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Abstract 

This thesis presents an edge-based FE solver for magnetohydrodynamic (MHD) problems. 

It is considered a major building block of HALO3D (High Altitude Low Orbit 3D), a Finite 

Element Method (FEM) hypersonic flows solver developed at the McGill CFD Lab under an 

NSERC Industrial Chair. Two formulations are implemented with their applicability gauged by 

the magnetic Reynolds number. The resistive MHD model is presented as a coupled system, 

composed of the Reynolds-Averaged Navier-Stokes (RANS) equations and the magnetic 

induction equation, while the low-magnetic Reynolds number formulation neglects the induced 

magnetic field and replaces the magnetic induction equation with the current-continuity equation 

cast in terms of a scalar electric potential. The anisotropic Hall effect is introduced through an 

asymmetric electrical conductivity tensor. For both formulations, the spatial discretization uses 

an edge-based FE formulation with stabilization achieved through a Roe scheme, on both 

structured and unstructured grids. The steady-state solution is obtained by an implicit integration 

in time. A loosely-coupled strategy is used in which each of the systems is solved separately via 

a generalized minimal residual (GMRES) method with an incomplete LU factorization (ILU) 

preconditioner. Calculation of flow through segmented electrodes and external flow past spheres, 

over an Apollo-like re-entry capsule and the OREX re-entry vehicle are carried out to assess the 

accuracy and efficiency of the low-magnetic Reynolds number formulation. The resistive MHD 

model is validated by the Hartmann flow and by inviscid and viscous flows through an MHD 

accelerator and a scramjet engine. Good agreement is demonstrated with experimental and other 

numerical data in the literature. The 3D unstructured hybrid meshes used in these cases are 

optimized with a highly anisotropic methodology based on the Hessian of the solution, using 

multi-physics combined adaptation criteria such as density, pressure, temperature, velocity, 

turbulent viscosity and the electric potential/induced magnetic field. Unlike uniform mesh 

refinement or gradient-based mesh enrichment, this approach greatly improves accuracy without 

increasing mesh size. The improvement is so dramatic that it could even be concluded that 

calculations of hypersonic flows over complex geometries carried out without mesh optimization, 

preferably anisotropic, could yield doubtful results. 
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Résumé  

Cette thèse s’inscrit comme la composante magnétohydrodynamique du solveur 

hypersonique HALO3D (High Altitude Low Orbit 3D), développé au Laboratoire CFD de 

McGill sous l’égide d’une chaire industrielle du CSRNG. Deux approches ont été implémentées 

et leur domaine de validité respectif est déterminé par le nombre de Reynolds magnétique. Le 

modèle de la MHD résistive est introduit comme un système d’équations couplées, composé des 

équations Navier-Stokes moyennées par Reynolds (RANS) et de l’équation d’induction. La 

formulation dite à faible nombre de Reynolds magnétique néglige le champ magnétique induit et 

remplace l’équation de l’induction par l’équation de continuité du courant, écrite en termes de 

champ de gradient. De plus, l’effet de Hall, intrinsèquement non-isotrope, est introduit à l’aide 

du tenseur asymétrique de la conductivité électrique. La discrétisation spatiale pour des 

maillages structurés ou non-structurés est réalisée avec une formulation FEM par arêtes, 

stabilisée avec le schéma de Roe. La solution stationnaire est quant à elle obtenue par une 

intégration temporelle implicite. Une stratégie dite de couplage faible est employée dans laquelle 

chaque système est résolu séparément par minimisation du résidu (GMRES) avec un pré-

conditionneur par factorisation incomplète (ILU). Des simulations numériques mettant en jeu des 

écoulements internes à travers des électrodes segmentées et des écoulements externes autour 

d’une sphère, d’une capsule de réentrée atmosphérique de type Apollo et du véhicule OREX, 

sont effectuées pour évaluer la précision et la performance de la formulation à faible nombre de 

Reynolds magnétique. Le modèle de la MHD résistive est également validé pour un écoulement 

de Hartmann et des écoulements visqueux et non-visqueux à travers un accélérateur MHD et un 

statoréacteur à combustion supersonique. Un bon accord est obtenu avec les solutions 

disponibles dans la littérature. Les maillages hybrides 3D non-structurés utilisés pour ces 

simulations sont optimisés sur la base des matrices Hessiennes de la solution, ce qui leur confère 

un caractère très anisotrope. Les critères d’adaptation multi-physiques utilisés sont les champs de 

densité, pression, température, vitesse, viscosité turbulente, et potentiel électrique / champ 

magnétique induit. À l’inverse des méthodes de raffinement adaptées aux maillages uniformes 

ou basées sur le gradient des champs, cette approche améliore grandement la précision des 

calculs sans pour autant augmenter le nombre de points du maillage. L'amélioration des résultats 

est telle que l'on pourrait même conclure que tout calcul hypersonique autour de formes 
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complexes n’utilisant pas de maillage adaptatif, préférablement anisotrope, donnerait des 

résultats douteux. 
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1 Introduction 

1.1  Applications of Magnetogasdynamics at High Mach Numbers 

Commercial space flight is witnessing a resurgence of interest in utilizing devices based on 

magnetogasdynamics (MGD) to manage the stability and control of futuristic hypersonic aircraft 

(e.g. aerodynamic control, drag reduction, communication, thermal protection, etc.) [1-3]. During 

atmospheric re-entry, extremely high temperatures trigger dissociation and ionization of the air 

as it traverses the bow shock in front of the vehicle. The ionization makes the adoption of 

electromagnetic technologies very effective in improving aerodynamic performance and 

reducing heat fluxes in this flight regime. The Thermal Protection System (TPS) of re-entry 

vehicles is perhaps the most important application [4], protecting the craft’s structure from 

thermal damage [5]. At the basis of these technologies, there is the application of a magnetic 

field to the conductive shock layer such that the Lorentz force will directly impact the 

aerothermodynamic interaction between the gas and the aircraft. The Lorentz force opposes the 

fluid motion across magnetic field lines, and by slowing down the flow near the body, reduces 

skin friction and heat transfer near the stagnation point. This idea, called MHD-heat shield, was 

proposed in the 1950s in the midst of the space race [6]. Numerous concepts emerged including 

large-scale self-powered MGD configurations that would reduce the overall heat load of re-entry 

vehicles [7], hypersonic flow control utilizing asymmetric forces [8] or Hall effects [7], and heat 

transfer mitigation combining ablation and electromagnetic mechanisms [9]. Enthusiasm for 

practical electromagnetic TPS waned in the 70s as it was concluded that the magnetic field 

strength required to address flows with low conductivity levels called for a magnet that was not 

efficient in terms of weight when compared to other cooling systems [10]. In the last five 

decades, tremendous advances in the area of flight-weight MHD technologies, especially those 

related to superconducting magnets and artificial electrical conductivity enhancement, have 

brought these techniques back to the sight of the aerospace community. Recently, an alternative 

approach called Electron Transpiration Cooling (ETC) [11], utilizing thermionic materials that 

emit electrons, was proposed to potentially induce a cooling effect most effective in protecting 

against elevated convective heating rates.  

Another application category is drag reduction and aerodynamic control [12]. While the 

most desirable geometries for hypersonic vehicles are long thin bodies with sharp leading edges, 
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manufacturing risk and availability of suitable thermal protection materials greatly limit their 

applicability [13]. Blunting the leading edge can circumvent these difficulties, but leads to a 

much larger wave drag [14]. Advances in MHD technologies demonstrated promises in reducing 

drag on blunt nose bodies by utilizing plasma injection [15]. Conventional aerodynamic control 

is achieved by means of mechanically driven control surfaces (flaps) the movement of which is 

limited because of the interfering bow shock surrounding the vehicles. Plasma actuators provide 

possibilities in tackling these problems since they have no moving parts and can easily be 

switched on and off. These advantages motivated explorations of plasma actuators in various 

hypersonic configurations to provide steering moments [16, 17], control of flow separation [18]. 

and local heat mitigation [19]. 

Many research efforts have also been dedicated to MGD-based propulsion systems. In these 

systems, the presence of an externally applied electric field creates the circulation of an electric 

current and produces a Lorentz force that accelerates the propulsion agent exiting the device 

through interactions with the imposed magnetic field [20]. Among various ideas in the context of 

MGD-based propulsion devices, the concept of MHD energy bypass scramjet engine has drawn 

the attention of the scientific community since it has the potential of expanding the Mach number 

envelope of traditional engines and enhance the performance of scramjet combustors [21]. Other 

research activities in this area include MHD blackout prevention [22] and MHD power 

extraction [23]. 

The above-mentioned applications typically involve complex physical phenomena due to 

high kinetic energy and the existence of charged particles. To fully understand the hypersonic 

flow regime, it is necessary to perform a comprehensive study of the physics behind it. 

1.2  Physical Modeling and Numerical Issues 

The most complete model used in MGD simulations for aerospace applications consists of 

the Maxwell equations coupled with the mass, momentum and energy conservation equations for 

an electrically conducting fluid subject to an electromagnetic field. This model is referred to as 

the full magnetofluid dynamics (FMFD) equations [23, 24]. Simplifying the FMFD system by 

enforcing the MHD assumptions (based on the assumption of negligible displacement current, 

negligible convection current and applicability of the generalized Ohm’s law), one obtains the 

(resistive) MHD equations. In the MHD model, the diffusive-convective magnetic induction 

equation takes the place of the Maxwell equations. Dropping the displacement current from the 
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FMFD system effectively renders the electromagnetic and flow timescales comparable with the 

consequent MHD model being significantly less stiff [25]. Solving the MHD equations is, 

however, still not a straightforward task at low levels of electrical conductivity (which is usually 

the case for aerodynamic applications), even for two-dimensional or axisymmetric 

configurations [26]. It is the diffusion term in the magnetic induction equation that causes severe 

numerical difficulties at low levels of ionization, since magnetic diffusivity is inversely 

proportional to electrical conductivity. As a result, the order of magnitude of the diffusion term is 

much larger than other terms of the induction equation, necessitating small Courant-Friedrichs-

Lewy (CFL) numbers.  

Most computational work in this area makes use of the low-magnetic Reynolds number 

approximation that prevails in common aerodynamic applications. In this formulation, the 

magnetic induction equation is omitted by noting that the induced magnetic field associated with 

the induced current density is negligible compared to the imposed magnetic field. In cases where 

the electric field is known or trivial, a further simplification can be made that reduces the system 

to source terms added in the Navier-Stokes equations. However, it is necessary in general to 

obtain the electric field appearing in Ohm’s law for the current in a self-consistent manner by 

solving the current continuity equation [2]. Thus, the low-magnetic Reynolds number 

formulation eases the trouble of dealing with the extreme stiffness of the complete Maxwell 

equations, but also shows limited applicability.  

In the simpler case with constant electrical conductivity, the current continuity equation 

reduces to a standard Poisson equation. Although similar formulations make their appearance in 

various physical models, such as the flow potential equation and the electric potential equation 

with known spatial charge distribution, the current continuity equation distinguishes itself from 

others in several aspects. Firstly, the large imposed magnetic field required to yield observable 

electromagnetic interaction introduces non-negligible Hall and ion-slip effects. To account for 

these effects, a tensor electrical conductivity must be adopted. Secondly, one must treat sharp 

gradients in the flow field caused by shocks as well as others in the electrical potential near 

insulator/electrode junctures [2]. 

1.3  Review of Related Works 

Among the earliest aerodynamic applications of the interaction of an electrically conducting 

fluid and electromagnetic field, Bush provided an approximate analytical solution for hypersonic 
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flow over a blunt body [27]. He considered an inviscid incompressible flow, with constant 

electrical conductivity, and predicted a significant “braking” effect in the presence of a strong 

magnetic field. Coakley and Porter presented the first CFD simulations of the MHD blunt body 

problem by means of a model analogous to Bush’s, and reported qualitatively similar results [28]. 

Because of limited computational resources at that time, these simulations adopted significant 

simplifications by assuming that the gas was ideal, inviscid and chemically non-reacting.  

Ziemer conducted the first experimental work focusing on measuring shock standoff 

distance and reported reasonable agreement with Bush’s analytical work [29]. Another 

hypersonic experimental work was reported by Bulen et al., who investigated shock standoff 

distance and heat transfer mitigation for viscous flow over axisymmetric geometries under 

significant Hall effect [30]. These experiments exhibited increased shock standoff distance, as 

well as increased total drag caused by the presence of a magnetic dipole. An unexpected increase 

in total heating, attributed to the Hall effect, was reported contradicting the semi-analytic models. 

Regardless of this unexpected outcome, concerns pertaining to the magnet weight hindered 

further research efforts and the enthusiasm for MGD technologies waned in the 70s. It was not 

until the 90s that interest in MGD-based hypersonic flow control techniques started to resurge. 

While recent experimental studies have provided new insights into electromagnetic effects 

on hypersonic flows and additional validation resources for MGD codes [31-33], their scope is 

limited by their prohibitively high cost. Meanwhile, computational approaches have gained 

considerable ground in the design and optimization of hypersonic vehicles. Palmer was one of 

the first to reevaluate MGD technologies using modern CFD tools [34]. First-order simulations 

of a Mars return aerobrake vehicle entering the Earth’s atmosphere were carried out by solving 

the coupled Maxwell and Navier-Stokes equations.  

The three formulations mentioned in the preceding section, namely, the FMFD model, the 

(resistive) MHD model and the low-magnetic Reynolds number approximation have by now 

been extensively investigated. Gaitonde and Poggie utilized the MHD model to simulate inviscid 

flow over two- and three-dimensional cylindrical bodies with non-uniform magnetic field 

distribution and observed an increase in shock standoff distance and a decrease in surface heat 

transfer rate. The electrical conductivity of the fluid was identified as the most important 

parameter in the fluid-magnetic field interaction [35]. In a subsequent study, Poggie and 

Gaitonde used the low-magnetic Reynolds number formulation to investigate inviscid and 
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viscous flows over a hemisphere [2]. An increase in shock standoff distance caused by the 

applied magnetic field was again observed in both cases, as well as a reduction in wall heat flux. 

It was concluded that viscosity has little impact on the effects of the applied magnetic field [26].  

Pàscoa et al. [36] present a numerical approach for MGD thrusters and Faraday generators 

employing the low-magnetic Reynolds number formulation. The flow equations were solved 

using the PISO algorithm and the electromagnetic problem was approximated by a Poisson-like 

equation for the electric potential. At each iteration, the magnetic field was corrected by the 

gradient of the electric potential to ensure the divergence-free constraint. Results were reported 

for the Hartmann flow and for cylindrical flows subject to an axial magnetic field.  

Chelem and Groll [37] developed a finite volume formulation of the MHD model using the 

coupling strategy of the modified AUSM-MHD [38]. The PISO algorithm for magnetic pressure 

correction was employed and mixed with a semi-discrete non-staggered central scheme for flux 

calculation [39]. The authors introduced a magnetic potential into the magnetic induction 

equation to ensure a divergence-free magnetic field, similar to Reference [40]. Results were 

presented for an MHD shock tube and the Villani-H thruster. 

Takeda and Yamamoto [41] investigated the case of supersonic MPD viscous flows with 

partial ionization using the resistive MHD model. The model presented was based on the 

axisymmetric compressible Navier-Stokes equations with Lorentz force and Joule heating, the 

magnetic induction equation and the continuity equation of electrons. The effects of the inlet 

temperature, the total current and the rate of ionization were investigated, and results were 

partially compared with experiments.  

Miki et al. [42] conducted a Large Eddy Simulation in an MHD energy bypass scramjet 

engine by solving the unsteady compressible Navier-Stokes equations and the magnetic 

induction equation. The numerical approach for the MHD equations was based on an 

approximate Harten-Lax-Van Leer (HLL) Riemann solver. Results were obtained for both non-

reacting and reacting flows without ionization and were in good agreement with experimental 

data. The authors also presented results for plasma-assisted combustion and investigated the 

effects of electromagnetic fields, temperature, density and mass fractions. 

Bityurin et al. investigated MHD flow and flight control, both experimentally and 

computationally, over several geometries such as circular cylinder, wedge, cowl-wedge, blunt 

body and re-entry airfoil [19, 32, 86, 87]. In Reference [32], the low-magnetic Reynolds number 
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approximation was utilized to simulate a two-dimensional cylinder with azimuthal magnetic field 

distribution. Two types of electrical conductivity models were investigated in Reference [19]: an 

equilibrium model that assumed ionization existed only behind the shock, and a frozen ionization 

model that assumed a fully-ionized medium in the entire domain. The equilibrium model was 

employed to represent conditions encountered by a re-entry vehicle, whereas the frozen 

ionization model corresponded to situations in the ground test wind tunnel facility used for their 

experimental work. It was observed that the applied magnetic field had stronger effects on flow 

structure when the equilibrium ionization was utilized. In addition, the Hall effect was significant 

for cases employing the frozen ionization model and reduced the overall MHD control efficiency, 

whereas cases with the equilibrium ionization model found the Hall effect negligible. 

