IRREDUCIBILITY OF POLYNOMIALS

BY

Md. Mahatabuddin

A thesis submitted to the Faculty of Graduate
Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

McGill University March 1964
Montreal




Gratitude is owing to Professor H.
Schwerdtfeger for his kind help and

encouragement.



TABLE OF CONTENTS

Chapter I
l. Definitions

2. Factorisation in an integral domain

Chapter II

l, Polynomial domain

2. Factorisation in a polynomial domain
3. Extended domainé and fields

4. Polynomial domain in several indeterminates

Chapter III

Irreduclbility criteria for Polynomials

Chapter IV

Irreducibility of Polynomials over a finite
field ‘

Bibliography

Page

15

28
30
39

49

56

. 85

93




CHAPTER I

Prerequisites

In many mathematical investigations such as determination
of degree of a field extension, determination of the Galois
group etc. the knowlédge of ineducibility of a polynoémial f(x),
or if reducible the nature of the irreducible factors of f(x)
are desired. We wish to give here a brief survey of the
polynomial domain, factorisation in such a domain and the
criteria by which non factorisability of a polynomial in
such a domain can be determined. We shall try to make the
contents self supporting and self explanatory as much as

possible within the scope of our present work.

1. Definitions:

(a) Elements: Objects of investigation in mathematics
are numbers, symbols, points, lines and various other things.
These will be denoted by the general name "element".

(b) Sets: A collection of elements will be called a
"set" A. The set A is formed by collecting together certain
etements having a given property p. For example, if the
elements are students and property pis the property of being
Ystudent of McGill University", then A will be the set of all
students of McGill University. If an element "a" has the
property "p'% then a is said to be an element of the set "A'":
This is technically denoted as ag¢A: and is read as '"a belongs
to A".

(c) Subset: If every element of a set A is an element of

another set B then A will be called a subset of B. This in

notation we shall write AQB.



(d) Composition: A composition in a set A is an
operation by which every pair of elements a, b of the set A is
composed to form an element of the same set A.

We call a composition either addition or multiplication
or by such similar names. The addition or multiplication of
a, b will be denoted as respectively by a+b and ab. The
choice of these names are quite arbitrary and what is called
addition may be called multiplication and vice versa.

In a set A there may be more than one composition.

(e) A composition, say addition, in A is called

(i) Associative, if a+(b+c) = (a+b)+c, /b, €A, 1T¥=for every

(ii) Commutative, if a+b=b+a, Ke,( €A,

(f) Two. compositions, say addition and multiplication,
in Aare called (left) distributive, if a(b+c) = ab+ac, (right)
distributive, if (a+b)c = ac+bc.

(g) Semigroup: If in a set A a composition is defined
and the composition thus defined is associative then A is
called a semigroup (wer.t. the composition).

Thus A is a semigroup w.r.t. addition if for every a,b,cé A

(i) a+b € A

(ii) (a+b)+c = a+(b+c) »

(h) Group: A set A is called group (w.r.t. addition)
if for every a,b,céA

(i) a+b e A,

(ii) (a#+b)+c = a+(b+c),

(iii) the equations a+x = b, y+a = b are solvable in A,

If the composition is addition the group is called

additive. Similarly one can define a multiplicative group.
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The property (iii) in the definition of the group is
equivalent to the property

(111)*J(there exists) in A an element, say O, to be
called zexo or ddditive identity element such that a+0=0+a=a,
va¢A, andraéad in A an elementgsan -a and called the additive
inverse of a, such that a+(-a)=a-az=-a+a=0.

We shall denote the multiplicative ldentity and the
multiplicative inverse of a by 1 and a-1 respectively, whenever
the composition is multiplation and these elements exist in A.

Theorem:; In a group the equations a+x=b, y+a=b are
solvable uniquely.

Proof: Let z be a fixed solution of yt+ta=0 i.e. z+a=0.

Now z+{a+x)=z+b

or (z+a)dx=z+b

or x=z+b = every solution is z+b.

(1) Commutative groups If the group cemposition is ¢
commutative then the group 1s called a commutative group or
an abelian group.

Examples (1) The set of all integers form a semigroup w.r.t.
both addition and multiplication.

(1i) The set of all integers form a commutative group
w.r.t. ordinary addition but not w.r.t. multiplication.

(j) Rings Let a set R is a group w.r.t, addition and
semigroup wer.t. multiplication such that the addition and the
multiplication is connected hy the distributive laws, then R
is called a ring.

Thus a set R with two compositions, say addition and

multiplication is a ring if for every‘a,b,c € R
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(1) a+b, abéRr,

{11) (a+b)+c=a+(b+c), (ab)c=a(bc),

(441) a+x=b, y+a=b solvable in R

(iv) a(b+c)=ab+ac, (a+b)c=ac+bc.

A ring may or may not be commutative w.r.t. either
or both of the compositions.

In a ring R

a+0=a=0+a for any aé¢R.

Multiplying by b€R, b{a+0)=ba
or ba+b0O=ba
but ba+0=ba
As R 1s additively a group, the eaquation ba+x=ba has only one
solution and hence
b0=0
Similarly one can prove that Ob=0

Thus the additive identity 0 of the ring R has the
property Ob=b0=0, rbeé¢ R

On account of this peculiar property, the additive
identity is called 'a zero elelment of R'.

In a ring R, only the additive identity has thésr
porperty for, if 0, in any other element having this property,
then |

0=00,=0,

As a0=0 and Qa=0, if follows that if one factor is
zero then the product is zero.

But the converse is not necessarily true in a ring.

It may happen that ab=0 but a0, bf0. In such a case a is



called a left divisor of zero relative to b and b is
called a right divisor of zero relative to a. If R is
commutative then the left divisors are also right divisiors.
But in general it is not so.
Example. All square matrices of order n over a ring R form
a ring My(R). But this ring is not multiplicatively commuta-
tivezand it has divisors of zero.

). Then A{#((0)),
B #((0)) but AB=(29)=((0)) and BA=(-2-%) £((0))

00
If R has no divisors of zero 1l.e. ab=0=2»a=0 or b=0 or

take n=2, A=(2 B=(0
For take n=2, ({!3)» (O

both =0 then R is called a ring without divisors of zero.
Theorem: A ring R is without divisors of zero iffthe cancellation
law: if c#0 and ac=bc esssemssiss or ca=cb then a=byholds.

For if R has no divisors of zero then ac=bc = (a-b)c=0 by the
distributive law,but cfb and there exists no divisor of zero

= a=wp=0Pa=b. Conversely if the cancellation law holds and

ac=0 with ch 2 ac=0=o0c hence cancelling c, we get a=0 i.e. there
exists no divisor of zero.

In a ring, the commutative law of addition is & consequence
of the other laws in most cases. Indeed one can prove the
theorem:

In a ring R addition is cemmutative if there exists in R
at least one element which is not a left divisor (or a right divisor)
of zero.

Proof:- In R, calculate the product (asb)(c+d) in two
ways

(a+b)(c+d)=(a+b)c+(a+b)d=(ac+bc)+(ad+ba)




Again (a+b)(c+d)=a(c+d)+b(c+d)=(ac+ad)+(bc+bd)
.. ac+(bc+ad)+bd=ac+(ad+bc)+bd by associative law.
.“. cancelling,bc+ad=ad+bc
Putting c#d, bc+ac=ac+bc
or [(b+a)—(a+bﬂ¢ =0
choosing € not a right divisor of zero we get
(b+a)={a+b)=0
i.e. b-+a=a+b
(k) Integral domain: A (multiplicatively) commutative ring
without divisors of zero is called an integrai domain.
As the elelments of a ring é&%ot necessarily form a group
w.r.t. multiplication, R may or may not contain the multiplicative
identity 1 i1.e. an element 1 such that
al=la=R ,vCerR -
For brevity we shall sometimes refer an integral domain
by simply "a domain".
(1) Units of a ring: Let a ring R contains 1, then the
elements agR for which a—l, with the property aa'l:a—la:l,e R
are called units of R.
It is easy to prove that the units of R form a multiplica-
tive subgroup of R.
(m) Skew field: A ring is called a skew field if its non
zero elements form a multiplicative group.
Some properties of the skew field F are evident.
(1) There exists always an identity element 1 in F such

that

al=la=a,wvceé F,



(2) To each e}lement af0€éF J an 1inverse a-l such that
aa-l=a—la=1

(3) A skew field has no divisors of zero

For if ab=0 and a#0 then 0O=a~-lo0o=a~!(ab)=(a~la)b=b

(4) 1If af0, ax=b, ya=b are uniquely solvable.

(n) Field: A skew field in which multiplication is
commutative is called a field.

Thus a set F with two compositions, addition and
multiplication is a field if for every a,b,céF

(i) a+b, abé F,

(ii) (a+b)+c=a+(b+c), (ab)c=a(bc),

(iii) a+b=b+a, ab=ba,

(iv) a+x=b, ax=b, afo in the 2nd case, are solvable,

(v) a(b#+c)=ab+ac.

Examples: The set of all rational numbers, the set of
all real numbers, the set of all complex numbers are exampks
of fields.

Obviously in a field every nonzero element is an unit.
If AB and A and B are both fields such that the compositions
of A are the compositions of B then A is called a subfield of B.
Similarly one defines subgroups, subrings etc.

(o) Order of an element: Let a be an element of a group
G (say additive) then a®%a=2a€éG, 2a+a=3aéG and so naéG, for
any positive integer n. on the other hand -2éG and -a-a=-2a ¢G
and so -naéG, for any#ive integer n. Thus, 1f aé¢G then naeG for

all integral values of n, positive or negative, with the convention

0.a=0 (additive identity of the group),



Two distincts cases may occur. All elements
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may or may not be distinct
1) If all multiples ha are distinct, the element a is
said to be of order zero.

2) If all multiples are not distinct , let ha=ka, hpk for
some integers h,k.

', (h-k)a=0

Let n be the smallest positive integer for which na=Q.
Then na=0,84285.++0+4y(n=1)a are all distinect:. For ha=ka;
Otk@thgn=>»(h-k)a=0 where h-k4n which contradicts the assumption
that n is the smallest such integer. Now if ‘mis any integer
then m can be expressed as

m=gn+p, O&psn

ma=(qn+p)a=q(na)+pa=0+pa=pa

Thus all multiples are expressed by, 0a=0,a,2a,..., (n-1)a.
Here n is called the order of the element a.

(p) Quotient field: Let R be an integral domain with
elements a,bsc,... For every pair of elements (a,b) with bfO
construct. the fractions %. Define %:% iff ad=bc. Then obviously
a_c e

=25 {11) === £-28 apd (iii)

a_c C a
Z== and £-g9 2-9
b d d b b d e d L:;

b h
So if we consider the class of all equal fractions then these
classes have no common element unless they are identical.

a
Denote the class in which B occurs by %.

Define addition and multiplication of the classes by the

rules —-fﬁzzigigﬁ amd 2 2 = 28 respectively.
d bd b d bd

Then under these definitions of addition and multiplication
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the classes form a field. Denote this field by Q(R). Q(R)
is called the quotient field bnf R.

(g) Characteristic of a ring (orofafield):

The characteristic of a ring R (or of a field F) is
defined to be the integer which is the least common multiple
of the additive orders of all elements of R (or of F). In
case there exists no such finite integer then the characteristic
of the ring (or field) is said to be zero. Thus if p is
characteristic of R, pa=0, #¥aéR.

Theorem: The non zero characteristic of a ring without
divisors of zero must be a prime integer p.

Proof: If possible let the characteristic p # 0 be not prime.
Then p = rs where, say, wis a prime integer.

Now (¥a)(sb) = (a+ee o.+a)(b+e..+b)

ab+ab+,..+ab, by the distributive law

I

(rs)(ab)=p(ab)
As p is the characteristic p(ab)=09(ra)(sb)=0. As there exists
no divisors of zero, one factor, say ra=0,
But O=(ra)b=(a+...+a)b=ab+ab+...dab
=a(b+...+b)=a(rb)
Taking a f O one gets b = 0. Thusrils the common multiple
of the orders of a and b and as a,b are arbitrary, r is
the characteristic. Contradicting p is the characteristic.
Theorem: A finite integral domain is a field.
Proof: Let aj,ap,..., apn be the elements of the integral

domain. Comstruct the multiplication table.
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1 2....ak..an

N>

a,l eveeevenca.a
i ik

n|

Then in the row of products with any given element say aj,
all elements must occur.
For if not let any element say ap is repeated

twice i.e. a@a,a = a = a_ a where %r¥ a
is

in p S

U ai(as_ar):O

But a{fo, as-arf 0 > the integral domain has divisions of zero,
Contradiction.

Then the equation ajx = aj is solvable. For aj occurs
somewhere in the row and x is then the colum head.
Similarly yaji = aj is solvable. Hence the theorem.
Theorem: The characteristic of a finite ring R is an integer
7o.
Proof: For if a¢R, na = ata+..+a é¢R

As R is finite there exists some least positive integer
p such that pa=0. Then the least common multiple of all such
p's will be characteristic.

Theorem: In an integral domain R of characteristic p,

(a+ Fopf pf
a_b>p:ap;tbp; (ai.b) =a 4 b
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Proof: As the multiplication is commutative, and distributive
law holds in R, the ordinary binomial theorem for the positive

integral index holds in R.

S (a+b)P = aP+(‘l°)ap‘lb+...+ (5)pP

but (2) = Pl _ p(p-1)...(p-itl) _ o

iy (p-i)t v

since p is prime, k is a positive integer if il.f-

So all the middle terms are p multiple of an element
of Ry, so they are zero. Hence the result.

Similar is the case with the other forms.

Let F be a proper subfield of Fli.e. FCFl and both are
fields wer.t. the same compositions. The field Fl is called an
extension of the field F. The process by which gl may be
obtained from F 1s called the process of extension.

The smallest subfield of a field is called a prime field.

Theorem: The prime field of a field is unique.

Proof: For, if Fl and F2 are two prime: fields of a field F,

then F3 = Ff\F2 = the set of common elements of Fl and F2, is

a field. F, is non empty, since O,l(-F3. Moreover Fgj c Fq. F’CF‘

3
#>Fl.is not prime. Hence F3=F;. Similarly F3=Fj,.
L F3= F1= Fp
Lét F be a subfield of Fl then the identity 1 is common
to both F and Fl. Now for any integer p and any a€F

pa = a4a+...+a, pterms

=l.a+aJd+...t+1la

:(1+14,...+1)a

~(p1)a
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So if pl = 0 then (pl)a = 0a=0, i.e. pa#O yaéF, 1.e.
characteristic of F ifA the additive order of 1. As 1 is
common ® both F and Fl, they have the same characteristic.
If the characteristic of F is p f 0, then the prime
field of F will generally be represented by F or by Rp
Evidently the characteristic of % is p.
Example: If R is the domain of common integers and p is a
prime integer then Rpsf(rp+q:I~:O,fl,jQ,...):q:O,l,2,...p—%}
i.e. the residue class of integers mod p form an integral
domain. Rp has only a finite number of elements. Hence, by
a previous theorem, R, is a field. The characteristic of this

p

field is p and this field has no subfield. So R, is a prime

field.
is

But if p/not a prime integer then Rp is a ring of
characteristic p, having divisors of zero. For, if p=rs
then (r) # (0), (s) # (0) but (r)(s) = (rs)=(p)=(0).

(r) Homomorphism and isomorphism.

