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ABSTRACT 

A new equivalencing technique for static power 

systems is introduced. In a two stage computation, the 

tie-line power flows are approximated by the first few terms 

of a Taylor series expa~sion about a known base case. The 

first stage involves determining the sensitivity matrices of 

the tie-line flows, which depend only on the network 

topology and the base case. The following stage employs the 

sensitivity matrices and the specified injections to 

approximately calculate the tie-line flows. Subsequently, 

the boundary bus injections are augmented by the approximate 

tie-line flows, and the retained system load flow may then 

be implemented. 

Since the sensitivity matrices are independent of 

injections, it is straightforward to determine the new 

approximate tie-line flows corresponding to the changed 

injections. However, when network changes occur, it is 

necessary to recalculate the sensitivity matrices. A less 

computationally demanding alternative is to update the 

matrices. Two such methods are suggested. 

Several test cases demonstrating the method and 

typical results are provided. 
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RESUME 

Une nouvelle technique d'equivalence pour systemes 
de transport d'energie en regime stationnaire est 
introduite. Dans une computation a deux etapes, 
l'ecoulement de puissance dans les lignes d'accouplement est 
approxime par les premiers termes de l'expansion de la serie 
de Taylor basee sur un cas connu. La premiere etape 
consiste a determiner les matrices de sensitivite de 
l'ecoulement dans les lignes d'accouplement, qui dependent 
uniquement de la topologie du systeme et du cas de base. La 
deuxieme etape emploie les matrices de sensitivie et les 
injections specifiees pour estimer l'ecoulement dans les 
lignes d'accouplement. Ulterieurment, les injections aux 
circuits communs interfaciaux sont augmentees par la valeur 
approximative de l'ecoulement dans les lignes 
d'accouplement, et l'ecoulement de charge pour le systeme 
retenu peut etre applique. 

Puisque les matrices de sensitivite sont 
independantes des injections, il est facile de determiner la 
nouvelle valeur approximative de l'ecoulement dans les 
lignes d'accouplement correspondants aux nouvelles 
injections. Neenmoins, quand la topologie du systeme 
change, il est necessaire de recalculer les matrices de 
sensitivite. Une alternative qui est quantitativement moins 
exigeante, est presentee pour modifier les matrices. Deux 
methodes sont suggerees. 

Plusieurs cas d'essais demontrant la methode et des 
resultats typiques sont inclus. 
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CHAPTER 1 

INTRODUCTION 

1.1 WHY ARE EQUIVALENTS NEEDED ? 

In the pre-digital computer era, power flows were 

obtained by modelling the power system network on an analog 

computer known as the "network analyzer". Needless to say 

preparing the model to simulate designated network 

configurations consumed much time, consequently, power flow 

analysis was performed off-line. 

A stage was soon reached where power systems had 

expanded beyond the limited number of circuits and generator 

units available on the network analyzer. For the first time 

a need arose to represent the actual network by a smaller 

equivalent model. Various practices aimed at obtaining 

reduced models were commonly employed, of which the most 

prominent was to disregard portions of the network deemed 

insignificant to the overall behaviour. Ward [1], in his 

pioneer paper published in 1949, suggested a method similar 

to the Norton equivalent for obtaining a reduced model. 

- 4 -
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Shortly after their advent digital computers were 

utilized by the power industry. Digital computers offered 

several advantages over network analyzers ; power systems 

could be readily modelled and network changes could be 

quickly implemented. Moreover, digital computers were 

capable of handling larger networks than their analog 

predecessors; equivalencing became an obsolete art. 

New developments and criteria were later introduced 

to power system operation and planning; economic dispatch 

had been integrated into load flow programs while security 

monitoring required the execution of several on-line load 

flow simulations. The time available for on-line 

computation did not however permit the luxury of simulating 

all of the desired configurations. In addition, power 

system networks, through continuous growth and 

interconnection, soon exceeded the digital computer memory 

capabilities. Once more, interest in developing equivalents 

was stimulated. The vicious circle between the demand for 

more powerful computers and the ever increasing expectations 

of on and off-line power system analysis methods has no end 

in sight today. 

- 5 -
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1.2 PERFORMANCE OF THE EQUIVALENT 

The need for increasing power system reliability 

and for minimizing operating costs has dictated the 

organization of power pools, i.e, the interconnection of 

networks owned and operated by independent utilities. 

Typically, in order to run a load flow, information about 

the entire system should be available. However a particular 

utility of the power pool is primarily interested in its own 

system. Moreover, lack of external information, 

insufficient computer memory and time limitations preclude 

it from using the interconnected system model. Accordingly 

the utility is induced to develop an equivalent that 

isolates its own area from the rest of the system and 

provides a faithful representation of neighbouring systems. 

The jargon used in power system equivalencing 

research is not mystifying and does not warrant a detailed 

elaboration. In order to ensure clarity, it will suffice to 

establish at the outset certain basic concepts and to point 

out commonly used synonyms. The actual power system 

consists of a mesh of interconnected networks that are owned 

and operated by various utilities. Terms used 

interchangeably to refer to this area are :total, full, 

complete, and actual system. The objective of equivalencing 

is to single out a particular area in the power system and 

- 6 -
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retain it without introducing any modifications. Synonyms 

used to refer to this area are . . internal, study, and 

retained system. The remaining network, which lies outside 

the area of interest and for which it is desired to find an 

equivalent, belongs to the external (eliminated) network. 

Normally, the internal and external systems are 

interconnected only via a few tie-lines, and the internal 

system buses from which the tie-lines emanate are known as 

boundary buses. When the internal system is adjoined to the 

extenal network equivalent, the reduced system model which 

will be used for load flow studies, is obtained. 

In steady state security analysis the equivalent is 

used to simulate the system conditions within the area of 

interest while retaining the accuracy of the results within 

acceptable limits, when; 

(1) Local disturbances such as equipment outages are 

present in the area. 

(2) ·Changes in operating conditions such as load and 

generation levels occur throughout the system. 

Other desirable properties in an equivalent are 

(1) It should contain as small a number of buses as 

possible. 

(2) The equivalent should have a readily identifiable 

physical relationship to the generation and load make 

- 7 -
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up of the original system. 

(3) The equivalent should be usable for interchange 

studies. 

(4) It should be possible to adjust the equivalent so that 

it would be valid over a wide range of operating 

conditions, with little knowledge about the external 

system conditions. 

1.3 DISADVANTAGES OF USING AN EQUIVALENT 

1. An equivalent network is never exactly interchangeable 

with the original network. The best it can do is 

simulate exactly the ~base case~ used to derive the 

equivalent. 

2. Local disturbances in the area are bound to affect the 

neighbouring system; this may cause some of the 

components in the neighbouring system to operate at 

their thermal or stability limits. In the equivalent, 

the individuality of the neighbouring systems is lost, 

it is no longer possible to detect such anomalous 

events. 

3. The operating conditions of the external system are 

represented at the boundary buses of the equivalent, 

- 8 -
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therefore changes in boundary bus injections become 

difficult to trace back to the external injections. 

1.4 EXCHANGE OF INFORMATION BETWEEN UTILITIES 

At the outset the power industry consisted of 

independent utilities, each responsible for delivering power 

to its own region. In order to enhance reliability and 

minimize operating costs utilities linked their networks via 

a few tie-lines. Power flow exchanges were worked out in 

advance, there was no pressing need for operational 

information exchange among the pool members. Recently the 

trend has been to increase inter-pool data links. The IEEE 

committee report [19] cites that with the advanced control 

methods on the horizon, it might be necessary to telemeter 

almost as 

internally. 

much external information as is required 

Every pool member's computer would have access 

to a data base consisting of relevant 

conditions that is regularly updated by 

pool 

the 

operating 

individual 

utilities. Among other information, such a data base would 

contain the status of large generating units and essential 

branches, it is forseen that a 30 second interval scan of 

these data is adequate. 

- 9 -
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1.5 ALTERNATIVE METHODS FOR HANDLING LARGE NETWORKS 

Prior to presenting the historical overview, it 

should be mentioned that equivalencing is not the sole 

option available for solving networks that surpass computer 
•. . 

memory. One feasible alternative is Network Partitioning or 

Diakoptics [29] , where the power system is subdivided into 

several interconnected blocks, subsequently each block is 

solved separately. This method requires full knowledge of 

the network and suffers from the inherent disadvantage of a 

relatively slow solution time. Decoupling [30] is another 

viable alternative which exploits the weak coupling that 

exists between the real and reactive powers in the load flow 

equations. The method requires complete knowledge of the 

network, however in contrast to Diakoptics the solution time 

is relatively fast. 

1.6 OVERVIEW OF REDUCTION METHODS 

In his pioneer work, Ward [1] derived an equivalent 

that required knowledge of a base case load flow solution 

(denoted hereafter as the ~base case~). The base case 

external generations and loads are converted to either 

constant current sources or to constant admittance 

quantities. This transformation permits the external system 

- 10 -
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to be expressed in terms of a linear expression relating the 

voltages and currents. Subsequently, Nor ton reduction 

eliminates all external system buses, and introduces new 

boundary bus interconnections and new boundary bus 

equivalent current injections which may be converted to 

equivalent power injections using base case values. 

Du ran and Arvanitidis [2] systematized the 

development of an equivalent. Three phases were recommended: 

(1) Design phase :- consists of determining the buffer 

system, weak links and controlling buses. 

(2) Reduction phase :- two reduction methods were proposed 

a- the Norton equivalent 

b- the incremental model 

The authors found that the performance of method (a) 

was superior. 

(3) Operational phase :- concerned with adjusting the real 

power injections that represent loads and generators 

at eliminated buses, and the real power inj~ctions at 

unobservable internal buses. 

Paulsson [3] presented two methods with boundary 

buses being of the PV type. 

{1) Norton equivalent ; the author concluded that holding 

the real power equivalent injections constant gives 

good results, whereas holding the reactive equivalent 

- 11 -
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injections constant renders poor results. 

(2) This method involves finding a real power linear 

equivalent for the external system as seen from its 

terminals using a de model. Then the real power 

flowing into the internal system from the tie-lines is 

found using an ac load flow. By equating the two real 

powers a set of equations is obtained which should be 

solved simultaneously with the internal system load 

flow equations. 

Debs [4, 6, 7] and Con taxis [ 6, 7] endeavoured to 

derive the equivalent, off-line, by monitoring scheduled or 

forced internal system outages together with state estimator 

data. 

Dopazo, Dwarakanath, Li, Sasson [s] 

following for deriving an equivalent on-line: 

proposed the 

(1) Observe boundary conditions through time using a state 

estimator. 

(2) Model the external system by two components ; 

a- Modelling the reaction of the external system by 

observing the variations in time of the boundary 

conditions. The method makes use of the p-~ 

portion of the load flow equations only, and uses 

the Kalman filter approach for recursive system 

identification. 

- 12 -
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b- Modelling the operating level; present conditions 

at the boundaries are matched by adjusting the 

operating level component of the model,which is 

interpreted as an additional load at each boundary 

bus. 

Alvarado and Elkonyaly [a] linearized the external 

system about a known base case and reduced the effect of the 

external system to the boundary buses. At each iteration of 

the Newton-Raphson load flow, both the mismatch equations 

and the Jacobian for the retained network can be found by 

first completely ignoring the external network. The 

mismatches at the boundary buses are then corrected by an 

additional amount plus an amount linearly proportional to 

the deviation from base case conditions. The Jacobian terms 

corresponding to the boundary nodes are also corrected by a 

constant amount. 

In reference [9] the authors extended their ideas to a 

decoupled load flow model. 

Dy . Liacco, Savulescu, Ramarao [12] proposed an 

approach that consists of deriving a topological equivalent 

using the REI method. A calibrating network with an 

arbitrary injection for on-line adjustment is subsequently 

adjoined to the equivalent. 

- 13 -
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Monticelli, Deckmann, Garcia, Stott [13] envisaged 

a simple extension to the Ward equivalent. The authors 

asserted that the inaccuracy of the Ward reduction is 

attributed to the dilemma concerning the designation of 

boundary buses as PV or PQ. The proposed solution was to 

designate all boundary buses as they actually are and 

adjoin,via a fictitious branch, to each PQ boundary bus a 

new fictitious PV bus m with Pm = 0 and vm = base case 

voltage of the PQ bus. 

Dopazo, Irissari, Sasson [14] suggested the 

following procedure for deriving an on-line equivalent : 

1- Obtain a base case load flow. 

2- Calculate the REI equivalent for each external area. 

Every equivalent consists of two nodes, one for area 

generation and one for area load. 

3- Determine the mismatches between real time boundary 

conditions and those given by the equivalent. Adjust 

the REI node voltages to minimize the unbalances, this 

involves solving a linear least squares problem. 

4- Adjust the equivalent transmission network parameters 

to further minimize boundary unbalances. Employ the 

Kalman filter for system identification. 

Houses, Irisarri, Porter, Sasson [16] 

appraised various Ward and REI equivalencing 

- 14 -
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They concluded that all equivalents that provide reactive 

support perform satisfactorily. 

Deckmann, Pizzolante, Monticelli, Stott, Alsac ~a] 

reviewed various load flow equivalencing methods, with 

particular emphasis on Ward, REI and Linearized methods. 

The paper provides a valuable insight into the principles of 

each method reviewed along with suggestions for improving 

its performance. In reference [17] the authors presented 

the numerical results obtained by testing the various 

equivalencing methods. 

1.7 OUTLINE OF THE THESIS 

Chapter 2 will review in detail the Ward reduction, 

the REI equivalencing and the Linearized Jacobian methods. 

Chapter 3 will commence with a brief review of the 

ac load flow and will subsequently reformulate it using 

concise vector and matrix notation. Following that, the 

approximation formulae for dependent load flow variables 

will be presented along with their derivation. 

Chapter 4 will present the motivation underlying 

the proposed equivalencing method, the procedure for 

- 15 -
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obtaining the equivalent will be described in detail and an 

illustrative example will be provided. Two methods for 

updating the approximation will be presented. 

Chapter 5 will be devoted to displaying typical 

results obtained while working with a 5 bus system and with 

the IEEE 30 bus system. The latter results will be compared 

to the corresponding results obtained by E. Elkonyaly [10] • 

Appendix A will demonstrate how the a matrices, 

that are needed in the approximation formulae, can be 

determined. 

Appendix B will include the approximation program 

for determining dependent load flow variables, and Appendix 

C will include the load flow program. Both of these programs 

were used extensively in this research. 

1.8 CONTRIBUTIONS OF THE THESIS 

Approximations (linear or quadratic) to the 

tie-line flows are obtained by a taylor series expansion 

about a known base case. The reduced system comprises of the 

internal system, with the boundary bus injections augmented 

by the approximate tie-line flows. This approach does not 

- 16 -
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require the modification of available load flow programs, 

and does not introduce any new lines or buses to the 

internal system. The linear approximation method belongs to 

the ~Linearized~ methods [18], and its performance seems to 

be very good. 

- 17 -
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chapter 2 

REVIEW OF 
WARD , REI , LINEARIZED JACOBIAN 

EQUIVALENCING 

2.1 INTRODUCTION 

Even though Ward~s method is the oldest of 

equivalencing techniques, various modifications of it spur 

up regularly in recent literature. The main concept 

underlying the Ward approach is to transform the base case 

nonlinear external power-voltage equations into a linear 

current-voltage expression that is susceptible to Norton 

reduction. When applied, Norton reduction eliminates all 

external system buses and models the effect of the external 

network by a new set of boundary interconnections and 

equivalent boundary injections. Ward~s reduction has been 

thoroughly examined in the literature, section 2.2.2 will 

elaborate upon its shortcomings. 

In the early 1960~s P. Dimo, of Romania, introduced 

the REI (for; Radial, Equivalent, Independent) equivalencing 

method. Researchers in the west, however, remained 

oblivious to the method until an english translation of 

- 18 -
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Dimo;s book [28] was made available in 1975, since then 

several mutations of the REI technique have surfaced. One 

of the main reasons behind the interest in this method is 

due to the fact that the REI overcomes several of the 

failings to which Ward;s reduction is prone. Briefly, the 

objective of the REI is to replace a set of external active 

nodes (i.e generation and load buses) by one or more 

fictitious active buses, thus rendering the external system 

buses passive and susceptible to Norton reduction. The 

equivalent obtained after Norton reduction has been applied 

comprises of the internal system with new boundary 

interconnections and which is adjoined to the equivalent 

fictitious buses. 

Finally, this chapter will review the Linearized 

Jacobian method [a], which puts forward ideas analogous to 

the ones presented in this thesis. By linearizing the 

external system about a known base case, a set of equations 

relating the boundary tie-line flows to the in~ernal system 

voltages are obtained. Translated into the internal system 

load flow problem, this specifies that at every iteration of 

the Newton-Raphson load flow, both the Jacobian and the 

boundary mismatches should be updated. 

Each of the remaining three sections in this 

chapter will be devoted to reviewing in detail one of the 

- 19 -
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above equivalencing methods. 

2.2 THE WARD EQUIVALENT 

2.2.1 WARD REDUCTION 

Notation 

I complex current injections vector. 

S complex power injections vector. 

P real power injections vector. 

Q reactive power injections vector. 

Y complex admittance matrix. 

* denotes the complex conjugate. 

denotes vectors and matrices. 

The power system is characterized by the linear 

current-voltage relationship [27] : 

I = Y V (2.1) 

At each bus, however, the power injections rather than the 

current injections are specified in practice. 

element of I is : 

I = 
i 

s I V 
i i 

- 20 -
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Replacing (2.2) in (2.1) yields : 

* N 
P -jQ =V :r:y V ( 2. 3) 

i i i k=l ik k 

When (2.3) is written for all buses i (i=l, ••• ,N) a set of 

non-linear equations relating the power injections to the 

bus voltages is obtained which is better known as the ~load 

flow equations~. 

The first step towards forming the Ward equivalent 

is to transform the external system load flow equations of 

(2.3) into the corresponding form of (2.1) using a known 

base case load flow. Either one of two classical methods 

may be employed . . The Ward Injection method, where all 

external injections are converted to constant current 

sources via (2.2). The Ward Admittance method, where all 

external injections are transformed to shunt admittances 

using ( 2 • 4) • 

* 2 
Y = s I IV I (2.4) 

i i i 

The Ward Admittance method is not a very attractive 

alternative [1~ , for it is not always appropriate to model 

loads by shunt admittances. Moreover, it is certainly an 

unreliable method for representing the Q-response at a PV 

bus, whose arbitrary base case power decides the value of 

- 21 -
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the shunt. Furthermore, as we shall see in the following 

subsection, this method cannot avoid including the external 

shunts in the admittance matrix. 

In order to determine the effect of the external 

system reduction upon the internal system, the base case 

internal power injections will also be transformed to 

current and admittance quantities. Thus it is possible to 

write the base case non-linear load flow equations in terms 

of a linear current-voltage relationship as in (2.1). 

Partition the system admittance matrix into 

external boundary and study matrices . , . 

Ie Yee Yeb 0 Ve 

Ib = Ybe Ybb Ybs Vb { 2. 5) 

Is 0 Ysb Yss Vs 

Eliminate the unknown vector Ve to obtain : 

[I:seq] [Ybb eq Ybs] [:] = {2.6) 
Ysb Yss 

where 
-1 

Ib eq = Ib - Ybe Yee Ie (2.7) 

- 22 -
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-1 
Ybb eq = Ybb - Ybe Yee Yeb (2.8) 

Reduction leaves both of the internal admittance 

matrix ~Yss~ and the internal injections unchanged. New 

boundary bus interconnections and shunts emerge (2.8), and 

boundary current injections are modified (2.7). The 

equivalent boundary current injections may then be converted 

to power injections by using the base case load flow. 

Subsequently the reduced system consists of the internal 

system with additional boundary bus interconnections and 

shunts, and the equivalent boundary bus injections. Studies 

using the equivalent are performed by altering the internal 

injections or the internal network configuration. 

2.2.2 SHORTCOMINGS OF THE WARD REDUCTION 

Recalling that reduction was possible only after 

transforming the base case external generations and loads 

into current sources and admittances, one would expect that 

a transformation about a state different from the base case 

would yield disparate !b eq and Ybb eq Accordingly, 

one may infer that the equivalent will be an exact model 

only under base case conditions. 

- 23 -
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External network line charging and reactive 

If the compensation shunts require special attention. 

shunts were included in the admittance matrix of (2.5) then 

the equivalent boundary shunts, obtained after reduction, 

would acquire extremely large values. As a result, a small 

change in the boundary bus voltage magnitude would trigger a 

large consumption of reactive power; a situation which is 

unrealistic. To thwart such an occurrence when working with 

the Ward Injection method, it is sufficient to convert all 

the external shunts into additional bus injections before 

elimination. This transformation will ensure that the 

resulting series equivalent network will have normal X/R 

ratios. Unfortunately, the prospects are not so bright for 

the Ward Admittance method where the shunt admittances are 

already very large prior to reduction, with low X/R ratios. 

It is not unusual to end up with extremely large shunts in 

the reduced network. Unlike the Ward Injection method, this 

unpleasant situation cannot be circumvented. 

In general it is more difficult to solve power flow 

problems after reduction is carried out. This may be 

attributed to the elimination of critical PV buses, the 

great diversity in magnitudes of the distributed injections 

at boundary nodes and the abnormal values of the modified 

admittance matrix elements. Thus, even though a particular 

equivalent problem is known to have a solution, the load 
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flow might fail to converge to it with acceptable accuracy, 

if it converges at all! 

The dilemma of classifying boundary buses as PV or 

PQ has received much attention [3, 13] • Reference [16] 

concluded that the major problem with the Ward equivalent is 

that it does not allow for reactive power support in the 

equivalenced area. This can be explained by noticing that 

although the real power is always specified for every bus 

except the slack bus, the reactive power is not specified at 

every bus and may vary. If the equivalent assumes that the 

reactive power at regulated PV buses will remain at its base 

case value even under outages, the results are usually 

unacceptable. However, the results are enhanced for a Ward 

equivalent with a carefully selected buffer zone. 

2.3 THE REI EQUIVALENT 

2.3.1 FORMING THE REI 

The REI approach [2fil overcomes some of the 

disadvantages of the Ward reduction method. The idea is to 

replace a set of generation and/or load buses (active buses) 

by one or more fictitious buses connected through a lossless 

fictitious network to the group of active nodes which it is 
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to replace. The equivalent power injection at the new 

fictitious bus is made equal to the algebraic sum of the 

power injections at the buses being replaced. Having done 

this, all buses in the external system become passive, the 

external network may then be reduced by Norton reduction. 

Consequently, the reduced system consists of the internal 

system having new boundary bus interconnections and shunts 

due to the reduction process, and of the new fictitious 

equivalent buses. 

Fig 1 represents the actual network classified into 

an internal system and an external system ( having distinct 

active and passive nodes) • There are N active buses in the 

external system, and the power injection at any active bus i 

is specified asS (i=l, ••• ,N). The objective is to replace 
i 

all the active external buses by a fictitious active bus R 

connected to the buses which it is to replace by the yet 

undetermined admittances Y and Y (fig 2). 
R i 
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Bus R is the new equivalent fictitious bus, whereas bus G 

is a passive bus with an arbitrarily assigned voltage V 
G 

The only constraints which must be satisfied are : 

and 

s = 
R 

I = 
R 

N 
l: 

i=l 

N 
:E. 

i=l 

s 
i 

I 
i 

Accordingly voltage V must then be: 

V 
R 

R 

= s I 
R 

* 
I 

R 

The current flowing through admittance Y is given by 
i 

* * 
I = s I V 

i i i 

lf V = 0 the branch admittances are 
G 

y = 
i 

y = 
R 

I I V 
i 

I I 
R 

i 

V 
R 

* 2 
= - s I IV I 

i i 

* 2 
= s I I vI 

R R 
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If V ~ 0 the branch admittances are 
G 

y = I I V V ) 
i i G i 

y = I I ( V V 
R R R G 

Substituting (2.8) into (2.15} I we get 

* * y = s I ( V ( V - V ) 
i i i G i 

* * y = s I { V V -I V. I 
i i i G l 

(2.15) 

(2 .16} 

) (2.17) 

2 
) (2.18) 

If V is set equal to zero, Y (2.13) is sensitive 
G i 

only to the voltage magnitude variation • This selection is 

attractive in power systems because voltage magnitudes 

undergo slight variations as network conditions change • 

However if V ~ 0 , Y (2.18) will also depend on the 
G i 

voltage angles which tend to vary significantly as network 

conditions change. 

Since node G is passive it can be eliminated, 

however from the standpoint of sparsity it may not be 

advantageous to eliminate it. On the other hand, if node G 

is retained it may adversely affect some of the load flow 
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algorithms that count on all network voltages to be near 

their nominal values. 

2.3.2 COMMENTS ON THE REI 

External line charging and reactive compensation 

shunts create the same problems for the REI as they did for 

the Ward Injection. These difficulties may be circumvented, 

as was done before, by converting the shunts to additional 

bus injections prior to reduction. 

Reference [18] gives an enlightening discussion of 

accuracy considerations for the REI technique. One point of 

concern is the portion of power flowing from bus R to the 

original active buses at different operating conditions. 

Usually the branch admittances Y are small, relative to 
i 

those in the rest of the system, and thus S will tend to 
R 

be distributed in the same proportion; this behaviour is 

suitable for a grouping of PQ buses. Deviations from the 

constant proportionality condition increase as the 

injections become 

admittances (2.13). 

larger, thus yielding larger branch 

The authors also argue that the REI has 

a built in tendency to be ill-conditioned, especially as far 

as the decoupled load flow is concerned. The unusual 
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fictitious REI branches lead to series admittances in the 

reduced network that may acquire unusual values. Concerning 

the application of the REI it is noted that, like the Ward 

Admittance but unlike the Ward Injection, the network 

admittances always retain information from the base case 

conditions. This information cannot be adapted to changes in 

external states. This limitation does not seem to be a 

serious drawback, for the accuracy of the boundary matched 

REI equivalent has been reported to be satisfactory. 

offer several suggestions 

regarding 

Tinney and Powell [11] 

the application of the REI and sparsity 

programming. Dy liacco, Savulescu, Ramarao [1~ use the REI 

method to develop their X-REI model that includes on-line 

calibration. Houses, Irissari, Porter, Sasson 

investigate several methods of forming the REI. Wu and 

Narasimhamurthi [15] give a detailed analysis of the REI and 

the necessary (but not sufficient) conditions for the REI 

equivalent to be incrementally accurate about the initial 

base case. 

2.4 LINEARIZED JACOBIAN METHOD [8,9,1~ 

Fig 3 shows a typical power system subdivided into 

internal and external networks, with boundary buses as well 
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as all of the boundary bus shunts and injections belonging 

to the internal system. ·The tie-lines, which emanate from 

boundary buses, interconnect the internal and external 

networks. 

internal 
system 

FIG 3 

boundary 
buses 

tie 
lines 

external 
system 

A Typical Power System 

Subnetwork B, fig 4, consists of the internal 

system with boundary injections supplemented by the base 

case tie-line flows. 

internal 
network 

FIG 4 
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Subnetwork A, fig 5, consists of the external 

system and the tie-lines which are excited at the detached 

end by the base case tie-line flows. 

s 
bdy 

FIG 5 

tie 
lines 

external 
network 

Subnetwork A 

The separate analysis, at base case conditions, of 

of subnetworks A and B would yield identical results as the 

base case of the complete network. 

