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Abstract

Spin-lattice relaxation times of X~cut quartsz, irradiated by
1 Mev electrons, were measured by means of the saturation technique,
Measurements were made in the temperature range from 1.6°K to 4.2°K
for four different concentrations, and the values of Tl were found to
obey a T, « T 07 12w below 3°K, and a Tye¢ 73 Law above 3°K.

Measurements of the Tl dependenceA on concentration were also
carried out., These exper:i.méntal results were fitted to an empirical

formula by means of the methed of least squares,. The empirical
formula is

T, (sec.) = 0,198% 0,164 x 1o%e_ - 0,119 x 10% ¢ + 0,262 x 1057

0,246 x 10? cl; + 0,848 x 10t cg
. a9
where c_ is in unit of 4 x 10 spins/c.c.
At the highest concentration the relaxation time was 10 ms at

4.2°K,



I. Imntroduction

Langevint's classical theory of paramagnetism postulates magnetic
substances as assemblies of isolated magnetic dipoles, which, in the
absence of magnetic field are distributed in random directions, and show
no magnetic moment. No consideration is given to the re-distribution of
the isolated dipoles during the period immediately after an external
magnetic field is applied. After the application of such a field, a
definite time Interval, however =mall, is required for these magnetic
dipoles to establish a state of equilibrium; and the length of this
interval depends on the magnetic forces tending to orient the dipoles in
the direction of the applied magnetic field,on the random forces of thermal
agitation, and on the constraints arising from the interaction of the dipoles
with their surroundings and with each other. According to whether the
applied field is weak or strong as compared with the internal field of the
magnetic ions, two kinds of characteristic relaxation time may be defined.
In the former case, the relaxation effects depend only on spin-spin inter-

action and the relaxation time is of the order of 10710

second.

In a small magnetic field, the states of electron spins are
distributed in accordance with Boltzmann's statistics. If the sample is
suddenly put into a large magnetic field, the spins will seek to obtain
a new thermal equilibrium state, characterized by a small excess of spins
in the lower energy states, and, for this to occur, spins must make
transitions to the lower energy states by one means or another. Inter-

actions of spins with the crystal lattice can affect these transitionms,
the characteristic time required for the exceas energy to be given to the



lattice being called the spin-lattice relaxation time Tl’

The first theoretical paper about spin-lattice relaxation times
in solids was given by Waller (1932), who considered the modulation of
the internal dipolar field by lattice vibrations in detail, and found
the spin-lattice relaxation time Tl to be dependent on temperature.
However, the value for the relaxation time obtained by Waller is much
greater than the true value, since he neglected interaction between the
individual spins and the lattice vibrations. Waller also pointed out that
two types of processes must be considered, which are the direct absorption
or emission of a quantum of lattice vibration by the spin system, and the
inelastic scattering of the lattice vibrations by the absorption of one
quantum and the emission of the other of different energy. The first type
of process is the so-called direct process and the second which is
especially important at high temperature, and which can be compared with
the Raman process in optics, is éalled the Raman or indirect process.

In their treatment of magnetic cooling, Heitler and Teller (1936)
pointed out that the magnetic emergy of the spin must be transferred to
the lattice vibrations. Since the spin energy levels are influenced by
the static effects of the electric field of the crystalline lattice, the
variations of the electric field due to thermal vibration provide a -
perturbation capable of inducing transitions. Heitler and Teller were
thus able to derive a formula for Tl dependent on temperature. Using
the same modulating crystalline electric field through lattice vibrations,
Fiez obtained an expression for the Raman process. The calculations of
these workers, however, showed that the crystalline electric field modulation
mechanism was inadequate to account for the observed relaxation time.,

Kronig (1939) suggested that the relaxation time, T,» influenced



by the modulation of the crystalline electric field due to lattice
vibration; might arise from the spin-orbital coupling. When the lattice
vibrates, the orbital motion in the magnetic ion undergoes periodic
changes due to the variations in the electric field of the crystal, and
these changes react on the spin through spin-orbital coupling, causing
them to alter their orientation with respect to the applied D. C. magnstic
field. Kronig obtained an order of magnitude expression for ions of S = -]2-'
which agreed fairly well with experimental results. |

One year later, Van Vleck (1940), using the spin-orbital coupling
mechanism, which he worked out independently, found that, under precise
consideration, Kronig's results were not entirely satisfactory. Van Vleck
worked explicitly on T:i.3 + and Cr3+ ions in alums with the consideration
of the vibrations of the surrounding complex of six water molecules, but
his values for the spin-lattice relaxation time were also longer than the
observed values in the liquid helium temperature range.

More recently, Mattuck and Strandberg (1960), modified Van Vleck's
method of calculation, using a more general method, and obtained the same
result. They pointed out that Van Vleck chose the wrong initial and final
state of transition and also grouped the perturbation Hamiltonian incorrectly.
Even if equivalent results had been obtained by these different authors,
their results differed in higher order perturbations. Orbach (1961)
proposed a different mechaniam for the rare-earth growp ions. In most
rare-earth salts, the crystalline electric field splittings of the ground
multiplet are small compared with the available phonon energies, so that
direct phonon-induced transitions can take place between the different

states, This can be furthermore explained as follows; the ground states



of a given rare-earth salt are denoteﬁ by 1b) and lad, where lb) is

the upper ground state. In addition, 1lc) is an excited state in which
the energy splitting with the ground states is less than the maximum
energy of the phonons. An ion in state 1lb) a.bsorbin,g. a phonon, will
transform to state lc), then in a second step, the ion will emit a phonon
of different energy from the previously absorbed phonon, making a
transition back to state lad.

It has been pointed out that Kronig and Van Vleck, using the modulation
of a crystalline electric field, instead of a magnetic field, due to
thermal lattice vibration as perturbation, found order-of-magnitude values,
However, in F-centre crystals, the ﬁodulation of the internal magnetic
dipolar field is also important in first order perturbation as well. This
occurs because the F-centre electrons have a relatively large hyperfine
coupling to the nuclei, which surround the hole. Therefore, the
transitions between the allowed Zeeman splittings should include the
nuclear spin quantum number ny and the electron spin quantum number Blge
Spin-lattice relaxation times are usually associated with those transitions
which satisfy the selection rules 4m; = 0, amg = ¥ 1.

