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Abstract

~

' .
Connectionist models and their application to Automatic Speech

Recognition are studied in this thesis. In particular, the Boltzmann’

machine algorithm and the error back propagation algorithm are
presented in detail, and are used in a specific application to speaker
normalization and the recognition of the place of articulation for
sonorant sounds. Spectral lines-are used to represent static speech
\ £\

informatjon into the connectionist r}etworks.( The networks learn to
classify vowels into three categories: back position, central
position and front position. The recognition rate is shown to be
dependent on how speech data is coded at the input of the networks.
The best results are obtained using coarse and multi-level coding.
The recognition rates are significantly better than results on
similar data, also using spectral lines information, but with Hidden
Markov Models alone.: :
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Les modeles connexionistes et leur application a la reconnaissance
automatique de la parole sont étudiés dans ce mémoire. En

B particulier, l'algorithme de la machine de Boltzmann et I'al@rithme

de rétro-propagation de l'erreur sont présentés \en detail. Ceux-ci
sont utilisés dans une -applicatién 3 la normalisation des locuteurs,
-pour/ré classification des voyelles en fonction de leur lieu
d'articulation en trois catégories: position arriere, centrale et’
, frontale. Les lignes spectrales du signal auditif sont extraites puis
fournies a4 l'entrée™des réseaux connexioniste®. Il est montré que le
taux de reconnaissance dépend de la maniére dont' les Iignes
spectrales sont codées a l'entrée des réseaux. Les meilleurs
resultats sont obtenus avec un codage a multiple niveaux et
“l'activation d'unités voisines. Les taux d'erreys obtenus sont
significativement meilleurs que ceux obtenus avec des données
similaires, aussi representées par leur lignes spectrales, mais
utiisanf les seuls modéles de Markov cachés. '
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1. Introduction

\

A
:ﬁ

" The human auditory system is able to solve the very
difficult proble?n of speech perception. Speech of poor quality,
distorted by noise, with inter-speaker and intra-speaker
variabilities is easily recognized by humans, using the numeréus
phonemic, lexical, syntactic and semantic constraints built into
speech. Since phonemes cannot be described by an invariant set of
acoustic features, and cannot be unambiguously segmented,
automatic recognition of connected speech (especially for multiple
speakers) is a very complex ‘task which remains to be
satisfactorily solved.

Artificial and adaptable neural networks (also'_known as
connectionist models, or parallel distributed processing models)
have recently attracted considerable attention in the field of
Artificial Intelligence (Al). ~ Connectionist models seem
particularly well suited. to problems in automatic vision and
speech perception. Connectionist models were studied in the 50's<
and 60's but research in this field was discouraged by a
pessimistic evaluation of the potential of the perceptron by Minsky
and Papert in 1969. However, in recent years connectionist models
have been proposed which solve the problems and limitations of the
_perceptrons pointed out”by Minsky and Papert. In addition, neural
networks can very easily be‘implemenfed through massively
~ parallel architectures in hardware. Available VLSI technology and
"the trend towards parallel Comphters thus, makes neural nets
. technologicallly very attractive.

Despite their name, neural nets are generally not plausible
models of neuron operation. Ins'”tead, tHey are inspired from
neurobiological cues. The fifst of these indications is the
massively parallel architecture, made up -of very' simple
computational elements, each: controlling very little memory. In




P ‘
contrast to the Von Neumann architecture, where the
computatignal power (CPU) is physically separate from the
memory, in the connectibnist models processing elements and
memory elements are distributed and close to each other. This
results in the capécity for the connectionist models to bring to
bear a very large amount of knowledge simultaneously when
solving a problem. This is especially useful in perception, where
huge amounts of data must be examined in. a very short fime (us?ng
very few machine-cycles) if real time recognition is desired.

This thesis will study connectionist model$, including a
brief neurobiological and historical overview and the description
of various models (chapter 2). The general problem of Automatic
Speech Recognition will be considered along with” a sh
description of the human auditory system (chapter 5). For this
thesis, experiments were performed with neural networks to
classify sonorant portions of connected, speech in order to achieve

a speaker-independent recognition of the place of articulation. -

These expériments were based upon two popular connectionist

~models models: the Boltzmann machine algorithm (described in

detail in chapter 3) and the error back propagation algorithm, or
multi-layer perceptron (chapter 4). In these experiments the
speech spectral information was computed and represented at the
input of the connectionist models using spectral lines. The results
of these experiments as well as their.methodology, including the
spectral line extraction technique, .the coding of data into the
neural nets and a comparison of the results with experiments
performed on similar data using Hidden Markov Models are
presented in chapter 6. In chapter 7 the possible direction of
future ' research is indicated and -additional aspects . of the
application of connectionist ‘models to automated speech
recognition are considered. In particular, we consider the probiem
of the representation of the sequential nature of speech in neural

nets.



&

»

2. Overview of Connectionist Models

-

_ Current symt;olic, heuristic, and logical Al works well for
high level mental functions but is not so successful for problems
such as automatic visual or speech perception. Connectionist
models (also known as artificial neural networks, or parallel
distributed processing models) have the potential of achieving
better performance in these fields. Recent interest in

connectionist models results from the new VLSI techniques.

available, new more powerful connectionist models, ard also from
the huge computing requirements of image or speech recognition.

.The connéctionist models ¢an be implemented in massively parallel

architectures, with computational elements (or nodes) connected
via "weightsa". In a neural net, memory and processing power are
both distributed and close to each -other. 'In opposition to the Von
Neumann machine CPU which has to look at each passive piece of
information of memory in sequence, the neural net architecfure can
bring a large amount of knowledge to bear simultaneously. Units of

connectionist systems are densely interconnected but, send, signals’

consisting of very few bits (typically a single bit marker or a
continuous scalar value). This should be contrasted with' the
parallel architectures which use mess'age) passing. The latter
machines usually require more complex processing units with more
storage and longer messages. Because “ca{wnectionci\st models
generally use a distributed representation (each concept is
represented not by one unit but by the pattern of act\ivation of
many units, cf. sections 2.3 and 7.3), they are fault-tolerant. If a

b

small random set of units ‘fails,” the performance of the network is .

only slightly affected (graceful gdegradation)(Rumelhart & al.,

-1986). However, this distributed representation makes the

internal representationy used by these networks hard to understand

-and moaify manually.” Therefore these networks need an automatic

L]
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learning mechanism to incorporate new knowledge. As such, the
locus of learning in connectionist models is the pattern and
strength of connections, hence the name conn(ectfonism.

4

- 2.1 From Neurobiology - -

\ g
The human brain is .an organ made of 1010 to 1012 neurons,

that uses a small number of steréotyped signals. It is far less
homogeneous (and thus far more complex) than other organs: there
are different types of neurons and they are connected to each other
in a very complex way. These congections are called synapses. At
chemical synapses, the specialized ending of a neuron ("presynaptic
terminal®) . is very close (about 50 nm) to a postsynaptic dendrite
of another neuron. Through these dendrites, the neuron collects
signals coming from other neurons whith are of twq electrical
. types: one for short distances and one for long distances. These
signals have the same form among neurons of the body, as well as
in most animals with a nervous system.:

L3 ¢
’ )

2.1.1 Operation of the Neuron

8 L

The' signals arriving. at’'a’ synapse (action potentials) travel
along the axon (which may be very long, up to about 1 m for example
in nerve fibers). They are series of impulses of constant amplitude,
travelling at -constant.speed from,the body of the originating neuron
to the presyﬁfaptic terminals at the junction with other neuronsx

™ | | a

When an impulse arrives at a synapse, a certain quantity of
neurotransmitter is released. On the- postsynaptic terminal, these
transmitter molecules "are detected and. this results in a=local
postsynaptic potential (PSP). This is translated into ‘an®increase

Y
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in electrical potential if the synapse is excntatory, a decrease if

itis inhibitory, . -
. PN N

The postsynéptic potentials from various dendrites travel
towards the body of the neuron (usually close to the dendrites) and
sum up with other postsynaptic potentlals ThlS summation is

u called ‘integration, it involves both' a xspatlal (from the
: simultaneous action of several synapses) and temporal component -
(sequence of impulses coming from a single synapse).

, e

If the postsynaptic . potentiél increases above a critical

level called threshold, an enormous ‘increase in potential occurs
e S very rapidly, creating an impulse (action potential) which can
spread through its axon towards. other neurons, "without loss “of
“amplitude (unlike the PSP, since it is continuously regenerated).
WAfter an impulse, there iS a period of low potdntial called the
refractory period (of the order of the millisecond) during which a
secord impulse cannot De initiated, therefoTe limiting the
; : 'rpximum frequency of firing.
- A - .
Note that the PSP is a continuously valued and local quantity _
~whereas tie action potential is of a binary nature (although the
frequency of firing™ may vary continuously) and can trawel long
distdnces. ‘

N

*

. -t -t
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2.1.2 About Learning

‘ Neu‘robiologists now believe that the mechanisms of
( memory must be seeked at the level of the synapses. In 1949; Hepb
Y, proposed a synaptic modification mechanism. , His ideas are

" generally accepted but have yet- to be deflmtely proven'

\ _experimentally. Specifically, he proposed. that

g
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. "when an axon of cell A is.near enough to excite a cell B and repeatedly and persistently
takes part in firing it, some growth process-or metabolic change takes place in one or

p \

both cells, such that A's efficiency, as one of the cells firing B, increases.”

This means that repeated coactivation ©f two cells
increases the synaptic strength ; a synapse growth woyld be
related to the-correlation of the Pre-synaptic and past-synaptic
cells activities. -

\ -

/Experiments show .that -aetivity —of— neurons result in
ultrastructural changes in synapéesn For example, in kittens reared
in the dark and then- exposed to vision for several hours, the number
and the. density of. synaptic vesicles (discrete units containing
fneurotransmitters) increases significantly (Weisel & Hubel, 1963).
In another experiment, the brains of rats experiencing either an
enriched environment (A) or an impoverished environment (B) are
compared. The cerebral cortex of rats "A" is thicker and weighs
. Jnore than the cerebral cp?tex of rats "B". However, the enriched
brain does not contain more nguroné, only more dendrites,”and ~
_tHerefore more~ synapses (Watson,} 1976, pp.191-192),(Volkmar &
Greenough, 1972). p S »

]

2.2 Historical Perspective "~ =~ =

3

ﬁ ——
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2.2.1 Formal Neurons w“ : .

