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ABSTRACT

NUCLEON ISOBAR PRODUCTION

John L. Rice, Ph.D. Thesis
Department of Physics, McGill University

A formalism for Reggeizing helicity .amplitudes, from which
kinematic singularities have been removed previously, is developed and
applied to quasi two body inelastic processes. This formalism is then
applied to the reactions T P -—-—9‘17011 Yp— T+, and NN — NN*,
assuming dominance of these processes by either the T or f trajectories.
The factorization theorem, the knowledge of the. t channel density matrix
elements obtained from t.he decay of the final state particles, and the data
on. the differential cross sections are then used to attempt to dt;_termine
fits to the data which are not trivially constrained. Although the
experimental data is still rather scanty, it is tentatively concluded that
the P trajectory generates a fit to W N —> T N* and ’tT-p-——7"ﬂ°n-

However, it is the pion trajectory which gives an adequate fit of the

NN — NN* data.
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CHAPTER 1

INTRODUCTION

The Regge pole model has been used for some time to make

predictions about high energy elastic scattering(l7) with a reasonable
amount of success. However, these processes do not provide a strict test
of the theory because of the large number of parameters and the lack of
knowledge of the spin dependence of the amplitudes. Recently, this model
has been applied to elastic change exchange processes with startling

(27)

success. However, these processes also yield information on the spin

dependence of the scattering amplitudes only very grudgingly, although
requiring fewer parameters.

In this thesis the extension of the Regge pole model to quasi
two body processes wili be considered. Specifically, the production of
nucleon isobars in quasi two body processes such as Y N ~—>=TN*
and NN —— NN* (1238) will be calculated using a formulation of the Regge
pole model for processes which contain intrinsic spin. However, for such
processes, the decay of the isobars in the final state yields a great amount
of information about the spin dependence of the cross section. This
information is provided by the crossed channel density matrix elementsgzo)
A complete knowledge of the dependence on momentum transfer of these
density matrix elements will provide stringent tests of the theory. These
tests can be expected to be particularly severe in those cases where a

single Regge pole is expected to dominate the amplitude.



In the present work an attempt to fit the inelastic processes
Wwp —>T Nk (1238), Wp—'N, pp~—3> pN* (1238) and ' pp —i= N¥*(1238)N*
(1238) has been made under the assumption that the only isospin one
trajectories contributing are the - and./D trajectories. The constraints
due to the factorization theorem for Regge residues have been fulfilled.
Moreover, it has usually been assumed that the Regge residues are independent
of momentum transfer. While no attempt has been made to include the effects
of the R(Az) trajectory, it should be noted that the factorization theorem
and fits to the processes *-n‘p—a,:‘{lN and p-——‘ﬁ‘f\ N*(123$) could be used
to determine, in principle, the effect of this trajectory on the processes
NN — NN* (1238) and NN ~—3= N*(1238)N#(1238). Moreover, the more
ephemeral isospin one trajectories, such as the Al’ B, and B' are also
neglected. The effects of the threshold constraints on the helicity
amplitudes noted by Franklin have also been discussed and fits to the
experimental data which satisfy these constraints have been sought.

The general plan of the thesis can be summarized as follows, The
second and third chapters contain a derivation of the Regge pole formalism
and of the kinematical singularities contained in the helicity amplitudes.
The fourth chapter provides detailed discussions of'the constraints on and
prescriptions for the Regge residues. The fifth chapter contains the

comparison to experimental data while the conclusions follow in the sixth

chapter,



CHAPTER 2

CENERAL FORMALISM FOR REGGEIZING SCATTERING AMPLITUDES

A general formalism for the “Reggeizing' of scattering amplitudes
involving particles with arbitrary spins has evolved through the

work of Gellman et al(l) and Wang§2’3) In this chapter this formalism

will be developed in detail with particular attention being péid to the
analyticity properﬁies and other assumptions necessary for the use of the
sommerfeld-Watson transformation.

This formalism is based upon the helicity amplitude expansion of
the scattering amplitude given.in the beautiful work of Jacob and Wick.ca)
This exbansion'deals explicitly with 8 matrix elements between helicity
stétes.instead of the usual invariant émplitﬁdes. For this reason these
heiicity amplitudes contain certain kinematical singularities and
kinematical zeros, the detailed form of which will be discussed in the
third chapter. However, it is to be understood that such singularities
have been explicitly factored out of our amplitudes before we attempt
Reggeization. These singularities and zeros will thus appear explicitly
in the final form of the full amplitudes, since the Reggeized expresslons
must be multiplied by these factors to regenerate the full helicity
amplitude.

The starting point for this development is the crossed or t chammel
partial wave helici£y expansion of Jacob and Wick. The state of total

angular momentum J, z component of angular momentum M, and helicities
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Then the parity operation P
produces the effect
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where N = l/a for J half integer
N" = O for J integer,
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However, the Jacob and Wick scattering amplitude can be expressed as
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and P (wo are Jacobi polynomial(sz)in cos 8. An important
property is the factorizability of the d“ (9) into a factor independent
of J multiplied by a polymomial in cos 0. It is these polynomials which
will be Reggized since all dependence on J is contained in them. Therefore

the following amplitudes are defined:
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it follows that
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This formula can be inverted to obtain
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L I
Both C and € are polynomials in the Legemndre functions of the
1B A :

first kind. Gellman et al(l) have listed these functioms.

It is this representation of the helicity amplitudes which will
be Reggeized. The first step in this process is the continuation to
complex J of eét and SE i,Lb in a manner that will permit a

A M)

Sommer feld~Watson transformation.

This continuation of the rotation functions ea -(%) is accomplished

by replacing the Legendre polynomials QY\ of cos 8 by the function

@: - Q-—'J—; ! Ta./n,U‘TT
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where F is the hypergeometric function and is suitable for continuation in

J. QJ has the following properties:
(a) ,6% = e— for 3 =0,1, 2, ... (2.14)
This equality follows from the -identity |
P(z) Q@ = ~L Q) (5)
22 - e 22 a8 (2.15)
sl | “Cosul w y .
(b) @J"—' 0 for J=-1, -2, -3, -4, . .. | A(2.16)
(c) @ contains a pole at all half integral J (2.17)
It T

r-the rotation functions will be designated by E,\/;

rather than €, '

, ‘W
when ,G%. is their argument. 1In order to continue the partial wave
amplitudes an analogue to the usual Froissart-Gribov continuation is
defined. This continuation requires a fixed t dispersion relation in s
and u or, -equivalently, in Z. It will be shown in the next chapter that

Jc{k} contains only factorizable kinematic t singularities. Then

defining QC{} such that

g &3 = Kranalt fa %;dff'ﬂ

where k(’t) represents all kinematic singularities, it follows that

JCHH(JH;;__, " Wi, M(tﬁ(i"))“h r(w(z)) , (2.18)
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We can now insert this dispersion relation in definition (2.11). If we

interchange the order of integrations the first integral can be done

analytically. It follows that
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Now

3 N S
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This implies

J+
Ji J= A - , .
Coen = 20" G

Ry N /, J" - F J - / i' |
In addition we define F')""Jl')‘@"b %edg,% M b K),,}J',?\a"‘b

If the integral in expression (2.18) for the scattering amplitude

u
+H

is to comverge, it is necessary that the helicity amplitudes be bounded

for large Z by Ze , € being some finite real number. Then the amplitudes

'3 € -Amax . .
f are bounded by Z and the weight functions by the same

. - 2-1 J+ =1 + A o
since  Q(®) ._-:7 'Z C —_— Z m and
i- -J-2+ % ol ke
—_— 2 i 1t is obv:.ous that our definition (2.19) is
A 2R
convergent. for real (J))€& . An examination of subtraction terms shows

€-
. max

that they do not contribute to F in this region, This definition of‘ the
partial wave amplitudes will be heuristicaliy extended to the left of
real (J) = € under the assumption that the only singularities in J are
the Regge poles,

In order to use the Sonmerfelci-Wat_son transformation, it is
necessary that the background integral be equal to zero or at least

negligible. Now if t is greater than the t channel threshold 'Zo'(S)'NI RSB
Jt

~and C —_ M{.Qa( € l\l A \) . This last property follows

A (1% 6
from the asymptotic expression given by Squires for 01(2).'

@, @ . W((Z‘%)Z@?[’z -(-0%)).

Ll =2~ (2.23)
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However, the use of equation (2.22) forces the definition of the usual two
continuations of FJ for positive and negative signature because of t;r'xe
factor (-1)". Moreover, it is interesting to note that the relation
%) = 077 ()
1nd1cates that if the '}-{2} amplltudes of equation (2.10) had not been
. adopted as a starting point the introduction of signature would suggest

these combinations in any case. So we define

REYON
Fr
L d{“,d,‘i:“)*‘-“—° Skl

" 2-'4 L % > S‘ o , o
(,&‘) _T.r_ dz w fS(E))+ (() W (¢ ul- Y))]C ,)

} (14) Jh C"J)’-a.')ib
(2.24)
At gy o
Where = S
. ‘t. - F "k = \- = integer
| F‘-X 14;10.% ) 17 S VR Y (t) = (&) =09 = tnces (2.25)

These Ygood signature amplitudes" have exponentially decreasing continuations

as \J\ —3 0 . Then

iz Ity IS ¢
4 lE2) =1 7\6-139'323 ¥ 15‘ ( 2

A2 M | (2.26)
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where

/ﬁ(ﬂs
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The notation :S has been introduced to differentiate between signature

~and J parity.

However,

(2.28)
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E, 0% = 36 C*/*(z\
Therefore,
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+ ' J
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J = integer

and placing this expression in (2.27) it follows

| {M (&) “*(&5 Z(ZJH) '“ (E @ £ e E;/ii-zx)

TRETRY A M» X h A

A +) + “) (- nl -
+ (t)(e /‘(a) G0 ¢ E/u(?-)>]

Vit (2.30)

Now the summations in (2.30) will be extended to values of J less than A

- .
For J = _'xm-l N S E 2l“':‘. (o} because of (2.16), ‘There are

assumed to be no fixed poles in FJ- at these values. This assumption,that

there are not fixed poles in F'J- at J = —Jo ,demands

by’

o . ‘) r s | o tI”
a2 Jlws (¢ s(ﬁ))-(-‘i'x”" W (t u(-i')) ch°' :- W (t,‘(i'))" i ﬂ-t-i)'i\( f:0(2.31)
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(-J,,)'*_' (€ }a
since the residue of afixed pole at J = -J_ in C is e, N
o 1/«. Wp

Truéman and Muellgz>have pointed out that the relation (2.3l) is a
superconvergent dispersion relation. If the validity of such relations
is assumed, the partial wave sum can be ‘extended to ‘]<“0%n . In fact,

, further '
the above assumptions are unnecessarily stringent since a-eted® examination

reveals that the assumption of no fixed poles is only necessary at the

even integers for the even signature amplitude and at the odd integers
for the odd signature amplitude.

There remain the terms with -'Xms J g ’)‘m_l not included
in the partial wave summations. These terms can be divided into pairs

about J = - 1/2 which satisfy the followihg identities:

1 (Yprompy )£ o QAL 7Y

= £ 21,3, cien. R X! (2.32)
LN Wy, T

E('ya"'m}/?)t . = E. (-‘/2‘-’"/2)1 2),,"‘.

for  MEL3 (2.33)
W W

All the quantities in these identities must be defined in a limiting sense
that is, in the limit as m - integer. Then, becauge the factor (2J+1)
takes on eqﬁal values and has opposite signs at J = - 1/2 t m/2, these
terms cancel in the partial wave series. Since the two functions

differ in the order of the highest power of Z which each contains, this

cancellation might appear surprising. However, omn closer examination it

is found that the coefficients of the higher powers of Z of the leading E

function vanish at these integers, allowing the cancellation to take place.
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This behaviour of EJ will be evident in the large Z expansions given
in Chapter &.

There are also poles in the functions 4;3 at the half integers.
For J = half integer ¢ - 1/2 these poles arise from the [ functiom
in the definition c;gl ; for J -.1/2 they arise from the hyper-
geometric function. These poles have residues which may be grouped as
follows: at J = = 1/2 the residue is multiplied by a zero due to the
(2J+1) in the partial wave expansion while at the remaining half integers
the residues are equal in mégnitude and opposite in sign at the points

Jo and -Jo—l because of the relations ‘

J".’. l("\"nt
Fln.nqa = . for J half (2.34)
A TR Ozntegzr .
Lim Jt  _ rim 4% '
s (-10) E'*/‘" gy (4-35) E"/” for J, half (2.35)
o} o integer

Therefore if the entire real axis is included in the contour these half .
integral poles give no net contribution. Furthermore, as a Regge trajectory
passes through J0:= half integer greater than - 1/2, the asymptotic
behaviour in 2 is not changed since the cancellation does not occur in the

leading power of Z. This behaviour can be verified using (2.13).

Tt follows that

i
pret o baiuam et (b

X
4
TV Rup 3 2swTd A}_

(2.36)
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The contour [ .contains the entire real axis, It was indicated previously
that the partial wave amplitudes F'J h(t) decrease exponentially with

. )
{J}]=~ & if t % t = channel thr;silold.

The function gy 1s bounded by a polynomial as \JI — ,
'Therefore, the contour can be expanded to the eo circle, picking up the
singularities in the J plane. The contour at infinity gives no contribu-

tion for Z large. It is assumed that the Regge poles are the only

singularities so encountered.