Let h denote the set of mismatch equations for the 

external network. These are a function of the eliminated 

node voltages and angles (denoted by x ) and also a function 
-1 

of some of the retained node voltages and angles (denoted 

by X ). 
-2 

0 0 
Linearizing about the base case solution~ x and x 

-1 -2 

- 33 -
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0 0 0 
J (X - X ) + J (X - X = 0 (2.20) 
-1 -1 -1 -2 -2 -2 

where 

@ h (!_ '.'!. ) 
1 2 

0 0 (2.21) 
@ X , 

-1 

@ h (!_ ,x 
1 2 

0 0 {2.22) 
@ X I 

-2 

Rewriting {2.20) so as to express the unknown external 

vo1tages in terms of the internal voltages, 

c 
0 -1 0 

~ ( X X ) = - J J X - X (2.23) 
1 -1 1 2 - 2 2 

Let h; denote the set of mismatches at the detached 

tie-line ends in subnetwork A, and let S denote the 
-bdy 

injection from subnetwork A into subnetwork B. 

S = h; {x ,x } (2.24} 
-bdy -1 -2 

Linearizing {2.24) about the base case, 

0 0 0 

s = s + J <! - X ) + J (X - X ) {2.25) - bdy -bdy - 3 1 - 1 -4 -2 2 

0 
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where 

@ h~ (X r!, 
1 2 

J = 0 0 ( 2. 26) -3 @ X X , X 
-1 - 1 2 

@ h~ (~ ,x ) 
1 2 

J~ = 0 0 (2.27) 
-4 @ X X X - - -2 1 2 

Therefore the Jacobian for subnetwork A is 

J J 
-1 - 2 

J = ( 2. 28) 
-A J J~ 

-3 - 4 

Using (2.23) to eliminate the unknown voltage 

0 

vector (X X in (2.25) 
1 -1 

0 -1 0 

s = s + ( J~ - J J J (!, - X (2.29) - -bdy - - - -bdy 4 3 1 2 2 2 

-1 
Define J = J~ J J J (2.30) -cor 4 -3 1 -2 

Equation (2.29) expresses the tie-line flows at the boundary 

buses as a function of the internal system voltages only and 
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thus permits solving subsystem B, independently of subsystem 

A, at conditions different from base case. 

Let g{x ) be the mismatch equations of the internal system, 
- -2 

hence the mismatch equations for 

given by : 

s + g <! ) = 
-bdy 2 

substituting for s • , 
-bdy 

0 0 

0 

subnetwork B, h(x ), are 
-B-2 

(2.31) 

==> s + J (X - X } + ~(X ) = 0 
-bdy -2 -2 -2 

{2.32) 
cor 

or equivalently, 

h (X ) = 0 (2.33) 
-B -2 

which can be solved by Newton's method ; the Kth iteration 

being : 

k k-1 k k k-1 
h (!. ) = h (X ) + J (x - X ) = 0 
-B 2 - B -2 B -2 2 

(2.34) 

where 

@ h {!_ ) 
k -B 2 

J = (2.35) 
-B @ X k-1 

-2 X 

2 

Substituting (2.32) into (2.34) . 
I 
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0 k-1 0 k-1 
5 + J (X - X ) + g(x ) 

bdy cor 2 2 2 

with 

@ 2_(!, ) 
k 2 

J = J + 
-B cor @ X -2 

The second term of (2.37) 

isolated retained network. 

SOLUTION ALGORITHM 

1. Run the base case load flow • 

2. Compute Jacobians 

3. a- Guess x 
-2 

J , J 
-A cor 

k k k-1 
+ J (X - X ) = 0 

B 2 2 

(2.36) 

k-1 (2.37) 
X - 2 

is the Jacobian of the 

b- Calculate the mismatches h(x ), and the Jacobian 
-B-2 

of the retained system • 

c- Correct the mismatches at the boundary nodes by 

k-1 0 

J (X - X ) • 
cor -2 -2 

d- Correct the Jacobian terms corresponding to the 

boundary nodes by adding the terms of J 

to obtain J 
-B • 
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e- Solve J ~ = h (!_ ) for ~ • 
B 2 B 2 2 

k+l k 
f- Let X = X A?! 

2 2 2 

g- Go to (b) • 

The authors [a, 9, 10] suggest a method for 

simulating the effect of external network changes after 

reduction. By repeating the above elimination process with 

equation (2.20) rewritten as : 

0 0 

(2.38) 

The boundary injections can be expressed entirely in 

terms of the retained system variables : 

0 
= s 

-bdy 
+ J 

cor 

0 

+ (2.39) 

Once more it is possible to incorporate this equation into 

the Newton-Raphson iterations. 

In references [9, 10] the authors extended the model 

to a form more compatible with the decoupled load flow. The 

Linearized Jacobian is a relatively recent contribution and 

has yet to receive its fair share of testing. Numerical 

results given by the authors [8,9,1Q] and in reference [17] 
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indicate the high performance of the Linearized Jacobian as 

compared to other equivalencing methods. The greatest 

disadvantage of the method,as far as implementation is 

concerned, is the necessity to modify the Jacobian of the 

retained system. This implies that normal load flow programs 

cannot be directly applied to the retained system without 

some modification. 
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chapter 3 

APPROXIMATION FORMULAE FOR DEPENDENT 
LOAD FLOW VARIABLES 

3.1 OBJECTIVE 

Explicit approximation formulae [23] based on the 

Taylor series expansion are derived relating an arbitrary 

dependent load flow variable, y, to 

injections z of a general load flow 

approximations will be considered : 

1. The linear approximation 

T 
y = B z 

2. The quadratic approximation 

T 
y = B 

T 
z + z c 

- 40 -
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problem. Two 
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(3.2} 
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3.2 THE AC LOAD FLOW 

In steady state analysis the power system is 

treated as a balanced three phase system and may be 

represented by a single phase positive sequence network. 

Under such conditions the static behaviour can be described 

in terms of a set of non-linear equations known as the #load 

flow#. Given the operating conditions of the_ system, the 

load flow determines the voltages at all the nodes of the 

network, subsequently, any dependent variable may be 

calculated. 

Each bus is characterized by four quantities [2~ • 

The net real and reactive power injections, the voltage 

magnitude and the phase angle. Three types of buses are 

represented in the conventional load flow, and at each bus 

type, two of these four quantities are specified. It is 

necessary to select one bus, called the slack bus, at which 

both the voltage magnitude and the phase angle are 

specified. The need for this contraption arises because the 

real power losses, being a function of the solution 

voltages, are not known in advance. Since the power 

injections will be specified at all the other buses, it is 

necessary to have one bus (the slack bus) at which the real 

and reactive power generations are determined by the load 

flow. The remaining buses of the system are designated 
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either as voltage controlled buses (also known as PV) or as 

load buses (also known as PQ). Real power injections and 

voltage magnitudes are specified at PV buses, whereas both 

real and reactive power injections are specified at PQ 

buses. 

The real and reactive power injections into node i can be 

expressed as : 

* s = p + j Q = V I ( 3. 3) 
i i i i i 

or equivalently 

* p = Real ( V I (3.4) 
i i i 

* 
Q = Imag ( V I ( 3. 5) 

i i i 

The current entering node i is: 

N 
I = ~ y V (3.6) 

i k=l ik k 

where N is the number of buses in the system and y is 
ik 

the ik element of the admittance matrix . 
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In rectangular coordinates, the nodal voltage at 

bus i is 

V = e + j f (3.7) 
i i i 

By substituting into (3.4) and (3.5), we obtain: 

N 
p = L e G e B f ) + f ( G f + B e ) 

i k=l i ik k ik k i ik k ik k 
( 3. 8) 

N 
Q = X f ( G e B f - e G f + B e ) 

i k=l i ik k ik k i ik k ik k 
{3.9) 

where y = G + j B 

c ik ik ik 

At load bus i . . 
specify p as given by (3.8) 

i 

specify Q as given by (3.9) 
i 

At voltage controlled bus i . . 

specify p as given by ( 3. 8) 
i 

2 2 2 
specify lv I = e + f 

i i i 

At the slack bus s . . 
c 
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2 2 2 
specify I V I = e + f 

s s s 

Usually the slack bus is made the reference bus by setting 

the phase angle to zero, or equivalently setting f = 0 • 
s 

All in all there are (2N-l) nonlinear equations in 

(2N-l) unknowns. Newton's method [27] transforms the 

non-linear load flow equations into a linear set of 

equations that must be solved iteratively until the solution 

converges to the desired accuracy. 

This section has reviewed the load flow problem in 

sufficient detail for our purposes. However one cannot pass 

by without remarking that the load flow problem has been 

extensively tackled in the literature, with various methods 

aiming at reducing memory requirements and/or decreasing 

execution time. 

3.3 REFORMULATING THE LOAD FLOW PROBLEM 

Of particular relevance to the current discussion 

are papers [20] , [21] and the work of Jarj is [22] which 

layed the fundamentals of the theory about to be presented. 

The most recent contribution is the work done by Banakar 
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[23] where the approximation formulae were derived. 

This section will be devoted to restating the load 

flow problem and establishing the fundamental tools 

necessary for deriving the approximation formulae. The 

formulae will be presented in section 3.4, their derivation 

has been postponed to the final section of this chapter so 

that the arduous mathematical manipulations will not obscure 

their elegance and simplicity. 

Let N be the number of buses in the network 

T 
e (e ,e , . . . ,e ) 

1 2 N 

T 
f (f ,f , • • • ,f ) 

1 2 N 

T T 
X {~ , f ) 

z net injection at bus k . . 
k 

if bus k is PQ , the injections are p , Q 
k k 

2 
if bus k is PV , the injections are p , IV I 

k k 

2 2 
for the slack bus s I the injections are e , f 

s s 
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z = F (X) load flow equations 

Each component z of the vector z 
k 

can be expressed in a quadratic form 

T 
z = X J X 

k z 
k 

2 
(i.e P ,o ,jv I > 

k k k 

(3.10) 

Where J is a (2N) * (2N) real symmetric matrix uniquely 
z 

k 

defined by the type of bus injection and the network 

structure. In case the slack bus imaginary voltage is set 

equal to zero, the dimension reduces to (2N-l) * (2N-l). 

Hence we may write : 

T 
z X J X 

1 z 
1 

T 
z = z = X J X (3 .11) - 2 z 

2 
• 
• • 

T 
z X J X 

2N-l z 
2N-l 
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Defining the matrix L(X) as 

T 
X J - z 

1 
T 

X J 
L (X) = z (3.12) 

2 

T 
X J 

z 
2N-l 

the load flow equations take the form , 

Z = L ( X ) X ( 3 .13) 

An interesting observation is that L (~) is equal 

to one-half the Jacobian matrix of the load flow equations. 

This can be easily verified by partial differentiation of z 

with respect to~ in (3.11). 

Dependent variables, y(~), in a load flow problem 

include real losses , line flows , reactive generations , 

and load bus voltage magnitudes squared. All of these 

dependent load flow variables may be expressed in quadratic 

form : 
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T 
y (X) = X R X (3.14) 

Where R is a highly sparse constant matrix corresponding to 

the specified dependent variable y. Appendix A 

demonstrates a typical derivation of the R matrix. 

3.4 THE APPROXIMATION FORMULAE 

Expanding the dependent variable y(~) in a Taylor 

0 

series in z around some nominal (base case) voltage , ~ , 

we get 

2 
0 @ y 1 T @ y 

y = y(x ) + (-) A!+- A! ( 
@ z 0 2 2 

.A!+ ••• 
0 

x=x @ z x=x 
(3.15} 

0 

.A! = z z - (3.16) where 

0 0 0 
and z = L (~ ) X - (3.17) 

Then a linear approximation would comprise of the 

first two terms, whereas the quadratic approximation would 

include the first three terms. 

The linear approximation formula for the dependent 
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load flow variable Y(!) in terms of the specified injections 

z is given by 

T 
y = B z ( 3 .18) -

where 

T 0 T -1 0 

B = (x ) R L (!5, ) (3.19) 

The quadratic formula is given by 

T T 
y = B z + z c z (3.20) 

where B is given by (3.19), and 

1 T 0 -1 0 -1 
c = 

4 
[ L (! >] [R- J (~)] [!!<~>] (3.21) 

3.5 DERIVATION OF THE APPROXIMATION FORMULAE 

3.5.1 USEFUL PROPERTIES 

Prior to proceeding with the formulae derivation 

two useful properties will be presented. 

T 
1. for any constant (2N-1) vector B = (B ,B , ••• ,B ) 

1 2 2N-1 
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T 
B z = 

= 

where J {B) = 

2N-1 
~ 

i =1 

2N-1 
l: 

i =1 

T 
= X 

T 
= X 

2N-1 
2: 

i =1 

B z 
i i 

T 
B X J 

i 

2N-1 
[ ~ B 

i =1 i 

X 

B J 
i z 

In (3.13) it was found that, 

Z = ~{~) X 

T 

X -z 
i 

J J X 

z 
i 

i 

which when premu1tiplied by the B vector, gives 

T T 
B z = B ~(~) X -

Comparing (3.25) to (3.28) we get; 

T T 
X J(B) = B L(~} 
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(3.26) 
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(3.29} 
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Of particular interest is that J(B) is symmetric and is as 

sparse as the Jacobian matrix. 

2. The partial derivative 

chain rule as follows . . 

@ y @ 

= 
@ z @ 

In (3.10) it was found that 

z 
i 

= 
T 

X J 
z 

i 

may be found by applying the 

y @ X 
(3.30) 

X @ z -

X (3.31) 

Taking the partial derivative of (3.31) with respect to x 

we obtain, 

@ z 
i T 

= 2 X J (3.32) 
@ X z . 

i 

which when carried out for i=l, ••• ,N gives 

@ z 
= 2 L (~) (3.33) 

@ X 

where L(~} has been defined in (3.12) • The above equation 
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informs us that L (!!) is equal to 1/2 the Jacobian . 
Inverting (3.33) 

@ X 1 -1 
= L(x} (3.34) 

@ z 2 

and substituting in (3.30) 

@ y 1 @ y -1 
===> = L (!!_) ( 3. 35) 

@ z 2 @ X -

3.5.2 FORMULAE DERIVATION 

Having presented the above properties we are now in 

a good position to proceed with the Taylor series expansion. 

2 
0 @ y 1 T @ y 

y = Y{!!_ ) + ~+ IS! ~+ . . . 
@ z 0 2 2 0 

x=x @ z x=x -
{3.36) 

Each term of the series will be examined separately. 
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(1) first term 

0 
T = y(x ) (3.37) 

1 

Therefore T is simply (3.14) evaluated at base case 
1 

voltages. 

(2) second term 

T 
= X R -

o T 
= (!_ ) 

T = 
2 

@ y 

@ z 

X 0 (3.38) - x=x 

0 

R X (3.39) 

(3.40) 
0 

x=x 

In the previous subsection, property (2) showed that the 

partial derivative of (3.40) is given by; 

@ y 
= 

@ z 

1 

2 

@ y -1 
L(~) 

@ X 
(3.41) 

Moreover, the partial derivative in (3.41) may be easily 

determined by substituting for y as given by (3.14). 
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===> 

Substituting 

where 

@ y @ T 
= ( X R X (3.42) 

@ X @ X 

T 
= 2 X R (3.43) 

(3.41) and (3.43) into (3.40), we get 

T -1 
T = x R L(!) 

2 

T o 

x=x 

T = B(! ) 6! 
2 

To o T -1 0 

!!<! ) = (X } R L(! ) 

(3.44) 
0 

(3.45) 

(3.46) 

(3) third term 

2 
1 T @ y 

T = De_ 6! (3.47} 
3 2 2 0 

@ z x=x 
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Start by examining 

2 
@ y 

6! = 
2 

@ z 

= 

= 

2 
@ y 

a!. . . 
2 

@ z 

@ T 
2 

@ z 

@ T @ X 

2 

@ X 

@ T 
2 

@ X 

@ z 

1 
[-

-1 
L{~) J 

2 

(3.48) 

(3.49) 

(3.50) 

(3.50) is obtained by replacing the partial derivative of 

~in (3.49) with expression (3.34). 

Moreover T , in (3.50), has already been found in (3.44) 
2 

to be, 

T 
T = B(~) .6.! ( 3. 51) 

2 

with 

T T -1 
B(~) = X R !! (~) - (3.52) 
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In order to compute the partial derivative of T 

@ T T 
2 @ B (?!) 

= 
@ X @ X 

consider a differential change in 

T 
in !! ( ?!_) ; 

T T -1 
d!! (?!.) = d( X ) R !! ( ?!_) -

Noting that, 

-1 
d ( !! (?!_) ) 

(3.54) may be rewritten as 

T T -1 
dB(?!_) = d(x ) R !!(X) 

Also, since we know that 

(3.56) may be rewritten as; 

T 
= d(x ) 

+ X 

. 
I 

T 
X 

T 
R 

-1 
L ( ?!_) 

R 
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2 

~ 

T I or 
2 

-1 
d [~ (?!_) J 

-1 
L(X) d( !! ( ?!_) 

in (3.50), 

(3.53) 

equivalently 

(3.54) 

(3.55) 

-1 
) L ( ?!_) 

(3.56) 

(3.57) 

(3.58) 



c 

Recalling property (1) where, 

T T 
B(!) L(x) = X ~(~) 

(3.58) can be simplified to 

T 
dB(!) = 

T 
d(! ) 

T 
d(x ) 

T 
= d(!} [ R - ~(B) J 

Returning to the partial derivative 

rewritten using (3.61) as, 

@ T 
2 -1 T 

= [~<!> J [!! - J(B) J 
@ X 

-1 
L(!) 

in (3.53}, 

~ 

and substituting (3.62) into (3.50) we obtain: 

@ T 
2 

@ z 
= 

1 

2 

-1 T 
[,!!(!,) J [R - J(~) J 

Finally, by replacing (3.63) into (3.47), we get; 
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(3.59) 

(3.60) 

(3.61} 

it may be 

(3.62) 

(3.63) 



0 

0 

1 T -1 T 
~ [ L (~) J [ R - !! (!!) J T = 

3 4 

o -T 

-1 
~(?!) Ll! 0 

x=x 

(3.64) 

0 -1 
===#> T = 

3 

1 

4 
[L(~ ) J [!!- J(!!)] [L(?!_) J ~ 

(3.65) 

Define the C matrix to be : 

1 o -T 0 -1 
[L(~ >] [R- J(B}] [~<~ ) J (3.66) c = 

4 

Having evaluated each of the first three terms of 

the Taylor series expansion, equation (3.36) may be 

reexpressed as 

o T o o o o 
y = y(~ ) + B (~ ) (~ - z ) + (~ - ~ ) C (~ - z ) 

(3.67) 

T o o o 
Since B (~ ) z = ~(~ ) , (3.67) becomes 

T o o o 
y = B (X ) Z + (~ - Z ) C (! - Z ) (3.68) 
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The first term of (3.68) gives the linear approximation. 

Substituting the value of C (3.66) into (3.68), and noticing 

that: 

0 T 0 0 
!!(B) X = L (X ) B (! ) - -

T 0 -T o 0 

= L <! L (! ) R X -
0 

= R X (3.69} -
we find that ·; 

0 0 0 0 
z c z = z c z = z c z = 0 - - -

Thus, (3.68) reduces to : 

T 0 
y = B (!_ ) z + z c z - - - (3.70) 

which is the quadratic form. 
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CHAPTER 4 

THE PROPOSED EQUIVALENCING METHOD 

4.1 MOTIVATION 

Consider a power system , fig 6 1 that has been 

subdivided into internal and external areas. 

INTERNAL EXTERNAL 

SYSTEM t1e-J.1nes SYSTEM 

FIG 6 

Given a set of base case injections , say , 

z = Zinternal , Zexternal where Zinternal denotes 

the internal injections and Zexternal denotes the external 

injections 1 a load flow for the complete system will yield 

a solution voltage , say , V = ( Vinternal , Vexternal ) 

where once again the internal and external bus voltages have 

been grouped separately • 

Isolate the internal system by severing the 

tie-lines at the boundary buses • Using injections !internal 
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a load flow for the isolated internal system will render a 

solution voltage, say, Visolated that generally differs 

drastically from Vinternal • Therefore, we reach the obvious 

conclusion that isolating the study system, is not a valid 

equivalencing method The dependence of the internal 

system on the external system is exemplified by the load 

flow problem where all (2N-l) equations must be solved 

simultaneously • 

To amend the discrepancy, one can augment the 

boundary bus injections of the isolated internal system by 

the corresponding tie-line flows, as given by the complete 

system base case load flow. The isolated internal system 

load flow will have a solution voltage, say, Visolated that 

should be identical to Vinternal. 

We should then apply the following recipe for 

obtaining an exact equivalent 1 

1. Run a load flow for the complete system and • 

determine the tie-line flows. 

2. At each internal system boundary bus remove 

the tie-lines and augment the injections by 

the net tie-line flows. 

So far the feasibility of simulating the effect of 

the eliminated external system by supplementing the boundary 
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injections has been demonstrated. However, the approach 

pursued above is not an appealing method for equivalencing • 

Since after all,it requires solving a complete system load 

flow whenever a change in operating conditions occurs. A 

more captivating approach is one where the effect of the 

external system is reduced to additional boundary bus 

injections in a fashion that lends itself to a simpler 

updating as a function of the operating conditions. This is 

where the approximation formulae, introduced in the 

preceeding chapter, step into the picture. 

The intense mathematical nature of Chapter 3 was 

unavoidable for attaining a clear understanding of the 

approximation formulae. That done, it is hoped that the 

quantities already defined will acquire a more practical 

meaning as we go along. 

It has been mentioned in Chapter 3 that the 

approximation formulae, which are based on a Taylor series 

expansion, relate an arbitrary load flow variable, y, to the 

independent injections, !, of a general load flow problem • 

Translated into our objective it conveys that the real and 

reactive tie-line flows into the boundary buses may be 

expanded in a Taylor series about a known base case. 

Subsequently, the tie-line flows for any other injection 

vector may be easily approximated. 
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As is to be expected, the more terms included in 

the Taylor series expansion the more accurate is the 

expression. We shall confine our attention in this work to 

the linear and quadratic expressions, it is anticipated that 

the computational effort for finding higher order terms may 

not compete with the time required for solving the complete 

system load flow. Actually most of the weight of the Taylor 

series is embeded in the first term, with latter terms 

carrying progressively less weights. 

4.2 APPROXIMATING THE TIE-LINE FLOWS 

The first step in the process of constructing the 

equivalent is to find the B vectors for the linear 

approximation, and the C matrices if the quadratic 

approximation is desired, corresponding to the real and 

reactive power flows at the boundary buses in each tie-line 

of fig 6 The B vector and the C matrix were derived in 

(3.46) and (3.66) respectively,and are repeated in (4.1) 

and ( 4. 2). 

T o T 0 -1 
B = (!_ ) R [ ~(!_ ) J ( 4 .1) 
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1 
c = 

4 

T o -1 
[!!(~ >J [R- J(!!}] 

0 -1 
[L(X ) ] ( 4. 2) 

Since we are working with a Taylor series expansion, 
• 

knowledge of a base case for the complete network is a 

prerequisite. 

0 

The base case voltages are denoted by x • 

It may be recalled that 7 

B is a (2N-l) vector. 

C is a matrix of order (2N-l). 

is 1/2 the Jacobian • 

R is a matrix that depends on the network 

structure and the dependent variable • 

J(B) defined in equation (3.26) , it depends 

on B and J 
z 

i 

For a specified injection ~, it is relatively 

straightforward to calculate each of the real and reactive 

tie-line power flow approximations using formulae (3.18) 

and (3.20), repeated below 1 

- 64 -



0 

c 

0 

The linear expression 

T 
y = B z 

The quadratic expression 

T T 
y = B z + z C 

(4.3) 

z (4.4) 

This completed, the next step is to adjoin the 

above injections to the boundary buses • 

In the case where there is more than one tie-line 

emanating from a boundary bus, it is possible to proceed as 

outlined above; i.e. to find the R matrices corresponding to 

each of the real and reactive tie-line power flows and 

subsequently determine all the B vectors (and C matrices). 

A more computationally efficient alternative is to find the 

single equivalent R matrix corresponding to the real power 

flow and the single equivalent R matrix corresponding to the 

reactive power flow for these tie-lines, and use it to 

determine the equivalent B vectors (and C matrices). To 

reexpress this more tangibly, suppose that at a particular 

boundary bus there are L tie-lines. The former approach 

will result in 2L B vectors (one B vector for the real power 

and one B vector for the reactive power corresponding to 

each and every tie-line). Whereas, the latter approach will 

yield 2 ~ vectors only! 
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4.3 AUGMENTING THE BOUNDARY INJECTIONS 

The procedure will first be demonstrated on a . 

particular example, then general conclusions based on the 

insight gained will be stated. 

p 
23 

p 
21 

+j Q 

p +j Q 
G 

2 

21 

G 
2 

BUS 2 
p 

FIG 7 

+j Q 
24 24 

+j Q 
25 

Consider a 5 bus system where the internal system 

consists of buses 1, 2 and 3, whereas buses 4 and 5 comprise 

the external system. Fig 7 

system. 

singles out bus 2 of this 

The objective is to consider in detail how one 

should handle the tie-line flows, when external buses 4 and 

5 are removed, so that the internal system conditions remain 

unchanged. 
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case a Bus 2 is a PV bus 

Without loss of generality it will be assumed that 

there is no load at bus 2. Let the subscript R denote load 

flow quantities obtained after the elimination of external 

buses 4 and 5. 

If the reduced model were exact all load flow 

variables should remain unchanged ; 

p = p Q = Q 
21 21 21 

R R 

p = p Q = Q 
23 23 23 

R R 

Since bus 2 is a PV bus only the 

injection is specified • The flows p and p 
24 25 

been evaluated using the approximation formulae, 

write 

p = p 
G G 

2 R 2 

p 
24 

p 
25 

21 
( 4. 5) 

23 

real power 

have already 

thus we may 

( 4. 6) 

This injection will ensure that all real and 

reactive flows in the reduced network would be identical to 

the corresponding power flows in the complete system. 
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Let us now examine the reactive generation at bus 2 

(which is a dependent variable of the load flow problem). 