LS

4]

In 1943, McCulloch and Pitts (McCulloch & Pitts, 1943)
presented a highlyﬂsimplified nedron model. An example of the
McCulloch and Pitts formal neuron is presented in figure 2.1.. The-
formal neuron is a boolean processing element with m inputs
Xy,.-,Xm and one output y. .It is characterized Qy its bias b and thé
m weights wy,...,.Wn. The module determines ie output in- function

| 4 '

of its inputs on a discrete time scale t=1,2,3... ‘ ' .




o / ’ . =

/ 4 yaus

0 y(t+1) = 1 iff 3, wy xi(t) > b ‘ |
o otherwize y(t+1)=0. ‘ 12.1)
X 1O\ v
Q - Vﬁ ‘ .
] y=11if D;XiWi-b>0

. X ,O—nud ‘ _ = 0 otherwise
2 2 I ,
) — b /

[ 4

. Figure 2.1 : Example. of a McCulloch-Pitts formal neuron. The
activation function is a hard limiting threshold.
b

+ ' In correspondence to real rieurons, the positive weights wilk be
said to\ be ‘excitatoryyand the negative weights inhibitory (cf.
excitat® and inhibitory synapses..section 2.1.1 )

P

] \ o ' ‘
In terms of this}efiniﬁon of the fermal neurgn,~a-formal
neural net can be definefl as a collection of formal neurons with
the same time scale, interconnected by sending the output of each

N _ formal neurcn to the inputs of several otfer formal neurons. These
« netWorks can ‘be represented by a digraph (directed graph), &s
shown in figure-2.2. oy r
N | i Ty
Y
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PUT
N OUTPUTS
. P
U .
T
o S.
*
) figure 2.2 . A simple network of formal neurbns, where each

neuron computes ‘*its boolean output in function of its boolean’l
inputs as defined in equation 2.1. Note that this network has no
/Ioop but connectionist networks in general can have some. ‘

Formal neural nets were shown to be finite automata, and
canversely, it was shown that it is always Rossible to construct a
formal nueura‘# net that has the input-output behavior of a given
finite automaton (for example see Arbib, 1964). A‘corollary to this
argument is, that formal neural nets are equivalent to digital
computers (by using some formal neurons for storage). . Thus
formal neural nets can compute any digital function. Formal neural
nets can be "programmed", by filling in the values of weights and
the description of the, structure of the network. However, they
would be much more usefal if they could learn (adapt) instead of
having to be programmed. The first”ideas in this direction came
~ ) from Donald Hebb's Organization of Behavior (194%). He proposed

_ the first learning rule for synapses: synapses should be
strengthened when both the presynaptic and postsynaptic units
were active simultaneously (section 2.1.2). His idea that -the
weights of the connections\ should depend on the correlated
activity of the connected nodes still persists today in current
learning rules, even though the details- of the rules may differ. The

~ next step in the development of a learning rule came with the work
of Frank Rosenblatt on the learning procedure for the perceptron.
N\
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222 The Perceptron

N

Rosenblatt introduced the perceptron in 1959, and presented
a learning rule with a proof of convergence in his book, Principles
“of Neuredynamics (1962), The percepfron is very much like the
formal neuron except that it has modifiable weights. The
perceptron was thought as a pattern recognition device that has
some ability to "learn" to recognize patterns of a set after a finite
number of trials. The main result of Rosenblatt's work is
summarized in his learning rule and its convergence theorem :

"Given an elementary alpha-perceptron, a stimulus world W, and any
classification C(W) for which a solution exists; let all stimuli in W occur in
any séquence, provided that each stimulus\must reoccur in finite time; then
beginning from an arbitrary initial state, an error correction procedure
will always yield a solution to C(W) in finite time,..."(p.596) —

The learning rule is called an "error-correction” or 'ireinforcehent
rule", and is defined as follows: if the response of a perceptron to
a given stimulus' is correct, then/nothing is changed.. If the
response is incorrect, the weights g/re changed. l.e. :

/
/

AW = constantx(target_outpi“t-gé:tual_output)xact.ual__inputi (2.2)

For units Wthh accept contu'{uous inputs, the Iearnmg rule in (2 2)
can still be used. '

——

Obviously, this learning ruTe is only applicable to networks
with one layer of perceptrons, since both desired output and input
of each unit must be known to apply the rule. In addition to that
problem, such a single-layer perceptron system canonly learn ¢
linearly separable functions (this was an important argument used
by Minsky and Papert (1969) when showing the limitations and

[
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problems of, perceptrons). Indeed, it cannot learn non-linearly
separable functions because there exists no set of weights that
will enable .the perceptron to perform that type of classification
using a single layer of perceptrons. The perceptron convergence
theorem is still true since it mentioned that the learning rule
converged for classification problems for which there existed_ a
solution wii\t the perceptron architecture. An example of functions
that are not linearly separable is the exclusive-or (XOR) functiof,
or the parity function.

f o
Minsky and Papert 's book (Perceptrons, 1969) presented a

thorough .analysis of the perceptron and of its limitations. Its
pessimistic evaluation of the perceptron discouraged further

‘development of pgrceptron-like models until the early. 80's. The

non-linearly separable functions could be computed on a multi-
layer perceptron, but it was.not known how to train the nodes not
directly connected to the input or the ‘output of the network. Such
nodes are called hidden nodes. The 'discovery of- learning
algorithms for multi-layer perceptron-like networks (see chapters
3 and 4) gave rise to a new research interest in neural networks.
Figureﬁ§2.3, de’m%d from Lippman (1987), shows the types of
decision regions that can be formed by single-layer, two-layer and
three layer perceptrons with two-inputs so that the input sp&ce
could be represented on the plane. One can see in this figure why
the sin)e layer perceptron, which can form a decision region for a
class defined by a half space bounded by a hyperplane, cannot
produce the XOR function. One can also see in this figure that to
solve ost general classification problems, a pevrceptrbn with
three layers of weights (i.e. two hidden layers) can be used
(although the number of necessary hidden nodes depends on the
complexity of the classification).
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respectively). Derived from (Lippman, 1987).




223 NETL
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. ‘The NETL system (Fahlman, 1979) is a type of connectionist
system for manipulating symbolic knowledge. It uses local
representation: each node represents a particular concept, defined
by the user; connections represent relations or assertions. It is an
implementation of a semantic network. The architecture is madé
of a large number of simple processing units to represent the
concepts and the relations. Each one is capable of storing only a
few single-bit- markers and of performing simple boolean
operatlons all in parallel, in response to the broadcast command of
a system controller (a serial machme)

-~

The NETL system can be used as an "intelligent" knowledge:

. base. It can perform lnhentance handle exceptions and perform set

intersections, all in parallel (constant time). It works well for”
symbolic processing, where every Afeature is either active or
inactive, but is not appropriate for the noisy. and very- variable
sensory information of speech and image recognition.

N
!
8 . ¥

2.3 Taxonomy ¢
- J
Connectionist models can bé classified_along the following
axes: * ' o

o

- local vs distributed representation :

-

-Local representation consists in the assignment of. specific
~concepts to individual units. The ‘'grandmother cell' theory says

that there exists one particular. cell in your brain that gets

. activated for one concept. For example, if someone talks “to you

about his grandmother, or if you see your 'grandmother coming into
the room, the grandmother cell will be activated. The cell will be



-y

used only to represent that concept. On the other hand a
distributed representation means that a certain pattern of
activation of units will represent the activation of a concept, and
furthermore, that each unit may be used in the activation of many
concepts. At the extreme, we find the hologram model : each tiny
element of a hologram contains information about all parts of the
picture. Conversely, any subset of the hologram contains the whole
picture, albeit with less details. Most probably, the brain uses an
in’termediate representation in which parts of the cortex are
organized in modules, themselves using a relatively dis‘tributed
representation. . The disadvantage of distributed representations is
the difficulty to interpret the activation of the units. It is also
impossible to add macroscopic knowiedge to those nets from the
outside by changing the microscopic weights since each weight
influences many concepts. One must absolutely use a learning rule

" which_relies on training and examples. An advantagé of distributed

representations is their tolerance to failures or errors of the units
(graceful degradation). This is an important feature of

.connectionist models, which, has been studied by a number of
- researchers e.g. McClelland (1986), Hinton & Sejnowski (1986) and
-is similar to graceful degradation in the brain (Rumelhart & al.,,

1986),(Schwartz, Marin, & Saffran, 1979). -

f

-

- binary vs continuous inputs and outputs :

\ , {
Some networks may accept continuous input but produce binary

output (e.g: the perceptron). Others may have both inputs and
outputs that are coptinuous -(e.g. the error back propagation
algorithm), Others may be binary in nature but can be converted to

‘centinuous input and output (e.g. the.perceptron can become the
Widrow-Hoff perceptron (Widrow & Hoff, 1960)). Others can be

binary in nature, but continuous inputs or outputs can be used by
changing or looking at internal variables of the units (e.g. the
Boltzmann machine algorithm cf. chapter 3 and section 6.2.2).

13
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- hastic v eterministi ration

It is believed that biological neurons fire according to a stochastic
rather than a deterministic process. The Boltzmann machine
(chapter 3) and other models (é.g. Barto et al. 1983) use a
stochastic activation function (or simply add random noise to the
deterministic part of the function). Of course, a simpler approach
4S to use a deterministic network (e.g. the error back propagation,
chapter 4, the Hopfield net, section 2.4.1).

- supervised vs unsupervised learnin

Q

This is a fundamental axis of -categorization of connectionist -
models, although it cgn admit intermediate cases. A supervised
adaptive network is one in which both inputs and desired outputs
(or classification) are specified. The network has a "te\acher" that
provides not only ?n\ejvironment but also a measure of the errors
that the network makes. In the unsupervised case; the network is
simply immersed in an environment, and it tries to construct an
internal model or representation of that environment that will
extract the structure, or the statistical regularities present in
this{ environment. Such a network may thus "discover' a set of
statistically salient features of the environment. The single-layer
or multi-layer perceptrons are supervised neural networks. The

" Boltzmann machine used for classification is also one. The

Competition network presented in ‘section 2.4.3 (Rumelhart &
Zipser, 1985), the Regularity Detector in section 2.4.2 (Geman,
1981) and Kohonen's self-organizing feature maps (Kohonen,
1982,1984) are examples of unsupervised learning paradigms.

-




- - iation®_or m mpletion v m iation

classification ™~

\ ' There are a lot of associative memory models (or content
addressable memory)(e.g. Kohonhen, 1977). A certain number of
patterns are stored in the network. In the retrieval phase, a noisy
or incomplete version of the pattern i5 presented, and the network
converges to the closest stored pattern (e.g. Hopfield Net, section
2.4.1), ‘or the network tries to complete the missing or unspecified
parts of the input (e.g. the Boltzmann machine). Another type of
network oﬁerates by computing an output when an input is given.
They can thus be used for pattern association or classification, or
to realize any input/output function.

2.4 Current Models " .

L ' .

- The most popular current models of neural nets are the , i

error back propagation algorithm and the Boltzmann machine

algorithm. These two models have ‘been used in the experiments

described in chapter 6, so they are thoroughly,.described in

chapters 3 and 4. ‘In this section, other models of neural nets are
therefore presented. ’

2.4.1 The Hopfield Net | ) R '

The Hopfield net was introduced in 1982 by Hopfield. Itis a
““network with binary inputs that can be used as an associative
memory or to’ solve optimization problems. Hopfield worked Jc‘)n
several vyersions of this network (Hopfield, 1982),(Hopfield,
1984),(Hopfield, 19886). A version of this network tused as
associatize memory will be degcribed here (see figure 2.4 for the
o structure of the network). “

N .
bt - .
"Ev'mff‘ - . v n IR _ . - I
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INPUTS (Applied before the iteration starts)

JFigure 2.4 : Structure of the Hopfield net.

o The N nodes are all connected to éach\other. They are used
both as input and output. Each node computes its output, which can
be either 1 or -1, as follows :

Yie F(Z; W Yi) ‘ (2.3)

— where f(x) = 1 if x>0 and -1 otherwise, and Y; is the output of node

i, Wj; is the connection weight between node i and j. The Hopfield

P net works by applying a value to the set of nodes and then iterating

by successively updating the output of the nodes. Hopfield proved

(Hopfield, 1982) that this relaxation process would converge if the

o weights were symmetrical (V\ﬂﬁ = W;;) and the node outputs are

updated asynchronousiy.

¢ ~
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\ The weights are determined not by "a learning process but
by assigning them the following value, depending on the set of
examplar vectors (X1g,X2s,...XNg) for the M classes s :

Wi = Zs0 to M1 Xis Xjg»  for (i) . ‘
=0 for (i=j) J ’ C o (2.4)
x;sQ.canhonly take values +1 or -1. The relaxation process is
stopped when the:network outputs have ceased changing.
e
The number of patterns that can be stored in the Hopfield
net is limited tp less than 0.15 x N. If more classes are stored, the

network may start converging to some spurious patterns which
were not stored. Another problem with the Hopfield net is that a

-stored pattern will be unstable if it shares many bits with another °
pattern : when the pattern is applied at time zero, the network

14

converges to another, close patterd instead- of staying in this
configuration. This problem can be eliminated by an

.orthogonalization procedure (Grant & Sage,1986).

