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Abbreviation Glossary 
CMR : Cardiovascular Magnetic Resonance 

MRI : Magnetic Resonance Imaging 

ICMP : Ischemic Cardiomyopathy 

CAD : Coronary Artery Disease 

MI : Myocardial Infarction 

OS-CMR : Oxygenation-Sensitive Cardiovascular Magnetic Resonance Imaging 

LGE: Late Gadolinium Enhancement 

CT : Computed Tomography 

BOLD : blood oxygen level dependent 

RF: Radio Frequency 

SSFP: Steady-State Free Precession 

bSSFP: Balanced Steady-State Free Precession 

CNN: Convolutional Neural Networks 

ROI : Region of Interest 

LOG : Laplacian of Gaussian 

GLCM : Gray Level Co-occurrence Matrix  

GLRLM : Gray Level Run Length Matrix  

GLSZM : Gray Level Size Zone Matrix  

NGTDM : Neighboring Gray Tone Difference Matrix  

GLDM : Gray Level Dependence Matrix  

ROC : Receiver operating characteristic 
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Abstract- English 

Ischemic cardiomyopathy (ICMP) is a condition where heart muscle damage due to 

decreased blood flow, or ischemia, impairs the heart's ability to pump blood efficiently. On a 

tissue level, severe irreversible ischemic injury, also known as myocardial infarction (MI), 

results in a fibrotic scar. Cardiovascular Magnetic Resonance (CMR) imaging is a valuable 

tool for the quantitative assessment of the heart’s morphology and function, but its unique 

ability lies in the ability to provide information on tissue pathology such as viualizing the 

extent of myocardial infarction and differentiate damaged myocardium from healthy and 

viable tissue. However, conventional CMR approaches require the acquisition of multiple 

images using multiple acquisition protocols and several slices, which is time-consuming. 

Most importantly, CMR imaging of myocardial scars necessitates an intravenous application 

of contrast agents, posing risks to patients with renal impairment and increasing the 

complexity of the imaging procedure. 

Oxygenation-sensitive Cardiovascular Magnetic Resonance (OS-CMR) is a novel, 

experimentally validated approach that uses the Blood Oxygen Level Dependent (BOLD) 

effect, where deoxygenated hemoglobin acts as a natural contrast agent in the magnetic field. 

This technique can be combined with vasoactive breathing maneuvers—paced hyperventilation 

followed by a breath hold—to visualize changes in myocardial oxygenation that can be induced 

by vasoactive medication on by breathing maneuvers. The breathing maneuvers induce carbon 

dioxide variations, causing vasoconstriction during hyperventilation and vasodilation during a 

long breath-hold. This method thus provides a means to assess abnormalities of the vascular 

function in affected ischemic or infarcted regions without the need for external contrast agents. 

Radiomics refers to the extraction of a large number of quantitative features from medical 

images using advanced computational algorithms. When paired with Artificial Intelligence 
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(AI), radiomics transforms these features into valuable clinical information that can predict 

disease characteristics and outcomes. The integration of radiomics with AI algorithms holds 

the potential to enhance patient-specific predictions by learning complex patterns in the data 

that may be imperceptible to the human eye. 

This study aims to explore the potential of combining OS-CMR with radiomics and AI 

techniques to identify ICMP. By using a four-minute, non-contrast, and detailed imaging OS-

CMR protocol and the analytical power of radiomics, this study aims to develop a robust, non-

invasive diagnostic approach for identifying patients with ICMP.  
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Abstract- Français 

La cardiomyopathie ischémique (ICMP) est une condition dans laquelle des lésions du muscle 

cardiaque dues à une diminution du flux sanguin, ou ischémie, altèrent la capacité du cœur à 

pomper le sang de manière efficace. À l’échelle tissulaire, une lésion ischémique sévère et 

irréversible, également connue sous le nom d'infarctus du myocarde (MI), aboutit à une 

cicatrice fibreuse. L'imagerie par résonance magnétique cardiovasculaire (CMR) est un outil 

précieux pour l'évaluation quantitative de la morphologie et de la fonction cardiaques, mais sa 

capacité unique réside dans la possibilité de fournir des informations sur la pathologie 

tissulaire, telles que la visualisation de l'étendue de l'infarctus du myocarde et la différenciation 

entre le myocarde endommagé et le tissu sain et viable. Cependant, les approches 

conventionnelles de la CMR nécessitent l'acquisition de plusieurs images en utilisant divers 

protocoles d'acquisition et plusieurs coupes, ce qui prend du temps. Plus important encore, 

l'imagerie par CMR des cicatrices myocardiques nécessite l'application intraveineuse d'agents 

de contraste, ce qui pose des risques pour les patients souffrant d'insuffisance rénale et 

augmente la complexité de la procédure d'imagerie. 

L'imagerie par résonance magnétique cardiovasculaire sensible à l'oxygénation (OS-CMR) est 

une approche novatrice, validée expérimentalement, qui utilise l'effet de dépendance au niveau 

d'oxygène sanguin (BOLD), où l'hémoglobine désoxygénée agit comme un agent de contraste 

naturel dans le champ magnétique. Cette technique peut être combinée avec des manœuvres 

respiratoires vasoactives—hyperventilation rythmée suivie d'une apnée—pour visualiser les 

changements de l'oxygénation myocardique pouvant être induits par des médicaments 

vasoactifs ou par des manœuvres respiratoires. Les manœuvres respiratoires induisent des 

variations du dioxyde de carbone, provoquant une vasoconstriction pendant l'hyperventilation 

et une vasodilatation pendant une apnée prolongée. Cette méthode offre ainsi un moyen 
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d'évaluer les anomalies de la fonction vasculaire dans les régions ischémiques ou infarctées 

touchées, sans nécessiter d'agents de contraste externes. 

Le radiomique fait référence à l'extraction d'un grand nombre de caractéristiques quantitatives 

à partir d'images médicales à l'aide d'algorithmes computationnels avancés. Associé à 

l'intelligence artificielle (AI), le radiomique transforme ces caractéristiques en informations 

cliniques précieuses qui peuvent prédire les caractéristiques et les résultats de la maladie. 

L'intégration du radiomique avec des algorithmes d'AI offre le potentiel d'améliorer les 

prédictions spécifiques aux patients en apprenant des motifs complexes dans les données qui 

peuvent être imperceptibles à l'œil humain. 

Cette étude vise à explorer le potentiel de la combinaison de l'OS-CMR avec les techniques de 

radiomique et d'AI pour identifier l'ICMP. En utilisant un protocole d'imagerie OS-CMR 

détaillé, non contrasté, de quatre minutes, et la puissance analytique du radiomique, cette étude 

vise à développer une approche diagnostique robuste et non invasive pour identifier les patients 

atteints d'ICMP. 
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Thesis Overview 

This thesis is structured into three chapters, each aimed at advancing the understanding and 

application of oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) combined 

with medical imaging radiomics for the diagnosis of ischemic cardiomyopathy (ICMP). 

Chapter 1 provides the background context by delineating the significance of OS-CMR as a 

contrast-free method for evaluating myocardial oxygenation non-invasively. It highlights the 

utility of OS-CMR in diagnosing heart diseases, particularly myocardial ischemia, and 

introduces medical imaging radiomics as an emerging field using quantitative features 

extracted from images to automate disease assessment. The chapter outlines the study's 

objective to assess the potential of radiomic features extracted from OS-CMR images in 

identifying cases of ischemic cardiomyopathy. 

Chapter 2 presents an original research manuscript, describing the automatic segmentation of 

the myocardium, data analysis, and the extraction of radiomic features from short-axis images 

captured across various phases of the cardiac cycle. Feature selection and a Random Forest 

classifier for distinguishing between healthy and ischemic cardiomyopathy cases are also 

explained. 

Chapter 3 The chapter addresses the potential of combining radiomic feature extraction from 

OS-CMR cine images with machine learning techniques for efficient and non-invasive 

stratification of heart conditions in clinical settings. 
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1.1 Introduction 

Ischemic cardiomyopathy (ICMP), characterized by impaired myocardial function due to 

reduced blood flow and a subsequent decrease in oxygen and nutrient supply with ischemic 

tissue damage, is a leading cause of death worldwide [1]. This condition can lead to adverse 

cardiac events, including heart failure and sudden cardiac death [2]. Traditionally, the definitive 

diagnosis of ICMP has relied on procedures such as coronary angiography, computed 

tomography (CT) angiogram, late gadolinium enhanced (LGE) imaging, and adenosine stress 

testing, each of which has its limitations and risks for patients[3].  

Oxygenation-sensitive cardiovascular magnetic resonance imaging (OS-CMR) is a novel non-

invasive technique to assess cardiovascular function by capitalizing on the unique behaviour 

of deoxygenated hemoglobin, which, due to its paramagnetic nature, serves as an endogenous 

contrast agent within the magnetic field, such that of an MRI scanner, influencing signal 

strength in response to its concentration changes [4]. This phenomenon, recognized as the 

blood oxygen level-dependent (BOLD) effect, helps reveal changes in tissue oxygenation 

across different regions. Changes in OS-CMR signal intensities can be expressed as the 

inducible relative increase in signal intensity, called the myocardial oxygenation reserve 

(MORE), which quantifies the responsiveness of the coronary vascular system tracking the 

oxygenation-related signal intensity levels during vasoactive maneuvers such as vasodilation 

infusion or a breathing maneuver against those at rest [5]. It has been observed that patient 

populations with coronary artery disease (CAD) or those at risk for the disease typically show 

a reduced MORE compared to healthy controls [6]. This capacity of OS-CMR to track 

oxygenation changes provides potentially valuable information for the non-invasive diagnosis 

of ICMP.  
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Radiomics is a technique that involves the extraction of a potentially large number of 

quantitative features from medical images, which aid in characterizing shape and texture of the 

tissue in these images and transforming them into mineable high-dimensional data. Research 

has demonstrated the potential clinical utility of radiomics in CMR. For instance, a study by 

Baessler et al. [7] highlighted the potential of CMR texture analysis to distinguish between 

hypertrophic cardiomyopathy (HCM) and normal hearts using non-contrast cine images. 

