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ABSTRACT 

Unraveling the complexities of climate change hinges on a detailed analysis of Earth’s 

energy balance and associated atmospheric processes, tasks for which hyperspectral radiative 

instruments are particularly suited. These instruments not only facilitate a comprehensive 

evaluation of energy balance changes by leveraging their sensitivity to key meteorological 

variables but also enable the disentanglement of various contributing factors. Moreover, 

retrieving atmospheric profiles from these measurements provides a comprehensive view of 

climate change, capturing its impacts across different atmospheric levels.  

This thesis mainly involves two hyperspectral instruments: the Atmospheric Emitted 

Radiance Interferometer (AERI), which measures the downwelling longwave radiance (DLR) 

emitted by the atmosphere at ground level in the infrared spectral range, and the High Spectral 

Resolution Airborne Microwave Sounder (HiSRAMS), designed for measuring microwave 

radiation and adaptable for use on research aircraft or at the surface. These instruments, with 

their high spectral resolutions, offer a multidimensional perspective on climate change.  

The objective of this thesis is to detect and understand climate change using 

hyperspectral radiative measurements from AERI and HiSRAMS. This goal is approached from 

two perspectives: radiative observations, which involve analyzing the spectral signals of various 

climate change agents and the evolution of the Earth's energy balance, and the application of 

hyperspectral radiative measurements to retrieve key atmospheric variables for further climate 

change analysis. Our objectives include obtaining a long-term DLR record from AERI 

observations at the Southern Great Plains (SGP) site and detecting and separating climate change 

signals. Additionally, we aim to address the radiometric accuracy of HiSRAMS measurements 
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and perform retrievals of temperature and water vapor concentrations using both AERI and 

HiSRAMS measurements under clear-sky conditions. 

For long-term climate change detection, we homogenize a 23-year DLR record observed 

by two AERIs at the SGP site, which includes an overlapping 10-year observational period. A 

neural network classifies the DLR spectra into distinct sky conditions: clear-sky, thin-cloud, and 

thick-cloud conditions. Employing a weighted linear regression model that incorporates a first-

order autoregressive process, we determine unique long-term DLR trends across various AERI 

channels and sky conditions. The spectral characteristics of these DLR trends reflect the impact 

of varying meteorological variables. For example, we identify significant positive DLR trends in 

temperature-sensitive channels, indicative of atmospheric warming, particularly at the surface 

due to strong absorption in these channels. Interestingly, we observe DLR trends with different 

signs in the window band between all-sky and clear-sky conditions, implying the significant 

impact of clouds on the longwave surface energy balance. Our study also highlights the early 

detectability of climate change in weak absorption channels and suggests that the primary source 

of uncertainty in DLR trends at the SGP site arises from internal climate variability, rather than 

measurement errors, emphasizing the importance of continuous spectrally resolved DLR 

observations for climate change detection and attribution.  

In terms of atmospheric profiling capabilities, we conduct a comparative assessment of 

radiative accuracy and performance in temperature and water vapor retrievals between AERI and 

HiSRAMS under clear-sky conditions based on three field campaigns carried out in Ottawa, 

Canada. HiSRAMS’s radiative accuracy is initially assessed against AERI through radiative 

closure tests. We compare the relationship between radiometric biases determined from the 

radiative closure tests and total column optical depth within the instrument’s viewing geometry 
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to assess the radiative accuracy of different instruments. Radiative closure results indicate that 

the radiative accuracy of HiSRAMS’s nadir-pointing measurements is comparable to that of 

corrected AERI observations, which remove the warm bias detected in the window band. 

Nonetheless, the zenith-pointing measurements from HiSRAMS exhibit relatively lower 

radiative accuracy. We further adopt an optimal estimation method to simultaneously retrieve 

clear-sky temperature and water vapor concentration profiles utilizing AERI and HiSRAMS 

measurements. AERI demonstrates better retrieval performance in terms of degree of freedom of 

signal (DFS), retrieval uncertainty, and the resolvability of fine vertical features in temperature 

and water vapor when adopting ground-based zenith-pointing measurements only. A synergy of 

HiSRAMS nadir-pointing hyperspectral measurement at high altitude and AERI ground-based 

zenith-pointing hyperspectral measurement increases the DFS and reduces the retrieval 

uncertainty in both temperature and water vapor retrievals. 

This thesis underscores the critical role of hyperspectral radiative measurements in 

detecting and understanding the multifaceted nature of climate change, providing insights into 

atmospheric mechanisms driving changes and enhancing our ability to monitor and predict 

climate change. 
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ABRÉGÉ 

Comprendre les complexités du changement climatique repose sur une analyse détaillée 

de la balance énergétique de la Terre et des processus atmosphériques associés, des tâches pour 

lesquelles les instruments radiatifs hyperspectraux sont particulièrement adaptés. Ces instruments 

facilitent non seulement une évaluation complète des changements de balance énergétique en 

exploitant leur sensibilité aux variables météorologiques clés, mais permettent également de 

démêler les différents facteurs contributifs. De plus, l'extraction de profils atmosphériques à 

partir de ces mesures offre une vue complète du changement climatique, capturant ses impacts à 

différents niveaux atmosphériques. 

Cette thèse implique principalement deux instruments hyperspectraux : l'Atmospheric 

Emitted Radiance Interferometer (AERI), qui mesure la radiance à longue onde descendante 

(RLOD) émise par l'atmosphère vers le sol dans la gamme spectrale infrarouge, et le High 

Spectral Resolution Airborne Microwave Sounder (HiSRAMS), conçu pour mesurer le 

rayonnement micro-onde et adaptable pour une utilisation au sol ou sur des avions de recherche. 

Ces instruments, de par leurs hautes résolutions spectrales, offrent une perspective 

multidimensionnelle sur le changement climatique. 

L'objectif de cette thèse est de détecter et de comprendre le changement climatique en 

utilisant des mesures radiatives hyperspectrales d'AERI et de HiSRAMS. Cet objectif est abordé 

sous deux perspectives : les observations radiatives, qui impliquent l'analyse des signaux 

spectraux de divers agents du changement climatique et l'évolution du bilan énergétique de la 

Terre, et l'application des mesures radiatives hyperspectrales pour obtenir des variables 

atmosphériques clés pour une analyse plus approfondie du changement climatique. Nos objectifs 

incluent l'obtention d'un enregistrement à long terme du RLOD à partir des observations d'AERI 
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sur le site des Southern Great Plains (SGP) et la détection et la séparation des signaux de 

changement climatique. De plus, nous visons à aborder la précision radiométrique des mesures 

de HiSRAMS et à effectuer des récupérations de la température et des concentrations de vapeur 

d'eau en utilisant les mesures d'AERI et de HiSRAMS dans des conditions ciel dégagé. 

Pour la détection du changement climatique à long terme, nous homogénéisons un 

enregistrement RLOD de 23 ans observé par deux AERI sur le site des SGP, qui comprend une 

période d'observation superposée de 10 ans. Un réseau de neurones classe les spectres RLOD en 

fonction de la condition nuageuse: ciel dégagé, nuages minces et conditions de nuages épais. En 

utilisant un modèle de régression linéaire pondérée qui intègre un processus autorégressif du 

premier ordre, nous déterminons les tendances RLOD à long terme uniques à travers divers 

canaux AERI et conditions nuageuses. Les caractéristiques spectrales de ces tendances RLOD 

reflètent l'impact de multiples variables météorologiques. Par exemple, nous identifions des 

tendances RLOD positives significatives dans les canaux sensibles à la température, indicatives 

d'un réchauffement atmosphérique, en particulier à la surface en raison d'une forte absorption 

dans ces canaux. De manière intéressante, nous observons des tendances RLOD avec des signes 

différents dans la fenêtre atmosphérique entre toutes les conditions nuageuses, impliquant 

l'impact significatif des nuages sur la balance énergétique de surface à onde longue. Notre étude 

met également en évidence la détectabilité précoce du changement climatique dans les canaux de 

faible absorption et suggère que la principale source d'incertitude dans les tendances RLOD sur 

le site SGP provient de la variabilité climatique interne, plutôt que des erreurs de mesure, 

soulignant l'importance des observations RLOD résolues spectralement pour la détection et 

l'attribution du changement climatique. 
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En termes de capacités de profilage atmosphérique, nous réalisons une évaluation 

comparative de la précision radiative et de la performance dans les récupérations de température 

et de vapeur d'eau entre AERI et HiSRAMS dans des conditions de ciel clair, basée sur trois 

campagnes sur le terrain menées à Ottawa, Canada. La précision radiative de HiSRAMS est 

initialement évaluée par rapport à AERI à travers des tests de fermeture radiative. Nous 

comparons la relation entre les biais radiométriques déterminés à partir des tests de fermeture 

radiative et la profondeur optique de la colonne totale dans la géométrie de visualisation de 

l'instrument pour évaluer la précision radiative de différents instruments. Les résultats de la 

fermeture radiative indiquent que la précision radiative des mesures de HiSRAMS pointant vers 

le nadir est comparable à celle des observations AERI corrigées, qui éliminent le biais chaud 

détecté dans la fenêtre atmosphérique. Néanmoins, les mesures pointant vers le zénith de 

HiSRAMS présentent une précision radiative relativement inférieure. Nous adoptons en outre la 

méthode d'estimation optimale pour récupérer simultanément les profils de température et de 

concentration de vapeur d'eau sous un ciel clair en utilisant les mesures de AERI et HiSRAMS. 

AERI démontre une meilleure performance de récupération en termes de degré de liberté du 

signal (DLS), d'incertitude de récupération et de la résolvabilité des caractéristiques verticales 

fines en température et en vapeur d'eau lors de l'adoption de mesures hyperspectrales au sol 

pointant uniquement vers le zénith. Une synergie des mesures hyperspectrales de HiSRAMS 

pointant vers le nadir à haute altitude et des mesures hyperspectrales au sol de AERI pointant 

vers le zénith augmente le DLS et réduit l'incertitude de récupération à la fois dans les 

récupérations de température et de vapeur d'eau. 

Cette thèse souligne le rôle critique des mesures radiatives hyperspectrales dans la 

détection et la compréhension de la nature multifacette du changement climatique, fournissant 
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des aperçus des mécanismes atmosphériques entraînant des changements et améliorant notre 

capacité à surveiller et à prédire le changement climatique.  
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1. A comprehensive homogenization of the long-term downwelling longwave radiance 

(DLR) record, as observed by the Atmospheric Emitted Radiance Interferometer (AERI) 

at the Southern Great Plains (SGP) site, has been conducted. This effort has resulted in a 

“hyperspectral radiative Keeling Curve,” establishing a solid foundation for climate 

change detection and attribution analysis. Long-term trends across all AERI channels 

have been analyzed under various sky conditions, enabling the extraction of distinct 

pieces of climate change information. 

2. Participation in the design and operation of three field campaigns in Ottawa, Canada, 

marked the first effort to collect collocated measurements from hyperspectral infrared 

and microwave radiometers, alongside radiosonde observations. The data from these 

campaigns provide a unique opportunity to systematically assess the radiometric accuracy 

of the newly developed hyperspectral microwave radiometer, the High Spectral 

Resolution Airborne Microwave Sounder, for the first time. Furthermore, these data 

allow for the testing of clear-sky temperature and water vapor retrieval capabilities using 

the hyperspectral microwave radiometer. 

3. A novel method has been proposed to assess the radiative accuracy of various 

hyperspectral instruments operating across different spectral ranges. This method is based 

on correlating the radiative bias, derived from radiative closure analysis, with the total 

column optical depth, as observed within the view geometry of the hyperspectral 

radiometer. It offers a straightforward yet effective approach to comparing the 

radiometric accuracy of different hyperspectral radiometers. 
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4. Retrieval algorithms for clear-sky temperature and water vapor, tailored to AERI 

measurements, have been developed. Additionally, a synergistic retrieval algorithm that 

utilizes both AERI and HiSRAMS hyperspectral measurements has been introduced. 

Infrared hyperspectral measurements offer a higher information content and superior 

vertical resolution for the retrieval of temperature and water vapor profiles compared to 

their microwave counterparts. The integration of ground-based infrared and airborne 

microwave hyperspectrometers provides a significant advantage for accurate sounding of 

temperature and water vapor profiles. 
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Chapter 1 INTRODUCTION 
 

The widespread influence and complex nature of climate change demand thorough 

investigation and analysis. Detecting and understanding its patterns is one of the central tasks 

toward enhancing our capabilities in monitoring and predicting climate change. As the planet 

navigates the consequences of climate change, the interrelated changes in Earth’s energy balance 

and atmospheric conditions play a pivotal role, acting to either amplify or mitigate global 

warming, characterized by the surface air temperature increases.  

The climate forcing and feedback framework, described by Equation 1.1, has been widely 

used to systematically understand and predict the climate change. This framework, which can be 

applied at both the top-of-atmosphere (TOA, Huang, 2013b; Soden et al., 2008) and at the 

surface (Andrews et al., 2009; Colman, 2015), quantitatively connects shifts in the Earth’s 

energy balance—represented by the energy imbalance (Δ𝑁𝑁), radiative forcing perturbation (Δ𝐹𝐹), 

and surface air temperature change (Δ𝑇𝑇𝑠𝑠). 

 Δ𝑁𝑁 = Δ𝐹𝐹 + 𝜆𝜆Δ𝑇𝑇𝑠𝑠 (1.1) 

Here, 𝜆𝜆 is defined as the climate feedback parameter, reflecting the sensitivity of the 

climate system to external changes. Feedback mechanisms, which involves climate system 

factors such as water vapor, atmospheric temperature, cloud, and surface albedo, are closely 

monitored for their relationship with energy imbalance and surface air temperature changes, as 

shown in Equation 1.2. In this equation, 𝜆𝜆𝑖𝑖 quantifies the specific feedback parameter associated 

with changes in the climate system factor 𝑥𝑥𝑖𝑖. 

 𝜆𝜆𝑖𝑖 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

×
𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑇𝑇𝑠𝑠

 (1.2) 
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In summary, the climate forcing and feedback framework underscores the importance of 

closely monitoring and analyzing Earth’s energy balance and atmospheric states to detect and 

understand climate change. Within this context, hyperspectral radiative instruments are 

invaluable for their ability to monitor the evolution of the Earth’s energy budget and retrieve key 

atmospheric variables. These capabilities enable the detailed observation and analysis necessary 

to bridge critical areas in climate science. 

1.1 Climate change and Earth’s energy balance 

Earth’s energy balance represents that the energy entering Earth should be in equilibrium 

with the energy exiting Earth, which plays a pivotal role in regulating the global climate. This 

balance can be analyzed at various levels: the TOA (e.g., Harries et al., 2001; Huang & 

Ramaswamy, 2009; Loeb et al., 2018; Wielicki et al., 2002), the surface (e.g., Wild et al., 2012), 

and within the atmosphere (e.g., Lin et al., 2008). Under equilibrium, all energy budgets at these 

levels are balanced. However, disturbances such as the greenhouse effect, driven by increased 

greenhouse gas emissions, disrupt this balance, leading to climate changes like surface warming. 

Monitoring the changes of Earth’s energy balance is crucial for detecting climate change (Loeb 

et al., 2016). 

The energy entering and exiting the Earth is in the form of electromagnetic energy, as 

shown in Figure 1.1. The electromagnetic spectrum illustrates the energy distribution across 

different wavelengths, i.e. different wavenumbers or frequencies. This distribution underlies the 

operation of hyperspectral instruments, which are devices capable of measuring radiance with 

high spectral resolution. Energy balances at various levels consist of distinct components, 

primarily categorized by their wavelengths into longwave and shortwave radiation. Changes in 

each component have significant implications for climate change. 
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Figure 1.1 The schematic of electromagnetic spectrum, obtained from 

https://www.noaa.gov/jetstream/satellites/absorb. 

1.2 Climate change and atmospheric thermodynamic states 

Atmospheric soundings, including temperature and water vapor vertical profiles, are vital 

for understanding Earth’s energy balance and weather systems (Cess, 1974; Guo et al., 2020; 

Laroche & Sarrazin, 2010; Thorne et al., 2011; Wang et al., 2016), necessitating continuous 

monitoring for climate change detection and understanding. Long-term monitoring of these 

profiles not only provides direct signals of climate change (Allan et al., 2022; Vuille & Bradley, 

2000; Zhou et al., 2021) but also informs atmospheric diagnostics like stability and radiation 

analysis (Doherty & Newell, 1984; Toporov & Löhnert, 2020).  

Radiosondes offer one of the most accurate atmospheric state measurements. However, 

there are challenges like drifting issues and limited temporal and spatial coverages. With global 

climate change, there is a need for vertical temperature and water vapor profiles in high temporal 

and spatial resolutions to improve weather forecasts and climate monitoring. 

https://www.noaa.gov/jetstream/satellites/absorb
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1.3 Hyperspectral radiative instruments in climate research 

Hyperspectral instruments, observing Earth’s radiation at high spectral and temporal 

resolutions, can be utilized to monitor Earth’s energy balance (Gero and Turner, 2011; Loeb et 

al., 2018; Palchetti et al., 2020; Wielicki et al., 2002) and retrieve atmospheric states (Aires et al., 

2015; Blackwell et al., 2010; Clerbaux et al., 2009; Susskind et al., 2010; Turner & Blumberg, 

2018). Various hyperspectral instruments typically span specific spectral ranges of Earth’s 

radiation. This is often considered as a criterion to classify these instruments, such as infrared 

and microwave hyperspectrometers. Depending on the deployment location of an instrument, it 

is possible to analyze the energy balance across different vertical levels and retrieve atmospheric 

profiles within the instrument’s viewing geometry. For instance, an infrared hyperspectrometer 

stationed at the surface can be utilized to monitor the downwelling longwave radiance (DLR) 

emitted by the atmosphere. 

The utilization of hyperspectral instruments in climate research is grounded in the distinct 

absorption characteristics of atmospheric gases. Figure 1.2 illustrates the spectral signatures of 

different atmospheric components within the DLR as observed from the Earth’s surface. These 

unique spectral responses enable the attribution of total climate change signals to various 

contributors within the energy balance analysis, as well as the retrieval of atmospheric profiles. 

In terms of energy balance analysis, spectrally resolved observations provide not only a 

broadband understanding of Earth’s radiation but also facilitate the disentanglement of the total 

climate change signals into contributions from different meteorological variables (Brindley & 

Bantges, 2016; Hilton et al., 2012; Huang & Ramaswamy, 2009). For the retrieval of 

atmospheric states, the enhanced temporal resolution afforded by hyperspectral instruments 

enables the detailed monitoring of atmospheric profiles. 
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Figure 1.2 The spectral signatures of different atmospheric components in the downwelling 

longwave radiance (DLR) at the Earth’s surface simulated by the Line-By-Line Radiative 

Transfer Model. The background profile is the standard mid-latitude summer (MLS) profile. The 

spectral resolution presented is 0.5 cm-1. This figure illustrates the difference in DLR when 

employing original MLS concentrations compared to using half of those concentrations. RU 

stands for Radiance Unit, where 1 RU equals to 1 mW/m2/cm-1/sr. Each bin represents 10 RU. 

One of the most important factors in Earth’s observational science is the reliability of the 

data obtained. A notable illustration is the Keeling Curve (Keeling et al., 1976), which represents 

the time series of atmospheric carbon dioxide (CO2) observed by nondispersive infrared 

analyzers at the Mauna Loa Observatory since 1958. It provides incontrovertible evidence of the 

escalating levels of atmospheric CO2. Thus, to rigorously evaluate the application of 

hyperspectral radiative measurements, it is crucial to validate the radiometric performance of 

these instruments, including assessing radiometric accuracy, the signal-to-noise ratio, and 
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stability. Various methods have been developed to assess the radiometric performance of 

hyperspectral instruments, including various calibration tests and radiative closure tests 

(Delamere, et al., 2010; Knuteson et al., 2004b; Turner et al., 2004). 

1.3.1 Hyperspectral infrared radiometer: AERI 

The Atmospheric Emitted Radiance Interferometer (AERI) is a pivotal hyperspectral 

radiative radiometer discussed in this thesis. AERI captures DLR from 520 to 3020 cm-1 with a 

high spectral resolution of 0.5 cm-1 and a temporal resolution of approximately 20 seconds 

(Knuteson et al., 2004a, 2004b). As an SI-traceable instrument, AERI upholds absolute 

radiometric accuracy, rendering it suitable for sustained radiative observations. 

AERI has proven crucial for the detection and attribution of climate change. Feldman et 

al. (2015) and Feldman et al. (2018) employed long-term AERI observations to ascertain the 

radiative forcing of surface CO2 and CH4 at specific sites. Gero and Turner (2011) determined 

DLR trends across various seasons for different sky conditions, leveraging a neural network 

approach developed in Turner and Gero (2011), at the Southern Great Plains (SGP) site based on 

a 14-year data series. 

Retrieval algorithms have been developed for AERI measurements, both individually and 

in synergy with other passive or active instruments, to acquire temperature, water vapor, and 

cloud information (Feltz et al., 1998, 2003; Turner & Blumberg, 2018; Turner et al., 2000). 

AERI’s measurements are most sensitive to the near-surface atmospheric profiles influenced by 

its location, offering invaluable insights into the monitoring of boundary layer thermodynamics. 

1.3.2 Hyperspectral microwave radiometer: HiSRAMS 

While energy in the microwave spectral range contributes minimally to Earth’s energy 

balance due to its relatively low intensity, the capacity of microwave radiometers to penetrate 
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clouds allows for the retrieval of crucial atmospheric states in all weather conditions. This ability 

enhances their interaction with both Earth’s energy budget and hydrological cycle, making them 

a popular choice for remote sensing applications (Aires et al., 2015; Blackwell et al., 2010; 

Simmer, 1999; Smith et al., 2021). 

In contrast to hyperspectral infrared radiometers, which offer a plenty of channels, most 

microwave radiometers are limited to only a few dozen channels, constraining the vertical 

resolution of the atmospheric states they retrieve. However, advancements in microwave 

technology, specifically fast Fourier transform (FFT) filters, have paved the way for the 

development of hyperspectral microwave radiometers. Through a collaborative effort involving 

Omnisys Instruments AB, the European Space Agency, the National Research Council of 

Canada, and McGill University, the High Spectral Resolution Airborne Microwave Sounder 

(HiSRAMS) was designed and developed, capturing hyperspectral microwave spectra across 

thousands of channels (Auriacombe et al., 2022; Bliankinshtein, Liu, et al., 2023). 

HiSRAMS, an airborne dual-radiometer system, operates within both the oxygen and 

water vapor absorption bands. This instrument is capable of measuring spectra in single or dual 

polarization modes at various altitudes, with configurations for both zenith-pointing (upward-

looking) and nadir-pointing (downward-looking) observations. 

1.4 Research motivation and questions 

Hyperspectral radiative measurements are instrumental in the detection and interpretation 

of climate change, offering insights into the Earth’s energy budget and atmospheric state 

dynamics. These measurements serve as a pivotal link in unraveling the complex interplay 

between the Earth’s energy budget and its atmospheric states. Recognizing the critical role of 

hyperspectral instruments in climate studies, this thesis aims to investigate their application in 
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detecting and comprehending climate change. It seeks to address the following research 

questions: 

1. Analogous to the “Keeling Curve” for CO2 concentration, is it possible to establish a 

dependable “hyperspectral radiative Keeling Curve” using long-term, spectrally 

resolved DLR observations from AERIs at the SGP site? If so, can such a “Keeling 

Curve” serve as a means to detect and monitor climate change? 

2. Evaluating the newly developed hyperspectral microwave radiometer, HiSRAMS: 

What is its radiative performance? How does it compare to other hyperspectral 

instruments like AERI in terms of radiometric accuracy? 

3. With comparable number of channels, can hyperspectral microwave radiometers 

match the performance of hyperspectral infrared radiometers in retrieving 

temperature and water vapor profiles under clear-sky conditions? Furthermore, what 

is the potential of combining ground-based hyperspectral infrared with airborne 

hyperspectral microwave instruments for enhanced retrieval of these profiles? 