Then y o

s s CAN LTt

s+ (&) t )(,:‘ ) t LS

= 24+ 1) - (t) (t i£) 2
3C (2) = "a( < Be ﬁt 20d; Aaky /fz) k”,)“ (2.37)
1:“33‘;&5 SN T
&
where the inequality E_o,:/‘ (@ > E}/‘_(E) for large Z, has been used

to drop the second term. If this procedure, of including the entire real
axis in the contour integral is found objectionable, it can obviously be
circumvented by including the conventional background integral along some
line Re J=-M where M % 1/2 and M > ?,, . Then it is necessary to
explicitly include, as well as the background integral, the half integral
~poles for J 2 M - 1. However, precisely because these poles do not occur
in the leading term in Z of E:: (%, but in that term whose large Z
| behé;viour is identical to that of half integral pole reflected through
J = - 1/2, as discussed earlier, the contribution of these poles will fall
off at large Z at least as rapidly as the background integral. This

integral is bounded by Z"M, as i1s the usual background integral of the

“"Mandlestam-Sommerfeld-Watson' (&) transformation.
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The kinematical region of interest in high enmergy imelastic
scattering is that of large s with t negative. The derivation of the

Regge pole expansion presented here has assumed that t » physical threshold

in the t channel, that is, t % to) 0. The problem of continuation of the

expansion to negative t can be resolved in either of two ways: with the
use of fixed s dispersidn relations in t(9) or with the use of a slightly
different representation for the bartial wave series.(lo) Since the

. amplitudes f 235: e and E‘\::‘ :','hﬂb have had all kinematic singularities
removed, they can be continued using either qf the methods mentioned above.

It is well known that the phase of the Regge pole amplitudes is

given by the signature factor in the spinless case. This property implies
that the Regge residﬁes are real. In order to prove that the residues are

real in the case where the particles carry spin, a trivial generalization

of a proof for the spinless case due to C. S. Lam(ll) is presented.

If f. (t,s) is the t channel helicity amplitude with all

‘).AJ"A‘ b
the kinematic sxngularlties removed ,then,as before
+ 4
fa ma 2) = % 42 w-& (“c (2))+l h S u@)
Ahaide Achditadb 24l |
2‘ Zzhx ~-~ 2 = . (2.38)
= Iy
fc(Z) ~ 9-2@

Now the complete t channel helicity amplitudes are assumed to satisfy the
Schwartz reflection principle, £* (z) = £ (z%). Since the kinematic
factors also satisfy this identity’

£f () fma By

This identity requires




- The amplitude f£'
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wt({Jil) 3 drn ]CI.t . (t’ Z""LS) for > Z°S

il
e
p
>a
,,a
,)
o
—t
N
+
oM
—r”

U\).“(t,k') for Z'< ~Z,

(2.39)

is assumed to be given by a single Regge pole for
-€(t) . |

large .Z. Then fﬁcj‘ 'L\& 2‘) a(t) for Z+ 1 0 s zy» 0?5}0 .

It is also assumed that the high energy behaviour is not oscillatory,

that is, that €{)is real ln the scatterlng reglon

" Then ‘]C‘(E) = f d% W laim(t %)A-z

—-—
-

4

2, F-%

$

" ~é(t}
‘((h: w"‘\Jm\b )+ J M ) d

(2.40)

For large Z the first integral wvanishes like

1
Z -2y
The second integral has the following properties:

(a) it has a cut from 0 to o0 along the real axis,

() mmf(2) = 1Im(a(t)) 2~ €

@) £, (@)
Therefore :F(z) L“U‘e Z-é dfﬁ" o
SN TT €

e f@ =1 jm ut [t 2h8) &Y
S 2
2

I

e
£,(2)

for Z large (2.41)

w 1e’1<l)1a.16 .
o, -z (2.42)
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(‘t Z-H.S) dz’

[+
W
=1
L 2,350,
2°u (z i)
T

But L
w" LRI

.depending on whether a {

amplitude.
However
Therefore
(2)=1° & odm
f w
= is

It follows that

and

alt)= £

This relation implies th

. @&, —z-LS) = &

) = -

(2.43)

dnfal] Z°

positive

. .} signature trajectory dominates the
negative

+

-,{%’c,—%’.iﬁ)

oQ

-
a(‘t) Y P % d%, for 2 lé.rge
2 #4z (2.44) .
dt a(t)
SINTE ' (2.45)
. -€
+me:l 2 Jdm&
=+
- -D‘t l AT IK-]
‘*”Té . | (2.46)

+
wat the phase of the Regge pole amplitude for £r7

is given exactly by the signature factor. In addition, a careful considera-

tion of all the kinematic factors shows these faCthS_to be real in both

the s and t channel physical regions. Therefore, the phase of the entire

helicity amplitude is just that of the Regge pole amplitude. Moreover,



. for a process dominated by a single Regge pole all helicity amplitudes

have the same phase,

18.
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CHAPTER 3

CONSTRUCTION OF THE KINEMATIC SINGULARITY FREE HELICITY AMPLITUDES

In order to Reggeize the helicity amplitudes using the procedure
given in Chapter 1, it is mecessary to separate the amplitude into a
product of two terms, the first containing kinematic singularities and
zeros and the second dynamical singularities. In the present theory, the
dynamical singularities appear when the continuation of thetchannel partial
wave expansion, which is extended outside of.its usual Lehmann ellipse of
convergence by means of a Sommerfeld-Watson transformatiom, diverges.
.The kinematical siﬁéularities, on the other hand, arise directly out of
the kinematical properties of the helicity amplitudes as implied by
angular momentum conservation and the crossing relatioms, and depends
only on the masses and spins of the initial and final state particles.

We now will sketch Wang‘s(z) developments, presenting in some
detail the particular arrangement of masses that is needed for processes -
such as YN=—> T N’.c and NN—> NN*.

We consider the general helicity amplitude for

i

a+b—3»c+d with s (P, + pb)2

and t = (Pa._ p‘)z (3.1

Note that the letters a, b, ¢, d, etc. are used to indicate both the
particle itself and its helicity, the meaning being implied by the context.

Furthermore, the antiparticles are represented by A, B, C, D.
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Then the t channel process can be represented as
D+ bee—p»c + A where t=(p.+p)2=(p -*-p)2
e a D b

The s channel helicity amplitudes which we use are related to those of

Jacob and Wick by J.W

cdja P:d. Cd',al: (3.2)

The overall normalization of these amplitudes is determined by the relation

(jgc . ‘ ;F (s t)‘ (3.3)

The partial wave expansion for the hellclty amplitude can then be written
{8}

fcd-,o.\,(s*ﬂ =%—- (2i+) F. cd; ob ) d (es\ A=0-b
/u-sc—d’-

where Gs = angle between 5; and E; in the s channel barycentric system.

(3.4)

The expressions in terms of s and t for cos QS, sin QS, etc. are given in
Appendix A. An examination of the expression given there for cos GS reveals

that it is an analytic function of the wvariable t. The rotation functions

have the representation

~' it -] el _(1ph 3440
- c "
d.w(es t (dw)\, (A-N){ 0S © ) (s N O Q _H(c.os o,

(3.5)
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(13-l el
p 1 /1)

whgre I~ M (Cg°€%> is the Jacobi polynomial and
u o= max (11,1xl)
N = Min ( |1\, y~0

It is therefore evident that the only possible t singularities come from
the sin(Gs/%, and cos(QS/Z) terms. However, these terms will factor
out of the partial wave expansion since they are independent of J.

Therefore the amplitude fs is defined such that

{*}

s (g Jaepl
QC‘_:.;';L * Tedab [cos_e] sm le] r

z(ow) E 6 P“"?szg'm
X ~ cd;ab J-™

(3.6)

Now f° contains no kinematic t singularities. Any t singularities of

F° are due to the divergence of this expansion and are said to be

dynamical. Furthermore, it is evident that some of the factors arising

from di (®) have been absorbed into FJ . These factors may contain
/L s cdab

branch cuts in the complex J plane which must be considered in the

Reggeization procedure,
The analogous t channel amplitude is defined

=t - 19|

-1 p! f 7 e 2
“J:C,H.,)D,/&, = (5‘"—'5%) # (cos.'é.at) h/‘\ ._( A= D-/?r

Ty /‘,_: Y (3.7)
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(1a-pml 1depml
p (1 /1)

Whgre J-M (ewn 93) is the Jacobi polynomial and

Max (l'll,l,u-l)
win ( 14], pl)

It is therefore evident that the only possible t singularities come from

M

N

]

the s1n(9 /2) and cos (G /2) terms. However, these terms will factor
out of the partial wave expansion since they are :Lndependent of J.

—$
Therefore the amplitude £ is defined such that

{*}

~{aw -'| ol
] [snuées]

=9

)Cdc!.;']o;l) = c.J» 0‘) Ecos_.e

’ ~J P (m'/*l;"“/‘“\
Z (241 ch;n\)(s) -1 (cose)

(3.6)

Now £ contains no kinematic t singularities. Any t singularities of

1 : r) 3 v - )
£ are due to the divergence of this expansion and are said to be

dynamical. Furthermore, it is evident that some of the factors arising

J .
ch;ab' These factors may contain '

from dJ,’\ () have been absorbed into
/U- ]
branch cuts in the complex J plane which must be considered in the

Reggeization procedure.
The analogous t channel amplitude is defined

=t - 19 S| At ;e 0
-S:C‘ R")D'ﬁr' = (s'u'liot) (COS “lé'af) //‘ { = D"

gt
cl H'J. ﬂo/g_l /a'_:' c'- AI (3.7)
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This amplitude is free of kinematic s singularities. Now’ the

. 12 . , . .
Trueman and chk( ) crossing relations are used to obtain crossing

:Fd,al;(sf S:- m ra's D!f’( t) '(C’ﬂ Drg'

N pY ¢ (3.8)

relations for these amplitudes
cdsal

Where

Ia 00

cd:ob . Sl oy Ia'ept
m ( t) -[SWL'QS] [MLG] flwu Lo, [mle] d.l”‘a) &,?‘Y(,) d(l’.)&(ﬁ)@ 9)

and

Cos ¥ o= [— (S+miE ~pip ) (t -t ?;) -2l (M?‘:“"“;‘mt'”}"i] AAL foe
ey <[+ Geat-m ) - 1) 2o, (reenloot) | o
2
cos %= [(S+ ik~ ang ) (£ +me- mi)'z e (M:-Mhﬁﬂz‘””ﬂ /5wl “he

bos %y :[—(sm}- ,,,l:)(ta,m’z-m},)—am}ﬁfﬂ? -Mimz-n«})]A (g

(3.10)

and I ' : '/2
ves2ma (] %7 o sums 2 Q6] foisTa

I/
S % Eﬂnc[‘w‘fﬂ%a . sm'%&-?vfrnd@[ﬂ]/ oy

(3.11)

The polynomials ¢(5"t) ) SQ-B ) and "'r“_ are defined in the first Appendix.
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Since -f—'t (s,t) is free of kinematic s singularities, all
kinematic s singularities of £~ (s,t) must come from the crossing matrices.
Wang has shown that there are pure s and pure t singularities at s = 0,

= 0, S.q " 0, t=0, . =0, ® =0 and that there are no mixed .

ac bd

s and t singularities at d(s,t) = 0. If the pure s singularities of

s ab

each M are factorizable and all M's. have the _same' type of pure s
singularity, it is then evident that this T° has factorizable singularities.

There exists the relation i

t —_— ,(A’.t) ] P
fc: H'j Dljrl(¢) ) ' 1\t f—c -Rl"-o -lr N

from parity symmetry where

| J-I—J-J N Y,
M, = Mg N LI e

(3.12)
Mo N, Tl;,
Using the above relation, the linear combination
8§t =5 )
o= faantt
ed;ab cd;ab _C_ABQB
then satisfies the crossing relations
g% - =t ediab ,_r-t
- / Y
;f = i— Mc’PI;D'B «d,DF (3.13)
Ad;ob %Y ,

Hcﬁr

where

ediob ~e-djob

.,-+e.;o,5 ed;ab
M_d , = ) +'ﬁth,Dp_(m

cf Ok ¢ 0

-c&ab
tm _nl ') 3.14
¢ A D)Zr ~o-a-0-f | (3-14)

We will also need the relatioms

J ) ST
- = (‘ \ (1
&“f"(ﬂ o ) s , (3.15)
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and 11_ \ .
b ee (22) g P
1}L(9 = T o (c,os.ia) (o) .
: (3.16)
where v=1 — for J = half integer
v =0 for J = integer
and

A .
Q;> {cos 0) is a polynomial in cos 6 of order J - v/2:

The particular set of external masses which interests us is given by:
m, = my ’ m, # my- This case gives results identical to those of

) E—1 = m .
Mg Y c U 4

. _ + .2 e
Then, at the points é = (ma mb) the quantities Sab51n.xa,

cos x ' in and co are free from singularities in s.
Sab 2° Sabs Xy Sab s x £ £ sing ties s

Of course, the expression Sab has a branch point in the variable s at each

of these points.

As a next step it is necessary to consider the quantities
%
SIN K %q, ' (/( - )] Z
, = Cos X
{COS % %o, c 1 + &

The cut in the s plane in the functions Sab’ cos X and sin xé is chosen
" .. _ _ 2 _ 2
to run along the real axis and join § = (mh + mb) and S = (ma mb) .