1 1.1 1

Let A of elements a,b,¢cy... and A~ of elements a~,by,Cc ,...
be two sets. Let each have one composition, say, multiplication.
Now let there exists between A and Al a unique correspondence..

h: A —> Al

such that every element of A corresponds with certain element of
Al and that if by h, a——%al, b—ag

then ab-d;albl
Put al=h(a), bl=n(b), (ab)l =h(ab)

Then n(ab) = (ab)l=albl=h(a)h(b).
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A correspondence h: A-—;Al having this property viz.
h(ab) =h(a)h(b)

is called a homomorphism of A into Al. If every element

1

of A- has correspondence with certain element of A then the

homomorphism H is called onto.

Let h is onto, then thybugh the correspondence h: a-—-)al
is unique, the }nverse corespondence h—l: ai_aya may not be
unique. In other words, though one element a corresponds to

1

one element a~ by h, yet one element al may correspond:. to

many element a by h-l.

If h™! is also unique i.e. if h is 1<=pl, then h is
called an isomorphism between A and Al. In notation A~Al,

As the isomorphism 1s biunique

A=A implies Am A.
For, H-l[,h(ab)] = h_lL h(a)h(b)], by the condition of homomor-
phism h
L abzﬁl(albl)

ice. h=i(al)n t(pl) = n~1l(alpl)

Thus h“l is also a homomorphism-.

If A and Al has two compositions, say addition and
multiplication, then the correspondence

hs A---)Al

1

is a homomorphism if a-sa-‘, b_qkﬂ- implies

ab--nalbl, a+b—m alse pl

1

In other words a homomorphism h:A-®»A~ is such that

h(ab) = h(a)h(b)s; h(a+b)=h(a)+h(b)
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As before h is isomerphism i1f h is biunique i.e. when h is
le].
(s) Classes of residues:
We have already givén an example Rp of classes of
residues mod p where R is the domain of common integers
and p isaprime integer.
Now let R be an arbitrary integral domain with identity
1. Then it can be verified that all elements rq ,r¢éR and
q a fixed element of R, form an integral domain (0), which
is a subdomain of R.
If q is not an unit then this domain does not contain 1.
Moreover if x€éR,ye(0) then xy=yx=pgx=xyq= rq &(0).
L .R.(0)g(0)
A subdomain of R which satisfies this property is called an
ideal in R.
Now let us establish a relation« , called congrﬁence
relation, between the elements of R such that aab iff
a-b ¢ (0) i.e. iffa-b=vrq for some¥ ¢{R.
Then
(i) a« a,for a-a=0=0q€(0)
(ii) a&b » bwa, for if a-b=yq then b-a=(-¥)q
(1iii) adb, bec a«c, for a-b=¥q,b-c=¥oq > a-c=a-b+b-c
=(Prvy)a = pa
Thus under the relation & the elements of R is divided
into distinct disjoint subsets of R such that if a,b belong
to the same subset of R then a-b=¥qg for some¥Y¢R . In this
case a is called congruent to b mod q and denoted as am b,

mod q. Denote the subset in which a belongs by (a).
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The subsets thus obtained may be considered as new algebrqlic ele-
ments. They form a set Rq, called the classes of residues mod
q.
Now if adb, cad then a-b=Hy, c-d=Y4q
. . a-btc-d = (a+c)e(b+d)=(r1+13)q

ac-bd=(¥,d+Wb+¥ ¥g)q

i.e. {a+c?0( §6+d} and ace bd.

Because of this property of o one can define addition
and multiplication hetween the elements of Ry-as follows,

(a)+(b) = (a+b), (a)(b) = (ab).

Then under this definition of addition and multiplication
Ry is a commutative ring.

For further properties of Ry we shall give a theorem
in the next article.

2.Factorisation in an Integral domain

Let R be an integral domain. In R un element ¢ is said

to be divisible by a if there exists another element b such that
c=ab
Both a and b are called divisors or factorsofc. In notation
we shall write this as a]c (orb‘c). Let R contain units. Then
if e 1s any unit and a an arbitrary element then
a:ee—é:eky/ where k=e la.

Thus every unit is a divisor of every element. if c=ab
and a or b or both are units then we say ¢ has only trivial
factors.

Let e is an unit and a arbitrary element of R then
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ae is called an "assodate" of a. Thus if U is the group
of units of R, then the set of all associates of a is
(a):aLJ:[ae:eGU}
For, if b 1s any associate then b=ae,eceU.
An element which is not an unit and is not divisiole
by any element other than by its associates and units is

called a prime element.

T oon o ,
If (a) = (k ). (h)(h‘) , whereé'are prime elements
and f,':’...,ﬁk are positive integers, n being finite, then
a iAcalled factorisable and this representation is called

a factorisation of (a).

..A , where @ € i/ .

Thus 1f this representation exists for a, with finite n,

then a is called factorisable. If every element a £ 0 of an
integrel domain R is factorisable then R is said to be a
factorisable domain.
Theorem: A factorisable domain must contain prime elements.
Proof: For, otherwise a will have infinite factors.
Theorems: A féctorisable domain must contain the identity 1.
Proof: For take a prime/ééR. Then since / is factorisable
fzef,:>R has units sR has the identity 1.

If every nonzero element a¢éR has the unique represen-

n

tation (a)Z(t )':- (fl e ..(é‘)rn in R/, where R/U is the set

S LT
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of all classes of associated elements of R, then R is

called a domain of unique factorisation.

Thus in R, two factorisations of the element a
= KRR
are such that there exists a one to one correspondence
between the prime elements % a-nd gs gsuch that the corresponding
s
primes being associated.
Examples: l. The set of all integers form a domain of unique
factorisation.

2. The set of all even integers form an integral
domain. This domain does not contain the multiplicative
identity 1. This is not a factorisable domain. For example
6 has no factor in this domain.

3. An example of a domain of nonunique factorisation
is c(V=6)= }a+b —6:a,b being pescisibee integers}.

In C(V_t%), 6:2‘3:—(VF:%)2 |
But ¥ —6 is not associated to 2 or 3 as + 1 are the only units
of this integral domain.
Theorem: The necessary and sufficient condition that an
integral domain R with identity 1 is factorisable is that
there should exist a norm N(a) for each a#0 such that
N(a)=integer 3 0;
N(ab)2 N(a), where the equality holds only

when b is a unit.

Proof: Let R be factorisable, then for aéR
7,0,
a:e‘fﬁ...é‘ P é being primes, yz

positive integers, &, unit.
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There might be more than one factorisation.
Take N(a) = min (} + V¥ +...4% )"
As Y. are integers 0, N(a)2 0 -

If N(a)=0, all Y- are zero=»a is a unit.

9
Next letlx:e;7fzfuz:f' 3 where 4 are primes.
/ 4

Then ab = ene;éﬂ;&q...én",lé’%":.. %f“"
N(ab) = min (NaV+r -~ +BS A 3 4m)

Zmin (f+R++¥h) 5 as 4,4,4;1-"'*/51« 70"
Hence the equality holds only when 4+ 4,4+ - ~+4,. =0 .
Hence N(ab) 2 N(a) where the equality holds only when b
is a unit.

Thus the condition iIs necessary.

The condition is also sufficient. For let there exist
a norm function N(a) satisfying the conditions and let R be
nonfactorisable. Let a # O be a non factorisable element.
Then a is neither a unit nor a prime, for these are facto-
risable.

So a must be divisible by another element a;, not
assoclated to it.

R a:albl

Here at least one factor, say q, is non factorisable.
Otherwise a becomes factorisable

Now N(a):N(albl)7PNbl) as £1 is not a unit.

As the norms are positive integers,

N(a)} N(bj)+1
As b, is again nonfactorisable, the argument can be

1

repeated and if b2 be @ nonfactorisable factor of b
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N(b )2 N(by)+l
CooN(a) 7 N(bp)+2
Repeating this n times
N(a) 2 N(by )+n,
where n is any integer.
As n can be as large as we like. N(a) does not exist.
This contradicts our assumption. Hence D is factorisable.
Theorem: The necessary and sufficient condition that a
factorisable domain R is a domain of unique factorisation
is that a product ab is divisible by a prime element p,
if and only if one factor is divisible by p.
Proof: The condition is necessary.
For let the factorisation be unique and
s=efh A

Y. NV R
veef %%

e N B_n b e
Then € =ab= e,é,é/&...éy 2% Y

If the primeﬁ divides one of the factors a and b then
p is associated to one of the primeSpi©r%). Aspi(or %)
occurs in the factorisation of ¢,c is also divisable by p.
On the other hand if ¢ is divisible by p, then p is associated
to ore of%Grqj .

Hence either a or b is divisible by p. Thus the condition
holds in R.

The condition is also sufficient.

For let the condition holds in R. If possible let there

exist two factorisations of an element a.
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ALY s Y‘Mr
a= e'h . Pn

LAY PS La
= €2 Wl 71 - %
Then the prime P, divides a and hence by the given condition

at least one of the prima%d say g+ , 1s divisible by f,.
(3 &

J
As both k,and qa are primes they are associated. As this
»
is true for every pair ﬁ.and %/ s the two factorisatiosnsare

same. Hence the factorisation is unique in R.

In a factorisable domain R, a common factor d of two
elements a and b which is such that every common factor of
a and b is a factor of d is called the heighest common factor
(abbreviated: h.c.f.) of a and b. This we shall denote by
(a,b).

Evidently h.c.f. d=(a,b) is determined except for a
unit .
If (a,b)=e = an unit, then a is called relatively prime to b.

Similarly one can define the least common multiple
(abbreviated: l.c.m.) of two elements a,b as the elementm
which is such that both a,b are factors of m and every common
multiple of a,b is a multiple of m. In notation m= [a,b].
Theorem: If the factorisation in R 1s unique then both h.c.f.
and l.c.m. exist for every pair of elements a,b; a }( O,b#b.

Proof: For, let

NN Vw
Y
N ) YSRRND YV
b = e?—h P’—“. w 9

here some of the indices may be zero.

Let t; = miniQBQ;S and k; = maxiY},Ai}

Then (a,b) :e3 f‘#:"’:”
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[a,5] =¢ ék":’:.. o
A factorisable domain R in which (a,h) exists and

(a,b) = ca+db for some suitable c,déR, is called a Pru fer
domain.
Theorem: A priifer domain R is a domain of unique factorisation,
Proof: Let p be a prime and ab be divisible by p in R.

. ab = Kp o k¢R
If p is relatively prime to é

e = (byp) = cyb+ep, e unit.,
J.3e = cypab + e,ap

= c,kp+ ey ap

(eyk+ep)p

As e 1s a unit and p is a prime, thisimplies that a is divisible
by p. Thus if ab is divisible by p and b is not divisible by p
then a is divisible by p. Hence R is a domain of unique fac-
torisation.
Theorem: If p is a prime element, then Rp, the classes of
residues. rmxiﬁ , is an integral domain when R is a domain
of unique factorisation and is a field when R is a Pru fer
domain.
Proof: Let R be a domain of unique factorisation. Then ab is
divisible by p iffeither a or b is divisible by p.
.ab =z 0, mod p, iffa = 0, mod p or b = 0, mod p.
i.e. Rp has no divisor of zero.
R, satisfies all the other properties of an integral

p

domain.

. o

. Rp is an integral domain.

Now let R be a Pru. fer domain. Then R is a domain of
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unique factorisation and consequently Rp is an integral
domain,

But in R, (a) =x(d) is solvable if (d) # (0).
For,as (d) ;%o; p is not a divisor of d.
As p is prime 1=l p) = cd+cip
',a:acd+aclp
. (a)=(acd), since (aclp)=(0)
=(ac)(d)
ox =(ac)=(a)(c)
i.e. the solution of (a)=x(d) exists if (d)/£ (0)
.. Rp is a field
An integral domain E is called a generalised Euclidean
domain if a norm function N{a), Vaf0¢éE, can be defined such
that
1) N(a) = integer 7 0 »
2) N(ab)z N(a), for a Z 0, bf0 s
3) E is the direct product PXQ where P,Q are myltiplicative
semigroups having common identity 1 such that
(i) if péE and N(p) is least then peP, and
(ii)y péP and ¥ qéQ N(g)Z N(p) where the equality holds
only when g is a unit. 4i.e. E = ipq:péP,qég}, P,Q satisfying these
two properties,
4) There exists for every pair of elements a,b, E with
a £ 0 a representation pb = ga +r in which péP and either ¥ =0

or N(r)gN(a).
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If P is the group of units then E is called simply
an Euclidean domain.
Theorem: In E N(a)ZZ7N(1l) = N (e) where e is a unit of E.
For N(a) = N(a.l)Z2N(l).... by definition (2)

Also N(1) = N(ee )% N(e)... by definition (2)

But N(e) N(e.1)Z N(1)

. N(e) = N(1)
. N(1) is least and all units has the least norm and
belongs to P, and if péP then N(p) = N(1).
Theorem: N(ab)? N(a) if gﬁ%.
Proof: Put e = ab
as a £ o, b £osue fo.
'.we have pa=qcey, for suitable p,q,r; r = 0 or N(r)&N(c) by
definition (4),
(i) 1f = f 0, r = pa-gc=pa-gab = a(p-gb)
.. by definition (2), N(r)z N(a)
S N(e) 2 N(r)7 N(a)
i.e. N(ab)yp N(a)
If r=0.
(ii)/then pa = gc = gab
S, P = gb, since cancellation law holds in an
integral domain
e N(p)Z N(b)... by definition (2)
As N(p) is least, N(p) = N(b)
S. béEP.
S If bf% then r cannot be = 0 =, by (i% N(ab)>N(a) -

We could consider the relation pc = ga+r but this gives

us no information except that r = 0 and q = pb.
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Theorem: In the generalised Euclidean domain the h.c.f.
(al,a2) is expressible linearly in terms of ay and a,.
Proof: For this purpose suppose N(ap)£ N(aj;) and apply
definition (4) repeatedly. Then

ppa;= dqiag+t az; az= 0 or N(agz)<L N(ap)

Podo= Qgpag+ au; ag= 0 or N(ag)g N(a3z)

etc.

As N(ai) is a decreasing sequence of positive integers, it
must terminate and hence after s steps, say, the above

procedure ends. The last steps are

Ps_0%g.2 = Ag_235.17 35

ps—las—l = qs—las+%+l

psas = qsas+l

Then ag4) = pg_@g_1-95-13¢
= Pg_13g-1"95-1(Pg_035_29-Ag_n3g_1)

= (Pg_17dg-195-2) 85_1-95_1Ps_285-2
Eleminating suége;sive£§ ;S, as_l,'::., a3 in this way,
one gets finally
3g41 T C121t €232,
when cj,co¢€ E.
This process is known as Euclidean algorithmus.
It follows from as+l:°1a1+ Chans that every common

(31932)
divisor of ajy and as and therefore the h.c.f./is a divisor of

s+1°
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Conversely, from the relation pgag= ggagy) 1t follows

that a is a divisor of pgag. Multiply the (s-1) th

s+1
relation by pg, (s-2) th relation by psps-1 etc. Then
p5p5—13393=psqs—1as+p5as+l
PsPs-1Ps-285-2 = PgPs-195-185-1"PsPs-1285g"
As ag41is a divisor of pgas and hence of pgps-1 and hence of
%
PgPg_1Ps-na8g_p etc... and of pgpg_j...ppap and‘psps—l"'p2plal .
Putting pi:psps_l...pi one gets that ag+1is a divisor of p%al
1 12 1
and of ppap, where p]l,p2€p.
Now if a is any element of E then as E = PxQ, and P,Q
both commutative, being subsets of E, a can be expressed as
a = pal where péP,ale Q and either al ia a unit, in which
case a¢P or al has no factor belonging to P except 1.
Express ag4), aj, ap as the product

] [
a;=Wdy, , ap = Wodp , agy] mpa, where W,T, pé P and

L az s, a€ Q and have no factors in P except 1.

