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Abstract

The goal of this thesis is to show that a wide range of operational systems can be reasoned

about compositionally. The formal tool we use to explore this is the notion of a bicategory.

Indeed, we construct bicategories for Markov processes and transition systems, where the

objects are input and output sets, the morphisms (one-cells) are the processes and the two-

cells are simulations. This builds on the work of Baez, Fong and Pollard, who showed

that a certain kind of finite-space continuous-time Markov chain (CTMC) can be viewed as

morphisms in a category. This picture allows a compositional description of their CTMCs.

Our contribution is to develop a notion of simulation for both labelled transition systems

and Markov processes which allows us to lift this framework to the 2-categorical level (where

the two-cells are simulation morphisms).

Cette thèse a pour but de démontrer qu’une série de systèmes opérationnels peuvent mieux

être compris de manière compositionelle. Pour effectuer ceci, on utilise la notion de bi-

catégorie. Notament, cette thèse construit une bicategorie de Markov processes et de transi-

tion systems, où les objets sont des ensembles, les “one-cells” sont les systèmes opérationnels

en question, et les “two-cells” sont des simulations. Ce traitment est inspiré par les idées de

Baez, Fong et Pollard, qui ont montré que certains “continuous-time Markov chains” peu-

vent être compris comme des morphismes dans une certaine catégorie. Notre contribution

est de delevopper une notion de simulation pour les “labelled transitions systems” ainsi que

les “continuous-time Markov chains” qui permet un raisonement au niveau de 2-catégorie.
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Introduction

A recent paper by Baez, Fong and Pollard [2] develops a compositional framework for Markov

processes. More precisely, they work with finite-state processes with a population associated

with each state. Transitions are governed by rates and are memoryless. Thus, they are

working with continuous-time Markov chains (see e.g. [3]). The important innovation in

their work is to define “open” Markov chains with inputs and outputs. This allows them to

connect Markov chains together and build more complex ones from simpler ones.

The work presented in this thesis is inspired by their treatment but differs in two significant

ways. First, we work with a wider set of processes: we look at Markov processes (with both

discrete and continuous state spaces), as well as labelled transition systems. Second, we view

them operationally. That is, the states represent states of a transition system and the system

moves between states according to a non-deterministic or probabilistic law: thus they are

closer in spirit to automata. We do not impose a detailed balance condition; it would not

make any sense in the scenario we are examining. Importantly we allow continuous state

spaces; which forces us into some measure-theoretic considerations.

The crucial idea that we borrow from Baez et al. [2] is the use of open processes that can be

composed, using the categorical notion of pushout. Though the details are different from [2],

the mathematics is inspired by their work and the work of Fong [4] on decorated cospans.

The second significant difference is the development of a bicategorical picture. The idea here

is to have two-cells that capture simulations. The concepts of simulation and bismulation

have played a central role in the development of process algebra [5, 6, 7] and the probabilistic

version has been similarly important [8, 9]. We have used simulation morphisms similar in

spirit to those used by Desharnais et al. [10, 9].
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Our goal will be to present the prerequisite knowledge in chapter 1, before tackling labelled

transition systems in chapter 2 and Markov processes in chapter 3. Our capstone results

will be to show that we can indeed construct bicategories where transition systems are the

0-cells (Theorem 14 of Section 2) and where Markov processes are the 0-cells (Theorem 18

of Section 3).
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Chapter 1

Background Material

1.1 Composing Markov Processes

The content of this thesis is inspired by a recent paper [2] by Baez, Fong, and Pollard which

looks at a compositional framework for Markov chains. In [2] a continuous-time Markov chain

is seen as a way to specify the dynamics of a population which is spread across some finite

set of states. More precisely, they look at open Markov processes. In these, the population

is allowed to flow in or out of certain designated input and output states, or ‘terminals’. If

the outputs of one open system match the inputs of another, it is explained how to glue

them together, or ‘compose’ them, and obtain a new open system. This makes the Markov

processes into morpshisms of a certain category.

Indeed, a Markov process is defined as a diagram:

(0,∞) E Ns

t
r
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Here, N is a finite set of nodes or states, E is a finite set of edges, s, t ∶ E → N assign to each

edge its source and target, and r ∶ E → (0,+∞) assigns a rate constant to each edge e ∈ E.

In this situation we call M a Markov process on N . If e ∈ E has source i and target j, we

write e ∶ i→ j.

To give these processes a directionality, the paper [2] uses decorated cospans. Following the

paper’s example, if we have the following diagram:

N

X Y

i
o

together with a Markov process on N (as defined above), then we say that M is an open

Markov process from X to Y , and we write M ∶X → Y . If we have such a process

As well as an open Markov process M ′ ∶ Y → Z as follows:

Then intuitively, we should be able to “glue” them together, and their composition should

look like the following:
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.