We then define

2 L
S ~(mot+mp) = -
) (mo b\-Y& , where {'l‘f>,4>>, w
2 ‘
5-(ma'm\b)‘:'Yﬂ-°¢ o £¢' ¢l
defines the first sheet. This definition implies S_, = R' e
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o (6+3)4

and cos % = R‘a|1 e . Further, in the complex cos x plane,

~

sin % X has a branch point at cos xa = 1 and we choose the cut to rum

from 1 to ©0 along the real axis. Similarly cos -]z;xa is chosen to be cut

from -1 to - ¢@ in cos X, - The angle x is treated analogously, defining

cuts in sin lz{b and cos -}233 . There is however .one small but important

difference. 1In the region t < 0, for t fixed, there are two solutions
to the equatiomn cb (s,t) = 0, which are called s, and 's< and satisfy
' 2 O .2 ,

S>_>-(ma+mb) > (ma,-mb) 7 s, . At (i) (s>,t), sin x_ = 0,

cos x_ = +1, sin x = 0 and + cos X, = -1 while the cosines change
sign at q’ (s< ,t) = 0. An examination of sin X reveals that it is pure
;imaginary for £t { 0, s 4,25 3 (ma + mb) . Hence |cos Xa‘ » 1 in this
region. It follows that near s = (ma + m.b)?', cos x, can be represented

$

as R @ where RA> 0 Dbecause cos xa=+ 1 at s . Similarly

>
¢I

cos xb = -RB e‘ where ILﬁ) o . In order to decide whether a

R . 2
particular function has a branch point at s = (ma + mb) we compute the

[

_'»-‘_‘function at the point. A in Figure 1 and again after a rotation of 291

~in a clockwise sense, that is, at B. A discontinuity indicates a branch

point. Now

at point A , cos x_= R, exp (-iTr/2); cos Xy

A -RB exp (-iT/2)

at point B,  cos x = -Rp exp (i%/2); cos X,

R, exp (1imw/2)
R,>0 RSO
It is then straightforward to examine the half angles and arrive at the

fdllowing table:
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@
' sin o+ x cos L X sin L cos L
2 *a 2 *a 2 b 2 %
At (e -/ Hy: YA
i ~~R A
At -l L2 Ay, - """/3/2
point - ? Kﬁ C Kﬂ € KB : e KS
B
cos L X cos L t éin L X sin L
2 "a 2 2 "a 2 %
. A U iz P L
. | poznt KA KBEQ e s e e
. N _",{/ o
At /e -k 2 _ LA aBA
point Kﬂ KB[ (A e ‘S + e ) C
B - ‘
where »
K = ].+R2 o = tan R K = 1+R2 B = tan R
A A A B B B
. 1 1 . L .1
This table shows (cos 5 %X, ©o0s7% x - sing x, sing xb) to have

no branch point at s

2. s L 1 1

(m, + mb) ., while (cos 5%, cosgyx + sing x
oL . . ,

sin 5 xb) has a branch point at this point.

Using similar methods the following functions can be shown to be

. _ 2 _ - 2, .

analytic at both s = (ma + mb) and s = (ma - mb) 3 Sab sin x_,

S cos X S sin S cos Lcos L X cos L + sin L X
ab a’ “ab *»* ®ab %2 2 *a 2 % 2 *a
in = ] x [s - (m_ + )2 He [cos Ly cos = - sin = x

sin o5 % : a” ™ ] ’ 2 *a 2 % 2 *a

1 1/2 '

sin

5 xb] x Y-s - (ma - mb)z-l , etec. A full list of such

Quantities has been given by Wang.
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Using the analytic properties of such quantities along with
equations (3.14), (3.15) and (3.16), it is then straightforward, if
very tedious, to show that the following prescription gives the .

amplitudes in the case m_= m #m, . The expressions for the
a mb [ d

crossing matrices from which these prescriptions are deduced are listed

in Appendix D.

Then the kinematic singularity free amplitudes are

AN ](A-Wi)y"'“' (artmeom §YEF [ tmen ]2

—cdiak (3.17)
l-:where o) =max (FN) of [ dut »JL -é-(n%):l 25 (0E) (f s aspe
. i Pask{=0, o= mex (iﬂa\:) of_ [Jq. +f3q
where
v=1 if J = half integer, v =0 if J = integer,

TlAL‘-' -rlﬁ T(,_ (_n\‘c"‘%"’é*ﬂ‘ | 'nd = (_i)JdJJ% ced
M M,

and the expressions for
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BB —»F(c)F(d) F(a)F(b)—s BB FF = FF BB —> BB

o (t “t . +

"1 o () ey (%) ag ag ()

By By O B, B, (O B, O

B, | - By B, ™ . By B, (O
(B = Boson) (F = Fermion)

where

.ozé("-?) = %(va-i-vb) - la-1u] + max (tT\ab) of [.I +J -5 (v +vb)+ —;— ([ -ul -|'x+11|)]

and

‘; Bg(*-'> = 2 v - |a- | + max ¢ Mo of [J HT 5 (v )+ C la=nl = h+n))]

where max Y| of N means greatest even integer % ¥ if M = +1 and

means greatest odd integer ¢n if M = -1.

The physical consequences of this expression will be discussed

in the next section and some modifications suggested. However, although

" this formulation appears to have found all kinematic singularities in the

helicity amplitudes it certainly does not contain all the zeros. These

zeros will appear in the form of constraints between the amplitudes.(l3)
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CHAPTER 4

In Chapters 2 and 3 a method of Reggeization of processes involving
spin has been developed and the kinematic singulariﬁies of the helicity
amplitudes under consideration have been explicitly calculated., 1In this
section we will discuss some ansatz for the residues and give the form of
the ﬁelicity amplitudes for specific processes.

In order to discuss the residues, it is necessary to examine the
constraints which can be applied to _these ,residues. The first of these

constraints is the factorization theorem for the Regge residues, first put

forward by Gellman(14) and independently by Gribov and Pomeranchuk.(ls)

While Gellman demonstrated this hypothesis only for the case of a coupled
channel Schrodinger equation, Gribov and Pomeranchuk explored the
relativistic problem, using unitarity directly, for the coupled T T

and K K channels in the region 4m“?< s <4mK2 . 'Oehme(l6) shows how to

_continue this relation back to thé t channel physical region. This simple

situation can be. extended to the case of a large number of two body
channels'quite easily but requires more careful consideration if many
particle channels are included. The proof for N two body channels is

given by Squires(6) and is reproduced in Appendix B for the case of helicity
amplitudes., It should be recognized that since this theorem is a comnsequence
of unitarity, the factorization property is carried by the residues of the

poles in Eiub , the amplitudes for which unitarity assumes a simple form.
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This theorem then states

Bcd;ab Bef;gh - Bcd;gh ' Bef;ab (4.1)

Fox and Leader(17) have recently shown that, becéuse the leading term for
large Z of the d /‘(Z) also can be factored, this factorization propefty
also applies to the contribution to the t channel helicity amplitudes
from-a single Regge pole.

That is,

) t t t ¢ t
fcd;ab fef;gh - fcd;gh ef;ab (4.2)

<

The "sense-nonsense" restrictions, which are a consequence of

this factorization,will now be discussed. We remark that the definition of
© gk + '
3; hln equation (2.19) contains the functions Cip which have factors

such as [:J(J+J):llj if exactly one of {1| \ exceeds 0. It is
+
necessary that the FJ contain these factors in order that they cancel
: +
with similar factors in the functions 6;1 (2). Then the partial wave
an

sum does not contain fixed branch points and no difficulties are encountered
in the Sommerfeid-Watson transformation.

In general an amplitude is called a sense-nonsense amplitude at
J=M if one of |4, |nl > M . Such a sense-nonsense amplitude contains
a factor [Qx -M@+ M+ 18 1/2 in the residue of the Regge pole
.occurring in the amplitude. An amplitude where both [2f, lult>M is
defined to be a nonsense-nonsense amplitude at J = M and an amplitude
where both {al, {n| ¢ M, a sense-sense amplitude at J = M. The factori-

zation theorem for the Regge residues states that the square of the
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residue of a nonsense-sense amplitude is equal to the pfoduct of the sense-~
sense and nonsense-nonsense residues. Thus, either the sense-sense
residue or the nonsense-nonsense residue must contain a factor

EJ’-'M)(J + M +'151 . Such a factor would cancel the pole in the
amplitude at J = M. If the sense-sense (nonsense-nonsense) residue does
not approach zero as J—~»M the trajectory is said to have chosen sense
(nonsense)lat J =M. If the trajectory chooses sense the pole in the
nonsense-nonsense amplitude that occurs as a Regge trajectory passes

through M is cancelled by the zero in the residue, 1If the trajectory
+

4choosesnonsense; it appears that fcdab has a singularity at a nonsensical

-+

~.value of o . However, it follows from (2.32) that this singularity is

cancelled by a compensating trajecfory of opposite J parity that passes
through J = -1 ¢ as the original trajectory goes through J = a.

In the previous chapter the exact form of the kinematic
singularities of the amplitudes was calculate&. These singularities were

explicitly inclu&ed in the full residue of the Regge pole. However, there

"are modifications of these kinematic forms which will be discussed here.

- Now from equation (2.11)

1

E Y W <

- 4 - /&

AT A P P S @
<rdytaty —L a/" }C"&':}l)}‘b }/“- hﬁ&,'}.a’\_
. + -
By definition f°! is free of kinematic singularities. From Appendix A
P

se 25,0 (B Th) 4L

2 LR (&.4)
where L('t) - _é(-:t (-tz_-t Zm(,f + (&J‘ﬂ”i)(d*c MM.))
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-

_ The integrations in the above expressions are carried out at
: +
fixed t. 1If there is a power series expansion of f"‘ L(t’S) in § near
. 'Q .

L() Which converges for some range of s, that is

-.Fm(’c,s) - f{;}(t, L(t))-”ﬂ;?ﬂ? %'}(t, L,(t)\ Fer G

/ A . .
then it follows, since G%/‘_ is a linear combination of

&

Py, N=1J +')M...

? N=J+aM—lc..J_1M+1’

-

wd - ’)M and ¢ . is a linear combinationoGPN

. - o
that, near %ac or T4 0,

J_qm
4+ - N
F':(,)‘} n [a.c B%-t S. (4.6) |

Some specific examples will now be considered in the light of the-

L 3303
previous points. Consider the process w"‘?-—a-‘n“'u , making the

identification
* +a

A py b ey Ty derm”

In the crossed channel this process can be written:

%tt
Dilr — c4 A or et o~ N

+h
% ’ !
Now relabel the process “TT" ~>N P as °~""b'—"5°l+é

Then

5 2
m_, = m, and ™ + m,, and t = (pa, + pb,) .

Using the results of Chapter 3 it is found that the following

combinations of helicity amplitudes are free of kinematic singularities:

455
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| - ,3, :
[J-C-J °°' "4'°°] “’/‘ /N[ (’m*”ﬂé o t- (M-m»)?-]x/aFz

(&4.7)

where B = pion mass m = nucleon mass M = isobar mass

The quantities al')a2§ 61’ BZ were defined in Chapter 3.
-+
Since any trajectory that couples to the T ‘Ti‘o system must have positive
J parity, G =+1, and I =1 or 2, there is a severe limitation on the
trajectories which can contribute. In fact the only known, zero

strangeness, boson trajectory with these quantum numbers is the P trajectory.

Now + = N AbA, S+ S§-N" Jf
f =3cc'a’3o°'. e N Ny 60 --de0

(4.8)

Further since the JD trajectory has positive J parity, it couples 6n1y to
. )

f' in the large Z limit. '.I.‘hérefclnre, f* 0 in large Z limit.
Then’ r T
' :Fc 'd"00 = /2 ddie0
- , (4.9)
and d-d’ _/‘ .

fca oo—-(") J‘-c-d,oo

The above expression for £7 can be simplified to the form

+ -—
= {cd;oo - ('nc‘{ -'F

adse0 ~c-d;00 : (4.10)

Using the results of the previous pages, we expect FJ+ and hence the

Regge residues to conta:.n the follow1ng terms,
' R
-t ~Lo<(o<+ ] (t-44°) [?f (wmf’ | (M
2 oo

. contains identical .
/)’:;,{,/”00 | ic factors

(4.11)
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The fact-or (p P_m)a-l descrlbes the threshold behav10r of F{}as
described on the previous pages. The [oz(oz + l)-] / arises because at

= 0 these amplitudes are sense-nonsense amplitudes. The factors of

(t - & 2) /2 and |t - (M - m)zl-l/2 are the kinematic singularities

as derived in Chapter 3. Amalogously the factors contained in the

remaining residues are

Y %, = o2
/33, -t Lo 8) ~ Et(atu)(o(-t)(x»‘ 2)] z&-(m{»n)z] 3&-‘7")(/mrsfrmf‘) (4.12).

_and

72 | -1 oL- 1 |
2 - -
Py 400" ”Et'(m*m)] [t—(mhm] (E“N O*wak) (4.13)

The asymptotic limit for the E functions can be derived by substituting the

' Ji
expression for Q%' in the expressions given in reference 1 for e"/“
and expanding the hypergeometric functions. .
Then

@5 M) (= )
° Pm’t \°NN

(4.14)

zZ T P ()
oL ! ! o |
() = BE M) [ |
E o\ ) LAEGE [o((f‘“)i\_ /?. W{-() ?‘nn‘ Pﬁ " (&4.15)
(Z) Ad(4-1) Pls)y /s N°F
L“ME [“("‘“)(" ‘)(“2)3 . 'ﬂé [ats) (e b (4.16)

where st = 2 (s - u)



The final form for the helicity amplitudes is then

3.
/2/2100

M (a41)  AlwTo [(M-M)z-»tjl/z

. s (-4
= [1- ex@(-)xrroc)—l A, o (4/“2-77)/2 ¥3/‘(2)oo (5/5,)
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(4.17)

§pgen = (17 eoplime) | ame, "« f*/“t)z Uy

e (S/S) 1 '

P(o(-{-( Awn T o [(M— -t 1/2'

r (£
- [l- exp(- mx] ¥y, '/‘oo(t) (%a\)
[y aiwre [t- M-,m}] [t-("“

{Vz'/z.)“

3/3 ,/_& . [x ezgn( 11 ] Lo, -c(pc—% %,E‘—(mw»)]

" (1) Auwteel

_ )oz-'l
E'an) LN

cancelled out of the final expression. The terms

The factors (p

Qii(Z) have been combined with the

sinw

. . . . -1
transformation in order to cancel the poles which occur in (sin M Q)

mAX  and the factors [@(a + 1)

" ]/

1/2 ~ have
1

(4.18)

(4.19)

(4.20)

r-\—(a—_-i-_-—]-_';' from the

from the Sommerfeld-Watson

when

o passes through a negative integer. The reduced residue Xh§t) is formed

by combining the remainder of the residue, after explictly removing the

kinematic terms described earlier, with the factor

(200 4+ 1) P(a + 1/2)

1?1/2
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The poles of rjﬁx + 1/2) at @ = -3/2, -5/2 are cancelled by the zeros

of FJ at these points.