Bobashev and Golovachov [43] performed numerical studies of MHD flows in a supersonic 

intake based on a Godunov-type finite volume scheme and the low-magnetic Reynolds number 

approximation. The results assessed the possibility of the deceleration of plasma flows down to 

subsonic speeds by the application of a magnetic field. The authors found out that the 

performance of this Faraday-type device was more effective when the Hall effect was suppressed. 

Simulations employing the FMFD model have also been reported. MacCormack [44, 45] 

used a modified Steger-Warming method, combined with artificially-scaled Maxwell flux 

vectors, and presented results for the Hartmann flow, an MGD accelerator, an MGD generator 

and a simplified two-dimensional MHD energy bypass scramjet engine. It was shown that the 

low-magnetic Reynolds number approximation failed to capture significant phenomena during 

the transient regime and that the utilization of the full MGD equations was necessary. Because of 

the computational cost caused by the distinct characteristics of the electromagnetic and flow 

fields, this approach has been applied to only simple two-dimensional or axisymmetric 

geometries. 

1.4  Review of Numerical Approaches 

The numerical simulation of hypersonic flow begins with the discretization of the governing 

equations. The temporal discretization may be either explicit or implicit. Explicit approaches 

were used in the 1980s due to their moderate computational requirements, but the stiffness 

resulting from the chemical reaction terms may restrict the permissible time step to an extremely 

small number, resulting in long simulation times. Nowadays, implicit methods are preferred 



  

  

 

15 

because they are more stable and, as a result, the allowable time step is much larger than for 

explicit methods.  

The spatial discretization can use either a finite volume method (FVM) or a finite element 

method (FEM), with the former being most dominant. In addition, both structured and 

unstructured meshes can be used, again with the former being most dominant. As an example of 

the variety of choices, the Michigan Aerothermodynamic Navier-Stokes Solver (LeMANS) [46] 

is a hypersonic FVM code designed for unstructured meshes. The calculations of numerical 

fluxes are computed by a modified Steger-Warming flux splitting method and the linear system 

solved using a line relaxation method, with an algorithm to find the line direction in unstructured 

meshes. The low-magnetic Reynolds number approximation is adopted to simplify the Maxwell 

equations and a finite difference scheme utilized to compute electric and current fields.  

The incompatibility in eigenvalues of electromagnetism and fluid dynamics is a major issue 

in MGD simulations using the FMFD model. In an effort to solve the FMFD equations in the 

FVM framework, MacCormack [45] proposed a novel scaling of the Maxwell flux vectors that 

balanced the numerical dissipation with the magnitude of the elements of the Maxwell flux 

vector itself. D’Ambrosio et al. proposed a method based on altering the magnitude of speed of 

light in the Maxwell equations to render the characteristic time scale of electromagnetism 

comparable with the one of gasdynamics [3]. 

Employing the low-magnetic Reynolds number approximation, Gaitonde [2] developed a 

high-order approximately factored compact-difference-based method to solve the three-

dimensional current continuity equation. The general case of spatially varying, tensorial 

electrical conductivity due to the presence of Hall and ion-slip effects was addressed, and 

compatible high-order boundary conditions are proposed for electrodes and insulators.  

Computational hypersonic codes have also been developed in the finite element context. 

Djaffar and Habashi [47] developed a fully-implicit FEM code for two-dimensional flows, 

adopting the two-temperature and finite-rate chemical models. To reduce the computation to a 

manageable level, this code utilizes a loosely-coupled approach that segregates the hypersonic 

system into gasdynamic, thermo-chemical non-equilibrium subsystems that are solved 

sequentially. In addition, an anisotropic mesh optimization technique was introduced for the first 

time to accurately capture shock waves.  
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The tensorial characteristic of electrical conductivity significantly affects the convergence 

of numerical schemes in solving the current continuity equation. Cristofolini et al. proposed a 

modified reverse Cuthill-McKee (RCM) procedure based on FEM that took into account the 

relation between the mesh geometry and magnetic direction [48]. Both original and modified 

RCM procedures have improved the convergence rate of the GMRES solver, and the modified 

RCM showed a higher convergence rate for strong anisotropies. 

Despite many advantages of FEM, such as good representation of complex geometries, 

natural imposition of boundary conditions, reduced sensitivity to high-aspect-ratio cells and 

second-order discretization of viscous terms, significant difficulties remain in the design of 

shock-capturing second-order stabilization terms [49] for the inviscid fluxes. Alternately, the 

edge-based Galerkin formulation of Selmin [50] takes advantage of upwinding schemes 

primarily developed in the FVM context. In Selmin’s formulation, the matrix assembly is carried 

out by looping over edges, instead of looping over elements, substantially reducing the indirect 

memory addressing required for unstructured meshes and yielding considerable computational 

savings for 3D problems. 

As previously mentioned, the majority of numerical simulations in the supersonic and 

hypersonic regimes utilize structured meshes [51, 52]. Unstructured meshes, despite flexibility in 

discretizing complex geometries and ease of generation, are often associated with loss of 

accuracy in shocks and boundary layers. This is most visible in derived quantities such as the 

heat flux distribution in the vicinity of the stagnation point in hypersonic simulations. By their 

very nature, unstructured meshes are not aligned with any flow feature. At high Mach numbers, 

mesh irregularities across shocks induce enthalpy oscillations, which are then transported 

downstream and through the boundary layer, inducing oscillations in the surface heat flux 

distribution. In all fairness, however, it should be noted that similar difficulties can easily be 

encountered with structured grids when they are not aligned with shocks or entropy 

discontinuities, for example with oblique shocks or multiple shocks, which is generally the case 

for complex geometries. 

Many attempts have been made to eliminate this problem by improving shock-grid 

alignment [53-55] or improving the numerical schemes (e.g. improved flux reconstruction [56], 

use of high-order algorithms [57], shock fitting [58] etc.). Habashi et al. [59] have effectively 

shown that the key to accurate use of unstructured grids is automatic anisotropic mesh 
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optimization, and demonstrated accurate hypersonic calculations on both structured [47] and 

unstructured [60] grids. 

Mesh-flow misalignment problems are further compounded in multidisciplinary 

applications. For example, flow and electro-magnetic (EM) quantities have disparate time/length 

scales and are not aligned in space. Thus, mesh optimization of only the flow field may cause 

insufficient resolution of the EM field, especially when discontinuities typical of high-speed 

flows are present. In the present work, the edge-based mesh optimization methodology of [60] is 

generalized for multi-disciplinary applications to simultaneously optimize the mesh according to 

flow field variables such as pressure, density, temperature, turbulence and velocity, as well as the 

electric potential. Results demonstrate that such anisotropic mesh optimization produces 

absolutely necessary complex node/element distributions, impossible to anticipate at the mesh 

generation stage, leading to high resolution despite the disparity of length scales. 

1.5  Thesis Objectives 

The CFD Lab at McGill University is developing an all-Mach number hypersonic code for 

civil aviation, HALO3D (High Altitude Low Orbit 3D), in collaboration with ANSYS and 

funded by Lockheed Martin under an NSRC Industrial Chair. This thesis is the very essential 

electro-magnetic module of HALO3D for conductive flows. It aims to provide an approach, 

compatible to the CFD part, that preserves good computational efficiency, robustness, and 

accuracy. This work focuses on the resistive MHD and low-magnetic Reynolds number models. 

The effects of thermal/chemical non-equilibrium, ablation, catalysis and radiation are tackled by 

parallel efforts at the CFD Lab. 

1.6  Thesis Contributions 

The engineering contribution is to provide an easy-to-use software toolkit that can simulate 

electromagnetic effects, their interaction with flows, and their unique applications in hypersonics. 

A graphical user interface is provided that can set up flow and EM configurations efficiently. In 

the toolkit, there are dedicated tools to monitor the convergence history, to visualize the solution, 

and to edit the grids. Installment guides and tutorials are also provided. Most of the above-

mentioned functionalities were developed by former students at the CFD Lab and experts from 

ANSYS. Thanks to their contributions, it is possible to update the numerical technologies and 

develop new physical models in the HALO3D framework without reinventing the wheel.  
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The author’s specific contributions are summarized as follows: 

1. Development of an edge-based FEM solver for the low-Magnetic Reynolds 

number approximation;  

2. Introduction of Hall effects and development of a hybrid edge/element-based 

assembly strategy to address challenges of asymmetric tensorial electrical conductivity; 

3. Development of an edge-based FEM solver for the resistive MHD model; 

4. Development of anisotropic mesh optimization strategies for heterogeneous 

physical quantities of flow and EM fields. 

1.7  Thesis Outline 

This thesis is organized as follows: in Chapter 2 the mathematical modeling is given for 

both the resistive MHD model and the low-magnetic Reynolds number approximation. Chapter 3 

describes the edge-based FEM numerical formulations. Chapters 4 and 5 presents the numerical 

results of hypersonic flows obtained with the low-magnetic Reynolds number approximation and 

the resistive MHD model, respectively. Chapter 6 provides concluding remarks and future 

developments.  
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2 Mathematical Formulation 

2.1  Resistive MHD Model 

Hypersonic flows under an imposed magnetic field are often modeled by the compressible 

RANS equations and the magnetic induction equation (resistive MHD model). The former 

express the conservation of mass, momentum and energy of the fluid, while the latter is derived 

from the Maxwell equations under the MGD assumptions [61]. The RANS equations can be 

written as 

𝜕𝜌

𝜕𝑡
+ 𝜵 ⋅ (𝜌𝑽) = 0  

 (2.1) 

 

𝜕𝜌𝑽

𝜕𝑡
+ 𝜵 ⋅ (𝜌𝑽𝑽 + 𝑝𝑰) − 𝜵 ⋅ 𝝉 = 𝒋 × 𝑩  

𝜕𝜌𝑒𝑡
𝜕𝑡

+ 𝜵 ⋅ ((𝜌𝑒𝑡 + 𝑝)𝑽) − 𝜵 ⋅ (𝑽 ⋅ 𝝉) + 𝜵 ⋅ 𝒒 = 𝒋 ⋅ 𝑬  

where 𝑽𝑽 is a tensor computed as the outer product, and 𝑽 ⋅ 𝝉 is a vector resulting from the 

product between a vector and a tensor. Using Einstein’s notation, one gets 

(𝑽𝑽)𝑖𝑘 = 𝑽𝑖𝑽𝑘                            (𝑽 ⋅ 𝝉)𝑖 = 𝑽𝑘𝝉𝑖𝑘 

The total magnetic field, 𝑩, is equal to sum of the imposed magnetic field 𝑩0  and the 

induced magnetic field 𝒃. The electromagnetic body force and Joule heating terms appearing on 

the RHS of the momentum and energy equations require the prior knowledge of the 

electromagnetic quantities 𝒋, 𝑩 and 𝑬. These can be computed by the following set of equations, 

assuming that the electrical conductivity 𝜎 is a scalar 

𝒋 = 𝜎 (𝑬 + 𝑽 × 𝑩)  (2.2) 

𝜕𝑩

𝜕𝑡
− 𝜵 × (𝑽 × 𝑩) + 𝜈𝜵 × (𝜵 × 𝑩) = 𝟎  (2.3) 

𝜵 ⋅ 𝑩 = 0  (2.4) 

Eq. (2.2) is Ohm’s law and relates the electric current density to the electric, magnetic, and 

velocity fields; Eq. (2.3) is the magnetic induction equation directly derived from the Maxwell 

equations under the MHD assumptions, while Eq. (2.4) expresses the conservation of the 

magnetic field. The Helmholtz form of Eq. (2.3) [62, 63] can be derived from Eq. (2.3) while 

implicitly respecting the magnetic field free-divergence constraint expressed by Eq. (2.4), i.e. 

𝜕𝑩

𝜕𝑡
− 𝜵 × (𝑽 × 𝑩) − 𝜈𝛻𝟐𝑩 = 𝟎  (2.5) 



  

  

 

20 

By introducing the following non-dimensional variables 

𝒙∗ =
𝒙

𝑙
, 𝑩∗ =

𝑩

𝐵0
, 𝑡∗ =

𝑡𝑉0
𝑙
, 𝑽∗ =

𝑽

𝑉0
 (2.6) 

the magnetic induction equation (2.5) is expressed as 

𝜕𝑩∗

𝜕𝑡∗
− 𝜵∗ × (𝑽∗ × 𝑩∗) −

1

Rem
𝛻𝟐𝑩∗ = 𝟎  (2.7) 

where the magnetic Reynolds number denotes the ratio of the magnetic field convection to its 

diffusion and is defined as 

Rem =
𝑉0𝑙

𝜈
 (2.8) 

For cases where the magnetic Reynolds number is of the order of unity and above, the full 

set of Eqs. (2.9-10) should be considered for adequate modeling of the coupled phenomena 

𝜕𝜌

𝜕𝑡
+ 𝜵 ⋅ (𝜌𝑽) = 𝟎  

(2.9) 

 

𝜕𝜌𝑽

𝜕𝑡
+ 𝜵 ⋅ (𝜌𝑽𝑽 + 𝑝𝑰) − 𝜵 ⋅ 𝝉 = 𝒋 × 𝑩  

𝜕𝜌𝑒𝑡
𝜕𝑡

+ 𝜵 ⋅ ((𝜌𝑒𝑡 + 𝑝)𝑽) − 𝜵 ⋅ (𝑽 ⋅ 𝝉) + 𝜵 ⋅ 𝒒 = 𝒋 ⋅ 𝑬  

𝜕𝑩

𝜕𝑡
− 𝜵 × (𝑽 × 𝑩) − 𝜈𝛻𝟐𝑩 = 𝟎  (2.10) 

For steady-state, this system can be written in compact form as 

𝜵 ⋅ (𝑭𝑨(𝑄) − 𝑭𝑽(𝑄, 𝜵𝑄)) = 𝑺𝐿  (2.11) 

where 𝑄 is 

𝑄 = (𝜌, 𝜌𝑽, 𝜌𝑒𝑡)
𝑇 (2.12) 

and 𝑺𝐿 is 

𝑺𝐿 = (0, 𝜎 (𝑬 + 𝑽 × 𝑩) × 𝑩,𝜎 (𝑬 + 𝑽 × 𝑩) · 𝑬)𝑇 (2.13) 

The inviscid flux vector, the viscous flux vector and the electromagnetic source terms in 

Cartesian coordinates are expressed as 

𝑭𝑥
𝐴 =

{
 
 

 
 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤

𝑢(𝜌𝑒𝑡 + 𝑝)}
 
 

 
 

, 𝑭𝑦
𝐴 =

{
 
 

 
 

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝑣𝑤

𝑣(𝜌𝑒𝑡 + 𝑝)}
 
 

 
 

, 𝑭𝑧
𝐴 =

{
 
 

 
 

𝜌𝑤
𝜌𝑢𝑤
𝜌𝑣𝑤

𝜌𝑤2 + 𝑝

𝑤(𝜌𝑒𝑡 + 𝑝)}
 
 

 
 

 (2.14) 
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𝑭𝑥
𝑉 =

{
 
 

 
 

0
𝜏𝑥𝑥
𝜏𝑥𝑦
𝜏𝑥𝑧

𝐕𝜏𝑥 + 𝑞𝑥}
 
 

 
 

, 𝑭𝑦
𝑉 =

{
 
 

 
 

0
𝜏𝑦𝑥
𝜏𝑦𝑦
𝜏𝑦𝑧

𝐕𝜏𝑦 + 𝑞𝑦}
 
 

 
 

, 𝑭𝑧
𝑉 =

{
 
 

 
 

0
𝜏𝑧𝑥
𝜏𝑧𝑦
𝜏𝑧𝑧

𝐕𝜏𝑧 + 𝑞𝑧}
 
 

 
 

 (2.15) 

𝑺𝐿 = 𝜎

{
 
 

 
 

0
𝐸𝑦𝐵𝑧 − 𝐸𝑧𝐵𝑦 +𝑤𝐵𝑥𝐵𝑧 + 𝑣𝐵𝑥𝐵𝑦 − 𝑢(𝐵𝑦

2 +𝐵𝑧
2)

𝐸𝑧𝐵𝑥 − 𝐸𝑥𝐵𝑧 + 𝑢𝐵𝑦𝐵𝑥 +𝑤𝐵𝑦𝐵𝑧 − 𝑣(𝐵𝑥
2 + 𝐵𝑧

2)

