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CHAPTER I 

Prerequisites 

In many mathematical investigations such as determination 

of degree of a field extension, determination of the Galois 

group etc. the knowledge of ineducibility of a polynomial f(x), 

or if reducible the nature of the irreducible factors of f(x) 

are desired. We wish to give here a brief survey of the 

polynomial domain, factorisation in such a domain and the 

criteria by which non factorisability of a polynomial in 

such a domain can be determined. We shall try to make the 

contents self supporting and self explanatory as much as 

possible within the scope of our present work. 

1. Definitions: 

(a) Elements: Objects of investigation in mathematics 

are numbers, symbols, points, lines and various other things. 

These will be denoted by the general name "element". 

(b) Sets: A collection of elements will be called a 

"set" A. The set A is formed by collecting together certain 

elements having a given property p. For example, if the 

elements are students and property pis the property of being 

"student of McGill University", then A will be the set of all 

students of McGill University. If an element "a" has the 

property "p'! then a is said to be an element of the set "A 11
: 

T!)is is technically denoted as afA: and is read as 11 a belongs 

to A". 

(c) Subset: If every element of a set A is an element of 

another set B then A will be called a subset of B. This in 

notation we shall write ASB. 
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(d) Composition: A composition in a set A is an 

operation by which every pair of elements a, b of the set A is 

composed to form an element of the same set A. 

We call a composition either addition or multiplication 

or by such similar names. The addition or multiplication of 

a, b will be denoted as respectively by a+b and ab. The 

choice of these names are quite arbitrary and what is called 

addition may be called multiplication and vice versa. 

In a set A there may be more than one composition. 

(e) A composition, say addition, in A is called 

(i) Associative, if a+(b+c) = (a+b)+c,(~_,l.1eG-/I~ 1)'-r for every 

(ii) Commutative, if a+b=b+a_, ~tt, 1 /,lll, 

( f) Two_ compositions, say addition and multiplication, 

in Aare called (left) distributive, if a(b+c) o::: ab+ac, (right) 

distributive, if (a+b)c a c+b c. 

(g) Semigroup: If in a set A a composition is defined 

and the composition thus defined is associative then A is 

called a semigroup (w.r.t. the composition). 

Thus A is a semigroup w.r.t. addition if for every a,b,cf A 

( i) a +b f A 

(ii) (a+b)+c = a+(b+c) • 

(h) Group: A set A is called group (w.r.t. addition) 

if for every a,b,cfA 

( i) a +b 1- A, 

(ii) (a+b)+c = a+(b+c), 

(iii) the equations a+x = b, y+a = b are solvable in A. 

If the composition is addition the group is called 

additive. Similarly one can define a multiplicative group. 



The property (iii) in the definition of the group is 

equivalent to the property 

(iii)*3(there exists) in A an element, say o, to be 

~alled zero or additive identity element auçh that a+O=O+a=a, 

YafA, andYa~A3 in A an element,sa~ -a and called the additive 

inverse of a, such that a+(-a)=a-a=-a+a=O· 

We shall denote the multiplicative identity and the 

multiplicative inverse of a by 1 and a-1 re$pectively, whenever 

the composition is multiplation and these elements esist in A. 

Theonern:~ In a group the equations aTx=b, y~a~b are 

solvable uniquely. 

Proofa Let z be a fixed solution of y+a=O i.e. z+a=O • 

Now z+(a+x)=z+b 

or ( z+a )fx=z+b 

or x=z+b *every solution is z+b. 

(1) Commutative group• If the group composition is 

commutative then the group is called a commutative group or 

an abelian group. 

Examples (1) The set of all 1ntegers ferm a semigroup w.r.t. 

beth addition and multiplication. 

(ii) The set of all integers form a commutative group 

w.r.t. ordinary addition but not w.r.t. multiplication. 

(j) Ringt Let a set R is a group w.r.t. addition and 

semigroup w.r.t. multiplication such that the addition and the 

multiplication is connected by the distributive laws, then R 

ie called a ring. 

Thus a set R with two composit~ons, say addition and 

multiplication is a ring if for every:~a,b,c fR 



(1) a+b, abtR, 

(11) (a+b)+c=a+(b+~), (ab)c=a(bc), 

{·iii) a+x=b, y+a=b solvable ln R 

(iv) ~(b+c)=ab+ac, (a+b)c=ac+bc. 

A ring may or may not be commutative w.r.t. either 

or both of the compositions. 

In a ring R 

a+O=a=O+a for any ••R· 

Multiplying by bfR, b(a+O)=ba 

or ba+bO=ba 

but ba+O=ba 

4. 

As R is addltively a group, the equation ba+x=ba bas only one 

aolution and bence 

bO=O 

Slmilarly one can prove that Ob=O 

Thus the additive 1dent1ty 0 of the ring R has the 

property Ob=bO=O,.,. b# R 

On ac,ount of this peculiar property, the additive 

ident1ty is called 'a zero elelment of R'. 

In a ring R, only the additive identity bas thi'r 

porperty fort if 01 in any other element havlng this property, 

th en 

0=001=01 

As aO=O and Oa=O, if follows that if one factor is 

zero then the product is zero. 

But the converse is not necessarily true in a ring. 

It may happen that ab=O but aro• bfO. In such a case a 1s 
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called a left divisor of zero relative to b and b is 

called a right divisor of zero relative to a . If R is 

commutative then the left divisors are also right divisiors . 

But in general it is not so . 

Example . All s qu are matrices of arder n over a ring R form 

a ring Mn(R) . But this ring is not multiplicatively commuta -

tive =anè:l it has d ivisors of zero . 

For take n=2, A=(2t: 4 ), B=(O 2) . Then Af ((O )), 
-1-2 0 - 1 

B j ((O)) but AB=(gg)=((O)) and BA=( -f-~) / ((0)) 

If R has no divisors of zero i . e . ab=O~ a =O or b=O or 

bath =0 then R is called a ring without divisors of zero . 

Theorem : A ring R is without di vi sors of zero iffthe cancellat ion 

law : if c / 0 and ac=bc 

For if R has no divisors of zero then ac=bc ~ (a - b)c=O by the 

d istri butive l a w, b~t cfO and there exists no divisor of zero 

~a-b=O~a=b . Converse ly if the cancellation law holds and 

ac=O with cf O :::> ac=O=oc hence cancelling c , we get a=O i . e . there 

exists no divisor of zero . 

In a ring, the commutative law of add ition i s a consequence 

of the other l a ws in most cases . Indeed one can prove the 

theorem : 

In a ring R addition is commut3t iv e if there ex i sts in R 

at least one element which i s not a l eft d ivi sor (or a right divisor) 

of zero . 

Proof : - In R, calculate the product (a+b)(c+d) in two 

wa y s 

(a +b)( c+d)=(a +b)c+(a +b )d =(a c+bc)+(ad+bd) 
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A§ain (a+b)(c+d) a(c+d)+b(c+d)=(ac+ad)+(bc+bd) 

:. ac+(bc+ad)+bd ac+(ad+bc)+bd by associative law • 

• •. ca n ce 11 in g, b c +ad= ad .Pb c 

Putting c~, bc+ac=ac+bc 

choosing C not a right diviser of zero we get 

(b+a )-( a+b )=0 

i.e. b+a=a +b 

(k) Integral domain: A (multiplicatively) commutative ring 

without divisors of zero is called an integral domain. 
do 

As tae elelments of a ring Rjnot necessarily form a group 

w.r.t. multiplication, R may or may not contain the multiplicative 

identity 1 i.e. an element 1 such that 

For brevity we shall sometimes refer an integral domain 

by simply "a domain". 

(1) Units of a ring: 

elements atR for which -1 
a ' 

Let a ring R contains 1, then the 

with the property aa- 1=a- 1a=l, fR 

are called units of R. 

It is easy to prove that the units of R form a multiplica-

tive subgroup of R. 

(rn) Skew field: A ring is called a skew field if its non 

zero elements form a multiplicative group. 

Sorne properties of the skew field F are evident. 

(1) There exists always an identity element l in F such 

that 

a 1 = 1 a= a , *'tC (: F, 



7. 

(2) To each element a/OfF:/ 

aa-l=a- 1a=l 

an inverse -1 a such that 

(3) A skew field has no divisors of zero 

For if ab=O and afo then 0 a-lo=a-l(ab)=(a-la)b=b 

(4) If a/0, ax=b, ya=b are uniquely solvable. 

(n) Field: A skew field in which multiplication is 

commutative is called a field. 

Thus a set F with two compositions, addition and 

multiplication is a field if for every a,b,c f F 

( i ) a +b , ab f F , 

(ii) (a+b)+c=a+(b+c), (ab)c•a(bc), 

(iii) a+b=b+a, ab=ba, 

(iv) a+x=b, ax=b, afO in the 2nd case, are solvable, 

(v) a(b+c)=ab+ac. 

Examples: The set of all rational numbers, the set of 

all real numbers, the set of all complex numbers are examplffi 

of fields. 

Obviously in a field every nonzero element is an unit. 

If A~B and A and B are both fields such that the compositions 

of A are the compositions of B then A is called a subfield of B. 

Similarly one defines subgroups, subrings etc. 

(o) Order of an element: Let a be an element of a group 

G (say additive) then a*a=ia,G, 2a+a=3a~G and so nafG, for 

any positive integer n. on the other hand -a#G and -a-a=-2a f G 

and so -na~G, for any.ive integer n. Thus, if atG then natG for 

all integral values of n, positive or negative, with the convention 

o.a 0 (additive identity of the group), 
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Iwo distincts cases may occur . All elements 

.•. , -ha , ... , - ka , .. , - 2 a , - a , 0 .a= 0 , a , 2 â, . •• , ka , .•• , ha .•• 

may or may not be distinct • 

1) If all multiples ha are distinct, the element a is 

said to be of order zero . 

2) If all mu l tipl e s are not distinct , let h a =k a , h ) k for 

sorne in tegers h,k . 

· (h-k)a=O .. 
Let n be the s ma lle s t positive integer for which na=o . 

Then na=O,a,2a, •..• , (n - l)a are all dist i nct . For ha=ka, 

O f,k rA h t n~(h-· k)a=O where h -kLn which contradict s the assumption 

that n is the s mall e st s uch inte g er . Now if "fl'\. is any integer 

then m c a n be expre s sed as 

m=qn+p, O~ p..( n 

m a = ( q n + p ) a = q ( n a ) + pa= 0 + Pa = pa 

Thu s a ll multipl es a re e x p re s s ed by, Oa= O, a , 2a , ••• , (n -l) a . 

Here n is called the order of the element a . 

(p) Quotient field : Let R be a n inte g r a l d om a in wi t h 

elem e nt s a ,b,c, ..• For every pair of el e ment s (a , b) with bp O 

c on s truct _ th e fr act ion s Ê· Defin e Ê=~ iffa d =bc . Th e n obviou s ly 

i ) ~=~; ( i i ) ~=~ ~ c-a 
b b b d d b 

a nd ( i i i ) ~=~ a nd ~=.9.. ~ ~=.9.. 
b d d ... b ~ 

So if we c on s id e r th e c l ass of a ll e qu a l fr act ion s then t hes e 

classe s h a ve no common elemen t unle s s t h e y a re iden t ic a l . 

a 
De note the cl ass in whi c h 0 

a occur s b y 0 . 

De fin e addi t ion a nd mul t i p li cat ion o f t h e cl asses by th e 

r u 1 es ~ + ~ = ad +b c 
b d b d 

a nd re s pect iv e ly . 

Th e n under t hes e de fini t ion s of a d d i t ion a nd mu l t iplic at io n 
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the classes form a field. Denote this field by Q(R). Q(R) 

is called the quotient field of R. 

( q ) Ch a r a c t e r i s t i c o f a r i n g ( o r of a f i e 1 d ) : 

The characteristic of a ring R (or of a field F) is 

defined to be the integer which is the least common multiple 

of the additive orders of all elements of R (or ofF). In 

case there exists no such finite integer then the characteristic 

of the ring (or field) is said to be zero. Thus if p is 

characteristic of R, pa==O, J'atR. 

Theorem: The non zero characteristic of a ring without 

divisors of zero must be a prime integer p. 

Proof: If possible let the characteristic p F 0 be not prime. 

Then p rs where, say, Vtis a prime integer. 

Now (~a)(sb) ==(a+ •••• +a)(b+ ••• +b) 

ab+ab+, •• +ab, by the distributive law 

::: (rs)(ab)==p(ab) 

As p is the characteristic p(ab) Q~ra)(sb)=O. As there exists 

no divisors of zero, one factor, say ra=O. 

But O=(ra)b (a+ ••• +a)b==ab+ab+ ••• d:"ab 

=a(b+ ••• +b)=a(rb) 

Taking a f 0 one gets 't'b ::: O. Thus ris the common multiple 

of the orders of a and b and as a,b are arbitrary, r is 

the characteristic. Contradicting p is the characteristic. 

Theorem: A finite integral domain is a field. 

Proof: Let a 1,a2, ••• , ah be the elements of the inte~ral 

domain. Conrtruct the multiplication table. 
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Then in the row of products with any given element say ai, 

all elements must occur. 

For if not let any element say ap is repeated 

twice i.e. a a a = a a where a 1 a 
iD pis r s 

a. (a -a .. ) 0 
• • l s .-

But aifo, a 5 -arf 0 ~ the inteiral domain has divisions of zero, 

Contradiction. 

Then the equation aix - aj is solvable. For aj occurs 

somewhere in the row and x is then the colum head. 

Similarly yai =ag is solvable. Hence the theorem. 

Theorem: The characteristic of a finite ring R is an integer 

/O. 
Proof: For if a~R, na = a+a+ •• +a(- R 

As R is finite there exists sorne least positive integer 

p sucg that pa O. Then the least common multiple of all such 

p's will be characteristic. 

Theorem: ln an integral domain R of characteristic p, 
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Proof: As the multiplication is commutative, and distributive 

law holds in R, the ordinary binomial theorem for the positive 

integral index holds in R. 

but (~) = Pf = 
p(p-l) ••• (p-i+l) =p.k, 

t! il, (p-i)~ 

since p is prime, k is a positive integer if iJ..~ · 

So all the middle terms are p multiple of an element 

of R, so they are zero. Hence the result. 

Similar is the case with the other forms. 

Let F be a proper subfield of F1i.e. FCF 1 and bath are 

fields w.r.t. the same compositions. The field F 1 is called an 

extension of the field F. The process by which F1 may be 

obtained from F is called the process of extension. 

The smallest subfield of a field is called a prime field. 

Theorem: The prime field of a field is unique. 

Proof: For, if F1 and F2 are two prime: fields of a field F, 

the set of common elements of F
1 

and F
2

, is 

a field. F
3 

is non empty, since O, ltF 3 • Moreover F3 Ç F 1 • F
3

C f\ 

• F 1 · i s not p r i rn e • He n ce F 3 = F 1 • Si rn i 1 ar 1 y F 3 = F 2 • 

.'.F3= Fl= F2 

Let F be a subfield of pl then the identity l is common 

ta bath F and F1 . Now for any integer p and any afF 

pa = a+a+ ••• +a, pterms 

= l . a +a .1+ ••• + l·a 

=(l+l+···+l)a 

=(pl)a 
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So if pl 0 then (pl)a = Oa=O, i.e. pa 0 P"afF, i.e. 

characteristic of F ih the additive order of 1. As 1 is 

common m both F and F1 , they have the same characteristic. 

If the characteristic of F is p f 0, then the prime 

field ofF will generally be. represented by Fp orby Rp 

Evidently the characteristic of ~ is p. 

Example: If R is the domain of common integers and p is a 

p ri rn e in te ger the n R p• t (Y' p +q: r = 0, :!:' l , :!:'2, ••• ) : q = 0, 1 , 2, ••• p -1 
i.e. the residue class of integers mod p form an integral 

domain. Rp has only a finite number of elements. Hence, by 

a previous theorem, Rp is a field. The characteristic of this 

field is p and this field has no subfield. So Rp is a prime 

field. 
is 

But if p/not a prime integer then R is a ring of 
f p 

characteristic p, having divisors of zero. For, if p=rs 

then (r) 1 (0), (s) f (0) but (r)(s) = (rs)=(p)=(O). 

(r) Homomorphism and isomorphism. 

1 1 1 1 Let A of elements a,b,c, •.• and A of elements a ,o,c , ••. 

be two sets. Let each have one composition, say, multiplication. 

Now let there exists between A and A1 a unique correspondence. 

h: A____,. A1 

such that every element of A corresponds with certain element of 

A1 and that if by h, a~a 1 , b-.b' 

then ab~albl 

Put al=h(a), bl=h(b), (ab)l =h(ab) 

Then n(ab) = (ab)l=albl=h(a)h(b). 
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A correspondence h: A~A 1 having this property viz. 

h(ab) oz:;.h(a)h(b) 

is called a homomorphism of A into A1 • If every element 

of A1 has correspondence with certain element of A then the 
j 

homomorphism H is called onto. 