The thesis is organized to systematically explore the stated research questions, and is 

divided into the following chapters: 

1. Chapter 2 synthesizes a 23-year DLR record observed by two AERIs deployed at the 

SGP site. Using a weighted linear regression that accounts for the first auto-

regression process, long-term DLR trends under various sky conditions are 

identified. Both interannual variability and measurement uncertainty are considered 

in the trend detection process and climate change signals are analyzed through the 

long-term trend in DLR. 
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2. Chapter 3 details three field campaigns we conducted in Ottawa, Canada, which 

gathered both hyperspectral infrared and microwave measurements alongside 

radiosonde observations under clear-sky conditions. Radiative closure tests are 

employed to assess the radiometric accuracy of AERI and HiSRAMS. A novel 

comparative approach involving the total column optical depth within the 

instrument’s geometry and the radiative bias is introduced to evaluate the radiative 

performance between AERI and HiSRAMS. 

3. Chapter 4 examines and compares the performance of clear-sky temperature and 

water vapor profile retrievals using both ground-based hyperspectral infrared and 

microwave measurements. A synergistic retrieval method, integrating both ground-

based hyperspectral infrared and airborne hyperspectral microwave measurements, is 

developed. The performance of this synergistic retrieval is then compared against 

single-instrument retrieval results.  

4. Chapter 5 summarizes the analytical findings aimed at addressing the previously 

raised research questions. Future work involving hyperspectral radiative 

measurements in detecting and understanding climate change is also proposed.  
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Chapter 2 TRENDS IN DOWNWELLING LONGWAVE RADIANCE OVER THE 
SOUTHERN GREAT PLAINS 

 

Chapter 2, in full, is a reprint of the material as it appears in Liu, L., Huang, Y., Gyakum, 

J. R., Turner, D. D., & Gero, P. J. (2022). Trends in downwelling longwave radiance over the 

Southern Great Plains. Journal of Geophysical Research: Atmospheres, 127, e2021JD035949. 

https://doi. org/10.1029/2021JD035949. The thesis author was the primary investigator and 

author of this paper. 
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Key Points 

• Long-term downwelling longwave radiance observations reveal distinctive trends across 

the infrared spectrum. 

• Significant positive radiance trends in weak absorption bands indicate earlier detectability 

of climate change. 

• Radiance trend uncertainty mainly results from natural variability, emphasizing the need 

to continue the measurements.   
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Abstract 

Downwelling longwave radiation is an important part of the surface energy budget. 

Spectral trends in the downwelling longwave radiance (DLR) provide insight into the radiative 

drivers of climate change. In this research, we process and analyze a 23-year DLR record 

measured by the Atmospheric Emitted Radiance Interferometer (AERI) at the U.S. Department 

of Energy Atmospheric Radiation Program Southern Great Plains (SGP) site. Two AERIs were 

deployed at SGP with an overlapping observation period of about 10 years, which allows us to 

examine the consistency and accuracy of the measurements and to account for discrepancies 

between them due to errors associated with the instruments themselves. We then analyzed the 

all-sky radiance trends in DLR, which are associated with the surface warming trend at SGP 

during this same period and also the complex changes in meteorological conditions. For instance, 

the observed radiance in the CO2 absorption band follows closely the near-surface air 

temperature variations. The significant positive radiance trends in weak absorption channels, 

such as in the wings of the CO2 band and in the weak absorption channels in the H2O vibration-

rotational band, show earlier detectability of climate change. The magnitude of the radiance 

trend uncertainty in the DLR record mainly results from internal climate variability rather than 

from measurement error, which highlights the importance of continuing the DLR spectral 

measurements to unambiguously detect and attribute climate change. 
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2.1 Introduction 

Longwave radiation is a key component of the atmospheric energy budget that drives 

climate change. At the top of the atmosphere (TOA), the outgoing longwave radiation (OLR), as 

well as its spectrally resolved radiance, is monitored by satellites with global coverage and long-

term records (e.g., Liebmann & Smith, 1996; Stephens et al., 2012). This allows us to study 

changes in OLR and to test climate models (e.g., Brindley & Bantges, 2016; Harries et al., 2001; 

Huang & Ramaswamy, 2009; Huang, Ramaswamy, Huang, et al., 2007; Huang, Ramaswamy, & 

Soden, 2007; Palchetti et al., 2020; Pan et al., 2015; Wielicki et al., 2002). Even when there is 

continuous spatiotemporal coverage of OLR spectra, the compensating effects of greenhouse gas 

opacity and temperature warming make it difficult to detect climate change in satellite 

measurements (Huang, 2013a; Huang & Ramaswamy, 2009). 

Downwelling longwave radiation emitted by the atmosphere is one key component in the 

surface energy budget (Stephens et al., 2012; Trenberth et al., 2009). Compared to the radiation 

budget at the TOA, the surface radiation budget is more uncertain and longwave radiation is a 

main contributor to the uncertainty (Trenberth et al., 2009; Wild et al., 2012). This is largely due 

to the paucity of global and long-term downwelling longwave radiance (DLR) observations. 

Despite the limits of spectrally resolved DLR records, it has been demonstrated that DLR 

measurements are useful for understanding the surface energy balance and testing climate 

models. For example, Lubin (1994) explained the super greenhouse effect by using observed 

DLR spectra over equatorial oceans; Feldman et al. (2015) used the DLR spectra to measure CO2 

radiative forcing at the Southern Great Plains (SGP) and the North Slope Alaska sites; Huang et 

al. (2019), Kapsch et al. (2016), Shupe and Intrieri (2004), Sokolowsky et al. (2020) and several 
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others diagnosed the DLR variability in relation to sea ice, clouds and other climate changes in 

polar regions. 

Climate change is driven by changes in energy balance. This leads us to an overarching 

question regarding the surface energy balance: can climate change be detected and understood by 

monitoring the DLR spectrum? One advantage of the DLR, compared to the OLR, is that the 

compensating effects mentioned earlier vanish. In the DLR, the greenhouse gas opacity and 

temperature warming effects reinforce each other to increase DLR. This makes DLR a 

potentially advantageous observation for monitoring climate change (Huang, 2013a). The signals 

from different meteorological variables such as temperature, greenhouse gases, and clouds 

imprint different spectral signatures. This allows for a spectral fingerprinting of their changes 

(Huang, Leroy, & Anderson, 2010). At the SGP site, the fifth generation European Centre for 

Medium-Range Weather Forecasts atmospheric reanalysis dataset, ERA5 (Hersbach et al., 2020), 

shows that there has been a significant warming in surface air temperature with a magnitude of  

~0.045 K/year between 1996 and 2018 (Figure 2.1). Can this warming be detected from the DLR 

spectral records at that site? 

We have two primary objectives in this paper. First, we are interested in constructing a 

long-term monthly DLR spectral record based on 23 years of measurements by the Atmospheric 

Emitted Radiance Interferometers (AERIs) installed at the U.S. Department of Energy 

Atmospheric Radiation Measurement (ARM) SGP site. Two AERIs have been deployed at this 

site and have rendered 10 years of overlapping observations but with different sampling 

strategies (i.e., 3 min sky average every 8 min vs multiple 20-s sky average observations every 4 

min). We will examine the accuracy and consistency of the measurements and assess them 

against synthetic spectra simulated from collocated atmospheric measurements using a 
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benchmark radiation model. Second, we will analyze the combined long-term DLR spectral 

trends for the period of 1996-2018. We are interested in ascertaining if the radiance trends in the 

AERI bands dominated by near-surface emission are consistent with the warming temperature 

trend shown by ERA5 (Figure 2.1). This work will also test the veracity of the trends 

documented by Gero and Turner (2011) using the early years of the DLR record and analyze the 

contributions from different sky conditions.  

 

Figure 2.1: Warming trend at Southern Great Plains (SGP). Shown here is the ERA5 monthly 

mean 2 m air temperature time series at the SGP site (average of nine 0.25°x0.25° resolution grid 

boxes centered at: 97.5° W and 36.5° N) between 1996 and 2018. The anomaly is defined with 

respect to multi-year monthly mean of each calendar month. 
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2.2 Data and methods 

2.2.1 AERI data processing 

The AERI is a ground-based Fourier transform spectrometer that measures the DLR 

emitted from the atmosphere with an accuracy of 1% ambient radiance at high temporal and 

spectral resolution (Knuteson et al., 2004a, 2004b). The measurements cover the spectral range 

between 520 and 3020 cm-1 with a resolution of 0.5 cm-1; however, we focus on the mid-infrared 

spectral range from 520 to 1800 cm-1 in this paper. Two high-emissivity blackbodies, a hot 

blackbody with a fixed temperature at 60°C and another blackbody at ambient temperature 

(Knuteson et al., 2004a), are used for radiometric calibration based on the method of Revercomb 

et al. (1988). The long-term average of all 23 annual mean DLR spectra and the standard 

deviation of monthly mean DLR spectra over the 23 years for different sky conditions at the SGP 

site are shown in Figure 2.2. We classify the scene into three different conditions: clear-sky, thin-

cloud, and thick-cloud; the classification method will be explained in Section 2.2.2. The main 

difference in DLR between different sky conditions is primarily in the window portion of the 

spectrum (between 800 – 1200 cm-1) shown in Figure 2.2a. The standard deviation of thick-cloud 

DLR is found to be the smallest among all the different sky conditions in the window band 

(Figure 2.2b), which indicates small variability of the radiating temperature of the thick clouds.  

The two AERIs deployed at SGP have different observational periods and different 

sampling frequencies. AERI-01 operated from July 1995 to March 2014, while AERI-C1 has 

operated from February 2004 to the present. C1 is the designator of the Central Facility location 

of the SGP site. Historically E14 was an alternate designator for the same location. AERI-C1 

was named AERI-E14 before 2011, for example, in Gero and Turner (2011). The two AERIs 
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were deployed side-by-side (within 5 m of each other). Given their vertical field of view (FOV) 

of 2.6° full-angle, both instruments view the same portion of the sky; 86% of the FOVs of the 

two AERIs are overlapped at the altitude of 1 km. The overlapping observations make it possible 

to test the accuracy and consistency of the measurements. However, the two instruments differ 

with respect to their sampling frequency. AERI-01 measures one DLR spectrum approximately 

every 8 min; its measurement cycle includes a 200-s sky-dwell period (Knuteson et al., 2004b) 

and the rest of the cycle is used for viewing the blackbodies for calibration. AERI-C1 uses a 

rapid mode with ~20-s sampling cycle (Turner et al., 2006). Such differences in the 

measurements necessitate appropriate procedures to homogenize the data from the two AERIs 

for inter-comparisons and trend analyses.  

Figure 2.3 shows the flowchart illustrating the data processing adopted in this paper. 

First, rigorous quality control is performed on the data to retain reliable observations. During the 

long history of observations at the SGP site, many factors have caused errors including: 

contamination of the scene mirror, malfunction of the interferometer, and failure of the detector 

temperature sensor. We first discard all the erroneous data based on the AERI quality control 

reports from the ARM program 

(https://adc.arm.gov/discovery/#/results/instrument_class_code::aeri). In addition, similar to the 

quality control method described in Turner and Gero (2011),  the hatch status and the sky view 

noise equivalent radiance tests are also implemented.  
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Figure 2.2: (a) Long-term average of all 23 annual mean AERI spectra for different sky 

conditions at Southern Great Plains (SGP). (b) Standard deviation of monthly mean AERI 

spectra for different sky conditions at SGP.  (RU: Radiance Units; 1 RU = 1 mW/[m2 sr cm-1]) 

The insets in the two panels indicate the corresponding zoomed-in results in the CO2 absorption 

band.  

After the Quality Control step, we average the AERI-C1 spectra over 8 min intervals, to 

be consistent with the AERI-01 sampling period. Then, in the Sky Classification step, we apply a 

machine learning algorithm (detailed in Section 2.2.2 below) to classify the sky conditions as one 

of clear, thin cloud, or thick cloud overhead based on the 8 min mean radiance spectra. Next, we 

compute averages of all 8 min spectra of each sky type within each hour and then average the 
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hourly spectra of the same hour of the day to obtain a monthly averaged diurnal cycle. It is 

verified that there is uniform diurnal sampling in each month; no data of the 24-hr diurnal cycle 

is missing. Next, the monthly mean spectra are obtained by averaging the monthly averaged 

diurnal cycle. Monthly means are discarded when the count of hourly spectra is below 400 (~ 

55%).  

 

Figure 2.3: Data processing flowchart. Yellow and purple squares represent AERI-01 and AERI-

C1 DLR data respectively. Blue squares represent important data processing steps. Pink squares 

represent radiative transfer model simulations. Details of processing steps are provided in the 

text. 
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Figure 2.4: Monthly anomalies of AERI-observed downwelling longwave radiance spectra and 

hourly spectra count in each month. 

Some channels in the center of the CO2 absorption band (~ 667 cm-1) and the water vapor 

absorption band (1300 – 1800 cm-1) for which the near-surface atmosphere is so opaque that the 

channels are essentially uncalibrated are discarded in the Optical Depth Screening step. These 

strongly opaque channels are identified using the criterion that the gaseous optical depth for a 1 
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m layer of atmosphere at the surface is above 0.5. Finally, the monthly anomaly spectra are 

obtained by subtracting from each monthly mean spectra the long-term average of all 23 monthly 

mean spectra for that calendar month (which effectively removes the seasonal cycle). These 

monthly anomaly time series are illustrated in Figure 2.4, and are used in the following analyses 

and figures. The long-term trends in the DLR monthly mean spectra are analyzed based on the 

monthly anomaly spectra. Synthetic clear-sky DLR, computed using collocated radiosonde data 

and a radiative transfer model (described below), are used as a baseline to evaluate the 

measurements of the two AERIs during the overlapping period; details are provided in Section 

2.5.  

Both AERIs produced more than 600 hourly mean spectra per month nearly 90% of the 

time (Figure 2.4c). The strongest monthly DLR anomalies are seen in the window band (800 – 

1200 cm-1; Figure 2.4a and Figure 2.4b). The pattern of the DLR anomalies in the overlapping 

observational period is similar in both AERI-01 and AERI-C1. 

2.2.2 Sky classification 

Clouds strongly influence the DLR spectra, especially in the atmospheric window (800 – 

1200 cm-1). In order to identify the causes of the DLR trends, we separate the clear-sky spectra 

from the cloudy cases and examine their trends separately.  

A sky-classification model is developed using a machine-learning method based upon the 

k-nearest neighbor (k-NN) algorithm (Cunningham & Delany, 2020). The 8 min AERI-01 and 

AERI-C1 spectra for the period between 1 March 2011 and 31 July 2012 are used to train the k-

NN model. We use the same inputs and truth data from Raman Lidar as in Turner and Gero 

(2011). The k-NN classification achieves an accuracy of 94.8%. This algorithm determines the 

sky to be clear or cloudy, while the cloudy sky is then further classified to be thin-cloud when 70 
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min averaged 985 cm-1 brightness temperature is lower than 250K; otherwise, it is classified to 

be thick-cloud. We also tried a classical backpropagation gradient-descent classification 

algorithm as used by Turner and Gero (2011), which achieves an accuracy of 90%. The resulting 

trends are not sensitive to the classification method chosen. The results presented below are 

based on the k-NN algorithm. 

Based on the classification of thin-cloud and thick-cloud, the thick-cloud emitting 

temperature range is smaller than that for thin-cloud, primarily because thick-clouds are opaque 

clouds relatively close to the surface while thin-cloud may be either partially cloudy scenes or 

clouds higher in the troposphere. This is why the thick-cloud classification has the smallest 

standard deviation of DLR among the three different sky conditions. 

2.2.3 Homogenization 

During the overlapping observational period, discrepancies larger than the documented 

AERI absolute calibration uncertainty (Knuteson et al., 2004a) were observed between the 

monthly mean spectra observed by AERI-01 and AERI-C1. Large radiance discrepancies occur, 

especially in the window band, and are found to mainly come from clear-sky scenes (see Figure 

2.14 and discussions in Section 2.6). This suggests that the discrepancies likely result from 

calibration (Rowe, Neshyba, Cox, & Walden, 2011; Rowe, Neshyba, & Walden, 2011) and other 

undetected errors (e.g., something in the FOV of one instrument but not the other). In order to 

avoid discarding meaningful data in the trend analysis, we simulate the clear-sky DLR spectra 

using a radiation model together with collocated atmospheric measurements and use these 

synthetic spectra as a reference to assign proper weights in combining the data of AERI-01 and 

AERI-C1, based on the findings of previous radiance closure studies (e.g., Turner et al., 2004) 

that demonstrated high accuracy in such synthetic spectra.  
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The radiation model used here is the Line-by-Line Radiative Transfer Model (LBLRTM 

v12.9; Clough et al., 2005). To compute the clear-sky DLR spectra at SGP, we use the 

temperature and water vapor profiles from the ARM Balloon-Borne Sounding System 

(https://www.arm.gov/capabilities/instruments/sonde). The water vapor mixing ratio profiles 

derived from radiosondes are scaled with a height-independent factor to match the precipitable 

water vapor (PWV) retrieved by the microwave radiometer at the SGP site. This approach has 

been used to compensate for the dry-bias issue found in the radiosonde water vapor data 

(Holdridge, 2020; Revercomb et al., 2003; Turner et al., 2003; Wang et al., 2002). CO2 and CH4 

concentration profiles are obtained from the CarbonTracker website 

(http://carbontracker.noaa.gov, Jacobson et al., 2020; Peters et al., 2007). O3 concentration 

profiles are adjusted from NASA’s Modern-Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA-2, Gelaro et al., 2017) ozone product to get a better radiative 

closure with AERI-observed DLR (see more details in Section 2.6). We use a 200-level input 

profile for the LBLRTM simulations. The first and second levels are at 0 and 10 m above ground 

level respectively. The depth of each subsequent layer is increased by 2% relative to the one 

below. 

As radiosonde observations of near-surface layers are essential to the DLR spectra, the 

AERI data are selected to match the radiosonde launch time. We keep the spectra whose 

observation time is within 10 min of the radiosonde launch time. For each month, about 70 clear-

sky DLR spectra are simulated on average. The absolute values of the radiance biases (𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) are 

determined as the monthly mean radiance differences between the synthetic and observed DLR 

spectra.  

https://www.arm.gov/capabilities/instruments/sonde
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During the overlapping observational period, the monthly mean AERI-01 and AERI-C1 

DLR spectra are combined according to Equation 2.1 and Equation 2.2 using the ratio 𝑟𝑟, which 

represents the proximity of the AERI’s observed DLR spectra to the synthetic DLR spectra. 𝑟𝑟 is 

a function of wavenumber. The 5th, 50th and 95th percentiles of the ratio r across all AERI 

channels over the 23-year period are 0.55, 2.06, and 12.84 respectively. The weighted radiance 

used in the trend analysis is given by Equation 2.2, where 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−01 and 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝐶𝐶1 represent the 

observed AERI-01 and AERI-C1 monthly mean DLR respectively.  

 𝑟𝑟 =
𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−01 −𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)

𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝐶𝐶1 −𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)
 (2.1) 

 𝑅𝑅 = 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−01 ×
1

1 + 𝑟𝑟
+ 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝐶𝐶1 ×

𝑟𝑟
1 + 𝑟𝑟

 (2.2) 

 

2.2.4 Trend detection 

A weighted linear regression method is applied to determine if there are any trends in the 

observed DLR. We develop our weighted linear regression model based on the regression model 

developed by Tiao et al. (1990) and Weatherhead et al. (1998).  

This model determines the radiance trend, 𝜔𝜔�, in each AERI channel, as: 

 𝜔𝜔� =
� 𝑊𝑊𝑡𝑡�𝑡𝑡 − 𝑡𝑡�𝑦𝑦𝑡𝑡⋆

𝑇𝑇
𝑡𝑡=1

1 − 𝜙𝜙
12 � 𝑊𝑊𝑡𝑡(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇

𝑡𝑡=1

 (2.3) 

In Equation 2.3, 𝑇𝑇 represents the total number of months and 𝑡𝑡 represents the mean value 

of t. 𝜙𝜙 is the autocorrelation in the noise of the time series considering a first-order 

autoregressive (AR1) process, and 𝑦𝑦𝑡𝑡⋆ represents the transformed radiance anomalies (see Figure 

2.11) after removing the effect of the AR1 process (see details in Section 2.5). 𝑊𝑊𝑡𝑡 represents the 
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weights which are determined as the intra-month variability of the all-sky observed DLR, shown 

in Equation 2.4: 

 𝑊𝑊𝑡𝑡 =
𝑁𝑁𝑡𝑡
𝜎𝜎𝑡𝑡2

 (2.4) 

where 𝑁𝑁𝑡𝑡 and 𝜎𝜎𝑡𝑡2 represent the number and variance of hourly observations in each month. 

Large variability of DLR results in smaller weights. We use the same weights for all sky 

conditions.  

Along with the magnitude of the trend it is also important to determine the associated 

uncertainty, 𝜎𝜎𝜔𝜔� , which is shown in Equation 2.5. In Equation 2.5, 𝜎𝜎𝑁𝑁2 and 𝜎𝜎𝑒𝑒2 represent the 

variance of the error due to internal variability in the time series and the variance of the 

measurement error respectively. Here, we mainly account for two sources of uncertainty. First, 

there is the uncertainty arising from internal climate variability. This is accounted for by the term 

in Equation 2.5 associated with 𝜎𝜎𝑁𝑁 and 𝜙𝜙. Second, there is the uncertainty arising from 

instrumentation errors accounted for by the term in Equation 2.5 associated with 𝜎𝜎𝑒𝑒. We use the 

radiance difference between clear-sky LBLRTM simulation and clear-sky AERI-observation as 

the measurement error. We assume that these two sources of uncertainty are independent of each 

other. The derivation of Equation 2.5 is given in Section 2.5.  

 𝜎𝜎𝜔𝜔� =
12�� 𝑊𝑊𝑡𝑡

2(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇
𝑡𝑡=1

� 𝑊𝑊𝑡𝑡(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇
𝑡𝑡=1

�𝜎𝜎𝑁𝑁2
1 + 𝜙𝜙
1 − 𝜙𝜙

+ 𝜎𝜎𝑒𝑒2 (2.5) 

The derived 𝜎𝜎𝜔𝜔�  in Equation 2.5 is referred to as the standard error of the trend magnitude. 

It is used to test whether the trends deviate significantly from 0 at the 95% significance level. A 

trend is considered to be significant at the 95% significance level if the trend magnitude is larger 
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than 2𝜎𝜎𝜔𝜔� . In following figures, the uncertainty envelope plotted in gray corresponds to the 95% 

confidence interval.  

2.3 Results 

2.3.1 All-sky radiance trends 

The homogenized DLR records have been constructed, based on monthly averaged 

AERI-01 data from 1996 to 2013 and AERI-C1 data from 2004 to 2018. In total, we have 23 

years of DLR data at SGP for analysis.  

It can be inferred from the monthly anomalies shown in Figure 2.4 that the DLR trends 

depend on the analysis period as the anomalies do not show monotonic changes over this 23-year 

period. The AERI-01 data (Figure 2.4a) show more frequent negative anomalies after 2011 in the 

window band (800-1200 cm-1), which is consistent with the negative trends reported in Gero and 

Turner (2011) for this instrument. However, including AERI-C1 data (Figure 2.4b) affords a 

longer DLR spectral record, and the latest several years are characterized by warm anomalies. 

The long-term all-sky radiance trends during the 1996-2018 period are shown in Figure 

2.5. The all-sky DLR trends have different features in different spectral regions. In the CO2 

absorption band centered around 667 cm-1, the trends are generally positive (i.e., radiance is 

increasing over time) and are statistically significant in the band wings but not at the center. In 

the window band (800-1200 cm-1), there are very few statistically significant trends. In the water 

vapor absorption band (1300-1800 cm-1), similar to the CO2 absorption band, the radiance trends 

are generally positive and statistically significant.  
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Figure 2.5: The all-sky radiance trends. The spectral elements indicated with red dots have trends 

that exceed the 95% significant test. The shading in the figure is the 95% confidence interval. 

The inset shows the zoomed-in results of CO2 absorption band.  

DLR in different AERI channels are controlled by different meteorological variables. To 

illustrate this point, Figure 2.6a shows the correlation coefficients between the deseasonalized 

and detrended monthly anomalies in the radiance (brightness temperature) spectra from the two 

AERIs and surface air temperature from ERA5. Note that AERI-01 and AERI-C1 have different 

observational periods, which result in different correlation coefficients especially in the window 

band. In the center of the CO2 absorption band (667 cm-1) and channels corresponding to strong 

H2O absorption lines, the correlation coefficient is close to one, indicating that the variance in 

the radiance in these channels is primarily controlled by the surface air temperature. This is 

because the atmospheric absorption is strongly saturated in these channels and thus they are less 

sensitive to variations in the concentrations of the gases themselves and to temperatures of the 

atmospheric constituents farther removed from the surface. In comparison, in the wings of the 
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CO2 band and the weaker H2O absorption lines, the atmospheric absorption is not saturated so 

that variability in DLR is subject to the variation in the temperature and gas concentration 

throughout the vertical column. This means that the trends both in temperature and gas 

concentrations drive the radiance to increase, which explains the stronger and statistically more 

significant trend signals in these channels, as seen in Figure 2.5.  