𝐸𝑥𝐵𝑦 − 𝐸𝑦𝐵𝑥 + 𝑢𝐵𝑧𝐵𝑥 + 𝑣𝐵𝑧𝐵𝑦 −𝑤(𝐵𝑥
2 + 𝐵𝑦

2)

(𝐸𝑥 + 𝑣𝐵𝑧 −𝑤𝐵𝑦)𝐸𝑥 + (𝐸𝑦 +𝑤𝐵𝑥 − 𝑢𝐵𝑧)𝐸𝑦 + (𝐸𝑧 + 𝑢𝐵𝑦 − 𝑣𝐵𝑥)𝐸𝑧}
 
 

 
 

 (2.16) 

In the steady state regime, Eq. (2.10) can be expressed in Cartesian coordinates as 

{
 
 
 

 
 
 
𝜕

𝜕𝑧
(𝑤𝐵𝑥 − 𝑢𝐵𝑧) −

𝜕

𝜕𝑦
(𝑢𝐵𝑦 − 𝑣𝐵𝑥) − 𝜈 (

𝜕2𝐵𝑥
𝜕𝑥2

+
𝜕2𝐵𝑥
𝜕𝑦2

+
𝜕2𝐵𝑥
𝜕𝑧2

) = 0

𝜕

𝜕𝑥
(𝑢𝐵𝑦 − 𝑣𝐵𝑥) −

𝜕

𝜕𝑧
(𝑣𝐵𝑧 −𝑤𝐵𝑦) − 𝜈 (

𝜕2𝐵𝑦

𝜕𝑥2
+
𝜕2𝐵𝑦

𝜕𝑦2
+
𝜕2𝐵𝑦

𝜕𝑧2
) = 0

𝜕

𝜕𝑦
(𝑣𝐵𝑧 −𝑤𝐵𝑦) −

𝜕

𝜕𝑥
(𝑤𝐵𝑥 − 𝑢𝐵𝑧) − 𝜈 (

𝜕2𝐵𝑧
𝜕𝑥2

+
𝜕2𝐵𝑧
𝜕𝑦2

+
𝜕2𝐵𝑧
𝜕𝑧2

) = 0

 (2.17) 

2.2  Low-Magnetic Reynolds Number Approximation 

When the magnetic Reynolds number, Rem , is less than unity, the magnetic convection can 

be neglected compared to its diffusion and Eq. (2.3) becomes Laplacian-like, expressing the 

diffusion of a magnetic field that vanishes as it approaches the external boundaries. In this case, 

the induced magnetic field, 𝒃, can be neglected compared to the imposed one, 𝑩𝟎, and Eq. (2.10) 

can be replaced by the current-continuity equation [64], obtained by taking the divergence of the 

Ampere-Maxwell law: 

𝜵 ⋅ (𝜵 × 𝑩) = 𝜇0𝜵 ⋅ 𝒋 = 0 (2.18) 

The electric potential 𝜙 is introduced through 𝑬 = −𝜵𝜙, yielding 

𝜵 ⋅ [𝝈 · (−𝜵𝜙 + 𝐕 × 𝑩0)] = 0 (2.19) 

which is a scalar equation. Note that 𝝈 is the electrical conductivity tensor, a compact way of 

accounting for ion-slip and the Hall effect. Adopting the formulation of Gaitonde and Poggie [4], 

Eq. (2.20) gives the electrical conductivity tensor with the Hall effect  

𝝈 =
𝜎

𝐷
[

𝐵2 + 𝛽2𝐵𝑥
2 𝛽(𝛽𝐵𝑦𝐵𝑥 − 𝐵𝐵𝑧) 𝛽(𝛽𝐵𝑧𝐵𝑥 + 𝐵𝐵𝑦)

𝛽(𝛽𝐵𝑦𝐵𝑥 + 𝐵𝐵𝑧) 𝐵2 + 𝛽2𝐵𝑦
2 𝛽(𝛽𝐵𝑧𝐵𝑦 + 𝐵𝐵𝑥)

𝛽(𝛽𝐵𝑧𝐵𝑥 − 𝐵𝐵𝑦) 𝛽(𝛽𝐵𝑧𝐵𝑦 + 𝐵𝐵𝑥) 𝐵2 + 𝛽2𝐵𝑧
2

] (2.20) 

where 𝐷 = 𝐵2(1 + 𝛽2). The Hall parameter 𝛽 is defined as: 
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𝛽 =
𝜀𝐵

𝑚𝑒𝜐𝑚
 (2.21) 

where 𝜀 is the elemental charge 𝜀 = 1.6022 × 10−19𝐶, 𝑚𝑒 = 9.11 × 10
−31𝑘𝑔 is the mass of a 

single electron, and 𝜐𝑚 is the electron-neutral particle momentum transfer collision frequency 

related to the electrical conductivity: 

𝜐𝑚 =
𝜀2𝑛𝑒
𝑚𝑒𝜎

 (2.22) 

where 𝑛𝑒is the electron number density. Using Eq. (2.22) to substitute 𝜐𝑚 in Eq. (2.21), the Hall 

parameter 𝛽 can be directly related to the fluid properties: 

𝛽 =
𝜎𝐵

𝜀𝑛𝑒
 (2.23) 
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3 Numerical Modeling 

The weak-Galerkin formulation of Eq. (2.1) is obtained by multiplication with a linear test 

function 𝑊𝑖, followed by integration by parts [65] 

∫ 𝑊𝑖
𝛺

𝜕𝑸

𝜕𝑡
− ∫ ∇𝑊𝑖 ∙ (𝐅

𝐴 − 𝐅𝑉)

Ω

+ ∫ 𝑊𝑖𝐧 ∙ (𝐅
𝐴 − 𝐅𝑉)

∂Ω

= ∫ 𝑊𝑖𝑺
𝑳

𝛺

 (3.1) 

The symbol “∙” denotes the inner product between vectors (Appendix A). A linear shape function 

is selected since a smooth higher-order shape function cannot capture discontinuities, such as 

shocks and contact discontinuities. The conservative variables 𝑸 and the source term 𝑺𝐿  are 

interpolated by means of a linear shape function 𝑁𝑖  at node 𝑖 . The inviscid fluxes 𝑭𝐴  are 

discretized by group representation:  

𝑸(𝑥, 𝑡) =∑𝑁𝑗(𝑥)𝑸𝑗(𝑡)

𝑁𝐺

𝑗=1

,   𝐅𝐴(𝑥, 𝑡) =∑𝑁𝑗(𝑥)𝐅
𝐴
𝑗(𝑡)

𝑁𝐺

𝑗=1

,    𝑺𝐿(𝑥, 𝑡) =∑𝑁𝑗(𝑥)𝑺𝑗
𝐿(𝑡)

𝑁𝐺

𝑗=1

 (3.2) 

where 𝑁𝐺  is the total number of nodes, 𝑄𝑗, 𝐅
𝐴
𝑗 and 𝑺𝑗

𝐿 are the nodal values only dependent on 

time. Substituting Eq. (3.2) into Eq. (3.1) yields 

∑ ∑ ∫ 𝑊𝑖𝑁𝑗
𝑑𝑄𝑗

𝜕𝑡
𝑑𝑉

𝑉𝑒 𝑗∈𝐾𝑒𝑒∈𝐸𝑖

− ∑ ∑ ∫ 𝑁𝑗𝛻𝑊𝑖 ⋅ 𝐅
𝐴
𝑗𝑑𝑉

𝑉𝑒𝑗∈𝐾𝑒𝑒∈𝐸𝑖

+ ∑ ∫ ∇𝑊𝑖 ⋅ 𝐅
𝑉𝑑𝑉

𝑉𝑒∈𝐸𝑖

+ ∑ ∫ 𝑊𝑖𝐧 ⋅ (𝐅
𝐴 − 𝐅𝑉)

𝐴

𝑑𝐴

𝑒∈𝐹𝑖

= ∑ ∑ ∫ 𝑊𝑖𝑁𝑗𝑺𝑗
𝐿𝑑𝑉

𝑉𝑒 𝑗∈𝐾𝑒𝑒∈𝐸𝑖

 

(3.3) 

where 𝐸𝑖 is the set of elements sharing the 𝑖-th vertex, 𝐹𝑖 is the set of boundary faces sharing the 

𝑖-th vertex, 𝐾𝑒 is the set of nodes of the 𝑒-th element, 𝑉 is the whole volume domain, and 𝑉𝑒 is 

the volume of 𝑒-th element.  

3.1  Lumped-Mass Matrix 

Introducing the lumped-mass matrix and the consistent-mass matrix, 

     𝐿𝑖 = ∑ ∫𝑊𝑖𝑑𝑉             

𝑉𝑒

𝐻𝑖𝑗 = ∑ ∫ 𝑊𝑖𝑊𝑗𝑑𝑉

𝑉𝑒𝑒∈𝐸𝑖𝑒∈𝐸𝑖

 (3.4) 

the temporal term in Eq. (3.3) can then be written as 

∑ ∑ ∫ 𝑊𝑖𝑁𝑗
𝑑𝑸𝑗

𝜕𝑡
𝑑𝑉

𝑉𝑒 𝑗∈𝐾𝑒𝑒∈𝐸𝑖

= 𝐿𝑖
𝑑𝑸𝑖
𝜕𝑡

  + ∑ 𝐻𝑖𝑗
𝑸𝑗 −𝑸𝑖

2
𝑗∈𝐾𝑖

 (3.5) 
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The source term in Eq. (3.3) reads 

∑ ∑ ∫ 𝑊𝑖𝑁𝑗𝑺𝑗
𝐿𝑑𝑉

𝑉𝑒 𝑗∈𝐾𝑒𝑒∈𝐸𝑖

= 𝐿𝑖𝑺𝑗
𝑳   + ∑ 𝐻𝑖𝑗

𝑺𝒋
𝐿 − 𝑺𝒊

𝐿

2
𝑗∈𝐾𝑖

  (3.6) 

3.2  Inviscid Fluxes 

The edge-based Galerkin formulation, first introduced by Selmin [50], consists of a 

summation over pairs of nodes during assembly, such that solution-dependent quantities are 

factored out from quantities dependent on the spatial discretization. Consequently, the edge 

coefficients associated with the geometrical characteristics of the mesh can be computed in a pre-

processing phase and not at each solution iteration [66]. The edge-based assembly also handles 

hybrid meshes with a unique data structure that is computationally more efficient than its 

element-based counterpart [67]. Edge-based assembly also permits Total Variation Diminishing 

(TVD) schemes to stabilize the advection terms. Moreover, a one-to-one analogous relation has 

been reported between the edge-based FEM and FVM for both simplicial [68] and non-simplicial 

[69] meshes.  

The domain assembly of the inviscid fluxes 𝑭𝐴 in Eq. (3.3) can be reformulated in an edge-

based fashion [50] 

−∑ ∑ ∫ 𝑁𝑗𝛻𝑊𝑖 ⋅ 𝑭
𝐴
𝑗𝑑𝑉

𝑉𝑒𝑗∈𝐾𝑒𝑒∈𝐸𝑖

= ∑ 𝜼𝑖𝑗 ⋅
𝑭𝐴𝑖 +𝑭

𝐴
𝑗

2
𝑗∈𝐾𝑖

−∑ 𝝌𝑖𝑗
𝑗∈𝐾𝑖

⋅
𝑭𝐴𝑗 −𝑭

𝐴
𝑖

2
 (3.7) 

where 𝐾𝑖  is the set of nodes connected to 𝑖 -th vertex via an element, 𝜼𝑖𝑗  and 𝝌𝑖𝑗  are edge 

coefficients, defined as 

𝜼𝑖𝑗 = ∑ ∫ (𝑊𝑖𝛻𝑁𝑗 −𝑁𝑗𝛻𝑊𝑖) 𝑑𝑉
𝑉𝑒𝑒∈𝐸𝑖

                  𝝌𝑖𝑗 = ∑ ∫ 𝑊𝑖𝑁𝑗𝒏 𝑑𝐴
𝐴𝑒∈𝐸𝑖

 (3.8) 

Note that the coefficient 𝝌𝑖𝑗 is only defined for boundary edges. In Eq. (3.7), the first term 

on the RHS is an arithmetic average of inviscid fluxes between node 𝑖 and node 𝑗. To provide 

stabilization for advection-dominated flows, the vector of inviscid fluxes 𝑭𝐴 is replaced with a 

numerical counterpart, 𝚽num evaluated at the edge’s midpoint, i.e. 

𝜼𝑖𝑗 ⋅
𝑭𝐴𝑖 + 𝑭

𝐴
𝑗

2
= 𝜱𝑛𝑢𝑚(𝑄𝑖, 𝑄𝑗, 𝜼𝑖𝑗) (3.9) 

The numerical inviscid fluxes used in this Thesis are the Roe fluxes [70], being nonlinear 

functions of the nodal variables and of the edge coefficients. 
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3.2.1 Viscous Fluxes 

The domain assembly of the viscous fluxes 𝑭𝑽in Eq. (3.3) is composed of the stress tensor, 

the inner product of stress tensor and velocity, and the heat flux. The stress tensor is assembled 

in an edge-based fashion as [68] 

∑∫ 𝛻𝑊𝑖 ⋅ 𝝉𝑑𝑉
𝑉𝑒∈𝐸𝑖

= ∑[(𝜇𝑖𝑗𝑡𝑟(𝒅𝑖𝑗)𝑰 + (𝜇𝑖𝑗 + 𝜆𝑖𝑗)𝒅𝑖𝑗
𝑠 + (𝜆𝑖𝑗 − 𝜇𝑖𝑗)𝒅𝑖𝑗

𝐴 )(𝑽𝑗 − 𝑽𝑖)]

𝑗∈𝐾𝑖

 (3.10) 

The inner product between a vector and a second-order tensor is defined in Appendix A. 

The edge mid-point quantities, 𝜇𝑖𝑗 and 𝜆𝑖𝑗, are calculated by the arithmetic average of the node 

values. The edge coefficient 𝒅𝑖𝑗 is a second order tensor defined as 

𝒅𝑖𝑗 = ∑ ∫ (𝛻𝑊𝑖𝛻𝑁𝑗) 𝑑𝑉
𝑉𝑒𝑒∈𝐸𝑖

 (3.11) 

tr( ) is the trace operator and 𝒅𝑖𝑗
𝑆  and 𝒅𝑖𝑗

𝐴  are the symmetric and anti-symmetric part of 𝒅𝑖𝑗, i.e. 

𝒅𝑖𝑗
𝑆 =

𝒅𝑖𝑗 + (𝒅𝑖𝑗)
𝑇

2
    𝒅𝑖𝑗

𝐴 =
𝒅𝑖𝑗 − (𝒅𝑖𝑗)

𝑇

2
       (3.12) 

Similarly, the inner product of stress tensor and velocity are assembled as 

∑∫ ∇𝑊𝑖 ⋅ (𝝉 ⋅ 𝑽)𝑑𝑉
𝑉𝑒∈𝐸𝑖

= ∑[(𝜇𝑖𝑗tr(𝐝𝑖𝑗)𝐈 + (𝜇𝑖𝑗 + 𝜆𝑖𝑗)𝐝𝑖𝑗
𝑠 + (𝜆𝑖𝑗 − 𝜇𝑖𝑗)𝐝𝑖𝑗

𝐴 ): 𝑽𝑖𝑗(𝑽𝑗 − 𝑽𝑖)]

𝑗∈𝐾𝑖

 

(3.13) 

The column product between two second-order tensors is defined in Appendix A. The heat 

fluxes of the translational-rotational energy mode are assembled as 

∑∫ ∇𝑊𝑖 ⋅ 𝒒𝑑𝑉
𝑉𝑒𝑒∈𝐸𝑖

= −∑[𝑘𝑖𝑗tr(𝐝𝑖𝑗)(𝑇𝑗 − 𝑇𝑖)]

𝑗∈𝐾𝑖

 (3.14) 

3.3  Magnetic Induction Equation (Resistive MHD Model) 

For steady-state computations, the weak formulation of Eq. (2.10) is written as 

∑ ∫𝑊𝑖(𝜵 × 𝑭
𝐵 +  𝜈𝛻2𝑩 )𝑑𝑉 =

𝑉𝑒𝑒∈𝐸𝑖

𝟎  (3.15) 

where 𝑭𝐵 = 𝑽 × 𝑩 is introduced for simplicity. Noting that 

𝑊𝑖(𝜵 × 𝑭
𝐵) = 𝜵 × (𝑊𝑖𝑭

𝐵) − (𝜵𝑊𝑖 × 𝑭
𝐵) (3.16) 

and utilising the divergence theorem, Eq. (3.15) can be rewritten as 
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−∑ ∫((𝜵𝑊𝑖 × 𝑭
𝐵) − 𝑊𝑖𝜈𝛻

2𝑩 )𝑑𝑉

𝑉𝑒𝑒∈𝐸𝑖

+ ∑ ∫𝑊𝑖𝒏 × 𝑭
𝐵 𝑑𝐴

𝐴𝑒

=

𝑒∈𝐹𝑖

 𝟎  (3.17) 

Analogous to the treatment of the inviscid flux 𝑭𝐴 in Eq. (3.7), the convection term (the 

first term) in Eq. (3.17) is cast in an edge-based fashion as 

−∑ ∫ 𝜵𝑊𝑖 × 𝑭
𝐵 𝑑𝑉

𝑉𝑒𝑒∈𝐸𝑖

= ∑ 𝜼𝑖𝑗 ×
𝑭𝑗
𝐵 + 𝑭𝑖

𝐵

2
− 𝝌𝑖𝑗 ×

𝑭𝑗
𝐵 − 𝑭𝑖

𝐵

2
𝑗∈𝐾𝑖

  (3.18) 

Assuming the magnetic diffusivity coefficient 𝜈 to be constant, the diffusion term in Eq. 