Let h is onto, then thfough the correspondence h: a--111a 1 

is unique, the inverse corespondence h- 1 : a~a may not be 

unique. In other words, though one element a corresponds to 

one element a 1 by h, yet one element a 1 may correspo!)d:, to 

1 t by h -1. many e emen a 

If h-l is also unique i.e. if h is 1._.1, then h is 

cal1ed an isomorphism between A and A1 • 

As the isomorphism is biunique 

A"::: ~ i m p 1 i e s A
1'= A ·• 

In notation A-::::A1. 

F or , h- 1 C. h ( ab )J ::: h- 1 t h ( a ) h ( b )) , b y the con d i ti on o f homo mor-

phism h 

, • ab 111 ( a 1 b 1 
) 

i.e. h- 1 ca 1 )h- 1 (b 1 ) == h- 1 (a 1b 1 ) 

Thus h-l 1·s 1 h h. a so a omomorp 1sm• 

If A and Al has two compositions, say addition and 

multiplication, then the correspondence 

is a homomorphism if a.-,al, b_.,bl implies 

ab...,.a 1bl, a+b--,al..,bl 

In other words a momomorphism h:A-.A 1 is such that 

h(ab) ::: h(a)h(b); h(a+b)==h(a)+h(b) 



14. 

As before h is isomerphism if h is biunique i.e. when h is 

1~1. 

(s) Classes of residues: 

We have already given an example Rp of classes of 

residues mod p where R is the domain of common integers 
a 

and p is prime integer. 

Now let R be an arbitrary integral domain with identity 

1. Then it can be verified that all elements rq ,rfR and 

q a fixed element of R, form an integral domain (0), which 

is a subdomain of R. 

If q is not an unit then this domain does not contain 1. 

Moreover if xfR,yf{O) then xy=yx=)"qx=xrtq= l';q 4- (0). 

: .R. (0)~(0) 

A subdomain of R which satisfies this property is called an 

ideal in R. 

Now let us establish a relation", called congruence 

relation, between the elements of R such that a~b iff 

a - b f ( 0 ) i • e • i f f a-b= rtq f or s o me ~ fR • 

Th en 

(i) aot a,for a-a=O=Oqfo(O) 

(ii) ao(b =) bQra, for if a-b='fq then b-a=(-T-)q 

(iii) a41(b, b«c:::) aqc, for a-b=~1 q,b-c 'f2q :::)-a-c=a-b+b-c 

Thus under the relation~ the elements of R is divided 

into distinct disjoint subsets of R such that if a,b belong 

to the same subset of R then a-b=Y'q for somel'tR. In this 

case a is called congruent to b mod q and denoted as a~b, 

mod q. Denote the subset in which a belongs by (a). 
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The subsets thus obtained may be considered as new algebrajic ele-

ments. 

q. 

They form a set Rq, called the classes of residues mod 

Now if 

. . 
act/,, c.td then a-b='îfl, c-d Y'4q 

a-b+c-d = (a+c)-(b+d)=(fl+r'4)q 

a c- bd= ( l\ d + 'r4 b + l\ t-,f! ) q 

i.e. {a+c} o( ~+d} and acoc bd. 

Because of this property of« one can define addition 

and multiplication between the elements of Ry as follows, 

(a)+(b) = (a+b), (a)(b) = (ab). 

Then under this definition of addition and multiplication 

R~ is a commutative ring. 

For further properties of Ry we shall give a theorem 

in the next article. 

2.Factorisation in an Integral domain 

Let R be an integral domain. In R ~n element c is said 

to be divisible by a if there exists another element b such that 

Botha and b are called divisors or factorsmc. In notation 

we shallwrite this as ale: (orb}c). Let R contain units. Then 

if e is any unit and a an arbitrary element then 

1 -1 
a=ee-a=ek 7 , where k=e a. 

Thus every unit is a divisor of every element. If c=ab 

and a or b or both are units then we say c has only trivial 

factors. 

Let e is an unit and a arbitrary element of R then 



ae is called an "associate" of a. Thus if U is the group 

of units of R, then the set of all associates of a is 

(a) a U = {a e: ef U} 
For, if b is any associate then b=ae,eEU. 

16. 

An element which is not an unit and is not divisiole 

by any element other than by its associates and units is 

called a prime element. 

If (a) 
or, 7;_ ~ 

(~).(p ... ) ...... (~) ,where~.areprimeelements 

and t: , t;, , ... , t""' are po s i ti v e in te gers , n be in g fin i te , the n 

a iAcalled factorisable and this representation is called 

a factorisation of (a). 

As (a) = auand(k)=ftu 
' 1! r.: 

( a ) aU= f!l! t/'i /!. a.p ": . . 
1 .. 

(J ft.: 1. t'~. . . ~ t;. 
1 Il lt. 

i.e. a =e,f'l/:Yl: .. ;,_t:.. , where t! f /1. 

Thus if this representation exists for a, with finite~, 

then a is called factorisable. If every element a 1 0 of an 

integral domain R is factorisable then R is said to be a 

factorisable domain. 

Theorem: A factorisable domain must contain prime elements. 

Proof: For, otherwise a will have infinite factors. 

Theorem: A factorisable domain must contain the identity 1. 

Proof: For take a primef~R. Then since fis factorisable 
1 f = ef ~R has units •R has the identity 1. 

If every nonzero element afR has the unique represen-
. .L ~ r:. ,._ 

t a t 1 o n ( a ) = ( r; ) . ( 1.. ) • • • • ( J. ) i n R/U, wh e r e R / U i s t he s e t ' r1 ~ 
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of all classes of associated elements of R, then R is 

called a domain of unique factorisation. 

Thus in R, two factorisations of the element a 
L r, r,.. ~ .,., , 'Ms.. "Ht,..\ 

a= li fi···~ = 'U ~ ... t ~ 

are such that there exists a one to one correspondence 

between the prime elements~ and q.~such that the correspohding 
T,: J 

primes being associated. 

Examples: 1. The set of all integers form a domain of unique 

factorisation. 

2. The set of all even integers form an integral 

domain. This domain does not contain the multiplicative 

identity l. This is not a factorisable domain. For example 

6 has no factor in this domain. 

3. An example of a domain of nonunique factorisation 

is c( V-6)= l a+bn:a,b being 11u· · · t R integersJ. 

In c(~6), 6=2·3=-(v-:b) 2 

But~ is not associated to 2 or 3 as+ 1 are the only units 

of this integral domain. 

Theorem: The necessary and sufficient condition that an 

integral domain R with identity 1 is factorisable is that 

there should exist a norm N(a) for each a/0 such that 

N(a)=integer~O; 

N(ab)pN(a), where the equality holds only 

when b is a unit. 

Proof: Let R be factorisable, then for afR 
J 'tf r; ...L ,.,.. 

a=e,r, ~ ... ~ _, being primes, rJ 
positive integers, e, unit. 
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There might be more than one factorisation. 

Take N(a) =min ('f,+l'!.,+ ..• +~)· 

As 'f!. are integers ~ 0, N( a )q 0 · 

If N(a)=O, all ~- are zero;:O-a is a unit. 

N t 1 t b--. e. '-4~~~ ... ~..._. h · ex e • w ere ~are prlmes. 
1 ;a. '-..1 "' ~· 

Then ab = «,tt,.!/l,r:. ... ~r...1;,s,j/:':' .. ~-
N ( ab) = rn in (Y:i"r ...... ··· +lt.*h,-tAz.."'· · . .,.4,...) 

, 
Hence the equality holds only when 4,.,.~~.-t···-..,..&-.. =0. 

Hence N(ab) ~ N(a) where the equality holds only when b 

is a unit. 

Thus the condition is necessary. 

The condition is also sufficient. For let there exist 

a norm function N(a) satisfying the conditions and let R be 

nonfactorisable. Let a 1 0 be a non factorisable element. 

Then a is neither a unit nor a prime, for these are facto-

ri sable. 

So a must be divisible by another element a 1 , not 

associated to it. 

. . 
Here at least one factor, say ~' is non factorisable. 

Otherwise a becomes factorisable 

As the norms are positive integers, 

As b
1 

is again nonfactorisable, the argument can be 

repeated and if b 2 be a nonfactorisable factor of b 1 



N(b 1 ).?" N(b2)+1 

N(a) :?1 N(b2)+2 

Repeating this n times 

N ( a ) ? N ( b.;.;) +n , 

where n is any integer. 

19. 

As n can be as large as we like. N(a) does not exist. 

This contradicts our assumption. Hence D is factorisable. 

Theorem: The necessary and sufficient condition that a 

factorisable domain R is a domain of unique factorisation 

is that a product ab is divisible by a prime element p, 

if and only if one factor is divisible by p. 

Proof: The condition is necessary. 

For let the factorisation be unique and 

L '1:1. r',. ....! J;.. 
a= e,r; fi. •.. r-

J, .dt. 4-.. 
b-:.ea.~ 1; ... "-

LYJL"'.... ~ A .6.a.. ~ 
The n A:. =ab= e,e., l1 fi.''·~-, 1~ ••• ,.,.., • 

If the primep divides one of the factors a and b then 

pis associated to one of the primespi(or~). Asp1 (or ~) 

occurs in the factorisation of c, c is also divisable by p. 

On the other hand if c is divisible by p, then p is associated 

t o ortè o f p, or q . 
~ J 

Hen~e either a or b is divisible by p. Thus the condition 

holds in R. 

The condition is also sufficient. 

For let the condition holds in R. If possible let there 

exist two factorisations of an element a. 
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Then the prime ~ divides a and hence by the given condition 

a t 1 e a s t one o f the p r i m Bit· , sa y qi , i s di vi si b 1 e b y t- . 
As both f:: and qi are primes they are associated. As this 

i s tru e for eve r y pa i r f;. and ~· , the t w o fa c tor i s a ti o sM are 

same. Hence the factorisation is unique in R. 

In a factorisable domain R, a common factor d of two 

elements a and b which is such that every common factor of 

a and b is a factor of d is called the heighest common factor 

(abbreviated: h.c.f.) of a and b. This we shall denote by 

(a,b). 

Evidently h.c.f. d=(a,b) is determined except for a 

unit . 

If (a,b)=e = an unit, then a is called relatively prime to b. 

Similarly one can define the least common multiple 

(abbreviated: l.c.m.) of two elements a,b as the element m 

which is such that both a,b are factors of m and every common 

multiple of a,b is a multiple of m. In notation m= Ca,bJ. 

Theorem: If the factorisation in R is unique then both h.c.f. 

and l.c.m. exist for every pair of elements a,b; a ;l O,b/0. 

Proof: For, let 

a 

b 

here some of the indices may be zero. 

L e t t i = m i n t 'r,.·, 6,j a nd k i = ma x l Y'"', ha-"] 
T he n ( a , b ) e ,:. 1.. 1:,_ 1.. tr.-) l'i r,. ... r .. 
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A factorisable domain R in which (a,b) exists and 

(a,b) = ca+db for sorne suitable c,dfoR, is called a Pr!tifer 

domain. 

Theorem: A pr Ü fer domain R is a domain of unique factorisation, 

Proof: Let p be a prime and ab be divisible by ~in R. 

0 ab = kP krR 0 • ' 
If p is relatively prime to & 

e = ( b ' p ) = c, b+t,p' e unit • 

ae = c 1 ab + t:,_ ap . . 
= c, kp+ c,_ a p 

= (c, k+c~)p 

As e is a unit and p is a prime, this imp 1 i es that a is divisible 

by p. Thus if ab is divisible by p and b is not divisible by p 

then a is divisible by p. Hence R is a domain of unique fac-

torisation. 

Theorem: If p is a prime element, then R , the classes of 
p 

residu es mod p , is an integral domain when R is a domain 

of unique factorisation and is a field when R is a Pr Ü fer 

domain. 

Proof: Let R be a domain of unique factorisation. Then ab is 

divisible by p iffeither a orb is divisible by p. 

' ab : 0, mod p, iff a : 0, mod p or b ~ 0, mod p. 

i.e. R has no divisor of zero. 
p 

Rp satisfies all the other properties of an integral 

domain. 

R is an integral domain. p 

Now let R be a PrU~fer domain. Then R is a domain of 



unique factorisation and consequently Rp is an integral 

domain. 

But in R , (a) =x(d) is solvable if (d) 1 (0). 
p 

For,as (d) /Co1 pis not a divisor of d. 

Aspis prime l=~,p) = cd+c 1p 

,'. a=acd+aclp 

• (a)=(acd), since (ac 1p)=(O) 

=(ac)(d) 

.·.x =(ac)=(a)(c) 

i.e. the solution of (a)=x(d) exists if (ct);! (0) 

.•• Rp is a field 
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An integral domain E is called a generalised Euclidean 

domain if a norm function N(a), Va/OfE, can be defined such 

that 

l) N(a) = integer ~ 0 , 

2) N(ab)n N(a), for a/ 0, b/O • 

3) E is the direct product PXQ where P,Q are multiplicative 

semigroups having common identity l such that 

(i) if pEE and N(p) is least then pfP, and 

(ii)y pé-P and Il qfQ N(q)qN(p) where the equality holds 

only when q is a unit. i.e. E = l pq:p~P,q"~' P,Q satisfying these 

two properties, 

4) Thene exists for every pair of elements a,b, E with 

a f 0 a re p r e s e n ta ti on pb = q a + a- i n wh i ch pl P and e i the r r = 0 

or N ( r )-' N ( a ) • 



If P is the group of units theo E is called simply 

an Euclidean domain. 

Theorem: In E N(a)~N(l) = N (e) where e is a unit of E. 

For N(a) = N(a.l)?N(l) •••• by definition (2) 

Also N(l) = N(ee- 1 )~N(e) ••• by definition (2) 

But N(e) = N(e.l)~N(l) 

:. N(e) = N(l) 
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;.N(l) is least and all units has the least normand 

belongs to P, and if pfP then N(p) = N(l). 

The or e m : N ( ab ) ? N ( a ) i f b /P • 

Proof: Put e = ab 

A s a / 0 , b / 0 ; :. c / 0 • 

;.we have pa=qc+~, for suitable p,q,r; r = 0 or N(r)~N(c) by 

definition (4), 

(i) If rf 0, r - pa-qc-pa-qab = a(p-qb) 

, • by definition (2), N(r)~ N(a) 

•• N(c)/N(r)qN(a) 

i.e. N(ab)7 N(a) 
If r=O, 

(ii)jthen pa qc = qab 

:. p = qb, since cancellation law holds in an 

integral domain 

N(p)7}N(b) ••• by definition (2) 

As N(p) is least, N(p) = N(b) 

/. b~P. 

:. If bfP theo r cannet be = 0 9, by (i), N(ab))N(a). 

We could consider the relation pc = qa+r but this gives 

us no information except that r = 0 and q = pb. 



Theorem: In the generalised Euclidean domain the h.c.f. 

(a 1 ,a 2 ) is expressible linearly in terms of a 1 and a 2 • 

Proof: For this purpose suppose N(a2)~ N(al) and apply 

definition (4) repeatedly. Th en 

a3= 0 or N(a3)~ N(a2) 

a4= 0 or N(a4)' N(a3) 

etc. 
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As N(ai) is a decreasing sequence of positive integers, it 

must terminate and hence after s steps:, say, the above 

procedure ends. The last steps are 

p a = q a + a s-2 s-2 s-2 s-1 s 

P a s-1 s-1 

psas = qsas+l 

Then as+l = Ps-las-1-qs-las 

Eleminating successively as, as-l' ••• , a) in this way, 

one gets finally 

This process is known as Euclidean algorithmus. 

It follows from as+l=c 1a 1+ c 2 a 2 , that every common 
(a l' a2 ) 

diviser of aî and a 2 and therefore the h.c.f.jis a diviser of 

as+l" 
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Conversely, from the relation p 5 a 5 ~ q 5 as+l it follows 

that as+l is a diviser of p 5 a 5 • Multiply the (s-1) th 

relation by p 5 , (s-2) th relation by PsPs-1 etc. Then 

PsPs-las-f=Psqs-las+psas+l 

PsPs-lPs-2as-2 ~ PsPs-lqs-las-l+PsPs-las• 

As as+lis a divisor of p 5 a 5 and hence 

PsPs-lPs-2as-2 etc ••• and of PsPs-l•••P2a2 

Putting PL~PsPs-l···Pi one gets that as+lis 

l 1: lL 
and of p2a2, where Pl,P2~P· 

Now if a is any element of E then as E ~ PxQ, and P,Q 

bath commutative, being subsets of E, a can be expressed as 

a pa 1 where pfP,alE- Q and either al ia a unit, in which 

case afP or a 1 has no factor belonging to P except 1. 

