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ABSTRACT | / : T

This thesis examines the dynamics and stability of slefxde:;
tubular beams conveying, fluid and sifultanecusly subjected to axial

X N . external flow. . , ' ‘\ a

In deriving the equation of small motionms, i\.]nviscid hydro-
" dynamic forces are obtained by slender-body theory, rrpl;lified to account
f for the boundary-layer thickness of the external flow; internal dis-
giptation and gra?%tg effects are also taken into account. The equation
\ of motions is sufficiently_ general to deal with nonuniform - but
\ smoothly varying and ax:Lsymnetrlc - internal and/or external shapes of
. the tubular beam. Solutions are obtained by means of a method similar
7 * to Galerkin's, with the elgenfunctlons approximated by Fourier serles.
< Calculations are presented for tubulatr beams of conical shape subjected
to either internal or external flow and for cyllndrlcal tubular beams
subjected to both flows simultaneously.

1t .is shown that for sufficiently high flow velocities, either
interxnal or externanl, sﬁch beams are subject to divergence and/or flutter.
Tubular beams conveyimj a conically convergent flow are found to pe less
stable than uniform pipes; in the case of conical beams in external flow,
tapering has a stabiilizing effect which mainly depends upon the boundary-
layer thlckness relative to the diameter.

o

- " For clanped—clamped ¢ylindrical tubul?r beams the effect of
the ‘two flows (:mternal ard efternal) on stability J.S adda.tlve, so that
if elther flow is just below the corresponding crltlchl value for in-
stability, an mcrease ‘in the other flow precipitates instability. ThlS
is not always the case for cantilevered systems; if the system is just
below the threshold of mstablllty due to either flow, instability may .

be eliminated if the other flow is increased.
'?

Experiments conducted with moulded rui:ber'tubular beams in a
vertical water tunnel corrcborate the theoretically predigted behaviour.
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Cett&%'\ése traite de la dynamique et de la stabilité de poutres
tubulaires soumises a l'effet d'un éqoulement interne et d'un écoulement
externe paralli\éle a leur axe.

~

La mise en équation pour des petits déplacements s'effectue a

partir d'écoulements potentiels qui, dans le cas du fluidg externe, tiennent

campte de la couche limite; 1l'effet de la gravité et des forc?s de dlSSlpatlon
interne ont ete prises en consideration dans le modele mathanathue. b7 'équa-
tion est assez' générale pour qu'on puisse traiter de poutres tubulaires non
cylindriques - maa,g néanmoms axlsynmetrlques et gans discontinuités de
section. Ia méthode de resolutlon s' msplre de celle de Galerkin, et la ¢
recherche des fonctions propres s'effectue a 1 aide de se’i'les de Fourier.

Les resultats sont offerts d'une part dans le cas d' élements de forme conique
soumis & un écoulement unique (interne ou externe) et d'autre part dans le
cas de tubes cylindriques soumis a des écoulements simltanés.

(Pour des vitesses d'écoulement interne ou externe suffisamment ¥
élevées, on trouve que de tels &léments risquent & la fois le flan"\bage et le !
flottement. De plus, on §'apergoit qu'une poutre creuse ayant un boyau
conique convergent est moﬁ.ns stable qu'avec un boyau cylindrique. Par contre,
dans le cas d"un,écoulement externe et d'éléments en forme de tronc de cone,
la stabilité dépend plus de 1'épaisseur relative de la couche limite par
rapport au diametre que de l'angle du cohe. Pour ce qui est des tubes
cylir@riques soumis a des écoulements simultanés, on s'apergoit que dans le
cas d'éléments encastrés aux deux extrémités, 1l'effet des deu);'écoulettents
est additif; ésavo:Lr qu'au seuil d'une instabilité on peut déclancher cette
dernidre en augmentant indifféremment, ou bien la vitesse du fluide interne,
ou celle du fluide externe. Tel n'est par toujours le cds pour des €léments
encastrés A une extrémité et libres & 1'autre: certaines instabilités peuvent
&tre évitées si au lieu d'augmenter la vitesse .dl_{ fluide externe au dell de

certaines limites, on augmente plutSt celle du fluide intexne ou vice versa.

| .
Les pré&dictions concernant les écoulements critiques ont été

confirmées expéicinent‘hlement dans une soufflerie (& eau) munie d'une section
d'essais verticale ou des éléments tubulaires coulés dans du cacutchou étaient
suspendus.
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.1. INTRODUCTION \

'

1.1 PRELIMINARY REMARKS & ~-

Over the past century dynamicists have been confronted ;

with vibration and stability problems in such things as 'travelling

chains, bands of band-saws, conveyor and power-transmission H%lts
‘ . ,and textile fibres: namely, probleﬁs involving an essentially one-

'E ‘ . di?ensional elastic eontinuum, associated with continuous transport
E . of mass. Mare recently, problems iﬁvolving fiuid transport were

?, added to the list; such as pipes conveying fluid (e.g., pipe-lines
e and hydroelectric power-plant conduits) andicylindrical components

I‘ subjected to an external flow parallel to éhgir axis (e.qg., tdbes' ,

in certain tyaﬁf of heat exchangers, and fuel rods in some types of-

nuclear reactors).

The study of the dynamics of such systems leads to
basically similar linearized e&uations of motion, namely to partial
differential equations of second order With respect to time, and of
second or fourth order with reépect to the spatial coprdinate, de-

¥

pending on whether the one-dimensional elastic continuum is modelled

.

as a string or a beam, and subject to two or four boundary conditions,

respectively.' Apart from the familiar terms due to tension and

r

stiffness, the inertial loading associated with axial mass transport
- is typically of the following form: .

L

32 32 2 32
- Mg+ 20 - 4 pt
At 3xdt ax

r .
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where M is the mass ;ransported per unit length with a velocity U,
and y is the lateral displacement of the structure ihvolyed: in
the case of external flows, M is the so-called "virtual" mass of
the fluid per -unit length. The‘three terms within brackets in the
above expression may be identified, reépeqtively, as (i) the trans-
verse accelgration, (ii) the Coriolis acceleration associated with
the axial velocity U and angular velocity 96/3t, where 6.3 3y/dx
and (iii) the centripetal acceleration associated with the axial
Velocitf and the curvature of the structure.

This inertial loading is found to be responsible for the
peculiar behaviour of such systems. Thus, if the system is other-
wisé conservative, the presende of Coriolis forces renders it
gynobcapkc+ conservatlv? which clearly changes its character in a
basic manner. Also, the last term of the equation is seen to be of

¥

éhe same form as a compressive loading, and obviously centrifugal
and éompressive forces have similar effects on the dynamics of such
one-dimensional structures; if, §9wever, the system has a free down-
stream* end( this term should best be viewed as due to a follower
force of magnitude MUZ, rendering the system ﬁon-conservative
(cinculatoay*) - in the same sense as that of a column subjecteq to
aatangential (follower) compressive load. Although the implicétions
of the form of the inertial loading exerted by the transported mass

p

were not realized immediately, they are useful to us in classifying
the type of problems considered here within the wider framework of
dynamical systems. Furthermore, the dynamical behaviour of these

systems then becomes easier fo understand.

*According to Ziegler's classification of dynamiéal systems, [84].

* . ' . .
qownstream, in the sense of the direction of mass transport.

» e bl

e T,
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The main feat®e of the dynamical béhaviour of these

u c\ systems is that at sufficiently high transport velocities, the ‘

~ structure may be subject to divergence (buckling) or to flutter .

(oscillatory, instability) in its first aﬁd higher flexural modes.

For a given structure the maénitude of the velocity to induce

instability (the so-called "critical" mass—trgnsport velociﬁy),

as well as the type of instapility obtained, depend to,a, large

exteqt on the boundary condi£ions involved. ' ”

A : * In undertaking a dynamical analysis of such systems,-

one_?ormally~seeks to determine (i))the lowest critical mass |

transport velocities above which instability occurs, and (ii)

the relationship betweenr the characteristic frequencies (eigen-

frequencies) and transport velocity. The former is the main goal

in stability anaiysis, while the  latter is essential if one is

interested in the fréé vibration characteristics and in the re—n

sponse of the structure to a prescribed excitation field.
Because of the subject of this thesis, our attention

N &4

will henceforth be focused on problemswinvolving fluid mass trans-

3 @
gﬁ . port in its general form, i.e. either "internal" flow as in a pipe,

o

. or "external" flow parallel to the axis as in a cyliﬁder in axial

PR

flow:¢ In the historical review that follows it will be seen that

the problem,of a pipe’conveying fluid has been studied quite ex- P

-

tensively, whereas that of cylindrical bodies immersed in axial

flow has received considerably less attention.. One important

L

i reaSan for this is that the instabilities associated with internal
i

flow have been observed a long time ago (e.g.,‘"shaking" of a fire-

hose), while those associated with external flow have only been
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problem), one can see why thé study of such problems transcends the
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discovered less thanj twenty years ago. Andther reason is the
. v e i

relative ease of both theoretical and experimental study of pipes

conveyinig fluid. 'Thus, in that case, the hydrodynamics of the
b I

problem are reduced to a trivial level,

K}

1
quately modelled as an infinitely flexible travelling string;:

as the fluid may be ade-

e

‘also, such factors as ¥rictional and base, drag forces, which must
be considered in the case of external flow and which require empi-
rlcal approxxmatlons, do not arlse in the case of internal flow.,

The foregoing discussion might lead the reader to thlnk

that the main,

w

if not the sole, motlvgtlon for studying these : £
& . R
phenomena has been primarily utilitarian, in the sense of- aiming.,

“ to solve practical engineering problems. AJthough} practlcal

problems do exist, as in heat exchangers, -nuclear reactors and
piping applications, it .is true to say that their solution can be

. 3 o - - \
accomplished by common-sense or empirical means, reguiring fairly

v

simple understanding of the phenomena involved./

~

for much of the work done in this field stems rather from scientific

The main impetus

.curiosity, in seeking to understand a set of intriguing physical
phenomeniior in studying mathematically iﬁteresting problems( as

part of the wider class,of problems mentioned at the beginning of

thls discussion. A case in point 1s fh& study of cantilevered pipes

conveying fluid - clearly a geometny of limited practical importance.
If one recognizes, however, thag/thls problem is closely related to

that of a column subjected to a follower tangential load (Beck's
/ : .
practical problem-solving/engineering dimension and is rather a
s
convenient vehicle for/éhe study of a wider class of dynamical sys-

7
7

tems of fundamental’}mportance in applied mechanics.
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1.2 LITERATURE REVIEW

| ,

1.2.1 Dynamics éf pipes conveyihg fluid

t

A seriFs of experiments by Aitken [1], reported in 1876,

on travelling cﬂains and flexible hoses conve&ing fluid, which

;

/ i
illustrated the: balance betwegn motion-induced tensile and centri—k

fugal forces, is perhaps among the earliest work pertinent to the

study of dynamics of structures subject to parallel flow.

The self-excited oscillations'of a pipe conveying water
b

were apparently first recognized by M. Brillouin in 1885, but his

i
'

work remained unpublished. Bourriéres, one of Brillouin's students,\

was the first to undertake a serious study of this broblem, .In a |

remarkable papef [2], published in 1939, Bourriares examined the
nature of the oscillatory instability of cantilevered pipes coén-
veying fluid, Both theoreti;ally and experi@entally. This paper
remained unknown to later workers in the figﬁd until rediscovered
by Paidoussis in 1972. Bourriéres was unable, however, to obtain
analytically the critical flow velocity for tﬁe onseg of osciblétpfy.
instability. A ' .

1 Interest in the subject was reactivated in 1950, to sﬁudy
the vibrations of the Trans-Arabian pipeline, by Ashley and
Haviland>[3]; unforturiately, the equations of motion obtained were

.
incorrect, as were the main conclusions reached therein. The
E
] , } ;

correct equations were derived by Feodos'ev [4],. Housner [5] and
Niordson [6], who studied theoretically the case of a simply-

supported pipe and found that for sufficiently high flow velocities

the pipe may buckle, ; Lo .

Ap——— Y
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<?i' S The case of cantllevered plpes conveylng fluid was
3 . ' ‘i
! xamlnea by Long (7], but hlS method of solution was applicable ’

only to relatively small flow velocities, ngthat he could not
. ! o
. . find the oscillatory instabilities observed by Brillouin and

~ Bourrjéeres.

| . N
J ! Handelman (8], Heinrich [9], Bolotin [10}, Hu and

[11] and Movchan [12] studied various agg;;Ls of the problem

A

P *! of a kube conveying fluid with both ends supported, and made

| ‘ ! ,
j important contributions mainly in the mathematical analysis of

f Tsoon

| “the problem. Heinrich [9], however, introduced a correction as-

sociated with‘internal pressurization of the tube which may become

significant fer high pressures. Finélly, the experiments of Dodds

PR

and Runyan [13] showed excellent agreémenF with theory with regard

to flow-induced divergence.
's
In all the above studies, excepting Bourriéres "lost"

work, the oaly forﬁ\of instability infolved was buckling (di&ergence).

RNCEOR N

It was not until 1963 that Grbgory and Paldou551s [14] rediscovered

theoretically and experlmentally the osc1llatory 1nstab111t¥\§

¢

LTI AT
T ]

(flutt?r) of cahtilevered pipes conveying fluid. However, it must

be said that Benjamin [15], in dealing with the dynamics of arti-

SRR ey g

. culated pipes (i.e.'rigid pipe .segments, flexibly connected), haQ\\Lh
, he J

- "examined a similar phenomenon, and had predicted anadytically t

3

exlstence of osc1llatory instability of cantllevered pipes con-

TR RN

w. ! veying fluid; ~moreover, he# percelved that the problem was lndepen— !

dent of fluid friction. Both effects were later confirmed by

v

* Gregory and Paidoussis's work. Gregory and Paidoussis were able/

.to obtain the critical ﬁ}ow velociéy for the onset of oscillatorny

N iy ] - ¢

N - . .\ »
b .
> . i
N hd -~ . I
. ? T - 1w e e .




! instability and compared it with their own experimental values.

4
hvégreement was quite good. '

Later on, Paifoussis extended the theory and performed
- B experiments with vertical pipes, where gravity is operative [16].
' Paidoussis and Deksnis also studied articulated vertical pipes [17],
and specificélly the tranéition from a diséréte to a continuously
flexible system, showing the inadequacy of two-degree-of-freedom
approximations of cogtinuous non-conservative syéggms. Chen (18]

studied the stability of a,pipe!%%th the upstream end clamped and

the’ downstream end constrained .by a linear spring. Chen also

studied the dynamics @f curved pipes conveying fluid [19], (20},

‘as well as pipes multiply supported, at regular intevals [21].

4 A i .
’E;‘.;,, *‘LA_J‘:' T ]

Herrmann [221 and Herrmann and Nemat-Nasser [23] showed

the connection between the problem of a cantilever conveying fluid

Y

e

and the more general problem &f a cantilever subjected to an end

follower load. Subsequently, Wiley and Furkert [24] considered a

2R IR s

fluid jet attached to a beam within the span; they found that

¥

Tl T, TN
R
z

either buckling or oscillatory ins}abilities, or both, may occur,

depending on the boundary conditions.

PP

'Paidoussis and Denise [26] studied the dynamics of very

-

thin pipes (shells) conveying fluid, both theoretically and experi-

e

mentally. In addition to the classical flexural beam modes, they

-

predicted and observed instabilities in the circumferential shell

T e BT

modes. Similar thedretical results were obtained independently

by Weaver and Unny {17] and extended by Weaver and Myklatun [28].

. ] Co d

i eae SR e e
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In the case of fairly short shells supported at both ends, shell-
/

7

mode divergence was found to occur first, with increasing, 'flow

A

TR S
(1“;: Pl A
.

p—

s Y

velocity, and was closely fallowed by flutter - in the theory.

In the experiments shell flutter only could be observed.

. e
. e
“

Paidoussis”and Issid (29] re-examined the ékability of N
pipes conveying fluid supported at both ends and found for the !
first time that, in this case also,if the flow veiocity was in-
ateased beyond the point of onset of divergence, flutter could be
‘precipitated. This matter of a conservative, albeit gyroscopic,

Ll

system being subject to flutter was examined further’ [30].

In an attempt to improve the theory, especially for
short tubes, Paidoussis and Laithier [31] used the Timosh%nko beam i
theory to describe the dynamics of the pipe. They found that for i
short cantilevered tubes this.théory agrees with experiments guite

well, although for longer tubes, surprisingly, agreement in terms

of the critical flow velocities is better when employing the
Euler-Bernoulli theory. Moreover, buckling of very short heavy
cantilevered pipes was predicted by theory for the first time, but

o

not substantiated experimentally as yet.

Increasing interest has been developing recently in the
nonlinear analysis of stability of pipes conveying fluid. Thurman §
and Mote [32] /presented such an analysis for simply-supported pipeé; ]

s ¢

of nonlinear terms resulting from the extension of

the importanc

the piges wag found to increase with flow velocity, thus restricting

the range of| applicability of linear theory. Nevertheless, the

[

predicted b haviour of the system was essentially as given by

linear theory. Liu.-and Mote [33] conducted some careful experimentd

(=
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in wQ}ch they measured the frequency as a function of flow velo-
city, and found that for pipe% supported at both ends they did
not obtain the zefo-frequency condition which characterizes

divergence (buckling) - contrary to Dodds and Runyan's earlier
1

n;{observations.

e

It is of ‘interest that this is contrary, not only

;%0 linear theory, but also to Thurman and Mote's nonlinear theory,
“i s '

and the matter remains unresolved. More recently, Holmes [34]

studied the qualitativeleffect of third-order nonlinear terms,

which arise when axial displacements are not neglected, by means
of ordinary nonlinear analysis and also by centre-manifol
» i
A
In all the studies above, the flow velocity was taken
to be steady.

Recently, Chen [35], albeit utilizing an incorrect

equation of motion, and later Paidoussis and Issid [29] and
Ginsberg [36] examined the stability of pipes convgying fluid with

g flow velocity which has a small time-dependent harmonic compo-

nent superposed on a steady flow velocity. They found that- para-
Id N

metric resonances (instabilities) are possible for both cantilevgred

pipes and pipes supported at both ends. This theoretical work was

extended by.Paidoussis and Sundararajan [37], who found that

¢

combination resonances are also possible. The existénce of both

IS
- ordinary parametric and combination resonances was confirmed ex-

perimentally by Paidoussis and Issid [38].

u-“ ¢ .
The above is not meant to be an exhaustive literature
ffeview. The interested reader is referred to Paidoussis and

Issid's paper [29] or to Chen's recent review [39].
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1.2.2 Dynamics of cylindrical structures immersed in external

axial flow

A common instability of structures subject to external

flow is panel flutter. Since Lord Rayleigh, and subsequently

.Lamb (40], first discussed the problem of a flapping flag, con-

siderable attent;on has-been devoted to the flutter of sails,

wings and panels, as evidenced by extensive literature reviews,

e.g. [41], [42], [43], [44]. However, this subject is of limited
B

usefulness to the study of the dynamics of bodies of revolution

in axial flow, the flow conditions being quite different in the

1

two cases. Similarly, the topic of thin structures (shells) sub-~

jected to flutter in pgrallel flow will not be disgussedmhere.

Investigating the stability of (rigid) airships, Munk [45]
calculated the aerodynamig forces exerted on their‘hullé. He
showed that the fluid inertia% loading may be expressed in terms
of a virtual fluid mass which may be calculated from inviscid,
ideal flow theory around ellipsoids of'revolution; for slen&er
bodies of circular crogs-section, this mass is éﬁproximately équal
to that of the dispiaced fluid. This result was later extended by

Lighthill [46] to slepder flexible bodies moving in fluid, in con-

nection with. his studies of aquatic animal propulsion. 1Incidentally,

this work illustrated the similarity in fluid inertial loading on

cylindrical beams moving in fluid to that experienced by'a pipe

conveying ,fluid.

Taking advantage of this similarity, Hawthorne [47]
investigated the large-scale laterial motions ("snaking”) of slender’

towed rubber oil Banks, qalled "Dracones”, which were deleterious

-
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to efficient towing. By a simplified analysis, he demonstrated
that buckling was possible at sufficiently high toWiﬁg speeds.
Later, Paidoussis [48] showed theoretically and experimentally
that rigid-body oscillations and flexural oscillatory instabilities
are also possible, provided that the tow-rope is sufficiently long

and the tail streamlined.

Starting circa the late 1950's a parallel body of

literature had‘begun forming, in connection with the dynamics of

a e

nuclear fuel elements, normally arrénged i bundles, in axial

flow - which by now has become quite voluminous, as may be seen
i N wh

in a recent literature review [49). Most of the early work on

the subject did not perceive the observed small-amplitude vibra-

o

tions of fuel elements as a true fluidelastic phenomenon; i.e. the

*couﬁled fluid-elastic forces were not considered, and the problem

o

- was simply viewed as one of response of tiie fuel gelements to un-

specified flow perturbations or to the boundary-layer pressure
field, which were taken to be uncoupled to the motions of the

cylindrical fuel elements.

The first systematic study of the dynamics of a cylinder
immersed in axial flow was conducted by Paidoussis both theoretical-’
ly and experimentally [56]. It was shown that flow damped free
oscillations andlredhced the natural frequencies of osqillatiop
at small flow ;elocities: however, at shfficiently high flow velo-
?ities, cylindrical beams could buckle and, at yet higher flows,
flutter. It was found, however, that for practical engineering

g

structures, and nuclear reactors in particular, these instabilities
]
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é ii‘ ' ' occhr at extremely high flow velocities, due to the relatively
. . \

Jhigh rigidity Qf{the structures, and so are unlikely to be en-

. (Eountered in ‘practice [51]. &
» . i { '
. . . Nevertheless, the above study enabled researchers to

5 ) study the problem in its proper perspective, and considerable
- progress was made in the study gf the so-called “sub—crltlcn;

. _vibrations of reactor 1nternals observed in practlce -“sub-crltlcal"

[

denoting the fact that they occur below the critical values for

»

! onset of h ' oelastic instabilities - by Paidoussis? [52] and Chen’

and Wambsganss [53*. Moreover, at the moment there are four empi-

“rical or semi-empirical expressions for predicting the amplitude

of these vibrations: Reavis' [§4f, Gorman's ([55] mainly for two-

, v .
phase flows, Paidoussis' [52]), and Y.N. Chen's [56]. Chen and
3
Wambsganss [53] also have means for obtaining these amplitudes;,

but their work is limited to very "quiet" flow systems, where -the

1

pressure near-field arising in the boundary layer is dominant.
. h K i L
Further information may be obtained from critical reviews of this

- g

area of work [49], [571, [58], [59].

By L

In all the above studies, even when considering bundles

[

,
of very closely spaced cyllnders, it was assumed that motions of

\

-7
one cylinder did not 1nfluence those of adjacent.ones, i.e. the
possibility of fluid ccupling in the motions of cylinders was ignored.

An attembt to take into.account this effect, by considering the in-
|
crease in the wirtual mass due to confinement (by other cylinders

‘ 4

and t@e‘flow channel), was made by Paidoussis [601. In two remark-"
able recent papers, Chen {61), [62) calculated the virtual mass of
arrays of cylindérs in stationary liquid, and paved the way to

taking fluid coupling fully into account. Some further work on ‘the

Y
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veying fluid where experimentation is relatively simple, experimental

designs of nuclear fuel elements. )
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subject was.done by Chung and Chen. [63]. It should be mentioned
that most of this work 1§'d1rected mainly towards the study %f

dynamics of arrays of cyllnders in cross flow.

Finally, Curioni and Tesari [64] were brobably the only
researchers to date to deal w;th the case of a system subjected
both to internal and external flow. ' In their\short article, they
consider buckiing of "horizontal pipes subjected to both flows,
under various conditlons.

.

1.2.3 General comments

- {

The short literature rev1ew of the prev1ous section w1ll

«

have glven the reader, it is hoped, a fair 1mpre331on of the remark-
able developments that have taken place in the area of dynamics gf

"one-dimensional" structures subject to dxial (internal or external)

flow, during the past twenty years. - . *

9

Several mattersdmay be commented upon. Firstly, that

Y i 4

unlike the proliferation of theoretical studies, experimental t

investigations are rather few. Thus, even in the case of pipes con-

work was only conducted.by Dodds .and Runyan [13], Paidoussis"and
co~workers [14]), I16], [26]}, [38], Williams and Naguleswaran,[zsf

and Liu and Mote [33]. A'gqnore acute state of affairs exists_in the

i

case of external flow, if one excludes the very considerable ad hoc
] .

work done on the response, rather than basic dynamics, of specific
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Another tendency in fesearch in this field is the fol-
lowing. After the basic character of thé dyﬁamical behaviour of
such systems was understood, researchers have genérall§ iooked in
two distinct directions: (i) into more esoteric aspects of the
problem, and (ii) into more applied features. The former some-
times yielded valuable and unexpected results (e.g., the discovery
of flutter of "conservative" gyroscopic systems, shell-type in-
stabilities with internaf incompressible flow), but inevitably has
led to a series of publications reporting on results which could |

. {
have been foreseen a priori, at least qualitatively; although this

is inevitable in terms of conducting research, perhaps the contribution

3

of this latter series of papers is of doubtful valﬁe: The latter‘
direction of research, into more practical problems, is of un-
guestionable value, provided of course that it addresses itself to

féél, as opposed to académically conceived, practical problems.

o

Thg topic of this thesis is a m;xture-of (i) and (ii)
above. One of the original aims of this research was to extend the
theorﬁ for fhg dynamics of flexible cylindrical bodies in axial\fioﬁ
to the case of conical bodies and test the thebry experiméﬁtally.
Aithough this would appear a straightforward exténsion of existing
theory, some rather unexpected results showed the need for a much
more careful and rewarding stgdy of certain aspects of the theory -
as will become apparent in the thesis. Another, more practical aim
of this research was to fill a gap in existing knowledge by study-

ing the dynamics of tubular slender bodies subjected simultaneously

T e e
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%; to both internal and external flow, as would be the case in some
¥ "

A

heat exchangers (or in certain regdions of some heat exchangers), ™

-
Tl

the legitimate question having been asked of whether the effects

< e F

of the two flows on stability are simply linearly superposable.

N “ The only. previous study on the aspect of\ the problem, that of

|

Gurioni and Cesari [64] is very limited in scope (e.g., surpris-

- ingly, only buckling instabilities are considered) and is not \
. .

"

supported by experiments.

,
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i the stability of cylindricalhéfructures. Because of the linearity
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1.3 SCOPE - ",
———y ,

.
Eon

This thesis develops a general approach for the study of

w5

&
y

the instabilities of slender tubular beams, not necessarily of

uniform cross-section, subjected to internal and external flows
simultaneously. The tubular beams are assumed sufficiently thick
and, slender to be represented as Euler-Bernoulli beams; iniaddition,
the effect of gravity (in the case of vertical systems) and material

damping have been taken into consideration.

The equation of free vibrations is derived by classical

’

vectorial mechanics and linearized for small coplanar motions. The
£

internal and external flows are presumed to be independent one from
" the other along the full léngth of the beams, yet, coupling between
the two flow velocities will appear in the equation through the base‘
drag (in the case of a free downstream end).! The forces egeftéd by
the two flows are calculated separately; in thé case of the e#ternal
flow, the 1lift, calculated by use of slender body theory, will be

corrected to account for the boundary layer.

Once the equation of motion and its boundary condXtions

.

have been obtained and rendered dimensionless, periodic solutions

will be investigated. The method of solution is similar to Galerkin's,
‘ /

with eigenfunctions aéproximated'by appropriate Fourier series.

The mathematical modeél thus obtained-will be used (i)

to compare the stability of quasi-cylindrical (in practice, only

]

conical) structures to that of similar cylindrical structures, in

.Cases where one of the two flows is at rest, and (ii) to inves-
.

]

tigate the superposabifity\qf the effects of simultaneous flows on

s
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of the model, the criterion for stability is the sign of the
imaginary parts of the eigenfrequencies: instability is predicted
, for flow velocities thch allow for at least one eigenfrequency

with a negative imaginary part; the onset of buckiing is charac- ‘

terized by a zero eigenfrequency and that of flutter By a purely
-

»
real eigenfrequency different from zero.

In parallel to the theoretical work, experiments con-
ducted in a vertical water-tunnel especially designed to provide

Fhe two (coaxial) flows will be reported. The dynamic behaviour

'of moulded rubber slender beams (solid or tubular), clamped“aﬁ

both ends or cantilevéred (clamped upstream, free downstream) will

i
be discussed for increasing internal and external flow velocities.

P

B The prime purpose of the experiments is to check the

-a

thedretlcal predlctlons of instabilities #dr terms of crltlcal flow

et

velocities. 1In addition, however, because the physical parameters

affecting stability (e.yg. length, density, friction, damping, etc.)
are too numerous to calculate stability diagrams for all possible
combinations, the available expérimehtar data will provide a frame-
work for the theoretical calculations. Incidentally, the experiments
providé additional information which, although of secondary iﬁport—
ance to us here, is nevertheless useful: e.g. qualitative information
on nonlihear effects and sub-critical vibrations, Sn the critical

frequencies of oscillations and the aésogiated modal shapes.
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' 2. DERIVATION OF THE EQUATIONS OF M;}ION

2.1 DYNAMIC EQUATIONS #F THE TUBE

[
i

Consider a tuhular beam whose axis of symmetry, whén
veréically in its undeformed equilibrium state, coincides with
both the direction of the,undisturbed external flow and with
the vertical x-axis peointing downwards; moreover, the inner and
outer cross sections of the tube are concentric, but need not
be uniform with respect to x. Because both internal and ex-
ternal surfaces of the tubular beam may have differentktaper
.angles, it will be convenient to express all forces alohg two
- directions only; namely, the tangential direction, i.e. that S

&
of the centerline, and the lateral direction, i.e. that of the

W

-

a

Q normal to the centerline in the X-y plane in wh;ch‘motion

i
i

is assumed to occur,

T ¢ M) TR

|
Furthermore, the x-

"

+

direction will be referred to
. ! A '
as 'axial', or vertical,™and

S IS

the y-direction as 'trans- 'l

N QIS N TP TR AR
R v

verse', or horizontal, to EXTERNAL
! FLOW

distinguish them from the

: tangential and lateral ‘

E . directions defined above.
il
' '

As briefly mentioned in the previous paragraph, Ye :

assume planar motion of the tube: no torsion, nor rotation around
the x-axis will be considered because it is assumed that the

eigenfrequencies of the torsional modes are well above those of
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the flexural modes, and accordingly arc subject to much greater
damping; moreover, and by the same assumption, negligible

coupling between flexural aﬁd torsional modes is expected.

We shall first seek to derive

b

the differential equations
governing small motions of the
tubular beam, in terms of the

forces to which it is subjected,

i.e. gravity ‘force, tension T,

—— o ——— — — . — i ]

T
|
|
|
I
[
|
'
!
|
|
|
\
\
\

shear force Q, and fluid forces
3 \
Fln' Flt' Een’ F t.acco*untlng_

for the normal and tangential

forces per unit length exerted

} ‘ on the beam by the internal and ]
X -

external fluid,frespectively.

The functional form of these
. 6 ¥
forces{ will be given later.
We restrict the analysis to small displacements and

small slopes and- assume that the effects of transverse-shear

deformation' is negligible; thus, first order balance of forces

in the %~ and y-directions yields the foliowing two equations: 1

, o 3
- - IRY W ‘
0 =% ¥ Fip * For = .Fypq + Fopdayp * X pAg,’(l.l) :

2
pA-g—,c¥=§-g+F. +F _ + (F

9
in en )_X * ax T_x)' (1.2)

it ¥

{ where we aséuméd that the axial acceleration (stretching), in

k!

PR
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: the first equation, is negligible; p is the density of the
Yj* 0 material, and A the cross-sectional area of the tubular beam.

A third equation is derived from the moments; upon. ’
neglecting rotatory inertia (v{de Appendix I), we obtain
, N .

" ‘ 0 = Efg + Eﬁi + aMJ+ Q
T .~ 93X 3x 9x !
; - -7 \
- : where Me and M, are the moments induced by external and internal

e

fluids respectively; and we write the flexural moment, M;‘in

i

A ‘ ‘ terms of the complex Young's modulus, E*, and the moment of

F™

+

i d
o

inertia, I, as follows:

n .«
.
! e T * .
— 2 >
- ~
"

model to represent the intqrnél damping of .the material. Thus,

v

M= EI(L + k%E)%§¥ ;
£

hoWev r, we $hall later consider k to depend upon the frequency of

motfon in order to take into account hysteretical damping charac-

terestics (vide Appendix K). | !

The third equation now yields

»

’ : 2 oM, oM
z - g=-dmrassdplly - e (1.3)

»
-

.
+ .
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Clearly, the shear Q may be eliminated from the other
equations by use Qf 9q.(1.3), and T can be calculated by in- L]
tggfating eq. (1.1); hence, eq.(1.2) becomes the eduation of motion.
In the next four chapters we shall complete the derivation of thé
" equation of motion by calculating: !
a) thé'components of the internal fluid fo?ces Fin and
Fier ‘
b) the components of the external fluid forces Fen and
Fetr
¢} the internal and external moments Mi and Me (in
order to obtain Q),
d) the axial and transverse boundary conditions (in

order to obtain T, and the boundary conditions

governing y).

2N
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2.2 DYNAMIC EQUATIONS OF THL INTERNAL, FLOW

We shall assume the following approximations to hold

in any cross-section:

a) the axial velocity pfofile is uniform,
b) there is no significant secondary cross—flow,ti.e. kinematically
the fluid moves laterally as a flexible solid of zero rigidity

23

(except for the taper effects). -
' Such approximations are reasonabple whenever the boundary

layer is turbulent and fully develoﬁea, and if small curvatures of
| the flow trajectories are
being considered. 1In fig.a
we'illustrate the convergent
velocity profile for a spheri-~
cal cross-section of fluid in
a conical conduit, inclined
with respect to the x-axis
and statiorfary. The velocity

y is\(quasi) Qniform in a cross-
| section, i.e. the value of

Ui is constant. Terms of

second order with respect to
- the taper angle Bi are negli-
gible, and therefore we ‘may

neglect the axial curvature

-

and consider a flat cross-

section, as illustrated in

]

. fig.b. It will be found con-

Y

™

i
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When the tubular beam éﬁffers lateral motions, we shall
neglect secondary-flow effects. Hence, the absolute velocity of
the fluid, Gi’ is the sum of the relative velocity ﬁi and the
velocity of point O on the centerline, which has the value 3y/3t.

We' need not account for axial motion of the beam because
the axial diéplacémént, which is equal to’the integral of
%[By/axlz, is small to the second orderj

’HoweQer, we must consider the effect of'rotaEion of a
cross-section of the tubular beam around the Z-axis. Let the
anéular velocity befQ=82y/ax3t.' For small angular- motions the
displacement of the tube is tangential and pgrallel to the m;in
direction of the flow; therefore, apart from additional shear at

the wall and in the boundary layer (assumed negligibly thin),

the fluid will slip and the rotation will have ‘

little effect on the absolute velocity dis- 82 ! vy
tribution; in fact, the streamiines relative a’ O! N0 /,EJ
to the beam‘are constant and thgrefore, at a \”// pr
distance Y from the Z-axis, the flow velocity \ . 3 ;
relative to the tubular beam is expressed‘as X l ;
follows: ‘ X !

& X

_ 2 QY
Wi = Ui‘(l + Ui), )
K

where, upon neglecting sedond order terms with respect to Byr QY

is the additional-velocity component,along the flow trajectory
[

»

due to rotahjon. ’ ,

.

The rate of change of the flow momentum, inside the
control volume Aw of an element 'of the tube of length dx; may

be expressed in terms of the convectiye*dorivativc of the absolute

R s+ ot PRt
X

RSP,

-~
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velocity Vi' and the density, p., as follows: -

LY

d & a‘7i - ﬁ—r >
dc !A ini d(aw) = ; 9i{'a—€— + (V.. V)V Ya (aw) .
\")

Alternatively, we may evaluate the rate of change of the flow
momentum relative to the non-inertial control volume attached
to the- tubular beam, and then add the apparent body forces as
follows:

A -+ ) > ﬁ ‘
&spiwi[wi'd(Asn +5T j;wpiwid(Aw) +] (3E3+2§xw +§X§xr+thr)pid(AwL

The second alternatiffe is more attractive; thus, the first
integral represents the net flux of momentum across the non;
inértial control volume boundaries; since no momentum flux
crosses the wa%;, the net flux is merely ihe difference between

¢

the fluxes across the two flat faces of the ¢ontrol volume,

)

which may be written as follows:

3 . "+ > N
-a—f{fAipiwi (WiéAi)}dx ,

Ay being the cross-sectional area, Now, upon
considering elementary- areas on each face bounded

by the same streamlines, we obtain

. 3 >
pidx/A W)W dA,
oy !
! ¢ /
where continpity 4as ?een invoked for cach strecam-tube. The
e /

! w \ .
second int ?ral*o& (2.1) represents the rate of incrcase of

momentum within the volume; the size of the control volume .

ek
’
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Hence, the £wo integrals of \(2.1) relative to the non-inertial

L . ,
AW, W,
i _ ] °7i
/:de in 5% (Wy—YRIdA; = pidx‘fp;iax U;dA,
R :
aw
=0 UidX A é_;(-— dA '

JFmally, the last mtegral "of (2.1), which relates to the ac-‘@*‘""i

remains constant, hence,

a_ i dw = e
T fawpiwidw = pidx Il\ir dw ;

/
however, the value of Wi at a point fixed Coe

ot st Gksingd s Rt

with respect to the ¢ étrol volume changes %
in time because of the rotation of the con-
3

trol volume, and w¢ have

/
/
> -+ -
ot 9s 3t 3x ’

/

control vplume yield

/

@

which, upon neglecting second order terms, yields

: A
+
v, Vg
P AU sx dx .
- ’ LS
where V 1s the value of W and U at the center line. R s?

g

celeration of the origin of the movmg frame of reference and

the Coriolis, centrifugal and tangential accelerations, yields

o ‘W T
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-+ ‘+ > b
f [*—¥-* ZQxU (l+——) + QXQx + gixr]p d(Aw)~:{ ——¥ + 20xU, )p d(Aw)
AW 1 Aw
22y 'b- ,
- pyB; (GEF + 2 axat)dx ‘

In summary, the rate of change of momentum per unit length is;,

2+ - 4
__; oy v
plA1[ + 201 oxXot + Ui Bx] '

which yields two components, -

»

: " s, (

. N . 1
a) in the x dlreetlon DiAiUi T

- . ¥ N

Y

o
’ . -

. N . \. . 82 32 a 'a
b) in the Y"dlrectlog piAi[EE; +°2Ui 53%3 + U, §§(Ui g%)] . (2-21
™ ' o
« This rate of change of momentum

balances the external forces on the fluid

element; hence, we obtain

AU, 3 dy
PiA U 3% = ~ x(Bypy) - Fyp t+ F, 3X

it in

'

) 3 2 SN Yy _ @ 8y _
PiPiGGE Y Uy )Y = 7 5xPyPs 5x%) T Fit 3x ~ Fin

]

where p. (x) is the éveraéé pressure along the median line,
i . ;

Then, as required for eq.(l:i) and (1.2), we write -

L4 \ . _
' : : S
- _ dy _ _ 3 _ i : :
F.¢ Fin X Fi(Aipi) 1A1U1 3x T piAig 4
'y

/ : ‘ \ (2.3)

. Ay _ _ 9 .2
Fin flrlt oX Bx 1 1 51) plAl Bt + Ui 5;) y -

0

!

v
B R R T A P -
Rl o HE L AN 2 S A e b o s T e e s kgt h e s PRI

hage dN ey, Y



ﬁin‘ L.
s e ol

o Y
B e R

L e e R S

P R + v e T St

SR TR AT R e

o

SU R Ly w43 s e

UV ORI e R

-

2.3 DYNAMICS OF THE EXTERNAL FLOW

2.3.1 General Derivation

It is unfortunately impossible to proceed with the
formulation of forces due to :he external flow exactly in the
same manner as for the internal flow. Fom instance, for an )
&nconfined external flow, we will have a constant total-pressure W
head in the main, large-scale flow and a boundary layer; friction at
the wall of the tubular beam* can no longer. be related to the

pressure drop in the large-scale flow but to the boundary layer..

Another difference with the previpus case - r; %‘
arides as we now take into account the .y f §
(N (Y y = ~
. . -
secondary (cress) flow, since the axial \

%
velocity does not coincide, not even

approximately, with the axis of the beam;

S RE LT L

v =

the lateral resultant velocity between

the beam and “he undisturbed axial flow, is

Y EX- _3_1 i i i
Ve ¥ 3% + Ue "% ! 23S illustrated in the diagram.
Consequently, it is impracticable to derive dynamic °

equations from a control volume as in the case of internal flow; -
instead, we shall directly evaluate all forces entering the cal-

r F

culgtlon of Fen

et’
According to slender beody theory, the lateral flow
N LIS '
generated by motions of the beam may adequately be represented,
near the beam, by a two-dimensional potential flow; such a flow

has a momentumMeve per unit length, where the virtual massk%

. ¢ \\ i 1
. J ’
© . :

v

i ° N
* To be referred to simply as "the beam” for short, in this section.

T o ‘
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will be approximately equal to peAe’ the value correspoﬁding to
an infinitely long circular cylinder; Pe is the density of the
external fluid, and Ae the full.cross-sectional area of the beam.

The corresponding changé of flow momentum in the tangential

¢

direction is zero for an infinite cylinder and may be neglected
for very elongatéd yet gﬁn—cylindrical beams, such as those under
consideration, provided that the wavelength of‘ﬁotion remains
%arge in comparison to the diameter. Hence, we need only consider
the rate of change of momehtum of the lateral flow which exerts an

opposite force on the beam; this force, calculated per unit length,

’

will be referred to as the lift, L;

[}

3toa BL +u ). 3.1

= - (3_
e v U "—O{Meve} - G + U e 3x

e oX e

N
-
| "

- We now consider shear at the surface of the beam;
et Aot and 9en be the tangential and normal frictional forces

exerted per unit, length; in the absence 6f any other pressure

effects, we may write

A—V— :a a EX 4 3
Fen = ,(EF *+ Ug 3§){€gAe‘Bt * U §§)} t Qen
F ., = é ; |
et et / ;

y,the sféady pressure forces per unit
{

length of beam in the x~ and y-directions, the fluid forces

then, adding F, and F

! 4
in the two directions as .required for eq.(l,1) and (1.2) are - /f"’

given by - g - ’ ‘

1

¢ 0
R .
P ‘\ '

a




.
R ‘w- S
P T *’i,?‘*"%‘"%fm~ AR S RG o weaX

i) ST T 1
—_ Cjat

D
R o e e T

Pressure and gravity effects .
If we consider an element
LA dx of beam immersed in fluid
L, A\m { on all sides, the buoyancy

T T ——

vt o e weeres s o A MY IIP ¢

~29-

- Y - - ay
Fet Fen 9x qet qen 5% + Fx ro .
F + F EX

~ _ 9 ] 3y 9 .
en et 9x [53 * Uy 3%) Loehe (5% *+ Ug 5§)] * den (3.2)

al Ll
+ et Fx + Fy '
\ .

The pressure components F_ and F_ will now be calculated.

~
3

2.3.2

foxce acéing on it is simply
, the intégfal of the pressure
forces acting on the total

. surface As of the element,

i.e,

’

Ip
AB = }-peﬁ ds = | 'V’pedw = - 'a'x_%Aw-{
As Aw

where Aw is the volume of the element, i.e. Aédx,and ia unit

vector in the x~ direction, (provided there is only an axial

pressdre gradiegt). Clearly,:if‘we now subtract from'the

buoyancy force the preséure forces atting on the top and bottom
v

flat faces, we shall obtain the resultant ,of the pressure forces

acting on the outer surfacé; the force acting on each\féce ig

i -
AP, and is applied at the center, hence

9

..

3 -
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!

-+ -+ > v, -+ 9 -
F dx = AB ~ [(-Aepen) + (Aepen)x] = AB + §§[Aepen]dx ;

x+dx

t

n is the unit normal pointing towards x>0,

5 ‘7 Hence, the two compoﬁents of F are simply

P, 3 9A_ . . ‘
Fy = =.9% B¢ + 3x[ReP] OF opy 55—

_ 8 d . ’
and F, = 5=[A_p, -5%] . :

¢~

Now, Py may be written as:/folloys:
!

ug c (x) , S (3.3)

~ 1
Pe (%) = pgp (x) + 5p b

e

5 ' 1
°

where peh(x) is the pressure in thé uniform vertical flow far

L3

from the beam, and cp is a torrective pressure coefficient to A

0

take into account the effects of taper, boundary layer and

motion of the beam; cp is normally small, and we will choose

Pen sufficiently large-in order to'have -
‘ \

1

1 .2
Peh 273Pel% °p

e

oA -
and then Po ~ Pap and F -~ Peh §§§; we may also write

~ F 2ap,) - A ié?!lc- 2 (Ap,) - oA
x ~ 9x “WePen e T9x 3% “‘ePen Pafed

If we now expand Fy' we obtain

Bpe

~ Ay 8 .. Ay
F, = 57 (R 59+ P 5308, 5D - .
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major concern in this study is not directed at sub-critical
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!
Even though Pe ~ Pgps We may not set a priori
dP.p, 9P .
ox '~ 9x !

however, the derivative of cp with respect to x is small compared

with det and may.therefore be neglected in eq. (3.2) as shown in

Appendix F. Hence, provided that the beam tapers slowiy we may

set |

pe = peh

and rewrite eq. (3.2) as follows: ‘

&)

1
*e]
g
Il

' - 3y _ a_
et en 9x et 9en 3% pegAe + ax(Aepe)'

' oo B
Ay - - (& 9_ y 3y R
Fen + Fet X (&t + Ue ax){peAe(at + Ue ax)} (3.4)
oy L3 Yy,
' + qen+ qet ax + ax[Aepe ax]

2.3.3 External Frictional Forces -

KWe shall assume the boundary layer to be turbulént_r”
over'the whole length of the beam; transition from laminar to
turbuleht layer will be asshme& to take place séme short distance
from the leading edge, prior to the beam itself, on the. upstream !

support, This aSsumption will not be too restrictive since our

vibrations, which ‘'might involve sub-critical Reynolds 'numbers,

but at instabilities which will generally require Reynolds"l

numbgrs of the(prder of 10?.
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‘. For long cylinders, inclined in a turbulent flow
ﬁg . Taylor [65] established the following expressions for the normal

and tangential forces per unit length

%&;:
,:' — l . 2-’ . - 9
. Fn = ipeDeUe[G sin"i + Cf sin 1] ,
K _ L .2 ." ‘ g
Ft ipeDeUe Cf cos i , - (3:95)

: ~
where Dy is the diameter of the beam,

C and C

£ dp £
' with form and skin-friction drag for

are coefficients associated

- a cylinder in cross-flow, and i is the

angle of attack; upon generalizing to

a beam which incurs very small trans-

verse motions we have

g T T D T o OO T
. . - P SRR RPN

1 ! ‘ »
- -1l 3y, 3y 1l ¥y,
i=gf+tan g g~ st 5ok (3.6)
\ e e
The formulae in eq.(3.5) have been subsequently transformed
: by: Paidoussis [57] to yield, for small motions,"
§
! - Ceny B
* Fn ‘_"D"e[ﬁ?*“e’a‘z]* Coﬁx
C
- ft 2
3 P
. (%} where, apart from the dynamic viscosity Bor Ch is an empirical
- coefficient depending upon Reynolds and Strouhal numbers, which
] N .
has been introduced to account for viscous-damping at the 'lower
\
| Q
A8 - !
A aaom [ PN
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flow velocities; moreovér}'as suggested by Taylor [65], we have

Cfn - Cft'

3

It will now be convenient to introduce the following

parameter, wpich has the dimensions of~a velocity

B

and rewrite the previous formulae as follows:

= 1 v (3 .X
Fxl* 5P D [C U ( + e ) + UV 5%

fn “e’‘dt

’
i

l 2

Fer

- /
[ ‘

] .
than 1 deg.) - in order to remain wel]l below ¢

for which flow separation would occur

. Hence, wef shall write
a : T a .
the local friction forces (per unit/length), as 1
a0 = - e, &L+ u M +u, S '
. 2%e ot e 9x A

Y
-

_ 1 o2
det (X) = 7PeDe (¥)UCy

1

(3.7)

As previously mentioned, since we‘shall devote little

attention to flows in the subcritical range of Reynolds numbers,

we shall usually assume that U <<UCen and, set u, = 0. The

value of Cet (and Cfn) will be derived from boundary layer cal-

culations at zero incidence (in Appendix G)
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2. 3.4, Boundary Layer Effects

\]

3

In previous work [57],[66] the effect of the boundary

layer was considered merely by taking into account the friction
- 1

terms, as represented by eq.(3.7). The 1lift exerted on the

beam was caiculated’by slender body theory, neglecting the boun- {l

dary layér displacement thickness with 'respect to the diameter .

of the beam. However, such an assuniption Tay become less ap-—-
plicab;e as we move from uniform to tapered beams, especially
" as we approach.fully conical shapes. Indeed, the observed L :
. gstability of such beams cannot be expiained by the theory de- |
veloped up to .now, as will be discussed more fully in Chapter 5,
In order to take into account the efféct of the axial 2
boundary.léyé} on the lateral motions, we first consider the g
body formed by the beam surrounded by the dlsplacement thick~-
ness; 61, the cross—sectional area is now A , instead of A_,

w

and the 1lift derived from eq.(3.1), yields

»

_ d p
L= - 5 + U, 50100 Ae('é% £ 1. (3.8)

e ax e X

! 1
7, Unfortunately, this result assumes that the fluid

Fooe within the dissplacement thickness remains at the wall even

[
for the lateral motion of the beam; 'in particular, it implies

.

that there is a displacement thickness

in the cross-flow which is identical

€3~ T SEEEIREY T

to that in the axial flow! In fact,

S
'

we are dealing here with a' three-

dimensional rather than a two-

~..
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dimensional problem, and the cross-flow dispiacemént thickness -
is likely to be neéligible, because (as the cross-flow veloci-

ties are of‘firsf_order with respedt to %% and Ug %%, thus

‘
4
4
EH
3
é
3
4
,

yieldihg'Reynolds numbers small enough to avoid separation, and
(b) the shear in the lateral flow is low due to th; high level
of turbulence induced by the axial boundary layer. Now, if
there is no boundary layer due to the lateral motion of the
beam, the quantity of fluid displaced and the lift derived in

eq. (3.8), have been overestimated. Making this ﬁséumption, the

momentum of the fluid supposedly displaced by the axial behndary :

layer, moving at a velécity, %%, is aﬁproximately equal to that_ !

of the fluid within the displacemént thickness; its rate of.

&

change is

9 3 * az
g t Ue 5x){pe(Ae - Ae)at} i
o |

and, the resukting lift, which is the opposite, must be sub-

tracted from eq, (3,8); the following expression is now obtained:

2_ U A QX.+ A*U iz)}. © (3.9)

- - 9
L= (35 e 55){pe( e 3t e e 9X )

This exéression&ban be ' "9«
interpreted simply upon considering
the cross—-flow té,be'the guper—
position of two potential flows;
one resultq from_the hotion of the

beam alone, i.e. of cross-sectional
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area Ae,~moving at velocity %% (as shown on fig.a); the other

one results from the motion of the fluid, flowing at an average

4

velocity —Ue %%, past the contour formed by the beam and the

axial boundary layer thickness, i.e. of cross-sectional area A;
é‘ ) (fig.b); eq. (3.9) states that the lift exerted on the beam is ,
. ‘ simply the sum of the lifts exerted by the two flows. Such a
v ‘ result‘is generally false, but we expect‘eq.(3.9) to give use-~
ful approxi@ations, when the trajectories of the both flows are
close, i.e’ for small boundary layer, or when fne flow prevails
over the other, | |

Let us now examine another assumption concerning the
axial boundary layer implied in this sub-isection. The deri-

vation of eqg.(3.8) and, subsequently (3.9) assumes that, with

respect to the cross-flow, the relative velocity‘of'the beam

and the beam augmented by §, are the'samé, i.e. %% + U, %%; in

other words, the boundary layer is fixed with respect to the

beam and consequently axisymmet¥ic, as for a beam in a co-axial

flow. 1In fact, as the boundary layer increases, it becémes less
P sefisitive to the motion of thé‘beam which, in turn, becomes in-
sulated from the axial flow. We may then imagine that the beam
moves within its boundary layer as if the axial velocity yere
reduced in that region. In order ‘to represent this insulation
effect, we shall reduce the lift calculatga in eq.(qt9) by multi-
plying‘t.'le with a corrective factor. This factor should be close

to unity when the boundary layer thickness is negligible with

respect to the local diameter, and close to zero when it is very
p—— L3

: * . .
large. The ratio Ae/Ae appears to be a good and convenient

4

G2 , .
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. *
measure of this effect; the reduced velocity, Ugr which we

now consider, is such that

* *
AeUe = AeUe .

