T I s

BT AT e ATk rewET R v e 06 TR

Flutter Evaluation and Control of an Airfoil
Solved in the Laplace Domain

Alfred Jeffrey
Mechanical Engineering, McGill University, Montreal

1 May, 1991

A Thesis Submitted to the Faculty of Graduate Studies and
Research in partial fulfilment of the requirements for the degree

of Master’s in Engineering

(c) Alfred Jeffrey 1991




A G e s T

|

¢

Abstract

Aeroelasticity is concerned with the interaction of aerodynamic forces and the re-
sulting structural deformations for a structure in an airflow. Flutter, which is one example
of an aeroelastic phenomena, may result in the catastrophic failure of an aircraft. The
traditional methods ol predicting the flutter velocity, namely the U — ¢ and p — k, have
been used with great success. However, in recent years, new mechods have been suggested
which approximate the unsteady aerodynamic forces and moments by rational functions.
The resulting equations are then solved in the Laplace domain. The goals of this work
are twofold. Firstly, to solve the equations of motion for an airfoil, in both incompressible
and transonic flow. in the Laplace domain using rational functions to approximate the
unsteady aerodynamics. Secondly, to implement active control for the airfoil in incom-
pressible flow, with the aim of increasing the critical flutter speed. The solution of the
aeroelastic equations of motion in the Laplace domain proved to be a powerful tool in the

analysis of flutter.
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Sommaire

L aéroélasticité traite de l'interaction des forces adérodynamiques et des déformations
structurelles résultantes d’un corps dans un écoulement d'air. Le flottement, qui est un
exemple de phénomene aéroélastique, peut provoquer d'importants dommages a un avion
Les méthodes traditionnelles, U/ —g et p—k, qui sont capables de prédire la vitesse eritigue
de flottement, ont été utilisées avec grand succes. Cependant, récemment, de nonvelles
méthodes ont vu le jour, estimant les forces et moments instationnaires par des fonctions
rationnelles. Les équations résultantes sont résolues dans le domaine de Laplace. Cette
these a deux objectifs. Tout d'abord, résoudre les équations du mouvement ponr un profil
en écoulement incompressible et en écoulement transsonique dans le domaine de Laplace,
en utilisant ces fonctions rationnelles. Ensuite, inclure un contréle actif du profil en
écoulement incompressible, dans le but d’augmenter le vitesse critique de flottement. On
a démoutié aussi que la solution des équations aércélastiques dans le domaine de Laplace

représente un outil puissant pour 'analyse du flottement.
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1 Introduction

1.1 Motivation

Acroclasticity is concerned with the interaction of aerodynamic forces and the resulting
structural deformations for a structure in an airflow. Flutter, which is one example of an
acroclastic phenomena. is a flow induced vibration that may result in the catastrophic
failure of an aircralt. The traditional methods of predicting the flutter velocity, namely
the I/ — ¢ and p — k mecthods, have bheen used with great success. However, in recent
years, new methods have been suggested which approximate the unsteady aerodynamic
forces and moments by rational functions. The resulting equations are then solved in the
Laplace domain. This allows for a more efficient solution to the flutter problem, and also.
allows for a direct extension of the aeroelastic equations for the implementation of active

control.

The goals of this work are twofold. Firstly, to solve the equations of motion for an
airfoil in both incompressible and transonic flow in the Laplace domain using rational
functions to approximate the unsteady aerodynamics. These results will be compared
with U — g and p — k gencrated results. Secondly, to implement active control for the

airfoil in incompressible flow, with the aim of increasing the critical flutter speed.
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1.2 Flutter Definition

In the tield of acroelasticity (Fung 1955; Ashley, Bisplingholf and Halfman 19353; Ashley
and Bisplinghoff 1962). no topic has received more attention than that of flutter. Flutter is
a violent self-induced acrodynamic vibration that may allect airplane wings, tail surfaces
and control tabs. The following example will give a more physical representation of Hntter
Consider a cantilever airfoil. with no sweepback and no aileron, rigidly attached to the
side wall of a wind tunnel. The wing is then confined to exhibit motion only in the
bending and pitching directions. With the air flow turned off, the airfoil is given an initial
small amplitude disturbance. and then allowed to freely oscillate. The amplitude of the
oscillation will decay until it is totally damped out. When the air flow is turned on, this
original oscillation will decay much quicker. With subsequent inereases in aiv speed the
system will show improved decay characteristics; however. there exists a specific speed
where the total system damping will begin to decrease. The air speed where the wing
shows constant amplitude motion is referred to as the critical flutter speed. .\t speeds
slightly greater. a small disturbance force will trigger violent oscillations, that in inost

cases lead to immediate catastrophic failure of the airfoil.

The dramatic and destructive consequences of flutter have gained the interest of
much of the aeronautical community. One industry representative went so far as to state
that : * The flutter problem is now generally accepted as a problem of primary concern in
the design of current aircraft structures. Stiffness criteria based on flutter requirements
are. in many instances. the critical design criteria.” (Head 1958). In recent years, airplane
design has resulted in the emergence of lighter, more flexible aircraft, with an increase

in maximum speed, resulting in an increase in the likelihood of flutter occurring. The

o




Hansonic regime tends to be the most critical with respect to flutter: however, there ate

still many other flutter problems that require attention.

Acrodynamic structures are, by definition. continuous, having an infinite number
of degrees-of-freedom.  However. most theoretical analysis of such structures discretize
the stiucture into a finite number of degrees-of-freedom, using, for example, cither the
finite element method or the assumed mode method. To obtain accurate estimates of
the flutter velocity it is necessary to consider a large number of modes in the flutter
analysis. However. it has been found that only two degrees-of-freedom, namely bending
and pitching, are required to give a good physical representation of flutter. It is the
conpling between these two modes that produces flutter. A rigid airfoil allowed only to
have bending motion does not flutter. In general. a rigid airfoil with only a torsional
degree-of-freedom will not flutter. It is the coupling of the two degrees-of-freedom that
allows flutter to possibly exist. Past experience has shr,wn that near coincidence of the
bending and torsion frequencies is one of the main factors in the cause of flutter, and that

the character of the torsional mode plays a more fundamental part in its occurrence,

The only source of external energy causing the flutter is that of the airstream.
Hence the airstream must be the key component in the instability of the airfoil. In fact, a
complete analysis of the interaction of the structural forces coupled with the aerodynamic
forces is required to determine when the system instability will occur. The aerodynamic
forces increase with velocity. However, the stiffness in the bending and torsional directions
is independent of the air speed. Any damping that is introduced to the system comes from
the aerodynamic forces: the structural damping is often so negligible that it is omitted in

most. aeroelastic analysis. Hence, there exists a critical speed at which the aerodynamic




0

¢4

damping is insufficient to give system stability, and tlutter occurs,

1.3 Unsteady Aerodynamics

The interaction of an airstream with an airfoil produces a behaviour that is very complh-
cated. The calculation of the resulting acrodynaniic forces presents, possibly, the major
difficulty in the analysis of flutter. The analysis of flntter has seen a gradual progression in
the complexity of the acrodynamic forces. this has considered the acrodynamics intially
as steady. then quasi-steady. and finally the true unsteady motion of the acrodynamies

has been considered.

When an airflow reacts with an airfoil, disturbances are introduced that result in
the flow following the contour of the airfoil. According to thin airforl theory (Fung 1955),
the airfoil can be represented by a continnous distribution of vorticity. The strength and
configuration of this vortex sheet produces the aerodynamic properties of the flow for the
desired airfoil. However, this is not quite correct, not only does there exist the bound
vortices on the airfoil, but there also exist free vortices in the wake of the airfoil. "These
free vortices are being produced continuously by the oscillating airfoil, shed at the trailing
edge of the wing and carried downstream by the flow. These {ree vortices also produce
vertical components of velocity on the wing, thus altering the aerodynamic properties
of the wing. Steady flow analysis completely neglects the frequency of oscillation of the

airfoil, and hence the free vortices produced by this oscillation.

Quasi-steady flow analysis realizes that vortices are being produced in the wake,

but assumes they have no effect. This is true if these free vortices are swept quickly




downstream. X najor simplification of applying a quasi-steady analysis is that the acro-
dynamies can be considered independent of the airfoil’s frequency of oscillation. which is
generally not the case. However, if this assumption is made, it eliminates a time consum-
ing iterative process. The strength of this theory is that it gives qualitative information
about the system, withont an extreme computational burden; but caution must be taken.

since the method has made many simplifying assumptions.

Unsteady flow analysis accounts for the free vortices in the wake. The acrodynamics
are now a function of the frequency of oscillation, k& = wb/U (or k., = wc/U), where w is
frecquency, € = 2b is the chord and U is the free stream velocity. Thus, for a given velocity,
the trequency of oscillation is required. before the aerodynamic forces can be determined.
This results in an iterative procedure. If the frequency of oscillation is small, steady or
quasi-steady flow analysis may suffice, but for the most part this is not the case and an
nnsteady flow analysis must be used. Due to the interaction of the flow with the airfoil
geometry, lag effects result in the flow; the circulation around the airfoil is not developed
instantancously due to a change in incidence, but there is a phase lag between the motion
and the resulting aerodynamic forces. These lag effects can lead to an amplification of

the small oscillatory motions.

The main difficultly in solving the aeroelastic equations of motion rests with the
calculation of the unsteady aerodynamics. The unsteady aerodynamics are sometimes
written as @Qn and @, where Qy = —L and Q, = M, are the total unsteady, nonconser-

vative forces and moments acting about the elastic axis, respectively.
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The quantitics @, and @, (Lee 1981) can be expressed in this form

@Qn = —(/C(C'z,,g + (), (1
PR
QC\ = (/c-(cvmh ; + C'mna) . (-”

where, ¢, . C4,. C,,,, aud C,,, ave the nondimensional derivatives of the lift and moment
cocflicients, with respect to plunging, h. and pitching, o, respectively. The dynamice

pressure. ¢, is a function of velocity, and given by

L.
¢= 5V, (3)

where p is the air density.

The determination of the unsteady aerodynamics is not an easy task. Theodorsen
has determined analytically the unsteady aerodynamics for incompressible low on a two-
dimensional airfoil (Theodorsen 1935; Garrick and Theodorsen 1941). The derivation of
these equations is based on potential flow theory and the Kutta condition at the trailing,
edge. and assumes inviscid. irrotational flow. All derivations assume small amplitude
oscillations, and thus, this allows for the linearization of the equations. The unsteady
aerodynamics, @5 and @, are written as a function of the Theodorsen Function, C'(4),

and are expressed as:
Qn=—L=-mpb? (h+Ud - bacr) -

2mpUbC (k) (h+ Ua +50.5 — a)a) (1)
and

Qa = My = 7pb? (bah — Ub(0.5 - a)a — b(.125 + a®)&) +

2mpUb* (0 +0.5)C (k) (h + Ua + (0.5 — a)d) (:

A |
—
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‘The Theodorsen Function C'(k). composed of a real part I and an imaginary part

{ (i, is a function of reduced frequency, &,
Clky=F+.G, (6)
k=2, )

where w is frequency, b is a characteristic length, the semi-chord, and U is the velocity.
Note that the equations are both a function of velocity and frequency. This will result in

an iterative type solution even for a fixed velocity.

[or the transonic regime, readily solvable equations do not exist. This is due to
the nonlinearity and irregularity of the associated unsteady transonic aerodynamics. The
analysis of transonic flow started with linear potential theory in the 1950’s and has pro-
gressed to the use of the nonlinear small disturbance equations, nonlinear Euler and the
Navier-Stokes cquations. Several methods, such as the relaxation methods (STRANS2
and UTRANS2) developed by Traci, Albano and Farr in 1974, and the indirect method
(LTRAN2) developed by Ballhaus and Goorjian in 1977, can be used to determine the

unsteady aerodynamic coefficients Cj,, Ci,, Cn, and Cp, as a function of reduced fre-

Wy

quency, A, for transonic low. LTRAN2 was based on the transonic small disturbance

equations, and utilized a time integration (indicial) finite difference method. However, it

VRS Uy TR %

gave accurate results only for low values of reduced frequency. Rizzetta and Chin fur-
thered the work of Ballhaus and Goorjian in 1979, by integrating the LTRAN2 program
and the structural equations of motion. Since then, the work by Houwink and van der
Vooren, and later by Couston and Angelini, have taken the original code and produced

much improvement in the accuracy and range of results for increased reduced frequencies.

It is now routine to calculate the aerodynamic derivatives, Ci,, C),, Cn, and Ci,

7
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as a function of reduced frequency, k, to give the unsteady acrodynamics required for the
aeroelastic equations of motion. The unsteady aerodynamics are calculated by performing,
computer simulations of pure bending and pure twisting in small disturbance flows. These
equations cannot be linearized because the flow behaviour is so irregular in the transonic
regime. Finding these unsteady aerodynamics for this regime is important since this
regime tends to be the most critical for the flutter of wings. Lee (1931) gives the results

for the transonic unsteady aerodynamic derivatives as a function of reduced frequency, k.

for M = 0.80, 0.85 and 0.875.

1.4 Flutter Solution

Prior to 1938, it was thought that the solution to the flutter problem could be found
by flight testing alone. It was supposed that flutter could be determined by noting a
reduction in the system damping with increase in velocity. Unfortunately, in February of
that year, during a carefully planned flight test, an aircraft went down killing all the crew
and scientists. Such testing had a number of shortcomings that affected reliability and
safety (Weissenburger and Zimmerman 1964). In particular, it was shown that flutter can
occur very quickly and without much warning. Thus, it was realized that to determine
the onset of flutter, a theoretical analysis must be used at the initial design stage and for
the modification of the existing aircraft, in conjunction with flight testing still being the

ultimate test of when flutter will occur.

New theoretical techniques consider an eigenvalue analysis of the flutter equations
of motion. A two-degree-of-freedom rigid airfoil is represented as a flat plate, which is

flexibly mounted and undergoing bending and twisting (torsion) motion (see Figure 1).

cn




Bending (plunge) is denoted by h, positive downward, and the twisting (pitch) about
the clastic axis is denoted by o, positive in the clockwise direction. The elastic axis is
defined as the point in which a load force would produce only pure bending (no twist).
The acroelastic equations of motion, which are a function of inertia forces, elastic forces
and acrodynamic forces (Fung 1955; Ashley and Bisplinghoff 1962), can be derived by

summing forces and moments, about the elastic axis:

mh + m(z,b)&d = ~Kyh — L, (8)
(I + m{xab)?)é + 171(&'01))71 =-K,a+ M, . (9)

where m is the mass per unit span, [ is the wing mass moment of inertia about the centre
of gravity, ¢ = 2b is the chord length, z,b is the distance from the centre of gravity to the
elastic axis, ab is the distance measured from the midchord to elastic axis, both positive
towards the trailing edge, '), is the spring constant in bending, K, is the spring constant
in twisting, and L and A, are the lift force and moment acting about the elastic axis,

respectively.

The calculated roots of the system aeroelastic equations give an indication of sta-
bility. This form of analysis gives an alternative indication of the onset of flutter. There
exists two well established techniques for determining flutter; in particular for dealing
with the iterative nature of the solution, namely the p — k (British) and U — ¢ (American)

methods, see for example Lee (1984).

In the U — g method, harmonic oscillatory motion is assumed, such that the gener-

alized coordinates. € and «, can be written in the following form:

§ =¢oe ft
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Q= Q,¢ . (1)

where £, and a, are complex constants, the absolute values of which represent the am-
plitudes, and their arguments give phase angles. A theoretical structural damping com-
ponent, g, is then introduced into the equations of motion, in order to produce steady
harmonic system motion. The rational behind the 7 — g method is that the system
will require just a sufficient amount of this fictitious hysteretic structural damping, ¢, to
maintain steady harmonic motion. If the system requires the input of negative damping
(—g) to make it harmonic, it is stable, likewise if it requires positive damping (+g¢) to
make it harmonic, it is unstable. An expression for the damping ratio (Lee 1984) can be
written as
g

v = 5 " (t1)

Hence, a positive value of damping ratio indicates a stable system.

In the p — & method, the generalized coordinates, é and «, take on a more general

form
E=¢et
o= ae” (12)

where &, and «, are complex constants, and p = 8 + 1w, where 3 gives an indicaiion of
damping and w gives frequency. The p — k method solves for the critical flutter velocity
by utilizing an iteration procedure of frequency for each eigenvalue. The damping ratio

(Lee 1984), a function of 8 and w, can be given as

s .
(=Tt (13)

Flutter occurs when there is insufficient aerodynamic damping to keep the system stable.

Hence, a negative value for the system damping ratio would indicate an instability.

10




Both methods agree at the critical instability point. but it has been found that the
American approach can largely over estimate the magnitude of the relative damping ratio
for values of subcritical velocity (Jackson and Lawrence 1968). These methods have been
used to great success in flutter analysis, but they tend to be time consuming iterative
processes, [n recent years. the focus of flutter analysis has turned away from the time

domain analysis to the frequency domain or Laplace domain.

The Laplace domain employs rational function approximations of the unsteady aero-
dynamic forces. When the unsteady aerodynamics are approximated this eliminates much
of the iterative work that characterizes the previous methods. The aerodynamic forces are
usually found in tabular form for simple harmonic motion at discrete values of reduced
frequency. The tabular data for the unsteady aerodynamics has heen, for sometime, read-
ily available for the incompressible regime, in the form of the Theodorsen Function, C(k).
[t is not until recently, that advancements in transonic numerical methods for computing
unsteady aerodynamic forces in the transonic regime, have made it possible to consider
this regime for further aeroelastic analysis. Transonic codes can now routinely calculate
the required unsteady aerodynamic coefficients Cj,, Ci,, Cm, and Cp,, at various Mach

numbers.

The idea of using rational functions to approximate unsteady aerodynamics is not
a new concept. Jones (1940) is credited with first using rational Laplace transform func-
tions to approximnate unsteady aerodynamics. He considered an approximation of the

Theodorsen Function, C(k), of this form,

0.165:k 0.335:k
tk+0.0455 k£ +0.32°

C(k) =1 (14)

The importance of such approximations were not fully realized until its versatility in the

11
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analysis of active control systems was discovered. llowever, for the proper analysis of
the aeroelastic equations of motion, the governing rational functions have to be some-
what more robust, than that first introduced by Jones. A rat.iol]al function is required
that gives good approximation to the unsteady aerodynamics as a function of reduced
frequency, with a compatible amount of complexity. The approximation of the incom-
pressible unsteady aerodynamics, namely the Theodorsen Function. C'(k), as a function
of reduced frequency, k. may not pose much of a difficulty; however, problems may be en-
countered in the transonic regime, where the unsteady transonic aerodynamic coeflicients
Ci,. Ciyy Cpyy, and €', vary in a very irregular manner with reduced frequency. Thus, in
order for the Laplace method to be viable, the approximations of these tabular unsteady

aerodynamics can not be considered lightly.

A function Q(ik) is required that approximates Q(ik), as a function of reduced
frequency, k, and gives good results over the entire specified range . The tabular data
Q(ik) of the unste...ly aerodynamic forces may be written in terms of real and imaginary

parts as a function of reduced frequency,
QUik) = F +iG (15)

where F' and G are the real and imaginary parts, respectively.

Many rational functions can be used to approximate the unsteady acrodynamics
(Poirel 1988). The Nasa-Langley rational function has been shown to be fairly robust in

its ability to approximate given data (Adams and Tiffany 1988), and is given by

. R
Q) = Ao+ Aip+ -+ + App” + 3 App—br | (16)
=1 P+bl

where p = ik. The coefficients Ao, Ay, ... and by, by, ... are chosen to ensure minimum

approximation error to the given tabular data. This is the form of the approximation

12




ctployed by Tilany and Adams (1988), and the same method that is used in this thesis.
The associated error distribution seems to be less, and it has a built in robustness that lets
it consider a larger initial frequency range. The physical interpretation of the equation is
that the first three terms stem from quasi-steady influences, and the other terms give the
unsteady effects. The lag terms b, give an approximation to the time delays (lag in the

development of the circulation about the airfoil) inherent in unsteady aerodynamics.

In the past, these lag terms were not optimized, but arbitrarily selected from the
range ol reduced frequencies for which tabular data of the unsteady aerodynamic forces
were available (Abel 1979). Present methods, that optimize these nonlinear lag terms, give
better results with a decreased order in the approximating equation, and thus a solution of
less complexity and increased efficiency. Optimization of the rational function coefficient
to ensure minimum approximation error was performed by utilizing a least square method
to determine the linear coefficients and a sequential simplex method to determine the non-
linear lag terms. The method employed to solve for the optimal nonlinear lag terms is a
sequential simplex method (Mead and Nelder 1965; Nelson and Olsson 1975) developed by
Nelder and Mead in 1965. This method is simple, robust and requires no derivatives, and
hence lends itsell quite well to finding the minimum of a non-linear objective function of
more than one independent variable. The validity of the Laplace solution depends greatly

on how well the unsteady aerodynamics can be approximated.

The advantage of approximating the unsteady aerodynamics is that it allows the
acroelastic equations of motion to be written in the Laplace domain. The equations.
in this form, can be solved quite easily by readily available computer subroutines, that

utilize matrix algebra and eigenvalue analysis. Abel (1979) has demonstrated how the
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acroelastic equations of motion in the Laplace domain can be solved. I'his requires the

expansion of the equations to obtain a m** order polynomial of the following forimn

[Fm] s™ + [Fm-l] -’*'m—l + [Fm—2] Sm—l + 4 [Fl} s+ [FU] =0, (IT)
where the coeflicients [F,]. [Fuz1]s [Fin=2] -+ [Fo) are functions of dynamic pressure

(velocity).

This can be easily placed in a typical eigenvalue problem of the given form

s{cr} =[{A]{x}, (1%)

to give a series of m x n first order equations, where

{.l'} - { Sm—l \ Sm—2 sl , 0 } . ““)

73

These equations can be solved quite easily by linear matrix techniques.

1.5 Flutter-Suppression Systems

Flutter-suppression systems have received increased attention in the last two decades
(Kass and Thompson 1971; Guruswamy, Olsen, Striz and Yang 1930; Karpel 1981). They
have been found to be an effective way of increasing the flutter speed. There are two types
of flutter-suppression systems: passive and active flutter control. Passive control inchides
increasing the structural stiffness and/or mass balancing. Proper mass balancing has a
direct effect on the system inertia coupling, which is often a predominant factor in the
occurrence of flutter. Active control uses a control surface which is deflected in response
to the wing motion, resulting in a change in the aerodynamic forces on the wing. The first

application of such a system in flight was on the B-52 in the mid 1970’s. Much work has

14




been done in wind tunnels and flight tests to show the feasibility of implementing active
control (Nissim and Abel, 1978: Abel 1979; Messina and O'Connell. 1979). Increases in

critical flutter speed of 20-25 % have been obtained through these methods.
|

The problem associated with applying an active control device to an airfoil hinges
on developing a set of aeroelastic equations, where the form of the unsteady aerodynamics
and the control law are compatible. This can be achieved by approximating the unsteady
acrodynamics by a rational function, and thus allows for both the unsteady aerodynamics

and the control law to be written in the Laplace domain.

The aeroelastic equations for a three-degree-of-freedom rigid airfoil including the
incorporation of active control, a flap, (see Figure 10) are given by numerous references
(Fung 1955; Ashley and Bisplinghoff 1962). The flap is deflected by an angle 3, in response
to the wing motion, a function of the plunge, h/b, and pitch, o, with the aim of causing
an increase in the flutter speed. Control laws of the following form have been considered

(Nissim and Abel 1978),

h/b
{8}=[T] , (20)

«

where [T] is a transfer function matrix of size 1 x 2.

The transfer function used was a function of h/b and « and their first derivatives,
ar N »
[T)=[t, a4+ —=s[t,], t3] . (21)
WR

This is referred to as a damping type transfer function by Nissim and Abel (1978), where
ar is a control of the amount of damping introduced by the control surface (flap), and wg
is a reference frequency, normally taken as the no-control flutter frequency. This transfer

function can be considered as a type of proportional-derivative (PD) control.
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In the late 1970°s, considerable work was done on flutter control systems to deter-
mine realistic transfer function parameters (Nissim and Abel 1978; Nissim 1977: Nissim
1971). Nissim and Abel (1978) used a theory based on the aerodynamic energy concept to
determine realistic transfer function parameter values. The aerodynamic encrgy concept
considers the work done by the aerodynamic forces on the wing per cycle ol oscillation,
referred to as P. llence. the transfer function [T] was determined to give a stable system,
or a negative value of work . Nissim and Abel determined the optimal parameters for
the transfer function for an airfoil of specific geometric configuration. A simple transfor-

mation was also derived that allowed for changes in airfoil geometry.

With the introduction of the control law into the aeroelastic equations of motion, the
equations can be expanded, as before, to obtain a m** order polynomial of the following
form

[Fn] 8™ 4 [Frnct) s™ 4 [Fne2] s™ 2 4o+ [R] s+ [Fo] =0, (22)
where the coefficients [Fin], [Fm-1], [Fm-2] <+ [Fu] are functions of dynamic pressure

(velocity). The solution follows the same methodology as shown carlier.

1.6 Thesis Overview

This study considers the analysis of the aeroelastic equations of motion of a rigid air-
foil, flexibly mounted. undergoing bending and twisting motion. as it pertains to flutter,
[nitially, the formulation of the equations of motion for a two-degree-of-freedom system
are considered in chapter 2. Chapter 3 discusses the unsteady aerodynamics and their
associated difficulties for both the incompressible and transonic regimes. An overview of

eigenvalue analysis methods, techniques that are commonly used for all forms of analyt-
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ical flutter calculation, is described in detail in chapter 4. In chapter 5 the traditional
solutions to the flutter problem, namely the p — k and U — g, are derived for the general

case of incompressible flow.

In chapter 6 the Laplace method is introduced. This method requires the approxi-
mation of the unsteady forces and moments by a rational function. The rational function
employed for this thesis is of the Nasa-Langley form. It requires the use of a two stage
function optimization (Adams and Tiffany 1988). A least square method is used to de-
termine the linear coefficients and a sequential simplex method (Mead and Nelder 1965)
to determine the nonlinear lag terms. A general Laplace solution is derived to consider

not only incompressible flow. but also that of transonic flow.

Chapter 7 is devoted mainly to the presentation and discussion of the results for the
approximation of the unsteady aerodynamics, for both the incompressible and transonic
regimes. The following chapter. chapter 8, is devoted to a comparison of the traditional
methods. namely the (7 — ¢ and p — &, with the Laplace method. Compatrisons are done

in the transonic regime by using previous U — g and p — k results given by Lee (1984).

In Chapter 9, the incompressible equations of motion for a three-degree-of-freedom
airfoil are formulated to consider control. Active control is considered with the aim of
obtaining an increase in the critical flutter speed. The values suggested by Abel and
Nissim, who employed the Aerodynamic Energy Concept (Abel and Nissim 1978), are
used as a starting point to find the optimal transfer function parameters for the control
law employed. The simplex method is then used to determine if these are indeed the
optimal values. Chapter 10 is devoted to a discussion of the consequences of implementing

active control for the incompressible flow regime.
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The final chapter, chapter 11, summarizes the conclusions.

The Appendices contain additional notes, tables and figures. as well as, complete
computer program listings (' — g, p— k and Laplace methods, rational function opti-

mization. incompressible control using Laplace method).
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2 Equations of Motion 2DOF

(‘onsider a two-degree-of-freedom rigid airfoil, represented as a flat plate, flexibly mounted
undergoing hending and twisting (torsion) motion (see Figure 1). Bending (plunge) is
denoted by b, positive downward, and the twisting (pitch) about the elastic axis is denoted
by a, pusitive in the clockwise direction. The elastic axis is defined as the point in which
a load force would produce only pure bending (no twist). The aeroelastic equations of
motion, whiclh are a function of inertia forces, elastic forces and aerodynamic forces (Fung
1955; Ashley and Bisplinghoff 1962), can be derived by summing forces and moments,

about the elastic axis:

mh + m(zab)& = ~Kph ~ L | (23)
(I + m(24b)?)é + m(zab)h = ~Koa + M, . (24)

where m is the mass per unit span, I is the wing mass moment of inertia about the centre
ol gravity, ¢ = 2b is the chord length, 2,b is the distance from the centre of gravity to the
clastic axis, ab is the distance measured from the midchord to elastic axis, both positive
towards the trailing edge, K, is the spring constant in bending, K, is the spring constant
in twisting, and L and M, are the lift force and moment acting about the elastic axis,

respectively.

Past experience has shown that structural damping can often be assumed to be

negligible for wing flutter analysis, and thus, it is not included.

Introducing a non-dimensional generalized displacement coordinate

U2,%
i
(S~
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and making the following substitutions
. 9
Ky = wym |

» 3
K, =uw,l, .

where
Iy =T + m(a,b)? .
gives
mbE + m(rab)é = —wimbe - L, (29)
[,6 4+ m(a.b*)€ = —wil,a+ M, . (30)

The above two equations may be simplified by dividing through by mb and mb?,

respectively to give

. 1
. " 2 — — :
€ + 206 + wié — (31)
- 1 M
"+ 2y 2% N= 2 32
mlﬂa +rad + w"mb2a mbh? (32)

Finally, using I, = r2mb?, where r, is the radius of gyration about the clastic axis,

the complete aeroelastic equations become

. i ~L ’
£+xaa+wﬁf= -7'7';'5 R (33)
v M.,
r2a + 2ol + wirla = 11nb2 : (34)




3 Unsteady Aerodynamics

The calculation of the unsteady aerodynamics forces presents, possibly, the major diffi-
culty in the analysis of flutter. The unsteady aerodynamics are sometimes written as @y,
and ), where ), = —L and Q, = M, are the total unsteady, nonconservative forces

and moments acting about the elastic axis, respectively.

The quantities Qp and Q,, can be expressed in this form
Qr = "(IC(CI,,g + Cl,Q) , (35)

£~
Qn = (IC?(Cm;, ,'-)' + C’mua) 3 (36)
where, C),, Ci,, Cn, and Ch, are the derivatives of the lift and moment coefficients,
with respect to h, plunging, and e, pitching, respectively. The dynamic pressure, ¢, is a

function of velocity, and given by
1

2
5PV (37)

The solution to the flutter equations of motion is complicated by the nature of the
unsteady aerodvnamics. They tend to vary in a very nonlinear manner with reduced

frequency, which results in an iterative type solution.

3.1 Incompressible Two-Dimensional Aerodynamics

[n the incompressible regime, @ and @, take on exact forms, expressed as a function of

the Theodorsen Function C(k) (Theodorsen 1935; Garrick and Theodorsen 1941),
Qn=—L = —npb? (h+Ud - bact) -
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rpl bC' (k) (/} + Ua+ b(0.5 - a)a) (38)
and

Qo = M, = mpb? (bafz - Ub(0.5 — a)d - b*(.125 + az)&) +

2 pl7 b (a + 0.5)C(k) (h + Ua +b(0.5 - a)d) . (39)

The Theodorsen Function, C'(&), (see Table 1), composed of a real part I' and an

imaginary part G, is a function of reduced frequency, £,

Ck)=F+iG (-10)
wh
A :-—U— (1

where w is frequency, b is a characteristic length, the semi-chord, and U/ is the velocity.
Note that the equations are a function of both velocity and frequency. This will result in

an iterative type solution even for a fixed velocity.

The derivation of these equations is based on potential flow theory and the Kutta
condition at the trailing edge. and assumes incompressible, inviscid and irrotational flow.
Furthermore, all derivations assume small amplitude oscillations for h and a, so the flow

remains potential and unseparated. This allows for the linearization of the cquations.




Theodorsen Function C(k)

k I’ G

[0.00 | 0.5006 | -0.0124
6.000 | 0.5017 | -0.0206
4.000 | 0.5037 | -0.0305
3.000 | 0.5063 | -0.0400
2.000 | 0.5129 | -0.0577
1.500 | 0.5210 | -0.0736
1.000 | 0.5394 | -0.1003
0.800 | 0.5541 | -0.1165
0.500 } 0.5979 | -0.1507
0.400 | 0.6250 | -0.1650
0.300 | 0.6650 | -0.1793
0.200 | 0.7276 | -0.1886
0.100 | 0.8320 | -0.1723
0.050 | 0.9090 | -0.1305
0.025 | 0.9545 | -0.0872

0.010 } 0.9824 | -0.0482

0.060 | 1.0000 | -0.0000

Table 1 Theodorsen Function C(k) = F(k)+ iG(k), where k = wb /U
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3.2 Transonic Two-Dimensional Aerodynamics

As yet, no such readily solvable equations for @4 and @, exist for the transonic regime.
Due to the associated nonlinearities and irregularity in this regime, it has been very
difficult to model the unsteady aerodynamics. However, the computation of transonic

unsteady aerodynamics has seen much development in the last decade.

Betore the development of transonic numerical codes, acroelastic analysis in this
regime was considered difficult, if not impossible. Fortunately, much progress has been
made in this field. The numerical methods available consider the uncoupled motion of
an airfoil pitching and plunging in small disturbance flow. It also assumes the flow is
inviscid and irrotational. The equations cannot be linearized, because the behaviour
of flow in the transonic regime is so nonlinear. The codes now available allow for the

routine calculation of the required unsteady aerodynamics, C),, Ci,,, C, and C,, (Lee

a
1984). The aerodynamic derivatives for a NAC AG4A006 airfoil at M = 0.85 are shown
graphically in Figures 2a to 2d. Each aerodynamic derivative is composed of a real and
an imaginary part, where the real part represents the total forces and moments in phase
with the airfoil motion, and the imaginary part represents those ninety degrees out of
phase with the motion. Refinements in existing codes have allowed for more time efficient

calculations, as well as an increase in the range of reduced frequency, k, and for different

values of M number.

Note:

The techniques presently available to generate the unsteady aerodynamics, give
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the forces and moments only for purely oscillatory motion at discrete values of reduced
frequency (tabular data). [n order to obtain solutions for decaying and growing motions
(not simply harmonic, {w), the concept of analytic continuation is used. These results
are extended off the imaginary axis, by iteration (or by using analytic approximating
functions) of the given tabular unsteady aerodynamics. This procedure is not completely
valid, but because flutter occurs along the imaginary axis of the complex plane, the

approximation is sufficient.
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4 Eigenvalue Analysis

The numerical techniques that are used in this study to solve the acroclastic equations of
motion rely on the equations being placed in an eigenvalue format. The procedure that
each method utilizes to obtain this form is slightly different, but the end result is the

same.

If a standard 2DOF system is considered in cigenvalue form, the solution will gen-

erate two complex conjugate pairs (four eigenvalues) of the following form

/\1 =da :i: ib Y

Ao =ctid. (12)
The roots determine the stability of the system at a given value of dynamic pressure
(velocity). The real part of the roots, a and ¢, give an indication of the damping, 4.
and the imaginary part, b and d, give frequency, w. FHence, the roots having negative

imaginary parts are not considered (a system can not have a negative frequency). The

damping ratio, a function of 3 and w, is given as

o B
Yok

(43)

Flutter occurs when there is insufficient aerodynamic damping to keep the system
stable. Hence, a positive real part, ¢ or ¢, indicates an instability (this gives a negative
value for the system damping ratio). It is difficult to determine which root will produce

the instability, therefore a complete tracking of both roots is required.

Flutter analysis is commonly considered by plotting both the system frequency and

the damping ratio versus dynamic pressure or velocity. Commonly a non-dimensional
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value of velocity is used, given by

U = Y (44)

T obw,
For example, see Figure 3, (Abel 1979) where the dynamic instability occurs at a dynamic
pressure of about 5.0. Another predominant characteristic of flutter is the coalescence of
the two frequencies. It is not a complete coalescence, but the two frequencies become very
close to one another at the onset of flutter. This can be seen from the graph of frequency

versus dynamic pressure (see Figure 3).
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5 Flutter Analysis : Traditional Methods

51 U - g Method

[n the {/ — g method. harmonic oscillatory motion is assumed such that the generalized

coordinates, £ and «, can be written in the following form:

a = a.e 't (15)

where ¢, and «, are complex constants, the absolute values of which represent the ampli-

tudes, and their arguments give phase angles.

A structural damping coefficient g is introduced into (33) and (34) by multiplying the
third term (stiffness) of the two equations by the factor (1 + ig), a hysteretic damping.
A sufficient amount of this structural damping, g, will be required to produce steady
harmonic motion. For the case of incompressible aerodynamics, the appropriate cquations
for @n and @, (38) and (39), respectively, are then substituted in to the equations, to
give:

€+ b + (1 + ig)wi€ = %}

2rpl
m

o T (€ + Ué — bagi) —

m

C(k) (bf + e+ b(0.5 — u,)c'r) , (-16)

Qa
mb?

2o+ + (1 +ig)riuwia =

2rpU

= %’- (b - Ub(0.5 - )i — 3(0.125 + a®)i) +

(47)

(a+0.5)C (k) (b€ + Ua + b(0.5 — a)ér) .



Multiplying through by g = /7 pb* (a non-dimensional airfoil mass) and ¢?/4L7? and

making the following substitutions

£ =6e" and a= a,e™,

the preceding equations can be expressed as
1
< —uk? — N, (w") + —kZ—ich(k)) £+
W, 4
and

Ve L @ omepy sl ' _
(Iaa;tkc —isk, = Tk = 20(k) - i(5 —a)ch(k)) a, =10, (49)

(fronk? = Jakd + ila+ DICMR.) &t

('l uk? = A = (% b+ i(é +a)k2+2a + )C(k tile+ 1)(l — A)C()k.) @ =0.
(50)
The above equations can be placed in matrix form as
[Al{z} = A, {B] {a} (51)

where [A]. [B] arc 2 X 2 matrices and
{r}={&, a}”.
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This typical eigenvalue problem can be solved to obtain A, for different valnes of

reduced frequency, k. namely
ANy =a+ib.

Ay = e+id .

Note that

. wib?
Ao = (1 + ig) 2
w? b? w2 h?

52 +ipng

=

(53)

The only unknowns in these equations are g, the structural damping cocflicient, and

[7. the free strcam velocity. Considering Ay, Uy and gy can be solved by the following

equations
Ay, = @ +1b
Thus
w2 b? 1
Uy = Bl = w5
a i
U2b b

and the frequency,

An expression for the damping ratio (Lee 1984) can be written as

=%
Nn= 9

A similar analysis for Ay, will give U, g2, w; and 7. Thus, each value of re-

duced frequency, k, will give two velocities and their respective associated frequency and

damping ratio.
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The rational behind the {7 —g method is that the system will require just a sufficient
amount of this fictitious hysteretic structural damping, g, to maintain steady harmonic
motion. If the system requires the input of negative damping (—g) to make it harmonic, it
is stable; likewise il it requires positive damping (+g¢) to make it harmonic, it is unstable.

[l the system response is harmonic, hence g = 0, this indicates a stability boundary.

5.2 p-Fk Method

[n the p— k method the gencralized coordinates, £ and a. take on a more general form
t
E=26e?

a=aqe? (38)

where €, and «, are complex constants, and p = S + 1w, where (3 gives an indication of

damping and w gives the frequency.

Substituting the appropriate equations for Q4 and @, in (33) and (34), again, for

the particular casc of incompressible aerodynamics, gives

é+ma&+wi£=9—h

mb
_oompb s . 2rpU (s i .
= —— (b€ +Ud — bad) - ——=C (k) (b + Ve + 505~ a)a) ,  (59)
Tof + 120 + rPwia = %
_Tp 2rpU

(anE“ — Uh0.5 — a)a — b%(0.125 + a2)&)+ =
m m

(60)
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Grouping common powers of £ and a. and using the substitution g = m/zph?. the above

- 1 ] A Ty na
- equations can be rewritten as
- l 20 (kU . a
§0+ =)+ &) e+ dea - G4
0 i ft
(U 1 U 20 (AU
e WY = — ) bt SA AR :
a (1)“ + ..C'(A)(:2 a)b;l) + a = )=10, (61)
and
: : L J AR T
Elrg — =) +¢ (—‘2(a + 3)C(k)£—) +a (r; + é*i"—) +
i 2 b I3
(U 1 Ll U N S /L. .
@ (b—;z(5 —a)-2a+ -j)(-z- - (L)C(k)&—;) + (rawa - 2(e + E)C (k)b—zﬁ =0. (62)
These two equations can then be expressed in matrix form as
¢ ; 3
e b+ + [A] =0, (63)
o} ! «
where [M)], [C] and [K] are the structural and aerodynamic mass matrix, damping matrix
and stiffness matrix, respectively.
A solution to this system of equations is done by considering an cigenvalue analysis
of the equations rewritten in the following form
M C Z 0 K z
+ =0 R (64)
0 I 2 -1 0 z
where
10
I =
01
and
z={¢ a}T .
-
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Fgnation (G 1) can be written as
[D]{p} + [E]{p} =0, (65)
where
p={3:}" .

and [D] and [£] are 4 x 4 matrices, that are a function of the Theodorsen Function, C'(k),
and velocity, U. By letting p = p,e™, the resulting eigenvalue problem will give a solution

of two complex conjugate pairs,

/\3’4 =¢ :{: ld N (66)

wherz @ and ¢ are damping, and b and d represent frequency, w.