Express as+l' a 1 , a2 as the product 

a 1 :::1ti J 1 , a 2 ::: 'lÎ 2 J 2 , as+ 1 :::t:P a , wh er e tri , 1f2, p (: P and 

J, , a~ , a f. Q and have no factors in P ex cep t 1 • 

ab ove 

' • P. a 
1 ' 

' ' ~ 1t; a, 

\ ' 1 ' • .... 0 0 P.· a =: p iT a"' ... where R1J;,rn~fr,u.. ris a semigroup. 
J,. 2. ,. ,.. ., , , 

' 1 ' ' ' ' pa di vides p
1 

a1 ~ ~11'\ a1, P..,_ aJ,.::: pz..1i.,_a% hence by 

property di vides ' 1 a a, ' a . '1. 

diivisor \ \ a is a of ( a, a -a.) 
" 

' 'ai) 
1 

i . e. (a, &~a. 

on the other hand as+l c 1 a 1+ c 2a 2 

. :::::: ...... '+ - • 1.e. pa c,,,, a, ca.'' ..... az.. 

Hence every common divisor ~f a 1 , ' a 2 and hence h. c. f. (a, 

is a divisor of a. 

the 



' \ :. a= ,.(a, ,a,.) 
1 • a f.C]),._ a 

As E is an integral domain 

1 ,..,. :;:::; 1 

i . e • )., .,.' a r e u n i t s • 

:. a may be taken \ ' a s a = ( a 
1 

, a2. ) 
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Now for any p~P, p • a:!) N ( p ) =.N.( ~4) ~ (4.):+ .-,. IL 1: P, 

since N0P) is least and if N (p) is least then pf P. 

So from the relation 

we get that, a common divisor of 1l, \\'~ andhence the h.c.f. , 
(tr.,"G"..,..) is a divisor Ç>f p. 

:. p ="(«\,'il,. ) ' fff p 

\ 1 
Bu t a s a l :rz tt,«:1 , ~,,;= 1i,. .t::',. 

( a1 , a 2.) = (ii., 'ii..,..) ( a! , a' .... ) 

:; .. a =pa='11 (rr,,r,) (a~ a~)=11 ( a, ... a.,..) 
s+l ' , 

Thus a
5
+1=c:,a,+c:.,.aî ii (a1 ,a1J i.e. h.c.f. of a 1 ,a2. is 

expressed linearly interms of a 1 ,a2.. 

We sum up the properties of the generalised ~uclidean 

domain as 

i) N(ab)., N(a), the equality holds only when t~:P. 

ii) 1f ( a1 , a~) = 4, a 1 + llll!2.a z.p 11 f P. 

If E is an Euclidean domain then P U ~ group of units. 

Hence from above 

(il) N(ab)~N(a), the equality holds only when b is a unit 

( ii l ) ( a 1 , a 2 ) :a c 1 a 1 +c 2 a 2 • 

(~) implies that E is a factorisable domain, and 

( ... ) . . 11 1mpl1es th~t E is a Ûfer domain. 
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Hence we get the theorem: The Euclidean domain is a 

domain of unique factorisation. 

IfE is the generalised Euclidean domain thenP~ u. 

For the elements of Q, N(ab)')N(a) unless bis a unit. 

Hence the elements of Q are factorisable. So if the 

elements of P are factorisable then the elements of E are 

also fàctorisable. 

Now for any two ~ement a, ,a~~Q if (a,,a.)- unit 

the n a , i s p r i me t o a&. I n th i s c a s e 

-.re =~a,+ c,_ a~_,'i\1:-P ,e unit • 

If b is any element of Q 

eub =-=;a, b + c.,. a.J. b 

I f a'& b i s d i vi s i b 1 e b y a,, a 2 b = ka 1 , kE Q 

:. e'itb = ~.a, b+C.,. a,_b = c, a,b+ c,. k a, 

= a, ( c \ b + c,. k) 

As a
1 
~ Q, a 1 di vides b. 

Thus if a1fO and is prime to a2 but divides a2b then a1 

divides b. 

:. The semigroup Q is uniquely factorisable. Hence we get 

the theorem: If P is uniquely factorisable, the generalised 

Euclidean domain is uniquely factorisable. 
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CHAPTER II 

1. POLYNOMIAL DOMAIN 

Let R be a ring in which addition is commutative; 

a,b,c, ••• , with or without suffix are its elements. Let 

x be an indeterminate. We take powers of x and multiply 

it with the elements of R, assuming that this multiplication 

is commutative i.e. axn = xna. In particular we shall consider 

xo and shall assume ax 0 = a for. every af R. 

Then the expressions of the form 

n finite integer~ 0 are called polynomials over the ring R. 

In the expression for p(x) the heighest index n of x, 

for which an1o is called the degree of the polynomial. ei is 

called the coefficient of xi and in parti cul ar a Q, the 

coefficient of xO and an the coefficient of xn, n being the 

degree of that polynomial, are respectively called the 

constant term and the leading coefficient of the polynomial. 

Generally the terms for which, coefficients are zero are 

not wrttten in the expression for p(x). Hove ver one can 

write these terms whenever feels necessary. 

We define the addition and multiplication of two 

polynomials 

p(x) 

q(x) = b0+b 1 x + ••• +bmxm 

rn m+l n = bo+b 1x + ••• +bmx +bm+lx + ••• +bnx , 

respectively by 
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m n 
p(x)+q(x)=(a 0+b 0 )+(a 1+b 1 )x+ ••• +(am+bm)x + •.• +(an+bn)x 

and p(x)·q(x)=c 0+c 1x+ •• +cmxm+ ••• +cnx~+ ••• +cm+nxm+n, 

wh er e cJI = I:.. ai b j , 
, . .,J::."' 

zr= 0' 1 ' ••• 'm +n 

From this rule of addition and multiplication it can 

easily be proved that all polynomials fo~a ring in which 

addition is commutative. We denote this ring by R CxJ . 

The additive identity of R [x] is the zero polynomial 

0 ( x ) = 0 + 0 x + 0 x 2 +. • +0 x n , 0 b e i n g the ad d i t i v e i d e n t y 

of R. As from the above conventions 0 = Gx 0 , one can 

assume O=O(x) ox 0=0+0x+ ••• +Oxn. 

Sometimes x is called variable and the elements of R 

are called constants. 

In R (x], the definitions of addition and multiplication 

imply 

(i) a(bx k) 

(ii) (a+b)xk = axk+bxk. 
. k+J' 

(iii) (axk)(bxJ) = abx 

In the product of polynomials we have 

cm+n = anbm 

. ·. I f R ha s no d i vi s or o f z er o c rn +n = an b rr/ 0 wh en 

m+n As p(x)q(x) = c 0+c 1x+ .•• +cm+nx , 

p(x)q(x)jO(x) => R [ xJ has no divisor of zero and degree of 

p(x)q(x) degree. p(x) +degree q(x). 

Conversely if R[x] has no divisor of zero R can not have 

any diviser of zero, since by the assumption a
0

xO= a
0 

one gets 



R t: R C xJ · 

Moreover if R is multiplicatively commutative, then 

Cy = Z::. a.b. r b1.a,-~p(x)q(x) = q(x)p(x), 
~.·~i=..., 1 J l:tJ""" 

i.e. RtxJ is commutative. 
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Thus if R is an integral domain then R Cx1 is also an 

integral domain. 

Let R contain the multiplicative identity 1 thenY af R 

ax = (al)x = a(lx), so in this case one can assume lx = x and 

that xç. Rf xJ. 
Theorem: If R is an integral domain then the units of R are 

the only units of RCx1. 
Proof: Let p(x) is a unit of Rfx1$-p(x) hasan inverse, say 

' 
q (x) , in R [ x1 suc h th at p (x) q (x) l. 

So degree (p(x)q(x)) = deg 1 = 0 

But degree (p(x) q(x)) =degree p(x) +degree q(x). 

:. 0 =degree p(x) +degree q(x) 

But if f(x) 1 O(x) degree f(x)~ 0 . 

. :. degree p(x) 0 = degree q(x) 

•·. p(x) = p, q(x) q such that p~qfR and pq = 1 i.e. 

they are units of R. 

2. Factorisation tn a polynomial domain. 

For the consideration of factorisation in a polynomial 

do rn a in R [ xJ w e s ha 11 suppose R i s an integra 1 d orna in w i th 

unique factorisation. As R is an integral domain R[~ is 

also an integral domain. 
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In R[x] if f(x) / O(x) we define norm f(x) = N(f(x))= ..., 

degree f(x). 

Th en 

(i) N(f(x))~o 

(ii) N(p(x).q(x)) = N(p(x)) + N(q(x))~N(p(x)), N(q(x)). 

In R[x], a division algorithem is possible •• 

n n-1 
For, 1 et a (x) = a o x + a 1 x +. . . +an 

b(x) m m-l = box + b 1 x + ••. n~ m, 

be two polynomialsofR rxJ . As Ris a domain of unique facto..,. 

risation h.c.f. k = (a 0 ,1:{)) exists. Then a 0 = klo, bo = kmo. 

It is seen that 

moa(x)-loxn-mb(x) = ~(x) where N [~{x)]~ n-1 

If m~ n-1 we can apply the same process to c1 (x) and b(x) 

a nd ge t 

m
1

c 1 (x)-1 1 xn-m-lb(x) = c 2 (x), N[C 2 (x)J~ n-2 

By repeating this process till Nfc;:(x)J~ m and combining 

all these steps we get 

p.a ( x ) = q ( x ) b ( x ) + r ( x ) 

where N(p):::O and N[r(x)]..t: N{b(x)] ••• (1) 

Thus, given any two polynomials a(«),b(x)ofR (x] one can 

find p, q(x), r(x) satisfying (1). 

L e t d b e the h • c • f • o f th e c o e f f i c i en t s a 
0 

, a 
1 

, • • • , a""- th en 

for i = 0,1, ••• , n 

( ) ( 
1 n 1 n-1 1 

50 a x = d aax +alx + ••• +a~. 

t h e h • c • f • ( a' 
0 

' 1 ' , a , ••• a ;=1. . """ 

= d a1 
( x ) , wh e r e 

d is called the content of a(x) and in abbreviation: cont a(x). 
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The polynomial whose content ia 1 is called a primitive 

polynomial . Thus J (x) is a primitive polynomial and may be 

c a 1 1 e d p r i m a( x ) • 

:. a(x) =da\ (x)= cont a(x) pr im a(x) . 

Theorem : Primitive polynomials Œf RCx) form a mult ipli cative 

sem i group . 

Pro of : Let a(x) = 
b ( x ) 

be two primitive polynomials . 

n x 

..r 
The n a ( x ) b ( x ) = c ( x ) = 1: C»" ')(.. 

where cy -=.''l. a,; bl ·' V =O,l, ... m+n; must be primitive . If not , 
, 1-J :tl" 

the coefficient c~ mu st be divisible by a prime p, for all v. 

Suppose that ar is the first coefficient of a(x ) and 

b~ , be the first coefficient of b(x) those are not divisible 

by p . i . e . 

Then as c y ~ ~1/,·t" · 
1-tJ= ~ . 

1. = 

cr+ s = arbs mod p 

mod p 

Bu t cr,.. A :. '() mo d p i . e • ar b s;. 0 mo d p i . e . p d iv i de s 

the product arbs · But as R is the d omain of unique factorisation 

p d i v i d e s e i t he r ar or b s , c o n t r a r y t o th e a s s u m p t i o n • Hence the 

theorem . 

The result proves that R[ x] is a direct product of R 

and the se mi gr oup of primitive polynomials . 

So R{ x] s ati s fi es a ll th e propertie s of a g e nerali se d 

Euclidean doma in, wher e1 for a(x ) / o(x), N(a(x)) =degree a(x ) . 

Moreover as R :i s a domain of unique fact oris ation RC xJ is 
a domain of un1que facto r isat1on . 
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If R is a field then RCxJ is an Euclidean domain, so 

in this case also R[~is a domain of unique factorisation. 

Theorem: f( x) reducible <~ f( x-ta) redu cible in R r x) , where 

R is a ring with identity l and a 1- R. 

Proof: f(x) reducible implies f(x) = g(x)h(x). 

Now in the definition of product we asumed nothing 

upon x except that axn=xna, r' aiR and for every positive integer 

n. So the product remains valid if we replace x by x+a. 

f ( x +a ) = g ( x +a ) • h ( x +a ) 

As UR, x& RC xJ • Hence for any a~R, (x+a)n agrees 

a binomial expansion in RC x)and we get g(x+a), h(x+a) 

as polynomials in x i.e. 

f ( x +a ) = g' ( x ) h t ( x ) • 

conversely if f(x+a) = p(x)q(x) then putting x:y-a we get 

f(y) = p(y-a)q(y-a) 

=p (y)q (y), expanding by binomial 
\ ' 

theorrem and rearranging by the law of addition. 

So replacing the indeterminate y by x 

f(x) = p (x) q (x) . \ 

Hence the theorem 

Let F = Q(R) the quotient field of the inte9ral domain R. 

Theorem: Every polynomial ~x) of F L xJcorresponds to unique 

primitive polynomial ~(x) such that +(x) : 

a 1 , brf R. 

a f; P. (x), where 

' ' 
P..W Proof: For <f>(x) , where b

1 
is the product of all the 

bl 
denominators of +(x) and p (x)~ R[ x]. 
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Also ct(x) =al e(x), where a, is the content of p(x) and 
ET' 

p (x) the corresponding primitive polynomial. 
1 

Let+(x) has another such representation i.e. 

~(x) a2 P2 ( x ) 
b2 

:. +<x) al Pl(x) = ~ P2 (x) 

bl b2 

or alb2pl(x) = a2blp2(x), ••• (K) 

As both p 1 (x) and p 2 (x) are primitive a 1b 2= ca 2b 1where c is a unit. 

Substituting this in (~) 

i.e. they differ only by a multiple of a unit. 

Theorem: If a polynomial +(x) of R [x) is factorisable in F [ x1 

the n .rf ( x ) i s a 1 s o factorisa b 1 e in R t x1 • 

Proof: Let1(x) = d f(x), whE;lre f(x) is primitive 

s p ( x ) q ( x ) , in F C xl 
a ( c () ) ( = tr P 1 x ) d q 1 x , wh er e p 1 ( x , q 1 x ) a r e p r i m it iv es 

ac-
e bd )'(x), where ~(x) = p(x)q 6x) is primitive. 

1 1 

But ct(x) corresponde to two primitives f(x) and r(x) 

":> c f ( x ) = r ( x ) = p ( x ) q ( x ) , wh er e c isl·a uni t 
\ ' 

:>f(x) has factors in R [x] 

?> + ( x ) ha s fa c t or s i n Rt x] • s i n ce d \- R 

Let R be the domain of common integers and p is a 

prime integer, then RP' the residue c1ass of integers mod p, 

is a field. Hence bath R r xl and Rp:ltxl are domains of unique 

factorisation. 
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A polynomial f(x) 

to a unique polynomial 'f"[7) = aa+alx+ •• +anxn, where a,..;r ai.(mod p) 

Theorem: f(x) factorisable in R[~ implies f(x) factorisable in 

Rp [ x]. 

Proof: Let f(x)=g(x)h(x) in R [x] , where 

g(x) 

h(x) 

• a . . i 

-a. 
]. 

b. c +b. 1 cl+ ••• +b 0 c. 
1 l.- ]. 

i . e • f("";) i s f a c t o r i s a b 1 e i n R pt x 1 

n:degree f(x) 

The converse however is not necessarily true. f(x) may be 

factorisable in Rp[xl ,though f(x) is irreducible in R t x1. 

However, by the theorem, if ~) is irreducible in Rptx1 then f(x) 

is necessarily irreducible in Rtx1and as Rptx1 has only a 

finite number of irreducible polYnomials of a given degree 

(see chapter IV) one can see whether rr;) is factorisable 

or not. If f(x) is not factorisable in Rptxl then one concludes 

f(x) is not factorisable in R\x1: 

It may be noted that if the leading coefficient of f(x) 

is not divisible by p then none of the leading coefficients 

of g(x) and h(x) can be divisible by p. Hence 9T'X'J, h(x) 

has the same degree as g(x), h(x) respectively. 
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Zeros of Polynomial 

.,.., . 
L e t f ( x ) = J: a . x b e a p o l y n i m i a l o f R Cx], R i n te gr a 1 

~--. "' 
domain with l. An elementlll( of R, for which f(«)=O, is 

called a zero of f(x). 

Theorem: If~ is a root of f(x), then x-â is a factor of 

f (x) • 

Proof: As division algorithfm is possible in RtxJ~we have, 

dividing f(x) by x-(, 

f ( x ) = q ( x ) • ( x -1() + r , wh er e r ' R 

Substituting x :11(, we get 

0 = f («) .:::t-1 ( Il( ) • O+r 

= 0 + r 

r = 0 

.· .. f(x)- o(x) \x-«J.Hence the thorem. 

Theorem: lf 411(1, 4(~,, .... ,41(" are different roots of f\x) then 

( x - f(1 ) ( x - ~a. ) •.. ( )(- .(1() i s a f a c t or f o f ( x ) • 

Proof: As IJ(. is a root 

' 
f(x) = p(x)(x-·~i) 

• 
Agaln as «~ is a root of f(x) 

0 - f\«.a.) P, ( --J..){ Ill(&.-~) 

As ~~4&, tl,. -11.{1 0 

and as R has no aivisor of zero ~(«1 )=o,~ Cl('z.is a root of p
1 

(x). 