Finally, eq, (3.9) yields

B B S o Ly Ay,
L=~ (g + U, 55 [ A, (5E + U, 25)) (3.10)

( ~  The validity of eg.{3.10) can be checked in two

cases. First, for a cyﬁiﬁdgr translating laterally and parallél

to the axis of the flow, the lift reduces to the following term:

-

32

- peAe Btg !
which illustrates adequately that the virtual mass of the.
cross-flow is independent of the boundary layer. Second, for
a stationary bent cylinder, the lift reduces to the following

term:

A2 2
’ - * 32! N - __e_ 2
PePelele 337 OF ~ Pq A% Ue %% ¢

which depends on the boundary layer and diminishes as the dis-
placement thickness increases. ‘In the above, the choice'of the
displacement thickness,'él, rather than the momentum thickness,
62, is disputable; however, for a turbulent| flow, the two values
are ndt Qrastically different: experimentally, the shape factor
is close to'1.4 for a fiat platg,'where the familiar n=7 power

law predicts 61/62 = 1+2/n~1.3.
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The two equations of (3.4) are npw rewritten as
(. follows: - t
4
- 9y _ - 3y . 9 H‘!ﬂ’h
Fet ~ Fen 5% = %t ~ %en 5% pe%ée * 5% (A B
,i Y, .
=l l
) Y 4 3 2y
”%R AFen.+ Fet X 9en t et 3% * ax(Aepe Bx) ‘ (3.11)
;:i:? \ ! 1 , . /
& \ 2 * 3 dy ;.. 2
B o | nonen ———
y & Gg + ?e 3% [Pele (3 + Ug 55)] !
£ 4 - ¢
%ﬁ

in order to substitute Fen and Fet from eq. (1.1) and eq.(1.2).

*
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- 2.4 MOMENTS INDUCED BY ﬁXTERNAL AND INTERNAL FLOWS

2.4.1 Notation
Before proceeding to calculate the moments induced by
o the flows we shall introduce specific operators to denote con-

! v

" vective derivatives. We shall define the opefator D such that .

$

- o b a
o ey L Hed T

_ AL uh

: v(n.t) - (ﬁt"Uax)(..-) .
7 Hence,
§ a) for the external fluid,
i ) -
D - & 2 T NS i 1

e~ (3p+t Uy 3x) and P, = (3¢ + Uy 53).

2 2 2
2 _ .3 o9 (2 ¢ ] 2 3
and Vo= G+ U350 = Gez ™2V, 55357 *+ Ve 532

t

and because U; is function of x we will have, for instance,

2 2 2 3,
2 _ 2 .2 _ 3 3 2 3 Ui o
» Py = Ge* Ui = BertynaetVine tUiox R

L]

2.4.2 EValuation of the Moments

Let I represent the external or internal wall of an

element dx of the tubuiar beam: in the

case of external flow the pressure acts

on the outside of.I, wpereas for the . d;
internal flow it acts on the inside. z ,

ol ST ﬂf' ’
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x We may express the pressure at a given flow velocity as
s o .
3 '
. , p(x,8,t) = p (x) + py(x,8,t); \
ok
T a L J
O where p is the component .of pressure independent of lateral
o displacement, hydrostatic in the case of external flow, and

. \
quasi~hydrostatic .in the case of internal flow (because taper

angles and fr%ctional?losses are'smazl); P is the perturbation
! component, which is function of the motion and the_position of

the beam, and symmetrically distributed with respect to the

S
S -

plane of motion (

il >

B

Let us flrst ellmlnate the moment due to po By
use of the rationale employed in §2.3,2, we

imagine the element immersedq;n fluid on

-

all sides; the total moment exerted on

this element being null, the momént ex-

symmetric with respec¢t to the polar angle 6).

et R

7
erted on I is equal and opposite to that

exerted on the two flat faces; this moment,

calculated. in O, yields % Apb(azy/axz)diz; »

this is negligible because of the factor dxz. Therefbieé any

Toment results from Py only Let Q bg any point on I he

'

momaht calculated about 0, on the center-line, is ~

> . dl'vl(= - ngSd H
jz Py )2 do

L? % .

1

n is the normal unit ve%tor pointing out of the wall., Since
1

is of first onder with respect to y (dr its derlvatlxeéy

"




1 ’ ; )
» -41-
I ‘ ¢ ' >
Q The only finite cylindrical coordinate NE ‘
i " of 06 is radial, horizontal and equal R Il J; {W]_
, o734\ n. g ar
to a, the local radius of I; hence , i ‘\ ’*}jTh
‘only the axial components of the pressure RE T égy};frkf
. 4
¥

'
<

forces will contribute to dM; moreover, ’

L and P being symmetric with respect

N

— ﬁ“?’?‘e‘m‘ ot SR T

. to the x-y plane, the resultant will
be in the z directibn as illustrated on the diagram,

be unit vectors in the x,y,z directions; then,

t

N )
aM = § (—Blﬁxoayﬁ dg
z

P e, ) oot

i

L = ~f (0xK).pyn doi= - f (00.9) (3xk).pyR d0
' ) >
' - (003 &.1) pyao . .
) . 1

J
13

.7

%

Let us now compare dM with the transverse lift, lLdx,

]

P exerted on I; we have ] Y \\
A} T '
Ldx = f —p13.§ do ; . i
z
. @ E > -»> >
’ - upon- introducing the unit radial chtorlr, such that 0Q = ar
we obtain ’
- I3 . . » * -
~ * "
noJ = (n -I):+n l) .-5 = (n-r). 'ag'g.-r) .
¥
) : ] '
. - N N ) Ve
R | : cL T
. | °

¥ ’ i
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Since n.1 and n.r represent the cosine and the sine

of the taper angle, which is constant around the element, then

. 'y 0
dM = a g'—i‘-’- lax = a2 tax . \
n.r dax

aM _ da
' ©dx C %ax

= 1
27 dx \

We now consider the external and internal cases

l

separately; using the convective notation we rewrite the two'
last terms in eq. (1.3):

. a) for an external flow, by use of eq.(3.9),.we get

9 :
M, oA Po OBy &
w5 = 9 5% L - 7w 9% lelAfe W .

b) for an internal flow, by use of eq. (2,2), we get

M, .y A pyA; 3R 2

3% T Im Wx L= ) -

&

In order to calculate %% in eq.(l1.2), we need to differentiate

eq. (1.3); the last two terms yhgld

2. 2. -
..aMe_aMi=2__{geaAev*[Ap()] ,
ax? ox? X 21 IxX elBeVe VY

§A, 2
! toanoax MWD ‘ e
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_The first expression in brackets of the right-hand side

expands as follows:

by

M, 0 A, A, ,2 2 : ,
_ _e e e d vy Y
= o w 5T +{Ug* U, )Bxat + Ue”e "‘g'ax ]

.p_ 9A 2 , . i
' e e 3y d )
sty Vel + U =l - : '

.
o

RS

In the final equatibn of motion we shall only retain !
. ’the terms which are of zero and first order with respect to the
taper angles; thus, Ai or Ae will be tgken to be of order zero;

aAi/ax, HAe/ax and'an/ax will be 9f first order; furthermore,

N .
UaomVs will also be considered to be of similar order. Hence,

" |

we write B ‘
2 2 (
3°M.  3°M A. SA. - A 9A
i e _ . i i) e _ed .p
- R T Pimy w sLW) Yo o 0L

-

. and, in 0i(y), we may consider Uy to be constant.
1

5 1

In fact, provided that internal and external flow

velocities remain small compared to ggmexfjﬁétion of the natural

-

wave propagation celeré;y/in”fﬁg/;aterial, and upon satisfying

———

assumptions’ such as large slenderness ratio and low critical

modes, it will be shown, in the final equation of motion, that

‘

+
TN . any term resulting from the convergent (or divergent) fluid

- '1 . - ' -
+ induced moments is small. This will become more obvious when
T ' |

we assume particular solutions for y(x,t).
y
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For the present t&ime we shall rewrite eq,(l.3) as ,
~ follows:
| 2 . .2 ‘A, sA, .,
?(;, Q_Q_ = - 2_. 3 9 f ' ..l‘. 1 L 2 !
3 Coax =~k g G (BT 5 M 4 0y o 5= 5050
r \ A oA . (4.3)
‘ | +p, 52 =2 & 12 ()] '
Lo e 2T 3x ox e .
. \ .
/ -
"
» ;
| )
“ i | |
* ‘ i ’u
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2.5 DERIVATION OF THE EQUATIONS OF SMALL MOTIONS . ) o )

2.5.1 Equation of small motions

By use of eq.(2.3) and (3.4) we now rewrite eq.(1l.l)

as follows:

U
AU 5

oT

3 - 3 .
3% T 3RiAPi) -y * 0329+ g lAp,] :

g W gl o
+ qet qen X peAeg + ax(Q ax) + pAg 0. j

TN ‘ .
The sheﬁ; Q and the normal friction Qg are of first order of

.y . . 3 (- By . 3y, :
magnitude with respect to y; hence ax(Q 5&) and den 3% 2Y€ of

second order and can be neglected. Because the internal dis-

s
charge AiUi'= (AU)i is ~constant with reépect to x, we rewrite

the previous equation in the following manner:

4 ' -
3 _ } A . ‘

Similarly, by use of-eq,(2.3), (3.,11) and (4,3) we

]

rewrite eq. (1.2) as follows:

[ 2 2
3y _ . 49 __(prd Y
PR 37 (Lkap) {3 (EI3g) )
]
PiBg By 5 5 Pele B, o o -
e ow wW tay ml )
- ’ . —
‘I ; a ?—x- ) 2 ! '
& (AP 53~ eiA 0 v) ‘
3 (an Yy oo oo* ‘ Ay
+ ax(Aepe 5%) . peve [Aeve (y)}] + \qen+qet ax

.\_;

3
5 (T %%)'
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‘ v
" which, by use of eq, (5.1) may be transformed to

.

T 3, 9% 3% : |
DA# = = (l+k§'6ﬂ {W(EIESE%) }
1 v &.

p.A, 3A. p_.A_3A
i’i i 3 ee ‘e 3
kel AR Tt ol LA
/ ad (5.2)
- p;A LU, &t 32y (y) - p 27 [A D (¥)]
,5\‘< PiA; L0~y g5~ 5l V) = Pl [Bg D v

- » ] _ 2
+ (pAgmp - gzl + (TeA p AP L + gy, .
1

T + Aepe - Aipi is the last unknown expression in eq.(5.2);

* let us set ;
o

Ty =T+ AP = A;p; « ‘
‘Once we.obtain Tl by integrating eq.(S.}), the equations of
motion will be reduced to oﬁe/sinqle diffe;eﬁfgpl equation of
fourth order with respect to x and second with respect to t.
The integration of eq, (5,1) between x and L yields:
x x

+ jLI(peAe~piAi—pA)g-qetde . (5f3)

orn

T, (x) = T, (L) + pi(AU)i[UiJL

L3
-

The differential equation of motion will be fully
formulated once we find Tl(L) from theé axial boundary conditions;
we will then analyse the transverse conditions at x=0 and x=L

in order to obtain the boundary conditions governing y.

~
t




2.5.2 BAxial boundary
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conditions

L] r

In order to
A;p;l; inmneq.(5.3), we

of the downstream end

At %=L, a small rigid

cvaluate the cxpressioanl(L) [T+Aepe-
define the geometric characteristics
of the tubes,

end piece of

A

length £ is added-to the main%tubc, \ MAIN
TuBE
as illustrated in the figure; on
LN L
the outside it is generally stream-

lined, and cylindrical inside,

=

We .shall distinguish two cases,

i.e., whether the end piece is

. P{EC
supported or not, and more pre- FIECE

&

/"'__L_\-

cisely whether it is free to move .

<

axially or-not.

L] :
) enp | N\

h\

A] free_or sliding end

Let us consider the system composed of the end piece
and of the internal fluid within; the axial accelerations are

negligible, hence, the rate of change of tangential momentum

[

of the system is null. ,

\ The fpllowiﬁg forces yield tangential

components-which must hence balance:

(a) the tension in the main tube {(at x=L), -T(L)
L+£
(b) the gravity force, e j (pA+p.A.)gdx
I L R i |

8 . ,
{c) the pressure fg}ces acting on the two internal

¢ :};A'p

]L+£
1‘i

L

crosgs~-sections,

.
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7 N 5
; »  (d) the pressure force acting on the external : §
- . s
fi . -~ B L+L BAe %
% surface, . ] Fe = | pe(x)5§—dx ;
o » . L ;
. (e) the frictional force on the external surface ! 4
? will be neglected in comparison with Far
? 3 We thus obtain the following equation: ///
L+£ L+L :
- T(L) - [A.p;] + F, + j (pA+piAi)gdx =0,
L L : .
or ‘
| L+L o (5.4
[T-A;p;ly = Fo = [A;Pilyap ¥ 5L (oAtp A ) gdx .

In order to evaluate Fe’ of (d) above, we set, as
in eq. (3.3) ° : : .
¥
1 2. ] 1 .
Pe = péh(x) + 5peuecp (x)
, &

FEs

l

where ;eh is hydrostatically distfibuted and cp accounts for

the Faper and flow separation over the end piece; furthermore
5 depends to some extent upon the jet characteristics of the
iﬂternal flow exiting at x=L+é, blit we need not take into cén-

sideration first order terﬁs due to the motion. o

Hence, . .

I+L 3A L+E 1

2A
= e | 2 e
Fo = ;L 7% Pepd® + jL Tpeuecp 5% 9X

;- L+8 L+ ) :
[A p.,] -
eTeh’ jL Apgdx +F , . | .

5

where Fb represents the drag exerted on the end piebe. Since

we previoug}y,assamed“péh‘= Pg UP to x=L and,‘becauséxéhe.thickness
» - T ' \
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of the tube is null at the very end, i.e. Ai(L+£) = Ae(L+£), ‘ -

we may rewrite eq. (5.,4) as follows:

-

3

L+2
[T+A p ~A, pJL L = = [A (peh P. )]L+£ +F o+ jL {PA+p . Ai PA )gdx {5.5)

Let us illustrate the significance of this equation
when-£=0)ﬁ”e. when the end of the main tube is blunt, as il-
lustrated on the right. - !

. For such a configuration, flow ' ‘

separation will occur ét_the edges of the \

SOV

external and internal surfaces, and if l

we assume as a first approximation that

the pressure at the base is uniform and

equal to that prevailing’in the main ex-

T 0 v

ternal flow, we write Pe=Pep s OF C =0; : W',

and therefore,'Fb=0 and [peh]L [p ] WAKE

hence, the previous equation reduces to

T p A p;1p = 0. o = ~{A,~A Pty

¥

E which, as could be expected, merely states that the tension at

' x=L is the compressionigue to the préssure acting upon the base

of the tube. Ny ’ : v

9

However, if the end piece is not blunt, or if the
i pressure at the base is different from that in the main flow

at x=L, there is a drag effect; from éq.(S.S) we see that the

{ " M \
T) . g R .‘\,\ \] “
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b 0 drag force consists of the drag exerted on the end piece of

the beam, Fb' and that of the internal flow, lAe(peh-pi)]L+£;
we shall express it as follows: ¢

L+L oA )
j %p c U2 ——de . ¢

Dy = (A (PepPy)]p,f * e“pe 3¥x

N -t '
¢ : :
: Upon considering eq.(5.2), we recall that the term
b .
T+Aepe—Aipi is multiplied by azy/axz; hence we need evaluate
[T+Aepe~Aipi]L, and consequent%y Db,only w1§h zero order terms
with respect to y; therefore, we proceed as if the end piece

were at zero incidence. As shown in Appendix H a quadratic

fit was selected to represent the base drag measured behind
cylindrical tubes; we thus set

2 1 2 1 2.2
fepe(AeUe)L + icfipi(AiUi)L + fcfx(pepiAeAiUeUi)

»

¥
(5.6)

[l L

“

24

We found semi-empirical expressions for Cf§; Cfi
\

will be representative of base drag effects behind cylindrical

and Cfx which

and smoothly tapered tubular beams.

We.finally obtain Tl(L) as Tequired in eq. (5.3),

A}
. '
3 .

Tl(P) [T+A P ~A;p; 1

L+l -
! §L [(p=p )A, + (p;~p)A,lgax

n

1 :
1 2 2 ‘ : 2
I+ Z[OeAeUeCfe+piAiUicfi +'(pep'p‘ A;) UeUiccfx]L' (5.7)

. l e 1
'3 - |

TR e T R TU S A
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B] Supported_ends:
At zero flow.vgiocities the
D tengion,T*, which acts at x=L on the
tubular beam is the sum of the hydro- & N L‘

static pressure force applied at the

77777777,

base and possibly an external tension

! - ~x=l

labelled To; we thus %rite . -} -- &
. ¢T° support X
T = -(A A )p +T_ ; |

- e i'Pe o' 4 '

-

(note:in this subsection the superscripted asterisk will charac-
terize the zerxo flow condition). We assume that the external
and internal fluids are almost in centact at the end of the tubu-

* *
lar beam, as illustrated on the diagram; hence%[pe]L~[pi]L, and
/

* *
Ty (L) = [THAP=AyP )y g = T,

From eq. (5,3), with no flow, we thus,obtain
/

' X
I p¥ ) = o “p.A;-
T, (x) = T, (L) + le(peﬂe pyA{-PA)gdx .

- i
Departing from this reference case of zero flow velo-

N3

[cities which defined To’ we now set

i N * '

T =T + T K
& * ]
L3 ]
) , , Py TPy tpP; -

By use of the previous equations, eq.(5.3) reduces to

. : : X
N 1 ' _ t U ! 1 X - -
(T +Aepe Aipi]x = [T +Aepe Aipi]L + pi(Ap)i[Ui]L IL qetdx ’

-~

e
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= L

or

1 t [] ] 2L L
T (?) = T (L)Y + [Aepe-Aipi—piAUi]x + jﬂr qetdx
° L]

’ »
X

and we shall appfoximate this tension distribution wiEﬁ\thag

corresponding to an axial stress distribution

_ T'(x) SR
O%x = K1)

»

[}

where we recall that A(x) = Ae(x) - Ai(x).

/

~

! 1 ]
Let us now consider the effect of p. and pe.’ Because

7
... of the small taper angles considered and of the small pressute

gradients in the x-direction we shall make use of the stress dis-
tribution which applies to a cylindrical, tube subjected to

constant internal and external pressure [67];,thii stress dis-

tribution yields

| ./
o A lA - /
. Py 1'9 '

[0 + 0O = 2,........—......-..—— .

rr 00 Ae—Ai 4

We superpoée the two distributions and we obtain the
. \ -

following axkial strain distribution in terms of éeisson’s ratio,

0 up. v - ¢
¢ - ““up(°rr+°ee) } ' (x)~ 211 [p A, pez‘&e]x
N x - T E , EfAe' Aijx
henée, ’
. v A ' . ' < 2 L
AT RRAD;] ' (1720) (AReAspy) = py(A; U] +f 9, dx
Ee = Xy X
X

(AT : o /

B . o
PR
lvd
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If ‘;Je now take Poisson's ratio u‘p%-, as for rubber
materials, ‘:de n'ote that the local pressure terms disappear from
the previous equation. It is not surprising that the internal
fluid frigtion ége‘s not appear in the expression abowve, because

the internal fluid friction and the internal iaressure drop due

to friction, have opposite effects on elongation; this does not

.hold for ‘external friction. .

~

The condition of non-sliding end support requires

L
J € _dx=0; hence we may write

o X
. v ; L ax L Ui (L)"Ui(X) 'Ljiqetdx
T *hePem2ipil | x = = A0y f AT, ) AT
o o - o b
or :
] 1 1 . . 1 l ]
[T +Aepe-Aipi]L = pi(AU)i Ui (L_)ai.- 590t (x=0)L a7 (5.8)

%

4
.

\ [ ' '
for guasi-uniform beams ai~0 and ae~l, and other values of ay

' t
and og have been calculated in Appendix D for conical tubular

"beams. We now write

. o * I ‘1 '
Ty (~Lﬁ) = Tl (Ly + [T +Aépe'-,zf\‘ipi]L
_— 1 o Y
* =T+ Py (Au)iai_ui—g') = 3%y ()L,
and finally, by use of_éq..(3.7) ’ 1 .
T(L) =T+ p,al (A,0%) -/'Cftn‘(o 2 (5.9)
1 o pll i Pefe T Do 0ILU, - . )

1 a
- ! , -




The;similarity bgtween eq.(5.9) and eq.(5.7) suggests

in both cases we set .

/} S ™ g bf "
1 2. . 2. 2,
Tl(L) £>To * E[peAeUeC£e+piAiUicfi + (pepiAeAi) UeU;Cfx]L' (5.10)
l i" ' ./ ’
(a) For a free end we shall set @
% -
' RS FY . :
?o = .[1. [(p-oe)Ae + (pi-o)Ai]gdx
' B ' o

- . ' . . o T
iy i )
Decause in this case, the only external tension to be considered
is the immersed weight of the end piece; in addition, the base:

o — N :
frag coefflclengs/calculated in Appendix H- are

14 N

o - . 1.35 : : e e
. ' .+ ' Tfe  S¥(2F/DY 0 - ’ .
c e oz ___0.07 R ’
“ - £i © T.25+(22/D) ¢ | Ca .
\ _ 0.2420/D - ... ’
& Gfx = 0,05 m ’ w;th D---De (L? . otk

¥

»

(b) For a supportedend, To reﬁresents the external tension *

gpplied'at x=L, and .

oy —_—
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2.5.3 Transverse Boundavry @onditions L

»~

i) Conditions at x=0. %he beam will usually be clamped,
. !

hence the displacement and the slope are both zerp, i.e.’”

. ‘ y(0) = y'(O)'= 0.

LT LN, T

R V' ghould it be pinned we shall assume no displacement‘(/ .

and no moment; hence * i

y(0) = y''(0) = 0. ~ e - X ‘-

M -

Lafera

sy ¥

nditions. at x=I.. The same conditions as abbve

will als ‘aﬁbly to clamped or pinned cases. Let us now devote

/
our attention to the case of a free end.

e E-»\_‘ﬂi Sy g o s

: ¢
We shall assume that due to the small size .of the
v R
. end piece the moment at x=L is negligible; Mhus y (L) = 0.

( 1

The second condition will be,found in the balance of
thc external and inertia lateral forceg exerted oﬁ'the end

piece; hence, we consider

N
'

a - . the gravity and bﬁbyancy lateral r%ful;ant“

1 "
'

{ “: L+l ’

~

‘ )
- JL (p{H'piAi"peAe)g % d*: '
b ~ ' the internal hydrodyhahic force, ‘ .

L+t 4
- JL P A, 05\y)dx;

i

~1

c - the externa hydrodynamic force which we express as 2
1 . - 4
. L+ I * - Mo
N - £f " bg? [0, (yV1dx ; -
. ( . r . i
) ‘ . R
N R
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; H

] where we kept the same expression .as for the slender portion

U

of the beam, but compounded by a factor f to account for the
® . - &'

-

=

g

4

44
ragid change of cross section a

- slenderness, as reported by
W N s
g' Paidousdis [50], and further elabyrated in appendix J. In.
% practice, f=0 will be used for a bluntly ended tlibular beam,
‘ -
? and £ Wlll approach 1 for smooth, streamllned end pleces because
13
¢ R we introduced the corrective factor £, U wild now be assumed
' constant over the end piece and equal to the value at x=L.’
; / :
P ) . 1
% .d - shear reaction . P
o .
) .9 2 A |
- o = (e & EI(5;¥) . -
e - fric¢tion will ge neglectegd in comparison with the hydro-‘
' 1
dynamic force. e
* ) 4 i ~
The balance of lateral forees vields . ,

- L+l .2 : ‘
) ‘ pA—a-—ng = . . i , /
) I at? ,
(5 11)
; L+4

*{l(p e PR +(p%p )A!]g-p A, D (y)- p fU (A D, (y)]}dx—Q(L)
A

|

|
Let us now integrate the hydrodynamic terms, over|

4

the end piece, namely -

;
. F
B \
. , . | - N
. s — 7
‘ ! : :

e ° L+t ,8 2 . i ’ 1
] / \ ’L plAl(at + Uy —;) y dx | for internal flow,
‘ L+£ ' : o )
e . and j . (—— + U ,)[A (—1 + U a )]dx for external flow.
{ ) ) ) L X . e X ) A
53 ' ) . ‘. ’ ' v A
13 < ‘ ! a\
. . 1
[ i . ' : ; ) . ° ,

.;‘.,.,ﬂn-— PO P e L Y ‘ g i s Bedta) T .zw:*ﬁr—ﬁ:i-iH*‘-ﬁ?"%f'pﬁ'("px?ﬁv A T




O

'
——

] > l
[ :
SR e A1 - T LI b
,

TR

i

In evaluating the first integral we recall that we have assumed,

a ' rigid end piece with a cylindripal duct for the internal flow;

{ -
then, for 0<z<£, we have ) SRV
\\
Iyl =1y o+ 134 g
. LAg L L
. 7 ) =~
hence

L+ . L S « L+L ’ ~ L+4
[ Ai(§!b+ u, 492y ax = %E I (—1 + U, 5§)dx + AUS [—X + U, %%]
L L L

N v !
R /

2 2
_a Dgp 3y, L2 a_#y_ 3y Y
= A, at{ T3 22 st + Uy £ }L + AU, Llaxat]L i
a2

With-respect to the second integral (external flow) we write

b o \
L+L e A d ‘
l L+l v e . ) L+2
= k3 oy _x_ 3
/L LI, (5X + U 5§)]dx + u [A, (5% .+ U, 5§o]L
: ‘ L+2 12 ay
SN N R NS A 2y el yax
) , | |
o f
L+{ RN 7 ¥ A
: -5 d
- + U {[ - Bx] + [AelL ue(gﬁ)L} u
' , Co i
2 2 L+f .
) 3 .
~ [-5?% + Ue -a—igT]L !L Aedx
4 3 3 )
+ Ue{[A_-e]L (531 +.21a] . 3_;35? + U_[A] [.5%] }

ARG R dehiriacer — wy am St P
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in this last expression we negiected the terws of order £2

[ et SR Tt

and we have also used the fact that the slope of the end piece
-,1s constant, i.e. (%%) (%%) . N '
L+L ‘ L
*

From eq.(5.11) we may now rewrite the balance of _
Y
lateral forces up to first order terms with respect to £, and
. : ?
in ascending order with respect to axial derivatives, as follows:

[ 3

2y L+L ‘ éx . - L+t
(559 fosa b+ [ [p(g-ay) + £o A ldx} + (L] £0 Ul (AT
<L L : ’ LV L
52 ( Ltk . Ty
+ 1355 (2oau. 2+ £0 U [ Aax + £puieia], } (5.12)
L . . L L+L
L+L L+£
ay * - —5 -
+ 13X (€0 U U [A_] [ tg=p)A, + (p=p;)A,lgdx}
L L L s
. : . S §
' 3 3 .oy , - d
= 9, 3y ‘ .
[EI (1+kz7), VL. . X - ‘ ;

L
. |
In order to integrate the overall cross sectional area A, over
the end piece, we will assume that the end piece can be adequately
{ -
represented by a conical element of cross section,(Ae)L at x=L

- /
and (A;); at x=L+{ . Then, we introduce S, such that »

L+L

hence,

3 3
(Ae)f - (Ai)f

S ""}-" L v L o b
"3 T I I
(A)Z ~ (A,)2 :
. - e L 1

L
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, s
<L" ‘ . We now write eq. (5.12) as follows: 1 o f

' \ i 2 , * 3
; C Up+Ep)S, + (9-P) (Ai)Ll.u-g—t%]L - o, <Ae—Ai>Lue[§%1L

T2
' * 3Y 4y - K
+ {fpe[(Ai}LUe+seUe] +12piAiUi}.£[axat]L [EI(1 (et

(5.13)

‘o)
L:w

-

u
(=]

. . _ - ;
- - -0, , N4
' -{fp_ (A Ai)LUeUe + [{p—p)S, + (p pl)(Al)L]? }[ax]L
¢ r e
2.5.4 Summary
’ \
‘The mathematical model for the dynamics of the system

has nﬁy been fully formulated. For the benefit of the reader,

- ! - /

J thé final equation, abstracted from the previous sections (subject
‘ v

to boundary conditions given in §2.5.3) is given below.

ANE Lo R R e 5 A e i g
o

) N
PA %E§ B ~ ;oo e T

4

o=

2

t

2 2
d 0 d
(Ltkgp) Iz (BT 53 )

et i M AR e e L

4 pihy Ay 5 G2, 42 2 32 |
7 : oY
. tam T 5‘{ tr * 2V 3xep v U \\ }
1 p A 52 )
. e'e e 9., 9 2 . ;
| _+ 219X {BtZ + 20s 3% T+ Ue 3% } i
i o ‘2 .
_ ¥ 3 (5.14y
PiBy { + 201 axat Yy §§¥} ) - :
. i *
2 2 ‘ 2 9A 5
- 3y "oy Yoy —e X 4
pe{Ae ot? f Ae(Ue+U )axat * AeUeUe 9X? * Ue X (at e ax)}
| v '
| . * e
p _ 82
+ {Tl(L)+piAiUi[Ui—Ui(L)] + {L[(pe—p)gAe + (p-pi)gAiﬁqet]dx}§§¥
) - ’ - ‘g
. .- LY

- ' i . \ ‘a
b PUe frr at e 3;‘) + UV 'a'%] + (peAe'tpiAi-pA)g 5-% .
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; 2.6 DIMENSIONLESS EQUATIONS
b H]
. ‘E?i 2.6.1 General Slender-Bodies
é The detailed'}endering of the equétion of motion and of
¢ ) . . .
. the boundary conditions dimensionless.is carried out in Appendix
{ . - A. Here we give an abbreviated account. ‘
We define the following dimensionless guantities:
: \
£ = x/L n =y/L
r ' ' & - B T
oe = Ae(g)/Ae(o) - Gi = Ai(g)/Al(o)
4 — ! ; ' / .
{ : A\ ' "
T = [ET/dpA+p A +p.A. )11 /12 v = [EI/(pA+p A +p A, 11 $#nn2
: . e'e TiTiTT | ee iYL g ]
. ~ P
_ 3 x * B 3 . )
u, = [peAe/EI] _ LU, ue—ue[Aé/Ae] v, = [piAi/EI] NLUi(O)
£=0 3 E=0
2 p
8% = [A/A] © .€ =L/[D_} Yy = glég[b ]
\f* ' .~ R "2 “ N , 3
Yo = ’1. *;rr__;pe/p ' Yi=lpyp-1)6° T = [pAe/EI]é=ogL
= = ) = i \ H
ch 2Cfn/n c, ZCft/ﬂ c, 2[peAe/EI]£=OUvL ;
! i t
1 and for the end conditions at £=1, \
. ! [
E 2
e I =T L/ET(0), . *
! M 1 : *
: ¢ ' |
; 2 i
5 6= (B2/EI(0) = 1 + 2o o (yu? + ke, —E 4 Lo [:e(l)]
\‘ 1 27fe’e’'Ye T 37ei G (D) T 2 exlo (D) Yg'i
X = Z/L" and Xe = &/D (L), | \
[ ¢
10é(1)§—63 ci(l)i’ ) , , ;o \
‘ se = = E{Ue(l) + 6 oi(l) + 608(1) oi(l) 1. \

3 i §
70, (1) %6 0, (1)

- ; ¢ —T

\ Incidentally, tﬁg parameters defined above are independent

except for gthree, namely ée} Xe and vy.
- ¢ i € ! \
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Substituting these into ‘the equation of motion, i.e.
A

eq. (5,14), we obtain o . |

4 2 2.2 / 2 .

5 82 -87a7 32n 87v vy do& O ug do, a3
(14+v3) { - g N :

3T FET T IS8 BEZ BeZo, ¢ ' TBET & LT

2

* Vi, 1 o
{uegegpw+ 5 Iy~—© . (2=y No gty 051 + eciug 2 }dE}852 /
* A

2 2 ‘
\ § +Yi§-6 vy doi Ye 1 3 u, 0, do a3n

+

_ e B
e {[Ye+Yi] 4£2 dgr + [Ye+yl] 4€f"” dE }?gza_r -
) do . B

- i' 2,9n

+ {I'[(2 ye)oe + yici] + EE" u ue + ece nue}5§
2 s i ’ (6.1)
+ {2[—=] v, + [ ] 0 (u +u )
‘ Ye+Yi /}' e+Yi é¥&agaT
§%+y, 8%, do. y.~1 o do_ .3
i i i e e ey, 371

= o

- + 5 e}
YotY; ez df Yo*Yi be2 df “9&93t2

Yol ‘ an Ye%e Y404 azn
ot {[;;;721 [eo, (c u +ct) + u ]} + Y, sy =0,
and for a free end, at &=1, eq.(5.13) yieids .
02-6402 6?+Y
"“"5""(l+"aT)[ag 1 - xiElugsg#s%o, WY = ) g
‘ f}‘_
.. * - 2 _ - an ’
//;({fueue[oe §%a;1 + Ty, 2)36 YiUi]X}[FE] oo
. / .
*(Y -1 )%( )[ : [l+f(y ~1l)]s +Y i%; a'zn]
+ fu o] ~6 0, ] - X - = 0.
e 'Yty; "? . ye+yl 912

i

{

“~
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\ We next separate the variables hy,lpokihg for a

{
complex sol&&}on of the following form .

s w“

e, T) = y(E)etT, |

i
A
\

Let us recall that both real and purely imaginar@ barts represent

the same,solution, within a scale factor and a phase shift, and

. T \ ' ..
upon setting m=wr+l”i and W=Wl+lwz,the real bart of the solution
reafds

-

\ .

;wiT —wy T kS
| Re{n(g,7)} = ¥ (E)e cos w 1= ¥,(E)e ~ sin u,T . \(6.2)

Using the complex notation equation (6.1) becomes

2 42 2.2 ) )
(1+1mv) 2 Ue S oy dZW} ) {6 vy dci . Geue dce}d3y
d§2‘l 8§t dg?

8c%o] df  8e? dg ‘dE?
Ny 2!

vy 1 ' i 2
A {\ueuece+ T -0~ ]g[r(z Yo) O +Y;0; ) +ec, 02Uz 1dE
B - [ e-l )* f_e_.. fggu + 6 +Y ' 62 dclv ]}d—;—zw
iw ('Y +Y 4e2 4g e (y +yy ) 45:2 dg ag?
p o 99 ’ J
{ . M2y do, vy 9, 1 7 lec u o, + ) u ] {6.3)
: | | ,
i K | Yol ; - 52 +y;
] + lw[(Y oy (ue+ue)0 + Z(Y w, Ly \ ] ‘
l
2 Y=l o, do 62+y 520 doy .
T S == 4 ]} -
’ ye+yjJ Be?2 dg Ye+y 8e2  d¢
\ ' .
\
I Yool i 3 \ doe * 2 Ye%e¥Y;93
1 + {1 + - —_— =
\(:3 ‘ {lw[Ye+Yi] [eoe}cnue cv) + e ] S ?W 0,
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and the various boundary' conditions yield

a) for a"clamped end: ¥ = %% = 0,
. 3%
! b} for a pinned end: ¥ = T = 0,
3 a2y
i c) for a free downstream end: 3Jfz = 0, and ,
(3 . 02—64oi 23y
S (1+iwv)
% 1 137 9E7 .
:3,: . [
£ 2, % ' o
‘% +{f[0e-6 Ui]ueue—xr[%i-ye)se+yi°i] : L
. . : L - (6.4)
§ - \ Ye~l 3 LTIy
c - le[f(S v, +5 o. iu )(Y +Y —) +,ZVi(?ZI;;) ]}“E
Yo -1 1} [l+f(y -1)1ls _+y.o0,
4 {1wfu o 870, J(Y L) wzx e 1 1y = o,

+Y% , 7e+Yi

A

is suggested in §2.4.2 and further elaborated uponéin

\ .
Appendix I, if we assume that uy and u, are smaller than €, the :
) .
second term of eq. (6.3), i.e, o ‘

62v2 g, a u2 dc d3w _ ’ 5
{ L + e e ) s i 4 :
‘ 88201—35 Be2 4 - dg?
P .

is negligible vis-3-vis the first term of the equation, and will

be dropped.

-,

t
hN

2.6.2 Conlcal Tubular Beams Q v

From here on'we shall 'deal with constant taper angles-

8 and Bi,over the whole length of the tubular beam, i. e. both

1&51de and ogw§1de»d1ameters Vary llnearly w1th the axial coordxnate.
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We set

'Dg = Dy (0) [1+a k), Dy = Dy (0) [1+aEl;

Ed o N

hence )
o = (140 £)?, 0, = (M+a,E)%,
e e S | b i '
and , ©) ' . (65)
D (L)-D_ (0O 41 ,
_ -1 e e e :
Be = 'tan ————-TT—~——— ——
-1 Dy (3)-D, (0) 60:/
Bi = tan - T \\ , i

It isghoted thdt ¢y and oy may be varied independently as the

. apexes of the cones, illustrated abovg, need not coincide (as

would be the case if ae=ai).

¢

.

* *
Let us evaluate ue(E); in §2.3.,4 we defined Ae as the

overall cross section of the beam plus the displacement thickness,

ai.e. Gl(x) = 0.325(x0+x)ct (as derived in Appendix G); hence,

a

x« A l+a & 2 -
Ye = 7%ue = {1+a E4+0 65[i»/D (0)+eElc } Ue
Aé e h o' e t

, K
. and upon setting ¢ a.lfO.GSeoct with €y = xo/De(O), we obtain

4

!

us 1 e 2 " a_s0, 6Ssct , -2
—— I3 { } = 2{1 "‘["“"'-""-'"'“"ﬂ"'" a ]E + L }
u, l+(a +0. 6560 )E/o o
which w1%; be llnearlzed as " e ‘ LT i
, ) -
- . 0.65c, (e~a_€ )
*
Ye - rl1=af 2 ' with a = t. .
—= = | 5 | g
e
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3

d2 (l+a £) -6 (1+a E)

; a’y »
(l+l'w\))d€z{- 1-8% dgf} )
1 .
4 1-a€, 2 2 2 Vi 2o
S + {357 (Lo 8) fug + (mJL o
v _ ) 2 2
& : {r(2-v,) (J;+ae€) +Iy; (1+a, £) “+ec, (1+a E)u_]dE
v 4 N i
: : s
: 624y, o2, Y-l a2y
; - el ) e

S

(1+0'v E)v., +(Y = ) -'—2'(1"'0‘ £) 11 ])-—r

~

+ {F(Z-Ye)(l+ae€)2+rvi(1+ai£) +u lec +20, (ioek “5) 1 (1+a_&) (6.6)
. 2 3 K 3

o S Te la£2
+ J.w[2(Y +Y-) v, + (————~7) [1+ (===)

lu, (i+cxe€) 2)

-1
3 Ye
+w ['Y';;‘:Y—; Ter—(1+o E) 7 + Ye+Y1 452(1'* £) ]}dF,

3 .
. Yol 1-qE, 2
+ {w(Y revy ) [e(c u, +a ) + 2u ue(—gﬁé) ](1+geg)

e l

2 Yo llte £) 24y, (Lo 5) 2
ﬁY"‘Y - ~}¥= 0

and, by use of eq.s(6.4), the boundary conditions for a cantilever

2 S
yield Y(0) = ¥ (0) = 0} and, at-f = 1, §E¥ = 0 and
. M !/ =4 - ‘,\
Co ey t-btasapt 3y : ‘ ,
(1+1m\)) 16" ——E—s- + .
N {
) 2.2 2, 1-0,2.2 _ ) 2
(£10+a ) ?-6% (e 021 (5D 702 = w1 2my )5ty (1+a) ] (6.7}
A 2 1~ g el g e
) - :uux[f(s +6 (l+a 1 5 3 (

Y .«
i ay
T et 2l wliag *

., - * .
1-a. 2 2? - 5 Ye—l 2 [l+fy ~fls Rt (1+a ) .
(i f . — e =0,
2 wfu, ( ) [y 1282 (14a )_](Ye l) +owxe . Ye” - ,N 0
3 ‘ ’
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We now assume that’we deal either with guasicylindrical elements

oé slender bodies, in which case we may neglect any moments due to
ghe convergent flow (sée Appendix I); furthermore, since we shall
mainly be concerned with flow velocities at the onset of ;nétability

compared to C U,

usually well above 1, we shall neglect <, e

We also account for a modified viscoelastic damplng whlch
yo. .
exhibits hysteretical behaviour at the hlgher frequencies (Appendlx ]
K) by multiplying the constant viscoelastic coefficient Vv by the s

following fﬁnction of frequency
wiuvlw]) L,

where p is the hysteretical damping coefficient when w-+w, We may

finally write the differential equation of motion as follows:

2 (e B)-st(1ha )t 2

iwpv, 4
U+ mvTe) @zl Ty daz}
P LA 2040 £) 202 5 (0dy? -
! c e e 1+a, .
. i /
2 4o o A
1 CeiVy 1 Mo '

1l 2 2
o7 5(1+ue) Ceele = 7 ll+al)2 -

2 l+aicfxuevi C
1

2 3

/g II‘(2 Yo )(1+a &) +PY (14a,€) +ec (l+u £)ug ]dE)——lii (6.8) »

Qa

+{T02Yg) (Lo 8) Payy (o 021 4 fec +2a (2220 “5) 1 4o 8)ul

2

) +'Y * Y -1 % 1- ag 2 d\y .
.t 1w[2(Ye+Yi) v, + ‘Y Y ) [3 + () ]u (1+d £) ]Hds
5 " - g , h \ 2
ol . vy (l+a £) 2, , (l+a,£)
ag 2 'e e i i =Q.
T (lw(Ye+ l) lec +2a, (d20k) ](l+a Q)U @ Yo 1. =0
‘ o
" ,
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a

NUMERICAL ANALYSIS AND METHOD OF SOLUTION

*

a

4 3 [

& . 3.1 CHARACTERISTIC MATRIC EQUAIION ) ' i

We now stand with anueiggnvalue problem described by a )
fou;th-érde? linear ordinary differential equation with four

boundary conditions, which takes the following form:

B o et & gt

4 aFy ,
E £ (gw) == = 0, ,
r=0 dE o
\ . - (7.1)
3 o gFy . \ . ‘
and I gl(w 5= = 0, with j=1,2,3,4 J
r=0 et : o ;
55 and £y =g,=0,f,=E =1 . '

-

The functions fr and the coefficients gi dépend on the charac-—-
tersstics of the béam and the internal and external flows; they
are Herived from,eqs.(ﬁ.?) and (6.8) and have been ?ymmarized H
- [ : D - -

in Appendix C. o o

Yed . o

In this chapter we present a brlef discussion of the

<o

method, of solution, which is presented in detail in Appendix B.
The general solution of (7.1) is a linear combination of an
e

infinite set of Lndependent elgenfunctlons, ..Wn l. cor-

el\yll
respondlng to an equal set of distinct elgenfrequenc1es, Wyr Gy s ool oo :

respectively. This eigenvalue problem is seldom self-adjoint, and

- ' M ) .

L r e e v o el BN s M £ e

e

‘classical tools such as Galerkin or normal-mode methods are not

easily gpplicable because one normally uses as comparison functions

the eiqufuncFions &f a simpler problem in the same domain which
. - . , » . [
are difficult to find; however, one may conveniently use Fourier o
° > - L
#

series’ which offer numerous advantages of calculations and

St

4

require relatively few terms for synthesizing the modal shapes.

» . Y - ‘?
'
s
)
N '
M "

i

[
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-
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L

-

' ) ) . , . ,
The periodiédity of the series must be greater than one'in order\.
:to satisfy, at g =0 and £=1,distinct boundary conditions and, to ,
allow for the contlnulty o% Y and *its derlvatlves, for convenience

v [rs

a perlod1c1ty of .two is cﬂgsen and we set

£ e
L . - oﬁ /‘ ' u~1l
4o i ’ . )
z =" Z{y .51n nn ¥ Yon €08 nmEl} o ‘
g 2n-1 2n :
e RIS

U

be seen from eg. (6.2 ﬂWe may ‘now rewrite the original system of.
? ‘ 13

equations as follo

)

! ‘&}é :ir T B - -
4 r , s 'mﬂt . ]
D(E,w) = f (£,w) =—I[y sin nw§ + vy, cos n7E] = 0,
w40 T agt 2k 2n ., » .
" i Y 14 Sy
fe 5o, ) | "
" and Z g (w {——— Z [y, _, sin n1€& + y, cos nmEl} = 0.,
., =0 7 ag’ n=0 2n-1 : 2n ' g:gj v
[ » © “

".7"
‘.

£,we equate to zero ther following ’integrals which repi‘esent the
Fourier coefficients of D(§,w)-, i ‘ )

. &

* l < . ] . — .
./; D(&,w) sin‘pwsdg =0, .
, A | R .
. D(£,w) cos pwEdE = Q;
. 0 ) ' ° ¥ o
L} .
‘when p varies from zero to 1nfln1ty such cynditlons are equlvaldnt 5
‘to satisfying the dlfferentlal‘equatlon for 0<E<l, . -k
: L, ! . |
< — o \ s ° ~

-3
-




<ol
4
B

e
3

' ‘/ 1 ! /

R e R R 1 2% 0 i

f»-n B T e T e el o s BT e 4 tors B o e ow - - —~ & P

\ ' -69- .

o

Each equation yields a linear homogeneous relation between the
. .

. o i ‘
Y's; the four boundary conditions are linear and homogeneous too.

equation:

(iw)1[r] = [0] , " (7.2) ,

where the firét four rows of matrix [A] are oéfupied by the .

boundary conditions ang the fOllOWlng by the conditions derived v

Y

from the dlfferentlal Fquatlon for 1ncrea51ng values of p. [I]

is the infinite column vector of the yv's. ’

v

The next step is to look for singular’ matrices [A] in
terms of w, so as to obtain other than trivial, solutions for [T'];
for this purpose we. equate to zero the determinant of squaré

% ’ . .
truncated submatrices of [A], which result from truncating the

"

Pourier series (the order of the matrix'being equal to the number
of terms in the series). The elgenvalues of w converge rapldly

with the size of thel submatrices, although higherx orders are required
for higher eigenvalues; in %enerak,less than fifteen terms inithe

LA

Fourier series are reguired to obtain the first eigepfrequencies

With good accuracy; for instance, as indicated on p.26 of Appendix ’

B, ten terms yigld the five lowest natural frequencies of a clas-

sical cylindrical cantilevered beam within one percent error;

. 3 » ‘ L3 . » .
however, if flowing fluid or conical cantilevers are being considered,
L3

.the number of terms fust -be increased.

> ' -
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'Inc1dentqlly, the solutlon given by eq. (6 2) is the same whether w

' images of those in I ahd Iv;g -
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3.2 SYMMETRY OF EIGENFREQUENCIES .

The only complex terms in eq:(6.8f arise from differen-
tiation with reepect to time, thus introducing the factor iw; this,

as will be shown below, results in symmetry of 'the ‘eigenfrequencies

) . 3 - k3 3 war’
around the imaginary axis., However, before this is proven, let -us

mention that such symmetry would not have occurred hig we 1ntroduced

hysteretic damplng in the form of a term, EI(l+1u) rather than
A\

viscoelasti¢ damping in the form EI(l+k gt)

Since?the general term of matrix [A] is a polynomial of

-

iw with real coefficients, the conjugate of [A] will simply be i

-

[A(iw)] !,

\

[A(iw)] =

where iw is the conjugate of juw.
! A

Let wn=an+ibn be a compleg root of the characteristic

equation;' if 0 is not a multiple (repeated) root we can calculate

Let @

the corresponding solution vector [Fn] from eq. (7.2).

—a£+ibn. -Now, if eq. (7.2) is satisfied, so is its conjugatef hence

we also have ‘-’ '

fAliw )T ) [xwiwn>;[f;1 (A& )T ] = 0, (8.1)

M Bl
v

which simply imgplies that &n is also a root of the characteristic

equation, and it is associated with [T 1, conjugate of [T 1.

takes the value wn or w

Y
in the first paragraph.

Thus, we have proven the statement made
{

Therefore, as illustrated on the diagram in the next page,
we only need to reprefent the loci of u in quadrants I and IV.of

an Argand diagram, the loci in the other two quadrants beting mirror

;o
<t Sesko s

VB



. .
2 ‘{;“ﬁummeW“ " .
o —— c e 5 AT e

-71&

Gr', ; Im(w)

upper [l{branch

A Y
_ 438 ¢
N e ~ >
N { 1
- . mode |
22
; o ' -
. QUADRANT NI QU DRANT | ) /
1 h { \
: aafllas " Retw) )
i 1

T\

- od

-3
Y

lower (H beanch

QUADRANT

v

]
’

However, Special‘attenfion-must be paid to the two distinct branches

. . ‘o . .
v on the Im(w)-axis which arise {rom the "collision" of symmetric loci,

as illustrated above,

+ In this casé, which is typical of viscoelastic
i

» . . ' Wy
cantilevered beams in external flow (v=.01,6f0,ae=—w5), the two . ‘

i

| symmetric first modes éollide on the imaginary axis (at velocity'

o

ueaz.Z); this results in two branches on the Im(w)~axis, one going
dowh and the other up. éyentually, the lover'branch having become

. ‘ ' » o
.’negative (buckling at ue=2.3),doubles back, while the upper one begins

© * t N v
1 f‘?. | to diminish. These two branches then collide (uea4.38) and depart

»

from the axis,in gpposite directionms. .
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s 3.3 COMPUTER CALCULATION PROCEDURES i

.
q :
»-

Computations and programming accounted for a large share

e e STl WO g

% this work; here, we shall outline the genéral proéess and some
; , .
of the tools which were developed, The major computer programs aré
{ given in Appendix L.,

First, a standard case corresponding to one of the ex-

perimental cases is selected and the following indépendent parameters

- ' {
are read in: ‘ )

s .
» .
3\ Ogr O 8, cn/ Crr €y €o o .
' Yer Yir Y Vo Tixg &
o o
w u ,\ V- \ L) /,—""'—'P‘Lr‘/ {
{ e e / -
. ]
/
B Then, mainly two different classes of operations are per-

L]

formef and usually in the following sequence: ‘ R '“ " '
A) The ;omplex frequencies“for~incrlasing flow velocities, i.e.
:v ’ either u, or Vi, depending upon the caég, aﬁe calculated with

‘ all other parameters fixed; Ehe 3alues are plotted;\real versus
imaginary part, as illustrated on the pfeviousrbage.~ The
%Pitial steps at zero flow velocities are estithated by use of f
A'the,perturbation;method (Appendixk E);~moreqver, since the per-

turbation solution predicts hydrod%namic damping‘of the sy/stem

over a range of velocities which :fcreases with the mode humber

our investigations were restricted to the 'three lowest mbdes.

(e.qg. at‘ue=2.3, 4.3, 4.45 on the figure of the previous page),
the critical velocties corresponding to pufeL% real frequenc%ﬁs
are calculated. Now, some of the other relevant parameters

listed abdve are varied step by step, usually one At a time, and’

]

Then, if the previous frequency loci intersect the real axis '

o ot i s NS

i
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c. , the corresponding critic’a‘l v_e.g.!ocities are calculated;

v neutral stability contours are thereby obtained.