In Figure 2.6, the time series of the brightness temperature in four selected AERI 

channels: a CO2 channel at 655.72 cm-1, a window channel at 887.63 cm-1, a O3 channel at 

1023.60 cm-1, and a H2O channel at 1447.89 cm-1 (Figure 2.6b-2.6e) are displayed. There is good 

consistency between the AERI-01 and AERI-C1 observed brightness temperature in all four 

channels. The all-sky brightness temperature at the CO2 channel follows closely with the surface 

air temperature from ERA5 (Figure 2.6b). The near-surface warming of 0.045 K/year (Figure 

2.1) is equivalent to 0.071 RU/year at this channel, which is close to the observed all-sky 

radiance trend of ~0.072 RU/year (averaged trend between 5 nearby channels).  In the H2O 

channel, the brightness temperature measured by the AERIs also follows the near surface air 

temperature (Figure 2.6e) but not as closely as the CO2 channel (Figure 2.6b). In contrast, the 

brightness temperature anomalies in the window and O3 channels have larger fluctuations than 

that in the CO2 and H2O channels and are evidently decoupled from the near surface air 

temperature (Figure 2.6c and Figure 2.6d). 
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Figure 2.6: (a) The correlation coefficient between the AERI-observed brightness temperature 

spectra and near-surface air temperature from ERA5 at the SGP site over the 23-year period. (b-

e) The time series of the deseasonalized brightness temperature and near surface air temperature 

in four AERI channels. In each title, the values in the parentheses are the correlation coefficients 

between near-surface air temperature from ERA5 and observed brightness temperature by AERI-

01 and AERI-C1, respectively.  

That the radiance trend is reinforced by both warming and opacity effects in the weak 

absorption channels indicates the benefits of using these AERI measurements in climate change 

detection. Assuming the trend magnitude and uncertainty determined from this 23-year record 

remain unchanged into future, the years to detect a significant trend, 𝑛𝑛⋆,  at 90% significance 

level is: 
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 𝑛𝑛⋆ ≈
3.3𝜎𝜎𝜔𝜔�

|𝜔𝜔�| × 23 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (2.6) 

where 𝜔𝜔� is the 23-year trend determined by Equation 2.3 and 𝜎𝜎𝜔𝜔�  is the trend uncertainty 

determined by Equation 2.5. The derivation of Equation 2.6 is given in Section 2.5.4. Although 

the trends are considered significant when |𝜔𝜔�| > 2𝜎𝜎𝜔𝜔� , we require |𝜔𝜔�| > 3.3𝜎𝜎𝜔𝜔�  when computing 

𝑛𝑛⋆. As discussed in Section 2.7, this yields a more conservative estimation of 𝑛𝑛⋆ compared to the 

method of Leroy et al. (2008). 

Based on this equation, approximately 30 years are needed to detect a significant trend in 

the 2 m air temperature from the ERA5 data shown in Figure 2.1 when 𝜔𝜔� and 𝜎𝜎𝜔𝜔�  are substituted 

with the 2 m air temperature trend magnitude and trend uncertainty, respectively. In comparison, 

Figure 2.7 shows earlier detectability of the radiance trends in weak absorption channels, such as 

in the wings of the CO2 band and in the weak absorption channels in the H2O vibration-rotational 

band. In Figure 2.7c, the earlier detectability of the radiance trends in the H2O vibration-

rotational band is noticeable in the wings of strong absorption lines (i.e., where the optical depth 

is relatively lower). We can conclude that it is advantageous to monitor the DLR in these 

weaker-absorption channels for climate change detection.  

Trend detection in the radiance record is determined by comparing the trend signal to the 

uncertainties arising from different causes. Here, based on Equation 2.5, we account for 

uncertainties arising from climate internal variability (𝜎𝜎𝑁𝑁) and also instrumentation error (𝜎𝜎𝑒𝑒; 

Figure 2.5). The overall uncertainty is notably large in the window band for the all-sky condition 

(Figure 2.5), which impedes the detection of any significant radiance trends in this especially 

variable spectral region. Analysis of the respective parameters in Section 2.5 (see Figure 2.12) 

indicates that internal climate variability dominates instrumentation error when shaping the 
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overall uncertainty envelope in Figure 2.5. It is also found that the influence of the 

autoregressive process does not strongly influence the trend uncertainty, as evident by the small 

value of 𝜙𝜙, especially in the window band (Figure 2.12). We conclude that the trend uncertainty 

mainly arises from internal climate variability. 

 

Figure 2.7: Trend detectability. (a) Time to detect (T2D) radiance trends at 90% significance 

level in different AERI channels; in comparison, the T2D for the 2 m temperature from the 

ERA5 reanalysis is about 30 years. (b) Zoomed-in figure of panel (a) in the water vapor 

absorption band. (c) The T2D (color-coded), in relation to atmospheric absorption strength, 

measured by the optical depth of a 1 m-thick atmospheric layer near the surface. The horizontal 

line marks optical depth of 0.5.   
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2.3.2 Trends in different cloud conditions 

The results presented in the previous subsection demonstrate that the radiance trends in 

the window band are different from the greenhouse gas absorption bands; the window band is 

also prone to high levels of uncertainty due to the marked variability of the signal that ranges 

from small values in clear sky conditions to large values when opaque low-altitude clouds are 

overhead. Given the fact that clouds are a significant factor that influences this band (see Figure 

2.2), we analyze the radiance trends under different cloud conditions in this subsection.   

The fraction of time that each sky condition occurs in 1 month (referred to as “sky 

fraction”) based on the hourly spectra are shown in Figure 2.8. First, there is a good agreement 

between AERI-01 and AERI-C1 in the sky fraction monthly time series, with correlation 

coefficients of 0.94, 0.89, and 0.94 for clear-sky, thin-cloud, and thick-cloud, respectively. The 

clear-sky fraction between June 1996 and May 2010 from our classification is around 42% which 

is comparable to what was found by Turner and Gero (2011).  

The clear-sky fraction increases at a rate of 0.17 ± 0.09 % per year, while the thick-cloud 

fraction decreases at a rate of -0.18 ± 0.09 % per year. There is no significant trend for thin-cloud 

fraction. Understanding the atmospheric mechanisms that drive the trends in the sky fraction for 

different sky conditions are the subject of investigation in a future work.  
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Figure 2.8: The monthly sky fractions of different sky conditions, categorized based on 8 min 

mean spectra at the Southern Great Plains site. The overlapping observational period is between 

the two vertical thick black lines. 

Trends in AERI-observed DLR for different sky conditions based on the k-NN classifier 

are shown in Figure 2.9. In the window band, the clear-sky and thin-cloud trends are positive, 

while the thick-cloud trends are negative; however, none of those trends are statistically 

significant from zero because of the notably large trend uncertainty. The positive trend in the 

window band in the clear-sky data is likely due to increases in PWV, as hypothesized by Gero 

and Turner (2011). The positive trend in the thin-cloud classification suggests that either the 

clouds in these scenes are becoming more opaque, the clouds are becoming warmer (perhaps by 

moving lower in the troposphere), the PWV is increasing, or some combination of the three. The 

decrease in the thick-cloud trend in the window suggests that these thicker clouds are either 
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becoming cooler or moving higher in the troposphere. In the spectral regions outside the window 

band, the trends for different sky conditions are generally positive and have the same features as 

the all-sky scenes.  

 

Figure 2.9: The trends in AERI-observed downwelling longwave radiance for different sky 

conditions at the Southern Great Plains site. The spectral elements marked with red dots indicate 

that the trends pass the 95% significance test. The shading in the figure is the 95% confidence 

interval.  
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The all-sky DLR trends are caused by changes in both sky fraction and the radiance of 

each sky condition. We use Equation 2.7 to separate the contributions from these factors, in 

which 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 represents the all-sky radiance, 𝑓𝑓𝑖𝑖 and 𝑅𝑅𝑖𝑖 represent the sky fraction and mean radiance 

for different sky conditions.  

 𝑑𝑑𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑

= �
𝑑𝑑𝑓𝑓𝑖𝑖
𝑑𝑑𝑑𝑑

𝑅𝑅𝑖𝑖 + �
𝑑𝑑𝑅𝑅𝑖𝑖
𝑑𝑑𝑑𝑑

𝑓𝑓𝑖𝑖  +  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (2.7) 

The results of the decomposed trends based on Equation 2.7 are shown in Figure 2.10. 

The small residual term (purple line in Figure 2.10a), which comes from nonlinear effects, 

suggests that the overall all-sky radiance trends can be well explained by Equation 2.7. In the 

window band, the overall radiance trends are a result of the compensation between the sky 

fraction change (orange line in Figure 2.10a) and the radiance change (yellow line in Figure 

2.10a). In the opaque portions of the CO2 absorption band (centered at 667 cm-1) and H2O 

absorption band (1300 – 1800 cm-1), the overall radiance trends are caused by radiance change 

which is due almost entirely to the increases in the near-surface temperature because the 

atmosphere is already too opaque to reflect any gas concentration changes. 

The overall radiance trends caused by sky fraction changes (orange line in Figure 2.10a) 

are a result of the compensation between changes in the clear-sky (blue line in Figure 2.10b) and 

the thick-cloud fraction (yellow line in Figure 2.10b) except in the opaque regions of the CO2 

absorption band (centered at 667 cm-1) and H2O absorption band (1300 – 1800 cm-1). In the CO2 

absorption band and H2O absorption band, the perfect compensation between positive trends 

caused by clear-sky and thin-cloud sky fraction changes and the negative trends caused by thick-

cloud sky fraction changes results in almost no trends. In the window band, the negative trends 

are mainly caused by the thick-cloud fraction change.  
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Figure 2.10: The all-sky downwelling longwave radiance (DLR) trends decomposed into the 

contributions from the sky fraction and radiance changes of different sky conditions.  (a) The 

blue line represents the calculated all-sky DLR trends, which is the same as that from Figure 2.5. 

The orange and yellow lines represent the contributions from sky fraction change and radiance 

change determined using Equation 2.7, respectively. The purple line is the residual term from 

Equation 2.7; (b) The all-sky DLR trends caused by sky fraction change. The blue, orange, and 

yellow lines represent the contributions from clear-sky, thin-cloud, and thick-cloud fraction 

changes respectively; (c) The all-sky DLR trends caused by radiance change. The blue, orange, 

and yellow lines represent the contributions from clear-sky, thin-cloud, and thick-cloud radiance 

changes respectively. 

In the window band (800 -1200 cm-1), the overall radiance trends caused by radiance 

change (yellow line in Figure 2.10a) result from the compensation between positive clear-sky 
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and thin-cloud radiance change trends and negative thick-cloud sky radiance change trends 

(Figure 2.10c). By contrast, in the CO2 absorption band (centered at 667 cm-1) and H2O 

absorption band (1300 – 1800 cm-1), the radiance changes for the three sky conditions all 

contribute similarly to the overall radiance trends caused by radiance change.  

 
2.4 Discussion and conclusions 

In this study, a long-term record of DLR at the SGP site has been constructed for 

analyzing the DLR trends, based on a weighted linear regression method that takes into account 

both natural climate variability and measurement error. Compared to previous studies, our 

analysis is based on a longer DLR record combined from the two AERIs at the SGP site, and 

makes use of synthetic DLR data in validating and differentiating the AERI measurements over 

their overlapping observational period. In addition, we quantitatively decompose the overall 

radiance trends due to the contributions from sky fraction change and the radiance change in 

each of these sky conditions.  

The trends in DLR in different spectral ranges have different features. The trends are 

generally positive in the CO2 and H2O absorption bands, while no statistically significant trends 

are detected in the window band (Figure 2.5). We find that in the more opaque regions (the 

center of the CO2 and H2O absorption bands), the radiance is controlled by the near-surface air 

temperature (Figure 2.6) because of the strong atmospheric absorption. The sensitivity of DLR to 

near-surface air temperature indicates the potential of DLR to monitor climate change. In the 

wings of these absorption bands, both the near-surface atmospheric warming and the increase of 

the abundance of these trace gases contribute to the radiance trends (Feldman et al., 2015), which 

makes a climate trend signal more readily detectable, as hypothesized by Huang (2013a). In the 
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window band, the radiance is decoupled from the near-surface air temperature (Figure 2.6) 

because of the impact of sky-fraction changes of different scenes (clear and cloudy-skies). 

We find that the sky-fraction change and the radiance change led to compensating effects 

on the DLR trends. This compensation results in weakly (statistically insignificant) negative 

radiance trends in the window band (Figure 2.10). In contrast, the radiance trends are dominated 

by the radiance change in the CO2 and H2O absorption bands, which are similar in all three sky 

conditions.  

The influences of both natural climate variability and measurement error are considered 

when determining the uncertainty of the trend magnitude (Equation 2.5, Figure 2.12). We find 

that for all sky conditions, the majority of the uncertainty comes from the natural variability. 

This underlines the necessity of continuous DLR measurements to ascertain the DLR trends, 

especially in the window band (Figure 2.5).  

The two AERIs at the SGP site provide us with an excellent opportunity to test the 

accuracy and consistency of the instruments. The discrepancies between the two AERIs in the 

overlapping periods may have come from calibration error and other undetected instrumentation 

errors. In this study, we use synthetic data to differentiate and combine the two AERIs’ 

observations. Further investigation is required to understand the origin of the discrepancies and 

therefore to assure the measurement accuracy.  

This paper has focused on the detection, as opposed to attribution, of the DLR trends. In 

the clear-sky case, atmospheric temperature and radiative gas concentration changes (primarily 

water vapor) are likely the main contributors to the DLR changes. As for the cloudy-sky case, 

changes in both the atmospheric states and cloud properties may contribute to the DLR changes. 
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Future work is warranted to understand and quantitatively attribute the DLR trends disclosed in 

this paper to different meteorological variables.  

2.5 Appendix A: Trend detection 

We first summarize the linear trend model and trend estimation from Tiao et al. (1990) 

and Weatherhead et al. (1998) in Sections 2.5.1 and 2.5.2. We adopt the notation in their papers. 

Then we add the measurement error term to the trend detection in Section 2.5.3 following Tiao et 

al. (1990).   

2.5.1 Basic linear trend modeling 

In order to detect a linear trend, we first construct a simple model that describes the 

monthly mean radiance 𝑌𝑌𝑡𝑡 as: 

 𝑌𝑌𝑡𝑡 = 𝜇𝜇 + 𝑆𝑆𝑡𝑡 + 𝜔𝜔𝑋𝑋𝑡𝑡 + 𝑁𝑁𝑡𝑡 , 𝑡𝑡 = 1,⋯ ,𝑇𝑇 (2.8) 

where 𝜇𝜇 is a constant term, 𝑆𝑆𝑡𝑡 represents the seasonal component, 𝜔𝜔 is the trend magnitude to be 

determined, 𝑋𝑋𝑡𝑡 = 𝑡𝑡
12

 represents time measured in the units of year, 𝑁𝑁𝑡𝑡 represents the unexplained 

portion of the data (i.e., the noise), and 𝑇𝑇 represents the length of the data set in months. 

The seasonal component 𝑆𝑆𝑡𝑡 is determined by computing a long-term average of each 

calendar month. This component is subsequently removed from the monthly mean. 

 𝑦𝑦𝑡𝑡 = 𝑌𝑌𝑡𝑡  −  𝑆𝑆𝑡𝑡 = 𝜇𝜇 + 𝜔𝜔𝑋𝑋𝑡𝑡 + 𝑁𝑁𝑡𝑡 , 𝑡𝑡 = 1,⋯ ,𝑇𝑇 (2.9) 

The noise 𝑁𝑁𝑡𝑡 is assumed to be autoregressive of the order of 1 (AR1): 

 𝑁𝑁𝑡𝑡 = 𝜙𝜙𝑁𝑁𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 (2.10) 

where 𝜖𝜖𝑡𝑡 is assumed to be random white noise with zero mean and common variance 𝜎𝜎𝜖𝜖2, 

𝜖𝜖𝑡𝑡~𝑊𝑊(0,𝜎𝜎𝜖𝜖2). The autocorrelations in the noise come from various natural factors. 𝜙𝜙 is 

determined as the autocorrelation coefficient of the AR1 process after removing from 𝑦𝑦𝑡𝑡 a linear 
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trend component obtained by regressing 𝑦𝑦𝑡𝑡 to time using a simple weighted linear least squares 

method (i.e., neglecting the AR1). The all-sky 𝜙𝜙 is shown in Figure 2.12a.  

The variance of the noise 𝑁𝑁𝑡𝑡 can also be determined from the detrended 𝑦𝑦𝑡𝑡 time series: 

 
𝜎𝜎𝑁𝑁2 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝑡𝑡 ,𝑁𝑁𝑡𝑡) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝜙𝜙𝑁𝑁𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 ,𝜙𝜙𝑁𝑁𝑡𝑡−1 + 𝜖𝜖𝑡𝑡)

= 𝜙𝜙2𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝑡𝑡−1,𝑁𝑁𝑡𝑡−1) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝜖𝜖𝑡𝑡 , 𝜖𝜖𝑡𝑡)
= 𝜙𝜙2𝜎𝜎𝑁𝑁2 + 𝜎𝜎𝜖𝜖2

 (2.11) 

Thus, 

 𝜎𝜎𝑁𝑁2 =
𝜎𝜎𝜖𝜖2

1 − 𝜙𝜙2 (2.12) 

2.5.2 Trend estimation with weights 

Given 𝜙𝜙, to obtain the trend estimation, we consider a transformed model: 

 

𝑦𝑦𝑡𝑡⋆ = 𝑦𝑦𝑡𝑡 − 𝜙𝜙𝑦𝑦𝑡𝑡−1
= 𝜇𝜇(1 − 𝜙𝜙) + 𝜔𝜔(𝑋𝑋𝑡𝑡 − 𝜙𝜙𝑋𝑋𝑡𝑡−1) + 𝜖𝜖𝑡𝑡

= 𝜇𝜇(1 − 𝜙𝜙) + 𝜔𝜔 �
𝑡𝑡 − 𝜙𝜙(𝑡𝑡 − 1)

12 � + 𝜖𝜖𝑡𝑡

= 𝜇𝜇(1 − 𝜙𝜙) +
𝜔𝜔𝜔𝜔
12

+
𝜔𝜔(1 − 𝜙𝜙)𝑡𝑡

12
+ 𝜖𝜖𝑡𝑡

= 𝜇𝜇⋆ + 𝜔𝜔𝑡𝑡⋆ + 𝜖𝜖𝑡𝑡

 (2.13) 

where 𝜇𝜇⋆ = 𝜇𝜇(1 − 𝜙𝜙) + 𝜔𝜔𝜔𝜔
12

 and 𝑡𝑡⋆ = (1−𝜙𝜙)𝑡𝑡
12

. Thus, in the transformed model, the noise term 𝑁𝑁𝑡𝑡 

has been removed. The transformed DLR 𝑦𝑦𝑡𝑡⋆ is shown in Figure 2.11. 

According to the weighted least squares estimation: 

 𝜔𝜔� =
� 𝑊𝑊𝑡𝑡�𝑡𝑡⋆ − 𝑡𝑡⋆�𝑦𝑦𝑡𝑡⋆

𝑇𝑇

𝑡𝑡=1

� 𝑊𝑊𝑡𝑡(𝑡𝑡⋆ − 𝑡𝑡⋆)2
𝑇𝑇

𝑡𝑡=1

 =
� 𝑊𝑊𝑡𝑡�𝑡𝑡 − 𝑡𝑡�𝑦𝑦𝑡𝑡⋆

𝑇𝑇
𝑡𝑡=1

1 − 𝜙𝜙
12 � 𝑊𝑊𝑡𝑡(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇

𝑡𝑡=1

 (2.14) 
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where 𝑊𝑊𝑡𝑡 represents the weights determined according to Equation 2.4, 𝑦𝑦𝑡𝑡⋆���� = ∑ 𝑊𝑊𝑡𝑡𝑦𝑦𝑡𝑡⋆𝑇𝑇
𝑡𝑡=1
∑ 𝑊𝑊𝑡𝑡
𝑇𝑇
𝑡𝑡=1

, 𝑡𝑡⋆� =

∑ 𝑊𝑊𝑡𝑡𝑡𝑡⋆𝑇𝑇
𝑡𝑡=1
∑ 𝑊𝑊𝑡𝑡
𝑇𝑇
𝑡𝑡=1

, and 𝑡𝑡̅ = ∑ 𝑊𝑊𝑡𝑡𝑡𝑡𝑇𝑇
𝑡𝑡=1
∑ 𝑊𝑊𝑡𝑡
𝑇𝑇
𝑡𝑡=1

. 

The variance of the estimated 𝜔𝜔: 

 

𝜎𝜎𝜔𝜔� 2 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝜔𝜔�) = 𝑉𝑉𝑉𝑉𝑉𝑉 �
� 𝑊𝑊𝑡𝑡�𝑡𝑡 − 𝑡𝑡�𝑦𝑦𝑡𝑡⋆

𝑇𝑇
𝑡𝑡=1

1 − 𝜙𝜙
12 � 𝑊𝑊𝑡𝑡(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇

𝑡𝑡=1

�

=
𝑉𝑉𝑉𝑉𝑉𝑉 �� 𝑊𝑊𝑡𝑡�𝑡𝑡 − 𝑡𝑡�𝑦𝑦𝑡𝑡⋆

𝑇𝑇
𝑡𝑡=1 �

(1 − 𝜙𝜙
12 )2 �� 𝑊𝑊𝑡𝑡(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇

𝑡𝑡=1 �
2

=
𝑉𝑉𝑉𝑉𝑉𝑉 �� 𝑊𝑊𝑡𝑡�𝑡𝑡 − 𝑡𝑡�𝜖𝜖𝑡𝑡

𝑇𝑇
𝑡𝑡=1 �

(1 − 𝜙𝜙
12 )2 �� 𝑊𝑊𝑡𝑡(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇

𝑡𝑡=1 �
2

=
� [𝑉𝑉𝑉𝑉𝑉𝑉[𝑊𝑊𝑡𝑡�𝑡𝑡 − 𝑡𝑡�𝜖𝜖𝑡𝑡]]𝑇𝑇

𝑡𝑡=1

(1 − 𝜙𝜙
12 )2 �� 𝑊𝑊𝑡𝑡(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇

𝑡𝑡=1 �
2

=
𝑉𝑉𝑉𝑉𝑉𝑉(ϵ𝑡𝑡)� 𝑊𝑊𝑡𝑡

2(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇
𝑡𝑡=1

(1 − 𝜙𝜙
12 )2 �� 𝑊𝑊𝑡𝑡(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇

𝑡𝑡=1 �
2

=
𝜎𝜎𝜖𝜖2� 𝑊𝑊𝑡𝑡

2(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇
𝑡𝑡=1

(1 − 𝜙𝜙
12 )2 �� 𝑊𝑊𝑡𝑡(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇

𝑡𝑡=1 �
2 

 

(2.15) 

 𝜎𝜎𝜔𝜔� =
𝜎𝜎𝜖𝜖

1 − 𝜙𝜙
12

�� 𝑊𝑊𝑡𝑡
2(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇

𝑡𝑡=1

� 𝑊𝑊𝑡𝑡(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇
𝑡𝑡=1

= 𝜎𝜎𝑁𝑁𝑔𝑔(𝑇𝑇,𝜙𝜙,𝑊𝑊) (2.16) 
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Figure 2.11: Transformed monthly anomaly of AERI-observed DLR spectra based on Equation 

2.13 and hourly spectra count in each month.  