Further undexrstanding of these expressions may be obtained by con-
sidering the threshold properties* of the amplitudes fcd;oo at the thresholds
in the t channel which occur whenever pﬂﬂ or pﬁﬁ~a'0. From Appendix A,we
see that p'ﬂ"ﬁ‘ goes to zero as t ~wim 2 and Py, 8oes to zero as t—> (M —I;‘m)2
or te—a(M - m)z. This second point is called a pseudo~threshold.

In order to facilitate the treatment of the threshold properties,

it is useful to define amplitudes governing transitions to the eigenstates of

: spin labelled by S, SZ for the NA system where § is the total spin of A

system and Sﬁ- is its component along the direction of motion. These

amplitudes are

Azz = f%—‘/ggco ' (4.21).
Mo = (%)l/z Ty-tgoo + (%’)% fg/z, joo (4.22),
Pus % g v Ve By 00 P
fl, = (_5/2( f-,/ 4,00 '—' g-%."/z;o 3 ) SR (4.24)

AN
But from Jacob and Wick‘ "’

J 2U+1) zz(.: vy at J
el J%)
AL’S (\/\/) “'[EIJ-H) - L . \ HslalJ,oO (4.25)
Franklln, in an earlier paper, has given expressions for the
behavior of AL'S"OO at both thresholds and pseudo-thresholds.

-The equation (4.25) above can be inverted by infroducing a sum

over L'. Further, AS'Zf'OO has the following expansion
s B

J J
Hs"'xjoo = %:(ZJH) dz’?-'ﬁ Hs’ﬁ.")oo _ (4.26)

*] am greatly indebted to Dr. Jerrold Franklin for showing me this result
prior to publication. ' o
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Moreover dJ ,(8) can be expanded as

J+h
(-2f5 (¥ 4y 0= IZ_J Cylio T ) B2
where , l ( 5 )‘ ,/2 ) ,
/1) = (2hery 2" (6“-/“)- Feml\ ATy (TLp
< (,u,/m_ ) 1y vl ( )(,» : )

(4.27)

F4.28)

where p'2> 0 and m' 3 n and n = max ({n|,{n']).

The other d}‘];u, (Z) can be defined using symmetry properties of these

functions.

This procedure leads to the following expression for AS 1,51
generalized to the case where both initial and final states carry

intrinsic spin.

AS’a’;sm = Z-(ZJ“)(ZM )Z ('l 'X)\ A ﬂr\ (”? ) (J g ').)x

LV~

ey : RV .3) (%) .H L
(-1) ‘(ZLH)(ZL’-H)_(O n! "’)"){o % -\ (T’%ﬁ—(“;i“*" L'S,LS

Now consider t ~(M + m)2 in the example *TN —>TN* . For J fixed

only a single L will contribute, L = J-S, and . Ai's“"OO ~ qJ-S .
- YA ’
Further as q=> 0, Z —y <@ and Pﬁ(z) > 7~ , which causes only
,£= J+ N to contribute to the sum over ,Z .
These simplifications imply |
%
F) s’ o (-—l) """'T(,;-_‘_M ¥ _—>_- (Quantities'
) o % (s-2) Independent
of )\ eand¥
as %,-)00

(4.30)
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)
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W

If,for reasons of paritygthe lowest angular momentum which can contribute .

is L = J-S+1

%

7‘/
ot = (1) ¥ factors independent of 21 and q
gS %300 ( s- (3_1)\(s+ﬁ)l i (231)
and for L = J-S+2 }/
tal, = ‘ (H.Lﬁ IA' >

}'whére A and B are lndependent of A and q.

This direct threshold behavior was specified earlier in our
expressions for the j’ Regge pole contribution. For example,at the direct
threshold t = 4u2 Wang's factors are just those necessary to cancel a -
similar factor in the factor sin GT . This behavior.ié verified by'this
cﬁlculation since it predicts a 1/qs7 i.e, a qo, behavior at this
threshnld. Similar results hold at the threshold t=(M+ m)z. it is
1mportant fo note that there are just two lndependent amplitudes at this
threshold 1nstead of the usual f;ur, because of the relatlons just derlved.

Specifically,fbr. j9 trajectory'for the 8=2 g@@lifudes at the

threshold t = (M +-n02, we have

An= -k, x_’%,/_' [_'—- | (4.33)

Ay = -4K L[é/'] | L (k3w
g .
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1f ,for reasons of paritygthe lowest angular momentum which can contribute .

is L = J-S+1

%

Q ~ (., )'1/2 ¥ factors independent of 2 and q
5'4'j00 s—- (s- .L)\(s+ i (4.3
and for L = J-5+2
ey 1 (9*5 A )
Hsz Y00 = ‘) [S W(s“ 1 (4.32)

tlwhere A and B are 1ndependent of A and q.

This direct threshold behavior was specified earlier in our
expressions fqr the j9 Regge pole contribution. For example,at the direct
threshold t = 4p2_ Wang's factors are just those necessary to cancel a .
similar factor in the factor sin O.E . This behavior.ie verified byrthis
celculation since it predicts a 1/qS, i.e. a qo, behavior at this
threshold. Similar results hold at the threshold t= M+ m)z. it is
1mportant fo note that there are just two lndependent amplitudes at this
threshold 1nstead of the usual feur, because of the relations just derlved.

Specifically,fér. 19 trajectoryvfor the S=2 eﬂplifudes at the

threshold t = (M +-m0 , we have

H;g,-; -K, *..— [Z4‘] | (4.33)

Aot = =4 _-[ :{ | D

.




and for S =1

where Kl and K. are two independent amplitudes.

2
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(&4.353)

(4.36)

The behavior of these amplitudeé at the pseudo-thresholds can

" for the behavior of the amplitudes Ags L's at these points.
’ H4

_be considered in a similar fashion. Franklin has given a prescription

At the

pseudo-threshold only a single L = J-S 1s expected to contribute, as

before. However, the dependence om ¢ is_modified at t= (M - uoz. Then

%
Bar g Lh]

This pseudo-threshold occurs at t =

physical region in the present example, and so we will inve

(4.37)

(4.38)

(4.39)

(4.40)

0.09 Bevz, which is near the

stigate the

consequenceé of letting such conditions apply, at least approximately,

" at the edge of physical region.
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If we define

‘Xzz(t) = Xg/z"’/z;Oo(t) 'b’;o(ﬂ =J{T’éy@'0£’t}

(4.41)

GIEN A PRI

2/ %) Y0 VO%EST
. t) L )

w0 = B Ty ) e

: Then it follows from equations (4.41), (4.42), (4.37), (4.38), (4.21),

(4.22), (4.18), (4.19) and (4.20) that

Yaulth.  ame, (x—t)(’f"ﬁ“) (- (il )" tonf-2) (4. 4)
7£zzu9 (Eig;) % |
and for large s ' te{ﬁqﬂmq'
= 25, (Hom) (1) B2z - (4.45)
Similarly,
Y, = 237 5o (H-r)u ¥,
(4.46)

These last two relations are’ the result of applying the constraint
only to the leading power of S' of the Regge amplitudes. All t dependent -

s . . 2
quantities in these equations are to be evaluated at t = (M -~ m) .
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%
Rho Trajectory Contribution to PP=—S=PN .

The treatmeﬁt of ‘this process is similar to that of thg previous
process excepting two complicationmns, the occurrence of nomnsense-nonsense
amplitudes and.of.res;rictions dué to factorization,as well as somé
difficulties associated with the kinematic singularities at t = 0. We
1ist'§he singular factofs th;t are extracted froﬁ the Regge residue of the

f° trajectory for the process pp -~ pN*. Then

- %
ﬂ/’/g,}é-é /’/ % %% ,/33/3 %% ﬂ{t (m—M)] O’NN/’NA) 1[_;4(0(“)] 'z(“ﬂ)
| 1 z -2 A
/f;-'/- P (Z‘-‘@mz)/z[t-(mﬂn)z] ) </’ui:‘ /",vzs)d s s f4_4§)

Bithinis o (ttn)” [_t (M{-xm}] [t(n-,m) T PNBJ’L&)OC (4.49)

‘i
: /e?/z%}'/z"/z, /5’/z%., Kt ’Vrt [M-/m]] * /NN éms> () (4.50)

/g/z /}’—'/ ~ T'/(z‘—l!/m ’éﬁ- (m+M) j (Puu »% x@,[d_,)(ﬁg]/(z» 5.

The superscripts on the B indicate whether the positive J parity combination

occurs in fcd;ab + f-c-d;ab or in fcd;ab - f-c-d;ab as Z -~y o0

Moreover, the factorization theorem states

Pun b P 6% . Pypsun . Pruhhs

@E@ . | /4212&3}ﬁ7;é fgjéf;§3547/£ /5'5154} ©-y ' /6Eé?jéJ££—§é'

(4.52)
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Evaluating these ratios we have

Y
‘ tl/z 1 « :." [} Nt Z
ﬁ%l/a';x'/i/ﬁ%yzs :/7_..:/:} ' ’6/3' Lk ///5%_7‘}%_%
: -1
vt

PR B/ By s et Pohthi M o 14 t

(4.53)

In addition, factorization enables one to relate these helicity amplitudes

to processes like ‘® N — 4 N* with relations such as

7 Y%
7 _- 2
/52 2j00/ = /3%'/2; XA ~ 1
: - :
P4 ;00 Buss %% (4.54)
The left-hand side of this relation refers to the residues of T N -TN*,
.the right-hand side to those of NN—~»NN*. The simplest solution to these
e.quatioris is to place a further factor of t in the residues /5% '/z') l/z'l/z.
Pun; u-u and Pty
A different approach to this matter is to return to Wang's derivation of
the kinematic singularities. The £1/2 singularities come entirely from
the crossing matrix, arising out of the singularities of cos X and cos X,
at t = 0. (The channel process A+ ¢ —» b + D has been identified with
.p- + p‘-);+ N*.) Then
cos x_ = L [t(s + m2 - Mz) + 2\::12(M2 - mz)] (4.55)

S.1 t'/i’-(t—émz)%‘

The crucial point is that although cos X, has a 1/tl/2 behavior as t —>0
the leading term as s-» @ behaves as t]'/2 at small t. The first behavior

leads to a.structure

st oL208g480) o (1/2

ot independent of helicities.
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This behavior can be verified if omne examines both linear combinations

+ - . s . . .
fcd;ab and fcd;ab' Fpr all helicity amplitudes,one of these combinations

. -1/2 o . . .
contains the ¢t / factor. We argue that,since we are interested in the

t dependence of the leading terms as s ==K, this behavior should be

1/2

modified to t . In any case,cos X is bounded by 1 when we are in the §

channel physical region and theA{:-']'/2 singularity cannot be supposed to be

effective when we are in the physical region, even when- tminf—y 0 as 8
becomes very large.
Among the factors which have been extracted from the Reggé

residues are some factors of (. The occurrence of such factors in the

sense-nonsense amplitudes was explained previously,as being due to the

analytic properties of these amplitudes in the J plane. The factorization
theorem for the Regge residues can be written in a manner which relates

the. product of two sense-nonsense residues at & = J_ to the product of a

sense-sense residue and a nonsense-nonsense residue.

[

For éxample . e
. vy N f) . l-fnl'y

/32?23);ﬁ5@. /gféz?i59§‘?§ - /gjépél 72/&'4/5A2'4b %%

This relation immediately implies‘that'one of the residues on the right-

hand side of this equation should contain a factor (@ + 1) . If, as in

the p;esent work, this factor is placed in /6;ﬁ’f§jﬁi°;ﬁ , the pole

in the nonsense-nonsense amplitude is cancelled and the trajectory is said

to have chosen sense at this point.

It should be pointed out that Trueman and Muellar<7) have recently

shown that the existence of fixed poles in the scattering amplitudes



alleviates the necessity that a trajectory choose sense or nomsense at the
5t ) (19)
point Jo’ where F is of the wrong signature at Jo. Mandelstam and Wang
have demonstrated that such fixed poles are possible in any theory that
possesses a third double spectral function. In particular, Trueman and
Muellar showed that it is no longer ﬁecéssary to have the helicity amplitude
for a process decouple from the trajectory when ¢ passes through an integer

£ Y\\ lm\ . However, in the present calculations it is always assumed
’

that the effects of the third double spectral function are small and that

" the trajectories will choose sense at such points.

If the edge of the s channel physical regiom is approached at
large fixed s by letting t-—-?tmin, the expression given in Appendix A
reveals that Lim ‘cos B..= 1, This limiting value of cos 6_ wculd seem

. t -—)tmin t t

to imply that the Regge approximation to the scattering amplitude should
break down as t becomes very small. However, in a recent paper Freedman

1 .
and Wang(2 ) have shown that, for the similar problem of backward 1f?
scattering, the assumption of analyticity in the momentum transfer is a
strong enough condition to enable one to prove that the S'a behavior can
be extended back to zero momentum transfer. This behavior was realized
through the intervention of daughter trajectories with singular residues.
In the present work it is assumed, in the same spirit, that the amplitudes

t a-a
which are free of kinematic singularities, the f'cd'ab’ behave as S' m
. H

everywhere in. the physical region.

Tt follows that the helicity amplitudes for this process can be

expressed as
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3(‘%% i _ [l-ex[O(-t'r?ol):{ M('z.) (QtJ o Y3 y ( )a(-]_
P{oﬂ-l) Aot ['t—(ﬂ—m\.) ] z S,

Similar expressions hold for :f/

'a"&} ‘/2 '/a and f%.yz; I/z '%\'-

(&.56)

with the appropriate residues

- [i ex,;(lf'd)] i "“""91: d[a(t)X St il Y{f—#/ﬂ/ (7.‘-'6‘71‘/"1)2)/

) st o (4.57)

3{%%’ 2

F i - L1 esbind] Yo Mm(@) .