L} \ \

..Ra‘:p‘““a‘
Vay= ol g ah where o pReDen P s i
%;at— p»nbaz’w ere Q"zh . is a semigroup.
.. ] ! 1 \ !
As ayg,, =pa divides B3y = Qﬂ‘%’FiaL: %ﬁﬁ? hence by the

above property a divides 3', Jz .

. A '
o, a is a divisor of (g a,)

. \ \ /
i.e. (3 525 ) =)a.
on the other hand Ag41 = clal+ Chay,
. \ ]
i.e. pa = c’ﬁ“ ay + C, M3z -
Hence every common divisor Qf'al, a, and hence h.c.f. (a: ,J;)

is a divisor of a.
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1 \
coa=a(ay,a,)

., at:hfa
As E is an integral domain
/
Ar = 1
i.e.},z’are units.
.. a may be taken as a = (a\,a;)
Now for any péP, p=p.as N(p)=N(he)zN &) Puy zeP,
since N{(P) is least and if N (p) is least then peg P.
So from the relation
\ —
pa = c¢,Mya, + Cy W, a,
we get that, a common divisor of W‘f@ and hence the h.c.f.
(fy,%, ) is a divisor of p.
Soop ™M, W ), 8¢ p
!
But as a; nﬁ\d.‘,d.ﬁ'ﬁz‘z

-

(8, yap)=(M,Ta) (a ,ay)

W e a5+l:pa:‘ﬁ (l\'\,f,)(a\‘ ,a‘,_):‘lT (a‘,a,)

Thus a =€, a,+ &, a3 % (3y53,) i.e. h.c.f. of ay ,a, is

s+1

expressed linearly interms of a, ,a

%

We.sum up the properties of the generalised Euclidean
domaln as
i) N(ab)? N(a), the equality holds only when L& %,
ii) W(a, ,33) = @,a, + @33,y e P,
If E is an Euclidean domain then P = U = group of units.
Hence from above
(il) N(ab)zN(a), the equality holds only when b is a unit
(iil) (al,az) = cja tcoan.
(ﬂ) implies that E is a factorisable domain, and

. | . . \ .o
(ii') implies thit E is a Prufer domain.
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Hence we get the theorem: The Euclidean domain is a
domain of unique factorisation.
If E is the generalised Euclidean domain thenPs» U.
For the elements of Q, N(ab)$ N(a) unless b is a unit.
Hence the elements of Q are factorisable. So if the
elements of P are factorisable then the elements of E are
also factorisable.
Now for any two element a,,a,€qQ if (a,say) = unit
then 3, is prime to 3g In this case
me =eya, + ¢, 3, ,R€P ,e unit .
If b is any element of Q
eb =ga,b + e, a,b

If azb is divisible by a, aob = ka, , keQ

soefib e 3, bt+e 3,b = e, a,bt ek 3y

a, (¢cyb + cyk)
As aleQ, a' divides b.
Thus if a1€Q and is prime to a2 but divides a2b then al
divides b.
.. The semigroup Q is uniquely factorisable. Hence we get

the theorem: If P is uniquely factorisable, the generalised

Euclidean domain is uniquely factorisable.
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CHAPTER II

1. POLYNOMIAL DOMAIN

Let R be a ring in which addition is commutative;

asbyCyeaey with or without suffix‘are its elements. Let
x be an indeterminate. We take powers of x and multiply
it with the elements of R, assuming that this muitiplication
is commutative i.e. ax? = x"a. In particular we shall consider
x0 and shall assume axO = afor.every a¢ R.

Then the expressions of the form

p(x) = ao+ay+...+anxn,

n finite integer» 0 are called polynomials over the ring R.

In the expression for p(x) the heighest index n of x,
for which an#O is called the degree of the polynomial. &; is

called the coefficient of x1 and in particular ap, the

coefficient of x© and a, the coefficient of x™, n being the
degree of that polynomial, are respectively called the
constant term and the 1leading coefficient of the polynomial.
Generally the terms for which, coefficients are zero are
not wrftten in the expression for p(x). Howe ver one can
write these terms whenever feels necessary.
We define the addition and multiplication of two
polynomials
n

P(X) = ao+ apx +...+anx

- , m
q(x) = bo+blx to. b X

=:bo+blx +...+bmxm+bm+lxm+l+...+bnxn,

assuming npm and bm+l:bm+2: ..:=bn=s0, respectively by
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p(x)+q(x):(ao+bo)+(al+bl)x+...+(am+bm)xm+...+(an+bn)xn

and p(x)-q(x):c0+clx+..+cmxm+...+cn£m4...+cm+nxm+n,
where c, =L ajbjy, ¥=0,1,...,m+n
=

From this rule of addition and multiplication it can
easily be proved that all polynomials forma ring in which
addition is commutative. We denote this ring by R Ex] .
The additive identity of R[x]) is the zero polynomial
0(x) = 0 + 0x + 0x2 +.. +0x", 0 being the additive identy
of R. As from the above conventions 0 = on, one can
assume O:O(x):OxO:O+Ox+...+Oxn.

Sometimes x 1s called variable and the elements of R
are called constants.

In R [x], the definitions of addition and multiplication
imply

Ky = (ab)xS

axk+bxk.

k+j
X

(i) a(bx

I

1

(11) (a+b)xX
(11i) (ax¥)(bx3) = ab
In the product of polynomials we have
Cm+n = 3pPp
.If R has no divisor of zero Cp4, = anbmf 0 when
an#O,bmfb.

As p(x)q(x) = CoHCyXtes e mn

X
m+n !

p(x)q(x)#0(x) > R[ x] has no divisor of zero and degree of
p(x)q(x )= degree: p(x) + degree qg(x).

Conversely if R[xj has no divisor of zero R can not have

any divisor of zero, since by the assumption anO: ag one gets
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R € R[ x7J

Moreover if R is multiplicatively commutative, then

= .b.= . a,. =
‘.';.'.‘N ;b ‘?;;_Jk} y 2 p(x)alx) = a(x)p(x),

*

y

i.e. Rpx] is commutative.

Thus if R is an integral domain then R [X] is also an
integral domain.

Let R contain the multiplicative identity 1 thenpy aé R
ax = (al)x = a(lx), so in this case one can assume lx = x and
that x¢ R[ x] .

Theorem: If R is an integral domain then the units of R are
the only units of R[x].
Proof: Let p(x) is a unit of RPﬂ;?;Nx) has an inverse, say
g(x), in R [x]such that p(x)g(x) = 1.
So degree (p(x)g(x)) = deg 1 = 0
But degree (p(x) q(x)) = degree p(x) + degree q(x).
.+ 0 = degree p(x) + degree q(x)
But if f(x) # 0(x) degree f(x)2 0 .
.. degree p(x) = 0 = degree q(x)
.'.p(x)~: ps a(x) = g such that pyeq€éR and pg = 1 i.e.

they are units of R.

2. Factorisation in a polynomial domain.

For the consideration of factorisation in a polynomial
domain R [ x] we shall suppose R is an integral domain with
unique factorisation. As R is an integral domain R[x] 1is

also an integral domain.



In R[x] if £(x) é’o(x) we define norm f(x) = N(f(x))=
degree f(x).
Then

(1) N(£(x)) 70

(11) N(p(x).q(x)) = N(p(x)) + N(q(x))ZN(p(x)), N(q(x)).

In R[x], a division algorithem is possible..

For, let a(x) = ag X"+ alxn_l+... +anp

b(x) = boxm + blxm_l+... by, nNZm,

be two polynomialsofRI[x] . As R is a domain of unigque facto-
risation h.c.f. k = (ag,lp) exists. Then ag = klg, bg = kmg.
It is seen that

mpa(x)=lox" Mo (x) = G|(x) where N [g{x)] ¢ n-1
If mg n-1 we can apply the same process to CI(X) and b(x)
and get

mpc, (x)=l x" ™ 1b(x) = cy(x), NLCy(x)]€ n-2

By repeating this process till N[cé(x)]é m and combining
all these steps we get

pa(x) = q(x)b(x) + r(x)
where N(p)=0 and Nfr(x)]< nfb(x)] ...(1)

Thus, given any two polynomials a(x),bx)ofR [x] ene can
find p, q(x), r(x) satisfying (1).

Let d be the h.c.f. of the coefficients a_., a

0 IEERRE a~‘then

| .
a = dat for i = 0,1,...,5, n

so a(x) = d(goxn+31xn°l+...+in; ) = d a (x), where

the h.c.f. (& , 2 ,...a' =1,

[ ] L%y

d is called the content of a(x) and in abbreviation: cont a(

X) e
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The polynomial whose content ia 1 is <called a primitive
polynomial. Thus = (x) is a primitive polynomial and may be
called prima(x).
S oalg)] = da (%) = comt al{x) prim a(x).
Theorem: Primitive polynomials &f R[x) form a multiplicative

semigroup.

Proof: Let a(x) = ag+ta;x +...+ an %

m

X

b(x) o

b0+blx H o b

L
be two primitive polynomials. Then a(x)b(x) = c(x)ZZ,'cv.)c

where ¢y =Z ag ¥w=0,1,... m+n; must be primitive. If not,

b*‘f .f ,, ‘

the coefficient c, must be divisible by a prime p, for all .

Suppose that a,. is the first coefficient of a(x) and
bs, be the first coefficient of b(x) those are not divisible
by p. 1.e. & O, i<y and bj= 0, je&s mod p

%0 ,b!f
/g 0, J =s
Then as c, =Z4, ‘/

l-g-

a.b

g 2 mod p

S

But c =0 mod p i.e. ayb20 mod p i.e. p divides

reh
the product arbg. But as R 1s the domain of unique factorisation
p divides eitherarorbg, contrary to the assumption. Hence the
theorem.

The result proves that R[';j is a direct product of R

and the semigroup of primitive polynomials.

So RfxJsatisfies all the properties of a generalised

Euclidean domain, where, for a( ;! 0(x), N(a(x)) = degree a(x).
Moreover as R is a main.of uni act isati i
a domain of un%que % eto 1 at ngue Patarisdiion BL wyis
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If R is a field then R[x] 1s an Euclidean domain, so
in this case also R[x]1is a domain of unique factorisation.
Theorem: f(x) reducible <& f(x+a) reducible in R[ x] , where
R is a ring with identity 1 and a ¢ R.

Proof: f(x) reducible implies f(x) = g(x)h(x).

Now in the definition of product we asumed nothing
upon x except that axM=x"a,y a é R and for every positive integer
n. So the product remains valid if we replace x by x+a,

o, f(x+a) = g(x+a) - h(x+a)

As 1éR, xe¢ RL x] . Hence for any aéR, (x+a)? agrees -
a binomial expansion in R[ xJand we get g(x+a), h(x+a)
as polynomials in x i.e.

f(x+a) = g‘(x)h‘(x).
conversely if f(x+a) = p(x)g(x) then putting x=my-a we get

f(y) p(y-a)g(y-a)

il

:p\(y)q‘(y), expanding by binomial
theorrem and rearranging by the law of addition.

So replacing the indeterminate y by x

\
Hence the theorem

f(x) = b (x) g (x)

Let F = Q(R) the quotient field of the integral domain R.

Theorem: Every polynomial ¢(x) of FL xJcorresponds to unique

primitive polynomial %(x) such that ¢>(x) = %‘3 (x), where
(
CI b'@ R.
Proof: Forc?(x) = Réll , where bl is the product of all the
1
denominators of +(x) and p (x)€ RL x37 .
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Also|+(x) = al p(x), where a,is the content of p(x) and
5T !

p (x) the corresponding primitive polynomial.

Let (x) has another such representation i.e.
p

&(x) = 22 p, (x)

T
.¢(x) =2l py(x) = 22 py (x)

5 z
or aibopi(x) = agbipo(x)s... (&)

As both pl(x) and py(x) are primitive aj;b,= casbywhere ¢ is a unit.
Substituting this in (&)

pi(x) = ¢ pal(x)
i.e. they differ only by a multiple of a unit.
Theorem: If a polynomial ¢(x) of R [x]is factorisable in F [ x]
then+(x) is also factorisable in R XJ.
Proof: Letn$(x) = d f(x), where f(x) is primitive

2 p(x)g(x), in F £ x]

=5 pl(x) % q;(x), where p;(x), qy(x) are primitives

£ %g P(x), where ¥(x) = %(x)q'@x) is primitive.
But ¢(x) corresponde to two primitives f(x) and r(x)
Dcf(x) = r(x) = p‘(x)q‘(x), where c istaunit
>f(x) has factors in R [ x]
»¢(x) has factors in RTx],since de R
Let R be the domain of common integers and p is a
prime integer, then Rp, the residue class of integers mod p,

is a field. Hence both R[ x}and Rptx]are domains of unique

factorisation.
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A polynomial f(x) = a0+alx+...+anx1"e R[x] corresponds
to a unique polynomial f(x) = Tp+a x+..43,x", where F =z ag (mod p)

Theorem: f(x) factorisable in R[xJ implies f(x) factorisable in
Rp[ x] .
Proof: Let f(x)=g(x)h(x) in R[ x] , where

g(x) = b, +'blx~+..+brxr

=x
—
s
S
|

cg + qx+...+csxs , T'+s = n=degree f(x)

'.ai: biCO+bt—lCl+. . .’f’bon_

ai: bic +Eﬁ—lcl+"'+boci

= bijco¥ Dj_1C1%.. -‘FBO'C-j_

L Ex) = 3(x)h(x)

i.e. f(x) is factorisable in Rp[x]

—

The converse however is not necessarily true. f{x) may be
factorisable in Rplx),though f(x) is irreducible in R x}.
However, by the theorem, if ;T;) is irreducible in Rp[xj then f(x)
is necessarily irreducible in RI[xJand as Rplx]has only a
" finite number of irreducible polYnomials of a given degree

(see chapter IV) one can see whether f(x) is factorisable

or not. If f(x) is not factorisable in Rp[f]then one concludes
f(x) is not factorisable in Rgf]:

It may be noted that if the leading coefficient of f(x)
is not divisible by p then none of the leading coefficients
of g(x) and h(x) can be divisible by p. Hence G(x), HT;)

has the same degree as g(x), h(x) respectively.
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Zeros of Polynomial

Let f(x) ;;§a£x£ be a polynimial of RLx],R integral
=
domain with 1. An element &« of R, for which f(e«)=0, is
called a zero of f(x).
Theorem: If &« is a root of f(x), then x-& is a factor of
f(x). |
Proof: As division elgorit@ém is possible in\R[x],we have,
dividing f(x) by x-&,
f(x) = g(x).(x-&) + r, where T ¢R

Substituting x =&, we get

0 f(of) =9( & ).0+r

I
(@]
+
Lo}

‘. f(x) = a(x) (x-&),Hence the thorem.
Theorem:s Lf %,4&,....,«& are difierent roots of f(x) then
Proot: As x;is a root
£(x) = p(x)(x-aqG)
Again as ¢f, 1s a root of f{x)
0 = flegy)=plag )(a)-a))
and as R has no adivisor of zero %(di):q%>q§s a root of P, (x).
gl = p(x) (x- )
F(x)=p(x)(x- af)=p (x)(x~oy)(x- )
Continuing this process k times, one gets
£(x) = (x-aq) (x= &) .o (x- ko) (%)

Hence the theorem.
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Corollary: From the above it is obvious that in an integral
domain a polynomial of degree n % 0 has at most n distincts
roots.
If however, R is not an integral domain the number of

roots of f{x) in R may be greater than the degree of f(x).