The use of decorated cospans [2] allows one to formalize this process of composition. Putting

two cospans side by side as follows, (effectively composing them)

N N ′

X Y Z

iN
oN

iN ′
oN ′

yields a new cospan by looking at the following picture:

N +Y N ′

N ⊎N ′

N N ′

X Y Z

q

ιN
ιN ′

iN iN ′
oN oN ′

In the above, ι represents the obvious inclusions, and q is a quotient map taking N ⊎N ′ to

N ⊎N ′/ ∼ where ∼ is the smallest equivalence relation on N ⊎N ′ such that for all y ∈ Y ,

ιN(oN(y)) ∼ ιN ′(iN ′(y)). Note that N +Y N ′ is called a pushout.

More succintly we will set jN ∶= q ○ ιN and jN ′ ∶= q ○ ιN ′ This gives a new cospan

N +Y N ′

X Z

jN○iN
jN ′○oN ′
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Importantly, our pushout has a universal property which will come into play later on. Given

any set Q and maps τ ∶ N → Q, τ ′ ∶ N ′ → Q such that for all y ∈ Y , τ(oN(y)) = τ ′(iN ′(y)),

there exists a unique u such that the following diagram commutes.

N

Y N +Y N ′ Q

N ′

jN

τ

oN

iN ′

u

jN ′

τ ′

1.2 Bicategories

The goal of our thesis is to lift the framework presented above to a 2-categorical level,

allowing us to view Markov processes as morphisms, and establishing arrows between said

morphisms. These so called 2-cells will be simulations, defined later. For now, we present

some background on bicategories, most of which is taken from [11].

A bicategory is a particular notion of weak 2-category. In a bicategory, the hom-sets are in

fact categories themselves. The associativity and unit laws of enriched categories, however,

hold only up to isomorphism. As such it is weakly enriched over Cat. More specifically:

Definition 1. A bicategory B consists of the following data:

• A collection ob(B), with elements called 0-cells A,B, . . .

• For each pair of elements A,B, a category B(A,B) which in turn has objects 1-cells

f, g, . . . and for morphism 2-cells α,β, . . ..
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• For each triple of 0-cells A,B,C, a functor

cA,B,C ∶ B(B,C) × B(A,B)→ B(A,C)

which on objects takes a pair (g, f) and returns their horizontal composition g ○f , and

on morphisms takes a pair (α,β) and returns their horizontal composition β ∗ α.

• For every 0-cell, a functor IA ∶ 1→ B(A,A) which effectively chooses an identity in the

category B(A,A)

• Natural Isomorphisms

B(C,D) × B(B,C) × B(A,B) B(C,D) × B(A,C)

B(B,D) × B(A,B) B(A,D)

cBCD×1

1×cABC

cACD

cABD

aABCD

• Natural Isomorphisms:

B(A,B) × 1

B(A,B) × B(A,A) B(A,B)

1×IA

≅

cAAB

rAB

and

1 × B(A,B)

B(B,B) × B(A,B) B(A,B)

IB×1

≅

cABB

lAB

such that the following diagrams commute:
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• The pentagon identity:

((kh)g)f (k(hg))f

(kh)(gf) k((hg)f)

k(h(gf))

a∗1

a
a

a

1∗a

• The triangle identity:

(gI)f g(If)

gf

1∗r

a

1∗l

Note that the notion of bicategory is weaker than the more natural notion of 2-category,

where all of the natural isomorphisms a, l, r are identities.

The most obvious example of a bicategory is the category Cat itself (it is in fact a strict

2-category). In this case, the 0-cells are categories themselves, the 1-cells functors, and the

2-cells are natural transformations.

We will use bicategories to formalize the notion that labelled transition systems and Markov

processes can be composed, but that this composition is only associative up to isomorphism.

We will develop the notion of simulation and show how they can be seen as 2-cells in our

bicategorical structures.
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Chapter 2

Labelled Transition Systems

Our first example of the theory presented in Section 1 will be labelled transition systems.

Definition 2. Given a set of states S, and a set of labels L, a labelled transition system on

S is a tuple (S,αS), where αS is a map αS ∶ S → P(S)L. Currying, we can think of αS as

taking in both a state s, and a label `, and returning the set of states reachable from s by

action `.

As in chapter 1, we can view our labelled transition systems as morphisms between input

and output sets, which one should think of as nodes to respectively “enter” and “exit” the

system.

Definition 3. Given two sets X,Y , a labelled transition system (LTS) from X to Y is a

labelled transition system (S,αS) as above, as well as two injective morphisms i ∶ X → S

and o ∶ Y → S called input and output.

We should think of an outisde observer, allowed to influence the system S using actions

labelled by L which result in a non-deterministic (as opposed to probabilistic) response by

11



the system; the set of possible responses to performing the action labelled by ` at state s is

given by αS(s, `).

Henceforth, we will be considering the case where ∣L∣ = 1 for simplicity, as it does not affect

the theory but allows for cleaner exposition, and therefore write αS(s) for αS(s, `)

2.1 Viewing LTSs as morphisms

Viewing LTSs as morphisms from inputs to outputs makes it tempting to construct a category

LTS. However, we will see that there is a problem with the composition being associative

only up to isomorphism. The objects will be sets and the morphisms X → Y LTSs from X

to Y .

