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Abstract

We study a class of symmetric space orbital integrals important for relating distinction of

automorphic representations on unitary groups to distinction on general linear groups. In the

first part, we verify a fundamental lemma for U2×U2 →֒ U4 via an explicit calculation, show-

ing strong evidence that there is a general theory of endoscopy lurking here. In the second

part, we determine a formula for the dimension of a family of affine Springer fibers associated

to a symmetric space arising from the block diagonal embedding GLn×GLn → GL2n. These

dimensions ought to be related to the transfer factors in a conjectural fundamental lemma.
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Résumé

Nous étudions une classe d’intégrales orbitales pour les espaces symétriques qui sont utilisées

pour relier a distinction de représentations automorphiques sur les groupes unitaires à dis-

tinction sur GLn. Dans la première partie, nous vérifions un lemme fondamental pour

U2×U2 →֒ U4 par un calcul explicite, montrant évidence qu’il cettes une théorie générale de

l’endoscopie qui se cache ici. Dans la deuxième partie, nous déterminons une formule pour la

dimension de fibres de Springer affines qui sont associées à un espace symétrique découlant

du plongement diagonale par blocs GLn × GLn →֒ GL2n. Ces dimensions doivent être liées

à des facteurs de transfert d’un lemme fondamental conjecturale.
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Dedicated to my grandmother Alenka Paquet.
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Chapter 1

Introduction

1.1 Distinction of Automorphic Representations

Let H ≤ G be reductive algebraic group over a number field F/Q and let AF be the ade-

les of F . Roughly, we say that a cuspidal automorphic representation π of G(A) is H-

distinguished if there exists a cuspidal ϕ in the space of π such that the period integral

∫

H(F )\(H(AF )∩1G(AF ))

ϕ(h)dh

is nonzero. Here, 1G(AF ) is the Harish-Chandra subgroup defined by the kernel of the

map HC : G(AF ) → Hom(X∗(G)Q,R) given by HC(g)(χ) = | log(χ(g))|, which is intro-

duced to make the integral converge; see [GW13] and [AGR93] for a lengthier discussion of

convergence.

The spectral side of the Arthur-Selberg trace formula sums over isomorphism classes

of automorphic representations. Jacquet and his school have introduced the relative trace

formula whose spectral side is restricted to distinguished automorphic representations. Dis-

tinction by certain H is closely related to functorial images of automorphic representations

from another group. Here is a classic:
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1.1. DISTINCTION OF AUTOMORPHIC REPRESENTATIONS Jason Polák

1.1.1 Theorem ([Jac05]). If E/F is a quadratic extension of number fields then a

cuspidal automorphic representation π of GLn(AE) is a base change from GLn(AF ) if

and only if it is distinguished by a unitary subgroup.

We now describe a more recent result of a similar flavour. LetM/F be a quadratic extension

of number fields and let τ the generator of Gal(M/F ). Let H be a connected reductive group

over F together with an automorphism σ : H → H and Hσ its fixed points under σ. We

assume that Hσ is connected, as it will be in all cases we discuss.

Define G = ResM/FH. In particular, the automorphism τ ∈ Gal(M/F ) also acts on the

R-points of G for any F -algebra R and the automorphism σ induces an automorphism on

G that we also call σ. Let Gσ be the fixed points of σ and for θ = σ ◦ τ , we let Gθ be the

fixed points of θ.

Let π be a cuspidal automorphic representation of H(AF ), and suppose there exists a

weak base change Π of π to G(AF ). Then [GW13] proposes the following:

General Principle. If Π is distinguished by Gσ and Gθ then there should exist an

automorphic representation π′ of H(AF ) nearly equivalent to π, and such that π′ is

distinguished by Hσ.

Here, we say that π = ⊗′πv and π′ = ⊗′π′
v are nearly equivalent if πv ∼= π′

v for almost all

places v. The main result of loc. cit. is a precise theorem following the form of this general

principal as follows. Define Uσ to be a quasisplit unitary group in n variables attached to

M/F and define U = ResE/FU
σ. For an F -algebra R we observe that

G(R) = ResM/FResE/F (U
σ)(R)

= ResE/F (U
σ)(M ⊗F R)

= Uσ(E ⊗F M ⊗F R).

Hence, we see that G = ResME/FGLn.

1.1.2 Theorem ([GW13], Theorem 1.1). Suppose E/F is a totally real extension of

number fields and M/F is a CM-extension of number fields. Let π be an automorphic
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1.1. DISTINCTION OF AUTOMORPHIC REPRESENTATIONS Jason Polák

representation of U(AF ) and let Π be a weak base change of π to GLn(AME) satisfying

the following conditions:

1. There exists a finite-dimensional representation V of UF∞
such that π has nonzero

cohomology with coefficients in V .

2. There exists a finite place v1 of F totally split in ME/F such that πv1 is super-

cuspidal.

3. There is a finite place v2 6= v1 of F totally split in ME/F such that πv2 is the

discrete series.

4. For all places v of F such that ME/F is ramified and M/F,E/F are both nonsplit

at v the weak base change Π has the property that Πv is relatively τ -regular.

In particular we assume that there exists a finite-dimensional representation V of UF∞

such that π has nonzero cohomology with coefficients in V . If the partial Asai L-function

LS(s,Π, r) has a pole at s = 1 then there exists a cuspidal automorphic representation

π′ of U(AF ) nearly equivalent to π and such that π′ is Uσ-distinguished. Moreover, π′

may be chosen to have nonzero cohomology with coefficients in V .

The importance of the pole of the Asai L-function for us is that it implies that Π is dis-

tinguished by Gσ and Gθ, so that Theorem 1.1.2 is indeed a particular case of the General

Principle. Although the conditions on π and Π may look daunting at first, they are fairly

typical if one wants to use simple trace formula.

We initiate the study of a new form of this general principal, with the following input: let

H = U2n be a quasisplit unitary group in 2n-variables attached to the extension M/F and

let σ : U2n → U2n be an automorphism such that Uθ
2n

∼= Un×Un. For an explicit description

of how we define these unitary groups and automorphisms, we refer to Section 2.2.

In this case, G := ResM/F (GL2n) and G
σ = ResM/FGLn × ResM/FGLn. Also, the group

Gθ will be some form of Un × Un. The relative trace formula comparison should then be

between the two quotients

Un × Un\U2n/Un × Un!ResM/FGLn × ResM/FGLn\ResM/FGL2n/ResM/FGLθ
2n.
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1.2. ORBITAL INTEGRALS Jason Polák

For a fixed F -algebra R, the elements of Un(R)
2\U2n(R)/Un(R)

2 are called relative classes,

and the same procedure on the right-hand side gives the τ -relative classes; these two sets

of relative classes for the relatively semisimple elements roughly should correspond under

a variant of the norm map as in [GW13], which together of matching of functions for the

Hecke algebras and relative endoscopy should lead to a comparison of the geometric sides of

the relevant trace formulas. This matching of relative classes will be addressed precisely in

a future work.

We mention briefly that distinction for GLn × GLn →֒ GL2n can be expressed in terms

of L-functions:

1.1.3 Theorem ([FJ93]). Let F be a number field. A cuspidal automorphic represen-

tation of GL2n(AF ) is GLn×GLn distinguished if and only if the partial exterior square

L-function for π has a pole at s = 1 and L
(
1
2
, π
)
6= 0.

At any rate, we do not attempt to derive such a comparison in this thesis, but rather initi-

ate the study of an important technical tool that should be necessary for such a comparison:

the theory of relative endoscopy. Let us explain this term. At some point during the com-

parison of trace formulas, one encounters expressions known as orbital integrals. Endoscopy

is essentially the process of replacing certain sums of these orbital integrals by integrals on

smaller endoscopic spaces. In the case of Un × Un →֒ U2n, we expect the endoscopic spaces

to be a product of two spaces of the form Un1
×Un2

→֒ Un1+n2
, analogous to the endoscopy

theory for unitary groups as in [LN08].

In the next section, we will explain exactly how sums of orbital integrals weighted by

characters (called κ-orbital integrals) may be replaced by similar integrals on endoscopic

spaces, which at this time are still conjectural.

1.2 Orbital Integrals

Up until now, we have been talking of the global problem of comparing trace formula for dis-

tinguished automorphic representations. For the remainder of the thesis we will focus on the

local problem at the nonarchimedean places. We remark that the problem for archimedean

places is also important and perhaps crucial, but it also will need quite different techniques
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1.2. ORBITAL INTEGRALS Jason Polák

compared to the nonarchimedean case, and so we leave that problem for another day. So,

we let F be a nonarchimedean local field with residue field Fq and ring of integers o.

Let G be a smooth linear algebraic group scheme over o. The valuation v : F× → Z

induces an absolute value |x| = q−v(x) on F with the convention that |0| = 0. This absolute

value induces a metric, which gives F a totally disconnected, locally compact Hausdorff

topology consisting of a neighbourhood basis of compact open additive subgroups of F .

We give a topology on G(F ) via an embedding G(F ) → GLn(F ) → F n2

, which can

be shown to be independent of the embedding and is closed. For these and other facts,

we refer to [Con12]. If V is an affine o-variety with a G-action ρ : G → Aut(V ) given by

some G× V → V , we consider also the space V (F ) also with the induced topology of affine

F -space.

We let C∞
c (V (F )) denote the C-vector space of complex-valued, smooth (i.e. locally

constant), compactly supported functions on V (F ). The space C∞
c (G(F )) is an algebra

under the convolution product, though we will not actually need this algebra structure.

A distribution is a linear functional on C∞
c (V (F )). An invariant distribution is a

distribution invariant under the action of G(F ) on V (F ). Perhaps the most important class

of invariant distributions for us are the orbital integrals, which form part of the harmonic

analysis initiated largely by Harish-Chandra.

1.2.1 Definition. Let γ ∈ V (F ) and Iγ be its stabiliser in G, which we assume to be

reductive. Assume either that G is reductive or that Iγ is trivial. We define the orbital

integral to be the distribution Oγ : C∞
c (V (F )) → C given by

Oγ : C∞
c (V (F )) −→ C

f 7−→

∫

Iγ(F )\G(F )

f(ρ(g)−1γ)
dg

dgγ
.

The measure dg is the unique Haar measure such that vol(G(o), dg) = 1 and similarly with

dgγ. When Iγ is nontrivial, the measure dg/dgγ is the quotient measure, which exists since

both G(F ) and Iγ(F ) are unimodular.
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1.2.2 Example. Let F = Fq((t)) be the field of Laurent series over a finite field Fq,

let o = Fq[[t]] and let G = GL2. Let G act on V := G via the adjoint action. Let

γ = diag(x, y) ∈ G(F ) with x 6= y ∈ o. This element is regular semisimple and has as

a stabiliser the maximal diagonal torus. Let f be the characteristic function of V (o).

Then

Oγ(f) = qv(x−y).

More generally, if γ = diag(x1, . . . , xn) ∈ V (F ) is such that xi 6= xj for i 6= j and xi ∈ o

for all i, then Oγ(f) = q
∑

i<j v(xi−xj). We note that we just used F = Fq((t)) as an

example: the same calculation works also over p-adic fields.

1.3 κ-Orbital Integrals and Stable Classes

We now discuss stable classes. If ρ : G → Aut(V ) is an algebraic action of G on an affine

variety V .

1.3.1 Definition. Assume Iγ is a torus.

1. If γ and γ′ are elements of V (F ) and there exists a g ∈ G(F ) such that ρ(g)γ = γ′

then we say that γ and γ′ are in the same stable class and write γ ∼st γ
′.

2. For any γ ∈ V (F ), we define the stable class of γ to be

St(γ) = {γ′ ∈ V (F ) : γ′ ∼st γ}.

The condition that the stabiliser of γ is a torus simplifies the exposition. If Iγ is not

a torus, then a more complicated definition must be used, which reduces to the one we

gave under the assumption that Iγ is a torus. However, our actual results fall under this

assumption so we will not go into the general definitions.

