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We study, via both experiment and theory, localization of longitudinal-acoustic waves scattered
from sites supporting transverse (shear) modes. The experimental system consists of a polymer melt
solidifying by the growth of spherical semicrystalline nuclei. We excite this system with acoustic
plane waves and measure the transmitted signal. For sufficiently high excitation frequencies we find
renormalization of the sound speed and intense absorption peaks over a very narrow range of wave
number. These data can be consistently interpreted as signs of localization within the sample. Stan-
dard theory, however does not predict localization in this system, since the longitudinal velocity in
the scatterers is faster than that in the liquid. However, the solid scatterers support shear modes,
which can significantly modify their scattering characteristics. We extend the theory of localization
to allow for scatterers supporting shear. This model predicts shear-induced localization in the sys-

tem we have studied.

I. INTRODUCTION

Consider a medium containing randomly distributed
scattering sites, such that the system is characterized by
an elastic scattering mean free path /5. Assume that the
inelastic scattering mean free path /; >>1/, so that dissi-
pation can be ignored, and that A, the wavelength of the
radiation (or the particle DeBroglie wavelength) satisfies
A <<lg, so that coherent multiple scattering is unimpor-
tant. In this case if the system size L >>[ then energy is
transported diffusively and the transport properties of
system are characterized by a diffusion constant D.!

Now suppose that the wavelength and elastic scatter-
ing MFP satisfy /g ~A; this is known as the Ioffe-Regel
condition.? In this case coherent multiple-scattering
events cannot be ignored, and in fact can dominate the
transport process. This was first noted by Anderson,’
who showed that this regime should admit a ‘localized’
state, where transport stops and the wave (in his case the
electron wave function) is localized to a finite region in
space. This results from long-range coherent multiple-
scattering events which dominate transport behavior and
which renormalize the diffusion constant to zero.

Localization effects were first investigated in the con-
text of electron transport problems. Several reviews on
this subject have recently been published.*> However,
since it is a coherent-scattering phenomena, localization
should also occur in classical wave scattering. Theoreti-
cal work on the classical wave problem shows that all
random one- and two-dimensional systems must be local-
ized, and that in three dimensions there can be transitions
from unlocalized to localized states. By analogy with the
electron transport problem, the boundary between these
two states is called a mobility edge. John’s replica func-
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tional integral approach® has provided a succinct proof of
this latter point, while several perturbative approaches
have allowed for detailed study of the weak-localization
regime. These approaches are useful in describing phe-
nomena such as enhanced backscatter”® and speckle.” ~!2
Such effects have recently been observed in optical
scattering experiments.> %3716 However, fully localized
states have not been observed other than in specially
prepared one-dimensional systems.!”'® This reflects the
technical difficulty of fabricating weakly dissipating
strongly scattering systems satisfying the Ioffe-Regel con-
dition.

The strongly localized regime has been studied in less
detail, since here the perturbative approaches break
down. The replica functional integral approach®!%?° has
proven very successful for analyzing the critical region
near the mobility edge. This treatment allowed John to
prove the existence of localization transitions in d =3
and to predict the critical exponents for the divergence of
the absorption as the mobility edge is approached from
the conducting side. However, this treatment does not
allow explicit calculation of the diffusion constant D or of
other physically measurable quantities. Soukoulis and
co-workers??? have developed a modification of the
coherent-potential approximation, which allows one to
predict the position of the mobility edge, but again does
not directly yield diffusion constants or velocities. Sheng
and Zhang?’ have developed a diagrammatic method
which, although only valid at low scattering densities,
does yield expressions for these quantities. This is also
the case for the self-consistent theory of Condat and
Kirkpatrick?*~2¢ (CK). This latter approach is briefly re-
viewed below.

In this paper we report evidence of localization phe-
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nomena for acoustic waves in a three-dimensional system.
Our novel system consists of a polymer melt containing a
constant number of spherical, equal-sized nuclei. During
the experiment the radius, a, of these nuclei increases
with time as the solid semicrystalline phase grows from
the liquid. We excite the system by applying an ultrason-
ic pulse of fixed width and constant frequency. We then
measure the attenuation and sound velocity through the
sample, as well as the shape of the transmitted sound
pulses. By performing these experiments as a function of
time we are able to ultrasonically probe the system with a
tunable reduced wave number, n=ka, k being the wave
number of the incident sound wave in the liquid phase.
For sufficiently high excitation frequencies we observe in-
tense peaks in the attenuation. These peaks are narrow,
spanning a limited range of scattering site radii. We also
observe renormalization of the wave velocity within the
peaks, as well as anomalous forward scattering of the
coherent signal. As we discuss below these observations
can be consistently interpreted as signs of localization of
the acoustic wave within the sample.