Similarly, a study by Cetin et al. [8] showed that radiomics could detect subtle myocardial 

architecture changes, which might not be apparent through conventional image inspection, 

offering a novel perspective in assessing hypertension-induced myocardial alterations. 

Furthermore, the application of radiomics extends to differentiating between various disease 

states, providing incremental accuracy in identifying conditions such as HCM from 

hypertensive heart disease, and also discerning acute from chronic myocardial infarctions with 

a high degree of precision [9], [10]. These examples substantiate the utility of radiomics in 

refining cardiovascular disease identification, understanding myocardial pathology, and 

potentially predicting clinical outcomes. When paired with artificial intelligence (AI) 

methodologies, radiomic features can be used to develop predictive models capable of 

automatically identifying cardiac diseases. 

Given the promising capabilities of radiomics and AI in CMR, this study aims to use these 

techniques to explore the potential of OS-CMR imaging in identifying ischemic 

cardiomyopathy.   

1.2 Cardiovascular Magnetic Resonance  

Cardiovascular magnetic resonance (CMR) is a non-invasive imaging modality that uses 

magnetic resonance imaging (MRI) to assess the function and structure of the cardiovascular 

system and is particularly valued for its ability to provide high-resolution images without 
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ionizing radiation [11]. This section provides an overview of CMR, its principles, and its 

applications in clinical practice. 

1.2.1 Principles of Magnetic Resonance Imaging  

The fundamental principles of MRI revolve around the magnetic properties of atomic nuclei. 

When placed in a strong magnetic field, the nuclei of atoms with a polarity and thus a magnetic 

moment align with the field. In the human body, the most abundant of such atoms are hydrogen 

atoms (protons) [12]. In the magnetic field, protons also show a specific movement called 

precession, also referred to as ‘spin’. Because this movement has a known frequency, an 

external application of a pulse with that frequency can induce a resonant. For the MR 

experiment, a resonant radio frequency (RF) pulse is applied that lifts protons to a higher energy 

level, also disrupting the alignment. When the pulse is turned off, the nuclei return to their 

original equilibrium state, releasing a detectable amount of energy [12]. Antennas (coils) and 

the MRI scanner capture this emitted energy and use it to create detailed images. This energy 

is translated into a greyscale value (signal) in the images. Because the signal intensity varies in 

intensity depending on the type of tissue and its chemical environment, its display allows for 

the differentiation between tissue characteristics [13].  

The terms describing the duration of the relaxation process after the pulse are T1 relaxation 

(longitudinal) and T2 relaxation (transverse). These relaxation times provide valuable 

information about tissue characteristics and different pathologies. T1 relaxation reflects the 

recovery of longitudinal magnetization of the nuclei back to equilibrium along the direction of 

the magnetic field [14]. Tissues with shorter T1 relaxation times typically  appear bright on T1-

weighted images, while those with longer T1 relaxation times appear darker. This is 

particularly evident in pathologies where T1 values are elevated due to increased interstitial 

space, such as in amyloid deposition or fibrosis [14]. In contrast, T2 relaxation represents the 
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loss of coherence in the spins of the nuclei following excitation, occurring perpendicular to the 

direction of the static magnetic field. Tissues with shorter T2 relaxation times appear dark on 

T2-weighted images, while those with longer T2 relaxation times appear bright. For instance, 

tissues with high water content, such as edema or inflammation, often display prolonged T2 

relaxation times, with an increased signal intensity on T2-weighted images. This is particularly 

useful in diagnosing acute conditions such as myocarditis and acute myocardial infarction [15].  

1.2.2 Utility of Cardiovascular Magnetic Resonance 

CMR distinguishes itself from cardiac CT, coronary angiography, and nuclear imaging, which 

rely on ionizing radiation, by deriving tissue contrast from the intrinsic physical properties of 

tissues itself. It covers the assessment of morphology, contractile function, and blood flow 

within a single examination. This comprehensive capability enables CMR to diagnose a wide 

array of heart conditions, including myocardial ischemia, cardiomyopathies, myocarditis, 

vascular diseases, and congenital heart diseases. [16]. Regarded as the gold standard method 

for measuring the volumes of the left and right ventricles, CMR is crucial for identifying and 

understanding different types of cardiomyopathies.  

Late gadolinium enhancement (LGE) in CMR is a technique that uses the behavior of 

gadolinium-based contrast agents within the heart's extracellular space to highlight differences 

in tissue composition [17]. The principle behind LGE is the differential shortening of the T1 

relaxation time caused by these contrast agents, which accumulate differently in normal and 

diseased myocardial tissues due to variations in their uptake and elimination [18]. Clinically, 

LGE is invaluable in detecting and characterizing a range of myocardial diseases, from 

myocardial infarction and myocarditis to cardiomyopathies including ICMP, by identifying 

areas of scar tissue, fibrosis, and other myocardial injuries [18]. However, it has been observed 

that the use of gadolinium-based contrast agents in CMR can lead to gadolinium deposition in 
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the brain and other tissues [19]. It can also cause complications for patients with renal 

impairments, highlighting the need for imaging methods that do not rely on contrast agents, 

which would be especially beneficial for these patient populations [20]. 

1.2.3 Principles of Oxygenation-Sensitive Cardiovascular Magnetic Resonance 

Oxygenation-Sensitive Cardiovascular Magnetic Resonance (OS-CMR), is a diagnostic 

imaging technique used to evaluate oxygenation changes within myocardial tissue [21]. This 

method is particularly valuable because it offers a non-invasive way to assess myocardial 

oxygenation by detecting mismatches in oxygen supply and demand [5]. It can highlight 

inhomogneities and regions with an abnormal vascular response and subsequent variations of 

the oxygenation-sensitive signal intensity.  

OS-CMR uses the Blood Oxygen Level-dependent (BOLD) effect, which is primarily based 

on the magnetic properties of deoxygenated hemoglobin. Deoxygenated hemoglobin is a 

paramagnetic molecule that reduces local magnetic field homogeneity, which can be visualized 

as a reduction in signal intensity [22]. In contrast, oxygenated hemoglobin acts as a weakly 

diamagnetic molecule and therefore slightly increases local magnetic field homogeneity, 

causing a signal intensity increase in OS images. These changes, particularly evident in tissues 

with significant variations in deoxygenated hemoglobin concentration, accelerate the decay of 

transverse (T2) relaxation, impacting signal intensity [5]. T2* signal, which is a subset of T2, 

predominates in heterogeneous tissues and reflects the rate of magnetic resonance signal decay 

over time. It is influenced by the presence of deoxygenated hemoglobin, thereby affecting the 

BOLD signal in tissues with a more rapidly decaying transverse relaxation. In cases of ischemia 

i.e. regional relative myocardial deoxygenation, the concentration of deoxygenated 

hemoglobin in capillary blood increases, resulting in T2* shortening and consequently 

decreased signal intensity on OS-CMR images [5]. The contrasting effects of oxygenated and 
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deoxygenated hemoglobin on the local magnetic field of MRI serve as an intrinsic contrast 

agent [23]. This phenomenon shows the utility of OS-CMR in identifying regions of reduced 

oxygenation within the myocardium. Areas that show normal increases and decreases in blood 

flow during breathing maneuvers are considered normal, whereas areas that do not vary much 

are deemed abnormal or ischemic. This is particularly beneficial for diagnosing conditions such 

as CAD and ICMP, where localized oxygen deficits may occur. OS-CMR distinguishes itself 

by its capacity to map and monitor changes in myocardial oxygenation without necessitating 

contrast agents. 

Breathing maneuvers, involving controlled hyperventilation followed by a maximal breath-

hold, have emerged as a viable and less invasive alternative to traditional pharmaceutical 

vasodilators like adenosine for assessing vascular function in cardiovascular imaging. 

Historically, adenosine has been used in OS-CMR to detect regional blood flow deficits across 

various patient populations [24]. Despite its efficacy, the use of adenosine is often limited by 

contraindications and adverse effects [25]. In contrast, carbon dioxide (CO2), a potent 

endogenous vasodilator, has been explored for its ability to induce vasodilation more safely 

[26]. Although CO2 and other vasoactive stimuli can reveal endothelial dysfunction through 

attenuated vasodilatory responses, practical limitations such as patient compliance and issues 

with signal-to-noise ratio (SNR) have curtailed their widespread use [27]. 

Breathing maneuvers have been validated in several studies as a suitable substitute for inhaled 

CO2, showcasing their applicability in diverse patient groups [28], [29], [30]. These maneuvers 

induce measurable myocardial oxygenation changes detectable by OS-CMR, providing 

information about myocardial blood flow and vascular resistance [31]. Specifically, 

hyperventilation-induced hypocapnia leads to vasoconstriction and an increase in vascular 

resistance, reducing OS-CMR signal intensity due to a relative increase in deoxyhemoglobin. 

Conversely, breath-hold-induced hypercapnia results in vasodilation and decreased vascular 
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resistance, increasing OS-CMR signal intensity [31]. Further research has demonstrated that 

breathing maneuvers not only increase patient comfort but also potentially offer greater 

sensitivity to myocardial oxygenation changes compared to adenosine, with fewer adverse 

effects [32]. They have also been effective in detecting inducible ischemia in animal models 

and multivessel CAD patients, as well as in highlighting microvascular dysfunction in 

conditions like obstructive sleep apnea, heart failure, and post-heart transplantation [28], [29], 

[33], [34], [35], [36].  

1.3 Ischemic Cardiomyopathy 

Ischemic cardiomyopathy (ICMP) refers to a condition where the heart's ability to pump blood 

efficiently is reduced due to damage (infarction) or chronic severe ischemia [37]. This term is 

closely linked with coronary artery disease (CAD), which is characterized by the buildup of 

plaques in the coronary arteries, leading to decreased oxygen and nutrient supply to the heart 

muscle [38]. Initially, there's a reversible decline in the heart's contraction ability due to 

decreased oxygen supply. However, prolonged ischemia causes irreversible myocardial 

damage, known as myocardial infarction (MI) [39]. Various factors contribute to the 

development of ICMP, including CAD, coronary plaque rupture, coronary vasculitis, coronary 

artery dissection, coronary microvascular disease, and fibromuscular dysplasia to name a few 

[40]. Risk factors for heart disease, such as having a family history of cardiovascular disease, 

high blood pressure, tobacco use, diabetes, high cholesterol, obesity, and physical inactivity, 

can increase the risk of developing ICMP [37]. 