In Equation 2.16, 𝑔𝑔 is a function of 𝑇𝑇, 𝜙𝜙, and W with the explicit expression shown in 

Equation 2.17. 
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 𝑔𝑔(𝑇𝑇,𝜙𝜙,𝑊𝑊) = 12�
1 + 𝜙𝜙
1 − 𝜙𝜙

�� 𝑊𝑊𝑡𝑡
2(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇

𝑡𝑡=1

� 𝑊𝑊𝑡𝑡(𝑡𝑡 − 𝑡𝑡)2𝑇𝑇
𝑡𝑡=1

 (2.17) 

Thus, 

 𝜎𝜎𝜔𝜔� = 12 𝜎𝜎𝑁𝑁�
1 + 𝜙𝜙
1 − 𝜙𝜙

�� 𝑊𝑊𝑡𝑡
2�𝑡𝑡 − 𝑡𝑡�2

𝑇𝑇

𝑡𝑡=1

� 𝑊𝑊𝑡𝑡�𝑡𝑡 − 𝑡𝑡�2
𝑇𝑇

𝑡𝑡=1

 (2.18) 

From Equation 2.18, we conclude that the trend uncertainty is affected by the length of 

the available data, the natural variability in the data, the autocorrelation of the data, and the 

derived weights. 

2.5.3 Effect of measurement error 

When we consider the instrumentation errors 𝑒𝑒𝑡𝑡 in the measurements, Equation 2.9 

becomes: 

 𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝜔𝜔𝑋𝑋𝑡𝑡 + 𝑁𝑁𝑡𝑡 + 𝑒𝑒𝑡𝑡 , 𝑡𝑡 = 1,⋯ ,𝑇𝑇 (2.19) 

𝑒𝑒𝑡𝑡 is considered to be white noise with zero mean and common variance 𝜎𝜎𝑒𝑒2, 

𝑒𝑒𝑡𝑡~𝑊𝑊(0,𝜎𝜎𝑒𝑒2), and is considered independent of 𝑁𝑁𝑡𝑡 because 𝑁𝑁𝑡𝑡 originates from unobserved or 

unsuspected atmospheric factors, while 𝑒𝑒𝑡𝑡 comes from the instrument itself. 

In this case, the variance of noise comes from two parts: 

 𝜎𝜎2 = 𝜎𝜎𝑁𝑁2 + 𝜎𝜎𝑒𝑒2 (2.20) 

Similar to the derivation in Equation 2.16, the variance of the estimated trend magnitude 

is: 
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 (2.21) 

The uncertainty of the all-sky radiance trend magnitude caused by the natural variability 

and the measurement error are shown in Figure 2.12b.  

 

Figure 2.12: Parameters concerning the radiance trends. (a) The all-sky autocorrelation 

coefficient based on an AR1 process; (b) All-sky DLR trend uncertainty decomposition based on 

Equation 2.21. The blue line represents the total all-sky trend magnitude uncertainty, while the 

orange and yellow lines represent the all-sky trend magnitude uncertainty arising from natural 

climate variability and measurement error respectively. 
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2.5.4 Time to detect the trend 

The trend detection 𝜔𝜔 is judged to be real or significantly different from zero at the 95% 

level if |𝜔𝜔�| > 2𝜎𝜎𝜔𝜔� . 𝜔𝜔� is approximately normally distributed, so 𝑧𝑧 = 𝜔𝜔�−𝜔𝜔
𝜎𝜎𝜔𝜔�

 follows a standard 

normal distribution. 

 𝑃𝑃𝑃𝑃(|𝜔𝜔�| > 2𝜎𝜎𝜔𝜔� ) = 𝑃𝑃𝑃𝑃 �𝑧𝑧 > 2 −
𝜔𝜔
𝜎𝜎𝜔𝜔�
� (2.22) 

To detect a real trend of specified magnitude |𝜔𝜔|, with probability of 90%, requires that 

2 − 𝜔𝜔
𝜎𝜎𝜔𝜔�

< −1.3 ⇒ 𝜔𝜔 > 3.3𝜎𝜎𝜔𝜔� . 

Thus, the number of years 𝑛𝑛⋆ of data required to detect the trend 𝜔𝜔� which is determined 

based on 23-year data, assuming that the trend and noise levels do not change relative to the 23-

year period, is 

 𝑛𝑛⋆ ≈
3.3𝜎𝜎𝜔𝜔�

|𝜔𝜔�| × 23 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (2.23) 

 We note that the T2D estimation is different from ascertaining whether the trend 

magnitude measured from data is significantly different from zero. Hence, although in some 

channels the trend magnitude is assessed to be “significant”, the estimated T2D may be longer 

than the record length (23 years). This is because when estimating T2D we recognize that the 

measured time series is one of the many possible realizations that, although governed by the 

same physical processes and thus of the same true trend, may not render the same trend 

magnitude in the data. This explains why the factor (3.3) used in the T2D estimation is different 

from that (2.0) used in the trend significance test. 

 



 46 

2.6 Appendix B: Homogenization of the two AERI records 

2.6.1 Comparison between the two AERIs 

During the overlapping observation period, the all-sky monthly mean radiance difference 

between AERI-01 and AERI-C1 is shown in Figure 2.13. Since these two instruments have 

different sampling frequency, the AERI-C1 spectra are averaged to match the sampling of AERI-

01 spectra before the comparison. From Figure 2.13a, there are noticeable discrepancies between 

the AERI-01 and AERI-C1 observations. Because of the different sampling frequency, the two 

AERIs have random errors of different amplitudes (Turner et al., 2006). However, we find that 

removing the random errors using the principal component analysis following Turner et al. 

(2006) has little impact on the discrepancies (not shown). We find that in more than 20% of the 

AERI channels in the spectral range from 700 to 1300 cm-1 and for more than 12% of the 

overlapping observational months, the radiance difference between two AERIs is larger than the 

documented absolute calibration uncertainty (Knuteson et al., 2004a).  

For the AERI-C1 data stream, multiple instruments were used. All these transitions can 

be seen in Figure 2.13a as either subtle changes or obvious differences. First, the transition from 

AERI-04 to AERI-05 happened in September 2009, which caused subtle changes and is labeled 

by the green star in Figure 2.13a. These AERIs were among the several AERIs constructed by 

the University of Wisconsin-Madison for the ARM program. Next, in March 2010, the 

instrument changed from AERI-05 to AERI-06, which is labeled by the green triangle in Figure 

2.13a. Then, the transition from AERI-06 to AERI-106 happened in March 2011, which caused 

more noticeable changes and is labeled by the green square in Figure 2.13a. At this point, the 

AERI technology was licensed to a commercial vendor, and their units are now characterized by 

a three-digit number. So AERI-106 is the 6th unit constructed by the vendor. AERI-106 operated 
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until July 2013, when it was replaced with the AERI-108 which has operated at the SGP site 

since then. We find that the radiance differences between all of these “AERI-C1” instruments 

and the AERI-01 have unique spectral signatures. 

 

Figure 2.13: (a) The monthly mean DLR difference between AERI-C1 and AERI-01 (AERI-C1 

– AERI-01). The green symbols indicate AERI-C1 instrument transitions; (b) Number of 8 min 

spectra for each month (the counts are identical after AERI-C1 spectra are resampled to match 

AERI-01).  

When separating the measured spectra by different sky conditions, we find that the 

prominent difference between the two AERIs in the window band mainly comes from relatively 

clear sky conditions. Figure 2.14 shows the monthly mean radiance difference for different sky 

conditions in October 2006 as an example. Here the DLR at 985 cm-1 is used to classify the sky 
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to be relatively clear or optically thin clouds (< 40 RU) or relatively cloudy (> 40 RU). We chose 

40 RU based on the threshold that Turner and Gero (2011) used to classify cloudy sky to be thin 

or thick clouds scenes.   

 

Figure 2.14: The monthly mean DLR difference between AERI-C1 and AERI-01 (AERI-C1 – 

AERI-01) for different sky conditions in October 2006. See text for details. 

We examined various instrumental parameters recorded with AERI measurements, 

including calibration blackbody temperatures and instrument responsivity, but found that no 

instrumental parameter explains the radiance difference between the two AERIs. It is possible 

that an unknown obstruction was partially in the FOV of one of the AERIs (e.g., unit AERI-106), 

such as what was experienced with an early AERI at the SGP site (Knuteson et al., 1999). 

2.6.2 Clear-sky LBLRTM simulations 

Since the differences between two AERIs mainly come from relatively clear sky scenes, 

we use clear sky synthetic spectra simulated by the LBLRTM as a metric to distinguish their 
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relative accuracies. Here we use the classical backpropagation gradient-descent classification 

algorithm mentioned in Subsection 2.2.2 to select clear-sky spectra. To ensure the case is clear, 

we set the algorithm threshold to be 0.8, which means the probability of the sky being clear is at 

least 0.8.  

After matching all datasets, including radiosondes and gas concentrations at SGP 

mentioned in Section 2.2.3 to select atmospheric profiles, clear sky synthetic spectra are obtained 

during the overlapping observational period. For each month, about 70 DLR spectra are 

simulated on average. The LBLRTM simulation is validated based on the test in Feldman et al. 

(2015). We chose the same time slices selected in Feldman et al. (2015) to simulate the DLR 

spectrum and we can achieve similar radiative closures between observation and simulation. 

 

Figure 2.15: The clear-sky monthly mean DLR difference between AERI-observations and 

LBLRTM simulations in October 2006.  



 50 

We originally used the ozone concentration profile from the Modern-Era Retrospective 

analysis for Research and Applications Version 2 (MERRA-2, Gelaro et al., 2017) in simulating 

the synthetic spectra. A relatively poorer radiance closure between AERI-observations and 

LBLRTM simulations was found in the ozone absorption band near 1040 cm-1 (not shown). By 

comparing the in-situ measurements at SGP (available only at limited times), we find that this is 

due to poor representation of the near-surface (and hence lower tropospheric) ozone 

concentration in the MERRA-2 dataset. To address this issue, we vertically scale the ozone 

profile uniformly to achieve an improved radiance closure in the ozone band as exemplified by 

Figure 2.15 (AERI-C1 line); however, this change to the ozone absorption region between 1040-

1140 cm-1 has little impact on the all-sky radiance trend detected in Figure 2.5.  

As demonstrated in Figure 2.15, we find that the AERI-C1 is generally in better 

agreement with LBLRTM simulations than AERI-01, especially in the window band. The 

radiance difference in each channel is used to weight the spectra of AERI-01 and AERI-C1, 

according to Equation 2.2, allowing us to develop an integrated record of monthly mean DLR 

spectra from the two instruments.  

Figure 2.16 shows the comparison between LBLRTM simulated clear-sky DLR trends 

(blue dots) and AERI-observed clear-sky DLR trends (red dots) over the 23-year period. The 

clear-sky DLR trends using simulated clear-sky DLR values are similar to the clear-sky DLR 

trends using AERI-observations indicating the reliability of the simulated DLR long-term record. 
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Figure 2.16: Comparison between LBLRTM simulated clear-sky DLR trends (blue dots) and 

AERI-observed clear-sky DLR trends (red dots) over the 23-year period. The inset shows the 

zoomed-in comparison in the CO2 absorption band.  

2.7 Appendix C: Comparison of the estimations of time to detect radiance trends 

Leroy et al. (2008) proposed a formula (hereinafter referred to as the Leroy method) to 

calculate the minimum time to detect (T2D) a trend. T2D calculated using Equation 2.6 

(hereinafter referred to as the Liu method) is longer than using the Leroy method.  

Figure 2.17 shows the time to detect (T2D) radiance trends at 90% significance level in 

different AERI channels using the Liu method and the Leroy method respectively. The signal-to-

noise ratio 𝑠𝑠 in Equation 11 of Leroy et al. (2008) is set to be 3.3 in order to be consistent with 

our derivation in Section 2.5.4; the terms 𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣 and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in this equation correspond to 𝜎𝜎𝑁𝑁 and 

𝜎𝜎𝑒𝑒 in Equation 2.5 respectively.  
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Figure 2.17: Trend detectability comparison between using (a) the Liu method and (b) the Leroy 

method. 

The correlation coefficient between T2Ds obtained from the two methods is 0.93. T2D 

calculated using the Liu method is generally longer than that calculated using the Leroy method 

by 10 years when T2D is 40 years, and by 45 years when T2D is 100 years. 
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Chapter 3 RADIATIVE CLOSURE TESTS OF COLLOCATED HYPERSPECTRAL 
MICROWAVE AND INFRARED RADIOMETERS 

 

Chapter 3, in full, is a reprint of the material as it appears in Liu, L., Bliankinshtein, N., 

Huang, Y., Gyakum, J. R., Gabriel, P. M., Xu, S., and Wolde, M. (2024). Radiative closure tests 

of collocated hyperspectral microwave and infrared radiometers, Atmospheric Measurement 

Techniques, 17, 2219-2233. https://doi.org/10.5194/amt-2023-215. The thesis author was the 

primary investigator and author of this paper. 
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Abstract 

Temperature and water vapor profiles are essential to climate change studies and weather 

forecasting. Hyperspectral instruments are of great value for retrieving temperature and water 

vapor profiles, enabling accurate monitoring of their changes. Successful retrievals of 

temperature and water vapor profiles require accuracy of hyperspectral radiometer 

measurements. In this study, the radiometric accuracy of an airborne hyperspectral microwave 

radiometer, the High Spectral Resolution Airborne Microwave Sounder (HiSRAMS), and a 

ground-based hyperspectral infrared radiometer, the Atmospheric Emitted Radiance 

Interferometer (AERI), is simultaneously assessed by performing radiative closure tests under 

clear-sky conditions in Ottawa, Canada. As an airborne instrument, HiSRAMS has two 

radiometers measuring radiance in the oxygen band (49.6-58.3 GHz) and water vapor band 

(175.9-184.6 GHz) for zenith-pointing and nadir-pointing observations. AERI provides ground-

based, zenith-pointing radiance measurements between 520 and 1800 cm-1. A systematic warm 

radiance bias is present in AERI observations in the window band. Upon removal of this bias, 

improved radiative closure was attained in the window band. The brightness temperature (BT) 

bias in nadir-pointing HiSRAMS observations is smaller than at the zenith. A novel but 

straightforward method is developed to diagnose the radiometric accuracy of the two instruments 

in comparison based on the relationship between radiometric bias and optical depth. Compared 

to AERI, HiSRAMS demonstrates similar radiometric accuracy for nadir-pointing measurements 

but exhibits relatively poor accuracy for zenith-pointing measurements, which requires further 

characterization. Future work on temperature and water vapor concentration retrievals using 

HiSRAMS and AERI is warranted. 
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3.1 Introduction 

Accurate long-term measurements of the vertical distributions of temperature and water 

vapor are crucial for climate change analysis, climate model validation, and weather forecasting. 

Radiosondes provide accurate in situ temperature and water vapor profiles with high vertical 

resolution but are limited in spatial and temporal coverage. Remote sensing techniques have been 

developed to fill such data gaps (Aires et al., 2015; Blackwell et al., 2010; Delamere et al., 2010; 

Turner & Blumberg, 2018; Warwick et al., 2022; King et al., 1992; Han & Westwater, 1995; 

Westwater, 1997; Turner et al., 2000). Hyperspectral measurements, in which the vertical 

information of temperature and water vapor can be retrieved from different spectral channels 

(Smith et al., 2021), are valuable for sounding their vertical distributions (e.g., Divakarla et al., 

2006; Turner & Blumberg, 2018). Spectral resolution (the number of channels within a certain 

spectral range) is pivotal in determining the information content in such retrievals (Rodgers, 

2000). 

Both hyperspectral infrared and microwave radiometers can be employed to retrieve 

temperature and water vapor concentration profiles. A distinct advantage of microwave 

radiometers in retrieving temperature and water vapor profiles is their ability to sound through 

clouds, allowing for all-sky retrievals. However, the existing microwave radiometers typically 

have no more than 100 spectral channels (Blackwell et al., 2010; Hilliard et al., 2013), which is 

an order of magnitude less than infrared hyperspectrometers (Aumann & Strow, 2001; Carminati 

et al., 2019; Knuteson et al., 2004a). Thanks to the advancement of digital polyphase fast Fourier 

transform (FFT) filter banks, hyperspectral microwave radiometers can now acquire a 

comparable number of spectral channels, which allows us to access and compare their 

temperature and water vapor profiling abilities as well as develop synergies between 
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hyperspectral microwave and infrared radiometers. The High Spectral Resolution Airborne 

Microwave Sounder (HiSRAMS) is such a hyperspectral microwave radiometer, developed by 

Omnisys Instruments AB, National Research Council of Canada (NRC), and McGill University 

under the sponsorship of the European Space Agency (Auriacombe et al., 2022; Bliankinshtein, 

Liu, et al., 2023). As a prototype for possible future satellite missions, HiSRAMS’ accuracy 

needs thorough assessment. 

In this study, we focus on two hyperspectral radiometers: (1) HiSRAMS, operating in the 

microwave spectral range (49.6-58.3 GHz and 175.9-184.6 GHz for single-polarized 

observations), and (2) the Atmospheric Emitted Radiance Interferometer (AERI), operating in 

the infrared spectral range (520-3020 cm-1). AERI is a well-tested instrument with good 

radiometric accuracy (Knuteson et al., 2004b), which provides a benchmark comparison for the 

radiometric accuracy of HiSRAMS.   

HiSRAMS, a payload mounted on a wing of the NRC’s Convair-580 research aircraft 

(Bliankinshtein et al., 2022), provides zenith-pointing (looking up) and nadir-pointing (looking 

down) observations or can be deployed on the ground for zenith-pointing observations. AERI is 

perpetually deployed on the ground for zenith-pointing observations (Knuteson et al., 2004a, 

2004b). Both instruments have high spectral resolutions and mainly target the retrieval of 

temperature and water vapor profiles with the potential to retrieve other trace gases. When 

airborne, HiSRAMS can take measurements at different altitudes. Such multi-altitude 

measurements yield more constrains of the detailed and extensive temperature and water vapor 

retrievals. In comparison, AERI has been demonstrated to be capable of retrieving temperature 

and water vapor profiles at high vertical resolutions, especially in the boundary layer (Turner & 

Löhnert, 2014; Turner & Blumberg, 2018).  
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The radiometric accuracy of the hyperspectral measurements is vital for successful 

retrievals. For example, in the optimal estimation method (Rodgers, 2000), the ability of a 

hyperspectrometer to resolve the vertical distributions of temperature and water vapor can be 

measured by the degree of freedom for signals (DFS), which is dependent on the 

characterizations of errors in both the hyperspectral measurements and the meteorological 

variables. Radiative closure tests can help determine the bias in the radiometer measurements 

and provide clues to their origins (Barrientos-Velasco et al., 2022; Clough et al., 1994; Delamere 

et al., 2010; Turner, 2003). In this study, we focus on clear-sky radiative closure tests to avoid 

uncertainties due to the poor representation of clouds. Two primary objectives of this work 

include (1) collecting collocated AERI and HiSRAMS radiance measurements under clear-sky 

conditions and (2) performing radiative closure tests for both radiometers and comparing their 

radiometric accuracy. 

3.2 Data and method 

3.2.1 Datasets 

Three clear-sky field campaigns (FC2021, FC2022, and FC2023) were carried out in 

Ottawa, Canada (latitude: 45.32° N, longitude: 75.66° W), to collect hyperspectral measurements 

and to perform radiative closure tests of the AERI stationed on the ground and the HiSRAMS 

mounted on the NRC’s Convair-580 research aircraft (details listed in Table 3.1).  
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Table 3.1: Summary of the three field campaigns. 

Field 
Campaign 

Date Radiosonde HiSRAMS AERI 

FC2021 29 October 

2021 

14:21:57 - 15:59:32 

UTC 

PWV: 0.69 cm 

Ground-based 

measurements, pre-

refurbishment, dual- 

and single-polarized 

(14:22:00 - 15:59:00 

UTC) 

Continuous 

ground-based 

measurements, 

every ~20 s 

FC2022 9 December 

2022 

18:57:33 - 20:08:47 

UTC 

PWV: 0.37 cm 

Ground-based 

measurements, after-

refurbishment, dual- 

and single-polarized 

(18:45:37 - 20:10:34 

UTC) 

FC2023 11 February 

2023 

14:22:53-15:26:22 

UTC 

PWV: 0.32 cm 

 

 

Flight measurements 

at different altitudes, 

ground-based 

measurements before 

taking off (13:45:45 - 

13:46:28 UTC) and 

after landing 

(16:35:24 UTC), 

single-polarized  

 

Radiosonde measurements were collected (one for each campaign), together with the 

HiSRAMS (Figure 3.1a, Figure 3.1b) and AERI measurements (Figure 3.1c). Ground-based 

zenith-pointing HiSRAMS measurements were archived in all three field campaigns. In the first 

two field campaigns, HiSRAMS collected longer ground-based records. In the final field 
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campaign, HiSRAMS was mounted on the NRC’s Convair-580 research aircraft to gather 

ground-based zenith-pointing measurements before take-off and after landing, including airborne 

measurements at different flight altitudes. In all three field campaigns, AERI provided 

continuous ground-based zenith-pointing measurements. 

 

Figure 3.1: (a, b) HiSRAMS mounted on the wing tip of the NRC’s Convair-580 research 

aircraft for zenith-pointing and nadir-pointing measurements during the flights. The arrow in 

panel (a) indicates the location of AERI. (c) AERI on the ground with the hatch open, taking 

zenith-pointing measurements.  

3.2.1.1 Radiosonde temperature and water vapor profiles 

The radiosonde used in this study was an iMet-4 from InterMet. We considered both 

repeatability and reproducibility errors in temperature and relative humidity to determine the 

total radiosonde uncertainty, following the procedure outlined in Blumberg et al. (2017). 
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Repeatability errors indicate random errors, measuring 0.2 K for temperature and 5% for relative 

humidity. Meanwhile, reproducibility errors represent systematic errors, measuring 0.3 K above 

and 0.75 K below 100 hPa for temperature and 3% and 5% for relative humidity at temperatures 

above 0 °C and between -40 and 0 °C, respectively. All the specified statistical uncertainties 

were at the 95% confidence level (see https://www.intermetsystems.com/products/imet-4-

radiosonde/, last access: 25 September 2023). The temperature and water vapor profiles obtained 

from in situ radiosonde observations are considered representative of “true” atmospheric 

thermodynamic states (see Figure 3.2). These profiles serve as inputs to radiative transfer models 

for testing the radiative closure. However, since radiosondes can drift, their measurements may 

not always accurately represent zenith profiles. Table 3.1 lists precipitable water vapor (PWV) 

converted from radiosonde water vapor measurements in each field campaign. The small 

fluctuations in the temperature and water vapor vertical profiles have a negligible effect on 

AERI- and HiSRAMS-detected radiances (not shown).  

In the boundary layer, temperature inversions with different inversion intensity and 

inversion depth were present in all three field campaigns (see the inset in Figure 3.2a), e.g., the 

two temperature inversions around 0.4 and 1.2 km in FC2021, the temperature inversion around 

0.5 km in FC2022, and the temperature inversion around 0.8 km in FC2023. Drier layers 

associated with the temperature inversions were also observed in all three field campaigns 

(Figure 3.2b). Based on the temperature, dew point temperature, and water vapor profiles, the 

cause of the temperature inversions was subsidence. The sources and features (such as the fine 

vertical structure) of the temperature and water vapor anomalies exhibited in these profiles are 

beyond the scope of this paper but warrant future analyses.  

https://www.intermetsystems.com/products/imet-4-radiosonde/
https://www.intermetsystems.com/products/imet-4-radiosonde/
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Hourly-mean atmospheric state profiles from the fifth-generation European Centre for 

Medium-Range Weather Forecasts atmospheric reanalysis dataset, ERA5 (Hersbach et al., 2020), 

at 8×8 grid boxes containing the trajectory of each radiosonde (Figure 3.2c), were also included 

for analysis of the spatial variability of temperature and water vapor concentrations. Generally, 

the ERA5 hourly profiles agree well with radiosonde measurements, except that they do not 

resolve the aforementioned dry layers, likely due to their limited vertical resolution. Considering 

this, we mainly use radiosonde-observed temperature and water vapor profiles for the radiative 

closure analyses.  

 

Figure 3.2: Radiosonde in situ measurements of (a) temperature and (b) water vapor 

concentration profiles in the three field campaigns, together with (c) radiosonde trajectories.  
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A higher vertical resolution is applied in the boundary layer compared to the upper 

troposphere and stratosphere because the AERI ground measurements are most sensitive to the 

lowermost layers. To avoid interpolating radiosonde measurements, the original temperature and 

relative humidity profiles are updated every 5 s until the balloon reaches 3 km, then every 15 s 

until it reaches 10 km, and finally every 60 s until the balloon reaches 20 km. Atmospheric 

conditions above 50 hPa (inclusive) from ERA5 are added to the top of the radiosonde 

measurements to form a hybrid full profile. Temperature and water vapor concentration at over 

200 levels are provided in inputs to the radiative transfer models.  