. H ,
A small library of general double-precision complex

ol '
g subprograms was developed, each of which has a specific function,

& . as summariged below: , , . Y

a) Root prediction. A predictor subprogram constitutes the core

class (A) operations. Apart from extrapolating to,giée

. " estimated values of frequencies from the érevious last three

t —

g

cy . e ra .
o \ sFeps, it increades or reduces velocity steps according «to the

, 'reqularity' of the frequency loci; it also overcomes dis-
{ 1

continuities such as might arise’from ﬁfalescence on’ the
imaginary axis of opposite branches.
H -~
\

‘I . b) Critical velocity calculatibn. A subprogram iterates both on

i

c s . . l N '
velocities and fréquencies to find a)critical velocity cor-

1

, i ] , b .
responding to Im{w)=0; this subprogram stores the characteristics
i

[

of éhe frequency locus™ (slope and partial derivatives) in order

‘ Y
. » to facilitate prediction of the next critical velpcity at the "

1% ’ next step, when the variable parameter is varied incrementally
p : . t
(as described in class (B) operations). !
’ v

e _}2%}:‘54

¢) 8ingular velocity calculation. A subprogram iterates both on

AR

' velocities and frequencies to anestlgate s1ngular points cor-
responding to a double root of the frequency These p01nts
e & i

are encountered when two modes collide at the same velocity such

5

as two syﬂhetrlc branches reaching the 1maglnary axis. ( If the ¥

Rl . ' N + * L]
singular eigenfrequency lies on the imaginary axis“with a negative
sign, the correspogding critical 'velocity indicates a transition

\ * :
' from bUCﬁllng to flutt Hﬁfﬁﬂew,wwm«% ‘

. et =T r -~ 1 '
»
o ' 3 \
] I\ -
-

- e S St sttt e -
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d) Matrix filling. The matrix of eqg.(7.2) is filled for input.

0 % ;

1 1
‘valpes of the freggggnggggwtye variable parameters. The

’ o

other p§§§H€§ers and the CC, CS, SS coefficients of Appendi#
|
q {recalculated for egch new value of ae, ai and o) are

transmitted through 'common' blocks. The determinant of th%

i

co s ) . L N
matrix is calculated by a standard pivoting method.
i | j

e)* Secant method application. Standard secant and Lagrange.

i

methods were improved to detect slow convérgence or divergenc

\of complex frequencies. The number of iterations required {

G

! .

used in the calling subroutine as anyindicator to vaiy the

. Step size of the paramé%er being varied.

s
L

’ f)\_Modal shape calculation. A subroutine solves eq.(7.2) at

‘, B 1
{ C,: \ iven flow velocities, in terms of the coefficients of the

‘Fourier series; the eigenfynction obtained thereby is

! | normalized and then plotted (redl part, imaginéi§7part and

' absolute value as functions of x) in order to illustrate the

. : modal shape at different times. This subroutine calls a

e

1

|

to find the root with a given accuﬁﬁby is stored and eventugll&

; “ ; & modified version of an IBM .subprogram to solve simultaneous
RPN SN P v .
: \1 equations with complex coefficients with double precision.
i o \ b 3
: y ' |
" ! ",
L t
1
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long c%gsed lodp, most of which consists of 0.2 m.stqinless—s;eel

{8 in.) pipe is used for distharges above 0.06 m3/s wherea

" second, on a smaller (4 in.) branch-line is used for flows below

v

v
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4, EXPERIMENTS

‘4
Y

A

4.1 APPARATUS

In parallel to the theoretical work, experiments were
condudgld-in a specially constructea, vertical water tunnel)a In
this tunnel, the water runs through an approx%mately 15 m (50 ft)

piping (8 in. I.D.), as illustrated in Fig. 1.

{

L

A“variab‘e belt drive, 50' H.P. motor propels 5 single
stage centrifugal pump»which delivers up to.0.25 m3"L(60 gal/s).

Downstream from the pump, two Venturi nozzles connected to a mercury

. ‘ . ' 4 .
manometer measure the flow discharge, One Venturi, on theimaln

the ‘

this value, The distribution of discharge through the two branches

is controlled by two pinch valves, one after each Venturi, and, in

practice, either one or the other is closed. e
| -~

j ‘
} At the top of the rig a 3,5 m (12 ft.) long heat exchanger
i .
is used whenever necegsary; in addition, thé filling of the tunnel }
is done through this exchanger which .is connected directly to the \
-y \

|
pump by a vertiFal 5 cm (2 in.)I.D.ipipe thus produci#g more ‘than

. 1
the minimum préssure Qaad required at the intake of the -pump. to avoid

[

“

cavitation. ! ' .

3

Haviné passed the exchanger, the flow reachds t e last

elbow before tAe test—section; in order to prevent the formation of

major vortices and large-scale_Spcondary flow, a bundle of thin stiff

plastic tubes, aéproximqtely 3 cm in diameter ahd packkd'one against
i * ! ‘ / L [ 4 § ¢
i . el

: ‘ . / |

l‘ .
| 1
|

|

!
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the other, 'was 1 sé}ted in the elbow around the bend; further down,

P2 }

the flow passes a series of straightening vanes and grids. The test

S N

: : §ection consists of a 0.1;n1verticalplast?c tube, \of 0.2 m I.D. gnd
0.02 m wall-thickness; it. is transparent and has /a 0.12 m door
similar to a portrhole, machined to match exactly the internal con-
tour of the test ection; the ﬂpper part of the section is tele-
scopic, sliding on two horizontal rubber O-rings, sqQ that the fragile

, .« plastic tube can be easily inserted, aligned and tightened tSp ané

; _bottom to the stainless-steel piping without danger; thick rubber

géskets provide gdditional flexibility for the alignment.
| - i

Ahead 9f the pump, a 1 m heavy rubber tube (valve liner)

is intended to absorb major. vibrations arising from the flow, es- ¢ i
M 1 ' . R .
" I

pecially\gt"veloqities of "the order pf 3 m/s and above. Finally,

. . : . } . | 5
just before re-entering the pump, the flow goes into a short dif- )

..\ 3
: fuser. - §
3 !

Obviously, other necessary devices were added to the 1
2 ~ tunnel,-such as ressurevgauges, thermometers, water filters, more .
v T o . ' '
% grids, and a deaerator which ,pumps the'water from the top of the
f ’ ;

loop, drains the %ir away and links back with the pump. More- -
\ .
over, the velocity profile in the test section was checked to be

réasonably flat in the neighbourhood of the center-line and axi- v

N

'symmetric; yet the value of the local velocity, read from Pitot

y -

tubes, is apﬁroximately fifteen percspt.above the average for the

1
| wholewcross~section as obtained from the Venturi readings.d!¥*

i

1
R The f%ternal flow is supplied independently of the

external flow by a long pipe of 5 &m diameter; an orifice plate

i




!

1

| is located in this.branch with fifty and thirty diameters of

o
w
)

straight pipe upstream and downstream, respectively; the diameter

then reduces to 1.3 cm (half-inch) as the p_ipe enters the rig,

S S

- v !
one meter above the test-~section; the p‘ipe runs along the axis

ER
5

of the water-tunnel down to the test~section, where it fi‘ts into

1

H

Y

v R

g - the support of the tubular beams,

) . .o

. . -
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. ‘ 4.2 FLEXIBLE TUBULAR TUBES " ;
.- i . ] k|
B 3 N . 7 g
% ° The tubular beams werée cast, 1ﬁ\spec1al moulds, from > %
8 | %
? liquid silicon rubbers’which harden with the aid of a catalyst; . g
25 - .
o A 3 . 4 : v 4 R . N
i the specific gravity and characteristic velocity of propagation
Fa ! Ay .
. . i ‘ ¢
- of a longitudinal wave in the four types of material which were 7 ®
- tested are tabulated below. - ‘
§ . ~

; o | ' \ type sé.,gr. c_(m/s)

I's

A’ 1.14 0

B 1.38 6l 2§

' 1‘50 ' " 53 a G-
D . - * ‘ *

{ AP S )
E ¢ 1i12 =~ 41 .
) ' b
4 T ‘

Fol%owing eariy experiments, the last ‘type, ie. l{'Silasll:i\,c' E,
4 was usually preferred to the others, because its elastic and
internal damping characteristics,appéared,to be more reliable
and consistent; this mgterial\exhibits little plifticity but

rather, as defined in Appendix K, hystpritic ﬁfscoelasticity.

The liquid rubber, free from air bubbles, is injected

fr:'l m below in the mould, pr to a cylindric&l metal piece, labelled

o

. .8 2 .
claﬂp-adaptor in Figure 2;" this piece, inserted in the axis of

the mould becomes solidly attached to the beam after the curirg

time has elapsed; and piovides a means to pull the beam from the .
1 .

o

A 3 B ! , !
méuld and then to clamp it to the support in the test-section
. ! '

) 3 " [ 4 ‘ . ' 3
with best alignment. The suppertaconsists of a .thick tube supported
* ’ e

s s

by four horizontal aerofoil struts; its outside diameter is the
*

)

Y

same as "that of the clamp }daéfbr, which in turn is the same as
) Nd 1 Ll « . ‘ N
R X : the upper extremity of the beams, i.e. 2.5 cm (1 in.); the pipe

5 wip ! . s . . .
:Y‘ \ ’ o . Yo \ )
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aQ

. ¥
conveying the internal flow fits into the top and the clamp adaptor

~ into the bottom, both fits being water-tight by the use of O-rings.
v Al . “

-

In the experiments where cylindrical tubular cantilevers
/ - v

were tested in extermal flow but with no internal flow, several

end pieces, with shapes ranging from blunt to well streamlined,

were fittea at the downstream free end of the beam, asfi;lustrated
in Fig.2; their density is closé to that of the beam. ’If the canti-
lever is not cylindrical, or if internal flow is ﬁeing considéred,

it was found more convenient to gr#ﬁd the extremity of the beam

&

e

(I . ¥ » . . . M
itself to the desired shape rather than to adapt end pieces td

i ' ’ N

,
such beams; although the end is no longer rigid, as assumed in

- ' , i
the transvérse boundary conditions, in fact the curvaﬁhre obtained

thereby is extrémeiy small since the moment is negligible over the

end.

>

¥+
In the experiments conducted with cylindrital tubular

beams supported at both ends, the downstream support consists of
a th%n vertical tube éupported by é horizontal aerofoil rstrut; the

tubular beam fitgkover this tube and it is loose enough to let the

1

ybeqm,slide axially. Although the beam is sypported'over nearly

2 cm, the clapped-sliding boundary condition th@g obtained is not’

- ideal; however, the errors suffered thereby are exXpected to be

!
i

equivalent to some underestimationl of the length by a few‘*percent..

. 4 .‘ , 1
o
~
* o
i
A N !
», gus
+ ‘ 'l
. i . ¢ )
. ) s
1
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i A
, 4.3 EXPERIMENTAL PROCEDURE.

~

i
sof

- 4
Ck . _ .. The experimenyadl data was collected from a set,
. |

experiments perfiormed on several beams which differed either in

FRPPTTYrES SR

the rubber material ‘tsed, tdiwhich parameters Y, Ye’ Y., and k
. ; . ) ,

3 » iy
T © are rélate@, or in the geometry of the external and inte{nal moulds,
14 3
which,sets 8 _, B, and the parameter §. 3
/ o ) ' : |
- Each experigent consists of a series of tests ¢onducted ;
- & . L
" ! 3
i

with the same beam, but progressively truncated shorter; %tarting
from a length of 50 cm (£-20), which corresponds to the maximum

L ?

distance éyailablé in the test-~section, the length was réduced by"

o asa

- i 4

five qgntimeters at each step, down to 25 cm, which corresponds

to €~10, and beyond which the slender—body%assumptions are probabfy

-

®
AR el Mo temath e il . &

violated; in qut, for €~10 the flow velocities required to render

such shgrt'beamg unstable'-exceed the possibilitics of our apparatus:‘
<

/
In the fests conducted with internal flow only, or with

supports at both ends, the downstream end was blunt; the stability

L)

of such beams is almost iﬁﬂepend?fﬁfof the external shape at this

PP R ST r Y v X, G A L N T e L

A N

, o
extremity bet¢ause the effect of the base drag, if any, and of the .

-~

v s v alt e T L bl e et A o o e PR T e bk nn, il v

‘immersed weight of the end piece ‘is small. However, gor canti~ »
Er A !

tevered beams’subjecteé to external flow, up to four downstream eqd

S, DA

a »

»

coﬁfigurations were ’investigated, ranging from a smoothly tapered,.
- o T
well-streamlined shgfe ixefl.S) to a blunt end (xe=0)"
» ¥ '
In summary, among‘the independent dimensionless parameters

I I gty g

previoust defined, all but, three, ‘gﬁe. Cn' ct and Egr Were )
. . P .

¢ investigated experimentaliy (aé and o, being derived from Be’ B.

R

l,

Q

§ and €). A typical experimentf conducted with a cantilevered

\
tgbular beam will>now be described.

\‘ﬁ_ 4 . ' ) .
1 \ \ s o ’

N
N R A R T T T T
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C. Oncde the beam is cast, it is pulled from its mould. with

’

‘ Yt
greatYcare (so as not to tear it) and its free end is machined

T M R g S
Lo S e d GBS T .
FEARTE T RS Y

down to the proper length and to a smooth taper (X ~1), as il- !

E Putl:

lustrated 1n Flg 2 (bottom left) Tchen, the beam 15' hung in the

water tux/'séel from its support, <he doéfﬁ the test-section is

LY

closed 'and the water valves are opened,. When the rig is filled -
' N . ¢

to the'top, ‘the pu\mp is switched on at low speed for a few minutes

wh::.le the air from thegmaln loop (external flow) , internal flow

'
i , p‘lplng, flowmeters and manometers is-drained and the water deaerated %
The precedure to be described below applies to ex,periments with 4

-

fbotr internal and' external flow. .

f
3
~ .

The pump is switched off and the internal floy vfelocit-fy
"is graciually increased entil tﬁe’ beam eventually departs: from ii.",s~ r -
a a stable pos:.tJ:on at rec-t alon'g the X- ax.ts\' the instabilities usual;.y :
gain’ rapldly in amplitude; hence, the flow velocity is set back \(\
b‘low the 1evel of 1nstaE111ty and increased Again untll J7t is felt
L that the threshold of stablllty has been es'ﬁ'abll hed The crltlcal

L} flow veloc1ty and, if appllcable, the correspondlng °frequen¢y, as:

B

.~

well as 'the approxlmate modal shape are then "recordeéi- the frer

3
[}

-«

T e e NS SRR T Sy e SR
‘

By

. ‘gquencies are generally s small enough for them to be measuregd visually
&
with a stop watch; yet a stroboscope was used to 'frdeze' the m%dal

shapes.’ Once the relevant dita' has been recorded, the 1nterna],

S o s S -
1
|
)

(,,.\ . flvow ise set back to zero. " Now the external flow is 1ncreased in {1

. .
small steps;'at each step the internal fl\ow is turned‘on and in- °
, o { o - @

.creased, repeating the procedure described *before . Usual%y. the

e o~ ™

’ limit on intgrnal flow was set by the,danger of failure of the beam
< . . .

" due to 'very large defleqtlons. The' test ends when tle @ternal flow

&y,

.. velocity 15 approxlmately 6 m/s, which correspends to the maximum
- . 4 R - .
/ ) ‘N . e
\ , - . . .

‘ 1
. .
i ' . — w [ ’
. . ?i ' . . . rook.
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: | |

attainable with the existing pump. ‘
L} i ‘ i .

The rig is then emptieg, the beam removed from the test-

-

section and the tapered end chopéga off (hence, xe=0). The complex

g ‘ Young'é modulus is thqn,célculated for this qucific beam from its

% - free lateral dsciliations as reportgd in Appendix Ka The beam %s ) 2

% | clamped back in the test-section and thé tést is repea&edu Once

; . both tests are completed, the length of the beam is reducéd by

E . roughly three centimeters, the end is streamlined and the pre;iou§~_ A

. ' operations are repeated, until the length becomes too small for" 1

% meaningful experiments. . ' i -

L VR
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4.4 GENERAL OBSERVATIONS : ) o |

As a result of observations based updn different tubular

1

° 0
beams and different support conditions, two classes of instabilities

[}
" N

: _were found,'namely buckling and transverse. flutter. Such\phenomena

have been described with accuracy by Paidoussis (lGﬂSO] and we now . !

»

give an abbreviated account of their occurrencé and of their main

.
. o

features. . S - !
* A 4.4.1 Buckling ‘ ; o

&

;fftﬁe beam ‘is supported at béth ends, buckling is the
first instability to develop as the flow velocity, eithe; internal .
or exteinal, is increased. However, if the beam is supported at
6neqend,only; buckling cannot be obtained by the sole action of the
ol

internal flow, nor ig it observed with external flow when the end R

is bluntly shaped.

N

The critical flow velocities delimiting the buckling zone

are always difficult to pinpoint begcause, contrary to what the |

linear theory predicts, the beam does not buckle all of a sudden

«when the critical %flocity is reached. 1In fact, the beam tends

1

towards a slightly buckled shape, similar to a first beam-mode, be-~
foré”gge "critical" flow velocity is reached; as the flow is increased
further, the deflection away from the x-axis increases continuously,

then reaches a maximum which does not exceed one or two diameters

an@ finally diminishes, gad the position of the 5eam beeﬁ stationary,
it might hévg been Possible to determine the "real" critical flow
velocity from a plot of the displacement vs the velocities by extra-
P atién; unfértunately t;; plane in which buckling takes place often

rotates. slowly; morcover, the beam continuously responds to random

“ A .
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perturbations in the flow, thus generating erratic motion. For

" tapered beams, subcritical.vibrations resulting from those per-

pl ‘.
turbat%ons in the flow are amplified-as they prepagate along the

4:5' beam 4Because of the diminishing cross-section’agd flexural rigidity)f/
to the extent that theyteventually offset~tﬂe defie?tioné arisinq
. frém buckling (and,«qu that'ma;ter, flutter): In fact)buckling
could not be isolated .(nor flﬁtter) with éertainty for almost conical
beams (-0;7>ae>-1.) because the levgl of turbu%enbe.in’the abpa}atus

was too high; for quasi—cylindrical beams we selected the criteria

\ +

for buckllng to be a minimum deflectlon frOm the positlon of rest by
S

approximately half a diameter.

' In establishing the upper limit of buckling, another dif-’

(

ficulty is met because the next 'instability (second mode flutter)

often 6ver1aps the buckling zone; in this range of velocities, the

modal shapes and the amplitude of the two reighbouring instabilities

i are very close and they can o¥ly be distinguished by their frequency,
i.e. one oscillates (flutter) and the other does not (buckling);

yet, the frequency of fiutter\is sometimes very low whereas the
Puckled beam may oscillate due to flow separation aqﬁ vortices at

the free end.

4.4.2 Flutter

0 Flutter generally supersedes buckling at hlgher flow/velo-
c1t1es and the modal shape of the osc\ﬂﬁatldn is close to a second
mode, except for cantilevers conveying internal flow which do not
buckle at all and may flutter in the first mode.

4@ 1

~ '
‘countered :and the beam never regains complete stability between
‘ |

As: the velocity increases, 'higher-mode flutter is en-

1 o

[
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successive 1nstab£}1t1es‘ The transition between two kinds of

)

flutter ocdurs abruptly, travelling waves shake the beam untll the
new modal shape has e§tabllshed itself.
. Although. the modal shapes do not thave nodes exactly fixed

E N \

with respect to the x-axis, some portions of the “beam experience

no

GBS EN e

beam does not oscillate in Bhase, and the phase shift betﬁeenothe

smaller displacements than'others and the -number 5f these regions
% usually increases by ohe as thea&nstability ewitches from one 1
g flutter mode to the next; moregver, such regions are stationafy,
g so that no sinéle‘travelling wave can’ be obser&ed. However’> the
5

t@# ends of the beam can be sidnificant, although it never appears

to keep the same sign over the whole ledﬁth'ef;the beam; in other
words, the motion of the beam 'is the sgperpoeition of a sinusovidal . . .
oscillation and small waves (of not necessarily ‘the same amplitude) ¥
travelling at different speeds and in opposite directions.

In the case of beams supported at both ends, the available

external flow in the water tunnel did ndt allow for flutter to be
observed without internal flow; ho%eéer,fat the maximum external
flow velocity, a small internal flow preclpltated flutter. As
opposed to the case of a- cantllevered ‘beam, where flutter develops
with a specific frequency, in this case the tnansltion from buckling -
to flutter is a cohtiﬂhous procesé} as described below;_mofeover,

no diminution of the amplitude of the buckled beam is observed.
Flutter starts in the form of a[travelling‘wave of roughly four
diameters in transvefse‘amplitude and withga half-wavelength (from
one node to the next) close to half the\length of the beam, which

\

propagates very slowly downstream; further increase in the flow '

LT

velocity causes the motion to become brisker, the frequenc% of the

!
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oscillations to incredse and the travelling wave to be more difficult
. ~ - :
. to observe; the oscillations.theﬁ'look more or less like those of 4
: o
a second beam-mode. ‘ . /? /

_Flutter due to’ the extérnal flow, irrespective of support

conditions, usually involves amplitudes and deflections much smaller -

R

thaé for the internalvflow;/rather than the eber-growing amplitudes L !

predicéed;by linear theory, small limit cycles are obtained, thus -

P

% 9 @ s ' . e

gl implying impertant .non-linear forces. However, in the case of . 1
¥ ‘ ) - - ' L

£ » . N ‘ . .o . . !

g .> internal flow, oscillations may develop until the tubular beam hits * §-

% “the wall of the test-section; thergfore, the flow had to be reduced .

quickly to stop flutter and avoid ruining the beam. It seems that §

[}

* - - . Ve
non-Iinearity affects.the experiments in external flow more than.

those in amternal flow, presumably because flow separation may occur
- * , ) ' ‘
along the beam and flow velocities are smaller away from the x-axis.

¥

Consequently, it is preferable to investigate the influence of ;

internal flow on an instability caused by the external’ flow, rather
than vice versa; in addition, the stabilizing or destabilizing effect

of internal flow on the amplitude of a small limit cycle can be-

easily assessed.

’y.Finafly, it is generally obsérved that, bé’ow the crlitical
fldw\ elocity, the beams are stable in .the small, but unst%pl? in
o ' : !
" th¢ large; for example, another manifestation of non-linear behaviour

s}

is that flutter'persists,below the critical velocity for a small
range of flow velocities; similarly, a highér-mode flutter persists

below the‘%elocity where, by increasing the flow, it had first super-

~ N

seded the previous lower-mode flutter. .

. ’ ‘ N
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5. COMPARISON BETWEEN EXPERIMENTAL AND THEORETICAL RESULTS
° . v

¢

&y - '
Rather than ﬁ%&senting the theoretical and experimental

results separately, %nd then c¢omparing them in another part 5¢»the

Thesis, it was decided\to preSenﬁ the two together, wherever both

%: are available, and compare theory to experiment directly. 'Two
X e
5 important reasons for this are that (a) there are many different,

3
5

albeit related types of systems considered (e.g. With internad
flow, with external fldﬁ, conical or cylindrical, etc.), (b) the
physical parameters affeb%ing stability are too numgrous to be

, . able to calculate stability criteria for all possible comiinations,

and hence the available experimental data provides- a framework for -

-

\

the theoretical oe%culétions.

5.1 CASES OF ZERO EXTERNAL FLOW

- In this section we will consider cases where only the
internal fluid possesses an axial velocity, whereas the only

¥

significant motion of‘the externa} surrounding fluid is the cross- .
flow due to lateral motion of the tubular beam, Thus, the flow

along the beam resulting from the mi&ing of the jet of internadl

filuid with‘the exte;hal fluid at rest will be neglected. The tests
involved only vertical cantilevers élamped,upstream.and.hanging
either in air or in'water, but the internal fluid was always water.

in all cases the thickness ratio was at Jleast equal to 0.5 along

the tube, to prevent shell type instabilities and swelling. Finally,

the free end was alﬁays blunt (x=I=0).
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\ /. According to the geometry of the internal duct and that

Pf/the external surface, we may classify tﬁe beams tested into the

.
[

fdllowing/three classes: ‘

\ / Ty
. /
a) cylindrical tubes; both external ang . AN VANNNANN
[ S GO
’ internal cross-sections are uniform.
. e /?‘ USSR SNSSY

! A
] 4 v

[ #
b) ecylindrical-conical tubes; the external

o TR

cross=-section is uniform, and the in-

v | o ¢ S—— —  So—— — S— 4

.

ternal conduit constitutes a Funcated NMULURNBRRRNN

- /

cone .,

e ]

' /
‘ L T SONNNNINENSSS
¢) conical tubes; both externpl and in- 4 —— — ————. —f
" ' TROS OS SUNNNN

ternal surfaces are truncated cones.
’ /
X J
¥
The fourth possi¥ility,i.e.a conical beam with a cylin-
/

drical duct was not investigated because of experimental dif-

ficulties; for instance, an initial upstream thickness ratio of

R

Siae

2:1 led to a fragiie downstream end, whereas a larger upstream
ratio would have- required critical flow velocities beyond the

K capabiiities of the;éxperimental apparatus..

o
V

- § ) .
,5.1.1. Cylindrical tubes

i

in thd case of cylindrical tubes, i.e. aefai=0, eq. (6.8)

¢

] réduces to « , . : o~
. o . ’ // . . . . . R , )
iwdy 4 d w 2, 1 - 4 Y-
@ {1‘u+v]wT} + vi - 3e)m T2mvg*y) (1-8) }Eﬁ
R (10.1)
+ {I(2~ y +y ) + 21w(Y +Y ) v} i y=0, \
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and, for a free downstream end,the boundary condition of eq. (6 7)

£=1 = 0 for a blunt end, i.e. for x=0.
U

\ a Apart’ fr;;\zgg\addltlons allow1ng for an external fluid

ot

simply reduce\\to (d W/dg )

other than alr,'and for both v13coelastlc and hysteretical damping,
thelequatlop .above is Ha51cally identical to those prev1ous1y derived

by M.P. Paidoussis, This case has been treated extensmvely by

* numerous authors with\good'predictiéns of flutter, and we shall

\ > ’ .
only focus on the effect of,/ the external Eu;rounding'fluid. )In

Fig.3 are plotted frequendy loci for a cantilever .in air and in

v & Q'
water. The coordinates have been scaled to represent the square

roots of the real and imaginary parts of the eigenfrequency u; ;

this repesentatlon has been adopted for such dlagrams because 1t

yields almost" equldlstant spacing between the modes ‘at small flow

“

velocities Ae.g. for the cylindrical tubuIQiabeams pqggﬁntly con-
o

sidered, the interval between consecutive modes is approximately

".In this example, since we did not count for inter-

¥
- nal damping of the material, the modes start on the réal axis at

7

eqﬁal to .

zero flow velocity. Great similarity is observed between the fre-

quency loci, for example in terms of the intersection ofjkpe first
mode with the imaginary axis (damped motion without oscillations)

and flutter in the second- mode However, the surrounding £fluid,

]
q

whether air or water, has a significant influence on both velocities

and frequencies; e.g. the critical dimensionless flow velocities

for flutter are 8.5 and 5 with frequencies of 25 and 14 in éir and /

{
This can be mainly attributed to the dif-

o~

water, respectively.
ferent gravity effects introduced by the term P(2~ye+yi) in eq. (10.1).
If T, which is a measure of gravity versus flexural forces specific

to the tube, is not negligible, t e eigenfrequencies of the
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I same tube at the same flow velJcities will differ in the two cases,

since the values of 2—Ye+Yi are close to 1 if the surrounding‘fluid'
is air and closer to 0 if it id water. Apart from the gravity ef-
fects, éhe inertia effects intﬁoduced independently by thé pérameters
Yo,Y; and 6 differ in the two ases; for instance, as shown' in

Appendix E, 'the imaéinary parts of the frequencies are .approximately

equal to 2vi[(§2+yi)/(Ye+yi)}£ for small-flow velocitie?, thus re~-

: , sulting'in higher hydrodynamic damping when the sﬁrroundingnfluid

is air rather than water. ' . e : ‘

5.1.2 Cylindrical-conical tubes

'Theéretical results, 3

For this case de=0 and equatfbn (6.8) yields

o .

2 1-6 (1+a E) 2

o S 2 o
! . L, 2 dzw [v .
~rl(2-y +y;) (1-8) + YiaifL"E ) + ¥y —5(1-E )]}dgz (10,%Q 7
, ey g F Yovs (Lrag ) /»;;,y_\“
+ T2~y +y; (Lo  E) ] + zlm[Ye+Y —=] v, }dg Yo ///}y: 0.

s

\\\ The frequency loci for a cantilever in air Qt///;er are

snown in Figi4. Great similarity, both in the genef/1 shapes/and

crlélcal characteristics is now observed for the two sets of loci;
moregpvexr, these paifs of }oci are very close to thoke of a cylind;
ricé tube in wat;r‘(yigi3), except f9r the &alues of the‘velocity.
This ar?ses because the value of Yy i.e. (149i)62, is usually small

(:) compared to Yo when we take 6<% and p<1.5pi, and 64 is small compared
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% to; 1; hence the main difference between eq. (10.1) and eq.(10.2)
" &
R A ‘ : '
: C. is the division of the velocity vy by (1+ai).in the factor associated §
3
g - . with the second derivative of Y. 1Indeed, at high flow velocities
ﬁg ' v we may expect the frequency loci to be similar, except for a velo-
E;é: ‘" ‘ ) ' (\ 4
%; 2 city ratio between 1 and l+a dependlng on whether w is large or
i . small the ratio w1ll be ciose to 1+a. 1f w is small szhce the only

other 51gnificént term involving Vs is multiplied by iw. For

instance, in Figs. 3 and 4 respectiveiy, the frequeﬁcies at velo-

citiee in a ratio of .5 such as v, =10 and v, {75, are close, since ]
l+al-0 .5; similarly, when the frequency loci intersect the real

axis, the critical velocities in water are Vs ~5 and v ~2'25 respect- )

o

ively, yielding a ratio of .45 which is close to the'value of l+a,..
v 4 \
o

Comparison with experiments = | S
a

a

. Our prime concern is the determination of critical flow

vélocities at, the onset of instability; in practice this was done

by increasing|the flow velocity until small regular oscillations.

were observed; then it was a matter of time before they began in-

o o

creasing in ‘amplitude so as to yield large deflections; consequently,

the critical frequenciesowere measured rapidly while the displace-
. e

flents were still small in order to avoid large non-linear effects.

The results for a single beam truncated to differepnt

gths are presented in Figs. 5 and 6, for the beam in water and

in afX, respectively; the experiments were not conducted below a

|
length fatio €=L/D=10 because the actual critical velocities and

frequencibs, as opposed to their dimensionless counterparts, increése’

rapidly and exceeded the capabilities of the apparatus; besides,

<

beam theory becomes inaccurate for beams of small, slenderness. As
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indicated on the abscissa of the figures we only investigate

]

length ratios corresponding to values of the taper ratio, &i,

-

varying from around-0.3 to-0.67 the lower range i.e, from-0.3

to 0.0 is bf'l;ttle/interegi, as the beam approaches the cylindri-
cal shape. . The upper range in the vicinity of -1.0 would clearly
be more interes;ing, as we expect the beam /o_become unstableﬂeﬁ -
very low flpw velocities; howeve;, stretching of. the tubes and

swelling at the upstream extremity become important in s cases,

~and eventually failure of the material may occur.

; In all cases, frequencies and critical velgtities are
very precise, and easier to ginpoint than for a simjlar cylindrical
d internal

e

ement between

‘tube; in both Figs. 5.and 6, the effect of a taper
conduit can be appreciated in terms of the good ag
the critical velocities obtainedwexperimentally and those predicted
by theory. On tﬁe other hand, the frequenties aye offlby as much
as 30%, which is not too surprising as interna damping- has not

!
been taken into account in these particula

figures.

If the buoyancy and gravity/fTorces balance, i.e. Yé=2
andlxi=0, egs. (10.1) and (10.2) bglome independent of T'. Now, for
a éyliﬁdrical tube and in the abgence of(damping (v=0), T'is the
; hence, as obse;?edlin Fig.5, the

critical velocity is almost ifndependent of e if %he surrounding

only parameter depending upon

fluid is water, whereas it irjcreases significaqgly with ¢ if in air

\

(Fig.6). This is not the cfdse for a conical duct, as predicted
earlier: the figures show/that the .critical velocity decreases with

oreover, the effect of gravity, which in-

pPpears to,be 'small, as illustrated in'Fiq.7, where

\\‘

\

larger values of =0
3

creases as' ¢
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~ the dLﬁenence between the' two critical velocities may be seen not
* -

' to vary s:.gnlflcantly with €. Finally, for both the eYlindri'cal

R

‘and the cyllndrlcal-conlcal tubes w? observe that the, critical velo-

-
N

cities are higher in air than in water.

u

Fig. 7 illustrates the influence of damping in the case

of the cylindrica}-—con‘ical beam. We observe that, irrespective of
: L - '
whether the beam ighjmersed in water or hanging in air, the critical

e

-

R T

-

! / velocf?y is only{:.ncreased by roughly 5% if we take into account

v1scohysteret1c damping (dotted lines); yet agreement with the ex-

&y

perlments is not significantly dif ferent, However, the crltlcal .
frequepcies, especially in water, are indeed more significantly

) reduced and the dlscrepancy w1th the experlments is now always less

i

‘- than 20%4.' '

\ \,"“ " .- . :
- v : .
5.1.3 Conical Tubes

h . o8

'}'heoretical results

We now consider the general case of a conical external

3

surface and a conical internal duct, T_he differential eguation '

(6.8) may be simplified due to ue:-o, yielding
|

4 4 4

A1+ . }
utv(w| ag? - 169 atZ 5

T vz . | ° g

T T ey T TSI -6) (10.3) . §

h ) ) v ’ 2

y
+ U2mY 3 0 (1-E8) # Z(2=Y e 47 00) (1-E%)) }g'{f'
) . 2
’ - 8%y,
2 .
# AT L2y ) (e £)? 4 Yi(1+aig)21 + 21u)[Y , i, }—E

o v, (asE) By, (14, £) ’
- w e e 1 L ¥ = 0.

Ye+Yi
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a ) - .. In Fig.8 are plotted the frequency..loci for such a tube, " ~-

- A
°

. A .
" hanging -either in air or in water; because internal damping has been

»

. g
taken into account, the natural frequencies at zero flow velocity ’

) . n . ‘
are compléx and the mode loci no longer start on the real axis. At
first, the external fluid would appear to have a critical effect on
' ’ the dynamics of the system when we’compare the two diagrams. For

instance, the .mode which becomes unstable first is mode 1 in water

L)

and mode 2 in éir; However, closer examination indicates that the
two cases are quite similar.if, independently of what hhppens at
velocities in.the wvicinity of 0.75 and above, we considér that the

loci of mode 1.and mode 2 have interchanged roles. Such mode inter-
, . ' o

change is commonly encountered in elastohydrodynamics and u\‘sually

has little influenée on the critical characteristdics.

If we compare these loci to those obtained in Fig.4 for --

_a cylindrical~conical tube, the major difference is ocbviously that

~ ~

~here both mode 1 and mode 2 become unstable; furthermore, if we

extrapolate the diagrams in Figs. 5 and 6 for ai=-.7, we obtain for

a cylindrical-conical tube critical velocities which in each case

R are higher than those of a similar conical tube.
!
’ _ ¢

- Experimental results:

: In Fig.9 we compare °exp‘erimer}tal and theoretical critical *

veloci\ties and frequencies with the beam truncated to progressively

m shorter lengths; hence, the values of oy and o, in the abscissa are
proportional to the length rdatio €. ‘The theoretical ca\lculations‘
¢

take into a}'ccoupt the vis’cohysteretical characteristi'cé of ‘the l:,f,

s ! ‘\“2
material, with either air or water as the external fluid. We observe

A
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xthaﬁ the critical velocity drops even more rapidly with ¢ than ig
the case of cylindrical-conical tﬁbes,due to the weakening of the
tubc as the external cross-section tapers off. ‘
Comparison between experimental and theoretical results
appears generally good, provided that £ remains above 10. 'As £
approaches 20, a sudden increase of the frequency occurs when the
external fluid is air. This is typical of the influence of gravity
terms, i.e. terms involving I'; I' is proportional tp e? and the fre-
quency locus would exhibit several other "jumps" if calculations
had been pursued to larger values of ¢. Such jumps have been.observed
by Paidoussis [16j for cylindrical tubes hanging in air (Yé=l) for
values‘of I up to 100; in Fig.6 we may observe one around e=19, -
correspondin%ﬁto r~15, and in Fig,9 thg corresponding valpe in air
is I'~1l; however, in comparing these two values we must realize
that the coefficients of I' are not identical in eq.(10.3) and (10.1).

If the external fluid is water such jpmp§ only occuk for higher

values of e, due io the effect of buoyancy.

i
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5.2 CASES OF NO INTERNAL FLOW

A .
N ’ ' |
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In this sub-chapter we shall consider external flow
only, and mostly for full beams rather than tubular beams. More-

over, we shall restrict our investigations to veftical cantilevered

beams «clamped at their upstream (upper) extremity. The beams are

terminated at their free end with bullet-shaped rigid end pieces.

{

Two major classes of beams will be considered; the first

LN

comprises cylindrical beams with a uniform circular cross-section
(ae=0), and the second consists of beams, referred to as conical,

which have the shape of a convergent truncated cone (-1<ae<0).

-

»

?

5.2.1 Cylindrical beams °

.Upon setting ae=ui=vi=0 and H~§(2-Ye)(for the immersed__

-

weight of an approximaﬁely conical end piece), eq.(6.8) yields

A

2 2y~ :
1-¢£. % 2 1 2 X bron 2y oy &Y |
FUETT) 9 = 308 ~ 3127 [T (2-vg+y;) + eceugl g)}EEzJ\\\ . §
. . C v \ 3
y -1 % 2 3
} 2 | 1-af ay ;
+ {I(2 Ye+Yiz + ecou + 1w(Ye+Yi) [1+ (=) ]ue}dE . (10.4);

y,~1 3 .
+ {iw({-=—) gcu_ - wz}W = 0.

Yoty #F ne \

7
Excepting a few:cases, Y will be null because no internal du

is present in the beam. The end piece will always be full (n

<)

holﬁow)

P

and rigid, and the boundary condition related to shea

r . \
the free end obtained from eq. (6.7) is - . \x\
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2 , vy -1 4
1-a 2 X . e ay

+ {f(~g—) u, - §[P(2-Ye) + %?( Ye) fue]}af (10.5)

? ¥

2y -1 1+£(y_~1)
S L] ] e 2 X e _

+ {1w(-3—) (-—Y-;—) fue + w 3 —————-——Ye ¢ = 0.

These equations are basically identical to those derived
by Paidoussis [57], apart from the modified expression for damping
and new factors premultiplying the velocity to account for the
boundary layer., In addition, eq.(10.1) for the internal flow and

eq.(10.4) for the external flow are almost identical, except for

the addition of three terms related to friction and for the substi

‘tution of the internal velocity, Vi by the external velocity, u,s
or by ue(lggi); therefore, we may expect parameters such as T, Ye'

¥ and v which appear identically in the two equations to have

similar stabilizing or destabilizing effects; however, this simi-
larity may be altered by the boundary conditions which are not the
same for internal and external,flowg if the beams are not supported
at both ends - unless the free end is blunt; ip the latter case

the boundary con@ition'expressed by eq.(10.5) for external flow
reduces to d3W/d£3sO (since x and, consequently, f vanish), which ‘

|
\\ig then identical to that for internal flow.

——————

a) Influence of T and Ye on stability.
\ !
In §5.1 the values of T were found to have a significant
effect on the critical internal flow velocities mainly for tubes
. %

hanging in air. However, we are now dealing with a surropnding
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fluid which is water, and the coefficient ;E I' in eq.(10.4) will
be smallsinceYi~0 and y,-~2 for Imaterials with a specific gravity
close to 1. The influence of T on the critical zflocities for
buckling and flutter, which was investiqated using the values of Yo
for two commonly used materials, i.e, type B and type E silicon

rubber, may be observed in Fig.1l0. The critical velocities increase

with increasing y and I' (more flexible beams) and decreasing values
of Ye (heavier\beams). Material of type B is heavier than material
of type ﬁ'but it is stiffer; as a result, the regions of instab@lity
(buckling) spanning the two critical flow velocities for beams of

the Same length, shown (for e=20) between the two arrows, are

almost identical; this result is corroborated fairly well by the
. . T
experimental data.

b) 1Influence of u and v. '

Obviously internal damping of a viscous type has no in-

fluence on the limits of buckling (w=0). In the case of flutter,

the effect of w and v on the critical velocities and frequencies

yields similar results to the case of internal flow: as damping in-

93
creases, the critical velocity at the onset of flutter remains

almost unchangqéz:?ereas the corresponding fréquency of oscillations
ghninishes rapidly.

\

This effect is illustrated in Fig.12; in one case the
intérnal démping characferistics of one of thé materials used in
experiments has been uéed (rubber type E, u=0.08, v=0.015) in éhg
caIculatiéﬁs of the eigenfrequencies, whéreas in Qhe second case
no damping was assumed. The lowest critical velocity which‘gives
flutter varies by less than‘oné‘percenﬁ because of material damping,

[

while the co;responding frequency drops from 6.7 to-4.6; in fact,

i

a

4

A,

1
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for heavy dimensionless damping, such as would apply .to very short

el
=

e R

beams (the value of v beihg inversely proportional to "), the

vt TR
#; &

£ ,

P critical frequency was found to drop to zero, and flutter gave way
o B

%% to buckling at ue=5.6 = which is the value obtained, independently
?' of internal damping for w=0. -Thus, this critical velocity appears
%

, , |
to be almost unaffected even by heavy damping, However, the next

+
It
v

Y

critical velécity, which is obtained along the third mode at ue=9.15
with no damping, disappears with damping because the third mode is
seen to remain stable. Due to damping, the second and third modes !
have interchanged roles in the vicinity of ;e=9: the second mode
iwhich regained stability at ue=9.2 with no damping, remains unstable
witﬁ damping - although a minimum degree of instability is found to

occur in the neighbourhood of 9<u <9.5, close to the critical velo-
‘t cities u =9.15,7u =9.2. This region corresponds to the' transition

i

*from second mode to third mode flutter and is difficult to pinpoint

experimentally; however, the experiments indicate that it is defi-
nitely larger than the shbrt overlap obtained without damping.

From a theoretical point of view, it is. more convenient to assume

no damping and compute two critical %ﬁ&bcities, i.e. the pointé‘where

flutter ends in the second mode and/Where it starts in the third

mode, rather than to_consider damping and compute the velocity which

{ corresponds to a minimum negative imaginary part «of w.
~

1 c) Influence of €. )

«In eqg.(10.4) e is encountered several times, either

] | explicitly in the terms related to friction foerces, such as €C and

{,,' EC, s OT implicitly in the calculation of o (which also involves Eét)
I

and of . The overall effect of ¢ :on the criticai velocities for

e T 15 T P T IO
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‘thenf we shall use Ce exclusively for the calculation of the boundary
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buckling and flutter has been talculated and compared to the ex-
perimental results in Fig,1l1. Theﬂ;heoreticalutrend which predicts
that the critical Qelocities should increase slowly with the length
appears to be corroborated by the experiments; moreover, fpe two

!

types of material used for the beams yield similar expérimental

results within the range of experimental uncertainty.

In summary, from the previous baragraphs we realize that

- T

the type of material used in the experiments has little effect on '
.the dimensionless critical velocities, and we may thus ;gmpar? in

the same figure several results obtained with different materials; §
moreover, from a practical point of view, we may select for each -
expériment the material which is the most suit;ble, e.g. in terms

'of strength or reliability - although in most cases the most im-

portant criterion used was low flexural rigidity which enabled us

-

to investigate a larger range of dimensionless flow velocities for

<

the same experimentally availa?}e range of dimensional flow velo-
i

cities.

5.2.1.2 Friction_and boundary layer_effects.

s s Otk o . sy T T e ot s Py M i Wy S o e Sl w8 B i et 4 St o

a) ,influence of c and c, on tge critical velocities,

As eq. (10.4) s?ands, it would be difficult to evaluate
the effects due to skin friction and those due to thickness of the
bgundary layer separately, because both depend on the same para- i
meter, ¢, . For this reason, we resort to the following artifice:

since the value of ch and c, are equal,’we shall replace Cy by Sy

when ct'applies_to friction, i.e. when it appears in eq. (10.4);

L

1
1 '

layer parameters o and o0; in this way, c, and c, may be varied

l
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\

independently. The results are presented in Fig.13. It is seen
that the influence of skin friction alone (ct=0, dn variable) is
smaller than that of the boundary layer thickness alone (cn=0,

ct variable); and if both are combined (cn=ct),]the,critical velo-

cities for Euckling and flutter in%rease sharply with increasing
kY ;

values of <L and Cyr especially for the latter. By assuming a

smooth beam surface .and an average Reynolds number around 2 X 106,
-3

a skin friction coefficient ct=8 x 10 was derived in Appendix G;

' agreement between experimental and theoretical points corresponding

to this value appears to be optimum if the boundary layer is taken
into account (dark circle data points); in 7dd1tlon we notlce that
boundary layer thickness is responsible for approx1mately a 15%
increase in the critical velocities, as 1llustrated by the brackets '
in the figure. 1In the same figure are plotted the critical velocity
zones measured by Paidoussis [50] in an.experiment where a fine
cotton thread was wrapped helically around the beam; "the total skin .
friction coeff1c1ent, com&only labelled Cer has been.estlmated from

/

standard tables by assuming a rough regime and an equivalent sand
. i
roughness ratio, based on the diameter of the thréad, equal to

3

2 x 10~ (indeed, for such a_roughness the regime is no longer hydrau-
s } ('

licallngmooth for Reynolds numbers above'los); thé wvalue thus

obtained is cf=7 X 10—3. We may not simply use/ﬁhe values cn=ct=2’cf

(as derived in Appendix G) to plot this data iﬁ Fig.13, because the

7

values of € do not match: €=20 for the\figqre and =25 for the tests
conducted by Paidoussis. However, as previously noticed, the charac-

teristic parameter for friction and boundary layer effects is EC,

* Schlichting op. cit. figure 21.6. \%égi:::>
- .
§
. \ , 4
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[ Y
rathér than ct, using his new abscissa,.the data could thus be

plotted in Fig.13 for ect—O .35. The agreement between exper1menta1

and theoretical data is striking. In fact the critical velocities

Pl

/ should be adjusted downwards to account for the fact that Paidoussis
considered horizontal beams (I'=0), whereas we considered vertical
beams; however, gravity only accounts for a small amodnt in the

critical velocities, as observed in Fig.l0.
|

b) influence of ﬁhe pouﬂdary layer thickness alone.

Fig.l4 shows the three lowest modes of a vertical canti-~

lever preceded by a short coaxial cylindrical support of the same

diameter. In one case the boundary layer has been taken into ac-

count (with c;=8 x 10_3 yielding @=0,1, ¢=1.05), and in the other

case it has not been (with c =0 yielding =0, 0=1). It is seen that \
‘ the two sets of modes are close. Considering pairs of points, one ’ .

from each set, corresponding.to the shortest distance between the

two loci; we then note the following:

i) the velocities dlong the loci which take account of the boundary

layer are larger than their counterparts on the other loci;
ii)‘when positive, i.e. in the case of damped motigns, the imaginary
parts of the eigenfreq&encies are generally larger for the loci'
which account for the boundary layer, as illustrated by the
palrs of points correspondlng to the velocities (2,

1.75),

(5, 4.5) and (8, 7[ in modes 1, 2 and 3 respectively.

‘ In summary, addition of the boundary layer thickness in the theory )

appears to be equlvalent to a reductlon of the flow veloc1ty comb}ned

s/

‘ft Wlth a stab:.llz:mg effect. / ‘ . {;
‘ . ) '

\ vl ™
- - .

£ *
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Uﬁfortunately, the- influence.of the boundary layer alone

5
3

P

AR

could not be assessed exp?rimentally. An attempt was made at

3 boundary }ayer suction using hollow tubes inserted in small diameter

%& | holes drilled in‘approxi'ately/one hundred locations. However, the

g;)m quantity of fluid which/could be regbve5¥was too&smgfa to obtain ]
% ' a significént reductioft of boundary lafé; thickness | {
;( o (see Appendix G); morgover it was suspected that

i

the small internal counter flow created thereby
; produced some hydrodynamic damping which probably

offset most of the destabilizing effect which .

might have arisen from suction. Another attempt

was made where, rather than trying to reduce

s A e Tk Pt

- boundary layer effects, it was thought that i@, . ) ' ’ |
might be easier to attempt to increase thém, e.g. by choosing ./
1ongerlaxial supborts‘br by using smaller diameters for the beams

(in order to increase the ratio of the boundary layer thickness

1

to the diameter); howeve#, the existing apparatus_gnd equipment

was not suited for the fairly major modifications necessitated

thereby.’

e ot i e B o i e 4 e o At At g s e . v s e e v e S S o S i S g o B e o

This effect i5 the most critical for stability of canti-
levered beams. 1In Fig.l1l5 are §ho§ﬁ the ?ritical velociﬁies for
buckiing and flutter which were obtained experimentally for two
types of cylindrical beams (maée of different silicone\;ubberé);
with at least three different end pieces, i.e. xeéﬁ.s, 1.0, 0.5;
those, obtained by Paidoussis [50] for horizontal beams have been

h
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added in the same figure. The experimental data is now compared

- -'.!‘
to the theoretical boundaries of the ignes of buckling, and first

‘and second flutter, which were computed (i) with the boundary layer

-4

ment with previous work, ‘the beams were found to be stable at any

assumptions (full lines) and (ii) without (dotted lines). 1In agree:

fIlow velocity if the end piece is almost blunt (no instability up

“to ue~lO for xe<0.55; if the end piece is more tapered than a hemi-

sphére‘(xe>0.3) the beams are found to be stable ét low flow velo-

~cities, then to buckle around ue=3; as the flow is further increased, -

E‘
. £ . . . ’
flutter is observed, first atound ue=6 with oscillations of a second

mode type, then around Ug 9 with osc1llatlo¥s similar to a thlrd

et

mode. The beams usually regaln complefé stability between buckllng

and the fxrst flutter, ‘although in some d%ﬁes there is some over- /

. : {
lapping between them which sopetimes makes it difficult to decide

]

when one ends and the other beglns, in thecg latt?r cases the symbol
used in Flg 15 to pinpoint the end of the lower 1nstab111ty has been
plotted Just above the symbol for the start of the higher one.

Transition from first to second flutter was found to be accompanied

by a marked diminuition of amplitude, without-an interval of stabil-

ity between them.

[
The consistency among the experimental results and the

agreement with the theoretical critical velocities are generally
pooxr for xé<l.5; this is not too surprising because the value of
the parameter f in eq. (10.5) has been established for a-potential
flow over the tapered end with no consideration for flow separation,

and also because the experimental critical velocities are difficult

to pinpoint, éspecially for buckling. Nevertheless, the theoretical

»e x R
RS 8 L Uyt 4f s —-sk.,-,y,i%—nwh;wwm.;quw,mw@ R g S ki :a‘:;«w
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4

. , ‘ /
predictions are generally better when boundary layer effects are
taken into account (ct=0.008) in the calculations. This may not
be clearcut,.consi&ering that the results obtained by Paidoussis

for flutter fall below the full lines; and closer to the dotted

line‘(ct=O)qur xe>{.0. However, this may be due to several factors:

¢

a) our theoretical critical velocities are overestimated with

& ‘respect to his data because the ratio of ‘the diameter of his test-
P
g

oo .
section to that of the beams was only 4; coqsequently, a signi-
™~

ficantf& larger virtual mass of the beam should be introduced in

the' equations of motion by multiplying the terms representing the

lift with a factor greater than 1, thus reducing the flow velocities
\ ! (

required to reach the critical conditions, and thereby the gap with

the experimental data;

b) another similar reason is that we accounted for gravity 1]

|
whereas it was inoperative in his experiments (I'=0); however, the

small de-stabilizing effect not accounted for is balanced by the

fact that his beams were slightly longer than ours (e~23.5 as op-

; N . - .
posed to 20), thus resulting in relatively more friction and a

\
i
kA
&
s
Y
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stabilizing effect (as can be observed in Fig.13 for larger values

¢
; of ec.);
L
E ¢) Paidoussis assumed a flat velocity profile in the test-section
. ' 1]
and thus measured the ayerage velocity rather than the velocity in
the neigﬁbourhood of the beam; for comparison purposes, in our tests

Qpe critical velocities would be underestimated by 15% with such an

4
I3

assumption.

ot St it g

R
¢ \

For these reasons we may conclude that taking into account
' |

the boundary layer improves prediction of the instabil}ty thresholds.
- \

i ‘
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5.2.2 Conical beams

Although relatively short, this sectio‘ accounts for
most of the time spent on both theoretical and gxperimental work.
For one thing, the computations requiﬁgd a;projfpately 17 term%
in the Fourier series for convergence of thé first ¢ritical eigen-
frequencies when the shape of the conical beam approaches that of

z

a full cone, namely ae<-0.84 as opposed to 10 terms for uniform

[N el

g . .
beams. il§04 unforeseen theoretical problems arose when the observed

-
PRS-
if

stability'd?/almost conical beams could not be explained with the
sole use of potential flow and slender’hody theories; this is the
reason why the new assumptions of §2.3.4 éoncerning the effect of
the boundary layer were developed.