2.4.2 A Regularity and Correlation Detector
' .

~ i

In (Geman, 1981) the author attempts to 7"design .. a

_system whose purpose is to discover temporal and spatial

regularities in‘ a high-dimensional environment". Like the other
connectionists he proposes to look to the neural and ,cogriitive
sciences for clues about the proper architecture for an intelligent
system One of these clues is that the strength of a synaptic

‘connection is influenced by the activities of the two neuron$ that

communicate through this connectnon Another one is that some
cells of the visual cortex (and probably of other sensory areas) are
initially (in the newborn animal) not specific in their activities,
and they learn to signal different selective events (or features) of




-

’ [}
the environment. This specialization is dependent on  the
environment and the experiences of the animal. .y '
At a given itime, we observe only g fraction ‘of the features
“of the environment (e.g. part of an object is hidden from™ our view,
etc...). We use the observed features to predict the value of some
of the unobserved features. Geman defines the state of a feature
as observed or unobserved. The value of a feature is only available
~~in the observed state. He assumgs that the étatg (observed or
unobserved) of a feature carries no information about the value of
this feature; what the neural network does is to guess or estimate
the value of unobserved features. He calls a feature "decided" if it
has been observed or its value ‘has been estimated. The decided
features thus .represent ccurrent hypotheses about the external
‘environment. To estimate.the value of an unobserved feature, the
neural networks forms an opinion concerning its value which is
based upon the value of other decided features. If that-opinion is
strong enough (i.e. reaches above a certain threshold) then this
feature becomes decided and its value available to other units.

Geman defi;es features f; having two possible values, + and
. - He then asks the following question « given all joint’
. " distributions among pairs_of feature values, how toud we Sbiaig a )
local opinion Oj for the value of an uhobserved feature f; ? For _‘ 1
this purpose he defines the following quantities for each feature :

(

1

, yi= 17 fi =+ and 0 otherwise
{ \ ni=1iffi=-and 0 otherwise

r+i = Pyjly;) {probability that f;=+ given that fi=+}
ey = P(njlys)

| Thus y;=0,n;=0 means that feature f;" is unobserved. A possible

form for Oj\is then the following : e




O = (1M) ( Ziyi log(t/(1-r+)) - Xy yi log(1/(1-rp) ) @9)

where M 2.i¥j = the number of observed features with value +.
The two sums in the equatnon represent ‘the opinions that fjis + or
-, respectively; guven that decided f's are 4

——
b

o

However, a real system has only a finite experience and
thus the conditional probabilities can only bg, estimated. The
problem is that in summing the “opinjons® of the various
connections the fact that some of them have more or less
"experience” (i.e. that their opinion should be more or less, valued)
is not téken into account. To,solve that problem he looks for, new
functions r+y(t) and rj;(t) whichMtend to the conditional
probability as t — <« but are small when the numbex of
simultaneous observations is dsmall. Consequently "inexp_eéie{ceg"
features would not much influence the opinion O;. He derives the
following definition of rtj(f) and rt) :

rtit) = Plyly){1-exp(- ep Ply) t] :
1) = P(jlyd[1-exp(- ep P(y) 1] a (2.6)

o

where p = P{f;is chserved é(nd fiis bbserved), antl ¢ is a small

constant. - , )

—_

<
-~

-~

Utho now only the first layer of cells wer? considered,i.e.
those that are d|rectly tied to the external world To denve an
opinion on the value of lnbkserved features{{only panrwnse
statistical information were us’e&e\. only first-order statistics.

However thase first-order statistics don't represent the whole’

available statistical information about Ehe perceived input. Adding

-statisiical variables of higher order iwould significantly improve

the decxsm? taking (as addnng hldden layers to the perceptron

enhance§ its
the netwark some hidden uqits with the following definition :

-

3

{

capabilities). ' In fact it would be necessary to add to _
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where N is the number of input cells .

7

o

These hidden units are ON when k specific input cells are- ON. k
represents the order of aha?*ticglqr statistic.  Obviously the
¢ ' number of such cells grows much too rapidly with N (exponentially) ,
and it will not be possible to have all of thE’stsible high order
-statistics in the network. Thus Geman proposes that only those
"that are, by some measure most frequent and, most important” be
ke‘p“t. - He defines the importance of.a statistic as its "correlation
! to innately important events". He calls this choice of relevant high -
order statistics the commitment of cells. He proposés, based on
studies of neural development, that the commitment should be
hierarchical. Layers of increasing statistical order draw their® ./
inputs from a few preceding layers. - Initiallw the first order )
statistics are evaluated, for the first layer. Then, based on these t
statistics and correlation to ihnagely i-mpdrtant events, some
second order cells are chosen, (representing the cqijnct.i?n'_ofc
pairs of features). As in the first Iaye?/, statistics are” then
‘ accuymulated : the connection strengths mature. After a while we
% are readyito commit cells in the third layer, based on the first two,
eté:... i - ~ Z .
. N
~ The system just described analyses the spatial structure of
N the input, i.e. it is not conceriied with the correlatiop between
succeeding frames.-of inputs. However our brain_ﬁa&;@ées. both
spatial and temporal analysis and intelligent machines shoulc}\ be .
. - - able to do so. . Geman proposes a second ‘éystem, called the
. temporal coding module, which takes its first levek inputs
(primitives) from various stages of the spatial coding module. The
only difference w'ith*the design of the spatial module is that the
definition of high level statistics is now the following :

n

¢ 'z = 11if yjy follows yp follows yj3 ... follows yy. & \
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Thus hidden units detect sequences of events rathgr than their -
simultaneous activity. "Follow" is defined in a rigorous discrete
manner : activity in a level p unit is said to follow activity in a
level g unit if it occurs during the pth period of time affer activity
in the level q unit. In other words, the sequence cﬁ‘ primitives
associated with the level q unit must immegiate precede the "
sequence of primitives associated with the level p unit.‘ |

| : [

- / Finall)}’Geman argues about the need for a third module,
which would provide‘ some definition of "appropriate action" and ,
"innately impor\tagt events".” The primitives of this module ,
consists of the inherently good and bad feedback (e.g. pain\fnd

. pleasure in the animal). Higher level cells represent events_in_the ®
spatial module and the temporal module that are correlated with

- the good and bad primitives. They influence the commitment of
high level cells in the spatial and temporal modules.

e s
/

2.4.3 Competitive Learning

L]

;o Rumelhart "and Zipser report (1985 on studies of an
unsupervised - learning paradigm called "competitive learning”,
applied to parallel networks of neuron-like elements. This method
provides to a neural net a way to discover regularities and general
features which can be used to classify a set of patterns. These
‘fealture detectors can be fo&med on. the basis of a Dmulti-layér
system that can learn categorizations which are not linearly .
separable. Other workers proposed competitive learning
~ algorithms such as Kohonen 's feature maps (Kohonen, 1984) and
Fukushima’s neocogpftron (Fukushima, 1980). '

- \

d ,
The basic characteristics of .the competitive learning

schemg are the follow\ing,a as outlined by Rumelhart & Zipser
(1985,: : ’

.
. -
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1. The un}rs of the network. are identical except for a randomly
distributed parameter. This initiall&y makes each unit respond (“

~  differently to the input. . - : \/

3
=
X
2
’h
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k
.
:

~ 2. Each unit can distribute a fixed amount of positive "strength” to
its input connections (X; w; is fixed to1). -

3. The units of each inhibitory cluster compete to respond to the
input. '

The éonsequence is that units adapt in order to respond to sets of
similar patterns (they put their weight strength in connections
that are—often used by a set of similar input patterns). )

e
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Figure 2.5 : Ar‘chitecture?of a competitive learning mechanism.

The architecture 6f a competitive learning system consists
of a set of hierarchically layered units in which each layer
connects with the layer above it. Within a layer, the units are
separated into inhibitory clusters in which all elements inhibit
each other, competing with one another to react to the pattern of
the preceding layer. The unit receiving the largest input in a
cluster- attains its maximum value (state) while the others are
forcec to a minimum value. All units in an inhibitory cluster
receive excitatory inputs from all the units in the lpwer layer.
Each unit distributes a fixed amount of weight among its
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excitatory input connections. Thus for a unit, learning means
"shifting weight from its inactive to its active input lines", when
it wins the competition :

Awji =0 if unit j loses on stimulus k
= constant x. [ (ci/ ng) - w1 if it wins on stimulus k.
(2.7)

where cj=1 if unit i in the lower layer is active for stimulus- k and
O otherwise. ‘ng is the number of active units in the lower layer for

stimulus Kk :

Nk= i Cik \ - ' _ (2.8)

As a result of this learning algorithm, experiments show
that éach cluster of size M classifies the stimulus set into M
groups. Each unit responds approximately to an equal number of
input patterns. The .units categorize the patterns in a structurally
relevant way if there is structure (redundancy) in the environment.
A large number of independent clusters receiving inputs from the-
same input units can classify the inputs according to a- variety of
independent features present in the stimulus, although it is
possible that two_ clusters choose the same classification. The
authors show arﬁlytically that after it has been learning for a
period of time, the system will spend most of its time in the most
highly stable of -the equilibrium states. An equilibrium state is
defined as a classification state (of the weights) in which the

weights are not changing in the average (providing a stable set of

features ).

Lo 4

- As suggested by a formal analysis, asymptotically the
weights were experimentally found to be proportional to the

probability that the “presynaptic® ‘unit is active when the ~

"postsynaptic” unit wins. That is,

Wy — P(sj = 1| unit] wins). = * - (2.9)
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3.- The Boltzmann Machine Algorithm

°

This model was introduced in 1983 by Falhman, Hinton &
Sejnowski. A basic idea of this model is that of using parallel
networks to perform relaxation searches that simultaneously:
satisfy different weak constraints represented by the clamped
values of input or output units. The computation is performed by
iteratively decreasing a cost function representing the extent to
which the current state of the hetwork (which means the output

/}‘ values of all the units in the network) violates the input_
constraints. These "weak" constraints are not necessarily absolute
constraints : they have a cost associated to their violation (i.e.
there may be some exceptions to these constraints, as for example
there may be exceptions to some grammar rules ).

This model (as well as several others) has received much of
its inspiration from concepts of statistical physics. Like the.
‘back-propagation model it can also be seen as an extension of the
perceptron.

3.1 Constraint Satisfaction

o

\ o |

Hopfield introduced in 1982 a neural net” with a relaxation
scheme involving a cost function, and where the network converges
to a local ' minima of the cost function (See™section 2.4.1). He

\ showed that if the connections among the units are symmetrical (
i.e. the weight Wy from unit i to unit j equals the weight Wj from
unit j tr unit i), and if the units are updated asynchronously, then
repeatec iterations are guaranteed to find an energy minimum ( the

\ " cost function never decreases ). He called the cost function

0 "Energy" and defined it as : )

1

s
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E= 'Ziq‘ W}j S Sj+2i Bisy ‘ (3.1)

\

where Wj |s the weight on the connectlon from unit j to unit i, s

is the state (0 or 1) of the ith unit,. and B;is a bias for uniti. The _
Hopfield net contains only visible units, i.e. units which are
directly connected (influenced) by the environment (input/output).
The Boltzmann machine model has visible and hidden units. The
hidden units are only connected to each other and to the visible
units. :

Output Layer

Hidden Layer

Input Layer

<
. N ©

*Figure 3.1 : Input, Output and Hidden Layers for the Boltzmann

Machine.

To ensure that the cost function never decreases, Hopfield's
updating rule chooses for every unit i the state for which the
energy is lower. Since the connections are symmetrical, the unit

should be ON (1) if
AEy = X Wi s - Bx >0 . ‘ (3.2)

and OFF (0) otherwise. Thus the unit is a binary threshold unit.




The main problem with this rule is that the network will
get trapped in local minima of the Energy function (if there are any
local minima). This was a desirable feature for Hopfield nets since
these networks are used as associative memories where local
minima represent stored items. However, for more complicated
problems where the energy landscape has undesirable local minima,
in particular in' the case of constraint satisfaction, it is desirable
to reach an absolute minimum of the Energy function.