These results are somewhat unexpected, as the stan-
dard analysis*! ~2° does not predict localization under the
conditions we consider: here, the longitudinal sound ve-
locity of the scatterers is faster than that of the medium.
However, our solid scatterers can also support shear
waves, which can significantly affect their scattering
properties. We have examined the importance of shear
by generalizing the work of Condat and Kirkpatrick
(CK). In their analysis CK considered scatterers which
supported only longitudinal waves, but at a different ve-
locity from the background. We have extended their
self-consistent approach to allow for scatterers support-
ing shear. This additional degree of freedom gives rise to
internal resonances within the scatterer and to enhance-
ment of the single-site scattering cross section. This
turns out to be sufficient to lower the elastic scattering
mean free path to the point where localized states become
possible.

The outline of the paper is as follows.”” In the next
section we discuss the experimental method and present
the experimental results. These results indicate
localization-related phenomena, but in a regime not ex-
pected by the standard shear-free analysis. This is fol-
lowed by a brief review of the theory of classical wave lo-
calization, with particular emphasis on the approach of
CK. Here we also develop the modifications to the CK
theory which are needed to allow scatterers supporting
shear, and compare the results of this new theory with
the original CK approach in order to illustrate how shear
can lead to localization. Finally we use our new theory to
examine the role that shear can play in our experimental
system. We find that the theory predicts localization in
the system we have studied, once shear is taken into ac-
count.

II. EXPERIMENT

The details of the experimental apparatus will be
presented elsewhere.?® The sample, a thin 0.5 cm disk,
4.0 cm in diameter, is confined between two vertically-
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aligned buffer rods having ultrasonic transducers at the
outer ends. The buffer rods are free to move vertically to
compensate for the thermal expansion of the sample, and
the axial length of the assembly can be measured to
within =1 um so that sample thickness, and hence
volume, can be accurately determined. The whole assem-
bly can be maintained at constant temperatures with a
stability of 0.1 K. Also, the buffer rods maintain a con-
stant pressure on the sample, so that the experiment is
performed under both isothermal and isobaric conditions.
For measurements, one of the transducers is energized
and provides an effective plane wave across the surface of
the sample. Similarly the second transducer, used for
detection, is sensitive only to signals coherent across the
transducer surface. A homodyne system is used to mea-
sure the phase of the transmitted signal with respect to
the incident pulse. This allows us to measure both the at-
tenuation and phase velocity through the sample. The
data are processed to account for the acoustic properties
of the buffer and the buffer-sample acoustic mismatch. 28

The polymer material used was isotactic polypro-
pylene, (Himont, Varennes, Canada), which has a liquid-
solid transition near T,, =438 K. We begin the experi-
ment by annealing the liquid sample at 453 K for 20 min,
and then quenching to 425 K. After a delay the solid
phase begins to form, via heterogeneous nucleation of
solid semicrystalline droplets within the liquid. These
droplets appear to nucleate on trace microscopic impuri-
ties in the molten polymer, so that n, the number density
of nuclei is constant from experiment to experiment.

In a separate experiment we used a transmission polar-
izing microscope to visualize the evolution of the struc-
ture during solidification: characteristic photographs of
the growing spheres are shown in Fig. 1. We observed
that (1) the nucleation centers were randomly distributed;
(2) the growth was radial such that the volume of the in-
dividual spherulite is Q=4a>/3; (3) the growth was ini-
tiated simultaneously for the different spherulites and
therefore their number was constant; and (4) the growth
rate was constant for all sites (=1.5 um/min.) such that
the spherulites were of uniform size. The system is con-
sequently highly monodisperse. The spheres continue to
grow until contact. Finally the interstitial regions solidi-
fy, and the solid phase is fully formed.

The spherulites come into contact at a radius
a(RCP)=125 um, which corresponds to a random-close-
packed (RCP) structure for the packed spheres in the
solid phase. Under this assumption we can determine the
time-independent number density of spherulites
n=~8X10* cm™3. We also measure the densities of the
pure fluid, p=0.82 gmcm™ > and pure solid, p, =0.89
gmcem™3. Therefore, using n and the measured (time-
varying) total volume of the polymer sample we can
determine the radii of the scatterers as a function of time,
as the solid phase is formed. The total time between the
onset of nucleation and the formation of random-close-
packed spheres takes on the order of seven to eight hours.

We probed the system with ultrasonic longitudinal-
wave pulses of duration =6 usec, with a rise time and fall
time of =~2 p sec. Therefore the system does not evolve
on the time scale of the acoustic measurements. We mea-
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FIG. 1. Photomicrographs showing the evolution with time
of the solid phase spherulites.

sured the attenuation and sound velocity of the coherent
part of the transmitted signal. As mentioned above we
excite the sample with a spatially coherent signal, and
detect only the spatially coherent part of the transmitted
pulse. This should be contrasted with typical optical ex-
periments, where the detectors are not sensitive to spatial
coherence. We excited the samples at frequencies of 1.75,
2.5, 4.88, 6.0, and 8.0 MHz, in order to probe the system
on different length scales, and also to allow separation of
single-scatterer from multiple-scatterer (or other) phe-
nomena.