As far as the éexperiments are concerned, many difficulties
arose becaus; we chose to, test quasi-conical, i.e. ae<—0.5{ rather ’
"than quasi-cylindrical beams; as mentioned in §4.4.1, such beams
are very sensitive to turbulence-induced'subcritical vibrations;
as a result, erratic oscillations, up to two diameters in amplitude’
at the free end, made it difficult to pinpoint the thresholds ofl
instabilities, and even to distinguish between the types of instabil—
ity. ,
3 ‘\ . ‘}\ B

. e AN
5.2.2.1 'Eigenfrequencies_and modal_shapes /

The comblex frequencies of the three lowest mq#és of a
tapered beam having the shape qE a full cone truncated in half
(ae=—0.5) have bEen,plotfed in iig.lG for dimensionlegs_flow velo-
cities up to 10; the loci are not significantly different from those

obtained/;n Fig.12 for a cylindrical beam of the same length; in both

cases mode 1 reaches the Im(w)- axis, buckling follows and then

!

:
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stability is regained just as the system loses stability in mode 2

7

by flutter; similarly, stabil;ty is regained in mode 2 and lost in
mode 3 by flutter; subsequently, mode 2 reaches the Im(w)-axis and
the system buckles. | v
For tgg six critical velocities obtained in Fig.1l6, the
modaiwshapes of the conical:beam have been computed and they are
pﬁesented in,Fig.17. Thé top three diaérams show buckling and the

others flutter; in the latter case the two positions of the bean,

~ obt#ined from the real and imaginary parts of the standardized

séiution (derived in Appendix B, section 4), illustrate the (undamped)
oscillations at two moments in time, out of phase by a quarter of
a period. The diagrams 1nd1cate that distinct modes may result in

[
similar modal shapes around the same flow velOCLtﬁes' *for instance,

the modal shapes of modes 1 and 2 at ue=4.6 and 4.8, (respectively,

i

!

upper limit of buckling and lower limit of flutte&), have similar
features; thls similarity may be easier to observé by looklng at T
the (shaded) areas, i.e. those swept by the beam éurlng flutter,

and ghoselbetween deflected p051t10n and p051t10n{at rest in the

f
case of buckling.

L]

5.2.2.2 Inflgence of ¢ -

. {
a) for constant values of oy Ty

i

At a given taper ratio, larger values of € result in
h£§her theoretical critical velocities; as in the case of cylindri-

cal beams, several factors have stabiliziﬁg effects with increasing

lengths; gravity is one, and, around ae=—0.5 and - €=17, it accounts

N W

)



R —

E for approximately a five-percent increase in the threshold for

buckling (corresponding to beams cast in material E), but less

i

for higher instabilities; the remaining factors, i.e. friction
and Boundary layer, are more important and, under similar conditions,
vield a fifteen percent increase, independently of Ehe‘kind of

instability.”

-

In Fig.18 both:;theoretical and experimental critical

velocitiesﬂﬁhve beeﬁ plotted for ae=—0.5 and -0.6; in\addition,,

{

the data obtained for ae=0, in Fig.ll, has been reproduced fotr
’ ‘ >t \
comparison purposes. For each value of a, two solid lines indicate

the theoretical lower limits of buckling and flutter, respectively,
whereas the dotted line indicates the upper limit of bucklihg. The
experimental points have ﬁeen obtained with beams cast with dif-
" ferent materials and different mouldsw(which, of course, giveq

different taper angles in the diagram). The scatter of the experi-

3

mental points is such that the influence of e predicted by the
theory cannot be positively verified. Moreovef, the short region?t
of stability predicted theoretically between buckling and flutter,

and indicated by brackets in the figure, could not be observed any

‘:clearly for conical than for cylindrical beams. The kind of’
3o

?Ment obtained in Fig.18 between theoretical and experimental .’
/ .

resu

typical of all the experiments conducted with conical beams. One

ts, and the poor ceonsistency among the experimental data is

1
3

can only say that the variations inthe theoretical critical velo-

cities are relatively small over the experiﬁental range of lengths,

"

as compared to the experimental\uqfertainties. s

&
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‘progressively shorter, have been presented; the taper angle of
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b) for constant taper angles,

e

In Fig.19, the theoretical and experimental critical

velocities-.and frequencies obtained with a conical beam truncated

the cone is‘6e=0.035 rad, its (full) length ratio is ¢=27.5, and

the relation thereby obtained between @, and € is e=-27.5 a- Up

to the maximum (dimensionless) experimental'flow velocity the first .
four modes have been computed and investigated for instabilities.
Buckllng is obtained in mode 1, then flutter for each of the .other
modes, with very little overlap between instabilities; additional j
buckling was predicted to occur simultaneously with 'the flutter of
the odd numbered modes; fo6r instance, buckling (in mode 3) is super-
imposed on flutter in mode 3. This sequence of instabilities was
observed experimentally and the modal shapes observed are v?ry g

similar to those plotted in Fig.l17. As far as frequencies are con-

cerned, the experimental and theoretical results are presénﬁéd in

the right-hand~side diagram of Fig 19; the arrOWS\match these in .

the left-hand-side diagram and, therefore, the experlmental p01nts/
which have been measured at the lower end of the 1nstab111ty reglons
should be compared with the portion of the contour aiming rlghtwards.
Generally sp%aking,‘bogp critical velocities and frequencies are
underestimatéﬁ by the theory 'and the quantitative agreem;nt dete-
riorates further as the truncation ratio, ~Qg s increases towards
unity (full cone).

As previous%y mentioned, for very tapered beams the

critical velocities and modal shapes are difficult to assess and’

the frequencies are too irregular to be counted, as indicated in
s
i . \

3

Fig.19 by short vertical dotted lines. Such difficulties are-€ven
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4 more serious for the third instability region where buckling and

A -

ff} 0. flutter occur simultaneously and combine in fast, erratic motions.

x
R .

! 1\ ~N
5.2.2.3 Influence of « /1
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We now investigate the effect_of a, on the criti&al velo-
cities assuming the 1engths(of the beams constant, The ;heoretical
§ results have been calculated for £=17 and plotted in Fig,20; the
J uﬁstable regionskggfained ?qincide with those of Fig.l9 for ae=-0.63
(which &ieldsfe=l7 ih Fig.fé) but otherwise do not diﬁfer signi-
ficantly; in addition, it is recalled from Fig.l18 that the vari-
ations of the theoretical critical velocities w;thin the experimental -~
. range of length ratios are less than ten percent with respect to
the value for e=17. Because of the above, we plotted in Fig.20 all
the expérimental\data which was obtained for 11l<e¢<2l, rather than
only the few points corresponding exactly (e=17) to the theoretical
curves. However, in orde? to notice any possible effect of length,
two types of symbols have been ?sed for the qxperimental data points:
for a specific material the symSol is black (full) if the taper
angle is relatively small, i.e. Be<0.03, and hollow (open) for
Bg>0.035; hence, conical beams in the former category are at least -
twenty percent longer. than the others, for the same value of o,.

e
For clarlty,only the p01nts for the experimental lower limit of )

¢

each 1nstab111ty zone have been plotted in the flgure, as a matter
of fact, the ubpper limit is generally concealed by the next 1nstabi-

lity.

‘ The conclusions to be derived from Fig.20 are similar to

<

those of Fig.19. It may be added that the four lowest regions of

\

\ { v




. instability are quite distinct, yét, the quantitative agreement
‘?" with the theory is gendrally poor; besides, no marked\éifference
between the longer and shorter beams is to be—noticed. Never@he-
less, the patterns of the experimental 'instability zones do cor-
. . ,xespond to the theoretical o%es.

-~

5.2.2.4 Influence of the boundary layer

! In the case of a cylindrical beam, with =20, the
boundary layer thickness was found to be responsible for a fifteen
peréent increase of the theoretical critical velocities. For coni-
cal beams of the same length, the effect oi_the boundary layer is
expected to increase for larger taper angles, because its thickneés
is correspondingly larger relative to the diameter for beams with

v

. larger taper angles; as a result, the reduction in ;ift exerted on
such beams would be more important7 ?his is illustrated in Fig.2£
where the same instability regions are plotted, computed either with
or without the'boundary layer. The dotted lines illustrate the case
of no boundary layer (ct=0) and the regions which have been calcu-
lated are the three lowest buckling areas and the first flutter
(the buckling zones are as convenient aslthe flﬁtte; zones for as-
‘séssing the béundary layer effect but several times cheaper to
con@ute). In addition we reproduced the experimental data of Fig.20.
The shaded areas indicate the sequence Sf theoretical velocity ranges
for buckling and flut%ér around ae=—0.25 and -0.5, respectively, and
the direction of shading differentiates between the two sets of
éheéretical curves, i,e, with or without boundary layer.

It is clear that, if the boundary layer is neglected,

theory—predicés that almost fully conical beams may become unstable;
y R .
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this is contrary to oux observations and agrees with theory when

s?l' bouhdary—layer'bffects are included. Moreover,<by accounting for

(3

G sy e ST TR Y é"'mi‘:;

the boundary layer,ﬁhigher critical velocities are predicted; since

oA

04 the experimental velocities are generally above the theoretical

ones, the introduction of boundary‘layer effects has thus improved

|
o the prediction of instability thresholds. As a matter of fact, /
bt this improvement is more significant” for conical than for quasi-

cylindrical beams.

5.2.2.5 Influence of the_tapered_end

o~ —— " - Py S T o Yo T . b s S

Most,of the ‘theoretical results derivéd in the previous

sections were obtained with Xe=1'5’ (£=0.9), i.e, for an elongated
ﬁapered end (the valpe of f approaches unity for‘xe>2). However,
in Figs. 19 and 20, the results for xe¥0.75 (£~0.7) have been drawn

in dotted lines; it is seen. in these fiéures that the cxitical velo- )

ciéy‘zones corresp?pding to Xe=0'75 are included within the zones
caiculated for4xe=l.5; this is supported by the experimental fesults.

- 'However, with respect to the critical frequencies, there is little
evidence among the experimental data in Fig.l9 that beams provided
with'a shorter end piece do flutter at higher frequehcies,‘as sug-
gested by the theoretical results.

In“;ig.Zz the effect of the shape of the tapered end has
been investigated on the boundaries of buckling for several taper
ratios; the theoreticai bdéﬁling zon; sh;inks rapidly as oy de~-
creases, and disappears for Fe<—0.75; besides,.the smallest“value of{,
Xe wh%ch yields buckling is algost independent of\ae in the iffterval

0<ae<—0.6 and approximately equal to Xe=°'5' For illustration pur- J
. !

poses, the experiméhtal data has been gathered from tests conducted

/

3
\
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with half cones (ae=-0.5) of equal length (e=13.75); the shapes !
of the three tapered ends to be tested were actually more round -
than the theoretical conical elements, drawn in the bottom of

Fig. 22, and used to calculate the parameter f. Given the fact

‘

that tﬁé present theory underestimates critical flow velocities,

agreement betwean éxperim?ntal and theoretical data with respect

\ '

to the stabilizing effect of shorter ends appears to be reasonably

good.

\
—

) I
Similar comparisons were attempted for more conical'

beams, especially around the value ae=—0.65, because no buckling
J -

could be observed further along, i.e. for ae=-0.7, even for well ™

streamlined end pieces; unfortunately the experimental data. was

inaccurate and generally too far above the theoretical predictions

il

to yield a meaningful comparison, e

Ae




‘ , ~114- \ !

5.3 CASFS OF SIMULTANFOUS INTERNAL AND EXTERNAL FLOWS

- H
'

In this sub-chapter we shall consider tubular beams

S M

subject to both interqal,and external axial flows, the velocity

xofleaéh flow being independent of the other. Although the theory

]
allows -for different fluids for the two flows, the experiments

1

1 . . . . w
+« were conducted with one fluid only, namely water. In addition,

o

wir R

i

only cylindrical tubular beams are considered here; the beams are

S
W
kit

:

vertical and can be either cantilevered; i.e. clamped-free, or

LS

clamped at both ends; in the latter case the downst#ﬁam.end is -

free to slide axially during the tests, and no exteﬁpal tension

| R

is applied. The downstream end iF usually blunt,‘gﬁbept for
cantilevered tybular beams, in which case as illustrated in Fig.2,

hollow (tubular) tapered ends will be considered.

-

The differential equation of motion obtained from eq. (6.8)

P ‘
1 "
.

L

may be written in the form

/ . f

( + iwuv'} aly

u+v ol 654
+ {(1—a£)2u2 v ole W2l 2 iC u.v |
o e ¥ Vi T 2%e% T 2CeiVi T 2CexUeVi T~ xT[2-vg)s vl
2 - dz‘{’ ) \/ill 1
= [T(2-y +y;) + ecpul](1-8)} — (11.1)
dg
[ 2 1 ’
' §°+Y . y -1 %
. o 2 . i V1-af, 2 e a¥y
+ AT (2-v #vg) + ecpug + w27 vy + [+ (5 71 () u ll &7
e 'i e 'i
Y -1 3 .
. e 2y
+ (lw(ﬁ) Ecnue - w’}Y = 0,
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%ﬂ and, in the case of cantilevered beams, the boundary conditions at //
g 1
g_g Q £=1 are I
3 asy -
1,%5.}_ N = 0
4, \ 3
i dé i
i and s \
'.'ga " ;;
\
% {1 + _iwuv ady ‘ é
| u+v | w | d£3 é
N I , ) . . g
4 2 , ; ¢
. + {f(1- 52 )(———) u, - XT[(Z-Ye)Sé+Yi] N \ ' §
: ' ! ;
: . :
P 2 ~ :
4 6 +Y- ;’ Y —l % 2 1 s :}
i - iwxl2 1y v, + £(== Sq ——2 o} ay 1{11. :
f wx [ (Ye+Yi) i (Ye+Yi) ( (=) ) ac . (}l 2) 2
F ’ ’ ;
i Yool ¢ ’ 5  (L+Ey_-f)s_+v, )
L + {iwf (=2 )(16)( %20+ wix S _S-2} = 0, :
7 2 2 2 .
where Sq = li%ig— and f = gezx— .
4ex"+(1- 8) ’ °

5.3.1 Theoretical results
/7’

We shall now proceed to investigate eq.(ll.l)'from a

simplified theoretical point of view. For this ‘purpose, we shall
make a few assumptiéns based on the theoretical and experimental
results obtéined in the previous. sections which will simplify the
expression of Lhe differeﬁgial equaﬁion; however, some of 'these
assumptions will be abandoned later on, . in order to obtain a
proper comparison with the experimental results.

First, the exterhal and internal fluids will be assumed
identical, i.e. v; = —62[2—ye]; then, the gravity effect will be
assumed negligible compared to the hydrodynamic fofceé, as would

1

\ AN
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C. be the case for very stiff or horizontal beams ([<<1l}, or beams o
with density close to that of the. fluid (Ye~é); the skin friction

forces will also be assumed relatively small (ecn<<1) as would be

2y

the case for rather short beams and large Reynolds numbers; more-

3

over, assuming short supports, the boundary layer thickness will

be neglected (eoct} ect<<l). Finally, for the sake of clarity,

¥

it will be convenient to neglect the base drag’terms'and internal

« damping.

B}

,
4
%
t
i;g
,;
£
4
@
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Eq. ( 11.1) has now been reduced to the following very

simple form . -

2 vy -1 1 . ‘ ‘ - E

2, 2.d% . Ye ay 2
— + (ue+vi)——§ + 2iw( Y-) (5vi+ue)a€ —‘m Y =0. (11.3) -:

ag Ye+ i

’ \

Incidentally, judging from the values of the parameters neglected,

this equation is not an unreasonable approximation within the =

framework of the experimental data; /in fact, the largest discrepancy
probably arises from omitting the boundary layer which accgunts for

‘approximately fifteen percent of the magnitudé of the critical

/

velocities (as for e=2¢ =20 and e€c,=0.16).

t

o 0 o o > b o T — " —

It appears that eq.(11.3) is very similar to the equation

of a beam subject to a single flow; in’fact, if

[ ' !
I

2 2 2" .

which occurs for

Ye  1-57

\ i
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* .
will be close , and better than with a single internal flow (i.e.

"eq.(11.2): ' :
3y Yol 2
a-y 2, 2 . e 2 ay
=+ {£(1-8%)u - 19))((Y “Y-) [£(s +8 )ue+26Vi]}/Ef ‘ /
4ag . e 'l
' ]
Gt (12 )i(l 52) 2, ST %Ny, .
+ {iwf(—— -8“yu_ + wy =0 . .
YetYi © TetYs

Generally, neither of the two single flows previously calculated

HFROA etk i ey sl LiEUE AL 1 fa g iy ) 5 Sk s .ﬂ” 3

~117-

‘ S

the equation is that of the beam subject, solely to an external

flow of velocity u, + 6v,; similarly, if ‘

u u
2 _ e, 2 . e _ 28

then, the equation’is equivélent to that obtained with an internal
f .

flow alone, of velocity vy + ue/ﬁw in this latter case it ought

to be noted that the internal and external flows are in opposite

directions.

¢

’ |
When the beams !are supported at both ends, or when tysj

downstream end is free and blunt, the boundary conditions are in-
dependent of the flews. For a free tapered end, when neglecting
gravity and boundary layer, and assuming identical internal and

external fluids, the following Boundary‘condition is obtained from

\

%

would yield‘such a condition; nevertheless, provided that Gvi is ,

small compared to Ugr the boundary condition obtained with the single

eiternal flow of velocity

V=u_  + Gvi/

e |

W{ ' ‘ i

'

* In eq.(11.4) set v, = 0 and replace ug by V. A

A §
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ue=0 and vi=v). Consequently, whenever possible, attempts will

be made to compare the case of simultaneous flows to that of a
i

single external flow.

P

i

5.3.1.2 gguivaient flow_conditions . J/ ‘

- S S G —— . — ———— —— — ——

i
N
&

We now consider the general case; let

v "

% , ~ }

7 — 2 2 2 [vd .

?“v U = u + !

s e v 1

o ) v = u, + Svi, and U # v. .

U and V are the characteristic parameters of the flow velocities

. in eqg.(11.3); provided that the boundary conditions are independent

AN of the flow velocities (or if they depend on U and V only), for any
. combination of velocities (u,,v;), there exists another, (uZ,vi),

' \

which yields the same characteristic parameters fo; the same
{
- }‘
equation of motion. | .

v

s . Those velocities are such that

°

s
hence, as illustrated in the diagram, the

"" . . » ' ' ] I3 +
E | point (ue'vi) is symmetric to (ue,vi) with
{ +
respect to the line vi= u. Incidentally, )
1 / X

if V<U negative internal flow velocities

(Q .are obtained, which are perfectly permissible solutions.

1 +

g
.
'Y -
.
Ve
Ve
.




Let us now consider small increases of the flow velo-~
* AN
cities in eq.(11.3); the incremental changes of the characteristic
terps are k , !
| & ) ] i

20U d4u

2uedue + 2vidvi P

’

av

"

du_ + &dv. . - ‘
e i )

It is possiﬁie to have dU=dv=0 if .

’ |

due = —dei‘ and v o= ou, .
This illustrates the fact that, for specific flow conditions,

the effect resulting from increasing one flow may be exactly

counteracted by decreasing the other.

1

It should now be clear to the reader that the stabilit§
of tubular beams subject to both internal and extfernal flow is not

dﬁrecélj obtqinable\from stability considerations of the beam sub-
|

ject to each flow sepafaﬁely. Generally, it is foreseen that the
effect of the combination of the two flows will be similar to that
of an external flow with a velocity greater than that of each

single flow, but less than their sum.

1 [ 4
. 3 | 9
5.3.1.3 Buckling : ,

prop-op-p e

From eq.(11.3) the critical flow ve%ocities for buckling
may be calculated easily; upon setting w=0, the equation reduces

)

to the following expression ) ‘ ,

, =7 + U —5 = 0, with U =u_ + vi ‘
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which describes the well-known Fuler buckling problem for a beam
subject to an axial compressive load Uz. -;,The general solution of

§

this differential equation is

Y =a+ bf + c cos U + d sin UE

where U and the constants a,b,c,d depend upon the boundary con-

ditions. Now

a) Férhclamped—clamped beams we have ¥Y(0)=¥'{0)=¥(1)=¥'(1)=0

§

T R N S R S L A R B e
,

and non-trivial values of a,b

,c,d require that

N

'U(2 cos U + U sin°U - 2) =

¥

0.

|
-
)
1

The root U=0 is irrelevant and the following critical values are

obtained

U kL 27, 8.9868, 4w, 15.4505, 6m, 21.8082, 8m, ...

lt
which yield the circular critical boundaries with respect to, u

. €

and vy illustrated in the right-hand side of Fig.23; every second
root being approximately equéiéto {(2k+1)m-4/(2k+1l)w, the consecu-

tive boundaries become equival®nt as k increases.

)

Incidentally, should oné of the extremities be pinnéd
instgad of clamped the necessary condition bécbmeé, tan U-U=0,

which allows for the following roots: U=4.49, 7.73, 10.9, 14.1,...

-

T o
(2k+1))~2—.',~ .
) For cantilevered beams we have Y (0)=Y'(0)=¥"{1)=0, and the

fourth condition, obtained from eq.(11.4) is

1 /A.
yoro(l) o+ f(l-Gz)uZW'(l) =0 ;
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2 _ (2k+1) 20?2 2 2 :
U, =5 v, = [2f(1-67)~1] ug
* 2£(1-6%) ,
“y ) " ) & ‘
2 1
o y=2£ (1-62) _
377 T\ v= (t-cosU) £ (1-67)
(==) k
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The condition for compatibility is now the following: r
2 = ]
Yo = (1-cos wE(1-6?) .
u, :

£}

Since the left~hand side is greater than unity (except if vi=0).

and since 0<l-cosU<2, no critical velocities can be obtained if

[

£(1-6%) < % ; ’

alternatively, values of (\(i/ue)2 such that

v, 2 2 -
< 2f(1-6") - 1

yield two roots of U in each 27 interval, as 'illustrated ﬁelow;
the largest interval between the two roots‘is obtained for vi=0

and the maximum ratio between v, and Y, is obtained for U= (2k+l)m




The boundaries of the three lowest regions of bucklingn'
. have been drawn in Fig.23;\ the regions are symme*trically distributed
around a circular center line located at U=(2k+1)7/. Four values
" of the term ffl—dz) have been investigated; the /largest possible
buckling regions a‘re obtained when f(1—62)+1, whereas they shrink
to points [vi=0, u-e=(2k+l)1r,k=0,l-,...] for f(l-Gz) = 0.5.
Before proceeding to the experimental results let us

recall that knowledge of the limits of buckling, as in Fig.23, is

o

of limited use because one cannot always tell 2 priond which side
of the limit corresponds to an unstable region, e.g., the two
diagrams below illustrate cases where w=0 fpr U=2I and U=3, and
where buckling is obtained for 2<U<3, yet, in fig.a buckling stops

]
when U>3 whereas it does not in fig.b.

o L Im (w) ~ $1m(w)
1 -—’/ ‘ v
¢ 5 A
— e : =1 g = U=1
u=3| b _ =3 L s
- Re (w) ! Re(w)
1 / . ] v -\\
J ! A, .
ig.a - fig.b

Nevertheless, tl}is‘s-ection has provided a qui?k :thsight
iqtg the periodicity of the buZ:kling instability with fesp&ct to
thie absolute velocity U=(u§+v§) %. In addition, it iarovides a

. simple check of the étability} regions computed by Cur:i:oni and
» Cesar;i. [64] with"'ggditional information on the unstable areas,
‘especially in f:he“‘éase of cantilevered beams where the authors

*apparently missed the importance of thé shape of the free ®Wnd,
' -
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5.3.1.4 Flutter .

= — -

Clearly the limits of flutter could be obtained in a

1

similar manner; one first needs to solve the fourth-order charac-

teristic polynomial .of leq.(11.3) for a general solution of the

»

form

n=4 A 5 - L
/ ¥ (E) ='2;1 a e’ n; )
ST |

T J ‘ 5
théd, in order to satisf& the boundary-conditions, a geneqal

relation between w, ug and v, and parameters such as f'X'Y'YeT
and Yy will' be obtained. The threshold of instability by flutter
is obtained either when w is purely real or when a frequency locus

leaves the negative Im(w)-axis, as shown on the previous page ‘in ,

t

fig.b; henceqkthe equation governing the critical velocities is

obtained eitherﬁby equating the imaginary part of w to =zero or "

by looking for double purely imaginary (negative) roots in w. \

Unfortunately, in contrast to the case of buckling, thg analytical
relation between ug and vy is intractable by hand; 'therefore, it

is not worth devoting much more attention to this, since in the

next section the theoretical limits of flutter (and bucklin&? will

be coTputed from eq.(11.1) direcfly.

Hpowever, we shall take this opportunity to show frequency
diagrams in the case of\clamped-gﬁamped beams. The loci plotted in
Fig.24 haQ; beeﬁ computed from eq.(li.3) for either internal gr‘
externg} flowy éhey are presented in guadrant IV (see §83.2) Lecause
all qﬁadranés are symmetric in this case; in addition to the sym-

A @
metry with respect to the Im(w)<axis, symmetry around the origin

\

: , . /
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arises because the differential equation and the boundary con-

ditions remain identical if the direction of the flow and the sign
of w are reversed simultaneously. Except for coupled-mode flutter,

the frequencies are either real or purely imaginary; for the sake

of clarity the loci that actually lie on the axesﬂ?ave been drawn
slightly gff the axes but paraiiel‘to them. It is noticed that

in one case the beam regains stability after first-mode buckling, j
before the onset of flutter (ViFO, 8,99<ue<9.3),'whereas it does

not in the othér case; such behaviour is not spécifkc to the type

of flow, i.e. whether internaf or external, but depends only upon

the values of Ye'Yi apd S. . 1

° 4 /1 , .
A ‘ - 1
5.3.2 Comparison between experimental and theoretical results
. . J .
5.3.2.1 Clamped-clamped tubular beams.

Two beams of equal lendth were cast with different rub-
S

bers. For the stiffer beam (rubber type B), the maximum avaifable

flow velocity in the apparatus only allowed for the first in-'
|

stability to be observed, namely buckling; with the other beam
|

(rubber type E), flutter could be reached for a range of combinations

of internal and external flow velocities close to their respective
\ -
In Fig:25 experimental and théoretical critical velo- -

1

cities have been plotted. The theoretical boundaries of instabifity

are close to those obtained in Fig.23 where several effects had nJF
|

been accounted for; as a matter of fact, the effects of the density

and stiffness of the material of the beamé\qf stability were found

\
[N N -

* , :
] ; '
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to remain very small provided that the eigenfrequencies remain

L

C. small. As observed from the figure, experimental and theoretical

o

.

results ére approximately twenty-five percent apart; moreover,

-~ the narrow region of stagility predicted above buckling, provided
;’ that ue>3 (upper left pg;£ of the figure) could hardly be noticed
in the experiments; instead, close to the upper limit of buckling,
an élmost standing wave which rzsembled a natural second node re-

\

placed the first-mode-like buckling; it appeared to move downwards

and gain speed as the internal flow was further increased, and

? { finally disappeared as flutter developed. To some extent such a

behaviour was not expected along this portion of the contour, but
rather along the portion out of reach of our tests, which cor-

responds to small 'external flows\(ue>3) and very large internal
I

e

flows; in this latter case, the two unstable regions are adjacent

but do not overlap; as-can be seen from the lower diagram of Fig.

24 in a-similar case, the transition from buckling to flutter is i
N |

a continuous process which involves combined modes on the Im(w)-

1

?
axis. . .

The discrepancy between experimental and theoretical
i ~.
results is probably due to several reasons. It is unlikely to
be due to the few theoretical approximations made in accounting

.

.for the forceslexerted on the beams), as the discrepancies resulting
thereby are likely to be small, good agreement having generally
been obtained for other cylindrical beams, especially for canti- .°
levers conveying flow. It thus appears that the most significant

) /
errors likely arisg from the physicdl boundary conditions; indeed, Q
af the downstream extremity of the' beams the contact with the

. - -
support was foose enough to.let the beam slide axially but.not

e
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o

enough to constitute a perfect (lateral) clamp; therefore, the

¢ \ P
conditions of a part%ally pinned and Partially clamped support

prevailed. 1In addition, large deflections of the beam rendered
r ]

the end condition closer to a pinned one, because the beém almost

3
i

slipped off its support, the element in contact becoming too small.

ke

" As a matter @f interest it was found\that the experimental data

sy

Y

lies in between the theoretical results obtained for clamped-

L g e
N i

\

.clamped and clamped-pinned boundary conditions: as from §5.3.1.3.a,

the lowest critical velocity in the latter case is approximately

thirty percent lower (4.49 as opéosed to 6.28). However, the

'fbuckling region is ‘larger than expected, and flutter does not occur
. g .
below the theoretical predictions for clamped-clamped beams. Such

|
-

= ‘ ;
a result is‘all the more surprising when one considers that the

L)

actual length of the beam between - supports increased by}roughly

five percent because of the deflections involved; thus one would

expect the critical velocities to decrease bytapproximately the

same amount. On the other hand, since the beam never regained
J
stability once buckling -first developed, the important non-linear

“

effects introduced by large deflections may possibly have extended

o \\ .
the. buckling region.

v

ESN

4

f5.3.3.2 Cantilevered tubular beams
|
All the tubular beams tested in this section had the same

_ overall length (e+x,=20); some had a blunt base (x_=0) while the
| - 1

others were smoothly tapered (xe=1). As in the previous section,
two materials were used for the beams (rubber type B or E). The

experimental and theoretical compinations of critical velocities

A

have been plotted in Figs. 26 and 27.° ' - \

3
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*f% (. In Fig.26, beams with blunt bases are considered.

%; ' Stability prevails for”small internal flow velocities, irrespec-
%g tive1§ of the external flow. Although the theory predicts that

%T the densities and gtiffnesses of the two materials should not

g

have a large influence on the critical velocities, a significant

+
T
s

difference is obsérved in the experimental data. However, it is
bélieveé that the discrepancy between the results for the two
beams could be reduced significantly by aceounting for internal
damping, because the net effect of damping is relatively more
%mpoitant for the stiffer beam (silicon rubber type B) due td i£s

higher real frequencies of flutter. Nevertheless, the general

agreement between both predicted and experimeﬁtal velocities and

' frequencies is fairly good.

| ¥

As opposed to the case of clamped-clamped beams, it

1

should be noticed that the roles of the inﬁérnal and external flows
are quite asymmetric: along the critical boundary a small increase
| :
of internal flow will always precipitate flutter whereas an increase
Y

of the external flow velocity will eitﬁer stabilize the beam when

ue<3 , Or have little effect when u,>3. Comparison between Figs.

25 and 26 illustrates the critical effect of the bounaary conditions
on stability: it may seem paradoxical that the same diffe}ential

equation combined with two sets of boundary conditions which/are

+

different yet independent of the flow velocities (for blunt bases

in both cases) result in such dissimilar boundaries of stability.

3 +

However, one must realize that forées specific to the external flow,

such as tangential friction forces and base drag (which is almost

!
|

\

.
\\ o -
. B .
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independent of the internal flow), act differently when the beam
is clamped-clamped or clamped-free; in the first case they yield
steady axial tension, whereas in the second case Fhey act as fol-

lower forces.

{
i

In Fig.27 the boundaries of stability for tubular beams
with tapered ends have been plotted. A destabilizing effect of
the external flow is now obtained theoretically and experimentally.
For small internal flow velocities, as the external f}ow is in-
creased, the beam first buckles, thén régains stability for a small
range of’velocities before flutt;ring; subsequently, buckling is
super-imposed on flutter at regular intervals and flutter may switch
éo higher modes. It is of interest to note that the two buckling
regions obtained iA Fig.27 are similar to those predicted in Fig.
23 for a value ‘of f(1-62) approximately equal to 0,7 (6=0.5,f=i7).
As previously obgerved, the characteristics. of the
beams cast with différent materials cause the experimental data
to diverge at high frequencies of oscillationé: for buckling and
fiutteF with slow oscillations, the experimental results obtainéd
with the two beams maf pe considered to be reasonably close, con-
sidering that the tapered shapes of the ends of the two beams could
not bgaground exactly identical. \
Lastly,\Iet us observe two interesting features of Fig. -
27. First, the external and internal flows have almost syﬁme;ric
effects 6n flutter in £he sense that the unstable areas (except
for buckling) are almost symmetric with respect to the diagonal
u =v, - Finally, it is the first time that we encounter stability

i
when combining internal and external flows which,.on their own
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(i.é. at the same individual flow velocities), would destabilize

i

the beam; e.g. flutter which occurs at v,=5 for ue=0 can be post-

poned until Vi=8 with a small exterﬂaL q10w around ue=3 and
] .
/

similarly we may reachyue

develops around ue=2 whgn vi=0. It i35 of interest to recall that
the maximum values of the flow velocities (internal or external)
at which a beam clamped at both extremities could be sgtable were

smal;erhthan those found here for cantilevers and approximately =~

N ' j
N

equal to Vi=6 and ue=8, as indicated in Fig.25 - contrary to in-

/tuitive expectation.

¢

W

=9 with Vi=4' whereas buckling first
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. (. ‘ ' 6. . CONCLUSIONS
;% ’ 154 ’
° ' 6.1 GENERAL CONCLUSIONS \ q

[} J

A mathematical model was developed in this thesis to
account for the dynamics of slender tubular beams of not necessarily
uniform cross-section, subjected simultaneously to internal and
! external axial flow -. the two flows being independent of each other

}
A and the flUldS 1nvolved 1ncompre551ble.

The derivation of the llnearlzed equations of motion 1s

perhaps the most careful done to date, and the equations obtalned

are the most eneral currently available. Thus, most of the as- .
sumptions usually made without proof have been carefully tested,

and a number of effects not usually taken into account have been

et b B Rt L O &, oWy ok

incorporated for the first time. Perhaps the most important of

these is associated with the boundary layer of the external flow.
' 1
It is recalled that one of the original aims of the work

described in this thesis was, what_was hoped to be, the straight-
forward extension of the theory for uniform cylindrical beams in
axial flow to slender conical beams; it was found that the pre-
dictions obtained from such a theory wereiin‘complete disagreement
with experimentai observations. This eventually led to the reali-
zation that the source of the problem was the complete peglect of
boundary-layer éffects,-which are more significant for conical beams,
than for cylindrical ones, as the boundary-layers are thicker in
relation to the beam diameter. In due course some corrections were

introduced to the 1lift as predicted by slender-body theory, to take




4

. boune(ary-layer effects into account‘approximatelyl. In essence,
the following procedure was adopted, applicable Eo all cases where
1 the boundary-layer displacement thickness is not negligibly small
(as compared to the local diameter). In a first step,.the single 2
potential cross-flow which arises in the straightforward apglication

o% slender-body theory to the problem at hand is replaced by two
' superimposed potential flows: one due to lateral motion of theabeam

/

alone, and the other representing the flow about an inclined body

of cross-sectional area augmented by the displacement thickness.

In the second step, instead of the actual mean flow velocity,l a

‘reduced flow velocity (related to the relative boundary-layer

thickness) is introduced to account for the insulating effect on

P A .= “‘,\‘ o ,,~
S At S

5 9@.’!&_ = ?"&“ﬂ!

o

S

the beam from the mean flow exerted by the boundary layer. The

R

Y
hed)

results of these corrections have been fairly successful, as dis- -

z

cussed in the main text of the thesis, and reiterated a little

later here.

Tt R PRI AR R TR

Among other effects taken into account are those of
{

gravity (in the case of vertical systems) and of internal dissipa-

: tion in the material of the beam, and /the incorporation of a base

drag which may be determined rather than guessed. However, the

main point is that the theoretical model derived here can deal with
tubular beams of noﬁ-uniform internal shape and/or external shape -
although they must be axisymmetric and changes in the cross- %
sectional area cannot be abrupt - and at the same time deal with 'y

simultaneous internal and external flow.

‘[ A new method of solution was Qeveloped. It is a matrix
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o L

method, which may be viewed as an extension of the Galerkin method.

’

The comparison functions involve Fourier series. One advantage of
'the methbd is that one need not determine new comparison functions

when the boundary conditions are changed, because the same kind of

v

" Fourier series is used irrespectively. The method was tested in

solving dynamical“proble&s of a fairly general type*and was found ;

~

to be very powerful - and economical - not only in determining the

low modes of the system, but also the higher modes of fairly complex
{

systems without loss of efficiency. Some useful work has also been
doné with the'ai% of the perturbétion method for d?terming the
eigenvalues gi thevproblem when the flow velociéiés are small; these
eigenvalues may then be used as initial values for the calculation

of the free vibration characteristics (eigenvalu nd eigen-

« functions) with increasing flow. ’'Incidentally} for t first time,

\ /7 ‘

these calculations show conclusively what was heretofore taken as

k &htuitively evident, i.e. that the stability of the system may be
assessed by determining the characteristics of only the lower few

modes of the system.

3

The validity of the theoretical model was tested by ex-
. periments in a'water tunnel. . Specifically the model was tested for 3
three/distinct classes of éystems. The first class involved canti-
levered beams of conical or cylindrical external shape and a conical
. |
internal conduit, convqying fluid. The second class involved ex-
ternally conical cantilevered beams in axial (external) flow. The’

third class involved cantilevered and clamped-clamped cylindrical

tubular beams subjected to internal ‘and external 'flow simultaneously.

T T T T R —
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Internal flow cases ‘ '

3

In the case of the first class of systems, involving a
convergent internal conduit, it was found that they behave very
much ‘like similar beams with a unifor@ (cylindrical) internal con-
duit. Thus, the only type of instabiiity encountered (for canti-
leveged systems) is flutter. It waé found that the critigal flow
velocity depends on the flexural rigidity of the sytem and the
flow velocity at the f;ee end,(rather than on the actual shape of
the conical conduit. Consequently, if the fle*ural‘iigidity does
not depend significantly on the internal diameter (i.e. for rela—/
tively thick tubes wity a cylindrical external form), iF is pos- .
sible to assess stability by assuming that the tubular beam is
essentially internally uniform, with a diameter equal to the dia-
meter at the free end. Thus; for externally\cylindrical beams
with a conical conduit, quick estimates of the lowest critical flow
velocity may be obtained in this way, since the case of cylindri-
cal pipés has been extensively treated. Incidentally, the same
conglusions should hold for tubﬁlar-beams,supported at both ends;
in fact, buckling being the lowest type of instability in such
cases, the estlmates of the critical velocities would probably
be even more accurate Fhan for cantilevered beams, since the simi-
larity of the equations of motion for conical and ¢ylindrical
internal conduits becomes closer when time derivations are elimina-

| ) i

ted (w=0).

Experiments conducted on several tubular beams with

conical internal conduits, conveying fluid and hanging in air or
\

1
\




e < - e e e o by

' - 134 -

in water corrobcratpd the theoretical predictions. Clearly,

o
therefore, the theoretical assumptions made in formulating the
dynamical effect of the internal flow are réasonable (e.g., that
the influence of the internal non-uniform flow velocity distri-
bution on the dynamics of the system is of secondar; importance) .
Indeed, aéreement between theory and eiperiment in the critical
flow velocity is within 5%, which must be judged most satisfactory.

[

External flow cases ] . N

As was mentioned at the beginning of this section, it

was found necessary.to introduce a number of modifications to the
theory - relating to the boundary iayer -~ before the theoretically
predicted behaviour began to resemble the observed behaviour. N

When boundary-layer effects are taken into account - even when

ki iR

lconsidering uniform cylinders --the critical flow velocities become
higher. As a rule of thumb, it may be said that the relative in-
creése of the lowest critical flow velocity is close to thﬁ

average ratio of the boundary-layer displacement thickness tohthe
radius along the beam. However, if this rétio becomes too large,
as in the case of. almost fully conic;} (rather than truncated

_coniéal) beams, it 'is possible that no critical flow veldcity may

be found - as the system becomes unconditionally stable.

The above\stafement anticipates some further comments
p?rtinent to the sfability of conical cantilevered beams in axial |
flow. Contrary to intuitive expectation, a conical beam of dia-
‘meter D at its supported end\ first loses stability by buckling at
a higher flow velocity than a cylindficai beam of diameter D, the .’

!
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. tapered "end" - which accdrdingly should be least stable. Nog

" cylindrical beams.

same lengéh and similar free-end shape, despite the fact that

the conical beam is more flexible. ~Moreover, for nearly com-

i

plepg cones (as opposed to truncated cones with an ogival free

end) the system ddes not lose stability at all. Without boundary-

layer considerations this last ‘result would have appéared_Very

curious‘indeed, sitnce a full cpnical shape, in terms of slender

- <t
body theory, represents a more streamlined form than just a,

in terms of "the higher-mode fnstabilities'— again excepting

nearly fully conical beams, which are-unconditionally stable -

a first region of flutter superse@es buckling at flov velocities

which are almost independent of the taper ratio; hiéher mode

flutter occurs at higher flow Yelocit%gs, but not as high as for
B !

cylindrical beams. Thus the net effect is to compresF the in-

stabilities into a smaller city range, as comp&red to

’

Amehg the parameters which most critically affect
stability As the shape of the free downstream end. Linearly
tapering beams ranging from cylinders (ae=0) to half cones

(ae=—0.5),only buckle if the downstream end is no blunter than

_a hemisphere; elongated end shapes' of increasing fipeness are

required fqgr more tapered beams to buckle, until the taper ratio

reaches a critical value (ae:—0.75), beyond which, even with a

{

/’ 0
very streamlined end shape, the beam cannot become unstable.

Theé main dynamical characteristics of conical beams
in axial flow predicted by theory were corroborated by the ex-

periments, qu:litatively‘at least. The critical flow velocities
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are still found to bé generally higher than predicted, although

e
4
-

t

this .gap has already been significantly reduced by introducing

.

R

the boundary layer corrections. It should be mentioned that the

<

experimental data exhibits a certain lack of consistency; it is
\

believed that this is due partly to undetected imperfectiohs in

the beams and partly, and perhaps most importantly, because the

E .
3
7
%
}
i

free ends were not ground to identical standard shapes.

i A ngteworfh& observation, from the practical point of
view, is that, alt@ough nearly-conical cantilevered beams ex- )
! perience neither buckling nor oscillatory instabilities, théey
are very susceptible to so-called sub-critical vibrations, i.e. ?
vibrations. induced by turbﬁlence and other departures. from ideal
flow conditions at flow velocities below the critical. In fact,
the severity of such vibrations all but éliminates the benefit of ' :
stability of, conical beams, from the practical point of view. |
| T ) :

Simultaneous external and internal flow

The stability charqcteristics of tubular beams supported

at both ends are relatively straightforward. Increasing either
)

the internal or external flow velocity, or both, the system eventu-

Q

ally loses stability by divergence f{buckling); its subséquent be- . :
: , ‘ g . ;

J

haviour witH increasihé flows involves a succession of flutter

. and buckling instabilities. In the case of ¢antilevered tubular
o % ‘ -
beams, the behaviour of the system is much more complex, depending

on the absolute values of internal and external dimensionless flow

(S;) velocities and on the shape ofntheedownSEream end. Cantilevered

beams with a blunt free end can only lose stability by flutter in
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- , '
‘L )< =~ a process dominated by the internal flow; if the free end is
L I

! ’

' ' streamlined, however{ a complex squence of buckling and flutter
"instabilities may éccur. Surprisfh;ly, when comparing the results
for clamped-clamped and clampederee beams, it was found that
clamped-clamped beams subjected to buckling can be stabilized. for

specific combinations of the two flows if the downstream end is

[}

ff' set free. | ’ ’ ;

The theoretically predictéd behaviour was supportéd by

VA

experiments, and agreement between theory and experiment was found

to be reasénably good.

.

It was shown that the state of a system with both -in-

-

T ternal and externat/flows present cangot generally be inferred

P 0 from knowledge of its state when subjected separately to the

. internal and external flow. However, in a few simple cases the

2 4 /

e stability of the system can bé inferred exactly from that of a

similar beam subjected to an iyalent single internal or external

: |
’ flow, w?ﬁle in many cases, a single, almost equivalent external
flow will provideluseful approximations of the lowest critical

flow velocities.

ij;ourse, in terms of piactical dpplication of thi

\

AY 3
work, a desiyner is probably not inferested in the intricacies -

aadE
et

e

of the succession df instabilities to which the system may be
l . B 1

subjected, but rather to the critical conditions as§ociated with

the first instability encountered with increasing internal or .
R ] N :
external flo locities. With this is mind, a simplified analysis
LOOR
3 \ N
relating exclusively to buckling was conducted, and it was shown
/ » S
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to provide approximate "universal" stability criteria for- the

/

first buckling instability. These criteria (the lowest ‘curves
of Fig. 23) are applitable to tubular beams with\clamped.ends,

and to cantilevered beams where the internal flow vglocity is

\

not excessively high (ui<3). These diagrams actually apply even

to counterflow situations, i.e. where the internal and external
flows are in opposite directions. i . . o
»

R
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" laminar and 9urbulent regimes.

6.2 SUGGESTIONS FOR FUTURE WORK | : ' z

There are many possible directions in which the work

presented in this thesis could be extended. Thus) one could

utilize the Timoshenko, rather than the Euler—Berno&ili, beam

. . . ﬁ\\\ 3y . ‘ ) .
theory. However, as in mosé«hydroelastlc and aeroelastic pheno~
mena, the main theoretical difficulties arise in modelling ade- 8

] .
quately the fluid mechanics rather than the solid mechanics,

side of the theory; hence, the greatest improvements and/or
generalizations of the theory are associated with the fluid

mechanics of the problem. Possible useful extensions to the

theory would involve the consideration of compressible and two-
phase flows; perhaps less useful, but theoretically important
is the case of pulsating flow. However, two areas may be singled

out as requiring more urgent attention and where even moderate
/

. k-

progress is likely to yield most interesting results.

The first area concerns the dynamical effect of the

\

boundary layer. More experiments should be undertaken where
bouﬂdary-layer thickness at various regimes would be varied
systematically; such experiments could be performed on cylindrical
beamé of various sizes (lengths ahd diameters) and with variable
support (forebody) sizes, investigating also the effect of the

‘ The fluctuations of the boundary

layer for specific motions of/beams should also be taken into

4
account. \

The second area deals with nonlinear effects. Clearly,
nonlinear effects appear to be more important in the case of ex-

ternal flows as evidenced by the small limit cycles observed

| -
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éxpérimentally. Experiments with simultaneous flows may provide
a useful tool for distinguishing nonlinear effects specifically

related to the beam itself from those associated with the two’

<

? flows. Also, this is an area where much useful theoretical work ‘ N
i ' |
4 \) could be done. It is noted that the current linear theories -
i including the one presqpted in this thesis - strictly speaking

collapse once the point of instability has been reached. The

question of post-critical behaviour is important. Fq& instance,

J

if linear thory predicts that an instability ceases/at a
/

speeifio? flow velocity, in Teality the instability ﬁéy persist
| ‘ ]
to higher flows, because the system for that range of flow is . .

stable in~the-small but unstable in~the-large. A

[

4
3 ¢
f
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o \ APPENDIX A: DIMENSIONAL ANALYSIS ’ -

y  In this Appendix we shall render dimensionless the ‘

equation of motion and the boundary condition given by eq.(5.13),
\

' which were derlved in the main text. To this end wé shall define

\

h number of dimensionless parameters; let the superscript © genote

3
v
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F FES LRI - - %
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guantities at x=0, and let us define

o 1%

. .+ BI t . ' o
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Equation (A.l) now becomes , . ’ . ’
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6 X
\

2 2
Ye%*Yi94 32 - {6 *Yy 870y doi + Yol 9¢ doe} 3’ n
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i e * 9a°n
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From eq. (5.10) and upon introducing 1 = , Wwe write

T EI
2 ; N
0 =1 +2c. o (1)u? + ic Ui, 1l [ce(l)] uv (a.4)
2 °fe e e 2°fi oi(li 2°fx ciiIS e i ! *

and, accordingly,for free or supported downstream ends, we have

’ ™N
a) for free end: n= xI‘[(2-ye)se + Yigi(l)]é

(vide Appendix H) 3.1 . ‘
Cee™ 1435 [9 + (2x)71 7,
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b) for supported end: ‘ n = TOLZ/EIO,
(as from'eq.(5.9n :
C = =0 -2-E- C‘ [
fe e T ft
A\ ' -
Cet= 205 o \
4 Cfx= o .
The boundary condition at £=1 for a free end éiven by eq. (A.2) may
be written din its final form
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Finally, denoting
= 2 =2 = 2
°h = ¥ Cgnr C¢ = F Cgp @nd c, = 3 Cpy ,
%
the differential equation may be written in its final dimensionless

form
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APPENDIX B
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\-; APPENDIX B: SOLUTION OF THE DIFFEﬁENTIAL EQUATION IN TERMS OF AN

EIGENVALUE MATRIX EQUATION. /

3
*
.

Within the next pages we shall develop a new %echnique
. 0
to solve differential equations of the form

&M "
Q p £ g0y =0 . (B.1)
r=0

«
t

involving M linear boundary conditions at &£=0 and 1,
-

3
~

M-1 ', ‘

‘ . gl () ¥ (£.) = 0 with 4=1 to' M (B.2)
;g'; r=0 r J. - ‘
' e and gj=0 or 1.

B.1 SOLUTION BY SERIES

Gt e N aA B S
-

i P A classical approach to the resolution of such

} )

é e}genvalue’problems‘is to investigate solutions in terms of
? series of real admissible'functions;’he would thus set.

4 ’ ‘

3

s \P(E) = F a ¢ (E)l

& ‘ _A n'’n

? - . n=0 '

3 “ - °

where the a's are complex coefficients. Assuming the series
!
f

and its derivatives to be absolutely convergenég we then write

+

) LS L (o)
v =z @

«

and then expand in series the terms of the differential equation

! El

(g as follows: . . ‘ .

\ (r) e .r
£ (E )0, (E{ = S=0bnp(p)¢p(€) ’
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so that the initial differential equation now becomes

* N S—
n . . =

Q\'M oo. co ’
B L a IbE (Wé () m 0

> r=0 n=0 ~ p=0

- B . -
For orthogomal coﬁparison functions, the previous equation is
|

finally equivalent to the folléwing homogeneous y}near system:
%

o M .
r {Zb
n=0 r=0 np

i . ’

(w)} a, =0 (p-= 0,+mh

% \
In previous work, mainly power serieg- and uniform- R

beam eigenfunction series had been used [50],[66]; hod@ver, slow
‘convergence of the a's must be expected from the power series,
as shown later in section B.5; and by extension, any series of

polynomials, such as shifted Chebyshe\r'polynomials (cf£. [68]1), is ¥

also likely to lead to problem% of convergence; on the other .
hand, the satisfactory convergehce obtained through uniform-beam
eigenfunctions deteriorates quickly as we depart either from a

A
uniform shape or zero-flow boundary cogditions (poor convergence

of the bip coefficients).

