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Abstract 

The joint stiffness plays a significant role during movement; however its function 

is not fully understood, particularly in terms of reflex contributions. Studies examining 

the mechanical consequences of reflex activity during movement are few. The long term 

objective of this thesis was to develop and validate a method for identifying joint 

mechanics during movement. 

Previously developed ensemble, time-varying algorithms were used to extend the 

parallel-cascade model to non-stationary conditions. This algorithm was tested using 

simulated data. We obtained parameter estimates of ankle stiffness from experiments 

under stationary conditions and used them to create a simulated system undergoing a 

ramp displacement. Data was acquired from three subjects as an electro-hydraulic 

actuator imposed a ramp displacement with superimposed perturbations to the ankle. The 

algorithm performed well with simulated data. Experimental system estimates were good 

at certain times and not at others, because the ensemble input was not rich enough to 

permit a good identification. 



Résumé 

La raideur d'un joint joue un rôle significatif pendant le mouvement; malS sa 

fonction n'est pas entièrement comprise, particulièrement en ce qui concerne les 

contributions du réflexe. Il existe peu d'études examinant les conséquences mécaniques 

du réflexe pendant divers mouvements. L'objectif à long terme de cette thèse était de 

développer et de valider une méthode pour identifier la raideur articulaire pendant divers 

mouvements. 

Des techniques, précédemment développées pour l'identification de systèmes non­

stationnaires, ont été utilisées afin d'appliquer le modèle «cascade-parallèle» aux 

conditions non-stationnaires. Cet algorithme a été évalué en utilisant des données 

simulées. Nous avons estimé des paramètres de raideur de la cheville à partir 

d'expériences en régime stationnaire et les avons ensuite utilisés pour créer un système 

simulé subissant un déplacement en rampe. Des données ont été acquises de trois sujets 

pendant qu'un actionneur électro-hydraulique imposait à leur cheville un déplacement en 

rampe avec des perturbations superposées. L'algorithme a bien exécuté avec les données 

simulées. Les estimations des données expérimentales était bonnes à certains instants et 

peu faibles à d'autres, parce que les données de l'ensemble n'avaient pas assez 

d'information pour permettre une bonne identification. 

11 



Acknowledgements 

1 would like to express my appreciation for the invaluable guidance, support and 

patience of my thesis supervisor, Dr. Robert Keamey. The technical and personal 

challenges that 1 accomplished were only possible with his steady guidance. 

1 would like to thank my lab colleagues, Shauna, Przemek, Daniel, Y ong, and 

Heidi, who made the lab a great place to be. 1 thank you for your support and particularly 

your patience with my long experiments. My gratitude is given to Dr. Mehdi Mirbagheri 

whose expertise was greatly appreciated. Thanks goes to Ross Wagner for his assistance 

in technical matters and for keeping the lab in tip-top shape. 1 thank Pina Sorrini, who has 

been a wonderful guide from the moment 1 first applied to the department. 1 have met so 

many incredible people in Biomedical Engineering, at McGill and in Montreal, who have 

enriched my life and for that 1 thank you aIl. 

1 would not have overcome this daunting task without the love and support of my 

family and friends. A special thanks goes to my aunt and cousins for their love, and for 

the great suggestion of presenting my thesis in a shoebox! Much thanks to my sister and 

brother-in-Iaw, Colleen and Peter, whom 1 admire immensely, for their constant 

encouragement. Special thanks to Roland for never losing faith in me. 1 greatly appreciate 

the constant love and support from my parents, Charlene and Brian Baker. My parents 

have always encouraged me to pursue my dreams and words cannot express my gratitude 

to them. 

This work was supported by funding provided by the Natural Sciences and 

Engineering Research Council of Canada (NSERC) and the Canadian Institutes of Health 

Research (CIHR). 

This thesis is dedicated to the memory of my uncle Joel, who was always capable 

of seeing a person' s potential and encouraging them to follow their dreams. 

III 



Table of Contents 

Abstract ................................................................................................................................ i 

Résumé ................................................................................................................................ ii 

Acknowledgements .......................................................................................................... iii 

Table of Figures ................................................................................................................ vii 

Table of Tables ................................................................................................................... x 

1. Introduction .................................................................................................................... 1 

1.1 Joint Dynamics and the Stretch Reflex ...................................................................... 1 

1.2 Identification of Time-Varying Joint Dynamics ........................................................ 2 

1.3 Thesis Outline ............................................................................................................ 2 

2. Background .................................................................................................................... 4 

2.1 Ankle Joint ................................................................................................................. 4 

2.2 Peripheral Neuromuscular System ............................................................................. 5 

2.2.1 Skeletal Muscle Structure ................................................................................... 6 

2.2.2 Motor Units .................................................................................................. , ...... 8 

2.2.3 Action Potentials and the Neuromuscular Junction ............................................ 8 

2.2.4 Control of Muscle Force ................................................................................... 10 

2.2.5 Peripheral Sensory Receptors ........................................................................... 11 

2.2.5.1 Muscle Spindles ......................................................................................... 12 

2.2.5.2 Golgi Tendon Organs (GTO) ..................................................................... 13 

2.2.6 Peripheral Reflexes ........................................................................................... 14 

2.2.6.1 The Stretch Reflex ..................................................................................... 14 

2.2.7 Electromyography (EMG) ................................................................................ 16 

2.3 Joint Dynamic Stiffness ........................................................................................... 16 

2.3.1 Views on Stiffness Function ............................................................................. 17 

2.3.2 Stiffness Modulation during Voluntary Movement.. ........................................ 18 

2.4 System Identification ............................................................................................... 19 

2.4.1 Impulse Response Function (IRF) .................................................................... 20 

2.4.2 Parallel-Cascade Model of Joint Mechanics ..................................................... 21 

2.4.3 Time-Varying Techniques ................................................................................ 23 

2.4.3.1 Techniques used to study Joint Dynamics ................................................. 24 

2.4.4 Time-Varying Identification Ensemble Methods ............................................. 25 

2.4.4.1 Linear Pseudoinverse Technique ............................................................... 27 

2.4.4.2 Hammerstein System Technique ............................................................... 27 

2.4.4.3 Previous Validation .................................................................................... 28 

IV 



2.5 Objectives ................................................................................................................ 30 

2.5.1 Motivation ......................................................................................................... 31 

3. Experimental Apparatus ............................................................................................. 32 

3.1 Electrohydraulic Actuator ........................................................................................ 33 

3.2 Boot. ......................................................................................................................... 33 

3.2.1 Materials and Construction ............................................................................... 34 

3.2.2 Axis of Rotation ................................................................................................ 34 

3.3 Transducers .............................................................................................................. 35 

3.3.1 Angular Position ............................................................................................... 35 

3.3.2 Torque ............................................................................................................... 36 

3.3.3 Electromyography (EMG) ................................................................................ 36 

3.3.3.1 Electrodes ................................................................................................... 37 

3.3.3.2 Main amplifier and interface unit .............................................................. 38 

3.4 Experimental Control ............................................................................................... 40 

3.4.1 Servo Control System ....................................................................................... 40 

3.5 Data Acquisition ...................................................................................................... 41 

3.6 Visual Feedback ....................................................................................................... 41 

4. Validation of the Time-Varying, Parallel-Cascade Identification A1gorithm ....... .43 

4.1 Identification of Time-Varying Joint Stiffness ....................................................... .43 

4.1.1 Algorithm Details .............................................................................................. 46 

4.1.1.1 Hammerstein details ................................................................................... 47 

4.1.1.2 IRF Propagation ......................................................................................... 47 

4.2 Simulation ................................................................................................................ 50 

4.2.1. Simulated Time-Varying Systems ................................................................... 51 

4.3 Results ...................................................................................................................... 55 

4.3.1 Gaussian Inputs ................................................................................................. 56 

4.3.1.1 Simulated SignaIs ....................................................................................... 56 

4.3.1.2 Model Evaluation ....................................................................................... 57 

4.3.1.3 Parametric Models ..................................................................................... 62 

4.3.1.4 True and Estimated Systems ...................................................................... 65 

4.3.2 Experimental PRBS Input ................................................................................. 68 

4.3.2.1 Simulated SignaIs ....................................................................................... 69 

4.3.2.2 Model Evaluation ....................................................................................... 70 

4.3.2.3 Parametric Models ..................................................................................... 75 

4.3.2.4 True and Estimated Systems ...................................................................... 77 

4.3.3 PRBS Inputs ...................................................................................................... 80 

4.4 Discussion and Conclusions .................................................................................... 81 

v 



5. Experim ents .................................................................................................................. 83 

5.1 Experimental Proto col ............................................................................................. 83 

5.1.1 Subjects ............................................................................................................. 83 

5.1.2 Initial Trials ....................................................................................................... 83 

5.1.3 Control Trials .................................................................................................... 85 

5.1.4 Imposed Ramp Trials ........................................................................................ 86 

5.2 Analysis .................................................................................................................... 87 

5.2.1 Trial Alignment ................................................................................................. 87 

5.2.2 Trial Selection ................................................................................................... 89 

5.3 Results ...................................................................................................................... 90 

5.3.1 General Behaviour ............................................................................................ 90 

5.3.2 Ensemble Behaviour ......................................................................................... 91 

5.3.3 Position Records ............................................................................................... 97 

5.3.4 Model Evaluation ............................................................................................ 100 

5.3.5 Estimated System Dynamics ........................................................................... l07 

5.3.6 Parametric Models .......................................................................................... 110 

5.3.7 Stationary Studies ........................................................................................... 114 

5.4 Discussion .............................................................................................................. 117 

5.4.1 Results ............................................................................................................. 117 

5.4.2 Identification Aigorithm ................................................................................. 118 

5.4.3 Methodology Considerations .......................................................................... 120 

5.4.4 Summary ......................................................................................................... 122 

6. Conclusion .................................................................................................................. 123 

6.1 Results .................................................................................................................... 123 

6.2 Discussion .............................................................................................................. 123 

References ....................................................................................................................... 125 

Appendices ...................................................................................................................... 130 

A. Axis of Rotation ...................................................................................................... 130 

B. Identification Implementation ................................................................................. 131 

C. Time-Varying Parallel-Cascade Identification MATLAB Code ............................ 132 

D. Ethics Certificate ..................................................................................................... 137 

VI 



Table of Figures 

Figure 2.1: Posterior view (left) and medial view (right) of ankle joint bones, tendons and 
muscles [adapted from 6] .................................................................................. 5 

Figure 2.2: Skeletal Muscle Structure [7] ........................................................................... 7 
Figure 2.3: Changes in membrane potential during action potential (AP) generation [6]..9 
Figure 2.4: Events occurring at the neuromuscular junction (NMJ) for action potential 

(AP) generation in muscle fibres [7] ............................................................... 10 
Figure 2.5: Relative muscle tension produced from a single twitch (left), and from 

multiple stimuli (right) [7] .............................................................................. 11 
Figure 2.6: Muscle Spindle and Golgi tendon organ [7] .................................................. 13 
Figure 2.7: Pathways involved in the stretch reflex, specifically for the knee jerk reflex 15 
Figure 2.8: Intrinsic and reflex components of dynamic joint stiffness ........................... 17 
Figure 2.9: Parallel-cascade model of joint mechanics .................................................... 21 
Figure 2.10: Input-Output matrices and the time-varying IRF matrix from the time-

varying convolution integral generated using ensemble methods .................. 26 
Figure 2.11: Block diagram of Lortie's simulation [4] ..................................................... 28 
Figure 2.12: Mean V AF between true and estimated IRFs as a function of input filter 

cutofffrequency (B) and of output SNR (A) from Lortie's simulation [4] .... 29 
Figure 2.13: Mean VAF between true and estimated static nonlinearities (A) and between 

true and estimated IRFs (B) as a function of output SNR using three different 
ensemble sizes from Lortie's simulation [4] ................................................... 30 

Figure 3.1: Experimental apparatus and signaIs ............................................................... 32 
Figure 3.2: Custom-fit boot bolted to foot pedal .............................................................. 34 
Figure 3.3: EMG setup [adapted from 52]. ....................................................................... 37 
Figure 3.4: DE-2.I single differential electrode design [52]. .......................................... 37 
Figure 3.5: Electrode Locations ........................................................................................ 38 
Figure 3.6: Frequency response, gain (upper plot) and phase (lower plot), between input 

to electrode and output from one EMG channel at a gain of 80 dB [53] ........ 39 
Figure 3.7: Gain, phase, and coherence of the transfer function between input 

perturbation and position under proportional control with no subject [55] ... .41 
Figure 3.8: Examples ofVisual feedback to the subject .................................................. .42 

Figure 4.1: Parallel-cascade model of joint mechanics ................................................... .44 
Figure 4.2: The parallel-cascade structure used to estimate time-varying intrinsic and 

reflex stiffness ................................................................................................ 45 

Figure 4.3: TQP1RF (t, T) immediately after identification (A) and after propagation of the 
first non-zero IRF (B) .................................................................................... 50 

Figure 4.4: Simulated Intrinsic and Reflex pathways ...................................................... . 51 
Figure 4.5: Simulated Intrinsic (A,C,E) and Reflex (B,D,F) parameters ......................... 53 

Vll 



Figure 4.6: Simulated intrinsic compliance (A), reflex stiffness (B) and static 
nonlinearities (C) ............................................................................................ 55 

Figure 4.7: Simulated position (A) and corresponding torque signaIs (B,C,D) from 
multiple realizations, using Gaussian position input ..................................... 57 

Figure 4.8: VAFs between total torque and predicted torques, with the dashed lines 
indicating the start and stop of the respective parameter change ................... 58 

Figure 4.9: VAFs between total torque and predicted torques, when using a larger change 
in the elastic parameter (K) ............................................................................. 60 

Figure 4.10: True (solid) and predicted (dashed) torque records for a single realization.61 

Figure 4.11: True and predicted total torque for 3 different trials (A), and at 3 different 
times (B), with the corresponding VAF . ........................................................ 62 

Figure 4.12: Parametric fit %VAFto the simulated (solid line) and estimated (dashed 
line) systems. Parameters of intrinsic compliance and reflex stiffness from 
parametric fit to simulated and estimated systems .......................................... 64 

Figure 4.13: Estimated IRFs, their parametric fits and simulated IRFs for intrinsic 
compliance and intrinsic stiffness IRFs, at various times indicated in A ...... 66 

Figure 4.14: Estimated IRFs, their parametric fits and simulated IRFs for reflex stiffness 
IRFs and the static non-linearities, at various times indicated in A ................ 67 

Figure 4.15: VAFs between true and estimated intrinsic (A,C,E) and reflex (B,D,F) 
systems and torques versus time. . .................................................................. 68 

Figure 4.16: Simulated position and corresponding torque signaIs from multiple 
realizations, using actual experimental PRBS position records ..................... 69 

Figure 4.17: VAFs between total torque and predicted torques, using the experimental 
position with the time-varying system ........................................................... 71 

Figure 4.18: Probability Density of the input velocity estimated across time (A,C) and 
across the ensemble (B,D) for Gaussian input (A,B) and PRBS input (C,D).72 

Figure 4.19: True (solid) and predicted (dashed) torque records for a single realization.74 
Figure 4.20: True and predicted total torque for 3 different trials (A), and at 3 different 

times (B), with the corresponding VAF . ........................................................ 75 
Figure 4.21: Parametric fit %VAFto the simulated (solid line) and estimated (dashed 

line) systems. Parameters of intrinsic compliance and reflex stiffness from 
parametric fit to simulated and estimated systems ................................... ....... 77 

Figure 4.22: Estimated IRFs, their parametric fits and simulated IRFs for intrinsic 
compliance and intrinsic stiffness IRFs, at various times indicated in A . ...... 78 

Figure 4.23: Estimated IRFs, their parametric fits and simulated IRFs for reflex stiffness 
IRFs and the static non-linearities, at various times indicated in A. ............... 79 

Figure 4.24: VAFs between true and estimated systems and torques versus time ............ 80 

Figure 5.1: Averaged pulse trials from Subject C at two ankle positions; Position (AC) 
and Torque (BD) at -0.135 rad (AB) and at 0.065 rad, the OOP (CD) .......... 84 

Figure 5.2: Input ramp (AB) and position (CD) before (AC) and after (BD) alignment for 
4 realizations; Subject A ................................................................................. 88 

Vlll 



Figure 5.3: Sorted torque standard deviations with dashed line indicating the threshold 
chosen; Subject A ............................................................................................ 89 

Figure 5.4: Multiple Trials with (CD) and without (AB) ensemble mean removed for 
position (AC) and torque (BD); Subject A. ................................................... 91 

Figure 5.5: Ensemble means (solid, dark lines) and standard deviations (light, dotted 
lines) of position (A), torque (B), GS EMG (C) and TA EMG (D), from the 
aligned and selected trials; Subject A. ............................................................ 92 

Figure 5.6: Ensemble means (solid, dark lines) and standard deviations (light, dotted 
lines) of position (A), torque (B), GS EMG (C) and TA EMG (D), from the 
aligned and selected trials; Subject B ............................................................. 93 

Figure 5.7: Ensemble means (solid, dark lines) and standard deviations (light, dotted 
lines) of position (A), torque (B), GS EMG (C) and TA EMG (D), from the 
aligned and selected trials; Subject C ............................................................. 94 

Figure 5.8: Effect of stochastic perturbation on ramp responses; Subjects A, B, and C .. 96 
Figure 5.9: Position records with ensemble mean removed from 5 realizations; for aIl 

subjects ........................................................................................................... 98 
Figure 5.10: VAFs between total torque and predicted torques (A, C, E), using the 

experimental PRBS input with the time-varying system (dashed) and time-
invariant system (solid) ................................................................................ 100 

Figure 5.11: VAF between total and predicted torques; Subject A. ............................... 101 
Figure 5.12: VAF between total and predicted torques; Subject B. ............................... 102 
Figure 5.13: VAF between total and predicted torques; Subject C ................................ 103 
Figure 5.14: Actual total torque (Plus) and net predicted torque (points) for three 

realizations for aIl subjects ............................................................................ 105 
Figure 5.15: Actual total torque (solid) and net predicted torque (dashed) at three times 

for all subjects ............................................................................................... 106 
Figure 5.16: Estimated IRFs and SNLs at particular times across the ramp; Subject A 107 
Figure 5.17: Estimated IRFs and SNLs at particular points across the ramp; Subject BI08 
Figure 5.18: Estimated IRFs and SNLs at particular points across the ramp; Subject CI09 
Figure 5.19: Parameters K, B, 1 from the intrinsic compliance fits (G,E,C) and G, w, z 

from the reflex stiffness fits (D,F,R), across time; Subject A ...................... 111 
Figure 5.20: Parameters K, B, 1 from the intrinsic compliance fits (G,E,C) and G, w, z 

from the reflex stiffness fits (D,F,R), across time; Subject B ....................... 112 
Figure 5.21: Parameters K, B, 1 from the intrinsic compliance fits (G,E,C) and G, w, z 

from the reflex stiffness fits (D,F,R), across time; Subject C ....................... 113 
Figure 5.22: VTQIRF estimates from the stationary, control perturbation trials at ramp 

start (dashed) and end (solid) positions for Subject A, B and C .................. 115 
Figure 5.23: VTQIRF estimates utilizing different segments of data from the stationary, 

control perturbation trial at mid-ramp for Subject C. ................................... 116 

IX 



Table of Tables 

Table 5.1: Ramp and Range of Motion parameters .......................................................... 85 

Table 5.2: Trial Alignment and Selection Results ............................................................ 90 

Table 5.3: Comparison of Experimental Protocols ........................................................ . 120 

x 



1. Introduction 

The neuromuscular control system is characterized by complex interactions 

between the nervous system and the musculoskeletal system. In order for you to sit, stand 

or walk as you read this thesis, your neuromuscular control system must maintain your 

balance and perform movements of variable speed and variable precision. It processes a 

variety of information, from sensory feedback coming from peripheral receptors (i.e. 

muscle spindles) to central commands coming from the brain. The study of joint 

mechanics and the neuromuscular control system allows us to better understand the 

control of movement, posture, and its disorders. 

1.1 Joint Dynamics and the Stretch Reflex 

Dynamic joint stiffness can be used to de scribe the mechanical behaviour of a 

joint and is defined as the relationship between the position of the joint and the torque 

acting about it [1]. Joint stiffness can be separated into two components: (1) an intrinsic 

stiffness component, due to the mechanical properties of the joint, passive tissue and 

active muscle fibres, and (2) a reflex stiffness component, due to muscle activity in 

response to the activation of stretch receptors, called muscle spindles, within the muscle. 

Much has been discovered physiologically about the stretch reflex, but its 

functional significance only becomes apparent when investigating joint dynamics. The 

two components of dynamic joint stiffness are challenging to quantify, but provide great 

insight into the neuromuscular control system when performing studies on posture and 

movement. 

In our laboratory, we are capable of measuring the angular position of a subject's 

ankle and the torque generated at the ankle. The subject lays supine with their ankle 

attached to an electrohydraulic actuator via a custom-fit, fibreglass boot. A proportional, 

position-control servo applies perturbations to the ankle. Novel system identification tools 

have been developed to fully characterize the two stiffness pathways during stationary, or 

postural, experimental conditions. To study non-stationary behaviour, such as voluntary 

movement, time-varying identification techniques must be used. In this thesis, we 

developed novel time-varying identification tools and used them to study a simple time­

varying behaviour. 
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1.2 Identification of Time-Varying Joint Dynamics 

System identification allows the creation of a mathematical model of a system (i.e. 

joint stiffness) based on measured inputs and outputs [2]. Previous work in our laboratory 

led to the development of a parallel-cascade model that represents the intrinsic and reflex 

pathways of stiffness [3]. Its elements can be reliably identified from position input and 

torque output records acquired under stationary conditions. Recently two time-varying 

identification techniques, one for linear intrinsic stiffness and the other for nonlinear 

reflex stiffness, were developed for use with ensemble data acquired under non-stationary 

conditions [4]. Separate simulations tested each technique and demonstrated their ability 

to identify rapidly time-varying dynamics of the ankle joint [4]. 

The overall goal of this thesis was to develop and validate a method for 

identifying joint mechanics during movement. This involved integrating the previous 

time-varying techniques into the parallel-cascade model. The first objective was to 

evaluate the quality of the time-varying, parallel-cascade identification algorithm using 

simulated data. We obtained parameter estimates of ankle stiffness from experiments 

under stationary conditions and then used them to create a simulated system undergoing a 

ramp change of position. Position input and resulting torque output records were obtained 

over multiple realizations. The time-varying, parallel-cascade identification algorithm 

was applied to the simulated input-output ensemble data. The true and identified systems 

were compared and found to be similar, for both stiffness pathways. 

The second objective was to test the identification algorithm with experimental 

data obtained during time-varying conditions. A simple, imposed-ramp paradigm was 

investigated for three subjects. The results showed an increase in intrinsic stiffness and 

reflex stiffness during the ramp. However, using this particular input perturbation the 

system estimates did not describe the data weIl at certain times. 