In order to do a kind of Fourier analysis for orbital integrals, we observe that the classes

in the stable class of a γ ∈ V (F ) may be classified by a cohomology set. For a scheme

12
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X defined over F , we use the standard notation H1(F,X) to denote the nonabelian Galois

cohomology set H1(Gal(F/F ), X(F )).

1.3.2 Proposition. Let G act on a variety V and γ ∈ V (F ). Then the classes in the stable

class of γ are in bijection with the set

D = Dγ := ker[H1(F, Iγ) → H1(F,G)]

via the map

ψ : St(γ) −→ D

[ρ(g)γ] 7−→ [σ 7→ g−1σ(g)].

Here, the map H1(F, Iγ) → H1(F,G) is induced by the inclusion Iγ → G and ρ denotes the

action of G on V .

Proof. The element ρ(g)γ is an element of V (F ), and so is fixed by any element σ of

Gal(F/F ). Hence for any such σ, we have

ρ(σ(g))γ = ρ(g)γ.

Thus, the element g−1σ(g) ∈ Iγ(F ), and by definition σ 7→ g−1σ(g) is trivial in H1(F,G).

Next, we show that ψ[ρ(g)γ] is independent of the representative g chosen. Indeed, suppose

that [ρ(g)γ] and [ρ(g′)γ] are the same G(F ) class. Then there exists an h ∈ G(F ) such that

ρ(h)ρ(g)γ = ρ(g′)γ. Hence y = g−1hg′ ∈ Iγ(F ) is such that

g′−1σ(g′) = y−1g−1σ(y)

for all σ ∈ Gal(F/F ), and so the cocycles σ 7→ g−1σ(g) and σ 7→ g′−1σ(g′) represent the

same element in H1(F, Iγ).

Let us show injectivity. Suppose that σ 7→ g−1σ(g) and σ 7→ g′−1σ(g′) are cohomologous

cocycles with values in Iγ(F ). Then, there exists an element y ∈ Iγ(F ) such that g−1σ(g) =

13
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y−1g′−1σ(g′)σ(y). Moving everything with a σ to one side we get the equality

g′yg−1 = σ(g′yg−1)

and so z = g′yg−1 is an element in G(F ) such that ρ(z)ρ(g)γ = ρ(g′)γ. Thus ρ(g)γ and

ρ(g′)γ are in the same class and hence represent the same G(F ) class. Thus the map ψ is

injective.

Finally, we show that ψ is surjective. Recall [Ser97, Section 5.4] that to the inclusion Iγ

there corresponds an exact sequence of pointed sets

(G/Iγ)(F ) → H1(F, Iγ) → H1(F,G).

Hence for each element aσ ∈ D there exists a gIγ(F ) ∈ (G/Iγ)(F ) such that g−1σ(g) = aσ.

By definition, σ(g)Iγ(F ) = gIγ(F ) and so [ρ(g)γ] is the required class such that ψ([ρ(g)γ]) =

aσ. �

Of course, so far we have only a pointed set D, which is not very helpful for doing

harmonic analysis. In the case where F is a nonarchimedean local field, however, D is an

abelian group. Indeed, we have the following which is very useful for computation:

1.3.3 Theorem ([Kot84, Section 6]). Let F be a complete nonarchimedean local field

and Γ = Gal(F/F ). For a and any torus T , one may identify the map H1(F, T ) →

H1(F,G) with the map

[π0(Ť
Γ)]D → [π0(Z(Ǧ)

Γ]D.

Here π0 denotes the functor that takes an algebraic group to its group of connected com-

ponents, X 7→ X̌ denotes taking the dual group, Z(−) denotes the center, and D denotes

taking characters. Here, by dual group we mean the complex points of the complex reduc-

tive group obtained by switching the character and cocharacter lattice, sometimes referred

to as the connected Langlands dual. For example, if T is a torus over F , then its dual is

Hom(TF ,Gm,F )⊗Z C×, which has a natural action of Gal(F/F ).

14
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Alternatively, still assuming that F is nonarchimedean, one may also identify D with

Im[H1(F, T sc) → H1(F, T )]. Here, T sc is the preimage under the map Gsc → [G,G] of the

image of T by the map G→ [G,G], where Gsc denotes the simply connected cover of [G,G],

though this result is less useful for computation.

Given a character κ : D → C, we define the κ-orbital integral of γ to be the distribution

Oκ
γ(f) =

∑

γ′

κ(γ′)Oγ′(f).

Here, κ(γ′) denotes the evaluation of κ on the element of A associated to the class of γ′ in

the stable class of γ. For a moment let V = g be the adjoint representation. The following

theorem is usually referred to as the fundamental lemma.

1.3.4 Theorem ([Ngô10]). Let F be a complete nonarchimedean local field of suffi-

ciently large positive characteristic. If κ : Dγ → C× is a character, then there exists an

endoscopic group H such that for matching regular semisimple classes represented by

γ ∈ g(F ) and γH ∈ h(F ), there is an equality

Oκ
γ(1g(o)) = ∆Oκ=1

γH
(1h(o)).

Here ∆ is some power of q up to a root of unity and depends only on γ and γH .

For instance, if κ is the trivial character then the statement reduced to the trivial statement

with G = H. To actually deduce a theorem that can be applied to the trace formula from

this one, a number of reductions are required, e.g. [LS90] to go from groups to Lie algebras,

[Wal06] to go from positive characteristic to characteristic zero, and [Hal95] to go from unit

elements to the full Hecke algebra, among other things. Suffice it to say, this reduction

of the original fundamental lemma as written by Langlands [Lan83] to the statement Ngô

proved is a somewhat involved process that is outside the scope of the current work, and the

reader is advised to consult [Hal12] for more details. We are aware that similar theorems are

needed for a general relative fundamental lemma. However, since we are presently interested

in unitary groups, we expect that proving a version of the fundamental lemma usable in

arithmetic applications should be significantly easier as in [LN08], where the authors take a

15



1.4. A SUMMARY OF OUR RESULTS ON SYMMETRIC SPACES Jason Polák

more direct approach.

At any rate, as we have mentioned, for distinguished automorphic representations, one

can establish relative trace formulas, and our goal is to develop a fundamental lemma suitable

for use in such relative trace formulas. We remark that there already exists fundamental

lemmas in some special cases. However, none of these are endoscopic in the sense that they

use a relation between κ-orbital integrals and stable orbital integrals on smaller groups. Such

an endoscopic fundamental lemma would be an important tool for the comparison of relative

trace formulas. In this thesis, we begin the study of such a problem by studying the Lie

algebra version of the problem.

1.4 A Summary of Our Results on Symmetric Spaces

We will initiate the study of relative endoscopy starting out with the local version on Lie

algebras since the explicit computations are a little easier in this setting. And, the Lie

algebraic version of orbital integrals for the quotient Un ×Un\U2n turn out to belong to the

well-studied notion of symmetric space, the basic properties of which were established by

Kostant and Rallis [KR71] in characteristic zero and Levy [Lev07] in positive characteristic.

Let G be a reductive algebraic group over a field F . Let θ : G→ G be an automorphism

of order two, and let G0 := (Gθ)◦ denote the connected component of the fixed point group

Gθ. The group G0 is reductive [Vus74] and acts on the −1-eigenspace

g1 := {x ∈ g : θ(x) = −x}

via the adjoint action. Let γ ∈ g1(F ) be semisimple, and additionally regular, which means

that the stabiliser Iγ of γ in G0 has minimal dimension. As usual, we assume that Iγ is

a torus. If F is a complete nonarchimedean local field, we wish to understand the orbital

integrals of the form

C∞
c (g1(F )) −→ C

f 7−→ Oγ(f) :=

∫

Iγ(F )\G0(F )

f(Ad(g)−1γ)
dg

dgγ
.
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Establishing a relative fundamental lemma for κ-orbital integrals is our goal.

The next two chapters of this thesis corresponds to the results of two papers that give

partial progress towards this goal. In Chapter 2, we actually verify a relative fundamental

lemma on Lie algebras, the precise statement of which is Theorem 2.1.2. This is the first

example of a relative endoscopic fundamental lemma that has appeared in the literature, and

hence is the first piece of evidence that a phenomenon of endoscopy is at work for symmetric

spaces. The entire chapter is devoted to its verification, which is somewhat technical but

completely elementary. The results have since been published in [Pol15b].

In Chapter 3, we study a geometric interpretation of orbital integrals via affine Springer

fibers. We compute the dimension of this ind-scheme for the symmetric spaces appearing

in Chapter 2. These dimensions are important for understanding the transfer factor that

appear in fundamental lemmas. It can also be found as a preprint in [Pol15a].
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Chapter 2

A Lie Algebra Fundamental Lemma

2.1 Introduction

In this chapter (which is a slightly modified version of the published paper [Pol15b]) we

study κ-orbital integrals for a pair (G, θ) where G is a connected reductive algebraic group

over a complete nonarchimedean local field and θ : G → G is an involution. The orbital

integrals will then be integrals on orbits for the action of (Gθ)◦ on g1 = {x ∈ g : θ(x) = −x}.

We first introduce a little notation.

Let F be a complete nonarchimedean local field of zero or odd positive characteristic with

algebraic closure F and residue field Fq. Let E/F an unramified quadratic extension. We

denote the nontrivial action of the Galois group by x 7→ x. Since E/F is fixed throughout,

we simply use N(x) = xx to denote the norm of x. We fix once and for all a δ ∈ E such

that δ = −δ and v(δ) = 0 so that Fδ = {x ∈ E : x = −x}. Let o ⊂ F be the ring of

integers with maximal ideal m, and let oE be the ring of integers of E. We write q = |o/m|,

the cardinality of the residue field. We fix once and for all a uniformiser π, and denote the

resulting valuation on F by v : F× → Z so that v(π) = 1.

In our computations we will consider various Haar measures on locally compact groups

of the form G(F ) where G is a linear algebraic group over o. These are always normalised

so that G(o) has volume 1. We will need the following proposition which follows from oE

being stable under Gal(E/F ).
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2.1.1 Proposition. If ax+ b ∈ oE where a, b ∈ F and x ∈ Fδ then ax ∈ oE and b ∈ oE.

Let γ ∈ g1(F ) be regular semisimple and let Iγ be its stabiliser, which we assume is a

torus. We write D(Iγ) for the abelian group that parametrises classes in the stable class

of γ. Let κ : D(Iγ) → C× be a character. In this setting we have a κ-orbital integral

Oκ
γ(1) =

∑

γ′

κ(γ′)

∫

Iγ′ (F )\G0(F )

1(Ad(g)−1γ′)
dg

dt
(2.1)

In this chapter, we prove a fundamental lemma for (U(4), θ) where θ is an involution such that

U(4)θ ∼= U(2) × U(2) and when γ is of the form γ = diag(x, y,−y,−x) with x 6= ±y ∈ F×.

Motivated by the usual fundamental lemma for unitary groups, we define for the nontrivial

κ : D(Iγ) → C× the endoscopic symmetric space to be (H, θH) = (U2, σH)× (U2, σH) where

σH : U2 → U2 is such that UσH

2
∼= U1×U1. We then set γH = diag(x,−x)×diag(y,−y) ∈ h1.

This gives a transfer γ 7→ γH .

2.1.2 Theorem. Assume that γ = diag(x, y,−y,−x) satisfies v(x + y) > v(x − y).

Then κ-orbital as defined in (2.1) satisfies

Oκ
γ(1g1(o)) = ∆(γ, γH)SOγH (1h1(o)).

where ∆(γ, γH) ∈ C can be calculated explicitly and is a simple power of q up to a root

of unity.

Even though relative orbital integrals have been considered previously in the literature, this

is the first known example of endoscopy in this setting, and will be helpful in formulating

more general relative endoscopic fundamental lemmas.