Since the sum of reactive powers flowing into a bus must add 

up to zero , we may write 

Q = 
G 

2 R 

Q 
21 

R 

+ Q 
23 

R 

But from equation {4.5),this implies that1 

Q = Q 
G 21 

+ Q 
23 

2 R 

however in the complete system 

Q 
G 

2 

= Q + Q + Q + Q 
21 23 24 25 

(4.7) 

(4.8) 

(4.9) 

Therefore , by comparing (4.8) and (4.9) we discern that 1 

Q 
G 

2 

= Q + Q + Q 
G 24 25 

2 R 

(4.10) 

which states that the reactive generation at bus 2 in the 

reduced load flow will differ from the exact value by 

( Q + Q ) . 
24 25 

To summarize the above observations for a PV bus . . 
i) The tie-line real power flows must be 

included as an additional boundary bus 
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ii) 

injection , this will guarantee that the 

real and reactive power flows in the 

equivalent model will be exact. However, 

this will not result in the exact reactive 

generation at that bus • 

To obtain the exact reactive generation 

one must add the reactive tie-line flow 

approximations to the reactive generation 

obtained from the reduced load flow • The 

point being emphasized is that at a PV bus 

the reactive tie-line flow approximations 

must not be treated as an additional load 

at that bus • 

case b Bus 2 is a PQ bus 

In this case both the real and reactive tie-line 

flow approximations are added respectively to the real and 

reactive loads at that bus • 
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4.4 ILLUSTRATION 

Having described in general terms how to obtain the 

equivalent , this section will implement the method on the 5 

bus system shown in fig 8 • 

Bus 1 Bus 2 Bus 5 

Bus 3 Bus 4 

FIG 8 5 Bus System 

The line data for the 5 bus system is provided in table 1 • 

Table 1 

1/2 charging 
line impedance admittance 

1-2 .020 +j .060 .030 
1-3 .080 +j .240 .025 
2-3 .060 +j .180 .020 
2-4 .060 +j .180 .020 
2-5 .040 +j .120 .015 
3-4 .010 +j .030 .010 
4-5 .080 +j .240 .025 
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c The bus data is provided in table 2. 

Table 2 

VOLTAGE GENERATION LOAD 
BUS TYPE MAGNITUDE ANGLE REAL REACTIVE REAL REACTIVE 

1 slack 1.06 o. ? ? o. o. 
2 PV 1.05 ? .692 ? .200 .lOO 
3 PV 1.04 ? .527 ? .450 .150 
4 PQ ? ? o. o. .400 .050 
5 PQ ? ? o. o. .600 .lOO 

The internal system comprises of buses 1,2 and 3 

with buses 2 and 3 being boundary buses • Accordingly the 

three tie-lines are 2-4 , 2-5 and 3-4 • The base case load 

flow , as provided by the load flow program included in 

Appendix C , is quoted in table 3. 
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V 0 L T A G E GENERATION DEMAND 

MAGNITUDE ANGLE REAL REACTIVE REAL REACTIVE 

BUS 1 1.060 0.0 0.448 0.058 0.0 0.0 

TO BUS 3 0.158 0.010 
TO BUS 2 0.289 0.048 

BUS 2 1.050 -0.81 0.692 0.043 0.200 0.100 

TO BUS 5 0.494 0.055 
TO BUS 4 0.172 -0.001 
TO BUS 3 0.114 -0.001 
TO BUS 1 -0.288 -0.110 

BUS 3 1.040 -1.82 0.527 0.033 0.450 0.150 

c TO BUS 4 0.347 -0.017 
TO BUS 2 -0.113 -0.041 
TO BUS 1 -0.157 -0.059 

BUS 4 1.037 -2.38 o.o o.o 0.400 0.050 

TO BUS 5 0.117 -0.010 
TO BUS 3 -0.346 -0.002 
TO BUS 2 -0.171 -0.038 

BUS 5 1.024 -3.81 0.0 o.o 0.600 0.100 

TO BUS 4 -0.115 -0.040 
TO BUS 2 -0.485 -0.060 

TOTAL SYSTEM LOSS = 0.017 

0 
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step 1 Find the B vector and C matrix 

The following B vectors need to be found 

B , B , B 
-2-4 -2-5 -3-4 

corresponding to real power 

corresponding to reactive power 

If the quadratic approximation is also desired, 

then in addition to finding the B vectors, the corresponding 

C matrices must also be determined The approximation 

program used in this work has been inserted in Appendix B 

along with a detailed simulation of this study case. 

Accordingly all the B vectors and C matrices are explicitly 

included in Appendix B. 

Having found the B vectors (and the C matrices) 

equations (4.3) and (4.4) may be applied to find the 

approximate power flows corresponding to a specified 

injection vector. If the injection vector is identical to 

the base case injection vector, one would expect that the 

power flows must also be identical to the base case flows. 

To convince oneself that the Taylor expansion satisfies 

this, it is sufficient to set 6~ = 0 

If the injections were different 

in equation (3.15). 

from the base case 

injections, the power flows in the reduced model would be an 
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approximation to the actual power flows. Typical of a 

Taylor series expansion, the further removed the injections 

are from the base case injections the larger is the error 

inherent in the approximation. 

To continue with the demonstration let the 

injection vector be the base case injection. Both linear 

and quadratic approximation formulae give (Appendix B) ; 

p = .172 Q = - .001 
24 24 

p = .494 Q = .oss 
25 25 

p = .347 Q = - .017 
34 34 

step 2 Augment the boundary injections 

Proceed as described in section 4.3 • For the 

current 5 bus example, both boundary buses are of the PV 

type. Thus only the real power injection needs to be 

updated prior to running the reduced system load flow. The 

reduced system line data is summarized in table 4. 
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1/2 charging 
line impedance admittance 

1-2 .020 +j .060 .030 
1-3 .080 +j .240 .025 
2-3 .060 +j .180 .020 

The reduced system bus data is provided in table 5 • 

Table 5 

c V 0 LT AGE GENERATION LOAD 
BUS TYPE MAGNITUDE ANGLE REAL REACTIVE REAL REACTIVE 

1 slack 1.06 o. ? ? 0. o. 
2 PV 1.05 ? .692 ? .866 .lOO 
3 PV 1.04 ? .527 ? .797 .150 

The resulting reduced system load flow is summarized 

in table 6 • 
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Table 6 

VOLTAG E GENERATION DEMAND 

MAGNITUDE ANGLE REAL REACTIVE REAL REACTIVE 

BUS 1 1.060 0.0 0. 44.8 0.058 0.0 o.o 
TO BUS 3 0.158 0.010 
TO BUS 2 0.289 0.048 

BUS 2 1.050 -0.81 0.692 -0.011 0.866 0.100 

TO BUS 3 0.114 -0.001 
TO BUS 1 -0.288 -0.110 

BUS 3 1.040 -1.82 0.527 0.050 0.797 0.150 

TO BUS 2 -0.113 -0.041 
TO BUS 1 -0.157 -0.059 

When table 6 is compared to table 3 it is noted 

that all load flow variables are identical (just as was 

expected), except for Q and Q 
G 2 G 3 

This discrepancy at boundary PV buses was pointed 

out in section 4.3: it may be rectified by augmenting the 

generations by the approximate tie-line flows (Appendix B) • 

Q + Q 
G 24 

2 R 

+ Q 
25 

= -0.011 - 0.001 + 0.055 = 0.043 
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Q + Q = 0.050 - 0.017 = 0.033 
G 34 

3 R 

which are identical to the corresponding values in table 3. 

4.5 UPDATING THE EQUIVALENT 

The ease with which the new tie-line flows may be 

found following a change in injections is evident from (4.3) 

and (4.4). One is equally interested, as in security 

studies, in simulating internal network changes (i.e. 

outages}. It may be recalled that the B vector and C matrix 

depend on the network configuration and the type of 

injection being approximated (and, of course, on the base 

case) • Accordingly both the B vector and C matrix will 

change if the network structure changes. In principle,to 

find the new equivalent, one would have to re-start the 

involved and time consuming computation of the B vectors and 

the C matrices. 

We have investigated whether there exists a simple 

prescription for updating the approximations. In this 

section two methods for updating the linear approximations 

will be discussed. 
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4.5.1 METHOD 1 

Consider the power network in fig 9 which has been 

subdivided into an internal system (whose quantities are 

denoted by subscript 2), and an external system (whose 

quantities are denoted by subscript 1). 

INTERNAL 

SYSTEM 
:i. 'i 

2 1 
tie-lines 

FIG 9 

Y
1 

and :t
2 

are the vectors of power 

extremities, they may be written as 1 

'i 
1 

EXTERNAL 

SYSTEM 

flows at the tie-line 

( 4 .11) 

( 4 .12) 

Where x is the vector of internal system voltages and x 
~ ~ 

is the vector of external system voltages. Since 'il and 'i
2 

are dependent load flow variables, they may be expressed in 

the form of (3.14). Consequently, G and G are functions of 
-1 -2 
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the network topology and the voltages. 

The external system load flow equations are 

+ ~1 ~l ( 4.13) 

and the internal system load flow equations are 

(4.14) 

Where z is the - vector of external system injections. 
l 

F (!_ ) is the right hand side of the load flow equations of - l l 

of the isolated (no interconnections) external system , this 

is clearly independent of x • The matrix A is constant and 
-2 -1 

contains all zeroes except for a -1 in the jk elements,where 

j is the row number of a boundary bus power injection in z , 
-1 

and k is the row number of the tie-line power flow at that 

bus in ~ {recall that at a PV bus no reactive power is 
1 

specified, accordingly the corresponding entry would be 

zero). Therefore the vector A ~ is the set of injections 
1 1 

that augment the boundary injections in z • 
-1 
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Likewise , z is the vector of internal system 
-2 

injections • F (x ) is the right hand side of the isolated 
-2 -2 

internal system load flow equations , and is independent of 

x • The matrix A is constant and contains a +1 in the 
-1 -2 

jk elements, where j is the row number of a boundary bus 

power injection in z , and - k is the row number of the 
2 

tie-line power flow at that bus in "i (the same remark 
2 

concerning PV buses holds true). 

When solved simultaneously,equations (4.11),(4.12), 

(4.13} and (4.14) yield the exact complete system load flow. 

From (4.3) , we know that a dependent variable y 

may be expressed as : 

T 
y = B z (4.15) 

The vector B can be found from the inverse Jacobian of the 

whole system as was shown in Chapter 3 • However , we would 

like to express it in terms of the Jacobian of the internal 

network so that it will be easier to modify in the case of 

internal contingencies. 
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@ F @ F - -1 2 
J = J = 

1 @ X 2 @ X - -1 2 

@ G @ G -1 1 
J = J = 
-3 @ X -4 @ X 

1 -2 

@ G @ G - -2 2 
J = J = -s @ X -6 @ X -1 - 2 

C The incremental equations of (4.11), (4.12), (4.13), 

(4.14) are : 

AY.. = J ~ + J a.?!. - - (4.16) 
2 5 1 6 2 

Lli. = J A!. + J ~ 
1 3 1 4 2 

(4.17) 

~ = J t:e + A c:J.. - ( 4 .18) 
1 1 1 1 1 

A! =J a.?!. + A c:J.. 
2 2 2 -2 2 

( 4 .19} 

0 
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Before proceeding it is important to note that both 

J and J cannot be nonsingular. If the slack bus is chosen 
-1 -2 

to be 

will be 

in the internal system (as is reasonable) , then 

singular and J will be 
-2 

nonsingular • One way to 

perceive this is to recall that F (x ) 
-1 -1 

is. the right hand 

side of the load flow equations for the external system 

without interconnections. The absence of a slack bus in the 

external system implies that the real power generation must 

be specified at every bus, which in turn dictates that the 

the system is over-specified (i.e. no bus accounts for the 

real losses in the system),or in other words the Jacobian J 
1 

is singular. By reexamining the formulae that determine the 

the elements of a Jacobian [26] one can readily verify that 

the elements of (J +A J ) are included among the elements 
-1 -1 -3 

of the complete system Jacobian. In fact, it is possible to 

rearrange the elements of the complete system Jacobian (by 

renumbering the buses) so that the matrix (J +A J ) appears 
-1 -1 -3 

in the first principal block. Furthermore,since the complete 

system Jacobian is invertible, it is a necessary condition 

that (J 
-1 

+A J ) also be invertible. 
-1 -3 

The objective is to solve the incremental equations 
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0 for an expression that relates the boundary flows to the 

injections and whi.ch is independent of the voltages. 

Substituting (4.17) into (4.18) yi~lds ; 

A! = J ~ + A ( J 6.! + J ~) (4.20) - - - -1 1 1 1 3 1 4 2 

==> &. = J + A J !::C. + A J ~ ( 4. 21) 
1 - 1 - 1 -3 1 - 1 - 4 2 

-1 
==> ~ = ( J + A J ) 6.! - A J ~) (4.22) 

1 - 1 - 1 - 3 1 - 1 -4 2 

Solving ( 4 .19) for 625. , 
2 

c -1 
==> ~ = J 6! - A t:::l (4.23) - -2 2 2 2 2 

and substituting (4.22) and (4.23) into (4.16), we get; 

~-A&.>] 
2 2 2 

-1 
+ J J A! - A ~ ) 

-6 -2 2 -2 2 
( 4 • 24) 

Transfering all terms containing ~ 
2 

to the left hand side ; 

-1 -1 -1 

c 
[.!.- J (~ + A J ) A J J A + J J A J & - 5 1 - 1 -3 - 1 -4 -2 -2 - 6 2 2 2 
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( 4. 25) 

Define ; 

-1 
J = J ( J + A J ) A J ( 4. 26) 
-7 -5 -1 - 1 -3 -1 -4 

-1 
J = J ( J + A J ) (4.27) 
-a 5 1 1 3 

and substitute J and J in (4.25) to get 
-7 -a 

-1 -1 -1 -1 
(I -J J A +J J A ) ~2 = J ~ +(J J - J J ) a! 
- -7 -2 -2 -6 -2 -2 -a 1 -6 -2 -7 -2 2 

(4.2a) 

-1 -1 
==,> [!. + ( J6 -J7) J . A J & 

2 2 2 
= J ~ + (J • J ) J a! -a 1 -6 -7 -2 2 

Define ; 

-1 
J = (I + J J A ) 
-10 - -9 -2 -2 

By substituting J and J into (4.29) we obtain, 
-9 -10 

- a4 -

( 4. 29) 

( 4. 30) 

(4.31) 



0 
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0 

-1 
J 6.¥.. = J ~ + J J ~ - - - -10 2 8 1 9 2 2 

-1 -1 -1 

6Y..2 = J J ~+ J J J ~ - 10 8 1 10 - 9 2 2 

Finally, defining the matrices 

T -1 
B = J J - - -1 10 8 

T -1 -1 
B = J J J - - - -2 10 9 2 

and substituting in (4.33) we obtain the desired form: 

= 
T 

B A!+ 
1 1 

(4.32) 

(4.33) 

( 4. 34) 

(4.35) 

Equation (4.35) is the end result of simple 

algebraic manipulations performed on the incremental load 

flow equations. If the incremental changes were designated 

to be deviations from the base case, then the incremental 

model would be identical to the linear approximation. 

Consequently, the B vectors given by (4.34) would be 

identical to the B vectors found in section 4.2. 

At first glance one may not discern and appreciate 
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the advantages of using the incremental equations to update 

~ as opposed to recalculating B. For this reason equation 

(4.34) will now be examined in depth. 

A look at the dimensions involved might prove 

helpful; assume that the external system comprises of N 
1 

buses among which L buses are connected via tie-lines to 

internal system buses.Then we have the following dimensions: 

J : 2N * 2N 
1 1 1 

J 2L * 2N .... 
3 1 

J . 2L * (2N -1) . 
""""4 2 

Moreover, suppose the internal system includes N buses 
2 

among which there are M boundary buses. Then we have the 

following dimensions: 

J (2N -1) * (2N -1) 
.... 2 2 2 

0 . 

. . 

2M * 2N 
1 

2M * (2N -1} 
2 
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A . ( 2N -1) * 2M . - 2 2 

A : 2N * 2L 
1 1 

Accordingly; 
J . 2M * 2N . 
-8 1 

J , J 2M * (2N -1) 
7 9 2 

J 2M * 2M 
10 

B 2M * 2N 
-1 1 

B . 2M * (2N -1) . 
-2 2 

Usually the external system is larger than the 

internal system; N > N • Moreover, there are normally very 
1 2 

few boundary buses: N >> L and N >> M • 
1 2 

The Jacobians J ,J ,J ,J ,J , and J are very 
-1 -2 -3 -4 -5 -6 

sparse matrices. Furthermore, matrix A contains at most 2L 
-1 

'-1' elements, and matrix A contains at most 2M '+1' 
-2 

elements. Thus matrices A and A are also very sparse. 
-1 -2 
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A change in the internal network topology 

incur changes in J only [ i.e, all of J ,J ,J ,J 

will 

, 
~ ~ ~ ~ ~ 

J ,J ,J ,A and A need to be calculated only once]. 
-7 -8 -9 -1 -2 

In order to approximate the tie-line flows, one may 

store the matrices J ,A ,J and use them along with the 
-9 -2 -a 

internal system Jacobian J to solve for 
-2 

B in (4.34) and 

subsequently substitute in (4.35). 

The above method would compute matrix inverses and 

store the large and full matrix J • A more computationally 
-9 

efficient approach is the following method. J is found by 
-8 

factorizing the sparse matrix (J +A J ) and applying 2M 
-1 -1 -3 

forward and backward substitutions (recall that M is the 

number of internal boundary buses which are usually very 

few). The matrix J as well as the very sparse matrices J , 
-8 -4 

J ,A are stored. In order to determine the approximate 
6 1 

tie-line flows it is necessary to compute J = J A £!. ) • - -7 8 1 4 

This is not a demanding computation since A and J are very 
-1 - 4 

sparse. Next, J is found, as in (4.30). J is found, as in 
-9 -10 
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(4.31), by first factorizing J and applying 2M forward and 
-2 

-1 
backward substitutions to evaluate J A (since A is very 

-2 -2 -2 

sparse). It is not computationally efficient to execute the 

intermediary step of finding the B vectors from (4.34). The 

approximations to the tie-line flows, 6Y should be 
2 

directly, by solving (4.32) using LU decomposition. 

found 

It is not necessary to recompute the factors of the 

internal system Jacobian every time a change in the internal 

system topology is studied. The new solution may be updated 

with the old factors either through the Matrix Inversion 

Lemma or·via compensation techniques [26]. Accordingly, both 

J and the approximations to the tie-line flows may also be 
-10 

updated. 

4.5.2 METHOD 2 

Consider the power system shown in fig 10, which 

has be~n divided into internal and external systems. The 

boundary buses, which are the only buses from which 

tie-lines interconnecting the internal and external systems 

emanate, have been grouped separately. 
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INTERNAL SYSTEM 

X - i 

z - i 

X 
b 

z 
-b t1e-11nes 

. 1nternal 
boundary buses 

FIG 10 

EXTERNAL SYSTEM 

X 
e 

z -e 

external 
boundary buses 

X 
-d 

z 
-d 

The nomenclature identifying each of the subsystems 

is specified in fig 10. Thus, the load flow equations for 

the complete system are: 

( 4. 36) z = F (~ , X ) 
-d - -d d e 

z = F (X , X , X ) ( 4. 37) - -b -d e e e 

z = F (~ , X.' X ) ( 4. 38) 
-b -b i -b e 

z = F (X , X ) (4.39) -. -. -. b 1 l 1 
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Linearizing about the base case, we get; 

A! J J 0 0 ~ 
d -dd -de d 

~ J J J 0 ~ 
e = -:-ea ee -eb e (4.40) 

A! 0 J J J ~ 
b be -bb -bi b 

A! 0 0 J J ~. 
i -ib ii 1 

where J is the partial derivative of F with respect to x • 
-lk -1 -k 

It is desired to obtain the reduced system shown in 

fig 11. 

X X X - -i b e 

z z z - i -b t1e-11nes eq 

FIG 11 

Fig 11 may be obtained from fig 10 by deleting all 

external buses (but not external boundary buses), there will 

be new external boundary bus interconnections as well as new 
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external boundary bus injections. Let us now examine the 

effect of eliminating vector ~ in (4.40) using gaussian 
d 

elimination: 

J J 0 ~ 
ee eq -eb e 

A! J J J A! 
b = -be -bb -bi b (4.41) 

6!, 0 J J ~. - ib ii 1 1 

where 
-1 

J = J - J J J 
ee eq ee -ed -dd -de 

-1 (4.42) 
l::J! =.A! - J J .o!. 

e eq e -ed -dd d 

The set of equations in (4.41) may be expressed in a more 

concise notation as 

(4.43) 

A A 

where~(~) is one-half the jacobian of (4.41). 

The Jacobian terms depend on the network topology 

and the voltages. Since elimination has only altered J ,one 
ee 
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may conclude that only the external system~s boundary bus 

interconnections will be modified. Fortunately, we will not 

be interested in knowing explicitly what these changes are. 

To summarize, the elimination of ~ in (3.40) by gaussian 
d 

elimination produces the network of fig 11. 

Let us now consider how method 2 may be used to 

determine the desired approximations, assuming that ~ and 
eq 

J (a square matrix of dimension 2L, where L is the 
ee eq 

number of external boundary buses and is usually very small) 

have already been calculated and stored. All of the Jacobian 

matrices in (4.41) should be evaluated using the base case 

voltages. The linear approximations to each of the real and 

reactive tie-line powers flowing into the internal system~s 

boundary buses are then found by using the approximation 

formula: 

where y is 

,. 
y = X 

.... 
R 

the approximation 
A 

tie-line flow. The R matrices 

power flow approximations are 

... 
z 

to the real or 

for the real and 

shown in Appendix 

" interesting observation is that R depends only 
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reactive 

reactive 

B. An 

on the 



c 

0 

0 

topology of the tie-lines. Thus, it is irrelevant to know 

explicitly what the new external boundary interconnections 

are. One may then proceed, exactly as in section 4.2, by 

supplementing the internal system~s boundary injections and 

subsequently implementing the reduced system load flow. 

Method 2 still retains the 

affecting the retained system Jacobian, 

the use of normal load flow programs. 
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CHAPTER 5 

TEST CASES 

Exhaustive testing of the proposed equivalencing 

method was performed using the 5 bus system shown in fig 8 

and whose line data is provided in table 1. A selection of 

results that are typical of the cases treated are presented 

in the first section of this chapter. The next section is 

devoted to results obtained while using the IEEE 30 bus 

system. Finally, section 5.3 will comment on the numerical 

results obtained by using various equivalencing methods. 

5.1 THE 5 BUS SYTEM 

5.1.1 CLASSIFYING THE VARIOUS CASES 

The injections specified in table 2 are designated 

as the base case injections, thus the corresponding load 

flow, given by table 3, is the base case load flow. 

Specified load flow independent variables include: 

IV I, IV I, IV I, p ,P ,Q ,P ,P ,Q ,P ,Q ,P ,Q 
1 2 3 G2 D2 D2 G3 D3 D3 D4 D4 D5 D5 
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Accordingly, by altering the above quantities various test 

cases may be obtained. 

Throughout these examples, the voltage magnitudes 

have been maintained at base case values. 

The real and reactive demands are expressed as a 

percentage of the base case values. Thus a 20% increase 

from base case is interpreted as: 

p = .240 Q = .120 
02 02 

p = .S40 Q = .180 
03 03 

p = .480 Q = .060 
04 04 

p = .720 Q = .120 
os os 

Likewise, the real power senerations are also 

expressed as a percentage of their base case values. 

S.l.2 APPROACH 

For each 

determined; 

case cosidered, the following are 
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1. The complete system load flow. 

2. The approximate tie-line flows. 

3. The reduced system load flow, with boundary injections 

supplemented by the linear approximations. 

For most of the cases treated, two additional 

reduction methods were implemented. 

4. Instead of using the linear approximation to augment 

the boundary bus injections in the reduced model, the 

base case tie-line flows are used. 

5. A Ward reduction, where both external loads and 

generators are transformed to current injections. 

4. and 5. were obtained so as to gain some insight 

into the behaviour of the approximation method. We are well 

aware that method 4 is a very crude and primitive method, 

and that more accurate results may be obtained from a 

different formulation of the Ward method. 

5.1.3 Notation 

linear 

quadratic 

exact 

fixed 

linear approximation. 

quadratic approximation. 

results from complete system load flow. 

results obtained by method 4. 
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Ward 

updated 

results obtained by method s. 

approximation updated due to contingency. 

