0.5, which reflects any scores differing by 0.5 were 

interpreted as “agreeing.”  
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3.3.6. Data Analysis  

3.3.6.1. Data Handling 

Missing values were present in the final kinematic data sets obtained from Vicon Motus. 

Missing values occurred when a marker became physically blocked or was no longer visible in at 

least two cameras during the video recording process, when two markers overlapped with each 

other for a frame or a series of frames and could not be individually identified within the 

software, or when image quality was not sufficient in at least two cameras (typically due to 

blurriness because of quick movement or lighting issues) for marker identification and tracking 

in the software. In these cases, missing values were replaced with a value of 0. 

Figure 3.3.5 shows the distribution of the locomotion scores assigned by the visual 

observer to each passage of recorded cows. There were few passages obtained for the scores 1.5 

(1 passage) and 4 (2 passages), and no passages scored below 1.5 (score 1) or above 4 (scores 4.5 

and 5). The passages with a score of 1.5 and 4 were removed from the data set before training 

since there were not enough samples to represent these classes, leaving 4 consecutive classes of 

gait in the middle of the range (scores 2.0 – 5.5) of the 9-classes NRS scores (Flower & Weary, 

2006). Another disparity between passages acquired was the difference in the length of 

individual recordings, which varied due to different walking speeds of cows. To mitigate this as 

needed for the training of a models, the dimensions of each passage were fixed to guarantee a 

rectangular training matrix. A threshold for the number of rows was selected by finding the 

passage with the greatest number of rows and selecting this number as the default size for all 

passages. In the case of passages that had a lower number of rows, 0 was input for the “missing 

observations”.  
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Figure 3.3.5. Distribution of NRS scores assigned by the visual observer in the kinematic data 

set (n= 74). The passages with a score of 1.5 and 4 were removed from the data set before 

analysis since there were not enough samples to represent these classes, leaving 4 consecutive 

classes of gait in the middle of the range of the 9-classes NRS scores (Flower & Weary, 2006). 

3.3.6.2.  Creating Working Data Set 

To reduce overfitting of the model, a stratified cross-validation was applied by holding 

out a portion of the kinematics data set (n = 19) to create a validation set (25%) and the 

remaining (n = 55) as the training set (75%). The validation set was kept separate from the 

training procedure to continuously evaluate the performance of the model. With the stratified 

approach, the distribution of classes in the training and validation set remained identical.  

Upon evaluation of data visualizations that had been created prior to model development, 

it was observed that no clusters of classes (locomotion scores) appeared. Some classes were also 

represented more than others, which could negatively influence the learning of the model. Based 

on this information and on the fact that a limited number of unique passages were available for 

model training (n = 55), a data augmentation strategy was deemed appropriate. The creation of 
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artificial data helps to overcome the limitations of collecting data with this type of kinematic 

system, especially regarding the availability of animals and the time and labor involved in 

preparation of cows (movement to the kinematic room and marker attachment), data collection 

(acquiring “usable” video passages), and video processing and digitization. Artificially 

expanding datasets using label-preserving operations has also been identified as a useful strategy 

for combating overfitting and has been shown to improve performance in ML models (Shorten & 

Khoshgoftaar, 2019). To generate synthetic samples, we used an approach previously developed 

by Karoui et al. (2021) in a previous study which aimed to develop our ML framework for 

automatic lameness identification. Random noise was added to the motion trajectories from the 

training data set with varying magnitudes of 1% or 5% of the original value to stochastically 

determined rows. The number of artificially created passages varied for each NRS class to create 

two balanced final training datasets with 2,500 samples of each gait category, resulting in a total 

of 10,000 training passages with either 1% or 5% added random noise. Data augmentation was 

applied only to the training data and not the validation data to prevent overfitting and guarantee 

that the distribution of the validation set represented the “true” data set and not the modified one.  

3.3.6.3. Modeling Methods 

A convolutional neural network (CNN) and a long-short term memory (LSTM) network 

were the ANN methods used. 