X ”54)/2/1. )1(0(-}-!) I Lt —m\k][t (me)] (f_;,/m) (4.58)
| 2
Fomsnn = Lizerhl (inw)] % “"at o« Y””//z/z( S(U* 59
TR ) amte, [l ]

A similar expression holds for JC/"‘V?_ /1

. eub(m) /z(f 4,,,{1) (f(fzm) ) C&O(gt of(( Poesen (3 )
U0l [[1 |

(urr) aum .
where . (4.60)

Sp = ('5"'“')/2, .

The other amplitudes are implied by parity conservation and the fact that

" only positive J parity contributes.

Pion Exchange Contribution to PP —3»PN*

The calculations of the amplitudes for this process are very
similar to that of the previous process except that there is the added

restriction that the pion can couple to the NN system’ only when they have
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the same helicity. This restriction follows immediately from the fact
that G = (- 1)L+S+T for an Nﬁ'system. In order to couple to the pion,
L must be even and T = 1 for the NN system. Now,if the nucleons have
opposite helicities,S = 1, which implies G =+. Hence the NN pair with

opposite helicities can't couple to the pion.

Then

- 2 1% )
El{—ﬂ‘ﬁ(‘f”‘lwag (SOY (t-40 Vf/ Wl‘t"/:

-éAJ/../L r(o(-l't Ay el | L.t (M+m)1]2

(4.61)

$ gy : Luebimd] g "‘(%S“(f’ )2 1 7’/Z//;/z. e

Plawr) st [t- Chem)? %
L
fuuyn - Lrek Cu] s )M t 7"/;/‘*/’-/1 | (4.63)
To+) anfer S tv(n-m*] 2l t-lism )

{"A'%;%‘/ [Hexp( /.Tx):[ i @-{nm)](st - 2(14_4,mjz ,(éx_,)b’g/(i)‘x/{(é; 64)
: F("‘*‘") AP ?

Again parity and J parity can be used to deduce the other amplitudes from
those given. There are threshold constraints for this process. In order

to apply such comstraints,we must consider amplitudes with total spin a

. good quantum number. Such amplitudes are

fly2™ ;35'  hh (4.65)

% )2
Ay, =(%) f&’Vz')'/z'/z %) 7[35%3'/21/7- (4.66)

( f’/ '2 + -7(:.:/2-//‘”%'/;2_) (4j67)
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| %
Q“ = ( ) 3(/'/// "'(A*) 2.](3//5/,4 : (4.68)

Now for pién exchange? the NA system has L. even and J even?implying
that for S.= 2 and J fixed,the minimal value which L cah attain-is J - 8.
For S = 1 the minimal valpe of L.=J -S4+ 1. If these amplitudes are
examined at the direct thresholds, the behavior is:éxactly that contained
in‘the expressions for }éﬁ'Wﬁ}}iﬂé ete. There are some constraints on
the amplitﬁdes at these ﬁoints»but we neglect such conditions since the
thresholds occur'a long distance from the S chammel physical region. When
thganalogousprocedure is attempted at the pseudo threshold only omne
constraint arises. The reason for this is that for L =J - 2 and L =

we have exactly the same pseudo-threshold behav1or q -1. These two partial
waves é;ve an overall helicity dependence of the form A+ B %. at this
threshold to describe the three S = 2 amplitudes. This occurrence leads

’

to a single constraint. This constraint can be written

{22) S L{-ch' WA s ‘Jco % =  (4.69)

. This constraint then reads, dropping all terms except the leading power of

s' .
— (M—m‘t) o((o(-l)\ﬁ/ Av A ‘(‘(M ’”‘)d[/) Y- ’/71/9./7. xp) TCAD

437 '\‘5/;1'/2;/1'/22 =0
)

(o]
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CHAPTER 5

. THE PROCESS T p—>T N¥ &

A parameterization of the 19 trajectory eon;ribution to the
helicity amplitudes for this,process was -given in Chapter 4, including
some possible ansatz for the t dependence of the Regge residues and
possible relations between these resxdues. In thlS section the relatlon
of‘these ansatz to the experimental data will be explored.
Tn terms of the amplitudes given in Chapter 4 we have .
y t R |
de w3 | fa| 27 ~
dt ch esed [(s-cmy»)“)(s-(«%")] - (5.1)
This relatlon follows from the unitary nature of the crossing matrix.
®t -
| 2 ({CF f%ntan, = Jjo md ;Egsﬂﬁ'd

(5.2)
in deriving. equations (5.1) and (5.2) we have made use of the relation
' L ~c+d
£ MMy GyRersa
sored —t - { |
2l 1\ _ ooy o (5.3)
o b
which comes from parity comservation. :

This relation simplifies to

' d-¢
_J(;O',—c.-d = - (°l) 3(0“}‘-0\' (5.4)

By making use of this relation the sums in equation (5.1) can be restricted

, to those amplitudes which are listed in section 4. This procedure intro-

duces a factor of two, but this factor is immediately absorbed into the
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residues by defining oo c,cl \r osc_e_l' . This factor introduces
the two on the left-hand side of equation (5.2). Further the relation (5.4)

introduces a minus sign between the two terms of equation (5.2) for

f3 1 if this equation is expressed in terms of the four amplitudes
Lh . .

listed in Chapter 4. Moréovér, since the phase of all helicity amplitudes

is given by the signature factor, R.Q. (fm\_ m\,l) = fm’t)m’

for this single trajectory model:

The t dependence of the amplitudes f;o cd in the physical region

3
-

is examined mext. TFor this process the edge of the physical region is

given by ¢ (s,t) = 0 where (!)(s,t) is given in Appendix A. For s large

it follows that

N A -

5% (5.5)
where §' was defined in Chapter 4.
Hence for px;:actical purposes we can set tmin = 0 for this process.
Furthermore, in the region of interest,' that is, t € 0.5 (Bev)2
‘Aw"etl = 'Z,S/ l-t t/;wm ]
. Ty L (-2 (- -442) (-~ 1) (5.6)

Figure'l shows a plot of sin Gt as a functlon of t in the s channel physical

region. Note that it wvanishes at the edge of the physical region and peaks

. g
at about t = -.10 (Bev)?. . Since all amplitudes include a factor lsin Gt\

, Where ’)\ = no. of units of helicity flip, all amplitudes involving helicity

flip vanish in the forward direction and should peak at small t if the
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other t dependences in the problem are not unreasonably strong. If the’
contribution of the non-helicity flip amplitude is not equal to zero, but
is of the same order of magnitude as the helicity flip amplitudes the
density matrix elements 1933, j93’1 and /93’_1 should approach zero, for
t ¢ -0.10 (Bev)%' as lt\-i» 0. This situation can be modified however

if the non-flip amplitude is approximately equal to zero., 1In this case

“only goes to zero, since only contains a factor sin O _.
3,1 _ 3,1 t

4

Ihgse conclusions are, of course, dependent on the validity of .the
Freedman and Wang extension of the Regge‘expansibn to the forwgrd direction.
There ex@sts data for this process at incident pion lgboratory
momenta of 2.75 Gev/c, 3.54 GevV/c, 4.0 Gev/c and 8.0 Gev/c. The differen-
;igl cross sections at‘these energies have been given by ﬁ. R. O. Morrison(
while the density matrix elements at ‘4 and 8vGev/c ére given in the paper
of Crijns et a1. (2
The differential cross section data given by Morrison contains
a forward péak at about ‘t‘ = 0:05. It appears to fall off for |t l<:().05
at all energies. The existence of this forward dip in our fits will be
used as one criterion for differentiating betwéen.the "oood'"" and '"‘bad"
fits. The second.interesting feature of the data is the energy variation
of the density matrix elements between 4 and 8 Gev/c. One of the features
of a single Regge pole model is that itAgives all the helicity amplitudes
the same energy behavior, provided,of course, that they can couple to
the pole under consideration. This situation leads immediately to the

prediction that the density matrix elements, as predicted by a single Regge

22)
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pole model are energy independent. This prediction is clearly incompatible
with the experimental data for ‘F;' by at least one standard deviation.

It is temptlng to propose the mechanism of direct chamnel resonances
interfering Wlth the Regge pole terms to explain thlS energy variation of
the data. However, recent work involving finite enefgy sum rules(24) seem

to indicate that the Regge pole analysis and the partial wave.analysis in

. the direct channel involving resonating partial waves are each complete

representations of the scattering amplitude and that these representations

£

should not be mixed. 1Im this case it is necessary to attempt to explain
this energy wvariation pf the density matrix elements with terms arising
out of the Regge expansion; that is, with lower Regge poles or Regge.cuts
or even a term from the background integral interfering with the }p

contrlbutlon. There is evidence for a /9 traJectory contributing to ‘TN

(24,25,26)

elastic charge exchange scattering. This trajectory is supposed

' to have an intercept about 0.4 below the jo trajectory and so might lead

to suchAinterference terms. These considerations naturally suggest fitting
the single Regge pole model primarily to the 8 GeV/c data. The fit that

is achieved at this energy for the various ansatz for the residues will be
compared to experiﬁent at lower energies however.

A numerical least-squares fit to the experimental data has been

attempted for several sets of assumptions.
_In the first fit it was assumed that o (t) = 0.56 + 0.81 t and
S0 = 2.0 Bevz, in agreement with the Arbab and Chiu(27) fit to piom-nucleon

charge exchange scattering. Furthermore, it was assumed that all the
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_reduced residues are independent of the momentum transfer and of one

another. These reduced residues were varied to achieve the fit which is
’shown in Table 5.1 and in Figures 3, 4, 5, and 6. .It is interesting to
note that this fit has the pa?anetér 7‘%&}2)V§9& = 0.0, which implies
that Rej?3’l-vanishes in the fofward direction as sin-Gt, while all other
density matrix elements reméin finite at the edge of the physical region.
At.8.GeV/c incident momentum the xz per point is about 0.75 for the

. R . -2, . .
dlfferentlal cross section data where x~ is defined in the usual manner

to be {. -2
2 _-f
X = ezk . THEORY ExPERMENT
*HeRMNeNT AL ,
PoinTs A : (5-1

A = experimental error assigned.
Furthermore, the density matrix elements are in good agreement with

experiment, all lying near or within 1 standard deviation of experiment.

At 4 GeV/c incident momentum the x2 for the differential cross section is

about 1.5 per point’which represents a barely adequate fit. At lower
incident momenta the experimental values are noticeably exceeded by the
calculated curves. This circumstance necessitates a secondary contribution
interfering destructively with the jD tréjectory contributions., It is noted,as

a matter of interest, that the fit to the 8 GeV/c incident momentum data is

relatively insensitive to about a 10% change in the parameters.

T+ is perhaps amusing to note that a second, relatively simple
fit to the data can be achieved in the following manner. It is assumed
that @ (t) = 0.56 + 0.81 t and the reduced residues are independent of

momentum transfer. These residues are chosen such that

3% /2 - 0.9
00, Hh-Yz -K;03347&, 0.2
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while \500.’,/2; Y = Xoo; B-Yp O - The scale parameter s, and"‘b’c;q} Yo

‘are then varied to achieve a best fit to the data. Therefore, by

construction,this fit gives fll = 0.29'Re f3,l = 0.0,.and Ref3’_l = 0.21.
Since only spin £flip amplitudes are used, the forward‘dip, which we have
accepted as one of the criteria for a fit, appears automatically. The
dependence on momentum transfer is fixed except for a.term exp(-(1ln so)a‘t)
which grows exponentially in'the scattering region if so'> 1. The best
fit, for s, = 5.64, has a X2=:°.9 per point for'the differential cross

section. Again the results at lower energies become progressively worse,

*. although both the 4 Gev/c and 8 Gev/c data‘can be said to be adequately fit.

The third fit to this process explores the threshold constraints
at the pseudo-threshold t = (M - moz,as discussed in Chapter 4. Since these
constraints occur much closer to the physical region than the P trajectory
pole at ar = 1,it is possible that they might be at least approximately
satisfied for t £ 0. .

The constraints, as listed in (4;11.8) and (4.11.9), reduce to two
the number of parameters in the fit. .If it is demanded that the helicity non-
flip émplitude be much smaller than the heiicity flip amplitudeg in order
to insure the appearance of the forward dip, only a single parameter
remains to fit fhe data. This parameter is the strength of the § = 2
ampiitudes. In this case,the density matrix elements are determined to
be Fll = 0.13, f3,1 = 0.18 and ,PS,-l = 0.07. These numbers bear no
resemblance to the experimental values. Further the differential cross sec-
tion disagrees with experiment. If we drop our requirement df a forward dip,

then much better numerical fits can be achieved and x2 per point reduced
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.to about 1 per point for both the differential cross sections and density

matrix elements. However these fits are rejected since they do not contain
the dip, which was accepted as a griterion faé an adequate fit.

If the residues are chosen, not as constants, but as linear
polynomials in t the number of- parameters rises to 6. There are a large
number of adequate fits in this case, since there is not enough experimental

information to determine 6 parameters.

. Pion Nucleon Charge Exchange Scattering

s

This reaction has been studied by many authors and satisfactory
fits to the differential cross section have been obtained by several
authors. The most useful of these fits is that of Arbab and Chiu(27) since
their parameterization is closest to the helicity amplitude formalism.
Although the Reggé polg model appears at first sight to give a vanishing
pola?ization for the recoil neutron,Duran&(28>has shown in a recent review
article that a closer examination reveals a variety of plausible reasomns
which might account for the nom zerA-value of the polérization.