In each 

are compared to 

approximations. 

case presented, the exact tie-line flows 

the corresponding linear and quadratic 

Next, results obtained by implementing the 

various methods are presented • 

- 98 -



0 

c 

c 

5.1.4 sample results 

Case 1 5 % increase from base case conditions 

tie-line 
flow 

2-4 

2-5 

3-4 

Dependent 
variables 

line flows 

1-2 

1-3 

2-3 

angles 

@ 2 

@ 3 

no contingency 

Exact Linear 
p +j Q p +j Q 

.164 -j .000 .164 -j .000 

.469 +j .050 .469 +j .050 

.329 -j .023 .329 -j .023 

Exact Linear Ward 

.275+j.053 .275+j.053 .314+j.041 

.15l+j.Ol2 .15l+j.Ol2 .165+j.008 

.109+j.001 .109+j.001 

-0.76 -0.76 -0.89 

-1.71 -1.71 -1.90 

- 99 -

Quadratic 
p +j Q 

.164 -j .000 

.469 +j .050 

.329 -j .023 

Fixed 

.313+j.041 

.164+j.008 

.114-j.OOl 

-0.89 

-1.90 
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Case 2 

tie-line 
flow 

2-4 

2-5 

3-4 

Dependent 
variables 

line flows 

1-2 

1-3 

2-3 

angles 

@ 2 

@ 3 

20 % increase from base case conditions 

no contingency 

Exact Linear Quadratic 
p +j Q p +j Q p +j Q 

.207 -j .003 .207 -j .003 .207 -j .003 

.594 +j .078 .594 +j .077 .594 +j .078 

.417 +j .011 .417 +j .010 .417 +j .011 

Exact Linear Ward Fixed 

.35l+j.029 .35l+j.029 .197+j.078 .195+j.079 

.19l+j.OOO .19l+j.OOO .138+j.Ol6 .138+j.Ol6 

.137-j.008 .137-j.008 .119-j.002 

-1.02 -1.02 -0.49 -0.49 

-2.27 -2.27 -1.53 -1.55 
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Case 3 

tie-line 
flow 

2-4 

2-5 

3-4 

Dependent 
variables 

line flows 

1-2 

1-3 

2-3 

angles 

@ 2 

@ 3 

40 % increase from base case conditions 

no contingency 

Exact Linear Quadratic 
p +j Q p +j Q p +j Q 

.242 -j .005 .242 -j .005 .242 -j .005 

.695 +j .103 .694 +j .099 .695 +j .103 

.488 +j .039 .487 +j .037 .488 +j .039 

Exact Linear Ward Fixed 

.412+j.Ol0 .410+j.Ol0 .102+j.l09 .lOO+j.llO 

.224-j.009 .224-j.009 .116+j.023 .118+j.022 

.160-j.Ol5 .160-j.Ol5 .123-j.004 

-1.23 -1.22 -0.17 -0.16 

-2.72 -2.71 -1.24 -1.26 . 
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Case 4 

tie-line 
flow 

2-4 

2-5 

3-4 

Dependent 
variables 

line flows 

1-2 

1-3 

2-3 

angles 

@ 2 

@ 3 

60 % increase from base case conditions 

no contingency 

Exact Linear Quadratic 
p +j Q p +j Q p +j Q 

.278 -j .006 .277 -j .008 .278 -j .006 

.797 +j .131 .794 +j .121 .797 +j .131 

.559 +j .068 .557 +j .064 .559 +j .068 

Exact Linear Ward Fixed 

.476-j.OlO .472-j.008 .010+j.l40 .006+j.l41 

.258-j.Ol9 .257-j.Ol8 .095+j.029 .098+j.028 

.184-j.022 .184-j.022 .128-j.005 

-1.45 -1.43 0.15 0.16 

-3.19 -3.17 -0.95 -0.99 
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c Case 5 80 % increase from base case conditions 

no contingency 

tie-line Exact Linear Quadratic 
flow p +j Q p +j Q p +j Q 

2-4 .313 -j .007 .312 -j .010 .313 -j .007 

2-5 .900 +j .161 .894 +j .143 .899 +j .160 

3-4 .631 +j .099 .628 +j .091 .631 +j .098 

Dependent Exact Linear Ward Fixed 
variables 

line flows 

1-2 .540-j.029 .532-j.027 -.083+j.l71 -.088+j.l73 

c 1-3 .292-j.028 .290-j.027 .074+j.036 .078+j.035 

2-3 .208-j.029 .207-j.029 .132-j.006 

angles 

@ 2 -1.66 -1.64 0.47 0.49 

@ 3 -3.65 -3.62 -0.65 -0.71 

c 
- 103 -



c 

c 

c 

Case 6 

tie-line 
flow 

2-4 

2-5 

3-4 

Dependent 
variables 

line flows 

1-2 

1-3 

2-3 

angles 

@ 2 

@ 3 

100 % increase from base case conditions 

no contingency 

Exact Linear 
p +j Q p +j Q 

.349 -j .008 .347 -j .012 

1.003 +j .194 .995 +j .164 

.702 +j .130 .698 +j .118 

Exact Linear 

.606-j.049 .594-j.045 

.327-j.037 .324-j.036 

.232-j.036 .231-j.036 

-1.89 -1.85 

-4.12 -4.07 
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Quadratic 
p +j Q 

.349 -j .008 

1.003 +j .192 

.702 +j .129 

Fixed 

.18l+j.205 

.058+j.041 

.136-j.008 

0.81 

-0.44 
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Case 7 

tie-line 
flow 

2-4 

2-5 

3-4 

Dependent 
variables 

line flows 

1-2 

1-3 

2-3 

angles 

@ 2 

@ 3 

5 % decrease from base case conditions 

no contingency 

Exact Linear Quadratic 
p +j Q p +j Q p +j Q 

.181 -j .001 .181 -j .001 .181 -j .001 

.519 +j .061 .519 +j .061 .519 +j .061 

.364 -j .009 .364 -j .009 .364 -j .009 

Exact Linear Ward Fixed 

.306+j.043 .306+j.043 .267+j.055 .266+j.056 

.167+j.007 .167+j.007 .154+j.Oll .154+j.Oll 

.120-j.003 .120-j.003 .116-j.OOl 

-0.86 -0.86 -0.73 -0.73 

-1.94 -1.94 -1.75 -1.76 
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Case 8 

tie-line 
flow 

2-4 

2-5 

3-4 

Dependent 
variables 

line flows 

1-2 

1-3 

2-3 

angles 

@ 2 

@ 3 

20 % decrease from base case conditions 

no contingency 

Exact Linear Quadratic 
p +j Q p +j Q p +j Q 

.138 +j .002 .138 +j .002 .138 +j .002 

.394 +j .034 .393 +j .033 .394 +j .034 

.277 -j .043 .277 -j .043 .277 -j .043 

Exact Linear Ward Fixed 

.229+j.068 .234+j.066 .383+j.Ol9 .383-j.Ol9 

.126+j.020 .127+j.Ol9 .180+j.003 .178+j.004 

.09l+j.007 .090+j.007 .llO+j.OOl 

-0.60 -0.62 -1.13 -1.13 

-1.37 -1.38 -2.11 -2.09 
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Case 9 

tie-line 
flow 

2-4 

2-5 

3-4 

Dependent 
variables 

line flows 

1-2 

1-3 

2-3 

angles 

@ 2 

@ 3 

40 % decrease from base case conditions 

no contingency 

Exact Linear Quadratic 
p +j Q p +j Q p +j Q. 

.103 +j· .i>04 .103 +j .004 .103 +j .004 

.294 +j .016 .293 +j .012 .294 +j .016 

.207 -j .068 .207 -j .070 .207 -j .068 

Exact Linear Ward Fixed 

.17l+j.086 .170+j.087 .478-j.OlO .479-j.Oll 

.094+j.029 .094+j.030 .202-j.003 .199-j.002 

.068+j.Ol4 .068+j.Ol4 .105+j.002 

-0.40 -0.40 -1.45 -1.46 

-0.93 -0.93 -2.41 -2.38 
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Case 10 

tie-line 
flow 

2-4 

2-5 

3-4 

Dependent 
variables 

line flows 

1-2 

1-3 

2-3 

angles 

@ 2 

@ 3 

60 % decrease from base case conditions 

no contingency 

Exact Linear Quadratic 
p +j Q p +j Q p +j Q 

.069 +j .008 .068 +j .006 .069 +j .008 

.196 -j .001 .193 -j .010 .196 -j .000 

.138 -j .093 .136 -j .097 .138 -j .093 

Exact Linear Ward Fixed 

.113+j.l05 .109+j.l07 .572-j.039 .575-j.040 

.062+j.040 .06l+j.040 .223-j.009 .219-j.008 

.045+j.021 .045+j.021 .10l+j.003 

-0.21 -0.19 -1.77 -1.78 

-0.50 -;-0.48 -2.70 -2.65 
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0 Case 11 90 % decrease from base case conditions 

no contingency 

tie-line Exact Linear Quadratic 
flow p +j Q p +j Q p +j Q 

2-4 .017 +j .013 .016 +j .010 .017 +j .013 

2-5 .049 -j .022 .043 -j .043 .049 -j .021 

3-4 .035 -j .128 .031 -j .137 .035 -j .128 

Dependent Exact Linear Ward Fixed 
variables 

line flows 

1-2 .029+j.l33 .020+j.l36 .714-j.OSl .719-j.082 

c 1-3 .Ol6+j.055 .013+j.056 .256-j.Ol8 .250-j.Ol7 

2-3 .Oll+j.033 .Oll+j.033 .094+j.006 

angles 

@ 2 0.08 0.11 -2.26 -2.27 

@ 3 0.15 0.19 -3.15 -3.07 

c 
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Case 12 20 % increase from base case conditions 

contingency; line 2-3 removed 

tie-line Exact 
flow p +j Q 

2-4 .269 -j .021 

2-5 .625 +j .071 

3-4 .327 +j .041 

Exact Linear 

line 
flows 

1-2 .305+j.043 .212+j.073 

1-3 .239-j.Ol3 

angles 

@ 2 

@ 3 

-0.86 

-2.92 

.333-j.038 

-0.54 

-4.20 

Linear 
p +j Q 

.269 -j .022 

.624 +j .069 

.326 +j .040 

Linear 
UJ2dated 

.305+j.043 

.238-j.Ol3 

-0.86 

-2.91 

- 110 -

Quadratic 
p +j Q 

• 26.9 -j .021 

.625 +j .071 

.327 +j .041 

Fixed 

.075+j.ll8 

.260-j.Ol9 

-0.08 

-3.21 
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Case 13 40 % increase from base case conditions 

contingency: line 2-3 removed 

tie-line Exact Linear Quadratic 
flow p +j Q p +j Q p +j Q 

2-4 .315 -j .025 .314 -j .027 .• 315 -j .025 

2-5 .731 +j .096 .729 +j .090 .731 +j .096 

3-4 .383 +j .074 .382 +j .072 .382 +j .074 

Exact Linear Linear Ward Fixed 
u12dated 

line 
flows 

1-2 .359+j.026 .248-j.061 .356+j.027 .063+j.l22 -.023+j.l51 

1-3 .280-j.025 

angles 

@ 2 

@ 3 

-1.05 

-3.48 

.390-j.052 

-0.67 

-4.97 

.280-j.025 

-1.04 

-3.47 
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.157+j.Ol0 

-0.03 

-1.79 

.243-j.Ol5 

0.26 

-2.98 
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Case 14 80 % decrease from base case conditions 

contingency1 line 2-3 removed 

tie-line Exact 
flow p +j Q 

2-4 .407 -j .032 

2-5 .946 +j .153 

3-4 .495 +j .144 

Exact Linear 

line 
flows 

1-2 .471-j.008 .332+j.038 

1-3 .365-j.046 

angles 

@ 2 

@ 3 

-1.43 

-4.63 

.508-j.079 

-0.92 

-6.56 

Linear Quadratic 
p +j Q p +j Q 

.404 -j .038 .407 -j .032 

.940 +j .131 .946 +j .152 

.492 +j .135 .494 +j .144 

Linear Ward Fixed 
UJ2dated 

.462-j.005 -.124+j.l85 -.219+j.218 

.362-j.046 

-1.40 

-4.60 
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.116+j.023 

.61 

-1.23 

.211-j.006 

0.94 

-2.54 
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Case 15 40 % decrease from base case conditions 

contingency~ line 2-3 removed 

tie-line Exact 
flow p +j Q 

2-4 .133 -j .005 

2-5 .309 +j .012 

3-4 .162 -j .054 

Exact Linear 

line 
flows 

1-2 .148+j.094 .102+j.l09 

1-3 .117+j.022 

angles 

@ 2 

@ 3 

-0.33 

-1.25 

.163+j.008 

-0.17 

-1.88 

Linear Quadratic 
p +j Q p +j Q 

.133 -j .005 .133 -j .005 

.308 +j .008 .309 +j .012 

.162 -j .056 .162 -j .053 

Linear Ward Fixed 
u12dated 

.147+j.094 .44l+j.001 .372+j.022 

.117+j.022 .239-j.Ol4 .308-j.032 

-0.32 -1.33 -1.09 

-1.25 -2.92 -3.86 

- 113 -



0 

c 

0 

Case 16 90 % increase from base case conditions 

contingency: line 2-3 removed 

tie-line Exact 
flow p +j Q 

2-4 .022 +j .011 

2-5 .051 -j .022 

3-4 .027 -j .126 

Exact Linear 

line 
flows 

1-2 .025+j.l35 .010+j.140 

1-3 .019+j.054 

angles 

@ 2 

@ 3 

0.10 

0.10 

.023+j.052 

0.15 

0.04 

Linear Quadratic 
p +j Q p +j Q 

.020 +j .008 .022 +j .011 

.045 -j .044 .051 -j .021 

.024 -j .135 .027 -j .125 

Linear Ward Fixed 
U}2dated 

.016+j.l37 .723-j.083 .623-j.054 

.017+j.055 

0.13 

0.14 
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.316-j.034 .348-j.042 

-2.28 -1.95 

-3.96 -4.40 
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5.2 THE IEEE 3a BUS SYSTEM 

In his Phd thesis [la], E.H. Elkonyaly cited 

results rendered by various equivalencing methods while 

using the IEEE 3a bus system. This section will investigate 

the same contingencies and compare the performance of the 

linear approximation equivalent to the corresponding results 

as given in [la]. The IEEE 3a bus data used in this study 

was obtained from [2s]. 

The internal (retained) buses are 

1, 2, 3, 4, 5, 6, 7, 8 and 28 - with buses 4, 6 and 28 being 

boundary buses. Injections are maintained at their base 

case values, the following contingencies are simulated . . 
1. Outage of line 1-2 (one circuit). 

2. Outage of line 1-2 (both circuits). 

3. Simultaneous outages of lines 2-4 and 2-6. 

4. Simultaneous outages of lines 3-4, 5-7, 6-8. 

For every contingency discussed, the exact tie-line 

flows and the linear approximations to the tie-line flows 

(as given by the approximation program) are given. Next, the 

results of implementing various equivalencing techniques are 

presented; namely Ward Classical (Y) (using equivalent 

admittances to model loads and equivalent current injections 
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to model generators), Ward Classical (I) (using equivalent 

current injections to model both loads and generators), REI, 

Linearized Jacobian, and the Linear Approximation. As a 

means of comparison two error criteria are used. The first 

one consists of evaluating the maximum difference between 

the exact contingency voltage magnitude or angle and each of 

the reduction techniques voltage magnitude or angle for all 

nodes within the retained network. The second error criteria 

used is the sum of the absolute values of these 

discrepencies. 
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c 1. Outage of line 1-2 (one circuit) 

boundary 
line flows actual linear aEEroximation 

4-12 .24789 +j.00126 .24788 +j.00136 

6-9 .13266 -j.03847 .13267 -j.03844 

6-10 .11444 +j.00420 .11444 +j.00421 

28-27 .16428 +j.05813 .16428 +j.05813 

reduction maximum error :r I errorl 
technique 

lE I _L E .JL 

Classical(Y) 1.7E-l 17.9 5.4E-l 101.6 

c Classical(!) 3.6E-3 6.7E-2 1.3E-2 2.2E-l 

REI .2E-3 .5E-l .3E-3 .2 

Linearized 6.5E-5 2.1E-3 2.0E-4 8.3E-3 

Approximation l.OE-5 5.1E-5 l.OE-5 2.8E-4 
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2. Outage of line 1-2 (both circuits) 

boundary 
line flows actual linear aEEroximation 

4-12 .26439 -j.00463 .26373 +j.00042 

6-9 .12410 -j.03868 .12437 -j.03720 

6-10 .10957 +j.00458 .10975 +j.00493 

28-27 .16156 +j.05918 .16170 +j.05909 

reduction maximum error !E I error l 
technique 

rEI _L E _L 

Classical(Y) 3.6E-4 4.7E-2 1.4E-3 3.2E-l 

c Classical(!) 5.7E-4 8.0E-3 2.4E-3 2.8E-2 

REI .3E-2 1.1 .9E-2 7.5 

Linearized 3.4E-6 1.9E-4 1.2E-5 9.3E-4 

Approximation 2.2E-4 4.6E-3 6.7E-4 2.4E-2 
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c 3. Simultaneous outages of lines 2-4 and 2-6 

boundary 
line flows actual linear aE2roximation 

4-12 .25368 -j.02830 .25332 -j.02539 

6-9 .13027 -j.05472 .13040·-j.05346 

6-10 .11282 -j.00072 .11292 -j.00036 

28-27 .16278 +j.05783 .16288 +j.05783 

reduction maximum error ~ I error I 
technique 

lE I @ E @ 

C1assical(Y) 1.8E-3 1.4 7.6E-3 10.3 

c Classical(I) 7.4E-3 6.1E-l 3.2E-2 3.8 

REI .7E-3 .3 ··.2E-2 1.4 

Linearized 4.5E-4 5.8E-2 1.7E-3 4.0E-l 

Approximation 1.9E-4 2.03E-3 S.OE-4 S.OE-3 

0 
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0 4. Simultaneous outages of lines 3-4, 5-7 and 6-8 

boundary 
line flows actual linear aEEroximation 

4-12 .23823 -j.Ol865 .23812 -j.Ol747 

6-9 .14124 -j.04779 .14120 -j.04668 

6-10 .11916 +j.00123 .11915 +j.00159 

28-27 .16064 +j.05869 .16077 +j.05882 

reduction maximum error ~I error I 
technig;ue 

lE I .JL E .JL 

Classical(Y) 7.SE-3 S.SE-1 3.0E-2 3.7 

c Classical(I} 1.4E-2 4.2E-l 5.9E-2 B.OE-1 

REI .lE-2 .4 .4E-2 1.8 

Linearized 2.2E-4 8.3E-3 8.7E-4 2.0E-2 

Approximation 1.9E-4 2.8E-3 7.0E-4 l.OE-2 

0 
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5.3 COMMENTS ON THE NUMERICAL RESULTS 

When comparing the various equivalencing methods, 

one must keep in mind that the conditions being assumed are, 

by and large, of a theoretical nature. For instance, we may 

assume that all the pertinent external information is 

available, that there are no errors in the internal state 

estimator data and that the network is three phase balanced. 

In order to fully determine the behaviour of a particular 

method, the only viable alternative is to actually implement 

it on-line over a sufficiently long period of time. This is 

a very costly, if not impractical, approach; yet, even if it 

were feasible, one would still lack the tools necessary for 

establishing a meaningful comparison. More bizzare is the 

fact that equivalents have been found to be highly problem 

dependent. To summarize, one must be cautious while 

interpreting the numerical results of equivalencing methods. 

Glancing through the results of the 5 bus system, 

it is evident that the quadratic approximation of the 

tie-line flows is consistently very close to the actual 

flows. Unfortunately, the excessive computational effort 

required as well as the necessity to store large and full 

matrices diminish the appeal of the method for on-line 

applications. 
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Looking at the linear approximation results, one 

observes that the approximations to the real power flows are 

generally more accurate than their reactive counterparts. A 

5 bus system, due to its compactness, tends to bring out the 

worst in an equivalent. Especially so for our method when a 

contingency is simulated, since the B vectors· and the C 

matrices are essentially sensitivity elements and are thus 

likely to be highly sensitive to the few branches that are 

present. 

be less 

In a larger network the elements of B and C would 

sensitive to the individual branches, which will 

result in more accurate approximations. 

Results of the IEEE 30 bus system seem to indicate 

that the Linear Approximation method is in the same league 

as the Linearized Jacobian method, which is quite 

satisfactory. 

) 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

The equivalencing method introduced in this 

thesis exhibits the properties desirable in a good 

equivalent, mainly; 

• The method does not introduce any additional buses to 

the internal system • 

• The sensitivity elements (of B , C) provide a readily 

i.dentifiable relationship between the external system 

generations and the additional boundary injections • 

• The equivalent may be used for interchange studies • 

• It is possible to adjust the equivalent so that it 

would be valid over a wide range of operating 

conditions. 

- Of particular significance is the fact that the 

internal network topology is not changed by the proposed 

approach. Thus, the load flow programs that are currently 

available in the industry may be used without modifications. 

Two methods for updating the linear 

approximations to the tie-line flows at the internal 
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boundary buses were presented. Method 1 found an explicit 

expression for evaluating the updated approximations by 

linearizing the load flow equations about a known base case. 

The only variable matrix in the expression was the internal 

system Jacobian. Method 2 also commenced by linearizing the 

load flow equations about a known base case. Gaussian 

elimination was then performed on the linearized equations 

to reduce the effect of the external system to the external 

system boundary buses. The tie-line flows (or B vectors) 

were then found by using the linear approximation formula 

associated with the reduced network. In theory, both Method 

1 and Method 2 should give identical numerical results. 

Method 2 appears to involve less storage than Method 1. 

Furthermore, since Method 2 requires only one factorization 

(of the order of the internal system plus external system 

boundary buses) and several multiplications with the sparse 

R matrices, it might also be more computationally efficient. 

The qua~ratic approximations to the tie-line 

flows were found to be consistently very close to the actual 

flows. Unfortunately, the excessive computational effort 

required as well as the necessity to store large and full 

matrices diminish the appeal of the quadratic approximation 

for on-line implementation. It remains to be seen whether 

there exists an efficient method for simply updating the 

approximation. 
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- The performance of the equivalent, which uses the 

linear approximations to the tie-line flows as boundary 

injections, was found to be as good as the Linearized 

Jacobian equivalencing method, and seems to be more accurate 

than the Ward and the REI equivalents (based on the test 

cases using the IEEE 30 bus test system) • The results 

quoted in reference (11] confirm the high performance of 

linearized methods as compared to other commonly used 

equivalencing methods. 

- In this work, the approximate tie-line flows were 

found before implementing the reduced system load flow. It 

is possible to insert the approximation program into the 

load flow program, so that at each iteration the Jacobian of 

the approximation program is evaluated at the updated 

internal voltages. This will result in more accurate 

approximations, but it remains to be seen whether the 

additional computational effort required is justified. 

- An interesting point that is worth investigating 

concerns the updating of the B vector. Suppose that B is 
-1 

the precontingency sensitivity vector, and B is the post
-2 

contingency vector. It is possible to find a vector ~, such 

that B = B + ~, using compensation techniques [26]. 
-2 -1 
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A tremendous saving in the computational effort that was 

previously required might follow if this method for updating 

B were implemented. 
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APPENDIX A 

R MATRICES 

A.l FORMING THE R MATRIX 
CORRESPONDING TO TRANSMISSION LOSSES 

Consider a branch of impedance z ; 

z = R + j X = 
ik ik 

connecting bus i and bus k 

BUS i 

The real power loss in 

p = 
L 

ik 

R 
ik 

+ j X 

I 
ik 

ik 

FIG 12 

branch ik , 

2 
G V 

ik ik 
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G +j B 
ik 

fig 12, 

(A.l} 

ik 

BUS k 

is given by 

(A. 2) 
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whereLVIdenotes the voltage magnitude, and V =V -V. 
ik i k 

The total transmission loss is obtained by the following 

summation 

1 
p = 

L 2 

Substituting 

1 N 
p = l: 

L 2 i=l 

1 N 
+ - l: 

2 i=l 

V 

N 
~ 

i=l 

ik 

N 
l: 

k=l 

N 
l: 

k=l 

= 

or more compactly written 

~ p = 
L 

T 
p = e -L 

T T 
e f ) 

G -

N 
~ 

i=l 

e 
ik 

G 
ik 

G 
ik 

+ 

( 

e + f 

T 

j f 

e 

f 

T 
G 

P = X R 
L 
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ik 
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2 
-
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2 
-
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X 

2 e 

2 f 

G 
ik 

and 

e 
i 

f 
i 

(A. 3) 

expanding ; 

2 
+ e ) 

k k 

2 
+ f 

k k 

(A. 4) 

(A. 5) 

(A. 6) 

(A. 7) 
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where G is the real part of the admittance matrix. 

Therefore 

R 
= [: 

A.2 OTHER R MATRICES 

The R matrix corresponding to the real power 

injections at bus k is 

with 

R = p 
-k 

The 

injection at 

= 

p 
k 

R 

bus 

q 
k 

T 
= X 

G H 
-k 

-B H 
k 

matrix 

k is 

T 
= X -

X (A. 9) 

+ H G B H - H B -k - k -k 

+ H B G H + H G - k k k 

(A.lO) 

corresponding to the reactive power 

Q X (A.ll) 
k 
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with 

B H + H B -G H + H G 
k -k - k -k 

R = Q = 
-k G H - H G B H + H B - - -k k k k 

(A.l2) 

Where H is an N*N matrix having all its entries -k 

th 
zero except for the kk element which is 1/2 • 

p and Q are 2N*2N symmetric and highly 
-k -k 

sparse matrices • 

The R matrix for the square of the nodal voltage 

magnitude is . . 
2 

I V I 
k 

= 
T 

X X {A.l3) 

V is obtained from P by replacing the matrices G and B 
-k -k 

by the unity matrix • 
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APPENDIX B 

APPROXIMATION PROGRAM 

$WATFIV 
c 
c 
c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cc cc 
cc cc 
cc cc 
CC THIS PROGRAM CALCULATES THE B VECTOR AND THE C CC 
CC MATRIX FOR THE LINEAR AND QUADRATIC APPROXIMATION CC 
CC FORMULAE • CC 
cc cc 
cc cc 
cc cc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c 
c 
c 
c 
c 
c 
c 
c 

'C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

APPLICATION OF APPROXIMATE FORMULAE 
***************************************** 

FOR LOAD FLOW PURPOSES THERE ARE THREE TYPES OF BUSES 

TYPE 

1 
2 
3 

NAME 

PQ 
PV 

SLACK 

SPECIFY 

p I Q 
p ' V 
V ,ANGLE 

UNKNOWN 

V , ANGLE 
Q I ANGLE 
p , Q 

THE PURPOSE OF THE LINEAR AND QUADRATIC APPROXIMATIONS 
IS TO RELATE AN ARBITRARY LOAD FLOW VARIABLE Y , TO 
THE INDEPENDENT INJECTIONS OF A GENERAL LOAD FLOW 
PROBLEM Z • 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

DEPENDENT VARIABLES Y , INCLUDE 

2 
• lv AT EACH PQ BUS 

M N 

• p , Q 
MN MN 

p +J Q 
MN MN 

• REAL LOSSES 

• AT SLACK BUS P GENERATION , Q GENERATION 

Q GENERATION AT PV BUSES 

GENERAL DESCRPTION OF ALGORITHM 
********************************* 

1. COMPUTE JACOBIAN 

2. FIND L(X ) 
0 

RECALL L(X ) = 1/2 JACOBIAN EVALUATED AT X 

3. 

4. 

5. 

6. 

c 

*** 

0 0 

FIND R 

T T 
COMPUTE B = X R 

0 

FIND J( B ) 

CALCULATE 

T -1 

-1 
L (X 

0 

= 1/4 ( L(X ) ) ( (R)-J(B) ) 
-1 

L(X ) 
0 0 

STEPS 4 AND 6 ARE FOUND USING LU DECOMPOSITION 
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c 
c 
c 
c 
c THE R MATRIX 
c ***************** 
c 
c 
c 
c 
c ** R MATRIX FOR p GENERATION AT SLACK BUS 
c 
c 
c 
c 
c 
c G H + H G B H H B 
c K K K K 
c 
c R = 1/2 
c -B H + H B G H + H G 
c K K K K 
c 
c 

c c 
c 
c WHERE . • K = BUS NUMBER . 
c • G = REAL y ADMITTANCE 
c • B = IMAG y ADMITTANCE 
c H = HAS ZEROS EVERYWHERE EXCEPT THE 
c KK SPOT THERE IS A "ONE'1 

• 
c 
c 
c 
c THE R MATRIX FOR Q GENERATION 
c AT SLACK AND/OR PV BUSES 
c 
c 
c -B H - H B G H H G 
c K K K K 
c R = 1/2 
c 
c -G H + H G -B H H B 
c K K K K 
c 
c 
c 
c 
c 

0 
c 
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c c THE R MATRIX FOR DETERMINING THE SQUARE OF THE 
c VOLTAGE AT PQ BUSES 
c FOR BUS K: HAVE "0" EVERYWHERE EXCEPT FOR THE KK, 
c (N+K) (N+K) ELEMENTS WHICH ARE EQUAL TO 
c "1" . 
c 
c 
c 
c M N 
c 
c 
c 
c p 

I Q 
c MN MN 
c 
c 
c THE R MATRIX (** s t OF BUSES) 
c FOR REAL POWER TRANSFER 
c 
c 
c M N M+S N+S 
c 
c , 

c M . . -G -1/2 G • • +1/2 G •• 0 • • - 1/2 
c MN MN MN 

c c 
c 
c N •• +1/2 G • • 0 •• +1/2 B .. 0 . . 
c MN MN 
c 
c , 
c M+S • • 0 •• +1/2 B •• -G -1/2 G . . 1/2 G . . 
c MN MN MN MN 
c 
c 
c N+S •• -1/2 B •• 0 . . +1/2 G . . 0 
c MN MN 
c 
c 
c 
c 
c 
c 

0 
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c 
c 
c 
c 

THE R MATRIX 
FOR REACTIVE POWER TRANSFER 

M N S+M S+N 

c 
c 
c 
c 

M .•• B + 1/2 B •• -1/2 B 0 •• -1/2 G •• 
MN 

c 
c 
c 
c 
c 

N 

C M+S 
c 
c 
c 
c 
c 
c 
c 
c 
c 
C• 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

N+S 

MN MN MN 

•• -1/2 B 
MN 

• • 0 

•• -1/2 G 
MN 

• • 0 

•• 1/2 G 
MN 

.. 0 

•• 1/2 G 
MN 

.. 0 

•• B + 1/2 B •• -1/2 

. . 
MN MN 

-1/2 B 
MN 

. . 0 

. . 