3.3.6.3.1. Convolutional Neural Network  

 Some researchers (Bai et al., 2018; Fawaz et al., 2019) have previously exploited the 

unique attribute of CNNs wherein a pooling step can be applied to reduce the dimensionality of a 

model and to reduce the influences of noise for use with temporal or sequential data. This 

approach was used in the development of the convolutional neural network (CNN) used by 

Karoui et al. (2021), whose methodology was used as a basis for the current study. The CNN 

employed was based on the LeNet architecture (Lecun et al., 1998), which was a 2-layer CNN 

originally developed for the classification of handwritten characters. The CNN architecture was 

constructed using two blocks, each composed of a convolution layer CONV (first = 6 filters, 

second = 16 filters) and an average pooling (POOL) layer. Following these blocks, two fully 

connected layers (ReLu activation function) and a decreasing number of neurons (first = 120, 

second = 84) were added. Finally, a prediction layer with four nodes (corresponding to the NRS 
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prediction classes and softmax activation function) was added. The original network architecture 

is shown in Figure 3.3.6. Moreover, to each CONV and POOL layer, a dropout layer (dropout 

ratio = 50%) was added as a regularization measure to reduce overfitting of the model. The 

dropout layer could randomly “turn off” certain nodes in the layer, forcing the network to 

probabilistically determine which nodes take precedence over others. This regularization 

technique also helps to reduce the chances of errors from prior layers propagating throughout the 

network. The model was trained with 1 and 2 CONV/POOL/Dropout layers.  

 

Figure 3.3.6. Illustration of the LeNet CNN architecture with output modified from Tra et al. 

(2017). 

3.3.6.3.2. Long Short-Term Memory Network 

A Long Short-Term Memory (LSTM) network was also evaluated. The LSTM networks 

are a particular type of recurrent neural network which benefit from directed connections in the 

network architecture that form a directed graph along a temporal sequence (Hochreiter & 

Schmidhuber, 1997), making it a suitable option to analyze sequential data such as kinematics. 

An architecture with 2 LSTM layers (LSTM1 = 32 nodes, LSTM2 = 64 nodes) and a single 

LSTM layer (LSTM1 = 32 neurons) were tested. After each LSTM layer, a dropout (25%) and 

batch-normalization layer were added. The last LSTM layer in both models was followed by 

dense layer with 32 nodes and Relu activation and a prediction layer with 4 nodes and a softmax 

activation.  
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3.3.6.3.3. Model Training 

The ANN models were trained on a Desktop computer with an Intel Core i5-4690 CPU 

(Intel, Santa Clara, California) with 8Gb of RAM and a GeForce RTX 2070 graphics card 

(Micro-Star International, New Taipei City, Taiwan). All models were built using the Python 

programming language (version 3.8.8) and the Keras (version 2.3.1), TensorFlow (2.1.0), and 

Scikit-Learn (0.24.2) libraries. The models were trained having the sparse categorical cross 

entropy as the loss function for 100 epochs and using the RMSprop optimizer with a learning 

rate = 0.001. Categorical cross-entropy was used as the loss function in this multi-class 

classification experiment. It was defined by the equation 𝐿𝐶𝐸 = ∑ 𝑡𝑖 log(𝑃𝑖)  𝑛
𝑖=1 where 𝑛 is the 

number of classes, 𝑡𝑖  is the truth label (taking a value of 0 or 1) and 𝑃𝑖 is the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 

probability for the 𝑖𝑡ℎ class. Categorical cross-entropy is a form of logistic loss, meaning that a 

prediction far from the truth value will yield a high penalty. A model that predicts instances 

perfectly will yield a cross-entropy loss of 0. Once the validation loss was stabilized, the learning 

rate would decrease by a factor of 10. Early stopping was also applied, in which training stopped 

if there was no improvement on accuracy after 10 epochs. 

3.3.6.3.4. Model Evaluation 

A selection of performance metrics including accuracy, precision, recall, F1-Score, and 

categorical cross entropy were used to evaluate the performance of each classification algorithm. 

Accuracy represents the capacity of the models to correctly classify passages. Accuracy is 

defined as: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Σ TP+Σ TN

Σ TP+Σ FP+Σ TN+Σ FN
 , where 𝑇𝑃 and 𝑇𝑁 are the number of true positive 

and true negative classifications, respectively; and 𝐹𝑃 and 𝐹𝑁 are the number of false positive 

and false negative classifications, respectively. While it is an indicator of overall performance, it 

is not enough alone to determine the strength of an algorithm and whether it has correctly learned 

the designated task when a dataset is imbalanced. 