• ~(x) = P,.(x)(x- ~) 

tl x ) - ~ \ x ) ( x- "ti ) =pa l x ) \ x- «2) ( x- « 1 ) 

Continuing this process k times, one gets 

f ( x ) = ( x- 4fW'\) ( x- «,) .•• ( x- ..t''<.) pl( ( x ) . 

Hence the theorem. 
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Corollary: From the above it is obvious that in an integral 

domain a polynomial of degree n 1 0 has at most n distincts 

roots. 

If however, R is not an integral domain the number of 

roots of f(x) in R may be greater than the degree of f(x). 

For example, thepnlynomial ~ 3 -x has six roots in the ring of 

residue class of integers mod 6. 

Definition: If n n-1 f(x) = a0 x +an-1 x + ••• +alx + ao, theo, 

we define, the derivative of f(x) (abbreviated f 1 (x))to be 

the polynomial 

/( ) n-1 ( l) n-2 f x = na~x + n- an-lx + ••• +al. 

From this definition one can easily prove 
1 1 (/ i ) ( f ( x ) +g ( x ) ) = f (x) + ( x ) 

i i ) 
1 1 1 

(f(x)g(x)) = f (x)g(x)+f(x) g (x) 

iii) ( f ( g (x ) ) )/ = t' (g(x))/ (x). 

Definition: if f (x) is divisible by (x-c() k but not by ( x-aO k+l 

theo~ is called a root of multiplicity k,of f(x). If k=l 

theo OC. is called a simple root. 

i.e. 

Now let Cl( be a root of multiplicity k, of f(x), 

• f ( x ) = ( x-«) k f, ( x ) , suc h th at f 1 ( «) to 
f 1 

( x ) = k ( x - ot) k - 1 f' ( x ) + ( x - .. ) k f ~ ( x ) 

Differentiating successively one gets 

f(oC)=O, 

f ( k ) ( x ) = k ! f. ( x ) + ( x -fJ. ) f 2 ( x ) 

f
1

(«)=0, f'(ol)=O, .. ,f(k-l)(M') = 0 but 

to, as f 1 («) 1 o · 

Theorem~ Let f(x)=a 0~ a 1x+·+a 0 x 0 6R[x),where Ris thedomain of 

common integers. Theo if a rational number pjq, (p prime to q), 



38. 

i s a r o o t of f ( x ) the n p \ ail' , q \ a""' and ( p-m q ) \ f ( m ) for an y 

integer m. 

Proof: We have 

"""" f( pjq) = ao+alp/q +. ·+an(p;q): () 

. . 
i.e. p is a root of 

i.e. +(x) = (x-p)g(x) 

Equating constant terms of both the sides and remembering 

(p,q): 1 one gets p)a 0 

Putting x p +q in f( x ) , one gets q f a""'. 

Again putting x = mq one gets (p-mq) \ +(mq) 

But +(mq) = qnf(m) 

A nd a s ( p , q ) = 1 , ( p ... m q ) l f ( m ) 

Hence the theorem. 

This theorem can conveniently be used to determine 

rational roots (hence linear factors), if any, of a polynomial 

over the domain of common integers R. For, as R is the domain 

ofunique factorisation a 1 and a~has only a finite number of 

factors. One can choose p and q from these factors and see 

whether, for an arbitrary integer m, (p-mq) \ f(m) or not. 

If not, one concludes that pfq is not a root of f(x). On the 

other hand if (p-mq)\ f(m) then by actually substttuting one 

finds the value of f(p/q). If it is zero then pfq is a root 

f(x), other wise not. As there are only finite number of p's 

and q's one tries only finite nos. to find rational roots if any. 
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The above theorem is also true in any domain of unique 

factorisation with the identity 1. 

3. Extended domainsand fields. 

Definition: A polynomial f(x) of R [xl is called irreducible 

in R[xJ if there exist no g(x), h(x)tRCxJ, such that 

f(x) = g(x)h(x) and degree g(x)~l, degree h(x)~ 1. 

Obviously an irreducible polynomial has no root in R. 

But it might have a root in R1 where RCR1. 

For example, x2 +l has no root in RCx], where Ris the field of 

real numbers. But it has roots in Cfxl, where C is the field 

of complex numbers and so x2 +1 is factorisable in Ctx]. 

Now let f(x) i ~ aixi be an irreducible polynomial 

of F(x) where F is a field. Let~ be an element (not belonging 

to F(x)) such that f(4)=0 •••• (1). One may take 1( an arbitrary 

symbol which satisfies all the postulates for the indeterminate 

x, in relation to F, together with (1). 

Consider the set F(«) of all elements of the form 

( ) n-1 
P d = bo+b f+ + ••• +bn-1~ ' . 
bi , 1=0,1, ••• n-1, 6 F 

Then F(«) is a field, For if 

q(4) 

the n p (C3l) +q («) 
n-1 

= (bo+co)+(bl+cl)~ + ••• +(bn-l+cn-1)~ 

= ,l" +J...ot+. ·+~-l t:J(n-l, where ct,;= b
1
• +c"., 

= J. (ft ) s a y • 

. 
0 

n-1, 
1= ' •• , 

For multiplication of p(d) and q(~ we see that p(~) corresponds 

to the polynomial p(x) 



get the corresponding polynomials q(x) and r(x) p(x)q(x). 

Now if the degree of r(x) is less than n then r(x) corresponds 

to the element r(~) of F ( .C) which is evident! y the product 

of p (of) and q 1 oc) • 

If however the degree of r(x) is ~n, then in F CxJ 

r(x) g(x)f(x) + h(x), 

where degree h(x).t. n. 

:. r(e() =g(cll)f(«)+h(.:() 

9 (t().o + h(l() 

Hence r(l() i.e. p(tll()q(oC')f F («) 

Let the inverse of p(~) is 

' .,. . , 
p- (tl) Uo + tt,« + •.. + u..,., tllf , t.."k· 2.. 

The n J. -::. ~ {IIC} /:;'(l:t) "=- tf!, fi 1 -f. {Ir 0 U
1 

-+ Gt, U~J) tl{_,. ••. i' &:,'k • tl"" ·t cri 

: · ll..o ti o -:./ ,_·. t! · Uo = Zo ~ 

4, Il,+ dt lit~ ::. o ,. .. r. u.--- J. a, u • :: 
1 llo 

etc. 

t;, .. -
tt.oL 

Th u s i f p ( 41( ) / 0 , p- 1 ( 4() c an be d e te r mi ne d a s a b ove • 

The other properties of a field .can easily be verified 

inF(tl(). 

Hence F(~) is a field. 

F(~) is an extension of f· The extension has been done 

w i th a r o o t of an ir redu ci b 1 e po 1 y nom i al f ( x ) of F Cx J. tl( i s 

called algebralic to F and the extension is called simple 

algebraic extension. 

It may be noted that we have assumed ~ to be a root of 

an irreducible polynomial f(x) over F. Consequentlyctdoes not 

belong to F. If however«" F, in which case f(x) is reducible 

in F(xJ with x -D(as a factor, one may considerctas a root of 
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x -«'and find F(«). Obviously here F(«) ;;;; F. 

Theorem: Let «,and «.,be two roots of an irreducible 

polynomial f(x) of degree n~2, over a field F. Th en 

there is an isomorphism 

+: F(«J--+ F(«,), such that tj(«,) = ~2 . 

Proof: 
.,.._, &. • 

The elements of F(.(
1

) are.l:a,;ol(", and those of F (..-c•zJ 
.,.._, t.' " "" D 

are z: "'• a,_ ~ .-c...· l- .&" • 
i71-ll 

Now establish the correspondence +: F( «.)--..;. F(«'J.), 

a. 'M. • .,. • 'Z. 'k-J,. • 

The relation c:f> (t:C1:.r, .. ) •.1: C,,:tl(; remain4valid because 
,.·,o ~=-o 

.-c, and «,.are the roots of the same polynomial. 
the 

Now it is obvious that/correspondence ~is 1~1 between 

the elements of F(oll(\) and F(.-<,.). 

So ~ is an isomorphism. 

Putting a 1 = 1, a• = a2. =·.. O, one gets cft ( "'• )=<a.· 

The most important consequence of this theorem is that 

any algebraic relation between one root of an irreducible 

polynomial and the elements of F remains true if this root is 

replaced by any other root of the polynomial. 

Theorem: Let Fi and f2. be two isomorphic fields and + is an 

i s o rn or phi sm Fi"_. F 2 • I f the po 1 y nom i a 1 f 1 ( x ) 
1
'f.l!i 1l J ~ ~· f: F, ., -- . 

i s i r re du c i b 1 e ove r F 1 the n f ( x ) =. r t:j (~·)'x! i s 
a. r~·· , 

irreducible over F 2' Further if K. is a root of f.(x), i=l,2, ' ~ 
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the n F 
1 

( <a) :::3:" F 1. (4 ;J) w i th an ex te n s i on i s omo r phi sm 'l' of + su ch 

CThe isomorphism Y' is an extension of ;. if for all c 1- F, 

one has 'f(t!) ~(c).J 

Proof: Between the elements of F1 (x) and F2 (x) establish 
...,... . -. ,· 

the correspondence j: 1:. lf,·x' ___.... .r tp/'4.,,:)~ ~ <~ta· f-F. 
41": 0 , ... , 

Then f(r.t:,·'X'') ::.r: ff~t.'JH'. 
Now J (r4. :N,·+xt,· ,:J = j(r, (A,·-1-ti)'>l') = r: l' {''f,·-1~,·)~~ 

' . ,. /1. ) e = s: ( t;/~,·)+ </JI'/,'))"':: r f14,) :H + r tl ,; , 
= j.(r4,.,tj -+j(r./.,·>tc) 

j {rtf,·H': E""'I·Nt) •.f (re,·H')~ C,·:::,!,..iif;·f.~ 

::. r +tt:.,.·)'H'. = r fil~;,·) >lr '1/I.·):H'. 

: j Cz tif.,· x'). J{z; ,,.. >t') , since ;is an·isomorphism. 

As the correspondencef:a,-"'~(4.,·) is 1......,.1, the correspon-

dencej is 1+-+l and hence ~ is an isomorphism. . . ~ 

r f t t.,e)::: . ~ ? {~· J xl' =- '!: ~ 1'4,:) H'· r ~tt" ) " 1-z, "':;.,g , , 

t ne n 1 (,; 4.,·Ht' rt~e. xie.)= r tf(",·) x( 1: ~(/,") x• • { fw) 

But j,(.J.fx))::..f,/"') and 5 is 1~1, 

· ·. /; (") = %' 4,· 11 'r-'.~c.,. ~ "~ e-. F, (":) i s redu ci b 1 e . . 
Ag ain if~: r .c, . .t, 1---lit r c/JCc,;)tJ(/ 

' 
then since the degrees 

of f1(x) and f2(x) are equal and the correspondence between the 

coefficients of same powers of Ifs, in the correspondencey-, 

is isomorphic, one can prove just as in the case of J above, that 

'l"is an isomorphism between F
1
(..c1 ) and F~,(l!(1). 

Putti ng a 1::: 1 , a o= a 2=. • • 0, we ge t 't(é I) ==ll2, sin ce 

-f(l)=l for any isomorphisme;. Putting a 1::: a .. ==an==O we get 
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Theorem: h.c.f. is preser:ved in an extension F{x],.where 

1 
F ";JF, both fields. 

Proof: Let f(x), g(x) be two polynomials of F[xJ and 

(f(x), g(x))= h(x) 

Then since FCxJ is an Euclidean domain there exist 

suitable .p(x),q(x)f FCx]such that 

h(x) p(x)f(x)+q(x)g(x) 

1 
Now let (f(x),g(x))=h

1
(x) in F [xl. So there exist l(x),m(x) 

f. F 1{x1 such that l(x)h 1(x) f(x), m(x)h 1(x)=g(x) 

h(x)=h
1
(x) i p(x)l(x) + q(x) m(x)} 

· hl (x) 1 h(x) 

But every common factor and hence the h.c.f. of f(x), 

g(x) in F CxJis also a common factor of f(x),g(x) in f 
1fx1 

,',h(x) \ o,(x) 

i.e.h(x), h 1 (x) are associated • 

.'.h(x)=b h, (x) ,where b is a unit. 

Theorem: Iwo polynomials f(x), g(x) of F fx'], F field , have 

a common factor of degree 91 iff they have at !east one common 

root in a suitable extension. 

Proof: If h(x) is a common facb~ of degree ~1 then the roots 

of h(x) are also roots of both f(x) and g(x). 

Conversely if f(x), g(x) has a common root ~ then in 

F(ot)[ xJ x-«is a factor of both f(x), g(x), henc.e is a factor 

of h. c. f. ( f (x) , g ( x ) ) in F (til) t xJ . But h. c. f. do es not ch ange 

in an extension. So f(x),g(x) have a common factor of degree ~1 

in F [ x) , 



Corollary: f(x), g(x), have common root, f(x) irreducible ~ 

f(x) \ g(x). 
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In the extension F(IC) of the field F by the root « of an 

irreducible polynomial f(x) the elements of F (Q0 are of the form 

n-1 
bo + blo( +., ..... + bn-1 1( ' 

bo, bl, ••... ,bn-1~ F. 

Now let F be a subfield of a field F1• Then F1 is an 

extension of F. If there exists fini te number of elements O(.,da~ ··· ,~f. 

F1 such that every element of F1 can be expressed as 

+ a2 «,. + ..•..... + ~ oe-, 
aitF, then Fl is called a finite extension ofF. If moreover all ~; , 

are independent over F i.e. c11!1(, + c
2

e(,_ + .... . +cmo(....._ =0 implies 

all ci = 0, then m is called the degree of theeKtension and one writes 

this as m =(Fl: F] . If there exists an element pt- F1 such that 

F1 : F <r) i.e. if every element~f- Fl can be expressed as 

----· ""= do + dl p + ...... + dm-1 r 
then pis called a primitive element of the extension. 

In the ab ove examp le F (p() is a fini te extension of F, « is 

the primitive element and [F (M) F] = n. 

Definition: If a field E is an extension of a field F such 

that a polynomialtp(x) of F(x] is factorised into linear factors in E [xJ 

and if ~(x) cannot be so factorised in any intermediate field, then 

E is called the splitting field of~x). Thus the smallest field E 

in which4P(x) is factorisable into linear factors is called the 

splitting field of cf<x). 
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Theorem: Splitting field E exists for every polynomial~x) of 

Proof: As every polynomial~(x) is reducible into prime factors 

in X{xJ , it is enough to consider the proposition when 1>(x) is 

irreducible. 

As~(x) is irreducible in FrxJ, extend F algebraically to F1 =R(~), 

where GC', is a root of+(x). F1 may contain other roots of +<x) besides «i • 

Let the roots 11(
1

, ••• J «kf l!\. 