1.3 Thesis Outline 

The thesis is divided into six chapters including this introduction. Chapter Two 

covers the physiology background of the stretch reflex, and de scribes joint dynamic 

stiffness and its role during voluntary movement. System identification is introduced 

along with techniques developed in our laboratory. The chapter concludes with the aims 
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and motivation of this thesis. The experimental setup is presented in Chapter Three, and 

gives details on the sensors, experimental control, and data acquisition. Chapter Four 

provides details on the time-varying, parallel-cascade identification algorithm. The 

simulation study is presented, along with the results and discussion. The fifth chapter 

explains the experimental protocol and data analysis used to study the time-varying 

behaviour. The experimental results are presented and discussed. The final chapter 

summarizes the results, pro vides a general discussion, and suggests directions for future 

work. 
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2. Background 

This chapter introduces the physiology of the ankle joint and the peripheral 

neuromuscular system. Skeletal muscle structure and the events leading to and during 

muscular contraction are presented. Sensory stretch receptors and peripheral reflexes are 

described followed by an introduction to joint dynamic stiffness. A brief review of the 

literature on joint dynamic stiffness during voluntary movement is presented. System 

identification is introduced and specifically time-varying techniques are discussed. The 

time-varying, ensemble-based methods developed in our laboratory are presented. To 

conclude, the objectives and motivation ofthis thesis are discussed. 

2.1 Ankle Joint 

A joint is composed of the associated bones, musculature and passive tissues (i.e. 

tendons, ligaments), which contribute to its overall mechanical behaviour. The ankle 

joint, or talocrural joint, is made up of four major bones: the tibia and fibula of the 

lower leg which articulate with the talus and calcaneus bones of the foot [5]. This 

synovial, hinge joint allows movement in two planes: sagittal and frontal. The sagittal 

movements are termed dorsiflexion, pulling the toes towards the leg (anterior si de), and 

plantarflexion, pointing the toes away from the leg. The frontal movements of adduction 

and abduction were not studied in this thesis. The main bones and muscles at the ankle 

joint are shown in Fig. 2.1. 

Dorsiflexion results primarily from the contraction of the muscle tibialis anterior 

(TA) which originates at the tibia and inserts at the base of the first metatarsal bone via 

the tibialis anterior tendon [6]. The muscles primarily responsible for plantarflexion are 

the gastrocnemius and soleus (GS), grouped as the triceps surae. The gastrocnemius is 

attached to the femur and via the calcaneal (Achilles) tendon to the calcaneus, thus 

spanning the knee and ankle joints. Underlying the gastrocnemius is the soleus, which is 

attached to the head of the fibula and a portion of the medial tibia, and shares the Achilles 

tendon attachment with the gastrocnemius [6]. 
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Figure 2.1: Posterior view (left) and medial view (right) of ankle joint bones, tendons and 
muscles [adapted from 6] 

2.2 Peripheral Neuromuscular System 

The nervous system can be divided into two major anatomical subdivisions: (1) 

the central nervous system (CNS), which consists of the brain and spinal cord, and (2) 

the peripheral nervous system (PNS), which includes aIl sensory or neural tissue 

outside of the CNS. Specifie motor control elements in the brain have been identified in 

the brainstem, cerebeIlum, basal ganglia, and cortical areas [7]. 

The role of the PNS is to deliver sensory and motor information via bundles of 

nerve fibres, called peripheral nerves. A further division of the PNS is made to 

differentiate between sensory information being brought to the CNS (afferent division) 
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from receptors in peripheral tissues and organs, and motor commands being carried from 

the CNS (efferent division) to peripheral tissues (i.e. muscles). 

2.2.1 Skeletal Muscle Structure 

To comprehend the physiological mechanisms of muscle, the structure of skeletal 

muscle must be understood. Skeletal muscle consists of many cylindrical muscle fibres, 

each composed of one elongated cell with multiple nuclei. Muscle fibres in adults may be 

up to 20 cm in length and have diameters between la and 1 00 ~m [7]. Muscle fibres are 

composed of myofibrils lying parallel to one another that are striped in appearance due to 

the arrangement oftheir thick and thin protein filaments, as illustrated in Fig. 2.2. 

The repeating unit in the myofibril is called the sarcomere, the basic functional 

unit of a muscle. A sarcomere consists of thin actin and thick myosin filaments lying in 

parallel and has a resting length between 1.6 and 2.6 ~m [6]. Thick and thin filaments are 

typically 10-12 nm and 5-6 nm in diameter, and 1.6 ~m and 1 ~m in length, respectively 

[6]. 

The thick filaments consist primarily of myosin molecules. Myosin molecules 

have a long tail portion from which extents a globular head containing a binding site for 

actin [5]. Two intertwined helical chains of actin molecules form the backbone of the thin 

filaments. Secondary components in thin filaments include troponin and tropomyosin. 

Tropomyosin molecules block the myosin-binding site on each actin molecule and are 

held in place by troponin. As depicted in Fig. 2.2, the actin filaments are anchored to a 

structure ofinterconnecting proteins known as the Z line [7]. 
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Thlèk (myosln) filament 

Figure 2.2: Skeletal Muscle Structure [7] 

Muscle contraction is initiated when a skeletal muscle has been excited (described 

in Section 2.2.3) and briefly occurs as follows [7]: 

1) Calcium binds to specifie binding sites on troponin causing a change in 

its shape. The modified troponin drags away the tropomyosin to expose 

the myosin-binding site on each actin molecule. 

2) The myosin globular heads bind to the actin forming cross-bridges. 

3) The myosin head generates the power stroke to slide the actin filament 

past itself resulting in the overall shortening of the sarcomeres. The 

energy required for the cross-bridge movement cornes from the 

hydrolysis of a high energy molecule called adensosine triphosphate 

(ATP). 

4) To repeat the cross-bridge cycle, ATP binding to myosin breaks the link 

between actin and myosin. 

5) When calcium is removed from troponin, the myosin-binding sites on 

actin are no longer exposed, which stops the contractile activity. 
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2.2.2 Motor Units 

The excitation required for muscle contraction originates in nerve cens, called 

alpha (a) motor neurons. The cell bodies of motor neurons originate in the anterior hom 

of the spinal cord and their axons travel down peripheral nerves to the muscles [7]. A 

muscle fibre is innervated by the axon of only one motor neuron, yet a motor neuron 

innervates many fibres as its axon divides into branches. 

A motor unit consists of the motor neuron, its axon and an the muscle fibres it 

innervates. AlI fibres in a motor unit contract each time the motor neuron fires, thus 

making the motor unit the smallest functional element of the motor system. Depending on 

the muscle function, the number of fibres in a motor unit varies. For example, in an eye 

muscle which generates fine movements, there are only about 13 fibres per axon [7]. In 

contrast, leg muscles required for large, coarse movements contain hundreds of fibres per 

axon. 

2.2.3 Action Potentials and the Neuromuscular Junction 

To understand how the cross-bridge cycle is initiated, the process called 

excitation-contraction coupling must be presented. In general, this process can be 

described as the transmission of electric signaIs along nerve fibres, across the 

neuromuscular junction and along muscle fibres, which leads to cross-bridge formation 

[5]. In this section, the events of the excitation-contraction coupling process are described 

in more detail. 

An action potential (AP) is a sudden change in the membrane potential of a nerve 

cell that propagates along the length ofthe axon. Referring to Fig. 2.3, the steps involved 

in action potential generation in a motor neuron will be briefly described [6]: 

1) The cell membrane has a resting membrane potential of -70 m V. If an 

area of excitable membrane is depolarized by local currents above a 

threshold of -60 m V, an AP will be generated. 

2) When the membrane potential reaches threshold, voltage-regulated 

sodium channels, which are closed in the resting state, are opened. The 

resulting inrush of sodium ions into the cytoplasm causes a rapid 

depolarization of the membrane. 
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3) When the membrane potential approaches +30 mV, sodium channels 

begin to close and voltage-regulated potassium channels begin to open. 

Thus a repolarization of the membrane occurs. 

4) As the potential returns to its resting state, the potassium channels close. 
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Figure 2.3: Changes in membrane potential during action potential (AP) generation [6] 

Action potentials propagate along an axon because adjacent sections of the 

membrane are subjected to local currents generated from the AP. These currents 

depolarize the membrane and the sequence of events described above is repeated along 

the axon. Skeletal muscle fibres have excitable plasma membranes and thus are capable 

of generating and propagating APs by mechanisms similar to those described for motor 

neurons. The resting potential of a muscle fibre, due to sodium and potassium ion 

concentrations, is approximately -90 mV. With sufficient stimulation, the muscle fibre 

potential may increase up to 30-40 m V [6]. 

The transformation from AP propagation in motor neurons to AP propagation in 

muscle fibres occurs at the neuromuscular junction. The neuromuscular junction (NMJ) 

is the connection between the end of a motor neuron axon's branch, or synaptic 
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terminal, and the muscle fibre it innervates. The synaptic terminal contains vesicles filled 

with a neurotransmitter called acetylcholine (ACh). Along the sarcolemmal surface of the 

muscle fibre there are membrane receptors that bind ACh and this surface is known as the 

motor end plate. The synaptic cleft is the narrow space between the synaptic terminal 

and the motor end plate [7]. 

The events that occur at the NMJ are depicted in Fig. 2.4. The arrivaI of an action 

potential at the synaptic terminal causes ACh to be released into the synaptic cleft. As the 

ACh molecules bind to the motor end plate receptors, the permeability of the sarcolemmal 

to sodium ions increases. Therefore sodium ions move rapidly through the sarcolemmal 

and produce local currents. These currents lead to an action potential being generated in 

the muscle fibre. Cross-bridge formation is then initiated. 

Figure 2.4: Events occurring at the neuromuscular junction (NMJ) for action potential 
(AP) generation in muscle fibres [7] 

2.2.4 Control of Muscle Force 

Two main factors control the tension produced by an entire skeletal muscle: the 

frequency of motor unit action potential (MUAP) firing and the number of motor units 

stimulated. As the MUAP firing rate increases, the tensions produced by the individual 

action potentials summate to create an overall increase in muscle tension. This effect is 

clearly illustrated in Fig. 2.5, where the tension produced from a single twitch is 

compared with the tension produced from multiple stimuli at different frequencies. 
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Unfused tetanus, shown in the middle of Fig. 2.5, occurs at low stimulation frequencies, 

where the muscle enters the relaxation phase and produces an oscillating tension [7]. 

When the MUAP firing rate is increased such that the muscle never enters the relaxation 

phase, the muscle is said to be in fused tetanus, illustrated on the right of Fig. 2.5. Most 

normal activities involve fused tetanus of the activated muscles [6]. 

tttttttttttttHtttHtttttttttmttt ssssssssssssssssss 
100 200 300 400 700 900 1000 

Time(ms) 

Figure 2.5: Relative muscle tension produced from a single twitch (left), from multiple 
stimuli (represented by 'S') applied at 10 stimuli per second (middle), and from multiple 
stimuli applied at 100 stimuli per second (right) [7] 

Recruitment, or multiple motor unit summation, is the smooth, steady increase in 

muscle tension resulting from an increase in the number of active motor units [6]. It 

occurs based on the size principle: the smallest motor units that contract slowly but 

fatigue slowly are stimulated first, followed by larger motor units that contract rapidly but 

fatigue rapidly [7]. Factors affecting recruitment are the axon diameter, axon conduction 

velocity, and motor neuron cell body size. 

2.2.5 Peripheral Sensory Receptors 

Sensory receptors are stimulated by physical or chemical changes in the body or 

by changes in the external environment. Proprioceptors are sensory receptors that 

perceive the position of the body in space by detecting position and force information. 

Two types of proprioceptors thought to be primarily responsible for muscle regulation 

are: muscle spindles and Golgi tendon organs (GTO). 
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2.2.5.1 Muscle Spindles 

Sensory stretch receptors are endings of afferent fibres that are wrapped around 

modified muscle fibres called intrafusal fibres. Several of these intrafusal fibres are 

enclosed in a connective-tissue capsule, as illustrated in Fig. 2.6, and the entire structure 

is called a muscle spindle [7]. Muscle spindles sense changes in muscle length and 

velocity. Intrafusal fibres lie in paralle1 with the muscle, thus changes in muscle length 

are reflected in the intrafusal fibres. 

Sensory information from the muscle spindles is carried via afferent fibres to the 

spinal cord. There are two types of sensory nerves: primary (Group la) and secondary 

(Group II) fibres. Group la fibres are myelinated nerves of large diameter (12-20 flm) 

and terminate as coiled unmyelinated endings that wrap around the non-contractile central 

portions of the intrafusal fibres. Group II fibres are unmyelinated nerves of small 

diameter (4-12 flm), whose endings terminate on the peripheral contractile end of the 

intrafusal fibres. Group II fibres only make synapses via interneurons, whereas Group la 

fibres also synapse directly with the motor neurons. There is only one primary ending for 

each spindle, but multiple secondary endings in each spindle. 

Studies using sinusoidal stretch inputs have refuted claims that secondary endings 

are insensitive to dynamic components of stretch. The frequency responses of both la and 

II afferents are both high pass dynamics, with a break-point at approximate1y 1 Hz [8]. 

However, the conduction of information in Group la afferents is faster (70-120 mis 

compared to 20-70 mis) than in Group II afferents. Primary afferents are more sensitive to 

smaller amplitude stimuli as compared with secondary afferents. Furthermore, la afferents 

are sensitive to acce1eration at high frequencies and have a smaller linear range [8]. 

Efferent fibres called fusimotor (1) motor neurons carry information from the 

spinal cord to the spindle intrafusal fibres. Fusimotor innervation controls the spindle 

sensitivity during muscle contraction. The polar ends of the intrafusal fibres contract in 

response to fusimotor neuron activation. This stretches the central non-contractile portion 

of the spindle, making it more sensitive to stretch [7]. There are two types of fusimotor 

neurons that alter the responsiveness of spindles. Dynamic 1 activity tunes the la 

afferents to the dynamic phase of stretch (i.e. ve1ocity), and static 1 activity increases the 

sensitivity ofboth la and II afferents to the static phase of stretch (i.e. muscle length) [8]. 
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Figure 2.6: Muscle Spindle and Golgi tendon organ [7] 

2.2.5.2 Golgi Tendon Organs (GTO) 

Sensory receptors called the Golgi tendon organs (GTO) monitor the tension 

produced in the tendon from muscle contraction. The GTOs are afferent nerve endings 

wrapped around collagen bundles in the tendon, as shown in Fig. 2.6. Contrary to muscle 

spindles, GTOs are assembled in series with sorne muscle fibers and in parallel with 

others. This leads to increased sensitivity of the receptors to active muscle tension, but 

less sensitivity to passive muscle tension. 

When the extrafusal muscle fibres contract, they pull on the tendon, which 

stretches the collagen bundles and distorts the receptor endings. The GTOs are activated 

by this distortion and thus fire in response to the tension generated by the contracting 

muscle [7]. The receptors are innervated by a single Group lb afferent axon. 
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2.2.6 Peripheral Reflexes 

Many types of reflexes involve a muscular response; however we are primarily 

interested in single limb reflexes during active muscle contraction. The stretch reflex is 

investigated in our laboratory, but first, to continue from the previous section, we will 

de scribe the reflex resulting from the activation of the GTOs. 

When the collagen fibres are stretched, the Group lb afferents from the GTOs 

stimulate inhibitory interneurons that in turn inhibit the motor neurons controlling the 

muscle that is producing the stretch [6]. These interneurons also stimulate the motor 

neurons of the antagonistic muscles. Thus this tendon reflex, or the inverse stretch 

reflex, is the body' s mechanism to prevent the tendon from tearing or breaking. 

2.2.6.1 The Stretch Reflex 

When a skeletal muscle is stretched, the change in muscle length is sensed by the 

muscle spindles. Group la afferent fibres from the spindles transmit a signal into the 

spinal cord where they synapse directly with the motor neurons controlling the muscle 

that was just stretched. This monosynaptic pathway is known as the stretch reflex arc, 

and is illustrated by path A in Fig. 2.7. Muscle contraction occurs approximately 20-50 

ms after the stretch was initiated [6]. This resistance to elongation occurs in basically 

every extensor or flexor skeletal muscle in the body and is called the stretch reflex. 

Group la afferent fibres also innervate motor neurons of agonistic muscles (path C 

in Fig. 2.7), whose contraction would assist in the intended motion of the stretched 

muscle. Conversely these afferent fibres synapse with interneurons (path B in Fig. 2.7) 

that in tum inhibit motor neurons of antagonistic muscles, whose contraction would 

oppose the intended motion of the stretched muscle. The activation of agoni st muscles 

and simultaneous inhibition of antagonistic muscles is called reciprocal innervation and 

is present in many reflexes (e.g. the reciprocal innervation of the spindle afferents is the 

opposite of that produced by the GTOs). The muscle length and velocity information is 

conveyed to higher centres of motor control in the brain via a final afferent pathway 

involving interneurons, as shown by path D in Fig. 2.7 [7]. 
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Figure 2.7: Pathways involved in the stretch reflex, specifically for the knee jerk reflex. 
The patellar tendon is tapped which stretches the extensor muscle, causing contraction of 
the stretched muscle and agonist muscles (paths A and C), relaxation of antagonistic 
muscles (path B), and muscle length information sent to the brain (path D) [7]. 

Factors that affect the stretch reflex include the level of fusimotor activity and the 

mechanical properties of the muscle. The sensitivity of the spindle afferents to stretch 

depends on the level of fusimotor activity. Muscle mechanics determine the force 

produced in reaction to a neural commando The reflex is elicited by a rapid muscle 

stretch, as shown in the knee jerk reflex in Fig. 2.7, and can be quantitatively described by 

measuring position and torque, as presented in Sections 2.3 and 2.4, or by recording 

electromyographic (EMG) signaIs, described next [9]. 
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2.2.7 Electromyography (EMG) 

Electromyography (EMG) is the measurement of the electrical activity of a 

muscle. If a rapid stretch is applied to the ankle in dorsiflexion, the EMG response of the 

gastrocnemius-soleus clearly depicts a large burst of activity at a latency equal to the 

reflex delay. Thus EMG can be used to quantitatively evaluate the stretch reflex. 

An EMG signal records the spatial-temporal summation of motor unit action 

potentials (MUAPs). EMG signaIs can be recorded from the surface of actively 

contracting muscle and represent the combination of multiple motor units firing at 

different mean rates [5]. 

EMG signaIs may be analyzed in the time or frequency domain. One important 

parameter to describe the power spectrum (frequency domain) is the bandwidth. EMG 

signaIs contain usable energy in the range of 0-500 Hz, with a bandwidth of 

approximately 50-150 Hz. The amplitude of the signal can range from approximately 0-

10 mV (peak-to-peak). 

Indwelling electrodes are those used directly within the muscle, whereas surface 

electrodes are placed on the skin overlying the muscle. Surface EMG is used in our 

laboratory since we are interested in a general picture of the electrical activity from 

relatively large muscles. 

2.3 Joint Dynamic Stiffness 

Studying the dynamics of joints enables us to understand more about the 

neuromuscular control system, as they represent crucial properties of the motor system. 

Joint dynamics determine the displacements that occur from perturbation forces or the 

forces that must be generated to execute a voluntary movement [1]. 

The mechanical behaviour of a joint may be described by its dynamic stiffness. 

Dynamic joint stiffness is defined as the relation between the position of the joint and 

the torque acting about it [1]. Stiffness can be separated into two components, as depicted 

in Fig. 2.8: 

1) An intrinsic component due to the paSSIve visco-elastic and inertial 

properties of the limb, joint and connective tissues, together with the 

active muscle mechanical properties, and; 

16 



Position 

2) A reflex component due to muscle activity in response to the activation 

of stretch receptors in the muscle. 
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Figure 2.8: Intrinsic and reflex components of dynamic joint stiffness 

2.3.1 Views on Stiffness Function 

The stiffness of a joint enables the body to maintain and adjust certain postures 

and plays a significant role during movement; however neither role is fully understood as 

yet, particularly in terms of the reflex contributions. Joint stiffness can be modulated and 

evidence points to various methods of modulation via the nervous system. It has been 

suggested that the nervous system modifies muscle [10, 11], joint [12, 13] or endpoint 

[14] stiffness to initiate voluntary movement and/or respond to external perturbations. 

Mechanically, reflex stiffness is challenging to understand, since there are 

complex, nonlinear interactions occurring between the two stiffness components. 

Furthermore reflex stiffness has been found to vary with the operating point, task, time, 

and context [15]. The mechanical results of the stretch reflex have only been measured 

for a limited number of tasks and behaviours. More studies on a variety of tasks and 

behaviours may provide evidence to support the theory that the central nervous system 

(eNS) modifies the stretch reflex function depending on the task, phase and intensity 

during a particular behaviour [9]. Moreover, the role of joint stiffness during movement 

must be thoroughly investigated. 
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2.3.2 Stiffness Modulation during Voluntary Movement 

The role of the stretch reflex in initiating and controlling voluntary movements is 

not clearly understood. However there are two main views: one central and one 

peripheral. The first view maintains that a central pattern generator (CPG) controls the 

timing and course of muscle activation for movement [16, 17]. The second view suggests 

that reflex parameters are modified via descending pathways to perform active 

movements [18-20]. It is likely that both theories occur, but for different types of 

movements. 

Many studies have measured changes in the stretch reflex from H-reflex or EMG 

responses during movement [21, 22]. Similarly, during particular tasks such as walking 

[23], running [24], beam balancing [25], pedaling [26,27], and cyclic trac king tasks [28] 

it has been shown that spinal EMG reflex responses vary throughout the movements. 

Work in our laboratory has supported the view of peripheral involvement in producing 

the modulation of reflex stiffness during movement [29]. In this study, pre-recorded 

walking movements were imposed at the ankle via a hydraulic actuator while the subjects 

lay supine. Pulse perturbations were superimposed throughout the walking cycle to evoke 

the stretch reflex. Reflex EMG modulation and magnitude reduction occurred throughout 

the step cycle and since central commands were kept constant during the experiment, 

these changes were attributed to peripheral mechanisms. 

Because movement studies are generally more challenging to perform than 

postural studies, it was natural to propose that the results obtained in postural conditions 

could be used to infer behaviour during voluntary movement at corresponding operating 

points. However findings about the stretch reflex during postural conditions are generally 

not applicable to movement [29]. For example, the reflex gain has been found to be larger 

in postural conditions than during movement at similar operating points and is modulated 

during cyclic activities [19]. 

Although a variety of studies have examined the stretch reflex during movement, 

there remains a void in terms of the mechanical consequences of reflex activity during 

movement. A recent contribution was made by Bennett et al who used frequency domain 

analysis to track intrinsic and reflex stiffness throughout rapid elbow movements with 

superimposed sinusoidal position perturbations [30] and pseudo-random binary sequence 
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(PRBS) force inputs [31]. During the voluntary movement studied with imposed PRBS 

perturbations, the overall stiffness of the elbow decreased. The overall stiffness values 

during the movement were found to be significantly smaller than those recorded in 

postural conditions at corresponding positions [31]. In another study by Bennett, imposed 

step perturbations were applied to the elbow during voluntary flexion movements of 

variable speeds and the mechanical properties of the elbow were found to be 'tuned' 

according to the speed of the movement [32]. Bennett examined the stretch reflex 

response during a voluntary movement with imposed sinusoidal position perturbations. 

He found that the mechanical contribution of the stretch reflex increased near the end of 

the movement (as the target was approached), to a maximum level that accounted for a 

significant portion ofthe overall stiffness when using low frequency perturbations [30]. 

The long term goal for this thesis is to contribute to this void in movement studies 

by measuring the mechanics of the stretch reflex during movement. The next section 

de scribes how we will develop the tools which allow tracking of rapidly time-varying 

systems, such as those encountered during voluntary movement. 

2.4 System Identification 

A system can be described as the process(es) or physical component(s) that 

produce an output signales) [2]. External signaIs imposed on the system to produce 

measurable outputs are called inputs. The term system identification involves creating a 

mathematical model of a system based on measured inputs and outputs [2]. 

