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Abstract

This thesis considers the use of linear systems theory in the context of Koopman opera-
tor approximation. The Koopman operator allows nonlinear systems to be represented as
infinite-dimensional linear systems by viewing their evolution in terms of an infinite set of
lifting functions. Data-driven methods are used to identify a finite-dimensional approxima-
tion of the Koopman operator using a finite selection of lifting functions. Thanks to its
linearity, the approximate Koopman model can be used for analysis, design, and optimal
controller or observer synthesis.

Depending on the choice of lifting functions, Koopman operator approximation methods
can incorrectly identify unstable models for asymptotically stable systems. Two methods
are proposed to guarantee asymptotically stable Koopman models: the first constrains the
spectral radius of the Koopman matrix, while the second regularizes the H_, norm of the
Koopman system.

Inherently unstable systems often require a stabilizing controller to operate practically.
To account for the structure of a closed-loop system, a closed-loop Koopman operator identi-
fication method is proposed, in which Koopman models of the closed-loop system and plant
are simultaneously identified given prior knowledge of the controller.

The linearity of the Koopman operator allows uncertainty within a population of models
to be characterized in the frequency domain. Linear robust control tools can therefore be
applied to a population of approximate Koopman models. A robust Koopman observer
synthesis method is proposed, based on mixed H,-H_, optimal control. Its advantages are
demonstrated experimentally using a population of several dozen motor drives.

Selecting lifting functions is a critical part of any Koopman operator approximation
method, but there is currently no systematic selection process beyond trial-and-error. The
pykoop Python library, presented in this thesis, helps address this issue by making it fast
and easy to compose, parameterize, and optimize lifting functions.
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Résumé

Cette these considere 'utilisation de la théorie des systémes linéaires dans le contexte de
I’approximation de 'opérateur de Koopman. L’opérateur de Koopman permet de représenter
les systémes non linéaires comme des systémes linéaires de dimension infinie en considérant
leur évolution en termes d’un ensemble infini de fonctions de levage. Des méthodes basées sur
les données sont utilisées pour identifier une approximation finie de 'opérateur de Koopman a
I’aide d’une sélection finie de fonctions de levage. Grace a sa linéarité, le modéle de Koopman
approximatif peut étre utilisé pour ’analyse, la conception et la synthése de controleurs ou
d’observateurs optimaux.

Selon le choix des fonctions de levage, les méthodes d’approximation de l'opérateur
de Koopman peuvent identifier incorrectement des modéles instables pour des systémes
asymptotiquement stables. Deux méthodes sont proposées pour garantir des modeles de
Koopman asymptotiquement stables : la premiére contraint le rayon spectral de la matrice
de Koopman, tandis que la seconde régularise la norme H__ du systéme de Koopman.

Les systémes intrinséquement instables nécessitent souvent un controleur stabilisant pour
fonctionner de maniére pratique. Pour tenir compte de la structure d’un systéme en boucle
fermée, une méthode d’identification de 'opérateur de Koopman en boucle fermée est proposée,
dans laquelle les modéles de Koopman des systémes en boucle fermée et en boucle ouverte
sont identifiés simultanément & partir d’une connaissance préalable du contréleur.

La linéarité de l'opérateur de Koopman permet de caractériser l'incertitude dans une
population de modéles dans le domaine des fréquences. Les outils de controle robustes
linéaires peuvent donc étre appliqués a une population de modeéles de Koopman approximatifs.
Une méthode de synthése d’observateur de Koopman robuste est proposée, basée sur un
controle optimal mixte H,-H_ . Ses avantages sont démontrés expérimentalement a l’aide
d’une population de plusieurs dizaines de moteurs.

La sélection des fonctions de levage est une partie critique de toute méthode d’approximation
de lopérateur de Koopman, mais il n’existe actuellement aucun processus de sélection
systématique au-dela de ’essai et de l'erreur. Le logiciel Python pykoop, présenté dans cette
thése, aide a résoudre ce probléme en rendant rapide et facile la composition, le paramétrage

et 'optimisation des fonctions de levage.
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Preface

This thesis explores applications of linear systems theory to the Koopman operator approx-
imation problem. Chapters 4, 5, and 6 use linear systems theory to enhance Koopman
operator approximation methods. Specifically, system structure and system properties like
gain and asymptotic stability are taken into account when approximating the Koopman oper-
ator. Chapter 7 applies standard linear robust control methods to a population of Koopman
models. Specifically, a robust Koopman observer is synthesized using a frequency-domain
uncertainty model of a population of identified Koopman systems. Chapter 8 presents an
open-source Koopman operator approximation library written, in part, to implement the
contributions of Chapters 4-7. The following is a list of original contributions presented
in this thesis, which were developed independently by the author under the supervision of
Prof. James Richard Forbes.

Chapter 4 [1-3|
— A semidefinite program reformulation of extended dynamic mode decomposition
(EDMD).

— A semidefinite program reformulation of dynamic mode decomposition with con-
trol (DMDc).

Chapter 5 [1, 2]
— EDMD- and DMDc-based Koopman operator approximation methods that con-
strain the asymptotic stability of the Koopman matrix.

— EDMD- and DMDc-based Koopman operator approximation methods that regu-

larize the (weighted) #H., norm of the Koopman system.

Chapter 6 [3]

— An EDMD-based Koopman operator approximation method for closed-loop sys-

tems with known controllers.

Chapter 7 [4, 5]

Xvi



— A robust nonlinear observer synthesis method for a population of Koopman mod-

els based on mixed H,-H_, optimal control.

— The frequency-domain uncertainty characterization for a population of Koopman
models considering six different uncertainty forms and nontrivial weighting func-

tions.

— An outlier detection method for Koopman models.

— A publicly available dataset for quantifying manufacturing uncertainty in a pop-
ulation of several dozen motor drives.

e Chapter 8 [6]

— An open-source Koopman operator approximation library that considers exoge-
nous inputs and multiple training trajectories, allows the construction of lifting
functions through composition, and supports standard cross-validation and hy-

perparameter optimization tools.

The optimization algorithm used in Chapter 7 to fit bounds to transfer function residuals was
originally implemented by Jonathan Eid with enhancements made by Prof. James Richard
Forbes.
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Ce qui est simple est toujours faux. Ce qui ne 'est pas est inutilisable.

— Paul Valéry (1942), Mauvaises pensées et autres



Chapter 1

Introduction

Differential equations are an essential tool for modelling the physical world. Ordinary dif-
ferential equations (ODEs) can be used to describe electric circuits, rigid-body dynamics,
or chemical reaction rates, while the fundamental laws of electromagnetism, fluid dynamics,
and heat transfer can be formulated as partial differential equations (PDEs). Despite the
prevalence of differential equations in science and engineering, much emphasis in the field of
machine learning is placed on learning time-independent functions. Most machine learning
models of functions are black boxes, and are used primarily to predict output data given
input data. While these methods can be applied to learning differential equations, they are
not designed to account for the time series nature of the training data.

All sets of coupled time-invariant ODEs,; including spatially discretized PDEs, can be
written in first-order form |7, §C.3],

x(t) = f(x(t)), (1.1)

where x(0) = x, is the initial state. Equation (1.1) implies that static black-box machine
learning tools can be used to learn differential equations if they treat samples of the state,
x(t), as inputs and samples of its time derivative, X(¢), as outputs. While, for example, a
neural network model of f(-) could produce accurate trajectory predictions, no other useful
information could be inferred from it. Scientists or engineers may be interested in analyzing
the system’s modes or stability, or they may want to design a controller for the system.
For these purposes, a more interpretable model is desirable. Linear models provide all of
these features, but they are unable to capture any nonlinearities in the system. A nonlinear
black-box model could be numerically linearized, but that approximation may only be valid
in a small region of the state space.

As it stands, the choice is between an opaque nonlinear model and an interpretable linear



model. The Koopman operator provides an interesting solution to this dilemma, since it can
model nonlinear differential equations while retaining some of the interpretability of a linear

model.

1.1 Background and Related Work

Using Koopman operator theory [8-11], a finite-dimensional nonlinear system can be rewrit-
ten as an infinite-dimensional linear system. This is accomplished by viewing the dynamics
of a nonlinear system in terms of an infinite number of lifting functions, which are scalar
functions of the system’s state. The Koopman operator itself serves to advance the system’s
lifting functions in time. Practically working with an infinite-dimensional operator is in-
tractable, so the Koopman operator is approximated as a finite-dimensional matrix, often
using data-driven methods. While the Koopman operator was originally proposed almost
one hundred years ago, recent theoretical results [9-11] paired with modern computational
resources have led to it becoming a popular tool for identifying differential equations from
data.

Thanks to its linearity, the Koopman operator yields a highly interpretable model. The
spectrum of the Koopman operator can be analyzed, revealing stability properties, along with
growth and decay rates. In the frequency domain, gain and phase can be assessed as functions
of frequency. The linear Koopman representation of the nonlinear system also allows linear
control design methods to be leveraged [12-19]. Koopman operator approximation methods
are also closely related to classical system identification methods [12, 20|, most notably
subspace identification methods [21, §3]. This similarity means that well-established tools
from system identification can be adapted to better approximate Koopman operators from
data.

To approximate the Koopman operator, a finite set of lifting functions is first selected.
In some situations, these lifting functions are inspired by the dynamics of the system [14, 15,
18], while in others, they are taken from a standard set of basis functions, like polynomials,
sinusoids, or radial basis functions [16, 22, 23|. Lifting functions can also be chosen to
approximate a given kernel [24-26]. Time delays are often incorporated into the lifted state
as well [12, 16, 27|. However, finding a practical set of Koopman lifting functions for a given
system is a significant challenge, both for theoretical and numerical reasons. The existence
of useful sets of Koopman lifting functions is analyzed theoretically in [28, 29]. Once the
chosen lifting functions are applied to the data, linear regression is used to approximate the

Koopman matrix, typically with some form of regularization [16].



1.2 Outline and Contributions

This thesis explores how linear systems concepts can be leveraged in the Koopman operator
approximation process. It also considers how Koopman operator models can be used in
tandem with linear optimal control techniques to design nonlinear controllers or observers.

Chapter 2 lays out the mathematical preliminaries required to understand Koopman
operator theory and optimal control. The preliminaries continue in Chapter 3, where Koop-
man operator theory, Koopman operator approximation methods, and related concepts are
explained.

The contributions of this thesis begin in Chapter 4, where two Koopman operator ap-
proximation methods are reformulated as semidefinite programs. The following chapters use
these reformulations as the basis for their contributions.

Chapter 5 considers how system properties, specifically asymptotic stability and system
norms, can be used in the Koopman operator approximation process. Two Koopman operator
approximation methods are proposed: one that constrains the asymptotic stability of the
identified system and another that regularizes the H_, norm of the identified system. The
benefits of these approaches are demonstrated experimentally on a soft robotic manipulator.

In Chapter 6, the identification of closed-loop systems is considered. Presented therein is
a method to simultaneously identify Koopman models of a closed-loop system and the cor-
responding open-loop plant given knowledge of the controller. This approach is particularly
useful for identifying unstable systems that are stabilized by a controller. Its advantages are
demonstrated experimentally using a rotary inverted pendulum system.

Chapter 7 explores the potential of the Koopman operator to be used in robust control
and estimation. By leveraging the linearity of the Koopman operator, uncertainty within a
population of Koopman models is quantified in the frequency domain and a robust Koop-
man observer is synthesized using mixed H,-#H., optimal control. An experimental dataset
collected from several dozen motor drives is used to validate the proposed approach. The
resulting uncertainty model is accurate enough to detect outliers in the dataset.

The contributions of the previous chapters are implemented using pykoop, an open-
source Koopman operator approximation library. This library allows lifting functions to be
constructed through composition, parameterized, and optimized using standard software.
Its software architecture and unique features are described in Chapter 8.

The thesis concludes in Chapter 9. While Section 1.1 provides a brief literature review of
Koopman operator theory, approximation methods, and applications, each chapter includes
an additional literature review to contextualize its contributions. The Preface contains a

detailed list of the contributions found in this thesis.



Chapter 2

Mathematical Preliminaries

Summary

This chapter outlines the mathematical fundamentals required to understand Koopman op-
erator theory, Koopman operator approximation methods, and optimal controller synthesis
methods. In particular, relevant concepts from linear algebra, linear systems theory, and

optimization are reviewed.

2.1 Introduction

This thesis considers how linear systems concepts can enhance the Koopman operator ap-
proximation process, and how linear optimal control tools can be paired with the Koopman
operator to synthesize nonlinear controllers or observers.

Linear algebra concepts that are required throughout the thesis, namely matrix defi-
niteness, matrix orthonormality, matrix decompositions, and matrix norms, are reviewed in
Section 2.2. A review of signals and systems is found in Section 2.3, wherein norms of signals
and systems, representations of linear systems, and stability are discussed. Optimization,
which is the foundation of Koopman operator approximation and optimal controller synthe-
sis, is reviewed in Section 2.4. Least-squares and regularization, which relate to Koopman
operator approximation, are first discussed. Semidefinite programs (SDPs) and linear ma-
trix inequalitys (LMIs), which are used to both approximate the Koopman operator and to
synthesize optimal controllers, then are reviewed.

Concepts that are only relevant to one chapter of this thesis are reviewed at the beginning

of their respective chapters.



2.2 Linear Algebra

This section discusses the linear algebra fundamentals used in the remainder of the prelimi-
naries. Specifically, the definiteness of a matrix is defined, norms of matrices, and decompo-

sitions of matrices are reviewed.

2.2.1 Definiteness of a matrix
A symmetric matrix A = AT € R™*" is called [30, §C.4.2][31, §1.3.1]
e positive definite if xTAx > 0, Vx # 0 € R
e positive semidefinite if xTAx > 0, Vx # 0 € R™¥!,
o negative definite if xTAx < 0, Vx # 0 € R™*1,
o negative semidefinite if x'Ax < 0, Vx # 0 € R™*!, and
e indefinite otherwise.

Positive definite matrices are denoted A > 0 and positive semidefinite matrices are denoted
A > 0. Negative (semi)definite matrices are denoted similarly. The notation A > B expresses
relative definiteness [31, §1.3.3], meaning that A — B > 0.

2.2.2 Orthonormal matrices

A square matrix A € R™" is called orthonormal if [32, §3.4]
ATA=AAT =1 (2.1)

Thus, for an orthonormal matrix, A~! = AT.

A rectangular matrix A € R™*" where m # n, cannot be orthonormal, but its columns
may still be orthonormal. In that case, ATA =1, so AT is only a left inverse. The matrix AAT
is the orthogonal projection matrix onto R(A), the column space of A [32, §3.4]. Transposing

these relationships reveals the properties of a rectangular matrix with orthonormal rows.

2.2.3 Matrix decompositions

The Cholesky factorization of a symmetric positive definite matrix A = AT > 0 € R™*"
is [30, §C.3.2]
A=LL", (2.2)



where L € R™" is lower triangular.

The eigendecomposition of a diagonalizable square matrix A € R"*" is
A=VAVH (2.3)

where A € C™*" is a diagonal matrix containing the eigenvalues of A and V € C"*" is a
square matrix whose columns are the eigenvectors of A [32; §5.2]. The magnitude of the
largest eigenvalue of a matrix is called the spectral radius and is denoted p(+).

The singular value decomposition of a matrix A € R™*" is
A=QxZ", (2.4)

where Q € R™™ and Z € R™ " are orthonormal matrices with the left and right singular
vectors of A as their columns, and ¥ € R™*" is a rectangular diagonal matrix containing
the singular values of A on its diagonal, which are nonnegative real numbers [30, §A.5.4][33,
§1.1]. The maximum singular value of a matrix is denoted (-).

The number of nonzero singular values of a matrix is equal to its rank [32, §6.3]. In the
economy singular value decomposition, zero singular values and their corresponding left and
right singular vectors are removed, resulting in Q € R™*" 3 € R™" and Z € R™*", where
r =r1k(A) [33, §1.1]. In the economy SVD, QTQ =1 and Z'Z = 1, but QQ" and ZZ" are
orthogonal projection matrices onto R(A) and R(AT) respectively [30, §A.5.4].

In the truncated singular value decomposition, only the r largest singular values and
vectors are retained, leading to a lower rank approximation of A. Algorithms like optimal

hard thresholding [34] are sometimes used to choose .

2.2.4 Matrix norms

Let A € R™*". The Frobenius norm of a matrix is defined as [30, §A.1.1]

|l = V/ir(ATA). (2.5)

The spectral norm of a matrix is defined as |30, §4.6.3|

IA]l; = /A (ATA) (2.6)

= 5(A). (2.7)



The nuclear norm of a matrix is defined as [30, §A.1.6]

Al = tr(VATA) (2.8)
min{m,n}
~ Y s 2.9)

i=1

where o,(+) is the #*" singular value of A. The nuclear norm is a convex approximation of
the rank function [35].

2.3 Signals and Systems

This section reviews discrete-time signals and systems. Specifically, it covers inner products
and norms of signals, along with state-space and transfer matrix representations of systems,

stability theory, and system norms.

2.3.1 Signals

A discrete-time signal is a sequence, which can be expressed as a functiony : Z-, — R [31,
§1.2).
The ¢, inner product of two signals is [36, §4.2]

<u7y> = ZUZYJW (21())
k=0

while the truncated ¢, inner product of two signals is [37, §8.2]

T
(,y)r =) uiy,. (2.11)
k=0

The /¢, and truncated /¢, inner products induce the ¢, and truncated ¢, norms. The /¢,

Iyl = V¥ = [ D_¥ive (2.12)

while the truncated £, norm of a signal, called the £, norm for a given T' € Z,, is 38,

norm of a signal is [38, §B.1.1]



§B.1.1]
1¥llyr = /¥, ¥)7 Zykyk (2.13)
k=0

The ¢, norm defines the inner product sequence space |38, §B.1.1]

ly={y|llyl3 < o0}, (2.14)

which consists of all square summable signals. The truncated ¢, norm defines the extended

inner product sequence space [38, §B.1.1]
loe = {¥ [ 1§57 < 00,¥T € Z} . (2.15)

A notable feature of /,, is that it contains signals like y, = sin(k), which are bounded but
not square summable.

Vector spaces equipped with an inner product are called inner product spaces [36, §4.2].
Inner product spaces that are complete with respect to the norm induced by their inner

product are called Hilbert spaces. Both £, and ¢, are examples of Hilbert spaces 38, §B.1.1].

2.3.2 Linear systems

A system is a mapping from signals to signals. In the time-invariant case, a system is denoted

G : ly, — ly,. For linear time-invariant (LTI) systems, G is a linear operator. That is,
G (au+ pv) = aGu + fGv. (2.16)
The state-space representation of a causal LTI system is

where x, € R™*! is the initial state. The output of the system given an input and initial
condition is [39, §3.4]

k—1
yi = CA*x, + Du, + ) ~ CA*'"'Bu,, (2.19)
1=0
where
yiree = CAFx, (2.20)



is called the free response and

k—1
v = Du, + »  CA*'~Bu, (2.21)
=0

is called the forced response.

State-space representations of LTI systems are not unique [40, §3.4.3]. Three key prop-
erties of state-space realizations, loosely described below, are controllability, observability,
and minimality. The pair (A,B) is controllable if, for every initial state, there exists an
input that brings the state to zero in finite time [40, §5.2.1]. The pair (A, C) is observable
if the initial state can always be uniquely recovered from measured inputs and outputs [40,
§5.2.2|. A state-space realization is minimal if and only if (A,B) is controllable and (A, C)
is observable [40, §8.1]. Minimal state-space realizations of LT systems capture their input-
output relations with the minimum number of states [40, §8.3]. There are an infinite number
of minimal state-space realizations for a given LTI system, which are related to each other
through a similarity transform [40, §8.3]. The linear operator G is related to the state-space

matrices through

min A|lB
g ~ ) 2.22
ch ~ (2.22)
where "' denotes a minimal state-space realization [38, §3.2.1].
Consider the situation where x, = 0 and u, = J,v, where
0, K#0
I, k=0

is the Kronecker delta function and v is a constant column matrix. In this situation, the

forced response is
. = (D5, + CA*'B) v, (2.24)

which is called the impulse response. The matrix
G, =Dj, + CA*'B (2.25)

is called the impulse response function of the system.

Another representation of an LTI system, which need not be causal, is the transfer matriz.



The transfer matrix relates the z-transform of the system’s inputs and outputs via

y(z) = G(2)u(z), (2.26)

where z € C [40, §3.5.2]. Evaluating the transfer matrix at z = /%, where § = 27 Atf is the
discrete-time frequency, At is the sampling period, and f is the continuous-time frequency,
yields the frequency response of the system. The transfer matrix is the z-transform of the
impulse response function of the system, and can be computed from its state-space matrices
via [40, §3.7]

G(z) =D+ C(21 - A)'B. (2.27)

The maximum singular value of the transfer matrix measures the maximum input-output
gain at each frequency. When the sampling period is known, discrete-time transfer matrices

may be shown in figures as G(f) for brevity.

2.3.3 Stability

Consider the autonomous nonlinear difference equation
X1 = £(X), (2.28)

and let ¢, denote its solution for an initial condition x,. Without loss of generality, consider
an equilibrium point X = 0. The equilibrium point is called Lyapunov stable if, for every
e > 0, there exists a d(¢) > 0 such that ||¢,|| < € for all £ > 0 when ||x,]| < J [40, §4.8.1].
The equilibrium point is called asymptotically stable (AS) if it is Lyapunov stable and there
exists an 1 > 0 such that

Jim fly [ =0 (2.29)
—00

when [|x,| < 7 [40, §4.8.1]. The equilibrium point is called unstable if it is not Lyapunov
stable. Loosely speaking, trajectories stay near a Lyapunov stable equilibrium point, but
converge to an AS equilibrium point. Trajectories diverge from an unstable equilibrium
point.

Next, consider an autonomous linear difference equation,

where X, is the initial condition. Also consider the discrete-time Lyapunov equation [40,
§4.8.3|,
ATPA-P+Q=0, (2.31)

10



where P = PT > 0. If there exists a matrix Q = QT > 0 that satisfies (2.31), then the
equilibrium point X = 0 of (2.30) is Lyapunov stable. If there exists a matrix Q = QT > 0

that satisfies (2.31), then the equilibrium point is AS. The equilibrium point X = 0 is also
AS if and only if

lim |A¥|| =0, (2.32)
k—o0
where || || can be any matrix norm [40, §4.8.2|. Another equivalent condition for asymptotic

stability is that the eigenvalues of A are contained strictly within the unit circle [40, §4.8.2].
That is,
p(A) <1, (2.33)

where p(-) denotes the spectral radius of a matrix. A matrix whose spectral radius is strictly
less than one is called Schur [40, §4.8.2].

Note that a linear system is called Lyapunov stable if all its equilibrium points are
Lyapunov stable. To be called AS, a linear system can only have one equilibrium point, X = 0,
which must be AS. When discussing the stability of a nonlinear system, the equilibrium point

must be specified.

2.3.4 Norms of linear systems

Like signals, the size of a linear system can be quantified with a norm. Both norms discussed

in this section are related to the notion of gain, that is, the amplification of a signal through

a system.
The H., norm of G is the worst-case gain from |[u||, to |ly|l, = [|Gul|,. That is |38,
§B.1.1],
Gu
G = sup 190l (2.3

uetzuzo |[Ufly

As such, the H_ norm is the system norm induced by the ¢, signal norm [38, §3.3.2]. In the
frequency domain, this definition is equivalent to [38, §B.1.1]

1G]l = sup 7 (G(e)), (2.35)
oe(—m,m]
where o(-) denotes the maximum singular value of a matrix. The H_, norm of a system can
be viewed as the peak magnitude of its frequency response.

The H, norm is

Gl = | > _t(GIG,) = \/% /_ﬂ tr(G(eﬁ)“G(eﬁ))de, (2.36)

11



where G, is the impulse response function of G and G(e’?) is the transfer matrix represen-
tation of G [41, §4.4][42]. Note that, unlike in the continuous-time case, it is possible to
compute the H, norm of a discrete-time system where D # 0 [31, §4.3.3][42]. The H, norm
can be viewed as the expected root-mean-squared (RMS) output of a system when the input
is unit variance white noise [38, §3.3.3|[36, §5.7][42]. In the frequency domain, the square
of the H, norm can be interpreted as the area under the curve of the sum of the squared

singular values of the transfer matrix (43, §2.3.3].

2.4 Optimization

Optimization problems are at the core of the Koopman operator approximation and optimal
control techniques discussed in this thesis. In this section, two types of convex optimization
problems are reviewed: regularized least-squares problems and SDPs. LMIs that relate to
LTI system properties are also reviewed.

An optimization problem has the form

min f(x) (2.37)
st.g;(x) <0, i=1,...,p, (2.38)
hi(x)=0, j=1,....q (2.39)

where x € R™! is the optimization variable, f : R™! — R is the objective function to be
minimized, the functions g, : R"*! — R are the inequality constraint functions, and the
functions h; : R™! — R are the equality constraint functions [30, §4.1.1]. The value x*
is optimal if it results in the lowest possible objective function value while satisfying the
constraints [30, §4.1.1].

In cases where many optimization variables are required, the subscript is omitted and
the notation

min J(Xq, ..., X0, ..., Q) (2.40)

)R

is used, where the cost function is denoted J(-;-), optimization variables are denoted x,., and

hyperparameters that are constant with respect to the optimization problem are denoted «,.

2.4.1 Convex optimization

A function f : R™! — R is called convesz if it satisfies the inequality

flogx) + aoxy) < oy f(x)) + ayf(Xy) (2.41)

12



for all x;,x, € R™" and ay, a, € Ry, where a; +a, = 1[30, §1.1]. An optimization problem
is called convex if its objective function and inequality constraint functions are convex and
its equality constraint functions are affine [30, §4.2.1|. Specifically, a convezx optimization

problem has the form

min f(x) (2.42)

st.g;(x) <0, i=1,...,p, (2.43)

alx—b, =0, j=1,...,4q (2.44)

where f(-) and g,(-),...,9,(-) are convex [30, §4.2.1]. Convex optimization problems are

significant because, if they are feasible, they have a unique global and local minimum |30,
§4.2.2].