The reasons for using smoky quartz for spin-lattice relaxation time
measurements here are based on the following:

l. Since different quartz crystals have various
concentrations of aluminum impurity, a given quartz
crystal can provide any desired number of colour
centres up to a limit,

2. The electron-spin-resonance absorption spectra of
the smoky quartz have been extensively investigated.



3. Measurements on spin-lattice relaxation time have
already been made at temperatures,.2°K and 1.6°K for
several concentrations.

4. Measurements, other than spin-lattice relaxation,
such as spin-phonon interaction, dielectric loss etc.,
hagebeen extensively carried out., Models, which explain -
the experimental results satisfactorily, were proposed
by O'Brien (1955) and Taylor (1963). There are still
conflicts existing about the relaxation mechaniasm, but
further experimental results may give information with
which an adequate mechanism may be constructed.

The spin-lattice relaxation time measured by Carr and Strandberg (1962)
was about 10 times longer than that measured by Taylor (1963). This
discrepancy cannot be attributed to experimental errors. Since cross-
relaxation may play an important role in smoky quartz, the spin~lattice
relaxation time was measured here at varying concentrations., Ta.yior
proposed that the spin-lattice relaxation follows neither the usual direct
process at very low temperature nor the Raman process at higher temperature.
But Shamferov and Smirnova (1963) reported that they had found the
existence of both the direct and the Raman processes when they used
neutron-irradiated quartz. Even Taylor's own experiment showed the like-
lihood of the two processes being present. In order to clarify this,
experiments on the temperature dependence of spin-lattice relaxation time
were carried out in the range fram 4.2°K to 1.6°K. All experimental

procedures and results will be presented in chapters V and VI,



II. Quartz Crystallography and Smoky Quarts

A, Quartz Crystallography

Quartz, also called silicon dioxide, is one of the commonest
minerals to be met with in a great variety of forms, of which a-quartz,
crystallized below 573°C is the most common. a~quartz has neither plane
nor centre symmetry, but three two-fold axes perpendicular to the
principal triad axis. Hence, in crystallography, it belongs to the
space group D‘B’ and Dg (see figure 1). The majority of quartz crystals
are bound by faces of a hexagenal prism and a hexagonal bipyramid as
~shown in figure 2a, although the prism is sometimes absent. The z-axis
of quartz is in the direction of the principal triad axis, whereas the
x-axis and y-axis are in the plane, in which one of the two-fold axes is
usually referred to as y-axis, perpendicular to the z-axis (figure 2b).

The unit cell of quartz is in the form of a right prism of height
¢, and with a 60° rhomboidal base of sides a and b, There are three S:i.o2
molecules in one unit cell, in which one of those silicon atoms is on
the two-fold axis located at a distance ¢/3 above the base, surrcunded by
four oxygen atoms to form an irregular tetrahedrom. The distances between
two oxygen atoms are 2.62 A, 2.64 A, 2.60 A, and 2,67 4, and those between
an oxygen atom and a silicon atom are 1.61 Z, 1.62 K, 1.60 K, 1.62 K.

The angle made by oxygen atoms to the silicon atom is L44° (Wei, 1935).

B. The Colour Centres
Natural «-quartz usually contains impurities such as aluminum,
sodium etc. According to O'Brien (1955) the smoky quartz Spectrum



described by Griffiths (1954) may be attributed to the aluminum
impurity. In silicon dioxide, each silicon atom of valence four, forms
four co-valent bonds with the oxygen atoms. Thus, there are twelve co-
valent bonds in one unit cell, all of the same kind, although the
surroundings of the oxygen atoms are different. The aluminum atom,
having merely three valence electrons, can only form plane or pyramidal
bonds. However, by accepting an extra valance electron, the aluminum
atom can also form a tetrahedral bond. Thus, by accepting an extra
electron from the 2p shell of the oxygen atom, the aluminum atom can
replace the silicon atom in quartz. In order to maintain electrical
neutrality, each Al  ion must be accompanied by a positive ion such as
. Na+ or Li+. After irradiation, the positive ion captures an electron to
became neutral, and the tetrahedrons formed by Al-O bonds are completed.
The missing orbital electrons from the oxygen atoms will act as
paramagnetic centres.

The spectrum of smoky quartz was fitted by O!Brien to the spin

Hamiltonian

H=pRyS+AT S+ ArTyS, + Ay Tysy+ prL = FLiz+0]- 2P, AT

where s =1/2 I =5/2 (I1-1)
81 = 2.06 g, = 2,00
= -h' -1 = = -l" -1
Az, 4.8 x 10 " em Ax‘ Ay, 5.5 x10 " em

P =-0.4x 1074 e
The g-tensor has axial symmetry, with the axis of each centre approximately

parallel to the line joining a pair of silicon atoms. The hyperfine



structure is attributed to the aluwminmm (I = 5/2), and its axes x!,
¥!, z! are not the same as the axes of g-tensor,

An aluminum atom can replace any of the three silicon atoms in
one unit cell, so that there may be twelve Al-O bonds in total, and
" theoretically, each oxygen atom can supply an orbital electron to form
colour centres, In actual fact, unexplicably, this dqes not happen, and
only six possible sites for the formation of colour cemtres can be
identified from observations. |

From the results of cross-relaxation and dielectric loss
measuraneﬁts, Taylor proposed that under the influence of thermal
agitation of lattice vibrations, the hole at a given aluminum impurity
can move back and forth between the two oxygen orbitals, and it is also
possible for the hole to jump from one oxygen atom to another (Taylor and
Farnell, 1964). The latter mechanism leads to the term of so-called
site-to-site relaxation.

The smoky quartz electron-spin-resonance absorption spectra are
very complicated, There are six lines in a group, which may be contributed
i‘rom the site of the aluminum impurity (S = 1/2, I = 5/2). In addition,
many smaller lines have been observed, these perhaps being due to the forbidden
transitions in which A m > 1 (Griffiths et al, 1955).
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III. Theory of Spin-lattice Relaxation Time

A paramagnetic centre in a crystal lattice will be affected by
an electric field which is formed by the neighbouring ions, and when
the Z@.attice vibrates, the interionic distances are modulated at the
frequency of lattice vibrations. The crystalline electric field is
modulated and gives a perturbation to the original Hamiltonian to produce
spin transitions by means of spin-orbital interaction. On the other hand,
an osclllating magnetic tield component arising from the motion of the
magnetic dipoles, will also give a perturbation effect.