(3.17) is first integrated by part, yielding 

∑ ∫  𝑊𝑖𝜈𝛻
2𝑩 𝑑𝑉

𝑉𝑒𝑒∈𝐸𝑖

= −𝜈 ∑ ∫  𝜵𝑊𝑖 ⋅  𝜵𝑩 𝑑𝑉

𝑉𝑒𝑒∈𝐸𝑖

+  𝜈 ∑ ∫  𝑊𝑖𝒏 ⋅  𝜵𝑩 𝑑𝐴

𝑨𝒆𝑒∈𝐹𝑖

  (3.19) 

Note also that the dot product of the gradient tensor and the normal vector corresponds to 

the normal derivative of the magnetic field, namely 𝒏 ⋅  𝜵𝑩 = 𝜕𝑩 𝜕𝑛⁄ . The edge-based assembly 

of Eq. (3.19) thus is 

∑ ∫  𝑊𝑖𝜈𝛻
2𝑩 𝑑𝑉𝑒

𝑉𝑒𝑒∈𝐸𝑖

= −𝜈 ∑  [ tr(𝐝𝑖𝑗)(𝑩𝑗 −𝑩𝑖) + 𝝌𝑖𝑗 ⋅ ( 𝜵𝑩𝑗 −  𝜵𝑩𝑖) ]

𝑗∈𝐾𝑖

+  𝜈𝝃𝑖 ⋅  𝜵𝑩𝑖  (3.20) 

where the edge coefficient 𝝃𝑖, is computed as 

𝝃𝑖 = ∑ ∫  𝑊𝑖𝒏 𝑑𝐴

𝐴𝑒𝑒∈𝐹𝑖

  (3.21) 

The discretization of the third term in Eq. (3.17) reads 

∑ ∫𝑊𝒊𝒏 × 𝑭
𝐵 𝑑𝐴

𝐴𝑓

=

𝑒∈𝐹𝑒

∑  𝝌𝑖𝑗 × (𝑭𝑗
𝐵 − 𝑭𝑖

𝐵) 

𝑗∈𝐾𝑖

+ 𝝃𝑖 × 𝑭𝑖
𝐵  (3.22) 

Finally, recapitulating the above equations, the edge-based finite element formulation of the 

magnetic problem can be summarized as 

∑ 𝜼𝑖𝑗 ×
𝑭𝑗
𝐵 + 𝑭𝑖

𝐵

2
− 𝝌𝑖𝑗 ×

𝑭𝑗
𝐵 − 𝑭𝑖

𝐵

2
− 𝜈𝑑𝑖𝑗(𝑩𝑗 −𝑩𝑖)

𝑗∈𝐾𝑖

+ 𝐵𝑇 = 𝟎 (3.23) 

3.4  Current Continuity Equation (Low-Magnetic Reynolds Number 

Formulation) 

The weak-Galerkin formulation of the current-continuity equation is written as 
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∑ ∫ 𝜵𝑊𝑖 ⋅ (𝝈 · 𝜵𝜙)𝑑𝑉𝑒
𝑉𝑒𝑒∈𝐸𝑖

+ ∑ ∫𝑊𝑖𝒏 ⋅ 𝒋 𝑑𝐴𝑒
𝐴𝑒𝑒∈𝐹𝑖

− ∑ ∫ 𝜵𝑊𝑖 ⋅ (𝝈 · 𝑭
𝐵)𝑑𝑉𝑒

𝑉𝑒𝑒∈𝐸𝑖

= 0 (3.24) 

Cast in an edge-based fashion, Eq. (3.24) becomes 

∑ 𝝈𝒊𝒋 ∶ 𝜼𝒊𝒋
𝑭𝒋
𝐵 + 𝑭𝒊

𝐵

2
− 𝝈𝒊𝒋 ∶ 𝝌𝒊𝒋

𝑭𝒋
𝐵 − 𝑭𝒊

𝐵

2
𝑗∈𝐾𝑖

+ 𝝈𝒊𝒋 ∶ 𝒅𝒊𝒋(𝜙𝑗 − 𝜙𝑖) = 0 (3.25) 

Noting that 

𝝈𝒊𝒋 ∶ 𝒅𝒊𝒋 = 𝝈𝒊𝒋
𝑆 ∶ 𝒅𝒊𝒋 + 𝝈𝒊𝒋

𝐴 ∶ 𝒅𝒊𝒋 = 𝝈𝒊𝒋
𝑆 ∶ 𝒅𝒊𝒋 (3.26) 

where 𝝈𝒊𝒋
𝑆 =

𝝈+𝝈𝑇

2
 and 𝝈𝒊𝒋

𝐴 =
𝝈−𝝈𝑇

2
 are the symmetric and skew-symmetric decompositions of 𝝈. 

Eq. (3.25) is not applicable when the Hall effect is taken into account since the information 

stored in the skew-symmetric matrix of 𝝈  is lost during the assembly of the second-order 

derivative term, 𝝈𝒊𝒋 ∶ 𝒅𝒊𝒋(𝜙𝑗 − 𝜙𝑖) . To address this drawback of edge-based assembly, we 

rewrite the first term in Eq. (3.24) as  

∑ ∫ 𝜵𝑊𝑖 ⋅ (𝝈 · 𝜵𝜙)𝑑𝑉𝑒
𝑉𝑒𝑒∈𝐸𝑖

= ∑ ∫ 𝜵𝑊𝑖 ⋅ (𝝈
𝑆 · 𝜵𝜙)𝑑𝑉𝑒

𝑉𝑒𝑒∈𝐸𝑖

+ ∑ ∫ 𝜵𝑊𝑖 ⋅ 𝑭
𝐸𝐴𝑑𝑉𝑒

𝑉𝑒𝑒∈𝐸𝑖

 (3.27) 

where 𝑭𝐸𝐴 is defined as 𝝈𝐴 · 𝜵𝜙 and is treated as a flux vector. Eq. (3.25) therefore becomes 

∑ 𝝈𝒊𝒋 ∶ 𝜼𝒊𝒋
𝑭𝒋
𝐵 + 𝑭𝒊

𝐵

2
− 𝝈𝒊𝒋 ∶ 𝝌𝒊𝒋

𝑭𝒋
𝐵 − 𝑭𝒊

𝐵

2
𝑗∈𝐾𝑖

+ 𝝈𝒊𝒋
𝑆 ∶ 𝑫𝒊𝒋(𝜙𝑗 − 𝜙𝑖) + 𝐶𝑇 = 0 (3.28) 

where the edge-based correction term 𝐶𝑇 is defined as  

𝐶𝑇 = −𝜼𝒊𝒋
𝑭𝒋
𝐸𝐴 + 𝑭𝒊

𝐸𝐴

2
+ 𝝌𝒊𝒋

𝑭𝒋
𝐸𝐴 − 𝑭𝒊

𝐸𝐴

2
 (3.29) 

When solving Eq. (3.28), 𝑭𝐸𝐴 is evaluated using the solution of the previous time step since 

it involves the derivative of the electric potential. The solution algorithm therefore is only 

partially implicit and the convergence rate of the simulation is hampered. Moreover, the edge-

based evaluation of derivatives is at best first-order accurate due to the approximation of a 

continuous variable by the edge’s midpoint value. An alternative to the use of the edge-based 

correction term is obtained by reverting to the element-based assembly of the first term in Eq. 

(3.24)  

∑ ∫ 𝜵𝑊𝑖 ⋅ (𝝈 · 𝜵𝜙)𝑑𝑉𝑒
𝑉𝑒𝑒∈𝐸𝑖

= ∑ ∑ 𝜔𝑔𝜵𝑊𝑖𝑔 ⋅ (∑ 𝑁𝑘𝑔
𝑘∈𝐾𝑒

𝝈𝒌 · ∑ 𝜵𝑁𝑘𝑔
𝑘∈𝐾𝑒

𝜙𝑘)

𝑔∈𝐺𝑒𝑒∈𝐸𝑖

 (3.30) 
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Eq. (3.25) then becomes  

∑ 𝝈𝒊𝒋 ∶ 𝜼𝒊𝒋
𝑭𝒋
𝐵 + 𝑭𝒊

𝐵

2
− 𝝈𝒊𝒋 ∶ 𝝌𝒊𝒋

𝑭𝒋
𝐵 − 𝑭𝒊

𝐵

2
𝑗∈𝐾𝑖

+ ∑ ∫ 𝜵𝑊𝑖 ⋅ (𝝈 · 𝜵𝜙)𝑑𝑉𝑒
𝑉𝑒𝑒∈𝐸𝑖

= 0 (3.31) 

yielding a mixed element-based and edge-based assembly.  

3.5  Solution Strategy 

Although Eqs. (3.23) and (3.28) are expressed for the steady-state case, the solution strategy 

makes use of a pseudo-transient continuation method where the original steady problem is 

transformed into a pseudo-unsteady one 

𝑨 ∆𝑸𝑛+1 = −𝑹(𝑸𝑛) 𝑛 = 0,1,2,… (3.32) 

with 𝑹 being the residual of Eq. (3.3), Eq. (3.23) or Eq. (3.28) and the Jacobian matrix 𝑨 is 

𝑨 = [
1

∆𝜏
𝑰 +

𝜕�̃�

𝜕𝑸
]

𝑛

 (3.33) 

The pseudo-time step ∆𝜏𝑛  is chosen to locally satisfy the CFL stability condition [71]. 

Small values of ∆𝜏𝑛 increase the diagonal dominance of the matrix, making its inversion easier 

and as ∆𝜏𝑛 increases, the first term on the RHS of Eq. (34) vanishes and the pseudo-unsteady 

system (33) reverts to a Newton method. Eq. (33) is solved by the GMRES method. To 

accelerate convergence, an ILU factorization of matrix 𝑨 is used as a right preconditioner [72]. 

The same ∆𝜏𝑛 is used for the flow and EM equations. Since a simultaneous solution approach 

would require substantial computing resources, a segregated approach is selected. The algorithm 

consists of computing a sequence of solutions of the two problems, as illustrated in Figure 1. 

 

 

Figure 1. Sequence of solutions of the segregated approach. 

3.6  Parallelization 

Parallelization is realized by the standard message passing interface (MPI) [73]. ParMETIS 

[74] is used to partition the domain and minimize communication between processors. The 

domain is divided into partitions with one processor designated for each. The overlapping 

regions between partitions are updated with the solution is. A sparse parallel block AIJ format 
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matrix is assembled in the PETSc framework [75, 76]. Block Jacobi preconditioning [77] 

partitions the linear system into different blocks. By default, the number of blocks is the same as 

the number of processors. Since the blocks are used as preconditioners, it is not necessary to 

solve them exactly. Each block is solved approximately by applying its ILU [78] preconditioner 

of fill-in level zero with only one iteration. This procedure can be illustrated for Eq. (3.34), 

where 𝑛 is the number of blocks, 𝐴1, 𝐴2, … 𝐴𝑛 are the block matrices from the linear system, 𝑏1, 

𝑏2 , … 𝑏𝑛  are the corresponding block vectors in the intermediate steps of GMRES, and 𝑃1 , 

𝑃2, … 𝑃𝑛 are the ILU preconditioners of 𝐴1, 𝐴2, … 𝐴𝑛, respectively. Note that in the last step, 

the diagonal block 𝐴𝑖 is approximately inverted by replacing it with the ILU preconditioner 𝑃𝑖. 
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4 Low-Magnetic Reynolds Number Formulation 

In this chapter, results are presented under the low-magnetic Reynolds number formulation 

and the resistive MHD model will be covered in the next chapter. The flow and electro-magnetic 

libraries are loosely-coupled. In all of the solvers, the Jacobian is assembled and stored explicitly. 

Six test cases are presented. In Section 4.1, the current-continuity equation solver is first 

validated through a study of 2D segmented electrodes proposed by Zheng et al. [79]. The Hall 

effect is incorporated by utilizing a tensorial electrical conductivity. Sections 4.2 and 4.3 present, 

respectively, a Mach 5 inviscid flow and a Mach 4.75 laminar flow over a sphere. The first two 

test cases use structured grids, while the third test case is with an isotropic unstructured grid. 

These cases are used to examine the accuracy and performance of the proposed formulation.  

Sections 4.5-4.7 present, respectively, a Mach 13.26 turbulent flow past an Apollo capsule 

with an angle of attack of 18.6°, a Mach 21.38 laminar flow over a sphere, and a Mach 17.61 

turbulent flow over the Orbital Re-entry Experiment (OREX) capsule. Unstructured grids are 

used for these test cases, and an edge-based mesh optimization methodology as in [60] is used to 

adapt on an aggregate number of flow quantities (pressure, density, temperature, velocity and 

turbulent viscosity), as well as an EM quantity of interest (the electric potential in this chapter). 

The capabilities, and absolute necessity, of multi-disciplinary anisotropic mesh optimization are 

demonstrated in the last three cases using different solution optimization criteria.  

4.1  Code Validation for Solving the Current-Continuity Equation 

The validation of the current-continuity equation solver is performed by simulating ionized 

flow through singly-paired electrodes as shown in Figure 2. The tensor electrical conductivity 𝝈 

is defined in Eq. (2.20).  
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Figure 2. MHD channel flow through singly-paired electrodes. 

 

The conductive flow has a uniform electrical conductivity 𝜎0 of 20 Ω−1𝑚−1. This study 

utilizes a structured mesh with 300×160×1 cells. The top and bottom walls are assumed to be 

adiabatic. The air is considered as a thermally perfect gas and the free-stream conditions are as 

follows: 

𝑇∞ = 1000 𝐾,   𝑝∞ = 1.00 × 105 𝑃𝑎,   𝑉∞ = 2535.75
𝑚

𝑠
, 𝛾 = 1.4, 𝐾𝑛 = 2.79 × 10−6 

The magnetic induction is imposed along the 𝑧 -axis and is set to 0.5 𝑇 . The current 

continuity solver assumes Dirichlet boundary conditions on the electrodes and the electric 

potential on the top and bottom electrodes is specified to be −30𝑉 and 30𝑉, respectively. 

Figure 3 and 4 show the contours of the electric potential with 𝛽 = 0 and 1, obtained using 

the mixed assembly given by Eq. (3.31). The results capture the Hall effect and are in good 

agreement with Ref. [79]. Figures 3 and 4 show that the potential difference between the two 

electrodes is evidently smaller than between the insulators, due to the establishment of an electric 

current connecting the electrodes and the release of charged particles. Figure 4 additionally 

shows that the Hall effect, as anticipated, introduces asymmetry into the distribution of the 

electric potential. 
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In Figure 5, we compare between the distributions of electric potential for 𝛽 = 1 at 𝑥 =

0.05𝑚 given by the mixed assembly and by the edge-based assembly with correction term. The 

CFL for both cases is 96. Figure 6 shows the convergence curves of the mixed assembly for 𝛽 =

1, 5, 20 and the edge-based assembly for 𝛽 = 1, all with a CFL = 96. It is shown that for lower 

values of the Hall parameter, the two assembly approaches have similar results and convergence 

behavior. However, when the Hall parameter is increased, the convergence behavior of the edge-

based assembly is affected by the correction term, and the CFL has to be reduced. For 𝛽 = 20, 

the simulation using the edge-based assembly fails to converge even at very low CFLs. On the 

other hand, the mixed assembly converges with high CFL (96), even for 𝛽 = 20. As shown in 

Figure 6, the convergence of the simulations with the mixed assembly is substantially slower for 

larger Hall parameters, requiring 21,000 iterations for 1 order of magnitude drop for 𝛽 = 20, 

while a 7-order magnitude drop takes only 4,000 iterations for 𝛽 = 1. The slower convergence 

behavior for larger 𝛽 can be explained by examining Eq. (2.20): as 𝛽 increases, the off-diagonal 

elements of 𝝈 become nontrivial and eventually grow to a magnitude comparable with their 

diagonal counterparts, hence the Jacobian of the resulting linear system ceases to be diagonally-

dominant, negatively affecting the convergence rate.  
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Figure 3. MHD channel flow through singly-paired electrodes:  

electric potential (V) contours between the electrodes with 𝛽 = 0. 