A system is linear if it obeys the law of superposition, which means that if a 

system is presented with a sum of inputs, then the system response will be a sum of the 

individual responses to the respective signaIs. Systems that are not found to be linear are 

called nonlinear. Time-invariant systems have properties that do not change with time. 

Conversely, a system whose properties change with time is said to be time-varying. 

Models of a system can be classified as either nonparametric or parametric 

(analytical). Nonparametric identification techniques do not assume a model structure and 

solve for a numeric representation of the system. Parametric models de scribe the system 

by a mathematical or analytic expression [1]. These models are often easier to interpret 

and require fewer parameters for the model description, compared with nonparametric 
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techniques. However the catch is that the system will only be properly characterized if the 

chosen form of the expression is correct. 

2.4.1 Impulse Response Function (IRF) 

A system's impulse response function (IRF) is the response to a unit impulse, 

which completely characterizes the dynamics of the system [2]. Impulse response 

functions are formulated in the time domain and have represented linear, nonparametric 

models for joint dynamics well [1]. Given a linear, time-invariant system's two-sided 

IRF, the output y(t) to any given input u(t) can be determined using the convolution 

integral [2]: 

00 

y(t) = fh(, )u(t -,)d, (2.1) 
-00 

where h(r) is the system's IRF or weighting function and r is the IRF time, or lag, where 

positive values represent system memory and negative values represent system 

anticipation. 

Similarly for linear, time-varying systems, the dynamics can be described by a 

time-dependent weighting function h(t, r). There are various formulations of the time­

varying convolution integral, and one possible expression is [33]: 

00 

y(t) = fh(t, , )u(t -,)d, (2.2) 
-00 

Thus h(t, r) corresponds to the response yU) to a unit impulse applied at time t-r. 

More complex approaches must be used for nonlinear systems and these include 

the following nonparametric methods: quasi-linear methods, functional expansions and 

cascade methods [1]. Quasi-linear models allow the system to be described at particular 

operating points, where the system behaves linearly to inputs of small deviations about 

the operating point. These models hold for stationary (time-invariant) conditions, but may 

not necessarily be valid in cases where the operating point changes in time. Functional 

expansions involve series expansions such as Volterra or Wiener, whose kemels will 

characterize the nonlinear system [34]. Many kemels parameters must be estimated which 
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increases the computational time significantly. Aiso kernels of higher orders are 

challenging to interpret. 

Cascade or block-structured models are descriptions that combine static 

nonlinear and dynamic linear subsystems [34]. A static system is one whose output at 

time t depends solely on the value of the input at time t. Block-structured models can be 

easily adapted to the time-varying case, by having each subsystem's model vary with 

time. A parallel-cascade model has been used extensively in our laboratory to identify 

ankle joint stiffness and is presented next. 

2.4.2 Parallel-Cascade Model of Joint Mechanics 

The parallel-cascade model of joint mechanics developed in our laboratory is 

illustrated in Fig. 2.9 [3]. The upper linear pathway represents intrinsic stiffness by a 

dynamic linear system. The lower nonlinear pathway represents reflex stiffness by a 

differentiator in series with a Hammerstein system. A Hammerstein system is itself a 

cascade system with a static nonlinearity in series with a dynamic linear subsystem. 

During postural conditions, this model represents ankle joint mechanics well for a variety 

of experimental conditions [3, 15]. The static nonlinearity of the Hammerstein system is 

very similar to a half-wave rectifier under stationary conditions [35]. 
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Figure 2.9: Parallel-cascade model of joint mechanics 
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The procedure used under stationary conditions to identify the parallel-cascade 

model from the position and torque data records will be briefly outlined below [3]: 

1) Intrinsic stiffness is estimated by identifying the IRF of the linear 

pathway from the position and torque signaIs. Since the reflex response 

has a delay, the IRF length is fixed to the delay associated with the reflex 

mechanisms to eliminate the possibility of reflex contamination. 

2) The intrinsic torque is estimated by convolving the position with the 

model obtained in Step 1. The intrinsic residual torque is computed. 

3) A Hammerstein system is estimated between the differentiated position 

(velo city) and the intrinsic residual torque from Step 2. 

4) The reflex torque is estimated by convolving velocity with the model 

obtained in Step 3. The reflex residual torque is computed. 

5) The total predicted torque is calculated as the sum of the estimated 

intrinsic and reflex torques. The percentage variance accounted for is 

computed between the actual and predicted total torques. 

6) Using the reflex residual torque from Step 4 instead of total torque, the 

procedure starting from Step 1 is repeated. Iterations will continue until 

the percentage variance accounted for by the model fails to increase. 

Sorne steps must be explained in more detail. The reflex torque response is known 

to have a delay, which justifies limiting the IRF length in Step 1 to only allow intrinsic 

mechanisms to be identified. Intrinsic mechanisms occur at short latencies, so this step 

will not prevent full characterization of the intrinsic dynamics. The intrinsic and reflex 

torques are considered to add linearly for simplicity, however in reality the interactions 

are likely to be complex and nonlinear. The iterative procedure improved estimates by 

removing components of the output signal which were not modeled by the pathway being 

estimated. Using the torque residuals with each iteration in effect increased the signal-to­

noise ratio (SNR). 

The parallel-cascade model of joint mechanics appropriately represents ankle joint 

mechanics for a number of reasons. The dynamics that are estimated from the reflex 

pathway are consistent with the velocity sensitivity of the reflex mechanisms and the low­

pass characteristics of muscle activation dynamics. Also the shape of the estimated reflex 
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stiffness IRF using the parallel-cascade model is very similar to the reflex torque response 

to a pulse displacement. In particular, GS reflex behaviour has been shown to be strongly 

non-linear. The response of the GS to a pulse depends in a non-linear fashion on 

amplitude, direction and duration of the pulse, as weIl as the level of voluntary activation 

[35]. Therefore the assumption of a delayed, non-linear pathway with low-pass dynamics 

is reasonable for reflex stiffness. 

The intrinsic pathway represents the elastic, viscous and inertial properties of the 

joint. The estimated intrinsic stiffness is found to account for much of the torque V AF 

when there is no or little reflex activity (as seen in the GS EMG), which demonstrates that 

the linear pathway is a suitable description of intrinsic stiffness under stationary 

conditions. The parallel-cascade model has been successful under postural conditions but 

it is important to recognize that during non-stationary situations this model may no longer 

represent anlde joint dynamics weIl. 

2.4.3 Time-Varying Techniques 

Reflexes are often studied under static conditions, because the identification 

procedures are simplified when using time-invariant solutions. Although there are many 

reliable techniques to identify linear time-invariant systems, the majority of biological 

systems are nonlinear and have time-varying behaviour. Thus the use of time-varying 

identification techniques allows a deeper understanding of physiological systems. 

In general, there are four major categories of time-varying identification 

techniques: quasi-stationary methods, temporal expansion methods, adaptive methods, 

and ensemble methods [33]. Quasi-stationary methods apply time-invariant identification 

techniques provided the operating point does not change significantly over a time period 

comparable to the system's dynamics duration. For temporal expansion methods, the 

time-varying parameters (for a parametric model) or time-varying kemels (for a 

nonparametric model) are expressed as a linear combination of known time functions 

. [33]. During identification, the coefficients of these linear combinations are estimated. A 

disadvantage of the temporal expansion method is that the form of the system's time-

variation must be known in advance [33]. Adaptive methods utilize iterative algorithms 

that estimate model parameters whenever new data becomes available, and work well for 
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slowly time-varying systems. However the system's structure must be known a priori 

[33]. 

Ensemble methods are capable of identifying very rapidly changing systems, 

those in which the changes in the dynamics occur faster than the duration of the dynamics 

themselves, and require no a priori knowledge about the time-variation structure [33]. A 

model of the system is generated at every instant in time during the time-varying 

behaviour using an ensemble of input-output realizations. The input-output relationship is 

evaluated across the ensemble at specific instants rather than across time. The time­

varying behaviour is assumed to be the same for each realization. 

2.4.3.1 Techniques used to study Joint Dynamics 

The pioneer in ensemble-based time-varying studies examining joint dynamics 

was Soechting and colleagues who used a correlation-based approach to study the human 

elbow's myotatic response [36] and dynamic compliance [37]. However this time-varying 

identification technique imposed severe restrictions on the experimental protocol as the 

timing between the input signal and the onset of time-varying behaviour had to be 

controlled precisely. 

Time-varying identification approaches based on parametric models have been 

used to study joint dynamics during movement. Parametric models can be very useful 

because the estimated parameters have physical meaning and allow direct inferences into 

motor control [38]. A recent ensemble time-varying technique used position perturbations 

as input to a linear, time-varying, second-order model of joint stiffness and the 

perturbation torque as output [38]. With multiple trials, a set of linear equations was 

formed and the parameters as a function of time were solved for using standard least 

squares estimation. Filtering techniques were used to extract accurate estimates of the 

position perturbations from the angular measurement that included the voluntary 

movement [38]. Most other ensemble techniques align the trials based on a feature in the 

movement to obtain an ensemble averaged movement which is then subtracted from each 

trial to obtain the desired perturbations. 

However, a major limitation of these parametric techniques [36-38], is that the 

instantaneous dynamics were assumed to be weIl modeled by a linear, second order 
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system. If this assumption is incorrect for the time-varying behaviour studied, the results 

will be meaningless. A recent algorithm for estimation of time-varying impulse response 

functions was created using autoregressive moving average (ARMA) models, but was 

applied to study renal blood pressure and flow [39]. Although the model order was not 

required a priori, the form of the models were still restricted to the AR and MA types. 

Nonparametric identification techniques do not require the assumption of a model 

structure or order before hand and can identify structures that may change in time. 

In our laboratory, the nonparametric approach for time-varying identification of 

joint dynamics was pursued using ensemble methods. MacNeil and colleagues [33] 

utilized ensemble input-output data to obtain least-squares estimates of linear, time­

varying impulse response functions by applying singular value decomposition. MacNeil's 

technique was used in two separate experimental paradigms: a rapid contraction change 

[40] and a rapid imposed movement [41]. The stretch reflex EMG dynamics were found 

relating joint velocity to EMG at a temporal resolution equal to the sampling rate. The 

development of ensemble techniques in our laboratory will be discussed in more detail in 

the following section. 

2.4.4 Time-Varying Identification Ensemble Methods 

The ensemble method was chosen as the time-varying technique for ankle 

stiffness identification over other methods for several reasons. First, ensemble methods 

are capable of identifying very rapidly changing systems. Secondly, they require no a 

priori knowledge about the time-variation structure [33]. Generally they apply standard 

time-invariant techniques, but to the input-output data across the ensemble at specifie 

points in time. 

The main disadvantage with ensemble techniques is that a large number of 

realizations must be obtained where the system's behaviour from one realization to the 

next do es not change, making the experimental methodology cumbersome. The more 

similar realizations obtained, the betler the model' s parameters can be estimated as they 

are estimated across the ensemble rather than across time. The number of data points (i.e. 

number of trials) should be much larger than the number of model parameters estimated 

(i.e. IRF length) to obtain reliable estimates. 
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Using ensemble methods, a model of the system is generated at every instant in 

time during the time-varying behaviour from an ensemble of input-output realizations, as 

shown in Fig. 2.10. The input-output relationship is estimated across the ensemble (i.e. 

each column in the input and output matrices of Fig. 2.10 represents a realization) at 

specifie instants (i.e. each row in the input, output and IRF matrices of Fig. 2.10 

represents an instant in time). The time-varying behaviour is assumed to be the same for 

each realization. 

Discrete 
time 

(t) 

Input matrix 

u(tl'l) u(t1,2 ) u(tl'N) 
u(t2 ,1) 

u(tn,l) u(tn,N) 

Output matrix 

y (tl'l ) y(tI'2) y(tl' N) 
y(t2 ,l) 

Realizations (N) 
• 

Matrix of system's IRFs h(t, r) 
(time-dependent weighting function) 

h~,~) h~,~) h~,~) 
h(t2 , rJ 

Lag time (r) 
• 

n - # of samples 
L-#oflags 
N - # of realizations 

Time-varying Convolution Integral: 
00 

y(t) = fh(t, r)u(t - r)dr 
-00 

Figure 2.10: Input-Output matrices and the time-varying IRF matrix from the time­
varying convolution integral generated using ensemble methods 

As introduced in the previous section, MacNeil et al created a linear, time-varying 

identification method using ensemble data [32]. The time-varying convolution integral is 

manipulated to obtain a set of linear equations, each representing a realization from the 

ensemble data. These equations in matrix form represent the output at time i expressed as 

weighted sums of past, present and future input values. The least-squares solution to the 

matrix equation provides estimates of the time-varying IRFs (or weighting functions) and 

is obtained by applying singular value decomposition. This technique places no 

restrictions on the timing between the input and time-varying behaviour, unlike previous 

ensemble techniques [36, 37]. However, it was found to estimate less reliably with 
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coloured inputs and low output signal-to-noise ratios (SNR). Therefore a new 

nonparametric technique was developed to address these two issues. 

2.4.4.1 Linear Pseudoinverse Technique 

Lortie and Keamey proposed a new nonparametric technique to identify linear, 

time-varying systems from ensemble data [42]. At each sampling time, a matrix equation 

involving estimates of the input autocorrelation and input-output cross correlation 

functions is computed from data across the ensemble. The matrix inverse needed to solve 

the equation is replaced with a pseudoinverse, which has been found to provide more 

reliable estimates when the input is coloured and the output SNR is low [43, 44]. Thus the 

basic correlation approach in combination with the pseudoinverse approach was extended 

by Lortie and Keamey in this new technique. 

2.4.4.2 Hammerstein System Technique 

A new technique to identify time-varying Hammerstein systems from ensemble 

data was also designed [45]. A correlation approach is first used to obtain initial estimates 

of the linear subsystem parameters at every sample time. A two step iterative optimization 

algorithrn is then employed to produce final estimates of the system parameters. The first 

process in the iterative optimization algorithrn involves fixing the linear subsystem 

parameter estimates and finding the estimates of the nonlinear subsystem parameters that 

minimizes the SUffi of squared differences between the observed outputs and the outputs 

predicted by the Hammerstein model. During the second process, the subsystems are 

reversed; the nonlinear subsystem parameters are fixed while the linear subsystem 

parameters are found. This two-step procedure is repeated until the sum of the squared 

differences between the observed and predicted outputs fails to decrease. The 

optimization algorithrn then repeats at the subsequent sarnpling times. The static 

nonlinearity is assumed to be represented by a polynomial at each time instant, with a 

maximum polynomial order that is chosen prior to identification. 

The advantage of both the linear and Hammerstein techniques is that they are 

capable of identifying the dynamics at time intervals equal to the sampling rate, providing 

excellent resolution of the dynamics across a time-varying behaviour. 
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2.4.4.3 Previous Validation 

Both techniques were tested separately with simulated data, as the algorithms 

were not yet combined into the parallel-cascade model. A linear, time-varying system 

simulated the intrinsic compliance of the ankle during a rapid dorsiflexing movement 

over a typical range of motion [4]. This was done by dividing the motion of the ankle into 

equally spaced positions corresponding to a given sampling time. The inertial (l), viscous 

(B) and elastic (10 parameters from the second order model of intrinsic compliance (see 

Section 4.3.1, Equation 4.3) were found by interpolating between parame ter values at 

corresponding joint positions using data from actual experiments performed under quasi­

stationary conditions. A block diagram of the procedure can be se en in Fig. 2.11. 

mean joint position 
as function of time 

experimental 
results for 

quasi-stationary 
conditions Gaussian 

white noise 
I(t), B(t), K(t) 

second-order simulated 
Gaussian low-pass input time-varying output noise-corrupted 

+ white noise Butterworth torque intrinsic position output 
filter compliance 

Figure 2.11: Block diagram of Lortie' s simulation [4] 

The simulation studies tested the linear, pseudoinverse time-varying identification 

technique for a variety of input bandwidths and output noise conditions. The mean 

variances accounted for, VAFIRF (see Section 4.4.2, Equation 4.6), between the true and 

predicted systems are shown in Fig. 2.12. Fig. 2.12B shows the effect of changing the cut­

offfrequency of the filter used to generate the position inputs at a set output SNR of5 dB. 

Fig. 2.12A shows the effect of changing the noise conditions at the output while using the 

same input filter eut-off frequency of 10Hz. Clearly the results showed a significant 

improvement over MacNeil's least-squares technique when the inputs are colored and the 
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output SNR is low, and proved the validity of the technique for identifying the linear, 

intrinsic pathway of ankle stiffness. 
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Figure 2.12: Mean V AF between true and estimated IRFs as a function of input filter 
cutofffrequency (B) and of output SNR (A) from Lortie's simulation [4] 

To test the time-varying Hammerstein technique, a similar simulation was used to 

generate ensemble data representing the reflex stiffness pathway [4]. The procedure was 

nearly identical to that illustrated in Fig. 2.11, however the values of reflex gain (G), 

damping parameter (0 and natural frequency (wn) from the second-order model ofreflex 

stiffness (see Section 4.3.1, Equation 4.4) were those found by interpolation from 

experimental data. This first simulation study provided clear evidence of the techniques 

strong estimation capabilities even in the presence of significant output noise and fewer 

realizations, as illustrated by the variance accounted for plotted in Fig. 2.13. 
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Figure 2.13: Mean VAF between true and estimated static nonlinearities (A) and between 
true and estimated IRFs (B) as a function of output SNR using three different ensemble 
sizes from Lortie's simulation [4] 

A second simulated system was created to test the conditions when the static 

nonlinearity changes in time and when abrupt changes occur in the static nonlinearity 

and/or the linear dynamics [4]. The results demonstrated that the technique performs very 

well when the static nonlinearity varies with time. The abrupt changes caused very small 

drops in the VAF between the true and estimated IRFs and SNLs, however did not hinder 

the identification's ability of identifying the dynamics, as the drops in VAF were in fact 

caused by the downsampling of the simulated output signaIs prior to the identification. 

2.5 Objectives 

The main objective ofthis thesis work was to use recently developed time-varying 

identification algorithms to extend the parallel-cascade model to time-varying conditions. 

The identification technique was then to be tested in two ways: 

• Using simulated data, representing time-varying ankle stiffness behaviour; and 

• Using experimental time-varying data obtained during an imposed ramp 

movement. 

The simulation study allowed the validation of the algorithm by comparing the true and 

identified systems and outputs. The experimental study tested the technique's capabilities 

with real data. 
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2.5.1 Motivation 

With a robust time-varying identification technique, our laboratory will be able to 

examine a variety of time-varying behaviours and provide insight into the role of 

peripheral mechanisms. Ideally, this novel algorithm will be used to study voluntary 

movement, and the results will contribute to our understanding of the mechanical 

consequences of the stretch reflex during movement. 

Beyond basic motor control research, there lS the possibility to explore 

neuromuscular disorders, such as cerebral paIsy, Parkinson's disease, and spinal cord 

injuries, using these quantitative tools. People with neuromuscular disorders have varying 

degrees of joint stiffness or muscle tone (spasticity), and it is currently assessed 

qualitatively. Quantitative tools may be extremely useful for assisting in the diagnosis and 

management of the disease. 

The application of joint mechanics studies have far-reaching effects into a variety 

of fields such as: rehabilitation [46], prosthetics [1], and robotics [47]. Functional 

electrical stimulation (FES), which restores function to paralyzed muscles by electrical 

stimulus, requires information about joint dynamics for control programs to maintain joint 

stability over a range ofmuscle activation levels [1,46]. The design ofprosthetic limbs is 

greatly enhanced if the dynamics of the prosthesis match closely the limb they replace 

[1]. Robotics will also benefit from research done on human joint dynamics, as the 

neuromuscular control system may provide useful insight into the design of robotic 

control [1,47]. 
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3. Experimental Apparatus 

This chapter describes the experimental setup used to acquire anlde stiffness data, 

pro vi ding details on the electrohydraulic actuator, custom-fit boot, transducers, control 

system, data acquisition, and visual display. Fig. 3.1 is a general depiction of the 

experimental apparatus and the signal flow. The subject lay supine on the bed with their 

left foot attached to the foot pedal of the actuator via a low-inertia, custom-made 

fibreglass boot. A strap over the lower thigh maintained the knee angle and sandbags 

under the knee provided support. An LCD monitor mounted above the subject' s head 

provided visual feedback. A servo valve controlled the flow of hydraulic fluid to the 

actuator. The actuator was controlled by proportional position feedback implemented 

with an xPC real-time digital signal processing system. Position, torque, gastrocnemius 

EMG, tibialis anterior EMG and input perturbation signals were digitized and stored on 

the workstation. The major components will be discussed in detail below. 

Visual 
Feedback 

Signal 
Generation ... -~ 

(Matlab) 

Figure 3.1: Experimental apparatus and signaIs 
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3. 1 Electrohydraulic Actuator 

A rotary hydraulic motor (ROTAC 26R-5) was controlled by a two-stage 

electrohydraulic servo-valve (Moog 730-233). To minimize backlash, the actuator shaft 

was coupled directly to the boot fixation assembly. The axis of rotation of the actuator 

assembly was aligned with the ankle's axis of rotation, as described in Section 3.2.2. 

Three safety mechanisms ensured that the subject's ankle was not moved beyond 

its comfortable range of motion (ROM). First, there were adjustable mechanical stops 

(steel bolts), labelled in Fig. 3.2, fixed to the torque transducer support. The bolts would 

contact a piece attached to the rotating shaft at the limits of ROM. Second, there was an 

adjustable hydraulic cam that automatically stopped hydraulic flow to the actuator upon 

reaching the limits of the ROM. Both the mechanical stops and hydraulic cam were 

adjusted to fit the subject's ROM prior to experiments being performed. These two safety 

mechanisms are completely independent systems, but are both activated by the rotating 

foot pedal. Third, the subject and experimenter each had buttons at hand that when 

pressed would immediately cut off the flow of the hydraulic fluid to the actuator. 

3.2 Boot 

The purpose of the custom-fit boot was to provide a rigid interface between the 

subject and the actuator and restrict movements to dorsiflexion and plantarflexion. The 

boot must have a low inertia so as to maximize the ankle' s dynamic response, but provide 

strength and stability against the perturbations and subject. The boot making procedure is 

outlined in detail in the REKLAB manual [48]. Photographs of a boot mounted to the 

rotating foot pedal are shown in Fig. 3.2. 
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Figure 3.2: Custom-fit boot bolted to foot pedal 

3.2.1 Materials and Construction 

The boot was made of fibreglass orthopaedic casting tape (Dynacast). Each 

subject had the orthopaedic tape wrapped around their foot and anlde while maintaining 

approximately a 90 degree angle. The malleoli were marked on the cast for use in 

determining the axis of rotation. The casting material hardened slightly within about 10 

minutes, and then was removed with a cast cutter. The boot then completely hardened 

overnight into a rigid mold of the subject's foot. The boot required trimming around the 

edges so that the subject could easily put the boot on and off. The toe region was also 

removed so that the subject could not generate torque with their toes. A 'tongue' for the 

boot was molded out of thermoplastic splinting material (Polyform A29215) between the 

boot and top of the foot, and was held in place during experiments with a Velcro strap. 