Then in E'1 fxJ, 

c:f>(x) =(x-~) (x-f(._\ .... (x-j()â..(x) c::b(x) •.• .d!t(x), 
oJ 1( Tet lit. Ta Y" 

where .d..(x) are irreducible in :F-'1 tx) and degree .A.(x) 1.. degreec;(x). 
~~~ -r.~ 

Now extend !1 by a root of~(x) to E'2 and proceed as above. In 

+<x) = (x- tt,) ... (x- <w (x- ~),· •. (x-~) tx) ... t't), 
where d!t(x) are irreducible and degree ..-(x) ~ degree d (x). Ts.: Ta·. na 

As the degrees of ~(x) are decreasing, we arrive, at !east 
Tlci. 

inn steps (n being the degree of~(x) ), in a field E such that in 

E +.ci.(x) are all linear and..p.(x) = (x-q;)(x-A's) ..• (x-«'~. 

E is the splitting field of~(x). 

Definition: An irreducible polynomial f(x) of F fic] which has 

no multiple roof in an extension of F is called separable, otherwise 

it is called inseparable. 

Let us investigate the inseparable polynomials of FCx). 

Let f(x) be an irreducible polynomial of FtxJ and OC b.e a root of 

f(x) of multiplicity K> 1 in an extension of F. Then 



J( 
f(x)={x-D() . q(x), where 1'(«} i= 0, in that extension. 

l K , K-1 
Differentiating f ·(x) = (x-«} ,. (x) + k (x-«) 1-' (x) 

or f 1 (x) = (x-cc)k-l { (x-A') ~(x) + Ji( 'l/(x) J . 
As k"> 1.) 0( is a root of f/ (x) of multiplicity k-1. 

k·• 
.. The h.c.f. (f(x), f (x)) = (x-ct) i' (x). 

Conversely, if every root of f(x) is simple, then 

f/ ::{)c) · = {x)~ 1() qi (x) + J (x). 

1 
f(CI() =,(Il) i= 0, for every root K of f(x). 

46. 

(_-:-

1 1 « is not a root of f (x) i.e. f, f · has no common root. 

(f(x}, fl(x))is an element ofF, i.e. f, fl has no common.: 

factor of degree~ Jin F(xJ (since h.c.f. does not change in an extension). 

Thus the necessar~ and sufficient condition that f(x) may have a 

, ~ 

multiple root is that the h.c.f. (f, f) is a polynomial of degree~·· 

Now if f(x) is irreducible, then it can have no common factor 

1 ' 1 with a polynomial of lower degree f· (x) unless f (x)= 0 (x). Thus - . if f (x) '!' r Il• x" is irreducible and still have multiple roots in an , :. . 
extension then, 

l ---. ,._, 
f (x)= r 1..IC

1
; >t. = 11 t~) 

,_ ... , 
• • ia' = 0 , for each 1 .j, tt •·· · · · (:r) 

Two cases possible: 

1) If the characteristic of F = 0 then from (~ a1= 0 for all i i= 6. 

f(x) Cl' C.0 

i.e. In this case an irreducible polynomial of degree ~1 can not 

have a multiple root. 
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2) Let the characteristic of F b~ p~O then (7) is true only when 

for a,~ 0, i = kp i.e. if i is an integral multiple of p. 

~ f( ) P "J,~ np . . one can wrïte x = a0 + ap x + azpX + .... + anp x , sorne of the 

coefficients aip may be zero. 

Conversely if f(x) is of the above type then f 1 (x) = 0 

Thus f(x) =, (xP), when 

If the characteristic of F is p ~ o,an irreducible polynomial of FCxJ 

can have multiple root iff f(x) = + (xP). 

Now let f(x) be an inseparable irreducible polynomial over the 

field F of characteristic p ~ O. 

Then f(x) = g (xP) 

But it may be such that g(x) is again 

.:. f(x) ~ h (xP2) 

So suppose that f(x) 

f(x) is inseparable. 

Renee f (y) is irreducible in F C Y1 

4>(Y) = f,(y) .:pt.. (y) 

....... 
'f' (xP : : ) where m ~ 0 as 

For if 

Then f(x) 
.... p'!JH 

= '/', (xP ) f'"'- (x · '), which contradicts the assumption 

that f(x) is irreducible. 

1 
Also + (y) ~ O. 

?ok-tf 
he nee f (x) : 1' (xP- •. ) 

1 
For if tj:- (y) = 0, +(y) = 'f ('1P) as before and 

which contradicts our hypothesis. 

Thus 4' (y) is separable and in a suit able extension 

+(y) = (y-,,) 01 -tJ~) . . . . . (y- ,..,0 ) 
:w.. 1ft ... 

f (x) = 6cP - - (31 ) (xP' · - (jz.. ) ••••• (xP · -li,.. ) 

Now if «i. is a root of f(x) it must be a root of xP..,...- f3~ (say) 

"~ «. - f'J~·= 0 

' ~?+&.. 
i.e. fi~·:: ~· 
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,... 
and xP - fJ,: = 

L-
p~ , 

x . ;... tl(~.· 

.,.._ 
[ 7 

pi. 
f(x) = (x- o(,) (::-ri~ ..... (x -ll.J 

:Jel.. 
lj (x)J P , where j'(x) = (x- ~ (x- «J ..... (x- «''-o ). 

If the degree of f(x) is n then n = n0 pm 

Thus f(x) has only n
0 

= n/~distinct roots, each root having 

the same multiplicity p~ The splitting field of f (x) is same as that 

of j (x). 

Definitions: A field N is called normal over F if (N:FJ is finite and 

each irreducible polynomial of F[xJ that has one root in N is split up 

completely inNCx7. 

Let K be the smallest extension of F such that f (x) i- 1< C~) 

splits up linearly in K~Jthen K is called the algebraic closure of F or , 
algebraically closed. 

Regarding algebraically closed field we state here the following 

important theorem due to Steinitz: " For every field F the closed field 

K exists. K is unique (except for isomorphism) ". 

It can be proved that the field of complex numbers is algebraically 

closed. So every polynomial is reduced to linear factors over the complex 

field. 

Conclusion: It is clear from the above discussions that the reducibility 

of polynomials depends on the domain or field over which they are defined. 

\ 
An irreducible polynomial may not be irreducible in an extension. In fact 

any polynomial has its splitting field and every field has its algebraic 

closure such that over the closed field any polynomial is reduced to 

linear factors. 
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4. Polynomial domain in severa! indeterminates. 

We have defined polynomials in a single indeterminate x over 

a ring or integral domain or field R and obtained R{x]. This 

' process is usually expressed as Rfx1 is obtained from R by the 

adjunction of x 
, 

We can proceed further. We can ex tend R C x1 by a second inde ter-

minate y and construct R! xJ[y]. If R is a ring in which addition is 

communtative, !hen R(xJ and hence R[x][yJis also a ring. The elements 

of this ring are 
P (x,y) = Pm(x) ym +Pm.~x) ym-l + .... +Po (x), 

where Pk (x) = ~ 
;' 

. 
ajk xJ . 

• :. P (x,y) =~ (t::a jk xj) yk. 
k.J 

We define addition and multiplication in RCx]{ y] precisely 

as before considering Pi(x) as coefficients. Then from this definition 

it follows that 
P (x,y) = % 'r (a]·" xj) yk. 

w.~· .n. 

Again one can construct R t yJ first and then R fy]tx) . Then 

the elements of R C y"]['xj are 

where ~.(Y) 
1 

p (y ,x) = ~(y) xn +?(Y) xn-1 + •..• + ~(y), ""' ...... ... 

p (y ,x) = 'Z: r (aJ'k yk) xj. 
tl' ... 

Let R contains the identity 1. Then we may consider x,y~Rrx)[Y) , 

so we can remove the parenthesis in the above s~s. 

Now ax = xa 
(ax) y = y(xa) 

Taking a = 1; xy = yx 
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RfxJ(yJ == R [ yJCxJ. 

If however R does not contain 1, still one may assume 

This assumption is permissible since it does not change definitions 

of addition and multiplication. 

From this assumption ( if required) 

B. [ x]f yJ == R ( y]{xJ • 

This common ring is denoted by R{x,y], which is therefore independent 

of the arder of adjunction. 

In a similar manner one can get the polynomial ring 

Its elements are 

By the degree of a term 
.,._ 

we mean the sum: F ~· The maximum of the degrees of the 
/:;1 

non vanishing terms is called the degree of the polynomial p (xl····,xn). 

A polynomial p (x1 ,x2, •.•••• ,xn) is said to be homogeneous and 

of degree m if 

~ ,t..,., - /.' ,. 
4 4!. . ~'x .... "' "a. . .. r.., ,.., a. • • . 
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Thus the necessarw and sufficient condition for homogenety is that 

m = i 1 + i 2 + ...... + in' for all i 1 , i 2, .••• ,in. 

The homogeneous polynomials are also called "forms" of degree m. 

Collecting homogeneous terms of different degrees together, one 

can write an arbitrar~ polynomial of degree m 

<"' /t ,; r:... .: ..... 
P (xl,xz, ..... ,xn) =~.,,.,i,i,.···'-~x, ~···~ 

as p (xl, x 2, .... ,xn) = U0 + Ul(xl,····•xn) + ,_ ... + Um(x1 ..... ,xn), 

where UÎ (x1, x 2, ..••.. xn) is a homogeneous polynomial of degree i, i=O, 

1, ..... , m. 

As Rl x,yJ = Rf xJ[ y1 , a polynomial p (x,y) is a polynomial in 

y over Rtx1 and hence one can define the derivative p/ (x,y) over R r x1 

just as in the case of a single indeterminate. To avoid confusion one 

writes this derivative pl (x,y) as ~ ..,, Similarly one can dèfine ~ • 

From this definition one can prove the Euler's theorem on 

homogeneous polynomials of degree m, viz; 

x u +~~+··· .. "'"'".: 1 '1>)(., 31C ... 

For factorisation in a polynomial domain of severa! variables 

we have the following extensions of the theorems of the previous articles. 

(1) R ring without divisors of zero implies RCx1 is a ring without divisors 

of zero and hence by induction R[x1 , ....... ,xn1 is a ring without divisors 

of zero if R is so. 

(2) R integral domain implies Rtx1integral domain and hence by induction 

Rrx1 , ..... ,xn1is also integral domain if Ris so. 

(3) R integral domain with unique factorisation implies R(X1 integral domain 

with unique factorisation and hence R[x1, ... ,xn1 is also an integral domain 

with unique factorisation if R is so. 
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The concept of primitive polynomials can also be introduced 

here. Let F be a field. Then a polynomial f of F[xl, ...•. xn1 is called 

primitive w. r. t. x}, xz, ..•... xn-1• if it is primitive w. r. t. the 

integral domain F [ x1 , ..... ,xn_f]i.e. if it does not have a non constant 

factor that depends only on x 1, .... ,xn-l· 

Proceeding precisely as in the case of one indeterminate one 

can prove that if f(xl, ..•. ,xn) considered as a polynomial over F[x1 ,xz .. . 

.. ,xn-ll have factors with coefficients in the quotient field of F[xl ... ,xn-l1 

then it has factors with coefficients in F xl,······xn-1 . 

Theorem: If a homogeneous polynomial over a ring R without divisors of 

zero is factorisable then the factors are homogeneous. 

Proof: Let p = p (xl, .••.. ,xn) be homogeneous and of degree ffi( and 

For brevity suppose 'JI= f'(xl, ..... xn) and )t = )" (xb •... ,xn). 

Let 'J' (xl, ..• ; ,xn) = 1-111 -t- fi,.J.···"*" ~ , 

and r (xl•····,xn) = ~"-tvr,+··· +~.Jo, where 

are homogeneous 

polynomials of degree i. Th en 

P (xl, .... ,xn) = (II.,+V1 +-· · ·+ 'û) (1{.,. z-1..,. ·- · +'*) 

=P., Z{, -t- ( vtl ~ + u, ~)-+ tH., li'._..,. q, z.J, +«, ~.) ...,_ · · · 

+(llo~+ ~ *-•..,.. · ··) + ··· + ""A Z!t- :J 

where the sum within each parethesis is a homogeneous polynomial of 

degree equal to the sum of the subscripts of tl and V.of any term within 

that parenthesis and no two such sums have equal degree. So p (xl, ... ,xn) 

must be equal to one of these $ùU!lS,,and all other sums within respective 
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parethesis be zero, i.e. zero polynomial. Then equating these sums with 

zero and remembering that R[Xl, ..•. xnJ has no divisors of zero we get 

that both t-(x1 , •.•• xn) and yt (xl, .... ,xn) are homogeneous. Renee the 

theorem. 

If however R has divisors of zero then the theorem is not 

necessarily true. For example, 

can be made homogeneous by choosing a1 , a 2, b2 none equal to zero but 

If R is a domain of unique factorisation with characteristic zero 

then we can use Eulers theorem on homogeneous functions to prove the 

above theorem. 

But 

where K and .k are respectively the degrees of 1" and "Y and Cl( and (J are 

polynomials, both zero otherwise are such that eve:cy term of « is a 

multiple of sorne term of )'. 

Moreover ~ does not contain all those terms qf ~whose degrees 

are 1(. Similar is the case wi th p . 

mp kq~ + bq 1" + qf( +1P 

• (k + t-m) qJ' + q tt+ Y'f!' 0 

From the properties of R it follows that ' and q divides each other i.e. 

they are associates. 

2 
p = er were e is a unit of R. 

~must be homogeneous 

. q i~s also homogeneous. 
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Symmetric polynomials 

A polynomial of F[xl, ....... xnJ, F field, which is invariant under 

all permutations of the indeterminates x· is called a s~etric 
1, 

polynomial of xl, xz, ..... ,xn. 

The following are called elementary symmetric polynomials 

Obviously each polynomial , when "'i'· are 

replaced by their representations in x~ is a symmetric polynomial in 

xl' ....... xn. 

The converse of this is also true, i.e. "every synunetric polynomial 

in x1 , ...•. xn can be expressed uniquely in terms of elementary symmetric 

polynomials oo;, "i. .. -~ "~ 11 This is the main theorem of symmetric 

polynomial. We however do not give the proof here. 

n n-1 Now let f (x)= x + a1 x + ..... +~be a polynomial of F{x], F 

field. Then in the splitting field off (x). 

f(x) = (x- o<) (x- (I(.J ..•.. (x -(1{..,), 

llll(a?ds.7-·· a(.,_ being the roots of f(x). 

n-1+ + ( l)n _, <114 • ··-< x . . . . . - ""' L- " • 

Multiplying out 

«a_,. .-:., _., . . . +-«~ .&-~. 
lill( «.a -1-dl, ct~+·· .. +a,_,« .. ~ +.Ca.. 

... 
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That is the elementary symmetric functions in the roots of a 

polynomial belong to the field defining the polynomial. 

Renee by the main theorem of symmetric polynomial we prove that 

"any function which is symmetric in all the roots of a polynomial belongs 

to the field defining the polynomial". 
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CHAPTER III 

Irreducibility critéria for polynomials 

In the previous chapter we gave severa! theorems concerning 

reducibility of a given polynomial in a given domain RfxJ. In this 

chapter we wish to discuss it in a more detail. 

The determination of irreducibility of an arbitrary polynomial 

is however difficult and this is usually done by tricks and trials. 

There are various irreducibility criteria applicable to different 

polynomials depending upon their nature, of which the most simplest 

one is due to Eisenstein. Because of its simple and useful characteristic 

we wish to begin our study with this theorem. 

Eisenstien's theorem: Let f(x) = a 0 + a 1x + .•.•• +an xn f RfxJ, 

where R is a domain of unique factorisation with 1. Then if there 

exists a prime p such that 

an fi 0 :.... mod p, 

a0 =j o mod p 2, 

0, 1, .... ,n-1 

then f(x) is irreducible in R[xl and hence in F [x], where F is the 

quotient field of R. 
r ,. 4 ,-

./ ~ J'n'}:: r ~," 1 Proof: If possible let f(x) = g (x) h (x), where g (x) =I'"'z.. • 41 ,. .r~• 
,.~~ 

s uch th at Y'':> tJ ,.~A ':? D , Y'~.-6:. ?J.. • 

Compa:ting constant terms, a
0 

= b
0

c0 , but a0 is divisible by the 

prime p hence either b0 divisible by p or c
0 

divisible by p but not both. 

2 
For in that case a

0
1S. 0, mod p • So suppose c

0
-:/. 0, mod.p. Moveover 

all coefficients of g (x) can not be divisible by p. For in that case 
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all coefficients of f(x) and in particular an will be divisible by p, 

contradicting the hypothesis. 