To solve this problem, the authors of the Boltzmann
machine looked at the work of Kirkpatrick (1983) who introduced a
.search technique for -solving hard optimization problems. Instead
of. allowing only reductions of the energy, some upward moves
must be allowed in order to get out of local minima. Kirkpatrick
used a physical analogy, that of finding a very orderly (low energy)
state of a metal by melting it and then slowly allowing it to cool.
This is called annealing and thus a search procedure based on this
procedure was called "simulated annealing".

The intuitive explanation of why this principle functions
(Hinton & Sejnowski, 1986) can be understcod by considering the
state of the network as a ball-bearing on an energy landscape.
When the temperature is very high, (i.e. imagine that we shake a lot
the system) the ball can be anywhere with almost equal
probability. This is because when the temperature is very high the
energy barrier between low energy minima and higher energy
minima is very small. On the other hand, if the system is gently
shaken (i.e. at lower temperatures), the ball will have a higher
probability of being in a low energy minima, but it will not make
transitions between one minima and another very often. Annealing

starts by applying a high temperature to the network and gradually

reduses temperature. As a result,  tHe system will go through a
temperature at which the thermal noise makes the best
compromise between the absolute probability of transitions

(escaping a minimum) and the ratio of probabilities of settling into
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minima of different .energy (see equation (3.4))(cf. Hinton &
Sejnowski, 1986). At the end of annealing the ball-bearing will be
at the bottom of the global minimum. The proof of this phenomenon
is” of the domain of statistical physms but the result applies to the
Boltzmann machine. ’

Thus, the idea of Hinton and Sejnowski was to apply the
simulated annealing procedure to the Hopfield net. This can be
done by modifying the update «rule for each unit, specifically using
a sigmoidal function of the energy barrier over the temperature
instead of the deterministic threshold function of Hopfield nets : .

Unit k chooses the state 1 with probability

®

pk=1/(1+exp(-AE/T) \ (3.3)

where T represents temperature iﬁ the simulated annealing
" > .

process. . .

As d result of this update rule, in thermal equilibrium the relative
probability of two global states is determined by their energy
difference and follows a Boltzmann distribution (hence the name

Boltzmann machine)(see Hinton, Sejnowski & Ackley,” 1984):
4 s ,

Pa/Pb=eXp('(Ea‘Eb)/T) ‘ (3.4)J

where E, is the energy of state a, and P, the probability of fmdmg
the network in that state at equmbrlum \

3.2 Learning

The result of each relaxation is, with a certain probability,

a global state of low energy. .Thus we c¢ould control what the

network will compute by "assigning" an energy value (and thus a
. | ¢ . .

W




probability) to each global state. However, in general the
environment or teacher will not be able to specify the probabilities
of global states since that would include visible as well as hidden
units. It may only provide information about the visible units. Why
are hidden units desirable in a connectionist model ?

The old perceptron had only visible units, and thus it was easy to
find a learning rule for the weights. Howegver, since there were
connections only between pairs of visible units, the network could
only learn the first order statistical structure (with the v
thresholds) ahd the second order statistical structure (with the
v2/2 pairwise connections) implicit in the environmental
examples. | b
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When faced with a problem of a higher structure (for example the
"XOR problem, see section 2.2.2 ) the .pérceptron gonvergence
procedure (learning rule) fails miserably.

There are only pairwise connections in the Boltzmann

Machine but high level statistical information can be represented

using hidden units (that are not directly influenced by the
environment). For example, in' the case of the XOR problem, if we
introduce only one hidden unit, that will have weights to detect an
AND of the two input units ghen it is possibleyto find the other
weights, to get the output unit to behave like an XOR of the two
input units. ‘ N

~ However how does one decide what the hidden unit(s) should
recognize (i.e. what feature should they detect)? What weights
should be assigned to their connections from the input units so
that the hidden units become useful feature detectors that
represent high order statistical regularities of the environment?

QOne answer to these questions is the Boltzmann Machine
learning algorithm. Making certain assumptions, the authors of the
Boltzmann machine algorithm, derived an information theoretic

:
P
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measure of how well the weights model the structure of the .

environment, and thus how to modify the weights to improve this
measure. The first assumption is that when the environment
clamps some of the visible units, they stay clamped until the
network reaches thermal equilibrium (not like for the Hopfield
net). The second assumption is that there is no statistical
structure in the sequence of input pafterns (the neural network is
-only going to learn about the static structure of these patterns not
about their sequence)

There ,are 2V possible enwronment vectors over the v visible
units. Thee%omplete structure of the. environment is thus defined

by the probabilities P+(V,) of the 2v vectors V,. (The + means that

the visible units are clamped). The idea is to compare this
distribution with the P-(V,) (the probability of vector V5 over the

-visible units when the network is running freely, no clamped units).

Thus a perfect set of weights is one for which P+(V,)=P~(V,) for all
.environment (input/output) vectors V,. The information theoretic ’
measure (Kullback, 1959) of the wdistance between two
distributions is given~ by :

G =Y PV I (PHV I P(VY)) “ (3.5)

It is ealled asymmetric divergence or information gain. It is not
symmetrical because it is more important to get -the probabilities
correct for input patterns that occur frequently than for rare ones
(hence the first factor). ’

It is possible to do gradient descent in G : changing the
weights so as to reduce G. We show in the next section (3.3) that

aG/aW;j, = - 1/T,[ p;j‘*' -.p;j'] ‘ ) (3.6)

where pj* and Pij” are the probabilities, averaged over all
( environmental inputs and measured at equilibrium that. the units i

[’f




and j are ON when the visible units are clamped and not clamped,
respectively. R
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Two interesting features of this. equation 'is that it involves only
— local information and that it is the same for visible and hidden
units. *
However, the algorithm is still not completely determined.
One still has to decide temperature cooling schedule, of how
many weights to change at a time, of how much to modify each
weight given the pj+ and pij;, of how long to collect the statistics
for the p;;* and p;~. These aspects will be discussed in section 3.4 -

L

~on the implementation. - )
) ! " -

“~
A

3.3 Derivation of Gradient .Descent Rule

e

~

) I

An equivalent of the ?ollowing demonstration can be found
; ©in works by Hinton & Sejnowskj (1986) and Hinton, Sejnowski &
Ackley (1984). This section is not absolutely necessary to the
understanding of the rest of the thesis, and can thus be optionally
skipped by the reader. We consider here the case where visible
| . units are either fixed or clamped, and the network is used for
‘ pattern completion.

o,

Let us derive the gradient descent rule, presented in (3.6).
The G-measure is defined in (3.5). We want to find its derivative
wikgt. the connection weight Wij. However, P+(V,) (the probability
§ of applying vector V, over the ‘visible units, i.e. when they are
C fixed, at “equilibrium) is independent ’ of W (since the visible units
' are fixed from the outside, they do not depend on the network
act?vity and connections). Hence the derivative of. G can be written

.as follows : |
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3G/IW; = La [3PH(Va)aWy; In(P+(Va)/P~(Va) +
’ P+Zva (1/P+(Va) dP+(Vg4 )/aw., - 1/P-(V,) 0P~ (va)/awi,)]

=-ZaR+<V~a>/P-<V_a>/aP-cvavaws,-' . (3.7)
Now let us consider the last factor of (3.7), i.e. consider the
network when thHe visible units are not fixed. °The probability
distribution over the visible units at equilibrium is the following : ~

P=(Va) = Zp P(Vaa Hp) = (T exp(-Eap/T/(S1, exp(-E/T)  (3.8)

where Hy is a vector of states of the hidden units, V; a vector of
states of the visible units and E,p the energy of the system in state
(VaaHp):

Eab = - 2, Wj; 50 520 . _ - (3.9)

as in (3.1), where Wj; is the connection weight between unit i and

“unit j, and s;3b is the state (O or 1) of unit i when the vectors V,

and Hp are applied to thew visible and hidden units respeétively
Note that the bias has been eliminated from the equations by
consndermg it as the weight of a connection from an inpat unit
wttnch is always ON. From (3.9), we obtain;

aexp(-Eab/T)/BWij = 1T Siab Sjab exp(-Eab/T) > (
Hence we can differentiate (3.8) :

3P-(V, )/aw,J (1T Xy exp(-Eap/T) 520 sb)/ X, exp(-Ej,/T)"
-(Zp exp( Eab/-r 4l 2:I u exp(-Ej/T) s sjlu‘% Z:l u exp(- -Ey/T))2

= HT[Zb P-(Va A Hp) si@b sjab P-( Zlu (Vi A H o) silu 5]
. (3.10)

and rewrite 0G/dWj;as follows :

ok, e Sy w:;a’ﬂ}" 'f,'.“:a:,s;" ’*"IA‘“: $ TN L e
A - [ ¢
) s K




0 L 3GAW= T2, P+(Va)/P~(Va) T P(Va A Hp) 5iab 20 - -
T 4 PH(Va) Ty (Vi A Hy) s sfu] By
7 Now we can simplify a little as follow's : |

Ya P*(Vy) = 1, by definition of a probability.

~
¥

| The probability of a conjunction ‘can be written in terms of the
conditional probability :

B+(Va A Hp) = PHHp | Va) P4(Va)

7 P-(Va 4 Hp) = P-(Hp | Va) P-(Va)
also, { .
P-(Hp | Va) = P+(Hp | Va) - : (3.12)

since_ the probability of a hidden state vector given a visible state
vector is the same wether of not the visible state vector has been
clamped or arrived to this value by iterations of the network. Thus
we can write ’ ’

P-(Va A Hp) ‘P+(Va)/P'(Va) = P+(V, X Hp) . (3.13)

\ N N -

and simplify as follows :

\

i . ] -
aG/aw,J = -UT{ Zap PH(Vaa Hp) s@d s@b . ~ :
‘ - Zju P7(Va A Hy) sl Sj'u] . (3.14) :

Let us define p;* and p;j"‘(the' probabilities averaged_ over all
possiblé input vectors that unit i aqd unit j are both ON, at
equilibrium) as follows : )

0 . Pyt =2ap PH(Vana Hp) 530 sab - (3.1 w
- o - P

P
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- (3.16)

Pij” = Ziu P(Via Hy) s sy |

so that the derivaitive.of G wrt to Wj cén be written as in (3.6) :
‘ 2 ] » '
aG/aWij =-1T] pij'*' - Py ]- / : (3.8) °
” ) :

3.4 lmplementatlob.\of the Boltzmann Machme for- the °

- Experiments % ]

+

) The program to implement the Boltzmann machine algorithm—
"~ and -the various experiments conducted with the speech data was

written in C on a VAX-8600 with the VMS operating, system. T ere .
are several versions of the program, for the different exp ents

conducted. The program itself is divided in 8 modules. A flow

diagram of the high level structure of the implementation of the
Bolzmann machine algorithm is presented in figure 3.2. Let us now
consider some aspects of the algorithmic implementation.

W

>4




Initialize, training=TRUE

) 4 ‘ :4 . - \‘

Initialize co-occurence counters
(beginning of a small leaming cycle)

/" | s .

Selectﬁ\ext speech sample, cdde it‘into the ' v
network : fix the inputs.

if
training

outputs_fixed = TRUE ’ '
A J

relaxation cycle : temperature cooling

r o . *

outputs_fixed = FALSE

v , . :

relaxation cycle : temperature c?oling.

! measure error .
- ‘K no

if training and
selected sample is of
third class

» | update weights | °

«4—| training=TRUE'

pord

4 training=FALSE

igue 3.2 : Flow chart diagram of high level stricture of the implemented Boltzmann

" chine algorithm. The infinite loop is stopped when the error on the testing set

doesn't improve anymore. Note that the speech samples are presented with a first,
second, and third class examplars always in -sequence.

i
|
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3.4.1 Temperature Cooling Schedule

"

The cobling schedule which is guaranteed to make the

' system reach the best solution is the following (see Geman &

Geman, 1984):

i

T(k) 2c/log (1 +k) (3.17)

where ¢ is a constant, k stands for the kth cooling iteration and

T(k) is the temperature at the kth iteration. In those conditions,

with probability converging to one as k— e, the configurations of

- the netwdrk will be those of minimal energy.

