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A bstra"ct 

.. 
Connèctionist models and their application to Automatic Speech 
Recognition are studied in this thesis. In particular, the Boltzmann 

, ~ , 

machine aLgorithm and the error back propagation' algorithm are 
preserl'ted in detail, and are used in a specifie application to speaker 
normalization and th~ recognition of the place of articulation for 
sonorant sounds. Spectral lines -are used to represent static speech 

informatio'n into the ~onn\ctionist networks. The networks learn to 
~ . 

classify vowels into three èategories: back positio n, central 
position and front' position. The recognition rate is shawn to be 
dependent on how speech data is coded at the input of the networks. 
The best results are obtained using coarse and multi-Ievel coding. 
The recognition rates are significantly better than results on 
similar data, also using spectral Iines information, but with Hidd~n 
Markov Models alone.' 
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Resumé 

Les modèles connexiGnistes et. leur application à la reconnaissance , 
automatique de la parole sont étudiés dans ce mémoire. En 
particulier, l'algorithme de la machine de Boltzmann et l'al~rithFl1e 
de rétro-propagation de l'erre,ur $ont présentés ~ detail. Ceux-ci 
sont - utilisés dans une ,application 'à la normalisatio n des locuteurs, 
.pou.f"1â clas'sification des voyelles en fonction de leur lieu 
d'articulation en trois catégories: position arrière, centrale er 
frontale. Les lignes spectrales du signal auditif sQnt extraites puis 
fournies à l'entrée'des réseaux connexioniste~. "est m0!1tré que le 
taux de reconnaissance dépend de la manière dont' les lignes 
spectrales sont codées à, l'entrée des réseaux. Les meilleurs 
,resultats sont obtenus avec un codage' à multiple niveaux et 
'l'activa~ion d'unités voisines. Les t'aux d'erre~ obtenus sont 
significativement meilleurs que ceux obtenus avec des dO[lnées 
similaires, aussi representé~s par l'eur lig"nes spectrales, mais 
utilisant les seuls modèles de Markov cachés. 
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1. Introduction 
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o 1 

, The human auditorx system is able to solve the very 
" difficult problem of speech perception. Speech of po or quality, 

distorted by noise, with inter-speaker and intra-speaker 

variabilities is easily recognized by humans, l1sing the numer6us 

phonemic, lexical, syntactic and semantic constraints built into 

speech. Since phonemes cannot be described by an invariant set of 

acoustic feat~r.es, and cannot be unambiguously segmented, 

automatic recognition of connected speech (especially for multiple 

speakers) is a very complex 'task Which remains to be 

satisfactorily solved. 

Artificial and adaptable neural networks (also known as 

conne'ctionist models, or parallel aistributed' processing mod els) 

have recently ,attracted co'nsiderable attention in the field 0 f 

Artificial Intelliger:lce (AI) .... Connectionist models seem 

particularly weil suit'ed, to problems in automatic vision and , , 

speech perception. Connecti5mist models were studied in the 50's '". 

and 60's but research in this field was discouraged by a 

Ressimistic evaluation of the potential of the perceptron by Minsky 

and Papert in 1969. However, in recent years connectionist models 

have been proposed which solve the problems and limitations of the 

, perceptrons pointed out"by Minsky and Papert. In addition, neural 

networks can very easily be 1 implement"ed through massively 

parallel architectures in hardware. Available VLSI technology and 

, . the trend towards parallel computers thus, makes neural nets 

. technolog ically very attractive. 

Despite their name, neural nets are generally not plausible 

models of neuron .operation. Ins'teÇid, they are inspired from 

neurobiological cues. The fiPst of these indications is the 

massively parallel arc~,itecture, made up .of very\ simple 

computational erements" each' controlling very little memory. In 

J, 
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contrast to the Von Neumann architecture; where the 
compytatiQJ1a/ power (CPU) is physically separate from th~ 

memory, in the connectionist models processing e/ements and 

memory elements are distributed and close ta each other. Thi~ 

results in the capâcity for the connecHonist models to bring ta 
bear a very large amount of knowledge simultaneously when 
solving a problem. This is especially useful in perception, where 

, v 

huge amounts of data must be examined in. a very short i'ime (using 
very few machine 'cycles) if real time recognition is desired. 

This thesis will study connectionist model§, including a 

brief neurobiologiçal and historical overview and the description 
o 

of various models (chapter 2). The general problem of Automatic 

Speech Recqgnition will be considered along with" a Sh~ 
description of the human auditory system (chapter 5). For this 

thesis, experiments were performed with neural networks ta 
classify sonorant portions of cOilnected \ speech in order to achieve " 
a speaker-independent recognition of the place of articulation. 

These expêriments were based 4pon two popular connectionist 
. models models: the Boltzman'{1 machine algorithm (described in 

detail in chapter 3) and the error back propagation algorithm, or 

mu Iti-Iayer perceptron (chapter 4). In these experiments the 

speech spectral information was compu~ed and represented at .th.e 

input of the connectionist models using spectral lines. The results 

of these experiments as weil as their 1 methodology, including the 

spectral line extraction technique, .the coding of data into the 

neural nets and a comparison of the results with experiments 

performed on similar data using Hidden Markov Models are 

presented in chaf*er 6. In chapter 7 the possible direction of 

future' research is indicated and ~dditional aspects. of the 

application of connectionist O"models to automated speech 

recognition are considered. In particular, we consider the problem 

of the, representation of the sequentia~ nature of speech in neural 

nets. 

2 
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2. Overview of Connectionist M6dels 

.. 
Current symbolic, heuristic, and logical AI works weil for 

high level mental functions but is not so successful for problems 
such as automatic visual or speech perception. Connectionist 

models (also known as art,ificial neural networks, or parallel 
distributed, processing models) have the potential of achieving 
better performance in these fields. Recent interest in 

connectionist models results trom the new VLSI techniques. 
available, new Q more powerful connect:Qnist models, and also from 
the huge computing requirements of image or speech recognition . 

. The connèctionist models Can be implemented in massively parallel 
architectures, with computational elements (or nodes) connected 
via "weights'''. In a neural net, memory and processing power are 
both distributed and close to each 'other. "In opposition. to the Von 

Neumann machine CPU which has to look at each passive ,.piece of • 
i~formation of memory in sequence, the neural net architeffure can 
bring a large amount ot' knowledge to bear simultaneously. Units of 

connectionist systems are densely interconnected but. send, signais" 
consisting of very few bits (typically a single bit marker or a 

contlnuous scalar value). This should be contrasted with' the 

paraltel architectures which use message) passing. The latter 

machines usually require more complex processifl9 units with more 
. f . <,' 

storag~ and longer messages. Because ~c{j'nnectlonl\st models 

genera"'y use a distributed representation (each c~ncep( is 
represented not by o~e unit but by the patterr. of act\vation qf 
many units, cf. sections 2.3 and 7.3), they are fault·tolerant. If a 

ç 

small random set of units 'fails," the performance of the network is . 

only slightly affected (gr~ceful ~egradation)(Rumelhart & al., 
,1986). However, this distribuJ~d representation makes the 

internai representatio~ used by these ~etworks hard to understand • 
'and moaify manually. Therefore these networks need an automatic 

c 
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? 2.1 From Neuroeiology 
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, " 

/ . 

J 

The human prain is -an organ made of 1010 to 1012 neurons, {" 
that uses a small' number of steréotyped signais. It is far less 
homogeneous (and thus far more complex) th an othér orgaos: there 

, ~ 

are different types of neurons and they are c.onnected to each other 
in a very cO/1llp/ex way. These connections are cal/ed synapses. At 

, ~ 

chemica/ synapses, the specialized ençing of a neuron ("presynaptic 
terminal"), is very close (about 50 nm) to a postsynaptic dendrite 

of another neuron. Through these dendrites, the neuron c~lIects 
signais coming from other neurons whibh are oJ twq electrical 
types:- one for short distances and one for long distances. These 
signais have ,the same form among neurons of the body, as weil as 
in most animais with' a nervous system.: . 

) 

. 
2,1.1 Operation- of the Neuron 

The' signais arr,lVIng. at' a' synapse (action potentjals) travel' 
a/ong thè axon (which may be very long, up ta about 1 m for example 
in nerve. fibers). They are series of impulses of constant amplitude, 
travelling at -constant· speed from\ the body of the originating neuron 
to the presyMaptic terminais at the' junction with other neuron~ 

~ ~ 
~Il! , 

Wh en an impulse arrives at a synapse, a certain quantity of 
neurotransmitter is released. On the- postsynaptic terminal, these . - ... 
transmitter molecules' are detected 'and. this results in a <tilocal 

postsynaptic potential (PSP). This is translated jnto 'an 0 Jncrease 

o 

~t 
.IF~W~-).·~{.·\.'·.r.·.i ____ ~·. ________________________________ ~------- -
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in electrical potentîal if the synapse is excitatory,' a decrease if 
it is i n h i bit 0 ~ 

The postsynàptic potentials from various dendrites travel 
towards the body of the neuron' (usually close to the dèndrites) and 
sum up with other postsynaptic potentials. ,Thi~ summation is 
called 'integration, it, involves bath" a' ~ s'patial (froom the 

simultaneous action of several synapses) and temporal component 
(sequence 0f impulses coming from a single synapse). 

~ 

-If the postsynaptic, potential increases above a critical 
level called threshold, an enormous '"increase in potential occurs 
ver/ .rapidly, ~reating an impulse (action ~otential) which can 

'-'!'> 

spread through its axon towards, other neurons, ~without loss of 
'-amplitude (unlike the PSP .... since it is continuously regenerated). 
lAtter an impulse, there is a period of low potèntial called the 
refractory p~riod (of the order' of, the millisecond) during which -fi 
secord impulse cannot be initiated, therefore' limiting the 
rgaximum frequency of fir[ng. .. 

Note that the PSP is a continuously valued and local quantity ... 
whereas tlîe action potential is of a binary nature (àlthough the. 

frequency of 'fir!ng' may vary continuously) ~nd can trav.el long 
distcrnces. 

-" 

2.1.2 About Learning 
lU 

Neurobiologists n'ow believe that the' mechanisms of 
memory must be seeked at the level of the synapses. ln 1949; Hepb 

1 

proposed a synaptic modification mechanism. , His ideas are 

gener~lIy accepted but have yet~ to b~ defi~itely, ploven' 
- experimentally. ' Specifically.o he proposed, that , , 

ô 
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'" . "when an axon of cell Ais. near enough to excite a ceU Band repeatedly and persistently 

takes part in firing il, some growth process- or metabolic change tikes place in one or 
Il ' 

bath cells, such th~t A's efficiency, as one of the ceUs firing 8, increases." 

This means that repeated coactivation 'bf two cells 
increases the synaptic strength ; a synapse growth wO\JJd be 

y reJated to thErcorrelation of the 'pre-synaptic and post-synaptic 
, 

c'ells activities. ~ 

, 
IExperiments show" th?t 'aetivity -of- neurons result in 

ultrastructuraJ changes in synap~e~ For example, in kittens reared 
in the dark and then .. exposed ta vision for seve~al hours, the number . 
and the" density of~ synaptic vesicles (discrete units containing 

.(neurotransmitterS) ï"ncreases- significan-tly (Weisel & Hubei, 1963). 
ln another experiment, the brains of rats experiencing either an 

"\ 

enrich~d environment (A) or an i[T'lpove.rished environment (B) are -
compared. The ce~ebral -<?or!ex of rats liA" is thic~er and weighs 

JTlor:e than the cerebral, c9rtex of rats .IIB". Howev~r, th~ errricped 
brç,in does not contain more n!(urons,. only more dendrites," and " 

b tlierefore more .... synapses (Watson,' 1976, pp.191-;192):(Volkmar & 

Greenoug_h, ~ 9}_2). ,PI 

2.2 Historical Persp§.Çtive 

o 2.2.1 Formai Neurons r 
.1 

- { 

'\ ' 

ln ~ 943, McCuUoch and Pi;ts (McCulloch & Pitts, 1943) 
presented a highly .... simpmied neùron model. An e~ample of the 
McCulloch and Pitts formai neuron is presénted in figure 2.1., The .. 
formai neuron is a boolean processing element with m inputs 
X1,..,Xm and one output y. ,It ~s' characterized {(Y its bias band)hè 
m weights W1, ... ,wm• The module détermines i\s output in, function 

, . '" 
of its ,inputs on a dise'rete tim,e scale, t=1,2,3 ... ... 1 

il 

, < ... 
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y(t+1) 1= 1 iff Li Wj Xj(t) > b 

.... otherwise y(t+ 1 )=0. 
\ - , 

\.. 
( • 

"\ 

f 
-~-Î 

y = 1 if ~ x i Wi - b > 0 
= 0 otherwise '---

.. 

Figure 2.1 Example, of a- McCulloch-Pitts formaI neuron. The 

activation function is a hard limitinf/i. threshold. 
') 

1 ln correspondence to real neurons, the positive weights' willl be 
~aid t~ be 'excitatory, and the negative weights inhibitory (cf. 
excitatory and inhibitory synapses,.....section 2.1.1 ) . 

, ) ln terms of Îhis 'definition of the fl!l;m~1 neuron,..."a .formal 

neu~al net can be define~ as a collection of formai neurons with 
,the same time scale, interconnected by sending the out~ut of ~each 
formaI neuron to the inputs of several ot~er formai nèuro('ls. These 
ne~9rks can 'he represent~ed by a digraph (directed graph), às 
shown in figure ·2.2. " ,. 