3

For example, thepolynomial %”-x has six roots in the ring of

residue class of integers mod 6.

Definition: If f(x) = a,x +an-l x  ~+4...+ayx + ag , then,
we define, the derivative of f(x) (abbreviated f/(x))to be

the polynomial

f/(x) = na xn"l+(n—l)an_lxn“2

" +-.o+alo

From this definition one can easily prove

1) (£(x)*a(x)) = £7(x) + ¢’ (x)

11) (£()a(x)) = £/ (x)a(x)+£(x) o’(x)
111) (£(g(x))) = £/ (g(x )’ (x).

Definition: if f(x) is divisible by (x-d)X but not by (x-a)k™!

1

then « is called a root of multiplicity k,of f(x). If k=1
thene is called a simple root.
Now let & be a root of multiplicity k, of f£(x),
Jof(x) = (x—“)k f‘(x), such that f, (o) F#0

k-1

£/ (x)=k(x-«) £, (x)+(x-e)k £/ (x)

Differentiating successively one gets

£V (%) = kg (x) + (x-&) £5(x)
i.e. £(d)=0, £/ (&)=0, fhx):o,..,f(k‘l)(x) = 0 but f(k)(x)=k§f|(«)
70, as f, (&) # O -
Theorem?¥ Let f(x)=ap$ ajx4.4a,x €REx}, where R is thedomain of

common integers. Then if a rational number p/q, (p prime to q),
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is a root of f(x) then pla,, q}a, and (p-mq)\ f(m) for any
integer m.

Proof: We have

. N
£( p/a) = ag+a;p/q +..4a fp/a) = @

,'_aoqn+alqn-lp + aQJhﬁﬁ..+anpn =0
i.e. p is a root of
+(x) = a‘qn + élqn—l X + agqn_2x2 +..+anxn
i.e. ¢(x) = (x-p)g(x)

Equating constant terms of both the sides and remembering
(psq) =1 one gets p)ag

Putting x = p +q in %(x), one gets qfa,.

Again putting x = mg one gets (p—mq)\ 4:(mq)

But (mg) = q"£(m)
And as (p,q) = 1, (p=mq) ] £(m)
Hence the theorem,

This theorem can conveniently be used to determine
rational roots (hence linear factors), if any, of a polynomial
over the domain of common integers R. For, as R 1is the domain
ofunique factorisation ag and a, _has only a finite number of
factors. One can choose p and g from these factors and see
whether, for an arbitrary integer m, (p-mq)\ f(m) or not.

If not, one concludes that p/q is not a root of f(x). On the
other hand if (p-mq)\ f(m) then by actually subsitituting one
finds the value of f(p/q). If it is zero then p/q is a root

f(x), other wise not. As there are only finite number of p's

and q's one tries only finite nos. to find rational roots if any.
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The above theorem is also true in any domain of unique
factorisation with the identity 1.

3. Extended domainsand fields.

Definition: A polynomial f(x) of R[ x] is called irreducible
in Rf{x] if there exist no g(x), h(x)¢éRLx], such that
f(x) = g(x)h(x) and degree g(x)®l, degree h(x)=z 1.
Obviously an irreducible polynomial has no root in R.
But it might have a root in R; where RCR;.
For example, x2+l has no root in R[x}, where R is the field of
real numbers. But it has roots in C[x}, where C is the field

of complex numbers and so x2+1 is factorisable in CIx}.

Now let f(x) s a.xT be an irreducible polynomial
0
fi

N i
1:
a

of F(x) where F is eld. Let& be an element (not belonging

to F(x))such that f(&)=0....(1),0ne may take & an arbitrary
symbol which satisfies all the postulates for the indeterminate
Xy in relation to F, together with (1).

Consider the set F(&) of all elements of the form

- n-1

p(&) = bo+bf +...+b 14 ’

b » t=0,1,...n~1, éF

Then F(&) is a field, For if
n-1

then p(d) +q(&f) = (bgtcy)+(b +c;)X +...+(bn_l+cn_l)°<

_ n-1 _ . _ n-1,
= 0 +Ad+o .+d{1—l x ’ WheI‘e d':— b‘, +CL. 1] l—O, . ’
=d ®) say.

For multiplication of p(d&) and q(X) we see that p(&) corresponds

to the polynomial p(x) = bo+blx+...+bn_lxn—l and similarly we
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get the corresponding polynomials gq(x) and r(x) = p(x)gq(x).
Now if the degree of r(x) is less than n then r(x) corresponds
to the element r(&) of F(& which is evidently the product
of p(&€) and q &)«
If however the degree of r(x) is»n, then in F [X]
r(x) = g(x)E(x) + h(x),
where degree h(x) 4 n.
. r(d) =g(a)f(a)+h(&)
=g(a).0 + h(«)
Hence r(&) i.e. p(ef)q(at)e F () .
Let the inverse of p(&) is
(o) = Ug + UK +. ..+ Un 4*-: th-2
thend o fOOBIE) = Gotts 4 (Lo )+ B Us) A+ " Corne Uy X
S Rolho =l t-€. Yoz L

N
b

&Lo
401/,4'41‘/0:0 L e. u,-.-id,u,:—é-" .
429 ‘a}'

etc.
Thus if p(d) f 0, p~i(«) can be determined as above.

The other properties of a field can easily be verified
in F ().

Hence F(&) is a field.

F(x) is an extension of F. The extension has been done
with a root of an irreducible polynomial f(x) of }:c&]. & is
called algebralic to F and the extension is called simple
algebraic extension.

It may be noted that we have assumed & to be a root of
an irreducible polynomial f(x) over F. Consequentlye does not
belong to F. If however«é F, in which case f(x) is reducible

in F[x] with x -efas a factor, one may considereas a root of
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x - ¢and find F(«). Obviously here F(&) = F.
Theorem: Let aand &, be two roots of an irreducible
polynomial f(x) of degree nz 2, over a field F. Then

there is an isomorphism

P: & ) — F(efg) s such that () = «5 -
e -t ¢
Proof: The elements of F( q’|) are & &, .(‘ and those of F ()
n-~l s’z 0
are L 4, dz é,-éF-
ize

Now establish the correspondence ¢ : F(a)—> F(4&,),

- s
such that <’>(1’4, P A ) =‘_’Z'°4'.’n’, .

i’z

Then cp(::a.%*zlf%‘j = (T (&40, ) ) =@ (ho#6,) M0

o LA ALS X AP AP P P ")+~ffz6 -(.’),
Pz, « .zl. ') = 1(:4—' “ ), £ &he ,
=1-£-e 4.‘ /41(-; .
BT LR NS LT NP VEPT WA N
2N . 2Nn-~2- .
The relation & (z;c o) =‘£ Cr o) remainavalid because
L0 o
A, and o, are the roots of H}e same polynomial.
e

Now it is obvious that/correspondence $is 1e»]1 Dbetween
the elements of F( &) and F(ay).

So ¢ is an isomorphism.
Putting a, = 1, a, = a,=... =0, one gets ¢ ()= -

The most important consequence of this theorem is that

any algebraic relation between one root of an irreducible

polynomial and the elements of F remains true if this root is
replaced by any other root of the polynomial.

Theorem: Let F} and K be two isomorphic fields and ¢ is an
isomorphism F\=F, . If the polynomial fl( )_ z- / /’ ‘)‘ﬁF, . .
is irreducible over Fj then £, (x) —t¢(9)x’ is

/’-.
irreducible over E,.Further if o, 1s a root of fi(x), i=1,2,
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then F, (s)2 F, («) with an extension isomorphism ¢ of ¢ such
that ¥(eq) =o>.

L[The isomorphism ¢ is an extension of ¢ if for all cé F,
one has y(e)=¢(c).]
Proof: Between the elements of F; (x) and Fyp (x) establish

»n- . M e’

the correspondence g:l'.d'x —-'* t‘ﬁ[d;)’l > €, €F.

Then € /¢4, ¢) =T ¢/4‘)x

sl ont
Now ¢ /fxa ezl x) = S(E Caceti) > )=% o cli)
=1(psa)+ Pl6)) xE =T Pla)x ¥ T L™

S $(sacnt) + §(xden)

S(ra-nSrdynt)=£(Te =), & ﬂz‘”:: Y bu
= £ gl = L Pla) T $r6 )M

= f(zacx). gz 4, >")

’ since $is an:isomorphism.
As the correspondencef:at—%f(q,-) is le=sl, the correspon-
dencej is le—»1 and hence § 1s an isomorphism.
. . &
1t f oz T PleInt =T @L)x L P00 )",
2 P
then §CTAN Tl x®) = T Pla)x'. T $b)x* = £64)
BUtj(—f,{’y)z'«/,/’g and S is leP1,
“h )T &V Ty Y e Lrwy is reducible.
5 £ex)
.. . ¢ . .
Again if \; zd‘.‘(‘ ___)t¢(4‘.)‘(z¢ ) then since the degrees
of f1(x) and f2(x) are equal and the correspondence between the
coefficients of same powers of 's, in the correspondencew,
is isomorphic, one can prove just as in the case of ; above, that
W is an isomorphism between F,.( o) and FL(‘(L)'
Putting aj= 1, ap= a2=...=0, we get W ])=A2, since

+(l):l for any isomorphism%. Putting a;= as=..=a, =0 we get

'f' ao) ¢\ao)
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Theorems h.c.f. is preserved in an extension F&x],where
F‘ZF, beth fields.
Proof: Let f(x), g(x) be two polynomials of F[x} and
(£(x)s 9(x))= h(x)
Then since Ffx] is an Euclidean domain there exist
suitable .p(x),q(x)é FfxJsuch that
h(x)=p(x)£(x)+a(x)g(x)
Now let (f(x),g(x)):hl(x) in E/[xJ, So there exist 1(x),m(x)
€ F/[x7 such that 1(x)hy(x)=f(x), m(x)h ,(x)=g(x)
on00=n, () §p0LG) + alx) mGof
b ()| R(x)

But every common factor and hence the h.c.f. of f(x),

g(x) in F [x]is also a common factor of f(x),g(x) in F ﬁ&]

sh(x) | By (x)

i.e.h(x), h‘(x) are associated .

.".h(x)=b hy (x),where b is a unit.
Theorem: Two polynomials f(x), g(x) of F[x3, F field , have
a common factor of degree 1 iff they have at least one common
root in a sultable extension.
Proof: If h(x) is a common facbr of degree wl then the roots
of h(x) are also roots of both f(x) and g(x).

Conversely if f(x), g(x) has a common root &« then in
F(#)[ x] x=~ois a factor of both f(x), g(x), hence is a factor
of hoc.f. (f(x), g(x)) in F(e)L xJ. But h.c.f. does not change
in an extension. So f(x),g(x) have a common factor of degree 24

in F[L x3J.
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Corollary: f(x), g(x), have common root, f£(x) irreducible =>
£(x) | 8(x).
In the extension F@) of the field F by the root & of an

irreducible polynomial f(x) the elements of F () are of the form

n-1

Now let F be a subfield of a field Fl. Then Fl is an
extension of F. If there exists finite number of elements q},a&,-~p‘hné
F1 such that every element of Fl can be expressed as

aj o +a)ofy feeeo.an. + a_ dwm s
aj¢F, then Fl is called a finite extension of F. If moreover all A ,
are independent over F i.e., c an + c2d5-+ ..... +cmaL“‘ = implies

1

all c; = 0, then m is called the degree of theextension and one writes

this as m =[F1: F] . If there exists an element /3(- F1 such that
Fl = F qz) i.e. if every elementvé& Fl can be expressed as

- 1
N=do+Hdip ... + dm—l? , where d ¢F and m =[F :F]> 1,

then P is called a primitive element of the extension.
In the above example F(X) is a finite extension of F, is
the primitive element and [F &) : F]= n.
Definition: If a field E is an extension of a field F such
that a polynomial 4>(x) of F[x] is factorised into linear factors in E [x]
and if 4>(x) cannot be so factorised in any intermediate field, then
E is called the splitting field of :P(x). Thus the smallest field E
in whichg‘;(x) is factorisable into linear factors is called the

splitting field of ‘P(X)'
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Theorem: Splitting field E exists for every polynomial <f(x) of
F [>].

Proof: As every polynomial GP(x) is reducible into prime factors
in Ffx] , it is enough to consider the proposition when §(x) is
irreducible,

As+(x) is irreducible in E[X], extend F algebraically to E; =E(eq),
where & is a root of ¢(x). F; may contain other roots of §(x) besides of *
Let the roots g, .. %€ Fi.

Then in Fj [X],

?(x) =(x-q) (x-x‘) ....(x—o{k)t(x) ?'Ex)...th&x),

where <h£(x) are irreducible in ¥ £x]) and degree <h_£x)£.degree+(x).

Now extend ¥; by a root of ‘k‘(x) to ¥ and proceed as above. In
Eo[x],

Px) = (x-%)...(x-4) (x- LORENCEr A ﬁgx)...t(f),

where ¢(x) are irreducible and degree +(x) £ degree ?(x).

2 2% "

As the degrees of f'(x) are decreasing, we arrive, at least

Ko
in n steps (n being the degree of ¢(x) ), in a field E such that in
E 4’ (x) are all linear andp(x) = (x-af) (x-0)...(x- &) .
Ki

E is the splitting field of +(x).

Definition: An irreducible polynomial f(x) of F [x] which has
no multiple roof in an extension of F is called separable, otherwise
it is called inseparable.

Let us investigate the inseparable polynomials of F[x].

Let f£(x) be an irreducible polynomial of Ffx] and & be a root of

f(x) of multiplicity K» 1 in an extension of F. Then
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f(x)=(x-a()‘. q(x), where 9(«) # 0, in that extension.
Differentiating fl(x) = (x—ﬂy";kx) + K (x—«t)“-1 1/(x)
or £/ (1) = xo)* 1] (x-@ P + KUY}
As K> 1, or is a root of £/ (x) of multiplicity Kk-1.
" The h.c.f. (£(x), £ (x)) = (x-4) ¥ (x).
Conversely, if every root of f(x) is simple, then :© ' | (e
£ = W-a) o () +g ).
.. f,(a() = 9 () # 0, for every root « of f(x).
. @ is not a root of fl(x) i.e. £, £/ has no common root.

(f(x), fl(x))is an element of F, i.e. f, £l has no common:

factor of degree % } in F[x] (since h.c.f. does not change in an extension).

Thus the necessary and sufficient condition that f(x) may have a
multiple root is that the h.c.f. (£, fl) is a polynomial of degree 2{.
| Now if f(x) is irreducible, then it can have no common factor
with a polynomial of lower degree fZ (x) unless f!(x) =0 (x). Thus
if f(x) = ;r;fx‘. is irreducible and still have multiple roots iﬁ an

XX ]

extension then,
l M—. ‘--' } { )
£ (X)=t L‘L' x = a (x
vt
’ .iai =0, for each ¢'¥¢ ces sue (I)
Two cases possible:
1) If the characteristic of F = 0 then from (X) a;= 0 for all i # 6.

i.e. In this case an irreducible polynomial of degree %1 can not

have a multiple root.
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2) Let the characteristic of F bg p#0 then (I) is true only when
for ay # 0, i =kp i.e. if i is an integral multiple of p.

b

. i B - o
. one can write f(x) = a5, + ap xP + azppX’ + ...+ anp X P, some of the

coefficients a;, may be zero.