N . )
1

B.2 SOLUTION BY FOURIER SERIES , N )

In searching,fog a proper set of\comparison functions,
the next simplest alternative aPpeaFéd to be Fourier series,
which are obviously eaéy to differentiate and can be expected to
requifekrela;ively few terms in order to match actual modal shgpes;

yet, in order to satisfy distinct boundary conditions at £=0 and
W \ y
£=1, these Fourier series will be required to have a periodicity

1 ’ -

N 8
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greater than 1.  'We finally op%ed to express the solution in ;

terms of Fourier series of periodicity 2 as follows:
’ /

-

d,‘f . N , v
. o 4 inmg
f - " e Py
‘{l (E) -f’ an /L/-E ' \ .
inng
and we have Toag ?Jf W(ﬁ) dg.

i

Yet, Y(£) only needs to satisf& the dlfferentlal equation in the
\ 4
domain osfsl. By choosing a, periodicity of 2, instead of 1, we

may require ¥, V¥' ...W(k)

y 06

.i. to be continuous over 0sf<2, and
14
(0) = W(k)(Z) for any falue of k, so that, if we expand the

derivative of order k as.

“

8

® inng
v® gy - a2 \ -
| / —-00 2 \
| f \
then we simply havef
/ \
k _ . k
‘ / a, = (inm) a, -

Let:it be noted that such simple relations-could not have been
obtained had thé'periodicity of ¥ been chosen equal to 1, because

of the discogéinuity of ¥ or its derivatives\at both ends of the
ﬂintefva1‘0<§?l Moreover, the continﬁity of ¥ and its derivatives
will also obVLOﬁsly lmprove the cénvergence of the solution as:
illustra#ed in the two diagrams on the next page, (these two dlagfams

illustrate the. periodic solutions for the first mode of a canti-

1eyé§¢d beam clamped at x=0 and free at x=1). u ’ /

M
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Once VY,¥' ...¥ hgve been replaced in (B.l) and (B.2) by their
. o, G . L. \
respective Fourier expansions, we obtain \ .
M i © - einn& \ :
D[E,w] = £ £ (E,w)|l (inwm)7a_ ~= =0, .
r=0 r = =00 l n \/.2_
- M~1 o inmg . .
52 ' e 1 .
and b_.(w) = I gj(w) ) (inm)Ta = ] = j=1l,...M.
| 3 r=0 T pe-e nov2

We then proceed as in the Galerkin method to eliminate,g from the.
former equation by equating to zero the following coefficients,

calculated over the interval 0<g<1l of applicatioﬁ of the expression

D(E,w), " ’ >

1 ,. N . \
] a, = f V2 DE,we'P™ a5 = 0, B [-o4e]. |
0

A
As pointed out in a previous paper [69], it is only necessary

to set de=°’ but less coefficients weré‘ultimately reﬁuired when

we added the conditions d2p+l=0' The differential equation and

its boundary conditions have now been replaced by an infinite

homogenous syséem of equations, linear with respect to the a's

\ ’ :

l:and ‘dependent upon w.
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It will now be convenient (for computing purposes) to f

switch back to real eigenfunctions with'é:,omplex coefficients by
4 f

setting

y(£) = EO(YZn_lsianE + yypcosnmE) /V2 . ¥ (B.3)
n=

The correspondence between the y's and ﬁhe a's is |

\ ) > . / ‘ (3.4)
Yop-1 % 1(an—a_n).

/

\
In order to have thesg_relations‘and gﬁe following equations

also valid for n=0 we shall break a, into two equal components,

\

. SRR S - -
i.e. a, =a_ =38 ; hefce we shall have y =a, & y_;=0.
We then calculate
D - d+d = % '3 (inm)T{a (1 2 £_(£,w)cos prf ePT8qr 4
= - = ’
2 P P o0 n=0 Ao T ,
‘ r 1 | -inmg
(-1) a_nf 2 £,(E,w)cos prE e *PTEag )
o) -,
and
\

which ié derived from sz by substituting sin pn§ instead of cos,pn&l

We now set ‘ P

A e e St cmme e AN TIE A o M g e P I AV e wn

o

s

U at L i S b
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1 a |
; / ' " ' )
: 4 ’ \
'C} with 4 , ! . \
) ‘ .
r r 1 = inmg
¢._ = (inm“{a f/ 2£_(E,w)cos prE e at
pn n T
: . \ o ,
/ |
£ . e i
/,5 l LN ’ - - /
| § + (—l)ra_n/, Zfr(E,m)cos pré e.;n“EdE} ' ' ' '

o ‘ . /
A

/ -
I r > r,
- = T
. Stn (inm) {an// _
. ) ) ,
: 1 | | /

+ (—l)ra_n/ 2£_(E,w)sin prg e "PEag)
. (o]

N

1 ‘ .
Zfr(E,w)sin pTE elnwgds

These constants may be expressed in the form

¢

\

ro_ . r A% 3 r . o E r
Cpn (inm) {[an+(il) a_n]Fccpn + ila -(-1) a_n]FCSpn} '
r r ’ r ‘ r ' \ r ° T
Son = (%nﬂ) {la +(-1) a—_n]Fscpn + ifa =(-1) a_n]FSSpn} ’
with,
1
r _ 1 ’ o
FCGpn = 2fr(£,m)cos prEcos nng di ,
o]
1.
chgn = //o 2frﬁ£,w)ccs prgsin nw§ 4§ , /
1 . . | ‘
r _ . _ wpel
FSCpn = // 2fr(£,m)3ln prEcos nif df = ?FS“P ’ (B.6)

o]

. 1
Fsst = //, 2fr(£,w)sin prn&sin nng 4§ ,
‘o .
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the evaluation of which reduces to the compupation/éf the

two types of integrals:

1 , 1 , .
4/. fr(E,m)coskuEdE} and 4/’ fr(E,w)sinkﬂEdE '
° )

(o]

\

where k takes on the valuts p+n orp-n.

According to the parity of r we have two cases,

‘a) if r = 2s
() T lagH =D el = <Dy,
O ap- (DTl = (D 0

and accordingly -

\

L Cgp = (R % am) ¥ [y  FCCo, + Yo chsp 1,
Y _ ,_14yS .. r .
\Spn = (-1) (nvk [anFSCp + Yan- lFSSp ] ;
| \
b) if r = 28+l ,
W T r 1.1\ 8 »
()" la *+(~1) a_n] = (-1) Yan-1 ’
0 \
r+l o _{_1\S ‘
(i) lag - (-~ l) a_ l = =(=1)" Yy,

and, accordingly, .

r _ ;_.1yS b o o X
cpn = (~1) " {(nm) [an_chcpn Y2nFCSp 1,
- Y _ ;_1:8 r r r .,
spn = (-1) " (n7m) Lyzﬁ_lgscpn ngFSSpn] .
N\
, AN
\

ERTAY

following
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- at £ = 0, for i=1,2, and

. B.3 THE EIGENVALUE MATRIX EQUATION . ’

For the purpose of solving our specific differential
. .

equation, where M=4, we finally end up with the following system,
|

consisting of (a) two bdundary conditions at each end, which yield

EO{Igi - g3y, + wrlal - (amZedly,, ) = 0,
n= . .

{

¢ P

z (-1) {[g - (nm) gi]Y2n + nn[g - (nf) gilYZn_l}
n=0
at § =1, for i = 3,4,
|

and (b) the following equations to represent the differential ‘ "
equation:

0
] ! i

= I {[Fssp +n1rFSCp = (nm) 2pss? o~ (nm Fscp +(nm) FSS

- 1Yo,
2p-1 n=0 pn pn’ 2n-1

- {nm) F802 +{nm) FSS +(nn) FSC

~nmF
nw SSp Pn pn

1

=0,
+[FSCp }

pn]YZn

o
)

]

4

{[chp +mchcp ~ (nm) Ecsp ~ () Fccp +{nm) chpn]an 1

+[FCC —nﬂFCS

2 3
pn —(nw) FCC +(nu) FCSp +{(n1) FCC

\

The calculation of the FCC, FCS, FSC, FsS and g co-

]YZn} =

efficients is pefforméd in Appéndix C, This system wyll now be.

represented by the matrix equation ) a

\ LY “
(a}(r]

= {0]
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We next solve the equation det[A] = 0 to obtain the eigen-

§
¥ «
?5“ frequencies, and then determine [I'] and the modal shapes if

3

required. \

RSN - -
-
=)

-* - e a
+
e e R

B.4 STANDARDIZATION OF THE SOLUTIONS

9

Since the system is linear and homogeneous, ‘any

v

solution vector [I'*] is defined within a complex constant :

: *
factor. We set Yo = 1 and compute the corresponding solution

set (provided Yo = 0 is not a solution) and theﬁ calculate a

complex factor which both nérmalizes ¥(£) and sets V¥(0) real.

These two steps are elaborated upon in (i) and (ii) below.

A%

(i) Although Y should be normalized on:",0<g<l, for purposes

T

of comparing the various solutions, i.e. by setting

AT

g . f ¥¥ag = 1 , (B.7)
; a ¢ ,0 i ' I 2
' !
" !

it will be much easier to set

° ' 2: \ , ‘y
0 . . .
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‘h’/ even though eq. (B.7) will no longer be satisfied for most cases.

From the computed vector [*] we then calculate

- 2 n=o p=> . n=oo
- 2 _ -]; 1 Ak J.(n—p) -"-E; _ }- L T
N ] R T T S
¥ .
which, by use of eq.(B.4), becomes s
*ok *k
ko “°YLY YoY
N2 = %[Y Y.+ I 2P = 1, R -
o'o p=1 2 2 p= 4

’ *
and the previously computed solution ¥ (§) must be divided by

N; hence by use of eq.(B.3), the amplitude-normalized solution

becomes h (
' & % ) x

_ . . \y*(g) 1l +n£l[72n_1sx.n (ntg) + Yo, COS (np&) 1]
R & ¥, (E) = = s o F o¥F 1

" N ' Yp ¥p

) i pl + pil > ]

(ii) We may express Wl(g) in terms of a real amplitude
function £ (£) and a real phase angle function ¢l(£) as follows:
’ 19, (£)
WI(E) = g(E) e .

o

Whereas in the previous step we normalized g (&), we

okl

now wish to standardize the phase functions in order to obtain

a zero phase angle at £ = 0. Hence, we need to apply to Wl(E)
A . .
¢

a correcting factor et o, where % will be given by

1

Im{Wl(ﬁ)G
‘tan¢o = 1lim ————,
- . g Re{WI(E)} |
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If we ndy have ¥, (0) s W'(O) = ... = W“(p-l)(O) =0

and ?l(p)(O) # 0 then, when E+b a MacLaurin's expansion yields

J
- gP L (p)

~
. (for example, the boundary conditions for a clamped beam yleld

p = 2, since Wl(Q) = W (0) = 0), and thefefore

iy, P ()} " § nplm{an+m}

tan ¢0 =

’

(7
Re{‘{’l P) 0y} g npRe{72n+m+1}

with m<= 0 if p is even,
m= -1if p is odd,

as obtained upon differentiating (B.3) for £=0,

B.5 COMPARISON BETWEEN FOURIER AND POWER SERIES IN SOLVING

A
i

fi THE BEAM EQUATION

In this section we apply the new method of solution to
the beam eigenvalue problem‘ﬁor which closed-form solutions are
available, We shall first coﬁsidef the solution of this problem

. by power series, agd shall discuss the convergence of such series.

Then, the solution will be obtained by the new method and its

. ?
eff#iency will be coﬁpared to the power series solution. =

B.5.1 §9;ution by power series; analysis of convergence

We consider the beam eigenvalue groblem

“(4) _ 14 ; '
Y (x) = ATy(x) | | \\ | (,B‘g)
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to which we seek absolutely convergent solutions of the form

© | -
L a x" . over . .0 s x5 1,
0 [

i‘ \ ] y (x)

where the an's are thus given by Taylor's expansion
A

(n) -
a = [y (x)/n!]x=° .

Now, differentiating eq.(B.9) n-4 times gives

Y(n) = A4Y(,n_4); P

L -

hence

‘ (n) X4 (n-4)

i a_, x (n-a)2
n n)!

] T

'

nj!

x=0 x=0 *

c and then . \

24 ,

: %n T B(-1) (0-2) (n-3) “n-4 ° (B.20)

H All coefficients can thus be ‘expressed in terms of the first

% four as follows: , "

; 4p L ' .

: a, = 7 a = a . ‘
4p 4p) . 8y 4p+1 (4p¥1) ¢ 1’ SR

gy T

4p 4p
, a = ——5———— (2a,); a = A (6a.)
: , 4p+2 ~ (4p+2)? 2’7" “4p+3 T [Ep¥3) T 0%3’ - '

BRGSEY .

One may notice that if ) is large, the magnitude of the co-

efficients goes throughaa maximum and then goes to zero as

p increases. (in eq. (B.10) the rati_o,an/an 4 is smaller than
- » LT . .

1 if n>A+2 ,and greater than 1 if n<A+i).

tat !




B.5.1l.a Truncation error

Let us now study the convergence of the theoretical

series (i.e.’with infinite number of terms) g& x=1,

H

© a, | 2a 6a '

= 4p
y (1) pfxfmmvmrwl 4

If we truncate the expansion at N = 4n, the error made in ~

evaluating the first sum associated with coefficiént a, is

o 4p 14n 4
- A _ AT A% (4n) ! '
‘o % I TR T %o TmT D+t mgmyr v - - 1 \

gn = (4n+4) (4n+3) (4n+2) (4n+l),

we have’

| , l
4n 4 . 8
A AT p
€ = 8 TIMT 1+ + . + .. .1
© © \an). 9n  Y4n°94n+s

hence € is bounded as follows: , o
~ v - ‘
Y ,4n \4 N 14“
: e < a [l + - + (—-—!—') + .-o\] = .
o Tam)™ =~ "o © "o Tm)T, Y%n  YUn (4n) (1-—-—q )
\ _ 4n

Ahe -condition A < 4n usually yields A e a4, hence

a°A4n ’ P
\ . . ' ;
l €o n).

Finally, the total error for estimating y(1) is -

in 3 (k)!ak ' )
A (7n+E)! : (B.11)

3 |
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" B.5.1.b. Magnitude of coefficients

As previously mentioned;\the size of the an's reaches
a maximum for some value of n depending uﬁon Ar. If we assume

n to be{large, from equation (B,10) we obtain

N

a, .X : A 4

n = v
a4 (n-1.5)3

fl
::,j
1
—
/

hence, each of the four series of an's, related to a,r ays éz,

a, respectively will start decreasing when n becomes larger

than a value n, which is approximately

n,y V1.5 4+ A, . ' ‘ (B.12)

-~

In each series the maximum value of a4p+k will be
4Py
= ! .
N Sl s L S oy (Be13)

with k = 0, 1, 2, 3 for each series, and 4(p1+1)+k > A+1.5 > 4pl+i,
If ) ,is large, equation (B,13) may be transformed

and expressed in terms of A and k alone. By use of Stirliﬁg's

:

formula we obtain — l .

4

(4pyk) ! ~ vaT e UPIHR) (4 4x) 4Py

f 2R

+k+1/2

and we set

4pl¥k = A

’

where, because of eq, (B.12), p satisfies .

- 1.5 >y > =2.5 ;
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gﬁ hence, assuming u<<A yields

) 7] ~

1 1 1 1
pER TR = A
it Ak+u ulk+u+§ 23U+

2 [1+T 2 e“

1
(4p,+) PL*T o ()

A and finally ,
o H 7]

¥ . %4pytk J Ak -k
B JiE ~ - M
‘. N L ST M ETE S Y A TRy~ W V4 \

\

e This may be written as follows: ‘

- . | ,
- . A k!ak /

" [a ] ~ e ’- (3-1\4)

' dp+k max V2T ik !

/

/

and for usual boundary conditions ak/kk will almost be a
<]. , constant, independent of )A; this arises because the solution'
j is a combination of sinuséidal and hyperbolic functions of
Ax, therefore eagh successive derivative is of order A with
,regpect to the previous one, and ao,a1,2a2,6a3 are the values
of y(0),y'(0),y"(0) and y"'(0) respectively. One now sees
that this maximum increases almost exponentially with A and
therefore the calculation of the larger a, coefficients may
reqﬁire high precision to obtain y(x) = Zanxn within good

- . ™~
" limits of precision.

B.5.1.c. Application to a cantilevered beam

Let us now consider a specific set of boundary con-
“ ditions, those corresponding to a cantilever beam.. Application

‘!E — ,TOfOthe boundary conditions in this case gives for the normalized

! solution -
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\ ) 8_16 :
\ ;
Y
»(. a°=a1=0 ’/ “ ’ .
' 2 3
\ : ay = Aps 83 = =0.A./3,
for the rth mode, and
J
o, = [51nh(Ar) - sxn(Ar)]/[cosh(Ar) + cos(Ar)].
. Let us now consider the truncation error in this
s
, case. From equation (B.1ll) the total error in y at x=1 is w g
£
4n  2a 6a 2) 4n+2 ag_A
§, = A. Iramry + 31 = = - 2L ;
, 4n r (4n+2). ~ (4n+3). (dn+2) 1! 4n+3°° y
’1 A
/ 1
The value of 0. is close to 1, and we have assumed previously
A<4n; hence, the order of magnitude of 54n may be estimated
/
by calculating
4n+
Cn = Ap 0/ (4n42) ) /
We shall not attempt to solve an inequality such as
/ e4n<10—s, where s would be the order of accuracy, but rather
: report a few quick rules which have been obtained. In order
' o - ! . ’ (
to have ¢, <10 3 we must choose nzn; such that \
K
\ 4n1—6 S eAr < 4n1—2 where ¢ = 2.718;‘A (B.15)

’
4
/

\ A ‘.
if, however, such accuracy is not satisfactory enough, by in-
13 / L3 L]
creasing n, by 1 the accuracy approximately increases to ancother

two decimal places since
& //
€4n+4 . k: ; < ( Ar )4
4n (¢h1+6)(4nlf5{§4nlﬁ4)(4n1+3) 4n1-2

’

4
/

<ed ~1072,
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We next consider the magnitudé of the largest co-

efficient. From equation (B.14) we obtain
eAr v o

(a v x /(2) for k=2,
4p+2)max /inxr

and

}‘r
e

¢2w§r

n

(a4p+3)max X’§-2) éor k=3.’
Let us now consi@er a numerical application; ‘'let us
investigate the fifth modeh(r=5) of the cantilever; accordingly,
\ | A, v (20-1) -‘zlm 14.15,
We calculate eXAr\&'38.4; hence we must choose

Vo

\
n; =11 in eq.(B.lS): The accuracy is expected to be between

8 1073

close to t:j lower limit of the inequality; actually, exact

and 10”2, but closer to 10°°, since in eq. (B.15) e\, is’
calculation”yields 644 " 2.SXI0_5. Hence, although half of
them are null, we must still calculate the first 43 a, co-
efficients!

As far aQ\the maxima are concerned, we obtain from
eq. (B.13) p,=3 for both cases k=2 and k=3; hence,
o Ze14.15 & 6

+
ajy NVo=aL . v v 3x10 7,

\ 15 - ar1a.1s

whereas exajt calculation yields a4 n ~a;g v 3.3XI0+6. (Let us

recall that the exact solutiou, y({x) sougnt hereby, varies bet-
@, ween -2 and +2, hence the previous calculations requife,accuracy

to seven digits, at least,)
\
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0 ‘ | B.5.1.4d Determination of the eigenvalues
Up to this point we préééeded as if A were known. 1In

practice we must find both A and the én coefficients. Let us now
recall how A may be calculated. ",pgm

.-  since all coefficients mayibe expressed in terms Qf the
lower four, i.e. ao};l,az,;3, we may express. the boundary cogditions
in terms of those, and obtain a matrix, the determinant of Yhich
has to be equated to zero for a non—trivial solution of ao,él,az,a3.

. . . /
For instance, for a cantilever anm.we write

/

i

e w;@‘z;)‘ o WEWWWWW e LI Y
w

y(0) =0 a =20,
y'(0)

v

' y" (1)

W
(=]
o
=~
|
o
-

1
o
™3
=
~~
=

[
._‘ -
S
fu

il
o
-

y'''(1) =0 z n(n-l)(n-Z)an =0 .

The second and third lines may be rewritten as follows:

3 o A4Pyi1g

3 4
I ' p
T I (4P+k) (J-H'k'l))\ k! = 3 , k ,

’ P k=0 (Apik) " % = I, L TeET /
| 4

¥ Y

I ?; (4p+k) (4p+k-1) (4p+k—2)A4pk! A - 3 ' AT KRlay ]
& p. k=0 (4p+k) < k k=2 p=3-k (Ap+k=-3) T *

|

!

\
hence, the characteristic.equation‘in * 1is derived from the

/
determinant of the coefficients of a, and ay in the two equations,

~ /

i.e. , |
' ) ; ’ J
8 A ) _ |
{pio p: } o= 1 l4p 15'}{ Z (4p+;)!} 0.
Y
I
3

st
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The first six positiﬁe roots have been computed for

increasing values of p, and reported in the first table of this

\ \ RN
Appendix. One may observe that the convergence of y(x), éiscussed
previously, and that of A require approximately the same number of

terms. E.g. for the\fifth mode, 1n ordgr to get both y(x) and A

within 0.01 percent we require 43 terms. ™

A

/

B.5.2 'Solution by the new method N

” We now consider the anal}éis of the beam.eigenvalue
problem by the new method. ’
An analysis of convergence, such as was done in the case
of solution by power éeries, is not available;.we shéll merely
pre;ént an application'of the new method. Obviously, the case of
a beam with simply supported ends would not be representative of
the general efficiency of the method since the modal shapes are

pure sine curves and thus included among the series of eigen-

functions used; we thusg selected the case of the uniform cantilever

/ Al
beam. I ) i
, A / \ o
o 4 . i ,
We have Q_% - k4y =0 : .
dx i &P °
and ‘

y(0) = y'(0) =§"(1) = y''"(1) = 0 .

Using the notation of §B.5 we write




C T O IR e

D
2p-1

\

¥

\

-

oL
Spn

M
T =

n=0 r=0

n

0
z

0

Becauqe the two values of r are even we have

) pn 2n pn 2n
and
4 _ 4
Cpn = (nm) (YZnFCC
4 _ 4
Spn = (nm) iy} FSCp

e

|
We have defined

r

FSSpn

\

- = a4
: f4(T) =1 and f0$¥) = =X".
We ﬁow introduce and calculate
1 : _V 0 if p#n'
. CCp, = [cos(p+n)wx + cosip-n)mx)dx = { 1 if p=n#0 \
t p 0 ‘ 2 if p=n=0
' ¢
\
1 ' 0 if p#n
ss = [cos (p-n)Tx - cos(p+n)mx]dx = { .1 if p=n#0 _
¢ P 0 ‘ 2 if p=n=0 \
1 . * 0 if p+n is even; otherwise
SC_/ [sin(p+n)7x + sin(p-n)mxldx = { .
P ) g 2 __, .2
{p+n) (p=n)m

f

/ \
The cdoefficients of the differential equation are simply.

o _ o
cpn YZnFccfpn ¥ Y2n-1

m

Al

f_{x)[sin{p+n)wx + sin(p-n)wx]dx,

0

4
pn
4 .

1

-

Fsc®

’/#,Bf

Fss® ’
Pn

4
+ Yyn-1FSC

FSS4

* Yan-1 pn

\

np

{

),

).

fr(x)[cos(p+n)nx + cos (p-n) rx]dx,

//1
o T .

fr(x)[cos(p-n)wx - cos (p#n)rxldx,

l"”*’:"i‘”"""";&m~f‘va~ws~ww.~1mxr~ AR RS S T ek
!

"

!

-y @By
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& Finally, we obtain
e 'r’,
) g;, \

| D = ;(n4u4-x4)lv cc__+y sC,,1 =0
2p/ o] 2n ““pn '2n-1 ““np roos
/ .

~.

%% . and

i

7 >4 4.4 ‘

* . Dp-1 = g(n‘" A7) (g SCon*¥an-1 %Spn] =0,
: et et . '

e,
and ¥8ur boundary conditions

oM 8
<
|
o

2n
\ S -
for y(x=0) = y'(x=0) = 0

, /
: /
)

nnyzn_l =0

b8

-n2w2(—1)n72n =0 .

Mg

\ ‘ for y''(x=1) = y''"(x=1) =0

=™ 8

3.3 n_ . _ n
n,n (=1)"Y¥y .y =0 S

We now build the matrix of the coefficients of the y's,which must

. \ Co . ! . .
be singular for non trivial solutions to exist,as shown in the

ﬁomputer programme 1iéting; the first four rows contain the boundary

! s
conditions; the next row represents the case of p=0. We then

calculate . ~

cc SCpp,s 88, for p & n =1, 2, «us

pn’ “7p

and the matrix is filled by groups of 4 eleménts, corresponding to
- \ .

the coefficients of v, and,YZn-l in D, .and D, _,i; exception is

2p
\ maﬁg for the first element of each row, which is filled in separately

A -

“for convenience as it corresponds to a null index, n = 0.

’




program required for the

/

purpose of f£filling the matrix.

On the last page of this Appendix is a listing of the short

The

, ¥
results of computation for a cantilever beam have been printed

as follows:

/a)

b)

On pageuB.26 we tabulated the lowest eigenvalues, up to the

sixth, for matrix sizes of 7x7 up to 19x19.

achieved by this method, compared to that of power series

.The convergence

can be appreciated; for an error <l(.)—15 fhe number of terms

required by the two metpods has been summarized in the fol-

lowing table:

% S

Mode ‘
Series 1 2 3 ., 4 5 6
Fourier N 14 17 15 17 16 18
power ! 14 22 31 39 47 55

On page B.27 an? B.28 the fifth and sixth modes have been

tabulated from a 17 term exgansion.

and the accuracy on Yy is within 1.5x10

exact solution [70f

The Y's were normalized

+

“4 45 compared with the

|

For the sake of cur1051ty, the values lof y(x) for 1¢{x{2 have

been listed in the rlght-most column of the same tables.

shape 15 simple,

(one node at most) yet, the amplitude, subject

The

to me11c1t conditions whlch have not been elaborated upon,

is much larger than on the [(0,1] lnterval.

-

I

D)
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B.5.3 The conical cantilever beam
/

The equation of motion for a full cone is

4 2

o

(1-x) - a-x?y = o,

QJQI
- N
o

X

which may be transformed and re-written convenientlfvas
- |
- \
4 4 |
24X _y=0;
d , /

\

' 2

the values of A compatible with the boundary conditions are

obtained from the following equation (cf. [711,[72]):
~

J2(2A)- 13(2A) + J3(2A). 12(2A) |
\
where IZ' 13 and Jz, J3 are Bessel functions of first and

o

second types.

A -
The values of ) computed by use of the previous -

&

equations and by use of the new method are tabulated on page

B.29. Clearly, for the same mode number we observe that the.

2

convergence of A requlres more terms in the Fourler series in
1

this case compared to the case of a uniform cantllever.

\/
A

B.5.4 Cohclusion.

~ Because the new method involves usually large deter-

v . & :
minants it is not the most economic tool for most common apr

v

plications. For instance, if one is only .concerned with the

very first eigenvalues of a diffq;enlial equation with almost
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constant coefficients, the eigenfunctions are likely to:-be
smoothly shaped (i.e. with few inflexion points), and power
series, although they may require more terms than Fourier
series, may be more economical since the determinants involved
can bg calculated by other techniques than full size matrix
inversion. Furthermore, the differential equation may be of
low order or of simple form, and it may allow easier solution
by means of classical methods such as Laplace'transforms.

On the other hand, this method becomes competitive as the
order of the différential equations and the complexity of the
coefficients increasés, or when higher order eigepvalues ére
involved (as observed on the previous page, one additional
term per additional mode being enough to maintain accuracy); or
when accurate modal shapes are required, Moreover, since the
method only transforms the differential equation coeffigients

by use of integration, these coefficients need not be continu-

ous functions of the independent coordinate, although this was

x

never the case in the present work.

B-24




LA g

JP
J¥
JP
-'D
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
P
~P
Uup
JP
VP

- y{4) M y=o )
WITH BOUNDARY CONDITIONS : ¥(0) = ¥'(0) = ¥Y"(1) = ¥Y"'(1) =0 .
CONVERGENCE OF A WITH RESPECT TO THE TERMS A, ,A;,Ac A, ... Bypr2rBapss -
= A2x2 + Aéx3 + A6x6 + A7x7 e, # A4p+2x4p+2 + A4p+3x4p+3 ..
MODE 1 MODE _ 2 MODE 3 MODE 4 MODE 5 MODE 6
1.681793
1.280015 3,8820677 Sw
1.37278¢ - ) )
1.775124 4.536286
1.A75101 5.022%75 5,236689
1.875104 4,689718
1.8751C4 4,696020 6.942553
1,375184 4,694004
1.375106 4,694100 7,714088 -
CLlaB751048 - 4,69409) 7.861682 9,83118
C1.F7510¢4 4, 694091 7.851498
1.6875104 4,69409) 7.854¢28 10,74722
1,675104 4,694091 7,854730 e
1,875104 4,694061 7.854758 '10,98582
1,875164 ©  4,69407] 7.854757 11,00077 12497264
le575)Ce 4,69409) 7.854757 10,99541
1.875104 4,654031 7.854757 10,59560 12,90426
1.£751G4 4,694091 7.854757 10,99554 14,15293 15,791466
1.775104 4,69409] 7.654757 10,9955¢4 14412927 . .
«E75104 4,694091 . 7,854757 10,99554 14,13739 16,88387
1.875106 4,694791 7.854757 10,99554 14,13706
1.6751C% 4,5540091 7.854757 10,99554 14,13717 17,25679
1.875104 4.,65409) & 10,99554 14413717 17,27875 .

TJ
T2
T2
T-
TJ
T4
TJ

T

T
T4
TJ
T4
TJ
TJ
T4
T4
T.
T-
TJ
T4
TJ
T4

A bt
A T:
Aloi
Al11
Alal
Al5:
Aalpe

‘AlGi

A2t
LYEY
L2618
R271%

-

Y (x)

aA3ns

R31:
A34:
A35:

R38:-

1393
A4
A433
B4b
K473

THEDAY®

L]

EIGENVALUES OF DIFFERENTIAL

7.854757

EQUATION :

IN THE sorLurton

@

* Values obtained from Bishop and Johnson [70]

e M ot 38

Y ot BET whs
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CONVERGENCE

Y{x) =

T TERMS:
8 TERHNS:
9 TERMS:
10 TERMS:
11 TegRNS:
12 TERHS:
13 TEgRHS:
14 TERMS
15> TERMS:
16 TERNMS:
17 TERMAS:
13 TERMS:
19 TERMS:

THEDRY* :

EIGENVALUES OF DIFFERENTIAL EQUATION :

(4) _ 54

Y - Y =0,

WITE BOUNDARY CONDIT&ONS : Y(0) = f'(O) = ¥"(1) =Y (1) =0 .

OF A WITH RESPECT TO THE NUMBER OF TERMS Yo,Yinz ces Y IN THE SERIES

P

Yo + Y;sin(mx) + y,cos(wx) + Yysin(2mx) + 79005(2"X) + ... + yzncos(nnx) ..

LY

&

. MODE 1™ MODE 2 MODE 3 MODE 4 MODE 5 MODE 6
i
2.324349 . ; . . )
2.3204679 6.283185 6+451220 1¥.28642
1.535021 4,805770 7.8959380 11.18346 15,65789 )
1.3787%46 4,701601 7.862592 10.97480 14,16C87 . o
1.275353 4,701230 7.855705 11.01267 14,09325 17.51883
1.8763134 4.701222 7.855315 11.01226 14,09612 17.29963
1,875257 4.694484 7.854792 10.99701 14,13786 17.28173
1.875112 4,6%94111 Te854777 10.99565 14,13739° 17.27737
1.E7511) 4.694111 7.854759 10.99564 14,13719 17.27926
1.é675111 4.694111 7.854758 10.99554 14.,13717 17.27925
l.~75104 4.6940292 7854757 10.99555 14,13717 17.27880
lead?5104 4.694091 7.854757 10.99554 14,13717 17.27876

1.375104 4.694091) 7854757 10.59554 14,13717 17.27876 .

1.875104 4.694091 7.854757 10.99554 14,13717 17.27875

©

* Values obtained from Bishop and Johnson

— -
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FIFTH

MODE

X=0,0

X=0,01
X=0.02
X=0,03
X=U,04
X=0,05%
X=0,06
X=0,07
X=0.08

Xz0.09,
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B-28
Y
SIXTH MODE
X=0,0 ¢ Y= 0.00019|] X=0,50 ~l.41607 X=1l.00 ¢ Y= 1.499962
X20,01 ¢ Y= =0,02793 |} X=0,51 ¢ ~1+39285 X=Ll,02 ¢ Y= 2.69230
X20,02 ! Y= «0Q,10546 X=0,52 i ~1.33016 X=l.04 ¢ Y= 3,40335
X=0,03 1 Y= =~0,22213 X=0,53 3 ~1.22788 X=1l.06 ¢ Y= 64,13507
X=0,06 1 Y= =0,36775 X=U,54 1 -1.08909% X=l.08 ¢ Y= 5.13008
X=0,05 ! Y= -0,53233 X=0,455 -0.91779 X=1,10 ¢ Y= 6.37207
X=0,06 ' Y= =0,70628 || X=0,56 ¢ -0.71922 X=1,12 1 Y= 8.07917
X=0,07 ¢ Y= ~0,88038 X=0,57 1 ~0,49922 X=1l.14 3 Y= 10.644039
X=0,08 : = "1;0‘0610 X=0,58 1 -0.26435 X=1l,16 ! = 13.64344
X=0,09 ! Y= =1,19568 X=0,59 t ¥= =0.,02156 X=1.18 ' Y= 17.44586 |
X=0,10 ! Y= ~1.32227 )] X=0.60 ¢ Y= 0.22193 X=1,20 ¢ Y= 23.14108
X=0,11 ¢ Y= ~].42007 X=0,61 ¢ Y= 0.45887 X=1,22 ¢ Y= 27,52214
X=0,12 ¢ Y= =1.48449 || X=0,62 1 Y= 0.68226 X=le24 ¢ Y= 36.85120 ;
X=0,13 : Y= «1.,51217 X=0,63 1 Y= 0.88543 X=z1,26 ¢ Y= 44,84036 k)
XsUy14 ¢ Y= «1.50113 || X=0.64 ¢ Y= 1.06239 X=1,28 ¢ Y= 53.04656 A
X=0,15 ! Y= ~1,45067 || X=0.65 t Y= 1.20785 X=1.30 : Y= 60.48818 -
*X=0,16 ¢ Y= ~1,36148 X=0,66 t Y= 1.31751 X=1,32 ' Y= b7.6H4332 N
Xz0,17 @ Y= =1.23550 X=0,67 : Y= 1.,38813 X=1,34 ! Y= 72./1164 P
X=0,18.: Y= «1.07584 ] X=0.68 : Y= 1.41760 X=1+36 ¢ Y= 15.20659 3
Xuw0,19 3 Y= ~0.88686 [ X=0,69 : Y= 1.40508 X=1.38 ! Y= 74.83792 -
X=0.20 P Y= «0.67271) X=0,70 ¢ Y= 1.35)00 X=1.40 ¢ Y= 7).9e998
X=20,21 ¢ Y= ~0.644263 || X=0,71 & Y= 1.25696 X=l,62 ¢ Y= 63.62253
X=0.,22 1 Y= -0,19958 X=0,72 : Y= 1.12588 X=1l.44 ¢ Y= 52.90637/
X=0,23 ¢ Y= 0.04786 X=0,73 : Y= (Q.96168 X=l.46 ¢ Y= 39.30869
X=0,2¢ ¢ Y= 0.29275 X=0,74 ¢ Y= 0.76939 X=1.48 ¢ Y= 23.55997
X=0,25 i Y= 0,52796 X=0,75 ¢ Y= 0.556483 X=1,50 ¢ Y= A.58801
X=0,26 : Y= 0Q,74664 X=0,76.: Y= 0.32451 X=14,52 ¢ ¥=-10.57¢13
X=0,27 ¢ Y= 0.94242 X=0,77 ¢ Y= 0.08549 Xz=l,54 1 Y==20,56905 "
X=0,28 3 Y= 1.10961 || X=0,78 ¢ Y= =0.15494 X=1,56 ¢ Y==gl,30050 3
X=0,29 1 Y= 1,24333[| X=0,79 : V= =0.38945 X=1,58 i Y=-53,27R69 3§
X=0,30 ¢ Y= 1.33960 Xx=0,80 ! Y= ~0,61070 X=1,60 ¢ Y==62.11008 2
X=0,31 1 VY= 1.39568 X=0,81 ¢ Y= ~0.8x186 X=1,62 ¢ Y=~=07.61646
X=0.32 ¢ Y= 1.40991 X=U,82 ¢ Y= «0.,95659 X=1,64 : Y==69.83696 .
X=0,33 : !"' 10381\93 Xx=0,83 i = =1.12923 Xz1l,86 ' Y==09.006287 =
X=0,3¢ { Y= 1.31262|] X=U.B4 : Y= =1,23510 X=1,68 ¢ Y==65,76025 &
X20,35 1t Y= 1,20402 X=U,85 ; Y= ~1.,30038 X=1,70 ¢ Y=-00.51617 g
X=0,36 ¢ Y= 1.05941 X=0,86 ¢ Y= =~1.32247 "X=l.T72 1 ¥Y==53,97125 ki
X=0,37 ¢t Y= 0,88310]|| X=U,87 i Y= -1,29989 X=loT4 ¢ Y=ze4b6.72501 3
X=0,38 ¢ Y= 0.68036|} X=0,88 { Y= -1.23227 X=1,76 & Y=-32.312%3 . 3§
X=0,39 : Y= 0.,45728 X=0,39 : Y= ~1,12052 X=1,78 | Y=432.19964 %
X=0,40 ¢ Y= 0.22049 X=U0,90 ! Y= ~0.96646 X=1.80 : Y==25.5710¢ g
X=0.‘01 H = -0002292 X'—'O.C)l . = "'Oc77303 x=1.82 H Yz"l‘)t”jﬁ?" g
Xx0,42 1 Y= -0,26568|] X=0i92 t Y= -0.54396 X=1.864 ¢ Y=z=lb.74651 %
X20,43 { Y= ~0.50054 x:u.qi P Y= ~0.28367 X=1,86 % Y=z=10.61972 X
X=0,44 1 Y= ~0,72051 X=0,9% ;3 Y= 0.00286 X=1,88 ¢ Y= =~7.,2874¢, %
Xz0,45 ¢ Y= =0,91902)| X=0.95 i Y= 0.31048 X=1,90 1 Y= =4.74u917 &
Xz0,46 t Y= =1.09014 || X=0,96 t Y= 0.6340) X=1.92 1 Y= =2,79105 ’%
X=0,47 t Y= =-]1.22878 X=U,97 1 Y= 0.96863 X=1,94 ¢ Y= «1.445673 &
X=0,48 1 Y= ~1.33080([ X=U:98 : Y= 1.30992 Xz=1,96 ¢ Y= =0.h0754 ’
X=0,49 ¢ Y3 =1,39319 XzU,99 & Y= 1.65444 X=1.,98 ¢ Y= =Q.]2331¢
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1QnT 1
15 T3RMS: 2.952%8867
16 TZRMS: 2,.982°15
17 7T3RY%sS: 2.7E2°12
19 T=3Ms:  2.3F2930
21 TEPMS: 2.352939
23 TTF¥S:  2,.252¢2¢
%

V3
=
[}
(]

‘o,
o]
e

2.3E273¢8

~

PIGTUVELUES OFT D

dz

-

2 Y(0)=T(D) =YY () =1 = C

MODE 2

8.,59¢338
h.S98701
4.508577
4.592061
4.,5%8048

4.,53846L1

4.59pe38

-

-

COXVERGENTZ QT X -WITH NON3EF OF TIRMS

MODE 3

6.,212342
6.2054309
65.203266
6,201459
6.22114A
6,2¢1%15

§,2C1107

IFTERENTIAL EQUATICTN

) \
a;r[(l~x)" g;%l - A" (1-x)2 Y =0

(FULL COFE)

G7,61,01,62,.... IN SOLUTION

p

MODE U_y/ FCDE 5

7.873621
7.827411
7.809233
7.79354¢C
7.739410.
~.78¢85f

7.789742

»
-

9,7M1466
©.55639)
9.873924
¢.3e87432
e,377611

©,373C61

€.371971

:;kiu:s TOMPUTED FPOM: . J,(2A)xI;(2X) + J,(2A)xI,(21) = 0

T(Y)= 30 + G1 COS(mY) + D1 SIN(nY) + G2 COS{2rX) + D2 SIN(2xX) + ... + DN SIN(NnT)

P
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' ot 3 YF < RO RRAWS 1 i i - N . L .. o o
i S R A b T i s it RO L e A T R e B ?wrw?t‘:ﬁffmfﬂ‘_"‘ NES ool PRI ARG e ST

b : ' o B-30

(]' SUBROUTINE MATDFT(B,X,YsIYsM)

IMPLICIT REALMB(A~H,0-2) '
DIMENSION B(H,N),CC(20,20),5C(20,20),55(9, 2"))L(20);M(20) A(20,20)
P123,1415926536 ,

NIM=M/2

NIP2aNIN-2 A

00 11 I=1,N , -

00 L1 J=1,N

t 11 All,J)=0,D0

c . ‘ .

' C 4 rows of boundary conditions.

i c

TN PR IR VLY SR R

o~

Atl,1y 1 =1

- DD 12 IH=1,NINM
Atl,2%IN) =) .
A(2,2%IM+1) < IN*P] S 5
A(3,2%IM) =(INxPT )&k (=])sei]N .

2 AQG 2% TH+)L )= ( TNPT ke (=] )k N

1 row corresponding to p=0 o :
1 col corresponding to n=0. ‘ >

A(5,1) =2 XX K% :
DC 13 IM=l,NIMs2 i
13 AgS,2%]iiel)=4%(= X#*4+(IV*PI)#*4)/(IN#PX) .
DD 15 IP=1,NIN ;
0N 14 INal,NIN
S LF{INGEN,IP) GO TO 14
~ SS({IN,IP)=0
SCUINSIP)=(1m( =1 )%k (IN+IP))#2uIN/(PI#([MN¥*X2]1P%2))
CC(IN,IP)=0 ! |
14 CONT INUF " |
S5CIP,1P)=1 ' '
. SC(IP,1P)=0 \
15 CclIpalrp)=l
DD 8 IP=1sNIP
A(G+2%IP,1l) = O
ACG+2%IP+1,1) =2%X¥k4k( (=1)kx[P=-1)/(IP*P])}
DD A INM=1,NIN
PING = INMP])kRbmXMih
Ata+2%IP,2%IN) -PINAvCC(IPaIN)’
Alb+2%P,y2%In+L) =FINA®SCUIN, IP)
A(S+2%[py2%IN) =PIMaxSC(IP,IN}
8 A(S5+2%Py2%IN+1) ePIH4®SS(IPYIN)
DN 20 l=1,N
Dn 20 J=1,N
20 Btisdy=allsd)/Pluxa
IF(IY,[1,0) GN TO 30
Y=RDET(RsLoM,N)
39 RETURN _
END . \ ! 1
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FCC, FCS, FSC, FSS AND gy COEFFICIENTS
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C.1 VALUES OF £

- ( ! r r r
. s APPENDIX C: CALCULATION OF ' FCC_., FCS , FSC ’ FSS y gr\

- N

Using\ the notation of eq. (B.l) we write the coefficients
of eq. (6.8) in ascending order with respect to powers of

(1+&eg), (1+a,E) and (1-0£) % as follows:

{

£,(E,0) = 3\4(1{ Iy ke £ - st tr

1- v
N A\
|

| £3(6,0) = L@l (e 0)” - 6% ey
§ v, 2 . .
%1'\ ' £, (E,0) = [T?};] - 0 + 2(]f' aE;)Z (1+ E) ‘
3 .
3 e '
E lzﬁT — 1BV 2 _ .4 2
?_},///i’k 1+ U_H)le)[(l"'aeg) ) (l+aiE) ]
L \ E=1
3 o (1+a &) ( )(l+aiE)3 (l+aiE)3}
S - lec,u, —5——— - I(2-y + Ty, ’

te T 20, e ""?E;~—_ i 3ay 3

62+Y |

] vy +oug [ec (l+a £) + 2a (l+a F,)(l ag) ]

) u 1 (1+a i) + vy (1+0;€)

\

. fl(E,m) = 2iu)[Ye+Yl

+ [T(2-y, ) + 1w(
Te¥t

Ye -1
Yot

- P T S O MR Y S ] -t
s oAb SR A S
"N
~

+ 1wl 2 (22082

3
] u, (1+a §)
i

r

Yo~1l ¢

/£ (E ) = iw[Ye+Y'] e (e u te,) + 2ua_ (2222} (140 _g)
‘ e 1

\

9
-

2
45 [ye(l+ae£)2 + yi(l+ai£)2]:
i

Ye+y.
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(j and each of the preceding functions may be written as
£ - i 4, m | .
S P
r;, i ’ \ fr ‘Elm) = z z bim(w) (1+ai£) s (C. 1)

i\ i=]1 m=0

- = wherelai may take the values a;=d,, 8,0, a;=—a.

C.2 CALCULATION OF FCC, FCS, FSC, FSS g
1

In the calculation of the FCC, FCS, FSC and FSS co-

efficients as defined by eq.(B.6) we shall thus encounter two

\

| major types of integrals, namely

\

R0

o
A

2

P A TS S

1 \
Iy (a) —[ (1+a&)"cos krEdE
0 i ZS

~

1 .
\ and J']:‘(a) [ (1+af)®sin knidE .
¢ Yy :

i

Giidd

Because ms4, we obtain

N .

T E R

3
Iy (a) -l (-1 ¥ (1+a)m'1—}] - )a:ll:]-(m—l) (m=2) [ (-1)% (1+a)™ 111,

TRRTE AT

L emo

and , !

\ - &

, _ .11k m - é . _
Jﬁ(a) =1 { 1)‘(l+a) f\a3m3(m—l)[(—l)k(l+a)m 2 _ 1]
kn k¥«

: 4 o .
oo - 2 (0-1) (m-2) tm-3) [ (-1 % (2+a)™ 4 - 1
A k3n3

’

\
provided that k is not equal to zero; otherwise, if k=0

~ f T

@ | Igla) = 1 + n J{l+m-L) 31+ (m-2) Fl2+m-3)3) 13,

: n . . \
and Jola) =0, ) .

- \ - .
"o, i "
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Thagte
TR

b B
LTy R
BN
-

Fri
e O

Shet

o)
t

w

\;-‘é:

o N \

¢ ) We now introduce the following coefficients:

>y

RSP B %, 3,0,
5 2 g
R

m m
ccgn(ai) = Ip+n(ai) + Ip—niéi) '
. :

5

Mot }
*, ‘3‘ m - m M
%Z Csppn(ay) = J§+P(ai) *Inpla) o
”:;% o
_ , PR |
8 SChnag) = Jpun(a5) T‘J§¥n‘ai’ = CSpplag) »
i ’ m _ _ M
( SSpn(ai) Ip-n(ai) Ip+n(ai) ’
33 g0 that, by use of eq.(C.1l) we finally obtain
\r 3 4, ' —
r _ r ,.m ,
3 4 Co ‘
r _ r oaely oy r \
/ FCSpn = iil mzo bimcqu(ai) FSCnp ’
‘\ .
3 4 i -
r _ r ool |
F§&s = L I b:; 85 (a.) .
n . in™“pntTi )
PR -1 m=0 P E
. I
|
1
2 . . \ e

C.3 VALUES OF g}_, ’

i

a) The upstream end, at £=0,is supported, hence ¥(0) = 0, and
N .
by use of eq.(B.2), the first boundary condlition yields -
1. . 1011
go =1 & gl = gz = 93 =0 ;

\

if it is pinned, we also assume ‘t\:h_at ¥"(0) = 0, then
: 2 _ 2 _.2_ 2 _
S 91 & 9 =9, =93=0,

and if it is clamped, then Y'(0) = 0; and

o : o 2’
. gial &g§=gz=g§-=0.

k
i . ~ .
. ' ’ e : t
R ' ~ ¢

.'tt;!:‘{‘ o




If the downstream end, at £=1,is also supported, pinned or

clamped, we obtain for g3 and g4 the same conditions as above

if however it is free then we obtain

and g

> o) by condition of zero moment, i.e., Y" (1) =

9, =1 & gp =

the relation between ¥, ¥' & W(

+4

]

at &=1, as in eq.(6.7),

Yom1 %
-6 (l+a ) ](

g IHE(r - is 4y (o, °

f[(l+ae) -8 (1+& )](—~*9 u, - xTl2=y)s_ + Yi(l+ai)2]

) v, }x ’

- 2
2,1-a
iw{f[se+6 (—E~
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APPENDIX D: CALCULATION OF a!l & aé
D.l1 Using dimensionless .notation we write
[P “ ) .
L ‘ 1 ~
t { ax_ . L / de
s ' - o )
- 0 BBy RAe Jo 0ll)

"Assumin‘g slender bodies and small taper angles we develop the

inverse of the cross section up to the second order, as follows:

I

t

27 -
1 1 g’ 1.2.20" o

— . [=l, amEl),_, + FET [ - 1, H
o (&) g &=0 ;2— £=0 2 o? ;7 £=0

hence

1l 2 . .
[ [ "

0 c(E) o o c o

D.2 We now calculate

‘ ‘/ ' J

Loy, (x) LU, (0) L

_r,/\f i dx = —1 / dag
- - x —3 ,__,__o_____ ———— 'Y o
0o BBy - R Jo 99

As in the previous paragraph, we write ° ot

. 1 1 - o' o{ ) ! 1.2 20‘2—0"0 20! --cx!'c:1 20'0!

[-—-] [—1, - El—=— + ], + 5E°] + + ] '

E 0 2 2°0. 2° - 3 3 2 2 0
oo o} O:L» . 00 o o, éooi g5
) i S ,
~ and,therefore,
o , @ v
1 N ] l2 [} ] .v "

ag 1l o c. 1,20 -go 20'c! 20' ~g,.0!"

0 °°i(5)’_'=-_ﬂ ooy “a ci’ : g° - ooy
. , | ¥ ‘

V' b
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v & . According to notation in eq. (5,8) we write

Ll
x)d U, (L)dx
T e /g__ [
l(Zc'z-oo . '03 R iz-o'oi
6 02 ‘ oo, o
i
120"2"00'0'" R

6 g2

.20}2-0}0" v
1 i1

+

Q
2 |,

Q
[
—
[
S’
Q
Q
"

?
=
1

+

a
C
-
1
[ S § ot
ala

I
a

—
.

I . N P
aja
+
N
q‘
N
TN

~

1l
h ] o, (0)

For cénical elements, as in §2.6.2, we will set . ‘

u _ 2 _ .2 2 oy 2
o g(E) = (l+ae£) $ (l+ai§) and oi(EL = (l+?i€)
then

2

o {0)-
a a'(0)

1, oy ()=(1+a)?

by
20, =

]
]

2(a~6%;)  0}(0)

]
i

207 .