2.4.2 Least-squares problems

Least-squares optimization problems are a specific subset of convex optimization problems
of the form [30, §1.2.1]
min f(x) = ||Ax — b||§ (2.45)
X

The more general matrix least-squares problem is
i f(X) = [AX - B} (216
Least-squares problems have the analytical solution [30, §1.2.1]
X = A'B, (2.47)
where (-)' denotes the Moore-Penrose pseudoinverse, which is defined as [30, §A.5.4|
AT =73'Q", (2.48)

where A = QXZT is the singular value decomposition (SVD) of A and >' is computed by
inverting the nonzero entries on the diagonal of ¥. When rk(A) = n [30, §A.5.4],

Al = (ATA) AT, (2.49)
while when rk(A) = m [30, §A.5.4],
Al = AT(AAT) (2.50)

13



When solving least-squares problems, regularization is often required to obtain well-
conditioned solutions |30, §6.3.2] and prevent overfitting [33, §4|. Regularization involves
penalizing the size of the optimization variable in the objective function of the optimization
problem. The extent to which the optimization variable is penalized is controlled by a
scalar regularization coefficient. For example, Tikhonov reqularization penalizes the squared

Frobenius norm of the optimization variable, leading to the least-squares problem [30, §6.3.2]
min f(X:0) = |AX — BJ? + o] X (2.51)

The Tikhonov-regularized optimization problem has the closed-form solution
X = (ATA +al) 'AB, (2.52)

where the matrix being inverted is always full rank [30, §6.3.2]. Other norms or measures of
the optimization variable can be used as regularizers, however they may affect the convexity

of the problem.

2.4.3 Linear matrix inequalities and semidefinite programs

A linear matriz inequality (LMI) in the variable x € R™*! is an expression of the form [31,

§1.3.2]

F(x) =F,+ ) z,F, <0, (2.53)
i=1
where x; is the i'® entry of x and F, = F], i = 0,...,m. LMIs can also be rewritten in terms

of matrix variables X, € RPi*% 4§ =1,... r. That is [31, §1.3.2],

F(X,,....X,) =F,+ ) He{GXH,} <0, (2.54)

i=1

where FO — FE]I' c ]Rnxn7 GZ c R"Xpi, Hi c R%Xn7 and

He{-} = () + ()" (2.55)

The entries of X; can be thought of as the m entries of x in (2.53), where m = Y"'_| p;q;.
Note that multiple LMIs can always be concatenated into a single LMI by placing them in
a block diagonal matrix 31, §1.3.5].
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A semidefinite program (SDP) is an optimization problem of the form [31, §1.4]

min ¢'x (2.56)

X

s.t. F(x) <0, (2.57)

where ¢ € R™*! is constant. In other words, a semidefinite program consists of a linear
objective function with any number of LMI constraints. Since LMIs are convex [31, §1.3.6],
SDPs are also convex. In practice, LMI constraints are written in the matrix form of (2.54),
and are translated to the standard form of (2.53) by LMI parsing software like PICOS [44]
or CVXPY [45]. The parsed semidefinite programs can then be solved with specialized solvers
like CVXOPT [46] and MOSEK [47]. A comprehensive list of LMI parsers and SDP solvers can
be found in (31, §1.5].

A matrix inequality that contains a product of two unknowns is called a bilinear matrix
inequality (BMI). BMIs are not convex, and optimization problems containing them can be
difficult to solve [48].

2.4.4 Linear matrix inequality properties

This section contains useful properties and identities for manipulating LMIs. Namely, the
effect of congruence transformations on LMIs and the Schur complement are presented. The

symmetric entries of a matrix are denoted with .

2.4.4.1 Strictness

SDP solvers only work with nonstrict LMIs. To specify a strict LMI, a tolerance 0 < ¢ < 1
is specified in the form
Q>cl (2.58)

or

Q< —-l. (2.59)
This tolerance should be larger than the optimality and feasibility tolerances given to the
solver.
2.4.4.2 Congruence transformations

The definiteness of a matrix is unchanged by a congruence transformation. As such, con-
gruence transformations are a useful tool in reformulating optimization problems as SDPs.
Specifically, consider the matrices Q = QT € R™" and W € R"*", where rk(W) = n. The
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LMI
Q<0 (2.60)

is satisfied if and only if [31, §2.3]
WQW' < 0. (2.61)

2.4.4.3 Schur complement

The Schur complement is also an essential tool when formulating SDPs. Consider the ma-

trices Q = QT € R, S € R™™_ and R = RT € R™ ™, Through the Schur complement,

the following are equivalent [31, §2.4.1].

1. [Q < 0.
*

2.Q—SR!'ST<0,R<0.

3. R—STQ'S<0,Q<0.

2.4.5 Linear matrix inequalities in linear systems

LMIs can be used to describe LTT system properties in terms of their state-space represen-
tations. As such, abstract optimization problems written in terms of LTI systems can be
rewritten as SDPs in terms of state-space matrices using LMIs. In this section, LMIs relating

to Lyapunov stability, asymptotic stability, the H_ norm, and the H, norm are presented.

2.4.5.1 Lyapunov and asymptotic stability

Lyapunov and asymptotic stability conditions for LTT systems can be expressed as LMIs.

These LMIs are derived from (2.31), the Lyapunov equation, which is presented in Sec-

tion 2.3.3.
Al B
C

Consider the discrete-time LTI system
where A € R™"™. The system G is Lyapunov stable if and only if there exists a matrix

P =P" € R™" such that [31, §4.1.3]

G : (2.62)

P>0, (2.63)
ATPA - P <0. (2.64)
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The system G is AS if and only if there exists a matrix P = PT € R™ " such that [31, §4.1.4]

P >0, (2.65)
ATPA - P <0. (2.66)
2.4.5.2 H_ norm

A bound on the H_ norm of a discrete-time LTT system

A B
C

where A € R™", can be computed using LMIs. The inequality |G|, < 7 holds if and only
if there exists a P = PT € R™ " such that [31, §4.2.2]

G ™ , (2.67)

P>0, (2.68)

P AP B 0

x P 0 PCT
x % 1 D'
* % * 71

> 0. (2.69)

A variety of LMIs equivalent to (2.68) and (2.69) can be found in [31, §4.2.2].

2.4.5.3 H, norm

A bound on the H, norm of a discrete-time LTI system

A B
C

where A € R™" and where A is Schur, can be computed using LMIs. The inequality
|G|, < p holds if and only if there exists a matrix P =PT € R™*" such that [31, §4.3.3]

g™ , (2.70)

P > 0, (2.71)
ATPA-P+C'C<O, (2.72)
tr(B'"PB +D'D) < z°. (2.73)

A variety of LMIs equivalent to (2.71)—(2.73) are presented in [31, §4.3.3].
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Chapter 3

Koopman Operator Theory

Summary

This chapter provides an overview of Koopman operator theory, data-driven Koopman op-

erator approximation methods, and common choices of Koopman lifting functions.

3.1 Introduction

As discussed in Chapter 1, the Koopman operator allows nonlinear systems to be expressed
as infinite-dimensional linear systems by viewing their dynamics in terms of an infinite set
of nonlinear lifting functions. The linearity of the Koopman operator means that tools from
linear systems theory can be applied to Koopman models with little modification, either for
analysis or for control design. The Koopman operator can be approximated from data by
selecting a finite set of nonlinear lifting functions, applying them to the data, and solving a
regression problem in the lifted space.

The Koopman operator is formally introduced in Section 3.2, and its extension to nonau-
tonomous systems is discussed in Section 3.3. Koopman operator approximation tech-
niques, including extended dynamic mode decomposition (EDMD), dynamic mode decom-
position (DMD), and dynamic mode decomposition with control (DMDc), are outlined in
Section 3.4. A selection of common Koopman lifting functions is presented in Section 3.5.
Additionally, the difference between local and global Koopman prediction error is discussed
in Section 3.6, and the Koopman system, which is the linear system defined by the Koopman

matrix, is formally defined in Section 3.7.
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3.2 The Koopman Operator

Consider the nonlinear difference equation

X1 = f(x), (3.1)

where x,, € M evolves on a manifold M C R™*!. Also consider an infinite number of
scalar-valued lifting functions, ¥ : M — R. The Koopman operator, U : H — H, is a linear
operator that composes all lifting functions ¢ € H with f(+), thereby advancing them in time
by one step. That is [49, §3.2],

UP)(-) = (W of)(). (3.2)
When the set of lifting functions, H, is a linear vector space, the Koopman operator is a

linear operator [10, §2|. That is, if a;¢; +ay1, € H for ay, a, € R and 9,1, € H, then |21,
§2.1]

Uy )y + agthy) = (a9 + aghy) of (3.3)
= a;(¥; of) + ay(¢h, of) (3.4)
= a; (Uy) + ay(Urhy). (3.5)

Sometimes the vector space H is explicitly chosen to be a Banach space, like the space of
continuous functions, or a Hilbert space, like the space of square-integrable functions 10, 21].
Other times, H is implicitly defined by the set of lifting functions chosen when approximating
the Koopman operator from data. The vector space H is often assumed to be a Banach space
when discussing the spectrum of the Koopman operator [10, §3.1][21, §4.4].

When evaluated at x;, (3.2) is

Using the Koopman operator, the dynamics of (3.1) may then be rewritten linearly in terms
of ¢ as

¢(Xk+1) = (UP)(xy). (3.9)

A finite-dimensional approximation of (3.9) is

P(Xp1) = Uh(xy) + €, (3.10)

19



where 1 : M — RP*! is the vector-valued lifting function, U € RP*? is the Koopman matrix,
and €, is the residual error. The relationship between the state-space, lifted space, and

approximate lifted space is depicted in Figure 3.1.

H Rpx1
~_ U ® _
b) S
Vry1(t) Yrs1
State space Lifted space Approximate lifted space

Figure 3.1: The Koopman representation of a system.

3.3 The Koopman Operator with Inputs

The definition of the Koopman operator can be modified to accommodate nonlinear difference

equations with exogenous inputs. Consider the difference equation
Xk—l—l = f(Xka uk)7 (311)

where the state is x, € M C R™*! and the input is u,, € N C R"*!. The lifting functions
are now ¢ : M x N'— R and the Koopman operator I/ : H — H now satisfies

(th)(xk?uk) = ¢<f(xk>uk>7*)7 (312>

where x = u, if the input has state-dependent dynamics, or x = 0 if the input has no
dynamics [50][49, §6.5]. Let the vector-valued lifting function % : M x N° — RP*! be

partitioned as
V(X
bixom) = | O ] , (3.13)

v (X, uy,)

where the state-dependent lifting functions are 19 : M — RP?*!  the input-dependent lifting
functions are v : M x N' — RP**! and the lifting function dimensions satisfy p, + p, = p.
With an exogenous input, substituting the state and input into (3.12) results in [49, §6.5.1]

P (x;4,) = Up(x,,u;) + €, (3.14)
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where U = [A B]. Expanding (3.14) yields the familiar linear state-space form,

V(X 1) = AD(x,) + Bu(x,,u;) + €. (3.15)

3.4 Approximating the Koopman Operator from Data

In this section, a selection of common Koopman operator approximation methods are pre-
sented. Many Koopman operator approximation methods are framed as extensions of DMD.
DMD itself was developed in the fluid dynamics community in [51, 52|, and its connection
to Koopman operator theory was then made in [53|. Later, DMDc [54| was proposed as an
extension to DMD that considered exogenous inputs. Approximating the Koopman operator
using a dictionary of nonlinear functions as first proposed in [55|, wherein the method was
called EDMD. Despite its name, EDMD is very similar to the least-squares approach to
Koopman operator approximation. The least-squares approach, while simple, is not com-
monly used, as it scales poorly with the number of lifting functions and data snapshots.

These methods are presented here in order of simplicity, rather than in order of appear-
ance in the literature. First, the least-squares solution is discussed, which, while impractical
for large systems, is the easiest method to understand. Then EDMD is discussed, which can
be thought of as an extension to the least-squares method. Finally, DMD and DMDc are
discussed.

The terms DMD and DMDc typically imply the use of linear lifting functions. However,
in this thesis, they are treated as methods to compute the leading eigendecomposition of the
Koopman matrix, regardless of the choice of lifting functions. EDMD is sometimes called
EDMDc when exogenous inputs are present. Since the method requires no modification when
considering inputs, it is referred to as EDMD in this thesis, even when exogenous inputs are

included.

3.4.1 Snapshot matrices

To approximate the Koopman matrix from a dataset D = {x,,u,}{_,, consider the lifted

snapshot matrices

v = ['%bo PR 11[)(1—1] € RPY, (3'16>
O, =9, 0, - o]ecr (3.17)

where v, = ¥ (x,u,) and 9, = ¥(x,). These snapshot matrices will be used in all the

following Koopman operator approximation methods.
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In the case of DMD, where there are no exogenous inputs, the snapshot matrices are

defined as

W= gy Py | ERY (3.18)
v, = ['%bl Py - d’q] € RV, (3.19)

where ¥, = ¥(x,,).

3.4.2 Least-squares

Least-squares is the simplest way to approximate the Koopman matrix from data. Recall
from (3.14) that
Uy = Uy, + €, (3.20)

Minimizing the residual €, for each snapshot in the dataset leads to the optimization problem

_ 1
min J(U) = 5||@+ ~- Uy, (3.21)

whose solution is [49, §1.2.1]
U=0_ v (3.22)

When the lifted dataset contains many snapshots or many lifting functions, the pseudoinverse
required in (3.22) is numerically ill-conditioned. EDMD addresses the case where there are
many snapshots, while DMD and DMDc address the case where there are many lifting

functions.

3.4.3 Extended dynamic mode decomposition

Eztended dynamic mode decomposition (EDMD) [55] improves numerical conditioning in the
least-squares approach to Koopman operator approximation when the dataset contains many
fewer states than snapshots (i.e., when p < ¢) [49, §10.3]. Assuming W is full rank, the

EDMD approximation of the Koopman matrix is

v=0, (\IJT\IJT*) o (3.23)
= (@, 9" (ve")' (3.24)
= GH', (3.25)
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where

1

G=-0,¥" c R (3.26)
q
1

H=-0¥" c RF?, (3.27)
q

Note that, when the columns of ¥ are linearly independent, H = H" > 0.

EDMD can also be viewed as minimizing

J(U) = é”@ﬂﬁ ey (3.28)

— |G — UH|; . (3.29)

In this thesis, methods that minimize (3.29) are referred to as variants of EDMD.
Tikhonov regularization [56, 57|, which penalizes the squared Frobenius norm of the
unknown matrix in a regression problem, can be easily incorporated into EDMD. Consider

the regularized Koopman cost function,

1 o
J(Usa) = 5H®+ —U‘I’||§+EHUHE (3.30)
1
_ 5tr<(@+ — U0, - U@)T) n %tr(UUT) (3.31)
1
= tr<—@+@1 —He{UG"} + U (H + g1) UT). (3.32)
q q

Comparing (3.32) with the unregularized cost function, given by
1
J(U) = tr (§®+®I — He{UG"} + UHUT> : (3.33)

demonstrates that
U =GH/, (3.34)

minimizes the Tikhonov-regularized cost function, where

“1. (3.35)

H, =H+-—
q

«

Including Tikhonov regularization in EDMD therefore amounts to replacing all occurrences
of H with H,,.
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3.4.4 Dynamic mode decomposition

Dynamic mode decomposition (DMD) [51, 52, 58| computes the leading eigenvalues and
eigenvectors of the Koopman operator when no exogenous inputs are present. This approach
is particularly useful when the dimension of the lifted state is so high that the Koopman
matrix cannot be formed explicitly (i.e., when p > ¢). The eigenvectors of U approximated
with DMD are called DMD modes.

Consider the truncated SVD of ¥,

U~ QXZ", (3.36)

where Q € RP*" ¥ € R™" Z € R?" and r is the number of singular values to retain.
A common approach for choosing r is the hard thresholding algorithm described in [34][49,
§8.2]. DMD computes the leading eigenvalues and eigenvectors of U indirectly through

U=Q'UQ e R, (3.37)

which is the projection of U onto R(Q). The matrix U can therefore be seen as a low-rank

approximation of U. That is,
U~ QUQ". (3.38)

Equation (3.38) holds exactly in R(Q). The projected Koopman matrix U defines a reduced-

order version of (3.10),
Vi = Uy + &, (3:39)

where ¢ » = QT, and €, is the residual error. Substituting in the least-squares solution to

the Koopman matrix results into (3.37) results in

U=Q" (¥, ¥"Q (3.40)
=Q"(v,ZX'Q")Q (3.41)
—Q'v. 73! (3.42)

which allows U € R™" to be computed without ever explicitly forming U € RP*? or any
other intractably large matrix.
The relationship between the eigendecompositions of U and U is now derived. Consider

the eigendecomposition of U,

UV = VA, (3.43)
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Next, consider only the eigenvectors that lie in R(Q). That is, let

V =QV, (3.44)
which results in
UQV = QVA. (3.45)
Premultiplying by QT yields
Q'UQV =Q'QVA (3.46)
= VA. (3.47)

Substituting (3.37) into (3.46) results in the projected eigendecomposition
UV = VA, (3.48)

which implies that the eigenvalues of U are also eigenvalues of U.

One method to compute the eigenvectors of U is to use (3.44), which yields
Vo = QV, (3.49)

where the columns of V
VprOJ'
R(Q) [58, §2.3].

To recover the true eigenvectors of U, consider the eigendecomposition

oroj are called the projected DMD modes. However, the columns of

are not the true eigenvectors of U, but rather the eigenvectors of U projected onto

Av, = Uy, (3.50)
= (\IIJr\IIT)Vi (3.51)
= (¥,Z23'Q")v,, (3.52)

where v, is the i eigenvector of U. Recall that

v, =Q'v,. (3.53)
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Premultiplying by QT and substituting in (3.53) yields

AQ'v, =Q'¥, ZxiQy,, (3.54)
AV, =Q'U ZXy,, (3.55)

1
v, = XQT\I:+zz:Wi. (3.56)

Comparing (3.56) with (3.53) implies that

1
vi=v WA (3.57)

Since DMD modes are typically normalized, the scaling factor of % can be ignored [58|. The

exact DMD modes are the columns of

Voot = U, 22TV, (3.58)

exac

Note that the columns of V
U.

The exact DMD modes are recommended for use when implementing DMD, as they

exact 1€ in the column space of W, which is the column space of

are the true eigenvectors of U [58, §2.3] The projected modes can be used in situations
where (3.58) fails. Specifically, this occurs if (3.58) evaluates to zero when computing the
mode associated with a zero eigenvalue [49, §1.3].

Equation (3.10) can also be rewritten in terms of the DMD modes,
Y = VAV, + ¢, (3.59)
or alternatively,
P = VA" (Vi) + ¢, (3.60)
where the elements of Vi, are called the DMD mode amplitudes.

DMD can be viewed as minimizing

1
J(U)=-[|Q"¥, —Q'UY|

2
. o (3.61)
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which is approximately equivalent to minimizing

A 1 N 2
J(0) = -[Q"w. - Q" (QUQT) (@=z7)| (3.62)
q F
1 . 2
— —HQT\II+ - UEZTHF. (3.63)
q
In this thesis, any method that minimizes (3.63) is considered a variation of DMD, regardless
of whether or not the modes are computed.

3.4.5 Dynamic mode decomposition with control

Dynamic mode decomposition with control (DMDc) [54] extends DMD to consider exogenous
inputs. Like DMD, DMDc computes the leading eigendecomposition of A. The value of B
is either treated as known, or is computed along with the eigendecomposition of A. In this
chapter, it is assumed that B is unknown.

Consider the truncated SVD of ¥,

T~ QXZ", (3.64)

where Q € RP*", 3 € R and Z € R?". Unlike in DMD, a projection onto Q cannot be
used to reduce the dimension of A and B, since ¥ and © do not have the same dimension [49,
§6.1.3]. Instead, consider the SVD of ®_,

0, ~QxZ", (3.65)

where Q € RPo*7 33 € R™** and Z € R?7*". Note that, typically, # < 7 [49, §6.1.3].
The projected versions of A and B are [54]

A=Q"AQ (3.66)
-Q'0,73'Q,Q (3.67)
=37'75'Q, 0. (3.68)

B=Q'B (3.69)
~-Q'e.,725'Q, (3.70)
~-37775'0, . (3.71)
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where Q = [Ql (12}, Q, € R<", Q, € RP*", A € R, and B € R™>. It follows that

U=Q'U . (3.72)

01

Following the same logic as the previous section, the eigenvalues of A are also eigenvalues of
A. The exact DMD modes are the columns of [54]

Vo = 0.25'QTQV, (3.73)

exact

where AV = VA.

DMDc can be viewed as minimizing

2
3.74
. (374)

11 - .
J(U) = —HQT@+ - QTU\Il’
q

which is approximately equivalent to minimizing

N 2
- _1 AT (AT _AT AT QT 0
J(0) =0 (sz) Q <QU . ID o F (3.75)
esr Q7 0] |
=-||22"-U ]q: (3.76)
g 0 1] ||

In this thesis, any method that minimizes (3.76) is considered a variation of DMDc, regardless

of whether or not the modes are computed.

3.5 Koopman Lifting Functions

In this section, a selection of Koopman lifting functions is described. For the sake of brevity,
exogenous inputs are not shown and the time index £ is omitted unless required.
When designing lifting functions, the first m lifted states are often chosen to be the state

of the original difference equation, x € R™*!. Specifically, [49, §3.3.1]

I(x) = L (3.77)
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This choice of lifting functions makes it easier to recover the original state from the lifted
state. If x is not explicitly included in ¥(x), it can instead be recovered using least-
squares [12, §3.2.1].

3.5.1 Polynomial lifting functions

Polynomial lifting functions typically consist of monomials, Hermite polynomials, or Legen-

dre polynomials. For x € R?*!, monomial lifting functions have the form

Yx)=| 2. (3.78)

The main advantage of polynomial lifting functions is their simplicity. Polynomial lifting
functions suffer from numerical issues when higher degrees are considered, particularly when
the training data is not normalized. High-dimensional systems can also be problematic, as
the number of lifting functions can explode even for a low polynomial degree. Examples of

polynomial lifting functions can be found in [16, 22].

3.5.2 Time delay lifting functions

Time-delayed measurements can be viewed as Koopman lifting functions [12, §7.1.2||27], and

have the form

p(x;) = : (3.79)

When implementing time delay lifting functions, extra care must be taken to not mix state
snapshots from different training trajectories. Examples of time delay lifting functions can
be found in [12, 16, 27|.
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3.5.3 Radial basis functions

Consider the state x € R™! and a set of constant centres ¢, € R™! i =1,...,n A

» "Ycentres*

radial basis function (RBF) is a function of the scaled distance

ri(x) = alx = ¢, (3.80)

where a € R is called the shape parameter. Common RBFs include
e the exponential RBF [59], 1;(x) = e "),
e the Gaussian RBF [59], ¥,(x) = e*”(x)Q,

the multiquadric RBF, 1;(x) = 1/1 + 7;(x)?,

the inverse quadratic RBF, 1,(x) = m,

the inverse multiquadric RBF, 9,(x) = 1 1 =
—+7r;(x

the thin plate spline [60, 61], ,(x) = 7;(x)*In (r,(x)), and

exp <—m), ri(x) <1
0, ri(x) >1

the bump function, ,(x) =

RBF centres are placed in a specified region of R"*!. They can be placed randomly, on a
uniform grid, or using Quasi-Monte Carlo methods like Latin hypercube sampling [62, 63].
The number of centres used directly determines the dimension of the lifted state.

Consider a set of example centres in R?*!,

1 -1 0 0
cl—[()], c2—[0 , c3—[1], c4—[_1]. (3.81)

The corresponding Gaussian RBF lifting functions with the original state included are

X

2
o—alx—ei]

P(x) = |eolxel®| . (3.82)

2
o—allx—es|

2
o—allx—es]

Examples of RBF lifting functions can be found in [59-61, 64, 65].
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3.5.4 Random Fourier features

Koopman lifting functions can also be chosen to approximate a given kernel. The following
is a summary of the method of random Fourier features, first proposed in [26, Algorithm 1].

Consider a positive definite shift-invariant kernel |66, §1.4|

k(x,y) = k(x —y), (3.83)
whose Fourier transform is
1 .
plw) = = / I AL(A)A, (3.84)
27T Rnx1

where A = x —y. Bochner’s theorem [66, §1.4.3] implies that the shift-invariant kernel
k(A) is positive definite if and only if it is the (forward or inverse) Fourier transform of
a nonnegative measure. This means that, if the kernel is appropriately scaled, its Fourier
transform can be treated as a probability distribution. Drawing N samples from p(w) and
arranging them into

cos (w]x)

2(x) = 1|~ | (@xX) (3.85)

sin (wix)

yields 2N random Fourier features [26]. For sufficiently large N,
z(x) z(y) ~ k(x — y). (3.86)

An alternative to (3.85) is
cos (w1 X + by)
z(x) = V2 : , (3.87)

cos (WX + by)

where by,...,by are drawn uniformly from [0,27) [26]. Koopman lifting functions using

random Fourier features (RFFs) have the form

p(x) = [ . ] : (3.88)
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Common kernels, with shape parameter a, and their corresponding Fourier transforms are 26|
e the Gaussian kernel, ellals/ 2 whose Fourier transform is a Gaussian distribution,
e the Laplacian kernel, e 4l whose Fourier transform is a Cauchy distribution, and

e the Cauchy kernel, HnN:I H%’ whose Fourier transform is a Laplace distribution,

where A can be replaced with the rescaled A, = V2aA to incorporate a shape parameter
into each kernel. Samples can be drawn from the above distributions using standard software.
RFF lifting functions are useful even when N is not sufficiently large for (3.86) to hold. An
alternative to RFFs are random binning features, also presented in [26]. Examples of RFF

lifting functions can be found in [24-26].