The Lie subalgebra g0 = gθ of fixed points also plays an important role. For x ∈ g1, if

dim zg0(x) ≤ dim zg0(y) for all y ∈ g1, then we say that x is regular. This is equivalent to

the orbit G0 · x having minimal dimension. For this and further facts, the reader is referred

to the paper [Lev07].
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2.2. U2 × U2 →֒ U4 AND REGULAR ELEMENTS Jason Polák

2.2 U2 × U2 →֒ U4 and Regular Elements

Define the n× n matrix

Jn =




1

�

1


 .

The n× n unitary group functor is defined for all F -algebras R by

Un(R) = {g ∈ GLn(R⊗F E) : Jnḡ
−tJn = g}

and its Lie algebra is the functor given by

g := un(R) = {x ∈ gln(R⊗F E) : −Jnx
tJn = x}.

From now on we consider the case n = 4. We let θ : ResE/FGL4 → ResE/FGL4 be conjugation

by

θ =




1

−1

−1

1




which by abuse of notation we also call θ. Since θJ = Jθ, the involution θ on ResE/FGL4

gives a well-defined involution on U4. For computational purposes, it is necessary to write

down explicitly the F -points of the −1-eigenspace g1 in terms of matrices. This can be most

easily done by observing that

gl4(E)(−1) = {x ∈ gl4(E) : θ(x) = −x} =








x11 x12 x13 x14

x21 x22 x23 x24

x24 −x23 −x22 x21

−x14 x13 x12 −x11




: xij ∈ E




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2.3. STABLE CONJUGACY Jason Polák

so that g1 is then the fixed points under x 7→ −J4x
tJ4, and the F -points are then

g1(F ) =








x11 x12 x13 x14

−x12 x22 x23 −x13

−x13 −x23 −x22 −x12

−x14 x13 x12 −x11




:

x11, x22 ∈ F

x14, x23 ∈ Fδ

x12, x13 ∈ E





. (2.2)

The fixed-point group G0 := Uθ
4
∼= U2 × U2 acts on g1. Inside g1(F ) there is a, a maximal

subspace of commuting semisimple elements such that

a(F ) =








x 0 0 0

0 y 0 0

0 0 −y 0

0 0 0 −x




: x, y ∈ F





We only consider regular semisimple elements in a(F ). If γ = diag(x, y,−y,−x) ∈ a(F ),

then γ is regular if and only if x, y ∈ F× and x 6= ±y. For any regular semisimple element

γ ∈ g1(F ) with stabiliser Iγ in U2 × U2, and for any compactly supported complex-valued

smooth function f on g1(F ), we define the orbital integral

Oγ(f) :=

∫

Iγ(F )\U2×U2(F )

f(Ad(g−1)γ)
dg

dgγ
.

2.3 Stable Conjugacy

Fix a regular γ = diag(x, y,−y,−x) ∈ a(F ). The stable class of γ in g1(F ) by definition is

G0(F )γ ∩ g1(F ). When using cohomology, it is useful to express the stable class of γ as

{Ad(g)γ : g ∈ G0(F ) and g
−1σ(g) ∈ Iγ(F ) for all σ ∈ Gal(F/F )}.

In this section, we explicitly decompose the stable class of γ into G0(F )-classes. As before,

we denote by Iγ the stabiliser of γ in G0. The inclusion Iγ → G0 gives rise to a long exact
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2.3. STABLE CONJUGACY Jason Polák

sequence of pointed sets

1 → Iγ(F ) → G0(F ) → (G0/Iγ)(F ) → H1(F, Iγ) → H1(F,G0)

in nonabelian cohomology. One easily checks that the map Ad(g)γ 7→ (σ 7→ g−1σ(g)) is a

well-defined bijection from the set of classes of γ in the stable class to D := ker[H1(F, Iγ) →

H1(F,G0)]. Using this correspondence, we can compute explicit representatives for the

classes within the stable class of γ.

We first compute

Iγ =








a11 0 0 0

0 a22 0 0

0 0 a22 0

0 0 0 a11




: aiiaii = 1





.

In other words, Iγ ∼= U1×U1 (which suggests our choice of an endoscopic symmetric space).

We can compute the Galois cohomology over the finite extension E/F which splits Iγ. Doing

this we find that

H1(F, Iγ) ∼= Z/2⊕ Z/2.

Let us apply Tate-Nakayama-Kottwitz duality to show that

D = ker[H1(F, Iγ) → H1(F,G0)]

is isomorphic to Z/2. Indeed, both Z(Ĝ) and T̂ split over the extension E/F so we may

calculate the corresponding cohomology as Gal(E/F )-cohomology. The corresponding map

on dual tori Z(Ĝ) → T̂ is the homomorphism of Gal(E/F )-modules:

C× −→ C× × C×

a 7−→ (a, a)

where the Z/2 ∼= Gal(E/F ) acts via the inverse map. Taking fixed points under this action
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and then character groups gives the map

Z/2⊕ Z/2 −→ Z/2

(a, b) 7−→ a+ b

whose kernel is evidently Z/2. For the purposes of computations, we will need to find a

generator of D. Fix the isomorphism of algebras E ⊗F E
∼
−→ E ⊕ E given on pure tensors

by (a⊗ b) 7→ (ab, ab), where the multiplication on E ⊕E is pointwise and the Galois action

on the left factor of E ⊗F E translates to (a, b) = (b, a) in E ⊕ E.

Let σ ∈ Gal(E/F ) be the nontrivial element. The nontrivial element in D is then

represented (for example) by the cocycle

σ 7→ (πI4, π
−1I4) ∈ Iγ(E)

The element in (Iγ\G0)(E) that maps to the corresponding cohomology class is represented

by (B, πB) ∈ G0(E) where

B =
1

2




π−1 + 1 −π−1 + 1 0 0

−π−1 + 1 π−1 + 1 0 0

0 0 π−1 + 1 π−1 − 1

0 0 π−1 − 1 π−1 + 1



.

Indeed, it maps to σ 7→ g−1σ(g) = (πI4, π
−1I4). We remark to the unwary reader that σ here

acts on the right of E ⊗F E, which on E ⊕ E is the same (a, b) 7→ (b, a). Now H1(F, Iγ) ∼=

H1(Z/2, Iγ(E)) by Hilbert’s Theorem 90 and the Lyndon-Hochschild-Serre spectral sequence,

and Iγ(E) ∼= {diag((a, a−1), (b, b−1), (b, b−1), (a, a−1)) : a, b ∈ E×}, so we are just computing

group cohomology of a cyclic group. We get

H1(Z/2, Iγ(E)) ∼= (E×/(E×)2)× (E×/(E×)2)

∼= Z/2× Z/2.

Hence σ 7→ (πI4, π
−1I4) is a nontrivial cocycle because π is not a square in E. We set
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γstc = Ad(B)γ. Now let κ : D → {±1} be a character. We have for any compactly

supported smooth function f on g1(F ) the κ-orbital integral

Oκ
γ(f) =

∫

Iγ(F )\G0(F )

f(Ad(g−1)γ)dg + κ(−1)

∫

Iγstc (F )\G0(F )

f(Ad(g−1)γstc)dg.

We note that we can omit the stabilisers of γ and of γstc since their F -points are compact.

We would like to compute this integral when κ is the nontrivial character and when f = 1,

the characteristic function of g1(o):

Oκ
γ(1) =

∫

G0(F )

1(Ad(g−1)γ)dg −

∫

G0(F )

1(Ad(g−1)γstc)dg.

This is the goal of the remainder of the chapter.

2.4 Preliminaries on Integration

We choose a parabolic P so that we get an Iwasawa decomposition

G0(F ) = P (F )G0(o) =M(F )U(F )G0(o)

where M is a Levi subgroup of P and U is the unipotent radical of P , so we reduce the

computation to one on P (F ) = M(F )U(F ). Although this does simplify matters, since the

stabiliser of γ is compact, we unfortunately cannot use the method of descent that would

otherwise make the computation significantly easier. Now, to specify a parabolic of G0 is

the same thing as giving a cocharacter λ : Gm → G0. We use the cocharacter

Gm −→ G0

r 7−→
1

2




r + r−1 0 −r + r−1 0

0 r + r−1 0 r − r−1

−r + r−1 0 r + r−1 0

0 r − r−1 0 r + r−1



.
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One verifies easily that λ is both θ-fixed and actually does land in U4. This cocharacter

uniquely specifies the parabolic P = {g ∈ G0 : limr→0 λ(r)gλ(r
−1) exists }. The unipotent

radical of this parabolic is given by U = {g ∈ G0 : limr→0 λ(r)gλ(r
−1) = 1} and we calculate

the F -points of the unipotent radical to be isomorphic to Fδ × Fδ via

Fδ × Fδ −→ U(F )

(c, d) 7−→




c+ 1 d c −d

−d −c+ 1 −d c

−c −d −c+ 1 d

−d −c −d c+ 1



.

(2.3)

For integrating, we use the product Haar measure on Fδ × Fδ where on each factor Fδ we

choose a Haar measure so that oδ has unit volume. A Levi subgroup of P is the subgroup

that centralises the cocharacter λ. We calculate its F -points to be isomorphic to E× × E×

through the isomorphism

E× × E× −→M(F )

(r1, r2) 7−→
1

4




r1+r2+r−1

1
+r−1

2
r1+r2−r−1

1
−r−1

2
r1−r2−r−1

1
+r−1

2
−r1+r2−r−1

1
+r−1

2

r1+r2−r−1

1
−r−1

2
r1+r2+r−1

1
+r−1

2
r1−r2+r−1

1
−r−1

2
−r1+r2+r−1

1
−r−1

2

r1−r2−r−1

1
+r−1

2
r1−r2+r−1

1
−r−1

2
r1+r2+r−1

1
+r−1

2
−r1−r2+r−1

1
+r−1

2

−r1+r2−r−1

1
+r−1

2
−r1+r2+r−1

1
−r−1

2
−r1−r2+r−1

1
+r−1

2
r1+r2+r−1

1
+r−1

2


 (2.4)

Again, for integration, we use the product Haar measure on E× ×E× so that o×E in E× has

unit volume.

We note that multiplying the matrix in 2.4 either on the left or the right by the matrix

that represents the cocycle is the same matrix but with ri replaced with πri for i = 1, 2.

Thus, in any expressions that are a function of mγm−1 for m ∈M , making this replacement

gives us the equations for mγstcm
−1.

In making these reductions, we are left to evaluate the integral

Oκ
γ(1) =

∫

M(F )

∫

U(F )

1(Ad(u−1) Ad(m−1)γ)dudm

−

∫

M(F )

∫

U(F )

1(Ad(u−1) Ad(m−1)γstc)dudm
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where the Haar measures are chosen so that U(o) and M(o) each have unit volume. We

now examine an element of the form Y = Ad(u−1) Ad(m−1)γ, where u is a matrix as in

(2.3) and m is a matrix as in (2.4). Since Y ∈ g1, by the explicit form of g1 in (2.2), we see

that Y ∈ g1(o) exactly when v = [Y11, Y12, Y13, Y14, Y22, Y23]
t ∈ o6. And, v ∈ o6 exactly when

Av ∈ o6 for any A ∈ GL6(o). In particular, we take

A =




0 −1 1 0 −1 1

1 −1 −1 −1 0 0

0 1 1 0 −1 −1

1 1 −1 1 0 0

1 1 1 −1 0 0

1 −1 1 1 0 0




, Av =




−Y12 + Y13 − Y22 + Y23

Y11 − Y12 − Y13 − Y14

Y12 + Y13 − Y22 − Y23

Y11 + Y12 − Y13 + Y14

Y11 + Y12 + Y13 − Y14

Y11 + Y13 − Y12 + Y14




.