-

" (0) 2(a§—52&§) ot (0)

8 o

We thus obtain
¥ 2
ae_d a

2 1
a; ~ 1 - (l+ai) [1 - oy + 3 —»——§—-aﬁ + ail
v & 9 2 ‘\1
~1 - [+ a.(2+a-)]{i -, [l-a,~—s 13,
b 177 1 1 3(1-62)

b
.
.
i
¥

2 ®
, a_ <8 ay R
el = {1l a1+ ]} -
. X . 3(1 6/)// - .\
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e L BRI ST T M, s gt R Y DA A SRS

S D~3
: \
B 0 hence |
g a,-6%
ai ~-ai[1 + & 1 . ' (D.2)
v ' 3(1-67)
For quasicylindrical tubular beams we obtain ai ~ ~a; . °
At this point we recall that for a converged? taper we have
ai<0 and hence ai-is posiggve. Do
D.3 We .now calculate.aéifrom eqg. (5.8) we write’
L L ’ ” L
— 2 dx ax .
Qe = Lg _ (0) { qeth} A —A.// A-A, '
2 et e 1 e 1
« \ 0 X 0 [
& fromithe expression of friction in eq. (3.7) we write
- f D_ (x)°
5 . g, (x) = q (0) =ov,
= .o - et et .De(O) '
i .
. and introduce the,function £(£) such that .
oy, )
}&: -
' L 1 | 0
/ d (0) —-T-YDe(g) ag (0)£(E)
- q X = Lg = Lg 0)£(E).
& ‘ | - et et . De 0 | et \
" We now write al as follows:
e A a ' '
. 3 . » »
Ge 2/0 a‘E—T dC//O ETE—)' H (D 3)

as breviously, we expand the following term

£ 4 £' _ fo' 1.2 £" f£lo' . (20'2-gom) ¢
£, = hyy + €lf - & L L2E + (28Loof,
st o0 o @0 2y o? o 0

*
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i

'

D-4
“:‘;‘g % ) / /
and, hence, by use of eq,(D.1l), we rewrite (D.3) as follows:
o £! , £g-2f'c" PR
P al =2 f:i-T 02[ b T
e
ER \ o' 20'"-gg" |,_
N , ‘ ol T 80
For conical shapes we have: ’
) D, (§) = De(O)[l+ae€] ‘
and hence,
: 1. 1 1,2 4 ‘
£(€) =1+ 350, - & - 308" ;
therefore, ; -
v . * = 2
Lot 2% %%
o 208 TP
a!' = 2[1 + 5 + ‘ - ~]
¢ 2 - ] -Gza.
- & 1
. 1-8% ‘
‘ ’ 2 2
o a -8%a, o -6,
~2+a -1 +—§3 ~‘% A 21 + -2 i—i
\ : \ 1-8 1-§
Y
14 2 ag=870y ,
~ 3% ~ 2
3(1-67) .
or o
'ue—ézkza ~a, ) - .o ,/”/
: Cala 1+ ; %__}_ . (D.4)
C . - 3(1-67) ‘

W ™~
For quasicylindrical tubular bearfis we obtain al~1l.

N .
\ N ‘ ,
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APPENDIX E: PERTURBATION METHOD AND INITIALIZATION OF COMPUTATIONS
b

In_this Appendix,yﬁhe'perturbation method will be used to
obtain simple approximate expressions of the eigenfrequencies for
small flow velocities and small internal damping, which will be used

“in initializing the calculations in the computer programs.

[ - R

E.l SMALL VELOCITIES

Although it has been previously mentioned that we are
mainly interested in critical flow velocities, the following
analysis will provide some useful insight about the behaviour of
natural freguencies at small flow velocities.

For simpiicity, we shall restrigt ourselves to

almost uniform tubes: ae~ai~0;

’

negligible gravity forces: vy-0;
#
. = no external tension: ! ©-0;

~ pure viscoelastic damping (V/i~0).

I Ye-l 3 ‘azkwl

We set Ae = (Ye+Yi) y Ay o= 1) and rewrite eq. (6.8) as follows:
ale 1-0£ 22 . 2 . - 2 ae
(Lriov)=— + (( )Tug + vi + Ecoug (1-8) }o—
‘ at R s ] as
« 4 2 1- aE 2,
- + {Ecnue + 1w[21 \ + [1+(—3) ]}Ef

|
+ {iv e(c.u 4+ )X - W}e =
ne v’

¥
We now write a first order perturbation approximation with respect
tqluewg v; in the form

/

-+
¢

1
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o O = 0y UL V0
o where ‘Do and W, may represent any of the modal eigenfunctions
and matching eigenfrequencies at zero flow. )
For zero flow, i.e. u, =v; = 0, we have -
3 ) ) | ) ' ) / l i
(4) . 2% _ o . '
(Jj-ljiwov) o+ {1m°ecvle wq}dbo =0 ; ) (E.1)
and for no internal flow, i.e. \ii = 0, but small external flow
. velocity, U, first drder terms in u, yield
3 ' o (1+1w v)tb( )+ {iwoecvle - wg}¢6/=
; O . (E-Qs
_ (4) 10§, 2), g1 - 14 . ,
iwe\) ¢o iw [1+ (—=) ])\e tIao ,[uneecv)\ 2w ol t :Lwoecn)\eMa ;
X . ' L 4
3 f\inally, for no external flow, i.e. u, = 0, first order terms
: in vy yield /
& .
: ' (4) \ ’ 2 -
(\l"‘lwo\))@i + [iwogcv}\'e -wo\wi \ =
' . o . . (E.3)
- imiv tbo - J.ufo 2)\5_ ¢o - h"fiecv}‘e - 2wowi]¢>o .
t B )
. Let us now premultiply eq.(E.1l) by ¢_, and add it to
eq. (E.2) premultiplied by -¢°; we get
\ . () _ o old) '
(,lﬂwo")”o. <be °o¢e ]
(4) L-ag, 2 ° i
-Q 1 _
iwev¢o¢o + iw [1/4- (———= ]Ae¢°<bo + llweeche 2w oY +:|.woec A M
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) E-3
e:":'. / .
R o
3 \ Similarly, premultiplying eq.(E.l) by o, and adding eq.(E.3)

5 : .
EZ d multiplied by -d>b, we obtain
H T e vy (o) @)

§‘~L : . (1+imov)[¢o Qi - ¢o°i ] = o ’
a\

N :

" P ) - 5 (4) : ' ° 2

. ( / . lojve @077 + iw 21.0 0! + [iw;ec A, - 2w w10 .
~ /

. Intthese last two equations, by use of eq.(E.l), we shall write
i N / .
o o) o o 0% ™o 2 '
R oo 1+iw v o

o

\

We shall now integrate these two equations over the’ i
interval [0,1]; the integration by parts of the following term
" yields . \
1 L n
(4) 4_ (4) - (3) 4 (3) _4(2) v g 62),1
j’ [¢o % ¢°¢ 1dg = [Qo ¢ ¢o¢ 'Qo o' + ' O 1= . ‘ i

. - B
0 | \

r

: and the last two equations, once.integrated over the interval
*% [0,1], thus yield ‘ |
b
T
% E=1 N
¢ uﬁwvn¢“%l-¢qﬂ”-ﬂm¢'+ ¢¢“H v =
: o o e oe £=0

2 A

-iw _ec_A 1l

, s Do tWoECy g . - . 2
{:Lwe» 1+lmov +\‘1weecv>\e ZwOwe+ 1woecn?«e}/ d>od5 .

L 1
' . 1=~ o.i,' 2 f A
1 | + 1woxe./; [1+(=522) ‘10 oldE

. 3
and ; .
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i

-
£=1
£=0

- (3) (3) = 4(2),, 10(2)
(1+iw°v)[¢°\ ¢i - ¢o°i - ¢0 ¢i + °o¢i 1

‘ ' Eal
{iu v-0—0 V& 4 ;4 ec 2~ wa}/ 2d£+1w}\[¢] .

2
w_~iw_ec. A

E_

L)
3

From hereon we shall assume that the beam is supported at £=0, i.e.

ki

- .- \ -
= = =0- 1 i i 1,2
00(0? ?e(O) ¢i(0) 0; also that ¢° is normallz?d, i.e, /G ¢°d£=l.
We may now calculate the following integrai which appears in the

former equation,

» - .- ~

| ’ .
1l
‘ 1- aE '
/0 1+ (55221020 at

1 1 2
1~ aE 2 + 2 _
{31+ d5%%el} + % [ e a

. | = —-—-(o +1-20+02 w  + —(1 a/ ) gde;)

\ 20
) 2
| . +122a 2(1) + 25 ; . .
20 o )

- \ ' - A

"neglecting the terms containing az is indeed of little consequence
since a, which accounts for the slope of the boundar& layer, is

much smaller than 1. We thus rewrite our two equations as
; N ; - .
TR T C) PPN BN C PR P ‘
(o) o e oe o e oe £=d (E.4)
2 ‘ - ’
iw ec A _-w a o241~ 20,

o vie o , oY
+ 2iw_ 1 + iw_ A _[ec. + == + ——0 (l)],
lf;wov o ‘ o'e n az 20

= i c -y
1we[e vle v

and, . !

\

=]
» . (30, _ o al3 _ 5(2)51 _ gegl2);"
, R O e ]azo
‘ \ \
lwoecvxe-wg ; " (E.5)
= iw, [eqvA S TTIEY + Ziwol + iwoAi'¢o(l)'.

(o)
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é?l.l Applications: Tubular beamg‘supported at both ends.

oo’Qe and Qi satisfy the same boundary conditions as ¢,i.e.

it

$(0) = &"(0) = ¢(1)
®'(0) = &(1)

" (1) =0 for/pinned-pinned, and

% (0) ¢'(l) = 0 for clamped-clamped beams;

hence, eq.(E.4) yields in both cases

C e . —smatal fe

2
imoegvle-w ;

(o] . La
-V : + iw A [ec + =] =0
iw lec A, + 2iw, = V—1oiy ] + iw A lec, 02] ’ ,
or . .
! R a ‘3
. ir lec, + d2]

, w_ = i

_ +
5 . e 2 4 ecvke — Vscvke iwo\
}:ﬁ | :uno (l+lwo\’) .
k)
5 ) .
‘ similarly, eq. (E.5) simply yields

'
"
S

20

S
Tolg

t . * v \
Thus, for negligible flow viscosity effects and negligible visco~

elastic- damping, i1.e. for cv~0 and v~0, we obtain

&

. A
. e Q
. - 1l = +
we 2 [ecn 2
‘ ‘ Y
= o t
\ wl ? .

It.is seen that Wy is burely imaginary and independent of\the
natural frequencies Wy and that the imaginary part of We ﬁs’Posi—
tive. Hence, smgll extefnal flow velocities produce damping which
is the'same for ail the modes and introduce no chahge in the fre-~

N

quencies of oscillations. The hydrodynamic damping predicted by the
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perturbation method is proportional to the flow velocity since w=

%% w tw U, . However, the perturbation method only applies if. Wa U <<,
%g; , Neverthqless, Fhe range of velocities which satisfy this condltlon
ggi ' is proportlonal to w, :and thus 1ncreases rapidly from one mode to

; e . the next one above.

% . ) Because a is proportlonal to cg (62.6,2), W is yropor—

tional to S and Cy¢ and therefore damping at low flow velocities
will be proportional to normal and tangential frictiop; furthermore,
we being proportional to le’ it can be shown that damping diminishes
as the ratio pe/p of the density of the fluid to that of the beam
increases.

With fegpect to the interngl flow, since wi=0, small fléwﬂ
velocities have little influence on the eigenfrequencies; in other

words, small internal flows do not create dahping nor do they af-

fect the natural frequencies of oscillations. A

. E.1.2 Applications: Clamped-free beams.

From jeq. (6.7) we obtain, neglecting all second order

-

/

terms in u, or v., at £=1

! A

- 3

. 2 do
(1+iwou)g—€§i - dux{Els, + 62 (5% Ihgug * 2A;v}5e |
N ‘\ (E.6)

2
. . 2 l-a ~ 2 -
\ 4+ {1wfue[1—6 M (F) +w xAle =0,

[l+f(ye—l)]se+Y1 l+f(Ye-~l)+3Yi

with A = e ¥ e el : ' k
g r
\ : - .
and we have for ¢ the following relation: ~ : -

$(0) = ¢'(0) =-¢"(1)
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E-7
};-. O[ﬂ
K ’ _ From eq. (E.6) we further obtain
: & '
g .
¥ . (3) 2 _
) (1+iw )03 (1) + wxr o (1) = 0, (E.7)
o~ ,
i’:ﬁ“_ : ( 3 ) 2 -
£ (1+ °e (1) + woxk ¢e(1) = . .
v{ - ] -0 Y \
'E - [1wof(l—6 A (=) + 2m°wexA]¢°(l) g (E.8)
+ io_XEls_ +62(l “)2]A o' (1) - iw_ve 3 (1)
X e O e o ] ’
\
' . (3) 2 _ ' ‘
(1+1w°v)¢i (1)7+ woxk Qi(l) = . |
(E.9)
- ~ 26 w.xA 0@ (1) + 2iw xAs 0'(1) - iw, v®(3)(1) ;
o i o o™i "o '

subsequently, we shall eliminate ¢é3)(l) from eqgs. (E.8) and
(E.9) by use of eq. (E.7).

In order to evaluate eqs (E.4) and (E 5) we calculate

P T~ T T I g e T T

. (3), _ (3) 2 (3) (3) \/;7:
z (l+;@°v)[¢° L , ¢o¢e 1 _ and (l+1w°v)[¢o @i—¢o¢i 1 _ i
E , " E=1 =1
: . (3)y _p o(3) T

\ (L+io v) (8 70 o°e ] =
- £=1 |
fiw f£r1-6%)0 (ilﬁ)z + 20 0 X\~ 02y 2e¥_ 1¢ (1)
o’ e o o%eX X 1+i iwgv

P

Y T O . T R S P

-
[}

2 .
- iw xf[s +6 (—Frq ]A @ ¢ (1)

"F) and
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'B_*fi“fﬁzﬁiﬁ':‘{ﬂﬁ‘?‘i&ﬁ‘;ﬂm B T U TR

i E"‘8
3 ’
“ (3) (3) ' .
() (1+iw v) [0 770, -0 0/ ]E=1 = |
éﬂ:‘u - /
2 _ ! fwgv
"};Ez\ [2(&) ., XA"'(&) ka]‘b (l) Zim X)\i O(b (l)
5 \
3, \
- We may now rewrite eq.(E.4) and (E.5) at &=1 as follows:
2 N M
(1+1w V){[lm f(l é )A ("'"-) + 2mowexl— wox)\m]‘b
\ . []
Lo i 52 (1= 2 ' .
- L0 XE #8555 10800, ) = | ~ (E.10)
1w05cv)\e—w§ 02¥1-2a 2
ime[21wo,+ecvxe-v 1+1m°\) ] + 1w A [cc + — 02 -—-—;—;——@ |
and
A 2 m.v | . \ | ' o
(L+iwg v){[2m wy XA =~ W xAm———] - 21wo?(li¢c'>¢’o} =
‘ (E.11)

iw_ec A-—mz

. . o ve o0
w, [2iw_ + A -V
1 J.[ (o] eov e l+1wov

¥

, 2
1 + lmo)‘i(bo .
We now need to calculate ¢ (1) and @' (1); this could be done
theoretlcally by solv:.ng eq. (E.1) 'with the boundary conditions
= ' = ¢ = v ¢(3) (D Ad

c,(0) %(0) ,o(l) (1+1“’ ) (1) + X (l)
»For the- sake of simplicity Wc/é shall now assume that cv~v~0 and
X<<l so that the eigenfunctions ® are close to those of the
classical uniform beam; hence, the normalized solution yields

«bp(l) ~ 1‘2 '

’ ‘ I
/ ' @'o (1)~ °°(1)“§ , where the positive or negative sign depends

I .
upon the mode numﬁer corresponding to Wy




4 < [

. ) We now rewrite eq. (E.10) as follows: : ‘ o h
i 2t ‘ ,\&‘/ o
ﬁ} | 2 1- a 02+1 &
i £(1-82 ) Ag (---) 4.~ xfls, +52 ( )JA 4l -3, [ec 2512 - 3%
n??%’—’ LY O 0 M
N - ' ;
3 ‘ ~ |
;\:;T \\3 , ~ 2ime(l+4XA) ? . » / :'

) . e ' B l . f!f
B - hence, we get . ‘ ‘ & 3
! A 1-a, 2 Fern - 2,1-a,2
LE':;: we ~ E-[l'"EXA').{ 4f (1"‘6 ) ( ) + 4Xm°f [se+6 (":‘6", ) ] w \
i , (E.X2)

+€Cn+2+-——7-}

.yt

Apart from the fact that it is imaginary, little can be concluded-

i

concerning the value of We? however, provided that xdoi<<l and

X<<1l, and provided that we neglect the boundary layer (o~1l,a-~0),

\

the previous expression reduces to

N A

e 2. ..
W N,li—[scn + 4 (£f86°+1-£)];

" and similarly eq. (E.ll) yields

~ 4dw Ay - 2iw XA 4mi ‘~'iwi[%iw°(l+4xk)] ;
. : r b
. o . 4
hence
_ , k \
N ) ’4+8xmi \ ' -
wy ~ iAg TFAXA) ~ 2ix; . _'(E.l3)

We thus noée'that bath Wq and w; are imaginary and

£ Rl

positive, (since Ae,li,ecny6>0 and OLf<l), and therefore small

flow yelbcities will have a stabilizing idémping) effect on S

-
-
T}
.
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\

cantilevers; such hydrédynaﬁic damping will bealarger with larger

’ ’ local shear (larger friction coefficients cn), slender”beams and
blunter end pieces {(smaller values of f). As previously noted,
in the case of clamped-clamped beans, here again hydrodynamic

damping is independent of the natural modal frequencies Wy provided

that the end piece is small enough to have fxmj<<1.

a

. v

In summary,'these sets of formulae in their simplest
form could be successfully applied to velocities up to i with less
than 1% error; in their more elaborate form, e.g. in eq.ﬂE.lz),they"
' can be used over a larger range of veidcities provided that thé v

conditions

V. W, <<w nd u_w <<w
iTi o a »ue e o

: © :

. for perturbation solutions are not yiolated. ‘ 7 :
;o On page E-15, the eigenvalues of the five lowest modes 3
have been plotted with respect to the internal flow velocity in O

the simple case were cv=v=x=0 and Ai=.5; eq. (E.13) yields wi=i,

7 and the approximate solution reads ; J
f/ N ) " \ £

w=w + iv,
iv,

. we
.

as can be seen from the graph, the higher the dee, the larger the
range of velocities over which this solution appears to be valid.

+
.

N

. E.2 SMALL INTERNAL DAMPING

' We shall now investigate the effect of small visco- :

elastic and hysteretical damping involving the terms with co- o

. efficient cer g .
. : 1 4 —tLUv R .
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( . upon the natural frequencies at zero flow conditions.‘.We shall
AR »
also relax the assumption ae=ai=0 and eq. (6.8) may be rewritten
at zero floq% as ' i
- PP Y-l {'(5)‘1—72“’} ~w¥mre =0,  (E.14) ‘
- wlel g2 gy - ' . :
/o |
- 7 ) K
f With * // . { - 3
! ; / )
{
(1+a £)4 - 6% (14, 6)? y (+a £)2 + v, (1+a,£)2
. e i _ e e i i ]
jE) = T y mE) = . :
) ~ Yo + Y;

L

We shall consider the viscoelastic coefficient v as the only per-

Al

turbation <variable, and we set

.
) ( n .
N

4 w =Wy + vy
;}{ . i
« Let B=v/u, the damping coeffigient becomes
iwuv 1wy )
)D 1+ p+v | wf 1+ 1+8w, ’ o
where B will be considered as‘'a parameter, i.e. independe f v,

A
j We now obtain the following differential equatign

y - =
2/ ’
: d 3 (2) 2 )
: —_— £y a } - wom(. )y =0,
: . dgzﬁ ( &, ' 0
~ $
N . ]
2 mlug g2 (2)
% Vo= ptm) e, - —{3(EY® “"} + 20w _w,m(EYD
3 i 1 1+, -
g ai o €2. | o/ o 1, o
% ~-i:.x3 ,
(o}

£ -~
)

ljjj;; * 20w Im(E)e  ,

s S PSS

A

i
.

.
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which may be combined and integrated to give

»

1
to dg{3(£)¢(2)} R - STGU S IR ETGUAURS PG G

2 o
7 ' +img 1 ‘ 2.
;%: ) = [m—- - 20 mll m(E)QO(E)dE . (E.L15)
4 .
% .
. Let us now apply the boundary conditions.
a)f'For clamped—clamped or pinned-pinned beams:
. The left-hand-side of eq.(E.15) is null, hence we need have.
i 1 2,
ﬁ W, =3 wol/(lfsmo)
- ]
b) For clamped~free beams: ¢(0) = ¢ (0) = Qu (1) = 0, '
t o
and [1 + ]3(1)¢ (1) + wg XA ®(1) = 0,
l+B |
; [1+£(v~1)Is +v;s; " B
N with ) = T » as obtained from eq.(6,7).
e Yi
Hence, we derive the two boundary conditions 3 \\
\, o N
: . (3) 2 -
S e 7L +wy xA @ (1) =0, (E.16)
% “ iw
. (3) 2 Y o 0 .,sp(3)
%: 5 J(l)¢l (1) + W XA @1(1) = Bwo j(l)b° (1)
?’ (E.17)
; . : ' )
. - 0 o1 XA °6(1) H

- 1

Since either slope or moment is null at the extremeties, eq. (E.1l5)
\ a . %

. reduces to

. ‘ . 3 S |
1w 3
(o ¢(3) 0 ¢(3)] 13 = [yggg - 2w ml]/ m(£)edg, .

v S 0 1 K




The left-hand side, calculated by combining egq.(E.16) and

(E.17), yields ' 1

;mg ‘ ,b

2
(mo- + 20wy lxd ¢(1);

hence, we obtain - ?
[ ] !
3 1 T )

ia iw
2
(_1-:!-—58: - 2moml) / m(g)@idg = (2w°wl - 1_+é£:)xmo(1) i
0 Y

since the integral and . Qg(l) are both positive and not zero,

\
"

" once more we must have o .

\\\

iw2 K
w &= —-—-—-9——-—-«. !
17 Z(IHBay)
/%

It thus appears that damping resulting from «isco-
hysteretic characteristics in the m;terial unlike hydrodynamic
damping, increases with the mode number; it is- proportional to
the médél eigenfrequency for purely hysteretic damping and pro-
portional to the eigenfrequency squared for viscoelastic damping.

In summary we obtain

W=+ %iuwow for hystenetic damping,
. ) c Ll 2 . : . :
, L w=w + Five] for viscoelastic damping, (E.18)
2 .
iuvwo

o 57313527 for v1scohysﬁ ;gt;c damping.

. . \
These results are illustrated on paééip—lﬁ and compared

to the three lowest eigenfrequencies of a conical thbe (tﬁe .
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. characteristics of which are given in Fig.8) for each type of

) ) = 3

damping. Although gravity effects were not negligible 1751.45X10_

)

and although relatively large damping coefficients were selected,
the agreement:between gq.(E.lB) (dotﬁed li;es)'and the‘correspond;nd
eigenfrequencies actually computed (data points) is good, 1In

, édditién, it can be verified that viscohysteretic damping is
equivalent tg viscoelfstic damping at I?% frequencies (mo<<u/v=40)

and tends towards hysteretic dampihg at high frequencies (wo>>u/vi,'
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(’ CALCULATION OF THE CORRECTIVE PRESSURE COEFFICIENT c
FOR SLENDER BODIES
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{ ) AEPENDIX F:  CALCULATION OF THE CORRECTIVE PRESSURE COEFFICIENT
- ’ \ c, FOR SLENDER BODIES
z.j‘? \ i
‘ We shall now show that the pressure terms involving
dc
352, which were neglected in eq, (3.4), are indeed quite small,
vis-a-vis the friction terms involving gq ¢+ AS given by Sears
@ N -
I [73], the perturbation potential of the flow pattern for Mach
numbers <<1 is - Y
/ ' L 1 !
o(x,x) = gz sty
o [{x-u)™ + r7]
As illustrated on the right, U is the
(positive) flow velocity, s(x) is the
G cross-~section area, x=0 and x=L are
the abscissa of the nose and tail of

\ \

rw() xel
the beamn. - C .

e o o s ey« g Iy R TN AR T

/

The pressurelcoefficientp for points near the surface

of a slender body of revolution is
- c = _2_3_(2_}__[_3_{]2 \ (F l)
p U ox 2 ar * ) :
\
"
For ¥

conical structum we write for the diameter

“

L3

K x | ‘ \
’D(X) r;-,- Do[l + a'f"] N .

. and we now set the foldowing dimensionless parameters:

(

' | . A
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] “g‘}(‘ i
X b
o ’ £=2x/L, p=1r/L, €=1L/D . \ |
i G ‘ ;
b Hence, we write v :
EM s ' -
%1 aUDg 1 (1+au)du aUL {
2 °(xlr) = - 7 2 3 = - 3 \y(grp) (F.Z) };
. , 8L Jy  [(g-u)®+p®)! Be . | g
L} - » , ’ i 4
:‘:; arld ’ . i t - , | ‘j
i . 2 ’ ]
c = & -a—w. - (_a.‘f.) ¢ ‘ (F. 3)
;8 P o4c® 38 64’ ap s | :
dc . " o
* The value of EEE at the wall is N
' a 3c. | dc. dr 3 |
! c c r c c o
P - _P 4y __Pr_17 = P .
dx % T3t Iaxlw = 3% toar X 3T f _
-\ 1
Q - ‘
hence, by use of eq. (F.3)
p_o 2%y o 2%, o avaln o ol
dr  4e® 98%  2e afdp  %2¢” 3p 2Edp  2¢ dp2
oV N
F.l CALCULATION OF -'b-
. : : 1
. - _ ,
f ~,1 1 . '
! \ oY _ (1+ou) (-p)du _ [op (E=u) -~ (p+paf) ]du
2 23 [ox ronZi2 g . 7
ap 0 [(E~u)T+p") 0 [(E=u)“+p”~]

which yields, upon setting v=£-u ,

‘ £-1 £-1

& o [ptapE] dv - ap ,_XQX;_T
e Y /g i)
v=§~1 v=E-1
(el (v 3 4 aplighgy)
2 = p
o [visp?)? v=E [ve+p?1? vk \
or ‘ ~ . .

\
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3Y _ l+af £-1 £ . 1 1 i
—— - — T a— pv—————T——---—T— (F.4)

o p LE-D24p%] (%4 He-1%v?] 1%+ |
! \

At the wall p= £%2£<<1, hence the second term which is pre-

v
multiplied by ap will usually bg small compared to the first one,
AY

and [%%] at the wall will be of the order of ¢, -

Y

a2y
F.2 CALCULATION OF <—
¥} | -
p< )
32y,
From eq. (F.4) w& may now derive —
- ap
\ N\
2w 1+af A A - ]+ af—o>% - — ]
30 IR S R [E-D)%+0%1%  [e%40%)?
. 3 - ' .
+[(1+aE)E + ap?)[5%4p?) 2 -[(L4a8) (5-1) + ap?11(E-1) 24p?) ¢,
- \ -
2y 2
hence, -—? at the wall is of the order of €° .
ap

F.3 CALCULATION OF

32y
§p§E 3

\

Upon differentiating eq.(F.4) with respect to { we obtain

2 : o 3
58E = (U5 Lvap] 1-6) + 3828 () 2021 (51 2o

-4
U prap) -6) + B2 202 2007

,

which can be re-writteh'as

2y %(;-1)3 + p(L+af)

353 + p{l+af)
[(6—1)2+921g )

200 (e240%) 2 | S

AN
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\ 2.
o u F.4 CALCULATION OF -3——;'-
;‘: - aE . ’
\ Because of symmetry between £ and u, . b

N

2y 7 22 2, 2,7} B 2 2, 2,7
. s =/ (L+ou) ==l (-u) “+p°] du =/ (L+au) <[ (E-u) “+p°] du,
v 0 3E° 0 du

!

which may be integrated by parts, and'yields after two integrations
' {

. <
r.:

\ 2 - -4 ~fu=l
: X o frrad [ (g-w?+0%] - al(E-wZ4p?] ]
12 Ju u=0
‘ ‘ . “ u=1
. = [(l+au)(E—u) - o ]
‘ [(E-u)24p?1? «I(E-u)2+p2]? =0 , f
_ (1) (o) - al(8=-1) 021 £ - a(g2nd) :
(,’ / - LD 240717, G
, . dc M ° D
. F.5 CALCULATION OF 'd'EP' -
] ’ . ¥
» Upon setting ) - '
p_ o 2%, o 2%y 1oy, _ o® oy ﬂ}
2.2 . 3. 2
dg 4c” 3¢ 2e-383p 4e 3p_ . 32'£. 3p 9p "
dc_ '

»

we may eécpect\a-;:-E to be of the order of €-2' and no term within
. | - -

the bracket may be neglected a priori._

. . 3c_
. If we now wish to compare q and }-pUZA £ (as it would appear
\ * et 2" ee 3x

N

in eq. (3.4), we conside\r the ratio

9C
1 2 | \
. . - F0LULR, 5 ) A, dc] . ™D, acE \
(, B et Decft oK 4Cft. 3%
7 . .
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and, upon wsing the dimensionless notation defined in’'§2.6,
N . .

we obtain

(L+ak) 3c ' -

q=T€E:_'a—EB' A

On the next pageé we shall present some specific values

of ac, and the short computer program used to calculate them.

The calculations were performed for three values of g, ‘using

- I

nine truncation ratios (ranging from a=-0.l1 for an almost cylin-
drical beam to o=-0.9 for an almost fully conical beam); the valﬁeg
‘of the taper angle, 8, which are equal to‘-a/e, are listed below
the values of a. Because the experiments were conducted with

beéms which normally satisfied .the conditions e€>15 and 3<2°=0.035 rd
and, since the tables indicate that.the value of qc, diminishes

with increasingly larger values of £ and increases with larger
|

values of -a, hence, the maximum average value of ac, is obtained
L

for =15 and 0=0.5. For ¢=15 and a=-0.5 we obtain

A .
qe, =5.3 1070 ;

N

hence, for a typical value ct=8.10-3, the ayerage value of g will

satisf; \\ \

3

| d<0.07 for e>15 and 8<0.035 .
. : -

\

Although: this ratio is not' really negligible .with respect to 1,

it is argued that the theoretical calculation has assumed a

uniform cylinder, “both upstream (£<0) and downstream (£>1) of
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the conical structure,as illustrated below, whereas the real
' |

3
.
i

calculation of cp ¥ would require the addition to the conical j
profile of ﬁhe boundary layer displacement thickness; this would’ '

eliminate the slope discontinuities at £=0 & &= 1 which boosted
dc , ] )

"the values of EEE in \the néighbourhood of £=0 & E=1, as observed _

on the tables. Accor lngly, in reality q is- substantlally 1ess

- than 1 ‘and may be cons dered to be negllglble : s
» . 2

. 1
N -
- > . [

boundary of actual.compdtatioh real boundary

™ * The perturbation potential assumes that the slender body
. is inserted between two axial ‘infinite uniform cylindets.
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207

160
203
7 101
204

CALCULATION OF DCP/DX & OxCy ,

DT IR aS T Y(21) 0 (2198) .7 (Q) JRETA(Y) s
MY 101 FEPS=},.3
[PS=1041FPSxY
EPS:L/HO
Fe&=1v&
1Y TALP=EY .9
Al vzl 12TALP
TaRE+ AL .
RETA(TALP)Y==a: P/EDS !
C O Y{IALY Y==ALP .
S=n -~ b
nao,o1n Ix=1.21 . -
T Xz ,Nhu{IX=1) a !
R +ALPEX)/(2%E28) g
FR =2=gpPSa((X-1)/SQRT{(X-1)**x2+Rxx2)-X/SURT{X*=2+R*22 ) }+ALP#R%(],/
1 QO [ {{X=~) ) %2+ RE=D) =], /SQOUT{ X2 +R"=%D ) )

FHie= 2 PS/RS( (/SURTIXZFR24R©%E2 ) = X=) ) /SORTI{X-1 ) #%2+R%%2) ) +ALP%(]1,./
SORT(X=] )&% )+ R&E=D ) =] /SORT [ X%:D2+RFHD ) )+ [ X+AL P& XxE24R%ED ) )/ (X
FRZ2HREFTVER] (O (THALPFX)F (X L) +ALPHREE? )/ ({ XL I %x%2+R%x%2)%%] .5

FRY=(ALP/R%(X=1)3+R2%DHDXEPS) /( (X=1) kD +Rx%D Jxx] 5
(M. P/REX %D +rib QR DHFPS) /{ Xak 24R%% ) )%x) . §

FXX=((X=1)R (L rAL2 ) —ALPx( (X=1)%%x2+R2%2) ) /((X-] ) aR+qxx2)xx] 5
XA P (k2 eR#%2) ) /(A 24K %%k 2)kk] 6 A

H{TX TALP )= (ALP/{+%EPSE%D )5 (FXX+ALP/ (2XEPS)HFRX) ;

—A Pl S 3P QL ) R4 FRX+BIP/(PEXFPS)2FRI) ) =R

S=S+HIMX, TALP)

Z01a1 915721 :

WRTTH(A202) (PSAIY(T)aT=1.9) o (HFTA(T)e]=1,9)

FUD ATINN Y2777 70075601277 /7TReCl1N 1 /TTRFIN,3/)

B 150 1=1.21

Y{T)=n,0n=(]=1) -

rRITEOA20Y /(T {R(TJTALR) TAREP=1.9)

FUPMAT(FA, 2.1 4, 1P-F1N,1)

WRITH{AW204) [Z(T)41=1e9)

FOINMAT( O JAX IPC-INV /2777272777 7)

STow

[ IR

-

“

v +

-

»

1
.1

1
1

1
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VALUES OF g C
=
e=15

-al 0.1 Co?2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

£ N8| 0.007  0.013 0.020°  0.027 0.033 0. 040 0.C47 0.053 0.060
0.00 —2.5E-C€& =—1.7E-05 <=444E-C5 ~8.2E-05 =-1.3E-04 ~1.9E-04 =-2.6E-04 -3.5€-04 <=4.4E-04
0.05 8.6E-04 1.7E-03 2.6E-03 3.5E-03 4.3E-03 5.2E~-03 6.1€-C3 7.08~03 7.9€e-03
c.1C 3.2E-04 6.4E-04 9.6E~-04 1.3E-03 1.6E-03 1.9-03 2.2E-C3 2. 6E-03 ),9E*C3
0.20 9.4E-Q5 1.9E~04 . 2.8E-04 3. 7E-04 4,5E~-04 5.4E-04 6.3E-04% T.2E-04 8.1E-04
0.25 "6.3E-05 1.2E-04 1.8E-04 2.4E-94 -~ 3,0€-04 3.5€-04 4,1E-C4 4.7E-04 5.2E-C4
«3C - 4,7€E-CS 9.,1€-05 1.3E-04 1.TE-04 2.1E-04 2.5E-04 249E-04 3.3E-04 3.7E-C4
«25 3.7e-Q¢£ 7.1E-05  1.0E-C4 1.3E-04 1. 6E-04 1.9E-04 2.2E-04 2.4€E-04 2.7E-04
0.40 _3.15-55 5.9E-05 8+.4E-05 1.1E-04 1.3E-04 1.5E~04 JaTE-C&~ 1.9E-04 2.1E-04
0. 45 2.8E-0< 5.2E-05 7.2E-05 9.0E-05 1.1E-04 1.2E-04 l1.4E-C4P 1.5E-04 1. 7E-C4
0.50 . -2.7E-C 4. BE-Q5 6. 6E-C5 8.0E-05 9.2E-05 1.0E-04 1.1E-04 1.2E~-04 1.3e-04
0.55 2-TE=0 4.8E=-05 6. 3E~-05 7.5E-C5 8.4E-05 9» 1E-05 9. 7E-C5 1.0€-04 1.1E-04
0.¢€C 2..9E-05 5.0E-05 6.5E-05 - T7T.4E-05 8.0E-05- 8.4E-05 8. 6E-CS S.CE-Q5 S.5E-05
0.¢6¢% 3.2E-CS 5. &E-05 T.0E-05 7.8E-05 8.1€E-05 B8.1E~-05 8.0E-05 8.0E-05 8.2E-0°%
« 70 4.0E-05 6.7E-05 8.2E-0°¢ 8. GE-85 B. 9E-05 " 8.5E-05 T.9E-08. T«4E-05 T.2E-05
.75 5.4E-05 8.85",05 1-1E'04 - 1.15-04 1. IE-O" 9.6E‘C5 8.3E-C5 To 2‘@-"05 E.SE-CS'
O0.€C 7.8E-CE 1.3E-04 1.5E-04 1.56-04 1.4E-04 1.2E-04 9,.8E-05 T.6E-05 é¢.CE-CE
"0.85 Js2E-04." 2.1E-04 2;;;;&4\ 2.5E-04 2.3E-04 1.9€E-04 1.4€-04% 9.3€-05 6.1E-05%
0.90 2.7E-04 4,4E-04 5 TE-0% 5.2E~04 4.6E-04 3. 7E-C4 2+ 6E-CH 1.5e-04 T«4E-05
C.S5 T.EE-04 1.3€E-03 1.6€-03 1.7E-93 1.6E-03 , 1.3£-03 9.0E-Q4 4.9E-04 1. 7E-C4
1.CO 9.3E~-Q¢ 2, CE-Q5 6.2E-C5 1.0E-04 1.6€E-04 2.3€-04 3.0€E-04 3.9E-0¢4 5.0E-04
?jAv;rage 1.5E-04 2.7 Ca 3.7TE-C4 4.,6E-C4 5«3E-04 5. 8€E~C4 6. 3E-C4 6.8BE~-04 T.4E-04
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- VAQUES OF g Ct »
7, — ! , -
4 " E:;-ZO
. - \ . . ) -
- 0-1 LN 002 003' 004 ~ 0.5 0.6 0.7 O.B 0-9
£ [ C.CC5 C.C1l0 0.015 0.029 0.025 0.020 0.03% . C.040 C.C45
0.00 -1.9E-0€6 —1.0E-05 =-2.6E-05 -4.7E-05 =-7.5E-05 =1.1E-04 ~1.5E-04 -2.0E-04 <-2.5E-04
C.C5 4.5E-Q4 9.0E~04 l1.4E~03- 1.8€-03 2.3E-03 2.7TE-03 3.2E-02 3. 6E-03 4.15~-03.
0.10 1.4E-04 - 2«9E-04 4.3€E-04 5.8E-C4 T.2E-C4 8.6E-04 1. 0E-C3 1.2E-03 1.3E-Q3
C.2cC 4.CE-CE 2,CE~-05 l. 2E-C4 l1.6E-04 1.9E-04% 2.3E-04 2.7TE-04% 3.1E-04 2.5E-C4
0.25 - 2.7E-05 S«.3E~05 7.8E-05 1. 0E-04 1.3E~-04 1.5E-04 1.7E-04 2.0E-04 2.2E-0¢4
C.3C_ 2.0E-05 3,8E-05 5.6E<D% 7T.3E-05 9.0E-05 l1.1E-04 l.2E-04 l. 4E-04 1.6E-04 4
. 38 1.¢E-CE- 3.CE-05 4.3€E-05 5.6E-05 6.8E-05 8.0€-05 9,1E-05 1.06-04 1. 1€E-C4
0.40 1.2E-C¢ 2+5E~-05 3.6E-CY 4.5E-0S 9. 4E-05 6.3E-05 T.1E-0S 7 .9E-Q5 8.8E-05
0.45 1.2E-05 2.2E-05 3.1E-05 3.8E-05 4,.5E-05 5.1E-0S S. TE~-C5 6.3E-05 7.0E-05
"CeSC 1.1E-C* 2.CE~0S 2.8E=05 3.4€E-05 3.9E-05 4.3E-05 4,8E-CS 5.28-05 5. 7E-C5.
0.5S I,IE:CS 2.CE~0% 2« TE-LS 3.2E-05 3.5E-05% 3.8€-05 4.1E-05 4 .4E-05 4.7€E-05
0.60 1.2E-05 2.1E-05 2.TE~05 - 3.1E-0S 3.4E-0%5 3.5E-05 3.6E~-C5 3.8E-05 4 .0E-05
“ 0.65 1.4E-05 2.4E-05 3.0E-0S -3 E-05 3.%5705 3.4E-05 3.4E-0Q°¢ 3. 4E-05 3.4E-05
° ] 06.7C l1.7E~CE 2.8E~-05 3. 5E~-CS 3.8E-05 3.83E-05 3.,6E-05 3+.3E-05 3.1€-05 2.CE~-CS
» ‘075 . 2.3E-05 3.7€~-05 4.5€~-05% 4.7TE-CS 4.5€E-05 4.1E-05 3.5E-05 3.0E-05 2.7E-05
0.8¢C - 23E-0S5 S.4E-05 6.4E-05 6.5E-05 6.,1E-05 £+.2E-CS5 4,2E-CS5 2. 2E-05 2.5E-05
- 0.8¢ E.7€-C< | S.1lE-05 l1.1E-04% 1.1lE-04 9.7TE-05 T.9€-05 5.9E-Q5 3.9€-05 2. EE-05
0.90 1.2€6-04 1.5E-04 2.2E~C4 7 2.2E-04% 2.0E-C4 1.6E-04 l1.1E-04 6.5E-05 3.1E-05
0.95 3.8E-04 . 6.4E-04 T.TE-04 T.9E-04 T.2E-C4 5.7E—Q§ ‘9.9E-C4 2.1E-04 T.1E-05
1.CC 4. 1E-CE 1.6€-05 3.3E-05 5,.76-05 - BLTE~05 1.2E-04 1.7E-C4 2.2E-C4 2.1{5794
sverage 7.82-05  1.:¢-04  1.BE-C4  2.2E-04 2.5E-04  2.7E-04 . 3.0E-04 3.26-04  3256-04
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. . VALUES OF q ¢ . -
. &
. R - gm25 . -
e
. - -
-Q Cel Ce2 ; ‘9031 . 0.4 0‘5 . , 0.6 0.7 0.8 0.9
£ gl 0.004 __ 0.008"° TV.012 0.016 0.020 0. 024 0.028 0.032 0.036
0.00 -1.2E-Cé¢ “-6.95:06 -1. 7TE-QS ‘3.15-05‘T;4.9E‘05 -T7.0E-05 -4065'05 =1.3E-04 <~1.6E-04
0.05 _2+.6E-04 5.1E-04 T.TE~-Q4 1.GE~-03 1.3E-03 1. 5E-03 1% 8E-03 2.1E-03 2.3E-03
0.1C T.6E-05 1.5€-04 2.3E-04 3.0E-04 3.,8E-04. 4,6E-04 5.3E-C4 ¢.1E-04 é. BE- 04
0.1% 3.¢E-CE 7. 1E-05 l« 1E-C4 l.4E-04 l.7E-04 2.1E-04 2.4E-04 2.8E=84 J.1E-C4
0.20 N2.1E-05 4.1E-05 6.1E-0S ~E.1E-0S 1. 0E-Q04 1.2E-04 1.4E-04 l.56£-04 1.8E-0%
6-25‘ = 1.‘0E‘05 2.75"05 l”oOE"OS 5-3E-05 6-55"05 7.8E—05 QOOE"’OS QOE"GIQ l.lE'C‘v
0.30 - 1.CE-C5 - 2.CE-05 2.GE-C5 3.8E-0% 4. 6E-Q5 5.5E~05 6.3E-05 T.1E-05 8.0E-05
0.25 | 8.0E-06 l1.5E-05 2+2E-05 - 2.9E-05 3.5E-05 4.1E-05 , 4. 17E-GC5 5.3E-05 5.9E-05
C.4C "~ 6.EE°CQ 1.3E~-05 1.8E-05 2+.3E-05 2.8E-05 3.2E-0° 3.6E-0S 4.1E-CS 4,5E-0°%
0F.45 6.1E-C¢ 1. l1E~-05 1. 6E-C5 2. 0E~-Q05 2.3E-05 2.6E-05 2+9FE-D05 3.2E-05 3.6E-05
0.50 - 5.8E-06 1.0E-05 1.4E-05 1.7€~05 2.0E-05 2. 2E-05 244E-C5 2.7E-05 2.9E-05
C.55 5S.8E-06" 1.0E-05 le4€-05 1.5E~-05 1.8E-05 2.0E-05 2.1E-CE 2.2E-05 2.4E-05
0.€6C €.3E-C¢ 1. 1€-05 1. 4€-05 1.6E-05 1.7€-0%9 1.8E-05 _1.9E-05 1.9E-05 2f€55ﬁ5~\\
0.65 T.2E-06 1.2E-05 l.5E-05 1le 7E~0S l.B8E~-05 1+ 8E~05 - 1.756-05 1.7E-05 1.8E-05 ,
C.7C 8.8E-06 1.5E-05 1.8E-05 1.9E~-05 -1.9E-0% 1.8E-05 1. 7€-CS 1. 6E-05 ].QSE-O,S
Ve 15 l1.2E-CE l.5E-05 2.3E-05 2+4E-05 2.3E-05 2.1E-05 1.86-05 1.5E-05 1. 4E-0QF
0.80 1.7E-Q¢ 2.8E-05 3.3E-05 3. 4E-CS5 3.1E~05 2.TE-05 2.1E-05 1.6E-05 1.3E-05
0.85 2 ..9E-05 4 ,TE-05 5.5E-05 5.5€-05 5.0E-05 4. 1E-Q5 3.0€-C5 2.0E-05 1.3E-05
‘Ce SC €. 3E-CE 1.CE-04 -1e2E-04 1.2E-04 1.0E-04 8.2E-05 S«TE-CE 2,3E-CS 1. ¢E-CE
0.95 2.2E-04 3. SE-04 4. 2E-C4 4. 3E-04 3.8E-04 3.0E-04 2.0E-04 1.15704 3.7E-05
1.00 2.8E-06 9.6E-06 . 2.1E-05 3.5E-C5 5.4E~-05 7.8E-05 1.0E-04 1.4E-04 1.7€-04
Average 3.2E-05 7.0E-05 9.6E-05 I-ZE—O‘vs 1.3E~-04 .1.5E‘04 T 1.€E-C4' 1.8E-C4 1.SE-C4
o
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BOUNDARY LAYER AND FRICTION COEFFICIENTS
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APPENDIX G: BOUNDARY LAYER AND FRICTION COEFFICIENTS

In the first seétions of this Appendix we shall calculate

the boundary layer thickness and frictign coefficients when the
beam is at zero incidence and in a $m0—dimensional flow. The last

part of the Appendix deals with boundary-layer sucéion.

G.l. General ¢

~

wg first proceed as in the case of a flat plate to cal-
culate the drag and the boundary-layer momentum thickness. For this

purpose we draw a cylindrical control volume as illustrated helow;

the section Sl and the outer surface S3 are placed at such a dis-
\

tance from the beam that they lie in a region where the axial

velocity, U, may be assumed undisturbed,and equal to'Ue.
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. Hence, ,the total axial momentum flux is

The momentum balance is %j.ven in tabular form as f&l}ows: '
. . N F

s ( ]

cross-section rate of flow momemtum in x-
¢ direction ,

R' A R! 2
Sl ' Ql=’/(; Ue21rrdr ,p-/; Ue21rrdr

‘ ~ d' ) . R. 2 (rY
S, -Q,= -f U2wxdr *-p/ U”2nrrdr
2 I
R R
™~

L AN P

e

/

Sy 9o o Ue;Qz-Ql) s

[

!’ : :
.

-

Rl .
M= pf U(Ue-U) 2nrdr I
R -

v . . ,

which can be expressed in terms of the momentum boundary layer

thickness’, 62, as follows:
- _ &

R+ 6 R+6, ,°
, M pf U (U -U)2nrdr = f U, 2mrdr ¢
R ‘ R

»

\ PR

Y 2 x4 |
p1r62(2R+62)'Ue ~ 271‘R620U if 62<<2R .

3 ' ! .

: 3
Provided that the adverse pressure gradient introduced by the

4

. \

tape%the beam may be neglected, the rate of ighange of .this
momentum .is simply equal to local friction force per un’:‘.ti_}ength,

1Y
and we thus write

Y | 2
2'er T, = d—;(Zn‘\RGsze) - . v
. 4 ' . ! . X
- )
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where';tg is the local shear stress; upon rewriting it as

~ g N .
=12 )
Ty pre Ce ‘ f E
i
we obtain o Vool
1, e d %
4 — ' ="--—- ‘ :
5 Rcf‘ ax (Réz) | (G.1) 4
. | 3
and in order to obtain 6, we will now calculate cg as for a ?
uniform cylinder at zero 1nc1dence. . \\ 2
| ;
Using cla551cal_ne%ati65' we write ' .
&
as, 8, (L*)
| = — =
i Cs 2dx end Cg 2 " .
N < /
J : k J
where L L + X and Xg approx1mately represents the length '

l of the upstream support of the beam corrected for edge effects;

'62 is the momentum thickness. Provided that 62 remains small with
. . )

respect to the beam diameter, we may apply, the Prandtl-Schlichting

skin friction formula [74] for a smooth flat plate at zero incidence.

a

Thus,

0.433 - &  for No5.10%,
[LogloﬁR] Np / .
, - ’ o x. -

where“NR is the Reynblds number fat abscissa L+xo, and A is the

(G.2)

correction for the laminar skin friction up to the point of

\
» transition; for values of the critical (transition) Reynolds nqmber

R = 107, we have
i

cf~2.9~x 10"3 independently of the critical Reynolds number, but

for-NR\? 106 then Cg may vary from 3 x 10'3 to 4 x 10_3.

- below 3 «x lds, we have A<1050; typically for N

1 - ’,s




R $
RS |

.

<

¢

PR E2M VN0t S /
G S R M e s M pin gy ey
s

i) of dimensionless velocities,or by taking an empirical average Reynolds

»

~ ' ) N G—4

-

.
s
J "

. It will be convefient to approximate cg over a specific

\

¢ R .
.. range of velocities. We may do that, either by considering a range

number. First, we write the Reynolds numbe} in terms of the dimen--

sionlessvvelocity u, introduced in §2.6.1, as follows:

( ‘. Lol
'
)

£ 3 XX S
[B—X—] Uy T ! (ve is the kinematic viscosity
e’e , e

NR(X) =

of the fluid)‘ v .

t

. . :
Then select NR for the median velog¥ty u, = 5, since our dimension- (

h]

less velocity range will commonly be p<ue<10,!and set for x=L

N

- J | . |
: X

_ }
N = =1-B 7 5010+ 29,
Ve p A ' -3
e e F

X-—-O %y

. Upon settlng NR R in eqf (G.2) we can calculdte an average value

of Cge In practice, for the purpose f this work, we derived Ce -

3
N [/ .

from an average experimental value of NR=2x106 obtained at x=0.3 m

with eo=xo/De=lO and U =3m/§, which yields ¢ ~4x10-3 by the loga-

f
rithmic' law. Inc1dentally,,for turbulent axial flow over a cyllndér

rather than a flat plate, Hoerner [75] proposes a correctlve incre- - ‘Q
‘*
ment to c

£ namely Ac =0. 0008 L/R (N ) 2/5 ; such a cérrection is

5
A}

negllglble in our case.
f
-
G.2 Calculation of friction coefficients

The local shearihg stress at the surface of the beag}being

»
»

/"‘\

= p “1"&—%';!;”!}"1?;\
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oot

<- the frictional tangential force per unit length of beam is
} "\ ‘ ~
- 1 ad \
: - _ 1 2 ! "\ .
q = nDeTO = 2peUeDe'ncf .

t : ,
\ ;
[\ | |

“ 1] . ¥
- By comparing to equation (3.7) we obtain Cft = vcf‘and from the ;
dimensionless notation of §2.6.1 ) \ )
C . | i
= 2 ' " ' j
®n~Ct T “C¢ ‘ ) f
¢ ;
L ] - g~ k-

For turbulent Reynolds number we shall approximate cf by cf~4x10 3.
L - N ! ‘

i

« G.3 Displacement thickness

) ‘

By -the n=7 power law we-may relate the displacement

13

d thickpess, 51, and the momentum thickness, 52, of the boundary

. am
;,§ ' layer as follows: .

A -

d Vg, = (1+2/n)62‘~ 1.36

1 27

)

| we then integ¥ate (G.1) to obtain §, at a distance { from the
! - . i i

%fading edge

R o e T 1

¥

o L j%z R(u)du _ ' .
2-— -z-cf - R(Z) - v N (Go3) |

\ : . :

As previously, we account for the edge effects and the short ,/‘
N - . i W
laminar boundary layer (transition will occur very close to -the
- { R .t
edge) by correcting the actual length £o by X 'We further assume
]

the support to be cylindrical and the beam attached to it to be of /

a conical shape'as in 5%.6.2; hence, upon setting £=xo+§ in eq.(G.3)

we obtain. . S ‘ -
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1 " G_6
: 1 fo"(1+uegc/mdx\ _—
8p(x) = zegelx, + I+a _x/L ] - ©
i . \
=telix + ¢ +a—2-—exz>(1+ x) -1
°s'% x L % 1 \

1 aex
~ -ch[xo"'X(l - E—)] .