Let us first give an intuition for this composition: this corresponds to cascading the transition

systems one after the other by identifying states that were outputs in the first system with

inputs in the second system, using Y to mediate this identification. Consider three sets

X,Y,Z and two LTSs

(S,αS) ∶X → Y

(T,αT ) ∶ Y → Z

The category Set which has sets as object and functions as morphisms admits pushouts. Let

us denote S +Y T the pushout of S and T along iT and oS, and let jS and jT be the inclusion

maps (as in Section 1).
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Y
oS //

iT
��

S

jS
��

T
jT

// S +Y T

The composition of (S,αS) from X to Y , with (T,αT ) from Y to Z is the LTS with input

X and output Z defined as follows.

T ∗ S ∶= (S +Y T,β)

where, for z ∈ S +Y T

β(z) = P(jS) ○ αS ○ j−1S (z) ⋃ P(jT ) ○ αT ○ j−1T (z)

where in the above we allow a slight abuse of notation and conflate j−1S (z) with the unique

element in this set if it exists. If either j−1S (z) is empty, or j−1T (z) (note that both cannot

happen simultaneously), we simply ignore this term in the above definition.

Intuitively, the “dynamics” of (S +Y T,β) at a state z is obtained by “combining” the

dynamics of both S and T coherently.

The following diagram gives an intuition for our above definition. Note that it does not

commute, but simply gives the domain and codomain of the maps used above.

S P(S)

Y S +Y T P(S +Y T )

T P(T )

αS

jS P(jS)

β

αT

jT P(jT )

13



Again, we stress that composition here is associative only up to isomorphism. Given any

state set X, the “identity” 1X will be (X,αX), where for all x ∈ X, αX(x) = ∅. Intuitively

this is clear. Cascading a morphism (S,αS) ∶ X → Y with the morphism 1Y ∶ Y → Y in

which no transitions occur should return a system isomorphic to (S,αS).

2.2 Simulations as Morphisms between LTSs

Given two LTSs with the same input and output sets, it is natural to ask whether they are

related in some way or not. To this end, we first introduce the notion of simulation, and

then show how it provides a natural framework for extending the previous construction to

the bicategorical level.

Definition 4. Given two LTSs (S,αS) and (T,αT ) defined with the same input and output

sets, a simulation of S by T is a function f ∶ S → T on the state spaces such that

f ○ iS = iT and f ○ oS = oT

and the following diagram commutes in a lax way:

S P(S)

T P(T )

αS

f P(f)⊇
αT

In such a case we say that (T,αT ) simulates (S,αS), or more simply that T simulates S.

Note that the usual definition of simulation uses relations rather than functions as we have

done, but is easier for our purposes to use the above definition. Indeed, using this definition

14



makes it easier to construct a bicategory. It is not clear if the relational definition would

also allow for a bicategorical treatment.

Given two finite sets X and Y , we’d like to have the “hom-set” LTS(X,Y ) of the previously

defined “category” LTS. But as indicated previously, this does not work out.

However, it is possible to construct a bicategory. We’ll let the set LTS(X,Y ) be a category

with objects the LTSs from X to Y and as morphisms simulations between such LTSs. We

carry out this construction in the next section.

The composition of two simulations with the same input and output sets is given by standard

function composition; it is denoted ○. The standard composition is associative which ensures

that ○ is also associative.

The fact that the composition of two simulations f ∶ S → T and g ∶ T → P gives a new

simulation is easily verified chasing the following diagram:

S P(S)

T P(T )

P P(P )

αS

f P(f)⊇
αT

g P(g)⊇
αP

Given a LTS (S,αS), the map idS is indeed a simulation, and will be an identity for our

simulation composition.

As such, given two sets X,Y , we can denote by LTS(X,Y ) the category of all labelled

transition systems from X to Y .

15



We can now provide some intuition for the earlier construction of T ∗S. Indeed we set up β

so that it was the “minimal” map which made the following commute laxly:

S P(S)

Y S +Y T P(S +Y T )

T P(T )

αS

jS P(jS)
⊇

β

αT

jT P(jT )⊇

In other words, β is the minimal map which allows (S +Y T,β) to simulate both (S,αS) and

(T,αT )!

2.3 The Bicategory LTS

To reach the bicategorical level, for every triple of sets X,Y and Z we introduce a functor

cXY Z ∶ LTS(Y,Z) ×LTS(X,Y )→ LTS(X,Z)

.

Given two LTSs (S,αS) ∶X → Y and (T,αT ) ∶ Y → Z, cXY Z(S,T ) is their composition S ∗T

defined earlier. This specifies our functor on objects.

Let us now define the functor cXY Z acting on the morphisms, the simulations. Let us consider

four LTSs (with k = 1,2):

(Sk, αSk
) ∶X → Y

and

(Tk, αTk) ∶ Y → Z

16



as well as two simulations

f ∶ S1⇒ S2 and g ∶ T1⇒ T2

Let us again denote jS,k ∶ Sk → Sk +Y Tk and jT,k ∶ Tk → Sk +Y Tk the pushout maps obtained

by performing the horizontal composition Sk ∗ Tk.