3.5.5 Lifting control inputs

A common design decision when identifying a Koopman model for control is to leave the
input unlifted. That is [12],
v(x,u) = u (3.89)

This ensures that a controller synthesized using the Koopman model will directly output u.
Recent work has also shown that bilinear input-dependent lifting functions are a better

choice for control affine systems [67]. An alternative set of input-dependent lifting functions

proposed in [67] is

u® J(x)
u

v(x,u) = , (3.90)

where ® denotes the Kronecker product. These bilinear input-dependent lifting functions
are capable of representing all control affine systems, and therefore present an interesting

alternative to leaving the input unlifted [67]. In [67], (3.15) is rewritten as
V(x;.4,) = AD(x;) + B, (0, ® 9(x;)) + Bouy + €, (3.91)

where the Koopman matrix is partitioned as U = [A B, BQ]. Equation (3.91) can be
treated as either a linear system or a bilinear system, depending on the application. In [67],
bilinear model predictive control (MPC) methods are used to exploit this particular structure

and synthesize a controller for the system.
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3.6 Local and Global Prediction Error

When using the identified Koopman matrices for prediction, the state and input are lifted,
then multiplied by the Koopman matrix. The state is then recovered and re-lifted with the
input for the next timestep. Using this prediction method leads to the local error definition
presented in [68], which is used throughout this thesis unless otherwise specified. Lifting the
initial state only once and repeatedly multiplying by the Koopman matrix would lead to the

global error definition of [68§].

3.7 The Koopman System

An output equation,

where ¢, € RP¢*! can also be considered to incorporate the Koopman operator into a true
LTT system with input, output, and state. While D = 0 for all Koopman systems in this
thesis, C can be chosen to recover the original states, or any other desired output. If the
original state is not directly included in the lifted state, C can instead be determined using

least-squares [12, §3.2.1]. The Koopman system is therefore

A|B
C

where "' denotes a minimal state space realization [38, §3.2.1].

g , (3.93)

The Koopman system G has a corresponding discrete-time transfer matrix [36, §3.7],
G(z)=C(21-A)"'B+D.
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Chapter 4

Koopman Operator Approximation as

Semidefinite Programming

Summary

This chapter explains how EDMD and DMDc, the Koopman operator approximation meth-
ods described in Chapter 3, can be reformulated as SDPs. The advantage of rewriting these
methods as SDPs is that system properties like asymptotic stability and gain can be incor-
porated into the optimization problems using the LMI constraints presented at the end of
Chapter 2. The effects of including these additional constraints will be discussed in Chap-
ters 5 and 6.

4.1 Introduction

In Chapter 3, closed-form solutions to the EDMD and DMDc problems are presented. How-
ever, there is no clear way to modify these methods to account for system properties like
asymptotic stability or gain. By treating these methods as optimization problems refor-
mulated as SDPs, additional constraints can be added to enforce desired properties on the
identified Koopman systems. For example, in Chapter 5, constraints will be used to enforce
asymptotic stability and regularize system gain. In Chapter 6, constraints will be used to en-
force the known system structure on the closed-loop system and plant. The modular nature

of SDPs makes it possible to add these constraints without modifying the original problems.

4.1.1 Related work

SDPs and LMIs are commonly used tools in system identification [69-75]. In the context of

the Koopman operator, LMIs have been used to ensure that the identified Koopman system
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is dissipative [76], is negative imaginary |77|, or has a known gain [78|. However, they have
so far not been used to regularize the Koopman operator regression problem. SDPs are
also commonly used to synthesize controllers for Koopman models [17, 79-82|. A related
optimization problem is posed in [83], where both the Koopman matrix and lifting functions
are treated as unknowns. While this problem is NP-hard [48], a convex relaxation allows
both to be found by solving two SDPs.

In [76-78|, modified versions of the least-squares approach to Koopman operator approxi-
mation are used, as opposed to approaches based on EDMD. These formulations may lead to
an excess number of variables or constraints when many lifting functions or data snapshots

are considered.

4.1.2 Contribution

The contribution of this chapter is the reformulation of EDMD and DMDc as SDPs. These
Koopman operator approximation methods scale better with the number of data snapshots
and lifting functions compared to the least-squares solution. LMI constraints for spectral
norm regularization and nuclear norm regularization are used as examples to demonstrate

the modularity of the SDP formulations.

4.2 EDMD as a Semidefinite Program

Two equivalent SDP reformulations of EDMD are derived in this section. The first method
was derived in [1, 2|, while the second method was derived in [3|. For completeness, both
are shown here. In poorly conditioned problems, one of these methods may outperform the
other, but in general, both will yield the same optimal Koopman matrix. In most cases, the

second form is preferable due to its simpler cost function.

4.2.1 First method
Recall from (3.21) that the Koopman matrix U minimizes

1

J(U) = 5H@+—U\I'Hi (4.1)
1 T

= 5tr((®+ ~uw) (0, - uw)") (4.2)

= tr(é@ﬁl — He{UG"} + UHUT) (4.3)

=c¢—2tr(UG") + tr(UHU"), (4.4)
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where ¢ = %tr(®+®1) is a scalar constant, and G and H are defined in (3.26) and (3.27).

The minimization of (4.4) is equivalent to the minimization of

J(U,v,W) = c —2tr(UG") + v (4.5)
subject to
tr(W) < v, (4.6)
W >0, (4.7)
UHU' < W, (4.8)

where v and W are slack variables that allow the cost function to be rewritten using LMIs [31,
§3.7.1]. To rewrite (4.8) as an LMI, consider the matrix decomposition H = RR", where H
is assumed to be positive definite. The matrix R can be found using the Cholesky factoriza-
tion or eigendecomposition of H, or the SVD of ¥. Assuming the decomposition has been

performed, the quadratic term in the optimization problem becomes

W — UHU' =W - URR'U" (4.9)
— W — (UR)1(UR) ", (4.10)

where 1 is the identity matrix. Applying the Schur complement [31, §2.4.1] to (4.10) yields

W UR

> 0. (4.11)
* 1

The LMI form of the optimization problem is therefore

min J(U, v, W) = ¢ — 2tr(UG") + v (4.12)
s.t. tr(W) < v, (4.13)
W > 0, (4.14)
W UR
> 0, (4.15)
* 1

where H = RRT.
As previously mentioned, the decomposition H = RRT can be realized via the Cholesky
factorization, eigendecomposition, or singular value decomposition. Using the Cholesky fac-

torization directly gives R. When using the eigendecomposition, H = VAV~ = VAVT it
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follows that R = VV/A. Alternatively, using the SVD, ¥ = QXZT, and substituting it into
the definition of H in (3.27) yields H = %QZzQT. It follows that R = \/LEQE.

4.2.2 Second method

By expanding the squared Frobenius norm, the cost function in (3.21) can be rewritten as
1
J(U) = atr(@+®1 — He{U¥O]} + UTTTU"). (4.16)
Substituting in the definitions of G and H from (3.26) and (3.27) yields
J(U) = tr(F — He{UG"} + UHU"), (4.17)

where F = 1©,0]. Introducing a slack variable [31, §3.7.1] results in an optimization
q

problem equivalent to minimizing (3.21) over U, that being

min J(U, W) = tr(W) (4.18)
s.t. W >0, (4.19)
F — He{UG"} + UHU" < W. (4.20)

Next, the Schur complement is used to break up the quadratic term in (4.20) [31, §2.4.1].
Again, assuming that H = H' > 0, consider its Cholesky factorization, H = RRT. Substi-
tuting in the Cholesky factorization and applying the Schur complement yields the SDP

min J(U, W) = tr (W) (4.21)
5.6 W > 0, (4.22)
~W +F - He{lUG™} UR
+F — He{UGT) <o (4.23)
* J—

4.3 DMDc as a Semidefinite Program

DMDc [54] reduces the dimension of the Koopman matrix regression problem when the
dataset contains many more lifted states than time snapshots (i.e. , p > ¢q) [49, §10.3]. In
DMDec, the Koopman matrix is projected onto the left singular vectors of ©_. The size of
the problem is then controlled by retaining only the 7 largest singular values in the SVD.
Consider the truncated SVD ©_ ~ Qﬁ]ZT, where Q € Rpo X7 e R™" and Z € R7*",

Instead of solving for U the regression problem is written in terms of its projection onto
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R(Q) [54], A
QO

U=Q'U
QU0 1

: (4.24)

where U € R™ v ig significantly smaller than U € RP?*P, Also consider the truncated SVD
U ~ QXZ", where Q € RP** 3 € R™" and Z € R9". The SVD dimensions # and 7 are
a design choice. A common approach is the hard thresholding algorithm described in [34].
Note that typically 7 < 7 [49, §6.1.3].

To reformulate DMDc as a convex optimization problem with LMI constraints, the cost
function is rewritten in terms of U instead of U by substituting in the SVDs of © 4 and
W. Recall that the Koopman cost function can be rewritten as (4.16). Minimizing and
introducing the slack variable W results in [31, §3.7.1]

1
min J(U, W) = atr(W) (4.25)
s.t. W >0, (4.26)

©,0] —He{U¥O!} +UTTUT < W. (4.27)

Substituting the SVDs of ©, and W into the optimization problem yields

1
min J(U, W) = gtr(W) (4.28)
st W > 0, (4.29)

QE’Q" - He{UQSZTZ3Q" } + UQS'QUT < W. (4.30)

~

Next, consider the projection of (4.28) and (4.30) onto R(Q). Recall that W > 0 is equivalent
to
9TWY >0, VI # 0 € RPXL (4.31)

Since (4.31) holds over all of RP?*! it must also hold over the subspace R(Q). Let the

~

vectors in R(Q) be parameterized by
9 = QD (4.32)
where 9 € R™!. Substituting (4.32) into (4.31) yields

9 QTWQD > 0, VO £ 0 € R, (4.33)
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which is equivalent to
W=Q"WQ >0 (4.34)

~

over R(Q). Applying the same logic to (4.30) yields
)y He{QTUQEZTZﬁ:} +QTUOS’QTUTQ < W, (4.35)

where the fact that QTQ = 1 is used.

To further simplify the problem, it is advantageous to rewrite (4.28) in terms of W. To
accomplish this, first recall that the trace of a matrix is equal to the sum of its eigenvalues.
The eigenvalue problem for W is

Wv. = \v,

K3 (AN

(4.36)

Projecting (4.36) onto R(Q) by substituting v, = foi, then premultiplying the result by QT,
yields
QTWQ‘AQ = )\Z‘A’Z (4.37)

Thus, W and W share the same eigenvalues for eigenvectors in R(Q), which indicates that

minimizing tr(W) is equivalent to minimizing tr(W) in that subspace.

The full regression problem projected onto R(Q) is therefore

“ 1 ~
min J(U, W) = 5tr(W) (4.38)
s.t. W > 0, (4.39)
s He{QTUQEZTZﬁl} +OTUOE’QTUTQ < W. (4.40)

Substituting U from (4.24) into the optimization problem yields

min J(U, W) = %tr(W) (4.41)
s.t. W > 0, (4.42)
) S He{fJQiDZTZﬁ)} LUQEQTUT < W, (4.43)
where - N
Q= [3 1] Q. (4.44)
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Applying the Schur complement to (4.43) yields the LMI formulation of DMDec,

A A 1 A
min J(U, W) = 5tr(W) (4.45)
s.t. W >0, (4.46)
~ ~ 2 A~ o~ A A "~
~W+ 3 —HelUQEZTZS ! UQX
{00 } ve <0, (4.47)
* -1

This is now a significantly smaller optimization problem, as its size is controlled by the
truncation of the SVD of ©_ . Reducing the first dimension of U also reduces the dimension
of the slack variable W.

4.4 Regularization using Linear Matrix Inequalities

To illustrate how additional constraints can be added to the SDP forms of EDMD and DMDc,
two brief examples are shown. The first is DMDc with a spectral norm regularizer, and the
second is EDMD with a nuclear norm regularizer. These regularization methods would not
be possible with the standard EDMD and DMDc approaches reviewed in Chapter 3. Unlike
EDMD with Tikhonov regularization, these optimization problems do not have closed-form

solutions.

4.4.1 Spectral norm regularization

To highlight the modularity of the SDP reformulation of DMDc, consider the application of
spectral norm regularization to DMDc. Recall from Section 2.2.4 that the spectral norm of
a matrix is

[U]l, = a(U). (4.48)

The spectral norm can be expressed as an LMI. The inequality ||U||, < 7 holds if and only
if [31, §3.3.1]
71 U

> 0. (4.49)
x vl
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Applying this LMI to regularize the spectral norm of the Koopman matrix in the DMDc
problem yields

A A 1 A

min J(U,W,7y;a) = 5tr(W) + %7 (4.50)
s.t. W > 0, (4.51)

L, N

~W+ 3 —HelUQEZTZE ! UQX

e{ Q } =y (4.52)

i * -1

41 U

7 > 0. (4.53)

k1

4.4.2 Nuclear norm regularization

Next, consider nuclear norm regularization applied to EDMD. Recall from Section 2.2.4
that the nuclear norm is a convex approximation of the rank function. Regularizing using
the nuclear norm can result in low-dimensional models, and in the case of the Koopman
operator, low-order linear systems [35].

The nuclear norm is defined as

min{py,p}
.= > (0, (4.54)

=1

where o,(-) is the i'! singular value of U € RP?*P. Solving
min [[U]. (455)

is equivalent to solving the SDP [35] [31, §3.3.6]

o1
nin 5 (tr(V,) + tr(Vy)) (4.56)
vV, U
st | ! >0, (4.57)
*  V,

where V, = VI € RP?*P9 and V, = VI € RP*P, Applying this LMI to regularize the EDMD
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problem using the nuclear norm results in

min J(U, W, 7; @) = tr (W) + —~ (4.58)
q
s.t. W > 0, (4.59)
W+ F-He{UG™} UR
* {UG"} <0, (4.60)
* -1
tr(V,) + tr(V,) < 27, (4.61)
v, U
! > 0. (4.62)
| * Vv,

4.5 Conclusion

SDP reformulations of EDMD and DMDec, two standard Koopman operator approximation
methods, are proposed in this chapter. These approaches scale better with the number of
data snapshots and lifting functions compared to the least-squares Koopman operator ap-
proximation method. These SDP reformulations use more computational resources than
the standard implementations of EDMD and DMDc, which require one or two SVDs, but
their added flexibility makes this a worthwhile tradeoff in many situations. The SDP refor-
mulations of EDMD and DMDc form the base of subsequent chapters, wherein additional
constraints will be included to enforce desired system properties or structure on the identified

Koopman system.
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Chapter 5

System Norms and Asymptotic Stability

in Koopman Operator Approximation

Summary

This chapter proposes two methods to incorporate linear system properties into the Koopman
operator regression process. The first method constrains the identified Koopman system to
be AS. The second method regularizes the Koopman operator regression problem using
the H., norm of the Koopman system. Both methods are formulated as constraints that
can be added to either the EDMD or DMDc problems reformulated as SDPs in Chapter 4.
Both methods result in BMIs that are solved through a sequence of convex optimization
problems. Two experimental datasets are used to demonstrate the properties of the proposed
approaches: one from an aircraft fatigue testing platform, and another from a soft robotic

manipulator.

5.1 Introduction

In this chapter, two Koopman operator approximation methods that incorporate desired
system properties into the regression process are proposed. Both methods are built upon
the SDP reformulations of EDMD and DMDc explained in Chapter 4. The first method
proposed constrains the identified Koopman system to be AS, while the second method
regularizes the H_ norm of the Koopman system, guaranteeing asymptotic stability along
the way.

These methods are motivated by the fact that the regression problem associated with
finding an approximate Koopman operator is numerically challenging, as complex lifting

function choices can yield unstable or ill-conditioned Koopman models for AS systems [68].
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Figure 5.1: Overview of the data-driven Koopman workflow, including the role of the proposed
regression methods. (a) First, data is collected from the system to be identified. (b) Next, a set
of lifting functions is chosen. (c¢) The lifting functions are then applied to the data and snapshot
matrices are formed. (d) Finally, one of several regression methods is used to approximate the
Koopman matrix. The proposed regression methods seek to address the numerical problems often
present in this step by viewing it as an optimization over discrete-time linear systems.

Regularization techniques play a crucial role in obtaining usable Koopman models for pre-
diction and control applications. Standard regularization techniques like Tikhonov regular-
ization [56] or the lasso [84] are often used to promote well-conditioned Koopman matrices.
These regularization techniques penalize different matrix norms of the Koopman matrix,
without considering the fact that the Koopman matrix defines a discrete-time LTT system
with input, state, and output. While these methods may indirectly promote asymptotic
stability in this Koopman system, their success is highly dependent on the regularization
coefficient used. Furthermore, they do not consider the input-output gain of the Koop-
man system. This chapter takes a systems view of the Koopman matrix regression problem,

proposing regression methods that constrain the asymptotic stability of the Koopman system
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and regularize the regression problem by penalizing its input-output gain, as represented by
its H,, norm. To accomplish this, regularizers and additional constraints are incorporated
into the EDMD and DMDc problems as BMI constraints on the reformulations of Chapter 4.
The resulting BMIs are solved by solving a sequence of SDPs. The data-driven Koopman

workflow and the proposed regression methods are summarized in Figure 5.1.

5.1.1 Related work

The H,, norm of the Koopman operator has previously been considered in [76], however it
is in the form of a hard constraint on the system’s dissipativity, rather than as a regularizer
in the cost function. The identification of Koopman systems with known gain is considered
in [78], while the identification of negative imaginary Koopman systems is considered in [77].

In [85], the problem of learning Lyapunov stable and AS linear systems is explored in
the context of subspace identification, where Lyapunov inequalities are used to enforce the
corresponding stability conditions. The related problem of learning positive real and strictly
positive real systems using constrained subspace identification is discussed in [86]. A convex
relaxation of the Lyapunov inequality is considered in [87], where linear constraints are added
incrementally to enforce the Lyapunov stability of a system. In [68, 88|, a gradient-descent
method is applied to find locally optimal Lyapunov stable or AS Koopman matrices. The
method relies on a parameterization of the Koopman matrix that guarantees Lyapunov or
asymptotic stability [89]. While addressing the asymptotic stability problem, this formula-
tion lacks the modularity of the proposed approach.

5.1.2 Contribution

The core contributions of this chapter are the solutions of the EDMD and DMDc problems
with asymptotic stability constraints and with system norm regularizers. Of particular focus
is the use of the H_ norm as a regularizer, which penalizes the worst-case gain of the
Koopman system over all frequencies. Furthermore, weighted H_,, norm regularization is
explored, which allows the Koopman system’s gain to be penalized in a specific frequency
band, where experimental measurements may be less reliable, or where system dynamics may
be irrelevant. These modifications add BMI constraints to the EDMD and DMDc problems,
which must be solved with an iterative method. Finally, the proposed regression methods are
evaluated using two experimental datasets, one from a fatigue structural testing platform,
and the other from a soft robot arm. The significance of this work is the use of a system
norm to regularize the Koopman regression problem, which is viewed as a regression problem

over discrete-time linear systems, resulting in a numerically better conditioned data-driven
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model.
The software required to fully reproduce the results of this chapter is available at https:

//github.com/decargroup/system_norm_koopman.

5.2 Asymptotic Stability Constraint

Since many systems of interest have AS dynamics, it is desirable to identify Koopman systems
that share this property. In [68|, it is proven that an AS nonlinear system can only be
represented accurately by an AS Koopman system, highlighting the importance of enforcing
the asymptotic stability property during the regression process. However, in practice, it is
possible to identify an unstable Koopman system from measurements of a Lyapunov stable
or AS system [68]. Even if the identified Koopman system is AS in theory, the eigenvalues of
its A matrix may be so close to the unit circle that it is effectively unstable in practice. One
solution, presented in this section, is to constrain the largest eigenvalue of A to be strictly
less than one in magnitude, within a desired tolerance. A modified Lyapunov constraint [90,
§1.4.4]

P> 0, (5.1)
ATPA — 7P < 0, (5.2)

can be added to ensure that the magnitude of the largest eigenvalue of A is no larger than

0 < p < 1. Applying the Schur complement to (5.2) yields

ATPA— P <0 < (ATP)P'(ATP)" — p?P < 0 (5.3)
e —pP— (~ATP) (=pP) ' (-ATP)" <0 (5.4)
5P —ATP )
= <0, —pP <0 (5.5)
* —pP
(5P ATP
= >0, P>0. (5.6)
*  pP
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The full EDMD optimization problem with asymptotic stability constraint is therefore

min J(U, v, W,P; p) = ¢ — 2tr(UG") + v (5.7)
s.t. tr(W) < v, (5.8)
W > 0, (5.9)
'W UR
> 0, (5.10)
* 1

P>0, (5.11)

(5P ATP
reR : (5.12)

|« pP

where H = RR" and U = [A B]. The SVD is used to compute R in the experiments
presented in this chapter.

Since both A and P are unknown, (5.6) includes a BMI constraint. The optimization
problem is therefore nonconvex and NP-hard [48]. One method to find a locally optimal
solution is outlined in [91]. First, assume P is constant with an initial guess of P = 1 and
solve (5.7)—(5.12), which is now an SDP. Then, hold the remaining variables constant using
the solution from that optimization, and solve a feasibility problem for P. Repeat this process
until the cost function stops changing significantly. Although this approach is rather simple,

it does result in an AS Koopman system with reasonable prediction error.

5.3 System Norm Regularization

While constraining the asymptotic stability of the identified Koopman system helps ensure
that the system’s predictions are usable, it does not consider the input-output properties of
the system. A system norm like the H, norm or the H_ norm can be used to regularize
the system’s gain, while also ensuring asymptotic stability for any regularization coefficient.
Specifically, the existence of a finite H, or H_, norm guarantees the asymptotic stability
of the resulting LTI system [36]. Regularizing using the H, norm can be thought of as
penalizing the average system gain over all frequencies, while using the H__ norm penalizes
the worst-case system gain. As such, the use of the H_, norm as a regularizer is explored
next. Weighted H_ norms are also considered as regularizers, which allow the regularization

problem to be tuned in the frequency domain with weighting functions.
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5.3.1 H_, norm regularization

Since approximating the Koopman matrix amounts to identifying a discrete-time LTT system,
it is natural to consider a system norm as a regularizer rather than a matrix norm. With

‘H ., norm regularization, the cost function associated with the regression problem is
J(Uia) = [|©, — UL + |G|, (5.13)

where « is the regularization coefficient. To integrate the H_ norm into the regression
problem, its LMI formulation must be considered. Recall from Section 2.4.5.2 that the
inequality |G|, < 7 holds if and only if there exists a P = PT > 0 such that [31, §4.2.2

P AP B 0

x P 0 PCT
x x ~v1 DT
x o+ x 91

> 0. (5.14)

The full EDMD optimization problem with H__ regularization is

min J(U, v, W,~,P;a) = c— 2tr(UGT) +v+ gv (5.15)
s.t. tr(W) < v, (5.16)
W >0, (5.17)
'W UR
> 0, (5.18)
* 1

P>0, (5.19)

P AP B 0

«x P 0 PCT
x * ~1 DT
* ok * 1

> 0, (5.20)

where H = RR" and U = [A B|.

Like the asymptotic stability constraint proposed in Section 5.2, (5.20) includes a BMI
constraint in terms of the unknowns P and A. As such, the optimization problem in (5.15)—
(5.20) is nonconvex and NP-hard [48]. However, it can be solved using the same iterative

procedure described in Section 5.2 [91].
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5.3.2 Weighted H_ norm regularization

The H_, norm used in (5.15) can be weighted by cascading G with another LTT system, G%,
as shown in Figure 5.2. For example, choosing GV to be a high-pass filter penalizes system
gains at high frequencies. Weights can be cascaded before or after G to weight the inputs,
outputs, or both. Recall that multiple-input multiple-output (MIMO) LTI systems do not
commute, so introducing the weight before or after the Koopman system results in a different
weighted system.
Consider the weight

A" | BY
Ccv | DV

w min
gV o~

, (5.21)

with state 9", input vV, and output ¢*. Cascading G" after G yields the augmented state-

space system

9 A 0] |9 B
M= T (5.22)
et BYC A _19k_ BYD
W ﬂk W
¢ =[prc cv]| k| +p D, (5.23)
_ﬁk_
Minimizing the H_ norm of the augmented system
A 0 B
G'G '~ | B'C A" |B'D (5.24)
D'C C*|D"D

is equivalent to minimizing the weighted #_ norm of the original system. The choice of

weighting function used can be viewed as another hyperparameter in the regression problem.

v—— G (=v g" — "

Figure 5.2: Series interconnection of Koopman system G and weight G%.

Weighting the regression problem in the frequency domain comes at the cost of increas-
ing the dimension of the optimization problem. When cascading the weight before G, the
dimension of 9" scales with the dimension of v. When cascading after G, the dimension
of ¥V scales with the dimension of ¢. In the regression problems considered here, only

post-weighting is considered, since ¢ has a much smaller dimension.
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5.4 Experimental Example: Aircraft Fatigue Testing Platform

The effectiveness of the proposed asymptotic stability constraint is demonstrated using
experimental data collected from the Fatigue Structural Testing Enhancement Research
(FASTER) platform at the National Research Council Canada [92|, which is used for air-
craft fatigue testing research. The purpose of this simple example is to demonstrate that
Koopman models with eigenvalues near the unit circle can have diverging predictions due to

the accumulation of numerical error.

(a) (b)
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Figure 5.3: (a) Eigenvalues and spectral radius constraints of Koopman A matrices approximated
from the FASTER dataset. The eigenvalues of A satisfy their respective spectral radius constraints.
Additionally, lowering the spectral radius constraint from g = 1.00 to p = 0.99 does not significantly
alter the eigenvalues. (b) Multi-step prediction error of Koopman systems approximated from the
FASTER dataset. All units are normalized. States are recovered and re-lifted between prediction
timesteps. Although both systems are AS; only the system with p = 0.99 is usable in practice, as
the other system’s response diverges due to the accumulation of numerical error.

In the fatigue structural testing dataset used in this section, the structure under test
is an aluminum composite beam. During a test, the FASTER platform applies a force to
this beam using a hydraulic actuator, which is controlled by a voltage. This input, the
applied force, and the structure’s deflection are recorded at 128 Hz. The actuator voltage
is determined by a linear controller designed to track a reference force profile. In this case,

the dynamics of the controller are neglected and the actuator voltage is considered to be
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exogenous. Of the 21275 samples in the dataset, half are used for training and half are used
for testing. All states and inputs in the FASTER dataset are normalized. A photograph of
this experimental setup can be found in [92].