Figure 2(a) shows the evolution of specific volume v
during solidification under isothermal (7=410 K) and
isobaric (p =200 kPa) conditions, close to those of the
photomicrographs in Fig. 1. In Fig. 2(b) we illustrate the
concommittant changes in the velocity ¢ and attenuation
a for 2.5 MHz longitudinal waves. As mentioned above
the results for the specific volume provide a direct mea-
surement for the volume content of the semicrystalline
spherulites. Here RCP occurs near the 1 hour mark.

At short times the velocity describes a shallow dip, in-
dicating that the density initially increases more rapidly
than the effective modulus. Thereafter, ¢ increases steadi-
ly until the spheres start to percolate and come into con-
tact, whereupon it gradually levels off at a value corre-
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sponding to the solid phase. In parallel the attenuation
initially ~ remains close to the value a;~4
dBcm (I, =2.5 cm) associated with the viscosity of the
melt. Later the attenuation increases rapidly due to elas-
tic scattering from the solid spheres, reaching a value

1.26
(a)
1.24
=)
o= 1.22
£
o
= 1.20
®
£
S 1.18
o
>
Q
S 1.16
[H]
Q.
)
1.14
1.12 ! L ! '
0 0.5 1.0 15 2.0 2.5
Time t (h)
1.50 60
1.45
50
1.40
% 0 §
~
S 1.35 Pas)
o =)
T 1.30 0 O
> S
S -
’§ 1.25 g
S 20
[} []
> =
1.20 <
10
1.15
1.10 ! ! ! l 0
0 0.5 1.0 15 2.0 25

Time t (h)

FIG. 2. Data showing the variation of (a) the specific volume
v and (b) the phase velocity ¢ and attenuation /! of 2.5 MHz
acoustic waves as a function of time ¢ In this example
solidification occurs rapidly because the sample was constrained
under low pressure (200 kPa). The remaining data were ob-
tained under a pressure of 2000 kPa. This higher pressure was
used to increase the degree of undercooling and to slow the
solidification process.
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ap~18 dBcm ! at around the 15-min mark. This corre-
sponds to an elastic mean free path /p;~=0.5 cm, and
marks the crossover into the diffusive regime. The at-
tenuation continues to increase until the percolation
threshold, whereupon it decreases as the medium be-
comes more homogeneous. Here the data implies
A/lg=0.3 near the maximum in the attenuation. We
find that even when crystallization is complete, the struc-
ture is not sufficiently rigid to support shear waves over a
distance much larger than the wavelength A. The value
for the shear wave velocity, in this and other cases, was
estimated by extrapolating low-temperature data.

The actual measurements presented in the following
were performed at a higher pressure of 2000 kPa, in order
to provide greater undercooling. This slows the
solidification process and allows for greater resolution in
the experiment.

In Fig. 3 we plot our experimental results for the
acoustic attenuation, ! !, as a function of dimensionless
wave number 7, where 1 =2mva /c, v being the excitation
frequency, a is the radius of the nuclei, and where c, the
velocity of sound in the liquid, is 1250 m/sec. Here the
different curves are truncated at values of 7 coinciding
with random close packing. Also, we have subtracted off
the residual attenuation associated with the viscosity of
the liquid phase, ~0.5 cm~!. For the semicrystalline
solid, the inelastic absorption is larger, =2 cm~!. How-
ever /; for both liquid and solid phases is still long on the
scale of interparticle spacings.

At excitation frequencies of 2.5 MHz and lower, we ob-
serve a slow rise and subsequent fall in attenuation of the
signal as the solid phase nucleates. However, at 4.88, 6.0,
and 8.0 MHz we find distinct narrow absorption peaks.
The peaks lie at different values of 7 for these different
excitation frequencies. They are therefore not due to
single-site resonances, since such peaks must lie at the
same dimensionless wave number 7, regardless of fre-
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FIG. 3. Experimental results for attenuation /! as a func-
tion of reduced wave number 7 for acoustic waves of frequen-
cies 1.75, 2.5, 4.88, 6.0, and 8.0 MHz. The curves have been
truncated at the volume fraction for random close packing of
the spheres with radii a(RCP)= 125 um.
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quency. Coincident with these peaks we observe sudden
changes in the measured renormalized sound velocity, ¢,
as illustrated in Fig. 4(a). This is further evidence of a
resonance phenomenon.