The solution to this problem is an iterative one. Initially, a specific velocity is
chosen, U/, and a reduced frequency, k, guessed. This then gives a frequency, w, by the

equation

The choice of k, will give C(k).

When solving the eigenvalue problem, only the positive imaginary parts of the com-
plex conjugate pairs are considered. The roots having negative imaginary parts are omit-
ted from the analysis: a system cannot have a negative frequency. Considering only one
of the roots, say A\ = @+ ib, the frequency b is compared to w. If they are equal, a solution

has been found, if not, it is required to calculate a new reduced frequency by

?~n
il
<&

(67)
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and the process is continued till convergence occurs. This same process is repeated for
the other root. The idea is to create a table of velocity and its two associated solutions.
The roots determine the stability, or instability, of the system at a given value of dynamic
pressure (velocity). The real parts of the roots, @ and ¢, give an indication of damping,
3. and the imaginary parts. b and d, give frequency, w. The damping ratio (Lee 1984), a

function of 8 and w. can be given as

3
- VBT + w?

Flutter occurs when a negative value for the system damping is obtained.
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6 Laplace Solution

More efficient algorithms for determining flutter speeds can be found by solving the equa-
tions of motion in the Laplace domain. The main problem in this approach is that of
linding a suitable 1ational function approximation to a given tabular data set of the
nnsteady aerodynamics as a lunction of reduced frequency. This eliminates the costly

iterative process, that is characteristic of the U — g and p — & methods.

The tabular data for the unsteady aerodynamics has been, for sometime, readily
available for incompressible flow, in the form of the Theodorsen Function, C'(k). It is not
until recently, that advancements in transonic numerical methods for computing unsteady
acrodynamic forces in the transonic regime, have made it possible to consider this regime
for further aeroelastic analysis. Transonic codes can now routinely calculate the required

unsteady aerodynamic coefficients C;,_, C)_, Cm, and C,,. at various Mach numbers.
h? a? h a

6.1 Rational Function Approximation

The tabular data Q(i/k) for the unsteady aerodynamic forces may be written in terms of

its real and imaginary parts as a function of reduced frequency.
Q(ik) = F +1iG, (69)

where ' and G are the real and imaginary parts, respectively.

A function Q(ik) is required that approximates Q(ik), as a function of reduced fre-
quency, k, and gives good results over the entire specified range . There are many possible

methods available that use rational functions to approximate unsteady aerodynamic given
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in tabular form. One method employed by Poirel (1988) uses a Pade approximant in the

following form

(-2(,)) — ‘\,’(I)) = Z;:ll':() am(l’)m
D(p) iz bi(p)

(70)
where
p=ik.

The Pade approximant (Baker and Gammel 1970; Vepa 1976) is simply a fraction con-
sisting of two polynomials of order M and L, where the coefficients a,, and b are chosen
to give minimum error to the given unsteady aerodynamic tabular data. It leads to useful
results, but accuracy in the range of interest depends upon a fairly complicated weighting
scenario. This weighting at the point of interest tends to result in more error at the ex-
tremes of the desired frequency range. This method is accurate for a specified decreased
overall reduced frequency range, but the approximation is not as robust when one is con-
cerned with a larger overall range. Another method used to approximate given tabular
data is that given by Nasa-Langley, and is often referred to as Roger's Approximation
(Roger 1977)

R
) -
Qp) = Ao+ Aip+ -+ App” + 3 Ayp—r . (71)
= p+ b

The value of P depends on the nature of the function, and R is the order-of-fit. of the
approximant. The coefficients Ay, A, ... and by, by, ... are chosen to ensure minimum
approximation error to the given tabular data. With the given parameters P and I made

equivalent to 2 and 4, respectively, this gives

2p) = Ao+ Ap + Ap® + Ag—L— p ALt AL =L (2
Q(p) o+ Aip + Axp® + 3p+b1+ 4p+b2+ 5p+b3 55 ¥ by (72)

This is the form of the approximation employed by Tiffany and Adams (1988), and the

method that is used in this thesis. The associated error distribution seemns to he less, and
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it las a built in robustness that lets it consider a large frequency range. The physical in-
terpretation of the equation is that the first three terms stem from quasi-steady influences,
and the other terms give the unsteady effects. The lag terms b, give an approximation to
the time delays (lag in the development of the circulation about the airfoil) inherent in

unsteady aerodynamics,

In the past, these lag terms were not optimized, but arbitrarily selected from the
range of reduced frequencies for which tabular data of the unsteady aerodynamic forces
were available (Abel 1979). Present methods, that optimize these nonlinear lag terms,
give better results with a decreased order in the approximating equation, and thus a

solution of less complexity and increased efficiency.

6.2 Constant Optimization

A method is required that can optimally choose the coefficients of a governing rational
function, to give the best possible approximation of the unsteady aerodynamics. This
optimization must keep the computational burden to a minimum , have the ability to
distinguish between global minimum and local minimum, as well as converge to the same
solution from varying starting values. The method must also require no derivatives, since
the objective function is of considerable complexity. The result is a two stage function
optimization. Optimization of the minimization of the objective function (error function)
was performed by utilizing a least square method to determine the linear coefficients and

a sequential simplex method to determine the nonlinear lag terms.
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Linear Coefficients : Ag. A;. ... Ag

-«
-

The linear coefficients are determined by utilizing a least square method, based on
the minimization of a given error function. Many different forms of error functions are in-
vestigated (Appendix A) to determine the one that led to the best overall approximation
of the unsteady acrodynamics. They consider slight modifications in error caleulation be-
tween real and approximate data and incorporate various forms of normalizing techniques.
The one that scemed to give the best results (Adams and Tiffany 1988) is

| QUik) - Qik) |* -
err(ik) =) 7 :L) . (73)
t where
|
M{(ik) = ma.v{l,l Qk) I"'}
The quantities Q(ik) and Q(ik) represent the rational function approximation and the
true tabular data at a given reduced frequency, respectively. The term M(ik) is used
to normalize the aerodynamic data, such that certain points do not receive larger than
normal weighting. Note, the error function is defined as the total normalized sum for all
the given values of the unsteady aerodynamic tabular data.

In order to obtain a minimum error, the derivative of the coefficients A,, j = 0 /06,

with respect to the error function is taken
derr(ik) 0 (1) ‘
oA
The result is a set of linear algebraic equations (see Appendix B), that can be written in
the following form,
[A}{z} = [B] , (75)
Q{)‘
“
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where

1 0 —4k? B B,
0 2 0 Bib, o Babs
-k 0 K k2B, .. =hB,
CEDY m'm By Biby —k¥B, BiBy(1+4%) ... BiBy(1+ 4k

By  Bpb, —k*B; B:Bi(1+B&) ... B,B(1+ %)

By Bsby —k*By B3By(1+ %) .- BaBy(l+ ki)

By  Biby —kBy BBi(1+43) .. BByl + Bi) ]

GB] b1
k ?

GBuby |
k 9

L ' 2
8)=% 35 |F o kG ~KF, FBi+ . FB,+

{‘l‘}={A09AlsA2a"' 1A6}9

and
2

B_,=m,j=lt04.

These equations can be solved quite easily by readily available computer subroutines, for

matrix manipulation and eigenvalue analysis.

The objective error function is calculated by considering the approximate function,
Q(ik), and the actual tabular data, Q(:k). Thus, given a set of lag terms, b, ({ =1 to 4),
the coefficients A,, () = 0 to 6), can be found. The values for the linear coefficients
obtained will result in a minimum error, but it will not be an optimal. There exists a
particular set of values for the nonlinear lag terms that will result in an overall optimized

minimal error function; this must be found as follows.
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Nonlinear Coefficients : b;, by, bj, by

The method employed to solve for the optimal nonlinear lag terms is a sequential
simplex method (Mead and Nelder 1965; Nelson and Olsson 1973) developed by Nelder
and Mead in 1965. This method is simple, robust and requires no derivatives, and hence
lends itself quite well to finding the minimum of a nonlinear objective function of more
than one independent variable (see Appendix C). The only assumption made is that the
function does have a minimum and that the surface is continuous. Its only downfall 1»
that it is not very efficient in the number of function evaluations that it requires. This
method requires the function evaluation at (n + 1) vertices for a function of n variables.
The largest function value is then replaced by a new point that is decided by reflection,
extension or contraction onto the space. This process continues until convergence oceurs.
The simplex procedure has the ability to adapt itself to any given contour, it does not
get easily fooled by a possible dead end. The beauty of the method is that it approaches
the function minimum by moving away from the higher function values (see Appendix €

for more details).

This method is quite self-contained (FORTRAN code: Olson 1974; O'Neil 1971),
requiring the user to supply only the objective (error) function and the initial start and
step values. This method also has the ability to consider self imposed boundary conditions.
The sequential simplex procedure is a direct method that recuires no derivatives of the
objective function. In this study, since the objective function is quite complicated, it

would be very difficult to supply such derivatives.

Powell’s method may also be considered as an attractive alternative to the simplex

method. This is a direction set method that produces N mutually conjugate directions
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to decide on its path of solution. Problems with large computational burdens involving a
large number of function evaluations will surely be faster using Powell’s method, but the
simplex adds an added robustness that seems to be lacking in Powell’s method (Fletcher
and Powell 1963; Flannery, Press, Teukolsky and Vetterling 1986). Powell's method has
a tendency to give incorrect values if initial guess values result in a simplex that covers

mote than one valley.

With any method, there is still a chance of false convergence. The results obtained
can be checked by choosing different starting points and repeating the process. or/and by

letting the process continue after the initial convergence to see if it is indeed a minimum.

Boundary Conditions

The rational function used to approximate any given tabular set of aerodynamic
data must obey several important boundary conditions. In order to be solved analytically,
none of the lag terms can be equivalent to one another. If two lag terms are equal, the
resulting equation Q(ik) could be reduced to a six-term equation versus the original
scven-term equation. The lag terms must also be greater than zero (non-negative) to
ensure system stability (Poirel 1988). This forces the poles of the resulting function to
be in the left half-plane of the Laplace domain. If poles are found to be in the right
half-plane, this implies an unstable governing function. The lag terms usually take on
values in the range of reduced {requencies over which tabular data is available. Note,
that in previous work, before these terms were optimized, they were chosen arbitrarily
over this given reduced frequency range. Boundary conditions can be handled quite easily
in the computer algorithm by replacing an incorrect (or undesirable) value with a new

(allowable) one. i.c. a negative number, with, say, 0.00001.
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Constraints

It is often required to place constraints on the approximating function. For example,
constraints could be imposed at the reduced frequency 4#=0.0, forcing the approximating,
rational function to agree exactly with the tabular data at this point. ‘This constraint
results in a better fit at £=0.0 (an exact fit), but such a condition leads to an overall
poorer fit. It may also be desirable to place constraints at a reduced frequency close to
the expected flutter frequency. However, any imposed constraints lead to a loss in the
degrees-of-freedom for the least-squares solution. In order to obtain an accurate fit to the
given tabular data with imposed constraints, it is necessary to choose an adequate order of
the approximating function. An increase in the order of the function (increase in number
of lag terms) will definitely give better results, but with an increase in computational

time.

An analysis was considered to determine the optimal number of lag terms required
to give the desired accuracy with a compatible amount of computational time. This was
done by looking at the approximation error obtained by the rational function, and by
comparing flutter results obtained from the Laplace method to those obtained from the
[/ — g and p — k analysis; both for the incompressible and transonic regime. I necessary,
constraints are applied to the aerodynamic derivatives at a reduced frequency of £ = 0.0,

in hope of achieving improved results.




6.3 Aeroelastic Equations in the Laplace Domain E

In this section the equations of motion for both incompressible and transonic flow will be

transformed into a general Laplace domain solution (see Table 2) of the following form

([M])~*+[C)s + K]+« [N])3(s) =0,

where [M]. [C'] and [N] are the mass matrix, damping matrix and stiffness matrix, respec-
tively. The matrix [N] consists of all the terms that are a function of reduced frequency,
k, and is approximated by the Nasa-Langley rational function. The constant value x is

simply a factor-multiplier that depends on the flow regime, incompressible or transonic.

The term 2 is the laplace operator of = where
T
z={€ a} .
"The approximation matrix [V} given by

(N] = [Q(p)] = (Ad] + [Ai] p + (4] p+

D p P P
A + A Ag] —— +[A
[3lp+bl [4]p+b2+[ 5]p+b3+[ 6]

can be easily written in the Laplace domain by using the expression for

b=

U k]
along with

s=lw and p=1ik,

to give

p+by’

sk

(76)
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The approximate rational function in Laplace form is then

[Q(»“ ] = (o] + b Al] 'Ié' )° [As) 24

S

+ ) T + g — o]
s »+%’-b2 o .s‘-f-%bg + A .s‘-}-%h‘ '

(3] (T9)

6.3.1 Incompressible Aerodynamics

The general equations of motion of a two degree-of-freedom airfoil (Eq. 33.3:1) are given

by
fn+ a6 +wif = Q!'— ,
mb
25 _ Y
roa+ la\ +w r. a i
For the particular case of incompressible aerodynamics these can be written as
. 1 : 2C(R)U
{4 o)+ 65 gty
G bu
« U 1 U 2C(RYU?
. — - — 4+20(k)(= - a)— =) =0, 80
al j (b;t et )(2 a)bu) a b2 ) (80)
and
a 1 9 ; + a?
Era— 2y 4 € (=2a+ ORI ) +a02 + B2,
i 2 b J

(U1 1.1 Lo oy .
(E;(;—-a) ((1+§)(§-— a) (A)bﬂ) (1 w - 2(a+ = )C(/n)bll)—-(). (S1)

Rewriting these equations, by taking all terms that are a function of C'(k), to the right

hand side gives

“ 1 U

1+ 2)+E(h) +dlza = )+ a(p) =
. 20U . 1 U =2C(k)U? .
i )+a(—20(k)(§—a);;)+a(-—————b2# ). (52
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and
L2
o - L) 402 + 255 4 g (g(.l - a)) +a(iwl) =
H 7 by 2
- N N AV O U ., U .
f(l(ﬂ +35)¢ (’")17’7) +a (3(a +35)(5 - a)C(k););) +a<?(a+ 5)6(“52—#') . (83)

The right hand side of both these equations is approximated by the Nasa-Langley

expression {Eq. 79) in matrix form.

The Laplace transform of Equations (82) and (83), allowing for the initial conditions

gives
([M]s?+[C]s+[K] + [D]s + [E])3(s) =0 (85)

where 2 is the Laplace operator of z where

z={€ a}",
and
1 L_
w1=2(3h) cw G (56
’ ~(a+}) ~(a+H(-a)
0 1
21=2 (2) e , (87)

An approximation is required for [D] s + [E].

Q(s) = [D]s + [E] (88)
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By using the following substitution

the approximation can be written as a single matrix [N], that is a function of C'(#) and

iMC(k).
- i i
V] = (1] Tkt (E] .
where
_ 7 ik (L —=a)ik+1
(V] =2 (l %—)2> C(k) = C(8)
#oo ~(a+ 1)k —(a+ 5L —a)ik=(a+])
or
[§] =2 (n] . (90)
where
LU
=9 (=2
€ ~ (“( b) ) L]
and
ik (L —ayk +1
[N] = C'(k) : . (91)

—(a+ )ik —(a+3)(3 = a)ik = (at3)

Thus, the Laplace transform of the equations of motion in the general form (lkq.
76). are given by
(M) 2+ [Cls + [K] + 2 [N])i(s) =0 .
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6.3.2 Transonic Aerodynamics

For the particular case of transonic aerodynamics, equations (33) and (34), may conve-

niently be written as

et 2o €
E+r.0 4w = mb(C'z,,2 + C o),
2
200 0 F 22, 96 3
ro@ 4 .6+ wiria = mb"’(cm"‘2 + Cp, ) .

Allowing for the same initial conditions as used for the incompressible aerodynamic ex-
ample, the transonic equations of motion (see Table 2) can be written in the Laplace

domain as

((M)s®+[C)s+ [K]+z[N])(s) =0 .

where
T (;—z( b) ) '
and
Ci./2 Ci.
V=] / N (92)
th —'2Cma
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Laplace General Solution

(M) + [Cls + [N+ 2 (N])3(s) =0

Incompressible Transonic
[ V] [M]
l. + TI; 10 % 1 :l'.CV
7'01_'7_, l'§+(é+a2)/ﬂ T ri

A
[ ]nermlynunnc

Y2
0 2r5Caly

ChsCa ~ 0.01

00
I
0 (15 - a)ﬁ% 0 0
[c'].structural [C]structural
20wy, 0 2Chwh 0

0 2ri(,w,

Ch (o =~ 0.01

note: [C'] = [C]

aerodynamee + [C]alructural

Table 2 (continued)
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Incompressible Transonic
(K] 1y
wi o0 wi 0
0 rie? 0 riuw?

(V]

ke (%—-a)ik+1

—(a+ L)k (a? = 1)k - (a+ %)

approvination of

C(k), C(k)ik

Ci,/2 Cy

o

- Cn;h —gc'm"

approximation of

Clha Cvlav C‘mha C'm,;,

Table 2

Laplace Solution : Matrices in Laplace Form for Incompressible

and Transonic Flow
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6.4 Solution of the Aeroelastic Equations in the Laplace Do-

main

['he solution to the acroclastic equations of motion in the Laplace domain follows the work

done previously by Abel (1979). Consider the general form of the acroelastic equations

ol motion

([M]s* 4 [C)s + [RK] + 2 [V])3(s) =0,

where

[.\'1:[..\(,]+%[.»\,]b ;’- HERES

=S

[‘3] +[‘h] +[ 5] TT}-TI)_'

’_—"{""‘6
T s +

This gives

) ,’ )
(M) 2% 4[]~ + [K] + o {[Ao] + é (0] + () (] s+

[’\3] + [,\4] —— + [As]

8
—— + [As
b + b s+ 5y -

m})f(-*) =0. (93)
s+ 5,

Equation (93) is then eliminated of its denominator terms to obtain the following

polynomial

(By [[A] 52+ [B] s+ [C]] + B [D] + B [B] + Bx [I] + B4 [G])ils) =0

(9:4)
where
Bo = (s + Lb—[bl)(s + %bg)(s + %bg)(s + %b.;) .
By = s(s + %bg)(s + -Ub-bg)(s + %b,,) ,

/ U U
By = s(s + Eb,)(s + )5 + )
b b b
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By = als+ Th)(s + Tha)(s + =by) .
b b b

r

L [’ {
By = (s + Sh)(s + =bo)(s + =by) |
b b b

[A] = (M1 + .r(zbf)2 [A2]
L
[
[D =X [443] )

]

| =101+ o (1]
] =[N

]+ 2 [4d]

[E =T [A4] )

Pl =x[Ag) ,

[
4]

r(Ag) -
Finally, this may be written as a 6" order polynomial in s of the following form
[Fo) * + [F5) & + () st 4+ + [Fl)s+ [Fo) =0 . (95)
wheie the coefficients [Fy], [F5], [F4], - -+, [Fo] are functions of dynamic pressure (velocity).

This can be casily placed in the form of a typical eigenvalue problem

s{e} = [A]{z} . (96)
to give a series of Gn first order equations, where

{e} = {s° &% &8 &2 st 80} (97)
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and

~[ESNE)D S IRSTED e = [RITYARL = (R (R
(1] (0] ax [0] [0]

[] = [0] /] e (0] (0]

0] 0] e (0] (0]

i (0] (0] X (1] (]

Formulating the equations of motion into a typical eigenvalue problem results in a
robust efficient method of calculating the critical flutter speeds. The flutter characteristies
are lound by calenlating the complex eigenvalues of 4] at various values of dynamic
pressure (velocity) at a specific Mach number. The eigenvalues are the roots of the
characteristic equation. The roots of the given problem will be a combination of complex

conjugate pairs and real numbers

3+ w,
3. (UN)

where w and 3 are the frequency and damping, respectively. A 6 order degree polynontial
will produce 12 roots. Of these, eight roots can be attributed to the dimension of the
rational approximating function, and the remaining four roots are due to the acroclastic
modes of the airfoil. For stability. all the real parts of the roots, /3. must be negative in
sign. A positive real part denotes an instability, flutter. Flutter occurs when at a given
velocity the frequency of the two complex conjugates begin to approach one another

(coalesce). When one of the real parts, 3, changes sign, flutter has occurred.
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7 Results : Rational Function Optimization

T'he validity of the Laplace solution for the acroelastic equations depends greatly on how
well the unsteady acrodynamics can be approximated. It is critical that the approxi-
mation be very close to the actual tabular data. Each approximant curve must follow.
almost identically, every dip and twist of the original function, and give an adequate
tepresentation ol both the real and imaginary parts of the aerodynamics - as a function
of the teduced frequency, k. If insufficient agreement is obtained the end solution will
be erroncous. Il an accurate approximation of the unsteady aerodynamics can be found.
the solution of the equations in the Laplace domain will eliminate the need for costly

iteration, that is characteristic of the traditional U - ¢ and p — k methods.

The unsteady acrodvnamics for both the incompressible and transonic regime will be
approximated by rational functions. The incompressible aerodynamics, found as a func-
tion of the Theodorsen Function, C(k) and C(k)ik, should not lead to much difficulty in
finding accurate approximating functions, since the aerodynamics vary in a fairly smooth
manner with reduced frequency. However, problems may be encountered in the transonic
regime, where the unsteady transonic aerodynamic coefficients Cy,. Ci,, Cp,, and Chp,
are very irregular, demonstrating much twisting as reduced {requency is changed. At a
transonic Mach number of M = 0.85, the aerodynamics are very irregular and should
prove the most difficult to approximate. Thus, in order for the Laplace method to be
viable, the approximations of these tabular unsteady aerodynamics cannot be considered

lightly.

In order for the overall solution of the aeroelastic equations of motion to be ro-
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bust. the unsteady acrodynamics should cover an adequate reduced frequeney range. | he
governing criteria for such an analysis is that the largest frequency generated from the
eigenvalue analysis should fall within the given range of frequency for the unsteady acro-
dynamic data. The tabular data for the unsteady acrodynamics has a lower value reduced

frequency of & = 0.0, and the upper value can be checked by

wh
l"uppm = —['T . (Q'.))

where b is the semi-chord and w is the largest frequency generated from the eigenvalue

analysis at the specific velocity [/,

For incompressible acrodynamics. approximations of both the Theadorsen funetion.
C'(A). and the Theodorsen function times the reduced frequency, C(A)rk are required. ni-
tially, the optimization procedure, which used a combined least square methodology and
a simplex method. considered only the Theodorsen function, C'(k). This was undertaken
in order to answer three fundamental questions. Firstly, the validity of the approximating,
function needed to be ascertained. Could the Nasa-Langley rational function lead to a
valid approximation of the unsteady aerodynamics, and hence lead to a possible successful
solution to the aeroelastic equations? Secondly, it was required to determine how many
lag terms were needed to ensure an acceptable amount of error. Lastly, a study of the
reduced frequency range was required to determine what range could be approximated

successfully.

A valid approximation of the Theodorsen function, C'(k). over the reduced frequency
range, 0.0 < &k < 10.0, was achieved by utilizing a Nasa-Langley rational function, con-

sisting of four lag terms. The calculated optimized linear terms were given by




Ay = 0.99338, ) = =0.000078, A, = 0.000012, A3 = —~0.040125.

Ay == =0.152297. A5 = —0.22708, Ag = —0.078005,

and the lag terms as

by = 0.014919, b, = 0.080715, b3 = 0.238540, b, = 0.687273,

with a calenlated error of 8.207 x 106,

It was determined that the approximation error to C (k) decreased quite significantly

with the increase in the number of lag terms, as shown in the table below.

Error # of lag terms
0.02025 l
0.0009360 2
0.00008485 3
0.000008207 4

The Nasa-lLangley rational function, incorporating four lag terms. gave an excellent
approximation to the Theodorsen function over the entire reduced frequency range. This
same methodology was then used to approximate C(k) and C(k)ik with great success.
It should be noted that in order to simplify the subsequent analysis of the aeroelastic

equations, C'(k) and C(k)ik were forced to have the same lag terms.

Again, considering the same reduced frequency range, 0.0 < k < 10.0, the calculated

optimized linear terms for C(k) and C'(k)ik, respectively, were
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Ay =0.99828, .1, = -0.000035. A, = 0.0000047, Az = ~0.011201,

A= =0.162893, A5 = -0.22909. Ag = —-0.0645937,

and

Ag = ~0.00001355. A, = 0.50037473, A2 = =0.00003629, A5 = 0.0006 1076,

Ay =0.0138048Y. A5 = 0.05848218, g = 0.0496:319,

with the lag terms,

by = 0.01544 1. by = 0.084286, by = 0.255951, by = 0.7651 14,

with a calculated error of 1.178 x 1075,

The Nasa-Langley rational function approximation with multi-level constraints and
nonlinear term optimization proved to be quite useful. In the incompressible regime, the
approximation error of the unsteady aerodynamics for C(k) and C'(k)ik was found to he
extremely small. Excellent agrcement can be seen by referring to cither the optimization
table comparison (see Appendix D) or the graphs of C' (k) and C'(k)ik (see Figures la-
| to da-+4 and Figures 4b-1 to 4b-4). Each comparison of the acrodynamic functions is
given as two graphs, the real component and the imaginary component versus the reduced
frequency. The choice of identical lag terms for the approximation of C'(k) and C'(k)ik,
allows for a more efficient and robust solution of the aeroelastic equations in the Laplace
domain. The given approximation to the unsteady aerodynamics gave uscful results to

the solution of the flutter problem, as will be seen in the next section.

In the tiansonic regime, approximations of four aerodynamic coefficients, namely,

56




Cre Cloe C,and O 0 were 1equired, This inevitably resulted in an increased approx-
imation error. To make matters worse. the transonic aerodynamics are very irregular.
This resulted in a slight modification to the way in which the unsteady aerodynamics
were approximated. A decreased reduced frequency range was considered, and an anal-

ysis was undertaken to study the effect of imposed constraints at the reduced frequency.

ko= 0.0.

Initially, an approximation of the unsteady aerodynamics for the transonic regime
at. M = 0.85 was considered and a reduced frequency range, 0.025 < & < 1.0 was
studied. The optimization of the aerodynamics appeared to be quite good, as can be
seen from Fignres Ja-1 to 5d-1: however, these approximations resulted in erroneous
solutions for the flutter velocity when employed in the Laplace solution. The values
of the unsteady aerodynamics at low values of reduced frequency, particularly in the
interval of 0.0 € & < 0.025, seemed to be of utmost importance in the analysis of the
acroclastic equations. If no consideration is given to the aerodynamics at the low reduced
frequency range. the approximation procedure may give values of the aerodynamics at
a value of &, that have no physical significance; i.e., a negative value of (%, or Cy,, at
k = 0.0 when they should equal 0.0, or extraordinary large values for the aerodynamics
at & = 0.0. These problems are related to the value chosen for the constant Ag in the
rational function approximation. Note that the value of each aerodynamic derivative at

the & = 0.0 condition is equal the value of Ag (see Appendix E).

To solve these problems the original reduced frequency range of 0.025 < £ < 1.0, had
to be changed to include the reduced frequency of k = 0.0. Hence, a reduced frequency

range of 0.0 < & < 1.0 was considered, as well as a decreased range of 0.0 < k < 0.5.
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Imposed constraints were considered at & = 0.0 for all four acrodynamic coetficients, and
as well as just for those that were zero at & = 0.0, namely ), and C,,. Al approxima-
tions of the unsteady aerodynamics resulted in functions which gave valid solutions to the
acroelastic equations in the Laplace method, as will be seen in the next section, The op-
timization results for the different reduced frequency ranges, and the imposcd constraints
are presented in Table 3. These results, for the transonic regime, were not as good as
those for the incompressible regime, but were still found to be excellent overall. Note,
that the requirements for the approximation of the unsteady transonic acrodynamies were
much more demanding than for the incompressible aerodynamics. as can be seen from

the calculated error.

Reduced Frequency Range, k Constraints at k= 0.0 Error

0.0< k< 1.0 Che Clyy Coags G, 0.000355

0.0< k<10 Ciye Cons 0.00:3602

00k <05 Ciis Clas Cinps Cmg 0.004133

0.0< k <05 Ciyr Comi 0.001396

Table 3 Transonic Regime : Comparison of Rational Function Optimization Error [o

Various Reduced Frequency Ranges and Imposed Constraints, M = (.35,

A reduced frequency range of 0.0 < k£ < 0.5, with imposed constraints at & = 0.0 for
the unsteady aerodynamics, (i, and Cp,, at M = 0.85, gave the minimum approximation
error, and the best solution to the flutter problem, as will be shown in the next section.

Excellent agreement can be secen by referring to either the optimization table comparison
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(seo \ppendix F) or the graphs of the transonic aerodynamic coefficients (see Figures 5a-2
to %-2). Each comparison is presented as two graphs, the real and imaginary components
as Minctions of the reduced frequency. The decreased reduced frequency range resulted in a
less robust total test range; thus, in the solution of the aeroelastic equations, some results
obtained at low values of velocity were somewhat erratic. Thus a check was required to
determine if the instability was totally within the accepted confines of the given unsteady

tabular data range.

Applying the same reduced frequency range, 0.0 < & < 0.5, with forced constraints
at k= 0.0 for C, and C),,. the approximations to the unsteady aerodynamics for M =
0.30 and M = 0.875 were also found to be very good. These results are graphically

presented in Figures Ga to 6d and Figures 7a to 7d, respectively.

[t should be noted that when approximations were made for the unsteady aerody-
namics, a complete global error was considered. Hence, for the incompressible regime,
the coefficients for the rational function were calculated simultaneously considering both
C'(k) and C(k)rk. The approximations were found such that they resulted in a minimum
total calculated error for the same nonlinear coefficients. The transonic regime is the
most interesting, since a global minimization of the four aerodynamic coefficients, C, .
C',y Cm,, and Cp,, was performed. It should be noted, once more, that this global ap-
proximation error approach was considered at M = 0.85, where the nonlinearities are

the most pronounced. and still gave adequate results.

The Nasa-Langley solution for approximating unsteady aerodynamics gave excellent
results for both the incompressible and transonic regime. This method demonstrates

comparably better results to previously used methods with less overall computational
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time and complexity (Poirel 1933).
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8 Results : Laplace Method of Solution for the

Aeroelastic Equations

The rational functions obtained for incompressible flow were substituted into the two-
degree-of-freedom airfoil equations. The corresponding Laplace eigenvalue problem was
solved, producing twelve eigenvalues (see Appendix G). Of these, eight were completely
real, attributed to the dimension of the rational approximating function, and the remain-
ing fonr cigenvalues produced two complex conjugate pairs, due to the aeroelastic modes
of the airfoil. The p — & solution generated four roots, which formed two complex conju-
gate pairs. This allowed for the direct comparison of the p — & solution with the Laplace
method, when the real roots were omitted. The U — g method produced only two roots,
which resembled those of the positive frequency conjugate roots. Various case studies

were considered, incorporating the various methods of flutter solution.

For example, each method was used to solve the equations for the following set
of parameters; p = 30.0, », = 0.5, ¢ = —0.5 and w,/w, = 0.2 (Case Study 1). The
results are presented as graphs of frequency ratio, w/w,, and damping ratio, versus non-
dimensional velocity. (7 (see Figures Sa-1 to 8a-3). All the methods resulted in exactly the
same value for the critical flutter velocity, 7 = 4.53 (see table 4); also, all the methods
gave similar values of frequency ratio, w/w,, over the non-dimensional velocity range,
(7. However, the U — g method showed some variance in the damping ratio compared
to cither the p — & or Laplace methods. A second example was considered, which led
to similar results. In this example, (¢ = 50.0, ro = 0.6, ¢« = —0.6 and wi/w, = 0.4

(Case Study 2)), all methods produced a flutter velocity, {7, of approximately 5.10. This
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example. showed similar response behaviour in {requency and damping ratio versus non-
dimensional velocity as in the previous one (see Figures Sh-1 to 8b-3). Other examples,
showing comparisons of critical flutter velocity, obtained from the various methods of
solution are shown in Table 4. It should be noted that the / — ¢ method encounteved

some numerical ditficulty in some of the cases studicd, namely case studies 4 and 5. The

p — k and the Laplace methods had no such problems.

Case Flutter Velocity U

Study p ro @ wn [ wy U-g p—k Laplace

l 50.0 05 -0 0.2 +.53 4.53 4.53

2 50.0 06 -0.6 0.4 5.10 5.10 5.11

3 1000 05 -05 0.2 6.24 6.26 6.26

4 75.0 0.4 -04 0.3 -7 - 3.68 3.68

5 1000 0.4 -04 0.3 -7~ 4.16 4.16

Table 4 Incompressible Regime : Comparison of critical (lutter velocity, (7.

using the [/ — g, p — k and Laplace methods. The symbol - 7 — indicates
that it was not possible to determine a flutter velocity for these conditions

due to numerical instabilities.

For transonic flow. the aeroelastic equations of motion were also solved utilizing the
rational function approximation of the unsteady aerodynamics. The given Laplace eigen-
value solution produced a total of twelve eigenvalues (see Appendix H). Of these, two real
roots and three complex conjugate pairs can be attributed to the rational approximating

function, and the other two complex conjugate pairs are from the aeroelastic modes of
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the auforl When the acroelastic eigenvalues were isolated from the other eigenvalues, not

always an ecasy task. comparisons can be made with the I/ — g and p — £ methods.

The traditional methods of solution for the aeroelastic equations were not formulated
for transonic flow. hut comparisons were made with U — g and p— 4 data from Lee (1984 ).
I he Laplace solution was formulated for transonic flow at a A/ = 0.85, for the parameters:
=500, r, = 0.3, 0« = =03, wy/ws, = 0.2 and &, = 0.25. This allowed for direct

compatison with the {7 — g and p — k generated results given by Lee (1984).

An initial 1educed frequency range of 0.0 < & < 1.0. with forced constraints at
k= 0.0 for all ol the aerodvnamic derivatives, Cy,. C,,. C'm, and Cy,,, was considered. This

yvielded the following results, [ = U/bw, = 3.36. w/w, = 0.302 and k = wb/U = 0.090.

These results did not compare as well as had been hoped with those of Lee (1984),

which are {7 = {7/hw, = 3.46, w/w, = 0.313 and k = wb/U = 0.090.

It was conclucded that better results could be obtained if the reduced frequency
range was decreased to 0.0 £ & < 0.m 1 his allowed for a better approximation of the
low-range reduced frequency aerodynan.’. Tais region, say from 0.0 < & < 0.1 seemed
to be the most critical in the overall flutter analysis scheme, since the expected critical
flutter frequency. & = 0.090, fell within this range. As well as considering this decreased
reduced frequency range. constraints were placed only on the aerodynamic derivatives,
whose magnitude at k& = 0.0 was 0.0; i.e.,, C), and Cp,. The following results were

obtained, {7 = I7/bw, = 3.45, wfw, = 0.309 and k = wb/U = 0.090.

These results agreed favourably with those given by Lee (1984). They are presented

graphically in Figuies 9a-1 and 9a-2. Figure 9a-1 shows excellent agreement for both the
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damping and frequency ratio as a function of non-dimensional velocity, /b . However

in Figure 9a-2. there is some variance observed in the magnitude of the damping ratio.

patticularly for values of low non-dimensional velocity, This was due to the imaginan

part of the eigenvalue falling out of the considered reduced frequency range, namely,

0.0 < k& £ 0.5, and thus out of the scope of the approximating acrodynamic function

This however, is not so critical; as the root that does go unstable is well hehaved, and

the other root shows variation from the expected behaviour only at low values of non

dimensional velocity.

For completeness. other results incorporating varving reduced frequency ranges and

constraints are included below. in Table 5.

Reduced Frequency Range

00<A< 10

0.0

IA

k

IN

1.0

0.0

IN
e
VAN
e
n

0.0

IN
>
IN
=
(1]

Table 5

Constrammts applied at k = 0.0

Cios Ctoyy Conpyy O
Chyy Cin,,
Cips Ciay Cops Ce
Clns Crmy

"

2]

[

3,36

3.19

3.31

345

Irequency Ranges and Imposed Constraints for M = 0.85.

wlw,

0).302

0297

0.302

0.309

Transonic Regime : Comparison of Laplace Solution for Various Reduced

k

() (9

0.093

0.091

0.0

The Laplace Solution yielded the best results, when the approximations of the nn-

steady aerodynamics considered a reduced frequency range of 0.0 < & < 0.5, with forced

constraints for €, and C,, at k = 0.0. Using these approximations of the unsteady

aerodynamics, the Laplace solution was formulated for varying values of non-dimensional
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arrforl mass, poat 1 = 4.85. ©his allowed for the direct comparison with ["'— ¢ and p— &
tesilts given by Lee (1934) (see Table 6). Excellent agreement was obtained over the
entire range of aitfoil non-dimensional mass, u. such that the percentage error between
the non-dimensional velocities, [, obtained using the Laplace method and those given by

Lee, was less than 1.

Further analvses considered the transonic regime for Mach numbers of M = 0.80
and W = 0.875 al varying values of airfoil non-dimensional inass, u, (see Table 6). This
showed that, although only a small interval range in Mach number was considered, 0.80 <
M < 0.875, the overall behaviour was quite irregular. For example. an analysis of the
acroclastic equations of motion for the Mach numbers of M = 0.30, M = 0.85 and
M = 0.875. at an airfoil non-dimensional mass, ¢ = 50.0, gave critical flutter velocities of
[/ =3.70, 3.45 and 6.17, respectively. If the flutter velocities obtained at M = 0.80 and
M = 0.875. had been used to interpolate for the flutter velocity at M = 0.85, the actual

value of {7 = 3.45 would not have been acquired.
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T ["—qg [/ p—»k~| Laplace | Laplace Laplace
[ U I I
V[ =0.835 M =085 .M=0307M=087
30.00 3.16 3.45 3.70 6.17
75.00 3.4 3.93 1,33 7.03
100.00 1.33 4.36 1.86 .01
150.00 1.99 5.01 5.76 7o
200.00 793 3.593 6.3 T.37
250.00 3.99 5.96 7.21 7.35
* reference Lec 1934
Table 6 Transonic Regime : Comparison of critical flutter velocity, I/,
for M/ =0.80. M = 0.85 and M = 0.875 using the I/ — ¢, p— k and
Laplace methods. with the given constants : r, = 0.5, « = —0.5,
wypfw, = 0.2, x, =0.25 and b= 1.0.

The optimized coefficients of the rational function approximations for M = 0.80,
M = 0.85 and M = 0.875 are given in Appendix [. Again, from a comparison of the
respective linear and nonlinear coefficient terms, it can be seen how quickly and irregularly

the aerodynamics change from one Mach number to another.

The excellent comparison obtained for the flutter condition between the traditional
methods and the Laplace method demonstrates the validity of the Laplace method. It also

shows the excellent nature of the approximation for the unsteady aerodynamics obtained
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by utilizing o Nasa-Langley tational function with multi-level constraints and nonlinear
terim optimization  The main strength of the Laplace method is that the nnsteady aero-
dynamies have only to be approximated once and then can be used in the analysis of many
sets of parameters: thus. an iterative type solution is not required. The benefits will soon
be realized if many conditions have to be studied. However, with the introduction of this
approxunating rational function the dimension of the problem is increased considerably.

from fom to twelve. thus incieasing the size of the eigenvalue problem.
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9 Active Control for a Two-Dimensional Airfoil in

Incompressible Flow

9.1 Equations of Motion Incorporating a Flap Deflection

Consider a three-degrec-of-freedom rigid arrfoil lexibly mounted undergoing bending and
twisting (torsion) motion (sec Figure 10). Bending (plunge) is denoted by A, positive
downward. the twisting (pitch) about the elastic axis is denoted by a, positive i the
clockwise direction. and the flap angle by 3, positive in the clockwise ditection. The
actoclastic equations of motion (Fung 1955; Ashley and Bisplingholf 1962), can be derived
by summing foices and moments about the elastic axis and moments about the Hap hinge

line to give

mh + m(a,b)éa + m(.zx;b)& = —Nph - L. (100)
(I 4+ m{xb))a + m(.z".b).l.z + (I3 + (e — a)mbz.rd)B =-N,a+ M, . (1o1)
(14 (c3—a)ymb*rg)a + m(.z‘,;b)iz + (['7),;3. = —-Nyd+ M, (102)

where I3 is the flap mass moment of inertia about the flap hinge line, .y is the distance
from the flap hinge line to the flap centre of mass, c3b is the distance from the midchord
to the flap hinge line, ab is the distance {from the midchord to the elastic axis (measured
positive towards trailing edge), Ky is the torsional spring constant about the flap hinge

line, and Mp is the moment acting about the flap hinge line.