The horizontal composition cXY Z(g, f) ∶ T1 ∗ S1 ⇒ T2 ∗ S2 is denoted g ∗ f and is defined as

the unique map making the following diagram commute:

S1 +Y T1

S1 T1

X Y Z

S2 T2

S2 +Y T2

g∗f

jS,1

f

jT,1

g

iS,1

iS,2

oS,1 iT,1

oS,2 iT,1

oT,1

oT,2

jS,2 jT,2

Note that for z ∈ S1 +Y T1,

(g ∗ f)(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

jT,2 ○ g(t) if ∃t ∈ T1 such that z = jT,1(t)

jS,2 ○ f(s) if ∃s ∈ S1 such that z = jS,1(s)

This horizontal composition is well defined. Let z ∈ S1 +Y T1. Assume that there exists

t ∈ T1 such that z = jT,1(t) and s ∈ S1 such that z = jS,1(s). By definition of the pushout,
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there exists y ∈ Y such that s = oS,1(y) and t = iT,1(y). Then:

(jS,2 ○ f)(s) = (jS,2 ○ f ○ oS,1)(y)

= (jS,2 ○ oS,2)(y) as f is a simulation

= (jT,2 ○ iT,2)(y) using the pushout

= (jT,2 ○ g ○ iT,1)(y) as g is a simulation

= (jT,2 ○ g)(t)

Lemma 5. The horizontal composition g ∗ f is a simulation.

Proof. In order to prove that it is indeed a simulation, we have first to prove that (g ∗ f) ○

jS,1 ○ iS,1 = jS,2 ○ iS,2, and similarly for the output maps. But this is obvious when we consider

the above diagram.

The second condition to verify is that the following diagram laxly commutes:

(S1 +Y T1, β1) P(S1 +Y T1)

(S2 +Y T2, β2) P(S2 +Y T2)

β1

(g∗f) P(g∗f)⊇
β2

We’ll examine the case where there exists t ∈ T1 such that z = jT,1(t) and there exists s ∈

S1 such that z = jS,1(s). If either of j−1T,1({z}) or j−1S,1({z}) is empty, the computation is

simpler.

18



β2((g ∗ f)(z)) = [P(jS,2) ○ αS,2 ○ j−1S,2]((g ∗ f)(z)) ∪ [P(jT,2) ○ αT,2 ○ j−1T,2]((g ∗ f)(z))

= [P(jS,2) ○ αS,2 ○ f](s) ∪ [P(jT,2) ○ αT,2 ○ g](t)

⊇ [P(jS,2) ○P(f) ○ αS,1](s) ∪ [P(jS,2) ○P(g) ○ αT,1](t)

= P(g ∗ f)(P(iS,1) ○ αS,1 ○ i−1S,1(z)) ∪ P(g ∗ f)(P(iT,1) ○ αT,1 ○ i−1T,1(z))

= P(g ∗ f)(P(iS,1) ○ αS,1 ○ i−1S,1(z) ∪ P(iT,1) ○ αT,1 ○ i−1T,1(z))

= P(g ∗ f)(β1(z))

Lemma 6. The exchange law holds. That is, if we have the following picture

f1

��

g1

��X

S1

��S2 //

S3

GG
f2

��

Y

T1

��T2 //

T3

GG
g2

��

Z

then (g2 ○ g1) ∗ (f2 ○ f1) = (g2 ∗ f2) ○ (g1 ∗ f1).

Proof. Again this can be proved purely diagramatically. Note that g1 ∗f1 is the unique map

that makes the following “upper half” of the diagram commute, and that g2∗f2 is the unique

map that makes the “bottom half” commute. Now note that g2 ○ g1 (resp. f2 ○ f1) gives a

simulation from T1 to T3 (resp. from S1 to S3), and we can chase the diagram to get the

exchange law.
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M1 +Y N1

S1 T1

X Y Z

S2 T2

S2 +Y T2

S2 T2

X Y Z

S3 T3

S3 +Y T3

g1∗f1

(g2○g1)∗(f2○f1)

jS,1

f1

jT,1

g1

iS,1

iS,2

oS,1 iT,1

oS,2 iT,1

oT,1

oT,2

jS,2
jT,2

g2∗f2

jS,2

f2

jT,2

g2

iS,2

iS,3

oS,2 iT,2

oS,3 iT,2

oT,2

oT,3

jS,3 jT,3

We must also show the existence of associators and unitors, satisyfing the pentagon and

triangle identities respectively. This will be pushed back to the section on Markov Processes.

We can now state the main result of this section.

Theorem 7. LTS is a bicategory.
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Chapter 3

Markov Processes

We now turn our attention to a similar categorical treatment of Markov Processes, showing

how viewing them as morphisms between input and output sets allows us to create a bicate-

gory. We will be dealing with both discrete and continuous state spaces. Since the latter has

some measure-theoretic details, we first work through the discrete case. It is pleasing that

the measure theory and the category theory can be more or less “factored” into separate

sections.

3.1 Discrete Markov Processes

Definition 8. Given a finite set M , a Markov kernel on M is a map τ ∶M ×M → [0,1] such

that for all m ∈M , τ(m, .) is a subprobability measure on M . A labelled Markov process on

M is a collection (τa) of Markov kernels on M that is indexed by a set of actions Act.