The shape of the transmitted pulses also helps in
characterizing the attenuation. Figure 4(b) shows shapes
typical of the transmitted pulse envelopes, taken at vari-
ous positions marked in the absorption peak in Fig. 4(a).
Far from the strong absorption regions, the transmitted
pulse is simply a diminished version of the excitation
pulse, with similar shape and length. However, near the
absorption region the transmitted pulse becomes
significantly lengthened, and in fact splits into two pulses:
one that is directly transmitted and one that is delayed.
The delayed pulse is not due to reverberations within the
sample, as it occurs too soon after the initial pulse. In
any case, the attenuation is so high that any true rever-
berated signal would have negligible amplitude and
would not be detected. The position of the delayed pulse
is also largely independent of the excitation pulse length.
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FIG. 4. (a) Attenuation, /!, and the ratio of the measured
velocity to the velocity in the liquid ¢ /c as a function of reduced
wave number 7, in the vicinity of the absorption peak for the
6.0 MHz data. (b) Oscilloscope photographs showing the shape
of the transmitted signals; the labels A, B, C, and D refer to
values of 7 indicated by the corresponding labels in (a). Rela-
tive to signal A the amplifier gain is up by 12 dB for signal B, 14
dB for signal C and 10 dB for signal D.
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Thus lengthening the incident pulse merely turns the de-
layed pulse into a “bump” on the tail of the main
transmitted pulse. Several possible sources of this pulse
can be ruled out. First it cannot arise from reradiation
from excited, oscillating spheres, as such a signal would
be incoherent and hence undetectable by our system. We
have also ruled out saturation of a resonant absorption
mechanism by verifying that the effect remains after
varying the input signal amplitude by +10 dB. Finally
we note that the first absorption peak occurs below the
percolation threshold for the solid phase, so that bulk res-
onances of the entire system are unlikely to play a role.

Having ruled out these alternative possibilities we in-
terpret the delayed pulse as a resonant forward-scattering
mechanism, in which the transmitted pulse is followed by
an echo arising from time-reversed scattering paths in the
same direction as the incident wave. This is analogous to
the resonant back scattering seen in optical experiments
on localization. In this way we can consistently interpret
our results of anomalous attenuation at nonconstant 7,
sound renormalization and anomalous forward scattering
as signs of localization of sound within the sample.

III. THEORY

Our starting point is the scalar wave equation in a non-
dispersive medium:

1 3
Vi———
l c? ar?

where ¢, here a real number, is the longitudinal wave ve-
locity and ¢ is the local displacement field. The solution
of this equation in the presence of scatterers is difficult
and requires suitable approximation techniques. This
takes great care, as the method must treat the scatterers
in a realistic way and must also ensure that the process of
“averaging” over the disorder does not throw away
correlated multiple-scattering events.

Such scattering problems are best treated via the
Green’s-function scattering formalism, so the problem
becomes one of finding ways to calculate ensemble aver-
ages of the one-particle (G (k,k’)) and the two-particle
(|G} (k,k")|*) Green’s function (GF). The former pro-
vides information about renormalization of the velocity
due to scattering. The latter corresponds to the propaga-
tor for the wave energy density, from which one can
derive a frequency-dependent diffusion constant D (w) for
energy propagation. When coherent-scattering effects are
unimportant this gives rise to the equations of radiative
transport theory.® However, when coherent multiple
scattering is important the diffusion constant can be res-
caled to zero. This is the signal for localized states, so
that an expression for D(w) is the goal of the analysis.
We shall pursue this goal using the self-consistent ap-
proach of Condat and Kirkpatrick (CK). This has the
advantage of being straightforwardly extensible to the
types of systems we wish to study—a background medi-
um propagating only longitudinal pressure waves con-
taining spherical scatterers supporting both shear and

o(x,t)=0, (1)
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longitudinal waves.

Consider a medium density p which propagates longi-
tudinal waves with a frequency-independent velocity c.
This medium contains a number of identical spherical
scatterers of radius a. We denote the number density of
scatterers by n, so that the volume fraction of scatterers
is n*=4ma’n /3. The fraction n* must be small so that a
perturbative expansion around the pure fluid is possible.

The CK theory?*?* can be summarized as follows. Us-
ing diagrammatic techniques they calculate perturbative
approximations for the averaged one- and two-particle
Green’s functions in terms of the single-site scattering
matrix T (k,k;w). The single-particle GF is solved using
Dyson’s equation, under the approximation that n* is
small. This gives rise to a modified wave velocity, ¢, re-
normalized due to scattering.

The two-particle GF is determined by solving the
Bethe-Salpeter equation via diagrammatic summation ap-
proximations to derive an expression for a “Boltzmann”
diffusion constant, Dg(w). This represents the diffusion
constant arising purely from incoherent scattering pro-
cesses. CK then develop a self-consistent theory for the
true diffusion constant D (w) due to both coherent- and
incoherent-scattering processes. This involves summing
a family of diagrams which are expected to be important
for localization (maximally crossed diagrams) and taking
a self-consistent approximation to the resulting divergent
expression for D(w). This gives an analytic expression
for the diffusion constant in terms of the single-site
scattering matrix T and the renormalized velocity ¢. The
results of the model then depend on the parameters n*
and ¢ and on the scattering matrix 7.

