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ABSTRACT

Forecasting of multivariate time-series is an important problem that has poten-

tial applications in various domains such as intelligent transportation systems, energy

and smart grids, and quantitative finance. A special case of the problem arises when

there is a graph available that captures the relationships between the time-series.

For this setting, the best existing approaches treat the problem as spatio-temporal

forecasting, i.e., they strive to learn both temporal and spatial dependencies. In

this work, a novel neural network learning architecture is presented that achieves

performance competitive with or better than the best existing algorithms, with-

out requiring knowledge of the graph. The key element of the architecture is the

learnable fully connected hard graph gating mechanism that enables the use of a

state-of-the-art, computationally efficient fully connected time-series forecasting ar-

chitecture. Experiments conducted on two public graph-based datasets as well as

two non-graph benchmark datasets illustrate the value of the proposed method, and

ablation studies confirm the importance of each element of the architecture.
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ABRÉGÉ

La prévision de séries chronologiques multivariées est un problème important qui

a des applications potentielles dans divers domaines tels que les systèmes de transport

intelligents, l’énergie et les réseaux intelligents, et la finance quantitative. Un cas

particulier du problème survient lorsqu’il existe un graphe disponible qui capture les

relations entre les séries chronologiques. Pour ce contexte, les meilleures approches

existantes traitent le problème comme une prévision spatio-temporelle, c’est-à-dire

qu’elles s’efforcent d’apprendre à la fois les dépendances temporelles et spatiales.

Dans ce travail, une nouvelle architecture d’apprentissage par réseau de neurones

est présentée qui permet d’obtenir des performances compétitives ou supérieures

aux meilleurs algorithmes existants, sans nécessiter de connaissance sur le graphe.

L’élément clé de l’architecture est le mécanisme d’apprentissage des portes d’un

graphe entièrement connecté qui permet l’utilisation d’une architecture, à la pointe

de la technologie et efficace en termes de calcul, entièrement connectée, pour la

prévision de séries chronologiques. Des expériences menées sur deux ensembles de

données publics basés sur des graphes ainsi que sur deux ensembles de données sans

graphe pour référence illustrent la valeur de la méthode proposée, et les diverses

expériences menées ont confirmé l’importance de chaque élément de l’architecture.
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CHAPTER 1
Introduction

Forecasting is among the oldest problems tackled by human civilization [2].

This task can be broadly related to self-supervised learning, also known as filling in

the blanks, which is often considered the foundation of common sense and intelli-

gent behaviour [3]. Therefore, improved forecasting algorithms have the potential to

profoundly impact a wide array of fields in which planning and intelligent decision

making are essential.

A multivariate time-series (TS) contains more than one time-dependent entity.

The forecasting of future values for each entity depends on both its past values and

other entities. In recent years, researchers have demonstrated the value of applying

deep learning architectures for the multivariate TS problems [4–10]. Furthermore,

many multivariate TS forecasting problems naturally admit a graphical model for-

mulation. This is especially true when the entities whose past is observed and whose

future has to be predicted affect each other through simple causal relationships. For

example, introducing Pepsi products in a store will very likely decrease future sales

of Coca-Cola in that store; car traffic congestion at one point on a highway is likely

to slow down the traffic at preceding segments of the highway. Without graphical

modeling, the model is blind to these nuances, making entity interactions a collec-

tion of confounding factors, extremely hard for the model to explain and predict.

Equipped with a learnable model for entity properties (e.g., entity embeddings), a
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model for entity interactions (e.g., graph edge weights), and a mechanism to con-

nect those to a TS model (e.g., a gating mechanism), we can attempt to learn the

otherwise unknown entity interactions to improve forecasting accuracy.

Problems amenable to graphical TS modeling include forecasting demand for

related products [11], electricity demand [12], road traffic [13], or passenger de-

mand [14]. In this thesis, we focus first on forecasting road traffic, using a collection

of sensors mounted on highways. This has obvious applications in traffic manage-

ment and can have immediate positive effects through reducing CO2 emissions as

well as improving the life quality of the general population commuting to and from

work every day. As the second application domain example, electricity demand is

selected, which can be modelled using a spatio-temporal graph with nodes related

via underlying dependent electricity consumption. The effective integration of green

energy sources with the electrical grid depends on the accurate forecasting of short-

term load and long-term demand. Tackling the electrical energy integration problem

will have long ranging impact on making the world economy more sustainable and

will help to address climate change.

Recent studies have shown that models that explicitly account for the underlying

relationships across multiple time series outperform models that forecast each time

series in isolation. As a result, the aim of this thesis is to tackle the spatio-temporal

forecasting problem, which involves simultaneously forecasting multiple time series

originating from entities related via an unknown underlying graph. Although the

inclusion of graph modeling has proven to improve accuracy, current models have

several serious limitations. First, the complexity and, therefore, the runtime of these
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models is significantly higher. Second, most models [14–17] rely on the definition of

relationships between variables provided by a domain expert (e.g., an adjacency ma-

trix is heuristically defined based on the geographical relationships between observed

variables). Finally, existing models tend to rely on Markovian assumptions to make

modeling the interactions across variables tractable.

To address these limitations we propose a novel architecture in this thesis, called

FC-GAGA (Fully Connected Gated Graph Architecture), that is based on a combi-

nation of a fully-connected TS model, N-BEATS [1], and a graph gate mechanism.

To produce the forecast for a single TS (node in the graphical model), it weighs the

historical observations of all other nodes by learnable graph weights, gates them via

a ReLU function and then stacks gated observations of all nodes to process them

via fully connected residual blocks. The advantages of this architecture are three-

fold. First, the architecture does not rely on the knowledge of the underlying graph,

and instead focuses on learning all the required non-linear predictive relationships.

Second, the basic layer of the architecture is stackable, which allows every layer to

learn its own graph structure. This endows the model with the ability to learn a

very general non-Markovian information diffusion process. Finally, FC-GAGA is a

very memory and computation efficient architecture, which we demonstrate via com-

plexity analysis and profiling. Ablation studies indicate that when using the efficient

fully-connected residual time-series prediction module, it is not sufficient to use stan-

dard graph attention since the sparsification achieved by the proposed novel graph

gate is essential in achieving good predictive performance.
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1.1 Thesis Organization and Contributions

The summary of the organization and contributions of the thesis is as following.

The material presented in this thesis has been published in the Advancement of

Artificial Intelligence Conference (AAAI), 2021 [18].

• Chapter 2 - Background

Key material associated with the main topic of this thesis (spatio-temporal fore-

casting) and the proposed architecture is presented in the background chapter.

I first provide a high-level overview of the most popular Graph Neural Net-

works that can be used to capture spatial dependencies. In the second part

of the chapter, I present a summary of deep learning models that have been

used for time-series prediction. Finally, I describe the computationally efficient

N-BEATS model [1], because this model is exploited as the time-series block

of the proposed architecture.

• Chapter 3 - Literature Review

In this chapter, I review works that have addressed temporal or spatio-temporal

forecasting. The literature review is divided into the following parts: (i) tradi-

tional and statistical approaches, (ii) deep learning based models that do not

process an associated graph, and (iii) graph-based methods.

• Chapter 4 - Fully Connected Gated Graph Architecture (FC-GAGA)

This chapter presents a novel graph gated neural network, called FC-GAGA,

for spatio-temporal forecasting. The key element of the architecture is the

learnable fully connected hard graph gating mechanism that enables the use of
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a state-of-the-art, computationally efficient fully connected time-series forecast-

ing architecture. Experiments conducted on two public graph-based datasets

and two non-graph benchmark datasets demonstrate performance competitive

with or better than the best existing algorithms.

I was a primary contributor in the development of the architecture and learning

procedure, in collaboration with Dr. Boris Oreshkin (Researcher at ElementAI

at the time when the research was conducted) and my supervisor, Prof. Mark

Coates. I also conducted the majority of the numerical experiments. Some of

the experiments were executed by Ms. Lucy Coyle, an undergraduate research

intern working with Prof. Coates, and others were conducted by Dr. Oreshkin.

I was co-first author (with Dr. Oreshkin) of the AAAI conference paper, in

recognition of our joint effort in developing the methodology. Lucy Coyle and

Mark Coates were co-authors.

• Chapter 6 - Conclusion

This chapter summarizes the main contributions of the thesis and discusses the

observed results.
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CHAPTER 2
Background Material

This chapter presents the necessary background material for the spatio-temporal

forecasting task: extraction of spatial dependencies and temporal prediction. Re-

cently, Graph Neural Networks (GNNs) have been employed by multiple methods

to capture spatial dependencies, so Section 2.1.1 is allocated to an overview of these

models. The temporal prediction section commences with Feedforward Neural Net-

works (FNNs), which play an important role in the architecture proposed in this

thesis. Subsequently, two popular variants of Recurrent Neural Networks (RNNs)

are presented. Finally, we introduce a computationally efficient, fully connected

time-series forecasting model called N-BEATS [1] in Section 2.2.3. This model forms

the temporal component of our proposed architecture.

2.1 Extraction of Spatial Dependencies

2.1.1 Graph Neural Networks

Graphs are a general language for describing and modeling complex systems.

Graph-structured data are irregular and non-euclidean, i.e., there is a variable num-

ber of unordered nodes, and each node may have a different number of neighbors.

These features contrast with the core assumptions of most existing machine learning

algorithms, which generally assume that instances are independent of each other,

and often require that the data is Euclidean. Therefore, Graph Neural Networks
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(GNNs) have emerged as an alternative solution. The key idea is to generate rep-

resentations or embeddings of nodes that rely on the graph structure as well as any

feature information [19]. In most of the GNN models, the adjacency matrix AN×N is

used to describe the structure of a graph. The entries of this square matrix indicate

whether pairs of vertices are adjacent or not in the graph. The entry has a non-zero

value if the link is present in the graph; otherwise, the entry is 0.

One of the most commonly used GNN models is the Graph Convolutional Net-

work (GCN) [20]. This has been used to extract the spatial features among the time

series (nodes) in the spatio-temporal forecasting problem [15–17,21–23]. This model

treats the information of the neighbors and the information from the node itself in

the same way. In a GCN, a layer-wise propagation rule consists of a weighted mean

operator that determines the contribution of each neighbor to the node-level output,

followed by multiplication by a learnable weight matrix. As the diagonal of an ad-

jacency matrix A for a simple graph is zero, self-loops are introduced by adding the

identity matrix to A. This allows the neural network to take into account the feature

of the node itself. The modified adjacency matrix is thus Â = A + I. The weighted

mean operator is based on the symmetric normalization of Â, i.e., D̂−
1
2 ÂD̂−

1
2 where

D̂ is the diagonal node degree matrix of Â. Consequently, the GCN computation at

the `-th layer having the learnable weight matrix W(`) can be described as:

f
(
H(`),A

)
= σ

(
D̂−

1
2 ÂD̂−

1
2 H(`)W(`)

)
. (2.1)
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2.2 Temporal Prediction

2.2.1 Feedforward Neural Networks

Feedforward networks are of extreme importance in machine learning since they

are the stepping stone to developing more complex deep learning models, e.g., recur-

rent networks. A neural network model can be described as a directed acyclic graph

comprised of many simple and connected processors called neurons. The neurons of

middle layers (hidden layers) are activated via weighted connections from all neurons

of the previous layer. For instance, a single hidden layer neural network with input

layer of vector x and output layer with one neuron, f(x), has the following formula:

h(1)(x) = g
(
b(1) + W(1)x

)
, (2.2)

f(x) = o
(
b(2) + w(2)>h(1)(x)

)
,

where W(1), w(2), b(1), and b(2) are the weights and biases of the network, respectively.

g is the activation function of the hidden layer, and o is the output activation function.

2.2.2 Recurrent Neural Networks

Due to the limitations of traditional time series forecasting models, which often

treat each time series independently and require manual feature selection, there has

been a focus on RNNs, which are the extension of FNNs with feedback connections.

The most effective RNNs are called gated RNNs. These include the Long Short-Term

Memory (LSTM) [24] and the Gated Recurrent Unit (GRU) [25].

An LSTM network has internal memory allowing long-term dependencies to

influence the output. The network consists of multiple gates and states. The input

(it), forget (ft), and output (ot) gates control the flow of information. The cell state
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ct maintains information about the input, and the hidden state ht determines what

passes through the output gate. The network can be described by the following

equations:

i(t) = σ
(
bi + Uih

(t−1) + Wix
(t)
)
, (2.3)

f (t) = σ
(
bf + Ufh

(t−1) + Wfx
(t)
)
,

o(t) = σ
(
bo + Uoh

(t−1) + Wox
(t)
)
,

c̃t = tanh
(
bc + Uch

(t−1) + Wcx
(t)
)
,

c(t) = f (t) � c(t−1) + i(t) � c̃(t),

h(t) = o(t) � tanh
(
c(t)
)
,

where xt is the input at time step t, and b, U and W respectively denote the biases,

input weights, and recurrent weights in each gate. � indicates the element-wise

product.