Markov processes are the standard model of memoryless probabilistic dynamical systems like

a probabilistic program executing or particles moving over time subject to random influences.
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Let us fix a set of actions Act throughout this thesis. These actions correspond to interactions

between the process and the environment; for instance, a user performing control actions on

a stochastic system.

Note that here we are only requiring subprobability measures. This is because it might be

the case that the process does not terminate and some of the probability mass might be

lost. We also want to have some cases where the transition probabilities are zero which

subprobability distributions allow us to accommodate.

As in [2] and in Section 2 we can view our labelled Markov processes as morphisms between

input and output sets.

Again we denote Set the category with sets as objects and functions as morphisms.

Definition 9. Given two finite sets X,Y , a discrete labelled Markov process (DLMP) from

X to Y is a tuple (M, (τa)a∈Act, i, o) consisting of a finite set M , a labelled Markov process

(τa)a∈Act on M , and two injective morphisms i ∶ X → M and o ∶ Y → M called input and

output. We also require that for a ∈ Act, y ∈ Y and m ∈M , τa(o(y),m) = 0.

The last condition says that when the process reaches a state corresponding to the output it

stops there. When we compose processes, these will become inputs to the next process and

will be subject to a new dynamics. Note that a state can be input and output: this means

that if the system is started in this state it will just stay there. We will also write τa(m,A),

where A ⊆M , to mean ∑
x∈A

τa(m,x).

The key difference between the standard definition of finite labelled Markov process and this

definition of DLMP is the use of input and output sets that allows us to specify the state in

which the system is at the start and the state when the experiment stops.

An outside observer is allowed to influence the system using the actions in Act, which result

in a probabilistic response by the system; the response to performing the action a at state
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m is given by the final state (sub)distribution τa(m, ⋅). Particles flow through the Markov

process, beginning at inputs, according to the kernels τa, until they reach an output state.

When a system hits an output state it stops. Later we will describe how composed systems

behave; essentially the output states become the input states of the next system.

Let us illustrate this definition using the example of a pinball machine. The position of the

ball represents the state of the process. The ball is introduced when the player starts the

game; this is the input state. The ball then moves around (this is the process) with the

player using flippers (actions) to act on its trajectory. The game ends when the ball reaches

the drain (output).

Note that the requirement on the Markov kernels is not symmetric between inputs and out-

puts. This is a direct consequence of the fact that input and output correspond respectively

to start and end of observation or experiment. In that setting, a start state can lead to

another start state whereas once the experiment is over, it cannot evolve anymore.

3.1.1 Viewing DLMPs as morphisms

As with labelled transition systems, we can compose Markov processes: again this corre-

sponds to cascading the systems one after the other by identifying states that were outputs

in the first DLMP with inputs in the second DLMP. Consider three sets X,Y,Z and two

DLMPs

M ∶= (M, (τMa )a∈Act, iM , oM) ∶X → Y

and

N ∶= (N, (τNa )a∈Act, iN , oN) ∶ Y → Z

The pushout M +Y N is constructed as in Section 2
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The composition of M and N denoted N ∗M is the DLMP with input X and output Z

defined as follows.

N ∗M ∶= (M +Y N, (τ ′a)a∈Act, jM ○ iM , jN ○ oN)

where, for m,n ∈M +Y N

τ ′a(m,n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τNa (m,n) if m,n ∈ jN(N)

τMa (m,n) if m,n ∉ jN(N) and m,n ∈ jM(M)

0 otherwise

Note that if m and n are both outputs of the first DLMP and inputs of the second one, we

use τN .

Again we face a problem of associativy of composition up to isomorphism only. Given any

finite set X, the “identity” 1X is the DLMP (X, (τa)a∈Act, idX , idX), where for all a ∈ Act,

and for all x, y ∈X, τa(x, y) = 0.

3.1.2 Simulations between DLMPs

Given two Markov processes with the same input and output sets, it is again natural to

ask whether they are related in some way or not. Let us introduce the notion of simulation

between Markov Processes. This definition is slightly more cumbersome than in Section 2,

as we are dealing with probability distributions over the state spaces.

Definition 10. Given two DLMPs

N = (N, (τNa )a∈Act, iN , oN)

and
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M = (M, (τMa )a∈Act, iM , oM)

defined with the same input and output sets, a simulation ofN byM is a function f ∶ N →M

on the state spaces satisfying the following conditions:

• f ○ iN = iM and f ○ oN = oM , and

• for all a ∈ Act, n ∈ N and m ∈M , τMa (f(n),m) ≥ τNa (n, f−1(m)).

where we write f−1(m) for f−1({m}). In such a case, we say thatM simulates N and write

f ∶ N ⇒M.

The composition of two simulations with the same input and output sets is again given by

standard function composition denoted ○. It remains associative.

Proof. Let us now check that the composition of two simulations is a simulation. Consider

two simulations f ∶M1 ⇒M2 and g ∶M2 →M3 with Mk = (Mk, (τ ka )a∈Act, ik, ok) ∶ X → Y .