B • • 
MN 

ALL ELEMENTS NOT SHOWN ARE ZERO. 

INPUT DATA 
************ 

1. 

2. 

IN INTEGER FREE FORMAT , ENTER THE TOTAL NUMBER 
OF BUSES AND THE NUMBER OF PV BUSES • 

. 
ENTER IN ORDER ON ONE CARD 
FORMAT 

1 IF THE CORRESPONDING 
0 OTHERWISE 

* TO FIND SLACK BUS PGEN 

, USING INTEGER FREE 

SELECTION IS DESIRED 

* TO FIND QGEN AT ANY OF SLACK BUS OR PV BUS 

* TO FIND VSQRD AT ONE OR MORE PQ BUSES 

* TO FIND THE POWER TRANSFER TO ONE OR MORE BUSES 

* TO FIND THE QUADRATIC APPROXIMATION TO THE 
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0 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

INDEPENDENT VARIABLE 

* THIS PROGRAM HAS THE FLEXIBILTY TO ACCEPT 
• AN INJECTION VECTOR 
• TO CALCULATE THE INJECTION VECTOR FROM A 

KNOWN VOLTAGE PROFILE 
TO SELECT THE FIRST PROCEDURE ENTER 1 
TO SELECT THE SECOND PROCEDURE ENTER 0 

3. IN (FS.O) FORMAT ENTER ON ONE CARD 
1 IF THE CORRESPONDING SELECTION IS TO BE 

PRINTED 
0 OTHERWISE 

* THE INPUT VOLTAGE PROFILE 
* LINE DATA 
* ADMITTANCE MATRIX 
* PUNCH CARDS FOR B AND C 
* PRINT B VECTOR AND C MATRIX 

4. EITHER THE INJECTION VECTOR , OR THE VOLTAGE PROFIL 
VECTOR IS ENTERED AT THIS STAGE (DIMENSION=2*N -1) 
THE DATA MUST BE IN AGREEMENT WITH THE SELECTION 
MADE IN STEP 2 • 
ENTER THE DATA ON SEPARATE CARDS USING (F10.5) 
FORMAT 
(IN P. U.) 

* THE CONVENTION USED IN THIS PROGRAM IS THAT : 
SLACK BUS IS LABELED i 1 
PV BUSES ARE LABELED NEXT 

• PQ BUSES ARE LABELED LAST 

* ORDER OF INJECTION VECTOR DATA 
• VOLTAGE SQUARED AT SLACK AND PV BUSES 

REACTIVE POWER AT PQ BUSES 
REAL POWER AT PV , THEN AT PQ BUSES 

* ORDER OF VOLTAGE PROFIL VECTOR 
REAL PART OF VOLTAGE FOR ALL BUSES 
IMAGINARY PART OF VOLTAGE FOR ALL BUSES 
EXCEPT SLACK 

IT IS POSSIBLE TO CONSIDER SEVERAL INJECTION 
VECTORS 1 HOWEVER THE MATRIX ZINJ MUST BE 
APPROPRIATELY DIMENSIONED • EXAMPLE ,FOR 3 INJECTIONS 

ZINJ(3,N2) 
AT THE END OF THE PREVIOUS DATA INSERT A CARD ON 
WHICH 999 IS ENTERED IN (F10.5) FORMAT 

INSERT A BLANK CARD 
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c 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

5. THE BASE VOLTAGES ARE ENTERED USING (5F10.5) FORMAT 
(IN P. U.) 

INSERT A BLANK CARD 

6. EACH LINE DATA IS TYPED ON A SEPARATE CARD • ENTER 
IN SEQUENCE , USING (2F5.0) FORMAT 1 
NODE NUMBER •• JOINS NODE NUMBER 
USING (F10.5} FORMAT , ENTER ; LINE RESISTANCE, 
LINE REACTANCE , 1/2 CHARGING ADMITTANCE. 
{IN P. U.) 

INSERT A BLANK CARD 

7. PV BUS NUMBERS WHERE THE Q GENERATION IS TO BE 
FOUND • ENTER EACH BUS NUMBER ON A SEPARATE CARD 
using (FS.O) FORMAT • 

INSERT A BLANK CARD 
2 

8. PQ BUS NUMBERS WHERE 1 V I IS TO BE FOUND 
ENTER EACH BUS NUMBER ON A SEPARATE CARD USING 
(FS.O) FORMAT • 

INSERT A BLANK CARD 

9. FOR EACH DESIRED REAL AND REACTIVE POWER TRANSFER 
ENTER ON A SEPARATE CARD , USING (FlO. 5) FORMAT 
RECEIVING BUS NUMBER , SENDING BUS NUMBER , 
1/2 CHARGING ADMITTANCE 

INSERT A BLANK CARD 

MAIN PROGRAM 

COMMON N,N1,N21,N2,PV,PVl,PV2 
COMPLEX*16 Y(S,S),YSHT,ZSER,CONE 
REAL*8 UR(S,S),DR(S,S),DL(S,S),BETA(10) ,ZINJ(50,10) 
REAL*8 WR(108),X0{10),XK(10,10),LUTRSP(l0,10), 

+ R(10,10),C,XC,RES,XL,APXLIN,APXQDR,ZCZ,CZ,IPTRSP(10} 
INTEGER N,PV,PV1,PV2,BS,BB,SELECT(6),IPRINT(5) 

READ I E , F 
N = E 
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c 

c 
c 
c 

PV = F 
N1 = N + 1 
N2 = 2 * N 
N21 = N2· - 1 
PV1 = PV + 1 
PV2 = PV + 2 
NWR = N21 * N21 + 3 * N21 

READ, (SELECT(!} , I=1, 6} 
READ, (IPRINT(I) , I=1,5) 

c 
C ** READ INJECTION VECTOR 
c 

1 
2 
3 

4 

5 

c 

K = 1 
I = 1 
READ (5,3) ZINJ(K,I) 
FORMAT (F10.5) 
IF (ZINJ(K,I) .EQ. 0) GO TO 5 
IF (ZINJ(K,I) .GT. 100) GO TO 4 
I = I + 1 
GO TO 2 
K = K + 1 
GO TO 1 
CONTINUE 
INJ = K 

C ** READ BASE VOLTAGES 
c 

DO 7 I=1,N2 
READ (5,6) XO(I) 

6 FORMAT (F10.5) 
7 CONTINUE 
C ** THIS IS USED TO READ A BLANK CARD 

READ (5, 6) CBLANK 
WRITE (6,8) 

8 FORMAT ('1',T2,' BASE VOLTAGES USED IN APPROXIMATION', 
+ /T3,35('='),///) 

WRITE (6,9) (II,XO(II),II=1,N2) 
9 FORMAT ('O',T1,4(4X,'V(',I3,') = ',F8.4,6X),/) 
c 
C ** THIS LOOP FINDS THE ADMITTANCE MATRIX 
c 
c 

10 

12 

DO 10 I=1 , N 
DO 10 J=1 , N 
Y(I,J) = DCMPLX(O.DO,O.DO) 
IF (IPRINT(2) .NE. 1) GO TO 12 
WRITE(6,26) 
NLN = 0 
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0 

14 READ (5,16) S,B,RES,XL,XC 
16 FORMAT(5F10.5) 

IF {S .EQ. 0) GO TO 20 
NLN = NLN + 1 
YSHT= DCMPLX (O.DO,XC) 
ZSER= DCMPLX (RES,XL) 
IF(IPRINT(2) .NE. 1) GO TO 18 
WRITE(6,28) S,B,RES,XL,XC 

18 M = S 
L = B 
ZSER = 1.DO / ZSER 
Y(L,L) = Y(L,L) + ZSER + YSHT 
Y(M,M) = Y(M,M) + ZSER + YSHT 
Y(L,M) = Y(L,M) - ZSER 
Y(M,L) = Y(L,M) 
GO TO 14 

20 IF(IPRINT(2) .NE.1) GO TO 22 
WRITE(6,30) NLN,N,PV 

22 IF(IPRINT(3) .NE. 1) GO TO 35 
WRITE(6,32) 

24 WRITE (6,34) ((I,J,Y(I,J),J=1,N},I=1,N) 
26 FORMAT(~1~,~LINE DATA~/1X,9(~=~)///T8, 

+ ~BUS NO. JOINS BUS NO. ~,T36,~R P.U.~,T50, 
+ ~XL P.U.',T64,'YSHT P.U.~,/,T8,7(~-~),T22, 
+ 7(~-~),T35,'---',T49,'----',T63,'-----'///) 

28 FORMAT(8X,F4.0,10X,F4.0,1X,3F14.4/) 
30 FORMAT(///////,T5,'THERE ARE ',I3, 

+ ~ LINES IN THE SYSTEM~,/T5,'THERE ARE~, 
+ I3,~ BUSES IN THE SYSTEM, AMONG WHICH~, 
+ I3,' ARE PV BUSES',//////) 

32 FORMAT('1',T2,' BUS ADMITTANCE MATRIX ELEMENTS~ 
+ /T3,30('=~),///) 

34 FORMAT(' ',T1,3(4X,~Y(',I3,',',I3,~) = ~,F7.3, 
+ ~ +J ',F7.3,7X),/) 

35 CONTINUE 
c 
C ** THE FOLLOWING STEPS PRINT THE VOLTAGE PROFIL WHEN 
C DESIRED 

IF (SELECT(6) .EQ. 1) GO TO 51 
IF (IPRINT(1) .EQ. 0) GO TO 51 
WRITE (6,40) 

40 FORMAT (~1',T2,~THE VOLTAGE PROFILS',/19('='),////) 
DO 50 MM=1,INJ 
WRITE (6,44) (II,ZINJ(MM,II),II=1,N21) 

44 FORMAT ('O',T1,4(4X,'V(~,I3,') = ~,F8.4,6X),/) 
WRITE (6,46} 

46 FORMAT ('0',//////) 
50 CONTINUE 
c 
C **FIND 1/2 (JACOBIAN}.DENOTED BY LUTRSP AT THIS STAGE. 
c 
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0 

0 

51 
c 
c 
c 

CALL YAQUOB(Y,XO,UR,DR,DL,LUTRSP,WR,NWR) 

**FIND THE TRANSPOSE OF THE JACOBIAN 

DO 52 I=l,N2 
DO 52 J=l,I 
C = LUTRSP (I ,J) 
LUTRSP(I,J) = LUTRSP(J,I) 

52 LUTRSP(J,I) = C 
c 
C **ELEMINATE ROW AND COLUMN CORRESPONDING TO SLACK BUS 
C VOLTAGE • 
c 
53 CALL SHIFT (LUTRSP) 
c 
C **LU DECOMPOSITION FOR MATRIX LUTRSP 
c 

c 
c 

CALL LUDATF (LUTRSP,LUTRSP,N2l,N2,6,CZ,ZCZ,IPTRSP, 
+ IPTRSP,C,IER) 

55 CONE = DCMPLX(O.DO,l.ODO) 
IF (SELECT(6) .EQ. 1) GO TO 71 

c 
C ** IN CASE THE VOLTAGE PROFIL HAS BEEN SELECTED AS 
C INPUT DATA , THE FOLLOWING STEPS DETERMINE THE 
C INJECTION VECTOR USING THE FACT THAT Z = L(X) X • 
c 

57 

58 

59 

62 
70 
c 
c 
71 

72 

DO 70 I=l,INJ 
DO 57 J=l,N 
BETA(J) = ZINJ(I,J) 
ZINJ(I,J) = O.DO 
BETA(Nl) = O.DO 
DO 58 J=Nl,N21 
K = J + 1 
BETA(K) = ZINJ(I,J) 
ZINJ(I,J) = O.DO 

CALL YAQUOB(Y,BETA,UR,DR,DL,XK,WR,NWR) 
CALL SHIFT(XK) 

DO 59 J=Nl,N21 
K = J + 1 
BETA(J)=BETA(K) 

DO 62 MM=l,N21 
DO 62 KK=l,N21 
ZINJ(I,MM)= ZINJ(I,MM) + XK(MM,KK) * BETA(KK) 

CONTINUE 

** TO PRINT INJECTION VECTORS 
DO 75 MM=l,INJ 
WRITE (6,72) MM 
FORMAT (/////,~O',T2,'THE INJECTION VECTOR NUMBER~, 
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0 
74 
75 
c 
c 
c 
c 
100 

120 
c 
c 
c 
c 

125 
c 
c 
c 

c 

c 

Q 
130 

c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

c 

+ I3,/32(~=~),////) 

+ 

WRITE (6,74) (II,ZINJ(MM,II),II=l,N21) 
FORMAT (~O~,Tl,4(4X,~Z(~,I3,~) = ~,F8.4,6X),/) 
CONTINUE 

**SET OR = REAL OF Y ADMITTANCE 
SET OL = IMAG OF Y ADMITTANCE 

DO 120 K=l,N 
DO 120 I=l,N 
OR(I,K)=Y(I,K) 
OL(I,K)=-CONE*Y(I,K) 

**REDUCE THE DIMENSION OF THE BASE VOLTAGE VECTOR FROM 
2N TO 2N-l 

DO 125 I=Nl,N21 
XO (I) =XO ( I+l) 

**INITIALIZE R AND XK 

C= 0.500 

IF (SELECT(!) .NE. 1) GO TO 199 

DO 130 I=l,N2 
DO 130 K=l,N2 
R (I,K)=O.OO 
XK(I,K)=O.OO 

**THIS SUBROUTINE FINDS THE R MATRIX FOR P GENERATION 
AT SLACK BUS. 

CALL PLACE ( R,DR,DL,C,l,1) 

** THIS STEP IS IDENTICAL TO THE PRECEEOING STEP • 
SETS XK = R • 
• R WILL BE USED IN THE CALCULATION OF THE B VECTOR 
• XK WILL BE USED IN THE CALCULATION OF THE C MATRIX 

CALL PLACE (XK,OR,DL,C,l,l) 

** THE B VECTOR AND THE C MATRIX WILL BE FOUND FOR 
THE P GENERATION AT SLACK BUS • 

CALL SAVE (XO,R,WR,XK,DR,DL,NWR,BETA,O,SELECT, 
LUTRSP, IPTRSP) 

** THE FOLLOWING STEPS CONCERN THE PRINTOUT 

IF (IPRINT(5) .NE. 1) GO TO 160 
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135 

140 

145 

150 

160 
170 
171 

172 

173 

174 
c 
c 
c 
179 

190 

191 

192 

c 
c 
c 

182 

183 

c 

+ 

+ 

+ 

+ 

+ 

+ 
+ 

WRITE (6,135) 
FORMAT (~1~,T2,~THE B VECTOR FOR SLACK BUS~, 

~REAL POWER GENERATION ~,/T2,50(~=~),////) 
WRITE (6,140) (II , BETA(II) ,II=1,N21) 
FORMAT (~O~,T1,4(4X,~B(~,I3,~) = ~,F8.4,6X)) 
IF (SELECT(5) .EQ. 0) GO TO 160 
WRITE (6,145) 
FORMAT (~1~,T2,~THE C MATRIX FOR SLACK BUS~, 

~REAL ~,~POWER GENERATION~,/T2,51{~=~),////) 
WRITE (6,150) ({II,JJ,XK(II,JJ) ,JJ=1,N21),II=1,N21) 
FORMAT(~ ~,T1,4(4X,~C(~,I3,~,~,I3,~) = ~,F8.4, 

7X) ,/) 
IF (IPRINT(4) .NE. 1) GO TO 179 
PUNCH 171 
FORMAT (~BETA FOR REAL POWER GENERATION AT~, 

~SLACK BUS~,I3) 
PUNCH 172 , (BETA(II) , II=1,N21) 
FORMAT (6(F8.4,3X)) 
IF (SELECT(5) .EQ. 0) GO TO 160 
PUNCH 173 
FORMAT (~C FOR REAL POWER GENERATION AT~, 

~SLACK BUS ~,I3) 
PUNCH 174 , ( (XK(II,JJ) ,JJ=1,N21) ,II=1,N21) 
FORMAT {6(F8.4,3X)) 

** TO FIND THE LINEAR APPROXIMATION 
DO 198 MM=1,INJ 
WRITE (6,72) MM 
APXLIN = O.DO 
APXQDR = O.DO 
DO 191 KK=1,N21 
APXLIN = APXLIN + BETA(KK) * ZINJ(MM,KK) 
WRITE (6,192) APXLIN 
FORMAT {~O~,T2,~*** THE LINEAR APPROXIMATION OF~, 
~THE ~,~REAL POWER GENERATION AT BUS 1 = ~, 
FB.4) 

** TO FIND THE SYSTEM~S TOTAL REAL POWER LOSS 
ADD THE REAL SLACK BUS POWER TO THE SPECIFIED 
INJECTIONS 
SUMINJ = O.DO 
DO 182 JJ=N1,N21 
SUMINJ = SUMINJ + ZINJ(MM,JJ) 
TOTLOS = SUMINJ + APXLIN 
WRITE (6,183) TOTLOS 
FORMAT (//,~O~,T2,~*** TOTAL LOSSES= ~,F8.4) 
IF (SELECT(5) .NE. 1) GO TO 199 

** TO FIND THE QUADRATIC APPROXIMATION 
ZCZ =O.DO 
DO 194 II=1,N21 
CZ = O.DO 
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Q 

0 

193 
194 

195 

c 
c 
c 

197 
198 
c 
c 
c 
199 
c 
c 
c 
c 
c 
c 
c 
c 
c 
200 
201 

c 

+ 

DO 193 JJ=1,N21 
CZ = CZ + ZINJ(MM,JJ) * XK(II,JJ) 
ZCZ = CZ * ZINJ(MM,II) + ZCZ 
APXQDR = ZCZ + APXLIN 
WRITE (6,195) APXQDR 

+ 

FORMAT(///,~O~,T2,~*** THE QUADRATIC APPROXIMATION~ 
~OF THE ~,~REAL POWER GENERATION AT BUS 1 = ~ 
,F8.4} 

** TO FIND THE SYSTEM~S TOTAL REAL POWER LOSS , 
ADD THE REAL SLACK BUS POWER TO THE SPECIFIED 
REAL POWER INJECTIONS • 
QDRLOS = SUMINJ + APXQDR 
WRITE (6,197) QDRLOS 
FORMAT (//,~O~,T2,~*** TOTAL LOSSES= ~,F8.4) 

CONTINUE 

IF (SELECT(2) .NE. 1) GO TO 290 

**THE PURPOSE OF THIS LOOP IS TO FIND THE B VECTOR 
AND THE C MATRIX FOR THE Q GENERATION AT THE 
SLACK BUS AND AT PV BUSES 

INITIALIZE R , 
** READ DESIRED PV BUS 

READ (5,201) PVBUS 
FORMAT(F5.0) 
J = PVBUS 
IF (J .EQ. 0) GO TO 290 

DO 210 I=1,N2 
DO 210 K=1,N2 
R(I,K)=O.DO 

XK 

210 ,XK(I,K)=O.DO 
c 
C ** COMPUTE R MATRIX 
c 

CALL PLACE ( R,DR,DL,C,J,2) 
c 
C ** XK AT THIS STEP WILL BE IDENTICAL TO R ABOVE 
c 

c 
c 

·c 
c 
c 

CALL PLACE (XK,DR,DL,C,J,2) 

** COMPUTES B VECTOR AND C MATRIX FOR THE Q 
INJECTION AT SLACK BUS 1 AND AT DESIRED PV 
BUSES • 

CALL SAVE (XO,R,WR,XK,DR,DL,NWR,BETA,O,SELECT, 
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0 c 
c 

+ LUTRSP,IPTRSP) 

C ** THE FOLLOWING STATEMENTS CONCERN THE PRINTOUT 
c 

IF (IPRINT(5) .NE. 1) GO TO 250 
WRITE (6,220) J 

220 FORMAT (~1~,T2,~THE B VECTOR FOR Q ~, 

+ ~GENERATION AT BUS ~,I3,/T2,44(~=~),////) 
WRITE (6,230) (II , BETA(II),II=1,N21) 

230 FORMAT (~O~,T1,4{4X,~B(~,I3,~) = ~,F8.4,6X)) 
IF (SELECT(5) .EQ. 0) GO TO 250 
WRITE (6,235) J 

235 FORMAT (~1~,T2,~THE C MATRIX FOR Q ~, 
+ ~GENERATION AT BUS ~,I3,/,T2,44(~=~),////) 

WRITE (6,240) ((II,JJ,XK(II,JJ),JJ=1,N21), 
+ II=1,N21) 

240 FORMAT(~O~,T1,4(4X,~C(~,I3,~,~,I3,~) = ~,F8.4, 
+ 6X),/) 

250 IF (IPRINT(4) .NE. 1) GO TO 275 
270 PUNCH 271 , J 
271 FORMAT (~BETA FOR Q GENERATION AT BUS ~,I3) 

PUNCH 272 , (BETA(II} I II=1,N21) 
272 FORMAT (6(F8.4,3X}) 

IF(SELECT(5) .EQ. 0) GO TO 275 
PUNCH 273 , J 

273 FORMAT (~C FOR Q GENERATION AT BUS ~,I3) 
PUNCH 274 I ((XK(II,JJ),JJ=1,N21),II=1,N21) 

274 FORMAT (6(F8.4,3X)) 
c 
c 
C ** TO FIND THE LINEAR APPROXIMATION 
275 DO 288 MM=1,INJ 

WRITE (6,72) MM 
280 APXLIN = O.DO 

APXQOR = 0.00 
DO 281 KK=1,N21 

281 APXLIN = APXLIN + BETA(KK) * ZINJ(MM,KK) 
WRITE (6,282) J , APXLIN 

282 FORMAT (~O~,T2,~*** THE LINEAR APPROXIMATION OF~, 
+ ~THE Q GENERATION AT BUS ~,I3,~ = ~,F8.4,///) 

IF (SELECT(5) .NE. 1) GO TO 289 
C ** TO FIND THE QUADRATIC APPROXIMATION 

zcz =0.00 
DO 284 II=1,N21 
cz = O.DO 
DO 283 JJ=1,N21 

283 CZ = CZ + ZINJ(MM,JJ) * XK(II,JJ) 
284 ZCZ = CZ * ZINJ(MM,II) + ZCZ 

APXQDR = ZCZ + APXLIN 
WRITE {6,285) J , APXQDR 
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0 

285 

c 
+ 

FORMAT('O',T2,'*** THE QUADRATIC APPROXIMATION OF', 
'THE Q GENERATION AT BUS ~,I3,~ = ',F8.4) 

288 CONTINUE 
c 
289 GO TO 200 
c 
290 IF (SELECT(3) .NE. 1)GO TO 400 
c 
C ** THIS LOOP FINDS THE B VECTOR , AND THE C MATRIX FOR 
C THE SQUARE OF THE VOLTAGE MAGNITUDE AT DESIRED PQ 
C BUSES • 
c 
295 READ (5,296) PQBUS 
296 FORMAT(F5.0) 

M = PQBUS 
IF (M .EQ. 0) GO TO 400 

DO 300 I=1,N2 
DO 300 K=1,N2 
R (I,K)=O.DO 

300 XK(I,K)=O.DO 

c 
c 
c 
c 
c 
c 

+ 
c 
c 
c 
c 

320 
+ 

330 

335 
+ 

340 
370 

L=M+N 
XK(M,M)=1.0DO 
XK(L,L)=1.0DO 
R (M,M)=1.0DO 
R (L,L)=1.0DO 

** THIS SUBROUTINE FINDS THE C MATRIX , AND THE B 
VECTOR 

CALL SAVE (XO,R,WR,XK,DR,DL,NWR,BETA,O,SELECT, 
LUTRSP, IPTRSP) 

THE FOLLOWING STEPS CONCERN THE OUTPUT 

IF (IPRINT(5) .NE. 1) GO TO 370 
WRITE (6,320) M 
FORMAT ('1',T2,'THE B VECTOR FOR THE VOLTAGE', 
'SQUARED AT BUS ',I3,/T2,50('='),////) 
WRITE (6,330) (II , BETA(II) ,II=1,N21) 
FORMAT ('O',T1,4(4X,'B(',I3,~) = ',F8.4,6X},/) 
IF {SELECT(5) .EQ. 0) GO TO 370 
WRITE (6,335) M 
FORMAT ('1',T2,~THE C MATRIX FOR THE VOLTAGE', 

'SQUARED AT BUS ;,I3,/,T2,53(,='),////) 
WRITE (6,340) ((II,JJ,XK(II,JJ),JJ=1,N21) ,II=1,N21) 
FORMAT('O',T1,4(4X,'C(',I3,',',I3,') = ',F8.4,6X),/) 
IF (IPRINT(4) .NE. 1} GO TO 375 
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0 

c 

0 

371 

372 

373 

374 
c 
c 
375 

380 

381 

382 

c 

383 
384 

385 

c 
388 
c 
389 
c 
c 
400 
c 
c 

c 
c 
700 
701 
c 
c 

+ 

PUNCH 371 , M 
FORMAT {~BETA FOR V SQUARED AT BUS ~,I3) 
PUNCH 372 , (BETA(II) 1 II=1,N21) 
FORMAT {~0~,6(F8.4,3X)) 
IF(SELECT(5) .EQ. 0) GO TO 375 
PUNCH 373 , M 
FORMAT (~C FOR V SQUARED AT BUS ~,I3) 
PUNCH 374 , ( (XK(II,JJ) ,JJ=1,N21) ,II=1,N21) 
FORMAT (6(F8.4,3X)) 

** TO FIND THE LINEAR APPROXIMATION 
DO 388 MM=1,INJ 
WRITE (6,72) MM 
APXLIN = O.DO 
APXQDR = O.DO 
DO 381 KK=1,N21 
APXLIN = APXLIN + BETA(KK) * ZINJ(MM,KK) 
WRITE (6,382) M , APXLIN 
FORMAT (~O~,T2,~*** THE LINEAR APPROXIMATION OF~, 

'THE VOLTAGE SQUARED AT BUS ',I3,' = ',F8.4,///) 
IF (SELECT(5) .NE. 1) GO TO 389 

** TO FIND THE QUADRATIC APPROXIMATION 
zcz = O.DO 
DO 384 II=1,N21 
cz = O.DO 
DO 383 JJ=1,N21 
CZ = CZ + ZINJ(MM,JJ) * XK(II,JJ) 
ZCZ = CZ * ZINJ(MM,II) + ZCZ 
APXQDR = ZCZ + APXLIN 
WRITE (6,385) M , APXQDR 
FORMAT('O',T2,~*** THE QUADRATIC APPROXIMATION OF~, 

+ 'THE VOLTAGE SQUARED AT BUS ~,I3,~ = ~,F8.4) 

CONTINUE 

GO TO 295 

IF(SELECT(4) .NE. 1) GO TO 700 

CALL PWRTRF(BS,BB,YSHT,DR,DL,XO,BETA,XK,R,WR,NWR,NOPT, 
+ ZINJ,SELECT,IPRINT,INJ,LUTRSP,IPTRSP) 

WRITE (6,701) 
FORMAT (~1~) 

STOP 
END 
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0 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THIS SUBROUTINE FINDS THE B VECTOR AND THE C MATRIX 
FOR REAL AND/OR REACTIVE POWER TRANSFER FROM BUS M 
TO BUS N • 

SUBROUTINE PWRTRF (BS,BB,YSHT,G,B,XO,BETA,XK,R,WR,NWR, 
+ NOPT,ZINJ,SELECT,IPRINT,INJ,LUTRSP,IPTRSP) 

COMMON N,Nl,N2l,N2,PV,PV1,PV2 
COMPLEX*16 YSHT 
REAL*S XO(N2),G(N,N),B(N,N),BETA(N2),WR(NWR),XK(N2,N2), 

+ R{N2,N2) 
REAL*S ZINJ(50,N2),A1,A2,A3,A4,C,C1,C2,C3,C4,SHT, 
REAL*S APXLIN,APXQDR,ZCZ,CZ,LUTRSP(N2,N2),IPTRSP(N2) 
INTEGER BS,BB,PV,PVl,PV2,IPRINT(5),SELECT(6) 

25 READ (5,10) RECEIV ,SEND ,SHT 
10 FORMAT (3F10.5} 

IF (RECEIV .EQ. 0) GO TO 400 
BS = RECEIV 
BB = SEND 
IF (BS .EQ. 0) GO TO 400 
YSHT = DCMPLX(O.DO,SHT) 
YSHT = 2 * YSHT 
NS=N+BS 
NB=N+BB 
NS1=NS-1 
NB1=NB-1 
NOPT = 1 

20 DO 1 I•l,N2 

c 

DO 1 J=1,N2 
R (I,J}=O.DO 

1 XK(I,J)=O.DO 
IF (NOPT.NE.1) GO TO 2 

C **THIS STEP IS EXECUTED WHEN THE REAL POWER TRANSFER IS 
C DESIRED 
c 

c 

A1= 0.5DO * G(BS,BB) 
A2= 0.5DO * B(BS,BB) 
A3=-G(BS,BB)+ YSHT 
GO TO 3 

C **THIS STEP IS EXECUTED WHEN THE REACTIVE POWER 
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c 

c 

0 

c 
c 

c 
c 
c 

c 
c 

TRANSFER IS DESIRED. 