A GRU network is designed to have fewer gates, thus reducing the number of

learnable parameters. The main difference between these models is that the update

gate (ut) in a GRU couples the forget and update gates of LSTM architecture. A

GRU processes sequential input as follows:

u(t) = σ
(
Wux

(t) + Vus
(t−1) + bu

)
, (2.4)

r(t) = σ
(
Wrx

(t) + Vrs
(t−1) + br

)
,

s̃(t) = tanh
(
Wsx

(t) + Vs(r
(t) � s(t−1)) + bs

)
,

s(t) = (1− u(t))� s(t−1) + ut � s̃(t),
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where ut, rt and s̃t are the outputs of update gate, reset gate and pre-output gate

respectively. st−1 and st are the old and the new states.W, V, and b are the input

weights, recurrent weights, and biases in each of the gates.

2.2.3 N-BEATS Architecture

Figure 2–1: N-BEATS architecture taken from the original paper [1].

In this thesis, we take advantage of the N-BEATS architecture [1] in the time-

series block of the proposed model. N-BEATS is one of the most recent literature on

univariate time-series forecasting, which has achieved state-of-the-art performance

on well-known forecasting datasets such as M3 [26], M4 [27] and Tourism [28] com-

petition datasets including time series from diverse domains as well as Electricity [29]

and Traffic [29] datasets, and it shows promising qualitative interpretability results.
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This work demonstrates that a pure deep neural method can be effectively utilized

in univariate time series forecasting compared to other machine learning approaches,

which heavily rely on feature engineering or hybridization with classical statistical

models.

The significant features of the N-BEATS design compared to previous architec-

tures are threefold. First, the authors treat forecasting as a non-linear multivariate

regression problem instead of a sequence-to-sequence problem. Therefore, the basic

building block of the architecture, as shown in the left of Figure 2–1, is a fully-

connected non-linear regressor that accepts the history of a time-series and predicts

multiple points in the forecasting horizon. Second, a doubly residual principle is

proposed to stack many basic blocks in a stack, as illustrated in the middle of Fig-

ure 2–1. To this end, the basic block generates both the future outputs, forecast, and

contribution to the input decomposition, backcast. Finally, each stack can specialize

in forecasting a particular type of output, e.g., trend or seasonality, making the out-

put human interpretable. Due to the mentioned characteristics, we take advantage

of the N-BEATS architecture to capture temporal correlations for the multivariate

forecasting method proposed in this thesis.

With regard to the mathematical description, each block of N-BEATS (consider

l as the block index) consists of a 4-layer fully connected network, which is followed

by θbl and θfl projection layers, building a backcast/forecast (gbl / g
f
l ) fork at the end.
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The equations of the basic block can be described as:

H`,1 = ReLU (W`,1X` + b`,1) , H`,2 = ReLU (W`,2H`,1 + b`,2) ,

H`,3 = ReLU (W`,3H`,2 + b`,3) , H`,4 = ReLU (W`,4H`,3 + b`,4) ,

θb` = Wb
`H`,4, θ

f
` = Wf

` H`,4,

X̂` = gb`
(
θb`
)
, Ŷ` = gf`

(
θf`

)
,

(2.5)

where X` is the input of `-th block. X̂ (backcast) and Ŷ (forecast) are the outputs

of the `-th block. W`,1, W`,2, W`,3, W`,4, Wb
`, Wf

` , b`,1, b`,2, b`,3 and b`,4 are the

learnable parameters of the network. In this thesis, we use the generic architecture

of N-BEATS, in which gbl and gfl are linear projections of the previous layer outputs.

As a result, the outputs of the `-th block can be written as:

X̂` = Vb
`θ

b
` + bb

`, Ŷ` = Vf
` θ

f
` + bf

` . (2.6)

The interpretability of the architecture can be enforced by considering the outputs

of the block’s penultimate layer as basis expansion coefficients θb` and θf` for the

bases Vb
` and Vf

` , respectively. These bases are learned through the network. In

the mentioned generic configuration, the learned basis Vf
` does not have a human

interpretable form. In contrast, the proposed interpretable configuration constrains

the final layer of the block to be a fixed polynomial basis, or a fixed Fourier basis.

This method constrains the outputs of each stack to appear as a trend or a repetitive

pattern, a seasonality, providing the forecast with human interpretable components

at the stack level.
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Each stack of N-BEATS employs two residual recursions: (i) running over the en-

tire input window (the backcast branch of each block) as described in Equation (2.7),

which facilitates gradient backpropagation; and (ii) summing the forecast branch of

blocks to generate its partial forecast as written in Equation (2.8).

X` = X`−1 − X̂`−1. (2.7)

Ŷ =
∑
`

Ŷ`. (2.8)

The input of the first block is the model level input and X̂0 ≡ 0. For all other blocks,

the input is the corresponding backcast X` which can be considered as a sequential

analysis of the input signal [1]. This design yields a hierarchical decomposition via

aggregating the partial forecast of each block Ŷ` at the stack level as well as at the

overall network level. Finally, the model output is the sum of all partial forecasts

coming from the stack modules.

2.3 Summary

This chapter provides the fundamental material for the spatio-temporal forecast-

ing topic. The following chapter will review algorithms that have been proposed to

tackle the time-series forecasting problem, including traditional time-series methods,

deep learning forecasting models, and spatio-temporal approaches.
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CHAPTER 3
Literature Review

This chapter provides the literature review for time-series (TS) forecasting. First

we introduce univariate TS statistical models, which consider each time-series as a

single time-dependent variable. Subsequently we discuss multivariate time-series

models, which strive to capture the underlying relationships across multiple TS. The

idea of inferring a causal graphical model has also been explored as a mechanism for

identifying the relationships between different TS. We summarize these classical and

statistical methods in Section 3.1.

In recent studies, architectures utilizing the power of deep neural networks have

been able to outperform state-of-the-art statistical methods [1,4–8,30–32]. We review

these models in Section 3.2. In some settings, we are provided with a graph that

is thought to extract the relationships between the time series. There has been an

intensive research effort to derive architectures that can use this graph information to

perform improved forecasting. Section 3.3 presents these graph-based models. The

literature review provides more detail for the models that are more closely related

to the methodology proposed in this thesis.

3.1 Statistical Approaches

Time-series forecasting has a very long history, so there are numerous ap-

proaches, many based on statistical models. Standard univariate methods include the
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Auto-Regressive (AR) [33] and Auto-Regressive Integrated Moving Average (ARIMA)

models [34]. The extension to the multivariate case leads to the Vector Auto-

Regressive (VAR) and Vector Auto-Regressive Moving Average (VARMA) mod-

els [34]. One of the most comprehensive and accurate statistical models is Prophet [35],

which includes components capturing the time-series trend, the seasonality, and spe-

cial events, e.g., holidays. However, this model is vulnerable to a low number of

observation data.

The graphical model formulation for capturing the relationships between the

different variables can be used to derive sparse VAR predictive models [36–39] which

enjoy better performance. However, as the linearity of these models can impede

forecasting accuracy, kernel versions have been introduced [40, 41]. Although these

architectures can outperform the neural network methods discussed below for shorter

time-series, selecting appropriate kernels is a challenge.

In some settings, a graph that potentially captures the relationships is provided

together with the TS. The graph VAR(MA) proposed in [42] is a linear model where

the VAR(MA) coefficients are specified in terms of the Laplacian of the provided

graph.

3.2 Neural Network Approaches without Graph

Historically, neural network approaches have struggled to compete in terms

of prediction accuracy with state-of-the-art statistical forecasting models such as

Prophet [35]. This has changed over the past few years. Several neural network

architectures reviewed in this section, if trained on many time series, have eclipsed

15



statistical approaches. The algorithms reviewed in this section do not consider the

knowledge of any graph structure to generate predictions.

3.2.1 Point Forecasting Approaches

Some architectures form predictions for a single target TS based on its past

history (and covariates) including [1, 30–32]. In contrast to the proposed method

in this thesis, these architectures do not simultaneously form forecasts for multiple

time series using past information from all of them. Smyl et al. [32] was the winner

of the M4 competition by introducing a hybrid model which combines a state-space

exponential smooth model (statistical model) with LSTM networks (deep learning

model). The state-space model extracts the local information from an individual

TS and the LSTM networks capture global information from all series. The main

disadvantage of this model is that it must be hand-crafted for each specific forecasting

horizon and dataset; therefore, this approach is hard to generalize. As a result, the

Neural Basis Expansion Analysis for Interpretable Time Series (N-BEATS) model

was proposed in [1] to show that a pure deep learning model is able to achieve

promising results on a wide range of TS forecasting tasks without using any statistical

approaches, hand-crafted feature engineering, or domain knowledge.

Other neural network based methods use multiple input time-series to predict

a single variable [4–8]. For these architectures, several innovations have proven ef-

fective, including denoising via transforms e.g., wavelet and empirical mode decom-

position, or stacked autoencoders [4, 10], employing Convolutional Neural Networks

(CNNs) to extract short-term patterns [6], introducing memory components, im-

plemented via LSTM encoders [8], and using attention mechanisms to determine
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which input variables (spatial attention) or time lags (temporal attention) to focus

on [5, 7, 9, 10]. In the following, more details about these methods are provided.

Even though RNN based models can effectively extract temporal features, they

have limitations when they are used to try to capture dependencies among multiple

variables. Hence, there have been various attempts to solve this problem and improve

performance. For instance, Bao et al. [4] propose a hybrid architecture that combines

more than one deep learning model, and incorporates wavelet transforms, stacked

auto-encoders, and LSTM networks, to perform prediction. The stacked autoencoder

effectively extracts factors from the time series, and these are subsequently denoised

by wavelet transforms and then fed into an LSTM. The results showed the superiority

of the hybrid method over single RNN based models like the LSTM. Many works,

including [10], are based on the ensemble decomposition framework to simplify the

complex data. This results in capturing internal factors and improving forecasting

accuracy. In [10] a prediction framework is presented that includes a stacked residual

LSTM encoder-decoder with an attention module. This model design incorporates

Ensemble Empirical Mode Decomposition (EEMD) due to its self-adaptability and

time-frequency resolution features. K-means clustering is also used to reduce the

number of input time series. Although this model is designed for the multivariate

forecasting task, it focuses on the local past data of a single variable during prediction.

Moreover, the proposed framework is not end-to-end since the decomposition and

prediction steps are separate.

RNN-based approaches are essentially black-box methods with little interpretabil-

ity. Moreover, they need much more data to fit reliably due to having many network
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parameters. They tend to exhibit poor performance in high-dimensional settings.

Tank et al. [43] aim to overcome these deficiencies. Their proposed framework em-

ploys component wise architectures for multivariate time series prediction, training

separate Multilayer Perceptrons (MLPs) or different variants of RNNs for each out-

put time-series. By imposing group sparsity penalties on the first-layer weights, it

becomes possible to estimate non-linear Granger Causality (GC) relationships be-

tween the time-series. This approach provides a more interpretable model, although

it focuses primarily on relational inference and does not efficiently interpret the vari-

ability of causality effects through time.

As the typical RNN based approaches struggle to model seasonality patterns

effectively, practitioners have used CNNs to capture local dependencies. For example,

Lai et al. [6] develop a multivariate forecasting approach that uses a CNN to learn

short-term dependencies between variables and then an RNN with skip connections,

called a recurrent-skip layer, to capture long-term patterns in the time-series. The

first layer is a convolutional component that learns the parameters of a set of filters

across the entire set of time-series. The proposed method can accept multiple time-

series in the input layer which allows the model to capture global properties during

both training and prediction. However, this method has a scalability problem because

of the growing size of the input layer. To tackle the scalability issue, an alternative

model is proposed in [5], which substitutes the recurrent-skip layer with a temporal

attention layer. Qin et al. [5] employ two time-varying attention modules. One

module is applied on the input side, determining which input series to focus on; the

other module, on the decoder side, determines which time lags (temporal hidden
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states of the encoder) are important. The temporal attention is point-wise attention

which might not be suitable for modelling continuous periodical patterns. To address

this problem, in [8], Chang et al. propose a Memory Time-series Network (MTNet).

The encoder architecture involves applying a convolutional layer to extract short-

term features, an attention mechanism to select among the features, and a GRU.