We now briefly review the theoretical framework of
CK. The unperturbed GF for the wave equation (1) is, in
momentum-frequency space

Gi,(k,k)=8k—k')Gg, (k)

_ 8(k—k")
(otie)?—c2k?’ @

where the + (—) superscript refers to the retarded (ad-
vanced) form. Given a single scatterer at position x the
single-particle GF can be written in terms of the unper-
turbed GF as?®?

G} kk)=Gg,(kK)
+e"X'(k'*k)G(;Tm(k)T(k,k;a))G(Iw(k) . 3)

If we now average over random configurations of the
scatterers, assuming the system to be homogeneous,
<G:,r (k,k’)) is diagonal and Dyson’s equation allows ex-
pression of the averaged Green’s function in terms of the
self-energy 2, (w);

(G kK))=8(k—k') @
G o(k) =3, ()

The self-energy can now be expanded in terms of n*,
which to lowest order gives®
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zk(w)zé”—fT(k,k;w)
a
=y w)—if (). (5)

Thus the self-energy depends only on the single-scatterer
T matrix. The imaginary part corresponds to attenuation
of a coherent wave due to scattering. Of particular in-
terest is the real part which, upon inspection of Egs. (5)
and (2), is seen to give rise to a frequency-dependent re-
normalized speed of sound;

1 =

o V{o/c(a))
cw? ¢

2

1
2 [0)

(6)

The solution for the two-particle GF is more prob-
lematic. CK show that the Fourier-Laplace transform of
the two-particle GF, averaged over the disorder, is pro-
portional to a diffusive hydrodynamic pole:

oy vV
G ert )~ e @
where € is the external frequency. Localization occurs
when lim,  ,D(w,€)— —ief(w)+O(€?). This implies
that the spatial energy density does not decay with time
and is localized within a spatial region of size {(w).

To find an expression for D, CK considered only
incoherent-scattering processes and assumed n* to be
small. Then the Bethe-Salpeter equation can be solved to
derive the following form for the “Boltzmann” diffusion
constant

2
5
_ c PN ~ 5}
Dp(w)=— onm fdpprdk Ty >
-1
xk,—p.)| (8)
where
Top |2 =T pk* : ©)
¢ p=k=w/c

and where the k, etc. refer to unit vectors. This depends
on the details of the scattering solely through the single-
site T matrix. This diffusion constant, which would de-
scribe the behavior of the system in the absence of
coherent scattering, can be used to define a transport
mean free path,

IT(co)=%DB(co) . (10)

This quantity is later important as an integral cutoff.

Coherent-scattering effects are taken into account by
including the maximally crossed diagrams within the per-
turbative expansion, since these are expected to be dom-
inant coherent terms. This is insufficient to describe
strong localization, however, as it is only a perturbative
approach. CK extended this to develop a self-consistent
theory for the diffusion constant. This yields the follow-
ing form for D in the limit e —0
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32B,, (@)D (@)
D(w,€)=Dy(w)+ Boy et B
4m°0
Q dq’

= . an
0 ieD Nw,e)—(g')?

The wave number cutoff, Q, is somewhat arbitrary. CK
assume that Q ~I 1 and investigated the behavior for
various proportionalities. Following CK we will take
Q=6mwl;!. However, the results are quite dependent on
the value of this cutoff, so we can expect no better than
qualitative agreement with experiment.

With Q =61 ! one can evaluate Eq. (11) to give

6B, (@)
EDB(CL))

3

C

D(w)=Dy(w) =

1— (12)

The velocities on the right-hand side of Eq. (12) have
been renormalized, as required by the self-consistent na-
ture of the theory. Also of interest is the ratio D /Dy,
which indicates the importance of coherent backscatter
to the total diffusion.

Equations (6), (8), and (12) are the core of the CK local-
ization theory. All we need now is an expression for the
scattering matrix, 7. In the far-field limit T can be writ-
ten in terms of the scattering amplitude

2
_ 4
Tﬁi(w/c)——z—ﬂzcbﬂe). (13)

The scattering amplitude ® 7 (6) can be found by solving
for the scattering of a plane wave from a single scatterer.
The corresponding single-site scattering cross section is
also of interest, and is given by
o =T tma*(0) (14)

or by the appropriate angular integral of ® ().

We can now write the renormalized velocity in terms
of ®* as

3n*
2

®1(0)
a

1 1
tw? c?