Introducing a non-dimensional generalized displacement coordinate, as before,

£ =~ (103)




and making the following substitutions

Ky = wim . (104)
K, = wil, . (105)
K3 = wzlg , (106)
I, =rimb* . (107)
I;= rf,mUz . (108)

where v, and 1y are the radius of gyration about the elastic axis and the flap hinge line.

respectively, the complete 3DOF aeroelastic equations of motion become

-L

£+ 20t + 258 + Wi = —. (109)
. ) A
rea 4+ r.€ + (r‘f; + (e — a)xg)B + wiria = rlnl)? . (110)
. w .. M
(15 + (c3 = a)ag)é + 2p€ + 138 + wiri3 = ;;f; . (111)

For incompressible flow, the expressions incorporating a flap deflection for the
lift. force, pitching moment and the hinge moment are (Theodorsen 1935; Garrick and

Theodorsen 1941)

L = —xpbiu? {Pw.f + [P¢ - (-i- + (I.)Pw] o+ 13,3/3} . (112)

My = mpbtt {0 = (5 + )R] €+ [My = 5+ a)(Po + Ma) + (5 +0'Pu]

(M5 - & +aps] 6} (113)
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M; = 7.'/)/)'“*'{1,(5 + {/o - (= +(I)7“.] a + /‘;J} (1

The expressions Py, P,. Py M., My, My, T, T, and T3 are included for reference
in Appendix J. They are a function of the Theodorsen function, C'(k), velocity, frequency

and geometry,

9.2 Flutter Analysis With Active Controls

Flutter-suppression control systems have received increased attention in the last decade
(Karpel 1981; Kass and Thompson 1971). They have been found to be an effective way of
increasing the critical flutter speed with substantial weight savings There are two types
of flutter-suppression systems that have proved to be quite nseful: passive and active

flutter control.
Passive Flutter Control

Passive flutter control considers increasing the structural stiffness and/or mass bal-
ancing. Proper wing mass distribution can improve the flutter characteristics tremen-
dously. This is so because careful placing of mass has a direct effect on the inertial
coupling of the system. Inertial coupling is very often the predominant factor in flutter.
Increasing the in structural stiffness (particularly the torsional stiffness) will also result
in an increased critical flutter speed. It has been shown that a stiffness increase of factor
n will result in an increase in flutter speed of approximately \/n . However, the addition

of stiffness unfortunately means an increase in the total overall aircraft weight.
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Active Flutter Control

The type of control that is employed in this study is active flutter-suppression.
Active control uses a control surface (flap) which is deflected in response to the wing
motion. 1esulting in o change in the aerodynamic forces and moments on the wing. Such
active control has to be very 1eliable and durable. because the loss of flutter control
would probably result in an iimmediate airfoil failure. Another problem encountered in
the use of active control is that of obtaining accurate measurements from the airfoil.
Ditect. measurement is required for the controller to control the control surface via some
specified control law, It is also important for the controller to be robust and allow for
control at various flight conditions. The benefit of active control is that its implementation

will have no significant increase in the airfoil weight.

Writing the cquations of motion in the Laplace domain allows for the easy imple-
mentation of active control. ('onsider the equations of motion of a three-degree-of-freedom
rigid airfoil incorporating a flap control, 3 . Neglecting the hinge moment equation, the

equations of motion (100) and (101) can be written in matrix form
([M]s® +[C)s+[K +z[N])i(s)=0, (115)

where [M], [C]. [A] and [¥] are 2 x 3 matrices, and the term 2 is the laplace operator of
s wherve

c={¢ap}l.

Fquation (115) may then be rewritten in the following form

([AL,

M) 4+ [Cs | Cls + [Iy | K] + 2 [Ns | Ne))

0. (116)
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where

[y =1{¢ a}’. L
{e.}=1{3}. (118

The subscripts « and ¢ denote a structural and control quantities, respectively, where

V). [C5) and [NS] are 2 x 2 matrices and [M.]. [C.] and [A.] are 2 x | matrices,

A control law is considered of the following form

{d}=[T] ‘ : (119)

(44

where [T] is a transfer-function matrix of size 1 x 2. This allows the flap angle, 3, to be

written as a function of the generalized aerodynamic motions, £ and o.

Applying the control law to (L16) gives
(M) s* +[C] s + [N] + 0 [N]) {a} +

(AL} + [C s + [Kd + 2 [NDT] {g} = 0. (120)

The solution procedure is the same as that employed earlier in section 6.1. Making,

the following substitutions in (120).

(V] = 14 + [ + -L’i (A4

S
| A6| —— » 121
T A T A T A T (121)

and

[’V]—[40c]+ [A1c]b+ 6)2[,12&]32+
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| —— A i {5.e] ——— + [ ] —— . 122
l ~+—-h|+( lls—i—%bg-*.[f ] %1)3+[‘"].:~+%1). ! )
gives
(L] + (O~ + (K] + o {[o] + [Ax}s+ -) [4e] 8% + [As) —grp+
TN

["‘t];—jr—(* [f‘s]-—;‘—ﬂ 6]*'7;'}){Q}+

b Y2

. . & S
([‘l,:] st + [( c] s>+ [I\.;] + *r{[/‘Om] + "Z' [fh',:] s + (U)2 [AZ.C] 32 -+ [;43,,:] ;+—%~—bl'+

[fh.e]mﬂL [As.e] ;—Jr—;—- [Aoc] i } (T]{q}=0. (123)

The denominators of the above equations are removed to obtain the following poly-

(Bo [[A] s*+ [B] s + [C]] + B. [D] + B: [E] + Bs [F] + B, [G]) {a} +

(Bo [[A:] s* + [B] s + [C]] + By [De] + Ba [Ee] + Bs [B] + By [G]) (1) {a} =0,

where
U U U U
By =(s+ ‘b‘bl)(s + ;bz)(s + ‘b‘ba)(s + -b_b“) ,
U U U
By = s(s + ‘b“bz)(s + ‘gba)(s + 'I;bnx) )
U U U
32 = S(S + “"'b])(s + —'63)(3 + _b4) s
b b b
U U U
By = s(s + 'Ijbx)(s + ‘b‘bz)(s + 7)‘111) ,
i / U
By = sls + Sh)(s + Sha)(s + o)

)2 [A2] ’

o

[A] = [M] + (
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)

[B] =€)+ e [0,

N

Ny
I

(K] + x[Ag] .

]
It

£ {:‘3] .
El =] .
P = [:‘5] .

G = ['46] ,

and
b
A =[] + .l-((—f,)l (Ao
- b
[B] = (€] + [0
| = K] + 2 [Ao]
D] = r(4s.] .

E‘; = [.‘14‘,_-] .

3
il

£ [f‘ 5.,;] ,

G‘; =T [AG.C] .

This is then expanded to obtain a m** order polynomial in s of the following form
(Fo] 8™ 4 [Foc1] 8™ 4 [Fn] 8™ 2+ o+ (B s+ (1) = 0, (121)

where the coefficients [Fin), [Fin=1], [Fin-2], *+*, [Fo] are functions of dynamic pressure

(velocity).

This can be easily placed in a typical eigenvalue problem of the given form

s{e} = [A]{z} . (125)

T4




to give a series of % n first order equations, where
(P} ={s"tsm 2. 5150 ), (126)
The method of solution continues as shown earlier (see Section 6.4). Thus. for a

given transfer function matrix [T], the problem can be analyzed to determine if such a

given control law has achieved an increase in the flutter speed.
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10 Results: Active Control for Incompressible Flow

g
The problem associated with applying an active control device to an airfoil, hinges on
developing a set of acroelastic equations, where the form ol the unsteady acrodynamics
and the control law are compatible. Writing the equations in the Laplace domain is ideally
suited to this task. Active control was considered only for the case of incompressible flow.
Active control for transonic flow could be considered; however, it would first be necessary
to modify the transonic aerodynamics to incorporate a flap.
A control law was considered of the following form
{3}=1[T] L (127)
a
where [T] is the transfer-function matrix of size 1 x 2. This allows the tlap angle, /3, 10
be written as a function of the generalized aerodynamic motious, £ and «.
The transfer function used was a function of £ and a and their first derivatives.
[T]= [t b |+ —Fs[t], 3] - (128)
WR
This is referred to as a damping type transfer function by Nissim and Abel (1978), where
ar is a control of the amount of damping introduced by the control surface (flap), and wy
is a reference frequency, normally taken as the no-control flutter frequency. This transfer
function can be considered as a type of proportional-derivative (P} control.
A proportional-integral-derivative (PID) control was also iinplemented by adding
an integrator term to give a transfer function of the following form
[T]=[tn. t]+ (ﬁl) s[his t2 ]+ (a_T‘) l[tﬁ' v bt ] (129)
’h- Wr/ WR/ 2 8
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For better numerical stability in the cigemvalue <olution, moditied control transfer

. functions [T] were employed for both PT) and PID control (Nissimn and Abel 197RY,

PD contiol

‘ ap 50000
=11, 4 —_—s— | ] .15 10
=[]+ wr ﬁ+50000[ G ho L130)

PID control

, — 50000 ar\ 1
Tl=1{1,. 1, <£1—>s—)————f".f', (——)-/"./:' 131
M=)+ (4) 20t sl () Lol

SO000 vty cn . . N . . N
0000 forces both the structure and the control matiix terms to

The added term
be a part of the highest order coefficient in s of the polynomial Without the addition ol
such a term. the highest order coefficient of the polvnomial would he a function of the

control matrix terms alone. This results in both very large and very small solutions tor

the eigenvalues and thus. places undue strain on the numerical acomacy.

Initially the damping type transfer function (PD control) was considered for anal
vsis. The values suggested by Abel and Nissim (1978), who had used o theory hased
on the aerodynamic encrgy concept, were used as a starting point to determine realistic
parameters in the transfer function. A simplex method was then used to determine

these were indeed the optimal values.

The aerodynamic energy concept considers the work done by the aerodynamic forces
on the airfoil per cvcle of oscillation, referred to as P. Hence, the transfer function {77
was determined to give a stable system, or a negative value of work /> For an anfoil ol
specific geometiic configuration, Nissim and Abel determined the optimal paratuetens for

a PD transfer function control. For an airfoil flap having a length equal to 20% of the

7




[,

chord (e, = 0 G see e 10). and having its displacement measuted at 30% chord from

the leadimg edge, (¢ = =0.1), they found the following values for the transfer function
=1t h2)=[00. -1.86] ,
and
(1 )=(15.-15)=[10.320] .

In the present study, an airfoil flap having a length equal to 20% of the chord
(r3 = 0.6, see figure 10) and having its elastic axis at 25% of the chord from the leading
edge (corresponding value of « = —0.5) was considered. A transformation was completed
(see Appendix K) to account for the difference in position at which the measurements

were made, this gave
[t]={tn.th2]=[00. ~-186],
and
[t-)={¢7.13]=[10.360].

The optimization of the transfer function parameters performed by the simplex
sequential method considered the net affect the active control had on the flutter velocity
and not on the overall system damping. It thus determined parameter values that resulted
t an mcrease in the cuitical flutter velocity. In fact, the overall magnitude of the system
damping seemed to decrease over the majority of the velocity range, but still gave a

tavourable increase in the flutter speed. The optimized transfer function for case studies




¢ 3

Lo 2 and 3. utilizing a PD control, was found to be

0.0012 30000
0.318 " s + 350000

(T)=[00.-03]+ [ 4.0, 360 ] (132

For case studies -} and 5. the optimized transfer function was caleulated as

0.0012 50000

1T1=10.0.~009 <
[ ] [ ]+ 0.548 = 4 30000

[ 10, 3.60] (1.33)

Note. the value ol wy, could have been changed to retlect the no contiol frequency ol
the case study in question. However, any change in the value of wy would have e Tted
in a propottional increase in the valtue of a7, What was important was the relatne tatio

of 1,jto ,1.“

The calculated values for the transfer function agree quite well with the first detiva
tive generalized coordinates given by the aerodynamic energy concept, but some vaniance
was encountered with respect to the coefficient for the coordinate o, It should he noted
that the plunging coordinate. &, gave very little useful control information for the syctem,
The method given by Nissim and Abel was quite helpful, in that it gave an indication of
the expected magmtude and sign of the required control parameters. It should also be
noted that the optimized control parameters are not unique, other values could be nsed

which may achieve the same increase in the flutter velocity.

In order for a system to be completely stable, all the cigenvalues calculated from
the aeroelastic equations of motion must possess positive damping haracteristies This

can be simplified by considering only the eigenvalues with positive frequency

The addition of active control to the airfoil had varying affects on cach of the cases

studied. In some cases. the 100ts 1egistered only minor changes. while m other cases the

9
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langes were quite sigmihcant compared to the eigenvalue solution with no contiol. The
resnlts obtained are given as a graph of damping ratio versus non-dimensional velocity.
[ (see Figuie 11 and Fignie 12). Both the no-control and PD-contiol cigenvalues are
plotted versus the non-dimensional velocity, £, The no-control 100ts are definec as NO
CONTROL ROOT1 and NO (CONTROL ROOT2. The root defined as NO CONTROL
ROOTI, shows incieasing damping with velocity, until at a certain non-dimensional ve-
locitv, it begins to show signs of a decrease in damping, The point where the damping
t5 zeio s refetied to as the margin of instability, and any increasc in velocity will result
m Hutter - The roet denoted as NO CONTROL ROOT2, shows a proportional increase
i damping with an increase in velocity. The introduction of active control changes the

natuie of the two roots, ROOT] and ROOT?2. The PD-control roots are denoted by PD

CONTROL ROOT! and PD ('ONTROL ROOT?2.

Two scenatios were nnestigated.  For example. active control was implemented
for the parameters; g = 50.0. r, = 0.5, « = —-0.5 and wy/w, = 0.2 (Case Study 1).
Ihe results are given as a graph of damping ratio versus non-dimensional velocity, [
(sce Figure 11). T'he control root, denoted as PD CONTROL ROOT1, showed similar
beliaviour to that of the no-control root, NO CONTROL ROOT]1, except that the control
toot began to show a decay in damping at a larger velocity than that of the no-control
toot. This resulted in an increase in the critical flutter velocity, from U =453to0 U = 4.8,
an effective increase of approximately 6%. However. the implementation of the control
law had quite an affect on the other root, defined as PD CONTROL ROOT2. The result
was that this root showed unstable behaviour, negative damping, at low velocity. Thus.
such an active contiol device would have to be turned off initially, and then later turned

ou. once the aitcraft has reached a stable velocity. It may be desired to implement the
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Hutter suppression contioiler at about {0% of the no control Hatter speed

Asecond example, with the patameters: 1= 30,0, r, = 0.6, « = —0.6 and TEWATER

0. (Case Study 2). was also considered (see Figure 12). In this example. the root defined
as PD CONTROL ROOT2 snowed stable damping chatacteristies over the entire velocts
tange. However, the root detined as PD CONTROL ROOTT. showed negative dampine,
at low values of velodity  This 100t goes through thiee distingt stages ol devetopment

he first stage is defined when the root has non-positive damping, The second stage s
defined by the 100t possessing positive damping characteristies. but still has loss damping
in comparison to its no-control root. NO CONTROL ROOTI. The linal stage begins
when the PD-control root shows improved damping in compatison to the no-cont ol 1oot

This allowed for an increase i the flutter velocity from L' = 3.1 to 0" = 3 6. us tesnlted
ma net increase in flutter velocity of approxumately 10% (see Figuie 12) Adihtional
comparisons of no-contiol and PD-control for vatious sets of parameters are indhuded 1

[able 7.

oL
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( 'll 4

Ntudy

I 50.0
2 50.0
B 100.0
I ™0
) 10U 0

Fable 7

Although the increase in flutter speed in these case studies can be consideted only as
fair, it has been shown that control analysis can be implemented quite easily by working,

in the Laplace domain. In past studies. increases in flutter speeds of 20 to 25% have been

achteved

The use of a PID control law resulted in no additional increase (beyond that achieved
via P control) in the critical flutter velocity, /. Maybe, this was to be expected. The
mtroduction of an integrator term is usually done in the hope of cancelling the steady-
state errot, in comparison to a known desired control velocity. However. in this context.

the object was not to contiol the velocity to some known required velocity, but to find
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nsing no control and PD control solved by the Laplace method. with
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11 <Conclusions

flutter analysis was consideted for a tigid antoil, flexibly mounted i the hending

aud totstonal ditections, N <hwple and effective way of determming Hhutter velodities

was developed by <olving the equations in the Laplace domam I thus proceduce the

Heratiog process enconntered i the traditional {0 = ¢ and p=4& methods s chimmated, In
using rational functions to approximate the uusteady actodvnanie forces as a tunction ol

reduced frequency.

The vahidity of the Laplace solution depends greatly on how well the nnsteadys
actody namics can be approximated. It is critical that the approximation he very close to
the actnal data. The unsteady acrodynanues for both incompressible and transonie How

were apptoximated by rational functions of the Nasa-Laungley form with gieat success

)= L 3 s (2 [l

S S

—_— - ..\.,-—“ L) ———
~ 4+ (T‘])l +[ l] S I).) +[ ] ])( [ ] }-—-I)l

[ Y

['he optimization mwethod ewployed a least squares method e conpunction with
a simplex method. The use of the simplex method to optimize the lag terms showed
marked improvement 1n the approximation in comparison with previous work, where the
lag terms were chosen randomly. For incompressible flow. 1" was necessary 1o appros
mate Theodorsen's function, C'(k) and ('(k)ek: the approximation ertor was tound to be
insignificant. even for a large teduced frequency range of 0.0 < & << 10 0. 'Tlus allowed tor

a robust evaluation of any aeroelastic problem in the incompressible flow. Fhe Laplace

method was found to give valies of flutter velocity and flutter {requency identical to those

given by the p — k and the {" — g methods. For valies of subcritical velocity, the Laplace

S3
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wethod showed sood compatison with ftequency and damping obtamed via the p -4

method

Fon transonic flow . 1t was necessary to approximate the four unsteady aerods namic

cocflicients € 07y and Oy 0 A mnch decreased range of reduced fiequency was

"n
constdered 00 = k<05 \lso, constraints were imposed on the aerodynamic derivatives
whose magnitudes were zeto at & = 0.0, namely €, and C',, The results were not as
pood as those obtamed i meompressible flow, but were still found to be excellent overall
Ihe rednced frequeney range had little effect on the calculation of the flutter velocities.
and i representations of frequency and damping ratio over most of the range of non-
dimensional veloeity were obtained. However, some disciepancies were apparent at the
lower values of velocity for one of the complex conjugate roots. Here. the {requencies
ohtamed by the eigenvalue solution fell outside of the applicable reduced frequency range.

and thus, resulted in some difference in the damping and frequency response to that

obtamed with the p =& and [ — g methods.

Solving the equations in the Laplace domain allows for the efficient implementation
ol active control to alleviate the flutter instability. Such control was considered with some
success for incompressible flow  Although, the increase in the flutter velocity can only be
constdered as fair (6 1o 10%). it was shown that the Laplace method was a viable way of

tmcorporating actinve control into the aeroelastic equations.

Future work could consider the implementation of other control laws, in the hope
of obtaining a more significant increase in flutter velocity. In addition, the control theory
could be extended to account for transonic flow. This would require the determination of

the unsteady aerody namices incorporating a flap for transonic flow.
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CENTRE OF MASS

Figure 1 Schematic representatien of airfoil with freedom to move in

torsional and bending directions (2DOF). (Lee 1984)
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Appendix A Objective Error Funetion

Many forms of an enor Bunction can be nsed

(QUk) = " 410 rational tunction approximation

(QUk) = I" 410 tabular data (discrete values of reduced frequency)

Faror #1 (one used in study)

o | QUik) — Q(ek) 2
arr(ik) =3 max {1.] Q(rk) |?}

Firor #2

Firor 43

o 44

t‘]'l‘(lk) = Z{abs [(F;‘F)] +ab8 [(G'C—;’G)]}

Q(lk) |.’= 1.'2+G‘2

where




e

other variations of the etror obhjective tinction could mdude

Frror #5

‘.’
.’} 8

ol 1oy L QUAY — QUik)
(II(IA ) = Z m«l.l'{l.‘ (3(1[;) '

Irror #0

o | QUA = QUb) |
cr(rk) =3 max {L.| Q(rk) |*} &2

whete | QUik) = F2+ G2

Analvsts has showed that the ertor function, given by Error # 1, 1esulted i the best
comparison of U, w [/ w, and &k to Lee (1984). For example. the table below considers
a reduced {requency range of 0.0 < &k < 0.5, with forced constraints for all actody nanne

coeflictents at & = 0.0.

Ervror Type | Reducd Frequeney Range, k| U | w [, |k,

#1 0.0<k<05 3451 0309 |0.090
#2 0.0<k<05 336 | 0.303 | 0090
#3 00<k<0.5 3421 0305 | 0089
#4 00<k<0.5 338 1 0302 | 0.080

Note: Depending on the original nature of the tabular data. one of the other pre
sented error functions may have resulted in better results. It was decided to implement

the same error function as used by Adams and Tiffany (1988). namely Eiror Type #1

A=2




§ PRy

Appendix B Linear Coctiicient Optimization - Least Squares

NMethodology

The hmear coefficients. g0 W40 L Al are optimmized by utilizing a least square
micthodology In order 1o obtain a minimum etror function, the derivative of the enor

finction 1s taken with respect 1o each linear coefficient, and written as

derr z;b) _0.

(
(A,

| he ertor funetion as defined as

QUK = Qb |2
(II(IA)—Z (k) .

where

M(k) = maz {1,] Q(ik) !} .

The quantities Q(1h) and Q(¢k) represent the rational function approximation and the
exact value, respectively, at a given reduced frequency. The term M (:k) is used to nor-
malize the acrodynamic tabular data, such that certain points do not receive larger than
notmal weighting. Note, the error function is defined as the total normalized sum for all

the given values of the unsteady aerodynamic tabular data.

The tollowing analysis considers an approximating function of only three lag terms.
henee inear coefficients 4g. 4. .. . A5, The extension to additional lag terms is straight
D 1 5 S

torward.

Making the following substitutions for Q(zk) and Q(ik),

ok 1k 1k
k) = Ay + Ak + Ay(ek)? + 43&-}-61 A41A+b2+ 1k + by

A=-3




rv TRy Topreseif A g WRNE R TREYT SWSEORVA PIT 4T R ST et
ez . PR N - N
bt

L

and
QU = F +(

mto the above equations ginves

0l |( lo+ 41th+ \_»(zk)-’+‘h‘,k’+‘,‘1 + 4y n':em+ 1r, ‘H,‘) (l~‘+x(.‘)|-}

A )
=1
a(4)
Using 14 = ~ 1. and cleaning up the denominator of terms of the form o& 1+ b where
) =1 to 3. gives
ko ak k=0, \ kP4 akd,
th+ 0, ok + hy \ok b, Tk ()j
The numerator term. given by
Zl (.*\()"}‘ \1I/n'+ “‘g(l!\) +. 13 L-::b + A'zk-f-’m + . \ ll\+h > (l +04) I
M(ik)
can then be rewritten to give
5 | (Ao+ Avik — Aqo(k)? + »xg—ﬁ*;—ggﬁ + M‘k;ﬁ”* + Ae,‘zﬂf.’%l) —(F 4y

MQOk)

This can be further simplified to

| (a+2b) 2 (a® + b%)
)BT M (1k) *Z '

M(k)
where
2 k* k? i
a = Ag — Ak* + .43k2 n Df + A4k2 n I)% + "1”/.’2 + [,7; ~ 1.
and
I\b kb In,'])';
_ ¢ — (]
h= 11»'*‘1.3}‘ b2+A‘}b 24 b3 +Aj}~‘2+b2’

This can be further siinplified to give

a® = A2 4+ A%kt 4+ ARBY 4 AXBI 4+ ALBE —2A0A0k — 2401 + 240,13, +

A-4
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24,0 ;H;“r—'.), ‘U ‘-,/f‘,+2.‘\z’-‘z["'—'.!I".‘\z/jl *2[‘—‘,"|BQ*‘2FA5B'3+2.‘\381A4 Bg+2:\381 "laB’} -+
2.”\482 /‘533 + F2 .

and

, : N 1322 B2
he = "]2,... + l'.‘{“’]—zﬁ‘ + 121"15;—2 + 4:2.—'/:2—3 —-2/-11/\'6 + 2A1f13[3[/)] + '2:‘1.";]32[)2 +
/ B! Bl B b B Biby Bal
Sl Wty 1, 0 ey Babe ey Bibs gy BibiBobe o BibiBabs
k k k b2 ke
B0, Bsb
D Ay —2270 223 2
where
& ‘
B,:m,]=1t03.

Hence, taking the derivative of the error function with respect to the linear coefficient

lo gives

Z 240 — 2.42k2 —2F 4+ 2A3B; + 2A4B; + 2A5B3 =0
M(2k) o

Or

Z .‘lu - ‘”\‘2!\’2 + /‘13B1 + ."L;Bg + A5Bg _ Z F
M{ik) -

I'liis can also he written as
[A){«} =[BT ,
where

[‘hll]=[l’ 09—/"2’ Bl’ B2a BSa
(Bl =[F]

and

{~”}={A0a Ay, Ay oiey As} .

A-=35




Similarly. taking the derivative with respect to the coeflicients 400 =11od vields a s

&
da of linear algebraic equations . that caun be written as
(4] {e} = [B)
where
1 0 -k B\ It
0 A'Z 0 Blbl e I.’,;h;
1 —A‘Z 0 A‘3 -—l\'?'Bl s —I\'JI))(
=2 05 , "
By B11)1 —1\'281 B]B\(l-{'—’t{?) [\)11)"([ + 'i"“‘)
By Baby —kBy ByBy(1+8) oo BByl + 2ht)
B3 B3b3 —k'ZBg BgBl(l + 132-2')—" cee B;U;(I + b‘i‘%‘*) |
1 G'Byb, (b, 1t
= —— | kG —-KF, FBi+—2, ... FB .
(B] ) I3 G F, FB, + T FBy+ T
and
{l‘} = { Ao, “11, .Ag, ceey, As } .
-




Appendix C 2 Nonlinear Coefficient Optimization - Simplex

Method

The best way to explain the simplex method is through an example. Consider a
function f consisting of two independent variables (n = 2), say X; and .X,. This problem
tequites the function evaluation f(.\'}, X3) at three (n + 1) different sets of values to
produce three vertices, Let these initial simplex vertices be denoted as A, B and (.
which would form a triangular simplex (see figure). In general, the simplex will not
be regular in shape. The simplex method then considers the function evaluations at
these thice points, and determines the largest, say for argument, it is f(A), and that
J(C) < f(B) < f(A). It now takes a series of steps. to move the point of the simplex,
wlich has the largest value. A, through the opposite face of the simplex. to produce a
new point that will replace 1. The initial step taken, is to reflect the point A through the
geometric centroid of the two vertices, B and C (the midpoint), resulting in a reflection
point F. In general, the centroid is defined as the centroid of all the points (X;),. (X;)..

. 3 not including the point of the highest function value. Note. that the lengths AD and
DI are equal. Depending on the magnitude of the function value at £, the simplex will
do an extension to F. contraction to H. a lesser contraction to GG, or maintain the initial

reflection to form BCE. The process continues until convergence occurs.

(‘riteria:
Do f(E) < F(C) locate F (extension point) aleng AD of length DE
2)if F(E) > f(A) locate G (interior contraction point) midpoint of AD

A-7
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)it f(B)Y < f(E) < f(.1) locate [ (exterior contraction point) midpomnt of DI

4) if f(C) < F(E) < f(B) keep £ (reflection point) new simplex is BCE

Simplex Method (X, 1))

[nitial Simplex

Reflection Point E —

Extenston Point F
Interior Contraction G ﬂ

New Simplex

Exterior Contraction H

Line of Projection
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Appendix D Funetion Optimization for Incompressible Regime

Nasa-Langlev approximate in Laplace form

[N] = [Aol + [ h]b+ )? [Aa] s+

s s
[13] l+[l;]——(,—b—;+[/{5];“%—ba+[,46]—~_+_—%b;.

Approximation of Theodorsen Function C'(k)

b
[\] = [0.99828] + — I [~0.00004] s + (+)*[0.00000] s+

[~0.04120] -

S
~0.16289
+ Y(0.01544) *l 5

S
+ i,f—(o.osagzg)+
[~0.22909)]
s+

S S
—0.06459 .
2(0.25595) + ] s+ 2(0.76511)

Approximation of C'(k) * 1k

b
[.V] = [~0.00001] + U [0.50037] 5 + ( %)2 [—0.00004] s+

0.00061 +(0.01380

| 13 -',;-(o o1540) T ! Y TYET
8 s

0.05843 0.04963

{ ) s + ¥(0.25595) + ] +¥(0.76511)

note @ lag terms are equivalent




SEQUENTIAL SIMPLEX : PROBLEM MINIMIZATION
INCOMPRESSIBLE REGIME
GLOBAL OPTIMIZATION
RANGE 0.00 < k < 10.00

N (1, 1) = C(k)
K EXACT APPROXIMATE
REAL IMAG REAL IMAG
10.000000, 50060, =-.01240, .50057, -.01257,
6.000000), .50170, -.02060, .50182, -.02047,
4.000000, 50370, =-.03050, .50372,  -.03025,
3.000000, .50630, -.04000, .50619, =-.03976,
2.000000, .51290, =-.05770, .51271, -.05764,
1.500000, .52100, -.07360), .52083, -.07373,
1.200000, .53000, ~-.08770, .52994, -.08798,
1.000000, .53940, -.10030, .53959,  -.10051,
.990000, .54000, -.10100, .54019, -.10122,
.880000, .54740, -.10950, .54767, -.10963,
.800000, .55410, ~-.11650, .55443,  -.11655,
.770000, .55700, =-.11930, .55733,  -.11934,
.660000, .56990, =-.13080, .57012, ~-.13063,
.600000, .57880, =-.13780, .57895,  -.13757,
.560000, .58570, -.14280, .58579,  -.14253,
.550000, .58760, -.14410, .58764,  -.14381,
.500000, .59790, =-.15070, .59787,  -.15049,
.440000, .61300, =-.15920, .61278,  -.15904,
.400000, .62500, -.16500, .62477, -.16499,
.340000, .64690, -.17380, .64683, ~.17397,
.330000, .65120, =-.17520, .65108, -.17543,
.325000, .65350, =-.17590, .65328, -.17614,
.320000, .65580, ~-.17660, .65552, ~-.17686,
.315000, .65810, =-.17730, .65782, -.17756,
.310000, .66040, ~-.17790, .66017, -.17825,
.305000, .66270, =-.17860, .66257, ~-.17894,
.300000, .66500, =~.17930, .66502, -.17961,
.240000, .69890, -.18620, .69927,  -.18633,
.220000, .71250, -.18770, .71297, -.18770,
.200000, .72760, -.18860, .72802, -.18841,
.160000, .76280, ~-.18760, .76288, -.18703,
.120000, .80630, -.18010, .80584, -.17977,
.110000, .81880, -.17660, .81822, -.17652,
.100000, .83200, -.17230, .83138,  -.17244,
.080000, .86040, =-.16040, .86027, -.16092,
.060000, .89200, ~-.14260, .89253,  ~-.14285,
.050000, .90900, ~-.13050, .90957,  ~-.13041,
.040000, .92670, =-.11600, .92684, -.11525,
.025000, .95450, =-.08720, .95305, -.08710,
.010000, .98240, ~-.04820, .98349, ~-.04764,

A-10
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N (1, 2 ) = C(k)*ik
K EXACT
REAL
10.000000, .12400,
6.000000, .12360,
4.000000, .12200,
3.000000, .12000,
2.000000, .11540,
1.500000, .11040,
1.200000, .10524,
1.000000, .10030,
.990000, .09999,
.880000, .09636,
.800000, .09320,
.770000, .09186,
. 660000, .08633,
. 600000, .08268,
.560000, .07997,
.550000, .07926,
.500000, .07535,
. 440000, .07005,
.400000, . 06600,
.340000, . 05909,
.330000, .05782,
.325000, .05717,
.320000, .05651,
.315000, . 05585,
.310000, .05515,
.305000, .05447,
.300000, .05379,
. 240000, . 04469,
.220000, .04129,
.200000, .03772,
.160000, .03002,
.120000, .02161,
.110000, .01943,
.100000, .01723,
. 080000, .01283,
. 060000, . 00856,
. 050000, .00653,
. 040000, .00464,
.025000, .00218,
.010000, .00048,

ity

IMAG

5.00600,
3.01020,
2.01480,
1.51890,
1.02580,
.78150,
. 63600,
.53940,
.53460,
.48171,
.44328,
.42889,
.37613,
.34728,
.32799,
.32318,
.29895,
.26972,
.25000,
.21995,
.21490,
.21239,
.20986,
.20730,
.20472,
.20212,
.19950,
.16774,
.15675,
.14552,
.12205,
.09676,
.09007,
. 08320,
.06883,
.05352,
. 04545,
.03707,
.02386,
.00982,

A-11

APPROXIMATE
REAL

.12582,
.12292,
.12110,
.11938,
.11536,
.11065,
.10561,
.10053,
.10023,
.09649,
.09325,
.09190,
.08621,
.08253,
.07980,
.07908,
.07522,
.06995,
.06597,
.05912,
.05786,
.05722,
.05656,
.05590,
.05523,
.05455,
.05385,
.04469,
.04127,
.03766,
.02991,
.02156,
.01941,
.01723,
.01286,
.00855,
.00650,
.00459,
.00215,
.00046,

IMAG

5.00914,
3.01116,
2.01468,
1.51835,
1.02526,
.78113,
.63585,
.53954,
.53474,
.48191,
.44352,
.42912,
.37626,
.34735,
.32802,
.32318,
.29892,
.26961,
.24989,
.21990,
.21483,
.21229,
.20974,
.20719,
.20463,
.20206,
.19948,
.16780,
.15683,
.14558,
.12204,
.09669,
.09000,
.08313,
.06882,
.05356,
.04548,
.03708,
.02382,
.00983,



Appendix E : Rational Function Optimization - Transonic
Regime

Comparison between the rational function approximaticn uf the aerodvnamic deriva-

tives and the tiue aerodynamics as a function of reduced frequency, 0025 < k < 1 000,

at M = 0.85.

CI,,a Cl.,, th and C,no
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.025000,
. 050000,
.075000,
.100000,
-150000,
.200000,
.250000,
.300000,
.350000,
.400000,
.450000,
.500000,
.550000,
.600000,
.650000,
.700000,
.750000,
.800000,
.850000,
.900000,
.950000,
1.000000,

SEQUENTIAL SIMPLEX

TRANSONIC REGIME

EXACT

REAL

.23000,
.40000,
.58000,
.74000,

1.00000,

1.17000,

1.23000,

1.22000,

1.19000,

1.13000,

1.06000,
.99000,
.92000,
.88000,
.79000,
.68000,
.57000,
.47000,
.39000,
.29000,
.20000,
.10000,

C,

IMAG

.56000,

.87000,
1.07000,
1.22000,
1.49000,
1.69000,
1.92000,
2.12000,
2.48000,
2.63000,
2.93000,
3.25000,
3.54000,
3.89000,
4.20000,
4.52000,
4.88000,
5.22000,
5.53000,
5.87000,
6.25000,
6.58000,

: PROBLEM MINIMIZATION

APPROXIMATE
REAL IMAG
.21658, .56611,
.41419, 84979,
.59756, 1.06853,
.75517, 1.24000,
.98456, 1.50109,
1.11518, 1.72130,
1.17742, 1.94017,
1.19509, 2.17025,
1.18273, 2.41433,
1.14896, 2.67229,
1.09904, 2.94340,
1.03633, 3.22697,
.96317, 3.52249,
.88125, 3.82966,
.79193, 4.14829,
.69631, 4.47832,
.59538, 4.81976,
-49004, 5.17262,
.38110, 5.53699,
.26936, $.91290,
.15556, 6.30041,
.04045, 6.69956,

.025000,
.050000,
.075000,
.100000,
.150000,
.200000,
.250000,
.300000,
.350000,
.400000,
.450000,
.500000,
550000,
.600000,
.650000,
.700000,
.750000,
.800000,
.850000,
.900000,
.950000,

1.000000,

th
EXACT
REAL IMAG
.01000, -.03000,
.02000, -.06000,
.03000, -.10000,
.03000, -.14000,
.01000, -.23000,
=-.01000, -.33000,
-.04000, -.40000,
-.06000, -.41000,
-.04000, -.43000,
.00000, -.45000,
. 07000, -.49000,
.14000, -.55000,
.21000, -.64000,
.27000, -.76000,
+34000, -.86000,
.39000, -.97000,
.46000, -1.06000,
.53000, ~1.13000,
.57000, -1.19000,
.61000, -1.28000,
.65000, -1.40000,
.68000, -1.53000,

APPROXIMATE
REAL IMAG
-.01235, -.01705,
.03307, -.05976,
.03738, -.12445,
.02280, -.17765,
-.01110, -.24884,
-.02820, -.29719,
-.02752, -.33989,
-.01311, -.38366,
.01179, ~.43100,
.04502, ~.48292,
.08512, -.53991,
.13108, -.60228,
.18211, -.67029,
.23757, -.74417,
.296990, ~-.82415,
.35958, -.91043,
.42512, -1.00321,
.49304, -1.10268,
-56289, -1.20898,
.63420, -1.32226,
.70653, -1.44262,
.77943, -1.57016,

contimmed



FI—V

.025000,
.050000,
.075000,
.100000,
.150000,
.200000,
.250000,
.300000,
.350000,
.4009000,
.450000,
.500000,
.550000,
.600000,
.650000,
.700000,
.750000,
.800000,
.850000,
.900000,
.950000,
1.000000,

EXACT

REAL

10.79000,
9.10000,
8.00000,
7.21000,
6.09000,
5.41000,
4.93000,
4.62000,
4.43000,
4.36000,
4.35000,
4.40000,
4.43000,
4.50000,
4.50000,
4.48000,
4.48000,
4.48000,
4.49000,
4.56000,
4.60000,
4.62000,

C

[33

IMAG

-4.01000,
~4.21000,
-3.82000,
-3.49000,
~2.96000,
-2.29000,
~1.79000,
-1.28000,
-.81000,
-.41000,
-.03000,
.27000,
.55000,
.74000,
1.00000,
1.18000,
1.31000,
1.47000,
1.63000,
1.80000,
1.91000,
2.02000,

APPROXIMATE
REAL IMAG
10.80926, =-4.16547,
9.23528, <-4.01598,
8.06712, -3.82265,
7.20308, =-3.55867,
6.03660, =-2.93090,
5.34470, -2.29399,
4.93936, -1.71875,
4.67882, -1.21716,
4.52562, -.78120,
4.43443, ~-.39950,
4.38410, -.06209,
4.36177, .23873,
4.35925, .50872,
4.37104, .75210,
4.39332, .97197,
4.42326, 1.17064,
4.45867, 1.34983,
4.49781, 1.51085,
4.53923, 1.65470,
4.58165, 1.78215,
4.62398, 1.89385,
4.66521, 1.99031,

.025000,
.050000,
.075000,
.100000,
.150000,
.200000,
.250000,
. 300000,
.350000,
.400000,
.450000,
.500000,
.550000,
.600000,
.650000,
.700000,
.750000,
.800000,
.850000,
.900000,
.950000,
1.000000,

(lnu
EXACT
REAL IMAG
-.43700, ~-.04100,
-.45100, ~-.12100,
-.48200, ~-.26200,
-.52300, ~-.34800,
-.68100, ~-.51100,
-.81700, ~-.58000,
-.90800, ~.59800,
-.90600, -.54800,
-.86900, ~-.57400,
-.82300, ~-.64000,
-.78600, ~-.74800,
-.77800, ~-.90000,
-.81800, ~-.99200,
-.85200, -1.08000,
-.87800, -1.14300,
-.89200, =-1.23000,
-.93000, -1.30700,
-.97800, ~-1.38100,
-1.00800, -1.43900,
-1.03100, -1.49500,
-1.04300, =-1.53400,
-1.05800, -1.56400,

&

APPROXIMATE

REAL IMAG
-.43992, -.01892,
-.45702, -.16849,
-.50534, -.27825,
-.56402, -.35625,
-.66848, ~.45194,
-.74100, -.51230,
-.78859, -.56393,
-.82047, ~-.61610,
-.84285, -.67156,
-.85947, -.73091,
~.87262, -.79411,
-.88376, ~.86094,
-.89383, -.93120,
-.90351, -1.00472,
-.91328, -1.08137,
-.92354, ~-1.1610.
-.93459, -1.24377,
-.94671, ~-1.32940,
-.96013, -1.41796,
-.97508, -1.50942,
-.99176, -1.60377,
-1.01035, -1.70098,