However. such a cooling schedule is very slow, because éf the
logarithmic function. In the first experiments that were

performed, such a cooling schedule was used.

For the cooling rate, after trying the slow logarithmic
cooling the following schedule was used :

T(k) = starting_temperature +/ ( k + 1) ' - 13.18)

where log(k+1) in (3.7) has been replaced by (k+1). Identical
experimental results were obtained with this cooling, but with a
gain in speed greater than 10. »

In addition to the cooling rate, one must determine the
temperature at which to start and to stop. To decide of a starting
temperature, the average” energy barrier AE, that each unit has
to jump to make an upward move was computed. The absolute
values of local energies of each unit (as defined in equation 3.2)
were added for all the iterations to compute a total energy, which
is then averaged over all those cycles and units. The chosen
starting temperature is this average absolute energy divided by 3.

Thus at the beginning of the cooling, the average unit will have

)

TR
o
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either about 42% or 58% probability of being ON depending on the
sign of its local energy. This average energy measures the average
height of the energy barriers that each unit has to climb to make an
upward jump in the energy landscape. Choosing a starting
temperature which depends on this value ensures that if the
network constructs very high energy barriers it will be able to
jump above them at least at the beginning of the cooling. Most
other researchers experimenting with the Boltzmann machine

chose a fixed schedule starting at a given temperature and ending’

at another one, independently of the value of the weights.

To stop the cooling one could choose to wait for a fixed

number of iterations, or a fixed finishing temperature, or one could -

wait for the network to settle (approximately reaching thermal
equilibrium). For the experiments of this thesis, ‘we chose to wait
for the network to stabilize. At each cooling cycle, the number of
"units which have switched from one state to another is counted. If
the network dqQesn't change state for' a certain number m of
consecutive cycles, the cooling is stopped. m was chosen to be
two cycles (by trial and error and looking &t the behavior of the
network at low temperatures).

3.4.2 Other Parameters

After thermal equilibrium has been reached, for a certain
number of cycles, statistical informations are gathered about the
number of occurrences and co-occurrences of ON states. These are
to be used to update the weights. The number of cycles during
which statistics are collected was computed as:

len_stat = 4 / sqrt(average_error + 0.1) , (3.19)

Thus, as the error gets smaller, more time is spent accumulating

statistics. This is because the learning procedure is driven by the
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nt of error (discrepan ween th havior of the uni
when the visibl ni re clam nd n lam

For the update rule, as suggested in several experiments
with the Boltzmann machine (see Ackley, Hinton & Sejnowski
1985) the weights were increased or decreased by a constant
multiph by the SIGN of the difference between the two
probabilities p;j+ and Pij” rather than by the difference itself. »
The advantage of this method is that it deals better with wide
variations in the first and second derivative of G (the distance
measure between clamped and not clamped network). Thus when G
falls rapidly and then -rises rapidly the learning doesn't take the
large divergent steps that the original definition (definith (3.6))
of AW takes. - :

AWj; = learning_speed x SIGN ( pj+ - py) | (3.20)

To allow slower variations when approaching the solution
(convergence), the learning speed was also changed in function of
the average error, as follows :

learning_speed = 10 average_errcr + 1 (3.21)
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4. The Error ‘Back Propagation Algorithm

»

The error back propagation algorithm is also called the
multi-layer perceptron (Rumelhart & al.,, 1886). It is a simple
extension of the perceptron to several layers, and its learning rule
looks similar to the learning procedure of the perceptron (see
section 2.2.2)(Rosenblatt 1959, 1962) and its variation (Widrow
and Hoff, 1960). As outlined in section 2.2.2 (and shown by the
pessimistic evaluatio’ of Minsky and Papert, 1969), the single
layer perceptron is limited to learning linearly separable
functions, which means that most interesting functions, including
such a simple one as the XOR function, cannot be learnt by the
perceptron. If we add only one "hidden unit" in addition to the two
input units and the output unit, and we set its bias and its
connection weights from the input units so that it computes the
AND function of the inputs, .then the network will be able to learn
the other weights, using the perceptron learning procedure, to
compute the XOR function. :

The "hard learning" problem is to decide how to set the
weights and connections of the hidden units. This is what the
Boltztgann machine algorithm and the error back propagation
algomtry to do. For the error back propagation model, like for
. the perceptron, the units are deterministic. ~They compute their
output in function of the weighted sum of their inputs. Like in the
model of Widrow and Hoff (1960),; the unit\sg_,c‘orhpute a continuous
(not binary) output, and the learning préced&»re changes the weights
s0 as to implement a gradient descent in a cost or error measure.

Although the output units give out a continuous value, the multi-

layer perceptron can be used as a classifier, with each output unit
standing for a class. The selected class is the one corresponding
to the output unit with maximum -value.
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4.1 Description and Derivation

/ 5

Let us consider the basic model : it is organized in

feedforward layers. There is one input layer, a certain number of
hidden layers and an output layer, as shown in figure 4.1. The

®

Q
outputs of units at a layer only go to the input of units on the layer
immediately "above”. Each unit sends its output to all the units in
the superior layer. -

/

Output Layer |}
/
7

/

/

Hidden Layer 2

Hidden Layer 1

input Layer

-~

-

" Figure 4.1 : Feedfprward Layers of the Error Back Propagation

Algorithm.




Each unit Y'i computes its output in function of the output of
units Yj on the previous layer as follows :

1

Xi = zunits j on the layer below unit i Wij Yj ‘ (4.1)
Yi=f(X) ° : (4.2)

where Wjj is the weight of the connection from the unit j on the
previous Iayegto unit i. The function f() is called the activation
function. Eor the perceptron it is a threshold (or step) function so
that f(x) is 1 if x>0 and 0 otherwise. In the case of the error back
propagation algorithm a semilinear activation function will be
necessary (as defined in Rumelhart, Hinton & Williams 1986) : one
which is nondecreasing and differentiable.

Let us define the following squared error measure, when
pattern p is presented :

Ep =12 x Zl (targety; - ij)2 (4.3')

where targety; is the desired value for the output unit Y; ( Yp; is
the actual output), when pattern p is presented. Let us also define

the global error as:

E=2pE . (4.4)

To implement gradient descenf'in‘ E, we want AW; to be
proportional-to - dE / dWj; . Using the chain rule, we have :
dEp / Wi = (Ep / 9Xpj)(Xpj / Wj) T (4.5)

where Xp; is the weighted sum of the mputs of unit 1, as defined in

. definition 4.1, at the presentation of pattern p. = Substituting

definition 4.1 in equation 4.5, we obtain
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OXpj I Wji = A/aWj ( Zx Wik Ypk ) = Ypi (4.6)

For the first factor of equation 4.5, let us define the error. measure
at unit j, when pattern p is presented :

Dpj = - 9E, / Xy S * (4.7)

Thus we can write . : 4

‘ - aEp / aWji“= Dpj Ypi - (4.8)

§

and to implement gradient descent in E we want to set the change
in weights as follows :

ApWji = learning_rate x Dy x Yp; (4.9)
Let us now determine the value of Dy  Applying the chain rule :

Dpj = - (@Ep / 3Yp)) (3Ypj/ 9Xpy) (4.10)

The second factor is simply

dYpj / oXpj = F(X55) - (4.11)
the derivative of \the activation function. For the first factor, let
us 'first consider }%e case of output units. By differentiating the
definition of E, (4.3) and assuming that there are no connections

from an output unit to another output unit, we obtain :
A

~

IEp / Yy = - (targety-Yp) o (412
thus, .
' Dpjﬁ=’f'(xp}) (targetpj-ij) . ‘ o (4.13)

~_
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for units on the output layer. For hidden units let us again use. the
chain rule to write Dp; in function of Dy of units k in the layer

above unit j :
-
meits k on the layer above unit j (éEp ! 9Xpk) (90X / dYpy)
= Zunits k on tlhe layer above unit j (aEp / Bka) a/aij (zl Wi Ypi)

= zunits k on the.layer above unit j (aEp / aka) ij *

= - Zunits k on the Iayer above unit j Dpk ij (4.14)
thus for hidden units :

~Dpj = f'(ij) Zunits k on the layer above unit j Dpk ij (4.13)

To summarize, definitions (4.1),(4.2),(4.9),(4.13) and (4.15) define
how to set the output of units as well as how to modify the
weights to implement a gradient descent~in the squared error
measure defined in (4.3) and (4.4). For each pattern, the input
pattern is presented to the input units and derived signals are
propagated in a feedforward pass towards the output units. In a
second phase the error is computed at the output units and
propagated with the error signals.(Dj) in a backward pass towards
the input units. In both cases, the weights are used in the
propagation. Hence the name "error back propagation" algorithm.

4.2 Parameters and Implementation for the Experi:ments
» \ !

Let us now determine the activation function f(x). Since its

. derivative f'(x) .is to be computed, the derivative of the activation

function must exist. Thus the step function of the perceptron is not
appropriate bec;Bie it is discontinuous.- The function suggested by
the authors of the algorithm, and found in many other algorithms,

| h’L



(such as the- Boltzmann Machine algorithm) is the sigmoid (or
logistic ) function : :

Yi=f(X)=1/(1+exp(- X)) (4.16)
and its dérivative can be computed and simplified as follows:

aY; /ax = exp( X;) 1 (1+exp(- X))2 _
f'(x,) Y (1-Y) (4.17)

thus the error signal D; can be computed as follows :
For output units :

= (targetl--Yi) Yi (1 - Yj) (4.18)

For hidden units :

Dj = Yj (1- Yj) Zunits k on the layer above unit j Dk ij - (4.19)

The activation function f(X;) does not permit a value of 0 or
1 for the output Y; unless Xj is infinite, i.e.—some—weights—are——
infinite. Thus desired output values should be assigned-a value
close but not equal to 1 and 0, for example 0.9 and 0.1. °

A poss:ble additional feature of the activation function is a
bias or threshold to the weighted sum of inputs : v °

-~

Xj = Bj+ Z units i in layer below unit ] Wii Yi (4.20)

In that case, that threshold can be learnt like any other weights by

assuming that it is a weight from a unit/Nhich\ is always set to 1.
\

Note that because all Uunits in the last hidden layer are
connected”to all units of the output layer, and because error signal

.are propagated in proportion to the weights, if the weights are
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initialized at 0, all weights would adapt in the same way. This
problem is simply solved by rting the learnin

" small randgm weights.

If the learning rate is sufficiently small, the network will
cohverge to a minimum of the error measure in weight space,
however, this may be very slow. On the other hand if the learning
fate is too jém¥e, the network might oscillate when it appfoaches a
strong curve in the weight space landscape. A way to get fast
convergence (i’®. using a high learning rate) without leading to
oscillations is to include a momentum term (Rumelhart, Hinton &
Williams, 1986) in the learning rule: '

AWt+1) = a x AWji(t) + learning_rate x Djx X; (4.21)

where a is a constant which determihes the influence of past
movements .of W; on-the current change; it was set to 0.95 in the.
experiments described in chapter 6. This procedure is equivalent to
applying a low pass frequency filter to the landscape of the weight
space, thus filtering out High curvatures which might have caused

rate was too large. ' ,
Since this network is updated deterministically and it is
. *not desirable that the ‘network learns the’exact input/output pairs
by rote, some noise was introduced at the input units. A uniform
random variable in U[-0.05,0.05] was added to-the input values.’
Comparing results with or without the input noise, slightly better
performance was observed when the inputs are noisy (actually best
results are the same, but without no‘is»e, the error on the test set
gets ‘worse with mpre learning, as expécted).

The coding of the input information is done like for the
Boltzmann Machine algorithm and is explained in section 6.2 on
coding. ‘

‘A

—very-slow—progress—of ‘convergence, or. oscillations if the learning
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'

initialize system, . training = TRUE
" :
select next speech sample

and code it into input units

v

e

forward pass of the nefwork (update state of units)

'

measure error at output units

1

backward pass i.e. update weights

1f one cycle of

compile error.