We calculate that det(A) = −32, so that indeed A ∈ GL6(o). Now it is simply a matter of

calculating Y = Ad(u−1) Ad(m−1)γ, and each of the quantities in Av. Straightforward but

tedious computations, and making the harmless change of variables (d − c  c, d + c  d)

show that

−Y12 + Y13 − Y22 + Y23 =
r2
r1
(x+ y)(−c− 1

2
) + 1

2
(x− y) 1

r1r2
(2.5)

Y 11 − Y 12 − Y 13 − Y 14 =
r2
r1
(x+ y)(−c+ 1

2
) + 1

2
(x− y) 1

r1r2
(2.6)

Y 12 + Y 13 − Y 22 − Y 23 =
r2
r1
(x+ y)(−d− 1

2
) + 1

2
(x− y)r1r2 (2.7)

Y11 + Y12 − Y13 + Y14 =
r2
r1
(x+ y)(−d+ 1

2
) + 1

2
(x− y)r1r2 (2.8)

Y 11 + Y 12 + Y 13 − Y 14 = 2 r2
r1
cd(x+ y)− d

[
r2
r1
(x+ y) + 1

r1r2
(x− y)

]

− r1r2c(x− y) + 1
2

[
r1r2(x− y) + r1

r2
(x+ y)

] (2.9)

Y11 + Y13 − Y12 + Y14 = 2 r2
r1
cd(x+ y)− c

[
r2
r1
(x+ y) + r1r2(x− y)

]

− 1
r1r2

d(x− y) + 1
2

[
r1
r2
(x+ y) + 1

r1r2
(x− y)

] (2.10)

We note that we have also harmlessly replaced some terms by their conjugates. We now

simplify these terms even further, preserving their status of integrality. Subtracting (2.5)

from (2.6) shows that the integrality of these implies that r2
r1
(x+y) is integral. In particular,
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it thus follows that if (2.5) is integral then so is

r2
r1
(x+ y)(−c) + 1

2
(x− y) 1

r1r2
. (2.11)

Multiplying this expression by the valuation-zero term π−(v(r1)+v(r2))r1r2 and applying Propo-

sition 2.1.1 shows that each term of this expression is in fact integral exactly when the entire

expression is integral. We can of course apply the same reasoning to (2.7) and (2.8), which

shows that (2.5)-(2.8) being integral is equivalent to the following expressions being integral:

E1 =
r2
r1
(x+ y) E4 = (x− y) 1

r1r2

E2 =
r2
r1
(x+ y)c E5 = (x− y)r1r2

E3 =
r2
r1
(x+ y)d

We observe also that if we subtract (2.8) from (2.9), we get the same thing as subtracting

(2.6) from (2.10), both differences being equal to

2 r2
r1
cd(x+ y)− (x− y)

[
cr1r2 +

d
r1r2

]
+ 1

2
r1
r2
(x+ y) (2.12)

so we might as well replace (2.9) and (2.10) by (2.12). We can again apply Proposition 2.1.1

to (2.12) multiplied by π−(v(r1)+v(r2))r1r2, which tells us that the integrality of (2.12) is

actually equivalent to the integrality of these two:

E6 = 4 r2
r1
cd(x+ y) + r1

r2
(x+ y)

E7 = (x− y)
[
cr1r2 +

d
r1r2

]

We have come to the end of our simplifications on the conditions that determine whether

Y = Ad(u−1) Ad(m−1)γ is integral.
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2.5 Elimination of Fiendish Cases

We have determined in §2.4 expressions E1, E2, . . . , E7 that are integral exactly when the

element

Ad(u−1) Ad(m−1)γ

is integral. We denote by Estc
1 , Estc

2 , . . . , Estc
7 the corresponding equations for γstc. Recall

that to get the conditions for γstc, we just replace ri by πri for i = 1, 2 in E1, . . . , E7. For

the remainder of the chapter, we set

h = v(r1) + v(r2),

Vm = v(x− y)

Vp = v(x+ y).
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To aid the reader, we list E1, . . . , E7 and their stable versions, along with their valuations:

E1 =
r2
r1
(x+ y) Estc

1 = r2
r1
(x+ y)

v(E1) = h+ Vp − 2v(r1) v(Estc
1 ) = h+ Vp − 2v(r1)

E2 =
r2
r1
(x+ y)c Estc

2 = r2
r1
(x+ y)c

v(E2) = h+ Vp + v(c)− 2v(r1) v(Estc
2 ) = h+ Vp + v(c)− 2v(r1)

E3 =
r2
r1
(x+ y)d Estc

3 = r2
r1
(x+ y)d

v(E3) = h+ Vp + v(d)− 2v(r1) v(Estc
3 ) = h+ Vp + v(d)− 2v(r1)

E4 = (x− y) 1
r1r2

Estc
4 = (x− y) 1

πr1r2

v(E4) = Vm − h v(Estc
4 ) = Vm − h− 1

E5 = (x− y)r1r2 Estc
5 = (x− y)πr1r2

v(E5) = Vm + h v(E5) = Vm + h+ 1

E6 = 4 r2
r1
cd(x+ y) + r1

r2
(x+ y) Estc

6 = 4 r2
r1
cd(x+ y) + r1

r2
(x+ y)

v(E6) ≥ min
{

h+Vp+v(c)+v(d)−2v(r1),
Vp−h+2v(r1)

}
v(Estc

6 ) ≥ min
{

h+Vp+v(c)+v(d)−2v(r1),
Vp−h+2v(r1)

}

E7 = (x− y)
[
cr1r2 +

d
r1r2

]
Estc

7 = (x− y)
[
cπr1r2 +

d
πr1r2

]

v(E7) ≥ min
{

Vm+v(c)+h,
Vm+v(d)−h

}
v(Estc

7 ) ≥ min
{

Vm+v(c)+h+1,
Vm+v(d)−h−1

}

We see that only the fourth, fifth, and seventh expressions differ between γ and γstc. We

observe that the difficulties will occur mainly with the sixth and seventh, since they are

sums. In this section, we eliminate some of the more fiendish difficulties to prepare the way

for the main calculation in §2.6. In order to lessen the wordiness and symbolism in the

sequel, the summands of E6 will refer to the two terms 4 r2
r1
cd(x+y) and r1

r2
(x+y). Similarly,

the summands of E7 will refer to the two terms: (x − y)cr1r2 and (x − y) d
r1r2

. We also use

this terminology, suitably modified, for the stable versions. For example, if E6 is integral,

then we know that either both summands are integral or neither are. These possibilities for

E6 and E7 break down the computation into various cases, and the next proposition shows

that the worst of these actually cannot occur.

2.5.1 Lemma. If none of the summands in E6 and E7 are integral, then E6 and E7 cannot
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be simultaneously integral.

Proof. We proceed by contradiction, assuming that none of the summands in E6 and E7

are integral, but that both E6 and E7 are integral. In this case, the valuation of the first

summand must be equal to the valuation of the second in E6, and the same is true of E7.

Thus, we get a pair of equations:

2[v(r2)− v(r1)] + v(c) + v(d) = 0,

2[v(r2) + v(r1)] + v(c)− v(d) = 0.

In particular, v(c) = −2v(r2) and v(d) = 2v(r1). Hence

v
(

r2
r1
d(x+ y)π−(h+Vp+Vm)

)
= −Vm.

Multiply E6 by the inverse of the expression in v(−) to get

4cπh+Vp+Vm +
N(r1)π

h+Vp+Vm

dN(r2)
∈ πVmo. (2.13)

Using the same procedure on E7 gives

4cπh+Vm+Vp +
4dπh+Vm+Vp

N(r1)N(r2)
∈ πVpo. (2.14)

We take the difference between (2.13) and (2.14), obtaining

πh+Vm+Vp

dN(r1)N(r2)
(N(r1)− 2d)(N(r1) + 2d). (2.15)

We note that N(r1) ∈ F whereas 2d ∈ Fδ. Hence, the valuation of N(r1) ± 2d is precisely

v(d). Thus, the valuation of (2.15) is Vm + Vp + v(d) − h. There are two cases to consider:

either Vp ≥ Vm or Vp < Vm.

Case 1: Vp ≥ Vm. Then (2.15) lies in πVmo, or in other words, v(d) + Vp + Vm − h ≥ Vm.

Simplifying, we get v(d) + Vp − h ≥ 0. On the other hand, the first summand of E6 also has

valuation v(d) + Vp − h, showing that this summand is integral, which is a contradiction.
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Case 2: Vp < Vm. Then (2.15) lies in πVpo, or in other words, v(d) + Vp + Vm − h ≥ Vp.

Hence v(d) + Vm − h ≥ 0, but this is the valuation of the second summand of E7, which is

again a contradiction. �

2.5.2 Remark. In this thesis, Case 2 in the above proof does not actually occur since we will

assume for the actual computation that Vp > Vm, but we have included the more general

statement for completeness.

The reader will have no trouble applying the same argument to prove the stable version.

2.5.3 Lemma. If none of the summands in Estc
6 and Estc

7 are integral, then Estc
6 and Estc

7

cannot be simultaneously integral.

The next lemma allows us a significant simplification if we stick with a “limiting case”

for γ.

2.5.4 Lemma. Suppose that Vp > Vm, that E1, E2, . . . , E7 are integral, and that not all the

Estc
i are integral (the last condition being equivalent to: Estc

7 is not integral). Under these

conditions, if the summands of E7 are integral, then the summands of E6 are integral as well.

Proof. We suppose by contradiction that we have a solution that makes E1 to E7 integral,

that the summands of E7 are integral, but that the summands of E6 are not integral. Before

we list the inequalities in this case, let us make three observations.

1. From E2, we get h + Vp + v(c) − 2v(r1) ≥ 0. However, the first summand of E6 not

being integral is equivalent to h + Vp + v(c) + v(d) − 2v(r1) < 0. Hence v(d) < 0.

Repeating the argument with E3 in place of E2 shows v(c) < 0.

2. The valuation of the first summand of E6 is equal to the valuation of the second. This

implies that v(c) + v(d) = 4v(r1)− 2h.

3. Since E4 = Estc
4 , any solution of E1, . . . , E7 will also be a solution of the stable versions

unless v(d) = h − Vm, so we evaluate only under this additional condition, and this

implies based on our second observation that v(c) = 4v(r1)− 3h+ Vm.
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Hence we have the following inequalities, by using the substitutions in (1)-(3) in E2, E3,

either term of E6, and the first term of E7 being integral:

2v(r1) ≥ 2h− Vp − Vm

2h+ Vp − Vm ≥ 2v(r1)

h− Vp > 2v(r1)

2v(r1) ≥ h− Vm

Or, more succinctly,

min{2h+ Vp − Vm, h− Vp − 1} ≥ 2v(r1) ≥ max{2h− Vp − Vm, h− Vm}.

We see that 2h+Vp−Vm ≥ h−Vp− 1 is equivalent to h+2Vp−Vm+1 ≥ 0. Since Vp > Vm,

so that h+ 2Vp − Vm + 1 ≥ h+ Vm + 1 ≥ 1. Similarly, h− Vm ≥ 2h− Vm − Vm is equivalent

to Vp ≥ h, which is true again since Vp > Vm. Hence we have that,

h− Vp − 1 ≥ 2v(r1) ≥ h− Vm.

So h− Vp − 1 ≥ h− Vm, or equivalently, Vm ≥ Vp + 1, which is absurd. �

Again, the same argument will apply to the stable version.

2.5.5 Lemma. Suppose that Vp > Vm, and that Estc
1 , Estc

2 , . . . , Estc
7 are integral, but that

at least one of E1, . . . , E7 is not integral. If the summands of Estc
7 are integral, then the

summands of Estc
6 are integral as well.�

2.6 Brute Force Calculations

We have introduced the orbital integral

Oκ
γ =

∫

G0(F )

1(Ad(g)−1γ)dg −

∫

G0(F )

1(Ad(g)−1γstc)dg. (2.16)
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The integral
∫
G0(F )

1(Ad(g−1γ)dg is the same as the measure of the set

{(c, d, r1, r2) ∈ Fδ × Fδ × E× × E× : E1, . . . , E7 are integral },

and the analogous statement holds for the stable version. To evaluate the orbital integral,

we do as follows: first, we find the measure of the subset of Fδ×Fδ×E××E× such that all

the E∗ are integral but at least one of E
stc
∗ is not integral. We refer to this as the (1, 0)-case.