2 A1=-0.SDO * B(BS,BB) 
A2= O.SDO * G(BS,BB) 

3 

A3=B(BS,BB} + YSHT*DCMPLX(O.DO,O.SDO) 

**THIS STEP FINDS THE R MATRIX 

XK(BS,BS)=A3 
R (BS,BS)=A3 
XK(NS,NS)=A3 
R (NS,NS)=A3 
XK(BS,BB)=A1 
R (BS,BB)=A1 
XK{BB,BS)=A1 
R (BB,BS)=A1 
XK(BS,NB)=-A2 
R {BS,NB)=-A2 
XK(NB,BS)=-A2 
R (NB,BS)=-A2 
XK(BB,NS)= A2 
R (BB,NS)= A2 
XK(NS,BB}= A2 
R (NS,BB)= A2 
XK(NS,NB)=A1 
R (NS,NB)=A1 
XK(NB,NS)=A1 
R (NB,NS)=A1 

(XK=R) 

C ** FIND THE C MATRIX , AND THE B VECTOR 
c 

7 CALL SAVE (XO,R,WR,XK,G,B,NWR,BETA,O,SELECT,~UTRSP,IPTRSP) 
c 
C ** THE FOLLOWING STATEMENTS CONCERN THE OUTPUT 
c 

30 

40 
so 

60 
70 

+ 
+ 

+ 
+ 

IF (IPRINT(S) .NE. 1) GO TO 120 
IF (NOPT .EQ. 2) GO TO 40 
WRITE (6,30) BS,BB 
FORMAT ( ... 1 .. , T2, ""THE B VECTOR FOR THE REAL ... , 
""POWER ... ,""FLOW LEAVING BUS "",I3,"" TOWARDS BUS "",I3, 
/T2,72(""="") ,////) 
GO TO 60 
WRITE (6,50) BS,BB 
FORMAT (""1 ... ,T2,""THE B VECTOR FOR REACTIVE POWER"", 

""FLOW LEAVING BUS "",I3,"" TOWARDS BUS "",!3, 
/T2,70(""="") ,////) 

WRITE (6,70) (II 1 BETA(II) ,II=1,N21) 
FORMAT (""O ... ,T1,4(4X,""B("",I3,"") = "",F8.4,6X),/) 
IF (SELECT(S) .EQ. O)GO TO 120 
IF {NOPT .EQ. 2) GO TO 85 
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0 

c 

WRITE (6,80) BS ,BB 
80 FORMAT (~l~,T2,~THE C MATRIX FOR REAL POWER~, 

+ ~FLOW~,~LEAVING BUS ~,I3,~ TOWARDS BUS~, 
+ I3,/,T2,67(~=~),////) 

GO TO lOO 
85 WRITE (6,90) BS ,BB 
90 FORMAT (~l~,T2,~THE C MATRIX FOR REACTIVE POWER~, 

+ ~FLOW LEAVING BUS ~,I3,~ TOWARDS BUS~, 
+ I3,/T2,70(~=~),////) 

100 WRITE (6,110) ((II,JJ,XK(II,JJ),JJ=l,N21), 
+ II=l,N21) 

110 FORMAT(~O~,Tl,4(4X,~C(~,I3,~,~,I3,~) = ~,F8.4, 
6X)/) 

120 IF (IPRINT(4) .NE. 1) GO TO 222 
IF (NOPT.EQ. 2) GO TO 140 
PUNCH 130 , BS ,BB 

130 FORMAT (~BETA FOR REAL POWER TRANSFER LEAVING~, 
+ ~BUS ~,I3,~ TOWARDS BUS ~,I3) 

GO TO 160 
140 PUNCH 150 , BS,BB 
150 FORMAT (~BETA FOR REACTIVE POWER TRANSFER~, 

+ ~LEAVING BUS~, I3,~ TOWARDS BUS ~,I3) 
160 PUNCH 170 , (BETA(II) , II=l,N21) 
170 FORMAT (6(F8.4,3X)) 

IF (SELECT(5) .EQ. 0) GO TO 222 
IF {NOPT .EQ. 2) GO TO 190 
PUNCH 180 , BS,BB 

180 FORMAT (~C FOR REAL POWER TRANSFER LEAVING~, 
+ ~BUS~, I3,~ TOWARDS BUS ~,I3) 

GO TO 210 
190 PUNCH 200, BS,BB 
200 FORMAT (~ C MATRIX FOR REAL POWER TRANSFER', 

+ ~LEAVING BUS ',I3,~ TOWARDS BUS ',I3) 
210 PUNCH 220, ({XK(II,JJ),JJ=1,N2l),II=l,N21) 
220 FORMAT (6(F8.4,3X)) 
c 
c 
C ** TO FIND THE LINEAR APPROXIMATION 
222 00 250 MM=l,INJ 

WRITE(6,223) MM 
223 FORMAT(/////,'O~,T2,~THE INJECTION VECTOR NUMBER~ 

+ ,I3,/32(~=~),///) 
230 APXLIN = 0.00 

APXQOR = 0.00 
DO 231 KK=l,N21 

231 APXLIN = APXLIN + BETA(KK) * ZINJ(MM,KK) 
IF (NOPT .EQ. 2) GO TO 233 
WRITE (6,232) BS , BB , APXLIN 

232 FORMAT ('O',T2,'THE LINEAR APPROXIMATION FOR THE~, 
+ ~REAL POWER FLOW LEAVING BUS ~,I3, 
+ ~TOWARDS BUS ~,I3,~ = ~,F8.4,///) 
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0 

233 
234 

235 

236 
237 

238 

240 
241 

c 

+ 
+ 

+ 
+ 

+ 
+ 

GO TO 235 
WRITE (6,234) BS , BB , APXLIN 
FORMAT (~O~,T2,~THE LINEAR APPROXIMATION FOR THE~, 

~REACTIVE POWER FLOW LEAVING BUS ',I3, 
~TOWARDS BUS ~,I3,' = ~,F8.4,///) 

IF (SELECT{5) .NE. 1) GO TO 250 
ZCZ =O.DO 
DO 237 II=l,N21 
CZ = O.DO 
DO 236 JJ=l,N21 
CZ = CZ + ZINJ{MM,JJ) * XK(II,JJ) 
ZCZ = CZ * ZINJ(MM,II) + ZCZ 
APXQDR = ZCZ + APXLIN 
IF (NOPT .EQ. 2) GO TO 240 
WRITE (6,238) BS , BB , APXQDR 
FORMAT {~O',T2,'THE QUADRATIC APPROXIMATION FOR', 

'THE REAL POWER FLOW LEAVING BUS ',I3, 
'TOWARDS BUS ',I3,' = ,F8.4,///} 

GO TO 250 
WRITE {6,241) BS , BB , APXQDR 
FORMAT (~O~,T2,'THE QUADRATIC APPROXIMATION FOR~, 

'THE REACTIVE POWER FLOW LEAVING BUS ',I3, 
'TOWARDS BUS ~,I3,' = ',F8.4) 

250 CONTINUE 
c 
290 IF (NOPT .EQ. 2) GO TO 300 

NOPT = 2 
GO TO 20 

c 
300 GO TO 25 
c 
400 RETURN 

c 
c 

END 

C THIS SUBROUTINE CALCULATES THE B VECTOR 1 AND THE 
C C MATRIX 
c 
c 
c 

c 

SUBROUTINE SAVE (XO,R,WR,XK,DR,DL,NWR,YO,NV,SELECT,LUTRSP, 
+ IPTRSP) 

COMMON N,Nl,N21,N2,PV,PV1,PV2 
REAL*8 XO(N2),R(N2,N2),XK(N2,N2),YO(N2),DR(N,N),DL(N,N) 
REAL*8 WR(NWR),C,LUTRSP(N2,N2),IPTRSP(N2) 
INTEGER PV,PV1,PV2,SELECT{6) 

C **ELIMINATE ROW AND COLUMN CORRESPONDING TO SLACK BUS 
C IMAGINARY VOLTAGE 
c 
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c 

c 

0 

c 

c 

5 
6 

CALL SHIFT (R) 

DO 6 I=1,N21 
C=O.DO 
DO 5 J=1,N21 
C=C+XO(J) *R(J,I) 
WR(I)=C 

C **NOW WR = X(O) R 
c 
C **USING LU DECOMPOSITION FIND B = X R L(X ) = YO 
c 0 0 
c 

CALL LUELMF (LUTRSP,WR,IPTRSP,N21,N2,YO) 
c 

IF (SELECT(S) .EQ. 0) GO TO 70 
c 
C **NOW THAT B HAS BEEN FOUND , PROCEED TO FIND C 
c 
C **FIND ( R - J(B) ) 

c 

c 

25 DO 30 K=1,PV1 
J=K+N 
XK(K,K)=XK(K,K)-YO(K) 

30 XK(J,J)=XK(J,J)-YO(K) 
DO 40 K=2,N 
C=-O.SDO * YO(K+N-1) 

40 CALL PLACE (XK,DR,DL,C,K,1) 
IF (PV2.GT.N) GO TO 51 

DO SO K=PV2,N 
C=-O.SDO*YO(K) 

SO CALL PLACE (XK,DR,DL,C,K,2) 

51 CALL SHIFT (XK) 
C ** FINDS 1/4 (R) 

DO 54 LL=1,N21 
DO 54 LLL=1,N21 

54 XK(LL,LLL) = 0.2SDO * XK(LL,LLL) 

T -1 
** FINDS R = ( L(X(O) ) ( R - J(B) ) 

THIS IS DONE USING LU DECOMPOSITION WHICH SOLVES 
A SET OF LINEAR EQUATIONS A X = B • 

WHERE A : (JACOBIAN) 
B :R-J(B) =XK 

T 

• 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THE IMSL ROUTINE MUST BE SOLVED WITH ONE COLUMN OF 
MATRIX B AT A TIME , FOR ALL COLUMNS • 

•• DEFINE COLUMN 
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c 

c 

56 

58 
c 
c 

c 
c 

60 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
62 

64 
c 
c 

c 

DO 60 K=1,N21 
DO 58 I=1,N21 
WR(I) = XK(I,K) 

•• SOLVE 
CALL LUELMF (LUTRSP,WR,IPTRSP,N21,N2,WR) 

T 
•• LET THE ANSWER BE A ROW OF MATRIX R 

DO 60 I=1,N21 
R(K,I) = WR(I) 

T -1 
** FINDS XK = C = (L(X ) ( R - J(B) ) 

0 

-1 
L(X ) 

0 

I AM REQUIRED TO SOLVE AN EQUATION OF THE FORM 
X A = B • 

T T T 
===> A X = B, A :JACOBIAN 

B :R GIVEN BY ABOVE EQUATION 
X :THE SYMETRIC C MATRIX 

SOLVE FOR ONE COLUMN OF X AT A TIME , USING LU 
DECOMPOSITION 

•• DEFINE COLUMN OF R 
DO 68 K=1,N21 
DO 64 I=1,N21 
WR(I) = R(I,K) 

•• SOLVE 

T 

CALL LUELMF (LUTRSP,WR,IPTRSP,N21,N2,WR) 

C •• LET ANSWER BE A COLUMN OF MATRIX XK 
DO 68 I=1,N21 

68 XK(I,K) = WR(I) 
c 
c 
70 RETURN 

c 
c 
c 

END 

SUBROUTINE PLACE (XK,G,B,C,K,NOPT) 
COMMON N,N1,N21,N2,PV,PV1,PV2 
DOUBLE PRECISION XK(N2,N2),G{N,N),B(N,N),X1,X2,C 
INTEGER PV,PV1,PV2 
J=K+N 
DO 30 I=1,N 
L=I+N 
IF (NOPT.GT.1) GO TO 10 
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c 

c 

c 
c 
c 

X1=G(I,K}*C 
X2=B(I,K}*C 
GO TO 20 

10 X1=-B(I,K)*C 
X2= G(I,K}*C 

20 XK(I,K}=XK(I,K)+X1 
XK(L,K}=XK(L,K)-X2 
XK(I,J)=XK(I,J}+X2 
XK(L,J)=XK{L,J)+X1 
XK(K,I)=XK(K,I)+X1 
XK(K,L)=XK(K,L)-X2 
XK(J,I)=XK(J,I)+X2 

30 XK(J,L)=XK{J,L}+X1 
RETURN 
END 

C THIS SUBROUTINE REDUCES THE DIMENSION OF THE MATRIX 
C FROM ( 2N* 2N ) TO (2N-1)*(2N-1) 
c 
c 

c 
c 
c 

SUBROUTINE SHIFT {A} 
COMMON N,N1,N21,N2,PV,PV1,PV2 
DOUBLE PRECISION A(N2,N2) 
DO 10 I=N1,N21 
DO 10 K= 1,N2 

10 A(I,K)=A{I+1,K} 
DO 20 K=N1,N21 
DO 20 I= 1,N2 

20 A{I,K)=A(I,K+1} 
RETURN 
END 

C THIS SUBROUTINE FINDS THE JACOBIAN OF THE SYSTEM 
c 
c 
c 

SUBROUTINE YAQUOB(Y,XO,UR,DR,DL,XL,WR,NWR) 
COMMON N,N1,N21,N2,PV,PV1,PV2 
COMPLEX*16 Y(N,N},CONE,CX,CY,CZ,CS 
DOUBLE PRECISION XL(N2,N2),WR(NWR),XO(N2),UR(N,N) 

+ DL(N,N),DR(N,N) 
REAL*8 A,B 
INTEGER PV,PV1,PV2 
CONE=DCMPLX(O.D0,1.0DO) 
DO 20 K=1,PV1 
DO 10 I=1,N 
XL(K,I)=O.DO 
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c 10 UR(K,I)=O.DO 
XL(K,K)=XO(K) 

20 UR(K,K)=XO(K+N) 
DO 40 K=l,N 
J=K+N 
CS=DCMPLX(O.DO,O.DO) 
A=0.5DO*XO(K) 
B=-0.5DO*XO(J) 
CY=DCMPLX(A,B) 
DO 30 I=l,N 
A=XO (I) 
B=XO(I+N) 
CS=CS+Y(I,K)*DCMPLX(A,B) 
CX=CY*Y(I,K) 
DL(K,I)=CX 

30 DR(K,I}=CONE*CX 
CS=0.5DO*CS 
WR(K)=CS 

40 WR(J)=-CONE*CS 
IF (PV2.GT.N} GO TO 51 
DO 50 K=PV2,N 
DO 50 I= 1,N 
XL(K,I)=DR{K,I} 

50 UR{K,I)=-DL(K,I} 
51 DO 60 K=1,N 

c J=K+N 
DL(K,K}=DL(K,K)+WR(K) 
DR(K,K)=DR(K,K)+WR(J} 
IF (K.LE.PV1) GO TO 60 
XL{K,K)=XL(K,K)-WR(J) 
UR(K,K)=UR(K,K)+WR(K) 

60 CONTINUE 
DO 80 K=1,N 
J=K+N 
DO 70 I=1,N 
L=I+N 
XL(K,L)=UR(K,I) 
XL(J,I)=DL(K,I) 

70 XL(J,L)=DR{K,I) 
80 CONTINUE 

RETURN 
END 

0 
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0 $DATA 
5 2 
1 1 1 1 1 1 
0 1 1 0 1 
1.1236 
1.1025 
1.0816 
-0.050 
-0.100 
-0.492 
-0.077 
-0.04 
-0.600 
999 
1.1236 
1.1025 
1.0816 
-0.0490 
-0.0980 
0.4820 
0.0750 
-0.3920 
-0.5880 

1.06 

c 1.04990 
1.03948 
1.03599 
1.02214 
0.000000 
-0.01484 
-0.03303 
-0.04298 
-0.06813 

1. 2. 0.02 0.06 0.03 
1. 3. 0.08 0.24 0.025 
2. 3. 0.06 0.18 0.02 
2. 4. 0.06 0.18 0.02 
2. 5. 0.04 0.12 0.015 
3. 4. 0.01 0.03 0.01 
4. 5. 0.08 0.24 0.025 

2. 4. 0.02 
2. 5. 0.015 
3. 4. p.01 

$ 
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0 

c 

BASE VOLTAGES USED IN APPROXIMATION 

V(1)= 1.0600 V(2)= 1.0499 V(3)= 1.0395 V(4}= 1.0360 

V(5)= 1.0221 V(6)= 0.0 V(7)=-0.0148 V{8)=-0.0330 

V{9)=-0.0430 V(10)=-0.0681 

LINE DATA 

BUS NO. JOINS BUS NO. R P.U XL P.U. YSHT P.U. 

1. 2. 0.0200 0.0600 0.0300 

1. 3. 0.0800 0.2400 0.0250 

2. 3. 0.0600 0.1800 0.0200 

2. 4. 0.0600 0.1800 0.0200 

2. 5. 0.0400 0.1200 0.0150 

3. 4. 0.0100 0.0300 0.0100 

4. 5. 0.0800 0.2400 0.0250 

THERE ARE 7 LINES IN THE SYSTEM 
THERE ARE 5 BUSES IN THE SYSTEM , 2 OF WHICH ARE PV 
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c 

0 

THE INJECTION VECTOR NUMBER 1 
=============================== 

Z(1)= 1.1236 

Z(5)=-0.1000 

Z(9)=-0.6000 

Z(2)= 1.1025 

Z(6)= 0.4920 

THE INJECTION VECTOR NUMBER 2 
=============================== 

Z(1)= 1.1236 

Z(5}=-0.0980 

Z(9)=-0.5880 

Z(2)= 1.1025 

Z(6)• 0.4820 

Z(3)= 1.0816 

Z(7)= 0.0770 

Z(3)= 1.0816 

Z(7)= 0.0750 

THE B VECTOR FOR THE REAL POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 4 

B(1)=-0.0084 

B(5)=-0.0018 

B(9)=-0.0665 

B(2)= 0.0181 B(3)=-0.0115 

B(6)• 0.0569 B(7)=-0.2314 
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Z(4)=-0.0500 

Z(8)=-0.4000 

Z(4)=-0.0490 

Z(8)=-0.3920 

B(4)= 0.0021 

B(S)=-0.3101 



0 

c 

c 

THE C MATRIX FOR REAL POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 4 

C(1,1)= 0.0030 C(1,2)= 0.0380 C(1,3)=-0.0371 

C(1,5)= 0.0001 C(1,6)=-0.0030 C(1,7)= 0.0127 

C(1,9)= 0.0012 C(2,1)= 0.0380 C(2,2)= 0.2081 

C(2,4)=-0.0049 C(2,5)= 0.0041 C(2,6}=-0.0090 

C(2,8}=-0.0230 C(2,9)= 0.0022 C(3,1)=-0.0371 

C(3,3)= 0.2969 C(3,4)= 0.0041 C(3,5)=-0.0032 

C(3,7)=-0.0022 C(3,8)= 0.0159 C(3,9)=-0.0019 

C(4,2)=-0.0049 C(4,3)= 0.0041 C(4,4)= 0.0022 

C(4,6)= 0.0004 C(4,7)=-0.0016 C{4,8)=-0.0012 

C(5,1)= 0.0001 C(5,2)= 0.0041 C(5,3)=-0.0032 

C(5,5}= 0.0019 C(5,6)=-0.0003 C(5,7)= 0.0012 

C(5,9)= 0.0003 C(6,1)=-0.0030 C(6,2)=-0.0090 

C(6,4)= 0.0004 C(6,5)=-0.0003 C(6,6)= 0.0000 

C(6,8)=-0.0003 C(6,9)=-0.0001 C(7,1)= 0.0127 

C(7,3)=-0.0022 C(7,4}=-0.0016 C(7,5)= 0.0012 

C(7,7)= 0.0041 C(7,8)= 0.0032 C(7,9)= 0.0009 

C(8,2}=-0.0230 C(8,3)= 0.0159 C(8,4)=-0.0012 

C(8,6)=-0.0003 C(8,7)= 0.0032 C(8,8)= 0.0047 

C(9,1)= 0.0012 C(9,2)= 0.0022 C(9,3)=-0.0019 

C(9,5)= 0.0003 C(9,6)=-0.0001 C(9,7}= 0.0009 

C(9,9)= 0.0021 
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C(1,4)=-0.0001 

C(1,8}= 0.0096 

C(2,3)=-0.2540 

C(2,7)=-0.0092 

C(3,2)=-0.2540 

C(3,6)= 0.0122 

C(4,1)=-0.0001 

C(4,5)= 0.0004 

C(4,9)=-0.0010 

C(5,4)= 0.0004 

C(5,8)= 0.0019 

C(6,3)= 0.0122 

C(6,7}=-0.0004 

C(7,2)=-0.0092 

C(7,6)=-0.0004 

C(B,l)= 0.0096 

C(8,5)= 0.0019 

C(8,9)= 0.0012 

C(9,4)=-0.0010 

C(9,8)= 0.0012 



c 

c 

THE INJECTION VECTOR NUMBER 1 

THE LINEAR APPROXIMATION FOR THE REAL POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 4 = 0.1724 

THE QUADRATIC APPROXIMATION FOR THE REAL POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 4 = 0.1724 

THE INJECTION VECTOR NUMBER 2 
================================ 

THE LINEAR APPROXIMATION FOR THE REAL POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 4 = 0.1690 

THE QUADRATIC APPROXIMATION FOR THE REAL POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 4 = 0.1690 

THE ~ VECTOR FOR THE REACTIVE POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 4 

B(1)= 0.0025 B(2)= 2.1997 B(3)=-2.2349 B(4)=-0.1349 

B(5)=-0.0450 B(6)=-0.0172 B(7)= 0.0700 B(8)= 0.0476 

B(9)= 0.0009 
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c 

c 

0 

THE C MATRIX FOR REACTIVE POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 4 

C(1,1)=-0.0009 C{1,2}=-0.0107 C(1,3)= 0.0106 

C(1,5)=-0.0000 C(1,6}= 0.0009 C(1,7)=-0.0036 

C(1,9)=-0.0003 C(2,1)=-0.0107 C(2,2)= 0.4945 

C(2,4)=-0.0255 C(2,5)=-0.0036 C(2,6)=-0.0024 

C(2,8)= 0.0236 C(2,9)= 0.0028 C(3,1)= 0.0106 

C(3,3)= 0.4795 C(3,4)= 0.0263 C(3,5}= 0.0041 

C(3,7)=-0.0172 C(3,8)=-0.0166 C(3,9)= 0.0001 

C(4,2)=-0.0255 C(4,3)= 0.0263 C(4,4)= 0.0027 

C(4,6)= 0.0001 C(4,7)=-0.0004 C(4,8)=-0.0003 

C(5,1)=-0.0000 C(5,2)=-0.0036 C(5,3)= 0.0041 

C(5,5)= 0.0035 C(5,6)= 0.0001 C(5,7)=-0.0004 

C(5,9)= 0.0003 C(6,1)= 0.0009 C(6,2)=-0.0024 

C(6,4)= 0.0001 C(6,5)= 0.0001 C(6,6)= 0.0004 

C(6,8)=-0.0018 C(6,9)=-0.0002 C(7,1)=-0.0036 

C(7,3)=-0.0172 C(7,4)=-0.0004 C(7,5)=-0.0004 

C(7,7)= 0.0054 C(7,8)= 0.0069 C(7,9)= 0.0006 

C(8,2)= 0.0236 C(8,3)=-0.0166 C(8,4)=-0.0003 

C(8,6)=-0.0018 C(8,7)= 0.0069 C(8,8)= 0.0100 

C(9,1)=-0.0003 C(9,2)= 0.0028 C(9,3)= 0.0001 

C(9,5)= 0.0003 C(9,6)=-0.0002 C(9,7)= 0.0006 

C(9,9)= 0.0037 
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C(1,4)=-0.0000 

C(1,8)=-0.0026 

C(2,3)=-0.4848 

C(2,7)= 0.0236 

C(3,2)=-0.4848 

C(3,6)= 0.0007 

C(4,1)=-0.0000 

C(4,5)= 0.0006 

C(4,9)= 0.0003 

C(5,4)= 0.0006 

C(5,8)=-0.0005 

C(6,3)= 0.0007 

C(6,7)=-0.0015 

C(7,2)= 0.0236 

C(7,6)=-0.0015 

C(8,1)=-0.0026 

C(8,5)=-0.0005 

C(8,9)= 0.0013 

C(9,4)= 0.0003 

C(9,8}= 0.0013 



c THE INJECTION VECTOR NUMBER 1 

THE LINEAR APPROXIMATION FOR THE REACTIVE POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 4 = -0.0007 

THE QUADRATIC APPROXIMATION FOR THE REACTIVE POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 4 = -0.0007 

THE INJECTION VECTOR NUMBER 2 

THE LINEAR APPROXIMATION FOR THE REACTIVE POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 4 = -0.0005 

THE QUADRATIC APPROXIMATION FOR THE REACTIVE POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 4 = -0.0005 

THE B VECTOR FOR THE REAL POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 5 