 Precision was used to determine the capacity of the models to correctly identify positive 

cases with respect to all the cases the algorithm has classified as positive. It was an indicator of 

how reproducible and repeatable a measurement is under unchanged conditions and was used to 

evaluate the exactness of a model. Precision is defined as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
Σ TP

Σ TP+Σ FP
.  
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 Recall was used to determine the model’s capacity to correctly identify positive cases 

with respect to all positive cases in the data. It is a measure of the classifier’s completeness. 

Recall is defined as 𝑅𝑒𝑐𝑎𝑙𝑙 =
Σ TP

Σ TP+Σ FN
.  

 The F1-Score combines both precision and recall into a single encompassing metric. 

Mathematically, the F1 score is the weighted average of precision and recall. F1-Score is defined 

as 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
. Accuracy, precision, recall, and F1-score range from 0-1, 

with values closer to 1 representing better performance.  

   

3.4. RESULTS  

All models performed well on the training data (not shown), but performed poorly on the 

validation data (Table 3.4.1). The LSTM (2 layer, 5% var) model performed best in regards to 

precision (0.378 ± 0.106) and F1-score (0.299 ± 0.067). The LSTM (2 layer, 5% var) and the 

LeNet (1 layer, 5% var) models had the best accuracy out of all models (0.403 ± 0.109 and 0.403 

± 0.031, respectively). The LeNet (1 layer, 5% var) model had the highest recall (0.327 ± 0.029) 

of all the models.  

Table 3.4.1. Precision, recall, F1-score, and accuracy measured on the validation data set of the 

recurrent neural network (CNN) and long short-term memory (LSTM) artificial neural network 

models trained on augmented data with added either 1% (1% var) or 5% (5% var) random noise. 
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Model Precision Recall F1-Score Accuracy 

Avg Std Dev Avg Std Dev Avg Std Dev Avg Std Dev 

CNN (1 layer, 1% 

var) 

0.219 

 

0.063 

 

0.271 

 

0.040 

 

0.229 

 

0.012 

 

0.351 

 

0.030 

 

CNN (1 layer, 5% 

var) 

0.282 

 

0.002 

 

0.327 

 

0.029 

 

0.296 0.006 0.403 0.031 

CNN (2 layer, 1% 

var) 

0.317 0.021 0.292 0.058 0.297 0.048 0.386 0.061 

CNN (2 layer, 5% 

var) 

0.243 0.036 0.286 0.039 0.249 0.045 0.333 0.030 

LSTM (1 layer, 1% 

var) 

0.213 0.093 0.283 0.079 0.236 0.084 0.351 0.132 

LSTM (1 layer, 5% 

var) 

0.337 0.127 0.298 0.064 0.285 0.053 0.386 0.061 

LSTM (2 layer, 1% 

var) 

0.192 0.071 0.265 0.126 0.215 0.094 0.351 0.160 

LSTM (2 layer, 5% 

var) 

0.378 0.106 0.315 0.079 0.299 0.067 0.403 0.109 

 

For both types of models (CNN and LSTM), overfitting occurred early in the training 

process since training stopped around epoch 5. Decreasing model complexity by removing layers 

did not seem to improve prediction results in general. The LSTM (2 layer, with 5% variation in 

the augmented data) model performed the best out of all models, with the best results overall for 

most of the evaluation criteria (Table 3.4.1.). The NRS scores with the greatest number of true 

predictions were 2.0 and 2.5 for the CNN and LSTM models, respectively (Figure 3.4.1.).  
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Figure 3.4.1 Confusion matrices showing the number of instances predicted for the best-

performing model within each type of model. These were the convolutional neural network with 

1 layer and 5% variation in the augmented dataset (A.) and the long short-term memory model 

with 2 layers and 5% variation in the augmented dataset (B.).  

3.5. DISCUSSION 

Our hypothesis that the 3D-scaled coordinates acquired through the kinematic system 

would reflect what was visually observed by the individual conducting locomotion scoring to the 

extent that the neural network models could achieve a high accuracy was not met. It is possible 

that this type of data acquired through the kinematic system does not have predictive potential 

for specific NRS scores. Karoui et al. (2021) were able to predict lame and non-lame cow 

passages with accuracy, precision, recall, and F1-score above 90% (as defined by an NRS score 

of 3 or higher) when this type of kinematic data in conjunction with a CNN. However, it is 

possible that the increased level of subjectivity involved when defining specific NRS scores (4 

consecutive classes of gait), as opposed to a dichotomous classification of lame versus non-lame, 