For a paramagnétic centre, the Hamiltonian of the electron-lattice

system may be written in the form

H=HetH: (III - 1)

where | o is the Eamiltonia_n containing the static interaction of an
electron with the external magnetic tield and the liattice, "Ri is the
Hamiltonian which contains the interaction between the centres and the
lattice vibrations. The observed electiron-spin-resenance absorption
spectra corresponds to transitions among the lowest lying eigemstates of
H.

e

')le is given by Feldman et al (1964) as

He= P, (P +pA(L+23)+ATS +2 45T

am
BLERECH_ ¢
+iZTe’ [3 7 Iy SJ

C, AV | > -
+Z-,é[3(s 5% 53] (IL-2)
¢ ¥ 4
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where P(¥) is the electrostatic potential produced by the lattice
ions surrounding the paramagnetic centre; A is the spin-orbital coupling
coefficient; Ak is the isotropic hyperfine coupling coefficient for the

k-th nucleus; B, is the anisotropic hyperfine coupling coefficient for

k
the k-th nucleus and C, is the coupling coefficient for the dipolar
interaction of the centre with the l-th identical neighbouring centres.
According to Orbach (1961), the Hamiltonian ’Hi, contributed from
the interaction between the paramagnetic centre and lattice vibrations,
can be expanded into a power series in terms of the strain produced at

the paramagnetic centre by the phonons. Thus we have,

H=2 Vum+ 2 Vo € Ent o (II1-3)

where ém is the strain produced by a phonon in the m-th mode, and
2
VoS e (x4

Since ém is time-dependent, ’)li is likewise, a.nd exchange of
energy will occur between the spin system and the lattice. The time
required for energy to be transferred from the spin system to the lattice
to reach thermal equilibrium is the spin-lattice relaxation time Tl’

Two kinds of mechanism, which depend on the crystalline field
interaction and magnetic dipole-dipole interactions, may occur simﬁlta—
neously or one at a time., That transitions are contributed by the
modulation of crystalline electric fields through the spin-orbital coupling,
has been widely accepted since Kronig introduced this idea in 1939.
However, the mechanism arising from dipole-dipole interaction has not been
similarly regarded, even though it was introduced seven years earlier.



In order to calculate the spin-lattice relaxation time, it is
necessary to find the transition probability per unit time for an
electron spin flipping from a state 1b> to a state la> . Since the
Raman, or indirect, process in which a spin flip is accompanied by the
inelastic scattering of a phonon, results from non-linear term :l'.n'Hi
taken to the first order, and from the linear term in"ﬂi taken to the
second order in the pertur‘ba.tion theory; we will consider only the
order up fo two in the following. |

The probability per unit time for an electron spin making the
transition between states 1lb> and lad by the time-dependent Hamiltonian
H, is (Heitler, 1944),

Wha™ —5—F&I Hil6>]pre) (III-5)

where f( €) is the density of the final states'.

The direct process; in which an electron spin flip is accémpatﬁ.ed
by tl‘ie absorption or emissibn of a resonant phonon, occurs when the first
order time-dependent perturbation theory is applied to the linear term
in the equation (III-3). Thus,

2
Wi = kalz e, Ib>] re (111-6)
and the corresponding transition probability for the Raman process is

P
wb-’&=;‘_”' E.-EJ. + <al§"vnn6h‘m‘b>’r‘s)

5 <alg Vi€ li><jI F Vil b>
;o
Since )\, the spin~orbital coupling coefficient,depends on the

relative positions of the hole" and its neighbouring nucleus}', the lattice

-



vibration makes the spin-orbital coupling time-dependent. Thus the
time-dependent crystalline electric field causes transitions within

the ground state multiplet. The hyperfine coupling coefficient Ak, also
depends on F; and the first ofder perturbatiqn of Ak has non-vanishing matrix
| elements of S, S_T_, leading to transitions of the type AmS =1 1,

4 m. =+ 1, ;n which electron and nucleus flip in opposite directions,

The time-dependent anisotropic hypgrfine coupling coefficient Bk’
by first order perturbation, leﬁds to non~vanishing matrix elements
S S » S I " S, I , and I S_« This means that electron and nucleus can flip
separately or that both-c:n flip simnltaneously. Finally, the electron-
electron interaction term, in which the one containing'gifg'leads to
mutual flips of a pair of spins, does not leéd to spin-lattice relaxation.
The other term does give rise to spin-lattice relaxation, but its
contribution can be made insignificant by sufficient dilution of the
paramagnetic centres.

Because of its complexity, we will abandon the anisotropic
property of elastic wave propagation in solids, and assume that the strain
in equation (III-3) can be represented by the average value €, at the
mean time. The expression of’Hi in éqpation (III-3) is evaluated at ?o,
such that Vﬁ, Vﬁn’ etc., are time-independent, so that we obtain a

simpler expression for
2
H:=Ae + BE (I1I-3a)

The density of final states is (Abragam, 1961),

f(E)-'—TV_f (II1-8)



_where v is the propagation velocity of an elastic wave in the lattice.
Equation (III-6) can thus be written,

_an 2 2 ot _
Wyoa= 2[4 (ol elb>| G0 See-ede (111-9)

where S (B ~ Eo) means that possible transitions are from the states of
eigenvalue E to those of eigenvalue E° only.

The matrix elements of the strain, € , at a point T for a
particular mode k of occupation number N, are (Ziman, 1960)

t ik
F(N+) <

N+l =& [0
T
AT Y.L

(111-10)
These elements correspond to the creation and destruction of a phonon
of energy #w appropriate to the transition we have considered.
From eqnatioﬁ (11I-9), the probability of transitions from
state 1by» to state lad> 1is
2 3
W,,,,,=37%?§ 7'1“i No(W+1) (III-11)
where N is the number of phonons of mode k. Since a phonon satisfies
Bose~Einstein statistics,

N=

Now, we are going to evaluate the reverse probability, which is the

I .
e (II1-12)

transition from state lad) to state 1lb> .

S |
W= 2Nl (23)



The net transition probability going from state 1b> to state

lad> is equal to the difference of Wb__’ a and Wa. —D°
Thus
ANs _ _3A%°
— 4t = oA [ NN+ = NN (ITI-14)

I.t’n=Nb—Ha, andHa+Mb=H, and since the number of phonons of

mode k in the system is constant,

%ﬁz zrrmvf ‘“”“d;zkr(" ") (III-15)

y )
where n N2 tanh 2= 2K7.