 

 

Figure 4. MHD channel flow through singly-paired electrodes:  

electric potential (V) contours between the electrodes with 𝛽 = 1. 
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Figure 5. MHD channel flow through singly-paired electrodes: 

electric potential distribution at 𝑥 = 0.05𝑚 with 𝛽 = 1. 

 

 

Figure 6. MHD channel flow through singly-paired electrodes:  

convergence history for 𝛽 = 1, 5, 10. 
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4.2  Mach 5 Inviscid Flow Past a Sphere 

In the second test case, a Mach 5 inviscid flow past a sphere is simulated under the effect of 

an imposed magnetic dipole. The sphere radius is 𝑟0 = 10 𝑚𝑚 and the properties of the free 

stream are 

𝑇∞ = 100 𝐾, 𝑝∞ = 1587 𝑃𝑎, 𝜌∞ = 0.055 𝑘𝑔 𝑚−3,  𝜎∞ = 794 Ω
−1𝑚−1, 𝑉∞ = 1022 𝑚 𝑠−1, 𝛾 = 1.4, 

𝐾𝑛 = 9.29 × 10−5      

The electric conductivity is assumed to be uniform in the entire domain, and equal to its free 

stream value. The imposed magnetic field is created by a dipole mounted at the center of the 

sphere, expressed as: 

𝑩 =
𝜇0[3𝒓(𝒓 · �̂�) − 𝑟

2�̂�)]𝑀

4𝜋𝑟5
 (4.35) 

where: 

 
𝑀 =

2𝜋𝐵0𝐿
3

𝜇0
, 𝒓 = (𝑥, 𝑦, 𝑧)𝑇 and 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 

 

 
with �̂� = (1, 0,0)𝑇, a unit vector denoting the direction of the dipole moment and the origin of 

the Cartesian system of coordinates being at the center of the sphere. The boundary conditions 

for the electric potential are as follows: the electric potential at the far boundary (inlet) is set to 

0 𝑉, while on the outflow boundary and on the sphere surface, the current is assumed to flow 

along the boundary, namely, 

𝒋 · 𝒏 = 0.  

Numerical results are presented in terms of the non-dimensional Stuart number: 

𝑆𝑡 =
𝜎∞𝐵0

2𝑟0
𝜌∞𝑉∞

 (4.36) 

This non-dimensional group, also known as Stuart number, measures the ratio of 

electromagnetic forces to inertial ones and is varied here by setting the value of the imposed 

magnetic field intensity 𝐵0. The applied magnetic field in the center of the sphere is provided in 

Table 1. The CFL starts at 1 and is exponentially increased to 50 within 100 Newton iterations. 

𝑆𝑡 0 1 2 3 4 5 6 

𝐵0[𝑇] 0.000 2.642 3.737 4.577 5.285 5.909 6.472 

Table 1. Strength of applied dipole for Mach 5 inviscid flow over a sphere. 
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Grid independence is studied using a coarse mesh containing 171,105 nodes and 163,840 

hexahedral bi-linear elements (G2, Figure 7), and a fine mesh containing 1,339,585 nodes and 

1,310,720 elements (G3). In Figure 8, the static temperature profiles along the stagnation line are 

plotted for 𝑆𝑡 = 0 (no imposed magnetic field) and 𝑆𝑡 = 6. While a finer mesh (G3) is more 

effective in terms of shock sharpness, the differences between the two meshes are imperceptible. 

We therefore proceed with the coarser mesh (G2) for the sake of computational efficiency. 

As described in Section 3.1, the edge-based discretization introduces a correction term: 

∑ 𝐻𝑖𝑗
𝑺𝒋
𝑳 − 𝑺𝒊

𝑳

2
𝑗∈𝐾𝑖

 

In Figure 9, the impact of this term is investigated by plotting the static temperature profiles 

across the shockwave for 𝑆𝑡 = 6 . No observable difference is found when neglecting the 

correction term.  

In Figures 10, 11 and 12, the contours of static temperature, pressure and Mach number are 

shown for 𝑆𝑡 = 0 and 𝑆𝑡 = 6. Under the influence of an increasing electromagnetic body force, 

the bow shock standoff distance is significantly increased.  

To demonstrate the effects of the induced electric field, the electric potential and the three 

components of the electric field are exhibited in Figure 13. The electric potential is non-uniform 

only in regions close to the sphere surface and the resulting electric field is therefore non-zero 

only in these regions. The induced electric field generally enhances MHD heat-shield. Figure 14 

reports the shock standoff distance, made non-dimensional with radius, as a function of the 

Stuart number. The results obtained with the standard low-magnetic Reynolds number 

approximation and the simplified version (neglecting the induced electric field) are compared 

with the literature [4, 27, 28]. Results of the simplified low-magnetic Reynolds number 

approximation are in reasonable agreement with those of Poggie and Gaitonde [4]. When 𝑆𝑡 is 

increased from 0 to 6, the shock standoff distance shows an increase of 70%. This is as expected 

since both are performed without considering the induced electric field. When the induced 

electric field is accounted for, an 87% increase in shock standoff distance is observed for 𝑆𝑡 = 6.  
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Figure 7. Mach 5 inviscid flow past a sphere:  

coarse mesh (G2). 
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Figure 8. Mach 5 inviscid flow past a sphere:  

comparison of static temperature across the shock with different meshes. 

 

 

Figure 9. Mach 5 inviscid flow past a sphere:  

comparison of static temperature across the shock with/without the edge-based correction term.  
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\ Figure 10. Mach 5 inviscid flow past a sphere:  

contour plots of static temperature (K) for 𝑆𝑡 = 0 and 𝑆𝑡 = 6. 

 
 

  

Figure 11. Mach 5 inviscid flow past a sphere:  

contour plots of pressure (Pa) for 𝑆𝑡 = 0 and 𝑆𝑡 = 6. 
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Figure 12. Mach 5 inviscid flow past a sphere:  

contour plots of Mach number for 𝑆𝑡 = 0 and 𝑆𝑡 = 6. 

 

 

 

  

Figure 13. Mach 5 inviscid flow past a sphere:  

contour plots of electric potential (V) and induced electric field (V/m) for 𝑆𝑡 = 6. 
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Figure 14. Mach 5 inviscid flow past a sphere:  

shock standoff distance against Stuart number. 

 

The convergence of the numerical results can be assessed, as in Figure 15, via the 𝐿2 norm 

of the residual 𝑅  vs. Newton iterations for 𝑆𝑡 = 6 . After 78 iterations the residual drops 

approximately 4 orders of magnitude, which is sufficient for inviscid flows.  

 

Figure 15. Mach 5 inviscid flow past a sphere:  

 𝐿2 norm of residual vs. Newton iterations 𝑆𝑡 = 6. 
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4.3  Mach 4.75 Laminar Flow Past a Sphere 

The third test case is a Mach 4.75 laminar flow of Argon past a sphere. The radius of the 

sphere is 𝑟0 = 38.1 𝑚𝑚  and a hybrid mesh consisting of 196,686 tetrahedral elements and 

224,074 nodes is shown in Figure 16. The inset in Figure 16 highlights the prismatic layers of 

365,760 elements used to resolve the boundary layer. The mesh ought to be fine enough to 

demonstrate the effect of Stuart number on standoff distance. For more quantitative answers, 

mesh optimization as used in [60] should be employed and is introduced in Section 4.4.  

The free stream conditions are 

𝑇∞ = 1100 𝐾, 𝑝∞ = 27.8 𝑃𝑎, 𝜌∞ = 1.214 × 10−4 𝑘𝑔 𝑚−3,  𝑉∞ = 3 × 103 𝑚 𝑠−1, 𝛾 = 1.4, 𝐾𝑛 = 

2.92 × 10−2     

The electric conductivity of Argon is set to [80]: 

 𝜎(𝑇) = 3.34 × 10−10
𝛼

𝛽√𝑇
  

where: 

 𝛼 = 0.00623 and 𝛽 = 5 × 10−17 𝑐𝑚2   

The free stream electric conductivity is thus 

 𝜎∞ = 1254.78 Ω
−1𝑚−1  

The imposed magnetic field and the boundary conditions of the electric potential are the 

same as in the previous test case. The Reynolds number based on the sphere radius is 𝑅𝑒 = 148 

and a laminar flow assumption is justified. The CFL starts at 0.01 and is exponentially increased 

to 20 within 50 Newton iterations. An isothermal boundary condition is imposed at the wall by 

setting 𝑇𝑤 = 300 𝐾. As in the previous test case, numerical results are presented in terms of the 

non-dimensional Stuart number.  

Figures 17, 18 and 19 show the contours of static temperature, pressure and Mach number 

for 𝑆𝑡 = 0 and 𝑆𝑡 = 6. The applied magnetic field in the center of the sphere is provided in 

Table 2. As for the inviscid case, the bow shock is significantly pushed away from the surface 

under the influence of an increasing electromagnetic body force. 

 



  

  

 

43 

 

𝑆𝑡 0 1 2 3 4 5 6 

𝐵0[𝑇] 0.00 0.09 0.12 0.15 0.17 0.20 0.21 

Table 2. Strengths of the applied dipoles for Mach 4.75 laminar flow over a sphere. 

Figure 20 shows the contours of electric potential and induced electric field. Similar to the 

test case of the preceding section, a non-uniform electric potential is observed only in regions 

adjacent to the sphere indicating that the induced electric field is nontrivial only in these regions.  

Figure 21 shows shock standoff distances as a function of 𝑆𝑡. When neglecting the induced 

electric field, the distance varies linearly from 0.24 for 𝑆𝑡 = 0, to 0.48 for 𝑆𝑡 = 6; a 75% 

increase. If the induced electric field is taken into account, the increase in shock standoff is even 

more salient and a 100% increase is observed for 𝑆𝑡 = 6. To the best of the author’s knowledge, 

no results are available in the literature to compare against for this case. 

In Figure 22 the peak heat flux at the stagnation point is plotted against 𝑆𝑡 , non-

dimensionalized with its value at 𝑆𝑡 = 0. A quasi-linear rate decrease is observed up to 𝑆𝑡 = 6, 

at which point a 13% reduction in the peak heat flux has been achieved. 

 

 

Figure 16. Mesh used for the simulation of Mach 4.75 laminar flow past a sphere.  
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Figure 17. Mach 4.75 laminar flow past a sphere: 

contour plots of temperature (K) at 𝑆𝑡 = 0 and 𝑆𝑡 = 6. 

 

 

Figure 18. Mach 4.75 laminar flow past a sphere: 

contour plots of pressure (Pa) at 𝑆𝑡 = 0 and 𝑆𝑡 = 6. 

 

 

Figure 19. Mach 4.75 laminar flow past a sphere: 

contour plots of Mach number at 𝑆𝑡 = 0 and 𝑆𝑡 = 6. 
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Figure 20. Mach 4.75 laminar flow past a sphere:  

 contour plots of electric potential (V) and the induced electric field (V/m) for 𝑆𝑡 = 6. 
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Figure 21. Mach 4.75 laminar flow past a sphere:  

 shock standoff distance in terms of the Stuart number, St. 

 

 

Figure 22. Mach 4.75 laminar flow past a sphere:  

 peak heat flux in terms of the Stuart number, St. 

 

Convergence has also been assessed for this viscous test case. As an example, Figure 23 

shows the 𝐿2 norm of the residual 𝑅, in terms of Newton iterations for 𝑆𝑡 = 6. A reduction of 5 
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orders of magnitude in the residual is achieved after 130 iterations, which is satisfactory for a 

low-Reynolds number flow.  

  

Figure 23. Mach 4.75 laminar flow past a sphere:  

 𝐿2 norm of residual in terms of Newton iterations.  

 

4.4  Introducing Anisotropic Mesh Optimization 

The simulations presented in Sections 4.2, as well as the majority of other hypersonic 

simulations, are performed on structured grids. In Section 4.2, though an unstructured grid is 

utilized, the grid remains isotropic with no shock-grid alignment. It is known that poor shock-

grid alignment induces an artificial vorticity in the post-shock region that is transported 

downstream eventually affecting wall solutions. Since the shock locations cannot be known a 

priori for arbitrary problems, aligning the shock with the grid is difficult when generating a grid, 

and impossible in the presence of a multi-shock system. Therefore, most examples in the 

literature employing structured grids are given for simple geometries, e.g. cones, spheres and 

cylinders.  

To overcome this serious limitation, an anisotropic mesh optimization algorithm (OptiGrid, 

a code developed by the McGill CFD Lab) [81] is used in conjunction with the flow solver. 

OptiGrid can be used for both structured [47] and unstructured meshes [59, 82]. OptiGrid starts 

with the premise that mesh enrichment based on gradients is impractical in 3D because the 

resulting grids become very large and do not really optimize any global solution metric. Hence, 

some directionality must be introduced in order to intelligently not only refine edges but also 

coarsen and swap them, as well as move nodes, where needed. OptiGrid uses the truncation error 
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as a measure of directional refinement, which is the true difference between the partial 

differential equation and its discretized form for linear elements. The truncation error, being 

proportional to the second derivatives on linear elements, has nine components forming a 

Hessian, 𝑯. The eigenvalues of 𝑯 give a measure of the relative length of an edge, and its 

eigenvectors specify the ideal orientation of the edge. A posteriori error measure can be 

expressed in an edge-based fashion as 

𝑒𝑟𝑟𝑜𝑟(𝒙𝑖 − 𝒙𝑗) = ∫ √(𝒙𝑖 − 𝒙𝑗)
𝑇
𝑴(𝑙)(𝒙𝑖 − 𝒙𝑗)

1

0
𝑑𝑙  

where 𝒙𝑖 and 𝒙𝑗 are two endpoints of an edge and 𝑴 is the absolute value of 𝑯. In practice, 𝑴  is 

approximated by post-processing the solution on a fixed background mesh. The error is then 

equally distributed among the edges by resorting to node movement, edge-face-swapping, mesh 

refinement and coarsening. The error estimator transforms the mesh from a Cartesian space to a 

Riemannian space. Uniformly distributing errors produces an isotropic Delaunay mesh in the 

Riemannian space, but a highly stretched anisotropic mesh in the Cartesian space that is 

automatically aligned with any number of shocks [82]. This is because the tetrahedral elements 

perpendicular to the shock are refined, and parallel to the shock are coarsened. In Figure 24, an 

arbitrary unstructured grid, together with a manufactured solution with uniform second order 

derivative yields a uniform grid in Cartesian space, clearly illustrating the converse mechanism. 

Unlike gradient-based mesh optimizers, OptiGrid introduces a crucial edge dimension effect and 

directional effect (anisotropy) based, respectively, on the eigenvalues and eigenvectors of the 

solution Hessian. This allows a much finer resolution of complex flow phenomena such as 

multiple shocks, most importantly without necessarily increasing the mesh size nor using higher 

order interpolation. Even more important is that minimal time is spent generating the initial grid: 

it will be optimized no matter what the starting mesh is and will always converge to the same 

solution [60]. 
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Figure 24. Arbitrary grid of a box (left); optimized grid based on a solution with uniform 

second order derivative (right). 

 

Given an initial flow solution, OptiGrid performs the aforementioned node and edge 

operations according to eigenvalues and eigenvectors obtained from the Hessian of the error 

estimator of the evolving solutions. It does this in three dimensions, while respecting the original 

CAD if nodes on the surface are moved. A user-selected (typically 8-10) number of adaptation 

iterations are performed. During each iteration, the error estimate computed over the grid 

resulting from the previous one is interpolated over the newly optimized grid. When the 

optimization process is completed, the solution is updated by solving the governing equations 

over the new grid. The new solution is then fed back to the optimization code and the cycle 

repeated until a prescribed number of global adaptation cycles is reached (typically 4 or 5).  

In OptiGrid, two options are available: optimizing to a specified error level in the solution 

domain or optimizing to a fixed number of mesh points i.e. giving the user the best solution for 

his/her money. In Sections 4.2-4.7, the second option is chosen to keep the number of mesh 

points bounded. It will be clearly demonstrated that mesh optimization not only enables a much 

better accuracy on unstructured meshes, but is perhaps the only way that makes possible the use 

of unstructured meshes to accurately predict aerodynamic and thermal loads of hypersonic 

vehicles of arbitrary shape. 