is not reflected in the current dataset. Additionally, the differences in the data used for the 

present study due to the technological updates and advances made in the kinematic system may 

help explain the differing results of the CNNs used in these two studies. In the previous study, 

the arrangement of the room where kinematic recordings were conducted did not allow for both 

sides of the cow (left and right) to be viewed simultaneously by the cameras within the motion 

tracking software. This resulted in the data sets for the right and left side markers of the cow 
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being processed and analyzed separately. The arrangement of the kinematic system used in the 

current study allowed for both sides of the cow to be recorded and analyzed simultaneously. This 

resulted in a dataset that had individual markers being tracked (having identified coordinates 

provided) at different starting and ending frames depending on when the body part where a given 

marker was attached crossed the designated starting and ending points of the passageway.  

All models performed well on the training data (not shown), but poorly on the validation 

data. Both the CNN and LSTM models started to overfit early in the training process (around 

epoch 5). One possible reason for overfitting could be that a model that was more complex than 

necessary was used. However, this did not appear to be the case, as removing layers to decrease 

model complexity did not seem to help prediction results in general. It is possible that the data 

augmentation strategy used was unsuccessful, or that the problem at hand requires a simpler 

model. This is the first study using a 3D-video motion tracking approach in conjunction with an 

LSTM model architecture to evaluate movement of the cow’s entire body as she walks. Previous 

studies using neural network approaches to specifically evaluate locomotion have primarily 

focused on one or a few specific parts of the body. Wu et al. (2020) used the YOLOv3 deep 

learning algorithm to identify legs of cows from video recorded from one camera and used the 

number of video frames taken for a cow to complete a step with a limb as a measure of stride 

length. Stride length as a characteristic vector was used to train an LSTM to predict lame vs. 

non-lame cows, with a resulting accuracy of 98.57% and a true positive rate of 0.97. This study, 

however, did not define how lame vs. non-lame cows were identified for model training and only 

used one camera, allowing for only a 2D analysis of motion. Abdul Jabbar et al. (2017) used a 

3D-depth camera to acquire images of the backs of dairy cows with an overhead view to 

automatically track specific areas such as the hooks and spine. The height movements (variation 

symmetry) of these body regions were analyzed with a Hilbert transform and used as locomotion 

signals. A 1-5 scale locomotion scoring system (Sprecher et al., 1997) was used, with a score of 

2 representing the threshold where a cow is considered lame. In using a linear Support Vector 

Machine (SVM) binary classification model, the threshold achieved an accuracy of 95.7% with a 

100% sensitivity for detecting lame cows and 75% specificity for detecting non-lame cows. Both 

of these studies had success in focusing on regions or parts of the body to analyze gait, although 

they only focused on identifying cows as lame versus non-lame. Applying a similar approach 
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wherein specific areas of the body (in this case specific joints on which markers are worn) are 

focused on with the kinematic system used in the current study could be a potential next step.   

In an attempt to better understand which specific markers worn on the cow (i.e., which 

specific joints) show the most promise for reflecting abnormalities in gait that could be picked up 

by a trained model, methods for decomposing the input variables (the specific joints on the cow) 

or the development of PCA plots could be implemented and considered before development and 

testing of additional models. Future testing using the Random Forest feature importance function 

would highlight which specific markers, and even which dimensions (x, y, or z) for those 

markers, contribute the most to helping the model make its locomotion score prediction. Training 

a model with kinematic data generated only from these markers could be tested to evaluate if this 

method could improve the model’s performance. Additionally, identifying anatomical locations 

(joints) which may be more “useful” for training a model could help reduce the time spent 

digitizing markers across the cow’s entire body and could help reduce the time and memory 

costs of prediction models. On the other hand, an alternative model training approach that would 

not require the use of augmented data could also be tested as a next step. Instead of using a 

repeated k-fold cross-validation in combination with augmented data as was done in the current 

study, leave-one-out cross validation as was conducted by Zambelis et al. (2021) could be used 

instead.  