Two such encoders are used to implement a memory, allowing the architecture to

learn and store very long-term historical patterns. A third encoder is used to process

the short-term history. Finally, outputs from the memory unit and the short-term

encoder are combined to form the prediction. An advantage of this model is that it

is more interpretable owing to its block-wise attention, although it requires a large

amount of memory to detect abrupt events.

The attention mechanism in TS forecasting models is mainly applied to hid-

den states across time steps, as in [5], allowing the model to focus on capturing

temporally important information. However this approach fails to consider the dif-

ferent importance of input variables. To handle this issue, Guo and Lin [7] propose

an approach that is based on a multivariable LSTM with tensorized hidden states.

Temporal and variable attention is derived from the hidden states. This mimics a

probabilistic mixture of experts model, where each variable and lag corresponds to

an expert, and the weighting of the experts is derived via the attention mechanism.

In [9], in order to demonstrate the different importance of input variables and lags,

Munkhdalai et al. append an adaptive input selection architectural component to

LSTM or GRU networks for multivariate forecasting. An encoding network (RNN)

is used to encode each time series and lag.
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Unlike the RNN-based methods, the Transformer [44] model has access to any

part of the history regardless of distance, making it potentially more suitable for

extracting patterns with long-term dependencies. Moreover, the Transformer does

not need to take the sequential data recursively; therefore, the model can be paral-

lelized, which makes the training and prediction process more efficient. However, in

the Transformer model, scaling attention to extremely long sequences is computa-

tionally expensive since the complexity of self-attention is quadratic with respect to

sequence length. This poses a serious problem in forecasting time series that have

strong long-term dependencies. In this vein, a modification of the original Trans-

former architecture is designed in [45] to address TS forecasting. Li et al. [45] propose

the use of convolutional self-attention to leverage local context and LogSparse self-

attention to enable learning from a long history without excessive memory usage.

Since the existing temporal Matrix Factorization (MF) approaches like [46]

use graph regularization to incorporate temporal dependencies, which cannot sup-

port negatively correlated dependencies, the Temporal Regularized Matrix Factor-

ization framework (TRMF) [47] is introduced to extend graph-based regularization

approaches. This method aims to integrate temporal dependencies and matrix fac-

torization models. It uses a principled time-series model to formulate relationships

between latent temporal embeddings. These temporal dependencies are integrated

into the standard matrix factorization approach by designing a new temporal regu-

larizer. The proposed temporal dependency learning is data-driven since the strength

of dependencies is learned from data. By taking advantage of MF properties, the
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TRMF model is capable of imputing missing values to handle data noise and is scal-

able to high-dimensional time series datasets. Additionally, this model has better

forecasting results since it can support negative correlations, and the weights can be

automatically learned from data. However, the TRMF method can only formulate

linear temporal dependencies. During prediction, the model only takes into account

the global patterns, and this can lead to approximation errors [48].

In contrast to most deep learning models which only focus on an individual

time-series during prediction, such as [30, 31], a hybrid model, called DeepGLO, is

proposed in [48] that exploits both local and global patterns during training and

prediction. DeepGLO combines a global model and a local prediction. The global

model is formed using a matrix factorization model that is regularized by a temporal

convolution network. The local prediction is then constructed by utilizing the factors

derived from the global model as covariates in a Temporal Convolution Network

(TCN) [49]. Although the authors argue that DeepGLO can deal with the problem

of variation in scale, the proposed model cannot completely solve this problem since

the proposed Deep Leveled Network only separates the mean and the residual of the

time series. However, the mean and the residual scale can still be large, which makes

a problem for neural networks.

3.2.2 Probabilistic Forecasting Methods

Although the approaches mentioned so far provide promising results in point

forecasting, these models have a severe disadvantage as they cannot measure the

uncertainty in their predictions. The availability of confidence intervals is useful

when making decisions based on forecasting. Therefore, several powerful multivariate
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forecasting algorithms that are capable of providing uncertainty characterization have

been proposed. These include DeepAR [31], DeepState [30], DeepFactors [50], and a

hybrid model [32].

DeepAR is a probabilistic forecasting model proposed in [31] that is inspired by

an autoregressive recurrent network. The model distribution is parameterized by a

multi-layer LSTM network which takes covariates of the target TS and the ground

truth value at the previous time step as inputs. By incorporating adaptive likelihood

functions based on the statistical properties of the data, the DeepAR model is able

to be data flexible. This model requires minimal feature engineering, as it learns

seasonal behaviour across time series based on the provided time covariates. One of

the main drawbacks of DeepAR is that as the scale of each time series is pre-specified

in the model, it cannot properly handle the variation scales problem.

In [50], Wang et al. propose a more general approach called DeepFactors.

DeepAR is a specific version of the DeepFactors framework. This method is a lo-

cal–global method that obtains lower uncertainty and more accurate predictions

compared to the DeepAR approach. DeepFactors is based on the decomposition of

time series into global and local parts. RNNs are used to extract global dynamics,

and the local component consists of a probabilistic graphical model that captures

the uncertainty of each individual time series. The local models explored in [50] are

white noise processes, linear dynamical systems, and Gaussian processes. In con-

trast to the DeepAR model, the scale of each time series is automatically estimated

in DeepFactors.
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Rangapuram et al. [30] present the DeepState model, which is the fusion of

a linear state-space model and an RNN. This multivariate forecasting model uses

a multi-layer RNN with LSTM cells for mapping from the covariates related to a

target TS to the time-dependent parameters of a linear state-space model. This

method provides model interpretability, can exploit assumptions about temporal

smoothness, and exhibits scalability to high-dimensional datasets. However, the

DeepState method can only model a Gaussian likelihood with time varying state-

space model parameters for each time series.

All of the above-mentioned deep learning based forecasting algorithms do not ac-

count for the spatial relationships in the data. The probabilistic forecasting methods,

such as the models in [31,50], mainly focus on modeling the forecasting distributions

and do not perform as well in the point forecasting task.

3.3 Graph-based Methods

Most of the existing graph-based approaches require a pre-defined graph, al-

though Graph Wavenet [22], Adaptive Graph Convolutional Recurrent Network (AG-

CRN) [51], and Structure Learning Convolutional Neural Network (SLCNN) [52]

have the capacity to learn adjacency matrices from the temporal data, and the

method in [53] uses dynamic time warping as a pre-processing step to learn a graph.

In the following discussion, we categorize methods based on their architectures, in-

cluding (i) Combination of GNNs and RNNs, (ii) Using Attention Mechanisms, (iii)

Adaptive Graphs, and (iv) Advanced Architectures.
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3.3.1 Combination of GNNs and RNNs

Zhao et al. propose a Temporal Graph Convolutional Network (T-GCN) in [54]

that combines GRU networks and GCNs by replacing the feedforward neural net-

works inside the standard GRU with the graph convolutional network. Following

the method proposed in [54], a more advanced architecture called the Diffusion Con-

volutional Recurrent Neural Network (DCRNN) is introduced in [15], which was

a breakthrough in the traffic forecasting task. This architecture combines a diffu-

sion graph convolutional network using a bidirectional graph random walk and a

sequence-to-sequence encoder-decoder with scheduled sampling [55] to fuse spatial

and temporal information. The matrix multiplications in each GRU cell are replaced

by graph diffusion convolutions, leading to a Diffusion Convolutional Gated Recur-

rent Unit (DCGRU). Huang et al. [56] extend the DCRNN model to include more

flexible spatial aggregation, using a rank influence learning mechanism similar to a

graph attention network. The rank influence learning provides a more interpretable

output with a tolerable runtime increase. One potential problem with the encoder-

decoder structure used in [15, 56] is that since the latent space vector has a fixed

size regardless of the length of the input and output sequences, for long-term input

sequences, some information will be lost.

Since RNN-based networks are widely known to be hard to train and computa-

tionally burdensome, the Spatio-Temporal Graph Convolutional Network (STGCN)

of [16] uses a CNN on the time axis to learn temporal relationships. Additionally,

it employs the ChebNet graph convolution network to learn spatial relationships.

Chen et al. [57] adapt residual-shortcut structures, gates, and hop connections, and
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thus achieve improved predictive performance. The hop connections allow learning

of daily and weekly periodic behaviour.

3.3.2 Using Attention Mechanisms

The RNN models discussed thus far struggle with long-term temporal depen-

dencies. An important extension is to use an attention mechanism on the time

axis which enables the model to efficiently handle the long-term sequence data. To

further improve the performance of the STGCN model [16], the Attention Based

Spatial-Temporal Graph Convolutional Network (ASTGCN) is proposed in [21]. This

method incorporates three components to capture recent dependencies, daily season-

ality, and weekly seasonality. Each component includes spatial and temporal atten-

tion mechanisms followed by a graph convolution to capture the spatial dependen-

cies and a convolution to extract the temporal relationships. The Spatial-Temporal

Graph to Sequence (STG2Seq) model in [14] combines a long-term encoder and

a short-term encoder, both based on gated graph convolutional modules (GGCMs),

where the outputs of multiple GCNs, operating on different time windows, are passed

through gates with learnable parameters. At the output, there are attention mech-

anisms operating both temporally and per-channel. The proposed stacked gating

mechanism of [14] is more effective than an RNN, as it prevents vanishing gradients

and the accumulation of errors in the prediction process to a certain extent; also,

it enjoys faster training speed. The Graph Multi-Attention Network (GMAN) [17]

incorporates multiple spatio-temporal attention blocks to provide greater flexibility

inside an encoder-decoder model. Moreover, a transform attention layer is used to

convey the learned features to the decoder. GMAN heavily depends on a pre-defined
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graph as it takes advantage of the node2vec algorithm [58] to preserve node structural

information while performing attention mechanisms.

None of the mentioned approaches consider both dynamically adjusting atten-

tion weights and the graph structure information. The Spatio-Temporal Graph

Attention Network (STGRAT) architecture [59] uses more sophisticated attention

mechanisms and achieves improved prediction performance. The proposed approach

is an encoder-decoder model using the positional encoding method of the Trans-

former [44] to capture features of long sequences and node attention to capture

spatial correlations. Shi et al. [13] present an alternative attention-based frame-

work that allows the encoder-decoder architecture to focus on temporal, spatial, and

periodic correlations. A recurrent structure with temporal skip-connections allows

long-term dependencies to be incorporated in the predictions. The spatial and pe-

riodic dependencies are captured through spatial attention in the encoder, and the

decoder extracts the temporal correlations via temporal attention. However, one

potential issue of the proposed model is that there are considerably more parameters

than competing methods like ASTGCN [21]. As a result, this model usually requires

more data before it exhibits improved performance.

One of the significant disadvantages of the above-mentioned approaches is that

the performance of these models heavily relies on how the graph is defined, which

requires domain knowledge. The pre-defined graph structures are generally fixed.

In a spatio-temporal problem, it is often the case that spatial dependencies vary

(slowly) over time.
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3.3.3 Adapting or Learning the Graph

To avoid the need for a pre-defined graph, Zhang et al. [52] propose the Structure

Learning Convolutional Neural Network (SLCNN) architecture, which incorporates

a capacity to learn a better graph topology than the one derived from geographical

considerations. The method in [53] also involves learning the graph; in this case,

dynamic time warping is used to evaluate similarities between the time-series. The

graph construction is a pre-processing step; it is not adapted during learning of the

subsequent graph convolutional network. The use of dynamic time-warping leads to

detection of correlations; there is no restriction to predictive or causal relationships,

which are of more interest in the forecasting context. The Traffic Graph Convolu-

tional Recurrent Neural Network (TGCRNN) of [60] integrates physical constraints

in its construction of the graph adjacency matrix. These constraints are based on

an assessment as to whether traffic at one node can influence traffic at another node

within a specific time frame. Diao et al. [61] learn an adaptive Laplacian by max-

imizing the smoothness of the signals after removing a low-rank component. As

in [53], this estimation is a pre-processing step applied before prediction. Formulat-

ing the estimation problem in terms of smoothness maximization means that neither

causality nor predictive capability is considered.

3.3.4 Advanced Architectures

The pixel-wise prediction task in image processing and computer vision can be

rendered analogous to multi-scale modeling of a dynamic graph by considering an

image pixel as a graph node. Building on this insight, Yu et al. [62], inspired by
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the U-shaped networks in U-Net [63], propose the Spatio-Temporal U-Network (ST-

UNet) which adds spatial pooling and temporal downsampling operations (followed

by unpooling). This allows the architecture to learn representations at multiple scales

and to model both the local dependencies and the global structure.