, . -.r \ 
'rE; 

,,<' ," • ~" .. ~,~ _.\ ~1 '. .1 ~ ,h. . .'"1.,: J ,j~ 
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) figure 2.2 :. A sïmple network of formaI neurons, where each 

neuron computes ·its boolean output in function of its boolean 
,1 

inputs as defined in equation 2.1. Note that this network has no 

loop but connectionist networks in general can have some. 
/ . 

Fprmal neural nets were shawn to be finite automata, and 

~co_nversely, it was shown that it is always Rossible to construct a 
. formai neuraf. net that has the input-output behavior of a given 

o! ~ \ ' 

finite automaton (for example see Arbib, 1964). A corollary ,to tnis 

argument is that formai neural nets are equivalent to digital ., . 
computers (by usiQg some formai neurons for storage)., Thus 

formai neural nets can compute any digital function. Formai neural ,. 
nets can be "programmed", by filling in the values of weights and 

the description of the .. str'ucture of the network. However, they 

would be ,much more usefûl if they could learn (adapt) instead of 
having to be programmed. The firsrideas in this direction came 

from Donald Hebb's Organization of Behavior (194~. He proposed 

-' '/the first learn i ng ru le fo r synapses: synapses sho uld be 

strengthened wh en both the presynaptic and postsynaptic units 

were active simultaneously (section 2.1.2). His idea that ~the 

weights of the connection\ should depend..on the correlated 

activity of the connected nodes still persists today in current 

learning rules, even though the details' of the rules may differ. The 

'- next step in the development of a learning rule came with the work -­

of Frank Rosenblatt on the learning procedure for the perceptron. 

'\ 

, '. - J.. ' 

. / .. 
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2.2.2 The Perceptrôn 

Rosenblatt introduced the perceptron in 1959, and Rresented 
a learf1ing rule with a proof of convergence in his book, Princip/es 

J of Neurodynamics (1962). The perceptron is very. much Iike the 
formai neuron except that it has modifiable wetghts. The 
perceptron was thought as a pattern recognition device that has 
some ability to "Iearn" to recognlze patterns of a set after a finite 
number of trials. The main result of Rosenblatt's work is 
summarized in his learning ru le and its convergence theorem : 

"Giv,en an elementary alpha-perceptron, a stimulus world W, and any 

classification C(W) for which a solution exists; let ail stimuli in W occur in 

any sequence, provided that each stimulus\must reoccur in finite time~ then 

beginning trom an arbitrary initial state, an error correction procedure 

will always yield a solution to C(W) in finite time, ... "(p.596) 

The learning rule is called an "error-correction" or ':re i nfo rce ment 
rule", and is defined as follows:_ if the response of a perceptron. to 
a given stimulus' is correct, then'/ nothing is changed., If the 

/ . 
response is incorrect, the weights are changed. I.e. : . / , 

L\wi = constantx(targecoutput-~ctua'-output)xact'ual_inputi (2.2) 
1 

> 

For unÎts 'Which accept conti~uous inputs, the learning rule in (2.2) 

can still be uséd: 

ÎIP 

Obviously, this learning rule is only applicable to n etwo rks 
with one layer of perceptrons, since both desired output and input 

\...; of each unit must be known ta apply the rule. In addition to that 

9 

problem, such a single-layer perceptron system can' only learn ~ 

linearly $eparable functions (this was an important argument used 
by Minsky and Papert (1969) when showing the limitations and 



• 
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problems of, perceptrons). Indeed, it cannot leam non-linearly 
separable functions because there exists no set of weights that 
will enable, the perceptron to perform that type of classification 
using a single layer of perceptrons. The perceptron convergence 
theorem is still true since it mentioned that the learning rule 
convèrged for classification problems for which there existed a 
solution wi~ the per~eptron architecture. An example of fu\nctio~s 
that are no\ linearly separable is the exclusive-oi' (XOR) function, 
or the pa rit y function. 

t 
Minsky and Papert 's book (Perceptrons, 1969) presented a 

thorough .analysis of the perceptron and of its limitations. Its 
pess,imistic evaluation of the perceptron discouraged further 
'development of perceptron-like models until the early. 80's. The . 
non-linearly separable functions could ee com.puted on a multi­
layer perceptron, but, it was, not know~ how to train the nodes not 
directly connected to the input or the output of the network. Such 
nodes are called hi d den nodes. The di scovery of, learning 
algorithms for multi-Iayer perceptron-like networks (see chapters 
3 and 4) gave rise to a new res'earch interest,-fn neural networks. 
Figure~2.3, de~d from Lippman (1987), shows the types of 
decisio~ regions th"at can be formed by single-layer, two-Iayer and 
three layer perceptrons with two - inputs so that the input sp,ce 
èould be represented on the plane. One can see in this figure why 
the sin~le layer perceptron, which can form a decision region for a 

, class defined by a half space bounded by a hyperplane. cannot 
produce the XOR function. One can also see in this figure that to 

; 

solve )Y0st general classification problems, a perceptron with 
three layers of weights (i.e. two hidden layers) can be used 
(although the number of necessary hidden nodes depends on the 
com~exity of the classification). 

" 

,-, 
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XOR problem 

Net with 

f a single 

\ 

1 lay~r of 
welghts 

Decision region <P 

defines a half plane 

• 
bounded by a . 0 
hyperplane 

::\ ,Net, witn .J\ ~ layers 
of weights 

... 
Output region defmed 
by the decision region ........ ___ ~~:..;..:..;..J 
can be Si convex region. 

Net with 
three 
layers 
of weights. 

Decision region is 

,0 

arbitrary lwith a ~egend : 
complexity depending 
on number of hidden 
nodes). 

o 

classification problem 
with meshed regions 

Class 1 (Desired output} 

Class 0 (Undesired output) 

Figure 2.3: Decision regions df a perceptron network, with one, two , 

and thr~ tayers of weights (i.e. zero, one and two hidden -tayers 
resoectivelv). Derived from (Lippman, 1987). 
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2.2.3 NETL 

(' ,',The NETL system (Fahlman, 1979) i~ a type of connectionist 
system for manipulating symb.olic; 'knowledge. It uses local 
representation: each node represents a particular concept, defined 
by the user; connections represent relations or assertions. It i,s an 

. 
implementation of a semantic network. The .architecture is madé 
of a large number of simple processing units to represent the 
concepts and the' relations. Each o.ne is capablê of storing only a 
few single-bit- markers' and of performing simple boolean 
operations, all in paraI/el, in response to ,the broadcast command of . '\ 
a system control1e'r (a seriai machine).,. 

The NETL system can be used as an "intelligent" knowledg,e, 
base. It can perform in/Jeritance; hançile exceptions and perform set 
intersections, 'ail in pa'rallel (constant time). It works weil -for 01 

symboliq processing, where every rfeature is either actiye or 
inactiye, but is not appropriate for the noisy. and very' variable, 
sensory information of speech and image recognition. 

, ' 

2.3 Taxonomy ~ 

Conn'ection.ist moqels can bê classifie~ng the following 
axes: ~ 

• local vs distributed representation 

. Local representation consi~ts in the assignment ,of, specit'ic 
concepts to individual units. The 'grandmother oeIl' theory says 
that there exists one particular, c~1I in your brain that gets 

, activated for one concept., For _example, ,if someone talks(to ~ou 
about his grandmother, or If you see your grandmother comlng mto 
the room, the grandmother cell will be activated. The cell will be 
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used only to represenf that concept. On the other hand a 
distributed representation means that a certain pattern of 
activation of units will represent the activation of ë;l concept, and 
furthermore, that each unit may be used in the activation of many 
concepts. At the extreme, we find the hologram model : each tiny 
element of a hologram contains information about ail parts of the l 

picture. Conversely, any subset of the hologram contains, the whole 

picture, albeit with less details. Most probably, the brain uses an 
iJtermediate representation in which parts of the cortex are 
organized in modules, themselves using a relatively distributed 

1 

representation. 'l The disadvantage of distributed representations is 
the difficulty to interpret the activation of the units. It is also 
impossible to add macroscopic knowledge to those nets from the 
outside by changing the microscopie weights since each weight 
influences l'Dany concepts. One must absolutely use ,a learning rule 
which. relies on training and examples. An advantagè of distributed 
representations is their tolerance to failures or errors of the units 
(9 rà cefu 1 dfe 9 rad at ion). This is an important feature of 

,cofmectionist models, wt)ich. has been studied by a number of 
. ,researchers e.g. McClelland (1986), Hinton & Sejnowski (1986) and 
. is similar to graceful degradation in the brain (RUmelhart & aL, 

1986),(Schwartz, Marin, & Saffran, 1979). 

- binary vs continuous inputs and outputs: 

, r- { 

Some networks may accept continuous input but produce binary 

output (e.g: the perceptron). Others may have both inputs and 

outputs that are coptinuous, (e.g. the error back propagation 

algorithm): Others may be binary in nature but cein be converted to 

'continuous input and output (e.g. the 1 perceptron can become the 

Wic.:Jrow-Hoff perceptron (Widrow & Hoff, 1960)). Others can be 

r binary in nature, but continuous inputs or outputs can be used by 

changing or looking at internai variables of the units (e.g. the 
Boltzrr,ann machine algorithm cf. chapter 3 and sectio"n 6.2.2). 

-"-,,,_:' j 
. - , 
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~ stochastic vs deterministic operation 

/t is believed that biological neurons fire according to a stochastic 

rather than a deterministic process. The Boltzmann machine 

(chapter 3) and other models (~.g. Bart'O et al. 1983) use a 

~tochastic activation function (or simply add random noise to the 

deterministic part of the function). Of course, a simpler approach 

~s to use a deterministic network (e.g. the error back propagation, 

chapter 4, the HO'pfield net, section 2.4.1). 

~ supervised vs unsupervised learning 

Thi's is a fundamental axis of, categorization of connectionist 

models, although it Qin admit intermediate cases. A supervised 

adaptive network is one in which both inputs and desired outputs 
, 

(or classification) are s~eeified. The network has a IJte~cherlJ that 

provides not only ~vironment but also a measure of the errors 

that the network makes. In the unsupervised case,. the network is 

simply immersed in an environment, and it tries to construct an 

internai model or representation of that environ'ment that will 
J 

extract the structure, or the statistical regularities pr-esent in 

this environment. Such a network may thus "discover" a set of 
1 

statistically salient features of the eQvironment. The single-layer 

or multi-Iayer perceptrons are supervised neural networks. The 

Boltzmann machine used for classification is also one. The 

Competition network presented in 'section 2.4.3 (Rumelhart & 

Zipser, 1985), the Regularity Detector in section 2.4.2 (Geman, 

1981) and Kohonen's self-organizing feature maps (Kohonen, 

1982,1984)" are examples of unsupervised learning paradigms. 

.. 1. 
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- auto-association" or pattêrn cQmpletion vs pattern association or 
èlassifiCation '< . , 

, There are a lot of associative memory models (or content 
addressable memory}(e.g. Kohonell, 1977). A certain number of 
patterns are stored in th,e network. In the retrieval phase, a noisy 

- or incomplete version of the pattern is prese~ted, and the network 
) converg~s ta th~ closest stored pattern (~.g. ~opfield Net, section 

2.4.1), 'or the network tries to complete
O 

the missing or unspe,cified 
parts of the input (e.g. the Boltzmann machine). Another type of 
network operates by computing an output when an input is 9 ive n. 
They can thus be used for pattern association or classification, or 
to' realize any input/output functior:l. 

2.4 Current Models 

The mosf popular cu~rent models of neural nets c:Ie the 
error 'back propagation algorithm and the Boltzmann machine , 
algorithni. These two models have' been used in the experiments 
described in chapter 6, so they are thorough Iy..- described in 
chapters 3 and 4. ,In this section, other models of neural nets are 
therefore presented. 

/ 

2.4.1 The Hopfield Net 

The Hopfield net was introduced in 1982 by Hopfield. It is a 
="'- network with binary inputs that can be used as an associative 

1 

memory or to' solve optimization problems. Hopfield worked on 
several \tersions of this network (.Hopfield, 1982),(Hopfield, 

1984) ,(Hopfield, 1986). A version of this network tJsed as 
associati le memory will be de~cribed here (see figure 2.4 for the 
structure of the network). 

i 

i 
1 
1 

1 
1 
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OUTPUTS (Valid after' the relaxation tonverged) 

INPUTS (Applied before the iteration starts) 

Figure 2.4 : Structure of the Hopfield net. 

<7 The N nodes are al! connected to each,other. They are used 
both as input and output. Each node computes its output, which can 

~ 

be either 1 pr -1, as follows 

y. f- f ( ". w .. y. ) 
1 LJ IJ J , (2.3) 

- where t(x) = 1 if x>O and -1 otherwise, and Yj is the output of node , 
i, Wij is the connection weight between node i and j. The Hopfield 

fS> net works, by applying a value to the set of nodes and then iterating 
by successively updating the output of the nodes. Hopfield proved 
(Hopfield, 1982) that this relaxation pr.ocess would converge if the 
weights were symmetrical (~ = Wji) and the node outputs are 

updated asynchronously. 