The Koopman lifting functions chosen for the FASTER platform are first- and second-
order monomials. The full lifting procedure consists of several steps to improve numerical
conditioning. First, all states and inputs are normalized so that they do not grow when
passed through the monomial lifting functions. Then, all first- and second-order monomials
of the state and input are computed. Finally, the lifted states are standardized to ensure
that they are evenly weighted in the regression. To standardize the lifted states, their means
are subtracted and they are rescaled to have unit variance [57, §4.6.6].

Given that the true FASTER system is AS, it is crucial to ensure that the identified
Koopman system shares this property. To demonstrate the impact of the asymptotic stability
constraint, Koopman matrices with maximum spectral radii of p = 1.00 and p = 0.99 are
computed and compared to an unconstrained Koopman matrix computed with standard
EDMD. Figure 5.3a shows the eigenvalues of the two constrained Koopman A matrices.
In both cases, the eigenvalues indicate that the systems obey their respective maximum
spectral radii. However, the multistep prediction errors of the two Koopman systems in
Figure 5.3b show that only the system with the spectral radius constraint of p = 0.99 is
usable in practice. The other system produces prediction errors that diverge to infinity due
to the accumulation of numerical error. The Koopman matrix without asymptotic stability
constraint behaves identically to the matrix with maximum spectral radius p = 1.00, and
is therefore not shown in Figure 5.3. By introducing a small amount of conservatism in
the spectral radius constraint, the identified Koopman system is rendered AS in the face of
accumulated numerical error.

In the following section, a more complex example is used to demonstrate the limitations

of the spectral radius constraint and the advantages of the H_ norm regularization approach.

5.5 Experimental Example: Soft Robot

The unique advantages of the H_, norm regularizer are demonstrated using the soft robot
dataset published alongside [93] and [16]. Identifying a Koopman representation of a soft
robot arm is a particularly interesting problem, as its dynamics are not easily modelled from
first principles. In this section, unregularized EDMD and Tikhonov-regularized EDMD |1,
56|, two standard Koopman matrix approximation methods, are compared with the EDMD
and DMDec versions of the asymptotic stability constraint from Section 5.2 and the H_, norm

regularizer presented in Section 5.3. The Koopman systems identified using these regression
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methods are analyzed in terms of their prediction errors, system properties, and numerical
conditioning. In particular, the limitations of the asymptotic stability constraint compared

to the H_, norm regularizer are discussed.
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Figure 5.4: Multi-step prediction error and trajectory plot of the third test episode for Koopman
systems approximated from the soft robot dataset. States are recovered and re-lifted between
prediction timesteps. All Koopman systems have comparable prediction errors, with the exception
of two large error spikes in the system with the asymptotic stability constraint.

The soft robot under consideration consists of two flexible segments with a laser pointer
mounted at the end. The laser pointer projects a dot onto a board positioned below the
robot. The two states of the system are the Cartesian coordinates of the dot on the board,
as measured by a camera. The soft robot arm is actuated by three pressure regulators,
each controlled by a voltage. The dot position and control voltages are recorded at 12 Hz.
Thirteen training episodes and four test episodes were recorded in this manner. The third
test episode is shown in Figure 5.4. Photographs of this experimental setup, along with
additional details, can be found in [93]| and [16].

The lifting functions chosen for the soft robot system consist of a time delay step, followed
by a third-order monomial transformation. As with the FASTER dataset in Section 5.2, the
states and inputs are first normalized. Then, the states and inputs are augmented with
their delayed versions, where the delay period is one timestep. Next, all first-, second-, and

third-order monomials are computed. Finally, the lifted states are standardized. Since the
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time delay step occurs before the monomial lifting step, cross-terms including delayed and
non-delayed states and inputs occur in the lifted state.
Section 5.5.1 discusses the behaviour of the proposed asymptotic stability constraint and

H
and demonstrates that the DMDc approach attains similar results to EDMD with fewer

« horm regularizer in the context of EDMD. Section 5.5.2 discusses the DMDc case,

computational resources.

5.5.1 EDMD results

Unregularized EDMD and Tikhonov-regularized EDMD are used as baselines for comparison
with the proposed regression methods. Tikhonov regularization improves the numerical

conditioning of U by penalizing its squared Frobenius norm [1, 56]. The regularizers used in

90°
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Re{\;} Tikh reg. & H. reg.

Figure 5.5: Eigenvalues of Koopman A matrices approximated from the soft robot dataset. EDMD
without regularization and EDMD with Tikhonov regularization both identify unstable systems,
while the asymptotic stability constraint and H., norm regularizer yield AS Koopman systems.

this section have coefficients of o = 7.5 x 1073, while the asymptotic stability constraint has
a maximum spectral radius of p = 0.999. Figure 5.4 shows the multistep prediction errors of
the four Koopman systems for the third test episode of the dataset. The prediction errors
are comparable for all four Koopman systems, aside from two large error spikes produced by

the system with the asymptotic stability constraint.
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Figure 5.6: Singular values of Koopman A and B matrices approximated from the soft robot dataset
plotted on a logarithmic scale. The A and B matrices computed using unregularized EDMD both
have large singular values. EDMD with Tikhonov regularization decreases the singular values of
both matrices, but does not yield an AS system. With an asymptotic stability constraint, the
singular values of A are reduced, but the singular values of B are unaffected and remain large.
Using an H, norm regularizer reduces the singular values of both A and B significantly, yielding a
better-conditioned Koopman matrix.

One way to compare the resulting Koopman systems is to analyze the eigenvalues of their
A matrices. Figure 5.5 shows that unregularized EDMD and Tikhonov-regularized EDMD
produce unstable Koopman systems, even though, as shown in Figure 5.8, the multistep
prediction errors do not happen to diverge in any test episodes. As expected, EDMD with
an H_, norm regularizer and EDMD with an asymptotic stability constraint both yield AS
Koopman systems.

While the Koopman system identified with an asymptotic stability constraint is indeed
AS, the system is not well-conditioned. To see this, consider Figure 5.6, which shows the
singular values of the Koopman A and B matrices. These singular values indicate the sizes
of the entries in each matrix. With unregularized EDMD, both matrices have singular
values on the order of 103. Using Tikhonov regularization decreases the singular values of
both A and B, though it still yields an unstable system. Constraining the spectral radius
of A greatly reduces the singular values of A but increases the singular values of B. The
numerical conditioning of this Koopman system is arguably worse, as the A and B matrices
contain entries of drastically different scales. Regularizing using the H_, norm resolves this

problem, as it reduces the singular values in both matrices, yielding a better-conditioned AS
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Figure 5.7: (a) Bode plot of Koopman systems approximated from the soft robot dataset. The
Koopman system identified with unregularized EDMD has high gain, with a resonant peak at a
high frequency. EDMD with Tikhonov regularization reduces the system’s gain, but identifies an
unstable system and retains an undesirable high-frequency resonant peak in the frequency response.
Constraining the asymptotic stability of the system does not significantly reduce the gain compared
to the unregularized system. Penalizing the H, norm of the Koopman system reduces its gain at
all frequencies without compromising prediction error. (b) Bode plot of unweighted and weighted
Koopman systems approximated from the soft robot dataset, along with weighting function. The
dashed line representing the weighting function uses the right axis, while the solid lines use the left
axis.

Koopman system with similar prediction error. The key takeaway is that constraining the
spectral radius of A is not sufficient to guarantee a well-conditioned Koopman matrix, as
the constraint does not directly impact B. Using the H__ norm as a regularizer considers the
system as a whole, thus impacting both A and B, and reducing their entries to reasonable
sizes.

Another way to compare the identified Koopman systems is by looking at their frequency
responses, which can be found by plotting the maximum singular value of the transfer ma-
trix at each frequency. Figure 5.7a shows the magnitude responses of the four Koopman
systems, and paints a similar picture to Figure 5.6. Unregularized EDMD yields a Koopman
system with very high gain and a resonant peak in the upper frequency range. Incorporating
Tikhonov regularization reduces the system’s gain, but retains the resonant peak at a high
frequency. Constraining the asymptotic stability of the system does not significantly impact

the system’s gain, which, given the large singular values of B in Figure 5.6, is not surprising.
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However, regularizing using the H_, norm directly penalizes the peak of the Bode plot in
Figure 5.7a, yielding a system with significantly lower gain and similar prediction error.

The H_, norm regularizer can be expanded upon by weighting the H__ norm using a high-
pass filter. This weighting function penalizes high gains at high frequencies while allowing
higher gains at low frequencies. Penalizing gain at high frequencies is motivated by the
fact that relevant system dynamics typically occupy low frequencies, while high frequencies
are corrupted by measurement noise. Furthermore, causal physical systems have frequency
responses that roll off as frequency grows, since it is unrealistic for a system to have infinite
gain at infinitely high frequencies. Figure 5.7b demonstrates the impact of weighting the
‘H., norm regularizer with a high-pass filter that has a zero at 4 Hz and a pole slightly below
6 Hz. This weighted regularizer yields a Koopman system with high gain at low frequencies
and decreasing gain at high frequencies.

Note that Figure 5.7 shows the frequency response of the Koopman system in the lifted
space, which is not the same as the “frequency response of the nonlinear system.” Since the
ultimate goal is to design linear controllers in the lifted space, only the frequency response

of the Koopman system in the lifted space and the corresponding H_ norm are relevant.
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Figure 5.8: RMS Euclidean errors of Koopman systems approximated from the soft robot dataset.
Error bars indicate mean and standard deviation of RMS error over the four test episodes. In
terms of mean error, all identified Koopman systems perform similarly well. However, the system
identified using H, norm regularizer performed more consistently throughout the test set.
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In Figure 5.8, the multistep prediction errors of the five identified Koopman systems are
compared across each episode in the test set. Given that the laser pointer dot projected by
the soft robot moves within a circle of radius 10 cm, it’s practically meaningless to distin-
guish each method based on mean prediction error alone. However, the distribution of each
identified system’s prediction errors across the test set clearly highlights the importance of
regularization. The Tikhonov regularizer, H_, norm regularizer, and weighted H_ norm
regularizer lead to systems with smaller standard deviations in the RMS error over the test
set. In contrast, EDMD without regularization and EDMD with an asymptotic stability con-
straint lead to systems that perform inconsistently over the test set. Comparing standard
deviations indicates that the regularized systems generalize better to previously unseen data,
with the H_ norm regularizer performing most consistently over the four test episodes.

The results in this section highlight the useful properties of the proposed H_. norm
regularizers. While all systems have comparable RMS prediction errors on the test set,
unregularized EDMD results in an unstable, poorly conditioned Koopman system with large
gain. While Tikhonov regularization improves numerical conditioning, the resulting system
is still unstable. Conversely, constraining the asymptotic stability of the system does not
improve its numerical properties. Only the H_ norm regularizers guarantee asymptotic
stability while improving the numerical conditioning of the system. These key results are
summarized in Table 5.1, which also highlights the difference between the unweighted and
weighted H_, norm regularizers. Weighting the H_ norm regularizer further improves the
condition numbers of A and B.

Table 5.1: Comparison of regression methods through the condition numbers of their Koopman
matrices and asymptotic stability guarantees. Only the Hoo regularizers guarantee asymptotic

stability while significantly improving the condition number of the Koopman matrices. In this case,
weighting the Ho, norm further improves cond(A) and cond(B).

Regression method cond(A) cond(B) Asymptotic stability
no regularization 5.77 x 10" 3.40 x 107 X
Tikhonov regularization 4.39 x 105 2.90 x 103 X
asymptotic stability constraint ~ 7.32 x 10*  4.87 x 103 v
H_, regularization 3.87 x 107 2.14 x 10? v
weighted H_ regularization 1.69 x 10> 5.43 x 10! v
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5.5.2 DMDc results

The DMDc projection in (4.32) defines a new Koopman system,

where C = CQ. The asymptotic stability constraint from Section 5.2 and the H_ norm
regularizer from Section 5.3 are now applied to this system, and the resulting Koopman
systems are compared with their EDMD counterparts. The same dataset and experimental

setup as Section 5.3 is used here.
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Figure 5.9: Singular values of Koopman A and B matrices approximated from the soft robot dataset
using EDMD and DMDec regressors. Singular values smaller than 10712 are not shown. Note the
logarithmic scale. While the EDMD methods retain all 34 singular values, the DMDc methods

truncate all but the first 14. The singular values retained by the DMDc methods are close to the
corresponding singular values computed by the EDMD methods.

An important decision in the DMDc algorithm is the choice of singular value truncation
method. Optimal hard singular value truncation [34] is used to determine 7, while 7 is left at
full rank. For the soft robot dataset, the optimal hard truncation algorithm retains only 14 of
the 34 singular values of A. Figure 5.9 demonstrates that the DMDc methods indeed reduce
the dimension of the problem, while also showing that the remaining singular values are close
to their EDMD counterparts. Figure 5.10a shows that the frequency responses of the original

Koopman systems are preserved by the DMDc methods. In spite of their reduced dimension,
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Figure 5.10: (a) Bode plots of Koopman systems approximated from the soft robot dataset using
EDMD and DMDc regressors. The DMDc methods preserve the frequency responses of the cor-
responding systems identified with the EDMD methods. (b) RMS Euclidean errors of Koopman
systems approximated from the soft robot dataset using EDMD and DMDc regressors. Error bars
indicate standard deviation of RMS error over the four test episodes. Since the DMDc methods
identify reduced-order Koopman models of the system, they have larger mean errors. However, the
Hoo norm regularizer still significantly reduces the standard deviation.

the Koopman systems identified with DMDc retain their frequency domain properties.

In Figure 5.10b, the RMS Euclidean errors of the EDMD and DMDc methods with asymp-
totic stability constraints and H_, norm regularization are summarized. Since the Koopman
systems identified by the DMDc methods are of a lower order, their mean prediction error
is higher than that of the EDMD methods. However, the H_ norm regularizer retains its
benefit of improving prediction consistency. Furthermore, as demonstrated by Figure 5.10a,
the frequency response properties of the EDMD regression methods are preserved by the
reduced-order DMDc models.

Note that, in one case, the Koopman system identified using stability-constrained DMDc
diverged due to poor numerical conditioning. This short segment of the dataset was omitted
throughout the chapter to allow for a more fair comparison between regression methods. This
finding highlights the advantages of the H_ regularization method in identifying numerically

well-conditioned Koopman matrices.
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Figure 5.11: (a) Execution time per iteration and (b) peak memory consumption of EDMD and
DMDec regression methods using the soft robot dataset. The DMDc methods run significantly faster
and consume less memory than the EDMD methods. Tests were run on a desktop computer with
an Intel Core i7-10700K processor using the MOSEK solver.

The most important advantage of the DMDc regression methods is their computational
savings when many lifting functions are required. The long execution times of the EDMD
methods, along with their high memory consumption, make cross-validation impractical.
Figure 5.11 demonstrates the significant resource savings provided by the DMDc methods in
both execution time and peak memory consumption. Memory consumption is of particular
importance when running multiple instances of a regressor in a multiprocess cross-validation
scheme. The DMDc regression methods presented provide significant computational savings
while still retaining the frequency-domain characteristics of their EDMD counterparts. In
spite of their higher mean prediction error, it is often worthwhile to leverage them for Koop-

man operator identification, particularly when hyperparameter optimization is a priority.

5.6 Conclusion

Approximating the Koopman matrix using linear regression proves challenging as lifting
function complexity increases. Even small problems can become ill-conditioned when many
lifting functions are required for an accurate fit. Viewing the problem from a systems per-

spective, where system inputs pass through dynamics and lead to outputs, provides multiple
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avenues to enforce asymptotic stability and penalize large input-output gains in the system,
thus ensuring improved numerical conditioning. In particular, regularizing the regression
problem with the H_ norm provides the opportunity to tune the regularization process in
the frequency domain using weighting functions. The significant performance savings pre-
sented by the DMDc-based regression methods allow the H__ norm regularizer to be applied
to much larger systems while still remaining tractable. This chapter proposes two new meth-
ods to approximate the Koopman operator while enforcing desired system properties. The
first constrains the asymptotic stability of the Koopman system, while the second regularizes
the H_, norm of the Koopman system. Both methods ensure asymptotic stability, while the
second method also yields Koopman systems with lower gain.

The nonconvex optimization problems required to use the asymptotic stability constraint
and H,, norm regularizers limit their applicability to practical problems. Future research
will address this limitation by making use of more efficient BMI solution methods, including
changes of variables [76-78, 94|, Iterative Convex Overbounding [95], and branch-and-bound
methods [96]. Although the use of the H_ norm [31, §4.2| as a regularizer is explored in this
chapter, any system norm, like the H, norm [31, §4.3] or a mixed H, norm [31, §4.4], can
be used. The unique properties of system norms prove useful in addressing the numerical
challenges associated with approximating the Koopman operator from data, and will be
explored further in future work.

While this chapter covers the identification of AS systems, the next chapter presents
methods to identify Koopman models of potentially unstable systems, which must be oper-

ated in closed-loop with a controller.
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Chapter 6

Closed-Loop Koopman Operator

Approximation

Summary

This chapter proposes a method to identify a Koopman model of a feedback-controlled system
given a known controller. Existing Koopman operator approximation methods are designed
to identify open-loop systems. However, it is impractical or impossible to run experiments
on some systems, such as unstable systems, in an open-loop fashion. The proposed method
leverages the linearity of the Koopman operator, along with knowledge of the controller
and the structure of the closed-loop system, to simultaneously identify the closed-loop and
plant systems. It is realized as a set of equality constraints on the SDP reformulation
of EDMD presented in Chapter 4. The advantages of the proposed closed-loop Koopman
operator approximation method are demonstrated in simulation using a Duffing oscillator

and experimentally using a rotary inverted pendulum system.

6.1 Introduction

Closed-loop (CL) systems with known controllers frequently arise in practice, especially
when the plant under consideration is inherently unstable. In this chapter, the identifica-
tion of Koopman operators for closed-loop systems is considered. Specifically, the proposed
method simultaneously identifies the closed-loop system and the open-loop plant given a
known controller through the use of constraints on the reformulation of the Koopman oper-
ator approximation problem posed in Chapter 4. The proposed approach is summarized in

Figure 6.1.
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Figure 6.1: Overview of the proposed closed-loop Koopman operator identification method. To
simplify the presentation, no feedforward signal is used. (a) First, the controller reference, controller
state, and plant state are recorded during a series of experiments. The controller state space
matrices are known, and CP and DP are fixed. If the controller state is not directly available, it can
be computed from its input and output. Only the Koopman matrix of the plant UP is unknown. (b)
The plant state is lifted and augmented with the controller state and reference. (¢) The Koopman
matrices of the CL system and the plant system are approximated simultaneously by incorporating
the known structure of the CL system as a constraint on the EDMD problem.

6.1.1 Related work

In the field of system identification, an area of particular interest is the identification of
closed-loop systems [97-100]. It is often unsafe or impractical to run an experiment on a
plant without a feedback control system [100, §1.1, §17.3]. In some cases, the control loop
is simply ignored and the controller’s outputs are treated as exogenous input signals to the
plant. However, this simplification, known as the direct approach to closed-loop system
identification [100, §13.5], is problematic in some situations. The feedback loop introduces
correlations between the plant’s output and its input, leading to biased estimates of the
plant’s dynamics [97, 98], [39, §11.1]. In cases where this bias is small, the direct approach
may yield acceptable results. In cases where the bias is not small, more sophisticated closed-
loop system identification methods must be employed. The indirect approach to closed-loop
system identification [100, §13.5|, which uses the reference signal as the exogenous input,
identifies the closed-loop system as a whole. The indirect approach then uses knowledge of
the controller to extract a model of the plant system for use on its own [97, 98], [39, §11.1].
While closed-loop system identification can lead to more complex plant models, in many

situations it is the appropriate tool to use to avoid biased estimates of model parameters.
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Closed-loop identification is particularly practical when identifying unstable plants. Eval-
uating the performance of an unstable model is challenging, as prediction errors may diverge
even if the identified model is accurate. This is problematic in the Koopman framework,
where lifting functions are unknown and are often chosen based on the prediction error they
achieve. By first identifying a model of the closed-loop system, which is assumed to be AS,
the closed-loop prediction error can be used as a more informative goodness-of-fit metric [97,
§4.1|. Closed-loop identification methods also allow the closed-loop system’s model param-
eters to be regularized, when regularizing the unstable plant’s parameters may incorrectly

lead to a stable model.

6.1.2 Contribution

The key contribution of this chapter is a means to identify a Koopman representation of a
system using closed-loop data. The proposed method is a variation of the indirect approach
to system identification. Given knowledge of the controller, the method simultaneously
identifies Koopman models of the closed-loop system and the plant. The significance of this
approach is that a system that cannot be operated in open-loop without a feedback controller
can now be identified using Koopman operator theory. Even in situations where open-loop or
closed-loop methods would identify the same model, it is shown that the closed-loop system is
more convenient to work with, as it naturally provides a bounded prediction error and allows
the closed-loop Koopman matrix to be included in a regularizer or additional constraint, such
as the asymptotic stability constraint presented in Section 5. The advantages of the proposed
method are demonstrated on a simulated controlled Duffing oscillator system subject to
coloured measurement noise, as well as on a rotary inverted pendulum system which, due to
its instability, would be difficult to identify in an open-loop setting.

The software required to fully reproduce the results of this chapter, including the ro-
tary inverted pendulum dataset, is available at https://github.com/decargroup/closed_
loop_koopman. The software used to gather the dataset, implemented in C, is available at

https://github.com/decargroup/quanser_qube.

6.2 Formulation of the Closed-Loop Koopman System

Consider the Koopman system modelling the plant,

9P, = AP + BPo?, (6.1)
¢P = CP9P + DY, (6.2)
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along with the linear system modelling the known controller,

X1 = AX; + Buy, (6.3
y;. = C°x; + Du;. (6.4)

Let
vy =Y + £, (6.5)

which yields the series interconnection of the controller and the plant with a feedforward
signal f,. This feedforward signal is entirely exogenous, and could be generated by a nonlinear

inverse model of the plant. The new Koopman system’s input includes the controller input

— [';:] , (6.6)

while its output is simply the plant output, ¢, = {}. The new system’s state includes the
controller state and plant state, resulting in

and feedforward input, resulting in

S
U

XC
9, = | " (6.7)
0y
The cascaded plant and controller systems are depicted in Figure 6.2.
£y
vl =
u; c /LJF P G =¢
k Ve \_/ T k k
Figure 6.2: Series interconnection of the controller and plant.
The state-space representation of the plant becomes
9., = APY) + BP (C°x§, + Duj, +f,) (6.8)
XC uC
= [Bree a| 5]+ [BDe B [ ’“] , (6.9)
k £,
¢h = CPY) + DP (Cxj, + Duy, + f,) (6.10)
X7 u;
_ [DPCC Cp} £l [DPDC Dp} fk] _ (6.11)
k k
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The state-space representation of the series-interconnected system is therefore

X1 A0 |xj n B 0| |uf
9, BPC® AP| |90 B°D° BP| |f, |’
p __ C X% C u%
¢i=[pres e ||+ [prpe Do) | ]
1V k
or equivalently,
9 A0 N Bc 0| |
= U’
" |Bece A |BeDe BP| F

¢ = [DPCC CP] 9, + [DPDC DP} s,
Next, consider the negative feedback interconnection,

u, =r; — (y,

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

where 1, is an exogenous reference signal. The input of this new feedback-interconnected

system is defined to be

Ly
Uk == y

as depicted in Figure 6.3. Substituting (6.16) into (6.6) yields

fk;
O + + l+
rk"Q—’ C HQ—' P Ck
ﬂck

Figure 6.3: Feedback interconnection of the controller and plant.
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Substituting (6.19) into (6.15) results in a new output equation,
¢ = (1+DD) 7 [Dres €] 9, + (1+D°D) ! [DPDe DP| v, (6.20)

where the feedback interconnection is well-posed if and only if 1 + DPDC is invertible [101,
§4.9.1]. Let Q =1+ DPD°. Substituting (6.20) into (6.19) yields

_Q—leCC _Q—lcp
0 0

1-Q 'D’D° —Q 'DP

v, 6.21
) L v 62

Substituting (6.21) back into (6.14) and rearranging results in a new state equation,

B AS — BchleCc _Bchlcp
" |BPC — BPDCQTIDPCE AP — BPDQICP|
B¢ — B¢ lepDc —B¢ lep
Q Q v, (6.22)
BPD° — BPD°Q'DPD¢ BP — BPD°Q'DP
and the output equation,
¢o=|Q e @ ier| v, + QDD Q DY), (6.23)

In the Koopman system, only A” and BP are determined from experimental data. The
remaining state-space matrices are chosen to be
c =1 (6.24)

mxm 0m><(p19—m)i| )

DP =0, (6.25)

such that CP recovers the controlled states of the nonlinear system being modelled, which
are the first m states in 9}. Substituting in (6.25) implies that Q = 1. Thus, the simplified

state-space representation of the closed-loop system is

) B —Be + B0 (6.26)
= v, .
ML IBeCe AP —BPDeCP| ' |BPDe BP| F
- ~~ ~ —
Af Bf
¢ =0 cp] 9.+ 0 v, (6.27)
H?—J Df
C

which is always a well-posed feedback interconnection, since Q = 1+ DPD® = 1 is invertible.
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6.3 Identification of the Closed-Loop and Plant Systems

Consider the closed-loop lifted dataset D = {9, v, }{_,, where the matrix approximation of

the Koopman operator is

ut, ut, U, Uf

| 21 22 23 24
RS _B°CP BT 0 6.9
~ |BPC® AP — BPD°C® BPD° BP (6:29)

Comparing (6.28) and (6.29) reveals that the matrices, BP, UL, UL, and UL, are related via
the expression
B'|ce Do 1| = [Ul, Ul L. (6.30)

Thus, one way to compute UP = [Ap BP} is to first compute U using EDMD and then

recover the plant’s state-space matrices using

B — UL, U, U)o D 1]T, (6.31)

AP = Ub, + BPD°CP. (6.32)

While this approach is simple, it is not guaranteed to preserve the required relationships
between U', AP, and B¢ found in (6.28) and (6.29). As a result, identifying the closed-loop
system, extracting the plant model with (6.31) and (6.32), and then closing the loop again
with the same controller using (6.29) can result in an entirely different closed-loop system.
This pitfall is explored further in Section 6.6.4.

To preserve the structure of the closed-loop system, (6.30) and (6.32) can be treated
as constraints on the SDP reformulation of the EDMD problem presented in Chapter 4.