3.2.2 Axis of Rotation 

The approximate ankle axis of rotation with respect to anatomical landmarks was 

determined from anthropometric studies on human cadavers. This was Il mm anterior 

and 12 mm distal to the lateral malleolus, as shown in Fig. A.1, and 1 mm posterior and 

16 mm distal from the medial malleolus, as shown in Fig. A.2 [49]. The malleoli were 

marked on the boot, and we utilized these statistical average measurements to locate the 

axis of rotation. To fine-tune the axis location, the ankle was manually moved about the 

axis of rotation. Any movement at the knee would indicate a misalignment. In this case, 

the marks of the malleoli would be shifted until no movement occurred at the knee. 
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We then drilled holes at these locations (Fig. 3.2A) and placed the boot in a 

replica of the boot fixation assembly. Aluminium posts (Fig. 3.2B) were fixed onto the 

sides of the boot using steel-filled epoxy (Devcon), while being held in the boot fixation 

replica as if bolted on during experiments. A straight wire was placed through the axis of 

rotation of the ankle and that of the actuator, via the posts. The posts had holes drilled at 

the same height measured from the base of the foot pedal to the actuator center of 

rotation. After the epoxy hardened, the boot was ready for use. 

3.3 Transducers 

The signaIs required to study the neuromuscular control system using system 

identification are: angular position, torque and EMG. The sensors used to measure each 

of these signaIs will be discussed in tUffi. 

3.3.1 Angular Position 

A potentiometer (BI Technologies 6273) made of a plastic conductive material, 

was used to measure angular position of the foot pedal onto which the boot is bolted. A 

flexible helical beam coupling (McMaster-Carr 6208K51) was used to connect the 

potentiometer shaft to the shaft of the bearing mounted in one of the boot fixation 

supports, as shown in Fig. 3.2B. The coupling has six cuts to provide the necessary 

flexibility for parallel, angular and axial misalignrnent, up to a maximum of 0.1778 mm, 

3° and 0.1270 mm, respectively. The maximum torque the coupling can handle is 0.7119 

Nm, as opposed to a maximum start torque of 0.014 Nm needed by the potentiometer. It 

has zero backlash (no slipping), which is ideal for this application as it requires frequent 

starts and stops. 

A mechanical contact sweeps along the plastic surface of the potentiometer, 

producing an output voltage linearly related to the contact's rotational displacement. This 

potentiometer has a resistance range of 1 to 900 kQ with a maximum non-linearity of 

±0.5% over 5.943 rad (340°). A custom-built potentiometer module was used to provide 

amplification and DC offset; it was calibrated to a sensitivity of 1 0 V/rad (or 0.1 radN). 

To estimate the resolution of the potentiometer and module, the noise was measured using 

a multimeter (Fluke 80) which recorded the output over a bandwidth of 200 kHz while 
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shorting the input of the module to ground [50]. The resulting root-mean-square noise 

level was found to be 1.0 mV (or 0.0001 rad) [50]. 

3.3.2 Torque 

To measure the torque produced by a subject, a general purpose reaction torque 

transducer (Lebow 2110-5K) was mounted via a flange to the second boot fixation 

support, as illustrated in Fig. 3.2. It is capable of measuring up to 565 Nm with a 

maximum nonlinearity of ±0.1 % and has a high torsional stiffness of 103,941 Nmlrad. 

The stiffness of the human ankle is in the range of hundreds of Nmlrad or less (i.e. 200 

Nmlrad) [51], smaller than the sensor's stiffness by a factor of roughly 1000. Since the 

ankle is significantly more compliant than the sensor, torque generated by the subject 

does not translate into torsional effects at the sensor, thus improving the sensitivity and 

accuracy of the measurement. Other advantages of the transducer were that it has minimal 

friction error, low end sensitivity due to the absence ofmoving parts and a high resistance 

to bending moments. 

A custom-built torque transducer module provided gain and offset to the torque 

signal, and was calibrated to provide a sensitivity of 0.05 V/Nm (or 20 NmN). Following 

the same procedure to measure noise levels in Section 3.3.1, the RMS noise level for the 

torque transducer and module were measured to be 2.1 mV (or 0.042 Nm) [50]. 

3.3.3 Electromyography (EMG) 

Electromyographic (EMG) signaIs were recorded from the gastrocnemius-soleus 

group (GS) and the tibialis anterior (TA), using a Delsys Bagnoli-4 EMG system. The 

Delsys system was weIl suited to our needs because: 

1) The Delsys electrodes have an 'active' electrode design which provides 

EMG measurements with a high signal-to-noise ratio (SNR), and; 

2) The belt-mounted interface and minimal amount of skin preparation made 

this system versatile and convenient, to accommodate the growing 

capacity of our laboratory. 

The EMG system is composed of the electrodes (DE-2.1), main amplifier unit, and a belt­

mounted interface unit as shown in Fig. 3.3 and detailed below. 
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Figure 3.3: EMG setup [adapted from 52] 

3.3.3.1 Electrodes 

The Delsys DE-2.I electrodes are active differential electrodes which have a 

unique design comprising two parallel bars in a bipolar configuration and a differential 

amplifier housed within the small electrode itself, as shown in Fig. 3.4. The signaIs are 

subtracted and pre-amplified (gain of 10) before being sent to the main amplifier unit. 

These electrodes have a common-mode rejection ratio (CMRR) greater than 80 dB, at 

60Hz. 

1mm 

Reference 

Figure 3.4: DE-2.I single differential electrode design [52]. The EMG measurement is the 
potential difference between VI and V2. 
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The electrodes were applied to the muscles, after shaving and lightly rubbing with 

alcohol, and held in place with double sided adhesive tape. The parallei bars of the 

electrode must be placed perpendicular to the muscle fibre orientation. The electrode 

housing was labelled with an arrow which should point in the direction of the muscle 

fibres. The electrode for the GS was placed on the lateral head of the muscle and the 

electrode for the TA was placed on the belly of the muscle, approximately one third of the 

distance between the knee cap and the lateral malleolus, as shown in Fig. 3.5. A 

reference, or neutral, electrode was attached to an eiectrically neutrallocation on the body 

(i.e. the patella) and aIl EMG signaIs were measured with respect to this electrode. 

Figure 3.5: Electrode Locations 

3.3.3.2 Main amplifier and interface unit 

The EMG and reference cables were plugged into a belt-mounted unit. The 

interface unit 1/0 cable sends the signaIs from the belt-mounted unit to the main amplifier 

unit. This main amplifier unit supplies power to the electrodes, receives and conditions 

the signaIs and provides four outputs for signal acquisition. Patient safety was insured by 

the use of an isolated medical grade power supply. Isolation was achieved with an 

isolated transformer. The supply provides a regulated 12 V output and conforms to the 

medical IEC6060 1 standard. This wall mounted supply has leakage currents of less than 

10 ~A and is safety isolated to 3750 VRMs [52]. 
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The main amplifier unit has individual gain switches for each channel, as well as 

two LEDs to detect signal saturation (± 4.8V) and line interference (60 Hz) on each 

channel. Four BNC sockets are used to connect the output signaIs to the data acquisition 

cardo 

The entire system (electrodes, interface unit and main amplifier) was tested using 

a custom-built in-house circuit that attenuated a single-ended input and converted it to a 

differential signal [53]. The input to the circuit was a swept sine wave from high to low 

frequencies over the range 1 Hz - 10kHz generated using a dynamic signal analyzer (HP 

3562A). The output from the EMG channel of the main amplifier was recorded on the 

dynamic signal analyzer. Subsequently the system's transfer function was computed and 

plotted between the input to the electrode and the measured main amplifier output at each 

input frequency. Fig. 3.6 shows the system's frequency response at a gain of 80 dB, with 

a bandwidth of approximately 22.4 Hz - 2.04 kHz. The circle marks the -3 dB point from 

the steady gain of 80 dB and occurred at a eut-off frequency of 22.4 Hz. The pointer trace 

on the analyzer was similarly used to find the high cut-off frequency. The channel was 

tested at its different gain settings and the system was shown to have the expected 

bandwidth of 20-2000 Hz, at the overall amplification settings of 40, 60 and 80 dB (100, 

1000, 10,000 V N). The physiological bandwidth of EMG signaIs, as presented in Section 

2.2.7, lies well within the usable frequency range ofthis detecting system. 
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Figure 3.6: Frequency response, gain (upper plot) and phase (lower plot), between input 
to electrode and output from one EMG channel at a gain of 80 dB using an in-house 
circuit and dynamic signal analyzer [53] 
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3.4 Experimental Control 

Experimental and analytical tools were developed and implemented usmg 

MATLAB (The Mathworks Inc., Natiek, MA). A graphieal user interface (GUI) recently 

developed by Przemek Boek [54], running under Windows XP, eontrolled the 

experiments. 

3.4.1 Servo Control System 

The desired position input was generated digitally and output to the servo-valve 

using a 6-channel, 16-bit digital-to-analog (D/A) eonverter (ComputerBoards Ine., PCIM­

DDA06/16). The controller was developed in Simulink (MATLAB) and used the xPC 

real-time digital signal processing (DSP) system. The xPC system requires a host PC 

running MATLAB/Simulink and the target PC running a real-time kernel. The host 

computer loads the DSP code to the target computer via Ethernet. 

Position and torque signaIs used by the Simulink eontroller were first anti-alias 

filtered at 400 Hz with an 8-pole, 6-zero, linear-phase, constant-delay, low pass Bessel 

filter (Frequency Deviees 9064) before being sampled at 1 kHz by the target computer 

using a 8-channel, 16-bit analog-to-digital (AlD) converter (ComputerBoards Ine., PCIM­

DAS1602/16). 

The controller used proportional position feedback for the actuator. This eontroller 

used only the position error signal to drive the actuator so the effects on the aetuator 

position from torques generated by the subject were insignifieant. Under position control, 

the foot pedal felt very stiffto the subjeet; it provided stiffness greater than 7,325 Nm/rad. 

This value was measured as the steady-state stiffuess of the system in proportional control 

[50]. The actuator frequeney response under proportional control with no subject is 

illustrated in Fig. 3.7. This response was generated using a dynamic signal analyzer (HP 

3562A), whieh applied random perturbations with a bandwidth of 0.5 - 500 Hz to the 

aetuator, measured the corresponding position signal, and computed the frequency 

response [55]. This system is capable of applying inputs up to approximately 60 Hz, 

whieh is sufficiently high to identify ankle dynamics. 
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Figure 3.7: Gain, phase, and coherence of the transfer function between input perturbation 
and position under proportional control mode with no subject [55] 

3.5 Data Acquisition 

The position, torque, EMG and input position data were sampled using a dynamic 

signal acquisition card (National Instruments 4472) on the host computer. This eard has a 

built-in digital anti-aliasing filter, with an extremely sharp cut-off frequency of 

approximately 0.4863 times the sample rate. We used a sampling rate of 1 kHz, thus the 

anti-aliasing filter has a eut-off of 486.3 Hz. The sampled data was stored on the host 

computer. 

3.6 Visual Feedback 

An LeD monitor hung above the subject's head and was capable of displaying 

two feedback signaIs via one target symbol that could be plotted along two axes. Fig. 3.8 

shows the actual display with the square target. Plot A displays only one feedback signal 

plotted on the vertical axis. Plot B depicts the target with two feedback signaIs, one 

plotted on the vertical axis and the other on the horizontal axis. The visual goal for the 
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subject can vary depending on the task and the feedback signaIs, but for illustration 

purposes Plots C and D show an attempt to minimize both signaIs to zero (i.e. between 

the dotted lines on the vertical axis, as shown in C, and to the left on the horizontal axis, 

as shown in D). In the experiments for this thesis, a single feedback signal of the error 

between the target torque and the low-pass filtered torque was plotted along the vertical 

axis, and subjects were asked to minimize the signal to zero. 

B. Feedback alon9 both axes 

C & D. Example of how subject must attempt to minimize the two signais of error feedback to zero 
(between the dotted lines on vertical axis and left on the horizontal axis). 

Note: this is not real subject data; it was generated for illustration purposes. 

Figure 3.8: Examples of Vi suai feedback to the subject 

In a method created by Ross Wagner, the digital feedback signaIs were sent from 

the Simulink model via a User Datagram Proto col (UDP) driver block to a second 

computer. This feedback display computer created the graphical display as shown in Fig. 

3.8. The video signal was then sent to the LCD monitor to provide the visual feedback to 

the subject. 
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4. Validation of the Time-Varying, Parallel-Cascade 

Identification Aigorithm 

This chapter presents the novel time-varying, parallel-cascade identification 

algorithm. First, the iterative identification procedure is described in detail. The next 

section describes the simulation model used to generate ensemble data for testing the 

algorithm. A time-varying system meant to represent ankle joint stiffness was created 

based on previous results obtained under stationary conditions. Computer-generated and 

experimentally measured position input records were passed through the simulated 

system to generate time-varying ensemble data. This data was then used to test the 

algorithm's ability to estimate the two components of stiffness. The simulation results, 

including the comparison of the true and estimated systems, are presented in the 

subsequent section. The chapter concludes with a discussion of the ability of the time­

varying techniques to estimate the simulated system dynamics. 

4.1 Identification of Time-Varying Joint Stiffness 

The main goal of this thesis was to develop and validate a method for the 

identification of time-varying intrinsic and reflex mechanisms. The two time-varying 

techniques presented in Section 2.4.4 were incorporated into a time-varying, parallel­

cascade identification algorithm, which is described in detail in this section. 

Many different algorithms could be considered for the time-varying identification 

of ankle joint mechanics, as presented in Sections 2.4.3 - 2.4.4. Currently the methods 

developed in our lab were chosen as most suitable for the parallel-cascade model. One of 

our major assumptions is the use of the parallel-cascade model representing ankle joint 

mechanics during the imposed movement. 

The parallel-cascade model, presented in Section 2.4.2, is shown in Fig. 4.1; the 

upper pathway represents intrinsic stiffness as a linear dynamic system and the lower 

pathway represents reflex stiffness as a nonlinear dynamic Hammerstein system. The 

overall torque is assumed to be the linear summation of the torques due to intrinsic (TQI) 

and reflex (TQR) mechanisms. 
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Figure 4.1: Parallel-cascade model of joint mechanics 

Fig. 4.2 illustrates the signaIs and systems generated using the time-varying, 

parallel-cascade identification algorithm from ensemble data. The implementation details 

of the algorithm are explained further in Appendix B, and the MATLAB pro gram is given 

in Appendix C. 

Before describing Fig. 4.2 in more detail, equations for the percentage variance 

accounted for (%VAF) using ensemble data are presented. The %VAF between an actual 

(.x) and predicted (X) signal or system at each time t was calculated as: 

%VAF
x 

(t) = 100(1- var(X N(t)- X N (t ))], 
var(X N(t)) 

(4.1) 

where the variances were computed across the ensemble with t held constant. Subsequent 

references to this %VAF will be shown as either VAF xCt) or VAFx, since the majority of 

the calculations were done across the ensemble. 

The %VAF corresponding to each realization N was computed as: 

(4.2) 

where the variances were estimated using data across time and N held constant. 

Subsequent references to this %VAFwill be shown as VAFxCN). 
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Figure 4.2: The paralIel-cascade structure used to estimate time-varying intrinsic and 
reflex stiffness. The solid, dark curves represent experimental data and the dotted, light 
curves represent predicted data. AlI systems are defined explicitly as a function of time (t) 
and lag (r). The signaIs are explicitly defined as a function oftime (t) and realization (N) 
to represent ensemble data. Similarly, for each signal the two curves with dots in between 
represent ensemble data. 

The identification procedure can be outlined as folIows, referring to Fig. 4.2: 

1) Intrinsic dynamics, PfQIRF (t, r), were estimated using the linear, 

pseudoinverse technique between the position, P(t,N), and torque, 

TQ(t,N), ensemble data. The lengths of IRFs were limited to the delay 

associated with the reflex mechanisms. To estimate the inverse of 

intrinsic stiffness (intrinsic compliance, TijP1RF (t, r)), a noise-free torque 

was obtained by convolving a white position input with PfQIRF (t, r). 

Subsequently TijP1RF (t, r) was estimated using the linear, pseudoinverse 

technique between the noise-free torque and position. 

45 



2) The position ensemble was convolved, using time-varying convolution, 

with PTQIRF (t, r) from Step 1, to predict the intrinsic torque, TQ/ (t, N) . 

The intrinsic residual torque for each realization (N) was computed as: 

TQIR(t,N) = TQ(t,N)- TQ/ (t,N), (4.3) 

and used as an estimate of the reflex torque. 

3) Reflex dynamics were estimated, using the time-varying Hammerstein 

technique, between joint velocities, V(t,N), and intrinsic residual torques, 

TQIR(t,N). 

4) The outputs of the static nonlinearities, r(t,N), were convolved with 

vfQIRF (t, r) (the linear subsystems obtained in Step 3) to predict the 

reflex torques, TQR(t,N). The reflex residual torque for each realization 

(N) was computed as: 

TQRR (t,N) = TQ(t,N)- TQRJ (t,N), (4.4) 

and used as a new estimate of the intrinsic torque. 

5) The net predicted torque for each realization (N) was computed as: 

TQ(t,N) = TQ/(t,N)+TQAt,N), (4.5) 

The VAFTQ(t) was computed between the actual and predicted net torques 

at each time tas per equation 4.1. 

6) The procedure was repeated starting from Step 1, using TQRR(t,N) from 

Step 4 in place of TQ(t,N). Iterations continued until the improvement in 

the mean VAFTQ(t) was less than 0.01. 

4.1.1 Aigorithm Details 

Prior to initiating the procedure outlined above, the mean position and mean 

torque across the ensemble were ca1culated and removed from aIl realizations. Thus the 

position records consisted of only the perturbations suitable for identification. The 

identification techniques make the assumption that the inputs have a zero me an, which is 

ensured when removing the ensemble mean. 
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The frequency band of interest for stiffness is low, particularly for the reflex 

component. Position and torque must be sampled at a high rate to capture the reflex delay. 

There is little power at high frequencies in the output and input, thus the system estimates 

contain noise at higher frequencies. Therefore these systems (intrinsic compliance and 

reflex stiffness) were low-pass filtered to remove the high-frequency content, using a 3-

point moving average algorithm, prior to convolution with their inputs. 

4.1.1.1 Hammerstein details 

The static nonlinearities (SNLs) were assumed to be represented by polynomial s, 

with coefficients port), pJ(t), P2(t) ... Pn(t} at each time t according to: 

g(t,u(t - r)) = Po(t)+ PI(t )u(t - r y + pz(t )u(t - r y + ... + Pn(t )u(t - r t, (4.6) 

where g(t, u(t-r)) is the time-varying nonlinear mapping function and u(t-r) is the input 

velocity. The maximum polynomial order (n) must be defined prior to identification. 

Throughout this thesis, the maximum polynomial order was set to three. 

The overall gain of the Harnmerstein system is determined by the gain of the static 

nonlinearity and that of the linear dynamics. When estimating a Harnmerstein system it is 

not possible to determine the distribution of gains between the static nonlinearity and 

linear dynamics [4]. Thus, the Harnmerstein systems must be normalized to permit 

comparisons between different Harnmerstein systems. 

Normalization was achieved by manipulating the gain distribution such that the 

De gain of the linear system was unity. To achieve this, a correction factor was 

calculated as the area under the IRF at each point in time. The IRFs were then divided by 

the correction factor and the polynomial coefficients multiplied by it at the corresponding 

times. This resulted in the gain being redistributed between the two subsystems so that the 

area under the IRF was unit y at every instant while the overall gain of the Harnmerstein 

system remained unchanged. 

4.1.1.2 IRF Propagation 

The time-varying, parallel-cascade identification algorithm uses a correlation 

approach to estimate the linear dynamics. To estimate a linear, time-varying system using 

this approach, a matrix equation is solved in which the input-output crosscorrelation 
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function estimate is expressed in terms of the input autocorrelation function estimate and 

the system weighting function [56]. As a result, IRFs cannot be estimated at times shorter 

than the IRF length and so were set to zero. The equations involved in the basic 

correlation approach will be briefly outlined, to understand why this occurs. 

Given an ensemble of realizations, the discrete time convolution integral for the 

Nh realization can be represented as: 

M2 

Y N (t) = !3.t L h(t, r )uN (t - r ), (4.7) 
r=Ml 

where Ml and M2 represent the finite length of the 2-sided time-varying weighting 

function h(t, r), where h(t, r) = 0 for lags r < Ml and r > M2. 

If both sides are multiplied be uN(t-k), summed over aU realizations (N = l to R, 

where Ris the total number ofrealizations), and multiplied by l/R, the result will be: 

1 R M2 1 R 

-LYN(t )uN(t -k)=!3.t Lh(t, r )-LuN(t - r )uN(t-k), (4.8) 
R N=l r=Ml R N=l 

where k ranges from Ml to M2. 

Equation 4.8 can be rewritten in terms of correlation estimates, as foUows: 

M2 

Jyu (t,-k) = !3.t L h(t, r). Juu (t - k,k - r), (4.9) 
r=Ml 

where Jyu (t ,-k) is the time-dependent, input-output, cross-correlation function estimate 

and Juu (t - k, k - T) is the time-dependent, input autocorrelation function estimate. 

It is evident from Equations 4.8 and 4.9, that the matrix solution requires the use 

of inputs at past times, i.e. uN(t-k) where k ranges from Ml to M2. Therefore the 

estimation of h(t,r) will begin at time t, but requires input data at times t-MI and t+M2. 

RecaU that Ml and M2 represent the length of a 2-sided IRF. Thus, although the acquired 

data may be L in length, the IRFs of a 2-sided (anti-causal) system cannot be estimated 

for the first Ml and last M2 time points and so are set to zero. Thus the system can only 

be estimated for L - (Ml + M2) time points. Similarly for a l-sided (causal) IRF with the 

length limited from 0 to Ml (range of k), the IRFs for the first Ml time points must be set 

to zero. 
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Since the correlation approach requires past inputs at times equivalent to the IRF 

length and does not estimate IRFs at these time points, there are two important 

considerations for the user. To describe the time-varying behaviour, IRFs must be 

estimated at aIl time points throughout the behaviour. Therefore given that initial and 

final IRFs are set to zero, it is important to sample enough data prior to and after the end 

of the time-varying behaviour. Secondly, the IRF lengths must be chosen carefuIly, as 

their length not only affects the quality of the estimated systems but also the times for 

which IRFs cannot be estimated. 

The parallel-cascade identification algorithm predicts the torques generated from 

each pathway and uses updated torque records (residual torques in Steps 2 and 4) with 

each iteration to improve the estimated systems. If IRFs are not estimated at the specified 

times, then clearly torques cannot be predicted at the se times. If the identification 

procedure continued, including the zero IRFs, the amount of usable data would decrease 

with each iteration of the parallel-cascade procedure, because the residual torques would 

be based on erroneous predicted torques. 

The solution we chose to mitigate this problem was to propagate the first non-zero 

IRF towards the start time (and end time for 2-sided IRFs). The rational behind this is the 

assumption that the system is time-invariant at these time points; that is they should occur 

weIl before and weIl after the time-varying behaviour is complete. Fig. 4.3 displays an 

intrinsic compliance IRF immediately after identification (A) and after propagating back 

the first non-zero IRF (B). 
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Figure 4.3: TQP1RF (t, T) immediately after identification (A) and after propagation of the 

first non-zero IRF (B). Notice that TQP1RF (t, T) (A) is set to zero for the first 200 ms (IRF 
length) along time axis. 