~~ , 
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\ T~e weights are determined not by -a learning process but 
by' assigning them the folJowing value, depending on the set of 
examplar vectors (X1s,x2s, ... XNs) for th,? Melasses s : 

W ij = }:-5::0 to M-1 xis Xjs, for (i;éj) 
=0 for (i=j) (2.4) 

o 

xi~can_only take values +1 or -1. The relaxation _process is 

stopped when the r network outputs have ceased changing. 
; 

The n'umber of patterns that can be stoOred in the Hopfield 

net' is limited ~: lèss than, 0.15 x _~', If more classes are stored, the 
network may start converging to som~ spurious patterns which 
were -not stored. Another problem with the Hopfield net .is that a' 

, stored pattern will be unstable if it shares many bits with another 

,pattern : when the pattern is applied at time zero, the network 

converges to another, close patterrf instead- of staying in this 
~ configuration. This prob lem can be elimin'ated by an 
,orthogonalization procedure (Grant & Sage,1986). ,-

2.4.2 A Regularity and Correlation Defector 

\ 
) 
1 

-.0 

ln (Geman, 1981) the author attempts ,to !"design ... a 

_ system whose p'u~pose is to discover temporal and spatial 

reg ularitie'S in' a high-dimensional environ-ment". Like the other 

connèctionists he proposes ta look to the neural and ,cognitive 

sciences for clues a~out the proper architecture for an intelligent 

system. One of these clues is that the strength of a synaptic 
;' 

'connection is influenced by the activiti~s of the two neurD-llS that 

communicate through this connection. Another one is that some 
J ..--' c> ~ 

cells of the visual cortex (and probably of other sensory areas) are 

initially (in the newborn animal) not specifie, in their activities_, 

and they learn to signal different selective events (or featuresr of 

i 
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the environment. This' specialization is dependent on' the 
environment and the experiences of the animal. 

"/ 
o 

At a given ~time, we observe only ~ fraction 'of the features 
. of thè envifonment (.e.g. part of an object is hidden from-' our view, 

etc ... t We use the observed fe?tures to prepict the v~lue of ~ome 
of the unobserved features. Gema'n defines the state of a feature 

>J 
as observed or unobserved. The value of a feature is only available 

'--in the obse~ved ,state. He assum~s that the stat~ (observed or 
undbserved) of a feature carries no information about thé value of 
this feature; what the neural network does is to guess or estimate 
the value of unôbserved features. He calls a feature "decided" if it 
has been observed or its value -has been estimated. The decide'd 

f~atures thus 0represent 'Current hy p othe ses about the external 

'-environment. To estimate _-the value of an unobserved feature, the 
neural neJ:works forms an opinion concerning its value which is 

based upon the value of other de~ided features. If that ~opinion is ) 
strong enough (i.e. reaches above a ceriain threshold) then this 

" 
feature becomes decide(! and its value 'availabfe ta other units. 

p 

Geman defines faa!ures fi having two possible values, + and 
_ u , 

• He th,en asks the fol/owing question :-.. given ail ~ jo i nt ' 
o distributions ?mong pairs_of feature values: -ho\vco~d we obtaiQ a 

local opinion Oj for the value of an uhobserved' feature fj? For 

this purpose hè defines the followfng quantities for each feature : 

Thus 

form 

Yi = 1 -[f fi = + and 0 otherwise 
ni = 1 if fi = • and 0 otherwise 

( 

r+ij ~ P(Yjl Yi) {probabili~y that fj=+ given that fi~+} 
r:'f:= P{njlyj) 

--

Yj=O, n j=O means that feature f( is unobserved. A 

for O~jS the~ t~e foJ/owing 
~ 

1 

or 

• 

\ ... 

pos'sible 

\; 
0 
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(2.5) 

'l(lJere M = 2:i Yi ~ the number of observed features with value +. 
The two sums in. the ~quation represent 'the opinions \hat; fj is + or 
., respectively; given that decided fj's are A " 

.. 
• > - 'i 

However, a real system has only a finite experrence and 
o 

thus the conditional probabilities' can only bq. estimated. The 
problem is that in summing the "opin,ions" of the various .. 
connections th.ê fact that sorne of them have more or Jess 
"experience" (Le. that their opinion should be' more or less, value_d) 

is not take~ into account. To"solve t\at problem he looks for ... new 
fu nct; 0 n s r+ ij(t) and r-Oij(t) wh ich te nd to the cond itional 
p'robab ility as t -4 00 but· are sm ail when the n,!Jmbe( of 

'-
simultao..eous observations is pmall. Consequently "in~nced" 
features would not. much influence the opinion Oj. He derives the 
following definition of r+ij(t) and

o 
r-ij(t) : 

r+ij(t) = P(Yj!Yi)[1-exp(- E p P6Yi} t] 
r-ij(t) = P(njl Yi)[1-exp (- E p P(Yi) tl, 

o 
\ 

(2.6) 

where p = P(fj is observed and fj is bbserved), anti E is à smalr 

constant.' 1 \ 0 

~ 1 - · ; 
UpY'to now o"nly the first layer of cells W;;1 consid~red, l'i.e. 

those that are directly tied to the external world. To derive an 
o ~~ 

opinion on the valu'e of ün6~erved features~only pairwise 
statisti.cal information were, used~e\ only. first-order statistics', 
However the.se first-order statistics don't represen~_ Jhe whole' 

r availat>le statistical information about the perceived input. Adding {, 
• -'s~atistical variables of higher order twould significantly imprav, 

the decisiory taking (as adding 'h idden layers to the perceptron 
enhancès ifs capabilities). 1 ln fact it would be necessary to add 'to 

, 'V 

the netw;1rk sorne hidden ~its with the following definition .. 
1 .' 

, l, 

. 
o 
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z· 1:1 YI1 Yi2 : .. Yik 1 k=1 to N, ~ 
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where N is the number of input cells \ 

. 
These hidden units are ON - when k' specifie inpbt calls ar&- ON. k-
represents the' order of a' pa~ticular statistic. Obviously the 

, 4 ' 

number of such c~lIs grows much too rapidly with N (exponentially), t 

and it will not be possible 'to have àll of th9p~ssible hi~t1 ord~ 

,statistics in the network. Thus Geman proposes that only tnose 

"t~~t are, by some m\3asure most fr~9uent and..,. most important" be 
kept. 0 He defines the importance of.a statistie as ifs "correlation 

• 1 _ 

to innately important events". He calls this choice of relevant high ; 
, , 

order statistics the commitment of cells. He proposes, based on 
studies of neural dev~lopment, .that the commitment should be y 
hierarchical. Layers of increasing statistical order draw their' ,1 

inputs tram a few preceding layers. . Initia~ the first arder 
statistics are evaluated, for the first la~er. Then, based on these 
statistics and correlation to ïrïn~telyY important· -avents, so~e 
s~cond orde'r cel/s are chose!\. (representing the cO,l1Jjunc~ifn '.of. 
pairs of featu re~). As in the tirst layer, statistics are then 
accj.Jmulated the connection strengths mature. After a while we 

ar; readY/to commit cells in t~è third layer, based on the first two, 
etc... , "" .... , 

" "' ' The system jUS1. described analyses the spatial structure of 

the inp.ut: i.e. it is ~ot concerned with the eorrelatio~ "between 
suceeeding frame~'ot inputs. However our ,brain ~an,es. both 
spatlàl and temporal analy.si~ and' intelligent machin'es shoulJ be 
able to do so. " Geman proposes a sec~nd 'system, cal/ed the " -
temporal coding module, which takes its first level' inputs 
(primitives) from various stages of the spatial coding module. The 
only difference w.ith· the design of the ·spatial module is that the-­

definition of higM level statist,ics is now the following : 

, z = 1 if Yi1 fo/lows Yi2 follows yi; ... follows Yik' 

i 

... 

\ 

1 
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Thus hidden units detect sequences of events rathE}f' than their 
simultaneous activity. "Follow" is defined in a rigorous discrete 
manner : aetivity in a level punit is said to ,fo.llow activity in a 
level q unit if it oeeurs during the pth period of time after activity 
in the level q unit. In other words, the seque~ce d1 primitives 
~ssoeiated with the level q unit must imme~iate~ precede the 
sequence of primitives associated with the level punit. 

-,. , ( , ~ 

Finally' Geman argue~s about the need for a third module, 
which would provide' some definition of "appropriate action" and 
"innately impor\ta~t events".' The primitives of this module 
consists of the inherently good and bad feedback (e.g. pai~nd 

" pleasure in the animal). Hrgher level eells reT:>resent events -lA--the 
spatial module and the temporal module that are correlated with , 
the good an~ bad primitives. They influence the commitment of 
high level cells in the spatial and temporal modules. 

2.4.3 Competitive Learning -

Rumelhart' and Zipser report (1985)· on studies of an 
unsupervised -Iearning paradigm called "competitive learning", 
applied to paraI/el networks of neuron-like elements. This method 
pfOvides to a neural net a way to discover regularities and "general 
features which can be used to classify a set of patterns. These 

'feature detectors can be fo\med on. the basis of -a multi-Iayer 
o 

, \ - ' 1 

1 

'" ' • 

system that can learn categorizations which are not linearly • 
separable. Other workers proposed competitive learning 
algorithms such as Kohonen 's feature maps (Kohonen, 1984) and 

FL~kushiA1a's n.eocàg~~on (Fukushirna, 1980). 

~ 

The basic characteristies of. .the competitive \earning 

sche'Tl( are the followlng" as outlined by 8umelhart & Zipser 

(1985,: 
" 

; , 

.... 
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1.. ïhe u~s of the network. are i~entical except 
distributed parameter. This jnitiar~ makes each 
differently to the input. 

2. Each unit can distribute a fixe~ amount of positive "strength" to 
its input connections (Li wij is fixed .to -1) .. 

3. The units of each inhibitory cluster compete to respqnd to the 
input. 

The consequence is that units adapt in order to respond to sets of 
similar patterns (they put their weight strength in connections 
that are-often used by a set of similar input patterns). 

\ 
\ 
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l.!lhibitory 
connections inside 
each cluster -----

Excitatory 
con nections 

" 

Excitatory 
Connections 

- , 
Figure ,~.5 : Architecture of a competitive learning mechanism. 

r , 
. 

The architecture of a competitive learning system consists 
of a sét of hierarchically layered units in which each layer 
connects with the layer above i!. _ Within a layer, the units are 
separated into inhibitor'y clusters in which ail êlements inhibit 
each other, competing with one another to react to the' pattern of 
the preceding layer. The unit receiving the largest input in a 
cluster' attains its maximum value (state) vyhile the others are 
forceC: to a minimum value. Ali units in an inhibitory cluster 

receive excitatory inputs from ail the units in the l.ÇIwer layer.' 
Each unit distributes a fixed amount of wei9ht among its 

" 
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excitatory input connections. Thu~ for a unit, learning means 
"shifting weight from its inactive to its active input lines", when 
it wins the competition : 

.6.Wji = 0 
== constant ~,[ (Cik' nk) - Wii] 

if unit j loses on stim~l,us k 
if it wins on stimulus k. 

(2.7) 

where cik=1 if unit i in the lower Jayer is active for stimulus' k and 
o otherwlse. ''Ok is the number of active uriits in the lower layer for 
stimulus k: 

(2.8) 

As a- result of this learning algorithm, experiments show 
that )ach cluster of 'Size M classifies the stimulus set into M 
groups. Each unit responds appr..oximately to an equal number of 
input patterns. The .units categorize the patterns in a structurally 
relevant way if there is structure (redundancy) in the environm'ent. 
A large number of independent clusters receiving inputs tram the­
same input units can classify the inputs according to ao variety of 
independe~nt features present in the stim4lus, although it is 
possible that tw~ clusters choose the same classification. The 
authors show anlAlytically that after it has been 1 learning for a 
period of time, th~ system will spend most of its tirl].e in, the most 
highly stable of -the equilibrium states. An equilibrium state is 
defined as a classification state (of the weights) in which the 
weights are not changing in the average (providing a stable set of 
features ). 

As suggested by a formai analysis, asymptotically the ., 
weïghts were experimentally found to be proportional to the 
pro-bability that the "presynaptic':' 'unit is active when the­
"postsynaptic" unit wins. That is, 

Wji ~- P(Si = 1 1 unit j wins). (2.9) 
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3. - The Boltzmann Machine Aigorithm 

This model was introduced in 1983 by Falhman, Hinton & 
Sejnowski. A basic idea of this model is that of _using parallel 
networks to perform relaxation searches that simultaneously' 
satisfy different weak constraints represented by the clamped 
values of input or output units. The computation is performed by 
iteratively decr~asing a cost function representing the extent ta 
which the curren!' state of the _ network (which means the output 

1 

values of ail the units in the network) vialates the in put 

constraints. These "weak" constraints are not necessarily absolute 
constraints : they have a cast associated té their violation (Le. 
there may be sorne exceptions to these constraints, as for example 
there may be exceptions to sorne grammar rules ). 

This model (as weil as several others) has received much of 
its inspiration from concepts of statistical physics. Like the_ 
'back-propagation model i" can also be seen as an extension of the 
perceptron. 

3.1 Constraint Satisfaction 

Hopfield introduced in 1982 a neural net with a relaxation 

scf-)eme ~nvolving a cast function, and where the network converges 
to a local' minima of the cost function (see" section 2.4.1). He 
showed that if the connections among the units are symmetrioal ( 

\ 

i.e. the weight Wji from unit i to unit j equals the weight Wij from 

unit j t'" unit i), and if the units are- updated asynchronously, then 
repeatec iterations are guaranteed to find an enBrgy minimu,m ( the' 
cos't fun\;tion' never decreases). He cal/ed the cast function 

. . \ 
"Energy" a:ld defmed It as 

·/r··~ 
. , 
''C 

/1 
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E = .. ". . w:· s· s· + " . B·' si ~ I<J IJ 1 J ~ 1 1 (3.1 ) 
1 • 

... :' 
\\0' fJ 

,_ where Wij is the weight on the c~~rection- fram unit j to unit i, Sj 

is the state (0 or 1) of the ith Illnit, , 1:lnd Bi is a bias for unit i. TOhe 

Hopfield net contains only visMle units, Le. units which are 
directly connected (influenced) by the environment (input/output). 
The Boltzmann machine model has visible and hidden units. The 
hidden units are only connected to each other and to the visible 
units. 