A logical next step following the aim of this validation study to have an ANN predict an 

overall NRS could be to use techniques such as permutation feature importance and partial 

dependence plots to see which patterns the model deemed “important” for its predictions of each 

class (locomotion score). It could then be determined if those patterns relate to or reflect any 

more specific aspects of gait, such as the additional gait attributes focused on in the NRS scale 

developed by Flower and Weary (2006). However, overall locomotion scores, such as the NRS 

used in this study, may not be ideal for the aim of this study to identify cows with subtle 

locomotor abnormalities or impairments who are not considered “perfect” regarding gait, but 

who are not yet clinically lame. In developed visualizations of the kinematic data used in this 

study, the classes (NRS scores) appeared ill-defined. Overall scores leave additional room for 

interpretation for the observer while conducting scoring and in some cases similar scores may be 

given when the gait issues across cows are not the same. For example, a score of 2.5 
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(representing "intermediate” gait where the cow exhibits some abnormality but is not yet 

considered clinically lame) may be assigned to one cow because of a limited range of motion in 

her limb joints, but assigned to another cow because of a prominent back arch and her back 

hooves not fully tracking up. To overcome this issue, future work could instead directly 

incorporate the scores of specific gait attributes for model training as opposed to an overall 

locomotion score. Gait attributes focusing on specific aspects of locomotion such as those 

outlined by Flower and Weary (2006) (swinging out of hind limbs, back arch, joint flexion, 

tracking up of hind limbs, gait asymmetry, and reluctance to bear weight on a limb) could be 

adopted. Specific descriptions provided for each gait attribute detailing how specifically to 

evaluate the attribute in questions (from a spatial perspective, temporal perspective, or both) that 

are provided by a locomotion scoring system could help to minimize the subjectivity that may 

occur with overall locomotion scores. This approach could also help to better learn the patterns 

associated with the specific gait attributes/abnormalities being exhibited within the kinematic 

data.  

Limitations regarding the kinematic system and usable animal passages were present in 

the current study. Twelve cows (out of approximately 25 tested for kinematic recording ability) 

with whom “usable” passages could be obtained (i.e., no stopping, running, jumping, frolicking, 

or drastic change in walking speed present) were available for use in the analysis. A total of 74 

total passages were used for data analysis, with scores for individual passages ranging from 2 to 

3.5. These passages did encompass the type of “intermediate” gait we hoped to identify with the 

model, but because of these limited numbers, the test set used for model validation was small (19 

samples). This meant that every time one sample was misclassified, the accuracy of the model 

decreased. These current limitations should be addressed through technological advancements of 

kinematic systems and motion tracking software in the future. This is especially expected as the 

use of markers may become no longer required and as kinematic systems become mobile, 

allowing for use on multiple types of farms with cows exhibiting a wider variety of gait quality 

and more differences in gait attributes affected. This will help redefine how locomotion is 

evaluated, and permit researchers and producers to move beyond the current limitations that exist 

with visual locomotion scoring. 
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 There are multiple possible future directions of data collected through this type of 

kinematic system used in conjunction with ANN techniques. A similar way to use this data and 

an ANN as a tool could be to exchange the overall locomotion or gait attribute score for some 

type of factor that impacts gait, such as a specific hoof pathology. The overall goal of our 

research on automatic locomotion scoring is for an ANN to be applied to general kinematic data 

gathered from a herd to identify not only cows that are severely lame but also those who exhibit 

more subtle gait abnormalities. Going a step further, an appropriate ANN applied to the 

kinematic data could then allow for the specific causes of exhibited gait abnormalities (the 

specific hoof disorder or injury) to be identified for individual cows. This could be particularly 

useful for instances where early identification of a hoof pathology is key to preventing severe 

lameness. A model could also be trained based on environmental factors or aspects of 

management that may impact gait, such as housing type, flooring type, or exercise access. An 

ANN used with this type of kinematic data could have the potential to become a widely used 

approach for automated locomotion assessment and gait abnormality (or abnormality cause) 

identification for both on-farm and research purposes, as well as an approach for investigating a 

range of factors that may influence dairy cow locomotion. These types of approaches could help 

to improve detection of locomotion abnormalities at an earlier stage and to identify changes that 

could help minimize the occurrence of pathologies or injuries contributing to locomotor 

impairment, helping to reduce costs associated with lameness and improve the overall health and 

welfare of cows.  

3.6. CONCLUSION 

In this validation study, 3D kinematic data did not reflect what was visually observable 

by a trained individual conducting locomotion scoring to the extent that specific locomotion 

scores could be predicted with a high accuracy through use of a convolutional neural network 

(CNN) or a recurrent neural network with long short-term memory (LSTM) architecture. 