4.2 Simulation 

T 0 test the new identification method, a realistic data set was generated by 

simulating a time-varying system representing how ankle joint stiffness might vary during 

a ramp movement. However, it is important to note that very little is known about the true 

dynarnics during a plantarflexing movement and hence this simulation does not 

correspond to how stiffness dynarnics actually change during movement. The simulation 

procedure is shown as a block diagrarn in Fig. 4.4 and will be described next. 
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Figure 4.4: Simulated Intrinsic and Reflex pathways 

4.2.1. Simulated Time-Varying Systems 

Output 
Torque 

Models of intrinsic compliance and reflex stiffness dynamics of the ankle joint 

obtained for quasi-stationary conditions were used to create the simulated time-varying 

system. Intrinsic compliance, at time t, is well modeled by a linear second-order, low-pass 

system with transfer function: 

TQP (s)- p(s) _ 1 
IRF - TQAs) - l(t )S2 + B(t)s + K(t)' 

(4.1 0) 

where P is position, TQI is intrinsic torque, and l(t), B(t), and K(t) are time-dependent 

inertial, viscous, and elastic parameters, respectively [3]. The linear component of the 

Hammerstein system, at time t, is well modeled by a delay in series with a second-order, 

low-pass system with transfer function: 

(4.11) 

where TQR is reflex torque, V is the static nonlinearity velocity output, GR(t) is reflex 

gain, (Vn(t) is the second order natural frequency, and ((t) is the damping parameter [3]. 

The 2nd order parametric fits to intrinsic and reflex ankle stiffness models 

estimated in our laboratory during quasi-stationary conditions, were used to choose 

reasonable parameters for this simulation [57]. To simulate the an1de undergoing a 
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plantarflexing ramp, certain parameters were chosen to vary with time. Only the reflex 

gain, intrinsic elastic and viscous parameters underwent a ramp change. A previous study 

under stationary conditions demonstrated that these parameters showed a strong 

dependency on position, aU values increasing as the foot was more dorsiflexed [57]. 

Moreover, the intrinsic inertial and reflex frequency and damping parameters were found 

to be position independent. Thus, the chosen parameter values are representative of 

normal values obtained for the ankle under stationary conditions. 

The time-varying parameters decreased by 50% of their initial absolute value in a 

ramp change of300 ms and each parameter change started at a different time, as shown in 

Fig. 4.5. The large change and staggered start times were chosen to make the time­

varying behaviour more obvious. This system will be used to test the algorithm's ability 

to track a system with large changes occurring at different times. It is not expected that 

this will correspond to actual behaviour. 

AH signaIs and systems were simulated for an extra 500 ms prior to the start of the 

time-varying behaviour to account for start-up transients, when using the computer­

generated position inputs. This extra time was not necessary when using the experimental 

inputs, since the input had been applied continuously to the ankle prior to data acquisition 

so there were no start-up transients. The data that was actuaHy used for the identification 

was 2 s in length, taken after the first 500 ms. A sampling rate of 100 Hz was used. 
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Figure 4.5: Simulated Intrinsic (A,C,E) and Reflex (B,D,F) parameters. Note: the first 500 
ms are not shown. 

IRFs for TQPIRl;{t, r) and VTQIRAt, r) as per Equations 4.10 and 4.11, were 

generated at each time instant using the parameters from Fig. 4.5. PTQIRAt, r) was 

determined by computing the dynamic inverse of TQPIRAt, r) as follows. A torque input 

of Gaussian white noise (5 Nm in amplitude) was convolved with TQPIluit,r) to obtain 

position, over many realizations (see Fig. 4.4). This ensemble data was then used with the 

linear, pseudoinverse technique to estimate PTQIRAt, r) between the position input and 

torque output records. 

The IRF lengths were 200 ms and 400 ms for TQPIRAt, r) and VTQIRAt, r) 

respectively; these lengths allow the IRFs to die out. Intrinsic stiffness IRFs, PTQIRAt, r), 

were limited to 40 ms per side. The linear component of the Hammerstein system 

modeled the reflex delay by shifting VTQIRAt, r) by 40 ms. The simulation was fUll long 

enough to allow transient effects to die out. Only data after the end of the transient effects 

are presented in the results. 
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Simulations were performed with a number of position inputs. The input shown in 

Fig. 4.4 was Gaussian white noise passed through a first-order, low-pass Butterworth 

filter with a 30 Hz eut-off frequency. The results (next Section) are organized according 

to the input type and each input is presented along with the simulation outcomes. 

The static nonlinearity of the Hammerstein nonlinear pathway was modeled as a 

third-order polynomial assumed to remain constant in time with coefficients Po, pl, P2, P3 

in the following equation: 

(4.12) 

where UN is the input velocity and YN is the output of the static nonlinearity, for the Nh 

realization. The coefficients were found by fitting a third-order polynomial between the 

input velocity and half-wave rectified velocity. This was done because in time-invariant 

studies, the SNL has been found to resemble a half-wave rectifier. For both the simulated 

and estimated Hammerstein systems, the gain was distributed between the SNL and IRF 

such that the DC gain of the IRF was unit y at every time. 

Fig. 4.6 shows the simulated models. Note that VTQIl~~t, r) were flat up until 40 

ms across lag time corresponding to the reflex delay. The reflex stiffness (Fig. 4.6B) 

shows no variation across time because it was normalized to an IRF DC unit y gain, 

whereas both TQPIl?~t, r) and SNL(t, V) display variation across time. 

The simulated output was then generated as follows: 

1. Intrinsic torque TQJ(t,N) was simulated by convolving PTQII?F(t, r) with its 

input position P(t,N). 

11. Input position was differentiated to give velocity. 

111. Velocity was passed through SNL(t, V) and then convolved with 

VTQII?F(t, r) to generate TQR(t,N). 

IV. The simulated net torque was calculated as, TQ(t,N) = TQJ(t,N) + TQR(t,N). 
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Figure 4.6: Simulated intrinsic compliance (A), reflex stiffness (B) and static 
nonlinearities (C). Note: the first 940 ms are not shown -longest IRF length (400ms) plus 
additional time (500ms) and reflex delay (40ms). 

4.3 Results 

Simulations were run using computer-generated Gaussian and pseudo-random 

binary sequence (PRBS), and PRBS experimental position input data. The simulation 

results are presented according to the type of position input used. 
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4.3.1 Gaussian Inputs 

The computer-generated inputs were filtered to be more representative of actual 

experiments since the actuator itself acts as a filter. The previous simulations [4], 

discussed in Section 2.4.4.3, used Gaussian inputs, so it was expected that the 

identification techniques would work well with these signaIs. 

A Gaussian input having a 10 Hz cut-off frequency (1 st order Butterworth filter) 

and an amplitude of 0.025 rad was chosen so that the mean absolute velocity matched 

closely to that of the experimental input (Section 4.3.2). This input was chosen so that a 

substantial amount oftorque would be accounted for by the reflex pathway, as it is known 

that a low me an, absolute velocity (such as that used in the experiments) yields larger 

reflexes. Inputs were generated randomly for 467 realizations (to be consistent with the 

number of realizations for the experimental input). 

4.3.1.1 Simulated Signais 

Sorne input-output realizations using this filtered Gaussian position input are 

shown in Fig. 4.7. The reflex torque (C) contributes about 1 to 5 Nm peak-to-peak of the 

total torque, whereas the intrinsic torque (D) contributes about 2 to 7 Nm peak-to-peak of 

the total torque. 
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Figure 4.7: Simulated position (A) and corresponding torque signaIs (B,C,D) from 
multiple realizations (the signaIs are offset vertically for clarity), using Gaussian position 
input (0.025 rad) low pass filtered to 10Hz. Note: only 1 s of data is shown for clarity. 

4.3.1.2 Model Evaluation 

This sub-section probes the identification results and presents how weIl the model 

describes the data. The VAF between the total torque and predicted torques, VAFTQx (t), 

was calculated where TQx is the predicted torque based on the reflex stiffness, intrinsic 

stiffness or both (i.e. 'TQx' is 'reflex', 'intrinsic' or 'total'). These values define the 

amount of measured torque that can be attributed to the reflex, intrinsic or total stiffness 

model. 

These VAFs are plotted across time in Fig. 4.8. OveraIl, the reflex pathway 

accounted for a mean of 26.0% of the total torque, and the intrinsic pathway accounted 

for a mean of 76.3% of the total torque, across time. The VAFtotal is very high (mean 

98.9%) throughout the simulated time-varying behaviour. However, the VAFintrinsic starts 
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off around 70% and increases to about 85%, while VAFreflex starts off at about 35% and 

decreases to 20%. This increase and decrease occurs simultaneously which is why the 

VAFtotal does not change across time (total torque is the sum of the intrinsic and reflex 

torques). 
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Figure 4.8: VAFs between total torque and predicted torques, with the dashed lines 
indicating the start and stop of the respective parameter change (i.e. K, G, B, as indicated 
in A). Note: the first 440 ms was neglected. 
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This significant change coincides with the lines indicating the ramp start and stop 

of the reflex gain parameter (Gs and Ge). Since the reflex gain decreased, the amount of 

reflex torque generated decreased. The total torque remained unchanged and thus the 

VAFintrinsic increased and VAFrejlex decreased, since less torque was being attributed to the 

reflex model. The opposite trends are also evident for both the elastic parameter K and the 

viscous parameter B ramp changes, although much less pronounced. AlI the parameters 

changed by 50% of their initial value, but the elastic and viscous parameters were chosen 

somewhat conservatively as compared with actual experimental results. This was 

confirmed by running the simulation again, but only changing the elastic parameter from 

300 to 150 Nmlrad (rather than 150 to 75 Nmlrad). The VAFintrinsic did in fact significantly 

decrease with this decrease in K and VAFrejlex correspondingly increased, as demonstrated 

in Fig. 4.9. As expected, the VAFs at times before Ks and after Be, i.e. during stationary 

conditions, remained relatively constant in both simulations. 
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Figure 4.9: VAFs between total torque and predicted torques, when using a larger change 
in the elastic parameter (K). 

Fig. 4.10 displays the true (solid line) and predicted (dashed line) total torque (A), 

intrinsic torque (B) and reflex torque (C), for a single realization. The estimated torques 

from each model followed very closely the simulated (true) signaIs. As shown in the Fig. 

4.11A, there was little variation between the true and predicted total torque when 

examining different realizations across time. This demonstrates the repeatability of the 

time-varying behaviour generated from this simulation. The total torque was well 

predicted at different points in time across the ensemble (Fig.4.11B). The VAFtotal, which 
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represent the amount of predicted torque attributed to the total stiffness model, were 

consistent across time and between realizations. 
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Figure 4.10: True (solid) and predicted (dashed) torque records for a single realization. 
The dashed lines indicate the times of parameter changes. 
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Figure 4.11: True and predicted total torque for 3 different trials (A), with the 
corresponding VAF TQ(N) for each trial. True and predicted total torque at 3 different times 
(B), with the corresponding VAFtota!. The dotted lines indicate the times of pararneter 
changes. 

4.3.1.3 Parametric Models 

Pararnetric models were fit to the non-pararnetric IRFs to evaluate how closely 

they matched the actual models. These best "least-squares" fits were found using a 

Levenberg-Marquardt nonlinear least-square fit algorithrn to minimize the mean squared­

error between the pararnetric and non-pararnetric IRFs [3, 57]. Reflex stiffness pararneters 

were deterrnined using an exhaustive search where the estimation was repeated for delays 
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between 30 and 80 ms at 10 ms intervals. The reflex stiffness 'best-fit' was that which 

yields the lowest overall error for the parameter set and delay. 

The least-squares method used to calculate the parametric fits requires good initial 

estimates of the parameters, therefore they were first chosen as the simulated values at the 

initial time. For subsequent fits, the initial parameters were taken as the previously 

estimated parameters. This was done to get the best fit during the ramp changes, as the 

estimated parameters at the previous time point should be close to the next parameter 

value. To account for poor curve fits, the algorithm verified that the VAFfit (the percentage 

variance accounted for between the non-parametric and parametric data) was greater than 

a specified value (i.e. 95%) before using the previous parameters as the initial estimates at 

the next time point. If VAFfit was less, then it would search until one was found that 

satisfied the VAFfit criterion. For these non-parametric curves, the VAFfit criterion was 

chosen as 95% for both the Harnmerstein and intrinsic compliance. 

The parametric fits were evaluated using VAFfit(t), and were found to be very high 

across time. This is shown in Fig. 4.12 with the VAFfit(t) for intrinsic (A) and reflex (B) 

simulated (solid lines) and estimated (dashed lines) models against time. The simulated 

VAFfit(t) were 100%, as they were generated based on the parametric models. This 

demonstrates that the least-squares fitting paradigm was able to accurately estimate the 

parameters of the simulated system. The parametric models were good fits to the IRF 

estimates particularly for the intrinsic compliance (mean 99%). For the estimated 

Hammerstein system, the VAFfit was consistently high across time (mean 98%). 

The original (non-normalized) reflex stiffness models were used for the 2nd order 

parametric model fitting. Because the two systems (simulated and estimated) were not 

normalized, comparisons cannot be made since the gain distribution of the Hammerstein 

systems is unknown. To compare the two systems, the overall gain (G) of the reflex 

stiffness block had to be used. This was calculated as the product of the gain of the linear 

model (GR) and the gain of the non-linear element. The reflex gain, GR, was found from 

the parametric fit. The gain of the non-linear element was found as the slope of the linear 

portion of the polynomial. 
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Figure 4.12: Parametric fit %VAFto the simulated (solid line) and estimated (dashed line) 
systems: intrinsic compliance (A) and reflex stiffness (B). Parameters of intrinsic 
compliance (C, E, G) and reflex stiffness (D, F, H) from parametric fit to simulated (solid 
line) and estimated (dashed line) systems. 

Since the VAFfit was high across time for both models, all parameters across time 

were examined. The simulated and estimated parameters resulting from the parametric 

fits are shown across time in Fig. 4.12, for intrinsic compliance (C,E,G) and reflex 

stiffness (D,F,H). Although the estimated parameters fluctuate around the desired values, 

the time-varying trends in B, K and Gare clearly estimated. The values of 1, OJ and ç (z) 

are estimated clearly as having stationary behaviour. Recall that the least-squares method 

was applied to the simulated systems and the resulting parameters and VAFfit are indicated 

in Fig. 4.12 as the solid lines. Given the simulated systems, the least-squares fitting 

paradigm was capable of correctly estimating the parameters. Therefore any deviation of 
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the parametric fits to the estimated IRFs is likely not due to the fitting paradigm itselfbut 

to the identification algorithm. 

4.3.1.4 True and Estimated Systems 

The true and estimated systems are presented at specifie points in time in Fig. 4.13 

and Fig. 4.14. The IRFs were taken from the following points in time (relative to the 

simulated parameter changes): at 0.5 s, 200 ms before any ramp start (bottom plots); at 

0.85 s, half-way through the ramp change in K; at 1.15 s, half-way through the ramp 

change in G; at 1.45 s, half-way through the ramp change in B; at 1.8 s, 200 ms after the 

end of all ramp changes (top plots). Fig. 4.13B and Fig. 4.14B plots the estimated IRFs 

(lines with markers) for the intrinsic compliance and reflex stiffness, respectively, with 

their 2nd order parametric fits (lighter lines with no markers), as well as the simulated 

IRFs (dark, dashed lines). In Fig. 4.13A and Fig. 4.14A, the intrinsic stiffness and the 

SNL are plotted for both the estimated and simulated systems. 

The time-varying nature in intrinsic stiffness is not very apparent (Fig. 4.13A). 

However, when we look at intrinsic compliance (Fig. 4.13B), the curves increase in size 

as time increases (bottom to top). The overall stiffness of the ankle is thus decreasing 

(increase in compliance) as the plantarflexing ramp occurs. The simulated curves and 

estimated parametric fits were very similar for intrinsic compliance, again demonstrating 

the good fit to the data. 

Fig. 4.14 show the elements of the normalized, smoothed Hammerstein system: 

the static non-linearity (A) and the linear system (B). As the system was normalized to 

have a De gain of unit y for the linear element, the time-varying nature of the system is 

only apparent in the SNL. The polynomial range decreased over time (bottom to top), 

which represents a decrease in the reflex stiffness, as simulated. For the linear system, the 

simulated curves and estimated parametric fits were very similar, demonstrating the good 

fit to the data. 

Because the block-structure Hammerstein model is highly non-linear, higher order 

polynomials must be used to represent the SNL. The higher order polynomials tend to be 

less accurate at the edges of the data set because they often include oscillations [58]. This 

was evident in the results as the polynomials were not as well estimated at the extremes of 
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the input amplitude, as shown by comparing the simulated and estimated SNLs at time 

0.5s (Fig. 4.14A). The other plots may not show this discrepancy as significantly because 

of the chosen input amplitude to the polynomials. 
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Figure 4.13: Estimated IRFs (markers with dark line), their parametric fits (lighter line) 
and simulated IRFs (dashed lines) for intrinsic compliance (B) and intrinsic stiffness (A) 
IRFs, at various times indicated in A (time increases from botiom to top). 
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and simulated IRFs (dashed lines) for reflex stiffness IRFs (B) and the static non­
linearities (A), at various times indicated in A (time increases from botiom to top). 

To quantitatively evaluate the quality of the identification, comparisons were 

made between the true and estimated systems, along with the true and predicted output 

signaIs. The VAFfm{t) was computed across the ensemble at time t between the true and 

estimated IRFs. For the reflex linear dynamics, VAFfm{t) was utilized between the 

normalized systems. The VAFsntCt) was computed between the normalized true and 

estimated polynomials over the range of input values used to estimate the system at each 

instant. Similarly the VAFTQx(t) between the simulated torques and predicted torques, was 

computed based on the reflex stiffness, intrinsic stiffness or both (i.e. 'X' is 'r', 'i' or 'n'). 

Fig. 4.15 illustrates the plots of VAFIRF (A, B, E), VAFsnl (F), VAFTQr (D) and 

VAFTQi (C) from the final iteration. As can be seen in Fig. 4.15, the estimated intrinsic 

IRFs and torques matched very weIl with the true behaviour (left plots), as did the reflex 
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pathway (right plots). The final iteration showed that the intrinsic stiffness model was 

estimated within 99.7%, the reflex linear pathway within 97.8% and the reflex static 

nonlinearity within 99.1 % of the true models. Aiso demonstrated was that the estimated 

system predicted the torque signaIs accurately, with a mean intrinsic torque VAFTQi of 

98.1 %, reflex torque VAFTQr of 96.0% and net torque VAFTQn of 98.9%. These are very 

high VAF between the true and estimated systems and torques, demonstrating the ability 

of the time-varying algorithm to capture the changing dynamics with this given input. 
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Figure 4.15: VAFs between true and estimated intrinsic (A,C,E) and reflex (B,D,F) 
systems and torques versus time. VAFIRF, (A,B,E); VAFTQx (C,D); VAFsnl (F). 

4.3.2 Experimental PRBS Input 

The simulation results presented in this section used experimental PRBS position 

input records. The input was a PRBS sequence of 0.03 rad in amplitude with an 80 ms 

switching interval. The experimental protocol is outlined in Chapter 5. 
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4.3.2.1 Simulated Signais 

Fig. 4.16 shows input-output realizations using the experimental inputs with the 

simulated time-varying systems. Notice the reflex torque records have the expected 

'twitch-like' response with a delay of 40 ms resulting from the pulse-like dorsiflexion 

position changes. The reflex and intrinsic torques shown in Fig. 4.16 contribute about the 

same amount (approximately 5 Nm) to the total torque. Thus the experimental PRBS 

input was capable of generating a larger reflex response from the simulated system than 

the Gaussian input, as found previously [3]. 
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Figure 4.16: Simulated position and corresponding torque signaIs from multiple 
realizations (the signaIs are offset vertically for clarity), using actual experimental PRBS 
position records as input to the simulation. 
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4.3.2.2 Model Evaluation 

Fig. 4.17 shows the VAFs of the torques attributed to each stiffness model, 

VAFtotal(t), VAFintrinsic(t) and VAFreflex(t), with the parameter changes indicated by the 

dashed lines. VAFtotal is high throughout the simulated time-varying behaviour, with a 

mean value of 95.8%. The VAFintrinsic has an average of 56.5%, and decreases with the 

decrease in the elastic parameter K, much more compared with the Gaussian input. 

VAFreflex averages at about 48.8% and decreases significantly with the decrease in reflex 

gain GR. The reflex torque accounted for much more of the total torque with the PRBS 

compared with the Gaussian input (me an 19.6%). The shape of the change in these VAFs 

across time is similar to when using the Gaussian input, however the PRBS input excites 

the reflex pathway more and was more significantly affected by a decrease in the elastic 

parameter. The effect of changing the viscous parameter B had nearly the same effect, a 

slight decrease in VAFintrinsic and corresponding increase in VAFreflex. 
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Figure 4.17: VAFs between total torque and predicted torques, using the experimental 
position with the time-varying system. The dashed lines indicate where the simulated 
parameters changes start and stop. 

The plot of VAFtotal shows sorne significant drops, which correspondingly appear 

in VAFrejlex and VAFintrinsic. These low points may be where the ensemble input did not 

provide a rich enough signal to permit a good identification. Fig. 4.18 shows the 

probability density functions of the Gaussian (A,B) and PRBS (C,D) position and velocity 

inputs across the ensemble at two specific times. The Gaussian inputs have a wider 

distribution than the PRBS inputs, for both position and velocity. The PRBS velocity 

distribution show that it is mostly at zero. The Gaussian probability density function does 

not vary substantially from one time to another, whereas the PRBS probability density 
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function shows quite a difference. Given the different properties of Gaussian and PRBS 

inputs across the ensemble, this could explain why the model described the data 

consistently across time with the Gaussian input than with this PRBS input. This theory 

will be discussed further in the discussion of Chapters 4 and 5. 

The points where the model did not describe the data as weU, such as around 1.0 s, 

will not be considered as part of the data set. Any subsequent results, for this data set, will 

not include points where the VAFtotal was lower than 92%. This value was chosen by trial 

and error, to retain enough data points to get a picture of the system estimates across time, 

but also obtain a steady VAFtotal across time. 
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Figure 4.18: Probability Density of the input velocity estimated across time (A,C) and 
across the ensemble (B,D) for Gaussian input (A,B) and PRBS input (C,D). 

Fig. 4.19 displays the true (solid line) and predicted (dashed line) total torque (A), 

intrinsic torque (B) and reflex torque (C), for a single realization. There are points in time 

72 



where the predicted torques do not match the simulated values, and these correspond to 

where the VAFtotal was low. 

Fig. 4.20 show total torques for different realizations (A) and at different points in 

time (B). The true and predicted total torques showed very little deviation between 

realizations or at different points in time. 

The intrinsic torque and reflex torques are in fact in the same range, roughly -4 to 

2 Nm for this particular trial in Fig. 4.19. This is quite different from the Gaussian input, 

where the intrinsic torque accounted for the majority of the torque. The PRBS input has a 

much lower mean absolute velocity and power at lower frequencies than the Gaussian 

inputs. This velocity distribution elicits more reflex activity. 
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4.3.2.3 Parametric Models 

To determine how well the estirnated IRFs were rnodelled by the parametric fits, 

the VAF of the fits were calculated at each point in tirne and plotted in Fig. 4.21. 