Magnetohydrodynamics is multidisciplinary compared to CFD, with the flow and EM fields 

not aligned in space because of the disparity in their length scales. Mesh optimization solely 

based on the flow or on the EM solution is thus likely to cause insufficient resolution of the 

variables excluded from adaptation, which in turn adversely affects the variables for which the 
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grid is optimized. In Sections 4.6 and 4.7, the mesh optimization methodology is 

comprehensively modified to simultaneously optimize the grid for curvature of the geometry 

even before the start of a CFD calculation, the flow variables (pressure, density, temperature, 

turbulence and velocity), as well as the EM variable of interest (the electric potential).  

4.5  Apollo-like Re-entry Capsule  

The fourth test case is the turbulent flow over an Apollo command module-like (AS-202) 

re-entry geometry. As shown in Figure 25, the outer mold line (OML) consists of a spherical 

section (forebody in the flow-oriented nomenclature) of radius of curvature of 4.694 𝑚 with a 

shoulder radius of 0.196 𝑚, and an afterbody consisting of a 33-degree conical section blunted 

to a 0.231 𝑚 radius at the aft end. The maximal diameter of the capsule is 3.912 𝑚 and the axial 

length, including the TPS material, is 3.431 𝑚. The origin is at the intersection between the 

spherical section and the x-axis. 

 

Figure 25. Apollo-like re-entry capsule:  

 schematic drawing of the outer mold line of AS-202 taken from [83]. 

 

The chosen re-entry conditions are at an angle of attack of 18.6° and a Mach number of 

13.26. The capsule temperature is set to 𝑇𝑤 = 8500 𝐾. The air being considered a thermally 

perfect gas, the free-stream conditions are as follows: 

x 

dipole 
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𝑇∞ = 268 𝐾, 𝑝∞ = 61.53 𝑃𝑎, 𝜌∞ = 8 × 10−4 𝑘𝑔 𝑚−3,  𝑉∞ = 4350 𝑚 𝑠
−1, 𝛾 = 1.4, 𝐾𝑛 = 2.44 ×

10−5     

The electric conductivity is uniform and set to: 

𝜎 = 794.00 Ω−1𝑚−1 [4] 

The imposed magnetic field is the same as in the two first test cases, mounted at (𝑥 =

1.0, 𝑦 = 𝑧 = 0.0). The Reynolds number based on the capsule length axis is 𝑅𝑒 = 800,000, and 

the Spalart-Allmaras turbulence model is used with a 10−5free-stream ratio of Eddy turbulent 

viscosity to laminar viscosity. 

The geometry of the test case is complex with anticipated challenging flow characteristics 

that are unknown a priori, making anisotropic mesh adaptation methodology an absolute 

necessity. Herein, mesh optimization is carried out for 4 cycles, with the agglomerated 

adaptation criteria being the Hessian of density 𝜌 , pressure 𝑝 , temperature 𝑇  and turbulent 

viscosity 𝜇𝑡. Figure 26 shows the initial mesh and the mesh after four adaptation cycles, for a 

Stuart number 𝑆𝑡 = 0. The initial original mesh is composed of 909,713 nodes, with 526,273 

tetrahedral elements and 1,626,088 prisms, whereas the adapted one is composed of 1,145,647 

nodes with 1,527,658 tetrahedral elements and 1,732,112 prisms. One can notice the vast 

improvement in the solution, with only a 10% increase in nodes but with “directionality” taken 

into consideration, as opposed to an unguided mesh refinement scheme in which points are 

blindly increased in all directions or even locally enriched which would require one to know the 

location of all singular phenomena such as shocks and boundary layers. 
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Figure 26. Apollo-like re-entry capsule:  

 initial mesh (left) and optimal one (right) after 4 adaptation cycles, 𝑆𝑡 = 0. 

In this case (𝑆𝑡 = 0), the CFL starts at 0.01 and is progressively increased to 0.5 in 1,500 

iterations. Figure 27 shows the static temperature contours for 𝑆𝑡 = 0 obtained from the initial 

mesh (left) and from the adapted one (right). It is clear that after mesh adaptation the shock-

capturing is considerably improved since the mesh is realigned with the shock adding grid points 

in regions of highest truncation error.  

 

Figure 27. Apollo-like re-entry capsule:  

 contour plots of temperature for 𝑆𝑡 = 0, with the initial mesh (left) and with the adapted one 

(right), expressed in Kelvins. 
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In Figure 28, the adapted meshes after 4 cycles are contrasted for 𝑆𝑡 = 0 (1,145,647 nodes, 

1,527,658 tetrahedral elements and 1,732,112 prisms) and 𝑆𝑡 = 6  ( 𝐵0 = 0.1622 𝑇 ), 

demonstrating how the mesh adaptation takes into consideration the local physics. Not only is 

the shock location captured well, but also the larger wake structure generated by the magnetic 

dipole. 

 

Figure 28. Apollo-like re-entry capsule:  

 meshes after 4 adaptation cycles for 𝑆𝑡 = 0 (left) and 𝑆𝑡 = 6 (right). 

 

In this case (𝑆𝑡 = 6), CFL starts at 0.01 and is increased to 0.1 in 1,500 iterations. Figure 29 

shows the static temperature contours for 𝑆𝑡 = 6 obtained with the initial mesh (left) and with 

the adapted one (right). Figure 30 displays the contours of pressure and Mach number for 𝑆𝑡 = 6 

with the adapted mesh. 
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Figure 29. Apollo-like re-entry capsule:  

 contour plots of temperature for 𝑆𝑡 = 6, with the initial mesh (left) and with the adapted one 

(right), expressed in Kelvin.  
 

 

Figure 30. Apollo-like re-entry capsule:  

 contour plots of pressure (Pa, left) and Mach number (right) for 𝑆𝑡 = 6.  

 

In Figure 31 the distribution of the static pressure across the shock wave is shown. The 

usefulness and the efficiency of the mesh adaptation methodology are clearly put into evidence 

in this figure. Without increasing the number of mesh points, the adapted mesh not only captures 

the shock with superior accuracy and sharpness (Figure 31), but also significantly improves the 

resolution of other complex flow features such as the expansion fans, the free shear layer and the 

base recirculation (Figures 29 and 30). On the other hand, the shock-mesh misalignment of the 
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initial mesh produces poorly resolved shock and induces oscillations in the surface heat flux 

distribution.  

 

Figure 31. Apollo-like re-entry capsule:  

 static temperature across the shock wave, expressed in Kelvins.  

 

Figure 32 illustrates non-dimensional (with respect to the forebody diameter) shock standoff 

distances as a function of 𝑆𝑡. When neglecting the induced electric field, they vary linearly from 

0.1176 for 𝑆𝑡 = 0, to 0.1503 for 𝑆𝑡 = 6, an increase of  27%. For the standard low-magnetic 

Reynolds number formulation, an increase of 34% is observed. 
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Figure 32. Apollo-like re-entry capsule:  

shock standoff distance in terms of the Stuart number St for the Apollo capsule. 

 

In Figure 33, the maximum heat flux on the capsule’s surface is reported in terms of the 

Stuart number 𝑆𝑡. Between 𝑆𝑡 = 0 and 𝑆𝑡 = 6, the maximum heat flux decreases by more than 

16%.  

 

Figure 33. Apollo-like re-entry capsule:  

 peak heat flux in terms of the Stuart number St for the Apollo capsule. 
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The convergence of the numerical results is assessed in Figure 34 that shows the 𝐿2 norm of 

the residual 𝑅 vs. Newton iterations for 𝑆𝑡 = 6 when the adaptive methodology is applied. A 

reduction of 5 orders of magnitude in the residual is achieved after 40,000 iterations, which is 

reasonable for such a stiff problem.  

 

Figure 34. Apollo-like re-entry capsule:  

 𝐿2 norm of residual in terms of Newton iterations. 

 

4.6  Laminar Flow over a Sphere (Mach 21.38) 

This test case considers laminar flow over a sphere with a radius of 1.0 𝑚 at Mach 21.38. 

The surface temperature is set to 𝑇𝑤 = 2000 𝐾. Air is assumed to be a thermally perfect gas, and 

the free-stream conditions at high altitude are as follows: 

𝑇∞ = 230 𝐾, 𝑝∞ = 6.40 𝑃𝑎, 𝑉∞ = 6500 𝑚 𝑠−1, 𝛾 = 1.4, 𝐾𝑛 = 7.52 × 10−4  

The electrical conductivity is uniform and set to: 

𝜎0 = 200.00 Ω
−1𝑚−1  

The Reynolds number based on the radius of the sphere is 𝑅𝑒 = 42,100. The imposed 

magnetic field is created by a dipole mounted at the center of the sphere, with �̂� = (1, 0,0)𝑇, 

𝐵0 = 0.3 𝑇The Hall parameter is set to 𝛽 = 10 . The boundary conditions for the electric 

potential are the same as in Sections 4.2 and 4.3. 

To fully resolve physical quantities with such distinct time/length scales, the mesh is 

optimized according to the solution. Three mesh-optimization strategies are considered, all 

starting from an unstructured initial mesh containing 1,023,327 nodes, 906,314 tetrahedral and 
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1,625,712 prismatic elements. A target number of nodes (1,000,000) after adaptation is applied 

for all three strategies, but the adaptation criteria are different, as shown in Table 3.  

 

Case Optimization criteria 
Final no. of 

nodes 

Final no. of 

elements 

Case 1 
𝜌, 𝑉, 𝑝, 𝑇 (Flow 

only) 
1,035,993 5,362,797 

Case 2 𝜙 (EM only) 1,035,185 5,374,500 

Case 3 
𝜙, 𝜌, 𝑉, 𝑝, 𝑇 

(Flow+EM) 
1,098,972 5,578,202 

Table 3. Mach 21.38 laminar flow over a sphere:  

mesh adaptation setup 

 

Figure 35 shows the convergence of the Mach number distributions along the stagnation 

line during the mesh optimization process for Case 3. The figure shows that the difference 

between the distributions starts being negligible as soon as the second optimization cycle.  

 

Figure 35. Mach 21.38 laminar flow over a sphere:  

convergence of Mach number along stagnation line during mesh optimization (Case 3). 
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Figure 36. Mach 21.38 laminar flow over a sphere, resulting meshes with different 

optimization strategies:  

 (a) Original mesh; (b) Case 1 (Flow only); (c) Case 2 (EM only); (d) Case 3 (Flow+EM). 

(a) (b) 

(c) (d) 
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Figure 36 shows the original and adapted meshes. Figures 37-39 display the contours of 

pressure, electric potential and Mach number, respectively, obtained with these meshes. Figure 

40 depicts the electric potential and Mach number distributions along the stagnation line.  

It is clear that different adaptation criteria produce very different node/edge distributions for 

the same target number of nodes. The element size of the original octree mesh increases 

exponentially from the sphere surface until a prescribed maximum is reached (Figure 36(a)), 

appearing as a generally coarse mesh, apart from the immediate neighborhood of the surface. 

The coarseness of the initial mesh produces a smeared shock (Figures 37(a), 39(a) and 40(b)) and 

a washed-out electric potential distribution (Figures 38(a) and 40(a)). Optimization based on the 

flow quantities (𝜌, 𝑝, 𝑉, 𝑇) alone results in better grid-shock alignment (Figure 36(b)) with nodes 

heavily clustered around the shock front, and coarse stretched elements upstream of the shock. 

While shock resolution is substantially improved (Figures 37(b), 39(b) and 40(b)) compared to 

the initial mesh, this adaptation strategy delivers the most disappointing resolution of the electric 

potential due to the coarsening and stretching of the elements (Figures 38(b) and 40(a)). 

Conversely, mesh optimization on the electric potential alone yields a relatively uniform mesh 

aligned with the oblique part of the shock, with sufficient refinement near the stagnation point 

(Figure 36(c)). Since a uniform electrical conductivity is assumed, the distribution of the electric 

potential is smooth and diffusive (Figure 38(c)), with discontinuities from the flow quantities 

only introduced through the 𝜵 ⋅ (𝝈 · 𝑽 × 𝑩) term in the current-continuity equation. 

While adaptation on the flow field or the EM field improves the resolution of the 

corresponding variable, it leaves the variables omitted from the optimization compromised. 

Since the flow equations and the current-continuity equation are coupled through source terms, 

poorly resolved quantities from one field undercut the other, whether individually optimized or 

not at all. For instance, despite the excellent grid-shock alignment in Figure 36(b), some 

irregularities are observed in the dense mesh cluster straddling the shock, as well as asymmetry 

in the distribution of electric potential in the stagnation region (Figure 38(c)). Although Case 1 

clusters the vast majority of nodes in the shock region, the resulting shock resolution is still 

inferior to Case 3, as shown in Figure 40(b). Moreover, due to the poor resolution of the electric 

potential, a substantial shift in shock location can also be observed in Figure 40(b). Optimization 

on both the flow and EM solution variables clearly outperforms the other strategies and, 

remarkably, without increasing the overall node count. Figures 37(d) and 40(b) show a crisply 
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resolved shock with a clean and sharp front without the irregularities of Figure 37(b), while 

Figure 39(d) demonstrates that the asymmetry near the stagnation point disappears. 

 

Figure 37. Mach 21.38 laminar flow over a sphere, pressure contours (Pa) obtained from the 

original and optimized meshes:  

 (a) Original mesh; (b) Case 1 (Flow only); (c) Case 2 (EM only); (d) Case 3 (Flow+EM). 

(a) (b) 

(c) (d) 
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Figure 38. Mach 21.38 laminar flow over a sphere, electric potential (V) contours from 

original and optimized meshes:  

 (a) Original mesh; (b) Case 1 (flow only); (c) Case 2 (EM only); (d) Case 3 (flow+EM). 
 

(a) (b) 

(c) (d) 
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Figure 39. Mach 21.38 laminar flow over a sphere, Mach number contours from original 

and optimized meshes:  

 (a) Original mesh; (b) Case 1 (flow only); (c) Case 2 (EM only); (d) Case 3 (flow+EM). 
 

(a) (b) 

(c) (d) 
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Figure 40. Mach 21.38 laminar flow over a sphere:  

 (a) Electric potential and (b) Mach number distributions along stagnation line. 

 

4.7  Turbulent Flow over Orbital Re-entry Experiment (OREX) Capsule (Mach 

17.61) 

The OREX capsule is considered for the simulation of hypersonic re-entry at Mach 17.61. 

The left side of Figure 41 shows the OREX geometry, composed of a cone with a spherical nose 

(R = 1.35 m), a circular shoulder and a rear truncated bi-conical cover, and the initial 

computational domain on the right. The detailed dimensions of OREX can be found in [84]. The 

origin of the coordinates system is at the nose of the capsule. 

 

(a) 

(b) 
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Figure 41. OREX geometry and computational domain. 

 

The surface temperature is set to 𝑇𝑤 = 1519 𝐾. Air is assumed to be a thermally perfect gas 

and the free-stream conditions are as follows: 

𝑇∞ = 248 𝐾, 𝑝∞ = 23.6 𝑃𝑎, 𝑉∞ = 5561.6 𝑚 𝑠−1, 𝛾 = 1.4, 𝐾𝑛 = 9.29 × 10−5 

The electrical conductivity is given as: 

𝜎 = 𝜎0 (
𝑇

𝑇𝑟
)
2

  

where 𝜎0 = 200 Ω
−1𝑚−1and 𝑇𝑟 = 25000 𝐾 [36]. The Reynolds number based on nose radius is 

𝑅𝑒 = 156,390. Turbulence is introduced via the Spalart-Allmaras model with a free-stream of 

Eddy-to-laminar viscosity ratio of 10−5. 

A magnetic dipole is placed along the 𝑥-axis at 𝑥 = 0.8 𝑚 with �̂� = (1, 0,0)𝑇and 𝐵0 =

0.3 𝑇. The Hall parameter is set to 𝛽 = 10. The inflow and outflow boundary conditions are the 

same as in the preceding test case. The surface of the vehicle is assumed to be an electrode, with 

the electric potential set to 0 𝑉. 

The same optimization strategies of the previous case are adopted. An initial coarse mesh 

( 2,391,100  nodes, 1,539,187  tetrahedral and 4,231,216  prismatic elements) and a target 

number of nodes (6,000,000) are the same for the three cases listed in Table 4. A target number 

of nodes much higher than the initial grid is justified by the anticipated formation of a turbulent 

wake and additional phenomena. The turbulent viscosity coefficient, μT, being one of the solution 

Line

-B 

Line

-A 
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variables, is incorporated in the adaptation criteria of Cases 1 and 3 to properly capture the wake 

behind the capsule. Figure 42 shows the convergence of the Mach number distributions along the 

stagnation line (Line-A in Figure 41) obtained on the original and the optimized meshes for Case 

3. As in the previous case, after two adaptation cycles the difference between the distributions 

becomes negligible.  