The solution of equation (III-15) is

- (ITI-16)

n=ne
where
3wy AW
T, 2MVIMA 2KT (I11-17)
and Tl is the spin-lattice relaxation time,
' In the case fw << KT, the energy splittings are much smaller
than the thermal energy, and coth%% can be expanded in terms of f;;.

and higher order terms neglected.
2 2
’-‘:—,‘ ='Tr:_ff?_ T (I11-18)
Thus T is proportional to T for the direct process. |
' Using the theory of conservation of emergy, E'-& =AW, , thus
the frequency difference of the absorption and emission phonons in a
Raman process is equal to the frequency of the scattering phonon,

w-w =w,, However, since ., is much smaller than either w’ orw, we
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obtain fram equation (III-7), that the transition probability per unit
time from state 1b> to state lad 1is,

Wl = ! }'{ ARENO) | (SN N

T e Y| Fw-a } (I11-19)

Since the elastic constants A and B are of the same order of
magnitude and are usually much smaller than 1, the first term of
equation (III-19) is negligible compared to the second term. Thus,
after a calculation equivalent to those used in equations (III-11) and
(II1-13), we get,

| 98’ YTy T d
W W“ﬁ)f [T (xr1-20)
where x = *“’ = #u, o) is the Debye frequency of the lattice, and §.
is the Debye tmperature defined by K@=#%wy,,
For T<<@ , the integral in equation (III-20) tends toward a
limiting value independent of T, Thus, the spin-lattice relaxation time,
T, x T.7. It should be noted that the integral converges rather slowly,

1

and the T,e¢ T ! law is only valid when -L<0,02 (Abragam, 1961). For

1 [ B
. O
T>»o, eKT can be expanded into 1 + ;“', the spin lattice relaxation
time T oK T 20

1
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IV, Apparatus

The X~band heterhedrodyné spectrometer used in this experiment
is similar to that discussed by Feher (1957) modified by the addition of
two precision micro-wave attenuators immediately before and after the
magic T bridge as described in detail by Lortie (1960).

The micro-wave power is supplied by a Pounder stabilized Sperry
2K39 klystron with frequency stability better than two parts in 107 at
frequency 9400 Mc/sec. A magic T with one arm leads to the micro-wave
source, which is attenuated by a 50 db variable attenuator to keep the power
leading to the cavity, forming another arm of the magic T, at a désired
level, The reflection power from the cavity, containing the signal,
leads to a balanced mixer through another 50 db variable attenuator, This

’ signal modulated by micro-wave power from a local oscillator of frequency
30 Mc/sec, off the frequency of the main micro-wave source, was lead to
the detector. system and displayed on a recorder. By proper adjustment
of the two#ariable attenuators, the signal level incident on the crystal
mixer can be kept constant, while the power incident on the sample varies
over a wide range. A variable phase shifter and attenuator form the
"dummy arm" of the magic T.

The Pacific 12" magnet gives a short time stabllity of one part
in 104. A 200 cycles/sec. audio-frequency ma@etic field is produced,
parallel to the D.C, magnetic field, by adding two Helmholtz coils at both
magnet poles. The effect of the magnetic field modulation is to modulate
the micro-wave signal reflected from the cavity at 200 cycles/sec. The
signal amplitude is proportional to the derivative of the magnetic

susceptibility.
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In order to establish magnetic resonant conditions, one can
either éha.ﬂge the frequency of the power sonrcé or the magnitude of
the D. C, magnetic field., The latter method has been found to be more
convénient.

The reflected signal is actually a function of the derivatives
of )’ and }", but in all of the experiments described here, the r
component is eliminated. By suitable adjustments of the variable phase
shifter and attenuator on the "dummy arm", the bridge can be balanced
to a null condition off resonance. When magnetic resonance is obtained,
the changes in X' of the sample unbalance the bridge, causing a net
reflected signal to be sent into the detector system.

" During the later part of this work, the local oscillator was

stabilized at 9400 Mc/sec., and simultaneously, a narrow band pass filter
was placed immediately before the mixer., This improved the signal to

noise ratio about three times,
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V. Measurement Techniques

A, The Sample

A 1.5 cm, long, 0.3 cm. in diameter, X-cut natural quartz crystal,
was irradiated by 1 Mev electrons from a linear accelerator until it
became opaque, that is saturated. This crystal was mounted parallel to
the magnetic field through the centres of the broad surfaces of the
rectangular cavity, which was originally designed for accoustic absorption
purpose, as reported by Taylor (1963). Since the direétion of the x-axis
of the quartz is fixed, only_one parameter is to be changed, unlike that
of the sample placed on the plunger which has two parameters to be
changed., This reduces the work for mounting.

Once a given crystal was mounted in the cavity the spectral lines
for a given site could be resolved for only a small angular range of D.C.
magnetic field. Also because the sensitivity of the spectrometer depends
on the angle of the cavity with respect to the D.C. 'field, the angular
range for spin-lattice relaxation purposes is quite limited. In this
thesis, all the experiments were carried out on the transition (1/2,
3/2~1/2, 3/2) and sometimes on transition (-1/2, 5/2—1/2, 5/2) of the

site 4 (Taylor and Farnell, 1964).

B. Bleaching of Crystal

The F~centres in quartz, produced by the irradiation with electrons,
neutrons, and X-rays, etc., are permanent at room temperature. However,
they can be removed completely by heating up to a certain temperature or

by ultra-violet irradiation. The required temperature and wave length
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depend on the agency by which the centres were produced.

The bleaching agent employed in this research was heat. The
sample was placed in a Central Scientific oven, which gives uniform
temperature in the range from room temperature to 285°C, and which can
also automatically adjust the temperature to a specified value. As the
mumber of centres decreases, the temperatures required for bleaching
increasé. The blqa.ching was started at 150°C, Since the darkening depth
depends on the energy and length of time of.irradiation, it seems likely
that the bleaching starts on the outside and moves inward. In this work,
the temperature ro'ge only to 224°C, due to the fact that gradua.l decrease
of centres above this tmperaturé is so small that the EPR signal could
not be detected, The writer attempted to maintain a constant temperature,
varying the time for bleaching. It was found that the EPR signal
intensity versus time for bleaching, follows approximately the exponential
function, as the alkali halide salt centré does.