SEQUENTIAL SIMPLEX : PROBLEM MINIMIZATION
TRANSONIC REGIME

APPROXIMANT FUNCTION N (1, 1) = (jh
AO Al A2 A3 A4 A5 A6

-7907.23428 13.851605 =1,.182972 7907.335646 .299359 1.150099 ~-22.698018

lagl lag2 lag3l lag4 error

. 000000273 .042626307 .132115292 2.737040606 .065486271 .065486271

APPROXIMANT FUNCTION N(1, 2 ) = Cha
AO Al A2 Al A4 AS A6

170329.1714 ~-4.694754 1.921693 ~-170317.2824 -3.613661 -4.501366 23.17

lagl lag2 lagld lag4 error

.000000273 .042626307 .132115292 2.737040606 .181049841 .306154896

APPROXIMANT FUNCTION N(2, 1) = (jnm
AO Al A2 A3 A4 AS A6

3001.540919 -6.292480 .797560 -3001.600689 .227531 ~-.334033 14.757

lagl lag2 lag3 lag4 error

.000000273 .042626307 .132115292 2.737040606 .059618785 .125105055

APPROXIMANT FUNCTION N(2 2) = Clnn

AO Al A2 Al A4 AS A6

-6706.7085 =3.347323 .739C6E7 6706.26103 .105898 ~-.565209 5.315633

lagl lag2 lagl lag4 error

.000000273 .042626307 .132115292 2.737040606 159675096 .465829992
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Appendix F : Function Optimization for Transonic Regime
Nasa-Langley approximate in Laplace form

IN] = [Ad + 7 L] s + (22 4] 524

3

[Aa) +[Ad] —— + [As5] —
R T T T

Approximation of Transonic Coeflicients of Lift and Moment with respect to plunge

and pitch, for a reduced frequency range of 0.0 < & < 0.5 with forced constrants for (7,

and €, at k = 0.0, at M =0.85.

c, Cu. 0.0000 14236 | 5 | 7.3520 0.9578 b .| 02652 125Mix
= +7 st )
Cmy Coma 0.0000 —0.5168 ~1.9059 —4.3942 ~0.2036 2710
—8561.67 404976 . 0.5930 —8.14577 R
R — _—
L_ 927 L !
158360 217699 | T (0-21893) 1 405084 0.16511 J s+ 5 (0.04365)
8707.6 108964 ‘ ~146.23 39874 .
————-—-—-—-——+ —————————— .
Uinos U0 onrRe
~159903 —219881 | ¢ 1 ©(0.27899) 1543.9 2184, | 51 v(0-28587)

note : lag terms are equivalent
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SEQUENTIAL SIMPLEX :

.000000,
.025000,
.050000,
.087500,
.100000,
.125000,
.150000,
.175000,
.200000,
.250000,
.300000,
.350000,
.400000,
.450000,
.500000,

EXACT
REAL

.00000,
.17000,
.39000,
.66000,
.76000,
.89000,

1.01000,

1.12000,

1.17000,

1.25000,

1.23000,

1.19000,

1.15000,

1.07000,
.98000,

PROBLEM MINIMIZATION
TRANSONIC REGIME M=
GLOBAL OPTIMIZATION
FORCED CONSTRAINTS
RANGE 0.00 < k < 0.
ERROR #1

0.85

N(r,c)=0.0 AT k=0.0
50

EXACT

C
lh
APPROXIMATE x

IMAG REAL IMAG REAL

. 00000, -00000, .00c00, .000000, 14.70000,

.56000, -16792, .54877, .025000, 12.20000,

.87000, .41847, .86344, .050000, 9.50000,
1.17000, .69680, 1.16498, .087500, 7.63000,
1.23000, .77287, 1.24726, .100000, 7.22000,
1.39000, .90794, 1.39206, .125000, 6.61000,
1.49000, 1.02060, 1.51454, .150000, 6.09000,
1.61000, 1.10957, 1.62079, .175000, 5.72000,
1.69000, 1.17459, 1.71761, .200000, 5.41000,
1.93000, 1.23994, 1.90689, .250000, 4.92000,
2.12000, 1.24034, 2.11637, .300000, 4.83000,
2.39000, 1.20249, 2.35917, .350000, 4.43000,
2.64000, 1.14690, 2.63547 .400000, 4.25000,
2.93000, 1.08659, 2.94005, .450000, 4.35000),
3.25000, 1.02883, 3.26655, .500000, 4.40000,

Cla

IMAG

.00000,
-4.05000,
-4.15000,
-3.70000,
-3.47000,
-3.18000,
-2.94000,
-2.59000,
~2.29000,
-1.79000,
-1.30000,
-.83000,
-.41000,
-.03000,
.28000,

APPROXIMATE
REAL IMAG

14.23567, .00000,
12.21288, -3.64541,
9.56427, -4.30539,
7.53586, ~3.72869,
7.15123, -3.52318,
6.57096, -3.17275,
6.12655, -2.88115,
5.75592, -2.61606,
5.43806, -2.35648,
4.94237, -1.82723,
4.62099, -1.29981,
4.43320, -.81140,
4.36678, -.38607,
4.35258, -.03010,
4.37100, .26139,

continued



A AT~ v

W—wmﬁmv T R A T WAy
" T

[N ] i
C”nh C"n”
k EXACT APPROXIMATE k EXACT APPROXIMATE
REAL IMAG REAL IMAG REAL IMAG REAL IMAG
.000000, .00000, .00000, .00000, .00000, .000000, -.44500, .00000, -.51684, . 00000,
.025000, .00100, -.03500, -.00729, -.03935, . 025000, -.45000, -.02700, -.48373, .04150,
. 050000, .01500, -.06500, -.007217, -.06574, . 050000, -.45500, -.12200, ~.45477, .14213,
.087500, .02500, -.12500, .01171, -.11930, . 087500, -.49500, -.31100, -.48600, -31323,
.100000, .03000, -.14500, .01725, -.14295, .100000, -.52000, -.34800, -.51147, .36418,
.125000, .02000, ~-.19800, .02145, ~-.19500, .125000, -.58100, -.42200, -.57665, .45028,
.. -150000, .01500, -.23000, .01512, -.24731, .150000, -.67200, -.50800, -.65200, .51226,
| .175000, . 01000, -.28000, .00030, -.29389, .175000, -.73200, -.54800, -.72737, .55013,
~ .200000, -.00500, -.32500, -.01874, -.3314s6, .200000, -.81000, -.58200, -.79435, .56754,
o .250000, -.03500, -.39700, -.05219, -.37922, .250000, -.90500, -.61000, -.88350, .56578,
.300000, -.06000, ~.40300, -.06191, -.40363, .300000, -.89800, -.55000, -.90772, .55768,
.350000, -.04500, -.42500, -.04310, -.42338, .350000, ~-.86800, -.57500, -.88429, .57878,
.400000, -.00500, -.44800, -.00139, -.45102, .400000, -.82400, -.64800, -.83843, .64393,
.450000, . 06500, ~-.49000, . 05504, -.49191, .450000, ~-.79000, -.75000, -.79150, .75384,
.500000, .14000, ~.55000, .11927, -.54679, .500000, ~-.77000, -.90300, -.75798, .90251,




.000000,
.025000,
.050000,
.087500,
.100000,
.125000,
.150000,
.175000,
.200000,
.250000,
.300000,
.350000,
.400000,
.450000,
.500000,

EXACT
REAL

.00000,
.17000,
.39000,
. 66000,
.76000,
.89000,
1.01000,
1.12000,
1.17000,
1.25000,
1.23000,
1.19000,
1.15000,
1.07000,
.98000,

SEQUENTIAL SIMPLEX

IMAG

.00000,

.56000,

.87000,
1.17000,
1.23000,
1.39000,
1.49000,
1.61000,
1.69000,
1.93000,
2.12000,
2.39000,
2.64000,
2.93000,
3.25000,

PROBLEM MINIMIZATION

TRANSCONIC REGIME M=0.85

GLOBAL OPTIMIZATION
FORCED CONSTRAINTS

RANGE 0.00 < k < 0.50
ERROR #1
APPROXIMATE
REAL IMAG
.00000, .00000,
.19383, .55795,
.43656, .85319,
.70846, 1.17109,
.79040, 1.25555,
.93541, 1.39534,
1.04994, 1.50834,
1.13440, 1.60795,
1.19295, 1.70330,
1.25110, 1.90029,
1.25543, 2.11892,
1.22593, 2.36403,
1.17512, 2.63603,
1.11128, 2.93413,
1.04035, 3.25724,

.000000,
.025000,
.050000,
.087500,
.100000,
.125000,
.150000,
.175000,
.200000,
.250000,
.300000,
.350000,
.400000,
.450000,
.500000,

C.
EXACT

REAL IMAG

14.70000, .00000, 14
12.20000, -4.05000, 12
9.50000, -4.15000, 9
7.63000, =-3.70000, 7
7.22000, =-3.47000, 7
6.61000, -3.18000, 6
6.09000, =-2.94000, 6
5.72000, =-2.59000, 5
5.41000, =-2.29000, 5
4.92000, -1.79000, a
4.63000, -1.30000, 4
4.43000, -.83000, 4
4.35000, -.41000, 4
4.35000, -.03000, 4
4.40000, .28000, 4

APPROXIMATE

REAL IMAG
.70000, .00000,
.16128, -3.97370,
.41145, -4.23129,
.67286, -3.66816,
.29733, -3.52885,
.66079, -3.25681,
.14647, =-2.96663,
.73753, -2.66267,
.41665, -2.35786,
.97158, -1.77935,
.70202, -1.26197,
.54025, -.80489,
.44697, -.39879,
.39915, -.03395,
.38285, .29772,

continued



4

.000000,
.025000,
. 050000,
.087500,
.100000,
.125000,
.150000,
.175000,
.200000,
.250000,
.300000,
.350000,
.400000,
.450000,
.500000,

0t -V

EXACT

REAL

.00000,
. 00100,
.01500,
.02500,
.03000,
.02000,
.01500,
.01000,
-.00500,
-.03500,
-.06000,
-.04500C,
-.00500,
.06500,
.14000,

C1n h

IMAG

.00000,
-.03500,
.06500,
.12500,
.14500,
.19800,
-.23000,
.28000,
.32500,
.39700,
.40300,
-.42500,
.44800,
-.49000,
-.55000,

APPROXIMATE
REAL IMAG
.00000, . 00000,
-.04127, -.05079,
-.02884, -.04927,
.01021, -.12957,
.00937, -.16165,
-.00401, ~.21692,
-.02225, -.25906,
-.03854, -.29126,
-.05051, ~-.31708,
-.06049, -.35882,
-.05448, -.39514,
-.03590, -.42987,
-.00707, -.46418,
.03062, ~-.49834,
.07634, -.53233,

.000000,
.025000,
. 050000,
. 087506,
.100000,
.125000,
.150000,
.175000,
.200000,
.250000,
.300000,
.350000,
.400000,
.450000,
.500000,

EXACT

REAL

.44500,
.45000,
.45500,
.49500,
.52000,
.58100,
.67200,
.73200,
-.81000,
.906500,
-.89800,
.86800,
.82400,
.79000,
-.77000,

Cnl('

IMAG

.00000,
-.02700,
-.12200,
-.31100,
-.34800,
.42200,
-.50800,
-.54800,
-.58200,
.61000,
-.55000,
-.57500,
.64800,
.75000,
-.90300,

APPROXIMATE

REAL IMAG
-.44500), .00000,
-.47202, -.06448,
~.42613, -.12063,
-.43443, ~.33035,
-.47130, -.39057,
-.56157, -.47416,
~.64879, -.51749,
-.72016, -.53602,
-.77337, -.54202,
-.83305, -.54527,
-.84809, -.56012,
-.83581, -.59821,
-.80830, -.66360,
-.77420, -.75757,
~.74002, -.88020,




-y

LAPLACE METHOD

RANGE
u r(alp) ah
50.0 .5 -.5
ND VELOCITY .500
-.14470 1.28135
-.14470 -1.28135
-.60746 .00000
-.67443 .00000
-.00511 -.20192
-.00511 .20192
-.05524 -.00255
-.05524 .00255
-.02989 .00322
-.02989 -.00322
-.02296 .00203
-,02296 -.00203
perfomance index is 1.75297
ND VELOCITY 3.300
-6.29379 .00000
-4.01529 .00000
~-.19525% 1.25302
-.19525 -1.25302
-.00033 -.30122
-.00033 .30122
-.34065 -.18074
-.34065 .18074
-.17917 -.11029
-.17917 .11029
-.086246 -.06004
-.06246 .06004
perfomance index is 2.72761
ND VELOCITY 3.400
-6.49084 .00000
-4.13698 .00000
-,20562 1.26275
-,20562 -1.26275
.00355 -.30563
-.35100 -.18800
-.35100 .18800
.00355 .30563
-.18377 -,11362
-,18377 .11362
-.06142 -.06271
-.06142 06271
perfomance index is 4.31713

TRANSONIC M=0.85
FORCED CONSTRAINTS
0.00 < k < 0,50

wben/wtor

Eigenvalue Analvsis

. 00000

. 00000

INSTABILITY
ND VELOCITY = 3.3}

. 00000




¢ 3

SEQUENTIAL SIMPLEX : PROBLEM MINIMIZATION

TRANSONIC REGIME M=0.85
GLOBAL OPTIMIZATION
FORCED CONSTRAINTS N(r,c)=0.0 AT k=0.0

RANGE 0.00 < k < 1.00

ERROR #1
C, Cy,
k EXACT APPROXIMATE k EXACT APPROXIMATE
REAL IMAG REAL IMAG REAL IMAG REAL IMAG
. 000000, .00000, . 00000, .00000, . 00000, .000000, 14.70000, .00000, 13.94730, .00000,
. 025000, .17000, . 56000, .16253, .54899, .025000, 12.20000, -4.05000, 12.17360, -3.42799,
.050000, .39000, .87000, .41431, .86878, .050000, 9.50000, -4.15000, 9.67237, -4.23117,
.087500, .660C0, 1.17000, .69195, 1.16922, .087500, 7.63000, -3.70000, 7.57972, -3.78514,
.100000, .76000, 1.23000, .76583, 1.25158, .1C0000, 7.22000, -3.47000, 7.16425, -3.58634,
.125000, .89000, 1.39000, .89576, 1.39867, .125000, 6.61000, -3.18000, 6.53843, -3.22036,
.150000, 1.01000, 1.49000, 1.00408, 1.52567, .150000, 6.09000, -2.94000, 6.07511, -2.89669,
.175000, 1.12000, 1.61000, 1.09045, 1.63721, .175000, 5.72000, -2.59000, 5.70821, -2.60052,
.200000, 1.17000, 1.69000, 1.15459, 1.73882, .200000, 5.41000, -2.29000, 5.40820, -2.31982,
.250000, 1.25000, 1.93000, 1.22118, 1.93316, .250000, 4.92000, -1.79000, 4.95806, -1.78414,
.300000, 1.23000, 2.12000, 1.22287, 2.14008, .360000, 4.63000, -1.30000, 4.66424, -1.27997,
.350000, 1.19000, 2.39000, 1.18306, 2.37316, .350000, 4.43000, -.83000, 4.48829, -.81771,
.400000, 1.15000, 2.64000, 1.12048, 2.63369, .400000, 4.35000, -.41000, 4.39670, -.40853,
.450000, 1.07000, 2.93000, 1.04718, 2.91750, .450000, 4.35000, -.03000, 4.36154, -.04479,
.500000, .98000, 3.25000, .96983, 3,.21913, .500000, 4.40000, .28000, 4.36154, .26823,
.550000, .92000, 3.54000, .89166, 3.53366, .550000, 4.43000, .55000, 4.38166, .53973,
.600000, .88000, 3.89000, .81392, 3.85723, .600000, 4.50000, .74000, 4.41178, .77649,
.650000, .79000, 4.20000, .73¢684, 4.18702, .650000, 4.50000, 1.00000, 4.44540, .98490,
.700000, .68000, 4.52000, .66016, 4.52100, .700000, 4.48000, 1.18000, 4.47847, 1.17048,
.750000, .57000, 4.88000, .58345, 4.85778, . 750000, 4.48000, 1.31000, 4.50862, 1.33784,
.800000, .47000, 5.22000, .50621, 5.19641, .800000, 4.48000, 1.47000, 4.53451, 1.49071,
.850000, .39000, 5.53000, .42799, 5.53621, .850000, 4.49000, 1.63000, 4.55549, 1.63206,
.900000, .29000, 5.87000, .34837, 5.87675, .900000, 4.56000, 1.80000, 4.5713¢0, 1.76425,
.950000, .20000, 6.25000, .26700, 6.21770, .950000, 4.60000, 1.91000, 4.58194, 1.88%14,
1.000000, .10000, 6.58000, .18357, 6.55886, 1.000000, 4.62000, 2.020G9, 4.58755%, 2.00320,

conta




[}

.000000,
.025000,
.050000,
.087500,
.100000,
.125000
.150000,
- .175000,
.200000,
v .250000,
. 300000,
.~50000,
.400000,

.450000,
.500000,
.550000,
.600000,
.650000,
.700000,
.750000,
.800000,
.850000,
.900000,
.950000,
1.000000,

EXACT

REAL

.00000,
.00100,
.01500,
.02500,
.03000,
.02000,
.01500,
.01000,
-.00500,
-.03500,
-.06000,
-.04500,
-.00500,

.06500 -
.14000,
.21000,
.27000,
.34000,
.39000,
.46000,
.53000,
.57000,
.61000,
.65000,
.68000,

v
C,

IMAG

.00000,
-.03500,
-.06500,
-.12500,
-.14500,
-.19800,
-.23000,
-.28000,
-.32500,
~-.39700,
-.40300,
-.42500,
-.44800,
-.49000,
-.55000,
-.64000,
-.76000,
-.86000,
-.97000,

-1.06000,
-1.13000,
-1.19000,
-1.28000,
~-1.40000,
-1.53000,

APPROXIMATE
REAL IMAG
.00000, .00000,
.01514, - 01722,
.03491, -.05826,
.04444, -.13429,
.04338, -.15945,
.03688, -.20736,
.02622, -.25074,
.01345, -.28853,
.00069, -.32037,
-.01725, -.36818,
-.01698, -.40259,
.00424, -.43438,
.04351, -.47188,
.09567, -.51964,
.15561, -.57908,
.21928, -.64973,
.28384, -.73020,
.34752, -.81879,
.40931, -.91387,
.46873, -1.01398,
.52566, -1.11794,
.58017, -1.22475,
.63245, -1.33366,
.68275, -1.44407,
.73133, -1.55552,

.000000,
.025000,
.050000,
.087500,
.100000,
.125000,
.150000,
.175000,
.200000,
.250000,
.300000,
.350000,
.400000,
.450000,
.500000,
.550000,
.600000,
.650000,
.700000,
.750000,
.800000,
.850000,
.900000,
.950000,
1.000000,

EXACT
REAL

-.44500,
-.45000,
-.45500,
-.49500,
-.52000,
-.58100,
-.€7200,
-.73200,
-.81000,
-.90500,
-.89800,
-.86800,
-.82400,
-.79000,
-.77000,
-.81800,
-.85200,
-.87800,
-.89200,
-.93000,
-.97800,

-1.00800,

-1.03100,

-1.04300,

-1.05800,

C,

IMAG

.00000,
-.02700,
-.12200,
-.31100,
-.34800,
-.42200,
-.50800,
-.54800,
-.58200,
-.61000,
-.55000,
-.57500,
-.64800,
-.75000,
-.90300,
-.99200,

-1.08000,
-1.14300,
-1.23000,
-1.30700,
-1.38100,
-1.43900,
-1.49500,
-1.53400,
~1.56400,

APPROXIMATE
REAL IMAG
-.57389, .00000,
-.50236, -.00277,
-.43591, -.12894,
-.48192, -.34358,
-.51936, -.39784,
-.60391, -.47587,
-.68543, -.51920,
-.75284, -.53819,
-.80187, -.54342,
-.84842, -.54545,
-.84946, -.96636,
-.83350, -.61570,
-.81867, -.68765,
-.81277, -.77282,
-.81723, -.86341,
~.83063, -.95435,
-.85067, -1.04290,
-.87516, -1.12786,
-.90235, -1.20894,
-.93092, -1.28636,
-.95998, -1.36052,
-.98895, -1.43193,
-1.01747, -1.50106,
-1.04534, -1.56834,
-1.07247, -1.63414,



3—————

LAPLACE METHOD TRANSONIC M=0,85
FORCED CONSTRAINTS AT N(r,c)=0.0 AT k=0.0
RANGE 0.00 < X < 1.00

u r (alp) ah wben/wtor Eigenvalue Analysis

50.0 5 -.5 2

ND VELOCITY . 500

-.01753 -1.17101

-.017583 1.17101

-,00509 . 20181

-.00509 -,20181

-.19517 . 03653

-.17830 . 03354

-.19517 -.03653

-.17830 -.03354

-.13698 .00000

-,12781 . 00000

-.02340 .00000

-,82273 . 00000

perfomance index is ,75683 . 00000

ND VELOCITY 3.100

-.19085 1.23731

-.19085 -1.23731

-1.36708 .69722

=-1.36708 ~-.69722

-1.16682 .25217

-1.16682 -.25217

-.74436 .00000

-.00338 .29255

-.00338 -,29255

-.35884 . 00000

-.20286 . 00000

-.07687 .00000

perfomance index is 8.89727 . 00000

ND VELOCITY 13.200

-.19992 1.24432

-,19992 =1.24432

-1.41678 .72501

~1.41678 -.72501

-1.20460 . 26032

~-1,20460 -.26032

-.76779 .00000

.00058 . 29752 INSTABILITY
.000E8 -.29752 ND VELOCITY = 3.19

-.36035 . 00000

-.21351 . 00000

-.07676 . 00000

perfomance index is 15.95851 .00000
A-24




SEQUENTIAL SIMPLEX :

.000000,
.025000,
.050000,
.087500,
.100000,

“w .125000,
I .150000,
& .175000,
.200000,
.250000,
.300000,
.350000,
.400000,
.450000,
.500000,
.550000,
.600000,
.650000,
.700000,
.750000,
.800000,
.850000,
.900000,
.950000,
1.000000,

EXACT

REAL

.00000,
.17000,
.39000,
.66000,
.76000,
.89000,
1.01000,
1.12000,
1.17000,
1.25000,
1.23900,
1.19000,
1.15000,
1.07000,
.98000,
.92000,
.88000,
79000,
.68000,
.57000,
.47000,
.39000,
.29000,
.20000,
.10000,

PROBLEM MINIMIZATION
TRANSONIC REGIME M=0.85

GLOBAL OPTIMIZATION
FORCED CONSTRAINTS
0.00 < k < 1.00

RANGE

C

IMAG

.00000,
.56000,
.87000,

1.17000,

1.23000,

1.39000,

1.49000,

1.61000,

1.69000,

1.93000,

2.12000,

2.39000,

2.64000,

2.93000,

3.25000,

3.54000,

3.89000,

4.20000,

4.52000,

4.88000,

5.22000,

5.53000,

5.87000,

6.25000,

6.58000,

APPROXIMATE
REAL IMAG
.00000, .00000,
.20041, .56379,
.43868, .85147,
.70126, 1.18815,
.78739, 1.27735,
.94081, 1.41745,
1.05738, 1.52418,
1.13708, 1.61709,
1.18649, 1.70825,
1.22244, 1.90616,
1.20838, 2.13362,
1.16854, 2.38805,
1.11535, 2.66342,
1.05501, 2.95416,
.99046,  3.25592,
.92301, 31.56554,
.85313, 3.88073,
.7808., 4.19990,
.70617, 4.52191,
.62879, 4.84597,
.54853, 5.17148,
.46518, 5.49806,
.37857, 5.82540,
.28853, 6.15329,
.19492, 6.48156,

.000000,
.025000,
.050000,
.087500,
.100000,
.125000,
.150000,
.175000,
.200000,
.250000,
.300000,
.350000,
.400000,
.450000,
.500000,
.550000,
. 600000,
.650000,
. 700000,
.750000,
.800000,
.850000,
.900000,
.950000,

1.000000,

EXACT

REAL

14.70000,
12.20000,
9.50000,
7.63000,
7.22000,
6.61000,
6.09000,
5.72000,
5.41000,
4.92000,
4.63000,
4.43000,
4.35000,
4.35000,
4.40000,
4.43000,
4.50000,
4.50000,
4.48000,
4.48000,
4.48000,
4.49000,
4.56000,
4.60000,
4.62000,

C

[41

IMAG

.00000,
-4.05000,
-4.15000,
-3.70000,
-3.47000,
-3.18000,
-2.94000,
-2.59000,
-2.29000,
-1.79000,
-1.30000,

-.83000,
-.41000,
~.03000,

.28000,

.55000,

.74000,

1.00000,
1.18000,
1.31000,
1.47000,
1.63000,
1.80000,
1.91000,
2.02000,

APPROXIMATE
REAL IMAG
14.70000, .00000,
12.09142, -4.07232,
9.23969, -4.20057,
7.67001, -3.60840,
7.30929, -3.51304,
6.64489, -3.30380,
6.08270, -3.02828,
5.63848, -2.70889,
5.30123, =-2.37741,
4.86628, -1.75049,
4.63458, ~-1.21168,
4.51518, -.76053,
4.45752, -.38090,
4.43406, -.05620,
4.42969, .22711,
4.43604, .47927,
4.44844, .70785,
4.46424, .91840,
4.48194, 1.11500,
4.50072, 1.30069,
4.52013, 1.47773,
4.53991, 1.64784,
4.55997, 1.81234,
4.58025, 1.97223,
4.60076, 2.12832,

continmed



.000000,
.025000,
. 050000,
.087500,
.100000,
.125000,
.150000,
.175000,
.200000,
.250000,
.300000,
.350000,
.400000,
.450000,
.500000,
.550000,
.600000,
.650000,
.700000,
.750000,
.800000,
.850000,
.900000,
.950000,
1.000000,

EXACT

REAL

. 00000,
.00100,
. 01500,
.02500,
.03000,
.02000,
. 01500,
.01000,
-.00500,
-.03500,
-.06000,
-.04500,
-. 00500,
.06500,
.14000,
.21000,
.27000,
.34000,
. 39000,
.46000,
.53000,
.57000,
.61000,
.65000,
. 68000,

CTII h

IMAG

. 00000,
-.03500,
-.06500,
-.12500,
-.14500,
-.19800,
-.23000,
-.28000,
-.32500,
-.39700,
-.40300,
-.42500,
-.44800,
-.49000,
-.55000,
.64000,

-.76000,

-.86000,

-.87000,
-1.06000,
-1.13000,
-1.19000,
-1.28000,
-1.40000,
-1.53000,

APPROXIMATE
REAL IMAG
.00000, . 00000,
-.08536, ~-.07477,
-.07246, -.03012,
.00470, -.13296,
-.00026, -.17806,
-.03268, -.24522,
-.06879, -.28304,
-.09475, -.30307,
-.10802, -.31524,
-.10344, -.33744,
-.07271, -.37041,
-.02907, -.41710,
.02019, -.47542,
.07148, -.54248,
.12324, -.61574,
.17495, -.69328,
.22659, -.77370,
.27836, ~-.85600,
.33054, -.93951,
.38344, -1.02376,
.43733, -1.10842,
.49246, -1.19328,
.54905, -1.27819,
.60729, -1.36306,
.66733, -1.44782,

.000000,
.025000,
.050000,
.087500,
.100000,
.125000,
.150000,
.175000,
.200000,
.250000,
.300000,
.350000,
.400000,
.450000,
.500000,
.550000,
.600000,
.650000,
.700000,
.750000,
.800000,
.850000,
.900000,
.950000,

1.000000,

EXACT

REAL

~.44500,
-.45000,
-.45500,
-.49500,
-.52000,
-.58100,
-.67200,
.73200,
-.81000,
-.90500,
-.89800,
-.86800,
-.82400,
-.79000,
-.77000,
-.81800,
-.85200,
-.87800,
-.89200,
-.93000,
-.97800,
-1.00800,
-1.03100,
-1.04300,
-1.05800,

C,

Ny

IMAG

.00000,
-.02700,
-.12200,
-.31100,
-.34800,
-.42200,
-.50800,
-.54800,
-.58200,
-.61000,
-.55000,
-.57500,
-.64800,
-.75000,
-.90300,
-.99200,

-1.08000,

-1.14300,

-1.23000,

-1.30700,

-1.38100,

-1.43900,

-1.49500,

-1.53400,

-1.56400,

APPROXIMATE
REAL IMAG
-.44500, .00LZ0,
-.45251, -.05573,
-.40544, -.12522,
-.42450, -.33564,
-.46298, -.39195,
-.55008, -.46639,
-.62755, -.50379,
-.68670, -.52187,
-.72856, -.53235,
-.77490, -.55295,
-.79240, -.58606,
-.79722, -.63383,
-.79794, -.69385,
-.79890, -.76310,
-.80217, -.83905,
~-.80866, -.91976,
-.81870, -1.00384,
-.83234, -1.09027,
-.84948, =-1.17836,
-.86999, -1.26760,
-.89371, =-1.35764,
-.92048, -1.44823,
-.95018, -1.53920,
-.98269, ~-1.63041,
-1.01789, -1.72178,




TRANSONIC M=0.85
FORCED CONSTRAINTS
RANGE 0.00 < k < 1.00

LAPLACE METHOD

u r(alp) ah wben/wtor Eigenvalue Analysis

50-0 05 -05 2

ND VELOCITY .500

-

-.02388 1.17850
-.02388 -1.17850
-,00516 -.,20181
-.00516 .20181
-.17990 . 00227
-.17990 -.00227
-.04345 -.00962
-.04345 .00962
-,03331 .01123
-.03331 -.01123
-.02539 .00376
-.02539 -.00376
perfomance index is .78187 .00000
ND VELOCITY 3.300
-.21773 -1.24873
-,21773 1.24873
-1.28855 -.01047
-1.28855 .01047
=.34557 -.25499
-.00193 -.29898
-.34557 +25499
-.00193 .29898
-.15908 -.13442
-.04041 -.07268
-.15908 «.13442
-.04041 .07268
perfomance index is 8.34966 .00000
ND VELOCITY 3.400
-.22938 -1.25594
~-.22938 1.25594
-1.34034 .00000
=1.31940 .00000
-.35652 -,26509
.00131 -.30338 INSTABILITY
~.35652 .26509 ND VELOCITY = 3.36
.00131 .30338
~.16341 -.13823
-.16341 .13823
-.03761 -.07519
-.03761 .07519
perfomance index is 8.98850 .00000
A=-27




Appendix G : Incompressible Regime - Eigenvalue Solutions

Eigenvalue solutions for the incompressible regime (Case #1) incorpoiating the {7 —

g, p — k and Laplace methods.




A

s

UG METHOD

50.0

10.000,
10.000,
6.000,
6.000,
4.000,
4.000,
2.000,
2.000,
1.000,
1.000,
.880,
.880,
.800,
.800,
. 600,
. 600,
.500,
.500,
. 400,
. 400,
.300,
.300,
.200,
.200,
. 150,
. 150,
. 140,
. 140,
. 130,
.130,
. 125,
.125,
. 120,
. 120,
. 110,
. 110,
. 100,
.100,
. 050,
. 050,

CASE #1
r(alp) ah
05 "'5
U/b*wtor w/wtor
.01970, .19698,
.11493, 1.14932,
.03283, .19699,
.19150, 1.14900,
. 04925, .19701,
.28709, 1.14837,
. 09856, .19711,
.57247, 1.14454,
.19746, .19746,
1.13102, 1.13102,
.22452, .19758,
1.27906, 1.12558,
.24711, .19769,
1.40063, 1.12050,
.33024, .19814,
1.82975, 1.09785,
.39712, .19856,
2.15096, 1.07548,
.49815, .19926,
2.58976, 1.03590,
.66874, .20062,
3.19652, .95896,
1.02048, .20410,
3.97729, .79546,
1.39164, .20875,
4.35545, .65332,
1.50237, .21033,
4.41925, .61871,
1.63333, .21233,
4.47879, .58224,
1.70828, .21354,
4.50682, .56335,
1.79092, .21491,
4.53418, .54410,
1.98367, .21820,
4.59055, .50496,
2.2245¢6, .22246,
4.66272, .46627,
4.97074, .24854,
7.19299, .35965,

wben/wtor

9

-.00209,
-.00569,
-.00348,
.00948,
-.00524,
.01423,
.01067,
.02861,
.02238,
.05796,
.02580,
.06604,
.02871,
.07275,
.03995,
.09686,
.04954,
.11494,
.06485,
.13857,
-.09274,
.16476,
-.15760,
-.16106,
.23812,
.09675,
.26508,
-.07038,
-.29866,
.03713,
-.31888,
-.01709,
-.34199,
.00554,
.40100,
.06404,
-.48395,
.14335,
-1.75199,
1.11015,

.00104,
.00284,
.00174,
.00474,
.00262,
.00712,
.00533,
.01431,
.01119,
.02898,
.01290,
.03302,
.01436,
.03638,
.01998,
.04843,
.02477,
.05747,
.03243,
06929,
.04637,
.08238,
.07880,
.08053,
.11906,
.04837,
.13254,
.03519,
.14933,
.01856,
.15944,
.00854,
.17100,

-.00277,
.20050,

-.03202,
.24197,

-.07167,
.87599,

-.55508,

damping ratio

INSTABILITY
U/b*wtor =

4.53




&

D

PK METHOD CASE #1
u r(alp) ah
50.0 5 -.5
k U/b*wtor damping
.3966, 5000, -.00640,
2.2909, .5000, -.01436,
.,2034, 1.0000, -.01487,
1.1348, 1.0000, -.02958,
.1394, 1.5000, -.02492,
.7434, 1.5000, -.04621,
.1087, 2.0000, -.03677,
.5425, 2.0000, -.06450,
.0916, 2.5000, -.05169,
.4169, 2.5000, -.084137,
3275, 3.0000, -.10547,
.0820, 3.0000, -.07180,
.2¢570, 3.5000, -.126113,
.0781, 3.5000, -.10247,
.1923, 4.0000, -.13992,
.0809, 4.0000, -.16167,
.1784, 4.1000, -.13846,
.0821, 4.1000, -.18312,
.1633, 4.2000, -.13313,
.0838, 4.2000, -.21078,
.1456, 4.3000, -.11102,
.0833, 4.3000, -.24824,
1306, 4.4000, -.05886,
.0805, 4.4000, -.29190,
.1228, 4.5000, -.01093,
.0749, 4.5000, -.33777,
1177, 4.6000, .02507,
.0678, 4.6000, -.38361,
.1133, 4.7000, .05465,
.0599, 4.7000, -.43058,
.1024, 4.8000, .08015,
.0499, 4.8000, -.48151,
.1056, 4.9000, .10301,
.0390, 4.9000, «.53891,
.1020, 5.0000, .12384,
.0284, 5.0000, -.60286,
.0986, 5.1000, .14317,
.0208, 5.1000, -.66517,

wben/wtor

.2

w

.19917,
1.14593,
.20335,
1.13484,
.20916,
1.11514,
.2173s,
1.08521,
.22893,
1.04258,
.98336,
.24614,
.89945,
.27359,
.76981,
.32367,
.73202,
.33747,
.68655,
.35084,
.62712,
.315793,
.57403,
.35396,
.55238,
.33681,
.54086,
.31138,
.53225,
.28056,
.52451,
.23879,
.51721,
.19045,
.50991,
.14083,
.50263,
.10505,

A-=-30

damping ratio

.03212
.01253
07295
.02606
.11830
.04141
.16679
.05933
.22026
.08066
10664
.28002
.13887
.35074
.17882
.44684
.18586
.47693
.19036
.51500
+17433
.56990
+10201
.63623
.01977
.70811
-.04629
.77642
-.10213
.83783
-.15106
.89589
-.19532
. 94285
-.23600
.97378
-.27394
.98776

INSTABILITY

U/b*wtor

4.53



PRt

LAPLACE METHOD CA

u r(alp)

50.0 .5

ND VELOCITY .50
-.01437
-. 01437
-.00637
~-. 00637
-.38147
-.38256
-.12656
-.12798
~-.04200
-.04214
-.00772
~. 00772

perfomance index is

ND VEIL.OCITY 1.00

-.02966

-. 02966

. 76212

. 76511

.01482

.01482

.24879

. 25595

. 081316

. 08429

. 01544
-.01543

perfomance index is

ND VELOCITY
-.04649
-, 04649
-1.14241
-1.14767
-.02480
-.02480
-.36693
-.38393
~.12267
-.12643
-,02316
-.02313

perfomance index is

1.50

ND VELOCITY
-.06529
-1.52250
-1.53023
~-.06529
-.51190
-.48020

2.00

SE #1

ah wben/wtor

-.5 .2

1.14595
-1.14595
-.19921
.19921
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

1.13157 . 00000

1.13486
-1.13486
.00000
.00000
.20360
-.20360
.00000
.00000
. 00000
. 00000
.00000
. 00000

1.22729 .00000

-1.11520
1.11520
.00000
.00000
.20984
-.20984
.00000
.00000
.00000
.00000
.00000
.00000

2.29740 .00000

1.08538
.00000
.00000

-1.08538
.00000

.00000 4

Eigenvalue Analysis



-.03664 .21879

-.03664 -.21879
- -.15957 .00000
-.16857 .00000
-.03088 .00000
-.03080 .00000
perfomance index is 28.13492 .00000
ND VELOCITY 2.50
=-1.90251 .00000
-1.91278 .00000
-.08644 -1.04289
-.08644 1.04289
-.63988 .00000
-.58718 .00000
-.05141 -.23195
-.05141 .23195
-.19235 .00000
-.21072 .00000
-.03860 .00000
-.03843 .00000
perfomance index is 2.70799 .00000
ND VELOCITY 3.00
-2.28251 .00000
-2.29534 .00000
-.11024 -.98348
-.11024 .98348
-.76786 .00000
-.68609 .00000
-.07108 .25240
-.07108 -.25240
~.25286 .00000
-.21817 .00000
-.04632 .00000
~-.04600 .00000
perfomance index is 2.86213 . 00000
ND VELOCITY 3.50
-2.66251 . 00000
-2.67790 .00000
-.13678 .89843
-.13678 -.89843
-.89583 .00000
-.77454 .00000
-.09940 .28811
«.09940 -.28811
-.29500 .00000
-.23173 .00000
-.05404 .00000
-.05348 .00000
perfomance index is 2.21510 .00000
- ND VELOCITY 4.00
’ =3.04253 + 00000
' ~-3.06045 .00000
~.16495 -.76095
-.16495 .76095
~-1.02381 .00000
-.84867 .00000

4-32




~.14324 -.36783

‘ -.14324 .36783
i -.33714 .00000
-,22548 . 00000
-.06176 .00000
-.06081 .00000
perfomance index is 2.43926 .00000
ND VELOCITY 4.10
-3.11854 .00000
-3.13696 .00000
-.16997 .71810
-.16997 -.71810
~1.04940 .00000
-.86123 .00000
-.15509 .39867
-.15509 -.39867
-.34557 .00000
-.22157 .00000
-.06331 .00000
-.06225 .00000
perfomance index is 2.98730 .00000
ND VELOCITY 4.20
-3.19455 .00000
-3.21348 .00060
-1.07500 .00000
-.87286 .00000
-.17319 -.65974
-.17319 .65974
-.16957 .44503
~-.16957 -.44503
-.35400 .00000
-.21693 .00000
-.06485 .00000
-.06368 .00000
perfomance index is 2.48161 .00000
ND VELOCITY 4.40
-3.34656 .00000
-3.36650 .00000
-.05134 .55387
-.32922 .52710
-1.12619 . .00000
-.89292 .00000
-.05134 -.55387
-.32922 -,52710
-.37086 ~.00000
-.20615 .00000
~.06794 .00000
-.06651 .00000
perfomance index is 6.60422 .00000
ND VELOCITY 4.50
7 -3.42257 .00000
. -3.44301 .00000
-1.15178 .00000
-.01016 -.54976
-.39043 «.51942

-.90108 .00000 1-133




-.01016 54976
d -.39043 .51942
4 ~.37929 .00000
-.20035 .00000
-.06948 00000
-.06791 .00000
perfomance index is
ND VELOCITY 4.60
-3.49858 .00000
=-3.51952 .00000
-1.17738 .00000
.02177 .54546
-.44317 .51200
-.90778 .00000
.02177 ~-.54546
-.44317 -.51200
-.38771 .00000
-.06929 .00000
-.07103 .00000
-.19451 .00000
perfomance index is
ND VELOCITY 4.80
-3.65060 00000
-3.67254 .00000
. 07249 .53602
.07249 -.53602
-1.22857 . 00000
-.53799 .49817
-.91590 .00000
-.53799 -.49817
-.40457 .00000
-.07200 00000
-.07412 .00000
-.18314 .00000
perfomance index is
ND VEIOCITY 5.00
-3.80262 .00000
-3.82557 .00000
-11382 -.52557
11382 52557
=1.27976 .00000
-.62745 ~-.48580
~.62745 .48580
-.91517 .00000
-.42143 .00000
-.17267 .00000
-.07461 .00000
-.07720 ,00000
perfomance index is

2.05162

5.28303

2.20679

1.71618

.00000

INSTABILITY
U/b*wtor = 4,53

.00000

.00000

.00000




Appendix H : Transonic Regime - Laplace Generated Eigen-
valies for M = 0.85

This sections gives the Laplace generated eigenvalues for M = 0.85.