P
Conversely if f£(x) is of the above type then f’ x) =0

Thus f(x) = f (xP), when ¢[:¢)= aj + apx+ ....4a, xD,
. If the characteristic of F is p # O,an irreducible polynomial of F[x]

can have multiple root iff f(x) = ¢ (xP).

Now let f£(x) be an inseparable irreducible polynomial over the
3

field F of characteristic p # O.
Then £(x) = g (xP)
But it may be such that g(x) is again = h (xP)
.. £(x) = h (xP2)
- ntl
So suppose that f(x) = #(xp‘) but # \[’(xp © ) where m # 0 as
f(x) is inseparable.
Hence ?(y) is irreducible in F [y] . For if
PG = ) $,O
Then £(x) = qﬁ(xp') f%_(x ), which contradicts the assumption
that £(x) is irreducible,
/
Also ¢’(y) # 0. For if ¢(y) =0, ¢y) = Y(’P) as before and
Mt
hence £ (x) =9 (xP° ) which contradicts our hypothesis.

Thus <?(y) is separable and in a 5uit able extension

) = -p) O-8) ..... - Puo )
i) =6 o) P B ) ... =" -A.,)
Now if o; is a root of f£(x) it must be a root of xb - /3, (say)
it pise

V iaan

i.e. /5;' d q:‘
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and xp”— /!; = xP = ,(f. = (x- «;)P
P
f(x) =[(x-o) (- ..... (x -%) 7
I

= [;(x)j P~ where $E) = (x-a) (x-a)..... (x- &),

I1f the degree of f(x) is n then n = ngp™

Thus £(x) has only nj = n/p®distinct roots, each root having
the same multiplicity p™- The splitting field of £ (x) is same as that
of § x).
Definitions: A field N is called normal over F if {N:FJis finite and
each irreducible polynomial of F[x7] that has one root in N is split up
completely inmn[x7.

Let K be the smallest extension of F such that f(x) ¢ k[21
splits up linearly in Kothen K is called the algebraic closure of F or
algebraically closed.

Regarding algebraically closed field we state here the following
important theorem due to Steinitz: " For every field F the closed field
K exists. K is unique (except for isomorphism) ". |

It can be proved that the field of complex numbers is algebraicaliy
closed. So every polynomial is reduced to linear factors over the complex
field.
Conclusion: It is clear from the above discussions that the reducibility
of polynomials depends on the domain Or field over which they are defined,
An ig}educible polynomial may nét be irreducible in an extension. 1In fact
any polynomial has its splitting field and every field has its algebraic
closure such that over the closed field any polynomial is reduced to

linear factors.
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Polynomial domain in several indeterminates.

We have defined polynomials in a single indeterminate x over
a ring or integral domain or field R and obtained R [x7] . This
process is usually expressed as ¢ R[ x7] is obtained from R by the
ad junction of x, .

We can proceed further. We can extend R [X] by a second indeter-
minate y and construct R[ x][y]. If R is a ring in which additiom is
communtative, then R[x] and hence R[x][ ylis also a ring. The elements

of this ring are
P (x,5) = Pm(x) ¥y +ppy(x) v L + ...+ po (x),

where pk (x) = I ajk X} .

ps
) , 3y ok
. P (x,y) BE @A X)) V.
K J
We define addition and multiplication in R[ xJ[ y] precisely

as before considering p;(x) as coefficients. Then from this definition

it follows that .
P (x,) =TT (ajy xd) yk.
%9

Again one can construct R[y] first and then R[y]fx] . Then

the elements of RIT yI[x] are '
P (r,x) =) "+ L+ 4 ),

where ?;.(y) = E ajkyk-

cP (LX) = Tz (g v xd.
PR
Let R contains the identity 1. Then we may consider x,yGR[XJ[j] s
so we can remove the parenthesis in the above sgems.

Now ax = xa
(ax) y = y(xa)

Taking a = 1; xy = yx
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Z T ag xd yk = rr ajkykxj

k s / Kk
. RGILYT = RIYEx]-
If however R does not contain 1, still one may assume
(axd) yk = (ay*) xJ.
This assumption is permissible since it does not change definitions
of addition and multiplication.
From this assumption ( if required)
ROx]L yl = RLyIx] .
This common ring is denoted by R[x,y], which is therefore independent
of the order of adjunction.

In a similar manner one can get the polynomial ring

P (xl, Xgeenoons »Xp) = % ai‘ ig+---in xlil x§2 ..xni?u.

By the degree of a term a;71i2..... in xil xziz ....xﬁn
we mean the seem: é?ﬁﬁ. . The maximum of the degrees of the
non vanishing terﬁ;/;s called the degree of the polynomial p (xl....,xn).

A polynomial p (xl,xz, """)Xn) is said to be homogeneous and
of degree m if

p(txl, tX9..... ,txn) = ™ P (Xl> X9y eeeesXy)
. 24‘;‘.‘.__‘.’, t&;'fl'zf---i- £a x,‘.':(.,‘.'-'-- X,,‘-"

= £

T LYY L
L. .. ' z L5
L,(.,---r,,x, X, " --. i
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Thus the necessary and sufficient condition for homogenety is that
m=i; + i2 i S + in’ for all i4, i2, ....,in.
The homogeneous polynomials are also called "forms'" of degree m.

Collecting homogeneous terms of different degrees together, one

can write an arbitrary polynomial of degree m

¢ ta _tnm

P (Xl,Xz, ..... ,Xn) =zc""-‘-_ by, x‘ x,,""f—w
as p (Xl’ X9, -++05%n) = Uy + Up(x1,....,%,) + ;... + Um(xl ..... ,xn),
where Uy (xl, Kgseeeees Xp) is a homogeneous polynomial of degree i, i=0,

As R[x,y] =R[x)[y], a polynomial p (x,y) is a polynomial in
y over R[xX7] and hence one can define the derivative p, (x,y) over R[x7}
just as in the case of a single indeterminate. To avoid confusion one
writes this derivative p" (x,y) as _%k . Similarly one can define g-,é y

From this definition one can prove the Euler's theorem on
homogeneous polynomials of degree m, viz;

m.p (xl,...., x,) = xl%é“"'x"%t;g:"'*x"%‘:

For factorisation in a polynomial domain of several variables
we have the following extensions of the theorems of the previous articles.
(1) R ring without divisors of zero implies R[xX] is a ring without divisors
of zero and hence by induction R[xl, ....... »*.7] is a ring without divisors
of zero if R is so.
(2) R integral domain implies RLxJintegral domain and hence by induction
fol, ..... ,xﬁ]is also integral domain if R is so.
(3) R integral domain with unique factorisation implies R[x] integral domain

with unique factorisation and hence R[xl,...,xn] is also an integral domain

with unique factorisation if R is so.



52.

The concept of primitive polynomials can also be introduced

here. Let F be a field. Then a polynomial f of F[X1,.....%x] is called
primitive w. r. t. X5 Xpevenns X,_1, if it is primitive w. r. t. the
integral domain FLxq,00... »Xp-13i.e. if it does not have a non constant
factor that depends only on KiseooesXpy 1.

Proceeding precisely as in the case of one indeterminate one
can prove that if f(xl,....,xn) considered as a polynomial over F[xq,x2...
"Xn-lj have factors with coefficients in the quotient field of F[Xl“"xn-lj
then it has factors with coefficients in F xy,...... X
Theorem: If a homogeneous polynomial over a ring R without divisors of

zero is factorisable then the factors are homogeneous.

Proof: Let p = p (Xl’ ..... ,Xp) be homogeneous and of degree m¢ and
= V(Xl, ...... Xn) Y (Xl ...... 1Y)
For brevity suppose 7/= 1/(xl, ..... Xp) and p = P (X7,.... sX5) .

Let 7,(x1,....’,xn) = U+ I/,*"“"% 4
and P (X1,...-,%p) = h+ ¥+ " F ¥t 5 where
U =Ug (55, "”‘”) £reol 2L =22 (5, 5,3, %, ) are homogeneous
polynomials of degree 1i. Then
P (X1,+++¢-,%n) = (IJ,,-\"I/,-P"'*%){%*Z'f*'"f%)
TUsthy + Uyttt 2h,)+ (Dt GV U )T
-fé”°2£k-+ a;zéa'+~--)-+---+-4gqu 2
where the sum within each parethesis is a homogeneous polynomial of
degree equal to the sum of the subscripts of &« and 2*#0of any tgrm.within
that parenthesis and no two such sums have equal degree. So p (xl,...,xn)

must be equal to one of these sums. and all other sums within respective
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pérethesis be zero, i.e. zero polynomial. Then equating these sums with
zero and remembering that R[Xl,....xn] has no divisors of zero we get
that both 7(x1,....xn) and y (x1,....,%Xn) are homogeneous. Hence the
theorem.

If however R has divisors of zero then the theorem is not
necessarily true. For example,

(aix2 + azy?) (b,y + bp) = aibg x2y + a2b1y3+ albzx2 + a2b2y2
can be made homogeneous by choosing aj, ajp, by none equal to zero but
ajbz = 0, agby = 0.

If R is a domain of unique factorisation with characteristic zero

then we can use Eulers theorem on homogeneous functions to prove the

above theorem.

For m.p. = xl.%_i’.‘ & R + Xn?%l;:
] .

Ay yo ) 2¥+- -+ )
M 3o pdp, o , hence w - y(u e e U0 EL
>,

0%, B T,
* 1/(k.w+4)+)°//57/*’3)

where W and k are respectively the degrees of y and ¢/ and « and @ are
polynomials, both zero otherwise are such that every term of « is a
multiple of some term of P.
Moreover ¢ does not contain all those terms qf P whose degrees
are R. Similar is the case with 2.
. mp = kqpe + bqv + qa + VP

(k + &-m) qp+ g+ P =0

'. From the properties of R it follows that yp and q divides each other 1i.e,
they are associates.
... p = erz , were e is a unit of R.
.. y must be homogeneous

. q i®s also homogeneous.
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Symmetric polynomials

A polynomial of Ffx1l,....... X,], F. field which is invariant under
all permutations of the indeterminates X4 is called a symmetric

polynomial of K1s XQsennnn ,X

The following are called elementary symmetric polynomials

@ =x1 + Xq +.o.... =
4;_=x1x2+x1x3+ ...... + Xy 1 Xp
f;—-x1XZX3+ X1X9Xnt <ot X 0Xn_1%p
T X Xy Xy oaeann X,
Obviously each polynomial 4*(9;’0;,...)a;) , when o5 are

replaced by their representations in x; is a symmetric polynomial in

The converse of this is also true, i.e. "every symmetric polynomial
in Kiseanes X, can be expressed uniquely in terms of elementary symmetric
polynomials ey e3,--,, ". This is the main theorem of symmetric
polynomial. We however do not give the proof here.

Now let £ (x) = x" + aj -l + a, be a polynomial of F[x7, F
field. Then in the splitting field of f (x).

£(x) = (x-) (x-oa) ..... (x -o),
)5 A3, of_ being the roots of f(x).

Multiplying out
£(x) = x® - (Mragrora) Pl + (-1) e

. Ay F Ay - A=y
44’2‘*04“5*""*‘(" —196 =+ L2

Gty - o (=D Lo -
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That is the elementary symmetric functions in the roots of a
polynomial belong to the field defining the polynomial.

Hence by the main theorem of éymmetric polynomial we prove that
"any function which is symmetric in all the roots of a polynomial belongs

to the field defining the polynomial’'.
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CHAPTER IIT

Irreducibility critéria for polynomials

In the previous chapter we gave several theorems concerning
reducibility of a given polynomial in a given domain R[x]. In this
chapter we wish to discuss it in a more detail.

The determination of irreducibility of an arbitrary polynomial
is however difficult and this is usually done by tricks and trials.

There are various irreducibility criteria applicable to different
polynomials depending upon their nature, of which the most simplest

one is due to Eisenstein. Because of its simple and useful characteristic
we wish to begin our study with this theorem.

Eisenstien's theorem: Let £(x) = agt a;x + ..... + a, " € Rfx],

where R is a domain of unique factorisation with 1. Then if there

exists a prime p such that
ajz Omod p, i =0, 1,....,n-1

an;t 0 = mod p,

2
ao;¥ o mod p°,

then f(x) is irreducible in R[x] and hence in F [x], where F is the
quotient field of R. A
Proof: If possible let f(x) = g (x) h (x), where g (x) ;:i;'(px‘r, "(")':,—,z,eyx’
such that Y2 o, A >0 , Vei=2n.

Cémparing constant terms, a = boco, but ay is divisible by the
prime p hence either b, divisible by p or o divisible by p but not both.

For in that case ajz 0, mod p2. So suppose cg # 0, mod.p. Moveover

all coefficients of g (x) can not be divisible by p. For in that case
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all coefficients of f(x) and in particular a, will be divisible by p,
contradicting the hypothesis.

Let b; be the first coefficient of g (x) not divisible by p,
then C<ci'eV<Ln.

Now O=aj; = bjey + by cq+ ....+ byecy

But b= 0, mod p, k£i ( by assumption)

. bicog 0, mod p, and since bi# 0, mod.p,

.. c§=0, mod p, i.e. ¢, divisible by p, a contradiction.
f(x) is irreducible in R [ x].
The other part is a consequence of a previous theorem.

It may be observed that the theorem is also true if a;% 0, mod p,
i=1,2,,....n. ao¢ 0, mod p, an-;-;o, mod pz'

There are cases where the theorem is not directly applicable but
is so if f(x) is replaced by f(x + a) for some a€R. In which case
f(x+a) irreducible implies, by a previous theorem, f(x) is irreducible,

So is the case with f(x) = %2 + 1, for f(x+l) = x2 4+ 2x + 2 is
irreducible over the field of rational numbers by the above cr¥iteria and
hence x2 + 1 is irreducible over this field.

An important generalisation of Eisenstien's theorem is due to
G. Dumas. We shall give here the theorem (without proof) and deductions

from it. 1In all our discussions in this connection, we shall suppose

R a’domain of unique factorisation with 1.

% L.
Let f(x) = Z;Kgﬁ “x ¢ R[x], where p is a prime element of

R and (aj, p) = 1. Let the points (i, bj) be plotted in the usual
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V

way. From this set of points a subset 2JP} o is obtained by choosing
J‘:

PO as the point (o, b,), PF = (n, b,) and Pj (j =1,...0-1) as

(k bKi) where (1€ k-« n ) and moreover kj is the greatest integer

)
such that no point (i, bj) lies below the line through Pj-l and Pj for

j’

j=1, ..... . The figure composed of these line segments pj-l Pj
is called the Newton polygon for f(x) corresponding to the given p.
As for example, if £(x) =72 4+ 72 x + 27 x2+ 4 x3 + 6 x4, the

Newton polygons corresponding to p = 2 and p = 3 are as given below.