Two methods were used to estimate the nmbér of F-centres, First,
the EPR line height and width were compared with those of a 0.5% KBGr(CN) 6
upper line, which was then compared with a weighed DPPH sample, Once
the widths and heights of these lines are known, the mmbei of F-centres
can be calculated from the formula trom Yaris et al (1961),

w
N _ Wi AH Mmooy
NS 7 qu qo”, o 25V |

0 gs (5Y M%) (Sw__ Hu_)‘_ ()

for the transitions from M-—&M—l, where the (1) and (2) refer to the
samples (1) and (2). Since the line width and height depend upon the .
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orientation of the crystals, errors may be introduced during different
concentration-determination runs, due to the difficulty of placing the
quartz and the potassimn‘ chromicyanode at the same angle for a specific
axis in the D. C. field., The second method is to use a Perkin Elmer

350 photometer to measure the absorption coefficient of f.he colour centres.
This method gives only rela.tivei concentrations, If the relation between
number of colour centres and the absorption coefficient of light of a
specific wave iengbh is known, the actual number of colour centres can

be estimated, However, due to the opacity of the smoky quartz during
most of the concentration-~determination runs, only a few measurements
were carried out for this comparison. Since the EPR signal could not be
detected after the smoky quartz became transparent, no relation between
the reading obtained with the absorption coefficient and the actual colour

centre concentration was found.

C. Measurement Method

There are two methods in general use for spin-lattice relaxation
time measurement, namely, the CW satui‘ation method and the pulse method.
The CW saturation method, which is the method employed in this thesis and
which is based on assumptions valid only in ideal cases, is not very
reliable. The pulse method is limited to a relaxation time longer than
of the order of one micro-second, and much greater power is usually
required to saturate the sa.mple.

If the attenuators before and after the cavity are adjusted so

that the power going to the rf pre-amplifier is not great enough to



saturate the rf amplifier, and if the modulation is sufficiently reduced,
the outpuﬁ signal is proportional to the power inpnt. to the cavity. That
is, the defleétion of the recorder needle is nearly proportional to 5‘—} or

"

%

s feppvi[zgen) = &l2y] ()

% is the so-called saturation factor dependent
1+ 3THTT
upon the power, and g(w) is the line shape function; gu;bhe modulation

frequency is here in the audio-?frequency range, Hl the magnitude of A..C.

where Z =

magnetic field; ¥ , the electron gyro-magnetic factor defined by 7= &

2me
3 3 3 -1'-
and T2 the spin-spin relaxation time defined by T2 > g(w)m. |
In all the measurements, ugng 2 6 holds if the modulation frequency
is 200 cycles/sec, then W.T. = 2n. Enough accuracy is obtained by

2
applying the condition"a’é‘l‘l >> 1, Weissfloch (1963)_ has given the

theoretical plotting of 20 log S against 10 logs, and has shown that
there is only a small divergence from that assumed Tl%>> l. From
Andrew (1955), the output for a Lorentzian line is

(16 +1é0 M‘)}i -2 -0
YT -C2 4 (G+2) 16+160+03) %

S (v=2)

where o= 32 Hi Tl T2, parameter depends on power input.
Relative values of 20 log S and S are plotted against 10 loge
respectively in figures 3 and 4. For the case ¢>»1, equation (V-2)
can be expanded in terms of 1/, neglecting terms of order higher than
two, one gets the asymptotic line corresponding to figure 3, 20 x log S
= const. + 2 x 10 loge. Thus the asymptotic tangent is 2 and intersects



the abscissa, i. e. 10 logdo”, at 1.6 db which can be easily verified.
In the. other graphs, (figure 4) the increase in power above a certain
limiting level has very little effect.

For Gaussian line shape

4

ﬁ 2
(= g e T
y=% (v-3)
Since lem» l, Z cannot change duripg a modulation cycle, and_ the

values of Z can be taken out of the bracket in equation (V-1). After

straightforward calculation, we have

-2a '
e T wm>> | (V-4)

e T2

where a is a parameter defined as -—12:' (wo - cu)2 = a and which depends on

S <

o through the relation 1 + ¢ e = 2a, The same kind of plot' is also
given in figures 3 and 4. The general forms of these plots for the two
kinds of line shapes appear to be very similar, with the exception of the
first type of plot in which the asymptotic tangent is 1.9 and intersecting
the abscissa at 2.5 db (Smith 1961).

Smith (1961) has given the formula for both line shapes as

T = Aty %) (v-5)
p ! 0.65 7k 7 for Lorentzian line shape
_AH B0l i=/) wia - -
where K ? oV (canig)’ Qu is the unloaded Q of the cavity,

[?7 1s the reflection coefficient, %; the frequency of the micro-wave

power, V the volume of the cavity at resonance, a, b, and c the

dimensions of the cavity, and T2 = Timar 3 and
T = A"#'/”('%) for Gaussian line shape (V-6)
) 0.5 Y2KT,
where T, = T'JTr'D , the line width defined here is between the points

of inflection.



The signal strength to be taken during the experiments was the
maximm deflection of the recorder needle, and the corresponding S is
defined

Maximum magnitude of unsaturated smoky guartz signal (v-7)
Maximum magnitude of saturated smoky quartz signal

Usually, the saturated signals are caompared with that of barely saturated
crystals, such as DPPH, The DPPH line, unfortunately, is in the midst of
the smoky quartz spectrum, and the measurements made for saturation effects
on the specified line were influenced by the smoky quartz lines., The
writer has tried without success to find other samples to substitute for
DPPH., The same EPR line was used both for relaxation time measurement,
and as the standard line to replace hard saturated sample., Great care had
to be taken in order to maintain the cavity input power at a level low
enough to eliminate a saturation effect. The attemuators immediately
before and after the magic T were then set to the readings for unsaturation
and saturation in alternation, and the magnitude of the same line noted.
Two methods were used to analyse the experimental data, both of
which should give equivalent results, although not with the same degree
- of accuracy.
In the first method, S defined in equation (V-7) shows that a
small fluctuation during the saturation of the crystal causes a serious
error. Since, in the first kind of plot,

D = 20 log S = 20 log s, /32 ' (v-8)

The fluctuation introduced due to as is

|aD | < 20{| 42| |§:s|} (v-9)



b

In most cases, 4s was comparable with s, and jap| would be fairly large.
This fluctuation would make it imposgible to give an accurate asymptotic
tangent, and besides, the time required for a complete saturation run is
rather long. It is difficult to keep the temperature constant for such
an extended peﬁod 80 t,hat this method of analysis is not suitable for
temperature dependence runs.