Including Tikhonov regularization, the resulting EDMD optimization problem is

1

min J(U', U%;a) = —||@, — U'F|? + Z|[U')2 (6.33)
q q

st Ul Ul U] =B e e, (6.34)

UL, = AP — B°D°CP. (6.35)

Including the structural constraints on the closed-loop system from (6.30) and (6.32) results
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in

min J(U', UP, W; a) = tr (W) (6.36)
s.t. W >0, (6.37)

~W +F - He{U'G™} UR
i {UGT} UR,| _ 0, (6.38)

* -1
(EARVARVAES Salcan ST (6.39)
UL, = A° — B’D°CP, (6.40)

where
H =H+1 (6.41)
q

=R, R}, (6.42)

which provides a means to simultaneously identify a Koopman model of the closed-loop sys-
tem and the plant system. While this method applies Tikhonov regularization to the closed-
loop system’s Koopman matrix, any regularizer or constraint, such as those in Chapter 5,
can be applied to either the closed-loop system or the plant system, since both Koopman

matrices are optimization variables.

6.4 Bias in EDMD

Even when identifying a plant operating in open-loop, EDMD is known to identify biased
Koopman operators when sensor noise is significant [102, §2.2]. However, since the plant’s
input is exogenous in an open-loop setting, any noise in the input signal is uncorrelated with
the measurement noise. In fact, the input signal is often known exactly because it is chosen
by the user.

In contrast, consider a scenario where measurements are gathered from a system oper-
ating in closed-loop with a controller. Feedback action propagates noise from the plant’s
measured output throughout the system. If the presence of the controller is ignored and its
control signal to the plant is treated as exogenous, correlations between the plant input and
measurement noise result in increased bias [97, 98][39, §11.1]. Furthermore, the input signal
is no longer known exactly, as it is corrupted by noise that is correlated with the state’s
measurement noise.

Identifying the Koopman system using a closed-loop procedure sidesteps this issue by
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using the exogenous reference and feedforward signals as inputs. If these signals are noisy, the
noise is uncorrelated with the state’s measurement noise. However, these inputs are typically
known exactly. Using a closed-loop approach therefore reduces bias compared to treating
the feedback controller’s output as an exogenous plant input. The remaining bias, which is
due solely to measurement noise, is inherent to EDMD. In practice, this bias is sometimes
too small to justify the use of more complex identification techniques [39, §11.1]. Variants
of DMD like forward-backward DMD [102, §2.4][94] and total least-squares DMD [102, §2.5]|

can also be used to compensate for this bias.

6.5 Simulated Example: Duffing Oscillator

Several advantages of the proposed closed-loop Koopman operator approximation method,
referred to in this section as closed-loop EDMD (CL EDMD), are demonstrated on a simu-
lated closed-loop Duffing oscillator system, pictured in Figure 6.4.

7 k() + kpa(t)? m ——>
75 |—|
LT
bi(t)

Figure 6.4: Duffing oscillator system with position x(t), force u(t), mass m, viscous damping b,
linear stiffness k1, and nonlinear stiffness ko.

6.5.1 Simulation setup

The Duffing oscillator [103] can be viewed as a forced mass-spring-damper system with

nonlinear spring stiffness. That is,
ma(t) + bi(t) + kyx(t) + kyx(t) = u(t), (6.43)

where x(t) is the mass position (m) and u(?) is the external force (N). A simulated dataset is
generated using a Duffing oscillator with mass m = 0.01 kg, viscous damping b = 0.1 Ns/m,
linear stiffness k&, = 0.02N/m, and nonlinear stiffness k, = 0.4N/m3. Its position error

e(t) = r(t) — z(t) is controlled by a proportional-integral controller,

1 .
K(s) = K* + ~K', (6.44)
S
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where s € C is the Laplace variable, K» = 1N/m is the proportional gain, and K' =
1N/(ms) is the integral gain. Thus, following the notation of Section 6.2, zP(t) = x(t),
vP(t) = u(t), and v(t) = r(t).

The simulated dataset consists of 10 training episodes and one test episode. Each episode
is 10 s long and begins with zero initial conditions. The episodes are sampled at a frequency
of 100 Hz. The position reference is a pseudorandom binary sequence (PRBS) [100, §13.3|
with amplitude 1m. An example reference signal is pictured in Figure 6.5a. The training
set position measurements used for both control and identification are subject to additive
coloured noise. Noise samples are first drawn from a Gaussian distribution with zero mean
and covariance 02 = 0.02m?. This white noise signal is then filtered using a 12*® order
Butterworth filter with a cutoff frequency of 5Hz. The test set does not have any added

measurement noise.

6.5.2 Comparison of identified models

The Koopman lifting functions used to model the Duffing oscillator consist of 6 time delays
of the state followed by 50 thin plate RBFs of the form

pi(x) = (allx — e[| +0)*In (allx —¢;f| +0), i=1,...,50, (6.45)

where o = 0.2 is the shape parameter and § = 0.001 is a small offset to avoid evaluating the
logarithm at zero. The centres ¢; are selected using Latin hypercube sampling [62, 63]. The
same set of lifting functions is used to identify two Koopman models of the Duffing oscillator:
one using EDMD in open-loop, and another using the proposed CLL EDMD method. In both
cases, the inputs are not lifted. This results in a 57-dimensional lifted state for the open-
loop Koopman model, and a 58-dimensional state for the closed-loop Koopman model, as
the controller’s state is also included.

To better understand the advantages and disadvantages of the Koopman approaches, two
autoregressive exogenous input (ARX) models [100, §4.2][104, §2.2.1.5] are identified using
SIPPY [105], an open-source system identification library for Python. For comparison with
EDMD, an ARX model of the open-loop plant is identified using 6 output lags and one input
lag, resulting in a 6" order system. This is an example of the direct approach to closed-loop
system identification. For comparison with CL. EDMD, an ARX model of the closed-loop
system is identified, also using 6 output lags and one input lag. The transfer function of the
plant is recovered using the indirect approach discussed in [97, §5.1] and [100, §13.5]. The
indirect approach, referred to as CL. ARX in this section, increases the order of the plant

transfer function to 14. Note that SIPPY only supports identification using a single training
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episode. Thus, to make full use of the training data, a transfer function is identified for each

episode and the coefficients are averaged to obtain a final model.
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(a) Prediction errors of the closed-loop systems iden- (b) Prediction errors of the plant systems identified

tified using CLL ARX and CL EDMD methods. The using closed-loop and open-loop ARX and EDMD

Koopman approach better captures the dynamics of methods. The CL ARX model fails to capture the

the closed-loop system. plant dynamics, possibly due to its high order. The
Koopman models perform best, with nearly identical
prediction errors.

Figure 6.5: Prediction errors the closed-loop and plant systems identified using ARX and EDMD
methods.

Figure 6.5 shows the prediction errors of all four models on the test episode. The mean
and RMS prediction errors for the plant system, normalized by the peak amplitude of the
state, are summarized in Table 6.1. While the CLL EDMD method is able to identify accurate
closed-loop and plant models, the CLL. ARX method is not able to accurately predict the
Duffing oscillator’s position throughout the test episode. Its failure to accurately predict
the plant’s open-loop dynamics is likely due to its inaccurate identification of the closed-
loop system. Furthermore, the classical indirect approach to system identification leads to
high-order plant transfer functions [97, §5.1], which may impact the accuracy of the plant
model. In contrast, CL. EDMD always identifies a plant system with fewer states than the
closed-loop system, and does not rely on multiplying or inverting any transfer matrices.
While the Koopman models have over 50 states, only 6 of them are time delays, compared
to the 14 of the CL ARX plant model. The open-loop ARX model performs better than its
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Table 6.1: Normalized mean and RMS open-loop plant errors in test episode.

Method Normalized mean error Normalized RMS error
EDMD —0.6 % 3.3%
CL EDMD —0.1% 3.2%
ARX —0.9% 4.7%
CL ARX 2.5% 20.4 %

closed-loop version, but not as well as either EDMD or CLL. EDMD. Both EDMD methods
perform nearly identically, with CL. EDMD attaining slightly lower mean and RMS errors
on the test episode.

While the simulated Duffing oscillator example clearly demonstrates the advantages
of Koopman approaches to system identification, it does not highlight the advantages of
CL EDMD over standard EDMD. The unique benefits of closed-loop EDMD will be ex-
plained in Section 6.6, where a more complex experimental example is considered, and issues

such as hyperparameter optimization and regularization are discussed.

6.6 Experimental Example: Rotary Inverted Pendulum

The benefits of the proposed closed-loop EDMD method (CL EDMD) are demonstrated on a
dataset collected from the Quanser QUBE-Servo [106], a rotary inverted pendulum system.
Pictured in Figure 6.6, this system has an unstable equilibrium point when the pendulum is

upright.

6.6.1 Experimental setup

The QUBE-Servo has one direct current motor with a maximum input voltage of 10V, as
well as two incremental encoders with 2048 counts per revolution. The system is controlled
by two parallel proportional-derivative controllers that track references for the motor angle
2} (t) and the pendulum angle x5 (). The reference signals are denoted 7 (t) and r,(t), while
the feedforward is denoted f(¢). All angles are presented in radians, while the plant inputs
are presented in Volts.

The controller’s transfer matrix from tracking error e(t) = r(¢) — xP(¢) to output vP(¢) is

K(s) = K7+ Kioe KP+ Kgee ], (6.46)

where K? = 6V /rad and K5 = 30V /rad are the proportional gains, K{ = 1.8 Vs/rad® and
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Figure 6.6: The Quanser QUBE-Servo system used to demonstrate the proposed closed-loop Koop-
man operator approximation method.

K¢ = 2.5Vs/rad® are the derivative gains, and a = 50rad/s is the derivative filter cutoff
frequency. The controller is discretized using the zero-order hold with a sampling frequency
of 500 Hz.

Samples of the exogenous test inputs are pictured in Figure 6.7. The motor angle reference
signal is an integrated PRBS, while the pendulum angle reference and feedforward signals are
PRBSs [100, §13.3]. The PRBSs are smoothed using a low-pass filter with a cutoff frequency
of 200 Hz. The signal amplitudes excite the rotary inverted pendulum as much as possible
without causing the pendulum to fall from its upright position.

The dataset presented here consists of 30 training episodes and 20 test episodes. Each
episode is 20s, or 10000 samples, long. The motor angle, pendulum angle, motor voltage,
reference motor angle, reference pendulum angle, and feedforward voltage are recorded at
every timestep. The controller’s state is computed at each timestep using the recorded
tracking error. The first 1s of each dataset is discarded to remove the transients associated
with manually raising the pendulum to the upright position.

The Koopman lifting functions chosen for the rotary inverted pendulum are second-order
monomials followed by 10 time delays. As required by the proposed method, the inputs
and controller states are not lifted. Further performance improvement can be achieved by
including more time delays, with diminishing returns after 20.

As a point of comparison with classical system identification, a MIMO ARX model with
10 output lags and 10 input lags is fit to the closed-loop system using SIPPY [105|. However,
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Figure 6.7: Sample of the exogenous test inputs used to identify a Koopman model of the Quanser
QUBE-Servo.

a difficulty with the indirect approach to closed-loop system identification in the MIMO case
is that it requires computing the pseudoinverse of a nonsquare transfer matrix to recover
the plant’s transfer matrix. Attempting this symbolically leads to a transfer matrix of an
intractable order. Since the closed-loop system is strictly proper, computing the pseudoin-
verse in state-space is also nontrivial. To circumvent this, the 2 x 1 block of the closed-loop
transfer matrix corresponding to the feedforward input is used to recover the plant’s transfer

matrix. This approach only requires inverting a single-input single-output transfer function.

6.6.2 Comparison of regularization methods and scoring metrics

Since the QUBE-Servo dataset does not contain significant sensor noise, EDMD does not
identify a noticeably biased Koopman model. In fact, with no regularization, both EDMD
and the proposed closed-loop method identify the same Koopman system. However, in many
situations, regularization is a necessary component of the Koopman identification process.
Choosing an appropriate regularization coefficient typically requires a hyperparameter opti-
mization procedure. As such, the advantages of the proposed method are examined through
the lens of hyperparameter optimization.

The proposed closed-loop Koopman operator approximation method is first compared to
EDMD by varying the regularization coefficient « of each identification method. Specifically,

180 values of « are evaluated, spaced logarithmically between 1072 and 10%. Recall that
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Figure 6.8: Effect of regularization on the spectral radii and prediction scores of the CL and plant

systems.
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EDMD with Tikhonov regularization penalizes the squared Frobenius norm of the plant
system, ||UP||Z, while the proposed closed-loop method penalizes the squared Frobenius norm
of the closed-loop system, ||[Uf||Z. For the sake of comparison with the closed-loop approach,
the open-loop plant models identified by EDMD are wrapped with the known controller.
Since the proposed approach simultaneously identifies the closed-loop and plant systems,
the plant system identified using the proposed method can be compared directly to the
plant model identified using EDMD.

As a first point of comparison between EDMD and the proposed closed-loop method,
consider the spectral radii of the closed-loop and plant systems as a function of their reg-
ularization coefficients. Given prior knowledge of the inverted pendulum system, both in
open-loop and closed-loop contexts, a desirable Koopman model should have AS closed-loop
dynamics when controlled using an appropriate controller, but unstable open-loop dynamics.
Figure 6.8a shows that regularizing using the Koopman matrix of the closed-loop system al-
ways results in an AS closed-loop system. However, regularizing using the plant’s Koopman
matrix results in an unstable closed-loop system for high enough regularization coefficients.
According to Figure 6.8b, the spectral radii of the plant systems identified with both methods
share a similar trend. For low regularization coefficients, the systems are correctly identified
as unstable, while for very high regularization coefficients, the plant systems are incorrectly
stabilized. Figures 6.8a and 6.8b indicate that a low regularization coefficient is appropriate
for this system.

As a second point of comparison between the EDMD and the proposed method, consider
the three-fold cross-validation score associated with each regularization coefficient. A good
cross-validation score should reach its maximum at an appropriate hyperparameter value
for the system. Given the spectral radius results in Figures 6.8a and 6.8b, a good scoring
metric for the QUBE-Servo system should have its peak at a low regularization coefficient.
The scoring metric of choice for this system is the R? score, also called the coefficient of
determination [107]. The R? score of a predicted state trajectory 7, relative to the true

state trajectory x, is
q A \2

R2(Ik, j}k) — 1 k=1 (‘rk - Ik)

Y (-2

where T = %Z%:l x;, is the mean value of x;. For multidimensional predicted trajectories,

(6.47)

the R? score of each state is averaged to obtain a single score. Perfect predictions receive an
R? score of 1, while predictions that only capture the mean of the data receive an R? score
of 0. Worse predictions can receive arbitrarily negative scores.

As before, Figure 6.8c shows the closed-loop R? scores of models identified with both
EDMD and the proposed method, where the plant model identified with EDMD is wrapped
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with the known controller. For any regularization coefficient, the R? score achieved by the
proposed method remains bounded and positive. Thus, the closed-loop regularizer has the
expected effect of driving the predicted trajectory towards the mean as the regularization
coefficient grows. However, for a large enough regularization coefficient, EDMD identifies an
unstable closed-loop system and its R? score diverges. The best closed-loop R? scores for
both methods are attained with a very small regularization, which also leads to the expected
stability properties. The use of the plant’s open-loop predictions to score the models does not
share this behaviour. Since the plant system is inherently unstable, its predictions are highly
sensitive to small variations in parameters and initial conditions. Thus, even the predictions
of an accurate model can yield unbounded prediction errors. As shown in Figure 6.8d, the
only way to achieve a finite plant R? score is to select an extremely large regularization
coefficient. For EDMD), this results in an unstable closed-loop system and an AS plant,
which does not reflect the underlying dynamics of the inverted pendulum system. While the
proposed closed-loop methods produces an AS closed-loop system for all regularizers, the
open-loop plant it identifies still becomes AS for a large enough regularization coefficient.
Figure 6.8 demonstrates two key conclusions. First, the closed-loop prediction error
should be used for assessing the accuracy of identified models, as the best closed-loop scores
correspond to Koopman models with the expected stability properties. Second, regularizing
the closed-loop Koopman matrix is preferable to regularizing only the plant’s Koopman ma-
trix, as it ensures the closed-loop system will remain AS for high regularization coefficients.
Note that closed-loop scoring can be leveraged without the proposed method, simply by iden-
tifying the plant using EDMD and wrapping the resulting model with the known controller.
However, this approach is susceptible to bias when significant sensor noise is present. Also,
only the proposed closed-loop approach has access to the closed-loop Koopman matrix for
regularization. Thus, if the controller is already known, it is preferable to use the proposed
closed-loop approach from the beginning, rather than leveraging controller knowledge only

at the end of the identification procedure.

6.6.3 Comparison of optimized regularization coefficients

Informed by the results of Section 6.6.2, four approaches to identifying a Koopman model
of the QUBE-Servo are compared via their eigenvalues and prediction errors. First is the
naive open-loop approach, where EDMD is used to identify the plant’s Koopman matrix,
and the regularization coefficient is selected according to the plant’s R? score. In this case,
the optimal regularization coefficient is a® = 10%. Second is another open-loop approach,

where EDMD is used to identify the plant’s Koopman matrix, but the plant is then wrapped
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Figure 6.9: Eigenvalues and prediction errors of closed-loop and plant systems.
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with the known controller and the regularization coefficient is selected according to the
closed-loop system’s R? score. In this case, the optimal regularization coefficient is of =
1073, Third is a closed-loop approach, where the closed-loop and plant’s Koopman matrices
are simultaneously identified, but the plant’s R? score is used to select the regularization
coefficient. In this case, the optimal regularization coefficient is o = 103. Last is the
proposed closed-loop approach, where the closed-loop and plant’s Koopman matrices are
simultaneously identified, and the closed-loop R? score is used to select the regularization
coefficient. In this case, the optimal regularization coefficient is af = 1072. The prediction
errors of these four Koopman models are also compared with those of the closed-loop ARX
(CL ARX) approach described in Section 6.6.1 without any regularization.

Consider the closed-loop and plant eigenvalues in Figures 6.9a and 6.9b. The naive ap-
proach, which uses the plant for regularization and scoring, identifies an unstable closed-loop
system with two eigenvalues clearly outside the unit circle. Due to the large regularization
coefficient, the plant system it identifies is AS, which is also inconsistent with the under-
lying dynamics of the system. The third approach, which uses the closed-loop system for
regularization but the plant for scoring, correctly identifies an AS closed-loop system, but
incorrectly identifies an AS plant. The remaining two approaches, which use the closed-loop
R? score to select the regularization coefficient, identify essentially the same eigenvalues.
Both methods correctly identify AS closed-loop systems and unstable plant systems. Since
measurements from the QUBE-Servo system are relatively noiseless, it is expected that the
two methods should agree. However, as is well-documented in the system identification lit-
erature, the closed-loop method could reduce the bias in the identified model in the presence
of significant measurement noise [97, 98|39, §11.1].

Looking at the closed-loop and plant prediction errors of each of these approaches in
Figures 6.9c and 6.9d respectively tells the same story as the eigenvalues. Both EDMD
and the proposed closed-loop method identify the same Koopman systems at low regular-
ization coefficients. For large regularization coefficients, EDMD incorrectly identifies an
unstable closed-loop system and an AS plant. However, the proposed method identifies
an AS closed-loop system, regardless of the regularization coefficient. The CL ARX model
correctly identifies an AS closed-loop system and an unstable open-loop system. In terms
of closed-loop prediction errors, the CLL. ARX model is slightly worse than the Koopman
models that use closed-loop scoring, indicating that it may not be able to capture the non-
linearity of the inverted pendulum system. The R? score and normalized root-mean-squared
error (NRMSE) of each model on the test set are summarized in Table 6.2. To compute
the NRMSE, the RMS error of each state is normalized by the peak amplitude of the true

value of that state. The normalized values for each state are then averaged to obtain a single
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number summarizing the error of the trajectory prediction.

Table 6.2: R? score and NRMSE over 20 test episodes.

Method Regularization Scoring R? avg. R? std. NRMSE avg. NRMSE std.

ARX — CL 0.813 0.026 11.7% 1.3%
EDMD  Plant Plant —00 — 00 —

EDMD  Plant CL 0.897 0.018 8.9% 1.1%
EDMD CL Plant 0.322 0.061 22.8% 21%
EDMD CL CL 0.893 0.017 9.0% 1.0%

Table 6.2 shows that, among the Koopman models, the most important factor for attain-
ing a high prediction score is the use of the closed-loop prediction error for scoring. For the
QUBE-Servo system, the choice to use the closed-loop or plant Koopman matrix for regu-
larization is not critical, as long as a sufficiently small regularization coefficient is chosen.
However, it must be noted that identifying the open-loop plant directly with EDMD and
wrapping the model with the known controller for scoring requires knowledge of the controller
and measurements of the controller output, just like the proposed closed-loop approach. If
knowledge of the controller is already assumed, then using the proposed closed-loop method
is preferable, as it avoids the possibility of bias in the models. Furthermore, in the proposed
closed-loop Koopman operator approximation approach both U and UP are available as opti-
mization variables. This additional flexibility allows additional knowledge of the closed-loop
system and plant to be incorporated into the optimization problem. For example, the closed-
loop system could be constrained to be AS using a method from Chapter 5. Alternatively,
known properties of the closed-loop system or plant could be incorporated by constraining
the poles to a particular region [108|. A distinct advantage of CL EDMD over CL ARX is
that it is constraint-based, meaning that it does not require transfer matrix multiplication
or pseudoinversion to obtain an estimate of the plant system. Due to the nature of the con-
straints, the identified plant system will always be of a lower dimension than the closed-loop

system. The advantages and disadvantages of each approach are summarized in Table 6.3.

6.6.4 Comparison of least-squares and constrained optimization

Using least-squares to extract a plant model from an identified closed-loop system seems to
provide a simpler alternative to the constraint-based formulation in (6.33)—(6.35). However,
using (6.31) and (6.32) to obtain a Koopman model of the plant does not respect the feedback

structure of the system. In fact, extracting the plant from the closed-loop system and re-
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Figure 6.10: CL eigenvalues and prediction errors of models identified with the least-squares and

constrained versions of CL EDMD.
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Table 6.3: Comparison of system identification methods.

Method Reg. Scoring Bounded score? CL reg.? Avoids bias? Nonlinear?
ARX — CL v — v X

EDMD Plant Plant
EDMD Plant CL
EDMD CL Plant
EDMD CL CL

Sx | N>
SN X X
NN > X
NSNS

wrapping it with the same controller does not result in the same system. Figure 6.10a shows
how the closed-loop eigenvalues change when the plant is extracted and re-wrapped with
a controller. In this case, the procedure actually destabilizes the system. When using the
constraint-based approach, as shown in Figure 6.10b, extracting the plant and closing the
loop again with the same controller does not move the eigenvalues. Figures 6.10c and 6.10d
show the prediction errors of each system before and after removing and re-adding the
controller. As expected, the predicted trajectories of the destabilized system diverge quickly.
The ability to extract the plant from the closed-loop system while respecting the feedback
structure of the system is particularly important for control design tasks, where, presumably,

the plant is being identified with the end goal of designing an improved controller.

6.7 Conclusion

When identifying closed-loop systems, it is often not possible to neglect the effects of the
control loop. This holds true for Koopman operator approximation as well as linear sys-
tem identification. In this chapter, a closed-loop Koopman operator identification method
is presented, where the closed-loop system and plant system are identified simultaneously
using knowledge of the controller. The proposed method, built on the SDP of EDMD
from Chapter 4, ensures consistency between the closed-loop and plant models while also
avoiding having to directly identify an unstable plant. The advantages of this method are
demonstrated in simulation using a Duffing oscillator with coloured measurement noise and
experimentally using an unstable rotary inverted pendulum system. In particular, the pro-
posed closed-loop method identifies Koopman models that align with the prior knowledge
that the closed-loop system is AS, while the plant is unstable. The closed-loop method
also naturally allows the closed-loop prediction error to be used as a goodness-of-fit metric,
which is crucial for selecting lifting functions and an appropriate regularization coefficient.

Furthermore, by identifying the plant system using constraints, the proposed closed-loop
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approach avoids inflating the dimension of the plant system.

A limitation of the proposed approach is that including the controller state in the lifted
state of the system increases its dimension, especially if complex controllers are used. While
high-order controllers are generally undesirable in system identification applications, the as-
sumption that the controller is known exactly does not always hold. Unmodelled effects
like actuator saturation may limit a user’s ability to correctly calculate the controller state,
which could affect the accuracy of the method. The proposed closed-loop Koopman operator
approximation method allows both the closed-loop and plant Koopman matrices to be used
in regularizers or constraints. Using EDMD, only the plant’s Koopman matrix can be used in
a regularizer, leading to potentially unstable closed-loop systems for large regularization co-
efficients. The additional flexibility provided by the proposed closed-loop Koopman operator
approximation method will be explored in future work, as the ability to incorporate known
information about the closed-loop system or plant into the regression problem could prove
useful in identifying more accurate or useful Koopman models. Extensions to address the
use of nonlinear controllers, or to address the situation where the controller is also unknown,
would widen the applicability of the proposed closed-loop Koopman operator approximation
method.

Rather than focusing on Koopman operator identification, the following chapter discusses
how Koopman models, potentially identified with the methods presented in Chapter 4, Chap-
ter 5, or this chapter, can be used with standard optimal control techniques to quantify

uncertainty and synthesize robust nonlinear observers.
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Chapter 7

Uncertainty Modelling and Robust

Estimation using the Koopman Operator

Summary

This chapter proposes a robust Koopman observer synthesis method based on mixed H,-
‘H., optimal control. This observer synthesis method is made possible by the Koopman
operator’s linearity, which allows uncertainty within a population of Koopman models to be
quantified in the frequency domain. A population of several dozen motor drives is used to
experimentally demonstrate the proposed method. Manufacturing variation is characterized
in the frequency domain, and a robust Koopman observer is synthesized. The uncertainty
model is shown to be sufficiently accurate to detect an outlier motor drive that was incorrectly

installed.