In contrast to most existing spatio-temporal approaches [15, 17, 56], the Graph

WaveNet model introduced in [22] does not require a pre-defined graph. Graph

WaveNet captures spatial correlations by using a graph convolution that generalizes

the diffusion convolution proposed in [15]. This architecture also incorporates a

module that can learn an adaptive graph topology, denoted as Aadp in (3.1). For a

directed graph with adjacency matrix A, the diffusion process with K finite steps

is specified by forward and backward transition matrices. The forward transition

matrix is Pf = A∑
i A:,i

and the backward transition matrix is Pb = AT∑
i A

T
:,i

. The

proposed graph convolution layer has the following formulation:

Aadp = softmax(ReLU(E1E2
T )) ,

Z =
K∑
k=0

Pk
fXWk

f + Pk
bXWk

b + Ak
adpXWk , (3.1)

where E1, E2, Wf , Wb, and W are learnable parameters. Graph WaveNet employs

dilated causal convolution [49] (also known as TCN) to extract temporal relation-

ships. This allows the architecture to learn from a larger receptive field. Having a

1D input x and a kernel F ∈ RK , the dilated causal convolution of x with F at time

step t, using the dilation factor d, can be mathematically written as:

x ? F(t) =
K−1∑
k=0

F(k)x(t− d× k) . (3.2)
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A gated mechanism for the TCNs allows the architecture to extract complex temporal

dependencies. Although this model can learn the graph topology, the model assumes

fixed spatial dependencies among nodes; it computes spatial dependencies once and

uses these for predictions at all times.

Song et al. [23] propose Spatial-Temporal Synchronous Graph Convolutional

Networks (STSGCNs). This approach is different from most other methods in that

it constructs a single spatio-temporal graph and then applies multiple GCNs over

this graph. This contrasts with most other methods [15,16,21] that use GCNs in the

spatial domain and combine with LSTM or GRU networks in the temporal domain.

Spatial dependencies are fixed once trained.

Xu et al. [64] introduce Spatial-Temporal Transformer Networks which do not

apply a pre-defined graph structure and can model dynamical spatial dependencies.

In this architecture, node features are enhanced with spatial and temporal positional

embeddings. Spatial information is extracted by a combination of fixed graph con-

volution and dynamic graph convolution (with spatial dependencies learned from

the traffic patterns). A temporal transformer is used to capture dynamic long-range

temporal dependencies.

In [51], the Adaptive Graph Convolutional Recurrent Network (AGCRN) ap-

proach is proposed. Inspired by the matrix factorization method, Bai et al. modify

the original GCN with a node adaptive parameter learning module, which allows the

model to learn the node-specific features considering all time-series. For a graph of

order N with adjacency matrix A and degree matrix D, the modified GCN has the
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following formulation:

Z =
(
IN + D−

1
2 AD−

1
2

)
xEGWG + EGbG, (3.3)

where x and Z are the input and the output of the GCN, respectively. EG ∈ RN×d is

the node-embedding matrix with embedding dimensionality of d (d� N). WG and

bG are the weights and biases of the network, respectively. Instead of generating an

adjacency matrix and then calculating the Laplacian matrix, this model uses a data

adaptive graph generation module (Â in 3.4). Finally, the proposed model applies

the adapted GCN instead of MLP layers in a GRU to capture both spatial and

temporal correlations. The formulation of each AGCRN layer can be represented as:

Â = softmax(ReLU(EET )) ,

r(t) = σ
(
Â[x(t), s(t−1)]EWr + Ebr

)
,

u(t) = σ
(
Â[x(t), s(t−1)]EWu + Ebu

)
,

s̃(t) = tanh
(
Â[x(t),

(
r(t) � s(t−1)

)
]EWs + Ebs

)
,

s(t) = u(t) � s(t−1) +
(
1− u(t)

)
� s̃(t) , (3.4)

where r(t) and u(t) are reset and update gates of a GRU cell at time step t, respec-

tively. E, Wr, Wu, Ws, br, bu and bs are learnable parameters of the model, and

[·, ·] indicates the concatenation. In summary, the AGCRN layer can be represented

as s(t) = AGCRN(x(t), s(t−1)), where x(t) and s(t) are the input and the output of

the layer respectively. The AGCRN model does not rely on a pre-specified graph.

This approach can be potentially applied to prediction problems wherever pair-wise
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correlation is important. One of the main drawbacks of this model is that it is not

clear how to use AGCRN for large-scale evolving graphs.

3.4 Summary

This literature review provides a summary of the approaches that have been

proposed to tackle the time series forecasting problem. The review focuses on recent

methods based on neural networks because these have been demonstrated to pro-

vide superior performance to statistical techniques, except in cases where very little

training data is available.

Although traditional time series forecasting models, such as State Space and

Autoregressive models as presented in Section 3.1 are still widely used, one of the

main limitations is that most of the statistical approaches require specification of a

much more restricted model. The neural network approaches can learn a model from

the data. Deep neural networks have been employed, as discussed in Section 3.2,

and various kinds of RNNs, including LSTM and GRU networks, have been used

to model time series. However, due to the problems associated with vanishing and

exploding gradients, RNNs remain challenging to train [65].

In recent years, spatio-temporal forecasting has received an increasing amount

of attention. The goal is to extract the temporal patterns existing in the data as

well as to learn and exploit the spatial relationships among the time series. The

proposed spatio-temporal models (Section 3.3), which take into account (or learn)

a graph describing dependencies between the time series, have outperformed the

non-graph temporal models. These methods apply various GNNs to capture spatial

dependencies. Most of the algorithms rely on a pre-specified graph, and can struggle
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to perform well if the graph does not accurately capture the dependencies. This is a

key weakness of these approaches since the pre-defined graph often omits some of the

important spatial relationships [51]. The manual specification of the graph heavily

relies on domain knowledge, so the techniques are not readily applicable to data from

other domains. To address this, we propose a novel neural network architecture

that does not rely on any pre-specified graph, but instead learns multiple graphs

that capture different types of dependencies. Our architecture is presented in the

following chapter.
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CHAPTER 4
Fully Connected Gated Graph Architecture (FC-GAGA)

This chapter introduces a novel pure deep learning architecture, called FC-

GAGA, for spatio-temporal forecasting. The first section provides a more formal

statement of the problem. Section 4.2 describes the details of the FC-GAGA ar-

chitecture. It includes a discussion of a variety of designs that were investigated

for the FC-GAGA model to improve its performance. Finally, in Section 4.3, we

report the results of experiments on two non-graph datasets and two graph-based

datasets. These experiments allow us to compare the performance of the proposed

method with the state-of-the-art baselines. Moreover, ablation studies are provided

to validate the effectiveness of different parts of the model.

4.1 Problem Setting

The problem of spatio-temporal forecasting involves simultaneously forecasting

multiple time series originating from related entities. We model these relationships

via an unknown underlying graph. Let a graph G = (V,E) be defined as an ordered

collection of vertices, V = 1, . . . , N , and edges, E ⊂ V × V . We are interested in

the multivariate TS forecasting problem defined on this graph. Each vertex v in the

graph is assumed to generate a sequence of observations, yv = [yv,1 . . . , yv,T ] ∈ RT ,

governed by an unknown stochastic random process. The graph connectivity encoded

in E is assumed to capture unknown relations between the vertices. For instance,
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considering the roads in a road network as graph vertices, the graph edges E may

reflect the connectivity of the roads, and yv may be the sequence of observations

of traffic velocity. The task is to predict the vector of future values yv ∈ RH =

[yT+1, yT+2, . . . , yT+H ] for every vertex v based on the observations generated by all

the vertices in the graph up to time T . The model has two inputs: (1) the input of

length w ≤ T at vertex v, ending with the last observed value yv,T , denoted as xv ∈

Rw = [yv,T−w+1, . . . , yv,T ]; and the corresponding time covariate input, cv ∈ Rw×dc ,

where dc is the number of available time covariate features. Example covariates are

the time of the day and the day of the month. The output of the model is the point

forecast of yv at vertex v, and is indicated as ŷv.

4.2 FC-GAGA Architecture

The block diagram of a single layer of FC-GAGA is presented in Figure 4–1.

The layer contains a graph gate, a time gate, and a fully connected time-series model.

One of the important parts of the model design is a node embedding matrix E which

is utilized in the graph and time gates. In our model, each node i is represented

as an embedding vector of dimensionality d, ei = [ei,1, . . . ei,d]. The collection of all

such vectors comprises the node embedding matrix E ∈ RN×d, defined as a set of

learnable parameters and learned as part of the backpropagation procedure.

The input to the FC-GAGA layer is a matrix X ∈ RN×w containing the history

of length w of all nodes in the graph, together with the corresponding time covariate

matrix C ∈ RN×w. Here, we only utilize the time-in-day feature of each node at a

time; therefore, dc is equal to one. The model generates predictions for all the nodes
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Figure 4–1: Diagram of a single layer of FC-GAGA, which includes a graph gate, a
time gate and a fully connected time-series model.

in one shot; the predictions are denoted as Ŷ ∈ RN×H , where H is the horizon of

prediction. We now describe the operation of a single layer of FC-GAGA in detail.

Time gate block. The goal of the time gate block is to model the time

covariate features (e.g., time-of-day and day-of-week) that may be available together

with the node observations. In general, data with strong seasonal patterns require

model components that are able to explicitly capture these effects. We extract time

related features using a multiplicative gate model. The gate normalizes the input of

the FC-GAGA layer using a fully connected network as depicted in Figure 4–1. The

normalization allows the other blocks to focus on relationships that do not depend
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on the time covariates. These normalization effects are reversed at the output of the

layer.

There are two key features in the design of the time gate block. First, the input

time feature matrix C is concatenated with the node embedding matrix E for each

node to account for the fact that each node may have a different seasonality pattern.

This is equivalent to removing a node-specific multiplicative seasonality from the

input of the block and applying it again at the output of the block. Second, the

model design allows the input and output time effects to be decoupled via separate

linear projection layers. This is important because the input and output occur at

different times, and the time effects are therefore usually different.

Graph edge weights. In the proposed architecture, the strengths of node

links are encoded in a weight matrix W ∈ RN×N derived from node embeddings:

W = exp(εEET ). (4.1)

Here ε is a hyperparameter that is set to allow for the decoupling of the scaling of

E from the scaling that is required to achieve a suitable dynamic range in W. Each

row of E stores an embedding of a node in the graph; it is designed to capture its

semantic properties. Then, the product EET provides a matrix of node relations, and

W in Equation (4.1) models the strengths of the relationships across node pairs. As

a result, we expect that the magnitudes of edge weights Wi,j will reflect the extent

of mutual influence between the pair of nodes (i, j) at a given FC-GAGA layer.

Graph gate block. The input of the graph gate block comes from the back-

ward output of the time gate block, as illustrated in Figure 4–1. The graph gating
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operation, as in Equation (4.2), produces a matrix G ∈ RN×Nw. The first dimension

(row) of the gated matrix corresponds to the target node i. The second dimension

corresponds to all the nodes which the target node interacts with. It contains all the

information accumulated by the graph during the past w steps. The entry Gi,jw+k

reflects the anticipated influence of the Xj,k, the k-th entry of the time series X

associated with node j on the prediction of xi. The graph gate calculation is

Gi,jw+k = ReLU[(Wi,jXj,k − x̃i)/x̃i], (4.2)

where x̃ is the maximum of the input values over the time dimension, x̃i = maxj Xi,j.

In the proposed graph gate design, there are several important elements at play.

First, the scaling operation, i.e., the division by x̃, the maximum value of in the

input window, was found through experiments to be effective for the fully connected

time-series block. Some form of scaling is necessary, since unscaled input variables

can have very different ranges, and this can result in a slow or unstable learning

process. If we scale the time series of each node with respect to its own maximum

value, the relative magnitude information between different input time series will

be lost. Therefore, we propose scaling by the maximum for the target node, which

results in the stability of scaling but also retains the relative magnitudes of different

inputs.

Second, the measurements in nodes i and j have to be aligned and related to

each other. This is accomplished by the operation inside the ReLU where the level

of node j is aligned with the level of the target node i Furthermore, the ReLU

operation has the function of shutting off the irrelevant i, j pairs while not affecting
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the scale alignment achieved via Wi,j. The magnitude of Wi,j affects the probability

of opening the hard gate.

Fully connected time-series block. We use a fully connected residual ar-

chitecture with L hidden layers, R residual blocks and weights shared across nodes.