This section provides an overview of diagnostic approaches of ICMP and the role of CMR in 

diagnosing and assessing the severity of ICMP. 
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1.3.1 Diagnostic Approaches and Challenges  

Common clinical methods used to assess patients suspected of ICMP include 

echocardiography, Single-Photon Emission Computed Tomography (SPECT), Positron 

Emission Tomography (PET), Computed Tomography (CT), X-ray coronary angiography, and 

CMR [41]. Each of these methods has its strengths and limitations.  

Echocardiography is a widely available real-time imaging modality and is suitable for initial 

evaluation of ischemia. However, its image quality can be influenced by patient factors such 

as obesity or lung disease, as well as the operator's experience, and seldom can one comment 

on the presence of ischemic injury or scar [42]. SPECT imaging in conjunction with a 

vasodilator provides functional assessment for detecting perfusion defects indicative of 

ischemia, but it involves radiation exposure and has limited spatial resolution compared to 

other modalities [43]. Stress-PET imaging offers high sensitivity and specificity in detecting 

myocardial perfusion abnormalities but is less widely available, and also involves exposure to 

radioactive material [44]. CT angiography provides detailed anatomical information about 

coronary arteries and can detect coronary artery stenosis. However, it traditionally lacked the 

ability to determine if the stenosis was causing myocardial ischemia [45]. Recent 

advancements, such as CT fractional flow reserve (FFR), artificial intelligence, and perfusion 

imaging, now allow for the assessment of ischemia [46], [47]. However, this method still 

requires contrast administration and exposes both patients and physicians to radiation. 

Coronary angiography remains the gold standard to assess for luminal narrowing due to its high 

spatial resolution, and the intravascular assessment of plaque is the current gold standard for 

the assessment of ischemia. However, this technique comes at the cost of its invasive nature in 

addition to the radiation exposure [48].  
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CMR addresses the common limitations of the aforementioned imaging techniques by 

providing high resolution images non-invasively and without ionizing radiation, and is a 

promising approach to identify the presence of ischemia and to assess the severity of ICMP. 

The following section provides more details about how CMR is used in cases of suspected 

ICMP. 

1.3.2 Cardiovascular Magnetic Resonance in Identification of Ischemic 

Cardiomyopathy 

When investigating ICMP, CMR stress perfusion tests are confirmed to be a valuable, accurate 

tool for providing information about the distribution and severity of myocardial perfusion 

deficits [49]. This method typically uses pharmaceutical vasodilators such as adenosine to 

induce stress conditions that amplify myocardial blood flow differences between healthy and 

ischemic tissues. Alongside, gadolinium-based contrast agents are injected to enhance the 

visualization of myocardial perfusion during the first pass of the contrast through the heart. The 

resultant images provide detailed insights into areas where blood flow is compromised. [50]. 

The resulting first-pass perfusion images are then analyzed to estimate the blood flow 

efficiency in the heart. CMR has proven useful in CAD [51]. However, its utility is limited by 

its reliance on substances that may pose risks to certain patient groups. Pharmaceutical 

vasodilators can provoke adverse reactions such as chest discomfort, headache, and more 

severe cardiovascular effects, particularly in patients with severe asthma or chronic obstructive 

pulmonary disease (COPD) due to their potential to significantly alter respiratory and cardiac 

function [52]. They also create challenges regarding logistics, added preparation time, and cost. 

Gadolinium-based contrast agents, while generally safe for most patients, are associated with 

a small yet relevant risk of nephrogenic systemic fibrosis, a rare but serious condition primarily 

affecting patients with severe renal impairment [53]. Additionally, it has been observed that 
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the use of gadolinium-based contrast agents in CMR can lead to gadolinium deposition in the 

brain and other tissues, which raises concerns about potential long-term effects [19]. These 

agents can also cause mild to moderate allergic reactions, which necessitates caution in patients 

with a history of allergic responses to contrast materials [54]. 

 1.4 Radiomics 

Radiomics is a field in medical imaging that uses advanced processing techniques to extract 

voxel-level quantitative features characterizing global and regional photometric, geometrical, 

and textural properties of medical images [55]. The main idea of radiomics is to transform 

medical images into high-dimensional, mineable data by extracting numerical features 

characterizing patterns and information that may not be visible to the human eye [56]. These 

extracted features can then serve as biomarkers and be integrated with statistical and machine 

learning models to enhance the prediction and diagnosis of different diseases [56].  

Radiomics was initially applied in oncology and has demonstrated remarkable success in that 

area. Several studies have proved the utility of radiomics in characterizing tumor phenotypes. 

For instance, radiomic texture analysis of prostate MRI has shown the utility for differentiating 

non-cancerous tissue from prostate cancer and for distinguishing different prostate cancer 

grades [57]. It has demonstrated considerable potential in predicting treatment responses. In a 

study conducted by Ahmed et al., texture analysis was found to be highly effective in predicting 

response to chemotherapy in breast cancer patients, revealing significant differences in texture 

parameters between responders and partial responders [58]. Similarly,  it has been shown that 

radiomic data from CT scans of primary tumors and lymph nodes can accurately predict how 

patients with advanced lung cancer respond to treatment before surgery [59]. Additionally, 

radiomics has shown promise in prognostication. It has been shown that a CT-based radiomic 

signature can accurately predict distant metastasis in patients with lung adenocarcinoma, 



25 

providing valuable prognostic information beyond traditional clinical factors [60]. The 

extensive work done in oncology suggests that analyzing image phenotype through radiomics 

texture analysis could provide valuable information into tissue-level pathology [61]. 

These radiomic features can be extracted from the selected region of interest (ROI) in original 

images or preprocessed images obtained through various filtering techniques including 

Laplacian of Gaussian (LoG) filtering and wavelet decomposition. LOG filtering applies a 

Gaussian blur to the original image, followed by edge detection using the Laplacian operator, 

and can be performed at different scales (sigmas) to capture features at different levels of detail 

[62]. Wavelet transform decomposes the 3D images into different frequency components using 

high and low pass filters that selectively capture high or low frequencies. These components 

include LLH (low-low-high), HHL (high-high-low), HHH (high-high-high) filters, and so 

forth, enabling multi-resolution feature extraction [63]. 

Radiomic features can be categorized into first-order, shape, and texture features, including 

Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level Dependence Matrix (GLDM), 

Neighborhood Gray-Tone Difference Matrix (NGTDM), Gray-Level Run Length Matrix 

(GLRLM), and Gray-Level Size Zone Matrix (GLSZM), which will be elaborated 

subsequently [64]. Appendix A provides the complete description of imaging features used in 

this work. 

First Order: First-order features describe basic statistical properties of pixel intensities within 

a ROI in an image, without considering spatial relationships between pixels. These features 

include commonly calculated statistics such as mean, median, standard deviation, skewness, 

kurtosis, and entropy. First-order features provide information about the distribution and 

variation of voxel intensities in an image. 
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Shape: Shape features characterize the geometric properties of the ROI, such as size, volume, 

surface area, and compactness.  

Gray-Level Co-Occurrence Matrix (GLCM): quantifies the spatial relationships between 

pairs of pixel intensities within an image. It calculates the frequency of occurrence of pixel 

intensity pairs at specified spatial offsets and directions. From the GLCM, various texture 

features can be derived, including contrast, correlation, energy, and homogeneity, which 

capture different aspects of texture complexity and spatial patterns within the image [65]. 

Gray-Level Dependence Matrix (GLDM): GLDM measures the dependence between pixel 

pairs based on their gray-level values and spatial relationships. It characterizes the frequency 

of occurrence of different gray-level pairs within an image, along with their corresponding 

spatial distances. GLDM features, such as contrast, dissimilarity, and homogeneity, quantify 

the variability and regularity of gray-level transitions within the image. 

Neighborhood Gray-Tone Difference Matrix (NGTDM): NGTDM assesses the differences 

in gray-level values between a central pixel and its surrounding neighbors within a specified 

neighborhood. It quantifies the variability of gray-level differences in different directions and 

distances, and provides information about the local texture and contrast variations within the 

image. 

Gray-Level Run Length Matrix (GLRLM): GLRLM captures the distribution of continuous 

runs of consecutive pixels with the same gray-level value in different directions within an 

image. It calculates the lengths and frequencies of these runs, from which features such as short 

run emphasis, long run emphasis, and run length non-uniformity can be derived. GLRLM 

features characterize the texture and spatial continuity of homogeneous regions within the 

image [66]. 



27 

Gray-Level Size Zone Matrix (GLSZM): GLSZM quantifies the distribution of connected 

regions with homogeneous gray-level values of varying sizes within an image. It characterizes 

the spatial distribution and sizes of these homogeneous zones, and provides information about 

the heterogeneity and coarseness of textures present in the ROI. 

1.4.1 Radiomics in Cardiovascular Magnetic Resonance 

Numerous studies have demonstrated the utility of using CMR radiomics for texture analysis. 

A subset of these studies has concentrated on deriving comparable information from non-

contrast images to those obtained through gadolinium-based images, with the ultimate aim of 

avoiding the need for contrast. For instance, Avard et al. explored the effectiveness of 

radiomics features extracted from non-contrast cine images, alongside machine learning 

algorithms, for MI detection [67]. Their study, involving 72 patients, revealed that radiomics 

analysis enabled accurate differentiation between MI and normal tissue, achieving an optimal 

performance, suggesting its potential as an alternative diagnostic method to LGE [67]. In 

another study, Fahmy et al. presented a model using radiomic features derived from balanced 

steady state free precession (bSSFP) cine images to identify hypertrophic cardiomyopathy 

(HCM) patients without scar to potentially spare them from unnecessary gadolinium 

administration [68]. 

CMR radiomics studies have also aimed to extract textural features from LGE images. Amano 

et al. conducted research focusing on patients with HCM and demonstrated differences in 

textural features extracted from LGE images between individuals with and without a history of 

ventricular tachycardia [69]. This finding shows the utility of radiomics in identifying subtle 

variations associated with arrhythmic events in HCM patients. Similarly, Kotu et al. 

investigated the predictive value of textural features derived from LGE scar in 34 individuals 

with chronic MI [70]. Their study revealed that these features offer incremental prognostic 
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value beyond scar size and location, particularly in assessing the risk of life-threatening 

arrhythmias. Additionally, Cheng et al. explored the association between LGE textural features 

and adverse clinical outcomes in individuals with HCM and reduced left ventricular systolic 

function [71]. And found a robust correlation between radiomic features of LGE images and 

an endpoint including death and life-threatening arrhythmias. 