However, our previous work using similar kinematic data and a CNN to identify lame versus 

non-lame cows was able to do so with an accuracy of over 90%. More research is needed to 

determine a model that could be appropriate for use with this type of kinematic data. Next steps 

should involve investigation into the usefulness of specific anatomical locations (joints) 

compared to others and testing of scores for specific gait attributes for model training (as 
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opposed to overall locomotion scoring). As technological advancements are made that would 

allow 3D-camera systems to be easily transported for mobile use and as motion tracking software 

no longer require the use of makers worn on the cow, this type of kinematic data used in 

conjunction with ANNs could have the potential to be used for multiple applications. An 

improved model framework could be used to identify cows that have impaired locomotion or 

changes in their locomotion while not yet clinically lame. Such a model could also be tested for 

uses such as automated early detection of lameness, identification of hoof pathologies or injuries, 

and investigation of environmental and management factors which influence dairy cow 

locomotion. 
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CHAPTER 4 – GENERAL DISCUSSION 

This thesis contained two studies. The first was the systematic literature review 

conducted according to PRSIMA guidelines to determine the measures that have been recorded 

through kinematic, kinetic, accelerometric, and other approaches in research evaluating 

environmental or cow-level factors that may influence locomotion. The second was a validation 

study of a kinematic system used in conjunction with an artificial neural network to predict 

locomotor ability of cows.  

 The literature review presented in Chapter 2 had 2 overall objectives. The first was to 

determine the measures recorded through kinematic, kinetic, accelerometric, and other 

approaches and to determine the relationships between the different types of measures and 

recording approaches used. A takeaway from objective 1 of the literature review was that it is 

difficult to compare these locomotion measures that have been recorded by kinematic, kinetic, 

and accelerometry technologies across studies. Use of these technologies for the purpose of 

assessing gait in dairy cows is relatively new and, therefore, a wide range of approaches, types of 

technologies, and arrangements of equipment, terminologies, and calculations for specific 

measure types have been used across studies. Different technologies can also be used to record 

the same types of measures (e.g., kinematic measures can be recorded through both kinematic 

technologies or PMS kinetic technologies). Although the measure definition may be the same, 

the technology used and approach to recording it must be taken into consideration.  

 The second objective of the literature review was to evaluate the research contexts in 

which these locomotion measures had been recorded. The two main categories of research 



 

82 

 

 

contexts were divided into the categories of environmental factors and cow-level factors. In the 

studies using kinematic, kinetic, and accelerometry technologies, environmental factors were 

more commonly examined. Flooring type was the most commonly studied environmental factor, 

followed by hoof-trimming. The presence of lameness or hoof disorders was the primary cow-

level factor evaluated. Studies evaluating lameness and/or hoof disorders more often used 

alternative approaches to look at gait, specifically through the recording of indirect physiological 

measures associated with gait. Studies relying more heavily on the three technologies of primary 

interest to evaluate gait more often focused on the impacts of environmental factors.  

 Many of the studies included in the literature review recorded a visual locomotion score. 

These were sometimes used as an additional outcome measure of gait quality itself or were used 

to compare or validate against the more specific measures of locomotion recorded through the 

technologies. It should be acknowledged that using locomotion scores as a gold standard when 

developing or using these newer technologies can be problematic because of their relative 

subjectivity and sometimes low reliability (Schlageter-Tello et al., 2014). Visual locomotion 

scoring has been the most commonly used method of assessing gait for on-farm and research 

purposes. One could argue that it also focuses on kinematic-type measures, as it involves an 

observer often focusing on how the cow or specific parts of the body move through space and 

time. However, it is a more simplistic approach with relatively more subjectivity. Locomotion 

scoring systems may not always provide enough detail about which part of the body or which 

aspect (spatial or temporal) a gait attribute should be examined through to prevent observers 

from interpreting instructions differently. Kinematic technologies, or kinetic or accelerometry 

technologies which can extrapolate kinematic-types measures, are a more advanced way of 
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looking at the visual (spatial and temporal) aspects of gait to gain insight into the potential 

underlying cause of a gait abnormality.  