Chiu and Arbab parameterize their fit as follows

do (at) = _‘_(M_\Z (pgaz)lmﬂ_t_ v o A\ (Bl

dt ’ | Y4 a4k “4n* (liznz)- 5.8y
where ol
- - E
H - Ctk) { QKk( Uﬁ&) (ET)
L ST oL o

B

D(t)E |~ exp (- i) _g_ “

AT 0
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in the above expression B represents the helicity £lip amplitude and A
the helicity non-flip amplitude. The symbols § and t are the invariant
squares of energy and momentum transfer, p and E .are the incident pion

momentum and total energy in the laboratory system, k is the centre of
mass momentum, M is the nucleon mass and Eo is a scale factor which Chiu
and Arbab take to be 1 GeV. Chiu and Arbab find that the data is well

represented by the following set of parameters

o (t) = 0.56 + 0.81 t o C(x) = o+ 1) C, exp (clt)
D(t) = a@ + 1) D exp (Dlt)
. where
C = 2.3 mb GeV D = 38.9 mb
o - o] ‘
¢, = 0.01 Gey 2 p, = 0.01 cev 2

Our parameterlzatlon will be slightly different from that of the previous

reference in order to facilitate use of the factorization theorem
_In the t channel we consider the process
M — NN
Then the following t channel helicity amplitudes are free of kinematical

singularities

(-am3)? fyes
t-4m M> 003 ++ (5.9)
~}/ f—
-1 T 2 2’3[\ , .
(4w 04 ) it (t-4mz) o 4 - (5.10)
J -
Using the>method develpped'in the previous chapter the following form for

the differential cross section can be derived.
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R
L II—MP( Luol) [F(o(-}lw'né
. R 2 JRE 2 .
ooy @) # 1Toos el () laal oo
(t- “'”"u ' /(5.11)

where

. (- (mep) ][/L (o) ]

For 1 <<‘+”nh1 the following identification can be made
‘KOoB'z'/z‘ = 4(4/’”'*’)[ ' ) 4 e (5.12)

i 2
o, ol = 7 [MGsa)] 0

Therefore

- -3
X = 240 GV
66 /'/2 )
J7A b/oo,/zﬁ
We note that the helicity flip amplitude dominates the helicity‘non-flip
away from t = 0. Because of the factorization theorem this feature will
be found in all processes where the.nucleon-nucleon Regge f) vertex occurs.

This helicity flip dominance will result in a forward minima in all

processes where j9 coupling to NN is the dominant coupling.

The Process PP - PN*

Only the j9 and W trajectory contributions to this process will
be discussed in a quantitative fashion. The JO contribution will be dis-

cussed first, making use of the factorization theorem. The possible

(5.13)

(5.14)
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contribution of the pion trajectory will then be explored.

(a) j9 Trajectory Cdntribution

In Chapter 4 expressions for the helicity amﬁlitudes for this
process were derived under the assumption of domination by the_fg
trajecto;y.' The fits for this.pfocesé are determined up to a single
parameter by constraints from the factorization theorem for Regge

residues. An examination of the definition of the reduced residues, the

) 3-{.a:}(t), reveals that they carry the factorization property attributed to

B{}}(t). These reduced residues are then determined up to a single
parametér by:Ehe fits given previously for be-éﬂ?N and ?fb -ﬂ?ﬂoN*f*
This parameter would be determined by a knowledge of the ﬁﬁfrvcharge
exchange scattering in the Regge pole region. The expression for the
differential cross section and density matrix elements will be compared

to experiment at the highest energy possible since the JP trajectory is
most likely to.be dominant at high energy. The single parameter remaining
determines overall normalization of the cross section and is chosen to
give the best fit to éxperimentjwhich is shown in Figure 7. The experimental
data is that of Anderson ét al(29) at -15 Bev)c'inc;dent proton momentumn.
The resulting curves are obviously in very poor agréement with the
experimental data. At all incident momenta where /9 dominance is hypothe-
sized, this procedure leadé to the brediction of the forward dip and leads

to expressions for the cross section which have a flatter t dependence

than is found experimentally. There is no experimental data which would
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indicate a forward dip at any energy as can be seen in Figures 8 to 14,
Furthermore, the density matrix elements of the N* produced by nucleon
excitation will be equal to those of the N¥* from pion excitation under
the assumptions of constant residues‘and the factorization theorem. This
prediction is tested by the data om nucleon excitation at 4 Geﬁ/c(so)-and
5.5 GeV/c(3l) and the data at 4 GeV/c and 8'GeV/c on pion excitation.
Moreover, since a single Regge pole model predicts that the high enexrgy
values of the density matrix elements will become independent

of energy, these results can be expected to be independent of the:small
energy differenceé. An examination of the experimental values, as listed
in Tables 2 and 3, shows the density matrix.elements for the twb processes
to be widely at variance. Finally, it is noted that the dependence of

the cross section on the incident momentum will be approximately (Fﬁudhﬁ)

"if the JD trajectory is dominant. This dependence is weaker than that

found experimentally.

Some of the previous results haVé been ipférred using the
factorization theorem for the residues and the assumption that the reduced
residues are independent of momentum trénsfer. However, in Chapter & an
extension of the factorization theorem to the leading power’of s of the full
t channel helicity amplitude was giveﬁ. This theorem points out that the
conclﬁsions concerning the density matrix elements and the forward dip

are independent of the assumption of constant residues. This conclusion

follows from the relation &

- & —
- = ATSNN LECANR
:F‘uv-a-ﬂﬂ’ :F NN-> NN .

00;00 cdsab ecoo oo;ab (5.15)
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Tf this expression is multiplied by its complex conjugate; with d

_replaced by d', and sﬁmmed over a b ¢, the equality of.the density matrix

elements of the N* follows immediaﬁély. A similar procedure yields

equality for the pro?ucts of cross sections. This procedure makes

obvious the assertion that the dip is predicted not ln the différential'
section .

cross for NN—>NN* but in the product of‘differential cross sections for

NN—=>NN#* and @@ —>ft# charge exchange. It is only after the assﬁmptioh

of a specific ansatz for the residues, which cauées'the (' charge

- exchange cross section to have no forward dip, that the earlier prediction

for the JP con;ributions to NN —»NN* is valid. However, there is no

reason to expecf such a dip in A Y charge exchange scattering.

We are of the opinion that the arguments presented in this .

section constitute a strong case against j9 dominance.

(b) Pion Trajectory

The pion éxchange amplitudes for NN.;—aNN* have been listed in

Chapter 4. 1In this section we wish to demonstraﬁe that it is plausible
that the pion trajectory is éiving the major contribution to this process.

. The first indication of pion trajectory domination comes from an
examination of the density matrix elements of N* produced in the bubble
chambef experiments of Alexander et alSBl) and Colettiet a1530) at
5.5 GeV/c and 4.0 GeV/c respectively. These values are not substantially
different than those which would be found from elementary pion exchange

with pure derivative coupling to a Rarita-Schwingew wave function for the

nucleon isobar.(32)
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Again the factorization theorem for  the t channel helicity
amplitudes can be used to write down the relation
j(ﬂf.,gu' ﬁN""ﬁN# {ﬂf-eiv'u* J(;J-N"PNE
cd‘,al) ﬁf;g‘\ ad;g‘\ l‘f,’a.ﬂr

The above expression is multiplied by the complex conjugate of the identical

(5.16)

expression with ﬁ—->h' and summed over ¢, d, g, e, .£, a, b. - This proce~-
dure leads immediately to the prediction of equality of the N¥* matrix
elements produced 1n the processes NN -——»NN%¥ and AN -—7f N* provided
that. the .pion trajectory dominates in both these processes. It is not
necessary that the pion dominate in MN = fN and NN ~—» NN; however, it
must make a finite contribution. The process W N —-7f N* can hax}e a
contribution only from the A2 or A trajectories among the physice}lly
verified trajectories. However, t.:he dominance of the A2 trajectory would
give fll = 0.5, f oo = 0-0, and Re )0 10 = 0-0 for the f meson density
matrix elements. Experimentai values(23) are foo = .77 and Re flO =
0.1z t 0.025. These numbers seem to indicate that the Az trajectory does
not play a major role in W N -—»f N%.. If the W trajectory is assumed
to dominate the process 4r N -—‘//0 N*, an assumption which is at least
plausible in the light of the previous arguments, a tes-t of ‘i dominance
in NN —3=NN* is. found in the comparison of the density matrix elements of
the N¥* produced in these two processes. An examination ’of these numbers,
which are listed in Tables 3 and 4, reveals that there is much better

agreement between these sets of numbers than those examined in the test

of f pole dominance. The agreement between the two processes is at
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least as good as that in each process at the two energies measured. Since
this single 4T trajectory model predicts the density matrices to be eneré&
indéﬁendent, these variations must be ascribed to experimental error or
background effects of the type described earlier.
Using similar arguments to those used earlier in discussing
"47N -3 ff N*, it can be shown that the density métrix elements _j93,3,
,fg,l and ‘f>3,-l of the N* produced in the nucleon-nucleon collisions
vanish in the forward direction if the A trajectory dominates. This
situation arises because G parity allows the pion to couple'to the NN
pair only when they have the same helicity. This condition theﬁ causes

the factor (sin © ;L » A being the number of units of helicity flip at

t

-the NN* vertex » to occur in the amplitudes given in Chapter 4 for this
process. There is no evidence for this behavior in the Coletti et al.
and Alexander et al.ekﬁeriments. However, since in both cases,the data
is averaged over the régidn from -t = 0.0 to 0.1 Bev% it is not obvious
that'this behavior would have been detected.

The data on the &ifferentialhcross sections comes from two
sources. The two aforementioned bubble chamber experiments and the missing
mass experiments of Anderson et al(zg) and Blair et al.(33) " This data
rangés in incident momentum from 2.85 to 15 Gev/c and in momentum transfer
from -t£00 Bav¥to «t:= a.20 ﬁﬂ-“a. A least squares fit has been made to all the
data including the data on the &ensity matrix elements. In terms of the

amplitudes listed in Chapter 4, the differential cross section and demsity

matrices are
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g SR
%?‘ = /.L(A. ) ]f/}’l'%.'/z lg/z.-/; ’/z'/z‘ + \f ‘;'] ljc? {4%1 s 17)
B = % j b /m’fmé %1 /Z /’(a 'A/J 518
m .
where
| b f |
by = Y AL -G

There are no particularly distinctive features in the experimental data
and so the only criterion used to discriminate whether a fit is "good" is
the value of x2. In some cases, notably in the fits to the data fFom a
single laboratory, low values of x2 are rather easy to achieve and the fit
is not unique. However,K when the datéAfrom all laboratories is included,
the task of fitting the data becomes more difficult, primarily becaﬁ;e
the data from the two missing mass experiments cover different ranges of
kinematic vgriables, but élso because the data from the two laboratories
are somewhat inconsistent.f This parpial inconsistency can be most easily
recognized in the data at 6 Bev/c incident momentum.

The least squares fits to these processes are shown in Figures 8
to 14. This best fit depends weakly on the relétive weights given to the
x~ from the density matrix elements and the x2 from thé differentiél Cross
section. In most cases, weighting factors are given to these two terms

'

such that their contribution to the total x2 are about equal.

The first set of fits presented were calculated using the formula
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given in Chapter &4,adding the assumption that the reduced residues are four
linearly independent quantities and are independent of momentum transfer.
We then describe three different fits; in the first we have fixed the pion

trajectory to have the value « (t) = =0.02 + t and So = 2.7 Bev2 and

varied the four residues to achieve our fit. This procedure allows us to

arrive at the fit in Table 4 and Figures 8 to 1l4. The density matrix
elements are shown in Table 4 along with .the values of the reduced

residues. There is not good agreement with experiment. The difficulty

. arises in attempting to attain a ‘large enough value for jo 33‘without

causing Re f73,1 to be much larger th§p experiment. Fufther, it is
difficult to fit all the data points simultaneously for the differential
cross section although there does not appear to be any systematic trend

in the deviations. 1In particular, the data at 6.0 Bev/c disagrees with
the calculated -curves altaough the agreement both aBove and beiow this
energy is satisfactory. Moreover, the data points at 7.88 GeV/c which
have —tY0.30 Bav* are markedly below the calculated values but since these
‘are the oﬁly points with -tyosoRsvy and because these points have such a
large scatter, there has been no attempt to fit these points. For the
remaining data points xz is of the order of one per point. The assignment
of an error to these fitted parameter; would be meaningless because of the
arbitrary manner in which some of the data points have been excluded.
However, there is a regién in the parameter space which has a size of
about 10% of the value of each parameter where x2 for the differential cross

section does not vary substantially.
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1t is interesting to note'the cause of the difficulty in
obtaining good fits simultaneously to the differential cross section and
the density matrix elements. This difficulty arises because all contri-
butions to P33, f,3,l apd. f3,_1 contain at least 1 spin flip amplitude
and all spin £flip amplitudes contain the sin Gt factor., Thué, in order to
keep the f33, f3,l and f3’_1 nonzero, it is necessary to include
finite amounts of these amplitudes with strong forward dips and weaker t

dependence at large t . Since we have fixed S, and ¢ (t), the t

dependence of these. amplitudes is fixed and tends to exceed experiment.

Thus, a fit to the density matrix elements implies that the slope of the
differential cross section is less than measured experimentally.

in order to explore fully the content of the previous remarks,
two other non;constrained fits will be presented. 1In the first of these

fits,the slope of the pion trajectory has been changed to l._S/Bev2 and the

reduced residues varied to obtain fit. 1In the second, no attempt to fit

the density matrix elements has been made, and only the amplitude

fl/2 1/2;1/2 1/2 has been retained and the fit to the differential cross
section attained by varying the slope of the pion trajectory. This second
fit is approximately equivalent to that of Margolis and Rotsstein(33) except
that we have included the threshold factors which differ from those of the
Born approximation. These fits are shown in Figures 8 to.l4. The
parameters, density matrix elements and x2 for these fits are shown in

Table 4. By choosing a larger slope for the pion trajectory, larger slopes

have been induced for-all the heliéity amplitudes. This change
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demands greate? amounts of the helicity flip contributions to fit the
differential cross sections. This procedure allows somewhat Better fits
to the density matrix elements with o (t) = -0.02 + ¢ (1.5). However,
this data would have to be regardéd as scanty evidence, at best, for .
assigning the pion trajectory a larger slope. Moreover, in a recent paper

Ffamtschi and Jones(34> have found a slope of4./s.»for the pion trajectory

- ' - [
quite adequate to attain a fit for the processes 4'p -—?f N#&, <Up ~>f N

kp —» KA, Wp =¥ £ON Javd fYp — £ON*.