Follwing is the detail explaination for constructing Newton
polygon.
Plott the points (i, bj), occuring as indices of x and p
respectively, in the terms aj pbi xl of f(x), on (s,t) plane as usual.
Let the set of these point be E. Let P, = (o, b,). Take P; = (ij’b%i)
¢ E such that ij is the maximum possible integer for which no point of E
lies below the line segment P,P;. Then take Py = (ik, bik)‘lz
such athat q£>ij‘and iy is the maximum possible integer for which no
point of E lies below the line segment P,P,. Continue this procéss until
we get P = (n, b,). The polygon B P1P2....lgk_1 Py is called the Newton

polygon for f£(x) relative to the prime p.
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One may choose successive P;'s in the following way:

/
Let us start with P, and take any point {{ €E such that P] =

/
(ij, b%i)’ then if bij - bO _ . theequation of the line P Py
bj I
is It - B® =F (= Ib, = Ib%; - Bij) and equation of any other line with
the slope B and passing through certain point ( sl, tl) is It-BS = Itl-le.

I

Taking I positive, the distances of these two straight lines from the

origin are F and 1 v1 - B ul

V12 4 B2 Y12 4 g

So if 1tl - BSI';.F‘ the point (gl, tl) cannot lie below the line

respectively, with proper sign.

Py Pié. So Py may be obtained by starting from P, and taking any point

(ij, bij)é E and determining B and F and seéing whether Ibj- Bi %F,
I

for i = 1,2,....,n or not. If Ib; - Bi»F for all i = 1,2,...,n take the
maximum ij for which Ib;- Bi = F and call: ° this point (ij, b%f) = Py.
However, if Ib; - Bi;‘E‘for all i = 1,....,n take one of the points of E

U
for which Ibj - Bi4 F. Consider this point as Py and find again B and F
I

and verify as above. 1In a finite number of steps we can find P Repeat

1
the same process to obtain P2 etc.

Theorem of Dumas: Let the segments of the Newton polygon for f(x)
corresponding to p be subdivided by lattice points occuring on them
and let the resulting segments connecting adjacent: points of division
be called the elements of the polygon. If £(x) = g(x) h (x), then the
Newtonpolygon for g (x) corresponding to p can be formed by jeiming

some of the elements of the polygon for f (x) without changing their
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lengths or slopes. Moreover, the Newton polygon for h(x) corresponding
to p can be formed in the same manner by precisely those elements not
used in the polygon for g(x).
Though Dumas' theorem can not be applied to determine irreducibility
of an arbitrary polynomial of R[x], however, in special cases it is helpful .
For example, Eisenstien's irreducibility criterion is a corollary
of Dimas' theorem. For, here the Newton polygon is the line segment
PQ, joining the points P = (0,1) and Q = (n,0), which containes no
other lattice point on it. Consequently the Newton polygon of g(x)

for the same p is PQ so that f(x) is irreducible.

(99 =p

FomAT) &= (>9)

Secondly it supplies us information about certain other polynomials.
For example consider the polynomial £(x) = 72 + 72x + 27 x2 + 4x3 + 6x4.
It's, Newton polygons for p = 2 and p = 3 are given in the page 58. |
go if it is factorisable the Newton's polygon for p = 2 gives that it
will have two factors each of degree 2. Whereas, that for p = 3 gives
that it will have two factors, one of degree 3 and the other of degree 1.
Consequently the polynomial is not factorisable.

So,fer an artibrary polynomial f(x) one may determine all the
Newton's polygon for different p's occuring in it and thereby determine
what the degree of possible factors maybe. If they do not agree for all

p then f(x) must be irreducible.

Thirdly, Dumas' theorem provides us another generalisation of
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Eisenstien's theorem.

e d

Theorem: Let £(x) =,Zaj_Pb1
Z2®o

xbé Rf x7J, p a prime, (aj, P) = 1,

i=0,1,....,n. Then if Ib; - Bi > Ib,, i=1,..... ,n-1 and the
relation - n(b_ - t) considered as an equation in (s,t) has no
Ao
S=
b -b
o n

integral solution for 14&£4 & n-1 then f£(x) will be irreducible, where

b, - b, by, - by
- B i.e. B is the reduced fraction , B prime
I I

n

to I, I positive, and i, b; be the indices of x and p respectively.
Proof: The proof of the theorem is quite easy. For, by the Dumas' theorem
if the Newton polygon of f(x) corresponding to some p is such that it is the
line segment joining the points P_= ( O,bo) and P1= (n, by) and that

the line segment P, Py has no other lattice point. on it then f(x) is
irreducible.

By hypothesis f(x) satisfied all these conditions. For, firstly
as the line through (0,b,) and (n, b,) i.e. the equation

_n (by - t)
by - bp

has no integral solution in the range l£ /4 < n-1, there exists no lattice
point within the line segment joining (0, by) and (n,b,) except these
end points.

Moreover this is the Newton polygon for f£(x). For slope of this

line is by - by

=B i . - Pi
— = T and by hypothesis Ibj Bl>'Ibo, i=1,...,n-1.
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so all points (i, bj)€ E, except the points (0, by), (n, by), lie
above this line.
Hence the theorem.

Eisenstien's criteria is obtained by putting bo=1, b,= 0.

For,here the equation 8 = n (bg - t) = n (l-t) i.e. t =1 -s has no
b, - b_ n
0 n

integral solution for 14€8 £ n-1,

Moreover since B = - 1 ¢ Ib; - Bi = nb; + i >Ib, = n always,
I n
ifb; 21, i=1,2,..... ,n-1.
f (x) isirreducible.
o ., b1l Dby bi n bit1 bi+2 bk
Cor. The binomic polynomial P, Py cves Py X - Pjiq Piioe-Py s Pj

different primes, is irreducible over R if for any 9-“ L"cy

the relation s = n (bj - t) , 1 +1l€ j<R
bj
or s = n.t s l&qei ,
b’v

considered as an equation in (S, t), has no integral solution in the
range 1$s ¢n-1.
From the dbove corollary we obtain the following result:
b . by n
Let f(x) = pl1 Py vennn. Py » X0 = Pyiyece.s p X =ax -b
be factorisable and S be the degree of a factor. Then from the corollary

S=n (bj-t),i+1¢ejgK

i
=]
+
’_I
UN
Na]
"IN
'_l
Hh
O
(a1
wn
[ ory
'—l.
[as
[\}]
o
|_I
[¢]
T
n



63.

o

So n J =bq = & ,say,where £ and m are relatively prime,
S ¥
m

bg__t T
so &t =1m¥‘=§ t I m%b=%>15|b9, l€qegi ;
and £ (bj-t) = mb; => 1| mbj,%t' by, i+l4 4k
So if f(x) is factorisable § exist® and is less than n, so trexists
and is greate¢ than 1.
That is h.c.f. (b1, bo,..... ,bk, n) > I is a necessary condition
for the reducibility of f(x) as given above,.
This result implies (1) p| a but p%fa, p prime, = f(x) ir%educible,
(2) p| b but pzj’b, P prime, = f(x) irreducible,
(3) n prime =2 f (x) irreducible unless
b; =nw, i=1,....,k
Dumas' theporem supplies us also some information about the

maximum possible number of factors of a polynomial of R[ x1.

x? be a polynomial with €RIx]

Theorem: Let f(x) = ag + ajx + ...... + ay

integral-eoeibiedenté and let a, and ax be the lst and last

coefficients respectively of f£(x) such that they are not divisible by

a prime p then the maximum possible number of factors e¢f £ (x) over R is
fmin (£,by) + (k-t) + min (n-k, b)) }

bnt+l
where pbé‘ a, but pbd+£{ a, and pbnl By but p n a, .

»
In case the no. of factors iszlnin. (t,bo) + min (n-k,b,) + U},
for some positive integer U’then there exist U factors whose leading
coefficient and constant terms are not divisible by p.

Proof: The Newton polygon of f£(x) corresponding to p is the following

polygon PQRT.
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(at)-p T=(n4.)

Lo 6.9 (t,0)= Q (x,9= <;’ 2

The maximum no. of lattice points on PQRT is obviously

min. (t, by) + k-t + min. (n-k, by).
So maximum no. of factors of f(x) over R cannot be greater than
this number. This is the proof of the 1st part.

If the number of factors of f(x) is

min (t,bg) + min (n-k, bp) + U,
where U positive,then surely the Newton polygon for U factors will
be parts of QR. So their constant terms and leading coefficients cannot

be divisible by p.

Cor. If t =k, in the theorem, then the maximum possible number of
factors of f(x) over R is
min, (t,b,) + min. (n-t, bp).
This result can be stated formally as:
Let £(x) = i?—ai x;. be a polynomial with dintegrel coefficientsék.

=0

Let a prime p divides every coefficient of f£(x) except a, and pb9 lag,
b
pbo+l* a, , P n

factors of f(x) over R is

an , pbn'*'l,”an then maximum possible number of

min. (t,bo) + min. ln-t, bn).

The alrove theorem can be further generalised: -

n

Theorem: Let f£(x) = a5 + ajx + ....+ a, x, aje'Ri. . ... Let pj be
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b, .
an arbitrary prime element such that pj o1 ‘ao, Pib°1+l4k 4o,

bni

P; Pni+1

| ap, Pi ,ran and ary and ay. be the lst and last coefficients.
respectively of £(x) such that they are not divisible by pj, then the
maximum possible number of factors of f(x) over R is
min.i min. (t;, boi) + ky- £ + min (n-k;, bnj) } .
In fact one needs only to calculate for those primes which
divide at least one of a, or a,. For, forother primes the number within

the 2nd bracket is n.

b . fal
Cor. For the polynomial pll b2 ?1 S pbl*|.... pbk the

maximum number of irreducible factors is
min.{ min. (n,bj)}, 1£i£k.
So if some bj = 1 then the above polynomial is irreducible.
An important class of irreducible polynomials over the field
of rational numbers are the cyeclotomic polynomials.

n _ 1 over the field of rational

Consider the polynomial f(x) = x
numbers. Then fzx) = nxt-1 # O(X), i.e. f,(x) has no root other than
zero, Hence f(x) has no multiple root.

In the splitting field of £(x), f(X) = (x-«,) (x-#4) .... (x-*),
where o, e, -- &,  are the w distinct mith roots of 1,

If ¢ is a root of xn- 1 = 0 such that it is not a root of any
polynomial x¥ - 1, vg¢n, then« is called a primitive root of x%-1.
Then |, «, 4:...) o' are all distinct and each of them is a root of

x™- 1. Moreover x”- 1 has only n roots, so they are all the roots of

x0- 1.
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The number of primitive roots of x%- 1 is denoted by ¢(n),
which is called Euler's c:':function or indicator.
We shall find the value of <p(n).

If &« is a primitive root then 1, e, .,(7; e at are all

the roots of xB- 1. Also if the order of ar‘ is n then x‘ is also a

primitive root. Let us find the order of 0{‘ for arbitrary h,.

Suppose (h,n) =y then n =Ny, b=2P, (X,;23) =1

>‘l = n=n
Y (n,h)
Now @\') = « = =( =

+*ive
Also », 1is the least_ integer satisfying this condition ,

¥4
For, let & <« >»,; and of =4
Then as ()s.,)\;)zl

S A8, + Ay B =\ for suitable ¢, and 8, -

. or Onlr,8, + 1, O,
AT L) ran g,
- ™04 468,
=1
. . . ap . &
which implies A = 1 where & PL ANV =mn since F< Xy

contradicting that o« is a primitive root.

D - is the order of o ,

@,h)
So c{‘ is a primitive root iff(n,h) =1

So number of primitive roots is equal to the number of positive
integers less than n and prime to n, including the interger 1 as one

of such integers.

Lety = ‘1>(n). and 0(.,0(,',--- ’ a(\. be the primitive roots of x2-1
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Then the polynomial X, (x) =(x-«) (x-4p..... (x- &p) is called the
eyelotomic polynomial of order n. 1Its roots are therefore the
primitive roots of x"-1 and its degree is p = ¢ (n).

Theorem: Xn (x) is irreducible over R,, the field of rational numbers.

Proof: Firstly we shall give some difinitiomns.

e ot

Let £(x) = 1_f’ (- By)

-

~
gx) =7 (%)
/a'
B "
Then we define R (£,g) = T g(p.) = 1™ 7 £(wz) = -1)™ R (g,£)

=1 =

and D(f) = (-1)BBL | r (£,£0) = -1)=BDLYpe ).

R is called the resultant of the polynomials f(x) and g(x),
while D is called the discriminant of the polynomial f£(x).

For the product polynomial £(x). g(x)

D (f.8) = + R (f.g., f'g + f.g%)

-+ TEUPAG P THPFTY)

* ‘ZT'/ I(f’cjdﬁ}’(\’/) F }Cﬂt‘) /T’ 1‘(4)-)

I+

= +D (£) D (g) R (f,8)°

Similarly D (f.g.h.) = + D (£) D (g) D (h) R (£,2)° R (g.h)% R (h,f)2

So if f(x) = x"- 1, thenf are 1, «, ... ,dn-',
and fz(x) =n Xn-l,
. (n-1)°
D (x"-1) = + n.n. “n-l n «Z(n-l) """ v
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i
I+
=]
o
X

I
1+
=]

n (n+1) (n-1)M
- { —

no .

[
1+

Now we give the proof of the theorem, which is due to I. Schur.
Let X be reducible over R ¢ and £(x) be an irreducible factor

of X Assume'v‘ =& yhere (p,n) = 1, xroot of £f(x), p prime and

a°
suchat that m is not a root of f(x).. N exists, otherwise all roots
of X, are roots of f(x) consequently f(x) = X, 1i.e. X, is irreducible.
Assume g(x) be the irreducible polynomial with leading
coefficient: 1 and with root‘q. Then as g(x) is irreducible and g(x), ¥n
have common root N, g(x) \Xn. Also we may assume leading coefficient
of f(x) be 1 and as f(x), g(x) are both irreducible (f(x), g(x)) =1
LR L) X,
which implies £(x) . g(x) ‘ x -1
x™1 = f (%) g(x) h(x).
As the leading coefficient for f(x)’g(x) and x"-1 is 1, the leading
coefficient of h (x) is also 1. As x - 1 has integral coefficients
we have by Gauss* theorem all f(x), g(x), h(x) have integral coefficients.
D P- 1) = +n" = D (f.g.h.) = +D(£). D(g). D(h). =

2
R (f,g) Rz(g,h) R2(h,f). As all the factors in the right hand side are

integers, we may write WP = an integer. R(f,g).

* Gauss theorem: If f(x) = g(x)h(x)é¢ Rol x], leading coefficients of
f(x), gx), h(x), be l1,then f(x) have integral coefficients implies.both

g(x), h(x) have integral coefficients.
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Now if g(x) = (x—'),) (x—‘l‘z) ..... (x—‘nt), then
R(f,g) =+ £ fén)..... £y
Again, f(xP) = (£(x))P, mod p
= (£(x))P + p.£1(x),
where f1 (x) has integral coefficients,
.. f ("I) = f(d’), =0 + p,fl(a’), since f&) = 0,
= p. fl(*rr), since " is also a primitive root.
As ), are roots of the same irreducible polynomial g(x),
.. f (41-‘) =p.f; ("]):' , i=l, 2...t, where "|‘="1 .
CoR(E® =1t eP 0ed) £, (ﬁ‘)} ).
o p| R BB
P l o = p\ n, contradicts that (p,n) =1,
Hence the theorem.

Abel's theorem: If p is prime xP- a is reducible iffa = bP, b ¢F,

F field, a¢F.
Proof: If a = bP, then xP-a = xP-bP = (x-b) xP™1+ bxP-2 +... .+ bp'l),
when characteristic of F ##, and = (x-b)P, when characteristic of F is
pP.