7.1 Introduction

Due to the linearity of the Koopman operator, standard linear control tools can be used to
synthesize optimal controllers and observers for nonlinear systems. Furthermore, uncertainty
within a population of Koopman models can be expressed in the frequency domain thanks
again to their linearity, opening the door for linear robust control. This chapter demonstrates
how linear robust control tools can be leveraged to design nonlinear observers that are insen-
sitive to uncertainty within a population of Koopman models. This chapter also shows how
a sufficiently accurate frequency-domain uncertainty model can be used to detect outliers or
faults in the Koopman operator identification process. The proposed methodology, summa-
rized in Figure 7.1, is demonstrated experimentally through the uncertainty characterization

of a population of several dozen motor drives exhibiting nonlinear oscillations. The resulting
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uncertainty model is also shown to be accurate enough to identify outlier systems. The
resulting nonlinear observer is shown to outperform its linear counterpart due, in part, to

its more accurate uncertainty model.

(a) ID Koopman model of each plant (b) Quantify uncertainty (c) Design observer

Select uncertainty model:

EDMD for each plant:

w A Synthesize Hy-H,, observer:
T~ ] A .
| 4 + min J(’C) = ||7;1W1||2
—‘ | gnom — s.t. H7;2W2Hoc <1
Koopman observer:
Compute uncertainty weight: Tnput Measurement
Me|
Mej T
Measurements of X1 = fo(Xp, )
Lifting functions —
4
=1 2
| i kY
N —— + +
b L= B />
L J - : I (J + K _
1 “F‘H‘\' T T T —

Lifted measurements (X, uy.)

Linear regression

Form generalized plant:

gnom C
A J
d W, Z,
R
| Koopman model 4, = Upth, Wi P Z
Koopman system for each plant: u y State estimate
G0,G91,---,9n K

Figure 7.1: Overview of the proposed robust Koopman observer synthesis procedure. (a) First, a
Koopman model is identified for each of N distinct plants in a population. (b) Then, an uncertainty
model is selected, along with a nominal plant model. A residual for each off-nominal plant is
computed, and an uncertainty weight is chosen to bound the residuals. The uncertainty weight,
along with performance weights and the nominal plant model, are combined into the generalized
plant, P. Finally, the generalized plant is used to synthesize a mixed Ha-Hoo Koopman observer.

7.1.1 Related work

Ever since exogenous inputs were introduced into the Koopman operator framework in [55],
interest in designing linear controllers in the lifted space has only grown. Approaches based
on the linear-quadratic regulator (LQR) include [14, 15, 109, 110]. Using a simple exam-

ple with an exact, finite-dimensional Koopman representation, [109] demonstrates that a

86



Koopman LQR outperforms a conventional LQR designed using the system’s linearized dy-
namics. In [14], similar results are obtained using an approximate Koopman model of a forced
Van der Pol oscillator. A Koopman-based LQR for a tail-actuated robotic fish is designed
in [15] using hand-engineered, dynamics-based, lifted states. The controller performs simi-
larly to a nonlinear backstepping controller, however it is much simpler to design. In [110],
an architecture called Koopman Reduced Order Nonlinear Identification and Control (KRO-
NIC) is proposed, which identifies Koopman eigenfunctions and synthesizes a Koopman LQR
using those functions as the lifted states.

MPC is also a natural fit with the Koopman operator, as shown in [12, 16, 19, 22
111]. Koopman MPC is most rigorously described in [12], where it is shown that MPC
algorithms using Koopman models achieve similar computational complexity to their linear
counterparts. Simulated examples are shown for bilinear motor control and nonlinear PDE
control. In [22], a Koopman representation of a differential-drive mobile robot is used in open-
and closed-loop MPC algorithms. The lifted states are chosen to be products of polynomials
in the robot’s Cartesian position and velocity. The proposed controller’s performance is
shown to increase as the dimension of the lifted state increases. Koopman MPC is used
in [16] to control an underactuated soft robotic manipulator. Monomials with a single time
delay are used as the lifted states. The Koopman-based MPC algorithm performs better
than a standard MPC algorithm that uses a linear model. The manipulator’s payload is
incorporated into the soft robot’s Koopman model and an observer is designed to estimate
its value online in [111], improving the performance of the controller.

Robust LTT controller synthesis using the Koopman operator is considered in [17, 79—
82|. In [17], H, optimal control is used to synthesize controllers that perform robustly
in the face of uncertainty modelled by polytope sets of Koopman models. Uncertainty in
the Koopman representation used in [17] is due to the use of multiple datasets to identify
multiple models of the same system. The synthesized controllers are tested in simulation
using a Duffing oscillator system and the Kroteweg-De Vries PDE. Uncertainty due to
the finite-dimensional approximation of an infinite-dimensional Koopman operator is repre-
sented in [79, 80| through the use of incremental quadratic constraints. Controllers are then
designed to guarantee stability in the largest possible regions of attraction and are tested on
simulated Van der Pol oscillator [79] and inverted pendulum [80] systems. Biased Koopman
models identified from noisy data are considered in [81], where uncertainty is modelled based
on a known sector bounded model mismatch. A dual-loop H_, control approach is used to
attain both robust stability and robust performance guarantees. The approach is demon-
strated using a simulated Van der Pol oscillator. In [82], robust H_, control is applied to a

linear parameter-varying Koopman representation. Uncertainty due to the linear parameter-
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varying nature of the model, along with known model approximation error, is modelled in
the frequency domain. The uncertainty is bounded using constant weighting functions in
an additive uncertainty representation. A mixed H,-H ., control problem is solved to guar-
antee the robust stability of the Koopman controller. The performance of the synthesized
controller is demonstrated on a simulated bilinear motor model. While robustness is not
considered in [112], a sophisticated H_, design procedure with dynamic performance weight-
ing functions is outlined in the lifted space. The synthesized H_ controller is demonstrated
on simulated Van der Pol oscillator and two-mass-Duffing-spring systems. Koopman-based
MPC algorithms that consider other definitions of robustness include [113-116].

Early work using the Koopman operator for state estimation introduces the Koopman
observer form, a state-space form computed from the estimated eigenvalues and eigenfunc-
tions of the Koopman operator [117, 118]. This form is then used to design a Luenberger
observer or Kalman filter. In [119], sparsity-promoting DMD is used to estimate the Koop-
man observer form and design a Koopman Kalman filter to estimate the flow field near an
actuated airfoil from pressure measurements. A generalized maximum likelihood variant of
the Koopman Kalman filter is introduced in [120], where it is used to estimate the rotor angle
and speed of a series of synchronous generators. In [121], a Koopman Luenberger observer
is designed to detect faulty actuators in a multirotor system. Koopman observer design for
models with bilinear lifting functions is considered in [122]. Koopman state estimation in a
batch optimization framework is discussed in |24, 123|, while simultaneous localization and
mapping is additionally considered in [123].

Outside the Koopman literature, observer synthesis methods for specific types of uncer-
tain nonlinear systems are considered. Gain-scheduled linear observers are designed in [124-

126] for linear and bilinear parameter varying systems. H_ optimal observers for systems

oo

with Lipschitz nonlinearities are synthesized in [127-130]. A sliding-mode H_, optimal ob-

server for Lipschitz nonlinear systems is proposed in [131].

7.1.2 Contribution

The key contribution of this chapter is the use of linear robust control tools to quantify the
uncertainty within a population of Koopman models and to synthesize robust nonlinear ob-
servers for uncertain systems modelled with the Koopman operator. Specific contributions
include the collection of a dataset including trajectories from 38 individual motor drives in
unloaded and loaded conditions, the quantification of manufacturing uncertainty within the
dataset, the consideration of multiple frequency-domain uncertainty forms in a Koopman op-
erator identification context, the use of nontrivial uncertainty weighting functions to identify

outliers and synthesize a robust Koopman H,-H_ observer, and the experimental, rather

[e.o]
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than simulated, validation of the proposed approach.
The full motor drive dataset is available for download at [5]. A datasheet following the
format of [132] is also provided. The software required to fully reproduce the results of this

chapter is available at https://github.com/decargroup/robust_observer_koopman.

7.2 Robust Control

This section outlines the robust control fundamentals required to quantify uncertainty within
a population of LTI models and synthesize a robust controller or observer using that uncer-
tainty model.

7.2.1 Nominal stability

The synthesis of an LTI controller that asymptotically stabilizes a known plant is considered

w

4>Z

P

K

Figure 7.2: The generalized plant P for a nominal control problem in feedback with a controller IC.

in this section.

The concept of the generalized plant forms the basis for modern optimal control [101,
§3.8]. The generalized plant P, shown in Figure 7.2, has two sets of inputs and outputs.
The controller inputs and outputs, u and y, represent the signals accessible to a controller
IC. The performance inputs and outputs, w and z, encode performance requirements for the
optimization problem. It is important to note that the generalized plant is not the plant
to be controlled, G, but rather it contains G, along with additional performance inputs and
outputs. The performance inputs and outputs exist for the purpose of optimization only, and
may not ever be computed when the controller is deployed. Examples of performance inputs
include reference signals, disturbances, and measurement noise. Examples of performance
outputs include tracking error and control effort.

Consider the LTI system 7T, which represents the closed-loop system from the perfor-
mance inputs w to the performance outputs y. That is, z = Tw. An optimal controller
IC is chosen to minimize a system norm of 7. Common choices of system norm include

the H, norm and the H_ norm. The particular choice of norm, performance input, and
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https://github.com/decargroup/robust_observer_koopman

performance output is problem-dependent. For example, if w contains a disturbance and z

contains tracking error, then the solution to the optimal control problem
min |17, (71)

can be seen as minimizing the worst-case impact of exogenous disturbances on tracking error.
Posing an optimal control problem in this manner guarantees the asymptotic stability of the

closed-loop system as long as a system norm of T is finite [36].

VA W
W, Wy
+
* y u N

Figure 7.3: Example of a generalized plant for a disturbance rejection problem. The disturbance
input is weighted to indicate the range of frequencies occupied by the disturbance signal, while the
error output is weighted to specify the frequencies over which errors should be minimized.

Without any further specification, an optimal control problem minimizes ||77|| equally
over all frequencies. However, reference signals, disturbances, and noise occupy known fre-
quency bands. Furthermore, specifications related to tracking error and control effort are
only relevant in some frequency bands. As such, performance inputs and outputs are often
weighted with LTI systems called weighting functions. For example, a noise input would be
weighted with a high-pass filter, as the effects of noise are most dominant at high frequen-
cies. A reference input would be weighted with a low-pass filter, as reference signals typically
occupy low-frequencies. Weighting functions can encode specific performance requirements
that, when paired with the H_, norm, are guaranteed to be met when || 7| < 1. An
example of a weighted generalized plant for a disturbance rejection problem can be found in
Figure 7.3.

7.2.2 Robust stability

Performance inputs and outputs can also be used to enforce robustness requirements on

the synthesized controller. Consider Figure 7.4, where A is an AS system representing a
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Figure 7.4: The generalized plant P for the robust optimal control problem in feedback with a
controller JIC and an uncertainty block A.

perturbation. Consider the LTI system 7T ,,, where
zy = T Wy, (7.2)

Assuming that IC asymptotically stabilizes P for A = 0, the small-gain theorem [101, §4.9.4|
implies that the closed-loop system in Figure 7.4 is AS for any ||A| < 1if || Tl < 1.
This fact is used in the robust control framework to synthesize controllers that stabilize any
plant in a modelled uncertainty set.

To model the uncertainty for a given population of systems, an uncertainty structure
must be chosen, often from among those pictured in Figure 7.5. Like with the performance
channels, weighting functions are used to characterize uncertainty in the frequency domain.
Working concretely with transfer matrices now, consider a nominal plant G(z), a perturbed

plant G,(z), and a perturbation, or residual, E(z). The perturbation can be expressed as
E(z) = Wy (2)A(2)Wy(2), [A()]l, <1, (7.3)

where often one of the weighting functions is set to identity. The additive uncertainty model

corresponds to
G, (2) = G(2) + E,(2). (7.4)

Let W,(z) = 1. The remaining weighting function W, (z) is designed to satisfy

1G,(2) = G(2)l, = [[A(:)W.(2) ]l (7.5
< AGE) o W1 (2) ]l (7.6)
< [IWi(2)ll (7.7)
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Figure 7.5: Six possible unstructured uncertainty forms [101, §8.2.3]
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for all perturbed plants. The remaining standard uncertainty forms are
e input multiplicative, where G (z) = G(z) (1 + E;(2)),
e output multiplicative, where G (2) = (1 + E,(2)) G(2),
e inverse additive, where G, (2) = G(z)(1 — E.(2)G(z)) ",
e inverse input multiplicative, where G, (2) = G(z)(1 — E;(2))"", and
e inverse output multiplicative, where G,(z) = (1 — E, (2)'G(2).

Given a population of perturbed plants, each perturbation E(z) is typically calculated
frequency-by-frequency. An uncertainty weight W(z) that bounds all the perturbations is
then designed manually or found using an optimization procedure.

For all uncertainty forms, a nominal plant must be chosen. If no nominal model is directly
available, an average model can be computed. However, the choice of parameters to average,
be they transfer matrix coefficients or canonical state-space matrices, is not obvious. In
data-driven applications, a nominal model can often be computed by identifying a model
using the combined training data from all the plants. In some situations, one plant out of
the population can simply be selected as the nominal plant. Both the choice of uncertainty
structure and the choice of nominal model have a significant impact on the magnitude of
the uncertainty bound and therefore on the performance of the controller or observer being
designed.

Let

Zl - THWl, (78)

H —T [:1] . (7.9)

Given the generalized plant in Figure 7.4, multiple controller synthesis methods can syn-
thesize a robustly stabilizing controller, two of which are discussed here. The H__ optimal

controller achieves robust stability by solving [101, §9.3]
7= argmin |77, (7.10)

and verifying that v < 1. Another option is mixed H,-H_, robust control, where the opti-

[e.o]
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mization problem [133-135]

min |17, (7.11)

st [Tl < 1, (7.12)

is solved. In the next section, concrete approaches to solving these optimization problems

over LTT systems are outlined.

7.2.3 Controller synthesis as semidefinite programming

In this section, one SDP formulation of the mixed H,-H_ optimal control problem is shown.
Other optimal control problems, like the H_ optimal control problem, have similar formu-
lations, but with different LMI constraints. A comprehensive list of SDP formulations of
optimal control and observer design problems can be found in [31].

Consider the discrete-time generalized plant

w
X1 = AX;, + [31,1 B1,2} [WM +Bou,, (7.13)
2.k
Zig| _ C1,1 X, + D11,11 D11,12 Wik X D12,1 u,, (7.14)
Z5 i C1,2 Dyior Dyjoo| |Wau D5,
Wik
Yk:C2Xk+|:D21,1 D21,2} w + Do,uy, (7.15)
2,k

where x;, € R™*! w, , € R"™ " w,, € Rw2*! u, € R™* y, € R z,, € Rt=*],

and 2, € R™:2*1 The state-space matrices have the corresponding dimensions. The mixed
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Ho-H,, optimal control problem in SDP form is [31, §5.4.4]

min J(u, A", B", C", D", X,,Y,,Z;7v) = i (7.16)
s.t. Xy > 0, (7.17)
Y, >0, (7.18)
Z >0, (7.19)
X, 1 X,A+B°C, A X,B,, +B"D,, ]
% X 1 0 > 0, (7.20)
x % * Y, 0
| * % * * 1 ]
X, 1 X,A+BC, A X,B,, +B"D,, , 0 |
* Y, A+B,D"C, AY, +B,C" B,,+B,D"'D,,, 0
% X, 1 0 CT,+CID"' D], -
n't )
% * Y, 0 Y,C],+C" D],
nT
* ok * * 71 DI1,22 + D-2rl,2D D—1]-2,2
x % * * * 71
(7.21)
Z C,1+Dy,D"C, Cy,Y, +Dyy, C°
* X, 1 > 0, (7.22)
E * Y,
D11,11 + D12,1DnD21,1 - 0: (7'23>
X, 1
1 > ()’ (724)
x Y,
tr(Z) < u, (7.25)

where 1 € Ry, 7 € Ry, A" € R B" € R*™*", C" € R D" € R X, =
X/ € Rr=xne Y, = Y] € R%=*"% and Z = ZT € R"1 X", The state-space matrices of the
controller are [31, §5.4.4]

-1

D° — (1 + ﬁCD22> D, (7.26)
C = (1 - DCD22) éc’ ( )
B¢ = B° (1 — D,,D°), (7.28)
A° = A° — B°(1 — D,,D°)'D,,C°, (7.29)
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where

~ ~ —1 —_
A B| [X, XB, A" B® X,AY; 0 YD 0 (7.30)
Cc De 0 1 c* D* 0 o0/ |cy, 1 '
and
X, Y] =1-X,Y,. (7.31)

The value of v must be chosen in advance. To guarantee robust stability, v = 1 is typically
used.

To compute the state-space representation of the mixed H,-H_, optimal controller,
1. solve the SDP in (7.16)—(7.25) to get (A", B",C",D"), X;, Y, and Z,

2. compute X, and Y, using a matrix decomposition of (7.31),

3. compute (Ac,ﬁc, Cc,ﬁc) using (7.30), and

4. compute (A°, B¢, C°, D) using (7.26)(7.29).

The final controller is

min A° | B°
KK~ (7.32)
CC DC
In this chapter, X, and Y, are computed using the SVD. That is,
X, = QVXZ (7.33)
Y,=ZVS (7.34)
where
QxZ' =1-X,Y,. (7.35)

7.2.4 Optimal observer synthesis

Optimal observer design can be viewed as optimal controller design with a particular choice
of generalized plant. This section provides a brief overview of linear observers and their
relationship to linear controllers. Consider the state-space representation of a strictly proper
LTT system,

Vi = Cxy, (7.37)
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where (A, C) is observable. The structure of the most common type of observer, the Luen-

berger observer, is [125]

Yi = Cxy, (7.39)

where L is the observer gain. The observer gain is chosen to asymptotically stabilize the

error dynamics [125]

where e, = X; — X,..

u, Yk
+ ¥ +

N K (

O K O
Vi
g C
X;,

Figure 7.6: The structure of an input-output observer. Note that the output matrix C is drawn as
a separate system from G to allow access to the state estimate.

However, observers need not be limited to static gains. In [125, 136], robust optimal

control techniques are used to synthesize input-output observers of the form

Xip1 = AX; + B (y, — Vi) (7.41)
Yi = X + D (y), — Vi), (7.42)
X1 = AX, + B (u, +y;), (7.43)
y. = Cx,. (7.44)
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A block diagram of an input-output observer is shown in Figure 7.6, where

min AC BC
I~ , (7.45)
I Cc | D°
cg " (A|B (7.46)
_ clol )

A copy of the nominal plant is used for comparison against measurements. The synthesized
controller compares the measurements with the nominal model’s output and makes correc-
tions to the nominal system’s input accordingly. Note that the output matrix C is drawn
as a separate system C in Figure 7.6, to allow access to the state estimate X, in the block
diagram. The input-output observer is the structure of choice for the experimental example
in this chapter. The generalized plant for that specific estimation problem, which is identical
for the linear and Koopman observer problems, is shown in Figure 7.7, demonstrating what
the generalized plant for a robust estimation problem looks like. The specific design choices

made in Figure 7.7 will be detailed in Section 7.4.

Wy Z,

Wi A

g C

-
O——AWs [—

Figure 7.7: The generalized plant for a robust input-output observer problem with inverse input
multiplicative uncertainty.
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7.3 Optimal Control and Estimation with Koopman Models

Thanks to the linearity of the Koopman operator, the optimal control and estimation tech-
niques outlined in this section can be applied to Koopman models with little modification,
as the control design process takes place in the lifted space. One important consideration is
that, as mentioned in Section 3.5.5, the control inputs are typically not lifted in a Koopman
model intended for control. This is to ensure that the lifted control input can be uniquely
retracted and applied to the system. Also, when comparing Koopman controllers to their
linear counterparts, weights on lifted states should be zero to ensure that both methods

minimize the same cost functions.

7.4 Experimental Example: Robust Observer for a Population of

Motor Drives

In this section, the robust control synthesis tools outlined in Section 7.2 are applied to
synthesize a robust Koopman observer for a population of 38 motor drives. Each motor
drive, pictured in Figure 7.8, consists of a motor and a Harmonic Drive gearbox. The gearbox
introduces a periodic oscillation into the system which cannot be captured by a linear model.
The motor drives operate in closed-loop, accepting position and velocity reference signals
and returning position, velocity, and current measurements. The velocity measurements are
computed from position measurements by the drives via a filtered finite difference scheme.
Once a Koopman model for each of the 38 drives is identified, manufacturing uncertainty
is characterized in the frequency domain and a robust Koopman observer is designed to
estimate motor velocity and current using position measurements. Each motor drive is
identified with and without an inertial load. The models used for observer synthesis are
identified using unloaded drives, so the motor current estimation errors can be treated as
load torque estimates. The uncertainty characterization is shown to be sufficiently accurate

to identify an outlier drive that was installed in its mount with incorrect fastener torques.

7.4.1 Dataset

The motor drive dataset consists of 40 episodes per drive, each approximately 20s long. The
drive is loaded with an inertial load, pictured in Figure 7.9, for 20 of the 40 episodes. The
loaded and unloaded datasets are split into 18 training episodes and two test episodes. The
reference position, reference velocity, measured position, measured velocity, and measured
motor current are recorded at 1kHz. The positions and velocities are recorded in rad and

rad/s respectively at the output shaft of the gearbox, while the current is recorded as a
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Figure 7.8: Motor drive used to generate the training data, which consists of a motor with a
Harmonic Drive gearbox. The gearbox introduces nonlinear oscillations into the system, leading to
tracking errors at specific frequencies related to the input velocity. Photo courtesy of Alexandre
Coulombe.

4

Figure 7.9: Rendering of the asymmetric inertial load used when collecting the motor drive dataset.
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fraction of the drive’s full-scale current. Figure 7.10 shows a portion of one of the test
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Figure 7.10: Reference position 6" (t) and velocity 6" (t) for the closed-loop motor drive system from
the first test episode. The velocity reference is a slightly smoothed PRBS, generated by setting
pseudorandom position checkpoints at the maximum allowable velocity and acceleration in the
drive’s control software.

inputs used to characterize the motor drives. The drive’s control software accepts position
checkpoints and generates the smoothed trapezoidal velocity trajectories required to reach
each checkpoint. Each episode contains 10 pseudorandom position checkpoints set within
one revolution of the gearbox output shaft in either direction. The resulting velocity profile
resembles a smoothed PRBS [100, §13.3]. For all episodes, the maximum allowed velocity and
acceleration settings are set in the drive’s control software to generate the most challenging

training and test trajectories possible.

7.4.2 Koopman operator approximation

This section considers the Koopman operator identification and calibration procedure for
a single motor drive. The lifting functions for the motor drive are chosen based on the
nonlinear oscillations that are known to be present in Harmonic Drive gearboxes. The phase
of this oscillation is a calibration parameter that must be identified for each motor drive.

EDMD is then used to identify the Koopman matrix given the calibrated lifting functions.
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7.4.2.1 Lifting function selection

To identify a Koopman model of a motor drive, lifting functions must first be selected. The
motor drives to identify are equipped with Harmonic Drive gearboxes, which are known to
generate vibrations at a frequency once and twice the input frequency [137, 138]. Let 6(¢) be
the gearbox output angle in rad and let i(¢) be the measured motor current as a fraction of
the full-scale current. The nonlinear vibration can be modelled as an exogenous load torque

disturbance, which is proportional to the current disturbance [137]
i4(t) = a, sin (rO(t) + ;) + aysin (2r0(t) + ©,), (7.47)

where a, and a, are vibration amplitudes, ¢, and ¢, are phase shifts, and r is the reduction
ratio of the gearbox. In this case, the gearbox multiplies torque by a factor of 100, so the

reduction ratio is r = 100. These vibrations appear as tracking errors in the position and
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Figure 7.11: Power spectral density of output velocity tracking error during a constant-velocity
trajectory segment. The velocity at the gearbox input is 50rev/s, leading to vibrations at integer
multiples of 50 Hz. The most prominent tracking errors occur at the fundamental frequency. A
logarithmic scale is used to better show the high-frequency harmonics.

velocity of the drive. They also appear in the current command due to the feedback action
of the controller. Figure 7.11 shows the power spectral density of a drive’s velocity tracking
error during a constant 0.5rev/s movement, which is the drive’s maximum speed. Since

the gearbox reduction ratio is known to be r = 100, the resulting gearbox input velocity is
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50rev/s. Velocity tracking errors occur at integer multiples of 50 Hz, with decreasing power
as frequency increases. By several orders of magnitude, the most significant tracking errors
occur at 50 Hz.

Inspired by Figure 7.11 and by (7.47), the Koopman lifting functions for the motor drive

system are chosen to be

O
9, = 0, : (7.48)
sin (1006, + ¢)
Uy = 1. 7.49
— (7.49)

Since the 50 Hz error in Figure 7.11 is by far the largest, only that sinusoidal term is included
in the lifting functions. It was found experimentally that including higher-frequency harmon-
ics has a minimal effect on the system’s overall prediction error. The vibration amplitude a,
is identified as part of the approximated Koopman matrix.

Note the inclusion of a constant phase offset ¢ in (7.48). A calibration procedure for this

fixed offset is proposed in Section 7.4.2.2.

7.4.2.2 Phase calibration

The Koopman lifting functions in (7.48) include a fixed calibration parameter for the phase
of the nonlinear oscillation term, which must be determined before computing the Koopman
matrix. Since this parameter is determined when the motor drive is being assembled, it is un-
known but constant. Designing lifting functions to include both cos (1006,) and sin (100 6,,)
could account for an unknown phase offset, absorbing it into the Koopman matrix. While
this may be appropriate when identifying a single motor drive, it significantly and artificially
increases uncertainty within a population of motor drives, which negatively impacts observer
performance. Including the phase offset in the Koopman matrix also affects the selection of
a nominal plant. Choosing a nominal plant with average damping or inertia is reasonable
for robust controller or observer synthesis, but choosing a nominal Koopman model with
an averaged phase offset does not result in useful predictions for off-nominal plants. Since
the phase offset is constant and is easy to determine for each motor drive, removing it from
the Koopman matrix by identifying it in advance is the preferred approach. By calibrating
for the phase offset in advance, the uncertainty within the population of Koopman models
better reflects the variation in the dynamics of each motor drive and gearbox.