Similarly, the (0, 1)-case is when all of Estc
∗ are integral but at least one of E∗ is not. We

then take the measure of the (1, 0) case and subtract the measure of the (0, 1) case.

In this section we carry out the calculation, evaluating the integral. Our strategy is to

fix h = v(r1) + v(r2), write down an expression for the measure of the solution set, and then

sum over all the possibilities for h:

2.6.1 Lemma. The integrality of E4 and E5 is equivalent to the inequality Vm ≥ h ≥ −Vm.

Similarly, the integrality of Estc
4 and Estc

5 is equivalent to Vm − 1 ≥ h ≥ −Vm − 1. In either

case, if Vm < 0, then neither of this equalities can be satisfied and hence the κ-orbital integral

vanishes.�

2.6.2 Definition. We say that γ is nearly singular if Vp > Vm.

For the rest of this chapter, we assume that γ is nearly singular, which is relatively

harmless since our calculation under this assumption still should give us the correct transfer

factor, assuming that there is a sane version of endsocopy operating in the midst. At any

rate, in view of Lemmas 2.5.1,2.5.3,2.5.4, and 2.5.5, we then have to consider two possibilities:

all summands in E6 and in E7 are integral, and the summands of E6 are integral but the

summands of E7 are not.

2.7 Integer Arithmetic and Measures

Here we state the properties of floor and ceiling functions we use. For any r ∈ R we write

⌊r⌋ and ⌈r⌉ for the floor of r and the ceiling of r respectively. If a, b ∈ Z, then we will

frequently need the following facts that are easy to verify, but included for convenience in
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following lengthy computations:

∣∣{x ∈ Z : a ≥ 2x ≥ b}
∣∣ =

⌊a
2

⌋
−

⌈
b

2

⌉
+ 1 =





a−b
2

+ 1 if a, b are even

a−b
2

if a, b are odd

a−b+1
2

if a, b have opposite parity
⌊a
2

⌋
=

⌈
a− 1

2

⌉

⌊a
2

⌋
+ 1 =

⌊
a+ 2

2

⌋

⌈a
2

⌉
+ 1 =

⌈
a+ 2

2

⌉

In all sections, (c, d) ∈ Fδ×Fδ, and Fδ has the Haar measure so that oδ has unit volume.

Then Fδ×Fδ has the product measure. Moreover, r1 ∈ E×, and E× has the Haar measure

so that o×E has unit volume.

2.8 Computations: All Summands Integral

In this section, we evaluate case (1, 0) (resp. (0, 1)) when all summands of E6 and E7 (resp.

Estc
6 and Estc

7 ) are integral. We consider two cases: one where h = Vm − 1, . . . ,−Vm for both

integrals, and the other where h = Vm for Oγ and h = −Vm − 1 for Oγstc . In order to make

reading this section easier, here are the inequalities that must be satisfied in this case:

2.8.1 Lemma. Suppose all summands are integral. Then the inequalities defining the set
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that we must determine the measure of are:

For Oγ For Oγstc

h+ Vp − 2v(r1) ≥ 0

h+ Vp + v(c)− 2v(r1) ≥ 0

h+ Vp + v(d)− 2v(r1) ≥ 0 Same as for Oγ

h+ Vp + v(c) + v(d)− 2v(r1) ≥ 0

Vp − h+ 2v(r1) ≥ 0

Vm + v(c) + h ≥ 0 Vm + v(c) + h+ 1 ≥ 0

Vm + v(d)− h ≥ 0 Vm + v(d)− h− 1 ≥ 0

Proof. We take the terms listed at the beginning of §2.5 and set the valuation of each of

them to be greater than or equal to zero for E1 to E5 and E
stc
1 to Estc

5 , and set the valuation

of each summand to be greater than or equal to zero for E6, E7, E
stc
6 and Estc

7 . We note

that we have not written down the inequalities for E4, E
stc
4 , E5, or E

stc
5 because these will

automatically be integral given our assumptions on h. �

Case (1, 0): The Integral Oγ for h = Vm

Our starting inequalities at the start of §2.8 reduce to the following:

Vm + Vp − 2v(r1) ≥ 0 (2.17)

Vm + Vp + v(c)− 2v(r1) ≥ 0 (2.18)

Vm + Vp + v(d)− 2v(r1) ≥ 0 (2.19)

Vm + Vp + v(c) + v(d)− 2v(r1) ≥ 0 (2.20)

Vp − Vm + 2v(r1) ≥ 0 (2.21)

2Vm + v(c) ≥ 0 (2.22)

v(d) ≥ 0 (2.23)
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We note that since h = Vm, the expressions Estc
∗ cannot all be integral since in that case we

must have Vm − 1 ≥ h. Since v(d) ≥ 0, we see that (2.19) and (2.20) are redundant, so we

can eliminate them. In subsequent calculations, we shall frequently eliminate the obvious

redundant inequalities without note. There are two cases to consider: v(c) ≥ 0 and v(c) < 0.

Case 1: v(c) ≥ 0. The remaining inequalities are

Vm + Vp ≥ 2v(r1) ≥ Vm − Vp

v(c) ≥ 0

v(d) ≥ 0.

At this point, the reader may wish to review §2.7 containing various identities with floor and

ceiling functions. Using these we see that the measure of the corresponding set of solutions

is




Vp + 1 if Vm + Vp is even

Vp if Vm + Vp is odd

Case 2: v(c) < 0. Now the relevant inequalities are

Vm + Vp + v(c) ≥ 2v(r1) ≥ Vm − Vp (2.24)

0 > v(c) ≥ −2Vm (2.25)

v(d) ≥ 0 (2.26)

We see that (2.24) implies that v(c) ≥ −2Vp, which we would have to use instead of v(c) ≥

−2Vm if we did not assume Vp > Vm. We have the measure

(1− q−1)
−1∑

v(c)=−2Vm

q−v(c)
(⌊

Vm+Vp+v(c)

2

⌋
−
⌈
Vm−Vp

2

⌉
+ 1
)
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Case (1, 0): The Integral Oγ: h = Vm − 1, . . . ,−Vm

The assumptions for h are equivalent to E4, E5 ∈ o and Estc
4 , Estc

5 ∈ o. Hence, any solution

that makes Ei integral will make Estc
i integral except when E7 is integral but Estc

7 is not,

which is equivalent to Vm + v(d) − h ≥ 0 but Vm + v(d) − h − 1 < 0. In other words,

v(d) = −Vm + h. Since h ≤ Vm − 1 by assumption, this implies v(d) < 0. Under this

additional requirement, we reduce to the following.

2h+ Vp − Vm ≥ 2v(r1)

2h+ Vp − Vm + v(c) ≥ 2v(r1)

2v(r1) ≥ h− Vp

v(c) ≥ −h− Vm

v(d) = h− Vm

We see again that there are two cases: v(c) ≥ 0 and v(c) < 0.

Case 1: v(c) ≥ 0. Then the inequalities reduce to the product set defined by

2h+ Vp − Vm ≥ 2v(r1) ≥ h− Vp

v(c) ≥ 0

v(d) = h− Vm

Hence the measure here is

qVm−h(1− q−1)
(⌊

2h+Vp−Vm

2

⌋
−
⌈
h−Vp

2

⌉
+ 1
)

Case 2: v(c) < 0. The relevant inequalities are

2h+ Vp − Vm + v(c) ≥ 2v(r1) ≥ h− Vp

0 > v(c) ≥ −h− Vm

v(d) = h− Vm
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Hence the measure of the corresponding set is

qVm−h(1− q−1)2
−1∑

v(c)=−h−Vm

q−v(c)
(⌊

2h+Vp−Vm+v(c)

2

⌋
−
⌈
h−Vp

2

⌉
+ 1
)

Case (0, 1): The Integral Oγstc: h = −Vm − 1

Since h = −Vm−1, the expressions E∗ cannot all be integral. Because Vm+v(c)+h+1 ≥ 0,

putting h = −Vm − 1 into this gives v(c) ≥ 0. We are left with

−Vm − 1 + Vp − 2v(r1) ≥ 0

−Vm − 1 + Vp + v(d)− 2v(r1) ≥ 0

Vp + Vm + 1 + 2v(r1) ≥ 0

v(c) ≥ 0

v(d) ≥ −2Vm

We do two cases: v(d) ≥ 0 and v(d) < 0.

Case 1: v(d) ≥ 0. We have:

Vp − Vm − 1 ≥ 2v(r1) ≥ −Vp − Vm − 1

v(c) ≥ 0

v(d) ≥ 0

The measure of this set is




Vp if Vm + Vp is even

Vp + 1 if Vm + Vp is odd
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Case 2: v(d) < 0.

Vp − Vm − 1 + v(d) ≥ 2v(r1) ≥ −Vp − Vm − 1 (2.27)

v(c) ≥ 0 (2.28)

0 > v(d) ≥ −2Vm (2.29)

Transitivity in (2.27) shows that v(d) ≥ −2Vp, but this is already satisfied under our hy-

pothesis Vp > Vm. We see that the measure of this set is

(1− q−1)
−1∑

v(d)=−2Vm

q−v(d)
(⌊

Vp−Vm−1+v(d)

2

⌋
−
⌈
−Vp−Vm−1

2

⌉
+ 1
)

Case (0, 1): The Integral Oγstc: h = Vm − 1, . . . ,−Vm

We just need to evaluate under the conditions that each Estc
i is integral but at least one of

Ei is not. The only way this can happen is when v(c) = −Vm − h − 1. In particular, this

implies that v(c) < 0.

We start with the following (in)equalities:

h+ Vp + v(c)− 2v(r1) ≥ 0 (2.30)

h+ Vp + v(c) + v(d)− 2v(r1) ≥ 0 (2.31)

Vp − h+ 2v(r1) ≥ 0 (2.32)

Vm + v(c) + h+ 1 = 0 (2.33)

Vm + v(d)− h− 1 ≥ 0 (2.34)

We do two cases: v(d) ≥ 0 and v(d) < 0.

Case 1: v(d) ≥ 0. Then, taking the above inequalities, eliminating the redundant ones
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((2.31) and (2.34)), and putting v(c) = −Vm − h− 1 gives

Vp − Vm − 1 ≥ 2v(r1) ≥ h− Vp

v(d) ≥ 0

v(c) = −Vm − h− 1.

The measure of this set is then

qVm+h+1(1− q−1)
(⌊

Vp−Vm−1

2

⌋
−
⌈
h−Vp

2

⌉
+ 1
)

Case 2: v(d) < 0. We again take (2.30)-(2.34), eliminate the redundant (2.30) and make

the substitution v(c) = −Vm − h− 1 to get:

Vp − Vm − 1 + v(d) ≥ 2v(r1) ≥ h− Vp

0 > v(d) ≥ h+ 1− Vm

v(c) = −Vm − h− 1

Giving us the measure

qVm+h+1(1− q−1)2
−1∑

v(d)=h+1−Vm

q−v(d)
(⌊

Vp−Vm−1+v(d)

2

⌋
−
⌈
h−Vp

2

⌉
+ 1
)

2.9 Computation: All Summands Integral: Taking the

Difference

In this section, we take the measure we have found so far for case (1, 0) and subtract from

it the measure for case (0, 1).
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Extreme Cases: h = Vm for Oγ and h = −Vm − 1 for Oγstc

Here, we subtract from the measure for h = Vm in Oγ the measure for h = −Vm− 1 in Oγstc ,

for all summands being integral. We find the difference to be:

(−1)Vm+Vp + (1− q−1)
2Vm∑

j=1

qj
(⌊

Vm+Vp−j

2

⌋
−
⌈
Vm−Vp

2

⌉
−
⌊
Vp−Vm−1−j

2

⌋
+
⌈
−Vp−Vm−1

2

⌉)

In the summation, we see that the terms where j is odd vanish, leaving us with:

(−1)Vm+Vp + (1− q−1)
Vm∑

j=1

q2j
(⌊

Vm+Vp−2j

2

⌋
−
⌈
Vm−Vp

2

⌉
−
⌊
Vp−Vm−1−2j

2

⌋
+
⌈
−Vp−Vm−1

2

⌉)

Simplifying the floor and ceiling functions gives (−1)Vm+Vp , so that we get

(−1)Vm+Vp

(
1 + (1− q−1)

Vm∑

j=1

q2j

)
= (−1)Vm+Vp

(
1 + (q2Vm − 1)

q

q + 1

)
.

h = Vm − 1, . . . ,−Vm

There were two cases here: the first, where v(c) ≥ 0 for Oγ and v(d) ≥ 0 for Oγstc , and the

second (reverse the inequalities).