-' 

, Figure 3.1 

Maqhine. 

Oùtput Layer 

Hidden Layer 

Input Layer 

Input, Output and Hidden Layers for the Boltzmann 

Ta ensure . thal the cost 'function never decreases, Hopfield's 
updating rule çhooses for every unit i the state' for which the 
energy is lower. Since the connections are symmetrica', 'the unit 
should be ON (1)' if 

(3.2) 

and OFF (0) otherwise. Thus' the unit is a bihary threshold unit . 

. \ .... _:, ... "' ......... _---------------~-------
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The main problem with this rule is that the network will 
gat trapped in local minima of the Energy function (if there are any 
local minima). This was a desirable feature for Hopfield nets since " 
these networks are used as associative memories where local 
minima represent stored items. However, for more complicated 
problems where the energy landscape has undesirable local minima, 
in particular in' the case of constraint satisfaction, it is ~esirable 

to reach an absolute minimum of the Energy function. 

To solve this problem, the a~uthors of the Boltzmann 
machine looked at the work of Kirkpatrick (1983) who introduced a 

Qsearch technique for ·solving hard optimization problems. Instead 
aL allowing only reductions of the energy, some upward moves 
must be allowed in order ta g~t out of local minima. Kirkpatrick 
used- a physical analogy, that of finding a very orderly (Iow energy) 
state of a metal by melting it and then slowly allowing it to cool. 
This is called annealing and thus a search procedure based on this 
procedure was called "simulated annealing". 

, The intuitive explanation of why this principle functions 
(Hinton & Sejnowski, 1986) can be understood by considering the 
state of the network as a ball-bearing on an energy landscape. 
When the temperature is very high, (i.e. imagine that we sh~ke a lot 
the system) the bail can be anywhere with almost, equal 
probability. This is because wh_en the temperature is very high the 
energy barrier between low energy minima and 11igher energy 
minima is very small. On the other hand, if the system is gently 
shaken (i.e. at lo~er temperatures), the bail will have a higher 
pf-obability of being in a low energy minima, but it will not make 
transitions between one mihima and another very often. Annealing 
starts by applying a high temperature to the network and gradually __ _ 

, - -

redu.::es temperature~ As a result,' the system will go through a 
temporature at which the thermal noise makes the best 
compromise between the absolute probability of transitions 
(escaping a minimum) and the ratio of probabilities of settling .into' 

/ 
/ 
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minima of different ,energy (see equation (3.4))(cf. Hinton & 
Sejnowski, 1986). At the end of annealing the ball-bearing will be 
at the bottom of the global minimum. The proof of this phenomenon 

is' of the domain of ~tatistical physics but the result applies, to the 
Boltzmann machine. 

, 

Thus, the idea of Hinton and Sejnowski was to ,apply the 
simulated' annealing procedure to the Hopfield net. This can be 
done by modifying the update ~'rule for each unit, specifically using 
a sigmoidal function of the energy barrier over the temperature 
instead of the deterministic threshold function of Hopfield nets: 1 

-' 
Unit k chooses the state 1 with probability 

Pk -= 1 1 ( 1 + exp ( - ÂEk 1 T ) (3~3) 

where T represents temperature in the simulated annealing 
, -4 

process. 

As à resült of this update rule, in thermal equilibrium the relative 
probability of two global states is determined by their energy 
difference and fo"ows a Boltzmann distribution (hence the name 
Boltzmann machine)(see Hinton, Sejnowski & ACkley,- 1984): 

(3.4L 

whtùe . Ea is the energy of state a, and Pa the probability of finding 

the network in that' state at equilibrium. 

'3.2 Learning 

The result of each relaxation is, with a certain probability, 
a global state of low energy. .Thus we could control what the 
network will compute by "assigning" an energy value (and thus a 

! ~ 
_1 

. " 
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probability) te each global state. However, in general the 
environ ment or teacher will not be able to specify the probabilities 
of global states since that would include visible as weil as hidden 
units. It may only provide information about the visible units. Why 
are hidden units desirable in a connectionist model ? 

The old perceptron had only visible units, and thus it was easy to 
find a learning rule for the weights. How~ver,' since there were 
connections only between pairs of visibîe u"nits, the network could 
only leàrn t'~e first order statistical structure (~ith the v 
thresh'olds) ahd the second order statistical structure (with the 
v 2 /2 pairwise connections) implicit in the environmental 
examples. :) 

When faced with a problem of a higher structure -(for example the 
'XOR problem, see section 2.2.2· f the. pèrceptron Qonv'ergence 
procedure (Iearning rule) fails miserably. 

There ~re only pairwise connections in the Boltzmann 
Machine but high level statistical information can be represented 
4sing- hidden units (that are not directly influenced by the 
environment). For example,- in'.·the case of the XOR problem, if we 
introduce only one hidden unit, that will have weights to detect an 
AND of the two input units 1hen it is possibl~to find the other 
weights. to get the output unit to behave like an' XOR of the two , , 

input units. 

Hqwever how do es one decide what the hidden unit(s) should 
recognize (i.e. what feature should they detect)? What weights 
should be assigned to their connections trom the input units so 
that the hidden units become useful feature detectors th a t 
represent high order statistical regularities of the environment? 

qne answer to these questions is the Boltzmann Machine 
learning algorithm. Making certain assumptions, the authors of the 
Boltzmann machine algorithm, derived an information theoretic 
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measure of how weil the weights model- the structure of th~ 

environ ment, and thus how to modify the weights to improv~ _~his 

measure. The tirst assumption is that when the environment 

clamps sorne of the visible units, they stay clamped until the 

networK reaches thermal equilibrium (not like for the Hopfield 

net). The s-econd assumption is that there is no statistical 
structure in the sequence of input patterns (the neural network is 

-only going ta learn about the static structure ot these patterns, not 
about their sequence). 

Therez..,are 2V possible environment vectors over the v visible 
units. The ~omplete structur-e bit the. environment is thus defined 

o 

by the probabilities P+(Va) of the 2v vectors Va. (The + means that 

the visible units are clamped). The idea is to compare this 
distribution with the P-(Va) (the probability of vector Va over the 

,visible un.its when the network is running freely, no clamped units). 
Thus a perfect set of weights is one for which ~+CVa)= P-(Va) for ail 

,envir,onment (input/output) vectors Va. The information theoretip 

measure (Kullback, 1959) of the ~istance between two 
distributions is given, by : 

(3.5) 

It is mllied asymmetric divergence or information. gain. It is not 

symmetrical because it is more important to get -the probabilities 

correct for input patterns that occur frequentiy than for rare ones 
(hence the first factor). 

It is possible ta do gradient descent in G : changing the 

weights so as to reduce G. We show in the next section (3.3) th,at 

aG/aw .. = - 1fT [ p .. + - p,,- ] IJ, - IJ • IJ 

. 
where Pij+ and Pi( are the probabilities, averaged over ail 

environmental inputs and measured at equilibrium that.- the units- i 
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and j are ON when the visible units are clamped and not clamped, 
respectively. 

Two interesting features of this, equation ïs that it involves only 
local information and that it is the same for visible and hidden 
unitS. 

However, the algorithm is still no,t completely determined. 
On,e still has to decider temperature cooling schedule, of how 
lnany weights to change. at a time, ot how lT)uch ta modify each 
weight given the Pij+ and Pi{, of how long ta collect _ the statistics 

for t~e Pij+ and Pi( Th~se aspeçts will be discussed in section 3.4 
.~ 

~ on the(' ~mplementatjon. 

1 

3.3 Derivation of G.fadient ,Descent· Rule 

-
An equivalent of the following demonstration can be found 

in works by Hintén & SejnoWsKr~(1986) -and ~intôn,--:Sejïi-owski St 
Ackley (1984). This section is not absolutely necessary to the 
understanding of the rest of the thesis, and. can thus be optionally 
s~ipped by the reader. We consioer here the case where visible 
units are either fixed or clamped, and the network is used for 

1 \, 

pattern completion. 

Let us derive the gradient descent rule, presentep in (3.6). 

The G-measure is defined in (3.5). We want -to find its derivative 
~. the connection wyeight Wij' However, P+(V a ) {the probability 

of applying vector Va over the \visible units, Le. when they. ?re 
{ixed, at Jequilibrlum) is independent 1 of Wij (since the visible units 

, are fixed from the outside, they do not depend on the network 

acttvity and connections). Hence the derivative of. G can be written 

. as follows 

",.1 ' 

3 

. . 
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'ê)G/êJW;j -= l,a [êJP+{Va}/àWij In(P+{Va)/P-(Va)) + 
o P+tVa)(1/P+(Va) êJP+(Va)/àWij - t/P-(Va} êJP-(Va)/OWij)] 

(3.7) 

Now let us consider the last factor of (3.7), i.e. consider the 

network when tHe visible units are not fixed. <;>The probability 

distribution over t,h.e v\;:;ible. ut1its at equilibrium is the following : " 

(3.8) 

where Hb is a vector of states of the hidden units, V ~ a vector of 

states of the visible units and Eab the energy of the system in state -

, (Va" Hb) : 

E b - -" W·· s·ab s·ab a - LI<J IJ 1 J (3.9) 

as in (3.1), where Wjj is the -~onnection weight between unit i and 

9 'unit Land Sjab is the state (0 or 1) of unit i when the vectors Va 
,', 

and Hb are applied to the\ visible and hidden units respectively. 

Note th~t. the bi~s has been eliminated trom the equations by 
lf ... f.&:'~ 

consldering it .as the weight of a connection from an inpttt unit 

which is always ON. From (3.9), we obtain,: 

( 

Hence we c?n diff~rentiate. '(3.8) : 
, 

ap-{va}/aWjj ~ (1/T 2.b exp(-Eab/T) sjab sjab)/l./,u exp(-E1u/T)" ~ 
. -(L b exp(-~ab/T) 1/T !",u exp(-Elu/T) Sj/u -Sj/u~(I./,u exp(-E/u/T))2 

• D 

= 1fT [ Lb P-(Va :- Hb) Sjab sjab - P-(V at ~I,u P-(VI/\ Hu} Sjlu SjhJ] 
. . (3.10) 

o 

and rewrite àG/aWjj as follows 
.J 

-
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aG/awij -= -1fT [ La P+(Va)/P-(Va) ~b P-(Va 1\ Hb) Sjab ~jab 
, , La P+(Va) LI,u P-(VI " Hu) Sjlu Sjlu o ] _ •• (3.11} 

, 

Now we can simplify a little as follo""s: .' 

/ - , 
2,a P+(Va) = 1, by dèfinition of a probability .. 

... . 
The probability of a conjunction can be written in terms of the 

conditional probability : 

~+(V a " Hb) = P+(Hb 1 Va) P +(Va) 
P-(Va l,""Hb) = P-U-~b 1 Va) P-(Va) 

also, 1 
'-' 

P-(Hb 1 Va) = P+(Hb 1 Va) (3,12) 

sinceo the probability of a hidden stat~ vector given a visible state 

vector is the same wether of not the visible state vector has been 

clamped or arrived to this value by iterationS' of the network, Th\Js 

we can write 
~ 

(3.13) 
.... - . 

and simplify as follows : 
... 

aG/awij = -1/T\[ L.a,b P+(Va 1\ Hb} Sjab Sjab 

... - LI,u P-(Va ", Hu} Sjlu SjIU] (3.14}-
\ 

-' - 0 

Let us d~fine Pij+' and Pif <. (the- probélbllities averaged over ail 

pos.a1'5lé input vectors that unit i and ul'1it j are both ON, at 
equilibrium) as follows -: .1 

( 

(3.1 SW'~ 
oP _ 0 



o 

- , 

.:j \ 

, 
- c 

"0 

.... 

1 ~ -.'" ~ ~l 

"j ).K" 
,< \,'f., _: '-', '/' ,'1 '1',-"'-', ~'~:~ , '.,i.. , ,-

" ' 

,-

(~.16) 

so that the derivative. of G w.r.t. to Wij can oe written as in (3.6) 

~ .. 
oGlèWir = - 1fT [ Pij+ - Pif J. ./ (3 .. 6) . 

" 

~ ~, 
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3.4 rmplementati~ of· the Boltzmann 

, Experim ents '\ 
, / 

\ . 

Machinè for' the ' 
j 

, 

The program to implement the Boltzmann machine algorithm-­
and --the various experiments conducted with the speech data was 
written in C on a yAX-8600 with the VMS opèrating,. system. TPere. 
are several versions ot the program: for the different exp~ents 
. conducted. The program it~elf is ~ivided in 8 modules. A flow 
diagram of the high level structure of the implementation of the 
Bolzmann machine algorithm is presented in figure 3.2. Let us now 
consider sorne aspects of the algorithmic 'implementation. 
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Initialize, training= TRUE 

Initialize co-occurence counters 
(beginning of a smallleaming cycle) 

Selec next speech sample, càde n,into the 
network : fix the inputs, 

"~-------------T----~--------~ 

relaxation cycle: tempe rature c,?oling 

no 

training= TRUE~ ~~ 

• 

) 

, 
• 

i,; 

~gu:e 3,2 : Flow chart diagram of high level strûcture of the implementfJd Boltzmann ~ 
- ~chine algorithm. The infinite loop is stopped when the error on the testing set 

doesn't improve anymore. Note that the speech ~amples are presented with a first. 
second, and third class examplars always in -sequence. --

.. , 
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3.4.1 Temperature Cooling Schedule 
\ 

",. 