Note that for any m in M1 and n in M3:

τ 3a (g ○ f(m), n) ≥ τ 2a (f(m), g−1(n)) ≥ τ 1a (m, (g ○ f)−1(n))

using the fact that g and f are both simulations. Finally note that (g ○ f) ○ i1 = g ○ i2 = i3

and similarly for the output map. This proves that the composition of two simulations is a

simulation.

Given a DLMPM = (M, (τMa )a∈Act, iM , oM), the identity idM is the identity on the underlying

set idM . It is indeed an identity for the composition we have just defined.
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3.1.3 The Bicategory DLMP

Given a triple of sets X,Y and Z, we need a functor

cXY Z ∶DLMP(Y,Z) ×DLMP(X,Y )→DLMP(X,Z)

representing horizontal composition.

Given two DLMPs M ∶ X → Y and N ∶ Y → Z, cXY Z(N ,M) is their composition N ∗M

defined in Section 3.1.1.

Let us consider four DLMPs (with k = 1,2) :

Mk = (Mk, (τM,k
a )a∈Act, iM,k, oM,k) ∶X → Y

and

Nk = (Nk, (τN,ka )a∈Act, iN,k, oN,k) ∶ Y → Z

as well as two simulations

f ∶M1⇒M2 and g ∶ N1⇒ N2

The horizontal composition (g∗f) is obtained as in the previous chapter. This is interesting,

as it suggests that there is a sort of “factorization” at play here; the dynamics of the systems

(probabilistic vs. nondeterministic) does not affect how we obtain simulations when we

compose them.
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Indeed the horizontal composition (g ∗ f) ∶ N1 ∗M1 ⇒ N2 ∗M2 is defined as follows. For

m ∈ M1 +Y N1,

(g ∗ f)(m) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

jN,2 ○ g(n′) if ∃n′ ∈ N1 such that m = jN,1(n′)

jM,2 ○ f(m′) if ∃m′ ∈M1 such that m = jM,1(m′)

Again, g ∗ f(m) is well defined.

Diagrammatically, the situation is the following :

M1 +Y N1

M1 N1

X Y Z

M2 N2

M2 +Y N2

g∗f

jM,1

f

jN,1

g

iM,1

iM,2

oM,1 iN,1

oM,2 iN,1

oN,1

oN,2

jM,2 jN,2

Lemma 11. The horizontal composition g ∗ f is a simulation.

Proof. In order to prove that it is indeed a simulation, we have first to prove that

(g ∗ f) ○ jM,1 ○ iM,1 = jM,2 ○ iM,2
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Let x in X, note that iM,1(x) ∈M1, therefore by definition of g ∗ f :

(g ∗ f) ○ jM,1 ○ iM,1(x) = jM,2 ○ f(iM,1(x))

But f is a simulation, hence f(iM,1(x)) = iM,2(x) proving the desired equality. The corre-

sponding equality with output maps is proven similarly.

Let us denote (τ ka )a∈Act the Markov process corresponding to the composition Nk∗Mk. There

remains to prove that for all a ∈ Act, m1 ∈M1 +Y N1 and m2 ∈M2 +Y N2,

τ 2a ((g ∗ f)(m1),m2) ≥ τ 1a (m1, (g ∗ f)−1(m2))

There are a few cases to check, but the proof is straightforward and as such we examine one

case (the other cases are nearly identical). Suppose m1 ∈ jM,1(M1) and that m2 ∈ jM,2(M2).

Then:

τ 1a (m1, (g ○ f)−1(m2)) = τ 1a (m1, (jM,1 ○ f−1 ○ j−1M,2)(m2))

= τM,1
a (j−1M,1(m1), (f−1 ○ j−1M,2)(m2))

≤ τM,2
a (f ○ j−1M,1(m1), j−1M,2(m2))

= τ 2a ((g ○ f)(m1),m2)

Lemma 12. The exchange law holds. Namely, when we have the following situation

f1

��

g1

��X

M1

��M2 //

M3

GG
f2

��

Y

N1

��N2 //

N3

GG
g2

��

Z
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then (g2 ○ g1) ∗ (f2 ○ f1) = (g2 ∗ f2) ○ (g1 ∗ f1).

Proof. This is exactly as in the previous case Lemma 6

Lemma 13. The horizontal composition is associative up to isomorphisms, i.e. for any finite

sets X,Y,Z and W , we have natural isomorphisms called the associators

αWXY Z ∶ cWY Z ○ (id, cWXY )→ cWXZ ○ (cXY Z , id)

Proof. Let us consider three DLMPs

M = (M, (τMa ), iM , oM) ∶W →X

N = (N, (τNa ), iN , oN) ∶X → Y

P = (P, (τPa ), iP , oP ) ∶ Y → Z

We will construct the associator αMNP ∶ P ∗ (N ∗M)⇒ (P ∗N )∗M, i.e. a simulation map

αMNP ∶ (M +X N) +Y P →M +X (N +Y P )

We will denote the pushout maps jM+Y NM ∶M →M +Y N etc.
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First note that X
iNÐ→ N

j
N+Y P

NÐ→ N +Y P is the input map of the DLMP N ∗ P , making the

outer diagram commute:

X

oM
��

iN // N

j
M+XN

N
��

j
N+Y P

N // N +Y P

j
M+X (N+Y P )
N+Y P

��

M
j
M+XN

M //

j
M+X (N+Y P )
M

++

M +X N
α1

((
M +X (N +Y P )

By the universal property of the pushout M +X (N +Y P ), there exists a unique map

α1 ∶M +X N →M +X (N +Y P )

making the above diagram commute.