Case 1: When v(c) ≥ 0 for Oγ and v(d) ≥ 0 for Oγstc. In this case we had for Oγ the

measure:

qVm−h(1− q−1)
(⌊

2h+Vp−Vm

2

⌋
−
⌈
h−Vp

2

⌉
+ 1
)

and for Oγstc :

qVm+h+1(1− q−1)
(⌊

Vp−Vm−1

2

⌋
−
⌈
h−Vp

2

⌉
+ 1
)

We have to sum both over h = −Vm, . . . , Vm − 1, and subtract the second from the first.

However, in placing this in the summation, we may replace h in the second expression with

−h − 1, a transformation which preserves the summation range. We do this since then we
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will get pairs of nicely paired terms in the sum. So we get:

qVm(1− q−1)
Vm−1∑

h=−Vm

q−h
(⌊

2h+Vp−Vm

2

⌋
−
⌈
Vp−Vm−2

2

⌉
+
⌊
−h−Vp

2

⌋
−
⌈
h−Vp

2

⌉)

where we have converted the floor to ceiling and vice-versa in the second equation to make

following the computations with §2.7 easier. We break the summation into two sums: one

over h = −Vm,−Vm − 2, . . . , Vm − 2, and the other over h = −Vm + 1, . . . , Vm − 1. In other

words, the first is over integers of the same parity as Vm and the second opposite parity.

However, if we look at the opposite-parity case, we see that 2h + Vp − Vm and Vp − Vm − 2

have the same parity, which is the opposite parity of both −h− Vp and h− Vp. Hence, the

sum vanishes. So we just have sum over h = −Vm,−Vm +2, . . . , Vm − 2. In this case, we get

(−1)Vm+VpqVm(1− q−1)(qVm + qVm−2 + · · ·+ q−Vm+2)

= (−1)Vm+Vpq2(1− q−1)(1 + q2 + · · ·+ (q2)Vm−1)

= (−1)Vm+Vp(q2Vm − 1)
q

q + 1

Case 2: When v(c) < 0 for Oγ and v(d) < 0 for Oγstc This is a little more lengthy, but

not terribly so. We recall the two terms. The first for Oγ is

qVm−h(1− q−1)2
−1∑

v(c)=−h−Vm

q−v(c)
(⌊

2h+Vp−Vm+v(c)

2

⌋
−
⌈
h−Vp

2

⌉
+ 1
)

The one for Oγstc is

qVm+h+1(1− q−1)2
−1∑

v(d)=h+1−Vm

q−v(d)
(⌊

Vp−Vm−1+v(d)

2

⌋
−
⌈
h−Vp

2

⌉
+ 1
)

The first thing we do is replace h by −h − 1 in the γstc-version, and use j as the index

of summation over positive instead of negative numbers. After doing this, converting the

appropriate floors to ceilings and vice-versa, and subtracting the second from the first, we
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get:

qVm−h(1− q−1)2
Vm+h∑

j=1

qj
(⌊

2h+Vp−Vm−j

2

⌋
−
⌈
Vp−Vm−2−j

2

⌉
+
⌊
−h−Vp

2

⌋
−
⌈
h−Vp

2

⌉)

Of course, we have still not summed over h yet, and we also note that if h = −Vm, the

sum is actually empty. Anyways, to make sense of this chaos we write down two separate

summations again: one for h = −Vm,−Vm + 2, . . . , Vm − 2 and one for h = −Vm + 1,−Vm +

3, . . . , Vm − 1.

Case 2.1: h = −Vm,−Vm + 2, . . . , Vm − 2. Here, the upper limit of the summation is even.

We also split the summation into two sums, depending on whether j is even or odd:

qVm−h(1− q−1)2

[Vm+h
2∑

j=1

q2j
(⌊

2h+Vp−Vm−2j

2

⌋
−
⌈
Vp−Vm−2−2j

2

⌉
+
⌊
−h−Vp

2

⌋
−
⌈
h−Vp

2

⌉)

+

Vm+h
2∑

j=1

q2j−1
(⌊

2h+Vp−Vm−2j+1

2

⌋
−
⌈
Vp−Vm−1−2j

2

⌉
+
⌊
−h−Vp

2

⌋
−
⌈
h−Vp

2

⌉)]

We again see that the summation where j is odd vanishes, and we simplify the rest to get

(−1)Vm+VpqVm−h(1− q−1)2

Vm+h
2∑

j=1

q2j = (−1)Vm+VpqVm−h(1− q−1)2q2
qVm+h − 1

q2 − 1

= (−1)Vm+Vp
q − 1

q + 1
(q2Vm − qVm−h)

As a sanity check, putting in h = −Vm gives zero. Good! Let’s sum over h now to get:

(−1)Vm+Vp

[
q − 1

q + 1
q2Vm(Vm)−

q − 1

q + 1
qVm(qVm + qVm−2 + qVm−4 + · · ·+ q−Vm+2)

]

= (−1)Vm+Vp

[
q − 1

q + 1
q2Vm(Vm)−

q2

(q + 1)2
(q2Vm − 1)

] (2.35)

Case 2.2: h = −Vm + 1,−Vm + 3 · · · , Vm − 1. This time, the upper limit Vm + h is odd.
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We again split the summation into two sums, depending on whether j is odd or even:

qVm−h(1− q−1)2

[Vm+h−1
2∑

j=1

q2j
(⌊

2h+Vp−Vm−2j

2

⌋
−
⌈
Vp−Vm−2−2j

2

⌉
+
⌊
−h−Vp

2

⌋
−
⌈
h−Vp

2

⌉)

+

Vm+h+1
2∑

j=1

q2j−1
(⌊

2h+Vp−Vm−2j+1

2

⌋
−
⌈
Vp−Vm−1−2j

2

⌉
+
⌊
−h−Vp

2

⌋
−
⌈
h−Vp

2

⌉)]

This time, the opposite happens: in other words, the summation with even powers of q

vanishes, and we are left with:

− (−1)Vm+VpqVm−h(1− q−1)2

Vm+h+1
2∑

j=1

q2j−1 = −(−1)Vm+Vp
q − 1

q + 1
(q2Vm − qVm−h−1)

Summing over h = −Vm + 1,−Vm + 3, · · · , Vm − 1 gives

−(−1)Vm+Vp

[
q − 1

q + 1
q2Vm(Vm)−

1

(q + 1)2
(q2Vm − 1)

]

We add this to (2.35) to get

(−1)Vm+Vp

[
1

(q + 1)2
(q2Vm − 1)−

q2

(q + 1)2
(q2Vm − 1)

]
= (q2Vm − 1)

1− q

1 + q

Gathering of Terms

We have now collected all the terms in our integral for the “all summands positive” case.

We add them together:

(−1)Vm+Vp

[
1 + (q2Vm − 1)

q

q + 1
+ (q2Vm − 1)

q

q + 1
+ (q2Vm − 1)

1− q

q + 1

]
= (−1)Vm+Vpq2Vm .

44



2.10. COMPUTATION: SUMMANDS OF E6 INTEGRAL ONLY Jason Polák

2.10 Computation: Summands of E6 Integral Only

The last case is the case of the summands of E6 being integral only. This case is a little

different because here, it will be impossible that both E7 and Estc
7 will be simultaneously

satisfied.

2.10.1 Lemma. For the summands of E6 = Estc
6 to be integral and the summands of E7

(resp. Estc
7 ) to be not integral, the following inequalities have to be satisfied:

For Oγ (resp. For Oγstc )

h+ Vp − 2v(r1) ≥ 0

h+ Vp + v(c)− 2v(r1) ≥ 0

h+ Vp + v(d)− 2v(r1) ≥ 0

h+ Vp + v(c) + v(d)− 2v(r1) ≥ 0

Vp − h+ 2v(r1) ≥ 0

Vm + v(c) + h < 0 Vm + v(c) + h+ 1 < 0

Vm + v(d)− h < 0 Vm + v(d)− h− 1 < 0

Proof. We set the valuations of the expressions at the beginning of §2.5 to be greater than

or equal to zero for E1 to E5, and we do the same for the summands of E6. We also set the

summands of E7 (resp. Estc
7 ) to have valuation less than zero. As usual, we have omitted

the inequalities for E4, E
stc
4 , E5, E

stc
5 since these are equivalent to our assumptions on h. �

Case (1, 0): The Integral Oγ

Here, we come up with an expression for h = −Vm, . . . , Vm. We make three straightforward

observations:

1. Since Vm + h + v(c) < 0 and Vm + h ≥ 0, we must have v(c) < 0, and similarly,

Vm − h+ v(d) < 0 implies that v(d) < 0
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2. Since the summands of E7 are not integral, we must have the valuations of these terms

equal. Hence v(d)− 2h = v(c).

3. In addition, since we are solving a congruence in E7, once v(d) is chosen, the measure

of {c : v(E7) ≥ 0} is qVm+h.

Making the substitution v(c) = v(d)−2h and eliminating redundancies gives the inequalities

Vp − h+ 2v(d) ≥ 2v(r1) ≥ h− Vp

h− Vm > v(d)

We see from the first that v(d) ≥ h − Vp, which gives a lower limit for v(d). Thus, the

measure of this solution set is

qVm+h(1− q−1)
h−Vm−1∑

v(d)=h−Vp

q−v(d)
(⌊

Vp−h+2v(d)

2

⌋
−
⌈
h−Vp

2

⌉
+ 1
)
. (2.36)

Case (0, 1): The Integral Oγstc

Here we have essentially the same three observations as in §2.10, suitably modified.

1. Since Vm + h+ v(c) + 1 < 0 and Vm + h+1 ≥ 0, we must have v(c) < 0, and similarly,

Vm − h+ v(d)− 1 < 0 implies that v(d) < 0

2. Since the summands of Estc
7 are not integral, we must have the valuations of these

terms equal. Hence v(d)− 2h− 2 = v(c).

3. In addition, since we are solving a congruence in Estc
7 , once v(d) is chosen, the measure

of {c : v(E7) ≥ 0} is qVm+h+1.

We have the inequalities:

Vp − h+ 2v(d)− 2 ≥ 2v(r1) ≥ h− Vp

h+ 1− Vm > v(d) ≥ h− Vp + 1
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where the lower limit for v(d) comes from the first inequality. We obtain the measure

qVm+h+1(1− q−1)
h−Vm∑

v(d)=h−Vp+1

q−v(d)
(⌊

Vp−h+2v(d)−2

2

⌋
−
⌈
h−Vp

2

⌉
+ 1
)

(2.37)

Gathering it Together

In this case, we see that after shifting the index of summation in (2.37) so that v(d) starts

at h− Vp, we get exactly (2.36), so that the two cancel.

2.11 Results and Interpretations

The calculations of §2.6, shown particularly in §2.9 give

Oκ
γ(1) = (−1)Vm+Vpq2Vm

We recall that γ = diag(x, y,−y,−x) and Vm = v(x − y). We have suggested that the

corresponding endoscopic space (H, θH) is two copies of U(1) × U(1) →֒ U(2), given as

follows. Set J2 = ( 0 1
1 0 ). We have U(2) := {g ∈ GL2 : Jg−tJ = g} and UJ2

2
∼= U(1) × U(1),

so that θH = (J2, J2). A trivial computation shows that for γH = (diag(x,−x), diag(y,−y)),

the corresponding stable orbital integral is just one. Although this does not suggest a way

to define endoscopic pairs (H, θH) in general, it is the likely choice given the situation with

the adjoint case. Hence:

2.11.1 Theorem. For (U4, θ) and (U2 × U2, θH) with γ = diag(x, y,−y,−x) nearly

singular and γH = diag(x,−x)× diag(y,−y), we have the identity

Oκ
γ(1g1(o)) = (−1)Vm+Vpq2VmSOγH (1h1(o)).