2 samples is completed

——

1f-

start new cycle with training -
set : training = TRUE e

start new cycle with testing

training

yes .

. <
set : training = FALSE

¥ -
Figure 4.2 : Flow chart diggram of high level structure of implemented
back propagation algorithm. The infinite loop is stopped when the error

on the training set doesn't improve anymore (it oscillates,.though).
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, ° The program, which implement‘s the Error Back Propagation
o : algorithm is much/ simpler and shorter than the one for the
Boltzmann chipe: It ,also runs faster since the output ‘i
- corresponding to an input vector is obtained in one pass’ over .the w
network (there is no relaxation). It was written in C on a VAX -
8650 running under VMS.
~—
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5. [Essential Problems in Automatic Speech
Recognition “

Speech perception is different from the other areas pf
perceptual research because of its role in language, theught and
communication. Furthermore, the sequential nature of spegch
makes the problem of automatic speech recognition (ASR)
distinctive from the statickrecogni'tion of visual patterns.

Hum‘ansﬁ, are able. with little conscious effort to recognize
speech of poor quality, distorted by noise or even obliterated. This
is due to a great amount of redundancy and structure in the speech

signal. The semantic, syntactic, lexical and phonological
constraints enable us to recognize continuous speech, even with
high distortions and noise. \ "\
!
. C
ORI . ‘L

A central problem in speech perception is the fact that éach
phoneme does not correspond to an invariant set of acoustic
features in a particular stretch of sound, for all contexts (problem
of the lack of acoustic-phonetic invariance).

Because of coarticulation, stretches of sound associated to
different. phonemes overlap and the acoustic description of a

phoneme depends on the surrounding phonetic context.  This

phenomenon also results in a great difficulty to segment the
speech signal into separate phonemic or word units. It is possible
to segmentpthe speech signal into acoustic units, but they won't
necessarily correspond to linguistic segments (phonemes).

48




5.1 Physiology of the Human Auditory System-

5.11 The Ear

+

The auditory system comprises the auditory nervous system
and the ear, itself divided into outer, middle and inner ear. The
sound goes through the external auditory canal and makes the
tympanic membrane vibrate. These vibrations from the outer ear
are transmitted to the inner ear through the three small bones of
the middle ear. Sound is transmitted through fluid in the inner ear:
the fluid in the cochlea is set into vibratory motion. Sensory cells
are located. on the organ of C°orti, inside the snail shaped cochlea.
The vibrations of the basilar membrane in the cochlea induce an
excitation of the sensory neurons (hair cells). The neural code
which is generated is modified on its ascending path to the brain.
The basilar membrane is thus the interface between the external
acoustic environment and the internal neural representation.
Experiments showed that each point along, the basilar membrane
vibrates maximally at one specific stimulus frequency, and this
vibration decreases gradually for higher or lower frequencies.
Similarly, each sensory neuron‘is maximally excited at & particular
frequency, called characteristic frequency. However, sensory
neurons display a finer frequency &electivity (resolution) than the
basilar membrane. :

5.1.2 Auditory Nervous System

There are two typens of nerve fibers involved in the auditory
nervous system. Information travels from the cochlear membrane
to the brain through the afferent fibers and from the brain towards
the ear through the efferent fibers. The efferent fibers are
probably used to modulate the incoming signal, using past

3
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information, to enhance variations in the sound rather than steady-
state signals.

A nerve fiber in the ascending pathway responds to sounds
within a certain frequency range. That range gradually increases

" with increasing intensity of the signal. In the ascending Bathway,

nerve fibers are arranged according to a tonotoplc organization, i.e.
fibers close to each other have close characteristic frequency and
characteristic frequency regular!y increases with distance along g
cross section of the nerve. A similar organization is found in the
auditory cortex, although the sound is not coded like at the sensory
neurons. This frequency coding can thus be called a place code.
The auditory system performs a kind of spectral "analysis of the
incoming sounds, although the output of each fiber is not a linear
function of input power. However, there is also a temporal coding
of low frequencies. Indeed, the discharge pattern of neurons on the
auditory ascending pathway ig phase-locked (synchronized) to the
periodicity of low frequency _gounds (below 4-5 kHz). Researchers
in the -field of auditory physiology presently assume that the
auditory system uses both temporal and spectral analysis in
parallel, with one representation more important_ for the analysis
of certain sounds and the other more important for other types of
sounds.

The ascending auditory nervous system modifies 'the
information gathered at the receptors, with .a -complexity
increasing as one moves towards the auditory cortex. A certain
number of nerve fibers (efferent system) bring feedback from the
auditory cortex to the ascending neural pathways, and from these
pathways to the neural receptors. It is not known today how the
signal emitted for the case of complex sounds at the sensory
neurons is transformed as it travels to the cortex. It is thus not
possible to predict, except for. simplé steady-state sounds, what
will be the response at the end of the ascending nervous pathway.

R
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From Seneff,

- Model of auditory sensitivity.

Each curve represents the frequency-response O
bank modeling the auditory nerve sensitivity.
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esponse curve to single tones can be experimentally determined.
hese curves are not symmetrical in “frequency, especially for
c\waracteristic frequencies above 2 kHz. The high frequency skirt
off these frequency threshold curves is steeper than the low
frequency skirt. The width of these curves (measured at a certain
energy level below the threshold, such as 10 dB) is approXimately
cc;{:stant for characteristic frequencies less than 500 Hz to || kHz.

For individual neurons of the \tgt‘ory pathway, a frequency

Above 1 kHz, the bandwidths increase about linearly with
frequencies (Moller, 1983). This can be modeled by indexed filter
ba\ ks with a characteristic frequency that is a logarithmic
function of the index (number) of the filter bank, as shown on
figure 5.1 from (Seneff, 86), (see section 6.1 on ,the non-linear

models).

|

1

5.2 rut"ojmatic Speech Recognition

e ' -

/ Today's ASR real-time application systems impose serious
cqns&raints ‘'on the end-user, for example, a limited vocabulary, a
nois/e-frée environment, a speaker-dependant recognition (and
trai,hing), or the obligation to pause - between words. These
Iinf/itations reflect the inadequacy of current theoretical models of

' s/pfeech perception,

/ \
5.2.1 Pattern Classification

The simplest (and still used today) method in ASR relies on
pattern classification and Igmgwlaxg-mgtghing. The speech signal
is first preproc’essed to be described by a certain pattern, or a
vector of features. In the training phase the descripticgs
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(templates) for the set of training ,samE}s representing the
different classes (e.g. words, or phonemes) to be recognifed are
stored in memory. For each c¢lass, one or more ‘'average’ patterns
are computed, i.e. clusters are formed in feature space (with

- possibly several clusters per class), and an average pattern is

computed for each cluster. In the recognition phase, the input
feature vector (template) is compared to all the stored templates.
The class of the stored template which is at the shorte’st distance
in feature space from the input template is selectgd. '

A basic requirement of this method is the proper selection
of invariant features describing each speech sample, which may be
difficult. - Indeed, the acoustic signal is very variable (of variable
duration, noisy, depending on speaker, context, position of word in
the sentence, etc...). '

A popular classifica?cion method in feature space is the
linear_discriminant function (discriminative distance). Given d
classes, each class C; is assoctated with a discriminant function
D; such that: ' ‘

(Ci 5 X) iff (D«(X)>Dy(X)) Vv j=i, (5.1)
whfre X is the acoustic .feature vector (xq,x2,...xs), and

Di(X) =W,;. X - - .- (5.2)
where X'=(xy,X2,...,X;,1). The b_bundaries between classes are thus
defined by hyperplanes in the feature space. The use of X' instead
of X (with thé addition of a fixed element, 1, at the end of the
vector) is ‘to permit these hyperplanes to avoid going through the
origin. '

This linear discriminant function exactly matches the
description of the perceptron. The additional element in W; can be

seen as a bias :

J
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Di(X) = Xici to 1 Wi Xi + Wiyt ~ (5.3)

As a consequence, the linear discriminant function will have the

same limitation as the perceptron, i.e. the inability to classify

sets of vectors which are not linearly separable.

v

5.2.2 Fast Fourier Transform

_-Spectral analysis is very often used in the preliminary
phases of sig‘nal preprocessing. According to the Fourier Theorem,
any periodic signal {or signal of finite duration) can be separated
into the sum of an infinite but discrete set of sinusoid signals of
various amplitudes. A signal which has a limited frequency
bandwidth can be sampled to obtain a discrete sequence without
losing any information. The signal can be represented as a finite
sum of discrete sinusoids : the discrete Fourier transform. A time
sequence of N consecutive real numbers can be mapped to a
spectral description, made of the amplitudes of N discrete
frequency components. An algorithm exists to compute the
discrete Fourier transform in time O(NlogN) : the Fast Fourier
Transform (FFT) algorithm. In general the FFT is computed fqr
subsequenbes of the discrete time signal, to obtain a sequence of
discrete spectral descriptions of the signal.

It ‘must be remarked that the choice of the time window to
be analyzed through the FFT is very important. A short window
provides a good time resolution but a poor frequency resolution (N
small). On the other hand, a very large window (e.g. the whole
speéch signal) provides very precise spectral-information- and no
temporal information at all. This trade-off can be exprﬁssed in the
following uncertainty relation \\

AT x AF = ¢ where ¢ is a constant close to 1 (5.4)
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where AT and AF are the time and frequency resolutions.

In speech recognition, this window will be chosen according to
knowledge of the necessary time and frequency resolution for the
perception of speech, and of- our khowledge of auditory physiology
(in general around 10 ms windows are used).

5.2.3 Dynamic Time Warping

As was mentioned earlier in the introduction of this chapter
and in section 5.2.1, different pronunciations of the same sound
may result in different temporal distortions : it will not be
possible to match exactly the two sequences of patterns. We can
imagine the signal as a rubber band with some parts more
stretched than others depending on the pronunciation. It was
observed that the rate of speech variations mainly affects: the
steady-state parts (e.g. vowels, . fricatives) of the signal.

The Dynamic Time Wérping (DTW) method of measuring
'distance’ between two different templates is based on a dynamic
programming algorithm. Each template consists of a sequence of
vectors. The distance between every vector of one template and
the second template are computed and placed in a matrix. For
example if we compute this matrix for the comparison of a
template . vs itself, we find a null diagonal. The objective of the
algorithm is to find a path in that matrix, (in the same dir?ction as
that diagonal, starting and finishing at the same corners of the
distance matrix) that will associate each vector of the first
template with one or more of the second one. At each point in the
path, the local distances are added. ‘The desired path is that one
which minimizes the total distance. The path is constrained to
obey chronological order. The resulting to’gal distance is used as

o




the distance measure between the two templates, and is used for
the classmcatlon decision.

5.2.4 Hidden Markov Models

ad

A Markov chain is a stochastic process descnbmg a
sequence of trials in which

1) the outcom\e of~each trial belongs to a finite set of states
(81,82,...Sm),

2) the outcome of any trial only depends x}pon‘the outcome of the
preceding trial : to each pair of states S; and S; is asso_ciated a
probability pj that S; will occur immediately after S;.

In a Hidden Markov Model (HMM), the states are, as the name
suggests, hidden. One can only make.an observation, which is
generated by a random function of the-current hidden state. Then
according to the transition probabilities pj, the underlying Markov
chain changes states. The observer observes the output (e.g.
spectra) ak when the process is in state S with probability

q1k(sjvak)

In 2 Continuous Parameters Markov Model (cf. De Mori, Merlo,

~ & Palakal, (1986) with the same data and spectral lines technique

as the experiments of this thesis, section 6.4), the observation

function * q(S;,S;,yx) is the probability that the spectral line yg is
observed in the transition from the state S; to the state S;. ‘




One of the main advantages of Hidden Markov Models (HMM)
for ASR ‘s that they take into account the sequential nature of the
speech ‘signalwand can include the time warping process (see

section 5.2.3) and learn a parametric and statistic description of

the speech through the presentation of a large set of examples.