Optimization criteria Final nodes Final elements 

Case 1 
𝜌, 𝑉, 𝑝, 𝑇, μT 

(Flow only) 
5,869,543 26,061,617 

Case 2 𝜙 (EM only) 6,027,358 26,824,706 

Case 3 
𝜌, 𝑉, 𝑝, 𝑇, 

μT, 𝜙 (Flow+EM) 
5,809,704 25,808,277 

Table 4. Turbulent flow over OREX capsule:  

 mesh adaptation setup. 
 

 

Figure 42. Turbulent flow over OREX capsule:  

 convergence of Mach number along stagnation line (line-A in Figure 13) during mesh 

optimization (Case 3). 
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Figure 43. Turbulent flow over OREX capsule, velocity vectors from original and optimized 

meshes:  

 (a) Original mesh; (b) Case 1 (flow only); (c) Case 2 (EM only); (d) Case 3 (flow+EM). 

(a) (b) 

(c) (d) 
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Figure 43 depicts the velocity vector field obtained with the original and adapted meshes. 

The major flowfield characteristics, such as the bow shock in the forebody region, the expansion 

fans on the shoulder, the base recirculation region, the converging free shear layer and the weak 

recompression shock wave emanating from the neck of the wake, are crisply defined when the 

flow variables are included in the adaptation criteria (Figures 43 (b) and (d)). On the other hand, 

insufficiently resolved (if not almost totally missing) flow characteristics are observed in Figures 

43 (a) and (c). For example, compared to Figures 43 (b) and (d), the base recirculation region is 

substantially smaller in Figure 43 (a) and poorly resolved away from the base in Figure 43 (c).  

Figure 44 shows the original and optimized meshes. Figures 45 and 46 display the contours 

of the electric potential and Mach number obtained with both meshes. Due to the complexity of 

the geometry and the formation of the wake, the adapted meshes exhibit different patterns 

according to the optimization criteria. In this test case, the electrical conductivity is a function of 

the square of the temperature and therefore increases abruptly across the strong shock. The 

resulting electric potential contours show sharp gradients in the vicinity of the shock in the 

forebody region (Figure 45). In addition, since the wall is assumed to be conducting and electric 

currents are short-circuited on the surface, strong variations are also observed in Figure 45 in the 

base region near the surface. The features of the electric potential appear clearly in the meshes of 

Case 2 and 3, shown in Figures 44 (c) and (d), since electric potential is one of the optimization 

criteria. On the other hand, the original coarse mesh in Figure 44 (a) produces an inaccurate 

electric potential distribution, with smeared gradients across the shock, overestimated values in 

the base region and behind the shock, and weak gradients behind the shoulder (Figure 45(a)).  

As with the previous test case, optimizing solely on flow variables (Case 1) clusters the 

nodes near the flow features and leaves the other regions with highly stretched elements. 

Consequently, the resolution of the electric potential improves across the shock compared to the 

original mesh, but its quality in the base region is unsatisfactory (Figure 45(b)). Optimization on 

the electric potential only (Case 2) shows a smeared shock in the stagnation region and a 

smeared wake due to lack of refinement (Figures 46 (c) and 43 (c)) compared to Cases 1 and 3 

(Figures 46 (b) and (d)).  

Adaptation on both flow and EM variables (Case 3) captures the features of the flow and 

EM fields much better, most importantly for the same node and element counts. Figure 44 (d) 

shows that the grid automatically clusters in the shock region, the expansion fan on the shoulder, 



  

  

 

69 

the wake, and captures the sharp gradients of electric potential in the forebody and wake regions. 

Figure 47 exhibits the Mach number and electric potential distributions along high gradients 

lines. This optimization strategy produces a more accurate solution in the wake region (Figures 

45 and 46), while yielding in the forebody region a Mach number distribution almost identical to 

Case 1 and an electric potential almost identical to Case 2 (Figure 47). 

 

Figure 44. Turbulent flow over OREX capsule, meshes with different optimization 

strategies:  

 (a) Original mesh; (b) Case 1 (flow only); (c) Case 2 (EM only); (d) Case 3 (flow+EM). 

(a) (b) 

(c) (d) 
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Figure 45. Turbulent flow over OREX capsule, electric potential (V) contours from original 

and optimized meshes:  

 (a) Original mesh; (b) Case 1 (flow only); (c) Case 2 (EM only); (d) Case 3 (flow+EM). 

(a) (b) 

(c) (d) 
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Figure 46. Turbulent flow over OREX capsule, Mach number contours from original and 

optimized meshes:  

 (a) Original mesh; (b) Case 1(flow only); (c) Case 2 (EM only); (d) Case 3 (flow+EM). 

(a) (b) 

(c) (d) 
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Figure 47. Turbulent flow over OREX capsule:  

 (a) Mach number distribution along stagnation line (line-A in Figure 40); (b) Electric potential 

distribution along y=1.1 m, z=0 m (line-B in Figure 40). 

 

 

 

 

 

 

(a) 

(b) 
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5 Resistive MHD Model 

In this chapter, the results from selected simulations of MHD flows employing the resistive 

MHD model are presented. The RANS solver is the same as in the preceding chapter with a 

modification to the EM source terms to incorporate the induced magnetic field.  

Four test cases are presented to validate the resistive MHD model: the Hartmann flow, a 

converging MGD accelerator, a two-dimensional simplified scramjet assuming inviscid flow, 

and a three-dimensional scramjet with viscous flow. To verify the fulfillment of the divergence-

free constraint of the magnetic field, the L2-norm of the divergence over the computational 

domain is reported for each test case, approximated using the following formula  

‖𝛻 ⋅ 𝑩‖𝟐 = √∑ ∫  (𝛻 ⋅ 𝑩)2𝑑𝑉𝑒
𝑉𝑒𝑒

= √∑ ∫  (∑ 𝛁𝑊𝑖 ⋅ 𝑩𝑖
𝑖∈𝐾𝑒

)

2

𝑑𝑉𝑒
𝑉𝑒𝑒

  (5.1) 

The first two test cases use structured grids. The latter two are on unstructured grids and 

OptiGrid is used to adapt on the flow field quantities (density, temperature and velocity) and the 

EM quantity of interest (the induced magnetic field in this chapter) 

5.1  Hartmann Flow 

The Hartmann flow is one of the cornerstone examples in magnetohydrodynamics [85]. It 

consists of a conducting liquid or gas flowing under the influence of a pressure gradient in the 𝑥 

direction, through a two-dimensional duct with a height of 2ℎ in the 𝑦 direction. A uniform 

external magnetic field 𝐵0 is applied in the 𝑦 direction (Figure 48).  

 

 

Figure 48. Sketch of the Hartmann flow configuration. 
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Assuming the walls to be perfectly insulated, an analytical solution for the 𝑥 component of 

the velocity and the induced magnetic field exists in the fully-developed regime and is written in 

non-dimensional form as 

𝑈∗ =
𝑢

𝑢𝑀
=
cosh(Ha) − cosh (

𝑦 Ha
ℎ
)

cosh(Ha) − 1
  (5.2) 

𝑏𝑥
𝐵0
= −

Rem
Ha

(
sinh (

𝑦 Ha
ℎ
) −

𝑦
ℎ
sinh(Ha)

cosh(Ha) − 1
)  (5.3) 

where Ha, the Hartmann number is defined as 

Ha = 𝐵0ℎ (
𝜎

𝜇
)

1
2
  (5.4) 

where the square of the Hartmann number measures the relative importance of electromagnetic 

forces to viscous ones.  

Results are obtained for a 48 m  long rectangular channel (ℎ = 0.2 m ) with different 

Hartmann and magnetic Reynolds numbers and compared to the analytical solution. The free-

stream temperature is 288 K and the channel walls are assumed to be adiabatic. A uniform flow 

of 10
m

s
 is imposed at the inlet and the outlet pressure is specified to be 1010 Pa. The mesh is 

composed of 600,000  nodes with 296,901  hexahedral elements with one layer of elements 

along the periodic direction 𝑧. Figures 49 and 50 show a comparison between the numerical and 

analytical solutions at 𝑥 = 45 𝑚 for 𝑅𝑒𝑚 = 1 and for different Hartmann numbers 𝐻𝑎 = 1, 2, 5 

and 10. In Figure 48 the braking effect of the electromagnetic forces in the core region of the 

flow is observed, together with the evolution of the hydrodynamic Hartmann layers. In Figure 49, 

the magnetic signature of the Hartmann layers is shown. The L2-norms of 𝛻 ⋅ 𝑩 are 0.32, 0.31, 

0.25 and 0.18 T ∙ 𝑚1/2 for 𝐻𝑎 = 1, 2, 5 and 10, respectively (𝑅𝑒𝑚 = 1).  
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Figure 49. Hartmann flow inside a two-dimensional channel:  

 velocity for different Hartmann numbers and unitary magnetic Reynolds number at 𝑥 = 45 𝑚.  

 

 

Figure 50. Hartmann flow inside a two-dimensional channel:  

induced magnetic field for different Hartmann numbers and unitary magnetic Reynolds number 

at 𝑥 = 45 𝑚.  
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5.2  MGD Converging Channel Accelerator 

Taken from MacCormack [44], this test case considers a 5.566 m long channel. The height 

of the channel is 0.933 m at the inlet and 0.730 m at the exit, as sketched in Figure 51. The 

accelerator inlet is at 𝑥 = 0 m and its outlet is at 𝑥 = 2.846 m.  

 

 

Figure 51. Sketch of the converging channel accelerator. 

 

A constant magnetic field (𝐵0𝑦 = 11.28 T) is imposed along the 𝑦 direction between the 

inlet and the outlet of the accelerator section. The induced electric field 𝒆 is neglected and the 

total electric field 𝑬 could be approximated by the imposed one 𝑬𝟎 which is applied everywhere 

across the accelerator section and varies linearly from 𝐸0𝑧 = −30,990 V.m
−1 at inlet to 𝐸0𝑧 =

−31,470 V/m at exit）. The boundary conditions for the induced magnetic field at solid walls 

normal to the 𝑦 axis are 

𝜕𝑏𝑥
𝜕𝑦

= −𝜇0𝜎𝐸0𝑧, 𝑏𝑦 = 0,
𝜕𝑏𝑧
𝜕𝑦

= 0 

where 𝜇0 = 1.257 × 10−6
H

m
. At the entrance of the channel, the pressure, the temperature, the 

Mach number and the Knudsen number are respectively: 𝑝 = 1.251 × 106 Pa, 𝑇 = 3583 K , 

𝑀𝑎𝑐ℎ = 1.147, 𝐾𝑛 = 8.60 × 10−8.  

Based on these conditions and the accelerator length, the magnetic Reynolds number is 

Rem = 0.17 . The mesh is composed of 64,962  nodes with 32,000  hexahedral elements. 

Numerical results have been obtained for the conditions described above. The induced magnetic 

field components are shown in Figures 52 and 53. Since the magnetic Reynolds number is 

considerably small thanks to the weak ionization in this test case, the induced magnetic field is 

not salient in general compared to the imposed one and is most noticeable at the inlet and outlet 
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of the accelerator section where the discontinuity of the imposed electric and magnetic fields 

occurs. The L2-norm of 𝛻 ⋅ 𝑩 is 0.06 T ∙ 𝑚1/2.  

 

 

Figure 52. MGD converging channel accelerator:  

 𝑥-component of the induced magnetic field (T) 𝑏𝑥. 

 

 

Figure 53. MGD converging channel accelerator:  

𝑦-component of the induced magnetic field (T) 𝑏𝑦. 

 

The pressure and the Mach number contours are shown in Figures 54 and 55. A supersonic 

flow is supposed to slow down in a convergent channel. However, under the influence of the 

Lorentz force, it is seen that a significant acceleration occurs between the entrance of the channel 

and the outlet of the accelerator by a factor of 1.96. From these results, it is observed that two 

mirrored shock waves generated at the inlet of the accelerator are reflected by the internal walls 

at multiple locations in the chamber. 
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Figure 54. MGD converging channel accelerator:  

pressure (in Pa) contours. 

 

 

Figure 55. MGD converging channel accelerator:  

Mach number contours. 

 

The axial velocity profile along the channel centerline 𝑦 = 0 m (normalized by the axial 

velocity at the entrance 𝑢0 = 1400.35 m. s−1)  is shown in Figure 56 and compared with 

MacCormack [44]. While both results qualitatively agree with each other and predict the same 

acceleration ratio, an exception is observed at the outlet of the accelerator section which shows 

one mesh point oscillation.  
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Figure 56. MGD converging channel accelerator:  

𝑥 component of the velocity 𝑢 𝑢0⁄  along the centerline 𝑦 = 0. 

 

5.3  2D MHD Energy Bypass Scramjet Engine (Inviscid) 

In an MHD energy bypass scramjet engine, the converging channel accelerator is located 

just downstream of the combustor chamber which itself is downstream of the diverging channel 

functioning as the generator. In this test case, taken from [45], the flow is assumed to be inviscid 

and a simplified geometry is considered. The geometry is composed of an inlet section, a 

generator, a combustor, an accelerator and an exit section. In its diverging generator section, the 

engine generates electric power from the kinetic energy and the flow slows down for better 

combustion. The extracted power is then used in the converging accelerator section to increase 

the thrust. Figure 57 shows a sketch of the engine. The scramjet is 6.9912 m long in total and the 

lengths of the generator and accelerator are 2.72 m and 2.85 m, respectively. At the entrance of 

the channel, the pressure, the temperature, the Mach number and the Knudsen number are 

respectively:𝑝 = 1.039 × 106 Pa, 𝑇 = 3370K, 𝑀𝑎𝑐ℎ = 2.16, 𝐾𝑛 = 9.72 × 10−8. 
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Figure 57. Sketch of the simplified MHD energy bypass scramjet engine with the applied 

electromagnetic fields. 

 

A piecewise constant magnetic field is imposed in the 𝑦 direction and Figure 58 (top) shows 

its distribution along the scramjet, with 𝐵0𝑦 = 12.74 T  and 11.28 T  at the generator and 

accelerator, respectively.  

 

Figure 58. 2D MHD energy bypass scramjet engine: 

 the distribution of the imposed magnetic field (top) and the imposed electric field (bottom) 

along the 𝑥 axis. 

 

The imposed electric field is everywhere across the generator and the accelerator sections. 

For the generator section, it varies linearly from 𝐸0𝑧 = −29,400 V.m−1 at the inlet to 𝐸0𝑧 =

−18,290 V.m−1 at the outlet. For the accelerator, it varies linearly from 𝐸0𝑧 = −30,990 V.m−1 

to 𝐸0𝑧 = −31,470 V.m
−1 (Figure 58, bottom). Boundary conditions and entrance parameters are 
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the same as in the previous test case. The magnetic Reynolds number is 𝑅𝑒𝑚 = 0.34 . No 

combustion takes place within the combustor for this test case. The electric conductivity (𝜎) 

equals 32.42 Ω−1m−1 in the generator and 35.87 Ω−1m−1 in the accelerator. 

To best resolve the flow features of the complex shock wave structure, OptiGrid was used 

to seek numerical solutions on unstructured meshes. The adaptation criteria are the density 𝜌, the 

temperature 𝑇 , the two components of velocity 𝑢  and 𝑣  and the magnitude of the induced 

magnetic field 𝒃. Three mesh-optimization cases starting from the same unstructured initial mesh 

(8398  nodes, 8005  linear prisms), but with different targeted node numbers, are performed 

(Table 5). Figure 59 shows the initial and adapted (after 5 cycles) meshes of Case 2. In the 

adapted mesh, two distinct types of node clusters are observed. The first type is aligned with 

flow features (shocks, expansion waves, etc.), and the second type resides at the junctions of 

engine chambers, caused by the discontinuities of the imposed electric and magnetic fields, as 

well as the abrupt geometry changes.  

 

Case 
Target no. of 

nodes 

Final no. of 

nodes 

Final no. of 

elements 

Case 1 8398 8370 8124 

Case 2 16000 15974 15611 

Case 3 32000 32480 31907 

Table 5. 2D MHD energy bypass scramjet engine:  

 the mesh-optimization cases. 
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Figure 59. 2D MHD energy bypass scramjet engine:  

 initial mesh and adapted one (Optimization Case 2) after 5 adaptation cycles. 