Its input for the target node i, Zi, is conditioned on the node embedding and its

own history: Z = [E,X/x̃,G]T , Z ∈ RN(w+1)+d×N . Using residual block and layer

superscripts and denoting the fully connected layer with weights Ar,` and biases br,`

as FCr,`(H
r,`−1) ≡ ReLU(Ar,`Hr,`−1 + br,`), the operation of the fully connected

residual TS modeling architecture is described as follows:

Zr = ReLU[Zr−1 − Ẑr−1],

Hr,1 = FCr,1(Z
r), . . . , Hr,L = FCr,L(Hr,L−1),

Ẑr = BrHr,L, Ŷr = (Hr,L)TFr.

(4.3)

The first formula in Equation (4.3) indicates the residual process, and the second

formula describes the L hidden layers mathematically. This block produces backcast

(Ẑr) and forecast (Ŷr). We assume Ẑ0 ≡ 0 and Z0 ≡ Z. The projection matrices

have dimensions Br ∈ RN(w+1)+d×dh and Fr ∈ Rdh×H . The final forecast of the

FC-GAGA layer is the sum of forecasts of all residual blocks, Ŷ =
∑

r Ŷr.

FC-GAGA layer stacking. One of the effective features of our model de-

sign is that the basic layer explained above is stackable (see Figure 4–2) based on

the following three principles. First, the next layer accepts the sum of forecasts

of previous layers as input. Second, each FC-GAGA layer has its own set of node

embeddings and thus its own graph gate. Thus each layer is provided the freedom
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to gate the information flow across nodes after taking into account the processing

already accomplished by the previous layer(s). For example, in the first FC-GAGA

layer, for node id 5, it may be optimal to focus on the histories of node ids [10, 200,

500]. However, since the first FC-GAGA layer updates the states of all nodes, in

the second layer, node 5 may no longer need the information provided by nodes [10,

200, 500], nor that provided by their neighbours; and instead may wish to focus on

node ids [3, 15], as they now provide more important information for adjusting the

forecast. Finally, the final model output is equal to the average of the layer forecasts.

Complexity analysis. In the following analysis, we skip the batch dimension

and compute the complexity involved in creating a single forecast of length H for

all nodes N in the graph when the input history is of length w, the node embedding

width is d and the hidden layer width is dh. The graph gate block has complexity

O(N2(w + d)), as is evident from Equation (4.2), which involves the N × N node

interaction matrix derived from the N × d embedding matrix and gating of the N2w

input values. The time gate mechanism produces a seasonality factor for each node

using its associated time feature, so its complexity scales linearly with the number of

nodes, the hidden dimension, the input history length and the forecast horizon, i.e.,

O(N(d + w)dh + NHdh). In most practical situations we have d + w > H. Finally,

the fully-connected TS model with L FC layers and R residual blocks that accepts

the flattened N ×Nw output of the graph gate scales as follows. The first and the

last layers of the residual block scale as O(N2wdh) (recall that the last linear layer is

doing a backcast from dh to Nw). The hidden layers scale as O(Nd2h). This results

in the total fully-connected TS model complexity O(R(2N2wdh + (L− 2)Nd2h)). In
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most practical configurations, the total complexity of the model will be dominated

by O(N2Rwdh). According to the presented complexity analysis, our graph gate

design has N times smaller complexity, O(N2), compared to the approaches known

in the literature that are based on matrix multiplication in the graph diffusion step

O(N3) (e.g. DCRNN [15] and Graph WaveNet [22]).

4.2.1 Variant Designs of FC-GAGA Architecture

In this section, different cases of the FC-GAGA model are investigated in order

to better understand the effects of each part of the model and improve the design of

the model. These cases are examined on two public graph-based datasets, and the

results are presented in Section 4.3.5.

• Asymmetric Graph Embedding Matrix

A.1. In the original architecture, the graph weights matrix is defined as W =

exp(εEET ), where E is the node embedding matrix. Instead we consider the

graph weights as W = exp(W′), where W′ is a matrix of learnable parameters,

learned as part of the backpropagation procedure. The idea is to understand

the impact on the model performance of learning the graph weight matrix

directly instead of using node embeddings.

A.2. Using the graph weights matrix W = exp(W′) similar to the case A.1,

but instead of utilizing the node embedding matrix E for the time gate, an extra

fully connected layer is added to the time gate block to learn the relationships

between the nodes.
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A.3. In this case, the graph weight matrix is defined as W = exp(εE1E
T
2 ),

where E1 and E2 are two separate node embedding matrices. This provides

more freedom for asymmetric predictive relationships.

• Layer Constraints

In the original model, all layers have the freedom to learn the graph edge

weights matrix W using information from all nodes. Hence, the model gen-

erates the predictions for a target node using the history information that

corresponds to all the nodes with which the target node interacts. In this case,

we constrain some layers by setting their weight matrices to the identity ma-

trix. This constraint forces a layer to make predictions for the target node

based only on its own history information.

4.3 Experiments

In this section, the proposed architecture in this thesis is assessed via conduct-

ing thorough experiments on two graph-based and two non-graph datasets. First,

the utilized datasets for the evaluation are described in Section 4.3.1, followed by

preprocessing steps. Then the baselines used for the comparison are presented. Af-

ter explaining the experimental details, the quantitative and qualitative results are

provided. The chapter will be finalized by the ablation studies and profiling results.

4.3.1 Datasets

The proposed FC-GAGA architecture is evaluated on the graph-based datasets,

which are METR-LA and PEMS-BAY [15,66] and the non-graph datasets Electricity

and Traffic [29]. The summary statistics of the datasets are provided in Table 4–1

and Table 4–2.
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• Graph-based datasets

– METR-LA: consists of the data of 207 sensors collected from loop de-

tectors in the highway of Los Angeles County for four months from March

1st, 2012 to June 30th, 2012.

– PEMS-BAY: contains the data of 325 sensors in the Bay Area for six

months from January 1st, 2017 to May 31th, 2017.

In both datasets, the traffic speed readings of sensors are aggregated into 5

minute windows. The sensor distributions of the METR-LA dataset, for in-

stance, are visualized in Figure 4–3. To construct the sensor graph, the pairwise

road network distances between sensors are computed.

Figure 4–3: The visualization of sensor distributions in the METR-LA dataset.

• Non-graph datasets
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– Electricity: The electricity usage in kW was recorded every 15 minutes

for 370 Portuguese clients from 2011 to 2014. The data is converted to

reflect hourly consumption by aggregating every 4 points of the original

Electricity dataset.

– Traffic: This is a collection of 15 months of daily data from the California

Department of Transportation. The data describes the occupancy rate of

different car lanes of San Francisco freeways. The data was sampled every

10 minutes. Therefore, the hourly traffic occupancy dataset on 963 roads

is obtained by taking the average over every 6 points in the original Traffic

dataset.

Table 4–1: Statistics of non-graph datasets.

Dataset #Time series Domain Freq. #Time steps Prediction horizon
Electricity 370 R+ Hourly 26,304 24
Traffic 963 (0, 1) Hourly 10,560 24

Table 4–2: Statistics of graph-based datasets.

Dataset #Nodes Domain Interval #Time step
METR-LA 207 R+ 5 Minutes 34,272
PEMS-BAY 325 R+ 5 Minutes 52,116

4.3.2 Preprocessing

For all datasets, missing values are substituted by the last known value in the

same time-series. Furthermore, for non-graph datasets, all conducted preprocessing

is aligned with the N-BEATS paper [1], which is as following. Both Electricity and

Traffic datasets are converted to reflect hourly data in the Traffic dataset by taking
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the average over every 6 points and the Electricity dataset via aggregating every

4 points. The conversion to hourly is conducted so that all the points available in

(h − 1 : 00, h : 00] hours are aggregated to hour h, e.g., if the start of the original

dataset is “2011-01-01 00:15” then the first point after conversion will be “2011-01-01

01:00”. In the Electricity dataset, the first year from the training set is removed;

therefore, the start date of this dataset is 2012-01-01, following the custom in the

TRMF literature [47]. Furthermore, it is also checked that data points for both

Electricity and Traffic datasets after conversion match those used in [47]. As we

follow the protocol utilized by the TRMF model, in both datasets, the last 7 days are

considered as the test set. These pre-processing decisions were conducted to facilitate

comparison with earlier works. The graph-based datasets are chronologically split as

70% of data for training, 10% for validation, and 20% for testing.

4.3.3 Baselines and Proposed Architecture

• Experiment 1: For graph-based datasets, the proposed architecture is com-

pared with both temporal models that do not require a pre-specified graph

and spatio-temporal models that may rely on a pre-specified graph or have a

learnable graph.

The following temporal models are considered:

– ARIMA: Auto-Regressive Integrated Moving Average model [67] imple-

mented using a Kalman filter.

– SVR: Linear Support Vector Regression model [68].

– FNN: Feedforward Neural Network.
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– FC-LSTM: The sequence-to-sequence model that uses fully connected

LSTM cells in the encoder and decoder [69].

– N-BEATS: Neural Basis Expansion Analysis for Interpretable Time Se-

ries [1], an univariate model, built using backward and forward residual

connections and a deep stack of fully-connected layers. Here, we utilize

the generic architecture of N-BEATS without ensembling.

The spatio-temporal models include:

– DCRNN: Diffusion Convolutional Recurrent Neural Network [15], a graph

convolutional network inside the sequence-to-sequence architecture.

– STGCN: Spatio-Temporal Graph Convolutional Network [16], merges graph

convolutions with gated temporal convolutions.

– Graph WaveNet: fuses graph convolution and dilated causal convolution

proposed in [22].

– GMAN: Graph Multi-Attention Network [17], an encoder-decoder model

with multiple spatio-temporal attention blocks, and a transform attention

layer between the encoder and the decoder.

– STGRAT: Spatio-Temporal Graph Attention Network for Traffic Fore-

casting [59], an encoder-decoder model using the positional encoding method

of the Transformer [44] to capture features of long sequences and node at-

tention to capture spatial correlation.

– AGCRN: Adaptive Graph Convolutional Recurrent Network [51], a com-

bination of a GRU with a modified GCN which has a node-adaptive pa-

rameter learning module.
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– FC-GAGA: The proposed architecture having the number of layers L = 3.

– FC-GAGA (4 layers)‡: The proposed model with 4 layers. In the fourth

layer, the graph gate weights are set to the identity matrix, implying more

reliance on the pure time-series component.

Of the mentioned methods, only Graph Wavenet can generate predictions with-

out a pre-specified graph. For DCRNN, we run the official code and report the

results after a bug fix in the code, which are better than the originally reported

results in the paper [15]. For STGRAT, we report the results from the original

paper since the official code is not provided. We execute STGCN; however, in

our experiments, STGCN achieves slightly worse performance than reported in

the original paper; therefore, we cite the results published by the authors [16].

The results reported for Graph WaveNet, GMAN and AGCRN methods are

produced via running the official codes provided by the authors.

• Experiment 2: For non-graph datasets, FC-GAGA is compared to the fol-

lowing deep learning based forecasting approaches:

– TRMF: Temporal Regularized Matrix Factorization [47], which integrates

temporal dependencies and matrix factorization models by introducing a

temporal regularizer.

– DeepGLO: The proposed method in [48], which is a global matrix factor-

ization with regularization using temporal convolution networks.

– N-BEATS: Neural Basis Expansion Analysis for Interpretable Time Se-

ries [1], Here, we utilize the ensemble of generic and interpretable archi-

tectures of N-BEATS.
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; and compared to deep learning probabilistic forecasting models:

– DeepAR: The model presented in [31], which is an RNN based probabilis-

tic method that uses a parametric likelihood for forecasting.

– DeepState: The probabilistic model proposed in [30], which is the fusion

of a linear state-space model and an RNN.

– DeepFactors: The proposed model in [50] that uses RNNs for global dy-

namics along with a local probabilistic graphical model to account for

uncertainty.

For the N-BEATS model, we report the best results of non-graph datasets pro-

vided in the original paper [1]. For TRMF, the results also are reported from the

original paper [47]. Since the approaches proposed by Amazon Labs (DeepAR,

DeepState, and DeepFactors) utilize different splits as their test sets compared

to the TRMF and N-BEATS models, we cannot utilize their reported results.

Therefore, we train these models using GluonTS framework [70] released by

the authors. Note that the implementations of the DeepState and DeepFactors

models are not completely aligned with the original methods, and some parts

are missing. We optimized hyperparameters for these models. DeepGLO also

used a different split of data as the test set. Thus, we train the model using the

unnormalized version of datasets since DeepGLO achieves better performance

in this case, and we utilize the provided settings released with the official code

by the authors.