Parametric rnodels where the VAFfit was less than 90% were not considered good fits, and 

therefore the parameters at these points were not examined. Therefore in Fig. 4.21 there 

are sorne breaks in the dashed lines, as this is where the fits were not good. Intrinsic 
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compliance from the good fits had a mean of 97.2% and the reflex pathway from the good 

fits has a mean of 95.9%. The po or fits for compliance dropped to a VAFfit as low as 40% 

and for reflex stiffness as low as 5%. Similar to the Gaussian input, the IRF fits for the 

reflex pathway were not as good as the intrinsic pathway. 

RecaB that the simulated values were chosen as the initial guesses for the least­

squares estimation of the parametric fits. The VAFfit criterion was chosen as 85% for both 

the estimated Harnmerstein system and intrinsic compliance model. This was chosen 

lower than in the case of the Gaussian input (95%) because the estimated systems were 

not as weB modelled. 

The simulated and estimated parametric fit values are shown across time in Fig. 

4.21, for the intrinsic compliance (C,E,G) and reflex stiffness (D,F,H). There are 

definitely more oscillations around the desired values as compared with the Gaussian 

input. Although there is more variation in parameter estimates across time, the time­

varying behaviour is still evident in B, K and G. The points where the parameters were 

not shown because of a low VAFfit corresponded to the points in time where the model did 

not describe the data as weB (VAFtotaz). 

Although the least-squares fitting algorithm was accurate for the simulated 

systems, this is partially dependent on the choice of initial parameters. When fitting to the 

estimated systems, the target VAFfit was used to ensure initial parameters were chosen 

based on previous good fits. However, the parameters were changing significantly during 

the ramp. If the VAFfit of the previous few systems were low, then the initial parameters 

were less accurate. While we could have used the actual simulated values as the initial 

parameters, this process is a realistic algorithm to use for experimental data. The issues 

with estimating the parametric models with the experimental data are further evaluated in 

the discussion of Chapter 5. 
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Figure 4.21: Parametnc fit %VAFto the simulated (solid line) and estimated (dashed line) 
systems: intrinsic compliance (A) and reflex stiffness (B). Parameters of intrinsic 
compliance (C, E, G) and reflex stiffness (D, F, H) from parametric fit to simulated (solid 
line) and estimated (dashed line) systems. 

4.3.2.4 True and Estimated Systems 

The estimated (lines with markers) and simulated (dark, dashed lines) intrinsic 

compliance (B) and intrinsic stiffness (A) IRFs are plotted in Fig. 4.22, along with the 2nd 

order parametric fits to compliance (lighter line with no markers). Similarly the estimated 

and simulated reflex stiffness (B) and SNL (A) are plotted in Fig. 4.23. Each row 

corresponds to a particular time and time increases from bottom to top. 

The system's intrinsic time-varying behaviour is quite apparent, with intrinsic 

compliance increasing over time (thus decrease in stiffness). The SNL displayed an 

overall decrease across time; however it displayed sorne unusual switching of the 

polynomial direction from 0.85 to 1.15 s. This was not seen when using the Gaussian 
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input. The estimated SNL did not match the simulated one, except at 0.5 s. Also the 

estimated reflex stiffness at times up until 1.15 s, were quite different from the simulated 

systems. Clearly the algorithm was not as accurate in estimating the system dynamics 

using this experimental input as compared to the Gaussian input. 
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Comparisons were made between the true and estimated systems, along with the 

true and predicted output signaIs. These results are shown in Fig. 4.24, but only the points 

are showing where the VAFIRF for the respective system was greater than 90%. 

The intrinsic stiffness pathway (upper two left plots) was weIl modeled 

throughout most of the behaviour until the last 400 ms. The intrinsic compliance was 

actually better modeled near the end of the behaviour. However, the lack of fits above 

90% when compared with the Gaussian input, demonstrated that the systems were not 

estimated as weIl with the experimental input. 

The reflex stiffness pathway (right plots) appeared to be weIl modeled throughout 

most of the behaviour when comparing the linear elements and the static non-linearities 

between the true and estimated systems. However, the estimated reflex torques were 

clearly not as weIl matched with the true torques, shown by the significant drops in 
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VAFTQr. This was also evident in Fig. 4.19 where the actual reflex torques were plotted 

against one another. OveraIl, these Hammerstein systems were not weIl estimated. 
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4.3.3 PRBS Inputs 

The simulation was attempted with computer-generated pseudo-random binary 

sequence (PRBS) inputs of varying switching rates (including 80 ms); however the 

identification did not work at aIl, with the exception of an extremely fast switching rate of 

10 ms. Even when the PRBS inputs were filtered the identification would not work. 

Unfortunately the preferred input type for experiments has been found to be PRBS inputs, 

as they elicit strong reflexes with a low mean absolute velocity, whereas Gaussian inputs 

have been found to inhibit reflex activity [3]. 
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4.4 Discussion and Conclusions 

This chapter presents a new technique for the identification of time-varying joint 

dynamics. A time-varying simulation of the ankle joint was used to generate time-varying 

ensemble data to test the algorithm. Gaussian inputs were used to validate the algorithm's 

abilities. The model was capable of describing the data extremely weIl, and separating the 

two stiffness components accurately. The estimated systems and torques matched the 

simulated very well. 

The simulation was repeated using experimentally obtained PRBS inputs. The 

PRBS inputs generated larger reflex activity as compared with the Gaussian input, when 

applied to the same time-varying simulated systems. The PRBS inputs produced estimates 

that described the data weIl at most points. However poor descriptions did result at certain 

points in time. Similarly models at these times were not weIl described by the parametric 

2nd order fits. A discussion will follow on why certain models were not weIl estimated. 

OveraIl, the estimated systems did not match the simulated systems weIl. When trying the 

simulation using computer-generated PRBS inputs, the algorithm did not work at aIl. 

The main question that results from these simulations is why does the algorithm 

perform so weIl with Gaussian inputs and not with PRBS inputs? This is likely due to the 

non-ideal properties of the experimental PRBS input. One possibility is that there may not 

be any or few perturbation changes at specific times across the ensemble, which is how 

the IRFs are estimated. The position only changes between two values, which results in a 

binomial input distribution. Similarly the velocity has a limited trimodal distribution 

where it spends most of the time at zero, as compared with inputs like Gaussian. Further 

discussion of the algorithm's ability to estimate system dynamics using PRBS inputs will 

be presented in Chapter 5. 

Compared with the computer-generated PRBS inputs, the experimental PRBS 

inputs were at least able to demonstrate the algorithm's ability to identify dynamics at 

sorne times. This is likely because it is filtered by the effects of the actuator and the 

subject. The computer-generated PRBS inputs, even when low-pass filtered, are not 

representative of actual experimental data. 
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Improvements should be investigated for the algorithm, not only related to the 

PRBS inputs. One item to consider is the representation of the static non-linearity. For all 

estimated Hammerstein systems, the polynomials were not well estimated at the edges of 

the data set (i.e. input velo city extremes). Future consideration for the Hammerstein 

system would be to use cubic splines, instead of polynomial s, to represent the static 

nonlinearity. Dempsey and Westwick tested cubic splines representing the SNL 

component of a Hammerstein system, using experimental data from the ankle between 

velocity and gastrocnemius-soleus EMG [58], instead of reflex torque as in this thesis. 

They found much better estimates at corners and edges of the SNL using cubic splines 

than using polynomials. It would be useful to investigate whether this substitution might 

improve the estimates of the SNL under time-varying conditions and contribute to a 

higher accuracy for identification of Hammerstein systems. 

The parallel-cascade identification technique for time-varying systems has proven 

to estimate the simulated system's dynamics well, given Gaussian inputs. The PRBS 

inputs gave an indication of the expected results, although not as well estimated at each 

time, particularly in the Hammerstein estimations. Given a subset of data with certain 

points in time omitted due to the poor estimates, the mean total variance accounted for by 

the model was 96% for the PRBS input and 99% for the Gaussian input. The use of the 

experimental PRBS input was very important since the computer-generated PRBS inputs 

were not able to function with the identification. To maximize the benefits of the 

simulation, the algorithm should be capable of working with computer-generated PRBS 

inputs. The expected results could be easily generated, prior to acquiring all 400 

realizations from a subject. In the future, this issue should be further investigated in terms 

of attempting to mimic more closely the measured ankle position from PRBS inputs. 

Thus two objectives of this thesis have been met; the development of a time­

varying, parallel-cascade identification algorithm and its validation with simulated data. 

The next objective for this thesis was to acquire experimental time-varying data and apply 

it to the time-varying, parallel-cascade identification algorithm, as presented in Chapter 5. 
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5. Experiments 

The simulation study in Chapter 4 demonstrated the identification technique' s 

ability to estimate the system dynamics. The next step was to test the technique with real 

data. The experimental protocol, which involved imposing a ramp to the ankle with 

superimposed perturbations, and data analysis are outlined in this chapter. Pilot 

experiments were performed on one subject to investigate a variety of input perturbations 

which would best suit the needs of the identification algorithm. Using the input 

perturbation, experiments were carried out on three subjects. The results are presented 

and the ability of the identification algorithm is evaluated from this preliminary data set. 

5.1 Experimental Protocol 

The experimental protocol was based on that by Kirsch and Kearney [41, 59]. An 

imposed stretch was applied to the ankle. Perturbations were superimposed on this ramp 

stretch to enable identification of the joint dynamic stiffness. Over 300 realizations ofthis 

same behaviour were obtained for use with the ensemble-based time-varying, paraUel­

cascade identification algorithm. Although the movement was not voluntary, the simple 

time-varying pilot data was useful for testing the algorithm. 

5.1.1 Subjects 

Three subjects, ranging in age from 23 to 28, two males and one female were 

examined. Subjects had no history of neurological disorders. Each subject had a custom­

fit boot fabricated prior to experimentation, as described in Section 3.2. The Ethics 

Certificate applicable to our experimental studies is included in Appendix D. 

The subject's ankle was placed in their zero position, defined as a 90 degree angle 

between the foot and tibia. AU other positions were taken relative to this defined zero 

position. 

5.1.2 Initial Trials 

Pulse trials were used to determine the position, caUed the optimal operating 

position (OOP), where the subject had the largest reflex torque [50]. The trials began at a 

position of large plantarflexion near to their range of motion limit. A short pulse, of width 

83 



40 ms, was applied to the foot, once the subject had matched the required target torque of 

-5 Nm to within ±10%. The visual feedback displayed the error between the low-pass 

filtered torque and the torque target signal and the subjects were asked to minimize it. 

Five to ten pulses were recorded at each position and their responses averaged. 

Reflex torque was calculated by finding the minimum of the twitch-like reflex 

response. This minimum value, shown in Fig. 5.1B and Fig. 5.lD by the cross formed by 

dotted lines, was measured relative to the baseline torque before the pulse was applied. 

The absolute values of the reflex torques are indicated for pulse trials at two different 

positions. Notice that the torque exhibits the twitch-like response after the pulse is 

fini shed. The pulse width was shorter than the reflex delay and therefore the intrinsic and 

reflex mechanisms of stiffuess could be separated simply on the basis of delay. 
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The foot was then dorsiflexed in small increments and the procedure repeated 

until the reflex torque reached a plateau or the patient was uncomfortable. The OOP was 

found to be at 0.065 rad for Subject C (Fig. 5.1). The OOPs for all subjects were found to 

be in positions of dorsiflexion. 

The selection of the OOP assured there would be strong reflexes at the end 

position. The subject's range of motion (ROM) was recorded and used to determine the 

maximum ramp amplitude that could be applied. The ramp amplitude was similar for all 

subjects. Table 5.1 shows the start position, end position, ramp amplitude, ROM and 

ramp amplitude as a percentage of ROM, for all subjects. Note that the ramp amplitudes 

are very similar, ranging from 0.2 to 0.225 rad. 

Table 5.1: Ramp and Range of Motion parameters 
Ramp start Rampend Ramp Range of Ramp 

Subject position position Amplitude amplitude! 
[rad] [rad] [rad] 

Motion (ROM) 
ROM(%) 

A -0.1 0.1 0.2 0.620 32.3 

B -0.175 0.05 0.225 0.542 41.5 

C -0.1 0.1 0.2 0.534 37.5 

5.1.3 Control Trials 

Two types of control trials were performed prior to the imposed ramp and 

perturbation trials: 

1) Control Perturbation Trials: Stationary trials executed at varlOUS locations 

throughout the ramp movement using only the perturbation. 

The control perturbation trials were performed to allow comparisons between the 

static and time-varying case at corresponding positions throughout the ramp movement. 

Trials of 30 s in length were performed at Il positions equally spaced through the ramp 

movement, while the subject maintained the target torque of -5 Nm. The visual feedback 

was the same as for the pulse trials. 

The data were then given to the time-invariant, parallel-cascade identification 

technique to determine the contributions from the reflexes. We were then able to compare 

the IRFs determined from the ramp and perturbation trials (Section 5.1.4) at a particular 

ankle position with the control perturbatIon trial at that same location. Previous work has 
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found that behaviour during stationary conditions differs from that during time-varying 

conditions [19,29], and thus we hoped to affirm this conclusion. 

2) Control Ramp Trials: Multiple trials using only the imposed ramp. 

The control ramp trials were performed for two sets of 30 realizations each, 

following the procedure described in the next section. The difference was that no PRBS 

perturbations were superimposed on the ramp. The ramp stretch imposed alone, permits 

the effect of the stochastic perturbation to be examined. We can examine the ensemble 

response in OS EMG to the trials with only the ramp and to the ramp and perturbations as 

weIl as the ensemble torque response, to see if there was a significant effect of the 

stochastic perturbations on ramp responses. 

5.1.4 Imposed Ramp Trials 

Rapid imposed ramp trials were performed with the visual display and target 

torque limits set as for the pulse trials. The starting position of the ramp was the optimal 

operating position (OOP) minus the ramp amplitude (see Table 5.1) so that the imposed 

movement would end at the OOP. Pseudo-random binary sequence (PRBS) perturbations 

were applied while the subject generated a plantarflexing torque. Once the subject 

matched the target torque within ± 1 0%, the ramp movement was initiated in the 

dorsiflexion direction. Typical trials are shown in Section 5.3.2. 

The PRBS input has an amplitude of 0.03 rad and a switching interval of 80 ms. 

This perturbation was selected to elicit reflex activity because of its low mean average 

velocity. It also has a fast switching rate to provide position changes during the ramp, so 

that the time-varying system estimates can be estimated throughout the ramp. 

The ramp input was filtered with a 1 st order low pass Butterworth filter with a cut­

off of 50Hz to remove sharp corners. The peak velocity was 0.6 rad/s, consistent for all 

subjects. Data was recorded for at least 800 ms prior to the ramp onset, for aIl subjects. 

The ramp duration ranged from 340-390 ms, depending on the ramp amplitude chosen for 

the subject. The duration after the ramp, before the foot was retumed to the initial 

position, was at least 600 ms. Perturbations were applied continuously, with the sequence 

repeating itself every 16 s. The duration recorded for each trial was 3 s. 
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The foot was returned to the initial position and after about 1 second (to allow for 

transients to die down) another ramp could be applied. However the subject had to again 

match the correct torque level before the ramp stimulus was triggered. Approximately 30-

40 trials were acquired sequentially followed by a roughly 2 minute rest period (no 

perturbations) and 10-15 sets were recorded in total. After approximately half the 

required sets had been completed, the subject walked around during a 10 minute break. 

Because the subject had to match the desired torque before the ramp was initiated, 

the ramp started at random times throughout the PRBS sequence. This is a crucial 

requirement for the identification algorithm, as the algorithm assumes that each 

realization consists of different random zero-mean inputs. The subject received no 

warning that a ramp was going to start, and was instructed 'not to react' voluntarily to the 

ramp. This is a challenging task, but with the number of trials performed, the majority of 

the responses were very similar as found in the previous study [41]. This meets another 

major assumption for the identification algorithm, that the system must undergo the same 

time-varying behaviour for each realization. A trial selection process was used to select 

the most similar trials based on torque standard deviation as described in Section 5.2.1. 

5.2 Analysis 

A crucial assumption underlying time-varying ensemble methods is that the 

system undergoes the same time-varying behaviour for each realization. Two post­

processing steps were taken to ensure this requirement was met. Firstly the trials were 

aligned according to a common feature of the time-varying behaviour. Secondly trials that 

showed the large st variability of torque compared with other trials were rejected. 

5.2.1 Trial Alignment 

Sampling was initiated for each trial once the subject had matched the desired 

torque. ldeally the ramp should have been initiated at exactly the same time for each trial. 

However due to timing discrepancies between the data acquisition hardware and the 

Simulink model that controlled the ramp changes, there were slight misalignments 

between trials (i.e. milliseconds). This variability would bias the results of the ensemble 

time-varying algorithm and as such were resolved with the following analysis. 
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Trials were aligned based on the ramp input signal, sampled without the PRBS 

perturbation. An trials were aligned to the trial where the ramp occurred earliest and then 

truncated to 1000 samples (1 second) after the start of the ramp. The ramp duration 

ranged from 340-390 ms, thus a minimum of 600 ms of data was kept after the ramp. 

Fig. 5.2 demonstrates the alignment procedure for 4 realizations. The trials shown 

in Fig. 5.2A have slightly staggered input ramp start times. After the alignment to the 

earliest occurring ramp input, these trials (Fig. 5B) an started at the same point. An 

channels of data (position, torque, input ramp, GS EMG, TA EMG) were shifted 

accordingly for each realization. This is demonstrated in the plots of position before (5C) 

and after alignment (5D). 

A Before A1ignment B After A1ignment 
~----~----~----~----~ 

l40mrad l40mrad 

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 

c D 

l40mrad l40mrad 

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 
Time (5) Time (5) 

Figure 5.2: Input ramp (AB) and position (CD) before (AC) and after (BD) alignment for 
4 realizations; Subject A. 
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5.2.2 Trial Selection 

The subject matched the torque feedback to initiate the ramp and was told 'not to 

react' to the ramp. If the subject performed consistently, each trial should exhibit similar 

time-varying behaviour. However, given the large number trials, the subject will likely 

alter their torque after sampling was initiated and 'react' to the ramp, for sorne of the 

trials. Trials with different behaviour from the majority will skew the results from the 

ensemble time-varying algorithm. 

Thus, a trial selection procedure was required to remove trials which were the 

least similar based upon the output torque. This process calculated the ensemble standard 

deviation of the torque across time from each aligned trial with the ensemble mean 

removed. These values were sorted in ascending order and plotted against the realizations, 

as shown in Fig. 5.3. 

A threshold level was then selected, and only the trials with a torque standard 

deviation below that level were kept. For subject A, a torque cut-off of 2.5 Nm was 

selected (see dashed line Fig. 5.3) which preserved 467 out of 500 aligned trials. 

Selecting a more stringent cut-off torque standard deviation, would yield trials that were 

more similar. However, the identification technique would be less accurate as the number 

of trials decreases, since the number of parameters used to generate the models (IRFs) 

depends on having many more trials than the IRF length. This is the inherent trade-off 

that must be considered when using ensemble methods. 

Sorled Standard Deviations of Torque 
5 

4.5 

4 

-E 3.5 
~ 

c 3 

------------------------------~ If) 

g 2.5 

2 

1.5 ----
10 100 200 300 400 500 

Realizations 

Figure 5.3: Sorted torque standard deviations with dashed line indicating the threshold 
chosen; Subject A 
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5.3 Resulfs 

The results from the three subjects based on the experimental protocol of Section 

5.1 will be presented in Sections 5.3.1-5.3.5. 

5.3.1 General Behaviour 

The data obtained from the experiments consisted of the position, torque, input 

ramp, GS EMG and TA EMG. Prior to identification, the trials were aligned and selected, 

as described in Section 5.2, and the ensemble mean was removed. The position was 

differentiated to give velocity. A sampling rate of 1 kHz was used to capture the reflex 

delay. The data were then decimated to 100 Hz, since only the low frequencies are of 

interest and enough frequency content will be retained to fully characterize anlde joint 

dynamics. 

Table 5.2 shows, for each subject, the total time of each trial, the number oftrials, 

and the number of trials remaining after choosing the torque threshold. The selected 

torque threshold levels varied between subjects because of each subject's ability to match 

the desired torque. 

Table 5.2: Trial Alignment and Selection Results 

Du ration of Total no. of No. of trials 
Torque 

Subject each trial (s) trials selected 
threshold 

(Nm) 

A 1.72 500 440 2.3 
B 1.72 332 307 3.5 
C 1.73 500 421 3.2 

Fig. 5.4 shows typical trials from Subject A, with position (A) and torque (B) for 

multiple aligned and selected trials. Fig. 5.4C and 5.4D show the same trials with the 

ensemble mean removed. In the position records with the ensemble mean removed, only 

the input perturbation remains. 
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Multiple Trials with Ensemble Mean Removed 
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Time (5) Time (5) 

Figure 5.4: Multiple Trials with (CD) and without (AB) ensemble mean removed for 
position (AC) and torque (BD); Subject A. SignaIs are offset for clarity. 

5.3.2 Ensemble Behaviour 

The ensemble behaviour for each subject is shown in Figs. 5.5-5.7. The position, 

torque, GS EMG and TA EMG were ensemble averaged and are shown as the solid dark 

lines. The ensemble standard deviations were also compared and are shown as the dotted 

light lines. The GS and TA EMG were rectified and by convention the GS EMG is shown 

increasing in the negative direction and the TA EMG increases positively. Negative 

position and torque indicates plantarflexion. 
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Figure 5.5: Ensemble means (solid, dark lines) and standard deviations (light, dotted 
lines) of position (A), torque (B), GS EMG (C) and TA EMG (D), from the aligned and 
selected trials; Subject A. 
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Figure 5.6: Ensemble means (solid, dark lines) and standard deviations (light, dotted 
lines) of position (A), torque (B), GS EMG (C) and TA EMG (D), from the aligned and 
selected trials; Subject B. 
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Figure 5.7: Ensemble me ans (solid, dark lines) and standard deviations (light, dotted 
lines) of position (A), torque (B), GS EMG (C) and TA EMG (D), from the aligned and 
selected trials; Subject C. 

For aH subjects, the ensemble position standard deviation (A, dotted line) 

remained constant in time, demonstrating that the stochastic perturbation was stationary 

despite the superimposed rarnp and corresponding large changes in torque. The standard 

deviation was also computed for single trials across time (after subtracting the ensemble 

mean), and found to be very close to the position ensemble standard deviation. This 

indicates that the perturbation was unchanged across trials and that its timing with respect 

to the rarnp onset was largely random across trials. 
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The ensemble torque records (B, dark lines) show the resistance of the ankle joint 

to the imposed stretch, with the torque level more than doubling in amplitude for aIl 

subjects. AlI subjects had similar ensemble torque responses. During the ramp, the torque 

level increased (negatively) at a fairly steady rate, then immediately after the ramp end, 

the torque level decreased in a smooth fashion to a steady torque level. 

The GS EMG ensemble data show a smaIl increase after the ramp, approximately 

3 Il V for Subject C, which is not a very strong response. The other subjects showed even 

less of a change in the GS EMG. The ramp slope was much slower (by a factor of 10) 

than previously used [41], therefore the GS did not display a huge burst of activity when 

the ramp was imposed. The TA EMG ensemble data also displayed a smaIl increase after 

the ramp, timed with the activity in GS. It is likely that during the imposed ramp, a smaIl 

amount of co-contraction occurred. 

Kirsch and Keamey compared the ensemble GS EMG from the two trials and 

demonstrated that there was little effect on the stretch reflex properties from the 

stochastic perturbation [41]. They found similar form and latency for the EMG within a 

subject and by taking the average of aIl subjects. We compared the ensemble GS activity 

from the perturbed ramp trials with the unperturbed ramp trials and found them both to be 

very smaIl for aIl subjects. 