The factor of (−1)Vm+Vp is not terribly mysterious, and one could likely eliminate it by

using the relative Kostant-Weierstrass section [Lev07], so we concentrate on the power of q.

We offer the following tentative interpretation of the power of q.
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We define γ̃ ∈ uθ(F ) by λ diag(x, y, y, x) where λ ∈ E is such that v(λ) = 0 and λ = −λ.

The map γ 7→ γ̃ gives an F -linear isomorphism between Lie(Iγ)(F ) and a(F ). But the sta-

biliser Iγ of γ in G0 is Iγ = {diag(a11, a22, a22, a11) : aiiaii = 1}. Its roots, or nonzero weights,

of its action on g1 (and on g0), are given (in terms of homomorphisms to ResE/F (Gm), using

adjointness of the restriction of scalars) by

diag(a11, a22, a22, a11) 7→ a11a
−1
22 ,

diag(a11, a22, a22, a11) 7→ a−1
11 a22.

Each root space being two-dimensional. Let D : Lie(Iγ) → Fδ be the discriminant function
∏

α(dα)
rα where rα is the F -dimension of the corresponding root space. Näıvely using the

formula in [Ngô10] with this discriminant function on γ̃ gives

D(γ̃)/2 =
2v(x− y) + 2v(x− y)

2

= 2Vm.

We shall attempt a reasonable explanation in a future work.
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Chapter 3

Dimensions of Relative Affine

Springer Fibers for GLn

We note that this chapter is a slightly modified version of the preprint [Pol15a].

3.1 Introduction

Let G be a connected algebraic group over a finite field k. Let F = k((t)) be the Laurent

series field over k and let o = k[[t]] be the ring of integers of F . Write v : F× → Z for the

valuation on F corresponding to the uniformiser t. For any representation ρ of G on a vector

space V defined over o, and γ ∈ V (F ) the set

X(G, γ)(k) = {g ∈ G(F )/G(o) : ρ(g)−1γ ∈ V (o)},

is the set of k-points of an ind-scheme X(G, γ) over k called the affine Springer fiber with

respect to γ. We have left V out of the notation since the representation shall be clear from

context. Finding a formula for the dimension of X(G, γ) when its dimension is actually finite

is an important and intriguing problem in representation theory. What is this dimension?

For simplicity, we shall assume that Iγ, the stabiliser of γ is split. The cocharacter group

X∗(Iγ) acts on X(G, γ) via the formula λ ∗ [g] = [λ(t)g] and in favourable circumstances,

X∗(Iγ)\X(G, γ) is actually a projective variety over k. We define the dimension of the
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affine Springer fiber X(G, γ) to be the dimension of this projective variety.

When ρ is the adjoint representation, this was done by Kazhdan and Lusztig for G

split over F with γ regular and in the Lie algebra of a split maximal torus [KL88], and by

Bezrukavnikov for any connected reductive G and any regular semisimple γ [Bez96].

Let G = GL2n and consider the involution θ : G→ G defined by

θ(x) =

(
In 0

0 −In

)
x

(
In 0

0 −In

)
.

Then G0 := Gθ ∼= GLn ×GLn sits inside GL2n block-diagonally. Write g for the Lie algebra

of G. We consider the representation of G0 on g1 := {x ∈ g : θ(x) = −x}. Let γ ∈ g1(F )

be semisimple, and also regular, which means that the orbit G0γ has maximal dimension.

In this thesis, we consider the affine Springer fibers X(G0, γ), and compute their dimension

when γ has a relatively simple form, analogous to the formula proved in §5 of [KL88]. More

precisely:

3.1.1 Theorem. Let γ =
(
0 1
β 0

)
∈ g1(F ) where β = diag(x1, . . . , xn) and xi 6= xj for

i 6= j. Then

dimkX(G0, γ) =
∑

i<j

v(xi − xj).

The proof of this theorem has two steps: first, we show that there is a well-defined map

X(G0, γ) → X(T, γ) where T is the diagonal maximal torus, and use the method of Kazhdan-

Lusztig [KL88] to determine the dimensions of the fibers over each t ∈ X(T, γ). Second, we

show that the dimension of the fibers is independent of t, which is not immediately apparent

in our case but was obvious in Kazhdan-Lusztig.

We are motivated by the application of our formula to the unitary symmetric spaces

given by Uθ
2n = Un × Un. The dimension we compute here should relate to the transfer

factor that we computed in Chapter 2, but currently this relationship is unknown and is

work in progress. Unfortunately, our result here does not directly apply to that case, as one

still needs to know the so-called Galois defect.
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Notations and Conventions

We assume that all reductive groups are connected. We write Scheme for the category

of schemes and Set for the category of sets. If a1, . . . , an are elements of a ring then

diag(a1, . . . , an) denotes the corresponding n × n diagonal matrix. Any element of g1 is

of the form

(
0 X

Y 0

)

where X and Y are n× n matrices; for brevity we write this element as (X, Y ).

3.2 Ind-Schemes

For any directed system Y1 →֒ Y2 →֒ Y3 →֒ · · · of schemes where each morphism Yi →֒ Yi+1

is a closed embedding, we define a functor Y = lim
−→

Yi : Schemeop → Set by first setting

Y (S) = lim
−→

HomScheme(S, Yi) for every affine scheme S, and then extend Y to a contravariant

functor on all schemes by taking its Zariski sheafification. We shall call any functor naturally

equivalent to one of this form an ind-scheme.

From now on we consider schemes over a finite field k = Fq. We write F = k((t))

and o = k[[t]]. For us, the prototypical example of an ind-scheme over k is the affine

Grassmanian whose set of k-points is G(F )/G(o) where G is a reductive algebraic group

over k. As a functor the affine Grassmanian for G, denoted by Gr(G), is usually defined to

be the fpqc-sheafification of the functor defined for each k-algebra R by

R 7−→ G
(
R((t))

)
/G
(
R[[t]]

)
.

One can recast this definition into more concrete language:

3.2.1 Proposition ([Ric14], Lemma 1.1). The affine Grassmannian represents the functor

that assigns to every k-algebra R the set of isomorphism classes of pairs (F , ϕ) where F is

a G-torsor over Spec(R[[t]]) and ϕ is a trivialisation of F [t−1] over Spec(R((t))

When G = GLn, a G-torsor over Spec(R[[t]]) is the same thing as an algebraic vector
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bundle of rank n over Spec(R[[t]]), which is in turn the same thing as R[[t]]-projective module

of rank n. So the k-points of the affine Grassmannian for GLn can be described as the set

isomorphisms ϕ : on⊗o F → F n under the following equivalence relation: ϕ ≃ ϕ′ if and only

if there exists an isomorphism β : on → on making the diagram

on ⊗o F
n

F n

on ⊗o F
n

ϕ

β⊗1

ϕ′

commute. In other words, Gr(GLn)(k) ∼= GLn(F )/GLn(o). The following Proposition 3.2.2

is a description of the ind-scheme structure on Gr(GLn) due to Gaitsgory [Gai01], general-

ising the ind-scheme structure for semisimple simply connected groups due to Kazhdan and

Lusztig.

3.2.2 Proposition. On k-schemes, the functor Gr(GLn) is naturally equivalent to the

Zariski sheafification of the direct limit Gr1 →֒ Gr2 →֒ · · · where Grm(R) is the set of

all R-flat t-stable submodules of R⊗k t
−mV [[t]]/tm+1V [[t]].

One can give an ind-scheme structure on the affine Grassmannian for all reductive groups

G by showing that a closed embedding G →֒ GLn induces a closed embedding Gr(G) →

Gr(GLn) of affine Grassmannians, and in fact one can even drop the reductive hypothesis

(see [Gai01] for details). Let us now take a look at Example 3.2.3, which is the starting point

for our investigations into the dimensions of affine Springer fibers.

3.2.3 Example (Dimension for Tori). To get an intuition for the geometric structure of

the affine Grassmanian, consider G = Gm. Then G(F )/G(o) = F×/o× which is iso-

morphic to Z as groups. As described in Proposition 3.2.2, the functor Gr(Gm) can be

written as a colimit of schemes Y1 →֒ Y2 →֒ · · · where for each m and for any field exten-

sion k′/k, the set Ym(k
′) is the set of all t-stable k′-subspaces of t−mk′((t))/tm+1k′((t)).

This space is just isomorphic to k′2m+2 where multiplication by t is the right-shift linear
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operator (a1, a2, . . . , a2m+2) 7→ (0, a1, . . . , a2m+1). For a fixed integer 0 ≤ d ≤ 2m + 2,

there is a unique d-dimensional subspace that is t-invariant.

Hence Ym(k
′) consists of one point in each irreducible component of the disjoint

union over the 2m+2 Grassmannians for t−mk′((t))/tm+1k′((t)) and so Gr(Gm) is zero-

dimensional. The same argument also shows that Gr(T ) is zero-dimensional whenever

T ∼= Gn
m.

3.3 The Fibration

The formula of Kazhdan and Lusztig was proved by first considering elements in the Lie

algebra of a Levi subgroup, and in particular, the Lie algebra of a split maximal torus to

obtain an explicit formula. The analog here is the following type of element: let γ ∈ g1(F )

be a regular semisimple element of the form

γ =

(
0 In

β 0

)
(3.1)

where β = diag(x1, . . . , xn) with xi 6= xj for i 6= j and In is the n × n identity (cf. [JR96,

Proposition 2.1]). Incidentally, the choice of such a γ determines a Cartan subspace, the

analogue of a Cartan subalgebra for symmetric spaces, and the formula we will derive gives

the dimension of the corresponding affine Springer fiber for any element in such a subspace

containing γ; see Remark 3.4.5 for further details.

We let T ⊂ G0 be the diagonal maximal split torus and B ⊂ G0 be the Borel subgroup of

upper triangular matrices in each block. Then we have an Iwasawa decomposition G0(F ) =

T (F )U(F )G0(o) where U is the unipotent radical of B.

3.3.1 Proposition. For each g ∈ G0(F )/G0(o), fix a decomposition g = tgug ∈ G0(F )/G0(o)

as in the Iwasawa decomposition. Then the map

p : G0(F )/G0(o) −→ T (F )/T (o)

g 7−→ tg
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is well-defined.

Proof. It suffices to observe that if t1u1 = t2u2 ∈ G0(o) then u−1
2 t−1

2 t1u1 ∈ G0(o) and so

t−1
2 t1 ∈ G0(o) ∩ T (F ) = T (o). �

Similarly, we can prove:

3.3.2 Proposition. If g ∈ X(G0, γ) then t = p(g) ∈ X(T, γ).

Proof. Write u = diag(v, w) where v, w ∈ GLn(F ) and similarly for t = diag(r, s) for r, s ∈

GLn(F ). Let g = tu ∈ X(G0, γ), so that Ad(g)−1γ = Ad(u)−1 Ad(t)−1γ ∈ g1(o). This is the

same as saying that the matrices

v−1r−1sw,w−1s−1βrv

have integral entries. In particular, this implies that r−1s and s−1βr have integral entries

since β is also a diagonal matrix. �

3.4 The Dimension of the Fiber

We wish to determine the dimension of X(G, γ). Since the dimension of X(T, γ) is zero

(Example 3.2.3), it suffices to determine the dimension of a fiber p−1(t), and show that this

dimension is independent of t. To do this, we will use:

3.4.1 Proposition ([GW10], Corollary 14.119). Let X and Y be finite type k-schemes and

f : X → Y be a dominant morphism of finite type. If all the nonempty fibers of f have

dimension r then dimX = dimY + r.