Descriptions of all of the baselines are provided in Chapter 3.
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4.3.4 Experimental Details

Experiment 1. To adjust the hyperparameters properly, we examine the per-

formance of the proposed model over various choices of different parameters: the best

scaler ε in Equation 4.1 is selected among the set {1, 5, 10, 20}, the number of hidden

layer width dh for all fully connected layers is examined over the set {64, 128, 256},

and the number of blocks R and the weight decay are chosen over the sets {2, 3, 4}

and {1e−4, 1e−5, 1e−6} respectively. The number of epochs is tested over {60, 80, 100}

and the initial learning rate is chosen over the set {1e−3, 1e−4}. Fianlly the best hy-

perparameters are optimized as followed. The scalar ε is set to 10. The embedding

dimensionality, d, is set to 64 and the hidden layer width dh is set to 128. The

number of blocks R in the fully-connected TS model is equal to 2. We use weight

decay of 1e-5 to regularize fully-connected layers. The model is trained using the

Adam optimizer with default TensorFlow settings and initial learning rate of 0.001

for 60 epochs. The learning rate is annealed by a factor of 2 every 6 epochs starting

at epoch 43. One epoch consists of 800 batches of size 4, and the model takes the

history of 12 time steps and predicts 12 time steps (60 min) ahead in one shot. Each

training batch is assembled using 4 time points chosen uniformly at random from

the training set and the histories of all nodes collected at each of the time points.

METR-LA has 207 sensor nodes and in PEMS-BAY has 325, resulting in the batches

consisting of 207 · 4 = 828 and 325 · 4 = 1300 time-series, respectively. The objective

function used to train the network is Mean Absolute Error (MAE), averaged over all
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nodes and all forecasts within horizon H = 12:

L =
1

HN

H∑
i=1

N∑
v=1

|yv,T+i − ŷv,T+i|. (4.4)

We opted for MAE loss function since it achieves better results in our experiments.

Unlike Mean Square Error (MSE), MAE is more robust to outliers. Moreover, it

provides a balance between the accuracies of different horizons. The accuracy of our

model is measured with three widely used metrics: Mean Absolute Error (MAE),

Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE):

MAE =
1

N

N∑
v=1

|yv,T+H − ŷv,T+H |, (4.5)

MAPE =
1

N

N∑
v=1

|yv,T+H − ŷv,T+H |
|yv,T+H |

,

RMSE =

√√√√ 1

N

N∑
v=1

(yv,T+H − ŷv,T+H)2.

Experiment 2. For non-graph datasets, we follow the common procedure

utilized by the TRMF baseline model [47], which is to consider the last 7 days of

data as the test set for both Electricity and Traffic datasets. Therefore, the number

of training points for Electricity and Traffic datasets will be 26, 136 and 10, 392

respectively.

In this experiment, following standard practice in the literature, the proposed

model takes the history of 24 time steps (one day) and predicts 24 time steps ahead

in one shot. Analogous to the procedure used by existing baselines, the rolling-

day prediction for seven days after the last point seen in training is conducted as
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evaluation, i.e., the prediction horizon is one day (24 points) and the start time of

the forecast is shifted by one day after evaluating the prediction for the current day.

Here, the 7 consecutive days right before the test set are utilized as the validation

set. All the training settings is the same as Experiment 1 except for the number of

epochs and the number of batches which increase to 80 and 1600, respectively. The

objective function used to train the model is MAE since this loss obtains the best

performance. We measure accuracy for non-graph datasets via Normalized Deviation

(ND) as in the TRMF literature [47]:

ND =

∑N
v=1 |ŷv,T+H − yv,T+H |∑N

v=1 |yv,T+H |
. (4.6)

4.3.5 Quantitative Results

Results of graph-based datasets:

Our key empirical results on two traffic datasets appear in Table 4–3. FC-

GAGA compares favourably even against graph-based models that rely on additional

external graph definitions on both METR-LA and PEMS-BAY datasets (DCRNN,

STGCN, Graph WaveNet, and GMAN). Most of the time, FC-GAGA outperforms

the Graph WaveNet‡ model when the algorithms are trained and evaluated in the

same conditions, i.e., both models only rely on the graph learned from the data.

(In this setting, Graph WaveNet uses only the adaptive adjacency matrix that it

learns from the data). FC-GAGA significantly outperforms the univariate models

(ARIMA, SVR, FNN, FC-LSTM, and N-BEATS). Note that STGRAT heavily relies

on the main ingredients of Transformer architecture such as positional encoding and

attention mechanisms. Therefore, comparing FC-GAGA against it gives a good idea
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of how our approach stands against Transformer-based methods in terms of accuracy.

Results of non-graph datasets:

The proposed FC-GAGA architecture is also evaluated on the Electricity and

Traffic datasets and the results are provided in Table 4–4. We observe that the FC-

GAGA model outperforms the existing methods for the Electricity dataset. In the

Traffic dataset, the univariate N-BEATS shows a better performance compared to

the multivariate models. This indicates that most time-series in this dataset do not

provide valuable information for generating predictions of other time-series. This

result is the opposite of what was observed for the graph-based datasets, where the

performance of N-BEATS was considerably worse than the multivariate algorithms.

We conjecture that one reason for this is that the time-granularity of the Traffic

dataset is much coarser (hourly rather than 5 minute intervals).

Results of FC-GAGA architectural variants:

In the following, we provide the results of experiments conducted to examine

the FC-GAGA architectural variants, explained in Section 4.2.1.

• Asymmetric Graph Embedding Matrix:

Based on Table 4–5, none of the alternative methods improve the results.

Learning the graph weights matrix independently (A.1) yields worse perfor-

mance than the original model (FC-GAGA). This result suggests that using

the node embedding matrix in all parts of the architecture (both graph gate

and temporal gate) causes a useful functional coupling during the learning pro-

cedure. Using an extra fully connected layer instead of the node embedding

matrix E (A.2) leads to significantly worse performance, confirming that the
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Table 4–3: Key empirical results on two traffic datasets. Error metrics computed by
averaging over last time step of horizon with input window length 12. The best and
the second best results in each column are shown in bold and marked with under-
line respectively. Lower numbers are better. ‡Graph Wavenet trained using official
code by the authors using only adaptive matrix without the support of geographical
adjacency matrix.

METR-LA (15/30/60 min)

Models MAE MAPE (%) RMSE

DCRNN 2.67/3.08/3.56 6.84/8.38/10.30 5.17/6.30/7.52
STGCN 2.88/3.47/4.59 7.62/9.57/12.70 5.47/7.24/9.40
Graph WaveNet 2.69/3.07/3.53 6.90/8.37/10.01 5.15/6.22/7.37
GMAN 2.77/3.07/3.40 7.25/8.35/9.72 5.48/6.34/7.21
STGRAT 2.60/3.01/3.49 6.61/8.15/10.01 5.07/6.21/7.42
AGCRN 2.89/3.25/3.67 7.79/9.13/10.53 5.61/6.56/7.66

ARIMA 3.99/5.15/6.90 9.60/12.70/17.40 8.21/10.45/13.23
SVR 3.99/5.05/6.72 9.30/12.10/16.70 8.45/10.87/13.76
FNN 3.99/4.23/4.49 9.90/12.90/14.00 7.94/8.17/8.69
FC-LSTM 3.44/3.77/4.37 9.60/10.90/13.20 6.30/7.23/8.69
Graph WaveNet‡ 2.80/3.18/3.57 7.45/9.00/10.47 5.45/6.42/7.29
N-BEATS 3.08/3.79/4.91 8.10/10.58/14.70 6.10/7.68/9.73
FC-GAGA 2.75/3.10/3.51 7.25/8.57/10.14 5.34/6.30/7.31
FC-GAGA(4 layers)‡ 2.70/3.04/3.45 7.01/8.31/9.88 5.24/6.19/7.19

PEMS-BAY (15/30/60 min)

Models MAE MAPE (%) RMSE

DCRNN 1.31/1.66/1.98 2.74/3.76/4.74 2.76/3.78/4.62
STGCN 1.36/1.81/2.49 2.90/4.17/5.79 2.96/4.27/5.69
Graph WaveNet 1.30/1.63/1.95 2.73/3.67/4.63 2.74/3.70/4.52
GMAN 1.34/1.62/1.86 2.81/3.63/4.31 2.82/3.72/4.32
STGRAT 1.29/1.61/1.95 2.67/3.63/4.64 2.71/3.69/4.54
AGCRN 1.38/1.70/2.01 2.98/3.88/4.68 2.90/3.87/4.66

ARIMA 1.62/2.33/3.38 3.50/5.40/8.30 3.30/4.76/6.50
SVR 1.85/2.48/3.28 3.80/5.50/8.00 3.59/5.18/7.08
FNN 2.20/2.30/2.46 5.19/5.43/5.89 4.42/4.63/4.98
FC-LSTM 2.05/2.20/2.37 4.80/5.20/5.70 4.19/4.55/4.96
Graph WaveNet‡ 1.34/1.69/2.00 2.79/3.79/4.73 2.83/3.80/4.54
N-BEATS 1.47/2.01/2.77 3.07/4.54/6.76 3.21/4.64/6.37
FC-GAGA 1.36/1.68/1.97 2.87/3.80/4.67 2.86/3.80/4.52
FC-GAGA(4 layers)‡ 1.34/1.66/1.93 2.82/3.71/4.48 2.82/3.75/4.40
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Table 4–4: ND results of Traffic and Electricity datasets. The best and the second
best results in each column are shown in bold and marked with underline respectively.
Lower numbers are better. The results specified by ∗ are the ones obtained via
training the models.

Models Traffic Electricity

TRMF 0.187 0.255

DeepAR 0.178∗ 0.698∗

DeepState 0.795∗ 0.798∗

DeepFactors 0.408∗ 1.205∗

DeepGLO 0.148 0.155∗

N-BEATS 0.112 0.171

FC-GAGA 0.137 0.135

node embedding matrix plays an important role. The results of using separate

node embedding matrices to construct the graph weight matrix W (A.3) show

that although there are probably directions of traffic flow, the node relation-

ships in the traffic datasets either exhibit symmetry, or the additional flexibility

of the model is outweighed by the removal of the regularization effect. Again,

this result indicates that using the node embedding matrix is important since

the difference between A.3 and FC-GAGA compared to the difference between

A.1 and FC-GAGA is much lower. The reason is that the node embedding

matrix identifies which one of the nodes is being targeted in both the time gate

block and fully connected time-series block.

• Layer constraint: The experimental results are provided in Table 4–6. As it can

be seen, considerable improvement for both datasets is obtained by constraining

the graph edge weight matrix W of the 4-th layer to the identity matrix. The
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results suggest that since the 4-th layer is responsible for making corrections,

it is better to base the corrections only on the node’s own history.

Table 4–5: Experiment results on METR-LA and PEMS-BAY datasets for the Asym-
metric Graph Embedding Matrix test. A.1: Learning the graph weights indepen-
dently, A.2: Extra fully connected layer instead of node embedding, and A.3: Using
separate node embeddings to build the graph weight.

METR-LA (15/30/60 min)

Models MAE MAPE (%) RMSE

A.1 2.91/3.39/4.00 7.75/9.51/12.03 5.68/6.83/8.19

A.2 3.06/3.70/4.69 8.15/10.53/14.05 5.97/7.38/9.22

A.3 2.78/3.13/3.52 7.26/8.68/10.29 5.38/6.38/7.34

FC-GAGA 2.75/3.10/3.51 7.25/8.57/10.14 5.34/6.30/7.31

PEMS-BAY (15/30/60 min)

Models MAE MAPE (%) RMSE

A.1 1.41/1.87/2.46 2.92/4.14/5.65 3.06/4.32/5.77

A.2 1.52/2.32/3.06 3.16/5.03/7.26 3.29/4.93/6.75

A.3 1.36/1.69/1.98 2.87/3.84/4.68 2.86/3.82/4.53

FC-GAGA 1.36/1.68/1.97 2.87/3.80/4.67 2.86/3.80/4.52
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Table 4–6: Experiment results on METR-LA and PEMS-BAY datasets for the Layer
Constraint test. The best and the second best results in each column are shown in
bold and marked with underline respectively.