Conversely, let xP-a be reducible, then if @ is a root xP-a =0
thenf, ¢8 ,.......(.*;‘ are all the roots of xP- a = 0, where ¢ is a
primitive root of xP-1 = 0.

. bt

., xP-a = (x-&) (x-€6)..... (x- ¢ a) _

Fe) Y ) say.

x- 0% ) (x-0€%)....x- g€N
gAithe Y

then +(x)

. The constant termof cr(x) = = €,say, ¢F.

FASS
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bbb (i + ) p 5
Then & =6 € =aS since g =a, € =1,

Now (s,p) = 1, hence there exist integers m, v such thatms+yp= 1,
élns + vp _ ans. avP
= (@)™, (a")P
=(cP)". (a") P

= (@ .a")?P

bP, where b = ¢, a¥¢F.

P

Theorems of Capelli

Let £(x) = g(h(x)), where g(y), h(x) both are polynomials over
a field F of characteristic zero and both have leading coefficients
1.

Also let in the splitting field of g(y)

k k-1, ... +a, = (y-A3 )(y—,)z) ..... -po) >

g(y) =y +ay
i.e. p,,fs,’---,/;“ are all the roots of g(y).

Theorem 1: f(x) is reducible over F iff(i) either g(y) is reducible
over F, or (ii) g(y) irreducible over F and h(x)-/%- is reducible over
F (/&), i=l,2..... k.

Proof: Let f(x) be reducible then since

£(x) = g(h(x)) = (h(x) -f) (A(x) -Po).... (B(x) - i ).
either g(y) is reducible or h(x)-f3. is reducible over B(f;), izl,....
Conversely let g(y) /::ducible then obviously f(x) is reducible.
Otherwise let h(x) - f.is reducible over F(@,), then
over F(P)....h(x) - = f(/s,,x),ﬁ(n,x)....cﬁ_(y‘,x),
over F- (,3)....11(.x‘)--p,= ﬁ(pt,x?“. 4;( B,x) ..... 4:1, (f2%)s
over ¥ (p)....h®) -p = $(p,x) PP, x),...+t( [2s%), where
4:2( Ei’ x) are irreducible over F( {;_)
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K
) . . = 17 _ -
. Multiplying £(x) = T (h(x) - fi) $ %’gx)... %t(x),
where %}(x) =<f’)(r:,,x)<£(k_,x). .. 4;([}‘, x), =1,2,....t.
As the r.h.s. is symmetric in all /l.",d hence f(x)is a polynomial
>
over F.

A
Thus f(x) = T f(x) i.e. £(x) is reducible over F.
>Y

pEY
Lemma: E (x) is irreducible over F.
>
If not let ¥ (x) be an irreducible factor of f(x),then 'f(x)
is a factor of some %(x). For_ as 'f(x) is irreducible ( %(x), f(x) )
v ; ¢

=1 or \f(x) and F Ex] is a domain of unique factorisation.

Suppose ¥} (x‘)‘, +i(x) ......... (a)
But i(x) =j;l=‘ <h (/},, x) > where ﬁ (6,, x) are irreducible
over F (,51‘ ).

Hence by the same argument as above,ve have ﬁ(ﬁ.,x) \ P(x),
form somej, over F (PJ')
@) =403 @0, over ()
But ld; i? a root of an irreducible polynomial g(y).
S LR (( ERNCES
¥ (%) F, B,2a(p,5 )
Y = % @ a @
F = $ (oD (pow
But, as $(fp,x) are irreducible, (4 (fii,x), (s ) =1
S T YOI 10 WO TS FPo® - §‘(x) | p&.... (b)

from (a) and (b) f(x) = ¥ (x) an irreducible factor of f£(x).
|

Hence the lkemma,
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Theorem 2: Let f(x) m=g(h(x) ) = E(E (x) ), where
g(y) = y&+....= G-LICY-f) - (y-A) in the

splitting field of g(y), and

g(y) = yh-l- ........ , H x) = B ,ﬁ x) = K +. ..
so that degree f£(x) = m = kh and (k,h) = 1.
Thenf(x) is reducible over F iffg(y) or/and g(y) are reducible over F,.
Proof: If g(y) or/and E(y) is reducible then obviously f(x) is reducible.
Conversely let f(x) be reducible and assume g(y), g(y) are ireéducible

over F. Then by theorem 1, h(x) -y be reducible over F (), so

that h(x) - oy = 4:; (o5 %) -ﬁ( Lors X)eaeon ﬁ (f»%), and

0 = Fw P F,0 .

Hegree %ix) =m, = kn, where ", = degree ﬂ(h., x) which is
independent of 1i.

Alsom, = hﬁ) (considering the polynomial g ( h x) ).

>
‘. k,m,‘ ,h[m> and (k,h) =1
.. kh{m)_ i.e. mfm, = m=m,
.. degree f(x) = degree %’Ex), i.e. t=1 = f(x) is not reducible, a
contradiction,
Hence the theorem.
The most important application of the above theorems is the
determination of reducibility of the binomial expression xo- a,
Let f(x) = x" - a, "a ¢ F, F field of characteristic zero,nz 2.
Let m = kh, where (k,h) =1
Then £(x) = x? - agxfP - a = b - oa = (xh)k -a.
.. By the theorem 2,
x"-a is reducible over F iffeither y¥ - a or yP -a or both are

reducible over F.
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Let n = pfﬁl p?z ...... pS"S, where p, are different prime integers.

Then x™-a is reducible over F iffat least one of xplv L a,....
XB(‘” - a is reducible over F.

Now xP  -a is reducible over F, for odd p, iffxP - a reducible
over F,

A 4

For, by theorem 1, xP -a = (xP '1)p-a reducible over F iff

p

either g(y) = y -a reducible over F or g(y) is irreducible over F and

-
h(x) -/5 = xpﬁ'—/ﬁ is reducible over F (), where/) is a root of
P
g(y) i.e./) = a,
M-l
But, by the same theorem, h(x) -/) =P -/? is reducible
over F (/)) implies gy(y) = yp—/,) is reducible over F (/5) or yp-ﬂ

-2

L
is irreducible over F( /b) and xV -ﬂl is reducible over

Bpp ) <P, ,
Where/g,l is a root of gl(y), i.e./’l =/""
Now in the first case, i.e. when g(y) = yP - /5 is reducible
over F (/5) we have by Abel's theorem /}; (6)1’ where byg"F(f-') i.e.
6 = agt allb + ...t ap.")p-l,
¥ (p) say

(= (P P

As/b is a root of an irreducible polynomial g(y) = yP-a
hm e (o P
ﬁ’; (p (,3') )P’ wherep,/)”..)/,r are all the roots of g (y).
Hence multiplyingf./;_..rP = (p (/3). p(k)_ ..... r (PP) )P
The expression under the parenthesis in the right hand side is a
symmetric function in all the roots of g(y) hence belongs to the

ground field F.
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But xP-a = (x—/}) (x -[52) ....... (x -/5', )

That is yP- a is reducible ( by Abel's theorem), which contradicts

. . pP-1
our previous hypothesis. Hence x

- /6 is reducible over F (/5)
/
implies gl(y) = yp-/J is irreducible over F (/3) and xﬁm‘2 -/9
) /]

is reducible over F'(/A), where /3 =/5

Arguing/k— 2 times in this way we prove that Xp2_5 is

. b I _

reducible over F(g ), where 3= L} and % = a,

So by theorem 1, either xP- 5 reducible over F (3) or xP- §

’
is irreducible over F(;) and xP- gl is reducible over F (§ ) where
§'-

The first case contradicts that xp-‘b\' was irreducible over F ("1)
and the second case contradicts that xP- g was irreducible over F (3 ).

Hence the result.

M
To consider the reducibility of x - a over F we prove that
y ]

x2 - a is reducible over F iff(i) a = b2, or (ii) when /{171, a = —4(4,
CEF.

Proof: The statement can easily be verified wheryﬂ =1 and/ﬂ= 2.

Let us assume that the statement is true when //1, -1 and consider
»
x¢ -a.

" M-l n-} n-l
Now if a=b? then x> =a = (x2 )2 -b2 = (x2 " 4b) (x2 -b),

" "2
and if a = - 4b4 xZ -a = (x21 ')4 + 4b4

e n-2 -1 e
= &2ty x4 Yy @2l omx? 4 2b2)
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Conversely let x™ -a =(x

2

)2 - a be reducible over F. Hence,

- a is reducible over F. i.e. a = b2, for some

o=l

by theorem 1, either y
b ¢ F, or yz— a is irreducible over F and x -¥a is reducible over
F (/T). Hence by our induction assumption either (i) ¥ a = (cva +b)2,

b,c,e F i.e. V& = c2a + b2 + 2bc ¥V a.

. c2a + b2 =0, 2bc =1 which implies c = %b 2 =4%‘"2
.. a = - 4bh,
or (ii) V3 = - 4d%, de¢ FOT),
= - 4(cV B +Db)*; b,c,e F,
= - 4(c?a + b%+ 2beVE)?
= -4 (VT +B)2
= - 4 (¢%a + 8% + 2C VD)
. cza+ B~ 0, -8BC=11i.e. C =% '-%ZB OR cz=zl;.%4 g2

4

La=- 4, 2%B% = _ 4 nher.

'. The statement is true WhGQ/"= n. Hence the statement is true in
general.

Wenow give a method for determining all the factors of a
binomial expression over the field of rational numbers. The method is,
however, labourious and have very little practical {tility

Let F by any field. x3- ¢ be an irreducible polynomial over F
having & as a root. Then in F (¢ ) any element x#o is given by

K =a)+a@+a38", (a;, ayds) £ ( 0,0,0)¢F.
Then & = b+ b8 + b36”€ F (), 4s€F.

1= o’ = (a) + a8 +a38" ) (b + b8 + b3€7' ).
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Equating coefficients of powers of &

1= alb1 + a3b2c + a2b3c
0 = agby + ajbyp + agbze ..... (a)
0= a3b1 + a2b2 + a1b3

As cz,exists, (a) is solvable for by,by,bg and

1 agc asc aj 1 a,c ap a3c 1
by = 10 a3 asc bo= lag 0 ajc by= a2 aj 0
0 a2 ap as 0 al as as 0
— ——= ?
D D D
al asc asc
Where D =
az al a3c
aj as a; .

So that D# 0.
As for any triplets of elemts, aj,a, ,a 5 not all zero we can get
A and a(-',' D O for any such aj,aj,aj3¢F.
If however x3 - ¢ is reducible over F then there exists at least
one set of three elements ( aj,ap, a3) % (0,0,0) such that

= 2
0 =a+ a20-+ a,

So that (a) is not solvable fortﬁz i.e. D=0

Generalising the above result we get, the necessary and sufficient

n

condition in order that x"“-c, c €F, be irreducible over F is
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a1 anC an-lC a_g
_ a, a a, C a3C
D, =
?éo
4 ah-1 ah-2 al
for any set of n elements a1, 8p-.ennnnn ,a, € F and not all zero.

So if C is any rational number we get a similar determinent
over the field of rational numbers, the vanishing of which for a set
of rational nos. (al,az, ..... ,an);l (0,0,....,0) is the necessary and
sufficient condition for the factorisability of the polynomial x - c

over rational field.
Nl

2
Now if #be any root of x - C=0 then 4, 307f5:‘">f ¢

n
are all the roots of x - C= 0, where < is a primitive =Ath root

of unity.
-t
.x’n-C=(x-€)(x-§€) ....... (x—;ﬂ)

:. ck(x)- 4:,_ (X)eveuennn . +K(x) say.
then -zb (x) = (x—j? ) (x—jv'y ) PR (x- glfﬂ ), l4£s<n-1
The coefficient of X , 0Dére® in <? (x) 1is, say,

r g J
L, = 195K
- . Vi vy %
where & = sum of products of combinations of g’ g , ...g‘s

taken s-r at a time.

Then | ar| = | 95".\.]0(]

é l 9s.v" ('3‘,"‘” -{’.‘ oo +I g”“[ ) the number of

terms within the parenthesis being ( S-v ).
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i
[y

- V.
- )T L G 1€
_ S-r $ _ ~
T LG L g ()

é\ClS—I—,_-E(n

n or \CI7TE (n 1) acc. as n is even or odd,
2

7

(H..... So when |C| 2 1, the coeff. of 0 £ regn-1 in+(x)
9

-

is< \C‘( g ) if n is even

andz|C) . (no1) if n is odd.
2 '

NBZ o

) .

1
(2)....and when \C | £ 1, the coeff. of x", 0g re n-1, is JC] M | (

1 n
if n is even and is¢ |C| 1| (n-1) if n is odd.

Now let C , (p,q) = 1, both p,q positive, otherwise we write

xn-c as x" + €.

‘n ‘

Then.x ~C T(x) <rz(x) ..... .ﬁ,“(x)
n —

qx"-p = 4?“(}{) . ?;sx) ....... qi(\x)

such that 4> (x) have integral coefficients.

&7

So when |C| 2 1, from (1),coeff. of xr7 0 &r¢n-1, in qa‘(x)- is e q.\CL(g )y if
p1|

n
n is even and is / q,|C\.( 3_1 ) if n is odd i.e.ep. (_rzl) if n is even

2
and 4 p . (nI.}]_ ) if n is odd.
R

1 n
and when Je\g 1, from (2), coeff of xr, Ogren-1, 1n1>(;qlslq |C\ L ( %) if
l
n is even and« q.|C| (n 1) if n is odd,
. n , . n . 3
ie.gq . ( ), ifnisevenand 2 q ., (p-1 ) if n is odd.

7z 2
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Thus the coefficientsof CF (x), which are integral, are numerically

N
less than max (p,q).( n ), if n is even and numerically less than
2
n . .
max. (p,q9).( n-1 ), if n is odd.
2
But (a1, 8p,..... ,ap) # (0,0,...,0) be the coefficients of ?(x) iff
i
a; ac a, _1C . asc
a a a,c a,c
1 n .
D, = 2 3 =0
1
a, & .1 3.9 aj

So we can choose any set of n integers from within —f to f (or from

n
within - m to m), (where L = nax (P,9).(n ), if n even and
2

m= max(p,q)( -1 ), if n odd) and put it in D

Nss

1
If D= 0 then they are the coefficients af some t‘(x) such
that a; is the coefficient of xi-l. If D1 # O then they are not the
coefficients of any factor of q x" - p.
We repeat this process with all possible choice of n integers
taken from within - irto t?(or from within - m to m). If there exists
no such n integers for which D= 0 then q x"- p is irreducible.

n

Consequently x " -p/q i.e. x™- C irreducible,

However if'ﬁ{(x) is known then <t(x) will be known from the relation
] .}

s
o P&) = > (x) , s being the degree of (%))
L4 <t 3l d
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Schoenemann polynomials: Let f(x) =<”(x)n + p.h (x), where <'=(x) is
irreducible mod p, p a prime element, n»l and ¥ = degree <r(x) > L.
and degree h (x) ¢ ny, is a polynomial of Rrx] , where R is a domain
of unique factorisation.

Schoenemann theorem: f£(x) is reducible mod p2 iff h x)z 0 (%)

(mod p and +(x) ), ie. iff all coefficients of h (x) are divisible
by p and h (x) is divisible by+(x), i.,e, iff h (x) = p. ¢’=(X) h1 x).
Proof: The condition is necessary. For let f(x) is reducible, mod pz,
Then

W ... .. £ = PO g, () +p%8 (1), ¢(x) and 5 (x) being

not constants.