These studies illustrate the potential of CMR radiomics to enhance current methods of image 

analysis and provide accurate disease classification and prognostic estimation without the need 

for injected contrast. 

1.5 Artificial Intelligence 

Artificial intelligence (AI) refers to the development of computer systems capable of 

mimicking cognitive functions, such as recognizing patterns and making decisions [72]. AI 

algorithms learn from data, identify patterns, and make predictions based on them. With its 

rapidly growing significance in medicine [73], [74], specifically in the field of medical imaging, 

AI is likely to revolutionize clinical practice in the coming years [75].  

Machine Learning (ML) is a subset of AI. In classical ML methods, a model, which is a 

function that makes predictions based on input data, is trained using a predefined set of features 

[76]. These features, selected and extracted from the data, are what the model uses to learn and 

make predictions. One of the most advanced ML techniques, Deep Learning (DL), takes a 

different approach by employing neural networks, inspired by the structure of the human brain, 

to automatically discover the relevant features directly from the data [77]. This section will 

provide an overview of AI applications in CMR, followed by an explanation of some key AI 

concepts used in the original research manuscript. 
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1.5.1 Artificial Intelligence in Cardiovascular Magnetic Resonance 

AI applications in CMR are diverse and extensive. Key applications include optimization of 

image acquisition and reconstruction, automated segmentation of the left and right ventricle, 

myocardial tissue characterization, diagnosis, and prognosis. The following is a brief literature 

review of each of these applications: 

Image Acquisition and Reconstruction: 

One of the primary challenges in CMR is the lengthy acquisition times, due to the respiratory 

and cardiac motion [78]. AI, particularly DL models have shown promise in improving speed 

and quality of image acquisition and reconstruction. These DL-based approaches focus on two 

key objectives: to shorten the image acquisition time and increase the overall efficiency of the 

imaging process and enhance the quality of the images by mitigating artifacts and reducing 

noise. Muscogiuri et al. employed DL to reduce noise in LGE images, enhancing image clarity 

without compromising diagnostic quality [79]. Schemper et al. and Lebet et al. introduced 

Convolutional Neural Network (CNN) based approaches for automatic reconstruction and 

quality improvement in CMR imaging, showcasing the potential for AI to automate complex 

processing tasks [80], [81]. Furthermore, studies by Frick et al., Yokoyama et al., Nitta et al., 

and Lu et al. demonstrated ML's capability in automating view and slice alignment, reducing 

the manual effort required in CMR imaging [82], [83], [84], [85].  

Image Segmentation: 

In CMR post-processing, the delineation of heart chambers and myocardium, known as 

segmentation, is essential but is traditionally a manual and time-intensive process. Despite the 

high precision achieved by experienced readers, the variability among them and the amount of 

time it takes remains a challenge [86]. Recognizing this, a substantial volume of research has 

aimed at automating CMR segmentation to improve efficiency and precision [87], [88], 
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although manual interventions are often still necessary for complex regions. DL methods have 

been effectively applied to myocardial and cardiac chamber segmentation from CMR images, 

frequently employing pixel-based classification strategies. Notably, the U-Net architecture has 

been widely used for this purpose [89], with various studies employing basic CNN layouts for 

segmenting short-axis CMR images [90]. Additionally, researchers like Bai et al. have 

innovated by incorporating contextual 3D spatial information within CNN architectures, 

enhancing the segmentation's accuracy [91]. Other innovations in DL segmentation involve 

boundary regression techniques for contour generation rather than pixel classification [92], [93]. 

Myocardial Tissue Characterization, Diagnosis, and Prognosis: 

In section 1.4.1 the application of radiomics in characterizing myocardial tissue was discussed. 

These radiomic features can be used as data points to train AI models for diagnosing heart 

conditions. Furthermore, CMR imaging not only aids in diagnosis but also in prognosis, as 

demonstrated by a meta-analysis by El Aidi et al., which identified key predictors of 

cardiovascular events [94]. Machine learning enhances this by analyzing vast patient data, 

including CMR findings, for more accurate outcome predictions, as shown in the study by 

Ambale-Venkatesh et al. [95]. 

1.5.2 Machine Learning-Based Classification 

Machine Learning (ML) is a subset of AI that focuses on developing algorithms and statistical 

models that enable computers to perform specific tasks without using explicit instructions [96]. 

Instead, these systems learn and make predictions or decisions based on data. Machine learning 

is broadly categorized into supervised and unsupervised learning, each serving different 

purposes based on the structure of the data available [96]. 

Supervised learning is one of the most common types of machine learning, where the model is 

trained on a labelled dataset [97]. This means that for each piece of data in the training set, the 
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outcome or label is already known. The goal of supervised learning is to train the model so 

well that when it is given new data, it can predict the correct output based on what it has learned 

from the training set. This approach is widely used in applications where the prediction of 

future events or classification of data into predefined categories is required. Unsupervised 

learning, on the other hand, deals with data that does not have labelled responses. The system 

tries to learn the patterns and the structure from the data without any guidance on what the 

outcome should be. It is used for clustering, association, and dimensionality reduction tasks 

where the goal is to explore the underlying structure of the data [97]. 

Classification, a type of supervised learning, involves categorizing data into predefined classes 

or groups. It is one of the most significant tasks in machine learning and has extensive 

applications in various fields, including image recognition, and medical diagnosis [98]. The 

essence of classification is to build a model on a training dataset, where the classes are known, 

and then use this model to classify new, unseen data into these classes. Radiomic features can 

serve as a valuable training set for classification tasks due to their ability to capture detailed 

information from medical images. These features can provide rich data representations that 

facilitate the differentiation between various classes, making them useful for training machine 

learning models [99]. 

 Several classification models exist, each suited for different tasks and datasets. The choice of 

model depends on factors such as the nature of the data, and the complexity of the classification 

problem [100]. Some commonly used classification models include decision trees, support 

vector machines, logistic regression, and random forests [96]. Each of these models has its 

strengths and weaknesses. In this study, random forests had superior performance and achieved 

the best results among all classification models tested. The next section explains this machine 

learning model. 
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1.5.2.1 Random Forest 

Random Forest is a widely used supervised machine learning algorithm frequently used for 

classification tasks. Its core comprises multiple decision trees, each representing a hierarchical 

structure that organizes data based on input features [101]. In a decision tree, at each node, a 

decision is made regarding which branch to follow based on the value of a specific feature 

[102]. This process continues recursively until reaching the terminal nodes (leaf nodes), where 

final predictions are made. What distinguishes Random Forest is its ensemble approach, where 

a multitude of decision trees are generated [101]. Each tree is trained on a random subset of the 

available data and a random subset of features. This randomness injects diversity into the 

individual trees, making the overall model more robust. Subsequently, the predictions of these 

trees are combined through averaging, to produce the final outcome. This ensemble strategy 

helps Random Forest to mitigate overfitting and enhance generalization [101].  

1.5.3 Feature Selection 

Feature selection is a preprocessing step in developing machine learning models. It involves 

the identification and selection of a subset of relevant features from the original set of features 

in a dataset. Its primary aim is to enhance model performance, reduce computational 

complexity, and improve interpretability by focusing only on the most informative and 

discriminative features [103]. 

In the context of radiomics, where we have a large number of quantitative features, feature 

selection becomes very important due to the high dimensionality of the feature space [104]. 

Not all these radiomics features are equally informative or relevant for predictive modelling 

tasks. Many of these features may be redundant, noisy, or irrelevant to the underlying pathology 

or clinical outcomes of interest. Therefore, effective feature selection techniques are needed 

for identifying and retaining only the most discriminative and informative radiomic features, 
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to enhance model performance, reduce overfitting, and improve the interpretability of machine 

learning models [104]. 

1.5.3.1 Boruta Algorithm 

The Boruta algorithm is an advanced feature selection method designed to identify the most 

relevant features in a dataset for predictive modelling, especially useful in scenarios where we 

have labelled data and the goal is to select features that vary significantly between classes [105]. 

Originating from the Random Forest classification technique, Boruta works by creating 

randomized copies (shadows) of all features in the dataset and then iteratively comparing the 

importance of real features against these shadows. This process helps in determining the 

relevance of each feature by evaluating if they stand out in terms of importance when compared 

to the baseline set by the shadow features. The algorithm continues this evaluation until all 

features are either confirmed as significant or rejected as irrelevant, ensuring that the model 

includes only those variables that have a meaningful impact on distinguishing between 

different classes. This selection process enhances the accuracy and effectiveness of predictive 

models by focusing on the most informative features [105].  
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1.6 Summary 

In this chapter, the utility of CMR imaging was examined, focusing on its role in diagnosing 

and assessing ICMP. The fundamental principles of MRI were explained, along with the 

applications of CMR in clinical practice. Specifically, the significance of OS-CMR in 

providing non-invasive insights into myocardial oxygenation status was presented, offering 

valuable diagnostic information without the need for invasive procedures or contrast agents. 

Furthermore, radiomics and its application in cardiovascular imaging was discussed, 

highlighting the potential of radiomic features extracted from OS-CMR images to augment 

diagnostic accuracy. Additionally, the integration of AI techniques, particularly machine 

learning algorithms, in cardiac imaging was explored.  Feature selection methodologies were 

also discussed, emphasizing the efficacy of techniques like the Boruta algorithm in identifying 

salient imaging features for diagnostic modeling.  

Overall, this chapter provided a comprehensive overview of OS-CMR imaging, radiomics, and 

AI in the diagnosis of ICMP. 
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2.1 Foreword 

OS-CMR has been validated as a non-invasive imaging modality that, in conjunction with 

vasoactive breathing maneuvers, assess vascular function without the need for gadolinium-

based contrast agents or pharmaceutical vasodilators. The quantitative characterization of the 

myocardium in these images can provide invaluable information. Radiomics extends this 

capability by characterizing the myocardium in terms of shape, intensity, and texture, offering 

a multifaceted view of the myocardium. When coupled with machine learning techniques, 

several studies have demonstrated the ability of radiomics to enhance diagnostic accuracy and 

predictive capabilities. 