 

 

Figure 60. 2D MHD energy bypass scramjet engine:  

 the pressure profile along the horizontal axis 𝑦 = 0.4 m.  
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In Figure 60, the pressure profiles along the horizontal axis 𝑦 = 0.4 m are shown for five 

different meshes: a structured mesh (57760 nodes, 28440 hexahedral elements), an unstructured 

initial mesh and three optimized meshes. One can notice that with almost the same number of 

nodes and elements as the unstructured initial mesh (Optimization Case 1), the solution quality in 

terms of shock sharpness is substantially improved and is superior to that achieved by the 

structured mesh with almost 6 times as many nodes. The mesh optimization methodology takes 

into account the directionality of the solution and therefore outperforms an unguided mesh-

refinement scheme in which additional nodes are added in all directions. Table 6 lists the channel 

thrust at the exit of the engine normalized by ∫ 𝑝 + 𝜌𝑉2𝑑𝐴0 at the inlet. It can be concluded that 

grid convergence is attained when the node count is doubled (Optimization Case 2) since the 

maximum difference between Optimization Case 2 and Optimization Case 3 is less than 0.05%. 

 

Mesh Normalized Exit Thrust 

Structured  1.0788 

Unstructured Initial 1.0687 

Optimization Case 1 1.0725 

Optimization Case 2 1.0734 

Optimization Case 3 1.0731 

Table 6. 2D MHD energy bypass scramjet engine:  

normalized thrust at the exit for different meshes. 

 

Figure 61 shows the Mach number contours using the unstructured initial mesh (above) and 

the adapted one (Optimization Case 2, below). The shock resolution is significantly improved 

because the adapted mesh is considerably better aligned with the shocks by adding nodes in 

regions of high truncation error. 
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Figure 61. 2D MHD energy bypass scramjet engine:  

Mach number contours with the initial (top) and adapted (bottom) meshes. 

 

Figure 62 shows the pressure contours obtained with the adapted mesh (Optimization Case 

2). In the inlet section, the supersonic stream forms an oblique shock (bottom) and an expansion 

wave (top), which subsequently experience a process of crossing and reflection through the 

chamber and establish a complex wave system.  

 

 

Figure 62. 2D MHD energy bypass scramjet engine:  

 pressure (Pa) contours with the adapted mesh. 
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In Figures 63 and 64, results for the induced magnetic field obtained with the adapted mesh 

are shown. The 𝑥-component of the induced magnetic field (𝑏𝑥) is most salient in the vicinity of 

the walls close to the inlet of the accelerator section due to the discontinuity of the boundary 

condition directly related to the imposed electric field. The 𝑦-component (𝑏𝑥), on the other hand, 

is noticeable only in the junctions of different sections due to the abrupt change of the imposed 

magnetic field. The L2-norm of 𝛻 ⋅ 𝑩 is 0.02 T ∙ 𝑚1/2.  

By means of mesh optimization, which automatically aligns tetrahedral elements with the 

shock, one can capture clean and sharp shocks with a substantially reduced number of nodes. 

Despite the success in resolving the electromagnetic field, however, the results presented by 

MacCormack [45] suffered from the coarseness of the mesh and could not capture any shock 

structure in the flow. This is understandable given that the main objective of that work was the 

development of a scaling scheme for the Maxwell flux to eliminate the numerical instability 

caused by the disparity in time scales of the flow and EM fields and that the latter was to a large 

extent insensitive to changes in the flow field. However, a detailed comparison with [45] is also 

rendered less informative by the crudity of the shock capturing in [45] and is therefore omitted.  

 

Figure 63. 2D MHD energy bypass scramjet engine:  

 𝑥-component of the induced magnetic field (T) 𝑏𝑥. 
 

Figure 65 shows the estimated error derived from second order derivatives of the 

aforementioned flow and EM quantities, on the unstructured initial mesh (above) and the adapted 

one (Optimization Case 2, below). The error traces shocks and expansions in the flow field, as 

well as discontinuities in the EM field (𝑏𝑥near the junctions of chambers). Adaptation reduces 

the overall level of the error and uniformly distributes the error across the computational domain.  
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Figure 64. 2D MHD energy bypass scramjet engine:  

 𝑦-component of the induced magnetic field (T) 𝑏𝑦.  

 

 
Figure 65. 2D MHD energy bypass scramjet engine:  

estimated error contours with the initial (top) and adapted (bottom) meshes.  

 

5.4  3D MHD Energy Bypass Scramjet Engine (Viscous) 

The geometry of the 3D MHD energy bypass scramjet engine is obtained by extruding its 

2D counterpart along the 𝑧-axis by 1 m. The configurations of the imposed magnetic/electric 

field, the boundary conditions of the magnetic induction equation, the electric conductivity and 

entrance parameters are inherited from the preceding test case. No-slip boundary conditions are 

used for solid walls when solving the momentum equations. The Reynolds number based on the 

generator length is 89,700,000 and the Spalart-Allmaras turbulence model is employed with a 

free-stream eddy/laminar viscosity ratio of 10−5.  
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For a better alignment of the mesh with the resolved flow and magnetic fields, anisotropic 

mesh adaptation is again utilized while preserving the number of nodes and total height of the 

prism layers near the surface. The adaptation criteria are the same with the preceding subsection. 

The initial mesh consists of 4,266,260  nodes with 3,285,244  tetrahedral elements and 

7,217,694 prisms, and the adapted mesh (after 3 adaptation cycles) has 4,197,014 nodes with 

6,129,306 tetrahedral elements and 6,150,474 prisms. Figure 66 shows the initial and adapted 

meshes. 

 

Figure 66. 3D MHD energy bypass scramjet engine:  

 initial mesh and adapted one after 3 adaptation cycles. 

 

Compared to the adapted mesh in the 2D inviscid case (Figure 59), node clusters are 

observed not only alongside the shock and the induced magnetic field, but also near the no-slip 

walls where the prisms reside to resolve the boundary layer effect.  

Figure 67 shows the Mach number contours (cross section 𝑧 = 0 𝑚) using the initial mesh 

(top) and the adapted one (bottom). The efficiency and pertinence of the multi-physics 
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anisotropic mesh adaptation are again clearly put into evidence in these two figures where shocks 

are significantly better resolved with the adapted mesh. 

 

 

Figure 67. 3D MHD energy bypass scramjet engine:  

Mach number contours in the cross section 𝑧 = 0 𝑚 for the scramjet with the initial mesh (top) 

and adapted mesh (bottom).  

 

In Figure 68, the pressure profiles along the horizontal axis 𝑦 = 0.40 m are shown for the 

2D inviscid test case (black line), the 3D viscous test case with original (dashed line) and 

adapted (red line) 3D meshes. While the 3D adapted mesh yields overwhelmingly sharper and 

cleaner shocks than the initial mesh, it also outperforms the 2D adapted mesh in terms of shock 

resolution. This is because in the 3D case, more nodes are available to be deployed to 

accommodate the need of shock capturing. Figure 69 compares the pressure contours at the 𝑧 =

0 𝑚 cross-section between the 2D and 3D adapted meshes. The flow structures are similar except 

that the 3D mesh gives higher pressure, and the boundary layer effect is insignificant for that 

case. 
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Figure 68. 3D MHD energy bypass scramjet engine:  

 pressure profile along the horizontal axis 𝑦 = 0.40 m.  

 

 

 

Figure 69. 3D MHD energy bypass scramjet engine:  

 pressure contours in the cross section 𝑧 = 0 𝑚; top: 2D with adapted mesh (Optimization Case 

2), bottom: 3D with adapted mesh.  

 

In Figures 70 and 71, results for the induced magnetic field obtained with the adapted mesh 

are shown. The induced magnetic field is more dispersive compared to its 2D inviscid 
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counterpart (Figures 63 and 64) due to the existence of a boundary layer. The L2-norm of 𝛻 ⋅ 𝑩 is 

0.06 T ∙ 𝑚1/2.  

 

Figure 70. 3D MHD energy bypass scramjet engine:  

 𝑥-component of the induced magnetic field (T) 𝑏𝑥. 

 

 

Figure 71. 3D MHD energy bypass scramjet engine:  

 𝑦-component of the induced magnetic field (T) 𝑏𝑦.  
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6 Conclusion and Suggested Future Developments 

As part of a sustained effort to create HALO3D, an all-Mach number CFD code capable of 

simulating non-equilibrium effects, turbulence, Stuart, and more, the present work presents a 

robust and accurate loosely-coupled solver for magnetohydrodynamic equations at high Mach 

numbers. Two models are developed with the magnetic Reynolds number determining their 

applicability. The resistive MHD model makes use of the MHD assumptions and yields a 

coupled system composed of the RANS and magnetic induction equations. The low-magnetic 

Reynolds number formulation neglects the induced magnetic field and replaces the magnetic 

induction equation with the current-continuity equation, cast in terms of a scalar electric potential. 

These equations, written in conservative form, are discretized via an edge-based FE formulation 

in which the shape function coefficients associated with the geometrical features of the mesh 

need to be computed only once in the pre-processing phase of the solution procedure. To 

stabilize convection-dominated regimes, the inviscid fluxes are discretized with the Roe 

formulation, and second order accuracy is obtained through a MUSCL reconstruction of the 

primitive variables at the midpoints of the edges and a standard 1D van Albada slope limiter. The 

linear system is solved using the GMRES method with an ILU preconditioner. Various two and 

three-dimensional numerical simulations on both structured and unstructured grids are presented.  

The solver for the current-continuity equation is first validated by simulating ionized flow 

through singly-paired segmented electrodes. The results shown are in good agreement with the 

literature. After the validation step, the coupled solver is used to simulate inviscid and laminar 

flows over a sphere, turbulent flows over an Apollo re-entry capsule and an OREX re-entry 

vehicle. Numerical results show that in all cases the flow features are changed by the imposed 

magnetic field. When the Stuart number 𝑆𝑡 gradually grows from 0 to 6, the inviscid and viscous 

flows over a sphere witness an increase in shock standoff distance of more than 70%, and the 

Apollo capsule problem also sees an increase of 27%. Moreover, it is put into evidence that the 

peak heat flux decreases as well (13% for the viscous flow over a sphere problem and 16% for 

the Apollo problem). An investigation on the effects of the induced electric field is also 

performed. The induced electric field is nontrivial in regions adjacent to the object and in general 

enhances the MHD heat-shield phenomenon . Therefore, it is suggested that the induced electric 
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field must be taken into account by solving the current continuity equation and subsequently 

taking the gradient of the calculated electric potential. 

The magnetic induction solver is validated through the Hartmann flow by comparing 

numerical results with analytical solutions. Results have also been obtained for a converging 

channel accelerator, a two-dimensional MHD energy bypass scramjet engine assuming inviscid 

flow and a three-dimensional energy bypass scramjet engine with viscous flow. The numerical 

results show, in all cases, how the flow characteristics are changed by the presence of the 

interaction between the magnetic and electric fields. For the Hartmann flow the braking effect of 

the Lorentz force is put into evidence, as well as the evolution of the hydrodynamic Hartmann 

layers and their magnetic signature. For the converging channel accelerator, the results 

demonstrate the accelerating effect of the electromagnetic force. For the entrance conditions 

retained for the computations, the acceleration ratio is 1.96. 

An anisotropic grid optimization technique is studied on unstructured grids and it is found 

that grid optimization is crucial to retrieve accurate solutions with constrained mesh size. Some 

key features are:  

(1) The process is automated. No matter what initial grid is used (and as a matter of 

fact what algorithm the user has chosen), this methodology delivers the same solution of 

superior multi-scale resolution without necessarily increasing the grid size. Gao et. al. 

studied the dependency of initial grids by comparing the optimization outcomes (with a 

target of 1 million nodes) of 3 unstructured grids with 1/2, 1 and 2 million nodes (coarse, 

medium and fine), respectively [60]. All 3 grids demonstrated similar node distribution, 

despite the observation that the medium grid deployed more nodes near the shock. It was 

worth noting that the solution computed on these optimal grids of roughly 1 million nodes, 

was nearly identical to the solution computed on the structured grid of 20 million nodes, 

except for slight differences near the shock.  

In non-trivial problems, the location of the salient flow features is not necessarily known 

a priori. Grid optimization effectively identifies these regions while locally optimizing the 

grid to resolve them. The sensitivity of the solution to user input is thus minimized. The grid-

shock alignment (along with the alignments with other salient physical features) achieved by 

this optimization technique is extremely tedious or even impossible if not automated. A 
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structured grid, at its best, can be aligned with a simple shock system for a simplified 

geometry, assumed that the needed resources are at the user’s disposal. 

(2) Wall quantities such as the heat flux are indirectly, yet dramatically, improved by 

the resulting increased shock resolution. 

(3) Unlike gradient-based grid optimizers, this methodology brings in a crucial 

directional effect based on the Hessian of the solution. The tetrahedral elements near the 

shock are elongated and aligned to the shock. The extremely elongated edges in the optimal 

grids are not only acceptable, but also necessary to capture shocks with superior resolution 

[82]. While order of accuracy is a major concern for structured grids dealing with smooth 

fields, it is less relevant for anisotropic unstructured grids resolving discontinuities that 

mandate first order techniques to introduce artificial viscosity. As is shown in Subsection 5.3 

for a complex multi-shock system in a scramjet engine, an optimal unstructured grid of 8000 

nodes produces, effortlessly, a more accurate solution than a structured grid of 57,000 nodes. 

(4) Recently many research efforts have been dedicated to high-order methods (e.g. 

discontinuous Galerkin) and some advances have been reported in the high-Mach number 

regime [88, 89]. However, to the best of the author’s knowledge, almost all of the reported 

results are limited to simplified 1D or 2D geometries employing mostly structured grids, and 

none has demonstrated comparable sophistication as the proposed methodology. Furthermore, 

Habashi et. al.  pointed out that most well-posed stable numerical schemes, be they of first or 

second order, give practically the same answers on optimal grids [59]. The author believes 

that CFD practitioners should be more confident in using grid optimization, together with 

simpler schemes with guaranteed order of accuracy to pursue more accurate results, rather 

than resorting to overly complicated higher-order methods. 

Moreover, the numerical results reveal that when heterogeneous physical quantities of 

different time/length scales reside in the solution, mesh optimization should respect their 

disparate time/length scales. Specifically, when the flow equations and the EM equations are 

coupled, the mesh optimization criteria should include both the flow field (ρ, 𝑝, 𝑉, 𝑇 and/or 𝜇𝑇) 

and the EM (𝜑 or 𝒃) variables. The results conclusively demonstrate that in hypersonic flow 

simulations it is not possible to heuristically generate meshes of sufficient quality to produce 

accurate results for both the flow and EM problems, and therefore anisotropic mesh optimization 

is an indispensable strategy that ought to be an integral part of credible hypersonic codes. The 
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results also show that for the same target number of nodes, optimization based on both the flow 

and EM solutions clearly outperforms that based on either alone. In addition, such noticeable 

increase in accuracy does not necessitate more mesh points, as gradient-based mesh enrichment 

would dictate. 

Future developments can include the following aspects:  

(1) The current hypersonic solver uses a loosely-coupled approach. This is an 

adequate approach at the beginning of the code development but has some disadvantages, 

such as stalls in the residuals and limitations on the CFL number, which suggest that fully 

coupling the solvers may improve convergence. Yet doing that would have the disadvantage 

that the modules are no longer portable;  

(2) To simulate more complex and realistic physics, it is necessary to develop 

additional physical models, such as weak ionization and near-surface plasma sheath;  

(3) During re-entry, the temperature on the surface of the vehicle may be over 2,000 

K, necessitating a thermal protection system. MHD heat-shield concept is able to reduce the 

heat on the surface by slowing down the flow near the body using the Lorenz force induced 

by imposed magnetic field. Electron transpiration cooling is another approach that decreases 

the heat by emitting electrons from the hot leading edge. Accurate modeling of the coupling 

between those physical phenomena and the flow is required to reduce design margins, thus 

improving efficiency. In this respect, the hypersonic flow solver developed in this work can 

be used as a solid basis for such future developments.  
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Appendix A: Vector and Tensor Identities 

The inner product between two vectors is defined as 

x ∙ y =∑xiyi

3

i=1

 (0.1) 

where x and y are two vectors, xi and yi are components of x and y, respectively. 

The inner product between a vector and a second-order tensor is defined as 

(x ∙ T)j =∑xiTij

3

i=1

 (0.2) 

where x is a vector, T is a second-order tensor, xi and Tij are components of x and T, respectively. 

The column product between two second-order tensors T and S is defined as 

T: S =∑∑TijSij

3

j=1

3

i=1

 (0.3) 

where Tij and Sij are components of T and S, respectively.  

The L2 norm of a vector R is defined as 

|R|L2 = √∑Ri
2

i

 (0.4) 

 

 