Re (15)

and using the forward-scattering theorem one also ob-
tains

D 9 A2 81(n*)?
=1 =1— 1,1 (16)
DB 217’2 lElT 8772 172
where
dt(0) ? 4
1,=2["dosing =22
o 3’1*1E
(17)
+ 2
1,=2["d0sin6(1— coso) | 201 | =44
0 a 3n*lT

With the chosen cutoff Q the condition for localization
becomes A=x1/Igly, which differs somewhat from the
Ioffe-Regel condition. One notes, for example, that I
can be 10 times larger than /; when the scattering is
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highly asymmetric.?

CK consider scattering spheres with density p, and
which propagate longitudinal waves with a velocity c;.
The relevant parameters then turn out to be A=p/p, and
M =c /cg, the ratios of the densities and wave velocities.
CK showed that the localization behavior should be seen,
for experimentally reasonable volume fractions n*, for
large values of M, i.e., M % 1.5. This corresponds to slow
scatterers in a fast medium, for example, gas bubbles in a
liquid background. Such systems, however, present
significant experimental difficulties such as polydispersity
and high absorption. Conversely, given structureless
scatterers, localization is unlikely in many systems which
have M <1, owing to the low single-site scattering cross
section for M in this regime.

Consider instead solid spheres in a fluid background.
In this case M <1, so the above treatment does not pre-
dict localization. However, solid spheres can support
transverse as well as longitudinal excitations, so that the
above analysis is clearly insufficient. Motivated by this
fact, we now extend the scattering analysis to treat
scatterers supporting shear, and to show how this
significantly affects the behavior.

Following standard approaches®® we define the in-
cident, scattered and internal displacement waves in
terms of the two fields 1 and 7. These fields correspond,
respectively, to the longitudinal and transverse parts of
the wave. The incident plane wave in the positive z axis
direction is derived from the field ¢/, which is given by

o

2 "(2m +1)—;jm(kr)Pm(cos6) . (18)

where P,, are Legendre polynomials and the j, are
spherical Bessel functions. The outgoing scattered field
Y° can be defined similarly,

o

i™2m +1)aA,h,, (kr)P, (cosf) , (19)

where h,,=j, +iy,, are spherical Hankel functions of
the first kind. Within the scatterers there are both longi-
tudinal modes,

o

l/}s___ 2 im

m=0

(2m +1)aC,, j,,(k,r)P, (cosf) , (20)

and shear modes,
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Ms

= i™(2m +1)aD,,j,, (kr)P, (cosb) , 2n

0

m

where ¢/ is the transverse wave velocity in the scatterers,
and k=w/c/ is the corresponding transverse wave num-
ber.

To determine the amplitude of the scattered wave, we
solve the boundary conditions at the interface between
the scatterer and the fluid. These boundary conditions
are those of continuity of the radial displacement

si+s0=sS (22)

and continuity of the stresses

ol +0% =05, (23)
g5, =0. (24)
The displacements and stresses are, in terms of the fields,
s,=—%——lﬂfr, (25)
ar r
2 209y 1 3 |1
=p? Y+ = | =+ —Q¢v—— | —Q ,
Tor—p@ [l/} 2| r or 2 4 or | r 7 }
(26)
where ) is the Legendre operator
1 0o d
- - 27
sin6 20 |*"%3¢ @7)

Here p, k, and k are the density, longitudinal wave vec-
tor, and transverse wave vector in the appropriate com-
ponent. Outside the scatter k =0.

It is straightforward to solve these boundary condi-
tions for the amplitude coefficients 4,,. The angle distri-
bution function is then given by

®H(0)=—i z (2m +1)aA,,P, (cosb) . (28)

This depends on three parameters, A and M as defined
above and a third parameter Q given by

Q=c//c, . (29)

In terms of these parameters the boundary conditions
reduce to the following system of linear equations for the
coefficients 4,,, C,,, and D,,

C, [(m —1)j,(k,a)—k.aj,, +(k,a)]=D,, {[m*—1—1L(ka)*]j,(ka)+kaj,  (ka)} , (30)
k—la[mjm(ka) kaj, y(ka)]+D,m(m +1)j,(ka)=C,,[mj,(ka)—k,aj, +(ka)]— A, [mh, (ka)—kah,, . (ka)],
(31

ZZA[kaj,,,(ka)-f—(ka)2Amhm(ka)]=Cm{[(Ka)z—Zm(m )1jn,k,a)—4k,aj,, +(ka)}
+D,2m(m +1)[(m —1)j,(ka)—«kaj,, +(ka)], (32)
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where k,=w/c,=Mk and «k=w/c/=Mk/Q. These
equations can be straightforwardly solved to yield the
desired coefficients 4,,.