The following chapter is an original research manuscript. This chapter includes the 

methodology used in this research and explains the integration of radiomics and machine 

learning with OS-CMR imaging. It outlines the procedural steps undertaken, presents the 

results obtained from this approach, and discusses its potential clinical implications.   
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2.2 Original Research Manuscript 

A Radiomics-based Machine Learning Approach for Identification of 

Ischemic Cardiomyopathy in Oxygenation-Sensitive Cardiovascular 

Magnetic Resonance Images 

 

2.2.1 Abstract 

Background: Oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) is a 

contrast-free method that enables the evaluation of myocardial oxygenation in a non-invasive 

manner [21]. OS-CMR is a valuable tool that provides critical information for the diagnosis of 

cardiovascular diseases such as coronary artery disease (CAD). Medical imaging radiomics is 

an emerging field that uses processing techniques to extract quantitative features that 

characterize global and local photometric, geometrical, and textural properties of images [56]. 

These objective features can be combined with machine learning techniques to automate the 

assessment of disease. This study aimed to evaluate the potential of radiomic features extracted 

from OS-CMR images to identify patients with ischemic cardiomyopathy (ICMP).  

Methods:  The dataset comprised a total of 120 cases, with 60 healthy volunteers (mean age 

54 ±8.9 y, 32 male) and 60 individuals with ICMP (mean age 64 ±11.4 y, 53 male). The 

myocardium from a single mid-ventricular short-axis (SAX) slice captured across different 

phases of the cardiac cycle were used for feature extraction. The Pyradiomics python package 

was used to compute 1021 radiomic features from each stack. Boruta feature selection was 

performed to identify 37 highly salient features. These were subsequently used to train a 

Random Forest classifier to distinguish between healthy and ICMP cases. Finally, a SHapley 

Additive exPlanations (SHAP) analysis was used to rank the salient features and explain their 

interactions with the predicted classes. 
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Results: We evaluated the model's performance using classification metrics. The model had an 

overall accuracy of 0.88, precision of 0.91 in detecting ICMP, recall of 0.83, and F1-score of 

0.87. These radiomic features cannot be manually measured due to their complex nature and 

cannot be perceived by the human eye. There is a noted disparity in the selected feature 

distributions between the healthy and ICMP groups. (Appendix A provides the complete 

description of imaging features used in this work). 

Conclusion: This study demonstrated that radiomic feature extraction on OS-CMR cine 

images, combined with machine learning techniques, can be used to identify ICMP from 

healthy cases with high sensitivity and specificity. This method has the potential to efficiently 

and non-invasively stratify heart conditions in a clinical setting. 
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2.2.2 Introduction 

Cardiovascular diseases remain a leading cause of mortality worldwide, necessitating effective 

diagnostic tools and treatment strategies [106]. Ischemic Cardiomyopathy (ICMP) is one of the 

most prevalent and clinically significant disorders. Using cardiovascular MRI (CMR), late 

gadolinium enhancement (LGE) has been used to visualize myocardial infarcts and thereby 

diagnose ICMP. , but relies on injected contrast which poses limitations for patients with renal 

impairment [20]. Additionally, there is concern over gadolinium deposition in the brain [19]. 

Oxygenation-sensitive cardiovascular magnetic resonance imaging (OS-CMR) has emerged as 

a non-invasive method for evaluating changes in myocardial oxygenation, offering advantages 

such as avoiding the need for intravenous contrast agents and pharmaceutical vasodilators [4]. 

By leveraging the blood oxygenation level-dependent (BOLD) effect, OS-CMR enables direct 

assessment of myocardial oxygenation changes, providing valuable insights into myocardial 

ischemia [5]. Previous studies have demonstrated the utility of OS-CMR in identifying 

cardiovascular pathologies. For instance, Wacker et al. [107] conducted a study involving 

patients with single-vessel CAD, revealing significantly lower T2* values in myocardial 

segments supplied by stenosed arteries compared to healthy myocardium. Similarly, Friedrich 

et al. [22] reported a mean signal intensity decrease during adenosine stress in myocardial 

segments related to severe coronary stenoses, showcasing the diagnostic potential of OS-CMR. 

Moreover, studies by Bernhardt et al. [108], Manka et al. [109], Karamitsos et al. [110], Arnold 

et al. [111], Jahnke et al. [112], and Walcher et al. [113] further corroborated the effectiveness 

of OS-CMR in detecting myocardial perfusion deficits and ischemia in CAD cohorts. These 

studies collectively highlight the promising role of OS-CMR as a non-invasive imaging 

modality for diagnosing ICMP and other cardiac pathologies. 

Radiomics is a method in medical imaging where a large number of quantitative imaging 

markers are computed from images, followed by the extraction of significant diagnostic or 
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prognostic features using various algorithms. Originally introduced in computed tomography 

(CT), radiomics has significantly expanded into MRI, including CMR. This technique has 

demonstrated its utility in offering innovative markers for various cardiovascular diseases. For 

example, features like Gray Level Non-Uniformity and T2 kurtosis have shown diagnostic 

potential in myocarditis and heart failure [114]. Additionally, other features such as the run-

length matrix and local binary pattern have provided incremental diagnostic value in 

differentiating between hypertensive heart disease and hypertrophic cardiomyopathy [9]. 

The present study aimed to use the potential of radiomics-based analysis of OS-CMR images 

to discriminate between healthy individuals and patients with ICMP. ICMP, presents imaging 

features that may be captured through radiomic analysis. By extracting a comprehensive set of 

radiomic features and employing machine learning algorithms, we attempted to develop a 

diagnostic model capable of accurately distinguishing ICMP from healthy controls. Overall, 

this study contributes to the growing body of research exploring the utility of radiomics in 

cardiovascular imaging.  

2.2.3 Methods 

2.2.3.1 Study Population 

This retrospective study was conducted using data collected at the Royal Victoria Hospital of 

the McGill University Health Centre. Among the 60 ICMP cases included in the study, 31 were 

confirmed to have ICMP based on MRI findings, angiography results, and medical history, 

while 29 self-reported a history of myocardial infarction. Additionally, 60 healthy cases were 

included in the study, all of whom had no history of relevant medical conditions. 
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2.2.3.2 OS-CMR Protocol 

CMR scans were conducted using a clinical 3 Tesla MRI scanner (Premier, GE Healthcare, 

Illinois, USA). Subjects were instructed to fast for 4 hours and avoid caffeine intake for 12 

hours. A vasoactive breathing maneuver was performed in the exam. CMR images were 

obtained in basal and mid-ventricular short-axis slices using a triggered modified SSFP 

sequence. Cine images were continuously acquired during the exam, including a baseline 

during free breathing over 120 seconds, 60 seconds of metronome-paced hyperventilation at 

30 breaths/min, and up to 60 seconds during a long breath-hold.  

2.2.3.3 Image Analysis and Preprocessing 

Post-hyperventilation breath-hold images were then extracted. Using one mid-ventricular slice, 

a single cardiac cycle consisting of 20 frames was extracted for radiomic feature extraction. 

We did not include the basal slices and analysis was performed exclusively on the mid-

ventricular slices. This decision was made to maintain consistency and focus on the region with 

the highest signal quality and reliability for the radiomic measurements required by our study. 

Using a prototype version of the certified software cvi42™ (Circle Cardiovascular Imaging, 

Calgary, Canada), an automated segmentation process was employed to segment the 

myocardium. Subsequently, the images and masks of the myocardium were converted from 

DICOM format to NIfTI format to have all the frames in a single stack.  

Preprocessing steps were performed using PyRadiomics python library (v3.0.1) [64]. The gray-

level intensity values of the images were normalized, and discretization was then conducted 

using a bin width of 20. Resampling was performed to achieve uniform pixel spacing, with a 

resolution of [1 mm, 1 mm, 1 mm] applied. A grid search was performed to optimize 

parameters such as bin width for discretization and resampling resolution. 
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2.2.3.4 Radiomics Feature Extraction 

All available radiomic features were extracted from both original and filtered images of the 

myocardium. Filtering included Laplacian of Gaussian filtering (for sigma = 3.0 and 5.0) and 

wavelet decomposition. These features cover a wide range and fall into different categories, 

such as basic histogram analysis, shape-based features, and texture features including Gray 

Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level 

Size Zone Matrix (GLSZM), Neighboring Gray Tone Difference Matrix (NGTDM), and Gray 

Level Dependence Matrix (GLDM). For more details about the nature of these features, refer 

to Section 1.4 and Appendix A which provides the complete description of imaging features 

used in this work. 

 2.2.3.5 Machine Learning Pipeline 

The dataset was divided randomly into training and testing sets using an 80/20 split, resulting 

in 96 cases for training and 24 for testing. This ensured an equal representation of both classes 

in both groups, with 12 healthy and 12 ICMP cases in each. Radiomic feature selection from 

the training set was performed using the Boruta algorithm. 

Several classification algorithms were then employed, including Support Vector Machines 

(SVM), XGBoost, Logistic Regression, and Random Forest. Random Forest was selected due 

to its superior accuracy, precision, and recall. The model was trained on the selected features 

from the training set and subsequently evaluated on the test set. 

Both model training and feature selection were conducted using the Scikit-learn and Boruta 

Python packages. Additionally, to provide insights into the model's predictions, Shapley values 

were computed for each feature using the SHAP Python package [115]. The workflow is 

illustrated in Figure 1. 
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Figure 1 : Overall workflow including the pipeline for feature extraction and model training 

2.2.3.5 Statistical Analysis 

Continuous data are depicted as the mean ± standard deviation, while categorical data are 

presented as counts. The chi-square test was used to assess differences in sex distribution 

between the healthy and ICMP cases, and the Mann-Whitney U test was used to analyze age, 

BMI, height, and weight discrepancies between the two groups. An unpaired t-test was 

conducted to compare the selected radiomic feature values between the healthy and ICMP 

groups, with a significance level set at p < 0.05. All statistical tests were performed using 

Python. 