In an earlier version of this work, the phase offset is determined through a hyperparameter

optimization procedure [139]. However, a simpler and more reliable method is presented in
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this chapter. To find the phase offset for a given drive, the position and velocity trajectories
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Figure 7.12: Inner product of the output velocity tracking error 0;’ and the signal sin(1000; + ¢;)
for phase shifts ¢; € [0,27), where ¢ is the segment index. The signal best aligns with the tracking
error at ; = 0.52rad.

are separated into constant-velocity segments. For each segment ¢, the velocity tracking error

9? is calculated and normalized, and the optimum phase,

P, = arg max <Qf, sin(100 6, + gﬁz)> : (7.50)

Pi

is found by evaluating 1000 phase samples in [0, 27). The final phase offset is then calculated

by averaging the optimal phase of each segment using the circular mean [140, §2.2.1],
1 — 1 &

p = atan2 (N;singoi,ﬁlz—;cos gpi) ) (7.51)
where N is the number of segments. To avoid this offline calibration procedure, a phase-
locked loop could be used to estimate ¢ online from velocity tracking errors.
7.4.2.3 Koopman regression

EDMD with Tikhonov regularization is used to identify Koopman matrices using linear lifting

functions and the lifting functions (7.48) and (7.49), along with the phase offset calibration
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parameter ¢. A manual bisection procedure is used to find the smallest regularization
coefficient that results in stable Koopman systems for each drive, both with linear and
nonlinear lifting functions. The Tikhonov regularization coefficient required to stabilize all
Koopman models is a = 90. More advanced methods like those in Chapter 5 could also
be used to guarantee asymptotic stability without such a high regularization coefficient.
However, in spite of the large regularization coefficient, the identified models are shown to

result in good predictive performance and observer designs.

7.4.2.4 Prediction results

The predicted position, velocity, and current trajectories of one motor drive are shown in
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Figure 7.13: Predicted position, velocity, and current trajectories for linear and Koopman drive
models using the first test episode. While both models capture the low-frequency behaviour of the
drive, only the Koopman model is able to reproduce the Harmonic Drive vibrations.

Figure 7.13. The corresponding prediction errors are shown in Figure 7.14. Figure 7.13 shows
that the linear model correctly identifies the low-frequency dynamics of the motor drive, but
does not predict the vibrations induced by the Harmonic Drive gearbox. In contrast, the
Koopman model predicts the oscillations accurately. The position predictions of both models
are nearly identical. Figure 7.14b shows the power spectral density of the prediction errors,

which demonstrate that the Koopman model significantly reduces prediction errors at 50 Hz,
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Figure 7.14: Predicted position, velocity, and current errors for linear and Koopman drive models
using the first test episode. The Koopman model better predicts the gearbox oscillations, leading to
lower velocity and current errors at 50 Hz. The position prediction errors are effectively identical.
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Figure 7.15: Frequency responses of the linear and Koopman models of the 38 motor drives under
test. Uncertainty is highest in the 10 Hz—100 Hz decade, where the gearbox oscillation is located.
The Koopman models vary more than the linear models throughout the spectrum.
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while introducing more low-frequency current prediction error. While higher accuracy could
be obtained by using a more complex Koopman model, the simplicity of the proposed model

is attractive.

7.4.3 Uncertainty characterization

Now that a Koopman model for each motor drive has been identified, uncertainty is quan-
tified within the population. Figure 7.15 shows the maximum singular values of the linear
and Koopman transfer matrices identified for each drive. According to Figure 7.15, the fre-
quency responses vary most in the 10 Hz-100 Hz decade, with the Koopman models varying
significantly more than the linear models in that region. Figures A.1 and A.2, shown in Ap-
pendix A, also show the frequency responses of the linear and Koopman transfer functions
but for each input-output pair.

To design a robust observer, an uncertainty form must be selected. To do so, residual
transfer matrices are computed given a nominal model. Often, an averaged model is chosen
as the nominal model. In this case, lower uncertainty is achieved by selecting one motor
drive model from the population as the nominal model. To select this drive, residuals for
each uncertainty form in Figure 7.5 are computed while treating each identified drive model
as the nominal model. For each uncertainty form, the motor drive yielding the smallest peak
residual is chosen as nominal. For the sake of comparison between the linear and Koopman
approaches, the nominal model for a given drive is selected using the Koopman model’s
residuals.

Figure 7.16 shows the upper bounds on the maximum singular values of the residuals
for each uncertainty form in Figure 7.5. Both output multiplicative uncertainty forms have
high gain over the whole frequency spectrum, and are therefore unsuitable for controller or
observer design. The input multiplicative uncertainty forms are more desirable, as they have
low uncertainty at low frequency and their gains remain below 0dB over all frequencies.
Between the two, the inverse input multiplicative uncertainty form has the lowest gain at
high frequencies, so it is selected for observer design. In Figure 7.16, each residual bound is
computed using its best nominal model. Input-to-output residuals for each uncertainty form
are shown in Appendix A.2.

The uncertainty bounds in Figure 7.16 are computed frequency-by-frequency. Once an
uncertainty model is selected, transfer functions must be designed to bound them. This can
be done manually or automatically with software assistance. Here, a nonlinear optimiza-
tion problem is solved to find the transfer function coefficients that result in a magnitude

response that closely bounds the residuals at each frequency.’ Figure 7.17 shows the uncer-

!The optimization algorithm used to fit bounds to transfer function residuals was originally implemented
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Figure 7.16: Upper bounds on the residuals for each uncertainty form. Both output multiplicative
uncertainty forms have high uncertainty everywhere, while both input multiplicative forms have
uncertainty below 0dB everywhere. Inverse input multiplicative uncertainty is preferred, as it
remains lower than its feedforward counterpart at higher frequencies.

tainty weights bounding the linear and Koopman residuals. Individual weighting functions
are computed for each input-to-output transfer function. For the linear model, first- and
second-order transfer functions are used. The Koopman models require third-order transfer
functions, except for Wy ;;(2), which uses a first-order transfer function. In both the lin-
ear and Koopman cases, W 5,(2) represents the majority of the uncertainty in the transfer

matrix.

7.4.4 Outlier detection

Before using the uncertainty models developed in Section 7.4.3 for robust observer design, an
additional, simpler, application of frequency-domain uncertainty characterization is explored.
The transfer matrix characterizing the uncertainty within a population can be used to identify
drives that do not belong to the population, referred to in this section as outliers. In this
example, outliers are motor drives that have been installed incorrectly. When a motor drive
is installed in its frame with inappropriate fastener torques, tracking performance is degraded
and oscillations induced by the Harmonic Drive gearbox are worsened. This effect is most

apparent when the motor drive is loaded.

by Jonathan Eid with enhancements made by Prof. James Richard Forbes.
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The uncertainty characterization procedure of Section 7.4.3 is now repeated for the loaded
dataset, using the same optimization procedure to determine weighting functions. The in-
verse input multiplicative residuals corresponding to a motor drive that was deliberately
installed with incorrect fastener torques are shown in Figure 7.18. The incorrectly installed
motor drive can be identified by looking at W, ;,(2) in Figure 7.18a and Wy 5,(z) in Fig-
ure 7.18b, where the outlier residuals exceed the fit residual bound. Note that, while the
outliers are easy to identify from the input-to-output plots in Figures 7.18a and 7.18b, they
are not detectable in the maximum singular value plots in Figures 7.18c and 7.18d. As
such, outlier detection must be performed by looking at each residual transfer function in-
dividually, rather than looking only at the maximum singular value of the residual at each
frequency.

While inverse input multiplicative uncertainty is shown in this section, the outlier drive
is detectable using any uncertainty model, as shown in the residual plots in Appendix A.2. It
has been verified that this outlier identification criterion is insensitive to the choice of nominal
model. All choices of nominal model except one correctly identify the outlier model. It could
be argued that that nominal model should also be considered an outlier. Ultimately, the
decision of whether a system should be considered an inlier or outlier depends on the use
case. The uncertainty mode could equally be extended to include the incorrectly installed

drive if a more conservative uncertainty model is required.

7.4.5 Robust observer design

In this section, the robust observer design problem for a population of linear and Koopman
models is solved. Since the motor drive has no true velocity sensor, motor velocity and
current are observed given position measurements. Because the observer is synthesized using
unloaded models, the motor current can be viewed as a proxy for the motor’s electromagnetic
torque. When the observer is fed measurements from a loaded drive, it predicts only the
electromagnetic torque, not the load torque. Consequently, the current prediction error can
be viewed as an estimate of the motor drive’s load torque.

Recall that, unlike a controller, an observer cannot destabilize the observed system. As
such, robustness in this chapter does not refer to robust stability. If the error dynamics
of the synthesized observer are AS, no perturbation of the observed plant can change that
property. Instead, as in [125, 136|, robustness refers to insensitivity of performance to model
uncertainty. In essence, the uncertainty model developed in Section 7.4.3 is used to inform

the observer of when it can trust its internal nominal model.
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7.4.5.1 Observer generalized plant

The generalized plant used for robust observer synthesis, depicted earlier in Figure 7.7, is
inspired by the input-output observer originally proposed in [125, 136]. The controller com-
ponent of the observer, K is synthesized by solving a mixed H,-H_, robust control problem.
The H, norm is a suitable performance metric for an observer due to its interpretation as the
expected RMS output of a system subject to unit variance white noise input [38, §3.3.3][36,
§5.7][42]. Recall that

min A|B
cg , (7.52)
Cclo
and let
min AWp BWp min AWU BWu min AWA BWA
WP ~ CWe | DWr |’ W, ~ CWu | pWn | Wa ~ CWa | pWa |’ (7'53>

where the corresponding states are denoted x, ", x."", and XZVA. A state-space realization

of the generalized plant is

Xpi1 [ A 0 0 BC™: BCM:] [ x, [BDW: BDW:] 0
X1 0 A 0 BC™: 0 X, BD™: 0 B
w
x| = [BWe —BW» AW 0 0 "+ 0 0 [1”“ + |0
w
XV 0 0 0 AV 0 XV BW: 0 2k 0
xVa] L0 0 0 0 A | x| | 0 BW™ 0|
(7.54)
]
z,] [D» —D¥ ™ o o0 || o 0 ][w,] o
) — Xk- 14 ) _|_ uk7
Z,), 0 0 0 O C™ |y, DV DWa| lw,, | |0
k
X" ]
(7.55)
]
f(k
w
ve=|C —C 0 0 of [+ 0 0 [ Vel 4 0, (7.56)
w Wok
Xk u )
x|
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Using these state-space matrices, an H,-H., optimal controller is synthesized using the
method outlined in Section 7.2.3. The final observer has the structure shown in Figure 7.6.

The observer synthesis procedure is identical for the linear and Koopman models, as they
are both represented by state-space matrices. When using the Koopman model for prediction
in the Koopman observer, the original system states are recovered and re-lifted with new

exogenous inputs at each timestep, as is done in the rest of this thesis.

7.4.5.2 Observer weighting functions

Figure 7.19 shows the specific weighting functions used in the robust observer synthesis
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Figure 7.19: Performance, input, and uncertainty weights for the observer design problem, along
with the plant and controller frequency responses. Note that the linear uncertainty weight is very
close to 0dB above 100Hz. This leads to higher controller gains at high frequencies, leading to
degraded performance compared to the Koopman observer.

problem. Aside from w, and z,, the input and output associated with the uncertainty block,
the generalized plant has one performance input and one performance output: w,, which is
associated with the system input and z,;, which is associated with the state estimation error.
For the sake of comparison, the input and performance weights are left as identity. In the
Koopman observer, the performance weight for the lifted state estimation error is zero. Only
the uncertainty weight differs between the linear and Koopman observer synthesis problems.

The intuition for how the observer weight affects the performance of the observer is
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as follows. The controller component of the observer, IC, governs the degree to which the
observer’s internal nominal plant model is corrected. Low uncertainty indicates that the true
plant and nominal model match well, so the observer’s internal nominal plant model should
be trusted without correction. This corresponds to a low controller gain. High uncertainty
indicates that the true plant and the nominal model may differ, so measurements should
be used to correct the nominal plant model. This corresponds to a high controller gain. In
Figure 7.19, the controller gain rises as the model uncertainty rises. As the plant gain rolls
off, so does the controller gain. The linear model has higher uncertainty at high frequencies,
so the controller gain remains higher than that of the Koopman model. In Section 7.4.6, this

effect is shown to degrade state estimation performance.

7.4.6 Experimental results

The performance of the linear and Koopman robust observers is compared in this section.
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Figure 7.20: Estimated position, velocity, and current trajectories of the linear and Koopman ob-
servers for the nominal and the worst off-nominal systems. Unlike the linear observer, the Koopman
observer correctly predicts the gearbox oscillations. The linear model’s transient velocity estimates
are degraded due to higher model uncertainty at high frequencies. Off-nominal predictions are
slightly worse for all observers.

Three test conditions are considered. First, the observers are tested with measurements

from their nominal motor drive. Then they are tested with measurements from the furthest
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Figure 7.21: Position, velocity, and current estimation errors of the linear and Koopman observers for
the nominal and worst off-nominal systems. The Koopman model captures the nonlinear oscillations
and has superior transient performance. Estimation error is slightly worse in the off-nominal case.
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Figure 7.22: Power spectral densities of position, velocity, and current estimation errors of the
linear and Koopman observers for the nominal and worst off-nominal systems. In both cases, the
Koopman observer reduces state estimation errors at 50 Hz. Note the linear scale.
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off-nominal motor drive. These results are shown in Section 7.4.6.1. Finally, as shown in
Section 7.4.6.2, the observers are tested with measurements from the loaded nominal motor

drive.

7.4.6.1 Performance with nominal and off-nominal drives

The linear and Koopman observers synthesized in Section 7.4.5 are compared in this section
for both the nominal drive and the worst off-nominal drive. Figure 7.20 shows the position,
velocity, and current state estimates for the nominal and off-nominal drives. The Koopman
observer is able to account for the gearbox oscillation while the linear model is not. Due to
higher model uncertainty at high frequencies, the linear observer’s transient velocity predic-
tions are less accurate than those of the Koopman observer. There is a slight performance
decrease going from the nominal to off-nominal plant, but the performance is still acceptable.
Figures 7.21 and 7.22 show the corresponding state estimation errors in the time domain
and the frequency domain. In both cases, the Koopman observer significantly reduces errors

at 50 Hz.
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Figure 7.23: Estimated position, velocity, and current trajectories of the linear and Koopman

observers for a nominal plant with an asymmetric inertial load. Neither the linear nor the Koopman
model account for the sinusoidal torque disturbance introduced by the load.
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7.4.6.2 Performance with loaded drive

Observer performance is now assessed for the nominal motor drive with an asymmetric
inertial load attached. Due to the force of gravity, the load introduces a low-frequency
sinusoidal disturbance to the system. The goal of the observer in this context is to estimate
the low-frequency load disturbance while rejecting the high-frequency gearbox disturbance.

The linear and Koopman models, which were not identified using loaded data, do not
predict this disturbance. As such, the observers do not include it in the state estimate.
The state estimates are shown in Figure 7.23, while the state estimate errors are shown in
Figure 7.24. The current tracking error in Figure 7.24a can be treated as an estimate of the
external load on the motor drive, particularly when the drive is not accelerating strongly.

The Koopman load estimate contains less 50 Hz disturbance than the linear load estimate.
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Figure 7.24: Position, velocity, and current prediction errors for linear and Koopman observers for
the nominal plant with an asymmetric inertial load. Neither the linear nor the Koopman model
account for the torque disturbance introduced by the load. The current estimation error A¢ can be
treated as an estimate of the load torque.
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7.5 Conclusion

This chapter explores how the linearity of the Koopman operator can be exploited to quantify
model uncertainty in the frequency domain and synthesize robust nonlinear observers using
that uncertainty. A detailed experimental example is presented, wherein Koopman models
for a population of 38 motor drives are identified and uncertainty within the population is
quantified using standard robust control tools. The frequency-domain uncertainty charac-
terization is shown to be sufficiently accurate to identify incorrectly installed motor drives.
Using this uncertainty model, a mixed H,-H_, robust observer is designed to estimate mo-
tor velocity and current from position measurements. While much contemporary Koopman
control literature focuses on simulated systems, the proposed observer design approach is
demonstrated with real data. Furthermore, the state-of-the-art in robust Koopman control
considers only very simple uncertainty models compared to those presented here.

As with many Koopman control approaches, one limiting factor in this approach is the
inability to lift the control inputs in the Koopman model. Bilinear lifting approaches like [67]
show great potential for MPC algorithms, but may be difficult to integrate with LTI con-
trollers. The proposed observer design approach can equally be used to synthesize robust

optimal controllers, which is a topic that will be explored in future work.
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Chapter 8

pykoop: a Python Library for Koopman

Operator Approximation

Summary

This chapter describes the software architecture of pykoop, an open-source Koopman opera-
tor approximation library written in Python. The contributions of pykoop relative to other
Koopman operator approximation libraries are its support of control inputs and multiple
training episodes, its ability to arbitrarily compose lifting functions, and its compatibility
with standard cross-validation and hyperparameter optimization tools. The methods pre-

sented in Chapters 4-7 are all implemented using pykoop.

8.1 Introduction

Designing Koopman lifting functions for a particular system is largely a trial-and-error pro-
cess [141]. Rather than addressing theoretical aspects of lifting function design, this chapter
presents pykoop [6], a Python library that aims to facilitate experimentation with Koopman
lifting functions and regressors. The pykoop library addresses three limitations in current
Koopman operator approximation software packages. First, pykoop allows lifting functions
to be constructed in a modular fashion, specifically through the composition of a series of
lifting functions. Second, the library allows regressor hyperparameters and lifting functions
to be selected automatically through full compatibility with scikit-learn’s [142] exist-
ing cross-validation infrastructure. Third, pykoop handles datasets with control inputs and

multiple training episodes at all stages of the pipeline.
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8.1.1 Related work

Open-source Python libraries for Koopman operator approximation include PyKoopman [143],
DLKoopman [144], and kooplearn [145]. While PyKoopman provides a similar selection of
lifting functions to pykoop, it does not allow lifting functions to be composed. Furthermore,
the library does not include built-in functionality to handle multiple training episodes. Unlike
pykoop, PyKoopman is able to identify continuous-time Koopman operators. As such, the
library includes several built-in numerical differentiation methods. Neural network lifting
functions are also supported by PyKoopman. The DLKoopman library focuses on learning
Koopman models using only neural network lifting functions, which are not implemented in
pykoop. The library supports multiple training episodes but does not support exogenous
inputs and does not follow the standard scikit-learn interface. The kooplearn library
includes kernel and neural network approaches to learning Koopman models, but does not
include other types of lifting functions. While multiple training episodes are handled by

kooplearn, exogenous inputs are not.

8.1.2 Contribution

The pykoop library tracks training episodes and input-dependent lifting functions through-
out the entire pipeline. This allows lifting functions to be composed arbitrarily while guar-
anteeing that the lifting functions can always be partitioned into input-independent and
input-dependent groups. The library’s strict adherence to scikit-learn’s interface allows
lifting functions to be parameterized and tuned using the cross-validation and hyperparam-
eter optimization tools built in to scikit-learn and other compatible libraries. These key
contributions, which are not fully supported in [143-145|, make pykoop a flexible and user-
friendly library for designing Koopman lifting functions, especially when exogenous inputs

are required.

8.2 Software Architecture

The contributions outlined in Section 8.1.2 are direct results of specific software architecture
choices in pykoop, which are described in this section. The aim of this section is to explain
the high-level organization of pykoop rather than its implementation details. Up-to-date
documentation for pykoop can be found at https://pykoop.readthedocs.io/en/stable/.
The examples found in this chapter use pykoop v1.2.3 and Python 3.12.4.

Unified modeling language (UML) class diagrams [146] are used extensively in this section.

A brief review of the notation follows [146, §B|. Each box represents a class. Inside each
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class, attributes are shown first, followed by methods. Public attributes and methods are
denoted with +, while private ones are denoted with —. Concrete methods are shown in
roman type and abstract methods are shown in italic type. Inheritance is denoted by a solid
arrow pointing from the child class to the parent class. Implementation is denoted by a
dashed arrow. An arrow with a closed diamond denotes composition, while an arrow with
an open diamond denotes aggregation. In both cases, the multiplicity and relevant attribute

name are written next to the arrow.

8.2.1 Data format

In the scikit-learn framework, an estimator is a general term for an object that fits a
model from training data [142]. Koopman lifting functions and regressors can be viewed
as scikit-learn estimators. Estimators adhering to the scikit-learn interface typically
accept two-dimensional numeric NumPy [147] arrays as inputs. Contrary to the notation in
the rest of this thesis, an array compliant with scikit-learn has the number of samples as
its first dimension and the number of features as its second dimension. To correctly apply
lifting functions to training data, a pykoop estimator must know which samples belong to
which episodes. Furthermore, the estimator must know which features are states and which
are inputs.

To specify training episode information, the first feature of a pykoop-compatible NumPy
array may be the episode feature, which contains an integer index that indicates the episode
to which a sample belongs. Exogenous input signals are specified as the last features in the
data array. The presence of this optional episode feature and the dimension of the exogenous
input signal are specified when fitting an estimator. To fit an estimator, the scikit-learn
interface specifies that the estimator must have the method fit (), which accepts training
data but may also have additional optional keyword arguments. All fit methods in pykoop
have the signature fit(X, n_inputs, episode_feature), where n_inputs is an integer
indicating the dimension of the exogenous input and episode_feature is a Boolean variable

indicating the presence of the episode feature.
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Consider an example where episode_feature=True and n_inputs=1. The data matrix

X u
—

e
0 01 —0.1 02 ]
0 02 -02 03 episode 0
0 03 —0.3 04
1 —-01 0.1 03

(8.1)
1 —0.2 0.2 04 | |episode1

1 —03 03 05
2 03 —0.1 0.3
2

02 -02 04

episode 2

is then interpreted by pykoop as having three episodes with a two-dimensional state and
one-dimensional input.

The pykoop library uses this information to keep the original system state at the be-
ginning of the lifted state, keep the input-dependent lifted states at the end of the lifted
state, and prevent reordering or sub-sampling that would mix data from different training

episodes.

8.2.2 The Koopman pipeline

The KoopmanPipeline class, shown in Figure 8.1, is central to pykoop’s Koopman operator

approximation workflow. A KoopmanPipeline object contains a single regression method,

KoopmanPipeline

+ lifting_functions
+ regressor

+ fit(X, n_inputs, episode _feature)

+ predict(X)

+ transform(X)

+ inverse_transform(X)

+ score(X)

+ predict _trajectory(X0 or X, U, relift _state)

* regressor
lifting functions 1
<<abstract>> <<abstract>>
KoopmanLiftingFn KoopmanRegressor
+ fit(X, n_inputs, episode_ feature) + fit(X, n_inputs, episode_feature)
+ transform(X) + predict(X)
+ inverse_ transform(X)

Figure 8.1: Abridged UML class diagram of the KoopmanPipeline class, which aggregates any
number of KoopmanLiftingFn objects and contains exactly one KoopmanRegressor object.
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represented by a KoopmanRegressor, and any number of composed lifting functions, rep-
resented by a sequence of KoopmanLiftingFn objects. When fit, a KoopmanPipeline ob-
ject lifts the training data. This is done by calling the fit() and transform() meth-
ods of each KoopmanLiftingFn object in order. Each lifting function is responsible for
ensuring that the input-independent lifting functions are ordered before input-dependent
ones. The KoopmanRegressor object is then fit. Note that, in keeping with scikit-learn,
each lifting function in a KoopmanPipeline object must be given a name. As such, the
lifting_functions attribute is a list of tuples, where each tuple contains a user-defined
name for the lifting function and the corresponding KoopmanLiftingFn object. The Koop-
man matrix can be extracted from the fit KoopmanRegressor object. The transform() and
inverse_transform() methods of KoopmanPipeline simply lift and retract data.

The KoopmanPipeline object has two prediction methods. The first, predict(), ad-
vances each data point provided by one timestep. The second, predict_trajectory(),
accepts an initial condition and input sequence, and performs a running prediction of an en-
tire trajectory. Its relift_state parameter determines whether the system’s original state
is recovered and re-lifted between timesteps. These options correspond to the local and
global error definitions of [68] respectively, as discussed in Section 3.6. The score() method
uses running predictions to evaluate the estimator, rather than one-step-ahead predictions.

A set of convenient plotting methods are also provided by KoopmanPipeline. These
methods can be used to plot the Koopman system’s frequency response, the maximum
singular values and eigenvalues of the Koopman matrix, the Koopman matrix itself, and the
model’s predictions and prediction errors.

A Python example using the KoopmanPipeline object can be found in Listing 8.1. In the
example, time-delayed polynomials are used as lifting functions to identify a mass-spring-
damper system using EDMD with Tikhonov regularization. Once fit, the KoopmanPipeline
object can be used to predict and plot new trajectories or score the estimator. Note that,
if the order of the polynomial and delay lifting functions was swapped, the resulting lifting
functions would differ. In this case, the polynomial combinations of states are computed first,
and then delayed, so there are no polynomial combinations of delayed states. If the poly-
nomial lifting functions were placed after, then lifted states of the form ;(x;) = 71,7 ;4

would be present.