Let bt be the first coefficient of g (x) not divisible by p, 

th en o"' z, • <: 'f'-"' l'z. • 

But bk:! 0, mod p, k Li ( by assumption) 

.. bic
0

: 0, mod p, and since bi 1 0, mod.p, 

c;o, mod p, i.e. c
0 

divisible by p, a contradiction. 

. . f (x) is irreducible in R C x1. 

The other part is a consequence of a previous theorem. 

It may be observed that the theorem is also true if ai3 0, mod p, 

i 1 , 2, , .... n. a 
0 
f: 0 , mod p , an~ 0, mod p 2 · 

There are cases where the theorem is not directly applicable but 

is so if f (x) is replaced by f (x + a) for sorne a E-R. In which case 

f(x+a) irreducible implies, by a previous theorem, f(x) is irreducible. 

So is the case with f(x) = x 2 + 1, for f(x+l) = x 2 + 2x + 2 is 

irreducible over the field of rational numbers by the above criteria and 

bence x2 + 1 is irreducible over this field. 

An important generalisation of Eisenstien's theorem is due to 

G. Dumas. We shall give here the theorem (without proof) and deductions 

from it. In all our discussions in this connection, we shall suppose 

R a:_domain of unique factorisation with 1. 

1-.: R[x], where p is a prime element of 

R and (ai, p) = 1. Let the points (i, bi) be plotted in the usual 
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way. From this set of points a subset 
., 

i 81. is obtained by choosing ( olJ'=c 
p as the point (o, bo), p = (n, bn) and Pj (j = 1, .. .'f-1) as 

0 
,. 

(k j' bk.) where (1~ ki 1.. n ) and moreover kj is the greatest integer 
J· 

such that no point (i, bi) lies below the li ne through Pj-l and p. 
J 

j = 1, ...•• ~. The figure composed of these line segments pj-l Pj 

is called the Newton polygon for f(x) corresponding tb thé given p. 

for 

As for example, if f(x) = 72 + 72 x + 27 x 2+ 4 x3 + 6 x4 , the 

Newton polygons corresponding to p = 2 and p = 3 are as given below. 

p 2 p = 3 

Follwing is the detail explainatinn for constructing Newton 

polygon. 

Plott the points (i, bi), occuring as indices of x and p 

respectively, in the terms ai pbi xi of f(x), on (s,t) plane as usual. 

Let the set of these point be E. Let P
0 

= (o, b
0
). 'l',ak.§! P1 = (ij,bij) 

fE such that ij is the maximum possible integer for which no point of E 

lies below the line segment P0 fl· Then take P2 = (ik, b") ~E 
11f. 

such athat ik > i j and ik is the maximum possible integer for which no 

point of E lies below the line segment P1P2. Continue this process until 

we get Pk = (n, bn). The polygon ~ P1P2 •... ~k-1 Pk is called the Newton 

polygon for f(x) relative to the prime p. 
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One may choose successive Pi's in the following way: 

Let us start with P0 and take any point Î: f,E such that Pl 

(ij, b~), then if biJ- b0 
theequation of the line P0P~ 

= 
-bj I 

is It - BI = F (= Ib0 = IbiJ - Bij) and equation of any other line with 

the slope B and passing through certain point ( s 1 , t 1
) is It-BS; It1-Bsl. 

I 

Taking I positive, the distances of these two straight lines from the 

origin are F and I v1 - B u1 

{12 + B2 

respectively, with proper sign. 

po P.( 

( 12 + B2 

the point (S1 , t 1) cannot lie below the line 

So P1 may be obtained by starting from P
0 

and taking any point 

and determining .!_ and F and seéing whether Ibi- Bi ~ F, 
I 

for i; 1,2, •.•. ,n or not. If Ibi- Bi~F for alli= 1,2, ... ,n take the 

maximum i j for which Ibi- Bi = F and call: · this point (i j, bi~) = P1 . 
J 

However, if Ibi- Bi~ F for alli= l, .•.• ,n take one of the points of E 

for which Ibi - Bi..! F. 
1 

Consider this point as P1 and find again~ and F 
I 

and verify as above. In a finite number of steps we can find P
1

. Repeat 

the same process to obtain P2 etc. 

Theorem of Dumas: Let the segments of the Newton polygon for f(x) 

corresponding to p be subdivided by lattice points occuring on them 

and let the resulting segments connecting aci.jacent points of division 

be called the elements of the polygon. If f(x) = g(x) h (x), then the 

Newtonpolygon for g (x) corresponding to p can be formed by ~ng 

some of the elements of the polygon for f (x) without changing their 
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lengths or slopes. Moreover, the Newton polygon for h(x) corresponding 

to p can be formed in the same manner by precisely those elements not 

used in the polygon for g(x). 

Though Dumas' theorem can not be applied to determine irreducibility 

of an arbitrary polynomial of R(xJ, however, in special cases it is helpful 

For example, Eisenstien's irreducibility criterion is a corollary 

of DUffias' theorem. For, here the Newton polygon is the line segment 

PQ, joining the points P = (0,1)_ and Q = (n,O), which centaines no 

other lattice point on it. Consequently the Newton polygon of g(x) 

for the same p is PQ so that f(x) is irreducible. 

(~•l=P~ 

~=(.,...,tl} 

Secondly it supplies us information about certain other polynomials. 

For example consider the polynomial f(x) = 72 + 72x + 27 x2 + 4x
3 + 6x4. 

lt 1 s, Newton polygons for p = 2 and p = 3 are given in the page 58. 

so if it is factorisable the Newton's polygon for p = 2 gives that it 

will have two factors each of degree 2. Whereas; that for p = 3 g~ves 

that it will have two factors, one of degree 3 and the other of degree 1. 

Consequently the polynomial is not factorisable. 

So,for an artibrary polynomial f(x) one may determine all the 

Newton's polygon for different p's occuring in it and thereby determine 

what the degree of possible factors maybe. If they do not agree for all 

p then f(x) must be irreducible. 

Thirdly, Dumas' theorem provides us another generalisation of 
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Eisenstien's theorem. 

'"" bi • 
Theorem: Let f(x) =.l:aip xl-(. Rt x-:J, pa prime, (ai, p) = 1, 

··~ 
i = 0, 1, .... ,n. Then if Ibi - Bi > Ib 0 , i= 1, ..... ,n-1 and the 

relation 
S= 

n(b
0 

- t) 

b - b 

considered as an equation in (s,t) has no 

o n 

integral solution for 1 ~Â !f n-1 then f(x) will be irreducible, where 

n 
- .JL 

I 
i.e. B 

I 
is the reduced fraction , B prime 

n 

to I, I positive, and i, bi be the indices of x and p respectively. 

Proof: The proof of the theorem is quite easy. For, by the Dumas' theorem 

if the Newton polygon of f(x) corresponding to some p is such that it is the 

line segment joining the points P
0

= ( O,b
0

) and P1= (n, bn) and that 

the line segment P
0 

P1 has no other lattice point. on it then f(x) is 

irreducible. 

By hypothesis f(x) satisfied all these conditions. For, firstly 

as the line through (O,b0 ) and (n, bn) i.e. the equation 

s 

has no integral solution in the range li=Â ~ n-1 , there exists no lattice 

point within the line segment joining (0, b0 ) and (n,bn) except these 

end points. 

Moreover this is the Newton polygon for f(x). For slope of this 

line is b0 bn 
n 

= B and by hypothesis Ibi - Bi~ Ib · 1 1 T o• 1= , ••• ,n- • 



62. 

:so all points (i, bi) Ç E, except the points (0, b0 ), (n, bn), lie 

ab ove this line. 

Renee the theorem. 

Eisenstien's criteria is obtained by putting b0 = 1, bn= O. 

For,here the equationS= n (b0 - t) 

bo - bn 

= n (1-t) i.e. t = 1 -s has no 
n 

integral solution for 1 ~ S ~ n-1. 

Moreover since B 
I 

1 ; Ibi - Bi = nbi + i > Ib
0 

= n always., 
n 

if bi~ 1, i = 1,2, ..•.. ,n-l. 

f (x) is irreducible. 

Cor. 
hl 

The binomic polynomial p1 
bz 

Pz 
different primes, is irreducible over R if for any 

the relation 

or s = n.t 
b,., 

bi+l bi+2 bk 
pi+l pi+2 .... pk 

;·- L,_ 

considered as an equation in (s, t), has no integral solution in the 

range l~s .tn-1. 

From the abOITe corollary we obtain the following result: 

Let f(x) n 
b = ax 

P· J 

be factorisable and S be the degree of a factor. Then from the corollary 

S = n (b j - t) , i + 1 ~ j ~ K 

b' (1 

= nt for suitable t's 
~-
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So n = b · 
- J s b-.- t 

J -
=~ = !:. ,say,where land mare relatively prime, 

t rn 

s o tt = m~ s+ l l m~ :::+ t l bt, 1 1'6 q iS i ; 

and t (b j-t) = mbJ ~ lJ mbJ*tl bJ·, i+l' j~ k 

So if f(x) is factorisable ~ exis~ and is less than n, so t exists 

and is greate~ than 1. 

That is h.c.f. (bl, bz, ..••• ,bk, n) ~ I is a necessary condition 

for the reducibility of f(x) as given above. 

This result implies (1) Pl a but p~a, p prime, =t> f(x) irreducible 1 

(2) p 1 b but p'lJb, p prime, ~ f(x) irreducible, 

(3) n prime ~ f (x) irreducible unless 

bi = n. 'l" , i = 1, .•.• , le. 

Dumas' theorem supplies us also sorne information about the 

maximum possible number of factors of a polynomial of R r x). 

Theorem: Let f(x) = a0 + a1x + ...... + anxn be a polynomial ~ f-Rtxl 

mtes•al.· e8e~>eMaW and let at and ~ be the lst and last 

coefficients respectively of f(x) such that they are not divisible by 

a prime p then the maximum possible number of factors aff (x) over R is 

(min (t,b0 ) + 

ao but pbo+l~ 

(k-t) + min (n-k, bn) } 

bn+l"' 
a0 and pbnJ ari but p 1 

In case the no. of factors is f min. (t,b0 ) +min (n-k,bn) + uJ, 
for sorne positive integer U~then there exist U factors whose leading 

coefficient and constant terms are not divisible by p. 

Proof: The Newton polygon of f(x) corresponding to p is the following 

polygon PQRT. 
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The maximum no. of lattice points on PQRT is obviously 

min. (t, b0 ) +k-t+ min. (n-k, bn). 

So maximum no. of factors of f(x) over R cannot be greater than 

this number. This is the proof of the lst part. 

If the number of factors of f(x) is 

min (t,b0 ) +min (n-k, bn) + U, 

where U positive,then surely the Newton polygon for U factors will 

be parts of QR. So their constant terms and leading coefficients cannot 

be divisible by p. 

Cor. If t = k, in the theorem, then the maximum possible number of 

factors of f(x) over R is 

This result can be stated formally as: 

-n.. ,,: 
Let f(x) = }:" ai x be a polynomial with 4ate~al coefficients fR. 

;,·=:4:1 

Let a prime p divides every coefficient of f(x) except at and pb9 \ a9 ~ 

pbo+1 r ao ' pbn J an ' pbn+l ..r an then maximum possible number of 

factors of f(x) over R is 

The àbove theorem can be further generalised: -

Let Pi be 
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an arbitrary prime element such that Pib0 i \ a0 , Piboi+l ~ a0 , 

bni J bni+l v Pi an, Pi 1 Sn and att and ~i be the lst and last coefficients. 

respectively of f(x) such that they are not divisible by Pi, then the 

maximum possible number of factors of f(x) over R is 

min. 1 min. (ti' b0 i) + kr ti + min (n-ki, bni) J . 
In fact one needs only to calculate for those primes which 

divide at least one of a0 or an. Fb~facother primes the number within 

the 2nd bracket is n. 

Cor. b} For the polynomial p
1 

b2 bi n p •••.•• p x 
2 i 

maximum number of irreducible factors is 

min.fmin. (n,bj)}, l_éjék. 

bi+l bk 
p .••• pk 
i+l 

So if some hj = 1 then the above polynomial is irreducible. 

An important class of irreducible polynomials over the field 

of rational numbers are the cyclotomie polynomials. 

the 

Consider the polynomial f(x) = xn - 1 over the field of rational 

numbers. 1 O(x), i.e. f (x) has no root other than 

zero. Renee f(x) has no multiple root. 

In the spli tting field of f (x), f (x) = (x- .C1) (x- et,) . . . . (x- .-.,J, 

where «1 , fla,., ... d~ are the""" distinct ~th roots of 1. 

If« is a root of xn- 1 = 0 such that it is not a root of any 

polynomial x'~~'- 1, yt.ln, ·then,( is called a primitive root of xn-1. 

Then 1, fil,-~ ... ~_,._.., are all distinct and each of them is a root of 

xn- 1. Moreover xn- 1 has on1y n roots, so they are all the roots of 
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The number of primitive roots of xn- 1 is denoted by +<n), 

which is called Euler's 'ffunction or indicator. 

We shall find the value of 'cf(n). 

If _, . . . t. h 1 """' '2. 1\-l 11 "" ~s a pr~m~ ~ve root t en , ..._, .tl(, ••• ) Dt are a 

the roots of xn- 1. A1so if the order of «' is n then ,c' is also a 

primitive root. 
( 

Let us find the order of el for arbitrary h. 

Suppose (h, n) = t4 then n = ,.,r, h=~.z'f, ( ~., ~.z) = 1 

~, "" .!! = n 
JI' (n,h) 

)1,.2. 
N ow ~ ') ~~ =- <Il(,_,., >-a~.:= « >-~ ~ .:: ( ...( "') - 1 

-+iVC. 
A1so "-• is the least,..integer satisfying this condition. 

and _, "~ d. For, let S. "" ,.. 1 ""' 

Then as ( ). 1 , )'..,) = J 

: · 1-tfla + )1.._ @l.. = \ for sui table é/1 and l"l.. · 
_IJPI'~,#, +)<..z,.SL} 4'r-~ A 

="'\ =1111( '1' 

= Ill( )&.8~ #( ~ IJ4',_ 

=1 

which implies «~t' = 1 where t!9 V'"'-' .).LYl:-.... since tl'"">- • , 

contradicting that fJ( is a primitive root. 

~. = 111,.. is the order of o( L, 
(n,h) 

So «1.. is a primitive root iff (n,h) = 1 

So number of primitive roots is equa1 to the number of positive 

integers less than n and prime to n, including the interger 1 as one 

of such integers. 

Let<(' = cp (n) and oé,, «,, ... , K"f" be the primitive roots of xn-1 



67. 

Then the polynomial Xn (x) =(x- «"1) (x- 1(~ .•••• (x- 1( .. ) is called the 

cyclotomie polynomial of arder n. Its roots are therefore the 

primitive roots of xn-1 and i ts degree is ,- = + (n). 

Theorem: Xn (x) is irreducible over R0 , the field of rational numbers. 

Proof: Firstly we shall give some difinitions . 
.......... 

Let f (x) = Tf (x- .11,~ 
i=t r 

.._.. mn!;: mn 
Then we define R (f,g) = .-rr gfllc:) (-1) . 11 f( "1•) = (-1) R (g,f) 

l-.#11 't" J;c 'J 

and D(f) = (-l)mt;-1). R (f,fl) = (-1)!!!.0f,.!)/'(flc). 

Ris called the resultant of the polynomials f(x) and g(x), 

while Dis called the discriminant of the polynomial f(x). 

For the product polynomial f(x). g(x) 

- 1 l D (f.g)- ± R (f.g., f g + f.g) 

= ± fif 1(f..t:)JCP,;) f /(.~·)/'1-liJ 
_. + 'rr; 1(f',') ii)'c..J.,·) Tï}CI'.-) f!f(*fJ·) - ,. ,. ~-· 1 

= ± D (f) D (g) R (f,g)
2 

2 2 2 
Simi1arly D (f.g.h.) = ± D (f) D (g) D (h) R (f,g) R (g.h) R (h,f) 

So ·;f f( ) n 1 h 1 ,., ... x = x - , t enp~ are , tl(, .•• , (J( , 

and t 1(x) = n xn- 1 

2 
n n 1 2(n-1) (n-1) D (x -1) = ± n.n. (1( - no( · ·· · ..... ·'l•UC . 
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D( (1+ ..... +n) (n-1) 

(n+ 1) (n-l).'h, 
oC 2 

Now we give the proof of the theorem, which is due ta I. Schur. 

68. 

Let Xn be reducible over R 0 and f(x) be an irreducible factor 
t' 

of Xn. Assume"'\ =#C where (p,n) = l,otroot of f(x), p prime and 

suchat that ~ is not a root of f(x) .. 11 exists, otherwise all roots 

of Xn are roots of f(x) consequently f(x) = Xn i.e. Xn is irreducible. 

Assume g(x) be the irreducible polynomial with leading 

coefficient 1 and with root "J· Th en as g(x) is :irreducible and g(x)' ~ 