B(1)=-0.0042 B(2}= 0.0559 B{3)=-0.0596 B(4)=-0.0022 

B(5)= 0.0012 B(6)= 0.0283 B(7)=-0.1150 B(S)=-0.1552 

B(9)=-0.7232 
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c 

0 

THE C MATRIX FOR REAL POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 5 

C(1,1)= 0.0015 C(1,2)= 0.0189 C(1,3)=-0.0185 

C(1,5)=-0.0001 C(1,6)=-0.0015 C(1,7)= 0.0063 

C(1,9)= 0.0006 C(2,1)= 0.0189 C(2,2)= 0.0770 

C(2,4)=-0.0019 C(2,5)=-0.0115 C(2,6)=-0.0044 

C(2,8)=-0.0116 C(2,9)=-0.0340 C(3,1)=-0.0185 

C(3,3)= 0.1683 C(3,4)= 0.0031 C(3,5)= 0.0124 

C(3,7)=-0.0015 C(3,8)= 0.0078 C(3,9)= 0.0455 

C(4,2)=-0.0019 C(4,3)= 0.0031 C(4,4)= 0.0012 

C(4,6)= 0.0002 C(4,7)=-0.0008 C(4,8)=-0.0006 

C(5,1)=-0.0001 C(5,2)=-0.0115 C(5,3)= 0.0124 

C(5,5)= 0.0188 C{5,6)= 0.0010 C(5,7)=-0.0041 

C(5,9)= 0.0016 C(6,1)=-0.0015 C(6,2)=-0.0044 

C(6,4)= 0.0002 C(6,5)= 0.0010 C(6,6)= 0.0000 

C(6,8)=-0.0002 C(6,9)= 0.0000 C{7,1)= 0.0063 

C(7,3)=-0.0015 C(7,4)=-0.0008 c (7 , 5) =-0 • 0 0 41 

C(7,7)= 0.0021 C(7,8)= 0.0017 C(7,9)= 0.0001 

C(8,2)=-0.0116 C(8,3)= 0.0078 C(8,4)=-0.0006 

C(8,6)=-0.0002 C(8,7)= 0.0017 C(8,8)= 0.0025 

C(9,1)= 0.0006 C(9,2)=-0.0340 C(9,3)= 0.0455 

C{9,5)= 0.0016 C(9,6)= 0.0000 C(9,7)= 0.0001 

C(9,9)= 0.0195 
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C(1,4)=-0.0000 

C(1,8)= 0.0048 

C(2,3)=-0.1200 

C(2,7)=-0.0048 

C(3,2)=-0.1200 

C(3,6)= 0.0061 

C(4,1)=-0.0000 

C(4,5)= 0.0011 

C(4,9)= 0.0023 

C(5,4}= 0.0011 

C(5,8)=-0.0051 

C(6,3)= 0.0061 

C(6,7)=-0.0002 

C(7,2)=-0.0048 

C(7,6)=-0.0002 

C(8,1)= 0.0048 

C(8,5)=-0.0051 

C(8,9)= 0.0011 

C(9,4)= 0.0023 

C(9,8)= 0.0011 



0 

c 

0 

THE INJECTION VECTOR NUMBER 1 

THE LINEAR APPROXIMATION FOR THE REAL POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 5 = 0.4935 

THE QUADRATIC APPROXIMATION FOR THE REAL POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 5 = 0.4935 

THE INJECTION VECTOR NUMBER 2 

THE LINEAR APPROXIMATION FOR THE REAL POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 5 = 0.4836 

THE QUADRATIC APPROXIMATION FOR THE REAL POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 5 = 0.4836 

THE B VECTOR FOR THE REACTIVE POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 5 

B(1)= 0.0011 B(2)= 1.0500 B(3)=-1.1212 B(4)=-0.0676 

B(5)=-0.7053 B(6)=-0.0072 B(7}= 0.0293 B(8)= 0.0161 

B(9)=-0.0715 

- 168 -



c 

.~ 

'-" 

THE C MATRIX FOR REACTIVE POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 5 

C(1,1)=-0.0004 C(1,2)=-0.0044 C(1,3)= 0.0044 

C(1,5)=-0.0000 C(1,6)= 0.0004 C(1,7)=-0.0015 

C(1,9)= 0.0000 C(2,1)=-0.0044 C(2,2)= 0.2651 

C(2,4)=-0.0126 C(2,5)=-0.0363 C(2,6)=-0.0019 

C(2,8)= 0.0139 C(2,9)= 0.0365 C(3,1)= 0.0044 

C{3,3)= 0.2468 C(3,4)= 0.0132 C(3,5)= 0.0460 

C(3,7)=-0.0079 C(3,8)=-0.0069 C(3,9)=-0.0007 

C(4,2)=-0.0126 C(4,3)= 0.0132 C(4,4)= 0.0014 

C{4,6)= 0.0001 C(4,7)=-0.0002 C(4,8)=-0.0001 

C(5,1)=-0.0000 C(5,2)=-0.0363 C(5,3}= 0.0460 

C(5,5}= 0.0571 C(5,6)= 0.0000 C(5,7)=-0.0001 

C(5,9)= 0.0058 C(6,1)= 0.0004 C(6,2)=-0.0019 

C(6,4)= 0.0001 C(6,5)= 0.0000 C(6,6)= 0.0002 

C(6,8)=-0.0009 C(6,9)=-0.0013 C(7,1)=-0.0015 

C(7,3)=-0.0079 C(7,4)=-0.0002 C(7,5)=-0.0001 

C(7,7)= 0.0028 C(7,8)= 0.0035 C(7,9)= 0.0052 

C(8,2)= 0.0139 C(8,3)=-0.0069 C(8,4)=-0.0001 

C(8,6)=-0.0009 C(8,7)= 0.0035 C(8,8)= 0.0051. 

C(9,1)= 0.0000 C(9,2)= 0.0365 C(9,3)=-0.0007 

C(9,5)= 0.0058 C(9,6)=-0.0013 C(9,7}= 0.0052 

C(9,9)= 0.0599 
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C(1,4)= -0.0000 

C(1,8)=-0.0011 

C(2,3)=-0.2443 

C(2,7)= 0.0135 

C(3,2)=-0.2443 

C(3,6)= 0.0005 

C(4,1)=-0.0000 

C(4,5)= 0.0030 

C(4,9)= 0.0000 

C(5,4)= 0.0030 

C(5,8)= 0.0008 

C(6,3)= 0.0005 

C(6,7)=-0.0008 

C(7,2)= 0.0135 

C(7,6)=-0.0008 

C(8,1)=-0.00ll 

C{8,5)= 0.0008 

C(8,9)= 0.0072 

C(9,4)= 0.0000 

C(9,8)= 0.0072 



0 

c 

THE INJECTION VECTOR NUMBER 1 

THE LINEAR APPROXIMATION FOR THE REACTIVE POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 5 = 0.0552 

THE QUADRATIC APPROXIMATION FOR THE REACTIVE POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 5 = 0.0552 

THE INJECTION VECTOR NUMBER 2 

THE LINEAR APPROXIMATION FOR THE REACTIVE POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 5 = 0.0530 

THE QUADRATIC APPROXIMATION FOR THE REACTIVE POWER FLOW 
LEAVING BUS 2 TOWARDS BUS 5 = 0.0530 

THE B VECTOR FOR THE REAL POWER FLOW 
LEAVING BUS 3 TOWARDS BUS 4 

B(1)= 0.0124 B(2)=-0.0747 B(3)= 0.0596 B(4)=-0.0004 

B(5)=-0.0040 B(6)=-0.0842 B(7)= 0.3423 B(B)=-0.5468 

B(9}=-0.2447 
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c 

0 

THE C MATRIX FOR REAL POWER FLOW 
LEAVING BUS 3 TOWARDS BUS 4 

C(1,1)=-0.0044 C{1,2)=-0.0555 C(1,3)= 0.0543 

C(1,5}=-0.0000 C(1,6}= 0.0044 C(1,7)=-0.0186 

C(1,9)=-0.0018 C(2,1}=-0.0555 C(2,2)= 0.2282 

C(2,4)= 0.0071 C(2,5)= 0.0107 C(2,6)= 0.0087 

C(2,8)= 0.0499 C(2,9)= 0.0456 C(3,1)= 0.0543 

C(3,3)= 0.0536 C(3,4)=-0.0067 C(3,5)=-0.0083 

C(3,7)=-0.0133 C(3,8)=-0.0337 C(3,9}=-0.0405 

C(4,2)= 0.0071 C(4,3)=-0.0067 C(4,4)= 0.0041 

C(4,6)=-0.0006 C(4,7)= 0.0024 C(4,8)= 0.0019 

C(5,1)=-0.0000 C(5,2}= 0.0107 C{5,3)=-0.0083 

C(5,5}= 0.0068 C(5,6)=-0.0007 C(5,7)= 0.0030 

C{5,9)= 0.0010 C(6,1)= 0.0044 C(6,2)= 0.0087 

C(6,4)=-0.0006 C(6,5)=-0.0007 C(6,6)= 0.0004 

c c 6 , 8 > =-o • o o o·6 C(6,9)=-0.0000 C(7,1)=-0.0186 

C(7,3)=-0.0133 C(7,4)= 0.0024 C(7,5)= 0.0030 

C(7,7)==-0.0002 C(7 1 8)==-0.0002 C(7 1 9)=-0.0004 

C(8,2)= 0.0499 C(8,3)=-0.0337 C(8,4)= 0.0019 

C(8,6)=-0.0006 C{8,7)=-0.0002 C(8,8)= 0.0039 

C(9,1}=-0.0018 C(9,2)= 0.0456 C(9,3}=-0.0405 

C(9,5)= 0.0010 C{9,6)=-0.0000 C(9,7)=-0.0004 

C(9,9)= 0.0068 
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C(1,4)= 0.0001 

C(1,8)=-0.0141 

C(2,3)=-0.1361 

C(2,7}= 0.0325 

C(3,2)=-0.l361 

C(3,6)=-0.0139 

C(4,1)= 0.0001 

C(4,5}= 0.0010 

C(4,9)=-0.0008 

C(5,4)= 0.0010 

C(5,8)= 0.0035 

C(6,3)=-0.0139 

C(6,7)=-0.0008 

C(7,2}= 0.0325 

C(7,6)=-0.0008 

C(8,1)=-0.0141 

C(8,5)= 0.0035 

C{8,9)= 0.0008 

C(9,4)=-0.0008 

C(9,8)= 0.0008 



0 

c 

0 

THE INJECTION VECTOR NUMBER 1 

THE LINEAR APPROXIMATION FOR THE REAL POWER FLOW 
LEAVING BUS 3 TOWARDS BUS 4 = 0.3469 

THE QUADRATIC APPROXIMATION FOR THE REAL POWER FLOW 
LEAVING BUS 3 TOWARDS BUS 4 = 0.3469 

THE INJECTION VECTOR NUMBER 2 

THE LINEAR APPROXIMATION FOR THE REAL POWER FLOW 
LEAVING BUS 3 TOWARDS BUS 4 = 0.3397 

THE QUADRATIC APPROXIMATION FOR THE REAL POWER FLOW 
LEAVING BUS 3 TOWARDS BUS 4 = 0.3397 

THE B VECTOR FOR THE REACTIVE POWER FLOW 
LEAVING BUS 3 TOWARDS BUS 4 

B(1)=-0.0040 8(2)=-3.3275 B(3)= 3.2566 8(4)=-0.8022 

B(5)=-0.2712 B(6)= 0.0274 B(7}=-0.1115 B(S)=-0.1012 

B(9}=-0.0360 
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c 

THE C MATRIX FOR REACTIVE POWER FLOW 
LEAVING BUS 3 TOWARDS BUS 4 

C(1,1)= 0.0015 C(1,2)= 0.0191 C(1,3)=-0.0188 

C(1,5)= 0.0001 C(1,6)=-0.0015 C(1,7)= 0.0064 

C{1,9)= 0.0004 C(2,1)= 0.0191 C(2,2)= 0.7846 

C(2,4)= 0.0390 C{2,5)= 0.0500 C(2,6)=-0.0099 

C(2,8)= 0.0087 C(2,9)= 0.0021 C(3,1)=-0.0188 

C(3,3)= 0.8342 C(3,4)=-0.0377 C(3,5)=-0.0473 

C(3,7)=-0.0259 C(3,8)=-0.0064 C(3,9)= 0.0101 

C(4,2)= 0.0390 C(4,3)=-0.0377 C(4,4)= 0.0186 

C(4,6)=-0.0001 C(4,7)= 0.0006 C(4,8)= 0.0008 

C(5,1)= 0.0001 C(5,2)= 0.0500 C(5,3)=-0.0473 

C(5,5)= 0.0222 C(5,6)=-0.0002 C(5,7)= 0.0008 

C(5,9)= 0.0023 C(6,1)=-0.0015 C{6,2)=-0.0099 

C(6,4)=-0.0001 C(6,5)=-0.0002 C(6,6)= 0.0005 

C(6,8)=-0.0006 C(6,9)= 0.0011 C(7,1)= 0.0064 

C(7,3)=-0.0259 C(7,4)= 0.0006 C(7,5)= 0.0008 

C(7,7)= 0.0101 C(7,8)= 0.0035 C(7,9)=-0.0041 

C(8,2)= 0.0087 C(8,3)=-0.0064 C(8,4)= 0.0008 

C(8,6)=-0.0006 C(8,7)= 0.0035 C(8,8)= 0.0182 

C(9,1)= 0.0004 C{9,2)= 0.0021 C(9,3)= 0.0101 

C(9,5)= 0.0023 C(9,6)= 0.0011 C(9,7)=-0.0041 

C(9,9)= 0.0221 
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C(1,4)= 0.0000 

C(1,8)= 0.0047 
-

C(2,3)=-0.8056 

C(2,7)= 0.0183 

C(3,2)=-0.8056 

C(3,6)= 0.0120 

C(4,1)= 0.0000 

C{4,5)= 0.0042 

C(4,9)= 0.0010 

C(5,4)= 0.0042 

C(5,8)= 0.0005 

C(6,3)= 0.0120 

C(6,7)=-0.0022 

C(7,2)= 0.0183 

C(7,6)=-0.0022 

C(8,1)= 0.0047 

C(8,5)= 0.0005 

C(8,9)= 0.0008 

C(9,4)= 0.0010 

C(9,8)= 0.0008 



c 

c 

0 

THE INJECTION VECTOR NUMBER 1 

THE LINEAR APPROXIMATION FOR THE REACTIVE POWER FLOW 
LEAVING BUS 3 TOWARDS BUS 4 = -0.0166 

THE QUADRATIC APPROXIMATION FOR THE REACTIVE POWER FLOW 
LEAVING BUS 3 TOWARDS BUS 4 = -0.0166 

THE INJECTION VECTOR NUMBER 2 

THE LINEAR APPROXIMATION FOR THE REACTIVE POWER FLOW 
LEAVING BUS 3 TOWARDS BUS 4 = -0.0192 

THE QUADRATIC APPROXIMATION FOR THE REACTIVE POWER FLOW 
LEAVING BUS 3 TOWARDS BUS 4 = -0.0192 
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c 

0 

APPENDIX C 

LOAD FLOW PROGRAM 

$WATFIV 
c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cc cc 
cc cc 
cc cc 
cc cc 
cc cc 
CC LOAD FLOW PROGRAM USING THE NEWTON RAPHSON METHOD CC 
cc cc 
CC THIS PROGRAM WAS WRITTEN BY S.L. LOW [24] CC 
cc cc 
cc cc 
cc cc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THIS PROGRAM IS DESIGNED TO ACCOMODATE UP TO 

AND 
50 BUSES 

100 LINES 

LARGER NETWORKS MAY BE SIMULATED BY INCREASING THE 
DIMENSIONS. 

THE LINE DATA IS ENTERED FIRST, IN F10.5 FORMAT IN 
THE SEQUENCE NODE NUMBER, NODE NUMBER, LINE 
RESISTANCE,LINE REACTANCE AND ONE HALF LINE CHARGING 
ADMITTANCE (ALL IN PER UNIT) 

THE LAST CARD OF LINE DATA IS SEPARATED FROM THE 
FOLLOWING DECK OF BUS DATA CARDS BY A BLANK CARD 

NEXT, THE BUS DATA IS ENTERED IN F5.2 FORMAT IN THE 
SEQUENCE BUS NUMBER, BUS TYPE, VOLTAGE MAGNITUDE, 
REAL POWER GENERATION,REACTIVE POWER GENERATION, 
REAL POWER DEMAND, REACTIVE DEMAND, 
INITIAL ESTIMATE OF BUS VOLTAGE MAGNITUDE AND ANGLE 

THE LAST CARD OF BUS DATA MUST BE FOLLOWED BY A BLANK 
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0 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CARD 

THE BUSES MUST BE NUMBERED CONSECUTIVELY STARTING 
FROM 1 HOWEVER THERE IS NO RESTRICTION ON GROUPING OF 
THE TYPES OF BUSES E.G. THE SLACK BUS CAN BE NUMBERED 
THE FIRST BUS, THE LAST BUS OR ANY NUMBER IN BETWEEN, 
THE SAME APPLIES TO PO AND PV BUSES 

THE BUS TYPES ARE CODED AS FOLLOWS; 
1.0 PQ BUS 
2.0 PV BUS 
3.0 SLACK BUS WHICH IS ALSO THE REFERENCE BUS 

THE FOLLOWING ARE SOME PARAMETERS THAT CONTROL THE 
EXECUTION OF THE PROGRAM THESE PARAMETERS 
SHOULD BE READ IN THE FOLLOWING SEQUENCE 
IN 5Fl0.5 FORMAT BEFORE OTHER DATA IS READ 

!READ --- INPUT DEVICE NUMBER.FOR LINE AND BUS DATA 
!WRITE --- OUTPUT DEVICE NUMBER FOR RESULTS 
CRITER --- ACCURACY TO WHICH THE MAXIMUM MISMATCH MUST 

SATISFY 
JUPDAT --- HOW FREQUENTLY THE JACOBIAN MATRIX IS 

UPDATED 
0 INDICATES THE INITIAL JACOBIAN MATRIX IS 

USED THROUGHOUT 
1 INDICATES THE JACOBIAN MATRIX IS UPDATED 

EVERY ITERATION 
2 INIDCATES JACOBIAN MATRIX UPDATED EVERY TWO 

ITERATIONS 
N INDICATES JACOBIAN MATRIX UPDATED EVERY N 

ITERATIONS 
LOOP --- MAXIMUM NUMBER OF ITERATIONS ALLOWED 

IMPLICIT REAL*S (A-H,O-Z), INTEGER*2 (I-N) 
REAL*4 PARM(5) 
INTEGER*4 IREAD,IWRITE 
LOGICAL*! OK 
COMMON /LOADFL/ VREAL(120),VIMAG(l20),VMAGSQ(l20), 

+CREAL(l20), 
+CIMAG(l20),CMAGLN(200),REALG(l20),REACTG(l20), 
+REALD(l20),REACTD(120),MODBUS(120),NREF,NOGEN 

COMMON /NETWOK/ DIAYMR(l20),DIAYMI(120),DATAYR(200), 
+DATAYI(200), 
+DATALN(200),LKSTYM(120),JCOLYM(400),LINKYM(400), 
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c 
1 
5 

c 
c 

+KONECT(120), 
+LORDER(120),NORDER(120},LINE,NFAULT 

COMMON /LUSOLV/ DELTAX(240),ERRORZ(240),DELTAG(120), 
+DELTAQ(120), 
+DIAGUT(240},DATAUT(500),DATALT(500),LKSTUT(240), 
+JROWUT (500) , 
+LINKUT(500},IRSTUT(240),JCOLUT(500),IRSTLT(240), 
+JCOLLT(500), 
+JCOLJB(240) 

COMMON /ENABLE/ CRITER,IREAD,IWRITE,JUPDAT,LOOP 
COMMON /SIZE/ NLESS1,NTOTAL,NLESX2,NTOTX2 
READ(5,1)PARM 
IREAD=PARM(1) 
IWRITE=PARM ( 2) 
CRITER=PARM(3) 
JUPDAT=PARM(4} 
LOOP=PARM(5) 
WRITE (!WRITE, 5) 
CALL INTIAL 
CALL DINPUT 
CALL NEWTON (OK) 
CALL RESULT(OK) 
STOP 
FORMAT ( 5F10. 5) 
FORMAT(~1~,T25,~CONVENTIONAL LOAD FLOW PROGRAM ~, 

+~USING NEWTON-RAPHSON ALGORITHM~// T28, 
+~WITH L-U DECOMPOSITION OF THE JACOBIAN~, 
+~ AND SPARSITY PROGRAMMING~} 

END 
SUBROUTINE INTIAL 

C THIS SUBROUTINE INITIALISES VARIABLES 
c 

IMPLICIT REAL*S (A-H,O-Z), INTEGER*2 (I-N} 
COMMON /NETWOK/ DIAYMR(120},DIAYMI(120),DATAYR(200), 

+DATAYI(200), 
+DATALN(200),LKSTYM(120),JCOLYM(400},LINKYM(400), 
+KONECT ( 120) , 
+LORDER(120),NORDER(120},LINE,NFAULT 

DO 1 !=1,120 
DIAYMR(I)=O.O 
DIAYMI(I)=O.O 
LKSTYM(I)=O 

1 KONECT(I)=O 

c 
c 
c 

RETURN 
END 
SUBROUTINE DINPUT 
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c 

c 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

10 

THIS SUBROUTINE READS IN THE LINE DATA AND BUS DATA 
THEN DOES A RE-NUMBERING OF THE BUSES ACCORDING TO 
THIS : 

PV BUSES ARE GIVEN THE FIRST NUMBERS IN THE ORDER THEY 
ARE ENTERED THEN PQ BUSES ARE NUMBERED INASCENDING 
ORDER OF THE NUMBER OF LINES JOINING IT 
THE SLACK BUS IS NUMBERED LAST 

IMPLICIT REAL*8 (A-H,O-Z), INTEGER*2 (I-N) 
INTEGER*4 IREAD,IWRITE 
REAL*4 BUFLIN(5),BUFNOD(9), 

+NODEl,NODE2,RPU,XLPU,YCPU,NODE,TYPE, 
+VM,PG,QG,PD,QD,VMG,ANGLE 

COMMON /LOADFL/ VREAL(l20),VIMAG(l20),VMAGSQ(l20), 
+CREAL(l20), 
+CIMAG(l20),CMAGLN(200) ,REALG(l20),REACTG(l20), 
+REALD(120),REACTD(120),MODBUS(l20),NREF,NOGEN 

COMMON /NETWOK/ DIAYMR(l20),DIAYMI(l20), 
+DATAYR(200),DATAYI(200), 
+DATALN(200),LKSTYM(120),JCOLYM(400),LINKYM(400), 
+KONECT(l20), 
+LORDER(120),NORDER(l20),LINE,NFAULT 

COMMON /LUSOLV/ 
+DELTAX(240),ERRORZ(240),DELTAG(l20),DELTAQ(l20), 
+DIAGUT(240),DATAUT(500),DATALT(500),LKSTUT(240), 
+JROWUT(SOO), 
+LINKUT(500),IRSTUT(240),JCOLUT(500),IRSTLT(240), 
+JCOLLT(SOO), 
+JCOLJB(240) 

COMMON /ENABLE/ CRITER,IREAD,IWRITE,JUPDAT,LOOP 
COMMON /SIZE/ NLESSl,NTOTAL,NLESX2,NTOTX2 
COMMON /CONTIG/ NODEl,NODE2,RPU,XLPU,YCPU 
COMMON /CONTIN/ NODE,TYPE,VM,PG,QG,PD,QD,VMG,ANGLE 
COMPLEX*16 REACTN,IMAG/(O.ODO,l.ODO)/ 
EQUIVALENCE (BUFLIN,NODEl),(BUFNOD,NODE) 

READING IN THE LINE DATA AND CALCULATING THE Y-MATRIX 
ONLY NON-ZERO ELEMENTS OF THE Y-MATRIX ARE STORED 

NFAULT=-1 
LINE=O 
LIST=O 
WRITE(IWRITE,1111) 
WRITE(IWRITE,SO) 
CONTINUE 

READ(IREAD,Sl)BUFLIN 
IF(NODEl.EQ.O.O)GO TO 20 
WRITE(IWRITE,52)BUFLIN 
LINE=LINE+l 
LIST=LIST+l 

- 178 -



c 

•. 

c 

0 

20 

c 
c 
c 

30 

N2=NODE2 
N1=NODE1 
KONECT(N1)=KONECT(Nl)+1 
KONECT(N2)=KONECT(N2)+1 
REACTN=1DO/(RPU+XLPU*IMAG) 
SUSCEP=-REACTN*IMAG 
DIAYMR(N1)=DIAYMR(N1)+REACTN 
DIAYMR(N2)=DIAYMR(N2)+REACTN 
DIAYMI(Nl)=DIAYMI(Nl)+SUSCEP+YCPU 
DIAYMI(N2)=DIAYMI(N2)+SUSCEP+YCPU 
DATAYR(LINE)=-REACTN 
DATAYI(LINE)=-SUSCEP 
DATALN(LINE)=YCPU 
JCOLYM(LIST)=N2 
LINKYM(LIST)=LKSTYM(N1) 
LKSTYM{N1)=LIST 
LIST=LIST+1 
JCOLYM(LIST)=Nl 
LINKYM(LIST)=LKSTYM(N2) 
LKSTYM(N2)=LIST 
GO TO 10 

CONTINUE 
WRITE(IWRITE,55)LINE 

READING IN THE BUS DATA 

WRITE(IWRITE,ll11) 
NTOTAL=O 
NOGEN=O 
DTORAD=3.1415926D0/180.0DO 
WRITE{IWRITE,60) 
CONTINUE 

READ(IREAD,61)BUFNOD 
IF(NODE.EQ.O.O)GO TO 40 
WRITE(IWRITE,62)BUFNOD 
NTOTAL=NTOTAL+1 
N=NODE 
MODBUS(N)=TYPE 
VREAL(N)=VMG*DCOS(ANGLE*DTORAD) 
VIMAG(N)=VMG*DSIN(ANGLE*DTORAD) 
REALG(N)=PG 
REALD(N)=PD 
REACTG(N)=QG 
REACTD(N)=QD 
DELTAG(N)=PG-PD 
DELTAQ(N)=QG-QD 
IF(TYPE.EQ.1.0)GO TO 30 

VMAGSQ(N)=VM**2 
KONECT(N)=O 
NOGEN=NOGEN+1 
IF(TYPE.EQ.3.0)NREF=N 
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0 

c 

40 

41 

c 

GO TO 30 
CONTINUE 
READ(IREAD,5l,END=4l)NFAULT 
DIAYMR(NFAULT)=99. 
CONTINUE 
NLESSl=NTOTAL-1 
NLESX2=NLESS1*2 
NTOTX2=NTOTAL*2 
NOGEN=NOGEN-1 
KONECT(NREF)=lOO 

C BUS RE-NUMBERING 
c 

DO 45 I=l,NTOTAL 
45 NORDER(I)=I 
65 INTERC=O 

DO 70 I=2,NTOTAL 
IF(KONECT(I-1) .LE.KONECT(I))GO TO 70 

L=KONECT(I) 
KONECT(I)=KONECT(I-1) 
KONECT (I-1) =L 
L=NORDER (I) 
NORDER(I)=NORDER(I-1) 
NORDER(I-1) =L 
INTERC=l 

70 CONTINUE 
IF(INTERC.NE.O)GO TO 65 

DO 80 I=l,NTOTAL 
80 LORDER(NORDER(I))=I 

RETURN 
50 FORMAT(~ LINE DATA~/1X,9(~=~)///T8, 

+~BUS NO. JOINS BUS NO.~,T36, 
+~R P.U.~,T50,~XL P.U.~,T64, 
+~YSH P.U.~/~+~,T8,7(~ ~),T22,7(~ ~), 

+T35,~ ~,T49,~ ~,TG3,~ ~///) 
51 FORMAT(8Fl0.5) --
52 FORMAT(8X,F4.0,10X,F4.0,1X,3Fl4.4/) 
55 FORMAT(//// T22,~THERE ARE ~,I4, 