We also compared the ensemble average torque between the perturbed and 

unperturbed ramp trials. This is shown in Fig. 5.8 with the dark lines corresponding to the 

ensemble torque from the ramp plus perturbation and the lighter, dashed lines indicating 

ensemble torque from ramp only. The thin lines correspond to the standard deviations of 

the respective ensemble torques. In aIl subjects, pre-ramp torque was consistent between 

the ramp alone and the ramp plus perturbations and also until 200 ms after the imposed 

ramp. With perturbations, the ensemble torque response was larger than with only the 

ramp, for aIl subjects. 
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Figure 5.8: Effect of stochastic perturbation on ramp responses; Subjects A, B, and C; 
Ensemble torque record (thick lines) and the torque standard deviation (thin lines) from 
ramp trials with perturbations (solid lines) and without perturbations (dashed lines). 

The behaviour of the ensemble torque for Subject B was slightly different between 

the ramp only and ramp plus perturbation trials. The raw data was examined for the ramp 
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only trials and this plateau behaviour was consistent throughout most of the trials. The 

subjects were told 'not to react' to the imposed ramp, however this likely took sorne 

practice. The control ramp trials were performed before the regular trials, therefore 

Subject B may have been reacting to the ramp initially. 

There was little difference in the shape of the ensemble torque records between 

the perturbation and no perturbation case, for subjects A and C. These results are similar 

to those found previously using the faster ramp and a larger initial contraction level [59]. 

Given the small differences in the shape and timing of the ensemble torques after the 

imposed ramp, we can assume that the overall behaviour was not distorted by the 

perturbation. 

5.3.3 Position Records 

The position, with the ensemble mean removed, is illustrated for 5 realizations in 

Fig. 5.9 for each subject, where the dashed lines indicate the respective ramp start and 

stop. Although the ensemble mean was removed from aIl the position trials, the trials 

show a slight increase in position amplitude that roughly corresponds to the ramp timing. 

The ensemble position record, as shown in Section 5.3.2, only included the ramp. Thus 

these residual position effects may be due to the actuator behaviour during the ramp. The 

behaviour of the actuator during this ramp movement with superimposed perturbations 

has not been fully investigated. The ideal position records would show the PRBS input as 

a stationary signal, with no effects from the imposed ramp. 
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Figure 5.9: Position records with ensemble mean removed from 5 realizations; for aIl 
subjects. The dashed lines correspond to the ramp start and stop. 

To fuIly understand the results from the simulation and experiments, it was 

important to deterrnine what effect, if any, the se position deviations would have on the 

identification procedure. Therefore a stationary system was simulated by maintaining the 

sarne stiffness pararneters across time. First, the Gaussian input from Section 4.3.1 was 

applied to the stationary system. The system estimates described the data very weIl, 

which demonstrated the ensemble identification algorithrn's capability of correctly 

estimating a stationary system. Secondly, the experimental PRBS input was applied to the 
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time-invariant system. The simulation results of the stationary and time-varying systems 

using the experimental PRBS input will now be presented. 

The V AF of the torques attributed to the total (A), intrinsic (C) and reflex (E) 

stiffness models, are shown in Fig. 5.10 for both systems, along with the torque variances 

(B,D,F). The V AFs and torque variances are indicated as the dashed curves for the time­

varying simulation and as solid curves for the stationary simulation. The dashed lines 

indicate the parameter changes occurring in the time-varying simulated system. The thick, 

short lines indicate the experimentally imposed ramp start and stop times, which are 

correlated with changes in the PRBS position as shown in Fig. 5.9. 

The VAFs performed similarly at stationary times: prior to the first dashed line 

(K) and after the last dashed line (B). Any deviation occurred between the times of 

parameters variations. There did not seem to be a large difference between the two 

systems when the ramp was initially applied. 

Differences between the stationary and non-stationary system estimates were 

more evident in the torque variances. The intrinsic torque variances of the two systems 

deviate at the first dashed line (K), whereas the reflex torque variances do not change at 

all. The reflex torque variances of the two systems deviate when the second dashed line 

(G) is reached. 

Hence differences between the stationary and non-stationary system estimates 

followed the parameter changes and did not follow the times corresponding to the 

imposed ramp. Although there is likely an influence from the position effects, it is much 

smaller compared with the results from the simulated parameter changes. 

99 



A 
100 

80 
~ 
~ 

ca 60 
-0 

u. .... 40 
< 
> 20 

?ft. 80 

.; 60 

.= 
~ 40 

u. 
< 20 
> 

1 

1 

1 

1 

: 1 

- Time-Invariant 
--- Time-Varying 

2 

o~--~--~----~--~~----~ 
0.5 1.5 2 

= 60 ;;::: 
CI> 

u. ... 40 
< 
> 20 

O~ __ ~ __ ~ ____ -L __ ~L-____ ~ 

0.5 1.5 2 

Total Torque Variance B 
14 

12 

10 
N 

E 8 
z 

6 

4 

2 

0.5 1.5 2 

0 
8 

Inlrinsic Torque Variance 

6 
N 

~ 4 

2 

0.5 1.5 2 

F 6 Reflex Torque Variance 

4 
N 

E 
z 

2 

0 
0.5 

Time (s) Time (s) 

Figure 5.10: VAFs between total torque and predicted torques (A, C, E), using the 
experimental PRBS input with the time-varying system (dashed) and time-invariant 
system (solid). The total (B), intrinsic (D) and reflex (F) torque variances are plotted for 
both systems. The short, thick lines indicate when the ramp was imposed in the 
experimental input. The dashed lines indicate the simulated parameters start and stop. 

5.3.4 Model Evaluation 

The identification was performed as described in Section 4.1. The chosen IRF 

lengths were 80 ms, 200 ms, and 400 ms, for intrinsic stiffness, intrinsic compliance and 

reflex stiffness, respectively. The first 440 ms in time were neglected when plotting the 

graphs and when calculating mean values across time to eliminate start-up transients. 

The mean variances accounted for (V AF) between the predicted and measured 

torques were computed across the ensemble at each point in time. Figs. 5.11-5.13 display 

these VAFs across time for each subject. The dashed lines indicate the ramp start and 

stop. The mean values across time are recorded in each plot. 
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Similarly to the simulation results using the experimental PRBS input, system 

estimates at particular times were poor. These results were substantially noisier than those 

obtained during the simulations. The system estimates at these times were inaccurate and 

therefore not inc1uded in the results. Data at times where the VAFtotal was less than zero 

were removed. Subject A had the fewest points removed, whereas Subject Chad the most 

removed. 
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of ramp; Subject C. 

For Subject A, the VAFintrinsic (B) decreased during the ramp while the VAFreflex 

(C) increased slightly. This drop in VAFintrinsic and rise in V AFreflex occurred mid-ramp for 

Subject A. The VAFtotal (A) dropped throughout the ramp and averaged across time at 

approximately 70%. The model did not describe the data weIl, yet Subject A had the best 

results of aIl subjects. 
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For both Subjects B and C, the estimates were worse throughout the ramp. The 

same trend as in Subject A for the V AFtotal was found in Subject B, however Subject C 

showed the opposite, an increase in V AFtotal during the ramp. The data from Subject C 

accounted for the least amount of the total torque as compared with Subjects A and B, 

and is therefore the least dependable data set. 

The system estimates did not well describe the data for Subject A, with mean 

V AFtotal ranging from 64-70%. In time-invariant experiments using PRBS inputs, 

generally 85-95% of the total torque variance is accounted for by the model. The reflex 

torque accounted for less of the total torque than in the simulations, with mean VAFreflex 

ranging from 8-17%, for Subject A. 

To get a sense of how well the identification predicted the torque, the actual 

recorded torque and predicted net torque traces are plotted in Figs. 5.14 and 5.15. A 

comparison between the actual and predicted net torque was done for individual trials in 

Fig. 5.14, but neglecting the times where the model estimates were poor. The trials for 

Subject A had VAFrealiz ranging from 54-89% and the average across all trials was 58%. 

Subject Chad the largest variations in performance with VAFrealiz ranging from 26-72%. 

This shows the variability between trials, perhaps due to changes in the subject's 

behaviour during the experimental protocol. Since the system estimates are so poor, it is 

likely a combination of the subject and estimation itself. 

Similarly, Fig. 5.15 shows the comparison between the true and predicted torques 

across the ensemble at three different times. For Subject A the V AFtotal are similar for the 

three times and have an average of 70%. Subject C again displayed the poorest prediction, 

with V AFtotal ranging from 59-73%. The technique was able to capture joint dynamics 

across time; however the VAFtotal are still not as high as for the simulations or studies 

done using the time-invariant algorithm. 
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Figure 5.14: Actual total torque (Plus) and net predicted torque (points) for three 
realizations for all subjects. 
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5.3.5 Estimated System Dynamics 

To view the changes in the dynamics occurring throughout the movement, the 

systems were plotted at specifie points in time, as shown in Figs. 5.16-18. These times 

were chosen where the model was well predicted (>80%) and a parametric model was 

weIl fit (>83%) and were different for each subject. The intrinsic compliance (B) and 

reflex stiffness (D) were plotted with their respective parametric fit. 
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Figure 5.16: Estimated IRFs and SNLs at particular times across the ramp; Lines with no 
markers indicate parametric fits; Intrinsic IRFs (A,B); Hammerstein (C,D); Subject A 
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It can be seen from the intrinsic plots in Figs. 5.16-18 that for an three subj ects 

there was an increase in intrinsic stiffness (thus a decrease in intrinsic compliance) across 

time. This trend was most apparent in Subjects A and C. The parametric fits for the 

intrinsic compliance were much better prior to the ramp for aU subjects, as previously 

noted from the V AF fit. 

The reflex stiffness also increased slightly during the ramp, as seen in the reflex 

stiffness IRFs for Subjects A and B. We expected the reflexes to be larger after the ramp, 

since the ankle was in a more dorsiflexed position, corresponding to the subject's optimal 
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operating position (OOP). However the estimated models for the reflex stiffness system 

were c1early not well modelled by a 2nd order parametric fit. Therefore the changes in the 

reflex dynamics across time are unc1ear. 

The Hammerstein systems were filtered before fitting the parametric model. The 

filtering reduces the high frequency noise in the system estimates, but negatively affects 

the reflex delay. This is seen in Figs. 5.16-18 as sorne of the reflex stiffness estimates do 

not show the flat response of the reflex delay, although it is captured in the parametric 

fits. 

The subjects displayed similar behaviour but at different times after the ramp 

initiation. Subject A exhibited the highest reflex mid-ramp, whereas Subjects B and C 

showed more reflex activity at the end of the ramp. Thus it appears that Subject A reaches 

peak reflex activity earlier than the other two subjects. This same trend occurred for 

Subject A in a preliminary trial using a larger ramp amplitude. 

5.3.6 Parametric Models 

Parametric models were fit to the filtered intrinsic compliance and reflex stiffness 

systems. First, the least-squares fitting algorithm was run with an initial estimate. Then 

the parameters which had the highest VAFfit, at the point in time before the ramp ons et, 

were used again in the algorithm. If there was no significant increase in the maximum 

VAFfit, then these parameters were used as the best initial guess. Finally the fitting 

algorithm proceeded as outlined in Chapter 4, with the next system's initial guess being 

set to previously estimated parameters with a VAFfit greater than 80%. 

The parametric fits for the intrinsic compliance were better than for reflex 

stiffness; however they both were not well modelled by the 2nd order models. In the 

subsequent plots, only model parameters are shown whose VAFfit was greater than 83%. 

Figs. 5.19-5.21 show the estimated parameters from the 2nd order parametric fits 

and the associated VAFfit for each subject. The intrinsic compliance parameters (K, B, 1) 

are shown in plots G, E, C and the reflex stiffness parameters (G, w, z) are shown in plots 

D, F, H. Overall reflex gain (G) was calculated as in Chapter 4. The dashed lines 

indicated the ramp start and stop times. 
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Figure 5.21: Parameters K, B, l from the intrinsic compliance fits (G,E,C) and G, w, z 
from the reflex stiffness fits (D,F,H), across time; Dashed lines indicate ramp start and 
stop; Subject C. 

The majority of the 'best-fits' to the intrinsic model occurred before the ramp. The 

parameters remained roughly stable in time for aIl subjects, as expected. The values then 

increased throughout the ramp, although limited good data points were available. The 

changes are significant, as much as 3 times the initial values before the ramp for aIl 

parameters. An increase in intrinsic stiffness with increased dorsiflexion does hold true to 

actual ankle dynamics. The large changes in inertia were surprising as normally it 

changes very little and likely indicates problems. 

The reflex stiffness parameters, on the other hand, displayed very inconclusive 

findings. This is due to the poorly estimated systems demonstrated by the huge variability 

of the VAFfit across time, leaving very few 'good-fit' parameters. Thus these parametric 

models of reflex stiffness are not representative of the true reflex dynamics. A key issue, 
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which is discussed in Section 5.4, is whether these difficulties are due to the fitting 

paradigm itself or the poor IRF estimates. 

5.3.7 Stationary Studies 

Control trials were recorded with only the PRBS perturbation applied to the ankle 

at specifie positions throughout the ramp. The stationary control perturbation trials 

confirmed that each subject exhibited reflex activity at points throughout the ramp. The 

estimated VTQIRFs from these trials for each subject at the ramp start and end positions are 

plotted in Fig. 5.22. 

Reflex stiffness increased as the ankle was more dorsiflexed for aIl subjects. 

These trials accounted for much of the torque, demonstrating that the system estimates 

described the data weIl. For Subject C at the ramp end, 20% of the VAF was attributed to 

reflex torque, with a VAFtotal of 85%. Similarly for Subject B at the ramp end, VAFrejlex 

was 20% and VAFtotalWas 76%. 

The control perturbation trials for Subject A were surprising as only 1 % of the 

VAF was attributed to reflex torque, at ramp end, with high a VAFtotal of 94%. The pulse 

trials for Subject A showed much larger reflex torques at the ramp end position, as weIl as 

in previous PRBS trials for this subject in pilot experiments. It is likely that these 

experiments were not typical behaviour for Subject A. 
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Figure 5.22: VTQIRF estimates from the stationary, control perturbation trials at ramp start 
(dashed) and end (solid) positions for Subject A (A), B (B) and C (C). 

The poor system estimates at certain times may be due to the lack of a rich signal 

from the ensemble input. To further investigate this statement, a test was performed with 

the stationary algorithm using the control perturbation trial at the ramp mid-point for 

Subject C. The stationary algorithm was applied to various segments of the data, 4 

seconds in length (400 points), and also to the entire data set, 30 seconds in length (3,000 

points). This compares to the ensemble time-varying technique estimating across the 

ensemble of 400 realizations at each time. 

The resulting reflex stiffness estimates are shown in Fig. 5.23. The system 

estimates do vary from one segment to another and deviate from the 'best' estimate 

utilizing 30 seconds of data. This supports the conclusion that the input may not be rich 
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enough for good identification using the 400 realizations with the ensemble time-varying 

algorithm. If more points do improve the estimates, then future work should involve 

testing PRBS inputs using 4000 realizations rather than 400, in simulation studies. 
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Figure 5.23: VTQIRF estimates utilizing different segments of data from the stationary, 
control perturbation trial at mid-ramp for Subject C. 

As the system estimates and parametric fits were poor certain times, an accurate 

comparison cannot be made between the stationary results and the time-varying results. 

The overall stiffness increased as the foot was more dorsiflexed for all subjects under 

both stationary and time-varying conditions, but as mentioned, there were too many times 

at which the system estimates were po or for the time-varying trials. 

Previous work has illustrated that it is not reasonable to assume properties of joint 

dynamics occurring during movement will correspond to those obtained at equivalent 

operating points during time-invariant conditions [19, 29]. This advocates further 

development of such novel time-varying identification methods to gain a better 

understanding of joint mechanics during movement. 
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5.4 Discussion 

A major finding of the present work is that the time-varying stiffness 

identification did not work very well with the inputs we used experimentalIy. This 

limitation for the algorithm is discussed and potential improvements presented. The 

resulting system dynamics are briefly presented as well as future improvements to the 

experimental protocol. 

5.4.1 Results 

The time-varying identification algorithm was applied to experimental data 

acquired from three subjects, whose ankle underwent a large stretch in dorsiflexion. This 

stretch produced a significant increase in the joint torque but had little effect on the GS 

EMG, due to the slow speed of the ramp. Descriptions of the instantaneous stiffness 

dynamics were obtained throughout the movement at a time resolution equal to the 

sampling rate, by using the torque responses evoked by the small amplitude PRBS 

perturbations superimposed on the larger amplitude stretch. 

Given the results from stationary conditions, it was expected that overall joint 

stiffness would increase from a position of plantarflexion to a stretched position of 

dorsiflexion. This was consistently shown in all subjects. The reflex stiffness did increase 

during the ramp, particularly for Subject A, which may support the stance that reflex 

modulation plays a role in initiating and/or controlling voluntary movements. However it 

was not possible to make concrete conclusions on the role of the stretch reflex during this 

movement, as the estimation of the reflex pathway was poor and the overall total variance 

accounted for was significantly lower than achieved in simulations or in time-invariant 

situations. 

AlI subjects showed the similar trend in intrinsic stiffness and reflex stiffness with 

time. The ensemble torque and GS EMG for all subjects was also similar. This 

demonstrates that the experiments were performed in the same manner so that the 

resulting behaviour was not widely different between subjects. 
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5.4.2 Identification Aigorithm 

The algorithm performed very weIl in the simulations using the Gaussian input. 

Using the experimental PRBS input, it also performed weIl, however not at aIl times. The 

algorithm did not function at aIl using a computer-generated PRBS input. Using the 

experimental data, the algorithm produced good estimates at sorne times and not at others. 

This consistent behaviour from simulation to experiments suggests the algorithm's 

deficiency in handling PRBS inputs. 

As the ensemble techniques utilize the data across the ensemble at specific points 

in time, there may be times at which the ensemble input is not rich enough to permit a 

good identification. The ensemble time-varying identification algorithm estimates across 

the ensemble and therefore is limited by the number of trials obtained. Under stationary 

conditions, the time-invariant technique generally uses 10 times the number of points as 

used in the ensemble algorithm. The stationary identification was tested using fewer 

points and found to have variable system estimates. Thus the identification techniques do 

require an input signal with enough information to permit good identification. The 

challenge associated with the ensemble time-varying algorithm is that more than 400 

realizations obtained in a session may fatigue the subject. For future investigations, the 

simulation should be run with over 4000 realizations of the PRBS input to see whether 

the estimates improve. 

Gaussian perturbations have much wider position and velocity probability 

distributions than PRBS, and therefore provide an ensemble input that is rich enough to 

permit good identification. Other inputs should be investigated with the simulation, such 

as multi-Ievel (amplitude) PRBS filtered inputs or PRBS inputs with superimposed small 

amplitude Gaussian noise. Both the position and velocity distribution must be wider than 

with the PRBS inputs. However it is equally important that these inputs elicit reflex 

responses. 

The identification showed substantial evidence of estimating the intrinsic 

component ofstiffness; however it failed to provide a good evaluation of the reflex 

component. This may lead to an overestimate of the amount of torque attributed to the 

intrinsic mechanics. There may have been excess noise in the data, which contributed to 
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these po or results. Noise reduction methods for implementation into the algorithm should 

be investigated. 

Parametric 2nd order models were fit to the data. Very few parametric models had 

a high VAFfib particularly for reflex stiffness. The question arises whether the fitting 

issues are a result of the fitting paradigm itself or due to the poor IRF estimates or a 

combination? The least-squares method does require good initial estimates to function 

properly and this may have contributed to the poor fits. An improved approach would 

have been to utilize the estimated parameters from the stationary control trials as initial 

estimates, specifie for each subject. Alternative fitting paradigms should also be 

considered, rather than relying solely on the least-squares method. Although not 

examined in detail, the VAFfit and VAFTQ did correlate in most cases (i.e. both low at 

certain times). Thus, poor system estimates were likely the major contributor to the poor 

parametric fits. However another consideration is that the stiffness models themselves 

may not be well represented by 2nd order models, as we assumed, particularly throughout 

the ramp movement. Previous work has shown that third order fits were necessary at 

sorne ankle positions, and particularly for reflex stiffness IRFs at high levels of 

contraction [57]. 

Further investigations could search for a suitable input, with low mean absolute 

velocity and a wider velocity distribution to excite the reflex pathway and provide a large 

input range to identify the SNL; however this may still not guarantee good identification. 

Recent work published by Dempsey and Westwick [58], utilized cubic splines instead of 

polynomials to represent the SNL. They found much better estimates at corners and edges 

of the SNL using cubic splines than using polynomials. This may provide a better 

estimation of the nonlinear component in the Hammerstein system. 

One key assumption was the choice of model structure. Although it has been 

successful under various stationary conditions, the parallel-cascade model structure may 

not represent ankle joint dynamics during this imposed stretch or potentially during any 

movements. During movements or conditions where the dynamics change rapidly, the 

parallel-cascade model may be too simplistic. Kirsch and Kearney [57] concluded that a 

more complex model of joint stiffness is likely required to describe the nonstationary 

changes occurring in joint stiffness during this imposed movement. The algorithm worked 
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well in the simulations but this was only for a given set of conditions. A more appropriate 

model structure may have to be considered for time-varying tasks and this could lead to 

the development of new identification algorithms; however this is beyond the scope of 

this work. 

5.4.3 Methodology Considerations 

Improvements were made to the previous experimental protocol to reflect more 

recent studies in our laboratory [3, 4]. The differences between the previous study [41] 

and the CUITent experimental paradigm are outlined in Table 5.3. 

Table 5.3: Comparison of Experimental Protocols 

Previous Study [41] Current Study 

• Gaussian filtered • PRBS 
Input 

• Larger RMS velocity • Smaller RMS velocity [3] Perturbation 
• Power at high frequencies • Power at lower frequencies 

RampEnd • 0.13 radians from neutral • At OOP, where largest reflex 
Position position torque (depends on subject) 

Analysis • Ensemble time-varying • Ensemble time-varying, parallel-
identification using SVD and cascade identification algorithm 

Technique 
least-squares method [33] based on Lortie's techniques [4] 

Reflex StitTness 
• Between velocity and GS EMG • Between velocity and reflex torque 

IRF 

The reflex activity was significantly enhanced using the PRBS perturbation inputs 

with a low mean absolute velo city and power at lower frequencies, as determined in a 

study by Keamey, Stein and Parameswaran [3]. The filtered Gaussian inputs previously 

used were found to suppress reflexes. Similarly, utilizing pulse trials to determine the 

optimal operating position (OOP), as performed by Tung [50], ensured significant reflex 

activity at the ramp end position. 

The recent identification techniques by Lortie [4] imposed fewer restrictions and 

provided better estimates than MacNeil's [33] in the presence of significant output noise. 

Most previous studies of reflex modulation during movement only examined EMG, as in 

[41], which is why our protocol reflects the mechanics of the joint during movement by 

computing the reflex stiffness IRF between velocity and reflex torque. 
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The time-varying ensemble technique reqmres identical behaviour from one 

realization to the next to produce the most accurate results. There are many sources of 

trial-to-trial variability, such as the subject, the data acquisition and protocol. The subject 

may adjust their body position, initial contraction level, and voluntary reaction to the 

imposed ramp from one realization to the next. These may affect their ankle joint 

dynamics. 