have common root "J, g(x) \ Xn. Also we may assume leading coefficient 

of f(x) be 1 and as f(x), g(x) are both 

f(x) . g(x) \ Xn 

which implies f (x) . g(x) \ xn - 1 

.. xn-1 = f (x) g(x) h(x). 

irreducible (f (x), g(x)) = 1 

As the leading coefficient for f(x),g(x) and xn-1 is 1, the leading 

coefficient of h (x) is also 1. 
n 

As x - 1 has integral coefficients 

we have by Gauss* theorem all f(x), g(x), h(x) have integral coefficients . 
. 

. . D (xn- 1) = ± nn = D (f.g.h.) = ±D(f). D(g). D(h). 

2 2 2 R (f,g) R (g,h) R (h,f). As all the factors in the right hand side are 

integers, we may write 1\.n =an integer. R(f,g). 

*Gauss theorem: If f(x) = g(x)h(x)f Rof xJ, leading coefficients of 

f(x), g(x), h(x), be l,then f(x) have integral coefficients impl_;i.es both 

g(x), h(x) have integral coefficients. 



where 

Now if g(x) = (x-1) (x-~z) •..•. (x-,t), then 

R(f,g) = ± f("[) fE1J2) •.. .• f("lft> 

Again, f(xP) :(f(x))P, mod p 

= (f(x))P + p,fl(x), 

fl (x) has integral coefficients. 
1:-. . f ("1) = f(d) = 0 + p. f~ («)' since f (tJ() = 0, 

= p. 
'). 

fl ('t)), since "'l is also a primitive 

As ,,are roots of the same irreducible polynomial g(x), 

" . . f c,,> p. t 1 <-,._>, i=l, 2 ••• t, where .., 
1
= "1 • 

R (f,g) =±pt fl(..,~ fl(jAJ 
;A, h 

f ' ( ~~ •••• f 1 <iJ . 
p 1 R (f, g) • 

p J nn ~ p \ n, contradicts that (p,n) = 1. 

Renee the theorem. 

69. 

root. 

Abel's theorem: If pis prime xP- a is reducible iffa = bP, b fF, 

F field, a f F. 

Proof: If a= bP, then xP-a = xP-bP = (x-b)(xPvl+ bxP-2 + ••.. + bp-1), 

when characteristic ofF ~p. and= (x-b)P, when characteristic ofF is 

p. 

Conversely, let XP-a be reducible, then ife is a root xP-a =0 ,_, 
thenl, f8 , ....... f 9 are all the roots of xP- a = 0, where (. is a 

primitive root of xP-1 = O. ,._,) 
xP-a = (x-8) (x-fl) ..... (x-~ 1 

= 4-<x) · t (x) say. 

thenc:f'(x) = (x- ~~tf ) (x- d'li() .... (x- gf''") 
. " .r,+~ot>~-··. +)i 

. The constant termof ct (x) = lJ f = C! ,say • f F. 
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,. ~ ;ltii ... · +~) 
Then C =IJ f =a8 , since 

} 
1!1 = a, 

JI 
f = 1. 

Now (s,p) = 1, hence there exist integers ""'• v such that,.s+VP = 1. 

,ns + vp ns vp a = a . a 

= (aS)n. (a*')P 

=(cP)n. (av) p 

(en . av) P 

bP, where b = en . a v* F. 

Theorems of Capelli 

Let f(x) = g(h(x)), where g(y), h(x) bath are polynomials over 

a field F of characteristic zero and bath have leading coefficients 

1. 

Also let in the splitting field of g(y) 

i.e. P•4'•>·· ·~pK. are all the roots of g(y). 

Theorem 1: f(x) is reducible over F iff(i) either g(y) is reducible 

over F, or (ii) g(y) irreducible over F and h(x)- /'i is reducible over 

F (/J~-·), i==l,2 ....• ,k. 

Proof: Let f(x) be reducible then since 

f(x) = g(h(x)) = (h(x) -~) (h(x) -~) ••.• (h(x) -ri(). 

either g(y) is reducible or h(x)- p, is reducible over !(f';), i=l, •••• k. 
be 

Conversely let g(y)/reducible thên obviously f(x) is reducible. 

Otherwise let h(x) -A· is reducible over F~.), then 

over F( f'•) .... h (x) - ~1 = +, (,t;, x) • 4t ( p, ,x) •••. t, q~~, x), 

over F (/!) .... h(x) - ~,_ = 1, (~,x) • t_ (Pz., x) ...••• <f',t ( f',._, x), 
• .. • • • • J.. • " /If 

Over F (~,~~.) .... h(x) -pK= f.<~J<!x) ·tft-((\A, x)•···+é~'x), where 

~ ( ~·, x) are irreducible over F( ~-) • 
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)(. 

Multiplying f(x) = J!. (h(x) -/br) f (x) f.<x) . . . ;{,(x) , 
• 2.. It 

where cf>-(x) = f>- (/"1,.x) 1;_(fi,X)... ~)1. ((k1 x), >-=1,2, .... t. 

As the r.h.s. is symmetric in all f/IJ hence t~·is a polynomial 

over F. 
.,J-

Thus f(x) 7{ ~(x) i.e. f(x) is reducible over F. 
).::1 I.>-

Lemma: ~~ (x) is irreducible over F. 

If not letf(x) be an irreducible factor of f(x)~then ~(x) 

is a factor of sorne t(x). For, as -r(x) is irreducible ( T,_~x), 'f(x) ) 

= 1 or ~(x) and F CxJ is a domain of unique factorisation. 

Suppose t (x) 1 
K 

But di(x) =1i 
I, A:::' 

over F <r;·). 

fi (x) ......... (a) 

+,rf},s:~N) /) where f, <(J·, x) are irreducible 

Renee by the same argument,as above,we have t.<~.,x) ' t<x), 

form somej, over F (~·) 

But n.is a root of an irreducible polynomial g(y). 
(} . 

. t (x) = 

'f(x) 

'f (x) 

'f (x) 

t<n,x) q <p.:Jx) 

t, CAz,x)q(~.,_, x) 

+, ~ .. x) q Cf":.~ x) 
... . ... 

f, (f:c_,x) q (~~x) 

But, asf,<n.,x) are irreducible, ( t.<~,;,x), cf=:<f'i ,x))= 1 

tf>
1
Cf>,,x) · +,<~:L,x) ....• t.<r""x) = f~x) \ y(x) ....... (b) 

from (a) and (b) t. (x) : t (x) an irreducible factor of f(x). 

1 
Renee the lremma.· 



Theorem 2: Let f(x) =g(h(x) ) = g(h (x)), where 

g(y) = yk+ •... = (y-~1)( y-;'&) •••• (y-~~ in the 

splitting field of g(y), and 

7 2. 

g(y) = y~ ••••.•.• ' 1h (x) 'h. - - k 
x·~ •••... ,h (x)- x + •.. 

so that degree f(x) = m kh and (k,h) = 1. 

Thenf(x) is reducible over F iffg(y) or/and g(y) are reducible over F. 

Proof: If g(y) or/and g(y) is reducible then obviously f(x) is reducible. 

Conversely let f(x) be reducible and assume g(y), g(y) are irEèducible 

over F. Then by theorem 1, h(x) - p,· be reducible over F ({51:), so 

that h(x) - !J,· = +, (~,-_, x) ·f;_ ( j'J,_·, x) ..•• ·f;. (~~·~x), and 

f(x) = f (x) · ;,::.. (x) • • • • . A.. (x) . , r,__ -z_:t 
:degree f<x) = m;.. = kn)l. where ....,.,. = degree ,.. which is 

independent of i. 

Also m >- ;::: hfi>- (considering the polynomial g ( ii (x) ) . 

. kfm,. .,h(m;.. and (k,h) = 1 

.. kh{m,._ i.e. mfm,_ =.> m=m;.. 

degree f(x) =degree ;E<x), i.e. t=l ~ f(x) is not reducible, a 
>-

contradiction. 

Renee the theorem. 

The most important application of the above theorems is the 

determination of reducibility of the binomial expression xn- a. 

Let f(x) = xn- a, ·a~ F, F fièld of characteristic zero~n? 2. • 

Let m = kh, where (k,h) = 1 

Th en f (x) = xn - a;: xkh 

• . By the theorem 2, 

xn-a is reducible over F iff either yk - a or yh -a or both are 

reducible over F. 
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_ .AI.l 42 .4-s h Let n- Pl Pz ...... p8 , w ere Pt are different prime integers. 

Then xn-a is reducible over F iffat leas~ one of xP14~- a, •••• 

- a is reducible over F • 
.JI,. 

Now xP -a is reducible over F, for odd p, iff xP - a reducible 

over F. 

For, by theorem 1, xP~ -a= (xP,.(-l)P-a reducible over F iff 

either g(y) = yp-a reducible over For g(y) is irreducible over F and 
__ ..,.._, 

h(x) - fJ = xP'-~ - (J is reducible over F (j!J), where p is a root of 
; 

g (y) i.e . p "" a. 

But, by the same theorem, h(x) -p is reducible 

over F <p) implies g1 (y) ::: yP -{!1 i.s reducible over F <p) 
-~-.... 1 is irreducible over P< fJ) and xl' - j3 is reducible over 

1 1 

F(f"1/'J ) = F(f" ) J 
,/J 

Wherep1 is a root of g1(y), i.e.f' =f · 
Now in the first case, 

over F (/l) we have by Abel's 

' 
= ao+ alfJ + 

= ., <{'J) say 

[J= ('t(fJ) )p 

i.e. when g1(y) = yP- ~ is reducible 

theorem p.: (~)P where ~~f f(/'J) i.e. 

p-1 .... + ap~•f' ' 

As~ is a root of an irreducible polynomial g(y) = yP-a 

~,_ = ('(' (/),) )P 
• * ... ""• .... '"' .. 

f!; = (J' </}) )p, where ~-~f'a~ .. ~ft are all the roots of g (y). 

Hence multiplyingPf,.· .. fp = (:)a <p). Y'((>)_ .. ... f' tp,_) )p 

The expression under the parenthesis in the right hand side is a 

symmetric function in all the roots of g(y) hence belongs to the 

ground field F. 
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('fo,. ........ P; = bp, where b f F 

But xP-a = (x-p) (x -f,.) ....... (x -{i;) 

~ pp,. ....... fr = a 

a = bP 

That is yP- ais reducib1e ( by Abe1's theorem), which contradicts 

our previous hypothesis. 
pf'-1 

Renee x - p is reducib1e over F (~) 

implies g1 (y) = yp- p is irreducib1e over F <f ) 

1 '" 
is reducib1e over f<f), where (!J = fJ 

~2 1 
and xP -~ 

Arguin~- 2 times in this way we prove that xP 2- Ji is 

, ~..,!:) 
reducib1e over f'( ~), where j = 1l. and lt · · = a. 

So by theorem 1, either xP- j reducib1e over F (j) or xP- j 

is irreducib1e over F(J) and xP- j 1 
is reducib1e over F (J 1

) where 

~,; = J 
The first case contradicts that xP-~ was irreducib1e over F (..,) 

and the second case contradicts that xP- J was irreducible over F (j). 

Renee the resu1t. 

2Af 
To consider the reducibi1ity of x - a over F we prove that 

~ 
x 2 - a is reducible over F iff(i) a = b2, or (ii) when _,A?l, a 

t i:F. 

Proof: The statement can easily be verified wheryÎ' = 1 and~= 2. 

Let us assume that the statement is true when .,/lt-;. .,.,_, 
z'!'-

x · -a. 

and consider 

zr"' ~-· 
.... -\ 'M._, 

Now if a=b 2 then x ... a (x2' ·· .·.) 2 -b2 = (xL. +b) (x 2' -b), 

4b4 x 2"'-a 
zr-2. 

4b4 and if a = - = (x . )4 + 
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zr- zn-1 2 Conversely let x -a =(x ) - a be reducible over F. Renee, 

by theorem 1, either y2- ais reducible over F. i.e. a= b2, for sorne 

b f. F, or y 2- a is irreducible over F and xz'!''!!l -Va is reducible over 

F ((]r). Renee by our induction assumption either (i) ~ = (c~ +b) 2 , 

b,c,~ :f i.e. ra= c2a + b 2 + 2bc va. 

c2a + b
2 = 0 , 2 be = 1 which implies c = 

a = - 4b4. 

or (ii) ra - - 4d4 dC. F(f1'), 
' 

- - 4(c;"""Q + b)4 ; b,c,E- fi, 

- - 4(c 2a + b 2+ 2bc~) 2 

- - 4 ce t;t: + B ) 2 

- - 4 (e2a + B'~ + 2BC vz;:-) 

8BC = 1 i.e. c = 1 -1 2 1 1 
"Z • 22B OR C = 4. ~ B2 

a= - 4. z4 n4 = - 4h 4, h E- r. 

The statement is true wheryA- = n. Renee the statement is true in 

general. 

Wenow give a method for determining all the factors of a 

binomial expression over the field of rational numbers. The method is, 

however, labourious and have very little practical ~tiliti 

Let F by any field. x3- c be an irreducible polynomial over F 

having tl as a root. Then in F (9) any element «ft> is given by 

2. 
tX = a 1 + a 21+ a3ll , (a1 , a 2 4t3) f ( 0,0,0) f F. 

-l z... 
Then "( = b1+ bz'J + b3D é F (6 ) , ./,if-F. 

1 = « .. , = (al + azl + a31'1.,..) (bl + bzl + b3fl,_.). 
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Equating coefficients of powers of (J 

1 = albl + a3bzc + azb3c 

0 = a 2b1 + a1b2 + a3b3c • •••. (a) 

0 = a3bl + azbz + alb3 

As 
_, 

tl( exists, (a) is solvable for b1,b2,b3 and 

1 asc aze al 1 aze al a3c 1 

bl 0 al a3e bz= az 0 a3e b3= az al 0 

0 a2 al a3 0 al a3 az 0 

D D D 

al a3c aze 
Where D 

az al a3c 

a3 az al 

Sa that D 1 0. 

As for any triplets of elemts. a1 ,a2 ,a 3 not all zero we can get 
_, 

ç{ and~; D/ 0 for any such a 1,az,a3f.F. 

3 
If however x - c is reducible over F then there exists at least 

one set of three elements ( a1,a2, a3) f (0,0,0) such that 

0 = a
1
+ az'J + a

3
g'-

Sa that (a) is not solvable for t}J i.e. D = 0 

' 

Generalising the above result we get, the neeessary and sufficient 

condition in arder that xn-c, c ~F, be irreducible over Fis 



a 
1
c 

n-

0 

for any set of n elements a1, a 2 .•...•.. ,anf F and not all zero. 
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So if C is any rational number we get a similar determinent 

over the field of rational numbers, the vanishing of which for a set 

of rational nos. (a1,a2•······8n);' (0,0, .•.• ,0) is the neeessary and 

sufficient condition for the factorisability of the polynomial xn - C 

over rational field. 
n 1 .,..., 

Now if 1 be any root of x - C=O then d, ji, fi,···~ f d 
n 

are a11 the roots of x - C= 0, where ~ is a primitive -.\.th root 

of unity. 

....-, 
(x- Il ) (x- ~~~ ) ....... (x - 1. B 

1 (x) · -==f '1. (x) ........ "fK(x) 

th en "i t (x) = (x- J tJ 
iJ 

) (x- jrl~ ) ....... (x- $&fi ) , 
r 

The coefficient of x , 0 ~ r~ $ 

s-r s-f' 
( -1) 1 . IX 

in ~(x) 

~ 

where /)( = sum of produc ts of combinations of 

taken s-r at a time. 
S·Y! 

Th en 1 ar J = \ tJ \ .1 D( \ 

is, say, 

) 

say, 

l~S-!n-1 

~ l ,$·V',. {lj~} ... J ~'1\ ....... ·tJ $"~1) 
, the number of 

terms within the parenthesis being ( ç ) s-,.. . 
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s-r • &f.· 
= \C t-rr- (s-r) [:J ~ ., =1 

= \cl~ ( s ) L ICI~ (:> r 

~ ~ \C) n · f~) or lei~ n 
<n-1 ) ace. as n is even or odd. 

2 T 

(l) ..... So when )Cl~ 1, the coeff. of x: 0 ~ r4,_n-l 

is-' f ,.( ~ ) if n is even 

2 

andL \C\ . (n~Ü if n is 
-r 

(2) .... and when \ C \ ! 1, the 

1 
if n is even and is~ 1c1 n 

odd. 

coeff. of 

n 
(nzl ) 

r 
x ' a, r ~ n-1, 

if n is odd. 

in 1:-(x) 
~ 

is \Cl 

Now let C=~ , (p,q) = 1, both p,q positive, otherwise we write 

n 
Then x -C = --t(x) • -;2.(x) ..... , 't-.(x) 

qxn-p = cà (x) . ~(x)....... ~(x) 
\1\ lz.\ '\C.\ 

such that ~(x) have integral coefficients. 

1 

(~) -'1'1. . 

~· So when 1 C \ 9 1, from (1), coeff. 
r n 

of x 1 0 4r é n-1, in ~(x) is .t q.\C\.(Z, ) if 

n is even and is L. q.}C\ .( ~-1 ) if n is odd 

2 
and t:. p . (n~l ) if n is odd. 

-r 

,)\ 

n 
i.e. L p . (~ ) if n is even 

1 n 

and when \C \ !!! 1, from ( 2) , coeff of xr, 
1 n 

0 ~ r~:on-1, inT;~is~q·ICl TI'. ( ,Z ) if 
J\ 

n is even and" q .,C 1 tt-. (nil) if n is odd, 

i.e. ~ q . ( ~ ) , if n is even and ~ q 
'Z 

n 
Cn-1 ) if n is odd. 

2 

, 
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Thus the coefficients of 't (x), which are integral, are numerically 
n ()\ 

less thau max (p,q).( ~ ), if n is even and numerically less thau 
2 

n 
max. (p,q).( ~ ), if n is odd. 

-z 

But (a1 , a 2, •.•.. ,au) ~ (0,0, •.• ,0) be the coefficients of ~(x) iff 

al a c a 1c aze n n-

a2 al aue a3c 
Dl = = 0 

a an-1 an-2 al n 

So we cau choose any set of n integers from within -f to e (or from 

within- m tom), (where e =max (p,q).( ~ ), if neven and 
2 

n 
m= max(p,q~( n -1 ), if n odd) and put it in D

1
. 

2 

If D1= 0 then they are the coefficients at sorne t, (x) such 
:Il 

h . h ff. . f i-l t at ai ~s t e coe 1c1ent o x . If Dl ~ 0 then they are not the 

n coefficientsof any factor of q x - p. 

We repeat this process with all possible choice of n integers 

taken from within - {. to ((or from within - m to m). If there exists 

no such n integers for which D1= 0 then q xn- p is irreducible. 

Consequently x n··-p/q i.e. xn- C irreducible. 

However if Cf.(x) is known 

s '' CJ- il t (x) = k (x) , s 
~ I)J 

then t<x) will be known from the relation 
a 

being the degree of t,. (x):· 

~· 
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Schoenemann polynomials: Let f(x) =~(x)n +p. h (x), where cr(x) is 

irreducible mod p, p a prime element, n,l and~= degree ~x) ~ 1. 

and degree h (x)~ ny-, is a polynomial of 1\ ex] , where R is a domain 

of unique factorisation. 

Schoenemann theorem: f (x) is reducible mod p 
2 

iff h (x):; 0 (x) 

(mod p and 4P(x) ), ie. iff all coefficients of h (x) are divisible 

by p and h (x) is divisible byf'(x), i.e. iff h (x) = p. T (x) h 1 (x). 

Proof: The condition is necessary. For let f(x) is reducible, mod p2. 

Th en 