• . 
0 The cooling schedule which is guaranteed to make the 
' system reach the best solution is the following (see Geman & 

Ge,man, 1984): 

T(k) ~ c / log ( 1 + k ) (3.17) 

where c is a constant, k stands f~r the kth cooling iteration and 
T(k) is the temperatura at the kth iteration. In those conditions, 

'" with proqability converging to one as k~ 00, the configurations of 

the netw.drk will be those of l}1inimal energy. 

However, such a cooling schedule is very slow, because ~f the 
• logarithmic function. In the first experiments that were 

performed, s,uch a cooling schedule was used. 

For the cooling rate, after trying the slow logarithmic 
cooling 'the following schedule was used : 

T(k) = stÇirting_temperature /. ( k + 1 ) t3.18) 

where log(k+1) in (3.7) ha's been replaced by (k+1). Identical 
. experimental results were obtained with this cooliT)g, but with a 

gain in speed greater than 1 O. ~ 

"' ln addition ta the cooling rate, one must determine the 
temperature at which to start and to stop. To. decide of a starting 
temperature, the average"" energy barrier ÂEk th~:tt each unit has 

to jump to make an upward move was computed.. The absolute 
values of local energies of each' unit (as defined in equation 3.2) 
wëre added for ail the, iterations to cômpute a total energy, which 
is then averaged over ail those c'yeles and units. The chosen . 
starting temperature is this average absolute energy divided by 3. 
Thus at the beginning of the eooling, the average unit will have 

\ 
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either about 42% or 58% probability of being ON depending on the 
sign of its local energy. This average energy measures the average 
height of the errergy barriers that each unit has to climb to make an 
upward jump in the' energy landscape. Choosing a starting 
temperature which depends on this value ensures that if the 
network constructs very high energy" barriers it will be able to 
jump above them at least at the beginnin'g of the cooling. Most 
other researchers experimenting with the Boltzmann machine 
chose a fixed sched~le starting at a given temperature and ending' 
at another one, independently of the value of the weights. 

To stop the cooling one could choose to wait for a fixed 
number of 'iterations, or a fixed finishing temperature, dr-" one"--éoulél ' 

wait for the network to settle (approximately reaching the r m al 
eguilibrium). For the experiments of this thesis, "we chose ta wait 
for the network to stabilize. At each cooling cycle, the number of 
units which have switched from one state to another is cOLJnted. If 
the network d~esn'-t change state for' a 
consecutive cycles, the cooling is stopped. 
~wo cycles (by trial and errer and looking 
network at low temperatures). 

3.4.'2 Other Parameters 

certain number m'of 
m was chosen to be 

at the behavior of Hie 

After thermal equilibrium has been r.eached, for a certain 
number of cycles, statistical informations, are gathered about the 
number of occurrences and co-occurrences of ON states. These are 
to be' used to update the weights. The number of cycles during 
which statistÎcs are collected was computed as: 

jen_stat = 4 / sqrt(average_error + 0.1' .(3.19) 

Thus, as the error gets smaller, more time is spent accumulating 
statistics. This is because the learning procedure is driven by the 
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amount of error (discrepancy between the behavior of the units 
when the visible units are clamped and not clampedl. 

For the update rule, as suggested in several experiments 
with the Boltzmann machine (see Ackley, Hinton & .8ejnowski 
1985) the ~eights were increased or decreased by a constant 
multip~ by the SIGN of the difference between the two 
prq babilities Pij+ and Pif, rather than by the difference itself. J> 

The advantage of this method is that it deals better with wide 
variations in the first and second derivative of G ,(the distance 
measure between clamped and not clamped network). Thus when G 
falls rapidly and then îises rapidly the learning doesn't take the 
large divergent steps that the original definition (defin~ (3.61) 
of .1'(11 takes. 

6. W ij = learlling_speed x SIGN ( Pij+ - Pi( ) (3.20) 

To allow slower variaions when approaching the solution 
(convergen.ce). the learning speed was also changed in function of 
the average error, as follows : 

.. 
lear:1ing_speed = 10 x average_errer + 1 (3.21) 
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4. The "Err~r 'Back Propagation Algorithm 

• 

The _ error bac~ propagation algorith'!1 is also called the 
multi-Iayer perceptron (Ru.melhart & al., 1986). It is a simple 
extension of the perceptron to several layers, a'nd its learning rule 
looks similar to the learning procedure of' the perceptron (see 
section 2.2.2)(Rosenblatt 1959, 1962) and its variation (Widrow 
and Hoff, 1960). As outlined in section 2.2.2 (and shown by the 
pessimistic evaluatiorj' of Minsky and Papert, 1969), the single 
layer perceptron is limit~d to learning linearly separable 
functions, which means that most interesting functions, including 
such a simple one as the XOR function, cannot be learnt by the 
perceptron. If we add only one "hidden unit" in addition to the two 
input units and the output unit, and we set. its bias and its 
conneëtion weights from the input units so that it computes the 
AND function of the inputs, othen the network will be able to learn 
the other weights, using the perceptron learning procedure, to 
compute the XOR function. 

The "hard learning" problem is to dAcide how to set the 
weights, and connections of the hidden units. This is what the 
Bolt~nn machine algorithm' and the error back propagation 
aigorit/itttry to do. For the error back prop?-gation mOdel, like for 
the perceptron, the units are deterministic. They compute their 
1 

output' in function of the weighted sum of their inputs. Like in the 
model of Widrow and Hoff (1960); the units'J c'ompute a continuous 
(not binary) output, and the learning procedu,re changes the weights 
so as to implement a gradient descent in a cost or error measure. 
Although the output U'1its give out a continuous value, the multi­
layer perceptron can be used as a classifier, with each output unit 
standing for a class. The selected ctass is the one corresponding 
to tho output unit with maximum· value. 
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4.1 Description and Derivation 

, 
Let us consider the basic model : it is organiz,ed in 

feeçfforward layers. There is one input layer, a certain number of 
hidden layers and an output layer, as shown in figure 4.1. T~e 

outputs of units at a layer only go to the input of units on the layer 
immedi.ately "above". Each unit sends its output to ail ,th~ units in 
the superior layer. .. 

Output Layer 

/ 
/ 

/ 
/ 

1 

Hidden Layer 2 

Hidden Layer 1 

Input Layer 

Figure -4.1 : Feedforward Layer$ of the Error Back- Propagation 

Aigorithm. 
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Each unit Yi computes its output in function of the output of 

units Yj on the previous layer as follows 

Xi = Lunits j 6'n the layer below unit i Wij Yj (4.1 ) 

Yi = f ( Xi) (4.2) 

where Wij is the weight of_ the connection from the unit j on the 

previous layeit0 unit i. The function fO is calJed the activation 
function. for the percêptron, it is a threshold (or step) function so 
that f(x) -is 1 if x>O and 0 otherwise. In the case' 6f the error back 
propagation algorithm a semilinear activation function will be 
necessary (as defined in Rumelhart, Hinton & Williams 1986) : one 
which is nondecreasing and differentiable. 

Let us define the following squared error measure, when 
pattern p is presented : 

Ep = 1/2 x I, J (targetpj - Ypj)2 (4.3) 

where targetpj is the desired value for the output' unit Yj ( y pj is 

the actual output), when pattern p is presented. Let us also define 
the global error as: 

To implement gradient descent' in' E, we want ~Wji to be 
proportional. to - ~E / aWji' Using the chain rUle, we have : 

(4.5) 

where Xpj is the weighted sum of the inpu~s of unit j, as defined' in 

definition 4.1, at the presentation of pattern p. ' Substituting 
definitiol1 4.1 in equation 4.5, we obtain 

, ' 
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li 
aXpj 1 Wji =. 'Ol'OWji ( L,k Wjk Ypk) = Ypi (4.6) 

For the first factor of equation 4.5, lét us define the error. mèasure 
at unit j, when pattern p is presented : 

(4".7) 
! 

Thus we can write 

(4.8) 

and to implement gradient descent in E we want to set the change 
in weights as follows: 

J 

.1pWji = learning_rate x Dpj x Ypi (4.9) 

Le~ us now determine the value of Dpj' Applying the chain rule : 

The second factor is simply 

ay pj 1 aXpj = t'(Xpj) _ (4.11) 

the derivative of the activation function. For the first factor,' let 
us ,first co~sider ~'e case of output units.· By differentiating the 
definition of Ep (41) ,and assuming that there are no connecti'ons 

trom an output unit to another output unit, we obtain : 
"'-.. 

'-

thus, 

Dpj'= t'(Xpj) (targetpr y pj) 

~I' 

','l, 

(4.12) 
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for units on the output layer. For hidden units let us again use, the 
chain rule to write Dpj in fu~ction qf Dpk of units k in the layèr 

above unit j : • 
LÜnits k on the layer above unit j (âEp / àXpk)(àXpj / àVpj) ~ 
= L.units k on the layer above unit j (àEp / aXpk) àlàV pj (Li Wki V pi) 

= L.units k on the.layer above' unit j (-àEp 1 àXpk) Wkj -4,) 

= ~- 2.units k on the layer above unit j Dpk W kj (4. 14 ) 

thus for hidden units : 

,Dpj = f'(Xpj) Lunits k on the layer above unit j Dpk Wkj (4.15) 

To sUI1J~arize! definitions (4.1),(4.2),(4.9),(4.13) and .(4.15) define 
how to set the output' of units as weil as how to modify the 

weights to implement a gradient descent~· in the squared error 

measure defined ln (4.3) and (4.4). For each pattern, the input 
pattern is presented --to the inpcut units and derived signais are 

propagated in a feedforward pass towards the output units. In a 

second phase the error is computed at the output units and 
propagated with the error signais, (Di) in a backward pass towards 

the input units. In both cases, 'the weights are used in ,th e 

propagation. Hence the name "error' back propagation" algorithm. 

4.2 Parameters and Implementation for' the ExperLments 

<> 

Let us now determine the activation function f(x). Since its 

de.rivative f'(x) ,is to be computed, the derivative of the activatio n 

function must eXlst. Thus the step function of the perceptron is not ' 

appropri~te becau\e it is discontinuous.- The function suggested' by 
the authors of the algorithm, and found in many other algorithms, 

l ~ , f. , 

) 

l 
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, 
(such as the ",-Boltzmann Machine algorithm) is the sigmoid (or 
logistic ) function : 

1< 

Yj = f(Xj) = 1 1 ( 1 + exp(- Xj ) ) 

\ 

and its derivative can be computed and simplified as follows: 

aVj / aXj = ~xp(-Xj) 1 (1+exp(-XJ)2 

f'(Xj) = Yj (1 -'Yj) 

thu$ the error signal Dj can be cornputed' as follows : 

For output units : 

(4.18) 

For hidden units : 

(4.16) 

(4.17) 

, (4.19) 

The activati?n function f(Xj) does not permit a value of 0 or 
1 for the output Yj unless Xj is infffiite, i-.e.--~son:le---weights-are-------

infinite. 'ihus desired output values should be assigned -a value 
close but not equal to 1 and 0, for example 0.9 and 0.1. " 

, 
A possible addition al feature of the activation function is a 

bias or threshol& to the weighted sum of inputs : \ 0 

Xj = Bj + ,2:. units i in layer belo~ unit j Wji Yi (4.20) 
, 

ln that case, that threshold can be learnt like any other weights by 

assuming that it is a, weight tram a unyhiCh> is always set ta 1. 

, Note th,at because aH jJ'nits in the last hidden layer are 

connected"to ail units of the ou~put layer, and because erro'r s!gnal' 
,are propagated in proportion to the weights, if the weights are 
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initialized at 0, ail weights would adapt in the same way. This 
problem is simply solved by starting the learning system wjth 
small random weights. 

If the learning rate is sufficiently small, the network will 
converge to a minimum of the error measure in weight space, 
however, this may be very slow. On the other hand if the learning 
,ràte is too .e,. the network might oscillate when it approaches a 
strong curve' in the weight space landscape. A way ta get fast 
convergence (i:ë. using, ~ high learning rate) without leading to 
oscillations is ta include a momentum term (Rumelhart, Hinton & 

Williams, 1986) in th~ learning rule: 
\ 

(4.21) 

where a isa constant which determin~s the influence' of past 
moyements .of Wji O/l" the current change; it was set to 0.9S in the, 

experiments
o 

described in chapter 6. This procedure is, equivalent to 
applying a low pass frequJ7ncy filter ta the landscape JLthe weight 
space, thus filtering out high curvatures which dmighf have caused 
verY-'slow-prograss--of --convergence,---o-r, -ôscillations if--th-e - learnTri-g-- ----

rate was tao large. 1 

Since this network is updated deterministically and it i~ 

,.. ,," not desirable,) that the 0 network learns the ~ exact inputf.output pairs 
by rote, s~me noise was introduced at the input units. A uniform 
random variable in U[-O.OS,O.OS] was Çidded to" the input values.' 
Comparing results with or without the input noise, slightly better 

• 
performance was observed when the inputs are noisy (actually best 
results are the same, but without nôise, the error on the test set , 
gets 'worse with mpre learning, as -expected). 

Thè coding of the input information is done like for the 
Boltzmann Machine algorithm and is explaine.d in section &.2 on 

coding. 