@ oo L @R ) = @ )+l @

Now éP(x) is irreducible, mod p,
Ly @ = $¢@"Lemed p,
fe. £ = ¢+ pg1(),
and  f, )= G @, mod p,
e @ = P2+ b g
Hence from (1), £()z $(O° +p ($" 5,60 +¢ ()" g (x)), mod p7,
and from (2), h(x) z )™ . g,(x) + $G) L g1 (x), mod pZ.
Now, n;»0, n,»0, for if nj= 0 then ny= n
and hence h (x) 3+(x)“ g1(x) + g,(x), such that degree h(x) z nw,
contradicts our assumption.
h(x) 50 (PG Tt + 40" g (), mod p
= 0 (x), (mod Hx), p) |
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The condition is also sufficient.
for, ph (x) = p? $(x) h; (),
implies £(x) = P(x)" + p’h (x) hy(x)
= +(x5h,- mod p2

As n » 1, f(x) is factorised, mod p2.

Eisenstien's theorem is a corollary of Schoeneman's theorem. For,

putting ﬁk(x) = ax, where a;!O, mod p and f(x) = a" x" + ph (x), where

n-1 + 2

h(x) = blx b2 x7"2 +......+bn (say), one gets f(x) reducible mod p

iff h(x)z 0 (x), (mod p, ax). Putting bné‘ 0, mod p, one get f(x)
irreducible mod pz. Hence by a previous theorem f(x) is also
irreducible over R. But those are also the conditions of Eisenstien's
theorem. Hence the statement.

We have given some inportant theorems concerning reducibility
of some particular polynomials over some specific domairs or fields. But
none of them is applicéble to an arbitrary polynomial.

We now give here a method, due to Kronecker, by which one
‘can determine the irreducible factors, of an arbitrary polynomial over
a domain of unique factorisation R.

As any polynomial of R [x7) factorisable over the quotient
field of R is also factorisable over R; so irreducibility of £(x)
over R implies also its irreducibility over the quotient field of R.

We shall suppose R has only a finite number of units.
Firstly, in R[x], £(x) = g(x) b (x) implies £(a) = g(a) h(a)

for everyae¢ R. For if £(x) =}'Ci xt, g(x) =‘2ijj, h (x) =2kak,

then CfﬁZ?'pj Vi -
FtK=
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¥ jona’

by the commulative and distributive property of R.

Coos@ b @ =@ ) @ud) sz @ umo oM -zl 1),
J 2

Now let the degree of f(x) = 2n or 2n+l. Then the degree
of at least one factor say g(x) is £ n. Let g(x) = U tUix+... .40, x™
Ulsevenn ,Up € R, which we wish to determine.
Take n+l distinct elements aj, aj1,...... »a8n € R.
Then f(aj) = g(a;) h(ai), i=0, 1,....,n.
If f(aj) = 0, then x - a; is a factor of f(x). Taking x-aj = g(x)

]

we can try to find factors of h(x) applying the method as we shall soon

find for £(x). So let f(aji) ;/ 0, 1 =0, 1,....,n.
Now g(aj) is a factor of f(a;). As the factorisation is
unique in R, f(a;) has only a finite number of factors i.e.

f(aj) = 841 8i2+++-- Bik» SaY, and g(ai) is one of these factors.

So there exists only a finite number of possibilities.

Taking one possible value, g(ai) =85 = gi(say) i=0,1,...n;
one gets n
Uo + Ulao + U2ap +....... + Un a, = g,
2 n
UO + U].a]. + U2a]_ s + U al = gl
2 n _
UO + Ula, + Ujay +....... + U a, = g,
This system of equations for U, Upsernns U, is uniquely

solvable, for, the rank of coefficient metrix is n+l.

Indeed the determinant

2 n
1 ao aO e ao
- 2
< 1 a;  a;” .. aln = T (ay -ay)
. . i> Kk,
2 n
1 an 8, ... ay 14 i4 n

does not vanish as ai}( ay .
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[ The value of this determinant can be found by multiplying
each column by a, and subtracting it from the next and then calculating

it by the recurrence formula so obtained.]

Thus U; = :f; where 4, is the determinant obtained from
&4 by replacing i + 1 th columm of & by (U )
, o
( Uy ), i=0,1,..... n.
(i)
(Un )

Thus g(x) is uniquely determined.

By actual division find whether g(x) is a factor of f(x),
1f £(x) so found is not a factor try the next possibility g(a;) ==g;i .
As there exists only a finite number of 8ik's and finite number of
units, the number of all such possibilities is finite. So we get
a factor in a finite number of steps if f(x) is reducible. Otherwise
f(x) is irreducible.One can now repeat this method to a factor of
f(x) thus obtained and find all the irreducible factors of f(x).

The labour may be minimused by neglecting those sets of
choice Bo» 81s+-++58p for which either U; = fﬁ: is not an element.
of R, at least for one i (i.e. if<n. is not divisible by« for some i)
i=0,....,n; or Co is not divisible by U, or C,, (or C2n+1) is not
divisible by U, thus determined.

In an arbitrary integral domain the difficulty of the
above theorem however 1lies in the fact that we have not been able
to give a procedure to find all the factors of the elemenﬂsdH'of R.
If R is the domain of common integers this however is not difficult,

As the prime factors of an integer a are all less than aone can, in

a finite number of trial and error method, find all the factors of a.
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For this domain however, one can find possible factors
of f(x) in Rp[x] by transforming f(x) to residue‘claSS mod p,
p prime integer and thus one can obtain the possible degrees of
the factors of f(x) and the possible coefficients of these factors.
Thus if Ui§{ d mod p, where d is the coefficient of xi of any factor
of degree m of f(x) tﬁen the combination U, Upsee...,0, - may be

neglected.
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CHAPTER IV

Irreducibility of polynomials over a finite integral domain or field.

As every finite integral domain is a field there is only
one case to consider: the case of irreducibility of polynomials
over a finite field.

It may be convenient to discuss briefly the nature of a
finite field.

A field r'which contains only a finite number of elements
is called a finite (Galois) field.

As the prime field (i.e. the smallest sub field) of [T is
a finite field, the characteristic of |~ must be a prime integer p.
In fact the prime field Ep of characteristic p are examples of Galois
fields. ["is a finite extensiod of Fp. Hence every element of I
can be expressed as
L €,

b € Fp

o=, & + byt .. bk,
As b‘: can take only p values, Pcan have pn values. Then J? contains
only p” elements where n =Ir: []"'] . As T7 is a field the non-zero
elements of J7 form a multiplicative group A with pt-1 elements.
Hence an elementp must have an (multiplicative) order y which is a
factor of p -1. Thus‘3 is a root of xpn-l—l =0, xpn-l- 1 being a
polynomial of Ip[x‘],

On the other hand xp -1 = 0 has only pn—l roots.
n.
11

Therefore the group A consists of the roots of xP 0 only.

n
Thus the elements of r‘ are roots of x° - x =0
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Conversely it is possible to construct a Galois field with p@»

elements, for every positive integer n and every prime p.

o

For, take ~F_ and considering x* -x as a polynomial

P

M
over Fp construct its splitting fieldf". In P the roots of x¥ -x =0

form a subfield. For »

F\—
Few pFp = ap)hs 0" “i’”

()" - ‘% ,

As the splitting field |7 is the smallest field containing these
roots, [’ Contains only these roots. As j3 is uniquely determined

(except for ismorphism) by p and n, it is usual to denote it by Fp-\\.

Theorem: FP“ subfield of Fpﬁ@ nlm .
,

Proof: Let Fp‘?fc Fp,m_then obviously n€m the elements of Fp"f

p™
are roots of ¥ -x = 0.
™M

b
Now if Pé Fp‘?" th(—'mP= P, alsope Fp?‘_‘ Ppgp

So if m = qn +y (0&£ Y« n), then
N TCL DR L - TP p
P=p= = p EoLe TOr
For any/g,(. Fp,..,/b —/)
n.

PR -1
Take /3 a primitive root of xP -1 = 0, then p? is the smallest
N

prime pwwwer such that ,3 =/-" . .r=0.
Conversely if m= gqn then for any/g(. F . p’b =p .

Popoptropes

Pl F e
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Theorem: Every finite extension of a Galois field has a primitive
element and is a normal extension.

For, a finite extension of Fam is a Fﬁ“,which contains
N i

P
n
the primitive roots of xP -1-1=0 considered as a polynomial over

Fp”v Hence

of being a primitive root.

n
As xP-1-1 is split up in Fﬁ?ﬂ Fﬁh-is a normal extension,

Consider now the polynomial f£(x) = xm-l oveer. Since
f/(x) = mxm_l, if m is not divisible by the characteristic p of Fp
then ff(x) -#é() i.e. f’(x) has no root other than zero. Hence f(x)
is spearable i.e. f(x) has no multiple root in any field extension.
If m is divisible-by p, put f(x) = xM-1 = thmZ-l, where
h.c.f. (m],p) = 1, then £(x) = (xm’-l)pt. So f(x) has o/
distincts roots, each being of multiplicity pf and each root being
a root of xm?;l = 0. So in this case also the roots of x™M-1 are
obtainable from those of a similar equation. Hence in our future
discussions we shall suppose that the degree m of £(x) is not divisible
by the characteristic p.

Let ’(\ ,“z, ce .y #p are all the primitive roots of -1 =0

. dy defi h i = (- -d) . .. (e~
over Fp We have already defined that the polynomial X =(x-e) (xdi (x 4),

is called the cyclotomic polynomial of order m. Its degree is p = m).
g | ¢
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Evidently Xm‘ x"-1

Now we have d ‘ m = xd-ll xM-1 =2 X4 \ x"-1 .

So xM-1 = Xl’Xdl Xdz ....... Xm g (x), where di are all the factors of m.
. . deg. (x™-1) =m = 4:(1) ++(dl) +toiinn. + <P(m) + deg \k(x)

But m = T f(d)

d'qm
deg ‘-’f x) =0

L1l =1 Xd

dlm

n n
CxP ek = x (xp'l-l) =x TN X

d!pr-lld

So if m‘i p?-1, X, splits linearly in Fpn[”].

We shall now determinethe irreducible polynomials of Fp?‘[ x]‘
Let g(x) be an irreducible polynomial of Fpn[x] of degree m. If &
be a root of g(x) then Fpn @#)is a finite extension of Fpn and

Fpn (0() = F

p
But Fp,m”is a normal field. So it contains all the roots
M
of xP © "l.1 =0, As g(x) is an arbitrary irreducible polynomial

it follows that all irreducible polynomials of degree m over Fp?, are
factors of xpnm'l—- 1 =0,

nm
But xP -la 1l = ‘W'nmX
dlp -1

d
So as g(x) is irreducible it must be a factor of certain
cyclotomic polynomials Xq, ql ptMm_1 , Moreover as for every factor

K of m there exists a subfield F ;; of Fpnm (i.e. Fpn ¢ Fpnk CFpnm ),
p

q should not be a factor of pnk-l, ks m and k| m,
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For, in that case Xq is split up linearly in F pk.

q is to be called the exponent of g (x).
As Xq is normal (since each root of Xq is a primitive root of xq-l=0),

q
all factors of Xq must be of the same degree m. Hence if Nmpn be

the number of irreducible polynomials of degree m and exponent ¢

over Fpn then

q
m.Nmpn =

Thus if q \ p™™o1 but»fpnk-l, 0<kem, k|m then X is

<f(q), where <b(q) is the Euler's function.

reducible or irreducible over Fpn according as <p(q) » m or+(q) = m.
1f %P(q) = m.t then Xq has t irreducible factors over Fpn each of
degree m. Fpnm may be obtained by extending Fpn by a root of anyone
of these factors.

Thus we get the theorem:
Any irreducible polynomial of degree m over Fpn is a factor of Xq
such that q | PP, but)fpnk-l, 0<kem, kjm.

phm
We can use the relation x - x=§“’ X and the
dlpnm-l 4

above theorem to find out all the irreducible polynomials of degree m.
Example To find all the irreducible polynomials of degree § over
Ry (residue classes modulo2). All the irreducible polynomials of

degree 6 over Ry are factors of

26 63

x7 -x = x (x -1)
= xX;(®) X3(x) X7(x) Xg(x) Xy %) X63(x)
= x(x-1) (x2 + x +1) (x6 + x5+ ..... +1) (x6+x3+1)(x12—...+1)
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Of all the factors of degree Z¥§ only Xy(x) is factorised into
factors of degree< . This is because 7isafactor of 23>1 where
346 and 3) 6. Where as it can be verified that over R, X‘](X) is
irreducible, X91(x) is reduciéd to two factors each of degree 6

and X63(x) is reduced to six factors each of degree 6,

Number of irreducible factors of degree m over F "
p*

nk
We have for every factor K of m, xP -x is a factor of

N
xP- ”‘:x. Moreover all irreducible polynomials of degree K over F -

P
pnk . .
are factors of x -x, considered as a polynomial over F__ .
p
So for every factor k of m all irreducible polynomials of degree k
over Fp”‘ are factors of xP™™-x. Again if k*m there exists no
irreducible polynomial of degree K over F_, which is a factor of

pr™ pi

X = xX. For in that case Fp‘ﬁ,‘:‘. would be subfield of F_‘M”and

AT nm P
xP* "wx would be a factor of xP  «x which implies that k ' m
contradicting that klr m.
So if hp"\- (d) be the number of irreducible factors of
MM $= 4.,
degree d over Fp"?f then p d\md hp,_" (d)

But if g(m) and £(d) are two arithmetical functions then

gm) = T £(d) <S> fm) = T AW) g (F), where 4(d)
djm dfm
is the Mobius/ﬂ function i.e.

(D) = ((-DY, if &K, 00,5 o0p all = 1

P,

(
( 0, if at least one of dAy>1
(
(1, if oL =1
where d = p‘{‘. p‘z(" .......... 13’_"' p; primes.
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“n
a~;r
So by this formula =js. lﬁufﬂ)’dﬁ/ﬂ(d)-f where~from hpn(m)
can be calculated,

n n mn
Thus of the total number of (ﬁn-l)(pn.p T )=p(m+1)n-p

m factors
polynomials of degree m, over Fpn only hpn (m) polynomials are

irreducible.

Reducibility of Xq over Fpn

The degree of Xq isg(q), hence,by the previous theorem,

all irreducible polynomials of degreef(q) over Fpn are factors of

n.pCY)
=P + x|

= X
dip~ oty d
One can simplify the right hand side and verify whether

X is reducible or not over F a-

4 P

The above process }s however labourious. On the other
hand we observe that if p*’q,giﬁ;re always exists a ieast positive
integer k such that (pn)kggl (mod q). 1If q is prime the relation
is obvious,since the classes of residues mod q form a field. 1If q
is not prime then also the elements Pj such that h.c.f. (pj,q)=1, form

a multiplicative group in the ring of classes of residues mod q. So

from the relation

. ,
WO = (),
kp™
the number of irreducible factors of Xq over Fpn is ft(g) , where

k
k is the least positive integer such that (pn)k.=.-: 1 (mod q). Each

of the factors of Xq is of degree k.

If k = 1 then Xq splits up linearly over F n
p
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Summary: There exists only a finite number of irreducible polynomials
MW

of degree m over Fﬁn- They are factors of xP' wx and also factors

of X such that q |p™™-1, but q,{’ p™-1, 0<kem, k|m. Al

other polynomials of degree m over F m is reducible.

P
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