~1) f(x) = t. (x)· 'f2.. (x) + p_lg (x), 'lj(x) and 'fi. (x) being 

not constants. 

(2) T (x) n + P.h (x) = +,(x). +'2. (x) + p~g (x) • 

Now 4r<x) is irreducible, mod p, 

t, (x) ::r fCx)nl,-mod p, 

i.e. f, (x) = f (x) nl + P.gl (x), 

and 
n2 f2. (x):::::::, c:f (x) , mod p, 

i. e. t''Z.. (x) = t (x) n2 + P. g2(x) 

Renee from (1), 

and from (2), h(x) : fCx)nf ; g 2(x) + "'f(x)nt. g1 (x), mod p 2 . 

Now, n 1 ,. 0, n
2 

)' 0, for if n 1= 0 then n 

and hence h (x) :, +(x)n g1 (x) + g
2
(x), such that degree h(x) ~ n,., 

contradicts our assumption. 

n1-l n -1 
h(x) ;;. f<x) ( f' (x) g2(x) + t<x) 2 g1 (x) ) , mod p 

::::. 0 (x), (mod tex), p) 



The condition is also sufficient. 

for, P.h {x) = p2 ~(x) h1 (x), 

implies f(x) = ~(x)n + p 2~(x) h1(x) 

=+ex)'; mod p2 

2 As n > 1, f(x) is factorised, mod p . 

Eisenstien 1 s theorem is a corollary of Schoeneman's 

putting +<x) = ax, where ajo, mod p and f(x) = an 

h(x) = b1x 
n-1 

+ n-2 (say), b2 x + ..•.•. +bn one gets 
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theorem. For, 

n x +ph (x), where 

f(x) reducible mod 

iff h(x): 0 (x), (mod p, ax). Putting bn\0, mod p, one get f(x) 

irreducible mod p2 • Renee by a previous theorem f(x) is also 

irreducible over R. But those are also the conditions of Eisenstien's 

theorem. Renee the statement. 

p 

We have given some inportant theorems concerning reducibility 

of sorne particular polynomials over sorne specifie domaiœor field&. But 

none of them is applicable to an arbitrary polynomial. 

We now give here a method, due to Kronecker, by which one 

can determine the irreducible factors, of an arbitrary polynomial over 

a domain of unique factorisation R. 

As any polynomial of R [x 1 factorisable over the quotient 

field of R is also factorisable oiJer R; so irreducibility of f(x) 

over R implies also its irreducibility over the quotient field of R. 

We shall suppose R has only a finite number of units. 

2 

Firstly, in R [x], f(x) g(x) h (x) implies f(a) = g(a) h(a) 

. . k 
for everyc,..f R. For if f(x) =ICi x 1

, g(x) =IUjxJ, h (x) =lVkx , 

th en c ·= r u . vk. 
1 • . J 
;-tiC·~ 
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. k 
g(a) h (a) = (2: U jaJ)(z:; Vka ) =1: (1: U j Vk) 

;· le. 1-. J-.,..,.;,. 
by the commulative and distributive property of R. 

Now let the degree of f(x) = 2n or 2n+l. Then the degree 

of at least one factor say g(x) is : n. Let g(x) 

where U
0

, U1, •.... ,Un fR, which we wish to determine. 

Take n+l distinct elements a0 , al,·······~f R. 

0, then x - aj is a factor of f(x). Taking x-aj = g(x) 

we can try to find factors of h(x) applying the method as we shall soon 

find for f(x). So let f(ai) 1 0, i =0, 1, .... ,n. 

Now g(ai) is a factor of f(ai). As the factorisation is 

unique in R, f(ai) has only a finite number of factors i.e. 

So there exists only a finite number of possibilities. 

Taking one possible value, g(ai) = gij = gi(say) i=O,l, ... n; 

one gets 2 n 
U

0 
+ Ulao + U2a0 + ...•..• +Un a

0 
= g0 

2 n 
Uo + Ulal + U2al + •••.... + Unal = gl 

2 n 
U

0 
+ U1an + u2au + ......• + Unan = gn 

This system of equations for Uo, ul, .... ' un is uniquely 

solvable, for, the rank of coefficient metrix is n+l. 

Indeed the determinant 

2 n 
1 ao ao ao 

.,:f: 1 2 a n T (a,; -ak) al al 1 

i> k, 
2 n 

1 an an an 1 ~ i~ n 

o:k ~ n-1 

does not vanish as aij ak. 
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[ The value of this determinant can be found by multiplying 

each column by a and subtracting it from the next and then calculating 
0 

it by the recurrence formula so obtained.1 

Thus Ui where .d' is the determinant obtained from 

..a by replacing i + 1 th column of 4 by ( u ) 
( uo 

) ' i=O, 1, ..... n • . 1 
( . ) . 
( Ua ) 

Thus g(x) is uniquely determined. 

By actual division find whether g(x) is a factor of f(x). 

If f(x) so found is not a factor try the next possibility g(ai) ==gik . 

As there exists only a finite number of gik's and finite number of 

units, the number of all such possibilities is finite. So we get 

a factor in a finite number of steps if f(x) is reducible. Otherwise 

f(x) is irreducible.One can now repeat this method to a factor of 

f(x) thus obtained and find all the irreducible factors of f(x). 

The labour may be minimused by neglecting those sets of 

h . f h' h . h u - -4,: c o1ce g
0

, g1 , .... ,gn or w 1c e1t er i- ~ is not an element 

of R, at least for one i (i.e. if d,; is not divisible by4 for sorne i) 

i=O, ••.. ,n; or C
0 

is not divisible by U0 or c2n (or c2n+l) is not 

divisible by Un thus determined. 

In an arbitrary integral domain the difficulty of the 

above theorem however lies in the fact that we have not been able 

to give a procedure to find all the factors of the elements ~ of R. 

If R is the domain of common integers this however is not difficult. 

As the prime factors of an integer a are all less than a,one can, in 

a finite number of trial and error method, find all the factors of a. 
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For this domain however, one can find possible factors 

of f(x) in ~[x1 by transforming f(x) to residue clàss mod p, 

p prime integer and thus one can obtain the possible degrees of 

the factors of f(x) and the possible coefficients of these factors. 

Thus if Ui ~ d mod p, where d is the coefficient of xi of any factor 

of degree m of f(x) then the combination U
0

, u1 , .•... ,Un may be 

neglected. 
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CHAPTER IV 

Irreducibility of polynomials over a finite integral domain or field. 

As every finite integral domain is a field there is only 

one case to consider: the case of irreducibility of polynomials 

over a finite field. 

It may be convenient to discuss briefly the nature of a 

finite field. 

A field r which con tains ànly a fini te number of elements 

is called a finite (Galois) field. 

As the prime field (i.e. the smallest sub field) of ris 

a finite field, the characteristic of r must be a prime integer p. 

In fact the prime field Fp of characteristic p are examples of Galois 

fields. ris a finite extension of Fp. Renee every element of , 

can be expressed as 

As ~.: can take only p values, p can have pn values. Then r contains 

only pn elements where n = [ r: ~ J . As r is a field the non-zero 

elements of r form a multiplicative group A with pn-1 elements. 

Renee an element~ must have an (multiplicative) order Y' which is a 

n n 1 pn-1 
factor of p -1. Thus pis a root of xP - -1 = 0, x - 1 being a 

polynomial of fp [ x1. 
"" p -• n 

On the other hand x -1 = 0 has only p -1 roots. 

Therefore the group A consists of the roots of xpn- 1-1 0 onljr. 

Thus the elements of ~ are roots of xpn - x = 0 
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Conversely it is possible to construct a Galois field with pn 

elements, for every positive integer n and every prime p. 

k d 'd . p~ 1 . 1 For, ta e :'Fp an cons1. er1.ng x -x as a po ynom1.a 

over F construct i ts splitting fieldr . In r the roots of xp'""-x =0 
p 

form a subfield. For 
... ,,.,.. 

«~'=Il(, l' $~ =9 

As the splitting field r is the smallest field containing these 

roots, r Contains only these roots. As T' is uniquely determined 

(except for ismorphism) by p and n, it is usual to denote it by Fp~ 

Theorem: F "" subfield of F ~ ~ p p n)m . 

Proof: Let F ~ F ,__then obviously n" m ' P prr 
the elements of Fp~ 

So if m = qn + l" (0 ~ 'l'~ n)' th en 

p = ppl"-- = j.(qn+Y') = 
pqn PY' 

/':' ' r ,YI . 
For any(!' E- F.,... f =t p. 

')'1. 

Take f a primitive root of xp -l-1 = 0 , then pn is the smallest 

nl'":_ A prime ~er such that 1- 1- r = 0 . 
p ...... 

Conversely if m= qn then for any A f F .,., A = j3 . 
;'"'Ir .,. ,- P r 

f = f ~ l"' :: P ~ r f 'i'" · 
F ..._CF 
p~ p~ 
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Theorem: Every finite extension of a Galois field has a primitive 

element and is a normal extension. 

For, a fini te extension of F-r' is a Fp,.. which contains 

the primitive roots of xPn-1_1=0 considered as a polynomial over 

Renee 
F :[l"-- F ~(«) 

~being a primitlve root. 

As xP~l-1 is split up in FP~' Fp~ is a normal extension. 

m 
Consider now the polynomial f(x) = x -1 overFp. Since 

m-1 
•mx ' if m is 1:10t divisible by the characteristic p of Fp 

then f 1 (x) ~0 i.e. f 1 (x) has no root other than zero. Renee f(x) 

is spearable i.e. f(x) has no multiple root in any field extension. 

tro7 If m is d:l.visible -by p, put f(x) =xm-l = xP --1, where 

h.c.f. (m1,p) = 1, t:hen f(x) = (xm
1
-t)Pt. So f(x) has m/ 

distincts roots, each being of multiplicity p~ and each root being 

ml!" 
a root of x -1 = O. So in this case also the roots of xm-l are 

obtainable from those of a similar equation. Renee in our future 

discussions we shall suppose that the degree m of f(x) is not divisible 

by the characteristic p. 

Let «,,Ill("'' ... , f'('v- are all the primitive roots of xm-l = 0 

over Fp. We have already defined that the polynomial ~=(x.- tt~ (K-1,: .. ()(.-~ 

is called the cyclotomie polynomial of arder m. It\ degree is r ,(m). 
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Evidently Xm' xm-l • 

Now we have dl rn::!) xd-1) xm-l .:a;.. Xd \ xm-l • 

So xm-l= Xt.xd1 xd
2 
•..••.• Xm ~(x), where di are all the factors of m . 

• • deg. (xm-l) ::; rn=+ (1) +cf<dl) + ••.... + cp(m) + deg r<x) 

But rn= 1:. t(d) 
d~ 

deg t (x) 0 

xm-l = 1f xd 
d)m 

= x 1f x 
d J pDl d 

Soif m\pn-1, Xm splits linearly in Fpn[;ar.J. 

We shall now determincrthe irreducible polynomials of Fp~[ x], 

Let g(x) be an irreducible polynomial of F ntx1 of degree m. If ~ 
p 

be a root of g(x) then Fpn~is a finite extension of Fpn and 

F pn (IIi ) = F p11!.,. 

But F ~~is a normal field. So it contains all the roots 
P- , 

Of P""'~ -1 x --1 O. As g(x) is an arbitrary irreducible polynomial 

it follows that all irreducible polynomials of degree rn over Fp~are 

factors of xPnm-1 __ 1 = O. 

So as g(x) is irreducible it must be a factor of certain 

cyclotomie polynomials Xq, q J pnm-1 . Moreover as for every factor 

k of rn there exists a subfield Fpnk of Fpnm (i.e. Fpn ~ Fpnk CFpnm ), 

nk q should not be a factor of p -1, k ~ rn and k 1 m. 



For, in that case Xq is split up linear1y in F nk. 
p 

q is to be ca11ed the exponent of g (x). 
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As Xq is normal (since each root of Xq is a primitive root of xq-1=0), 

a11 factors of X must be of the same degree m. Hence if Nq be q mpn 

the number of irreducible polynomials of degree m and exponent q 

over F n then 
p q 

m.Nmpn = f(q), where <f'(q) is the Euler's function. 

pnm-1 butfpnk-1, O..C k" m, Thus if q then X 
q 

is 

reducible or irreducible over F n according as p .:P< q) '::7 m or'f(q) = m . 

If 4r(q) = m.t then Xq has t irreducible factors over Fpn each of 

degree m. F nm may be obtained by extending F n by a root of anyone 
p p 

of these factors. 

Thus we get the theorem: 

Any irreducible polynomial of degree m over Fpn is a factor of Xq 

such that q J pnm-1, but-\'pnk_1, OLk.o:!"m, k)m. 

pnm ~ 
We can use the relation x - x=xn X~ 

djpnm-1 
and the 

above theorem to find out a11 the irreducible po1ynomials of degree m. 

Example To find a11 the irreducib1e polynomia1s of degree Ô over 

R2 (residue classes modulo 2.). All the irreducible polynomia1s of 

degree 6 over R2 are factors of 

26 63 
x -x = x (x -1) 

= xX1(x) X3(x) x7(x) Xg(x) x21 (x) x63 (x) 

= x(x-1) (x 2 +x +1) (x
6 

+ x
5
+ .•... +1) (x6+x3+1)(x12- ... +1) 

36 (x - .•..•. +1) 
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Of all the factors of degree Q-6 only x
7 

(x) is factorised into 

factors of degree-' 6. This is because 7 isafactor of 23-1 where 

3-' 6 and 3J 6. Where as it can be verified that over R2 X'f(x) is 

irreducible, x21 (x) is reducéd to two factors each of degree 6 

and x63 (x) is reduced to six factors each of degree 6, 

Number of irreducible factors of degree m over F ~ 
p 

pnk ' 
We have for every factor k of m, x -x is a factor of 

p ... ... 
x ... x. Moreover all irreducible polynomials of degree k over F 

p"""' 

pnk 
are factors of x -x, considered as a polynomial over F ~· 

p .. 

So for every factor k of m all irreducible polynomials of degree k 

Pnm { over F ,._. are factors of x -x. Again if k m there exists no 
p. 

irreducible polynomial of degree k over Fp~which is a factor of 
p~"""' 

x - x. For in that case F _k would be subfield of F "'""""'and 
P-'·' p, 

xP~-x would be a factor of xP""'tx which implies that k 1 m 

contradicting that k~m. 

So if h ~ (d) be the number of irreducible factors of 
p .. 

degree d over Fp""' then pnW..dfmd.hpt'- (d) 

But if g(m) and f(d) are two arithmetical functions then 

g(m) = 1:. f(d) # f(m) 
dJm 

is the Mobiu~ function i.e. 

= l:. ~(d) g (cl ) , where ~(d) 
d(m 

..,Ac.(d) = (( -l)Y', if o( 1 '«1. ' ... .1 tJ( '(' all 1 
( 

dl.:~ 1 ( 0, if at least one of 
( 
( 1, if el = 1 

where d .-é"t. -<,. 
p2 ··········P~,Pi primes. 
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So by this formula 

........ 
-,.,./. ('JHj::: r..;~r(~Ji>.f.,..X where...--from h n (m) 

f... .,~ p 

can be calculated. 

..n n n n _ (m+l)n mn 
Thus of the total number of (p -l)(p .p •••• p )-p -p 

m factor~ 

polynomials of degree m, over F n only h n (m) polynomials are 
p p 

irreducible. 

Reducibility of Xq over Fpn 

The degree of Xq i&i{q), hence,by the previous theorem, 

all irreducible polynomials of degree~q) over Fpn are faŒors of 

One can simplify the right hand side and verify whether 

Xq is reducible or not over Fpn· 

hand we 

in te ger 

The above process is however labourious. On the other 

'~ 
observe that if p1rq,tthere always exists a least positive 

k 
k such that (pn) :=1 (mod q). If q is prime the relation 

is obvious,since the classes of residues mod q forma field. If q 

is not prime then also the elements pj such that h.c.f. (Pj,q)=l, form 

a multiplicative group in the ring of classes of residues mod q. So 

from the relation 
kNq 

k~'"' 
= 

the number of irreducible factors of Xq over Fpn is 

tt: is the le ast positive integer such that (pn/a 1 

of the factors of X is of degree k. 
q 

± (q) , where 
k 

(mod q). Each 

If k = 1 then X splits up 1inearly over F n' 
q p 
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Summary: There exists only a finite number of irreducible polynomials 

"""""" of degree m over Fp•· They are factors of xP' -x and also factors 

of Xq such that q jpnm-1, but q{ pnk_l, û""'k.o(m, kj m. All 

other polynomials of degree m over Fp~is reducible. 
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