Another method corresponding to the theoretical plot of figure 4
was first developed by Bloembergen (1948). The corresponding signal S
is defined as the reciprocal of equation (V-7), the error introduced due
to the fluctuation of the signals being relatively small, as can be seen

through following equations.

D=<= (v-10)

oDl <1451 +15%| (-11)

where 8 g 8, and 1; < S, Thus the fluctuation of AD is fairly amall,
A horizontal line XY is drawn on figure 5, the intersections of
which uith different saturated S versus 10 logo plots will give the same

<
values of 8, that is,

Sy =85 =S5 = ee. (v-12)

where S,, Sy, S; etc. are functions of the corresponding o, &, o

<

etc., respectively. One possible solution of equation (V-12) is,

Oz = OB: o-;:... (V—13a)

HT )= UH T L= (P H T T = (v-13b)
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and we find the ratio of spin-lattice relaxation time to be

2
Tya _ ( e\ T (V-14)
Tip  \Hyl Ty

To express the ratio of power as a difference in db below one watt and
" the spin-spin relaxation time, T2, in terms of line-width, equation (V-14)

becomes, if lines A and B etc., are of the same shapes,

H

4H
—lAi =2 Anti log

1B 4l

where 4Db = db of A -~ db of B, This method requires the temperature to

ADb
10

maintain constant for a shorter time, since only a few points around the
specified line at half saturation are enough to determine the curve shapes.
In the second method, a sample of known spin-lattice relaxation
time.was placed in the cavity simultaneously. During each run, measurements
were made on both samples, In this resea.rch, a crystal of KBCr(CN) 6
which was used as a standard for concentration comparison, was placed in
the cavity with the smoky quartz. The spin-lattice relaxation time of
the former crystal with a concentration 4 x 10]'9 spins/c.c. served as
a standard; it had been obtained by the first analytical method, where
N was found by fitting the experimental data to the theoretical plot,
being then calculated by equation (V-5).
Except for the highest concentration sample, all the spin-lattice

relaxation times were analysed by the second method.



VI. Experimental Resulis

A. Spin-spin relaxation time measurements were made at extremely
high and low concentrations during this research. Since the spin-spin
relaxation time '1‘2 relates to both the line shape and width, an accurate
measurement on line width was carried out by counting the number of
clicks of the D, C. magnetic field sweeping rate marker, this was
calibrated to an accuracy of three significant figures with a Harvey Wells
precision NMR gaussmeter. In order to determine the line shape, theoretical
plots of both normalized Gaussian line and normalized Lorentzian line were
fitted to the experimental curve, They were neither ideal Lorentzian nor
Gaussian lines but were close to Lorentzian lines (see figures 6 and 7).
This result contradicts that of Taylor»uho found that the line shape is
closer to Gaussian line shape, the F-centre concentration of the crystals
used by Taylor and this writer were of the same order. In general, we
can say that as the concentration decreases, the line shape has a tendency
to become closer to the lLorentzian line,

The line width of the sample at a high concentration i.e.

4 x 10" spins/c.c. is 0.65 gauss. Hence we have

T2 = T-:ﬁ%zﬁ = 5,5 x 10_8 sec for Lorentzian line
T =J—;?—=lhxlo-7 sec for Gaussian lin
2= Al o ussi e
where V= ﬁg— = 1.75 x 107 gauss-sec,

The line width of the extremely dilute sample, i.e. 2.8 x 10°8
spins/c.c. is 0.52 gauss, the corresponding spin-spin relaxation time being
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T2 = 6.6 x 10-8 sec for Lorentzian line

and T, = 1.7 x 1077 sec for Gaussian line

Additional measurements are necessary to find the corresponding
spin~lattice relaxation time. From equations (V-5) and (V-6), there
are four unknown quantities to be determined. The unloaded Qu was
measured by the using of a ratio‘ meter., Simultaneously, the coupling
coefficient B, which is related to the reflection coefficient f’ s wWas
also measured in under-coupled conditions. « is the frequency of
microwave power source and V the volume of the cavity at resonance.
The numerical values of those quantities are given below

B = 0.63 at 4.2°K
Qu=(1+ B) Q:.l; = 1,63 x 3100 = 5100 at 4.2°K <
@ = 21 x 9,400 x 107 sec™t

V =abc = 2.2 x 1.0 x 4.6 = 10 cur

where Q,_ is the measured loaded Q of the cavity. The reflection

coefficient ['= %—f% = 0.23. Then we have
i
K== = 0.98
Py

The experimental data for S were fitted to the theoretical
plot of figure 4, from which one finds the intersection of the asymptotic
line with the abscissa at 50.4 db (=N) as shown in the typical plot of
this kind in figure 8. |

At 4.2°K, by equations (V-5) and (V-7), for the 4 x 10'7 spins/c.c.

case, N = 50.4 db, we have



T, =10 x 1073 sec = 10 ms for Lorentzian line

and

Tl = /1.8 ms for Gaussian line

B. Temperature Dependence
In this and next sections, experimental data were analysed by
the second method described in section (V-C). A typical plot of this

kind was shown in figure 9 for the concentration of 4 x 1019

spins/c.c.

The reading for S = 0.5 on input power below one watt at 3.4°K subtracted from
the reading for S = 0.5 on input power below one watt at 4.2°K, gives

abb = 2,3 db. Since I, at L4.2°K is known, and the line-widths at 4.2°K

and 3.4°K are almost the same, the spin-lattice relaxation time Tl at
3,4°K can be calculated from equation (V-15).

Figures 10 and 11 show how the spin-lattice relaxation time
depends on temperature. The temperatures in the range from 4.2°K to
1.6°K were achieved by pumping liquid heliwm in the inner dewar. By
means of a temperature and vapour pressure correspondence chart, which
is calibrated by a thermocouple, the ;cetnperature can be read directly
from the readings on the manometer. However, since hydraulic pressures
were not indicated during the calibration, it is difficult to know the
true temperature of the sample merely from the pressure readings, when
the temperature is between 4.2°K and 2,2°K, the A point of liguid helium.
Because the walls of the dewar are at a different temperature from the
surface of the liquid helium, a temperature gradient exists and,
obviously, the temperature difference between the sample and the liquid

helium surface depends on the height of the latter. In most cases, the



amcunthcliquid helium poured into the dewar cannot be controlled

. accurately. Below the A point, liquid helium becomes a superfluid,
therefore the ‘b_eunpera;ture gradient no longer exists. Hence the
accuracy of readings at temperatures above 2.,2°K would not be as
great as those made below the A point.