METR-LA (15/30/60 min)

Models MAE MAPE (%) RMSE

1st layer 2.78/3.12/3.51 7.29/8.59/10.12 5.39/6.39/7.31

2nd layer 2.75/3.11/3.50 7.22/8.59/10.07 5.34/6.33/7.28

3rd layer 2.75/3.09/3.51 7.13/8.46/9.98 5.30/6.30/7.29

1st & 2nd layers 2.81/3.15/3.54 7.46/8.86/10.28 5.47/6.45/7.33

1st & 3rd layers 2.80/3.15/3.55 7.44/8.81/10.38 5.47/6.43/7.35

2nd & 3rd layers 2.78/3.14/3.56 7.29/8.67/10.24 5.39/6.38/7.35

all 3 layers 2.95/3.48/4.21 7.76/9.70/12.18 5.80/7.05/8.57

4th layer 2.70/3.04/3.45 7.01/8.31/9.88 5.24/6.19/7.19

5th layer 2.73/3.07/3.47 7.03/8.29/9.91 5.28/6.23/7.21

FC-GAGA 2.75/3.10/3.51 7.25/8.57/10.14 5.34/6.30/7.31

PEMS-BAY (15/30/60 min)

Models MAE MAPE (%) RMSE

1st layer 1.36/1.68/1.94 2.87/3.82/4.64 2.85/3.79/4.46

2nd layer 1.35/1.67/1.94 2.84/3.76/4.55 2.82/3.75/4.41

3rd layer 1.33/1.66/1.92 2.84/3.79/4.56 2.82/3.76/4.41

1st & 2nd layers 1.36/1.69/1.95 2.90/3.89/4.67 2.88/3.87/4.50

1st & 3rd layers 1.36/1.69/1.96 2.84/3.79/4.62 2.87/3.81/4.49

2nd & 3rd layers 1.36/1.68/1.95 2.92/3.91/4.69 2.88/3.87/4.50

all 3 layers 1.40/1.83/2.38 2.90/4.02/5.41 2.99/4.16/5.47

4th layer 1.34/1.66/1.93 2.82/3.71/4.48 2.82/3.75/4.40

5th layer 1.35/1.67/1.94 2.83/3.75/4.56% 2.86/3.79/4.46

FC-GAGA 1.36/1.68/1.97 2.87/ 3.80/4.67 2.86/3.80/4.52
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4.3.6 Qualitative Results

The final FC-GAGA forecast is composed of the average of the forecasts of

individual layers. Figures 4–4 and 4–5 present examples of how the different layers

in the architecture contribute to the final 15 min ahead prediction (after scaling by

the averaging factor 1/3) for the METR-LA and PEMS-BAY datasets, respectively.

Figures 4–6 and 4–7 further illustrate the layer contributions. Figures 4–8 and 4–9

show the same information, but focus on shorter time windows. We can see that the

role of the first layer is mainly to provide a (relatively accurate) baseline forecast in all

cases, while at the same time accounting for some seasonal effects, and then layers 2,

3 and 4 provide modifications to enhance the accuracy. These layers provide iterative

correction terms to the original baseline produced by layer 1, based on the most recent

data. This is especially evident for layer 3 and 4 whose outputs are inactive most of

the time, becoming active when an abrupt change is required because the observed

signals undergo significant changes (primarily during rush-hour on weekdays). For

several of the nodes (e.g., METR-LA node 37 and 124, PEMS-BAY nodes 30 and

179), we can see that layer 2 is responsible for modeling a daily periodic fluctuation.

In Figures 4–8 and 4–9, clearer evidence of the compensation effects of layers 2

and 3 is demonstrated. For example, for node 31 in the METR-LA dataset, we see

in Figure 4–8 that the layer 1 prediction lags behind the true signal after the sudden

drop, and struggles to return to the same level for close to an hour. Layer 2 (orange)

compensates for this by providing a significant positive component to the prediction
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only during this period when the layer 1 prediction is trying to recover. For PEMS-

BAY node 182 in Figure 4–9 it is clear that layers 2 and 3 are compensating for the

prediction lag of layer 1 whenever there are significant changes in the true signal.
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Figure 4–4: (a) 15 min ahead forecasts of FC-GAGA with 3 layers. (b) 15 min ahead
forecasts of FC-GAGA(4 layers)‡. Blue, green, orange and purple lines depict the
partial forecasts produced by layers 1, 2, 3, and 4 of the architecture respectively.
Blue & red: left axis; orange & green & purple: right axis.

Next, we show in Figures 4–10 and 4–11 the geographical distribution of the

weights Wi,j in the graph gate, specified in Equation (4.2), for layers 1–3, as learned

for the METR-LA and PEMS-BAY datasets, respectively. Each layer is provided the

58



0 1000 2000 3000 4000 5000

25

50

75

Tr
af

fic
 S

pp
ed

 (m
ph

)

40

20

0

20
PEMS-BAY: Node 37 Predictions

Time
(x 5min)

(a)

0 1000 2000 3000 4000 5000

40

60

80

Tr
af

fic
 S

pp
ed

 (m
ph

)

0

5

PEMS-BAY: Node 170 Predictions

Time
(x 5min)

(b)

Figure 4–5: (a) 15 min ahead forecasts of FC-GAGA with 3 layers. (b) 15 min ahead
forecasts of FC-GAGA(4 layers)‡. Blue, green, orange and purple lines depict the
partial forecasts produced by layers 1, 2, 3, and 4 of the architecture respectively.
Blue & red: left axis; orange & green & purple: right axis.
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Figure 4–6: FC-GAGA 15 min ahead forecasts for different nodes in METR-LA
dataset. Blue, green and orange lines depict the partial forecasts produced by layers
1, 2, and 3 of the architecture respectively. Magnitudes of blue and red lines are
indicated by the left axis labels; magnitudes of orange and green lines are indicated
by the right axis labels.
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Figure 4–7: FC-GAGA 15 min ahead forecasts for different nodes in PEMS-BAY
dataset. Blue, green and orange lines depict the partial forecasts produced by layers
1, 2, and 3 of the architecture respectively.Magnitudes of blue and red lines are
indicated by the left axis labels; magnitudes of orange and green lines are indicated
by the right axis labels.
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Figure 4–8: FC-GAGA 15 min ahead forecasts for different nodes in METR-LA
dataset from time 3000 to 3250. Blue, green and orange lines depict the partial
forecasts produced by layers 1, 2, and 3 of the architecture respectively. Magnitudes
of blue and red lines are indicated by the left axis labels; magnitudes of orange and
green lines are indicated by the right axis labels.
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Figure 4–9: FC-GAGA 15 min ahead forecasts for different nodes in PEMS-BAY
dataset from time 3000 to 3250. Blue, green and orange lines depict the partial
forecasts produced by layers 1, 2, and 3 of the architecture respectively. Magnitudes
of blue and red lines are indicated by the left axis labels; magnitudes of orange and
green lines are indicated by the right axis labels.

63



Figure 4–10: Spatial distribution of weights: maps of 20 and 4 highest weighted
nodes for layers 1, 2, and 3 (left to right). The white star in the black circle is the
forecasted node (node 146 in METR-LA).

freedom to learn its relationship across graph nodes; the learned relationships differ

significantly across layers, indicating information aggregation from different spatial

regions. There are usually fewer nodes with significant weight for the third layer, and

they tend to be located closer to the target node for which the forecast is produced

(see Figures 4–10 and 4–11, the maps of the four largest weights).

Figure 4–12 depicts the average weight by weight rank, i.e., for the largest weight

as an example, what is the average value. The left panels of this figure show clearly

that the gating is less strictly enforced in the first layer, as the weights for layer 1

are higher than those of layer 2, which are in turn higher than layer 3, implying

stricter gating in Equation (4.2) for layers 2 and 3. This illustrates how layer 1

incorporates information from many nodes to form its prediction, whereas layers 2

and 3 use far fewer nodes (the weight gating blocks the contribution from many

nodes). The left panels of Figures 4–10 and 4–11 support this intuition since the
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Figure 4–11: Spatial distribution of weights: maps of 20 and 4 highest weighted
nodes for layers 1, 2, and 3 (left to right). The white star in the black circle is the
forecasted node (node 216 in PEMS-BAY).

geographic distribution of values is more dispersed. We interpret this as indicating

that in layer 1, FC-GAGA collects information across various nodes and geographical

locations to construct a stable baseline forecast. As we move from layer 2 to layer

3, we can see that the nodes with highest graph weights more tightly concentrate

around the target node (see Figures 4–10 and 4–11, middle and right panels, and the

right panel of Figure 4–12 (a)).
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In the right panel of Figure 4–12 (b), we show the average distance from the

forecasted nodes for each weight rank for the PEMS-BAY dataset. The results have

similarities with the results depicted in Figure 4–12 (a) for the METR-LA dataset;

however, there are also differences. As for the METR-LA dataset, the average dis-

tance increases with the weight rank, especially for layers 1 and 3, particularly for the

first 20 ranks. For the PEMS-BAY dataset, we see that the distance for layer 2 does

not grow as rapidly. This suggests that for PEMS-BAY, layer 2 often incorporates

information from nodes that are further away.
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Figure 4–12: (a) Average of graph gate weights Wi,j normalized by the self-weight
Wi,i (left) and their average distances from the forecasted node (right) per FC-GAGA
layer in METR-LA dataset. (b) Average of graph gate weights Wi,j normalized by
the self-weight Wi,i (left) and their average distances from the forecasted node (right)
per FC-GAGA layer in PEMS-BAY dataset.
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Table 4–7: Ablation study: the effectiveness of the FC-GAGA layer stacking. 4I‡

uses the identity for the fourth layer weight matrix.

METR-LA (15/30/60 min)

Layers MAE MAPE (%) RMSE

1 2.80/3.17/3.63 7.36/8.82/10.55 5.44/6.44/7.48

2 2.77/3.13/3.54 7.30/8.74/10.41 5.37/6.39/7.36

3 2.75/3.10/3.51 7.25/8.57/10.14 5.34/6.30/7.31

4 2.75/3.10/3.52 7.21/8.54/10.19 5.34/6.34/7.34

4I‡ 2.70/3.04/3.45 7.01/8.31/9.88 5.24/6.19/7.19

PEMS-BAY (15/30/60 min)

Layers MAE MAPE (%) RMSE

1 1.35/1.69/2.00 2.85/3.85/4.78 2.85/3.83/4.61

2 1.36/1.68/1.97 2.87/3.80/4.64 2.86/3.81/4.52

3 1.36/1.68/1.97 2.87/3.80/4.67 2.86/3.80/4.52

4 1.35/1.69/1.98 2.83/3.78/4.66 2.86/3.83/4.57

4I‡ 1.34/1.66/1.93 2.82/3.71/4.48 2.82/3.75/4.40

4.3.7 Ablation Studies

We conduct ablation studies with the goals of validating the effectiveness of the

FC-GAGA layer stacking mechanism, the graph gating mechanism and the time gate

block. Table 4–7 demonstrates the performance of FC-GAGA as a function of the

number of layers. Increasing the number of layers leads to substantial improvement

on the METR-LA dataset, while on PEMS-BAY, the number of layers does not

affect performance significantly. Forecasting for the METR-LA dataset is known to

be a more complex problem than forecasting for PEMS-BAY due to the more erratic

nature of its time series. This implies that increasing the number of FC-GAGA layers

to solve harder problems may bring additional accuracy benefits, while using only
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one FC-GAGA layer to solve an easier problem may benefit from the computational

efficiency standpoint (the runtime scales approximately linearly with the number of

layers). The final row in the table (4I‡) shows the performance when the fourth layer

is set to the identity so that the layer focuses on forming a prediction using only the

history of each node. This approach leads to a noticeable improvement; forcing one

layer to learn univariate relationships can be beneficial.

Table 4–8: Ablation study: the effectiveness of the FC-GAGA graph gate and time
gate.

METR-LA (15/30/60 min)

Models Layers MAE MAPE (%) RMSE

(1) MV N-BEATS 3 3.00/3.60/4.44 7.96/10.22/13.59 5.90/7.28/8.92

(2) add time gate 3 2.86/3.24/3.68 7.60/9.13/10.81 5.61/6.66/7.67

(3) add graph gate 3 2.81/3.21/3.67 7.33/8.75/10.51 5.36/6.36/7.45

FC-GAGA 3 2.75/3.10/3.51 7.25/8.57/10.14 5.34/6.30/7.31

PEMS-BAY (15/30/60 min)

Models Layers MAE MAPE (%) RMSE

(1) MV N-BEATS 3 1.41/1.86/2.40 2.94/4.20/5.90 3.05/4.26/5.48

(2) add time gate 3 1.37/1.70/1.99 2.87/3.83/4.68 2.89/3.86/4.57

(3) add graph gate 3 1.35/1.69/2.00 2.84/3.79/4.72 2.86/3.82/4.58

FC-GAGA 3 1.36/1.68/1.97 2.87/3.80/4.67 2.86/3.80/4.52

Table 4–8 provides the results of ablating the graph gate and time gate mech-

anisms with the original architecture, a 3-layer FC-GAGA network. Both the time

gate and graph gate individually lead to improvements over a straightforward mul-

tivariate N-BEATS model, i.e., accepting concatenated histories, and then combine

to offer further improvement. Table 4–9 examines different approaches for the graph
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Table 4–9: Ablation study: the effectiveness of the FC-GAGA graph gate block.