• 1 
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initiaUze system,. training = TRUE 

select next speech sample 
and code it into input units 

--
forward pass of the n~twork (update state of units) 

~ , . 

measure érror at output units 

backward pass i.e. update weights 

yes no compile error. 
1 

start new cycle with training 
1-----+ set: training = TRUE • . 

start new cycle with testing 
~----~ ~ 

set: training = F ALSE 

~ 

. Figure 4.2 : Flow chart dipgram of high level structure of implemented 
back propagation algorithm. The infini te toop is stopped when me error 
on the training set doesn't improve anymore (it oscillates",though), 
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which implements the Error Back Propagation 
éflgorithm is much simpler and shorter tnan the one for the 
Boltzm,ann chi e: It ,also runs faster since the output 
corresponding to an input vector is obtained in one pass' c;wer, the 
network (there is no relaxation). It was written in C on a VAX 
8650 running under VMS. 

o 
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5. Essentlal 
Recognition 

Problems ln Automatlc Speech 

Speech perception is different trom the other areaSt,t 
perceptual < research because of its role in language, theught a d 
communication. Furthermore, the seguential nature of spe ch 
makes the problem of automatic speech recognition (ASR) 

"-J 

disti,nctive from the static recognition of visuar patterns. 

, 

Humans are able, w~th little conscious effort to recognize 
speech of pOér quality, distorted by noise or even obliterated. This 
is due to a great amOL!nt of redundancy and structure in the speech 
signal. The semantic, syntactic, lexical and phonological 

constraints enable us to recognlze continuous speec:cven with 
high distortions and noise. ~-\ 

J , ~-J 

~-- f-

A central problem' in speech perception is the tact that éach 

phonem~ does not c~rrespond ta an invariant set of acoustic 
features in a particular stretch of sound, for ail contexts (problem 
of the lack of acoustic-phonetic invariance). 

Because of coarticulation, stretch es of sound associated to 
different, phonemes overlap and the acoustic descriptiodn of a 
phoneme depends on the surrounding phonetic oontext. This 
phenomenon also results in a great difficulty to segment the 
speech signal into separate phone mie or word units. rt is possible 

to segment(?the speech signal into aéoustie ~nits, but they won't 
necessarily correspond to linguistic segments ,(phonemes). 
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5.1 'Physiology of the Human AUditory System' 

5.1.1 The Ear 

The auditory system comprises the auditory nervous system 
and the ear, itself divided into outer, middle and inner ear. The 
sound goss through the external auditory canal and makes the 
tympanic membrane vibrate. These vÎbrations trom the outer ear 

are transmitted ta the inner ear through the three small bones of 
the middle ear. Sound is transmitted through flurd in the inner ear: 
th.e fluid in the cochlea is set into vibratory motion. Sensory cells 

o 

are located o on the organ of Corti, inslde the snail shaped cochlea. 

The vibrations of the basilar membrqne in the cochlea induce an 
excitation of the sensory neurons (hair cells). The neural code 
which is generated is modified on its ascending' path to the brain. 
The basilar membrane is thus the interface between the external 
acoustic environment and the internai neu rai representation. 
Experiments showed that each point along, the basilar membrane . 
vibrates maximally at -one specifie stimulus frequency, and this } 
vibration decreases gradually for higher or lower freq~encles. 

Similar/y, each sensory neuron 'is maximally excited at a particular 

frequency, ca/led char~cteristic frequency. However, sensory 
neurons display. a finer frequency selectivity (resolution) than the 
basilar membrane. 

1 

5.1.2 Auditory Nervous System 

i 
There are two types of nerve fibers involved in the auditory 

nervuus system. Informationo travels from the toch/ear membrane 
ta the brain through the afferent fibers and from the b,rain towards 

the ear through the efferent fibers. The efferent ·fibers are 
probably used to modulate the incoming signal, using past 

o 

. - -~,--- ~-~--_ ... 
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information, to enhance variations in the sound rather than steady­
state signais. 

A nerve fiber in the ascending pathway responds to sounds 
within a certain frequency range. That range gradually increases 
with increasing intensity of -the signal. In the ascending pathway, 
nerve fibers afe arranged according to a tonotopic organiiation, Le. 
fibers close ta each other have close cha'racteristic frequency and 
characteristic frequency regularly increases with distance along' a 

, • J 

cross section of' the nerve. A similar organization is found in the 
auditory cortex, although the sound is not coded Iike at the sensory 
neurons. This frequency codin@ can thus be called a place code. 
The f:luditory system performs a kind of spectral' analysis of the 
incoming sounds, although the outpu~ of each fiber is not a rinear 
function of inpùt power. However, there is also a temporal coding 
of low frequencies. Indeed, the 'scharge pattern of neur.ons on the 
auditory ascending pathway j phase-Iocked (synchronized) to the 
perioaicity of low frequency, ounds (below 4-5 kHz). Researchers 
in the ~ne-Id of auditory physiology presently assume that the 
auditory system uses both temporal and spectral analysis in 
parallel, with one representation more important for the analysis ~ 
of certain sounds anq the other more important for other types of 
sounds. 

The ascending auditory nervous system modifies 'the / 
information gathered at 'the receptors, with .. a -complexity L 
in~reasing as one moves towards the auditory cortex. A certain 
number of nerve fibers (efferent system) bring feedback from the 

auditory cortex to the ascending neural pathways, and from these 
" pathways to the neural receptors. It is not known today how' the 

signal emitted for the case of complex sounds at the sensory 

neurons 'is transformed as it travels to the cortex. lt is thus not 
possible to predict, except for, simplé steady-state sounds, what 
will be the response at the end of the ascending nervous pathway. 

1 
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. Figure t:.1 : Model of auditory sensitivity. From Seneff, 

Each curve represents the frequency· response of a filter, in a filter 

bank modeling the auditory nerve sensitivity. 
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For individual neurons of the ~ditory pathway, a frequency 
esponse curve to single tones can b experimentally determined. 
hese curves are not symmetrical in requency, especially for 

characteristic frequencies above 2 kHz. The high frequency skirt 
o~ these frequency threshold curves is steeper than the low 
f!1quenc~ skirt. The width of th'ese curves (measured at certain 
energy level below the threshold, such as 10 dB) is appro imately 

cllnstant for characteristic frequencies less tha,n 500 Hz to kHz. 
A ove 1 kHz, the bandwidths increase about linearl with 
1re uencies (Mailer, '1983). This can be modeled by indexed fifter 
ba~ks with a characteristic frequency that is a logarithmic 
fun tion of the index (number) of the tilter bank, as shown on 
fig re 5.1 from (Seneff, 86), (see section 6.1 on. the non-linear 
cod'ng of frequency for the experiments with connectionist, 

mo \els). 

\ . , j 

5.2_ Îutomatic Speech Recognition 

1 • l , 

. 1 Today's ASR real-time application systems impose serious 

cQns/~rai~ts 'on the end-user, for example, a Iimited vocabulary, a 
noi~e-free environ ment, a speaker-dependant recognition (and 
traihing), or the obligation to pause - between words: These 
lirriitations retlect the inadequacy of cu'rrent theoretical models of 

. 1 • 
7eeCh perceptIOn . 

.1 
5.2'.1 Pattern Classification 

, 
The simplest (and still used today) method in ASR relies on 

" pattern classification and temglate-matching. The speech signal 
is tirst preproc'essed ta be described by a certain pattern, or a 
vector of features. In the training phase th,e descriptioFs 

52 
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(templates) for the set of training ,samas representing the 
different classes (e.g. words, or phonemes) to be recogni~ed are 
stored in memory. For each èlass, one or more 'average' patterns 
are computed,. Le. clusters are formed in feature space (with 
possibly several clusters per class), and an average pattern is 
computed for each cluster. In the re~ognition phase, the input 
feature vector (template) is compared to ail the stored templates. 
The class' of the stored template which is at the shorte'st distance 
in feature space from the input template is selected. 

'" 

A basic requirement of this method is the proper selection 
of invariant features describing each speech sample, which may be 
difficult. . Indeed, the acoustic signal is very variable (of variable 
duration, noisy, depending on speaker, context, position of ward in 
the sentence, etc ... ). 

l _ 
A popular classificatiqn method in feature space is the 

linear" discriminant function (discriminative distance). Given d 
classes, each clas,s Ci is assocrated with a discriminant function 
Dj such that: 

Wh/re X is the l~coustic ,feature vector (X1,x2,."Xf), and 

Dj(X) = W j . X' 

(5.1 ) 

(5.2) 

where, X'=(x1,X.2""'X{, 1). The boundaries between classes are thus 

defined by h er lanes in th tea ure a . The use of .X ' ins~ead 
of X (with hè addition of a fixed element, 1, at the end of the 
vector) is to permit these hyperplan es to avoid going through the 

origin. 

Th is linear discriminant function exactly matches the 
description of the perceptrèn.- The additional element in W i can be 

seen as a bias : 

53 
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(5.3) 

As a consequence, the linear discrimInant function will have the 

same limitation as the perceptron. Le. the inability to classify 
sets of vectors which are not linearly separable. 

5.2.2 Fast Fourier Transform 

__ ·Spectral analysis is very often used in the preliminary 
phases of signal preprocessing. According to the Fourier Theorem, 
any periodic signal (or signal of finite duration) can be separated 
into the sum of an infinite but discrete set of sinusoid signais of 
various amplitudes. A signal which has a limited frequency 
bandwidth can be sampled to obtain a discrete sequence without 
losing any information. The signal can be represented as a finite 
sum of discrete sinusoids : the- discrete Fourier transform. A time 

p 

sequence of N consecutive teal numbers can be mapped _ to a 
spectral description, made of the amplitude~ of N discrete 
frequency components. An algorithm exists to compute the 
discrete Fourier transform in time O(NlogN) : the -Fast Fourier 

Transform (FFT) algorithm. In general the FFT is ~omputed for 
, 1 

subsequences of the discrete time signal, to obtain a sequence of 
discrete spectral descriptions of the signal. 

It -must be remarked that the choiee of the time window to 

be analyzed through the FFT is very important. A short window 
provides a good time resolution but a poor frequency resolution (N 
small). On the other hand, a very large window (e.g. the whole 
speech signal) provides very precise spectral- information,- and no 

... " . 
temporal information at ail. This trade-off can be expr\ssed in the 

following uncertainty relation : 

\ 
~T x ~F ~ c wJl~Je c is a constant close to 1 (5.4) 
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where â T and .1F are the tjme and frequency r~solutions. 

ln speech recognition, this window will be chosen according to 
knowledge of the necessary time and frequency resolution for the 
perception of speech, and of" our knowledge of auditory p~ysiology 

(in general around 10 ms windows are used). ' 

5.2.3 Dynamic Time Warping 

As was mentioned earlier in the introduction of this chapter 
and in section 5.2.1, different pronunciations of the same sound 
may result in different temporal distortions : it will not be 
possible to match exactly the two sequences of patterns. We can 
imagine the signal as a rubber band with some - parts more 
stretched than others depending on the pronunciation. It was . 
observed that the rate of speech variations mainly affects' the 
steady-state parts (e.g. vowels,: fri'catives) of the signal. 

, , 

The Dynamic Time Warbling (DTW') method of measuring 
'distance' between two differ~nt templates is based on a dynamic 
program ming algorithm. Each template consists of a sequence of 

> vectors. The distance between every vector of one template and 
the second template are computed' and placed in a matrix. For 

\ 

example if we compute this matrix for the comparison of a 
template, vs itself, we find a null diagonal. The objective of the 
algorithm is to find a path in that matrix, (in the same dir,ction as 
that diagonal, starting and finishing at the same corners of the 
distance matrix) that will associate each vector of the first 
template with one or more of the second one. At each point Jn the 
path, the local distances are added. 'The desired path is that one 
which minimizes the total distance. T~e path is constrained to 
obey chronological order. The resulting total distance is used as 

/ 
.. 

.- , 
" , 



G 

". 

the distance measure between the two templates, and is used for 
the classification decision. 

5.2.4 Hidden Markov Models 

.. 
A Markov chain is a stochastic process describing a 

sequence, of 'trials in which 

1) the outcome of" each trial belongs to a finite set of states 

(S1,S2.···Sm). 

2) the outcome of any trial only depends jpon' the outcome of the 
preceding ,trial : to each pair of states Si and Sj is associat,ed a 
probability Pij that Sj will occur immediately after Si. 

ln a Hidden Markov Model (HMM), the states are, as the name 
suggests, hidden. One can only make· an observation, which is 
generated by a random function of the' current ,hidden state. Then 
according ~o the transition probabilities Pij. the underlying Markov 

chain changes states. The observer observes the output (e.g. 
spectra) ak when the process is in state ,Sj with probability 

qjk(Sj. ak)· 

ln a Continuous Parameters Markov Model (cf. De Mori, Merlo, 
& Palakal. (1986) with the same data and spectral lines technique 
as the experiments of this the.sis, section 6.4), the observation 
function \ q(Si,Sj'Yk) is the probability that the spectral line, Yk is 
observed in the transition trom the state Si to the state Sj' --

" 
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One 01 the main advantages of Hidden Markov Models (HMM) ) 
for ASR is, that they take into account the sequential nature of th'e 
speech signal" and can include the time warping ,process (see 
section 5.2.3) and learn a parametric and statistjc description of 

. , 

the speech through the presentation of a large set of examples. 
_ " 

The most popular training algorithms are the Backward­
Forward (Baum, 1972) and the Viterbi (Viterbi, 1967) algorithms. 
However, HM Ms can be used only after the chosen speech process 

(1 

has been modeled with a statê topology, allowable transitions and 
this means including explicit knowledge on speech production ,and 
recognition in the HMMs. In fact, each class to be recognized must 
be modeled differently. 

, . 
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6. Experiments in Automatic Speech Recognition 
Performed with Connectionist Models 

Connectionist models were applied to perform speaker .. 
. . , 

in de pen den t recognition of place of articulatio n for vowels. 

Although speaker normalization is a difficult task, it is known 

from speech analysis that sonorant portions of speech 
spectrograms exhibit similar images when different spe"akers 

o ' 

pronounce the same sound or the same sequence of sounds. The 

éxperiments reported in' this thesis investigate the" application of 
" • 0 

neural network models. for performing speaker normalization, using 

spectral lines· characterized by their frequency and amplitude to 

represent the speech samples. 