Classifier's performance was assessed using accuracy, precision, recall, and F1-score. 

Accuracy measures the proportion of correctly classified instances out of the total. Precision 

assesses the accuracy of positive predictions, indicating the proportion of correctly predicted 

positive cases among all predicted positives. Recall, on the other hand, evaluates the model's 

ability to correctly identify positive instances among all actual positives. Lastly, the F1-score, 

a harmonic mean of precision and recall, offers a balanced assessment of the classifier's 

performance, considering both false positives and false negatives. Receiver operating 

characteristic (ROC) curves, precision-recall curves, and calibration curves were generated to 

further assess the classifier's performance.  



52 

2.2.4 Results 

2.2.4.1 Baseline Demographic Characteristics 

Table 1 provides a comparison of baseline characteristics between ICMP patients and healthy 

controls. The mean age of healthy controls was 54.4±8.9 years, whereas ICMP patients had a 

significantly higher mean age of 64.9±11.4 years (p < 0.001). The proportion of females was 

significantly higher among ICMP patients, accounting for 46.6% of the group, compared to 

only 11.6% in the healthy control group (p < 0.001, Chi-square test). Further analysis showed 

no significant difference in BMI, with healthy controls having an average BMI of 27.87±4.27 

kg/m^2 compared to 29.79±5.30 kg/m^2 for ICMP patients (p=0.21). Similarly, differences in 

weight and height between the groups were not statistically significant, with weights being 

82.15±15.26 kg for healthy controls and 85±18.59 kg for ICMP patients (p=0.42, Mann-

Whitney test), and heights averaging 1.72±0.10 m for healthy controls versus 1.71±0.09 m for 

ICMP patients (p = 0.94).  

Table 1: Baseline characteristics for ICMP patients and healthy controls 

Characteristics Healthy Controls (n=60) ICMP Patients (n=60) p-value 

Age (years) 54.4±8.9 64.9±11.4 <0.001 

Female Sex (n) 7 (11.6%) 28 (46.6%) <0.001 

BMI (kg/𝑚2) 27.87±4.27 29.79±5.30 0.21 

Weight (kg) 82.15±15.26  85±18.59 0.42 

Height (m) 1.72±0.10 1.71±0.09  0.94 

 

2.2.4.2 Model Performance Evaluation 

A total of 1021 radiomic features were initially extracted from the mid ventricular myocardium 

segments. Through the Boruta feature selection algorithm, 37 features were identified as salient 

for further analysis. Meaning and description of these features are provided in Appendix A. 
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These selected features are summarized in Table 2, providing their names, respective classes, 

and the source image. The table showcases that salient features were predominantly extracted 

from wavelet-decomposed images, demonstrating the utility of this method in isolating 

significant characteristics. Additionally, the table also indicates that GLDM features were 

particularly discriminative, suggesting their effectiveness in capturing key differences in tissue 

textures between healthy and ICMP cases. Table 3 presents the means and standard deviations 

of the feature values in the two groups, along with the corresponding p-values obtained from 

an unpaired t-test. Thirty-six of these 37 features demonstrated statistical significance (p-

value<0.05). 

Following the feature selection results, Figure 2 provides a visual representation of the impact 

each feature has on the model's output, using SHAP (SHapley Additive exPlanations) values. 

Each dot on the plot represents a SHAP value for a feature for an individual sample. The 

horizontal location of a dot shows the impact of that value on the model's prediction, with 

features pushing the prediction higher shown to the right and those pushing it lower to the left. 

The vertical axis is ordered according to the features' average impact on the model output, with 

the topmost features having the highest importance. 

The model showed an accuracy of 0.88, accurately predicting 10 out of 12 ICMP cases and 11 

out of 12 healthy cases. The confusion matrix depicting these results is presented in Table 4, 

while Table 5 provides detailed classification metrics derived from it. The classifier achieved a 

precision of 0.85 for healthy cases and 0.91 for ICMP cases. This indicates a high rate of true 

positives from all positive predictions. Recall, or the true positive rate, stands at 0.92 for healthy 

cases and 0.83 for ICMP, showing the model's strength in capturing the majority of actual 

positive instances. The F1-Score, which harmonizes precision and recall, is recorded at 0.88 

for healthy cases and 0.87 for ICMP, showing the balanced accuracy of the model across both 

classes. 
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 Figure 3 illustrates the ROC curve, having an AUC of 0.92, indicating a high degree of 

discriminative ability. The precision-recall curve, showing the trade-off between precision and 

recall, is depicted in Figure 4. The high precision across all levels of recall in this curve indicates 

that the model reliably identifies positive cases (ICMP cases) and maintains high confidence 

in its predictions. 

The calibration curve of the trained classifier is shown in Figure 5, compared to that of a 

perfectly calibrated model. Points below the dashed line show where the classifier is 

underconfident and predicts lower probabilities than the true outcomes. Points above indicate 

overconfidence, with the classifier assigning higher probabilities than the actual outcomes. The 

curve suggests that the classifier is well-calibrated for lower probabilities up to 0.2, then 

becomes slightly overconfident in the probability ranges around 0.4 and 0.6, and returns to 

being well-calibrated as the probabilities near 1.0.  
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Table 2 : List of selected features by feature class and source image, including original, wavelet transformed, and Laplacian 

of Gaussian-filtered (LoG) images. 

Feature Name Feature Class Source Image 

Flatness Shape Original 

Maximum 3D Diameter Shape Original 

Mesh Volume Shape Original 

Voxel Volume Shape Original 

Gray Level Non-Uniformity GLRLM Original 

Coarseness NGTDM Original 

Dependence Non-Uniformity GLDM Wavelet (low-low-high pass filter) 

Gray Level Non-Uniformity GLDM Wavelet (low-low-high pass filter) 

Gray Level Non-Uniformity GLRLM Wavelet (low-low-high pass filter) 

Coarseness NGTDM Wavelet (low-low-high pass filter) 

Gray Level Non-Uniformity GLDM Wavelet (low-high-low pass filter) 

Run Entropy GLRLM Wavelet (low-high-low pass filter) 

Run Length Non-Uniformity GLRLM Wavelet (low-high-low pass filter) 

Dependence Non-Uniformity GLDM Wavelet (low-high-high pass filter) 

Gray Level Non-Uniformity GLDM Wavelet (low-high-high pass filter) 

Gray Level Non-Uniformity GLRLM Wavelet (low-high-high pass filter) 

Run Length Non-Uniformity GLRLM Wavelet (low-high-high pass filter) 

Coarseness NGTDM Wavelet (low-high-high pass filter) 

Gray Level Non-Uniformity GLDM Wavelet (high-low-low pass filter) 

Run Length Non-Uniformity GLRLM Wavelet (high-low-low pass filter) 

Dependence Non-Uniformity GLDM Wavelet (high-low-high pass filter) 

Gray Level Non-Uniformity GLDM Wavelet (high-low-high pass filter) 

Gray Level Non-Uniformity GLRLM Wavelet (high-low-high pass filter) 

Run Length Non-Uniformity GLRLM Wavelet (high-low-high pass filter) 

Coarseness NGTDM Wavelet (high-low-high pass filter) 

Dependence Non-Uniformity GLDM Wavelet (high-high-low pass filter) 

Gray Level Non-Uniformity GLDM Wavelet (high-high-low pass filter) 

Run Length Non-Uniformity GLRLM Wavelet (high-high-low pass filter) 

Maximum First Order Wavelet (high-high-high pass filter) 

Dependence Non-Uniformity GLDM Wavelet (high-high-high pass filter) 

Gray Level Non-Uniformity GLDM Wavelet (high-high-high pass filter) 

Gray Level Non-Uniformity GLRLM Wavelet (high-high-high pass filter) 

Run Length Non-Uniformity GLRLM Wavelet (high-high-high pass filter) 

Coarseness NGTDM Wavelet (high-high-high pass filter) 

Complexity NGTDM Wavelet (high-high-high pass filter) 

Contrast NGTDM Wavelet (high-high-high pass filter) 

Dependence Non-Uniformity GLDM LoG (sigma = 5) 
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Table 3 : Calculated means and standard deviations of the selected features for both groups and p-values for comparison 

between groups 

Feature Names Healthy ( n = 60) ICMP (n = 60) p-value 

original_shape_Flatness 0.53 ± 0.05 0.44 ± 0.06 < 0.001 

original_shape_Maximum3DDiameter 43.10 ± 3.64 50.02 ± 5.16 < 0.001 

original_shape_MeshVolume 9303.26 ± 1877.78 13147.79 ± 2731.14 < 0.001 

original_shape_VoxelVolume 9347.06 ± 1879.79 13202.67 ± 2738.07 < 0.001 

original_glrlm_GrayLevelNonUniformity 1411.89 ± 243.92 1827.09 ± 379.92 < 0.001 

original_ngtdm_Coarseness 0.0013 ± 0.0003 0.0010 ± 0.0004 < 0.001 

wavelet-LLH_gldm_DependenceNonUniformity 488.11 ± 97.79 721.29 ± 182.33 < 0.001 

wavelet-LLH_gldm_GrayLevelNonUniformity 3722.78 ± 826.38 5677.65 ± 1551.06 < 0.001 

wavelet-LLH_glrlm_GrayLevelNonUniformity 1845.58 ± 391.63 2830.31 ± 789.49 < 0.001 

wavelet-LLH_ngtdm_Coarseness 0.0007 ± 0.0002 0.0005 ± 0.0002 < 0.001 

wavelet-LHL_gldm_GrayLevelNonUniformity 4282.80 ± 1063.80 6076.41 ± 1590.73 < 0.001 

wavelet-LHL_glrlm_RunEntropy 3.23 ± 0.14 3.31 ± 0.16 0.0064 

wavelet-LHL_glrlm_RunLengthNonUniformity 1953.59 ± 343.13 2581.45 ± 489.98 < 0.001 

wavelet-LHH_gldm_DependenceNonUniformity 709.94 ± 157.51 1051.80 ± 255.01 < 0.001 

wavelet-LHH_gldm_GrayLevelNonUniformity 4618.30 ± 954.37 6509.76 ± 1397.02 < 0.001 

wavelet-LHH_glrlm_GrayLevelNonUniformity 2673.42 ± 529.83 3716.33 ± 769.40 < 0.001 