3.2.1.2 AERI spectra 

AERI measures downwelling longwave radiance (DLR) emitted from the atmosphere 

from 520 to 3020 cm-1, with a field of view (FOV) of 2.6°, a spectral resolution of 0.5 cm-1, and 

a temporal resolution of 20 s (Knuteson et al., 2004a, 2004b). The units of radiance observed by 

AERI are the radiance units (RUs), representing 1 mW (m2 sr cm-1)-1. In each 20 s observation 

cycle, aside from taking sky-view measurements, AERI also stares at two blackbodies, an 

ambient blackbody at the temperature of the surrounding air and a hot blackbody at a fixed 

temperature of 60 °C to radiometrically calibrate the measured DLR. In this study, the focus is 

on the AERI Channel 1 observations from 520 to 1800 cm-1.  

Given AERI is most sensitive to atmospheric conditions in the boundary layer (Turner & 

Blumberg, 2018), an accurate representation of near-surface temperature and water vapor 

concentration profiles is essential for analyzing the radiometric accuracy of AERI. Each balloon 

launch exceeds 1 h, during which the thermodynamic conditions may change considerably. 

Consequently, the original AERI-observed spectra, with a ~20 s sampling frequency, are 
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averaged over the period from 2 min before to 8 min after the balloon launch to provide temporal 

sampling consistency between AERI observations (shown in Figure 3.3) and radiosonde profiles.  

The radiance in the CO2 absorption band centered at 667 cm-1 and the water vapor 

absorption band between 1400 and 1800 cm-1 indicates the radiating temperatures of the near-

surface atmosphere. The radiance differences shown in Figure 3.3 correspond to the different air 

temperatures during the three field campaigns. The generally low radiance in the window band 

(800-1200 cm-1) confirms a clear-sky condition during the three field campaigns. The radiance 

differences here indicate different PWV values. The radiance differences in the water vapor 

absorption band between 520 and 600 cm-1 also indicate the different PWV: the low PWV value 

of 0.32 cm in FC2023 led to very low radiance values in this spectrum.  

In summary, the differences between the AERI spectra from the three field campaigns are 

qualitatively consistent with the differences in air temperature and water vapor concentrations. 

 

Figure 3.3: AERI-observed spectra. The spectra are averaged over a period from 2 min before to 

8 min after the time of the balloon launch. (RU: radiance unit; 1 RU = 1 mW [m2 sr cm-1]-1) 
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3.2.1.3 HiSRAMS spectra 

HiSRAMS consists of two radiometers, one targeting an oxygen absorption band and the 

other a water vapor absorption band. HiSRAMS can measure either single-polarized radiance 

over 49.6-58.3 GHz in the oxygen band and 175.9-184.6 GHz in the water vapor band or dual-

polarized radiance over 52.4-57.2 GHz in the oxygen absorption band and 178.8-183.5 GHz in 

the water vapor band. Although dual-polarized measurements are valuable for characterizing 

radiance over water surfaces, this study focuses on single-polarized observations because the 

nadir-pointing measurements from FC2023 were mostly over land.  

With its FFT filter banks, HiSRAMS achieves a spectral resolution as high as 305 kHz 

(Auriacombe et al., 2022). To reduce noise in brightness temperature (BT) measurements, the 

data were averaged to a 6.1 MHz resolution; i.e., the radiance was resampled every 20 original 

HiSRAMS channels. Each HiSRAMS radiometer is equipped with two FFT spectrometers: FFT0 

and FFT1. In the case of single-polarization observations, both FFT spectrometers share an 

overlapping frequency range. For dual-polarization observations, the two FFT spectrometers 

have identical spectral ranges. HiSRAMS-observed spectra are calibrated regularly using 

measurements of a hot calibration load maintained at 80 °C as well as an ambient calibration 

load.  

Ground-based zenith-pointing HiSRAMS observations of single-polarized spectra are 

averaged over the entire observation period shown in Figure 3.4. As with AERI measurements, 

differences between HiSRAMS spectra in the oxygen and water vapor absorption bands reflect 

the temperature and water vapor variations in the three clear-sky field campaigns. In the opaque 

frequency range of about 56 GHz in the oxygen band, the effective emitting layer lies close to 
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the surface, resulting in the observed BT representing the near-surface temperature. Greater 

water vapor concentration results in a higher BT in the water vapor band.  

 

Figure 3.4: HiSRAMS-observed ground-based zenith-pointing spectra in the (a) oxygen band 

and (b) water vapor band. Solid and dashed lines show the observed spectra from the two 

overlapping spectrometers, FFT0 and FFT1, respectively.  

In Figure 3.4, the observed spectra from the two FFT spectrometers are shown in solid 

lines (FFT0) and dashed lines (FFT1), respectively. In FC2021, unphysical signals at the edge of 

the spectral range were detected, herein referred to as a “roll-off” issue. This issue occurred in 

both FFT spectrometers, showing an overestimation of the radiance at the lower end of the 

frequency range and an underestimation at the higher end. Hence, discrepancies between the two 

spectrometers were identified within the overlapping frequency ranges in the oxygen and water 
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vapor absorption bands (see the blue lines in the insets in Figure 3.4). One cause of the roll-off 

issue was attributed to incomplete image rejection in channels symmetric about the local 

oscillator frequency (Xu et al., 2023). After a refurbishment in the summer of 2022 to improve 

HiSRAMS’ image rejection behavior and to better characterize the image response, the 

discrepancies between the two FFT spectrometers were significantly reduced.  

 

Figure 3.5: HiSRAMS-observed spectra during FC2023 flights at different altitudes. Solid lines 

are for FFT0 measurements and dashed lines are for FFT1 measurements. (a, b) Zenith-pointing 

and (c, d) nadir-pointing spectra in the oxygen and the water vapor band, respectively.  

The HiSRAMS flight measurements taken during FC2023 are shown in Figure 3.5. 

Observations in both zenith and nadir directions were made over 10 straight-and-level flight legs 

on 11 February 2023, with altitudes ranging from 429 m to 6.8 km. After the HiSRAMS 

refurbishment, the observed spectra in the overlapping frequency range agreed well between the 
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two FFT spectrometers in both the oxygen and water vapor absorption bands, at all flight 

altitudes. 

In zenith-pointing spectra, the BT decreases with observation altitude in both the oxygen 

and water vapor bands (Figure 3.5a, Figure 3.5b) because of the corresponding overall decrease 

in temperature (and water vapor), resulting in lower emitting temperatures with increasing 

altitudes. In contrast, with nadir-pointing spectra in the strong absorption frequency range, e.g., 

54-58 GHz in the oxygen band and 181-184 GHz in the water vapor band, the BT decreases with 

altitude because the emitting layer goes higher according to the 𝜏𝜏 = 1 law; i.e., the altitude 

corresponding to τ = 1 is where the weighting function peaks (Huang & Bani Shahabadi, 2014), 

resulting in a lower emitting temperature, while in the weak absorption frequency range, e.g., 

49.5-52 GHz in the oxygen band and 176-179 GHz in the water vapor band, the BT increases 

overall with altitude as a result of competing contributions from the surface and from 

atmospheric emissions (Figure 3.5c, Figure 3.5d).  

3.2.2 Forward model 

In radiative closure tests, the radiometric accuracy of a radiometer is verified by 

comparing its measurements to synthetic spectra simulated by a radiative transfer model. The 

input of the temperature and water vapor concentration profiles to the radiative transfer model is 

taken from radiosonde measurements, as described above.  

3.2.2.1 AERI forward model 

We use the Line-by-Line Radiative Transfer Model Version 12.9 (LBLRTM v12.9, 

Clough et al., 2005) as the forward model for AERI synthetic spectra simulation. LBLRTM-

computed monochromatic radiance spectra were convolved with the AERI scan function, 

enabling comparisons with AERI-measured spectra. Carbon dioxide concentrations (413.84, 
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418.75, and 419.72 ppmv), sourced from the global and monthly averaged marine surface values 

of the Global Monitoring Laboratory of the National Oceanic and Atmospheric Administration 

(Lan et al., version 2023-06), remain constant across all the vertical levels. Ozone and methane 

concentration profiles were taken from the ERA5 reanalysis dataset and the Copernicus 

Atmosphere Monitoring Service (CAMS) global atmospheric composition forecasts dataset 

(Inness et al., 2019), respectively. No CFC11 and CFC12 were prescribed in the synthetic spectra 

calculations. We undertook a comparison between the most recent version of LBLRTM, v12.16, 

and the version we chose, v12.9. The primary distinction arises within the far-infrared spectral 

range, where AERI observations exhibit a relatively large measurement uncertainty, attributed to 

inadequate calibration at the spectral detector’s edge (see a detailed description in Section 3.5.1). 

3.2.2.2 HiSRAMS forward model 

The HiSRAMS forward model (Bliankinshtein et al., 2019) consists of two major 

components, the Rosenkranz gas absorption parameterization (Rosenkranz, 2017) and an 

efficient plane-parallel radiative solver that excludes multiple scattering but accounts for surface 

polarization. A sea surface emissivity model is used as an example boundary condition for nadir-

pointing measurements. The forward model was validated against the Monochromatic Radiative 

Transfer Model, MonoRTM (Clough et al., 2005), and the Atmospheric Radiative Transfer 

Simulator, ARTS (Eriksson et al., 2011). To avoid uncertainty with regard to the surface 

contribution in the closure tests, nadir-pointing measurements taken at the lowest flight altitude 

(429 m) were employed as the boundary condition (i.e., elevating the surface to this altitude). 

The nadir-pointing measurement taken by HiSRAMS at 429 m already includes the contribution 

from the surface (i.e., the product of the surface emissivity and the blackbody emission at the 

effective skin temperature plus the reflected atmospheric downwelling radiation) as well as the 
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impact of the atmosphere below 429 m. The boundary emissions propagating upwards, along 

with emissions from the atmosphere, constitute simulated measurements at higher flight legs.  

3.2.3 Radiative closure diagnosis 

In this study, the radiance or BT bias is defined as the instrument-measured radiance or 

BT minus the forward model-simulated radiance or BT, which provides a metric for evaluating 

the radiance closure:  

∆𝑅𝑅𝜐𝜐 = 𝑅𝑅𝜐𝜐,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅𝜐𝜐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,        where 𝑅𝑅𝜐𝜐 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵 (3.1) 

The bias uncertainty derives from the instrument measurement uncertainty and model 

simulation uncertainty: 

𝜎𝜎∆𝑅𝑅𝜐𝜐 = �𝜎𝜎𝑅𝑅𝜐𝜐,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 + 𝜎𝜎𝑅𝑅𝜐𝜐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2,     where 𝑅𝑅𝜐𝜐 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵 (3.2) 

The instrument measurement uncertainty for AERI is 1% of ambient blackbody radiance 

(3-σ), which is its absolute radiometric calibration accuracy (Knuteson et al., 2004a). For 

HiSRAMS measurements, if multiple individual measurements are averaged, the standard 

deviation of any individual measurements during the whole observational period is considered to 

be the uncertainty of the HiSRAMS-averaged measurements, which is applied to HiSRAMS 

ground measurements in FC2021 and FC2022 and flight measurements in FC2023. If only the 

individual observed spectrum is available, i.e., FC2023 HiSRAMS ground measurements, its 

uncertainty is determined by taking into account the radiometric noise characterized by the 

noise-equivalent differential temperature, calibration load imperfections, detector nonlinearity 

error, and instrument drift (Bliankinshtein, Gabriel, et al., 2023). Both the forward model 

uncertainty and the uncertainties associated with the input variables contribute to the total 

uncertainty in model simulations. Input uncertainties include radiosonde (instrumental) 

measurement errors and those arising from the spatial variability of the input profiles due to 
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radiosonde drift. Both uncertainties are combined in quadrature similar to Equation 3.2. We used 

the ERA5 hourly-mean profile within the 8×8 grid box rectangular region, including the balloon 

trajectory (Figure 3.2c), to represent the spatial variability of the temperature and relative 

humidity profiles.  

Randomly generated noise, accounting for both random errors, including radiosonde 

repeatability errors and the radiosonde drifting errors derived from ERA5 spatial variability in 

temperature and relative humidity, was added to the radiosonde profiles for each case. In total, 

1000 profiles were created with this random noise. Subsequently, a single randomly determined 

radiosonde reproducibility error was added to each generated profile. Using radiative Jacobians, 

we determined the radiance or BT difference between using the original radiosonde profiles and 

using the randomly generated profiles as inputs. The standard deviation of the radiance or BT 

simulation from the 1000 generated profiles was utilized to represent the 1-σ model-simulated 

uncertainty. In all uncertainty analyses in the following discussion, the σ level is set to 3 standard 

deviations (99.7% confidence level). 

3.3 Results 

3.3.1 AERI  

The DLR observed by AERI is most strongly influenced by the near-surface atmospheric 

thermodynamic state. Quality control of the AERI spectra was performed following Liu et al. 

(2022). For example, strong CO2 and water vapor absorption channels subject to calibration 

errors were excluded in this analysis following the optical depth screening procedure of Liu et al. 

(2022).  

Figure 3.6 exhibits the AERI radiative closure test results. Overall, the uncertainty in the 

DLR bias for AERI mainly derives from LBLRTM simulation uncertainties in the temperature-
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sensitive bands. In the window band, both measurement uncertainty and LBLRTM simulation 

uncertainty contribute to the total uncertainty.  

 

Figure 3.6: AERI radiative closure test results. Each panel represents one field campaign. The 

blue line in panel (a), the orange line in panel (b), and the yellow line in panel (c) represent the 

DLR bias between 10 min averaged AERI-observed and LBLRTM-simulated spectra. The 

purple lines and the green lines represent the AERI measurement uncertainty and LBLRTM 

simulation uncertainty, respectively. The shadings represent the total DLR bias uncertainty.  

Good agreement between 10 min averaged AERI-observed spectra and LBLRTM-

simulated spectra was observed in the CO2 absorption band centered around 667 cm-1 and the 

water vapor absorption band of 1400-1800 cm-1, controlled primarily by atmospheric 
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temperature, indicating excellent closure between the radiance measurements of AERI and the 

temperature profiles collected by radiosondes.  

Over the three field campaigns, a persistent and stable positive DLR bias in the window 

band was detected, with the mean biases from the three campaigns (blue line in Figure 3.7) far 

exceeding their standard deviation (orange line in Figure 3.7). Across many channels in the 

window band, the sigma level exceeds 4, indicating a more than 99.99 % likelihood that the bias 

mean will exceed the bias standard deviation for these three field campaigns. Moreover, the DLR 

bias in the window band in each of the field campaigns is larger than the DLR bias uncertainty 

(Figure 3.6). Because of the low BT in the window band, even a small radiance bias leads to a 

relatively large BT bias (Figure 3.7b). In this band, the radiance is primarily controlled by water 

vapor, aerosols, and clouds (Hansell et al., 2008; Seo et al., 2022). Through sensitivity tests (not 

shown), the bias was unlikely to be explainable by possible errors in the radiosonde water vapor 

measurements: over 150% of the original water vapor concentration in all the vertical layers 

would be needed to remove this bias (not shown). The presence of optically thin aerosols or 

clouds with an optical depth of ~0.06 at the altitude with a higher relative humidity may explain 

the magnitude of this bias. However, the almost constant values of this bias across all three field 

campaigns make this hypothesis less likely. 

It is interesting to note that historical AERI data measured elsewhere have also exhibited 

relatively large biases in the window band under clear-sky conditions (Liu et al., 2022; Delamere 

et al., 2010). A FOV obstruction could introduce a positive radiance bias in the window band due 

to radiance leakage from the obstructive element having an emitting temperature higher than the 

scene temperature in the window band under clear-sky conditions (Turner, 2003). Based on a 

sensitivity test, the portion of obstructed FOVs needed to explain this warm bias in the window 
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band is around 2% (not shown). Since all three field campaigns targeted cold and dry clear-sky 

atmospheric conditions whose calibration extrapolation process introduces larger uncertainties, it 

is also possible that calibration bias, e.g., the nonlinearity-induced inaccuracy, accounts for the 

radiance bias in the window band. Lower radiance in the window band draws the extrapolation 

further away from the blackbodies’ emitted radiance, resulting in a larger calibration bias. 

However, whether the calibration process could lead to a consistent positive DLR bias in the 

window band is unknown. 

 

Figure 3.7: AERI radiative closure test results. (a) DLR bias. The grey lines show the DLR 

difference between 10 min averaged AERI-observed spectra and the LBLRTM-simulated 

synthetic spectra in the three campaigns. The blue line and the orange line represent the mean 

and standard deviation, respectively, of the DLR differences. (b) BT bias.  
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As a result, a systematic, consistent warm radiance bias in the window band for AERI 

clear-sky observations is present and removable for future retrieval analysis by subtracting the 

bias mean in channels whose radiance bias means (blue line in Figure 3.7a) are larger than their 

radiance bias standard deviation (orange line in Figure 3.7a). This correction is referred to as the 

AERI warm bias correction. 

3.3.2 HiSRAMS  

Radiative closure tests were performed on both the ground-based zenith-pointing 

measurements and the flight measurements of HiSRAMS. In light of the roll-off error in the 

FC2021 measurements previously noted, the following discussions focus on the results of 

FC2022 and FC2023, which show a better closure in both the oxygen and water vapor absorption 

band at the frequency edges of each FFT spectrometer after the HiSRAMS refurbishment (Figure 

3.8). The radiative closure results for ground measurements in FC2022 and FC2023 as well as 

flight measurements in FC2023 are shown in Figure 3.9 and Figure 3.10, respectively. The two 

methods mentioned in Section 3.2.3 to determine the uncertainty of HiSRAMS ground 

measurements result in similar measurement uncertainties (purple lines in Figure 3.9), except for 

the significant measurement uncertainty at the edge of FFT1 for both the oxygen and water vapor 

band in FC2022, whose source is the remaining roll-off issue. This indicates that the frequency 

range with large measurement uncertainty, computed from the standard deviations of individual 

spectra, should be discarded in future retrieval analysis. 
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Figure 3.8: HiSRAMS-observed ground-based zenith-pointing spectral BT bias for the (a) 

oxygen band and (b) water vapor band. Solid and dashed lines show the observed spectra from 

FFT0 and FFT1, respectively. 

The primary contribution to the radiative closure uncertainty in the weak absorption 

frequency range (50-54 GHz) of the zenith-pointing oxygen band radiometer is the measurement 

uncertainty. However, in the strong absorption frequency range (55-58 GHz), the simulation 

uncertainty could be similar to or larger than the measurement uncertainty, depending on the 

uncertainties in the vertical temperature profiles. The zenith-pointing BT bias in the strong 

absorption frequency range (55-58 GHz) is relatively small, falling within the radiative closure 

uncertainty (Figure 3.9a and Figure 3.9c). However, in the weak absorption channels (50-54 

GHz), a notable BT bias occurs which exceeds the 3-σ BT bias uncertainty. In FC2022 and 
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FC2023, the BT bias for both ground and flight zenith-pointing measurements in the oxygen 

band has similar spectral shapes and magnitudes (except for leg-1 FC2023 flight measurements; 

these suffer from a large calibration bias discussed later), suggesting a systematic bias, which 

may come from the calibration process. The zenith-pointing BT biases in the oxygen band, 

excluding the leg-1 FC2023 flight measurements, exhibit a mean BT bias larger than the 

standard deviation of the BT biases (Figure 3.11), supporting the hypothesis that the bias may be 

systematic.  

 

Figure 3.9: The ground-based zenith-pointing HiSRAMS radiative closure test results for the (a, 

c) oxygen band and (b, d) water vapor band. Orange lines in panels (a) and (b) and yellow lines 

in panels (c) and (d) represent the BT bias. In each panel, the shading represents the total 

uncertainty of the BT bias, while the purple and green lines represent the measurement 

uncertainty and simulation uncertainty, respectively. 
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Figure 3.10: BT bias for FC2023 flight measurements at different observational altitudes. (a, b) 

Zenith-pointing BT bias in the oxygen and water vapor bands, respectively. (c, d) Nadir-pointing 

BT bias in the oxygen and water vapor bands, respectively. 

Compared to the oxygen band radiometer’s zenith-pointing BT bias uncertainty, 

simulation uncertainty primarily contributes to the radiative closure uncertainties in the water 

vapor band radiometer’s zenith-pointing BT bias. A relatively smaller BT bias was present in the 

strong water vapor absorption band (182-184 GHz) in zenith-pointing ground measurements 

(Figure 3.9b and Figure 3.9d). There is a positive BT bias for both FC2022 and FC2023, with 

different magnitudes, in the weak absorption band at 176-180 GHz (Figure 3.9b and Figure 

3.9d). This bias is within the 3-σ BT bias uncertainty. Measurements in different flight legs in 

FC2023 also show different BT biases in the water vapor absorption band (Figure 3.10b). Flight 

legs at lower altitudes tend to have positive BT biases; those in higher-altitude legs tend to have 

negative BT biases, which suggests that these biases may be environment-dependent. The 
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correlation coefficients between the environmental temperature from radiosonde temperature 

measurements and the channel-averaged BT biases for FFT0 and FFT1 in the water vapor band 

are 0.90 and 0.87, respectively (Figure 3.12), suggesting that the source of the HiSRAMS bias in 

the water vapor absorption band is related to the calibration processes.  

 

Figure 3.11: HiSRAMS radiative closure results for the zenith-pointing oxygen band 

measurements from FC2022 and FC2023 ground measurements as well as FC2023 flight 

measurements. The grey lines represent individual BT biases for different conditions. The blue 

and orange lines represent the mean BT bias and the standard deviation of the BT biases, 

respectively. 

A more accurate radiative closure was achieved for nadir-pointing HiSRAMS flight 

measurements (Figure 3.10c, Figure 3.10d) compared to the zenith-pointing HiSRAMS flight 

measurements (Figure 3.10a, Figure 3.10b). BT biases within 3 K were observed for nadir-

pointing HiSRAMS measurements at all observational altitudes below 5.32 km.  

Flight leg 1 (6.81 km) exhibits relatively poor radiative closure for all observational 

conditions and spectral ranges, which is an absolute outlier from the radiative closure for other 
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flight legs. The HiSRAMS calibration process is sensitive to the environmental temperature; 

validation of the HiSRAMS calibration was performed in a well-controlled laboratory 

environment. However, the difference in environmental temperature during the flight 

measurements may introduce a larger bias into HiSRAMS measurements (Bliankinshtein, 

Gabriel, et al., 2023).  

 

Figure 3.12: Scatter plot between HiSRAMS zenith-pointing averaged BT biases in the water 

vapor band (FFT0 and FFT1) and environmental temperature from radiosonde measurements. r 

represents the correlation coefficients.  

Because the zenith-pointing BT in the water vapor absorption band is highly sensitive to 

variations in water vapor vertical profiles, the uncertainty in the water vapor input results in the 

relatively large BT bias shown in Figure 3.9b, Figure 3.9d, and Figure 3.10b. This strong 

sensitivity could be beneficial to water vapor concentration retrieval if the accuracy of the 

HiSRAMS zenith-pointing measurements under different environmental conditions can be 

ensured; this requires more HiSRAMS ground-based and flight measurements.  
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3.3.3 Comparison of HiSRAMS and AERI radiative accuracy 

As an established hyperspectrometer, AERI can be used to evaluate the accuracy of the 

HiSRAMS experimental radiometers. The BT biases in both AERI and HiSRAMS 

measurements are organized with respect to the total column optical depth for the channels 

dominated by either CO2 or water vapor absorptions for AERI (see detailed AERI channel 

selection in Section 3.5.2) and all the channels for HiSRAMS (Figure 3.13). In the original AERI 

measurements, the BT bias decreases overall with optical depth. The BT bias has a broader 

spread when the optical depth is low (Figure 3.13a); this may arise from the slight wavenumber 

mismatch between AERI observations and LBLRTM simulations. After the warm bias 

correction, a more accurate radiative closure of AERI is achieved (Figure 3.13b) with a lower BT 

bias and a standard deviation for both the CO2 and water vapor channels.  