 The objective of the validation study presented in Chapter 3 was to determine if 

kinematic data, recorded through a system consisting of 6 cameras and a motion tracking 

software, could be put into two different types of artificial neural networks (ANN;  convolutional 

neural network and a long short-term memory model) along with the corresponding visually 

observed locomotion scores to predict locomotion score with a high accuracy. We aimed, in 

particular, for the model(s) to be able to identify cows that were not yet designated as clinically 

lame but which exhibited more subtle changes in locomotion or gait abnormalities. Our 

hypothesis that the 3D coordinates collected using the kinematic system would reflect what was 

visually observed by the individual conducting locomotion scoring to the extent that the model(s) 

could achieve a high accuracy was not met. All tested models performed poorly regarding the 

metrics of accuracy, precision, recall, and F1-score. It is possible that the scaled 3D-coordinates 

acquired through the kinematic system do not provide data with predictive potential for the NRS 

scores. It is also possible that there was not enough data with variability between NRS scores. 

Overall locomotion scores may not be an ideal approach for identifying cows with 

“intermediate” gait, where abnormalities are present but the cow is not yet clinically lame. Next 

steps should involve determining if particular anatomical locations (specific joints) have greater 

or more noticeable differences in their motion trajectories across different levels of locomotor 

ability, thus making them more useful for training of ANN models. This could help improve 

machine learning and reduce the amount of time spent on marker attachment and digitization of 

markers covering the cow’s body within the motion tracking software. This would allow for 
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more time to be spent on data collection, yielding a greater number of unique cow passages that 

could be used for model training or testing. Additionally, scored gait attributes (swinging out of 

hind limbs, back arch, tracking up of hind limbs, joint flexion, gait asymmetry, and reluctance to 

bear weight) should be tested for model training as an alternative to overall locomotion scores. 

Overall locomotion scores may be designated based on a number of abnormalities across these 

attributes, with the same scores sometimes being provided when the gait attributes affected are 

different between cows. Training a model with a specific gait attribute is expected to result in 

better machine learning and performance, as there is less subjectivity and fewer aspects of gait 

encompassed within an attribute score compared to an overall locomotion score.  

 Additional research to determine an improved model framework and technical 

advancements that allow for this type of kinematic system to become mobile are needed. Camera 

system mobility would allow for data collection to be conducted on multiple farms, likely 

encompassing a wider variety of locomotor ability and types of gait abnormalities than those 

available in this validation study. This will help push this type of technology used in conjunction 

with ANN techniques into a variety of uses. Locomotion score or gait attribute score as used 

with this type of model could be swapped out with some type of factor that impacts gait. For 

example, patterns of gait for cows with known injuries or hoof disorders could be evaluated. 

Cows with hoof pathologies or a specific hoof pathology at a known/scored level of severity 

could be studied. The pathology identification or severity could be entered into the model along 

with the kinematic data for training; if a high accuracy is achieved and consistent patterns can be 

detected for specific pathologies or severities, these patterns could be examined further and may 

represent how a pathology specifically causes a gait impairment or abnormality. The model 
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could then be applied to general kinematic data gathered from a herd, and the specific causes or 

reasons behind locomotor impairment could be identified. This could be particularly useful for 

instances where early identification of a hoof pathology is key to preventing severe lameness.  

Similarly, because we know that certain gait issues are associated with certain types of 

housing (like tie-stalls contributing to stiffness), the model could be trained based on housing 

types. If a high accuracy for predicting housing type was achieved, techniques could then be 

implemented to see which patterns were deemed important in the kinematic data for said 

prediction. The model could be used as a method to evaluate how, in much more detail and with 

much more specificity, a housing type affects gait. Additionally, overall locomotion score as 

used in the validation study could be substituted with other factors related to the cow’s 

environment or management which may impact locomotion, such as exercise access, or exercise 

access frequency. As kinematic motion tracking software advance and no longer require marker 

attachment on cows and as cameras are developed for the use of providing 3D views in mobile, 

adaptable kinematic systems, this type of model could have the potential to become a widely 

used approach for automated locomotion assessment and gait abnormality (or abnormality cause) 

identification for both on-farm or research purposes.  

 Continued use of these kinematic, kinetic, and accelerometry technologies in research 

will provide more overlap between measures recorded. Technical advancements and the 

development of new approaches should also help to overcome their current limitations. Data 

acquired from these technologies could then be used with machine learning approaches as a tool, 

as demonstrated in Chapter 3, to evaluate factors that affect gait in a much greater detail than was 

previously possible with visual observer methods and scoring. This will help to improve 
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detection of locomotion abnormalities at an earlier stage, identify changes that could help 

minimize the occurrence of pathologies or injuries contributing to locomotor impairment, and 

better address the overall health and welfare of cows. 
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