The most popular training algorithms are the Backward-
Forward (Baum, 1972) and the Viterbi (Viterbi, 1967) algorithms.
However, HMMs can be used only after the chosen speech process
has been modeled with a staté topology, allowable transitions and
this means including explicit knowledge on speech production and
recognit‘ion in the HMMs. In fact, each class to be recognized must
be modeled differently. - . .
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6. Experiments in Automatic Speech “Recognition
Performed with Connectionist Models

Connectionist models were applied to perform speaker-
independent recognition of place of articulation for vowels.
Although speaker normalization is a difficult task, it is known
from speech analysis that sonorant portions of speech
spectrograms exhibit similar images when different speakers
pronounce the same sound or the same sequence of sounds. The
experiments reported in “this thesis investigate the’ apblication of
neural network models for performing speaker normalization, using
spectral lines- characterized by their frequency and amplitude to
represent the speech samples. ’ |

Sounds are classified into three categories according to
their place of articulation in the mouth : back positio‘n,»central
position or front position. The speech data consisted of 144
speech samp|e§, 72 used for the tfhining of the networks, 72 used
only for testing. . These samples were extracted from the
continuous speech of 38 speékers (24 males and 14 females)

pronouncing connectedly spoken letters and digits.  Details of

segmentation can be found in De Mori, Laface, & Mong (1985).

Static ‘representgtion‘of speech data is based on spectral
lines, . already used by Merlo, De Mori & Palakal! (1986) to perform
speech recognition tasks. The original time signal is sampled at
20 kHz over 12 bits and its power spectrum (FFT every 10 ms) and
zero crossings are computed. This information is used to identify
the sonorant portions of the signal that exhibit resonances: This
segmentation is based on rough spectral features that eliminate
segments containing frication noise, silences and buzz-bars. The
remaining spectrogram (time- frequency-energy pattern) is sent to
the spectral line extraction program.

£
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letter Z half the energy of digit O.

The r;etyvorks «consist of a: certain number of
1) input nodes, coding the energy/frequency information from the
spectral lines, - !
2} a certain number of hidden nodes that ‘learn through examples an -
internal -representation of the input/output environment and
3) three output nodes whose activation level represent the three
classes of vowels (back, center or front position). The data was

'initially classified (labeled) using an afgorithm (De Mori, Laface,

Mong, 1985). I .

6.1 Spectral Lines Extraction

¢

To extract the spectral lines, the spectrogram is tredted as =
an image. This image is processed by a thinning and a ’
skeletonization algorithms, and then by a line tracing algorithm.

These algorithms are described in Palakal & De Mori (1985).
Segments were extracted where spectral lines were quasi
stationary, allowing the use of simplé stafic data as the .input to

_the connectionist networks, rather than time-varying sequences of

descriptions. The spectral lines extraction pragram was provided

. by Mathew Palakal (c¢f. Palakal; De Mori 1985).

The thinning algorithm used |s the Safe Point” Thinning
Algorithm, described in Naccache & Shmghal (1984). This algorithm

.was ‘chosen because connecnwty of lines are maintained ,by

keeping the points at the junctions, and excess erosion is not
allowed. Figure 6.1 shows the spectrogram for a pronunciation. of
the letter 'a', before the spectral line extraction algorithm is .
applied. Rngure 6.2 shows the spectral lines extracted frome the
spectrogram “of the letter 'a’.  Time increases on the vertical axis,
with each step corresponding to 10 msec. Frequency increases on-
the horizontal axis; energy is coded by letters and digits. For
example the letter A represents half the energy| of the letter B, the
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The Line Tracing Algorithm (ALTRACE) is applied to the
result of the thinning algorithm. This-step discards all scattered
points, keeps all the lines and smooths the pattern. .The algorithm
retains collinearity, continuity, curvelinearity as well as other
properties present in the pattern. - .

. The output of the Spectral Line Extraction algorithm .is a
description of n lines, each with its energy and frequency. The
first line is called a base line and is selected as the line of highest
energy in the low frequencies (< 1 kHz). The others may be
described relative to the base (or anchor) line. The difference
‘between their frequency and energy. and those of the anchor line are
provided by the spectral lines extraction program. The base line
frequency is absolute and its energy is absolute but was not
-provided to the network.. Thus the network received an energy-
normalized description of the spectral lines. |

6.2 Coding

Given the set of lines, each with its energy/frequency values,

con"ti,nuous. or binary activation values were assigned to the input
nodes of the neural nets. The way this coding is done has an impact
on the efficiency of the network (error rate) as well as on the
efficiency of the learning (number of learning cycles necessary). |t
also has an impact on the number of input nodes, and thus on the
speed of the simulation.

The input nodes are first assignedo to frequency intervals,
based on a model of auditory sensitivity (see figure 5.1 in chapter
5). One node or a group of input nodes represent a range of
frequencies. The distribution of ffequencies was inspired from an
approximation of the ear model : under 1 kHz (low frequencies), the
characteristic frequencies grow linearly as follows  : (




frequency_index = INT[(frequency - minimum_frequency) x

low_freq_index_range/low_freq_range] (6.1)
where INT[x] represents the integer part of the real number x.
Above 1 kHz characteristic frequencies’ grow logarithmically (so
that higher characteristic frequencies are farther apart and their
bandwidth is wider) : j

- frequency_index = INT[c1 x log(frequency - 1000) -c2] (6.2)

where ¢1 and c¢2 are chosen to make the minimum andmmaxirhum
high frequencies fall on the boundaries of the high frequency
indices. Thus for high frequencies, the frequency index (on the
grid) is a logarithmic function of the frequency. .

Unit 1
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Unit 6
Unit7
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unit 10

S LA L LT LA
SRR S U, ST

1
O0OomoooaSN

A

Figure 6.3 : Multi-level energy coding. Relative (w.r.t. base line
which has energy 1.0) energy range represented by each of ten units
coding a particular frequency range.

s

.

2

9y

2

Y
JUTRS

C
g2

.,‘ o
o R AR



To represent energy, several nodes were used within each
frequency range, each representing a certain energy level (or
range). Thus the input. nodes can be seen as points on a 2-
dimensional grid of frequency and energy (see figure 6.4). The

© distribution of energy was chosen empirically (see figure 6.3) so

as to make the number of samples falling in each range about equal.
A typical number of ranges chosen was 10. Better results are
obtained with this mul;i-fe&el coding of the energy than with only
one node per frequency range, coding the energy continuously
between 0 and 1. The system converges slower to a solution and
makes a larger error, as shown in table I. Note that in those
experiments with only one node per frequency range, more
frequency resolution as well as more hidden units were provided,
so as to obtain a similar number of connections in the network.
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Figure 6.4 : Coarse coding (neighbors get activated), showing base
line units, low frequency units and high frequertcy units.

In addition to exciting one node for each energy/frequency
input, neighboring nodes also received an input (with intensity
decreasing with distance on the 2-dimensional energy/frequency
grid).- Thus for each input spectral line, there were 12 additiopal
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nodes on the grid which were activated, as shown on figure 6.4.
This strategy called coarse coding (or neighborhood code, see
Prager, Harrison & Fallside (1986) for a discussion about it) gives
much better results than the simple excitation of one
energy/frequency node per spectral line (see table 1). One should
recall from section 5.1 abeut the human auditory system that nerve
fibers are not only excited for a small "individual" frequency range
but also display some activity gdecreasing for farther neighbors)

when their neighbofs are active. Indeed, the frequency response
(threshold curve) of adjacent fibers overlap.

The ener_gy level coded into the ‘network is always relative
to the energy of the base line, and the network does not receive
information about the absolute energy of the base line. In facf a
separate set of nodes (coding only for low frequencies, and no
energy levels) is provided to represent the base line. Typically
there are ‘

14

- 15 nodes to represent (low frequencies) the base line,

- 15 (frequencies) x 10 (energy levels) = 150 nodes to represent
low frequencies and )

- 15 {frequencies) x 10 (energy levels) = 150 nodes to represent
high frequencies. .

This makes a total of 315 input nodes, as shown on figure 6.4.




Boltzmann Error Back
Machine Propagation

Experiment 1

{ coarse coding, multi-
level energy coding, and
relative frequencles)

4.2% 6.9% ,

Experiment 2 )
As before but . '9.7% 9.7%
No Coarse coding

Experiment 3 )
No muiti-level 8.3% 15.3% -
energy coding

Experiment 4
Absolute instead
of relative
frequencies

. 5.6% 6.9%

TABLE I : Error on Test Set for Various Coding Schemes

-The output”value of nodes on the input layer is continuous
(between O and 1) for the error back propagation algorithm.
However, the Boltzmann machine units normally have binary inputs
and outputs. To code a continuous value at the output of the input
layer units, the following stratagem was employed. Since the

- output of Boltzmann machine unit k is chosen to be 1 (instead of 0)

with the continuous probability py,
pk=1/(1+exp (-AE/T) (3.3)

the desired continuous input can be assigned to pyx. Afterwards the
unit will choose a sequence of 1's and 0's each according .o
p’erability Pk, in the relaxation process. This procedure will be
effective since the Boltzmann machine operates with a long
relaxation cycle (often 10 to 50 cycles in our experiments). This
method also has the advantage of automatically providing some
noise to the input (something that had to be implemented with the
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error back propagation algorithm, see section 4.3). Note that
small noise in the input is desirable because the training consists
in repeatedly presenting the same set of examples, rather than
presentipg new examples each time,

A

6.3 Experimental Results

$ \ T

The .experi'ments described in this chapter show that the
error back propagation algorithm was faster but less accurate than
the Boltzmann machine algorithm. The results obtained with the
two methods are shown in table II. Table II shows a comparison of
speeds for the best performances of the two algorithms. These

results were obtained with 2x200=400 hidden nodes (2 hidden |

layers, 103600 connections) for the error back propagation
algorithm, and 100 hidden nodes (75490 connections) for the
Boltzmann machine *algorithm. The running time shown in table II
is for the presentation of one speech sample (from the test set), on
the VAX 8650 CPU.

Boltzmann Error Back =
Machine Propagation
Speed
(CPU time for 3 sec. 0.21 sec.
one sar_nple)
- N
rror on o o
Test Set 4.2 % . | 6.9%
/

TABLE II: Speed and Best Results fof the 2 Algorithms.
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The program measured the error on the training set and
repeated the presentation of the set of examples until this error
reached 0%. At this point the test.set was preserted and the error
measured. Afterwards one can still present training examples. * For
the Boltzmann machine (stochastic) this may result in a few errors
that slightly modify the weights. After the error rate "again
reached 0% the program presented the test set to the neural
network. The error on the test set was thus slightly oscillating
from one presentation of the test set to another (after some more
learning, with the training set). :

Similarly for the error back propagation, there continues to
be learning after 0% error on the training set has been measured,
; since what drives the learning is the difference between target and
actual continuous outputs (whereas a successful output is observed
if the correct class has a larger output value than the others).

Typically, the Boltzmann machine converged to 0% error on
the training set after 15 to 20 presentations of the training set.
The shape of the learning curve (error rate vs number of
presentations of the training set) is shown in figUre 6.5.
Afterwards, further training for a certain number of presentations
(about 10) could provide slightly better results on the testing set.
The error back propagation network converged to 0% error on the
training set after about 10 presentations of the training set.