LAPLACE METHOD TRANSONIC M=0.85

. u r(alp) ah wben/wtor Eigenvalue Analyws

50.0 .5 -.5 .2

ND VELOCITY .500

-.08315 1.27662
-.08315 -1.27662
-.00511 -.20185
-.00511 .20185
-.18737 -.01797
-.18737 .01797
-.12884 -.03121
-.12884 .03121
~.11139 -.01459
-.11139 .01459
-.02172 .00019
-.02172 -.00019
perfomance index is 1.34192 . 00000
ND VELOCITY 1.000
-.13682 -1.22225
-.13682 1.22225
-.01143 .21140
-.01143 -.21140
-.47016 .00000
-.41480 .00000
-.24390 -.08059
-.24390 . 08059
-.19773 -.03599
-.19773 .03599
~-.04279 .00145
-.04279 -.00145
perfomance index is 1.91492 . 00000
ND VELOCITY 1.500
-.14304 -1.17204
-.14304 1.17204
-.91862 .00000
-.60947 .00000
~-.01825 22490
-.01825 -.22490
-.35435 .13235
-.35435 -.13235
-.27054 .05787
-.27054 -.05787
-.06248 00460
-.06248 -.00460
perfomance index is 3.55296 . 00000
T  wo verocrTy 2.000
-.13090 -1.16269
-1.42867 .00000
-.13090 1.16269
-.81080 .00000

-.02269 .24257 41-136




-.02269 ~-.24257
-.46358 .18321
’ -.461358 -.18321
- -.33331 .07634
-.33331 -.07634
-.08006 -.01006
-.08006 .01006
perfomance index is 3.54698 . 00000
ND VELOCITY 2.500
-1.93877 . 00000
-.13300 -1.18652
-.13300 1.18652
-1.01285 . 00000
-.02228 .26434
-.02228 -.26434
-.57278 .23294
-.57278 -.23294
~-.38902 .08819
-.38902 -.08819
-.09496 -.01771
-.09496 .01771
perfomance index is 4.61556 .00000
ND VELOCITY 3.000
-2.43536 .00000
-.15539 1.22983
-.15539 -1.22983
-1.21510 .00000
-.68232 -.28189
-.68232 .28189
-.01448 -.28849
-.0144s8 .28849
-.44104 .09158
-.44104 -.09158
-.10696 .02704
-.10696 «. 02704
perfomance index is 3.86013 .00000
ND VELOCITY 3.100
-2.53320 .00000
-.16210 -1.24029
~.16210 1.24029
-1.25556 . 00000
-.70427 -.29162
-.70427 .29162
-.01186 -.29332
-.01186 .29332
-.45129 -.09119
-.45129 .09119
-.10903 .02906
-.10903 -.02906
perfomance index is 5.05791
ND VELOCITY 3.200
-2.63062 . 00000
-.16948 1.25130
~.16948 -1.25130
-1.29602 .00000
-.72623 -.30133 4-37



-.72623
-.00889
-.00889
-.46152
-.46152
-.11100
-.11100

perfomance index is

ND VELOCITY
-2.72764

~-.1774¢

-.17749

-1.33649

~.74821

.74821
00554
.00554
-.47177
-47177
.11287
.11287

perfomance index is

ND VELOCITY

-2.82428

-.18609
.18609
~1.37696
-.77020
.77020
-.00184
.00184
.48205
.48205
.11466
-.11466

perfomance index is

ND VELOCITY
~2.92058

-.198525

~1.41743

-.19525

-.79221

.79221
.00221
.00221
.49236
. 49236
-.11637
-.11637

perfomance index is

g ND VELOCITY
s =3.39765
-1.61980

-.24794

-.24794

-.90240

3.300

3.400

3.500

4.000

.30133
-.29807

.29807
~-.09044

. 09044

.03110
-.03110

5.61231

. 00000
-1.26286
1.26286
. 00000
-.31102
.31102
~-.30271
+ 30271
-.08933
. 08931
.03319
~.03319
24.33285

. 00000
=1.27495
1.27495
. 00000
.32070
-.32070
.30721
-.30721
.08786
-.08786
.03530
-.03530
16.47175

. 00000
1.28757
. 00000
-1.28757
~.33037
.33037
«31152
-.31152
. 08603
-.08603
.03744
-.03744
5.16679

. 00000

. 00000
-1.35846
1.35846
. 37857

A-38

» 00000

. 00000

. 00000

INSTABILITY
ND VEL = 3.45

. 00000



-.90240 -.37857

02714 -.32936
.02714 .32936
-.54475 =-.07102
-.54475 .07102
-.12386 . 04847
-.12386 -.04847

perfomance index is 2.57841 . 00000

A-39




“*p

Appendix I : Transonic Regime - Comparison of Rational Func-

tion Optimization

Comparison of rational function optimization for M = 080. M = 085 and M =

==
v 2]
-1
(W11




TRANSONIC AERODYNAMICS

M=0.85 M=0.80 M=0.875
N(1,1) .000000 .000000 .000000
, 7.351972 1.908267 6.759715
C, -.265177 3.804198 .499484
-8561.672085 -95004.636200 3.652575
.593074 .668869 .076634
8707.625432 15317.270050 .928264
-146.231038 79694.444592 -3.828033
N(1,2) 14.235672 10.400895 17.891303
) .957753 6.483311 -.319441
C, 1.258183 -.637080 2.425840
404976.770760 199406.181992 -21.350260
-8.145772 -4.472213 11.313079
~408964.029690 -31963.187732 -23.973478
3987.367830 -167451.070982 22.699002
N(2,1) .000000 .000000 .000000
-1.905869 -1.614667 -1.979172
C, -.293633 -0.378487 .006105
158360.047503 10060.571210 -3.656111
-.059842 .024373 -.004016
~159903.225805 ~1624.362035 ~.219576
1543.931881 -8436.118582 4.435226
N(2,2) -.516839 -.178982 -4.220761
' ~4.394286 2.247185 -1.072839
Chn, 2.744002 -2.311694 .007098
217699.240354 21872.971701 7.958546
.165112 -.038852 -.309693
-219861.401614 -3648.306001 3.606871
2184.097622 -18230.087698 ~8.442002
OPTIMAL
LAG TERMS .27892661 54004054 .30284145
.04365735 .06187302 00461111
.27899139 .54678439 .02192557
.28586712 .53878120 .35119036
ERROR .00139602 .00106544 .00236629
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Appendix J : 3DOF Incompressible Unsteady Aerodynamics
Expressions for Lift force. Pitching Moment and Hinge Moment

P, =1 —'21_;%(F+2G)

1
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Appendix I\ : Control Transformation Matrix
Various Airfoil Configurations (transformation)

For an aitfoil of specific geometiic configuration, Nissim and Abel determimed the
optimal parameters for a PD transfer function control. For an airfoil flap having a length
equal to 20% of the chord (cs = 0.6. see figure 10), and having displacement measured at
307 chord (measured from leading edge. gives a = —0.4), they found the cortesponding

values
[t]=[t11.t12]=[0.0.—186].
(t-]=[t;. 3]=[40.320]}.

In this study an airfoil flap having a length equal to 20% of the chotd (cq = 0.6,
see figute 10) and having displacement measured at 25% chord (cortesponding value ol
u = —0.5) was considered. A transformation was required to account for the difference i

position at which the measurements were made (Nissim 1971; Nissim 1977)

The transformation matiix can be written as

1 —z,—-04d
[ 1= lon
0 1
where [ ], is the original matrix values Nissim and Abel obtained fo1 the speafic geom-

etry of an airfoil flap having a length equal to 20% of the chord (¢s = 0.6. and having
displacement measured at 30% chord (measured from leading edge, gives a = —04).

namely

[t]=[tu, tiz]=[00. -1.86] .
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The value of r, 1s analogous to the quantity a, that is used in this thesis. Note when
« value of @ = 0.4 is used in the transformation matrix, the original matrix results are

correctly obtained

In this study an aitfoil flap having a length equal to 20% of the chord (c; = 0.6.
~see fignie 10) and having displacement measured at 25% chord (corresponding value of
a = —0.5) was considered A tiansformation was completed to account for the difference

in position of measurement by

| -ry,—04
[I]sz[’]up!
0 1
I —(-0.5)-04
[l],::[O —l.SG]ap, =[0 —1.86]
0 1
and
| —o,—-04
[l =1t"].,
0 1
_ —(=0.5) - 0.4
(7], =[4.0 3.2], =(4.0 3.6]
0 1
q
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Appendix L : Computer Program Listings

PROGRAM

1 UG.FOR

2 PK.FOR

3 SIMPN.FOR

4 SIMPTRN.FOR

5 LAPINCOM.FOR

6 LAPTRAN.FOR

7 LAPPDOP.FOR

B ]

INPUT FILES

UGTHEO.DAT
CONST.DAT

PKTHEO.DAT
CONST1.DAT

N1ll.DAT
N12.DAT

N1l1l.DAT
N1l2.DAT
N21.DAT
N22.DAT

LAPLACE.DAT
CONST6 . DAT

LAPLACE.DAT
CONST6.DAT

LAPLACE.DAT
CONST6 .DAT

OUTPUT FILES

UGDATA.OUT

PKDATA.OUT

LAG.OUT
LAPLACE. DAT
DATA.OQUT

LAG.OUT
LAPLACE.DAT
DATA.QUT

EIGEN.OUT

EIGEN.OUT

OPTIMAL.OUT
DATA.OUT

COMMENTS

eigenvalue analysis
flutter calculation
COMP.BAT (FORTRAN)
{incompressible)

eigenvalue analysis
flutter calculation
COMP.BAT (FORTRAN)
(incompressible)

rational function
approximation
(incompressible)

rational function
approximation
(transonic)

eigenvalue analysis
flutter calculation
COMP.BAT (FORTRAN)
{incompressible)

eigenvalue analysis
flutter calculation
COMP.BAT (FORTRAN)
(transonic)

eigenvalue analysis
flutter calculation
COMP.BAT (FORTRAN)
(incompressible)
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$storage:2
$floatcalls
$debug
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IMPLICIT REAL*8 (A-2)

INTEGER ib,n,ia,ijob,iz,ier,infer,i,j

COMPLEX*16 eval(2),A(2,2),B(2,2),EIGA(2),EIGB(2),Z(2,2),WK(3,6)
REAL k(40),kc(40),F(40),G(40),u

REAL abar(2,40),bbar(2,40) ,ndvel(2,40),ndw(2,40)

REAL gdamp(2,40),dratio(2,40)

INTEGER pt,pts

C Read in constants.
OPEN (UNIT=1,FILE='CONST.DAT',STATUS='0OLD')
READ (1,*) ia,ib,iz,n,ijob
CLOSE (UNIT=1)

[p R

open required files
OPEN (UNIT=2,FILE='CONST.OUT', STATUS='NEW')
OPEN (UNIT=4,FILE='UGEIGEN.OUT',STATUS='NEW')

C required constants
u=50.0
wrat=0.2
r=0.5
ah=-0.5

x=0.25
semic=1.0
wtor=1.0
pts=21
C
C Theodorsen function C(k)= F+iG given by k, wu»ve k=kc/2
C thus if kc=0.2, k=0.1 therefore require C(.'=7(0.1)
OPEN (UNIT=3,FILE='UGTHEO.DAT',STATUS='C " )
do 50 pt=1,pts
READ (3,*) k(pt),F(pt),G(pt)
Kc(pt)=2.0*k (pt)
50 continue
CLOSE (UNIT=3)
c
C formation of COMPLEX matrices [A] and [B] to
C solve eigenvalue problem given by [A]{x) = lamba [B]{x)
do 100 pt=1,pts
arll=0.25%u*kc(pt)**2+0.25%*kc (pt) **2+kc(pt) *G(pt)
aill=-kc(pt) *F(pt)
arl2=0.25*x*u*kc(pt) **2-0.25%ah*kc(pt) **2-2*F(pt) +
1 (0.5-ah) *kc (pt) *G(pt)
ail2=-0.5*kc(pt)-2*G(pt)-(0.5-ah) *kc(pt) *F(pt)
ar21=0.25*x*u*kc(pt) **2-0.25%ah*kc(pt)**2-(ah+0.5)
1 *kc (pt) *G (pt)
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ai2i=(ah+0.5) *kc(pt) *F(pt)
ar22=0.25%r**2*ukkc{pt) **2+(0.125+ah**2) 0. 25%kc (pt) **2

1 +2%(ah+0.5) *F (pt)-(ah+0.5) * (0.5-ah) *kc (pt) *G (pt)
ai22=-(0.5-ah) *0.5%kc (pt)+2*(ah+0.5) *G (pt)+(ah+0.5)
1 *(0.5-ah) *kc (pt) *F (pt)

a(l,1)=demplx(arll,aill)
a(l,2)=dcmplx(arl2,ail2)
a(2,1)=dcmplx(ar2l,ai2l)
a(2,2)=dcmplx(ar22,ai22)

brll=wrat**2

bil1=0.0

brl2=0.0

bil2=0.0

br21=0.0

bi21=0.0

br22=r**2

bi22=0.0
b(1,1)=dcmplx(brll,bill)
b(1,2)=dcmplx(bri2,bil2)
b(2,1l)=dcrmplx(br2l,bi21)
b(2,2)=dcmplx(br22,bi22)

subrountine for eigenvalue calculation
abar : real part of eval( )
bbar : imaginary part of eval( )
CALL EIGZC(A,IA,B,IB,N,IJOB,EIGA,EIGB,2,1Z,WK,INFER,IER)
DO 5 I=1,n

5 EVAL(I)=EIGA(I)/EIGB(I)
write(2,19) k(pt),F(pt),G(pt)

19 format (' k ',£5.3,! F + iG ',2£12.7)
write(2,20) arll,aill,arl2,ail2,ar2l,ai2l
write(2,20) ar22,ai22,brll,br22

20 format (10£12.7)
write(2,21)wk(1,1)

21 format(' perfomance index is', 2f10.3)
write(2,22)eval(l)

abar (1,pt)=dreal (eval(l))
bbar (1,pt)=dimag(eval (1))
write(2,22)eval(2)
abar(2,pt)=dreal(eval(2))
bbar (2,pt)=dimag(eval(2))
write(4,22)k(pt),eval(1l)
write(4,22)k(pt),eval(2)
do 6 i=1,n

6 write(2,22) (z2(i,3).3=1,n)

22 format(8f12.5)

100 continue

CLOSE (UNIT=3)

calculations and data table

ndvel : nd velocity vel/ (b*wtor)
ndw ¢ nd frequency w2/wtor
gdamp ! structural damping coefficient g
dratio ¢ damping ratio -g/2




OPEN (UNIT=5,FILE='UGDATA.OUT',STATUS="'NEW"')
OPEN (UNIT=6,FILE='UGDAMP.OUT',STATUS="'NEW')
OPEN (UNIT=7,FILE='UGFREQ.OUT',STATUS='NEW!')

write(5,32)

write(5,121)

write(5,121)

write(5,33)

write(5,121)

write(5,34) u,r,ah,wrat

write(5,121)

write(5,120)

write(5,121)

32 format(' UG METHOD ')
33 format ("' u r(alp) ah wben/wtor!')
34 format (£7.1,4£10.1)
120 format ("' k U/b*wtor w/wtor g
1! damping ratio ')
121 format (' ")

do 140 pt=1,pts

do 130 i=1,2
ndvel(i,pt)=(u/abar(i,pt))**0.5
ndw(i,pt)=k(pt) *(u/abar(i,pt))**0.5
gdamp(i, pt)=bbar(i,pt)/abar(i,pt)
dratio(i,pt)=-gdamp(i,pt)/2

C printing data to to be graphed to file 'UGDATA.OUT'®
write(5,125) k(pt),ndvel(i, pt),
1 ndw(i,pt) ,gdamp (i,pt) ,dratio(i,pt)

write(6,12%) ndvel(i,pt),dratio(i,pt)
write(7,125) ndvel(i,pt),ndw(i,pt)

125 format(fe6.3,',*,£f13.5,',',£12.5,"',¢',£9.5,!',!
1 ,£9.5,',"',f12.5,"',',£12.5)

130 continue

140 continue

CLOSE (UNIT=7)
CLOSE (UNIT=6)
CLOSE (UNIT=5)

END




INPUT FILE : UGTHEO.DAT
THEODORSEN FUNCTION C(k)

10.00 0.5006 =-0.0124
6.000 0.5017 -0.0206
4.000 0.5037 =-0.0305
3.000 0.5063 ~-0.0400
2.000 0.5129 -0.0577
1.500 0.5210 -0.0736
1.200 0.5300 -0.0877
1.000 0.5394 -0.1003
0.800 0.5541 -0.1165
0.600 0.5788 -0.1378
0.400 0.6250 -0.1650
0.300 0.6550 -0.1793
0.200 0.7276 -0.1886
0.150 0.7737 -0.1857
0.13G 0.7954 -0.1820
0.110 0.8188 -0.1766
0.100 0.8320 -0.1723
0.050 0.9090 -0.1305
0.025 0.9545 -0.0872
0.010 0.9824 -0.0482

k F iG

INPUT FILE : CONST.DAT
2 2 2 2 2




OUTPUT FILE : UGDATA.OUT
UG METHOD
u r(alp) ah wben/wtor
50.0 .5 -.5 o2
k U/b*wtor w/wtor g damping ratio
10.000, .01970, .19698, -.00209, .00104,
10.000, .11493, 1.14932, -.00569, .00284,
6.000, .03283, .19699, -.00G348, .00174,
6.000, .19150, 1.14900, -.00948, .00474,
4.000, .04925, .19701, -.00524, .00262,
4.000, .28709, 1.14837, -.01423, .00712,
3.000, .06568, .19704, -.00703, .00351,
3.000, .38249, 1.14748, -.01901, .00950,
2.000, .09856, .19711, =~-.01067, .00533,
2.000, .57247, 1.14494, -.02861, .01431,
1.500, .13147, .19721, =-.01444, .00722,
1.500, .76090, 1.14135, -.03831, .01916,
1.200, .16444, .19732, -.01834, .00917,
1.200, .94726, 1.13672, -.04810, .02405,
1.000, .19746, .19746, -.02238, .01119,
1.000, 1.13102, 1.13102, -.05796, .02898,
.800, .24711, .19769, -.02871, .01436,
.800, 1.40063, 1.12050, =-.07275, .03638,
.600, .33024, .19814, -.03995, .01998,
,600, 1.82975, 1.09785, ~-.09686, ,04843,
.500, .39712, .19856, -.04954, .02477,
.500, 2.15096, 1.07548, -.11494, .05747,
.400, .49815, .19926, -.06485, .03243,
.400, 2.58976, 1.03590, -.13857, .06929,
.300, .66874, .20062, -.09274, .04637,
.300, 3.19652, .95896, -.16476, .08238,
.200, 1.02048, .20410, -.15760, .07880,
.200, 3.97729, .79546, -.16106, .08053,
.150, 1.39164, .20875, -,23812, .11906,
.150, 4.35545, .65332, -.09675, .04837,
.130, 1.63333, .21233, =-.2986%, .14933,
.130, 4.47879, .58224, +~.03713, .01856,
.110, 1.98367, .218206, -.40100, .20050,
.110, 4.59055, .50496, . 06404, -.03202,
.100, 2.22456, .22246, -.481395, .24197,
.100, 4.66272, .46627, .14335, ~-.07167,
‘ .050, 4.97074, .24854, -1.75199, .87599,
\ .050, 7.19299, .35965, 1.11015, ~.55508,
! ,025, 10.37782, .25945, -4.24223, 2.12111,
.025, 13.98072, .34952, 2.64402, -1.32201,
- .010, 27.41923, .27419,-12.28424, 6.14212,
.010, 34.48513, .34485, 6.79696, -3.39848,
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$storage:2

$floatcalls
$debug
C ———————————————————————————————————————————————————————————————————————
c p-k EIGENVALUE SOLUTION
C -----------------------------------------------------------------------
C
IMPLICIT REAL*8 (A-2)
INTEGER ib,n,ia,ijob,iz,ier,infer,i,j
COMPLEX*16 eval(4),A(4,4),B(4,4) ,EIGA(4),EIGB(4),Z(4,4),WK(6,12)
REAL k(40),kc(40),F(40),G(40),u,vel
REAL abar(4),bbar(4) ,ndvel (4,40) ,ndw(4, 40)
REAL gdamp(4,40),dratio(4,40) ,kqg, fg,99, step
INTEGER temp, it,pt,pts,test,solnl, isoln,check,soln(2)
C

C Read in constants.

OPEN (UNIT=1, FILE='CONST1l.DAT',STATUS="'OLD')
READ (1, *) ia,ib,iz,n,ijob

CLOSE (UNIT=1)

c

C open required files
OPEN (UNIT=2,FILE='CONST.OUT',STATUS='NEW')
OPEN (UNIT=4,FILE='PKDATA.OUT',KSTATUS="'NEW')
OPEN (UNIT=5, FILE="'PKDAMP.OUT',STATUS='NEW')

OPEN (UNIT=6, FILE='PKFREQ.OUT', STATUS="NEW')
c

C required constants
u=50.0
wrat=0.2
r=0.5
ah=-0.5

x=0.25
semic=1.0
wtor=1.0
when=wrat*wtor
pts=41

write(4,32)

write(4,35)

write(4,35)

write(4,33)

write(4,35)

write(4,34) u,r,ah,wrat

write(4,35)

write(4,36)

write(4,35)
32 format(' PK METHOD ')
33 format(" u r(alp) ah wben/wtor')
34 format(£f7.1,4£f10.1)
35 format(' ')

36 format (' k ND VEL b (damping) w/wtor ')
Cc

C Theodorsen function C(k)= F+iG given by k, where k=kc/2
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C thus if kec=0.2, k=0.1 therefore require C(k)=C(0.1)
OPEN (UNIT=3,FILE='PKTHEC.DAT',STATUS='OLD')
do 50 pt=1, pts
READ (3, *) k(pt),F(pt),G(pt)
kc(pt)=2.0*k(pt)
50 continue
CLOSE (UNIT=3)

C
C
C iterate velocity
vel=0.0
step =0.5
60 vel=vel+step
if(vel/ (semic*wtor).gt.5.0) goto 120
do 95 test=1,2
check=0
count=0
kg=( (wtor+wben)/2) *semic/vel
C
C interpolation of reduced frequency, F and G
51 tempw=vel *kg/senic
it=1
52 it=it+1
if(kg.1t.0.01) kg=0.01
if(k(it) .1t.kg) goto 53
goto 52
53 Fg=f(it-1)+(£(it)-£(it-1))*(kg-k(it-1))/(k(it)-k(it-1))
Gg=g (it-1)+(g(it)-g(it-1))*(kg=k(it-1))/(k(it)-k(it-1))
54 format(' ',8£12.5)
C

C formation of COMPLEX matrices [A] and [B] to
C solve eigenvalue problem given by [A){x) = lambda [B]{x}
arll=0.0
aill=0.0
arl2=0.0
ail2=0.0
arll3=wrat**2+*wtor**2
ailld=0.0
arl4=(2/u)*(vel/semic) **2*Fqg
ail4=(2/u)*(vel/semic) **2*Gg
ar21=0.0
ai21=0.0
ar22=0.0
ai22=0.0
ar23=0.0
ai23=0.0
arz4=rx*2*ytor*#*2-2*(ah+0.5) *(Fg/u) *(vel/semic) **2
ai24=-2*(ah+0.5)*(Gg/u) *(vel/semic) **2
aril=-1.0
ai3l=0.0
ar3z2=0.0
ai32=0.0
ar33=0.0
ai33=0.0
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ar34=0.0
ai34=0.0
ar41=0.0
ai4l1=0.0
ar42=~-1.0
aiq42=0.0
ar43=0.0
ai43=0.0
ar44=0.0
ai44=0.0

a(l,1l)=dcmplx(arll,aill)
a(l,2)=dcmplx(arl2,ail2)
a(l,3)=dcmplx(arl3,aill)
a(l,4)=dcmplx(arl4,aild)
a(2,1)=dcmplx(ar21,ai2l)
a(2,2)=dcmplx(ar22,ai22)
a(2,3)=dcmplx(ar23,ai23)
a(2,4)=dcmplx(ar24,ai24)
a(3,l)=demplx(ar3l,ail3l)
a(3,2)=dcmplx(ar32,ail2)
a(3,3)=dcmplx(ar33,ail3)
a(3,4)=dcmplx(ar34,aild)
a(4,1)=dcmplx(ar4l,aisl)
a(4,2)=dcmplx(ar42,ais2)
a(4,3)=dcmplx(ard3,aid3)
a(4,4)=dcmplx(ar44,aidq)

bril=1+1/u

bil1=0.0

brl2=x-ah/u

bil2=0.0

brl3=2*(Fg/u) * (vel/semic)
bil3=2*% (Gg/u) * (vel/semic)

brid=((1/u)+2* (Fg/u)*(0.5-ah))*(vel/semic)
bil4=(2*(Gg/u) *(0.5-ah))*(vel/semic)

br2l=x-ah/u

bi21=0.0

br22=r*#*2+(0,125+ah**2) /u

bi22=0.0

br23=-2*%(ah+0.5)*(Fg/u) *(vel/semic)
bi23=-2*(ah+0.5)*(Gg/u)*(vel/semic)

br24=((0.5-ah) /u-2*(ah+0.5) * (Fg/u) * (0.5-ah) ) * (vel/semic)
bi24= (-2*(ah+0.5)*(Gg/u)*(0.5-ah) ) *(vel/senic)

br31=0.0
bi31=0.0
br32=0.0
bi32=0.0
br33=1.0
bi33=0.0
br34=0.0
bi34=0.0
br41=0.0
bid1=0.0
br42=0,0
bi42=0.0




br43=0.0

bi43=0.0

br44=1.0

bi44=0.0
b(1,1)=dcmplx(-brll,-bill)
b(1,2)=dcmplx(-brl2,-bil2)
b(l,3)=dcmplx(-brl3,-bil3)
b(1l,4)=dcmplx(-brl4,~-bil4)
b(2,1)=dcmplx(~br21,-bi2l)
b(2,2)=dcmplx(~br22,-bi22)
b(2,3)=dcmplx(-br23,-bi23)
b(2,4)=dcmplx(~br24,-bi24)
b(3,1)=dcmplx(-br31l,-bi3l)
b(3,2)=dcmplx(~br32,-bi32)
b(3,3)=dcmplx(-br33,-bi33)
b(3,4)=dcmplx(~br34,-bi34)
b(4,1)=dcmplx(~br4l,-bidl)
b(4,2)=dcmplx(~br42,-big2)
b(4,3)=dcmplx(~brd3,-bid3)
b(4,4)=dcmplx(-br44,-bis4)

C
C subrountine for eigenvalue calculation
C abar : real part of eval{ )
C bbar : imaginary part of eval( )
CALL EIGZC(A,IA,B,IB,N,IJOB,EIGA,EIGB,2,1IZ,WK, INFER, IER)
C
do 5 I=1,n

5 EVAL(I)=EIGA(I)/EIGB(I)

21 format(' perfomance index is', 2£10.3)
c write(2,22)eval(l)

abar(l)=dreal (eval(l))
bbar(1)=dimag(eval(l))
c write(2,22)eval(2;
abar(2)=dreal (eval(2))
bbar(2)=dimag(eval(2))
c write(2,22)eval(3)
abar(3)=dreal (eval(3))
bbar(3)=dimag(eval(3))
c write(2,22)eval (4)
abar(4)=dreal (eval(4))
bbar(4)=dimag(eval(4))
C
C obtaining eigenvalues with positive imaginary parts for analysis
j=0
do 14 isoln=1,4
if (bbar(isoln).gt.0.0) goto 12
goto 14
12 J=j+1
soln(j)=isoln
14 continue
if (check.eq.0) goto 23
if (test.eq.l.and.abs(tempw-bbar(soln(l))).lt.abs(
1 tempw-bbar (soln(2)))) goto 23
if (test.eq.2.and.abs(tempw~bbar(soln(2))).lt.abs(
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tempw-bbar (soln(l1)))) goto 23
if(test.eqg.2) goto 19
temp=soln(1)

soln(l)=soln(2)

soln(2)=temp

goto 213

temp=soln(2)

soln(2)=soln(1l)

soln(l)=temp

C convergence check

23

c

check=1

w=dimag(eval (soln(test)))

if (abs(w-tempw).1lt.0.001) goto 94
kg=w*semic/vel

goto 51

C writing final data to file

94

non o0

100
120
200
300

1

1
1

write(4,27)kg,vel/ (semic*wtor) ,dreal (eval (soln(test))),
dimag(eval (soln(test)))/wtor

write(5,27) vel/(semic*wtor),-dreal (eval(soln(test)))/
((dreal (eval (soln(test)))) **2+ (dimag (eval (soln(test))))

**k2) ®%0. 5
write(6,27) vel/(semic*wtor),dimag(eval(soln(test)))/wtor
format(f6.4,',',£7.4,"',',£12.5,"',',£12.5)
format (8£f12.5)

continue

changing velocity step size

if(vel/(semic*wtor).ge.5.0) step=0.1
if (vel/(semic*wtor).ge.4.8) step=0.05
if(vel/(semic*wtor).ge.5.0) step=0.5
if(vel/(semic*wtor).ge.6.0) goto 120
goto 60
CLOSE (UNIT=4)
CLOSE (UNIT=2)
END




INPUT

THEODORSEN FUNCTION C(k)

10.00
6.000
4.000
3.000
2.000
1.500
1.200
1.000
0.990
0.880
0.800
0.770
0.660
0.600
0.560
0.550
0.500
0.440
0.400
0.340
0.330
0.325
0.320
0.315
0.310
0.305
0.300
0.240
0.220
0.200
0.160
0.120
0.110
0.100
0.080
0.060
0.050
0.040
0.025
0.010
0.000

FILE :

0.5006
0.5017
0.50137
0.5063
0.5129
.5210
.5300
.5394
.5400
.5474
.5541
.5570
.5699
.5788
.5857
.5876
.5979
.6130
.6250
.6469
.6512
.6535
.6558
.6581
.6604
.6627
.6650
.6989
.7125
.7276
.7628
.8063
.8188
.8320
.8604
.8920
.9090
.9267
.9545
.9824
.0000

POCOOOO000DO000000000O0000VDODO0O0DODOO0OOOOOOO

F

FILE :

4 4

2

PKTHEO. DAT

-0.0124
-0.0206
-0.0305
-0.0400
-0.0577
-0.0736
-0.0877
-0.1003
-0.1010
-0.1095
=0.1165
-0.1193
-0.1308
-0.1378
-0.1428
-0.1441
-0.1507
-0.1592
-0.1650
-0.1738
-0.1752
-0.1759
-0.1766
-0.1773
-0.1779
-0.1786
-0.1793
-0.1862
~-0.1877
-0.1886
~0.1876
-0.1801
-0.1766
-0.1723
-0.1604
-0.1426
-0.1305
-0.1160
-0.0872
-0.0482
~-0.0000

iG

CONST1.DAT
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I OUTPUT FILE : PKDATA.OUT

PK METHOD

u r(alp) ah wben/wtor

50.0 «5 -.5 .2

k ND VEL b (damping) w/wtor
.396n, .5000, -.00640, .19917

2.2909, .5000, -.01436, 1.14593
.2034, 1.0000, -.01487, .20335
1.1348, 1.0000, -.02958, 1.13484

.1394, 1.5000, -.02492, .20916
.7434, 1.5000, -.04621, 1.11514
.1087, 2.0000, -.03677, .217395
.5425, 2.,0000, -.06450, 1.08521
.0916, 2.5000, -.05169, .22893
.4169, 2.5000, -.08437, 1.04258
.3275, 3.0000, -.10547, .98336
.0820, 3.0000, -.07180, .24614
.2570, 3.5000, -.12613, .89945
.0781, 3.5000, -.10247, .27359
.1923, 4.0000, -.13992, .76981
.0809, 4.0000, -.16167, .32367
.1228, 4.5000, -.01093, .55238
.0749, 4.5000, -.33777, .33681
.1020, 5.0000, .12384, .50991
.0284, 5.0000, -.60286, .14083
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SEQUENTIAL SIMPLEX PROGRAM (MINIMIZATION PROBLEM SOLVING)
RATIONAL FUNCTION APPROXIMATION - INCOMPRESSIBLE REGIME
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OPERATION
REQUIRE: 1) INPUT OF ICOUNT, N, REQMIN, START(I),STEP(I)
2) USER SPECIFIED FUNCTION SUBPROGRAM (DOUBLE PRECIS1ON
FUNCTION FN(X) - MINIMIZATION FUNCTION)

DOUBLE PRECISION START(20),STEP(20),XMIN(20),
1XSEC(20),YNEWLO, YSEC,REQMIN

OPEN(UNIT=6, FILE='DATA.QUT!')
kkk**x INPUT REQUIRED **kkkkkkkkxkkkkkkkk
*
: ICOUNT,N,REQMIN,START(N) ,STEP(N) *
:*************************************:
LET N=4 AT ALL TIMES, SIMPLY SET START(I)=0.0 AND STEP(I)=0.0
ICOUNT=260
N=4

REQMIN=0,0000000000001
START(1)=0.015

START (2)=0.084464515
START (3)=0.25635

START (4)=0.76550587
STEP(1)=0.0105
STEP(2)=0.01
STEP(3)=0.05
STEP(4)=0.1

DO 60 I=1,N
XMIN(I)=0.DO
XSEC(I)=0.DO
60 CONTINUE
YNEWLO=0. DO
YSEC=0.D0

CALL NELDER-MEAD SUBROUTINE

CALL NELMIN (N, START, XMIN, XSEC, YNEWLOQ, YSEC,
1REQMIN, STEP, ICOUNT)

OUTPUT FROM PROGRAM
WRITE(6,64)

WRITE(6,65) ICOUNT
WRITE(6,75)




WRITE(6,77)
Do 79 I=1,N
79  WRITE(6,80) I,XSEC(I),XMIN(I)
WRITE(6,82)
WRITE(6,83)
WRITE(6,84) YSEC,YNEWLO

64 FORMAT(6X,1H //,1H ,42H SEQUENTIAL SIMPLEX : PROBLEM MINIMIZATION)
65 FORMAT(1H //,1H ,I5,12H TRIALS USED/)
75  FORMAT(1H ,21X,9HESTIMATES/)
77  FORMAT (6X,1H ,9HPARAMETER, 7X, 12HNEXT-TO-BEST, 8X,
14HBEST/)
80 FORMAT(1H ,I5,2F20.7)
82  FORMAT(6X,1H //,1H ,6X,15HFUNCTION VALUES/)
83 FORMAT(6X,1H ,5X,13H NEXT-TO-BEST,8X,4HBEST/)
84  FORMAT(6X,1H ,2F15.9)

STOP
END
c
c NELDER-MEAD SUBROUTINE
o

SUBROUTINE NELMIN(N,START, XMIN, XSEC,YNEWLO, YSEC,
1REQMIN, STEP, ICOUNT)

DOUBLE PRECISION START(N),STEP(N),XMIN(N),
1XSEC(N) ,YNEWLO, YSEC, REQMIN,P(20,21) ,PSTAR(20),
2P2STAR (20) , PBAR(20) ,Y (20) , DN, 2, YLO, RCOEFF,
3YSTAR, ECOEFF, Y2STAR, CCOEFF, FN, DABLT, DCHK,
4COORD1, COORD2

DATA RCOEFF/1.0D0/,ECOEFF/2.0D0/,CCOEFF/0.5D0/

KCOUNT=ICOUNT

ICOUNT=0

c

IF (REQMIN.LE.0.DO) ICOUNT=ICOUNT-1

IF(N.LE.O) ICOUNT=ICOUNT-10

IF(N.GT.20) ICOUNT=ICOUNT-10

IF (ICOUNT.LT.0) RETURN

o

DABIT=2.04607D-35

BIGNUM=1.0D38

KONVGE=5

XN=FLOAT(N)

DN=DFLOAT (N)

NN=N+1

c
c CONSTRUCTION OF INITIAL SIMPLEX
o

1001 DO 1 I=1,N
1 P(I,NN)=START(I)

Y (NN)=FN (START)
ICOUNT=ICOUNT+1
DO 2 J=1,N
DCHK=START (J)
START (J) =DCHK+STEP (J)
DO 3 I=1,N

A =60




oRoNeNo N NP KS!

NOn

o000

oNeNoNe!