Figures 10 and 11 confirm the existence of two processes,
supposedly dominating in two regions _sepa.rated by a certain temperature,
the "eritical temperature", which depends on the concentration of
F-centres. As the concentration decreases, the '"critical temperature"
increases. One process, dominating below the "critical temperature"
results in the spin-lattice relaxation time to be proportional to T~ 0'7;
while the other process, taking place when the temperature is above
the "eritical temperature", gives T, 726,

Results of the spin-lattice relaxation time at two extremes of

concentration, and at 4.2°K and 1.7°K, are presented both for Lorentzian

and Gaussian line shapes as below:

Tl(ms) Tl(ms)

Concentration Temperature 4Db Lorentzian Gaussian
4 x 10~ spins/c.c. 4e2° K 0 10 o8
1.75° K 6.0 L2 18
2.8 x 10'® spins/c.e.  4e2° K 145 296 127
1.65° K 20.3 1100 472

Tt has to be pointed out here that at 4 x 107 spins/c.c., both
analytical methods were used at each temperature, showing that the results
are consistent within experimental errors. For the lower concentrations,

the second method only was employed.
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C. Concentration Dependence
The relation of spin-lattice relaxation time to concentration
is presented in figure 12, The useable concentration is no less than
2.8 x 1018 spins/c.c., below which the EPR signal to noise ratio is so
small that measurement of the EPR saturation effect becomes impossible.
By meang of the leé.st ;.mquere.-c method, an empirical expression

was fitted to this data. Using McGill's IBM 7040 computer, one can get,

)

T. = 0.192 + 0.164 x 10° e, - 0.119 x 102 ¢® + 0.262 x 10° e3s

1

H ©
w \»n

- 0.246 x 10° c‘; + 0.848 x 10° ¢

where ¢  is the number of F-centres in a unit of 4.0 x ZLO]'9 spins/c.c.
and Tl the spin-lattice relaxation time in second. |
As the concentration decreases, the spin-lattice relaxation time

T, increases until 8 x 10]'8 spins/c.c. is reached. Henceforward, Tl

1
proceeds to a certain limit, beyond which there is no corresponding
increase with decrease in concentration.

Most of the measurements were made on the fifth line, i.e.
(-~ 1/2, 3/2~1/2, 3/2) of site 4. In several cases, measurements were
also made on the sixth line, i.e. (-~ 1/2, 5/2 —1/2, 5/2) of the same site.
The relaxation times for both lines at extremely high concentration are
approximately equal. However, for very low concentration, they differ
widely. It has been found that the spin-lattice relaxe.f.ion time ratio
for transition (- 1/2, 3/2—1/2, 3/2) at the two extremes is 25, while
that for the transition (- 1/2, 5/2 —1/2, 5/2) is 91, almost four times

larger, The spin-lattice relaxation times for transition (- 1/2,5/2—1/2, 5/2)
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were obtained by both kind of analyses, the results being fairly

consistent. Thus the inconsistency in ratio must be due to causes other

than experimental error.

D. Line~width Variations with Concentration

At most concentrations, line-widths were measured at 4.2°K
on transition (-1/2, 3/2 —1/2, 3/2) of the site 4 using modulation
of less than 0.l gauss, However, due to the D. C. magnetic field
sweeping rate being relatively too tast, no precise results can be
presented. All that can be said is that the line-width decreases with
decreasing concentration, and the ratio of the line-width of the fifth

line at the greatest and least concentration is 0.$5/0.52.



VII, Discussion of Results

A, Spin-lattice Relaxation Time

Measurements on spin-lattice relaxation time have been reported

32

~ previously by several authors and each has shown some kind of inconsistency.

Carr and Strandberg (1962), using the CW saturation method, found

that Tl at 4.2°K was 300 ms and greater than 3 seconds at 1.7°K. They

mentioned neither the concentration of crystals at which their measurements

were carried out, nor the shape of the line obtained. From acoustic

saturation data Taylor estimated that the concentfation of the sample they

used was less than 3.4 x 1047 spins/c.c.

Using both the CW saturation technique and the puise technique,
Taylor (1963) carried out measurements on T, for X-cut smoky quartz of
a concentration of 3.4 x lO:L9 spins/c.c., in the temperature range
4.2°K to 1.6°K, His results are shown below:

Tl(ms) by CW saturation technique Tl(ms) by
Temperature Lorentzian Gaussian pulse technigue
L2°K 3.9% 1.5 1.8t 0.8 34T 5
1.6°K 15.4% 6 ' 7.3% 3 125% 15

The difference in spin-lattice relaxation time as measured by the pulse
and the CW saturation technique, he concluded, was due to both site-to-
site and dipolar cross-relaxation.

Comparing Taylor's results with those obtained in this thesis,
the former is smaller by half at 4.2°K. The concentrations are believed

to be approximately of the same order,
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B. Temperature Dependence

In both papers mentioned in the previous section, spin-lattice
relaxation times have been measured at four different temperatures at
least. In Carr and Strandberg'!s paper, measurements were made at l.7°K,
4.,2°K, 35°K and 77°K. Due to the temperature invervals being too large,
no indication of process changes appeared. Even in Taylor's attempt to
prove that neither a direct nor an indirect process exists in smoky
quartz spin-lattice relaxation, the resulis of his measurements show
that the relationship between '1‘l and temperature is far from following
the single process which would be important at very low temperatures., It
is believed that further studies of temperature dependence at temperatures
beyond 4.2°K will show more clearly which processes are actually in
existence. Shamfarov and Smirnova (1963), using neutron-irradiated
quartz at two different concentrations, found, by using the pulse
inversion method, in the temperature range from 1.6°K to 4.2°K, that,
both for the 10°° spins/c.c. sample in the tanperatui'e range from 1.6°K
to 3°K, and for the 101 I spins/c.c. sample in the temperature range from
1.6°K to 2°K, the spin-lattice relaxation time foilawsj Tl o T-l law;
while from the temperatures indicated above to 4.2°K, the spin-lattice
relaxation time follows Tl-c T'l’ law, This change in "critical temperature®
from 3°K to 2°K with change of concentration might indicate a different
relaxation mechanism at the different concentrations.