Sounds are classified into three categories according to 

their place of articulation in the mouth : back position, .. central 

position or front position. T~e speech data consisted of 144 

speech sample~, 72 used for the training of the networks, 72 uS\3d 

only for testing. , T"hese s~mples were extracte,d fr~m the 

contim.:ous speech of 38 speakers (24 males and 14 females) --

pronouncing connectedly spoken letters and digits. Details of 

segmentation can be found in 't)e Mori, Laface, & Mong (1985). 

Static -represent~tion - of speech data is based 'on spectral 

lines, ,already used by Merlo, De Mori & Palaka! (1986) 'to perforrh 

, speech recognition tasks. The original time signal is sampled at 

20 kHz over 12 bits and its power spectrum (FFT every 10 ms) and 

zero crossings are compùted. This information is used to identify 

the sonorant portions of the .signal that exhibit resonances: This 

segmentation is based on rough spectral features that ,elir1}inate - -

segments containing frication noise, silences and buzz-bars. The 

remaining spectrogram (time- frequency-e~ergy pattern) is sent to 

the spectral line extraction program. 
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Th~ net)Norks ,·consist of a' certain number of 
1) input nOdes, coding the energy/frequency information. from the 
spect{al lines, 
2} a certain number of hidden nodes that 'Ieam through examples an . 
internai -representation of the input/output environment and 
3) three output nodes whose activatio'n level represent the three 
classes of vowels (back, center or front position). The data was 
initially classified (Iabeled) using an atgorithm (De Mori, Laface, 
Mong, 1985). ~ 

6.1 Spectral Lines Extraction 

, -

To extract the spectral lines, the spectrogram is treélted as . 
an image. This image is processed by a thinning and a 
skeletonization algorithms, and then by a line tracing algorithm. 

~ . 
These algorithms are described in Palakal & De Mori (1985). 
Segments werê extracted whe~e spectral lines were quasi 
stationary, allowing the use of sLmplé stafic data as the ,input tCf 

_ the connectionist netwo'rks, rather than time-varying sequences of 
descriptions. The spectral lines extraction prog:-am was provided 

. by Mathew Palak_aJ (cf. Palakalj De Mori 1985). 

• '0 

__ The thinning algorithm used i~ the Safe-Poinr Th i n n i n g 
Aigorithm, described in Nacéache & Shinghal (1984). This algorithm 

\ '\. .-
. was 'chosen becayse connecÙvity of lines ar~ maintained . by 
keeping the points at the junctions', and excess erosion is no t 
allowed. Figure 6.1 shows the spectrogram for a pronunciation. of 
the letter 'a', béfore the spectral line extraction a~gorithm is 
applied. ~gure "6.2 shows the spectral lines extractèd fro~ the 
speétrogram \Oi the letter 'a'. Time incr?ases on' the .vertical axis, 
with each step corresponding to 10 msec. Frequency increases on· 

, the' horizontal axis; en~rgy is coded by letters and digits. For 
example the letter A represents hait the energy\ of the letter B, the 
letter Z hait lhe energy of digit O. ' 0 ' 
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Figure 6.1 : Spectrogram of a pronunciatlon of the lelter 'a', before spectral lines were. extracled. 
Letlers and digits rèpresent energy levels (@<A<B< ... <Z<O<1< .. <8<9). 
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Figure 6.2 : Spectral lines extracted from a pronounciation of the lelter 'a'. lime is represented on the 
vertical axis, frequency on, the horizontal axis and energy by lefters and digits (9)8> .. >O>Z:>Y> .. >B>A). 
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The Line Tracing Aigorithm (AL TRACE) is applied to the 
result of the thinning algorithm. This- step discards ail scattered 
points, keeps ail the lines and smooths the pattern. ,The algorithm 
retains collinearity, continuity, curvelinearity as weil as other 
properties present in the pattern. 

, The output of the Spectral Line Extraction algorithm -Îs a 
description of n lines, each with its energy an'd frequency. The 
first line is called a base line and is selected as the line of highest 
energy in the low treqüencies « 1 kHz). The others may be 
described relative to the base (or anchor) line. The difference 
'between their frequency ana energy. and those of the anchor line are 
provided by the spectral lines extraction program. The base line 
frequency is absolute and its energy is absolute but was not 

'provided to the network.- Thus the network received an ~nergy­
normalized description of the spectral lines. 

6.2 Coding 
() 

" 
Given the set of lines, each with its energy/frequency values, 

continuous. or binary activation values were assigned to the input 
nodes of the neural nets. The way this coding is done has an impact 
on the efficiency of the network (error rate) as weil as on the 
efficiency of the learning (number of learning cycles necessary). It 
also has an impact on the number of input nodes, and, thus on the 
speed of the simulation. 

o 

The input nodes are tirst assigned to frequency intervals, 
, . 

based on a model of auditory sensitivity (see figure 5.1 in chapter 
5). One node or a group of input ~ nodes represent a range of 
frequencies. The distribution of frequencies was inspired trom an 
approximation of the ear model : under 1 kHz (Iow frequencie$), the 
characteristic frequencies grow linearly as follows : 

{ 
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frequency_index = INT[(frequency - minimum_frequency) x 

Iqw _freCLindex_range/low _freCLrange] (6.1 ) 
, 

whe.re INT[x] represents the integer part of the r,eal number x. 
Above 1 kHz characteristic trequencies grow logarithmically (sa 

~ , 

that higher characteristic frequencies are farther apart and their 
bandwidth is wider) : 

--- frequency_index = INT[c1 x log(frequency - 1000) -c2] (6.2) 

, -
where c1 and c2 are chosen ta make the minimum and maximum 

$S., 

high frequencies fall on the boundaries of the high frequency 
indices. Thus for high frequencies, the frequency index (on the 
grid) is a logarithmic function of the frequency. \ 

2 

• Unit 1 

Fa Unit 2 
[J Unit 3 

El Unit 4 
1 0 Unit 5 

0 Unit 6 
Iii Unit 7 
IJ Unit 8 
tJ Unit 9 

0 unit 10 

(Ob 

0 

, 
Figure 6.3 : Mu/ti-Ievel energy codirig. Relative (w.r.t. base line , , 

which has energy 1.0) energy range representeq by each of ten units 
coding a partibular frequency range. 
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To represent energy, several nodes were used within each 

frequency range, each representing a certain energy level (or 
range). Thus the input nodes éan be seen as points on a 2-
dimensional grid of frequency and energy (see figure 6.4). The 

, distribution of energy was chosen empirically (see figure 6.3) so 
as to make the number of samples talling in each range about equal. 

• 
A typical nu mber of ranges qhosen was 10. Setter results are 
obtained with this mu/!Heve/ coding of the energy than with only 
one node per frequency range, coding the energy continuously 
between 0 and 1. The' system converges slower to a sO,lution and 
makes a larger errer, as shown in table 1. Note that in those 
experiments with only one node per frequency range, more 
frequency resolution as weil as more hidden units were provided, 
50 as to obtain a similar number of connections in the network. 

1IIIIfW111111 

bese 11ne 

o 

" 

energy 

Il 

----------~) frequency 
low frequencies high frequencies 

(1 i neer) (log erithmi c) 
C' 

Figtire 6.4: Coarse coding (neighbors get activated), showing base 
line units, low f[equency units and high fjequert'Cy units. 

ln aodition to exciting one n'Ode for each energy/frequency . 
input, neighboring nodes also recehÎed an input (with intensity 

decreasing with distance on the 2-di~ensional energy/frequency 
grid)., Thus for each input spectral line, there ~ere. 12 additional 
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nodes on the grid which were activated, as shown on figure 6.4. 
This strategy called coarse coding (or neighborhood code, see 
prager, Harrison & Fallside (1986)' for a discussion about it) gives 
much better results than the simple excitation, of olne 

energy/frequency node per sp~ctral line (see table 1). One should 
recall f~om section 5.1 apQut the human auditory system that nerve 
fjbers are pot only' excited for a small "individual" frequency range 
but also display sorne activity (deG:reasing for farther neighbors) 
when their n~ighbors are active. Indeed, the frequency response 
(threshold curve) of adjacent fibers overlap. 

The ener-gy level coded into the Il'network is always relative 

to the energy of the base line, and the network does not receive 

information about the absoluLe energy of ~he base line. , ln facf a 

separate set of nodes (coding only for low frequencies, and no 
energy levels) is provided to represent the base line. Typically 
there are 

• 15 nodes to re'present (Iow frequencies) thé base line, 
• 15 (frequencies) x 10 (energy levels) = 150 nodes to represent 
low frequencies and 

- 15 (frequencies) x 10 (energy levels) = 150 nodes to represent 
high frequencies. 

ThJs makes a total of 315 input nodes, as shown on figu_~~_ 6.4. 
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Boltzmann Error Back 
Machine PropagatioQ 

Experiment 1 

( coarse coding, multi-
4.2% 6.9% levai energy COd~ and 

relative fraquenc s) 

Experiment 2 
As before but '9.7% -

9.7% 
No Coarse coding 

Experiment 3 
~ 

No multi-Ievel 8.3% 15.3% J .-~ ~ 

energy coding 

Experiment 4 
Absolute instead 
of relative 5.6% 6.9% 

frequencies 

TABLE 1: Error on Test Set for, Various Coding Schemes 

"The output" vàlue of nodes on the input layer is continuous 

(between 0 and 1) for the error back propagation algorithm. 

However, the Boltzmann machine units normal!y have binary inputs 

and outputs. To code a continuous value at the output of the input 

layer units, the following stratagem was employed. Since the 

output of Boltzmann machine unit k is chosen to be 1 (inste'ad of 0) 
with the continuous probability Pk, 

Pk = 1 / ( 1 + exp ( - ~Ek / T·) (3.3) 

the desired cçntinuous input can be assigned to Pk. Afterwards the 

unit will choose a sequence of 1 '5 and 0'5 each according Jo 

(rèbability Pk, in the relaxation process. This procedure will be 

effective since the Boltzmann machine operates, with a long 

relaxation cycle (often 10 to 50 cycles in our experiments). This 

method also has the advantage of automatically providing sorne 

noise to the input (something that had to be implemented with the 
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error back propagation algorith-m, see section 4.3). Note that 
small noise ln the input is desirable because the training consists 
in repeatedly presenting the same set of examples, rather than 
presenting new examples each time. 

"" 

6.3 Experimental Results 

o 
j 

The .experiments described in this chapter show that the 
error baçk propagation algorithm was faster but less accu 'rate than 
the Boltzmann machine' algorithm. The results obtained with the 
two methods are shown in table II. Table II shows a ,comparison of 
speeds for th~ best performances of the two algorithms. These 
results wëre obtained with 2,,200=400 hidden nodes (2 hidden 0 

layers, 103600 connections) for the error back propagation 
al,9orithm, and 100 hidden nodes (75490 connections) for the 
Boltzmann machine' algorithm. The running time shown in table II 
is for the presentation of one speech sam pie (from the test set). on 
the VAX 8650 CPU. 

Boltzmann Error Back 
Machine Propagation 

Speed 
(CPU time for 3 sec. 0.21 sec. 
one sample) 

--

"\ 
Error on 

4.20/0 6.90/0 
Test Set 

, . . 
i 

/ " 

T ABLE II : Speed and Best Results fa the 2 Algarit~ms. 
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The program measured the error on the training set and 
repeated the presentation of the set of examples until this error 
reached 0%. At tbis point the test ,set was preseitted and the error 
measured. Afterwards one ca~ still present training examples. ' For 
the Boltzmann machine (stochastic) this may result in a few errors 
that slightly modify the weights. After t!le error rate P again 
reached 0% the program presented the test set to the neural , , 

network. The error on the test set was thus slightly oscillating 
from one presentation of the test set to another (after some more 
learning, with the training set). 

, 

Similarly for the error back propagation, there continues to 
be learning after 0% error on the training set has been measured, 

,) since what drives the learning is the difference between target and 
actual continuous outputs (whereas a successful output is observed 
if the correct class has a .larger output value than the others). 

Typically, the Boltzmann machine converged to 0% error on 
the training set after '15 to 20 presentations of the training set. 
The shape of the learning curve ,(error rate vs nU,mber of 
presentations of the training set)- is shown in figure 6.5. 
Afterwards, further training for a certain number of presentations 
(about 10) could provide slightly better results on the testing set. 
The error back propagation network corlVerged to 0% error on the 
training set after about 10 presentations of the training set. , 
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Figure 6.5 : LEARN/NG ,. Error Rate for t(1e Training Set vs Number of 
~ r ~ i 

Full Learning Oyc/es, for the BMA. Note 'that the error stayed at 
1.4% until the 20th cycle, whe~ it reached 0% error. 