To show that the outer diagram commutes, we calculate as follows:

α1 ○ jM+Y NN ○ oN = jM+X(N+Y P )N+Y P ○ jN+Y PN ○ oN using the definition of α1

= jM+X(N+Y P )N+Y P ○ jN+Y PP ○ iP using the pushout square of N +Y P

Y
oN //

iP
��

N
j
M+XN

N // M +X N

α1

##

j
(M+XN)+Y P

M+XN
��

P

j
N+Y P

P ##

j
(M+XN)+Y P

P

// (M +X N) +Y P

))
N +Y P

j
M+X (N+Y P )
N+Y P

// M +X (N +Y P )

By the universal property of the pushout (M +X N) +Y P , there exists a unique map

(M +X N) +Y P → M +X (N +Y P )
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making this diagram commute. We call this map αMNP . Note that we could have con-

structed the associator from the explicit definition of the pushout given in Section 3.1.1.

Naturality and isomorphism of the associator follow from similar constructions and the fact

that all pushout maps are injective as the input and output maps are injective.

Remember that we had defined identity DLMP 1X = (X, (0)a∈Act, idX , idX). Similar con-

structions using pushouts give us two natural isomorphisms corresponding to the unitors :

for all M ∶X → Y a DLMP, we have

λM ∶M ∗ 1X →M and ρM ∶M → 1Y ∗M

Pentagon identities and triangle identities are proven using similar computations. Hence:

Theorem 14. DLMP is a bicategory.

3.2 Continuous State Space

While the finite case is interesting to start with, in many cases of interest the underlying state

space of an LMP is not finite but an arbitrary measurable set or perhaps a more restricted

structure like a Polish space or an analytic space. However, most of the work we did in

the previous section does not rely on LMPs having a finite state space and it becomes very

tempting to extend the bicategory DLMP we just constructed to a more general notion of

LMP. It is not as straightforward as it may seem as the output map is more complicated in

the continuous case. The restriction to analytic spaces is important for proving the logical

characterization of bisimulation or simulation. Since we are not doing that here we will

consider general measurable spaces.
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3.2.1 LMP and simulation in the continuous case

Definition 15. Given a measurable space (M,Σ) a Markov kernel is a function τ ∶M ×Σ→

[0,1] where for each m ∈M the function τ(m, ⋅) is a subprobability measure on (M,Σ) and

for each measurable set B ∈ Σ the function τ(⋅,B) ∶M → [0,1] is measurable where [0,1] is

equipped with the standard Borel-algebra. A labelled Markov process is a collection (τa) of

Markov kernels on (M,Σ) that is indexed by a set of actions Act.

Let us now extend our previous definition of DLMPs to deal with the continuous case.

Definition 16. Given two finite sets X and Y , a continuous labelled Markov process (CLMP)

from X to Y is a tuple (M,Σ, (τa)a∈Act, i, o) consisting of (M,Σ) a measurable space, a

labelled Markov Process (τa)a∈Act, an injective function i ∶ X →M and a function o ∶ Y → Σ

such that for all y1 and y2 in Y o(y1)∩o(y2) = ∅, satisfying the following additional condition

for all a ∈ A :

for all y ∈ Y, m ∈ o(y) and B ∈ Σ τa(m,B) = 0

Note that here we have an input point but a (measurable) output set. To avoid painfully

long notations, we will also write o(Y ) for the set ⋃y∈Y o(y) ∈ Σ.

We now adapt the definition of simulation to this setting.

Definition 17. Given two CLMPs

N = (N,Λ, (τNa )a∈Act, iN , oN)

and

M = (M,Σ, (τMa )a∈Act, iM , oM)
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defined with the same input and output sets, a simulation of N by M is a measurable

function f ∶ N →M on the state spaces satisfying the following conditions:

• f ○ iN = iM and oN = f−1 ○ oM , and

• for all a ∈ Act, n ∈ N and B ∈ Σ, τMa (f(n),B) ≥ τNa (n, f−1(B)).

In such a case, we say that M simulates N and write f ∶ N ⇒M.

3.2.2 The bicategory CLMP

We now extend what was done in the finite case to the continuous case in order to construct

the bicategory CLMP.

Given two sets X,Y , there is a category CLMP(X,Y ) which has as objects the CLMPs

X → Y and as morphisms the simulations between them. Composition is given by the

standard composition on their underlying sets and the identities are the standard identities

on the underlying state spaces.

The next order of business is to define the horizontal composition both on the CLMPs and

the simulations. Let us start with the CLMPs.