Let Φ+ be the set of positive roots of T with respect to B. For each m ≥ 1, we define

the set Φ+
m to be the set of roots in Φ+ that can be written as a sum of at least m roots of

Φ+. This gives us a finite filtration Φ+ = Φ+
1 ⊇ Φ+

2 ⊇ · · · ⊇ Φ+
n = 0 with Φn−1 6= 0. We let

um be the sum of the root spaces corresponding to the roots in Φ+
m. For each m, let Vm be

the sum of root spaces corresponding to the roots in Φ+
m but not in Φ+

m+1. Put more plainly

for our specific situation, Vm consists of those block diagonal matrices diag(X, Y ) where X

and Y are n× n matrices whose nonzero entries are only on the mth upper off-diagonal.
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Let Um denote the root group corresponding to um. It is the unique unipotent subgroup

of the unipotent radical U of B such that Lie(Um) = um. In particular, U1 = U . Moreover,

Um/Um+1
∼= Vm as abelian groups.

Fix a t ∈ T (F ) and a g ∈ p−1(t). Write g = tu via the Iwasawa decomposition. We

consider the linear map ϕ = [Ad(t)−1γ,−] : g → g. By assumption, we have Ad(t)−1γ ∈

g1(o), and so ϕ is defined over o and its restriction to g0(o) = Lie(G0) gives a homomorphism

ϕ : g0(o) → g1(o)

of free o-modules. We let v be the subspace of g1 consisting of elements of the form

(
0 M

N 0

)

where M and N are strictly upper triangular. The next theorem expresses the dimensions

of the fibers of X(G0, γ) → X(T, γ) over each t ∈ X(T, γ) in terms of the linear map ϕ. The

proof is similar to that of [KL88, §5, Proposition 1], modified to work with our representation.

3.4.2 Theorem. The dimension of the fiber of the map X(G0, γ) → X(T, γ) at a point

t ∈ X(T, γ) is v(det(ϕ)), where ϕ : u(o) → v(o) is the map of free o-modules given by

[Ad(t)−1γ,−].

Proof. Let g ∈ X(G0, γ) be an element in Y1 = p−1(t), and write g = tu. Writing ũ for the

image of u in U1/U2
∼= V1, we see that [Ad(t)−1γ, ũ] ∈ v(o) since Ad(u)−1 Ad(t)−1γ ∈ g1(o).

We claim that this gives a well-defined map p1 : Y1 → Z1 = v(o)/ϕ(V1(o)). Indeed, if we

choose some other u′ such that g = tu′ inX(G0, γ), then we can write u = u′v where v ∈ U(o),

and so [Ad(t)−1γ, ũ]− [Ad(t)−1γ, ũ′] lies in ϕ(V1(o)). Then the surjective map p1 : Y1 → Z1

is such that the dimension of p−1
1 (z) is independent of z ∈ Z1 (see Example 3.4.3).

Let z1 ∈ Z1(k). We then reiterate the procedure but now with the fiber p−1
1 (z1) and since

all the fibers have the same dimension it suffices just to take z1 corresponding to ũ = 0.

Then for any g ∈ q−1
1 (z1) =: Y2 we can write g = mu2 ∈ X(G0, γ) where u2 ∈ U2(F ) and

the coset u2U2(F )/U2(o) is well-defined. We let p2 : Y2 → Z2 =: v(o)/ϕ(V2(o)) be the map

defined by p2(g) = ϕ(ũ2). Proceeding inductively, we have defined a sequence of surjective
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morphisms, with each morphism having constant-dimension fibers

Yn−1 Yn−2 · · · Y1

Zn−1 Zn−2 · · · Z1

where Yn−1 → Zn−1 is an isomorphism, and so the dimension of the fiber over t is just
∑

dim(Zi), which is the same as v(det(ϕ)). �

3.4.3 Example. Lest the general concept of this proof be lost in murky darkness, the

following example for n = 3, i.e. G = GL6 should help. In this case, for u = (v, w), t =

(r, s), r = diag(r1, r2, r3), s = diag(s1, s2, s3), β = diag(x1, x2, x3), and

v =



1 a12 a13

0 1 a23

0 0 1


 , w =



1 b12 b13

0 1 b23

0 0 1




we have

v−1r−1sw =

(
s1r

−1

1
b12s1r

−1

1
−a12s2r

−1

2
−a12b23s2r

−1

2
+a12a23s3r

−1

3
+b13s1r

−1

1
−a13s3r

−1

3

0 s2r
−1

2
b23s2r

−1

2
−a23s3r

−1

3

0 0 s3r
−1

3

)
,

w−1s−1βrv =

(
x1r1s

−1

1
a12x1r1s

−1

1
−b12x2r2s

−1

2
−a23b12x2r2s

−1

2
+b12b23x3r3s

−1

3
+a13x1r1s

−1

1
−b13x3r3s

−1

3

0 x2r2s
−1

2
a23x2r2s

−1

2
−b23x3r3s

−1

3

0 0 x3r3s
−1

3

)
.

We see that the choice of fixing a12, b12, a23, and b23 does not affect the dimension of

the k-variety in the coordinates a13 and b13 since the coefficients of πℓ for ℓ < 0 in the

expressions b13s1r
−1
1 − a13s3r

−1
3 and a13x1r1s

−1
1 − b13x3r3s

−1
3 are uniquely determined.

This follows because xi 6= xj for i 6= j.

We next determine a formula for v(det(ϕ)). For any 1 ≤ i, j ≤ n denote by eij the matrix
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whose only nonzero entry is 1 at i, j. Then an F -basis of u(F ) is

{(eij,0) : i < j} ∪ {(0, eij) : i < j}

where 0 is the zero matrix. We also use this notation for a basis of v(F ). For example, in

u(F ), the basis element (eij,0) corresponds to the block diagonal matrix diag(eij,0), whereas

used to denote a basis element of v(F ), it corresponds to the block antidiagonal matrix

(
0 eij

0 0

)

These bases are also bases for u(o) and v(o) as free o-modules. We need to write down the

n(n − 1) × n(n − 1) matrix of ϕ. Recall that we have fixed t ∈ X(T, γ). Write t = (r, s)

where r = diag(r1, . . . , rn) and s = (s1, . . . , sn). Let us agree to use the notation (A,B) ∈ g1

to denote the block antidiagonal matrix

(
0 A

B 0

)
.

Then Ad(t)−1γ is the matrix (diag(r−1
1 s1, . . . , r

−1
n sn), diag(s

−1
1 r1x1, . . . , s

−1
n rnxn)) ∈ g1(F ).

We compute the matrix with respect to the ordered basis

(e11,0), (e12,0), . . . , (en−1,n,0), (0, e11), . . . , (0, en−1,n)

for u(F ) and the same notation denotes the ordered basis we use for v(F ). Then it is
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somewhat trivial to write down the matrix corresponding to ϕ:

ϕ =




−a2 a1
. . . . . .

−an a1
. . . . . .

−an an−1

b1x1 −b2x2
. . . . . .

b1x1 −bnxn
. . . . . .

bn−1xn−1 −bnxn




(3.2)

Here, ai = r−1
i si and bi = s−1

i ri. Although it is a bit difficult to see from the typesetting, the

only nonzero elements are on the main diagonals of each of the four n(n− 1)/2×n(n− 1)/2

blocks. For example, if n = 2, the matrix of ϕ is the 2× 2 matrix

(
−r−1

2 s2 r−1
1 s1

s−1
1 r1x1 −s−1

2 r2x2

)

Then v(det(ϕ)) = v(x1 − x2), and does not depend on t. This holds true in general:

3.4.4 Theorem. The determinant det(ϕ) does not depend on the chosen t ∈ X(T, γ),

and

v(det(ϕ)) =
∑

i<j

v(xi − xj).

In particular, since X(T, γ) is zero-dimensional (Example 3.2.3), this is also the dimen-

sion of the affine Springer fiber X(G0, γ).

Proof. Let us abuse notation and write ϕ for the matrix of ϕ as in (3.2). First, multiply ϕ
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on the left by the diagonal matrix

D = diag(−b2b1x1,−b3b1x1, . . . ,−bnb1x1,−b3b2x2, . . . ,−bnb2x2, . . . ,−bnbn−1xn−1, 1, 1, . . . , 1)

In other words, D corresponds to multiplying each of the first n(n − 1)/2 rows of ϕ by

nonzero elements in such a way so that the rows of the upper left n(n − 1)/2 × n(n − 1)/2

block are the same as the rows of the corresponding lower left block. By subtracting the kth

row from the [n(n− 1)/2 + k]th row for k = 1, 2, . . . , n(n− 1)/2, we get a new matrix that

is upper triangular, and whose diagonal entries are diag(A,B), where

A = diag(b1x1, b1x1, . . . , b2x2, b2x2, . . . , b2x2, . . . , bn−1xn−1),

B = diag(b2(x1 − x2), b3(x1 − x3), . . . , bn(xn−1 − xn)).

Hence, the determinant of ϕ is det(diag(A,B))/ det(D), which is

det(ϕ) =

∏
i<j bibjxi(xi − xj)∏

i<j −(bixibj)
= (−1)n(n−1)/2

∏

i<j

(xi − xj).

Taking the valuation of this gives the desired result. �

3.4.5 Remark. By definition, a Cartan subspace is a subspace a of g1 that is maximal with

respect to being commutative and consistchapterntirely of semisimple elements. One easily

calculates that the stabiliser of γ is of the form

{(X,Xβ) : Xβ = βX} .

Since γ = diag(x1, . . . , xn) is regular, which is the same thing as saying xi 6= xj for all i 6= j,

we see that the stabiliser of γ is just the commutative subspace

a(R) =
{(

diag(c1, . . . , cn), diag(c1x1, . . . , cnxn)
)
: ci ∈ R

}
,
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which consists entirely of semisimple elements. Since

γ′ =
(
diag(c1, . . . , cn), diag(c1x1, . . . , cnxn)

)
∈ a(k)

is conjugate to
(
In, diag(c

2
1x1, . . . , c

2
nxn)

)
, we can also use our formula to compute that

dimXγ′ =
∑

i<j v(c
2
ixi − c2jxj) whenever γ′ is regular. This follows since the two affine

Springer fibers for two elements in the same class are isomorphic.

3.4.6 Remark. One can define a map

X(G0, γ) −→ Gm(F )/Gm(o) ∼= Z

(A,B) 7−→ v(det(A−1B))

which has nonempty fibers over a finite set of points in Z. The fiber over the point 0 ∈ Z is

the affine Springer fiber X(GLn, β), which by Kazhdan-Lusztig’s formula also has dimension
∑

i<j v(xi − xj). Theorem 3.4.4 then says that all the other fibers also have this dimension.
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Chapter 4

Final Remarks

We have seen two results: the computation of a relative endoscopic fundamental lemma of

the form Oκ
γ(1) = (−1)∗qrOκ=1

γH
(1H), and a computation of the dimension of the GLn-version

of the affine Springer fiber that corresponds to the orbital integral Oγ. How do these two

results relate?

The exponent r depends on the geometric properties of the two affine Springer fibers:

in the usual Fundamental Lemma of Ngô, r = dimkX(G, γ) − dimkX(H, γH) where H is

the associated endoscopic group for κ. For symmetric spaces, either this result or something

very close to it should hold. The result we computed in Chapter 3 applies to the closely

related affine Springer fiber for GLn. However, to write down the correct formula for unitary

groups, one should combine the result in Chapter 3 with the ideas in [Bez96]. Such a formula

for unitary groups should give precisely the transfer factor obtained in §2, and in general,

give the transfer factor in a relative fundamental lemma for unitary groups.

After these results, it seems quite reasonable that a relative fundamental lemma for

unitary groups exists. To derive it and use it in a comparison of relative trace formulas will

be quite interesting.
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