In order to simplify further , calculations associated with the

boundary layer we shall only retain a line§r expreéssion for 62 I

\

by assuming aex/(ZL)<<1; hence;,
[ \

GZ(X)~%Cﬁ(xo+xt‘f 2x10-3(xo+x) ’
#
and

N 8,(x)-1.3 §,(x) = 2.6x10-‘3(xo+x) ) . (G.4)

N\

2 . ——

G.4 Boundary layer suctionj

gfsed on uniform suction, the theoretical velocity profile
L *

of a laminar flow on a flat plate develops towards an asymptatic

suction profile which is fuller than a typical Blasius profile; in
N g
terms of the charactfristic velocity defined by quantity of fluid

¥

" removed by -wetted area, - and viscosity, v_, the velocity obtained
§ Yo 274 Y1 Ve

thereby at a distance, y, from the wall, is
-~ !

4

Y
Jo¥
v . 8
U, = er{l -e e} : - (G.5)
- s . /
y ~ M ) ) \)e - -
the, asymptotic displacement thickness, Sim' is equal to -5 as
| *‘K * N ! - (o] -

) ) |

given by Sch}ichting . -

E ) ey
* op. cit. [74]), Chapter XIV, b.

J
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Many technical difficulties made it almost impossible

I

for us to obtaiq such a profile; for instance the Reyholdé“numbers

3
in the tests are too large to expect a laminar boundary layer over

i ,
1%; ‘ the beam, even with the help of suction; in addition}ﬂ&he ideai
%\ conditions for a uniform and axisymmetric suction are difficult to
é approach, especially in dynamic rather thaa static test - Moreover,
: theoretical difficulties are encountered; for example,nsuction v
o ‘; * implies’that friction coefficience should - | | d td
f: . be reduced in the calculations, and more
g& seriously still, the 1lift calculated in
. eq.(3.1) no longer apgiles because of “é !

sink effects and the presence of an in- i
| ternal adverse (accelerated) flow, as
illustrated in the diagram.

\

Nevertheless, let us proceed '\

and estimate the amount of suction re-

quired to produce a significant reduction of the boundary layer on
! / . N\
cylindrical tubes. Two methods will be investigated.

(a) We flrst apply the theoretical r?sults for a laminar

boundary; eq. (G 5), applied to water at'20 C. ylelds

1
[

. ~6 |
v =r11%3lir’——(m/5),
3

!

which may be rewritten in terms'of the maximum internal flow, i.e.

AiUi at x=0 (assuming no suction for x<0),, and the wetted area,

f . : /

TD Ly as follows: -/ )
N - L T A N
, , U;(0) A ‘A; D, ’ : |
! v o= —meed = UL(0) = o \ |
l o ™. L - 1 A_ 4L
e e |
-
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by use of dimensionless notation (§2.6.1),

\

2
3 - 6 ) /
/ Vo = Ui (0 75 :
hence, .
a ""'5 - M
= _ 1.3ex10
- U0 === -

[ ; oo é le

displacemenﬁ‘thickngss, A;—Ae, should not.be larger than 5% of that

£ the beam, A_; hence \) ' '
. ’ ,
A¥el 268 2
£ = 1+ 5 -1<0.05,
e e -

.which yields, for a 2.54‘cm 0.D., 61m<0.032 cm; Fhis value Jould be

approximately 6 times smaller than the éresent value of 9.2 cnm, derivgd
E» from eq\ (G.4) for 61 at the downstream end of the‘same<beam (preceded

by a 25Icm support, and without suction). For §=0.5 and ¢=20, as in

\ -
our tests, we would thus require

Uif0)>l m/s.

(b) Alternatively, because neither the boundary la&er is
laminar nor the suction uniform, the following rule of thumb may
be used: ',let us drdw from the external flow, the rate of flow

displaced'byathe boundary laver thickness, i.e. [A; - Ae] we

. - - “ LUem;
would then(bxpect the velocity profile to be significantly fuller.

We now obtain '
. [A*-A_] A 46, (L)
\ v,(0) = —2-%g ,py 2Ly ,
i Ay g \Al Do ex
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: f '
which yields for the data of the previous paragraph and Gl(L)=O.2 cm

the\following condition:

[

s U.(0) > 1.25 x © .
1 e

¥

As opposed to the previous condition for Ui’ this one

depends on the velocity of the external flow; however, since the

values of the external velocities required to observe instabilities

3

of the beams are generally above ﬂ m/s, both conditions yield

internal flows of at least 1 m/s. ‘Such velocities were too large

for our apparatus, since, in practice, we could never draw more

than 20

B
[

cm/s.

A\

7
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(.’ APPENDIX H: BASE DRAG EVALUATION
It was decided to evaluate the base drag coefficients,

. %
fe’ Cgi and Cey intfquced in equatidn (5.6), experimentally. To

this end,rigid cylindrical tubes equipped with pressure taps were

C

y " 1] v [3 \-
designed, which, for convenience, were tested in a wind tunnel
[

rather than in a water t&pnel// y

-
.

H.1 Geometric similarity’ .
. t

N In order to reproduce similar external flow conditions

in both water and air, the Reynolds numbers based both on diameter 5

A . : .
and length were scaled separately, i.e. it was required that' ‘ F
N " . #. -
‘ U.D. U.D ' urn o un b -
ww_ —aa é‘nd - ww _ _aa
v v @ v v o

y where U, D and L denote externafd;elocities,”diaﬁeters and lengths, -
] ’ . 7

- 0
respectively, and subscripts w and a refer to water and air.
1

rd

Clearly, it follows that LW/Dw 2 lLa/Da and, therefore,f

r&‘\r

the two models must be geometrically similar; in fac¢t .,the geometric
similar@ty fufther extends to tHe boundary layer, as shown by the
follow1ng dimensional analwsis: the ratio 6*/D, 1 e. the boundary

layer thlckness lelded bysdlameter, is .(in 1ncomp%e551ble flow) a

| given function of x/L, D/L, UD/v and of a critical Reynolds number
oo ‘whlch accounts for tran51t10n (and which de;ends malnly upon the .
level of tufbulence for ;1m11ar and smooth surfaces) Hepcey péo-
vided®that either the levels of turbulence in the two’tunnels are

9
'

’51m11ar or thé transition points close t9fthe leadlng edge, the’

4
ratio 6*/D will be very close, espe01ally at the downstream end

o ?
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where they are relevant for[base drag. It is noted that for the

external flow, velocities will remain loW enough to neglect the
Q o g

compressibility of air.

With respect' to the internal flow, geometric similarity
) X

must be satisfied in this case also, to prpvide similar flow con-

ditions. Ultimately the scale factor La/Lw was chosen equal to 2

fgr a velocity factor of 8 at 70°F.

I

H.2 Experiments - ’ .

t

Experiments were conducted on rigid\tubes, cylindrical

]

both outside and inside; the ratio of internal ‘to external diameter
was kgél constantland equal ;to Di/De=o'4 (i.e.,Di=2 cm and De=5 cm)
and the ratio e=L/D was €qual to 15. Thfée different dowﬁgtreém end
pieces were used, as illustiated below on the right; one was eldhg-
ated, another w;s hemispherical,'ana the 1as§ one was very blupt.

'In eébhqegg ﬁ&ece, six pressure’taps were drilled at different radial
positions and connected to an alcoyol manometer; the suppgrt sﬁrut
was placed next to the upstream end qf the tube, so as no£ to inter—
fere significantly with the base drag measurements.

¢ 4
N ] . & ' »

»e
.
.....

‘ aerofoil

Y g end" PR W s ‘
, supporﬁ pieces i e A
. [ . (2) ‘

. | |

. .
JTTITIIY T I T II T 7T I 7 T T Y 702 T 7 71 7T v T Ty vy v ey r vr? EEEEE
<

i . ) — e =

(3)

g
%
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The range of external(figw velocitie; was 0 to 50.m/s
~and that of internal flow was 0 to ldO m/s (in ofaer.to scale ranges
. of 0+6 m/s ahd 0+12 m/s in water, respectively). The pressure -

'} ) . measufements érom the six pressure taps and the main pressure in

the wind tunnel weré then recorded for each pair of velocities and

the total base drag calculated.

poo H.3 Quadiatic fit . 3 : |
T\ / A homogeneous second-order approximation was then selected
L t \ ye

to fit the experimental points (the average relative deviation was

>

less than 10%) leading to

-

;0 1
_ 2 2 )
D, = fpair{AéU Cpo + B U7 Cpy + [AeAi] uU;C

e fe i fx}'

‘The values of the coefficients for. each end piece are

tabulated below.

. Cee Cei Cex
, /bygnt 0.15. 0.016 0.109
hemispherical 0.13 0.009 0.054
’ elongated 0.03  0.007 0.053

| o

.

As ﬂay be obéérved they are all bosiEive“ thus suggesting that drag

e o *

I

increases with either internal or external flow velocity; however,
+  experiments indicated that for the larger Reynolds numbers of the

external flow,lthe ddag for zero internal flow was always 10% higher
i .
“than predicted by the expression above. Furthermore, those co-
1} M " . -
efficients should alsoc depend to some extent upon the ratio ¢ = L/D

®
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.

and on the actual velocities, since the thicker the boundary layer

ratio §/D, the more "insulated" is the base; as suggested by

.

Hoerner*,lthe base drag coefficient for a slender body varies as
the inverse of the square root of the forébody drag coefficient;
however, in this study, we shall assume that they are reasoeably
constant, because of tﬂe limited ranges of Reynolas"numbers anq\

. )
slenderness ratios €. ‘ .

' Nevertheless, these coefficients still yield, if’nog a
very accurate, at least a representative evaluation of the base
drag 'of our tubular Beams. Co
It will noiibe con&enient to find semi-empirical expres-

3

R A\
sions for each of th threéjcoefficients,‘ﬁgcoﬁding to the shape’ \\

of the end piece, io be supplied to the computer program.

(a) For elongated semi-ellipsoidal end piecqs, withoyt internal

flow, the following formula for Cfe has been suggested by Chank -
’ | .
~as reported by Hoerner * > F_ y |
‘e = 0.06 (24~ D
fe ‘ D ' |
- . i

‘

- 1 L ! - ' .
wheﬁe, as illustrated above, ZﬁLs the lendth of the end piece,

A

and D, the dlamamer, as could be expected 1t only agrees with our

s 553

data for the most elongated end piece; thus we proceeded to derlve

our own formula te fit the range £ = 0 to &' = ?D/2 namely

1.35 y

¢ ) C'=—_-'*_§' . .
’9+(2£/D} ¢ r . s

fe
T e

3

* op. Cit. [75] p.2-7.

»
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2 (b) sSimilarly, the following. formula was obtéined'for‘gflﬂ

. (a- - Q St
: ¥ - B

W c.. = 0.02
- By TEL ) ase(2e/p) !} :

.

s

howeveér, it is noted that since-'Cfi is of the order of Cfe/lo,

Ld

it will add little to the total drag whenever Aiui remains below

or is comparable to Aeui'\

f | ' *

(¢) We now consider Cfx: Its magnitude tends to indicateythat .

i ‘ . there is a st¥ong interaction between internal and external flow

’w%th respect to base'drag: for similar\magnitudes‘of¢§;Ui and AeUZ,

the contribdtions to drag from the and the C terms are similar.
v fe £x

. 13 - 3 . ‘
As previously, we established our own semi-empirical formula for

‘ ., - i “ ' ~
y : , '
;o The applicab@lity of 'these ¥hree formulae\should further

be réstricted to tases where the‘diameter'ratio is close to 0.4

4
(actuglly in the experiments conducted in the water tunnel this raéio

. N sl

#as ‘equal to 0.5). .

3 i =

» 4 I

-
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APPENDIX I '

\

IMPORTANCE OF ROTATORY INERTIA "
4
AND MOMENTS DUE TO COMVERGENT FLOW

] . -

A
- !

S

° N Y
. { \/
1 .
'. * * ! ‘ﬁ; - ~
S
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g. APPENDI)(’I: IMPORTANCE OF, ROTATORY INERTIA
; ) -
: ’ AND MOI;‘IENQ‘S DUE TO CONVERGENT FLOW
@ * '
L) '4 n
\kf I.1' Rotatory inertia
“ B
. 4 X
! The moment arising from rotatory inertia of the beam is
, . ° ‘
p1 —4> (1.1)
.- 5 - 3xdt “ ’
- ,
4 |
per unit length,,and the corresponding flexural moment is
.« v o2 2? 2’ ~ .
(g1 =41 ~ BT =¥ | " (1.2)
"L " 3x ax 3x . .
for glender bodies. \
_ é’ ? iwt .
'l If . we set y(x,t) = Ré{v(x)e™ "}, Re{} denoting the real .,
. o ) : .
part, eqy (I.l) yields r
\ s ¢ ’l
3> 2 oy it
pI _—’17 = pI Re{-w® =—e™. "} . ‘
“ axat T e .
Ay r 'A )
N If we now assume Y(x) ~ e’ ¥ that is to say that some wavelength
» . i
i canfpe found associated with the ﬁodalmshape, thenfeq.(I.2) yields
g‘ 3 ' 2 Y _iwt ’ /
. - EI 3—% ~ EI Re{-1° =e "7} - ‘
. - ax o - Ix -
o - " ‘ N ’ "\,
& . Hence, provided that AZ and wz&are gpproxidﬁtely real, the ratio
N1 - <', . s . .
of these two terms is ) .
i , N . . . q‘
4 / N :
A& o 4
€S§ - e 33y/oxat? ) || ? o L (1.3
. ' E 83y/8x3 E l)\l2 - - s . g
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' {1' Provided that this ratio is well below unity, itsmay be assuméd
' n .
. that rgtatory_inertié will have a small effect compared to flexural
l i
inertia. . . .
Let us consider quasi-uniform beams at zero f§low veleocdity;
¢ - then, m2 = (ALf4 EI/(pAL4), and eq. (I:3) becomes |
) B L]
. 2|9|2 o Mer _ (AL 2 o’ _ (l&)z °
’ E'A B 2 L 1 4c ’
. | pAA .

where, for standard boundary conditions, AL takes- well-known values.

Thus, for pinned-pinned beams, for mode %, AL = k7; hence

" ’ . . ‘ T
P 2 km, 2 . E
,E‘% s R % -

]
3¢
W

-

and in order to neglect rotatory inertia we need to'have e>>k; for

o
4

instance, if e€>8k then the error will be less than one percent..
' . ‘

A ’ For clamped<free beams, 1

¢

e(k:%)n 2 .

}

XL - (2k—l)% and %(%)2 = {—_EE——-' .

-

A

RIS IR

. |
hence, we need e>>k-l, and £>8k-4 will yield Tess than one percent’
error. In fact, previded that €>25 Rosinger and Ritchie [7¢] found

that the errors resulting from neglecting rotatory inertia and\
X

’ =Y
shear deformation are less than 5% for the natural frequencies (up

to the fifth) qf&a dantilever beam; furthermore, such g@rors vary
t

approximatef? like e72, and somewhat proportionally to the modé

-

number. b . ¥
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"' . Unfortunately, when we depart from the ﬁero flow velocity

éondition or from the case of a uniform beam A becomes a function-

of x, and the relation between w and A is no longer straightforward.
- 4
|

The longest wavelength, X, should thén be measured em-

o “ piricall§ from the experimental modal shape and )\ estimated from the

value Anx: %ﬂ; then;ﬂone should chés} that-

|
'é \ ’ In practice we shall choose large length ﬁatios (6;15),
'gfl and only consider the first set of instabilities, which occur at
f%~] | critical velocities where only the lowest modes can be excited; as
%% a result, the corresponding critical frequencies remain small, i.e.
o
Zﬁ . ) generally lower than at zero flow; in addition, the wavelengths =
é‘ Aever increased signifiqéntly aﬁd therefore, the inequality stated
% _ above csuld be satisfied.
5 <
% ' I.2 Moments due to Fonvergent flows
i' '! Let us prove that the terms resulting from the moments

At

induced by the combination of flow and taper (either internal or

o %
-

external), may be neglected 4n the differential equation of motion. ‘?“
4
i ;
Ca In eq.(5.2) these terms have the form y @
o~ . N , g ‘ ° 5
o A_3A :
00 o 9 2
2T 9X §§{vo(y)} ! (L4
1 . > ‘
& -
where the subscript o stands for either i or e, referring to internal
v

aﬁd external flow respectively. We shal® now compare thel!“gﬁs to
“ + » ‘ M
-
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: ") similar ones associated with the hydrodynamic forces, which have .
;. . _the form .
!
N
p A D2 (y) © o (1.5)
0o o .
!
. ’ N /
As in ghe previous section, ye assume a-solution '
; % . . -
3(~el>‘x elmt; the ratio between the terms in (I.4) and (1.5) gives !
" . aA -
Q@ A x % X, . 2 AL
| 7w | =l T ey D 00 < log 251 <
€ .
\ ‘ < |
; This ratio will always be very small because (i) we have already
i " : ,
% satisfied the conditions 4e>AL, in order to neglect rotatory inertia,
g" (ii) e>>1 for slender bodies, and (iii) |a°l<l for the tapered beans
£ L ad
Ei t uhder consideration. -
% Incidentally, it is not always necessary to make as-
g’ sumptions regarding y in order to neglect the fluid-induced moments.
L) ’ ¢
3 g For instance, when the frequency, w, ‘is very small, as in the
lo‘;*’ ! . ~ - ’ B ‘ v
- neighbourhood of buckling, the expansion of (I.4) with respect to
: 3
7%‘ the opérator D reduces to a single term, i.e. cone containing\ §, as
Vi ax

stated, at the end of 82.6.1 such a term is negllglbly small compared
to the term resulting from the flexural moment, provided that the "
flow velocities remain below the slenderness ratio £. This can be

shown by comparing’the fo;lowing\two terms in eq.(6.3)
[% B R -
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for the flexural and fluid-induced moments, -respectively. Therefore,
, ® . (
if, . b
- '/ N )
2 v, 2 2
uz << 16€ , and; (Eg_._) << léc 6 .
1-6 i 1-48
then, negessarily, ‘the second term will be negligible. 1In terms
of the true flow velocigieé Uy Uﬁ"z and the wave-propagation velo- .
city, c, these inequalities yield " 2 7
‘ 27 e 20 2 200y << 20 o2
t{i 2t U (0) << 22.c% w ’
: h S ¢t
These condltlohs were satisfied 1n our tests since the
maximum flow velocities were around 6 m/s and the smallest of the
A
values of ¢, listed for differenti materials in ?(.2», was 40 m/s.
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APPENDIX J: CALCULATION OF THE_  CORRECTIVE HYDRODYNAMIC

3

!

COEFFICIENT £.

¢

[N

N, %
e ™ . .
' R.H. Upson and W.A, Klikoff [77] proposed an analysis >

> . o
‘0f the forces exerte(d on half bodies of revolution which has
also later been reported by H.R.‘ Kelly [78] to be mote apgrop-\

riate than Mm}k;? f4s 1% 1In brief, it is suggested to f'eplace

L]
‘Munk 's *virtual sass factor k,-k, by the following:factor

*
~

. }. . . 2
gf = 2(1+1dl) (1+k,) cos g_ s
\

D/dx, D being

N&:—-

where B is the full taper angle, ‘i,e. tap 'ﬁB‘ =

. . .

the diameter of a cross-section. This factor would then be
’ ) K

. variable along the body except for conical shapesfj. For practi-
cal purposes, the product (1+k1) (l+k2) \gecreaées very rapidly
. ;

to a value af 2 as the slenderness of the body increases; this
= » .. @ 3 .
is illustrated in the table below for half’ellipsbids of

" .

the initial value of 2.25 is obtained for a hemi-

N
revolution:
spherical body (a and b are the lengths of the major and minor

~ ! NG

N ' . *
\ . . .

axes respectively) .

- %

ol am | -1 1.5 2 3 40 50 W e
ky 0.500 * 0.305 0.209 0.122 0.082 0.059 oA.oz;L"\p.o
' k, | o.gsoo”ﬂ,o.s*zl‘ 0.702 0.803 0.860 0.895 0.960 1.0
4k )\ % 3 250 2.115 .2.058 2.023 2.013 .2.007 2.001 2
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Over the n\iajbr portion of the beam which is conical we thus
take (l+k1) (l+k2) = 2, since the conical shape may be considcred .
as the envelope of a family of infinitely long e'llips“oids, hence

3

- s
£ = cos?§ =2 gz - 1- tan?f ; o '
l ¢ l-H:anz2 _ o
- dpD o a
since - ’ tang- = %— -é‘;—{z = 5—2— , then f£.1 - (-2%)2

f‘; C

~ o )
We shaﬁ always* consider cases whgi;ﬂ]z%k %—0 , then f£~1 and |

£y PN
no correct;ive\fxa\ctor need be applied to the lift exerted on&:he/
v .

~ \
" beam along its length; however, at the downstream, end,. the anglé\

: ¢ .
8 is no longer négligiblé. o

5

7 - . " . As in §2.5.3, and for the sake of
k/— \\\\, ' | simplicity, we shall assume that-
. . ® SN S c T
e S ° the end piece may be represented
I o *. N + =
. - - —1--- B, >=- by a truncatfed cone, .and'then
. D L [ PPt - Z3 ' ~ '
/ o — > /j, - K,. '>(1+kl);(\l\+k2 ~2 and’ 8 is given by 4
g . - ’/ - ! ) s
~ e - . . , '
/x= L ’ tan-B- = [D,e-Di] X=L = De(L) []:...E..:. ,=n L_[l_al:}.al]
. 3 3L Y AT B S St E T L
" ) ‘< .8 x=L e e

A N e ! . . . ; .M '
hence,, ’ : 0

N .f = ('JOS2§ = " 4)(8 . T . \.\- ' (J.1)
. ST 2 2 1-6 (14 ) /(140 T ‘
) T e ' Xe i e’ . £
\ 1 M L]
N ' S . ’ . -

. . ~ ) ‘f" v ‘T
. Clearly, the evaluation of. the fydrodynamic force. over

~ the end piece.and the calqgla‘r,i{n of the corrective factor, g\ N

2
have been oversimplified if the present work.,& For example, in.:

§2.5.% of the main text, we accommted for.a constant boundary- :
/ ‘ o B S ) e
N e Y
\ . B S
» Co - ) . . -~
g . *‘\'\ g B
e ! , o
o , [ . . 0 - .
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B layer-effect over the end piece in terms of a reduced flow velo-

! . city, U; obtained at ,x=L.,' whereas the boundary layer grows rapidly

6ver the “end piece. In addition, "the evgntuality of flow separa-

tion must be considered. . . :

~Récent studies have investigated the thick turbulent

P

,
. ,“,“.;,az%ygsﬁtéﬁwﬁ{f Sl
.
.

boundary layer near the tail of bodies of revolution (791, [80],

[S

(811]. Nakpyaﬁa, Patel and Landweber (80] found that the rapid

SE-

SIS SEIRNE B

- 3 e 4
X growth of the thick boundary layer over the conical tail section

x

of a modified spheroid is sufficient to relieve the potential flow
§ pressure gradients and- thereby avoid‘separationﬁaltcgether, In- 5
‘ cidentally, those results were obtained with experimental da%a:very

| j
similar to ours; for instance, Reynolds numbers were in the vicinity E
. ' -

!

of 106, the gisplacemenﬁ thickness meaﬁgred prior to the tail - o

‘: see;ion was of the order of 5%’of Fhe loc§l diameter anq the fapei'
angle of the conical tail piece was B=45°nl Although this study

- does nqi considef tréﬁsverse motion, it is nonet?eless useful to
calculate base drags and to predict that flow separation will

-
L A R g i e i -

brobably not occur for sufficiently small motions (provided that-

the boundary layer remains staﬁig). . ‘ !

¥
¥
%
?

i Another approximation made in §2.5.3 and previoqs studies
(381, 401, [771, wgs‘to consider a constant value of the parameter
f, +independent of the type ofqmqtion. More sophisticated approaches
are now available to calculate the idéal flo@ around bodies of

revolution. Very recently; Paidoussis and Yu' [82] investigated the

,1 effect of nose and tail shapes on the stability of towed bodies. ¥
They presented an analysis\giving the forces ‘and moment distribution

[
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" 0 Sy s

g A IO, St e
rer ' B WY JAVS O JPLL SR AN N




513
g
;
3
g
3
7
=
T
Iy
6
By

¥

s R

o

|

T e
\

RIS AT e £ 8 R
J-4
'

A}

+

on an ellipsoid undergoing. plane moticn. An interesting feature

of their work is that they considered truncated tails. Un-

-fortunately, our theory is difficult to compare to theirs, because,

on one hand, our parameter f is insufficienﬁ to account for‘the
refinements 1ntroduced by their th Ory, and on the other hand,
they did not account for the 1nsu1at10n effect of the boundary
layer, Neverthelegs, comparing the new theory with an older theory,
which is similar to ours for zero-boundary layer thickness,
Paidoussis and Yu noted that, ‘for appropriate values of the para-

”V’ »
meter £, the correspondance of the two theories is &&ite good,

“at least}up to the first oscillatory instability. The values of

f thus required are generally lower than those derived by use of -
eq. (J.1) since they vary from 0 up to a maximum value which, for -
very elongated bodies, is 'shown to be less than 1, whereas eq.(J.l)’
yielde £-1 when Xg >2 (f=1, asyhptotically). However, in our |
boundary conditions, e'g. eq. (10 7), f is c0mpounded by the factor
(——-) , due to the boundary layer, which is smaller than unlty, ‘

as a result, the two theories are expected to yield quite similar
' {

results for the lower instabilities.

-
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In order to calculate the dimensionless parameters
* i\
‘ defined on p.60 we need determlne Young's modulus, E, £gd the i

“damping coefficient, k; the remaining characteristics, such as

S it o

frlctlon coeff1c1ents have been obtaineq in. Appendlx G, whereas

S i
flow velocities, specific gravitles and geometrlc ratlos may be
l
measured ea51ly and accurately.
w ‘ ° o ? \
> 9 ' * ]
K.l Velocity and Time Scales ] “r
<
The quan%}ties by which .the velocities and true fre-
guencies should be .divided to yield dimensionless values may be
‘ ’ expressed in terms of the velocity of wave propagation, c=[}3‘./p]L

"as follows: - . L .

! L

' a) Reference external velocity V, ' , '

W -~ . / ! * cl
- 2,, .4, 1% /
- "\\. o “\l'e = [——l—] EDe(l 8 ) 1 ! } 1 - C 1. 64 &
; U g Pefe’ o

1. Lo B (e—-st *_ =

@\} !

b) Reference fnternal velocity Vi

| } o 1 L
= B e B g—aesh R o
o Pifi0 P

Gﬂpi 4s~ LY

If external @nduinternal fluids have the same density, then

N /V\ Ve = GVi -

* ¢) Reference frequency F,
L . ) 2 P - .-
i 1 ED (1- -s4 )pA 1 _ e [1_34 3 g

[+ ] Ze = [re] [ ] = e [m—] .
Lp 0 LZ ’ - 1l6ép o PAFP A +0; Al 0 LZ 4eL Yty
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o \ C . B ,
It will also be useful to express this quantity in
") terns of T, which has been, defined in §2.6.1 as ,
l/ o ‘ p‘A /
4 . e 3
| F=[gr] oL

we then obtain : :
el :
A ‘I ° ! ' |

f

. '35 oA
L F = [93]

) ) 1 .
[ 2 -] = £ [y.+v.1 .
PAFD A ¥03Ri" 17 TL e i

, o * \NaQ R A

\ ‘ : =,
Fipally,fg%e three reference’bﬁantities may also be

expressed in_terms og&a,dimensionless pgraméter y which relates

to ¢ and T as follows: ,

‘ ~ 16g D_(0) | o 4
IS Y = / 2e or \ .Y — F ...,....__l g . -
(o] ‘ €

Clearly, § is iﬁdependent,of the lengtb and tﬁickness
ratioé. The upstream diameter of beams had to be one inch
(because of our appar;tus); hence y may be used as a character- :
istic of the material. , L . ’<} ‘

LY

K.2 Determination of the visq,glastic cohstants

Starting from the general relation between stresses and -

R

strains for a viscoelastic material, i.e. (cf. 18313

AU Y

\ 2 2 -
. ] -_ 9 : d 0 -
(a, + a,2— + a, %=+ ... )0 = (b, +b. %+ b %= + ...)e
0 lae 252 e e N

| / "

we restrict ourselves'to the Kelvin-Voigt first order model and

obtain for sinusoidal motions the following complex Young's. modulus:
s ~ . . \
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I . Bt =B, . (k1) ;
,!1 ’ .. ‘ . . ) . /1)\ .

1%, (j '°qﬁg;e Q.is the c1rch1ar frequency, and 'E and k are characterisﬂlc

g. constants of the materlal. Clearly, E can be ﬁmasured by statL

§; >.tests; however, we opted for dynamic tf%ts from which both E

% " and k could be derived at the same time. Thé method involved the

o %

g

measurement of the‘§atural frequency of the first, and

s siog)
e

sometimes(

o

)

o

the second and third,transverse mode andfthe corresponding

>

.
7 1
4
':\

,

| ‘ L o
logarithmic decxement. ‘ ' :

% For convelience, the measurements were performed on

S . L
cantilevers hanging in air rather thgn in the water tunnel; the

free end was displaced and then released;tthe ensuing free
decaying sinusoidal motion was sensed by a fibre - optic! sensor,

recorded on ao}oscilloscope and finally photographed, once all )

but the oscillations of the specific mode investigated were

damped out. Support pins had to be adjusted-experimentally at

the nodes for exciting the second and the third modes. The

natural frequencies, 2, and the logarithmic decremgnt, ‘6, 'were

~

thus obtained for up to three' different mddes.

In the next step, for no flow velocity and no damping,

eq. (6.8) was—soiveé numerically in terms of the dimensionless

. 3
frequency w for the corresponding beam and corresponding modes ;

\

to this end a trial value for T was selected and 1terat10ns were

carrled out until the experlmental frequency  could be matched,

namely, until the follo ing ratio was reached: |
. !' -
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y - * Then we calculated F x y

% ( L(Y ot ;) Déxp .

§ B} agL3. ? ' ‘ ’
# p and we obtained c¢ = [3] = [—%—F] and calculagpd Ve and Vi.

f

a " 1f we now éonsider damping and a logarithmic decre-

ment §, we haveﬂ/ !
f
) /
; ‘ p Im(w) _ Im(Qegp) = 8.
Re (w) Re(Qexp) 2n. . .

[ - v
]

prtunate}y, the real part of w is almost independent
of damping/for small values of the_diménsionléss damping para-
meter v,,as shown in Appendix E, and the\ﬁmaginéry partfﬁf w
i§ almoJ; proportional to v, cetends® paribus . We thus select
an arbitrary small trial'valﬁe of v,compute Im(w)iand compare
w{th!éhe required Qalue %FRe(w) to obtain the proper factor to

be /apblied to the ipitia trial value. We then derive k by

udividiﬁ& Vv by’ the reference i.e.

equency,

-
=

of the material is k and not the dlmen51on1ess term v: for

v/ example, v will vary with the ®runcation ratio, for°the same beam.
B f o

?

It was found that the value of the eldstic modulus E
- !
of each beam was often lafger for higher modes, as is generally .

/ , the case for a material with viscoelastic properties, but the’

' r

variation of the values of E seldom exceeded 10% between the

first and the third modes. The first\Prdér viscoelastic

.
o .
\ . . . ) ¥
.




approximation cannot dccount for variations of the real part

of the modulus; anyway, this approximation is not satisfactory,
. O\

maifnly because the \s&\bposedly constant value of k was found to

drop rapidly with the modal ffequenciesf; Q.
\

-

K.‘ 3 Viscohysteretical damp\ing

We ha‘re plotted on page K-8 the typical’results

"obtained from tests on several beams Pnade of a rubber-like

mafterial; rather than presenting k versus , we chose k as -~
" f ,

the ordinate versus k( as the abscissa, in order to compare

~

the data for the material tested with either the case of pure

Voigt type viscoelastic damping, i.e. k independent of @ (a
J
horizontal line on this diagram), or with the case of hystere-

."" tical da'mping, i.e, k inversegroportional to R (a vertical

line Pn\the diagram). Beams with different lengths and dif-

9

ferent taper angies were tested, andwthe points corresponding
‘to the modes of the same beam have been joined together. We

observe that the relative change in k; is‘larger than the change

of k@, thus implying that dissfpaéon follows the hysteretical
model more closely than the viscéelastic one; but there is 1it-

tle evidence of a single analytical relation between k and Q.

2

The search for other parameters 1nvolved ln relatlng

k to € is beyond the scope of this work; therefore, we shall

A‘ )

simply assume a linear relationship between k and k&; for each

L

material we obtain a least~-square-fit rélat‘ion, name\ly

Yo

- k. . .
0
k = ko -~ b(k}) or k = m . <
v
s 3 , AN

!'J
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‘F‘ * This relation between k and implies vi§co-hy§te£etical
‘.\,

» ‘ * ”\
. properties,

- i *

(ay~when 940, then k~ko; in other words, for low eigepfrequenbies

" . the cémplex modulus accounts for Kelvin-Voigt' viscoelastic damping -

] - .

3 - and E* = E(l+ikoQ); - ‘

‘ ’ ’
o ) (b) when Q+=, then k+0 and kQ~ko/b; the complex modulus will thus

i +  account for hysteretical damping, and E* = E[l%iko/b]; o

T % ‘ ]

(c) for the general case we will have a combination of the two !

5 effects and ”
- - T d | I
i kg0 |
= BI1 + gl : i
a ) .
$

7
<

We now define two dimensionless parameters, namely

.

v =k, x 1/t, and u = k,/b | .

and we obtain /
| . a

1 L]

In fact, the denominator of the expression above should contain

. 1 : 4
the real part-of-w, rather than w, because we derived eq. (k.1l) %m

d

using the actual real frequencies of oscillations; however, we

~

are mainly interested in the critical velocities which occur
when the imagirfary part of w goe§ to zero, at which point.the
expreSSLOn above is valid; moreover, as the frequency loc1

exhxblt symmetrynthh respect to the 1maglnary axis, only if

g

damping is a real function of iw (see §7), we choose the magni-

tude |w|, rather than w or its real part; again the critical
o R !

o

¢ ".

)
- ¢ I

* |

- . ,/’ . !
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va%yes,will no;aE? alferéd since the semi-empirical expression

for the modulus.will be exacﬁ. Finallyﬂgwe write ¢ .
’ . . - - i \ ; ;
s - CE* _ g iwpv R ’ §
0 : BT 1 ATy (k.2) j

~ ” - -

~5

so that in eq. (6,6) we need}én}y‘ﬁerform the~follow{ng sub—/' SN

stitution: . : ' j :
1 ' i

v+op/ (p+v|wl) . ' . / . .

f . - N
' M . /
\ s

Remarks

1]

- ‘ . ’ 4

¢ o

(a) It should be noticed that this expression yields pure

viscoelastic and hysteretical properties for w~0 and w-+e .

’

.

respectively, whereas a linear combination such as

E* = E(l+iwv+iy) would yield the opposite properties for .

. { b4 .
w~0 and m+w,respégtively. oo s 3

[

i

(b) Pure hysteretical damping is also obtained if v»% whereas
viscoelastic damping requires u»vw; hence it should be.realized

that visco-hysteretical damping is viscoelastic if the hystere-

tical constant u is infinite; and vice versa, it is hysteretical 1

a

if the viscoelastic parameter v is infirdite.
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APPENDIX L: COMPUTER LISTINGS ' '

.
L.1 Search for eigenfreguencies with increasing flow ' b

T g S~ R

~

i ' These are thq "class A" operations defined in §3.3, and
"the program consists of the following seéuencgim,>

v

1%

“the next two subroutines calculate the integrals defined 'in Appendix

- « .~

C; subroutine MAT fills the.matrix [A] of eq.(7.2) for given values

l. main program | ‘ ~ listing on page L3,
2. subroutines COEFIL & BLCOEF * . listing on pages L4-6,
3. subroutine MAT oy similar to ﬂATﬁIX, T
) « 4: subfunq;ion DET , listing on page L7, %
B 5. subroutine SECANT | | similar to LAGRAN, §
) €. subroutine PREDIC - 8 _.listing on pages LB;lO. g .
L. ‘ , : |
L b The main program.is used for input-quﬁpuE pufposes,"and 3
! ' t

.

of the flow velocity and w; its determimant is then calculated by

bl
%

" use of Fheasubfunction DET, and the nearest eigenvalue of [A] is
]

; obtained by secant iterations on w pérformgd by subroﬁtipe SECANT.

(A more elaborate version of this last subroutine, using the Lagrange

metﬁod ig- introduced in the next subsection.) Finally, subroutype
- '

~ PREE?Q chooses adequate velocity step sizes and predicts riew val?es

i

of w to initialize the next secant iterations. ,

-
- .
N [
L]

L.2 <Calculations of critical eigenfrequencieés

is

|These are class: B opexations which.deal with the following

A ‘ o

<1;) three cases:. . ) ‘] . ‘
» . El

) '
- “§1 N TR v o~
; o o . . ; ) : .
RN “ g DY 1 s o, . 5 I
LT ISR (R A2 S A R TIRY E NE A S-S S . e
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a) critical velocities for flutter, . \\g\;}//
1' . -\

b) critical velocities for buckiing,

c) velocities for singular eigenfrequencies.

tn the first case we must iterate both on velocity and
the corresponding eigenfrequency to find the critical velocity,'

whereas in the second case we may set w=0 and iterate on velocity

‘
‘

alone; in the latter case storage is cut by half (the matrices being

0

real, rathér~than complex). Because the predictions are not as

accurate as in the previous sectioh, the Lagrange method rather than
the secant method is used to reduce the number of iterations. For

the first case the program comprises the following:

.

g

1. main program .

.t v

listing on pages L11-12,

2. ,subroutines COEFIL & BLCOEF « (same as prewiously)

3. subroutine MATRIX listing on pages L13-15

4. subfunctions DET (same as previously)
/S
5. subroutine LAGRAN listing on pages‘}16—17

6. subroutine AXROOT R listing on pages L18-20F

) .
For the second case, the sequence is identical but the

o

.sub;outings are simpler and real. For the third case, iterations’

P

are performed on the frequencies to fﬁnq the extremum of the deter- .

]

minant and then iterations on the velocity are performed until this

extremum is found to be null. The last two subroutines in the

[N

sequence listed above are now replaced by ' g '

5. IMROOT . listing on pages L21-22,
6. MINIMI ) listing on page L22,

~
7. VELSEC - '

listing on page L23

f

b
-
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EIGENVALUES: FOR INCREASING FLOW
.
MAIN

IMPLIGTT COMPILSX=1A(N) RFAILXR (A=H,/P=2)

COMMNN /GNFPES/ COEX15.9.9) (SEFX(5,9,9),SSEX(5,9 q».rCIN(s 9.4,
1SCINISe3¢Q) e SSINISe9e%) o CLINPIIG49)«SLINPIR,9,9),S5INP(3,09,0).CCE |
1XP{3.9.¢)L.SCFAP(A:9,9),SSEXP(3.9,9) /CNEFRL/ GORLITIW9,9)SCRLIZ9Y

19). S8R (3.9,

/PRMTRS/Z PAL127 )4 TV, [RC,

DIMENSTION NA(Y TV T),OMEGALSR) PARAM(DIL),LILTI M(17)

Y

READ NR NF LNCT.NJINNDEX OF VA?TARLE

L szipynnb PARBMETFRS FNR SUARTMITINF PRFENIC
R

L READ INITIAL

DﬂTA pAQAM/'QlP“A(F)' FAILLPHA( L)Y dul, O/n=t 0 Mzt Cy=t,
1 M Mim ® IGAMM T )20, IGAMMIE )=t JINRLTAT/EL ,INT EMD/LY,
1 VIL/NYENDY o 1GR/~PSA= L EPSIL/N) 'L tEP(XN/N ) L IKLDMEGY =,
1 SPI(TEN)= VL, INT =t M FXT =0, tALPHAAI =, CFE=!,
1 N BULEGIGME 28, ICLA-CLAMY IC1LA-FRFE I/ .

READ PARAMETERS, -\\3

REAND{H. 101} MAXPAR, JR(C - .

NN 1000 [PRMTI=}MAXPAR '

REAN(S.10N) {28R( J) o d=1e1R) *

FORMAT(ANIN,T)

PAR(22)=1+4N. Ao%PAR| 14)%PAR(G)EPAR()

PAR(1C)={PAR{1)1+N,ASEPAR|{L13)xPAR{5)XPAR{3)) /PAR(22) ‘
{UT=17.UE=18) £ MAX[MUM VELACITY,

REAN{SINT) TTEMBX (N IVIIM ] . o

FORMAT (316, 2FLN.A) o

IF{TTEMAX.GT.D)Y GN TN 6

ITEMAX==TTEMAX , co

GO TO A . 1

CALL CNEFTL(PARI L) PAR(?) A1) ’ N

CALL RLCOFF(PARIT1)PAR[1Q)N)

PAR(2N)=PAR( T \)%%x2/(PAR{ Y1 1%=24N, 26008 (]~ PARGQ)#PAR(10)*(I+P6R(?))

170 +PAR{1 ) I%xD)

GAMSP=P AR (12) /(| =PAR(C) x4

PAR( 21 )=NSORT(3RA, 4DN/GAMSD  J{DBR(TI+PAR(R))) /PAR( YR} xx) tDAR(l5)

TTE(A200) 28RA{ 23+ TRCH . (FERAM( 1) PAR( ) 4 3=1,72) r’b

FORMAT{ V1 AR/G{/6{2X 08, 10N, 6))) .
DO 1000 (TFRAT=1,. TTEMAX i N ¢
(CFINFSCRIPTINN INM PRENIC)
“WHC.IDUP KM KEY, IRFND, NM %
«3)

VELOFITYCIN(RFMF“T FREOUENCIESI? FOR S*= CANT)EIN(QF"FNT.
READEFS,102) )M, OMY . N¥, AN

Lo

e 107)
ORMAT(S5TS.D

-

103 FORMAT(REIN, 6} ,

WRITE[A201) PARAM(3S=1V) BAR(35=]V),MONF N, NM
b ol FORMAT( 1 1em 0 AR F6, 2.0 =% MONF=t 1,0 ax N2t [20 , W=, 1PRT 1 /7))

NO 1 IN=1,1FFaD

CALL PREDIC(AMIMIONT N2 ) N DM ENGNyK2 oK1 oK [AX, INLIP (KM, KEY)

EIGIM={D,NO~1.DN) &M} )

HLE anGN(n\nQT(nAFGIFlG'M)).FIGIM)

"ETGRF=0NM)

EIGRE=DSORT(NDARSI E]GRF)) ¢ : :

WRITE( AR ID) PARAMIIVIGU MY FIGRE,FIGIM, K “ ’
| O FORMAT( ! VoARCFIN T &X' OM-GA= 1 IPP2N1G b L 1X*SOURT(NMFGA) =1 ,APPFQ,

16, 13%. 149, TTERATINNG?/) . e \
' El=F1G[Mxe2

) IFU(K 2GE KMa ) DR L ((U- ~UMIEONGT.0,PN) DR, (FT.6T.5.N11) 60 TN 1000

! CONTINE . .
000 CONT IMUE \

SThp 1 " ;

END N T

-~ . "
¥ . . .
)
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) . \\ a

AR SURRMITTINE CNSET) (AE, AT N)
. TMOLIGTT PEALRXAR (AeCeP,S)
COMMNN JCDEFFS) CEEX(S5+9,6) SCEXI5:9,9]4SSFX(5,3 Q) CLIN(5:4.9),
- 1SCINES.Q,0) 4 SSINTIS¢940) COINP{3,9,4),SCINP(3,9.9).SSINR(3,9,9)}.(CE
: 1XP(3:9¢9) SCELP(3.9,9).55F¥P{3,9.9) * :
PIx3.141502A534N0
LeNv/241 : S &
‘ PO 1 Mxl.b .
CCEX(Melal)=2a( 1+ (M~ S ISAE/DB (14 (MaP ) AR/ {1+ (M= ) RAF /G ( Yo {Mat 1RA o
1E7%1)))
CCIN(M.l.l)a?*(l+(M—l)#AI/?¢(l+l“-?)*6ll1v(l¢(ﬂ-?l-ﬁI/L*(!¢(“-4)tA5
11/5331)
SCEFX{M,141)=0
SCIN(M.1e1)=N .
p - . SSTH[Mela))=n -
SSEX'M".’):” s -
IF(M.GT,.3) 6N TN 6 ' i -
l CCEXP (Moo 1)=22(0, 5NN+ M-l 1RAF/24(M=] )R {M=D |%AF%xE2/R) '
 CCINPIMa1a1)1=2%(N.5N0+{M=1)%AT /34 (M=) )R (M=) nA]uRD /R ‘
SCEXPIM1 41 )= . L
SCIND(M.1.|)=’) ' ¢
SSEXP(M-I-I'=H N
SSINP (M.}, 120
6 CONTINUE §
00, 1 - T=1.L ot .
‘ IFIL.EQ.1) GO TN 7
‘ COFX(MeToT)ECAEX(My 10a1)/2.N0 —AF& (M=} )k (Lo (1+A3 )ua(M=D))/((P6]-D )%
1P )P +AERRa(MaT (M= R (MR )R { I~ |+AF)2X (ML) ) /[ 22]=2 )P ] V224
COINIMeT 1) 2COTINIM 14117270 =ATx (M )R (1=(1+8])XR(M=2))/((2*]-7 )%=
1P )P+ ATma k(M=) (MoP )R (M) F=C1+A)ER({M=4) ) /({(Ix]-7 )P )n=ms .
"SCEX(Me T o T )= (1 m(1+AEYER(M=) } )/ ( (P[22 )2P[]=4Fk&ZA (Va] )X (MDD )2 (1= \3
TEY+AE ) ax [ M=3) ) /{25 ] =2) 5P T ) 503+ AFkALn (M=) )& (M=D J & [ M) (ML) (] --.
OI+AE R (M=5)V /(2% (-2 ) %P1 ) oy : '
SCIN(MeT, 1)=(t=(1+AT )R8 (M= )) /(2% [=2)%P] ) =A[RB2E (Ml )H(M=D)2( 1~
SHOIHAT IR (MeT) ) /(2% =D )P IVER LA T SXLR[M=T )R (M=D )% {A-F )R (M=L}> ()~
1H1+AT)ed(M=5) )/ ({P2%1=2)%P])n=5 )
. SSEX(M T 1) 2= CFX{M T, 1)4CREX(M. 141 , v ;
SSTIN(M T T hz=TCINIMo T II+CCINI{M T 1) - j
7 DIVERIENED R R A ,
IFIT.FO.Y) GO TN 2
CCEX(MoTod)emaFafMallm({]=(=1)ea( [+ )n{1+AE )Rk M=D )} }5(1/{{]1%]-2)8P]
1)ex26 1 2{t1=))sPR) R J+AEXR AR (MR )x(Ma) )k {M=2 ) (1 ={=1bmx([a))n(]+AF
1)os (M=t ) )l 1/011+4=2) P ) 2nbe) /L1101 4P 11434
CCINIM T, Mz=A]a (M= 1)&«1-&-1»tn(|+u)v(lvdr)u*(u “2 et 1/t Ts -2 1nP]
112224170 (1=) 2P T )&% D)+ 32Ax M=) (M=) 2 MD)W ()= (=1 )an(]+)dn(}+A]
1) (M=) )2 (1 /{14020 eP | )musa)/(([=0)mP])xxd) !
CSCEXIM, Ty Mz l=t=T)ma(led ) (1 +AFIRX (M= (1 /{(T+4=F )12PT)+1/((1~d)
1RPT ) ) ~AFBe2a{d=t )R M=) ()l ={~1)ee[ ]+ ))a{ 1 +AR) R (Mo} )x()/{{]20=-7)>
APIINRASY2{ (1= )1 uP ) &3] + AFGNGGIMeL)E(Ma] 1R(Ma? )R- k(] )an(
1R+ IS (V1AL IR (M=K IR (1 /(T4 0=2) %P )x26a}/{{]1=))nP[}Tas]}) ' :
PN ; . SCIN(M, Todta(iml=1dsa(is )l a(1+A)Ea{M=1))a( 1/ L[4 0=2)8R0 )41 L0 (]=)
k(-) . 1P ) =AY B2 A-] )R (MaP )b (F= (=1 )20 { [+ J)n(1+A] )RR (M=) () /(([+1-2)"
- e APTI 2234 ) 70U =0} #PT) w2 3) ¢ Alogan(MeQ ) (M=l )® (M= ) o (V=g )d{]-(~])nh(,

i
i
H
}
:
i
|
i

N

5
- R

h)
P

“
.