Given three finite sets X, Y and Z and two CLMPs M = (M,Σ, iM , oM , τM) ∶ X → Y

and N = (N,Λ, iN , oN , τN) ∶ Y → Z, there are two inclusion maps jN ∶ N → M + N and

jM ∶M →M +N . We then define the relation ∼ on M +N as the smallest equivalence such

that

∀y ∈ Y ∀m ∈ oM(y) jM(m) ∼ jN(iN(y))

We then define the quotient map q between measurable spaces

q ∶ (M +N,Σ +Λ)→ ((M +N)/ ∼, (Σ +Λ)/ ∼)
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where (Σ +Λ)/ ∼ is the smallest σ-algebra such that q is measurable.

Note that here we are mimicking the explicit construction of the pushout given in the finite

case. We will therefore also denote (N +M)/ ∼ as N +Y M and (Σ + Λ)/ ∼ as Σ +Y Λ. We

define the horizontal composition of M and N as:

N ∗M = (M +Y N,Σ +Y Λ, q ○ jM ○ iM , q ○ jN ○ oN , τ ′)

where the LMP is defined for m ∈M +Y N and B ∈ Σ +Y Λ as

τ ′a(m,B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τMa (m′, j−1M q−1(B)) if ∃m′ ∈M ∖ oM(Y ) m = q ○ jM(m′)

τNa (n′, j−1N q−1(B)) if ∃n′ ∈ N m = q ○ jM(n′)

0 otherwise

Note here how the condition on the input and output maps is used : remember that the

input map is injective and that the output maps gives sets that are pairwise disjoint. This

ensures that if m1 ∼ m2 with m1 and m2 in M then there exists y in Y such that m1 and

m2 are in oM(y) and if n1 ∼ n2 with n1 and n2 in N then n1 = n2. This guarantees that τ ′a

is well-defined.

The identity is the same as the one we have defined in the discrete case : let X be a finite

set and let Σ be the discrete σ-algebra on X, then the identity is

1X = (X,Σ, (τa), idX , oX)

where τa(x,B) = 0 for all x ∈X and B ∈ Σ and oX(x) = {x}.

For every triple of finite sets X, Y and Z, we define the horizontal composition on the

simulations. Consider f ∶ M1 ⇒ M2 ∶ X → Y and g ∶ N1 ⇒ N2 ∶ Y → Z where Mk =
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(Mk,Σk, τM,k, iM,k, oM,k) andNk = (Nk,Λk, τNk , iN,k, oN,k) (k = 1,2). We use similar notations

as for the composition of CLMPs but index them by 1 or 2 (see following diagram).

We define their horizontal composition as

g ∗ f ∶M1 +Y N1 →M2 +Y N2

n↦ q2 ○ j2N ○ g(n′) if ∃n′ ∈ N1 n = q1 ○ j1N(n′)

m↦ q2 ○ j2M ○ f(m′) if ∃m′ ∈M1 m = q1 ○ j1M(m′)

(M1 +Y N1,Σ1 +Y Λ1)

(M1 +N1,Σ1 +Λ1)

q1

OO

(M1,Σ1)

j1M
55

f

��

(N1,Λ1)

j1N
ii

g

��

X

iM,2 $$

iM,1
::

Y

oM,1
ii

iN,1
55

oM,2uu iN,2 ))

Z

oN,1
cc

oN,2{{
(M2,Σ2)

j2M ))

(N2,Λ2)

j2Nuu
(M2 +N2,Σ2 +Λ2)

q2
��

(M2 +Y N2,Σ2 +Y Λ2)

This is again mimicking what happens in the finite case. Note that the remark used pre-

viously to show that the horizontal composition of DLMPs is well-defined is used here to

prove that the horizontal composition of the CLMPs is well-defined.
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The proofs with the associators and the unitors are similar to the finite case except that

they rely on the universal property of the quotient instead of the universal property of the

pushout. This gives the main result of the chapter:

Theorem 18. CLMP is a bicategory.
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Chapter 4

Conclusion

We have developed a notion of bicategory of Markov processes where the two-cells capture the

notion of simulation. The original paper of Baez, Fong and Pollard developed a compositional

theory of a certain class of CTMCs. We have developed an analogous theory for Markov

processes in both discrete and continuous state-space versions. By adding the two-cells we

have incorporated one of the most powerful and widely used tools for reasoning about the

behaviour of Markov processes and this opens the way for compositional reasoning.

Of course, this thesis is just a start. There are many interesting directions to explore.

Perhaps the most pressing is to understand how feedback can be incorporated via a trace

structure. Certain categories of probabilistic relations do have a traced monoidal structure;

it remains to be seen how to incorporate that here in a manner consistent with the two-cell

structure. We are also working on using more general coalgebras as the morphisms instead

of just Markov processes.

In earlier work [9] logical formalisms (modal logics) for reasoning about bisimulation have

been developed. Here we have the framework where one can think about compositional

logical reasoning. In a paper about a decade ago Mislove et al. [12] have studied duality for
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Markov processes (our CLMPs) and also developed a notion of composing Markov processes.

We have not yet worked out the relations between that framework and the one presented in

this thesis, but clearly it is an interesting topic to be examined.
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