We can now examine how transverse modes affect lo-
calization behavior. We shall consider the case of a fixed
scatterer volume fraction n*=0. 18 and scatterers which
propagate longitudinal waves faster than the bulk, viz.,
M =0.5714 (1/M =1.75). In the absence of transverse
modes this should not allow localization. We have exam-
ined the behavior both in the absence (Q =0) and pres-
ence (Q =0.5) of such transverse modes, calculating the
theoretical predictions for the single-site scattering cross
section, the importance of coherent scattering to diffusion
(D /Dpg), the renormalized velocity and the attenuation
length. The results are shown in Figs. 5 and 6, plotted
against the dimensionless wave number 7 =ka, where k is
the wave number of the wave in the majority medium and
a is the radius of the scattering sites.

The importance of shear resonances is strikingly evi-
dent. In the absence of transverse modes the single-site
scattering cross section is always small, and the calculat-
ed diffusion constant is equivalent to the Boltzmann
value, viz., D/Dg=1. Coherent-scattering effects are
unimportant and propagation is entirely diffusive.

o/47ra2

FIG. 5. (a) Single-site scattering cross section o /47a? and (b)
diffusion constant ratio D /Dy as a function of reduced wave
number n=ka, for the case n*=0.18 and M=0.5714
(1/M =1.75), A=1. Shown are the results in the absence
(dashed line Q =0) and in the presence (solid line Q =0.5) of
shear modes within the scatterers.
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FIG. 6. (a) Attenuation, / !, and (b) ratio of renormalized ve-
locity to velocity in the liquid, ¢/c, as a function of reduced
wave number, 7 for the two situations presented in Fig. 5. The
localization peaks are clearly evident.

When shear is present this situation is completely
changed. Coupling between the transverse and longitudi-
nal modes within the scatterers gives rise to strong inter-
nal resonances, which are clearly seen in the single-site
cross section. These strong resonances allow coherent
scattering to become important, so that near the single-
site scattering resonances the diffusion constant can be
renormalized to zero, as seen in Fig. 5(b). Localization
effects due to such internal resonances can therefore
occur for moderate scatterer volume fractions.

In an acoustic scattering experiment one can directly
measure the attenuation and phase velocity of the
transmitted wave. These quantities are shown in Fig. 6,
where we plot the attenuation / "!'=c¢/[3D(®)] in cm ™!,
assuming a velocity in the fluid of 2650 m/sec, and the
ratio of the renormalized phase velocity to the velocity in
the background fluid, ¢ /c. The narrow absorption peaks
in the attenuation are due to coherent scattering, while
the strongest peaks correspond to localized states. Asso-
ciated with these peaks we note significant renormaliza-
tion of the sound velocity. However, peaks in this disper-
sion relation are not necessarily coincident with peaks in
the attenuation, as the velocity renormalization is, within
this analysis, a single-scatterer calculation while the at-
tenuation calculation takes multiple scattering into ac-
count.
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IV. DISCUSSION

We now examine what our theory predicts for our
acoustic scattering experiment. Theoretical results corre-
sponding to the known values for solid and liquid phase
densities and longitudinal wave velocities are shown in
Figs. 7 through 8. Here the results have been truncated
to show only those data for which n* <0.4, since the ap-
proximations taken in the development of the theory are
unlikely to be valid for larger n *.

Figure 7 shows the single-site scattering cross-section.
The curve shown corresponds to our best estimate for the
transverse velocity: the experiment only allows us to
determine an upper bound on this quantity, ¢ S0.3c,
(c{ <450 m/sec). The sharp, shear-induced resonances
are clearly evident. We note that this resonance behavior
is strongly dependent on Q (not shown) so that decreasing
Q by only 10% can significantly affect the position and
amplitude of the resonances. This in turn affects the po-
sition and magnitude of the coherent scattering reso-
nances shown in Fig. 8.

As mentioned above, even small changes in Q can
significantly affect the position and nature of the localized
resonances. There is also (not shown) a strong depen-
dence on n, the number density of scatterers, a quantity
that is also known only approximately. Therefore we can
expect at best qualitative agreement between experiment
and theory. We also note that scatterer polydispersity
has not been taken into account. Although the system is
highly monodisperse, even a small degree of polydispersi-
ty leads to broadening of the peaks and to weakening of
the narrower resonances.

We now examine theoretical predictions for the at-
tenuation at excitation frequencies of 1.75, 2.5, 4.88, 6.0,
and 8.0 MHz, showing characteristic results in Fig. 8.
The sharp coherent-scattering-induced absorption peaks
are clearly evident. The tallest peaks (I 7'>10 cm™})

16 T T T T

14 b

10 1

a/41ra2
(o]
T
1

. 1 Il
0 2

FIG. 7. Single-site scattering cross section as a function of re-
duced wave number 7 for M =0.477 and A=0.828 and for
Q=0.25. These parameters come from the following values for
the densities and velocities in the pure fluid and solid, respec-
tively: p=0.82 gmcm ™3, ¢ =1240 msec™!, p,=0.99 gmcm 3,
¢, =1600 msec™!, and c¢/=400 msec ™.
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FIG. 8. Attenuation / ! as a function of reduced wave num-
ber for acoustic waves of frequencies 1.75, 2.5, 4.88, 6.0, and 8.0
MHz. The parameters are the same as Fig. 6. The curves are
truncated above n*=0.4.

would correspond, in our system, to fully localized states.
Thus our model predicts that localization can occur in
the systems we have studied. At high frequencies there is
quite reasonable agreement between the peak positions
predicted by the theory and those seen in experiment.
However, at lower frequencies the theory predicts locali-
zation peaks that are not observed experimentally.