A post-processing selection procedure was used to account for the subject's 

contraction level, by examining the standard deviation of the torque for each realization 

(Section 5.2.1). Trials were aligned according to the ramp start, but this depends on the 

timing of the acquisition of only the ramp input compared with the acquisition of the 

actual position. There may have been slight timing discrepancies within a trial thus 

affecting the alignment procedure. 

An important consideration for the protocol was that the ramp occurred at random 

times with respect to the superimposed perturbations and that the subject had no warning 

that a ramp was about to be imposed. Thus, the experimental protocol was setup such that 

the subject had to re-establish the torque level before another ramp stretch was initiated. 

The torque level had to be matched to within ±1O%, and often subjects would become 

very good at re-establishing the torque after many realizations. Therefore there may have 

been sorne prediction by subjects who were able to maintain the target torque level 

immediately after the plantarflexing ramp returned their foot to the initial position. A 

solution would have been to put a pause after each ramp of random length (i.e. between 0-

2 s). However the entire protocol aIready lasted for 4 hours, so any additional time spent 

in the actuator fatigues the subject and may also cause changes in their joint dynamics. 

Another methodological consideration not addressed in the analysis of the results 

was to utilize the reflex EMG dynamics to determine a subject-specific reflex delay. The 

reflex delay is used to limit the intrinsic stiffness IRF length so that during identification 

any reflex contributions are neglected due to this timing discrepancy. For simplicity, we 

utilized 40 ms for aIl subjects. This is not a significant issue in this study, as the reflex 

EMG dynamics were briefly examined and aIl subjects had reflex delays around 40 ms; 

however this step should be integrated into the algorithm for future use. 
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Although the ensemble mean position was removed from each position record, 

there were sorne changes in the properties of the perturbation during the time of the 

imposed ramp. We tested the potential effect of these changes on the identification 

procedure and found that they had little effect on the estimation results. Nevertheless, for 

future work, it would be beneficial to eliminate this effect or fully account for and 

understand these effects. 

5.4.4 Summary 

A new method for time-varying identification of joint dynamics has been 

developed and preliminary tested. It was capable of estimating the intrinsic mechanics at 

the ankle joint, with results similar to those found in a similar study [59]. Estimates of 

reflex dynamics were unreliable, as the variance accounted for was significantly low and 

a second-order mechanical model was not well fit to the data, even at time-invariant 

conditions. Future steps have been discussed to evaluate how the algorithm and the 

experiments can be improved to achieve reliable estimates for ankle stiffness using PRBS 

inputs. 
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6. Conclusion 

A method was developed to identify time-varying systems. The algorithm was 

tested using simulated and experimental data. The results, a brief discussion and 

suggestions for future work are presented. 

6.1 Results 

The algorithm was capable of identifying a simulated time-varying system very 

weIl using Gaussian inputs. Experimental PRBS position records were applied as input to 

the simulation. These results showed good estimates at certain times and poor estimates at 

others. 

Joint position and torque data was acquired from three subjects while their ankle 

underwent a large dorsiflexing stretch with superimposed PRBS perturbations. The 

system estimates described the data fairly weIl at certain times and very poorly at others. 

Based on the good system estimates, the intrinsic and reflex stiffness were found to 

increase throughout the movement. Reflex stiffness and intrinsic compliance models were 

not weIl modelled by a 2nd order mechanical model at most times. 

6.2 Discussion 

The parallel-cascade model was adapted to be used under time-varying conditions. 

From simulation and experimental studies, the algorithm was not capable of providing 

good system estimates at aIl times using PRBS inputs. 

Since the results were positive at aIl times using Gaussian inputs to the simulation, 

one possible explanation is that the ensemble input did not provide a signal rich enough to 

permit a good identification. The PRBS inputs do have characteristics that provide less 

information, in terms of position and velocity distributions, as compared with Gaussian 

inputs. 

A major assumption that may have been violated during the imposed stretch is 

that of the parallel-cascade model. The description of the intrinsic and reflex stiffness 

pathways may be entirely different and more complex during movement. 

Although a time-varying, parallel-cascade identification algorithm has been 

developed, there are many areas for improvements. The major finding from this work was 
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that the algorithm works poorly with this PRBS input. The parallel-cascade structure and 

algorithms require a thorough review, and can be further tested in simulations at different 

conditions. Different parametric model structures may apply during movement, as the 2nd 

order fits were not good. Alternative parametric fitting methods should also be examined. 

Since sorne estimates were good at sorne times and not at others, the properties of the 

input across the ensemble must be further inspected. Investigations could utilize different 

inputs, first with the simulation and then with experiments, to potentially obtain better 

estimates at aIl times. 

In the long term, the study of voluntary movement will require additional efforts. 

The actuator will have to operate in a c1osed-Ioop manner. Therefore c1osed-Ioop 

identification methods will have to be integrated into the time-varying algorithms. In spite 

of the long joumey ahead, this work has brought the study of voluntary movement one 

step c10ser to reality, as the time-varying nature of systems can be isolated and the 

mechanical consequences of reflex activity during time-varying behaviour can be 

examined. 
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Appendices 

A. Axis of Rotation 

Figure A.I illustrates the position of the axis of rotation on the lateral side of the 

ankle joint, with respect to the lateral malleolus, as obtained from anthropometric data 

[3.1]. Figure A.2 illustrates the position of the axis of rotation on the medial aspect of the 

ankle with respect to the medial malleolus. The histograms in each figure indicate the 

number of specimens tested. 
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Figure A.I: Location of ankle axis of rotation with respect to most lateral point of the 
lateral malleolus 
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Figure A.2: Location of ank1e axis of rotation with respect to most media1 point of the 
media1 malleo1us 

B. Identification Implementation 

An object oriented matlab too1 box for 1inear and non1inear system identification 

has been deve10ped in our 1aboratory [60]. This too1box was used to generate the time­

varying mode1 objects. The class at the top of this object oriented too1box is called nltop 

(top of non1inear class) and is divided into various subclasses, one of which is nldat 

(non1inear data) object types. The time-varying mode1 objects (tvrn) used for this thesis 

are of type nldat and thus inherit all the methods from its derived classes (nldat and 

nltop). 
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Many methods existed specifically for the tvm objects and sorne of these caU on 

methods from other mode! types, such as irfs and polynomials types. Certain methods 

were edited for this thesis, such as plot (to allow more flexibility when plotting objects of 

type tvm), and nlident (to appropriately set certain parameters such as the start time, when 

performing time-varying identification). Methods that were added for use with the time­

varying, parallel-cascade algorithm included tv _irffit (which fit parametric models to 

time-varying objects), and propagate (which performed the propagation of the IRFs, 

described in Section 4.1.1.2). A function called tv_2_LP_delay was created to generate a 

time-varying impulse response of 2nd order low-pass filters in series with a delay, for the 

simulation. Similarly for simulation purposes, a function called vaf_irf which computed 

the VAF between two IRFs and two SNLs was created to aUow comparison between the 

simulated and identified time-varying systems. 

C. Time-Varying Para"e'-Cascade Identification MA TLAB Code 
% tvident data.m 
% 
% This script is used to run time-varying identification to identify 
% ankle dynamics from ensemble experimental data. 
% 
% The format follows the parallel-cascade algorithm as developed for the 
% time-invariant case (i.e. see ref1ex_stiffness.m) 
% 
% IN WORKSPACE: 
% 
% 
% 
% 
% 
% 
% 
% 
% SET PATHS: 
% 
% 
% 
% MJB May 18/04 

- Must have an nldat object named 'XS' (created from 
tvselect.m) 

- 'XS' should be a 3D nldat object with the following 
structure: [:,5, :), where the first coordinate 
represents time, the second is the five channels 
recorded in this order (POS, TQ, TA EMG, GS EMG, INP), 
and the last is realizations 

- Must include the path where propagate.m is located 
(CHANGE THE FIRST LINE OF CODE AS NECESSARY) 

% MJB Oct 19/04 Add cornrnents 

%Must inc1ude in pa th location of propagate.m 
addpath P:\Thesis\Simulations\Time varying\simulate 

%User selection of IRF lengths (NLags) for intrinsic stiffness, 
%intrinsic compliance & reflex stiffness IRFs 
disp(' '); disp([ 'The length of interest of the data is ' num2str( 

(size(XS,l)) * (get(XS, 'domainincr')) * 1000) , milliseconds')); 
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disp('Choose the NLags accordingly to the length of data ... '); 
h_int = input ('Enter NLags for intrinsic IRFs (ms): '); 
h_comp = input('Enter NLags for compliance IRFs (ms): '); 
h ref = input ('Enter NLags for reflex IRFs (ms): '); 

%User selection of a decimation ratio 
dratio = input ('Enter decimation ratio (if no decimation enter 0): '); 

%The ensemble mean must be calculated for the newly selected trials 
%(lost trials in tvselect.m) 
XM=mean(XS,3); %Ensemble mean for each channel 
XR=XS-XM; %Removed the ensemble mean 

if dratio -= 0 %DEClMATION 
disp ( [ 'Decimating the data ... ']); disp ( , , ) ; 
Vel = ddt(XR(:,l, :)); %Velocity before decimation 
XRD=decimate(XR,dratio); 
V = decimate(Vel,dratio); %Velocity after decimation 
disp ( [ , . .. finished decimating.'] ); disp ( , , ) ; 

else %NO DECIMATION 
XRD=XR; 

end 

%Calculate the new sampling frequency, time vector & NLags for IRFs 
%after decimation. 
fs new = l/get(XRD, 'domainincr'); 

time_start = get(XS, 'DomainStart'); 
time = [time_start : l/fs_new : time start + ... 

(size(XRD,l)/fs_new - l/fs_new)]; 
nsamp length(time); %Define the number of samples 

h_int fix(h_int/1000*fs_new); 
h_comp = fix(h_comp/1000*fs_new); 
h ref = fix(h ref/1000*fs_new); 

% Use white noise input to find inverse of intrinsic stiffness (compl.) 
INP_matrix = []; 
AMP = input_d('Enter amplitude for Gaussian position input to find ... 
noise-free torque [for compliance] (rad) ',0.03,0.00001,1); 
fc_pos = input_d('Enter the cutoff frequency or 0 (zero) for no filter 
(Hz)',O,O,fs); 
for i=l:num trials 
INP = AMP/2*randn(length(time),1); 
if fc_pos -= 0 
[C1,A1] = butter(1,fc_pos/(fs/2)); %LP filter 

INP = fi1ter(C1,A1,INP); 
end 
INP matrix 
end 
INP matrix 
INP matrix 

[INP_matrix INP]; 

reshape(INP_matrix,length(time),l,i); 
nldat(INP_matrix, 'domainincr',ts); 

TQ = XRD(:,2, :); %Recorded total torque 
POS = XRD(:,l, :); %Recorded Position 

%Initialization of parameters for identification loop 
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vaf total = 0; %VAF estimate 
vaf last = -1; %VAF previous estimate 
icount = 0; %Number of iterations 
TQ_R_pred = nldat(O); %Predicted reflex torque 
TQ_R_res = TQ - TQ_R_pred; %Initial estimate of Reflex residual torque 

figure; %All plots will be generated on the same figure 

disp (' '); disp('IDENTIFICATION commencing ... '); disp(' 

% ITERATE UNTIL VAF TOTAL DOES NOT IMPROVE ANYMORE 
while vaf total > vaf last 

vaf last = vaf total; %Set to previous VAF estimate 

, ) ; 

icount = icount + 1; %Increase number of loop iterations by 1 

disp ([' ITERATION = ' int2str(icount)]) 

% Identify intrinsic pathway 

% {{ { 

disp (' '); disp('Identifying Intrinsic stiffness ... ') 

%Intrinsic Stiffness IRF to be estimated between POS & TQ_R_res 
Zstiff = cat(2,POS,TQ_R_res); 

%Linear dynamic 2-sided Intrinsic Stiffness estimated using 
%pseudoinverse method 
istiff=tvm(Zstiff, 'Model Type', 'irf', 'Nsides',2, 'nlags', 

(h_int+l), 'Method', 'pseudo', 'comment', 'PTQ_I_R_F'); 
clf; plot(istiff); title('PTQ_I_R_F') 
disp(' '); disp(['PAUSE ... until you hit a key']); disp(' '); 
pause 

%Propagation of IRFs 
istiff = propagate(istiff); 
disp(' '); disp(['PAUSE ... until you hit a key']); disp(' '); 
pause 

disp( , '); disp('Identifying Intrinsic Compliance ... ') 

%Estimation of Intrinsic Compliance between TQ_R_res & POS 
% Generate TQ based on intrinsic stiffness IRF, using a noise-free 
% pos.input 
OUT = nlsim ( istiff, INP_matrix ); 
Zcomp = cat(2,OUT,INP_matrix); 
icomp = tvm (Zcomp, 'Model_Type' , 'irf' , 'Nsides' , l, 'nlags' , (h comp), ... 

'Method', 'pseudo', 'comment', 'TQP_I_R_F'); 
clf; plot(icomp); title('TQP_I_R_F') 
disp ( [ 'PAUSE ... until you hi t a key']); disp ( , , ); pause 

%Propagation of IRFs 
icomp = propagate(icomp); 
%Smoothing fil ter (1 pass) using a 3-point moving average algorithm 
icomp = smo(icomp,l); 
clf; plot(icomp); title('TQP_I_R_F') 
disp(' '); disp(['PAUSE ... until you hit a key']); pause 
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%Time-varying convolution of Intrinsic Stiffness (istiff) with 
%Position (POS) to get an estimate of intrinsic torque (TQ_I_pred) 

[TQ_I_res, istiff_vaf, TQ_I_pred] = nlid_resid(istiff, ... 
cat(2, POS - mean(POS), TQ),l); 

% [output_residual, irf_vaf, predicted_output] = nlid resid(irf, 
%cat(2, data to convolve with irf, data to compare with predicted 
%output), flag to stop plotting function); 

disp( , '); disp(' ... identification of Intrinsic pathway finished. ') 

% {{ { 

% Identify reflex pathway 

% {{ { 

disp (' '); disp('Identifying Reflex pathway ... ') 

%Concatenate Velocity & Intrinsic Residual Torque (==TQ - TQ_I_pred) 
ZVTQ=cat(2,V,TQ Ires); 

%Using velocity as input and the intrinsic residual torque as output 
% (reflex torque estimate), the static nonlinearity and linear 
%dynamic elements in the reflex pathway are estimated using the 
%Hammerstein identification procedure. 
ihammer = tvm(ZVTQ, 'Model Type', 'nlbl', 'Nsides',l, 'nlags',h_ref, ... 

'ordermax',3, 'comment', 'VTQ_irf'); 
%'nlbl' => nonlinear block structure model type 
%'ordermax' => Maximum polynomial order estimated 

%To filter VTQirf once, a 3-point moving average is used 
ihammer = smo(ihammer,l); 

%Convolve Hammerstein system with velocity to get an estimate of 
%reflex torque. Reflex residual torque (TQ_R_res = TQ - TQ_R_pred). 
[TQ_R_res, ihammer_vtq_vaf, TQ_R_pred] nlid_resid(ihammer vtq, ... 

ca t (2, V, TQ ), 1) ; 

%Normalize identified Hammerstein system; gain is redistributed 
%between nonlinear and linear subsystems 
ihammer old = ihammer; 
ihammer = normalize(ihammer,l); %DC gain of IRF is unit y 
clf; plot(ihammer_vtq); 
disp(' '); disp(['PAUSE ... until you hit a key']); pause 

disp (' '); disp(' ... identification of Reflex pathway finished. ') 

% {{{ 

%Calculation of Voluntary torque offset 
OFFSET = mean(TQ) - mean(TQ_R_pred); %Means for each realization 

%Convert OFFSET nldat object to double so that it can be added 
%properly to other nldat objects. 
offset data = OFFSET.data; offset data reshape(offset_data,l, ... 

length(OFFSET)); 
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off_temp = zeros(size(TQ,1),size(OFFSET,3)); 
for j = 1:size(OFFSET,3) 

for i = l:size(TQ,l) 
%Create matrix of mean values for each realization at each 
%point in time 
off temp(i,j) offset data(j); 

end 
end 
off temp = reshape(off_temp,size(TQ,1),1,size(OFFSET,3)); 
OFFSET = nldat(off_temp); 
%This nldat object can now be added properly to other nldat objects 

%Net predicted torque 
TQ_net_pred TQ_R_pred + TQ_I_pred + OFFSET; 

disp (' , ) ; 
warning off MATLAB:divideByZero; 
%VAF calculations below may result in division by zero, so warning 
%is turned 'off' to keep command window clear. 

%VAF calculations across the ensemble at each point in time for the 
%predicted torques. **NOTE: mean values are calculated by neglecting 
%times corresponding longest IRF length (h_ref). 

%Intrinsic 
vaf_int = double(vaf(TQ, TQ_I_pred, 'sample')); 
mean_vaf int = mean(vaf_int(h_ref:nsamp)); 
%nsamp is number of samples 

%Reflex 
vaf ref = double (vaf(TQ_I_res, TQ_R_pred, 'sample')); 
mean_vaf ref = mean(vaf ref(h_ref:nsamp)); 

%Total 
vaf_tot = double (vaf(TQ, TQ_net_pred, 'sample')); 
mean_vaf total = mean(vaf_tot(h_ref:nsamp)); 

disp(['===-- VAFs for Iteration' int2str(icount) , --===']) 
disp('---VAF torques---') 
disp(['Mean VAF intrinsic: ' num2str(mean_vaf_int)]) 
disp(['Mean VAF reflex: ' num2str(mean_vaf_ref)]) 
disp(['Mean VAF total: ' num2str(mean_vaf_total)]) 

clf; subplot(311); 
plot(time(h_ref:nsamp),vaf_int(h_ref:nsamp)); 
title('VAF intrinsic'); axis([time(h_ref) time(nsamp) 0 100]) 
subplot(312); 
plot(time(h_ref:nsamp),vaf_ref(h_ref:nsamp)); 
title('VAF reflex'); axis([time(h_ref) time(nsamp) 0 100]) 
subplot(313); 
plot(time(h_ref:nsamp),vaf_tot(h_ref:nsamp)); 
title('VAF total'); axis([time(h ref) time(nsamp) 0 100]) 

disp([' IRF iteration ' int2str(icount) '; Total VAF= ' ... 
num2str(mean_vaf total)]) 

% ITERATE UNTIL VAF TOTAL DOES NOT IMPROVE ANYMORE 
vaf total = chop(mean_vaf_total,4); %New total VAF 
disp(' '); disp(['PAUSE ... until you hit a key']); disp(' '); 
pause 
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end %while loop 

disp (' '); disp('Identifying EMG Hammerstein system ... ') 

%Identify reflex EMG dynamics between Velocity and GS EMG 
GS=XRD ( : , 4, : ) ; 
ZR=cat(2,V,abs(GS)); %Concatenate Velocity & rectified GS EMG 

% Hammerstein model time-varying identification 
ihammer_vgs=tvm(ZR, 'Model_Type', 'nlbl', 'Nsides',l, 'nlags',h_ref, ... 

'ordermax',3, 'comment', 'VGS_I_R_F'); 
clf; plot (smo(ihammer vgs,2)) 

disp (' , ); disp ( , ... identification of EMG Hammerstein finished.') 
disp(' ... IDENTIFICATION finished. ') 

D. Efhics Certificafe 

Please find attached our Ethics Certificate dated April 5, 2004, valid until April 4, 2005. 
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Faculty of Medicine 
3655 Promenade Sir William Osier 
Montreal, OC H3G 1Y6 

April 6, 2004 

Dr. Robert Kearney 
McGiII University 
Faculty of Medicine 
Department of Biomedical Engineering 
Duff Medical Building. Room 309 
3775 University Street 
Montreal, Quebec 
H3A2B4 

Dear Dr. Kearney: 

Faculté de médecine 
3655. Promenade Sir William Osier 
Montréal, OC, H3G 1Y6 

FaX/Télécopieur: (514) 398-3595 

We are writing in response to your raquest for continuing review for the study A04-M09-97 
entitled "System Identification of Funct/onal Modulation of Instrlnslc and Reflex Studles" . 

The progress report was reviewed and we are pleased to inform you that full board 
re-approval for the study was provided by the Chair of the Committee on April 51 2004. valid 
until April 41 2005. The certification of annual review is enclosed. 

We ask you to take note of the investigator's responsibility to assure that the current protocol 
and consent document are deposited on an an nuai basis with the Research Ethics Board of 
each hospital where patient enrollment or data collection is conducted. 

Should any modification or unanticipated development occur prior to the next review. please 
advise the IRB prompt/y. 

Yours sincerely, 

Lawrence Hutchisoon, M.D. 
Co-Chair 
Institutional Review Board 

cc: A04-M09-97 



McGll1 FBcully of Medicine 
Inatltutlonal Revlew Board 

-Contlnulnl Revlew-
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APPROVAL 
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·· .. ··········F~~·~iïy··~f··M·~dï~i·~ë"····· ...... ·· 

McGili University 

Principallnvestigator: -!.A...,.o"'b!lijeurt .... K:!Se!!<a .... m..,.euv _____________ Departmentllnstitution: Biomedical Engineering 

IAB Aeview Number: A04-MC9-97 Study Number (if any): ______ Review Interval: __ cA!..!JnnW,\utllau..1 _ 

Title of Aesearch Study: A04-MQ9-97 
CIHR: System identification of functional modulation of Intrlnslc and reflex stlffness 
FQRNT: $trlltegles biom/metlques pour le controle du mouvement en robotlgue et en rehabilltat/on)' 

Date of initiallRB approval: 4 April 1997 Date of previous continuing review (if applicable): ___ _ 

INTERIM REPORT (PLEASE CHECK OR SPECIFY) 

Current Status of Study: 

Active Study: __ .... X;l..... __ _ On Hold:. __________ Closed to Enrolment: ____ _ 

Interim Analysis: ____ _ Final Analysis:. _______ _ Study Not Activated·: ____ _ 

'11 the study has nol become active al McGiII, please provida correspondance 10 explaln: enclosed: _______________ _ 

McGiII hospital(s) where study has received approval of local Research Ethics Board(s) (if applicable): 

JGH: 0 

RVH: 0 

MCH: 0 MGH: 0 MNHlMNI: 0 

SMH: 0 Other: 0 

McGiII hospital(s) where study has not received approval of local Research Ethics Board(s) (if applicable): __ _ 

If study sponsorship or financial support has changed, please provide correspondence to explain; enclosed: ____ _ 

Number of subjects to be enrolled at McGiII: __ ~--,1"",Q:<..IIye"",aO<lr_ Number of McGiII subjects enrolled to date: ~40 

-,""-'-" ----....... ----_. 
Number of McGiII subjects enrolled since last review: ---,1~Q,---_ Have McGiII subjects withdrawn from the study?: _ .... N.."o,--

Ras the study been revised since the last review?: ~ Have the study revisions been approved by the IRB?: Yes 

Has the consent form been revised since the last review?:_---'N""o><--__ Date of the current consent form: 28 July 2003 

Are there new data since the last review that could influence a subject's willingness to provide continuing consent?: NO 

Have all serious adverse experiences (SAEs) and safety reports relevant to the study been reported to the IRB?: YES 

SIGNATURES: 

Principallnvestigator: ___ ,-,R""obe=rt,-,K",eqi',..,n",e ... y~ D~e: _____ 1~1wM~a~ro~h~2~Q~Q24 __________ __ 

IRBChair:_ 
.05 APR 200; 

Date: _________________ _ 
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