~
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Figure 6.5 : LEARNING ; Error Rate for the Training Setvs Number of

Full Learning Gycles,”for the BMA. Note ‘that the error stayed at
1.4% until the 20th cycle, when it reached 0% error.
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6.4 Comparison with Results Using Hidden Markov Mod%ls \

Experiments were performed with similar data, using the

more traditional Hidden Markov Models (using the  Forward-
Backward algorithm, Bahl, Jelinek and Mercer 1983), and using the

‘'same spectral line extraction technique to preprocess the speech
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signal. These results were reported in (Merlo,_De Mori & Palakal,
1986), (cf. table III)..

o™~
Exactly the same algorithm was used’'to compute spectral
lines information for vowels (sonorant sounds) extracted from
random sequences of connectedly spoken letters and digits. The
- training set consisted 14 female and 24 male speakers. The test
- set consisted of 9 new female and 9 new male speakers. The error
_ 'was consistently different for the three classes of output
k (whereas with the connectionist models differences were observed
but not consistently from experiment to experiment).
N h - /
Place of | HMM alg.  |HMM alg. + rules
Back 5% 3% o error on
‘.Central b - 2% training set
. Front 2% " 1%
average - 3% A
Back | 16% 6% error on
Central 2% 2% ‘
Front o % " test set .
average 7.3% 4%
TABLE III : Comparison with HMM Algdrithrh, Same Data
Note that jn addition to the Hidden Markov Model procedure,
some knowledge about the expected frequencies of spectral lines
was used to improve performance. If the a-priori probabilities
computed by the Hidden Markov Model procedure for the different
classes were close, rules were executed to take the decision.
. However this usage of empirical rules makes the method less
- generalizable and not automatic in nature, since the rules were
@ defined in function of the observed weaknesses of the HMM

. algorithm with the speech data.
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~ With the experiments- conducted using the connectionist
models it was always possible to reach 0% error on the training
set after sufficient learning. This was in fact the criteria to start

measuring error on the testing set. This suggests that much better

results on the testing set could be obtained with the connectionist

models if a much larger training set was used. Indeed, with a very
large training test, the testing samples would be very close to
samples which would have been already seen in the training set.
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7. Direction for Futuaré Work

i

7.1 Larger Neural Nets and Integration of Several Modules

Good results were obtained with neural nets of a size of a
few tens of thousands of connections to solve a qualitatively

difficult problem such as speaker normalization; however, they

are of a limited bearing (i.e. classification of sonorant sounds in
three categories). Wil it be possible to exXtend the size of these
models for pnore complex problems such as the recognition of
phonemes in non-segmented continuous speech signal ? l.e. how
will their-size and rate of learning grow with the complexity of
the problem? Will their performance (as measured by the error

rate) get better or worse?

To answer these questions, a primary a{(enue of research is

L]

"the consideration of the time dimension of the speech signal, since

it is necessary to consider time when dealing with speech units
longer than the vowel. In the experiments reported in this thesis, a
static description of the sounds analyzed was consjdered . For a
true automatic speech recognition system, the sequential nature of
speech will obviously have to be considered in the design of a
connectionist model. This’ question is treated in more details in”

section 7.2.

<

For the performance of the networks, better recognition
rates should be expected in large systems -that will take into'
account the different contexts (acoustic, phonological, lexical and
semantic). One should recall (chapter 5) that humans perform
better when recognizing a phoneme when it is in a word rather than
isolated, and perform better to recognize a word when it is in a
sentence rather than when it is presented alone. '
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If the length of the training phase of .connéctionist models
appears to grow too much for larger problems, it will be possible ‘ %
to consider a solution that involves different. modules that can be '
frained separately {(or hierarchically) for subproblems of the global

. ASR task. For instance, the network developed.in the experiments
"+ described in"this thesis could constitute one such module. o

7

7.2 Incorporatmg the Time Dlmensmn of Speéch/in«
Connectlomst Models - - ‘ ‘ ce e

Attempts at segmenting the speech signal:by aco'usticaliqy

" defined criteria have not, proven to' be very successful, gspecially
for connected 'speech. On thg other hand, the speech signal is

gequential in nature and the human auditory system uses parts of it

to recognize other parts. The determination of the’ phonetic

classnfucatuon of -an «acoustic segment depends on the acoustic,

segments preceding and following it. Psychelinguistic expenments

‘have proven (e.g. see in Sawusch, 1986) that we use not only the.

left context -but also the right context inm the identification of a

phoneme or of even of & word. '

. Consequently, future research should tackle the question of
how to represent and code into connectionist medels the time
dimension and the various .acoustic, phonetic, cal, syntactic and
semantic contexts that influefice thegpercdeption of a small”
segment of speech. ’ :

o

i _ 7.2.1 Window in the ‘Input o

, , The ‘following solution was proposed by Sejnowski with
0 .~ NETTalk (Sejnowski & al., 1986). He uses the error back .
- propagation algorithm to convert written English text_into spgééch.

LT e
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The input text is presented to the neta_work through a window that -
shows not only the current input vector to be processed but also a
certain number of precedent and subsequent input vectors (see
figure 7.1). They constitute the left and right context. Th,e‘neural
net was trained to generate the correct sound- (or 'phoneme)
associated with each letter in the different possible contexts

(other letters around it). The same architecture was used by - ’

(Bourlard & Wellekens, 1987) for speech recognition, to map
acoustic veciors to phonémes. The algorithm was applied to a
speech sentence with a known phonemic segmentation. This can be
a weakness of the previous approach, since the training data has to
be phonemically segmented (because the neural net néeds the
target output when it is learning).
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Figure 7.1 :
(Sejnowski- & al.,

N

-A drawback of

Window on the input stream Here as used for NETtalk
1986) to map text to speech. '

‘that the cohtext ie

this method is

dehberately chosen by the user and this imposes a flxed limit on

the context.

For example

in the above_mentioned example
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(Bourlard & Welleken, 1987), the ne‘work uses only acoustic
context.

Another example of a window solution is the TRACE model
(McClelland & Elman, 1986). It consists of a hierarchical network,
organized in three levels for features, phonemes and words. In this
model of local representation, each unit represents a hypothesis
about a particular feature, phoneme or word, at a particular time
relative to the beginning of the utterance. Old portions of the input
continue to ‘be processed as.new input arrives. This allows right
(és well as left) context to influence the recognition of speech.
Connections are bidirectional and excitatory for units of different
layers which are mutually consistent, inhibitory for units on the

same layer which are inconsistent. Words and phgneme units are

centered every three time-slices, thus adjacent u\ﬂts overlap.
There are several features, organized in banks, with 9 units to
represent O levels of activation of these features, repeated’{or

every time' slice. Input is presented sequentially at the feature

level.

/

7.2.2 Recurrent Links with Delays

Another solution is to incorporate the contextual ‘effects
~and time integration in the network itself by modifying the way
each unit operates. For example, the connections between units
can irﬁpose a delay (which is neurally plausible). Eventually, these
delays can be modified with a learning rule. The same effect can
be obtained by permitting recurrent links, since each unit takes at
least one time unit to compute its output from its input. The
Boltzmann machine has recurrent links, but the state (output value
of all nodes, including hidden nodes) of the network is initialized

for each input frame, in order to perform the simulated annealing
procedure. '



Watrous and Shastri proposed a generalization of the multi-
_layer perceptron and error back propagation algorithm which,
admits recurrent links and delays (Watrous & Shastri, 1986). Their
model includes D .connections with D different delays (0 to D-1)
where there was only one connection in the basic multi-layer
perceptron : '

. |
) = X8 Wig Yjit-d) - (7.1)

where Y; is computed as before (definition (4.16) in chapter 4). )
The weight change rule is modified as follows :
AWjjq = constant x Xg Dj(t-s) Yi(t-s-d) B (7.2)

where Dj(t-s) is the error signal at time t-s for unit j, given by :

Zak Wia Diltea) 1) , | (7.3)

for -hidden units, where f(x) is-the differential of f(x), as-in
equation (4.17) of chapter 4. For output units,

Djt) = (Yj(t)-target;(t) f;(t). c (7.4)
7.2.3 Context Feedback

This method assumes that the speech signal- can be
considered as the manifestation of an underlying Markov process,
with the property that its state at time t dep?ds only on the state
at time (t-1) and new information (new. speec frame)

Sit+1) = F ( S(), I(t) ) | “ - (75)
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where S(t) is a state which summarize all available knowledge
about past speech, and I(t) is the spectrogram frame input at time
t. This strategy was implemented with the Boltzmiann machine
(Prager, Harrison, & Fallside, 1986) by wsing carry units. "

ouT

R

classification

carried over outputs
outputs . (past context state vector)

¢

S . N

‘ /‘BOLTZMANN MACHINE

13

with hidden layers

Aovad3Iad

\_ Y,

Current input) carry input units
frame

IN

{ | :

i

Figure 7.2 : Context feedback with carry units, on the Boltzmann
machine as proposed by Prager & al. (1986).

/ As shown in figure 7.2, a part of the output is féd back to
e. the input of the machine, via the carry input units. The machine

/
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learns to utilize this information about the values of units on the
carry output state vector to perform better in the recoghition of
frame |(t).

Experiments performed by Prager & al. (1986) tend to show
that the Boltzmann machine indeed used the carried over
information in cases which were ambiguous if the context was not
given. '

! .
N A weakness of this method is that it considers only left
context information.

7.3 Realization of Connectionist modeis in Hardware

~

The full potential of connectionist models will be available
only when experiments will be performed on massively parallel
hardware that simulates or directly implements neural networks
models. The simulations performed for this thesis were éxecuted
on a Von Neumann traditional computer. They needed a lot of CPU

time. Since connectionist models are still being developed and

experiments with varying models are being conducted, it would be
more profitable for the present time to use massively parallel
gomputers flexible enough to program the individual nodes. For
this purpose, it would be much more efficient to use SIMD (Single
Instruction Multiple Data) machines such as Hillis' Connection
Machine (Hillis, 1985). Indeed, they use smaller processing units
than MIMD (Multiple Instruction Multiple Data) computers, each
with less memory but allowing for much more massive parallelism
(65,536 = 64K units in the Connection Machine). As such,
connectionist models are ideally suited to massive parallelism. No

special algorithm is needed to segment the problem, since the

connectionist models were initially designed as parallel models.

79

i




In addition to the advantage of being ea%ily transportable to
parallel computers, connectionist models also offer the possibility
of readily carrying out wafer-scale integration because of
their inherent fault tolerance (see Rumelhart & McClelland, 1986).
A few malfunctioning units in a wafer would simply be ignored and
this would not significantly alter the performance of the neural

.net. In fact this might allow for much cheaper VLS! productidn,

since it is- much easier to build a million-transistor system with
95% working elements, than to build a perfect system. Yield in
production decreases exponentially with area of the circuitry,
since it is a question of conjunction of probabilities : ~

probability that circuit of size 2A is faultless
= (probability that circuit of size A is faultless)@
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8. Conclusion

1

In this thesis, the development, theory and applications of
connectionist models were studied. In particular, the Boltzmann
machine algorithm and the error back propagation algorithm were
examined in detail and were implemented in an application to
automatic speech- recognition. Connectionist models were shown
to present a potentially very useful solution to problems in
automatic perception. '

N

The Boltzmann machine model and the error back
propagation algorithm were used to perform speaker normalization
and classify sonorant portions of continuous- speech according to
place of articulation : back position, central position and front
position. )

An important -conclusion of this thesis is that experimental
results, especially concerning the error rate, have been shown to
be dependent on how spectral lines are coded. The best results
were obtained using coarse and multi-level coding, as well as
relative frequency and amplitude in a. non-linear frequency scale
derived from knowledge’ about ear sensitivity. The results obtained
with connectionist models were significantly better than the ones
obtained with Hidden Markov Models (alone), using similar data and
preprocessed with the same technique of spe&tra’l lines extraction.

\ Some important issues in Automatic Speech Recognition
were considered. In particular, the thesis stressed the difficulty
of the ASR problem for multiple speakers and connected speech,
because of the sequential nature of speech, the lack of acoustic-
phonetic invariance, and the strong ‘influence of the acoustic,
phonetic, lexical and semantic contexts.




Although th& models used in the experiments of this thesis
assumed a static representation of speech, some methods to
include the time dimension into the connectionist models were
also examined. Knowledge of speech perception permits us to *

- predict that the error rate obtained in our experiments would be
significantly reduced if the sequential nature of speech and the
influence of context.were taken into account in the connectionist

' models. Considegng the 0% error rate obtained on the»training set,
. we can also suppose that better recognition rates-would be
obtained if the training set was significantly "larger. )
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