1000

2005

2010

2015

2020

P(I,J)=START(I)
Y (J)=FN (START)
ICOUNT=ICOUNT+1
START (J) =DCHK

SIMPLEX CONSTRUCTION COMPLETE

FIND HIGHEST AND LOWEST Y VALUES
YNEWLO (Y(IHI)) INDICATES THE VERTEX OF
THE SIMPLEX TO BE REPLACED

YLO=Y (1)

YNEWLO=YLO

1LO=1

IHI=1

DO 5 I=2,NN
IF(Y(I).GE.YLO) GOTO 4
YLO=Y (I)

1LO=I

IF(Y(I) .LE.YNEWLO) GOTO 5
YNEWLO=Y (I)

IHI=I

CONTINUE

PERFORM CONVERGENCE CHECKS ON FUNCTION

DCHK= ( YNEWLO+DABIT) / (YLO+DABIT) —1.D0O
IF (DABS (DCHK) . LT.REQMIN) GOTO 900

KONVGE=KONVGE-1
IF(KONVGE.NE.0) GOTO 2020
KONVGE=5

CHECK CONVERGENCE OF COORDINATES ONLY
EVERY 5 SIMPLEXES

DO 2015 I=1,N

COORD1=P(I, 1)

COORD2=COORD1

DO 2010 J=2,NN
IF(P(I,J).GE.COORD1) GOTO 2005
COORD1=P (I, J)

IF(P(I,J).LE.COORD2) GOTO 2010
COORD2=P(I,J)

CONTINUE

DCHK= (COORD2+DABIT) / (COORD1+DABIT) -1 .DO
IF (DABS (DCHK) . GT.REQMIN) GOTO 2020
CONTINUE

GOTO 900

IF (ICOUNT.GE.KCOUNT! GOTO 900

CALCULATE PBAR, THE CENTROID OF THE
SIMPLEX VERTICES EXCEPTING THAT WITH
Y VALUE YNEWLO




[

o,

eNeK?! oMo Ne] oMo NY] a0n

oNoNoNe!

o NoNp]

10
11

12

13

14

15

16

po 7 I=1,N
Z=0.0D0

DO 6 J=1,NN
2=2+P(I,J)
2=2-P(I,IHI)
PBAR(I)=2/DN

REFLECTION THROUGH THE CENTROID

DO 8 I=1,N

PSTAR(I)= (1.0DO+RCOEFF)*PBAR (I)-RCOEFF*P (I,IHI)
YSTAR=FN ( PSTAR)

ICOUNT=ICOUNT+1

IF (YSTAR.GE.YLO) GOTO 12

IF (ICOUNT .GE.KCOUNT) GOTO 19

SUCCESSFUL REFLECTION, SO EXTENSION

DO 9 I=1,N

P2STAR(I) =ECOEFF*PSTAR(I)+(1.0D0O-ECOEFF) *PBAR (I)
Y2STAR=FN (P2STAR)

1COUNT=ICOUNT+1

RETAIN EXTENSION CR CONTRACTION

IF (Y2STAR.GE.YSTAR) GOTO 19
DO 11 I=1,N
P(I,IHI)=P2STAR(I)
Y(IHI)=Y2STAR

GOTO 1000

NO EXTENSION

L=0
DO 13 I=1,NN
IF(Y(I).GT.YSTAR) L=L+1
CONTINUE

IF(L.GT.1) GOTO 19
IF(L.EQ.0) GOTO 15

CONTRACTION ON THE REFLECTION SIDE OF THE
CENTROID

DO 14 I=1,N
P(I,IHI)=PSTAR(I)
Y (IHI)=YSTAR

CONTRACTION ON THE Y(IHI) SIDE OF THE CENTROID
IF(ICOUNT.GE.KCOUNT) GOTO 900
DO 16 I=1,N

P2STAR(I) =CCOEFF*P (I, IHI)+ (1.0D0~CCUEFF) *PBAR (1)
Y2STAR=FN (P2STAR)
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ICOUNT=ICOUNT+1
IF(Y2STAR.LT.Y(IHI)) GOTO 10

CONTRACT THE WHOLE SIMPLEX

DO 18 J=1, NN
DO 17 I=1,N
P(I,J)=(P(I,J)+P(I,ILO))*0.5D0
17 XMIN(I)=P(I,J)
Y(J) =FN(XMIN)
18 CONTINUE
ICOUNT=ICOUNT+NN
IF (ICOUNT . LT.KCOUNT) GOTO 1000
GOTO 900

RETAIN REFLECTION

19 CONTINUE
19 DO 20 I=1,N
20 P(I,IHI)=PSTAR(I)
Y(IHI)=YSTAR
GOTO 1000

SELECT THE TWO BEST FUNCTION VALUES (YNEWLO
AND YSEC) AND THEIR COORDS. (XMIN AND XSEC)

900 DO 23 J=1,NN
DO 22 I=1,N

22 XMIN(I)=P(I,J)
Y(J) =FN(XMIN)

23 CONTINUE
YNEWLO=BIGNUM
DO 24 J=1,NN
IF(Y (J).GE.YNEWLO) GOTO 24
YNEWLO=Y (J)
IBEST=J

24 CONTINUE
Y (IBEST)=BIGNUM
YSEC=BIGNUM
DO 25 J=1,NN
IF(Y(J).GE.YSEC) GOTO 25
YSEC=Y (J)
ISEC=J

25 CONTINUE
DO 26 I=1,N
XMIN (I)=P (I,IBEST)
XSEC(I)=P (I,ISEC)

26 CONTINUE
RETURN
END

APPROXIMATING FUNCTION : PADE APPROXIMATE WITH LAG TERMS

DOUBLE PRECISION FUNCTION FN(lag)
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IMPLICIT REAL*8 (A-Z)

COMPLEX*16 ckquad,cklag,ckbar(40,2,2),p

DOUBLE PRECISION LAG (4)

REAL*8 w(40) ,k(40,2,2),F(40,2,2),6(40,2,2),a(9,18) ,b(9,1),x(9,1)
REAL*8 mn(40)

INTEGER i,m, in,nst,nf,j, prt,totlag,c, r,count,icount

INTEGER D,COL,6ROW

a0

OPEN (UNIT=1,FILE="'LAG.OUT')
OPEN (UNIT=10,FILE="'LAPLACE.DAT"')

kkkkkkxki® TNPUT REQUIRED *kkkkkkkkkhhkthkkhhhhkkk

* *
* OPEN REQUIRED INPUT TABULAR DATA FILES *
* MINIMUM ERROR DESIRED FCR TABTE *
* TOTAL # OF ITERATIONS ICOUNT *
* INPUT NUMBER OF LAG TERMS REQUIRED *
* # OF POINTS (m) IN DATA FILES *
* *
* *

I3 2222222 2 R 2222 et s R a2 222222 2 22 2 X2 L)

ocNoNoNoNoRoNoNo o NoNo N e

icount=260+5
minerr=0.0000167
totlag=4

m=40

O

count=count+1
if (count.gt.1) goto 88

C

C FILES CONTAIN k(i,r,c), F(i,r,c), G(i,r,c)
C k(i) REDUCED FREQUENCY

C F(i) REAL

c G(i) IMAGINARY

C
C

APPROXIMATING C(k) AND C(k)*ik
OPEN (UNIT=2,FILE='N11.DAT',STATUS="'0OLD')
OPEN (UNIT=4,FILE='N1l2.DAT', STATUS="0OLD"')
do 150 i=1,m
READ(2,*) k(i,1,1),F(i,1,1),G(1i,1,1)
READ(4,*) k(i,1,2),F(i,1,2),G(i,1,2)
150 continue
CLOSE (UNIT=4)
CLOSE (UNIT=2)

C
C REQUIRED CONSTANTS
Cc matrix [A] ( size in x in )
88 nst=4
in=nst+(totlag-1)
nf=2*in
C
C NOTE: lag(l) <> lag(2) <> lag(3) <> lag(4)
C lag(1l), lag(2), lag(3), lag(4) must be all non-negative
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C BOUNDARY (CONSTRAINT) CONDITIONS

163
164

157
156

390

400

410

0

C

415

do 156 i=1,totlag
if(lag(i).1t.0.0) lag(i)=i*0.0001
do 157 j=1,totlag-1
if(i.eq.j) goto 157
if(lag(i).eq.lag(j)) goto 163
goto 157
print 164, Jj
format (i5,' EQUAL LAG TERMS REQUIRES IMMEDIATE STOP')
stop
continue
continue

FN=0.0

do 750 c¢=1,2
r=1
err=0.0
RESETTING MATRIX ELEMENT VALUES TO ZERO
do 410 i=1,in
do 400 j=1,nf
a(i,j)=0.0
continue
b(i,1)
x(i,1)
continue

0.0
0.0

CREATING MATRICES [A] AND [B] : SOLVE [A] (x} = [B]
do 175 i=1,m

bkl=k(i,r,c)**2/(k(i,r,c)**2+1lag(1l) **2)
if(totlag.eq.1l) goto 415
bk2=k(i,r,c)**2/(k(1i,r,c) **2+1lag(2) **2)
if(totlag.eq.2) goto 415
bk3=k(i,r,c)**2/(k(i,r,c) **2+1lag(3) **2)
if(totlag.eq.3) goto 415
bka=k (i,r,c)**2/'k(i,r,c)**2+1lag(4) **2)
mn(i)=F(i,r,c)**2+G(i,r,c) **2
if(mn(i).1t.1.0) mn(i)=1.0
w(i)=1.0
w(i)=w(i)/mn(i)
a(l,1)=a(l, L)+w(i)*(1.0)
a(l,2)=a(l,2)+w(i)*(0.0)
a(l,3)=a(l,3)+w(i)*(~k(i,r,c) **2)
a(l,4)=a(l,4)+w(i)*(bkl)
a(1,5)=a(l,5)+w(i)*(bk2)
a(l,6)=a(l,6)+w(i)*(bk3)
a(l,7)=a(l,7)+w(i)*(bk4)
a(2,1)=a(2,1)+w(i)*(0.0)
a(2,2)=a(2,2)+w(i)*(k(i,r,c)**2)
a(2,3)=a(2,3)+w(i)*(0.0)
a(2,4)=a(2,4)+w(i) *(bkl*lag(l))
a(2,5)=a(2,5)+w (1) *(bk2*lag(2))
a(2,6)=a(2,6)+w(i)*(bk3*1lag(3))
a(2,7)=a(2,7)+w(i) *(bké*lag(4))
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a(3,1)=a(3,1)+w(i)*(~k(i,r,c)**2)
a(3,2)=a(3,2)+w(i)*(0.0)
a(3,3)=a(3,3)+w(i)*(k(i,r,c)**1)
a(3,4)=a(3,4)+w(i)*(~k(i,r,c)**2*bkl)
a(3,5)=a(3,5)+w(i)*(~k(i,r,c)**2*bk2)
a(3,6)=a(3,6)+w(i)*(=k(i,r,c)**2*bk3)
a(3,7)=a(3,7)+w(i)*(~k(i,r,c)**2*bka)
a(4,1l)=a(4,1)+w (i) *(bkl)
a(4,2)=a(4,2)+w(i)*{bkl*lag(1l))
a(4,3)=a(4,3)+w(i)*(-k(i,r,c)**2*bkl)

a(4,4)=a(4,4)+w(i)* (bklx*2* (1+(lag (1) **2/k(i,r,c)**2)))

a(4,5)=a(4,5)+w(i)*(bki*bk2*(1+(lag(l)*lag(2)/
k(i,r,c)**2)))
a(4,6)=a(4,6)+w(i)*(bkl*bk3*(1+(lag(l)*lag(3)/
k(i,r,c)**2)))
a(4,7)=a(4,7)+w(i)*(bkl*bk4*(1+(lag(l) *lag(4)/
k(i,r,c)**2)))

a(5,1)=a(5,1)+w(i)*(bk2)
a(5,2)=a(5,2)+w(i)*(bk2*lag(2))
a(5,3)=a(5,3)+w(i)*(=k(i,r,c)**2*bk2)
a(5,4)=a(5,4)+w(i)* (bkl*bk2#* (1+(lag(l)*lag(2)/
k(i,r,c)**2)))
a(5,5)=a(5,5)+w(i)*(bk2*bk2* (1+(lag(2) *lag(2)/
k(i,r,c)**2)))
a(5,6)=a(5,6)+w(i)* (bk3*bk2* (1+(lag(3)*lag(2)/
k(i,r,c)**2)))

a(5,7)=a(5,7)+w(i)*(bk4*bk2* (1+(lag(4)*lag(2)/
k(i,r,c)*%2)))

a(6,1l)=a(6,1)+w(i)*(bk3)
a(6,2)=a(6,2)+w(i)*(bk3*lag(3))
a(6,3)=a(6,3)+w(i)*(-k(i,r,c)**2%bk3)
a(6,4)=a(6,4)+w(i)*(bkl*bk3*(1+(lag(l)*lag(3)/
k(i,r,c)**2)))
a(6,5)=a(6,5)+w(i)*(bk2*bk3*(1+(lag(2) *lag(3)/
k(i,t,c)**2)))
a(6,6)=a(6,6)+w(i)*(bk3*bk3* (14 (lag(3)*lag(3)/
k(i,r,c)**2)))
a(6,7)=a(6,7)+w(i)*(bka*bk3*(1+(lag(4)*lag(3)/
k(i,r,c)*%2)))

a(7,1)=a(7,1)+w(i)*(bk4)
a(7,2)=a(7,2)+w(i)*(bka*lag(4))
a(7,3)=a(7,3)+w(i)*(-k(i,r,c)**2*bk4)
a(7,4)=a(7,4)+w(i)*(bkl*bka*(.+(lag(l)*lag(4)/
k(i,r,c)*%*2)))
a(7,5)=a(7,5)+w(i)* (bk2*bkd* (1+(lag(2)*lag(4)/
k(i,r,c)**2)))
a(7,6)=a(7,6)+w(1i)*(bk3*bk4*(1+(lag(3)*lag(4)/
k(i,r,c)*%2)))
a(7,7)=a(7,7)+w(i)*(bk4a*bka*(1+(lag(4)*lag(4)/
K(i,r,c)**2)))

b(1,1)=b(1,1)+w(i)*(£f(i,r,c))
b(2,1)=b(2,1)+w(i)*(g(i,r,c)*k(i,r,c))
b(3,1)=b(3,1)+w(i)*(-£(i,r,c)*k(1i,r,c)**2)
b(4,1)=b(4,1)+w(i)*(bkl*(f(i,r,c)+g(i,r,c)*
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* 1 1ag(1)/k(i,r,c)))
b(5,1)=b(5,1)+w(i)*(bk2*(f(i,r,c)+g(i,r,c)*
1 lag(2)/k(i,r,c)))
b(6,1)=b(6,1)+w(i)*(bk3*(£f(i,r,c)+g(i,r,c)*
1 lag(3)/k(i,r,c)))
b(7,L)=b(7,1)+w(i)*(bk4*(f(i,r,c)+g(i,r,c)*
1 lag(4)/k(i,r,c)))
175 continue
205 format (8£10.4)
206 format (' ')
PROGRAM INVMAT

A(N,NF) -- CHANGE BOTH THE DECLARATION I.E REAL A(N,NF), AS WELL
AS THE DECLARED VALUES OF N & NF. ALSO CHANGE THE NF VALUE IN THE
FORMAT STATEMENT AT THE END. I.E (NFF6.2)

sNoNoNeRPNY!

DO 4 ROW=1,IN
DO 3 COL=(IN+1) ,NF
A(ROW,COL)=0.0
IF ((ROW+IN) .EQ.COL) A(ROW,COL)=1.0
CONTINUE
4 CONTINUE
DO 50 D=1,IN
TEMP=A (D, D)
DO 5 COL=D,NF
A(D,COL)=A(D, COL) /TEMP
5 CONTINUE
DO 15 ROW=D+1,IN
TEMP=A (ROW, D)
DO 10 COL=D,NF
L(ROW,COL)=A (ROW,C ,-TEMP*A (D, COL)
10 CONTINUE
15 CONTINUE
50 CONTINUE
DO 100 D=IN,2,-1
DO 80 ROW=D-1,1,-1
TEMP=A (ROW, D)
DO 70 COL=D,NF
A(ROW, COL) =A (ROW, COL) ~TEMP*A (D, COL)
70 CONTINUE
80 CONTINUE
100 CONTINUE
DO 120 ROW=1,IN
DO 125 COL=IN+1,NF
X (ROW, 1) =X (ROW, 1) +A (ROW, COL) *B(COL~IN, 1)

w

125 CONTINUE

120 CONTINUE

130 FORMAT{' ',9F15.5)

C CALCULATION OF APPROXIMATE FUNCTION
c

do 300 i=1,m
! p=dcmplx (0.0,k(i,r,c))
ckquad=x(1,1)+x(2,1) *p+x(3,1) *p**2
cklag=x(4,1) *p/(p+lag(l))+x(5,1) *p/(p+lag(2))+x(6,1)*
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C
C

300
301
305

500
600

602
603
601
604
605
634
635
606

610
611

650

CREATE FILE

1

p/ (p+tlag(3))+x(7,1) *p/(p+lag(4))
ckbar (i, r,c)=ckquad+cklag
mn(i)=F(i,r,c)**2+G(i,r,c) **2
if(mn(i) .1t.1.0) mn(i)=1.0

err=err+ ( (dreal(ckbar(i,r,c))-f(i,r,c)) **2+
(dimag(ckbar(i,r,c))-g(i,r,c))**2)/mn(i)
continue
FN=FN+erv
format(6Xx,f12.6,',',£f10.5,"',',£f10.5,',',£10.5,"',"',
f10.5,',"',2£10.5)
print 634, count
continue

if (count.lt.icount-1) goto 750

write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write

format(6X,

(1,602)
(1,604)
(1,604)
(1,603)
(1,604
(1,605)
(1,604)
{1,601)
(1,604)
(1,605)
(1,604)
(1,604)
(1,606)
(1,604)
(1,635)
(1,604)
(1,604)
(1,610)
(1,611)
(1,604)
(1,604)

r,c

x(1,1),x(2,1),x(3,1),x(4,1)

x(5,1),x(6,1),x(7,1)

lag(1),lag(2),lag(3),lag(4),err,FN

APPROXIMANT FUNCTION

format (5x, "' AO
format (5x, ' A4
format(' ')
format(5x,8f£16.8)
format(2i5,7£12.9)
format(5x,7£12.9)
format (5x, ' lagl
' error')
format (6X, k
format (6X, '

' IMAG')

do 650 prt=1,m

N('Iizl'lllizl' )')

A2 A3')
A6')
lag3 lag4’,

APPROXIMATE')

IMAG REAL ',

write(1,305) k(prt,r,c),f(prt,r,c),g(prt,r,c),ckbar(prt,r,c)
continue

'LAPLACE.DAT' CONTAINS bl, b2,

o o o

Ao’ Al' . o 0

write (10,605) x(1,1),x(2,1),x(3,1),x(4,1),x(5,1),

x(6,1),x(7,1)
if(r.eq.1.and.c.eq.2) goto 584
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Ex)

584

750

800

goto 750
write (10,635) lag(l),lag(2),lag(3),lag(4),FN

continue
RETURN
END
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INPUT FILE :

10.000
€.000
4.000
3.000
2.000
1.500
1.200
1.000
0.990
0.880
0.800
0.770
0.660
0.600
0.560
¢.550
0.500
0.440
0.400
0.340
0.330
0.325
0.320
0.315
0.210
0.305
0.300
0.240
0.220
0.200
0.160
0.120
0.110
0.100
0.080
0.060
0.050
0.040
0.025
0.010

DATA
k

0.5006
0.5017
0.5037
0.5063
U.5129
0.5210
0.5300
0.5394
0.5400
0.5474
0.5541
0.5570
0.5699
0.5788
0.5857
0.5876
0.5979
0.6130
0.6250
0.6469
0.6512
0.6535
0.6558
0.6581
0.6604
0.6627
0.6650
0.6989
0.7125
0.7276
0.7628
0.8063
0.8188
0.8320
0.8604
0.8920
0.9090
0.9267
0.9545
0.9824

TABLE

F

N11.DAT

-0.0124
-0.0206
~-0.0305
=0.0400
~-0.0577
-0.0736
-0.0877
-0.1003
-0.1010
-0.1095
-0.1165
-0.1193
-0.1308
-0.1378
—-(.1428
-0.1441
-0.1507
-0.1592
-0.1650
-0.1738
~-0.1752
-0.1759
-0.1766
-0.1773
-0.1779
-0.1786
-0.1793
-0.1862
-0.1877
-0.1886
-0.1876
-0.1801
-~0.1766
-0.1723
-0.1604
~0.1426
-0.1305
-0.1160
-0.0872
-0.0482

c(k)

iG

A=-70




INPUT FILE :

10.0000000
6.0000000
4.0000000
3.0000000
2.0000000
1.5000000
1.2000000
1.0000000

-.9900000
. 8800000
. 8000000
. 7700000
. 6600000
- 6000000
.5600000
. 5500000
. 5000000
-4400000
.4000000
.3400000
. 3300000
. 3250000
. 3200000
. 3150000
3100000
. 3050000
. 3000000
. 2400000
.2200000
. 2000000
1600000
.1200000
-1100000
- 1000000
. 0800000
. 0600000
. 0500000
- 0400000
. 0250000
. 0100000

DATA TABLE

N12.DAT

.1240000
1236000
.1220000
.1200000
.1154000
.1104000
.1052400
.1003000
.0999900
.0963600
.0932000
.0918610
.0863280
.0826800
.0799680
.0792550
.0753500
.0700480
.0660000
.0590920
.0578160
.0571675
.0565120
.0558495
.0551490
.0544730
.0537900
.0446880
0412940
.0377200
.0300160
.0216120
.0194260
.0172300
.0128320
.0085560
.0065250
.0046400
.0021800
.0004820

C(k)*ik

-G*k

5.0060000
3.0102000
2.0148000
1.5189000
1.0258000
.7815000
.6360000
.5394000
.5346000
.4817120
.4432800
.4288900
+3761340
.3472800
.3279920
.3231800
.2989500
.2697200
.2500000
.2199460
.2148960
.2123875
.2098560
.2073015
.2047240
.2021235
.1995000
.1677360
.1567500
.1455200
.1220480
.0967560
.0900680
.0832000
.0688320
.0535200
. 0454500
.0370680
.0238625
.0098240

iF*k




ﬁ OUTPUT FILE : DATA.OUT
SEQUENTIAL SIMPLEX :

260 TRIALS USED

PROBLEM MINIMIZATION

ESTIMATES
PARAMETER NEXT-TO-BEST BEST
1 .0154409 .0154409
2 .0842865 .0842865
3 .2559507 .2559507
4 .7651135 .7651136
FUNCTION VALUES
NEXT-TO-BEST BEST
.000011782 .000011782
OUTPUT FILE : LAG.OUT
APPROXIMANT FUNCTION N (1, 1)
A0 al A2 A3
.99828226 -.00003562 .00000474
A4 A5 A6
-.16289333 -.22908745 -.06459371
lagl lag2 lag3 lag4
.015440852 .084286467 .255950673 .765113
.000009348
k EXACT APPROXIMATE
REAL IMAG REAL
10.000000, .50060, -.01240, .50057,
6.000000, .50170, -.02060, .50182,
4.000000, .50370, -.03050, .50372,
3.000000, .50630, ~—.04000, .50619,
2.000000, .51290, -.05770, .51271,
1.500000, .52100, -.07360, .52083,
7 1.200000, .53000, -.08770, .52994,
* 1.000000, .53940, -.10030, .53959,
.990000, .54000, -.10100, .54019,

A-=-72

-.04120375

error

621 000009348

IMAG

-.01257,
-.02047,
-.03025,
-.03976,
-.05764,
-.07373,
-.08798,
-.10051,
-.10122,




P,

.880000, .54740, =.10950, .54767, -.10963,
.800000, .55410, -.11650, .55443, -.11655,
.770000, .55700, -.11930, .55733, -.11934,
.660000, .56990, -.13080, .57012, ~-.13063,
.600000, .57880, -.13780, .57895, -.1375%7,
.560000, .58570, -.14280, .58579, -.14253,
.550000, .58760, ~-.14410, .58764, -.14381,
.500000, .59790, -.15070, .59787, -.15049,
.440000, .61300, -.15920, .61278, -.15904,
.400000, .62500, -.16500, .62477, -.16499,
.340000, .64690, -.17380, .64683, -.17397,
.330000, .65120, -.17520, .65108, -.17543,
.325000, .65350, ~-.17590, .65328, -.17614,
.320000, .65580, -.17660, .65552, -.17686,
.315000, .65810, -.17730, .65782, -.17756,
.310000, .66040, -.17790, .66017, -.17825,
.305000, .66270, -.17860, .66257, -.17894,
.300000, .66500, -.17930, .66502, ~-.17961,
.240000, .69890, -.18620, .69927, -.18633,
.220000, .71250, -.18770, .71297, ~-.18770,
.200000, .72760, -.18860, .72802, -.18841,
.160000, .76280, -.18760, .76288, -.18703,
.120000, .80630, -.18010, .80584, ~-.17977,
.110000, .81880, -.17660, .81822, -.17652,
.100000, .83200, -.17230, .83138, ~.17244,
.080000, .86040, -.16040, .86027, -.16092,
.060000, .89200, -.14260, .89253, -.14285,
.050000, .90900, -.13050, .90957, -.13041,
.040000, .92670, ~.11600, .92684, -.11525,
.025000, . 95450, -.08720, .95305, -.08710,
.010000, .98240, -.04820, .98349, -.04764,
APPROXIMANT FUNCTION N (1, 2)
AO Al A2 A3
-.00001355 .50037475 -.00003629 .00061076
A4 A5 A6
.01380489 .05848218 .04963449
lagl lag2 lag3 lag4 error
.015440852 .084286467 .255950673 765113621 .000002434
.000011782
k EXACT APPROXIMATE
REAL IMAG REAL IMAG
10.000000, .12400, 5.00600, .12582, 5.00914,
6.000000, .12360, 3.01020, .12292, 3.0111e,

A-173




AR
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4,000000, .12200, 2.01480, .12110,
3.000000, .12000, 1.51890, .11938,
2.000000, .11540, 1.02580, .11536,
1.500000, .11040, .78150, .11065,
1.200000, .10524, .63600, .10561,
1.000000, .10030, .53940, .10053,
.990000, .09999, .53460, .10023,
.880000, .09636, .48171, .09649,
.800000, .09320, .44328, .09325,
.770000, .09186, .42889, .09190,
.660000, .08633, .37613, .08621,
.600000, .08268, .34728, .08253,
.560000, .07997, .32799, .07980,
.550000, .07926, .32318, .07908,
.500000, .07535, .29895, .07522,
.440000, .07005, .26972, .06995,
.400000, . 06600, .25000, .06597,
.340000, .05909, .21995, .05912,
.330000, .05782, .21490, .05786,
.325000, .05717, .21239, .05722,
.320000, .05651, .20986, .05656,
.315000, . 05585, .20730, .05590,
.310000, .05515, .20472, .05523,
.305000, .05447, .20212, .05455,
.300000, .05379, .19950, .0538S5,
.240000, . 04469, .16774, .04469,
.220000, .04129, .15675, .04127,
.200000, .03772, .14552, .03766,
.160000, .03002, .12205, .02991,
.120000, .02161, .09676, .02156,
.110000, .01943, .09007, .01941,
.100000, .01723, .08320, .01723,
.080000, .01283, .06883, .01286,
.060000, . 00856, .05352, .00855,
.050000, .00653, .04545, .00650,
.040000, .00464, .03707, .00459,
.025000, .00218, .02386, .00215,
.010000, .00048, .00982, .00046,
OUTPUT FILE : LAPLACE.DAT
.99828226 -.00003562 .00000474
-.16289332 -.22908745 ~.06459372
-.00001355 .50037475 -.00003629
.01380489 .05848217 .04963449
.015440851 .084286462 .255950657 .765113549

2.01468,
1.51835,
1.02526,
.78113,
.63585,
.53954,
.53474,
.48191,
.44352,
.42912,
.37626,
.34735,
.32802,
.32318,
.29892,
.26961,
.24989,
.21990,
.21483,
.21229,
.20974,
.20719,
.20463,
.20206,
.19948,
.16780,
.15683,
.14558,
.12204,
.09669,
.09000,
.08313,
.06882,
.05356,
.04548,
.03708,
.02382,
.00983,

-.04120375

.00061076

.000011782
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SEQUENTIAL SIMPLEX PROGRAM
RATIONAL FUNCTION APPROXIMATION - TRANSONIC REGIME

OPERATION
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(MINIMIZATION PROBLEM SOLVING)

REQUIRE: 1) INPUT OF ICOUNT, N, REQMIN, START(I),STEP(I)

2) USER SPECIFIED FUNCTION SUBPROGRAM (DOUBLE PRECISION

FUNCTION FN (X)

- MINIMIZATION FUNCTION)

DOUBLE PRECISION START(20),STEP(20),XMIN(20),
1XSEC (20) , YNEWLO, YSEC, REQMIN

OPEN (UNIT=6,FILE='DATA.OUT"')

*%k%kk% TNPUT REQUIRED **kkkkkkAkkkkhhhkhk

*

*

* ICOUNT,N,REQMIN, START(N) ,STEP(N) *

*

&

khkkkkdkhkkkhkkkkhekhkhkhkhkhkhkhkhkhkhkkkhkkkhkkkkkk

ICOUNT=450

N=4
REQMIN=0.000000000001
START (1) =0.000592052
START (2)=0.07383689
START (3) =0.27305258
START (4)=0.47381410
STEP(1)=0.1
STEP(2)=0.1051
STEP(3)=0.210412
STEP(4)=0.310323

DO 60 I=1,N
XMIN (I)=0.DO
XSEC(I)=0.D0
CONTINUE
YNEWLO=0.D0
YSEC=0.DO

LET N=4 AT ALL TIMES, SIMPLY SET START(I)=0.0 AND STEP(I)=0.0

CALL NELDER-~-MEAD SUBROUTINE

CALL NELMIN (N,START, XMIN,XSEC,YNEWLO, YSEC,

1REQMIN, STEP, ICOUNT)

OUTPUT FROM PROGRAM

WRITE (6, 64)
WRITE (6, 65) ICOUNT
WRITE (6, 75)
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79

64

65
75
77

80
82
83
84

1001

WRITE(6,77)

DO 79 I=1,N

WRITE(6,80) I,XSEC(I),XMIN(I)
WRITE(6,82)

WRITE(6,83)

WRITE(6,84) YSEC,YNEWLO

FORMAT (6X,1H //,6x,1H ,
142H SEQUENTIAL SIMPLEX : PROBLEM MINIMIZATION)
FORMAT (6X, 1H //,6x,1H ,I5,12H TRIALS USED/)
FORMAT (6X, 1H , 21X, 9HESTIMATES/)

FORMAT (6X, 1H , 9HPARAMETER, 7X, 12HNEXT-TO-BEST, 8X,
14HBEST/)

FORMAT (6X,1H ,I5,2F20.7)

FORMAT (6X,1H //,1H ,6X,1SHFUNCTION VALUES/)
FORMAT (6X, 1H ,5X,13H NEXT-TO-BEST, 8X,4HBEST/)
FORMAT (6X, 1H ,2F15.9)

STOP

END

NELDER-MEAD SUBROUTINE

SUBROUTINE NELMIN (N,START,XMIN,XSEC,YNEWLO,YSEC,
1REQMIN, STEP, ICOUNT)

DOUBLE PRECISION START(N),STEP(N),XMIN(N),
1XSEC(N) , YNEWLO, YSEC,REQMIN, P(20,21) ,PSTAR(20),
2P2STAR(20) , PBAR(20),Y(20),DN,2,YLO, RCOEFF,
3YSTAR, ECOEFF, Y2STAR, CCOEFF, FN, DABIT, DCHK,
4COORD1 , COORD2

DATA RCOEFF/1.0D0/,ECOEFF/2.0D0/,CCOEFF/0.5D0/

KCOUNT=TCOUNT

ICOUNT=0

IF(REQMIN.LE.0.DO) ICOUNT=ICOUNT-1
IF(N.LE.O) ICOUNT=ICOUNT-10
IF(N.GT.20) ICOUNT=ICOUNT-10
IF(ICOUNT.LT.0) RETURN

DABIT=2.04607D-35
BIGNUM=1.0D38
KONVGE=5
XN=FLOAT(N)
DN=DFLOAT (N)
NN=N+1

CONSTRUCTION OF INITIAL SIMPLEX

DO 1 I=1,N
P(I,NN)=START(I)

Y (NN) =FN (START)
ICOUNT=ICOUNT+1

DO 2 J=1,N
DCHK=START (J)

START (J) =DCHK+STEP (J)
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1000

2005

2010

2015

2020

DO 3 I=1,N
P(I,J)=START(I)
Y (J) =FN (START)
ICOUNT=ICOUNT+1
START (J ) =DCHK

SIMPLEX CONSTRUCTION COMPLETE
FIND HIGHEST AND LOWEST Y VALUES

YNEWLO (Y (IHI)) INDICATES THE VERTEX OF
THE SIMPLEX TO BE REPLACED

YLO=Y (1)
YNEWLO=YLO
ILO=1
IHI=1

DO 5 I=2,NN
IF(Y(I).GE.YLO) GOTO 4
YLO=Y (I)

ILO=1

IF(Y(I).LE.YNEWLO) GOTO 5
YNEWLO=Y (I)

IHI=I

CONTINUE

PERFORM CONVERGENCE CHECKS ON FUNCTION

DCHK=(YNEWLO+DABIT) / (YLO+DABIT)~-1.DO
IF(DABS (DCHK) . LT.REQMIN) GOTO 900

KONVGE=KONVGE-1
IF(KONVGE.NE.O) GOTO 2020
KONVGE=5

CHECK CONVERGENCE OF COORDINATES ONLY
EVERY 5 SIMPLEXES

DO 2015 I=1,N

COORD1=P(I,1)

COORD2=COORD1

DO 2010 J=2,NN
IF(P(I,J).GE.COORD1l) GOTO 2005
COORD1=P(I,J)

IF(P(I,J).LE.COORD2) GOTO 2010
COORD2=P(I,J)

CONTINUE

DCHK= (COORD2+DABIT) / (COORD1+DABIT) -1. DO
IF (DABS (DCHK) .GT.REQMIN) GOTO 2020
CONTINUE

GOTO 900

IF (ICOUNT.GE.KCOUNT) GOTO 900

CALCULATE PBAR, THE CENTROID OF THE
SIMPLEX VERTICES EXCEPTING THAT WITH
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14

15

16

Y VALUE YNEWLO

po 7 I=1,N
Z=0.0DO0

DO 6 J=1,NN
2=2+P(I,J)
2=2-P(I,IHI)
PBAR(I)=2/DN

REFLECTION THROUGH THE CENTROID

DO 8 I=1,N
PSTAR(I)=(1.0DO+RCOEFF) *PBAR (I)-RCOEFF*P(I,IHI)
YSTAR=FN (PSTAR)

ICOUNT=ICOUNT+1

IF (YSTAR.GE.YLO) GOTO 12

IF (ICOUNT.GE.KCOUNT) GOTO 19

SUCCESSFUL REFLECTION, SO EXTENSION

DO 9 I=1,N
P2STAR(I)=ECOEFF*PSTAR(I)+(1.0D0~-ECOEFF) *PBAR(I)
Y2STAR=FN ( P2STAR)

ICOUNT=ICOUNT+1

RETAIN EXTENSION OR CONTRACTION

IF (Y2STAR.GE.YSTAR) GOTO 19
DO 11 I=1,N
P(I,IHI)=P2STAR(I)

Y (IHI)=Y2STAR

GOTO 1000

NO EXTENSION

L=0
DO 13 I=1,NN
IF(Y(I).GT.YSTAR) L=L+1
CONTINUE

IF(L.GT.1) GOTO 19
IF(L.EQ.0) GOTO 15

CONTRACTION ON THE REFLECTION SIDE OF THE
CENTROID

DO 14 I=1,N
P(I,IHI)=PSTAR(I)
Y (IHI)=YSTAR
CONTRACTION ON THE Y(IHI) SIDE OF THE CENTROID
IF (ICOUNT.GE.KCOUNT) GOTO 900

Do 16 I=1,N
P2STAR(I)=CCOEFF*P(I,IHI)+(1.0D0-CCOEFF) *PBAR(I)
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17

18

1
19
20

900

22

23

24

25

Y2STAR=FN (P2STAR)
ICOUNT=ICOUNT+1
IF (Y2STAR.LT.Y(IHI)) GOTO 10

CONTRACT THE WHOLE SIMPLEX

DO 18 J=1,NN

DO 17 I=1,N
P(I,J)=(P(I,J)+P(I,ILO))*0.5D0
XMIN(I)=P(I,J)

Y (J)=FN (XMIN)

CONTINUE

ICOUNT=ICOUNT+NN

IF (ICOUNT.LT.KCOUNT) GOTO 1000
GOTO 900

RETAIN REFLECTION

9 CONTINUE

DO 20 I=1,N
P(I,IHI)=PSTAR(I)
Y (IHI)=YSTAR
GOTO 1000

SELECT THE TWO BEST FUNCTION VALUES (YNEWLO
AND ¥YSEC) AND THEIR COORDS. (XMIN AND XSEC)

DO 23 J=1,NN

DO 22 I=1,N
XMIN(I)=P(I,J)

Y (J) =FN ( XMIN)
CONTINUE
YNEWLO=BIGNUM

DO 24 J=1,NN
IF(Y(J) .GE.YNEWLO) GOTO 24
YNEWLO=Y (J)
IBEST=J

CONTINUE

Y (IBEST) =BIGNUM
YSEC=BIGNUM

DC 25 J=1,NN
IF(Y(J) .GE.YSEC) GOTO 25
YSEC=Y(J)

ISEC=J

CONTINUE

DO 26 I=1,N
XMIN(I)=P(I,IBEST)
XSEC(I)=P(I,ISEC)
CONTINUE

RETURN

END

APPROXIMATING FUNCTION : PADE APPROXIMATE WITH LAG TERMS
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DOUBLE PRECISION FUNCTION FN(lag)

IMPLICIT REAL*8 (A-Z)

COMPLEX*16 ckquad,cklag,ckbar(40,2,2),p

DOUBLE PRECISION LAG(4)

REAL*8 w(40),k(40,2,2) ,F(40,2,2),G(40,2,2),a(9,18),b(9,1),%(9,1)
REAL*8 mn(40)

INTEGER i,m,in,nst,nf,j,prt,totlag,c,r,count, icount

INTEGER D, COL,ROW

OPEN (UNIT=1,FILE='LAG.OUT')
OPEN (UNIT=10, FILE="'LAPLACE.DAT')

kkkkkkkkx* INPUT REQUIRED **hkXkhkdehhkkkhkAhkkXh k%

* *
* OPEN REQUIRED INPUT TABULAR DATA FILES *
* TOTAL # OF ITERATIONS ICOUNT (2) *
* # OF POINTS (m) IN FILES *
* CHECK FORCED CONDITIONS *
* *
* *

% de dodedede ok ok ko okokok ok dok kod ok okohk Kok okokk ok okkokhkk ok thkhkdkkkkkhk

icount=450+5
minerr=0.0000167
totlag=4

m=15

count=count+1
if(count.gt.1l) goto 88

FILES CONTAIN k(i,r,c), F(i,r,c), G(i,r,c)
k(i) REDUCED FREQUENCY

F(i) REAL

G(i) IMAGINARY

APPROXIMATING UNSTEADY AERODYNAMICS

150

88

OPEN(UNIT=2,FILE='N11.DAT',STATUS="'0OLD')
OPEN(UNIT=4,FILE='N12.DAT',STATUS='0OLD')
OPEN(UNIT=7,FILE='N21.DAT',STATUS='0OLD')
OPEN(UNIT=8,FILE='N22.DAT',STATUS='0LD')
do 150 i=1,m
READ(2,*) k(i,1,1),F(i,1,1),G(i,1,1)
READ(4,*) k(i,1,2),F(i,1,2),G(i,1,2)
READ(7,*) k(i,2,1),F(i,2,1),G(1i,2,1)
READ(8,*) k(i,2,2),F(i,2,2),G(i,2,2)
continue
CLOSE (UNIT=8)
CLOSE (UNIT=7)
CLOSE(UNIT=4)
CLOSE (UNIT=2)

REQUIRED CONSTANTS

matrix [A] ( size 1in x in )
nst=4

A4-80
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in=nst+ (totlag-1)

nf=2*in
C
C NOTE: lag(l) <> lag(2) <> lag(3) <> lag(4)
c lag(l), lag(2), lag(3), lag(4) must be all non-negative

C BOUNDARY (CONSTRAINT) CONDITIONS
do 156 i=1,totlag
if(lag(i).1t.0.0) lag(i)=i*0.000000001
do 157 j=1,totlag-1
if(i.eq.j) goto 157
if(lag(i).eq.lag(j)) goto 163
goto 157
163 print 164, j
164 format (i5,' EQUAL LAG TERMS REQUIRES IMMEDIATE STOP!)
stop
157 continue
156 continue

FN=0.0

do 750 r=1,2
do 700 c=1,2
err=0.0
C RESETTING MATRIX ELEMENT VALUES TO ZERO
390 do 410 i=1,in
do 400 j=1,nf
a(i,j)=0.0
400 continue
b(i,1)=0.0
x(1,1)=0.0
410 continue

c CREATING MATRICES [A] AND [B] : SOLVE [A] {x} = [B)
do 175 i=1,m
if(k(i,r,c).eq.0.0) goto 175
bkl=k(i,r,c)**2/(k(i,r,c)**2+1lag (1) **2)
if(totlag.eq.1l) goto 415
bk2=k(i,r,c)**2/(k(i,r,c)**2+lag(2) **2)
if (totlag.eq.2) goto 415
bk3=k(1i,r,c)**2/(k(i,r,c)**2+1lag(3) **2)
if(totlag.eq.3) goto 415
bkd=k(i,r,c)**2/(k(i,r,c)**2+lag(4) **2)
415 mn(i)=F(i,r,c)**2+G(i,r,c)**2
if(mn(i).1t.1.0) mn(i)=1.0
w(i)=1.0
w(i)=w(i)/mn(i)
a(l,1)=a(l,1)+w(i)*(1.0)
a(l,2)=a(l,2)+w(i) *(0.0)
a(l,3)=a(l,3)+w(i)*(-k(i,r,c)**2)
a(l,4)=a(l,4)+w(i)*(bkl)
a(l,5)=a(1,5)+w(i)*(bk2)
a(l,6)=a(l,6)+w(i)*(bk3)
a(l,7)=a(l,7)+w(i) *(bk4)
a(2,1)=a(2,1)+w(i)*(0.0)
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a(2,2)=a(2,2)+w(i)*(k(i,r, c)**2)
a(2,3)=a(2,3)+w(i)*(0.0)
a(2,4)=a(2,4)+w(i)*(bkl*lag(l))
a(2,5)=a(2,5)+w(i)*(bk2*lag(2))
a(2,6)=a(2,6)+w(i)*(bk3*lag(3))
a(2,7)=a(2,7)+w(i)* (bkd*lag(4))
a(3,1)=a(3,1)+w(i)*(-k(i,r,c)**
a(3,2)=a(3,2)+w(i)*(0.9)
a(3,3)=a(3,3)+w(i)*(k(i,r,c)**4)
a(3,4)=a(3,4)+w(i)*(-k(i,r,c)**2*bkl)
a(3,5)=a(3,5)+w(i)*(-k(i,r,c)**2*bk2)
a(3,6)=a(3,6)+w(i)*(-k(i,r,c)**2*bk3)
a(3,7)=a(3,7)+w(i)*(-k(i,r,c)**24bk4)
a(4,1)=a(4,1)+w(i)*(bkl)
a(4,2)=a(4,2)+w(i)*(bkl*lag(1))
a(4,3)=a(4,3)+w(i)*(-k(i,r,c)**2*bkl)
a(4,4)=a(4,4)+wii)*(bkl**2% (1+(lag(1l)**2/Kk(i,r,c)**2)))
a(4,5)=a(4,5)+w(i)*(bkl*bk2*(1+(lag(l)*lag(2)/
k(i,r,c)**2)))
a(4,6)=a(4,6)+w(i)*(bkl*bk3*(1+(lag(l)*lag(3)/
k(i,r,c)**2)))
a(4,7)=a(4,7)+w(i)*(bkl*bk4*(1+(lag(1l)*lag(4)/
k(i,r,c)**2)))

a(5,1)=a(5,1)+w(i) * (bk2)

a(5,2)=a(5,2)+w(i) *(bk2*lag(2))
a(5,3)=a(5,3)+w(i)*(-k(i,r,c)**2*%bk2)
a(5,4)=a(5,4)+w(i)* (bkl*bk2*(1+(lag(1l)*lag(2)/
k(i,r,c)**2)))

a(5,5)=a(5,5)+w(i) *(bk2*bk2*(1+(lag(2)*lag(2)/
k(i,r,c)**2)))
a(5,6)=a(5,6)+w(i)*(bk3*bk2*(1+(lag(3)*lag(2)/
k(i,r,c)**2)))

a(5,7)=a(5,7)+w(i) *(bk4a*bk2*(1+(lag(4)*lag(2)/
k(i,r,c)*#*2)))

a(6,1)=a(6,1)+w(i)*(bk3)
a(6,2)=a(6,2)+w(i)*(bk3*lag(3))
a(6,3)=a(6,3)+w(i)*(-k(i,r,c)**2+bk3)
a(6,4)=a(6,4)+w(i)* (bkl*bk3*(1+(lag(l)*lag(3)/
k(i,r,c)**2)))
a(6,5)=a(6,5)+w(i)*(bk2*bk3*(1+(lag(2)*lag(3)/
k(i,r,c)**2)))

a(6,6)=a(6,6)+w(i) *(bk3*bk3*(1+(lag(3)*lag(3)/
k(i,r,c)**2)))
a(6,7)=a(6,7)+w(i)*(bka*bk3*(1+(lag(4)*lag(3)/
k(i,r,c)**2)))

a(7,1)=a(7,1)+w(i)* (bk4)
a(7,2)=a(7,2)+w(i)*(bké*lag(4))
a(7,3)=a(7,3)+w(i)*(-k(i, r,c)**2*bk4)
a(7,4)=a(7,4)+w(i) *(bkl*bka*(1+(lag(l)*lag(4)/
k(i,r,c)**2)))
a(7,5)=a(7,5)+w(i)*(bk2*bk4*(1+(lag(2)*lag(4)/
k(i,r,c)**2)))
a(7,6)=a(7,6)+w(i) * (bk3*bka*(1+(lag(3)*lag(4)/
k(i,r,c)**2)))