Nadir-pointing HiSRAMS measurements display consistent radiometric characteristics 

across various optical depth ranges. The mean BT bias for nadir-pointing HiSRAMS 

measurements is relatively small, and the spread of the BT bias at different optical depths is 

minimal (Figure 3.13c, Figure 3.13d). In contrast, the zenith-pointing HiSRAMS BT bias does 

not exhibit a straightforward relationship with optical depth. Within the oxygen band, where 

optical depth is relatively large, the BT bias is close to zero, showing good radiometric accuracy 

(Figure 3.13e). However, at other optical depth ranges within the oxygen band and across the 

entire optical depth range in the water vapor band, the BT biases are substantial, with a 

significant standard deviation. It is important to note that, in nadir-pointing measurements, the 

elevated surface setting may mitigate the BT biases between the measurement and the 

simulation. This is because the surface contribution in the simulation is derived from the 

measurement. 
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Figure 3.14 compares the radiometric accuracy of AERI and HiSRAMS. The results for 

the mean BT bias and the standard deviation of the BT biases at different optical depth ranges 

are shown. The optical depth here refers to the total column optical depth along the entire light 

path. Considering the corrected AERI radiometric accuracy to be the benchmark, the nadir-

pointing HiSRAMS measurements (yellow and purple dots and shadings in Figure 3.14) agree 

well with the corrected AERI measurements (orange dots and shading in Figure 3.14). The 

zenith-pointing HiSRAMS measurements (green and black dots and shadings) clearly diverge 

from the corrected AERI measurements, indicating poorer radiometric accuracy. When 

comparing the radiometric accuracy of AERI and HiSRAMS in zenith-pointing measurements, 

the viewing geometry of the two instruments is identical, ensuring a fair comparison. However, 

when comparing the radiometric accuracy between AERI zenith-pointing measurements and 

HiSRAMS nadir-pointing measurements, it is necessary to consider their different viewing 

geometries, as this could also affect the radiometric accuracy. 

In conclusion, nadir-pointing HiSRAMS measurements in the oxygen and water vapor 

bands have a similar radiometric accuracy to the AERI benchmark. However, poor radiometric 

accuracy has been observed in zenith-pointing HiSRAMS measurements in the oxygen and water 

vapor bands, indicating the necessity of improving HiSRAMS’s zenith-pointing radiometric 

accuracy calibration. 
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Figure 3.13: BT biases with respect to optical depth at different channels for (a) AERI 

measurements, (b) corrected AERI measurements, (c) nadir-pointing HiSRAMS oxygen band 

measurements, (d) nadir-pointing HiSRAMS water vapor band measurements, (e) zenith-

pointing HiSRAMS oxygen band measurements, and (f) zenith-pointing HiSRAMS water vapor 

measurements. The color represents the number of channels. The numbers in the parentheses 

represent the mean and standard deviation of the BT biases, respectively. For AERI 

measurements, only channels dominated by either carbon dioxide or water vapor absorptions are 

included. 
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Figure 3.14: Mean (dots) and standard deviation (shadings) of BT biases with respect to optical 

depth at different channels for AERI observations, corrected AERI observations, nadir-pointing 

HiSRAMS observations, and zenith-pointing HiSRAMS observations. For AERI measurements, 

only channels dominated by either carbon dioxide or water vapor absorptions are included. 

3.4 Conclusions and discussions 

Vertical temperature and water vapor concentration profiles are essential for climate and 

weather studies. Hyperspectral radiometers have been shown to be useful in retrieving high 

temporal and spatial resolution profiles of temperature and water vapor concentration. 

Advancements in millimeter-wave technologies have made possible the development of 

hyperspectral microwave radiometers exhibiting thousands of channels. HiSRAMS, designed 

and developed by an international team, is an instance of such a development. The radiometric 

accuracy of this experimental instrument was evaluated under clear-sky conditions, employing 

collocated clear-sky AERI and HiSRAMS spectral measurements collected in Ottawa, Canada, 

together with the radiosonde measurements of temperature and water vapor concentration 
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profiles. Determining the radiometric accuracy of the two HiSRAMS hyperspectral radiometers 

is a prerequisite for temperature and water vapor concentration retrievals.  

Three field campaigns were conducted to evaluate the radiometric accuracy of AERI and 

HiSRAMS. The radiance bias in the temperature-sensitive bands in AERI observations is 

relatively small, indicating a good accuracy of the temperature inputs from radiosonde 

measurements. A persistent warm bias in the window band was present in AERI measurements, 

which may be due to the FOV obstruction or calibration processes; this can be corrected. Upon 

implementing the warm bias correction in AERI measurements, a more accurate radiometric 

closure was achieved in the window band. HiSRAMS nadir-pointing spectra from flight 

measurements exhibit a smaller BT bias compared to zenith-pointing spectra from both ground 

and flight measurements. Zenith-pointing HiSRAMS water vapor band measurements are 

sensitive to changes in water vapor concentration, underscoring the importance of accurate 

HiSRAMS measurements for water vapor concentration retrievals. It is essential to note that the 

sample size for this study was limited to three field campaigns, each accompanied by one 

radiosonde launch. The two instruments, HiSRAMS and AERI, are planned to be deployed in 

additional field campaigns and calibration experiments in the future, which will validate the 

closure assessment concluded here.  

A novel but straightforward method was developed to test the radiometric accuracy of the 

instruments based on the relationship between radiative closure bias and total column optical 

depth. The radiometric accuracy of HiSRAMS was compared against the well-tested instrument 

AERI. Based on the BT bias in different optical depth ranges, nadir-pointing HiSRAMS 

measurements exhibit a radiometric accuracy comparable to AERI. However, poorer radiometric 
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accuracy was observed in the zenith-pointing HiSRAMS measurements. To fully assess the 

source of this measurement bias, improved calibration and field campaigns are required. 

The objective of designing and developing HiSRAMS is to test the retrieval performance 

of temperature and water vapor concentration from hyperspectral microwave observations under 

clear- and cloudy-sky conditions. This study focuses on the radiometric accuracy of HiSRAMS 

and AERI under clear-sky conditions as a first step. Future work will include comparisons of 

temperature and water vapor retrieval performance between hyperspectral infrared and 

microwave radiometers under clear-sky conditions, assessing the synergy of HiSRAMS and 

AERI observations for temperature and water vapor retrieval under clear-sky conditions and 

validating the all-sky radiometric accuracy of HiSRAMS as well as all-sky temperature, water 

vapor, and cloud retrievals based on HiSRAMS. 

3.5 Supplement of “Radiative closure tests of collocated hyperspectral microwave and 

infrared radiometers” 

3.5.1: The impact of the LBLRTM versions 

The most recent release of LBLRTM, v12.16, became available in December, 2022. We 

compared the radiative closure difference for AERI measurements between utilizing v12.9 and 

v12.16 (Figure 3.15). The primary discrepancy arises in the far-infrared spectral range. Within 

the spectral range exhibiting notable radiance disparities between the two LBLRTM versions, the 

radiance differences between simulations and actual observations are already significant due to 

relatively insufficient calibration at the spectral detector’s edge. We began simulating the AERI-

observed DLR in 2018. To ensure consistency with our previous work, we decided to utilize 

version 12.9 in this study. 
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Figure 3.15: (a) DLR difference between LBLRTM simulations using version 12.16 and version 

12.9. (b) DLR difference between LBLRTM v12.16 simulations and AERI observations. (c) 

DLR difference between LBLRTM v12.9 simulations and AERI observations. 

 
3.5.2: The AERI channel selections 

Different greenhouse gases exhibit distinct absorption features at various AERI channels. 

Using FC2023 data, we computed the total column optical depth contributed by different 

greenhouse gases (CO2, H2O, O3, CH4, N2O, and CFCs) at each AERI channel. Subsequently, 

each AERI channel is labeled based on the greenhouse gas that contributes the most to the total 

column optical depth (Figure 3.16). 
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Figure 3.16: AERI channel labels. Each AERI channel is labeled according to the greenhouse gas 

that contributes the most to the total column optical depth.  
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Chapter 4 COMPARATIVE EXPERIMENTAL VALIDATION OF MICROWAVE 
HYPERSPECTRAL ATMOSPHERIC SOUNDINGS IN CLEAR-SKY CONDITIONS 

 

Chapter 4 is a manuscript under review in Atmospheric Measurement Techniques. It is a 

complete reprint of the material as it appears in Liu, L., Bliankinshtein, N., Huang, Y., Gyakum, 

J. R., Gabriel, P. M., Xu, S., and Wolde, M.: Comparative experimental validation of microwave 

hyperspectral atmospheric soundings in clear-sky conditions, EGUsphere [preprint], 

https://doi.org/10.5194/egusphere-2024-1045, in review, 2024. The thesis author was the primary 

investigator and author of this paper.  
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Abstract 

Accurate observations of atmospheric temperature and water vapor profiles are essential 

for weather forecasting and climate change detection. Hyperspectral radiance measurements 

afford a useful means to retrieve these thermodynamic variable fields, by harnessing the rich 

information contained in the electromagnetic wave spectrum of the atmospheric radiation. 

Compared to infrared radiometry, microwave radiometry holds the ability to penetrate clouds 

and potentially achieve an all-sky thermodynamic retrieval. Recent technological advancements 

have enabled the development of a hyperspectral microwave radiometer, the High Spectral 

Resolution Airborne Microwave Sounder (HiSRAMS), which we employ in this study to retrieve 

the atmospheric temperature and water vapor profiles under the clear-sky condition, in 

comparison with an infrared hyperspectrometer, the Atmospheric Emitted Radiance 

Interferometer (AERI). HiSRAMS and AERI measurements under different viewing geometries 

have been acquired and compared for atmospheric retrieval. When both instruments are placed 

on the ground to acquire zenith-pointing measurements, the infrared hyperspectral measurements 

exhibit higher information content and greater vertical resolution for temperature and water 

vapor retrievals than the microwave hyperspectral measurements. A synergistic fusion of 

HiSRAMS and AERI measurements from the air and ground, respectively, is tested. This 

“sandwich” sounding of the atmosphere takes advantage of the complementary information 

contents of the two instruments and is found to notably improve retrieval accuracy.  

4.1 Introduction 

Temperature and water vapor concentration vertical profiles are fundamental 

thermodynamic variable fields and play a crucial role in diverse meteorological applications, 

ranging from extreme weather forecasting to long-term climate change detection (Guo et al., 
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2020; Langland & Baker, 2004; Laroche & Sarrazin, 2010; Thorne et al., 2011; Wang et al., 

2016). Multiple methods are employed to measure these profiles, including direct, in situ 

measurements through radiosondes and aircrafts (Bliankinshtein, Liu, et al., 2023; Durre et al., 

2006; Petzold et al., 2015; Zhou et al., 2021), indirect, remote sensing measurements obtained 

from spectrally resolved radiance (Aires et al., 2015; Loveless, 2021; Turner & Blumberg, 2018; 

Susskind et al., 2003; Susskind et al., 2010; Pougatchev et al., 2009), and data assimilation 

(Gelaro et al., 2017; Hersbach et al., 2020).  

Direct measurements offer precise temperature and water vapor concentration profiles but 

have limited spatial and temporal coverage, in contrast to indirect, remote sensing (spectral) 

measurements, essential for regional and global weather and climate analyses. In these 

measurements, the temperature and water vapor information is typically encoded in the 

atmospheric radiance spectra. An algorithm is required to retrieve this information from 

atmospheric emission, absorption, or scattering features of the atmosphere across various 

frequency ranges. Hyperspectral measurements are particularly useful in this application because 

the high spectral resolution translates to richer information content. Several hyperspectral 

measurement methods were undertaken for atmospheric temperature and water vapor soundings; 

these can be categorized in terms of deployment platform (e.g., ground-based, airborne, or 

spaceborne) or frequency range (infrared, microwave, or other radiometers). 

Clouds cover more than half of the Earth’s surface (Stubenrauch et al., 2010), wielding a 

significant impact on hyperspectral temperature and water vapor retrievals, primarily due to their 

masking effect (McNally & Watts, 2003). In the infrared spectral range, clouds tend to be 

optically thick, effectively obscuring the atmosphere and preventing the retrieval of the target 

(atmospheric temperature and water vapor) behind the cloud layer. In contrast, microwave 



 93 

signals penetrate clouds, enabling the retrieval of temperature and water vapor profiles of the 

entire atmospheric column and a true all-sky sounding of the atmosphere. 

For this reason, microwave radiometers have been a subject of active studies for decades 

(Aires et al., 2015; Blackwell et al., 2010; Hilliard et al., 2013; Smith et al., 2021). In the past, 

microwave radiometers typically had several or, in rare cases, dozens of channels, limiting the 

vertical resolution of temperature and water vapor retrievals. However, recent advancements in 

microwave Fast Fourier Transfer (FFT) filter techniques have led to the development of very 

high spectral resolution microwave radiometers, offering similar numbers (thousands) of 

channels to infrared hyperspectral radiometers and the potential for an information content boost. 

In this study, we deploy an airborne hyperspectral microwave spectrometer, the High Spectral 

Resolution Airborne Microwave Sounder (HiSRAMS), developed by an international team 

(Auriacombe et al., 2022; Bliankinshtein, Liu, et al., 2023). HiSRAMS is equipped with two 

radiometers and operates in the microwave spectral ranges covering two absorption bands of 

oxygen and water vapor respectively. It can be configured to measure single-polarized or dual-

polarized radiance. As an airborne instrument, it can provide both zenith-pointing (looking up) 

and nadir-pointing (looking down) measurements (Bliankinshtein, Liu, et al., 2023).  

A ground-based infrared radiometer, the Atmospheric Emitted Radiance Interferometer 

(AERI), was also utilized in this study to compare with HiSRAMS in terms of temperature and 

water vapor concentration retrieval performance. AERI is a well-tested infrared interferometer, 

which measures downwelling radiance emitted from the atmosphere between 520 and 3200 cm-1 

with a spectral resolution of 0.5 cm-1 (Knuteson et al., 2004a, 2004b). AERI has been used to 

retrieve temperature and water vapor vertical profiles using the Optimal Estimation method with 
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acceptable accuracy, particularly for near-surface profiles (Feltz et al., 1998, 2003; Turner & 

Blumberg, 2018; Turner et al., 2000; Turner & Löhnert, 2014).  

While the primary advantage of microwave radiometers lies in their ability to retrieve in 

cloudy-sky conditions, this study focuses initially on clear-sky retrievals. The study has two 

main objectives: 1) to test the abilities of HiSRAMS and AERI to retrieve temperature and water 

vapor profiles while they are both placed on the ground taking zenith measurements, which 

provides identical conditions for assessing the two hyperspectral instruments in terms of their 

retrieval performance; 2) to test a synergistic retrieval combining AERI’s ground-based zenith 

measurements with HiSRAMS’ airborne nadir measurements, which allows the exploration of 

the complementary information from the two instruments operating in different spectral ranges 

and observing from different viewing geometries. 

4.2 Field campaigns 

Two field campaigns were conducted to retrieve vertical profiles of temperature and 

water vapor concentration profiles using AERI and HiSRAMS. The first campaign, denoted as 

FC2022, took place on December 9, 2022; the second campaign, FC2023, on February 11, 2023. 

During both campaigns, AERI and HiSRAMS measurements were collected alongside 

radiosonde data. FC2022 was a ground-based campaign, with AERI and HiSRAMS solely 

acquiring zenith-pointing measurements from the ground. In contrast, FC2023 included ground 

measurements of HiSRAMS and AERI and flight measurements of HiSRAMS at various 

observational altitudes. A thorough description of the field campaigns, particularly the radiative 

closure analysis of AERI and HiSRAMS measurements, can be found in Liu et al. (2023). This 

study focuses on the FC2023 campaign, during which the highest observational altitude of 

HiSRAMS reached 6.8 km, which allows us to validate the temperature and water vapor 



 95 

concentration retrievals within the troposphere against the measurements of radiosonde and 

aircraft. The HiSRAMS measurements used in this study are single-polarized measurements. 

4.3 Retrieval algorithms 

Our retrieval algorithms, employing HiSRAMS and AERI data, are based on the optimal 

estimation method (Loveless, 2021; Rodgers, 2000; Turner & Blumberg, 2018). These 

instruments measure the radiance, 𝒚𝒚, received by their respective detectors. A forward model, 𝑭𝑭, 

is utilized to simulate the radiance 𝑭𝑭(𝒙𝒙) under the atmospheric state conditions, 𝒙𝒙, shown in 

Equation 4.1. The AERI forward model we adopt is the Line-by-Line Radiative Transfer Model 

Version 12.9 (LBLRTM) and the HiSRAMS forward model has been developed and validated 

by Bliankinshtein et al. (2019). More details of the forward models can be found in Liu et al. 

(2023). In this study, the state vector 𝒙𝒙 encapsulates vertical profiles of temperature and water 

vapor concentration. 𝜺𝜺 represents the error including both the measurement error and the forward 

model error. 

 𝒚𝒚 = 𝑭𝑭(𝒙𝒙) + 𝜺𝜺 (4.1) 

Linearizing the relationship between 𝒙𝒙 and 𝒚𝒚 at a reference state 𝒙𝒙𝟎𝟎: 

 𝒚𝒚 = 𝑭𝑭(𝒙𝒙𝟎𝟎) +
𝝏𝝏𝝏𝝏(𝒙𝒙)
𝝏𝝏𝝏𝝏

(𝒙𝒙 − 𝒙𝒙𝟎𝟎) + 𝜺𝜺 = 𝑭𝑭(𝒙𝒙𝟎𝟎) + 𝑲𝑲(𝒙𝒙 − 𝒙𝒙𝟎𝟎) + 𝜺𝜺 (4.2) 

Here 𝑲𝑲 = 𝝏𝝏𝝏𝝏(𝒙𝒙)
𝝏𝝏𝝏𝝏

 is the Jacobian matrix, representing the sensitivity of the forward model 

to the state vector. 𝑲𝑲𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 and 𝑲𝑲𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 are obtained by the analytical Jacobian method using 

their respective forward models. This linearization is a good approximation for the temperature 

values under question. However, for water vapor, we find that linearization works better for the 

logarithm of the water vapor concentration (Huang & Bani Shahabadi, 2014). Thus, 𝒙𝒙𝑻𝑻 = 𝑻𝑻 and  
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𝒙𝒙𝒒𝒒 = 𝒍𝒍𝒍𝒍𝒍𝒍(𝒒𝒒), where 𝑻𝑻 represents atmospheric temperature in units of K and 𝒒𝒒 represents 

atmospheric water vapor in units of ppmv.  

The objective of the retrieval is to infer 𝒙𝒙 from 𝒚𝒚. To address the nonunique 

correspondence between the atmospheric state conditions and the radiance, the Optimal 

Estimation method minimizes the cost function 𝑱𝑱 or optimizes a posteriori. Applying the 

Levenberg-Marquardt iteration method and using a multiplier 𝜸𝜸 to stabilize the iteration 

processes by assigning varying weights between the measurement and the a priori (Rodgers, 

2000), the state vector at iteration step 𝒋𝒋 + 𝟏𝟏, 𝒙𝒙𝒋𝒋+𝟏𝟏, is determined by Equation 4.3. The maximum 

step number is arbitrarily set to be 20. For all the retrieval cases in this study, the state vector 

converges before the maximum iteration step. 

𝒙𝒙𝒋𝒋+𝟏𝟏 = 𝒙𝒙𝒋𝒋 + �𝑲𝑲𝒋𝒋
𝑻𝑻𝑺𝑺𝒆𝒆−𝟏𝟏𝑲𝑲𝒋𝒋 + (𝟏𝟏 + 𝜸𝜸)𝑺𝑺𝒂𝒂−𝟏𝟏�

−𝟏𝟏
�𝑲𝑲𝒋𝒋

𝑻𝑻𝑺𝑺𝒆𝒆−𝟏𝟏�𝒚𝒚 − 𝑭𝑭�𝒙𝒙𝒋𝒋�� − 𝑺𝑺𝒂𝒂−𝟏𝟏�𝒙𝒙𝒋𝒋 − 𝒙𝒙𝒂𝒂�� (4.3) 

Here, 𝑺𝑺𝒆𝒆 and 𝑺𝑺𝒂𝒂 are the measurement and a priori error covariance matrix, representing 

the covariance of the measurement error at different observational channels and of the state 

vectors at different vertical levels, respectively. The diagonal elements of 𝑺𝑺𝒆𝒆 and 𝑺𝑺𝒂𝒂 are the 

variance of the errors and the off-diagonal elements are the inter-channel or inter-layer 

covariance of the errors. Considering that the covariance of the AERI measurement errors are 

relatively small (Turner & Blumberg, 2018), the off-diagonal elements of 𝑺𝑺𝒆𝒆,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 are set to be 0. 

The square root of the diagonal components of 𝑺𝑺𝒆𝒆,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 and 𝑺𝑺𝒆𝒆,𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 are shown in Figure 4.15. 

AERI radiance has a relatively smaller measurement uncertainty in the window band (800 – 

1200 cm-1), although it translates to large brightness temperature uncertainty because the 

radiance signal in this band is typically small, especially in the clear-sky condition.  

The a priori dataset consists of the hourly-mean temperature and water vapor 

concentration profiles from the fifth generation European Centre for Medium-Range Weather 
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Forecasts atmospheric reanalysis dataset, ERA5 (Hersbach et al., 2020). The hourly-mean 

profiles in Februaries from 1944 to 2022 at 9 grid boxes centered around the Ottawa 

International Airport (latitude: 45.32°, longitude: -75.66°) were collected to capture the temporal 

and spatial variability of the atmospheric state variables. The vertical coordinate we adopted in 

this study is altitude. Thus, both ERA5 hourly-mean surface level and pressure level (37 levels) 

data are utilized to form the a priori dataset, which has 38 vertical levels in total (shown in 

Figure 4.16). The thickness of the layers is 1.26 km on average, with the lowermost few layers 

being centered at 0.13, 0.24, 0.44, 0.64, 0.85, 1.07, 1.29, and 1.51 km, respectively. The reason 

that we did not use higher vertical resolution for the a priori is that the vertical resolution of the 

retrieval is already limited by the Jacobian matrix and the measurement error covariance matrix 

(details in the following analysis). The covariance matrix 𝑺𝑺𝒂𝒂 used in this study is shown in 

Figure 4.17 and the correlation matrix 𝑪𝑪𝒂𝒂, which represents the correlation coefficient in the a 

priori dataset, is shown in Figure 4.18. The first guess of the state vector, 𝒙𝒙𝟏𝟏, is the mean profile 

of all the hourly-mean profiles in the a priori dataset. 

Ideally, the Jacobian matrix should be updated at every iteration step. However, the 

calculation of the Jacobian matrix is the most computationally expensive step in the retrieval. 

Owing to the relatively smaller change of the atmospheric state vectors after iteration step 2, 

which results in a relatively smaller change of the Jacobian matrix, we set the AERI Jacobian 

matrix for all the following iteration steps to that from step 2, 𝑲𝑲𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨,𝟐𝟐. The calculation of the 

𝑲𝑲𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 is fast so it is updated in every iteration step. The AERI analytical Jacobian in high 

spectral resolution was obtained first and then it was convolved with the AERI scan function to 

match AERI channels. The product of the Jacobians and the standard deviation of the state 
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variables at selected levels for AERI and HiSRAMS are illustrated in Figure 4.19, Figure 4.20, 

and Figure 4.21. 

In Equation 4.3, we use a regularization parameter, 𝜸𝜸, to weigh the measurement and a 

priori according to their error magnitudes. It is set to be a large value at the first step, decreasing 

with iterations until the convergence criterion (described below) is met. A set of sensitivity tests 

was performed to find the appropriate initial value of 𝜸𝜸 and how it should change with iterations. 

The final setting of the initial value of  𝜸𝜸 is 10000. For each iteration, if the cost function 𝑱𝑱 

shown in Equation 4.4 is increasing, 𝜸𝜸 is increased by 10 times and the state vector is updated 

based on the new 𝜸𝜸 until 𝑱𝑱 is smaller than that for the previous step. While 𝑱𝑱 is decreasing and 𝜸𝜸 

is larger than 1, 𝜸𝜸 is decreased by 10 times for the next iteration step. 

 𝑱𝑱 = �𝒙𝒙𝒋𝒋 − 𝒙𝒙𝒂𝒂�
𝑻𝑻𝑺𝑺𝒂𝒂−𝟏𝟏�𝒙𝒙𝒋𝒋 − 𝒙𝒙𝒂𝒂� + �𝒚𝒚 − 𝑭𝑭�𝒙𝒙𝒋𝒋��

𝑻𝑻𝑺𝑺𝒆𝒆−𝟏𝟏�𝒚𝒚 − 𝑭𝑭�𝒙𝒙𝒋𝒋�� (4.4) 

The information content of the retrievals finds common usage in assessing the 

retrievability of the atmospheric state variables. The averaging kernel matrix, 𝑨𝑨, defined as the 

derivative of the estimated state vectors to the true state vectors, can be derived based on 𝑲𝑲, 𝑺𝑺𝒆𝒆 

and 𝑺𝑺𝒂𝒂, shown in Equation 4.5. The Degrees of Freedom for Signal (DFS), which is the trace of 

the averaging kernel matrix, are adopted to quantify the information content of the retrievals 

(Equation 4.6). A higher value of DFS means that more information content can be retrieved. 