+~ LINES IN THE SYSTEM~) 
60 FORMAT(~ BUS DATA~/1X,8(~=~)///T24, 

+~VOLTAGE~,T37,~GENERATION~,T57, 
+~LOAD~,T7l,~STARTING VOLTAGE~//T8,~NUMBER~,Tl6, 
+~TYPE~,T23, 
+~MAGNITUDE~,T35, 
+~REAL~,T4l,~REACTIVE~,T54,~REAL~,T60,~REACTIVE~, 
+T7l,~MAGNITUDE~,T82,~ANGLE~/~+~,T8,6(~ ~),Tl6, 
+~ ~ ,T23,9 (~ ~), -
+T~ ~,T41;8(~ ~),T54,~ ~,T60,8(~ ~) ,T71,9(~_~) 
+,T82,~~)///) - --

61 FORMAT(lGF5.2) 
62 FORMAT(8X,F4.0,Tl7,F2.0,T25,F4.2, 
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c 

+T34,F6.3,T42,F6.3,T53,F6.3, 
+T6l,F6.3,T71,F6.2,T80,F6.2/) 

1111 FORMAT(//////////) 

c 
c 
c 

END 
SUBROUTINE NEWTON(OK) 

C THIS SUBROUTINE PERFORMS THE NEWTON RAPHSON ITERATIONS 
c 
c 
C IT RETURNS A LOGICAL*! VARIABLE OF VALUE .TRUE. WHEN 
C THE ROUTINE WAS SUCCESSFULLY COMPLETED 
C OTHERWISE THE RETURNED VARIABLE IS .FALSE. 
C UNSUCCESSFUL COMPLETION IS WHEN THE REQUIRED ACCURACY 
C IS NOT ATTAINED IN THE MAXIMUM ALLOWED NUMBER OF 
C ITERATIONS 
c 
c 

IMPLICIT REAL*8 (A-H,O-Z), INTEGER*2 (I-N) 
INTEGER*4 IREAD,IWRITE 
LOGICAL*! OK 
COMMON /LOADFL/ VREAL(120),VIMAG(120),VMAGSQ(120), 

+CREAL(l20), 
+CIMAG(l20),CMAGLN(200),REALG(l20),REACTG(l20), 
+REALD(l20),REACTD(120),MODBUS(120),NREF,NOGEN 

COMMON /NETWOK/ DIAYMR(l20),DIAYMI(l20), 
+DATAYR(200),DATAYI(200), 
+DATALN(200) ,LKSTYM(120),JCOLYM(400),LINKYM(400), 
+KONECT(l20),LORDER(120),NORDER(l20),LINE,NFAULT 

COMMON /LUSOLV/ 
+DELTAX(240),ERRORZ(240),DELTAG(l20),DELTAQ(120), 
+DIAGUT(240),DATAUT(500),DATALT(500) ,LKSTUT(240), 
+JROWUT{SOO) I 

+LINKUT(500),IRSTUT(240),JCOLUT(500),IRSTLT(240), 
+JCOLLT(500),JCOLJB(240) 

COMMON /ENABLE/ CRITER,IREAD,IWRITE,JUPDAT,LOOP 
COMMON /SIZE/ NLESSl,NTOTAL,NLESX2,NTOTX2 
KOUNT=O 

100 CONTINUE 
c 
C ** CALCULATING CURRENT INJECTIONS 

DO 200 M=1,NTOTAL 
I=NORDER(M) 
CREAL(M}=DIAYMR(I}*VREAL(I)-DIAYMI(I)*VIMAG(I) 
CIMAG(M)=DIAYMI(I)*VREAL(I)+DIAYMR(I)*VIMAG(I) 
L=LKSTYM (I) 

150 CONTINUE 
KDATA=(L+l)/2 
J=JCOLYM(L) 
CREAL(M)=CREAL(M)+DATAYR(KDATA)*VREAL(J) 
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c 

0 

200 
c 
c 

+ 

+ 

+ 

-DATAYI(KDATA)*VIMAG(J) 
CIMAG(M}=CIMAG(M}+DATAYR(KDATA)*VIMAG(J)+ 

DATAYI(KDATA)*VREAL(J) 
L=LINKYM(L) 
IF(L.NE.O)GO TO 150 

CONTINUE 

** EVALUATING THE MISMATCHES 
IF (NOGEN.EQ.O}GO TO 410 
DO 400 I=1,NOGEN 

J=NORDER (I) 
ERRORZ(I)=-VMAGSQ(J)+VREAL(J)**2+VIMAG(J)**2 
ERRORZ(I+NLESS1)=-DELTAG(J)+VREAL{J)*CREAL{I) 

+VIMAG{J)*CIMAG(I) 
400 CONTINUE 
410 CONTINUE 

IF(NOGEN.EQ.NLESS1)GO TO 510 
M=NOGEN+1 
DO 500 I=M,NLESS1 

J=NORDER(I) 
ERRORZ(I)=-DELTAQ(J)-(VREAL(J)*CIMAG(I) 

+ -VIMAG (J) *CREAL (I)} 
ERRORZ{I+NLESS1)=-DELTAG(J)+(VREAL(J)*CREAL(I}+ 

+ VIMAG(J}*CIMAG(I)) 
IF(J.EQ.NFAULT)ERRORZ(I)=O.O 
IF(J.EQ.NFAULT)ERRORZ(I+NLESS1)=0.0 

500 CONTINUE 
510 CONTINUE 
c 
C ** CHECKING AGAINST CONVERGENCE CRITERIA 

DO 600 I=1,NLESX2 
IF(DABS(ERRORZ{I}).GT.CRITER)GO TO 700 

600 CONTINUE 
c 
·c ** ALL MISMATCHES ARE LESS THAN THE CRITERIA GIVEN 

WRITE{IWRITE,550)CRITER,KOUNT 
OK=.TRUE. 
RETURN 

c 
C ** MORE ITERATIONS REQUIRED 
c 
700 CONTINUE 

c 
c 
710 

IF(KOUNT.LT.LOOP)GO TO 710 
WRITE{IWRITE,560)CRITER,LOOP 
OK=.FALSE. 
RETURN 

** DETERMINE WHETHER TO UPDATE JACOBIAN MATRIX 
CONTINUE 
IF(KOUNT.EQ.O)GO TO 730 
IF(JUPDAT.EQ.O)GO TO 750 
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0 

c 

0 

IF(KOUNT/JUPDAT.EQ.(KOUNT-1}/JUPDAT)GO TO 750 
730 CONTINUE 

CALL JACOB 
750 CONTINUE 

CALL BACKSB(NLESX2) 
DO 800 I=1,NLESS1 

J=NORDER(I) 
VREAL(J)=VREAL(J}+DELTAX(I) 
VIMAG{J)=VIMAG{J)+DELTAX(I+NLESS1) 

WRITE(IWRITE,660)J,VREAL(J),VIMAG(J) 
660 FORMAT(//~ VOLTAGE AT BUS ~,I3 ,~: ~,F10.5, 

+~ + J~,F10.5) 

800 CONTINUE 
KOUNT=KOUNT+1 

GO TO 100 
550 FORMAT(~1~,T11,~CONVERGES TO WITHIN ~,F8.5,~ FOR THE~, 

+MAXIMUM MISMATCH IN ~,I3,~ ITERA~IONS~ /////) 
560 FORMAT(~1~,T11,~FAILS TO CONVERGE TO WITHIN ~,F8.5, 

+~FOR THE MAXIMUM~, 

c 
c 
c 

+MISMATCH IN ~,I3,~ ITERATIONS~/////) 
END 
SUBROUTINE JACOB 

C THIS SUBROUTINE EVALUATES THE JACOBIAN MATRIX 
c 
c 
C THE JACOBIAN MATRIX IS NOT STORED BUT AS SOON AS ONE 
C ROW IS CALCULATED IT IS DECOMPOSED INTO THE 
C CORRESPONDING ROWS OF THE LOWER AND UPPER TRIANGULAR 
C MATRICES 
c 
c 

IMPLICIT REAL*8 (A-H,O-Z), INTEGER*2 (I-N) 
COMMON /LOADFL/ VREAL(120),VIMAG(120),VMAGSQ(120), 

+CREAL(120), 
+CIMAG(120),CMAGLN(200),REALG(120),REACTG(120), 
+REALD{120),REACTD(120),MODBUS(l20),NREF,NOGEN 

COMMON /NETWOK/ DIAYMR(120),DIAYMI(120), 
+DATAYR(200),DATAYI(200), 
+DATALN(200),LKSTYM(120),JCOLYM{400),LINKYM{400), 
+KONECT(120), 
+LORDER(120),NORDER(l20),LINE,NFAULT 

COMMON /LUSOLV/ DATAJB(240),ERRORZ(240), 
+DELTAG(120),DELTAQ(120), 
+DIAGUT(240),DATAUT(500),DATALT(500),LKSTUT(240), 
+JROWUT(SOO), 
+LINKUT(500),IRSTUT{240),JCOLUT(500),IRSTLT(240), 
+JCOLLT(500),JCOLJB(240) 

COMMON /SIZE/ NLESS1,NTOTAL,NLESX2,NTOTX2 
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c 

c 

DO 170 J=1,NLESS1 
I=NORDER(J) 
DO 179 J0=1,NTOTX2 

DATAJB(JO)=O.O 
179 JCOLJB(JO)=O 

J0=1 
IF(MODBUS(I).NE.2)GO TO 175 

DATAJB(J)=-2.0*VREAL(I) 
JCOLJB(JO)=J+NLESS1 
OATAJB(J+NLESS1)=-2.0*VIMAG(I) 

GO TO 178 
175 DATAJB(J)=-VIMAG(I)*DIAYMR(I) 

+ +VREAL(I)*DIAYMI(I)+CIMAG(J) 
L=LKSTYM{I) 

171 CONTINUE 
M=JCOLYM(L) 
IF(M.EQ.NREF)GO TO 177 
M=LORDER(M) 
JCOLJB(JO)=M 
JO=J0+1 
KD=(L+1)/2 
DATAJB(M)=-VIMAG(I)*DATAYR(KD) 

+ +VREAL(I) *DATAYI (KO) 
JCOLJB(JO)=M+NLESS1 
JO=J0+1 
DATAJB(M+NLESS1)=VIMAG(I)*DATAYI(KO)+VREAL(I)*DATAYR(KD) 

177 L=LINKYM(L) 
IF(L.NE.O)GO TO 171 

JCOLJB(JO)=J+NLESS1 
DATAJB(J+NLESS1)=VIMAG(I)*DIAYMI(I) 

+ +VREAL(I)*DIAYMR(I)-CREAL(J) 
178 CALL LUNSYM(J,NLESX2) 
170 CONTINUE 

DO 160 J=NTOTAL,NLESX2 
I=NORDER(J-NLESS1) 
DO 163 J0=1,NTOTX2 

DATAJB(JO)=O.O 
163 JCOLJB(JO)=O 

J0=1 
DATAJB(J)=-VIMAG(I)*DIAYMR(I) 

+ +VREAL(I)*DIAYMI(I)-CIMAG(J-NLESS1) 
L=LKSTYM (I) 

161 CONTINUE 
M=JCOLYM(L) 
IF(M.EQ.NREF)GO TO 166 
M=LORDER(M) 
JCOLJB(JO)=M 
JO=J0+1 
KD=(L+1)/2 
DATAJB(M)=-VREAL(I)*DATAYR(KD)-VIMAG(I)*DATAYI(KD) 
JCOLJB(JO)=M+NLESS1 
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c 

c 

0 

JO=J0+1 
OATAJB(M+NLESS1)=VREAL(I)*OATAYI(KD) 

+ -VIMAG(I)*DATAYR(KD) 
166 L=LINKYM(L) 

IF(L.NE.O)GO TO 161 
JCOLJB(JO)=J-NLESS1 
DATAJB(J-NLESS1)=-VREAL(I)*DIAYMR(I) 

+ -VIMAG(I)*DIAYMI(I) 
+ -CREAL(J-NLESS1) 

CALL LUNSYM(J,NLESX2) 
160 CONTINUE 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

1 

10 

RETURN 
END 
SUBROUTINE LUNSYM(I,N) 

THIS SUBROUTINE TRANSFORMS A GIVEN ROW OF A MATRIX 
INTO THE CORRESPONDING ROWS OF A LOWER TRIANGULAR AND 
AN UPPER TRIANGULAR MATRIX. ONLY NON-ZERO ELEMENTS 
ARE STORED. 

THE INPUT VARIABLES I GIVES WHAT ROW OF THE MATRIX IT 
IS TO BE DECOMPOSED WHILE N GIVES THE ORDER OF THE 
MATRIX 

IMPLICIT REAL*8 (A-B,O-Z), INTEGER*2 (I-N) 
COMMON /LUSOLV/ DATAJB(240),ERRORZ(240), 

+DELTAG(120),DELTAQ(120), 
+DIAGUT(240),DATAUT(500),DATALT(500},LKSTUT(240}, 
+JROWUT(500), 
+LINKUT(500},IRSTUT(240),JCOLUT(500},IRSTLT(240), 
+JCOLLT(500) ,JCOLJB(240) 

IF(I.NE.1}GO TO 22 

** INITIALIZATION AND CALCULATION OF FIRST ROW OF 
UPPER TRIANGULAR 

KUT=1 
KLT=1 
IRSTUT(1)=1 
IRSTLT(l)=1 
DO 1 M=1,N 
LKSTUT (M) =0 
DIAGUT(1)=DATAJB(1) 
J0=1 
L=JCOLJB ( JO) 
IF(L.EQ.O)GO TO 20 

IF(DATAJB(L).EQ.O.O)GO TO 15 
DATAUT(KUT}=DATAJB(L) 
JROWUT(KUT)=1 
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0 

c 

15 

20 
c 
c 
22 

c 

JCOLUT(KUT)=L 
LINKUT(KUT)=LKSTUT(L) 
LKSTUT(L)=KUT 
KUT=KUT+1 

CONTINUE 
JO=J0+1 
L=JCOLJB(JO) 

GO TO 10 
RETURN 

**DECOMPOSITION OF ROWS OTHER THAN THE FIRST 
CONTINUE 
J0=1 
IRSTUT(I)=KUT 
IRSTLT(I)=KLT 
IR=IRSTLT(I) 

C ** SEEKING COLUMN ONE ENTRIES OF JACOBIAN MATRIX 
L=JCOLJB (JO) 

130 IF(L.EQ.O)GO TO 110 
IF(L.EQ.1)GO TO 120 
JO=J0+1 
L=JCOLJB (JO) 

GO TO 130 
c 
C ** EVALUATING ELEMENT OF COLUMN ONE OF LOWER 
C TRIANGULAR MATRIX 
120 JCOLLT(KLT)=1 

DATALT(KLT)=DATAJB(L)/DIAGUT(1) 
KLT=KLT+1 

c 
C ** IF THIS IS SECOND ROW NO MORE LOWER TRIANGULAR 
C MATRIX ENTRIES 
110 IF(I.EQ.2)GO TO 140 

c 

I1=I-1 
DO 200 J=2,I1 
J0=1 
DATALT(KLT)=O.O 

C ** SEEKING NON-ZERO ELEMENT IN CORRESPONDING POSITION 
C IN JACOBIAN 

L=JCOLJB(JO) 
220 IF(L.EQ.O}GO TO 230 

IF(L.EQ.J)GO TO 210 
JO=J0+1 
L=JCOLJB ( JO) 

GO TO 220 
210 DATALT(KLT)=DATAJB{L) 
230 K1=KLT-1 
c 
C ** IF THERE ARE NO PREVIOUS ENTRIES IN THIS ROW OF 
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0 

c 

0 

c 
c 
c 

c 

THE LOWER TRAIN MATRIX NO FURTHER PROCESSING IS 
NECESSARY FOR THIS ELEMENT 

IF(IR.GT.K1)GO TO 240 

C ** SCANNING THROUGH LIST OF ELEMENTS IN COLUMN J OF 
C UPPER TRIANGULAR MATRIX TO MATCH THE CORRESPONDING 
C ENTRY IN THE LOWER TRIANGULAR 

L=LKSTUT(J) 
MM=KLT 
DO 250 M=IR,K1 

MM=MM-1 
270 IF(L.EQ.O)GO TO 250 

IF(JROWUT(L).LT.JCOLLT(MM))GO TO 250 
IF(JROWUT(L).EQ.JCOLLT(MM)}GO TO 260 
L=LINKUT (L) 

GO TO 270 
260 DATALT(KLT)=DATALT(KLT)-DATAUT(L)*DATALT(MM) 
250 CONTINUE 
c 
C ** IF ELEMENT IS ZERO DO NOT STORE INTO LIST 
240 IF(DATALT(KLT).EQ.O.O)GO TO 200 

JCOLLT(KLT)=J 
OATALT(KLT)=DATALT(KLT)/DIAGUT(J) 
KLT=KLT+1 

200 CONTINUE 
c 
C ** CALCULATING THE DIAGONAL ELEMENT OF UPPER 
C TRIANGULAR MATRIX 
140 DIAGUT(I)=OATAJB(I) 

K1=KLT-1 
IF(IR.GT.K1)GO TO 340 

L=LKSTUT(I) 
MM=KLT 
DO 300 J=IR,K1 

MM=MM-1 
330 IF(L.EQ.O)GO TO 300 

IF(JROWUT(L).LT.JCOLLT(MM))GO TO 300 
IF(JROWUT(L).EQ.JCOLLT(MM))GO TO 320 
L=LINKUT(L) 

GO TO 330 
320 DIAGUT{I)=DIAGUT(I)-DATALT(MM)*DATAUT(L) 
300 CONTINUE 
340 CONTINUE 
c 
C ** IF IT IS THE LAST ROW THERE IS NO NON-DIAGONAL 
C ELEMENT IN UPPE 

IF(I.EQ.N)GO TO 100 
c 
C ** EVALUATING ELEMENTS IN THE UPPER TRIANGULAR MATRIX 
C EXCLUDING DIAGONAL 
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c 

c 

I1=I+1 
DO 400 J=I1,N 
J0=1 
DATAUT(KUT)=O.O 
L=JCOLJB(JO) 

430 IF(L.EQ.O)GO TO 410 
IF(L.EQ.J)GO TO 420 

JO=J0+1 
L=JCOLJB (JO) 

GO TO 430 
420 DATAUT(KUT)=DATAJB(L) 
410 IF(IR.GT.K1)GO TO 440 

L=LKSTUT(J) 
MM=KLT 
DO 450 M=IR,K1 

MM=MM-1 
480 IF(L.EQ.O)GO TO 450 

470 
450 
440 

400 

100 

c 
c 
c 

IF(JROWUT(L) .LT.JCOLLT(MM))GO TO 450 
IF(JROWUT(L).EQ.JCOLLT(MM))GO TO 470 
L=LINKUT(L) 

GO TO 480 
DATAUT(KUT)=DATAUT(KUT)-DATALT(MM)*DATAUT(L) 

CONTINUE 
IF(DATAUT(KUT) .EQ.O.O)GO TO 400 

JROWUT(KUT)=I 
LINKUT(KUT)=LKSTUT(J) 
LKSTUT(J)=KUT 
JCOLUT(KUT)=J 
KUT=KUT+1 

CONTINUE 
RETURN 
CONTINUE 
IRSTLT(N+1)=KLT 
IRSTUT(N+1)=KUT 
RETURN 
END 
SUBROUTINE BACKSB(N) 

C THIS SUBROUTINE DOES A FORWARD THEN A BACKWARD 
C SUBSTITUTION WITH THE GIVEN LOWER AND UPPER TRIANGULAR 
C MATRICES RESPECTIVELY. 
c 
c 
c 
C THE INPUT VARIABLE N IS THE NUMBER OF ROWS IN THE 
C MATRIX 
c 
c 

IMPLICIT REAL*8 (A-H,O-Z), INTEGER*2 (I-N) 
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0 

c 

COMMON /LUSOLV/ 
+DELTAX(240},ERRORZ(240),DELTAG(120),DELTAQ(120), 
+DIAGUT(240),DATAUT(500) ,DATALT(500),LKSTUT(240), 
+JROWUT ( 500) , 
+LINKUT(500),IRSTUT(240),JCOLUT(500),IRSTLT(240} 
+JCOLLT(500),JCOLJB(240) 

IEND=IRSTLT(2)-1 
DO 600 I=1,N 

600 DELTAX(I)=ERRORZ{I) 
DO 700 I=2,N 

ISTART=IEND+1 
IEND=IRSTLT(I+1)-1 
IF(IEND.LT.ISTART)GO TO 700 
DO 750 J=ISTART,IEND 

M=JCOLLT(J) 
DELTAX(I)=DELTAX(I)-DATALT(J)*DELTAX(M) 

750 CONTINUE 
700 CONTINUE 

ISTART=IRSTUT(N+1) 
DO 800 I=1,N 

IR=N-I+1 
IEND=ISTART-1 
ISTART=IRSTUT(IR) 
IF(IEND.LT.ISTART)GO TO 800 
DO 850 J=ISTART,IEND 

M=JCOLUT(J) 
DELTAX(IR)=DELTAX(IR)-DATAUT(J)*DELTAX(M) 

850 CONTINUE 
800 DELTAX(IR)=DELTAX(IR)/DIAGUT(IR) 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

RETURN 
END 
SUBROUTINE RESULT(OK) 

THIS SUBROUTINE CALCULATES THE POWER INJECTIONS, THE 
POWER FLOWS AND THE TOTAL TRANSMISSION LOSSES OF A 
SYSTEM GIVEN THE NODAL VOLTAGES 

IF THE INPUT VARIABLE IS .FALSE. IT PRINTS A WARNING 
MESSAGE THAT THE NODAL VOLTAGES ARE NOT UP TO THE 
SUFFICIENT ACCURACY 

IMPLICIT REAL*8 (A-H,O-Z), INTEGER*2 (I-N} 
INTEGER*4 IREAD,IWRITE 
COMMON /LOADFL/ VREAL{120),VIMAG(120},VMAGSQ(120}, 

+CREAL(120), 
+CIMAG(120),CMAGLN(200),REALG(120),REACTG(l20), 
+REALD(120),REACTD(l20),MODBUS(l20),NREF,NOGEN 
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c 

0 

COMMON /NETWOK/ DIAYMR(l20),DIAYMI(l20), 
+DATAYR(200),DATAYI(200), 
+DATALN(200),LKSTYM(l20) ,JCOLYM(400),LINKYM(400), 
+KONECT(l20),LORDER(l20),NORDER(l20),LINE,NFAULT 

COMMON /LUSOLV/ 
+DELTAX(240),ERRORZ(240),DELTAG(l20) ,DELTAQ(l20), 
+DIAGUT(240) ,DATAUT(500),DATALT(500),LKSTUT(240), 
+JROWUT(500) I 

+LINKUT(500),IRSTUT(240),JCOLUT(500),IRSTLT(240), 
+JCOLLT(SOO) ,JCOLJB(240) 

COMMON /ENABLE/ CRITER,IREAD,IWRITE,JUPDAT,LOOP 
COMMON /SIZE/ NLESSl,NTOTAL,NLESX2,NTOTX2 
LOGICAL*! OK 
IF(.NOT.OK)WRITE(IWRITE,SOO) 
WRITE(IWRITE,520) 
PLOSS=O.O 
RTODEG=l80D0/3.1415926DO 
DO 1000 I=l,NTOTAL 

VMAG=DSQRT(VREAL(I)**2+VIMAG(I)**2) 
ANGLE=DATAN2(VIMAG(I),VREAL(I))*RTODEG 
J=LORDER(I) 
IF(MODBUS(I).EQ.l)GO TO 300 

REACTG(I)=VIMAG(I)*CREAL(J) 
+ -VREAL(I)*CIMAG(J)+REACTD(I) 

IF(MODBUS(I}.NE.3)GO TO 300 
REALG(I)=REALD(I)+VREAL(NREF)*CREAL(NTOTAL) 
WRITE(IWRITE,SSO)I,VMAG,ANGLE,REALG(I), 

+ REACTG(I),REALD(I),REACTD(I) 
GO TO 350 

300 CONTINUE 
WRITE(IWRITE,SSO)I,VMAG,ANGLE,REALG(I),REACTG(I), 

+ REALD(I),REACTD(I},ERRORZ(J),ERRORZ(J+NLESSl) 
350 CONTINUE 

PLOSS=PLOSS+REALG(I)-REALD(I) 
L=LKSTYM(I) 

400 CONTINUE 
M=JCOLYM(L) 
KDATA=(L+l)/2 
VOLTRL=VREAL(I)-VREAL(M) 
VOLTIM=VIMAG(I}-VIMAG(M) 
CURREL=-DATAYR(KDATA)*VOLTRL+DATAYI(KDATA)*VOLTIM 
CURIMG=-DATAYR(KDATA)*VOLTIM-DATAYI(KDATA)*VOLTRL 
SHUNT=-DATALN(KDATA)*VMAG**2 
REAFLO=VREAL(I)*CURREL+VIMAG(I)*CURIMG 
REACTV=VIMAG(I)*CURREL-VREAL(I)*CURIMG+SHUNT 
WRITE(IWRITE,555)M,REAFLO,REACTV 
L=LINKYM(L) 
IF(L.NE.O)GO TO 400 

1000 CONTINUE 
WRITE(IWRITE,559)PLOSS 
RETURN 
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0 
500 FORMAT(T14,~THE FOLLOWING RESULTS ARE CALCULATED~, 

+~BASED ON THE YET TO CONVERGE VOLTAGES~ /////) 
520 FORMAT(/ T14,~V 0 LT A G E~,T35, 

+~GENERATION~,T56,~DEMANO~, 
+T73,~MISMATCH~ // T11,~MAGNITUDE ANGLE~, 
+T33,~REAL REACTIVE~, 
+T52,~REAL REACTIVE~,T71,~Q/nVA POWER;/) 

550 FORMAT(//~ BUS ;,I3,F10.3,F8.2,3(3X,2F8.3)/) 
555 FORMAT(7X,;TO BUS ~,I3,T30,2F8.3) 
559 FORMAT(//.///T20,;TOTAL SYSTEM LOSS= ~,F8.3 / ;1~) 

END 
c 
c 
c 
c 
c 
c 
c 
c 
$DATA 
5. 10. 0.0002 1. 4. 
1. 2. 0.02 0.06 0.03 
1. 3. 0.08 0.24 0.025 
2. 3. 0.06 0.18 0.02 
2. 4. 0.06 0.18 0.02 
2. 5. 0.04 0.12 0.015 
3. 4. 0.01 0.03 0.01 
4. 5. 0.08 0.24 0.025 

1. 3. 1.06 o. 1.06 
2. 2. 1.05 0.692 0.2 0.1 1. 
3. 2. 1.04 0.527 0.450.15 1. 
4. 1. 1. 0.4 0.05 1. 
5. 1. 1. 0.6 0.1 1. 

$ 
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