2)

2
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a(7,7)=a(7,7)+w(i)*(bk4a*bkd*(1+(lag(4)*lag(4)/

1 K(i,r,c)**2)))

b(1l,1)=b(1,1)+w(i)*(f(i,r,c))
b(2,1)=b(2,1)+w(i)*(g(i,r,c)*k(i,r,c))
b(3,1)=b(3,1)+w(i)*(-£(i,r,c)*k(i,r,c)**2)
b(4,1)=b(4,1)+w(i)*(bk1l*(f(i,r,c)+g(i,r,c)*

1 lag(l)/k(i,r,c)))
b(5,1)=b(5,1)+w(i)*(bk2*(f(i,r,c)+g(i,r,c)*
1 lag(2)/k(i,r,c)))
b(6,1)=b(6,1)+w(i)*(bk3*(f(i,r,c)+g(i,r,c)*
1 lag(3)/k(i,r,c)))
b(7,1)=b(7,1)+w(i)*(bk4*(f(i,r,c)+g(i,r,c)*
1 lag(4)/k(i,r,c)))
continue

format(8£10.4)
format (' ")

PROGRAM INVMAT

A(N,NF) =-- CHANGE BOTH THE DECLARATION I.E REAL A(N,NF), AS WELL
AS THE DECLARED VALUES OF N & NF. ALSO CHANGE THE NF VALUE IN THE
FORMAT STATEMENT AT THE END,

DO 4 ROW=1,IN
DO 3 COL=(IN+1l),NF
A (ROW,COL)=0.0

I.E (NFF6.2)

IF ( (ROW+IN) .EQ.COL) A(ROW,COL)=1.0

CONTINUE
CONTTNUE
DO 50 D=1,IN
TEMP=A (D, D)
DO 5 COL=D,NF

A(D,COL)=A(D,COL)/TEMP

CONTINUE

DO 15 ROW=D+1,IN
TEMP=A (ROW, D)
DO 10 COL=D,NF

A (ROW, COL) =A (ROW, COL) ~-TEMP*A (D, COL)

CONTINUE
CONTINUE
CONTINUE
DO 100 D=IN,2,-1
DO 80 ROW=D-1,1,-1
TEMP=A (ROW, D)
DO 70 COL=D,NF

A (ROW, COL) =A (ROW, COL) =TEMP#*A (D, COL)

CONTINUE
CONT INUE

CONTINUE

DO 120 ROW=1,IN

DO 125 COL=IN+1,NF

X (ROW, 1) =X (ROW, 1) +A (ROW, COL) *B(COL~IN, 1)

CONTINUE
CONTINUE




F

130
C

FORMAT ('

', 9F15.5)

C FORCED AGREEMENT WITH TABULAR DATA AT k=0.0

aonNaoa

noaoaaoaaoaoaqn

300
301

305

500
600

1

1

1

1

if(r.eq.1.and.c.eq.1l.and
if(r.eq.2.and.c.eq.1l.and
if(r.eq.l.and.c.eq.2.and
if(r.eq.2.and.c.eq.2.and
CALCULATION OF APPROXIMATE FUNCTION

do 300 i=1,m
p=dcmplx(0.0,k(i,r,c))
ckquad=x(1,1)+x(2,1)*p+x(3,1) *p**2
cklag=x(4,1)*p/(p+lag(l))+x(5,1)*p/(p+lag(2))+x(6,1)*
p/ (p+lag(3))+x(7,1) *p/ (p+lag(4))
ckbar (i, r,c)=ckquad+cklag

c error calculation

mn(i)=F(i,r,c)**2+G(i,r,c) **2

if(mn(i).1t.1.0) mn(i)=1.0

c square error (complete) #1 #2

err=err+( ((dreal (ckbar(i,r,c))-£f(i,r,c))**2+

(dimag(ckbar(i,r,c))=g(i,r,c))**2)/mn(i))/m

% square error (separate) #3

.k(1,1,1).eq.0.0)
.k(1,2,1).eq.0.0)
.k(1,1,2).eq.0.0)
.k(1,2,2).eq.0.0)

x(1,1)=F(i,r,c)
x(1,1)=F(1,r,c)
x(1,1)=F(1,r,c)
x(1,1)=F(1,r,c)

err=err+( (dreal (ckbar(i,r,c))-f(i,r,c))**2/£(i,r,c)**2+
(dimag(ckbar(i,r,c))-g(i,r,c))**2/g(i,r,c)**2)/m

% error (separate) #4

err=err+ (abs((dreal(ckbar(i,r,c))-£f(i,r,c))/f(i,r,c))+
abs((dimag(ckbar(i,r,c))-g(i,r,c))/g(i,r,c)))/m

continue
FN=FN+err

print 305, x(1,1),x(2,1),x(3,1),x%(4,1),%x(5,1),%(6,1),x(7,1)

format (6X, £f12.6,"',',£f10.5,"',',£f10.5,',"',£10.5,"'.,"',
£10.5,',',2£10.5)
print 634, r,c,lag(l),lag(2),lag(3),lag(4),err,FN
print 634, count
continue
if(count.1lt.icount-2) goto 700

write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write

(1,604)
(1,602)
(1,604)
(1,604)
(1,603)
(1,604)
(1,605)
(1,604)
(1,601)
(1,604)
(1,605)
(1,604)
(1,604)
(1,606)
(1,604)
(1,635)
(1,604)

r,c

x(1,1),x(2,1),x(3,1),x(4,1)

x(5,1),%x(6,1),x(7,1)

lag(1),lag(2),lag(3),lag(4),err,FN
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write
write
write
write

(1,604)
(1,610)
(1,611)
(1,604)

write (1,604)
C
C CREATE FILE 'LAPLACE.DAT' CONTAINS bl, b2, ..., AO, Al, ...

write (10,605) x(1,1),x(2,1),x(3,1),x(4,1),x(5,1),

1 x(6,1),%x(7,1)
if(r.eq.2.and.c.eq.2) goto 584
goto 585
584 write (10,635) lag(l),lag(2),lag(3),lag(4),FN
C
602 format (6X,' APPROXIMANT FUNCTION N (',i2,',',i2,' ")
603 format (5x, ' A0 Al A2',
1 ' A3')
601 format (5x, A4 AS A6')
604 format (! ")
605 format (5%x,8£16.6)
634 format(2i5,7£12.9)
635 format(7x,7£11.8)
606 format (7%, lagl lag2 lag3 lags!,
1 ! error')
610 format (6X, ' k EXACT ',
1 ' APPROXIMATE ')
611 format (6X, " REAL IMAG REAL ',
1 ' IMAG')
585 do 650 prt=1,m
write(1,305) k(prt,r,c),f(prt,r,c),g(prt,r,c),ckbar(prt,r,c)
650 continue
700 continue
750 continue
RETURN
800 END




#iideg

INPUT FILE : N11.DAT

0.00 0.00
0.025 0.17
0.050 0.39
0.0875 0.66
0.100 0.76
0.125 0.89
0.150 1.01
0.175 1.12
0.200 1.17
0.25 1.25
0.3 1.23
0.35 1.19
0.4 1.15
0.45 1.07
0.5 0.98
DATA TABLE

Cl (h)

k Real

0.00
0.56
0.87
1.17
1.23
1.39
1.49
1.61
1.69
1.93
2.12
2.39
2.64
2.93
3.25

Imaginary

INPUT FILE : N12.DAT

0.000 14.70
0.025 12.20
0.050 9.50
0.0875 7.63
0.100 7.22
0.125 6.61
0.150 6.09
0.175 5.72
0.200 5.41
0.25 4.92
0.3 4.63
0.35 4.43
0.4 4.35
0.45 4.35
0.5 4.40
DATA TABLE

Cl (alpha)

Kk Real

=0.00
~-4.05
-4.15
=-3.70
~3.47
-3.18
-2.94
~-2.59
-2.29
-1.79
-1.30
-0.83
-0.41
-0.03

0.28

Imaginary
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INPUT FILE : N21.DAT
0.000 0.000 0.000
0.025 0.001 -0.035
0.050 0.015 -0.065
0.0875 0.025 -0.125
0.100 0.030 -0.145
0.125 0.02 -0.198
0.150 0.015 ~0.23
0.175 0.010 -0.280
0.200 -0.005 -0.325
0.25 -0.035 -0.397
0.3 -0.060 -0.403
0.35 -0.045 -0.425
0.4 -0.005 -0.448
0.45 0.065 -0.490
0.5 0.14 ~0.55
DATA TABLE

Cm(h)

k Real Imaginary

INPUT FILE : N22.DAT

0.000 —-0.445
0.025 -0.450
0.050 -0.455
0.0875 —-0.495
0.100 -0.520
0.125 -0.581
0.150 -0.672
0.175 -0.732
0.200 -0.810
0.25 -0.905
0.3 -0.898
0.35 -0.8683
0.4 -0.824
0.45 -0.790
0.5 -0.770
DATA TABLE
Cm(alpha)

k Real

0.000
-0.027
-0.122
=0.311
=-0.348
~0.422
~0.508
-0.548
-0.582
-0.610
=0.550
-0.575
~0.648
=-0.750
-0.903

Imaginary




{ OUTPUT FILE : DATA.OUT

SEQUENTIAL SIMPLEX : PROBLEM MINIMIZATION

451 TRIALS USED

ESTIMATES
PARAMETER NEXT-TO-~BEST
1 .2789266
2 .0436573
3 .2789914
4 .2858671
FUNCTION VALUES
NEXT-TO-BEST BEST
.001414830 . 001396017
OUTPUT FILE : LAG.OUT
APPROXIMANT FUNCTION N (
AO Al
.000000 7.351972
A4 A5
«593074 8707.625432
lagl lag2 lag3

.27892661 .04365735 .27899139

BEST
.2789266
.0436573

.2789914
.2858671

1, 1)
A2

-.265177

A6

-146.231038

lag4

A3

.

-8561.672085

error

.28586712 .00020817 .00020817

K EXACT APPROXIMATE
REAL IMAG REAL IMAG
.000000, .00000, .00000, .00000, .00000,
.025000, .17000, .56000, .16792, .54877,
g{ .050000, .39000, .87000, .41847, .86344,
' .087500, .66000, 1.17000, .69680, 1.16498,
.100000, .76000, 1.23000, .77287, 1.24726,
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N .125000, .89000, 1.39000, .90794, 1.39206,
.150000, 1.01000, 1.49000, 1.02060, 1.51454,
.175000, 1.12000, 1.61000, 1.10957, 1.62079,
.200000, 1.17000, 1.69000, 1.17459, 1.71761,
.250000, 1.25000, 1.93000, 1.23994, 1.90689,
.300000, 1.23000, 2.12000, 1.24034, 2.11637,
.350000, 1.19000, 2.39000, 1.20249, 2.35917,
.400000, 1.15000, 2.64000, 1.14690, 2.63547,
.450000, 1.07000, 2.93000, 1.08659, 2.94005,
.500000, .98000, 3.25000, 1.02883, 3.26655,

APPROXIMANT FUNCTION N (1, 2)
AO Al A2 A3
14.235672 .957753 1.258183 404976.770760
A4 AS A6
-8.145772 -408964.029690 3987.367830
lagl lag2 lag3 lag4 error
.27892661 .04365735 .27899139 .28586712 .00020294 .00041111
k EXACT APPROXIMATE
REAL IMAG REAL IMAG
.000000, 14.70000, .00000, 14.23567, .00000,
.025000, 12.20000, -4.05000, 12.21288, ~-3.64541,
.050000, 9.50000, =-4.15000, 9.56427, -4.30539,
.087500, 7.63000, -=3.70000, 7.53586, =3.72869,
.100000, 7.22000, -3.47000, 7.15123, -3.52318,
.125000, 6.61000, -3.18000, 6.57096, -3.17275,
.150000, 6.09000, -2.94000, 6.12655, -2.88115,
.175000, 5.72000, -2.59000, 5.75592, -2.61606,
.200000, 5.41000, -2.29000, 5.43806, -2.35648,
.250000, 4.92000, -1.79000, 4.94237, -1.82723,
.300000, 4.63000, -1.30000, 4.62099, -1.29981,
.350000, 4.43000, -.83000, 4.44320, -.81140,
.400000, 4.35000, -.41000, 4.36678, -.38607,
.450000, 4.35000, -.03000, 4.35258, -.03010,
.500000, 4.40000, .28000, 4.37100, .26139,
APPROXIMANT FUNCTION N (2, 1)
. A0 Al A2 A3
“ .000000 -1.905869 -.293633 158360.047503
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A4 A5 A6
-.059842 -159903.225805 1543.931881
lagl lag2 lag3 lag4 error
.27892661 .04365735 .27899139 .28586712 .00019833 .00060945
k EXACT APPROXIMATE
REAL IMAG REAL IMAG
.000000, .00000, .00000, . 00000, . 00000,
.025000, .00100, -.03500, -.00729, -.03935,
.050000, .015n0, -,06500, -,00727, -.06574,
.087500, .02500, -.12500, .01171, -.11930,
.100000, .03000, -.14500, .01725, -.14295,
.125000, .02000, -.19800, .02145, -.19500,
.150000, .01500, -.23000, .01512, -.247131,
.175000, .01000, -.28000, .00030, -.29389,
.200000, -.00500, -.32500, -.01874, -.33146,
.250000, -.03500, -.39700, -.05219, -.37922,
.300000, -.06000, -.40300, -.06191, -.40363,
.350000, -.04500, -.42500, -.04310, -.42338,
.400000, -.00500, -.44800, -.00139, ~-.45102,
.450000, .06500, -.49000, .05504, -.49191,
.500000, .14000, ~-.55000, .11927, -.54679,
APPROXIMANT FUNCTION N (2, 2)
AO Al A2 A3
-.516839 -4.394286 2.744002 217699.240354
A4 Lo A6
.165112 =-219881.401614 2184.097622
lagl lag2 lag3 lag4 error
.27892661 .04365735 .27899139 .28586712 .00078657 .00139602
k EXACT APPROXIMATE
REAL IMAG REAL IMAG
.000000, -.44500, .00000, -.51684, . 00000,
.025000, -.45000, -.02700, -.48373, -.04150,
.050000, --.45500, -.12200, -.45477, -.14213,
.087500, -.49500, -.31100, -.48600, -.31323,

A-90




L

.100000, --52000, -034800, -.51147,
.125000, -.58100, -.42200, -.57665,
.150000, -.67200, -.50800, -.65200,
.175000, -.73200, -.54800, -.72737,
.200000, -.81000, -.58200, -.79435,
.250000, -.90500, -.61000, -.88350,
.300000, -.89800, -.55000, -.90772,
.350000, -.86800, -.57500, -.88429,
.400000, -.82400, -.64800, ~-.83843,
.450000, =.79000, -.75000, -.79150,
.500000, -.77000, -.90300, -.75798,
OUTPUT FILE : LAPLACE.DAT
. 000000 7.351972 -.265177
.593074 8707.625432 -146.231038
14.,.235672 .957753 1.258183
-8.145772 =408964.029690 3987.367830
. 000000 -1.905869 -.293633
-.059842 -=159903.225805 1543.931881
-.516839 -4.394286 2.744002
.165112 =219881.401614 2184.097622
.27892661 .04365735 .27899139 .28586712

-.36418,
-.45028,
-.51226,
-.55013,
-.56754,
-.56578,
-.55768,
-.57878,
-.64393,
-.75384,
-.90251,

-8561.672085

404976.770760

158360.047503

217699.240354

.00139602




$storage:?2
$floatcalls
$debug

C LAPLACE EIGENVALUE SOLUTION
C FLUTTER CALCULATION (INCOMPRESSIBLE REGIME)

C ________________________________________________________________________
C
IMPLICIT REAL*8 (A-2)
INTEGER ib,n,ia,ijob,iz,ier,infer,i,j
COMPLEX*16 eval(12),A(12,12),B(12,12) ,EIGA(12),EIGB(12),2(12,12)
COMPLEX*16 WK(21,42)
REAL*8 u,vel,atempl,atemp2,atemp3,atemp4s
REAL*8 finv(7,2,2),£f(8,2,2),m(2,2),c(2,2),k(2,2)
REAL*8 a0(2,2),al(2,2),az2(2,2),a3(2,2),a4(2,2),a5(2,2),a6(2,2)
real*8 nl(2,7)
INTEGER Yy
C

C Read in constants.
OPEN (UNIT=1,FILE='CONST6.DAT',STATUS='0OLD')
READ (1,*) ia,ib,iz,n,ijob

C 12 12 12 12 2
CLOSE (UNIT=1)

C open required files
OPEN (UNIT=4,FILE='EIGEN.OUT',6 STATUS='NEW')

C required constants
u=50.0
wrat=0.2
r=0.5
ah=-0.5

Xtor=0.25
semic=1.0
wtor=1.0
wben=wrat*wtor

required constants

Q0N

OPEN (UNIT=10,FILE='LAPLACE.DAT',STATUS='0OLD')
do 25 i=1,2
READ (10,*) ni(i,1),nl(i,2),nl1(i,3),nl(i,4),n1(i,s),
1 nl(i,e6),nl(i,7)
25 continue
READ (10,*) bl,b2,b3,b4,err
CLOSE (UNIT=10)
C
C titles and initial parameter listing to file
write(4,32)
write(4,121)
write(4,121)
write(4,33)
write(4,121)



write(4,34) u,r,ah,wrat
write(4,121)
write(4,121)

32 format(6x,' LAPLACE METHOD INCOMPRESSIBLE (THEODORSEN) ')
33 format (6x, u r(alp) ah wben/wtor')
34 format (6x, f7 1,4£10.1)
121 format (' ")
C
C FOUR IAG TERMS
C
C PADE APPROXIMANT THEODORSEN FUNCTION C(k) AND C(k)*ik
C
C term Q(1,1): C(K)*ik
c
ao(1,1)= ni1(2,1)
al(l,1)= ni(2,2)
a2(1,1)= nl1(2,3)
a3 (1l,1)= nl1(2,4)
a4(1,1)= nl(2,5)
as(1,1)= ni1(2,6)
a6(l,1)= nl(2,7)
C
C term Q(1,2): C(k)*ik*(0.5-ah)+C(k)
C
a0(1,2)= n1(2,1)*(0.5-ah)+nl1(1,1)
al(l,2)= nl(2,2)*(0.5-ah)+n1(1,2)
a2(1,2)= nl(2,3)*(0.5-ah)+nl(1,3)
a3(l,2)= nl(2,4)*(0.5-ah)+nl(1,4)
a4(l1,2)= nl1(2,5)*(0.5-ah)+n1(1,5)
a5(1,2)= nl(2,6)*(0.5-ah)+nl1(1,6)
a6(l,2)= nl(2,7)*(0.5-ah)+n1(1,7)
C
C term Q(2,1): C(k)*ik*(-(ah+0.5))
o
a0(2,1)= nl1(2,1)*(~-0.5-ah)
al(2,1)= n1(2,2)*(-0.5-ah)
a2(2,1)= nl1(2,3)*(-0.5-ah)
a3(2,1)= nl(2,4)*(-0.5-ah)
a4(2,1)= nl(2,5)*(~-0.5-ah)
a5(2,1)= nl(2,6)*(-0.5-ah)
a6(2,1)= nl1(2,7)*(-0.5=-ah)
C
C term Q(2,2): C(K)*ik*(-(ah+0.5)*(0.5-ah))-(ah+0.5) *C (k)
c
ao(2,2)= n1(2,1)*(~0.5-ah)*(0.5-ah)-(ah+0.5)*n1(1,1)
al(2,2)= nl(2,2)*(-0.5-ah)*(0.5-ah)~(ah+0.5)*n1(1,2)
a2(2,2)= nl(2,3)*(-0.5-ah)*(0.5-ah)~-(ah+0.5)*nl1(1,3)
a3(2,2)= nl1(2,4)*(-0.5-ah)*(0.5-ah)-(ah+0.5)*nl1(1,4)
a4(2,2)= nl(2,5)*(-0.5-ah)*(0.5-ah)=-(ah+0.5)*n1(1,5)
a5(2,2)= nl(2,6)*(-0.5-ah)*(0.5-ah)-(ah+0.5)*n1(1,6)
a6(2,2)= nl(2,7)*(-0.5-ah)*(0.5-ah)-(ah+0.5)*n1(1,7)
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c

b1234=bl+b2+b3+b4

bl23=bl+b2+b3

bl24=bl+b2+b4

bl34=bl+b3+b4

b234=b2+b3+b4

bt123=bl*b2*b3

bt124=bl*b2*b4

bt134=bl*b3*b4

bt234=b2*b3*b4

bgl234=bl*b2*b3*b4
bt1234=bl*b2*b3+bl*b2*b4+bl*b3*b4+b2*b3*b4
bd1234=bl*b2+bl*b3+b2*b3+bl*b4+b2*b4+b3*b4
bd123=bl*b2+bl*b3+b2*b3
bdl24=bl*b2+bl*b4+b2*b4
bd134=bl*b3+bl*b4+b3*b4
bd234=b2*b3+b3*b4+b2*b4

C iterate velocity

60

C

vel=0.0

step =0.5

vel=vel+step
if(vel/(semic*wtor).gt.5.0) goto 120
wf=vel/semic

xvar=2*wf**2/u

C formation of matrices : ([M], [(C], [K], (D] and {E]

NnoOOan

m(l,1l)=1+1/u
m(l,2)=xtor-ah/u
m(2,1)=xtor-ah/u
m(2,2)=r**2+(0.125+ah**2) /u
¢c(1,1)=0.0
c(l,2)=wf/u
c(2,1)=0.0
c(2,2)=(0.5=-ah)*wf/u
k(1l,1l)=wrat**2*wtor**2
k(1,2)=0.0

k(2,1)=0.0
kK(2,2)=r**2%ytor**2

formation of polynomial coefficients : [F7), [Fé6], ([F5],

[F7)s6+[F6]s5+ ... +[F2]s+[F1] = 0
do 200 i=1,2
do 100 j=1,2

calculation of [F7]
£(7,1i,3)=m(i,j)+xvar*(1l/wf)**2*a2(i,J)
calculation of [Fé6]

£f(6,1,j)=c(i,j)+wEf*bl234*m(i, j)+xvar*(1/wf)*(al(i,j)+

b1234*a2(i,j))
calculation of [F5]

£(5,1,j)=k(i,3)+wE*b1234*c(i,j)+wE**2%bd1234*m(i,])+
xvar* (a0 (i,j)+bl234*al(i,j)+bdl234*a2(i,j)+a3(i,j)+
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1 a4(i,j)+as5(1,j)+a6(i,j))
o calculation of [F4]
£(4,1,))=wf*b1234*k(i,j)+wE*x*2%bd1234*c(i,J)+WEk*3*bt1234+*
1 m(i,]j)+xvar*wf*(bl234*a0(i,j)+bd1234*al(i,j)+bt1234%*
1 a2(i,j)+b234*a3(i,j)+bl34*ad(i,j)+bl24*a5(i,j)+
1 bl123*a6(i,j))
C calculation of [F3]

£(3,1,))=wE**2%bd1234%K(i,])+wEx*3*bt1234*c(i,j)+wirxq*
bql234*m(i, j)+xvar*wt**2*(bd1234*%a0 (i,j)+bt1234*al (i, )+
bgl234%a2(1i,j)+bd234*a3(i,j)+bd1l34*a4(i,j)+bd1l24*
a5(i,j)+bd123*a6(i,j))
C calculation of [F2]
£(2,1,])=wE**3*pt1234*k(i,]j)+wE**4*bql234*c(i,j)+
1 Xvar*wf**3* (bt1234%a0(1i,j)+bgl234*al(i,j)+bt234*a3(i, )+
1 bt134*a4(i,j)+btl24*as5(i,j)+btl123*%a6(i,j))
C calculation of [F1]
£(1,1,3)=wE**4%bq1234*k(i,])+xXvartwE**4*bql234*a0(i,J)
100 continue
200 continue

R

C calculation of inverse ( inv[F8] )
f7det=£(7,1,1)*£(7,2,2)-€(7,1,2)*€(7,2,1)
if(f7det.eq.0.0) goto 210

goto 220
210 write(4,215)
215 format (' DETERMINANT EQUALS ZERO - INVESTIGATE INPUT ',
1 "CONSTANT ... ah ')
goto 120
220 finv(7,1,1)=£(7,2,2)/f7det

£(8,1,1)=finv(7,1,1)
finv(7,2,2)=£f(7,1,1)/f7det
£(8,2,2)=finv(7,2,2)
finv(7,1,2)=-£(7,1,2)/f7det
f(8,1,2)=finv(7,1,2)
finv(7,2,1)=-£f(7,2,1)/f7det
£(8,2,1)=finv(7,2,1)
C
C formation of matrices [A] and [B] to
C solve eigenvalue problem given by [A]{x) = lambda [B](x)
do 400 i=1,n
do 300 j=1,n
a(i,j)=dcmplx(0.0,0.0)
if(i.eq.j+2) a(i,j)=dcmplx(1.0,0.0)
b(i,j)=dcmplx(0.0,0.0)
if(i.eq.j) b(i,j)=dcmplx(1.0,0.0)

300 continue
400 continue
do 500 i=1,n/2
y=n/2+1-1i

atempl=-(finv(7,1,1)*f(y,1,1)+£finv(7,1,2)*f(y,2,1))
a(l,2*i-1)=dcmplx(atempl,0.0)
atemp2=-(finv(7,1,1)*£(y,1,2)+£inv(7,1,2)*£f(y,2,2))
a(l,2*i)=dcmplx(atemp2,0.0)
atemp3=-(finv(7,2,1)*f(y,1,1)+finv(7,2,2)*f(y,2,1))
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a(2,2*i-1)=dcmplx(atemp3,0.0)
atemp4=-(finv(7,2,1)*f(y,1,2)+£finv(7,2,2)*£f(y,2,2))
a(2,2*i)=dcmplx(atemp4,0.0)

500 continue

C
748 format (6x,2£24.6)
750 format (6x,28e8.1)
749 format (6x,13)
760 format(' ')

C

C subrountine for eigenvalue calculation
C abar : real part of eval( )
C bbar : imaginary part of eval( )
CALL EIGZC(A,IA,B,IB,N,IJOB,EIGA,EIGB,Z,1IZ,WK,INFER, IER)
do 5 I=1,n
5 EVAL(I)=EIGA(I)/EIGB(I)
C printout of velocity and associated eigenvalues
write(4,23) vel/(semic*wtor)
do 6 i=1,n
write(4,22) eval(i)
6 continue
write(4,21) wk(1l,1)
write(4,121)

21 format (6x,' perfomance index is', 2£15.5)
23 format (6x,' ND VELOCITY ',bf6.3)
22 format (6x,8£17.5)
28 format(6x,£f17.5,',',£f17.5,"',',£17.5)
C
C
C changing velocity step size
c if(vel/ (semic*wtor).ge.3.5) step=0.1
o if(vel/ (semic*wtor).ge.5.0) step=0.1
c if(vel/ (semic*wtor).ge.6.0) step=0.5
c if(vel/ (semic*wtor).ge.6.0) goto 120
700 goto 60
120 CLOSE (UNIT=4)
800 END




INPUT FILE : LAPLACE.DAT

.99828226 -.00003562 .00000474
-.16289333 -.22908745 -.06459371

-.00001355 50037475 -.00003629
.01380489 .05848218 . 04963449

.015440852 .084286467 .255950673 .765113621

INPUT FILE : CONST6.DAT

12 12 12 12 2

-.041201375

.00061076

.000011782
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i LAPLACE METHOD INCOMPRESSIBLE (THEODORSEN)

QUTPUT FILE : EIGEN.OUT

u r(alp) ah wben/wtor
50.0 .5 -.5 .2
ND VELOCITY .500
-.01437 1.14595
-.01437 -1.14595
-.00637 -.19921
-.00637 .19921
-.38147 .00000
-.38256 .00000
-.12656 .00000
-.12798 .00000
-.04200 .00000
-.04214 .00000
-.00772 .00000
-.00772 .00000
perfomance index is 1.25299 .00000
ND VELOCITY 1.000
-.02966 1.13486
-.02966 -1.13486
-.76212 .00000
-.76511 .00000
-.01482 .20360
-.01482 -.20360
-.24879 .00000
-.25595 .00000
-.08316 .00000
-.08429 .00000
-.01544 .00000
-.01543 .00000
perfomance index is 1.50717 .00000
ND VELOCITY 1.500
-.04649 -1.11520
-.04649 1.11520
-1.14241 .00000
-1.14767 .00000
-.02480 .20984
-,02480 ~-.20984
-.36693 .00000
-.38393 .00000
-.12267 .00000
-.12643 .00000
{ -.02316 .00000
: -.02313 .00000
perfomance index is 3.53341 .00000
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ND VELOCITY 2.000
-.06529
-1.52250
-1.53023
-.06529
-.51190
~.48021
-.03664
-.03664
-.15957
-.16857
-.03088
-.03080

perfomance index is

ND VELOCITY 2.500
-1.90251
-1.91278

-.08644
-.08644
-.63988
-.58718
-.05141
-.05141
-.19235
-.21072
-.03860
-.03843
perfomance index is

ND VELOCITY 3.000
~2.28251
-2.29534

-.11024

.11024

.76785
-.68609
-.07108
-.07108
-.25286
-.21816
-.04632
-.04600

perfomance index is

ND VELOCITY 3.500
-2.66251
-2.67790

-.13678
-.13678
-.89583
=.77455
-.09940

1.08538
.00000
.00000

-1.08538
.00000
.00000
.21879

-.21879
.00000
.00000
.00000
.00000
17.25293

.00000
.00000
-1.04289
1.04289
.00000
.00000
-.23195
.23195
.00000
.00000
.00000
.00000
1.84973

.00000
.00000
-.983438
.98348
.00000
.00000
.25240
-.25240
.00000
.00000
.00000
.00000
3.86263

.00000
.00000
.89843
-.89843
.00000
.00000
.28811
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-.09940
-.29500
-.23173
-.05404
-.05348
perfomance index is

ND VELOCITY 4.000
~-3.04253
-3.06045

-.16495

.16495

-1.02380

—-.84867
~-.14323

.14323

.33715
~.22548
-.06176
-.06081

perfomance index is

ND VELOCITY 4.500
—-3.42257
-3.44301
-1.15178

-.01016
-.39043
-.90109
-.01016
-.39043
—-.37929
-.20035
-.06948
-.06791
perfomance index is

ND VELOCITY 5.000
-3.80262
-3.82557

.11382
.11382
-1.27975
-.62744
-.62744
-.91518
-.42143
-.17266
-.07461
-.07720

perfomance index is

~-.28811
. 00000
. 00000
. 00000
. 00000
2.67030

. Q0000
. 00000
-.76095
. 76095
. 00000
. 00000
-.36783
.36783
. 00000
. 00000
. 00000
. 00000
3.78368

. 00000
. 00000
. 00000
-.54976
-.51943
. 00000
.54976
.51943
.00000
. 00000
. 00000
. 00000
3.19514

. 00000
. 00000
-.52557
. 52557
. 00000
-.48581
.48581
. 00000
. 00000
. 00000
. 00000
. 00000
2.91782
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$storage:?2
$floatcalls
$debug

C LAPLACE EIGENVALUE SOLUTION
C FLUTTER CALCULATION (TRANSONIC REGIME)

IMPLICIT REAL*8 (A-2)

INTEGER ib,n,ia,ijob,iz,ier,infer,i,]j

COMPLEX*16 eval(l2),A(12,12),B(12,12),EIGA(12),EIGB(12),Z(12,12)
COMPLEX*16 WK(21,42)

REAL*8 u,vel,atempl,atemp2,atemp3,atemps

REAL*8 finv(7,2,2),f(8,2,2),m(2,2),c(2,2),k(2,2),d(2,2),e(2,2)
REAL*8 a0(2,2),al1(2,2),a2(2,2),a3(2,2),a4(2,2),a5(2,2),a6(2,2)
INTEGER vy

C Read in constants.
OPEN (UNIT=1,FILE='CONST6.DAT',STATUS='0QLD')
READ (1,*) ia,ib,iz,n,ijob

C 12 12 12 12 2
CLOSE (UNIT=1)

C open required files
OPEN (UNIT=4,FILE='EIGEN.OUT',STATUS='NEW')

C required constants
u=50.0
r=0.5
ah=-0.5
wrat=0.2

xtor=0.25
semic=1.0
wtor=1.0
wben=wrat*wt ~r
pi=4.0*atan(1.0)

C

C required constants (approximation)

OPEN (UNIT=10,FILE='LAPLACE.DAT',STATUS='0OLD')
do 50 i=1,2

do 25 j=1,2
READ (10,%*) a0(§,j),al(i,j),a2(i,j),aﬁ(i,j),a4(i,j),
1 as5(i,j),a6(1i,3)
25 continue
50 continue

READ (10,*) bl,b2,b3,b4,err
CLOSE (UNIT=10)
C
C titles and initial parameter listing to file
write(4,32)
write(4,121)
write(4,121)
write(4,33)
write(4,121)
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k'l
. write(4,34) u,r,ah,wrat
write(4,121)
write(4,121)
32 format(6X,' LAPLACE METHOD TRANSONIC M=0.85")
33 format (6X, "' u r(alp) ah wben/wtor')
34 format(6X,£7.1,4£10.1)
121 format (' ')
C
C
C term Q(1,1): N(1,1) = Clh/2
C
ao(l1,1)= ao(l,1)/2.0
al(1,1)= al(l,1)/2.0
a2(1,1)= a2(1,1)/2.0
a3(l,1)= a3(1,1)/2.0
a4(1i,1)= a4(1,1)/2.0
as(l,1)= a5(1,1)/2.0
a6(1,1)= a6(1,1)/2.0
C
C term Q(1,2): N(1,2) = Cltor
C
a0(1,2)= a0(1,2)
al(1,2)= al(l,2)
a2(1,2)= a2(1l,2)
a3(l,2)= a3(1,2)
a4(1,2)= a4(1,2)
as(1,2)= a5(1,2)
a6(1,2)= a6(1,2)
C
C term Q(2,1): N(2,1) = Cmh*(-1)
c
a0d(2,1)= aod(2,1)*(-1.0)
al(2,1)= al(2,1)*(-1.0)
a2(2,1)= a2(2,1)*(-1.0)
a3i(2,1)= a3(2,1)*(-1.0)
ad(2,1)= a4a(2,1)*(-1.0)
as(2,1)= a5(2,1)*(=1.0)
a6(2,1)= a6(2,1)*(-1.0)
C
C term Q(2,2): N(2,2) = Cmtor*(-2)
C
ag(2,2)= ao(2,2)*(=2.0)
al(2,2)= al(2,2)*(-2.0)
a2(2,2)= a2(2,2)*(-2.0)
ai(2,2)= a3(2,2)*(-2.0)
a4(2,2)= ad(2,2)*(-2.0)
as(2,2)= as(2,2)*(-2.0)
a6(2,2)= a6(2,2)*(-2.0)
C
C
C
L4

b1234=bl+b2+b3+b4
* b123=bl+b2+b3
bl24=bl+b2+b4
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1 bl34=bl+b3+b4
b234=b2+b3+b4
btl123=bl*b2*b3
btl24=bl*b2*b4
btl134=bl*b3*b4
bt234=b2*b3*b4
bgl234=bl*b2*b3*b4
btl1234=bl*b2*b3+bl*b2*b4+bl*b3*b4+b2*h3*b4
bd1234=b1l*b2+bl*b3+b2*b3+bl*bd+b2*b4+b3*b4
bd123=bl*b2+bl*b3+b2*b3
bdl24=bl*b2+bl*b4+b2*b4
bdl34=bl*b3+bl*b4+b3*b4
bd234=b2*b3+b3*b4+b2+*b4
C
C iterate velocity
vel=0.0
step =0.5
60 vel=vel+step
if(vel/(semic*wtor).gt.4.0) goto 120
wf=vel/semic
xvar=(1l/pi) *wf**2/u
C
= C formation of matrices : [M], [C], [K], [D] and [E]
x m(l,1)=1.0
‘ m(l,2)=xtor
m(2,1l)=xtor
m(2,2)=r**2
c(1,1)=0.0
c(1,2)=0.0
c(2,1)=0.0
c(2,2)=0.0
k(1,1)=wben*x*2
k(1,2)=0.0
k(2,1)=0.0
kK(2,2)=r**x2*wtor**2

formation of polynomial coefficients : ([F7], [F6], [F5], [F4]

noaonn
=
W
1y
3%
[y

[(F7)s6+[F6]s5+ ... +[F2]s+[F1] = O
do 200 i=1,2
do 100 j=1,2
calculation of (F7]
£(7,1,])=m(i,j)+xvar*(1l/wf)**2*a2(i,j)
c calculation of [Fé6]
£(6,1i,))=c(i,]j)+wf*bl234*m(i,j)+xvar*(1/wf)*(al(i,j)+
1 bl234*a2(i,J))
C calculation of [F5]
£(5,1,3)=k(i,]j)+wf*b1234*c(i,j)+wE**2+%bd1234*m(i,])+
1 xvar* (a0 (i,j)+bl234*al(i,j)+bd1234*a2(i,j)+a3(i,j)+
1 ad4(i,j)+as(i,j)+a6(i,j))
s C calculation of [F4]
> £(4,1,3)=wf*b1234*Kk (i, )+WE**2%bd1234*C(i,)+Wf*k*3*bt1234*
1 m(i,j)+xvar*wt*(b1234*a0(i,j)+bd1234*al(i,j)+bt1234+*
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100
200

210
215

220

C

-

=

a2 (i,j)+b234*a3(i,j)+bl34*a4(i,j)+bl24*a5(i, )+
bl23*a6(i,j))

calculation of [F3]
£(3,1,3)=wE**2%bd1234*K (1, ) +WE**3*bt1234%C (i, ) +wE**4*
bgl234*m(i,j)+xvar*wfx*2%(bdl1234*a0(i,j)+bt1234*%al(i,j)+
bql234*a2(i,j)+bd234*a3(i,j)+bd1l34%a4(i,j)+bd124*
as5(i,j)+bdl23*a6(i,j))

calculation of (F2]
£(2,1i,3)=wf**3*bt1234*k(i,j)+wE**4*bql234*c(i, )+
xvar*wf**3* (bt1234%a0(i,j)+bql234*al(i,j)+bt234*a3(i,]j)+
bt134*a4(i,j)+btl24*a5(i,j)+bt123*%a6(i,J))

calculation of [F1]
f(1,i,j)=wf**4*bgl234*k(i,j)+xvar*wf**x4*bql234*a0(i,j)

continue
continue

calculation of inverse ( inv[F8] )
f7det=£(7,1,1)*£(7,2,2)-£(7,1,2)*£(7,2,1)
if(f7det.eq.0.0) goto 210

goto 220

write(4,215)

format (' DETERMINANT EQUALS ZERO - INVESTIGATE INPUT ',
'CONSTANT ... ah ')

goto 120

finv(7,1,1)=£(7,2,2)/£7det
£(8,1,1)=finv(7,1,1)
finv(7,2,2)=f(7,1,1)/£f7det
£(8,2,2)=finv(7,2,2)
finv(7,1,2)=-£(7,1,2)/f7det
£(8,1,2)=finv(7,1,2)
finv(7,2,1)=-£f(7,2,1)/f7det
f(8,2,1)=finv(7,2,1)

C formation of matrices [A] and [B] to
C solve eigenvalue problem given by [A]{x) = lambda [B]({x)

300
400

500

do 400 i=1,n
do 300 j=1,n

a(i,j)=dcmplx(0.0,0.0)

if(i.eq.j+2) a(i,j)=dcmplx(1.0,0.0)
b(i,j)=dcmplx(0.0,0.0)

if(i.eq.j) b(i,j)=dcmplx(1.0,0.0)

continue
continue
do 500 i=1,n/2

y=n/2+1-1i
atempl=-(finv(7,1,1)*f(y,2,1)+finv(7,1,2) *f(y,2,1))
a(l,2*i-1)=dcmplx(atempl,0.0)
atemp2=-(finv(7,1,1)*f(y,1,2)+finv(7,1,2)*f(y,2,2))
a(l,2*i)=dcmplx(atemp2,0.0)
atemp3=-(£finv(7,2,1)*f(y,1,1)+£finv(7,2,2)*f(y,2,1))
a(2,2*i-1)=dcmplx(atemp3,0.0)
atemp4=~(finv(7,2,1)*f(y,1,2)+finv(7,2,2)*£f(y,2,2))
a(2,2*i)=dcmplx(atemp4,0.0)

continue
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C subrountine for eigenvalue calculation
C abar : real part of eval( )
C bbar : imaginary part of eval( )
CALL EIGZC(A,IA,B,IB,N,IJOB,EIGA,EIGB,Z,1Z,WK, INFER, IER)
do 5 I=1,n
5 EVAL(I)=EIGA(I)/EIGB(I)
C
C printout of velocity and associated eigenvalues
write(4,24)
write(4,23) vel/(semic*wtor)
do 6 i=1,n
write(4,22) eval(i)
6 continue
write(4,21) wk(1l,1)
21 format(6x,' perfomance index is', 2f15.5)
23 format (6x,' ND VELOCITY ',6f6.3)
22 format(6x,8£17.5)
24 format(' ')
i Cc
| C changing velocity step size
; c if(vel/ (semic*wtor).ge.3.0) step=0.1
: c if(vel/(semic*wtor).ge.3.5) step=0.5
. c if(vel/ (semic*wtor).ge.4.5) step=0.5
i c if(vel/(semic*wtor).ge.5.0) step=0.5
: 700 goto 60
; 120 CLOSE (UNIT=4)
2 800 END
x
&
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é INPUT FILE : LAPLACE.DAT

.0000600 7.351972 -.265177 -8561.672085

.593074 8707.625432 -146.231038
14.235672 .957753 1.258183 404976.770760

-8.145772 -408964.029690 3987.367830
. 000000 -1.905869 ~.293633 158360.047503

-.059842 -159903.225805 1543.931881
-.516839 -4.3942836 2.744002 217699.240354

165112 -219881.401614 2184.097622

.27892661 .04365735 .27899139 .28586712 .00139602

INPUT FILE : CONST6.DAT

12 12 12 12 2
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i OUTPUT FILE : EIGEN.OUT

LAPLACE METHOD TRANSONIC M=0.85
u r(alp) ah wben/wtor
50.0 .5 -.5 2
ND VELOCITY .500
-.08315 1.27662
-.08315 ~1.27662
-.00511 -.20185%
-.00511 .20185
-.18737 -.01797
-.18737 .01797
~-.12884 -.03121
-.12884 .03121
-.11139 -.01459
-.11139 .01459
-.02172 .00019
-.02172 -.00019
perfomance index is 1.34192 .00000
ND VELOCITY 1.000
-.13682 -1.22225
-.13682 1.22225
-.01143 .21140
-.01143 -.21140
E -.47016 .00000
! -.41480 .00000
¢ -.24390 ~-.08059
x -.24390 .08059
; -.19773 -.03599
-.19773 .03599
: -.04279 .00145
3 ~-.04279 -.00145
- perfomance index is 1.91492 .00000
3 ND VELOCITY 1.500
5 -.14304 -1.17204
5 -.14304 1.17204
é -.91862 .00000
3 -.60947 .00000
3 -.01825 .22490
-.01825 -.22490
-.35435 .13235
-.35435 -.13235
-.27054 .05787
- -.27054 -.05787
-.06248 .00460
@ -.06248 -.00460
perfomance index is 3.55296 .00000
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ND VELOCITY

.