wavelet-LHH_glrlm_RunLengthNonUniformity 2330.41 ± 420.60 3189.21 ± 596.14 < 0.001 

wavelet-LHH_ngtdm_Coarseness 0.0005 ± 0.0001 0.0003 ± 0.0001 < 0.001 

wavelet-HLL_gldm_GrayLevelNonUniformity 4299.18 ± 1022.16 6164.94 ± 1603.23 < 0.001 

wavelet-HLL_glrlm_RunLengthNonUniformity 1926.74 ± 344.12 2475.47 ± 427.49 < 0.001 

wavelet-HLH_gldm_DependenceNonUniformity 724.33 ± 148.78 1067.98 ± 252.31 < 0.001 

wavelet-HLH_gldm_GrayLevelNonUniformity 4619.26 ± 937.79 6536.05 ± 1386.57 < 0.001 

wavelet-HLH_glrlm_GrayLevelNonUniformity 2684.04 ± 512.58 3742.42 ± 762.69 < 0.001 

wavelet-HLH_glrlm_RunLengthNonUniformity 2346.72 ± 418.01 3191.89 ± 601.02 < 0.001 

wavelet-HLH_ngtdm_Coarseness 0.0005 ± 0.0001 0.0003 ± 0.0001 < 0.001 

wavelet-HHL_gldm_DependenceNonUniformity 629.50 ± 139.00 942.39 ± 228.31 < 0.001 

wavelet-HHL_gldm_GrayLevelNonUniformity 4650.48 ± 958.58 6556.22 ± 1415.56 < 0.001 

wavelet-HHL_glrlm_RunLengthNonUniformity 2025.68 ± 357.34 2768.89 ± 503.13 < 0.001 

wavelet-HHH_firstorder_Maximum 16.37 ± 6.61 18.93 ± 9.16 0.0829 

wavelet-HHH_gldm_DependenceNonUniformity 825.67 ± 172.59 1211.02 ± 280.23 < 0.001 

wavelet-HHH_gldm_GrayLevelNonUniformity 4672.39 ± 941.23 6596.43 ± 1372.18 < 0.001 

wavelet-HHH_glrlm_GrayLevelNonUniformity 2805.16 ± 533.17 3882.64 ± 763.08 < 0.001 

wavelet-HHH_glrlm_RunLengthNonUniformity 2448.93 ± 437.45 3312.27 ± 611.41 < 0.001 

wavelet-HHH_ngtdm_Coarseness 0.0005 ± 0.0001 0.0003 ± 0.0001 < 0.001 

wavelet-HHH_ngtdm_Complexity 0.98 ± 0.96 1.81 ± 1.80 0.0020 

wavelet-HHH_ngtdm_Contrast 0.10 ± 0.03 0.07 ± 0.04 0.0076 

log-sigma-5-0-mm-

3D_gldm_DependenceNonUniformity 550.27 ± 158.31 1083.92 ± 534.19 < 0.001 
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Figure 2 : Beeswarm plot of feature Shapley values in the final model 

 

Table 4 :  Confusion matrix for the test set 

 Predicted Class 

Healthy ICMP 

True Class Healthy 11 1 

ICMP 2 10 

 

Table 5 :  Classifier metrics, evaluated on the test set 

Class Precision Recall F1-Score 

Healthy 0.85 0.92 0.88 

ICMP  0.91 0.83 0.87 

Weighted Average 0.88 0.88 0.87 

  Accuracy: 0.88 
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Figure 3 : ROC curve showing the classifier performance in the test set 

 

Figure 4 : Precision-Recall curve in the test set 
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Figure 5 : Calibration curve in the test set 

2.2.5 Discussion 

This study shows the feasibility of radiomics to automatically distinguish between patients with 

and without ICMP using OS-CMR images. Our main finding was that our radiomics-based 

machine learning model was overall 88% accurate in categorizing ICMP and healthy cases 

based on features extracted from OS-CMR images and had a diagnostic accuracy (AUC) of 

92%. Another observation was that wavelet-decomposed images exhibited texture features that 

were very effective in distinguishing between healthy and ICMP cases. 

The main differentiating factor of this study compared to other radiomics studies in CMR 

imaging lies in the utilization of OS-CMR. Unique to this approach, the analysis was conducted 

using just one slice and one cardiac cycle, enhancing the impact and specificity of the results. 

OS-CMR, a 4-minute, non-invasive scan that employs breathing maneuvers without exogenous 

contrast administration, facilitates the visualization of changes in myocardial oxygenation and 

enables the detection of ischemia. This innovative approach holds significant promise due to 

its avoidance of exogenous contrast agents. Unlike current CMR protocols for ICMP, which 
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typically involve multiple sequences including T1 and T2 maps, LGE, and quantitative 

perfusion and require at least 40 minutes for completion, OS-CMR offers a more efficient 

alternative. The ability of our study to detect or rule out ICMP using only a 4-minute scan and 

a single slice of short-axis cine image is particularly advantageous. By offering a rapid and 

accessible diagnostic tool, this approach has the potential to change the clinical management 

of ICMP and optimize healthcare resource utilization. 

The retrospective nature of our study introduced limitations that must be considered when 

interpreting the findings. The machine learning model was trained and tested exclusively on 

images obtained from a single scanner (Premier™ 3 Tesla, GE Healthcare, Milwaukee, USA), 

although the test set was isolated. This lack of an external test cohort may potentially 

compromise the generalizability of our results. Additionally, the dataset used in our analysis 

exhibited inherent biases, notably in age and sex distributions between healthy individuals and 

those with ICMP, which could impact the robustness of our conclusions. Furthermore, our 

comparisons focused on healthy subjects due to the limited representation of other cardiac 

conditions within our dataset. Future studies would benefit from a more diverse and inclusive 

cohort to facilitate the distinction between ICMP and other cardiovascular pathologies, thereby 

enhancing the clinical relevance of our findings. Moreover, it's worth noting that some cases 

of ICMP relied on self-reported information rather than clinical confirmation, introducing a 

potential source of uncertainty in our analysis. It is important to note that from the self-reported 

cases, patients with predominantly right ventricular (RV) ischemia were not excluded from our 

study, even though only the left ventricle (LV) was segmented. However, isolated RV 

myocardial infarction (RVMI) is uncommon; more often, RVMI occurs in conjunction with 

left ventricular MI, particularly when there is inferior wall involvement [116]. Addressing these 

limitations through prospective studies with larger and more diverse cohorts, as well as 
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incorporating clinical confirmation for all cases, would strengthen the validity and reliability 

of our findings. 

2.2.6 Conclusions 

This study shows that radiomics and machine learning can reliably identify patients with ICMP 

in OS-CMR images with high diagnostic accuracy and without using contrast agents. This 

approach could help improve the safety, efficiency and cost-efficiency of the diagnostic 

workup of patient with suspected heart failure. 
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3.1 Summary 

This concluding chapter discusses the findings of the original research manuscript which 

explores the potential of OS-CMR, coupled with radiomics techniques, to provide a rapid, non-

invasive method for assessing myocardial tissue oxygenation and detecting underlying 

cardiomyopathies. In addition to summarizing and discussing the findings, this chapter 

addresses the study's limitations, outlines future directions, and presents conclusions. 

The original research manuscript showed significant differences in radiomic features extracted 

from OS-CMR images between patients with ICMP and healthy controls. The machine learning 

model trained on these features demonstrates remarkable accuracy, precision, and recall in 

distinguishing ICMP cases from healthy cases, indicating its potential as a diagnostic tool in 

clinical practice. The results of this study contribute to the body of evidence supporting the 

effectiveness of radiomics in cardiovascular imaging. The implications of this for clinical 

practice are profound, offering an approach for the non-invasive fast detection of ICMP. By 

using radiomics and machine learning and OS-CMR imaging, clinicians can potentially 

improve patient care by reducing image acquisition and analysis time, enabling more timely 

diagnoses. 

In conclusion, this thesis highlights the potential of radiomics and machine learning in 

advancing cardiovascular imaging and disease diagnosis. Further research efforts are necessary 

to address the limitations of this novel technique and validate the clinical utility of this approach 

across diverse patient populations. 
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3.2 Discussion 

The findings of this study suggest significant implications for the detection of ICMP. Our 

results indicate that the application of radiomic analysis on breathing-enhanced OS-CMR 

images, acquired through a brief, non-contrast 4-minute scan focusing on a single slice, holds 

promise for the detection of ICMP. This approach offers an efficient means of assessing 

myocardial tissue characteristics, potentially enabling clinicians to identify subtle pathological 

changes indicative of ICMP. By leveraging the rich information embedded within a single slice 

of OS-CMR images, unapparent to human eye, our study shows the potential of radiomics in 

facilitating diagnosis and intervention for ICMP. 

This study was the first to examine radiomics in OS-CMR images, whereas many studies have 

used radiomics in other types of CMR images to detect different conditions including 

myocardial ischemia. For instance, in a study by Baesseler et al., it was demonstrated that by 

using five distinct radiomic texture features, it was possible to distinguish between ischemic 

scar tissue and normal myocardium on cine CMR images [10]. Avard et al. similarly 

demonstrated the efficacy of radiomics analysis in accurately detecting myocardial infarction, 

validating the potential of this approach as an alternative diagnostic method to LGE [67].  In 

another study, Larroza et al. showed that radiomics texture analysis could differentiate between 

acute and chronic MI’s on both contrast-enhanced and cine CMR images, where MI is 

frequently difficult to discern visually [117]. These studies exclusively focused on texture 

features. In contrast, our research included both shape and intensity-based features in addition 

to texture-based features. While the majority of the identified salient features were texture-

based, out of the 37 selected features, three were shape-based. 
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3.3 Limitations 

Radiomics, as a methodology, is reliant on various factors such as the precise segmentation of 

myocardial tissue, the quality of image acquisition, and the methods used for image 

reconstruction [118]. In our study, we used the same automatic segmentation algorithm for all 

images, and all data were acquired from a single scanner. While this approach ensured 

consistency within our dataset, it may limit the generalizability of our findings to other 

segmentation techniques and imaging systems. The reliance on a single segmentation algorithm 

and scanner configuration may introduce biases specific to our dataset, potentially impacting 

the broader applicability of our results.  