‘As shown in chapter III, the spin system in an excited state, is
related to thermal equilibrium by two kind of processes, The direct process,

usua]J.y dominant at a very low temperature, leads to Tl proportional to T.l.



The Raman, or indirect process, leads to '1‘ proportional to T 7 In

figures 7 and 8, the spin-lattice relaxation time Tl is proportional to

"0.6 "207

T .and T respectively.

From our results and those of Shamfarov et al, we may conclude

that at temperatures below 3°K in highly concentrated crystals, the

direct process dominates. A reading for Tl proportional to T"O’6

instead of Tt

could not be simply due to experimental error, since the
temperature measurement made below the A point, and the spin-lattice
relaxation are fairly precise, For Tl’ in a temperature range higher
than 3°K, we could not determine whether it follows the fflac T law,
Measurements made above 4.2°K will clarify this point. The spin-lattice
relaxation time Tld T"z‘7 for temperatures above 3°K, does not seem to
be contributed from the local mode of lattice vibration at the defect . -
as shown by Castle el al (1963). If the local frequency lu,o‘-:ﬂsf..,'tbm

Debye frequency, the spin-~lattice relaxation time will have a tem

proportional to T3, The conditions for &:>«» are that either the mass

of the impurity is less than that of the donor, or that the local strain
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is enhanced. This seems impossible in the case of alumimmm as the impurity

in quartz.

Klemens (1962) showed that at temperature T_ = —( )3 [ )3, the

direct and Raman processes are comparable., In this experiment,

E/K = 0.46°K, and for quartz, the Debye temperature measured by Jones and

Hallis Hallet (1960)is 469°K. In most cases, ) 3 ~ 1 so that

Tc o 25°K, which is much higher than the temperatures measured. This may



be due to Klemens, in his calculation, neglecting the factor contributed
from the integral j. X(%‘% dX . The Debye temperature may also be lower
.after the quartz is irradiated.

C. Concentration Dependence

So far there is no other reported result about spin-lattice
relaxation time depending on concentration of smoky quartz., Taylor
noted only that his results were not of the same order of magnitude as
those of Carr and Strandberg, and he attributed these differences to
crystals of different concentrations being used., Shamfarov and Smirnova
also pointed out that the spin-lattice relaxation time measured of
different concentrations had huge difference.

Since the Zeeman splittings of the smoky quartz are much greater
than those of the hyperfine splittings, it is difficult to convert the
Zeeman energy to energy produced by dipolar interaction, quadrapolar
interaction, etc.; consequently, it is impossible to consider it as a
single spin system. The rate of establishment of thermal equilibrium
between the system of individual spin levels of the paramagnetic centres
and the system of dipoles etc., will be characterized by the term of
cross~relaxation time. On the other hand, interactions, which are not

strong enough tc split the energy levels but strong enough to broaden

the resonant absorption lines, also contribute greatly to cross-relaxation.
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In the case of smoky quartz, the separation of two neighbouring lines is so

small compared to their line-widths that overlapping is impossible to

avoid, Thus cross-relaxation plays an important role
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in the relaxation mechaniam,
From the observed electron-spin-resonance absorption spectra,
we know that dipole-dipole interaction is quite strong in smoky quartz.
For a given crystal, the distance between two nearest centres, i and J,
is proportional to the inverse cube root of the number of centres contained
i. e., Ty 3 =N -1/3 « Since the dipole~dipole interaction is proportional

to r -3 s it will be directly proportional to the number of centres in

i3
the specified crystal. The cross-relaxation time is defined as

== [;?'(zl')—l‘;f,mh)[zf]-l s thus the cross-relaxation time T, is

21
inversely proportional to the square of concentration. To express the
number of centres in units of 4 x 1019 spins/c.c., which seems to be
the highest concentration one can get with the sample used, thus one has
'I‘21 = ci.
The empirical formula has terms of order up to the fifth power
of concentration, and the coefficients of c’:, cz > cls', are of the same
order of magnitude, This con.flj.ct between the experimental results and
the simple estimation of the previous paragraph may be due to other
interactions which the writer has ignored. Since the lattice is
vibrafing, the distance between the centres is not a constant. Thus the
dipole-dipole interaction cannot be so represented as in the sixth term
of equation (III-2); and usually, B, is also a function of spacial
coordinates. Hence the result will be more complicated. |
Lastly, it is worth noting that with decrease in concentration, the
more rapid increase of T, on the (- 1/2, 5/2->1/2, 5/2) line as compared

with T, on the (- 1/2, 3/2—+1/2, 3/2) line is due to the energy of



37

the latter being more easily shared by its immediate energy level

than that of the former, since the energy involved in the transition
(- 1/2, 3/2—1/2, 3/2) is nearer to the average energy of the whole
site.. Consequently, we should expect a stronger dependence of
concentration for the lines (-~ 1/2, 1/2 =~1/2, 1/2) and (- 1/2, - 1/2-

1/2, - 1/2) than for any of the other lines in the same site.



VIII. Conclusions
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Measurements were made on the (-1/2, 3/2 —1/2, 3/2) line of

site 4 of the X-cut smoky quartz, especially of the spin~lattice

relaxation time dependence on concentration and on temperature.
experimental results are summarized as follows:

(i) The spin-lattice relaxation time of a crystal
with concentration 4 x 10+ spins/c.c. at 4.2°K
is 5 to 10 milli-seconds.

(2) Temperature dependence measurements of Tl were
carried out for four different concentrations in
the temperature range from 4.2°K to 1l.6°K. Two
different processes are in dominance in the
temperature regions separated by 3°K, for
1.6 <T<3% T, < 707 gnd T * 3°K, T < T3,

(3) Spin-lattice relaxation time, Tl was measured as
a function of concentration from 4 x 1019

to 2.8 x 10'° spins/c.c. An empirical formula was

found by the method of least square., .

spins/c.c.

The

T, = 0.192 + 0.164 x 10% ¢ .- 0,119 x 10° c§ + 0,262 x 102c2
-0.246 x 10° c‘; + 0,848 1olc2

where B, is the concentration in units of 4 x Zl.Ol9 spins/c.c.

and Tl :Ln seconds,
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Experimental saturation curve
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