8.2.3 Koopman regressors

The KoopmanRegressor class, shown in Figure 8.2, is used to represent Koopman regression
algorithms in pykoop. In keeping with the scikit-learn interface, the class inherits from

sklearn.base.BaseEstimator and sklearn.base.RegressorMixin. Each implementa-
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import pykoop

# Get example mass-spring-damper data
eg = pykoop.example_data_msd()

# Create pipeline
kp = pykoop.KoopmanPipeline (
lifting_ functions=[
('polynomial', pykoop.PolynomiallLiftingFn(order=2)),
('delay', pykoop.DelaylLiftingFn(n_delays_state=1, n_delays_input=1)),
e
regressor=pykoop.Edmd(alpha=0.1),

# Fit the pipeline

kp. fit(
eg['X_train'],
n_inputs=eg['n_inputs'],
episode_feature=eg['episode_feature'],

# Predict using the pipeline
X_pred = kp.predict_trajectory(egl['x0_valid'], egl['u_valid'])

# Score using the pipeline
score = kp.score(eg['X_valid'])

# Plot results using the pipeline
kp.plot_predicted_trajectory(egl['X_valid'], plot_input=True)

Listing 8.1: Example usage of the KoopmanPipeline class. Lifting functions are time-delayed poly-
nomials.
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scikit-learn

<<abstract>> <<abstract>>
BaseEstimator RegressorMixin

<<abstract>>
KoopmanRegressor

+ fit(X, n_ inputs, episode feature)
+ predict(X)
— _fit_regressor(X _unshifted, X shifted)

Dmdc Edmd
+ mode_type + alpha

+ tSVd—Shift?d — _fit_regressor(X unshifted, X shifted)
+ tsvd_unshifted =_= = =

— _fit_regressor(X unshifted, X shifted)

Figure 8.2: Abridged UML class diagram of the KoopmanRegressor abstract class, which inherits
from standard scikit-learn abstract classes. All Koopman regression methods in pykoop are
implementations of this class.

tion of KoopmanRegressor overrides a private method, _fit_regressor (), which takes the
unshifted and shifted lifted data matrices as inputs with the episode feature removed. These
preprocessing operations are done inside fit (), and thus do not need to be re-implemented
inside each child class.

The KoopmanRegressor classes implemented in pykoop are

e Dmd, which implements DMD (see Section 3.4.4),

e Dmdc, which implements DMDc (see Section 3.4.5),

e Edmd, which implements EDMD (see Section 3.4.3 and Listing 8.1),

e EdmdMeta, which implements EDMD by wrapping scikit-learn regressors, and
e DataRegressor, which allows a known Koopman matrix to be hard-coded.

LMI-based KoopmanRegressor classes implementing the methods from Chapters 4 and 5
are implemented in pykoop.1lmi_regressors. Selected KoopmanRegressor classes are now

described in detail in their own sections.
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scikit-learn

<<abstract>>
BaseEstimator

<<abstract>>
TransformerMixin

<<abstract>>
KoopmanLiftingFn

+ fit(X, n_inputs, episode_ feature)
+ transform(X)
+ inverse_ transform(X)

<<abstract>>
EpisodeIndependentLiftingFn

<<abstract>>
EpisodeDependentLiftingFn

SplitPipeline

+ fit(X, n_ inputs, episode feature)
+ transform(X)

+ inverse_ transform(X)

— _fit_one_ep(X)

— _ transform_one_ep(X)

— _inverse_transform_ one_ep(X)

+ fit(X, n_ inputs, episode feature)
+ transform(X)

+ inverse transform(X)

— _fit_one_ep(X)

— _transform_one_ep(X)

— _inwverse_ transform_ one_ ep(X)

+ lifting functions_ state
+ lifting functions input

+ fit(X, n_ inputs, episode feature)
+ transform(X)
+ inverse _transform(X)

PolynomialLiftingFn

RbfLiftingFn

DelayLiftingFn

+ order
+ interaction _only

— _fit_one ep(X)
— _transform_one_ep(X)
— _inverse_transform one_ep(X)

+ rbf

-+ centers
+ shape
+ offset

+ n_delays_state
+ n_delays_input

— _fit_one_ep(X)
— _transform_one_ep(X)
— _inverse_transform one_ ep(X)

— fit_one ep(X)
— _transform_one_ep(X)
— _inverse_transform one_ep(X)

Figure 8.3: Abridged UML class diagram describing the KoopmanLiftingFn abstract class, which in-
herits from standard scikit-learn abstract classes. All Koopman lifting functions in pykoop are im-
plementations of this class. The EpisodeIndependentLiftingFn and EpisodeDependentLiftingFn
are used to simplify the implementations of common types of lifting functions.
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8.2.3.1 Edmd

The Edmd class implements EDMD with Tikhonov regularization. Its regularization coeffi-
cient, alpha, is specified in the constructor. Example usage of this class can be found in
Listing 8.1.

8.2.3.2 Dmd and Dmdc

The Dmd and Dmdc classes implement DMD and DMDc respectively. DMD requires one

Dmd Dmdc
+ mode type + mode_type
+ tsvd + tsvd_shifted
— _fit_regressor(X unshifted, X shifted) + tsvd_unshifted
— _fit_regressor(X_unshifted, X shifted)

tsvd _shifted, tsvd unshifted

Tsvd
+ truncation
+ truncation_ param

+ fit(X)

Figure 8.4: Abridged UML class diagram of the Dmd and Dmdc classes, which use the Tsvd class to
implement the truncated SVD.

truncated SVD while DMDc requires two. As shown in Figure 8.4, these classes make use
of the Tsvd class to compute SVDs with different singular value truncation criteria, such as
those discussed in [34]. The Tsvd class inherits from sklearn.base.BaseEstimator. Thanks
to the scikit-learn interface, its truncation parameters can be explored and optimized

using compatible cross-validation and hyperparameter optimization software.

8.2.4 Koopman lifting functions

Koopman lifting functions are implemented using the KoopmanLiftingFn class, shown in
Figure 8.3. The KoopmanLiftingFn class inherits from both sklearn.base.BaseEstimator
and sklearn.base.TransformerMixin. Each child class of KoopmanLiftingFn implements
fit(), transform(), and inverse_transform(). Beyond bookkeeping, the functionality of
fit () varies for each lifting function. The transform() and inverse_transform() methods
lift and retract data matrices.

Some classes, like SplitPipeline, inherit directly from KoopmanLiftingFn. How-
ever, in most cases, it is more convenient to inherit from EpisodeIndependentLiftingFn

or EpisodeDependentLiftingFn, as they contain the majority of the shared code
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for common types of lifting functions. When inheriting from one of these two ab-
stract classes, the child class need only override _fit_one_ep(), _transform_one_ep(),
and _inverse_transform_one_ep(), which consider only a single episode. Any
lifting function that can be applied on a sample-by-sample basis inherits from
EpisodeIndependentLiftingFn. All lifting functions except time delays fall into this cate-
gory. For these types of lifting functions, the single-episode methods can be applied to the
entire data matrix, regardless of episode. Lifting functions that require episode information,
like time delays, inherit from EpisodeDependentLiftingFn. In these cases, the data ma-
trix must be divided by episode. Episode-dependent lifting functions are applied to each
sub-matrix and the resulting lifted sub-matrices are re-combined.

The KoopmanLiftingFn classes implemented in pykoop are

e PolynomialLiftingFn, which implements polynomial lifting functions (see Section 3.5.1
and Listing 8.1),

e DelayLiftingFn, which implements time delay lifting functions (see Section 3.5.2 and
Listing 8.1),

e RbfLiftingFn, which implements RBF lifting functions (see Section 3.5.3),
e KernelApproxLiftingFn, which implements RFF lifting functions (see Section 3.5.4),

e BilinearInputLiftingFn, which implements bilinear input lifting functions (see Sec-
tion 3.5.5),

e ConstantLiftingFn, which adds a constant term to the lifting functions,

e SplitPipeline, which allows different lifting functions to be applied to states and

inputs, and

e SkLearnLiftingFn, which wraps scikit-learn transformer objects into lifting func-

tions.

Selected KoopmanLiftingFn classes are now described in detail in their own sections.

8.2.4.1 PolynomialLiftingFn

The PolynomialLiftingFn class generates monomial lifting functions of a specified order. Its
constructor has two parameters, order, which determines the maximum monomial order,
and interaction_only, which removes lifting functions containing only one variable like

0 (x,,) = xi’k Example usage of this class can be found in Listing 8.1.
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8.2.4.2 DelayLiftingFn

The DelayLiftingFn class generates time delay lifting functions. Its constructor has two
parameters, n_delays_state and n_delays_input, which control the number of time delays
used for the state and input respectively. Note that, if the number of state and input delays
differ, transform() and inverse_transform() will not be exact inverses since some samples

from the data matrix are dropped. Example usage of this class can be found in Listing 8.1.

8.2.4.3 RbfLiftingFn

The RbfLiftingFn class, shown in Figure 8.5, generates RBF lifting functions. The choice

RbfLiftingFn
+ rbf
+ centers
+ shape
+ offset
— _fit_one_ep(X)
— _transform_one_ep(X)
— _inverse transform one ep(X)

—_

centers

<<abstract>>
Centers

+ fit(X)

/

QmcCenters GaussianRandomCenters
+ n_ centers + n_ centers

+ qme + fit(X)
+ symmetric_ range

+ fit(X)

Figure 8.5: Abridged UML class diagram of the RbfLiftingFn class, which implements RBF lifting
functions. The RbfLiftingFn class is composed of one Centers object, which controls where the
RBF centres are placed.

of RBF is specified through the rbf parameter, the shape is specified through the shape
parameter, and, if needed, the offset is specified through the offset parameter. The choice
of algorithm to generate RBF centres is made through the centers parameter, which contains
one object implementing the Centers abstract class. The Centers abstract class inherits
from sklearn.base.BaseEstimator, so the parameters of any class inheriting from Centers,
including the number of centres, can be tuned using standard hyperparameter optimization
tools.

Some centre generation classes provided by pykoop are

e ClusterCenters, which chooses centres according to a clustering algorithm,
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e DataCenters, which uses hard-coded centres provided by the user,

e GaussianRandomCenters, which distributes centres according to a Gaussian distribu-

tion,

e GaussianMixtureRandomCenters, which distributes centres according to a Gaussian

mixture distribution,
e GridCenters, which distributes centres evenly on a grid,

e QmcCenters, which distributes centres using a Quasi-Monte Carlo algorithm like Latin

hypercube sampling (62, 63| (see Listing 8.2), and

e UniformRandomCenters, which distributes centres according to a uniform distribution.

kp = pykoop.KoopmanPipeline(
lifting_ functions=[(
'rbf ',
pykoop.RbfLiftingFn(
rbf="'thin_plate',
centers=pykoop.QmcCenters (
n_centers=100,
gmc=scipy.stats.qgmc.LatinHypercube,
)s
):
)1,
regressor=pykoop.Edmd (),

Listing 8.2: Example usage of the RbfLiftingFn class with centres generated using Latin hypercube
sampling.

An example of a KoopmanPipeline with thin plate RBF lifting functions distributed using
Latin hypercube sampling [62, 63| can be found in Listing 8.2.

8.2.4.4 KernelApproxLiftingFn

The KernelApproxLiftingFn class generates lifting functions that approximate a specified
kernel. The only argument taken by KernelApproxLiftingFn’s constructor is kernel _approx,
which controls the kernel to approximate, its shape parameter, and the number of compo-
nents to use. The kernel_approx attribute can be an instance of the KernelApproximation
abstract class, but it can also be one of scikit-learn’s built-in kernel approximation meth-

ods found in sklearn.kernel_approximation.
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KernelApproxLiftingFn

+ kernel approx

— fit_one_ep(X)

— _transform_one ep(X)

— _inverse_transform_one_ep(X)

—

kernel approx

<<abstract>>
Kernel Approximation

+ fit(X)
+ transform(X)

RandomFourierKernelApprox RandomBinningKernelApprox
+ kernel or ft + kernel or ddot
+ method + n_components
+ n_ components + shape
+ shape + fit(X)
+ fit(X) + transform(X)
+ transform(X)

Figure 8.6: Abridged UML class diagram of the KernelApproxLiftingFn class, which implements
RFF lifting functions. The KernelApproxLiftingFn class is composed of one KernelApproximation
object, which determines the kernel approximation method used.

kp = pykoop.KoopmanPipeline (
lifting_functions=[(
'rff',
pykoop.KernelApproxLiftingFn(
kernel_approx=pykoop.RandomFourierKernelApprox(
kernel _or_ft='gaussian',
n_components=100,
shape=1,
N,
I
regressor=pykoop.Edmd (),

Listing 8.3: Example usage of KernelApproxLiftingFn to generate lifting functions using RFFs.
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The KernelApproximation class inherits from sklearn.base.BaseEstimator
and  sklearn.base.TransformerMixin, ensuring  compatibility ~ with  standard
cross-validation methods. The two kernel approximation classes provided by
pykoop are RandomFourierKernelApprox, which is discussed in Section 3.5.4 and
RandomBinningKernelApprox, which is discussed in [26]. An example of a KoopmanPipeline

with Gaussian RFF lifting functions can be found in Listing 8.3.

8.2.4.5 SplitPipeline

The SplitPipeline class, shown in Figure 8.7 is different from other lifting functions in that

it behaves similarly to KoopmanPipeline. This class allows different sets of lifting functions

SplitPipeline

+ lifting functions _state
+ lifting_ functions_ input

+ fit(X, n_ inputs, episode feature)
+ transform(X)
+ inverse_transform(X)

* | lifting functions state, lifting functions input

<<abstract>>
KoopmanLiftingFn

+ fit(X, n_inputs, episode_ feature)
+ transform(X)
+ inverse_ transform(X)

Figure 8.7: Abridged UML class diagram of the SplitPipeline class, which aggregates any number
of KoopmanLiftingFn objects in 1ifting_functions_state and lifting_functions_input.

to be applied to states and inputs. As with KoopmanPipeline, lifting functions are specified
as lists containing tuples, where the first entry of the tuple is a user-defined name and the
second entry is the corresponding KoopmanLiftingFn object. This class can be used to
avoid lifting inputs when identifying Koopman models for control applications, as shown in
Listing 8.4.

kp = pykoop.SplitPipeline(
lifting functions_state=[
('polynomial', pykoop.PolynomiallLiftingFn(order=2))
e

lifting_functions_input=None,

Listing 8.4: Example usage of SplitPipeline to lift the state with polynomials while leaving the
input unlifted.
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8.3 Example: Cross-Validation

The regressors and lifting functions discussed in this chapter all depend on hyperparameters.
For regressors, they may specify regularization coefficients or SVD truncation criteria. For
lifting functions, they may affect the dimension of the lifted state or the shape of a kernel
function. Systematically hand-tuning these parameters is intractable for complex Koopman
models. Hyperparameters are most often tuned by searching over a grid, searching randomly,
or by using Bayesian optimization, among other techniques [148].

A key tool in hyperparameter optimization, regardless of the optimization technique, is
cross-validation |33, §4.6]. In a cross-validation scheme, a portion of the available data is
set aside to be used for final model evaluation. This portion is called the test set. In k-fold
cross-validation, the remaining data is subdivided into a training set and a wvalidation set in
k different ways, usually randomly. For a given hyperparameter value, £ models are trained
on the training sets, and are evaluated on the validation sets. The £ validation scores are
averaged to determine the score of that hyperparameter value. This process is repeated for
each hyperparameter value, regardless of whether it originates from a grid search, a random
search, or a Bayesian optimization routine. Once the cross-validation procedure is complete,
the model with the highest score is re-fit on the combined training and validation sets, and is
tested on the test set. By adhering to the scikit-learn interface, pykoop allows standard
cross-validation tools to be used to select lifting functions and regressor hyperparameters.

In this section, a simple scikit-learn cross-validation example using pykoop is presented.

Table 8.1: Cross-validation results for Van der Pol system with RBF lifting functions.

n_centers alpha mean_test_score std_test_score rank_test_score

20 0 -3.320724 1.170352 9
20 0.1 -3.267083 1.155264 8
20 1 -0.984383 0.612771 3
30 0 -2.084154 0.040298 5
30 0.1 -2.287393 0.093318 6
30 1 -2.356491 0.148787 7
40 0 -1.788004 0.927631 4
40 0.1 -0.436251 0.178864 1
40 1 -0.787177 0.433653 2

In this example, Gaussian RBF lifting functions are used to identify a Koopman model
of a Van der Pol oscillator [149]. EDMD with Tikhonov regularization is used to approx-
imate the Koopman matrix. This model structure is defined on lines 7-16 of Listing 8.5.

The number of RBF centres and the value of the regularization coefficient are left unspeci-
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import sklearn.model_selection
import pykoop

# Load example Van der Pol data
eg = pykoop.example_data_vdp()
# Set up Koopman pipeline
kp = pykoop.KoopmanPipeline (
lifting_functions=[(
'rbf',
pykoop.RbfLiftingFn(
rbf="'gaussian',
centers=pykoop.QmcCenters (random_state=1234),
):
)1,
regressor=pykoop.Edmd (),
)
# Split data episode-by-episode
episode_feature = eg['X_train'][:, 0]
cv = sklearn.model_selection.GroupShuffleSplit(
random_state=1234,
n_splits=3,
) .split(eg['X_train'], groups=episode_feature)
# Define search parameters
params = {
'rbf __centers__n_centers': [20, 30, 40],
'regressor__alpha': [0, 0.1, 1],
X
# Set up grid search
gs = sklearn.model_selection.GridSearchCV(
estimator=kp,
param_grid=params,
cv=cv,
scoring=pykoop.KoopmanPipeline.make_scorer(),

)

# Fit the pipeline

gs.fit(
eg['X_train'],
n_inputs=eg['n_inputs'],
episode_feature=eg['episode_feature'],

)

# Get results
cv_results = gs.cv_results_
best_estimator = gs.best_estimator_

Listing 8.5: Example usage of pykoop for cross-validation.
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fied. Three-fold cross-validation is implemented using scikit-learn’s GroupShuffleSplit.
This class uses the episode feature to ensure that episodes are not broken up or mixed.
The cross-validation specification is found on lines 18-22 of Listing 8.5. A grid search algo-
€ {0,0.1,1} x
{20,30,40}. The scoring metric is, by default, the negated mean-squared error. The

rithm, scikit-learn’s GridSearchCV, is used to evaluate every (o, N qpires)
grid search setup is found on lines 24-34. The resulting GridSearchCV object is itself a
scikit-learn estimator. To perform the cross-validation, this object is fit using the com-
bined training and validation set. The cross-validation results, along with the best estimator,
are added as attributes of the GridSearchCV object after the fit. A summary of the cross-

validation results can be found in Table &.1.

8.4 Conclusion

This chapter outlines the software architecture of pykoop, an open-source Python library
for Koopman operator approximation. The pykoop library differentiates itself from other
offerings through its support of multi-episode training sets and exogenous inputs, through
its compatibility with standard cross-validation and hyperparameter optimization tools, and
through its ability to arbitrarily compose lifting functions.

Each of these features is enabled by the specific design choices explained throughout the
chapter. Support for multi-episode training sets and exogenous inputs is made possible by the
data format defined in Section 8.2.1, which all pykoop regressors and lifting functions adhere
to. The compatibility of pykoop with standard cross-validation and hyperparameter tuning
is due to the fact that every component of pykoop is a scikit-learn estimator. The ability
to compose lifting functions is thanks to the structure imposed by the KoopmanPipeline
and KoopmanLiftingFn classes defined in Sections 8.2.2 and 8.2.4 respectively.

A limitation of pykoop’s architecture is that it is difficult to remove lifting functions
after a regressor has been fit. Methods that rely on removing redundant or problematic
Koopman modes like [150] would be difficult to implement in pykoop. Furthermore, pykoop
only supports retracting the lifted state by extracting it from the first lifting functions. The
ability to recover the lifted state using least-squares as in [12, §3.2.1] would be valuable, as it
would remove the restriction that the original system’s state must be included in the lifted
state.

Given that the contributions outlined in Chapters 4-7 of this thesis are all implemented
using pykoop, its software architecture has been proven to be user-friendly while remaining

flexible enough for research tasks.
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Chapter 9

Closing Remarks and Future Work

Learning a Koopman operator amounts to identifying a linear system in a higher-dimensional
lifted space. This thesis explores how concepts from linear systems theory can be used
to enhance the Koopman operator identification process, and how standard linear optimal
control tools can be applied to Koopman models in the lifted space. The Preface contains a
comprehensive list of the contributions found in this thesis.

Chapters 4, 5, and 6 consider the Koopman regression problem. In Chapter 4, EDMD
and DMDc are reformulated as SDPs. The following two chapters build upon these refor-
mulations by adding additional constraints that incorporate linear systems properties into
the regression problem. Chapter 5 considers how two important system properties, asymp-
totic stability and gain, can be used to shape the Koopman regression problem. In the first
part of the chapter, an asymptotic stability constraint is added to the regression problem
to ensure that the Koopman model of an AS system shares this property. In the second
part, the H__ norm of the Koopman system is used to regularize the regression problem, also
guaranteeing asymptotic stability while ensuring that the gain of the Koopman system is rea-
sonable. An appealing feature of H_ norm regularization is the ability to add LTI weighting
functions to the regularizer. In Chapter 6, the identification of potentially unstable systems
is considered. To practically collect data from an unstable system, a stabilizing controller is
required. In the Koopman operator identification process, the effect of this controller must
be removed. Chapter 6 proposes a method for simultaneously identifying the closed-loop and
open-loop Koopman systems given a known controller, also through the use of constraints on
the SDPs reformulation of the Koopman regression problem. Both Chapter 5 and Chapter 6
demonstrate their proposed methods on experimental data.

Chapter 7 discusses how linear robust control tools can be used to synthesize a robust
Koopman observer in the lifted space. Due to the linearity of the Koopman operator, a

population of Koopman models can be compared through their frequency responses using
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standard robust control tools. Uncertainty within a population can be bounded in the fre-
quency domain and used to synthesize controllers or observers that are robust to variation in
the population. Chapter 7 specifically considers the robust observer synthesis problem, where
the uncertainty model determines the frequency ranges in which the observer’s internal model
is trustworthy. The proposed approach is tested on an experimental dataset collected from
several dozen motor drive systems, where the uncertainty reflects manufacturing variation.

Chapter 8 outlines the software architecture of pykoop, an open-source Koopman oper-
ator approximation library designed to support the research in Chapters 4-7. The pykoop
library sets itself apart from other Koopman operator approximation libraries through its
compatibility with multi-episode datasets and exogenous inputs, through its ability to con-
struct new lifting functions through composition, and through its compatibility with standard
hyperparameter optimization tools.

The limitations of each contribution, along with proposed enhancements, are discussed

at the end of each chapter. A high-level discussion of future research directions follows.

9.1 Future Work

Chapter 5 considers properties of the approximate Koopman system from a practical perspec-
tive: it is often convenient to work with AS systems, or systems with low gain. However, it
is not clear how the properties of an approximated Koopman system relate to the properties
of the original nonlinear system. There is a relationship between the asymptotic stability of
a Koopman system and the original system [68|, but there is no clear relationship for system
norms. Future theoretical work might ask what, if anything, the H_ norm of a Koopman
system says about the original nonlinear system, which does not have a norm defined.

A pervasive issue in designing Koopman lifting functions in Chapters 6 and 7 is the
inability to lift exogenous inputs. Leaving exogenous inputs unlifted has been shown to limit
the types of systems that can accurately be represented with a Koopman model [67]. Bilinear
lifting functions are shown to represent a much wider class of systems, but are still difficult
to work with in control applications.

A final open question at the intersection of control theory and Koopman operator theory is
whether Koopman models intended for control might have different properties than Koopman
models intended for prediction alone. Koopman models with excellent predictions do not
always result in good controllers, and the reasons for this are so far unclear. Properties like
the closure of the Koopman model, the number and type of lifting functions, the sensitivity
of the lifting functions in the region of interest, and the methods used to recover the original

system’s state may all have different effects when synthesizing Koopman controllers using
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optimal control tools.

The Koopman operator presents a tremendous opportunity to combine tried-and-true
linear systems and control techniques with novel machine learning methods, but more fun-
damental work is required before these techniques can be applied to Koopman systems with

the same ease as linear systems.
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Appendix 1

Motor Drive Uncertainty

Characterization

This appendix contains additional figures relating to the uncertainty characterization of
the population of 38 motor drives. Specifically, Appendix A.1 contains the input-to-output
frequency responses for each unloaded motor drive, Appendix A.2 contains the residuals of
the unloaded motor drives for each of the six uncertainty forms, and Appendix A.3 contains

the loaded outlier residuals for each of the six uncertainty forms.

A.1 Frequency Responses of Linear and Koopman Models

This appendix contains the input-to-output frequency responses of each unloaded linear and
Koopman drive model.

Figure A.1 shows the frequency responses of the linear models. The magnitude of G, (f)
is close to 0dB for every motor drive up to 100 Hz, indicating that the tracking error of the
drive’s controller is low at low frequencies. The magnitude of Gy, (f) is similarly 0dB for all
motor drives below 100 Hz, but at higher frequencies, the transfer functions vary significantly
more.

Figure A.2 shows the frequency responses of the Koopman models. The magnitudes of
G1,(f) and Goy(f) are similar to those of the linear models. However, the variation between
the individual motor drives appears to be lower for G,y (f) and higher for all other transfer

functions.
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Figure A.1: Frequency responses of linear models of the 38 motor drives under test, from each
input to each output. Notably, G11(f) and Gaa(f) have unity gain throughout the frequency range,
indicating that the position and velocity track the reference well, at least below 100 Hz.
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Figure A.2: Frequency responses of Koopman models of the 38 motor drives under test, from
each input to each output. Notably, G11(f) and Gaz(f) have unity gain throughout the frequency
range, indicating that the position and velocity track the reference well, at least below 100 Hz. The
frequency responses of the Koopman models are significantly more varied than those of the linear
models.
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A.2 Residuals of Unloaded Linear and Koopman Models

This appendix contains the input-to-output residuals of each unloaded linear and Koopman
drive model, for each of the six uncertainty forms.

The additive residuals are shown in Figure A.3, the inverse additive residuals are shown
in Figure A.4, the input multiplicative residuals are shown in Figure A.5, the inverse input
multiplicative residuals are shown in Figure A.6, the output multiplicative residuals are
shown in Figures A.7 and A.8, and the inverse output multiplicative residuals are shown in
Figures A.9 and A.10.
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A.3 Outlier Residual for Loaded Linear and Koopman Models

This appendix contains the input-to-output residuals of each loaded linear and Koopman
drive model, for each of the six uncertainty forms, along with the outlier residuals. In
each figure, the outlier residual exceeds the residual bound in at least one of the transfer
functions, meaning it could be detected with a weighting function that is sufficiently close
to the residual bound.

The additive residuals are shown in Figure A.11, the inverse additive residuals are shown
in Figure A.12, the input multiplicative residuals are shown in Figure A.13, the inverse
input multiplicative residuals are shown in Figure A.14, the output multiplicative residuals
are shown in Figures A.15 and A.16, and the inverse output multiplicative residuals are
shown in Figures A.17 and A.18.
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