Moreover, in this study we did not match healthy controls and ICMP cases on a per-patient 

basis. Consequently, there is a disparity in the proportion of male participants and the younger 

age of healthy controls compared to the ICMP cases. This discrepancy may have influenced 

the radiomic features and prediction outcomes. However, it is crucial to note that despite these 

differences, the healthy controls did not have any medical conditions known to impact cardiac 

health. Therefore, while the demographic variations between healthy controls and ICMP cases 

may have introduced some level of bias into our analysis, the absence of underlying medical 

conditions that could affect cardiac health ensures the reliability of our study's primary focus 

on myocardial pathology assessment through radiomic analysis. 

Furthermore, in a clinical setting, it would be more beneficial to have a radiomic model that 

can distinguish between various types of cardiomyopathies, rather than solely identifying 

ICMP and healthy individuals. However, our study was constrained by the limited availability 

of patients with OS-CMR scans across different cardiomyopathy subtypes. As a result, our 

analysis primarily focused on distinguishing ICMP from healthy controls, which represents a 

simplified scenario compared to the complexity encountered in clinical practice. While this 
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narrowed scope allowed us to investigate the specific radiomic features associated with ICMP, 

it is acknowledged that the clinical applicability of our findings may be constrained by the 

absence of broader cardiomyopathy classifications.  

3.4 Future Directions 

In future work, expanding the scope of feature selection could enhance the performance and 

robustness of our model. Incorporating additional features, such as strain parameters related to 

the dynamic deformation of the heart during the cardiac cycle, could provide valuable insights 

into myocardial function and could aid in creating more accurate diagnostic models. Moreover, 

while our study focused solely on radiomic features extracted from the left ventricular 

myocardium, studies have shown that the inclusion of features related to right ventricular 

dysfunction and radiomic features related to blood pool signal intensity could also be beneficial 

in characterizing cardiac pathology [119], [120]. 

Furthermore, using other advanced techniques such as DL derived features or auto encoder 

based features could offer additional discriminative power and improve the model's diagnostic 

capabilities. These approaches have shown remarkable success in various medical imaging 

applications [121]. Additionally, future research could aim to expand the classification 

framework to include a broader spectrum of cardiac diseases and pathologies. By refining the 

model to detect not only ICMP but also other challenging conditions and differentiating 

between various cardiomyopathies, we can broaden its clinical utility.  

The effectiveness of radiomics is significantly influenced by image acquisition parameters, 

which can substantially alter texture and histogram-based intensity metrics. To ascertain the 

robustness of these machine learning algorithms for widespread use, future studies should 

assess datasets from various external cohorts. Additionally, reducing the number of features in 
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future research might enhance the interpretability of radiomic models, by making it easier to 

discern the clinical relevance of each feature. 

3.5 Conclusions 

ICMP is a major global health concern due to its significant mortality. The traditional 

diagnostic approaches for ICMP are often encumbered by their invasive nature, reliance on 

contrast agents, or time-intensive protocols. OS-CMR presents an innovative alternative, 

leveraging the paramagnetic characteristics of deoxygenated hemoglobin within the capillaries 

to naturally create contrast, thereby avoiding the need for intravenous contrast materials or 

exposure to ionizing radiation. This technique facilitates the assessment of myocardial 

oxygenation by tracking the relative shift in oxygen levels in response to induced hyperemia. 

OS-CMR can be useful in detecting subtle textural differences in myocardial tissue, which can 

be quantified through radiomic analysis. The novel research presented in this thesis has 

explored the viability of employing radiomic features derived from OS-CMR imaging to 

develop a predictive ML model. The outcomes show that this model is precise and capable of 

distinguishing between the textural alterations in myocardial tissue associated with healthy 

hearts and those with ICMP. The promise shown by OS-CMR in capturing these critical 

changes through radiomic techniques sets a solid foundation for future investigations, which 

will aim to further enrich the predictive model by incorporating additional data extracted from 

OS-CMR images. 
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 Appendix A 

This appendix is prepared based on the detailed descriptions and mathematical definitions 

provided by the PyRadiomics documentation [122]. 

Shape Features 

1. Flatness 

o Formula: 

𝑓𝑙𝑎𝑡𝑛𝑒𝑠𝑠 =  √
λ𝑙𝑒𝑎𝑠𝑡

λ𝑚𝑎𝑗𝑜𝑟

 

Where λ𝑚𝑎𝑗𝑜𝑟 and λ𝑙𝑒𝑎𝑠𝑡are the lengths of the largest and smallest principal 

component axes. Values range from 1 (non-flat, sphere-like) to 0 (flat object, or 

single-slice segmentation). 

Explanation: Measures the flatness of the shape of the ROI. 

2. Maximum 3D Diameter 

o Formula: The largest pairwise Euclidean distance between surface voxels in 

the ROI. 

o Explanation: Indicates the largest distance within the ROI. 

3. Mesh Volume 

o Formula:  

𝑉𝑖 =  
𝑂𝑎𝑖

. (𝑂𝑏𝑖
 × 𝑂𝑐𝑖

)

6
   (1)             𝑉 =  ∑ 𝑉𝑖  (2)

𝑁𝑓

𝑖=1
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The volume of each tetrahedron (𝑉𝑖) is calculated using the points 𝑎𝑖  , 𝑏𝑖 , and 

𝑐𝑖 that define each triangle 𝑖 of the mesh, along with the image origin (O).  

o Explanation: The volume of the ROI calculated from the triangle mesh. 

4. Voxel Volume 

o Formula:  

𝑉𝑣𝑜𝑥𝑒𝑙 = ∑ 𝑉𝑘

𝑁𝑣

𝑘=1

 

 Where 𝑉𝑘 is the volume of a single voxel and N is the number of voxels. 

o Explanation: Total volume occupied by all voxels in the ROI. 

Gray Level Run Length Matrix (GLRLM) Features 

1. Gray Level Non-Uniformity (GLN) 

o Formula:  

𝐺𝐿𝑁 =  
∑ (∑ 𝑃(𝑖, 𝑗)

𝑁𝑠
𝑗=1 )2𝑁𝑔

𝑖=1

𝑁𝑧
 

P(i,j) be the size zone matrix, Ng be the number of discrete intensity values in the 

image, Ns be the number of discrete zone sizes in the image, Nz be the number of 

zones in the ROI. 

o Explanation: Measures the variability of gray-level values in the image with a 

lower value indicating more homogeneity in intensity values. 

2. Run Entropy 

o Formula:  
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𝑅𝐸 =  − ∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑙𝑜𝑔2(𝑝(𝑖, 𝑗|𝜃) + 𝜀)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

𝜀 is an arbitrarily small positive number. The GLRLM quantifies gray level 

runs, which are sequences of consecutive pixels with the same gray level value. 

In a GLRLM 𝑃 ( 𝑖 , 𝑗 ∣ 𝜃 ), the element ( 𝑖 , 𝑗 ) describes the number of runs with 

gray level 𝑖  and length 𝑗 that occur in the image (ROI) along the angle 𝜃. 𝑁𝑔is  

the number of discrete intensity values in the image 𝑁𝑟 is the number of discrete 

run lengths in the image. 

Explanation: This reflects the complexity and randomness of the distribution 

of the lengths of consecutive pixels (runs). A higher entropy value indicates a 

more complex and less predictable texture pattern. 

3. Run Length Non-Uniformity (RLNU) 

o Formula:  

𝑅𝐿𝑁 =  
∑ (∑ 𝑃(𝑖, 𝑗|𝜃)

𝑁𝑔

𝑖=1
)2𝑁𝑟

𝑗=1

𝑁𝑟(𝜃)
 

o Explanation: Measures the similarity of run lengths throughout the image. A 

lower value shows more homogeneity among run lengths within the image. 

Neighborhood Gray Tone Difference Matrix (NGTDM) Features 

1. Coarseness 

o Formula:  
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𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 =  
1

∑ 𝑝𝑖𝑠𝑖
𝑁𝑔

𝑖=1

 

𝑝𝑖 represents the probability of a specific gray level 𝑖 occurring in the image.  𝑠𝑖 is the 

sum of absolute differences for gray level 𝑖 , which measures how much the gray level 

𝑖 deviates from a reference value. 𝑁𝑔 denotes the number of distinct gray levels 

present in the image. 

o Explanation: Coarseness measures the average difference between a center 

voxel and its surrounding neighborhood, reflecting the rate of spatial change in 

the texture. A higher coarseness value indicates a slower rate of change, 

resulting in a more uniform texture in the image. 

2. Complexity 

o Formula:  

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  
1

𝑁𝑣,𝑝
∑ ∑ |𝑖 − 𝑗|

𝑝𝑖𝑠𝑖 +  𝑝𝑗𝑠𝑗

𝑝𝑖 + 𝑝𝑗

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

o Explanation: Quantifies the visual complexity of the texture patterns. An 

image is considered complex when it has many distinct elements and shows 

significant variability, with frequent and rapid changes in gray level intensity. 

3. Contrast 

o Formula:  

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = (
1

𝑁𝑔,𝑝(𝑁𝑔,𝑝 − 1)
∑ ∑ 𝑝𝑖𝑝𝑗(𝑖 − 𝑗)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

)(
1

𝑁𝑣,𝑝
∑ 𝑠𝑖

𝑁𝑔

𝑖=1

) 
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𝑁𝑔,𝑝 be the number of gray levels that do not have probability of zero. 𝑁𝑣,𝑝 is 

the total number of voxels with a valid region. 

o Explanation: Measures the local variations in the image intensities. 

Gray Level Dependence Matrix (GLDM) Features 

1. Dependence Non-Uniformity (DN) 

o Formula:  

𝐷𝑁 =  
∑ (∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑖=1
)2𝑁𝑑

𝑗=1

𝑁𝑧
 

 𝑁𝑑  be the number of discrete dependency sizes in the image. 𝑁𝑧 be the 

number of dependency zones in the image, 

o Explanation: Measures the variability of gray-level dependencies in the 

image, with a lower value indicating more homogeneity among dependencies 

in the image. 

First Order Feature 

1. Maximum 

o Formula:  

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = max (𝑋) 

o Explanation: The highest gray-level intensity within the ROI. 
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