. ¥

‘ v v .
2 il s AT B
) e : - "
s . : " " - -
A . . 7
i

- ! Ve P IR
. : AR A
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A :
= 1T (1 4R ) 0u (MBI )1/ 1]4.)=-2)9P] )e64) /([ ]=))#P])AF5) }
3 CSSEX(Me Lo ) ewAER (M) 1¥ (1=~ )on{ I+ )B(1+AF JRn(M=2 ) )8 ()/{[]=J)=P]
4] 1hos2=1/7(t1+0=21 0Pl ) ex2 ) +AFnR I8 (M-I (M=) )a( M=) (]| ={-])ma(]+1)]]
w ' LAE s (MG ) ( U/{(1=0)ePl)88&n] /([ [+0=D)2P] ) 5%s)
] ' SSIN(MoToct)a—aTe(M=1 1A= (=1 0eal 1+ )R (148 1) 2a{M=2 )01 /([ [=))*P]
%i g 11882=t 7 (T+d=21%P 1 ) &x2 ) +A 1230 (M= ) (Mol )& (M=D )R] =(=} )0a(]+})n{]+"
) .o ldlilt(M—A)i*(lI((I-Jl*Pllt:L-ll((l*l-?l*Pl)**bl
£ " TFCIIM=3)*{M=-4] 6T, N) R, tI*J.FOL1)) GN mi s
3 TIF(NAKS(AF) .LT. 1.P=5) 60 TA 3
5 » .  CCEXP(M=LeFaddx((1+AE) 8 (M= t)wrCFxtl.l.J»-rrFx(n 1PN ANARLEARE Y 3}
v L ! SCEXP (M=t wly 11 =({1+AE )2k (N UIESCEX (1o Tyl b=SOFXIMa [od) )/ ( (M=) 12AF)
2 -~ 7y s SSEXP(M=lolodta{({+AE)#5 (M=} )SSSEX(T oo d)= scsxcurx.lyi/dtM-tlmnsn
T . Gh TN & N
- - : B “IR(T.EQ.J) 6N TN 30 :
: o CCEXPIM=Lala) === 18R (1201 (1 /0 LT+0=2100 )24 1 /({T=g)8P [) 257}
£ SSEXPIM=1oTodr=(1={=1)as(Fad)2{ 1/ ((T=)}nPT)4xd =]/ (([e. (=2 )%p[ )uu2).
SCEXP{M=1 [ 1=1/({T+0=21%P T )41/ ((1=0)}=P])
/ G0 TN « 4 .
3 B& CCP:XP(N—!-I.I')? N.5N0 -
b SSEXB{M=1.T4T )= N, 5ND
; . | SCEXP(M=1. 1.1)= VU121 2P 1) '
. Be  <IFINDARS(AT) LT, 1.D=5) GO TN & |
b 3 COTNP (Mm) o Jodd=(f1eA T a8 (MmL)BCCING o Lo d)=CEINE M. L1y 70 tMay ¥EnT)
£ SCINP(M=ToT o a=({1+AT (Mo 1RSCENCY o T4 J)=SCINIMG 1))/ LAV mAT)
E SSINP (=10 1o ) =1 (1+AT)#R(M=1)8SSINTT 1o D) =SSINEM L)) Z0EM=1)RAT) ©
k 6n Tn’y - . ) |
E : 5 IFLIVEDLDY 6N TH 5N Y,
4 COTNP (MoLaT o=l lm( =1 )88 (1o g In(1/ (1 1+J=2 18P 1) %2241/ ((1=0)%P] ) 2%
- SSINPIM=1aTo b= () == 185l T+ 008 (1/141=0) 0P )b =)/ {(1+3=2)%P 1) a%2)
‘ SCINPIM=10 10 0)=1/0( T+J=2)5P1) 61/ [ {1=1)=P]) . ) :
E G0 TN 1 . '
: 50 CCINP(M=1.14T)= N, 50N
g : SSINP(M-1.T,10)= 0,500 ’
¢ ; . SCINPIM=T.T4T0= 1/(12%]=-2)2PT) . T \
4 \ CANT ERUE r : A
R RETURN  ° v .
A ENQ
¥ SURRNUTINE RLINFF(AE.ALPWND l
} , TMPLICIT RFAL®R (ALVC.P.S) / i
T ) COMMAN /CNEFRIL/ CORLI319+:91,SCRL(3.9,9)455R1L(3.49.9)
1 P1=23,141592A03 600 v
i LeN/241 . ’
L [ DN 1 M=2.3 , i ,
{ A=(5~MI%AE ~ (4=M)BALP
: R R N EA Y
t DO 2 J=1.L ) M
& IFI1.60,0) 60 1N 2 ,
' COALIM T == s Mo )a (1=l =) n (140 )8 (148 VRE(M=D PIs(1/((fod=2180] "
158241 /(L 1-11aP[)8%7) , _
SCRLIMe 1o =( L=l 1 #u (T4 1130 1+A 1R (M=} I (V/{(T+0-2 %P T)I41/((1~))
1%P ) ) =W 2#2m( A=1 )18 (M=P 18l =(~1)en{1+))n(1+A Jax(Mad)in(1/(([+0=D)n
1PLIsx34 1 /L LT-Neo 43 ) |
SSALIM, T, 0)==n 5(M=] )2 (1=( =122 [+.0)2(1eA )Bt(M= PN/ 12 eu]
1)882-) /(14 )=2)a0])5xD)
© P CONT INIIE *
. ' TFEILRDOY) GIF YO 7 )
- COALIMAT TI=ClRLIMe Lo 11 /2.00 =& &{M-1)0(1=( 148 JER(W=2)) /1 (2547 )n
1P )as)
. \ SCHLIM DL T1=(L=(14A Do (M=1) ([ 20]~ 7):${) -h wEPE(M-) )R (M-2)0 -
: (j) : 101447 pea(M=3)) /1 (28 [=2)sP1 )0 )
o SSALIMJle 1 =-ICHLIM, 1,10 4CCRLIM 11D I .
7o -
/y \ / ™
: I
L ‘ \’ ’

*, M 2
B S
RS AN S T .,




60 TN 1 : A .

f o ceaLMO N =2a(14(M=1)%a /28 1+(M-2)54/3)) ..
X SCARL{M 1o} )pan b '
SSAL{MeT o) }=0 " |
h CONTINUE d ) .
REFUIRN ’
F END '

o
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COMPLEX FUNCTION - DET#16( A, ,MoN)
DIMENSTIIN A(NeN)sLIN)eM{N)
} COMPLEXET A A, IVNTLHOLD
/ INTEGER EnA, iNw. COL.
. YEND = N - .
DET =(1.00,0.7M .o

PIVINW. PIVONL

v ‘ o0 10 T = 1N . N

Livry =1 o
M1y =1
DO 100 LNNT 3 3.FND
pIvaT={n.no.n.n0y .
DD 20 1 = LMNP.N
ROw =1L 1) ’
DO 20 J = LMNT.N
coL =M
IF (CHARS(PIVIT)
/ PIVROW = |
PIVCOAL = |
‘ PIVAT = A(RAONM.COL)

20 CONTINDE -~ , . - .
TF(PIVRNIW.EO.MNT) GD TH 22 ‘
NET = = DET )
~ KEFP = L(PIViNw)
LEPEVRAK) = LIILMNT)
LILMNT) = KESP
TF(RPIVONDL,FOLLMNT ) GO TO 26
DET ='= DFT . ~
, » KEEP = M{P1VINL) .
% . MIPTIVEDL) = ALLMNT)

MILMNT) = KEZP i

10

1

«GE., CNARS{A(RNAW,COL)))

DET =

- | JANG
PlvRiim
i . PIvCeOL

IF(CNARSIPTIVIT)

DET x vlvny

= LMNT + )
= L(LANT)
= M{LUNT]

«FQ.N.ND)

1N 333

e DO 100 T = JAIGN ' ! .
ROw = L") » 2
HOLD = A(RAwW.PIVCOLI/PLVOT °

PO 160-0 = JAIG.N

caL = M(a)

A{ROKR.CNOLY = A{ROWLOL)
DET % 4(RNW. CM}

100

, DET =
P 333 RETURN
END

GN

- HOLOSA(PIVRAOW.COL Y

.
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’ SURRNITINE PR & nlrroul.ou DY oD etie DU RMY INON T2 o T1o 1o TAX TP, 17/xsv;
DTSENSTIN AT19.16).L119)MI10) .
COMPLEX®1A AL 1M1, NMO. D¥aN] NG /
REAL®R La DULRALNNRLROLR 1M o NIIM ¢///

L5

. GI1=(0.00,1.N0)
J1,=1 -
Jan
DUM=DARS ( THP=3M) /128
. TF(DARSINH/DIIA) ;6T 66,.NO) 1129 LY
L INITIAL VELOCITY . INITIAL (HARACTFRI§T1C§ KEPT.FOR NFXT STFP,
R1=NM1] .
IFCIN JGTS 1) GO TD 1000 v
JUP=TUPR (DARSINII/RM)+1)
OMN=(IM ; '
1ax=0 /
IFINARS{RI).LT. 1N, %RM) [AX=5 )
R1=n1 .
TFU(DARSERY)GT, 10, 2RM) (AN, (TAX,EQ, 5)) 1aX==3 ¥
60 1D 31
1000 RO=M. , /
TF(L.LT.IM) G TO /
L SPECIAL CASES NF NJVERGENCF. }
IF(IN.S0.1) G TN 10T - /
- NN . , TF{1AX) 101, R.VY 4 /’ '
(‘ E SPECIAL CASES (F CANVERGFNGE. x Lo
- X IFL KEV.LT.O ) 1=) .
IF{INJLEL3) 6} TN 50 ) )
! JAX=1AX+S " J -
Gn Tﬂ ('?v‘)o")oéo?thqQSOG)”hx 4
' 4 TRFI{RILGTRMEIN, LAND, RN LT.RMRIN, ) 6N TN 12
IF({RILLT.RMEIN, ) ANNLLROLGT.AMRIN, }) GO T1) Ko
IFLIAX,GY,.4) 6N TD 20 °
- IF( R+ ]M AT, RO/2.) GN TN 10
. 1FI R+ RM (LT. R0/4,) J=f-)
i * T=MAXO 2, 1+1/2+1/7)
, . 1229 ,
| | 9 I=1-1/5 . -
R220,75%R1+5%)1 =3%M) ’ ~ ;
/ ‘ TFIR2.L1.0.0 ) 12=9 ! ’ C ’
0 TFICT.LF. a+A/rw).nn.¢n~ﬁﬁ(HU/4 NOILLT.RUM 1) 6N TN & .
SLOW CONVERGFANCE . NIVISIOM OF STEP RY 4,
H=zi=0, 7HN0aNi} . : J
. Hu=mize, pn / E -
D =(5xP+32NY) 73>
DI={5%N1+AxN) 722 , N
i oME=(neD) / , . e j
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‘ ~ WRITk(A,Q0) 11 "/ v

b9 FORMAT(? -PREVIC~ VELOCITY SET RACK TO,FG, 6,0 AECAISE TNN MANY 11
| 1FRATIONS In PARVINNS STEPY) 3

L. I=1-1 K .
6N TN 79

E SPFCTAL  THIHD & (IRTH PRINTS 0N OR NFF [M-AX]S,

. D= (DM} 72,00
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i L SPECIAL PROCENIRS T FACE TOO OUICK VARIATINNS AF FQEOHGN(Y. ~
A IFIKEY.LT.0) 6N TR &
IFLIN.EQ.4) G TN A4 ‘ »
IF(1IAX_EQ.0) AN TN 63
Fx{OM1=(1M) /D ‘ .
TF(LARSIF)LT.N.5)ANDL{ L. LEL2)) J=-] Y H
p I=t=0 '
IFITAX . LE.4) GO TN S . -
p3 TFILTIATLA) 0L (T.EQ.3 JAND, J1%12,.GT.1)) GN TO A . ,
IFL 1=112]2,LF.R) GO TN 6& >
: IFIT.EDLY) G TN A5
GO TN 4 .
he KU= (11+43M /48, NN /DY
, TFIKEY . FO,N) (=N _ :
\ / TF(Ku=~(xU/2)=22 €0, 0 ) GO TN 6b
pS SEl-2-(47INYEAINOL 1-3,7) : ’
6N TH A7
N K6 . J=1/2 = (1/6)8(IN/G) .\
TROCTRT1LFOL 11 AN, (KU={KU/4) 66 LEO, 0) ) =] e
34 I=1-1 ' W
L PREDICTED STFP FALTNR ., NFW CHARACTFRISTICS. \
P IDHPR=2,.N0%e{2=1) ‘ ¢
MINNDDR=HARSINMI/NUM)+N, 1 / ° .
‘ TFIMINDDR2NNG 1T, 1.D0) DNR=2  NO%*( - ManDﬂ/?) , b
DY=N1=NDA
C O FER(OMI-OMN) /DL . >
IFIF.BT.0,) Jl==1 A
N DDI=(NM)=DM=DL)=(1=6/ INYRR E&x(2=])2N]/N *
L DL S(3R(OMI-N4)I=DN + (AU =OM=D)=NNR)I=NNA/D , N
. D ={3X(OM1-0AM)=N = (NM]=OM=N)®NDR)=NDAR/2,.N0O N
¢ 12=11-1+41/11
T1=1+} '
U=u+ny ! | /
Ve OM1=0M14D14+DN Y 1 )
TRFOIAXONE,N) 1aX=TAX+] - A
60 TN RO ’
L FIRST PNINT (N [4-axIS,
| h H1=D1
IF(((RN+3, NOXALY, GT 0.00) .AND. (I.EQ.IM)) GO TO 10 ¢
. OMN=NM-RO . + {D1=HY)IXRO/ (RD=-H}.)
D= GTCNASS{TUPX(RA=D) ) /7 { 2% 111P)
RO={RN=N) /7 X
?4 1ax=1 ) , '
- ,\ NN =MO+DY .
oMn=NMY - Gi® NARS{IUPERN 12 122 1uP)
' G0 Th Al . |
86 &  HizM . - e
N}=NMh~nMY) ° |
OMN=NM-RO  + (PL~H1)ERO/(RO=HY)
RO==M2GI/H . ) a
I TRIROE(UP,GT.0.N0) 60 TN R4 ' | . °
L SFCOND PUENT PN T4-AXTS. [
b Tax=2 . ‘ *
. DI=CNARS{ TN NMI=AM+N) IRGE/ [ 22 ]1IP) . ,
ND=CHARS (TUPIIMI=IM} ) ZT1IP2G] ‘ !
. 60 1N %0
) 0 TFICPHARS((IM=RN} . GT,RM) GO 710 3
- L FIRST PNINT WOFF AXIS (TD RF R-CALCULATEN)
' 1 18X==a
DI={CHARSIA) + N1 /2,D0)u), 50N .
L__ﬂ_,IFIRQ.Ql.ln.nd*ﬂﬂ)"nl=(Gl#CnQﬁ§(nIJHPDfJHP+HlL-n.7ﬁnn___k-_jf_u |l
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- M =M . - . e .
‘ GO TA 5 . ) ' l .
SECOND PNINT OFF [M=8XIS (70 RE PREDICTFD) ' ' oy R0
JAX==3 . ] : ‘ {
nl-anRS(nnl-nn) : ° . v
U=l+DI) e ot ' r:
1FIN-3) 51.53.57 o ‘ : . *
DE=0M1-M y o
D= o :
OMY=zNML+N) '
TFUINLGT.3) Jl==1=TARS(TAX+]) v
12=2 . '
1=2 ' ;
DDY =0 . ' ) : c
ko OM=0M1=N1-pNY . g , ‘ -
R1=NM1 ) . ‘ 1
RO=NM v
E INVESTIGATION NF A NFGATIVE PLENICTINN ARYOND [M=AXTS, “
IFLIRTLLT.1N,NO=RM) 8NN, (TAX .EQ.0)) GN TO R ' ’ .
TOMDsOM +D1DNL=J1 %017 IM .- . v
J1=1 ' )

Bl CALL SECANT[ALOML OMN LTI RM, TM L oMoN, T KFY)‘ ,
IF(T*)1 LGF, TM&IM)® [=1M+] :
IF({T.LT.TM) .NR. (DARSINI.LT. 2E01M ) LR, (INJLT.41) GN T0 100- ;

, TFU{TAX=1)%(1aX+4))} 91,90,100 . ) ;

'?0 Dl"l') % °

. IF(1AX.EO, 1} n1=H1 . N

D=n1 { ‘

IAXe-18X+) ° ~ '

GO TN 92~

D 1 IF(TAX.ENLN) 60 TO 100 \ o

¥ TF(NBASIOU),GT. 4xNUM) GO T, &

- 101 T=1M+] e ) ’

{ L 00 IF{1.LO.IM) G TN 1000 v
* RET“QN i N
, END
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. | | . CRITICAL CHARACTERISTICS |
Agt.f !
S 1 . ‘
.j& ~ N !
. ‘&: N » . i
% 4 ! '

IXP1T:i9.9).SC4P13.9,6),S8SFXP(3,9,9) /CNEFAL/ CLRIL(13,9.9).SCRL (3.9,
e SS]LH3,G,9) /PRHUTRS/ PAV(22)1.1P3,. P2, In ., .
IN NMES(3),P3(3).PALAM{D4) :

[}

. nar RAM/VALPHEIE) S, ' 8LPHALT) ' *AL 0O/0=Y ! CN=t .t CY=i,
1 4 MURS IGAMMI T ) s 1 'GAMMIE) =P INFRILTAT/F I IDT END/LY,
. 1 -(L/ny=un-.-c*/=p<a='.-Fp<(L/n»'.'ew(xO/n)'.'K(nqu =,
. o 1 'P((TFN)—' TULTNT =8, FXT =1, 041 PHAR = EFE=1?,
- 1 TN e tSIGMA WICLA=CLAMY (¥ A= FQFF'/
? L READ NUMRLR OF nthFERFNT SETS NF PARAM%TERS INDFX FNR A( (CL=-CL:0,.CL
'; REAN{S,13) NRYAX,INC .
DO 1NN TIPARI=L NOMAX
3 [T READ COMPLETF SFI (IF PARAMFTEQS,MATE:RFADN EPQ(n FOR CONSTANT ANGLF.
REANIS.172) (PAR( 1)eJd=1,1R) .
12 FORMAT(RNDIN,3) I,

C REAn FIRST PARAM-TERQIS | ACATION.STFPS(NR RRANFHFQI.CTGP SI2EB(NR 1,
. REAN(S5.13) TPL.NPY NP
( 1.3 FORMAI(215.4F1N.5.416)
4 1PR=n N
Dl 10N NPAR]I=L.ND]
C READ SECOND PARAMFTCRIS 1 NCATIONLSTFPS.INITIAL VAIUFRSINITIAL M MEMUM
=L USAME SINAN UNLESS UPPER MHRANCHITAGLURALY o MAX NF ITE2A lnNS.MArnxx
i : READ(9413) [P NP2, P2 NPYNIPIMINAM, IM N KEY
GAMSP=PAR(12)/7(1=PAR{S)xxL}+]) , N=2N t
PAR(21)1=NSNRT{IARA,LDOZGAMSY  Z{PARITI+PAR([R) )} /PAR( I3 %%kD *DARI15)
PAR(2N) =PAR(1RIZx?2/(PAR(]]1A24N,28NNX(]-PAR(Q)=PAR(IN)E(V4+BAR(7))
VAR ELTUIRURELED
’ ! PAR(272) =140, A>=PAR{ 14 )=PAR(B)=PAR() ) .
PAR{IC)I={PARIL)I+N,ASXNARS(PAK([13))%PAR(ISI&PAR(3))/VAR(??)

t
|
1 ¢ IFCCIPL=L)x(T21=2)u([P]=-R)%(]P1~ ~6)E(PL=13)18([PI-T141&(NPARL=1},NE, -,
: , ) 10) 60 TH S v ot
IF(INPARL=1)2([P1=1)=(TP]1=2].,NE 0} GN TO 40
, CALL CPFFTLIPAR{I)PAR(214) S
FRFINPART LGTe 1) 6N TN {60.611.1P]
EPS=PAR(13) ' ) !
0 CALL RILCOF=(PAR( VI PARI 19 NI
' : 51 TEC(DARSINPY ) (LT, 1 N=7) AND. (PR, FO, IP21) 6N TN 49 f
WRITH{A, 1N J8RAMI2A4TUG) . {PARAM 11 .PAR(S) o I=1427)
s FORMATE YY) ,A8,¢, REAL [AT-RCELTS VIGU ALK ARLIBDYD N7
L READTTHIN PARAM-TERQ'S LOCATI N, 2 VALIES [N GRITICAL 70NE, [NCREMENT,
;o [ APDROXIMATE (FORIFSPANNTIFG) FRECGIENCTIES,FXPRECTFN INCREMENT (RFAI ) X
¢ G REANISITY 1P3.23(1).PI(2).NBAPI.OMEGL]) NANEGE?) . DMP)
f 17 FORMAT(I2. TR, A FR, ) -
3 WRITHIAL I A) NaAM (PARAM{IPI) WARIIP) ) PARAM(TP?) . P2,NR) PARAA(IPY)
- : 16 FORMATL t—nam Nz, ]2, , Arcnuacv='.lpnﬂ.1.Two.'ov:'.An.nlp.s/
- 1T3Q,'PP 2t R, 11 7.5, HY NPR=1,NI2,.6/T34, P31 ,AR, Y 71))
N TRUCIFA=1)n(123=2)e( IP3=-2)2({]P3=-R)n(]P2A=~ l%)*(!pa 14)156,55,454 .
(I: ¥ %5 WRITFI A, 14) PARAM{IPR) .
19 . - FORMAT( Y _COEFFICTENTS WON T MAT(H TRIRD PARAMETER !.Aﬂl)an B
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e DO Y _d=)1.NIN -

SURRNUTINF MATRIX(A4X,P3,P2,N) : /
IMPLICTIT COMPILEXRLA(A.X) R-AL%B(AR~H,0=W) ' /
REAL®R NU.AE.Al.ALP /
COMMON /CNEFFS/ CREX(5:949)aSCEXI5e949) 4 SSFXI54949),CCINIS¢9.:9)

lS(IN(S 9. 0).§QIN(5.9.°).CC'NP(3 Qe eSLINDL,Q,4) ,SSINP(349.0},CCF

1!9(3.0 ©) JSCEXPI1, 9.°).S§FXP(3 Q@,9), /COEFRKL/ ((HLli Qqql.S(HL(3 «9e

19).SSRL{3.9,9) /PRUTRS/ P(22).1P3, IP?.IRC

DIMENRInN A{NN)ACC4L(9.9). A%(A(Q a9, ASS4(Q,9)ACC3ILU.9).458(219,9)
fS#(Q 9)ACT2(,9),A5C2(3.,0)A882(9, 0).Aryﬂl0 0).A§c (9. Y. ASSI(

19.9) AGCN(9.9),ASCO(9.9),A885N(0,°C)
XI={0.000,1,NY) '
P123,141562A53589793N0 |
P(IP3)=FP3 Lo :
PLIP2)=P? .
Ak=P( 1) . i \
Al=P(?) "

Uli=P(17) '

UE=P(1R) . .o e
SIAMA=1+0. 65%2 (14)xp (5)=P (3) Y
ALP =(R LI+N, 652p  (131%P  (R)xP «[3))/RIRMA

GAMMA=8 (1) {13)2x3/{1=P{3)ak4)+1.N=10
Nu:nsoRT(%aﬁ.anO/GAMMA/(P(V)+b(n))/P(l3))*9(1%) -

DMUNU=P ( A) + NIXCDARS(X)

TF(DMUNU,LT,.1.N=-0) nMuNu—l.

NUSNURD () ZDMONI
XB={1+X[xX&N1)
V2=lIEx%?
WE=((1+AFE) /(1 +ALP}/SIGMA ) %kD

U2=v2/STGHA%R)

CHI=P{L11)x(1+AE}/P(13) ) .

R2=P (13 )%P{S)nVv?

SE ={{1+AF )% %3-P(9)xx32(Y+A[)2%3) /A, DN/{1+AR=P(V)X(1+A1))
CFE=N, 8RT75/(Q, + (28D 11))5x3 )0V
CFI=N,0)/(1.25+NSORT(2.N002P({1}) )xen1fx%k?
CFX=N,0258(0, 1+P111))/{0.05+P (11 ) )=1FRU] .
THETA=CFE= {1 +1E)%%x2 +CFE/(1+A1 )62 +CFX&[1+AEY /71 1+81) +P(16)
BA=UT=x2/(1+A()322=THFTA-CHIAGAMMAXR({2~P{R) )X SE +0(7)%(148] )1 %% )
Baz=GAMMAR{ 2 _IN-P(R) ) ’ .
A5==GAMMAIP (7)) °

BA=2,NOXNSORT((P(TI+P(Q)x%x2)/(PLTI+P{R)) )%l

B7= DSOIT((P(RI~0.99C9349QNMN)/{P(7)+P(R)))*IF

RN=R7/SIGMA%R%E)

RR= P{13}1aP(hiIxy? K
RAA=2a AL %117

RG= P(l?)*(P!AI*UE+ 0.0 }ENSORT((P(R)=0,9990004} /(P (T]1+P(5)))
AGA=P%AF%R(} \

RO=PLT)I/{PLT)+P{R]))
RI=P(R)/(PIT)+PI3R))
X3==X]2X/{2aP{ ]} )&xxDaRT4D NORAF

RG==XT2X/(2%P[13) ) 2% 2uR6xP (O )au)pnA]
XS=(X/{22D(131) 1222 AF(P{U)=1 . NN)/{P{TI+P(R))} '
XA=(X/(?¢P(11|))v#?#hl°(9(7)*P(Q)5#?)/(P(7)+°(R))*D(Ql**?
DAl =P[3)%54nD(2)anr? / .
NIN=N/2+) . i ~ °
NIP=NIN-? ,

PO 1 T=].NIN

1/7(1-P{Q)=xrs4)
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% C. ACC_& :RELATIVE N FIRST INTEGRAL DF COFFFICIENT NF &4 TH nFRlvaTlvE. ’
A L CCEX(K+1. :RELATIVE TO FIRST INTEGRAI, NF (1+AF*X)®aK EN2 EXTERNAL
& L SCIN(K+1. SRELATIVE TO SFCIND INTEGRAL OF (14A1#X)o#k FNR INTFRNAL
L CACCOL T D) =XRE(COEX( S, T4 1) =P () 22snC INISe] od)})
it ASCL(Tod)EXRE(SCFX(5,1,J)=P(Q)uxsnSLINIG, (o)) ‘
% S ORSSAT e J)=XREISSEN{ 5,11 -P[U)ex4xSSINISe o))
* . ACCAUT ) =REXAR(ASRCOFX {4l o J1=P(Q )xxtxA[ACCINIL T AY)
% ASC{T M) =REXA(AFKSCFX 4y} o d)=Pl9)nxsxATRSLIN(G],.1)) «m)
¥ ASSIU T d)=RENAE(ARRSSEX 4, 1,,})~P (9 )uxanp [2SSINI &L ] 1))
14 ACC2{ T, J)m12=KA{ AEX22aCCEX( 3, [o ) =NAI=COINIT T ) )41 2ChRL .10 d)
¥ 1-R2*CCEXP{?. 1. J)+RIXCCEXIT Tod)#RAPCCEXP (3010l ) +HEXECINP (3,1 ) Y
A 14X32CCEXbe Lo d P+ X&xCOINI2, (4 .0)
b ASC2(T )=t 20XRn(AE%a28SCEX {3014 1) =DATHSCINIZL L0 oU22SCRLIZMT4J)
L 1=R2%SCEXP{2¢ 1o 11 4R3ESCFX( 1T, J)+R4BSCEXPI 3312 J)+RERSCINP(301.7)
p oA 14X3ESCFX(6o o))+ XBASCINI 24 T400) | ]
Y e ASS2{F e )= P ARR(AESEXIUSSEX (R [a ) )=DNOTESSINII LT 0) 14 2%SSALI 0T o )
. ' 1-R2#SSEXP(2. 1. 1}+RIXSSEX(], I.J)#RA'SSFXP(3.I.J)¢Rsx<<lNP(3 1..0)
o : 14X38SSEX (4. To )+ XanSSIN(2, 01,3} !
. ‘ BCCIU T )X TRl RALCE TN o 1 JI4RNALCRLIB o Lo )V +HAROCFY{ 2, LW 0+ (X%
¢ , 1XERT=R4VECCEX( 20 T4 JI=RE4CCIN(T T JI+XSXCOFXIA 1 )+ XnaCOINIG, ], S) N
- 1+RRAECCHLI? W Ta ) ‘
§ ASCHIT e J)=XToXRIRAXSCINILe b o J)#RNESCRL{ I [ 4 J))+RAKILEX(D, [, N4 X]%
£ IXERT-RLVECCEX( 3, 1y ) =REASCIN(3 T 1 +X52SCEXTG, o d}exraSCINIGLTL)) |
; 1+BRA%SLALI?« 1. 1)
: i ASSI(To ) =XTaxXa [RARSSINGY 4T o 0 )+ROBSSALIB W 1o J) ) +HRAKSSEX (20T, 114 (X]% .
IXERT=RG)IXSSEX] 3. 14 J)=RE5SSINID, o)) $ASHSSEX (& T o0 ) +XARSSINIL. T ,) }
1+RAB%SSAL (2. T..0) J
ACCO( T4 J)=XTa(aRIXCCFX (24 Fo ) )=XEXR(HIZXCOFX (3. l'l)¢Rn*(Fl (3.7..0)) ]
1 +RGARYIEARCOCRLIP.T6l))
‘ ‘ ) ASCOL L. J)= xI*(tn%scsnz.I.J)—xnxv(nwsccua.t.d)Hn-<cwn.r..tn
N 1 +ROAX XK SCRLIZ - Foul) . {
J ASSOU T4 0} =X TR XSRIRGSEX [Py F o)) =X Xu (A1SSEY (34Tl P44 %SSTM(T01 o))
g 1 +RGAXXIAXKXSSAL[2.T4.)
E A(S.1)=ACON(1.1)
) PO 9 IP=7.NIP st ' ¥
] A(2+?=l9.ll-A«Cn(‘P 1¢ .
£ B B(3+2= TP, M=ASCO(TPT) - <
F DO 10 IN=? NIN ' .
L PIN=(IN=11%3, \axsqaasisnnvwann
B AlHe2%IN=?) = Ar¢%ll.lu)-v1~an<c1(l~.l)-PlN«u7uanc9(|.lvv
b 1 Ve " #PINER3EASCI(IN, V) 4P INERLRACCL( ] TN)
H BiHy 22 IN=1)sASON{ING I +PINAACC LI 1 TN =P INREIRASE2 {101 )
" 1 “PINBEIBACCI{ Ve [N +PINSRLASCL( [V, 1)
¢ N0 10 P=7,NI2 ‘
i ~ AL242% 1P 2% IN=2)=8CCOI TP INI=PINRASCI{INGIP)=PIN*®2 220 C2( [Py IN)
1 1, #9]N*¢3ﬂﬁ\(%(lN.IP)+P!Mt#&“A(CL((P.(hl
ﬁ BU3+26 TP, 2%IN=2)=ASCOITP EN) =PTNEASS] ([Po IN)-PIMa&I+ASCR{ [0, IN)
N 1 +PINEEIACSA( [P, [N )+ HmemanaCCa(]r, M)
A{P+25 1P, ?=1~ U1 =8SCOUING TP +P INRACCYT (TP TN)=PINR® ) e ASC2 (1N, 1P ‘
1 ~DINEXIXACCA(IP, [Mupl\m-.r/\\ra”w.wr
A{3+4221P, ?v|N-1)-ASSOGIP.IM)*DINﬂA\(l(IP-IM)-°|~“°9=A\S?(lw.'N‘
1 -pwuunsruw IMI+PENR R4 ASSG TP INY
| 10 CONT INHIF ., )
NIN=N/Z2 !
N Al) o1 =) .
A(?2.1)=0 o . ..
TFLIRG.EO.N) G0 TR 20 .
L - CLAMPrN-FFE CONTILTIANS | )
=~ , E=P(Q1nnpap( )] ns) ) ® !
(( / EFF =P (11 )4& /1P ])8624 1 =P(Q)sP(10IR(1+AT)/(1+A3))ee2/4)
o e CRAZEFE .. $RTE{[Y+AE PR 2~ | EX(1+Al D) aME . .. _
I

i
bbb =




v
t
s

-

1

BRaCHIS( (1+EFS  #(P(A)=1))2{PITI+PIR))I&SF +uNX(1+AT )22 ap(10) =2 )
BC=EFE *{(1+4ENe»2- Ca{1+A1)nmD )AV2RUE =CHIRSAMMAR{ (P=P(B))*
1S¢ 0°(7)*(|¢A[)#L7tP(lﬂl*t7) v
BDs~CHIX({FFE =*RT®(SE + Fa{l+Al)&*28WF ) +RA)
XE=((1+8E) %261 +Al )neanExn2)/(1=Fon2)u( 1+ XIRXONIT)
At3.11=0 * '
A(4. ] )=RABX[aY + RRKX#%2
DO 11 IN21.NIN \
Af1, 25 IN) =)
A(1e2%IN+1)=0 |
! A‘?OZ*‘N,gn o .
7 A(2428 TN+ )=INSDT, . , .
AL 2% [N)=INR2IB (=] ) [N%PT &%) ’ ;
A{3e2%IN+Y =0
Albe2%INI=ATLs IR {=1)uxIN
1 Albe?®IN#1 )= 1 )2x IN®( IN®P IX(RCHANRX[EX) = ( INSP] ) u=m35XF)
GO TO 21 ’ ’ -
C CLAMPEN-CLAMPED 'ONDITIONS | /
0 Afa,1)=0 < 1 > /
A(3.1)=) - ~
PO 19 IN=1,NIN : e
A{le?5IN) =1 .-
A(1.2%TN+1}=0
‘ A(2(2%1N) =0 ‘ N
Al2.2%5IN+1)=Tn=p] :
Al3.2%IN)=(=1)ux]N
A{3,25IN+1)=0 .
A{4e?®IN}=0 2 o

.

19 A(4 2% N1 ) =P [xTNE(~])x&IN oo
L SURSTRACT 1RST'GAL TN EVFRY EVEN GAL: 3RN TN DDN. NRNEZ RENUCED RY 2

L, CHECK CARND LMNT=3,ENN IN DETHI6 . n
21 NN 13 I=1.n _ o,

N0 12 =2.NIN .
A{Te2%0)=(A(Ve224]=0(Tel))}/PTk%t

. ~

/
—————e AR

{

Y YL A LS LI PR RIS SO LYY R PR SR PIEE T
13" A(1.3)=UA(1.2) -811,1))/PIese.
RETURN . ’ N
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L-15

G0 T0 100 iy
56  XP3=PAR(1P3) . ]
XP2uPAR([P?)
. TF(EPS.LT+N,) XP)=PAR{3-[P?)
PAR(TP?)=P? :
i : DP=NP2 : 4
/N0 5 NPAR?=],WP? :
TF(UIPP=11%( 122 2)8(1P?=21a(P2=5)2(1P?-13)%( IP?-14).FO.NIGNTO SR
TFUCIPA=1)n([2R=2)8(1PR=3)u([PR=6)a( [PR-13)& [ IPR-14))A1.57 Ak
- 57 TF((IPR=1)B([3R=2)) AN.6U, AN
: B8 IF{(I1P?2=114(122=2),NE.0) 6N TN §7 N ,
IF(EPS.GT.N.) GN TN 59 \
PAR[13) m=FPSe3AR{ [P2)/XP? .
PAR(3=1P2 ) =XP{%PAR(IP?)/XP? : '

- ol
A B

B ) CALL CNREFTIL(PAR(1),PAR(2),M) .

- : TFLIPR.EQ.?)Y 5D TN {(ADL6Y).1P2 . .

60 TF(NARS(PARELI)I I LT AM) GNATH 41 -

STGMA=1+N, A5 P AR (T4} =BAR(SIZPAR(3) e

PAR({1C}=(PARt L) +N, 65*»‘&&(1”*9411(5)#959!3))/SIGMA

. . CaLL RL(‘I’IEHP\RH) PAR{15).N) .

i 51 CALL AxannT(Uw—n.nnMP?.Pa.WP%v?.PAR(lP?).nP?.nul SLeNM [ [YMWKEY) .

IPR=N .

‘F(lﬂ“S(')"l“l ﬂ.qﬂ‘oﬁ -

’ Ko TFLEPS.LT.N) wWRITE(ALR) PARAM(3I-IPD),PAR(3—-]IPD) PARAM(I}2) ,PAR(Y3) |

,? ~f- WRITE( 6, 14) PARAM{JPZ)'PARIIP?))QARAMlKg%).oﬁ(%) OMEGI3 ) SL UL, T | >

- 18 FORMATIIH AR, FC,5,',!, AR,FR, R}

l & FOIMAT(1H . AR.F9.5,9X, ARGFQ,5. GX,INMERA =1,1PD1?2,5,¢,

, 1eDG 20 OXITANSI,NA, 1. AX.ODI/NIMZ DR, 1,0 [=t,127)

- b6 TF(l.G2.IM  %4PAYD) GO TH w9 ) .

- lF((PaR(l7).Lr N.NN) JOR, [PAR(L1R),LT. N.N0Y)Y GATA 9o

IF({ DARS{OPI/DPI2MINI.GF.O.S0Q0N) K T § | !

‘ ' TRI(NP2RNPIMEN, GF =NPI2MINERD /3, N0} ,NR. (NPARD ,LF,?2)) £N TO 94

C ATIEMPT AT POINT DM UPPFR RRANCH.

OMEGI? I =3=NMEG( 1 ) =P&NNER(3) - .
OMEG{) ) =OQMEG( 2)+{ NMEGL 2 )=NMFGI3) ) /20, .

s StL==2,.hnx&) - Y ] ' -
MiT==hut/2,nN0 C .

DP2=0 .
PA(1)=P3(3)+4:NP3ID? o

3 PAR(IP2)=PAR([P2)4+DP? .

B9 PAR(IP?)=XP? ) ,
PAR('IP3}=XP3
IPR=1P2 .

CTF(EPS.GT.0.) GO TO 100 \
PAR(13)=EPS ,
PAR({3-1P?)=XPL - ;

1 00 PAR(IPI)-vAR1(PI)+nPI

¢ . sTue

END~ .
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SURARNUTINE LAGRAN(AGXT o X011 P NMeKMyLeM NJK KFY)
DIAENSTON AINJNILLIN)JMIN)
COMPLEXELA AcXNeX1eX2.Y1e YN Y XDNET
REALRR 1 P.NM,RX.NX
K=n
CALL MATRIX({A. XN MI,P,N)
YO=NFT (AL oM, N)
., L0=CNARS{YN)

TRITAASEKEY) NF 1) GN TN ]

CWRITEIATOIP i XN YO X
K=K+ \
CALL MATRIUX{A.X1 N PyN} -

K==K
I0=1n%70 \
TF(CNARSIYT) 5T 10.= 21) 6O TN 3
X=(XN+X1) /2 )

Y=(Yi+YD) /2 - '

X2=((X RYNEYLIX(Y]1=Y0)+XNEYIEY 5(Y —¥])+X1&Y *¥YNX(YOLY ) /(Y -Y0O)/ '

HIYO=-Y1}/(Y1=Y D)+{X1&aYN=-XD:Y) )1/ (YO=Y1 )4+ X]%Y=XaY])/(V-¥Y])}/3,

YRO=YN ' .

YR1=Y1 | o

W=YRNZYRY={YN=YPN)&(Y)=YR]] |

21=CNARS(Y.])

IF(W. LT.20%71/Kxe%?) 70=10,%70

TF(L 212(01-1.3/7K)  oGTe 701, 0R (K, GF,KM)) GO TN 3

IF(TARSIKFY).NFY) GO TN 8 R

WRITE(AaIN) Pl XDQ YD XY oY o X?

FORMAT( ! P2=0,1PN10,3." PI=0 N1, 4.2(" X=to?2D9,2.8 V=1 ,2NR, 1V, X=

1%,011.44N9,2) )
DEFINE ACCURACY ACCMRNDING TO NISTANCE FROM REBL AXIS

Y2=({N,0,=-1.0)%X7? i |

DX=N, 062 ARS (Y2 )+NMx5) .

IF( CNARS(X2-X1).LT.NX) GO TN 2 |

RX=%2 {

TF(RX+1DM) Ay heT | . :

720=X1=-X0 $

XN=X?2~-RX N ¢

X1=X0=(0, NN, 1, NNYERX ;

K=eK-? ,

GO TO 4 ’
X=x1 . '
Y=YI . N - S
IFI2).6T,.20) 60T 11
X=X0 « -~
X=X} .
Y=vY0
YO=Y1 j
X1=X2 R
TF(DAMSIRXY,LI.NM) X)=X]1=-RX s
20=21
an 10 ) .. -

o it

. R |
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E WRITR(As1]) KoKMeP ol XDeYN.X)o¥1aX2
1 FORMAT('N=1 AGRAN= INTFRRUPTEN AFCAISE OF NIVFRGENCS NF FREQUENC YR A -
1FTER K=t,12.¢ ITFRATINNS £ 'K<KkMaX=1,12,% (LAST [TFRATIONM TRACFKA -
1CK ¢ 0/ Po=? 1PN10,3,0 PI=1,N]1,4e2(" X201 2NQ, 2,1 V=!I ,2NR L)' X>
L 10eN11.4.06.2) . .
R K=KM .
! 2 z*:XZ .
ETURN

END

W
@9
¢ . G
L
!
K, -
: ‘
,: .
E '
i R
i .
-
f .
®
p a
1
H
H
' N
§ :
i) ~ N .
i
¥ \
¥
i 1
5 . PR
1 \
3 9
. - .
: B \
- \ h
\ ha v i s
L P [ .
]
)
'
.
{
CC} ¢ ' ’ !
°
| - -y
A s —————— - -
' . R /
. ¥ -
. .
.
'
L | \
-
Al vt e e \
, R B TR SO v Ut S




R T

. R BRIV Ppe—— . e S N e A e
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SURRNUTINE AXINNTIAMNNMe VNV PeNPNUNIMGSLNDMAX o To TMAXGNIKFY)
DIMENSTTIN A{20.2D) oL U20)oMIID)NM{3),VIF}
COMPLEX®1A GlNM, MO, ML M2, NM3, DME LA
REALTR VePoeNP O3 X14X2,X0eY0, Y, v?.nv.nnnm(.§|.nvntn.nnu
. GI=(N.N0, 1,00} y
INIT=)
Nv2=v(?2)
IF(KEY.LT.0) 60 TN 10
KEY=KEY=?
. {=0
INIT=0D !
V('H!O v \
QM 3) =0 ‘ _
L CALCULATINN A= FREQUENGCIFES AT INITTAL VELNCITIFS ,
OML=IM( A=K ) . ‘
TF({K=LI*INIT.LF.0) GN TN V1
Y2==G1%NM?
, VI2)=VI1)-NVN{MeY? : .- .
' - X2=0M? 3
OMI2)= X2=Y2/(Si.+DNMAX) - '
& TFE X2 JLT.DDWAX ) OM(2)=PDMAXAG] . o
b OMI={(IM]+9%=OM{ 211 /104 .
11 U3=V(K) ’ L ’ ) 2
NM2=NM{x) ' \ i
CALL LAGRAN{ALON? JIMY 113.P nnMAx.xMAx.L. Ng.JoKEV) - N
- IF{J=TMAX) 1,100,100
i OM(K)=nNM? , . ) {
IF{TI.FO, -TMAL) J=TMAX
i q- Y1==GTenMi ) i
§ C Y2=~Gl1&0M( 2) . ,
¥ TFLINTT+ NARSI[=1+4Y2AY1).GT, 0.08) ~N TR 12
SPECIAL PROCENIRE FOR TOO rLNSE lNlTAL VALUES NF FRFOUFNCTES,
; “o VI2)E26VI2) =V 1) \
VI1i=2&v(1)=-13
. un=u3 .
- OMN=(1M2
. I=z=-1
60 10 10 .
TEUI.FO.-1) 6N TN &
OMO={UM{1)+0M(2)) /2, )
UN={VIY)I+VEZNN /2, P
‘=0 o . -
TF(YYIewD L T,Y?%x2) =] \
Ut=vivei) .
' w2=vi{2-1)
) OMY=OM{ ) +T1)
OM2=NM{2-T1)
.k ITFRATIONS IN VFINCITY
DD 2 =1, IMAX .
. ‘ YO=-Gl&(MO )
("(T; \ Y1==R1n(M} ‘
‘ 1 |
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BT Ax

L 00
hoi

CIFL(I=1/71)%Y28x2 GT.Y0%£2 I GN TO 24

. FORMAT(®' ~aXRONT- INTFRRUPTED HECAUSE OF DIVERGFNCE NF FREQUFMLY ]

V3= ( {HOSY I RY28(YI=Y1 ) +H1AYIRYO& {YO-Y? ) +128YDRYI={Y)=YN)) /{YO=-Y1)/
LEYI=Y2) /(Y 2=YN}+(U2RY 1 =1J1RY2 1/ { Y1 =Y2)+(U2aYD=110%Y2 )/ (YD=Y?)) /3,
TFUIYI3Y2 .67, 0,001, AND {11 =2/11%NARS(Y2) (GT. DARS(YLI)) GO TO 99
X0=nM0

X1=NM)

X2=nM? \
D=’ (ARS{HI2=UL)I+NARS (LI ~(10)) /2
NDU=NARS({U3=12) /NU)x{T=0,3) /71
CHECK TNN SILOW CANVERGENGE TE FRRAR ON 113>30% NR NNTSINE SPECIFLC
BECINARS(1=13/12).6TaNe3 JOR. NDH.GEL1) AND, YI£Y2 . GT.NL ) GNTD 99
OME=((XORVYIRYIG({ Y=Y )+« X1AY2EYNS{YN=Y2)4X2aYORYIn{ Y =¥YN)) /(YN=YY}/
LUYI=Y2)Z{Y2=YM +{X22YL~X12Y2 ) /{Y]=Y2 )+{ X22YO=XORY2)/ (YN=-Y2))/3,
OMI=IMF+GTxY2/10,.N0 .

EF(NARS{1-113/921+0ARSIY2) LT, NDDMAX) GN TN 2

CALL LAGRANIANMFNMI P NDMAXIVAX oL M oNKoKEY)

OM3=NME

TF(K=-IFAX) 25,10Nn.100

Y32=-GleIM3 A .
IFINDARSIT=N3/:17)+ ABS{Y3) .tT, NAMAX) GN TN 3 - -

uo=ut .
OMO=M] ) ,

ulr=y?

OMi=NM2 . o

GO T0 2?26,

uo=u2 :

DMO=NM?

u2=03 -

OM2=M13

I=Tmax 7,

S =(Y?2=¥1)/(112-01) ) -

1F( X?.ﬁE.OnM\X ) S =(Y1=Y¥2)/iX1=X2)

WRITELALN?) T1.113,P,8 ~

FORMAT{'O-AXRINT~ INTFRRUPTIFA RECAUSFE TON SLAW CANVYERGENCF AaFTFR ]
1=%,12." TTERATINNG AT ©3=1,10P10, 48,0 , w=14n1INn,3," |, TAN=!,8Q ] /)
I=1MAX«(1=2%INIT) + 1=INTIT

GO TN 999

STHRARS NF CRITIGAL CHARALTERISTICS (VELNGITYFREQUSNCYAILOPES)
VI3)=V(3) + (1=[MIT)=(03=-NV) .

OM{3)=NM{3) + [1=-INIT)®{OMA-NOM)

NNV2=)

TF{ARS{DWV?2).GT.1.8F=-A) GO TN & /
TELARSIDV2 ). LT D.5F=A) VI1I=ti3=1,F-4
LF{NARS(HVI GT, NAMAXY GATH 4

NQv2=0N
nV=03-v(3) |
NOM=AMA-OM( 3 )

VI2)=hDu2s INT T&(113=V(1)+NV2} ;
V11 21342% (03=VIR))=NV + V(2] \

OM{])=NMI+ 26 (I¥I=M{3) 1 =DM .
OME2)Y=0IMI T )% ( L+GTENNMAX ) ] . .
OV=(14=V{3) )& (NIT

Vi3 =03

OM{3)=014

DVDIM=(12=11 )/ (Y2=Y1)

SL=1.ha

TFIX?2. 6T, DNMAY) SL={Y1=Y2)72({X1=X2)

TFLJ.FD, INAX) G T 106 ]

RF TURN : K . . -
WRITe (A O ) 113, P | .

AN
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IN =LAGRAN=- A[ U=, 1PDIN.3.* AND ﬁ-'n.mn.‘a/)

1=1Max+l - InYg [
TF{INIT, FO.Y) G TO 103
SL=1.0nD
RETHRN
P=2P-NP
DVDIM=NVOTMEO, TH )

NPaNP/?

nDv=Nv/2 .

V(?)=V(?) /6 .

V(1)1=vI3) -+ DV +V(2) /2 3

DHM=POIM/2 '

M) =NKE) + NNM . )
NM{2)=0M(3)%0,90 + NOME] 1 s
RETURN .
END ' o
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A SUSRAOUTINE THMRONT{DMeNNMV NV, P NP NVNY NNMAX e T+ IMAX N KEY )

” THIS SUHRROUTINE HAS SAMFE TNPUT RFQUIREMENTS AS  AXRNOT,

E <XEPT NN SLOP-=, . R
IMPLICET RFAIL%A(A~H,0~2)

DIMENSINDN aA{ 20, ?0).L(?0).Ml?n) DY), v(i3)

INTT=}

IF{KEY.LT.N)Y GN TN 10

KEY=KEY-2 ‘ |

I=0 7

© L INTT=0 ,

Vi3)=n ,
. OME3)=20 )

10 OM2=0M(2) <3
oMY =0M( 1} ;

N C CALCULATINN D= I“AGINARY FREQUFNCY AT INITIAL VELOGCITY FOR MIN|MUM
U3l=vi(t1)
CALL MINIMI( B, nvl.nn7 u1 e PaNDMAX, TMAX L JMoN, S KEY )

‘ TECS=TRAX) 1,100,100 .

13 MY =2 e
YO=4(1,1) *

IFCINIT.EN.O0) GNTOD 11 "
vV(2)= Yoenyny ¢V(ly
11 DN 12 I=1.1mMax ‘ /
» n=u3
: u2=vi(?2)

C CALCULATION 1= VELOCITY FN WHICH THE PRVINUSLY FMOIIND FREQUENCY 1S
CALL— VF'_SFC(AD Ula1)2 e NMD -".N’)‘WAXl]MAX.L-“-N.JoK"'Y'
vi2)=t?

OMI=(IMN241 0 xNIMAX
U3=u?

C CALCULATE THE NRp FREOUENCY ENR THE MINIMUM AT NFW VELOGITY, ,
CALL MINIMI{A.NMINMIUT P NDMAX, [UAX L oM NS KEY) . -
TFCI=TPAX) 2,100,100

4 Yi=Al(]l«1)

PVOY=(V(2)1=V(1))/1Y1=-Y0) .

U3 =A(1.1)xnyIIY "+V(?) | N

IF((NARS(13=112),0.T . NDMAX) DR, (DARS(1=U2/113) ... V. NNMAX )} NTO 3
f2 - NM2=0M3

” STORAGE DF CRITICAL runaarTFRl<Tlr< {VELOCTTY. FREQUENCYRSLAPES)

3 V(4)z=V(3) + (1=INET)=(013=-NV)

OM{3I=(M(2) + (1=INTIT IO (IM23=NM)

THEDARSENVIL LT NNMAX) DV=111=V(3)

TFIDARSENNM) L T ADMAX ) NEM=OMI-(M( 3) . . .

VIEEY =345 (113-v({ 3) } =NV Lot

ML ) =sMI42% (MM 3 ) ) =NNM

OME2)=0M{ 1) =( L+10XDNMAX) .

IV={UA-V(2A})m [NIT \

DUM=LOMA-DUMAT31)EINTIT. . ‘{f : _
| .
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1000
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V(3r=03 ; ) i
OM(3)1=0M3

FFIJ. 0. 1MAX) GN' TN 1N . .
RETURN -

CWRITE{#.101) 113,P

FORMAT (' ~aXRINT- INTFRRUPTEN RECANSE NF NIVERGFNCS NF FREDUENLY 1
IN -LAGRAN= AT U3=',1PNID.3,' BAND PR.s',N1N,3/)

TeIMaX+] - IN(T :
IF(INIT.EOL1) 6O TO 103 .

St=1. 000 ., : ,

RETURN . . /

. P=P=NP ) i )

DVOY =NVDY 20,75
ne=npP/? ”
< DV=DV/?

V(1)=V(3) + DU/2+(VI1]I=-V(3))/4 '

.DOM=NNM/2 .
OME1Y=0M(3) + NNM R
OM(21=04(3)%0.99 + DOM*],1 L 4

RETURN

END . '
SURRNUTINE MINTMT (A PDGPEyHHeP DM KM, LM N KKEY)
IMRLTICIT REALXR (A=H,.N-2)

DIMENSIUN AINJN)JLIN)MIN) ,
NX=(P1=-PN) /10

X0=PN=NX

CALL MATRIX[A,XOM,P N) .
V0=DE|(A.L.M.N) *

X1=P0+NX

CALL MATRIX{&.X14lly PoN) :
YI=DET(AL), oMenN) .. '
YPO={Y1=YD)/(1=-XDN)}

TF(TARS{KEY) NF, 1) 6A 10 1

WRITE( Ao LOIP, 1} XDYDX1,Y1.YPN,PN,P]

PO R K=l,.,KkM

OX=(P1=PN) /1N
TX0=P1-NX

CALL MATRTIX(A XN, l)e PN} ) A&

YDO=DFT(A.LeM.N) ' |

X1=P1 40X

CALL MATRIX{A«X1sl14PoN)

YI=DET (A0 M)

YPI=(Y]1=Y0)/(X1=XN)

P2={YP#PO-YDN&P1 )/ (YPI-YPN) |
TFIYPO2YPI%(1=1,0/K) T, YPOE=D) GO TN 3
IEIDARS(P2=P1I. LT.10.002DM (OB, DARS(I=P1/P?),LT.N%4) GATH 7
IF{TARSIKEY)  NF. 1) GO TD &

WRITF (6,101 PolloXNa YN, X1,YV,YP} P, P?

FORMAT(Y P2z, 1PDIN, 3¢ PA=,N1Y, 4,200 NM=1,N] ], 4," NRT=1, Dk,]j,"
1 SLI= DR Te? AMI=t  DIT et PMI=0,0)).4) : s
IFINARSIYPY/Y2) ,GT,1.N0) G0 TO A .
pPn=p} .
T Ypo=vYpl

Pl1=P2 )

WRITE(A, V) N
(FORMAT (1 O0-MINIME- INTERRUPTFED RECAUSE QF DIVFRGENCS NF SLOPFY)
KzK#M N

P1=P2

CALL MATRIX({A,P2.11,P N}

vz:“ﬁ'(ﬁcL'”'N'
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IFCTARS(KEY ), NF.1) GN TO 9 ) - "o . SR |
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