The sécond of these fits is presented in order to accommodate
the possibiligies ‘that there is a substantial contribution.from states
of the opposite G parity or that the density mﬁtrix elements can be
accounted for by kinematically reflected isobar events. The second
possibility is discussed in Appendix C. The possibility of contributions
with opposite G parity allows for helicity flip amplitudes with 4 =g,
and hénce allows for COntribution§ to Fhe density matrix}elements 1?3’3,
Re f93’1 and Re f73’_1 which are non-vanishing as t approaches tmin'

The parameters for ;his fit are listed in Table 4.

In Chapter & a‘single constraint between the four Regge residues
for this process was~dé§eloped. It is badly violated for each of the fits
which were presented on the previous pages. The assumption of independence
of t for the Regge rgsidueg makes this constraint inconsistent with
experiment. This inconsistency is most easily seen by noting the t
dependence of the ratios of the helicity amplitudes is given by simple

products of (b(s,t), d,and ¢ = 1. 1In the region of small t, @ - 1 is
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approximately constant. Moreover ¢ is antisymmetric about t = +b.02 and
Cb(s,t) is approximately antisymmetric about t = 0. Therefore, these
ratios of helicity amplitudes are approximately the same at t = - -’m)2
andt = 4+ - moz. But at t = -.1 the helicity non-flip amplitude
dominates the other amplitudes bj at least one order of magnitude if the
shape of the differential cross sections is to resemble experiment. Thus,
it appears impossible to fit the shape of the differential cross section

and the constraints simultaneously.

The Process NN —=» N*N*

This process will be considered only briefly. The factorization
theorem can be used to relate this process to others thought to be dominated

by pion exchange, through the relation

][Jc(?r) (wp—>ww £ tde) J(Esin) e Es) 1(1()(@‘(&9“%)

- g (5.20)
edjal 2f; ‘3[\ o edsaly ’Q‘F'Q'L

if thlS relation is multlplled by the complex conJugate relatlon and

summed over all helicities, it is found +* 50

o 4 et N
I TET AP L PV £ 3 L RFPRG
(..___) :( ( (5.21)
At ott At dt
0f course, this relatlon can only be expected to be valid when the g
trajectory dominates all four processes. The assumption of isospin
invariance alldws the above relation to be transformed to

.gx,-H‘ &0
N

"o p°N BV wpf L, pp-oH -
dt ) [olt) | i-t) é{f) - (5.2’2)
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-

Unfortunately data is available on the process ﬂ*p-ézfpfvn‘
only at 4 and 8 GeV/c(ZB), on pp —-)N*'H-N%,o at 5.5 Gev/c(35), and on
T P -q.f'?? " at about 3 valc. This scarcity of data makes the
comparison with experiment of relation (5.22) extremely difficult and any
éonclusions drawn will be only tentative. However, the assqmption of i1
dominance provides us with an energy extrapolation for the cross sectioms.
Then,it is only required that this relation be evaluated at energies such.
that the product of thé s values on each side of equation (5.22) are
equal. ‘This condition is realized if %Fp..; ﬂpéf+ is evaluated at
4 GeV/c incident momentum, pp —2pN¥ at 4 GeV/c incident momentum,
~rp-p —>f°7]_ at 3 GeV/c incident momentum,and pPp—» N#N* at 5.5 GeV/c
incident momentum. Then, if relation (5.22) is evaluated for
0.4 BaVi¢-t ¢ 0.2 &w.‘, it is found that the left-hand side of the relation
is about one order of magnitude greater than the right-~hand side.
Therefore, the assumption of Y dominance for the left-hand side implies

that there must be a large cancellation of the pion contribution in at

" least one term on the right-hand side. The other possibility is thét the

pion does not dominate both the terms on the left-hand side of equation
(5.22). However, this relation should be tested with better data at an
energy nedr 5 Bev/c before any definite conclusions are drawn.

Relation (5.20) can be manipulated in the usual manner to predict
the equality of the‘density matrix elements of all the isobars produced in
the various processes entering this relation. Tﬁe density matrix elements

are given in Tables 2, 3, 5. These relations appear to be satisfied.
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Furthermore, an examination of the two body density matrix elements(36)
for double iéobar production reveals that these can be factored into a
product of one body density matrix elements if the t channel helicity
amplitudes factor. This result has experimental implications. However, -
there is no data available to test the result.

Using the techniques developed in earlier chaptefs, expressions
have been derived for the differential cross section for NN — N*N*
assuming dominance of either the W or'f9 trajectories. If the reduced
residues are assumed to be independent of momentum transfer apd if the
factorization theorem is used to relafe these residues to other processes,
the number of undetermined parameters in each case may be reduced to a
single normalization parameter. This simplification makes use of
NN ~~> NN* for the it .trajectory and QIN =~$TN* for the f trajectory.
The results are shown.in the last figure. 1In both cases the fit is poor,

although the pion trajectory definitely gives a superior result,
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CHAPTER 6

CONCLUSIONS

Before any conclusions are drawn, the major assumptions necessary
for the derivation of the phenomenological forms used in this work will be
reiterated. These assumptions can be iumped into three clésses. The
first class, upon which the formalism depends critically, contains the
assumption of the Jacob-Wick crossing relations for the helicity amplitude
or suffiéient analyticity in the Mandlestam s - t variables to gﬁarantee
these relations, the assumption that the helicity amplitudes for such quasi
two body inelastic processes with kinematic singularities removed satisfy
dispersion relations in both energy and momentum transfer and the

assumption that the definitiom of Fi;}'(t) can be continued to smaller

values of J:than those for which theloriginal Froissart-Gribov definition
coﬁverged. The secon& set of assumptions concerned the nature of the
singularities in FJ.found in this continuation. It was assumed that only
siﬁple»poles, dependent on the wvariable t,were encountered and that there
were no poles of higher order or Regge cuts or fixed poles that could
contribute to the asymptotic behavior of the helicity amplitudes. Thirdly,
there is the set of assumptions used in fixing upon some ansatz to determine
the overall t dependence of our helicity amplitudes. This group incluées

the assumption that the t channel helicity amplitudes still have the usual

t channel threshold behavior when continued to large Z, the assumption

that the continuation for Z large from t = (M'- “02 or t = mﬁ? or ?FZ to



69.

t negative can be approximated by a reduced residue independent of t

and the assumption that effects due to third Mandlestam double spectral
function are small, forciﬁg a trajectory to choose '"sense" or ''monsense."
Furthermore, it was assumed the A7 and }3 trajectories always choose

' sense and that their trajectories can be approximated by straight lines

in the region of interest.

]

With the aid of these assumptions,phenomenological forms have
been derived and fits to the experimental data have been made. The fit
to the process AN —>1T N* using only j’ exchange is successful. However,
more detailed information about the energy dependence of fhe cross section
and the t dépendence of the density matrix elements is necessary to test
the model in more than a perfunctory fashion.

The situation for the production of isobars in nucleon-nucleon
collisions ffesents a much more complicated picture. However, the factori-
zatioﬁ.property has allowed us to conclude that it is not the f’ trajectofy
which domin;tes this process below 15 Bev/c. The possibility that it is
the pion trajectory which is dominant has been explored and satisfactory
fits have been obtained for both the differential cross section and
density matrices. It is only when this process is related to double
isobar production that difficulties of a non-trivial nature are encountered.
These difficulties are encountered as a consequence of factorization and
are dependent on experimenﬁal results which have large errors;

These procedures can be extended to a larger number of processes

and trajectories, all of which should be fit simultaneously. Detailed
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kno%ledge of the dependénce on momentum transfer of the density matrices
along with constraints from the factorization theorem should providg
stringent tests for the Regge phenomenologyﬂ

The threshold constraints derived by Franklin were found
inconsistent with experimenf if"f dominance is assumed for U N —>» 1 N*.
A similar inconsistency was found if A dominance was assumed_fo;
NN —>NN*. Therefore, if thesé constraints are accepted, either the

simple 9 or f’ dominance model or the assumption of constant residues

must be abandoned.
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APPENDIX A

The boundary of the physical region is the curve d)(s,t) =0

for all three processes.

Olut) = k(5 mp -t ) -4 )amem?)
— 2 ( mb-rr%) (ﬂﬂf-/ﬂfj) — (il Gy - G mf}(/mfmﬂ:-mf.mg) (A1)

Then in the s channel (a + b~=c¢ + d) where QS is defined as the angle

between ;a and ;c'

cos 6, —_,—[2“";-!4?— S g/’ﬂzlz +(4’ZZ“/’”2) (mf—m@) _t% déd/ (A.2)

where = 2
h Qfﬁ _ [A/— ey }2 1 %-(mm /"’b). ] = sl

(4.3)

Me,; =ZE‘V 4’%@]1/2 Afib ad, s

Further, if in the t channel (D + b—2 ¢ + A) barycentric system Qt is

defined as the scattering angle between D and C.

oS &g =E2Ai+'tz ”t‘;ml? ‘]‘(/mj‘”ﬂ:ba)(/}ﬂf’”ﬂ:)t{/ﬂ VIZC/ .(A 5)
%/ |
At &5 = 3 {t (i)(A,)‘t)] ‘ﬁc ﬁa‘

(A.6)



where

T = [l e | [t e

= P[-f Pic
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(A.7)
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APPENDIX B

The factorization theorem for the Regge residues is proved herein,
the proof being that of Squires,(6) ggnéralized to helicity amplitudes.

The unitary relation in the physical region for partial wave
helicity amplitudes can be written
T *
Z <Tf,’\c’}‘¢{‘s (N 1”:,}‘”;> </' ia16 / S—I/Nﬂ”t 1”) = g{/.A{xa,ic 51'[, A/ (B.1)
"/),’\N.,g\l\é,
1f SI is the I particle threshold,‘ then for Sy < s;i $L+l , the sum over
intermediate states contains all states for which { ¥ rm,;)?'s Lot -

=1
The above equation can be written in matrix notation as

o '
( S%A/)) 53-('4/) ﬂ _ (B.2)

Then Carlson's theorem allows the definition of a unique interpolation in
: . unique

i

the complex J plane of this relation, provided, of course, that an inter-
polation S( A,s)» 3& = complex angular momentum, satisfying the necessary

condition for Carlson's theorem can be found. Then the continuation of (B.2)

S ()fi/.l/) S ()\)Ad‘: :ﬂ. tr Q< L<h,, (B.3)

Therefore /

S (')\) Af) = cof SJT("\;; Aj)

reads

Det ST( )%@) B

It is recalled that the rank of a matrix equals the number of linearly

independent rows or columns. Further the reader is reminded of two well
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known theorems: (1) the rank of an N by N matrix whose determinant is

nonzero is N (2) the rank of the product of two square matrices is at
least as large as the sum of the ranks minus the number of rows.

Thergfore '
. Y[S:] + vEg,{Sj] - N &v E)c‘%‘ (SJ) ﬂ’]

where

(B.5)

T[H _‘ = rank of matrix A.

Now for general s, it is assumed that SN+ contains only simple zeros.

Hence *
t :l -
Y [SN = N=I Therefore Y Ea'f SN $ |
That is, the matrix of residues has rank one.

Therefore

L 4 (4 | _ B )
_._ﬁ_"lt___z _ﬂLL(__ where Sba(JJ/L)- /5"'}/ é«)o—j
This relation (B.6) can be continued in s since the matrix SN(J,s) is

assumed to have reasonable continuations in both J and s.
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APPENDIX C

In the previous chapters extensive use has beén made of the
values determined from experiment for the density matrix elements of the
N+ (1238) produced in various reactions. These numbers have been computed
using the well-known result of Gottfried and Jackson(zo) which relates the
t channel barycentric helicity amplitudes, continued into the s channel

physical region, to the decay distribution of the resonance in its s channel

rest frame. Therefore, if it is assumed that the contribution due to the
resonance as a final state interaction dominates the scattering a.mplitude
completely in the particular region of the kinematic variables being

studied, these decay distributions may be ﬁsed to determine the t channel

density matrix elements.

In order to examine possible complications, a more careful' study
of the reaction pp — pn ~n‘+ at an incident proton momentum of about 5 Bev/c
will be made in thié appendix. At this emnergy the final sAtate
contains a very large bump in the pTr+ mass plot, the N*'H'(1238) resonance,
which contains roughly ome-half of the events in the pn Tx‘+ final state.

gince this channel, that is, the N*-H-‘Tl, channel, appears to have a back-

ground contribution of less than 10% of the value of the cross section at

the resonance peak as estimated from the shape of the resonance, all the
events in the mass regicn M(P \1‘+) s~ 1238 MeV are usually analyzed as being
controlled by a final state interaction in the p‘1r+ channel. Usually this

channel is specialized to the P33 p‘ﬁ+ channel. Since the values of the
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density matrix elements depend critically on this assumption, it is of

~interest to estimate, in a phenomenological manner, the effects of other

contributions.

'Thenfirst contributions that are comsidered are the other possible
ﬂ*p channels such as P3l and 831. However, in the region of.the 33
resonance fhe phase shifts in these channels are very small, being of the
order of 5 or 10 degrees. Since the phase shift in the 33 channel is about
90", the interference terms will be small because the two contributions are

about 90° out of phase. Actually both the interference contribution and

the squared contribution due to the non-resomant phase shifts will be of

2 . . .
the order of 531 when compared to the resonance contribution. This con-

tribution is negligible.

The second set of possible contributions are those which involve
a (n‘ﬁ*) final state interaction and which are usually described in the
(n ﬁ#)p channel. These events will be examined on the "kinemétically
reflected" mass plot, that is, on M(p1?+) in order to ascertain their effect
on the deéay distributién of the p'm+ system in its rest frame. It shouid
be noted that the descriptions of the final state as a p(n-m*) or n(p1f+)
system are both complete and that the states of the two channels are not
orthogonal. This duplication wouldvcause difficulties if the final state
interactions in fhe n ﬂ& and p‘ﬁ+ states were computed coherently.