METR-LA (15/30/60 min)

Graph gate W Layers MAE MAPE (%) RMSE

graph attention 3 2.99/3.56/4.43 7.90/10.00/13.15 5.83/7.15/8.89

identity 3 2.97/3.54/4.35 7.80/9.88/12.77 5.87/7.25/8.93

ones 3 2.87/3.24/3.67 7.71/9.22/10.80 5.67/6.71/7.65

shared learnable 3 2.77/3.13/3.57 7.20/8.53/10.09 5.36/6.35/7.37

learnable first layer 3 2.77/3.13/3.55 7.28/8.67/10.23 5.40/6.41/7.44

FC-GAGA 3 2.75/3.10/3.51 7.25/8.57/10.14 5.34/6.30/7.31

PEMS-BAY (15/30/60 min)

Graph gate W Layers MAE MAPE (%) RMSE

graph attention 3 1.44/1.92/2.57 3.00/4.32/6.07 3.08/4.38/5.86

identity 3 1.41/1.86/2.44 2.92/4.10/5.58 3.05/4.27/5.66

ones 3 1.38/1.70/2.00 2.89/3.82/4.70 2.89/3.86/4.60

shared learnable 3 1.37/1.72/2.01 2.95/4.00/4.84 2.88/3.90/4.62

learnable first layer 3 1.36/1.69/1.99 2.87/3.82/4.70 2.86/3.83/4.57

FC-GAGA 3 1.36/1.68/1.97 2.87/3.80/4.67 2.86/3.80/4.52

gate. “Graph attention” is a standard graph attention approach that does not per-

form hard gating. We see that the sparsification provided by our proposed gate is

essential; graph attention is even outperformed by the univariate FC-GAGA model

(“identity”). The univariate FC-GAGA outperforms all univariate methods in Ta-

ble 4–3 (ARIMA, SVR, FNN, FC-LSTM, and N-BEATS) by a large margin. When

W is set to all ones (“ones”), FC-GAGA is provided with more information from

the other graph nodes and can learn relationships between different nodes, but it

cannot emphasize influential nodes. We examine three learnable options: “shared

learnable” where all layers share a single learnable W, “learnable first layer” where
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W associated with the first layer is learnable, and it is set to the ones matrix for other

layers, and finally the fully learnable FC-GAGA approach. According to the results,

allowing the architecture to learn a different weight matrix for each layer leads to the

best prediction performance, and the additional computational overhead is minor.

Table 4–10: Profiling results: total training and evaluation runtime, and GPU mem-
ory utilization. Measured using official DCRNN, Graph WaveNet and GMAN codes
and our non-optimized tensorflow implementation of FC-GAGA on NVIDIA P100
GPU in the default Google Colab environment.

Models METR-LA

Runtime, min GPU memory, GB
DCRNN 358 8.63

Graph WaveNet 90 2.14
GMAN 215 9.84

FC-GAGA, 3 layers 37 0.93

PEMS-BAY

Runtime, min GPU memory, GB
DCRNN 828 8.63

Graph WaveNet 192 2.75
GMAN 366 9.84

FC-GAGA, 3 layers 69 1.47

4.3.8 Profiling Results

To confirm the computational efficiency of FC-GAGA, a profiling experiment is

conducted using a P100 GPU in the default Google Colab environment. We profiled

the original codes provided by the authors of DCRNN [15], Graph Wavenet [22], and

GMAN [17]. The profiling experiment uses our TensorFlow 2.0 implementation of

FC-GAGA, relying on standard Keras layer definitions, with no attempt to optimize

for memory or speed. Table 4–10 clearly shows that FC-GAGA is more computa-

tionally effective as it consumes approximately half the memory and compute time

of Graph WaveNet, is about 10 times faster than DCRNN and 6 times faster than

70



GMAN, and about 5-10 times more memory efficient than these algorithms. We can

also see that FC-GAGA scales well between METR-LA (207 nodes) and PEMS-BAY

(325 nodes) datasets, which may be an important property for handling larger scale

problems with thousands of nodes.

4.4 Summary

In this chapter, a novel gated graph neural architecture, called FC-GAGA, has

been introduced. The efficacy of this model has been demonstrated through exten-

sive experiments, including a thorough assessment of how the proposed approach

compares to state-of-the-art baselines. The results show that FC-GAGA compares

favourably even against graph-based models that rely on additional external graph

definitions on the two graph-based datasets. Moreover, the model achieves compa-

rable or better results for two non-graph datasets. In order to better understand the

model, we inspect the contribution of each layer to the final prediction and examine

the graph edge weight matrix W. Further ablation studies have been conducted to

validate the effectiveness of each part of the model. Finally, a profiling experiment

establishes the computational efficiency of FC-GAGA.
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CHAPTER 5
Conclusion

In this thesis, a novel neural architecture for spatio-temporal forecasting, which

we call FC-GAGA (Fully Connected Gated Graph Architecture), is proposed and

empirically validated. FC-GAGA combines a fully connected TS model with tempo-

ral and graph gating mechanisms that are generally applicable and computationally

efficient. The proposed approach offers three advantages. First, the architecture

does not depend on any knowledge of the underlying graph; instead, it focuses on

learning all the required non-linear predictive relationships. Second, the basic layer

of the architecture is stackable, allowing every layer to learn its own graph structure.

This provides the model with the ability to learn a very general non-Markovian in-

formation diffusion process that can be learned effectively, as we showed empirically.

Finally, FC-GAGA has a hard gate mechanism, which is efficient both in terms of

memory and computation, as demonstrated via profiling.

We empirically show that the proposed model can be learned efficiently from

the data to capture non-Markovian relations across multiple variables over layers in

the architecture, resulting in excellent generalization performance. We further pro-

file FC-GAGA’s training and inference runtime and demonstrate that it is several

times more efficient in its use of GPU memory and compute than existing models
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with comparable accuracy. Our results provide compelling positive evidence to stim-

ulate the development of fully connected architectures for graph-based information

processing.

Our empirical study supports that the magnitudes of the graph edge weights

introduced in the graph gate block correlate well with the geographical proximity of

nodes. The conducted experiments show that without the hard gating, the graph

weighting procedure is much less effective. Ablation studies also demonstrate that

when using the efficient fully-connected residual time-series prediction module, it is

not sufficient to apply standard graph attention, i.e., the sparsification achieved by

our proposed novel graph gate is essential in achieving good predictive performance.

We conjecture that this is because, for each target node, there are only a few relevant

nodes at a given layer; therefore, the input to the fully connected architecture should

be sparse. Hard gating encourages sparsity, while soft gating provides input that is

not sparse, which can lead to overwhelming a fully connected network with far too

many low-magnitude inputs originating from many nodes in the graph. Additionally,

based on the provided complexity analysis, the proposed graph gate design has N

times smaller complexity, O(N2), compared to most state-of-the-art methods in the

literature that exhibit O(N3) complexity (e.g., DCRNN, Graph WaveNet, GMAN,

and TRMF).

Future Work. One of the potential extensions to FC-GAGA is to effectively

have the graph edge weight matrix W that evolves over time. In the current model,

the predictions are generated by focusing on the long-term dependencies. An alter-

native approach might then be an architecture that is a combination of the model
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arising from the long-term dependencies (current W) and the one arising from the

short-term relationships. The idea might be that we normally make predictions at

node j based mainly on nodes {i, r, w}. However, for instance when there is very

heavy traffic, it is valuable to also learn from other nodes {i, s, t}. Through this

way, we can recognize the heavy traffic scenario by generating some kind of context

vector.

Although the proposed method in this thesis shows promising results for point

forecasts on both graph-based and non-graph datasets, the model has a serious dis-

advantage as it cannot measure the uncertainty in the predictions. Since one of the

major benefits of time series forecasting is to make decisions based on predictions,

it is essential to provide a prediction interval. Therefore, one important avenue to

pursue is to extend the existing model to a probabilistic forecasting approach.

74



REFERENCES

[1] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-BEATS: Neural
basis expansion analysis for interpretable time series forecasting,” in Proc. Int.
Conf. Learning Representations (ICLR), 2020.

[2] A. A. Neale, “Weather forecasting: Magic, art, science and hypnosis.” Weather
and Climate, vol. 5, no. 1, pp. 2–5, 1985.

[3] Y. LeCun, “Deep learning hardware: Past, present, and future,” in IEEE Int.
Solid-State Circuits Conf. (ISSCC), 2019, pp. 12–19.

[4] W. Bao, J. Yue, and Y. Rao, “A deep learning framework for financial time series
using stacked autoencoders and long-short term memory,” PloS One, vol. 12,
no. 7, 2017.

[5] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. W. Cottrell, “A dual-
stage attention-based recurrent neural network for time series prediction,” in
Proc. Int. Joint Conf. Artificial Intelligence, 2017.

[6] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and short-term
temporal patterns with deep neural networks,” in Proc. Int. ACM SIGIR Conf.
Research & Development in Information Retrieval, 2018, pp. 95–104.

[7] T. Guo and T. Lin, “Multi-variable lstm neural network for autoregressive ex-
ogenous model,” arXiv preprint arXiv:1806.06384, 2018.

[8] Y.-Y. Chang, F.-Y. Sun, Y.-H. Wu, and S.-D. Lin, “A memory-network
based solution for multivariate time-series forecasting,” arXiv preprint
arXiv:1809.02105, 2018.

[9] L. Munkhdalai, T. Munkhdalai, K. H. Park, T. Amarbayasgalan, E. Er-
denebaatar, H. W. Park, and K. H. Ryu, “An end-to-end adaptive input se-
lection with dynamic weights for forecasting multivariate time series,” IEEE
Access, vol. 7, pp. 99 099–99 114, 2019.

75



76

[10] F. Liu, Y. Lu, and M. Cai, “A hybrid method with adaptive sub-series clus-
tering and attention-based stacked residual LSTMs for multivariate time series
forecasting,” IEEE Access, vol. 8, pp. 62 423–62 438, 2020.

[11] P. K. Singh, Y. Gupta, N. Jha, and A. Rajan, “Fashion retail: Forecasting
demand for new items,” arXiv preprint arXiv:1907.01960, 2019.

[12] D. Rolnick, P. L. Donti, L. H. Kaack, K. Kochanski, A. Lacoste, K. Sankaran,
A. S. Ross, N. Milojevic-Dupont, N. Jaques, A. Waldman-Brown et al., “Tack-
ling climate change with machine learning,” arXiv preprint arXiv:1906.05433,
2019.

[13] X. Shi, H. Qi, Y. Shen, G. Wu, and B. Yin, “A spatial-temporal attention ap-
proach for traffic prediction,” IEEE Trans. Intelligent Transportation Systems,
pp. 1–10, Apr. 2020.

[14] L. Bai, L. Yao, S. Kanhere, X. Wang, and Q. Sheng, “STG2Seq: Spatial-
temporal graph to sequence model for multi-step passenger demand forecasting,”
in Proc. Int. Joint Conf. Artificial Intelligence, 2019, pp. 1981–1987.

[15] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting,” in Proc. Int. Conf. Learning Repre-
sentations (ICLR), 2018.

[16] B. Yu, H. Yin, and Z. Zhu, “Spatio-Temporal Graph Convolutional Networks:
A Deep Learning Framework for Traffic Forecasting,” in Proc. Int. Joint Conf.
Artificial Intelligence, 2018.

[17] C. Zheng, X. Fan, C. Wang, and J. Qi, “GMAN: A graph multi-attention net-
work for traffic prediction,” in Proc. AAAI Int. Conf. Artificial Intelligence,
2020.

[18] B. N. Oreshkin, A. Amini, L. Coyle, and M. J. Coates, “FC-GAGA: Fully
connected gated graph architecture for spatio-temporal traffic forecasting,” in
Proc. AAAI Int. Conf. Artificial Intelligence, 2021.

[19] W. L. Hamilton, Graph Representation Learning. Morgan & Claypool, 2020.

[20] T. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” in Proc. Int. Conf. on Learning Representations (ICLR), 2017.



77

[21] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in Proc.
AAAI Conf. Artificial Intelligence, 2019.

[22] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep
spatial-temporal graph modeling,” in Proc. Int. Joint Conf. Artificial Intelli-
gence, 2019, pp. 1907–1913.

[23] C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous graph
convolutional networks: A new framework for spatial-temporal network data
forecasting,” in Proc. AAAI Conf. Artificial Intelligence, 2020.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comp.,
vol. 9, no. 8, pp. 1735–1780, 1997.
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