./ 

6.4 Comparison with Results ~~ing Hidden Mark-ov _MOd~IS 
o 

Experiments were performed with similar data, usj~g the 
more traditional Hidden Markov Models (using the . Forward­
Backward algorithm, Bahl, Jelinek and Mercer 1983), and using the 
·same spectral line extraction teGhnique to preprocess the speech 
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signal. These results wefe reported in (Merlo, De Mori & Palakal, 

1986), (cf. table III)., 

Exac,tly the, same algorith~ was used' to compute spectral 

lines information for vowels (sonorant sounds) extracted from 

random sequences of conneçtedly spoken letters and digits. The 

training set consisted 14 female and 24 male speakers. The test 
c 

"" set ~onsisted of 9 new female and 9 new male speakers. The error 

'was consistently differen,t for the three classes of output 

(whereas with the connectionist models differences were observed 

but not consistently from experiment to experiment). 

plac~of 
HMM alg. HMM alg. + rules articulation 

li> • 

Back 5% 3% error on 

. Central 2% 2% 
training \ 

" Front set 
2% 1% 

average' 3% - 2% 

Back ! 16% 6% error on 
Central 2% 2% , 

Front 4% 4% 
- ',' test set 

'averagè 7.3% 4% j 

" 

, , 

TABLE III : Bomparison with HMM Algorithm, -S_ame Data 
, ' 

Note that .in -addition to the Hidden Markov Model procedure, 

~ome knowledge about the expected ,frequencies of spectral lines 

was used to improve performance. If the a-priori probabilities 

computed by the Hidden Markov Model procedure for the different 

classes were close, ru les were executed to take the decision. 

However this usage of empirical rules makes the method Jess 
rI /J ~ ~ 

generalizable and not auto matie in nature, since the rules were 

defined in function of the observed weaknesses of the ·HMM 

, algorithm with the speech data. 
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With the experiments- conducted using the connectionist 
models it was always possible to reach 0% error on the training 
set after sufficient learning.- This was in fact the criteria to start 
measuring error on the testing set. This suggests that much better 
'results on the testing se.t could be obtained with the connectionist 
models if a n1uch larger traming set was used. Indeed, with a very 
large _training test, the testing samples' would be' very close ta . 
samples which would have been already seen in the training set. 
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7. Direction for Future Work 

7.1 Larger Neural Nets and Integration of Several Modules 

Good results were obtained with neural nets of a size of a 
few tens of thousands of connections to solve a qualitatively 
,difficult p,roblem such as speaker normalization; however, they 

are of a limited bearing (Le. classification of Sdnorant sounds in 

three""categor:ies). Will it be possible to extend the siz,e of these 
models for fIlQre complex problems such as the recognition of 

phonemes in non-segmented continuous speech signal ? /.e. how 
will their, size and rate of learning grow with the complex!ty of 

the problem? Will their performance (as. measured by the error 

rate) get better or worse? 

To answer these questions. a primary avenue of research is . . . • 
the consideration of fhe time dimension ,of the spe~ch signal, since 

it is. ne.cessary to consider time when dealing with speech units 
longer than the vo·wel. In the èxperiments reported in 'this thesis, a 

static description of the sCunds analyzed was cons,idered. For a 
true automatic speech recognition system, the sequentÎal nature of 

speech will obvïously have to be considered in the design of a 

connectionist model. This' question is treated in more details in 0 

section 7.2. 

For the performance of the networks, better recognitipn . , 
rates should be expected in large systems· that will take into 

account the different contexts (acoustic, phonological, lexical and 

semantic). One should reca/l (chapter 5) that humans perform 

better when recognizing a phoneme whe'n it is in a word rather than 

isolated, and perform better to recognize a word when it is in a 

sentencé rather than when it is presented alone. " 
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If the length of the training phqse of ,connèctionjst models 
appears to grow too much for larger problems, it will be poss!ble 
to -consider' a solution that involves different. mocules that can be 
frain'ed separately (o"f hierarchically) for subproblems of the global 
ASR task. For instance, the network developed, in the e~periments 

? described inl"this thesis could constitute one such module. 

l , 

7,2 !ncorporating the Timë Dimransipn of Speech t'in 
Connectionist Models " ,of 

Attempts at segmel1ting the speech signal' by aco'ustically­
defined criteria have not. prov.en to' be very sU,ccessfu r, ,especially 
for connected 'speech. On th.a other hand, the speech signal, is 
sequential in nature uand the human auditory system uses parts of it 
to recognize other parts, "T:he determination of the - phonetic 

classific~tion of -an 1 acoustic ,segment pe.pehds on the acotJstic, 
segrTJents preceding and fo/lowing it. Psycholinguistic' experiments 
·hav.e proven (e.g. see' in Sawusch, 1986) that we ,u~e not only' the. 
left context -but ~Iso th~ right context in' the identification of a 
phoneme or of even of a- word. 

" a 

Consequently, futur,e research should "tackle th question of 
how to represent and code' into connectipnist m els the time 

dimension and t~e" various ~acou~tic, phonetic, 1 ~ cal, syntactic· an~d, 
semantic conte~ts that i nfluetice the, perception of a small' 

• ségment of speech. 
q 

7.2.1 Window in the "Input 

, . 
" 

. , 

Thè 'fo/lowing solution was proposed by Sejnowski with 
•. ~- N ~TTalk (Sejnowski' & aL, 1986). He us"es' the error back', 

prt?pagation algorithm to convert written English texL into SpèéCh, 
l .' 
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The input text is presented to the network through a window that u 
lf" ' 

shows not only the current input vector to be prÇ>cessed but a/50 a 
c~rtain number of precedent and subsequent input vectors (se e . , 
figure 7.1), Th~y constitute the left and right context. Th,e neural 
net was trained to generate the correct sound'- (or 'phoneme) 
associated with each letter in the different pOSsible contexts 
(other letters around it). The same architectu<re was used by 0 

(Bourlard & Wellekens, 1987) for speech recognition, to map 
acoustic vectors to phonemes. The algorithm was applied to a 
speech sentence with a known phonemic segmentation. This can be 
a weakness of the previous approacfi"- since the training data has to 
be phonemica/ly segmented (because th,e neural net needs the 
target output when it is learning). 
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text 

silence 15 

coded as weil 
as other letters 

.. ' . 

• • 

, 

. . 

Output units are connected 
to a speech synthetizer. Each 

(one represent a dlff~rent Phoneme.~. 

• 00 ) 

feedforward connections f~om 
each unit of second layer to each 
unit of third layer .\ 

• 00 

feedforward connections from each 
unit of input lâyer ta each unit of 
seco nd layer 

current letter 
, translated. llke ail 

other letters, it IS coded 
wlth a gmup of btnary 
Input unlts" , 

speech ..... ---­
goinOg to the 
left wlth time 

Figure 7.1 Window on the input stream. Here as used for NETtalk 

(Sejnowski- & al., 1986) to map text to speech. 

-
--A drawback of this method is -that the context is , 

deliberately chosen by the user and Ulis impo,ses a fixed limit çm ". . 
the co'ntext. For example, in the above __ e-mentioned example 
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(Bourlard & Welleken, 1987), the nelwork uses only acoustic 
context. 

Another example of a window ~o"ution is the TRACE model 
(McClelland & Elman, 1986). It consists of a hierarchical network, 

organize~ in three levels for features, phonemes and words. In this 
model of local representation, each unit represents a hypothesis 
about a particular feature, phoneme or word, at a particular time 
relative to the beginning of the utterance. Old portions of the input 
continue to 'be processed as 0 new input arrives. This alloyvs right 
(às weil as. left) context to influence the recognition of speech. 
Connections are bidirectional and excitatory for units of different 
layers which are mutually consistent, inhibitory for units on the 

same layer which are inconsi~tent. Words and pl1Ql)eme units are 
centered every three time-slicës,' thus adjacent ~its overlap. 
There are several featu res, organized in banks, with 9 units to 

represent ~ levels 
every time \ slice. 

level. 

of activation of these features, repeated· for 
Input is presented sequentially at the feature 

7.2.2 Recurrent Links with De.lays 

Another solution is to incorporate the contextual· effects 

and time integration in the network itself by modifying t~e way 
each unit operates. For example, the connections between units 
can impose a delay (which is neurally plausible). Eventually, these . ' 

delays can be modified with a learning rule. The same effect can 
be obtained by permitting recurrent links, since each unit takes at 

least one time unit to compute its output from its input. ~he 
Boltzmann machine has recurrent links, but the state (output value . - ' 
of ail nodes, including h idden nodes) of the network is in itialized 

for e~h input frame, in order to perform the simulated annealing 

procedure. 
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Watrous and Shastri proposed a generalization of the muJti· 

.Iayer perceptron and error back propagation algorithm which 0 

admits recurrent links and delays (Watrous & Shastri, 1986). Their 

model includes 0 oconnections with D different delays (0 'to D-1) 

where there was only one connection in the basic multi-Iayer 

perceptron : 

---- ~ 

where Yi is computed as before (definition (4.16) in chapter 4). 

The weight change rule is modified as follows 

1 
(7.1 ) 

(7.2) 

where Dj(t-s) is the error signal at time t-s for unit j, given by : 

(7.3) 

for ,hidden units, r!her~ f'(x) is' the differential of f(x), as' in 
equation (4.17) of chapter 4. For output units, 

(7.4r 

7.2.3 Context Feedback 

This rnethod assumes that the speech signal' can be 

considered as the manifestation of an underlying Markov process, 

with the propérty that its state at time t depe~dS only on the state 

at time (t-1) and new information (new. speech frame) : "' 

5(t+1) = F ( S(t), I(t) ) 



( 

where 5(t) is astate which summarize ail available knowle"dge 

about past speech, and I(t) is the spectrogram frame input at time 
t. This strategy was implemented with the Boltzm'ann machine 
(Prager, Harrison, & Fallside, 1986) by using carry units .. 

OUT 

classification 
outputs 

carried over outputs 
(pas,t context state vector) 

rsOLTZMA~N MACHINE 

with hidden layers 

carry input unit~ 

IN 

1 

"TI m 
m 
c 
m 
l:­
n 

" 

Figure 7.2 : Context feedback with carry units, on. the Boltzmann 
machine as proposed by prager & al. (1,986). 

As shawn in figure 7.2, a part of the output is fed back to .. 

the input of the machine, via the carry input units. The machine 
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learns to utiliie this information about the values of units on the 
carry output state vector to perform better in the recognition of 
frame I(t). 

Experiments 'performed by Prager & al. ,(1986) tend to show 

that the Boltzmann machine indeed l1sed the carried over 
information in cases which were ambiguous if the context was not 

given. 

tt A weakness of this method is that it considers only left 

context information. 

7.3 Realization of Connectionist models in Hardware 

The full potential of connectionist 'models will be available 

only when experime-nts will be performed on massively para/lel 

hardware that 'simulates or directly imp1ements neural networks 

models. The simulations performed for this thesis were é,xecuted 

on 'a Von Neumann traditional computer. They needed a lot of CPU 

time. Since connectionist models are still being developed and 

experiments with varying models are being conducted, it would be 

more profitable, for the present time to use massively paraI/el 
~omputers flexible enough to program the individual node's. For 

this purp'ose, it would_ be much more efficient to u~e SIMD (Single 

Instruction Multiple Data) machines such as Hillis' Connection 

Machine (Hillis, 1985). Indeed, they use smaller processing units 

than MIMO (Multiple Instruction Multiple Data) computers, each 

with less memory but allowing for much more massive parallelisr.n 

(65,536 = 64K units in the Connection Machine). As such, 

connectionist models are idea/ly suited to massive parallelism. !iQ 

special algorithm is needed ta segment the problem, since the 

çonnectionist models were initially designed as parai lei models. 
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ln addition to the advantage of being easily transportable to 
paraJlel computers, connectionist models also otfer -the po~~ibility 

\ 

of readily carrying out waf~r-scale integration because of . 
their inherent fault tolerance (see Rumelhart & McClelland, 1986). 
A few malfunctioning units in a wafer would simply be ignored and 
this would not significantly alter the performance of the neural 

. net. In fact tt,lis might allow for much cheager VLS 1 productiÔn, 
since it is· mdch easier ta build a million-transistor system with 
95% wO,rking elements, than to build a pertect system. Yield in 
production decreases exponentially with area' of the circuitry, 
since it is a question of conjunction of probabi./ities : r--

, , 

probability tha,t circuit of size 2A is fau/tless 
= (probability that circuit of size A is faul1less}2 
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8. Conclusion 

ln this thesis, the development, theory ,and applications of 
connectionist models were ~tudied. In partiéular, the Boltzmann 
machine ,algorithm and the error back propagation algorithm ~ere 
examined in detai! and were implemented in an application to 
automatic speech- recognition: Connectionist models were shown 
to present a potentially very useful solution to problems in 
automatic perèeption. 

The Boltzmann maohine model and the error back 
propagation algorithm were used to perform speaker normalization 
and classify sonorant portions of continuous' speech according to 
place of articulation back position, central positio n and front 
positio n. 

An important' conclusion of this thesis is that experimental 
results, especially concerning the error rate, ha~e been shawn to 
be dependent on how spectral lines are coded. The best results 
were obtâined using coarse and multi-Ievel cOding, as weil a,? 
relative frequency and amplHude in a- non-linear frequency scale 
derived from knowledge' about ea~ sensitivity. The results obtained 

with connectionist models were significantly better than the ones 
obtained with Hidden Markov Models (alone), using similar data and 

" preprocessed with the same technique of spectral Iines extraction. 

Some important issl:les in Automatic Speech Recognition 
were considered. In particular, the thesis stressed the difficulty 
of -the ASR problem for multiple speakers and connected speech, 

because of the sequential nature of speech, the lack of acoustic-. 
phonetic invariance, and the strong -influence of the aco ustic, 
phonetic, lexical and semantic contexts. 



.0 Although thl models used in the experiments of this thesis 
assumed a static representation of speech, sorne methods ta 
include the time dimension into the connectionist models \vere 
also examined. Knowledge' of speech perception permits us to 
predict that the error rate obtained in our experiments would be 
significantly reduced if the sequential nature of speech and the 
influence of context, were taken into account in the connectionist 
models. Considegng the 00/0 ~rror rate obtained on the_training set, 

. we can also suppose that better recognition rates" would be 
obtained if the trainin:g set w~~ ytgnificantly - larger. 
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