The kinematical wvariables for the process pp—~ pn~n"+ are des-
cribed as follows: let the initial proton four momenta be pl'and Py> the

final proton, neutron and pion four momenta be Per P and k respectively.
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Then the following invariants are defined

2 2 2 2 2.
5= (p; +P,) M, = (P + k) M, = (p, + kK
2 - 2
t= (pz = pn) £ = (Pl - pf) (c.1)

At energies of a few BeV the production process is usually
described by an exchange mechanism, with bosonic quantum numbers in the
crossed channel and is extremely peripheral, that is, for most of the events
either t or E is small. 1In this appendix,howeversa pure}y phenomenological
model is assumed which is thought to describe, albeit very roughly, the
contribution to the cross section of the  final state interactions
nﬁf+ and.p‘ﬁ#. Moreover, it is assumed,withéut justification, that the
effects of these two final state interactions of the piom with each of
the nucleons add incoherently. However

this assumption simplifies the

calculation enormously.

This simplification is due to the relation

_iéf: ' = PM¥+ da

it

— (C.2)
£J2M+ﬁit Ay Pﬁh éﬁlmgdfﬂbq+
where dJZH++‘

is evaluated in the frame ;% +k=0 and dQM+ is evaluated in the frame

P+ k =0,

0 PM* (,?M ) is the three momentum of the pion or nucleon from
b )

the decaying n'ﬂ# (p'ﬂ#) system in the n ﬂ# (p1§+) rest frame. In each

case the z direction is defined to be that of the incident proton, for example,

32 in the M+ rest frame. The identity (C.2) can be derived by working out



the phase space integrals for these differential cross sections and then

making use of identities generated by evaluating the invariant
g

mov P
Curpe P P2 BF P
in the two isobar rest frames.

The contribution of n'ﬂ‘+ final state interactions is then

approximated as

_QQ..Q: = Z {[:/zrr) , b A }"b:t- E(em,qyrm)(c.s)
A

————————

LA A

F. 1is usually a low order polynomial in cos O

Since \ng-;. (E‘/Z“)/KM+_ M’L.\z +C2/4_] _

it follows that 0.‘:;9!;: ﬁ;' being identified with the total cross section.
for the production of the iE isobar.

In order to fix the parameters of this phenomenological ansatz,
the experiment of Alexaﬁder et al (31) at 5.5 Bev/c is considered. This
experiment recorded some 1500 events in the pn’n‘+ channel of which about
500 have 1180 M (p ’fr+) < 1300. The remaining events, those outside of
1180 £ M (p 1]"+) < 1300, have considerable low mass enhancement and structure
on the M(n 'N+) mass plot. We feel this indicates a final state interaction
in this channel. However,the magnitude of such an effect is difficult to
estimate,

The angular distributions are plotted in Figure 10 of the paper
of Alexander et al, along with the curves generated in the usual Jackson-

Gottfried analysis. However, this analysis does not appear to generate a
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good fit to the experiment. In particular the Jackson-Gottfried analysis

predicts

W(wse) = %'—/333s:~6 v P (Lo e)]

(C.4)
o 4-4” CoS Bd? FZQ. -
W @) | é‘;{, /\]3 )03’ ‘ (C.5)

Now relation (C.4) predicts that there should be egqual numbers of events
with © <’f"/2 and 0O >¢"/2. Experimentally, there are 232 events with

4] )AT/Z and 174 events with 6< W /2 in the region 1180 M(p’T ) £ 1300.
These numbers are 2.5 standard deviations from equality and there is less
than a 10% chance that the Jackson-Gottfried analysis will fit the data.
Further w(@) is peaked at @ = 1 , an effect which cannot be duplicated
by the Jackson-Gottfried amalysis. Moreover, it is of interest to note
that the events for 1300 & M(p1Y+) S 1800 accentuate these features.

Using the prescription described earlier, the angular distributions
of the p‘W+ pair have been computed. The nﬁf+ spectrum has been represented
by two peaks which are normalized to give roughly the number of events in
n %* spectrum with mass <1600 MeV. These peaks were placed at 1236 and
1512 MeV and assigned widths of 200 MeV. This procedure, which is rather
arbitrary, is justified by the fact that the result is not very sensitive
to the mass of the n/ﬁ+ pair chosen. 1In addition, the contribution of these
n{' events to the angular distribution is not sensitive to the form chosen
for Fi; in this calculation F, = 1 + 3 cosg/S?( and F2 = 1/49% . The t

1

dependence of the differential cross section controls the amount of backward
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peaking. In the present calculations, b = 7.0 Bev-z, a value lying between
the experimental values at 4 and 5.5 GeV/c.

It is reasonable to question how the approximately 400 events of
the n.ﬂ* spectrum which have been included can affect the angular distri-
butions since only about 10-20% of these are expected to lie in the region
1180 € M(pr+) < 1300. This situation arises because these events,
decaying approxiﬁately isotropically in the (n’N+) rest frame?have rather
sharp aﬁgular characteristics in the (p4f+) rest frame. Most.of the events
occur near ¢ = qf and all occur with © 3> “72. Thus, some 800 events
in the n1Y+ spectrum would have the effect shown in Figures Al to A4. 1In
Figure Al and A2 the fits to the events for 1300 £ M(p’ﬂ‘+) < 1800 are
shown. The results are excellent. However, the results for M(p4f+)
between 1180 and 1300 MeV are too small although the shape resembles
experiment. However, this calculation has been performed incoherently and
it is expected that interference effects will increase the magnitude of the
effect markedly in the region 1180 £ M(p*ﬂ+) < 1300. Moreover, such
interference effects would not be visible as background since they would
have the shape of the resonance. We hope to include interference effects
in future calculatiomns.

In conclusion, the simple isobar model is probably adequate to
account for gross features of the process pp—> pnff+ but more extensive
calculations should be made to check the validity of the isobar model for

features of the cross section, such as angular distributions, which might

be sensitive to background effects.
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APPENDIX D

The singularity structure at Sab = 0 can be deduced from the following form.

¢ 2 L s ‘ “1 Ll ) £ B
e p | el -l " L (Jo- 1, /2) (Jb /2 o
4 ‘ . 1- v X 1~ eza kb . p .

b oG] Lo sl e {( o) (1et) D G B o ol (0 455) (o3

o~ o b “ (S ¥ 12) Q(Jb'”’b/z) (1-206s) (A/.:L-QS) W'%) (/Jf”'%) ]Og %) d’ @L‘{)

1+ ¢olo I+ el
%0.5 ( -S(/.\.'ko-) (-—:;m:_’lz) ¢ CKJY@) (('J)O'V'b)
| 6-41 -l )-Valz (Jp-75/4,) e v N ML 2leed)
¢ ,y“g_ Cﬁ’)l-¢ + -
. (c- wb) ((w) w0 40) @ (o) (1-99) ey (50 %) (topts) + Yoy (-0
s b ym¥a
la*al -6l e-mz) 0 Pi/k) m w Vs o] Y
¥ o=/ e am [ Ly, \ > b1 d™q. T,
. HM'yfo.) (H‘ b) (_m‘%&\) @ (- eso%p) (H CGOGS) {Ce{)zés) @Wz%a) @Mbé_’«’b) dfc,c('ﬁ L) db,d(! 1
- Yo - Sun¥h .
where : | Lk Ok
Camd = M-—/l»l - ['H/Uv\ 7\04) = T\g LAWY (-1) St dpCt m= | if ith particle is a fermion
' ‘ - .o s th . . '
A)""O if the exchanged particles are bosonic T\b T\D va =0 if lt particle is a boson
M= if the exchanged particles are fermionic

= 0,

Aanimilar form gives the singularity structure at Scd
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Density Matrix
Elements

F1,1
J 3,3

Re f3,l

Ref?»;-l

2

~7

0
00,3/2 1/2

2
L 00,1/2 -1/2
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TABLE 1
8 Bev/c 4 Bev/c
Theory Experiment Theory E:::p eriment
0.284 0.286 T 0.06 0.273 0.10 £ 0.06
0.216 0.214 £ 0.06 0.227 0.40 £ 0.06
0.143 0.066 £ 0.07 0.150 -0.03 T 0.07
: + " +
0.190 0.13 T 0.067 0.181 0.21 £ 0.08
\62 = 0.679
00,3/2 -1/2.
2
s 0.0

oo,1/2 1/2



TABLE 2

Density Matrix Elements of N¥ Produced in NN —3 NN¥

cos O
N*®
(in barycentric
system)

f 33
Re f3,l

Re f3,-l

£33

Ref’31

H

Re f3,-l

Incident Momentum 4.0 Bev/c

1.0 to .98 .98 to .95 .95 to .90
17t 06 .22 .06 16T 06
0.10 T .04 0.10 £ 0.05 0.16 To.04

0.00 £ 0.08 0.01 - 0.09 0.09 £ 0.08

Incident Momentum 5.5 Bev/c

Averaged over cos GN"
0.13 £ 0.04
0.02 T 0.0z

-0.03 ¥ 0.0z

86.

.90 to O

0.05 T 0.01

i+

0.04 - 0.08
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TABLE 3

Density Matrix Elements of N¥ Produced in TN —¥ pN*

Incident Momentum &4 Bev/c

+

fs 0.08 £ 0.03
, +

Re f3 1 0.01 £ 0.03
-+

Re f5 -0.01 T 0.03

Incident Momentum 8 Bev/c

average £ - 0.0--0.05 -.05-=»-.10 -.10~»-.20 =-.20~—>®
over t [
-} 4 + + » ¥
£33 0.05-0.03 fas 0.05t0.08 0.0%0.06  0.1370.06 ~ 0.20-0.10
Re £y ; 0.015%0.028  Re f3,4 0.1070.07 .0.18%0.08 -.10-.10  -.07-.10

+ + + + +
Ref3’_l ~-0.076-0.033 Refs,__1 0.04-0.05 =0.05-0.05 -0.02-0.06 0.04-0.10



TABLE 4

88.

Parameters and Density Matrix Elements for Three Fits to NN —~— NN#%

Fit 1
2
¥ . = 157.3 = 0.5 = = = 0.0
1/2 1/2 1/2 1/2 qu ~/’33 )03, 1 JDB,l
2
¥ = 0.0 Q (t) = -0.02 + .61 ¢t
1/2 -1/2;1/2 1/2
-32 = 0.0 x> = 0.67 per point on d
3/2 1/2;1/2 1/2 ot
32
3/2 -1/2;1/2 172 = 20
Represented by , e, — . =~ . in Figures 8 to 14
Fit 2
) ,
X = 472.4 f.. =038 Ref, . = -0.01
1/2 1/2 1/2 1/2 i 3,-1
= 0.08
X Re f3,l
= 129.0
1/2 -1/2;1/2 1/2 o (t) = -0.02 + 1.5 t
XZ = 2490.0 i{z = 1.2 per point on 4_?_'
3/2 1/2;1/2 1/2 dt
5 = 535.0
3/2 -1/2;1/2 1/2
Represented DY w e - —~ - — in Figures 8 to 1&
Fit 3
2
¥ = 376.0 = .43 Re p, . = 0.0
1/2 1/2 1/2 1/2 .fll 3,-1
) : | Re]03’1 = 0.09
= 0.0
1/2 1/231/2 -1/2 a (t) = -0.02 + 1.0 t
\5‘2 = 1668.0 X2 = 1.4 per point on 4_‘_7:
3/2 1/2; 1/2 1/2 At
2

~r

“3/2 -1/2;1/2 1/2

Represented by ......-.+.......,. in Figures 8 to 1&



TABLE 5

Density Matrix Elements of N¥% Produced in NN —» N*HN"’-‘O

O N%°
Pas 0.04 T 0.04 0.05 T 0.04

Re( Py 1) 0.04 - 0.02 0.03 T 0.02

89.



S0° (,409)3~

o
[e)]
(5 (w-W)+1) (;B7+D) [
=1
'S
um uIsS JO onTeA WAWIXBW = :
1 snsxaa ‘g uis : 1 TANOTA




FIGURE 2

Complex s plane.
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FIGURE 5
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FIGURE 6

Incident Momentum 3.54 Bev/c.
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FIGURE 8

Incident Momentum 2.85 Bev/c.
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The legend for Figures 8-14 is given in Table 4.
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FIGURE 9

Incident Momentum 4.55 Bev/c.

98.

. 2
gi(mb/Bev )
oir
10.0 5
8.0- ..
6.0 A
° QR
’ ‘E\"‘\~ “ e
\_ 3
4.0 AR 2.
\ \“:-_ %
N -
AN e
A N K
- ~ N
2.0 \\\ <. % “ “
~ \.‘ .. %
\'\10 ° . .
W= was -
~. TS ————
N~ 00000 teel,., TTTmme=e~
1.0 N~ 32 BUTee. L. .
o '~
\'
\t .~
- -~ Pl
~.
\n
\u
~
- .
.05 .10 .20

-t(Bev/c)




"y (mb/Bevz)
ci
10.0 +
6.0+
o
\
\ -
\ .
2.0 ¢ <\ .,
™~
—
NN
NN,
N\ N
1.0 N \"‘\".
~ ~N
~
~
-

FIGURE 10

Incident Momentum 5.5 Bev/c.
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FIGURE 11

Incident Momentum 6.0 Bev/c.
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FIGURE 12

Incident Momentum 7.88 Bev/c.
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Incident Momentum 10 Gev/c.
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FIGURE 14

Incident Momentum 15 Bev/c.
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FIGURE 16
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FIGURE A3 0 Dependence of Events with 1180 < M(p o) € 1300.
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FIGURE A& @Dependence of Events with 1180 < M(p ¢ ) £ 1300
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