The DFS for each retrieved vertical level tells us how many pieces of independent information 

we can get for this specific level. Ideally, for each vertical level, the DFS equals to 1. Yet due to 

various limiting factors, including the measurement errors and the covariance between different 

levels, the DFS is normally below 1. 

 𝑨𝑨 = �𝑲𝑲𝒋𝒋
𝑻𝑻𝑺𝑺𝒆𝒆−𝟏𝟏𝑲𝑲𝒋𝒋 + 𝑺𝑺𝒂𝒂−𝟏𝟏�

−𝟏𝟏
𝑲𝑲𝒋𝒋

𝑻𝑻𝑺𝑺𝒆𝒆−𝟏𝟏𝑲𝑲𝒋𝒋 (4.5) 
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 𝑫𝑫𝑫𝑫𝑫𝑫 = 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑨𝑨) (4.6) 

Another relevant measure of the retrieval performance is the retrieval uncertainty. The 

posterior error covariance matrix, 𝑺𝑺, is defined in Equation 4.7. The square root of the diagonal 

elements of 𝑺𝑺 provides the 𝟏𝟏𝟏𝟏 uncertainty in the retrieved atmospheric state variables. Both 𝑨𝑨 

and 𝑺𝑺 are iterated over the steps and are impacted by the value of 𝜸𝜸. In order to have fair 

comparison between different retrieval cases, the final values of 𝑨𝑨 and 𝑺𝑺 are determined when 𝜸𝜸 

is 0. 

 𝑺𝑺 = �𝑲𝑲𝒋𝒋
𝑻𝑻𝑺𝑺𝒆𝒆−𝟏𝟏𝑲𝑲𝒋𝒋 + 𝑺𝑺𝒂𝒂−𝟏𝟏�

−𝟏𝟏
 (4.7) 

For all these matrices, the dimensions are only based on the dimension of the vertical 

level (𝒏𝒏𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍) and the dimension of the instrumental channels (𝒏𝒏𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 and 𝒏𝒏𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯). In this 

study, we retrieve temperature and water vapor vertical profiles simultaneously. Thus, 𝒙𝒙 equals 

to [
𝒙𝒙𝑻𝑻
𝒙𝒙𝒒𝒒] with a dimension of 𝟑𝟑𝟑𝟑 × 𝟐𝟐 = 𝟕𝟕𝟕𝟕. Because HiSRAMS is an airborne instrument, the 

light path of the HiSRAMS may be limited by the observational altitude when pointing directly 

downward (nadir-pointing). Thus, 𝒏𝒏𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 varies for different case studies (detailed in the 

following sections). In order to test the full potential of AERI and HiSRAMS to retrieve 

temperature and water vapor concentration profiles, all the instrumental channels are kept, 

resulting 𝒏𝒏𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 = 𝟐𝟐𝟒𝟒𝟒𝟒𝟒𝟒 and 𝒏𝒏𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 (including the measurements of both 

spectrometers of HiSRAMS). 

The retrieval is considered to be converged when the convergence criteria, shown in 

Equation 4.8 are met: 

𝒅𝒅𝒙𝒙,𝒋𝒋
𝟐𝟐 = �𝒙𝒙𝒋𝒋 − 𝒙𝒙𝒋𝒋+𝟏𝟏�

𝑻𝑻�𝑲𝑲𝒋𝒋
𝑻𝑻𝑺𝑺𝒆𝒆−𝟏𝟏𝑲𝑲𝒋𝒋 + 𝑺𝑺𝒂𝒂−𝟏𝟏��𝒙𝒙𝒋𝒋 − 𝒙𝒙𝒋𝒋+𝟏𝟏� < 𝐦𝐦𝐦𝐦𝐦𝐦 �𝒅𝒅𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝟐𝟐,
𝒏𝒏𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍
𝟐𝟐𝟐𝟐

� (4.8) 
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Where 𝒅𝒅𝒙𝒙,𝒋𝒋
𝟐𝟐 represents the change of uncertainty in state vector space. The threshold of 

this parameter, 𝒅𝒅𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟐𝟐, is determined when the temperature change between two iteration 

steps equals 0.5 K (𝚫𝚫𝒙𝒙𝑻𝑻 = 𝟎𝟎.𝟓𝟓 𝑲𝑲), the water vapor concentration change between two iteration 

steps equals a 10 % change in water vapor concentration [𝚫𝚫𝒙𝒙𝒒𝒒 = 𝐥𝐥𝐥𝐥𝐥𝐥 (𝟏𝟏.𝟏𝟏)]. These values 

represent the expected accuracy of the variables. Note that 𝒅𝒅𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝟐𝟐 varies with each iteration 

due to updates in the Jacobian matrix. 

To assess the sensitivity of the measurements while accounting for the state vector 

variability and the measurement uncertainty together, we derived a metric, the Signal-to-Noise 

Ratio (SNR) as defined in Equation 4.9, where 𝝈𝝈(𝒙𝒙) represents the standard deviation of the state 

vector in the a priori dataset. Based on their SNR values, we can have a fair comparison between 

different measurements, i.e., AERI and HiSRAMS in this study. 

 𝑺𝑺𝑺𝑺𝑺𝑺 =
𝑲𝑲𝑲𝑲(𝒙𝒙)

�𝑺𝑺𝒆𝒆,𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
 (4.9) 

In this study, we obtained temperature and water vapor retrievals based on single 

instruments (AERI or HiSRAMS) and joint instruments (AERI and HiSRAMS), respectively. 

Regardless of the retrieval cases, the dimensions of 𝑺𝑺𝒂𝒂, 𝑺𝑺, and 𝑨𝑨 are all 𝒏𝒏𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 × 𝒏𝒏𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍. 𝑺𝑺𝒂𝒂, 𝑺𝑺, 

and 𝑨𝑨 all have a similar matrix structure: the upper-left sub-matrix and the lower-right sub-

matrix are for temperature and water vapor respectively. As a result, we can separate the 

information of temperature and water vapor. When retrieving the temperature and water vapor 

vertical profiles using either AERI or HiSRAMS alone, the dimension of 𝑺𝑺𝒆𝒆 and 𝑲𝑲 are   

𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 × 𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 and 𝒏𝒏𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 × 𝒏𝒏𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍, respectively, where ‘instrument’ refers to 

either AERI or HiSRAMS. For joint retrieval: 
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 𝒚𝒚𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋 = �
𝒚𝒚𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨

𝒚𝒚𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯� (4.10) 

 𝑺𝑺𝒆𝒆,𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋 = �
𝑺𝑺𝒆𝒆,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟎𝟎
𝟎𝟎 𝑺𝑺𝒆𝒆, 𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

� (4.11) 

 𝑲𝑲𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋 = � 𝑲𝑲𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨
𝑲𝑲𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

� (4.12) 

The dimensions of 𝒚𝒚𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋,  𝑺𝑺𝒆𝒆,𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋, and 𝑲𝑲𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋 are (𝒏𝒏𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 + 𝒏𝒏𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯) × 𝟏𝟏, (𝒏𝒏𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 +

𝒏𝒏𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯) × (𝒏𝒏𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 + 𝒏𝒏𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯), and (𝒏𝒏𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 + 𝒏𝒏𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯) × 𝒏𝒏𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 respectively. 

4.4 Ground-based HiSRAMS and AERI retrievals  

Ground measurements of AERI and HiSRAMS were obtained in campaign FC2023. 

Simultaneous temperature and water vapor retrievals were performed for single instruments 

(AERI or HiSRAMS) to compare their retrieval performance. For ground-based retrievals, the 

number of the vertical levels is 38. Thus, 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is 76.  

4.4.1 Temperature retrieval 

The total DFS corresponding to temperature retrievals across the entire atmospheric 

column are quantified to be 9.52 and 5.27 for AERI and HiSRAMS, respectively. Notably, AERI 

exhibits a higher information content in temperature when compared to HiSRAMS. To further 

elucidate the distribution of information content, the Cumulative Degrees of Freedom for Signal 

(CDFS) for temperature, defined as the vertical summation of DFS values from the surface up to 

the target altitude, is shown in Figure 4.1a. The results indicate a greater concentration of 

information content in the lowermost atmospheric layers for both AERI and HiSRAMS. 

Furthermore, most of the information content in temperature resides within the tropospheric 

region, specifically below 8 km, exhibiting DFS values of 6.14 and 3.41 for AERI and 

HiSRAMS, respectively.  
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Figure 4.1: Information content and retrieval uncertainty in temperature based on single ground 

measurements. (a) Cumulative Degrees of Freedom of Signal (CDFS) for temperature. (b) 

Uncertainty in the retrieved temperature.  

The uncertainty associated with temperature retrievals varies between AERI and 

HiSRAMS. In AERI retrieval, the temperature uncertainty demonstrates an overall increase with 

altitude. In contrast, the temperature uncertainty in HiSRAMS retrieval decreases with altitude 

within the few initial levels near the surface. The interplay between the a priori uncertainty and 

the measurement uncertainty, the two terms in Equation 4.7 that determine the posterior error 

covariance matrix, govern the retrieval accuracy. Within the troposphere, the a priori uncertainty 

typically decreases with altitude, thereby contributing to the overall reduction in retrieval 

uncertainty. The sensitivity of AERI measurements to temperature tends to decrease with altitude 

(Figure 4.19), leading to an increase in retrieval uncertainty with height (Figure 4.1a). At higher 

altitudes, this measurement uncertainty exceeds the a priori uncertainty. However, in the case of 
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HiSRAMS measurements, the sensitivity to temperature does not show a monotonic decrease 

with altitude across certain channels, as shown in Figure 4.20a and Figure 4.20b. This particular 

behavior results in maximum retrieval uncertainty within the lowermost atmospheric layers 

(Figure 4.1b). It is pertinent to note that the behavior of the sensitivity of the HiSRAMS 

measurements discussed above is influenced by variations in the thickness of vertical layers. 

 

Figure 4.2: Comparison between retrieved temperature profiles based on AERI or HiSRAMS 

ground measurement and the truth from radiosonde measurements.  
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Figure 4.3: Signal-to-Noise Ratio (SNR) for temperature. (a) SNR for AERI zenith-pointing 

measurements at 0.75 km (level 5). (b) SNR for HiSRAMS zenith-pointing measurements in the 

oxygen band at 0.75 km (level 5). (c) SNR for HiSRAMS zenith-pointing measurements in the 

water vapor band at 0.75 km (level 5). (d) SNR for HiSRAMS nadir-pointing measurements in 

the oxygen band at 6.1 km (level 18). (e) SNR for HiSRAMS nadir-pointing measurements in 

the water vapor band at 6.1 km (level 18). Units: 1. 

The validation of retrieved temperature profiles is based on ground-truth data from 

radiosonde measurements, represented by the black line in Figure 4.2. A temperature inversion at  

~550 m, with a depth of approximately 400 m, presented a valuable test to assess the 

resolvability of such signals in temperature retrieval. The subset displayed in Figure 4.2 

specifically focuses on the profiles below 2 km. The a priori profile shows a near-surface 
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temperature inversion (grey dashed line in Figure 4.2), which is different from the truth observed 

by the radiosonde. The AERI-retrieved temperature profile (blue line in Figure 4.2) effectively 

captures the sub-kilometer temperature inversion in the layer of 300-700 m together with an 

accurate representation of the near-surface temperatures below 300 m. In contrast, HiSRAMS 

cannot capture the detailed vertical temperature structures below 2 km. The shape of the 

HiSRAMS-retrieved temperature profile (red line in Figure 4.2) closely mirrors that of the a 

priori profile. This discrepancy in the near-surface temperature feature retrievability between the 

two instruments can be attributed to AERI’s higher SNR for temperature near the surface when 

compared to HiSRAMS, as demonstrated in Figure 4.3a, Figure 4.3b, and Figure 4.3c. In the 

upper troposphere, both AERI- and HiSRAMS-retrieved temperature profiles align well with the 

truth data. However, it is noted that AERI exhibits a more pronounced temperature retrieval bias 

above 6 km. 

In summary, in this clear-sky ground-deployment case, it is evident that AERI 

outperforms HiSRAMS in terms of the retrievability of temperature profiles, showcasing 

superior performance across key metrics, including information content, retrieval uncertainty, 

and retrieval accuracy. 

4.4.2 Water vapor retrieval 

The retrieval of atmospheric water vapor concentration using AERI and HiSRAMS 

ground measurements provides valuable insights. AERI records a total DFS of 4.22, whereas 

HiSRAMS reports 3.03, indicating that the two instruments offer comparable information 

regarding water vapor. However, at an altitude of 8 km, AERI reaches its maximum CDFS, 

while the CDFS for HiSRAMS continues to increase with altitude, suggesting that, despite its 
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lower total water vapor DFS compared to AERI, HiSRAMS captures water vapor information 

over a broader vertical range. 

 

Figure 4.4: Information content and uncertainty in water vapor retrieval from single ground-

based measurements: (a) Cumulative Degrees of Freedom of Signal (CDFS) for water vapor, (b) 

Uncertainty in retrieved water vapor concentration. 

Moreover, the uncertainty associated with retrieved water vapor concentration from 

AERI increases with altitude. In contrast, the uncertainty in HiSRAMS-retrieved water vapor 

concentration reaches a maximum of approximately 4 km. Notably, at altitudes below 5.5 km, 

AERI-retrieved water vapor exhibits lower uncertainties compared to HiSRAMS-retrieved water 

vapor, while the converse is observed at altitudes above 5.5 km. 
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Figure 4.5: Comparing retrieved water vapor concentration profiles from ground-based AERI 

and HiSRAMS measurements with radiosonde-derived truth. 

The water vapor concentration derived from radiosonde measurements (black line in 

Figure 4.5) reveals local minima and maxima, particularly a distinctive dry layer at 

approximately 750 m, with a depth of ~400 m. However, neither AERI nor HiSRAMS can fully 

capture this fine-scale, half-kilometer deep dry anomaly near the surface. The water vapor 

concentration profile retrieved by AERI (blue line in Figure 4.5) exhibits a closer alignment with 

the radiosonde-derived truth, in contrast to the profile retrieved by HiSRAMS (red line in Figure 

4.5). Furthermore, the AERI-retrieved water vapor concentration profile suggests the presence of 

a moist anomaly at an altitude of about 2 km, which is consistent with the radiosonde 
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measurements. This finding, along with the resolvability of the temperature inversion shown 

above, encourages further investigation of the instruments’ capacity to capture fine-scale 

thermodynamic variability in the lower atmosphere.  

 

Figure 4.6: Same as Figure 4.4 but for water vapor. Unit: 1. The presence of negative SNR 

values results from negative values in 𝑲𝑲.  

Generally, AERI outperforms HiSRAMS in water vapor retrieval, primarily due to the 

greater number of AERI channels with relatively higher SNR, as evident in Figure 4.6a, Figure 

4.6b, and Figure 4.6c. The higher SNR in AERI measurements makes it more feasible to retrieve 

precise water vapor concentrations, particularly under challenging atmospheric conditions. 

However, both AERI and HiSRAMS exhibit lower water vapor retrievability than temperature 
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retrievability, particularly in terms of information content and the ability to resolve confined sub-

kilometer features.  

4.4.3 Sub-kilometer feature resolvability 

Fortunately, in this specific case, both the temperature and water vapor vertical profiles 

exhibited sub-kilometer features, offering a valuable opportunity to assess the vertical 

resolvability of temperature and water vapor utilizing ground-based AERI and HiSRAMS 

measurements. A temperature inversion, with an altitude of approximately 550 m and a depth of 

400 m, and a sudden dry layer at around 750 m with a depth of 400 m, were clearly discernible. 

To understand the performance of the two instruments, we employ the averaging kernel 

matrix to determine the vertical resolution of the retrieved profiles. Each row in the matrix 

defines the averaging kernel for a specific level within the retrieved profile. Each row of an ideal 

𝑨𝑨 would look like a delta-function, indicating that the retrieved quantity at the vertical level 

exclusively represents the condition at that particular vertical location, i.e., exhibiting the highest 

attainable vertical resolution. However, due to correlations between different atmospheric layers, 

the vertical resolution of the retrieved profiles is constrained. Typically, each row of 𝑨𝑨 reaches 

its peak at the retrieval level; this indicates that the bulk of information at that particular level is 

derived from that level, although smaller but non-negligible contributions are obtained from 

neighboring levels. Hence, we use the full width at half maximum (FWHM) of every row of 𝑨𝑨 to 

quantify and represent the vertical resolution of the retrieval. 

To demonstrate the concept, we show the rows of 𝑨𝑨 corresponding to altitudes of 550 m 

and 750 m, where the sub-kilometer temperature and water vapor concentration features are 

situated. For example, the blue line in Figure 4.7a shows the row of 𝑨𝑨 for AERI temperature 

retrieval at an altitude of 550 m. This row of 𝑨𝑨 peaks at the selected altitude, decreasing rapidly 
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on either side of the peak. AERI temperature retrieval at 550 m displays a FWHM of 

approximately 403 m, indicating its vertical resolution. In contrast, HiSRAMS temperature 

retrieval at the same altitude offers a coarser vertical resolution of 869 m. The temperature 

inversion depth, roughly 400 m, closely aligns with AERI’s vertical resolution but is shallower 

than that of HiSRAMS. This difference elucidates why the AERI retrieval has the capability of 

resolving the temperature inversion, while the HiSRAMS retrieval cannot. 

 

Figure 4.7: Comparing vertical resolution of retrieved (a) temperature and (b) water vapor 

concentration profiles from ground-based AERI (blue lines) and HiSRAMS (red lines) 

measurements. This figure displays the averaging kernel matrix row for a vertical level at 550 m 

for temperature and 750 m for water vapor concentration. 
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The vertical resolutions of the retrieved water vapor concentrations by AERI and 

HiSRAMS at 750 m are 678 m and 835 m, respectively. It is evident that neither of the rows in 

the averaging kernels of AERI nor HiSRAMS exhibit peaks at the target altitude, indicating a 

stronger correlation in water vapor concentrations between adjacent atmospheric layers. In 

general, AERI demonstrates higher water vapor vertical resolvability compared to HiSRAMS. 

However, the vertical resolutions for water vapor concentration at 750 m, as achieved by both 

AERI and HiSRAMS, exceed the depth of the thin dry layer, rendering them incapable of 

resolving this layer near the surface. 

4.4.4 Retrieval bias and uncertainty comparison 

The 3𝜎𝜎 retrieval uncertainties (dashed lines in Figure 4.8), obtained from the posterior 

matrix (Equation 4.7), are compared with the retrieval bias (solid lines in Figure 4.8), which 

quantifies the difference between the retrieved profile and the truth derived from radiosonde 

measurements. In general, both the retrieval bias in temperature and water vapor concentration 

falls within the 3𝜎𝜎 retrieval uncertainties, with exceptions at altitudes where fine vertical features 

exist. 

The DFS of temperature and water vapor concentration in the troposphere is similar to 

previous AERI retrieval and multichannel microwave radiometer retrieval studies (Blumberg et 

al., 2015; Loveless et al., 2022; Turner & Löhnert, 2021). Blumberg et al. (2015) conducted a 

comparison of retrieval performance between AERI and a 14-channel ground-based microwave 

radiometer in clear-sky conditions. Even with a significantly greater number of channels in 

HiSRAMS compared to the 14-channel radiometer, this study shows comparable retrieval 

performance between the two microwave radiometers. This implies that, for ground-based 
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retrievals, an increased number of channels in the microwave spectral range may not necessarily 

improve the retrievals of clear-sky temperature and water vapor concentration. 

 

Figure 4.8: Comparison of retrieval bias and uncertainty in ground-based retrievals for (a) 

temperature and (b) water vapor. 

In summary, when retrieving temperature and water vapor concentration profiles from 

hyperspectral ground measurements under clear-sky conditions, infrared instruments exhibit 

better performance compared to microwave instruments in terms of information content, retrieval 

uncertainty, vertical feature resolvability, and retrieval biases. However, it is worth noting that 

hyperspectral microwave instruments demonstrate less temperature bias and lower water vapor 

concentration uncertainty in the upper troposphere. 
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4.5 Joint airborne HiSRAMS and ground-based AERI retrievals 

As an airborne instrument, HiSRAMS was used to collect radiance measurements at 

various altitudes during the FC2023 campaign. To investigate the potential advantages of 

combining these airborne HiSRAMS measurements with ground-based AERI measurements, we 

conducted joint retrievals in comparison to independent retrievals. We refer the measurements 

obtained from this unique setting as “sandwich” measurements. Throughout FC2023, we 

gathered HiSRAMS nadir-pointing measurements during ten flight legs, covering altitudes from 

near the surface up to 6.8 km. We specifically selected measurements obtained at 6.8 km for our 

joint retrievals, as the measurements at this altitude captured a substantial portion of the 

troposphere viewed by both instruments. 

In this section, we compare joint retrievals, which combine the AERI zenith-pointing 

measurements on the ground and the HiSRAMS nadir-pointing measurements at 6.8 km to 

retrieve temperature and water vapor concentration vertical profiles, with single retrievals based 

on either the AERI zenith-pointing measurements on the ground or the HiSRAMS nadir-pointing 

measurements at 6.8 km alone. In the case of joint retrieval and AERI-only retrieval, 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is set 

at 76, as ground-based measurements are incorporated into both retrievals. To avoid uncertainties 

due to land surface emissivity, we adopt an elevated “surface” boundary condition at altitude of 

429 m for the HiSRAMS nadir-pointing forward model (Liu et al., 2023). Consequently, for 

HiSRAMS nadir-pointing retrievals alone, 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is set at 30, considering that there are only 15 

levels between 429 m and 6.8 km in the vertical configuration used for these retrievals. Previous 

work by Liu et al. (2023) has identified biases in nadir-pointing HiSRAMS flight measurements. 

To ensure the reliability of our retrieval results, we have corrected the HiSRAMS nadir-pointing 

measurements used in this study, following the method outlined in Section 4.7. 
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4.5.1 Temperature retrievals 

Joint retrieval enhances the temperature information content. The total temperature DFS 

for the joint retrieval stands at 10.96, surpassing the values obtained in individual retrievals (9.52 

for AERI-only retrieval and 3.20 for HiSRAMS-only retrieval). A field campaign carried out by 

the UK Met Office Airborne Research Interferometer Evaluation System (ARIES) demonstrated 

a DFS between 4 and 5 for temperature retrievals using airborne nadir-pointing infrared 

hyperspectral observations between 690 and 775 cm-1 at similar observational height to 

HiSRAMS (Allen et al., 2014). This DFS value is higher than that of HiSRAMS retrieval. 

Figure 4.9a shows the detailed DFS values for specific altitude levels. In the case of the 

HiSRAMS-only nadir-pointing retrieval, the DFS increases with altitude (red line in Figure 

4.9a). This increase is attributed to the HiSRAMS measurements acquired at 6.8 km, making it 

more responsive to atmospheric conditions near the instrument. Similarly, for the AERI-only 

zenith-pointing retrieval, the DFS decreases with altitude (blue line in Figure 4.9a). Notably, the 

DFS for the joint retrieval (green line in Figure 4.9a) exceeds that of either individually, 

signifying the increased information content, particularly in the upper troposphere, where 

AERI’s capabilities are limited. 

Joint retrieval not only enhances the information content but also diminishes retrieval 

uncertainty. The temperature uncertainty in AERI or HiSRAMS single-instrument retrievals 

increases and decreases with altitude respectively. By combining both sets of measurements, the 

overall uncertainty in temperature diminishes, compared to that in either of the individual 

retrievals. Consequently, temperature uncertainties below 6 km consistently remain within 1 K. 
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Figure 4.9: Comparison of information content and temperature retrieval uncertainty between 

joint airborne HiSRAMS and ground-based AERI retrievals versus single-instrument retrievals 

from either airborne HiSRAMS or ground-based AERI. (a) Temperature Degrees of Freedom for 

Signal (DFS). (b) Uncertainty in retrieved temperature. 