-1.

perfomance index is

ND VELOCITY
-1.

|
=

.

perfomance index is

ND VELOCITY
-2.

|
)

perfomance index is

ND VELOCITY
—2.
-1.

2.000

13090
42867

.13090
.81080
.02269
.02269
.46358
.46358

33331
33331
08006
08006

2.500

93877
13300
13300
01285
02228
02228
57278
57278
38902
38902
09496
09496

3.000

43536
15539
15539
21510
68232
68232
01448
01448
44104
44104
10696
10696

3.500

92058
19525
41743
19525
79221
79221
00221

-1l

16269

.00000

1.

16269

.00000
.24257
-.24257
.18321
-.18321
.07634
-.07634
-.01006
.01006

3.54698

. 00000
-1.18652
1.18652
. 00000
.26434
-.26434
.23294
~-.23294
. 08819
-.08819
-.01771
.01771

4.61556

. 00000
1.22983
-1.22983
. 00000
-.28189
.28189
-.28849
.28849
.09158
-.09158
.02704
~-.02704

3.86013

. 00000
1.28757
. 00000
-1.28757
=.33037
.33037
.31152
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.00221
-.49236
-.49236
~-.11637
-.11637

perfomance index is

ND VELOCITY
-3.39765
-1.61980

=.24794
-.24794
-.90240
-.90240

.02714

.02714
-.54475
-.54475
-.12386
-.12386

perfomance index

4.000

is

A—109
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.31152
.08603
.08603
.03744
.03744
5.60378

. 00000
.00000
.35846
.35846
.37857
.37857
.32936
.32936
.07102
.07102
. 04847
. 04847
3.19862

.00000

.00000
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LAPLACE EIGENVALUE SOLUTION
IMPLEMENTATION OF ACTIVE CONTROL
FLUTTER CALCULATION (INCOMPRESSIBLE REGIME)

OFERATION
REQUIRE: 1) INPUT OF ICOUNT, N, REQMIN, START(I),STEP(I)
2) USER SPECIFIED FUNCTION SUBPROGRAM (DOUBLE PRECISION
FUNCTION FN(X) - MINIMIZATION FUNCTION)

DOUBLE PRECISION START(20),STEP(20),XMIN(20),
1XSEC(20) ,YNEWLO, YSEC, REQMIN

OPEN(UNIT=6,FILE='DATA.OUT',STATUS="'NEW')

*k*k%k% INPUT REQUIRED **kkkkkhkhkhhkkhkhhhrkhhhkhhhkhhkhhhk

ICOUNT, REQMIN, START (N) , STEP(N)

L ]
»*
%*
velndnc : no control non-dimensional velocity *
step : velocity step size *
u : airfoil-air mass ratio *
wrat : frequency ratic (wben/wtor) *
r : non-dimensional distance *
ah : non-dimensional distance *
%*
*
*
*

OUTPUT FILE : OPTIMAL.OUT

* % A % X ¥ ¥ ¥ N ¥ ¥ *

khkkhkhkhkkhkhkhkhhkhkkhhhhkhkhkhkhkhhhkkhhhhkhkhkhhkhhhkhhhhkhihhkhkkkk

LET N=4 AT ALL TIMES, SIMPLY SET START(I)=0.0 AND STEP(I)=0.0

ICOUNT=8
N=4
REQMIN=0.000000001
START (1)=0.0

START (2) =~ o 3
START(3)= .

STEP(2)=-0 .1
STEP(3)=0.1
STEP(4)=0.1

DO 60 I=1,N
XMIN(I)=0.D0
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60

79

64
65
75
77

80
82
83
84

XSEC(I)=0.D0
CONTINUE
YNEWLO=0. D0
YSEC=0.D0

CALL NELDER~-MEAD SUBROUTINE

CALL NELMIN(N,START,XMIN,XSEC,YNEWLO,YSEC,
1REQMIN, STEP, ICOUNT)

OUTPUT FROM PROGRAM

WRITE (6, 64)

WRITE(6,65) ICOUNT
WRITE (6, 75)

WRITE(6,77)

DO 79 I=1,N

WRITE(6,80) I,XSEC(I),XMIN(I)
WRITE (6,82)

WRITE (6, 83)

WRITE (6,84) YSEC,YNEWLO

FORMAT(1H //,1H ,42H SEQUENTIAL SIMPLEX : PROBLEM MINIMIZATION)
FORMAT (1H //,1H ,1I5,12H TRIALS USED/)

FORMAT (1H ,21X,9HESTIMATES/)

FORMAT (1H ,9HPARAMETER, 7X, 12HNEXT-TO-BEST, 8X,
14HBEST/)

FORMAT (1H ,I5,2F20.7)

FORMAT (1H //,1H ,6X,15HFUNCTION VALUES/)
FORMAT (1H ,5X,13H NEXT-TO-BEST, 8X,4HBEST/)
FORMAT (1H ,2F15.9)

STOP

END

NELDER-MEAD SUBROUTINE

SUBROUTINE NELMIN (N,START,XMIN, XSEC, YNEWLO, YSEC,
1REQMIN, STEP, ICOUNT)

DOUBLE PRECISION START(N),STEP(N),XMIN(N),
1XSEC(N) , YNEWLO, YSEC, REQMIN, P(20, 21) , PSTAR(20),
2P2STAR(20) , PBAR(20),Y(20),DN, 2, YLO,RCOEFF,
3YSTAR, ECOEFF, Y2STAR, CCOEFF, FN, DABIT, DCHK,
4COORD1, COORD2

DATA RCOEFF/1.0D0/,ECOEFF/2.0D0/,CCOEFF/0.5D0/

KCOUNT=ICOUNT

ICOUNT=0

IF(REQMIN.LE.0.DO) ICOUNT=ICOUNT-1
IF(N.LE.O) ICOUNT=ICOUNT-10
IF(N.GT.20) ICOUNT=ICOUNT-10
IF(ICOUNT.LT.O0) RETURN

DABIT=2.04607D-35
BIGNUM=1.0D38
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1000

oMo Ny

OO0

KONVGE=5
XN=FLOAT (N)
DN=DFLOAT (N)
NN=N+1

CONSTRUCTION OF INITIAL SIMPLEX

DO 1 I=1,N
P(I,NN)=START(I)

Y (NN) =FN (START)
ICOUNT=ICOUNT+1

DO 2 J=1,N
DCHK=START (J)

START (J) =DCHK+STEP (J)
DO 3 I=1,N
P(I,J)=START(I)

Y (J) =FN (START)
ICOUNT=ICOUNT+1
START (J) =DCHK

SIMPLEX CONSTRUCTION COMPLETE

FIND HIGHEST AND LOWEST Y VALUES
YNEWLO (Y (IHI)) INDICATES THE VERTEX OF
THE SIMPLEX TO BE REPLACED

YLO=Y (1)
YNEWLO=YLO

ILO=1

IHI=1

DO 5 I=2,NN
IF(Y(I).GE.YLO) GOTO 4
YLO=Y (I)

ILO=I
IF(Y(I).LE.YNEWLO) GOTO 5
YNEWLO=Y (I)

IHI=I

CONTINUE

PERFORM CONVERGENCE CHECKS ON FUNCTION

DCHK= (YNEWLO+DABIT) / (YLO+DABIT) -1.DO0
IF (DABS (DCHK) . LT.REQMIN) GOTO 900

KONVGE=KONVGE-1
IF(KONVGE.NE.O) GOTO 2020
KONVGE=5

CHECK CONVERGENCE OF COORDINATES ONLY
EVERY 5 SIMPLEXES

DO 2015 I=1,N

COORD1=P(I,1)
COORD2=COORD1
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12

13

DO 2010 J=2,NN
IF(P(I,J).GE.COORD1) GOTO 2005
COORD1=P(I,J)

IF(P(I,J).LE.COORD2) GOTO 2010
COORD2=P(I,J)

CONTINUE

DCHK= (COORD2+DABIT) / (COORD1+DABIT) -1.D0
IF (DABS (DCHK) .GT .REQMIN) GOTO 2020
CONTINUE

GOTO 900

IF (ICOUNT.GE.KCOUNT) GOTO 900

CALCULATE PBAR, THE CENTROID OF THE
SIMPLEX VERTICES EXCEPTING THAT WITH
Y VALUE YNEWLO

DO 7 I=1,N
Z=0.0DO

DO 6 J=1,NN
Z2=Z+P(I,J)
Z=7-P(I,IHI)
PBAR(I)=Z/DN

REFLECTION THROUGH THE CENTROID

DO 8 I=1,N

PSTAR(I)=(1.0D0+RCOEFF) *PBAR(I)-RCOEFF*P (I, IHI)

YSTAR=FN (PSTAR)
ICOUNT=ICOUNT+1
IF(YSTAR.GE.YLO) GOTO 12
IF(ICOUNT.GE.KCOUNT) GOTO 19

SUCCESSFUL REFLECTION, SO EXTENSION

DO 9 I=1,N

P2STAR(I)=ECOEFF*PSTAR(I)+(1.0DO-ECOEFF) *PBAR(I)

Y2STAR=FN (P2STAR)
ICOUNT=ICOUNT+1

RETAIN EXTENSION OR CONTRACTION

IF(Y2STAR.GE.YSTAR) GOTO 19
DO 11 I=1,N
P(I,IHI)=P2STAR(I)

Y (IHI)=Y2STAR

GOTO 1000

NO EXTENSION

L=0

DO 13 I=1,NN
IF(Y(I).GT.YSTAR) L=L+1
CONTINUE

IF(L.GT.1) GOTO 19
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18

IF(L.EQ.0) GOTO 15

CONTRACTION ON THE REFLECTION SIDE OF THE
CENTROID

DO 14 I=1,N
P(I,IHI)=PSTAR(I)
Y (IHTI)=YSTAR

CONTRACTION ON THE Y (IHI) SIDE OF THE CENTROID

IF (ICOUNT.GE.KCOUNT) GOTO 900
DO 16 I=1,N
P2STAR(I)=CCOEFF*P (I, IHI)+(1.0D0~-CCOEFF)*PBAR(I)
Y2STAR=FN (P2STAR)

ICOUNT=ICOUNT+1

IF(Y2STAR.LT.Y (IHI)) GOTO 10

CONTRACT THE WHOLE SIMPLEX

DO 18 J=1,NN
DO 17 I=1,N
P(I,J)=(P(I,J)+P(I,ILO))*0.5D0
XMIN(I)=P(I,J)

Y (J) =FN (XMIN)

CONTINUE

ICOUNT=ICOUNT+NN

IF (ICOUNT.LT.KCOUNT) GOTO 1000
GOTO 900

RETAIN REFLECTION

19 CONTINUE

19
20

900

22

23

24

DO 20 I=1,N
P(I,IHI)=PSTAR(I)
Y (IHTI)=YSTAR
GOTO 1000

SELECT THE TWO BEST FUNCTION VALUES (YNEWLO
AND YSEC) AND THEIR COORDS. (XMIN AND XSEC)

DO 23 J=1,NN

DO 22 I=1,N
XMIN(I)=P(I,J)
Y (J) =FN(XMIN)
CONTINUE
YNEWLO=BIGNUM
DO 24 J=1,NN
IF(Y(J).GE.YNEWLO) GOTO 24
YNEWLO=Y (J)
IBEST=J
CONTINUE

Y (IBEST) =BIGNUM
YSEC=BIGNUM
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DO 25 J=1,NN
IF(Y(J) .GE.YSEC) GOTO 25
YSEC=Y (J)

ISEC=J

25 CONTINUE
DO 26 I=1,N
XMIN(I)=P(I,IBEST)
XSEC(I)=P(I,ISEC)

26 CONTINUE
RETURN
END
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LAPLACE SOLUTION (EIGENVALUE SOLUTION)
THEODORSEN: 7th order in s
approximate C(k) & C(k)*ik

DOUBLE PRECISION FUNCTION FN(lag)

IMPLICIT REAL#*8 (A-2Z)

DOUBLE PRECISION lag(4),t(1,2),tst(1,2)

INTEGER ib,n,ia,ijob,iz,ier,infer,i,j

COMPLEX*16 eval(14),A(14,14),B(24,14) ,EIGA(14) ,EIGB(14),Z(14,14)
COMPLEX*16 WK(24,45)

REAL*8 u,vel,velndnc,velck,atempl,atemp2,atemp3,atemp4d

REAL*8 trml,trm2,trm3,trm4,trm5,trm6,trm7,trm8

REAL*8 trm9,trml0O, trmll,trml2,trml3,trml4

REAL*8 finv(8,2,2),£(9,2,2),m(2,2),c(2,2),k(2,2)

REAL*8 mc(2,1),cc(2,1),kc(2,1)

REAL*8 a0(2,2),al(2,2),a2(2,2),a3(2,2),a4(2,2),a5(2,2),a6(2,2)
REAL*8 a0c(2,1),alc(2,1),a2c(2,1),a3c(2,1)

REAL*8 ad4c(2,1),as5c(2,1),a6c(2,1)

REAL*8 nl1(2,7)

INTEGER y,check

transfer function constants
t(1,1)=LAG(1)
t(1,2)=LAG(2)
tst(1,1)=LAG(3)
tst(1,2)=LAG(4)

velndnc=4.53
step=0.05
u=50.0
wrat=0.2
r=0.5
ah=-0.5

ta=0.0012
th=0.5484
cst=50000.0
ds=cst*ta/tb
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! velndbig=2*velndnc

C Read in constants.
OPEN (UNIT=1,FILE='CONST6.DAT',STATUS='0OLD"')
READ (1,*) ia,ib,iz,n,ijob

C 14 14 14 14 2
CLOSE (UNIT=1)

a0

open required files
check=check+1
if(check.gt.1l) goto 66
OPEN (UNIT=4,FILE='EIGEN.OUT',STATUS='NEW')
OPEN (UNIT=5,FILE='OPTIMAL.OUT', STATUS='NEW')
C required constants

pi=3.14159
C
xtor=0.25
semic=1.0
wtor=1.0
wben=wrat*wtor
C
xbeta=0.25
rbeta=0.5
cl=0.6
C
C required constants
C

tl==-(1/3)*(1l-Ccl**2)**0.5%(2+cl**2)+cl*acos(cl)
t2=cl*(l-cl**2)-(1l-Ccl**2)**0.5%(1l+cl**2)*acos(cl)+cl*

1 (acos(cl) ) **2
t3==((1/8)+tcl**2)*(acos(Cl))**2+0.25* Cl*(1l-Cl**2)**Q 5%
1 acos(cl)*(7+2*%Cl**2)~(1/8) *(1-Cl**2) % (S*cl**2+4)

t4=-acos(cl)+Cl*(1-Cl**2)**0.5
t5=-(1l-cl**2)-(acos(cl) ) **2+2*Ccl*(1l-cl**2)**0, 5*acos(cl)
t6=t2
t7==((1/8)+cl**2)*acos(Cl)-(1/8)*Cl* (l-Cl**2)**0. 5%
1 (7+2*Cl*%2)
t8==(1/3)*(1l-Cl**2) **x0 5% (2*Cc1**2+1)+cl*acos(cl)
£9=0.5*%((1/3)*(1-Cc1l**2)**1 5+ah*t4)
t10=(1l-cl*#*2)**0,5+acos(cl)
tll=acos(cl)*(1l=2%cl)+(1-Cl**2)**0,5%(2-cl)
t12=(1-C1l**2)**0,5% (2+cl)-acos(cl) * (2*cl+1)
t13=0.5*%(-t7-(cl-ah) *tl)
t14=(1/16)+0.5%ah*cl
C required constants
C
OPEN (UNIT=10,FILE='LAPLACE.DAT',STATUS='0OLD')
do 25 i=1,2
READ (10,*) nl1(i,1),n1(i,2),n1(i,3),nl(i,4),n1(i,s),
1 nl(i,6),n1(i,7)
25 continue
2 READ (10,*) bl,b2,b3,b4,err
- CLOSE (UNIT=10)
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AND C(k)*ik

5)*nl(l,1)
5)*nl(1,2)
5)*nl(1,3)

FOUR LAG TERMS
PADE APPROXIMANT THEODORSEN FUNCTION C (k)
term Q(1,1): C(k)*ik
a0(1,1)= nl1(2,1)
al(l,1)= ni(2,2)
a2(1,1)= ni(2,3)
a3(l,1)= ni1(2,4)
a4(1,1)= ni(2,5)
a5(1,1)= nl(2,6)
a6(l,1)= nl(2,7)
term Q(1,2): C(k)*ik*(0.5-ah)+C(k)
a0(1,2)= nl(2,1)*(0.5-ah)+n1(1,1)
al(l,2)= nl(2,2)*(0.5-ah)+nl(1,2)
a2(1,2)= nl1(2,3)*(0.5-ah)+n1(1, 3)
a3(i,2)= n1l(2,4)*(0.5-ah)+nl1(1, 4)
a4(1,2)= n1(2,5)*(0.5~-ah)+nl1(1,5)
a5(1,2)= nl(2,6)*(0.5-ah)+n1(1,6)
a6(1,2)= n1(2,7)*(0.5-ah)+n1(1,7)
term Q(2,1): C(k)*ik*(-(ah+0.5))
aon(2,1)= ni1(2,1)*(~-0.5=-ah)
al(2,1)= nl1(2,2)*(-0.5-ah)
a2(2,1)= nl(2,3)*(-0.5=-ah)
a3(2,1)= nl(2,4)*(-0.5=-ah)
a4(2,1)= nl1(2,5)*(~-0.5=-ah)
a5(2,1)= nl(2,6)*(~-0.5=-ah)
a6(2,1)= nl(2,7)*(~0.5-ah)
term Q(2,2): C(k)*ik*(-(ah+0.5)*(0.5-ah))~-(ah+C.5)*C(k)
a0(2,2)= nl(2,1)*(-0.5-ah)*(0.5-ah)-(ah+0.
al(2,2)= nl(2,2)*(-0.5-ah)*(0.5-ah)-(ah+0.
a2(2,2)= n1(2,3)*(-0.5-ah)*(0.5-ah)-(ah+0.
a3(2,2)= nl(2,4)*(-0.5-ah) *(0.5-ah)-(ah+0.

a4(2,2)=
a5(2,2)=
a6(2,2)=

nl(2,5)*(-0.
nl(2,6)*(-0.
ni(2,7)*(-0.

flap control

term Qc(1,1):

aoc(1,1)
alc(i, 1)
aac(l 1)

)

5-ah) * (0.
5-ah) * (0.
5-ah) * (0.

5-ah)-(ah+0.
5-ah}-(ah+0.
S-ah) - (ah+0.

ik*C (k) *t11/ (2*pi)+t10*C (k) /pi

5)*n1(1,4)
5)*nl1(1,5)
5)*nl(1,6)
5)*n1(1,7)

nl(2,1)*t11/ (2*pi)+nl(1,1)*t10/pi
nl(2,2)*t11/(2*pi)+nl(1,2)*t10/pi
nl(2,3)*t1l/(2*%pi)+nl(1,3)*t10/pi
nl(2,4)*t1ll/(2*pi)+nl(1,4)*t10/pi
nl(2,5)*t11/(2*pi)+nl1(1,5)*t10/pi
nl(2,6)*tll/(2*pi)+nl(1,6)*t10/pi
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aéc(l,1l)= nl(2,7)*tl11l/(2*pi)+n1(1l,7)*tlo/pi

C

C term Qc(2,1) : -(0.5+a)*(1k*C(k)*tll/(2*p1)+t10*C(k)/pi)
aoc(2,1)= (nl(2,1)*tll/(2*pi)+nl(1, 1)*t10/p1)*
alec(2,1)= (nl(2,2)*tll/(2*pi)+nl(1,2)*tl0/pi)*
a2c(2,1)= (n1(2,3)*t1l/(2*pi)+nl(1,3)*t10/pi)
a3c(2,1)= (ni{(2,4)*tll/(2*pi)+nl(1l,4)*tl1l0/pi)
a4c(2,1)= (nl(2,5)*tll/(2*pi)+nl(1,5)*t10/pi)
asc(2,1)= (nl(2,6)*tll/(2*pi)+nl(1,6)*t10/pi)
aéc(2,1)= (nl(2,7)*tll/(2*pi)+nl(l,7)*tl0/pi)

* ¥ ¥ % *

[eEeNe!

b1234=bl+b2+b3+b4
bl22=bl+b2+b3
bl24=bl+b2+b4
bl34=bl+b3+b4
b234=b2+b3+b4
bt123=bl*b2*b3
btl24=bl*b2*b4
bt134=bl*b3*b4
bt234=b2*b3*b4
bgql234=bl*b2*b3*b4
bt1234=bl*b2*b3+bl*b2*b4+bl*b3*b4+b2*b3*b4
bdl1234=bl*b2+bl*b3+b2*b3+bl*b4+b2*b4+b3*b4
bd123=bl*b2+bl*b3+b2*b3
bd1l24=bl*b2+bl*b4+b2*b4
bd134=bl*b3+bl*b4+b3*b4
bd234=b2*b3+b3*b4+b2*b4
c
C
C titles and initial parameter listing to file
66 write(4,34) t(1,1),t(1,2)
write(4,34) tst(1,1),tst(1,2)
write(4,32)
write(4,121)
write(4,121)
write(4,33)
write(4,121)
write(4,34) u,r,ah,wrat,velndnc
32 format (6x,' LAPLACE METHOD INCOMPRESSIBLE (THEODORSEN)')
33 format (6x, ' u r(alp) ah wben/wtor '
1 'no control velocity!')
34 format(6x,£7.1,3£10.1,£8.2)
121 format (' ")
C
C iterate velocity
vel=velndnc+0.1
velck=velndnc*l.3
60 vel=vel+step
4+ if(vel/(semic*wtor).gt.velck) goto 800
wf=vel/semic
xvar=2*wf**2/u

&>

A-118




4,

C formation of matrices : (M], [C], [K], [D] and [E)

s NoNONON®!

Q

m(l,1)=1+1/u

m(l,2)=xtor-ah/u

m(2,1)=xtor-ah/u

m(2,2)=r**2+(0.125+ah**2) /u

c(1,1)=0.0

c(l,2)=wf/u

c(2,1)=0.0

c(2,2)=(0.5-ah) *wf/u

k(l,l)=wrat**2*wtor**2

k(1,2)=0.0

k(2,1)=0.0

K(2,2)=r**2*ytor**2

mc(1l,1)=xbeta-t1l/ (pi*u)

mc(2,1)=rbeta**2+(cl-ah) *xbeta+(-t7-(cl+0.5)*t1+
(0.5=ah) *tl1l)/(pi*u)

cc(l,1l)=-wf*t4/ (u*pi)

cc(2,l)=(wf/u*pi) *(~(t4-(2/3)*(1l-cl**2)**1.5)+(0.5+ah) *t4)
kc(1,1)=0.0

kc(2,1)=(wf**2/u) *(t4+t10)/pi

formation of polynomial coefficients : ([F8], (F7], [F6], [F5], [F4]

(F3], [F2], [F1]

(F81s7+[F7]S6+[F6]s5+ ... +[F2]s+[F1] = 0

do 200 i=1,2
do 100 j=1,2

calculation of [F8]
trml=m(i,j)+xvar*(1/wf) **2*a2(i,j)
trm2=mc(i,l)+xvar*(1/wf)**2*a2c(i, 1)

£(8,1i,3)=trml+trm2*t(1,j)+ds*trm2*tst(1,j)

calculation of [F7)
trm3=c(1i,))+wf*bl1234*m(i,j)+xvarx(l/wf) *
(al(i,j)+bl234*a2(i,j))
trm4=cc(i,l)+wf*bl234*mc(i, 1) +xvar*(1/wf)*
(alc(i,1)+bl234*a2c(i,1))

£(7,1,))=trm3+trm4*t(1,j)+ds*trmi*tst(1l,j)+cst*trml+

cst*trm2*t(1,3)

calculation of ([F6)
trmS=k(i,3)+wf*bl234*c(i,j)+wE**24bd1234*
m(i,j)+xvar*(a0(i,j)+b1234*al(i,j)+bd1234«
a2(i,j)+a3d(i,j)+ad(i,j)+as(i,j)+a6(i,j))
trmé=kc (i,1)+wf*b1234*cc(i, 1) +wE**2+bd1234+*
mc(i,l)+xvar*(aOc(i,1l)+bl234*alc(i,1)+bd1234*
a2c(i,1)+a3c(i,1l)+adc(i,1)+as5c(i,l)+a6c(i,1))

£(6,i,j)=trmS5+trmé*t(1,j)+ds*trm6*tst(1,]j)+cst*

trm3+cst*trmd*t (1, 3)

calculation of [F5]
trm7=wf*b1234*k(1i,]) +wf**2*bd1234*C(i,j) +wfk*3*
bt1234*m(i,j)+xvar*wf4(b1234%a0(i,j)+bd1234%*
al(i,j)+btl234*a2(i,j)+b234*a3(i,j)+bl34*as(i,y,+
bl124*a5(i,j)+b1l23*a6(i,j))
trm8=wf*b1234*kc (i, 1) +wf**2*bdl234*cc(i, 1)+
wf**3*bt1234*mc(1,1) +xvar*wf*(b1234*a0c (i, 1)+
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200

210
215

220

[

N el

S

el

[

e

bdl234*alc(i,1)+bt1234%a2c(i,1)+b234*a3c(i, 1)+
bl34*adc(i,1l)+bl24*as5c(i,1)+bl23*a6c(i, 1))
£(5,1i,j)=trm7+trm8*t(1,j)+ds*trm8*tst(1,j)+cst*
trmS+cst*trmé*t (1, 3)
calculation of [F4])
trm9=wf**2*pbd1234*k (1i,j)+wE**3*bt1234%*c(i,]j)+
wE**4*bql234*m(i,j)+xvar*wf*x*2* (bd1234*a0(i,j)+
bt1234*al(i,j)+bgl234*a2(i,j)+bd234*a3(i,j)+
bd134*a4 (i,j)+bdl24*a5(i,j)+bd1l23*aé6(i,]j))
trml10=wf**2*bd1234*kc(i, 1) +wf**3*bt1234*cc(1i,1)+
wE**x4*bgl234*mc(i, 1) +xvar*wf**2*(bd1234*a0c(i, 1)+
btl1234*alc(i,1)+bgl234*a2c(i,1)+bd234*a3c(i,1)+
bd134*adc(i,1)+bdl24*a5c(i,1)+bd123*a6c(i, 1))
f(4,1i,]))=trmo9+trmlo*t(1l,j)+ds*trmlO*tst(1l,j)+cst*
trm7+cst*trm8*t(1,7J)
calculation of [F3])
trmll=wf**3%*bt1234*Kk (i,]j)+wf**4*bql234*c(i,3)+
xvar*wf**3*x (btl234*a0 (i, j)+bgl234*al(i,j)+
bt234*a3(i,j)+btl34*a4 (i, j)+btl24*as5(i,J)+
bt123*a6(i,j))
trml2=wf**3*bt1234*kc(i,1l)+wf**4*bgl234*cc(i, 1)+
xvar*wf**3% (bt1234*a0c(i,1)+bql234*alc(i, 1)+
bt234*a3c(i,1l)+btl34*a4c(i,1l)+btl24*as5c(i, 1)+
bt123*a6c(i, 1))
£(3,1,]j)=trmll+trml2*t(1,]j)+ds*trml2*tst(1l,j)+cst*
trm9+cstxtrmlo*t(1,3)
calculation of [F2]
trml3=wf**4*bqgl234*Kk(i,j)+xvar*wf**4+bql234=*
ao(i,j)
trmld4=wf**4*bql234*kc(i, 1) +xXvar*wf**4*bql234*
aldc(i,l)
£(2,1,j)=trml3+trml4*t(1l,3)+ds*trmla*tst(1l,j)+cst*
trmll+cst*xtrml2*t(1,])
calculation of [Fl)
f(l,i,j)=cst*x(wf**4=bql234*k(i,]j)+xvar*wf**x4+bql234%*
a0(i,j))+cstx(wfkx*4*bgl234*kc(i, 1) +xvar*wf**4*bql234+*
aoc(i,1))*t(1,3)

continue
continue

calculation of inverse ( inv[F9] )
f8det=f(8,1,1)*f(8,2,2)-£f(8,1,2)*f(8,2,1)
if(f8det.eq.0.0) goto 210

goto 220

write(4,215)

format (' DETERMINANT EQUALS ZERO - INVESTIGATE INPUT ',
*CONSTANT ... ah ')

goto 800

finv(8,1,1)=£(8,2,2)/f8det
£(9,1,1)=finv(2,1,1)
finv(8,2,2)=f(8,1,1)/f8det
£(9,2,2)=finv(8,2,2)
finv(8,1,2)=-£(8,1,2)/f8det
£f(9,1,2)=finv(8,1,2)
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! finv(8,2,1)=-£f(8,2,1)/f8det
£(9,2,1)=finv(8,2,1)
C
C formation of matrices [A] and [B] to
C solve eigenvalue problem given by [A]{x} = lambda [B]{x)
do 400 i=1,n
do 300 j=1,n
a(i,j)=dcmplx(0.0,0.0)
if(i.eq.j+2) a(i,j)=dcmplx(1.0,0.0)
b(i,j)=dcmplx(0.0,0.0)
if(i.eq.j) b(i,j)=dcmplx(1.0,0.0)

300 continue
400 continue
do 500 i=1,n/2
y=n/2+1-1i

atempl=-(finv(8,1,1)*f(y,1,1)+finv(8,1,2)*f(y,2,1))
a(l,2*i-1)=dcmplx(atempl, 0.0)
atemp2=~(finv(8,1,1)*f(y,1,2)+finv(8,1,2)*f(y,2,2))
a(l,2*i)=dcmplx(atemp2,0.0)
atemp3=-(finv(8,2,1)*f(y,1,1)+finv(8,2,2)*f(y,2,1))
a(2,2*i-1)=dcmplx(atemp3,0.0)
atempd=-(finv(8,2,1)*f(y,1,2)+finv(8,2,2)*f(y,2,2))
a(2,2*i)=dcmplx(atemp4,0.0)

500 continue

C

C

C subrountine for eigenvalue calculation

C abar : real part of eval( )

C bbar : imaginary part of eval( )
: CALL EIGZC(A,IA,B,IB,N,I1JOB,EIGA,EIGB,Z,1Z,WK, INFER, IER)
E do 5 I=1,n
' 5 EVAL(I)=EIGA(I)/EIGBE(I)

cC

C printout of wvelocity and associated eigenvalues
: C flutter velocity check

: vndcrit=0.0

; do 6 i=1,n

o write(4,22) eval(i)
if(dreal(eval(i)).gt.0.0001) vndcrit=vel/(semic*wtor)
] C 1 dreal (eval(i)) ,dimag(eval (i) ) /wtor
3 6 continue

FN=velndbig-vndcrit
perc=( (vndcrit-velndnc)/velndnc) *100
if(vndcrit.gt.0.0) goto 779

21 format (6x,' performance index is', 2£15.5)
23 format (6x,' ND VELOCITY ',f6.3,' Ta ',6£6.4)
22 format (6x,8£17.5)
28 format(6x,£f17.5,',',£f17.5,"',"',£17.5)
41 format (6%, 'NO CONTROL VELOCITY ',£f5.2,' CRITICAL ‘',
1 'VELOCITY ',£f5.2,' % INCREASE !',F5.2,' %')
42 format(6x,' Ta ',f7.4," Tb ',£7.4)
* 43 format(6x,' [ t ] ',2fl4.4)
* 44 format (6x,' [ tst ] ',2f14.4)
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achy

700
779

789
800

RETURN
END

goto 60

write(5,41)
write(5,42)
write(5,43)
write(5, 44)
write(5,121)

velndnc, vndcrit, perc
ta,tb

t(1,1),t(1,2)
tst(1,1),tst(1,2)




&0

INPUT FILE : LAPLACE.DAT

.99828226 -.00003562 .00000474 -.04120375
~.16289333 -.22908745 ~-.06459371

-.00001355 .50037475 -.00003629 .00062076
.01380489 .05848218 .04963449

.015440852 .084286467 .255950673 .765113621 .000011782

INPUT FILE : CONST6.DAT

14 14 14 14 2
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OUTPUT FILE : OPTIMAL.OUT

NO CONTROL VELOCITY 4.53 CRITICAL
Ta .0012 Tb .5484
[ t) .0000
[ tst ) 4.0000

NO CONTROL VELOCITY 4.53 CRITICAL
Ta .0012 Tb .5484
[t .1000
[ tst ) 4.0000

NO CONTROL VELOCITY 4.53 CRITICAL
Ta .0012 Tb .5484
[t ] .0000
[ tst ) 4.0000

NO CONTROL VELOCITY 4.53 CRITICAL
Ta .0012 Tb .5484
[ t] .0000
[ tst ] 4,1000

NO CONTROL VELOCITY 4.53 CRITICAL
Ta .0012 Tb .5484
[t .0000
[ tst ] 4.0000

NO CONTROL VELOCITY 4.53 CRITICAL
Ta .0012 1b .5484
[t .0500
[ tst ) 4.0500

NO CONTROL VELOCITY 4.53 CRITICAL
Ta .0012 Tb .5484
[t .0000
[ tst ] 4.0500

NO CONTROL VELOCITY 4.53 CRITICAL
Ta .0012 Tb .5484
[t .0000
[ tst ) 4.1000

NO CONTROL VELOCITY 4.53 CRITICAL
Ta .0012 Tb .5484
(t) .0000
[ tst ] 4.0500

NO CONTROL VELOCITY 4.53 CRITICAL
Ta .0012 Tb .5484
[t) .0000
[ tst ] 4.0500

VELOCITY

-.3000
3.6000

VELOCITY

-.3000
3.6000

VELOCITY

-.4000
3.6000

VELOCITY

-.3000
3.6000

VELOCITY

3.7000

VELOCITY

-.3000
3.6000

VELOCITY

-.3500
3.6000

VELOCITY

-.3000
3.6000

VELOCITY

=-.3000
3.6500

VELOCITY

3.6000

INCREASE

INCREASE

INCREASE

INCREASE

INCREASE

INCREASE

INCREASE

INCREASE

INCREASE

INCREASE




,l NO CONTROL VELOCITY 4.53 CRITICAL VELOCITY 4.73 % INCREASE 4.42 %
Ta .0012 Tb .5484
[t ] . 0500 -.3000
[ tst ] 4.0500 3.6000

NO CONTROL VELOCITY 4.53 CRITICAL VELOCITY 4.88 % INCREASE 7.73 %
Ta .0012 Tb .5484
[t ] .0000 -.3500
[ tst ) 4.0500 3.6000

NO CONTROL VELOCITY 4.53 CRITICAL VELOCITY 4.78 % INCREASE 5.52 %
Ta .0012 Tb .5484
[t . 0000 -.3000
[ tst ) 4.1000 3.6000

NO CONTROL VELOCITY 4.53 CRITICAL VELOCITY 4.78 % INCREASE 5.52 %
Ta .0012 Tb .5484
[t ] . 0000 -.3000
[ tst ) 4.0500 3.6500

NO CONTROL VELOCITY 4.53 CRITICAL VELOCITY 4.78 % INCREASE 5.52 %
Ta .0012 Tb .5484
! [t ] . 0000 -.3000
| [ tst ] 4.0500 3.6000
OUTPUT FILE : DATA.OUT

SEQUENTIAL SIMPLEX : PROBLEM MINIMIZATION

12 TRIALS USED

ESTIMATES
PARAMETER NEXT-TO-BEST BEST
1l . 0000000 .0000000
2 =.3000000 -.3500000
3 4.1000000 4.0500000
4 3.5999999 3.5999999

FUNCTION VALUES
NEXT-TO-BEST BEST

4.280000206 4.180000205
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