The reason for this discrepancy is not clear. One possi-
bility is that smaller-radii scattering spheres are too small
to behave in the ideal manner assumed by our analysis.
We note that the intense peaks in the high frequency
curves correspond to scatter radii on the order of 105
pm, while the intense peaks in the low frequency results
correspond to radii on the order of 50 um, consistent
with this argument. To check this point we need a more
detailed understanding of the structural properties of the
growing solid spheres. Unfortunately such data are not
experimentally accessible. We also note that the spheres
should be viscously coupled when close on the scale of
the acoustic wavelength. This can lead to an enhance-
ment of the coupling between adjacent spheres and hence
to an enhancement of the effective scattering cross sec-
tion. Such effects are not included in our formalism.

At this point we note an alternative explanation for our
results, based on recent experimental work by Weitz
et al.’! Weitz et al. have used Brillouin scattering to ex-
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amine the dispersion relation for suspensions of hard-
sphere colloids at packing fractions between 15 and 50%.
At high packing fractions (R 20%) they find that the
dispersion curve divides into two branches, one predict-
ing velocities faster than that due to a linear interpolation
of the pure fluid and pure solid, the other slower. These
modes are interpreted as being due to an acoustic wave
propagating through the composite medium (fast) and
one propagating along the interface between spheres
(slow). This slow mode arises when the exponentially
damped shear wave in the fluid can couple to an adjacent
sphere, thereby allowing an interfacial wave to propagate
through the region between them. Theoretical work*?
has confirmed this analysis for this experimental situa-
tion: here the velocity in the fluid is 1.2X10° cm/sec
while, in our notation, M =0.44, Q =0.41, and A= 1.

The packing fractions at which we see attenuation
peaks are >20%, so it is possible we are observing some
aspect of this complicated mode behavior, and not locali-
zation. In this interpretation the delayed pulse would
then correspond to the “slow” mode, or would be a result
of mixing between different modes. This, however, would
suggest that the angular frequencies of the delayed pulses
should be different from that of the directly transmitted
pulse. To within the sensitivity of our detector (sensitive
to the resonant frequency +30%) we observe no such
difference. Also, in their theoretical analysis Sheng
et al.*? point out the strong dependence of the slow mode
on @, the ratio of the shear to longitudinal velocities in
the solid. When they decrease the ratio Q from 0.41 to
0.19 the “slow” mode all but disappears, even at high
packing fractions ( R 38%). In our experiment Q is low,
certainly <0.25, yet we still observe strong resonant ab-
sorption peaks for packing fractions below 30%. It is
therefore not obvious that our results can be explained
solely in terms of an additional propagating mode. Ideal-
ly this could be checked by measuring the dispersion rela-
tion. Unfortunately our solidifying polymer system does
not easily lend itself to Brillouin scattering experiments,
so that the measurement is not feasible at present.
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In conclusion, we have presented experimental results
on acoustic propagation in a solidifying polymer melt.
These data indicate that localization can take place in
this system, at appropriate excitation frequencies and for
appropriate radii of the scattering sites. Transitions be-
tween the diffusive and coherent-scattering dominated re-
gimes are evident. We have also observed anomalous for-
ward scattering of a delayed pulse, which we attribute to
a coherently reconstructed forward scattered wave. This
observation seems to be unique to acoustic experiments
such as ours, since the signal we detect must be coherent
across the face of the sample. Such measurements would
present significant difficulties in optical scattering experi-
ments. We have also noted that previous localization
theories do not predict localization in the system we have
studied. However, our scattering sites can support shear
motion, and we have extended localization theory to take
this into account. We find that this leads to strong
single-site scattering resonances, which in turn allow for
coherent multiple scattering to become important and
can lead to fully localized states. We further find that
this modified theory predicts localization in our experi-
mental system, once shear excitations are taken into ac-
count. However, we note that shear coupling between
spheres can significantly complicate the analysis, in par-
ticular for high packing fractions and when the shear-
wave velocity is large. Such effects are not included in
our analysis. Finally, our work suggest that systems
composed of solid particles supporting shear suspended
in a shear-free fluid may be an extremely useful laborato-
ry for studying acoustic-wave localization in three dimen-
sions.
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