Figure 4.10a shows the temperature profiles retrieved from actual measurements. As with 

the ground-based HiSRAMS retrieval results, the HiSRAMS-only nadir-pointing retrieval (red 

line in Figure 4.10a) remains incapable of resolving the fine vertical temperature features near 

the surface. This limitation arises from a lower SNR (not shown), compared to the zenith-

pointing HiSRAMS measurements, in regions where a temperature inversion is present. The 

smaller SNR results from the measurements being further away from the fine vertical feature. 

The change in observation locations identifies why the temperature profile retrieved from 

HiSRAMS-only airborne measurements around 6 km closely approximates the actual values, 

corroborated by the relatively higher SNR shown in Figure 4.3d. 
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Figure 4.10: Retrieved temperature profiles for joint retrieval (combining AERI zenith-pointing 

measurements on the ground and HiSRAMS nadir-pointing measurements at 6.8 km) and single-

instrument retrievals (utilizing either AERI zenith-pointing measurements on the ground or 

HiSRAMS nadir-pointing measurements at 6.8 km). (a) Retrieved temperature profiles based on 

actual measurements. (b) Retrieved temperature profiles based on synthetic measurements. 

As discussed in the previous section on ground-based retrieval, the AERI-only retrieval 

successfully resolves temperature inversions near the surface but exhibits a larger temperature 

bias in the upper troposphere. Joint retrieval combines the strengths of the two instruments by  

resolving the fine vertical features near the surface and yielding a reduced temperature bias in the 

upper troposphere compared to the AERI-only retrieval. Note that a temperature bias still exists 

above 6 km, even in the case of joint retrieval. 
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Liu et al. (2023) identified a significant brightness temperature bias in HiSRAMS 

airborne measurements concerning the brightness temperature truth derived from the HiSRAMS 

forward model, which utilized radiosonde measurements as inputs. This bias may arise from 

inaccuracies in either the HiSRAMS measurements or the brightness temperature truth due to 

imprecise atmospheric state inputs. To assess the limits of the joint retrieval concept, we further 

conducted joint and single-instrument retrievals based on synthetic measurements. Specifically, 

radiosonde-derived temperature and water vapor profiles served as inputs for AERI and 

HiSRAMS forward models to generate synthetic spectra with added random noises appropriate 

to the measurement uncertainty to emulate the measurements in the retrieval algorithm. 

The AERI retrieval based on the synthetic measurement exhibited good resolvability of 

the temperature inversion near the surface but displayed a larger bias in upper tropospheric 

temperature (blue line in Figure 4.10b). Simultaneously, the synthetic HiSRAMS retrieval 

accurately captured temperature profiles well below the observational altitude but could not 

resolve the near-surface temperature inversion feature (red line in Figure 4.10b). In contrast, the 

joint synthetic retrieval not only captured the near-surface temperature inversion feature but also 

effectively constrained the temperature profile both above and below the observational altitude 

(green line in Figure 4.10b). This underscores the complementary information in the two 

instruments and a substantial potential of joint retrieval between AERI and HiSRAMS. 

4.5.2 Water vapor retrievals 

Joint retrieval increases the information content in water vapor concentration. The total 

water vapor DFS for joint retrieval is 5.82, exceeding that of the water vapor DFS values for 

either AERI- or HiSRAMS-only retrievals, which are 4.22 and 3.11, respectively. The water 

vapor DFS for specific levels, illustrated in Figure 4.11a, clearly indicates the enhanced water 
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vapor information content achieved through joint retrieval. Joint retrieval in water vapor 

particularly excels at the HiSRAMS observation altitude and near-surface, primarily contributed 

by HiSRAMS and AERI, respectively. Allen et al. (2014) reported a DFS of approximately 3 for 

the ARIES airborne system at an observational height of 7.4 km with 10 vertical levels, 

comparable to the HiSRAMS retrieval result. Similarly, higher information content was detected 

closer to the observational height. 

 

Figure 4.11: Comparison of information content and uncertainty in water vapor retrievals 

between joint airborne HiSRAMS and ground-based AERI retrievals and single-instrument 

retrievals from either airborne HiSRAMS or ground-based AERI. (a) Water vapor Degrees of 

Freedom for Signal (DFS). (b) Uncertainty in retrieved water vapor concentration. 

Joint retrievals reduce uncertainties in the retrieved water vapor concentration. As with 

joint temperature retrievals, uncertainties in retrieved water vapor concentrations from AERI-
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only measurements generally decrease with altitude. Notably, uncertainties in retrieved water 

vapor concentration profiles from HiSRAMS-only measurements exhibit a distinct peak around 

2 km. Water vapor concentration profiles computed from joint retrievals are characterized by 

reduced uncertainties at all levels, including those above the HiSRAMS observational altitude. 

 

Figure 4.12: Retrieved water vapor concentration profiles for joint retrieval (combining both 

AERI zenith-pointing measurements on the ground and HiSRAMS nadir-pointing measurements 

at 6.8 km) and single-instrument retrievals (utilizing either AERI zenith-pointing measurements 

on the ground or HiSRAMS nadir-pointing measurements at 6.8 km). (a) Retrieved water vapor 

profiles based on actual measurements. (b) Retrieved water vapor profiles based on synthetic 

measurements. 
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Water vapor concentration profiles retrieved from actual measurements are presented in 

Figure 4.12a. While a HiSRAMS-only retrieval constrains water vapor concentration near the 

observation altitude due to some channels with the absolute value of SNR larger than 1 (Figure 

4.6e), its retrieval capability diminishes further away from it. Joint retrieval in water vapor 

concentration combines the strengths of both AERI- and HiSRAMS-only retrievals. 

Nevertheless, constrained by vertical resolution limitations, even joint retrieval falls short of 

fully capturing fine vertical water vapor features, such as thin dry layers around 750 m and 4.6 

km. 

The synthetic retrieval results in Figure 4.12b do not exhibit significant improvement in 

terms of retrieved water vapor concentration bias and the resolution of fine vertical features. This 

suggests that the accuracy in water vapor retrieval is not severely limited by the accuracy of 

radiance measurements. 

4.5.3 Retrieval bias and uncertainty comparison 

Generally, the retrieval bias is within the 3𝜎𝜎 retrieval uncertainties for HiSRAMS nadir-

pointing flight measurements single-instrument retrieval and joint retrieval (Figure 4.13). 

Significant retrieval biases exist at altitudes with fine vertical features. The temperature and 

water vapor retrieval uncertainties decrease with distances away from the observational heights 

in single instrument retrievals. Joint retrieval shows a bow-shaped posterior uncertainty, 

signaling its benefits in reducing the retrieval uncertainty. The retrieval bias reported here was 

analyzed from only one case study, which affords limited error statistics.  
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Figure 4.13: Comparison of retrieval bias and uncertainty in joint retrievals: (a) Temperature, (b) 

Water vapor. 

In summary, the synergistic integration of radiative measurements at varying 

observational altitudes enhances the retrieval performance of thermodynamic variables, with a 

notable impact on temperature. Previous studies have demonstrated similar improvements, such 

as the synergy achieved through hyperspectral infrared instruments at different altitudes (e.g., 

Bani Shahabadi & Huang, 2014; Loveless et al., 2022; Zhao et al., 2022). This study highlights 

the potential of synergistic retrievals, specifically emphasizing the advantages achieved by 

combining hyperspectral infrared and microwave radiometers across different altitudes, which 

may be especially useful for intensive observation campaigns. 
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4.6 Conclusions and discussion 

Hyperspectral radiance measurements afford an advantageous means to monitor the 

vertical distributions of temperature and water vapor concentration. Leveraging advancements in 

polyphase spectrometers, a hyperspectral microwave radiometer, featuring a large number of 

spectral channels comparable to hyperspectral infrared radiometers has been developed. In this 

study, measurements from an airborne hyperspectral microwave radiometer, HiSRAMS, and a 

ground-based hyperspectral infrared radiometer, AERI, were acquired on February 11, 2023, to 

test their retrievals of temperature and water vapor vertical profiles.  

We first evaluated the retrieval performance of ground-based AERI measurements 

against ground-based HiSRAMS measurements. Concerning retrieval uncertainty and 

information content, AERI demonstrates superior retrieval performance for both temperature and 

water vapor concentrations compared to HiSRAMS, except in the water vapor retrieval at higher 

altitudes above 5.5 km. Both AERI and HiSRAMS retrievals exhibit a higher information 

content for temperature than for water vapor concentrations. The high vertical retrieval 

resolution of AERI enables the resolution of fine temperature inversion features near the surface, 

a capability not shared by HiSRAMS temperature retrieval. On the other hand, neither AERI nor 

HiSRAMS can resolve fine vertical features of water vapor, such as the thin dry layers found 

near the surface, due to the coarse vertical retrieval resolution of their retrievals. While AERI 

captures the overall water vapor profile effectively, HiSRAMS demonstrates reduced retrieval 

performance in this application. These results suggest that, for ground-based measurements, an 

increase in the number of channels of microwave radiometers does not necessarily make them 

comparable to infrared hyperspectral radiometers. 
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We also experimented with a joint retrieval approach involving ground-based zenith-

pointing AERI measurements and airborne nadir-pointing HiSRAMS measurements, which we 

find enhances the performance of temperature and water vapor concentration retrievals compared 

to single instrument retrievals. Joint retrieval exhibits increased information content and reduced 

retrieval uncertainty for temperature and water vapor concentrations across all retrieval levels. 

Ground-based AERI measurements contribute to the resolution of near-surface temperature 

features, while airborne HiSRAMS measurements exhibit a lower retrieval bias in temperature 

near the observational altitude (6.8 km). Combining measurements from both instruments yields 

retrieved temperature profile that captures fine vertical features near the surface while mitigating 

bias in temperature at the upper troposphere near the HiSRAMS observational altitude. By 

comparison, the improvement in accuracy in the water vapor concentration retrieval is limited in 

joint retrieval. 

This study is subject to certain limitations. Using the entire spectrum of channels for both 

instruments in conducting temperature and water vapor retrievals ensures maximum information 

content employed in the retrievals but is also subject to larger errors and possible interference in 

certain channels, which can be minimized or eliminated via a channel selection approach in 

future work. Additionally, the retrieval comparison in this study relies on limited samples from a 

single campaign, thus bounding the usefulness of the error statistics and comprehensiveness of 

this assessment. This issue, also relegated to future work, can be addressed with more field 

observations. 

In conclusion, this study utilizes infrared and microwave hyperspectral radiometers to 

retrieve clear-sky temperature and water vapor concentration profiles under various 

observational conditions. The retrieval comparison between HiSRAMS and AERI ground-based 
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measurements reveals that infrared hyperspectral observations provide a higher information 

content and greater vertical resolution for temperature and water vapor retrievals than microwave 

hyperspectral observations. However, employing zenith-pointing AERI measurements and nadir-

pointing HiSRAMS measurements at high altitudes, forming a “sandwich” configuration, not 

only enhances information content but also reduces retrieval uncertainty and bias in temperature 

and water vapor concentrations. Integrating ground-based infrared and airborne microwave 

hyperspectrometers proves advantageous for sounding temperature and water vapor profiles. To 

thoroughly assess and explore the potential of hyperspectral microwave radiometers in retrieving 

thermodynamic profiles, further case studies addressing both clear-sky and cloudy-sky 

temperature and water vapor retrievals are warranted. 

4.7 Appendix A: Bias correction for HiSRAMS nadir-pointing measurements at 6.8km 

Nadir-pointing HiSRAMS measurements exhibit some brightness temperature biases (Liu 

et al., 2023), which need to be removed for accurate physical retrieval applications. Given that 

our focus is solely on nadir-pointing measurements during a specific leg, and we obtain true 

temperature and water vapor concentration profiles from radiosonde measurements, the 

brightness temperature bias can be identified based on the differences between HiSRAMS 

measurements and forward model simulations (blue lines in Figure 4.14). 

We partitioned the entire spectrum into distinct spectral ranges, each defined by specific 

bias features. Within each spectral range, we determined the brightness temperature bias either as 

a constant or through the application of a linear regression method, as illustrated by the red lines 

in Figure 4.14. Subsequently, the biases represented by the red lines were systematically 

removed for all retrieval cases utilizing nadir-pointing HiSRAMS measurements at 6.8 km. 
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Figure 4.14: Correction of nadir-pointing HiSRAMS measurements bias in (a) oxygen band and 

(b) water vapor band. The blue lines represent the brightness temperature bias determined by the 

difference between measurements and forward model simulations (refer to Liu et al., 2023 for 

detailed methodology). The red lines represent the determined bias. 

4.8 Supplement of “Comparative experimental validation of microwave hyperspectral 

atmospheric soundings in clear-sky conditions” 

This supplemental document presents the vertical level adopted and main matrices used 

in this study, including 𝑺𝑺𝒆𝒆,  𝑺𝑺𝒂𝒂, and 𝑲𝑲 at selected levels. 
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Figure 4.15: The square root of the diagonal components of 𝑺𝑺𝒆𝒆 for AERI measurements (a), 

HiSRAMS nadir-pointing measurements at 6.8 km in the oxygen band (b) and in the water vapor 

band (c), and HiSRAMS zenith-pointing measurements at the surface in the oxygen band (d) and 

in the water vapor band (e). 
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Figure 4.16: The vertical levels adopted in this study for all the retrievals. We utilize altitude 

coordinates for the retrievals, determined by averaging the geopotential heights from the a priori 

dataset. 
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Figure 4.17: A priori covariance matrix 𝑺𝑺𝒂𝒂. Here, the label T represents temperature, and q 

represents the logarithm of the water vapor concentration. All units along the axes are in km. 
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Figure 4.18: A priori correlation coefficient matrix 𝑪𝑪𝒂𝒂. Here, the label T represents temperature, 

and q represents the logarithm of the water vapor concentration. All units along the axes are in 

km. 
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Figure 4.19: (a) 𝑲𝑲𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨,𝑻𝑻 × 𝜎𝜎(𝑻𝑻) at selected levels. This shows the product of the temperature 

Jacobian, 𝑲𝑲𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨,𝑻𝑻, and the standard deviation of the temperature profiles in the a priori dataset, 

𝜎𝜎(𝑻𝑻). (b) 𝑲𝑲𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨,𝒒𝒒 × 𝜎𝜎[𝑙𝑙𝑙𝑙𝑙𝑙(𝒒𝒒)] at selected levels. This presents the product of the water vapor 

Jacobian, 𝑲𝑲𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨,𝒒𝒒, and the standard deviation of the water vapor concentration profiles in the a 

priori dataset, 𝜎𝜎[𝑙𝑙𝑙𝑙𝑙𝑙(𝒒𝒒)]. Note that we use the logarithm of water vapor concentration to 

calculate the water vapor Jacobian. 
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Figure 4.20: The same as Figure 4.19 but for HiSRAMS ground based zenith-pointing Jacobians. 

(a) 𝑲𝑲𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯,𝑻𝑻 × 𝜎𝜎(𝑻𝑻) in the oxygen band. (b) 𝑲𝑲𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯,𝑻𝑻 × 𝜎𝜎(𝑻𝑻) in the water vapor band. (c) 

𝑲𝑲𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 ,𝒒𝒒 × 𝜎𝜎[𝑙𝑙𝑙𝑙𝑙𝑙(𝒒𝒒)] in the oxygen band. (d) 𝑲𝑲𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 ,𝒒𝒒 × 𝜎𝜎[𝑙𝑙𝑙𝑙𝑙𝑙(𝒒𝒒)] in the water vapor band.  
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Figure 4.21: The same as Figure 4.20 but for HiSRAMS airborne nadir-pointing Jacobians. The 

observational height is set at 6.8 km. 
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Chapter 5 CONCLUSIONS AND FUTURE WORK 
 

Hyperspectral instruments have proven invaluable in detecting and understanding climate 

change, providing evidence of shifts in the energy balance, insights into the drivers of these 

changes, and enabling the retrieval of vertical thermodynamic states. 

5.1 Summary of Results 

The long-term record of downwelling longwave radiance (DLR) observed by the 

hyperspectral infrared radiometer, Atmospheric Emitted Radiance Interferometer (AERI), has 

been homogenized at the Southern Great Plains (SGP) site. This long-term “hyperspectral 

radiative Keeling Curve” is instrumental for its unique capability in detecting and attributing 

climate change. 

Employing a weighted linear regression method, we have identified long-term trends in 

DLR under various sky conditions at the SGP site. Notably, significant positive trends in DLR 

across different sky conditions in the temperature-sensitive channels of AERI indicate that 

ground-based hyperspectral instruments can detect surface warming signals. Furthermore, these 

long-term trends in DLR reveal climate change signals from various meteorological variables. 

For instance, a positive trend under clear-sky conditions in the window band suggests an 

increasing water vapor concentration over time, while negative trends in the all-sky DLR record 

hint at a cooling effect from cloud changes on the surface. 

A pivotal aspect of our research has been the analysis of trend uncertainty, which allowed 

us to assess the significance level of climate change signals. Our algorithms take into account 

both measurement uncertainty and interannual variability, revealing that climate change signals 

in the weak absorption channels of AERI can be detected earlier than surface air temperature 

warming signals. This early detection is attributed to the reinforcing effects of increases in 
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greenhouse gas concentration and temperature on DLR. We found that interannual variability is 

the primary contributor to the uncertainty of climate change signals. 

The AERI, a rigorously tested and precisely calibrated hyperspectral infrared radiometer, 

has played a crucial role in various climate change studies. It enables key applications, including 

the determination of surface greenhouse gas forcings, retrieval of atmospheric thermodynamic 

states (especially the near-surface temperature and water vapor profiles), and the detection of fog 

and aerosols, all dependent on AERI’s exceptional radiometric accuracy. Demonstrating 

homogenized long-term DLR records, this study highlights AERI’s capability in detecting 

climate change as an SI-traceable instrument with absolute radiometric precision. 

On the other hand, the novel High Spectral Resolution Airborne Microwave Sounder 

(HiSRAMS) awaits validation of its radiometric accuracy for climate change research 

applications. Through three field campaigns under clear-sky conditions in Ottawa, Canada, and 

implementing radiative closure tests, we introduced an innovative method to assess the 

radiometric accuracy of various hyperspectral instruments. Our findings reveal that, after 

correcting for a detected warm bias in the window band, AERI demonstrates a relatively minor 

brightness temperature bias across a wide range of total column optical depths during radiative 

closure tests. HiSRAMS’ nadir-pointing measurements exhibit radiometric accuracy comparable 

to corrected AERI data. However, its zenith-pointing measurements show lesser radiometric 

precision, likely due to calibration processes, with brightness temperature bias closely related to 

environmental temperature. 

Following the radiometric validation of both HiSRAMS and AERI, we conducted 

simultaneous clear-sky temperature and water vapor profile retrievals to evaluate the capability 

of hyperspectral microwave instrumentation in monitoring atmospheric states. With both 
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instruments stationed on the ground for zenith-pointing measurements, the hyperspectral infrared 

radiometer outperformed the hyperspectral microwave radiometer in retrieving clear-sky 

temperature and water vapor in terms of retrieval information content, the retrieval accuracy, and 

the resolvability of fine vertical features. This superiority is primarily due to the higher signal-to-

noise ratio of hyperspectral infrared measurements. Utilizing “sandwich” measurements, which 

combine ground-based zenith-pointing hyperspectral infrared measurements with airborne nadir-

pointing hyperspectral microwave measurements, we achieved enhanced retrieval performance 

compared to retrievals using a single hyperspectrometer. This synergy resulted in higher 

information content, reduced retrieval uncertainty, and a more accurate representation of 

temperature and water vapor profiles, extending from the surface to the altitude of the airborne 

instrument.  

5.2 Future work 

The distinctive application of hyperspectral radiative measurements for detecting and 

understanding climate change, connecting both Earth’s energy balance and atmospheric states, 

warrants further exploration into attributing climate change and evaluating climate models, 

alongside retrieving all-sky thermodynamic states. 

5.2.1 Climate change attribution and global climate model evaluation 

Observational data and model simulations are fundamental to advancing our 

understanding of climate change. Observational radiative records provide us with rich climate 

change signals, which can be used to evaluate global climate models (GCMs). In turn, the 

analysis of model radiative outputs, which usually offer better temporal and spatial sampling 

compared to observations, helps to guide observational efforts. 
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The long-term trends in DLR observed by AERI at the SGP site encapsulate the climate 

change signals from a range of meteorological variables, including air temperature, greenhouse 

gas concentrations, and clouds, underscoring the potential of these observations in separating the 

impacts of different climatic drivers. A forthcoming objective is to determine the contributions of 

these meteorological variables to the observed changes in DLR. Despite the spectral overlap of 

these variables’ radiative effects, their unique spectral signatures permit the separation of their 

individual contributions using the optimal fingerprinting method (Hasselmann, 1997; Huang, 

Leroy, & Anderson, 2010; Huang, Leroy, Gero, et al., 2010). This approach facilitates the 

quantification of longwave surface forcings and feedbacks, including those related to CO2, O3, 

water vapor, air temperature, and clouds. 

GCMs serve as indispensable tools for identifying climate feedbacks, necessitating 

accurate evaluation to ensure reliable climate projections. The longwave surface forcings and 

feedbacks observed at the SGP site provide a benchmark for assessing GCM performance, 

particularly regarding surface cloud feedback, where observational data can help to address the 

significant uncertainties present in the models. Analyses of the contributions from various 

meteorological variables enable us to elucidate the agreement or discrepancy between 

observational data and GCM outputs, thereby providing insights to refine the models further. 

Moreover, our established framework for climate change detection, attribution, and 

model evaluation—anchored on long-term, spectrally resolved radiance records—holds 

applicability across a broad array of datasets, whether originating from model outputs or direct 

observations, at the top of the atmosphere (TOA) or at the surface. For instance, data from the 

Atmospheric Infrared Sounder offer long-term, spectrally resolved insights into outgoing 
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longwave radiation, allowing an analysis of Earth’s energy balance at TOA and aiding in the 

detection and understanding of climate change from a TOA perspective.  

This systematic approach allows for a global analysis of climate change signals, 

enhancing both regional and global climate change detection and offering guidance for 

optimizing ground-based observation networks and satellite mission planning, based on model-

detected regional climate change patterns. Furthermore, the simulation of future scenarios using 

GCMs is invaluable for planning the continuous monitoring of climate change. 

5.2.2 All-sky temperature and water vapor retrievals 

Achieving high temporal frequency in the vertical profiling of temperature and water 

vapor is essential for detecting long-term climate change, evaluating climate models, and 

improving weather forecasting. The integration of newly developed hyperspectral instruments 

into climate studies necessitates a series of methodological steps for successful thermodynamic 

state retrievals. These steps include developing radiative transfer forward models and retrieval 

algorithms, conducting field campaigns under desirable weather conditions, performing radiative 

closure tests to ascertain the instrument’s radiometric accuracy, and ultimately conducting 

thermodynamic vertical profile retrievals. Addressing the radiometric accuracy of HiSRAMS 

through further calibrations is a priority, given its potential for enhancing the retrieval of all-sky 

temperature and water vapor profiles. 

In light of the unique potential of hyperspectral microwave measurements for 

comprehensive all-sky retrievals, we intend to construct a cloudy-sky radiative transfer model 

specific to HiSRAMS, which integrates gas absorption parameterization, surface emissivity 

models, cloud parameterization schemes, and a radiative solver. Building on this cloudy-sky 

radiative forward model, we aim to develop a simultaneous retrieval algorithm for HiSRAMS, 
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capable of processing an array of atmospheric variables, including temperature, water vapor, and 

cloud properties. Furthermore, by examining the synergistic application of hyperspectral 

microwave and infrared measurements across diverse viewing geometries, we anticipate 

improvements in the performance of our retrieval operations. 

The inclusion of clouds in observational detection introduces significant challenges, 

primarily due to the difficulty in obtaining reliable cloud truth data necessary for validating 

radiative forward models and retrieval outcomes. Initiating our efforts with single-layer low 

cloud field campaigns, which allow for the collection of collocated hyperspectral measurements 

(from both AERI and HiSRAMS), in-situ cloud observations, and radiosonde data, presents a 

pragmatic starting point. Following a methodology similar to the workflow established for clear-

sky HiSRAMS measurements, we aim to evaluate the performance of the all-sky HiSRAMS 

radiative forward model through radiative closure tests, subsequently performing comprehensive 

all-sky temperature, water vapor, and cloud retrievals based on a combination of hyperspectral 

measurements.  
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